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Abstract 

Protease activated receptor 2 (PAR2) is one member of a family of G-protein 

coupled receptors. A defining feature of this family of receptors is their protease 

mediated activation. An emerging role for PAR2 in both the immune system and 

also in bone biology suggests a potential function for this receptor in 

osteoimmunology and its associated pathologies. Inflammatory arthritic 

conditions such as rheumatoid arthritis (RA), are pathologies that include both 

inflammation and bone destruction, making them a prime model for 

osteoimmunological studies. Previous murine studies identified that loss of PAR2 

results in protection from inflammatory adjuvant-induced arthritis. These 

animals experienced an attenuated form of arthritis, with significantly reduced 

joint inflammation and damage. In addition, PAR2 is known to be upregulated in 

both macrophages (from tissue biopsies) and peripheral blood monocytes in 

patients with RA. However, the functional impact of protease signalling via PAR2 

in monocytes in RA and how this receptor influences joint destruction via 

monocytes and their tissue differentials is still unknown. 

The central aim of this doctoral study was to understand the function of PAR2 in 

monocytes and how protease signalling via PAR2 would influence the 

differentiation potential of these cells. Specific focus was placed on osteoclasts 

(OCs), and how protease signalling may further contribute to bone erosion 

through the action of PAR2 on these bone resorbing cells. 

Initial work confirmed the expression of the PAR2 on the plasma membrane of 

monocytes, with the highest expression consistently found on classical 

monocytes that have the highest osteoclastogenic potential. In order to study 

the impact of PAR2 signalling on OC formation and activity, in vitro OC 

differentiation assays were set up using both WT and par2-/- cells. Both standard 

homeostatic and inflammatory TNF enhanced OC assays were utilised. These 

studies revealed that during homeostatic OC formation PAR2 contributed to the 

regulation of OC formation and prevented excessive fusion of precursors (OCPs) 

into giant cells. The PAR2 mediated regulation of OC formation was found to be 

important both via OCPs directly, and via the stromal compartment. An absence 

of PAR2 in osteoblast (OB) -like cells resulted in a more osteoclastogenic stroma 

and contributed to enhanced OC formation. However, during inflammatory-
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driven OC formation, the role of PAR2 in osteoclastogenesis was reversed, and 

protease signals via PAR2 enhanced the formation of OCs. The observations 

made in murine in vitro systems were replicated in human cell cultures when 

monocytes were exposed to PAR2 inhibitors during the process of OC 

differentiation. 

Combined, this work indicates that PAR2 has an impact on the process of 

osteoclastogenesis. Whether PAR2 signalling regulates or enhances OC formation 

is dependent upon the environment and the combination of signals received by 

precursor cells. 
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1 Introduction 

1.1 The Myeloid Compartment 

1.1.1 The Myeloid Lineage and Monocyte Development 

The myeloid compartment is comprised of cells of the innate immune system 

including monocytes, dendritic cells (DCs), granulocytes (such as neutrophils), 

erythrocytes, and platelets. After physical boundaries such as the skin, innate 

immune cells are the first line of defence against pathogens, and this system is 

responsible for initiating adaptive immune responses against invaders. In 

addition, the cells of the innate immune system maintain homeostasis, and aid 

in tissue healing. Monocytes are a primary cell of the myeloid system, found 

circulating in the peripheral blood (PB). These cells migrate into tissues when 

called upon, during states of inflammatory or infectious stress1. While DCs, 

another staple of the myeloid system, are located in tissue sites, gathering 

antigen in order to migrate and present it to adaptive immune cells (T cells) in 

secondary lymphoid organs. Together the myeloid lineage components, 

monocytes, DCs, and macrophages, form the mononuclear phagocyte system 

(MPS). 

Traditional dogma of the MPS proposed that monocytes were PB circulating 

precursors of tissue macrophages, which when required enter into the tissue and 

replenish the macrophage population, or supply macrophages to sites of 

infection or inflammation2. However, recent developments in our understanding 

of the MPS have indicated that this traditional dogma does not accurately 

represent the development of the myeloid system. It is now appreciated that a 

pool of resident macrophages exist within the tissue which arise from the 

embryonic yolk-sac3 and the neonatal liver4; these cells are self-renewing, 

lasting throughout life and replenish themselves through local proliferation, 

independent of adult haematopoiesis5,6. These cells are not derived from bone 

marrow (BM) residing hematopoietic stem cells (HSCs) but instead arise from an 

embryonic erythron-myeloid progenitor (EMP)3. Resident macrophages maintain 

homeostasis within the tissue, primarily phagocytosing apoptotic cells7. Each 

tissue environment drives a “differentiation” of resident macrophages, to 

develop tissue specialised functions, for example microglia of the brain have 
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very different functions from Langerhans cells of the skin, in order to maintain 

tissues appropriately8. Their life span can be variable dependent on the tissue in 

which they reside, with monocytes replenishing macrophage populations more 

frequently in some tissues, such as the gut, and very rarely in others such as the 

brain9. Monocytes do enter the tissue sites, especially during inflammation and 

infection, where they develop phagocytic functions, as well as driving the 

immune response and promoting further infiltration of innate immune cells. 

However, the phagocytes originating from monocytes are recognised to be a 

different cell, in both phenotype, and ontogeny, from tissue macrophages. In 

addition, DCs arise from an independent PB progenitor, not from monocytes as 

was previously proposed. These cells are independent of the monocyte 

compartment in both phenotype and function. In order to take into account this 

new appreciation of the development of the MPS a new nomenclature was 

proposed by Guilliams et al, which was based primarily on the ontogeny (where 

the cellular pre-cursor originates) and then cellular function10. In brief, all 

mononuclear phagocytes within the tissue that originate from the embryonic 

foetal liver are termed macrophages. DCs originate from the BM, and 

differentiate into subsets of conventional DCs, and plasmacytoid DCs from the 

common DC progenitor (CDP). These cells have a more stellate morphology and 

are primarily responsible from presenting antigen to adaptive immune cells such 

as T cells. Finally, monocytes are classified separately; these cells originate 

from the BM, but not the CDP, and primarily circulate in PB until they receive 

signals to enter into the tissue where they can develop pro-inflammatory and 

phagocytic functions. Their tissue state is termed monocyte-derived cell, in 

order to differentiate these cells from resident macrophages. 

Unlike resident self-renewing innate immune cells such as resident macrophages, 

monocytes are short-lived. These cells are only maintained within the PB for 1-6 

days. Consequently, monocytes are regularly replenished from pluripotent, self-

renewing HSCs located within the BM niche throughout adult hemopoieses. HSCs 

are the quintessential stem cell for the generation of all immune cells; self-

renewing but also differentiating into multipotent progenitors for both the 

lymphoid and myeloid lineage of the immune system. For the purposes of this 

thesis the myeloid lineage, specifically monocytes and osteoclast precursors 
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(OCPs) will be the focus. OCPs also originate from myeloid BM precursors, this 

will be discussed in a subsequent section (1.2.1) 

The pioneering transcription factor and master regulator that drives HSC 

differentiation towards a myeloid route, and development into the Common 

Myeloid Precursor (CMP) is PU.1. This factor is so essential in the development of 

the myeloid system, that PU.1 null mice have no detectable monocytes or 

macrophages, while retaining T and B cell development, and delayed neutrophil 

development11. Successive commitment continues from the CMP, into 

granulocyte/macrophage committed progenitor (GMP), which can give rise to 

both granulocytes and myeloid progenitors. From GMP these can further 

differentiate into macrophage/DC progenitors (MDPs)12. MDPs maintain self-

renewing capabilities and are retained within the BM, largely via CXCL12 – CXCR4 

chemokine interactions. Recent research has identified a subsequent progenitor 

commitment stage derived from MDPs, which commits these cells to a monocyte 

lineage, without the capability of generating DCs. This subsequent progenitor 

stage is known as the committed monocyte progenitor (cMoP)13. Monocytes 

differentiate from this progenitor, and egress the BM into the peripheral blood 

upon requirement, mediated by chemokine receptor CCR2 signals14. Monocyte 

development within the BM and into the PB is shown in Figure 1.1. 
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Figure 1.1 Monocyte Development and Maturation 
Tissue resident macrophages appear developmentally prior to the establishment of the 
hematopoietic BM niche. These cells derive from the EMP in the embryonic yolk sac, or foetal liver. 
These phagocytes are self-renewing and maintain themselves within the tissue. While PB 
monocytes derive from HSCs in the BM. To begin differentiation to a myeloid lineage HSCs 
become the common myeloid progenitor (CMP). From this point they further differentiate into 
GMPs which have the capacity to develop into granulocytes, monocytes, or DCs. To further the 
differentiation process to monocytes these GMPs specialise to MDPs which can no longer become 
granulocytes. MDPs then loose the capacity to develop into DC and commit to a monocyte lineage 
through differentiation into the cMoP. This maturation process all takes place in the BM. Monocytes 
then derive from cMoPs and migrate into the PB. The first stage of blood monocytes is the classical 
stage where monocytes express high levels of the surface TLR4 co-receptor CD14, and lack 
expression of CD16. Most of these cells egress the blood into tissue to respond to infection, 
inflammation, or to support the resident macrophage populations. Classical monocytes which do 
not leave the blood within 2 days then develop into intermediate monocytes, where they express 
both CD14 and CD16. This stage lasts 1-3 days before the final maturation step of blood 
monocytes into non-classical CD14- CD16hi cells. These are known as luminal patrollers. 
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1.1.2 Monocyte Heterogeneity 

Monocytes do not exist as a homogenous population, instead upon leaving the BM 

for the PB they further mature into subsets that are morphologically and 

functionally distinct. Differential surface expression markers are gained, which 

delineate monocytes with diverse functional capabilities. Human monocytes 

were initially identified through their expression of the Toll like receptor 4 

(TLR4) co-receptor known as CD14. These can be further subdivided based on 

expression levels of FcgRIII, also known as CD1615. Monocytes with high CD14 

expression and low/no CD16 expression are termed “classical” monocytes 

(CD14hiCD16lo), which make up around 90% of the PB human monocyte 

populations. While CD14 low, CD16 high expressing monocytes are termed “non-

classical” (CD14loCD16hi) and only make up around 5-10% of the PB monocytes. In 

addition to the classical and non-classical subsets, intermediate monocytes 

express both CD14 and CD16 (CD14+CD16+)16, this is summarised in Figure 1.1.  

Further differentiation of these subsets can be made based on chemokine 

receptor expression17, with classical monocytes expressing high levels of CCR2, 

which decreases in intermediates and decreases further in non-classical 

monocytes. Non-classical monocytes express high levels of CX3CR1 chemokine 

receptor, compared to lower expression in classical monocytes17. The ligand for 

CCR2, CCL2 plays a crucial role in monocyte recruitment. CCL2-/- mice have 

normal levels of resident macrophages but completely lack monocyte-derived 

tissue phagocytes18. These mice are also less capable of fighting bacterial 

infection, demonstrating the requirement for classical monocyte-derived tissue 

phagocytes in anti-bacterial defence19,20. While loss of CX3CR1 chemokine 

receptor and its ligand CX3CL1 in murine models shows a specific loss of non-

classical monocytes in the PB21. 

The classical and intermediate populations of monocytes are largely considered 

to possess pro-inflammatory functions, and these cells infiltrate into sites of 

inflammation or infection within the tissue22,23, whereas non-classical monocytes 

are recognised to have an alternate functional role (Fully reviewed in 24). These 

cells adopt a luminal patrolling phenotype, whereby they monitor and maintain 

vascular homeostasis25. Non-classical monocytes do not contribute to an 

inflammatory state within the tissue like their classical counterparts, and are 
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instead thought to play a more immune-regulatory role. Using a new method of 

in vivo deuterium cell labelling in human subjects, Simon Yona and colleagues 

identified that human monocyte subsets exist in a continuum. Upon release from 

the BM all monocytes are in a classical monocyte state, and around 99% of these 

cells migrate into tissue after 1 day of PB migration. The monocytes that are 

maintained within the PB after 1 day mature into intermediate monocytes 

(CD14+ CD16+). All of these intermediate monocytes then begin to mature again 

after 2 days into non-classical, luminal patrolling monocytes, which survive in 

the circulation for a further 3-4 days26. 

This heterogeneity is reflected in the murine system, where classical and non-

classical monocytes are also represented. The CD14 and CD16 markers from the 

human system however, do not hold true in the murine system. Chemokine 

receptors CCR2 and CX3CR1 are maintained in this species. Similar to the human 

system classical monocytes express both CCR2 and CX3CR1 and are able to 

migrate by either CCL2 or CX3CL1 chemokine drivers. “Non-classical” monocytes 

do not express CCR2 and have higher expression of CX3CR1, making them 

dependent on CX3CL1 for survival and migration. In addition to differential 

expression of chemokine receptors, these subsets can also be defined by their 

expression of Ly6C, a membrane protein with unknown function. Classical 

murine monocytes express high levels of Ly6C on their surface while non-

classical cells are Ly6Clo 27. 

This standard identification of monocyte subsets based on surface markers is 

now recognised as a potentially simplified model. Advancements in technology 

have enabled single cell sequencing analysis of blood myeloid cells to identify 

differences within this population using non-bias analysis. Notably, studies 

utilising this technology have identified that there is heterogeneity within 

currently defined monocyte populations28. This new data has demonstrated that 

monocytes can be clustered into 4 populations, and highlighted that the 

intermediate population may be more heterogeneous than previously 

appreciated29.  
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1.2 Osteoimmunology 

Osteoimmunology is the interdisciplinary research field studying the interactions 

between the immune and skeletal systems. Initial observations that the immune 

system influenced the function of skeletal cells were first made over 40 years 

ago, when supernatant isolated from activated peripheral blood mononuclear 

cells (PBMCs) was shown to increase bone resorption in explant cultures30. 

This marriage of 2 specialties coined the new interdisciplinary field of 

“osteoimmunology”, a term first proposed in 200031. An understanding of each 

system is required to interrogate the complex crosstalk between these organs 

and thus, appreciation of the field as a whole. Overlap of both disciplines is 

evident in their shared cellular ontogeny; shared transcription factors, driving 

both immune and bone cell development and action; and finally shared ability to 

respond to immune mediators. A striking example of the interaction of these 

fields is observed in pathologies relating to either system. Chronic immune 

pathologies that have symptoms of severe bone erosion include chronic 

inflammatory diseases such as inflammatory arthritis, periodontal disease32,33, or 

leukemic malignancies such as multiple myeloma34. This further emphasises how 

dysregulation of one system can substantially impact the other. 

The cellular ontogeny of the bone resorbing osteoclast (OC) is a major bridge 

between these disciplines. OCs are derived from the hematopoietic lineage and 

precursors of myeloid/monocytic cells. The hematopoietic origin of these cells 

was initially recognised through the use of parabiosis35 and BM chimeras36,37, 

which rescued the osteopetrotic phenotype of grey lethal (gl/gl) mice with WT 

infusion. Further definition of the OC precursors (OCPs) as cells of myeloid origin 

was then made in the 1980s, where in vivo transfer of thymidine labelled 

monocytes were traced to OCs38, with further conformation through observation 

of monocyte fusion into OCs in vitro 39. In addition, mutation of the M-CSF gene 

results in abnormal formation of both macrophages and OCs, indicating these 

cells are closely linked and dependent on this growth factor40. Overall, the 

shared precursor of both monocyte-derived phagocytes and bone resorbing OCs 

intimately links the bone and immune systems. Alterations to monocyte 

migration, and activity, can and does have an impact on OC formation. 
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In addition to bone cell development from the immune system, interaction 

between bona fide immune cells such as T cells and macrophages, and OCs, 

OCPs, and stromal bone compartments such as osteoblasts (OBs), also has an 

impact on bone formation and resorption. Activated T cells are a key immune 

cell known to promote the development and activity of OCs41. Activation of T 

cells drives the upregulation of receptor activator of nuclear factor k-B ligand 

(RANKL) 42,43, an essential driver of OC formation 44,45. In addition cytokines from 

activated T cells and macrophages such as TNF46, IL-647, and IL-1748 are known 

drivers of OCP fusion to OCs. While alternate cytokines of an immune source can 

regulate OC development and inhibit OC formation such as IFN-g49, IL-450, IL-

1051, or IL-1252. Depending upon the type of immune response that is mounted, 

bone resorption can be promoted or controlled. Cytokines with known 

capabilities to drive OC formation such as TNF and IL-6 53, are also highly 

expressed in erosive inflammatory arthritic conditions. In addition to driving 

excessive OC formation, or regulating OC differentiation, cytokines can also 

control bone formation through direct action on OB stromal cells. TNF inhibits 

the development and activity of OB cells; suppressing bone formation and thus 

promoting further bone erosive pathology54. 

Development of the skeleton precedes immune system maturation, as the 

skeleton creates the space to host haemopoietic stem cells (HSCs). HSCs give 

rise to cells of the immune system and reside in the bone marrow (BM) 

compartment. Providing an appropriate niche for HSCs and immune precursors is 

an essential function of the skeleton, and thus normal bone development is 

required for normal immune development. OC activity is essential to carve out 

the space for niches that are essential for BM development55. OBs are also a key 

producers of survival factors such as BMPs which maintain HSCs 56.In addition, 

RANKL, which drives OC formation, is an essential driver of secondary lymphoid 

organ development and thus crucial for immune cell development 45,57. 

Overall these systems are intimately linked, both during developmental stages 

and throughout life in homeostasis and maintenance of these organs. 

Perturbation of one system leads to disturbance within the other. Therefore, an 

understanding of both of these systems is essential in treating conditions such as 
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RA, whereby both immune overactivity and bone erosion drive pathology and 

tissue destruction. 

1.2.1 Osteoclast Precursors 

Osteoclasts have been confirmed as a terminal differentiation point for 

myeloid/monocyte cells since the publication of work conducted by Tinkler and 

colleagues (discussed above, 1.2). This understanding came in 198138, however 

the exact precursor cells of OCs within the myeloid lineage has been somewhat 

elusive. Despite ongoing research in this field, multiple suggestions and 

possibilities have been proposed. Whether OC have a specific precursor that is 

divergent from that of the tissue monocyte-derived phagocytes has been a 

subject of research for the last 20 years. Studies conducted in murine systems 

have provided the wealth of our understanding in this field and proposed specific 

monocyte populations that could contribute to the OC pool. 

Flow cytometric and FACS techniques were employed to identify a population of 

myeloid cells with a high osteoclastogenic potential in vitro and in vivo from 

murine BM. In brief, myeloid cells from the murine BM, identified as CD115+ and 

thus M-CSF responsive, were further subdivided based on expression levels of 

other myeloid associated markers, such as Ly6C, CD11b, CD117 (c-kit), and 

chemokine receptors CCR2, and CX3CR1. Collectively these studies identified 

that while multiple populations of myeloid cells had limited OC differentiation 

potential, Ly6ChiCD11bloCD117+CD115+CX3CR1hiLy6G- cells had the highest OC 

differentiation capacity58-60. The OCPs defined here differ from circulating 

monocytes in their expression of CD11b. Monocytes express high levels of this 

integrin subunit and it contributes to multiple fundamental functions of this cell 

type such as migration, and phagocytosis61. The requirement for a lack of this 

integrin is confirmed by the negative regulation of CD11b-b2 integrin 

heterodimer signalling in OC differentiation62. However, aside from CD11b the 

OCPs do share many of the cell surface markers of monocytes, such as Ly6C and 

chemokine receptors, therefore lack of CD11b is one method of identifying these 

cells from the alternative monocyte populations. OCPs also maintain the 

capacity to differentiate in phagocytic “macrophage” or “DC” like cells 

dependent on the stimuli and growth factors provided, indicating plasticity of 

this precursor. As well as osteoclastogenic tendencies, subsequent studies 
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identified that this population of monocytic BM OCP cells had myeloid suppressor 

functions including suppression of T cell expansion 63. This subset of BM myeloid 

cells was expanded in the BM during active disease in inflammatory models of 

arthritis63. The authors of this study propose that while the OCP population 

identified with the above mentioned Ly6Chi CD11blo phenotype confer both OCP 

and myeloid suppressor capabilities, this population may still be mixed and 

whether single cells have the plasticity to develop into both OCs or monocyte-

derived suppressor cells is still unknown. A single cell analysis approach may 

provide more insight into this question. 

Recently studies investigating the origin of the OC have taken a systematic 

approach, utilising multiple reporter mice, with various cell transfer models and 

imaging techniques, in order to follow OC formation from foetal development of 

the skeleton, to bone maintenance in adulthood 64. A conditional knock out of 

csf1r (CD115 gene), and tnfrsf11a (RANKL gene) in the hematopoietic lineage 

resulted in normal skeletal development, with normal OC numbers, successful 

tooth eruption, and BM cavity formation at birth and throughout early life. 

However, these rodents began to lose OCs over time, developing increased bone 

density and a loss of the BM cavity which became observable at 16 weeks and 

continued to deteriorate to 22 weeks. This was the first indication that OC 

formation during developmental stages was not dependent on cells of BM 

hematopoietic origin, while simultaneously demonstrating that myeloid cells of 

the BM were necessary for the maintenance of the OC compartment in 

adulthood. This observation has similarities with macrophage development and 

maintenance, discussed above (1.1.1). The authors further explored this 

phenomenon using alternate conditional knock out animals which would provide 

a CD115 knock out primarily in EMPs over HSCs (tnfrsf11acre;csf1rfl/fl). These 

animals failed to develop a normal skeleton, which supported the hypothesis 

that OC formation during skeletal development in foetal and early life stages 

was dependent upon embryonic macrophage precursors, EMPs.  

This study provides a whole new perspective on OC development which appears 

to closely mirror macrophage development. The authors of this continued using 

fluorescent reporter mice to show that OCs formed during development are long 

lived, but also fuse with HSC derived precursors of the monocyte lineage to 
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support their maintenance over time. Overall, from this study it can be 

determined that like macrophages, OC are dependent upon EMPs for early 

development and OC formation, but throughout life maintenance of the bone 

and OC differentiation becomes increasingly dependent upon monocyte-derived 

precursors. These HSC derived adult pre-cursors are likely those identified 

previously with Ly6ChiCD11b- surface identification. This thesis will focus on later 

stage, hematopoietic, myeloid-dependent osteoclastogenesis, and the 

development of these cells in both health and disease states. 

Identification of OCPs as circulating in the PB, prior to migration to the bone, as 

well as the dependence on chemokine receptors for osteoclast formation, 

demonstrates the requirement of OCP migration for OC differentiation. In 

addition, one of the first observations that led to the hypothesis that OC were of 

hematopoietic origin was their motile appearance65,66. Collectively these initial 

observations of OCP phenotype, location, origin and surface markers support the 

possibility that these cells are reliant upon appropriate and controlled migration 

to direct their differentiation into OCs. Despite the origin of adult OCPs within 

the BM compartment, where the requirement for OC is largely located, these 

cells appear to first circulate in the PB before returning to the bone and BM area 

for local OC differentiation. Evidence of circulating OCPs first came from 

observations that cells from the PB could be differentiated into OCs 67-69. OCP 

leave the BM and enter the PB via a sphigosine-1-phosphate (S1P) mediated 

mechanism70,71. The exact trafficking of OCPs after they have left the BM (and if 

all precursors leave the BM environment) is still unknown. However, the lack of 

OC present in CCR2 and CX3CR1 KO rodents indicates that OCPs are actively 

trafficked to the bone site for differentiation. 

Advancement in murine systems has given us a clear insight to the cellular 

origins of OCs. The technologies that can be applied to murine in vivo systems 

such as genetic knock out, and monitoring of labelled cell trafficking etc, cannot 

be applied to human in vivo systems. For this reason, the exact profile of human 

OCPs are still elusive. Circulating human monocytes isolated from PB have 

established in vitro OC differentiation potential in co-culture with osteoblastic 

cell lines 72, with CD14+ monocytes identified as a possible OCP73. All subsets of 

human monocytes (classical, intermediate and non-classical) have OC 
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differentiation potential. However, the response to some OC enhancing factors 

can differ between subsets, indicating that the route to OC differentiation and 

the resulting OC generated from different monocyte precursors are slightly 

different74. Human in vitro OC assays still regularly use total PBMC populations 

or isolated CD14+ monocytes. 

Murine in vitro assays for experimental investigation of OC consistently use cells 

isolated from the BM of the long bones. Aside from this one consistency, these 

assays vary greatly in how they are conducted. Some studies utilise the whole BM 

to generate OC75, which includes hematopoietic stem cells, matured immune 

cells, and mature/precursor stromal cells. Using this mixed culture system, cells 

of the stromal compartment can be stimulated to become OC driving cells, or 

OCPs can be directly stimulated using M-CSF and RANKL stimulation. 

Alternatively, total BM can be incubated overnight and non-adherent cells 

removed for further differentiation into OC76-79. This method aims to limit the 

stromal contribution to the culture, leaving behind the adherent stromal cells. 

Even within this method there is variation in how OC differentiation is conducted 

between studies. The length of M-CSF stimulation varies with some studies first 

differentiating cells into a “macrophage-like” phenotype and then stimulating 

with RANKL to drive OC formation76,77. While other studies use short M-CSF 

stimulation (24 hours) to drive RANK expression and then stimulate with RANKL 

immediately after this pre-incubation78. Overall, methods of murine BM OC 

cultures have large levels of variation throughout the literature, making 

comparison between in vitro OC studies difficult. A standardised approach to 

murine in vitro osteoclastogenesis cultures is urgently required. In contrast, 

human OC cultures have less variation, with most studies isolating CD14+ 

monocytes from peripheral blood and culturing in M-CSF and RANKL, with 

variation largely in concentrations of growth factors and duration of cell 

culture80. Some studies still utilise whole PBMC populations, and these mixed 

cultures will be influenced by the presence of other cell types80. 

