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SUMMARY

The work presented in this thesis was conducted in 

the field of analytical chemistry and was intended to 

improve the process of methodology development in the 
related fields of analytical toxicology and therapeutic 
drug monitoring. Most pharmaceutical and toxicological 
analyses require a sample clean-up step before quantitative 
detection of a drug by chromatography or spectroscopy. 

Solid phase extraction (SPE) techniques have recently 

assumed considerable importance for this purpose and many 

of these procedures utilise chemically modified silica as 

adsorbents, in which organic substituents have been 

introduced on to the silica surface. A diverse range of 

polar and non-polar substituents has been used to provide 

adsorbents for straight-phase, reversed-phase and ion 

exchange systems.

Bonded silica is used as a stationary phase in high 

performance liquid chromatography (HPLC) and although much 
research has been directed towards understanding the solute 

retention process in HPLC, as yet no attempt has been made 

to apply this theory to SPE. In this study, the physical 
and chemical parameters determining the retention of 

analytes on SPE sorbents were examined to elucidate the 

underlying mechanisms of the SPE process on different 
sorbents. A mathematical model of the process could then 

be constructed to predict the retention of novel analytes
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based solely on their physical and chemical 
characteristics. These predictive rules are known as 

Quantitative Structure-Retention Relationships (QSRR). The 

substances of interest were fl-adrenoreceptor antagonist 
drugs related to propranolol.

In the first three chapters of the thesis, 
background material is given concerning silica stationary 

phases in liquid chromatography (LC), their synthesis and 
properties, the role of the mobile phase in (LC) systems 
and the interactions which take place between analytes and 

the mobile and stationary phases. Thereafter, QSRR are 

reviewed and parameters used to characterise analytes are 

introduced: these fall into two categories - dispersive

parameters (e.g. molecular volume) and inductive parameters 

(e.g. dipole moment). Finally, particular problems arising 

in the SPE of basic substances are reviewed.
The problem was approached in a series of steps as 

follows:
(i) Forty three substituted benzene test compounds were 

selected as simple model solutes containing one or more 

common functional groups. Physical and chemical data were 

collected for each solute, including shape and size 

descriptors, polarity terms and hydrogen-bond
(T)donor/acceptor ability. Five non-polar Bond Elut 

sorbents were selected: ethyl-, octyl-, octadecyl-, phenyl-

and cyclohexyl-silica. Eight aqueous methanol mobile 

phases were used as eluents containing four different
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percentages of methanol (20, 30, 40 and 50%), each

duplicated at pH 5 and pH 7.

(ii) Although SPE methods normally use small cartridges, 

these were impractical for collecting sufficient data for 

significant statistical analysis. The bonded silica

sorbents were packed into HPLC columns and retention

capacity factors (k') were measured with a continuous flow 
system for each test solute in each chromatographic 

system. The following criteria for "digital" SPE 

chromatography were used: if the log k' value of a solute
was greater than 1.7, it was assumed than the solute would 

be indefinitely retained in SPE under those chromatographic 
conditions ("off"). Log k' values of less than 1.7 

indicated that the solute would be eluted ("on").

(iii) A second series of test solutes consisting of

propranolol and fourteen synthetic analogue compounds were

subsequently examined using octyl-, phenyl- and 

eyelohexyl-si1ica and 30:70 methanol:water with 0.3M 
tri-n-butylamine as an organoamine modifier to suppress 

analyte retention by active silanol groups. The effect of 
plasma protein solution and fresh plasma on retention 

behaviour (matrix effect) was also studied.

(iv) A database was compiled containing k' values and 

information relating to both the solutes and the 
chromatographic systems. The data was then used for 

statistical analysis. Independent solute parameters were 

first established by factor analysis then the logarithmic
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capacity factors, log k ‘, were correlated with these 

parameters by multiple linear regression analysis. A 

series of equations were obtained by this method which 

could be used to predict retention behaviour of solutes.
From the physicochemical parameters selected by 

multiple linear regression analysis, the following 

conclusions were drawn:

(i) The partition coefficient, log P, and the 
ionisation-corrected partition coefficient, log D, were 

dominant in the regression equations derived for the 
substituted benzene solutes. An inductive parameter, the 

number of hydrogen-bond donor groups, was also 

significant. With the n-alkyl bonded silica sorbents, 

solute retention increased with log P or log D. This was a 

reflection of the hydrophobic contribution to retention by 

the non-polar sorbent ligands. The hydrogen-bond donor 

term reflected the ability of the mobile phase components, 

methanol and water, to decrease retention by 
hydrogen-bonding to solutes i.e. log k' decreased as the 

hydrogen-bonding term increases.
(ii) Increased hydrophobic retention by octadecylsi1ica 

enhanced the hydrogen-bond donor contribution to retention 

of substituted benzene solutes, and the coefficient of this 

term was greater than for ethyl- and octyl-silica.
(iii) The volume of an acidic benzene solute was another 

retention-determining parameter on octadecylsi1 ica. Such 

solutes resided in the most mobile part of the stationary
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phase where they could be enveloped by the flexible bonded 
chains if their size was appropriate. No volume parameter 

was observed in the regression equations for the shorter 
n-alkyl chains.

(iv) Phenylsilica was shape-selective towards substituted 

benzene solutes as indicated by two additional terms, 

volume and connectivity.
(v) Phenylsilica appeared to undergo a phase transition 

at 40% methanol in water which increased the hydrophobic 
surface area of the bonded ligands.
(vi) Cyclohexylsilica could not be modelled successfully 

with substituted benzene solutes.

(vii) The 3-blocker test compounds were retained 

indefinitely on octyl-, phenyl- and cyclohexyl-silica 
through silanol interactions, unless tri-n-butylamine was 
added to suppress retention. Pretreating the sorbent with 

either plasma protein solution or fresh plasma also masked 

silanol behaviour. Use of tri-n-butylamine as well as 
pretreatment with the biological matrix aided fast elution 

of the solutes.
(viii) The three selected bonded phases for 13-blocker 

probes were all shape-selective, although octylsilica was 

not a suitable sorbent for modelling the retention 

behaviour of these solutes as the correlation between log 
k' and the selected physicochemical parameters was poor. 

Excellent correlations were achieved with the cyclic 

sorbents.
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The retention prediction equations derived for 

phenyl- and cyclohexyl-silica with the 3-blocker 

compounds could be used to either predict log k' for a 
particular chromographic system, or more useful for SPE, a 

suitable eluent or sorbent could be selected by setting log 

k' at 1.8 for retention of a solute, and at 1.6 for 
elution, thereby allowing prediction of suitable systems 

for method development.
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C H A P T E R  O N E  

THE CHROMATOGRAPHIC SYSTEM

Introduction and Aims
Most pharmaceutical and toxicologica1 analyses 

require a sample clean-up step before quantitative detection 
of a drug by such methods as high-performance liquid 

chromatography (HPLC), gas chromatography (GC) or mass 
spectrometry (MS). As the quantity of analyte in the sample 
is often less than a few microgrammes the extraction method 

must remove the majority of matrix and interfering 

components as well as preconcentrate the analyte.

The principle behind the different techniques 

available is basically the same - to retain the analyte(s) 

of interest allowing interfering compounds to be removed 

with an appropriate solvent. An important class of analyte 

in toxicology is drug substances, which are often organic 

and therefore soluble in organic solvents such as methanol 
or acetonitrile which allow concentration by evaporation. 

The phase which retains the analyte can be a 

water-immiscible solvent e.g. ethyl acetate as in the 

popular 1iquid-1iquid extraction (LLE), a solid phase such 

as XAD-2 which is a polystyrene medium capable of removing 
proteins, fats and lipids, porous polymer beads for urine 

extraction or inorganic porous materials which depend on 
adsorption of the drug. The latter group includes 

diatomaceous earth, magnesium silicate, alumina and
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charcoal, but the most widely used sorbent is silica because 
it can be easily modified with non-polar, polar and 

ion-exchange substituents to produce highly stable, 
non-swelling stationary phases. Termed "bonded phases", 
they allow a much wider range of extraction capabilities 
than other adsorbents due to the different retention 

mechanisms of the attached group i.e. hydrogen-bonding 

(polar). Van der Waals (non-polar) and ionic interactions.

Bonded phases have been routinely used as HPLC column 
packings for well over ten years and recently many novel 

solid-phase extraction (SPE) techniques have been developed 
which utilise the modified silicas for sample clean-up. A 

small quantity of bonded material (100-500mg) is packed into 

a polypropylene cartridge with a solvent capacity of l-5ml. 

Application of positive pressure or a vacuum of 10-15 mm Hg 

draws the sample or solvent through the sorbent bed, 

normally chosen to retain the analyte, allowing the matrix 

to be washed off. Because the volumes of sample and elution 

solvent(s) required are of the order of 1ml, a fast and 

highly efficient method of extraction and preconcentration 

is available.
SPE has a number of advantages over conventional 

LLE; the use of a bonded silica phase and a solvent 

eliminates emulsion formation between the two immiscible 

solvents, common in LLE, which results in loss of analyte; 

the large volume of organic solvent utilised by LLE is often 
hundreds of millilitres compared to the few millilitres used 

in SPE; single-step extraction compared to the multiple
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back-extractions often required by LLE; the ability of SPE 
to allow separation of a drug and its metabolites which 

cannot often be achieved successfully by LLE; successful 

automation. Hence SPE is more efficient than LLE in terms 

of increased amount of analyte extracted from the endogenous 

material and reduced analysis time and cost [1].

Many SPE methods have been developed for a wide range 
of analytes of toxicological and pharmaceutical interest

[2-8] and although SPE is easy to use in terms of extraction 
technique, the fundamental principles are not fully
understood. The bonded phases used for SPE are very similar

to those developed for liquid chromatography (LC) and 
therefore LC theory can be applied in understanding the 

retention/extraction mechanism in SPE. A large amount of 

research has been directed to bonded phase theory over the 

past ten to fifteen years yet only a basic understanding of 

the retention/extraction mechanism of SPE has been gained. 

It is well established that as well as a primary interaction 

between the bonded moiety, be it non-polar, polar or 

ion-exchange, and the solute/solvent, there exists a 

secondary weak polar or cationic-exchange interaction

attributed to unmodified silica surface hydroxyls. The 

ability to predict solute/solvent/sorbent interactions would 

improve development of new extraction procedures for SPE, 

especially for basic solutes which are retained by the 

excess surface silanols present on bonded phases. The 

secondary interaction is undesirable if its influence on the 
analyte cannot be predicted, but if it can be controlled an
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extra degree of specificity is available to improve 

extraction. The role of free silanols is still highly 
controversial in terms of theory and more discussion will be 
given in the following section.

Aims
The following research work was intended to provide a 

further insight into the bonded phase retention mechanism by 

elucidating the physical and chemical characteristics of a 

solute which are most significant in influencing retention 

behaviour. Initial experiments to study the effect of 
different bonded sorbent substituents and mobile phase 

components on the retention times of a number of substituted 

benzene compounds were undertaken by HPLC. Quantitative 

strueture-retention relationships (QSRR) were derived by 

statistical linear regression analysis to relate retention 

behaviour to solute descriptors including physical 
parameters (for example dielectric constant, melting and 

boiling points) and molecular parameters (for example dipole 
moment, molecular volume). Retention times were then 

collected for the 6-adrenergic receptor antagonistic drug 

propranolol and several of its analogues. Remodelling the 

equations for the 6-blocker compounds enabled a 

relationship to be established between their physicochemical 

properties and retention behaviour. The effect of blood 

proteins on the QSRR of the test compounds was also studied.
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1.1 The Bonded Phase
Stationary phases used in gas and liquid 

chromatography must be thermally and hydrolytically stable, 

respectively, to withstand the chromatographic

environments. Carbon, alumina and silica [9,10] have all 
been used as stationary phase sorbents, but in their

unmodified forms they are neither very reproducible in 

performance nor highly selective [11].
In the late 1960's Aue and Hasting [12] prepared

surface-bonded silicones by reacting activated silica with 

mono- and di-methylchlorosilanes. Use of alkoxy- and 
organo-silanes gave bonded phases a new dimension by 

allowing non-polar, polar and ion-exchange groups to be

bonded to the silica through surface hydroxyl groups. These 

phases offered a much wider range of selectivity 

capabilities due to the unique character of each one.

The following sections describe the types of bonded 

phase in more detail by discussing those aspects which

influence their behaviour such as the properties of the 

silica substrate and their mode of synthesis.

1.1.1 Silica
Silica is an amorphous s i 1icon-oxygen polymer with a

2large specific surface area (50-400 m /g) due to its high 
porosity (figure 1). Exposed silicon atoms at the surface 

are readily hydroxylated to form acidic silanols which can 

assume a number of configurations (figure 2). Steady-state 

luminescence spectroscopy studies have shown that the
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(a)

Crystall ine si l ica 

•-Si 0-0

(b)

Silicon atoms in silica

Figure 1 The structure of polymeric silica. (Wells AF.
"Structural Inorganic Chemistry" 4th E d . : Oxford 
University Press (1975))
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silanols are not evenly distributed and that the surface is 

heterogeneous [13]. It is through the silanol groups that 

organic substituents can be attached to the silica. To 

optimise this reaction and the resulting phase's efficiency, 
it is necessary to know certain physical and chemical 
parameters of the silica substrate such as the size and 
shape of the particles, specific surface area, pore size and 
silanol concentration. Small changes in these

characteristics will result in changes in the bonding 

density and bonded layer thickness.
The shape of the silica particles determines the ease 

with which a liquid will flow through the sorbent bed. 

Large, irregular particles of approximately 40 ;um are 

preferred for SPE to reduce resistance of solvent passage 
through the cartridge (figure 3). As the solvents are 

pumped through the stationary phase under much higher 

pressures in HPLC, spherical particles sizes of the order of 

5-10 pm are used to make the phases to increase the number 
of theoretical plates and consequently the efficiency of 
separation. Very small silica particles, termed fines, must 
be kept to a minimum as they block the frits used to hold 

the bonded phase in the column or cartridge, increasing the 
pressure of the system, and may even break through if they 

are smaller than the pores of the frit (~2 p m ) .
Surface area is an important influencing factor for 

the degree of modifier coverage. The maximum number of 

accessible unassociated surface silanols must be initially 

present to ensure optimum surface bonding although other
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determining factors include pore size [14-16], a fully

hydroxylated surface [17] and length of modifier chain [18],

all of which will be discussed later on. A well-used method

for measuring surface area is the Brunaur, Emmet and Teller 

(BET) method based on the extent of sorption of nitrogen or 

similar gas (at its melting point) into the porous silica

substrate. The specific surface area, SB E T , includes that 
within the pores and is calculated by

7 _ i oS ( m  /g) = X .A .N .10 xo Equation l(BET) * m m M

where X^ is the specific monolayer capacity (calculated 

from the gas's isotherm between two specified relative
pressures), A is the cross-sectional area of the gas used m
e.g. nitrogen or helium, and N is Avogadro's constant.

The porosity of the substrate is defined by the 

specific volume. The volume (V p) calculated from the

following equation:

Vp(cm3/g) = pH g - PHe Equation 2

PH g is the apparent density of mercury and PHe is the 

apparent density of helium [19]. By combining S andBti 1
V p , the mean pore diameter, D, can be calculated

4Vp
D(nm) =   . 103 Equation 3

SBET



-  11 -

A major drawback with the BET measurement is that the 
gas molecules can penetrate into much smaller pores than the 

larger, bulkier organosilanes thereby giving a greater area 
than is truly available for substitution. It is therefore 

wiser to quote mean pore diameter rather than volume for 
pore dimensions. This parameter also prevents volume errors 

from "ink-pot" pores with narrow openings which prevent 

access of modifier or solute [20,21]. Ideally pore 
diameters should be greater than 10-llnm for maximum 
efficiency; smaller pores prohibit entry and prevent longer 
alkyl chains from extending [14,20,21] while larger pores 
encourage lower bonding densities [16]. The average pore 
size used in manufacturing is 8-10nm , but this can only be 

used as a guide because polymeric phases which possess a 

large bonded-layer thickness require larger pore sizes than 

the monolayer monomeric phases [20,22].

The different surface silanol configurations have 

been under much scrutiny to understand which are the active 

bonding sites for chemical modification. Temperature 
studies coupled with Fourier transform-infrared spectroscopy 

(FT-IR) [23,24], GC [15] and adsorption isotherms [25] 

suggest that acidic isolated sites are the most reactive 

although more sensitive techniques such as diffuse 

reflectance-infrared spectroscopy (DRIFT-IR) [11] and

silicon-29 cross polarisation magic angle spinning-nuclear 
magnetic resonance (29Si CPMAS-NMR) [26,27] imply that

both isolated and weakly hydrogen-bonded geminal sites are 

involved. Vicinal silanols may react to a lesser extent



-  12 -

because of steric constraints [11].

Silanols are present in the bonded phase even after 

extensive surface modification as steric restrictions 
prevent 100% reaction completion. Excess silanols are 

potential acidic, hydrogen-bonding sites capable of 

retaining basic and some acidic solutes. This behaviour

will be discussed more fully in the following sections.

1.1.2 Chemical Modification
Bonded silica stationary phases for SPE and LC can be 

synthesised by similar surface-modifying reactions. They 
are superior to unmodified silica as they provide a more 

homogeneous chromatographic environment with better
efficiency and enhanced selectivity. The groups bonded to 

the sorbent are normally organic and the modified silicas 
are categorised into three groups relative to the primary 

interaction exhibited by the attached organo-1igand:

non-polar e.g. n-alkyl chains, polar e.g. cyanopropyl, or 

ion-exchange e.g. benzene sulphonic acid. Each of these
classes has a different solute retention ability which will 

be discussed more fully in Section 1.1.3.
Surface-modifying reactions are performed with 

organosilanes either as a gas or as a liquid. 
Organoalkoxysilanes are preferred for synthesising polar 

phases while organochlorosilanes are often used to prepare 

the non-polar phases [16,28]. The characteristics of the 
resulting phase will be dependent on the functionality of 

the organosilane, which may possess a single bonding site as
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with monofunctiona1 reactants, or multiple bonding sites for 

polyfunctional compounds as shown in figure 4. It is only 
physically possible for monofunctional modifiers to form a 

monolayer on the surface via a 1:1 reaction with an 

accessible active site, but careful control of reaction 
conditions is necessary to maintain a monolayer when using 
bi- or tri-functional organosilanes. Phases synthesised 

from multifunctional organosilanes will possess multiple 

anchorage sites, although even with trifunctional 
substituents the maximum number of bonding sites never 

reaches three because of steric hinderance [29]. As these 

reactants have more than one hydroxyl or chloro group, the 
organosilane molecules will bind to each other to build a 

polymeric network. The two structures of the bonded phase 
each have their advantages and disadvantages which need to 

be weighed up when choosing a phase for a specific 

separation. Monomeric phases are preferred by research 

workers as they have a more defined structure referred to as 

'brush' layers. They are easier than polymeric phases to 

synthesise reproducibly and possess better separation mass 

transfer. However, for commercial purposes polymeric phases 

are easier to manufacture as the synthesis does not need to 

be free of water - in fact water promotes the reaction. 

Polymeric coverage appears to enhance selectivity because of 
the increased amount of modifying ligand exposed to the 

solute [22].
Thermal pretreatment of the silica is necessary 

before bonding takes place to ensure the optimum number of
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reactive silanols. often quoted as 7-8 jjmol/m2 [19,17].

Heating the silica to around 130 °C will remove

surface-bound water which promotes condensation

polymerisation of the organosilanes and reduces the

reactivity of the silanol groups. It is recommended that
the sorbent is heated to a much higher temperature to remove

as much physisorbed water as possible from the microporous

structure. Van der Venne ejt al̂ . [30] recommended a

temperature of 600 °C after studying how thermal

pretreatment affected pore structure, resulting carbon

content and unreacted silanol concentration while another

group found that temperatures up to 850 °C did not further

affect the substrate structure [26]. At such temperatures

the surface was dehydroxylated, creating siloxane groups
such as = = S i ^ ° ^ S i = = ,  which upon rehydroxylation with

boiling water over a period of a few days provided a more

homogenous cross-section of reactive silanols. Kohler's

group observed that the rehydroxylated surface silanol
2concentrations did not exceed 6.5 jjmol/m with water alone

[31] and showed that treating the silica with nitric acid

before boiling in water increased the concentration to
2around 7 jjmol/m , which is nearer the assumed value of the 

original silica before treatment. However, because of the 

extreme conditions involved such thorough pretreatment is 

often impractical in terms of time and in most cases it is 

sufficient to heat the silica to 130-140 °C where 

negligible surface water is present. It is critical that 
water is removed from the reaction vessel if a monomeric
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phase is to be synthesised. All glassware must be 

thoroughly dried and is often treated with 

trimethylchlorosilane (TMCS) to block any possible reactive 
sites to which the organosilanes will attach themselves. If 

organochlorosilanes are used, dry pyridine is often added to 
remove the hydrochloric acid produced which helps the 

reaction to proceed. Multifunctional silanes have more than 

one possible binding site as depicted in figure 5(b). If 

excess water is present during the synthesis, a polymeric 
organic layer will result.

Undesirable reactive silanols are always present 
after modification even after the most careful work-up. 

Some sites are inaccessible due to steric hindrance of the 

large bulky organosilanes or because the silanols are 

situated in narrow pores. Water will hydrolyse ==Si-Cl 

and E=Si-OR sites forming more silanols. This gives all 

bonded phases unwanted potential sites for hydrogen-bonding 

derived retention of some acidic compounds such as benzoic 

acids and of basic solutes. This is especially troublesome 
in n-alkyl-modified phases as all the polar sites should be 
removed to create a totally non-polar environment. An 

effective method, though not totally successful, to reduce 

the number of excess silanols is by chemical treatment after 

synthesis. This is termed end-capping. Using a similar 

organosilane to the bonded organosilane moiety, such as 

TMCS, is effective as the chemical environment will not be 
drastically altered and a silanol-reactive, small molecule 

of this type is able to penetrate the polymeric network.
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However, as Lochmuller and Marshall pointed out [32], the 

production of hydrochloric acid is detrimental to the bonded 

surface as it will attack siloxane bonds causing them to 
open up and form more acidic silanols. TMCS can be used to 

end-cap phases which will be used to separate acidic or 
neutral compounds, but these treated phases are not suitable 

for basic or benzoic acid solutes. They suggested using 

hexamethyldisilazane as the reaction by-product, ammonia, 

will further reduce surface polarity. One disadvantage is 

that the surface will have a greater chemical heterogeneity 

because of the different species present.
Trimethylphosphine has also been proposed as the 

phosphine produced is harmless with regard to the phase, and 

with careful handling the toxic gas can be removed safely 

[33]. Another approach involves treating the silica after 

rehydroxylation with an end-capping compound such as 

trimethylmethoxysilane or TMCS before modification. By 
doing this the most reactive silanol clusters will be 

blocked and the remaining silanols are free to bond with the 

appropriate organosilane [11,34]. It must be remembered 
that chemical pretreatment will result in long-chain alkyl 

phases with reduced carbon content because a significant 

amount of short chains will already occupy a number of 

active sites.
Sorbent parameters and the synthetic method used will 

be reflected in the overall performance and characteristics 
of the stationary phase and this will be reviewed in the 

subsequent section.
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1 -1 *3 - Characteristics of the Bonded Phase

Commercially manufactured bonded phases with the same 
nominal substituents exhibit significantly different solute 

selectivity capabilities [35,36], Such diversities exist 

because of subtle variations in physical and chemical 

properties among silica substrates. The overall efficiency 
of the modified silica as a solid-phase extraction sorbent 

is sensitive to these differences and changes in separation 
performance are observed even between batches from the same 

manufacturer [37]. Character differences are also a result 
of the synthetic method used, which affects the extent of 

surface coverage and amount of carbon in the bonded layer. 

Most commercial bonded phases are polymeric as the reaction 

conditions are less stringent than those for monomeric 

phase. Researchers, however, prefer monomeric phases for 

studying the behaviour of bonded phases as they are easier 

to characterise because polymeric phases made from bi- and 

tri-functional reagents possess unreacted chloro or methoxy 

groups which are easily hydrolysed in aqueous solvent [38]. 

Polymeric layers therefore change in the chromatographic 

environment.
Fundamental differences exist between monomeric and 

polymeric phases. True monomerics are attached to the 
silica by only one ether link via a surface silanol. 

Non-polar monomeric n-alkyl bonded chains can be visualised 
in a "brush-like" conformation [39] which under certain 

temperature and solvent conditions collapse to form randomly 

distributed "droplets" [40]. Using carbon-13 CPMAS NMR to
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study molecular movement of monomeric octyl- and octadecyl- 

silicas, Sindorf and Maciel found that motion is negligible

near the silica anchorage point, but increases along the

length of the chain towards the unattached end [41]. Octyl 

chains possess maximum movement around the seventh and 

eighth carbon-carbon bond whereas octadecyl chains reach 

maximum mobility about the eighth and ninth carbons, 

possibly because of restricted freedom imposed by the radius 
of movement around the end of the long chains. Polymeric 

phases are more motion-restricted due to multiple bonding
between the modifier and substrate and intermolecular
interaction between the modifying ligands [42]. Such phases 

are much harder to quantify as they possess both monomeric 

and complex polymeric character [43]. A typical polymeric 

layer is depicted in figure 6. Character differences 

between polymeric and monomeric phases become less obvious 

when particular n-alkyl chain lengths are used in their 

synthesis. Polymeric phases have been noted as exhibiting 
monomeric character when chain lengths are small while 
monomeric phases with greater than thirty carbons in the 

functional substituent show similar behaviour to polymeric 

phases with eighteen carbons in the ligand [44].
Solute retention is a function of the bonded phase 

structure although several research groups disagree over the 

phase property responsible. Sentell and Dorsey [45] 

conducted studies with phenyl and methyl compounds on 

monomeric phases and reported that selectivity relies on the 

degree of alkyl chain ordering. Two other research groups
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Figure 6 Cross-section of a polymeric bonded silica phase
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found selectivity to be dependent on extent of surface 

coverage [46,47]. Sander and Wise proposed that overall 
phase thickness is the determining factor from work that 

highlighted selectivity differences between monomeric and 
polymeric n-alkyl phases through changes in bonded layer 

thickness [44]. They found that the thickness of the bonded 

phase determines selectivity; monolayer thickness depends 
only on chain length whereas selectivity by polymeric layers 

is related to both chain length and degree of 
polymerisation. Lochmuller e_t a_l. [40] reported that alkyl 

chain lengths of more than twelve carbons are selective 
towards benzene solutes as the chains can envelope the 

solute molecules thereby enhancing non-polar interactions. 

Substituted polyaromatic hydrocarbons (PAH) used in the 
study were too large for such enclosure and some of their 

surface area was not exposed to the alkyl chains of the 

lengths used. Other groups have also noted that large, 
hydrophobic solutes such as PAH need to be enveloped by the 

n-alkyl chain for optimum retention and selectivity 

[45,48]. There is, however, general agreement that 

polymeric phases exhibit better selectivity than monomerics 
[43], particularly for PAH solutes [22,44,49]. A study on 

the effect of percentage carbon loading and length of 
n-alkyl chain on the retention behaviour of polar phenols 

and non-polar PAH solutes was undertaken by Hennion, Picard 
and Caude [50]. Both series of compounds were found to reach 

maximum retention at 15% carbon (w/w) octadecylsilica, but 
differences were apparent when the chain length was altered.
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PAH experienced an exponential increase in retention as the

number of carbons in the ligand increased while phenol
solutes gave linear plots for retention capacity ratios

versus length of chain. Selectivity for both groups

improved as the non-polar character of the phase increased

with chain length. This work highlights how differences

between batches can alter phase retention character. If
n-alkyl chains are less than four carbons in length, more

than one retention mechanism will prevail via accessible
silanol and non-polar interactions, giving rise to

unexpected retention behaviour [47]. Such differences can
be utilised to separate a series of non-polar solutes with

subtle variations in polar character; polar groups are

capable of hydrogen-bonding to silanols thereby increasing

their retention times to varying extents.
Quoting percent carbon loading (P ) for comparisonc

of different bonded phase samples is not recommended as it
does not allow for surface area differences. More widely

accepted is the combination of P c with other

experimentally-determined sorbent characteristics to
calculate the degree of surface coverage, N, in micromoles

2of modifier per metre of silica.

PcN ( jjmol/m2 ) = __________________  -106 Equation 5
[1200 nc-Pc (M-l)JS [51]

where n is the number of carbon atoms in the substituting c
molecule, M  is the substituent's molecular weight and S is
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the surface area of the unmodified silica (m2/g). 

Spectroscopic methods have also been used to measure surface 

coverage. Sindorf and Maciel employed silicon-29 CPMAS NMR 

to estimate extent of coverage for both monomeric and 

polymeric phases [52]. Spectral intensity differences 
between the unmodified silica and the bonded phase related 

to the extent of modification and 6-value shifts indicated 

degree of polymerisation. Silica-bonded charge-transfer 

groups have been quantitatively examined by photoacoustic 
spectroscopy [53].

The degree of modification determines the motional 
freedom of a bonded phase. Clark and Lai studied coverage 

effects on the behaviour of monomeric phases [54]. They 

observed that as monomeric coverage increases, the 

self-associated, collapsed chains uncoil by repulsion. The 

thickness of the bonded layer therefore alters with 

coverage. It has been suggested that the depth of the layer 

influences solute selectivity [44] which would account for 

selectivity variations among phases prepared by different 

workers and manufacturers. Polymeric layers become 

motion-restricted when coverage is high [39] with extent of 

bonding dependent on silica pore size [20]. If the pore 

diameter is too small, coverage is less than optimum as 

organosilane access is restricted. Such phases resemble 

monomeric phases in behaviour [22,43]. However, large pores 

encourage greater polymerisation and the overall pore size
o

is decreased [21]. Sander and Wise found that a 300A pore 

diameter was required for a good polymeric coverage of
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5 jjmol/m . They suggested that monomeric coverage should 

be independent of pore size as long as the pores are large 

enough to allow chain extension e.g. 21A for octadecylsilica 
[20].

