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SUMMARY

The Taylor Dispersion Technique has been applied to the measurement of 

mutual diffusion coefficients for liquid mixtures at elevated press­

ures. The systems studied were toluene plus n-hexane and toluene plus 

acetonitrile over the temperature range from 273 to 348 K and up to 25 

MPa. The density and viscosity for the same mixtures have been measur­

ed from 298 to 373 K and up to 500 MPa. A self-centering falling body 

viscometer was used for the viscosity measurements, and densities were 

measured with a bellows volumometer. High pressure densities are also 

reported for the ternary mixture of n-octane, i-octane and oct-l-ene. 

Measurements were also made of the mutual diffusion coefficient of 

benzene and eight fluorinated benzenes at trace concentration in 

n-hexane from 213 to 333 K, at atmospheric pressure.

The results have been used to make a rigorous test of current theo­

retical and empirical relationships. The Tait equation fits the 

density data within 0.2%. The trace mutual diffusion coefficient data 

are satisfactorily accounted for on the basis of the rough hard-sphere 

model and the high pressure viscosity coefficient results are success­

fully correlated using a method based on consideration of hard-sphere 

theory. The Grunberg and Nissan equation satisfactorily reproduces the 

mixture viscosity data, with parameter G dependent on temperature, 

pressure and concentration.

An important development in the correlation of dense fluid transport 

properties on the basis of hard-sphere model is described, whereby 

diffusion and viscosity coefficients are considered simultaneously. 

This should lead to more reliable prediction methods for transport 

coefficients of dense fluids and fluid mixtures.
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SYHBOLS AND ABBREVIATIONS

Except where specified otherwise the symbols used have the following 

meanings:

A (i) Viscometer calibration constant

(ii) Cross-sectional area of bellows 
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B Viscometer calibration constant
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De Dean number

F flow rate
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G Grunberg and Nissan constant
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g(d) Radial distribution function at contact

K Bulk modulus

K Secant bulk modulus

k Boltzmann constant

L, 1 Length

Ls length of sinker

M (i) Liquid mass in bellows

(ii) Molecular weight 

MD Molecular dynamics

m Mass per molecule

N Avogadro constant

n (i) Number of moles

(ii) Constant in equation for the viscometer 

calibration
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P Pressure

Po Atmospheric pressure

R Universal Gas constant

Ro Radius of diffusion tube

Rc Radius of helix

Re Reynolds number

r Radius of capillary

rl Radius of sinker

r2 Radius of viscometer tube

Sc Schmidt number

T Temperature

t time
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V (i) Volume
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p, pi Density of liquid
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Packing fraction 

Dynamic viscosity coefficient 

î /p Kinematic viscosity coefficient

c1 (i) Standard deviation of Gaussian peak

(ii) Hard sphere diameter 

X Coefficient of thermal conductivity
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INTRODUCTION



2

INTRODUCTION.

Transport properties of fluids and fluid mixtures play an important 

role in chemical engineering (for example, in plant design), in medi­

cine (as in protein transportation in biological systems), in environ­

mental engineering (air pollution, for example), in chemical processes 

(as in isotope separation) and in other disciplines. A study of 

transport properties is therefore extremely important both experi­

mentally, to obtain precise measurements on systems of industrial 

importance and on key systems for testing theories, and theoretically, 

in order to provide information on the least well understood state of 

matter, the liquid. For accurate prediction of transport properties it 

is essential to develop theories of transport of dense fluids which 

have a molecular basis.

The theory of transport phenomena is well developed for dilute gases 

[1] made up of structureless spherical particles. Accurate prediction 

of diffusion, viscosity and thermal conductivity coefficients is 

possible, provided potential energy functions are accurately known. 

However, for dense fluids, problems arise because of many-body 

effects. These can be overcome, in principle, by the computer 

simulation technique of molecular dynamics [2-12]. The limitations of 

this method are the need for an accurate description of the pair 

intermolecular potential energy function for each substance, plus 

information concerning the non-additivity of the pair potential. An 

additional major disadvantage is the length of computing time involved 

in the calculations.



In view of these difficulties in calculating exactly the transport 

properties of dense fluids and their mixtures, it is necessary at 

present to use empirical methods or, preferably, semi-empirical 

methods which are based on theory. An outline of some of the currently 

used methods is given in Chapter 2. The most successful theoretical 

approach at this time is based on the hard-sphere model of a fluid 

[13] and this has been widely used for the successful correlation of 

experimental transport coefficient data for dense fluids and fluid 

mixtures [14-24]. However, values reported for the molecular parameter 

of a given substance often show significant variation. In order to 

resolve this difficulty and provide a sound foundation for further 

application of this approach, a careful analysis has been made of 

viscosity and diffusion data, simultaneously, since these properties 

exhibit a very strong density dependence, and a consistent set of 

parameters determined. The data used were for n-alkanes where 

extensive accurate measurements are available over wide temperature 

and pressure ranges. The results of this theoretical part of the 

project are included in Chapter 2.

For a rigorous test of any theory, it is necessary to have experi­

mental measurements for selected systems over a wide range of 

experimental conditions.

Most of the experimental work on mixtures in the past has been 

concentrated in the case of mutual diffusion coefficients on measure­

ments at trace concentrations over a limited temperature range, with 

little attention given to the pressure dependence. In this work, the 

Taylor dispersion technique is used to measure the mutual diffusion 

coefficients for benzene and eight fluorinated benzenes at trace con­



centration over the temperature range 213-333 K at atmospheric 

pressure. These systems show similar molecular interactions but have 

different size and mass ratios. The theory of the method is discussed 

in chapter 3, section 3.2 and the results are discussed in section 

3.4.10. and 3.4.11.

High pressure mutual diffusion measurements were conducted for toluene 

+ n-hexane mixtures over the temperature range 298 to 348 K at toluene 

mole fractions of 0, 0.25, 0.50, 0.75 and 1.0 up to 25 MPa. Measurents 

were also made for toluene + acetonitrile mixtures at temperatures 

from 273 to 248 K at a toluene mole fraction of 0, 0.2, 0.4, 0.6, 0.8

and 1.0 up to 24 MPa. The results for these non-ideal systems are

presented in section 3.5.4. of Chapter 3. Prediction methods are 

available for the composition dependence of binary liquid mixtures 

[25-29] but in most cases knowledge of the thermodynamic factor is 

required.

In the case of viscosity coefficients at elevated pressures, previous 

measurements have been made almost exclusively on n-alkanes and their 

mixtures. Therefore, in this work an experimental study has been made 

of mixtures of toluene with n-hexane and with acetonitrile, where the

molecular interactions will differ. Chapter 4 describes the methods

used to measure the viscosity coefficient and density at atmospheric 

pressure. Results given in this chapter for toluene, acetonitrile and 

binary mixtures of toluene + n-hexane and toluene + acetonitrile at 

temperature from 298 to 348 K are used in the subsequent chapter to 

calculate the high pressure density and viscosity coefficient. High 

pressure densities were measured by using a bellows volumometer while 

high pressure viscosity coefficients were measured using the self­
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centering falling body viscometer at the National Engineering 

Laboratory, East Kilbride, Glasgow. Both sets of apparatus are 

described in the later sections of Chapter 4.

The high pressure densities and coefficient of viscosity for binary 

mixtures of toluene + n-hexane and toluene + acetonitrile at 

temperatures from 298 to 373 K and at pressures up to 500 MPa are 

presented in Chapter 5. Density results are also presented for the 

equimolar mixture of n-octane, i-octane and oct-l-ene over the same 

temperature and pressure ranges, to supplement previous measurements 

on the equimolar binary mixtures [30].

The results presented in Chapter 5 are discussed in Chapter 6 in the 

light of current theories and correlation methods. Specifically, (a) 

the variation of molar excess volume with composition and pressure is 

described; (b) the densities are fitted to the modified Tait equation, 

and (c) the viscosity coefficients are correlated on the basis of the 

rough hard-sphere theory, and also fitted to a free volume form of 

equation and to the empirical Grunberg and Nissan equation.

Chapter 7 is devoted to various conclusions drawn from this research 

work, and includes a number of suggestions for future work.
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CHAPTER 2

THEORIES OF TRANSPORT PROPERTIES FOR DENSE FLUIDS

2.1 INTRODUCTION

2.2 HARD SPHERE THEORY

2.2.1 Transport Coefficient for a Dense Hard 
Sphere Fluid

2.2.2 Rough Hard Sphere Theory

2.3 ACTIVATION ENERGY THEORY

2.4 FREE VOLUME THEORY

2.5 GRUNBERG AND NISSAN EQUATION

2.6 CORREALATION OF HIGH PRESSURE DIFFUSION
AND VISCOSITY COEFFICIENTS OF n-ALKANES

2.6.1 The Correlation Method

2.6.2 Applica tion
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2.1 INTRODUCTION.

The diffusion and high pressure viscosity coefficient data for liquids 

and liquid mixtures obtained in this work are discussed in terms of 

current theories and empirical relations in use at the present time, 

such as the hard-sphere theory and activation energy theory, the free 

volume form of equation and the Grunberg and Nissan equation. Of these 

the most successful theoretically-based approach is that based on the 

hard sphere model, and an attempt is made to correlate simultaneously 

the self-diffusion and viscosity coefficient data of n-alkanes 

(methane to n-hexane) over the wide temperature and pressure ranges 

and to derive a single set of Vo values. In this chapter, an outline 

of the different theories and various correlation methods is first 

given for the two properties and discussed.

2.2 HARD SPHERE MODEL.

The kinetic theory of transport properties is highly developed for 

dilute monatomic gases [31,32]. The transport coefficients derived 

from the theory depend upon the nature of the pair potential, which in 

the case of rare gases is now quite well known. The problems arise in 

trying to account theoretically for the transport coefficients of 

dilute polyatomic gases, and for dense fluids. In the case of dense 

fluids, there is at present no formal theory that allows exact 

calculation of transport properties in terms of the actual molecular 

interactions and so it is necessary to consider reasonably realistic 

but approximate models for which transport coefficients can be 

evaluated accurately. These solutions can then form the basis of 

correlations and prediction methods and are to be preferred over
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purely empirical methods.

The model that has provided the required basis for such an approach is 

the van der Waals model of a fluid which pictures the molecules as 

having an infinitely steep repulsive interaction and a very long-range 

attractive interaction. At fluid densities, this becomes equivalent to 

the hard-sphere model for transport properties. For this model the 

interaction energy is given by:

U(r) = 0 r>d

U(r) = oo r^d (2.1)

For any real system, the potential energy does have a steep repulsive 

part and the range of the attractive part can be considered large 

relative to the interparticle spacing at densities greater than the 

critical density. The attractive energy then forms a uniform 

attractive energy surface, and the molecules will move in straight 

lines between core collisions, providing that the kinetic energy is 

not too low. In applying the hard-sphere model to real fluids 

therefore it is to be expected that the core size will decrease as the 

temperature is increased, a consequence of the softness of the 

repulsive interaction.

2.2.1 TRANSPORT COEFFICIENTS FOR A DENSE HARD-SPHERE FLUID.

Transport coefficient for a dense hard-sphere system can be related to 

the dilute hard-sphere values. For a dilute gas of hard spheres, where 

the interparticle distance is large compared to the size of the 

particles, the transport coefficients, namely, diffusion coefficient
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D0/ viscosity coefficient r̂0 and coefficient of thermal conducti- 

ty X 0 can be written as [13].

Do = (3/8n07t or 2) (7t kT/m) w  2 (2.2)

1^0 = (5/167TO' 2)(7tmkT)i/2 (2.3)

Xo = (25CV/327T d 2) ( ?r kT/m) 1 / 2 (2 .4 )

where n0 is the number density, m is the mass of the particle, T is

the absolute temperature, k is the Boltzmann constant and Cv is the 

heat capacity for monatomic species at constant volume.

The kinetic theory for transport coefficients of a dense hard sphere 

system has been given by Enskog [33]. In a dense system, the collision 

rate is higher than in a dilute system because the molecular diameter is 

no longer negligible compared with the interparticle distance. The 

Enskog theory of diffusion assumes that the high density system behaves 

exactly as a low density system except that the collision frequency is 

increased by a factor of g(cr), where g(d) is the radial distribution 

function at contact for the spheres of diameter d [15,34,35]. The 

solution of the Boltzmann equation valid at low density is merely scaled 

in time to give the ratio of the diffusion coefficient De at high num­

ber density n relative to that at low density, subscript zero.

nDE/n0D0 = 1/g(d) (2.5)

g(d) can be determined from the Carnahan-Starling equation [36]:
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g(d) = (l-O.S’j )/(l-^ )3 (2.6)

where^= b/4V for molar volume V, and b (the second virial coefficient 

for hard spheres) is 27TNd3/3 where N is the Avogadro constant and D0

is given by equation 2.2.

For diffusion the particles themselves must move, but for viscosity and 

thermal conductivity there is the additional mechanism of collisional 

transfer whereby momentum and energy can be passed to another molecule 

upon collision. The Enskog theory for viscosity r̂E and the thermal 

conductivity \e in terms of the low density coefficients accordingly 

contain additional terms.

HE/r}o = U/g(d) + 0.800b/V + 0.761g(d) (b/V) ?] (2.7)

Xe/Xo = [l/9(d) + 1.200b/V + 0.755g(d)(b/V)2] (2.8)

where î> and \0 are given by equations 2.3 and 2.4 respectively.

Since the Enskog theory is based on the molecular chaos approximation 

and only binary collisions are considered, the theory fails at liquid 

density because of neglect of correlated molecular motion, such as back 

scattering of a molecule surrounded by a shell of surrounding molecules. 

The existence of correlated molecular motion is proved by molecular 

dynamics calculations [37] and Alder, Gass and Wainwright [3] have 

computed the resulting corrections to the Enskog coefficients at

different reduced volumes, V/Vo, where Vo is the volume of close

packing.
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For dense gases at densities up to 2.5-times the critical density, the 

corrections to Enskog theory for viscosity and thermal conductivity 

coefficients are less than 10%, but for diffusion the corrected 

coefficient is significantly greater than the Enskog value at densi­

ties corresponding to 1.5- to 2-times the critical density. At the 

highest densities, approaching the onset of solidification, the 

correction arising from back-scattering results in the exact hard 

-sphere diffusion coefficient being lower by about 40%, and viscosity 

coefficient being higher by a similar amount.Thus, to obtain the exact 

relationship for the dense hard-sphere transport coefficients in terms 

of the low density coefficients, equations 2.5, 2.7 and 2.8 must be 

multiplied by the appropriate correction factor.

2.2.2 ROUGH HARD-SPHERE THEORY.

The smooth hard-sphere theory is only applicable to the monatomic 

fluids (noble gases),liquid metals [38], and polyatomic spherical 

molecules such as methane, where the mass distribution is spherically 

symmetric. For polyatomic fluids generally it is necessary to take 

into account the effects of non-spherical shape and the possibility of 

coupling of translational and rotational motion. Chandler [39-41], 

related the diffusion and viscosity coefficients for a rough 

hard-sphere fluid to those for a smooth hard-sphere fluid as

Drhs = ADshs (2.9)

I|rhs = Cî shs (2.10)

where A and C are translation-rotation coupling factors, expected to
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be density and temperature independent, taking into account the 

possibility of changes in angular momentum as well as in translational 

momentum upon collision, and are bounded by the condition:

0 < A  ̂ 1 and C >y 1.

An equation for A [42] suggests that A has a value from 5/7 to 1 for 

polyatomic fluids, while in the case of the lower alkanes it was found 

that the coupling factor C could be taken to have the value unity 

[43].

The thermal conductivity for rough hard-sphere fluids cannot be simply 

related to that for a smooth hard-sphere fluid like the viscosity and 

diffusion coefficient because the internal energy must be taken into 

account in consideration of this property. In this work , attention is 

therefore restricted to application of the rough hard-sphere theory to 

the correlation of diffusion and viscosity coefficients over the wide 

temperature and densities ranges. The method of application, and 

results, are discussed below in section 2.6, using literature results 

for n-alkanes, and in Chapter 6 for the experimental results of 

toluene plus n-hexane and toluene plus acetonitrile obtained in this 

work.

This rough hard-sphere model can also be applied to transport proper­

ties of liquid mixtures. For example, the binary diffusion coefficient

D12 for a dense fluid mixture is given by Eq. 2.11 [23]

tv 3(kT)1 /2
Ul2 - _ rmi + m2 -|1/2 Ai 2 D

8ndi22 „ 2mim2lT. gi2(d) De MD



where n is the total number density, d\ 2 = (cT2 +c/2 )/2 for spheres 

of diameter d1, d̂ ; mi and m2 are the molecular masses and 

(D/De)md is the computed correction to the Enskog value.

A12 is the translation-rotation coupling constant and gi2(d)

is the unlike radial distribution function which is given in terms of

the like radial distribution functions by:

gi2(d) = [ o'ig22(d) + cr2gn(d) ]/2di2 (2.12)

where gii(cf) is given by

gi i (0) = l/(l-x)+3yi/[2(l-xV]+yiV[2(l-x)3] (2-'^

where x= Xi + x2, with Xi equal to m d i 3/6

and yi = (diXj + o'jXi)/di

Thus mutual diffusion coefficients for binary mixtures of hard-sphere 

fluids can be calculated provided that the core sizes of the solvent 

and solute molecules are known as a function of temperature. Values 

for A12 can be derived from limiting tracer diffusion coefficient or 

limiting mutual diffusion coefficient measurements by using equations 

2.11-2.13 with given core sizes. Corrections to the Enskog values can 

be determined by molecular dynamics calculations while the core sizes 

can be estimated from fitting the viscosity or tracer diffusion 

coefficient data for the pure components to a free volume form of 

equation [44] or from the formula presented by Protopapas et al. [38].

This approach has been used for the analysis of the mutual diffusion 

coefficient measurements at trace solute concentration reported in

Chapter 3, to derive values for A i2 for the organic solutes in
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n-hexane and for the systems toluene + n-hexane and toluene + 

acetonitrile.

2.3 ACTIVATION ENERGY THEORY.

An alternative approach to the solution of the problem of transport 

processes has been considered in terms of an activation energy theory 

[45] which is based on the theory of absolute reaction rates. Accord­

ing to this theory, in a pure liquid at rest the individual molecules 

are constantly in motion. However, because of the relatively close 

packing of molecules the motion is largely confined to vibration of 

each molecule within a "cage" formed by its nearest neighbours.

Eyring [46] has suggested that a liquid at rest continually undergoes 

rearrangement in which one molecule at a time escapes from its "cage" 

into an adjoining hole. In order to "jump" into a neighbouring 

vacancy, a molecule must first overcome an activation energy barrier 

caused by the field of the neighbouring molecules. On the basis of the 

absolute reaction rate theory, the viscosity of a pure liquid is given 

as follows [47]:

r^= (Nh/V)(X/a)2exp(aGVRT) (2.14)

where N is the Avogadro constant, h is the Planck constant, X is the 

distance between adjacent moleculer layers, V is the molar volume, a 

is the distance between neighbouring molecules in the layer and 6G* 

is the Gibbs free energy of activation for viscous flow, equal to the 

difference in the chemical potentials of the transition state and the 

pure liquid.
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Similarly, the temperature dependence of diffusion coefficients can be 

expressed as an Arrhenius type of equation in terms of the activation 

energy of diffusion, which arises from two different mechanisms [48], 

one static and the other dynamic. The static contribution comes from 

the contact pair correlation function gi2(d) in Enskog diffusivi- 

ty. The pair correlation function can be expressed in the form:

gi2(d) = exp[-w(d)/RT] (2.15)

where w(d) is the potential of mean force of a pair of molecules held 

just at contact. gi2(d) is also a measure of the number of neare­

st neighbour solvent molecules around a solute molecule. This caging 

of a solute molecule by solvent molecules give rise to the 

configurational activation energy.

The other source of activation energy is dynamical, namely, the 

activation energy of the back scattering effect, accounted for by the 

factor D/De . The total activation energy of diffusion is the algebra­

ic sum of the two activation energies.

Both the Arrhenius type equation for diffusion and equation 2.14 

predict that In D and In should be a linear function of reciprocal 

temperature as is found experimentally in most of the cases, with 

slope equal to the activation energy divided by Gas constant R. In 

Chapter 3, section 3.4.10, this approach is applied to the mutual 

diffusion coefficient data for fluorinated benzenes in n-hexane and 

the activation energy of diffusion is calculated.
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2.4 FREE VOLUME THEORIES.

The first relationship between viscosity and the free volume, in which 

the molecules are free to move, of an unassociated liquid was proposed 

by Batschinski in 1913 [49] as follows:

l/î  = (v-w)/C (2.16)

where v is the specific volume of the liquid, w and C are constants, w 

was correlated as being a nearly constant fraction of the critical 

volume, similar to van der Waals b, but Batschinski failed to find a 

correlation for C.

Doolittle [50] found that the fluidity of many simple hydrocarbon 

liquids could be represented by a relation having a form quite 

different from Batschinski's equation as follows:

1/rj = A ’ exp[-B'Vo/Vf] (2.17)

which is equivalent to

In r^= A" + CV*/(V-V*) (2.18)

where A" and C are constant for a given liquid and V* was 

defined initially as the specific volume of the liquid extrapolated to 

absolute zero, but later [51] was considered as an other adjustable 

parameter.
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Cohen and Turnbull [52] derived a similar equation from consideration 

of the statistical redistribution of the free volume in a hard-sphere 

fluid. According to them:

In (ij/ T W 2 )  = Ac + Bc/Vf (2.19)

where Ac and Bc are constants and Vf is the free volume,

assumed to be equivalent to a thermal expansion from a reference

temperature to the experimental temperature.

Recently Hildebrand [53] modified Batschinski's equation, by reasoning 

that fluidity should be a linear function of the ratio of free volume, 

V-Vo, to the volume Vo at which, as the temperature decreases, 

molecules become too close to permit either free flow or self

diffusion. He wrote

1/r̂  = B"(V-Vo)/Vo (2.20)

where B" is a constant whose value depends upon the capacity 

of molecules to absorb momentum because of their mass, flexibility or 

inertia of rotation. B" has been found to be linearly related to

chain length in the case of the n-alkanes [54]. Equation 2.20 fits the

data fairly well, whether the volume change is brought about by 

temperature change at atmospheric pressure or pressure variation at a 

constant temperature [55], provided the freezing point is not

approached. Application of the Hildebrand equation to the viscosity 

data of benzene, mono-halogenated benzenes and n-alkanes such as 

n-heptane and n-decane [56] at temperature from 293.2 K down to their 

melting points, reveals that equation 2.20 is restricted to reduced
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temperatures T/Tc, where Tc is the critical temperature, greater than 

0.46 at which unhindered molecular rotation is possible.

A more recent approach [57] was based on the exact smooth hard-sphere 

results which are expressed in the form :

In r̂' = -0.762 + 1.355Vo/(V-Vo) (2.21)

where was given by 9.118X107i|y2/3/(IlRT)i/2 f0r

monatomic and simple polyatomic fluids, which can be treated as smooth 

hard spheres. This equation fitted the viscosity data very well. A 

similar form of equation was expected to hold for other polyatomic 

fluids, with different values for the parameters, to take into account 

the effects of translational rotational coupling and non-spherical 

molecular shape. The equation has the form:

In r̂' = A + BVo/(V-Vo) (2.22)

where A and B are now adjustable parameters. Dymond and Brawn [57] 

fitted the viscosity data for certain pseudo-spherical molecules and 

relatively rigid ring hydrocarbons to equation 2.22 . They found that 

A was temperature independent and had the same value (-1.0) for the 

liquids of closely similar molecular structure. This value of A also 

gave a good fit to the data for carbon tetrachloride and 

tetramethy1s i1ane.

Dymond et al. [58-60] applied equation 2.22 to the viscosity

coefficient of liquid n-alkanes and mixtures of n-alkanes as well as 

to mixtures of aromatic compounds with A equal to -1.0, while Vo and B
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were derived from the data of the pure components as:

Vo = X1V01 + X2V02 (2.23)

B = X1B1 + X2B2 + XiX2a|Bi~B2l c zz<t)

where a is a positive constant, obtained by fitting the data of the 

pure components to equation 2.24. It was observed [59] that calculated 

B values were significantly different from the observed B values for 

systems having enhanced intermolecular interactions.

Equation 2.22 is tested using the measured viscosity coefficient data 

of toluene, acetonitrile, three binary mixtures of toluene + n-hexane 

and three binary mixtures of toluene + acetonitrile in Chapter 6, 

section 6.4.2.

2.5 GRUNBERG AND NISSAN EQUATION.

The above methods have the disadvantage of requiring accurate 

information on liquid densities under the experimental conditions. The 

empirical Grunberg and Nissan equation [61] simply relates the 

viscosity coefficient of a mixture to the viscosity coefficient

where G is a characteristic constant for each mixture. Equation 2.25 

is applicable to saturation as well as high pressure viscosity data. 

Grunberg and Nissan constant, G, may depend upon the pressure as well 

as on the composition for mixtures of n-alkanes or aromatic compounds

of the pure components r̂i and according to

In ]|ra = xilnr̂ i + X2lnr̂ 2 + X1X2G ( 2-2.5)
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[60,62,63], whereas the temperature dependence in these cases is 

insignificant. The Grunberg and Nissan equation is applied to the 

viscosity data obtained in this work, in Chapter 6, section 6.4.3.

2.6 CORRELATION OF HIGH PRESSURE DIFFUSION AND VISCOSITY COEFFICIE­

NTS FOR n-ALKANES.

Thermal conductivity coefficients and viscosity coefficients of 

n-alkanes over wide ranges of temperature and pressure can, separ­

ately, be successfully correlated by methods based on a consideration 

of the hard-sphere theory of transport properties [13,57,64]. Unfor­

tunately, values which have been reported for the molecular parameter 

Vo, the volume of close packing, differ significantly. For example, 

for n-hexane at temperatures close to 323 K, Vo has been variously 

given as 71.77 [65], 73.06 [66] and 77.3X10  ̂m3/mol [67] 

from thermal conductivity data analysis and 72.0X10-6 mJ/m°l 

[68] from viscosity measurements. A preliminary simultaneous fit of 

viscosity and thermal conductivity coefficients gave a Vo value of 

83.12X10-b m3/mol [69] which is significantly higher than these 

values and also much higher than the figure of 76.32X10-<> 

m3/mol given by Harris [70] from fitting self-diffusion data 

for n-hexane at 333 K. For a satisfactory correlation of transport 

properties of n-alkanes using methods based on hard-sphere models, it 

is essential to establish a consistent set of Vo values. This is 

particularly important when this approch is to be used for calculation 

of transport coefficients at other temperatures, or for other members 

of the series where data are at present limited. It is also preferable 

to have an agreed set of Vo parameters before embarking on the corre­

lation of transport properties of liquid n-alkane mixtures.



Thermal conductivity coefficients and viscosity coefficients of 

n-alkanes have been correlated simultaneously [69] by using a single 

set of Vo values, derived from the viscosity coefficient data. 

However, since an increase in pressure has only a relatively small 

effect on thermal conductivity of the n-alkanes, and also because the 

effects of internal energy have not yet been exactly quantified, we 

considered it prefereble to correlate the high pressure diffusion and 

viscosity coefficients of n-alkanes, initially, and to consider ther­

mal conductivity at a later stage.

2.6.1 THE CORRELATION METHOD.

Calculation of viscosity or self-diffusion coefficients for any 

compound on the basis of exact smooth hard-sphere theory at a given 

temperature and pressure requires just a value for the parameter Vo, 

the volume of close-packing of spheres, given by Ncr 7 2  w, .

This is conveniently carried out by an established curve-fitting 

procedure [57,71] based on reduced quantities D ‘ and r̂ ‘ defined 

by the following expressions:

D* = (nDsHs/n0D0)(V/Vo)2/3 (2.26)

= (i\s h s /H p )(V/V o )2/3 (2.27)

where the smooth hard-sphere coefficients are given by the product of 

the Enskog value and the corrections to Enskog theory,

Dshs=De (IVDe)md anc* ^sHs-^ECn/nE)

Values for D* and i£* are calculated from theory for different
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reduced volumes, V/Vo. Values are also calculated from experiment 

since on substitution of the hard-sphere expressions:

IT = 5.030X10B(M/RT)i/2(D/VW3) (2.28)

q* = 6.035X108 (î V 2 /3)/(MRT)1/2 (2.29)

To determine Vo for a given compound from self-diffusion data at a 

given temperature, a plot of log D* from experiment versus log V 

, where V is the molar volume, is superimposed on the curve of log 

D* versus log (V/Vo) by translation along the x-axis. Values for 

Vo can similarly be derived by curve-fitting using viscosity

coefficient data. In figs. 2.1 and 2.2, the variation of log D ‘

and log r̂* with log (V/Vo) for the hard-sphere system are

shown respectively. D* and are defined by Eq. 2.2 6 and 

2.27 respectively. Solid lines are given by smooth hard-sphere theory 

with corrections to Enskog theory given by Easteal et al.[72] for the 

diffusion coefficient and Dymond [74] in the case of the viscosity 

coefficient. Circles represent diffusion [71] and viscosity [73] data

for methane at 140 K while vertical lines identify the range of D*

and for n-hexane. Crosses represent the predicted hard- 

sphere values using the earlier corrections (Alder et al. [3]) to the 

Enskog theory, and it is important to note the significant difference

in density dependence of these predictions. It is essential that all

curv-fitting should be carried out with respect to the same reference 

curves and we therefore recommend that the solid lines given here,

calculated as described above, be taken as the exact hard-sphere

reference curves.
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Methane at 140 K was taken as the reference smooth hard-sphere system 

because accurate diffusion [71] and viscosity coefficient [73]

measurements have been made at this temperature, and this molecule can 

be expected to behave as a smooth hard-sphere with respect to

transport properties at high densities. For this molecule the mass is 

effectively concentrated at the centre. Indeed, it is found [74] that 

these data can be interpreted on the basis of the smooth hard-sphere 

model, with the same value for Vo of 20.825X10~h m3/mol.

Methane data at other temperatures are similarly fitted to the 

hard-sphere curves, and the derived Vo values are found [74] to

decrease smoothly with increase in temperature as expected since real 

molecules experience a soft repulsive interaction.

At high densities the hard-sphere system becomes metastable, but for 

real fluids still higher values for iq* and L>' are possible, 

as shown for n-hexane in figs. 2.1 and 2.2. Such molecules are

generally non-spherical and also exhibit roughness, that is there is 

the possibility of transfer of rotational as well as translational 

momentum on collision. For pseudo-spherical molecules, correlation of 

these transport properties can be achieved on the basis of the rough 

hard-sphere model, by superimposing plots of log D' versus log 

V, and similarly of log versus log V, on respective curves given 

by experimental results for a selected reference temperature. This is 

illustrated in fig. 2.3 for the n-hexane diffusion coefficient 

measurements of Harris [70] which cover the temperature ranges 223 to 

333 K. The 298 K isotherm was taken as reference and the required 

shift along the x-axis in order to superimpose the other curves gives 

the ratio of Vo values for the different temperatures. These vary 

smoothly with temperature. It should be noted that, in terms of the
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model, there is no evidence of a temperature dependence for A. Similar 

results have been obtained from viscosity coefficient measurements for 

individual alkanes, and this is now an established method [60,62] for 

testing the consistancy of experimental viscosity measurements.

In order to determine absolute values for Vo for different n-alkanes, 

the correlated curves for a given compound are compared with the 

appropriate smooth hard-sphere curve. To allow for the fact that 

higher n-alkanes are non-spherical the above ideas can be extended to 

give:

D = R dD shs and ry = R ^ hs (2.30)

where the factors Rd and R^ account for non-spherical shape 

and translational- rotational coupling. Values for these parameters 

for a given compound are derived by simultaneously curve-fitting the 

correlated log D* versus log V with the solid line in fig. 2.1, 

and the correlated log r|* versus log V curve with the solid line 

in fig. 2.2. Since horizontal and vertical adjustments ai e possible, 

there is a range of values for Vo at the reference temperature, and 

also for Rd and Rri.