1.2.2 Osteoclast Differentiation 

The process of mononuclear OCP differentiating into mature OC is termed 

osteoclastogenesis. The process of multinucleated OC formation is multistep 

requiring; 1) the recruitment of OCPs, 2) attraction and migration of these cells 
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to the bone surface where they can interact with bone lining stromal cells, 3) 

induction of OC-associated genes in mononuclear cells, and finally, 4) fusion of 

pre-OCs to multinucleated OC. Multinucleated OC have traditionally been 

identified via histological staining of Tartrate-resistant acid phosphatase (TRAP) 

enzyme, a marker of OCs81. Resorbing bone results in the release of chemotactic 

factors, primarily from active OCs and OBs, which is thought to drive migration 

of peripheral OCP to sites of bone remodelling82. Upon arrival at the active bone 

sites, OCPs come into contact with stromal OB bone lining cells. From in vitro 

co-culture assays it was established in 1988 that OB and OC interaction was 

required for OC formation83. Various signals are supplied from stromal OB cells 

to co-ordinate the induction of OC-associated transcription factors and gene 

expression. The transcription of these genes into functional proteins, along with 

active adhesion and migration of OCPs and pre-OCs, enables the fusion of 

mononuclear myeloid precursors into catabolically active syncytia. 

Two essential factors for the process of osteoclastogenesis have been identified; 

M-CSF and RANKL. While other cytokines and soluble mediators can influence the 

process (as mentioned above in section 1.2), these factors cannot drive the 

process alone. The presence of M-CSF and RANKL is always required for this 

differentiation process. 

Commitment to the myeloid lineage (discussed in section 1.1.1) is the first step 

in the differentiation process of hematopoietic OC differentiation. The 

commitment to this lineage through the expression and action of transcription 

factor PU.1 enables these precursors to be responsive to M-CSF via CD115. Mice 

lacking M-CSF (op/op mice) have an extreme osteopetrotic phenotype, as the 

result of complete failure to differentiate OCs (both EMP and BM origin) 40. M-

CSF is a vital survival signal for precursor cells and the first essential signal to 

further differentiate OCP84. M-CSF signalling via CD115 initiates expression of 

microphthalmia-associated transcription factor (MITF). In conjunction with PU.1, 

MITF initiates the transcription of RANK, the surface receptor responsive to 

RANKL. 
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1.2.2.1 M-CSF 

M-CSF is a soluble growth factor essential for the proliferation and survival of 

myeloid precursors, monocytes and macrophages. Its only receptor is known by a 

variety of nomenclatures such as CSF-1, c-FMS, and CD11585. It is one member of 

a large family of tyrosine kinase receptors. Upon engagement with M-CSF these 

receptors dimerise and self-phosphorylate86. The phosphorylated elements of the 

C terminal of this receptor act as binding sites for SH2 domain containing 

proteins and amplify the signal87. CD115 signals via 2 primary pathways; 

activation of the mitogen-activated protein (MAP) kinase pathway, specifically 

extracellular signal regulated kinase (ERK) 88, and activation of the 

phosphoinositide 3 kinase (PI3K) Akt pathway89. Collectively these signals 

promote proliferation by driving entry into the cell cycle via expression of D 

cyclins90. In addition to survival and proliferation signals M-CSF also drives the 

expression of RANK making them responsive to RANKL 60. 

1.2.2.2 RANKL  

RANKL is a type II membrane protein of the tumour necrosis factor (TNF) family. 

It is commonly expressed within the bone on the surface of stromal OB cells, and 

can be induced in inflammatory environments to be expressed on immune cells. 

RANKL can be shed from the cell surface via proteolytic cleavage mediated by 

TNF convertase (TACE) 91. The receptor for this ligand is RANK, a type I 

membrane protein expressed by OCs and their precursors in response to M-CSF. 

RANKL – RANK interactions are indispensable for OC differentiation, as 

demonstrated by rank-/- murine models that experience severe osteopetrosis 

attributed to a lack of OCs45. Both transmembrane and soluble forms of RANKL 

contribute to homeostatic OC formation92. 

RANK – RANKL interaction results in receptor trimerization, which initiates 

activation and recruitment of signalling adaptor proteins. TNF receptor 

associated factor (TRAF) 6 binds the intracellular portion of RANK upon 

activation and mediates OC associated RANK signalling 45,93. This is not the only 

mediator to associate with active RANK, Grb2-associated binder 2 (Gab2) is a 

scaffold signalling adaptor protein that also mediates RANKL signalling94. 

Multiple signalling cascades are initiated by active RANK; which in turn 
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orchestrate a selection of nuclear transcription factors to drive OC formation. 

These signalling cascades include; both canonical and non-canonical NFkB 

activation and translocation to the nucleus, activation of AP-1 transcription 

factor via c-Jun N terminal kinase 1 (JNK1), activation of the Src pathway, and 

MAPKinase activation of p38 pathway driving MITF transcription factor and 

ERK1/2 (Reviewed further in 95). 

The master transcription factor responsible for OC differentiation was identified 

as Nuclear Factor for activated T cells c1 (NFATc1) 96. This transcription factor is 

induced early in OC differentiation and is driven by RANK mediated calcium 

signalling and NFkB activity. In addition, NFATc1 can drive its own expression 

post induction, in a process known as auto-amplification97. NFATc1 trans-locates 

into the nucleus where alongside other OC associated transcription factors; 

PU.1, MITF, and Fos, it binds promotor regions of osteoclast-associated genes, 

promoting their transcription. This includes ctsk (Cathepsin K), acp5 (Tartrate-

resistant acid phosphatase – TRAP), dcst (Dendritic cell-specific transmembrane 

domain – DC-STAMP), Oscar (Osteoclast-associated receptor), and b3 integrins98-

100. 

Regulation and inhibition of the RANK-RANKL interaction is mediated by RANKL 

decoy receptor osteoprotegerin (OPG)101. This decoy receptor binds any free 

RANKL and prevents binding to RANK on OCP surface in order to control/inhibit 

further OC differentiation and activation. 

1.2.2.3 ITAM Signals 

The role of ITAM signalling is essential, in concert with RANKL signalling 

cascades, to induce osteoclastogenesis. This signalling transduction from 

phosphorylated ITAMs activates phospholipaseCγ (PLCγ), releasing calcium (Ca2+) 

into the cytoplasm and providing the necessary Ca2+ signal for NFATc1 induction 

(an essential osteoclast transcription factor). Two immune cell associated 

membrane adaptors have been shown to be involved in this process: Fc receptor 

common γ subunit (FcRγ) and DNAX-activating protein 12 (DAP12) 102. FcRγ-/- 

DAP12 -/-  mice have been shown to exhibit severe osteopetrosis due to a lack of 

osteoclasts, demonstrating that M-CSF and RANKL signalling alone is not 

sufficient for osteoclastogenesis102. Osteoclast associated receptor (OSCAR), is a 
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relatively novel leukocyte receptor present on pre-osteoclasts, and mediate Ca2+ 

signalling via FcRγ, through binding to its collagen ligand103. This receptor can 

rescue the osteopetrotic phenotype of DAP12-/- mice, and thus can contribute 

the required Ca2+ signal to mediate osteoclastogenesis103. The collective signals 

required for osteoclast differentiation and OC associated gene transcription are 

shown in Figure 1.2. 

 

Figure 1.2 Signals which Drive Osteoclast Differentiation 
M-CSF signalling via CD115 drives the proliferation and survival of OCPs, as well as driving the 
upregulation of RANK, making these cells more receptive to RANKL. RANKL signals through 
NFkB, MAPKinase to mediate the translocation of NFkB and AP-1 to the nucleus. In addition 
RANKL signals drive c-Fos activation which in combination with Ca2+ from OSCAR signalling 
pathways mediates the activity of master regulator of OC differentiation NFATc1. These signals all 
work in combination to drive OC-associated gene transcription such as TRAP, Cathepsin K, and 
integrin expression. 

 

1.2.2.4 Fusion 

The signals discussed above co-ordinate the transcription of genes necessary for 

OC differentiation and function. A fundamental process differentiating pre-OCs 

must then co-ordinate is cell fusion. This process is still not fully understood but 
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is known to require a series of co-ordinated events to enable pre-OC fusion. This 

firstly involves directional chemotaxis of OCPs towards each other via 

chemokines, with CCL-2 thought to contribute to this stage of fusion104,105. Once 

cells have been brought into close proximity with one another they must adhere. 

The process of cell-cell adhesion relies upon the expression and activation of 

cadherins and integrins. E-cadherin participates in mediating early pre-cursor 

interactions, which enables cellular fusion. By blocking this cadherin, the 

formation of multinuclear osteoclasts is significantly diminished106. In addition, 

an essential integrin involved in the fusion of OCPs is aVb3107. While cellular 

adherence via integrins is required to enable close contact of cells to mediate 

their fusion, integrins also act to enable fusion through cytoskeletal re-

organisation within the cell. Integrin mediated signalling via SYK enacts to 

promote skeletal rearrangement through microtubules and actin108. This 

promotes the formation of cellular extensions formed of f-actin known as 

podosomes. The formation of these f-actin structures is essential for the process 

of macrophage fusion109. 

In addition to the migration, adhesion and cytoskeletal re-organisation discussed 

above, two surface receptors have been identified as essential mediators of 

fusion in osteoclastogenesis; DC-STAMP110 and OC-STAMP111. However, the 

mechanism by which these surface receptors mediate this process is still 

unknown. Similarly, the ligands for these receptors during OC fusion is still not 

known. However, their importance in this process is evident in DC-STAMP KO 

animals, which fail to generate multinucleated OCs, leading to osteopetrosis110. 

1.2.3 Osteoclast Function 

The primary function of an OC is the controlled degradation of calcified tissue 

for the purpose of resorbing old and damaged bone112. In order to perform this 

unique function, OCs must both generate and direct bone eroding enzymes and 

acids onto the bone surface without causing any collateral damage to 

surrounding cells, tissue, or microenvironment. Acids such as hydrochloric acid 

(HCl) are released via ion channels and H+ATPase proton pumps113. In addition to 

acidic breakdown of inorganic calcified tissue, proteases are released to 

breakdown the extracellular organic matrix. The central protease released by 

OCs is cathepsin K114. The activity of both acidic components and proteases is 
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essential for the function of OC, and a lack of either of these components results 

in osteopetrosis 115,116. However high concentrations of acidic and proteolytic 

material can be damaging not only to bone but also to surrounding cells and 

tissues. Thus, the release of this material is targeted specifically to the bone 

surface below the cell. In order to do this a seal is created between the bone 

surface and the OC cell via the sealing zone and a structure known as the ruffle 

border. Adhesion and cytoskeletal re-organisation are fundamental processes 

that enable the formation of the sealing zone and ruffle border. 

The sealing zone is created by the formation of actin filament rich podosomes. 

Adhesion molecules mediate binding of OC cells to bone and the formation of 

these podosomes. Cell surface glycoprotein CD44 is at the core of the 

podosomes, directing the formation of actin filaments surrounding it. In 

addition, other OC-associated integrins are also present in the periphery of the 

podosomes, maintaining interaction between OCs and the bone surface in a low 

affinity state117. Podosomes begin to combine, eventually amalgamating to form 

an actin ring around the periphery of the OC. This “actin ring” structure is a 

principle phenotype in recognising formed OCs in vitro118. Integrins are also 

essential in the adhesion of OC to the bone surface and the organisation of the 

cytoskeleton. Integrin heterodimer aVb3 is the primary integrin that enables the 

mediation of bone resorption. Expressed by OCs, aVb3 recognises proteins that 

reside on the bone surface such as osteopontin (OSP) and bone sialoprotein 

(BSP). Attachment and spreading of OC cells on the bone surface is dependent 

upon aVb3 interaction with these bone proteins, demonstrated by competitive 

ligands of this integrin resulting in the arrest of bone resorption119-121. In 

addition, b3 subunit knock out mice have an osteopetrotic bone phenotype 

attributed to dysfunctional OCs107. Outside-in signalling through aVb3 integrins 

enables co-ordination of cytoskeletal actin rearrangement122. In addition to 

mediating adhesion, signals received from aVb3 also enhance OC differentiation 

signals123. Through adhesion of OCs to the bone surface and formation of the 

sealing zone, OCs become polarised, which enables directional exocytosis to 

occur. 

While formation of the sealed zone is important for efficient OC function, the 

formation of the ruffle border is still required in order to complete resorption 
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functions. The ruffle border is enclosed within the sealed zone and all of the 

organelles responsible for resorption functions are contained within this ruffle 

border. This is therefore known as the hallmark of active resorption in OC cells. 

As indicated by its title “the ruffle border”, it is the complex folding of the 

plasma membrane that borders the bone surface, creating a ruffled appearance. 

This was first observed using electron microscopy demonstrating the folded 

membrane124. Within the ruffle border and sealing zone, proteases such as 

cathepsin K and acids are secreted onto the bone surface. These compounds 

mediate the breakdown of the bone below and the degraded fragments are then 

endocytosed in the centre of the ruffled border region for further degradation 

and removal. The process of OC differentiation from HSC to endpoint functional 

resorbing OC and the signals which drive this process at each stage are 

summarised in Figure 1.3. 

Multinucleated OC have traditionally been identified via histological staining of 

Tartrate-resistant acid phosphatase (TRAP) enzyme, a marker of OCs 81. The 

exact role of this enzyme in OC function is still not fully understood. However it 

is known to be secreted by during active resorption, with its release positively 

correlating with resorptive behaviour125. This enzyme hydrolyses a number of 

substrates, including osteopontin (OSP), a protein component of bone tissue 

which mediates OC binding. The TRAP dependent dephosphorylation of OPN 

results in a loss of binding to OC126. TRAP is essential for normal bone 

development as demonstrated with trap-/- mice. These animals had abnormal 

skeletal formation (long bones were shorter, wider, with thicker cortices), and 

increased bone density indicative of mild osteopetrosis and failed resorption 

phenotype127. Overall, this indicates a role for the TRAP enzyme in OC function 

and bone resorption. 

The process of releasing high quantities of proteolytic and acidic material in a 

polarised manner consumes a huge amount of energy. The proton pumps which 

delivered acidic HCl material to the bone surface require ATP for their function. 

In order to complete these functions OCs are highly metabolic cells and require 

glucose consumption for glycolysis. It is thought that the process of glycolysis is 

the central metabolic driver of osteoclast resorption function128. 
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Figure 1.3 Osteoclast Differentiation 
Osteoclasts originate from immune precursors in the BM, HSCs. These cells give rise to cMoP 
through upregulation of PU.1, which in turn give rise to monocytes/OCPs through MITF activation 
via M-CSF. Monocytes and OCPs circulate in the peripheral blood. These cells migrate to bone 
surfaces through chemokine receptors CCR-2, and CX3CR1. Initial signals received via M-CSF 
results in upregulation of RANK. Stimulation of monocytes at the bone via RANKL initiates 
signalling molecules and transcription factors; TRAF6, NFkB, c-Fos, and NFATc1 driving 
commitment to the osteoclast lineage. Committed OCPs then upregulate integrin avb3 and DC-
STAMP which mediates fusion of OCPs into multinucleated polarised osteoclasts bound to the 
bone surface. Polarised OCs form ruffle borders and through upregulation of Cathepsin K and 
active secretion of acids these cells begin to resorb bone. (Adapted from 129) 

 

1.2.4 Osteoblasts 

Osteoblasts (OBs) produce the organic basis of the bone tissue and are 

responsible for its mineralisation, and thus are the “bone forming” cell type. 

OBs are found lining the bone, especially at newly synthesised areas of bone, 

and are cuboidal in morphology. As the sole producers of all organic components 

of the bone tissue and inorganic calcification, these cells are highly anabolic, 

with large mitochondrial capacity and golgi apparatus in order to mediate the 

production of high amounts of protein. 

OBs are derived from mesenchymal stem cell progenitors (MSCs), which have the 

capacity to differentiate into adipose cells, chondrocytes, or OBs, dependent 

upon the signals received and active transcription factors. Many extracellular 

signalling factors drive and regulate osteogenic differentiation of MSCs, 

including; Indian hedgehog (IHH), bone morphogenic proteins (BMPs), notch 

ligands, fibroblast growth factors (FGFs), parathyroid hormone-related protein 

(PTHrP), transforming growth factor b (TGF-b), the Wnt signalling family, and 

integrin ligands. Hedgehog signalling pathways initiated by IHH via patched 

homologue 1 (PTCH1), Smoothened (SMO), and zinc finger protein glioma-
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associated oncogene (GLI) drive the master transcription factors of OB 

differentiation RUNX2 (runt-related transcription factor – 2), and OSX (osterix) 
130. In addition, Wnt signalling via frizzled (FZD) through either b-catenin 

canonical signalling or non-canonical pathways with PKC131, also drives increased 

levels of both RUNX2 and OSX. The signals which drive MSC differentiation into 

OBs are outlined in Figure 1.4. 

These transcription factors drive the transcription of OB-associated genes and 

enable the differentiation of this cell type. OB differentiation occurs across a 

period of time, which can be broken down into stages that are loosely defined by 

what proteins are being produced and the cells activities. In the earliest stage of 

differentiation (stage 1) these cells will be producing fibronectin, collagen type 

I, osteopontin, and expressing TGF-b receptors. This reflects the primary role of 

secreting and forming osteoid at this stage, laying down the organic bone 

matrix. This extracellular matrix also enables the adherence of OBs and OCs via 

fibronectin and osteopontin, which are both integrin ligands. Once OB 

differentiation reaches stage 2, these cells are still producing collagen I but will 

also begin to produce alkaline phosphatase (ALP). This enzyme hydrolyses 

phosphate, thus providing inorganic phosphate to promote mineralisation. As 

such; the expression of ALP is an important step in the process of initial 

mineralisation. Finally, mature OBs will be defined by their fully mineralising 

phenotype. These cells will produce osteocalcin and calcium phosphate, which 

enables the complete mineralisation of the organic matrix formed earlier in 

development132. Once fully mature osteoblasts have generated new mineralised 

bone, they can then either become enveloped within the mineralised tissue and 

develop into osteocytes, or they can become quiescent bone lining cells. 

During development, the skeleton can be formed by 2 methods, dependent on 

the location and type of bone formation. Long bones of the extremities and 

some of the axial skeleton are formed by a process of endochondral ossification, 

while cranial bones are formed by a process of intramembranous ossification. 

Essentially endochondral ossification is the process by which growing cartilage is 

systematically replaced by bone in order to form the calcified skeleton. 

Chondrocytes form the cartilage anlage, which will eventually become future 

long bones. During this process chondrocytes are proliferative and produce 
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matrix, increasing the size of the cartilage anlagen. Chondrocytes in the centre 

of this structure become hypertrophic, and begin to differentiate into more OB-

like cells, secreting a distinct selection of matrix components, this is termed the 

primary ossification centre. These hypertrophic chondrocytes direct cells in the 

surrounding membrane (termed the perichondrium, which contains OB precursor 

cells) to differentiate into OB and mineralise. This begins the formation of 

cortical bone, the dense, compact layer of bone which will provide long bones 

with strength and rigidity. At this point the primary ossification centre becomes 

perfused with blood vessels, hypertrophic chondrocytes either develop into 

mineralising OBs133,134 or undergo apoptosis, and the centre of the structure 

becomes mineralised. Secondary points of ossification also form at the bulbous 

ends forming the metaphysis. Remaining cartilage is driven away from the 

diaphysis (shaft of the long bone) until it meets the ossified metaphysis, where 

this cartilage/bone interface remains, bordering the 2 regions. This band of 

chondrocytes remains post-natal and is traditionally known as the “growth 

plate”. It is from this point that the length of the long bone can be extended 

throughout growth until adulthood (bone development reviewed in 135). OCs also 

control this mineralisation process, by resorbing some of the new bone formed, 

maintaining the trabecular bone structure and providing space for BM formation. 

Intramembranous ossification, which occurs primarily in the cranial and facial 

bones, differs from endochondral ossification in that there are no cartilage 

intermediates135. Mesenchymal precursors aggregate in areas where bone 

formation will occur and then once these have reached a high enough density 

they will begin to differentiate directly into OBs. These cells secrete the osteoid 

and then subsequently mineralise this to form the cranial skeleton. 
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Figure 1.4 Signals which Drive Osteoblast Differentiation 
MSCs can differentiate into chondrocytes, adipocytes, or osteoblasts. Signals received from BMPs, 
TGF-b, and calcineurin drive RunX2, OSX, and NFAT2, all master regulators of osteoblast 
differentiation. In addition, wnt signalling drives b-catenin mobilisation to the nucleus and also 
drives OB specific gene transcription. 

 

1.2.5 Bone Remodelling  

Bone remodelling is a healthy, homeostatic process by which the quality, 

quantity and integrity of the bone is maintained throughout life, as well as 

maintaining mineral homeostasis by regulating calcium liberation into the 

circulation136. The cell types discussed above; OBs and OCs, are the mediators of 

this process and work closely together within what is known as the basic 

multicellular unit (BMU), in order to mediate the removal of old bone and laying 

down of new bone. The BMU is named based on a concentration of multiple OBs 

in close proximity to multiple OCs, each regulating and enabling the function of 

the other group. These cells perform the same individual functions as they did 

during skeletal development. In this instance these functions are performed as 

more of a marathon than a sprint. The remodelling of bone is stimulated by 
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weight bearing, microscopic bone fractures, and the requirement to release 

calcium into the circulation; an essential requirement for cellular processes and 

signalling. 

In order to maintain the skeleton but also avoid excess bone resorption or bone 

formation, the molecular communication between OCs and OBs, or these bone 

cells and cells of the BM and immune system, is a fundamental mechanism that 

regulates this physiological process with remarkable precision. It is essential that 

the quantity of bone formation and resorption is tightly balanced. However, in 

addition to this, the process of bone formation and resorption also requires 

spatial and temporal regulation to ensure sites of old bone removal are quickly 

replaced by new bone. A subtle loss in the tight regulation of this process is 

apparent in many bone pathologies. 

Tight regulation of the BMU is what maintains the structure of the bone, and 

coupling of bone formation to the preceding action of bone resorption is thought 

to be primarily dictated by OC / OB interaction. These regulate the activity of 

one another, via cell-cell interactions or soluble mediator production. Active OBs 

are able to initiate the action of OCs, through production of OC attractants and 

differentiation promoting factors 23. Hormone activated OBs produce CCL-3, a 

chemoattractant cytokine that mediates the movement of myeloid osteoclast 

precursor cells to the bone area137. Expression of osteoclastogenic factors such 

as, M-CSF, RANKL138, and OSCAR ligand139 are up-regulated on PTH stimulated 

osteoblasts in order to drive bone resorption. However, in order to prevent over-

active bone resorption mature OB then produce RANKL decoy receptor OPG25 to 

stop the effect of RANKL.  

As well as control of OC formation by OBs, mediators produced by OCs can also 

act as OB attractants and activators or induce their differentiation140. Some 

examples of this arm of the cross-talk are OC production of complement 

component 3a (C3a) 141, collagen triple helix repeat containing 1 (Cthrc1) 142 and 

Sphingosine 1-phosphate (S1P) 143, which all attract, activate, or promote the 

survival of neighbouring OBs. In addition to the role of RANK-RANKL signalling in 

the promotion of OC formation, it has been recently demonstrated that this 

system can signal in reverse via surface RANKL on OB cells. This reverse RANKL 

signal promotes OB differentiation through activation of RUNx2. A mouse model 
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expressing a mutant RANKL that can still enable a forward RANK signal but 

cannot signal in reverse (RANKLp29A), has defective bone formation in 

comparison to WT counterparts144. The process of bone resorption (presence and 

activation of OCs), there in stimulates bone formation by initiating OB migration 

and maturation and vice versa. 

The process of bone remodelling in a region of the skeleton can take a few 

weeks to complete and is achieved in distinct stages. These can be split into 5 

processes, namely, initiation of bone remodelling, the resorption phase, the 

reversal phase, bone formation phase, and finally termination of bone 

remodelling 145. The initiation of bone remodelling can be triggered by 

mechanical stimuli received by osteocytes via mechano-transduction146 or 

through bone damage such as micro-cracks147. Osteocyte cell death caused by 

bone damage can result in a loss of OC inhibitory signal TGF-b and thus trigger 

bone remodelling 148. In addition, a requirement for calcium liberation can be 

detected and PTH is released from the parathyroid gland, which acts upon OBs 

and promotes the production of factors to promote OC activity149. Therefore, 

during the initiation stage signals are generated to initiate remodelling from 

either local osteocyte activity or at a hormonal level, which drives OB 

activation. 

This leads into the second stage of remodelling; the resorption phase. OBs 

activated during the initiation phase produce chemokines (e.g. CCL-3, 

mentioned above) which promote the recruitment OCP and promote their 

differentiation150. At this stage mature OBs produce M-CSF, RANKL and reduce 

OPG release in order to drive the differentiation and activity of OC at the site of 

bone remodelling138. The maturation of OC and maintenance of their activity 

lasts the duration of the resorption stage where they are responsible for the 

removal of old bone tissue. In order to prevent excessive resorption, the next 

stage of bone resorption is the reversal stage, where catabolic resorption is 

stopped, and the process is switched to anabolic formation. At this stage 

clearance of resorbed bone is completed by OCs themselves, and possibly with 

the aid of macrophages resident at the bone periosteum (termed osteomacs) 
151,152. During the removal of the matrix debris, OBs are recruited to the site by 

factors produced by OC during the resorption phase such as SP1 (mentioned 
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above 1.2.5, page 39). Factors released or expressed on the OC surface promote 

mesenchymal pre-OB migration and maturation, and prevent OC activity, leading 

to the bone formation stage. A coupled signal between EphB4 ephrin-B2 

expressed on OC and its receptor EphB4 receptor on osteoblastic cells can 

generate bi-directional signalling that simultaneously inhibits OC activity and 

promotes OB differentiation and maturation153. 