Dynamic alterations of the bonded chains can be

induced by changes in temperature. Such transitions alter

the environment to which a solute is exposed during

chromatography [55]. Gas chromatography studies on changes

in solute retention times (In k') have confirmed that

densely bonded n-alkyl phases experience a motional

transition over a narrow temperature range dependent on the
length of the organic chain [55-57]. As the temperature

increases, solute retention increases until the onset

temperature, T . This transition is represented by a

sinusoidal drop in the linear plot of In k' versus 1/T.
Below T , the chains self-associate and the solute is o
eluted relatively quickly. When sufficient thermal energy 

is put into the system, the chains reorientate and become 
more mobile. When Tq is reached, the phase assumes a more 

stable conformation. The chains retain some degree of 

conformation when thermal energy is removed. Solute and 
solvent molecules in liquid chromatography are exposed to a 

different bonded phase environment when the temperature is 

equal to or greater than T , which may increase polar 

solute retention through exposed silanols. The chains 

cannot relax back to their original relaxed state when the 

thermal energy is removed from the system after reordering 
[56]. TQ varies with chain length and solvent [58].
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Incremental Tq changes of +10 ° per methylene group were 

observed for alkyl chains between eight and ten carbon atoms 
in length [56]. At room temperature and in aqueous, 

nonsolvating conditions, octadecylsilica is in a collapsed 
state and solutes are retained through entrapment and 
partitioning rather than adsorption.

A range of functional groups can be bonded to silica 

as shown in figure 7. The different primary interactions 

exhibited by the functional groups will dominate the 

character of the bonded silica and bonded phases are 
normally chosen for a particular extraction on this basis. 

All of the bonded phases exhibit secondary weak cationic 

exchange or non-polar capabilities to varying degrees 

through non-bonded, exposed silanols or n-alkyl chains (for 
example, from end-capping reagents or chain extensions to 

prevent substituted polar groups from interacting with 

exposed surface silanols) respectively. Many organic 

analytes in toxicology are ionisable and at the appropriate 

pH (designated by the pKa value(s) of the analyte) will 

become relatively non-polar, making octyl- and 

octadecyl-silicas popular choices for SPE and HPLC. Such 

phases are rather non-selective and therefore suitable for 

general drug screens which remove most organic and other 

non-polar compounds allowing polar endogenous material to be 

washed away with aqueous solvent. Unless the analyte has to 

be eluted in a solvent suitable for subsequent 
derivatisation or quantitative analysis, the bonded phase is 

normally chosen to retain the analyte(s) non-selectively.
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The retention/elution behaviour of the analyte(s) is then 

controlled by the solvents chosen. Selectivity effects of 

the mobile phase solvents will be discussed in the following 

section. Careful choice of bonded phase, solvents and the 

use of both primary and secondary interactions make HPLC and 

SPE highly versatile separation and extraction techniques 
respectively.

1 •2 The Mobile Phase

Liquid chromatography is used to separate components 

in a liquid sample by distribution between two phases. The 

phases may be two immiscible solvents e.g. water and a

lipophilic organic solvent as used in L L C , or a solid phase 

and a liquid phase as in thin layer chromatography (TLC),

SPE and HPLC which employ solid supports such as silica and 

alumina. Separation by LLC is described as partition 

chromatography because the sample components will disperse 

in either one of the two solvents depending on the ability 

of each liquid to solvate the compounds. The mechanism by 

which components are separated in TLC, HPLC and SPE was 

originally believed to be an adsorption process and the 

method is so named. In chromatography the sorbent is termed
the stationary phase because it is immobilised in the system

while the mobile phase, i.e. the solvents, move through the 

stationary phase by, for example, applied pressure, gravity 
flow or by capillary action. The sample is introduced as a 

solution to the chromatographic system. In HPLC the sample 

is injected into the continously flowing mobile phase
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whereas in SPE and TLC the sample is applied directly onto 

the stationary phase and moves through the system with the 

mobile phase under pressure or by capillary action 

respectively. The components in the sample pass through the 

system at different rates determined by their distribution 
between the two phases. Components which are attracted to 

the stationary phase are retained and subsequently eluted by 
the mobile phase in a time related to the degree of 

stationary phase-solute interaction. Retained solutes may 
require many column volumes of mobile phase to elute them 

and consequently their retention times, i.e. the time taken 
for a molecule to move through the system, are long. 

Sometimes the solute may be adsorbed so strongly that the 

mobile phase may have to be changed for elution to take 

place.

Unfortunately the retention mechanisms in adsorption 

chromatography are not as clear-cut as the name suggests. 

Both adsorption and partition processes are possible giving 

rise to much controversy over the principal interactions 

responsible for retention. An overview of proposed theories 

is given in section 1.3. Regardless of the mechanism by 

which the solute is retained, the degree of retention and 

rate of elution are dominated by the choice of mobile phase 

[48, 59]. The role which the eluent plays depends on the 

mode of separation. Both routine HPLC and TLC demand a 

solvent system capable of eluting the solutes within a 

reasonable time while, ideally, separating them so that the 

analytes are detected as a series of single peaks or spots.
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On the other hand, because SPE is used to extract analytes 

from a matrix, three eluents are required - one to enhance 

retention of the analytes by the stationary phase, thereby 

immobilising the molecules during sample application, one to 

wash away endogenous material while keeping the analytes on 

the sorbent and another strong enough to elute the retained 

components in a single step (figure 8). The stationary and 

mobile phases in SPE should promote "digital chromatography" 

[60], that is, the analyte is either fully retained 
(stationary, "off") or eluted (mobile, "on").

1.2.1. Effect of Solvent on the Bonded Phase
As mentioned in section 1.1.3, the sorbent is usually 

chosen before the mobile phase unless special requirements 

dictate otherwise. Single solvents and combinations of 

solvents with varying elution strengths allow a wide scope 

in the choice of an appropriate mobile phase. Mobile phase 

selection will depend upon the primary interactions 
exhibited by the solvent components as well as those from 

the solute and stationary phase. Enhancement of attraction 
between analyte and stationary phase is desired in SPE 

during the loading stage so the sample application solvents 

must encourage solute-sorbent interaction. Polar phases 

including unsubstituted silica, diol- and aminopropyl-silica 

will attract solutes capable of hydrogen-bonding and 
dipo1e—dipo1e interactions. A non-polar solvent such as 

hexane will therefore facilitate retention on polar phases. 
Likewise non-polar, n-alkyl-bonded silica will show greatest
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affinity for solutes which exhibit Van der Waals or 

dispersion forces. Suitable solvents are polar e.g. 

methanol and water. Conversely. solvents capable of 

breaking the solute-sorbent bonds are used as eluting mobile 
phases.

The most popular solvents employed in reversed-phase 
HPLC (where the modified sorbent is less polar than the 

mobile phase) and SPE (using non-polar modified sorbent) are 
polar, specifically methanol, acetonitrile, tetrahydrofuran 

(THF) and water. The organic solvents (termed "organic 

modifiers") are miscible with water to give aqueous binary 
phases suitable for most reversed-phase HPLC and SPE 

applications. Another important property of the organic 

modifiers is their ability to solvate the non-polar bonded 

chains. This "conditioning" effect is necessary to solvate 

the bonded chains so that they are in their fully extended 

or swollen conformation to maximise mobile phase component 

incorporation and solute retention [61J. When the bonded 

phase is dry or exposed to a non-wetting solvent such as 

water, the hydrocarbon chains remain disordered and 

collapsed [58,62] and HPLC peaks show strong fronting, 

suggesting minimal solute contact with the shrunken bonded 

phase [48]. intercalation of polar organic solvent 

molecules between the chains encourages chain extension 

because the solvent can distribute throughout the bonded 

phase network, overcoming interchain attraction. Monomeric 

chains extend when conditioned whereas polymeric phases 
swell [42,46]. As long as the bonded phase is prevented



- 33 -

from drying out totally, it will remain solvated when 
different mobile phases are used. Although THF and 

acetonitrile are stronger solvating agents than methanol in 

terms of the amount of energy required for solvation

[61.63], methanol is the preferred conditioning solvent as 
it tends to form a monolayer 0.6nm thick near the silica 

surface [48]. Acetonitrile and THF are adsorbed more 
strongly as they possess greater hydrophobic capacity and as 
a result create an undesirable multilayer to which solutes 
may be adsorbed in preference to the stationary phase 
[64,65]. Methanol also increases the motility of the 
organised, extended chains through hydrogen-bonding

[61.64]. It must be remembered that the conditioning 

solvents are actually bonding to a layer of adsorbed water 

on the silica surface and not to the sorbent directly [49], 

When aqueous phases are used after the bonded phase has been 
conditioned with an organic solvent, the highly polar water 

molecules will compete with and replace some of the 
solvating molecules [48]. A simple diagrammatic 
representation of the solvation of a non-polar sorbent is 

given in figure 9. If the percentage of organic modifier in 

the aqueous phase is low, the chains will collapse a little 

[66] and if a totally aqueous eluent is present, the chains 

cannot remain extended [62]. The chains then collapse and 

entrap solvent molecules [66,67]. Zwier conducted carbon-13 
studies on octadecyl- and octyl-bonded silica and the 
structure of the solvated stationary phase [63]. He 

observed that the stationary phase contained immobilised
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solvent molecules besides the bonded chains. The distance 

from the surface which could then be classed as the 

stationary phase actually extended past the length of fully 

uncoiled octadecyl chains (2.5nm). When an 80:30 

methanol:water mobile phase was used, the stationary layer 
was 4.3nm thick.

1.3. Behaviour of a Solute in the Chromatographic System
The properties and characteristics of both the 

stationary phase and the mobile phase in chromatography will 
affect the behaviour of a solute. The time a solute takes 

to pass through a liquid chromatographic system will reflect 

its preference for one of the phases - a short retention 

time (tr ) indicates preferred interaction with the mobile 

phase, a long retention time indicates preferred interaction 

with the stationary phase. In HPLC, the capacity factor, 

k', is normally quoted instead of t and is calculated by

= t r - t n Equation 6
to

where t is the time an unretained solute, such as a salt o
or radiolabelled mobile phase component, takes to pass 

through the column and corrects for delays caused by 

stationary phase packing faults and dead volume in the 

plumbing.
The principles behind reversed-phase LC solute 

retention have not yet been fully described by any one 

theory. It is now generally accepted that solute retention
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in a reversed-phase system does not occur by adsorption to 
the ends of the bonded chains alone as originally thought 

because the model does not allow for disordered, flexible 

n-alkyl chains, mobile phase effects or competition between 

the solute and the solvent layer. For a true partitioning 
process the bonded phase must behave as another liquid 
phase. Since the chains are anchored at one end, rendering 
them motionally restricted, and the bonded layer may only be 
a monolayer thick, partitioning cannot satisfactorily 

describe solute retention either.

In the late 1960‘s, Sinanoglu [68] proposed a theory 

to describe hydrophobic effects in biological systems. They 

described the process in terms of the so-called "solvophobic 

effect". Horvath ej: aĵ . applied the solvophobic theory to 
reversed-phase chromatography [69,70]. They included 

properties of the bulk solvent such as surface tension and 

dielectric constant, and solute properties such as surface 

area and dipole moment as well as assuming that a complex is 

formed between the solute and non-polar chains. The free 

energy changes associated with the solvophobic effect arise 

firstly from putting a solute into the mobile phase and 

creating a cavity amidst the solvent molecules and secondly 

from interactions between the solute and solvent molecules. 

The following relationship describes solute retention:

In k '  = 0 +
RT

AA(Nt + a) + NAs7 (Xe - 1) + W Az_
S

+ In
RT

PnV
Equation 7 
[70]
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where </> is the phase ratio, A R  is the sum of surface areas

for the solute, the hydrocarbon substituent and the complex,

N is Avogadro's number, y is the bulk solvent surface 
-2tension (Nm ), Ag is the surface area of a solvent
2 qmolecule (m ), X adjusts macroscopic surface tension to 

molecular dimensions, a and W are solvent-dependent 
parameters, A Z is the sum of charge distribution and 

molecular size of the solute, the hydrocarbon ligand and the 

complex, £ is the bulk solvent dielectric constant and R, T, 
P Q and V have their usual meanings. All the terms, except 

the phase ratio, are measurable physical properties of the 
solute and solvent. Figure 10 illustrates the solvophobic 
effect in a reversed-phase system.

Recently Dill redefined partitioning by considering 
the severe conformational constraints imposed on bonded 
ligands [71]. Termed an "interfacial phase", the stationary 

phase has a high surface:volume ratio with greatest 

rotational freedom away from the substrate. The 

conformation of the interfacial phase is dependent on three 

factors - (i) geometry, density and length of the ligands;
(ii) a high degree of disorder; (i i i) exclusion of poor 

solvents from the interfacial region which is assumed only 

to contain solute and chains. Solvent interactions within 

the interfacial boundary were ignored on the basis that 
their incorporation requires an unfavourably high degree of 

organisation. However, attractions between a solute and 

silanol groups were included. Evidence supporting this 

model includes a linear relationship between In k' and log
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Bonded
Ligand

Bulk
Solvent

Solute

Y--

Complex Region

Silica

Attraction between solute and hydrocarbon ligand 
facilitated by decrease in molecular surface area 
upon complex formation
Attraction between solute and solvent through 
polar interactions

Figure 10 The solvophobic effect on the partitioning of a 
solute molecule between an alkyl chain and an 
aqueous bulk mobile phase.
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P, the solute's hydrophobicity (partitioning) coefficient, 
with a slope equal to 1 as predicted for a partitioning

mechanism, a reduction in retention as surface density of

substituents increases, and independence of solute 
selectivity from bonded chain organisation. Dill did not 

favour the solvophobic effect because it neglects creation 

of a cavity by solute molecules within the stationary 

phase. Although, for the reasons pointed out by Dill, the 
solvophobic effect is not definitive as a reversed-phase 
retention model, it is generally accepted as a satisfactory 
model to describe reversed-phase retention.

Jaroniec and Martire combined solute and solvent 

distribution models to define solute retention by a mixed 

mechanism of displacement (adsorption) and partitioning 

[72]. This thermodynamic approach included adsorbent 
heterogeniety and specific solute-solvent and

solvent-solvent interactions. Consideration of solvent 

molecule displacement from the surface solvation layer by a 

solute is an important factor in this model as the solute 

could be retained through such an interaction. If a polar 

solvent is used as an organic modifier, a layer of organic 

modifier will form a solvation layer as already discussed in 

Section 1.2.1. A solute may compete with an adsorbed 

solvent molecule for a retention site by either 
displacement, association, or both (figure 11) [48,49,65].
Solvent molecules weakly held in a monolayer, either because 

they do not hydrogen bond or are highly polar, but present 

in low concentration, may be displaced by a well-retained
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(a)

 t ♦ ♦ f f t  __--

Displacement of weakly polar solvent or low concentration 
polar solvent molecule by a solute

(b )

/  ■ /• • • • • X• • • • • • • •  • » »
Adsorption at an incomplete bilayer

(C)
X
\  X

Adsorption of a solute to a monolayer of hydrogen-bonded 
solvent

(d)

• • • • • • • •  • • • • X # « «
• • • • • • • •   • • • •  • • • •

Mixed interaction at the completed bilayer

Figure 11 Competition between a solute molecule (X) and
solvent molecules in (a) a displacement mechanism, 
(b)-(c) an adsorption mechanism and (d) a mixed 
interaction mechanism.
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solute molecule (k'>lo) (figure 11(a)). If an incomplete

bilayer is formed (figure 11(b)) or if the monolayer is 
created with strongly bound solvent molecules and a solute 

with k '<10 interacts with it (figure 11(c)) [73],
adsorption will occur. Both adsorption and displacement are 

possible if a complete bilayer of solvent is formed (figure 
11(d)). The solute will displace weakly held, secondary 
layer solvent molecules and adsorb to the newly exposed
primary layer.

The size and shape of a solute play important roles 

in determining the extent of retention. Solutes which are 

able to penetrate between chains, i.e. planar and linear 
molecules, will maximise the area of nonpolar surface

available to interact by Van der Waals forces and are

therefore retained to a greater degree than those which
cannot intercalate as far into the stationary phase

[46,74]. Berendsen and De Galan studied the effect of 
n-alkyl bonded chain lengths on the retention of various 

aromatic compounds [48J. They observed a critical chain

length, independent of mobile phase composition, necessary 
to achieve maximum interaction between the bonded phase and 
the solute. Solutes with large nonpolar surface areas 

needed longer n-alkyl ligands in order to be encompassed for 

maximum effect. Consequently their retention times were 

greater than those of small solutes which could be enveloped 

by much shorter chains [75]. The depth of stationary phase 
into which a solute can penetrate must also be considered. 
The polarity change in going from the surface of the silica
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sorbent to the unattached ends of the alkyl ligands is not 
constant, as depicted in figure 12(a). Schunk examined the 

different regions of the stationary phase using four 
different solutes - benzene, anisole, phenol and aniline 

[76]. He found that polar compounds such as phenol and 

anisole preferred to reside near the end of the alkyl chains 
with their polar substituent exposed to the polar bulk 

mobile phase. Benzene, being nonpolar, moved further into 

the stationary phase to the region of least polarity. 

Aniline was attracted even further down between the chains 

to the sorbent surface where the region of greatest polarity 
exists due to exposed reactive silanols and the solvated 
layer of methanol and water.

Under certain solvent pH conditions polar solutes, 

silica-surface bonded polar groups and unmodified, exposed 

silanols will be ionised. When the solvent pH is equal to 

the pKa value of an ionisable compound, the molecules will 

be 50% ionised and 50% unionised. If the solvent pH is 

increased by at least two pH units above the pKa of an 

acidic solute, or if the solvent pH is decreased by more 
than two pH units below the pKa of a basic solute, then the 
solute will be ionised and capable of interacting with other 

ionic species. Within the pH range range of pKa+2 for acids 

and pKa-2 for bases, the degree of ionisation varies 

dramatically. The use of a buffered mobile phase is 

therefore essential to ensure that an HPLC separation or 
bonded phase extraction can be repeated on different 

occasions under exactly the same conditions if the same
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Figure 12 (a) Changes in the polarity of the stationary phase
and (b) effect of such changes on the positioning 
of solute molecules within the stationary phase 
layer.
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batch of bonded silica is used.

Predicting solute behaviour in a reversed-phase 
chromatographic environment is complicated by the existence 
of unreacted, exposed hydroxyl groups at the silica 

surface. When silanols participate in the retention process 
either through hyrogen-bonding when neutral or by weak 

cationic-exchange interactions when ionised (pH>4), strong 
acids and bases will be retained. Under these circumstances 

retention is no longer due to the solvophobic effect alone 

and the retention mechanism becomes a mixed mode of polar 
and hydrophobic interactions. The mobile phase pH range 
recommended by silica bonded phase manufacturers to avoid 

degradation of the bonded phase is between pH2 and pH9, but 

within these limits many organic bases and acids, including 

silica-surface silanols, are ionised. Although an ionic 

analyte is readily solvated by an aqueous mobile phase and 

should therefore be eluted quickly from a reversed-phase 

system, it is instead preferentially attracted by the 
competitive silanol sites. The retention time of the solute 
is thereby greatly increased. In a multi-analyte SPE, such 

a strong silanol-solute interaction prevents a single-step 

elution of all the analytes while in HPLC the 
silanol-retained analyte is recorded as a peak with low 

resolution and a long tailing slope. One way in which to 

overcome silanol effects in reversed-phase chromatography is 
by ion-pairing. A water-soluble salt in the mobile phase 

interacts with an ionised analyte to form a complex which is 

more soluble in the organic modifier present in the mobile
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phase than the free analyte ion:-

A+ (aq) + B (aq) AB (o r g ) Equation 7

where A and B are either ionised analyte or mobile
phase salt species and AB is the hydrophobic complex formed 

through ion-pairing (a more detailed treatment of ion-pair 

chromatography theory is given in reference 77). Popular 

reversed-mobile phase ion-pairing additives include

counter-ions for carboxylic acid analytes, and chlorates for 
amines [78,79]. Addition of a salt to the mobile phase 

reduces analyte interactions with the silanols. Figure 13 

shows the changes in retention of an ionised analyte as the 

concentration of salt increases. The plot is typically 

U-shaped. Initially retention decreases as the

concentration of salt increases and ionised silanol sites 
are preferentially occupied by the salt ions rather than the 

ionised analyte until a minimum in analyte retention is 

observed at xmmol/1 of salt. When the salt concentration 

exceeds the optimum amount, the ionised analyte starts to 
form a complex with the oppositely charged salt ion. 

Hydrophobic interactions between the complex and nonpolar 

bonded phase increase retention [80]. Analyte retention is

counter — ions are often used in the chromatography of basic 

drugs possessing an amine group. The counter— ions do not 

complex with the analyte, but instead occupy silanol sites.

alkylsulphonates for basic analytes, alkylammonium

now solvophobic interactions. Tetraa1kylammonium
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Figure

BX

ION “ PAIRING] mmol/l 
AGENT J 1

Region A-X

X mmol 1

Region X-B

Decreasing analyte retention by silanols 
which are preferentially occupied by ion- 
pairing agent

Optimum ion-pairing agent concentration 
to achieve minimum analyte retention by 
silanols

Increasing analyte retention by solvo­
phobic effects as a hydrophobic complex 
forms between the analyte and ion-pairing 
agent

13 Changes in the retention time of an analyte 
through ion-pairing with a salt.
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effectively masking solute-silanol interactions. The 
analytes are no longer retained by the silanols and are 
readily eluted [81].

A solute in a chromatographic enviroment will 

experience a range of interactive forces with the stationary 

and mobile phases as discussed in this section. The extent 

of solute-solvent-sorbent interactions is primarily 
influenced by the physical and chemical properties of the 
solute. The following chapter discusses the use of such 

properties in deriving correlations between a solute’s 

retention time and its physicochemical descriptors in order 
to predict solute behaviour in reversed-phase liquid 

chromatography.
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C H A P T E R  T W O  

QUANTITATIVE STRUCTURE-RETENTION RELATIONSHIPS 

Introduction

Medicinal chemists have successfully predicted the 

biological activity of drugs and other compounds by using 
quantitative structure-activity relationships (QSAR) in 
which the physical and chemical (physicochemical) properties 

of the molecule are related to its bioactivity; [82,83]. A 
drug molecule iji vivo partitions between lipid-containing 

tissue e.g. brain, heart, kidneys, and aqueous extracellular 

fluid e.g. blood, urine. The degree of partitioning is 

dependent on the affinity of the drug molecules for either a 

hydrophobic or hydrophilic environment. Parent drugs and 

their metabolites which are hydrophobic will tend to remain 

in the lipid membrane whereas hydrophilic compounds reside 

mainly in aqueous areas and readily pass into the blood or 

ur ine.
Reversed-phase liquid chromatography has been widely 

used to derive QSAR because the non-polar stationary phase 

and polar aqueous mobile phase are good models for in vivo 

systems [84,85]. Relationships between the physicochemical 

properties of a drug and its chromatographic retention can 
be used to predict drug transport and disposition in the 

body as well as the chemical interactions which occur 

between the drug molecule and its biological environment. 
This information aids prediction of the effectiveness of a
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drug and also helps in the development and modification of a 

compound to maximise its bioactive potential. An example of 

HPLC applied to QSAR can be demonstrated by work conducted 

by Rittich, Polster and Kralik on the relationship between 

mono- and bi-functional phenols and their fungicidal 
activities [86]. They wished to show that the 

reversed-phase HPLC retention times of the substituted 

phenols were related to their fungicidal activities, C, by 

the hydrophobic descriptor, log P. Log P is called the 
partition coefficient and indicates the preference of a 

solute for either a hydrophobic or hydrophilic environment. 
Log P can be represented by the Hansch parameter, ir , if, as 

in this case, the test solutes have a common parent

structure. w represents the hydrophobicity of a

substituent group on the parent structure and was found in 

this study to correlate well with log(l/C) (correlation 

coefficient, r2 > 0.9).
Quantitative relationships between solute structure 

and chromatographic retention (QSRR) are analogous to QSAR. 

QSRR are useful in three senses: (a) prediction of the

retention capacity factor, k'. (b) measurement of
physicochemical parameters, and (c) understanding the 

retention process. Chen and Horvath [87] applied the

fundamental principle of QSAR, linear free energy 

relationships (LFER), to QSRR. The LFER are a less rigorous 

thermodynamic treatment of the energy changes associated 
with the chromatographic system than classical 

thermodynamics and are conceptually easier to interpret
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because they are expressed in chemical and physical 

parameters relating to the solute, solvent and sorbent. 

Consider the chromatographic retention capacity factor, k ‘. 
It is related to the thermodynamic equilibrium constant, K, 
by

k ‘=K$ Equation 8

where 4> is the phase ratio (the volume of stationary phase 
to the volume of mobile phase). The associated total free 
energy, A g °t , associated with solute-sorbent and 

solute-solvent interactions is given by

A g °t = -RT InK = -RT(lnk'- In <i> ) Equation 9

Therefore

-a.g °t
Log k' =   + log$ Equation 10

2.3 RT

where R is the gas constant and T is the absolute

temperature. A G°ip can be sub-divided into two

contributory free energies - that from the stationary phase,

A G° , and that from the mobile phase, A 6° . Thus 
o

-( A G°o + AG°W )
Log k , = _________________    + log Equation 11

2.3 RT

Free energy changes associated with the stationary phase are



- 51 -
assumed to be negligible, more from the point of view that 

the stationary phase is difficult to quantify in terms of 

associated energy rather than that the stationary phase does 

not contribute to the retention process. If the same mobile 

and stationary phases are used to determine log k' , 4? 
becomes a constant. Ultimately.

- AG°w
Lo9 k' =  —  Equation 12

2.3RT

In general terms, LFER assume that the free energy in 

a biological or chromatographic system is a linear sum of 
energetic contributions, namely hydrophobic, electronic and 
steric interactions. Kamlet et a_l. [88] have shown that 

solubility parameters can be expressed in these easily 

characterised LFER terms:

Log k' = a A + 13B + ) C  Equation 13

where A is the hydrophobic term, B is the electronic term, 

C is the steric term, and a. 13 and 7 are constants.
Chromatographic retention can therefore be described 

by a few physical and chemical solute properties which 

relate to the interactions a solute is involved in with the 

bonded phase and the mobile phase in chromatography. The 
general interactions described by LFER can be separated 

into two distinct groups; dispersive and inductive forces 
[89 90] Dispersive interactions can occur between
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non-polar molecules or between non-polar and polar 

molecules. They are defined by "bulk" parameters such as 

molar volume, molecular weight and the number of carbon 

atoms either in the whole molecule or in a substituted 

side-chain. Linear correlations between log k' and bulk 

properties for homologous (cogeneric) series of solutes 
with equal polarity imply that the dispersive forces are 
additive [90], However, different families of homologous 

solutes appear as a series of parallel lines on a graph of 

1°9 k 1 versus (bulk parameter) through differences in 
electronic and steric properties exhibited by the different 
families [91]. Electronic and steric interactions are 

termed inductive and, unlike dispersive forces, multiple 

polar/steric effects do not follow linear relationships and 

generally they cannot be added together e.g. dipole moments 

[92 pp.108]. Inductive parameters include dipole moment, 

hydrogen bonding ability and topological indices. These 

parameters are a measure of solute polarity. Retention 

behaviour of non-cogeneric solutes has been successfully 

correlated with a mixture of hydrophobic, electronic and 

steric parameters [93,94].
A number of physicochemical properties have been 

proposed as good descriptors for QSRR, and although a large 

number of research workers have achieved good correlations 

between retention and such parameters, no one relationship 
has been accepted as definitive of the chromatographic 

process. Some of the more important and significant 

parameters which have been used as physicochemical
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descriptors are discussed below.

2 • 1 Dispersive Parameters

Dispersive interactions are one of three types of 

Van der Waals forces and are called London interactions. 

They occur between molecules both with and without dipole 

moments, and are the most common interaction between two or 

more molecules. London interactions are long range and 

originate from the electric field generated by the electron 

cloud which surrounds the molecule. Because they are 

scalar, dispersive forces are additive.

Bulk parameters that define shape, volume and size 

of alkyl' chains have been shown to correlate well with 

retention data for homologous series of alkanes, alcohols 

and alkylbenzenes in reversed-phase chromatography 

[95,96]. Members of a cogeneric series with equal polarity 
should not be distinguishable by inductive forces which 

reflect polar properties. This allows selectivity amongst 

such groups of solutes to be based purely on differences 

between their bulk parameters [97]. Such relationships are 

important in reversed-phase systems because the non—polar 
q £ g molecule will determine the solubility of the 

solute in the aqueous mobile phase; the more non-polar 

character a solute exhibits, the less soluble it will 

become in an aqueous medium.

2.1.1 Number of Carbon Atoms
A parameter which has been used extensively to
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predict retention times in gas chromatography is the number 

of carbon atoms in the alkyl chain of cogeneric

hydrocarbons (nc ) which ultimately gave rise to the 
Kovats retention index [92, pp.50]:

log t'ri - log t'rc
Ii(T) = 100 x  + 100c Equation 14

lo9 t'r(c+l)'- lQg t'rc

where I^(T) is the Kovats GC retention index of a solute,
i, at temperature, T; t' is the corrected retention time
of a homologous standard with c carbon atoms; t' , , x isr (c + 1)
the corrected retention time of a second homologous standard 

with (c+1) carbon atoms and t' . is the corrected/ j. x

retention time of solute, i. Analogous retention indices 
for LC has been proposed by several other groups [98-101]. 
Jandera observed a linear correlation between log k' and log 

(nc ) when no polarity effects were operational between a 

pair of aromatic solutes [101]. Another group found
excellent correlation between log k' and nc for
hydrocarbons and PAH when the two series were considered 
separately [102]. Such observations allow the free energy 
involved in transferring a non-polar solute from the mobile 

phase to the stationary phase to be calculated in terms of 
each methylene group increment added to the substituent.
The enthalpy involved will be constant for n-alkyl chain 
substituents and has been quoted as 300 kcal/mol per 

methylene group [103]. However, non-linearity can occur
when either the number of carbon atoms in the n-alkyl chain
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of a cogeneric series of polar compounds is either less than 
2 or greater than 8, possibly due to changes in polarity 

group shielding as the alkyl chain increases in length [104].