2.6.2 APPLICATION.

The first conclusion which results from applying the above procedure 

to n-hexane viscosity (248 to 3?3 K and up to $30 MPa) and self-diff­

usion coefficients (223 to 333 K and up to 400 MPa) is that it is not 

possible to obtain a simultaneous fit of both properties with the same 

Vo for the reference temperature (298 K) with Rd and RVi set
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equal to unity.

To determine the pos- iMe range of values for Vo, conditions similar 

to those which pertain to the translational-rotational coupling 

factors have been applied, namely that Rp^l. and Rr̂>l.

Matching the correlated diffusion curves for n-hexane with fig. 2.1 to

give agreement within 3% leads to the conclusion that Vo at 298 K,

lies between 76.9 and 80.4X10'6 m3/m°l with Rd between 0.77 

and 1.0. From the corresponding viscosity coefficient data fit, Vo 

must be between 79.4 and 81.8X10"'-' m3/mol and Rtl has the 

limits of 1.0 and 1.33, to fit the data within estimated experimental 

uncertainity. For a simultaneous fit of these two properties Vo for 

n-hexane at 298 K must lie between 79.4 and 80.4X10 -' m3/rool 

with 1.33 >Rr̂ >1.16 and 0.92 <Rd< 1.0. Similarly, limits can 

be found for Rd, Rrt and Vo at the reference temperature for 

other n-alkanes for which self-diffusion and viscosity coefficient 

values are available. It is found for the accurate n-hexane self­

diffusion coefficient data [70] and the less accurate diffusion 

coefficients for other n-alkanes [75,76] that, in terms of the model, 

effects of the non-spherical molecular shape and roughness are very 

small and indeed, Rd may be set equal to unity. The corresponding 

Vo values lie in the middle of the range determined from a fit of 

viscosity data alone. Accordingly, Rd has been taken as 1.0, and 

the optimum Vo and Rr̂ values that give the best simultaneous fit 

to the hard-sphere viscosity and diffusion curve determined by curve 

fitting.

Values which have been obtained in this way for Vo are given in Table 

2.1. As expected, the Vo values at a given temperature vary smoothly
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TABLE 2.1

VALUES FOR THE CHARACTERISTIC VOLUME Vo (10~<> m3/mol)

T/K 90 95 100 110 120 130 140 150

CH 4 - - 22.46 - 21.57 - 20.82

C 2H 6 “ ~ 34.59 34.10 33.70 33.32 - 32.69

C 3H 8 50.95 50.40 49.82 48.95 - - 47.01

C 4H 10 - - - - - -  61.25 60.50

T/K 160

C H 4

c 2h 6

c 3h 8

C 4H i 0 59.84

170 180 200 250

19.93 19.69 19.26 18.51

290

31.52 30.75 30.27

58.86 58.17 56.59

300

18.00

42 .67 

55. 19

320

29.94

T/K 223.2 

C 6H i 4 84.34 

CbHi8 

C 1 2H 2 b 

CibH34

248.2 273.2

82.64 81.32

111.7 109.0

298.2 323 . 2

80.40 79.64

107. 1 105.5

165 . 8 163 . 3

224.4 221 . 1

348.3 373.2

78.91 78.23

104.4

160.9 158.6

217.6 214.2
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with change in n-alkane carbon number, as shown in fig. 2.5. This 

makes possible an accurate estimation of Vo for the other members of 

this series. The factor Rr̂ also varies smoothly with increase 

in carbon chain length for the n-alkanes, as shown in fig. 2.6, going 

from 1 for methane to 1.2 for n-octane and then rising more rapidly to 

just above 1.6 for n-hexadecane. Accurate interpolation is possible 

for other n-alkanes from the fitting equation:

Ra = 0.9855 + 0.01687C + 0.001403 (2.31)

where C is the carbon number. Once Vo and Rrt have been determined

with Rd equal to 1, universal curves can be drawn for log D'

versus log Vr, and for log qj' versus log Vr, where V,

is the molar volume under given conditions multiplied by 20.825, the

Vo value for methane at the reference temperature of 140 K, divided by

Vo for the compound at the experimental temperature, log and

log D* have

been represented by polynomials in (1/Vr):

log q/ = 0.877 - 78.97/Vr + 7130.4/Vr:

-219020/Vr3 + 3075840/Vr4 (2.32)

log D* = 3.285 - 661.04/Vr + 57700/Vr  ̂ - 2575677/Vr3 

56074080/Vr4 - 490561075/Vr5 (2.33)

Although this is not the best form of representation, it is considered 

suitable for determining the degree to which the experimental data can 

be fitted. For methane, there is a very satisfactory fit of both 

self-diffusion coefficient and viscosity coefficient measurements, as
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Variation of Vo with carbon number of n-alkanes.
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Variation of Rî  with n-alkane carbon number.
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shown in fig. 2.7, with agreement with experimental values generally 

well within 3%. The Vo values were taken from Table 2.1.

In the case of n-hexane, the other n-alkane for which extensive accur­

ate viscosity and self-diffusion measurements have been made, the exp­

erimental values are compared with values calculated from Eqs. 2.32 

and 2.33, with Vo values from Table 2.1, in figs. 2.8 and 2.9. For 

diffusion there is excellent agreement with results of Harris [70] and 

also reasonable agreement with those of Ludemann [75,76], for which 

the reliability is quoted as 10%, at temperatures of 240 K and above. 

However, at 214 K the experimental values are on average 15% higher 

than calculated. Since this isotherm is close to the 223 K isotherm 

for which Harris reported measurements, it appears that there is some 

inconsistency in these data.

A summary of the data fit for all the n-alkanes studied is presented 

in Table 2.2 for diffusion and Table 2.3 for viscosity. Some of the 

diffusion coefficient measurements of Ludemann show deviations of more 

than 10%, but part of the discrepancy may be due to the fact that the 

corresponding experimental densities are not available. In this case, 

densities were calculated from the modified Tait equation by the 

method of Dymond and Malhotra [77], with an estimated uncertainty of 

0.2%. This method is restricted to the temperatures below the critical 

temperature, and higher temperature diffusion coefficient data of 

Ludemann were not considered.

For viscosity, the agreement between calculated and experimental 

coefficients is generally extremely satisfactory, with only 2 points 

out of 481 deviating by more than 10% from the calculated values. For
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TABLE 2.2
COMPARISON OF SELF-DIFFUSION COEFFICIENTS CALCULATED BY THE 

CORRELATION METHOD WITH EXPERIMENTAL VALUES.

No. of points 
Total Deviation from expt. Reference

5-10% >10%
CH4 54 6 - [71,78]
C 4H 10 19 6 8 [75,76]
C 6Hi4 54 4 - [70]
C 6Hi4 21 3 6 [75,76]
C 1 0 H 22 25 6 4 [75,76]

TABLE 2.3
COMPARISON OF VISCOSITY COEFFICIENTS CALCULATED BY THE 

CORRELATION METHOD WITH EXPERIMENTAL VALUES.
No. of Points Max.Dev. Ref.

Total Deviation from expt (%)
5-10% >10%

CH4 107 - - 3.1 [73]
C 2H 6 98 - - 3.3 [79]
C 3H 8 60 5 6.5 [80]
C 4H 10 79 - - 3.4 [81]
C 6Hi4 37 - - 3.5 [62]
CsHis 41 11 1 11.2 [58]
C 1 2 H 26 31 7 1 16.6 [58]
CifeH34 28 - - 4.7 [62]



n-alkanes from methane to hexane, the agreement is better than 3% in 

practically all cases. For higher n-alkanes, there are larger discre­

pancies which may be due in part to the greater uncertainty in the 

measured density.
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3.1 INTRODUCTION.

In 1911, Griffiths [82] found experimentally that if a patch of 

colouring matter is injected into a water stream flowing slowly 

through an impermeable cylindrical tube, the colouring matter spreads 

out in a symmetrical manner from a point which moves with the mean 

velocity of water in the tube. Later on, Taylor [83-85] found that 

the spreading of the colour band is due to the combined action of 

molecular diffusion and the variation of the velocity over the cross 

section of the tube and under certain conditions it is possible to 

calculate the diffusion coefficient from the observed distribution of 

concentration ( Taylor Dispersion Technique ).

The diffusive mixing of two solutions of the same components but with 

different composition is expressed in terms of an interdiffusion 

coefficient or mutual diffusion coefficient, designated as D(i for 

binary liquid mixtures. Self diffusion coefficient is the term used 

to describe the motion of molecules in an environment which consists 

of one chemical species only, while the term intra diffusion 

coefficient or tracer diffusion coefficient involves the motion of a 

labelled species in a homogeneous medium which may, or may not, be 

multicomponent, and may, or may not, contain that unlabelled species.

The SI unit for diffusion coefficients is meters/second (m2/s) and 

for liquid diffusivity, the value is of the order of lO*' ma/s. A 

number of techniques are available to measure the liquid mutual 

diffusivity such as the diaphragm cell method [86], the stabilised 

inverse density gradient method [87,88]; Gouy diffusiometer method
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[89]; the light absorption technique [90] and Taylor dispersion or

chromatographic peak broadening technique. The polarographic method 

[91,92] and diaphragm cell method can be used for tracer diffusivity 

measurements and the NMR spin echo technique [93] used for self 

diffusion measurements. The chromatographic peak broadening technique 

was used to measure the mutual diffusion coefficients reported in 

this work because of its demonstrated accuracy at atmospheric

pressure {Alizadeh and Wakeham (lOO)} and increased speed of 

operation over the other available methods.

The measurements were in two parts. Firstly, the mutual diffusion 

coefficients, Dts, ,have been measured for benzene and eight 

fluorinated benzenes, at trace concentration, in n-hexane over the 

temperature range from 213.2 to 333.2 K at atmospheric pressure. 

Secondly, the Dt2 measurements were extended to higher pressures for 

toluene plus n-hexane binary mixtures over the whole composition 

range at temperatures from 299 to 348 K and pressure up to 25 MPa, 

with a few measurements for toluene plus acetonitrile mixtures over 

the temperature range 273 to 348 K and at 0, 0.2, 0.4, 0.6, 0.8 and

1.0 mole fraction of toluene. The values have an estimated

uncertainty of ± 2.5%. The results are presented and discussed in

section 3.5.5.

D l2t values have been calculated theoretically on the basis of the 

Rough Hard Sphere theory, for the fluorobenzenes in n-hexane. It is 

found that experimental results for D*z can be reproduced to within 

±10% with the translational- rotational coupling factor Aa equal to 

0.72. The experimental results for toluene in n-hexane, acetonitrile

in toluene and toluene in acetonitrile can be reproduced to within



34

±3% with Ai2 equal to 0.72 for toluene in n-hexane and acetonitrile in 

toluene and Aa equal to 0.69 for toluene in acetonitrile.

3.2 THEORY OF TAYLOR DISPERSION METHOD.

The ideal model for an apparatus for the measurement of diffusion 

coefficients by the Taylor dispersion method consists of an 

infinitely long straight and impermeable tube of uniform circular 

cross-section, through which flows the incompressible liquid in 

laminar regime. A mixture of the same components but with different 

composition is injected into the tube as a delta-function pulse that 

is dispersed by combined action of molecular diffusion and parabolic 

velocity profile. Provided certain conditions are satisfied the 

concentration profile at the end of the diffusion tube results in a 

Gaussian curve. The theory of the method has been discussed 

extensively in the literature (94-98). The variance of the Gaussian 

curve is related to the diffusion coefficient of the liquid by the 

equation (3.1).

cT*= 2 Da t/L + Ro.t/(24.D,z ) (3.1)

where Ro is the inside radius of the diffusion tube of length L, t is 

the retention time of the solute in the tube and o'2- is the variance 

of the eluted Gaussian peak. Equation (3.1) is valid under certain 

conditions ( Tyrrell and Harris 1984) [99] such as

(a) Re = 2 Uo Ro f /x̂  < 2000 (3.2)

where Uo is the mean velosity and j? and are the density and
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viscosity of the fluid. Re is a dimensionless group called the 

Reynolds number. This condition restricts the flow to be in the 

laminar regime.

that is, retention time should be long enough for the radial 

variation of the concentration to die down to 1/e of its initial 

value and further that at time t=0 the solute distribution is given 

by a delta-function.

Diffusion coefficients in gases are much larger than those found in 

liquids and therefore the first term of right-hand side of equation

3.1 is dominant. However in liquids diffusivity is smaller by a 

factor of about 10* , therefore it is possible under certain 

experimental conditions to reduce equation (3.1) to the working 

equation

The diffusion tube is normally 10-20 metres in length and is wound on 

a former either in a U-shape [97) or in the form of a helix for 

isothermal measurements. This give rise to secondary flow in the 

curved tube and the observed diffusivity is higher than the true 

value. The effect of this secondary flow can be minimised to less 

then +0.005% if the following condition is fulfilled [100,101].

(b) t >> Ro /(3.8) Di2. (3.3)

cfZ= Ro.t/(24.Du ) (3.4)

(3.5)
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where Rc is the radius of curvature of the helix. The secondary flow 

effect also depends upon the ratio of the helix to tube radius (W) 

and provided 100< W <500 the effects are less than ±0.05$ if the 

following condition is fullfilled [100].

Dez.Sc < 20 (3.6)

where De is the Dean number and Sc is Schmidt number defined as 

De = Re//W and Sc = rj/(g.D^ ) (3.7)

Secondary flow effects on dispersion of the solute have been 

considered in detail by Nunge et al. [102], Golay [103], and Tijssen 

[104] and a transition flow rate Ftr was defined as the flow rate in 

a curved tube at which secondary flow becomes significant compared to 

diffusion as the process which determines dispersion [105,106]. For a

sample of given diffusion coefficient, in a liquid of density £ and

viscosity

*/z
FTR = (518 Ro.Rc.D^rj/p) (3.8)

Provided W>>1, the effect of the curved path on the dispersion is
rdependent only upon the group IDe.Sc J. Using the solution of Nunge 

[1Q£3 and Golay ClO^J, Atwood and Goldstien [IP61 estimated the 

diffusion coefficient Dm that would have been obtained if the tube 

was straight. The observed diffusion coefficient Dx in a curved tube 

can be corrected by the expression

Dm = Dx {l-a(F/FTfO) (3.9)

where F is the experimental flow rate and a was found to be equal to
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0.1034 . When F/Ft* < 0.6, the secondary flow effect is negligible and

Dx equals Dm.

The Taylor dispersion technique is a dynamic method for measurements 

of liquid diffusivity and because of its simplicity and rapidity as 

well as rapid development of the chromatographic instrumentation this 

method has been used widely for diffusion studies of gases [107-110], 

liquids [42,111-117] and compressed fluids systems [118-120].

3.3 LIQUIDS USED

The liquids used in this work, their grades and stated purities are 

shown in Table 3.1. The liquids were used as received without further 

purification. However the solvents ( n-hexane, toluene and 

acetonitrile) were degassed by distillation prior to use.

Refractive index was measured using a high accuracy 60/ED Abbe' 

refractometer (Bellingham and Stanley Ltd, England), illuminated by a 

sodium lamp at 293.2 K by water circulation. Densities of n-hexane, 

toluene and acetonitrile were measured using a vibrating tube 

densimeter as described in Chapter 4, section 4.3. As shown in Table 

4.3, the agreement with the literature values is generally very 

satisfactory.

3.4 MEASUREMENT OF DIFFUSION COEFFICIENTS.

3.4.1 DESCRIPTION OF APPARATUS.

The apparatus for the measurement of diffusion coefficients by the 

Taylor dispersion technique consists of a constant temperature bath,
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Table 3.1

LIQUIDS USED

Compound Purity Refractive index Grade and
% Measured Literature Manufacturer

n-Hexane 99.9 1.3748 1.3749 HPLC (a)

Toluene 99.9 1.4961 1.4969 HPLC (a)

Acetonitrile 99.9 1.3443 1.3440 HPLC (a)

Benzene 99.9 1.5010 1.5011 (b)

o-Difluoro- 
benzene

98.0 1.4431 1.4427 (a)

p-Difluoro- 
benzene

98.0 1.4414 1.4415 (a)

1,2,4 Trifluoro 
benzene

pure 1.4229 1.4140 (c)

1,2,3,5 Tetra- 
fluorobenzene

99 + 1.4040 1.4035 (a)

1,2,4,5 Tetra- 
fluorobenzene

98.0 1.4079 1.4067 (a)

Pentafluoro­
benzene

98 .0 1.3916 1.3905 (a)

Hexafluoro­
benzene

99.0 1.3777 1.3769 (a)

Octafluoro- 
toluene

98 .0 1.3671 1.3670 (a)

Literature values from Catalogue Handbook of Fine Chemicals, 
Aldrich (1986-1987)

(a) Aldrich Chemical Co. Ltd. Gillingham, Dorset, England.

(b) BDH Chemical Ltd., Poole, England.

(c) Koch-Light Laboratories Ltd. Colnbrook, England.



a metering pump, a sample injector, a long uniform, circular 

capillary tube, a detector and a recorder. The experimental set up is 

shown in fig. 3.1. The pump used was an Altex Model 110 A metering

pump which delivers liquid at flow rates from 0.1 ml per minute

upwards. The diffusion tubes used had lengths of approximately 20 

metres (loop A) and 30 metres (loop B) of 316 stainless steel 

capillary with nominal 1/16 inch O.D., obtained from Phase Separation 

Ltd. Clwyd, U.K., wound in helical form for the ease of temperature 

control. The characteristics of the diffusion loops are given in

Table 3.2. Sample injection was by a six port loading injector

(Rheodyne Model 7125) with a 10 pi loop. Two detectors were employed 

in this work, an Altex Model 153 UV detector with a 254 nm filter for 

aromatic compounds and a LDC Refracto-Monitor Model 1107 for non 

aromatic compounds. The recorder was a variable speed Tekman 

Electronic recorder Model TE 200. A Budenberg Gauge Co Ltd. pressure 

gauge was employed for high pressure diffusion measurements.

3.4.2 TEMPERATURE CONTROL AND MEASUREMENT.

For the measurements of diffusion coefficients, the temperature was 

kept constant to within ±0.02 C by immersion of the diffusion tube in 

a bridge controlled constant temperature bath (Townson and Mercer 

Ltd. Model E.270 series III) containing water. The temperature was 

controlled with a Clandon proportional temperature controller Model 

YSI 72. Temperatures between 298.2 and 348.2 K were measured using a 

mercury-in-glass thermometer (No.9566) which had a range from -5‘C to 

105 °C, was subdivided in lOths of a degree and was capable of being 

read to ±0.02 C. An eye piece was used to avoid parallex errors. This 

thermometer was previously calibrated at the National Physical



fig . 3.1

Experimental set up for diffusion coefficient measurements.
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Table 3.2

CHARACTERISTICS OF DIFFUSION TUBES.

LOOP A LOOP B

Length/cm 

Volume/cm3 

Radius/cm 

Helical radius/cm 

Apparatus Constant/cm2

2039.8 

9.4 

0.0383 

11.364 

7.40X105

2996.2 

15.4 

0.0405 

4. 350

7.96X10S
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Laboratory, London. As a check, temperature was also measured using a 

Lauda R46 digital thermometer and was found to agree to within ±0.02
oC.

For measurements at 273.2 K the temperature bath was filled with a 

crushed ice-water mixture, having a six inch layer of ice on top, 

covered by a layer of Allplas insulating balls and stirred thoroughly 

for uniform temperature. Temperatures below 273.2 K were attained by 

a bridge controlled Minus Seventy thermostat bath (Townson amd 

Mercer, series III). The coolant was methylated spirit-Cardice (dry 

ice) mixture [121-123], and temperature was controlled to ±0.05 C. 

The temperature was measured by a Lauda R46 digital thermometer.

3.4.3 PROCEDURE.

The system is brought to the required temperature and degassed 

solvent is pumped through the diffusion tube at low flow rate. When 

thermal equilibrium is established and detector response steady

(steady base line on recorder), 10 pi of dilute solution is injected 

into the stream by means of a hyperdermic syringe through a liquid 

chromatographic injection valve. To fill the loop, an excess volume 

of sample (usually 50 pi) is used. The syringe needle is inserted

into the needle port with the injector in LOAD position. The end of 

the needle abuts directly against one of the loop passages and the 

sample is injected. The handle is turned clockwise 60'’. This connects

the loop with the pump and column and the sample is flushed. After
u

injection, the handle is rotated anticlockwise 60. The solute is 

allowed to disperse in the mobile phase and after a sufficient time 

the sample is detected by the detector and an output signal is
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recorded on the recorder. The time taken from injection to the 

maximum of the peak is noted.

As already explained in section 3.2, provided certain conditions are 

satisfied, the solute is normally distributed at the end of the 

diffusion tube. The diffusion coefficient is determined from the 

dispersion time and variance of the Gaussian peak, calculated 

graphically as described in section 3.4.4. A typical experimental 

peak is shown in fig. 3.3.

The extinction coefficients of the fluorobenzenes at 254 nm are 

sufficient to allow measurements at low concentration (0.1% to 0.5%). 

However, because of excessive base line drift, in the case of the 

Refracto-Monitor at high sensitivity, a higher concentration (5% to 

10%) was employed with this detector. Base line drift can be 

controlled to a large extent by attaining a good thermal equilibrium 

between the reference and the sample cells of the Refracto-Monitor. 

This can be achieved by filling the thermostat of the 

Refracto-Monitor with water at room temperature and sealing the inlet 

and outlet with rubber caps.

Multiple measurements can be made by introducing a series of samples 

at regular intervals. A blank sample (mobile phase) was introduced 

between two different solutes. The whole apparatus was flushed with 

freshly degassed solvent everyday. The values reported here are the 

mean of at least 5 injections. Variation from run to run was 

generally less than the uncertainty of the measurement.
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3.4.4 DETERMINATION OF VARIANCE.

A Normal curve is defined by the equation
'/l Xy = l/{d(2 TT )} exp(-(x-m)/2(5 ) (3.10;

where m is the mean of the data points xl, x2, x3, .... xn, having

corresponding values of y, yl, y2, y3, .... yn respectively and cfMs 

the variance of the curve. The maximum of the curve occures at x = m 

and the corresponding value of y is l/{d(2^)*}. The equation 3.10 can 

therefore be written as
2 -iy = ym.exp(-(x-m)/2d ) (3.11)

For x-m=d, where cf is the standard deviation, equation 3.11 becomes

y = ym exp(-l/2) = ym X 0.6065 (3.12)

Thus the half width at 0.6065 times the maximum height of the peak 

gives the value for standard deviation and squaring this value gives 

a value for the variance of the Gaussian curve.

3.4.5 CALIBRATION OF THE APPARATUS.

The Taylor Dispersion technique can be used as an absolute method for 

measurements of liquid diffusivity, provided the diffusion tube is 

highly uniform in circularity and the dimensions of the diffusion 

tube as well as other components are known accurately. However, since 

for the purpose of isothermal measurements the diffusion tube is 

wound in a helix on a former and small pieces of connecting tubes 

with different bore size are often used to connect the diffusion tube 

to the detector, the apparatus is calibrated with solute/solvent 

systems whose diffusion coefficient is known accurately.
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The residence time of the solutes from injection to the elution is 

measured and the variance of the peak is calculated. The working

apparatus constant (RoZ /24) is calculated as

Apparatus Constant = D(1 cfz /t (3.13)

The calibration was carried out with benzene at trace concentration 

diffusing in n-hexane at a nominal flow rate of 0.1 ml per minute at

299.2 K using the UV detector, both with low and high pressure cells 

and also using the Refracto-Monitor. A number of injections were made 

and an average value of the apparatus constant was determined. The 

results for the two loops are given in Table 3.2.

3.4.6 COMPARISON OF MEASURED VALUES WITH LITERATURE VALUES.

The experimentally determined mutual diffusion coefficients for a 

flow rate of 0.1 ml/min are compared with the literature values in 

Table 3.3 for benzene diffusing in pure n-hexane at 273.7 K, 299.2 K,

313.2 K and 333.2 K. The injected solution had concentrations from 

0.1 to 1% (v/v) which all gave the same D )Z values (within estimated

uncertainty) using the UV detector. Values are also compared for 

toluene diffusing in n-hexane at 273.2 K, 299.2 K and 313.2 K. For

this system, both the UV detector and Refracto-Monitor were used with 

toluene concentration in the same 0.1 to 1% (v/v) range. The

agreement with literature values is very satisfactory. Measurements 

were also made for n-hexane, n-decane and n-tetradecane diffusing in 

toluene at 299.2 K, 323.2 K and 348.2 K. The injected solution had a 

concentration of solute from 5 to 10% (v/v) and the Refracto-Monitor 

was used for the detection of the peak. High concentration was 

required where solute and solvent refractive indices were comparable. 

The results for a flow rate of 0.1 ml/min are compared with the
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literature values in Table 3.3. The values are in good agreement, 

generally well within the combined uncertainties.

3.4.7 EFFECT OF FLOW RATE ON CALCULATED D l2i .

In order to establish a method to derive the correct mutual diffusion 

coefficients from the experimental measurements, the D,z values were 

measured for toluene diffusing in n-hexane, and vice versa, at 299.2 

K as a function of flow rate at 0.1% solute concentration, using the 

UV detector in the former case and at 10% solute concentration using 

the Refracto-Monitor in the latter case. Coil B was used for these 

measurements as it had a smaller helix to diffusion tube diameter 

ratio, and will give rise to a greater secondary flow effect. The 

results are presented in Table 3.4 and the ratio of the observed 

diffusion coefficient to the limiting value (Dx/Dm) is plotted

against the normalised flow rate (F/FlfO  in fig. 3.4.

The points for the two systems lie on a common curve, showing that it 

is a characteristic curve for this coil. It can be seen from fig. 3.4 

that the Dl2 ratio is practically independent of flow rate up to 0.6 

times the transition flow rate, and from Table 3.4 that there is an 

increase up to almost 4% at a normalised flow rate equal to 0.85. The 

Dx/Dm ratio increases linearly with normalised flow rate in the 

region 1.5 to 2.5.

Alizadeh et al. (1980) [124] and Atwood and Goldstien [106"\ found

that the theoretical curve of Nunge's solution for the dispersion of

solute in a mobile phase in a curved tube, lies very close to the
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Table 3.3

COMPARISON OF MEASURED DIFFUSION COEFFICIENTS 
WITH LITERATURE VALUES.

So lute Solvent Temp/K 10** X D n / (m Z/s)
Literature Measured

Loop A Loop

Benzene n-hexane 273 . 7 3 .40 (a) 3 .45 (1) -

299 . 2 4 . 66 (a ) 4 .71 (2) 4 . 66
299 . 2 4 . 747 ( b ) 4 . 69 (3) 4 . 72
299 . 2 4 . 758 (c ) 4 . 74 (4) -
299 . 2 4.723 (d) 4 . 70 (5) —

313.2 6 . 82 (a ) — 6 . 96
313 . 2 7 . 01 (e ) — —

333 . 2 5 . 47 (a ) 5 . 53 (6) -

Toluene n-hexane 273 . 2 3 .21 (a ) 3 . 22 -

299 . 2 4 . 38 (a ) 4 . 45 4 . 40
299 . 2 4 . 344 ( f) - -
299 . 2 4 . 355 (f) — —

313 . 2 5 . 00 (a) 4 . 95 -

n-hexane toluene 299 . 2 2 . 479 (f) 2 . 52 2 . 48
300 . 2 2 .41 (9) - -
323 . 2 3 . 25 (9) 3.21 3 . 30
348 . 2 3 . 99 (9) 4.17 4 .33

n-decane toluene 299 . 2 1 . 87 (9) 1 . 86 1 . 82
323 . 2 2 .41 (9) 2.52 2.51
348 . 2 3 .21 (9) 3 . 25 3 . 20

n-tetra- toluene 299 . 2 1 .45 (9) 1 . 47 1 . 45
decane 323 . 2 1 . 97 (9) 1 . 98 1 . 99

348 . 2 2 .61 (9) 2 .61 2 .60

(a) Dymond (1981) [23]
(b) Harris et a l . (1970) [133]
(c) Shankland et a l . (1977) [89]
(d) A l b right et a l . (1976) [134]
(e) Chen et a l . (1985) [135]
(f) Ghai and Dullien (1974) [131]
(g) Chen and Chen (1985) [136]
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Table 3.4

D,z AS A FUNCTION OF FLOW RATE AT 299.2 K.

Flow rate 10*1 D 4Z F / F 7B Dx/Dm
ml / min. m l/s

(a) Toluene in n-hexane

0 . 1 4 . 40 ± 0 . 05 0 . 380 1 . 000
0 . 2 4 . 4 5 ± 0 . 05 0 . 760 1.011
0 . 4 6 . 08 ± 0 . 06 1.521 1 . 382
0 . 5 7 . 45 •t 0 . 01 1 . 901 1 . 693
0 . 6 8 . 87 ± 0 . 12 2 . 281 2. 016

(b) n-hexane in Toluene

0 . 1 2.48 ± 0.02 0 . 427 1 . 000
0 . 2 2.58 ± 0.05 0 . 855 1 . 040
0 . 4 3.81 ± 0.04 1 . 709 1 . 536
0 . 5 4.73 ± 0.01 2 . 137 1 . 907
0 . 6 5.64 ± 0.02 2 . 654 2 . 274

Table 3.5

OBS E R V E D  AND CORRECTED D n VALUES FOR N-HEXANE, N-DECANE 
AND N-TETRADECANE IN TOLUENE.

Temp/ K 10°iD tZ/ ml /s

n-hexane n-decane n-tetradecane

299 . 2 2 . 48 ± 0 . 02 1 . 82 ± 0 . 01 1 . 45 ± 0 .01 (a)
2 . 58 ± 0 . 05 1 . 99 ± 0 .01 1 . 65 ± 0 .01 (b)
2 .48 1 . 85 1 . 46 (c)

323 . 2 3 . 30 ± 0 . 04 2 .51 ± 0 . 02 1 . 99 ± 0 .01 (a)
3 . 51 ± 0 . 03 2 . 68 ± 0 . 03 2 . 24 ± 0 . 02 (b)
3 . 34 2 .44 1 . 93 (c )

348 . 2 4 . 33 ± 0 . 03 3 . 20 ± 0 . 02 2 . 60 -t 0 . 02 (a)
4 . 57 ± 0 . 02 3 . 56 ± 0 . 04 3 . 00 + 0 . 02 (b)
4 . 38 3 . 30 2 . 65 (c)

(a) at 0.1 ml/min flow rate.
(b) at 0.2 ml/min flow rate
(c) gives (b) corrected for secondary flow effect.
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experimental results and fits the data quite well.

In order to check their conclusion, Devalues were measured for 

n-hexane, n-decane, n-tetradecane {at concentraions of 5 to 10% 

(v/v)} in toluene at 299.2, 323.2 and 348.2 K at a flow rate of 0.1 

ml/min and approximately 0.2 ml/min in loop B to see the effect of 

curvature of the tube in the region where the normalised flow rate is 

greater than 0.6 but less than one. The results are presented in 

Table 3.5.

Equation 3.9 was applied with a =0.1034 and Dm was calculated from 

the observed diffusion coefficient for flow rates of about 0.2 

ml/min. The appropriate values of density and viscosity of the mobile 

phase were taken from the literature and interpolated or extrapolated 

where necessary. A computer programme was used to calculate the 

limiting values of D,z from observed Dx. The absolute average 

percentage deviation of 9 measured (0.1 ml/min flow rate) and 

corrected data points is 1.64%, having a rms deviation of 1.07% and 

maximum deviation of 3.1%, which is within the expected uncertainty. 

Equation 3.9 was used in all the subsequent work where the flow rate 

exceeded 0.1 ml/min.

3.4.8 EFFECT OF CONCENTRATION CHANGES IN INJECTED SOLUTION ON D 12j .

In order to determine the effect of concentration changes in the 

injected solution on the measured mutual diffusion coefficients for 

fluorinated benzenes diffusing in n-hexane, measurements were made of 

D 12 for hexafluorobenzene diffusing in n-hexane at 299.2 K as a 

function of concentration (volume percent) of the injected solution.
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The results using the Refracto-Ilonitro as detector are presented in 

Table 3.6.

