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Abstract.

Recent developments in microfabrication technology have enabled the
manufacture of semiconductor devices in which the carriers scatter very
infrequently over typical device lengths. Transport of this kind is termed
ballistic, and under such conditions, coherent quantum interference phenomena
become an increasingly important part of the conduction process. In particular,

the conductors of such devices now assume the role of electron waveguides.

Most previous attempts at modelling quantum ballistic transport have been
based on one-dimensional models. However, relatively little was known about
the true nature of wavepacket propagation in real structures where diffraction

from apertures or around obstacles could occur.

This thesis presents the first theoretical study of quantum ballistic transport
in a two-dimensional quantum waveguide network. The study specifically
concentrates on modelling the Aharonov-Bohm effect in ring structures, which

is an exclusively quantum-mechanical effect.

The method of investigation was to numerically solve the two-dimensional
time-dependent Schrodinger equation for an idealised ring structure using a

computer algorithm which incorporated several novel techniques.

One-dimensional calculations show that one can expect a modulation depth of
100% in the oscillations in the magneto-resistance characteristic of such
rings. Present oscillation amplitudes measured experimentally however fall far
short of this figure, typically being about 0.1% of the background resistance in
metal rings and about 10% in rings formed in the two-dimensional electron gas

at a heterojunction interface.



Computer simulation of wavepacket propagation in these latter structures
clearly show a multi-mode structure in the wavefunction across the conductors
of realistically-sized rings. It is shown that it is the transmission of more than
one mode at the exit of the ring which is a major factor in reducing the
amplitude of the magneto-resistance oscillations. Good agreement between the
average magneto-resistance oscillation amplitude in the simulated and
experimental characteristics for a ring formed at a heterojunction was
obtained. The two-dimensional model can therefore be regarded as a major

improvement on earlier one-dimensional models.

Evidence suggesting a damping of the magneto-resistance oscillations as a
result of the direct action of the magnetic field acting on the conductors is also
found. It is estimated that the approximate cut-off field would be about 0.5 Tesla
for the particular device modelled, which is consistent with experimental
observations of a decline in the oscillation amplitude in the range 0.5-1.0
Tesla.

A modification of the basic ring structure to achieve larger
magneto-resistance oscillations by constricting the exit of the ring is proposed
and computer simulation of wavepacket propagation through this structure

shows that a substantial increase in modulation depth can be expected.

The techniques developed in this thesis have therefore been able to
successfully model existing quantum interference devices and also assess the
likely improvement in performance of a hypothetical device. These techniques
could 3  be applied to the modelling of wavepacket propagation in other types
of sub-micron quantum-interference devices where transport can be

considered to be ballistic.

(xii)



INTRODUCTION.

Motivation and Purpose.

Semiconductor physics and technology is now entering an exciting era in which new

phenomena are being discovered and harnessed to achieve novel types of electrical and
optical devices.

Much of this activity has been based on the modifications to the bulk material
transport properties which can be brought about by artificially tailoring the bulk
bandstructure at a microscopic level. Other novel effects have arisen from continued
miniaturisation of electronic components where quantum-mechanical behaviour is

becoming a significant aspect in the overall conduction process.

Although many such phenomena have been known to theoretical physics for some
time, the past decade has seen an intensification of research in these areas. This is
because the types of structures required for these effects to become promin nt can now
be realised following constant improvements in microfabrication technology. These
improvements have fuelled theoretical research in this area which, in turn, has

created the feedback to stimulate further advances in fabrication technology.

If microelectronics is to enjoy the further benefits of miniaturisation, the
fluctuation phenomena caused by the non self-averaging of random processes at a
microscopic level must be properly understood. However, a more optimistic view of
these processes is that they can be used to probe the underlying physics of the
conduction process at a microscopic scale. Indeed, quantum-mechanical interference

can form the basis of new types of devices where the small size is an advantage.

The fluctuation phenomena peculiar to conducting rings such as the Aharonov-Bohm
(AB) effect and the closely-related Al'tshuler, Aronov and Spivak (AAS) effect are due
to interfering electron trajectories following different paths which are explicitly
defined by the conductors. Interference phenomena such as weak-localisation and
universal conductance fluctuations on the other hand can occur in single wires. These
processes are also due to interfering electron trajectories following different

paths in a two-dimensional plane but within the wire itself.



Theoretical understanding of such phenomena in the collision-dominated diffusive
regime, which occurs mainly in metals and highly-doped semiconductors, is well
advanced. There is now however increasing attention being focussed on these
interference effects, particularly the AB effect, in channels within the high-mobilty
2DEG formed at a heterojunction. In this case electrons scatter infrequently over
typical device lengths and transport within such devices can be considered to be
ballistic with the conductors now assuming the role of electron waveguides. Relatively

little was known theoretically about this type of transport as it occu¥ed in real ring
structures.

Many early attempts to model this behaviour were one-dimensional and based on the
matching of plane wave coefficients around the ring. It soon became apparent however
that these models had the serious shortcoming that they predicted a 100% modulation
in the resistance of the ring with applied magnetic field when every experimental

result to date was much less than this, typically being about 10% of the background
value at most.

Real rings do not have one-dimensional conductors and the electron wavepacket has
some freedom to diffract out of apertures and around structures in two (or three)
dimensions. It was therefore believed that a more realistic study of ballistic transport
in these structures could be achieved by considering a two-dimensional model of
wavepacket propagation in these structures. In particular it was intended to discover
why the magnitude of the oscillations were so small and what effect the ring geometry
would have on the magneto-resistance oscillation amplitude.



Synopsis of thesis.

The first chapter describes how quantum interference processes can affect the bulk
transport properties of semiconductors. It is shown how different types of devices can
be classified in terms of their dimensionality arising from varying degrees of carrier
confinement. The process of major concern in this thesis is the Aharonov-Bohm effect
in multiply-connected geometries, and the chapter contains a review of various
experiments which demonstrate the effect in vacuo, metals and semiconductors

together with the relevant theory.

A parameter of particular interest is the quantum-mechanical transmission
coefficient of a particular structure, as this determines the current flow through the
device. Chapter two considers a variety of ways this can be evaluated in one dimension
but concentrates on two methods. One using transmission matrices and a more
sophisticated method using group-theoretical techniques. It is shown how the
transmission matrix method can be readily applied to calculate both the transmission
coefficient and, via the stationary-phase approximation, the transit time for electrons
incident on rectangular-shaped potentials in one dimension. The results obtained are

compared with well-known results for a resonant double-barrier potential.

Chapter three concentrates on the AB effect and explains how &  arises as a
consequence of gauge invariance. In order to maintain gauge invariance of the
Schrodinger equation the phase of the wavefunction changes by an amount determined
by the four-dimensional electromagnetic flux enclosed by the electron-beam
trajectories. The derived relations are used in a simple model to determine the
resulting wavefunction when the two beams are allowed to interfere. This is done for
both the magnetic and electostatic cases, although they both have a common origin in
the general theory.

Much recent research on the AB effect and other quantum interference phenomena
has been concerned with the transport in the two-dimensional electron gas (2DEG)
present in the inversion layers of silicon MOSFET devices and at heterojunction
interfaces in GaAs high electron mobility transistors (HEMTs). The major interest in
HEMT structures in relation to this thesis derives from the fact that the 2DEG can be
further confined to form quasi-1D wires and ring structures. Concentrating mainly on
GaAs devices, chapter four discusses several techniques for achieving this extra

confinement and the advantages and disadvantages of each method are outlined.



A detailed description of a patterned-gate HEMT ring structure fabricated

by Ford et al [1987] is given, as this was one of the structures for which computer
simulations were performed.

Chapter five describes how an idealised AB ring with one-dimensional conductors
was modelled. These studies formed the background work for the project and were
used for the interpretation of the two-dimensional results obtained later. This
time-independent model used transmission and scattering matrices to match the
plane-wave coefficients around the ring to find the total transmission. The results
confirmed the occurrence of the AB effect in one dimension and verified that the
transmission fell to zero when the enclosed magnetic flux was equal to half the flux
quantum h/e. The principal effect of constraining the electrons to move along
one-dimensional conductors was to introduce an energy dependence into the expression
for the transmission coefficient which was absent from the result obtained from the

analysis of a simple two-slit interference experiment.

The behaviour of the ring could be broadly classified according to whether the ring
was well or poorly coupled to its external leads. The results were in good agreement
with similar work by Buttiker et al [1984] but the underlying physics giving rise to
the transmission characteristic of a well-coupled ring with no scattering in the arms
was unclear. To explain the behaviour, an approach using phasor diagrams was taken
which showed that the transmission could reach zero at certain wavevector values even

though the magnitude of the wavefunction had not been reduced to zero.

Real rings have random potentials arising from remote donor ions superimposed on
the confinement potential and it was considered important to obtain an assessment of
the likely effects of this. The one-dimensional model was therefore used to
qualitatively study the effects of a scattering potential by considering the transmission
coefficient of the arms of the ring to be less than unity. The results of this study
showed that even a modest amount of scattering in the arms can have a large effect on

the transmission characteristic of the ring.

Chapter six discusses in general terms the modelling of quantum ballistic transport
in two dimensions and discusses some methods for the solution of the numerical
problem. The numerical solution of the one-dimensional problem is discussed in detail
as the solution of this later forms the basis for solutions of the problem in two

dimensions.



The problem was ultimately reduced to the evaluation of several sets of tri-diagonal
matrix equations for which standard numerical methods could be used. However, in
order to fully utilise the high-speed vector processing capability of the IBM 3090
(which was used for the magneto-transmission calculations), it was necessary to

restructure the numerical algorithm in a non-standard way. This technique is
described in detail.

Having introduced the general solution technique, chapter seven then deals
specifically with the modelling of a two-dimensional AB ring. The Hamiitonian
operators for two different magnetic field distributions are derived and the errors
incurred in the discretisation process are considered. The problem of unphysical

reflections from the mesh boundaries was solved by the use of an imaginary potential
to model an absorbing contact.

Chapter eight presents the results of the two-dimensional simulations. The results of
a small-scale preliminary simulation are shown and it is described how this model
was scaled-up to a more realistic size following an improvement in computing
facilities. The results from the larger model are discussed in detail and it is shown that
the formation of transverse modes in the conductors is a major factor limiting the
magnitude of the magneto-resistance oscillations.

In order to quantify results and enable comparison with experiment, it was
necessary to calculate the magneto-resistance characteristics of the AB rings. Chapter
nine describes how this calculation was performed and analyses the results by
comparison with the 1D models and by Fourier analysis of the magneto-transmission
curves.

The first magneto-transmission calculations were performed on the idealised
(though realistically-sized) ring so that the results from the earlier wavepacket
propagation study could be used in the interpretation of the obtained
magneto-transmission results.



The theory was compared against experiment by simulation of the
magneto-resistance characteristics of a ring fabricated by Ford et al [1987]. Initial
determinations of the magneto-resistance oscillation amplitude were rather higher
than those found by experiment. However, later evidence and subsequent calculations
show that this discrepancy can, to a large extent, be attributed to uncertainties in the
width of the conducting channels.

Further calculations using revised values for the channel width were in better
agreement with the observed oscillation amplitudes.

Based on the hypothesis that the transverse modes are responsible for the reduction
of the magneto-resistance oscillations, a modified ring geometry is proposed. A
simulation of wavepacket propagation through this structure showed that the on/off
transmission ratio could be substantially improved.

Finally, the effects of a longitudinal electric field and the presence of remote ionised
donors are qualitatively investigated.



1 Quantum interference phenomena

1.1 Introduction.

In this chapter several classes of quantum devices are described in terms of their
dimensionalities. The quantum-mechanical effects of the reduced dimensionality are
then examined and the different types of interference phenomena which occur are
identified. Particular emphasis is placed on the Aharonov-Bohm (AB) effect which is

the major concern of this thesis.

A review of experiments and accompanying theory for the AB effect in vacuo, metals
and semiconductors is given. The AB effect in semiconductors is of particular relevance

to this thesis and will be discussed in greater detail in further chapters.

1.2 Classes of quantum devices.

It may be argued that all semiconductor devices are quantum devices in the sense that
many concepts of solid-state theory such as allowed energy bands, Fermi-energies and
effective mass are based on quantum theory. However, usually when one refers to
quantum devices, it is meant that the bulk material has been modified in such a way so
that the presence of quantum effects radically alters the conventional transport

properties.

Modifications to the bulk transport properties have been achieved by the use of
molecular beam epitaxy (MBE), metal organic vapour deposition (MOCVD) and
improvements in electron-beam lithography. Much of the current work is based on
GaAs/AlGaAs materials, although there is also considerable amount of research on the

InGaAs system and to a lesser extent in strained-layer silicon structures

The GaAs/AlGaAs system is particularly suitable for the manufacture of quantum
devices. The low effective mass in GaAs and its composites results in a longer DeBroglie
wavelength for a given electron energy, and since quantum effects become prominent
only when the DeBroglie wavelength is comparable with device dimensions, this

permits less stringent limits on fabrication technology.



Secondly, aluminium has a similar lattice parameter to gallium, so alternate layers
of GaAs and AlGaAs with varying amounts of aluminium content can be grown whilst
maintaining interfaces of good integrity. The effect of the aluminium is to increase the

band-gap energy thus causing an energy discontinuity in the conduction and valence
bands at each interface.

By the growth of alternate layers of GaAs and AlGaAs, the resulting conduction band
consists of a series of energy barriers, which, theoretical work has shown [Collins
1986], can be interpreted in terms of an electrostatic potential. The techniques of
MBE and MOCVD have been used to fabricate resonant tunnelling devices [Capasso
1986] in which the conduction band profile consists of two potential barriers of about
20-50A thickness separated by a gap of about 20-50A. It may be shown (chapter 2)
that even if the tunnelling transmission through any one of the barriers individually is
negligible, there exists a resonant energy for the double-barrier combination for
which the transmission is unity. This behaviour is important because the resonant
transmission can lead to a negative differential resistance in the current-voltage
characteristics which could be used as the basis of a very-high-frequency amplifier
or switch [Sollner et al 1983].

If more potential barriers are considered, more resonant or "allowed" energy levels
are found to exist, which cluster together. In the limit of a large number of barriers,
the device is known as a superlattice [Capasso 1986, Esaki 1986] and the clusters of
resonant energies are identified with the mini conduction bands of the superlattice.
Since the superlattice period is larger than the interatomic spacing of the GaAs
composite, the energy bands of the superlattice are narrower than the bulk conduction
bands and may consist of a series of closely-spaced energy levels; contrasting with the

essentially continuous bulk conduction band.

The resonant tunnelling device and superlattice are examples in which the transport
through the material has been affected by the introduction of potential barriers into
the bulk conduction band which are comparable with the DeBroglie wavelength.
However the definition of quantum devices can be expanded to include effects which
play a more passive role in altering the conduction processes. An example of this type
of device is the high electron mobility transistor (HEMT). The HEMT consists of a
highly-doped AlGaAs layer grown on top of an unintentionally doped GaAs substrate.



The electrons from the the high-band-gap AlGaAs composite diffuse into the GaAs and
become trapped at the interface where they form a two-dimensional electron gas
(2DEG). Conventional transistor operation benefits from the higher mobility of the
2DEG which arises mainly as a result of the segregation of the conduction electrons
from their donors. Thus in this case, the quantum effects are being used to enhance the

performance of a conventional type of device rather than the effects themselves

forming the basis of operation.

An important development of the HEMT-type structure has been the the use of shaped
gate contacts which, by the formation of depletion regions, provide a means of
confining the 2DEG into narrow channels and other configurations. A more complete

description of these structures will be given in chapter4.

One way of classifying the various types of quantum device is by reference to their
dimensionality and figure 1.1 shows how the devices discussed may be classified in this
way. The patterned-gate HEMT structure is seen to be particularly versatile in that
the 2DEG can be further confined to form a superlatt« or resonant tunnelling device,
or by the use of high confinement potentials, quasi-1D wires and Aharonov-Bohm

rings. In principle the technique could also be used to fabricate arrays of loops or
quantum dots.

1.3 The Aharonov-Bohm effect.

1.3.1 General

Of increasing interest in the study of quantum interference effects is the quantum
transport of wavepackets through ring structures and arrays of loops such as those
shown in figure 1.1 [Washburn and Webb 1986].

In the case of the single ring, an incident wavepacket can be split into two coherent
wavepackets propagating around each half of the ring and recombining at the opposite

side where they interfere with each other.



Figure 1.1 Classes of quantum devices

No confinement Confinement in 1D Confinement in 2D Confinement in 3D

AlGaAs ponors "Quantum dots"

mm\ o, O e} o0 ﬁAT||||a4
L ﬁ Q ©c 00 © RlGaAs

IIIII — = | P =S

2DEG -
No perturbation Gans o GaAs

\ g AlGans g

\A\ Bulk material Basic HEMT device M\f Etched wires -, . B
7 < N . . i .

RT device/Superlattice | Stron erturbation = i
P Lateral suface Superlattice | B Confinement
+ Perturbation % 4 _ \\\\\\\\ﬁ
% |
‘ 7
in 1D \ > S D [ D
A | ﬁw \_

Gates _ Devices mo;::@ 1D channels

Patterned-gate HEMT devices

gt

+ Pertutrbation

0n

——=———— Aharonov-Bohm rings

ﬁ
Ik

resonant tunnelling device




A particularly interesting situation arises if the ring is subjected to a perpendicular
magnetic field. The effect of the vector potential created by the field is to change the
phase of the wavefunction by an amount

Ad = (eM) A dr (Egn 1.1)
where A is the vector potential.

The two partial wavepackets can therefore acquire equal but opposite additional
phases due to the vector potential which means that the interference and hence current
at the output can be controlled by the magnetic field. In particular, when the relative
phase between the wavepackets is n, complete cancellation occurs and simple theory
predicts that the output current should fall to zero. As the magnetic field is increased,
the resistance of the ring is predicted to vary in a sinuseidal fashion as the
wavepackets experience consecutive conditions of constructive then destructive
interference. This phenomenon is known as the Aharonov-Bohm (AB) effect [Aharonov
and Bohm 1859].

Figure 1.2 shows schematically how the effect occurs in ring structures.
The AB effect is closely analogous to Young's double-slit experiment in optics, and
indeed many of the early experiments on the AB effect using modified electron-beam

microscopes were of the double-slit type geometry.

Figure 1.2 Schematic representation of wavepacket
propagation in ring structures.
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Theoretical studies (discussed in greater detail in chapter 3) have predicted the
following characteristics for the AB effect.

1. The resistance oscillation is a periodic function of magnetic flux threading the
ring, of period h/e.

2. The interference is controlled only by the threaded flux and not directly by the
field strengths.

3. The effect of a magnetic field acting on the trajectories is to displace the
interference pattern as a whole, but not directly alter the arrangement of interference

fringes within the overall single-slit diffraction envelope.

Figures 1.3 to 1.5 illustrate these points for a generic double-slit experiment,
although the same principles also apply to the ring geometry.

The result that the interference pattern can be changed by a magnetic field which is
confined solely to the non-accessible region is a surprising one because it means that
the current flow through a ring structure can be changed without any force being
exerted on the electrons. It also means that the electrons are aware of the presence of
the magnetic field in a region which they cannot visit. It must also be stressed that this
behaviour is not due to any effect arising from the close proximity of the conduction
paths to the magnetic field as the conductors can, in principle, be moved arbitrarily
far away from the region of magnetic field provided that the wavetrains still remain

coherent.

However, from a theoretical point of view, one cannot ignore a priori the fact that
irrespective of how far away the conductors are from the region containing the
magnetic field, an extremely small, but nevertheless finite, overlap between the
wavefunction and the field-containing region occurs. The same argument can also be
applied to the case where the electrons are prevented from entering the
"non-accessible" region by confining potentials because of the physical impossibility
of infinitely large potentials. This problem has been resolved theoretically by
considering the AB effect for the case of finite confinement potentials. [t was then
shown [Olariu and Popescu 1985] that the AB effect still occurred in the limit of the
confinement potential tending to infinity at which point the space available to the

electrons was trui  muitiply-connected.
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In the following sections the experimental evidence for AB-type quantum
interference effects in vacuum, normal-metals and semiconductors will be discussed
alongside the relevant theory.

1.3.2 The Aharonov-Bohm effect in vacuo.

The quantum interference of electrons resulting from enclosed fluxes was noted by
Franz [1939] as far back as 1939. Later, Ehrenberg and Siday [1949] also predicted
observable quantum interference effects in the context of electron optics.
Unfortunately, it seems that these two papers aroused little interest outside the
immediate scope of their specialist areas. Ten years later still, Aharonov and Bohm
published their widely acclaimed paper [ Aharonov and Bohm 1959] on the effects of
electromagnetic fluxes on quantum phenomena. The success of this paper lay in the
fact that the wider implications of the role of electromagnetic fluxes in quantum
mechanics was emphasized whilst also pointing out that the technology necessary for
testing the theory already existed.

The earliest experiments demonstrating the AB effect used electrostatic biprisms of
the sort first used by Mollenstedt and Duker [1956] to observe electron diffraction
patterns around a metallic fibre. A schematic diagram of the electrostatic biprism is
shown in figure 1.6 . Since contributions from different parts of the source are
incoherent, it was necessary that the width of the source did not exceed about 100nm to
ensure a coherent beam of electrons. This narrow source was obtained using
electron-optical techniques from a real electron source of 50 microns width. The
central fibre was held at a positive potential with respect to the two grounded plates
and had the effect of deflecting the electron beam by a certain angle which was
independent of the distance of closest approach to the fibre. The effect of this was to
create two virtual _ources either side of the fibre and was made possible by the fact
that the 1/r-dependence of the electric field produced by the charged fibre balanced
the r-dependence of the time spent in that electric field. Using this electron focussing
geometry, Mollenstedt and Duker were able to demonstrate the quantum-mechanical

analogue of Fresnel diffraction around the fibre.
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Figure 1.6

Schematic diagram of the electrostatic biprism of

Mollenstedt and Duker. The two demagnifying lenses

are to reduce the apparent size of the electron
source and the two magnifying lenses are to

increase the size of the resulting interference
pattern.
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Figure 1.8

Qualitative representation of the interference pattern
obtained in the biprism experiments of Chambers.