2.1.2 Volume and Surface Area Parameters
Both volume and surface area relate to solute 

solubility which is one of the most important properties 
affecting reversed-phase liquid chromatography. Solubility 

is an indicator of the ease with which a solute can make a 
cavity within the structural network of the bulk mobile 
phase in order to be solvated. This largely depends on the 
size of the solute when no inductive forces are in play; a 
large non-polar solute requires more energy than a small 
non-polar solute to be solvated by a polar mobile phase. It 
may be energetically more favourable for a large non-polar 
molecule to interact with the non-polar bonded phase through 

dispersive interactions compared to breaking polar bonds 

between mobile phase components [105] and this will be 
observed as an increase in the retention time of the 

solute. The partition coefficient, log P, which represents 
the hydrophobicity of a solute. is strongly related to 

solubility. although other electronic factors are also 

involved (Section 2.3) [106,107].
The increase in retention of alkyl-substituted 

molecules as the non-polar side chain increases in length, 
shown by log k 1 versus nc plots, is a reflection of the 

increase in surface area [108]. The incremental surface 
area contribution made by the addition of a methylene group
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to the overall surface area of an n-alkane was used by 
Mockel e_t <rl. in the prediction of retention times of 
polar-substituted n-alkanes [91]. The enthalpy effects 

which are associated with the transfer of a solute from the 
mobile phase to the stationary phase can be measured from 
Van't Hoff plots of In k' versus (1/T) where retention is 
related to enthalpy, - A h , by the expression

- A H  AS
In k' =    +   + ln<t> Equation 15

2.3RT 2.3RT
[97,109]

The slope of a Van't Hoff plot gives - ah. The change in 
enthalpy between homologues of alkylphenols is linear [110], 
but it has been shown that - A h  is not constant between 
homologous alkylbenzene compounds because of 7r-electron

energy effects [103]. The length of the chain bonded to the 
silica sorbent does not appear to influence -A H and either 
octyl- or octadecyl-silica is suitable for such studies 

[111].
Volume and surface area are conformation dependent, 

one example being shown by work on six ethers [106]. 
Measurement of these properties therefore needs to be 
accurate. An early modelling technique called the 

Corey-Pauling-Koltzman (CPK) method used a scaled 
representation of the solute. The surface area was
calculated from the maximum number of relatively-sized water 
molecules which could be physically packed around a
styrofoam model of the molecule in its lowest energy form
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[92, p.88]. Bondi and Van der Waals group increments and
bond lengths, which are to be found in the literature, lend

themselves more readily to computer-assisted measurement of

size parameters [112]. The most common method of generating
computer-calculated parameters is by Complete Neglect of
Differentail Orbitals (CNDO/2). Volume is calculated by
CNDO/2 by sampling points within a box enclosing the
molecule which is input in its lowest energy conformation.

« 3The box is sampled at a density of 8000 p o m t s / A  if box
• 3 o 3 • 3is less than 50A , 1000 p o m t s / A  if between 50A and

125A3 , and 125 points/A3 if greater than 125A3 . 
Parameters calculated by the CNDO/2 method are highly 
dependant on geometry and the length and angle of bonds.

Other parameters such as molar refractivity, 

polarisability, melting and boiling points, and molecular 
weight are all highly correlated to volume and surface 

area. It is therefore wise to use only one of these 
descriptors in multi-parameter QSRR to represent size.

2.1.3 Parameters Relating to Shape
There are not many solutes whose retention times in 

reversed-phase LC appear to be related to their shape apart 
from polyaromatic hydrocarbons. Polyaromatic hydrocarbons 
(PAH) form a special class of aromatic molecules which are 
rigid and planar. They have received special attention in 

QSAR and QSRR because they are toxic by-products of the 
combustion of fuels and synthetic foams. The retention 
behaviour of methyl-substituted PAH [99,113] and various PAH
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which are found in coal fractions retention behaviour is 

shape-dependent [114], but simple descriptors such as the 
Verloop parameter are not sufficient. The Verloop parameter 
is a ratio of the length-to-breadth of a molecule (L/B). It 
is a simplified form of the Principal Elliptical Axes which 

serve to define the shape of a molecule in three dimensions 

by x, y and z coordinates. Other simple descriptors include 
the F-parameter created by Jinno and Kawasaki as a shape 
parameter for PAH [114] where

F = (number of double bonds) + (number of primary
carbon atoms) + (number of secondary carbon 
atoms) - 0.5 Equation 16

(0.5 is deducted if a non-aromatic ring is included)

Rohrbaugh and Jurs introduced a "shadow index" to define the 
shape of PAH. It is based on the three-dimensional 
structure of the solute in the x, y and z planes. The 
shadow area defines any two of these planes together [113]. 
This parameter appears to be more significant for 
unsubstituted PAH than for substituted PAH on a polymeric 
octadecylsilica phase.

Unfortunately none of these three examples of simple 
shape descriptors correlate well with retention behaviour by 

themselves. They are often used in conjunction with a 

topological index, specifically the connectivity index, x , 
developed by Kier and Hall in the mid-1970's from the Randic 
branching index [115]. A topological index defines the 
position, and often the type, of atoms in a molecule as a
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mathematical graph. This graph is represented by a 
numerical index. The simplest connectivity index, termed 
the "zero order' index (°x). is an index relating to the 
number of atoms in a molecule. It is calculated by

°X = Equation 17
A more useful connectivity index is the "first order" index, 
1XV . The postscript, v, indicates that the index is 

related to the valency of each atom in a molecule, but is 
often omitted because the index is assumed to be determined 
by this method anyway. Each atom in the molecule (except 
hydrogen atoms) is assigned a "5-value" indicating the 
number of bonds between the atom and adjacent carbon atoms 

or heteroatoms. Figure 14 illustrates the calculation with 
toluene and methyl-4-hydroxybenzoate. The index is 
calculated by

1X = 2Z(^ i5j)_0’5 Equation 18

where i and j are adjacent atoms. Heteroatoms have 
valency-related 5-values, e.g. a nitrogen atom in a nitrile 

group has a 5 -value of 5, but in a secondary amine the 
5-value is 4. 5-values for heteroatoms can be found in

Reference 115, pp.17.
The first order connectivity index is not strictly a 

descriptor of dispersive forces alone because it includes 
heteroatoms which participate in the retention process 
through inductive interactions. Electronic and steric
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c1
3 S' NS3

Xr 4 + 2 + _J__
/(3.3) /(4.3) /(4.1)

=2.411
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-Xs 2 + 4 + 2  +  X + 1 + i
A3. 3) /(3.4) /(4.4) /(4.1) /(4.6) /«!.§)

- 3.249

Note 1 Hydrogen atoms have been omitted
Note 2 Numbers beside atoms indicate their respective 

S-values•

Examples of caleuiaticn of the first-order caonnecfcivity tataf.
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parameters are therefore needed to describe polar 
interactions more fully and commonly-used inductive 
parameters are discussed below.

2.2 Inductive Parameters

Inductive interactions arise from another kind of Van 
der Waals force, the Debye interaction. A molecule which 
has an unequally distributed electron cloud is said to 
possess a "dipole moment". The dipole moment may be 

permanent if atoms in the molecule have unequal 
electronegativities, such as oxygen and nitrogen, or the 

dipole moment may be induced in a non-polar molecule by a 
neighbouring molecule with a permanent dipole (figure 15). 
The energy associated with an inductive interaction is ten 

times stronger than a dispersive interaction. 

Polar isability is a measure of the ease with which the 

electron cloud of a molecule can be distorted. It is 

actually a dispersive force because it is additive (scalar) 

and is highly correlated to volume.

2.2.1 Dipole Moment and £
The very fact that inductive forces are not scalar 

makes them hard to quantify for chromatographic 

interactions. The electronic environment of the mobile 

phase in a chromatography system is continuously changing 

while that of the stationary phase is both random and 

non-uniform through incorporation of mobile phase components 
and the heterogenic nature of the surface,. interactions of
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(a)

Distortion of electron cloud around butanal which 
has a permenent dipole moment.

(b)

Induced distortion of electron cloud around methane 
(to create an induced dipole) by a molecule with a 
permanent dipole moment.

Figure 15 Permanent and induced dipole moments.
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an inductive nature are highly orientation-dependent and it 
is very difficult at the present time to predict the 
position and orientation of a solute within such a random 
system. Dipole moments themselves have had relatively 
little success as polarity descriptors in QSRR, except for 
GC retention prediction [116]. This is mainly due to the 
fact that the dipole moment is a measurement over the whole 
molecule. As polar interactions are orientation-dependent, 
a more useful measurement would relate to the part(s) of a 
molecule most liable to interact by polar forces. Such a 
parameter, termed delta ( A ), was introduced by Kaliszan, 
Osmialowski and co-workers as a measure of the electron 
excess charge density distribution [90,117]. It is 
calculated from the difference between the two atoms in a 
molecule with the greatest electron excess and the greatest 
electron deficiency (figure 16). The charges on the 

individual atoms are generated by CNDO/2 calculations. The 

group found that A along with another CNDO/2-generated term, 
Et# for a diverse set of substituted benzene compounds 

could be satisfactorily used to predict log k'. Replacement 
of A with the dipole moment greatly reduced the correlation 
[90]. Et is, however, a very general descriptor of 

dispersive interactions, encompassing a number
of individually- determined bulk parameters and was only 
used in this example to show that chromatographic retention 
on a polymeric octadecylsilica phase is related to both bulk 

and inductive forces.
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Figure 16 Example of the calculation of the excess electronic charge 
distribution parameter, A.
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2.2.2 Ionisation Effects

An ionisable species can be classed as an acid, a base or an 
amphoteric molecule. An acid is a molecule which has a 
tendency to lose a proton and a base is a molecule which has 
a tendency to accept a proton. Amphoteric species such as 
amino acids have both a basic group and an acidic group. 

The strength of an acid or a base can be determined from the 

equilibrium constant, K, associated with the interaction of 
the species with water:

[H30 + ] .[A- or B+ ]
K =   Equation 19

[H20].[HA or HB]

where HA represents the acid species, HB the basic species 
and [] the concentration or activity of the species. As 
most measurements are made in dilute solution, tH 2°] 

constant. The equilibrium constant now becomes the acidic 
dissociation (or ionisation) constant, K . Taking the3
negative logarithm of K , the following expression is3

obtained:

pK. = pH + log ([A]/ [B]) Equation 203

where A and B are the acid and basic species respectively. 

pKa indicates the pH at which the solute will be 50% 
ionised and 50% unionised, i.e. the concentrations 

(activities) of the acidic and basic species are equal. The 
degree of ionisation of a solute changes rapidly within the
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difference of a couple of pH units from the pK value. Asa
a rule, an acidic solute will be at least 99% ionised when

pH > (pKa + 2) and for a basic solute when pH <
(pKa~2). The extent of ionisation is an important factor
in determining the aqueous solubility of an ionisable solute
in reversed-phase liquid chromatography. As a solute
becomes ionised to a greater extent, it will show a
preference for the aqueous mobile phase with respect to a
relatively non-polar stationary phase. This effect is very
important when considering the partition coefficient of a
solute in such a system (Section 2.3).

A substituent on a parent molecule may alter the

overall pK of the solute. The new pK can be a a
calculated using the Hammett constant, <r [118]

pKa (substituted molecule) = pKa ° +]£ o- Equation 21

where ° indicates the parent molecule, e.g benzoic acid, 
aniline. Different substituents have different a -values, a 
table of which can be found in Reference 118. The a -value 

of hydrogen is taken to be zero and is the reference 
substituent. A positive <r -value relative to hydrogen 
indicates that the substituent is acid-weakening 
(electron-donating) while a negative a -value indicates that 

the substituent is acid-strengthening (electron- 
withdrawing). Hammett constants are usually only quoted for 
substituents at the meta- and para-positions. Substituents 
in the ortho-position have too varied an effect on the pK

3
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of the parent molecule through hydrogen-bonding, steric 

effects and short-distance electric field effects to make 
them of any use in the simple prediction of solute pK^ 
from the above equation.

Ionisation effects represented by o are not suitable 
polarity descriptors when considered by themselves. Most 
often they are used in conjunction with other parameters, 
such as the partition coefficient, which are affected by the 

ionisation behaviour of the solutes with a range of 
different functional groups [94,119,120]

2.2.3 Hydrogen Bonding
In reversed-phase liquid chromatography where the 

mobile phase normally consists of water and an organic 
modifier, the hydrogen-bonding ability of a solute becomes 
relevant. A hydrogen atom in a molecule which is attached 
to an electronegative element, such as oxygen or a halogen, 
will create a highly polarised bond. The polarised group is 
known as a "hydrogen-bond donor" (HD). When in contact with 
an atom which has a lone pair of electrons, e.g. nitrogen, 
carboxylic or alcoholic oxygen, known as a "hydrogen-bond 
acceptor" (HA), a weak hydrogen bond is formed. Water 

self-associates through hydrogen bonding and this explains 
its high boiling point. Methanol is a popular choice of 
organic modifier because it exhibits both HD and HA 
effects. Thus a wide range of solutes can form hydrogen 
bonds with this organic solvent and, in reversed-phase 
liquid chromatography, the solute retention times should be
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reduced because of the favourable hydrogen-bonding 
interaction with the mobile phase components.

Jinno and Kawasaki [94], and Masuda et al.. [96] have 
demonstrated that the numbers of HA and HD groups are 
relevant when used as a descriptors in multi-parameter 
correlation equations. The solvatochromic terms, a and R, 

are more quantitative descriptors of HA and HD ability 
respectively, and indicate to a better degree the strength 

of the hydrogen-bonding ability of a solute than just the 
number of HA and HD groups [112,121,122].

As will be realised by now, descriptors which 
represent inductive forces are not a good choice for single 
parameter relationships with retention. Yet when used in 
conjunction with bulk parameters, a more complete picture of 

the reversed-phase retention process can be built up.
One very important parameter still to be discussed is 

the partition coefficient, log P. As will be shown, log P 

is a reflection of many of the dispersive and inductive 
parameters which have already been discussed in the 

preceeding two sections.

2.3 The Partition Coefficient, Log P
In a biological system a solute, such as a drug, 

partitions between hydrophobic (lipophilic) tissue and an 

aqueous liquid. The preference shown by the solute for 
either phase will be related to the physical and chemical 
properties of the molecule as already mentioned. The 
lipophilic nature of a solute is represented by the
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logarithm of the partitioning coefficient, P, which is 
expressed by

(Concentration of solute in 
the lipophilic phase) 

p - Equation 22
(Concentration of solute in 
the hydrophilic phase)

The greater the lipophilicity of a solute, the greater will 

be the concentation of solute in the lipophilic environment 
and P will be greater than one.

In order to model the biological environment for 

QSAR, an accurate representation of the interactions which 
would be exerted by both the hydrophobic and hydrophilic 
compartments was necessary. Conventional liquid-liquid 
chromatography was originally considered the best method for 
determining the partitioning coefficient. This method is 
known as the "shake-flask" method. Although a range of 

immiscible organic/aqueous systems have been tried, the most 
popular system is water and n-octanol. The n-octanol/water 
system has been adopted as the standard reference for 

partitioning behaviour and many compounds have been measured 

in this system [123].
If the solute is reasonably water-soluble, the sample 

is prepared in octanol-saturated buffer and the partitioning 

coefficient, P, is calculated by

A b - v aqp  -------------- x   Equation 23
v org

where A is the amount of solute present in the 6



- 70 -
octanol-saturated aqueous sample before partitioning between

the two phases, is the amount of solute in the aqueous
phase after partitioning, V is the volume of aqueousaq
sample used and v org is the volume of buffer-saturated
octanol added to the sample.

Log P only applies to unionised solutes. If the
solute is ionised, the partition coefficient is lower than 
would be expected because more of the solute will reside in 
the aqueous layer. The partition coefficient can be
corrected for ionisation effects and is then known as the 

dissociation coefficient, log D, if such a correction is 
used.

For basic compounds-
Log D = Log P - log [l + lot(PKa~PH )] Equation 24

For acidic compounds-
Log D = Log P - log [l -f 10T(PH~PKa)] Equation 25

It is important to note whether the lipophilicity of a 
solute was measured in the ionised or unionised form as a 

difference of two pH units between pK and pH would 

decrease log P by 2.01. Care should be taken when using 
literature values in this respect.

Log P and log D correlate linearly with log k' with a 

slope equal to 1 if the chromatographic system is identical 
to the n-octanol/water system. However, a linear 

relationship is not normally observed because of three 
restricting factors; (a) the silica-bonded alkyl chains do
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not act as a real organic liquid because the number of 
degrees of freedom is reduced through attachment to the 

sorbent, (b) the silica sorbent is a heterogeneous surface 
with active, exposed silanols acting as weak cation-exchange 
sites which will attract bases and strong acids, and (c) 
methanol is present in the mobile phase. The presence of 
methanol affects the chromatographic partitioning of solutes 
with polar substituents, e.g. phenols [119,124], which 
hydrogen-bond to the polar organic modifier thereby reducing 

both their retention time and partition coefficient. There 
are several alternatives to overcome such problems including 
coating of the stationary phase with n-octanol [125], using 

an organic amine and n-octanol in a phosphate buffer to 

reduce silanol effects [126] and using the Collander 
equation to account for the presence of methanol. The 
Collander equation has the form

Log P = Log k' + Log K Equation 26

where K is a constant relating to the equilibrium between 
the mobile phase and the stationary phase in the 
chromatographic system. Extrapolation of the plot (log k' 
versus % organic modifier) to 0% organic solvent is a 

popular way of reducing the error caused by the presence of 
the non-aqueous solvent and is often used as a means of 
determining log P. It is a more efficient and faster method 

of determining the partition coefficient than the 
shake-flask method. However, there are three limiting
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factors on measuring hydrophobicity by high performance 
liquid chromatography;

(a ) the physicochemical state of the solute.
Ionisation, as already mentioned, can reduce or

increase retention through either increased attraction of 
the solute for the aqueous mobile phase, interaction with 
silanols or intramolecular interaction between polar
functional groups which will make the molecule appear more 
hydrophobic [127,128].

(b) the percentage of organic modifier in the mobile 
phase.

The amount of methanol in the mobile phase is 
important as below 10% and above 50% (v/v) methanol in
water, the relationship between log k' and (% methanol) is 

no longer linear [106,124]. One reason is that high 

percentages of methanol increase the pH of the mobile phase 
by approximately two units which may ionise a solute which 
would not normally be expected to ionise in a particular 

system [129].
(c ) the solvent system used to measure hydrophobicity.

It must also be remembered that octanol and methanol
have different characteristics such as chain length and 
degree of polarity. Although log k ‘ versus (amount of 
methanol) is linear (within a certain range), log k ‘ has a 
quadratic relationship with acetonitrile [130,131]. At low 
% acetonitrile, the organic modifier is easily incorporated 
into the water network, but in greater quantities,
acetonitrile is not so readily accepted into the normal
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structure and the properties of the mobile phase change [95].

Relating the capacity factor to concentration of 
methanol (<p)

log k' = a <p+ log k'w Equation 27

where log k'w is the extrapolated capacity factor at 0% 
methanol and a is a constant. Such a relationship has been 

noted for caffeine and its metabolites [132] and 
benzodiazepines on a phenyl phase [133]. Opperhuizen ejt a l . 
used a solubility parameter, S, in place of the constant in 
equation 27, and found that the following relationship which 
held for alkyl and chlorinated hydrocarbons:

log k' = log k' - S <p Equation 28

[134]

The addition of a salt to alter the ionic strength of
the solvent system in either LLE or HPLC will also affect

partitioning through 'salting-out' effects which can reduce
the affinity of a solute for the hydrophobic phase and
thereby increasing log P, as demonstrated for carboxylic

acids with phosphate buffers [135].
In summary, the problems which arise between log

p and log PUDrn are: additional phase components inLLE HrLL
HPLC; immobility of the bonded phase in HPLC; different 
hydrogen-bonding properties exerted by methanol and silanols 

as compared to octanol in LLE.
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Attempts to predict retention from the influence of 

different solute substituents on solute hydrophobicity have 
been successful by employing Hansch parameters, 77 , where

71 = log PHX - log PH Equation 29

where log P^ is the n-octanol/water partition coefficient 

of a parent compound and log Puv is the partitionH a

coefficient of the substituted parent compound, tt is a free 
energy constant because it is derived from an equilibrium. 
Electron-withdrawing functional groups such as -OH increase 
solubility of the solute in water through hydrogen-bonding 

as do substituents with oxygen and nitrogen lone pairs 
[119]. The Hansch parameter has been widely applied as a

measure of the contribution of a functional group to 
partitioning behaviour, including anti-rheumatics [136], 

substituted benzene and phenol compounds [94] and pyridines 
[128]. Yamamoto et al.. replaced 77 with a solubility
parameter which could be used for a homologous series [109], 
but solubility parameters break down for polar solutes 
thereby reducing the applicability of the solubility 

parameter [137].
A similar substituent parameter was introduced by

Rekker [138]. Called the 'fragmental hydrophobic constant', 
f, it was intended to replace tt as f corrects for folding of 

long alkyl chains.

Log p = E  anf n Equation 30
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where a is the incidence of a given fragment in the molecule

and f is the fragmental substituent constant. Rekker1s
fragmental constant has been applied to the retention
prediction of aromatic acids [139], but D'Amboise and Hanai
found that solutes with small values of log , , e.g.y Rek y
Q-alcohols, did not correlate well with alkylbenzenes and
polyaromatic hydrocarbons [14QJ.

Solvatochromism is a phenomenon that relates changes 
in the spectrum, e.g. intensity, shape and position of peaks
in the spectrum of a molecule to changes in its

. * environment. Solvatochromic parameters include tt which
is an index of solvent polarisability, i.e. the ability of a

solvent to stabilise a charge or dipole by virtue of its
dielectric effect, a which represents the ability of a

solvent or solute to accept a proton (H-bond acceptor) and
13 which represents the ability of a solvent or solute to
donate a proton (H-bond donor) [121]. Kamlet, Taft and
fellow workers have applied the above solvatochromic

parameters to solubility:

Solubility, S, = cavity term + polarity term +
hydrogen- bonding term

i.e.
S = a + b(V/100) - c tt * - d/3 - e a Eguation 31

where V is the molar volume and a, b, c, d and e are
constants [88]. Leahy applied these equations to 
partitioning and retention prediction, using a
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computed-generated Van der Waals volume, V , instead ofvdv

• *molar volume as V is actually correlated with tt , 13 and
a [121,122]. He reported that such equations in the above 
form could be applied to a diverse set of substituted 
benzene solutes except those which possessed a basic centre.
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C H A P T E R  T H R E E

PROBLEMS ASSOCIATED WITH THE ANALYSIS OF PROPRANOLOL

Propranolol belongs to a group of drugs classed as 
B-adrenoreceptor antagonists which also includes

atenolol, timolol, practolol and corwin. Known commonly as 
HB-blockers", they are orally administered in the 
treatment of coronary disease and hypertension. 

Propranolol works by preventing adrenaline and 
noradrenaline from activating beta^ receptors which are 
predominant in the heart. When activated, the beta^ 
receptors increase heart rate and cause other symptoms 
associated with anxiety. B-blockers reduce the oxygen 

demand made on the heart under duress by reducing the heart 

rate which in turn improves coronary flow. Propranolol is 
a lipophilic drug (log P=3.56) so that it readily crosses 
the blood-brain barrier and is normally administered as the 
hydrochloride salt to aid dissolution in the stomach. The 

therapeutic level is quoted as O -05—lpg/ml [141]
Sensitive analytical techniques are required in 

forensic toxicology, clinical pharmacokinetic studies and 
drug testing in sport for the detection of B-blockers and 
their metabolites in biological fluids. The most common 
methods are HPLC with ultra-violet and fluorescence 
detection, immunoassays or gas chromatography [142-144]. 
It can be seen from the structure of propranolol (Figure 
17) that it is composed of a large hydrophobic centre
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Figure 17 The structure of propranolol.
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(naphthalene ring) and a polar side chain with a basic 

centre. The basic nature of propranolol, and indeed many 

other drugs, makes it difficult to extract and analyse the 
compounds efficiently with bonded silica sorbents because
basic solutes are retained longer than expected. This is 
due to exposed active acidic silanol sites present at the 
silica surface which interact with basic centres through
either ionic or hydrogen-bonding attractions. There are 
thought to be two different types of active silanols - one 
with a weak binding ability, but a high capacity, and the 
other strong binding ability, but low capacity. These have 
been observed for phenylsilica phases and are assumed to 
exist in most bonded silica LC systems [145, 146]. In HPLC 

this phenomenon can be observed by the increased retention 

times of basic compounds and the tailing of detected peaks 
as the basic solute overloads the low capacity sites and

passes through the column at different rates.
Often a mobile phase additive is employed to 

minimise the effect of silanol interaction with basic
compounds. Common methods include lowering the pH of the 
eluent to approximately pH4 to suppress ionisation of the

silanol groups [147-149] and addition of an ion-pairing 

agent which forms a neutral complex with the cationic 

solute [150-152]. Another widely used method in the
analysis of basic drugs by reversed-phase liquid
chromatography is the use of a competing amine in the 
mobile phase introduced by Wahlund ejt. â L. [153-155]. The 
amine should possess a reasonably bulky or long alkyl
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substituent to block the maximum possible number of 
silanols. De Shutter and co-workers observed that total 

suppression of silanol participation with an organic amine 

as the sole additive reduced selectivity between 
quarternary ammonium drugs. Addition of a second additive, 
sodium 1-octyl-sulphonate, to the mobile phase restored 
selectivity while reducing peak tailing [156].

In solid-phase extraction, the main objective is to 
elute all compounds of interest as efficiently and cleanly 
as possible in the minimum number of steps and minimum 

amount of eluent. When selectivity between a parent 
compound and its metabolites, or between

structurally-similar solutes, is not a stipulation, 
organoamines are widely used as eluent additives, the most 
popular amine additives being triethyl- and tripropyl-amine 
[155, 157-159]. Work by Ruane and Wilson on the SPE of 

fi-blockers showed that when silanol activity is minimised 
by an organoamine, the retention behaviour of a basic drug 

in SPE still cannot be predicted by hydrophobic parameters 

log P and pKa alone and that some additional factors must 
be responsible for the behaviour of the solutes [160].

It is well known that extraction methods developed 
on a particular manufacturer's bonded phase may not work on 
a phase with the same functional group(s) made by another 
manufacturer [152,158]. This is because the properties of 
bonded phases are sensitive to the different types of 
silica which can be used as the sorbent, and also the 
various synthetic methods used to prepare the phases. If
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the extent of participation of the silanol groups could be 
predicted, then the selectivity from the active sites could 

be used to improve the efficiency of the purification 
process and to add an additional dimension of selectivity.
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C H A P T E R  F O U R

EXPERIMENTAL METHODS AND RESULTS

4 .1 Experimental

4.1.1 Test Compounds

A range of analytical-grade mono-, bi- and 
tri-functional benzene compounds was obtained from various 
chemical manufacturers (Figure is). Each solute was 
dissolved in the mobile phase to be used except the benzene, 
toluene and cumene solutions which were prepared with 100% 
HPLC-grade methanol (BDH Chemical Co., Poole, UK). Solution 

concentrations were between l-10mg/ml or l-ioyl/ml depending 
on whether the compound was in a solid or liquid form at 
room temperature.

Propranolol and fourteen of its analogues synthesised 
at ICI Pharmaceuticals (Alderley Park, Cheshire, UK) were 
selected as model compounds for the retention prediction of 
13-blocking drugs (Figure 19). The ICI registry numbers of 

the compounds were M046004 (compound no.l), M115715 
(compound n o .2 ) , M115716 (compound n o .3), M045655 (compound

no.4), M O6 5 318 (compound n o .5), M109056 (compound no.6),
M109055 (compound no.7), M047070 (compound no.8), M087086
(compound n o .9), M081509 (compound no.10), M045520 (compound
no.11), M049666 (compound no.12), M052092 (compound no.13),
M0524 87 (compound no.14), M051932 (compound no.15). The
identity and purity of each substance were confirmed by
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injecting a standard solution of the drug in methanol 

(lrag/ml) into a VG Analytical liquid chromatograph-mass 

spectrometer combination (model 70-250S) via a plasmaspray 
interface operating at a temperature of 240°C (VG 
Analytical Instruments. Manchester, UK). For all other HPLC
experiments, standard solutions were prepared at a
concentration of lOhg per ml of mobile phase.

4.1.2 Instrumentation
High performance liquid chromatographic retention 

times were measured on a Hewlett Packard 1081B liquid
chromatograph fitted with a nitrogen- or compressed 
air-operated variable volume injector, autosampler tray and 

column compartment temperature regulator (Waldbronn, FRG) . 
Mobile phases were pumped through the system at

l±0.1ml/min. Peaks were detected by a Kratos Spectroflow 

757 variable wavelength UV detector (Kratos, N J , USA) set at 
a sensitivity level of 0.1 AUF and a wavelength of 254nm for

benzene solutes and 290nm for propranolol and its
analogues. A potentiometric chart recorder was used to

record the HPLC peaks and was also used in conjunction with 
an integrator (LDC 308, Shannon, Ireland) for both the 
effect of temperature on selected benzene solutes and

fl-blocker retention behaviour studies.

4.1.3 Bonded Phase Columns
Five non-polar modified silica phases manufactured by 

Analytichem international Inc. (Harbour City, CA, USA) as
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used in their Bond Elut® solid phase extraction 
cartridges were examined. The phases studied with the 

benzene compounds were ethylsilica (Lot No.032059),
octylsilica (Lot No.0628234), octadecylsilica (Lot
No.0729123), cyclohexylsilica (Lot No.103079) and 
phenylsilica (Lot No.080560). Octyl-, cyclohexyl- and 

phenyl-silica were chosen for the B-blocker studies. The 
average particle size and pore diameter quoted by the 
manufacturer were 40ym and 60A respectively. The
percentages of carbon and hydrogen were measured for each of 
the phases by elemental microanalysis (Table 1).

The bonded phase packings were supplied in loose 
powder form and were packed by the tap-fill method, 

described by Snyder and Kirkland [162], into 100x4.5mm 
internal diameter stainless steel HPLC column tubes fitted 
with 15ym-pore bed support frits and female column-end 
fittings (Jones Chromatography, Mid Glamorgan, UK). Prior 

to packing, the HPLC columns and fittings were washed 
thoroughly with distilled water and methanol to remove any 
dirt or grease, then dried under nitrogen.