The results show that D tl is constant up to 30% v/v hexafluorobenzene 

solution but decreases beyond that from 4.1X101 m7- /s to a value 

2.49X10* m2, /s when pure solute was injected into the stream. Similar 

behaviour was observed when using the UV detector but for this 

detector flat topped and non-Gaussian peaks were observed for 

solution as dilute as 3%(v/v). The limiting values were thus measured 

at trace concentration (0.05 or 0.1%) with the UV detector.

Table 3.6 also contains the D iZ values for equimolar mixtures of 

toluene plus n-hexane at 299.2 K as a function of mole fraction of 

n-hexane in the injected solution. The values are fairly constant 

from 0.546 to 0.788 mole fraction of n-hexane in the injected 

solution. However, the D(t value decreases from the average value of 

2.75X10^ m2/s [comparable to 2.75X10^m2/s at 298.2 K, obtained by the 

diaphragm cell method {Ghai and Dullien (1974.)}to a value of 2.38X10 

m z /s when pure n-hexane was injected. A similar comparison for 

toluene diffusing in acetonitrile at 298.2 K (Table 3.13) shows that 

values are constant up to 20% (v/v) concentration of the injected 

solution using the Refracto-Honitor.

3.4.9 Dl2 RESULTS FOR FLU0RINATED BENZENES IN N-HEXANE.

D l2 values were measured for benzene and 8 fluorinated benzenes at 

atmospheric pressure over the temperature range from 213.2 K to 333.2 

K, using different coils and detectors. It was found that for benzene 

itself and partially fluorinated benzenes that a steady baseline and
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Table 3.6

(a) D ,2 FOR HEXAFLUOROBENZENE AS A FUNCTION
OF CONCENTRATION OF INJECTED SOLUTION.

Cone . 10 1 .Du / m z/s

5 % 4.00 ± 0.04
10 % 4.08 ± 0.03
30 % 4.10 +. 0.01
40 % 3 . 90 ± 0.02
50 % 3.60 -t 0.02

100 % 2 . 49 ± 0.01

(b) D 1X FOR EQUIMOLAR MIXTURES OF TOLUENE + 
n-HEXANE AS A FUNCTION OF MOLE FRACTION 
OF THE n-HEXANE IN INJECTED SOLUTION.

Mole fraction 10 .D,2/m2 /s
of n-hexane

0.546 2.79 t 0.04
0.592 2.74 ± 0.01
0.688 2.74 ± 0.01
0.788 2.76 ± 0.03
1.000 2.38 ± 0.05
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well defined peak were obtained using the Refracto-Honitor at 

concentrations much lower than had been required for 

hexafluorobenzene. The measurements made at a flow rate higher than 

0.1 ml/min were corrected for the secondary flow effect as described 

earlier. The results are presented in Table 3.7, and have an 

estimated uncertainty of ±2.5%. Devalues are quoted with standard 

deviations. Each value is the average of at least five measurements.

3.4.10 EYRING THEORY APPLIED TO RESULTS FOR FLUORINATED BENZENES IN 

n-HEXANE.

Extension of the Eyring theory of reaction rates [48J leads to the 

interpretation of diffusion coefficient data in terms of an 

activation energy for diffusion which is due to the caging of the 

solute molecule by solvent molecules (configurational activation 

energy) and back scattering (back scattering activation energy). The 

configurational activation energy increases with solute to solvent 

size ratio, reflecting the fact that the larger the solute molecule, 

the more the nearest neighbour solvent molecules around it and 

therefore the greater the probability of binary collisions between 

the solvent and solute molecules. Thus, it is more difficult for 

larger molecules to escape a cage of solvent molecules. The back 

scattering activation energy depends upon solute to solvent mass 

ratio. As the solute molecule become heavier, back scattering 

diminishes.

The activation energy for diffusion was calculated from 

Arrhenius-type plots (log D against the reciprocal of the absolute 

temperature) which for these systems are straight lines over this
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Table 3.7

MUTUAL DIFFUSION COEFFICIENTS OF ORGANIC SOLUTES IN N-HEXANE.

Compound i o \ 2 / m2 . s

213 .2. K 233 .2 K 253 .2 K 273 .2, K

Benzene 1.21 ± 0.01 1.80 ± 0.03 2.57 + 0.03 3.43 ± 0.08 (a)
3.45 -t 0.02 (a)
3.40 ± 0.04 (b)

o-difluoro 1.10 ± 0.03 1.60 ± 0.08 2.41 + 0.02 3.35 ± 0.04 (a)
-benzene 3.26 ± 0.03 (b)

p-difluoro 1.10 ± 0.03 1.72 + 0.11 2.49 ± 0.02 3.36 ± 0.06 (a)
-benzene

1,2,4 tri- 1.18 ± 0.09 1.72 ± 0.03 2.33 + 0.03 3.20 ± 0.04 (c)
fluorobenzene 3.21 ■t 0.02 (b)

1,2,3,5 tetra 1.05 ± 0.02 1.67 ± 0.03 2.27 t 0.08 3.29 i 0.06 (b)
fluorobenzene 3.42 ± 0.02 (d)

1,2,4,5 tetra 1.05 ± 0.02 1.68 + 0.05 2.22 ± 0.03 3.17 ± 0.05 (d)
fluorobenzene 3.15 ± 0.05 (b)

Pentafluoro­ 1.06 ± 0.04 1.70 ± 0.02 2.26 ± 0.04 2.98 ± 0.01 (b)
benzene

Hexafluoro­ 1.01 ± 0.02 1.62 t 0.03 2.16 ± 0.03 2.87 0.01 (e)
benzene 2.82 t 0.09 (b)

Octafluoro- 0.88 ± 0.01 1.40 ± 0.06 1.83 ± 0.02 2.51 •fc 0.02 (f)
toluene 2.45 ± 0.04 (b)

(a) = (1%, R, A) (b) = (0.1%, H, A) (c) = (0..05%, L, B)
(d) = (10%, R, A) (e) = (5%, R, A) (f) = (0,.05%, H, B)

where the first figure is the concentration of injected solution, R stands 
for Refracto-Monitor, A and B for loop A or B and H and L stand for low 
pressure or high pressure cell in the UV detector.



53

Table 3.7 (Continued)

MUTUAL DIFFUSION COEFFICIENTS OF ORGANIC SOLUTES IN N-HEXANE.

Compound 1o \ d ,2 (mz/s)

299.2 K 313.2 K 333

Benzene 4.73 ± 0.06 (h) 5.53 0.05 (i) 6.96 ±
4.66 ± 0.04 (i) 5.57 ± 0.01 (a)

5.61 ± 0.01 (j)
o-difluoro 4.48 ± 0.06 (h) 5.23 -t 0.01 (a) 6.61 i.
-benzene 4.44 ± 0.03 (k) 5.29 + 0.08 (b)

p-difluoro 4.63 t 0.03 (1) 5.51 t 0.07 (a) 6.62 ±
-benzene 4.63 ± 0.07 (k) 5.37 ± 0.06 (b)

1,2,4 tri- 4.43 ± 0.06 (h) 5.29 -h 0.04 (b) 6.34 t
fluorobenzene 4.39 ± 0.05 (b) 5.16 t 0.05 (c)

4.49 ± 0.02 (m)

1,2,3,5 tetra 4.40 t 0.05 (d) 5.00 ± 0.09 (b) 6.48 t
fluorobenzene 4.41 t 0.07 (n) 4.91 ± 0.07 (c)

4.57 ± 0.01 (b)

1,2,4,5 tetra 4.42 ± 0.08 (d) 5.28 t 0.04 (b) 6.20 +
fluorobenzene 4.26 0.04 (b) 5.17 ± 0.09 (c)

4.49 + 0.04 (e) 4.99 + 0.06 (d)

Pentafluoro­ 3.99 ± 0.01 (o) 4.83 ± 0.08 (b) 5.95 ±
benzene 4.02 ± 0.04 (P)

4.02 ± 0.04 (d)
4.06 + 0.08 (q)

Hexafluoro­ 4.00 ± 0.04 (r) 4.62 ± 0.09 (e) 5.81 ±
benzene 4.08 ± 0.03 (s)

4.10 ± 0.01 (t)
4.03 i 0.05 (m)

Octafluoro- 3.48 ± 0.06 (u) 4.07 t 0.02 (j) 4.98 t
toluene 3.51 ± 0.03 (e)

3.52 ± 0.03 (a)
3.45 ± 0.05 (n)

(h) = (1%, R/ B) (i)= (0.5%, R, A) (j) = (1.5%,R,A)
(k) = (0.05%, H, A) (1)=(2%, R, B) (m) = (0.1%, L, A)
(n) = (0.5%, L, B) (o)= (8%, R, A) (P) = (6%, R, A)
(q) = (0.2%, L, B) (r)= (5%, R, B) (s) = (10%, R,B)
(t) = (30%, R, B) (u)= (3%, R, A)

K

.10

.20

.03

.06

1.06 

.08

1.07

i.IO

'.01
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temperature range, with only an occasional point deviating slightly 

more than experimental uncertainty, and generally a very close fit to 

the line . The activation energy Ea, is calculated from the slope of 

the best straight line fitted by the method of least squares and 

results are presented in Table 3.8. The values are remarkably 

similar. These can be contrasted with the calculated activation

energy for diffusion for n-hexane in toluene and for toluene in 

n-hexane which show that Ea is larger for the former case (12.5 

kJ/mole), where m 2 /mx is less than one and the size ratio greater 

than one (hence both the factors contribute to a greater activation 

energy), than in the latter case (7.9 kJ/mole) where the size ratio

is less than one while the mass ratio is greater than unity, hence

giving a smaller total activation energy.

The organic solutes studied in this work have solute to solvent mass 

ratios greater than one (except benzene) and core size ratios less 

than one, except octafluorotoluene. Their activation energy values 

for diffusion are comparable to that of toluene in n-hexane. The 

similar values for activation energies for these solutes reflect

their similar dependence of diffusion coefficient on temperature.

3.4.11 APPLICATION OF ROUGH HARD SPHERE THEORY.

The Rough Hard Sphere theory is applied to the mutual diffusion 

coefficients of organic solutes in n-hexane at trace concentration. 

On the basis of the Rough Hard Sphere theory model, the mutual 

diffusion coefficient, D ^ o f  rough hard spherical molecules diffusing 

into a dense fluid is given by
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Table 3.8

ACTIVATION ENERGY FOR DIFFUSION OF 
FLUOROBENZENES IN N-HEXANE.

Compound Activation energy
(kJ/mo 1e )

Benzene 8.55

o-Difluorobenzene 8.84

p-Difluorobenzene 8.80

1,2,4 Trifluorobenzene 8.33

1,2,3,5,Tetrafluorobenzene 8.80

1,2,4,5 Tetrafluorobenzene 8.72

Pentafluorobenzene 8.27

Hexafluorobenzene 8.42

Octafluorotoluene 8.43
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Dt2. = Dt. • A e  (D/Dc ) (3.14 )D

where D e is the Enskog smooth hard sphere diffusion coefficient, A,; 

is the translational-rotational coupling constant and (1)/DC ) is the
MO

computed correction to the Enskog theory to take into account 

correlated molecular motion. Computed corrections [125-127] to Enskog 

theory for different solute-solvent mass and size ratios have been 

given for mixtures where solute is present in trace amount. A 

prediction method proposed for equimolar mixtures [128] is not 

supported by experimental results.

The (D/De ) corrections to the Enkog theory for different size and 

mass ratios were calculated using the following equation [129]:

(D/De) = 0.58 + 7.08(0.6666-Vo/V)~20.2(0.6666-Vo/V)

+ 0.29 log(m2/mx) - 0.12{log(m /m)}

+ 1.8(c/i/cr( )log(m2/m, )(V/Vo-1.6)
3+ 17.6(0.6666-Vo/V) - 0.42(cf2/oi -1)

2
- 0.421og(m2/m, ) (cf,/cf,-1)- log(m^/m,) (d^/d, ) (3.15)

The V/Vo of n-hexane from 213.2 to 333.2 K was calculated using 

density (API tables) and core size values [70] over the region 223.2 

to 333.2 K and extrapolating down to 213.2 K. The solute diameters at

298.2 K were derived from viscosity data. Since the solute core sizes 

were not available over the required temperature range, therefore 

solute-solvent diameter ratios were assumed to be constant at all 

temperatures. The V/Vo ratios and core sizes are tabulated in Table 

3.9. The solute to solvent mass ratio, size ratio and core size of 

the solutes at 298.2 K are presented in Table 3.10.
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Table 3.9

V/Vo RATIOS AND CORE SIZE OF N-HEXANE AS A FUNCTION OF TEHPERATURE.

Temp/K 213.15 233.15 253.15 273.15 298.15 313.15 333.15

V/Vo 1.4510 1.5090 1.5685 1.6255 1.6872 1.7540 1.8188

d/nm 0.5763 0.5733 0.5706 0.5683 0.5660 0.5647 0.5635

SOLUTE TO SOLVENT MASS AND SIZE RATIO 
AND CORE SIZE OF SOLUTES AT 298.2 K

Table 3.10

Compound 

n-Hexane 

Toluene 

Acetonitri1e 

Benzene

o-Di fluorobenzene 

p-Di fluorobenzene

1,2,4 Trifluorobenzene

1.2.3.5 Tetrafluorobenzene

1.2.4.5 Tetrafluorobenzene 

Pentafluorobenzene

Hexafluorobenzene 

Octafluorotoluene

m z/m, ** /nm

1.00 1.00 0.566

1.07 0.97 0.549

0.50 0.72 0.409

0.91 0.90 0.905

1.32 0.92 0.521

1.32 0.92 0.521

1.53 0.94 0.532

1.74 0.95 0.538

1.74 0.95 0.538

1.95 0.97 0.549

2.16 0.98 0.555

2.74 1.02 0.577
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The translational-rotational coupling factor A 12 was calculated by 

taking the ratio of the average experimental diffusion coefficient to 

the Enskog value corrected for correlated molecular motions. The 

calculated (D/DE ) values along with the derived A„ values are 

presented in Table 3.11.

The magnitude of A,2 is a measure of the roughness of the molecule (or 

the departure of a molecule from spherical shape). The average value 

of A,j over the temperature range 233.2 to 333.2 K for these organic 

solutes lies within the range 0.67 to 0.72 and although the mass 

ratio of solutes ranges from 0.9 to 2.74 and diameter ratio from 0.9 

to 1.02, the A,2 are close to the A,, value of n-hexane derived from 

self diffusion data. The A,2 value is roughly temperature independent 

for benzene, ortho- and para difluorobenzene, but shows slightly 

irregular variation with temperature for the rest of the solutes. The 

average of 54 A l2 values for 9 solutes at 6 temperatures is 0.70 ± 

0.04 as expected for systems of rough polyatomic molecules [42]. This 

shows that D,2 can be calculated theoretically with AI2=Ai, for these 

solutes in spite of the larger solute to solvent mass and size 

ratios. An attempt was made to calculate DIZ for these solutes with Alz 

=0.72 (A,, for n-hexane at 298.2 K). The absolute average percentage

deviation of 54 data points was 5.5%. The values were generally 

reproducible to better than ± 10% with only 5 points out of 54 having 

a deviation greater than 10%. Four of these points are of 

octafluorotoluene, while one corresponds to penta fluorobenzene, at

233.2 K.

In spite of the fact that (1) the experimental uncertainty of the
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Table 3.11

VALUES OF (D / D t ) AND A o FOR FLUOROBENZENES IN n-HEXANE
fv>D I L

Temp/ K 233.2 253.2 273.2 298.2 313.2

Benzene

(D/De ) 0.642 0.799 0.926 1.027 1.109
A,2 0.69 0.67 0.67 0.70 0.68

o-Di fluorobenzene

(D/Dt ) 0.659 0.833 0.975 1.088 1.191
A n M1> 0.67 0.67 0.68 0.70 0.67

p-Difluorobenzene

(D/D ) 0.659 0.833 0.975 1.088 1.191
* Mt)A l2 0.72 0.70 0.69 0.72 0.69

1,2,4 Trifluorobenzene

(D/Dt ) 0.658 0.838 0.687 1.106 1.217
tzA t? MX> 0.76 0.69 0.69 0.73 0.68

1.2.3.5 Tetrafluorobenzene

(D/Dt ) 0.658 0.844 0.999 1.124 1.241
A iZ 0.77 0.69 0.74 0.75 0.66

1.2.4.5 Tetrafluorobenzene

(D/Dfe)_ 0.658 0.844 0.999 1.124 1.241
\zA n 0.77 0.68 0.71 0.74 0.71

P entafluorobenzene

(D/D£ ) 0.651 0.843 1.004 1.134 1.258
A iz MD 0.83 0.73 0.69 0.70 0.68

Hexafluorobenzene 
(D/De ) 0.648 0.845 1.011 1.146 1.275
A l2 0.82 0.71 0.68 0.72 0.67

Octafluorotoluene

(D/D£ ) 0.626 0.835 1.014 1.188 1.305
A lz £ ^  0.80 0.67 0.64 0.66 0.60

333 . 2

1 . 174 
0 . 70

1 . 273 
0 . 69

1 . 273 
0 . 69

1 . 306 
0 . 68

1 . 338 
0 . 70

1 . 338 
0 . 67

1 . 360 
0 . 67

1 . 383 
0 . 66

1 . 427 
0 . 62



60

measurements is 2.5%, (2) the computed correction is made on the

assumption that solute-solvent diameter ratios are constant at all

temperatures, (3) there is uncertainty in the extrapolated or 

interpolated core size of n-hexane, (4) the molecules depart from 

spherical shape to varying extends, and (5) there is uncertainty in 

the computed corrections to Enskog theory, the near constancy of Au 

is remarkable and although the molecules are non spherical in shape, 

the data can be reproduced satisfactorily on the basis of the rough 

hard sphere model with the translational-rotational coupling factor

equal to that of the solvent.

3.5 HIGH PRESSURE DIFFUSION MEASUREMENTS.

3.5.1 PRESSURE GENERATION AND MEASUREMENT.

Commercially available metering valves can be used for the pressure 

generation in high pressure diffusivity measurements. However, since 

they have inlet and outlet diameters significantly different from 

that of the diffusion tube, this may contribute to extra band 

broadening. Therefore, to avoid this, small pieces of 316 stainless 

steel crimped capillaries were used to generate the pressure. It has 

been reported [130] that this method raises the mobile phase pressure 

in the diffusion tube without changing the flow rate. In this work it 

was found that a slight increase in flow rate resulted at high 

pressures.

Measurements with the high pressure cell were made with crimped 

capillary connected either directly to the diffusion tube or to the 

outlet side of the UV detector. In the case of the Refracto-Monitor 

where this capillary had to be connected before the detector, the
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capillary was immersed in water at room temperature to avoid base 

line drift. Since the residence time in the cooling and pressure 

reducing section is negligible compared to the period over which the 

dispersion proceeds at the bath temperature, the perturbation on 

measured diffusivities caused by temperature and pressure reduction 

is expected to be negligible [48]. This also reduced the pressure 

fluctuations. A 2.8 cm length of crimped capillary was found to raise 

the pressure to about 60 bars, while pressures about 3 00 and 200 bars 

were attained using 5 cm and 8 cm lengths of capillary tube 

respectively at a flow rate of 0.2 ml per minute. The pressure was 

measured using a Budenberg Gauge Co. Ltd. Broadheath Standard Test 

gauge, that can be read to + 1 bar, and had been calibrated using a 

primary pressure standard.

3.5.2 PROCEDURE.

The mixtures were prepared by weight, weighing the less volatile 

component first followed by adding the required amount of the second 

component. The system was brought to the required temperature and 

mobile phase was pumped through the loop. The system was allowed to 

attain a constant pressure before injections were made. The flow 

rate was monitored throughout the run as well as during elution of 

peaks using a Phase Separation flow rate meter, which had a stated 

accuracy of ±1%.

The effects of flow rate fluctuation on the variance of the eluted 

peak were considered by Atwood and Goldstien [106] and using their 

results it can be shown that, if there is a fluctuation in flow rate 

during the elution of the peak, then the ratio of the true variance
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to the observed variance will be equal to the square of the ratio of 

the flow rate during elution to the average flow rate during the run.

The variance from the recorded trace was corrected in this way for 

all the high pressure measurements. When measurements were completed 

at one temperature, the temperature was raised and the system was 

allowed to attain thermal equilibrium before further injections were 

made.

The systems investigated were toluene plus n-hexane and tolene plus 

acetonitrile. The results are given in section 3.5.4., following a 

comparison of measured mixture Devalues with the literature values 

for the toluene plus n-hexane system at atmospheric pressure in 

section 3.5.3. Measured D 12 at trace concentration for benzene in 

n-hexane and toluene in n-hexane at 298.2 K up to 24 MPa are compared 

with tracer diffusion measurements in that same section.

The Di2 measurement was carried out for toluene in n-hexane at 299.2 K 

and at 7.0 MPa with the crimped capillary connected to the outlet of 

the detector (with high pressure cell) and then in between the 

diffusion tube and the detector. A comparison of the two values 

(4.13X10^ m2/s in the former case and 4.11Xlo'm2/s in the latter case) 

shows that the capillary can be connected either at the outlet of the 

detector (with high pressure cell) or in between the loop and 

detector.

3.5.3 COMPARISON WITH LITERATURE VALUES.

Mutual diffusion coefficients have been measured for toluene +
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n-hexane mixtures over the whole composition range at 298.2 K and at 

ambient pressure {Ghai and Dullien £1313)- The present measurements 

at 299.2 K, at an injected solution concentration of 5% to 10% are on 

average 1% higher than their results, which is close to the average 

temperature coefficient of I) V2 of these mixtures. The maximum

difference between the two sets of data is only 1.6%.

Trace diffusion coefficients have been reported for {^C} benzene and 

{ ,AC) toluene in n-hexane at 298.2 K at pressures up to 400 UPa 

(Dymond and Woolf (1982) },[132]. The present high pressure I)l2

measurements were made for benzene in n-hexane at 299.2 K up to 20 

UPa with injected solution from 0.5% to 1% (v/v) and for toluene in

n-hexane up to 24 UPa (concentration 1%). For the purpose of 

comparison the literature values were interpolated for the

experimental pressures from a log D 1Z against pressure (UPa) plot.

The measured D,x (10* /m1s') values for benzene in n-hexane at 5.2,

10.0 and 20.2 UPa pressure, namely 4.55 ± 0.04, 4.36 ± 0.04 and 4.07 

+ 0.14 are in excellent agreement with interpolated intradiffusion

coefficient values of 4.54, 4.38 and 4.07 at the same respective 

pressures. The measured values for toluene at the same temperature 

are within the combined experimental uncertainty. A maximum deviation 

of 5.7% between the two sets of data is observed at 16.8 UPa 

pressure, infering that the present high pressure measurements have

an accuracy, which at worst, is better than 14%.

3.5.4 RESULTS.

High pressure D,2 measurements were made for toluene + n-hexane and
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toluene + acetonitrile mixtures at different mixture compositions and 

temperatures. For the n-hexane plus toluene system, the injected 

solution was richer in n-hexane. The difference in concentration

between the mobile phase and the injected solution was sufficient to 

give a steady base line and well defined peaks. In practice, the 

injected solution had a mole fraction of n-hexane of 0.38, 0.74 and

1.0 where the mobile phase mole fraction was 0.25, 0.50 and 0.75 

respectively. For the pure solvent (x=l) mobile phase, the injected 

solutions generally had a solute concentration of 10% (v/v). In the 

case of the toluene plus acetonitrile system, the mole fractions of 

acetonitrile in the injected solution were 0.32, 0.51, and 1.0

corresponding to mole fractions of acetonitrile in the mobile phase 

of 0.2, 0.4, and 0.8, while for the mobile phase with 0.4 mole

fraction of toluene the injected solution had a 0.44 mole fraction of

toluene. For toluene diffusing in pure acetonitrile and vice versa

the solute concentration in the injected solution was 10%(v/v), 

equivalant to 0.05 mole fraction of toluene in the former case and 

0.18 mole fraction of acetonitrile in the latter case. The results 

are presented in Tables 3.12 and 3.13 respectively. The Devalues are 

plotted as a function of the mixture composition at atmospheric 

pressure and at different temperatures in fig. 3.5 and 3.6, while 

values at 299.2 and 348.2 K at 22 UPa are compared with atmospheric 

pressure values as a function of mole fraction of toluene for the

toluene plus n-hexane system in fig.3.7. A similar comparison for the 

toluene plus acetonitrile system, at 10 UPa, is shown in fig. 3.8.

3.5.5 DISCUSSION.

To investigate the effect of pressure on diffusion tube diameter, the
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Table 3.12

MUTUAL DIFFUSION COEFFICIENTS OF (1-x) n-HEXANE (A) + x TOLUENE (B)
MIXTURES AS A FUNCTION OF TEMPERATURE, PRESSURE, AND COMPOSITION OF
THE MOBILE PHASE.

T= 299.15 K T= .323.15 K T= 348..15 K
„ '1 'Ax P/MPa 101 DlZ P/MPa 10 P/MPa 10 D a
m2 /s m2/s mz/s

0.00 0.1 4.40 ± 0.04 0.1 5.59 t 0.01 0.1 7.00 ± 0.06
10.0 4.01 ± 0.06 10.0 5.06 1 0.00 9.9 6.29 t 0.04
16.8 3.67 ± 0.05 16.5 4.77 t 0.03 16.6 5.88 t 0.05
24.2 3.54 ± 0.02 24.3 4.54 t 0.03 24.2 5.57 ± 0.04

0.25 0.1 3.35 -fc 0.03 0.1 4.39 ± 0.06 0.1 5.58 + 0.03
7.5 3.05 .+ 0.06 6.7 4.15 i 0.05 6.8 5.22 + 0.08
15.6 2.88 ± 0.06 15.2 3.89 ± 0.06 14.9 4.83 ± 0.06
22.8 2.78 t 0.02 23.7 3.65 + 0.04 22.8 4.44 t 0.08

0.50 0.1 2.79 ± 0.04 0.1 3.60 ± 0.03 0.1 4.57 ± 0.05
9.8 2.56 -t 0.03 9.8 3.45 ■fc 0.06 8.6 4.47 -fc 0.05
16.0 2.47 ± 0.04 16.5 3.26 t 0.07 16.6 4.18 ± 0.07
25.4 2.26 i 0.06 24.0 3.00 ± 0.04 23.8 3.98 t 0.05

0.75 0.1 2.50 ± 0.04 0.1 3.28 ± 0.07 0.1 4.28 ± 0.03
8.0 2.38 + 0.04 8.2 3.14 ± 0.05 7.1 4.19 + 0.08

17.8 2.25 i 0.06 16.5 3.02 ± 0.U4 15.5 3.92 t 0.09
22.8 2.18 i 0.03 23.1 2.87 i 0.08 22.8 3.78 + 0.08

1.00 0.1 2.52 i 0.03 0.1 3.21 + 0.08 0.1 4.17 ± 0.07
7.5 2.34 t 0.03 7.4 3.14 ± 0.02 7.7 4.01 t 0.02
15.9 2.23 ± 0.02 15.4 2.99 i 0.06 15.0 3.80 ± 0.04
24.8 1.98 ± 0.03 23.8 2.80 ± 0.07 24.0 3.59 t 0.03

x= Mole fraction of toluene 
T= Temperature
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Table 3.13

MUTUAL DIFFUSION COEFFICIENTS OF (1-x) ACETONITRILE (A)
+ x TOLUENE (B) MIXTURES AS A FUNCTION OF TEMPERATURE,

PRESSURE, AND COMPOSITION OF THE MOBILE PHASE.
T= 273 .15 K T= 298 •15 K

X P/MPa 10 D ia P/MPa 10 D,z
m2- /s m z /s

1 . 00 0 . 1 2 .13 ± 0.01 0 . 1 3 .18 ± 0.03
8 . 0 2 .09 ± 0.02 8 .0 2 .91 ± 0.02

16 . 1 1 .94 ± 0.01 15.8 2 .76 + 0.04
24.4 1 .86 ± 0.01 24 . 0 2 .67 ± 0.01

0 . 80 0 . 1 1 . 43 ± 0 . 03 0 . 1 2.18 t 0 . 04
8.0 1 . 39 ± 0 . 02 8 . 7 2 . 05 ± 0 . 02

16 . 3 1 . 37 ± 0 . 02 16 . 2 1 . 94 ± 0 .01

0 . 60 0 . 1 1 . 29 ± 0 . 02 0 . 1 1 . 93 ± 0 . 02
8 . 3 1 . 19 ± 0 .01 7 . 6 1 . 77 + 0 . 03

17 . 8 1 . 14 + 0 . 02 17 . 8 1 . 55 ± 0 . 01

0 . 40 0 . 1 1 .22 ± 0.01 0 . 1 1 . 86 ± 0 .05

0 . 20 _ 0 . 1 2 . 14 ± 0.04

0 . 00 0 . 1 2 . 49 ± 0 . 02 0 . 1 3 . 38 ± 0 . 04
3 . 39 ± 0 . 05
3 . 35 ± 0 . 04
3 . 38 ± 0 . 03

8 . 8 2 . 44 ± 0 . 02 9 . 5 3 . 27 ± 0 .01
2 . 38 ± 0 . 03

* less reliable value. (a) at 5% c o n e .
(b) at 10% cone
(c) at 10% cone
(d) at 20% cone
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Table 3.13 (Continued)
MUTUAL DIFFUSION COEFFICIENTS OF (1-x) ACETONITRILE (A)
+ X TOLUENE (B) MIXTURES AS A FUNCTION OF TEMPERATURE,

PRESSURE, AND COMPOSITION OF THE MOBILE PHASE.
T= 323 . 15 K T= 348 . 15 K

X P/MPa 10 D,z P/MPa 10 D i2
m 2- /s mx /s

1 . 00 0 . 1 4.54 ± 0.03 0 . 1 5.96 ± 0.08
7 . 8 3.83 ± 0.06 8 . 1 5.30 ± 0.05

15 . 0 4.09 ± 0.05 15 . 8 5.04 t 0.03
24 . 2 3.64 ± 0.01 24 . 5 4.78 ± 0.01

0 . 80 0 . 1 3 .01 ± 0 . 06 0 . 1 4 . 03 + 0 . 07
8 . 4 2 .81 ± 0 . 01 8 . 7 3 . 74 ± 0 . 05

16 . 3 2 .69 ± 0.02 16 . 3 3 .67 + 0 . 04

0 . 60 0 . 1 2 . 67 ± 0 . 05 0 . 1 3 . 49 ± 0 . 07
8 . 2 2 . 49 ± 0 . 03 8 . 4 3 . 32 ± 0 . 2

16 . 3 2 . 38 ± 0 .01 16 . 9 3 . 16 + 0 . 04

0 . 40 0.1 2 . 63 i 0 . 04 0 . 1 3.65 t 0.03

0 . 20 0 . 1 3 . 16 0 . 05 _

0 . 00 0 . 1 4 .46 ± 0. 07 0 . 1 5 . 55 -t 0 . 04
8 . 1 4 . 29 ± 0 . 05 8 . 7 5 . 40 ± 0 . 04

4. 25 ± 0 . 05
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system was pressurised to approximately 30 MPa, then reduced to 

atmospheric pressure and l)lz re-measured for toluene in n-hexane at

299.2 K. The constancy of the values revealed that there is no 

permanent effect of pressure on the diffusion tube diameter.

The D\2. values plotted against mole fraction of toluene at ambient 

pressure for the two systems studied show that these mixtures are 

non-ideal and that the toluene plus acetonitrile system shows more 

deviation with respect to straight line behavior than that of toluene 

plus n-hexane. Similar behavior is observed at elevated pressure as 

shown in fig. 3.7 for toluene plus n-hexane, where values

interpolated for a pressure of 22 MPa are plotted against mole 

fraction of toluene and the composition dependence is compared with 

that for the atmospheric pressure results. For toluene plus 

acetonitrile, a problem arose in trying to establish a steady high

pressure for the solution where the mole fraction of toluene was 0.4.