The diagram on the left shows the fringe distribution
without an applied flux whilst the diagram on the right
shows the fringe distribution when a mag«tised whisker was
placed in the shadow region of the biprism.



However, it was Chambers [1960] who performed the first experiments
demonstrating the quantum effects of an enclosed flux. The apparatus used was similar
to the electrostatic biprism of Mollenstedt and Duker, but in order to introduce a

magnetic flux between the beam trajectories an iron whisker was placed in the shadow
region behind the central fibre of the biprism.

Such whiskers were known to be single magnetic domains and to taper with a slope of
about 10-3 (figure 1.7). The taper gave rise to a radial leakage field which reduced
the z-component of the flux. The z-component of the flux produced the enclosed flux
which was responsible for the displacement of the interference fringes, but since this
flux changed along the length of the whisker, so did the displacement of the fringes. In
particular, the rate at which the flux was changing at any point along the z-axis was
proportional to the radial field at that point. The fringes were thus tilted with respect
to the z-axis, the slope of which was determined by the rate of loss of the enclosed flux
to the radial field. Figure 1.8 shows a qualitative reproduction of the results from the
experiments of Chambers. All the observed effects were in good agreement with the
theory of Aharonov and Bohm.

1.3.3 The Aharonov-Bohm effect in metals

The experiment outlined above was performed in a vacuum. In metals and
semiconductors however, the situation is very different in that electrons scatter
elastically (without loss of energy) due to lattice defects, impurity atoms, grain
boundaries and can also scatter inelastically from phonons. In samples of large size
(>several tens of microns) electron transport may be thought of as diffusive, that is,
electrons follow random paths within the material constantly colliding with lattice
impurities or phonons, and then accelerating between collisions. In this regime,
transport may be described in terms of an average collision rate [Blakemore 1985].
Carriers responsible for current flow are generally those close to the Fermi surface,

so that the mean free path I, between collisions can be written as I=Vs.t where Vjis

the Fermi velocity and t, the mean free time between collisions. Typical mean free

path lengths in metals are in the order of a few nanometres.

In 1981 Al'tshuler, Aronov and Spivak (hereatterreferred to as AAS) considered the
effects of a magnetic vector potential on the conductivity of a disordered normal-metal
cylinder [Al'tshuler, Aronov and Spivak 1981]. The calculation, based on the

diagrammatic evaluation of the Green's function for electrons close to the Fermi-level
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showed that in the quasi-1D case (where the circumference and thickness of the
cylinder is small compared to the elastic scattering length) the correction to the
classical Boltzmann conductivity varied with the applied flux as (1/2)h/e; half the
normal Aharonov-Bohm flux. It was also found that the modulation amplitude of the
fluctuations decreased exponentially with increasing circumference: a result which is

in agreement with a simpler theories of the interference effect.

Seeking to verify the AAS effect, Sharvin and Sharvin [1981] coated a quartz
filament of about 1.5 micron diameter and 1cm length with a magnesium film (figure
1.9). The choice of metal was motivated by the need to cool the sample to extremely low
temperatures (less than 1K) so that the mean free path was as long as possible whilst
ensuring that the sample did not become superconducting. The results, which are
shown in figure 1.10, clearly showed the predicted h/2e resistance oscillation. This
was the first of many experiments which showed that the crucial transport parameter
was the inelastic scattering length and not the total of inelastic and elastic scattering
lengths. The present view is that although elastic scattering changes the phase of the
wavefunction, it does so in a deterministic manner so that for a particular sample, a
degree of correlation between trajectories is still possible. Any inelastic scattering
process however, completely randomises the phase of the wavefunction so that no
time-independent interference effects persist. Therefore, in using the word "coherent"

it is usually understood that elastic collisions are to be allowed.

The identification that inelastic processes controlled quantum interference effects
was an important step, as at low temperatures the inelastic scattering length can be
several microns whereas the elastic scattering length is seldom more than a few
Angstroms. Although the origin of the h/2e oscillations may be formally understood
from the diagrammatic calculations of AAS, the essential physics involved can be
highlighted by considering a simple model of the interference process in which
identical pairs of electron trajectories traverse the loop in opposite directions and
interfere with each other back at their point of origin. The effect of this is to cause an
enhancement of the wavefunction at the origin and increase the dwell time in this
region resulting in an increase in the resistance of the sample. Gijs et a/ [1984]
performed a detailed study of the AAS type resistance oscillations in clyindrical
magnesium films in which the behaviour predicted by AAS was observed. This work

also included a study of the temperature dependence of the oscillations, which

supported the theory that the phase coherence length 1,(T) decreases with increasing

temperature.
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Figure 1.9
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Although flux-dependent oscillations had now been observed, there had been no clear
observation of the AB conductance oscillation of period h/e and so research was
initiated to search for these oscillations. Figure 1.11 shows a single loop of gold used
by Umbach et al [1984] in their early experiments to detect conductance oscillations
of period h/e. Figure 1.12 shows the magneto-resistance characteristic of this ring
from which it is seen that there is no obvious structure in the plot such as h/e or h/2e
oscillations. On the contrary, the magneto-resistance spectrum appeared to consist of
random noise, and it was only after careful examination that it was found that the data
were, in fact, reproducible on cycling the magnetic field. Despite temperatures as low
as 3mK and a ring diameter of 280nm with 45nm wide wires, the resistance
fluctuations were only about 0.1% of the background resistance. The resistance
fluctuations persisted up to fields of about 8 Tesla, which ruled-out oscillations
arising from the AAS effect which were known to decay at much smaller fields
(corresponding to fluxes of a few h/e). It was also found that the scale of the
fluctuations increased with decreasing temperature approximately as T-1/2_1n these
experiments however, it was not certain as to whether phase coherance had been
maintained around the loop. In any case, an argument was put forward by Stone
[1985] suggesting that even if phase coherence had been maintained, the variety of
trajectories within the ring due to its low aspect ratio (the ratio between the ring
diameter and the wire width) would result in apparently aperiodic fluctuations. The
electrons traversing the inner and outer perimeters, for example, would acquire
different phases from the field since the trajectories would enclose different amounts
of flux. When the contributions from these trajectories were added together they would
give rise to not just one periodicity in field but many, resulting in a confusion of
signals at the output. The temperature dependence was explained in terms of an energy

averaging of the incident electron distribution caused by thermal effects over an
energy range E=K,T. Assuming the existence of some energy correlation range E, over
which the structure in the magneto-resistance data remains the same, the ring was
thought of as averaging n=KJ/E. uncorrelated channels. This would mean that if the

signal in each channel was treated as a random variable, the relative size of the

fluctuations would decrease in amplitude by a factor n"12, Thus under the conditions

1/2

where K{J>>E. (ie many channels), this would explain the T~ temperature

dependence.
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Stone [1985] supported his findings by using a numerical simulation, based on a

nearest-neighbour tight-binding model developed earlier by Lee and Fisher [1981].
The aperiodic fluctuations in the data hindered the search for the expected h/e
oscillations and it was suggested that a necessary condition for observing unambiguous

h/e oscillations was that the wire width be much smaller than the ring diameter.

With the intent of observing clear h/e oscillations of a single period, Webb et al
(1985] manufactured a larger device (diameter 784nm) whilst keeping the wires at
approximately the same width (41nm). This strategy was well rewarded, resulting in
the first clear observation of h/e oscillations in single loops (figure 1.13). The
oscillation period was in good agreement with that expected from the average area

enclosed by the loop which was measured with an electron microscope.
1.3.4 The Aharonov-Bohm effect in semiconducting structures.

Other workers then turned to semiconducting structures. The motivation for using
semiconducting structures, such as M(hAs were as follows:-

1. The DeBroglie wavelength is typically much longer than in metals, so that the
number of transverse modes in any structure would be substantially reduced, leading

to enhanced interference effects.

2. Mobilities in such materials, most notably at a GaAs /AlGaAs heterojunction, were
known to be very high and offered near-ballistic transport in realistically-small

devices.

3. The methods for producing ultra-thin layers with good integrity and the associated

lithographic processes were both well advanced.

Bandyopadhyay et al [1986] performed some preliminary experiments based on the
electrostatic version of the AB effect using a semiconducting structure shown in figure
1.14. Oscillations near the h/e period were found, although they were still only about
0.08% of the background resistance. Furthermore, only a few oscillation periods were
seen, which although the period seemed to be correct, raised doubts as to whether they
were in fact AAS h/2e oscillations that were being damped by the field. Timp et a/
[1987] searched for the AB effect in a patterned-gate high-mobility GaAs /AlGaAs

heterostructure.
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Figure 1.11

ggld loop fgbricated by Umbach et al to search for
Thgnito—re51stan;e oscillations of period h/e.

1€ loop has an inside diameter of 280nm and the
wires are about 45nm in width.

Figure 1.12

Magneto-resistance characteristics of the ring fabricated
by Umbach et al. The zero-field resistance of the ring, Ro,

was 7.7 Ohms.
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Clear observation of h/e magneto-resistance
oscillations by Webb et al.
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Structure of a device utilising the electrostatic
Aharonov-Bohm effect proposed by Bandyopadhyay et al.



This type of structure had also been used by other workers [Ford et al 1987] and
will be discussed in greater depth in chapter 4. The oscillation in the ring of Timp et
al were much larger, being about 10% of the background resistance and were
unambiguously identified (given the ring dimensions) as being of the h/e type. One of
the other findings was that at around 0.3 Tesla the oscillations started to decay. The
onset of this decay apparently ocurred when the Larmor radius was half the wire

width; an effect which will be discussed in greater detail in chapters 8 and 9.

1.4 The characteristics of different types of quantum interference

processes.

Early experiments on metal rings showed a variety of conductance fluctuations with
different periods of oscillation and different behaviours in strong magnetic fields. The
h/2e AAS effect is due to time-reversed pairs of trajectories encircling the ring and
returning to the origin and is insensitive to ensemble averaging because the initial
phase of the pairs is unimportant. These oscillations, which are typically no larger

than the the h/e contribution, do not self-average to zero.

The h/e trajectories are those which travel independently round each half of the ring
and recombine at the other side of the ring. These trajectories start with an arbitrary
phase relative to each other and therefore the h/e contribution self averages to zero as
the number of trajectories is increased. If a magnetic field is uniformﬁj applied to
the wires in addition to the centre of the ring, the AAS trajectories now enclose
differing amounts of flux, leading to different periods of oscillation. When these
contributions are summed over all paths, the total oscillation amplitude is diminished.
To illustrate these points consider the h/e contribution to be the sum of cosine terms

over all paths with a period ®y=h/e and an arbitrary relative phase yp for each path.
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If By is the magnetic field required to produce a flux of ®¢g through the centre of the

ring then the contribution to the conductance from this process will vary
approximately as:-

AG(B) ==z Cos{( BBy~ yp).2n} (Egn 1.2)

where vp follows a random distribution over the paths. The AAS effect near zero

field has the form:-
AG(B) = - Cos{( 2B/Bgy).2r} ( B<<Byp) (Egn 1.3)

and does not depend on any relative phase between paths. However, due to the fact that
different trajectories will enclose slightly different areas, the value of By will vary

from one path to another in both h/e and h/2e cases.

For the h/e contribution the conductivity correction can be written as:-
AG(B) =ZIp Cos{( B/(Bo(P)) + ¥p).2m} (Egn 1.4)

Since the areas enclosed by the paths vary randomly within some range, this can be

rewritten as:-
AG(B) = Ip Cos{( B/Bg + fp).Zn} (Egn 1.5)

Where the difference between B/(By(P)) and B/By has been absorbed into the phase

factor v'p which is different to yp but still follows a random distribution.

Applying the same procedure to the AAS contribution gives:-

AG(B) =-3p Cos{( 2B/(Bo(P) )-2%) (Eqn 1.6)

=-ZIp Cos{(2B/By+ Yp).2n}
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Thus for fields of the order By, or greater, the AAS effect will start to average to zero
like the h/e paths.The only effect the flux has on the h/e paths, which are more
numerous, is to effectively change the random relative phases from Yp 10 ¥, which is

no different than the situation for which B=0. Thus, if h/e type oscillations are seen at

all for B=0, the application of a magnetic field will not substantially alter the h/e
contribution.

In addition to the periodic h/e and h/2e types of oscillation, there are other
fluctuations in conductance present that occur in rings or wires which show that these
latter fluctuations are not strongly related to the topology of the system in which they

are occurring.

A sharp decrease in magneto-resistance can be observed just above zero field in
rings or wires. This effect is known as weak localisation and is due to the coherent
backscattering of pairs of trajectories back to the origin. Weak localisation can be
thought of as a more disordered form of the AAS effect in rings, but unlike the AAS
effect, the areas enclosed by pairs of trajectories are defined by elastic collisions with
impurity sites and not by the conductors forming the ring. Weak localisation effects
therefore do not exhibit a single oscillation period but a superposition of periods
relating to a range of areas enclosed by the trajectories (up to a maximum cut-off
defined by the inelastic scattering length). Like the AAS effect, the localisation effect is
quickly destroyed by the application of a magnetic field of the order of a few times the

h/e flux quantum.

Another type of interference effect causing conductance oscillations has been
reported to exist at fields of up to 11.5 Tesla [Leadbeater et a/ 1987]. These
oscillations are also due to scattering from impurity sites and are believed to be
related to the h/e type process, which is consistent with the persistence of the
fluctuations to high fields. An analysis of this process by Lee and Stone [1985] has
shown the magnitude of the fluctuations to be of the order of h/e2 and independent of
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sample size provided the wavefunction remained coherent within the sample. These
oscillations were termed universal conductance fluctuations since it was also found
that the magnitude of the fluctuations were independent of the degree of disorder and
were only weakly dependent on sample shape. Figure 1.15 summarises the different

types of interference processes and the types of electron trajectories which occur in
each process.

Universal conductance fluctuations in n-doped GaAs wires and split-gate
heterostructures have been studied by Leadbeater and Taylor [Leadbeater et al 1987].
Figure 1.16 shows the measured magneto-resistance for a wire of 50nm thickness,
90nm width and 10 microns length. The four curves correspond to the

magneto-resistances of the wire at temperatures of 4.2K, 13.4K, 26.0K and 51.5K
from top to bottom.

The sharp decrease in resistance near zero field for each trace is due to the
destruction of the weak localisation back-scattering effect with increasing magnetic
field. Two main points are to be noted from these data. The first is that the amplitudes
of the fluctuations decrease with increasing temperature, indicating an overall
decrease in coherent backscattering due to the increase in phase-breaking collision

events. The second point is that there is a good correlation between the positions of
the peaks in the traces at each temperature which were reported to be reproducible for
temperatures below about 100K. This suggests that the microscopic defect
configuration of the sample remains fixed at temperatures below 100K as the
displacement of only one scattering site would be statistically indistinguishable from
an entirely different random configuration, and can be expected therefore to give very
different structure in the magneto-resistance characteristics [Cahay et a/ 1988]. The
change in magneto-resistance structure above 100K is probably due to the thermal
activation of electrons into defect traps such as the "DX-centre" [lwata et al 1986]
which would change the microscopic arrangement of scattering sites. Research is
currently in progress to obtain more information concerning the precise mechanism
[Taylor 1988 ].

Figure 1.17 shows cosine Fourier transforms of the full magneto-resistance curves
(ie including negative field values). For single ring AB-type oscillations, the Fourier
spectrum would normally show a distinctive peak around the oscillation frequency
corresponding to a flux of h/e penetrating the ring. In the case of the universal

conductance fluctuations, the spectrum of flux-enclosing areas can be revealed by
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Figures 1.16 and 1.17 showing the magneto-resistance (MR) and
Fourier transform of the MR respectively of a 90nm-wide wire.
The four curves correspond to measurements taken at temperatures
of 4.2K, 13.4K, 26.0K and 51.5K from top to bottom.
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considering the contribution from each loop to be oscillating with a flux period of h/e.
Thus, the peaks in the Fourier transform data can be identified with areas enclosed by

contributing interference loops. The area scale is shown on the upper horizontal axis.

The oscillations in the Fourier transform data decay as the corresponding loop area
increases due to the elimination of the larger loops from the interference process
which is a result of the increased probability of a phase-breaking collision occurring
during transit around the loop. This conclusion is substantiated by sharper decreases

in the Fourier amplitude as the temperature was increased.

1.5 Summary

A review of quantum-mechanical effects in semiconductors was given and it was
shown how the bulk transport properties could be altered as a direct result of these
effects.

The different types of devices are classified by reference to their dimensionalities
and the HEMT structure was shown to be a particularly versatile structure and will be

discussed further in chapter 4.

The Aharonov-Bohm effect in vacuo, metals and semiconductors was then discussed.
In vacuo, electrons move ballistically and produce clear interference fringes in
electrostatic biprism experiments. In metals, the situation is quite different. The
electrons can suffer many elastic collisions before interfering and so the transport can
be thought of as diffusive. The transport in semiconductors is intermediate between
these two extremes, although low temperature transport in the 2DEG in high mobility
HEMT structures can be regarded as ballistic or near-ballistic over typical device

lengths.

In metals and semiconductors a variety of conductance fluctuations are observed.
These fluctuations are viewed as different aspects of the same fundamental process.
Weak localisation is seen as a disordered form of the AAS effect and arising from the
scattering of the electron trajectories from impurity sites whilst universal

conductance fluctuations are seen as a disordered form of the h/e AB process caused by

diffraction around impurity sites.
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2. Quantum-mechanical modelling of devices in one dimension.

2.1 Introduction.

This chapter describes the quantum-mechanical modelling of 1D devices which was
performed in the early stages of the project. Three numerical techniques for finding
the quantum-mechanical transmission coefficient for a one-dimensional potential

barrier are outlined with particular emphasis on an approach using transmission
matrices.

The orginal motivation for concentrating on the transmission matrix method was that
it was expected to provide a simpler way of calculating transmission coefficients for
rectangular potential barriers and superlattices. It transpired that this was the case,
but it was also found that the method provided a simple means of calculating the transit
time through a system of barriers using the stationary phase approximation. In
addition to these advantages, it was also recognised that, through the introduction of the
3-port scattering matrix, the theory could be extended to include multiply-connected
ring structures, which are the subject of further study.

As a case study, the behaviour of the transmission coefficient and tunnelling time of a

resonant tunnelling device was investigated using the transmission matrix technique.

2.2 Methods of calculating the transmission coefficient of a

one-dimensional potential.

The transmission coefficient for an arbitrary one-dimensional potential cannot in
general be found by simple analytic means. In cases where the potential is varying
slowly and the incident electron energy is substantially less than the barrier height,
the WKB approximation [Schiff 1955] can be used with some degree of success.
However, in many important situations such as the double-barrier tunneiling
problem, it has been shown [Collins 1986] that the WKB method is inadequate,
especially in predicting the position of the resonant transmission. For these cases
therefore, the WKB method cannot be relied upon and more robust numerical methods

must be sought.
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The first method considered was the method of Vigneron and Lambin [1980] who
showed that if a region of arbitrary potential was considered to be between two regions
of constant potential (at the end-points), the discretised Schrodinger equation could be
efficiently solved by means of a continued fraction method. Once the problem has been
discretised the method of Vigneron and Lambin solves the discretised Schrodinger
equation exactly resulting in a terminating continued fraction. This method was used by
Collins to find the transmission coefficients of single and double barrier structures,
and has also been extended to find the complex transmission and reflection coefficients

[Collins 1986] which contain information about the phase-shifts in the wavefunction.

Another method of solving for the transmission coefficient of a one-dimensional’
potential is by the use of the transmission matrix method and it is this method which is
studied in this project. Its advantage over the continued fraction method is that
considerably less computation is required if the form of the potential consists of
rectangular-shaped barriers. It will also be shown that the complex transmission and
reflection coefficients arise naturally from this method which enables a

straightforward calculation of the tunnelling delay time through a system of barriers.

Finally, a more advanced approach using group-theoretical techniques is outlined.
This approach is particularly well-suited to the calculation of the wavefunction
through a system, although if only the transmission coefficient is required, the
simpler tansmisson  matrix method suffices.
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2.3 Transmission matrix methods.

In the most usual formulation of transmission matrix theory one considers an
arbitrary one-dimensional potential V(x), such as that depicted in figure 2.1, which
is constant outside the domain -| <x<+| The barrier need not be centred on x=0,
but it simplifies calculations if it is. The transmission matrix (T-matrix) then

relates the coefficients of the forward and backward propagating plane waves on the
right on the barrier to those on the left.

C=TA ( Egns 2.1)

A=(A} , C=(C . T = (T11 Tio
A’ c To1 T22>

Appendix A contains more information on the T-matrix and its properties, including
its relation to an equivalent scattering matrix.

The utility of the transmission matrix can be demonstrated by considering the

propagation of a wavetrain through a system of barriers similar to that shown in
figure 2.2. If the individual transmissions T4,T2,T3...T; can be found then the total

transmission is not the product of each of the individual transmissions. This is because
in simply multiplying the transmissions, corrections due to multiple reflections
within the structure are not taken into account. When the length of the system is
comparable to the coherence length, multiple-reflection processes can be an important
or even dominant factor in characterising the electrical behaviour of the structure.
When the system is large compared to the coherence length, and there is no coherent
interaction between the barriers, then the classical result outlined above is valid. In
order to arrive at the correct formulation of the composite transmission matrix for a
small system it is necessary to match the wavefunction at each interface. Since the
transmission matrix relates the forward and backward propagating plane waves to the
right of the barrier to those on the left by matching wavefunction and its derivatives at
both interfaces, the correct rule for finding the composite T-matrix is to muitiply the

individual matrices for each of the barriers together.
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However, in multiplying these matrices together, account must be taken of the
null-potential region between the barriers, which will introduce an additional phase
factor. The inclusion of these phase-shifts is essential in the modelling of

quantum-mechanical systems as they are responsible for the energy resonances which
occur in the system.