4.1.4 Mobile Phases
(a) Benzene Solute HPLC Studies

Eight aqueous methanol mobile phases were used for 
these chromatographic studies. Four different
concentrations of HPLC-grade methanol were prepared with 
buffers dissolved in de-ionised, distilled water (MilliQ 
System, Waters, MA, USA). The concentrations used were 20%,



- 91 -

PHASE % CARBON % HYDROGEN
Ethylsilica 5.36 1.10

Octylsilica 11.75 2.12

Octadecylsilica 17 . 68 3 . 53
Cyclohexylsilica 8 . 46 1.41

Phenylsilica 10.15 0.96

Table 1 Elemental microanalyses of ethyl-, octyl , octadecyl , phenyl 
and cyclohexyl-silica.
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30%, 40% and 50% (v/v) methanol in aqueous buffer. Each

concentration was duplicated and buffered to approximately 

pH7 or pH5 using buffer tablets (BDH Chemical Co.) or an 

acetic acid/sodium acetate buffer [161] respectively.
(b) fl-Blocker Solute HPLC Studies

A mobile phase containing 0.3M tri-n-butylamine 
acetate in methanol:water (30:70 v/v) was prepared by adding 
tri-n-butylamine (10.2ml) and glacial acetic acid (12ml) to 
methanol (150ml). De-ionised, distilled water (350ml) was 
then added and the solution mixed thoroughly. The pH of 
this mobile phase was 4.1.

When in use, a mobile phase would be prepared every 
1-2 days. Prior to use the mobile phase was degassed with 
helium.

A Pye Unicam pH meter, model 291 (Cambridge, UK) 
fitted with a glass reference electrode was used to measure 

solution pH.

4.1.5 HPLC Measurements
Before retention measurements were made, each newly 

packed bonded phase was conditioned with 15ml methanol. 
Between 30 and 120ml of mobile phase was subsequently passed 
through the column to achieve equilibrium before the test 
solutes were injected into the system. All mobile phases 
used for the benzene solute studies were recycled. The 
column pressure did not exceed 90 bar. Distilled, deionised 
water was flushed through the system for 120 min between 

mobile phase changes.
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Octyl-, cyclohexyl- and phenyl-silica were chosen for 

retention prediction studies with the propranolol test 
solutes. The mobile phase used for these studies was 30:70 
(v/v) methanol:water buffered with 0.3M tributylamine/acetic 

acid. The effects of plasma protein solution and fresh 
plasma on the retention behaviour of selected propranolol 
analogues were also studied by HPLC with the three chosen 
phases. After solvation of the selected phase with methanol 
as described above, the silanol selectivity coefficient, 

a a 1 was determined with 5yl each of lmg/mlb  lUti

N,N-diethyl-m-toluamide (N,N-DETA) (Aldrich Chemical Co., 
Dorset, UK) and 40mg/ml anthracene (Aldrich Chemical Co.) in 

100% acetonitrile which was used as the mobile phase [163]. 

The void time, t , for the silanol concentration 

determination was measured with 5mg/ml sodium nitrite (BDH 
Chemical Co.) in 65:35 (v/v) acetonitrile:water.

k'(N,N-DETA)
aSiOH =   Equation 32

k 1(Anthracene)
(k' was calculated according to equation 33)

After a s ^OH was measured, 10ml of 100% methanol then 
30ml de-ionised, distilled water was passed through the 
system at lml/min before the following sequence was used to 

measure the retention times under different matrix 

conditions:



(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)
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Equilibration of column for 30 min with 
the buffered 30:70 methanol:water (v/v) 

mobile phase (pH4) described in section 
4.1.4(b).

Measurement of retention times for the 
test solutes.

Removal of silanol-bound tributylamine
with 20ml water acidified with glacial
acetic acid to pH2.6.

a „ ■ remeasured.SiOH
Injection of lml plasma protein 
solution. Removal of excess plasma with 
10ml deionised, distilled water.
Equilibration of column with 20ml of
30:70 (v/v) methanol:water with no
buffer added.

Measurement of retention times for the
test solutes with only plasma effects. 

Removal of silanol-bound plasma products 
with 20ml water acidified with glacial 
acetic acid to pH2.6.
Equilibration of column with the 
pH4-buffered aqueous methanol mobile 

phase for 30 min.
Measurement of retention times for the
test solutes with plasma and 
tri-n-butylamine effects.
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Steps (iii) to (x) were repeated with fresh plasma instead
of plasma protein solution. a . values are shown inS lOH
Table 2.

The column compartment was maintained at a constant
temperature of 25±0.2°C by the internal regulator for
all HPLC determinations except the temperature studies
where the column was subjected to temperatures of 25, 30
and 3 5 ° C . The column temperature was allowed to
equilibrate overnight.

Approximatly lQj g of each test solute in 10 yl of
mobile phase was injected onto the column. Each
chromatographic run was repeated at least three times and

the retention time, t , taken as the average value. Ther
void volume, t , was measured with either sodium nitrite 
for the benzene solute studies, or uracil for the 
fl-blocker studies. The solute capacity factor, k', was 
calculated by

tr-10
Log k 1 = Equation 33

 ZZ--

4.1.6 Partition Coefficient Measurements of Propranolol 

and its analogues
The following method for partition coefficient (log 

P) and dissociation constant (log D) measurements was 
adapted from one used by the Physical Chemistry Division of 
ICI Pharmaceuticals (Alderley Park, Cheshire, UK).

Log P was measured at p H 9 .5 (de-ionised, distilled
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water buffered with pH9.2 tablets (BDH Chemical Co.) and 
adjusted to p H 9 .5 with diethylamine), and the dissociation 
constant, log D, was measured at pH4.

Solutions of each test compound in octano1-saturated 
buffer (O.lmg/ml, 10ml) were transferred to separate clean, 

dry centrifuge tubes. Buffer-saturated octanol (100 u 1) 
was added to the tubes which were then capped and vortexed 
for 1 min. The tubes were mixed overnight on a rock/roll 
platform to equilibrate. The solutions were left to stand 
for 10 min before centrifuging for 15 min at 3700 rpm 
(Gallenkamp, UK). The aqueous layer was filtered and 
transferred to a fluorescence cuvette and the amount of 

drug measured by spectrofluorimetry with an emission 
wavelength of 342nm and an excitation wavelength of 290nm, 

both slitwidths being set at 2.5nm (Perkin Elmer, Model 
LS-5 luminescence spectrometer, Cambridge, UK). The 

partition coefficient was calculated by

A a - A b V aq
p =    x   Equation 34

A b v oct

where A. and A are the degree of fluorescence before b a
and after extraction respectively, V ag is the volume of 
stock solution used (10ml) and Voct is the volume of 
saturated octanol added to the aqueous solution (0.1ml). 
The dissociation constant, D, was calculated using the same 

equation as for P.
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4.2 Computational Methods

4.2.1 Physical and Chemical Solute Properties

Physical and chemical properties taken from the 
literature are shown in Table 3. A molecular modelling
system called VIKING (ICI Pharmaceuticals Division, 
Alderley Park, Cheshire, UK) was used in tandem with the 
molecular property calculation package, ICICAL (ICI
Pharmaceuticals Division), to generate molecular volumes, 

dipole moments, polarisabilities, moments of
polarisability, elliptical principal axes, momentums and 

atom charges for all solutes used. Molecular structures

and properties were generated by the CNDO/2 (Complete
Neglect of Differential Overlap) method using standard bond 

angles and bond lengths.
The following parameters were calculated using some 

of the properties shown in Table 3:

Molar Refractivity, R (cm3mol-1 ) = (u£zJL) M Equationm (n^ + l) V~ 3 5

Molar Volume, V m (cm3mol_1) = ” Equation 36

Submolecular polarity parameter,A = q-̂  - q2 Equation 37
[92]

where U is the refractive index, M is the molecular weight, 
p is the density, and q i and q 2 are the charges on two 

atoms which have the greatest charge difference in a 

molecule.
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PHYSICOCHEMICAL SOLUTE PROPERTIES SOURCE

(a)Taken From Literature

Molecular Weight, MW 
Melting Point, mp (°C) 
Boiling Point, bp (°C) 
Density, p (gem-3) 
Refractive Index

1164]

Partition Coefficient, Log P
Hammett Constant, 0 (meta- and para-substituents) 
Number of Electron Acceptor Groups, HD 
Number of Electron Donor Groups, HA 
Hansch Parameter, ^

[123]

First Order Molecular Connectivity, 1 X v • [115]

F-value [94]

Ionisation Constant, pKa [118]

Hydrogen bond donor ability, B [112,121]

(b)Computed Parameters

Volume, A.3

Dipole Moment (]i) j for whole molecule 
Polarisability / and substituents 
Moment of Polarisability*

Principle Elliptical Axes
Momentum
Atomic Charge

VIKING
and
ICICAL
computer-
aided
molecular
modelling
systems.

Table 3 Source of solute physicochemical data.
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4.2.2 Statistical Data Analysis

Solute physical and chemical properties were entered 
into a database compiled with Scientific Information 

Retrieval (SIR) software, version 2 (SIR Inc., IL, USA), on 
both Glasgow University's VME network (ICL 3980 mainframe 

computer) and an IBM PS/2, model 50 personal computer 
(PC). Data to be used in a particular statistical analysis 
was transferred from the database to the statistical 
package SPSSX P C + , version 2.1 (SPSS Inc., IL, USA) on the 
IBM PC.

Correlation analyses are presented in accordance 
with the guidelines recommended by Charton e_t a_l. [165].
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4.3 Results

Chromatographic retention times were determined by 
HPLC for a range of mono-, bi- and tri-functional benzene 
solutes using five non-polar stationary phases and four 

aqueous methanol mobile phases, each duplicated and
buffered to approximately pH5 and pH7. Various

combinations of stationary phase, mobile phase organic 
modifier concentration and pH allowed retention times to be 
determined in forty different chromatographic systems. The 
logarithmic capacity factors (log k') values for each of 
the benzene test solutes are presented in Table 4. The 
retention times measured by hand and those measured by the 
integrator were precise to within ±o.lmin. The solutes 
were eluted with the mobile phase in the order of highest 

methanol concentration (50%) to the lowest concentration 
(20%) to eliminate possible bonded phase character changes 
caused by irreversibly-bound solutes which do not elute at 
low methanol concentrations e.g. diethylphthalate and
cumene. Very good peak shapes were achieved considering 

that the Bond Elut phases consisted of large, 
irregularly-shaped particles not intended for use as HPLC 
stationary phases. Three examples of typical HPLC peak 

shapes obtained for aniline are shown in figure 20. The 
number of theoretical plates, N, for each bonded phase 
used, measured with aniline, are shown in Table 5.

Statistical analysis was performed to test for the 

presence of linear correlations between log k' and the 

solute physicochemical properties. Appendix I contains the
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LOG K* VALUES FOR THE ETHYL PHASE

SOLUTE
NAME

20% 
pH 5.0

MeOH 
pH 7.0

307o 
pH 5.1

MeOH 
pH 7.0

Acetyl salicylic acid b 1.41 0.29 1.21
2 -Amino benzoic acidc _ _

o-Amino phenolc — — _
2 -Amino phenol b b 0.14 b
2 -Amino salicylic acidc _ _ _
Aniline c c 0.31 0.49
o-Anisic acidc _ _.
£-Anisic acidc _ . __ _
Anisole c c 0.95 1.01
Anthranilic acidc — —
Benzamide b 0.48 0.31 0.43
Benzene c c b b
Benzoic acid 0.22 b 0.15 -0.65
Benzonitrile c c b 4.38
Benzyl alcohol c c 0.45 0.55
Benzylamine0 - - — —
o-Cresol c c 0.77 0.82
jp-Cresol c c 0.70 0.75
Cumene c c d d
3,4-Dihydroxy benzylamine 
Diethyl phthalate c c d d
N,N-Dimethyl benzylamine0 - - - -
2,4-Dimethyl phenol c c 0.95 1.09
Dimethyl phthalate c c b b
m-Hydroxy benzoic acid -0.18 -1.24 -1.03 a
2 -Hydroxy benzoic acid b a 0.01 -1.21
Methyl-4-hydroxy benzoate c c 0.93 0.97
Methyl salicylate c c 1.26 1.31
Phenol c c 0.46 0.57
Phenyl acetic acid 0.19 b 0.13 -0.33
2 -Phenylene diamine0 - - - -
2 -Phenyl phenol c c d d
Phenyl salicylate c c b b
Phthalic acid a -0.41 -0.60 -0.91
Phthalodinitrile c c 0.88 b
n-Propy1-2-hydroxy benzoate c c c 1.63
Pyridine c c 0.52 0.74
Quinol 0.05 0.13 -0.02 0.12
Salicylic acid -0.19 -1.41 -0.36 -0.79
Toluene c c b b
Toluene-p-sulphonamide c c -0.48 -0.99
Toluene-2 -sulphonic acid -0.39 -1.72 -0.53 -0.99
2 -Toluic acid0 - - - -

£ negative or zero k* value b—no elution time obtained c—not used
in this particular system d-k* value greater than 50 (log k* > 
1.70)
Table 4 Logarithmic capacity factors of substituted benzene test solutes 

from high performance liquid chranatographic studies, cont./...



LOG K ’ VALUES
- 103 - 

FOR THE ETHYL PHASE (cont.)

SOLUTE 40% MeOH 50% MeOH
NAME pH 5.5 pH 7.2 pH 5.6 pH 6.9

Acetyl salicylic acid I o Ln 00 -0.47 -0.50 -0.61
£-Amino benzoic acidc _ —

o-Amino phenol0 — _ _
£-Amino phenol -0.32 0.20 c c
£-Amino salicylic acidc - — _ _

Aniline 0.16 0.42 0.15 0.26
o-Anisic acidc — —

p-Anisic acidc — — _

Anisole 0. 75 1.00 0.58 0.67
Anthranilic acidc — _ _ __

Benzamide 0.11 0.38 0.05 0.14
Benzene*3 — - — _

Benzoic acid -1.12 -0.66 -0.20 -0.26
Benzonitrile 0.64 0.85 0.45 0.55
Benzyl alcohol 0.29 0.52 0.21 b
Benzylamine0 - - - -

o-Cresol 0.54 0. 79 0.39 0.50
£-Cresol 0.55 0.79 0.39 0.51
Cumene d d 1.24 1.33
Diethyl phthalate d 1.61 d 1.04
3,4-Dihydroxy benzylamine -0.21 1.32 0.00 1.04
N,N-Dimethyl benzylamine0 - - - -
2,4-Dimethyl phenol 0.84 1.05 0.56 0.69
Dimethyl phthalate0 - - - -

m-Hydroxy benzoic acid -0.53 -1.40 -0.56 -0.55
£-Hydroxy benzoic acid -0.24 or-*1 a -0.55
Methyl-4-hydroxy benzoate 0.69 0.91 0.41 0.53
Methyl salicylate 1.60 1.26 0.77 0.8 7
Phenol 0.30 0.54 0.21 0.31
Phenyl acetic acid -0.08 -0.4 7 -0.19 c
£-Phenylene diamine -0.23 0.34 -0.12 c
£-Phenyl phenol 1.32 1.58 0.91 1.03
Phenyl salicylate*3 - - - -

Phthalic acid -0.81 a -0.86 a
Phthalodinitrile 0.49 0. 74 0.34 c
n-Propyl-£-hydroxy benzoate 0. 79 1.53 0.83 c
Pyridine 0.36 0.62 0.28 0.41
Quinol -0.18 0.09 -0.13 -0.12
Salicylic acid -0.17 -0.66 -0.65 -0.68
Toluene'3 - - - -
Toluene-£-sulphonamide 0.24 0.49 0.11 0.19
Toluene-£-sulphonic acid

iHO
'

o1 -0. 74 -0.86 -1.25
£-Toluic acid0

j negative or zero k* value b—no elution time obtained c not used
in this particular system d-k* value greater than 50

Table 4 cont./*
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LOG K* VALUES FOR THE OCTYL PHASE

SOLUTE
NAME

20% 
pH 5.0

MeOH 
pH 7.0

30% 
pH 5.1

MeOH 
pH 7.0

Acetyl salicylic acid c c -0.04 c
£-Amino benzoic acidc _ _

o-Amino phenol0 _ _ _
I>-Amino phenol0 — _ _
jp-Amino salicylic acid0 — _ __ __

Aniline c c 0.48 b
o-Anisic acid0 - — _ _
£-Anisic acid0 — _ — __

Anisole c c 1.32 1.57
Anthranilic acid0 — — — _

Benzamide 0.62 0.78 0.34 0.56
Benzene c c b b
Benzoic acid -0.69 -0.23 0.12 0.08
Benzonitrile c c 1.05 1.22
Benzyl alcohol c c 0.72 0.89
Benzylamine0 - - - -
o-Cresol c c 1.11 1.29
£-Cresol c c 1.12 1.25
Cumene c c d d
Diethyl phthalate c c d d
3,4-Dihydroxy benzylamine -1.62 c -0.68 0.88
N,N-Dimethyl benzylamine0 - - - -
2,4-Dimethyl phenol c c 1.42 d
Dimethyl phthalate c c 1.30 1.61
m-Hydroxy benzoic acid 0.14 -0.73 -0.12 -0.43
£-Hydroxy benzoic acid 0.30 -0.60 0.07 -0.85
Methyl-4-hydroxy benzoate c c 1.09 1.29
Methyl salicylate c c 1.63 -
Phenol c c 0. 73 0.91
Phenyl acetic acidc - - - -
£-Phenylene diamine0 - - - -
£-Phenyl phenol c c d d
Phenyl salicylate c c 0.73 0.91
Phthalic acid 00oo1 a -0.38 a
Phthalodinitrile0 - - - -
n-Propyl-p-hydroxy benzoate0 - - - -
Pyridine c c 0.45 0.76
Quinol -0.01 0.22 -0.20 0.21
Salicylic acid . c c -0.07 -
Toluene c c b b
Toluene-p-sulphonamide - - 0.59 0.78
Toluene-£-sulphonic acid0 - - — —
£-Toluic acid0

g negative or zero k* value b--no elution time obtained c not used
in this particular system d-k' value greater than 50
Table 4 oont./*«*
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LOG K' VALUES FOR THE OCTYL PHASE (cont.)

SOLUTE
NAME

407o
pH 5.5

MeOH 
pH 7.0

507o 
pH 5.6

MeOH 
pH 7.3

Acetyl salicylic acid -0.22 c -0.58 c
£-Amino benzoic acidc _ _ _
o-Amino phenolc _ _
£-Amino phenolc — ,
£-Amino salicylic acidc —

Aniline 0.32 0.62 0.12 0.32
o-Anisic acidc _ _ —

£-Anisic acidc • — —
Anisole 1.15 1.38 0.88 0.95
Anthranilic acidc _
Benzamide 0.16 0.37 -0.55 0.11
Benzene*3 — — —
Benzoic acid 0.25 -0.28 -0.03 -0.01
Benzonitrile 0.81 0.97 0.55 0.63
Benzyl alcohol 0.51 0.68 0.27 0.41
Benzylamine0 - - - -
o-Cresol 0.90 1.10 0.62 0.72
£-Cresol 0.87 1.10 0.53 0.68
Cumene*3 - - - —
Diethyl phthalate 1.63 1.37 1.19 1.21
3,4-Dihydroxy benzylamine -0.48 0.92 -0.58 0.88
N,N-Dimethyl benzylamine0 - - - -
2,4-Dimethyl phenol 1.20 1.42 0.88 0.96
Dimethyl phthalate 0.98 1.37 0.65 0.72
m-Hydroxy benzoic acid -0.30 -0.58 -0.64 -0.35
£-Hydroxy benzoic acid -0.05 -0.65 t o o -0.43
Methyl-4-hydroxy benzoate 0.81 1.03 0.40 0.59
Methyl salicylate 1.43 1. 75 1.08 1.28
Phenol 0.53 0. 71 0.29 0.42
Phenyl acetic acid0 - - - -
£-Phenylene diamine0 - - - -
£-Phenyl phenol 1.68 d 1.25 1.38
Phenyl salicylate 0.54 0. 78 0.30 0.43
Phthalic acid -0.50 a -0.93 a
Phthalodinitrile0 - - - -
n-Propyl-£-hydroxy benzoate0 - - - -
Pyridine 0.32 0.56 0.12 0.31
Quinol -0.29 0.03 -0.56 0.18
Salicylic acid -0.26 c -0.55 c
Toluene d d d 1.34
Toluene-£-sulphonamide . 0.32 0.60 0.02 0.23
Toluene-£-sulphonic acid0 - - - -
£-Toluic acid0

q negative or zero k' value b—no elution time obtained c not used
in this particular system d-k' value greater than 50

Table 4 cont./.
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LOG K* VALUES FOR THE OCTADECYL PHASE

SOLUTE
NAME

207o 
pH 5.2

MeOH 
pH 7.4

307o 
pH 5.4

MeOH 
pH 7.5

Acetyl salicylic acid 0.38 0.48 0.07 0.22
j>-Amino benzoic acidc _ .

o-Amino phenolc — _ _

j>-Amino phenol -0.29 -0.16 -0.58 -0.11
|>-Amino salicylic acidc — _ —

Aniline c c 0.48 b
o-Anisic acidc — _ _ __

^-Anisic acidc _ _ __ _

Anisole c c d 1.71
Anthranilic acidc — _ _

Benzamide 0.62 0.78 0.34 0.56
Benzene c c b b
Benzoic acid 0.69 -0.23 0.12 0.08
Benzonitrile c c d 1.19
Benzyl alcohol c c 0. 72 0.89
Benzylamine0 - - - -
o-Cresol c c 1.11 1.29
£-Cresol c c 1.12 1.25
Cumene c c d d
Diethyl phthalate c c b b
3,4-Dihydroxy benzylamine -0.5 7 -0.78 c -0.74
N,N-Dimethyl benzylamine0 - - - -
2,4-Dimethyl phenol c c 1.42 d
Dimethyl phthalate c c b b
m-Hydroxy benzoic acid 0.14 -0.73 -0.12 -0.43
£-Hydroxy benzoic acid 0.23 -0.89 -0.07 -1.00
Methyl-4-hydroxy benzoate c c b 1.17
Methyl salicylate ; C c b b
Phenol C c 0.94 b
Phenyl acetic acid 0.95 0.40 b 0.22
£-Phenylene diamine C c -0.98 -0.44
2 -Phenyl phenol c c d 1.68
Phenyl salicylate c c b 0.85
Phthalic acid 0.05 a -0.21 a
Phthalodinitrile c c d 0.85
n-Propyl-p-hydroxy benzoate c c b 0.85
Pyridine c c 0.48 0.68
Quinol -0.10 0.06 -0.26 -0.08
Salicylic acid 0.22 0.46 -0.02 0.19
Toluene c c b b
Toluene-£-sulphonamide c c -0.14 0.22
Toluene-£-sulphonic acid 0.23 0.47 -0.14 0.24
£-Toluic acid0

negative or zero k* value b—no elution time obtained c not used
in this particular system d-k' value greater than 50

Table 4 cont./.
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LOG K* VALUES FOR THE OCTADECYL PHASE (cont.)

SOLUTE
NAME

40% 
pH 5.5

MeOH 
pH 7.7

50% 
pH 5.7

MeOH 
pH 8.0

Acetyl salicylic acid -0.21 -0.05 -0.68 -0.22
£-Amino benzoic acidc __ _
o-Amino phenolc - — — —

j>-Amino phenol -0.80 -0.55 -0.68 -0.50
£-Amino salicylic acidc - - — —

Aniline 0.34 0.28 0.18 0.22
o-Anisic acidc _ _ __ _
£-Anisic acidc — _ • —

Anisole 1.32 d 1.05 1.57
Anthranilic acidc — _ — —
Benzamide 0.08 0.14 -0.11 -0.03
Benzene*3 — - — —
Benzoic acid b -0.26 -0.02 -0.39
Benzonitrile b 0.90 b 0.60
Benzyl alcohol 0.53 0.51 0.28 0.36
Benzylaminec - - - -
o-Cresol 0.90 b 0.65 0.69
£-Cresol 0.90 0.97 0.62 0.66
Cumene^ — - - -
Diethyl phthalate d d d 1.30
3,4-Dihydroxy benzylamine c c c -1.23
N,N-Dimethyl benzylaminec - - - -
2,4-Dimethyl phenol 1.25 d 0.96 1.00
Dimethyl phthalate b b 0.61 b
m-Hydroxy benzoic acid -0.50 -0.98 -0. 72 b
£-Hydroxy benzoic acid -0.34 -1.28 -0.52 -1.11
Methy1-4-hydroxy benzoate b 0.82 0.44 b
Methyl salicylate d 1.64 1.25 1.29
Phenol 0.53 0.51 0.29 0.37
Phenyl acetic acid 0.25 -0.03 -0.03 -0.14
£-Phenylene diamine -0.85 -0.98 -0.61 b
£-Phenyl phenol d 1.61 1.36 1.44
Phenyl salicylate 0.54 0.51 0.33 0.38
Phthalic acid -0.61 a -1.03 a
Phthalodinitrile 0.45 0.43 0.20 0.13
n-Propyl-£-hydroxy benzoate 1.54 1.32 1.13 1.16
Pyridine 0.30 0.36 0.14 0.20
Quinol -0.43 -0.34 00inO1 -0.48
Salicylic acid -0.29 -0.11 -0.68 -0.25
Toluene*3 - - - -
Toluene-£-sulphonamide -0.55 -0.31 -0.68 -0.26
Toluene-£-sulphonic acid -0.43 -0.07 -0.88 -0.23
£-Toluic acid*3

a-negative or zero k* value b—no elution time obtained c not used
in this particular system d-k* value greater than 50

Table 4 ccnt./»
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LOG K* VALUES FOR THE CYCLOHEXYL PHASE

SOLUTE
NAME

20% 
pH 5.2

MeOH 
pH 7.2

30% 
pH 5.3

MeOH 
pH 7.6

Acetyl salicylic acid a -0.41 -0.56 -0.23
2 -Amino benzoic acid 0.02 c -0.26 c
o-Amino phenol -0.19 c 0.10 c
2 -Amino phenol -0.80 -0.55 -0.68 -0.50
2 -Amino salicylic acid -0.68 c -1.22 c
Aniline 0.34 0. 78 0.22 0.58
o-Anisic acid -0.19 c -0.34 c
2 -Anisic acid 0.50 c 0.10 c
Anisole b 1.53 0.84 0.67
Anthranilic acid 0.04 c -0.06 c
Benzamide 0.36 0.80 0.19 b
Benzene b b 0.73 1.19
Benzoic acid -0.15 -0.51 -0.29 -0.15
Benzonitrile 0.82 1.37 0.69 1.15
Benzyl alcohol 0.37 0.94 0.25 0. 78
Benzylamine 0.51 c 0.44 c
o-Cresol .0.64 b 0.47 b
£-Cresol 0.68 1.29 0.51 b
Cumeneb - - - -

Diethyl phthalate d d 1.64 d
3,4-Dihydroxy benzylaminec - - - -
N,N-Dimethyl benzylamine 0.75 c 0.64 c
2,4-Dimethyl phenol d 1.66 0.74 b
Dimethyl phthalate 1.18 d 0.90 1.59
m-Hydroxy benzoic acid -0.48 -0.64 -0.50 -0.37
2 -Hydroxy benzoic acid -0.17 -1.11 -0.29 -0.50
Methyl-4-hydroxy benzoate 0.87 1.56 0.59 1.30
Methyl salicylate 1.36 b 1.14 1.72
Phenol 0.02 0.91 0.21 0.75
Phenyl acetic acid -0.02 -0.08 -0.24 0.22
2-Phenylene diamine 0. 75 0.77 0.22 0.91
2 -Phenyl phenol** - - - -
Phenyl salicylate b 0.93 0.25 b
Phthalic acid -0.52 a -0. 74 a
Phthalodinitrile 0. 75 1.30 0.53 1.02
n-Propy1-2-hydroxy benzoate d d 1.27 d
Pyridine 0. 74 1.06 0.59 0.94
Quinol -0.07 0.36 -0.17 0.25
Salicylic acid -0.48 -0.34 0.31 -0.26
Toluene 1.21 1.78 1.12 d
Toluene-2 -sulphonamide 0.48 1.05 0.24 0.71
Toluene-p-sulphonic acid -0. 75 -0.51 -0.82 -0.6 7
2-Toluic acid 0.50 c 0.25 c

a—negativs or zero k* value b—no elution time obtained c not used
in this particular system d-k* value greater than 50

Table 4 cont./*
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LOG K* VALUES FOR THE CYCLOHEXYL PHASE (cont.)