Even at atmospheric pressure, there were problems with the peak

height not being proportional to the sensitivity of the detector.

This was more evident for the solution of mole fraction of 0.2 of 

toluene, where it proved impossible to obtain results at 273.2 and

348.2 K. The reason is that the refractive index for these solutions 

lies at the extreme end of the range for each of the two prisms in 

the detector. For the pure component mobile phase and solutions with 

mole fraction of toluene equal to 0,6 and 0.8, the results lie 

parallel to the atmospheric pressure curve, as shown in fig.3.8.

The activity coefficient measurements for these systems were not 

conducted, but Ghai and Dullien [13 13 have shown that the activity 

corrected mutual diffusion coefficients for the toluene plus n-hexane
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system at 298.2 K show positive deviation.

The hard sphere theory can only be applied to these mixtures at the 

limiting cases where one of the constituents is present at trace 

amount. Using density data and V/Vo values as given in chapter 6, the 

(D/De ) were calculated for the limiting cases at atmospheric

pressure and values for A i2_were derived as explained earlier.

The A ^  values for toluene in n-hexane are fairly constant (0.72 ± 

.01) over the temperature range 273.2 to 348.2 K and equal to the Au 

value for n-hexane itself. Taking A l2 = produces a maximum

difference of 3% between the calculated and experimental values.

The A,2 value for acetonitrile in toluene from 298.2 to 348.2 K is 

also constant (0.72 + 0.01). The derived value of A^ at 273.2 K, i.e. 

0.83 is somewhat higher than the average, but this descrepency is 

attributed to the fact that the V/Vo value for toluene at this 

temperature is beyond the limit of the hard sphere theory, as the 

hard sphere system become metastable at V/Vo < 1.5. The A,2 values for 

toluene in acetonitrile have an average value of 0.69 ± 0.06 over the 

temperature range 273.2 to 348.2 K, but for this system there is a 

definite decrease in A lz values with rise in temperature.

The pressure coefficient of diffusion for the two systems studied is 

presented in Table 3.14. The experimental accuracy does not allow a 

critical analysis of the dependence of diffusion coefficients on 

pressure at different temperature and mobile phase composition, as a 

±2.5% error in atmospheric pressure values and 14% error in high 

pressure measurements can add ±0.4% to the percent change in
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Table 3.14

PE R CENT CHANGE IN DIFFUSION COEFFICIENTS PER MPa.

(a) toluene plus n-hexane mixtures.

Mole fraction 
of toluene

Temperature / K

299 . 2 323 . 2 348 . 2

0.00 -0 .81 -0 . 77 -0 . 85

0 . 25 -0 .75 -0 .72 -0 . 90

0 . 50 -0 . 75 -0 . 69 -0 . 54

0 . 75 -0 . 56 -0 . 54 -0 . 52

1 . 00 -0. 87 -0 . 53 -0 . 58

b) toluene + acetonitrile mixtures.

.e fraction 
if toluene

Temperature / K

273 . 2 298.2 323.2 348 . 2

0.00 -0 . 28 -0.34 -0.48 -0 .31

0 . 60 -0 . 65 -1.11 -0.67 -0 . 56

0 . 80 -0. 26 -0.68 -0.66 -0 . 55

1 . 00 -0 . 52 -0.67 -0.82 -0 . 81
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diffusion coefficient per HPa. However the values cannot be regarded 

as pressure independent even within this limited pressure range.

The pressure coefficient of mutual diffusion is roughly constant for 

the toluene plus n-hexane mixtures where the two components have 

comparable molecular weights. The pressure dependence is smaller for 

toluene in acetonitrile compared to acetonitrile in toluene over the 

whole temperature range, where the limiting values at infinite 

dilution are comparable but the solvents have significantly different 

molecular weights. The pressure coefficient values of these mixtures 

are comparable with those of other organic solutes in similar 

solvents [106,132].
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4.1 INTRODUCTION

In 1685 Newton [137] proposed the existence of an internal resistance 

to the flow in liquids when relative motion exists between the 

particles of a liquid. This can be expressed as :

F = r^A ( dV/dZ ) (4.1)

where A is the area of contact of two liquid laminae and F is the 

force necessary to maintain a velocity gradient ( dV/dZ ) between the 

laminae. i[ is a constant, characteristic of each liquid and is called 

the coefficient of dynamic viscosity. Fluids for which viscosity 

coefficient is independent of the rate of shear stress at constant 

temperature and pressure are said to be Newtonian. The liquids 

studied in this work are Newtonian.

The SI unit of viscosity is pascal second ( Pa s) while the e.g.s. 

unit is g/cm/s or poise ( P ). A smaller and more convenient unit for 

liquid viscosity coefficient is centipoise ( cP ) which is equivalent 

to mPa s. The dynamic viscosity coefficients obtained in this work 

are reported as mPa s. The coefficient of kinematic viscosity is the 

ratio of the dynamic viscosity coefficient to the density at the same 

temperature and is expressed as meter"/second ( m z/s ) in SI units. 

The e.g.s. unit of kinematic viscosity is cm 2 / s or stokes ( St ) 

while a convenient unit for the liquid is centistokes ( cSt ), being 

equal to mmz/s.

The viscosity coefficient of fluids can be measured using various
methods but the British Standards Institution [138] recommends only
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two of these methods which are based on the resistance to the motion 

of a liquid passing through the capillary of a glass viscometer ( 

Poiseuille flow ), or the resistance to the motion of a sphere 

falling through a liquid ( Stokes law ). The method based on Stokes 

law is only applicable to liquids having a kinematic viscosity 

coefficient of over 500 cSt and so is not suitable for the present 

work. Therefore, at saturation pressure, a method based on that of 

Poiseuille flow is used, which considers a viscous fluid flowing 

through a stationary tube. The fluid is assumed to be incompressible 

and the layer of liquid in contact with the wall of the capillary is 

at rest. The resulting velocity profile is parabolic and viscosity is 

proportional to flow time.

Modified suspended-level viscometers, described in section 4.2.1 were 

used for the measurement of the kinematic viscosity coefficients at 

saturation pressure. They have the distinctive feature that liquid is 

suspended in the capillary and fills it completely. The suspension 

ensures a uniform driving head of liquid independent of the quantity 

of the sample charged in to the viscometer, making viscometer

constants independent of temperature. By making the diameter of the 

lower meniscus approximately equal to the average diameter of the 

upper meniscii, the surface tension correction can be reduced. 

Further, since the viscometer is not open to the atmosphere, it can 

be used for volatile liquids or mixtures even at temperatures above 

the normal boiling point without appreciable change in composition.

To enable the dynamic viscosity coefficient and buoyancy correction

to be calculated, it is necessary to have corresponding density data

. The densities were measured using a vibrating tube densimeter, as
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described in section 4.3.

The densities and viscosity coefficients for toluene, acetonitrile, 

three binary mixtures of toluene plus acetonitrile, three binary

mixtures of toluene plus n-hexane and the density of a ternary

equimolar mixture of n-octane plus i-octane and oct-l-ene have been 

determined from 298 K to 348 K and extrapolated to 373 K.

4.2 MEASUREMENT OF KINEMATIC VISCOSITY COEFFICIENTS

4.2.1 DESCRIPTION OF VISCOMETER

Standard capillary viscometer techniques were used. The time for a 

definite volume of liquid to flow through a capillary tube was 

measured under conditions of closely controlled temperature and an

accurately reproducible head of liquid. However, in order to overcome 

the problem of vapour loss and difficulty of repeat measurements with 

a conventional glass capillary viscometer a closed design was 

employed. The design of this instrument, a modification of the 

British Standard BS/IP/SL type, is shown in fig. 4.1, and has been

described in detail by Young et al. [139,140] and Robertson [141].

The viscometer consisted of two reservoir bulbs A and B, of 

approximately 15 cm3 capacity, connected on one side by a measuring 

section consisting of precision bore capillary C and a bulb D. Two 

circumferential marks X and Y etched on the glass above and below the 

bulb defined a precise volume for timing. The reservoirs A and B were 

also connected by a side arm and filler section, sealed by an S13 

Rotaflo tap, F. To minimise surface tension effects the capillary 

tube opened smoothly in a bell shape into the bulbs at either end,
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and the length of the straight section of the tube above bulb D was 

sufficiently long that the liquid meniscus had reached a constant 

velocity before passing mark X.

Measurements on each liquid were made simultaneously using two 

viscometers having different capillary bores and lengths to obtain a 

more reliable estimate of the accuracy of the viscosity coefficients. 

Viscometers 1 and 2 were used initially for the measurements of flow 

time for calibrating liquids, but as they have approximately the same 

bore sizes and comparable capillary lengths, viscometers 2 and 3 were 

used for the measurement of kinematic viscosity coefficients for the 

liquids and mixtures to be studied. The relevant dimensions of the 

viscometers are given in Table 4.1. Flow times for a given viscometer 

were reproducible to ±0.1% and the viscosity coefficients from the 

two viscometers agreed on average to within 0.3%.

4.2.2 VISCOMETER THEORY

A rigorous theory of the flow of liquids through a capillary tube was 

first obtained by Poiseuille [142]. If a volume V flows along a 

capillary of radius r and length 1 in time t, then Poiseuilie's 

formula gives

V/t =Trapr /̂8r̂ l (4.2)

where AP is the pressure drop along the capillary. Since P=gph where 

h is the head of liquid

*1 /£ = H’ghr'1 t/8Vl (4.3)
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Table 4 . 1

DIMENSIONS OF THE VISCOMETERS

V iscometer
Number

1

2

3

Calibration 
Range / cSt

0.46 - 3.97

0.46 - 3.97

0.46 - 1.82

C a p i 1lary 
Bore / mm

0. 50

0 . 50

0 . 30

C a p i 11ary 
Length/mm

75

55

115

Volume 
D / cm'

9

9

2

Table 4.2

COMPARISON OF EXPERIMENTAL KINEMATIC VISCOSITY COEFFICIENTS 
WITH L I T E R A T U R E  VALUES.

V i s c ometer No 

Compound

C y c 1ohexane

Benzene

n-Dodecane

V i s c ometer No 

C y c 1ohexane

A= 0.002898 mm 1 /s2 B= 4.410 mmz

Temp
T/K

333 . 15

(n/p)(Exp) 
/cSt

(n/p)(Lit) 
/cSt

Dif f 
%

333.15

313 . 15

333.15

2 A :

298.15

313 . 15

333.15

0 .7155 0 .. 7120 (a) + 0 .. 49
0 ,. 7149 (b) -0 ,. 08
0 ..7144 (c) -0 ,. 15
0 ..7168 (d) + 0 ., 18

0 .4657 0 ,. 4660 (a) + 0 .. 06
0 ,. 4662 (b) + 0 ,. 11
0 ,.4664 ( c ) + 0 ,. 15

1. 4463 1 .. 4650 (a) +1.. 30
1 ,. 4450 (b) + 0 ,. 09
1 ,. 4462 (d) + 0 ,.01

1. 1114 1 .,1290 (a) + 1., 60
1 ., 1135 (d) + 0 .. 19

0028 19 mm2 /sx B= fj . 811 ___2mm

1 .1576 1 .1570 (a) -0 ., 05
1 ., 1591 (b) + 0 ., 13
1 ., 1587 (c) + 0 ., 09
1 ., 1595 (d) + 0 ., 16

0 .9273 0 .. 9230 (a) -0 .,46
0 ., 9250 (c ) -0 .. 25
0 .. 9268 (d) -0 ., 05

0 .7135 0 .,7120 (a) - o ..21
0 ..7149 (b) + 0 ,. 20
0 .,7144 (c ) + 0 .. 13
0 .,7168 (d) + 0 ., 46
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Table No. 4.2 (continued) 

Viscometer No 

Compound

Benzene

Toluene

n-Dodecane

V i s c ometer No 

Toluene

2 A= 0.002819 mm) s7' B= 5 . 811 mm?

Temp (i}/p) (Exp) (n/p)(Lit) Diff .
T/K /cSt /cSt %

298.15 0 . 6888 0 . 6878 (a ) -0.15
0.6880 (b) -0.12
0.6898 (c ) + 0 . 14

333.15 0.4659 0.4660 (a ) + 0 . 02
0.4662 (b) + 0 . 06
0.4664 (c ) + 0.11

298.15 0.6416 0.6378 (a ) + 0 . 59
0 . 6400 (c ) -0 . 25
0 . 640 2 (d) -0 . 22
0.6426 (a ) + 0.15

323 . 15 0.5023 0.4978 (a ) -0 . 89
0.5036 ( a ) + 0 . 26
0.5031 (a ) + 0 . 16

348.15 0.4099 0.4049 ( a ) -1.21
0.4098 ( c ) -0 . 02
0.4148 (e ) + 1 . 20

298.15 1.8215 1.8430 (a ) + 1 . 20
1.8240 (b) + 0 . 14
1 . 8238 (d) + 0 . 13

313.15 1.4432 1.4650 (a ) + 1 . 50
1.4450 (b) + 0 . 12
1.4462 (d) + 0 .21

333 . 15 1.1096 1 .1290 (a ) + 1.75
1 . 1135 (d) + 0 . 35

CO > II 0 . 001074 m m 2 /s2 B= - 2 . 173 mm2-

298.15 0.6395 0 . 6378 (a ) -0 . 26
0.6402 ( c ) + 0.11
0.6426 ( a ) + 0 . 48

323 . 15 0.5018 0.4978 (a ) -0 . 80
0.5036 (c ) + 0 . 36
0 . 5031 ( e ) + 0 . 26

348.15 0.4097 0.4049 (a ) -1 . 20
0.4098 (c ) + 0 . 02
0.4148 ( e ) + 1 . 20

Literature data from:

(a) API tables [151] (b) Young (1980) [139] (c) Ro b e r t s o n
(1983) [141] (d) Glen (1985) [152] (e) Makita (1982) [153]
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where h is now the mean head of the liquid. If h were the same for 

every run then rj/p would be proportional to the time for a set volume 

of liquid to flow through the capillary under its own pressure. This 

is not the case and corrections must be applied to take account of 

loss of effective driving head as kinetic energy is imparted to the 

liquid on entering the capillary. For certain geometries these 

correction terms can be evaluated and Kestin, Sokolov and Wakeham 

[143] were able to derive an equation of the form

y p  = ( 7Trgh/8V(l+fcl))t-(mV/87r(l + fcl))/t (4.4)

where m is a constant and &\ is a correction to the length of the 

capillary. The factor (1+&1) was first suggested by Couette [144] on 

an entirely experimental basis.

The viscometers used in this work do not correspond to those analysed 

by Kestin et al, but their equation can be written in a general form 

as

ij/p = A(l-^/g)(l+a&T)t-B/t (4.5)

where A and B are now apparatus constants for a given viscometer. The 

term (1+aAT), where a is the coefficient of linear expension of 

glass, takes account of change of length of viscometer between the 

reference temperature ( taken as 313.15 K) and the experimemtal 

temperature while the term (l-gv/p) is a buoyancy correction term. 

The vapour density can be calculated from the ideal gas law and a 

knowledge of the vapour pressure of the liquid.
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It has previously been known [145] that almost 0.5% error may occur 

if the viscometer is calibrated with water and used for the 

determination of viscosity coefficients of organic liquids. This 

discrepency may be attributed to surface tension effects and can be

avoided by calibrating the viscometer with organic liquids.

4.2.3 USING THE VISCOMETER

Before use, the viscometers were cleaned with chromic acid solution, 

washed with distilled water, rinsed with Analar acetone and dried on 

a vacuum line. Liquid mixtures were prepared by weighing the 

components into a bottle with a tight fitting top, the less volatile 

component being added first. Mixtures were transferred to the 

viscometer as quickly as possible to minimise composition change. To 

avoid any material entering the viscometer which could block the 

capillaries, the viscometers were filled using a syringe fitted with 

a Millipore filter ( type FH, pore size 0.5 micron). The liquid in 

the viscometers was frozen at liquid nitrogen temperature, and the

air pumped out before the viscometer was sealed and mounted in the

constant temperature bath.

The viscometers were mounted on stands attached to the lid of the

bath, a Townson and Mercer model E270 Series III, filled with water. 

The experimental arrangement is shown in fig. 4.2. Temperatures were 

measured to ±0.02 K by an NPL calibrated Zeal total immersion 

mercury-in-glass thermometer (No.9566). The viscometers were first 

inverted to fill the top reservoir bulbs then returned to the 

position shown in fig. 4.1 where liquid fell under gravity into bulb
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D . The viscometers were aligned vertically by reference to a plumb 

line.

The time taken for the liquid meniscus to move from the upper mark X 

to the lower mark Y was measured for each viscometer to the nearest 

0.1 s using a Junghans stopwatch or Racal Instrument Universal 

Counter 9835. Measurements could be made as often as required by 

inverting the viscometer and repeating the procedure outlined above. 

In practice readings were taken until three consecutive 

determinations agreed to within ±0.1% of their mean. The quoted

kinematic viscosity coefficients are the average of the results of

two viscometers with different capillary bore sizes.

Viscometers designated 1, 2 and 3, used in this work were calibrated 

by Young [139] using benzene, cyclohexane and n-dodecane. Viscometers 

No. 1 and 2 were calibrated in the kinematic viscosity range 0.46 to 

3.97 cSt while viscometer No. 3 was calibrated up to 1.82 cSt. Flow 

times were measured for benzene, cyclohexane and n-dodecane and using 

the apparatus constants determined by Young U 3 9 J  the calculated 

kinematic viscosity coefficients were found to be in excellent

agreement with the measurements of Young and literature values within

the estimated uncertainty of ±0.5% as shown in Table 4.2. No change 

to the apparatus constants reported by Young was therefore considered 

necessary. The kinematic viscosity coefficients of n-hexane and 

acetonitrile are less than the lower limit of the viscometer 

calibration range, but using the same apparatus constants, kinematic 

viscosity coefficients can be calculated with an uncertainty not 

exceeding 1%. (YoungL13Q3).
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4.3 MEASUREMENT OF DENSITY

4.3.1 DESCRIPTION OF DENSIMETER

Density measurements at saturation pressure have been made using a 

vibrating tube densimeter for acetonitrile, three binary mixtures of 

toluene plus acetonitrile, three binary mixtures of toluene plus 

n-hexane and the ternary equimolar mixture of n-octane plus i-octane 

plus oct-l-ene.

An ANTON PAAR DMA 45 Calculating Digital Densimeter was used. The 

measuring principle of this instrument is based on the change in the 

natural frequency of oscillation as a function of the total mass of 

the oscillator. The sample cell is a U- shaped glass tube surrounded 

by an outer jacket through which water could be circulated to provide 

temperature control. The U-tube is excited by an electro-mechanical 

oscillator and a signal is produced from which the period of 

oscillation can be determined. If the appropriate constants have been 

stored then density can also be displayed digitally.

4.3.2 DENSIMETER THEORY

The period of oscillation T of a hollow body of mass M and volume V 

filled with fluid of density is given by [146,147]:

r = 271 7(M+pV)/k (4.6)

where k is the "spring constant". This can be rearranged to give
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£ = (r2-B)/A (4.7)

with A = 4TT V/k and B = 4TTM/k (4.8)

In principle, density measurements could be on an absolute basis if 

k, 11 and V could be determined with sufficient accuracy. In practice, 

however, A and B are regarded as instrument constants and determined 

by calibration with fluids of accurately known density. The 

instrument constants A and B are temperature dependent due to both 

the temperature dependence of the modulus of elasticity and the 

thermal coefficient of expansion of the sample cell, and also vary 

with time, presumably due to slight changes in the mass of the cell 

and variation in the "spring constant" due to ageing.

4.3.3 USING DENSIMETER

Before using the sample cell, it was washed with distilled water, 

followed by Analar acetone and dried by compressed air. The cell was 

thermostated by circulating water from a flask in an Electrothermal 

bath. The bath temperature was monitored by a Lauda R46 digital 

thermometer. Fluid temperatures are estimated to be accurate to ±0.03 

K.

The sample was introduced to the cell by means of a syringe and a 

blanking plug used to seal the other port to prevent composition 

changes for mixtures due to vapour loss. Care was taken to avoid air 

bubbles being trapped in the system.
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4.3.4 DENSIMETER CALIBRATION

The densimeter was calibrated with distilled water and air. If pw and 

pa are the densities of water and air, Tw and Ta are corresponding

periods then equation 4.7 can be solved to give

2 2 z  
A = (T'w-Ta)/(pw-pa) B = Tw-Apw (4.9)

The density data for water and air were taken from the instruction

manual of the instrument. The densimeter was calibrated at each 

temperature and for each liquid. There was a slight change in the 

apparatus constants from time to time, so the calibration was carried 

out prior to each set of measurements. The densities are estimated to

be accurate to better than ±0.3 kg/m? at temperature up to 348 K as

shown in Table 4.3

4.4 RESULTS

Viscosity coefficients and density data are presented for three 

binary mixtures of toluene plus acetonitrile, three binary mixtures 

of toluene plus n-hexane and a ternary equimolar mixture of n-octane 

plus i-octane plus oct-l-ene at saturation pressure in the

temperature range 298 to 373 K. Kinematic viscosity coefficients have 

been measured using modified suspended-level viscometers and density 

measurements are made using a vibrating tube densimeter. From these 

data, dynamic viscosity coefficients have been calculated.

The acetonitrile, toluene and n-hexane were Aldrich HPLC 99+% grade



35

Table 4.3

COMPARISON OF EXPERIMENTAL DENSITIES WITH L ITERATURE VALUES.
Compound Temp Dens ity Dens ity

T/K Exp/kg m 5 Lit/kg m3.
Acetonitri1e 298 . 15 776 . 7 776 . 5 b) 776.0 (c )

323.15 749.6 749 . 5 b)
348.15 721 . 3 722 . 0 b)

n-Hexane 298.15 655 . 0 655 . 8 a ) 655.1 (b)
655 . 0 h ), 655.8 (i)
655 . 3 j) 655.1 (m)
654 . 8 n ), 654.9 (o)

323 . 15 632 . 0 631 . 5 a )
Toluene 298.15 862 . 0 862 . 3 a ) (c ) and (f)

862 . 2 d) and (e)

323.15 838 . 8 839 . 3 9- ) 838.9 (d)

348 . 15 814.9 816 . 2 a ), 814.8 (d)

Cyc1ohexane 298.15 773 . 8 773 . 9 a) (j ) and (m)
773 . 8 h ) 773.6 (1)

323 . 15 750 . 1 750 . 1 a ) 749.7 (h)

348.15 725 . 8 726 . 0 a ) 724.9 (h)

Benzene 298.15 873 . 4 873 . 7 a ) and (i)
873 . 6 d) (e),(f), (k)
873 . 8 9)

323.15 847 . 0 846 . 9 a ) 846 . 8 (d)

348.15 819 . 1 819 . 1 a) 819 . 3 (d)
818.8 h)

Literature data from:

(a) API tables [151]
(b) Kratz and Muller (1985) [154]
(c) R itzoulis (1986) [150]
(d) R o b e r t s o n  (1983) [141]
(e) Hales and Townsend (1972) [155]
(f) T immermanns (1965) [156]
(g) Glen (1985) [152]
(h) Young (1980) [139]
(i) Diaz and Nunez (1975) [157]
(j) Letcher (1975) [158]
(k) Radojkovie et al (1977) [159]
(1) Kiyahora and Benson (1973) [160]
(m) Alcart et al (1980) [161]
(n) Int. Data Series. 1973 [162]
(o) Chen and Zwolinski (1974) [163]
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and at 298.15 K measured densities are in good agreement with the 

literature values (Table 4.3). The n-octane and oct-l-ene were

purchased from B.D.H. Chemical Ltd., and had a stated purity of >

99.5% and > 99%, while i-octane was purchased from Riedel - De Haen

Ag Seelze-Hannover and had a stated purity of 99.5%. The chemicals 

were used without further purification.

The composition of mixtures in the viscometer will change as the 

temperature is increased due to differenecs in vapour pressure of the 

components. The change in composition can be calculated by finding 

the number of moles of each component in the vapour phase at each 

temperature and subtracting from the number of moles of each

component originally present in the liquid phase. Raoult's Law was

applied to calculate the number of moles of each component n^G) in 

the vapour phase.

where V is the volume of the vapour space, P̂  is the vapour pressure 

of pure component i at temperature T, calculated from the Antoine 

equation [148], and is the mole fraction of the component i in the 

liquid originally present. The true mole fraction of the component 1 

in a binary liquid mixture is then given by

n i(G)= x-lPi V/RT (4.10)

_n-.(L) - in (G)
n i (L ) - n i (G ) + n ; (L ) - n,(G) (4.11)

where n t (L) is the number of moles originally present in the liquid 

phase and n^ (G) is the number of moles in the vapour phase, 

calculated from equation 4.10.
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The maximum change in the composition was observed for the toluene 

plus n-hexane mixture with 0.75 mole fraction of n-hexane, where a 

mixture with 0.7501 mole fraction of n-hexane at 298.15 K becomes a 

mixture with 0.7493 mole fraction of n-hexane at 348.15 K, while the 

maximum change in the mole fraction of acetonitrile in the toluene 

plus acetonitrile mixtures from 298.15 to 348.15 K was only 0.0002. 

Such a small change in composition has a negligible effect on the 

measured viscosity coefficients, hence composition corrections were 

not applied. Since the densimeter is a closed system with no vapour 

space this problem is not encountered in density measurements.

The kinematic viscosity coefficients along with density and

calculated dynamic viscosity coefficients for the systems studied are 

tabulated in Table 4.4, and compared with literature values where 

available in Table 4.5.

The viscosity coefficients for acetonitrile plus toluene have been 

measured by Friedel and Ratzsch fl4^0 at 293 K and Ritzoulis et al. 

[1501 at 288, 298 and 308 K as a funtion of composition. A

comparison of the present measurements with these literature values 

is shown in fig. 4.3. The measurements of Friedel and Ratzsch are at

a low temperature of 293 K but are much as expected from

consideration of our results at 298 and 323 K, however the results of 

Ritzoulis et al. disagree totally with the present measurements. 

Their results at 288 and 308 K have a similar composition dependence 

to the curve shown at 298 K. It seems that they have miscalculated 

the composition of the mixtures. This is supported by the fact that 

at 298 K their viscosity coefficient and density at 0.8397 mole
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Table 4.4

DENSITY AND VISCOSITY COEFFICIENTS OF MIXTURES

; fraction Temp (0/P) Dens ity
toluene T/K /cSt £ /kg rn̂ /mPa s

(a) Toluene + acetonitrile

0 . 000 298.15 0.4387 776 . 7 0.3406
323.15 0.3631 749 . 6 0.2722
348.15 0.3091 721 . 3 0.2229

0. 250 29e.15 0.4846 812 . 0 0.3935
310.65 0.4327 799 . 2 0.3458
323.15 0. 3918 786 . 1 0.3080
335.65 0.3574 772 . 4 0.2761
348.15 0 . 3281 759 . 2 0.2491
373.15 — 734.8* 0.2076

0 . 500 298.15 0.5416 835 . 8 0.4527
310.65 0.4809 823 . 5 0.3960
323.15 0.4310 810 . 9 0.3495
335.65 0.3904 797 . 8 0.3114
348.15 0.3567 784 . 9 0.2800
373.15 — 760.0* 0.2311

0 .750 298 . 15 0.5971 851 . 9 0.5087
310.65 0 . 5258 840 . 1 0 .4417
323 . 15 0.4682 827 . 9 0.3876
335.65 0 .4231 815.2 0.3449
348.15 0 . 3859 802 . 9 0.3099
373.15 — 780.3* 0.2538

(b) Toluene + n- hexane

0 . 250 298.15 0.4602 699 . 7 0.3232
310.65 0.4179 688 .4 0.2877
323.15 0.3801 676 . 9 0.2573
335.65 0.3490 664 . 2 0.2318
348.15 0 . 3213 651.5 0.2093
373.15 — 623.9* 0.1766

0 . 500 298.15 0.4957 748 . 6 0.3711
323 . 15 0.4057 7 26.0 0.2945
348.15 0.3431 701 . 9 0.2397
373.15 — 678 . 8 * 0.2021

0 . 750 298.15 0.5497 802 . 2 0.4410
310.65 0.4900 791 . 0 0.3876
323 . 15 0.4430 778 . 8 0.3450
335.65 0.4013 767 . 1 0 . 3078
348.15 0.3668 754 . 9 0.2769
373.15 - 729.9* 0.2305

* E x t r a p o l a t e d  values
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Table 4.4 ( continued )

DENSITY AND VISCOSITY COEFFICIENTS OF MIXTURES

Temp (^/p) Density r\_
T/K /cSt £/kg m 3 /rnPa s

Ternary Equimolar mixture of 
n-octane + i-octane + oct-l-ene

298.15 0.9770 698.8 0.6827
323.15 0.7938 679.0 0.5390
348.15 0.6709 657.4 0.4411
373.15 - 634.2* 0.3672*

* Extrapolated values

Table 4.5

COMPARISON OF ( TOLUENE + N-HEXANE ) DENSITY AND VISCOSITY 
COEFFICIENTS WITH LITERATURE VALUES (a) at 298 K.

Mole fraction p(Exp) p ( L i t ) r\( Exp) if(Lit) Dif f /
of toluene /kg m 3 /kg m3 /rnPa s /rnPa s %

0.00 655 . 0 654. 9 0.2979 0.2958 0 . 7
0 . 25 699 . 7 699 . 1 0.3232 0.3258 0 . 80
0 . 50 748 . 6 747 . 8 0.3711 0.3720 0 . 24
0 . 75 802 . 2 801 . 7 0.4410 0.4420 0 .23
1 . 00 862 . 0 861 . 5 0.5521 0.5530 0 . 16

(a) Ghai and Dullien [1^*]
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fraction of toluene are 0.457 cP and 0.8362 g/ml which are comparable 

to the viscosity and density determined in the present work at the 

equimolar mixture composition, being 0.4526 cP and 0.8358 g/ml.

The viscosity coefficients and density measurements have been 

reported at 298.15 K for toluene plus n-hexane mixtures as a function 

of composition by Ghai and Dullien C13.U . The densities reported in 

this work are in excellent agreement with their values, the maximum 

difference being 0.1%. The viscosity coefficients are in good 

agreement within the combined uncertainty, the maximum difference 

being only 0.8%.

4.5 DENSITY AND VISCOSITY COEFFICIENT MEASUREMENTS AT ELEVATED 

PRESSURES.

Viscosity coefficients at elevated pressures were obtained using a 

high pressure self-centering falling body viscometer at the National 

Engineering Laboratory, East Kilbride, Glasgow. This apparatus was 

built and used by Isdale [164] for the investigation of the pressure 

dependence of viscosity coefficients of certain pure liquids at 

temperatures from 298 to 373 K up to 500 MPa and subsequently used by 

Young Cl 3CM, Robertson C14' 1, Glen 11627 and Malhotra 1 1»?>3 for 

pure liquids as well as liquid mixtures over the same temperature and 

pressure range. A number of mechanical and electrical improvements, 

including pressure and temperature control and measurement, 

redesigning of the detection system and incorporating a micro 

processor based data logging system were made and described in detail
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by Glen LI-^ 1• The corresponding density data, required for buoyancy 

correction, were obtained using a bellows volumometer.

4.5.1 PRESSURE GENERATION, CONTROL AND MEASUREMENT.

The pressure vessel, intensifier body and gauge block were made of En

26 steel hardened to 1.2 GPa and mounted on self-aligning bearings as

shown in fig. 4.4, enabling them to be rotated through more than 180°. 

Further detail of design and construction of the pressure vessel is 

given by Isdale [164].

The pressurising system consisted of an air pump, hydraulic fluid 

reservoir, pressure intensifier, pressure block with release valve

and pressure vessel immersed in a constant temperature bath as shown

in fig. 4.5.