Care must be taken even if the barriers are in immediate contact with each other
because the model calculation for the rectangular barrier assumed that the barrier
was centred at x=0, which can only be true for one barrier in the system. To
circumvent this difficulty, another matrix is used to connect the general solutions for
each barrier and its effect in multiplying the current matrix product by it is to
relocate the next barrier at the origin. Taking the centre as the reference point for
each barrier, the general solutions are matched according to:-

An+1 Br exp( |kAx ) (Eqn 2.2)

A'nst B'n exp( -ikAax ) (Eqn 2.3)
Where Ax is the distance between the centres of the barriers.

This transformation may be conveniently implemented using the iteration matrix,
defined by:-

D - exp(kax) 0 | (Eqn 2.4)
0 exp(-ikax)

The general solutions are thus connected via:-

Apn,1 = Dp.Cp (Eqn 2.5)

Since Ap and Cp, are related to each other by the T-matrix, a recurrance formula

may be formulated:-

An+1 = Dn.( Tn An ) (Eqn 2.6)
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Figure 2.1

Type of potential considered in transmission-matrix
calculations.

Figure 2.2

Type of potential which is well-suited for T-matrix techniques.

The total transmission for the system is found by multiplying

the T-matrices for each barrier and not their individual transmission
coefficients.

R i

X T1 T2 T3 T4 TS

Figure 2.3 Model potential used to calculate T-matrix
elements analytically.

Region 1 Region 2 Region 3

- rtgf -

o om2x € A= mix/m2

|
|

ml* , K1 | ml* k3
|

Bias eV

X=-L x=0 X=+L



and
Cn+t = Tnyet1 (D (Th Ap)) (Eqn 2.7)
= (Th4t Dn Th) Ap

This is now of the same form as equation (2.1), so that the quantity (The1 Dp Th)

can be identified as the composite transmission for two barriers. For N barriers, this

formula can be iterated to yield the total transmission matrix for the system.

TiottN) = TN IT'N.q) Dp T ( Eqn 2.8)

This iteration formula was then tested by calculating the transmission coefficient of

a resonant double-barrier structure as a function of energy for which the results
were well known.

2.4 The use of the transmission matrix to study a resonant tunnelling
device.

The strategy for calculating the transmission of the double barrier device was to
first calculate the T-matrix elements for a rectangular potential barrier depicted in
figure 2.3 and then, by the use of the iteration matrix, multiply two identical matrices

together to obtain the double-barrier result.

One convenient feature of the transmission matrix method is that differences in
effective mass between the barrier and well regions could readily be taken into
account. A calculation of the T-matrix elements (Appendix A) obtained by matching

y(x) and 1/m*(x) dy(x)/dx at each interface yields the following results:-

Top=1/2((kq+k3)/k1)Cosh(2pl)-i((kyk3-A2p2 )/(prky))Sinh(2pl))
x exp( i(kg+k{)!)
(Eqn 2.9)
Tpq=-1/2((k1-k3)/ky)Cosh(2pl)-i((k1kg+A2p2 )/(pik{))Sinh(2pl))

x exp( i(kg-k{)l)
(Eqn.10)
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where the energy of the incident wavetrain is considered to be less than the barrier
height. The propagation constant, p, inside the barrier is thus:-

(2m*/h2)( Vparrier- E)1/2 (Eqn 2.11)

The parameter A characterises the ditference in effective mass in the barrier and
well regions.

A = m*(well)) m*( barrier) (Egn 2.12)

Using these results and the iteration formula of equation 2.8, the transmission

coefficient was calculated from the composite transmission matrix Tin¢ as

1/]To12212.

Figure 2.4 shows the transmission coefficient of a tunnelling device consisting of two
barriers each 25Angstroms thick separated by 35Angstroms and 300meV high. The
red curve is the transmission characteristic when the effective mass through the
system was considered constant (ie A=1) whilst the green curve shows the
transmission when the effective mass in the well and barrier regions is different. To

obtain an estimate of the mass appropriate for the barrier region, the following
relations for the compositional dependence of the band-gap energy in AlyGa(q.y) As

were used [Collins 1986].
Elg(x) = Eg(0) + 1.247x x<0.45 (Eqn 2.13)

Elg(x) = Eg(0) + 1.247x + 1.147(x-0.45)2  x>=0.45
(Egqn 2.14)

And the dependence of the effective mass on composition was taken as :-

m*T(x) =ml(0) + 0.083M(free)-X (Egn 2.15)

27



To obtain the barrier height as a function of the composition parameter, x, a
conduction/valence band offset must be assumed. Although some con troversy still
surrounds the value of the offset ratio, most authors seem to agree on a value of about
60:40 [Jaros 1986]. Taking this offset ratio, the effective mass in GaAs to be

0.067"m(free) and the barrier height to be 300meV gives an effective mass in the
barrier of 0.1 times the free electron mass.

It was found that increasing the barrier widths made the transmission peak sharper
and the effect of increasing the width of the well was mainly to reduce the energy the
resonance occurred at. The sharpening of the transmission peak is a result of a greater
number of internal reflections taking place within the well resulting from the extra
confinement caused by the mass discontinuity. The more partial waves exist inside the
well region the greater the opportunity they have to add out of phase (thus destroying
the resonance) unless they are very close to the quasi-bound energy.

The dependence of the resonance position with the energy can be understood by
considering the double-barrier system to approximate the infinite potential well for
which the energy levels are proportional to 1/(width)2. An increase in the weil width

thus results in a lower resonant energy.

The resuits of the T-matrix calculations using a higher effective mass in the barrier
region show that the resonant peak has been sharpened and shifted to a lower energy.
The sharpening of the resonant peak can be attributed to the extra confinement of the
wavefunction resulting from the increased effective mass. This has the same effect as
increasing the barrier widths which can be seen by considering the exponentially

decaying wavefunction inside the barrier which is of the form:-

v(x) = exp(-p(m”)x) (Eqn 2.16)

where p, the propagation constant, is dependent on the effective mass.
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Therefore the larger the effective mass, the more rapidly the wavefunction is
damped. Increasing the effective mass thus has the same effect as increasing the the
barrier thickness in the sense that the evanescent wave from the well is in both cases
reduced by the time it reaches the outside of the barriers. It is the evanescent wave
reaching the outside of the barriers which is responsible for allowing the trapped
wavefunction to escape, so that a decrease in the evanescent wave amplitude means that
the wavefunction inside the well has been more effectively confined.

The lowering of the resonant energy is a little more difficult to explain, as one might
expect the resonant energy to increase as a result of the extra wavefunction
confinement. To interpret this result, it is important to recognise that it is not the
wavefunction which is now matched at the interfaces but the quantity (1/m*)dy/dx. In
the case where m2>m1, this has the effect of making the slope of the wavefunction just
inside the well lower than it would have been in the constant mass case. For a given

wavefunction amplitude at the interface, the relation between the derivatives just
inside the well in the two cases is:-

dy/dx(discon)=(m*(well)/m*(barrier))1/2dy/dx(cont)
(Egn 2.17)

By matching the evanescent waves inside the barrier to a sinusoidal form inside the
well, it is seen that the lowering of the wavefunction derivative at the interface has the
effect of causing the wavefunction to spread-out more inside the well. The
wavefunction therefore behaves as if it were in a wider well, which is known to lead to
lower bound energies. The introduction of a discontinuous mass between the barrier
and well regions thus has the same qualitative effect as increasing the barrier and well

width in the constant mass system.

The results for the constant mass case were checked for accuracy against the
cont inued fraction method of Vigneron and Lambin using a very small mesh cell size of
0.25Angs. The two results agreed with each other to better than 0.025% for all
energies up to 600meV apart from the resonant energy, where the agreement was
about 0.4%. The computation time for 5000 energy points was 36s and 534s for the
T-matrix and continued fraction method respectively using an HPS000 desktop

computer.
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2.4.1 Traversal times.

Traversal times are of interest in double-barrier systems as they determine the
ultimate switching speed of such devices and also indicate whether loss mechanisms,

such as phonon collisions, are likely to be an important consideration.

In early studies of this topic there was much controversy surrounding the question of
tunnelling times, and estimates ranged from instantaneous tunnelling to very long
delay times [Barker 1986]. The confusion seems to have partly stemmed from an
uncertainty of how best to define a transit time. Other estimates used methods that
were too simplistic in their approach. For example, the method used by Stevens
[1983] was essentially a WKB-type calculation [Barker 1985], which was known to
give inaccurate results for a double-barrier system [Collins 1986]. The issue was
further clouded when computer simulations showed that different shaped wavepackets
had different tunnel delay times. In the work of Collins and Barker [Collins 1986,
Barker 1985], it was found that the stationary phase approximation (appendix B)
gave a good fit to the numerical results providing that the transmission coefficient

varied slowly over the wavepacket momentum distribution.

Perhaps the most consistent definition of tunneling time was that given by Barker
[1986] who defines an “interaction time" as being the sum time each fragment of
wavefunction spends in the barrier region. The Born interpretation was therefore

applied to the time-dependent wavefunction to define the interaction time as:-

5¢

460
1 = dx § _e |wix) % dt (Eqn 2.18)

where W is the width of the barrier region.

However, since the T-matrix method is a time-independent method and finds only the

transmission coefficient and not ¢(x.t), the stationary phase approximation will be

used here to investigate the tunnel delay times for a double barrier structure as a

function of energy.
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Although the transit time for a continuous plane wave is a physically meaningless

concept, one can approach the problem by considering the calculated delay times as

being appropriate to the limiting case of an extremely broad wavepacket.

However, as already mentioned these results will also serve as a good approximation in
the case of more realistically sized wavepackets.

The calculation of the tunnel delay time involves the calculation of the phase of the
complex transmission coefficient for the barrier system. Using the transmission
matrix approach, this can be readily calculated as it is possible to calculate the real
and imaginary parts of the wavefunction separately. This is not the case for the
original method of Vigneron and Lambin. The complex reflection coefficient can be
extracted without too much difficulty, but the complex transmission coefficient is

more difficult to compute, although a satisfactory numerical method has been developed
by Collins [1986].

2.4.2 Results of tunnelling delay time calculations for a resonant
double-barrier potential.

Figure 2.5 shows the results of the tunnel delay time calculations plotted underneath
the corresponding transmission plots for the cases of equal and different effective
masses in the barrier and well regions. It is clearly seen that the delay time peaks at
the under-barrier resonant energy and, to a lesser extent, at the over-barrier
resonance. The constant-mass result is in excellent agreement with that obtained by
Collins [1986] for the same system using a modified continued fraction method. The
increase in delay time through the system at resonance can be interpreted in terms of
the coherent waves undergoing multiple reflections before escaping in a manner
analogous to the operation of a Fabry-Perot interferometer in the case of optical
waves. The greater the confinement caused by the barriers, the larger the number of
internal reflections the partial waves undergo before escaping and so the greater the
tunnelling delay time. This also has the effect of sharpening the resonant peak in the
transmission characteristic. This phenomenon can be described using the formula of

Breit and Wigner [Landau & Lifshitz 1958, Messiah 1962] which was originally

developed to investigate radioactive decay.
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By specifying the width of the transmission peak as T, the lifetime of a particle
trapped between the barriers is approximately:-

v = (Eqn 2.19)

It can be shown [Messiah 1962] that if the Breit-Wigner form of the transmission
coefficient is used near resonance,

WE) = 1/( (E-E)+iT) (Eqn 2.20)
then the probability density in the well decays with as time as:-

lw(1)]2 = exp( -(2T/)t ) (Egn 2.21)

with a time constant of h/2r.

F nermore the phaseshift in the wavefunction near resonance was found to be:-
o(E) = Arctan ( T/(E-E;)) (Egn 2.22)

Thus from this formula it can be seen that the phase shift varies most rapidly when
the energy is near resonance, which from the phase delay time result t=tid¢/dE,
implies a long delay time near resonant€ This analysis is therefore in qualitative

agreement with the results obtained from the T-matrix calculations.

2.5 A group-theoretical approach to the transmission matrix

method.

Peres [1983] has given a group-theoretical treatment of the transmission matrix
technique. The Schrodinger equation was written as a first order muilti-component
equation by considering two functions, f and g, formed from linear combinations of v

and dy/dx. The particular decomposition used was:-
f(x)= 1/2( y(x) + 1/(ik). dy(x)/dx ) (Egn 2.23)

g(x)= 1/2( w(x) - 1/(ik). dy(x)/dx ) (Eqn 2.24)

so that y(x) = f(x) + g(x) (Egn 2.25)
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This decomposition can be seen as a generalisation for an arbit, potential V(x) of
the null-potential result:-

y(x) = F. exp( ikx) + G. exp(-ikx) (Eqn 2.26)

so that for V(x)=0, the functions f and g are equal to F.elKX and G.e"IKX respectively.
The f and g functions can therefore be interpreted as the forward and backward
propagating plane waves. In the case where V(x) was not equal to zero, the f and g

functions were interpreted in terms of forward and backward propagating waves inside

an infinitesimally narrow "cut" in the potential profile.

The decomposition of the Schrodinger equation gave rise to two coupled first-order
equations in f and g, but by the introduction of the two-component wavefunction

(similar to a sinor, although no spin is considered in this theory) the equations could
be reformulated as:-

idy/dt = { (1-V(x)/2E) oz - V(X)/2E. ioy by , w= (f.g)T
(Egn 2.27)
where oy and oz are the standard Pauli matrices and the variable 't' is a length
parameter through the system. The notation was chosen to indicate that that the length
variable could be thought of as being analogous to time in the normal form of the

Schrodinger equation and the operator on the right hand side of equation 2.27 as being

analogous to the Hamiltonian. Equation 2.27 can be rewritten in matrix form as:-

v(t) = A(t) y(0) (Eqn 2.28)

where the 2 by 2 matrix A(t) can be thought of as a "time evolution operator”.
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From figure 2.1 it can be seen that A(t) is also the transmission matrix for the
system expressing the forward and backward wave amplitudes either side of the
system. The matrix A(t) can therefore be written as:-

A = Tyg Ty2°
T2 Tq117 (Eqn 2.29)
with | Ty1]% - | Tyg] 2 = 1 (Eqn  2.30)

(See Appendix A )

The transmission matrix therefore belongs to the SU(1,1) group which again

emphasises the role of the t-variable as a time-like parameter.

The time-like t-variable was written in equation 2.27 as t=-kx to bring the
equation into the same form as the time-dependent Schrodinger equation so that when t
is going in the positive t-direction, x is going in the negative x-direction. This offers a
rationale for the fact that the elements of the T-matrix for a potential barrier are
most easily found by normalising the transmitted plane wave to unity; a condition
which would at first sight seem more natural for the incident wave (Appendix A).

The group-theoretical method is then developed by writing a transmission matrix

which is very close to the unit matrix as:-
As = 1- Sy (-Syn +S¢1 (Eqn 2.31)
where | is the unit matrix and,

sxet/2 01 syt i O st=12 ]

10 i 0 o

(Eqns 2.32)
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The coefficients ¢, 1 and t are real and very small. Although one could conceivably

work with this form of the transmission matrix by considering the transmission

through a very narrow "slice” of the potential and multiply several such matrices

together, the advantage of this approach is that the group properties of I Sy, Sy and Sy

can now be used to generate a finite transfer matrix.

One can define a "vector" 8, to have components &, 1 and t and write:-

As=1+8S.0 (Egn 2.33)

for equation 2.31.

Applying the infinitesimal transformation Ag to the wavefunction yields an

infinitesimal change of:-

dy= d( S.6). ¢ (Egn 2.34)

so that the finite transformation matrix of equation 2.28 can be expanded as:-

exp(S.0) = 1 + (5.0) + (S.8)2/2! + (S.0)3/3! + ... (Eqn 2.35)

The group properties of the S-matrices may now be used to reduce the exponential

expansion to:-
exp(S.0) = Cos(6/2) + Sin(6/2)( S.6/8), 6={2+n2-12 (Eqns 2.36)

which was compared to the form of equation 2.29 to find the T-matrix elements in

terms of &, and .

That the Schrodinger equation can be treated in this way is not especially novel, as a
similar decomposition was used for the Klein-Gordon equation [Fresbach and Villars
1958]. What is novel in this case is that the group properties leading to the reduction
of the exponential expansion in equation 2.35 can be realised by matrices of higher
dimensionality. In particular, a three-dimensional representation of the SU(1,1)

group was used in which the complex expression S.6 was replaced by a real one.
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The vector R(X,Y,T) for the three-dimensional representation was defined in terms

of the f and g components as follows:-

R=( X,Y,T)

X = f'g + fg*

Y = i( f'g - fg*)

T= ff* + gg* (Eqns 2.37)

Once again the infinitesimal transform of equation 2.34 produces a rotation of the
"vector" R.

R=R +(S.8)R (Eqn 2.38)
where S.6 is now a linear combination of real 3 by 3 matrices.

Current conservation then resulted in a restraint on the X,Y and T components of:-
T2 X2 .vy2 _4 (Egn 2.39)

The vector R(X,Y,T) is thus restricted to lie on the upper sheet of a unit hyperboloid
so that the variation of the wavefunction in space was represented by a trajectory on

the hyperboloid.

By introducing polar co-ordinates y and ¢ to represent a point on the hyperbola (and
therefore automatically taking into account the constraint of equation 2.39), the
evaluation of the finite transformation matrix R was formulated in terms of two real
first order equations. The solution for x and ¢ were then used to find the f and g

functions and hence the wavefunction.

This method is useful in the numerical evaluation of the wavefunction because it
imposes a restraint arising from the physical properties of the wavefunction (je
current continuity) and thereby acts to stabilise any numerical implementation.
Otherwise, if the wavefunction is calculated directly from the T-matrix by considering

the potential to be divided into a series of thin barriers, the absence of this constraint

leads to numerical instability due to round-off errors.
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In the work contained in this thesis, it was the transmission coefficients only which
were calculated, for which a straightforward multiplication of the T-matrices was
acceptable since there was no need to evaluate the wavefunction through the system and
hence was not subject to the numerical instability described above. The
group-theoretical method has been successfully applied to the calculation of

wavefunctions in superlattices and disordered superlattices by Pepin [1987].

2.6 Summary.

In this chapter it was shown how the transmission coefficient of a one-dimensional
potential could be calculated using transmission matrices. The method is particularly
useful when the potential consists of rectangular-shaped barriers where it offers a
considerable saving in computation time.

The other advantages of this method are that effective mass variations between
barrier and well regions can be taken into account. Also, because the real and
imaginary parts of the transmission coefficient arise naturally, it is a simple matter

to calculate the tunnelling delay time within the stationary-phase approximation.

As a case study the transmission coefficient and tunnelling delay time of a resonant
tunnelling device were calculated as functions of incident electron energy. The results
for the case of constant effective mass in the barrier and well regions were found to be
in excellent agreement with those obtained by Collins. The effect of different effective
masses in barrier and well regions was to lower the resonant energy, make the
resonance peak sharper and increase the tunnelling delay time. These results were
attributed to an increase in confinement of the wavefunction between the barriers and

at the same time a spreading of the wavefunction within the well region.

A more advanced approach using group-theoretical methods was outlined. This
method, studied in detail by Pepin, is capable of accurately determining the
wavefunction through a one-dimensional system. This accuracy and stability derives

from the constraint imposed on the system of equations which arose from a need to

ensure current continuity.
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3. Theoretical origin of the Aharonov-Bohm effect.

3.1 Introduction.

In this chapter the Aharonov-Bohm effect is described in terms of the principle of
gauge invariance. It is shown that overall gauge invariance of the Schrodinger equation
is maintained if the change in the Hamiltonian (which is not gauge invariant) is
accompanied by a change in the phase of the wavefunction.

Changes in the phase of the wavefunction have no effect on the expectation value of

operators, but nevertheless lead to observable effects if two independent beams are
allowed to interfere.

The phase change is related to the four-dimensional electromagnetic flux via a path
integral over the trajectory of the particle. It is remarked that a phase change can also

be achieved by the application of a transverse glectric field.

The derived relations are then used in a simple model to determine the resulting
wavefunction at the point where the two beams meet in both the magnetic and
electrostatic case. An alternative derivation by Datta et a/ [1987] which considers the

dispersion relation for two monomode wavepackets is outlined.
Finally, a theory by Berry [1984] is described. This theory can be considered to be

a generalisation of the AB effect in other dynamical systems and offers another way of

viewing quantum interference between two beams.
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3.2 Gauge invariance.

The AB effect is a consequence of the gauge invariance of electromagnetic fields. This
means that the differential of an arbitrary function f(r,t) of space and time may be

added to the electromagnetic potentials without altering the corresponding field
strengths. For instance since

B=V xA (Eqn 3.1)

letting A — A + Vf(r,t) will not have any effect on the strength of the magnetic
field.

Maxwell's equation connecting the electric field in a vacuum to the time rate of

change of the magnetic field can be satisfied if the electric field is written as:-
E(r,t) = -dA/dt - Vo(rt) (Egn 3.2)
so that the curl of E(r,t) will satisfy Maxwell's equation
V xE(rt) + 9 B(r,t) at =0 (Egn 3.3)

Choosing A'= A + V f(r,t) means that the gauge-transformed scalar potential is

¢'=0-df(r,t)/dt and hence the electric field is left unchanged.