SOLUTE 40% MeOH otn MeOH
NAME pH i5.4 pH ;r.o pH Ij. 8 pH ;1.9

Acetyl salicylic acid -0,.78 -0.,03 -1,,20 -1.,66
£-Amino benzoic acid -0..15 -0..67 -0,,44 c
o-Amino phenol 0,.04 0.,29 -0.,17 c
£-Amino phenol 0..08 0..16 -0.,17 0.,04
j>-Amino salicylic acid -0..70 -0,.32 -0.,48 c
Aniline -0..05 0..59 -0.,11 0.,32
o-Anisic acid -0..40 -0..14 -0,, 72 c
£-Anisic acid -0..03 0.,21 -o.,48 c
Anisole 0,.88 1..51 0,,20 0..74
Anthranilic acid -0,.12 0..25 a c
Benzamide .-0 .48 0..74 0,.37 0.,23
Benzene 0,.58 0..97 0,,20 0..68
Benzoic acid -0,.30 -0,.13 -0,,66 a
Benzonitrile 0,.47 1,.19 a 0.,60
Benzyl alcohol 0 .14 -0,.20 -0,,06 0,.40
Benzylamine 0 .47 0,.41 -0,.17 c
o-Cresol 0 .34 1,.12 -0..01 0..55
£-Cresol 0 .33 1,.15 -0,.01 0..54
Cumene d d 0,, 79 1,.50
Diethyl phthalate 1 .07 d 0,.90 d
3,4-Dihydroxy benzylamine0 - - - -
N,N-Dimethyl benzylamine 0 .63 1,.28 0.,56 d
2,4-Dimethyl phenol 0 .56 1,.36 0,,13 0.. 72
Dimethyl phthalate 0 .60 1,.54 0.,03 b
m-Hydroxy benzoic acid -0 .52 -0,.48 -1,,02 -1,.06
£-Hydroxy benzoic acid -0,.36 -0,.62 -0,,69 -1..36
Methy1-4-hydroxy benzoate 0..38 1..53 0..01 0.,56
Methyl salicylate 0,.86 0.,97 0,.33 0,.96
Phenol 0.,16 -0..92 -0..11 0,.40
Phenyl acetic acid -0,.30 0.,06 -0,,60 -0..88
£-Phenylene diamine 0.,20 b 0,,05 0..13
£-Phenyl phenol 0.,99 1. 31 0.,33 1.,07
Phenyl salicylate 0.,19 0. 66 b b
Phthalic acid -0. 78 a a -0.,96
Phthalodinitrile 0. 31 1. 21 0.,00 0..42
n-Propyl-£-hydroxy benzoate 0. 88 d 0.,28 1..06
Pyridine 0. 45 1. 28 0. 13 0.,42
Quinol -0. 18 0. 05 -0.,34 0.,01
Salicylic acid -0. 70 0. 24 -1. 56 -1. 19
Toluene 0. 89 1. 48 0. 42 0.,97
Toluene-£-sulphonamide -0. 05 b -0. 21 0. 28
Toluene-£-sulphonic acid -0. 78 0. 32 b a
£-Toluic acid 0. 04 0. 35 -0. 46 c

a—negative or zero k* value, b—no elution time obtained c not used
in this particular system d-k’ value greater than 50

Table 4 cont./.
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LOG K* VALUES FOR THE PHENYL PHASE

SOLUTE 207. MeOH 30% MeOH
NAME pH .!5.5 pH 51.2 pH I5.6 pH ;P. 3

Acetyl salicylic acid -0..78 -0..24 -1..20 -0..31
£-Amino benzoic acid -0..15 -0.,76 -0..44
o-Amino phenol 0..04 0..11 -0.,17 _
£-Amino phenol 0.,08 0..00 -0..17 -0..08
£-Amino salicylic acid -0.,70 -0.,61 -0..48 -1.,30
Aniline -0..05 0..41 -0..11 0.,33
o-Anisic acid -0..40 -0.,57 -0..72 -0.,64
£-Anisic acid -0..03 -0..14 -0,.48 -0.,29
Anisole 0..88 1..25 0.,20 1.,01
Anthranilic acid -0,.12 -0..55 _ -0..50
Benzamide -0,.48 0..45 0..37 0..32
Benzene 0,.58 0..91 0,.20 0.. 76
Benzoic acid -0..30 -0,.45 -0,.66 -0..59
Benzonitrile 0,.47 1..07 - 0..91
Benzyl alcohol 0,.14 0,.42 -0..06 0,.32
Benzylamine 0 .47 0,.47 -0,.17 0,.41
o-Cresol 0 .34 0.. 70 -0,.01 0,.58
£-Cresol 0 .33 0,.68 -0,.01 0,.57
Cumene - - 0,. 79 -

Diethyl phthalate 1 .07 - 0,.90 -
3,4-Dihydroxy benzylamine c -0,.16 c c
N,N-Dimethyl benzylamine 0 .63 1..29 0..56 1,.21
2,4-Dimethyl phenol 0 .56 1,.02 0,.13 0,.84
Dimethyl phthalate 0,.60 1..51 0..03 1..20
m-Hydroxy benzoic acid -0,.52 -0,.72 . -1,.02 -0,.80
£-Hydroxy benzoic acid -0,.36 -0..86 -0..69 -0,.85
Methy1-4-hydroxy benzoate 0,.38 0,.96 0,.01 0,.71
Methyl salicylate 0..86 - 0,.33 1..33
Phenol 0.,16 0..36 - o ,.11 0,.30
Phenyl acetic acid -0..30 -0.,33 -0,.60 -0,.46
£-Phenylene diamine 0..20 0.,25 0..05 -
£-Phenyl phenol 0.,99 - 0..33 1..64
Phenyl salicylate - 0.,66 - -
Phthalic acid -0., 78 a a -1..07
Phthalodinitrile 0. 31 1. 25 0..00 1,.04
n-Propyl-£-hydroxy benzoate 0. 88 - 0..28 1..36
Pyridine 0. 45 0. 92 0.,13 0..71
Quinol -0. 18 -0.,14 -0.,34 -0..24
Salicylic acid -0. 70 -0. 22 -1.,56 -0.,45
Toluene 0. 89 1. 30 0.,42 -
Toluene-£-sulphonamide -0. 05 0. 63 -0. 21 b

.25Toluene-£-sulphonic acid -0. 78 -0. 13 - -0.
£-Toluic acid 0. 04 -0. 09 -0. 46 -0.,21

a-negative or zero k* value b-no elution time obtained c-not used
in this particular system d-k' value greater than 50

Table 4 cont./*



- Ill -
LOG K* VALUES FOR THE PHENYL PHASE (cont.)

SOLUTE 407, MeOH 507, MeOH
NAME pH !i. 6 pH ;1.6 pH I>.8 pH ;7.8

Acetyl salicylic acid -1,.06 -0..21 -1,.74 -0,.49
£-Amino benzoic acid -0..46 -1..13 -0..52 a
o-Amino phenol -0..14 -0..03 -0.,16 -0..11
£-Amino phenol -0,.14 -0.,17 -0..19 -0..26
£-Amino salicylic acid -1,.54 -0..69 b -1..19
Aniline -0,.05 0,.41 -0..11 0,.33
o-Anisic acid -0,.61 -0..69 -0..71 -0..54
£-Anisic acid -0,.24 -0.. 78 -o,.60 -0..45
Anisole 0,.58 0..58 0..37 0..26
Anthranilic acid -0,.38 -0,.66 b -0., 79
Benzamide -0,.05 0,.15 -0,.15 -0,.01
Benzene 0,.42 0,.94 0..26 0,.50
Benzoic acid -0 .63 -0,.63 -0,.77 -0,.59
Benzonitrile 0 .41 0,. 73 0..26 0,.43
Benzyl alcohol 0 .03 0,.18 -0..10 0,.13
Benzylamine 0 .26 0,.39 0,.27 0,.35
o-Cresol 0 .19 0,.43 0,.01 0,.30
£-Cresol 0 .18 0,.44 0,.02 0,.28
Cumene b d b 1,.12
Diethyl phthalate 1 .11 1 .36 0..70 0,.97
3,4-Dihydroxy benzylamine 0 .05 c 0,,61 c
N,N-Dimethyl benzylamine 0 .53 1,.24 0,.10 0,.41
2,4-Dimethyl phenol 0 .36 0,.63 0,.14 0,.48
Dimethyl phthalate 0 .62 0,.36 b 0,.65
m-Hydroxy benzoic acid -1 .17 -1,.23 -1,.68 -0,.71
£-Hydroxy benzoic acid -0,. 78 -1.,53 -0..84 -1..49
Methyl-4-hydroxy benzoate 0,.27 0..50 0..06 -0,.03
Methyl salicylate 0..83 0.. 79 b 1..03
Phenol 0..00 0..18 -0.,12 0..12
Phenyl acetic acid -0..56 -0.,21 -0.,67 -0..42
£-Phenylene diamine 0..05 0. 01 0.,05 -0..13
£-Phenyl phenol 0.,93 1.,20 0.,59 0..84
Phenyl salicylate0 - - - - -
Phthalic acid -0.,78 a a -1..07
Phthalodinitrile 0. 54 0. 93 0.,35 0..52
n-Propyl-£-hydroxy benzoate 0. 70 1. 00 0. 40 0..68
Pyridine 0. 45 0. 62 0. 24 0.,30
Quinol -0. 37 -0. 39 -0. 43 -0. 32
Salicylic acid -1. 14 -0. 58 -1. 59 -0.,41
Toluene 0. 68 0. 81 0. 47 0., 70
Toluene-£-sulphonamide 0. 00 0. 12 -0. 11 0. 29
Toluene-£-sulphonic acid -1. 41 -0. 53 -2. 59 -0. 32
£-Toluic acid -0. 24 -0. 39 -0. 53 -0. 45

a—negative or zero k * value b—no elution time obtained c not used
in this particular system d-k1 value greater than 50

Table 4
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(a)
3 min

(b)

Figure 20 Examples of aniline peak .shapes when eluted with 
50:50 (v/v) methanolrwater (pH7) from (a)octyl- 
silica, full-scale deflection (FSD)=10mV,
(b)cyclohexylsilica, FSD=20mV, (c)phenylsilica, 
FSD=50mV.
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PHASE Number of Theoretical Plates, N

Ethylsilica 138.50
Octylsilica 157.60
Octadecylsilica 97.73
Cyclohexylsilica 216.41
Phenylsilica 152.70

Table 5 The nurrber of theoretical plates for each of the five chosen 
Band Elut phases.
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solute physicochemical properties. In order to establish
that no single solute physicochemical property was highly

correlated with log k' (correlation coefficient, R ^ , >
0.8), initial statistics involved simple linear plots of

log k* against (i) molecular weight (ii) connectivity (iii)
*

Hansch parameter and (iv) log P for all of the

chromatographic systems. From the R^ values, it was
concluded that more than one variable would be necessary in 

most circumstances to predict the reversed-phase retention 
behaviour of the benzene solutes. Figure 21 shows a 
typical correlation analysis printout.

The physical and chemical properties collected for 

each solute were chosen so that they would cover the major 
interactions expected to influence the behaviour of a
solute in reversed-phase LC; dipole/charge effects, size 

and shape, hydrophobicity and hydrogen bond donor/acceptor 
ability. However, some interactions can be described by 

more than one physicochemical descriptor e.g. volume,
molecular weight and polarisability representing size; log
P and the Hansch parameter both representing
hydrophobicity. By performing factor analysis on the
solute descriptors, groups of related parameters could be 
determined (figure 22). Subsequently, the following
parameters were chosen from factor analysis as independent 
variables for multiple linear regression analysis:

Volume - molecular size
A - polarity/dipole effects

(cont ...)
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PLOT OF LOGK WITH MW

10 14 18
80 120 160 200

MW
R2 = 0.017 S.E.= 0.542

PLOT OF LOGK WITH HANSCH

-2.4 -1.2 0 1.2
HANSCH

R2 = 0.408 S.E. = 0.407

Figure 21 Correlation analysis between log k 1 and selected single 
variables. 50% methanol, ethylsilica phase, cont./...
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PLOT OF LOGK WITH CONNECT

11
OR

2.4 3.2 4
CONNECT

R2 *-0.069 S.E.- 0.517

PLOT OF LOGK WITH LOGP

11

1. 27
3.42.551.7.85

LOGP

R2 = 0.401 S.E. -0.439

Figure 21
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Connectivity - molecular shape
Beta(fl) - degree of hydrogen-bonding ability
Log P, Log D - partition and ionisation-corrected

partition coefficients respectively 
HA, HD, HA-HD - number of hydrogen bond acceptors

and donors, and their difference 
respectively

Stepwise multiple linear regression (MLR) analysis
was performed on the experimental data using log k 1 as the
dependent variable and the selected physicochemical
properties as independent variables. Two examples of
output from SPSSX/PC for MLR analysis are shown in figure
23 (a glossary of statistical terms used can be found in
Appendix II). As small retention times (log k' < -0.50)
were difficult to measure accurately, these cases were
omitted from the regressional analysis. Also omitted were
retention times for the substituted benzene solutes
measured on octyl-, octadecyl- and ethyl-silica at 20%

methanol because of the small number of solute retention
measurements. The log k' values determined at the two pH

values of each mobile phase were not treated separately
2except when the regression was not satisfactory (R < 

0.7) .
MLR analysis was divided into three stages. First, 

MLR was performed on neutral solute data only. Next, 
acidic compound data was added to the neutral compounds to 
observe any polarity/ionisation effects on the 
correlation. Log P was corrected for ionisation effects to 

log D as discussed in Section 2.3. Finally, basic 
compounds were also added to give a complete relationship
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SPSS/PC+ The Statistical Package for IBM PC X

GET FILE='Q :\OLDIMAGE\ANITA\MUM1.DAT'.
SELECT IF (PHASNAME EQ 'C8 ' & PERCENT EQ 30 & COMPOUND EQ 1 & LOGK GE -0.50)
IF (COMPPOL EQ 1) LOGD = LOGP-LGl0(1 +10 * *(PH-PKA1) ) .
IF (COMPPOL EQ 2) LOGD=LOGP.
IF (COMPPOL EQ 3) LOGD = LOGP-LGl0(1 + 10**(PKA1-PH) ) .
REG VAR=VOLUME CONNECT DELTAQ BETA LOGD LOGK HACCEPT HDONOR HASUBHD I
The raw data or transformation pass is proceeding

38 cases are written to the uncompressed active file.
/DEP=LOGK
/MET=STEP
/RES=HIS(SRE)
/SCAT=(* SRE,* PRE) (LOGK,*PRE) .

* * * * M U L T I P L E  R E G R E S S I O N  * * * *

Listwise Deletion of Missing Data
Equation Number 1 Dependent Variable.. LOGK
Beginning Block Number 1. Method: Stepwise

Variable(s) Entered on Step Number 
2.. HDONOR

Multiple R .95967
R Square .92096
Adjusted R Square .91409
Standard Error .17754
Analysis of Variance
Regression
Residual
F = 134.00148

DF Sum of Squares
2 8.44743

23 .72496
Signif F = .0000

Mean Square 
4 . 22371 
.03152

Variable
LOGD 
HDONOR 
(Constant)

Variables in the Equation -- 
B SE B Beta

49015
30395
47124

04870 
, 07070 
12673

.73717
-.31492

T Sig T
10.064 .0000
-4.299 .0003
3.718 .0011

Variables not in the Equation

Variable
VOLUME
CONNECT
DELTAQ
BETA
HACCEPT
HASUBHD

-4

. 06503 

. 06062 

. 06767 

.01586 
260E-03 
.01837

. 23120 
21469 
. 20230 
04263 
.01120 
06078

Min Toler T Sig T
. 64010 1.115 . 2771
.63513 1.031 .3137
.48787 .969 .3431
.54013 . 200 . 8432
.43330 -.053 . 9586
.57490 . 286 .7779

Figure 23 Two typical outputs of multiple linear regression analysis 
frcm SPSSX-PC. cont./---



Residuals Statistics: - 120 -

Min Max Mean Std Dev tl
*PRED -2 1904 1.5594 . 5582 8900 33* ZPRED -5 0524 1.3983 -.3239 1 5311 33*SEPRED 0360 . 2334 .0697 0394 33*ADJPRED -2 1904 1.5594 .5543 9012 33*RESID - 4997 2.7804 .1542 6289 33*ZRESID -2 8144 15.6607 . 8685 3 5423 33*SRESID -2 7472 9.4 809 .5867 2 5382 33*DRESID - 4997 2.7804 . 1581 6385 33* SDRESID -2 7472 9.4809 . 5993 2 5676 33*MAHAL 0654 15.5080 2 .8638 3 3364 33*COOK D 0000 11.0106 . 5892 2 0286 33
*LEVER 0026 . 5965 . 1125 1289 33
Total Cases = 38
Histogram - Studentized Residual

Cases,NExp N (* = 1 c
2 . 00 Out * #
0 . 00 4 50
0 .00 4 00
0 .02 3 50
2 . 08 3 00 **
0 .31 2 50
0 .92 2 00
2 2.16 1 50 *:
5 3.99 1 00 ##* . *
4 5.76 50 ***# _
7 6.51 00 ******;
2 5.76 - 50 # *
5 3 .99 -1 00
1 2.16 -1 50
2 .92 -2 00 : *
1 .31 -2 50
0 . 08 -3 00
0 .02 -3 50
0 . 00 -4 00
0 . 00 —4 50
0 .00 Out

= Normal Curve)

Standardized Scatterplot"
Across - *PRE0 Down - *SRESID
Out :

-1

-2

-3

Max M
1. 
2.

Figure 23 canrfc-/- -
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Standardized Scatterplot 
Across - *PRED Down - LOGKOut

3 - -

2 - -

-3
Out

-1 4-

i  j  -1— t i— i

Symbols: 
Max N

Out

1.0 
2.0 
4 . 0

Note 1: Variables selected from database under specified conditions.
Note 2: Statistics relating to the equation derived by multiple linear

regression analysis. Please refer to Appendix II for definition 
of terms.

Note 3: Specialised treatment of the residual data between the predicted
and experimental capacity factors. Please refer to the "SPSSXcAdvanced Statistics Guide" Norusis, MJ (editor), M Graw-Hill books 
(1985), pp.28-22.
This data was not used in interpreting the regression equations. 

Note 4: Histogram of residual data. Ideally the data should follow a
normal distribution curve.

Note 5: Scatterplot of studentised residual data versus predicted log k 1.
Ideally the data should be randomly scattered.

Note 6: Scatterplot of experimental capacity factors versus predicted
capacity factors. Ideally the data should follow a linear plot, 
passing through the origin. Note that the axes for both this and 
the above scatterplot are not indictive. of the true values.

Figure 23 cont./,..
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SELECT IF (PHASNAHE EQ ' CH ' & PERCENT EQ 50 & LOGK GE -0.50 & COMPPOL EQ 2) 
Variable(s) Entered on step Number1 . . LOGP

Multiple 
R Square 
Adj usted 
Standard

R Square 
Error

.67378 

.4 53 98 

.43578 

.31038
Analysis of Variance
Regression 
Res idual
F = 24 .94271

DF
1

30
Sum of

Signif F =

Squares 
2 .40282 
2 .89000

. 0000

Mean Square 
2 .40282 
.09633

n the Equation -----------

Variable B SE B Beta T
LOGP .29341 05875 .67378 4 .994
(Constant) -.18151 12662 -1 .433

m mm U a n '  sHl oc nri ♦* i n 4-* V-» /*» P /-* t i ♦- *i « *•%VaL laUicb ll<J L XII i n e  equation — — — — — •
Variable Beta In Partial Min Toler T Sig T
VOLUME -.01641 -.01747 .61909 -.094 .9257
CONNECT .01812 .01860 .57503 . 100 .9209
DELTAQ - . 20207 - . 27140 .98502 -1.519 . 1397
HDONOR -.25986 -.27863 .62773 -1.562 . 1291
HACCEPT -.19747 -.24219 .82133 -1.344 . 1893
HASUBHD -.03789 -.05021 .95889 - . 271 .7885
BETA -.07910 -.09197 .73811 -.497 .6227

. 0000 

. 1621

End Block Number PIN = 050 Limits reached.

Residuals Statistics:
Min

*PRED -.1698
* ZPRED -2.0050
*SEPRED . 0549
*ADJPRED -.2100
*RESID -.4399
*ZRESID -1.4172
*SRESID -1.4419
*DRESID -.4686
*SDRESID -1.4695
*MAHAL . 0000
*COOK D . 0006
*LEVER . 0000

Total Cases = 36

Max Mean Std Dev N
8924 .3909 . 2744 33
8100 .0089 . 9856 33
1245 .0742 . 0210 33
9086 .3881 . 2747 33
607 6 -.0133 .3101 33
9577 -.0429 . 9992 33
1073 -.0379 1.0326 33
7040 -.0105 .3321 33
2447 -.0368 1.0459 33
0201 . 9419 1 .1259 33
3523 .0381 . 0617 33
1297 . 0304 .0363 33

Figure 23 cont./*
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NExp N (* = 1 Cases0 .03 Out
0 .05 3 . 00
0 .13 2 . 67
0 .29 2 . 33
1 .60 2 . 00 :
0 1.10 1.67
3 1.81 1.33 * . *
4 2.66 1.00 * * . *
7 3.50 .67 * * * . * * *
1 4.13 . 33 *
1 4.37 .00 *
1 4.13 -.33 *
6 3.50 -.67 * * * . * *
1 2.66 -1.00 *
8 1.81 -1.33 *•******
0 1.10 -1.67 .
0 .60 -2 . 00
0 .29 -2.33
0 .13 -2.67
0 .05 -3.00
0 .03 Out
Standardized Scatterplot

= Normal curve)

Across - *PRED Down - *SRESID
Out

-1

- 2  - -

-3
Out

Out

Symbols: 
Max N

1. 0 
2 . 0 
3 . 0

Standardized Scatterplot 
Across - *PRED Down - LOGK
Out

-1

- 2

Symbols: 
Max N

1.0 
2 . 0 
3.0
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between the benzene test compound retention times and the 
solute properties (Table 6).

Once correlation equations were developed for the 
substituted benzene model compounds, retention prediction 
of the propranolol analogues was undertaken. Three bonded 
phases were chosen for this study; octyl-, cyclohexyl- and 
phenyl-silica. Being basic in nature and therefore 
attracted to active silica-surface silanol groups, the 
analogues could not be eluted from these three stationary 
phases within the required k' value with aqueous methanol 
alone. Addition of a silanol-site competitor,
tri-n-butylamine, to the aqueous methanol eluent allowed 
the solutes to be eluted from the sorbent with a k' value 
of less than 50, which was taken throughout these studies 
as an upper retention limit. A 30:70 (v/v) methanol:water 
mobile phase with 0.3M tributylamine buffer was found to 
elute the solutes efficiently in terms of retention times 
and peak shape. Capacity factors for the propranolol 
analogues are given in Table 7. The effect of a biological 
matrix on the retention behaviour of 13-blocker drugs was 
also investigated. Plasma protein solution and fresh 

plasma were injected on to the stationary phase column 
before eluting the model compounds with the above mobile 
phase. Table 8 contains log k' values for this study and 
plots of log k' against structure are presented in figure 
24. Typical peak shapes are presented in figure 25.

The retention data for the 13-blocker analogues was 

treated statistically in the same way as the benzene test



(a)Correlation Equations
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Mobile Phase

Ethylsilica

30% Methanol Neutrals
only

Log k* = 

R2=0.981

0.581LogP + 1.033B 
- 0.010(HD-HA) - 0.5 70 

S.E.=0.059 N=22

- 0.132HD 

F=278.391
Acids & 
Neutrals

Log k* = 

R2=0.971

0.617LogD + 1.0836 - 
- 0.123HD - 0.469 

S.E.=0.087 N=26

-0.478 A 

F=202.385
Acids , 
Neutrals & 
Bases

Log k* = 
R2=0.917

0.562LogD - 0.205 
S.E.=0.142 1=33 F=289.O30

40% Methanol Neutrals
only

Log k* = 
R2=0.817

0.472LogP - 0.145 
S.E.=0.200 N=28 F=121,523

Acids & 
Neutrals

Log k* = 

R2=0.860

0.326LogD - 0.200HD 
- 0.274

S . E .= 0 .1 9 9  1=32

+ 0.001V

F = 6 2 ,2 7 0

Acids, 
Neutrals & 
Bases

Log k* = 

R2=0.860

0 .326L o g D  -  0 ,2 0 1 1 ©  
- 0.262

S.E.=0.195 1=36

+ 0 ,4 9 3 V  

F = 6 6 ,4 1 0

50% Methanol Neutrals
only

Log k" = 
R2=0.953

0 .36 7L o g P  -  0 .119H D  
S . E .= 0 .0 8 0  1=26

- 0 ,0 9 5  
F = 2 5 6 .3 7 2

Acids & 
Neutrals

Log k* = 
tt2 = 0 ,9 6 4

0 ,3 6 8 t© g ©  - 0 ,1 1 9 1 ©  
S . E ,= 0 .0 7 8  1=29

- 0 ,0 9 7  
F = 3 5 1 ,9 4 8

Acids, 
Neutrals & 
Bases

Log k* = 
E2= 0 .9 6 1

0 .36 1L o g B  -  0 ,1 2 1 1 ©  
S . E .= 0 .0 8 8  1=33

— 0 .0 7 6  
F = 3 4 3 ,8 5 0

Octylsilica

30% Methanol Neutrals
o n ly

Log k" = 
M2= 0 ,9 1®

0 .6 2 0 L o g P  -  0 .2 1 9 1 ©  
S .E . = 0 .1 4 0  1=22

+ 0 .2 0 3  
F = 9 7 .? 6 9

Acids & 
Neutrals

Log k* = 
E2 = 0 .9 2 3

0 .51 3L o g ©  -  0 .3 1 1 1 ©  
8 . E .= 0 .1 8 8  1 = 3 1

4 0 .4 4 1  
F = 1 5 1 .1 5 3

Acids„ 
Neutrals & 
Bases

Log k" = 
E2 = 0 .6 8 6

0 .41 6L o g ©  -  0 .6 2 3 1 ©  
S - E .= 0 .3 3 9  1=33

+ 0 .7 6 9  
F = 2 8 .3 1 6

40% Methanol Neutrals
o n ly

Log k *=  <0 
E2 =© .9© 0

>.®46LoglP — 0 .1 6 8 1 ©  -  
S .E . = 0 .1 6 4  1= 25

- 0 .0 6 8  
F=96.688

Acids &. 
Neutrals

Log k" = 
E2 = 0 .9 2®

® .566Log©  -  0 .2 0 2 1 ©  
S . E . = 0 .1 7 4  1= 32

4 © ,1 1 2  
F = 1 5 © .2 7 5

Table 6 Multiple lliftear 
p^sxao* 
solutes

legressioni ©qpefionis feefeesro l.og k" airafS 
prq^irties of tSae saitefcitufed Ĥorazesrae test

€orot,/„„ *



507o Methanol

Acids, 
Neutrals & 
Ac Ids 
Neutrals 
only
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Log k’ = 0.562LogD - 0.206HD 
R =0.917 S.E.=0.172 N=36

Log k ’ = 0.530LogP - 0.145I1D 
R2=0.895 S.E.=0.132 N=25

Acids & 
Neutrals

Log k' = 0.422LogD - 0.107 
R2=0.819 S.E.=0.222 N=30

Acids , 
Neutrals & 
Bases

Log k* = 0.497LogD - 0.409HD 
R2=0.807 S.E.=0.225 N=34

Octadecylsilica

307» Methanol Neutrals
only

Log k’ = 0.579LogP - 0.388HD 
R2=0.944 S.E.=0.155 N=16

Acids & 
Neutrals

Log k' =-2.5220 - 0.376HD + 0 
+ 0.113LogD - 1.170 

R2=0.879 S.E.=0.234 N=26

Ac ids , 
Neutrals & 
Bases

Log k ’ =-2 .370B 4 0.011V
4 0.129LogD 4 0.893 

R2=0.870 S.E.=0.227 N=29

407o Methanol Neutrals
only

Log k ’ = 0.609LogP - 0.356HD
Rz=0.940 S.E.=0.151 N=19

Acids & 
Neutrals

Log k ’ = 0.213LogD - 0.367HD 
- 1.4388 4  0.019 

R2=0.825 S.E.=0.292 N=26

Acids, Log k’ = 0.214LogD - 0.364HD
Neutrals & - 1.424B - 0.025
Bases R2=0.828 S.E.=0.279 N=28

507o Methanol Neutrals
only

Log k’ = 0.566LogP - 0.222HD 
R2=0.934 S.E.=0.144 N=24

Acids & 
Neutrals

Log k ’ = 0.198LogD 4 0.013V - 
- 0.634

R2=0.813 S.E.=0.254 N=29

Acids, Log k ’ = 0.195LogD 4 0.001V -
Neutrals & 4 1.106 A — 0.289HD -
Bases R2=0.894 S.E.=0.186 N=29

Phenyls ilica 

207o Methanol Neutrals
only

Log k ’ = 0.204LogP - 0.405HD - 
- 0.369

R2=0.953 S.E.=0.100 N=15

Acids & 
Neutrals

Log k ’ = 0.24lLogD - 0.318HD h 
R2=0.884 S.E.=0.183 N=20

4 0.126 
F=155.306

- 0.197 
F=95.030

F=113.978

4 0.045 
F=5 7.563

4 0.445 
F=127.878

.010V

F=39.088

0. 3591ID

F=41.248

4 0.071 
F=141.301

4 0.013V

F=29.358

4 0.012V

F=32.332

- 0.192 
F=156.553

1.3420

F=35.797

1.3730
- 0.328 
F=45.026

»- 0.011V

F=88.700

h 0.578 
F=65.812

Table 6 cx>nt./*



Acids, 
Neutrals & 
Bases
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Log k' = 0.24lLogD - 0.318HD 4 0.575 
R2=0.884 S.E.=0.178 N=22 F=69.580

30% Methanol

40% Methanol

50% Methanol

Neutrals
only

Acids & 
Neutrals

Acids, 
Neutrals & 
Bases

Neutrals
only

Acids & 
Neutrals

Acids, 
Neutrals & 
Bases

Neutrals
only

Acids & 
Neutrals

Acids, 
Neutrals & 
Acids

Log k’= 0.302LogP 4 0.357 X
- 0.223HD - 0.709 

R2=0.847 S.E.=0.188 N=27

Log k* = 0.268LogD - 0.001V -
- 0.710

R =0.811 S.E.=0.238 N=35

Log k’ = 0.243LogD - 0.294HD 
- 0.621

R =0.7 75 S.E.=0.263 N=38

Log k’ = 0.244LogP - 0.218HD 
- 0.286

R2=0.833 S.E.=0.167 N=15

Log k’ = 0.201LogD - 0.236HD 
- 0.368

R2=0.780 S.E.=0.210 N=41

Log k* = 0.174LogD - 0.204HD
- 0.552 A _ 0.500 

R2=0.795 S.E.=0.202 N=44

Log k’= 0.246LogP 4 0.157X -
- 0.709

R2=0.853 S.E.=0.136 N=33

Log k* = 0.136LogD - 0.105HD
- 0.736

R2=0.860 S.E.=0.147 N=37

Log k* = 0.136LogD - 0.105HD
- 0.732A - 0.453 

R2=0.856 S.E.=0.146 N=41

F=45.247 

0.186HD 

F=45.448

4  0.001V 

F=39.941 

4 0.162X 

F=55.992

4 0.001V

F=45.883

4 0.001V

F=40.739 

■ 0.735A 

F=62.860 

4 0.001V 

F=56.055 

4 0.001V 

F=5 7.259

Cyclohexylsilica

20% Methanol

307» Methanol

Neutrals
only

Acids & 
Neutrals

Acids, 
Neutrals & 
Bases

Neutrals
only

Log k’ = 0.540LogP 4 0.043
R2=0.558 S.E.=0.382 N=24 F=28.754

Log k* = 0.180LogD - 0.532HD 4 1.008 
R2=0.607 S.E.=0.422 N=33 F=24.156

Log k* = -0.716HD 4 1.410
R2=0.533 S.E.=0.445 N=44 F=38.615

Log k’= 0.330LogP 4 0.036 (HA-HD)
4 0.051

R2=0.628 S.E.=0.287 N=26 F=20.451

Table 6 cont./*



40% Methanol

50% Methanol

Acids & 
Neutrals

Log k* = 

R2=0.672

Acids ,
Neutrals
Bases

&
Log k ’ = 

R2=0.490

Neutrals
only

Log k* = 
R2=0.4 79

Acids & 
Neutrals

Log k' = 
R2=0.490

Acids,
Neutrals
Bases

&
Log k* = 
R2=0.500

Neutrals
only

Log k'= < 
R2=0.436

Acids & 
Neutrals

Log k* = 
R2=0.504

Acids,
Neutrals
Acids

&
Log k' = 
r 2=q .445

0.229HD - 0.710

+ 0.892

S.E.=0.416 N=45 F=20.185

?93LogD - 0.346HD 4 0.339 
S.E.=0.409 N=50 F=22.893

>3LogP - 0.182 
S.E.=0.310 N=33 F=24.943

!35LogD - 0.084 
S.E.=0.334 N=3 7 F=36.524

_95LogD - 0.250HD 4 0.163 
S.E.=0.347 N=41 F=15.856

(b) Correlation Equations for Each Phase Including Different 
Percentages of Methanol in the Mobile Phase

Ethyl Silica
Log k* = 0.315 LogD - 0.016(% MeOH) - 0.194 HD 

4  0.004V 4 0.416 
R2=0.745 S.E.=0.243 N=106 F=69.778 O =±0.243

Octylsilica
Log k* = 0.424 LogD - 0.016(% MeOH) - 0.291 HD 

4  0.004V 4 0.592 
R2=0.872 S.E.=0.202 N=112 F=150.539 CT =±0.202

Octadecylsilica
Log k* = 0.177 LogD - 0.361 HD 4 0.011V - 0.017(7o MeOH) 

- 2.338B 4 0.926 
R2=0.841 S.E.=0.240 N=100 F=0.240 CT =^0.240

Cyclohexylsilica
Log k* =0.155 LogD - 0.419HD - 0.015(% MeOH) 4 0.018V 

-0.393 X - 0.749 A + 0.239 HA 4 0.385 
R2=0.614 S.E.=0.354 N=172 F=35.754 CT =±0.354

Phenylsilica
Log k* = 0.183 LogD - 0.016(% MeOH) - 0.204 HD 4 0.0128V 

- 0.501 A - 0.156 X + 0.108 
R2=0.818 S.E.=0.205 N=148 F=101.350 a=±0.205

Table 6
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COMPOUND
NUMBER

CAPACITY FACTOR. LOG K*
Octylsilica Cyclohexylsilica Phenylsilica

1 0.29 0.34 0. 34
2 0.49 0.50 0. 35
3 1.20 0.98 0.,86
4 0.84 0.75 0.,65
5 0.70 0.67 0.,67
6 1.35 1.19 1.,09
7 0.78 0.72 0.,57
8 0.63 0.60 0.,56
9 1.40 - 1,.04
10 0.37 0.19 0,.01
11 0.41 0.46 0,.40
12 0.67 0.62 0,.65
13 0.61 0.62 0 .67
14 0.47 0.50 0 .55
15 0.14 0.29 0 .39

Table 7 Logarithmic capacity factors of the frtlocter test solutes; frcm
------- high performance liquid chromatography. 30% methanol (v/v) ,

0.3M tri-n-butylamine, pH4.
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PHASENAME COMPOUND CAPACITY FACTOR, LOG K*
NUMBER With Plasma Protein With Fresh Plasma

Solution+30:70(v/v) +30:70(v/v)
Methanol :water Methanol‘.water

Octylsilica 4 _a 0.39
6 — 0.60
7 — -0.06
8 — 0.15
10 — -0.35
11 — -0.11
12 — -0.09
15 - -0.31

Cyclohexyl- 4 _b _b
L.

silica 6 _b _b
7 _b 0.99
8 1.03 0.83
10 0.31 0.20
11 0.70 0.53
12 0.93 0. 75
15 0.64 0.49

Phenylsilica 4 _c 0.67
6 _ 1.16
7 _ 0.62
8 _ 0.63
10 — 0.07
11 — 0.41
12 — 0.73
15 — 0.53

. . . .  v* _a_No elution within k* < 50 under these conditions b-Peak too
broad to be measured Not measured under these conditions

Table 8 Logarithmic capacity factors for the study of fresh Pl-*na®a
------- plasma protein solution an the retention behaviour of selected

$-blocker test solutes, cont./...