Pressurising fluid (1:1 mixture of paraffin and Shell Tellus 27 oil) 

was pumped from the reservoir using a Madan Air hydro pump, supplied 

by an air line. Fluid was transmitted to the gauge block and pressure 

vessel through two pairs of non-return valves D and E on the

intensifier body, with valve B and C open and valve A closed.

Pressures up to 200 MPa were generated by this method and monitored 

by a dial gauge and the final pressure measured by a resistance 

gauge.

High pressures were generated using an intensifier. The system was 

first primed to 200 MPa as above to return the intensifier piston to 

its starting position. With valves B and C now closed and valve A

opened, the fluid was pumped to the low pressure side of the
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intensifier piston. Each stroke of the intensifier piston raised the 

pressure by around 70 MPa. The piston was returned to the starting 

position by the priming procedure and the process repeated until the 

desired pressure was obtained. The pressure could be released at any 

time by opening the pressure release valve.

The pressure was measured by monitoring the change in the resistance 

of a coil of manganin wire immersed in the fluid in the pressure 

gauge block. The coil consisted of about 2.5 meters of 40 S.W.G. 

double silk covered wire, wound on a P.T.F.E. former. It had

previously been stablised by subjecting it to temperature and

pressure cycles and the pressure coefficient of resistance determined 

by Glen. Although the temperature coefficient of resistance is known 

to be very small in the region around room temperature [165], Glen 

fl5£3 attemptted to take account of temperature variations from run 

to run, by incorporating a thermocouple and a platinum resistance

thermometer in the gauge block. The thermocouple reference junction 

consisted of a well-stirred ice bath in a Dewar flask close to the 

gauge block. The manganin gauge was previously calibrated against a 

Budenberg free-piston deadweight pressure balance over the pressure 

range 0.1 to 600 MPa.

Since the atmospheric resistance of the manganin wire changes 

continually during use [164-166], possibly due to continual immersion 

in pressurising fluid, the atmospheric pressure resistance was

measured before each pressurisation and the effect was eliminated by 

using an equation of the form

z
P = A + B( R-Ro-R') + C( R-Ro-R') (4.12)
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where A, B, and C are contants, R and Ro are resistances at pressure 

p and atmospheric pressure. R 1 is a correction for change in 

resistance due to temperature change. The overall accuracy was found 

to be better than ±0.2% for pressure above 100 MPa, Dymond et al.

4.5.2 TEMPERATURE CONTROL AND MEASUREMENT.

The pressure vessel was immersed in heating oil, Marlotherm S oil, in 

the oil bath, which was insulated on all sides by a layer of 

fibreglass and, to minimise the heat loss from the surface, was 

covered by a double layer of Allplas insulating spheres. The 

temperature of the bath oil was maintained and controlled by six 1 kW 

mineral insulating heaters, four of which could be used as boosters, 

as shown in fig. 4.6. The oil was thoroughly mixed to keep the 

temperature uniform by means of four stirrers. Temperature control 

was found to be better than +0.03 K but the temperature variation 

inside the pressure vessel would be much smallar than this due to 

very high thermal inertia of the pressure vessel.

The bath temperature was measured by two metal sheathed Rosemount 

platinum resistance thermometers immersed in the oil bath close to 

the pressure vessel and interfaced to a data logging system. The 

thermometers were previously calibrated to IPTS-68 standard by 

measuring their resistance at the ice point, steam point and one 

intermediate point and were found to give the temperature with an 

uncertainty not exceeding ±0.02 K, Glen L15 2.].
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4.5.3 DENSITY MEASUREMENTS AT ELEVATED PRESSURE.

The simplest and the most widely used method for density measurements 

at high pressure is by using a bellows volumometer [169-172]. The 

flexible metal bellows is filled with the liquid under test with a 

known mass at atmospheric pressure and then its change in length as a 

function of pressure is measured. The bellows was made of 

stainless-steel, had a volume about 12 cm3and uncompressed length of 

12 cm. Prior to filling, it was washed with Analar acetone and dried 

in hot air hanging upside down. After cooling and sealing with 

"Dowty" bounded seal it was weighed, then opened and the sample was 

introduced by means of a syringe, fitted with a Millipore filter (0.5 

micron). The bellows was compressed and stretched for a few times to 

eliminate trapped air , topped up with liquid and resealed. The outer 

surface of bellows was cleaned and dried and the bellows re-weighed. 

The experimental set-up is shown in fig. 4.7.

One end of the bellows was screwed to a rigid housing which ensured 

linear movement. A length of non-magnetic stainless-steel rod was 

screwed into the free end of the bellows, with a small piece of 

ferrite at the tip, projected through the end cap of the pressure 

vessel into a length of non-magnetic high pressure tubing which was 

sealed at its extremity. A coil block containing a pair of coils, 

which could be moved along the length of the tube to detect the 

position of the ferrite tip, was attached to the high pressure 

tubing. The previously used detection system was modified by Glen 

Llt-l and later Dymond et al. (1988) incorporated a stepping-motor 

drive (BENTHEM, SMD3B/IEEE) controlled by a microcomputer for coil 

block movement, and a Capacitance Displacement Transducer (CDT) for



CAPACITANCE —
UVSFLACemtMT
'TNftNspuctR

uz=— =n

COIL BLOLK >

h -  - U

-f e r r it e  t i p

HIGH PRESSURE

tubing

SCREWS

ANNULAR SCREWED 
RING

thrust bervnmg

RING

AMINOO" c o u p l in g

POLTURHTUKNE SEAL

STAINLESS STEEL BOD

PRESSURE VESSEL

METRL SHIELD 

FOR Bellows

-BELLOWS

s c r e w  r u d  " d o w v *  

Bonded seal

f ig . 4 .7  FORM OF tVPPKRRTUS USED TO MEKSURE

d e n s it ie s  kt elemkteo p r e ss u r es .



95

more accurate measurements of the change in the length of bellows

with pressure.

The bridge was initially balanced with the coil remote from the tip 

position. The approximate tip location was then obtained by observing 

the out-of-balance signal from the bridge of an oscilloscope and 

looking for a maximum. The coil block was moved to about 1 mm above 

the approximate tip position then stepped down in 15 equal steps. At 

each step, the bridge voltage was measured by a Digital Volt Meter 

(DVM). A polynomial was fitted to bridge voltage in position, from 

which the maximum could be obtained by differentiation. A minimum of 

three repeats were made at each pressure and the position of the

maximum agreed to within ±0.003 mm in general. The same procedure was

repeated at each pressure until the desired pressure range was

covered or freezing was observed.

The bellows were initially pressurised for a few minutes to several

MPa, to dissolve any air or vapour bubbles which would affect the

atmospheric-pressure reading. The coil displacements were determined 

at approximately 20 MPa intervals from 100 to 20 MPa, with a further 

two determinations at about 10 and 5 MPa, to establish the coil 

position at atmospheric pressure by extrapolation of the CDT

potential differences at higher pressures. Generally the extrapolated 

CDT p.d. agreed with the measured value at atmospheric pressure 

within +0.01 volt.

4.5.4 CALIBRATION OF APPARATUS.

Density at pressure P can be calculated from the atmospheric pressure
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density po and mass of the liquid M in the bellows using the equation

p(P) = M/((M/po)-A.Al) (4.13)

where A is the cross-sectional area and M  is the change in the

length of bellows from atmospheric pressure to pressure P. In term of 

CDT potential difference

A1 = (E(P)-E(Po ))f (4.14)

where E(P) is CDT voltage at pressure P and f is a conversion factor

obtained by calibration of CDT voltage against displacement. Full 

details of the calibration procedure are given by Young (1 r ,. The 

following equation was used to calculate the densities at high

pressures.

p(P) = M/(M/po-A0(l+2a(T-Tr))(E(P)-E(Po))f) (4.15)

where AO is the bellows area at reference temperature Tr and a is the 

coefficient of linear expansion of the steel.

The bellows was calibrated with water at 303.15 and 343.15 K and 

toluene at 298.15 K, Dymond et al. [17 r'j. Density measurements for

n-heptane at 298.15 K and 310.65 K at pressure up to 270 MPa were 

found to agree with literature values to well within the estimated 

uncertainty of ±0.2%.

4.5.5 ACCURACY OF DENSITY MEASUREMENTS.
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The accuracy of measured density depends upon the accuracy in the 

measurements of temperature, pressure, liquid mass in the bellows,

atmospheric pressure density and the cross sectional area of the 

bellows. Error in measured density can be estimated by considering 

the maximum uncertainty in each of these parameters. As an example, 

the measured density of the equimolar mixture of toluene plus 

n-hexane at 348.35 K and at 522.7 MPa is 917.1 kg/m*. The mass of the 

liquid in the bellows was 8.3787 g, the extrapolated CDT voltage was 

1.623 V at atmospheric pressure while the measured value at 522.7 MPa 

was 6.8383 V, and the atmospheric pressure density was 701.7 kg/m*.

The mass of liquid could be measured to ±0.0003 g but because of 

possible adsorption of atmospheric moisture a better estimate is 

±0.001 g, producing an uncertainty of ±0.004% in density. The 

extrapolated CDT voltage was within ±0.01 V of the experimental

value, hence at the most, ±0.059% error would be introduced in the 

density using the extrapolated value. The high pressure CDT voltages 

were within ±0.001 V of the mean, introducing a possible error of 

±0.006% in the measured density. The atmospheric pressure density was 

accurate to ±0.3 kg/nu The contribution from such a variation to the 

density at elevated pressure would be ±0.056%. An error of 0.002 cm2 

in the cross-sectional area of the bellows adds an error of ±0.034%. 

An uncertainty of 0.1 K in the reference temperature contributes 

±0.00004% to density while an error of 0.03 K in experimental 

temperature leads to an error of ±0.00003%. Contribution of error due 

to error in the coefficient of linear expansion of steel would be 

±0.006%. The sum of the absolute errors is thus 0.16% while the 

square root of the sum of the squares of the errors is +0.09%. In

addition to these, an error of ±0.02 K in the measured temperature
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leads to an error of ±0.027% in absolute density, while an error of 

+0.5 MPa in pressure will produce an uncertainty of +0.09% in the 

measured density. The maximum error will lie somewhere in between 

+0.13% to +0.28%. It is therefore concluded that densities at 

elevated pressures normally should be accurate to better than +0.2%.

4.6 DESCRIPTION OF HIGH PRESSURE VISCOMETER.

The self-centering falling-body viscometer consisted of a viscometer 

tube, sinker, plug and end cap. All of these components were made 

from the same material ( En 58 J non-magnetic stainless steel) to 

minimise compressibility, thermal expansion and magnetic effects. The 

sinker was a small cylinder having a hemispherical nose at one end 

and a cavity at the other end into which a small piece of ferrite 

core could be fitted. The sinker had an approximately 1.42 cm length 

and 0.7465 cm outer diameter. The viscometer tube bore was 0.7620 cm 

in diameter and deviated from circularity by less than 0.0005 cm. The 

viscometer tube and sinker have their surfaces finished to 0.13 

micron.

The pressure was transmitted to the liquid by means of approximately 

10 cm length of collapsible P.T.F.E. tubing attached to one end of 

the viscometer tube. The viscometer used throughout this work was a 

modified version of those used earlier by Young and Robertson, 

redesigned and described in detail by Glen ( 1 However a 

different tube/sinker combination was employed. The complete 

viscometer assembly is shown in fig.4.8.

4.6.1 EXPERIMENTAL METHOD.
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Prior to filling, the individual components of the viscometer were 

thoroughly washed with Analar acetone, followed by the liquid under 

test. Approximately 10 cm length of 1 cm diameter P.T.F.E. tube was 

straightend by heating. One end of this tube was mounted on to the 

viscometer and made leak tight by heating with a heat gun. On cooling 

the nut was tightend. The other end was sealed by means of a cap and 

screw. The viscometer was held vertically in a clamp and liquid under 

test was injected from a syringe fitted with a Killipore filter. 

After rinsing twice, the viscometer was filled and trapped air 

bubbles were expelled by agitation and squeezing the P.T.F.E. tube. 

The cavity of the sinker was filled with liquid under test and care 

was taken to have no air bubbles in the cavity. The mark on the 

ferrite core was aligned to the mark on the edge of the viscometer 

tube and the sinker was carefully dropped in to the viscometer with

the hemispherical nose leading. The viscometer was sealed with an "0”

ring and end plug and finally the end cap was finger-tightened. The

P.T.F.E. tube was again squeezed and checked for leakage, the

viscometer was opened, topped up with liquid if necessary and again 

sealed. Electrical connections were then made and the whole assembly 

lowered into the pressure vessel. The electric plug closure was 

tightend and checked for pressure leakage.

Pressure was generated, controlled and measured in the same manner as 

described in section 4.5.1. During the viscosity measurements, one of 

the six heaters burned out and was replaced by a 2 kW rating heater. 

This influenced the temperature fluctuations slightly and the largest 

observed fluctuation in temperature was +0.05 K. The temperature 

control and measurements are as described in section 4.5.2.
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4.6.2 MEASUREMENTS OF FALL TIME.

The terminal velocity of the sinker is determined by measuring its 

fall time between the two coils wound on the outside of the 

viscometer. These two coils form the active arm of the bridge as 

shown in fig. 4.9. The other three arms of the bridge are remote from 

the viscometere. The bridge is balanced externally before any 

measurements were taken, with the sinker remote from either coil. As 

the sinker approaches the coil, an out-of-balance signal is observed 

due to change in induction. This out-of-balance signal is amplified 

and converted to a DC signal like that shown in fig. 4.10. The signal 

first rises and then falls then rises and falls again, triggering the 

timer at the maximum of the first peak and stopping it at the maximum 

of the second peak.. The self check routines and sub-routines provided 

in the programme to control the data logging system eliminate false 

triggering caused by electronic noise. The data logging system is 

described in detail by Dymond et al. wlv -

The pressure vessel is inverted and time is measured for the backward 

fall of sinker (open end leading). Before measuring the forward 

fall-time again, the sinker is allowed to fall in the reverse 

direction for a time double the backward fall-time. This ensured that 

the sinker would reach its terminal velocity in the forward direction 

before reaching the first coil and that it would be falling centrally 

(Isdale and Spence 1̂ ' -J).

Several fall-time measurements were made at each pressure until the 

standard deviation of the mean, expressed as a percentage of the
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mean, for the three measurements was within +0.5%. When the required 

number of measurements have been taken, the pressure was changed and 

at least fifteen minutes allowed for equilibrium before measuring any 

new fall-time. The bath temperature was changed at the end of each 

day's measurements and allowed to stabilise overnight before 

measurements were made at the next temperature.

Atmospheric pressure fall time measurements were repeated for a few 

liquids to check the reproducibility of the fall-time. For example, 

for 0.25 mole fraction of toluene in toluene plus n-hexane mixture at

298.3 K fall times were reproducible to ±0.2%. For the same mixture 

at 323.2 K and a pressure of 25.6 MPa, the reproducibility was found 

to be +0.25%, while for the equimolar mixture of the same components 

at atmospheric pressure the reproducibility was ±1.1% and ±1.2% at

348.2 and 373.2 K respectively. Fall time was reproducible to ±2.1%

at 323.3 K for 0.75 mole fraction of toluene in toluene plus n-hexane

mixture, while two sets of measurements agreed within ±0.5% at 348.4

K. Similarly, toluene plus acetonitrile mixture with 0.75 mole 

fraction of toluene at 348.2 K have fal1-times reproducible within 

+1.0%. Viscosity measurements of toluene at 298.2 K were repeated and 

fall-times of the two sets agreed to 1.7%. It is therefore concluded 

that the reproducibility of the fall-time measurements is generally 

better then ±1.5%.

4.6.3 CALIBRATION OF VISCOHETER.

The solution of the equations of motion of a cylindrical sinker 

having mass m, density anĉ radius n  falling with laminar flow

down centre of a cylindrical tube of radius rz, filled with liquid of
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density and having viscosity leads to the result given below

(Isdale 1' - ).

mg(l - ^1/fs)
V = --------------

271 Ls
(r2 \ fr2 rl \ln (-)-(-— J
rl r2 + rl

(4.16)

where Ls is the length of the sinker. If the sinker falls a distance 

L in time t then subtituting V=L/t and rearranging, equation 4.16 can 

be written as

mg(l - £l//>s)t r2. r2* - rl\
rl = ----------------  ln-[ - ) - [ — --- 1)27TLs L . rl r2 + rl

(4.17)

If the sinker and tube are made of the same material (as they were in 

this case) then equation 4.17 can be written as

t (1 - pl/ps)
(4.18)

A [1 + 2a(T-To)][l-3p(P-Po)]

where and p are the temperature coefficient of linear expansion and 

compressibility of steel and A is called the viscometer constant, 

given by

2TTLSO Lo
A - —  - " “ (4.19)

mg (In (r2/rl) - [(r2 - rl)/(r2 + rl)])

Lso and Lo are the values of Ls and L at the reference temperature 

(295.8 K) and at atmospheric pressure.

In principle, equations 4.17 and 4.18 could be used to calculate the 

viscosity coefficient from the fall time and dimensions of the 

viscometer. However, in the derivation of equation 4.17, the entry 

and exit effects as the liquid passes through the annulus between the
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sinker and tube have not been taken into account. Although methods of 

calculating these effects are available for general shapes of sinker 

[175,176], they could not be applied to this system due to the 

smaller length-to-diameter ratio of the sinker. Further, the 

dimensions of the instrument cannot be determined with the required 

accuracy. Therefore, in practice, the instrument is calibrated using 

liquids of accurately known density and viscosity at atmospheric 

pressure.

The viscometer/sinker combination used throughout this work was 

calibrated by Dr. Rakesh Malhotra '/( ", over the viscosity range

0.227 to 16.14 cP using Shell Vitrea No. 21 oil, n-octane, i-octane 

and n-hexadecane. The density and viscosity coefficients of Shell 

Vitrea oil and n-hexadecane were measured by Young^l. j T h e  density 

and viscosity values of n-octane were those of Robertson <1~ ) , 

while required data for i-octane were taken from Glen 3 . The 

density of the sinker was determined by weighing it in air and water.

If Ma and Mw are the mass of sinker in air and water and P is the

density of water at the same temperature then the density of sinker 

is given by

= Ma (^/(Ma-Mw) (4.20)

The density of the sinker at 295.8 K was found to be 7673 kg/m5 .

The density of sinker at temperature T and pressure P was calculated

from the density at the reference temperature and at atmospheric 

pressure as

6s = £s°/[(l + 3cc(T - To))(1 - 0.666p(P - Po))] (4.21)

where oc and p have the same definitions as before. The fall times 

were measured for the calibrating liquids at atmospheric pressure
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and, using equation 4.18, the experimental viscometer constant A was 

calculated. The data for the calibration of the viscometer is given 

in Table 4.6 and the viscometer constant A is plotted against 

buoyancy corrected fall time t* equal to td-fc/fl in fig. 4.11. It

can be seen that A is not constant and varies about 21% over this

viscosity range. As the fall time decreases A increases rapidly

indicating the flow of the liquid past the sinker is becoming

non-laminar at low viscosity.

The experimental viscometer constant was fitted to an equation of the 

form

A = Ao [1 + (B/t* )fl] (4. 22;

with Ao, B and n obtained by optimisation. For this tube/sinker 

combination Malhotra I 1 obtained the following values

Ao= 19.05 s/cP

B= 2.20 s

n= 2.00

Equation 4.22 was fitted to 19 data points. The maximum deviation 

from the experimental A value was 1.65% with a mean deviation 0.8%, 

while r.m.s. percentage deviation was 0.95%.

It was found necessary to calibrate the viscometer in the range 0.16

to 0.227 cP for the present study. The viscometer was calibrated in

the same way described above using densities and viscosities of 

acetonitrile, 0.25 toluene + 0.75 acetonitrile, 0.25 toluene + 0.75 

n-hexane reported in this chapter in Table 4.4 and the data for

n-hexane from Dymond et al. ^£>2.3 • Experimental viscometer constant

A' was fitted by a linear equation as
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Table 4.6
DATA FOR CALIBRATION OF HIGH PRESSURE VISCOMETER.

Liquid T/K p/kg m* r|/mPas t/sec t* /sec -\
A/s cP

n-octane 298.15 698.5 0.5088 11.12 10.11 19.865
323.15 678.1 0.3868 8.67 7.90 20.409
323.15 678.1 0.3868 8.64 7.88 20.348
348.15 657.0 0.3036 7.01 6.41 21.084

i-octane 298.15 678.8 0.4718 10.56 9.61 20.375
323.15 666.7 0.3587 8.22 7.50 20.907
348.15 644.4 0.2818 6.73 6.16 21.840
348.15 644.4 0.2818 6.67 6.11 21.647
373.15 621.2 0.2270 5.56 5.11 22.464

n-hexa- 298.15 770.2 3.0670 63.47 57.10 18.616
decane 323.15 752.9 1.8350 38.49 34.71 18.901

348.15 735.8 1.2410 26.00 23.50 18.910

Shell 313.23 852.7 16.140 348.07 309.36 19.158
Vitrea 318.16 849.5 13.380 287.12 255.30 19.069
No. 21 323.28 846.2 11.130 240.45 213.90 19.204
Oil 328.11 843.1 9.476 201.15 179.02 18.875

333.10 839.8 8.095 174.74 155.59 19.200
342.95 833.5 6.124 131.59 117.27 19.124
353.15 826.8 4.729 100.91 90.01 19.004

Aceto­
nitrile

348.16
373.18

721.3
693.8

0.2229
0.1885

5.487
4.557

4.970
4.144

22.264
21.936

Mixture
(a)

373.15 734.8 0.2076 5.127 4.635 22.278

Mixture
(b)

348.20
373.20

651.5
623.9

0.2092
0.1765

5.200
4.248

4.758
3.902

22.710
22.059

n-hexane 348.23
373.29

606.7
580.8

0.1912
0.1602

4.705
3.823

4.332
3.533

22.624
22.006

(a) 0.25 toluene + 0.75 acetonitrile
(b) 0.25 toluene + 0.75 n-hexane
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A' = 20.155 + 0.454t (4.23)

where t is now the actual fall-time. 7 points were fitted to equation 

4.23, with a maximum deviation of 1.72%, the mean deviation being 

1.0% while the r.m.s. deviation was ±1.2%. The experimental 

viscometer constant is compared with the fitted one in Table 4.7 over 

the whole viscosity range. This tube/sinker combination was thus 

calibrated over the viscosity range 0.16 to 16.14 cP.

4.6.4 CALCULATION OF VISCOSITY COEFFICIENTS.

There are two methods for calculating the viscosity coefficients from 

the measured fall time. The first method, the "direct" method uses 

equation 4.18 with the value of A from equation 4.22 or 4.23 

depending upon the value of viscosity coefficient at atmospheric 

pressure. The second method or "ratio" method is applied when 

viscosity at atmospheric pressure is accurately known. Generally the 

ratio method is prefered because of less errors associated with it 

compared to the direct method. On some occasions, serious 

disagreements were observed between the atmospheric pressure 

viscosity obtained using the suspended-level viscometer and the 

falling body viscometer, therefore the direct method has been used in 

calculating high pressure viscosity coefficients reported in this 

work.

4.6.5 ERRORS IN MEASURED VISCOSITY COEFFICIENTS.

Errors in the measured viscosity coefficients can be estimated by 

considering the errors in each parameter of equation 4.18. The major 

contribution to the error was from the fall-time measurements and
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Table 4.7

COMPARISON OF EXPERIMENTAL AND CALCULATED VISCOMETER CONTANTS 
FROM EQUATION 4.22 WITH Ao=19.05; B=2.2 and n=2.0

Liquid A (exp) A (f i tted) Deviatic
s/cP s/cP %

n-octane 19 . 87 19 . 95 + 0.41
20 .41 20 . 53 +0 . 58
20 . 35 20 . 53 + 0 .91
21 . 08 21 . 29 + 1 . 02
21 . 17 21 . 28 + 0 . 52

i-octane 20. 38 20 . 05 -1 . 63
20.91 20 . 69 -1 . 06
21 . 84 21 .48 -1 . 65
21 . 65 21 . 52 -0 . 60
22 . 46 22 . 58 +0 . 54

n-hexadecane 18 . 90 19 . 13 + 1 . 19
18.91 19 . 22 + 1 . 62

Shell Vitrea 19 . 16 19 . 05 +0 . 54
No.21 oil 19 . 07 19 . 05 -0 . 10

19 . 20 19 . 05 -0 . 77
18 . 88 19 .05 + 0 . 92
19. 20 19 . 05 -0 . 76
19 . 12 19 . 06 -0 . 33
19 . 00 19 . 06 + 0 . 32

Rms deviation=0.95%

COMPARISON OF EXPERIMENTAL AND CALCULATED VISCOMETER CONSTANTS
FROM EQUATION 4.23

Acetonitrile 22.264 22.646 +1.72
21.936 22.224 +1.31

0.25 toluene + 22.278 22.483 +0.92
0.75 acetonitrile

0.25 toluene + 22.710 22.516 -0.85
0.75 n-hexane 22.059 22.083 +0.11

n-hexane 22.624 22.291 -1.47
22.006 21.891 -0.52

Rms deviation= 1.20%
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viscometer content A. The factor containing the thermal expansion and 

compressibility term in equation 4.18 has a small value and the 

resultant error is negligible. It can be shown that the errors from 

uncertainty in densities are also very small. The overall 

contribution to uncertainty in the viscosity coefficient from all the 

parameters except fall time and viscometer constant is ±0.06%. The 

standard deviation of the fall time from the mean was generally 

within ±0.5%, contributing an uncertainty of ±0.5%. Similarly the 

contribution of uncertainty in the viscometer constant would be 

±0.95% on the basis of the r.m.s. deviation of the fitted viscometer 

constant. The maximum contribution due to temperature fluctuations 

(±0.05 K) was observed for 0.25 toluene + 0.75 n-hexane mixture and 

was ±0.06%. For the same mixture, the pressure fluction at low 

temperature and pressure contributed ±0.62% uncertainty on the basis 

that the presure fluctuation was ±0.5 MPa during the measurements.

In addition to these, the measured pressure has an uncertainty of ±1 

MPa, contributing a possible ±1.24% error in viscosity. The sum of 

the absolute errors is thus 3.43%. As stated in section 4.6.2 the 

reproducibility of fall time was found to be better than ±1.5%, hence 

the maximum error in measured viscosity coefficients could lie 

between 3.43% to 4.93%, and it is therefore concluded that viscosity 

coefficients reported here would be accurate to ±5.0%, and generally 

better than this.
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CHAPTER 5

DENSITIES AND VISCOSITY COEFFICIENTS RESULTS FOR THE 
LIQUIDS AND BINARY LIQUID MIXTURES

5.1 DENSITIES AND VISCOSITY COEFFICIENTS AT
ELEVATED PRESSURES

5.2 COMPARISON OF MEASURED DENSITIES OF
ACETONITRILE WITH LITERATURE VALUES

5.3 DENSITY AT ROUNDED TEMPERATURES AND
PRESSURES

5.4 COMPARISON OF MEASURED VISCOSITY
COEFFICIENTS WITH LITERATURE VALUES

5.5 VISCOSITY COEFFICIENTS AT ROUNDED 
TEMPERATURES AND PRESSURES

5.6 RESULTS

5.6.1 Acetonitrile

5.6.2 Toluene

5.6.3 x Toluene + (l-x) Acetonitrile

5.6.4 x Toluene + (l-x) n-hexane

5.6.5 Ternary Equimolar Mixture of
n-Octane, i-Octane and Oct-l-ene
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5.1 DENSITIES AND VISCOSITY COEFFICIENTS AT ELEVATED PRESSURES.

Densities for one pure liquid, acetonitrile, three binary mixtures of 

toluene + acetonitrile, three binary mixtures of toluene + n-hexane, 

and one ternary equimolar mixture of n-octane + i-octane + oct-l-ene, 

and values of the isothermal secant bulk modulus at the same 

pressures and temperatures are presented in Tables 5.1 to 5.9.

Viscosity coefficients and densities at corresponding temperatures 

calculated using the Tait equation, are presented for acetonitrile, 

toluene, three binary mixtures of toluene + acetonitrile and three 

binary mixtures of toluene + n-hexane, in Tables 5.10 to 5.25

5.2 COMPARISON OF MEASURED DENSITIES OF ACETONITRILE WITH LITERATURE 

VALUES.

Densities, volume ratios, specific volumes and values of the 

isothermal secant bulk modulus have been reported in the literature 

at elevated pressures and temperatures for acetonitrile by 

Francesconi [177], Srinivasan and Kay JJL -7^1, Schroeder 117^7,

Landau and Wurflinger [13°3, Easteal and Woolf [lgd] > U-32.1, and

Kratzke [15^7-The literature data have been converted to volume 

ratios in order to make a comparison with the present values, shown 

in fig. 5.17. The agreement is generally satisfactory. At 298 K, the 

present values are smaller than those of Srinivasan and Kay £17 

with the difference increasing to 0.93% at 250 MPa, but the maximum

difference with the measurements of Easteal and Woolf is only

0.36%. Similarly the results of Landau and Wurflinger [lSo3 shows a
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difference of 0.13% at 0.1 MPa and 0.99% at 300 MPa. At 323 K the 

measurements of Easteal and Woolf agree with the present

values to within 0.2% up to 200 MPa, and differ by only 0.32% at 

their highest pressure of 250 MPa. The measurements of Schroeder et 

al. Cl 7+3 which cover a temperature range slightly greater than the 

present work show the same temperature dependence of the volume 

ratios at the constant pressure, and are in close agreement. The 

measurements reported by Kratzke and Muller lb>'l have not been used 

for comparison because they have been made at significantly different 

pressures. The results of Franceseoni [1771 appear to be seriously 

in error.

In conclusion, of all the previous measurements, those of Easteal and 

Woolf are considered the most reliable. The present measurements 

agree with these to within the combined estimated uncertainities.

5.3 DENSITY AT ROUNDED TEMPERATURES AND PRESSURES.

For the calculation of the molar excess volume, of the mixtures, 

densities of the mixtures and the individual components are required 

at the rounded temperatures and pressures. Experimental densities 

were measured at slightly different temperatures and pressures. 

Rounded pressure densities can be obtained by fitting a polynomial 

equation to the experimental densities. An equation of the form

£ = A + BP + CP2 + DP* + ___ (5.1)

can be used, but this equation requires at least five or more terms 

in order to reproduce the high pressure densities to the required 

accuracy. Since the number of data points on each isotherm were not
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sufficient to fit a six degree polynomial therefore to avoid 

overfitting, rounded pressure densities were obtained from some form 

of the secant bulk modulus equation, suggested by Hayward (1PM, and

used by Young (l3ci3, Robertson [.14' J and Glen [l3 2.y

Isothermal compressibility is defined as the fractional volume change 

per unit pressure at constant temperature and its reciprocal, the

bulk modulus, is defined as

K = -V.C3 P / W  (5.2)
T

Secant bulk modulus, defined as the average value of the bulk modulus 

from saturation pressure, Po to P is given by

K = -Vo.(P-Po)/(V-Vo) (5.3)

where V is the volume of liquid or mixture at pressure P. Equation

5.3 is equivalent to

K =e(P-Po)/(<f - £„) (5.4)

in term of densities, where f and are the densities at pressure P 

and Po respectively. Experimentally derived values of K, obtained by 

application of equation 5.4, were fitted to the equation

K = KO+K1P+K2P+_ (5.5)

where Ko, Kl, K2, are the coefficients of the least squares fit. 

Equation 5.4 can be rearranged to
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Q  = K. ?c/(K-(P-Po)) (5.6)

Equation 5.6 was used along with equation 5.5 to calculate the 

densities at rounded pressures of 50 or 100 MPa intervals up to the 

maximum experimental pressure at each temperature. Rounded pressure 

densities at the experimental temperature were converted to the 

rounded temperature assuming linear variation of density with 

temperature along the isobars.