Initially there appears to be a problem in applying these principles to the
Schrodinger equation. From the analysis above it is seen that gauge transformation of
the electromagnetic potentials had no effect on the field strengths and it is therefore to
be expected that the dynamics of an electron moving in these new potentials will not be
changed. However, the Hamiltonian for the new potentials is different, and therefore
not gauge invariant with respect to the new potentials. In particular, the momentum

operator transforms as:-
(P -eA) > (P -eA-eVt) (Eqn 3.4)

The Hamiltonian is thus gauge dependent whereas the energy is gauge invariant (up to

a trivial constant).
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It is not always the case that the Hamiltonian operator represents the energy of the
system, although by the choice of an appropriate gauge function this can always be
arranged [Kobe 1988]. Despite the gauge-dependent nature of the Hamiltonian, gauge

invariance of the Schrodinger equation as a whole can be recovered by allowing the
phase of the wavefunction to change.

y'o=exp(i A(nY) ) v (Egn 3.5)

where A(r,t) is an arbitrary function to be determined.
The change of phase of the wavefunction is not important when evaluating the
expectation values of observables associated with an operator (Lg). Substitution of the

new wavefunction into the standard expression for the expectation value of an
. Al
observable (assuming | le normalised) yields:-

<L'> = exp(-ia) v+ U exp(+ir)y d3r (Eqn 3.6)
=] ys Lo v d3r
= < Lg >
The expectation values of the operators are therefore left unchanged, which is
consistent with the fact that the fields are unchanged by the gauge transform.
Substituting A —» A + Vf(r,}) and y' = exp(i A(r,)) y into the time-dependent

Schrodinger equation gives:-

{1/2m*). (h/iV-eA -eV)2-eq}eldy =ih ddielr y)

(Egqn 3.7)
and upon using the results, (with y=- eA -e Vi)
(Viy)eidy =eld (VA+V+Y)y (Eqn 3.8)
(V+y Reldy =eld (VA(VA+V+y) + V(VA+V+y)
+ Y(VA+V+Y) ) v
—elA (VA+V+7)2 vy (Eqn 3.9)

Towlee U o fla 30.03& wdanial form of Lo .
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The gauge-transformed Schrodinger equation is obtained:-
172m* el (RVA - eA - VI +Hi V)2 y — e g eiA y =

iR (i dA/dt el y + elA gyt ) (Egn 3.10)

The original (non-transformed) equation is thus recovered if

hVA-eVi=0 , A =(ef)f (Egns 3.11)
and a new potential defined such that:-

-e¢' =-e¢p +hda/dt , ¢ =¢ - df/dt (Eqns 3.12)

Gauge invariance of the Schrodinger equation as a whole is therefore restored if the

phase of the wavefunction transforms as:-
y(rt) — exp( ie f(r,)M ) y(r) (Egqn 3.13)
Of particular interest is a region in which there are potentials but no fields. In this
case, the vector and scalar potentials can be represented by the differential of an

arbitrary function g.

A =Vg (Eqgqn 3.14)
¢ =- dg/dt (Egn 3.15)

Letting A'=A + Vf(r,t) and ¢'= ¢ - df/dt as before, it can be seen that the
potentials in the field-free region can be completely eliminated by executing the gauge

transform:-

fu(rt) = -gu(r.t) (Eqn 3.16)
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This enables one to use the simple free-particle Schrodinger equation and multiply
any solution thus obtained by the phase factor exp(ie/h f(r,t) ) to find the solution

for a region with the potentials. Equations 3.14 , 3.15 and 3.16 give the gauge
function required to do this as:-

fir) =- A dr-¢ dt (Egn 3.17)

It must be noted, however, that the boundary conditions for the problem have now
been significantly altered. In particular, the quantity f(r,t) is not single-valued
under continuation around a closed circuit so that the usual boundary conditions of
v(8)=y(6+2n) are not observed [Olariu and Popescu 1985].

For a trajectory along a path P the integral

- JA dr-¢ dt (Eqn 3.18)

is known as the four-dimensional electromagnetic flux.

In the generic AB experiment, a closed ftrajectory surrounds a region of non-zero

field (figure 3.1) and f(r,t) increases by an amount ® for each circuit around the
region.

® = o (¢ dt +A.dr) (Egn 3.19)

For closed circuits the quantum-mechanical effects of the potentials are therefore
governed by the phase factor exp(-ie®/f) which is known as the non-integrable phase

factor.

Equation 3.19 may be transformed using a four-dimensional version of Stokes'

theorem into an integral over a surface spanning the path in four-dimensional space

[Olariu and Popescu 1985].

® = lsurface Exdtdx +Eydtdy + Ezdtdz
+ By dy dz + By dx dz +B; dx dy (Egn 3.20)
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This flux is different from the usual three-dimensional electric flux appearing in
Coulomb's law of electrostatics. The above relation shows that an AB phase-shift can
also be achieved by the application of an electric field. Other potentials can also give
rise to interference effects and interference between neutron beams for example, has

been observed [Colella et al 1975) as a result of differences in gravitational potential
experienced by the two beams.

3.3 A simple analysis of the Aharonov-Bohm effect.
Using the concepts developed in the last section, the density | y|2 at the point where
the split beam is recombined is calculated (figure(3.1)). Taking the origin as the

point where the beam was first split, the output wavefunction can be written as:-

vout = w1 exp (ie/h JAdr) + wyoexp (iefh (- A).dr)
(Egqn 3.21)

Assuming that the path lengths are equal and that the beam splits equally y1 and y»

may be written as:-

w1 =vin (172)V2 y2 = yin (1/2)1/2 (Eqns 3.22)

and the direction of integration reversed for path 2 . This enables the two path

integrals to be expressed in terms of a single line integral around a closed loop.
| Adr + [(- A).(-dr) = JA.dr (Eqn 3.23)
By the use of Stokes' theorem, this can be written in terms of flux linkage @ through

the loop.

fAdr = [Bds = @ (Eqn 3.24)

43



The modulus-squared of the output wavefunction is thus:-
lwoutl® = (1/2) |yinl2 (e +iedM , o-iedM 12 5-12 o
= (172) lyinl2 (1 + Cos( e ®M ) ) (Eqn 3.25)

The output wavefunction therefore varies with the flux linkage and has an oscillation
period of h/e. This flux value is similar to the h/2e flux quantum which arises in
superconductivity, the 2e arising from the charge appropriate for a Cooper pair.
There is however, an important difference between the origins of the two fluxes. In the
AB experiment, the linking flux can take any value whereas the flux linkage through a
superconducting ring is forcibly constrained to be an integer multiple of h/2e. It
must also be remembered that electric charge must be conserved, so that when
I\Vout|2 decreases, the wavefunction elsewhere must necessarily be enhanced. A more

graphical demonstration of this will be given in chapter 8.

An alternative approach taken by Datta and Bandyopadhyay {1987] was to calculate
the phase shift of a wavepacket travelling as a single transverse mode in a
semiconductor AB ring (figure 1.14). The strategy was to calculate the dispersion

relationships for the wavepackets in each of the two arms using the following
Hamiltonian:-

H=(P+eA)22m* + Eg(2) (Eqn 3.26)

Where Eq(z) represents the energy profile of the conduction band in the z-direction.

Using a vector potential of the form,
A= (Byz ,0 ,0) (Eqn 3.27)
the Hamiltonian expands to:-

H=1/(2m*) ( Py2 + eBzPy + ePyBz +B222+ Py2 +P;2) + E¢(2)
(Eqn 3.28)
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The z-component terms are:-
- 2/0m*
Ez=<vy | Ppé2m* + Ec(2) | v > (Egn 3.29)

which represents the energy of the sub-band caused by quantisation in the
z-direction. The y-component terms simply express the normal parabolic E-k
relation, representing free motion in the y-direction.

Ey=<v | Py22m* | y > (Egn 3.30)

The x-component of the energy can be expressed in terms of a modified Py operator

by completing the square on

Ex=<y | 12m*(Py2 +2eBz Py + B222)| y > (Eqn 3.31)
to yield
Ex=<v | 1/2m*( (Py+ eBz)2 +e2B2 <225) | y > (Eqn 3.32)

Where <z2> is defined as the mean-square spread of the wavepacket:-

<22>=<w|22|\y> -(<\y|z|\y>)2 (Egn 3.33)

The total dispersion was found to be:-

E(k,B)=Eq(z) +h2k2/2m* + (fiky + eB<z> )2/2m* + e2B2<z2>/2m*
(Egn 3.34)

where Eg(z) is the energy of the bottom of the 1D sub-band.

It was then assumed that the energy of each of the eigenmodes in the two channels was

equal and that the spread of the wavepackets in the two channels was equal.
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Figure 3.1 Generic Aharonov-Bohm interference experiment.

* Magnetic flux

Figure 3.2 The electrostatic Aharonov-Bohm effect.
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Taking the zero for the z co-ordinate as being in the centre of the paths and equating
energies of the two wavepackets resulted in a solution for the difference between the

two wavevectors K4 and Ko in the x-direction in the two channels.

(kq-k2) = eB(zy -z2)h + e(91-02)/AV, (Eqn 3.35)

where Vy= fiky+k2)/2m* and ¢1 and ¢2 are the electrostatic potentials of the two

paths. Multiplying by the length of the channels, L, gave a value for the
Aharonov-Bohm phase shift .

® = eBl(zqy -zp)h + e(01-02)L/AV, (Egn 3.36)

Which again shows that a transverse electric field in addition to a magnetic field can

induce a phase difference between wavefunctions following two different paths.

3.4 The electric Aharonov-Bohm effect.

A simplified analysis along the same lines as the magnetic effect can be performed by
considering an idealised ring with one-dimensional conductors, illustrated in figure
3.2.

The ring, of length L and width W, has its upper and lower arms held at potentials ¢1
and ¢2 respectively by the application of a transverse electric field. The difference in

phase between the two plane waves travelling in the arms can be seen to arise from the
electric part of the 4-dimensional electromagnetic flux described in section 3.2.

Concentrating on the case for which B=0, Ex=0, and Ez=0 and taking (without loss of

generality) the input wire to define the y co-ordinate datum point, then the relative

phase shift between the beams is:-

AS =] ¢(t)upper - ¢ (1) lower ) dt (Egn 3.37)
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Assuming the transverse electric field to be a constant, the potentials can be written
as:-

o(t) = Ey ( +/- W(x(t)/2 ) (Eqn 3.38)
so that
AS =] Ey W(x(t) dt (Eqn 3.39)

An electric flux can thus be defined via the relation:-
®e = Ey | W(X)/Vy(x) dx (Eqn 3.40)

although this is not in the usual form of a flux, since the associated area is not

normal to the electric field and also involves the x-component of the velocity. If W is
assumed constant and the electric field is small enough so that V, can be assumed

constant, the expression for the electric flux reduces to:-
e =(Ey/Vx )WL (Egn 3.41)

in which the area enclosed by the trajectories can be identified as WL, so that the

actual electric flux is the quantity Ey/Vx.

As (n the case o the magnetic effect, this phase-shift can be achieved without the
field doing any net work on the wavepacket. This is because the electric field can, in
principle, be confined to a region in which the arms of the ring run perpendicular to
the field. In con trast to the magnetic effect however, the particle does experience
fields as is passes through the regions of different potential. Nevertheless, energy is

still conserved as it is in analogy to the zero bias tunnelling experiment.

Figure 3.3 shows a schematic diagram of a ring under the influence of a transverse
electric field. Whilst the energy of the wavepacket is conserved overall, the partial
wavepacket in the upper arm (in this case) can be reflected by the effective barrier

caused by the electric field.
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Incident wavepacket.

Figure 3.3

Wavepacket incident on an AB ring under the influence of a
transverse electric field. The partial wavepacket traversing the

upper arm encounters a potential barrier as a result of the field,
whereas the wavepacket traversing the lower arm encounters a potential

well.

North pole

4

Equator Libreville

Figure 3.4 An example of Berry'’s geometrical phase arising
from the parallel transport of a vector over a

curved surface.



This means that although the phase-shifts can be arranged so that destructive
Interference would occur, the two partial wavepackets would have very different
amplitudes at the output wire, resulting in a loss of modulation depth in the AB

oscillations. This effect would become more severe as the device dimensions WL are
reduced.

In structures similar to Datta's [1986), W is necessarily small to promote
single-mode propagation of the wavepacket, leaving the length as the only adjustable
parameter. The gate voltage in Datta's device of about 1mV would appear to be correct

in comparison with the expected energy of about 10meV so that not too much reflection
would have taken place.

3.5 Berry's geometric phase factor.

Berry has studied the transport of a quantal system around a closed circuit [Berry
1984] . In this analysis, the AB effect can be regarded as a special case of a much more
general theory. It was stressed that in addition to the familiar dynamical phase factor
exp(iEvh), there is also a circuit-dependent factor exp(iy). Attention was focussed on
the circuit-dependent contribution (which is not single-valued under continuation
around the circuit) and its value was calculated in general terms as a function of the
eigenstates of the Hamiltonian. The time evolution of the wavefunction for a system

being transported around a path R(t) in parameter space was expressed as:-

W (1) ) =exp { - [tgdt' En(R(t)) }. exp(i yn(t)). In(R(V) )
(Egqn 3.42)

The quantity |n(R(t) ) is the instantaneous basis of eigenvectors satisfying the
time-independent Schrodinger equation at any instant (the adiabatic approximation).
The evolution of states |n(R(0)) ) with H(R) to states In(R(t)) ) can therefore be

viewed as the effects of the direct action of forces on the system trajectory.

H(R) | n(R) ) = Ep(R) [ n(R) ) (Eqn 3.43)

The first exponential term in equation 3.42 is the usual dynamic phase factor

describing the time evolution of the eigenstates and the second exponential is the

circuit-dependent phase factor.
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For this equation to hold, the Hamiltonian must be changed slowly around the circuit
so that the adiabatic approximation can hold. That is, the basis states of the
wavefunction must be eigenvectors of the instantaneous Hamiltonian. By substitution
of the trial wavefunction back into the time-dependent Schrodinger equation, Berry

was able to show that the total phase change due to the circuit-dependent contribution
was:-

n(c) = i/ <n(R) | VR n(R) ». dR (Eqn 3.44)

Stokes' theorem then enabled a reduction to a surface integral of the form:-
w(c) =- | Vp(R). dS (Eqn 3.45)
Where Vy, can be identified as a magnetic field in the case of the AB effect.

Berry's most significant contribution was that he showed that this "geometrical
phase factor " could be observed in systems other than the Aharonov-Bohm
experiment. Pursuing this line of thought Chiao and Wu [1986] asked whether one
would be able to observe the geometric phase shift for a photon. A short time later,
Tomita and Chiao [1986] carried out an experiment in which laser light of known
polarisation was introduced into one end of an optical fibre wound into a helix which
was then subjected to a magnetic field. The polarisation of the light emerging from the
opposite end of the fibre was measured and found to be in very good agreement with that

predicted from theory.

However, such geometrical phase factors can arise even in purely classical
situations [Berry 1987]. Consider, for example, a journey around the world in which
one carries a pointer (figure 3.4). Setting-off from Quito near the equator and
travelling east to Libreville with the pointer pointing eastwards, one then turns north
taking care not to change the direction of the pointer. At the North pole one then heads
south to the starting point at Quito, again ensuring that the pointer is not turned. On
arriving at Quito, one finds that the direction of the pointer is at right angles to its
original direction: an effect that would not have been present if the Earth's surface had

been flat.
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This is an example of a geometric phase factor which is seen to arise from the curved
surface over which the pointer moves. Berry's phase, and hence the AB effect, is thus a
consequence of the curvature of parameter space in which the a particular system
moves. The curvature in the case of the AB effect is caused by the magnetic vector
potential. The case of a dynamic system undergoing such a journey in the example
above, could be represented by a spinning weather vane. On completing the journey
whilst spinning at a constant angular velocity o, the total angle the vane would have
turned through (with respect to its starting direction) would be :-

0 = T + v (Egn 3.46)

Where ».T is the dynamic phase, and yc the geometric phase (n/2 in this case).

3.6 Summary.

This chapter has discussed the underlying theory of the AB effect in which the phase
difference between two interfering beams can be related to the four-dimensional
electromagnetic flux enclosed by the beam trajectories. A phase difference between the
beams can therefore be achieved both by the presence of a transverse electric field or

by an enclosed magnetic flux.

Analysis of a simple model in the magnetic case showed that the probability density at
the point where the two separate beams interfered was a simple sinusoidal function of
the magnetic flux enclosed by the trajectories. The flux oscillation period was h/e and

the probability density reached a minimum of zero at a flux value of 1/2(h/e).

The following chapters will consider the structures in which the AB effect can take

place and also how the simple model can be improved upon.
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4. Structures for achieving confinement of carriers in one and

two dimensions.

4.1 Introduction.

In recent years there has been increasing interest in quantum-mechanical
fluctuation phenomena in small semiconductor devices. As the length scales and
dimensionality of these systems are reduced the fluctuation phenomena associated with

the breakdown of ensemble averaging of random processes at a microscopic scale
become more apparent.

Two experiments concerned with these phenomena are described. These experiments
achieved the further confinement of carriers in the inversion layer of silicon MOSFET
devices by the techniques of deep etching and electrostatic confinement respectively.
Confinement of the 2DEG in HEMT structures is also considered and described in detalil,

as these structures have been configured by several workers to act as AB rings.

4.2 Transport phenomena in the inversion layers of silicon NMOS

transistors.
4.2.1 General.

This section describes two approaches to the study of transport phenomena in the

inversion layers of NMOS transistor structures.

The first approach considered is a multi-terminal MOSFET fabricated by Skocpol
[1986] which enabled a detailed examination of the conduction processes in an FET.
The second approach, used by Hartstein [1986] uses electrostatic confinement of the

two-dimensional electron gas to form a quasi-1D channel in the inversion layer.

51



4.2.2 Transport in a multi-terminal MOSFET.

Figure 4.1 shows a schematic diagram of Skocpol's device. A NiCr mask was patterned
onto a conventional MOSFET structure using electron beam lithography. The sample
was then subjected to reactive ion etching to remove material not protected by the NiCr
mask down to the lightly-doped silicon substrate. The object of this structure was that
a current could be passed through the narrow channel formed in the inversion layer

and the local potential probed at various points by connecting high-impedance
voltmeters to the side-branches.

Figure 4.2 shows the resistance of a 0.1 micron wide by 0.25 micron long segment
of channel between probes 2 and 3 as a function of gate voltage and temperature. The
results clearly show jumps in the resistance of the segment due to single electron

traps charging and discharging with temperature-dependent characteristic times.
These traps are believed to exist only a few Angstroms from the SiO5/Si interface and

can have energies near the Fermi energy in the inversion layer. Once a trap has been
charged, it acts as a scattering centre and can readily affect the resistance of devices of
this size where they may be only in the order of a hundred other scatterers. The duty
cycle of the switching is seen to vary as the energy of the trap is swept past the
Fermi-energy due to the activation energy between the trap energy and the Fermi
energy increasing. As the temperature is lowered, the thermally-activated switching
rate is seen to decrease and only a single trap switching on but not off is observable at
the lowest temperature of 5K.

The magneto-resistance measurements on the device revealed the presence of
universal conductance oscillations whose rms amplitude was about 0.06e2/h
superimposed on an average background conductance of 1.1e2/h. It was known from the
work of Lee and Stone [1985] that provided the wavefunction remained coherent
within the sample, one could expect an r.m.s variation of approximately e2/h if the
microscopic arrangement of scatterers is changed or if approximately one quantum of
flux was applied. Skocpol therefore interpreted the results in terms of many
interconnected quantum subunits whose length was the estimated inelastic diffusion
length. Each coherent subunit was considered to to be contributing a random component

of e2/h to the overall conductance.

52



A quasi-1D channel therefore, can be considered to be composed of N ( N=ULjng| )

such subunits connected in series, which after ensemble averaging each contribute
N-1/2 (e2/h) to the conductance and N-3/2 (e2/h) to the absolute conductance.
Similarly, a 2D system can be thought of as being composed of M such quasi-1D
channels connected in parallel. After averaging the relative conductance of each strip is
M-1/2 and the absolute contribution is M1/2, so that the total conductance
fluctuation for the entire system is N-3/2M1/2 (e2/h). For Skocpol's particular
device it was estimated that N=7.5 and M=1.5 giving a conductance fluctuation of about

0.04 (e2/h) which was in reasonable agreement with the experimental result of 0.06
(e2/h).

4.2.3 Electrostatic confinement of the 2DEG in an NMOS structure.

Another confinement approach was taken by Hartstein [1986] who used a MOSFET
structure to study the physics of quasi-1D systems. Hartstein's structure, shown in
figure 4.3, consists of a conventional FET of about 10 microns channel length with two
additional control electrodes implanted either side. A negative voltage applied to the
control electrodes enlarges the depletion layer around the p+ diffusions and thus acts
to confine the channel to narrower widths allowing the width of the conducting channel
to be varied between 20nm and 2 microns.

Using this device, a study of the channel conductance as a function of gate voltage for
temperatures of 1.417K, 0.453K and 0.100K was performed (figure 4.4). Sharp
fluctuations in the conductance were observed at the lowest temperature, which at
first sight appear to be random noise, but were in fact found to be ®pcoducible in a
given sample (although they did vary from sample to sample). The
amplitudes of the peaks in the conductivity were observed to increase with dcreasing

gate voltage or temperotufe.

The very sharp conductance oscillations in the low gate voltage regime were
attributed to strong localisation atswpfrom the statistics of just 1 or 2 hopping events
whilst the oscillation in the higher gate voltage and higher temperature regime were
attributed to weak localisation effects. A smooth transition between the two regimes

was observed.
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Figure 4.2

The resistance of segment B of a multi-terminal MOSFET showing
sharp changes in resistance as a result of the (thermal)
activation of a single interface trap to act as a scatterer.




Figure 4.3

Schematic diagram of Hartstein’s squeezed-channel FET.

(a) Plan view. The P+ regions are the control electrodes used to reduce
the width of the channel and are about 1-2 microns apart and 14 microns
long.

(b) Cross—sectional view along AA showing how the depletion
regions confine the electrons in the inversion layer.
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Figure 4.4

Typical conductance data from Hartstein’s device showing large
Conductance fluctuations as a function of gate voltage.
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Comparison of the oscillations caused by the weak localisation was compared to the
theory of Lee and Stone [1985] and was again found to be in good agreement, although it

was commented that the degree of agreement was perhaps better than deserved
considering the nature of the approximations made.