PHASENAME

Octylsilica

Cyclohexyl-
silica

Phenylsilica

COMPOUND ____________CAPACITY FACTOR, LOG K*____________
NUMBER With 30:70(v/v) With Plasma With Fresh

methanol:water Protein Plasma+Eluent
+ 0.3M TBA Solution4Eluent

4 1.10 -0.22 0.39
6 1.03 0.15 0.60
7 1.03 -0.32 -0.21
8 0.90 -0.41 -0.18
10 0.48 -0.76 -0.10
11 0.72 -0.57 -0.26
12 0.90 -0.46 -0.20
15 0.37 -0.87 -0.59

4 0.82 0.54 0.65
6 1.27 0.96 1.08
7 0.80 0.47 0.59
8 0.68 0.38 0.51
10 0.25 -0.16 0.06
11 0.49 0.20 0.35
12 0.68 0.41 0.54
15 0.35 0.06 0.20

4 0.56 0.50 0.58
6 1.18 0.96 1.01
7 0.49 0.49 0.54
8 0.47 0.48 0.54
10 -0.09 0.05 0.03
11 0.31 0.33 0.37
12 0.56 0.59 0.63
15 0.26 0.31 0.35

Table 8
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OCTYLSILICA

15 12 COMPOUND
NUMBER

-0.5

1.0 CYCLOHE XYLSILICA

0
IS T2 COMPOUND

NUMBER

1.0

PHENYLSILICA

0
COMPOUND
NUMBER10

Figure24 Effect of □ pH4-buffered 30:70 methanol:water 
(v/v) eluent only,Owhole plasma + eluent,
A plasma protein solution + eluent on the 
retention behaviour of propranolol analogues.
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compounds. Correlation equations were constructed for the 
three chosen phases with and without the addition of matrix 
components. The same independent variables used in the MLR 
analysis of the benzene solutes were correlated with the 

log k ‘ values of the propranolol analogues. Correlations 
are presented in Table 9.

As temperature is known to affect the conformational 
behaviour of n-alkyl bonded chains and thus retention 
times, eight substituted benzene probes were eluted from 
the bonded phases with the longest chain length 
(octadecylsi1ica) and the shortest chain length 
( etbylsilica). Retention times were determined in 50:50 
(v/v) methanol:water and at 25, 30 and 35°C (Table 10).
Plots of log k' against temperature were made to observe 

changes in solute retention behaviour (Figure 26).



Octylsilica - 135 -

Eluent Only

Eluent -4- Plasma 
Protein Solution

Eluent -f Fresh 
Plasma

Cyclohexylsilica 

Eluent Only

Eluent + Plasma 
Protein Solution

Eluent + Fresh 
Plasma

Phenylsilica 

Eluent Only

Eluent -f Plasma 
Protein Solution

Eluent + Fresh 
Plasma

Log k* = 0.349x ~ 2.015
R2=0.632 S.E.=0.238 N=23 F=25.039
o =±o.24

Log k* = 0.322X - 0.027(HA-HD) - 2.426
r2=0.934 S.E.=0.082 N=8 F=50.156
a =±0.08

No correlataion.

Log k* = 0.769 X - 0.186HD - 0.012V - 1.428 
R2=0.870 S.E.=0.095 N=23 F=30.030
a =±0.10

Log k* = 0.404X - 0.206HA - 1.907
r2=0.985 S.E.=0.045 N=8 F=191.828
a =± 0.05

Log k* = 0.369X - 0.182HA - 1.580
r2=0.955 S.E.=0.066 N=8 F=74.905
a =± o.07

Log k’ = 0.373 X - 0.286HD - 1.675 
r2=0.800 S.E.=0.130 N=23 F=26.987
a =±0.13

Log k* = 0.713X - 0.400HD - 0.010V - 1.358
r2=0.992 S.E.=0.025 N=8 F=299.685
a =±0.03

Log k* = 0.324X - 0.160HA - 1.317
r2=0.886 S.E.=0.094 N=8 F=28.328
a = ± 0.09

Table 9 Multiple linear regression equations between log k 1 
and physicochemical properties of propranolol and 
selected solutes.



PHASENAME TEST SOLUTE LOG K*
25°C 30°C 35°C

Ethyl
Salicylic acid -1.10 -1.15 -1.,22
Benzoic acid -1.10 -1.15 -1.,22
Phenol -0.46 -0.47 -0.,48
Aniline -0.43 -0.46 -0.,46
Benzene -0.05 -0.08 -0,.10
2 ,4-Dimethylphenol -0.15 -0.19 -0,.21
p-Phenylphenol _a _a _a
n-Propyl-p-hydroxybenzoate -0.18 -0.24 -0..28

Octadecyl
Salicylic acid -0.57 -0.55 -0.65
Benzoic acid -0.70 -0.66 -0.75
Phenol 0.05 0.14 0.09
Aniline 0.08 0.06 0.02
Benzene 1.04 1.01 1.00
2,4-Dimethylphenol 0.79 0.79 0.73
p-Phenylphenol 1.26 1.20 1.14
^j-Propyl-ja-hydroxybenzoate _a _a _a

a^-not eluted within k* < 50

Table 10 Logarithmic capacity factors of selected benzene test solutes 
for the study of teirperature at high performance liquid
dhrcanatographi c retention.
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25 30

-  0 ,• 2 H

“0.8H

(b)

30 3525
-0.2J

“0 . 6 *|

Figure 26 Effect of temperature on the retention of 
• salicylic acid,A benzoic acid, +phenol, 
Oaniline,Q benzene, □ 2,4-dimethylphenol, 
Op-phenylphenol, A n-propyl-p-hydroxy- 
benzoate. (a) ethylsilica (b) octadecyl- 
silica, 50:50 methanol:water, pH7.9 (1.0ml/ 
min flowrate)
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C H A P T E R  F I V E

DISCUSSION

The chromatographic environment is a complex system 
incorporating the mobile phase, the stationary phase and 

the solute. The contributions from each of these 
components cannot be separated because of the random nature 
imposed by both the bulk mobile phase and the bonded 
sorbent. The heterogeneous nature of the system has 
therefore resulted in a lack of parameters for these two 
phases with which to describe their contributions to solute 
retention. As a consequence and for simplicity, the 

stationary phase and the mobile phase need to be assumed as 
homogeneous in studies relating to solute retention 
prediction. This leaves only the solute with 

readily-generated, reliable physicochemical data, and the 
most common approach to understanding the chromatographic 

retention process involves observation of changes in 
retention of solutes as either the sorbent or mobile phase 

is changed. Interpretation of the retention process can 

then be made from the properties of the solute which appear 
to determine retention and elution behaviour. By keeping 
both the mobile phase and the sorbent constant, and by 

adding to or changing the substituents on a solute, the 
contribution of a functional group to retention and elution

can be examined.
This study was undertaken to apply solute retention
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prediction to the solid-phase extraction of 13-blocker 
drugs in order to evaluate the usefulness of prediction 
rules in solid-phase extraction method development. The 
ability to predict the conditions required for 
retention/elution would aid the development of new 
solid-phase extraction techniques and improve existing 
methods, resulting in reduced expense and time to the 
development toxicologist.

5.1 The Experimental Approach
The selection of model benzene solutes was based 

primarily on the functional groups commonly encountered in 
13-adr ener gic receptor drugs, in particular propranolol. 
Mono-, bi- and tri-functional benzene compounds were chosen 
because (a) they encompassed a wide variety of suitable 

substituents, (b) the compounds were easily obtainable and
(c) the solutes had a common benzene nucleus in their 
structure which served as a convenient chromophore for the 

detection of the solutes by UV spectrometry. Forty three 
solutes were chosen with acidic, basic and neutral 

substituents including carboxylic, amino, phenolic, 
methoxy, nitrile and alkyl groups. Multifunctional benzene 

solutes permitted the influence of neighbouring 
substituents and their relative positions around the ring 

to be explored. Several small series of solutes were used, 
such as phthalic acid, dimethylphthalate and 
diethylphtha late; also ortho-, meta- and para-hydroxy 

benzoic acid.
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The pH of the aqueous methanolic mobile phases used 

in the HPLC studies were chosen as approximately 5 and 7, 
the pH values to which biological samples might be buffered 
for SPE.

Being basic in nature, 13-blocker drugs are
difficult to extract because of unpredictable retention 
through silanol interactions. Propranolol and several 
synthetically-modified analogues were chosen to represent 
this group of drugs in the modelling of retention 
behaviour. Fourteen analogues of propranolol were selected 
with functional group variations in the side chain and 
around the naphthalene ring. This enabled the influence of 
groups adjacent to the basic centre involved in the silanol 
interaction to be examined, as well as the effects of 

introducing substituents onto the dominantly lipophilic
fused ring system of naphthalene. These test compounds 

also allowed the influence of size to be studied.
In this present work it was also considered

important to study matrix effects on retention and 
elution. Biological fluids contain proteins and lipids 

which may change the properties of the sorbent if they 
interact with the bonded chains or exposed silanol groups. 

These components are normally present in much greater 
concentrations than the drugs and their metabolites and the 
matrix may readily saturate much of the available 
stationary phase surface. As the retention of 13-blocker 
drugs may be changed by such alterations to the bonded 
phase, the 13-blocker test solutes were prepared as
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aqueous solutions, and also in fresh plasma and plasma 
protein solution to investigate this phenomenon.

Bonded silica extraction cartridges under the trade 
name of Bond Elut were chosen because they are among the 
most widely used cartridges for the solid-phase extraction 

of drugs from biological matrices. Like the majority of 

other commercial bonded phase sorbents. Bond Elut® is 
polymeric to enhance selectivity [22].

Non-polar phases were selected for testing as 
reversed-phase extractions are widely employed in 
toxicology, including the more frequently encountered 
octyl- and oc tadecyl-s il icas as well as the lesser used 

ethyl-, cyclohexyl- and phenyl-silicas. As little research 
has been conducted on the latter two phases, the present 
study is particularly informative with respect to the 
retention behaviour and selectivity to be expected.

A large number of retention data was required for 
significant statistical analyses to be performed. 

Extraction of the test solutes with the Bond Elut 
cartridges would have been slow and the analysis of 
fractions collected during these steps would only indicate 
if a solute was eluted or retained indefinitely under each 

particular set of conditions. Thus a continuous flow 
system similar to HPLC was used to provide the data needed 

for statistical analysis in the shortest time, but more 
importantly to enable relative retention times/volumes of

solute series to be studied.
The bonded silica phases were supplied loose and
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packed into short (10cm) HPLC columns to imitate SPE 
cartridges. Packing into the stainless steel columns by 
the slurry method did not yield as many theoretical plates 
as columns packed by the dry tap-fill method described in 
reference 162 (Table 11), so HPLC columns were subsequently 

packed with the sorbents by the latter method. This 
unexpected result is undoubtedly due to the size and 
irregular shape of the particles compared to the much 
smaller, spherical packings used in HPLC.

Degradation of the material by hydrolysis of the 
Si-O-C ether bond with the aqueous mobile phases did not 
appear to be a problem. For example, the number of 
theoretical plates, N, measured with aniline for a column 
filled with the octyl phase immediately after packing was 
157.6. After two weeks of continuous use (average time in 
which to collect retention data for the solutes with four 

out of a total of eight mobile phases), N had dropped by 
just 4.2 to 153.4. Thus it was concluded that loss of 

silica-bonded ligand was negligible over the time-span 
normally required for the retention measurements.

Methanol was chosen as an appropriate organic 
modifier for the aqueous mobile phases not only because it 
is the most widely used organic modifier in reversed-phase 
HPLC, but because of its properties as compared to 
acetonitrile (ACN) and tetrahydrofuran (THF) which are also 
commonly used. Methanol possesses both hydrogen—bond donor 

and acceptor abilities unlike ACN and THF which are only 
hydrogen—bond acceptors. Thus methanol exhibits similar
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PACKING METHOD NUMBER OF THEORETICAL 
PLATES, N

Slurry packing
with methanol 116

Dry tap-fill 222

Table 11 Comparison of the number of theoretical plates 
for a column packed with Bond Elut octylsilica 
by the slurry method and the dry tap-fill method.

SOLVENT POLARISABILITY DIELECTRIC CONSTANT

VOLUME i
24 3 (x 10 c m)

Methanol 3.23 30

Water I> 00 80

Table 12 Some properties of methanol and water
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polarisation properties to water (Table 12). Methanol also 
does not drastically alter the solvation sphere of water 

molecules associated with a solvated solute and/or 
si1ica-bonded ligand as it is approximately the same size 

and shape as a water molecule and can therefore readily 
replace a water molecule without disrupting the sheath of 
solvent. Use of methanol therefore minimises changes to 

the bulk mobile phase structure as the percentage of 
organic modifier is changed, and, unlike ACN and THF, 
methanol forms only a single monolayer with the water bound 
to the silica surface of the sorbent. Adsorption of the 
solute by a thick layer of adsorbed solvent is thereby 
reduced.

Methanol is often used to "condition" reversed-phase 

SPE sorbents before sample application as it readily 
solvates the non-polar ligands attached to the silica. 
This encourages polymeric bonded phases to swell and lowers 

the energy needed for solvation by the bulk aqueous mobile 
phase used as eluent. Because methanol has a lower 

dielectric constant than water (Table 12), it is easier for 
a solute to form a cavity within the methanol network. 

This is observed by reduced solute retention times as the 
percentage of methanol in the mobile phase increases, e.g. 
with octadecylsilica and 30% (v/v) methanol buffered to pH
7, the log k' values of acetylsalicylic acid, anisole and 
toluene-£-sulphonamide are respectively 0.22, 1.71 and
0.22, but at an increased percentage of methanol (50% v/v, 
pH7), the solute retention times are reduced to —0.22, 1.57
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and -0.26 respectively. Note that the retention times of 
the two polar solutes are greatly reduced by an increase in 

percentage organic modifier compared to the neutral anisole.
This pattern is a reflection of the positions that 

the solutes adopt within the stationary phase network as 

already depicted in figure 12, p.43. Polar solutes, except 
bases, tend to reside at the unattached end of the bonded 
ligands to enhance their hydrogen-bonding or ionisation 
interactions with the polar bulk mobile phase. Therefore 

such polar solutes are influenced to a greater extent by 
changes in mobile phase composition than solutes such as 

anisole which prefer to reside deeper in the stationary 
phase where more non-polar interaction with the hydrophobic 
ligands is favoured. The concentration range of organic 
modifier was chosen as 20-50% methanol because of the 
adverse changes to mobile phase pH at methanol 

concentrations above 50% (v/v) [106,124] and also because
of the difficulty of eluting hydrophobic solutes within a 
reasonable time with less than 20% (v/v) methanol.

A second mobile phase additive was necessary for the 

retention studies of propranolol and analogues to nullify 
ion-exchange retention through exposed silanol groups. 

Tri-n-butylamine (0.3M) was used as the modifying amine to 
block such potential retention sites and maximise 

reversed-phase behaviour of the basic compounds. The 
optimum concentration of tri-n-butylamine was selected as 

the concentration at which the peak shape and height of 
propranolol was no longer improved by additional amounts of
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modifier, and the composition of the aqueous methanolic
mobile phase was taken as the concentration at which the
retention time of propranolol was no longer reduced upon

further addition of methanol to the mobile phase (30% (v/v) 
methanol).

The dynamics of the stationary phase have been noted
as changing when the system is subjected to varying
temperature [55]. At a specific temperature, T , the

o
stationary phase reaches a stable conformation [166] and
T values vary for different lengths of bonded chains o
[56]. A study of the effect of column temperature on the 
retention of selected substituted benzene solutes was 
conducted on the test phase with the shortest chain length 

(ethylsilica) and one with a longer ligand length
(octadecylsilica). Solutes were chosen to represent the 

three main families of compounds: polar (acids and bases), 
non-polar and phenols, and were eluted with 50% (v/v)
methanol at pH7. The lowest temperature at which the

column could be regulated within the HPLC column
compartment was 25° so the behaviour of the eight test 

solutes was examined at temperatures of 25°C, 30°C and
35°C. From the plots of log k' versus temperature in

Figure 26 (p.137), the following conclusions could be drawn:
(a) Effect of temperature on the ethylsilica phase

With the short-chain ethyl phase, the solutes were 

eluted at each temperature in the order expected from their 
general physical properties, i.e. benzene, being non-polar, 
was retained longer than phenol which in turn was eluted
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more slowly than the more polar salicylic acid. When the
temperature increased, the solutes were eluted slightly

faster than at the previous temperature as the
silica-bonded chains increased in mobility and the solutes
were exposed to more of the bulk mobile phase, in which the
solutes became more soluble with increasing temperature.

The unattached ends of the chain became more mobile than
the rest of the ligand as the temperature rose, and
consequently solutes which reside in the more mobile
region, i.e polar solutes such as salicylic acid and

benzoic acid, experienced less restriction imposed by the
hydrocarbon ligands and also less energy was required to

create a cavity in the mobile phase. Thus they showed a
greater reduction in retention times than the less polar

solutes as the temperature rose. All of the plots for this
phase were linear implying that either the stationary phase
had not reached its T temperature or, more likely, thato
it was already in its most stable conformation as T q for 
ethylsilica is less than 25°C because the bonded chains 
are short [58] .
(b) Effect of temperature on the octadecylsilica phase

Again the test solutes were eluted in the order 

expected at each temperature. However, it can be seen from 

Figure 26 that a break in linearity occured for the polar 
acidic solutes including phenol. This, again is related to 
the position of the solutes within the stationary phase 
layer. At 30°C, the long silica-bonded hydrocarbon 
ligands undergo a conformational transition towards the end
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of the chains. Thus the retention of solutes within this 

region will be affected as shown in Figure 27. Solutes 
which partition further into the stationary phase layer do 
not experience any drastic change in their environment, 

except slightly increased freedom, and therefore follow 
linear behaviour as temperature increases. Hence it can be 

concluded that octadecylsilica does not reach its most 
stable conformation until the column temperature is above 
30°C. This must be kept in mind when comparing retention 
data performed on octadecylsilica below 30°C and where 
the column temperatures used are different. Experimental 
studies carried out under different chromatographic 

conditions for retention data comparison should be 
performed at a constant temperature to eliminate such 

uncertainty.
Interestingly, aniline, which is a polar solute and 

would therefore be expected to reside near the end of the 
stationary phase near the bulk mobile phase, does not show 

non-linear behaviour like phenol which is similar in 
polarity. This illustrates that aniline is pulled further 
into the stationary phase network by ionic interaction with 

silanol groups and is in a less chaotic environment, as 

observed by Schunk [76].
The adaptation of SPE to HPLC requires appropriate 

criteria to be chosen when the terms 11 retention" and 
"elution" are used in the 'digital' chromatography concept 
applied to SPE. If k' was greater than 50, the solute was 

taken to be irreversibly retained under those particular
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NH

NH

Figure 27 Effect of sorbent chain mobility on solutes in 
the chromatographic system.
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chromatographic conditions ("off" in SPE). if k' was less 
than 50, it was presumed to be eluted with that particular 

mobile phase from the bonded phase used ("on" in SPE). 
This concept will be discussed in more detail further on 

with respect to the precision of the prediction equations, 
it is important to realise that in the practical 
application of QSRR theory to cartridge-SPE methods the 
correlations between predicted and actual retention 
behaviour are of a lower degree than those needed for QSRR 
studies of the theory of HPLC.

Solutes eluted with logarithmic retention capacities 
of less than -0.50 were not used in the regression analysis 
as such times could not be measured to a sufficiently high 
degree of precision.

5.2 Selection of Physicochemical Descriptors
The chemical and physical properties chosen to 

represent the test solutes had to be carefully selected in 
order to cover the two major interactions which prevail in 
liquid chromatographic retention; dispersive and inductive 

forces. Table 13 lists the parameters collected for each 
solute. A number of descriptors are clearly

intercorrelated with other properties, e.g. both the 
partition coefficient, log P, and the Hansch parameter 

represent the hydrophobic potential of a solute; both 
volume and polarisabi1ity reflect solute size. If highly 
intercorre1ated independent physicochemical variables are 
used together in the same regression equation, the
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LIST OF PHYSICOCHEMICAL PROPERTIES 
DETERMINED FOR THE TEST SOLUTES

Molecular weight, MW 
Melting point, mp 
Boiling point, bp 
Density
Refractive index
Partition coefiicient, log P
F-parameter
Hansch parameter, tt
No. of hydrogen-bond acceptors, HA
No. of hydrogen-bond donors, HD
HA-HD
HA+HD
Ionisation constant, pKa 
First order connectivity index,x 
Molar refractivity, Rm 
Molar volume, Vm
Excess electronic charge distribution coefficient^
Hammett constant,a
Momentum, Mx, My and Mz
Volume of whole molecule, V
Dipole moment of whole molecule, DM
Summation of dipole moments for substituted groups
Principal elliptical axes, Px, Py and Pz
Polarisability of whole molecule
Summation of polarisabilities for substituted groups 
Moment of polarisability of whole molecule
Summation of moments of polarisability for substituted 
groups
Hydrogen-bond acceptor ability, fi

Figure 13 List of parameters collected for the test solutes
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correlation coefficient, R ^ , is falsely increased due to 
the intercorrelation. Therefore only one significant 
variable describing possibly a number of other similar 
descriptors has to be selected. In this study, such 

selection was performed by factor analysis which grouped 
together parameters relating to size and shape, 
hydrogen-bond acceptor/donor ability and polarity (Table 
14). From this the following parameters were selected as 

independent variables for multiple linear regression (MLR) 
analysis: V, X , log P, HA, HD, HA-HD, A & 3.

If a solute possessed two or more ionisable 
substituents, the substituent which was thought to exert 

the greatest influence on the ionisation behaviour of the 
molecule as a whole was selected. For example, with 

£-hydroxybenzoic acid, the pK taken to represent the3
whole molecule was that of the carboxylic acid substituent 
(4.67), in preference to the pK of the weaker phenolic3
substituent (9.37).

Momentum and principal elliptical axes could not be 
used in MLR because they are dependent on the orientation 

of the molecule. Momentum would have been a good parameter 
to describe the "tumbling" motion of a solute which would 
be useful when considering how a molecule rotates about its 

centre of gravity. The principal elliptical axes would 
also have been useful for representing the planarity and 
elongation of a substituted molecule, particularly when the 

bonded phase may only allow a particular shape of molecule 
to "slot in" between ligands. Limitations of the VIKING
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CHEMICAL/PHY SICAL 
PROPERTY

PHYSICOCHEMICAL DESCRIPTORS 
WHICH ARE RELATED

Size and Shape Polarisability
V
F
IT
Vm
Rm
X
Log P 
MW
Moment of Polarisability

Hydrogen-bond HA+HD
acceptor/donor HD
ability HA

3

Polarity Total dipole moment 
Fragmental dipole moment 
A

■Fiqure 14 physicochemical parameter 
analysis.

s selected by factor
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program on the selection of standard orientational axes 
meant that these variables had to be excluded.

No other appropriate descriptors are presently 
available, especially relating to the mobile phase and the 
stationary phase. Those used include the most recently 

developed parameters published in the field of QSRR. 
However, as will be discussed in suggestions for further 
work, new parameters need to be developed to satisfactorily 
predict the effects of inductive parameters and geometric 
factors on chromatographic retention.

5.3 Approach to Computational Methods

5.3.1 Molecular Modelling
The solute physicochemical parameters had to be 

accurately measured to reduce errors in the prediction 
equations. A number of properties such as molecular 
weight, density, log P (substituted benzene solutes only) 
and x were found in the literature as already shown (Table 
3, p.99). However, particular properties of all solutes, 
such as volume and dipole moment, had to determined by a 

molecular modelling system. Structures to be measured were 
constructed by VIKING software (ICI Pharmaceuticals). A 

calculation package called 1CICAL then accessed the 

structures from VIKING and performed the required 
calculations by the CNDO/2 method. The structures were 

input in their lowest energy form, e.g. salicylic acid was 
constructed with the substituents orientated so as to
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maximise intramolecular hydrogen bonding. The potential 
energy of phthalic acid, dimethyl- and diethyl-phthalate 

were highly orientation-dependent and were assigned zero 
dipole moments if drawn in the wrong conformation. This 

resulted in no VIKING/ICICAL-generated atomic charge data 
for phthalic acid because the orientation of the lowest 
energy form could not be represented accurately enough.

5.3.2 Statistical Analysis
With the large amount of experimental and 

physicochemical data generated for statistical analysis, it 
was necessary to file the data in a hierarchical-structured 
database. SIR was chosen as the database package for this 

reason. This allowed each test solute to be treated as an 
individual case. Associated with each case were three 
records; one containing the physical and chemical
parameters for the solute, another containing details of 

the chromatographic systems in which that solute's 
retention times were measured, and a third with the

appropriate experimental retention data.
A compatible statistical analysis package, SPSSX/PC, 

was use to retrieve selected cases and records from SIR and 
perform a variety of statistical manipulations on the 

data. Simple linear correlation analysis was initially
performed to confirm that no single variable alone
correlated significantly with log k' (dependent variable). 
A correlation coefficient of less than 0.8 was accepted as 
indicating that the single variable correlation was not



- 156 -
significant. Once it was established that more than one 
variable would be necessary to correlate log k' with solute 
physicochemical properties (independent variables) in the 

majority of situations, factor analysis was performed to 
reduce the number of independent variables and to highlight 
independent variables which were highly intercorrelated. 

Although work by Leahy [112,122] shows that log P is highly 
correlated to volume, solute polarity and 13, indicating 

that only one of these variables should be used as an 
independent variable, omission of log P or log D from the 
regressional analysis variable list resulted in very poor 
correlations, for example:

Octadecylsilica 40% methanol
With log D R2 = 0.828
Without log D R2 = 0.489

Thus the eight physicochemical descriptors described in the
previous section were selected as independent variables.

If multiple linear regression generated a prediction

equation where the predicted dependent variable, log

k' , was ideally correlated with the experimental pred
value, log k'eXpt» ttie correlation coefficient would be 
either + 1 if log k'pred increases in value as log

k'expt increases or -1 if log k ’pred decreases with 
increasing log k 'expt* R =°' then there is no
linear correlation between the dependent variable and any
independent variables although it may be possible that a
non-linear correlation exists. A correlation coefficient
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of greater than 0.9 is considered very good, although in 

this work a correlation coefficient of better than 0.8 was 
accepted to indicate a good linear correlation.

Generally MLR equations take the form of

n
Dependent - 5 *  n -(Independent)J + C Equation 38

where A is the constant associated with a particular
independent variable and C is the intercept of the slope
with the y-axis. The following statistics relating to the
regression equation were deemed important for data

2interpretion: R , standard error of the correlation
2(S.E.), and mean square residual, a . These were used to

verify the "goodness-of-fit" of the prediction equation.