OB are matured at the site of bone remodelling, initially producing osteoid and 

then reaching full maturity where they mineralise the osteoid matrix and form 

new bone (see section 1.2.4). The final stage of this process is the termination 

phase, when equal quantities of new bone have been created in place of the old 

resorbed bone, the process comes to a halt. The specific signals that drive the 

termination of the bone remodelling process and thus in turn prevent excessive 

bone formation, are still not fully understood. However, it is now thought that 

osteocytes may play a role in this process, potentially through the production of 

sclerostin, an OB inhibitory factor154,155. The interactions between OCs and OBs 

which drive and regulate the activity of these cells to co-ordinate bone 

remodelling are summarised in Figure 1.5. 

As well as known factors produced by either OCs or OBs that initiate or inhibit 

their activities, recent work using intravital imaging techniques has identified 

that the dynamic regulation of the OC/OB spatial relationship also regulated 

function156. This research identified that OB and OCs largely remain in distinct 

areas of the bone, ensuring there is no active resorption or active formation at 

the same time and same place. Notably, when OC and OB came into contact this 

was highly inhibitory for resorptive activity, and thus this process may be part of 

the reversal phase. Therefore, direct cell–cell communication is essential in 

preventing excessive resorption. This may be linked to the bi-directional 

signalling of the EphB4 pathway mentioned previously (see section 1.2.5, page 

40). 
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Figure 1.5 Dynamic Regulation of Bone Remodelling Conducted By Osteoblasts and 
Osteoclasts. 
OB receive signals to initiate the process of bone remodelling. This drives expression of 
monocyte/OCP chemo-attractants CCL3 to promote the migration of OCPs to the site. OBs then 
increase expression of OCP survival factor M-CSF, and osteoclastogenic RANKL (as both cell 
surface ligand or in soluble form) and OSCAR ligand. Simultaneously they reduce expression of 
RANKL decoy receptor OPG. In turn driving OC formation and promoting the resorption phase. 
Active OC then resorb old bone through production of acidic and proteolytic mediators. This phase 
is constrained to prevent excessive resorption again through interaction with OBs. OBs initiate the 
reversal phase which stops OC activity and promotes OB activity. Interaction of OCs and OBs via 
EphB4 (OCs) and EphB4 receptor (OBs) drives bi-directional signals – simultaneously suppressing 
OC activity while promoting OB maturation. In addition, OC produce C3a driving OB migration and 
cthrc1 promoting OB survival and maturation. This initiates the formation phase of active bone 
formation and replacement of the old bone with newly synthesised bone.  

 

1.2.6 Bone Pathologies  

Several pathologies are associated with dysregulated OB/OC balance, resulting 

in excessive bone formation (osteosclerosis) or excessive bone resorption 

(osteopenia). Pathologies can be either systemic, affecting the whole skeleton in 

diseases such as osteoporosis or osteopetrosis, or be specifically localised to the 

joints such as arthritic conditions. In many of these conditions dysregulated OC 

drive pathology. 

Osteoporosis is a condition characterised by systemic low bone mass and 

deterioration of the bone microarchitecture, which consequently increases bone 

fragility and susceptibility to fracture157. This most commonly affects 
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postmenopausal women, with approximately 30% of postmenopausal women in 

the United States (US) and Europe experiencing osteoporosis158. Increased 

resorption via OCs and limited bone formation by OBs results in systemic loss of 

bone. As such 2 therapeutic approaches have been taken to tackle this 

condition, anti-resorptive to directly target OC activity, and anabolic treatments 

to promote remodelling and bone formation through OBs. In addition, to 

osteoporosis another condition characterised by an increased rate of bone 

resorption is Pagets disease. The enhanced OC activity and resorption results in 

localised areas of destruction. Subsequently a compensatory increase in bone 

formation is then induced at the eroded sites, which results in an accelerated 

deposit of disorganised hyper-vascularised bone rather than the linear pattern 

formed in healthy bone remodelling. Overall the process results in skeletal 

deformity159. 

Bisphosphonates are the most common anti-resorptive treatment that has been 

historically prescribed for diseases characterised by hyper-resorption of bone. 

These compounds mimic the structure of endogenous inorganic pyrophosphates 

(PPi), a by-product of many reactions within the body and found endogenously in 

the blood and urine. These PPi’s are known to be capable of inhibiting 

calcification and hydroxyapatite breakdown, via direct binding to hydroxyapatite 

crystals within the skeleton, where they are retained160. In doing this they 

effectively suppress the process of bone resorption and are thus great tools in 

the treatment for conditions of overactive OCs, such as osteoporosis and Pagets 

disease. 

In contrast osteopetrosis is a heterogeneous group of conditions where there is a 

defect in the process of bone resorption. These heritable conditions are 

generally caused by mutations in genes essential to OC formation or action, thus 

patients fail to form functioning OCs. The most common osteopetrotic mutations 

occur in the H+ ATPase proton pump, and the CLCN7 OC-specific chloride 

channel161. These mutations cause defects in the acidification action of OCs. As 

these conditions are primarily genetic in nature, the only current form of 

treatments available are bone marrow transplant, which would replace the HSC 

pool with cells which do not carry these mutations and can differentiate into 

functional OCs. In addition gene therapy methods to correct these null mutations 
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are in development currently, with moves to enter into human clinical trials in 

the near future162. 

In addition to systemic imbalance of OC and OB activity, localised imbalance 

within this system is also found at the joint site in arthritis conditions. 

Exacerbated OC formation in inflammatory arthritis contributes to bone erosion 

as discussed in detail in section 1.3.4. Osteoarthritis (OA) is also characterised 

by bone remodelling dysfunction at the joint site, however this is not comprised 

of erosion based deformity found in inflammatory arthritis. Instead this 

pathology is associated with abnormal bone formation in the form of bony spurs 

(osteophytes) 163, and subchondral bone formation164. While the exact 

mechanisms that drive the bone pathology associated with OA are not fully 

understood, it is thought that one contributing factor is the altered 

biomechanics of the OA joint which could drive dysfunctional bone formation 

through mechano-transduction mechanisms165. These abnormalities and 

deformities of the OA bone cannot currently be treated. 
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1.3 Rheumatoid Arthritis 

1.3.1 Introduction 

The arthritides are a heterogeneous group of conditions with a common endpoint 

of structural joint degradation. Rheumatoid arthritis (RA) is the most prevalent 

overtly inflammatory condition of this group. This chronic, autoimmune disorder 

affects around 1% of the UK population 166 and is characterised by swelling, 

fatigue, pain, and loss of joint mobility. In addition to join pathology, RA is also 

characterised by a range of co-morbidities such as cardiovascular disease, 

mental health conditions, osteoporosis, and cancer, all of which may be 

associated with systemic inflammation. RA more predominantly affects women 

with onset age most commonly between 30 and 50 years of age. Therapeutic 

management of this condition is primarily through immunosuppressive agents 

such as; non-steroidal anti-inflammatory drugs (NSAIDs, ie., naproxen), disease 

modifying anti-rheumatic drugs (DMARDs, i.e., methotrexate), or specific 

immuno-pathway targeting biologics (i.e., anti-TNF, or anti-CD20) (Fully 

reviewed by 167). 

1.3.2 Immunopathology 

A number of immune-related pathways have been highly associated with RA 

through Genome Wide Association Studies (GWAS) from both the innate and 

adaptive arms of the immune system. For example, the HLA-DR locus has the 

highest association with this pathology168. Thus, highlighting the importance of 

presentation of antigen (possibly self-antigen) and both the innate and adaptive 

immune compartments in this pathology. In addition to underlying genomic risk 

factors for RA, the possibility of developing RA is also highly associated with a 

number of environmental risk factors. For example, smoking is the highest 

lifestyle associated risk factor that increases the likelihood of developing this 

pathology169. The exact mechanisms linking smoking and RA are still not fully 

understood but the enhanced modification of self-antigens induced by smoking 

may drive the recognition of these as foreign and drive an increased likelihood of 

a break in immune tolerance. 
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Therefore, this disease manifests as a result of a break in immune tolerance 

towards antigens associated with articular joints in genetically susceptible 

individuals. This leads to an adaptive driven immune response to self-antigens, 

such as IgG (rheumatoid factor, RF) 170 or post-translationally modified proteins 

(anti-citrullinated protein antibody, ACPA) 171. Interestingly, self-reactive 

antibodies such as ACPAs present prior to disease symptom onset 172. The RA 

inflammatory synovial infiltrate consists of auto-reactive B and T cells, 

inflammatory monocytes, mast cells, and neutrophils, which together produce a 

network of pro-inflammatory cytokines (TNF-α, IL-6) 173 chemokines (CCL2, 

CXCL8), proteases, and reactive oxygen species (ROS), creating a hypoxic, 

inflammatory environment. 

The synovial membrane in healthy individuals is 1-2 cells thick and comprised of 

fibroblast-like synoviocytes (FLS) and tissue resident macrophages. However, 

during pathology, this expands, creating a hyperplastic expansion of the 

membrane174. In addition, increased inflammatory mediators (e.g. IL-6), and 

catabolic proteases are produced by active pro-inflammatory FLS of the 

membrane. This aggressive phenotype is maintained 175 through epigenetic 

imprinting, creating an almost “transformed” synovial membrane 176. FLS 

hyperplasia creates structural damage due to thickening of the synovial 

membrane, creating an invasive pannus which can erode neighbouring tissue177. 

Structural damage is also caused by immune cell infiltrate invading the juxta-

articular bone and calcified cartilage, led by excessive osteoclast activity 

(derived from infiltrating myeloid cells e.g. monocytes) and TNF-α driven 

mechanisms 178. 

In addition, adaptive immune mechanisms also drive the chronicity of this 

disease. Pathogenic populations of CD4+ T helper Th17 and Th1 cells have been 

identified. Regulatory T cells (Tregs) are also abundantly present, however, 

their function has been shown to be attenuated, limiting their ability to regulate 

chronic inflammation179. The presence of ectopic lymphoid follicles at the RA 

joint is a hallmark of uncontrolled disease pathology. This is the site of active T 

cell and B cell communication that closely resembles germinal centres present in 

active lymph nodes180. T cells provide aid for driving B cell differentiation and 

somatic hypermutation at these follicle sites, which then become a large source 
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of auto-antibody181. The presence of elevated levels of B cell survival factors 

within the synovium maintains their survival, and promotes further chronicity182. 

1.3.3 Monocytes in RA 

The innate immune system is integral in the pathogenesis of RA (see section 

1.3.2). Monocytes are altered during chronic RA, with these cells expressing a 

TNF skewed transcriptional signature183. Their importance in disease 

pathogenesis is highlighted in that their heightened cell number correlates with 

disease activity and also indicates responsiveness to drugs such as anti-TNF184. 

Frequencies of monocyte populations are altered in RA patients, skewing 

towards a more prominent intermediate population than in healthy controls. 

Moreover, this expanded intermediate population is thought to drive pathogenic 

T cell population expansion185. Systemic inflammation is a hallmark of RA and 

while elevated cytokine levels impact the phenotype of PB monocytes, the 

chronic inflammation also drives early release of monocytes from the BM 186. 

This early release phenotype is thought to be driven by increased demand and 

turnover of monocytes, due to their constant recruitment to the joint. Research 

looking at monocytes in RA is somewhat limited as more focus has been given to 

their tissue differentiated states within the joint (monocyte-derived 

macrophages).  

1.3.4 Inflammatory Bone Erosion 

Chronic RA is characterised by generalised osteopenia (a reduction in the protein 

and mineral content of bone), resulting in overall increased fracture risk187. 

Measurements of osteopenia and bone mineral density correlate with disease 

activity in RA patients188. In addition to general bone loss, a hallmark of 

uncontrolled RA is localised bone loss and focal bone erosions at the inflamed 

joint. These erosions are evident in radiographic imaging of the joint, with 

erosions most commonly localised to the “marginal areas”. These are the 

periarticular regions of the joint not covered or protected by the articular 

cartilage. Focal bone erosions are the end point of structural damage, most 

commonly found in patients who experienced uncontrolled disease for some 

time. 
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Peri-articular bone erosion usually occurs in joints that display active 

inflammation. These focal bone erosions at the pannus/bone interface contain 

OCs at their forefront. This has been demonstrated in both RA and juvenile 

idiopathic arthritis (JIA) joint tissue where TRAP+ cells are clearly evident189. 

The presence of OCs is essential in mediating bone erosion, as demonstrated in 

the K/BxN murine serum transfer model. When the serum of this mouse is 

transferred to another background the host develops arthritis. Notably, when 

K/BxN serum was transferred to a rankl knock out mouse, although they 

developed inflammatory arthritis, there was no evidence of any bone erosion190. 

The evidence above indicates that, even in a highly inflammatory environment, 

bone erosion cannot occur independently of RANKL-mediated OC formation. 

However, some contradicting work has suggested that RANKL independent 

osteoclastogenesis can occur during inflammatory arthritis. Many different 

mechanisms of RANKL independent osteoclastogenesis have been proposed. 

Some studies have demonstrated TNF driven osteoclastogenesis independent of 

RANK/RANKL 191,192, indicating potential non-RANKL driven osteoclastogenesis 

during TNF dominant inflammatory arthritis. In addition to inflammatory 

cytokine driven OC formation, bacterial toxins such as pasteurella multocida 

toxin193, and hypoxia associated lysyl oxidase194 as potent inducers of 

osteoclastogenesis independent of RANK/RANKL signals. However, time and 

again the reports of RANKL independent osteoclastogenesis have been disputed, 

demonstrated as irreproducible and are generally considered controversial195-197. 

Overall, the field still does not fully accept the possibility of RANK independent 

osteoclastogenesis even in the extreme circumstances of cancer and chronic 

inflammation. 

RANKL is upregulated not only in experimental rodent models of disease 198, but 

also in human inflammatory joint diseases such as RA199,200, and psoriatic 

arthritis 201. Direct inhibition of OC activity and formation in human disease 

through the use of clinical treatment with anti-RANKL (denosumab) is effective 

in preventing bone erosion, however, it has no other clinical benefits. Supporting 

the concept that inflammatory OC formation is still dependent on RANKL in 

human disease. Also indicating that this mechanism does not contribute to any 

other clinical manifestation, such as joint space narrowing or cartilage 

degradation202. 
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While the formation of OCs and thus the presence of bone erosions in still 

dependent upon the basic mechanisms of OC development and activity, i.e., 

RANK / RANKL interaction, the increase in number and activity of these cells is 

driven by a combination of inflammatory factors. The RA joint is a location of 

high monocyte trafficking (see 1.3.3), these cells are capable of differentiating 

into OC with the right combination of signals. The inflamed synovium is an 

environment rich in OC promoting factors, such as osteoclastogenic cytokines 

(TNF, IL-17, and IL-6), and RANKL, providing a wealth of signals to drive the 

excessive formation of these multinuclear cells. Within the RA synovium various 

cell types are responsible for promoting their differentiation, 2 primary cells 

involved in this process are FLS of the invasive pannus, and activated T cells 

within the synovium. Active and aggressive RA FLS are a primary source of 

RANKL, and can thus drive OC formation199, which provides an in-road into the 

bone, where the pannus follows to further invade this tissue. Active T cells, 

especially Th17 cells, also provide a source of RANKL, in combination with other 

OC promoting cytokines such as IL-17203. While both of these cells are known 

RANKL producers, the primary source of RANKL during inflammatory arthritis was 

identified as synovial fibroblasts. Through a series of conditional rankl-/- murine 

models of inflammatory disease T cells, chondrocytes, and synovial fibroblasts 

were all selectively depleted of RANKL, which demonstrated the highest 

dependence of RANKL from the fibroblast204. In addition to pro-inflammatory 

cytokines, auto-antibodies have also been implicated in driving OC formation in 

RA. Within in vitro cultures of OC assays and auto-antibodies isolated from RA 

patients, the enhancement in OC formation was shown to be dependent upon 

chemokine IL-8205. Thus, antibody driven OC enhancement is most likely 

dependent on cellular migration. It was initially suggested that specific 

polyclonal ACPA isolated from RA patients enhanced the formation of OC. 

However, subsequent follow up determined that the citrullinated peptide 

binding capacity of these antibodies had not fully been elucidated and therefore 

this may not be an ACPA specific phenomenon206. 

Another key mediator that drives RA bone erosion and OC formation is the pro-

inflammatory cytokine TNF, which is prominent factor in disease pathogenesis. 

This is noted as one of the most important enhancers of OC formation in RA and 

will be discussed in more detail below (1.3.4.1). 
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It should also be appreciated that bone erosion in RA patients is not repaired, 

resulting in irreversible joint damage. This could be the result of a failure in the 

bone formation pathways driven by this disease. Inflammation, also reduces 

osteoblast differentiation potential, prohibiting their maturation into a 

mineralising state and thus their bone forming capacity207. Thus, taken together, 

in RA there is a loss of regulation in the homeostatic bone remodelling process. 

Bone resorption via OC is enhanced, while bone formation pathways and OBs are 

inhibited, preventing any repair of excessive bone erosion. 

1.3.4.1 TNF in Osteoclastogenesis 

TNF is a pro-inflammatory cytokine. Un-detectable in healthy individuals but 

enhanced and detectable during inflammation related to both sterile and 

infectious pathologies. RA patient serum levels of TNF are significantly 

enhanced53. This enhancement of serum TNF also positively correlates with 

disease activity 208. In addition TNF is also prevalent within the inflamed 

synovia209. This cytokine is a central driver of RA disease pathogenesis, and 

inhibitors for TNF were the first biologic approved to treat RA patients210. 

Activated macrophages are the central producers of TNF. However, it is also 

produced by activated helper T cells211, neutrophils212 and fibroblasts213. 

Similarly to RANKL, this cytokine can be found anchored to the cell surface, in a 

membrane bound form, or it can be cleaved from the cell membrane to a soluble 

state via TNF-a converting enzyme (TACE)214. Both forms of the cytokine are 

active. It is a well-known driver of inflammation, especially innate immunity, 

and has high association with innate immune driven conditions, for example in 

bacterial infections where macrophage activation is crucial for bacterial 

clearance. This is highlighted by the increased risk of bacterial infections during 

anti-TNF therapy215. 

In addition to the success of anti-TNF in regulating inflammation in patients, this 

treatment has been demonstrated to reduce the risk of developing radiographic 

evidence of bone erosions216. Most likely, the reduction in the likelihood of bone 

erosion with anti-TNF therapy is due to the potent pro-osteoclastogenic action of 

TNF. TNF was first identified as a potent enhancer of RANKL mediated 

osteoclastogenesis in 2000, in a study conducted by Jonathan Lam. This study 

determined that in conditions of reduced RANKL expression TNF was able to 
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drive excessive osteoclast differentiation in vitro. This effect was lost if TNF was 

added to the culture system too early in the differentiation phase46. Thus, the 

effect was based on enhancing an already committed progenitor post-RANKL 

exposure. Since this publication, the TNF OC enhancement has been further 

demonstrated in murine model both in vitro191 and in vivo217,218, and also in 

human cell culture systems of monocyte / OC differentiation. Some publications 

have reported that TNF can drive OC without RANKL, however, this idea is not 

widely accepted. Double genetic manipulation murine models with rankl-/-, and 

TNF-overexpression maintain osteopetrosis, as the overexpression of TNF fails to 

rescue OC deficiency in these animals219. Therefore, it is commonly recognised 

that TNF does not drive OC differentiation alone but instead enhances RANKL-

mediated OC differentiation. 

TNF has 2 cognate receptors, tumour necrosis factor receptor 1 (TNFR1) and 

tumour necrosis factor receptor 2 (TNFR2). These receptors can each signal via 

distinct pathways but can also overlap through TRAF2 mediated NFkB and 

MAPKinase signals. Both of these receptors are expressed by OCPs. TNFR1 can 

couple with TRADD, which can subsequently couple to FADD (fas associated 

death domain) to drive apoptotic signals. Alternatively, TRADD can couple with 

RIP which in turn activates the NFkB pathway via IKKs and IkB phosphorylation. 

Driving NFkB translocation to the nucleus and inflammatory-associated gene 

transcription. Finally, TNFR1 coupled TRADD can also activate the MAPKinase 

signalling cascade via JNK1, driving the AP-1 transcription factor. In comparison, 

activation of TNFR2 leads to engagement of multiple TRAFs (TRAF 1, 2, 3, 5, and 

6) and subsequent MAPKinase JNK signalling and AP-1 assembly, or NFkB 

activation220,221. 

The exact mechanisms by which TNF drives enhanced OC formation are still not 

fully understood. It is thought that this cytokine can promote enhanced 

expression of both RANK222 and RANKL. Furthermore, the signalling mechanisms 

of TNF share many similarities to that of RANKL, and it was therefore originally 

thought that this signal may be contributing to the RANKL signal223. However, it 

is now recognised that the TNF driven OC enhancement is dependent upon 

RANKL expression but driven by pathways independent of RANK/RANKL191. Even 
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though OCP express both TNFR1 and TNFR2191, the OC stimulatory signal from 

TNF is thought to be driven primarily via TNFR1223,224. 
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1.4 Protease Activated Receptors (PARs) 

1.4.1 PAR Family of Receptors 

Protease activated receptors (PARs) 1-4 are a small family of transmembrane, G-

protein coupled receptors. The unique aspect of these receptors is their lack of 

traditional ligand. All members of the PAR family are activated via cleavage of 

their N terminus by serine proteases, unveiling a novel N terminus, which in turn 

can bind the second extracellular loop as a “tethered ligand” to induce 

activation. This results in an inability to dissociate the bound ligand and re-use 

the receptor, therefore, post-activation PARs are internalised and degraded. In 

1991, PAR1 (a thrombin responsive receptor) was the first family member to be 

cloned 225. Following this, the trypsin-responsive receptor PAR2 was cloned226,227, 

and then in 1997 a second thrombin responsive receptor, PAR3, was identified 

via a PCR-based approach to complementary DNA of PAR1228. PAR4, the final 

receptor family member to be identified, was cloned in 1998229. PARs 1, 3 and 4 

play important roles in vascular physiology, the coagulation pathway and the 

immune system, and are primarily cleaved by thrombin 230. PAR2, however, is 

activated by a number of serine proteases such as trypsin231, mast cell 

tryptase232, neutrophil proteinase 3 233 and matriptase234, many of which are 

generated and released during tissue injury or inflammation. Thus, PAR2 (also 

known as FR2 Like Trypsin Receptor; F2RL1) serves slightly different 

physiological roles from the other family members. And in the last decade a 

strong link has emerged between this receptor and innate and adaptive 

immunity. 

Located on chromosome 5227, the FR2 Like Trypsin Receptor (F2RL1) gene is 

2.9Kb in length235. This is translated into a 394 amino acid sequence to form the 

PAR2 protein, with a predicted molecular weight of around 44kDa. The structure 

of this receptor includes 7 transmembrane domains, and a 74 amino acid N 

terminal sequence that during activation is irreversibly cleaved. The standard 

trypsin cleavage site is 36 amino acids from the N-terminus, which when 

dissociated exposes a novel N terminal with a SLIGKV sequence227. This tethered 

sequence is then capable of self-binding the second extracellular loop of the 

receptor to induce signal transduction236.  
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1.4.2 PAR2 Activation and Signalling 

The unconventional method by which this receptor is activated via protease 

cleavage results in irreversible changes to the receptor structure. The self-

anchored ligand does not dissociate so in order to end signalling from the 

activated receptor it is internalised. Many other G protein coupled receptors are 

also internalised post activation, and within the endosome ligands are removed 

and the receptor is recycled to the cell surface ready to be activated again237. 

However, the structural modifications undergone for protease activation leave 

the PAR receptors unable to be activated again. Thus, post endocytosis these 

receptors are trafficked to lysosomes for complete degradation. Endocytosis of 

the receptor is mediated by b-arrestins, which are recruited after G protein 

signalling. PAR2 action is regulated by appropriate trafficking around the cell, 

thus enabling it to only be expressed on the surface when required and to end 

irreversible signalling via receptor internalisation and degradation. 

Once activated via protease cleavage of the N terminus, the binding of the novel 

N terminus to the second extracellular loop of the receptor238 induces a 

conformational change and activation of PAR2, initiating G protein signalling. 

Canonical PAR2 signalling is initiated by conventional PAR2 activating proteases 

that all cleave the receptor at the same point exposing the SLIGKV activating N-

terminus. This includes; trypsin, tryptase, granzyme A, coagulation factor VIIa 

and Xa, and kallikrein 2, 4, 6, and 14. While all of these proteases cleave the 

same section of the PAR2 N terminus, they all differ in terms of their potency for 

PAR2 cleavage. In addition to conventional protease mediated cleavage, in order 

to study the function of PAR2, without cleaving any other PARs or surface 

proteins, activating peptides were produced. These activating peptides mimic 

the tethered ligand, such as SLIGKV in human cells, and have been further 

modified (furoylation) to improve potency 239. 

Canonical PAR2 activation initiates multiple signalling pathways, associated with 

diverse groups of G protein a subunits, such as calcium mobilisation, MAPKinase 

ERK phosphorylation, and GTPase associated Rho signalling. In addition to G 

protein mediated pathways, PAR2 also directs b-arrestin-mediated signalling via 

structurally independent regions of the C-terminus240,241. The activating peptides 

that mimic the conventional tethered ligand for this receptor function in largely 
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the same way as direct protease activation. They also activate canonical G 

protein signalling pathways, b-arrestin interactions and drive internalisation of 

the receptor. 

Canonical PAR2 signalling involves activation of multiple G protein α subunits, 

such as Gαq118,119, Ga12/13242, Gas 243. Utilising a cell line system with 

transfected flag-tagged human PAR2 in COS-7 cells, activation of these G protein 

a subunits was confirmed in response to PAR2 activating peptide, and the a 

subunits that drive or are associated with independent signalling pathways were 

elucidated243. The Ga12/13 family initiates the Rho signalling pathway, an 

essential pathway involved in cytoskeletal organisation. The Gas pathway 

activation has been suggested to stimulate the adenylyl cyclase pathway (cAMP) 

which can in turn activate cAMP dependent protein kinases and amplify the 

signal. It is also known to regulate and inhibit Rho activation. Activation of 

Gaq/11 was associated with the activation of phospholipase C (PLC), mediated 

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) driving	Ca2+ 

mobilisation, inositol 1, 4, 5 triphosphate and protein kinase C (PKC) signalling 

pathway activation240. Downstream of this, PKC activates the NFkB pathway, 

increasing IKKa and IKKb, which subsequently translocate to the nucleus. This 

process can be inhibited with PKC inhibitors 241. Through activation of 

RasGTPase, PAR2 is also able to signal via MAPkinase signalling elements ERK, 

p38, and JNK241,244. Activation of NFkB, and MAPkinase are principal signalling 

pathways involved in inflammatory responses, which result in the survival and 

proliferation of immune cells, and drive the induction of inflammatory 

associated genes e.g. pro-inflammatory cytokine production. In addition 

pathways such as Rho activation via PAR2 drive cytoskeletal rearrangement, and 

actin polymerisation that drive immune cell migration and adhesion245. 