4.3 GaAs HEMT structures.

4.3.1 General

Another popular system for studying the physics of electron transport in one and two
dimensions is in the two-dimensional electron gas (2DEG) present at a AlGaAs/GaAs
interface within a HEMT structure. In this thesis, it is the electron transport through
this type of structure which is of principal interest. In this section therefore the
general principles of HEMT operation will be briefly reviewed for completeness and

the use of these structures in the fabrication of AB rings will be described.

The high electron mobility transistor (HEMT) in its basic form consists of a highly
doped AlGaAs layer, typically around 60nm thick on top of a nominally undoped GaAs
layer. Source and drain contacts are then made, ensuring that electrical contact has
been made to the active interface region, and a gate contact is then fabricated on the top

surface.

4.3.2 Operational principles.

Operation of the HEMT is best understood by considering the conduction band profile
vertically through the device. Figure 4.5 shows the conduction band profile after
equilibrium has been attained when there are free carriers present at the
heterojunction interface. The potential discontinuity at the semiconductor surface
arises from the Schottky-barrier potential between the AlGaAs and metal when an
electrode is present at the surface. When the surface is not contacted by an electrode
but free, a potential discontinuity still ocecurs because the conduction band is held, or

"pinned", at a fixed energy above the Fermi level in the bulk semiconductor due to the

existence of surface states.
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Figure 4.5

Conduction-band profile of a HEMT.

\
\

7/
w&:é
Wavefunction of carriers
trapped at interface.

— - —a— -

—P |-
GaAs Cap n-doped AlGaAs
(15nm Typ) (40nm Typ)

{
L‘||J||||'u Undoped GaAs

undoped AlGaAs
(5nm Typ)

(Not to scale)



If the Fermi levels are considered to be flat and within the bulk of the metal and the
semiconductor, then the application of a negative gate bias can be envisaged as an
upward movement of the conduction band at the Schottky contact. This in turn, raises
the rest of the conduction band with respect to the Fermi energy. When the gate is
sufficiently negative with respect to the semiconductor, all of the conduction band is
above the Fermi level, which means that there are no free carriers present and that
the device is in its "off" state. In the "off" state, there are no surplus charges in the
undoped GaAs and hence the conduction band in this region is flat. Decreasing the
negative bias on the gate (/e making it more positive) brings the conduction band into
closer proximity to the Fermi level and begins to mobilise carriers in the conduction
band. Any free carriers mobilised in the doped region can then readily diffuse into the

undoped GaAs, but not the other way around because of the potential discontinuity at the
heterojunction.

When the system has reached ¢quilibrium the familiar conduction band profile shown
in figure 4.5 is established. Under these conditions, a high percentage of electrons
transfer into the GaAs and are confined by the band-gap discontinuity and their own
electrostatic potential into a thin sheet of charge, typically 10-100 nm thick, just
underneath the heterojunction.

The roughly triangular shaped potential well in which the electrons find themselves,
causes a quantisation of energy levels in the direction perpendicular to the layers
(z-direction). Within each sub-band, transport is two-dimensional, with no motion
being allowed in the z-direction and it is for this reason that the resulting sheet of
charge is called a two-dimensional electron gas (2DEG).

The advantage of this arrangement is that the conduction electrons are now remote
from their donor atoms, and therefore suffer less ionised impurity scattering. Indeed,
they now move in a nominally undoped material which leads to a much higher mobility.
However, since the 2DEG is still very close to the heterointerface, the remote donors
can still cause some scattering which degrades performance. To reduce this effect,
undoped spacer layers of AlGaAs are often grown between the highly doped region and
the active layer in order to further separate the conduction electrons from their
donors. If this technique is carried too far however, the spacer layer will start to
inhibit charge transfer into the undoped GaAs and therefore a balance must be struck
between high mobility but low carrier concentrations and low mobility and high

carrier concentrations.
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These issues have been addressed [Al-Mudares 1984] using a Monte Carlo mode! to
find the optimum spacer layer thickness for a particular device. For the purposes of
observing quantum effects, it is probably better to design the device for high mobility

because even elastic scattering has the tendency to scramble the quantum effects
(whilst not actually destroying them).

4.3.3 Confinement of the 2DEG in HEMT structures.

The uses of the HEMT structure however, need not be limited solely to normal
transistor applications, and the major interest in this thesis derives from the fact that

the 2DEG can be further confined into quasi-1D wires and ring structures.

Starting from the basic HEMT structure, several techniques have been employed to
achw ve the further confinement of the 2DEG and figures 4.6 to 4.9 show a schematic
representation of the techniques which have been used to date.

The first method involves the etching of the semiconductor directly through the
active interface thus forming rigidly defined wires (figure 4.6). There is however a
variant of this which has been successfully used by Van Houten et a/ [1986] and others
[Timp et al 1987). This was to partially etch the top surface so that the etched surface
was just above the heterojuncton interface (figure 4.7). The surface potential arising
from the pinning of the Fermi-level was then sufficient to deplete carriers from
underneath the etched regions, and cause a confinement of carriers in the unetched

regions.

A second very successful technique, which involves no etching, is to use a pattern ed
gate contact to deplete the carriers in selected regions thus forming a shaped 2DEG
(figure 4.8). The final method (figure 4.9) uses ion bombardment to damage selected
areas of the material which substantially reduces the conductivity in those regions.
Alternatively, the same technique can be used to locally increase the bandgap, causing

the electrons to reside in the non-bombarded regions. This latter alternative however

causes appreciable damage around the active interface region.
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Generally, the shallow etch and gated-HEMT techniques of confinement have been
favoured because of the minimal interference with the active interface region.
Deep-etched wires however have been routinely fabricated [Leadbeater et al 1987]

and the technique has also been used to produce AB ring structures [Ishibashi et al
1987].

The gated-HEMT structures have an additional advantage that the width of the
conducting regions can be dynamically changed by the application of a gate voltage. The
main disadvantage of the technique is that the gap between gates at the surface is large
in relation to the "wire" widths. The shallow etch method does not allow the width of

the wires to be changed once made, but could enable smaller structures to be
manufactured [ lan Mcintyre 1988].

The quantum-mechanical modelling of electron transport in these structures in this
project was based on gated-HEMT structures, although the techniques developed could

be easily applied to other structures.

The specific device modelled was an AB ring of the gated-HEMT type fabricated by
Ford et al [1987]. The work of Ford et al was a development of earlier work by
Berggren et al [1986] and Thornton et a/ [1986] who used a split-gate HEMT to study
transport effects in quasi-1D channels.

Figures 4.10 and 4.11 show a schematic diagram of an early ring fabricated by Ford
et al [1987]. The conducting channels in this device could be made as narrow as about
200nm and possibly smaller and the AB oscillation amplitude was about 5% of the total
resistance. The computer simulations by Finch [1987] were in general agreement
with this figure and also suggested that the relatively wide exit to the ring would not
favour very large AB oscillations due to the formation of many transverse modes
(chapter 8). Therefore in a subsequent experiment, the exit from the ring was reduced
from a width (as defined lithogrghically on the top surface) of about 1.3 microns to
about 0.5 micron and the depth of the 2DEG from the top surface reduced from 150 to
60nm (figure 4.12). The amplitude of the oscillations in the latter ring were as large
as 18% of the background resistance, suggesting that the number of transverse modes
(which, it is proposed, lead to the loss of modulation depth) had been successfully
reduced.

These experimental results and the associated computer simulations will be

discussed in greater detail in chapters 8 and 9.
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Figure 4.6
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Figures 4.6 to 4.
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Fabrication techniques used to achieve confinement of the 2DEG
in HEMT-structures.
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Figure 4.10

Schematic diagram of a patterned-gate AB device fabricated
by Ford et al as it appears on the top surface (ie dimensions
of channels are lithographic and not actual conducting widths).
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Figure 4.11 Cross-sectional view along AA for the above device.
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The quasi-2DEG channel is about 60nm below the surface
and is about 100nm wide.

Figure 4.12

Improved ring structure fabricated by Ford et al.
This ring structure produced magneto-resistance
oscillation amplitudes of up to 20% of the background resistance.



4.4 Summary.

This chapter has briefly described how semiconducting systems for confining the
conduction electrons in one or two dimensions can be realised. The main motivation for
the use of HEMT structures is that the high mobility in the 2DEG makes these

structures good candidates for the observation of coherent quantum interference effects
such as the AB effect.

Therefore particular attention was paid to methods of confining the 2DEG in HEMTs.
From the viewpoint of AB ring fabrication, the shallow etch and gated-HEMT

techniques seem to be the best methods as both involve minimal damage to the active
interface region.

Ultimately the shallow etch technique could produce the best results as it appears
that smaller rings could be manufactured this way. At the time this work was in
progress however, the shallow-etch technique had not yet been perfected and the best
available results were being obtained with gated-HEMT structures, so modeliing
proceeded with this system.

58



5. Modelling of an Aharonov-Bohm ring with one-dimensional

conductors.

5.1 Introduction.

This section shows how the technique for calculating transmission coefficients using

transmission matrices can be extended to include multiply-connected one-dimensional
structures, such as rings.

Although these models may be far removed from experimental reality, they do
provide a means of understanding much of the basic behaviour of such structures at a
simple level. These models then, can be of use in the interpretation of experimental
data provided that the validity and limitations of the model are kept in mind.

An explicit formula for the transmission coefficient of an AB ring is developed using
transmission and scattering matrices to match the plane wave coefficients around the
ring.

The transmission coefficient of the ring is studied as a function of enclosed magnetic
flux and wavevector for different model parameters.

The effect of elastic scattering in the arms of the ring is studied qualitatively and the
large variations in the behaviour of the ring is demonstrated.

5.2 Elements of the model.
The one-dimensional model for an AB ring was composed of two main elements;
1) The transmission matrix for a 1D potential.

2) The scattering matrix for a 3-port Y-junction.

The transmission matrix (T-matrix) expresses the forward and backward
propagating plane-waves on the right hand side of the potential barrier in terms of
those on the left hand side. A detailed description of the transmission matrix was given
in chapter 2 (and appendix A). As a corollary, it is seen that the T-matrix is able to

describe how a plane wave will propagate through any potential distribution, so that

the free-space case is also included.
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The scattering matrix (S-matrix) is similar to the transmission matrix in that it

deals with plane waves at a junction, but dissimilar in that it relates the outgoing
waves from a junction to the incoming ones.

The form of the S-matrix is derived by assuming that the matrix must be unitary
and exhibits time-reversal symmetry. The unitarity of the S-matrix ensures that

current is conserved in the scattering process and hence the sum of all incoming
currents must equal the sum of all outgoing currents.

The second assumption of time-reversal symmetry is a little more restrictive. The
time-dependent Schrodinger equation for particles moving in a magnetic field does not
satisfy the test for time-reversal invariance [Landau and Lifshitz 1958], namely that
of testing if the Schrodinger equation retains the same form if the sign of 't' is
reversed and at the same time the complex conjugate of the equation is taken. The test
for time-reversal invariance fails because the Hamiltonian for a particle moving in a
magnetic field has an imaginary part. However, for the case in which the magnetic field
is confined solely to the interior of the ring, it will be shown that the Schrodinger
equation can be reduced to that for a free particle if the wavefunction is multiplied by
an additional phase factor arising from the magnetic vector potential. Since the
free-particle Hamiltonian is real, the Schrodinger equation for the ring with an
enclosed flux does exhibit time-reversal invariance and therefore all the results in

this section are concerned with this situation.

The approach taken by Buttiker et al was to further simplify the S-matrix by
considering all of the elements to be real; a procedure that was justified by the
arbitrary division of elastic scattering and free propagation between the S and T
matrices. All phase factors pertaining to propagation and scattering in the arms of the
ring were therefore represented by the T-matrices. This means that the y-junction

may be thought of as a singular point off which the incident wavefunction scatters.

Alternatively, one could use the approach of Gefen e/ a/ [1984] which was to
incorporate scattering and propagation terms for the arms of the ring into the
definition of the S-matrix thus eliminating the T-matrices from the problem.
Although this model for the ring required only two S-matrices joined back to back, the
form of the matrices were considerably more complex so it was doubtful whether any

real simplification had been made.
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In this project

it was decided to use Buttiker's strategy as it seemed more modular

and hence extendable to more complex networks other than rings. The modular nature

of the procedure also made it suitable for computer implementation.

Enforcing unitarity on the S-matrix together with the requirement that it must also

be symmetric, leads to the following general relationships:-

S11821  + S5+

S11S31  + S12832 +

S21811  + S840+

Sp21 =542
S31=9513
S3p = Sp3

To make any further progress more information about the S-matrix is needed. If the

matrix element Sij is interpreted as the coupling between wire i and wire j, then taking

wire 1 to be the "input” wire, Sy and Sy3 represent the coupling coefficients between
the input wire and each of the arms forming the ring. If the ring is considered to be
symmetrical with respect to the input wire, then there is now enough information
available to assemble the complete S-matrix. The coupling between the input and the
arms, denoted by e, can vary between 0 and 1/2 representing the case when the ring is

poorly and strongly coupled to the external leads respectively.

1
—

]
—

S13533

S13333

S23543
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Since however, the S-matrix in this model deals with the wavefunctions and not the
probability densities, S12 and Sy3 are equated with ¢ 1/2.

Inserting these results into the relationships expressed by equations 5.1 to 5.9 yields
an S-matrix of the form:-

;
-(a+b) g1/2 ¢1/2

S = g 172 a b (Egqn 5.10)

el2  p a

A form obtained by Buttiker et al [1984].

Solving for 'a" and 'b* between equations 5.1 to 5.9 and 5.10 yields the result:-
a,/. = (#-) 12 ((1-2¢)1/2 4 (Eqn 5.11)

b/ = (+-) 12 ((1-2¢)1/2 1) (Eqn 5.12)

5.3 The transmission coefficient of a ring with one-dimensional
conductors.

The ring to be modelled is considered to be constructed of two S-matrices and two
T-matrices connected as shown in figure 5.1. As for the case of the T-matrix for the 1D
potential (Appendix A), a solution can only be obtained by inserting an appropriate
"boundary condition " , in this case f=0 and a=1. This condition represents a plane
wave of unity amplitude incident on the ring from a point far to the left of the ring. The
coefficient f' is set equal to zero as there will be no back-reflection in this idealised
model since the output wire is considered to be infinite in extent. If necessary a
boundary on the right hand side of the ring could be modelled, but this would require the

inclusion of another T-matrix.
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Figure 5.1 S&T Matrix method used to calculate the transmission
of a ring with one-dimensional conductors.

The arrows represent the direction of propagation of the plane
waves that must be matched at each interface. The letters represent

the coefficients of the plane waves in each region.



Buttiker's and Imry's calculation involved the (legitimate) swapping around of
T-matrix elements to simplify the calculation. In this project it was intended to
incorporate the previous work on T-matrices into the model and also use standard
definitions so that a modular structure could be set-up for more complex networks.
Whilst the use of non-standard definitions did not present an unsurmountable problem,
the author can see no reason why the transmission could not be calculated directly in

terms of the standard definitions outlined in chapter 2. The following pages outline the
various stages of the calculation.

The procedure is to assume that a plane wave of unit amplitude is incident from the
left, and with the aid of the S and T-matrices, calculate the amplitude of the wave
emerging at the exit. Since the waves are assumed to be incident from the left only, the

coefficient for the backward-propagating wave at the exit of the ring is set equal to zero.
The system of equations to be solved is therefore as follows:-

S-matrix equation for the input y-junction.

A S11 S12 S43

) 1 \
‘ “.
B . = S21 S22 S23 . B (Eqn 5.13)
¢ S31 S32 S33 c
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T-matrix equation for the "upper" arm.

D = t11 42 -1 \‘ (Eqn 5.14)
a) 21 top] | B
Figure 5.3
| T-Matrix |
78 A\
\ \ B’
/o g

T-matrix equation for the "lower" arm.

K E\ - T11 Ti2 ) c\ (Ban 5.19)
l

. E' ] To1 T2 \ C i

figure 5.4

N A
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S-matrix equation for the y-junction.

o
F'\' I

\. | S11 Siz S1g o)
E \ = S'21 S2p S'23 E | (Eqn 5.16)
D ! ‘N

\S'31 S32 S33 D

Figure 5.5

Although these equations can be solved for the general case, working may be simplified
by assuming that both the S-matries are identical and that (in the first instance) the

T-matrices are those representing free-space propagation along the arms of the ring.

Solving this system of equations, one obtains the following results for the transmission
and reflection coefficients of the ring.

Bzvz‘ rzvzl
B3 v3l * la3 3

Y3 le vzi
B3 3

af 1

B3 Ysl

a3 713 B1 M

(Egn 5.17)
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S114 Y1\ \Bz 72‘ S12 12 l B3 13
S13 val 183 v3l *+ | S13 val 1B1 71
r =
Y3 ‘Bz vzl
B3 v3
(Eqn 5.18)
Where an, Bn and vy are given by:-
o [ Tt 0 - S31 S32 Sg3 k
l a2 = (S12,813) 0 141 Sp1 Sp2 Sp3
\., a3 '
(Eqn 5.19)
/ B1 ( T11 0 "\ [ S31 S32 S33 o
\
:‘ ' ' |
B2 = (S22,823) 10 t44 1S S22 Sz3, —| o0
s : ’
' B3 - T22 |
(Egn 5.20)
; . v\ \ / 5
‘,‘ 1 ',‘ Ty4 0\ / Sg1 S32 S3z ] 0
i 2 ' = (S32, S33) 0 ty1; | S21 S22 S23 | - tzz)
\ 3/ \ °
(Egn 5.21)

where the elements t,n belong to the transmission matrix for the upper arm of the

ring and T, to the lower arm.
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The "upper" T-matrix for free propagation along a one-dimensional wire is of the
form:-

t(k,0) = exp( i(kl+¢)) 0 (Eqn 5.22)
0 exp(-i(kl+¢))

The length, |, is the distance around the upper half of the ring from the input to output
junction and ¢ is the flux-induced phase change. The form of the "lower" T-matrix is
similar, but the sign of ¢ is reversed as the wavetrain is propagating around the region
of flux in the opposite sense to the upper arm. The "lower" T-matrix thus has the form:-

/ .
Tko) = exp( i(kl-¢)) 0 (Eqn 5.23)
\ 0 exp(-i(kl-¢)) |

For a ring without scatterers in the arms and a coupling parameter of 0.5, equation
5.17 reduces to:-

t(k,0) = ( e2ikl ( e2ikl _Cos2¢ ) - Sin2¢)/( elkl Cosg( e2ikl-Cos2¢))

with ¢ = n(®/(h/e)). (Eqn 5.24)

Even for a perfectly coupled ring without any scatterers, the transmission
characteristic is no longer a simple sinusoidal function of the enclosed flux which was
the case in the two-slit calculation of chapter 3. The other major difference is that there
is now a functional dependence on the wavevector through the appearance of terms
involving the product kl. These terms give rise to energy resonances, which were also

not present in the simple two-slit calculation.
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5.4 Resuilts.

The derived transmission formula (equation 5.17) was implemented on an HP3000
desktop computer and the behaviour of the transmission as a function of flux, coupling
parameter and energy was studied. In this description of the ring, it is seen that the
actual values of the wavevector, k, and half-circumference, |, are unimportant
separately, and it is only their product which is of significance. The transmission
coefficient was therefore plotted as a function of the 'kI' product. As the transmission

function will be periodic in ki, only ki values between 0 and 2r were considered.

The behaviour of the transmission as a function of energy with fixed flux values and
coupling parameters was considered first. Two distinct regimes become apparent. The
well-coupled regime (with the coupling parameter close to a half) exhibits a
transmission characteristic that is near unity most of the time for small values of
applied flux. For energy values where the ki product is close to an integer multiple of ,
the transmission falls sharply to zero. As the applied flux is increased, the zero-points
in the transmission profile persist, but the peaks become lower and smoother (figures
5.6 to 5.9) .These eventually tend towards zero for all wavevectors as the applied flux

tends towards a value of 1/2(h/e) and shows the occurrence of the AB effect in one
dimensional rings.

It is known that it is not possible to perfectly match each of the y-junctions
individually, but it can be seen from the graphs that the coupling to the rest of the ring

system means that the ring as a whole can be matched, resulting in unity transmission at
certain values of wavevector.

As the coupling parameter ¢ decreases the peaks in transmission become more
singular (figures 5.10 and 5.11), and in the limit of ¢ tending to zero, these energies
may be identified as the eigenstates of the isolated ring. For coupling parameters less
than about 0.1 it was found that the energies and shifts in the energies with applied flux
agreed well with a model for an orbiting electron in a magnetic field [Olariu and Popescu
1985].
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5.5 Discussion of results: A phasor diagram approach.

The positions of the peaks and their amplitudes in both the high and low coupling
regime can be understood in terms of the freely orbiting electron model [Olariu and
Popescu 1985] or from the work of Buttiker et al [1984]. What was not so clear was
why the transmission persistently became zero at regular intervals of kl=nn. In
constructing a reasonable theory for this, it is important to notice that the transmission
is always exactly zero (to within machine accuracy) at these values, and is not simply a
small value. Also, these values always occur when ki=nz and are flux independent, which

would seem to rule-out any multiple-reflection process.

The second study performed was to investigate the behaviour of the transmission as a
function of the enclosed flux. Figures 5.12 to 5.14 show the transmission coefficient of
a perfectly coupled ring as a function of ¢/¢g, where ¢g is the h/e flux quantum. For
coupling parameters close to 0.5, the transmission curves are of approximately

cosinusoidal form with minima at ¢/¢g as expected and are rather insensitive to

variations in the kl-product.

It the coupling parameter is now reduced, the behaviour of the transmission coefficient
becomes more complex. In similarity with the study of the wavevector dependence,
resonances in the transmission occur at certain flux values (Figures 5.15 and 5.16).
In the case where £=0.25 and kl=0.35*(2n) for instance, the transmission is seen to
initially rise, which is quite different to the initial reduction one would expect from the

simple two-slit model which does not take energy resonances into account.