If a regression relationship did not appear to be

linear from either the scatterplot of log k' . versuspr ed
log k'expt or residuals versus log ^'pred» no attempt 
was made to derive non-linear relationships through lack of 
sufficient data for meaningful curve-fitting.

5.4 Discussion of Experimental and Statistical Results

5.4.1 Substituted Benzene Test Compounds
An initial review of the experimental data alone 

shows that a number of the test compounds follow expected 
retention patterns according to their general physical 

properties. For instance, polar solutes such as benzoic 
acid and acetylsalicylic acid tend to elute faster than
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more non-polar solutes such as benzonitrile which in turn 

generally elute faster than even more non-polar solutes 
such as p-pheny1phenol. Retention times also tend both to 
decrease as the percentage of methanol in the mobile phase 
increases and to increase as the number of carbons in the 
bonded chain increases. Unfortunately many of these trends 
are not linearly related to a single parameter and
therefore cannot be defined by simple concepts like log P 

or polarity, although, as would be expected in 
reversed-phase systems, the hydrophobic parameters log P 
and log D feature prominently in all of the regression 
equations. Some deviations do exist, for example 
p-hydroxybenzoic acid (salicylic acid) elutes more slowly 

than m- and p-hydroxybenzoic acid. Answers to such
questions can only be found when the underlying process of 

retention relating to the structure of a solute has been 
determined.

In order to build up a complete picture of the
retention process, the test solutes were divided into 3

groups relating to their ionisation behaviour. Solutes
with 6< pK <8 or those which are weak acids or basesa
were classed as neutral, solutes with pK <6 werea

classed as acidic and solutes with pK >8 were classedcl
as basic. This allowed the effect of solute ionisation 
behaviour to be studied as this property will affect 
hydrophobicity. The behaviour of each group of compounds 
under the different experimental chromatographic conditions 

is discussed separately below.
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Solute retention on cyclohexylsilica could not be

predicted by the physicochemical parameters selected for
the substituted benzene solutes. Although the lack of
correlation was disappointing, it was not unexpected as it
was thought that the phenyl or cyclohexyl phases would be
orientation-dependent because of the geometry of the

ligands. More encouraging correlations were achieved with
the 3-blocker analogues and the characteristics of this

phase will be discussed more fully in Section 5.4.2
A short-hand notation of the chromatographic

conditions will be used in the following text. Ethyl-,
octyl-, octadecyl-, phenyl- and cyclohexyIsi1ica will be
abbreviated to C2, C8, C18, PH and CH respectively. The
number after the phase name will represent the percentage

of methanol and the pH of the mobile phase respectively,
e.g. log k' relates to the logarithm of they * CH,50,7.9
retention capacity of a solute in a system with a 
cyclohexylsilica phase, eluted with 50% methanol in water 

at pH 7.9.

5.4.1.1 Neutral Substituted Benzene Solutes
Compounds which are not ionised under a particular 

set of chromatographic conditions should follow 

straightforward reversed-phase retention/elution behaviour 
relating to both their lipophilic tendencies and an 

inductive term. This is indeed observed with this sub—set 
of solutes (Table 6, p.125). In the chromatographic 
systems where the bonded phase is an n—alkyl chain (except
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ethylsilica (C2) at 30% methanol), the log k' value can be 
predicted from a hydrophobic term (log P) and an inductive 

term (HD) as has already been shown by others [94, 96, 157]. 

As log P is a positive variable, log k' will increase as 
hydrophobicity becomes more pronounced:

Benzonitrile 

p-Phenylphenol

On the other hand, HD is a 
decreases as HD increases, 
the following:

Phenol

Quinol

log P = l .56
log k 'os,3o ,5.5= 0 -81 
log P=3.20
log k'c0#3o #5.5=1-68

negative term, that is, log k' 
This can be illustrated with

HD=1
log k'c8,30,5 .5=0 -53- 
HD = 2
log k 'C 8 ,30,5. 5=-0.29

to hydrogen-bond 
phase [59] so 
eluted faster

HD is a reflection of a solute's ability 
with the polar components of the mobile 
solutes with hydrogen-bonding potential are 

than those which do not:

jD-Cresol HD=1
log k 'o s ,50,7.3 =0•68

Toluene HD=0
log k'C8f50,7.3=1.34

The effect of extending the length of an alkyl
silica-bonded chain is to increase the constant relating to
log P. The lipophilic contribution of the C8 phase is
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greater than that of the C2 phase as shown by reduced

constants for log p in the regression equations for the
latter, although C18 appears to exert the same lipophilic

interaction on non-polar solutes as C8 which indicates that

lipophilic interaction reaches a maximum once the solute
can be enveloped by an n-alkyl chain [40,45,48]. This

emphasises the importance of quoting bonded phase coverage 
2per m rather than as percentage carbon by weight because 

although CIS certainly has a greater carbon content, the 

number of ligands may be less than for C8 due to the 
bulkiness of the octadecyl groups. Therefore a less 
hydrophobic environment is created and hydrophobic effects 

are not as large as expected [110].
The significance of the hydrogen-bonding term in the 

regression equation increases with the sorbent chain 
length, as observed by Miyake e_t al.. [127]. This is due to 

the reduced C2 and C8 retention times of solutes which are 
only moderately hydrophobic and possess a hydrogen-bond 

donor group. As the solutes tend to be eluted quickly from 

these two phases through reduced hydrophobic interaction, 

they are not differentiated according to their 

hydrogen-bond donor capabilities. However, CIS increases 

the retention of these solutes by more pronounced 

hydrophobic attraction and thus the solutes are exposed for 

longer to intercalated solvent molecules. This results in 

a greater contribution of HD to retention.
The elution times of solutes from C2, C8, C18 and PH

phases decrease as the percentage of methanol increases.
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although this is not obvious from the relative 

contributions of hydrophobicity, hydrogen-bonding ability 
and size factors between different systems. What is 

observed is a compensation i.e. log P may increase and the 
effect of HD may become more pronounced as the amount of 

organic modifier increases, but the residual constant in 
the regression equation becomes more negative, which 
results in a net lowering of log k'. Neutral compound 
retention will decrease as more methanol is added to the 

eluent. Methanol makes the n-alkyl stationary phase swell 
and consequently as the amount of methanol increases, 
solutes that partition down into the bonded ligands are 
then exposed to more of the bulk mobile phase which results 

in a lower degree of retention.
The retention mechanism of the PH phase appears to 

be different to that of n-alkyl bonded phases. A 

shape/size factor is included in addition to log P and HD, 

implying that retention by this aromatic phase is 

shape-related. The connectivity index,x , appears to 
contribute as much to retention as the hydrophobic term and 
therefore is important. Retention increases as the size of 
a solute increases because the term is positive. Thus, the 

more hydrophobic and bulkier the solute, the longer it will 

be retained by the bonded phase:
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Solute X Log P Log k '
Phenol 2 . 13 1.46 0.30
n-Propyl-
£-hydroxy-
benzoate

4.45 3 .04 1.36

p-Phenyl
phenol

4 .21 4 . 20 1.64

p.-Phenyl phenol could also be retained by tt -tt 

interactions between the aromatic rings, but as no 
parameters were available to measure ir-energy effects, this 

phenomenon could not be investigated further.
Neutral compounds should not be ionised under the 

conditions used in this work and therefore should not show 
appreciably different retention behaviour under different 

pH conditions. Yet this is observed, for example,

Benzylalcohol log k 'p h ,40,5.6=0 - 03
log k'pH,40,7.6=0.18

This must be due to other factors besides ionisation,

especially in this case as benzylalcohol is such a weak

acid (pK =15.40), and one of these must be protonation of 
a

the alcohol, analogous to the formation of H 30 . It 
may be expected that hydrogen-bond acceptor ability would 
become important in this situation, but this is not 

observed under the conditions used in this work. Another 
influencing factor may be the different buffering salts 

used which were sodium acetate/acetic acid for pH5 and
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phosphate in the commercial buffer tablets used for pH7.

If the buffer ions interact with the bonded sorbent through 
ion-exchange, the character of the surface may alter. 

Also, slight differences in the percentage of methanol in
the mobile phase resulting from measurement errors during 
eluent preparation could explain these observations.

Compounds which oxidise quickly when exposed to air 
change their retention behaviour after oxidation has 
occurred. One example which highlights this problem is 

quinol. Although care was taken to prepare the solution 
freshly when required, experimental retention was longer 
than predicted:

Retention of Quinol

Bonded Phase Eluent Conditions log k'eXpt log k'prea
C8 30% methanol,

pH7 0.21 0.11
PH 50% methanol,

pH5 -0.32 -0.52

In summary, the retention behaviour trends exhibited 
by the neutral solutes reflect reversed-phase behaviour as 

expected. By using these observations as a reference 
point, the effect of ionisation on elution can be studied 

by examining changes in the retention mechanism with acidic 

test probes.

5.4.1.2 Acidic Solute Retention Behaviour
H y d r o p h o b i c i t y  is a major in flu ence on solute
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retention in reversed-phase systems as shown by the 

behaviour of neutral solutes in the previous section. 
Changes in the properties of a solute which ultimately 
alter its hydrophobic character will therefore affect 

retention behaviour. Solutes in their ionised form become 
more soluble in the aqueous eluent and therefore their 

hydrophobicity appears smaller than predicted resulting in 
over-estimation of retention by prediction equations. 

Correcting log P to log D should compensate for partial or 
total ionisation of compounds under particular conditions. 
For acidic solutes:

Log D = log P - l o g [ l + 1 0 U pH-pKa )] Equation 25

and log D was used instead of log P in MLR analysis. This 
correction also takes into account the differences in 
degree of ionisation at different values of mobile phase 
pH. Data for the acidic compounds were added to that for 

the neutral compounds and new retention prediction 

equations were constructed (Table 6, p.125).
7The R values of the equations do not change 

significantly after addition of the acidic solutes to the 

data set and are still better then 0.8. This implies that 

ionisation corrections have successfully removed possible 

prediction errors arising from ionisation effects on 

lipophilicity. Log D remains highly significant for C 2 , C8 

and PH even though its contribution is reduced in these 

cases. For the phases containing short n-alkyl chains the
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number of hydrogen-bond donor groups becomes more 

significant as would be expected because the acidic solutes 
will have more hydrogen-bonding character than the neutral 

compounds. The connectivity index in regression equations 
for the PH phase is replaced by volume indicating that the 
size of an ionic solute is more important than the shape. 
Although it would appear that the contribution to retention 
from volume is less significant than that from the
connectivity index, it must be noted that the volume 
parameter is two orders of magnitude greater than the 
connectivity index e.g. for benzoic acid, x is 2.615 and 
volume is 104.337. Therefore, volume is just as

significant for acidic solutes as connectivity appears to 
be for neutral compounds.

The retention mechanism for acidic solutes appears 
different on C18 to that for the neutral compounds on the 

same phase. The hydrophobicity term decreases
significantly and HD remains approximately constant, but 

volume (V) and 13 are added to the equations. Log k ‘
increases with volume (V), but decreases as J3 increases. 

Both V and 13 are more dominant than log D. Although fl
represents hydrogen-bond donor ability like HD, it is more 

representative of relative HD ability than just the number 
of donor groups. The inclusion of a volume term reflects 

the residence of acidic solutes near the flexible, 
unattached end of the stationary phase layer. As the 

unfixed parts of the silica-bonded chains have more freedom 
to rotate and coil around solute components than the middle
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of the bonded phase where the non-polar solutes tend to 

reside, the size of solute will become a determining factor 
for retention on a C18 phase.

The percentage of organic modifier in the mobile 
phase does not appear to affect the retention behaviour of 
the majority of acidic solutes in any predictable way. No 
strong trends are observed as the amount of organic 
modifier increases which is expected for acidic solutes, 
which are exposed to more of the bulk solvent than neutral 

solutes, because as noted in Section 5.1, methanol exhibits 
similar hydrogen-bonding properties to water and thus a 
change in composition of the bulk mobile phase should not 
significantly change acidic 6olute solvation. An exception 

is C18 where the contribution of lipophilicity to retention 
is reduced as the percentage of methanol increases, as 

illustrated by acetylsalicy1ic acid:

Behaviour of AcetyIsa 1 icy1ic acid 
on Octadecylsilica, pH5

20%
i --  tMethanol log k'=0.38 log D =- 0 .37

30% Methanol log k'=0.07 log D=-0.56
40% Methanol log k'=-0.21 log D=- 0.66
50% Methannol log k ’=-0.68 log KOCOo1IIQ

The phenyl phase appears to behave in an unusual 
fashion with regard to the retention behaviour of acidic 

and neutral solutes. Acids such as m- and £-hydroxybenzoic 
acids follow the expected pattern of decreasing retention 

with increasing percentage of methanol:
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Acidic Solute Behaviour on 
Phenylsilica. pH 5

Solute Name % Methanol log k'
m-Hydroxybenzoic acid 20 -0. 52

30 -1.02
40 -1.17
50 -1.68

_p-Hydroxybenzoic acid 20 -0.36
30 -0.69
40 -0.78
50 -0.84

However, neutral solutes decrease in retention from 20 to
30% methanol, but retention increases at 40% and is lowered

again at 50%:

Acidic Solute Behaviour on
Phenylsilica, pH 5

Solute Name % Methanol log k'

Anisole 20 0.88
30 0.20
40 0.58
50 0.37

Benzene 20 0.58
30 0.20
40 0.42
50 0.26

One theory is that the phenyl ligands attached to silica 
undergo a phase transition in aqueous methanol not unlike 

that observed for n-alkyl chains when a critical 
temperture, T , is reached. When the amount of methanol 

in the system is below a critical concentration, the phenyl 
rings will have a lower potential energy by interacting
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amongst themselves rather than extending fully into the 
bulk mobile phase, and as a consequence this conformation 

prevents neutral solutes from partitioning between them. 
At the critical concentration of methanol, which appears to 
be 40% methanol in water, the phenyl rings re-orientate and 

are fully solvated, creating spaces between adjacent rings 
into which neutral solutes can penetrate. This would 
explain the increase in retention times at 40% methanol as 
7T -7T interactions between the benzene solutes and the phenyl 
bonded rings are enhanced.

The anomolous behaviour of the homologous series of 
£-, m- and p-hydroxybenzoic acids was highlighted earlier. 

On C2 and C8 under both pH conditions the three acids were 
eluted within much the same time. However, on C18 and PH 

at pH 7, the m- and p-hydroxy acids were eluted more 
rapidly then p-hydroxybenzoic acid. This is due to an 
intramolecular interaction between the carboxylic acid 
group and the adjacent phenolic group in the ortho acid. 
As a consequence, the solute assumes a less polar 
configuration and effectively adopts a fused ring 
configuration thereby reducing hydrogen-bond donor ability, 
but increasing volume and hydrophobicity. Similar 
behaviour has been reported by Minick et al. [127]. As 

retention by both C18 and PH phases is dependent on size 
and hydrogen-bond donor ability, it becomes clear why the 

ortho-acid experiences increased retention. Such an 
anomaly does not occur for p — and p —cresol because the two 
substituents are a methyl and a phenolic group which do not
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participate in intramolecular interactions.

5.4.1.3 Basic Solute Retention Behaviour

After correction of log p to log D using Equation 24 
(p.70), addition of basic compound data to the that of 
neutral and basic solutes for MLR did not reduce R2 for 
the three phases C2, C8 and PH, except at 30% methanol 
However, with the exception of C8, these equations were 
still significant (R2 >0.8).

The retention times for aniline were very similar 

across the different sorbents at each composition of mobile 
phase. This suggests that aniline must be positioned 

within the stationary phase where the length or shape of 
the non-polar ligand does not affect retention i.e. near 

the silica surface in the region of least mobility of the 
bonded ligands. This behaviour is also displayed by 
phthalodinitrile which, incidentally, is also retained 
longer than aniline as a result of increased silanol 
attraction:

Solute Chromatographic
System

log k'eXpt

Aniline C18, 40%, 5.5 0.34
C 2 , 30%, 5.1 0.31

Phthalodinitrile C18, 40%, 5.5 0.45
C2 , 30%, 5.5 0.88

The predicted log k 1 values for aniline under the above 

conditions are:
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Phase % Methanol & pH Log k 1pred
C18 40% Methanol, pH5.5 0.32±0 .28
C2 30% Methanol, pH5.5 0.30±0 .21

The variance is calculated by /cr2 . it can therefore be 
assumed that the variables selected by MLR reflect the 
retention mechanism in a non-polar reversed-phase system 
using methanol as the organic modifier.

5.4.2 General Prediction Eguations for Substituted
Benzene Solutes 

General prediction equations were derived for each 
Bond Elut phase for all mobile phase compositions and with 

all substituted benzene test probes. These are shown in 
Table 6, p.128. Prediction of retention on

cyclohexylsilica with substituted benzene solutes was not 

successful =: 0.614). It was concluded tha t the
retention mechanisms on this phase can not be adequately 
investigated with the test compounds chosen as they do not 
seem to reflect the properties that determine retention by 
cyclohexylsilica. As shown further on, this phase was 
modelled better with the 6-blocker test solutes because 

they possess a relatively long side-chain which can 
intercalate between the ligands on the sorbent. Aliphatic 

model compounds may therefore be a better choice for 

modelling retention behaviour on CH.
The contribution from the percentage methanol in the 

bulk eluent reflects how an increase in the concentration
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of organic modifier results in a decrease in log k 1 
(negative relationship). The percentage of methanol was 
entered into the database as 20, 30, 40 or 50% and, as
noted above for the volume coefficient, the coefficient of 

the mobile phase composition term in the MLR equation 
should be adjusted accordingly to allow direct comparison 
of its significance with that of the coefficients of the 

other independent variables. The coefficient for %MeOH 
does not change between the different bonded phases 
indicating that the effect exerted by the organic modifier 

on retention is constant for all non-polar phases.
In a previous study, Zwier found that the 

compositions of the eluent which is incorporated into the 
octyl- and octadecyl-silica stationary phases are different 
from the bulk mobile phase composition [63]. Less water 
than expected is found in the stationary layer and the 
relative percentage of methanol here is greater than in the 

bulk eluent (Table 15). The percentages of methanol in the 
prediction equations for C8 and C18 were replaced with 
those from Zwier's work. The equations were essentially

Phasename % Methanol in % Methanol in
bulk mobile phase stationary phase layer

Octylsilica
20 23
30 32
40 40
50 48

Octadecvlsilica
20 50
30 60
40 65
50 69

Table 15 Percentages of methanol in the bulk mobile phase 
-------- and in the stationary phase layer. From reference 63.
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the same in both cases with no change in R2 . Although 
both ways of representing the amount of methanol in the 

system are satisfactory, it was decided that the percentage 
of methanol in the bulk mobile phase would be better in 
this instance because it is more readily available.

The hydrophobic contribution increases from C2 to 
C8, but is reduced for C18 and PH. However, the reduction 
in hydrophobic contribution for these two phases is 
compensated by an increase in the size contribution from 
solute volume which is almost the same for PH and C18.

The hydrogen-bond donor term coefficient increases 
from C2 to C8 to C18 and the 6 term is introduced for C18 
for the reasons given in Section 5.4.1.1 and 5.4.1.2.

The volume of a substituted benzene molecule is more 

important than the shape according to the equation for 
phenylsilica which was observed when acidic and basic 

solutes were included in the regression analysis with 
neutral test solutes.

The <j values quoted for each equation indicate the 

variance of the predicted log k' value.
Finally, the percentage carbon in the five non-polar 

bonded phases (determined by elemental microanalysis) was 
used as a sorbent descriptor in the regression equations, 
keeping the percentage of methanol in the mobile phase 
constant. The correlation coefficients were less than 
0.723. From this, it can be concluded that percentage 
carbon is not a suitable parameter for sorbent 
characterisation and that surface coverage may provide 

better correlation.
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5-4.2 Propranolol and Fourteen Analogues

Initial attempts to elute the fl-blocker model 
compounds from the chosen phases, C8, CH and PH, without a 
secondary mobile phase additive to block silanol activity 

resulted in indefinite retention of the test compounds, 
even with 100% methanol. Using the optimised mobile phase, 

which contained 30:70 (v/v) methanol:water + 0.3M tri-n-
butylamine at pH4, the model compounds were eluted well 
within the log k' limit set at 1.7 (k'=50) (Table 7,
p.129). From previous work carried out by other groups, it 
was expected that phenylsilica would be a more selective 
towards aromatic solutes than octylsilica because the 
aromatic, non-polar phase is shape-sensitive with respect 
to retention [43,46,49], Although very little work has 
been conducted with the cyclohexylsilica, it was thought 
that it would display similar retention mechanisms to 
phenylsilica, that is, retention would be dominated by the 
shape of the solute.

The regression equations for data determined with 
the eluent alone in Table 9, p.135 show this to be the 

case. The connectivity index is selected for all phases, 

including the n-alkyl chain. Polyaromatic solutes are not 

good probes to use to observe the retention mechanism of 
octylsilica with the physicochemical parameters available, 

as shown by the lack of correlation (R2=0.632). This 
correlation coefficient is similar to that determined for 
the cyclohexylsilica phase with the substituted benzene 
solutes. The regression equations for PH and CH, though.



2are good (R =0.800 and 0.870 respectively). Size and 
shape appear to dominate selectivity by the CH phase more 
than the PH when no matrix effects are present. This may 
be caused by the stereochemistry of the cyclohexyl rings 

which require correct solute geometry for the molecules to 
fit between the rings. In all three equations, the log 

k'pred values are over-estimated and a large negative 
constant is needed to correct for this.

Matrix effects on the retention of the fl-blockers 
were studied with fresh plasma and plasma protein solution 
(PPS), the difference between them being that fibrinogen 

and Y-9l°bulins are removed from PPS along with several 
Factors leaving only Factors 5 and 6 in this solution. The 
effects of the different components in each solution could 
be seen when only 30:70 (v/v) methanol: water was used as

the eluent (no TBA) and 1ml of plasma was pre-injected onto
the columns before the test solutes were applied (log k'

values given in Table 8, pp.130-131). If the components of 
the matrices did not affect the general behaviour of the 
silanol group interaction, the test solutes would be 
retained indefinitely as they were with no TBA. However, 
the fi-blocker compounds were eluted with k'<50 from all

three sorbents when fresh plasma was used, and from CH when 
PPS was employed. This must be due to components in the
plasma matrices which are capable of masking silanol 
activity, such as the polar components of fibrinogen. The 
capacity factors for the solutes from CH after pretreatment 

with PPS were increased:
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Cyclohexylsilica
3-Blocker Analogue Pretreatment TBA? log k 1

with PPS?
12 No Yes 0.68
12 , Yes No 0. 93
15 No Yes 0.35
15 Yes No 0. 64

With fresh plasma pretreatment. the rate of solute eli
when compared to that achieved with 30% methanol, no
was faster for all solutes from C8, and slower for

solutes from CH and PH:

Sorbent 3-Blocker Pretreatment TBA? log k 1
Analogue with Fresh Plasma?

C8 12 No Yes 0. 90
12 Yes No -0.09

15 No Yes 0. 37
15 Yes No -0.31

CH 12 No Yes 0 . 68
12 Yes No 0.75

15 No Yes 0.35
15 Yes No 0.49

PH 12 No Yes 0.56
12 Yes No 0.73

15 No Yes 0.26
15 Yes No 0. 53

The model compounds all possess a long side-

with a basic nitrogen centre (Figure 19, pp.87-88). The 
molecules will orientate in the chromatographic systems so 

as to enhance silanol interactions, which will be more
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energetically favourable than the partitioning of a large 
non-polar fused ring between the short bonded ligands of 

the three sorbents used. Both plasma solutions contain 
protein components which have predominantly hydrophobic 

properties and therefore the ability to saturate the 
non-polar phases through hydrophobic interaction. The 
matrix products will physically block silanol interaction 
to a certain degree, but some active sites are still 
accessible to the side-chains of the solutes. The solutes 
are eluted faster because the sorbent is saturated by the 

plasma matrix which has both hydrophobic and hydrophilic 
character.

Addition of TBA to the eluent when the two plasma 
solutions are again pre-injected results in much faster 
elution of the solutes as depicted in Figure 24, p.132 with 

PPS producing the fastest elution times. Now the majority 
of silanol sites are deactivated by both adsorbed 

hydrophobic proteins and tri-n-butylamine resulting in the 
much faster elution of the solutes through repulsion 

between the hydrophobic compartments of the stationary 
phase and the polar side-chains on the 13-blocker model 
compounds. Molecules such as analogue 15 with 
hydrogen-bonding groups on the second ring, opposite to the 
side chain, are eluted much faster than solutes such as 

analogue 12 with a second ring substituent on the same ring 
as the side-chain. This is because the polar substituents 

of analogue 15 are in the correct orientation to enhance 
hydrogen-bonding to the components of the bulk mobile phase:
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pretreatment with PPS
Analogue 12 log k'=o.41
Analogue 15 log k'=o.06

The elution patterns are the same for the 
TBA-modif ied eluent alone and under the different 

conditions created by the addition of a matrix, for both CH 
and PH, but on C8 the retention mechanism appears to change 

when plasma matrix products are present. This could be due 
to the comparatively long length of the non-polar sorbent 
ligands. When no matrix effects are in operation, the side 
chains of the solutes can easily penetrate in between the 
octyl chains to reach the silanol sites without a large 
hydrophobic repulsion by plasma proteins. The naphthyl 

rings are exposed to the non-polar sorbent ligands and 
retention is enhanced by hydrophobic attraction.

Compound 6 is a very bulky molecule with a phenyl 
group at the end of the side-chain attached to the 
naphthalene ring (Figure 19, p.87) and from the plots in 
Figure 24, appears to be retained longer than might be 

expected. Two reasons are possible. PH may increase 
retention through tt — tt interaction while the CH bonded 

ligands allow the phenyl substituent of the solute to slot 
in between thereby increasing the hydrophobicity of the 

environment that the group is exposed to. Another 
explaination is that instead of being repulsed by the 
hydrophobic proteins when the matrix components are 
present, the solute is actually retained by increased 

non-polar interaction.
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The regression equations derived for the elution of 

the test solutes with aqueous methanol + TBA alone, and 
also with different plasma matrices, indicate quite clearly 

that the shape of the solute is a major contributor to the 
retention mechanism. This emphasises the importance of the 
length of the side-chain and its bulkiness. Hydrogen-
bonding effects also appear significant as a solute will be 
more readily solvated by the bulk mobile phase if it

possesses hydrogen-bond donor groups.
Pretreatment with the plasma matrices greatly

improves the correlation of log k' with X and 

hydrogen-bonding ability on C8 (R2=0.934) and CH
(R2=0.985), and PH (R2=0.992) when a volume term is 
added.
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C H A P T E R  S I X

CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER WORK

This study confirms that substituted benzene solutes 
and J3-blocker model compounds follow retention rules 

which would be expected with the non-polar sorbents chosen 
for investigation. Temperature studies on ethyl- and 

octadecyl-si1ica showed that the ionisation properties and
polarity of a solute will determine the depth and the
position that the solutes take up in the stationary layer. 
Acidic solutes were observed to occupy the stationary layer 
nearest to the bulk mobile phase to enhance polar
interaction with the polar components of the eluent, 
methanol and water. They were therefore more susceptible 
to mobility changes at the unattached end of the bonded
ligands which is reflected by the addition of a volume term
to the prediction equation for acidic solutes on

octadecylsilica. Octadecyl chains are more flexible than 
ethyl and octyl chains, and hence the size of a solute will 
determine whether the octadecyl chains can envelope the 

molecule to enhance hydrophobic interaction. Neutral 
solutes partition further into the stationary layer in 
order to maximise hydrophobic bonding and therefore will
not be affected by mobility effects caused by changes in
temperature. Basic solutes should behave like acidic 

solutes, but are found to interact by ion-exchange with
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exposed, active silanol groups present on the silica 
surface. Like the neutral solutes, the retention times of 
bases did not appear to be affected by temperature 

suggesting that they, too, occupied positions well below 
the surface of the bonded phase.

With these observations in mind, the prediction 
equations generated by multiple linear regression to 
correlate log k' with solute physicochemical properties can 
be interpreted with similar conclusions. Using substituted 
benzene solutes as probes, good prediction equations were 

initially established for the n-alkyl bonded phases and 
phenylsilica. All equations contained a hydrophobic term, 

either log P or log D, and a hydrogen-bond donor term, HD. 

Log k' increased with hydrophobicity and decreased as HD 

increased, as expected in reversed-phase chromatography. 
With the long-chain octadecylsilica phase, the HD 
contribution was large. This is because phases containing 
the shorter n-alkyl chains did not retain polar solutes 
long enough for hydrogen-bond donor effects to be 
significant in determining retention behaviour.

Phenylsilica proved to be interesting with neutral 

substituted test compounds which highlighted a phase 
transition dependent on the percentage of methanol 
present. A break in the log k' values at 40% methanol, 
similar to that observed at the critical phase transition 

temperature. T , suggests that phenylsilica undergoes a 

physical and spatial rearrangement. As the retention times 
q £ the neutral probes increased from 30 to 40% methanol, it



can be concluded that the phenyl rings rearrange so as to 

allow intercalation of solutes between them thus increasing 
hydrophobic interaction and, consequently, retention.

The regression equations developed for 
cyclohexylsilica with the benzene probes were poor. When 
the 13-blocker test compound data was used, the 
correlation improved dramatically and a shape term, 

represented by x. was included. This indicates that either 
the benzene probes themselves, or the physicochemical 

parameters available at this moment in time, are not 
suitable for such a phase. As it seems that the side-chain 

on propranolol and its analogues provides a good probe for 
cyclohexylsilica, aliphatic compounds may serve as good 

test solutes for further investigative work on 
cyclohexylsilica.

Like cyclohexylsilica, the retention mechanism for 
phenylsilica was reflected well in the retention behaviour 
of the /3-blocker solutes. The size of a molecule, 
probably relating to the length and bulkiness of the 
naphthalene side chain, was an important factor. 
Octylsilica was not modelled well with these probes and/or 

physicochemical parameters.
Without a secondary mobile phase additive such as an 

organoamine, the /3-blocker solutes were retained by 
octyl-, cyclohexyl- and phenyl-silica indefinitely. 
Tri-n-butylamine was a good competing agent and reduced 
retention times dramatically when present in the eluent.
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Similar masking behaviour could be achieved by pre-coating 

the sorbent with plasma, as shown by the elution of the 
solutes within the log k' limit of 1.7. The combined 

effect of plasma pre-coating and addition of TBA to the 
eluent resulted in fast elution of the B-blocker solutes 
and excellent retention prediction.