Activation of the PLC pathway also aids in directing signalling regulation via 

phosphorylation of the intracellular C terminus, resulting in uncoupling of G 

proteins, thus preventing continued signalling in an irreversibly activated 

receptor. G-proteins are un-coupled from the PAR2 C terminus by b-arrestins, 

which themselves become associated with the C terminus. Not only do b-

arrestins stop G-protein association with the C-terminus they also mediate 

clatherin-dependent endocytosis of the activated receptor. A study by Bohm and 
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colleagues in 1996246 used calcium flux monitoring and microscopy imaging 

techniques to greater understand and visualise PAR2 signalling and cellular 

trafficking. They demonstrated that within 15 minutes of PAR2 activation there 

is a diminished surface expression but increased PAR2 presence in small vesicles 

close to the cell surface. By 30 minutes PAR2+ vesicles appeared larger and 

localised to the cytoplasm. Through visual co-localisation with an endosomal 

marker (transferrin receptor) the group identified that PAR2 enters endosomes 

and then through subsequent co-localisation with GM10, a lysosomal marker, 

they concluded that the receptor is degraded within lysosomes246.  

In addition to driving the trafficking of activated receptors away from the 

membrane for degradation, b-arrestin is also an essential signalling mediator 

that drives non-G protein signalling from PAR2. During b-arrestin driven 

internalisation of PAR2, in the early endosome there is formation of the b-

arrestin signalling complex. This includes recruitment of Raf which activates 

ERK, and initiates cell membrane ruffling, and filopodia formation to drive 

cellular motility247-249. In addition to its association with Raf-ERK signalling, 

PAR2-b-arrestin also complexes with cofilin, a protein that interacts directly 

with actin in the cytoskeleton. By binding the cofilin activating protein 

chronophin, the PAR2-b-arrestin complex activates cofilin, which induces actin 

polymerisation at the cells leading edge and thus drives cellular motility250,251. 

Overall, the signalling complexes created with b-arrestin during receptor 

internalisation are key drivers of cell migration. The signals initiated during 

canonical PAR2 activation are shown collectively in Figure 1.6. 

Studies conducted with various adherent cell lines transfected with human PAR2 

tagged proteins have been invaluable in teasing apart the intricacies of the 

expansive signalling cascades that are induced by canonical PAR2 activation, 

outlined above. However, it must also be considered that while these signal 

mediators have been connected in PAR2 transfected cell lines, such findings do 

not always directly translate to primary cells. It is possible that cell type may 

drive some bias with regards to the signalling pathways initiated by canonical 

PAR2 activation, and certainly the functional outcomes of these signalling 

pathways may differ between cell type. Further exploration of PAR2 signalling in 

primary cells with endogenous PAR2 expression has only been minimally explored 
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and would undoubtedly be valuable in further understanding the role of this 

receptor in specific cell types and settings. 

 

Figure 1.6 PAR2 Canonical Signalling Pathways 
Various serine proteases are known to cleave PAR2 at the N-terminus to reveal the activating 
novel N-terminus SLIGKV (SLIGRL in mice), including Trypsin, Granzyme A, Tryptase, Kallikrein 2, 
4, 6, and 14, and Coagulation factors VIIa and Xa. This novel N terminus binds the second 
extracellular loop of the receptor to initiate canonical PAR2 signalling. Canonical signalling can 
drive the activation of multiple Ga proteins and b-arrestin. This includes; activation of Gaq/11 which 
drives signalling via PLC and Ca2+ mobilisation, activation of Gas which drives signalling via 
cAMP, and activation of Ga12/13 which drives signalling via Rho-kinase to mediate cellular 
migration. In addition, canonical PAR2 activation results in receptor association with b-arrestin 
which mediates receptor internalisation, but also signals via MAPKinase phospho-ERK and cofilin 
to drive actin rearrangement. Finally, canonical activation can also result in Ras GTPase activity to 
mediate MAPKinase signalling through phospho-ERK as well.  

 

1.4.2.1 PAR2 Bias Signalling 

In addition to canonical PAR2 cleavage, which provides the novel N terminus of 

SLIGKV in the human or SLIGRL in mice, other proteases can cleave PAR2 at 

alternate sites. When this was first discovered it was thought that this alternate 

cleavage was only intended to disarm available receptors, making them 

unresponsive to their canonical activation252. However, it is now apparent that 

alternate cleavage can drive PAR2 activation in a limited form, also known as 

bias signalling. These distinct sites of alternative PAR2 cleavage cannot initiate 
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all of the signalling pathways driven by canonical activation, and instead they 

selectively activate specific pathways in a bias manner, driving alternative or 

selective actions of this receptor. 

This concept of bias signalling in PAR2 and the PAR family in general is a 

relatively new finding and our knowledge of this is still somewhat limited. As 

more research is conducted more proteases have been found that can drive a 

bias activation of PAR2. Many of these bias proteases are also abundantly 

sourced from activated immune cells, such as neutrophil elastase, proteinase-3, 

and cathepsin G, all of which are released by activated neutrophils253,254. 

Neutrophil elastase cleaves PAR2 at a distinct site, beyond the canonical trypsin 

site, much closer to the first transmembrane region. Cleavage by this proteinase 

drives Ga12/13 activation, without any other G protein involvement. This drives 

MAPKinase ERK activation via Rho kinases, with no b-arrestin recruitment, and 

thus no signalling via b-arrestin, nor receptor internalisation255. The cleavage 

site results in a very short tethered ligand in this case. Moreover, the peptide 

mimic for this novel elastase-generated N-terminus cleavage does not activate 

PAR2. Suggesting that this mechanism leads to a tethered ligand independent 

PAR2 activation. The mechanism of activation has not been fully explored but 

cleavage of the N-terminus at this site could possibly induce an active 

conformation of the receptor. 

Cathepsin S is a cysteine protease with known production by specific 

macrophage populations, i.e. alveolar macrophages. It also has capacity to 

cleave PAR2 at a non-canonical site and is capable of driving alternate PAR2 

activation. Unlike elastase, cathepsin S drives Gas driven cAMP accumulation, 

but does not trigger Ca2+ signalling or ERK phosphorylation256. As such, this drives 

yet another form of signalling bias, distinct from elastase. The physiological 

responses associated with this bias signal have been associated with pain 

reception. The known routes of PAR2 signalling bias are presented in Figure 1.7. 

These findings indicate that during inflammatory responses, the release of 

neutrophil and macrophage associated proteinases could drive alternative PAR2 

activation during inflammatory assault. PAR2 is able to dynamically respond to 

diverse proteinase signatures within the environment to trigger precise 
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intracellular pathways that will drive distinct cellular responses. This may 

provide some insight as to why PAR2 sometimes appears to drive opposing 

actions in different disease states. A greater understanding how to drive specific 

actions of PAR2 by promoting signalling bias could also be a valuable therapeutic 

tool257. By driving PAR2 activity in a particular direction, this could eliminate the 

pathogenic actions of this receptor in some disease settings without losing its 

valuable actions. 

 

Figure 1.7 Known PAR2 Bias Signalling Pathways 
Unlike canonical activators, some proteases cleave PAR2 N terminus at an alternate site. This can 
sometime still initiate receptor activity but only drive activation of particular Ga subunits and 
signalling pathways. Two identified proteases that can drive a bias non-canonical activation of 
PAR2 are neutrophil elastase and cathepsin S. Neutrophil elastase can only mediate Ga12/13 
signalling via PAR2, which drives Rho-Kinase signals. While cathepsin S can only drive Gas 
activity and cAMP actions through PAR2. Neither protease mediates b-arrestin recruitment to 
PAR2. 

 

1.4.3 PAR2 Expression and Function 

Upon discovery of PAR2, initial investigation of the expression patterns of PAR2 

throughout the body were crudely performed. In 1995, Nystedt and colleagues 

performed northern blot techniques with RNA isolated from various human 

organs and blotted for PAR2 mRNA. Organs that contained large amounts of PAR2 

mRNA included the liver, kidneys, pancreas, prostate, small intestine, and colon. 

A lot of these organs were high producers of proteases and involved in 

metabolism or digestion in some form. As a protease activated receptor this 
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made physiological sense for this receptor to be localised to environments with 

high levels of protease expression. Since this initial observation it has been 

established that PAR2 does play a substantial role in digestion and specifically in 

stimulating exocrine secretion in the pancreas258, intestinal cells259,260, and the 

release of saliva from salivary glands 261. PAR2 also stimulates gut motility 

through smooth muscle contraction and relaxation, an essential function 

mediating the peristaltic movement through the GI tract262. In addition to 

homeostatic functions in mediating secretion and motility, PAR2 has also been 

established to drive pain reception in the intestine263, as well as association with 

immunological functions within the gut, playing a role in chronic inflammatory 

intestinal conditions264. Overall, it is clear PAR2 plays fundamental roles in GI 

tract health, homeostasis and in disease265. 

In addition to expression in GI associated organs the initial crude analysis of 

organ-associated PAR2 transcript expression identified lower, but still evident 

levels of PAR2 mRNA in leukocytes, and the spleen227 (see 1.4.4). 

Subsequently, expression was then confirmed in endothelial cells (Human 

umbilical vein endothelial cells - HUVECs) 266. Furthermore, PAR2 transcript 

levels were enhanced in response to inflammatory stimuli IL-1a, TNF, and LPS266. 

Importantly, this enhanced expression was limited to PAR2, as the same 

responses were not found in PAR1 transcript; a clear discriminator between 

these receptors and their potential functions266. In addition to this, a further 

study identifying a key role for PAR2 in HUVECs was conducted by Plevin and 

colleagues. Demonstrating that TNF, and IL-1b cytokine stimulation, and LPS 

stimulation of TLR4, resulted in PAR2 upregulation both at the mRNA and 

functional protein level. Through the use of adenoviruses to inhibit specific 

points in the MAPkinase and NF-kB signalling pathways, they also found that 

PAR2 upregulation post-cytokine stimulation was dependent on p38 MAP kinase 

protein40. This study also identified self-regulation of PAR2 expression. 

Stimulation with PAR2 activating peptides also resulted in increased PAR2 

expression. As the cell type responsible for the recruitment of immune cells to 

sites of tissue inflammation from the peripheral blood, the increased PAR2 

expression during inflammatory responses in this cell type gives a further 

indication of a role for this receptor during inflammation. 
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Overall PAR2 has a clear association with digestion, the GI tract, and the 

immune system. The functions of this receptor within these systems are diverse 

and very much cell type specific. The focus of this thesis was to investigate the 

role of PAR2 in bone turn over and inflammatory bone erosion and thus the role 

of PAR2 in the immune system will be further expanded upon below.  

1.4.4 Immunological Functions of PAR2 

In the last decade PAR2 research has demonstrated a strong link between this 

receptor and innate and adaptive immunity. The connection between these has 

been established in a number of leukocyte populations from both innate and 

adaptive arms of the immune system. Protein and mRNA expression of PAR2 has 

been identified on human eosinophils267, neutrophils268, mast cells269, 

monocytes270, macrophages271,272 and T cells273. Non-hematopoietic cells with a 

close relationship to leukocytes and relevant roles in leukocyte migration and 

activation, such as endothelial cells (as mentioned previously in section 1.4.3) 

and fibroblasts also express PAR2274,275. It is also of note that in most of these 

cell types’ qPCR and western blotting techniques were employed to identify the 

presence of this receptor, and while these techniques provide evidence of the 

presence of this receptor in these cells, they do not provide information 

regarding the location within the cell (e.g. cell surface or cytoplasmic). By 

adopting flow cytometry approaches Rachel Steven and colleagues271, identified 

PAR-2 receptors in human monocyte-derived macrophages, discriminating 

between intracellular (70% of cells) versus cell surface PAR2 expression (~20% of 

cells). Subsequent investigation of this intracellular expression in peripheral 

blood monocytes confirmed that intracellular stores of PAR2 are present and can 

be trafficked to the cell surface in response to stimulation270. Indicating that 

PAR2 responses could be a form of early response mechanism, which may be 

relevant to many immune cells, especially those of the innate arm that already 

have established fast response mechanisms to inflammatory cues. 

As well as expression, a functional role for this receptor in these cell populations 

has also been reported. In order to identify the functional role of this receptor a 

PAR2 deficient mouse was generated. Using homologous recombination, a null 

allele of the PAR2 gene was created in embryonic stem cells creating a 

homozygote KO276. Through the use of par2-/- mice and PAR2 agonists (SLIGKV-
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NH2), and inhibitors (ENMD-1068, SAM-11), the functional role of this receptor in 

inflammation has been interrogated in both in vivo models and in vitro cell 

culture systems. Agonist-mediated activation of PAR2, on leukocyte populations 

has been shown to induce cytokine production; such as IL-6 in T cells277, IL-6 and 

IL-8 release from endothelial cells278, increased LPS driven TNF production in 

macrophages271, and interestingly drive IL-1b, IL-6, and IL-8 production in human 

peripheral blood monocytes270. In addition, PAR2 activation has been shown to 

drive the release of reactive oxygen species (ROS) and generation of 

prostaglandins via cyclooxygenase (COX) activation279. It has also been 

associated with increased vascular perfusion280, a trait characteristic of 

inflammation, which aids in leukocyte infiltration. The interaction between 

endothelium and leukocytes is also a key relationship in initial inflammatory 

responses for leukocyte migration and both of these cell types express PAR2. A 

study conducted by Bernstein and colleagues (2000) found that par2-/- mice 

exhibited delayed inflammatory response to surgical trauma, characterised by 

delayed leukocyte rolling, adhesion, and extravasation into tissue281. This was 

not an isolated finding; a study prior to this demonstrated that topical 

administration of the rodent PAR2 agonist (SLIGRL-NH2) to murine mesentery 

induced a 3 fold increase in leukocyte adherence to the venule and a significant 

increase in polymorphonuclear leukocyte extravasation into the peritoneal 

cavity282. Therefore, it is clear that PAR2 activation is able to promote trans-

endothelial migration of leukocytes via activation of endothelium, leukocytes, or 

both. However, this process has not been fully explored and it would be 

interesting to investigate how elements of the leukocyte recruitment process are 

altered by PAR2 activation, for example chemokine receptor and adhesion 

molecule upregulation. These studies collectively confirm that PAR2 plays a role 

in early and acute inflammatory responses. 

The use of par2-/- mice has also given us a clear indication that this receptor 

does not only contribute to acute inflammation but is also crucial in chronic 

inflammation. Multiple murine inflammatory disease models fail to establish or 

were significantly abrogated in par2-/- mice. This included neuroinflammation283, 

and atopic skin models284, where a significant reduction in infiltrating immune 

cells to the skin was observed. The most well-defined association between PAR2 

and chronic inflammation, however, comes from models of rheumatoid arthritis; 
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a classic, chronic inflammatory condition characterised by swelling and 

destruction of the synovial joints (see section 1.4.6). 

1.4.5 Role of PAR2 in Bone Biology 

PAR2 has reported expression on cells of the skeletal system, such as OBs285, 

skeletal stromal cells (pre-OB)75, and monocytes 286(OCP). There are currently no 

studies confirming the presence of PAR2 protein on OCs, however, it has been 

shown that the PAR2 transcript is increased in RAW264.7 upon RANKL 

incubation75. Skeletal cells, such as OBs, OCs, or osteocytes, themselves are not 

known producers of PAR2 activating proteases. However, OCs are highly 

proteolytic in nature, and some of the proteases these cells produce could 

potentially activate PAR2. A study comparing the production of proteases within 

in vitro cultures of BM-derived macrophages and OC, outlined a panel of 

proteases produced by OC but not by macrophages. This list did not contain any 

confirmed PAR2 activating proteases, but did contain serine proteases and 

various cathepsins. It is therefore possible that some of these identified 

proteases may be unidentified PAR2 activators. In addition, there may be PAR2 

activating proteases produced by both BM-derived macrophages and OCs, which 

were not identified due to non-differential expression 287. While there have been 

no confirmed PAR2 activating proteases produced by OCs or OBs, there has been 

reported expression of PAR2 activating proteases in BM cells76. Total BM cell 

isolates contained trypsin, matriptase, acrosin, and kallikrein 4, indicating that 

the skeletal environment will contain PAR2 activating proteases. During 

inflammation that is associated at or near the bone site, such as that observed in 

osteomyelitis, septic arthritis, or chronic autoimmune conditions such as RA, the 

influx of active immune cells could result in the release of alternative PAR2 

activating proteases. Cells such as neutrophils, mast cells, and macrophages will 

be active at these sites. These cells are known producers of canonical and non-

canonical PAR2 activating peptides, such as matriptase, neutrophil elastase, and 

cathepsin G. This change in the microenvironment is likely to influence the PAR2 

signals received. 

Numerous studies of the functional role of PAR2 in the skeleton have been 

conducted. However, this research has often identified contradictory roles for 

this receptor within the skeleton. Thus, the fundamental role of PAR2 in bone 
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biology is still not fully understood. Gross analysis of the skeleton of par2-/- 

mice, does not reveal any overt abnormalities. For example, observable 

phenotypes include; a slight enhancement in tibial length in young par2-/- males, 

which is normalised by 90 days; an increase in bone volume, including enhanced 

cortical thickness, and trabecular area in young (50 days old) par2-/- animals 

which subsequently resolved by 90 days old76. Combined, this data provides an 

indication that there are subtle bone phenotypes as the result of a lack of PAR2. 

This could suggest that the absence of PAR2 results in reduced or enhanced rates 

of bone turn over, which may not result in an overt phenotype of the skeleton 

but does impact the activity of OCs and OBs. In support of this, the observation 

of a reduced number of both OBs and OCs in par2-/- trabecular bone, may 

indicate a reduced rate of bone turn over in these animals76. Overall, during 

homeostasis par2-/- animals do not present with overt skeletal abnormalities. 

However, subtle changes in architecture and cell number in the skeleton of KO 

animals indicates a minor influence of a lack of this receptor in this system, the 

impact of which may be more overt during disease states. 

The first studies interrogating the role of PAR2 in OCs employed whole BM 

osteoclastogenesis in vitro assays. In these studies, the whole BM was stimulated 

with OB survival and differentiating factors such as PTH and VitD. This is known 

to drive the expansion and differentiation of OBs, which produce OC stimulatory 

factors such as M-CSF and RANKL, and in turn stimulates BM OCPs to 

differentiate into OCs. This in vitro culture system is a classical OB/stromal-

driven OC differentiation assay. With this experimental procedure the authors 

found that PAR2 stimulation via activating peptides of the whole BM culture 

inhibited the differentiation of OCs. The proposed mechanism of this was that 

PAR2 activating peptide inhibited RANKL expression, as demonstrated with 

decreased tnfsf11 transcript levels and unaffected OPG expression75. They 

concluded that PAR2 activation prevented OC differentiation by suppressing 

transcription of OC activating RANKL. A complementary study was also 

conducted looking at the impact of PAR2 alone. PAR2 activation of OB 

stimulated enhanced transcription of collagen type 1. Thus, together this data 

suggests that PAR2 prevents bone resorption and enhances the production of 

osteoid components, so overall promoting bone formation and inhibiting bone 

resorption. 
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Subsequent osteoclastogenesis assays were conducted in 2012, using a culture 

system that directly promoted OC formation in BM cells using M-CSF and RANKL. 

This study found that BM macrophages isolated from par2-/- animals had a 

reduction in osteoclast formation, as measured by the number of TRAP+ OC 

formed. Indicating that in this context PAR2 was stimulating OC formation, 

which contradicted previous thoughts on the role of this receptor in bone turn 

over. Overall, the research conducted suggests that PAR2 activity in OB 

suppresses their capability to form OCs, while PAR2 activity in macrophage/OC 

cells appears to enhance OC differentiation. All of this work was conducted in 

homeostatic conditions, however, the proteases present during inflammation 

may change the way this receptor operates during inflammatory assault, or 

indeed during alternative less inflammatory bone pathologies such as OA. 

Murine models of OA conducted in par2-/- animals have demonstrated that this 

receptor plays a key role in pathogenic bone formation in this context. For 

instance, par2-/- animals are protected from both osteophyte formation, with a 

reduction in the size and number of osteophytes formed, and also from 

osteosclerosis288. OB isolated from OA patients have enhanced PAR2 expression 

and in response to PAR2 activating peptides they produced increased levels of 

MMPs and IL-6, as well as increasing expression of membrane bound RANKL289. 

This enhanced RANKL expression translated into an enhanced capability to 

stimulate OC differentiation when OA osteoblasts were co-cultured with PBMCs. 

These studies indicate that in OA and OA-like models PAR2 contributes to both 

pathogenic bone formation, and also pathogenic bone resorption. This contrast 

in conclusions demonstrates a contradicting literature with regards to PAR2 and 

pathogenic bone biology.  

1.4.6 PAR2 in Murine Experimental Models of Arthritis 

The first ‘proof of concept’ that PAR2 has a direct role in chronic inflammatory 

arthritis was demonstrated via PAR2 deficient mice. Using these animals Ferrell 

and colleagues developed an adjuvant (Freund’s complete adjuvant) induced 

mono-arthritis model in WT, par2-/- homozygote and through backcrossing of 

homozygotes, par2-/+ heterozygote mice. This innate immune mediated arthritis 

model revealed almost complete ablation of arthritis in the par2-/- compared to 

WT mice, with the heterozygotes demonstrating an intermediate phenotype276. 
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This paper also demonstrated via PAR2 agonist treatment, that direct 

stimulation of PAR2 in the joint resulted in a significant pro-inflammatory effect 

with prolonged joint swelling and increased synovial blood perfusion. Using b-

galactosidase incorporation into the PAR2 gene region this group also 

demonstrated that in the articular tissue from the adjuvant-induced arthritis 

model in WT mice, PAR2 was substantially upregulated in extravascular tissue 

unlike the uninflamed model in which PAR2 expression was limited to the 

endothelium276. This was the first study to find a direct link between PAR2 and a 

chronic arthritis, demonstrating both correlation between inflamed tissue and a 

functional role in induction of an inflammatory pathology. This opened many 

possibilities for the role of PAR2 in the innate system and warranted further 

investigation of its mechanistic role in inflammatory disease. In addition to the 

mentioned findings, this study also provided a proof of concept that isolated 

PAR2 depletion could inhibit inflammatory disease and confirmed its potential as 

a therapeutic target. However, it should also be appreciated that when an 

alternatively generated par2-/- mouse was used for further investigation in 

various innate and adaptive murine models of arthritis by Busso and colleagues 

in 2007, they found no significant alteration in inflammatory response in the 

equivalent innate immune model they induced290, contrary to the pro-

inflammatory role in innate immunity theory proposed by the Ferrell group. 

Instead they proposed that PAR2 was possibly only relevant in antigen-specific, 

adaptive models of chronic inflammation. There were multiple variables that 

differed between the 2 studies that make their results possibly non-comparable. 

Firstly it could be argued that the genetic addition of β-galactosidase276, not 

present in the Busso murine model may alter PAR2 expression or action in some 

way. Perhaps a more likely explanation was that the differences in model 

induction between the 2 papers resulted in a more severe model in the Ferrell 

paper compared to Busso et al., which in turn may give a more obvious 

difference between wild type and par2-/-. Importantly, subsequent studies of the 

role of PAR2 in murine arthritis models have further indicated a pro-

inflammatory role for this receptor in inflammatory arthritis models. 

The immunological role of PAR2 in murine RA models was further investigated by 

Ferrell and colleagues using the collagen induced arthritis (CIA) model in DBA/1 

mice291. This is considered a gold standard, reliable model of inflammatory RA 
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that activates the murine adaptive immune responses against type II collagen. 

Due to a lack of PAR2 KO on the CIA susceptible mouse strain DBA-1, 

prophylactic treatment of PAR-2 inhibitors (both small molecule ENMD-1068, and 

monoclonal antibody SAM-11) were employed prior to model induction291. The 

result of this PAR2 inhibition was a highly significant reduction in arthritis score 

compared to the vehicle-treated models, and lymph node cell suspensions 

isolated from PAR2 inhibited mice had significantly reduced IL-17 and IFNγ 

levels. Trending inhibition of TNF, IL-1b, IL-6, IL-12, CCL3, and GM-CSF was also 

observed, and titres of anti-collagen antibodies were significantly reduced in 

PAR2 inhibited models291. This study provided evidence in support of PAR2’s 

immunological role in inflammatory disease, pinpointing reductions in key 

inflammatory associated cytokines and linking a role for PAR2 to the induction of 

adaptive antibody responses. 

As the inflammatory role of PAR2 became more evident, the source of its 

activating proteases in the context of inflammatory joint disease models gained 

interest. Mast cells present one potential source of PAR2 activating proteases. 

The ability of mast cell granules to activate PAR2 was demonstrated using KO 

animals. Administration of compound 48/80 to induce mast cell degranulation in 

mice induced significant vasodilation in WT animals, but failed to exert these 

actions in par2-/- 292. Mast cells significantly contribute to the murine collagen 

induced arthritis model (CIA) of RA. Pre-clinical depletion of these cells in CIA 

reduces inflammation and inflammatory cytokine expression in this model293. In 

addition, mice that lack the dominant mast cell tryptase also experience 

attenuated forms of inflammatory arthritis models, however this is not 

dependent upon PAR2294. 