A better understanding of the behaviour of the ring in the well-coupled regime can be
gained by representing the plane waves around the ring in vector form on a phasor
diagram. Referring to figure 5.17 representing the strong coupling case, the two

vectors of equal length represent the wavefunctions in the upper and lower arms.

It can be seen that for a ring with equal arm lengths, the two phasors (representing
amplitude and phase of the wavefunction at the output) are symmetrically disposed about
the real axis when the kl product around the arms is nrx. The phases ¢+ and ¢- are the
flux-induced phase shifts for the upper and lower arms (taking the zero-phase
reference point to be at the input junction) and are equal and opposite because the paths
they refer to are iden tical but encircle the flux in opposite senses. It is now seen that

when the kI product is nrn the resultant wavevector always lies along the real axis
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independent of the applied flux. Since the S and T matrices match the coefficients of plane
waves around the ring, the transmission coefficient thus obtained is in terms of
currents. This then, explains the sharp drops in transmission when ki=nrn , because the

resultant wavefunction at the output in these instances is purely real and hence cannot
carry any current.

Considering the low coupling regime, there are now many phasors on the diagram
(though of reduced length to maintain overall normalisation). These phasors are
produced each time the wavetrain cycles around the ring, being split at each pass
through the input and output S-matrices. A wavefunction internal to the ring is still
split into transmitted and refiected portions even if the coupling parameter is 1/2
(representing perfect coupling). This is because the single S-matrix cannot be #ffectly

matched for plane waves both internal and external to the ring, as was remarked upon
earlier.

Figure 5.18 shows the steady state diagram for a ring of low coupling parameter and
arbitrary flux linkage. The smaller the coupling parameter, the shorter and more
numerous the phasors. For most flux values, the phasors will have travelled different
distances and had their phases changed by varying amounts according to the path taken.
Thus on average, when the phasors are added together at the output junction, the
resultant will be small. This is because the more phasors there are, the more
symmetrical their distribution about the origin, and hence the resultant will also be
near the origin. In the limit of an infinite number of phasors evenly distributed about
the origin, the resultant will generally be zero. There are however exceptions, where
the transmission can rise to unity. These situations occur when all the partial phasors
add together coherently when the phase shift due to the flux ¢ and that due to the freely
propagatiywave (kl) add up so that:-

2kl + 2¢ = 2nx (Eqn 5.25)

This is so that on each cycle around the ring the total phase advancement of the next
partial phasor is such that it is at the same position on the diagram as it was in the

previous cycle. This ensures that all partial phasors add constructively.
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Figure 5.16 shows a plot of transmission versus flux linkage for a low coupling
parameter and clearly shows the peaks in transmission at the allowed kl-values. For a
ring with a flux linkage of @, the relation

26=(e/h)® (Egn 5.26)

may be substituted into equation 5.25 to obtain an expression for the positions of the
energy resonances:-

kl/(2r) =1/2 (n -®/dg ) with @g =h/e (Eqn 5.27)

which is the same result that would have been obtained by applying the Sommerfeld

quantisation condition to quantise the ca n onical angular momentum [Olariu and Popescu
1985].

In the more general situation, ¢ is rather less than 0.5 but still significant (figures
5.10 and 5.11). Since there are fewer phasors in this case, complete cancellation does
not occur for all the non-allowed kl-values and the peaks are not as sharp. Zero
transmission does however always occur on the AB condition when pairs of partial waves
are out of phase with each other by 180 degrees. This condition is demonstrated by
figure 5.9 which shows that the transmission is tending to zero for all ki values as the

flux tends towards 0.5®(. A numerical calculation of the transmission for a flux linkage
of exactly 0.5¢g9 was not possible due to a singularity at this value. It was however

possible to get as close as machine accuracy would allow, so that the limit ® — 0.5&¢

could be approached.

The behaviour of the transmission as a function of flux for a coupling parameters of
between 0.5 and 0.1 can be similarly understood. In particular, the initial rise in
transmission for coupling parameters of about 0.2-0.35 can be attributed to the ring
slowly approaching resonance. This type of behaviour is noted in later chapters which
consider a two-dimensional model of the ring. The conclusion to be drawn from these
findings is that the coupling parameter in the particular two-dimensional model
considered is probably in the range 0.2-0.35.
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A major difficulty with the 1D model is that the choice of coupling parameter is quite
arbitrary within the range 0-0.5. An objective of later work using two-dimensional
models therefore, was to obtain a less arbitrary estimate of the 1D model parameters by

fitting the 1D transmission characteristics to the 2D magneto-transmission curves.

5.6 A Qualitative study of the effects of impurities in rings with

one-dimensional conductors.

In this section the effects of elastic scattering in the arms of the ring are investigated.

This is likely to be important in real rings as a result of the potentials arising from
remote ionised donors.

Elastic scattering in the arms was modelled by the introduction of transmission
matrices of the form [Buttiker et al 1984, Appendix(A)].

S Y - (Eqn 5.28)

-1/t 11

with t= | Tg | 1/2 exp( i¢s ) (Eqn 5.29)

where Ts is the square-modulus of the transmission coefficient of the scatterer and ¢g
is the phase change in the transmitted wave. In this work it is only the effect of altering

Tg which is investigated.

The resuits obtained agreed with the theory of Buttiker et al [1984] who related the
peaks in the transmission coefficient to the poles in transmission formula. In the case of
strong coupling to the external leads, the pole in the transmission coefficient converged
to a flux value of ¢/¢g = 3n/2 as the elastic scattering increased. What was not perhaps
stressed sulfficiently in the work of Buttiker et al was the large variation in behaviour
when elastic scattering was incorporated into the model. The main purpose here
therefore, is to indicate the variety of behaviour possible and to point out some general
features of the transmission curves so that they can be used in the interpretation of the

two-dimensional simulation results in chapter 9.
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Figures 5.19 to 5.21 show the effect of altering the transmission of one of the arms of
the ring. The curves can be seen to be progressively distorted from the case when the
arm transmissions are unity. When both arm transmissions are unity the curves are
always symmetric about ki=0.5*(2r), but as one of the arm transmissions is reduced,

this symmetry is destroyed although the curves are still periodic (with period 2n).

When both arm transmissions are changed (figures 5.22 to 5.24) the symmetry in the
transmission curves is retained, but only one axis of symmetry remains at
kl=0.75"(2n). As the arm transmissions are reduced, the peaks in the ring
transmission either side of the symmetry axis become progressively sharper and the
transmission at other kl-values away from the resonance condition becomes lower.
When there is no special relationship between the partial waves traversing the ring,
they add as though they are incoherent and the net transmission is the same as the
transmission of the individual matrices and is indifferent to the fact that the waves have
travelled along different paths to reach the output.

Even the effects of quite modest scattering in the arms can have a drastic effect on the
transmission characteristic. Figure 5.25 shows the effect of elastic scattering in a
well-coupled ring with an enclosed flux of ¢/¢9=0.35. This graph is greatly distorted
about the value kl=0.5"(2r) compared to the case without any scattering (figure 5.7).
Figures 5.25 to 5.27 show the effect of altering the coupling parameter for a fixed arm
transmission. As the coupling parameter is decreased, some asymmetty is still
observed in the plots, but the main effect is to expand the distance between the first two

peaks and reduce the distance between the second pair of peaks.

Finally, figures 5.28 and 5.29 show the transmission coefficients of a perfectly
coupled ring with a kl product of 0.1*2x. These plots demonstrate that in certain
circumstances the effect of the scattering can be toSvppress the zero in transmission
altogether. Indeed, the transmission can actually peak at a flux value of around

0.5*(h/e); a complete reversal of the behaviour of the ring without any scatterers.
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Figure 5.17

Phasor diagram representation of the

wavefunction at the output junction of
an AB ring. Zero phase is referenced to
the input junction.
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5.7 Summary.

This chapter has described a one-dimensional model which used transmission and

scattering matrices to connect plane-wave solutions in a multiply-connected AB ring
structure.

The results confirmed the existence of the AB effect in one-dimension and predicted
that the transmission should fall to zero when the enclosed flux was equal to half the flux
quantum h/e. Also revealed, was the presence of energy resonances, where the
transmission may peak at certain values of wavevector due to multiple-reflection
processes at the input and output junctions.

Two transmission regimes were identified for the ring. That when the external leads
were well coupled to the ring and that when they were poorly coupled. In the absence of
scatterers in the arms of ring, the transmission characteristic in the weak-coupling
limit was understood in terms of the eigenvalues of a closed ring. In the cases of strong
or weak scattering in the weakly-coupled ring and strong scattering in the well-coupled
ring, the transmission characteristic was in good agreement with the theory of Buttiker
et al [1984]. However, the explanation of the structure in the well-coupled ring with no
scattering remained rather inconclusive. In this case the electron waves travel
ballistically around the ring, a situation which becomes more likely as device
dimensions and temperatures are reduced. Since quantum ballistic transport is of
central importance to this thesis, it was considered important to develop a theory to
understand the behaviour in this regime. To this end, an approach using phasor diagrams
was taken as an aid to understanding the transmission plots. It was then shown how the
sharp drops in transmission could be explained in the weli-coupled regime by
considering the resultant phasor at the output junction. This model was also used to show
how the sharp peaks could be accounted for in the poorly-coupled regime.

The effect of elastic scattering was investigated by the introduction of transmission
matrices whose transmission coefficient was less than unity. The resuits showed that the
symmetry about ki=0.5*(2%) for the case with no scattering was destroyed when the
arm transmission was lowered. In the case when both arm transmissions were the same,
only one symmetry axis remained at ki=0.75*(2W). The effects of quite modest
scattering (|T|=0.95) can have a large effect on the transmission characteristics, in
some cases causing a complete reversal of behaviour compared to the no-scattering case.
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6 Two-dimensional Time-dependent transport.

6.1 Introduction.

This chapter explains the need for a two-dimensional model of an AB ring and
describes the problem in general terms. Discussion is initially confined to a detailed
exposition of the solution techniques for the one-dimensional time-dependent problem
as this will be later shown to form the basis of the fully two-dimensional computation.

The general numerical problem in one dimension consists of finding a suitable
approximant for the time-evolution operator which is both stable and unitary. It is
shown that the Cayley form of the time-evolution operator meets both these criteria
and that the final numerical problem can be formulated in terms of a tri-diagonal
matrix equation for which weli-known solution techniques can be used.

The solution strategy for the two-dimensional problem is then introduced. This is
based on a decomposition of the total Hamiltonian into two components on which

one-dimensional solution techniques can be used, and the problem thus reduced to the
solution of many sets of tri-diagonal matrix equations.

One consequence of this procedure is that the general problem cannot be decomposed
in this way without introducing a small error in the compound time-evolution
operator. Section 6.10 contains an estimate of how serious this is likely to be.

Another problem in solving the two-dimensional problem is that the amount of
computer time required is substantially increased over typical 1D problems and
therefore attention must be given to the computational efficiency of the algorithms
used. Section 6.11 describes how the recursion formulae arising from the solution of
the tri-diagonal matrix equations were re-structured to take full advantage of the
vector-processing facility on the IBM3090 computer.
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6.2 Motivation for a 2D model.

The 1D treatment given in the last chapter had the failing that it predicted a
magneto-resistance modulation of 100% of the backgrournd value when every
experimental value to date was much less than this. A typical value for the modulation
depth in metal rings was about 0.1% of the background resistance. Semiconductor
structures which utilise the 2DEG at a heterojunction have achieved larger
oscillations, typically around 5%-10%. and a maximum of about 20% [Ford 1988].
Despite the improvement in oscillation amplitudes attained over recent years, the 1D

model is clearly lacking in its ability to predict the actual oscillation amplitudes.

Another drawback of the 1D model was that it did not take into account the direct
action of the magnetic field but only the vector potential produced by the field. Thus the

phase-shifts in the wavefunction were properly accounted for but no forces acting on
the electron were included.

Real rings do not have one-dimensional conductors and the electron wavepacket has
some freedom to diffract out of apertures and around structures in two (or three)
dimensions. Therefore, in order to model the ring structures in a more realistic
fashion, a two-dimensional model was developed. Even though the wavefunction might,
in some instances, become appreciably confined in the transverse direction within the
wires, it was expected that the inclusion of finite wire widths would help reconcile the
difference in MR amplitudes between experiment and the simple 1D model.

6.3 Specification of the problem to be solved.

In recent years, there have been attempts to incorporate quantum effects into
conventional Monte Cario techniques. Of these, the most straightforward is to soive the
Schrodinger equation for the transmission and reflection coefficients whenever a
particle is incident on a potential barrier (or well). The particle can then be moved
across the barrier within a time predicted by the stationary phase approximation. A
more elaborate method is based on the evaluation of the Wigner function of the system.
In this procedure, a family of Monte Carlo simulations are performed in parallel
phase-spaces with different weighting parameters.
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It was then shown [Barker and Murray 1983] that the actual process may be
reconstructed from a superposition of the family of Monte Carlo simulations. This
method however, would consume a (possibly prohibitively) large amount of computer
resou ‘(. In addition to this problem, a common drawback of Monte-Carlo techniques is
that the essential physics can often be obscured by the complexity of the computer
model. Hybrid quantum-classical Monte Carlo calculations have been performed
[Al-Mudares 1987] for the type of patterned-gate HEMT structures considered here
and the results showed that the two-dimensional electron gas within such structures

could be successfully confined to form separate narrow conducting channels.

The purpose of this project was to investigate the quantum interference processes
occurring in these structures. It was therefore decided to concentrate solely on the
quantum transport through a specified structure using a quantum-ballistic transport

model, leaving the question of the precise form of the confinement potential as a
separate problem.

In this type of model, the motion of the electron is determined by the solution of the
time-dependent Schrodinger equation for the system and is considered to move without
any collisions (except with the side-walls of the wire); inelastic collisions which
change the energy of the electron are not considered. Polar-optic phonon scattering,
which is a dominant inelastic collision process at room temperature, ceases to be of
importance at the very low temperatures at which experiments are performed.
Instead, electron-electron scattering becomes the dominant inelastic process, which
proceeds via a number of low-energy transfers [Wind et a/ 1986]. Unfortunately, this
process is difficult to incorporate into a simple model, and was neglected in the first
instance. Elastic collisions with crystal defects and impurity sites occur more
frequently, (although these were also neglected in the first instance) but it was
recognised that these processes could be included more easily than the inelastic

processes. A qualitative study of impurity scattering is given in section 9.8.
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6.4 Solution of the time-dependent Schrodinger equation.

In order to describe the model and solution technique for the 2D case, it is necessary
to review the techniques for solving the 1D problem.

It may be shown [Schiff 1955] that a freely-propagating wavepacket has the general
form of a plane wave multiplied by a Gaussian envelope. This functional form is known
to have a minimal position-momentum uncertainty product. The general 1D problem
can therefore be defined as solving the time-dependent Schrodinger equation to find the
wavefunction y(x,t) in a region where the Gaussian wavepacket is the initial condition
y(x,0). During the propagation of the wavepacket it may interact with various

potentials including single barriers and wells [Goldberg et al 1967] and resonant
double-barrier structures [Collins 1986].

The Schrodinger equation,

H w(rt) = ih dy(r,t)/dt (Egqn 6.1)

can, in some instances, be efficiently solved by means of an eigenstate expansion of

the initial condition. Each eigenstate can be evolved forward in time by multiplying by

a phase factor of exp(-iot), and the total wavefunction reconstructed by a

superposition of all such states;

w(rt) = L ap exp(-iEpth) w(r) +J dk a(k) exp(-iEntMN) w(r)

(Egn 6.2)

where the eigenvectors of the Hamiltonian can, in general, have a part discrete and

part continuous spectrum [Messiah 1962]. The eigenvectors satisfy the
time-independent equation,

H wn(r) = En wn(r) (Eqn 6.3)

and the expansion coefficients are found by projection of the initial condition onto
this basis set:-

an = < yn( | y{r0) > (Eqn 6.4)
ak) = < yk(n | y(r0) > (Eqn 6.5)
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This method has two major drawbacks. The first is that for all but the simplest of
cases, the eigenvalues and eigenvectors of equation(6.3) must be found numerically,
and diagonalising the large Hamiltonian matrices involved can be difficult and
computationally intensive. Secondly, when the eigenvalues and eigenvectors have been
found, one must then integrate over all eigenvectors with the appropriate expansion
coefficients and phase factor (as indicated by equation 6.2) for each spatial point. If
there are n? points on the grid, then the evaluation of the complete wavefunction at a
later time requires o(n4) operations. For these reasons the above method was not
used, and a scheme requiring o(n2) operations was employed. The difference in
computation time between an o(n4) and an o(n2) process can be enormous for the grid
sizes used. Consider, for example, a 512 x 256 grid and a typical time per floating

point operation of 50ns, then an o(n?) process will take in the order of 6ms compared
to about 14 minutes for the o(n4) process.

The scheme chosen considers how the entire wavefunction can be approximately
propagated from one instant in time to another a short time later and relies on the fact

that the time-dependent Schrodinger equation can be formally integrated over a time
interval At to yield:-

y(rt+ At) = exp(-i AtH/MA ) y(rt) (Eqn 6.6)

where the exponential term is known as the time-evolution operator. The

Hamiltonian operator appearing in the exponential may be understood in terms of a
series expansion.

Naturally, for numerical work, an infinite series expansion of the time evolution
operator is not possible. Furthermore the generally complicated nature of the
Hamiltonian forces one to seek approximations to the time evolution operator which
are as simple as possible. The next few sections consider what criteria must be applied
in choosing an expansion scheme and to what extent approximants to the full

time-evolution operator fulfil these requirements.
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6.5 The stability of expansion schemes for the time evolution

operator.

The simplest approximation to the time-evolution operator is a first order Taylor
expansion, which results in the following explicit scheme,

w1 = (1hHAYR) ¢ (D (Ean 6.7)

The scheme is termed "explicit" because the wavefunction at timestep n+1 is found
directly from the wavefunction at timestep n. The stability of this scheme is
investigated by »the use of the Von Neumann stability criterion [Potter 1873] which

considers possible unbounded growth in any of the Fourier modes present on the mesh
of the form:-

uj" = uNexp(ikx)) (Eqn 6.8)

for the kth Fourier mode, where n denotes the timestep index and j the meshpoint

index. Direct substitution into the discretised form of the explicit scheme shows how
each of the modes will propagate.

uM+1 = (1 - 2A (1-Cos(kax) ) +Vial) ) UM, A=at/(24x2)

(Eqns 6.9)

The growth factor, defined as G = u"+1/uN, for a Fourier mode of wavevector k is
therefore:-

1 - i(2A (1-Cos(kax) ) +VjAt) (Eqn 6.10)

The Von Neumann stability requirement states that for a discretisation scheme to be
stable the modulus of the growth factor (to first order terms in At) must be less than
or equal to unity. The above growth factor is greater than unity for all wavenumbers,
and so the explicit scheme is inherently unstable. A simple explicit method is
therefore not suitable for the solution of the time-dependent Schrodinger equation.
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The next approximation considered was the Crank-Nicholson scheme. This scheme

considers forward and backward propagation in time from the current wavefunction:-
wN+1 = exp( -iat H/h ) yn (Eqn 6.11)
wN-1 = exp( +iat H/h ) yn (Eqn 6.12)
and uses the two relations to eliminate N, resulting in the equation:-
exp( +iat H/h ) yN+1 = exp( -iat H/R ) yn-1 (Egn 6.13)

Taylor-expansion of the two exponentials to first order in time results in the
approximation:-

wh+l = ((1-0(aV2) HMA ) 7 (1 + i(at/2) HM ) ) N (Egn 6.14)

This approximate form of the time-evolution operator is known as the Cayley
expansion.

A stability analysis similar to that performed for the explicit scheme yields a growth
factor of:-

G=(1-i( 2A(1-Cos(kax)) +2Vjat )/ (1+i( 2A(1-Cos(kAx)) +2Vjat ))

(Egn 6.15)

the modulus of which is always equal to unity, which means that errors will not

grow exponentially. It also has the desirable property that it is accurate to second
order in both Ax and At [Potter 1973].

6.6 The importance of unitarity in the expansion scheme.

In choosing a numerical integration scheme, one must not only consider the growth
of any errors, but also the unitarity of the scheme. In physical terms the property of
unitarity applied to the time-evolution operator ensures that the overall
normalisation of the wavefunction remains a constant and hence the number of

"particles" in the simulation is conserved.
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This can be seen by considering the wavefunction as a vector in Hilbert space, with
the co-ordinate axes the eigenvectors of the Hamiltonian matrix. Since the

eigenvectors form a complete set and are orthogonal to each other, the norm of the
wavefunction can be written as:-

Norm = Zn ap <wn |wn* > (Egn 6.16)

where the ap are the eigenvector expansion coefficients. This shows that the

normalisation may be thought of as the length of the state vector. A unitary matrix has
the general property of being able to rotate the state vector (ie propagate the solution

in time) without altering its length and so will maintain the normalisation of the
wavefunction.

An operator is unitary if it satisfies the identity:-

0+0 =1 (Egn 6.17)

where O+ is the Hermitian conjugate of the operator O. Making use of the fact that

the Hamiltonian operator is an Hermitian operator, it is seen that the exact form of the
time-evolution operator is exactly unitary, as expected.

L+*L = exp(+iHtAvh ) exp( -iH Avh )
=1, ( H*=H) (Egqn 6.18)

Applying the same test to the explicit expansion scheme results in:-

L+*L = (1+iaAtH*/h ) (1-iatH/A )
= 1 +At2H2/R2 (Eqn 6.19)

so the explicit scheme, in addition to being unstable is also non-unitary. For the
Crank-Nicholson scheme, the unitarity test resuits in:-

LL* = ((1-AtH/A Y(1+iatHA ) ((1+iat HA )/(1-iat HA )
1 (Eqn 6.20)

since (1-iAtH/M ) commutes with (1+iatH/A ). Thus, the Crank-Nicholson
scheme is exactly unitary and so conserves the normalisation of the wavefunction.
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6.7 Numerical solution of the equations.