Table 5.26 list the coefficients derived using equation 5.5 for all 

the liquids and mixtures studied. It is found that up to a pressure 

of 100 MPa, K varies linearly with pressure while at higher pressure 

a quadratic equation fits the experimental data for most of the 

measurements, however a cubic equation improved the fitting where 

deviations were more than ±0.2 %. The coefficients of the cubic 

equation have been presented in Table 5.26. The advantage of using 

equation 5.5 over 5.1 is that fewer terms are required, furthermore 

equation 5.5 fits the experimental density data to within the 

experimental uncertainity of ±0.2 % . For acetonitrile at 298.15 K, 

the freezing pressure lies between 320 and 360 MPa. Both equations

5.1 and 5.6 can only be used for interpolation of densities within 

the limit of the experimental pressures. Rounded pressure densities 

beyond the experimental pressure range were calculated from the Tait 

equation.
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5.4 COMPARISON OF MEASURED VISCOSITY COEFFICIENTS WITH THE LITERATURE 

VALUES.

The viscosity ratio has been reported in the literature for n-hexane 

by Bridgman [1£4 3 at 303 and 348 K up to 980 MPa, Ageav and Golubev 

ilS5] at 298 and 348 K up to 50 MPa, Brazier and Freeman at

303, 323 and 333 K up to 400 MPa, by Isdale et al. [_lS? 3 at 298,

323, 348 and 373 K up to 400 MPa and by Dymond et al. IG2.3 over the

same temperature and pressure range, and by Kashiwagi and Makita 

[ 1'53>] at 298. to 333 K up to 110 MPa. The viscosity coefficients 

measured for n-hexane were converted to viscosity ratios and a

comparison made. The relative viscosity is plotted against pressure 

in fig. 5.18 along with the literature values. The measured

viscosity ratios at 298, 323, 348 and 373 K are in general agreement 

with Isdale [lS?^ and Dymond £ bZ \ within the combined

uncertainity of 8 % The results of Brazier and Freeman are not

shown in fig. 5.18, as there is serious disagreement between their 

results and those of Isdale et al., as earlier pointed out by Young

For toluene, viscosity coefficients at elevated temperatures and 

pressures have been measured by Bridgman £1341 at 303 and 348 K up 

to 1200 MPa, by Kashiwagi and Makita [153/3 at 298, 303, 323 and 348 

K up to 110 MPa, by Krall et al. j\12S>) from 298 to 398 K, up to 30 

MPa and by Malhotra Q1 8^1 at 298.2 K up to 110 MPa.

The viscosity ratios for toluene are compared with values given by 

Kashiwagi and Makita in fig. 5.19. At 298 K the two sets of data
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agree very satisfactory up to 110 MPa, the maximum deviation being 

1.6% . At 323 K the agreement is within 1.5 %. and at 348 K the

present measurement are slightly higher but are still within the

combined uncertainity of 8% except the highest pressure value of 

Kashiwagi and Makita which is as much as 11% lower than this work. 

The reason for this significant difference is not known. The results 

of Malhotra at 298 K and up to 110 MPa agree with this work within 

4%. His results are slightly higher then the present work and the 

results of Kashiwagi and Makita. Generally the results for three 

isotherms agree with the literature values within the estimated 

combined accuracy of the measurements.

The viscosity coefficients at saturation pressure and at 298.15 K 

have been reported for x toluene + (l-x) n-hexane by Ghai and Dullien

[131 1 and x toluene + (l-x) acetonitrile at 288, 298 and 308 K by

Ritzoulis et al. £1SC> 1* A comparison with the present measurements

is made in section 4.4. No high pressure viscosity data was found in 

the literature for these mixtures.

5.5 VISCOSITY COEFFICIENTS AT ROUNDED TEMPERATURES AND PRESSURES.

Viscosity coefficients at rounded temperatures and pressures were 

obtained in two steps. Firstly, the viscosity coefficients were 

obtained at rounded pressures at experimental temperatures. Secondly 

these values were interpolated for exact temperatures. Viscosity data 

were fitted to an equation of the form

In i| = a + bP (5.7)
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over a small pressure range, where a, b are contants and P is 

pressure. If Pi is pressure close to the rounded pressure Pr and PI 

and Ph are the the pressures below and above Pi respectively, then

In rp. = a + bPi

In r̂l = a + bPl

In r̂ h = a + bPh

In r̂r' = a + bPr

(5.8a) 

(5.8b) 

(5.8c) 

(5.8d)

where qr' is the rounded pressure viscosity coefficient at rounded 

pressure Pr at the experimental temperature. Solving these equations 

simultaneously for qr', it can be shown that

Pr - Pi

Ph - PI
nh

Tir ' = ^  (“ )

(5.9)

Generally the rounded and experimental pressures are close together, 

hence additional uncertainity in the rounded pressure viscosity 

coefficient is small. The viscosity coefficients so obtained were 

converted to the rounded temperatures, by fitting In against 1/T, 

where T is the absolute temperature.

If qr is the viscosity coefficient at rounded pressure and rounded 

temperature Tr, T3 is the temperature close to Tr and T2, T1 are 

experimental temperatures above and below T3, while corresponding 

rounded pressure viscosity coefficients are q3, q2 and ql 

respectively,then solving a set of equations like
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In r̂i = a + b/Ti (5.10)

where i=l, 2, 3 or r, and a and b are the coefficients of the least

square fit, yields

T1 T2 (T3 - Tr) 

Tr T3 (T2 - Tl)
(5.11)

ipr = Ij3 ( —  )
«L2

At 298.15 K, Tl was taken to be equal to T3, while at 373.15 K T2 was 

taken to be equal to T3, as there are no measurements carried out 

beyond this temperature range. The experimental temperature differed 

only slightly from the rounded temperature, hence the additional 

uncertainity in the derived viscosity coefficients is small. It is 

estimated that the total uncertainity in the rounded temperature and 

pressure viscosity coefficient is less than ±6%.

5.6 RESULTS

5.6.1 ACETONITRILE

The density of acetonitrile is presented in Table 5.1 at 298, 323, 

348 and 373 K and up to 500 MPa, or the freezing pressure where this 

is lower and plotted against pressure in fig. 5.1. At 298.16 K, a 

sharp increase in density was observed at approximately 400 MPa, 

indicating the solidification of the liquid. No attempt was made to 

determine the exact freezing pressure. However fall-time measurements 

at the same temperature revealed that the freezing pressure lies 

between 320 MPa and 360 MPa. The viscosity coefficient at 298, 323, 

348 and 373 K at pressures up to 500 MPa, or to the freezing pressure 

if lower, is presented in Table 5.10 and plotted in fig. 5.2. Rounded
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pressure values of density and viscosity coefficient are tabulated in 

Table 5.11.

5.6.2 TOLUENE

The viscosity coefficients for toluene are presented from 298 to 373 

K and pressures up to 500 MPa in Table 5.12 and plotted in fig. 5.3.

Density measurement for this liquid was not undertaken as Dymond and

Malhotra [_ 198 d have measured the density over this temperature and

pressure range, in the same laboratory, using the same apparatus. The 

rounded temperature and pressure values of density and viscosity 

coefficients are tabulated in Table 5.13

5.6.3 X TOLUENE + (l-x) ACETONITRILE SYSTEM.

The densities of (x Toluene + (l-x) Acetonitrile) in the range 298 to

373 K and 0.1 to 500 MPa with x equal to 0.25, 0.50, and 0.75 are

presented in Tables 5.2, 5.3, and 5.4 respectively and plotted

against pressure in figs. 5.4, 5.6 and 5.8 respectively. The

viscosities of the same mixtures are presented in Tables 5.14, 5.16 

and 5.18 and plotted in figs. 5.5, 5.7 and 5.9 respectively. Rounded 

temperature and pressure values are presented in Tables 5.15, 5.17 

and 5.19.

5.6.4 x TOLUENE + (l-x) n-HEXANE SYSTEM.

The densities of (x Toluene + (l-x) n-Hexane) with x equal to 0.25, 

0.50, 0.75 are given in Tables 5.5, 5.6, 5.7 and plotted in figs.

5.10, 5.12 and 5.14. Corresponding viscosity coefficients are
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tabulated in Tables 5.20, 5.22 and 5.24 and plotted in figs. 5.11,

5.13 and 5.15. The rounded temperature and pressure values are 

presented in Tables 5.21, 5.23 and 5.25.

5.6.5 TERNARY EQUIMOLAR MIXTURE OF n-OCTANE + i-OCTANE + OCT-1-ENE

Only density measurements were made for this mixture. The density 

from 298 to 373 K at pressures up to 400 MPa is presented in Table 

5.8 and plotted in fig. 5.16. The rounded temperature and pressure 

densities are presented in Table 5.9
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Table 5.1

DENSITY AND ISOTHERMAL SECANT BULK MODULUS FOR
ACETONITRILE

Temperature 

T/K 

298.26

323 .21

348.26

373.27

Pressure Dens ity Isothermal S 
Bulk Modul

P/MPa £/kg m 3 K/GPa

0.1 776 .6 —
5.0 780 . 9 0.8899

10.3 785 . 3 0.9207
20 . 9 793 . 5 0.9766
40 . 7 807 . 8 1.0512
60 . 2 820 . 0 1.1355
79 . 7 830 . 6 1.2244

102 . 9 842 . 5 1.3142
200.4 885 . 4 1.6300
313 . 6 925 . 5 1.9486
399 . 3 1070.2 1.4551

0.1 749 . 5 —
4.7 754. 1 0.7541
10 . 0 759 . 5 0.7519
20.9 769 . 0 0.8203
40 . 0 784. 6 0.0919
60 . 6 799 . 5 0.9674
79.9 811.3 1.0450

100. 6 823 . 1 1.1239
199 . 0 868 . 4 1.4527
300 . 4 905 . 7 1.7412
395 . 9 935 . 6 1.9898
448 . 7 949 . 0 2.1339
469 . 0 954. 1 2.1866

0. 1 721 . 2 —
4.7 726 . 6 0.6190

10.2 732 . 7 0.6435
20 . 7 743 . 9 0.6751
39 . 8 761 . 1 0.7573
60.4 777 . 1 0.8383
80 . 1 790 . 7 0.9102
99. 5 802 . 7 0.9790

200. 9 852 . 5 1.3037
298 . 6 892 . 5 1.5552
385 . 5 919 . 1 1.7899
450. 8 936 . 5 1.9604
476.7 943 . 6 2.0221

0. 1 693 . 7 —
10.4 708 . 6 0.4898
20 . 7 722 . 0 0.5256
40.4 742 . 7 0.6108
59. 8 760 . 2 0.6825
79 . 5 775 . 4 0.7536

100 . 5 789 .6 0.8267
200 . 3 842 . 5 1.1335
300 . 0 885 . 2 1.3863
401 . 2 917.6 1.6438
467 . 8 936 . 3 1.8051
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Table 5.2

DENSITY AND ISOTHERMAL SECANT BULK MODULUS FOR 
(0.25 TOLUENE + 0.75 ACETONITRILE)

Temperature 

T/K 

298.28

323.18

348.23

373.35

Pressure Dens ity Isothermal S 
Bulk Modul

P/MPa C/kg m 3 K/GPa

0.1 811.8 —
7.0 818 . 0 0 . 9253

15 . 0 824 . 5 0.9750
30 . 5 836 . 2 1.0461
50 . 3 849. 1 1.1458
70 . 1 861 . 0 1.2275
90.6 871 . 8 1.3172

112.3 883 . 1 1.3916
204 . 2 921 . 9 1.7105
306 . 0 954 . 8 2.0439
402 . 8 986 . 2 2.2785
507 . 7 1010.2 2.5859

0.1 786 . 1 —
10 . 0 795 . 9 0.8040
20 . 2 805 . 0 0.8561
40 . 0 820 . 9 0.9412
60 . 0 835 . 1 1.0209
80.4 848 . 0 1.1001

100.6 859 . 3 1.1798
198 . 0 904 . 6 1.5107
299 . 1 942 . 1 1.8057
398 . 0 972 . 1 2.0796
492 . 9 997 .4 2.3262

0.1 759.2 —
9 . 6 770 . 4 0.6535

20. 2 781 . 2 0.7137
39 . 8 798 . 8 0.8008
59. 2 814. 1 0.8764
80.2 828 . 5 0.9576

100. 6 841 . 6 1.0265
200 . 3 890 . 3 1.3596
296 . 6 927 . 6 1.6332
386 . 3 956.4 1.8730
449 . 9 974. 1 2.0389
472 . 2 979.6 2.0983

0.1 734 . 6 —
10.1 748 . 3 0.5462
21 . 2 762 .0 0.5868
39. 9 781 . 5 0.6632
58 . 7 797 . 8 0.7397
79.7 814.3 0.8133
99. 5 827 . 7 0.8837

200 . 9 881 . 8 1.2029
309 . 9 923 .4 1.5152
400 . 9 956.6 1.7271
490.0 978 . 5 1.9654
515.6 988 . 2 2.0087
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Table 5.3

Temperature

T/K

298.40

323.36

348.43

373.31

ISOTHERMAL SECANT BULK MODULUS FOR
TOLUENE + 0.50 ACETONITRILE)

Pressure Density Isothermal S 
Bulk Modul

P/MPa C/kg m 3 K/GPa

0. 1 835 . 5 —
10. 8 842 . 9 1 .2188
21 . 0 851 . 5 1.1123
40 . 3 864. 7 1 . 1904
60 . 0 874 . 5 1.3431
79 . 6 885.4 1.4106

100 . 8 895 . 9 1.4937
200.4 939 . 7 1.8064
299 . 1 975 . 3 2.0859
349 . 9 991 . 1 2 . 2281
415 . 2 1006.6 2.4421

0.1 810 . 6 —
10.1 819 . 9 0.8816
20.4 828 . 9 0.9195
40. 5 844 . 8 0.9980
60 . 3 857 . 9 1.0919
80 . 6 870 . 5 1.1699

100.0 881 .4 1.2437
200 . 4 926 . 7 1.5988
304. 2 963 . 1 1.9205
407 . 3 994 . 4 2.2030

0.1 784 . 6 —
10 . 9 794 . 6 0.8582
20 . 1 805 . 0 0.7892
40 . 2 822 .4 0.8724
60.7 837 . 0 0.9680
80 . 8 851 .0 1.0343

101 . 5 863 .4 1.1110
201 . 3 910 . 9 1.4511
288 . 1 944. 7 1.6994
348 . 4 965 . 1 1.8623
402 . 5 980 . 4 2.0149

0.1 759 . 8 _
9.6 773 . 0 0.5563

20 . 3 785 . 7 0.6128
40.7 805 . 0 0.7231
59. 8 822 . 0 0.7890
79 . 8 836 . 7 0.8672

101 .6 850 . 6 0.9508
200. 9 901 . 5 1.2775
301 . 0 943 . 2 1.5475
404 . 8 974.8 1.8349
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Table 5.4

Temperature 

T/K 

298.27

323.32

348.33

373.26

ISOTHERMAL SECANT BULK MODULUS FOR
TOLUENE + 0.25 ACETONITRILE)

Pressure Density Isothermal S< 
Bulk Modul

P/MPa (?/kg m 2* K/GPa

0 . 1 851 . 8 —
10. 3 859 . 5 1.1386
22 . 3 868 . 2 1.1752
41 . 6 879.6 1.3131
61 .7 891 .4 1.3866
80 . 3 902 . 3 1.4330

100 . 3 911.5 1.5299
202 . 9 952 . 4 1.9199
300 . 7 986 . 1 2.2072
379 . 3 1006.4 2.4685
415 . 8 1015.8 2.5748

0. 1 827 . 6 —
4.7 831 . 8 0.9110
9 . 6 836 . 3 0.9132

20. 8 845 . 4 0.9831
40 . 4 858 . 5 1.1197
60 . 0 872 . 3 1.1689
79.4 883 . 3 1.2576

100. 2 894 . 2 1.3440
203 . 0 937 . 5 1.7308
293 . 6 970 . 0 1.9993
354. 8 987 . 3 2.1928
394 . 7 997 . 2 2.3201

0. 1 802 . 7 —
4.6 807 . 6 0.7417
9 . 8 813 . 1 0.7584

19 . 7 822 . 5 0.8142
40 . 2 839 . 1 0.9244
60 . 8 852 . 9 1.0313
80.4 866.4 1.0922

100.4 876. 8 1.1868
199 . 1 922 . 8 1.5290
255 . 4 942 . 7 1.7191
304. 5 960 . 0 1.8577
342 . 8 972 . 3 1.9647
396 . 1 986 . 5 2.1254

0 . 1 780 . 2 —
10.1 792 . 3 0.6292
21 . 1 804 . 7 0.6897
40 . 5 822 .6 0 . 7838
60.9 837 . 7 0.8858
78 . 9 851 . 0 0.9472

102 . 2 865 . 4 1.0371
201 .4 912 . 8 1.3857
300.4 950. 3 1.6777
401 . 2 980.4 1.9642
494. 8 1003.2 2.2255



124

Table 5.5

DENSITY AND ISOTHERMAL SECANT BULK MODULUS OF
(0.25 TOLUENE + 0.75 n-HEXANE)

Temperature 

T/K 

298.27

323.33

348.40

373.36

Pressure Density Isothermal Se 
Bulk Modul

P/MPa (?/kg m3 K/GPa

0. 1 699 . 6 —
10.6 710 . 3 0.6970
19. 7 717 . 3 0.7943
41. 7 733 . 8 0.8926
60 . 1 747 . 2 0.9418
79. 5 758 . 8 1.0177

101 . 3 769 . 2 1.1184
200 . 6 812 . 2 1.4462
300 . 3 845 . 5 1.7397
381 . 6 867 . 9 1.9673
446 . 7 882 . 7 2.1530
473 . 6 887 . 8 2.2337

0.1 676 . 5 _
4.7 682 . 0 0.5704

10.1 688 . 2 0.5882
20. 5 698 .6 0.6449
39 . 7 716 . 0 0.7178
59. 8 730 . 8 0.8035
81 . 3 743 . 7 0.8986

100 . 7 754.9 0.9687
202 . 8 800 . 3 1.3103
304 . 0 835 . 8 1.5945
381 . 9 859.2 1.7955

0 . 1 651 . 2 —
9.9 664 . 6 0.4861

20. 1 677 . 1 0.5229
40.0 696 . 5 0.6135
60.4 713 . 1 0.6947
78 . 9 726 . 1 0.7639

101 . 1 739.4 0.8467
200. 6 785 . 7 1.1712
300 . 2 822 . 1 1.4436
378 . 9 846 . 0 1.6451
429. 8 856 . 7 1.7914
465 . 0 865 . 1 1.8802

0.1 623 . 6 —
10.2 642 . 2 0.3487
21 . 1 656 . 7 0.4166
42 . 1 680 . 0 0.5064
60 . 6 696 . 9 0.5752
80 . 8 711.8 0.6513

100 . 6 724.4 0.7222
200 . 1 773 . 1 1.0342
311 . 9 812.6 1.3406
417. 1 842.4 1.6055
493 . 9 861 . 2 1.7898
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Table 5.6

DENSITY AND ISOTHERMAL SECANT BULK MODULUS OF
(0.50 TOLUENE + 0.50 n--HEXANE)

Temperature 

T/K 

298.22

323 . 26

348.35

373.35

Pressure Density Isothermal Se 
Bulk Modul

P/MPa (?/kg m 3 K/GPa

0.1 748 . 5 —
9. 1 756 . 3 0 . 8727

20. 2 765 . 0 0.9319
39 . 3 778 . 5 1 .0172
59 . 9 791 . 3 1.1056
80 . 2 801 . 8 1.2050

101 .6 812 . 6 1.2867
199 . 7 851 . 5 1.6501
300 . 7 883 . 4 1.9685
399. 9 909 . 2 2.2620
460 . 0 921 . 6 2.4485

0.1 725 . 9 —
10 . 3 736 . 7 0.6958
21.0 746 . 5 0 . 7574
40. 5 761 . 8 0.8573
60.4 775 . 3 0.9464
80 . 5 787 . 3 1.0309

101 . 5 798 . 6 1.1139
200 . 9 840 . 1 1.4772
300 . 5 873 . 9 1.7738
397 . 3 899 . 5 2.0581
447 . 9 910 . 3 2.2106

0. 1 701 . 7 —
10 . 8 715 . 4 0.5587
20 . 2 725 . 9 0.6029
41 . 1 744. 8 0.7085
60 . 7 759 . 3 0.7988
86. 2 775.6 0.9036

102 . 0 784.8 0.9623
201 .4 828 .9 1.3118
301 . 8 863.6 1.6093
410.4 893 . 1 1.9145
522 . 7 917 . 1 2.2251

0.1 676. 1 —
8 . 2 689 . 6 0.4138

21 . 3 707 . 7 0.4748
44. 5 730 . 8 0.5932
58 . 7 739 . 4 0.6845
79 . 6 754 . 6 0.7642

100 . 6 767 . 5 0.8439
201 .7 816 . 0 1.1759
301 . 2 852 . 9 1.4525
414.0 883 . 5 1.7632
522 . 3 909 . 9 2.0323
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Table 5.7

Temperature 

T/K 

298 . 22

323.31

348.32

373.49

SOTHERMAL SECANT BULK MODULUS OF
i TOLUENE + 0 . 2 5  n-HEXANE)

Pressure Density Isothermal Si
Bulk Modu

P/MPa C/kg m K/GPa

0. 1 802 . 2 —
9. 5 809 . 6 1.0284

20 . 2 817 . 8 1.0537
40 . 6 831 . 3 1 . 1570
58 . 1 840 . 5 1.2728
78 . 6 852 . 4 1.3329

101 . 2 863 . 1 1.4328
201 .4 901 . 6 1.8259
301 .4 933 . 5 2.1421
402 . 9 958 . 2 2.4741
490 . 6 976 . 0 2.7545

0.1 778 . 6 _
10.2 788 . 7 0.7887
20 . 0 797 . 0 0.8620
40 . 3 811.1 1.0033
60 . 1 824 . 4 1.0800
80.0 835 . 6 1.1713

101 . 1 846 . 4 1.2609
201 . 8 886 . 7 1.6545
301 . 3 919.4 1.9668
399 . 6 944 . 3 2.2767
466 . 5 959 . 4 2.4749

0 . 1 754.7 _
10.1 765 . 6 0 . 7024
20 . 3 775 . 1 0.7675
41 . 0 792.0 0.8684
59. 3 804 . 9 0.9492
81.2 818.8 1.0360

100.7 829 . 2 1.1197
199.6 871 . 7 1.4864
299. 6 905 . 6 1.7974
404. 2 932 . 7 2.1174
515 . 3 957 . 2 2.4353

0.1 729 . 5 —
10 . 0 741 . 2 0.6272
20.4 752 . 6 0.6614
40. 5 772 . 1 0.7322
59. 6 786 . 6 0.8197
80 . 9 800 . 5 0.9110
99. 2 811.1 0 . 9850

200. 8 857 . 1 1.3481
295 . 8 890 . 9 1 . 6322
371 . 6 911.8 1.8581
442 . 1 928 . 8 2.0599
498 . 3 940.7 2.2190
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Table 5.8

DENSITY 
(0.333 n

Temperature

T/K

298 .15

323 . 15

348 . 15

373 . 15

AND ISOTHERMAL SECANT BULK MODULUS FOR
■OCTANE + 0.333 i-OCTANE + 0.333 OCT-1-ENE)

Pressure Dens ity Isothermal S 
Bulk Modul

P/MPa (?/kg m 3. K/GPa

0.1 698 . 8 —

4 . 4 702 . 7 0.7748
10 . 3 707 . 9 0.7935
21 . 1 716.4 0.8548
39. 2 728 . 8 0.9499
61 . 3 741 . 3 1.0675
79 . 5 751 . 2 1.1383

108 . 9 763 . 9 1.2767
202 . 1 797 . 8 1.6278
281 .0 821 .0 1.8872

0.1 679 . 0 —

4.6 683 . 5 0.6835
10 . 2 689 . 2 0.6824
22.4 699 . 3 0.7682
39.9 712 . 3 0.8513
59.4 725 . 7 0.9215
81.7 738 . 0 1.0207

110.8 751 . 4 1.1489
223 . 6 792 . 4 1.5617
299 . 7 815 . 7 1.7877
411.9 841 . 0 2 . 1378

0.1 657 . 4 —

4.6 663 . 0 0. 5328
9.4 668 . 7 0 .5503

20. 8 680 . 4 0.6124
41 . 8 697. 5 0.7253
59. 9 710.7 0.7974
62.3 711.7 0.8152
81 . 4 722 . 8 0.8985
99.0 732.4 0.9658

210.1 777 . 3 1.3614
297 . 6 803 . 9 1.6325
414.6 832 . 0 1.9752

0.1 634 . 2 —

4.4 640 . 8 0.4175
9.5 648 . 1 0.4383

20 . 1 661 . 0 0.4933
40 . 6 680 . 8 0.5858
63 . 6 697 . 8 0.6967
81.9 709 . 8 0.7680
98.7 720 .0 0.8274

214.4 767 . 1 1.2369
305 . 6 794 . 9 1.5112
397 .4 818 . 9 1 .7615
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Table 5.9

DENSITIES AT ROUNDED PRESSURE FOR THE TERNARY 
EQUIMOLAR MIXTURE OF n-OCTANE + I-OCTANE + OCT-1-ENE

Pressure Temperature/K

MPa 298.15 323.15 348.15 373.15

Density/kg

0 . 1 698 . 8 679.0 657 . 4 634. 2
25 . 0 719 . 2 701 . 6 684. 2 666 . 3
50 . 0 735 . 3 719.4 703 . 9 688 . 7

100 . 0 760 . 3 746 . 6 732 . 6 720 . 0
150.0 780. 1 785 . 5 754 . 6 742 . 8
200 . 0 797. 1 801 . 2 773 . 4 761 . 8
250.0 812 . 3 815 . 1 790.0 778 . 5
300. 0 827 . 7 805 . 0 793 . 7
350 .0 838 .7 818 . 1 807 . 3
400.0 829 . 1
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Table 5.10

VISCOSITY AND DENSITY OF ACETONITRILE 

Temperature 

T/K 

298.25

323 .13

348.16

373.18

Pressure Fall time Density Viscosity

P/MPa t/sec C/kg m^ Y|/cP

0.1 8 . 249 776 . 6 0.3404
25 . 8 9 .918 796 . 7 0 . 440
50 . 8 10.371 813 . 6 0.461
73 . 2 11.297 827 . 1 0 . 505

118.7 13.071 850 . 9 0 . 589
150 . 9 14.169 865 . 7 0 . 640
201 .4 16.834 886 . 3 0 . 765
260 . 7 19.039 907 . 6 0 . 867
326 . 7 23.233 928 . 5 1 . 060

0 . 1 6.595 749.58 0.2722
23 .0 7 . 371 770 . 5 0 .313
49 . 2 8 . 219 790 . 7 0 . 355
75 . 5 9. 141 808 . 1 0.400

101 .2 9 . 924 823 . 2 0 . 438
151.7 12.001 848 . 8 0 . 537
200 . 5 13.567 869 . 9 0.611
280 . 6 17.107 899 . 6 0 . 776
345 . 7 20.956 920 . 4 0 . 954
399 . 6 21.616 935 . 9 0 . 983
511.7 26.830 964 . 7 1 . 221

0.1 5 .487 721.30 0.2229
24 . 0 6 . 246 746 . 2 0 . 256
49 . 4 6 . 938 767 . 9 0. 291
75 . 4 7 . 673 786 . 8 0 . 328
99 . 8 8 . 589 802 .4 0 . 373

150.6 10.676 830.2 0 . 474
202 . 2 11.695 853 . 7 0.522
300 . 3 14.581 891 . 7 0 . 656
402 .7 18 .116 924. 1 0 . 820
512.4 22.296 953 . 5 1 .021

0.1 4. 557 693.80 0.1885
24.5 5 . 327 725.1 0 .213
50. 2 5 . 996 750. 7 0 . 243
75 . 2 6 . 600 771 . 4 0 . 273
99.2 7 . 182 788 . 5 0 . 302

150.2 8 . 384 819.1 0. 361
201 .4 9 . 720 844. 7 0.426
299.7 12.441 884 . 7 0 . 555
398 . 5 15.246 917 . 6 0 . 685
502 .4 18.307 947 . 2 0 . 826
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Table 5.11
VISCOSITY AND DENSITY OF

ACETONITRILE
AT ROUNDED TEMPERATURES AND PRESSURES

Temperature 

T/K 

298.15

323 . 15

348.15

373.15

Pressure Density Viscosity

P/MPa £/kg m"3 Yl/cP

0.1 776 . 7 0.3406
25.0 796 . 9 0 . 438
50 . 0 813 . 8 0 . 460

100 . 0 841 . 6 0 . 557
150 . 0 864 . 8 0 . 639
200 . 0 885 . 4 0 . 763
250 . 0 904. 2 0 . 844
300 . 0 921 .4 0.961

0 . 1 749 . 6 0.2721
25 . 0 772 . 8 0 .317
50.0 792 . 1 0 . 356

100 . 0 823 . 1 0 . 436
150.0 848 . 1 0 . 534
200 . 0 869 . 5 0.610
300 . 0 905 . 8 0.813
350 . 0 921 . 6 0 .916
400 . 0 936 . 2 0 . 984
500 . 0 961 . 9 1 . 193

0.1 721 . 3 0 . 2229
25 . 0 748 . 1 0 . 258
50 . 0 769 . 6 0 . 292

100 . 0 803 . 4 0. 373
150.0 830 . 2 0 . 473
200 . 0 853 . 2 0.511
300 . 0 892 . 3 0 . 656
400.0 924. 3 0 . 816
500 . 0 950 . 4 0 . 996

0.1 693 . 8 0.1885
25 . 0 727 . 1 0.214
50.0 752 . 2 0 . 243

100 . 0 789 . 7 0 . 303
150.0 818.5 0 . 360
200.0 843 . 0 0.424
300. 0 884 . 7 0 . 556
400 . 0 918 . 5 0. 687
500 . 0 946 . 1 0 . 822
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Table 5.12

Temperature 

T/K

298.23

323.14

348.24

373.27

VISCOSITY AND DENSITY OF TOLUENE

Pressure Fal1 time

P/MPa t/sec

0.1 12.636
25 . 5 14.585
50 .6 17.249
76 . 3 20.470

101 . 3 23.320
146. 8 30.194
200 . 5 39.096
299 . 1 66.339
400.7 107.690
502 . 2 176.520

0 . 1 9 . 700
25 . 9 11.581
50 . 2 13.541
75 . 8 15.508

101 . 1 17.603
150. 2 23.913
195 . 8 28.198
294 . 8 42.464
394.9 66.510
487 .7 96.248

0.1 8 . 038
27 . 2 9 . 828
50 . 1 11.261
74.0 13.353

101 . 9 16.009
152.6 19.377
202 . 5 24.415
298 . 9 36.294
398. 1 52.875
502 . 1 81.063

0.1 6.683
25 . 1 8 . 000
49 . 8 9.467
73 . 3 10.731

101 . 8 12.472
149 . 5 15 . 239
200.7 19.903
307 . 8 29.677
412 . 0 42.988
518 . 8 59.534

Dens ity Viscosity

C/kg m 3 Y|/Cp

862.10 0 . 5516
880 . 2 0 . 659
895 . 6 0.784
909 . 5 0 . 933
921 . 6 1 . 065
941 . 0 1 . 381
960 . 7 1 . 789
990 . 9 3 . 030

1016.6 4.905
1038.5 8 . 019

838.80 0.4211
860 . 8 0 .516
877.9 0 .609
893 . 3 0 . 701
906 . 6 0 . 798
928 . 7 1 . 091
946 . 5 1 . 287
977 . 0 1 . 938

1002.3 3 . 031
1022.2 4. 377

814.70 0.3336
839 . 7 0 . 431
856 . 9 0 . 500
872.4 0 . 600
888 . 0 0 . 725
912 . 1 0 . 880
932 . 0 1 . 113
963 .4 1 . 656
989 . 8 2.410