Overall it is evident from studies conducted in mouse models that PAR2 plays a 

significant role in arthritis and inflammation models; the mechanistic role of this 

receptor in the immune system and within this inflammatory disease is still 

under scrutiny. The immune cell types that mediate the pro-inflammatory 

effects of PAR2 activation in inflammatory arthritis, and the mechanism by 

which these PAR2 activated cells induce inflammation, are still unclear. 

Accordingly, ongoing work is investigating the cellular mechanisms of this 
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relatively new inflammatory associated receptor in the pursuit of a potential 

new therapeutic target for arthritic disease. 

1.4.7 PAR2 in RA 

Work on murine models established proof of concept that PAR2 influences the 

inflammatory aspect of murine models of arthritis and enabled in vivo 

investigation of the immune influence of PAR2. However, it is important to be 

able to translate these findings into human systems and find relevance for in 

human disease. Using immunohistochemistry (IHC) for protein detection and 

transcript analysis via PCR, enhanced expression of PAR2 was identified in RA 

articular biopsies compared to osteoarthritic (OA) tissue290. This provided the 

first indication that PAR2 upregulation during inflammatory disease was not 

isolated to mice but also found in human tissue. This led onto further studies of 

human articular samples which demonstrated that PAR2 expression also 

positively correlated with synovitis scores in human patients295; further 

implicating this receptor in RA pathology. This could potentially be either as a 

by-product of the inflammatory environment or directly contributing to the 

chronic inflammation. 

In addition to enhanced expression of PAR2 in RA tissue, there is also increased 

levels of serine proteases which activate this receptor in this disease setting. A 

substantial increase in the number of synovial mast cells in RA patients has been 

previously established296 and their role in promotion of inflammation in the joint 

has been linked to the release of granule stored mediators such as histamine, 

heparin and proteases. These cells therefore represent a possible source of PAR2 

activating proteases. As mentioned above (see section 1.4.6), mast cell 

degranulation activates PAR2. In RA patients, mast cells are in high abundance 

and co-localise with PAR2 expressing cells in inflamed articular tissue; mast cells 

in these tissues were also found to possess PAR2, suggesting possible self-

activation292. This evidence supports further investigation of the hypothesis that 

mast cells contribute to the pathogenesis of inflammatory arthritis via PAR2 

activation induced by release of proteases. 

This enhanced expression in human diseased tissue provoked further mechanistic 

studies to dissect the pathways influenced by this receptor’s activation in RA 
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patients. Crilly and colleagues investigated PAR2 cell surface expression on 

circulating CD14+ cells (identified as monocytes) in both RA patients in remission 

or in those flaring. They found that PAR2 expression on patient monocytes 

positively correlated with classic signs of disease flare such as erythrocyte 

sedimentation rate (ESR) and C reactive protein levels (CRP). Furthermore, this 

study also identified that high PAR2 expression in circulating monocytes from RA 

patients was subsequently inhibited post-NSAID treatment 270,297. This direct 

correlation between receptor expression and circulating PB monocytes is 

interesting as it goes beyond expression at the primary site of inflammation in 

this chronic disease. As mentioned previously (section 1.3.1) RA is a systemic 

inflammatory environment, so this enhancement of PAR2 expression could be a 

reflection of a response to inflammatory mediators within the blood. It could 

also indicate that monocytes are primed either within the PB or prior in the BM, 

driving this enhanced expression. Suggesting that these cells may have the 

potential to respond differently, or have a greater response to proteases present 

within the swollen joint. The functional effect of PAR2 activation in human 

monocyte-derived macrophages gave an indication of the role of upregulated 

PAR2 in active disease monocytes271. Human macrophages were treated with 

PAR2 agonist SLIGKV in vitro and subsequent phenotypic analysis of the cells 

found an altered cytoskeleton and enhanced TNF production with and without 

LPS stimulation271, confirming that enhanced PAR2 expression on monocytes 

reported by Crilly et al. 297 translates to a functional impact on the cells. 

The importance of altering macrophage activity in the inflamed RA joint should 

not be underestimated. Many of the biologic treatments currently in trials or 

being used clinically target macrophage activating factors or their pro-

inflammatory products. Monocyte-derived macrophages are a large proportion of 

the inflammatory infiltrate in the inflamed synovium, and embryonically-derived 

macrophages are resident within the synovial membrane. These immune cells 

contribute to the inflammatory milieu through production of cytokines such as 

TNF, IL-6, and IL-12, as well as promoting leukocyte infiltration through 

chemokine production (CCL-2 and CCL-3). Successful RA treatment also 

correlates with reduced macrophage infiltrate to the synovium, to the extent 

that it is considered a robust biomarker of treatment responsiveness298. 

Therefore, targeting a receptor that activates these and potentially other cells 
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of the immune system is a very attractive small molecule approach to inhibiting 

inflammation in RA patients. As such, PAR-2 represents a possible therapeutic 

target which encompasses macrophages and other innate cells to inhibit the 

cytokine network.  
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1.5 Hypothesis and Aims 

The family of protease activated receptors were discovered throughout the 

1990’s. These receptors respond dynamically to the protease environment and 

have highlighted a novel function of proteases acting as hormone-like mediators 

to influence cellular function. Of this family PAR2 has the strongest associations 

with the immune system and inflammation. PAR2 is activated by a different 

group of proteases compared to its counterpart PAR1, with most if not all of the 

proteases being more highly associated with immune function. Moreover, PAR2 is 

prominently expressed on immune and stromal cells that commonly interact with 

each other. In addition, this receptor has been linked to inflammatory disease, 

with par2-/- animals experiencing milder symptoms of disease models. Human 

tissue samples from people experiencing chronic inflammatory diseases such as 

asthma, and RA also have enhanced expression of this protease receptor. This 

heightened expression is most prominent in the monocyte compartment where 

RA patients have increased PAR2 surface expression on their monocytes that is 

further enhanced when patients are hospitalised in a flare episode.  

The mechanisms that drive enhanced PAR2 expression in human monocytes 

during inflammatory stress is not known. Moreover, the function of PAR2 in 

monocytes and it’s effect on their potential to differentiate into osteoclasts, 

remains poorly defined. Monocytes are a key cell type trafficked to the inflamed 

RA joint. Upon arrival at the inflamed articular tissue these cells receive signals 

to differentiate into osteoclasts; the drivers of irreversible bone destruction in 

RA. Finally, osteoclasts are a proteolytically active cell, required to produce an 

abundance of proteases in order to complete their functions in bone resorption. 

In light of this, we hypothesise that systemic inflammatory mediators within the 

PB of RA patients enhances the expression of PAR2 in circulating monocytes of 

these patients. Upon entering the inflammatory joint these monocytes will 

receive signals to undergo differentiation into bone resorbing osteoclasts within 

a proteolytically active inflammatory joint. The heightened expression of PAR2 

on these cells and the protease rich environment may influence the 

differentiation of monocytes into osteoclasts. 
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The aim of this thesis was to test this hypothesis. In order to do so the following 

questions were proposed: 

• Do inflammatory mediators enhance surface expression of PAR2 in human 

monocytes? 

• What impact does the loss of PAR2 have on osteoclastogenesis? 

• Does an inflammatory environment influence the impact of PAR2 on 

osteoclastogenesis? 

Using murine PAR2 knock out mice, this thesis attempted to understand the 

function of PAR2 in the process of osteoclast differentiation from monocyte 

precursors during both homeostasis and inflammation. This was then translated 

to human cells through the use of PAR2 activating peptides and inhibitors during 

in vitro OC differentiation assays. 
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2 Materials and Methods 

2.1 Human Study Methodology 

2.1.1 1321N1 Cell line 

2.1.1.1 Cell Culture 

Human astrocyte cell line 1321N1 was transferred from collaborators at 

AstraZeneca. This cell line was originally obtained from European Collection of 

Authenticated Cell Cultures (Public Health England; UK) and was stably 

transfected with human PAR2 (hPAR2) and antibiotic resistance to Geneticin 

(G418) at AstraZeneca. The founder cell line was also maintained as a negative 

control for the hPAR2 stable transfection. These cells were seeded at 2x106 cells 

per 75cm2 flask and cultured in complete Dulbeccos Modified Eagle Medium 

(DMEM, Invitrogen; UK, see appendix) and split twice weekly. Transfected cells 

were also cultured in the presence of 600ug/ml of G418 antibiotic (Thermofisher 

Scientific; UK) to select for successfully transfected cells. When 1321N1 cells 

reached 70-80% confluency they were split 1:5, or used for downstream 

applications. 

2.1.1.2 PAR2 expression via Western Blot 

1321N1-hPAR2 and naïve 1321N1 cells were harvested from 75cm2 tissue culture 

flasks using TrypLE. In brief, cells were washed with PBS to remove remaining 

media, before incubation at 37°C in 5ml of trypsin replacement cell dissociation 

buffer TrypLE (ThermoFisher Scientific; UK. #12605010). This buffer was 

selected as an alternative to trypsin in order to limit trypsin dependent PAR2 

activation. Cells became detached from the plastic surface after 5-10 minutes of 

incubation and were transferred to 50ml falcons and topped up with 5ml media 

to limit any further protease activity of the dissociation buffer. These cells were 

counted manually using a haemocytometer with trypan blue (Sigma-aldrich; UK) 

dead cell exclusion, and 2x106 cells were washed twice in PBS and resuspended 

in 200µl of RIPA buffer (see appendix). Lysates were incubated for 30 minutes on 

ice and centrifuged at 17,000g for 10 minutes. The protein lysate was aspirated 

and stored at -20°C (short term) or at -80°C if for long term storage; the pellet 

was discarded. 
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Protein concentration was measured using the Pierce BCA Protein assay kit 

(Thermo Scientific, UK) according to manufacturers’ instructions. In brief, 

reagent A and B were mixed 50:1, and a standard curve of known concentrations 

(25-2000µg/ml) of BSA protein in RIPA buffer prepared. The BCA reagent (200µl) 

was mixed with 25µl of each sample and the standard curve. This reaction was 

incubated for 30 minutes at room temperature and the colour change measured 

on a colorimetric plate reader at 562nm. From this the standard curve was 

plotted against the detected wavelengths and a line of best fit applied. The 

equation of the line was applied to sample wavelengths and the concentration of 

protein contained in each sample determined. 

The volume of lysate required for 30µg of protein was calculated and this was 

taken forward for gel electrophoresis. Protein was reduced using NuPAGE Sample 

Reducing agent (Thermo Fisher;UK #NP0004) and denatured using NuPAGE LDS 

sample buffer (Invitrogen; UK #NP00007) and brought to 95°C for 5 minutes. 

Samples and 5µl of a broad range pre-stained protein marker were loaded onto a 

12 well Novex Bis-Tris 4-12% poly-acrylamide gel (Invitrogen; UK #NP0322BOX) 

and run at 120 volts for approximately 1 hour. Gels were transferred to PVDF 

membranes using the iBlot2 dry transfer system (Invitrogen; UK) and the 

presence of protein on the membrane checked using Ponceau S. Briefly, Ponceau 

S. was poured onto the membranes after protein transfer; this rapidly stains 

available protein, presenting as bands of pink/red dye. The stain is easily 

reversible. Washed in water and with gentle agitation the stain is removed. After 

checking for successful protein transfer the blots were washed (PBS-T) and 

incubated in blocking buffer (PBS-T 5% milk) at room temperature for 1 hour. 

Anti-PAR2 antibodies listed in Table 2.1 were diluted in PBS-T 5% BSA at differing 

concentrations dependent on manufacturers guidance (see Table 2.1). Blocking 

solution was removed and membranes were incubated with diluted antibodies 

overnight at 4°C with gentle shaking. Membranes were subsequently washed in 

PBS-T 5 times, each wash 10 minutes on a shaker. Secondary antibodies, anti-

rabbit HRP (Cell Signalling Technology; UK #7074S) and anti-mouse HRP (Santa 

Cruz; USA #sc-2371), were diluted in PBST 5% BSA (for dilution concentrations 

see Table 2.1). Membranes were incubated in secondary antibody for 2 hours at 

room temperature. Following this a series of 5 washes was repeated as above. 

West Femto substrate (Thermofisher Scientific; UK #34095) was add to the 
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membrane surface and incubated for 1 minute in the dark. Bands were visualised 

using the LI-COR Chemi-luminescence detection system (LI-COR Biosciences, 

UK). The pre-stained ladder bands were marked with the WesternSure Pen (LI-

COR Biosciences; UK #P/N 926-910000) to be visualised at the same time. 

Further quantitative analysis of blots was performed using ImageJ. 

 

Table 2.1 Western Blot Antibodies 
Specificity Clone Concentra

tion 
(µg/ml) 

Supplier Dilution 
(v/v) 

PAR2 SAM-11 

D61D5 

Polyclonal 

200 

250 

600 

Santa Cruz Biotechnology 

Cell Signalling Technology 

Alomone Labs 

1:500 

1:1000 

1:500 

Phospho-
ERK(1/2) 
(Thr202/Tyr20
4) 

D13.14.4E 500 Cell Signalling Technology 1:2000 

ERK (1/2) 137F5 80 Cell Signalling Technology 1:1000 

Rabbit IgG 
(HRP) 

Polyclonal Unknown Cell Signalling Technology 1:1000 

Mouse IgG 
(HRP) 

Polyclonal 400 Santa Cruz Biotechnology 1:5000 

 

2.1.1.3 1321N1 Fluorescent Microscopy 

Naïve and stably transfected 1321N1 cell lines were cultured on 8 well glass 

chamber slides (Thermofisher Scientific; UK #154534PK) for 2 days to allow 

adherence while preventing over confluence. Medium was aspirated and cells 

were fixed with 4% paraformaldehyde in PBS for 10 minutes at room 

temperature, then washed 3 times for 5 minutes each. Cells were permeabilised 

with PBS 0.2% Triton X-100 for 5 minutes at room temperature and washed as 

above. Samples were blocked using 1X PBS 5% goat serum 0.1% Tween 20 for an 

hour at room temperature. The primary antibodies were prepared in antibody 

dilution buffer (1x PBS 1%BSA 0.1% Tween) at the following concentrations; 

D61D5 1:25 (Cell Signalling Technology; UK #6976), SAM-11 1:50 (Santa Cruz; USA 

#sc-13504), Alomone polyclonal 1:200 (Alomone Labs; Israel #APR-032); blocking 

solution was aspirated and antibodies incubated with the cells overnight at 4°C. 

The following day AF488 fluorochrome-conjugated secondary antibodies (anti-
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rabbit and anti-mouse) were prepared in antibody dilution buffer at 1:500 

dilution. Samples were washed in 1xPBS 0.1% Tween three times for 5 minutes 

each and secondary antibody incubated for 1 hour at room temperature. 

Washing was repeated as above and chambers removed from slides. DAPI 

mounting media (Vector Laboratories; UK. Vectasheild #H-1200-10) was used to 

mount coverslips to the glass slides and cells were imaged using EVOS FL Auto. 

Control wells that contained secondary only antibody or isotype antibody were 

used to confirm specific staining. 

2.1.1.4 PAR2 detection via Flow Cytometry  

1321N1 cells were either left untreated or treated with FLIGRL (2µM, Tocris; UK) 

for 20 minutes and then removed from the cell culture plastic surface using 

TrypLE (Thermofisher Scientific #12605010), as described in section 2.1.1.2. 

Immediately post dissociation, cells were washed in PBS, and incubated with 

DAPI live dead stain (CyStain DNA 2 Step, Sysmex; UK) in PBS for 15 minutes, 

some cells were heat killed at 65°C for 5 minutes as a positive control for 

staining. Cells were washed and maintained in suspension in FACS buffer (1% 

FBS, 1mM EDTA, 0.5% sodium azide) and incubated with 1µl of D61D5 (CST; UK) 

or 2µl SAM-11 PE (Santa Cruz; US) for 45 minutes on ice. Cells were washed again 

in FACS buffer and samples which had been stained with D61D5 clone were 

incubated with 1µl of secondary anti-rabbit AF647 for a further 45 minutes on 

ice. Further washes in FACs buffer were conducted and samples were fixed in 

Cell Fix (BD Biosciences; UK #340181) for 20 minutes before running samples on 

the LSR II. 

Intracellular PAR2 stains were also conducted in these cells. In this instance 

live/dead stain was not performed and cells were permeabilised with 

Cytofix/CytoPerm (BD Biosciences; UK #554714) for 20 minutes at 4°C. Cells 

were washed in perm/wash buffer before intracellular staining of D61D5 (1µl) or 

SAM-11 PE (2µl) was conducted in perm/wash buffer for 1 hour on ice. Samples 

were washed in perm/wash buffer and secondary staining conducted on the 

D61D5 stained samples, samples were incubated in 1µl anti-rabbit for 45 minutes 

on ice in perm/wash buffer. All samples were washed again in perm/wash and 
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then reconstituted in FACs buffer to run on the LSRII (BD; UK). All Flow 

Cytometry samples were analysed using FlowJo software.  
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2.1.2  Primary Human Cells 

2.1.2.1 RA patients and healthy donors  

Human blood samples were acquired from buffy coat obtained directly from the 

Scottish National Blood Transfusion Service (SNBTS) from healthy volunteers who 

had granted informed consent at the transfusion service. Alternatively, healthy 

volunteer samples were collected fresh at the Glasgow Biomedical Research 

Centre (GBRC); with informed consent from a trained phlebotomist. Rheumatoid 

arthritis patient samples were collected from the peripheral blood of individuals 

attending rheumatology clinics within Greater Glasgow and Clyde; with informed 

consent taken by trained physicians. Recruitment of these individuals was 

conducted by trained medical professionals in the Great Glasgow and Clyde 

district, primarily by Dr. James Robertson. RA patients with both active disease 

and those in remission were recruited for this study, patients were also on a 

variety of treatments with most patients on DMARDS but not on biologics. All 

samples were obtained after written consent, with appropriate ethical approvals 

in place. 

2.1.2.2 PBMC Isolation from Human Blood 

Human Peripheral Blood Mononuclear Cells (PBMCs) were isolated from buffy 

coat or fresh blood samples via density gradient centrifugation. In brief, 9ml of 

freshly isolated blood was carefully layered directly onto 3ml of ficoll (Sigma-

aldrich; UK), avoiding mixing. Buffy coat was diluted 1:1 in PBS (Gibco; UK) prior 

to layering and then the same protocol was followed for both. Layered blood 

samples were centrifuged at 400g for 30 minutes with no brake in order to 

separate each blood fraction; this results in erythrocytes at the bottom, 

followed by a layer of ficoll, PBMCs are less dense and thus form a layer above 

the ficoll, and finally this is topped with plasma. All centrifugation steps were 

conducted at room temperature, with a swing out rotor unless stated otherwise. 

Using a Pasteur pipette the serum upper layer was removed to within 1cm of the 

PBMC layer and discarded. The buffy coat layer was then isolated by eye, again 

using a Pasteur pipette and transferred into a fresh 50ml falcon tube (Corning, 

UK), and red blood cells were discarded. The PBMCs were washed twice in PBS, 

first with a low centrifugal force of 200g for 10 minutes in order to wash off any 

remaining serum from the cells, then a second faster spin at 400g for 5 minutes. 



2  80 
 
At this point cells were counted using the traditional haemocytometer method 

with trypan blue (Sigma-aldrich; UK) dead cell exclusion and resuspended at 

1x107 cells/ml in FACs buffer or cell culture media (RPMI, 10% FBS, 1% 

Penicillin/streptomycin, 1% L-glutamine). To perform a cell count 50 µl of cells 

(currently in 10ml of PBS) were mixed with 200µl of PBS and then 50µl of this 1:5 

diluted cell solution was mixed with 50µl Trypan blue, giving a final dilution of 

1:10. 10µl of this cell dilution was added to a haemocytometer and a light 

microscope used to count (EVOS, Thermofisher Scientific; UK). 

2.1.2.3 Flow Cytometry  

PBMCs were washed in PBS and a sample of cells were heat killed at 65°C for 5 

minutes for a positive control for a live/dead stain. All samples, excluding an 

unstained control of PBMCs were then stained with DAPI dead cell stain (CyStain 

DNA 2 Step, Sysmex; UK) for 15 minutes on ice. Cells were washed in FACS buffer 

and Fc receptors were blocked using 1:10 dilution of human FcR Blocking 

Reagent (Miltenyi Biotech; UK. #130-059-901) and incubated on ice for 10 

minutes. Surface marker staining to discriminate monocytes from other PBMC 

cells was employed and the cocktail of antibodies used for this are listed in 

Table 2.2. In addition to cell markers, cells were also stained with the D61D5 

clone for PAR2 detection, keeping one sample for each donor negative for this 

stain. Surface stain was conducted on ice for 45 minutes and samples are washed 

in FACS buffer. A secondary antibody stain was conducted with anti-rabbit AF647 

(Biolegend; UK), 1:50 dilution in FACS buffer, again for 45 minutes on ice. 

Samples are again washed in FACS buffer and finally fixed in Cell Fix (BD; UK) for 

20 minutes before acquiring on the LSRII. Intracellular stains were also 

conducted in these cells, for this the live dead was not conducted, surface stains 

for cell markers were still performed and permeabilization and intracellular 

staining procedure was conducted from here. This protocol is outlined in 2.1.1.4. 

Peripheral blood samples were collected over an extended period of time, 

however, the samples were processed and run on the flow cytometer 

immediately. The flow cytometer fluctuates subtly over time meaning that using 

the same settings (voltage and compensation set up) may actually result in 

different detection levels over time. In order to allow comparison between 

samples processed at different times and to limit the impact of machine 
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fluctuation over time, an application settings method of experimental set up was 

adopted. Thus, initial set up of voltages and compensation are subtly adjusted 

by the machine over time so that for example, the mean fluorescence intensity 

(MFI) that would have been detected for sample 1 on day 1 would be the same if 

sample 1 were run on day 135. Thus limiting the technical impact of long term 

sample collection. 

Samples were prepared in the same way to run on the ImageStream (Luminex; 

USA). All Image Stream samples were analysed using “IDEAS” software (Merck 

Millipore; UK). 

 

Table 2.2 Antibody Panel for PAR2 Detection in Human Monocytes. 
Specificity Fluorescent 

label 

Clone Concentration 

(µg/ml) 

Supplier Catalogue 

Number 

µl/sample 

CD14 BV605 M5E2 150 BioLegend 301834 2 

CD16 V500 3G8 Unknown BD Horizon 561394 2 

HLADR PE Cy7 G46-6 Unknown BD 

Pharmingen 

560651 2 

CD3 FITC UCHT1 Unknown BD 

Pharmingen 

555332 10 

CD19 FITC HIB19 Unknown BD 

Pharmingen 

555412 10 

CD56 FITC B159 Unknown BD 

Pharmingen 

561905 2 

CD15 FITC HI98 50 BioLegend 301903 2 

PAR2 N/A D61D5 250 Cell 

Signalling 

Technologies 

6976S 1 

Rabbit IgG AF647 Poly4064 100 BioLegend 406414 1 

 

In addition, human PBMCs were also stained for integrins in conjunction with 

PAR2. In this instance isolated PBMCs were resuspended at 1x106 cells/ml in 

complete RPMI and 1ml of cells put into 6ml lidded FACS tubes. PBMCs were left 

unstimulated, stimulated with 100ng/ml of LPS (Salmonella ? source; Invivogen; 

UK), 100ng/ml PMA (Abcam; UK), 2µM FLIGRL, or 3µM AZ8838 for 90 minutes at 

37°C and then immediately put on ice to prevent modulation of surface proteins. 
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The same staining procedure was followed as above, with a live/dead DAPI stain, 

followed by FcR block, followed by the antibody cocktail found in Table 2.3. No 

intracellular staining was conducted with the integrin staining procedure. Cells 

were left unfixed in FACS buffer and ran on the LSRII within 2 hours. 

 

Table 2.3 Antibody Panel for Integrin and PAR2 Detection in Human Monocytes. 
Specificity Fluorescent 

Label 

Clone Concentration 

(µg/ml) 

Supplier. Catalogue 

Number 

µl/sample 

CD14 BV605 M5E2 150 BioLegend 301834 2 

CD16 V500 3G8 Unknown BD Horizon 561394 2 

HLADR PE Cy7 G46-6 Unknown BD 

Pharmingen 

560651 2 

CD3 FITC UCHT1 Unknown BD 

Pharmingen 

555332 10 

CD19 FITC HIB19 Unknown BD 

Pharmingen 

555412 10 

CD56 FITC B159 Unknown BD 

Pharmingen 

561905 2 

CD15 FITC HI98 50 BioLegend 301903 2 

PAR2 N/A D61D5 250 Cell 

Signalling 

Technologies 

6976S 1 

Rabbit IgG AF647 Poly4064 100 BioLegend 406414 1 

CD18 PerCP Cy5.5 TS1/18 200 BioLegend 302119 2 

CD11a PerCP TS2/4 200 BioLegend 350608 2 

CD11b PE TR ICRF44 100 BioLegend 301347 2 

CD11c AF700 Bu15 200 BioLegend 337220 2 

aVb3 PE 23C6 200 BioLegend 304406 2 

 

2.1.2.4 Protein Lysis, Quantification, and Western Blot 

PBMC samples were maintained in suspension in complete RPMI (10% FBS, 1% L-

glutamate, 1% Penicillin/Streptomycin) at 37°C and stimulated with FLIGRL 

(2µM, Tocris Bioscience; UK), PMA (100ng/ml), or left unstimulated. Stimulations 

were conducted in a time course ranging from 2 to 90 minutes (2, 5, 15, 30, 60, 

90 minutes) of FLIGRL exposure, and PMA stimulation for 15 minutes. 

Stimulations were stopped with 8% paraformaldehyde (PFA) diluted 1:1 in cell 
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suspensions. Fixed cells were then centrifuged at 500g for 5 mins and the 

fixative discarded. From this point onwards the same protocol was followed as 

described in 2.1.1.2. Instead of incubation with anti-PAR2 antibodies, 

membranes from the PBMC stimulation experiments were incubated with 

antibodies against phopho-ERK and total ERK protein. These antibodies were 

diluted in PBS-T 5% BSA, details and working concentrations of these can be 

found in Table 2.1.  