Because of the excellent norm-preserving properties and good stability, the
Crank-Nichcolson scheme was chosen as the integration method in this project.
However, one drawback in using the Crank-Nicholson scheme is that it results in a set
of implicit equations which means that the wavefunction at a particular point cannot be
found directly from the previous timestep because it is coupled to the solution at
surrounding points for the next timestep. The wavefunction at each point must
therefore be determined by the solution of a system of equations. To illustrate this

point, consider a simple one-dimensional Hamiltonian of the form:-

H = (-h2/2m*) d2/dx2  + V(x) (Egn 6.21)

The discretised Hamiltonian acting on the wavefunction at a particular timestep then

becomes:-

(-i272m*) ( yN(p+1) 2yN(p) + yN(p-1) )ax2 + V(p)yN(p)
(Egn 6.22)

where p is the mesh-point index and n is the timestep index. The centted form of
differencing scheme has been used here because Taylor expansion shows that this is
correct to order Ax? instead of only Ax for the one-sided schemes. There is also the
bonus of a neater, more symmetrical-looking set of equations when the Hamiltonian is
later split for two-dimensional computations.

In one-dimension, the Crank-Nicholson scheme expands to read:-

(1-ia(wN+1(p+1) + yN+1(p-1) -U(p) yN+1(p)) =

(1+ia( yN(p+1) + yN(p-1} -U(p) v"(p)) (Egn 6.23)
where,
a = FA(4m*ax2) , Up)= Ax2 2m*V(p)i2 + 2 (Egns 6.24)
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Equation 6.23 may then be simplified and recast as a tri-diagonal matrix equation:-

a(p)yn+i(p+1) + bp)yN+1(p) + cp)yn+1(p-1) = d(p)
(Egn 6.25)

where a(p), b(p) and c(p) are complex constants which can be explicitly computed,
but in general change from one mesh point to another. The quantity d(p) is to be called
the source term since it has the same mathematical form as a source charge would in a
discretised solution of Poisson's equation. The source term may be computed explicitly

from the current wavefunction using the right hand side of equation 6.23.

6.8 Solution of the tri-diagonal matrix equations.

A standard Gaussian elimination of N unknowns in an N x N matrix requires O(N3)
arithmetic operations. The tri-diagonal system however, has a particularly simple
solution which requires only O(N) operations. Following standard theory, it is
assumed that y(p) satisfies the following recurrence relation:-

v(p) = g(p) - o(p) y(p+1) (Eqn 6.26)

Substituting this relation into the tri-diagonal matrix equation and re- arranging
yields the recurrence formula.

a(plw(p-1)=( d(p) - cP)g(P)e(P) ) - (b)) - cP)la(P) ) v(p)
(Egn 6.27)

Since a(p), b(p),c(p) and d(p) are known at each point, the value of the
wavefunction at point n-1 can be found from the wavefunction at point n if the
auxiliary factors g(p) and w(p) can be determined. The auxiliary factors can also be

found recursively by comparing the above equation with the original assumed form in

equation 6.26. The recurrence relations are:-

glp-1) = ( d(p) - c(p) a(p) w(p) )/a(p) (Eqn 6.28)

w(p-1) = ( b(p) - c(p) w(p) )a(p) (Egn 6.29)
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which can be re-arranged to give the forward recursion formulae:-
o{p) = cP)( blp) - alP) w(p-1) ) (Egn 6.30)
aglP) = w(P) ( d(p) - a(P) g(p-1) )ec(p) (Egn 6.31)

The general strategy for solving the equations therefore, is to first calculate the
auxiliary variables w(p) and g(p) in a forward sweep of the mesh from points 1 to N

followed by a backward sweep to find the solution using equation 6.26 and the

previously determined values of w(p) and g(p). For computer implementation it is

useful to note that w(p) can be substituted into the expression for g(p), resulting in
equal denominators for the two recurrence relations. The denominator may therefore

be calculated only once for both functions, saving the number of arithmetic operations
required.

The boundary conditions are imposed by specifying the values of y(0) and w(N+1)

at the edges of the mesh. The value of y(0) is used for initiating the forward
recurrence:-

b(0)w(0) = d(0) -c(0) y(1) (Ean 6.32)
so that

g(1) = ( d(1) - a(l) y(0) )/b(1) (Egn 6.33)
and

o(1) = c(1)b(1) (Eqn 6.34)

The value of yw(N+1) defines the starting value for the back-substitution stage.

y(N) = g(N) - o(N) y(N+1) (Eqn 6.35)

In this work, the behaviour of the wavefunction will be considered to be occurny in a

closed system and the boundary conditions used will be :-

y(0)=0 , wy(N+1) =0 (Eqns 6.36)

85



6.9 Generalisation to two dimensions.

As explained in section 6.4 the method of expansion in eigenfunctions is not well

suited for numerical computation due to the very large number of arithmetic
operations required for any reasonable size mesh.

However in two dimensions, the direct use of the full two-dimensional Hamiltonian
in the Cayley expansion scheme also leads to a large computational problem. The
resulting matrix equation to be solved has a banded structure but it is not tri-diagonal
and so the very-efficient tri-diagonal algorithm described in section 6.8 cannot be
used. Through the use of sparse matrix techniques the number of operations required

can be expected to be less than O(N3) needed for a full Gaussian elimination but will
nevertheless rise sharply with increasing mesh size.

Instead of dealing directly with the two-dimensional Hamiltonian therefore, a
strategy for solving the problem by reduction to many sets of 1D problems was sought.

If this could be achieved the efficient techniques already discussed could be used,
resulting in an O(N) solution time.

The starting point is to resolve the Hamiltonian into two components labelled x and
y:-

H(tot) = Hx + Hy (Eqn 6.37)

although it must be stressed that this notation is not meant to indicate that the two
portions are solely functions of x or y.

Substituting this into the Cayley expansion yields the relation:-

wN+1 = (1-Hyt-Hyt)(1+Hyt+Hyt )T yn 1 =iat/2f

(Egn 6.38)
This expression may then be factored so that it resembles the product of two

one-dimensional time-evolution operators acting on the current wavefunction:-

wn+t o ( (1 -Hyt) (1 -Hyt))((1+Hyt) (I +Hyt) )yn

(Eqn 6.39)

which, by comparison with equation 6.38, is correct to terms of order At2,
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If an intermediate wavefunction y "+1/2 s introduced as an auxiliary variable, the
calculation can be broken-down into two stages:-

n+1/2

v =( (1-Hyt)/(1 +Hyt) )yn (Egn 6.40)

v T S (- Hyt) /(1 Hyt) ) yn+1/2 (Eqn 6.41)

to arrive at two equations of one-dimensional form. This procedure is known as the
alternating direction implicit (ADI) method and is frequently used for the solution of

the closely-related time-dependent heat flow equation in two dimensions.

This then is the solution strategy chosen for the two-dimensional time-dependent
Schrodinger equation. The following chapters will give explicit forms for the
Hamiltonian operator and the details of how the formulae were implemented in a
computer model will be discussed.

6.10 Errors arising from the non-commutivity of the split-operators.

In the last section it was shown how the Cayley expansion for the time-evolution
operator using the full Hamiltonian could be formulated as two separate equations of
one-dimensional form. However, in introducing the half-timestep wavefunction and
performing the calculation in two distinct stages another error in addition to those

caused by the finite expansion of the time-evolution operator has been introduced
which arises from the non-commutivity of the Ly and Ly operators. The Schrodinger

equation can be written in simplified form as:-
dy/dt = -Ly (Eqn 6.42)

And this equation can then integrated over a timestep interval At to give the solution

at timestep n+1 from the wavefunction at timestep n.

yn+1 = exp( -Lat) yn (Eqn 6.43)

87



The ADI| procedure, described in section 6.9, then required splitting the total

operator into two parts. To investigate this procedure, the AD! method is analysed in

terms of the unexpanded exponentials.

Resolving the total L operator into two parts as before gives:-
wn+1 = exp( -(Ly+Ly) At) yn (Eqn 6.44)

If (and only if) Ly and Ly commute, then the above equation may be rewritten as:-

wN+1 = exp( -LyAt ) exp( -Lyat) yn (Eqn 6.45)
And this may be further re-arranged into the form:-

exp(LyAt/2) yN+1 = exp(-LyAt/2) { exp(-LyAt/2) exp(-LyAt/Z)\pn }
(Egn 6.46)

since Ly and Ly commute with themselves.

The term in curly brackets can be identified as the half-timestep wavefunction

yN+1/2 and hence equation 6.46 can be written in two parts:
exp( Lyav2) yn+l = exp(-Lyav2) yn+1/2 (Eqn 6.47)

exp( Lyav2) yn+1/2 = exp(-Lyav2) yn (Eqn 6.48)

Making first-order Taylor expansions of these exponentials (/e neglecting terms of
order At2 once again) results in the ADI equations of section 6.9.

( 1+Lyat2 ) yn+1/2 = (1-Lyav2) yn (Eqn 6.49)

( 1+Lyav2) yN+1 = (1-Lyav2) yn+1/2 (Egn 6.50)
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However, it Ly and Ly do not commute, there will be an error in this splitting

process, regardiess of how the exponentials are expanded for the purposes of
computation .

Taylor expansion of the relevant exponentials gives the following result to

first-order in the commutator (Ly, Ly] -

exp(Ly).exp(Ly) - exp(Ly+Ly) 2 [Ly,Ly]/2 (Eqn 6.51)

Thus, the time-evolution operator exp(-LyAt).exp(-LyAt) used as the basis of the
Pi-Lx Pi-Ly

ADI method in equation 6.45 is not the same as the true composite operator exp(
-(Lx+Ly) At ).

A better approximation to the exact operator would be:-
exp(-Lxat).exp(-LyAt) - 1/2 (-a1)2 [Ly, L] (Eqn 6.52)

When the ADI procedure was used to solve the Schrodinger equation for a wavepacket
in an AB ring structure, it was found that the stability (as assessed from the
normalisation) was good for small magnetic fields, but became poor for magnetic fields
above about 0.5T. The instability manifested itself as a gradual but uncontroilable
increase in the normalisation.

The spatial discretisation chosen was several times smaller than the cyclotron radius
for magnetic field of the order of 1T and the cyclotron energy was also relatively small
(at about 1.76meVT'1) compared to the energy of a typical wavepacket (about
10meV). The conclusion that was drawn from this was that the instability was unlikely
to be directly due to the spatial and temporal discretisation errors such as those that
will be discussed in chapter 7. Therefore the unitarity of the expansion scheme was
investigated.

Denoting the actual operator used in the simulations by O¢ and the exact operator by

Oo, it is seen that O satisfies (approximately) the following identity:-

Oy = Op +1/2At2 [Ly, Ly] (Eqn 6.53)
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The operator O1 is tested for unitarity by forming the product 0401*. To simplify
the analysis, only terms to first-order in Ly, Ly] are retained, so that the unitarity

test for Q4 results in the relation:-
0101* = 1+ 1/2At2{ 0y [y, Lyl* + [Ly, Ly] Op* ) (Egn 6.54)

Thus the non-commutivity of the Ly and Ly operators has the effect of making the
ADI method a non-unitary process.

A direct calculation of the commutator results in:-

[Ly, Lyl =a2 { (m*N2)( d2V/dy2 - d2V/dx2) - 4if d2/dxdy
+1/2 U ( d2/dy2 - d2/dx2 ) - 1/2 iBU ( xd/dy + yd/dx )
+iB (-1/2 B2 xy - (m*M2)( y dV/dx + xdV/dy) )

+B2 ( y( d/dy + xd2/dxdy) - x( d/dx + yd2/dydx )) }
(Egn 6.55)

Where V=V(x,y) is the potential function, a=-ifi/(2m*), B=eB/h and U=U(x,y) is a

lumped potential energy term, defined as:-

Uxy)= ( -e2B2( x2+y2)/(4£i2) - 2m*V(x,y)i2 ) (Eqn 6.56)

To obtain an estimate of the magnitude of the error term, a typical value for the
commutator is estimated, but to make any further progress, some assumptions about
the functional form of the potential energy V(x,y) and the wavefunction have to be
made. In general there will not be a simple analytic form for V(x,y), and the solution
w(x,y) is not known in advance, so that the magnitude of each of the terms comprising
the commutator cannot in general be found exactly by analytic means. However, a
model calculation for a simple case can be performed to obtain an estimate of the order

of magnitude of the terms.
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Assuming V(x,y) is a constant everywhere in the computational region leads to

two-dimensional particle-in-a-box eigenfunctions of the form:-

W kx,ky (xy) = ASIn(( ky2+V )1/2x). Sin(( ky2+V )1/2y)
(Egn 6.57)

Consider first the case for which V(x,y) is a constant and the magnetic field is zero.

The commutator in this case reduces to:-
[Ly, Lyl =0a2 { (-m"VA2)( d2/dy2 - d2/dx2) } (Eqn 6.58)

Evaluating this simplified commutator for the particle-in-a-box eigenfunctions

gives an order-of-magnitude estimate for the error term of:-

-1/2 At2a2m*V(Kx2—Ky2)/ﬁ2 (Egn 6.59)

Taking the difference in the x and y components of the energy to be around 10meV and
a constant potential of 1V (used as the confinement potential in this study) yields a
value for the error term of approximately 1027At2. For a timestep of about 10-15s,

this term has a relative size of about 10-3.

Consider now the case of a non-zero magnetic field. If the variables x and y are
equated to Dx (the mesh size) then for a best-case estimate, a term by term analysis of
the commutator shows the last term in B2 to be the largest. This term is of the order of

x'ac10377-2, and has a relative size (for a timestep of 10-15s) of about 1.0T-2; a

2 .
factor of about 1000 greater (per Tesla) than the zero-field error term.

Therefore the application of a magnetic field of of the order of 1 Tesla can destroy the
unitarity of the ADI expansion scheme. As a result, the simulations in this study were
limited to fields in the order of about 10mT. It is possible that the stability of the ADI
scheme could be improved for high-field calculations by taking the higher-order

corrections involving the commutator [Ly, Ly] into account.
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6.11 Vector-processing techniques employed for high-speed
computation.

In late 1988 the University of Glasgow acquired an IBM 3090 model 150E/VF
mainframe computer. This project was fortunate enough to be chosen as one of several
special study projects which benefit ed from a close collaboration with IBM under the
Kelvin Project, the purpose of which was to assess the performance of numerically
intensive applications on the IBM 3090 in a university environment.

Since the 1BM 3090 is capable of processing in vector mode, the CPU can work on
several pairs of numbers simultaneously in its internal registers. For example, a

mulitiplication of two floating-point numbers might typically consist of four distinct
stages:-

1) Addition of exponents

2) Pre-normalisation exponent adjustment
3) Multiplication of mantissas

4) Post-normalisation exponent adjustment

In normal, or scalar operation, a particular pair of numbers must complete all four
steps before the next pair can be processed. In vector mode however, the processing of
a second pair of numbers can be started as soon as the first pair moves onto stage two
of their processing. A third pair can then be processed after the first pair has moved to
stage three and the second pair to stage two, and so on. The CPU can be thus working on
four pairs of numbers simultaneously. Vector processing can offer significant
increases in speed over scalar operation in computations involving repetitive

operations on large arrays.
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6.11.1 Modification of computer code for vector processing.

Considering the first half-sweep of the mesh in the ADI procedure, the tri-diagonal

algorithm described in section 6.8 generates FORTRAN code with the following

structure:-

20

30
10

DO 10 1Y=1,IYMAX | For each row
Forward elimination stage.
{Initialise values for start of recursion formula for IX=1}
DO 20  IX=2, ( IXMAX -1)
W(X) = Fn{ W(IX-1) }
G(IX) = Fn{ W(X-1), G(IX-1) }
CONTINUE
{ Fix end-values of recursion formula for IX= IXMAX }
Back-substitution stage.
DO 30 IX=(IXMAX -1), 1, -1
PSI( IX,IY ) = Fn{ PSKIX+1,lY), W(IX), G(IX) }
CONTINUE
CONTINUE

Where the notation Fn{ } denotes the functional dependence of the variable on the left

hand side. The DO 20 and DO 30 loops are recursive, which means that the result from

the previous computation must be known in full before the next pair of numbers can be

started in the CPU vector pipeline. Vectorisation of this code as it stands therefore, is

impossible.

The only other possibi\itﬁis to vectorise on the DO 10 loop. The compiler will not do

this automatically because on each cycle through the DO 10 loop, the values of W(IX)

and G(IX) will be different. To overcome this, extra dedicated storage has to be

allocated, as the compiler does not provide for the allocation of any storage dynamically

during execution.
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Therefore, the code was modified so that it had the following structure:-

DO 10 1Y=1,IYMAX | For each row
Cc Forward elimination stage.
{Initialise values for start of recursion formula for IX=1}
DO 20 IX=2, ( IXMAX -1)
W(IX,1Y) = Fn{ W(IX-1, 1Y) }
G(IX,1Y) = Fn{ W(X-1, 1Y), G(IX-1, 1Y) }
20 CONTINUE
{ Fix end-values of recursion formula for IX= IXMAX }
C Back-substitution stage.
DO 30 IX=(IXMAX -1}, 1, -1
PSI(IX,1Y)=Fn{PSI(IX+1,1Y), W(IX,1Y), G(IX,1Y)}
30 CONTINUE
10 CONTINUE

Figure 6.1 shows how this process may be visualised. The calculation for any
particular half-sweep can be thought of as solving many sets of independent
one-dimensional problems. For the code shown, the wavefunction for each row is found

as a function of IX and is independent of all other rows (in the y-direction).

Since vector processing was found to be impossible for each matrix in the
x-direction (referring to figure 6.1), the variables can be thought of as being stored
in a cubic format and vectorisation performed in the y-direction for which there are
no recurrences. The disadvantage of this technique is that more storage is required and
therefore the range of the IY-index on which vectorisation was performed was limited
to 128 at a time so that in this case the complete half-sweep computation consisted of
two such cubes. The length of 128 variables was chosen because this was the number of
variables the internal CPU registers could hold at a time. Longer vector lengths result
in faster processing speeds, but for vectors longer than 128, the increase in speed

with length becomes a law of diminishing returns.
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The second type of modification concerns the efficient use of the high-speed cache
memory. The cache memory holds 64 kBytes of data from the main memory which the

CPU can then access as fast as necessary without incurring the relatively long data
fetch time from the main memory.

There is however a problem that sometimes arises when two-dimensional arrays are
processed. In FORTRAN, 2D arrays are physically stored in a one-dimensional format
in "column major" order so that, for instance, the 3 by 3 array

would be internally stored in consecutive memory locations as:-

Thus if the array is accessed in column major order with the left hand subscript
varying most rapidly, the internal memory locations are addressed in order, one after
another. On the other hand, if the array is addressed in row major order, the internal
memory locations are accessed every 3 elements. The distance between consecutive
array elements as they are accessed is called the stride. For an N by N array, row
major addressing results in a stride of N, whereas column major addressing always
results in a stride of 1.

The high-speed cache is organised in lines of 128 bytes, which are loaded one line at
a time from the main memory as required. Processing with a stride of 1 is the most
efficient mode of operation because each cache line is fully accessed before it is
necessary to load another line. However, the larger the stride, the more frequently the
cache lines must be loaded and this increases the average data fetch time by increasing

the number of references to the main memory.
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The vectorised code was therefore written as follows, using the array G(IY,IX) as a
temporary store for a transposed table of PSI(IX,IY).

DO 10 IY=1,1YMAX | For each row
C Forward elimination stage.
{Initialise values for start of recursion formula for 1X=1}
DO 20 IX=2, ( IXMAX -1)
W(IY,IX) = Fn{ W(Y, IX-1) }
G(IY,IX) = Fn{ W(Y,IX-1), G(IY,IX-1) }

20 CONTINUE
{ Fix end-values of recursion formula for IX= IXMAX }
C Back-substitution stage.

DO 30 IX=(IXMAX -1), 1, -1
GUY.IX)=Fn{ G(IY,IX+1), W(IY,IX), G(IY,IX)}
30 CONTINUE
10  CONTINUE

This enables stride-one processing in the "direction of vectorisation" on the Y
variable.
To recover the array PSI(IX,lY), a separate loop, outside the main IY-vectorised

loop, was inserted to transpose the array G(1Y,IX).

DO 40 IX =1, IXMAX
DO 40 IY =1, IYMAX
PSI(IX,IY) = G(IY,IX)
40 CONTINUE

This loop was then vectorised on the IX variable.
Other smaller modifications such as the use of compound multiply-and-add
instructions and of an optimised library routine for the calculation of a

scalar-product were also made.
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The modification of the original code so that it was in a form suitable for
vector-processing enabled almost all of the computation time to be spent in vector
mode compared to almost none using the unmodified code. This resulted in about a

five-fold increase in computation speed over normal scalar computation.

6.12 Summary.

This chapter has discussed the general aspects of a two-dimensional quantum
ballistic transport model.

The efficient solution of the two-dimensional problem is non-trivial, and it is shown
that schemes based on a finite expansion of the time evolution operator, which evolve
the solution on a timestep basis, offer substantial savings in computational effort over
more traditional eigenfunction expansion techniques.

The expansion of the time-evolution operator must preserve the properties of the

original equation as far as possible. In particular it must result in a stable numerical
scheme which also preserves unitarity. The Cayley form of the time-evolution
operator, which arose from consideration of the Crank-Nicholson scheme, was shown
to meet both these criteria.

Although one could tackle the two-dimensional problem by expansion of the
time-evolution operator in terms of the full Hamiltonian matrix, it was shown that
by resolving the Hamiltonian into two components, a solution could be obtained by
multiple one-dimensional solutions along the rows and columns of the mesh. The
advantage of doing this is that the very-efficient tri-diagonal algorithm described in
section 6.8 can be used.