2The high correlation coefficients (R >0.800) and 
low variance (o-<±o.iO) obtained for the phenyl- and 

cyclohexyl-silica phases indicate that total masking of 
silanol interactions provides a predictable chromatographic 
system in which the retention behaviour of propranolol and 
related compounds can be predicted to a high level of 
significance.

The prediction equation can be used either to 
predict log k' in a particular chromatographic system or, 

more useful for solid-phase extraction, to predict the 
percentage of methanol which would allow either retention 
(log k' >1.8) or elution (log k' < 1.6) of a solute
from a particular bonded phase.

Although the retention volumes of the test compounds 
used in these studies could be predicted accurately with 

the derived prediction equations, practical application to 
SPE in the form of, for example, a computer simulation and 
prediction of optimum extraction conditions, can only be 

made once more parameters are available for the bonded 
phase and the eluent. At present, the heterogeneity of the 
two phases has prevented descriptors from being applicable 
for all bonded silica phases. Parameters are still
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required to predict the contribution of silanols to 
retention of basic solutes, which may be related to the 

properties of the silica used as a substrate in silica 
bonded phases as well as to the ligand bonding density and 

clustering of active silanol sites. The mobile phase also 
lacks descriptors because it is a continuously-changing 

environment, so obviously some means of predicting the 
random behaviour of the components needs to be developed. 

A better solute parameter for inductive interactions is 
also needed. The excess electronic charge distribution 
coefficient, A , is good in that it indicates the part of 
the molecule which is most liable to take part in ionic and 
polar interactions, but requires further development to 
incorporate a geometrical or vector component relating to 
the physical distribution of the electronic charge excess 

on the analyte molecule.
A new type of bonded phase has recently become 

avaiable commercially. Bonded alumina, with either 
octadecyl or methyl substituents, provides new and 

interesting sorbents, ideally suited to the extraction of 
basic compounds as the alumina surface is basic. However, 
acidic solutes will be retained on this phase in the same 

way that basic compounds are retained by acidic silanol 
groups in modified silica. Thus SPE phases with the 
g0iq q rivity of silica bonded phases, but with no 
unpredictable retention behaviour have yet to be developed.
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Abbreviations used in the following Appendix

MW Molecular weight
MP Melting point (°C)
BP Boiling point (°C)
Ref. Index Refractive index
Log P Octanol/water partition coefficient

HA, HD Number of hydrogen bond acceptors and donors
respectively

X First order molecular connectivity index
A Quantum chemical excess electronic charge

distribution parameter
M  Moments of inertia in planes x f y and zx f y, z
p Principal elliptical axes in planes x,y and zx , y , z
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TEST COMPOUND PHYSICOCHEMICAL PARAMETERS

Ref.
Benzene Test Solutes MW MP BP Density Index Log P

PHTHAL0DIN1TRILE 128.13
TOLUENE-p-SULPHONIC ACID 172.20
TOLUENE-p-SULPHONAMIDE 171.21
PHENYLACETIC ACID 136.15
ANILINE 93 .13
BENZENE 78.11
p-PHENYLENE DIAMINE 108.14
QUINOL 110.11
2,4-DIMETHYLPHENOL 122.70
CUMENE 120.19
ANISOLE 108.14
BENZOIC ACID 122.12
ANTHRANILIC ACID 137.14
SALICYLIC ACID 138.12
ACETYL SALICYLIC ACID 180.16
METHYL SALICYLATE 152.15
PHENYLSALICYLAT E 214.22
O-ANISIC ACID 152. 15
M-HYDROXYBENZOIC ACID 138.12
P-AMINO BENZOIC ACID 137.14
P-AMINO SALICYLIC ACID 153. 14
p-HYDROXY BENZOIC ACID 138.12
METHYL-4-HYPR0XyBENZOATE 152.15
li-PROPYL p-HYPROXYBENZOATE 180.20
P-ANISIC ACID 152.15
P-TOLUIC ACID 136.15
BENZAMIDE 121.14
BENZONITRILE 103.12
p-PHENYLPHENOL 170.21
PHENOL 94 .11
0-AMINO PHENOL 109.13
p-AMINOPHENOL 0.13
PHTHAL1C ACID 166.13
DIETHYLPHTHALATE 222.24
DIMETHYLPIITHALATE 194.19
PYRIDINE 79. 10
TOLUENE 92.14
O-CRESOL 108.14
P-CRESOL 108.14
BENZYLAMINE 107.16
3,4-DIHYDROXYB EN ZYLAMIN E
N ,N-DIMETHYLBENZYLAMINE 135.21
BENZYLALCOHOL 108.14

141.0
104 .0 1.25
138. 5 0.85
77.0 265.5 1.2280 1.41
251 .0 1.0217 1.5863 0.90

5.5 80.1 0.8786 1.5011 2.13
140.0 267 .0
173 .0 285.0 1.3280 0.55
27.0 210.0 0.9650 1.5420 2.30

-96.0 152.4 0.8618 1.4915 3.66
-37.5 155.0 0.9961 1.5179 2.11
122. 4 249.0 1.2659 1.0749 1.87
146.0 1.4120 1.21
159.0 211.0 1.4430 1.5650 2.23
135.0 1.46
-8.0 223.3 1.1738 1.5369 2.46
4 3.0 173.0 1.2614

101.0 200.0
201 . 5 1.4730 1. 50
188.0 1.3740 0.46
150.0 0.87
201.5 1.4680 1.58
131.0 270.0 1.96
96. 2 1.0630 1.5050 3.04
185.0 275.0 1.96
182.0 2.27
132.5 290.0 1.0792 1.3410 0.64
-13.0 190.7 1.0102 1.5289 1.56
165.0 305.0 3.20
43.0 181.8 1.0722 1.5509 1.46
174 .0 1.3280 0.62
0.0 0.0 0.04

210.0 1.5930 0.60
298.0 1. 1175 1.5000

0.0 283 .8 1.1905 1.5138 2.22
-42.0 115.5 0.9819 1.5095 0.66

i '_n O 110.6 0.8669 1.4961 2.69
30.9 191.0 1.0273 1.5361 1.96
34 .8 201.9 1.0178 1. 5312 1.94

185.0 0.9813 1.5401 1.09

-60.0 185.3 0.9286 1.5153 1.79
-15.3 205.4 1.0419 1.5396 1.10

Appendix I Physicxxiiernical properties of substituted benzene solutes and 
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Benzene Test Solutes F 7r HA HD HA+HD HA-HD pKal pKa2-------- - ---- - _ ____ ____
PHTHALODINITRILE 3 -1.14 2 0 2 2 6.22
TOLUENE-p-SULPHONIC ACID 3 -1.34
TOLUENE-p-SULPHONAMIDE 4 -1.26 2 2 4 0 10.14
PHENYLACETIC ACID 4.30
ANILINE 3 -1.23 1 1 2 0 4. 58
BENZENE 3 0.00 0 0 0 0
p-PHENYLENE DIAMINE 3 -2.46 2 2 4 2.97
QUINOL 3 -1.34 2 2 4 0 9.91 11.56
2,4-DIMETHYLPHENOL 5 0.45 1 1 2 0 9.94 9.34
CUMENE 4 1.16 0 0 0 0
ANISOLE 4 -0.02 1 0 1 0
BENZOIC ACID 3 -0.32 1 1 2 4.20
ANTHRANILIC ACID 4 -1.55 2 2 4 0 1.89 4.87
SALICYLIC ACID 3 -0.99 2 2 4 0 2.97 13.65
ACETYL SALICYLIC ACID 5 -0.96 2 1 3 1 3.38
METHYL SALICYLATE 4 -0.68 2 1 3 1 9.87
PHENYLSALICYLATE 6 2 1 3 1
O-ANISIC ACID 4 -0.34 2 1 3 1 3.90
M-HYDROXYBENZOIC ACID 3 -0.99 2 2 4 0 4.08 9.98
P-AMINO BENZOIC ACID 4 -1.55 2 2 4 0 2.41 4.85
P-AMINO SALICYLIC ACID 4 -2.22 3 3 6 0 2.05 3.66
p-HYDROXY BENZOIC ACID 3 -0.99 2 2 4 0 4 .67 9.37
METHYL-4-HYDROXYBENZOATE 4 -0.68 2 1 3 1 9.07
n-PROPYL p-HYDROXYBENZOATE 5 0.40 2 1 ■3 1
P-ANISIC ACID 4 -0.34 2 1 3 1 4.48
P-TOLUTC ACID 4 0. 24 1 1 2 0 V.37
BENZAMIDE 3 -1.49 1 1 2 0
BENZONITRILE 3 -0.57 1 0 1 1
p-PHENYLPHENOL 6 1.29 1 1 2 0 9.96
PHENOL 3 -0.67 1 1 2 0 9.92
O-AMINO PHENOL 3 -1.90 2 2 4 0 4.66
p-AMINOPHENOL 3 -1.90 2 2 4 0 11.91 4.31
PHTHALIC ACID 3 -0.64 2 2 4 0 2.76 4.92
DIETHYLPHTHALATE 7 1.02 2 0 2 2
DIMETHYLPHTHALATE 5 -0.02 2 0 2 2
PYRIDINE 3 5.23
TOLUENE 4 0.56 0 0 0 0
O-CRESOL 4 -0.11 1 1 2 0 10.21
P-CRESOL 4 -0.11 1 1 2 0 10.23
BENZYLAMINE 4 9.33
3.4-DIHYDROXYBENZYLAMINE 4 9.43
N ,N-DIMETHYLBENZYLAMINE 4 9.03
BENZYLALCOHOL 4 -1.03 1 1 1 0 15.40
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Benzene Test Solutes x~ 18 8 Rnr Vm A

PHTHALODINITRILE 2,,775 0 ,.278
TOLUENE-p-SULPHONIC ACIL) 3 .40 L 0 .687
TOLUENE-p-SULPHONAMIDE 3,,481 0.700
PHENYLACETIC ACID 3 .046 0 .722
ANILINE 2,, 199 39,,31 91 .15 0 .344
BENZENE 2. 000 34. 25 88. 90 0 .000
p-PHENYLENE DIAMINE 2 ,,399 0 ,.320
QUINOL 2. 269 82. 91 0 .418 - 0 .37
2,4-DIMETHYLPHENOL 2,,462 51,.86 127 .15 0 ,.422 -0,.30
CUMENE 3 .614 52. 96 139. 46 0 .065
ANISOLE 2 .661 42 .85 108 .56 0.344
BENZOIC ACID 2. 615 6. 96 95. 47 0 .729
ANTHRANILIC ACID 2 .750 97 . 12 0 .745
SALICYLIC ACID 2. 723 40. 22 95. 72 0 .731
ACETYL SALICYLIC ACID 3 .617 0.749
METHYL SALICYLATE 3 .255 52. 51 129. 62 0 .748
PHENYLSALICYLATE 4 .666 169 .83 0.763
O-ANISIC ACID 3 .150
M-HYDROXYBENZOIC ACID 2 .723 0.724 0 .37
P-AMINO BENZOIC ACID 2. 330 99. 81 0 .724
P-AMINO SALICYLIC ACID 2 .550 0 .624
p-HYDROXY BENZOIC ACID 2. 723 0 .723 0 .45
METHYL-4-HYDROXYBENZOATE 3 .025 0.721 0.45
n-PROPYL p-HYDROXYBENZOATE 4 .452 65.,68 169. 52 0 .722
P-ANISIC ACID 4 .480 0 .723
P-TOLU1C ACID 2,,960 0 .716
BENZAMIDE 2 .653 32 .02 112 .25 0.730
BENZONITRILE 2.,384 40,.91 102. 08 0 .266
p-PHENYLPHENOL 4 .206 0.429 -0 .01
PHENOL 2,,134 36,,22 87. 77 0 .442 0 .00
O-AMINO PHENOL 2 .410 82 . 18 0 .459
p-AMINOPHENOL 2. 334 0 .420 -0. 66
PHTHALIC ACID 3 . 183 104 .29
DIETHYLPHTHALATE 3 .030 76.,49 198. 87 0 .730
DIMETHYLPHTHALATE 3 .236 64 .01 163 . 12 0.726
PYRIDINE 1.850 31.,42 80.,56 0 .,000
TOLUENE 2 .'411 40 .64 106 .29 0 .065
O-CRESOL 2. 551 42,.60 105. 26 0 .400 - 0 .,10
P-CRESOL 2 .551 42 .71 1<D6 .25 0.435 -0 .17
BENZYLAMINE 2. 672 44.,43 109. 20 0.730
3,4-DIHYDROXYBENZYLAMINE 2 . 947 0.388
N , N-DIMETIIYLBENZYLAMINE 3 .470 57,,26 145.,61 0 .,246
BENZYLALCOHOL 2 .580 42 .20 103 .79 0.409
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Benzene Test Solutes Mx My Mz Volume

PHTHALODINITRILE 630,,71.5 383 .212 247 . 503 117 .905
TOLUENE-p-SULPHONIC ACID 923 .006 831 .093 ] 88. 548 13 1 .375
TOLUENE-p-SULPHONAMIDE 930,,711 838 . 760 195 .969 133 .750
PHENYLACETIC ACID 713 .567 578. 589 138. 171 119. 500
ANILINE 283,,640 193 .815 90 .941 90 . 125
BENZENE 178. 441 89. 222 89. 219 81. 873
p-PHENYLENE DIAMINE 428,,795 338 .372 92 .679 100 .737
QUINOL 431. 509 340. 786 90. 722 93. 649
2,4-DIMETHYLPHENOL 550,,660 385 .895 171 .152 120 .125
CUMENE 537 .718 421. 167 153 .029 130. 125
ANISOLE 408,.316 307 .880 103 .628 103 .875
BENZOIC ACID 538. 586 407. 401 131. 185 104. 337
ANTHRANILIC ACID 621 .431 410 .239 21 .036 110 .000
SALICYLIC ACID 610. 263 406. 198 210. 836 109. 249
ACETYL SALICYLIC ACID 1007 .915 783 .634 230 .670 147 .125
METHYL SALICYLATE 810. 493 592. 870 220. 816 125. 750
PHENYLSALICYLATE 2060 .176 1753 .240 306 .935 180 .625
O-ANISIC ACID 769. 307 425. 741 346. 758 124. 000
M-HYDROXYBENZOIC ACID 717 .746 527 .505 190 .241 110 .337
P-AMINO BENZOIC ACID 762. 103 630. 317 132. 945 110. 625
P-AMINO SALICYLIC ACID 850 .038 640 .695 210 . 504 115 .625
p-HYDROXY BENZOIC ACID 766. 653 634 .763 131. 890 110. 385
METHYL-4-HYDROXYBENZOATE 1011 .933 867 .100 148 .026 127 .625
n-PROPYL p-HYDROXYBENZOATE 1788. 418 1584. 000 213 .998 161. 625
P-ANISI.C ACID 1004 .24 5 856 . 501 150 .93 5 126 .750
P-TOLUIC ACID 765 .791 634. 544 134 .441 119. 500
BENZAMIDE 538 .098 407 .486 130 .612 109 .250
BENZONITRILE 420,,067 330.,853 89. 214 100. 500
p-PIIENYLPHENOL 1329 .880 1328 .834 179 . 183 158 .000
PHENOL 283. 584 193 .668 89. 916 87. 875
O-AMINO PHENOL 376 .624 225 .381 152 .394 97 .313
p-AMINOPHENOL 430. 099 339. 548 91. 701 97. 34 5
PHTHALIC ACID 837 .774 466 .114 373 .881 123 . 125
DIETHYLPHTHALATE 1757. 527 1160. 041 827 .213 198. 375
DIMETHYrLPHTHALATE 1156 .295 729 . 529 648 .322 164 .625
PYRIDINE 171. 808 86. 603 85. 205 78. 032
TOLUENE 289 .248 200 .028 92 .414 97 .125
O-CRESOL 383. 034 227. 642 158. 585 104. 250
P-CRESOL 435 .293 345 .352 93 . 135 105 . 125
BENZYLAMINE 433. 760 332. 603 105. 503 107. 750
3,4-DIHYDROXYBENZYLAMINE 735 .519 576 .927 188 .894 119 . 375
N ,N-DIMETHYLBENZYLAMINE 742. 773 628. 912 149. 045 140. 875
BENZYLALCOHOL 427 .582 346 .134 106 .664 104 .875

Appendix I cont./.



ModeflifllOt r - 
Dipole Substituent 

Benzene Test. Solutes Moment(DM) DM Px Py Pz

PHTHALODINITRILE 2. 965 3 .070 0 .000 1 .54 4 1 .838
TOLUENE-p-SULPHONIC ACID 3 ., 556 2 .708 0 ,, 487 1,.267 2,.441
TOLUENE-p-SULPHONAMIDE 4 .452 3 .633 0 .549 1.314 2. 451
PHENYLACETIC ACTD 0 ,, 739 1. 483 0 ,,297 1,.414 2 .083
ANILINE 0 .54 5 0 .354 0 .175 1.348 1.757
BENZENE 0 ,,000 0 .000 0 ,,000 1,.424 1,.424
p-PHF,NYLENE DTAMINE 0 .174 0 .682 0 .228 1 .290 2. 069
QUTNOL 0,,937 1.500 0,,000 1,.353 1,.838
2,4-DIMETHYLPHENOL 0 .297 0 .879 0 .408 1.54 5 2. 110
CUMENE 0 .160 0 .081 0 .633 1.393 2 . 103
ANISOLE 0 .525 0 .768 0 .315 1.262 2. 059
BENZOIC ACID 1 .645 1. 390 0 .000 1.358 2 .014
ANTHRANILIC ACID 2. 045 1.927 0 .171 1.536 1.952
SALICYLIC ACID 2 .220 3 .491 0 .212 1.418 1.886
ACETYL SALICYLIC ACID 1.956 2. 783 0 .380 1.343 2. 668
METHYL SALICYLATE 2 .157 n. 100 0 .289 1.422 2 .468
PHENYLSALICYLATE 2. 524 2. 332 0 .001 1.533 3. 326
O-ANISIC ACID 2 .347 2 . 188 0 .289 1.807 1.939
M-HYDROXYBENZOIC ACID 1.743 2. 077 0 .000 1.455 2. 089
P-AMT.NO BENZOIC ACID 2 .276 1.1803 0 .166 1.303 2 .307
P-AMINO SALICYLIC ACID 1 .514 2. 708 0 .161 1.355 2. 312
p-HYDROXY BENZOIC ACID 1.485 2 . 100 0 .000 1.318 2 .207
METHYL-4-HYDROXYBENZOATE I .,293 2. 004 0 .289 1.248 2. 714
n-PROPYL p-HYDROXYBENZOATE 1. 165 2 .093 0 .436 1.239 3 .416
P-ANISIC ACID 1 ,,491 2. 145 0 .289 1.253 2. 570
P-TOL1JIC ACID 1.975 1.449 0 .297 1 .281 2 .406
BENZAMIDE 2,,342 2. 508 0 .000 1.357 2. 073
BENZONITRILE 1 .798 1.579 0 .000 1 .368 1.774
p-PHENYLPHENOL 0 ,,471 1.064 1.028 1.042 2. 850
PHENOL 0 .509 0 .741 0 .000 1.371 1.653
O-AMINO PHENOL 0 ,,962 1.,084 0 .177 1.434 1.776
p-AMTNOPHENOL 0.858 1 .097 0 . 175 1.318 1.953
PHTHALIC ACID 0 ,,000 0,,000 0 .247 1.494 1 .926
DIETHYLPHTHALATE 1.258 2 .464 0.731 2 . 172 2 .767
DTMETHYLPHTHALATE 1,,359 2.,452 0 .,740 2.,056 2.,266
PYRIDINE 0.542 0 .000 1. 270 1.467
TOLUENE 0 .,280 0 ,,050 0 .,325 1.,314 1 .,862
O-CRESOL 0.325 0.822 0 .315 1.507 1.807
P-CRESOL 0 .,529 0 ,,803 0 ., 3 L5 1.,284 2.,059
BENZYLAMINE 0.303 0.260 0.349 1.316 2 .061
3,4-DIHYDROXYBENZYLAMINE 0 ,.323 1,,740 0 ,,502 1,,354 2,,274
N ,N-DIMETHYLBENZYLAMINE 0.144 0.224 0.595 1 .317 2 .394
BENZYLALCOHOL 0 ,,583 0 .,609 0 ,.441 1,.284 2,,028
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Mb 1 ar Molecular
Polarisability Substituent Moment, of 

Benzene Jest Solutes (Polar) Polar. Polar.

PHTHALODINITRILE 14 .036 4 .476 5. 631
TOLlJENE-p-SULPHONIC ACID 17 .060 7.757 U .366
TOLUENE-p-SULPHONAMIDE 17. 487 8. 121 5. 704
PHENYLACETIC ACID 14 .775 4 .912 0 .658
ANT LINE 11 .909 1. 892 9. 736
BENZENE 10 .404 0 .771
p-PHENYLENE DIAMINE 13 .421 3. 784 0. 450
QUINOL 11 .713 2 . 286 2 .956
2,4-DIMETHYLPHENOL 14. 723 5. 587 7. 477
CUMENE 15 .941 5 .915 8 .538
AN I SOLE 12. 876 2. 925 0. 034
BENZOIC ACID 12 .935 3 .138 11 .230
ANTHRANILIC ACID 14. 463 5. 030 14. 650
SALICYLIC ACID 13 .652 4 .281 23 .460
ACETYL SALICYLIC ACID 17.,436 7. 859 41. 360
METHYL SALICYLATE 15 .484 6 .055 27 .300
PHENYLSALICYLATE 23. 223 13. 716 1. 837
O-ANISIC ACID 15 .484 19 .770
M-HYDROXYBENZOIC ACID 13. 652 4. 281 9. 360
P-AMINO BENZOIC ACID 14 .463 5 . 030 7 .918
P-AMINO SALICYLIC ACID 15. 182 6. 173 9. 195
p-HYDROXY BENZOIC ACID 13 .652 4 .281 8 .653
METHYL-4-HYDROXYBENZOATE 13. 167 6. 055 5. 405
n-PROPYL p-HYDROXYBENZOATE 19 . 157 9 .677 10 .860
P-ANISIC ACID 15. 484 6. 063 5. 468
P-TOLUTC ACID 14 .775 5 .360 6 .885
BENZAMIDE 13 .377 3. 509 0. 060
BENZONITRTLE 12 .203 2 .238 3 .764
p-PHENY I,PHENOL 20. 671 11. 170 16. 570
PHENOL 11 .030 1 . 143 0 .053
O-AMINO PHENOL 12. 552 5. 030 2. 156
p-AMINOPHENOL 12 .552 3 .035 13 .150
PHTHALIC ACID 15. 610 6. 276 0. 912
DIETHYLPHTHALATE 22 .929 13 .432 23 .420
DIMETHYLPHTHALATE 19. 264 9. 824 15. 280
PYRIDINE 9 .471 4 .349
TOLUENE 12. 249 2. 222 0. 049
O-CRESOL 12 .876 3 .365 0 .656
P-CRESOL 12. 876 3. 365 2. 122
BENZYLAMINF. 13 .756 3 .737 1 .424
3,4-DIHYDROXYBENZYLAMINE 15. 081 4. 880 2. 766
N ,N-DIMETHYLBENZYLAMINE 17 .449 7 .429 29 .390
BENZYLALCOHOL 12. 876 2. 925 4. 069
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Substituent. 
Moment of 

Benzene lest. Solutes "Polar. 0
PHTHALODINITRILE 0 .,000 0 ,.66
TOLUENE-p-SULPHONIC ACID 3 .819
TOLUENE-p-SULPHONAMIDE 4,,957
PHENYLACETIC ACID 3 .062 0 .50
ANT LINE 1 ., 585 0 ,,41
BENZENE 0 . 10
p-PHENYLENE DIAMINE 3 ,, 170 0 ,.72
QUINOL 1.552 0 .56
2,4-DIMETHYLPHENOL 5,,852 0 ,.35
CUMENE 7 .867 0 .12
ANISOLE 3,,335 0 .32
BENZOIC ACID 1 .265 0 .40
ANTHRANILIC ACID 2,,850 0 .71
SALICYLIC ACID 1.718 0 .63
ACETYL SALICYLIC ACID 9,. 192 0.70
METHYL SALICYLATE 5. 662 0 .62
PHENYLSALICYLATE 12 .202 0.63
0-AN1ST C ACID 0 .62
M-HYDROXYBENZOIC ACID 2 .041 0 .63
P-AMINO BENZOIC ACID 2. 850 0 .71
P-AMINO SALICYLIC ACID 3 .626 0.94
p-HYDROXY BENZOIC ACID 2.,041 0 .63
METHYL-4-HYDROXYBENZOATE 5 .662 0.62
n-PROPYL p-HYDROXYBENZOATE 15,,425 0 .64
P-ANISIC ACID 4 .600 0.62
P-T0LU1C ACID 3,,803 0 .,41
BENZAMTDE 2 .340 0.67
BENZONITRI.LE 0 ,.000 0 .,38
p-PHENYLPHENOL 8 .655 0 .43
PHENOL 0 .776 0 ,,33
O-AMINO PHENOL 2 .850 0.62
p-AMINOPHENOL 2,.361 0 .,62
PHTHATJC ACID 2 .056 0.70
DLETHYLPHTHALATE 17,,658
DIMETHYLPHTHALAT E 9 .771
PYRIDINE 0 .,64
TOLUENE 2.538 0 .11
O-CRESOL 3,.314 0 ,.35
P-CRESOL 3 .314 0.35
BENZYLAMINE 4,.050 0 ,.63
3,4-DIHYDROXYBENZYLAMINE 4 .856 1 .09
N ,N-DIMETHYLBENZYLAMINE 10,.444 0 ,.57
BENZYLALCOHOL 2 .988 0 .55
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193 -Propranolol
Analogues MW Log D F

M045520 243 .35 3. 13 8
M045655 273.37 3.31 6
M046004 273.37 2.37 8
M047070 273.37 1.22 8
M049666 289.37 3.00 9
MO51932 307.39 2.44 1
M052092 289.37 3.28 9
M052487 289.37 3 .37 9
M065318 243.35 3 .52 6
M081509 274.32 1.22 8
M087086 364.45 4.07 8
M109055 330.43 4.04 8
M109056 378.47 3.93 8
M115715 314.43 2.34 8
M115716 362.47 3.16 8

HA HD HA+HD HA-HD X ii
<J ii

3 2 5 1 6. 797 0. 398
3 2 5 1 7 .414 0 .398
3 2 5 1 7. 254 0. 401
3 2 5 1 7..297 0 .431
4 2 6 2 7. 463 0. 398
5 2 7 3 7 .457 0 .398
4 2 6 2 7. 463 0. 398
4 2 6 2 7,.457 0 .412
2 1 3 1 6. 839 0. 394
5 '3 8 2 6 .811 0 .646
5 3 8 2 8. 846 0. 654
5 3 8 2 8,.458 0 .733
5 3 8 2 9. 632 0. 752
3 4 7 1 8,.208 0 .652
4 3 7 1 9. 382 0. 753

Propranolol
Analogues Volume

Molecular 
Dipole 

Moment(DM)
Substituent

DM

Molecular 
Polarisability 

(Polar)

M045520 242.750 1.429 1.476 30.460
M045655 265.875 1.395 1.409 32.309
M046004 263.000 1.036 1.009 32.309
M047070 263.875 2.896 0.971 32.309
M049666 267.375 1.531 1.277 32.980
M051932 292.625 1.403 1.313 35.510
M052092 267.075 0.972 1.325 32.980
M052487 267.000 1.809 1.368 32.980
M065318 240.625 0.754 0.844 29.800
M081509 24].125 2.541 2.876 30.202
M087086 330.875 2.596 2.917 41.656
M109055 306.375 2.716 3 .200 37 .179
M109056 34 4.125 2.896 3.447 43.103
Mil 5715 296.750 2.003 1 .989 36.898
M115716 334.250 2.936 3 .109 42.433

Substituent
Polar

14.336
16.173
16.173
16.173
14.336
14.336
14.336
14.336 
13.635 
14.162 
25.529 
21.099 
26.982 
20.762 
26.282
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Propranolol Molecular Moment Substituent 
Analogues of Polar. (MP) MP

M045520 
M045655 
M046004 
M047070 
M049666 
M051932 
M052092 
MO52487 
M065318 
M081509 
M087086 
M109055 
M109056 
M115715 
M115716

37.500 
45.220 
43.920 
43.160 
43.700 
52.100 
46.400 
45.600 
39.200 
31.940 
52.080 
56.590 
59.610 
53.730 
56.880

34.185 
45.629 
42.982 
43.057
34.185
34.185
34.185
34.185 
36.365 
25.805 
56.086 
63.899 
67.614 
56.984 
60.357
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GLOSSARY

R2

Adjusted
R2

Standard 
Error (SE)

Residual

Mean Squarea
DF

F-ratlo

B

Beta

T-test

OF TERMS USED IN MULTIPLE LINEAR REGRESSION ANALYSIS

Correlation between the dependent variable (log k*) 
and the selected independent variables
(physicochemical parameters) in the regression 
equation. Ideally |r2 | should be 1 for a true 
linear correlation and zero if the correlation is 
non-linear.

Correction of R2 relative to the number of cases 
used to create the regression equation.

Estimate of the standard deviation of the distibutions 
of the dependent variables from a normal distribution 
curve.

The error in prediction, in this instance the 
difference between the experimentally determined log 
k* and the predicted log k* .

Sum of squares for either the regression or residuals 
divided by their respective degrees of freedom, DF.

Number of degrees of freedom for regression or 
residuals.

Ratio of the mean square of regression to the mean 
square of the residuals. Should be greater than zero 
and should lie above a certain value according to the 
number of degrees of freedom that the regression and 
the residuals possess.

Coefficient of an independent variable in the 
regression equation. A positive B-value implies a 
positive correlation with the dependent variable, 
i.e. the independent variable increases as the 
dependent variable increases, and a negative B-value 
implies the reverse, i.e. the independent variable 
decreases as the dependent variable increases.

If the magnitudes of the independent variables are 
different because of different units, then the 
coefficients of the independent variables, B, are 
standardised to allow direct comparisons of the 
contribution of independent variables to the 
regression equation.

Indicates if the residuals for log k* pred are 
random and tests for non-linearity.
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