2.1.2.5 Monocyte Isolation 

PBMCs isolated from blood samples were counted, using trypan blue exclusion of 

dead cells, and resuspended in cell separation buffer (CSB, PBS 1% FBS, 2mM 

EDTA) at a concentration of 1x108 cells/ml. The volume of cells expected for the 

required number of monocytes needed for each assay (with expected frequency 

of around 10%) was put into sterile 6ml plastic FACS tubes (Falcon, Corning; UK). 

EasySep human CD14 positive selection Kit II (STEMCELL Technologies; UK) was 

used to enrich CD14+ cells from the PBMCs, following manufacturer’s 

instructions. In brief, 100µl of CD14 positive selection cocktail was added per ml 

of PBMCs and incubated at room temperature. After 10 minutes, 100µl of 

magnetic nanoparticles per ml of PBMCs was added to the sample and incubated 

for a further 3 minutes. Sample volumes were then topped up to 2.5ml total 

with CSB and the samples were incubated in a purple EasySep Magnet (STEMCELL 

Technologies; UK). After 3 minutes incubation the tube, whilst still inside the 

magnet, was inverted over a discard bottle to remove the unlabelled negative 

fraction. The remaining cells were resuspended in 2.5ml of CSB inside the same 

6ml FACS tube. This was placed back inside the magnet and incubated for a 

further 3 minutes. Again, the negative fraction is poured off and this process was 

repeated once more. The cells that remain in the 6ml FACS tube were the 

purified fraction of CD14+ monocytes and these were resuspended in complete 

a-MEM media, counted, centrifuged for 5 minutes at 400g and finally 

resuspended at 1x106 cells/ml in complete a-MEM for downstream cell cultures. 

In order to check the purity of this monocyte isolation a small sample of purified 

CD14+ cells, the negative (discarded) fraction, and the whole PBMC fraction 

were kept for flow cytometry analysis. These samples were initially washed and 

then incubated in a 1:5 diluted FcR block (Miltenyi Biotech; UK) at room 
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temperature for 10 minutes. A cocktail of antibodies against cell surface markers 

which identify cell populations present in the PBMC fraction, listed in Table 2.4, 

was added to the cells without washing off the FcR block. This antibody cocktail 

was incubated for 30 minutes at room temperature. Cells were washed in FACS 

buffer (centrifugation at 400g for 5 minutes). These samples were then acquired 

on the LSRII and analysis conducted on FlowJo software. 

 

Table 2.4 Antibody Cocktail for Human Monocyte Isolation Purity Check 
Specificity  Fluorescent 

label 

Clone Concentration 

(µg/ml) 

Supplier Catalogue 

Number 

µl / sample 

CD3 V450 UCHT1 Unknown BD Horizon 560365 1 

CD20 APC 2H7 Unknown BD Pharmingen 559778 5 

CD14 BV605 M5E2 150 BioLegend 301834 1 

CD56 AF488 B159 Unknown BD Pharmingen 557699 2 

 

2.1.2.6 Human Osteoclast Culture 

The enriched CD14+ monocytes suspended in complete a-MEM at 1x106 cells/ml 

were treated with 25ng/ml of Macrophage Colony Stimulating Factor (M-CSF; 

Peprotech, UK). These cells were then plated in flat bottom 96 well cell culture 

plates, 100µl per well; resulting in 1x105cells/well, and incubated overnight at 

37°C, 5% CO2. After approximately 16 hours of incubation, 50µl of cell culture 

medium was removed and replaced with 50µl fresh media containing 50ng/ml 

recombinant human soluble receptor activator of nuclear factor kappa-B ligand 

(RANKL; Peprotech, UK), and 50ng/ml of M-CSF – which are diluted 1:1 in the 

original media for a final concentration of 25ng/ml of both cytokines. M-CSF 

alone was used as a negative control of osteoclastogenesis. Media was refreshed 

on day 4, applying the same 50% media change method used above. After 7 days 

of culture cells were fixed with 4% acetone buffered formalin and stained for 

osteoclast associated enzyme, tartrate-resistant acid phosphatase (TRAP), the 

protocol for this is detailed below in section 2.1.2.7. 

In some experiments, a TNF-enhanced inflammatory osteoclastogenesis method 

was adopted. For these experiments, on day 1 media was changed to contain a 

final concentration of only 1ng/ml RANKL, and when cell media was refreshed on 
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day 4 this included 10ng/ml of TNF (Peprotech, UK). These cultures were fixed 

and TRAP stained on day 7 (see section 2.1.2.7). 

2.1.2.7 TRAP Stain of Human Osteoclast Cultures 

Media was removed from osteoclast cultures after 7 days of culture and cells 

were fixed with the addition of acetone buffered 4% formalin (For 100ml; 25ml 

citrate solution, 10ml 37% formaldehyde, and 65ml acetone). Wells were washed 

in distilled water 3 times. TRAP staining solution was made up as per 

manufacturer’s instructions (Sigma-aldrich; UK #387A). In brief, a fast garnet 

solution is prepared first, this is formed of a 1:1 ratio of Fast Garnet and Sodium 

Nitrate, mixed by inversion for 30 seconds and incubated at room temperature 

for 2 minutes. In order to make 5ml TRAP staining solution 50µl of this Fast 

Garnet solution is added to 4.5ml H20, along with 50µl napthol, 200µl acetate, 

and 250µl of Tartrate solution. The TRAP solution is then added to the fixed 

osteoclast cultures, 70µl per well, and incubated at 37°C for 20 minutes. This 

stain is washed off, using 3 washes of distilled water. The stained cultures are 

left to dry before imaging. Digital images of the entire wells at 10x 

magnification were acquired post TRAP stain using the EVOS FL Auto Cell Imaging 

System (Life Technologies; UK). Mature OCs were identified as TRAP+ cells with 

3 or more nuclei, quantified by manual counting using ImageJ software. TRAP 

positive cells will appear purple.  
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2.2 Murine Study Methodologies  

2.2.1  Murine Colonies  

2.2.1.1 Murine Colony Maintenance 

All mice used in this study were on the C57Bl/6 background. Mice were housed in 

standard plastic bottom cages with food and water available to them freely. 

Animals were bred and maintained in the Biological Procedure Unit at 

Strathclyde University or the Joint/Central Research Facility at the University of 

Glasgow in accordance to the Home Office regulations. All procedures carried 

out were in accordance with the Animal (Scientific Procedures) Act 1986. 

PAR2 deficient mice were generated prior to the commencement of this study, 

the methods of this were previously published from this group and can be found 

in the 2003 publication by Ferrell et al in the Journal of Clinical Investigation276. 

Colonies were maintained from a colony originally established by Professor Robin 

Plevin at the University of Strathclyde. Heterozygote crosses; which result in 

wild type (WT), par2-/-, and heterozygote offspring; provide homozygote 

breeders for homozygote WT and par2-/- colonies in order to prevent genetic 

drift. Ear punch samples were taken to identify mice and the samples acquired 

from this event were used to isolate DNA and ascertain the genotype of the 

heterozygote colony. All breeding of genetically modified murine colonies was 

conducted under protocol 1 of project license: P989A202D. 

2.2.1.2 Genomic PCR 

In order to genotype animals from heterozygote colonies, genomic DNA was 

isolated from ear punch sections and PCR detection of PAR2 gene, F2RL1. DNA 

extraction was conducted using the Phire tissue direct kit (Thermo Scientific; 

UK). In brief, DNA extraction buffer was prepared by mixing 20µl of diluent 

buffer and 0.5µl of DNA release for each sample and ear tags were submerged in 

20µl of DNA extraction buffer and vortexed to disrupt. Samples were heated to 

98°C for 2 minutes. After this incubation, samples were vortexed again and the 

DNA extract buffer now contained extracted DNA from the ear tag. This DNA was 

used for the detection of the F2RL1. PCR master mix was prepared which 

included 10µl PHIRE, 6µl nuclease free H2O and 1µl (100µM) of each primer 
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(Primer 1: 5’-AAGGCAGAGGGCTATCCGA –3’, Primer 2: 5’- 

CCTGGAGAACTTGTTGGAGC –3’, Primer 3: 5’– GACCGCTTCCTCGTGCTTTA –3’ ). In 

200µl thermostable PCR tubes (Starlab; UK) 1µl of genomic DNA extract was 

added to 19µl of PCR master mix and these samples were subjected to the 

following cycling protocol in a Thermocycler; 5 minutes at 98°C; then 25 cycles 

of 10 seconds at 98°C, 10 seconds at 67°C, and 30 seconds at 72°C; with a final 

extension of 5 minutes at 72°C. Samples were then stored at -20°C or 

immediately taken forward for gel electrophoresis. Both a ladder of known DNA 

weights (10µl, 50µg O’GeneRuler Express DNA Ladder, Thermo Fisher) and 

samples (15µl) were loaded onto a 2% agarose ethidium bromide gel that was 

prepared by adding: 2.6g agarose (Bio-rad; UK) and 2µl ethidium bromide 

(10mg/ml stock solution, ThermoFisher; UK), 55g of Boric acid (Fisher Scientific, 

UK), 9.3g ethylenediaminetetraacetic (EDTA, Fisher Scientific, UK) and made up 

to 1 litre with distilled water. The gel was run at 150 volts for 30 minutes. Gels 

were then visualised under UV light (Cleaver Scientific, UK) in order to display 

DNA bands and captured using a Canon PowerShot G16 camera (Canon; Japan). 

Due to the method of cassette insertion knock out, the genomic product post 

amplification of F2RL1 will be larger in par2-/- mice compared with the wild type 

counterpart. The product sizes for each genotype are as follows: Homozygous 

WT – 302bp, homozygous KO- 482-512bp, with heterozygotes containing both 

bands. An example genotyping gel containing WT, par2-/-, and heterozygous 

samples shows a clear distinction between each genotype (Figure 2.1). 
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Figure 2.1 DNA PCR Products of FR2LR1 gene from WT, par2-/-, and Heterozygote Mice. 
Post amplification with FR2LR1 primers, genomic products were run by gel electrophoresis and 
separated by size. The genomic products from the unchanged FR2LR1 found in WT animals is 302 
base pairs long, which can be seen in lane 1. While the PCR product of FR2LR1 gene with 
cassette insert from KO animals measures around 482-512 base pairs, as can be seen in lane 2 
and 4. Heterozygote animals possess one copy of each gene, found in lane 3. 

 

2.2.2 In Vitro Cultures  

2.2.2.1 Murine Bone Marrow Extraction from Long Bones 

Freshly isolated Bone marrow (BM) cells were used for murine in vitro cultures. 

In order to obtain BM cells, mice from WT and par2-/- between 6-10 weeks old 

were culled under a schedule 1 procedure. The tibias and femurs were dissected 

from these animals and in a tissue culture hood, using sterile technique the 

epiphyseal ends of the bones were removed. The bone marrow was flushed out 

of the long bones with a-MEM complete media using a 10ml syringe and 25 gauge 

needle (0.5 x 16mm, BD Microlance 3; UK). Cells were dissociated into a 

homogenous solution by repeated pipetting. 

2.2.2.2 Flow Cytometry  

Flow cytometric analysis of WT and par2-/- BM cells was conducted to check the 

cellular composition of these genotypes. Freshly isolated BM cells were washed 

in PBS and then live dead staining was conducted using CyStain DNA 2 Step DAPI 

stain (Sysmex; UK) diluted 1:2 in PBS, incubated for 15 minutes at room 

temperature. The samples were topped up with FACS buffer and centrifuged at 
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400g for 5 minutes at room temperature. Cells were incubated with 1:10 dilution 

of CD16/32 block (BD Pharmingen; UK) in order to prevent non-specific binding 

of antibodies via Fc regions for 10 minutes at room temperature. Following this, 

an antibody cocktail against markers used to identify BM cell populations in mice 

(Table 2.5) was added to the samples for 30 minutes at room temperature. 

Samples were subsequently washed in FACS buffer (centrifugation at 400g for 5 

minutes) and either fixed for post analysis at a later date, or maintained in FACS 

buffer and acquired on the LSRII analyser immediately. Data analysis was 

subsequently completed using FlowJo software. 

 

Table 2.5 Antibodies for Murine Bone Marrow Analysis 
Specificity  Fluorescent 

label 

Clone Concentration 

(µg/ml) 

Supplier Catalogue 

Number 

µl/sample 

CD3 PE 145-

2C11 

200 BD 

Pharmingen 

553064 2 

B220 PE/Cy7 RA3-6B2 200 eBioscience 25-0452-81 2 

Ly6C PerCP/Cy5.5 HK1.4 200 BioLegend 128012 2 

Ly6G (Gr-1) AF700 RB6-8C5 200 Invitrogen 56-5931-80 2 

CD11b APC/Cy7 M1/70 200 BD 

Pharmingen 

557657 2 

CD16/32 N/A 2.4G2 500 BD 

Biosciences 

553141 1 

 

2.2.2.3 Bone Marrow Osteoclast Cultures 

Freshly isolated BM was used to obtain osteoclast precursors for culture. In brief, 

total BM was cultured in a 75cm2 tissue culture flask overnight (12-16 hours) in 

37°C and 5% CO2. Post overnight incubation the non-adherent bone-marrow cells 

(NA-BMCs) were collected; this population should be depleted of adherent 

stromal cells and enriched for monocyte populations. The NA-BMCs were counted 

manually by haemocytometer using trypan blue for dead cell exclusion and 

resuspended at 1x106 cells/ml in complete a-MEM (see appendix). These cells 

were cultured in flat bottom 96 well plates, at a concentration of 1x105 

cells/well in the presence of 30ng/ml of recombinant murine M-CSF overnight 

(approximately 18 hours). The following day media was half changed by 
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removing 50µl of media and adding 50µl of a-MEM containing 100ng/ml of both 

murine M-CSF and RANKL (to give a final concentration of 50ng/ml of each). 

Cells were checked daily to monitor progress and after 4 days media was 

refreshed again by half changing. Negative control for OC formation was NA-BM 

cultured in M-CSF alone, with no RANKL. The following day (day 5 of the culture) 

media was removed, cells were fixed, and TRAP stained as detailed in 2.1.2.7. 

An inflammatory osteoclastogenesis protocol was also adapted, in which BM was 

isolated in the same way, cultured overnight and NA-BMCs were again put into 

culture with M-CSF (30ng/ml) the same as above. Media was also half changed 

the following day, however, on this occasion a reduced concentration of RANKL 

was used (10ng/ml), with 50ng/ml M-CSF. After 2 days of RANKL treatment (day 

3 of the culture), 10µl of 400ng/ml of TNF was added to the appropriate sample 

wells, diluting to a final concentration of 40ng/ml of TNF. Media was half 

changed on day 4 of the culture, again maintaining 10ng/ml RANKL, 50ng/ml of 

M-CSF, and 40ng/ml of TNF. Samples without TNF were maintained for 

comparison to TNF enhancement, as well as negative M-CSF alone controls for 

osteoclast formation. Cultures were maintained for a total of 9 days with media 

change every 3 days. These cultures were finally fixed and TRAP stained as 

described in section 2.1.2.7. 

Analysis of whole well images of TRAP stained murine cultures was conducted 

with ImageJ software. Analysis included counting total osteoclast numbers 

(TRAP+, 3 or more nuclei), as well as quantification of the area of each well that 

contains TRAP+ multinucleated osteoclasts, used as a surrogate of osteoclast 

size. OC area was investigated by manually outlining OC cells on ImageJ and 

calculating the percentage of the total well area covered by outlined OCs. 

As well as TRAP staining of murine osteoclasts, activity of these cells was also 

measured by conducting the same culture as above but on osteo-assay surface 

plates (Corning; UK). These plates are coated with a calcium phosphate micro-

crystalline scaffold that mimics native bone. Thus allowing direct assessment of 

osteoclast functionality by enabling quantification of resorption and pit 

formation. Culture for this particular assay was extended to 12 days, with 

culture media half changed every 3 days. On day 12, the media was removed and 
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60µl of 10-15% sodium hypochlorite solution (Sigma-aldrich; UK) added to each 

well for 3 minutes to remove the cells. Wells were subsequently washed 3 times 

in distilled water and left to dry. Images of wells were taken on the EVOS FL 

Auto Cell Imaging System (Life Technologies; UK) light microscope, using 2x 

magnification to capture the entire well in 1 image. Subsequent analysis of the 

proportion of the cell culture well with resorbed mineral was calculated on 

ImageJ software, where the contrast between resorbed and intact material 

could be discriminated using greyscale darkness intensity. 

2.2.2.4 RNA Extraction from NA-BM Cultures 

RNA extracts were also taken from BM osteoclasts at various time points in order 

to analyse the transcriptional differences between WT and par2-/- OCs. In brief, 

media was removed from OCPs/OCs and all relevant control wells at 0 hours 

(prior to RANKL addition), 6 hours, 24 hours, 48 hours, and 72 hours post RANKL 

exposure or at the end point of OC culture (5 days), and RNA lysis buffer (RLT) 

containing 1% b-mercaptoethanol was added to each well (100µl). This was 

stored at -20°C until ready for RNA extraction. 

2.2.2.5 Calvarial Osteoblast Isolation and Culture 

Calvaria were dissected from the skull of WT or par2-/- pups aged 3-5 days. 

These were digested in Collagenase II in order to isolate osteoblast cells. In 

brief, dissected calvaria were initially washed in PBS, 3 calvaria were pooled per 

sample and these were submerged in 3ml of 1mg/ml of Collagenase II (dissolved 

in FBS free a-MEM media) and incubated at 37°C, with shaking, for 10 minutes. 

This initial collagenase step degrades soft tissue and is discarded. The 3 calvaria 

were then again incubated in 3ml of 1mg/ml Collagenase II at 37°C, with 

shaking, this time for 30 minutes. The resulting supernatant was collected as 

digestion 1, which contains early osteoblast-like cells. The calvaria were then 

washed in 6ml PBS and this wash supernatant was combined with digestion 1. 

The calvaria were then incubated in 3ml of 4mM EDTA at 37°C, with shaking, for 

10 minutes. The EDTA supernatant was subsequently collected (digestion 2) 

which contains a more mature population of osteoblasts and again the samples 

were washed in 6ml PBS and wash supernatant combined with digestion 2. Both 

of the collected digestions were centrifuged at 350xg for 5 minutes to pellet the 
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isolated cells immediately, to prevent cell death by prolonged EDTA exposure. 

Meanwhile, the calvaria were digested for a final time in 3ml of 1mg/ml 

Collagenase II at 37°C, with shaking, for 30 minutes. The resulting digestion was 

the final collected supernatant and this was also washed in the same way 

described above and centrifuged at 350xg for 5 minutes. Each stage of calvarial 

digestion was resuspended in 5ml of complete a-MEM media and then combined 

(Digestion 1, 2, and 3 for each donor) and cultured in a 75cm2 tissue culture 

flask. 

After 4-5 days the isolated stromal cells reached confluency. Dependent on the 

experimental set up it was at this point that they were harvested for co-culture 

with monocytes in a 96 well plate or osteoblast PAR2 stimulation experiments, 

or the cells were split (1:5) and further differentiation was carried out. The 

stromal cells were either differentiated in 1µM Prostaglandin E2 (PGE2; Sigma, 

UK) and 10nM Vitamin D (VitD; Sigma, UK) to promote osteoclastogenic 

functions, or they were differentiated in 10nM Dexamethasone (Dex; Sigma, UK), 

100µM ascorbic acid (AA; Sigma, UK), and 2mM b glycerol-2-phosphate (bGP; 

Sigma, UK), which is traditionally used to promote a mineralising phenotype. 

Both differentiation protocols were maintained for 8 days, with media changed 

every 3 days and cells split if reaching 70-80% confluency. Post short term 

maturation OBs were then taken forward for subsequent co-culture or osteoblast 

phenotype analysis. 

2.2.2.6 Osteoblast PAR2 Stimulation  

Osteoblasts were harvested from 75cm2 tissue culture flasks by incubating with 

5ml of TrypLE (Thermofisher, UK) for 10 minutes at 37°C. The harvested 

osteoblasts were counted and resuspended in a-MEM at a concentration of 4x104 

cells/ml and 1 ml of cells were plated per well into a 12 well plate. The cells 

were left to rest and adhere overnight in the murine cell culture incubator 

(37°C, 5% CO2). The following day media was changed to include either 10nM 

Dex, 100µM AA, and 2mM bGP, or 1µM PGE, and 10nM VitD, or a vehicle control 

(ethanol (eth) 0.1%). Across a time course of osteoblast maturation; including 

day 1, 3, 6, and 9, these cells received a further 4 hour incubation with PAR2 

activating peptide FLIGRL (2µM, Tocris;UK), or PAR2 inhibitor AZ3343 (3µM, 
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AstraZeneca; Sweden), or were left with maturation growth factors only 

(unstimulated, with vehicle dimethyl sulphoxide (DMSO) 0.005%). After 4 hours 

of stimulation in a cell culture incubator (37°C, 5% CO2) media was removed and 

cells were lysed for RNA extraction using 300µl RNA lysis buffer (RLT buffer). 

Cell lysates were stored at -20°C  

2.2.2.7 Bone Marrow Monocyte and Calvarial Osteoblast Osteoclastogenic 
Co-culture 

WT and par2-/- calvarial osteoblasts 4 days after tissue digestion, or 8 days after 

maturation with growth factors (detailed in section 2.2.2.5) were harvested 

from 75cm2 tissue culture flasks, counted, and plated in flat bottom 96 well 

tissue culture plates, at a cell concentration of 2x103 cells per well, or 5x103 

cells per well respectively in complete a-MEM. Osteoblasts were also seeded 

onto osteo-assay wells at 3x103 or 7.5x103 cells per well respectively dependent 

on maturation. The osteoblasts were left to settle and adhere to the plates 

overnight. The following morning adult WT and par2-/- mice aged 6-10 weeks 

were culled under a schedule 1 procedure and tibia and femurs dissected. The 

bone marrow was isolated from these as detailed above (2.2.2.1). A 

homogeneous solution of bone marrow from 2 mice were pooled for an N=1 

sample, this is centrifuged at 400g for 5 minutes and resuspended in 10ml of cell 

separation buffer (1% FBS, 2mM EDTA in PBS). At this point cells were counted 

and centrifuged again as before, and resuspended at 1x108 cells/ml in cell 

separation buffer. The cells were transferred to a 6ml sterile FACs tube for 

monocyte isolation via negative cell selection kit: EasySep Mouse Monocyte 

Isolation Kit (STEMCELL Technologies; UK). Initially, 50µl of rat serum per ml of 

cells was added to block available Fc receptors and prevent non-specific binding 

of antibodies. This was incubated for 5 minutes at room temperature, 

meanwhile component A and component B of the separation cocktail were mixed 

at a ratio of 1:1. 100µl of this was added per ml of the cell sample and this was 

incubated for 5 minutes on ice. Meanwhile, magnetic rapidspheres were 

vortexed to ensure homogenous solution and post 5 minute incubation with the 

antibody cocktail, 75µl of rapidspheres was added per ml of sample and 

incubated for a further 3 minutes on ice. Samples were topped up to 2.5ml with 

cell separation buffer and placed inside in a purple EasySep Magnet (STEMCELL 

Technologies; UK) and incubated for 3 minutes at room temperature. Post 
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incubation, in one continuous motion the magnet and tube were inverted into a 

15ml centrifuge tube (Corning; UK), with the monocyte fraction contained in 

solution while all other cell types were magnetically maintained at the side of 

the tube. The negatively purified sample was incubated in the magnet 3 further 

times to ensure optimal purity. Monocytes were counted and resuspended in 

complete a-MEM at 1x106 cells/ml. Media was then removed from the osteoblast 

cultures in 96 well plates and 100µl of monocytes were plated on top of these 

cells. These cultures were either exposed to 10nM of Dex, 100µM of AA, and 

2mM of bGP, or they were cultured in 1µM PGE, and 10nM VitD. As a negative 

control for osteoclast formation these cells were also cultured in a-MEM with 

vehicle control only (eth, 0.1%). These cultures were also conducted with or 

without PAR2 activating peptide (FLIGRL, 2µM), or PAR2 inhibitor (AZ3383, 3µM). 

Media was first changed after 3 days by removing 50% of the media (50µl) and 

replacing with 2x concentrated 50µl of replacement media. This method of 

media replacement was repeated every 2 days from then on. OCs were visible 

after 7-9 days of culture and TRAP stain was performed after 8-10 days. 

Resorption osteo-assay wells were continued until 12 days of culture and again 

bleached to remove cells and analysed as detailed above (2.2.2.3). 

2.2.2.8 Static Adhesion Assay  

Full well ELISA plates were coated with 6µg/ml of ICAM-1 (50µl per well) diluted 

in PBS, with some wells receiving PBS only as a plastic adhesion control. Plates 

were covered with parafilm and incubated at 4°C overnight. The following 

morning plates were washed twice with PBS (200µl per well) and wells were 

blocked with 1% milk in PBS for 1 hour and 15 minutes at 37°C. During this time 

monocytes were isolated from fresh murine bone marrow (see section 2.2.2.7 for 

detailed protocol)with the EasySep Murine Monocyte isolation kit (STEMCELL 

Technologies; UK). Monocytes were counted and resuspended at 1.5 x106cells/ml 

in adhesion medium (RPMI1640 + 0.1% BSA + 20mM HEPES (pH 7.25) + 2mM 

MgCl2). Monocytes were stimulated with PMA (1µg/ml), PAR2 activating peptide 

(FLIGRL, 2µM), or PAR2 inhibitor (AZ3383, 3µM) for a 15 minute pre-incubation 

at 37°C. Blocking buffer was removed from the ELISA plates and 400µl of 

monocytes (+/- treatment) was added to each well. The plate was incubated on 

ice for 8 minutes to allow all cells to settle to the bottom and then placed in the 
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incubator at 37°C for 30 minutes. During this incubation period a plate was 

prepared which was used to calculate the absorption from the total cells added 

to the plate. To do this 400µl of each sample was transferred to Eppendorf tubes 

and spun down at 400g for 5 minutes, supernatant removed. These cells were 

resuspended in 200µl of PBS and 50µl of each sample added to a new ELISA plate 

in triplicate, PBS only was also added to 3 wells as a negative control for cells. 