1013.3 3 . 687

790.00 0 . 2730
817.4 0 . 342
838 . 6 0 .413
855 . 3 0 . 474
872 .6 0. 557
896 . 6 0 . 687
918 . 0 0 . 904
953 . 6 1 . 352
981 . 1 1 . 958

1004.8 2 . 707
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Table 5.13
VISCOSITY AND DENSITY OF

TOLUENE

AT ROUNDED TEMPERATURES AND PRESSURES

Temperature Pressure Dens ity Vi scos ity

T/K P/MPa £/kg m3 Y|/cP

298.15 0.1 862 . 2 0.5521
25 .0 880 . 8 0 . 657
50 . 0 896 . 1 0 . 781

100 . 0 920 . 8 1 . 054
150.0 940 . 8 1 . 406
200 . 0 958 . 1 1 . 786
300 .0 991 . 2 3 . 049
400 . 0 1016.5 4 . 895
500 . 0 1038.2 7 . 947

323.15 0 . 1 838 . 8 0.4211
25 . 0 860 . 4 0.512
50 . 0 877 . 8 0 . 608

100 . 0 905 . 2 0 . 793
150 . 0 926 . 6 1 . 089
200 . 0 944 . 4 1 . 308
300 . 0 975 . 1 1 . 982
400 . 0 1003.4 3 . 096
450 . 0 1014.4 3 . 825

348.15 0.1 814. 8 0 .3338
25 . 0 838 . 4 0 . 424
50.0 857 . 6 0 . 500

100 . 0 887 . 9 0 .718
150 . 0 911.3 0 . 871
200 . 0 930 . 7 1 . 101
300 . 0 962 . 9 1 . 665
400.0 991 . 2 2 .431
500.0 1012.9 3.684

373.15 0 . 1 790. 1 0 . 2732
25 . 0 817 .6 0.342
50 . 0 839 . 3 0 . 414

100.0 872 . 1 0 . 553
150.0 896 . 6 0 . 689
200 . 0 916 . 6 0 . 902
300 . 0 949 . 4 1.315
400.0 978 . 2 1 . 884
500.0 1001.0 2 . 561
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Table 5.14

(

Temperature 

T/K 

298.10

323.05

348.18

373.15

VISCOSITY AND DENSITY OF
0.25 TOLUENE + 0 . 7 5  ACETONITRILE )

Pressure Fall time

P/MPa t/sec

0.1 9 .410
23.9 10.555
51 .0 12.731
78.0 14.249

102 .4 16.209
150 . 8 19.955
201 . 4 23.380
302 . 9 32.977
414. 2 46.234

0.1 7 .440
25 . 0 8 . 547
50.3 10.011
77 . 0 11.491

100 . 3 12.733
151 . 2 15.031
198 . 3 17.939
301 .4 24.617
401 .9 32.775
505 . 1 42.115

0.1 6 . 063
27 . 6 7.086
49.9 8 . 061
74.9 9. 148

101.4 10.268
149. 5 12.135
200 . 2 14.594
300. 3 19.921
400.9 25.600
509. 8 32.956

0.1 5 . 127
24.4 6 . 038
50 . 1 6 . 748
75 . 4 7 . 564

103.2 8 . 338
149. 9 10.063
200. 3 11.835
309.4 15.402
411 .4 19 . 550
520.7 25.717

Density Viscosity

e/kg m nrycP

812.05 0.3937
831 . 3 0.468
850 . 0 0 . 573
866 . 2 0 . 644
879 . 2 0 . 736
901 . 8 0 .910
922 . 2 1 . 068
956 . 3 1 . 508
986 . 9 2.110

786.20 0.3083
808 . 6 0 . 370
827 . 8 0 .442
845 . 3 0 .513
859 . 0 0 . 572
885 . 0 0 . 679
905 . 6 0 .814
943 . 2 1 .121
973 . 5 1 .493

1000 . 2 1 .916

759.20 0.2490
787 . 4 0 . 298
806 . 2 0 . 346
824.4 0.399
841 . 2 0 .453
867 .4 0 . 542
890 . 8 0.657
928 . 8 0.904
960 . 1 1 . 163
989 . 0 1 .497

734.80 0.2076
764 . 9 0 . 245
789 . 9 0 . 280
810 . 4 0 . 320
829 . 8 0. 358
857 . 3 0.441
882 . 2 0 . 525
925 . 9 0 . 691
958 . 8 0 . 882
988 . 9 1 . 163
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Table 5.15
VISCOSITY AND DENSITY OF

(0.25 TOLUENE + 0 . 7 5  ACETONITRILE)

AT ROUNDED TEMPERATURES AND PRESSURES

Temperature 

T/K 

298 .15

323 . 15

348.15

373.15

Pressure Density Viscos ity

P/MPa £/kg m 3 ry cP

0.1 812 . 0 0.3935
25 .0 833 . 1 0 . 472
50.0 850 . 1 0 . 569

100 . 0 877 .4 0 . 727
150 . 0 899.7 0. 907
200 . 0 919 . 4 1 . 062
300 . 0 954. 5 1 .493
400 . 0 985 . 1 2 . 021

0 . 1 786 . 1 0.3080
25 . 0 809 . 3 0 . 370
50.0 828 .4 0.440

100 . 0 859. 3 0 . 570
150.0 884. 2 0 . 675
200 . 0 905 . 5 0 .818
300 . 0 942 . 1 1 .116
400 . 0 973 . 2 1 .484
500.0 998 .9 1 . 890

0.1 759 . 3 0.2490
25.0 784.9 0 . 293
50 . 0 805 . 6 0 . 346

100. 0 838 . 5 0.450
150.0 864. 9 0. 543
200.0 887 . 8 0 . 657
300. 0 927 . 3 0 . 903
400.0 960.4 1 . 161
500 . 0 986.7 1 .464

0.1 734. 8 0.2076
25 . 0 766 . 5 0. 245
50.0 791 . 1 0 . 280

100. 0 828 . 6 0 . 353
150.0 857 . 3 0.442
200.0 881 . 3 0 . 525
300.0 921 . 3 0.676
400 . 0 955 . 0 0 . 857
500.0 983 .4 1 . 104
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Table 5.16

(
Temperature 

T/K 

298 . 17

323.09

348 . 23

373.10

VISCOSIY AND DENSITY OF
0.50 TOLUENE + 0 . 5 0  ACETONITRILE )
Pressure Fall time

P/MPa t/sec

0.1 10.975
26.1 13.235
50. 2 15.289
75.0 17.248

101 .4 19.791
150.6 25.092
201 . 1 30.729
304 . 3 46.601
401 . 0 67.604
510.7 100.780

0.1 7 . 980
25 . 3 9 . 820
49 . 9 11.377
77.4 13.417
99.2 14.075

150. 1 17.642
201 . 7 22.687
297 . 9 31.881
392 . 3 44.560
440 . 2 51.524
497 . 1 61.184

0.1 6.780
24 . 0 7 . 888
49 . 2 9 . 090
75 . 9 10.556

100.7 12.132
149. 5 14.640
200 . 3 17.843
299. 8 25.161
405 .9 33.572
516.5 45.069

0.1 5.634
26 . 5 7.052
48 . 0 7 . 600
74. 8 8 . 720

100. 1 9.683
152 . 1 12.116
200 . 6 14.360
300 . 8 19.624
401 .4 27.361
515 . 5 35.769

Density Viscosity

C/kg m3 Y|/cP

835 . 50 0.4526
855 . 1 0 . 596
870 . 8 0 . 693
885 . 2 0 .785
898 . 9 0 . 903
921 .4 1 . 148
941 . 2 1 . 406
975 . 3 2 . 130

1001.8 3 . 084
1027.7 4. 584

810.95 0.3497
833 . 0 0 . 432
851 . 1 0 . 507
868 .7 0.604
881 . 1 0.634
906 . 4 0. 800
928 . 2 1 .034
962 . 1 1 .454
989 . 8 2 . 031

1002.4 2 . 346
1016.2 2 .782

784.84 0.2798
808 . 0 0 . 337
828 . 5 0 . 396
847 . 0 0.467
862 .4 0 . 542
888 . 5 0 . 660
911.6 0 . 808
949.2 1 . 145
982 . 1 1 .527

1011.4 2 . 046

760.04 0.2312
791 . 1 0. 295
811.5 0 . 322
832 . 8 0 . 377
850. 1 0.423
880 . 1 0 . 539
903 .4 0 . 644
942 . 8 0 . 887
974 . 9 1 . 241

1005.8 1 . 621
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Table 5.17
VISCOSITY AND DENSITY OF

(0.50 TOLUENE + 0 . 5 0  ACETONITRILE)

AT ROUNDED TEMPERATURES AND PRESSURES

Temperature 

T/K 

298.15

323 . 15

348.15

373 .15

Pressure Density Viscosity

P/MPa €/kg m* Vj/cP

0.1 835 . 7 0.4527
25 . 0 853 . 5 0 . 591
50 . 0 869 . 4 0 . 693

100 . 0 896 . 8 0 . 897
150.0 920 . 1 1 . 145
200 . 0 940. 7 1 . 401
300 . 0 975 . 5 2 . 095
400 . 0 1003.9 3 .074
500 . 0 1025.6 4.412

0 . 1 810 . 8 0.3495
25.0 832 . 8 0.431
50 . 0 851 . 4 0 . 507

100 . 0 881 . 6 0 . 639
150 . 0 905 . 9 0 . 991
200. 0 926.6 1 . 028
300.0 961 .9 1 .464
400 . 0 991 . 7 2 . 080
450 . 0 1004.6 2 . 448

0 . 1 784. 8 0.2800
25 . 0 808 . 4 0 . 340
50 . 0 829 . 2 0 . 398

100 . 0 863 . 3 0 . 540
150 . 0 890 . 2 0 . 661
200 . 0 912 . 2 0 . 808
300.0 948 . 1 1 . 146
400 . 0 980.7 1 . 504
500.0 1007.2 1 .961

0.1 759 . 9 0. 2311
25 .0 791 . 1 0.292
50.0 814.3 0 . 325

100.0 849. 1 0.423
150.0 876 . 9 0 . 534
200.0 901 . 2 0 . 643
300 . 0 943 . 2 0 . 885
400 . 0 973 . 9 1 . 236
500 . 0 1001.7 1 . 563
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Table 5.18

Temperature 

T/K 

298.19

323.08

348.23

373 . 22

VISCOSITY AND DENSITY OF
0.75 TOLUENE + 0 . 2 5  ACETONITRILE)
Pressure Fall time

P/MPa t/sec

0. 1 12.064
51 .0 16.281
75 . 5 18.830
99 .9 22.122

150 . 8 29.530
202 . 1 37.752
298 . 0 55.447
400 . 6 84.554
467 . 5 109.950

0 . 1 9. 331
25 . 2 11.229
48 . 5 12.398
74. 7 14.366

102 . 7 16.530
149 . 7 21.856
200.4 25.802
249 . 5 31.968
308 . 2 40.349
411 . 8 59.079

0. 1 7 . 579
25 . 2 8 . 962
49 . 2 10.507
75 . 2 11.714

102 . 3 13.802
150 . 2 16.198
200 . 9 20.050
245 . 9 23.893
301 . 1 29.222
406 . 9 42.753

0.1 6 . 209
25 . 2 7.444
50. 1 8 . 689
74. 1 9 . 879
99.9 11.433

150.6 14.235
201 . 3 16.384
300. 2 23.700
367.7 29.688
436.4 35.919

Density Vi scosity

£/kg m^ Y]/cP

851.86 0.5085
886 . 4 0 .739
900 . 0 0 . 858
912 . 2 1.011
934 . 5 1 . 352
953 . 7 1 . 728
984. 0 2 . 534

1010.8 3 . 854
1026.2 5 . 002

827.95 0.3879
848 . 2 0 . 500
864. 2 0. 555
880. 1 0 . 648
895 . 2 0 . 749
917 . 3 0 . 997
937 . 9 1 . 177
955 . 4 1 . 460
974.0 1 . 842

1002.6 2 . 691

802.85 0.3097
826 . 3 0 . 390
844 . 9 0 . 464
862 . 2 0 . 522
878 . 1 0 . 621
902 . 2 0 . 732
923 . 8 0 .910
940 . 7 1 . 087
959 . 1 1 . 331
989.6 1 . 946

780.25 0.2537
807 . 7 0.314
829. 5 0. 376
847.2 0 . 433
863 . 7 0 . 508
891 . 1 0. 639
913 . 9 0 . 739
950 . 1 1 . 076
970 . 8 1 . 349
989 . 6 1 . 632
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Table 5.19
VISCOSITY AND DENSITY OF

(0.75 TOLUENE + 0 . 2 5  ACETONITRILE)

AT ROUNDED TEMPERATURES AND PRESSURES

Temperature 

T/K 

298 . 15

323 . 15

348.15

373.15

Pressure Density Viscosity

P/MPa C/kg ^/cP

0.1 851 . 9 0.5087
50.0 885 . 5 0.7340

100. 0 911 . 8 1.0114
150.0 934. 0 1.3469
200.0 953 . 5 1.7144
300 . 0 987 . 1 2 . 5555
400.0 1014.9 3.8468
450.0 1022.3 4.7018

0.1 827 . 7 0.3876
25 . 0 848 . 8 0.4984
50 . 0 866 .0 0.5590

100 . 0 893 . 9 0.7369
150.0 916 . 9 0.9968
200 .0 937 . 1 1.1744
300. 0 971 . 8 1.7981
400.0 999 . 3 2.5998

0 . 1 802 . 8 0.3101
25.0 827 .4 0.3895
50 . 0 846 . 7 0.4672

100 . 0 876 . 9 0.6147
150 . 0 901 . 3 0.7322
200. 0 922 . 5 0.9085
300 . 0 959 . 0 1.3279
400 . 0 987 . 6 1.9069

0 . 1 780. 3 0.2538
25 . 0 809.0 0.3142
50.0 830. 8 0 . 3755

100 . 0 864.0 0.5079
150.0 889 . 7 0.6381
200 . 0 911 . 7 0.7358
300 . 0 948 . 9 1.0757
400 .0 978 .6 1.4762
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Table 5.20

Temperature 

T/K 

298.30

323.25

348.20

373.20

VISCOSITY AND DENSITY OF
(0.25 TOLUENE + 0.75 n-HEXANE)

Pressure Fall time Density Viscosity

P/MPa t/sec <^/kg m^ Y|/cP

0.1 7 . 592 699.60 0.3227
24. 8 9 .453 721 . 8 0 . 422
49.4 11.323 739 . 8 0.513
77 . 1 13.500 757 . 1 0 .619

100 . 4 15.657 769 . 8 0 . 722
151 . 3 20.367 793 . 5 0 . 945
200. 3 26.052 812 . 7 1 .212
301 . 0 42.697 845 . 2 1 . 989
401 .4 65.707 871 . 6 3 . 055
506 . 6 87.721 895 . 2 4 . 068

0 . 1 6 .137 676.80 0.2568
25 . 7 7 . 774 702 . 9 0 . 338
50 . 1 9. 325 722 . 8 0.415
74.9 11.105 739 . 8 0. 502
98 . 8 12.088 754 . 1 0 . 549

149.8 15 . 508 779 . 9 0 .713
200. 0 20.684 801 . 0 0.958
300.0 31.402 835 .4 1 .460
400 . 5 46.434 863 . 6 2 . 157
504 . 5 67.515 888 . 3 3 . 130

0.1 5 . 200 651.45 0.2092
25 .4 6 . 540 681 . 9 0 . 275
49.9 7 . 783 704 . 3 0. 338
75 . 5 9 . 022 723 . 3 0. 399
99 . 5 10.307 738 . 6 0 . 462

150.7 13 . 284 765 . 8 0 . 606
201 . 0 16.807 787 . 7 0.774
300. 1 23.796 822 . 7 1 . 102
399.5 35.713 850. 9 1 .657
508.4 50.173 887. 1 2 . 325

0.1 4.248 623.90 0.1765
26.0 5 . 688 662.9 0.231
49.4 6 . 582 687 . 4 0 . 277
73 . 5 7 . 670 707 . 3 0 . 332

101 .0 9 . 006 726 . 0 0 . 398
150 . 3 11.256 753 . 0 0 . 508
200. 2 14.565 775 . 2 0 . 667
303 . 3 21.559 811.3 0 . 997
399 . 6 28 . 856 838 . 2 1 . 337
501 .4 38 . 733 862 . 1 1 . 795
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Table 5.21
VISCOSITY AND DENSITY OF

( 0.25 TOLUENE + 0 . 7 5  n-HEXANE )

AT ROUNDED TEMPERATURES AND PRESSURES

Temperature 

T/K 

298.15

323.15

348.15

373.15

Pressure Density Viscosity

P/MPa V/kg m 3 Y)/cP

0.1 699. 7 0.3232
25 .0 722 . 5 0 . 423
50.0 740 . 6 0 . 516

100 . 0 769 . 2 0 . 722
150.0 792 . 0 0 . 941
200.0 811.8 1 .212
300 . 0 845 . 7 1 . 983
400 . 0 872 . 9 3 . 047
500 .0 893 .9 4. 002

0.1 676 . 6 0.2570
25 . 0 703.4 0 . 336
50.0 723 . 9 0.415

100.0 754. 9 0 . 553
150 . 0 779 . 0 0.715
200 . 0 799. 5 0 . 959
300 . 0 834. 7 1 .461
400 . 0 863 . 2 2.155
500 . 0 887 . 0 3 . 084

0.1 651 .4 0.2093
25 . 0 682 .4 0 . 274
50.0 705 .4 0 . 338

100.0 739 . 3 0 . 464
150.0 764 . 9 0 . 604
200.0 786 . 4 0 . 771
300 .0 822 . 3 1 . 102
400.0 850.9 1 .661
500.0 875.1 2 . 267

0.1 623 . 8 0.1766
25.0 662 . 8 0 . 229
50.0 688 . 9 0 . 278

100.0 724. 5 0 . 389
150.0 750 . 4 0 . 507
200.0 772 . 1 0 . 667
300 . 0 808 . 9 0 . 986
400.0 839. 5 1 . 339
500 . 0 861 . 6 1 . 788
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Table 5.22

Temperature 

T/K

298.23

323.24

348.32

373.23

VISCOSITY AND DENSITY OF
(0.50 TOLUENE + 0 . 5 0

Pressure Fal1 time

P/MPa t/sec

0.1 9 . 334
24 . 2 11.180
49 . 9 13.371
75 .0 15.514
99 . 7 18.241

151 . 8 23.947
200 . 7 30.527
299 .9 49.158
399 . 8 76.537
503 . 2 114.440

0 . 1 6 . 675
25.9 9 . 160
50.0 10.822
75.3 12.557

100 . 7 14.522
150 .9 18.808
200. 8 23.296
300 . 5 36.298
400 . 2 54.050
495 . 7 73.331

0.1 5 .764
25 . 4 7 . 057
49 . 9 8.916
75 . 2 10.523

101 . 2 11.840
151.5 15.567
201 . 2 19.373
301 . 8 29.079
401 .4 41.137
508 . 9 57.103

0.1 4. 638
24. 9 6.066
50 . 0 7 . 396
75 . 5 8 .512

100.4 10.004
150 .7 13.136
200 . 4 15.990
300 . 8 23.617
400 . 8 32.463
510 . 3 44.821

-HEXANE)

Dens ity Vi scos ity

(?/kg nT* Y|/cP

748.55 0.3708
767 . 7 0 . 504
784 . 8 0 .610
799. 2 0 .712
811.7 0 . 841
834. 6 1 . 109
852 . 7 1 . 416
883 . 3 2 . 279
908 . 6 3 . 541
931 . 0 5 .281

725.90 0.2943
749. 8 0 . 405
767 . 9 0 . 486
784.0 0 . 570
798 . 1 0 . 664
821 . 7 0. 866
841 . 5 1 . 076
873 . 7 1 . 680
900 . 0 2 . 499
921 .4 3 . 384

701.75 0.2394
729 . 8 0 . 299
750 . 8 0 . 392
768 . 6 0 . 471
784 . 3 0 . 534
809.4 0.712
829 . 9 0 . 891
863 .4 1 . 343
890 . 0 1 . 900
914. 2 2 . 634

676.20 0.2020
709 . 3 0 . 249
733.6 0.316
753 .4 0 . 372
769.6 0 . 445
796 . 5 0 . 596
818 . 1 0 . 731
853 . 0 1 . 088
880.7 1 . 497
906 . 0 2 . 066
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Table 5.23
VISCOSITY AND DENSITY OF

( 0.50 TOLUENE + 0.50 n-HEXANE )

AT ROUNDED TEMPERATURES AND PRESSURES

Temperature 

T/K 

298.15

323.15

348.15

373.15

Pressure Density Viscosity

P/MPa £/kg m^ -f[/cP

0.1 748 . 6 0. 3711
25 . 0 768 . 9 0 . 508
50.0 785 . 4 0 .610

100. 0 812 . 0 0 . 843
150.0 833 . 5 1 . 100
200 . 0 851 . 9 1 . 412
300 . 0 883 . 4 2 . 282
400 . 0 909 . 3 3 . 548
500. 0 930.4 5.224

0.1 726.0 0.2945
25 .0 750. 2 0 . 402
50.0 768 . 9 0 . 486

100.0 797. 8 0.662
150. 0 820. 7 0 . 863
200.0 840.3 1 . 073
300.0 873 . 7 1 . 678
400 . 0 900 . 5 2.499
500 . 0 922 . 5 3 . 435

0.1 701 . 9 0.2397
25 . 0 730 . 9 0 . 299
50 . 0 752 .4 0 .400

100 . 0 784. 1 0 . 532
150.0 808 . 1 0 . 708
200.0 828.4 0 . 888
300 . 0 877.9 1 . 337
400 . 0 891 . 5 1 . 895
500 . 0 913.4 2 . 568

0.1 676 . 3 0.2021
25.0 711 .6 0 . 249
50.0 735 . 3 0.316

100. 0 768 . 1 0 . 444
150 . 0 792 . 7 0 . 594
200.0 813 . 8 0. 730
300. 0 851 . 1 1 . 086
400.0 882 . 8 1 . 494
500 . 0 905 . 8 2 . 006
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Table 5.24

Temperature 

T/K 

298.28

323 . 27

348.35

373.35

VISCOSITY AND DENSITY OF
(0.75 TOLUENE + 0 . 2 5

Pressure Fa 11 time

P/MPa t/sec

0 . 1 11.245
25 . 1 13.401
50 . 3 16.210
74 . 9 18.286

100 . 0 21.142
149 . 8 26.852
198 . 4 35.481
300 . 1 58.687
396 . 5 94.838
499.4 140.220

0 . 1 8 . 647
25 . 2 10.547
51.0 12.536
74 .7 14.400

100.2 16.886
150 . 8 21.569
199.9 27.476
300.4 43.038
400 . 2 63.624
499 . 1 90.631

0 . 1 6 . 650
25 . 2 8 . 346
47 . 0 10.093
75 . 6 12 . 099

103 . 9 14.133
150 . 5 17.287
199.7 21.515
299.5 31.685
391 .6 44.920
499.7 61.999

0.1 5.672
26.9 6.989
51.7 8 . 386
74.6 10.021
98 .9 11.193

149 . 0 14.499
202 . 6 18.266
299.6 26.500
400 . 1 36.789
505 . 5 48.775

-HEXANE)

Dens ity V i scos ity

£/kg m 3 Y[/cP

802.10 0.4404
820 . 5 0 . 608
836 . 3 0 . 741
849 . 9 0 . 838
862 . 2 0 . 972
883 . 5 1 . 237
901 . 3 1 . 636
932 . 2 2 . 703
956 . 4 4 . 358
978 . 6 6 . 426

778.70 0.3446
799 . 9 0.470
818 . 0 0 . 566
832 . 2 0 . 654
845 . 7 0 . 772
868 . 6 0 . 990
887 .4 1 . 265
919 . 0 1 .981
944 . 5 2 . 924
966 . 1 4 . 156

754.70 0.2765
778 . 8 0 . 362
795 . 8 0 . 448
814.6 0 . 544
830 . 5 0.641
852 . 7 0 . 789
872.4 0 . 987
905 . 1 1 .456
929 . 1 2 . 064
954.2 2.843

729.70 0.2302
759 . 2 0. 294
780 . 3 0 . 364
796 . 6 0.444
811.3 0 . 500
836 . 9 0 . 658
859 . 2 0 . 834
891 . 9 1 . 216
919 . 1 1 . 689
942 . 0 2 . 237
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Table 5.25

VISCOSITY AND DENSITY OF
( 0.75 TOLUENE + 0 . 2 5  n-HEXANE )

AT ROUNDED TEMPERATURES AND PRESSURES

Temperature 

T/K 

298 . 15

323.15

348.15

373.15

Pressure Density Viscosity

P/MPa £/kg m* t|/cP

0.1 802 . 2 0.4410
25 . 0 820 . 9 0 . 608
50.0 836 . 7 0 . 741

100.0 862 .4 0 . 973
150 . 0 883 . 5 1 . 240
200 . 0 901 . 6 1 . 652
300 . 0 932 . 6 2 . 706
400 .0 957 . 9 4 . 436
500 . 0 978 . 8 6.456

0.1 778 . 7 0.3450
25.0 801 . 2 0 . 470
50. 0 818 . 7 0 . 563

100 . 0 845 .7 0.772
150.0 867 . 3 0 . 988
200 . 0 886 . 1 1 . 266
300. 0 918.8 1 . 981
400 . 0 945 . 6 2 . 926
500 . 0 966 . 3 4. 178

0 . 1 754 . 8 0 . 2769
25 . 0 779. 5 0 . 362
50.0 799 . 0 0.459

100. 0 829 . 0 0 . 630
150.0 852 . 2 0 . 789
200. 0 871 . 9 0 . 990
300.0 905 . 1 1 .462
400 . 0 932.6 2 . 127
500.0 954.4 2 . 853

0 . 1 729 . 8 0.2305
25.0 757 .4 0 . 290
50 . 0 779 . 2 0. 359

100.0 812 . 3 0. 504
150.0 837 . 4 0.661
200.0 858 . 1 0 . 826
300 . 0 891 . 8 1 . 220
400. 0 919. 2 1 . 691
500.0 942 . 0 2 . 237
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Table 5.26 COEFFICIENTS FOR EQUATION 5.5
Liquid/mixture Temp.

T/K
Bens, 
/kg m 3

K0
MPa

K1 3,-K2.10
1EM:

k3.10
MPa'2

Acetonitrile 298.26 
323.21
348.26
373.27

776.6 
749.5 
721.2
693.7

875.25 
730.62 
596.16 
443.76

4.5710
4.2484
4.2758
4.2820

3.7011
3.8443
4.7909
5.2122

2.9828
4.4327
4.8927

Toluene (a) 298.15
323.15
348.15
373.15

862.2
838.8
814.8 
790.1

1051.78
873.6
778.51
633.1

5.698
5.241
4.618
4.553

4.818
3.314
2.360
2.331

-

n-Hexane (b) 298.15
323.15
348.15
373.15

655.0
631.6
606.7 
580.5

668.2
531.2
454.8
332.4

4.156
4.016
3.636
3.731

1.580
1.442
1.156
1.636

-

0.25 Toluene 
+

0.75 Aceto­
nitrile

298.28
323.20
348.23
373.35

811.9
786.1
759.2 
734.6

895.54
765.92
622.08
506.99

5.1335
4.5058
4.5414
4.1088

6.4447
4.4625
5.1854
3.6534

5.6793
3.5461
4.6460
2.6374

0.50 Toluene 
+

0.50 Aceto­
nitrile

298.40
323.36
348.43
373.31

835.5
810.6 
784.6 
759.8

1104.69
831.64
770.26
505.60

3.9139
4.4417
3.1592
5.2736

2.9333
3.4267
-1.6204
9.3176

2.9346
1.9353

-4.5645
1.0885

0.75 Toluene 
+

0.25 Aceto­
nitrile

298.27
323.32
348.33 
373.26

851.8
827.6
802.7 
780.2

1099.45
878.14
713.61
584.64

4.7603
5.4691
5.4458
5.0934

4.8286
8.3841
8.3213
6.6978

4.6208
9.5869
9.0271
6.3004

0.25 Toluene
■i

0.75 n-Hexane

298.27
323.33
348.40
373.36

699.6
676.5 
651.2
623.6

677.01
545.25
443.43
316.48

4.8984
4.7060
4.4610
4.5396

6.5022
5.5578
5.2390
5.5355

6.5619
4.7280
4.9437
4.8536

0.50 Toluene 
+

0.50 n-Hexane

298.22
323.26
348.35
373.35

748.5
725.9
701.7
676.1

829.45
653.12
512.35
377.90

5.0482
5.2193
4.9694
5.2965

5.8262
7.0595
5.9430
7.7340

5.4311 
7.0838 
5.1856 
7.0466

0.75 Toluene 
+

0.25 n-Hexane

298.2
323.31
348.32 
373.49

802.2
778.6
754.7 
729.5

696.24
751.61
663.38
574.39

5.1311
5.9059
5.0422
4.4200

5.5918
8.7794
5.5169
3.5858

5.2080
8.7087
4.6841
2.6821

0.333 n-Octane 298.15 698.8 742.78 5.6155 7.6320 7.6086
+

0.333 i-Octane 
+

232.15
348.15
373.15

679.0
657.4
634.2

649.59
506.13
395.03

5.0506
5.3656
4.9919

5.7201
7.7950
6.1062

5.3945
8.2108
5.5427

0.333 Octa-l-ene

(a)-data from J.H.Dymond and R.Malhotra (1988) [173]
(b)-data from J.H.D}roond and K.J.Young (1979) [62]
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6.1 INTRODUCTION

The density and viscosity coefficient data obtained in this work, 

which cover a wide range of temperature and pressure, are used in the 

following sections to test the various existing theories and

empirical relations. The main aim of the density measurements at 

elevated pressures was to be able to calculate the dynamic viscosity 

coefficients, but measured densities obtained are sufficiently 

accurate to calculate the molar excess volume, . The density data 

are successfully fitted to the Tait equation. The viscosity

coefficient data are discussed in terms of hard sphere theory, free 

volume theory and the Grunberg and Nissan equation.

6.2 DISCUSSION OF DENSITY DATA

6.2.1 MOLAR EXCESS VOLUME.

When two miscible liquids are combined to form a binary mixture, the 

final volume is not usually the sum of the volumes of the pure

components. The difference is called excess volume, mathematically

Vm = VM ~ (xiMi/pi + X iM2/02) (6.1)

where x, M, p are the mole fraction, molar mass and density

respectively. There are currently two general methods employed in 

determination of for binary mixtures. First of these is an

indirect method involving the measurement of density of the pure

components and a series of mixtures at the same temperature. Density 

has normally been measured by using vibrating tube densimeter
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[192-194] or by pyknometry [195] and V^ is calculated from equation

6.1 The second general method determines the change in volume 

directly using a dilatometric technique and is highly precise and 

accurate, but density of the individual components can not be 

obtained. Although determination of was not the main aim of this

research, the density obtained using a vibrating tube densitimeter at

saturation pressure and with a bellows volumeter at elevated 

pressures was used to calculate V*.

6.2.2 MOLAR EXCESS VOLUME OF BINARY MIXTURES AT SATURATION PRESSURE.

As shown in fig. 6.1, molar excess volumes for the toluene plus

acetonitrile binary mixtures are small and negative, in accordance 

with the general trend for mixtures of lower nitriles plus aromatics 

( Rowlinson and Swinton, L196T). The curve is asymmetric and the 

minimum lies more towards toluene rich mixtures. The values of at 

323 K are practically identical to those at 298 K, but at 348 K the 

curve lies above the 298 and 323 K curve. Considering the 

uncertainties in the density measurements obtained using the 

vibrating tube densitimeter, and the calculated uncertainty in the 

derived V^ , the V* values seems to be to a good approximation 

temperature independent for this system. V^ was not calculated at 373 

K, as the densities at this temperature were extrapolated values, and 

will have higher uncertainty.