Despite the use of these techniques, the computation was still very numerically
intensive and attention was therefore given to the optimum use of the
vector-processing facility on the IBM3090. The original code written was impossible
to vectorise on the IBM due to the recursions in the resulting formulae. However,
since all the separate 1D problems are independent for each half-timestep, it was
shown how the code for the full 2D calculation could be vectorised by the allocation of

extra storage.
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7. Computer modelling of an Aharonov-Bohm ring.

7.1 Introduction.

This chapter describes the details of a two-dimensional computer model for an AB
ring.
The Hamiltonians for two different magnetic fieid distributions are derived and it is

shown how these are resolved into two components necessary for the solution of the
numerical problem.

Although the computation scheme chosen was shown to be both stable and unitary in
chapter 6, this does not necessarily mean that it is accurate. To assess the accuracy of
the model, the spatial and temporal discretisation is considered. These considerations

in addition to those imposed by the stability requirement lead to the final choice for the
mesh size and timestep.

The choice of the initial condition is also discussed and a technique for modelling the
contacts at the mesh boundaries is described. Successful modelling of the contact
regions was of great importance in reducing the computational effort required for
subsequent magneto-transmission calculations.

7.2 Construction of the Hamiltonian.

For motion in a magnetic field, the one-electron Hamiltonian takes the following

form:-
H = (P -eA)22m"  + V(xy) (Eqn 7.1)
where A is the vector potential arising from the magnetic field. Spin has been
neglected because at all but the highest fields, the contribution of the spin term is

comparatively small and the inclusion of spin would also complicate matters by the

need to represent the wavefunction as a two-component spinor.
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If the magnetic field is considered to be perpendicular to the plane of the ring (in the

z-direction) and the symmetric gauge is used for the vector potential, then:-
A=12B(-y,x,0) (for B=(0,0,B) ) (Egn 7.2)
The Hamiltonian may then be expanded to give:-

H = (h2/2m*)( V2 - 2m*V(x,y)h2 - e2B2(x2+y2)/(4h?)
+ (-ihjeB( x. d/dy - y.d/dx )/he )

(Eqn 7.3)
where use has been made of the commutators
[y ,Px]=0 and [x,py ]=0 (Eqns 7.4)
Rewriting the Schrodinger equation in a simplified form:-
dy/dt =-L vy (Eqn 7.5)
gives
L = (-ifi/2m*)( V2 - 2m*V(x,y)/h2 - e2B2(x2+y2)/(4H2)
+ieB( y.d/idx - x.d/dy YA )
(Eqn 7.6)
Two components of L may then be identified as:-
Ly = o d2/dx2  + 1/2. U(xy) +iB y.d/dx ) (Eqn 7.7)
Ly = a(d2/dy2 +1/2. Uixy) - ip x.didy ) (Eqn 7.8)
where  o=-ii/(2m*) , B=eB/f (Eqns 7.9)
and
U(xy) = - €2B2(x2+y2)/(4h2) - 2m*V(xy)/hZ (Eqn 7.10)

entering as a lumped potential energy term which has been split equally between the

two operators.
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Using the ADI procedure described in the last section, the equations to be solved are

(1 + AV2 Ly) y N+1/2 = (1- a2 Ly) yhn (Egn 7.11)

(1 + At/2 Ly) y M+ o 1o a2 Ly) yn+1/2 (Egn 7.12)

Each of these equations is then solved in turn using the tri-diagonal algorithm
described in section 6.8.

7.3 Construction of the Hamiltonian for the case of a magnetic flux
piercing the centre of an AB ring

In this case, it is assumed that the magnetic field distribution is entirely within the

ring so that electrons in the ring experience a vector potential but no force through the
magnetic field.

For the case when the magnetic field is assumed to be in the z-direction, initial

working is best done in polar co-ordinates. Starting with

B= VxA
(Eqn 7.13)

as the definition of the vector potential, surface integration of the magnetic field over

the interior of the ring results in the relation:-

jAdl = [B ds (Egn 7.14)

For a single line of magnetic flux or "magnetic string” the A; and A, components of
the vector potential are zero, so that the magnetic field in the z-direction only gives

rise to a rotational component, Ag. From symmetry considerations Ag must be a

constant for a fixed radius away from the centre.
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Performing the line integral in equation 7.14 for a fixed radius gives:-
JAdl =Ag 2nrr (Egn 7.15)

But /B ds is just the total amount of flux threading the ring ®, so that the theta
component of the vector potential is:-

Ag= ®/2nr (Egn 7.16)

In numerical work however, rectangular polar co-ordinates are generally easier to
work with, so that the Ag component of the vector potential is expressed in terms of x

and y components for the purposes of computation.

Expansion of the Hamiltonian in equation 7.1 proceeds as before for the case of the
uniform magnetic field, except in this instance the components of momentum and

vector potential do not commute with each other. Specifically, the relations are:-

[Py . Ay 1= (ih2n ) @ ( -2xy/( (x2+y2)2) ) (Eqn 7.17)

[Px . Ax]

(-ifi2m ) @ ( +2xy/( (x2+y2)2) ) (Eqn 7.18)

Fortunately, it is seen that these commutators are equal and opposite in sign, so that
a reasonably tractable form for the Hamiltonian is still recovered:-

H = (-h22m*)( V2 - e2dp2/(H2(x2+y2))
i edp.(2x didy -2y didx ) /(R (x2+y2)) - 2m* V(x,y)H2 )
(dp= ®/2n) (Eqn 7.19)

The magnetic string was considered to be placed at the centre of the ring so that in the
actual computer model, an additional transformation was performed to re-locate the
origin at the centre of the ring instead of at the bottom left-hand corner of the region.
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7.4 Specification of the initial condition.

The initial condition is represented by a plane wave of wavevector kg, multiplied by
a Gaussian envelope. The width of the wavepacket represents the initial uncertainty of
the electron position and the wavevector kg specifies the average forward momentum.

The initial wavefunction in one-dimension has the form:-
v(x) = A exp( -(x-x0)2/(262) ). exp( ikgx ) (Eqn 7.20)

The y-variation is derived from the form of the lowest eigenfunction for an infinite
well using the wire width, Ly, as the well width yielding a full two-dimensional

initial wavefunction of the form:-

vixy) = A exp( -(x-x0)2/(262) + ikgx ). Cos( m(y-yg)/Ly )
(Egqn 7.21)
When specifying the initial distribution, one must ensure that the Gaussian envelope
is not too severely truncated by the boundary of the computational grid. The errors
involved due to truncation of the initial condition will be discussed in detail in section

7.5, but for the moment a few general comments are made about the size of the
wavepacket.

If a free wavepacket is injected from a contact far away from the region under study
and is allowed to travel ballistically, the width of the wavepacket becomes broader and
the corresponding Fourier spectrum becomes sharper. For instance, a 10meV
wavepacket with an initial standard deviation of 50nm doubles in width roughly every
half micron. This might lead one to suspect that a realistic form for the wavepacket
which is some way away (several microns) from the contact would be a very broad,
plane-wave like, Gaussian. In reality, the wavepacket does not keep broadening
indefinitdly due to the fact th the electron scatters inelastically from time to time. The
process of inelastw scattering can be thought of as a measurement process on the
electron and thus serves to identify the position of the wavepacket to within some

region.

An argument put forward by Thouless [1980] treats the wavepacket in this manner
and the diffusion constant D is calculated on the basis that each time the wavepacket
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suffers an inelastic collision it finds itself in some confining region of length I.

For long inelastic scattering times 1, the diffusion constant was found to be:-

D= 12/121; (Egn 7.22)

For the {vrposes of this study, a detailed knowledge of the width of the wavepacket is
probably unimportant, but it is worthwhile to note that the extent of the wavepacket is

indeed limited, and the confining length is freportional to the square root of the
inelastic scattering time.

The view taken in this study was accept the presence of inelastic scattering outside
the region of interest (giving rise to a limited-breadth wavepacket), but to consider
the transport to be entirely ballistic within the region of interest. If quantum effects
are to be seen at all, the wavepacket must be free from inelastic collisions during its
passage through the device. Thus, it would seem reasonable to take a standard deviation
for the wavepacket which is at least about the same order as the ring diameter; the

actual value being chosen to avoid large truncation errors in the limited space
available on the computational grid.

In preliminary work, the energy was chosen such that the DeBroglie wavelength was
(cmmensurate with the dimensions of the ring. Thus for a test ring of 300 Angstroms
diameter, an energy of 0.15eV was chosen (A approximately 120 Angstroms). For
subsequent larger-scale simulations, the energy used was the Fermi energy deduced

from the sheet electron concentrations measured in actual devices (Appendix C).

7.5 Errors incurred in the process of discretisation.

In this section the various criteria which must be met in choosing physical
parameters such as spatial mesh size and timestep size are examined.

Goldberg et al [1967] have analysed the discretisation of a similar problem in one

dimension and analysis of the errors caused by the spatial differencing in a null

potential region resulted in the constraint:-

Km2Ax2/12 << 1 (Eqn 7.23)
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where Ky, is the wavevector of the highest Fourier component in the system.

This estimate arose from a consideration of how accurately the finite difference form
approximated the known eigenfunctions of the "particle-in-a-box" problem.
Introducing a scalar potential of Vi34 everywhere, added to the kinetic energy term,

changing the above constraint to:-
(Km? +Vmax )AX2/12 << 1 (Eqn 7.24)

The highest wavevector of interest can be found by Fourier transformation of the
initial spatial distribution of the wavepacket. Writing the momentum distribution in a
form similar to the spatial distribution:-

v(k) = A exp(ikxg) exp( -(k-kg)2/(20k2) ) (Eqn 7.25)
Upon which the identity ok=1/0x is established.

The energy chosen for the test simulation was 0.15 electron volts, which gave a
wavepacket with an average wavevector of about 130x108 m-1. The spatial standard
deviation was chosen to be 10 times the mesh cell size, as this was about the maximum
size the input wire could contain due to memory constraints on the computer in use at
the time. The table below shows the values of the wavefunction in momentum or real
space for various values of position or wavevector away from the central average
(normalised to unity).

Table 7.1

(k-kolor (x-xg)  w(x) or w(k)

] 0.6
20 0.1

This shows that if the Gaussian wavepacket is truncated at a wavevector of between
two and three times the standard momentum deviation above the average, then this can

be considered an acceptable truncation error.
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Taking the maximum wavevector of interest to be
Kmax = Kave + 3ok (Eqn 7.26)

and substituting this value into the stability requirement of equation(7.23), suggests
a mesh cell size of less than about 3x10-% m. This value ensures that all wavevector

values up to Kmay are faithfully represented on the discretised mesh.

The Gaussian is also truncated in real space by the boundaries of the model. At the
boundaries, the wavefunction is held at zero, which is different to the proper value if
the Gaussian were infinite in extent. From table 7.1, it is seen that an acceptable
truncation error would again be between two and three standard deviations from the
centre of the wavepacket. In the test simulation, the wavepacket was about 2.7cy
away from the left hand side mesh boundary, giving a truncation error of about 1%.
Unfortunately, because the simulation was performed on a two-dimensional mesh, it
was not possi ble to be as generous as Goldberg et al [1967] in the allocation of mesh
points to avoid truncation errors. This was especially noticeable when the wavepacket
was propagated for any reasonable length of time, when the transmitted and reflected
portions of the wavepacket interacted with the mesh boundaries. In one dimension
Goldberg et al were able to make their computational region large enough so that
negligible interaction with the boundaries took place during the simulation without
incurring unreasonably long computations. Hence, the criteria of Goldberg associated
with this requirement namely that of ensuring sufficient space for the wavepacket

during the simulation are not satisfied.
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7.6 Choice of an appropriate timestep.

Having chosen the size of ring for the test simulation, the available machine memory

allowed a mesh cell size of 5 Angstroms to be taken, which is within the stability
requirement demanded by equation 7.23.

To obtain an estimate for a suitable timestep, the Schrodinger equation can be
compared to the closely-related diffusion equation for which the stability conditions

have been extensively studied. Treating the Schrodinger equation as an imaginary-time
diffusion equation, one can write:-

D d?y/dx2 = dy/dt , t=it , D=t/2m* (Eqn 7.27)

where D is the diffusion constant and t is an imaginary-time parameter. A suitable
timestep may be estimated by applying the Courant-Friedrichs-Lewy criterion
[Potter1973]. This states that the maximum velocity that can be represented by the

temporal and spatial differencing, Ax/At, must be at least as large as the maximum
actual velocities in the physical system.

| Vaumerical | 2 | Vphysical | (Egn 7.28)

In the simulation, wavevectors larger than n/Ax cannot be represented by the spatial
differencing method in any case, so that the maximum physical velocity of interest is

the group velocity associated with wavevector n/Ax. This results in the requirement:-
Ax2/at = 2D, D =t/2m* (Egns 7.29)
Thus, the smaller the mesh cell size, the smaller the time interval must be for
sampling. The ax2 dependence can be seen to arise from the diffusion length over a

time At, through the classical diffusion relation:-

Ax = ( D At )1/2 (Eqn 7.30)

This requirement suggests a maximum timestep size of about 1.5x10-16 second for

the energy used.
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7.7 Errors in the phase of the wavefunction.

In addition to the errors incurred by the spatial differencing of the continuous space,
the finite time discretisation also leads to errors. The Courant-Friedrichs-Lewy
criterion concerns itself with the stability of the solution and must always be
observed. Having thus placed an upper limit on the timestep size, this section obtains
estimates of the errors caused by the temporal differencing.

Following Goldberg et al, the null potential is again considered and the Cayley
approximation for the time-evolution operator is applied to a plane wave and then

compared to the exact expression. The result for the maximum relative error in the
Fourier components is (in Sl units):-

Error = (NAt3/12 )(i2m")3 (Kp6 - Ko ) <<t (Eqn 7.31)

Where the wavevector K, is the highest Fourier component and Kg the average. The
number of timesteps is N and At is the timestep size.

It was estimated that the wavepacket would take in the order of 1x10-13 sec. to
propagate around the ring, and a few trial computations suggested a suitable total
simulation time of about 1.5x10-13 sec. The timestep was then chosen so that the
relative phase error could be kept below 1% or less during this period of time. The
final choice for the timestep was 2X10-17 second over 8000agiving a maximum

. . . . Eimastegs
relative phase error in the test simulation of about 6.5x10-3.

7.8 Modelling the contacts.

It was intended to use the computer model to measure the total transmission and
reflection coefficients of the ring, that is the total proportions of refiected and
transmitted wavepackets after all interactions with the ring are complete. This task
posed a problem of how best to model the boundaries or "contacts” in the simulation.
The wavefunctions in figures 8.2 to 8.4 show standing wave structure at the output and
input wires in the direction of motion. This is an artifact of the numerical procedure
caused by demanding that y(x,y)=0 at the boundaries, and is not physical.
Unfortunately the standing waves, caused by the transmitted and reflected waves

rebounding off the boundaries, made the determination of transmission coefficients
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very inaccurate.

A possible solution would have been to extend the length of the modelled system so
that by the time the reflected and transmitted wavepackets reach the boundaries,
interaction with the ring is virtually complete. The problem with this strategy is that
the length of the system would have to be made unreasonably large, causing an
unacceptable increase in an already lengthy computation.

The second method is to consider how the wavefunction can be absorbed by modelling
a contact. ldeally, such a contact should totally absorb any wavefunction impinging on
it whilst reflecting nothing. In practice such a contact could not be made totally
abscerbing or without a certain amount of reflection. However, by increasing the length
of the contact, both these parameters could be made arbitrarily small. furthermore, the

resulting length of the contact was much less than what would have been required if no
absorbtion had occurred.

To absorb the wavefunction, an imaginary part to the potential was introduced. A

proof that a wavefunction in a complex potential is completely absorbed is given below.

Consider a model Hamiltonian of the form:-
H = (h2/2m*)) V2 + (V, +1iVj ) (Eqn 7.32)

where V, is the real part of the potential and V; the imaginary part. This operator is

non-Hermitian and so when used in the time-evolution operator will not conserve the
normalisation of the wavefunction. For an absorber it is required that the
normalisation decrease, corresponding to a loss of particles into the contact. The
general result for the normalisation as a function of time is:-

Norm(t) =[w(rt) y*(r,t) d3r (Eqn 7.33)

One can now substitute for y(r,t) from the time-dependent Schrodinger equation

using the model Hamiltonian to yield,

Norm(t) = | exp( (-ith)( (-h2/(2m*)) V2 + (Ve+ iVj))) w(r,0)

exp( (+ith)( (£2/(2m*) V2 + (V- V) ) w*(r,0) d3r
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= [exp( +2vith) wy(r,0) y=(r,0) d3r
= exp( +2Vi¥h ) Norm(0) (Eqn 7.34)

The normalisation thus decreases exponentially with time if the imaginary part of
the potential is made negative. In the simulation the wavefunction is not always
situated in a complex potential, but moves into it from a region of zero potential.
Reflection at the contact arises in two ways; that caused by the potential discontinuity
(similar to real-potential barriers) and that caused by reflection of the (damped)
wave reflecting off the boundary and back out of the contact. The initial reflection
when the wave first impinges on the contact is proportional to the height of the
imaginary potential, and so the amount of reflection can be reduced by lowering the
imaginary potential. However, if the potential is lowered too much, the wave takes
longer to become damped and can then rebound off the boundary and back out of the
contact without sufficient attenuation. The latter effect can be reduced by increasing
the length of the contact, causing the wave to dwell longer in the damping region. This
does of course increase the amount of computation and therefore a balance must be
reached between the amount of acceptable reflection and the length of the contact
region. The reflection can be reduced further by smoothly grading the imaginary
potential profile so that sharp discontinuities in potential are avoided and in this work
a Gaussian profile was chosen.feasonable parameters for the contact were found
empirically using a one-dimensional simulation to study the behaviour of a wavepacket
incident on such a potential. It was assumed that a good range of values for the peak
complex potential would be roughly the same as the wavepacket energy. From this, the
length of the contact was adjusted so that an acceptable reflectance was obtained. An
acceptable reflectance was considered to be less than about 1% because this was about
the same order as the other errors in the simulation. The final choice was a peak

potential of 50mV and a length of 830 Angstroms.

There is a considerable advantage of using this technique over simply increasing the
size of the grid. Using a mesh cell size of 16.6 Angstroms and a wavepacket energy of
10meV, the wavepacket took about 50ps to fully interact with the ring in a region of
512x16.6 Angstroms length. The interaction was judged to be complete when the
wavefunction normalisation representing that part of the wavepacket still trapped
inside the ring fell below 1% of the initial value (1.00).
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The average (ballistic) velocity of the 10meV wavepacket in GaAs is about 230x103
m/sec, which means that a region at least 1.5 microns would be required to contain the
wavepacket for the necessary SOps. In actual fact, this probably under-estimates the
space necessary, because the wavepacket generally splits into transmitted and
reflected components on impacting the ring. Thus the space required is nearer twice
the original estimate. Even then, the high-velocity components of the wavepacket have
been ignored. A region approximately 23 microns long is therefore required to model
a region 0.85 of a micron; an increase of about 2609j.In contrast, the contacts

modelled using the complex potential occupy 0.083 micron at each end, adding only
20% to the total length.

7.9 Summary.

This chapter has considered the specific aspects of a two-dimensional model for an
AB ring. The Hamiltonians for two different magnetic field distributions were derived
and it was shown how these were resolved into the two components necessary to
implement the ADI method which was described in general terms in chapter 6. The
particular decomposition used was not unique, but partitioning the lumped potential

energy term equally between the two operators was considered sensible.

The spatial and temporal discretisation errors were estimated by considering how
accurately the finite-difference equations approximated the known eigenfunctions for a
null-potential region. For the preliminary calculations on the small ring, the error
due to the truncation of the initial condition was estimated to be about 1% with an
error in the phase of the wavefunction of about 0.5% and a negligible error due the
spatial differencing. Errors for the full-scale calculations were slightly worse, with a
relative phase error of about 2% and a error due to spatial differencing of around 1%.
However, in view of the other uncertainties encountered in constructing the model,
such as determining the correct wavepacket energy and the precise form of the

confinement potential, these errors were considered acceptable.

A method of modelling the contacts of the device by the addition of an imaginary
potential to the Hamiltonian was described. The trade-off between the width and
absorbing efficiency of the contact was discussed and it was found that acceptable
results could be obtained by a 0.166 micron increase in length of the modelled region.
This compares to about an extra 23 microns if the length of the region were simply
extended to avoid interference occurring at the boundaries.
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8. Two-dimensional simulation results.

8.1 Introduction.

In this chapter the computer model described in the previous chapter is used to
simulate the propagation of a wavepacket through an AB ring.

In the first instance a small-scale simulation was performed, which demonstrated
the AB effect in a two-dimensional system, although unphysical boundary effects
limited the length of time the simulation couid be run.

Subsequently, larger, more realistically sized rings were simulated in which the
bourdaries were modified to remove most of the unphysical boundary reflections. The
results show a much more complex distribution of the wavefunction than found in the

preliminary studies and the emergence of a multi-mode structure in the wavefunction
across the wires is observed.

The non-ideal magneto-transmission characteristic for the larger ring, which is
dealt with in greater detail in the next chapter, is discussed in terms of the

distribution of the interference fringes with respect to the output wire.

The transit time of the wavepacket through the ring is also considered and was
approached in two ways. By measuring the position of the wavefront and by measuring
the transmitted charge as a function of time. Both results were compared to the

analytic result for a free wavepacket moving in one dimension.

8.2 Description of the idealised AB ring modelled.

Figure 8.1 shows a plan view of the idealised patterned-gate HEMT structure used
for the computer simulations. The shaded regions denote areas of high scalar potential
of 100 times the average wavepacket energy. The areas not shaded are regions of zero
scalar potential which represent the wires forming the ring. The wavefunction is
contained for the most part in the wire regions, but since the confining walls are not
infinite in height, some penetration into the high-potential regions does occur. The
potential profile across the wire was taken to be a perfectly rectangular well. A
calculation by Davies [1988] has shown that in the limit of very few carriers in the
the wires, th