This plate was placed to the side until the cell lysis stage. 

Post incubation of monocytes in the ICAM-1 coated ELISA sample plate, this was 

removed from the incubator and placed upside down in a bucket of 2.5L PBS + 

2mM MgCl2 and left, wells completely submerged, for 50 minutes. After this 

incubation the plate was carefully removed retaining liquid in the wells (by 

inverting whilst submerged). 350µl of liquid was removed from all wells at this 

stage (leaving 50µl remaining) and cells could be examined under the 

microscope. At this stage cells were lysed by addition of 100µl of 3mg/ml para-

nitrophenyl phosphate (PNP) in 1%Tx-100/50nM acetate buffer pH5, which was 

incubated for 60 minutes at 37°C in the dark. This same procedure was 

conducted with the “total plate”. After the 60 minute incubation 50µl of NaOH 

was added to each well to stop the reaction and the observable colour change 

was measured on a colorimetric plate reader at absorption 405nm. 

Absorption measurements were transferred to Excel for analysis. In order to 

calculate the absorption of the total cells added to each well for each sample, 

the mean was calculated for the measured absorption of the triplicates for each 

sample. This value was then multiplied by 4 (since 1 quarter of the total cells 

was added per well), this value equates to the absorption from the total number 

of cells added per well. The absorption measured from the sample wells can 

then be compared with the total cell lysate and a percentage of monocytes that 

have adhered to ICAM-1 calculated. The calculated % adhesion for each genotype 

+/- treatments, was transferred to Graphpad Prism to generate graphs and 

calculate statistics. 
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2.2.3 Polymerase Chain Reaction 

2.2.3.1 RNA extraction 

RNA extraction was performed using PureLink mini kit as per manufacturer’s 

instructions. Briefly, RNA lysis buffer containing b-mercaptoethanol (RLT) was 

added to the cells and stored at -20°C until required. Prior to extraction, lysates 

were defrosted on ice. An equal volume of 70% ethanol was added to each 

sample and mixed by pipetting. The lysate was added to a spin column, and 

centrifuged at 12,000g for 15 seconds. The flow-through was discarded and 

700µl of wash buffer 1 added. The column was centrifuged as before. Two 

further washes with 500µl wash buffer 2 were carried out, to remove impurities. 

The column was transferred to a fresh 2ml collection tube and centrifuged at 

maximum speed for 2 minutes. Transferring the column reduces the risk of 

contamination from previous buffers and removes any factors that may inhibit 

RNA elution. The column was transferred to a 1.5ml collection tube and RNA 

eluted using nuclease-free water. RNA was quantified and purity checked using a 

Nanodrop 2000/2000c (Thermo; UK). Absorbance was measured at 230, 260 and 

280nm. A 260/280 ratio of 2.0 and a 260/230 ratio between 1.8-2.2 was 

considered ‘pure’ RNA. No further quality control steps were carried out. RNA 

samples were stored at -80°C until required. 

2.2.3.2 cDNA synthesis 

cDNA was synthesized using High Capacity cDNA synthesis kit (Applied 

Biosystems). 100ng of RNA was converted per reaction. The reaction was 

assumed to go to completion, creating 100ng cDNA. Briefly, RNA samples were 

diluted to 10ng/µl and 10µl added to a reaction mix containing reverse 

transcriptase, dNTPs and random primers as per manufacturer’s instructions. 

Samples were incubated at 25°C for 10 minutes, followed by 37°C for 2 hours 

and then 95°C for 5 minutes to inactivate the enzyme. cDNA was diluted to 

2ng/µl using nuclease free water. cDNA samples were stored at -20°C until 

required. 



2  97 
 
2.2.3.3 Quantitative PCR 

All primers for qPCR analysis were obtained from the previously designed stocks 

within the laboratory, the sequences for these can be found in Table 2.6. Upon 

first use, all qPCR primers were validated with a melt curve to ensure the 

presence of a single product without evidence of primer dimerization. 

Transcripts were analysed by qPCR in duplicate in either 96- or 384- well plate 

formats. Regardless of plate format, a 10µl reaction was carried out using 5µl 

PowerSYBR Green, 0.1 µl of each forward and reverse primer (stock 100µM; see 

Table 2.5), 3.8µl nuclease free water and 1µl of cDNA at 2ng/µl. A non-template 

control (NTC) was carried out for each primer set to control for reagent 

contamination. For this, 1µl of nuclease free water was added instead of cDNA. 

The plates were sealed and centrifuged for 30 seconds. Plates were run on 

Applied Biosystems StepOne Plus or QuantStudio 7 Flex Real-Time System. 

Cycling conditions were as follows: 10 minutes at 95°C, then 40 cycles of 95°C 

for 15 seconds, and 60°C for 1 minute. Samples were normalized to 18s 

housekeeping gene using the following equation: 

2#∆%& = 2#(%&	(*+,+	-.	/,&+0+1&)#%&(3-41+5++6/,*	*+,+)) 

Table 2.6 Murine Primer Sequences 
Gene Species Forward Sequence (5’-3’) Reverse Sequence (5’-3’) 

Csfr1 Murine TGAAGGTGGCTGTGAAGATG AGGCTCCCAAGAGGTTGACT 

oscar Murine GTTTTGGGGGTTTGTTCGTT TTACCTGGGAGATGGGATTG 

Acp5 Murine GGTATGTGCTGGCTGGAAAC GGTAGTAAGGGCTGGGGAAGT 

Tnfrsf11a Murine TTTGTGGTTTTGGCATCCTT CTGGCACCTTCATTTTGTCC 

Mmp9 Murine TCTACTGGGCGTTAGGGACA AGGAGTCTGGGGTCTGGTTT 

OCSTAMP Murine TGGGCCTCCATATGACCTCGAGTAG TCAAAGGCTTGTAAATTGGAGGAGT 

DCSTAMP Murine TCTGCTGTATCGGCTCATCTC ACTCCTTGGGTTCCTTGCTT 

Nfatc1 Murine TCATCCTGTCCAACACCAAA ATGTCTGTCTCCCCTTTCCTC 

Ctsk Murine GGAACGAGAAAGCCCTGAA CACACCTCTGCTGTAAAACTG 

18S Murine GACTCAACACGGGAAACCTC AGACAAATCGCTCCACCAAC 

Tnfrsf11 Murine TCTGTTCCTGTACTTTC TTCATGGAGTCTCAGGATTC 

Col1a1 Murine GCCAAGAAGACATCCCTGAA CTTCCGGGCAGAAAGCA 
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bplag Murine ACCATGAGGACCATCTTTC GGACATGAAGGCTTTGTC 

Alpl Murine CGCACGCGATGCAACACCAC TGCCCACGGACTTCCCAGCA 

Sp7 Murine TGCTTGAGGAAGAAGCTC CTTCTTTGTGCCTCCTTTC 

Tnfrsf11b Murine CTTGCCCTGACCACTCTTATAC CTTCCTCACACTCACACACTC 

RUNX2 Murine GAGAGGTACCAGATGGGACT CACTTGGGGAGGATTTGTGA 

Spp1 Murine GCAGAATCTCCTTGCGCCAC CGAGTCCACAGAATCCTCGC 

 

2.3 Statistical analysis 

All statistical analysis was performed using GraphPad Prism 6 software 

(GraphPad). Depending on the data being analysed, different statistical tests 

were carried out. On all applicable data, a test for normal distribution was 

carried out to determine what type of statistical analysis should be used. When 

data followed a normal (Gaussian) distribution pattern, as determined using 

D’Agostino & Pearson test of normality, parametric tests were used. When data 

was not normally distributed, or where there was insufficient data to test 

distribution, non-parametric tests were used. See figure legends for details of 

the specific statistical tests used for each set of data. A p value less than 0.05 

was considered significant. 



3  99 
 

3 Assessment of Commercially Available 
Antibodies Against PAR2 

3.1 Introduction 

PAR2 has been reported to play a key role in immune function and the 

inflammatory response. Surface PAR2 expression has been detected and 

quantified in many immune cells such as monocytes, lymphocyte subsets286, 

neutrophils268, macrophages271 and mast cells269. PAR2 surface expression has 

previously reported associations with inflammation, and expression correlation 

with inflammatory diseases. Circulating monocytes in rheumatoid arthritis (RA) 

patients express higher levels of surface PAR2 than healthy controls, and this has 

been demonstrated to further correlate with flare status, as determined by 

circulating markers of inflammation (CRP) and the requirement for in-patient 

admission 297. In addition to this, CD68+ macrophages in RA synovial biopsies have 

been shown to be PAR2+ and have greater PAR2 expression than those found in 

OA synovial tissue. These findings are not isolated to articular joint or rheumatic 

associated inflammation; it has also been reported that peripheral blood 

monocytes from asthmatic patients have enhanced PAR2 surface expression, 

which correlates with disease activity299. This enhanced expression during 

chronic inflammation has been found both in peripheral blood monocytes of 

these patients and monocyte-derived tissue phagocytes at the sites of 

inflammation, potentially indicative of the systemic nature of these conditions. 

Studies were undertaken in the present chapter to expand our understanding of 

this phenomenon through investigation of which stimuli may trigger upregulation 

of the receptor. An additional aim was to investigate whether increased 

expression is limited to particular subtypes of monocytes and if receptor 

expression is found on terminally differentiated monocytes such as macrophages 

or OCs. 

In order to further investigate the effect of monocyte stimulation and 

differentiation on PAR2 expression, a reliable and robust methodology to 

definitively measure this is required. The most common anti-PAR2 antibody used 

in the literature is the antibody clone SAM-11. This clone, along with other anti-

PAR2 antibodies have previously been scrutinised for their selectiveness300. The 
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challenge of generating reliable antibodies against GPCRs has been recognised 

and discussed in the literature as one of the potentially limiting factors in the 

advancement of GPCR research and the translation of GPCR research to a clinical 

application of findings301,302. Thus, PAR2 is not the only GPCR to have reported 

problems with antibody reliability. A study published in 2009 debated the 

antibody issue for a number of different GPCR families 303. The study generated 

49 different anti-sera raised against 19 different receptors and determined that 

none of the anti-sera could withstand robust specificity or selectivity testing for 

their respective targets. It is therefore not surprising that an issue has arisen 

with regards to PAR2. Attempts have been made in the literature to confirm 

SAM-11 specificity, including use of pre-incubation with known epitope as an 

experimental control. Moreover, an in-depth investigation of the range of 

available anti-PAR2 antibodies was conducted and published in 2012, through 

comparison of antibody staining pattern with PAR2-GFP transgenic cells. They 

evaluated a number of techniques including western blot, immunofluorescence, 

and flow cytometry300. SAM-11 performed best overall and based on this work 

became recognised as the gold standard for use in PAR2 research. 

Since the publication of this initial PAR2 antibody assessment, new antibodies 

have become available. Considering all of the above, and before generating data 

to analyse the expression of PAR2 in monocytes, validation of the current 

commercially available antibodies against human PAR2 was performed within the 

methodologies planned. The most successful clone from the previous antibody 

study and most commonly published anti-PAR2, SAM-11 clone, was chosen for 

comparison with newly available PAR2 antibodies. 

The research presented in this chapter sought to compare and thereby select  

the best antibody now available to quantify the protein expression of human 

PAR2. To achieve this the central aims were: 

1. Confirm antibody binding to recombinant human PAR2 

2. Use stable transfected hPAR2 human cell line, and a naive control to 

test selectivity of antibodies under different staining conditions. 

a. Denatured and solubilised protein (Western Blot) 
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b. Fixed protein (Immunofluorescence microscopy)  

c. Live in-vitro staining in suspension (Immunofluorescence flow 

cytometry and ImageStream analysis) 
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3.2 Results 

3.2.1 Assessment of antibody binding to recombinant human 
PAR2 

The antibody clones investigated in this chapter include SAM-11, D61D5 and a 

polyclonal antibody from Alomone Labs (Table 3.1). The amino acid sequence of 

human PAR2 is shown in Figure 3.1. This sequence is compared to both murine 

and rat PAR2 sequences, with all aligning amino acids shown in the second line, 

between the 2 sequences. Each antibody binds to a discrete epitope on PAR2 

(although SAM-11 and D61D5 have an overlapping epitope) and the binding 

regions are marked on the sequences in Figure 3.1. 

Table 3.1 Anti-PAR2 Antibodies 

 

 

The full region of binding for SAM-11 is 14 amino acids in length and immediately 

after the conventional cleavage site at amino acids 37-50. It encompasses the 

activating tethered ligand region and therefore can inhibit activation of the 

receptor. It is recommended by the manufacturer for the detection of human, 

mouse, and rat PAR2 protein. However, the sequence alignment at the epitope 

region of binding between the human protein the antibody was raised against, 

and the murine protein is less than 50% (42.8% similarity, Figure 3.1A) and 

contains 50% alignment to the rat epitope sequence (Figure 3.1B). 

The exact antigenic binding region of the D61D5 clone is proprietary information 

and therefore cannot be mapped exactly to the sequence, however, it has been 

disclosed to be around glycine 44. This indicates that the binding region of this 

antibody is after the conventional cleavage site, meaning it can recognise both 

full sequence and cleaved, activated receptor. Due to the proprietary epitope 

we are unable to map sequence homology to any other species but sequence 
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homology to the murine protein was disclosed by the producer, as 57% (Figure 

3.1A). This homology was viewed as too low to warrant further investigation into 

binding to murine protein and therefore the distributor (Cell Signalling 

Technologies) of this antibody only confirms reactivity with the human PAR2 

protein. 

Finally, the third antibody in our assessment is a polyclonal antibody raised 

against the rat C terminal amino acids 368-382. The sequence homology between 

the rat protein and human epitope at that region is 73.3% (11/15 amino acids, 

Figure 3.1B) and 93.3% homology to murine protein (14/15 amino acids). While 

amino acid similarity is higher than either of the N terminal region binding 

antibodies the capability of polyclonal antibodies to recognise multiple epitope 

regions of 1 protein increases the risk of cross-reactivity with other peptides. 

Therefore, staining PAR2 with this antibody on cells/tissues of another species 

may increase the risk of non-specific binding. 

All of the above antibodies have been recommended for detection human PAR2 

protein by the manufacturers. As an initial assessment of their suitability a dot 

plot was conducted using recombinant human PAR2 protein to test whether 

these antibodies were capable of directly binding the recombinant human 

protein. Human PAR2 protein was dotted onto a membrane at 3 concentrations 

with a 10-fold increase between them. Full recombinant human PAR2 was dotted 

on the first row, the SLIGKV tethered ligand region of the receptor on the 

second, and the C terminus fraction, amino acids 368-382 on a third row. These 

blots were then incubated overnight with each respective antibody of interest 

and anti-mouse or anti-rabbit secondary conjugated to HRP (dependent on 

primary antibody host) was used to conduct chemiluminescent assessment of 

antibody binding to protein. As can be seen in Figure 3.2, all of the antibodies 

tested bound to full length recombinant human PAR2 in a concentration 

dependent manner. The polyclonal antibody from Alomone also interacted with 

the C terminal peptide whilst neither SAM-11 nor the D61D5 clones displayed any 

interaction. None of the antibodies were able to bind to the SLIGKV peptide. 
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Figure 3.1 PAR2 Amino Acid Sequence Comparison Across Species 
Utilising uniport and BLAST software the amino acid sequence of human PAR2 was aligned with 
either (A) murine protein, or (C) rat protein. Where amino acids were positively aligned they are 
stated in the intermediate line between the 2 sequences. The estimated epitope region for SAM-11 
(orange), D61D5 (blue), and the polyclonal antibody purchased from Alomone (red) were overlaid 
onto these sequences. The overall alignment of the species was then graphically represented in C 
for murine sequence and D for rat, with red areas demonstrating misalignment and grey regions as 
positively aligned and regions of antibody binding also highlighted in these graphics.   
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Figure 3.2 Anti-PAR2 Antibodies Bind to Recombinant Human PAR2. 
Full recombinant human PAR2 protein, SLIGKV or the C terminal rat peptide (immunising epitope 
from Alomone Labs) was dotted onto PVDF membrane at 3 successive concentrations (1ng, 10ng, 
and 100ng). The blots were incubated with either Alomone polyclonal, D61D5 clone, or SAM-11 
overnight and secondary HRP was used to visualise antibody binding by chemiluminescence. 
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3.2.2 Ability of Anti-PAR2 Antibodies to Detect PAR2 via Western 

Blot of Total Cell Protein Lysates 

The dot blots provided evidence that the antibodies can interact with a 

preparation of purified recombinant PAR2. In order to test the specificity of 

these interactions, a human astrocyte cell line (1321N1) stably transfected with 

human PAR2 (1321N1-hPAR2) was acquired from AstraZeneca alongside its 

wildtype counterpart (1321N1) that does not express PAR2304. To initially confirm 

that the cell lines did or did not express human PAR2, transcript levels were 

evaluated via quantitative PCR. Both cells lines contained equivalent levels of 

the housekeeping GAPDH transcript (Table 3.2) but only the 1321N1-hPAR2 cell 

line had detectable levels of the PAR2 transcript. Thus, from this data it can be 

concluded that the transfected cell line has the potential to express higher 

levels of PAR2 protein over its naive counterpart due to substantially higher gene 

expression levels. 

Table 3.2 Quantitative PCR Cycle Threshold of Housekeeping Gene (GAPDH) and F2RL1 in 
both Naive 1321N1 and Transfected 1321N1-hPAR2 
Representative of 2 experimental repeats. 

 

Given the detection of PAR2 transcript in 1321N1-hPAR2 cell but not 1321N1, 

these cells were used to not only evaluate the expression of PAR2 at a protein 

level but also determine whether the various antibodies are specific for PAR2. 

Protein lysates from both 1321N1 and 1321N1-hPAR2 were separated by 

molecular weight using gel electrophoresis and these were transferred onto a 

PVDF membrane for probing with the PAR2 antibodies (Table 3.1). The staining 

pattern detected by the polyclonal Alomone anti-PAR2 is shown in Figure 3.3A. 

Multiple bands were observed in the transfected cell extract, ranging from 

135kDa down to around 26kDa. Notably, the predicted molecular weight of PAR2 

is 44kDa, and there were 2 bands observed between the 32 and 46kDa molecular 

weight markers in the ladder. Furthermore, the brightest band in the extract 

appears just below 58kDa. When compared to the cell lysates from the WT cell 
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line many of the same bands were observed, such as the highest band at 135, 

and the band between 32 and 46kDa. The band observed in the transfected cells 

just below 58kDa is not completely equivalent to that band observed in the 

naïve cells (slightly lower molecular weight), however, based on the data 

obtained, the presence of the 58kDa band in the naïve cells cannot be 

completely ruled out. There is one very faint band at 80kDa in the transfected 

cell line lysate that does not appear to be present in the naïve cells, but it is 

unlikely to be PAR2. Overall, the multiple band staining pattern is similar 

between the transfected and naïve cell lysates when stained with the polyclonal 

anti-PAR2. 

In Figure 3.3B the same protein lysates have been run and stained with the 

D61D5 antibody. In the PAR2 expressing 1321N1-hPAR2 lysate, 1 strong, clean 

band can be seen at around 40kDa followed by a faint smear and another band 

at a very high molecular weight (out with the ladder). The molecular weight of 

the strongest band on this blot is very close to the predicted molecular weight of 

the PAR2 protein. When comparing with the staining pattern found in the 

wildtype cells it can be clearly seen that another band of matching molecular 

weight is found, albeit at a lower staining intensity. This band does not have the 

same smear found in the transfected cells. 

We finally assessed the western blot staining pattern of SAM-11 clone with the 

same cell lysates as the other antibodies (Figure 3.3C). This blot also contains 

multiple bands ranging from high molecular weight (245kDa) right down to the 

predicted weight of 40-44kDa. The strongest bands are found at 190kDa, 60kDa, 

and 58kDa, with fainter bands at 40 and 44kDa. No bands were found in the 

wildtype 1321N1 cells, which appears to confirm that these cells do not express 

PAR2, as found with transcript analysis (Table 3.2). It also indicates that SAM-11 

is able to discriminate between PAR2 expressing cells and cells which do not 

express the protein of interest using western blot, even if the bands do not 

reflect the expected molecular weight. 

If the antibodies were specific for PAR2 using this technique, we would expect to 

find a single band at the predicted molecular weight of PAR2 (44kDa) in the 

transfected cell lysates and not in the naive cell line. None of the tested 

antibodies conformed to the expected profile. 
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Figure 3.3 Western Blots Conducted with Different Antibody Clones Against PAR2 Resulted 
in Detection of a Different Pattern of Bands. 
Cell protein lysates were taken from naive 1321N1 cells and transfected 1321N1-hPAR2 cells 
using RIPA buffer and separated by molecular weight through gel electrophoresis alongside a 
visible protein ladder of known band sizes Proteins were then transferred to a PVDF membrane 
and incubated with either (A) Alomone polyclonal, (B) D61D5, or (C) SAM-11 overnight. Blots were 
then washed and incubated with secondary antibodies conjected to HRP. Detection of antibody 
binding was determined via chemiluminescence. Each blot contained lysates from the same protein 
isolation that were prepared for electrophoresis in the same manner. 

 

Despite the use of the same cell lysates with identical preparation, the detected 

staining pattern for each antibody differs greatly (Figure 3.3). This suggests that 

some antibodies are able to pick up PAR2 in alternative isoforms (such as 

dimerisation states or post translational modifications) that the others are not 

capable of detecting. Alternatively, it suggests that all of the antibodies are not 

able to specifically detect PAR2 protein with western blotting techniques. 

In order to assess whether the multiband properties of SAM-11 and Alomone 

polyclonal western blot staining (Figure 3.3A and B) were caused by dimerization 

of PAR2, methods were adopted from a previous paper studying another family 

of G protein coupled receptors - chemokine receptors305. This publication 
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demonstrated that the temperature at which a protein is denatured during 

sample preparation can influence the ratio of monomer to dimer expression of 

the chemokine receptor, which can then be detected with gel electrophoresis. 

The same method of sample preparation used in this publication was applied to 

new cell lysates from transfected cells, denaturing at 37°C, 60°C, and the 

original temperature of 90°C. As can be seen from the blots in Figure 3.4 

differing denature temperatures made no difference to the size or number of 

bands found with polyclonal Alomone stains (A), D61D5 (B), or the SAM-11 clone 

(C). The polyclonal stain remained consistent with the previous experiment 

(Figure 3.3A) expressing many bands of various molecular weights with no 

change between preparations (Figure 3.4A). SAM-11 also did not change with 

sample prep temperature alterations (Figure 3.4C) but the bands on this blot do 

not resemble the previous cell lysate experiment (Figure 3.4C). On this occasion 

there is only 1 band featured at 82kDa, whilst in other experimental conditions 

multiple bands were found (Figure 3.3) despite sample preparation consistency 

between experiments (90°C sample in Figure 3.4C and Figure 3.3C), so the 

source of this variation is unknown. 

While we cannot definitively say that multiple bands found in this assay were not 

caused by dimerisation, adoption of this previously established method to detect 

G-protein coupled receptor dimers did not provide any evidence to support that 

possibility. 
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Figure 3.4 There was no Evidence of Temperature Dependent Dimerization of PAR2 in Cell 
Lysates. 
Protein lysates were isolated from transfected 1321N1-hPAR2 and denatured at various 
temperatures (90°C, 60°C, or 37°C) before proteins were separated by molecular weight via gel 
electrophoresis alongside a visible ladder of known molecular weight. Proteins were then 
transferred to PVDF membrane and incubated with either (A) Alomone polyclonal, (B) D61D5 
clone, or (C) SAM-11 clone overnight. Secondary antibody conjugated to HRP was used to detect 
antibody binding by chemiluminescence. The same cell lysates were run for each blot. 
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3.2.3 Assessment of Antibody detection of PAR2 via Fluorescent 

Microscopy 

Some antibodies optimally perform or are more appropriately used under 

different staining protocols and conditions. Therefore, in order to test the 

suitability of these antibodies in a fixed cell scenario we adopted fluorescent 

microscopy methodology. This enabled testing of each antibody under new 

constraints and the data acquired from this technique provided insight into the 

cellular location of the protein. Again, the 1321N1 cell lines were used to 

compare transfected and wildtype cells as positive and negative controls. 

Representative images can be seen in Figure 3.5 and semi-quantitative analysis 

was performed on these images using ImageJ. The integrated density of 

fluorescence was calculated by subtracting the background fluorescence 

intensity and DAPI nuclear dye was used to locate cells via the nuclei (blue). 

PAR2 was stained using the tested antibodies (Table 3.1), with Alomone and 

D61D5 fluorescence generated using a secondary antibody conjugated to FITC, 

while the SAM-11 antibody used was a direct conjugate to fluorophore PE.  

Immunofluorescence (IF) staining on the 1321N1-hPAR2 cells conducted with the 

polyclonal Alomone resulted in very bright, high intensity stain, as seen in Figure 

3.5A. Due to the nature of a polyclonal, it will contain multiple antibody clones 

which are able to bind different areas of the known epitope. For this reason, 

polyclonal antibody stains can result in more antibody bound to the protein of 

interest, resulting in a higher signal. This high signal was not limited to the 

transfected cells, naïve cells also had a bright signal (Figure 3.5B). This signal 

was dimmer than the transfected cell fluorescence intensity as seen in 

quantification (Figure 3.5G). It was also unexpected to find that the staining 

appeared to localise strongly to the nucleus. 