Molar excess volumes for toluene plus n-hexane binary mixtures are 

more negative and are in agreement with published values ( Int. Data 

Series 1980 p 141 ). The V* against mole fraction of toluene curve, 

fig. 6.2, is not truely symmetric but the minimum lies at equimolar



  Lf)

□
*

UJZUJ3
D
h~

luO

o

u
(XC£
U.

UJ
-Jo
JEZ

0x1
C O
cn

0
cjrd
X0
AI
a

0 c 0 2 
*—Ho
+>

|q«a*jjm.o/  3Wfl10W 9S30X3 HdlOW

rx

o
<3*
o

UJ
zUJ
X )_J
D

O

z
D
M
J—1 CJ
cn
onu_
uj
u
D
z

CO
CD
C O

u
+>
•H
cjo

-p0
U
0

0
CJ0CJ

rH
O

-M

II I
^Kt-wo/ wA 3WniOA SS30X3 atnQW



148

composition. This system shows dependence of vj on the temperature, 

becoming more negative as the temperature increases.

6.2.3 MOLAR EXCESS VOLUME OF BINARY MIXTURES AT ELEVATED PRESSURES

Molar excess volumes at elevated pressure for the six binary mixtures 

studied, have been calculated using densities measured by a bellows 

volumeter. Since the densities have an uncertainty of 0.2%, hence 

only a general trend of variation of VME with composition, temperature 

and pressure can be considered. V* for the equimolar toluene plus 

acetonitrile system has been plotted as a function of temperature and 

pressure in fig. 6.3. It can be seen that VfE increases slightly up to 

a pressure of 50 MPa at 298 and 323 K and then decreases with 

increase in pressure. For 348 and 373 K, V^ decreases with increases 

in pressure. This trend is less pronounced for the 0.75 mole fraction

of toluene mixture and for the 0.25 mole fraction of toluene mixture.
pThe variation of V^ with the composition of the mixture has been

shown in fig. 6.4 at 323 K. The isobars follow a regular pattern of 

becoming more negative up to 0.5 mole fraction of toluene and then 

become less negative. Similar behaviour has been observed at other 

temperatures, and in all the cases the minimum lies close to 0.5 mole 

fraction of toluene in the mixture.

The variation of V^ for the two mixtures of toluene plus n-hexane

with 0.25 and 0.5 mole fraction of toluene have been shown in fig.

6.5 The four isotherms of each mixture follow a regular pattern of 

variation within the uncertainty of density measurements. The V* for 

mixture with 0.25 mole fraction of toluene are all negative and 

decrease with increasing pressure at constant temperature, while for
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the equimolar mixture the values first becomes less negative and 

eventually positive up to a pressure of 100 to 150 MPa and then 

decrease down to negative values. This behaviour is more pronounced 

for the 0.75 mole fraction of toluene mixture, where the at 

saturation pressure is negative, but becomes positive, increases to a 

maximum and then decreases, as shown in fig. 6.6, for 323.15 K. At 

this temperature Vm at saturation pressure is -0.23 cnr“/mole, rises 

to 0.49 cmVmole at a pressure of 150 MPa and then decreases smoothly 

to 0.19 cm5 /mole at 500 MPa. The other isotherms behave similarly. 

The V* at constant pressure and at 0.25 mole fraction of toluene is

negative , becomes less negative at equimolar composition and

eventually positive at toluene richer mixture. Similar variation in 

has been observed at other temperatures.

6.3 TAIT EQUATION

One of the disadvantages of the isothermal secant bulk modulus

fitting of density data is that it can neither be used for

extrapolation of density beyond the experimental pressure range nor 

for the interpolation within the experimental temperature range. An 

excellent correlation method is fitting the data to the Tait equation 

[77, KU-2oO

(<?-?<,) = C log((B+P)/(B+Po)] (6.2)

where B and C are adjustable parameters which can be optimised to 

provide the best fit of the isothermal densities while other symbols 

have their usual meanings. The Tait equation has an advantage of 

being more. accurate for extrapolation of densities to higher
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pressure, outside the actual experminental range [173]. Equation 

(6.2) with the values of B and C given in Table 6.1. fits the present 

density data for all the liquids and mixtures. Only 12 points out of 

368 shows a deviation more than 0.2% , 9 of these have deviations not 

more than 0.3% while 3 points have deviation between 0.3 to 0.4%.

It has previously been observed that C may be taken as constant for a 

given compound, independent of temperature [202,203] and may have the 

same value for a series of compounds[173,199,200]. For example Gibson 

and Loefflerl'.2o23, have suggested that for all aromatic compounds

and their derivatives C may be taken equal to 0.216. This research

reveals that the C value for acetonitrile ( 0.260 - 0.262 ) and the 

six binary mixtures are higher than 0.216 and an attempt to take C 

equal to 0.216 and optimise B does not reproduce the densities within 

experimental uncertainty. However C values seem to be roughly 

temperature independent and it is possible to select a common value, 

for C, from the range of C at four temperatures, that fit the data at

all temperatures for that particular liquid or mixture provided that

B is optimised. For example, C equal to 0.260 for acetonitrile and 

optimised B, slightly different from that given in Table 6.1, 

reproduces the experimental densities to within experimental 

accuracy. The values of C seem to be composition dependent for these 

mixtures in contrast to the conclusion of Gibson and Loeffler C2CST] 

for sodium bromide solution in glycol. The C value decreases as the 

concentration of the toluene increases in both the systems studied 

and seem to be converging on the value of C for toluene (0.211 - 

0.228). If the common value of C, selected from the range, is taken 

at each composition and optimised for B, the fit is marginally 

inferior compared to that obtained with an optimised B and C [30].
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Table 6.1
COEFFICIENTS OF THE TAIT EQUATION

Liquid/Mixture Temp Density B C
T/K Kg m* MPa —

acetonitri1e 298.26 776 . 6 106 . 0 0 . 268
323.21 749 . 5 86 . 0 0 . 265
348.26 721 . 2 72 . 0 0 . 268
373.27 693 . 7 52 . 8 0 . 262

toluene (a) 298.23 862 . 1 110.0 0 . 228
323.14 838 . 8 80 . 0 0.211
348.23 814 . 7 74 . 0 0 . 220
373.27 790 . 0 57 . 0 0.213

n-hexane (b) 298.15 655 . 0 66 . 7 0 . 230
323.15 631 . 6 47 . 5 0 . 217
348.15 606 . 7 37 . 0 0 . 217
373 . 15 580 . 5 26 . 0 0.211

0.25 toluene 298.28 811.9 99 . 0 0 . 248
+ 323 . 18 786 . 1 90 . 0 0 . 261

0.75 acetonitrile 348.23 759 . 2 72 . 5 0 . 257
373.35 734 . 6 57 . 2 0 . 256

0.50 toluene 298.40 835 . 5 110.0 0. 249
+ 323 . 36 810 . 6 91 . 5 0 . 250

0.50 acetonitrile 348.43 784 . 6 83 . 0 0 . 261
373.31 759 . 8 60 . 0 0 . 249

0.75 toluene 298.27 851 . 8 110.0 0 . 236
+ 323.32 827 . 6 101 . 0 0 . 247

0.25 acetonitrile 348.33 802 . 7 81 . 0 0 . 242
373.26 780 . 2 64 . 0 0 . 237

0.25 toluene 298.27 699 . 6 73 . 0 0 . 243
+ 323.33 676 . 5 62 . 0 0 . 248

0.75 n-hexane 348.40 651 . 2 47 . 5 0. 241
373.36 623 . 6 31 . 0 0 . 224

0.50 toluene 298.22 748 . 5 88 . 0 0 . 237
+ 323.26 725 . 9 70 . 0 0 . 234

0.50 n-hexane 348.35 701 . 7 52 . 5 0 . 226
373 . 35 676 . 1 40 . 0 0 . 223

0.75 toluene 298.22 802 . 2 100 . 0 0 . 232
+ 323.31 778 . 6 81 . 0 0 . 227

0.25 n-hexane 348.32 754 . 7 68 . 0 0 . 227
373.49 729 . 5 54 . 0 0 . 223

(a) data from ref: Dymond and Malhotra (1988) [173]
(b) data from ref: Dymond and Young (1979) [190]
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6.4 VISCOSITY COEFFICIENT CORRELATION AND PREDICTION FOR BINARY 

MIXTURES

6.4.1 HARD SPHERE THEORIES

The hard sphere theory has recently been applied for the correlation 

and prediction of the viscosity coefficient of spherical and 

pseudo-spherical polyatomic molecules. Dymond and Brawn [.57 } 

defined a dimensionless quantity r̂ ’ as

r̂ '=9.118X10 vV(HHT)1 (6.3)

where r̂, V, H are viscosity, volume and molecular weight, r̂ 1 

calculated from the experimental data and plotted against log V for 

the pure liquids and their mixtures forms a family of curves, 

superimposible on a reference curve, to form a single curve. The 

lateral adjustment along the log V axis required to superimpose the 

particular isotherms on the reference curve gives the Vo(T)/Vo(Tr) 

values, where Vo(T) is the close packed volume at temperature T.

This approach has been applied to the viscosity coefficient of all the 

liquids studied and the values of Vo(T)/Vo(Tr) determined. Table 6.2 

lists the Vo ratios for the liquid studied. 298 K was chosen as the 

reference isotherm for all the liquids and mixtures.

Plots of r̂' against log V', where V' is V.Vo(Tr)/Vo(T) and Tr is the 

temperature of the reference curve, are shown in fig. 6.7 to 6.10 for 

toluene, acetonitrile and equimolar mixtures of toluene plus
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Table 6.2
VALUES OF V o (T )/Vo(T r ) FOR HARD SPHERE CORRELATION

Liquid/Mixture Temperature/K
298.2 323.2 348.2 373.2

acetonitrile 1.000 0.978 0.956 0.928

toluene 1.000 0.985 0.981 0.975

n-hexane (a) 1.000 0.989 0.982 0.974

0.25 toluene +
0.75 acetonitrile 1.000 0.983 0.960 0.930

0.50 toluene +
0.50 acetonitrile 1.000 0.973 0.960 0.937

0.75 toluene +
0.25 acetonitrile 1.000 0.983 0.972 0.956

0.25 toluene +
0.75 n-hexane 1.000 0.986 0.974 0.967

0.50 toluene +
0.50 n-hexane 1.000 0.987 0.976 0.962

0.75 toluene +
0.25 n-hexane 1.000 0.988 0.979 0.971

(a) data from ref: Dymond; Young and Isdale (1980) [62]
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acetonitrile and toluene plus n-hexane.

The viscosity coefficient measurements of n-hexane were conducted at 

the very end of the experimental work and values obtained for initial 

measurements at 348 and 373 K gave an average deviation of 3-4% from 

results previously obtained by Young et al. Z&2-2 • However at 298

and 323 K the values were all higher by about 5 to 6 %. The agreement 

at the higher temperatures confirms the Young values which are used 

at all temperartures in subsequent analysis. It has been found that 

n-hexane is prone to leakage. At 298K measurements were repeated 

thrice, but every time leakage was observed. Young himself came 

across this problem, but since he used a viscometer of different 

design, he manage to overcome the problem by tightening up the screws 

holding the viscometer tube.

As can be seen from Table 6.2, Vo ratios for acetonitrile and 0.75 

mole fraction of acetonitrile mixture show stronger temperature 

dependence than for the other liquids. Values of Vo decrease as the 

temperature increases, in accordance with the fact that the repulsive 

interactions of real molecules are not infinitely steep. The ratios 

for all the acetonitrile mixtures lie in between the ratios for the 

pure components, while for toluene plus n-hexane mixtures, the 

variation of Vo(T)/Vo(Tr) is practically identical with each of the 

pure components.

These results suggest that there is a definite relationship between 

the viscosity coefficient of a dense fluid and the molar volume, 

specifically the molar volume relative to the close packing volume. 

Hence it is possible to predict the pressure dependence of viscosity
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coefficient at other temperatures provided density is known along the 

entire pressure range. The hard sphere based correlation method can 

thus be successfully applied to the systems studied in this work, not 

only in the density range of the hard sphere theory but over the 

entire density range. The disadvantage of this method is that it 

requires volume data over the whole pressure range.

6.4.2 FREE VOLUHE THEORY

Free volume theory has successfully been applied for the correlation 

of the viscosity coefficients of the binary mixtures of n-alkanes 

[58], branched hydrocarbons [60] and aromatic compounds [59]. The 

equation has the form

In i|' = A + B.Vo/(V-Vo) (6.4)

7  '/z.where r̂' is 9.118X10 V /(HRT), V is volume, Vo is volume of close 

packing and A, B are adjustable parameters, to take account of the 

effects of non spherical molecular shape and of translational 

rotational coupling. For the liquids studied by Dymond and Brawn 

(1977), A and B were found to be temperature independent, and with A 

equal to -1.0 the experimental viscosity coefficients were reproduced 

generally within 5%.

Equation 6.4 was applied to the viscosities of the liquids and 

mixtures studied, with A equal to -1.0 and optimised for Vo and B to 

give the best fit at each temperature. Vo values so obtained were 

then adjusted to give a smooth temperature variation and B was 

optimised. The Vo and B values for the liquids and mixtures studied
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are listed in Table 6.3. The Vo values for toluene plus acetonitrile 

mixtures vary smoothly with composition, as shown in fig. 6.11. An 

attempt was made to set Vo equal to Vo4 x* + Vo2x2 at each temperature 

and to optimise for B to reproduce viscosity coefficients to within 

5% as has previously been done successfully for n-alkane mixtures 

[58], but this approach failed in this case and significantly higher 

deviations were observed for some points. The values of B for 

acetonitrile are larger than for any other liquid and decrease with 

increase in temperature in contrast to the general trend. Similarly 

the 0.75 mole fraction of acetonitrile plus toluene mixture also

shows a decrease in value of B with rising temperature. This is shown 

in fig. 6.12, where B seems to increase with acetonitrile mole 

fraction at all temperatures.

The Vo values for toluene plus n-hexane system do not vary smoothly

with composition, values at equimolar composition are the same as for 

the 0.75 mole fraction of toluene mixture, while values for 0.75 mole 

fraction of n-hexane mixture are somewhat lower, as shown in fig. 

6.14. The B values increase with rise in temperature.

Tables 6.4 lists the deviations in the calculated viscosity

coefficients using optimised Vo and B values, and also using linearly 

varing Vo and optimised B. Although the number of points having 

deviations in between 5-10% is 46 in the latter case, 27 of these

points have deviations in between 5-6%.

In general equation 6.4 with the values of Vo anb B given in Table

6.3 fits the viscosity data to within 6%. Large deviations were found

for toluene plus n-hexane system at saturation pressure. In light of
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Table 6.3

COEFFICIENTS FOR THE FREE VOLUME EQUATION, Vo AND B
Liquid/Mixture Temp Viscosity Vo B

T/K mPa s cm*/mo 1 —

acetonitri1e 298.25 0.3403 22 . 4 3.411
323 . 13 0.2722 22 . 1 3 . 345
348.16 0.2229 21 . 8 3 . 284
373 .18 0.1885 21 . 5 3 . 181

toluene 298.23 0.5516 68 . 0 1 . 700
323 . 14 0.4211 67 . 0 1 . 709
348.23 0.3336 66 . 0 1 . 787
373.27 0.2730 65 . 0 1 . 800

n-hexane (a) 298 . 15 0 . 2980 73 . 0 2 . 064
323 . 15 0.2357 72 . 0 2 . 084
348.15 0.1915 71 . 0 2.115
373 . 15 0.1603 70 . 0 2 . 144

0.25 toluene 298.10 0.3937 33 . 8 2 . 566
+ 323.05 0.3083 33 . 3 2 . 521

0.75 acetonitrile 348.18 0.2490 32 . 8 2 . 500
373.15 0.2076 32 . 3 2 . 405

0.50 toluene 298.17 0.4526 44 . 0 2 . 340
+ 323.09 0.3497 43 . 0 2 . 318

0.50 acetonitrile 348.23 0.2798 42 . 0 2 . 351
373.10 0 . 2312 41 . 0 2 . 355

0.75 toluene 298.19 0.5085 55.0 2 . 057
+ 323.08 0.3879 54 . 0 2 . 065

0.25 acetonitrile 348.23 0.3097 53 . 0 2 .095
373.22 0.2537 52 . 0 2.111

0.25 toluene 298 . 30 0.3227 67 . 0 2 . 325
+ 323.25 0.2568 66 . 0 2 . 323

0.75 n-hexane 348.20 0.2092 65 . 0 2 . 340
373.20 0.1765 64 . 0 2 . 389

0.50 toluene 298.23 0.3708 69 . 0 2 . 034
+ 323.24 0.2943 68 . 0 2 . 024

0.50 n-hexane 348.32 0.2394 67 . 0 2 . 044
373.23 0.2020 66 . 0 2 . 066

0.75 toluene 298.28 0.4404 69 . 0 1 . 863
+ 323.27 0.3446 68 . 0 1 . 885

0.25 n-hexane 348.35 0.2765 67 . 0 1 .910
373.35 0.2302 66 . 0 1 . 951

(a) data from ref: Dymond; Young and Isdale (1980) [62]
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Table 6.4

DEVIATION OF CALCULATED VISCOSITY USING FREE 
VOLUME EQUATION

Deviation No. of data points

Optimised Optimised
% Vo and B B

0-3 % 230 194

3-5 % 58 74

5-10 % 24 46

> 10 % 4 2
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the fact that measured high pressure viscosity coefficients are 5% 

accurate and an uncertainity of 0.2% in the density at moderate 

pressure produces 1.5% error in the calculated viscosity, increasing 

to 4.5% at 500 MPa, the free volume equation seems to provide a 

reasonable fit of the data. Although Vo and B values can not be 

simply fitted to an equation, they can be interpolated graphically at 

other compositions and temperatures, and provided that molar volumes 

are known the viscosity coefficient can be estimated under other 

conditions of composition, temperature, and pressure. It is estimated 

that viscosiy coefficients so obtained would have an uncertainty of 

6%.

6.4.3 GRUNBERG AND NISSAN EQUATION:

The Grunberg and Nissan equation, originally proposed in 1949 [61] 

has been recommended by Irving after a study of more than 25

equations, as being the most effective equation in presenting 

viscosity coefficient data for binary mixtures. The empirical 

expression may be written as

In x, In r̂, + x2ln r^+ x, x* G (6.5)

where î , is the viscosity coefficient of mixture of components having 

mole fractions x, , x^ and viscosity coefficients r̂ ( and 

respectively. G is the Grunberg and Nissan constant, which Irving

(1977) recommended should be considered as a single disposable 

parameter even though, for the few systems for which viscosity 

coefficients data were available at elevated temperature, G was found 

to be temperature dependent.



160

The Grunberg and Nissan equation has been applied to the viscosity 

coefficients data, obtained in this work. The effects of temperature 

and composition on G are shown in fig. 6.15 for toluene plus 

acetonitrile, and plus n-hexane, systems at saturation pressure. A 

1% uncertainity in the measured viscosity coefficient of the mixture 

at equimolar composition leads to an uncertainity of 0.05 in G value, 

rising to 0.07 for the mixture having 0.75 mole fraction of any 

component. In general G is not constant for these systems, but varies 

with temperature. The saturation pressure G value for toluene plus 

acetonitrile system is positive and increases slightly with 

increasing mole fraction of toluene and decreases with rising 

temperature. At constant temperature, G can be calculated at other 

mole fractions from the equimolar G value, using the equation

G = G0?(1.343 - 0.685 x) (6.6)

where x is mole fraction of acetonitrile. Using equation 6.6, 

saturation pressure viscosity coefficients for 12 data points were 

reproduced with a rms deviation of 0.23% and having a maximum 

deviation of 0.8%.

The G values for toluene plus n-hexane system at saturation pressure 

are negative, practically independent of composition and become less 

negative as temperature increases. Taking G at any composition equal

to the equimolar G value, the 12 experimental viscosity coefficients 

were reproduced with a rms deviation of 0.3%, the maximum deviation

being only 1%.
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The value of G for the equimolar mixture as a function of pressure 

and temperature is shown in fig. 6.16 for toluene plus acetonitrile. 

At constant temperature, the G values in general increase with 

increasing pressure and then decrease. At contant pressure, G

increases with mole fraction of toluene, up to a mole fraction of 0.5 

and than decreases. The slope of the G versus pressure curve also 

varies with temperature, being 0.001 per llPa at 298 and 323 K and 

reducing to 0.0002 per HPa at 373 K, where G becomes nearly

independent of pressure and a value of G equal to 0.1 reproduces the 

24 rounded pressure viscosity coefficients with a rms deviation of

1.9%. Only one point had a deviation more than 5%.

Values for G for the equimolar toluene plus n-hexane mixture are

plotted against pressure in fig. 6.17. The saturation pressure G

values are negative but become less negative and eventually positive 

at high pressure. At 323 K there is evidence of a maximum in the 

curve. For any given temperature and pressure, G generally increases 

with an increase in the mole fraction of toluene.

Because of the dependency of G on composition of mixture, temperature

and pressure, it is not a simple matter to reproduce high pressure G

value for the mixtures studied, by simple empirical equations.

However there is a definite trend of variation of G with the three 

experimental variables, and G can be estimated from the appropriate 

graphs.

Hakita and Kashiwagi C 15^0 proposed a modified form of Tait

equation, found to give a good representation of viscosity 

coefficient data for n-alkanes and aromatic hydrocarbons at pressure
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up to 110 MPa. The equation has the form

In V  1̂ = E ln[(D+P)/(D+Po)] (6.7)

where D and E are adjustable parameters. Glen [152j applied this 

equation to the viscosity coefficients of n-octane, i-octane, 

n-dodecane and three equimolar mixtures of n-octane + i-octane, 

n-octane + i-octane and i-octane + n-dodecane up to a pressure of 500 

MPa and found systematic deviations like that of the free volume 

equation, but of opposite sign. Futhermore I) and E do not vary 

smoothly with temperature. Therefore the present data were not fitted 

to this equation.
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CONCLUSIONS.

The main objectives which have been achieved in this research project 

are:

• to apply the Taylor Dispersion Technique successfully to the 

measurement of mutual diffusion coefficients of liquid mixtures at 

elevated pressures,

• to obtain accurate mutual diffusion coefficient measurements, and 

density and viscosity measurements, over a wide temperature and press­

ure range for mixtures of two non-dipolar liquids and a non-dipolar + 

a highly dipolar liquid.

• to test current theories of transport properties and empirical 

relationships using these measured values.

• to develop a method of correlation of dense fluid transport

properties based on the hard-sphere model by considering diffusion and 

viscosity coefficients simultaneouslyand to derive a consistent set of 

parameters for n-alkanes.

The Taylor Dispersion Technique has been applied at pressure up to 25 

MPa using a UV detector with pressure reduction through crimped capi­

llaries placed (a) before and (b) after the detector. No changes in 

the peak broadening were detected.

The high pressure mutual diffusion coefficient measurements have been 

made up to 25 MPa for binary mixtures of toluene with (i) n-hexane and
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(ii) acetonitrile over the whole concentration range and at temp­

erature in the range of 299 to 348 K in case (i) and 273 to 348 K in 

case (ii). Since the uncertainty in these measurements is 2.5 - 4%, 

only a general trend of variation of diffusion coefficient with the 

variation in pressure can be considered. The two systems behave non­

ideal ly, while the toluene - acetonitrile system shows more deviation 

with respect to straight line behavior. In terms of the rough hard- 

sphere theory, the value of the translation-rotation coupling factor, 

Ai2/ for acetonitrile in toluene (0.72 ± 0.01), which is a typi­

cal value for a system of polyatomic molecules, suggests that there is 

no effect of molecular interactions between a highly dipolar molecule 

(acetonitrile, p = 1 1 . 3 x l O “ 30 cm) and a non-polar (toluene) mole­

cule, on the experimental diffusion coefficient. A similar conclusion 

had been reached earlier [205] in the case of a non dipolar liquid 

plus chlorinated alkanes which possesssmaller dipole moments. Signi­

ficantly lower values of A12 have been observed for systems 

where strong dipole - dipole interactions (for example, acetonitrile- 

methanol) or quadrupole-dipole interactions (for example, carbon 

disulphide-acetonitrile) exist [206].

Mutual diffusion coefficients have been measured for benzene and eight 

fluorinated benzenes in n-hexane at atmospheric pressure over the 

temperature range 213 - 333 K using the chromatographic peak broad­

ening technique, with an estimated accuracy of 2.5%. An Arrhenius-type 

equation (which predicts that the logarithm of diffusion coefficient 

is a linear function of reciprocal of absolute temperature) gives a 

reasonable fit to the temperature dependence of the mutual diffusion 

coefficient data for each mixture, with some occasional points showing
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deviation slightly more than experimental accuracy. The position of 

the fluorine atoms affects the diffusion coefficient values. For 

example, the Di2 values for o-difluorobenzene in n-hexane are 

lower than the values for p-difluorobenzene at the corresponding 

temperatures. Similarly, 1,2,3,5 tetrafluorobenzene diffuses faster 

than 1,2,4,5 tetrafluorobenzene. Although the solute to solvent mass 

and size ratios for these solutes vary significantly, these solutes 

have similar activation energy on the basis of the Eyring "jump" model 

of diffusion. The solute molecules can be considered to behave as 

rough hard-spheres and the values derived for the translational 

rotational coupling constant are again typical of those for pseudo- 

spherical polyatomic molecules and close to the translational- rot­

ational coupling factor derived for the solvent (n-hexane) itself. In 

spite of the fact that certain approximations are made in calculating 

the corrections to the Enskog theory of diffusivity, the mutual diff­

usion coefficients at trace concentration for these solutes can be 

reproduced to within 10%, with the roughness factor for these solutes 

with n-hexane equal to that of the solvent.

The saturation pressure viscosity coefficient and density have been 

measured for toluene, acetonitrile and the binary mixtures of toluene 

with n-hexane, and with acetonitrile, over the temperature range 298 

to 348 K. The kinematic viscosity coefficients have been measured 

using a modified suspended-level capillary viscometer with an esti­

mated accuracy of 0.5%. The densities have been measured using a vib­

rating tube densimeter and have an uncertainty of no more than 0.3 

kg/m3 at the highest temperature.

The high pressure viscosity coefficient and densities have been
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measured for binary mixtures of toluene with n-hexane, and with aceto­

nitrile, in the temperature range 298 to 373 K and pressure up to 500 

MPa. The viscosity coefficients have been measured using the self- 

centering free falling body viscometer at the National Engineering 

Laboratory, and are accurate to 5%, while densities, measured using a 

bellows volumometer have an uncertainty of 0.2%.

The atmospheric pressure values of molar excess volumes for these 

mixtures are small and negative. Since the accuracy of high pressure 

density measurements is 0.2% only a general trend of variation of 

molar excess volume V with temperature, pressure and composition can 

be considered. The high pressure values show a clear trend of becoming 

more negative as the pressure increases for both the mixtures of 

toluene with n-hexane, and with acetonitrile.

For the purposes of interpolation and slight extrapolation, the 

density values have been fitted to the modified Tait equation. The fit 

is excellent and data can be interpolated or slightly extrapolated 

with an accuracy of 0.2%. Optimised values for C and B are reported. 

However, it is possible to select a single value for C in the Tait 

equation from the range of C determined for a given liquid or liquid 

mixture at the different temperatures. The parameter B in this case 

will then have to be optimised to fit the data within the experimental 

uncertainty.

The viscosity data obtained in this work have been correlated succes­

sfully using a method based on the rough hard sphere model. The dimen- 

sionless quantity r̂ ', proportional to rjV2 / 3/(frRT) 1 /3 plotted 

against log V at constant temperature gives curves which for a given
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composition can be superimposed. This enables the calculation of the 

viscosity coefficient at any temperature and pressure to be made with 

an estimated accuracy of 5%, provided the saturation pressure visco­

sity coefficient and molar volume at that pressure and temperature are 

known. This approach shows that viscosity coefficients depend upon the 

molar volume and especially on the volume relative to some reference 

which, in the case of the hard-sphere model is the volume of close 

packing.

The viscosity data have also been interpreted in terms of a free 

volume form of equation. The fit is very satisfactory. Although the 

parameters B and Vo for mixtures in the free volume equation cannot be 

simply related to those of the pure components, graphical interpo­

lation is possible. The values of Vo are a decreasing function of 

temperature. Viscosity coefficient values can be predicted with an 

accuracy of 6% for other pressures provided the molar volume is known.

The empirical Grunberg and Nissan equation, which relates the visco­

sity coefficient for mixtures to the viscosities of pure components, 

and has the advantage of not requiring knowledge of the molar volume, 

fits the present viscosity data very well. The dependence of the 

values of G, the Grunberg and Nissan constant, for these mixtures upon 

pressure, temperature and composition of the mixture, has been deter­

mined.

Self-diffusion coefficient and viscosity coefficient data for liquid 

n-alkanes over the whole pressure range at different temperatures have 

been satisfactorily correlated simultaneously by a method based on
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consideration of the exact hard-sphere theory of transport properties. 

Universal curves are developed for reduced quantities D ‘ and 

iq*, by extension of the hard-sphere results. Values for the 

equivalent hard-sphere close-packed volume Vo and factors Rr> and 

Rrv which are introduced to account for the effects of non-spheri- 

cal molecular shape and molecular roughness on diffusion and viscosity 

respectively are determined by graphical curve fitting. It is found 

that both Rd and R,t can be considered temperature independent 

as well as density independent. While it is not possible to establish 

unique sets of values for these parameters, they can be fairly closely 

defined. Rd is very close to unity for the n-alkanes and has 

been taken as 1.0. On this basis, values are given for RrL, and

Vo at various temperatures. It is found that RrL increases smooth­

ly from 1.0 for methane up to slightly higher than 1.6 for

n-hexadecane. Vo values for n-alkanes at a given temperature show a 

smooth variation with length of carbon chain.

A consistent set of parameters has been provided which, together with 

the equations for universal curves, will allow accurate prediction of 

these transport properties at elevated pressure for other n-alkanes 

from methane to hexadecane for which data are at present not

available.
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SUGGESTION FOR FUTURE WORK.

A. EXPERIMENTAL

For the mutual diffusion coefficient measurements:

(i) further work needs to be carried out on making crimped capill­

aries for generation of steady pressures above 25 MPa within the 

apparatus at low flow rates.

(ii) extension to pressures above 40 MPa, the upper limit of the 

present pump, needs to be considered. Steady liquid flow might be 

maintained by an automatic displacement method with the sample flushed 

out of a side tube into the mobile phase. Capillary tubing would need 

to have thicker walls to withstand the higher pressures.

(iii) with the present set-up, a significant improvement would be 

automated injection of samples. This work is in progress. A block 

diagram of different parts is shown in Appendix 1.

(iv) a further improvement would be to record and analyse the detector 

output by computer.

For the density measurements:

(i) the present method has reached the limits of its accuracy. It is 

therefore timely to consider the vibrating tube method, which is 

established as an accurate technique in general use for density 

measurements at atmospheric pressure. A commercial high pressure cell
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allows extension to high pressures, but apparatus for measurements 

above 100 MPa is only now being developed [207].

For the high pressure viscosity:

(i) the falling body method is probably also at the limits of its

accuracy, although a better theoretical description of the dynamics of 

the sinker might extend the range and lead to improved accuracy.

(ii) further consideration should be given to the vibrating wire 

method which has the potential for giving more reliable measurements 

[208].

B. CORRELATION AND PREDICTION

Methods based on the consideration of the hard sphere model of 

transport properties should be developed:

(i) by replacing the graphical curve-fitting techniques used until now

with numerical methods, with appropriate weighting of the experimental 

points,

(ii) by simultaneous fitting of all three transport properties for the 

members of n-alkanes series with a consistent set of parameters,

(iii) by application to mixtures of n-alkanes using the previously 

determined parameters,

(iv) by consideration of compounds in other homologous series.
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APPENDIX 1 
BLOCK DIAGRAM OF DIFFUSION APPARATUS
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