Staining from the D61D5 was much dimmer than the Alomone antibody (Figure 

3.5C). However, this stain could differentiate between transfected and naïve 

cells, with transfected cells appearing brighter (Figure 3.5C, D, and G). Unlike 

the polyclonal this single clone is limited to how many primary antibodies can 

bind to the protein due to the limitation of one specific epitope. This may 

account for dimmer staining in comparison to the Alomone polyclonal. Dimmer 
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staining could also be attributed to a lack of availability of the D61D5 epitope in 

post-fixation conditions that this assay was conducted under. 

With IF microscopy, the SAM-11 antibody was unable to detect any visible PAR2 

staining on either transfected (Figure 3.5E) or wildtype cells (Figure 3.5F). When 

the images were analysed using ImageJ this analysis was able to detect very low 

levels of staining and could distinguish between naïve and transfected cells 

(Figure 3.5G), but this detection level was so low it may not be considered 

reliable. However, it is worth considering that this may not be the most efficient 

method of protein detection using IF microscopy for 2 reasons. Firstly, a direct 

conjugate was utilised as opposed to using a primary antibody against PAR2 and 

then amplifying the signal of this with a secondary conjugated to the 

fluorophore. A limited quantity of monoclonal antibody is capable of binding its 

protein of interest and this can limit the intensity of the signal. Secondary 

antibodies are thus commonly used to amplify this signal as multiple secondary 

antibodies can then bind 1 primary. In addition the fluorophore (PE) applied in 

this instance is not optimal for IF microscopy applications, as this is a bright dye 

with limited photostability, it is more suitable for flow cytometry applications. 

Due to the requirement for longer exposure of fluorescent excitation required 

for acquiring an image with microscopy this can result in photo-bleaching of this 

fluorophore before images are acquired. While flow cytometry is a more 

sensitive detection method with very fast excitation and detection and thus PE is 

an ideal fluorophore in this context. Overall, the direct conjugate of SAM-11 

antibody with PE in this context is not suitable for this application and is unable 

to detect PAR2 protein. 
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Figure 3.5 Detection of PAR2 via Immunofluorescent Microscopy. 
(A, C, E) Naive 1321N1 cells and (B, D, F) transfected 1321N1-hPAR2 cells were cultured 
overnight on glass chamber slides. Cells were fixed and permeabilised before staining with either 
(A, B) Alomone polyclonal antibody, (C, D) D61D5 clone, or (E, F) SAM-11. DAPI (Blue) mounting 
media was used to stain and identify nuclei. Stains were then imaged at 10x magnification on the 
EVOS FLAuto. (G) Subsequent quantification of fluorescence intensity was conducted on ImageJ. 
Cells were defined and background (area containing no cells) fluorescence was subtracted from 
the fluorescent intensity of the stained cells. This was conducted on an average of 15 cells across 
multiple images for each antibody. Representative images of this experiment have been shown. 
Quantification and images are representative of 1 experiment which has been repeated twice. The 
Kolmogorov-Sminov test which does not assume Gaussian distribution of the data was used to 
determine statistical significance; * p<0.05, ** p<0.01, *** p<0.001 
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3.2.4 Assessment of antibody detection of surface and 

intracellular PAR2 expression via Flow Cytometry 

Flow cytometry is a central technique used in the immunology field and beyond 

for the detection and quantification of proteins in various cell types 

simultaneously. This technique allows for a greater number of fluorescent probes 

than IF microscopy and thus enables staining of various cell markers to be used 

in conjunction with the protein of interest, allowing determination of cell 

subsets within a mixed population. This technique has been applied for the 

detection of PAR2 in a number of immune cells previously published. Most papers 

have utilised the SAM-11 clone for this application 267,271,272,297,299. However many 

groups have also produced their own polyclonal antibody through immunisation 

of small animals and purification of the anti-serum 268,285,306. The application of 

different antibody clones to detect this protein have resulted in a confusing and 

contradictory literature with regards to PAR2 expression. Appropriate 

assessment of the tools available and a standardised method for PAR2 detection 

via flow cytometry is urgently required to regain clarity in this matter. The anti-

PAR2 antibodies listed in Table 3.1 were assessed for their use in flow 

cytometry, with the exception of the Alomone polyclonal. This antibody detects 

the internal C terminus and therefore cells would have to be permeabilised for 

detection. This would include detection of all intracellular stores of the receptor 

and cell surface membrane only detection would not be possible. Again, the 

wildtype and stably transfected 1321N1 cells were used to determine if these 

antibodies could robustly differentiate between high expression and low/no 

PAR2 expression (Table 3.2). 

The cell lines were stained both for surface protein expression only, and also 

permeabilised to detect intracellular stores of receptor - which have been shown 

to be present in other transfected cell lines307-309. The mean fluorescence 

intensity (MFI) of an isotype or secondary only control was then used to 

determine the delta MFI (DMFI) for each stain and this was compared between 

transfected and naïve counterparts. Histograms of the D61D5 stain compared 

with secondary only are presented in Figure 3.6A. Transfected 1321N1-hPAR2 

cells have a clear and bright signal detecting surface PAR2 expression and a 

brighter signal detected in permeabilised samples. While the naïve cells, had no 

detectable surface expression and a substantially lower MFI expression (Figure 



3  115 
 
3.6B) of intracellular PAR2, which indicates the presence of low level PAR2 

expression stored within the cell. Overall the staining patterns found using the 

D61D5 antibody reflect the detected differences in transcript levels identified 

between the 2 cells. While the naive cells were negative for surface expression, 

this indicates that these cells contain some intracellular stores of the receptor. 

This data also supports the western blot results generated using this antibody 

which suggested higher expression levels of PAR2 in 1321N1-hPAR2 over naïve 

1321N1, but still contained some dim staining in naïve cells. This dim western 

blot band may reflect the intracellular stores detected via flow cytometry. 

Similar flow cytometry staining was conducted using a SAM-11 directly 

conjugated to PE fluorophore, compared with a PE isotype stain (Figure 3.6C). 

Unlike the staining conducted with the D61D6 clone, SAM-11 failed to detect 

differential expression between naïve and transfected cells, both cells contained 

surface and intracellular PAR2 and for both of these sites delta MFI of the naïve 

1321N1 was higher than the transfected cells (Figure 3.6D). This does not reflect 

the data generated using the SAM-11 clone in western blotting, nor does it 

match the expected differences in expression as indicated by transcript 

detection (Table 3.2). 
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Figure 3.6 Clone D61D5 is Capable of Discriminating Between Naive and Transfected 
1321N1 Cells on the Basis of PAR2 Expression. 
Naive and transfected 1321N1 were lifted and maintained in suspension where cells were either 
stained with (A, B) D61D5 clone or (C, D) SAM-11 clone and samples run on the BD LSR II Flow 
Cytometer. A control for non-specific binding of antibodies was also conducted on both naive and 
transfected 1321N1 with (A) secondary antibody alone, or (C) a PE isotype. Histograms are 
displayed for each sample, which have been gated on cells with doublet exclusion for (A) D61D5 
stain and (C) SAM-11 stain with control stains in blue and PAR2 stains in red. (B, D) Quantification 
of MFI was calculated by subtracting control stain MFI from the PAR2 stain MFI and these values 
were plotted with naive 1321N1 in green and transfected 1321N1-hPAR2 in purple. 1 experiment 
shown which is representative of 2 experimental repeats. 
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Since staining intensity detected using D61D5 and secondary fluorophore was 

much higher using flow cytometry techniques compared with detection using IF 

microscopy, the ImageStream was utilised to generate microscopic images. 

ImageStream is a method of flow cytometry which simultaneously acquires 

microscopic images of brightfield and fluorescence while also generating 

conventional flow cytometry data. Using this technique samples could be 

prepared and run in the same way as flow cytometry while also acquiring images 

of each processed event. By adopting this technique both MFI of the stain via 

flow cytometry and an image accompaniment for each event could be obtained, 

providing information on cellular location of the receptor. This was conducted 

using the D61D5 clone, as above with both naive 1321N1 and transfected 

1321N1-hPAR2 to detect surface expression. 

Images acquired from the brightfield, AF647 PAR2, and side scatter, for naive 

cells (Figure 3.7A) show little to no visible detection of the receptor. This is in 

contrast with the transfected cells (Figure 3.7B) which show clear surface 

membrane staining of variable intensities. The fluorescence intensity of the 

PAR2 across the two cells is shown in histograms where the threshold for positive 

staining was defined using a secondary only antibody stained negative control. 

This further confirms the flow cytometry data (Figure 3.6) and demonstrates 

that PAR2 expression is diffuse across the surface membrane of transfected 

1321N1-hPAR2 cells. 
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Figure 3.7 D61D5 Clone can Detect Visible Surface Membrane PAR2 via ImageStream. 
(A, C) 1321N1 and (B, D) 1321N1-hPAR2 cells were surface stained for PAR2 using the D61D5 
clone and samples run on the ImageStream. Brightfield, AF647 (PAR2), and SSC images from a 
representative sample of cell events which had been gated for doublet exclusion are shown for (A) 
naive and (B) transfected cells. Samples with control stain (only the secondary antibody) on the 
respective cell type were used to establish positive staining for PAR2 expression. (C, D) The 
staining intensity of a positive stain is delineated with dotted lines on the histograms. N=1 for each 
genotype, experiment was repeated twice with the same findings, data only shown from 1 
experiment. 
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In order to validate the observed surface PAR2 flow cytometry stain, we 

conducted short term stimulation with high concentration of PAR2 activating 

peptide (FLIGRL), which is known to lead to receptor internalisation. Cell 

surface membrane stain was then conducted using both SAM-11 and D61D5 

clones as above, on unstimulated controls and FLIGRL stimulated samples. This 

assay was once again conducted in both naive and transfected cell lines. 

As expected, the D61D5 clone could not detect any surface PAR2 in the naive 

cell line and this was unchanged upon stimulation (Figure 3.8A). As shown 

previously SAM-11 detected very low levels of PAR2 expression in naive cells, and 

upon stimulation the fluorescence intensity of this stain more than doubled 

(Figure 3.8C), however the staining intensity of this was so low the relevance of 

a 2 fold increase in this instance is limited. The D61D5 clone detected high levels 

of PAR2 on the surface of transfected cells (Figure 3.8B) (as seen previously, 

Figure 3.7B, and Figure 3.6B). The MFI of this expression was reduced 49% upon 

stimulation (Figure 3.8E, F). Transfected cells had low levels of detection with 

SAM-11 and this was slightly increased upon stimulation (Figure 3.8D) although 

MFI increase was not as high as the SAM-11 reported in the naive cells (Figure 

3.8E, F). If the stain was specifically detecting surface PAR2 we would expect to 

lose some of the cell surface signal after this stimulation as the receptor is 

activated and internalised. The loss of surface stain in transfected cells 

stimulated with FLIGRL using D61D5 detection, confirms that this method is 

identifying PAR2. While SAM-11 stain does not detect a loss of the receptor 

expression upon stimulation dependent internalisation, indicating non-specific 

binding of this clone. 
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Figure 3.8 Stimulation Dependent Internalisation of Surface PAR2 is Detected Using the 
D61D5 Clone. 
Cells were stimulated with PAR2 activating peptide (FLIGRL, 2µM) for 20 minutes while in 
suspension and then put on ice. Both stimulated and unstimulated cells were then surface stained 
for PAR2 using (A, B) D61D5, (C, D) SAM-11 or the (A, B) control secondary only or (C, D) isotype 
stain. All staining procedures were conducted on ice. (E) MFI was calculated through subtraction of 
the MFI of control stains from PAR2 stain and this is plotted for each antibody and stimulation in. 
(F) The difference between stimulated and unstimulated samples for each antibody was calculated. 
N=1 for each genotype, 1 experiment conducted.  
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3.3 Discussion 

The literature surrounding PAR2 cellular expression is fraught with 

inconsistencies and contradictory data. For example, a study conducted by 

Colognato and colleagues employed the use of the SAM-11 and N19 antibody 

clones to identify PAR2 cell surface expression in human monocytes272. Using 

both western blotting and flow cytometry techniques they found that primary 

human monocytes from healthy donors did not express any PAR2. Transcript 

analysis via end point PCR amplified a product which could be seen with a faint 

band. Differentiation of the monocytes over a period of 7 days with M-CSF 

resulted in positive expression of PAR2 as detected via flow cytometry and 

western blot, again using the SAM-11 clone. A subsequent publication that 

utilized a newer anti-PAR2 antibody clone (34422, R&D), analysed PAR2 

expression across peripheral blood immune cell populations and found on 

average 40% of peripheral blood monocytes were PAR2 expressing286. In this 

study monocytes were shown to have the highest PAR2 surface expression of all 

of the PBMCs analysed. These differing results could be attributed to variations 

within diverse human populations and limited sample sizes tested (both studies 

only repeated this experiment with 5-6 donors). However, it is also potentially 

the result of unsuitable tools employed for the detection of PAR2. If both 

antibodies are capable of detecting human PAR2 through western blot and flow 

cytometry techniques it seems unlikely that they would generate completely 

contradicting data. In order to facilitate reliable human expression studies, the 

antibodies available were validated to find a clone fit for the purposes of this 

study. It is advisable and good laboratory practice to validate antibodies in this 

manner before proceeding with data collection. 

Initial confirmation that all of the antibodies used in this study bound to their 

target came from the use of recombinant human PAR2 which was simply dotted 

onto a membrane, results of which are found in Figure 3.2. The Alomone 

polyclonal can definitively bind to the epitope it was raised against, as 

demonstrated with detectable signal from the C terminal protein. There was no 

detected binding of the SAM-11 or D61D5 clones to the SLIGKV peptide. While 

this peptide sequence is a known area of the SAM-11 binding epitope it is only 6 

out of the total of 14 amino acids of the complete epitope. It is unsurprising that 

the incomplete epitope was not sufficient for detection by SAM-11 or D61D5 
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clones, as antibodies often require the entirety of their cognate antigen for 

sufficient binding affinity. The SLIGKV peptide was used because this peptide is 

readily available. 

Confirming positive binding to the receptor of interest does not confirm that this 

interaction is specific. In order to test the specificity of these interactions, an 

astrocyte cell line stably transfected with human PAR2 (1321N1-hPAR2) was 

acquired from Astra Zeneca, alongside its naïve counterpart (1321N1) that does 

not contain PAR2 to be used as a negative control for all staining protocols. The 

lack of PAR2 expression in the naive form of this cell line was originally 

demonstrated by Grishina and colleagues, showing undetectable RNA transcript 

levels and a lack of calcium flux signal in response to PAR2 activating 

peptides304. A lack of detectable levels of PAR2 transcript was also demonstrated 

within this chapter (Table 3.2) in the naive 1321N1 while simultaneously 

confirming transcript expression in the transfected cells. 

The staining pattern detected by the polyclonal Alomone antibody via western 

blot is similar between the transfected and wildtype cell lysates, with dimmer 

stain intensity in the naïve (Figure 3.3 A). The blot also contains multiple bands, 

none of which appear to be at the expected molecular weight. This does not 

provide compelling evidence that the polyclonal Alomone antibody is selective 

for PAR2. For both the western blot and immunofluorescence there was 

detectable staining intensity differences between the 2 cell lines (Figure 3.3A, 

Figure 3.5A, and G), however both wildtype and transfected cells have very high 

intensity staining. Due to the nature of a polyclonal, it will contain multiple 

antibody clones which are often able to bind different areas of the known 

epitope. For this reason, polyclonal antibody stains can result in a higher 

concentration of antibody bound to the protein of interest, resulting in a higher 

detectable signal than that from a monoclonal antibody. However, overall the 

data generated from the Alomone polyclonal did not provide compelling 

evidence of specific staining, since both naive and transfected h-PAR2 cell lines 

have high staining intensities of multiple molecular weights. 

Staining soluble lysates of 1321N1-hPAR2 cells via western blot with the D61D5 

clone produced one clean band around the expected molecular weight of 44kDa 

followed by a faint smear (Figure 3.3B). This pattern is often found in blots of 
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proteins which carry post translational modifications such as glycosylation, with 

molecular weight correlating with the quantity of bound glycan, which can vary. 

PAR2 is known to post-translationally modified in many ways, including 

palmitoylation 307, glycosylation 20,21 and phosphorylation309. The protein is often 

dependent on these modifications for its function. For example, it has been 

demonstrated that the cellular location of the receptor is directed by 

palmitoylation. Addition of this post translational modification directs the 

receptor to the cell surface membrane 307. Therefore, it is possible that the 

concentrated band at the 44kDa weight is PAR2 protein and the smear is caused 

by various post translational modifications. To investigate this hypothesis, we 

could employ techniques used to remove palmitoylation and glycosylation from 

cell lysates and reblot. However, investigating the modification status of the 

receptor was not essential for confirming the validity of the antibody binding 

and thus out with the scope of this project, so not performed. 

A similar band of dimmer intensity but the same molecular weight is observed in 

the naive cell lysates when stained with D61D5 (Figure 3.3B). This indicates that 

the D61D5 is either picking up non-specific protein of a similar molecular weight 

or an alternative possibility is that the naive 1321N1 cells do contain some PAR2 

protein. While negative transcript of 1321N1 indicates lack of expression it is 

possible that transcript levels are too low to detect or quickly degraded, not 

necessarily that it is not transcribed at all. It has also been previously shown 

with other thrombin receptors that an internal storage of receptor is found in 

endosomes310 which enables rapid upregulation of surface expression. This could 

also be possible in naive cells, meaning they do contain some internal stores but 

are unable to respond to activation. It is also of note that naive cell staining 

detects no smear of post translational modification. Studying the data collected 

as a whole this detail may be indicative of how the receptor could be expressed 

in naive cells. The flow cytometry data generated using the D61D5 antibody 

demonstrated PAR2 surface expression in 1321N1-hPAR2 cells while the naive 

cells were negative at the cell surface (Figure 3.6). The lack of surface 

expression of endogenous receptor in the wildtype cells could be reflective of 

their lack of post translational marks denoted on the western blot smear, as we 

know from work discussed above that post translational modification is required 

for receptor mobilisation to the surface307. This hypothesis is based on research 
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from the surrounding literature and to provide evidence to support this, the 

presence of modification in transfected h-PAR2 1321N1 cells would need to be 

confirmed. Further to this, in order to confirm post translational modifications 

detected in the transfected cell line are driving the mobilisation of this receptor 

to the cells surface, inhibition of these modifications could be performed and 

further staining of their surface PAR2. However, this question is out with the 

scope of this thesis and therefore was not carried out. 

Immuno-Fluorescent staining of fixed/permeabilised adherent cells for 

microscopy using the D61D5 antibody was somewhat successful. A faint but 

visible stain was located in transfected cells (Figure 3.5C) and reduced staining 

detected in the naive cells (Figure 3.5D). However, the staining intensity was 

very faint in what is probably an overexpressing PAR2 transfected cell line, 

which may not be useful for detection of lower levels of expression in primary 

cells. As well as this, it was of note that while there was some staining of the 

cell body there was also a high concentration of nuclear staining(Figure 3.5D), a 

pattern mirrored in the Alomone polyclonal stains (Figure 3.5A and B). Nuclear 

localisation of PAR2 has not previously been observed in studies analysing the 

trafficking of this protein using labelled PAR2, such as GFP-PAR2300, mCherry-

PAR2307 and flag tagged-PAR2244,248. These papers primarily reported surface 

expression and an intracellular localisation within the cytoplasm, which is 

increased upon post-stimulation internalisation. However, there have been 

previous reports of GPCR localisation to the nucleus311, which includes PAR2, 

where this observation was made in neuronal cell types. The study conducted by 

Chemtob and colleagues identified that nuclear translocation post cell surface 

activation was an essential function of PAR2 in driving neo-angiogenesis in 

neurons 312. In doing so this group identified a novel method of PAR2s function to 

directly drive gene transcription (in this case vegfa) via interaction with the 

genome 313. While the 1321N1 cell line is not neuronal, it is an astrocyte and 

these cells are also located in the central nervous system (CNS). It may be 

possible that this nuclear localisation function is present in other CNS cell types 

– such as astrocytes. However, localisation of PAR2 to the nucleus was driven by 

cell surface PAR2 activation 313. The 1321N1 cells in these experiments had 

received no treatment of PAR2 activating ligands, and therefore we would not 

expect to visualize nuclear localization. One possibility is that the cell culture 
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media used to maintain these cells contained some serine proteases, which 

could be a possible source of PAR2 activators. The source of proteins in the cell 

culture media is Foetal Bovine Serum (FBS) and the exact composition of this is 

not defined and varies from batch to batch. Supernatant was not stored from 

these experiments, so it was not possible to investigate this hypothesis. 

Final investigation of the suitability of D61D5 antibody stain was confirmed with 

flow cytometric analysis. As flow cytometry would be the most utilised method 

for investigating PAR2 expression in human monocytes, this test would confirm 

the suitability of this antibody clone to take forward for further use. Expression 

of PAR2 on the cell surface membrane was detected in 1321N1-hPAR2 cell line 

via D61D5 staining, while surface stain in naive 1321N1 cells was absent (Figure 

3.6A and B). 

From here the specificity of the surface stain was confirmed using activation 

induced internalisation of the receptor. As conventional activation of PAR2 

involves cleavage of the receptor, this leads to internalisation and subsequent 

degradation of PAR2; a necessary step to halt receptor activation. This has been 

confirmed in multiple publications 244,246,308,314,315. Internalisation of PAR2 has 

also been reported after stimulation with activating peptides which mimic the 

cleaved N terminus244,308,314. If surface binding of the D61D5 antibody was 

specific for the PAR2 protein a loss of the detectable surface stain would be 

expected after 20 minutes of stimulation. The time-point of 20 mins was 

specifically chosen because previous publications have demonstrated that 

between 5 min and 30 min receptor internalisation is ongoing248 and complete 

replenishment of receptor at the cell surface occurs after 120 min308. In the 

interim it has been shown that cells are unresponsive to PAR2 stimulation further 

confirming the period of internalisation without replenishment of receptor. As 

can be seen in Figure 3.8B, E, and F, surface levels of PAR2 dropped to 50% of 

the unstimulated fluorescence intensity. While not all receptor expression was 

lost, this is not a major concern. It would be unlikely to achieve 100% loss of 

surface PAR2 for many reasons, such as not achieving a significant enough dose 

to saturate the high level of surface expression in transfected cell lines, or 

faster than anticipated recruitment of new PAR2 receptors to the cell surface. 

Therefore a 50% reduction is significant enough to have confidence that this 
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antibody is detecting PAR2 on the surface of cells, and will be able to detect 

changes to surface expression in human cells. 

Since this antibody clone appears to be useful in the detection of PAR2 using 

flow cytometric techniques but failed to robustly detect PAR2 with IF 

microscopy, Imagestream analysis was conducted. This application enables the 

generation of both microscopy images and flow cytometric data, with the same 

cell preparation required for flow cytometry. Staining for IF microscopy involved 

fixation and permeabilization prior to the staining process, while flow cytometry 

staining did not require any fixation, and if the cells do need to be fixed this can 

be conducted post staining. It is therefore possible that the failure to generate a 

bright signal with the D61D5 antibody clone for IF microscopy was due to a lack 

of epitope availability post fixation. The ability to generate microscopy images 

with flow cytometric cell preparations with the Image stream provide detailed 

information on the surface expression pattern of this receptor in the transfected 

cell line, showing a largely uniform distribution across the surface membrane. 

This may be a more useful technique to employ in order to identify the 

localisation of the receptor when using the D61D5 clone than IF microscopy. 

Especially in non-adherent cell types which will not be influenced by 

maintenance in suspension for this technique. 

Overall, evaluation of the SAM-11 antibody had variable outcomes from the tests 

conducted. The western blot staining pattern of SAM-11 stain contained multiple 

bands, none of which were at the expected weight and the patterns do not 

match those found with the polyclonal or D61D5 stain (Figure 3.3C). The SAM-11 

antibody, however, did not stain the negative control lysates (naive 1321N1) 

(Figure 3.3C). Therefore, it is possible that the multiple bands found are indeed 

PAR2 protein in different forms. It has been demonstrated that PAR2 is able to 

homo-dimerise 316, and hetero-dimerise with other PAR family members 317,318. 

These multiple bands could reflect this dimerization, or co-localisation with 

other proteins, as well as potential post-translational modifications discussed 

earlier. The variations between the staining patterns found with each antibody 

when using the same cellular lysates indicates that either some antibodies are 

binding non-specific proteins or it is also possible that one clone of anti-PAR2 

may be more inclined to detect specific dimers, or post-translational 
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modifications than another, potentially due to loss of some visible epitopes post-

dimerization/modification. 

Inconsistencies were identified in the application of the SAM-11 antibody for 

western blot. Different patterns of bands were detected between one 

experiment and another when all conditions were kept consistent. For example, 

the staining patterns found between Figure 3.3C and Figure 3.4C. In these 

figures new cell lysates from the 1321N1-hPAR2 cells were made but these cells 

had been cultured in the exact same manner, and proteins extracted in the 

same way. There were no major differences between the staining patterns with 

the Alomone (Figure 3.3A and Figure 3.4A) or D61D5 antibodies (Figure 3.3B and 

Figure 3.4B) between these experiments. It may be of note to refer to the 

previous PAR2 antibody evaluation paper300 and note the variation in types 

(weight and number) of bands found when looking at endogenous protein over 

transfected cell proteins. Variation in SAM-11 staining patterns within the same 

cell lines across different experiments was also identified in this antibody 

evaluation paper, similar to what was found between Figure 3.3C and Figure 

3.4C. It is possible that the receptor dimerises or post-translational 

modifications are different between different cell lysates taken at different 

times but this adds further complication to analysing these blots. 

When investigated for use in IF microscopy (Figure 3.5E and F), the SAM-11 clone 

failed to detect any PAR2 in either transfected or naive cell lines. Due to the 

direct conjugate method used with this clone, this may have limited the 

potential staining intensity. Instead, using a method with SAM-11 as a primary 

antibody and a secondary anti-mouse antibody with a conjugated fluorescent 

probe could amplify the signal and may give detectable PAR2 staining. However, 

given the time implications, this additional experiment was not considered to be 

of priority. 

Flow cytometry staining methodology was then tested with the SAM-11 antibody 

(also a direct conjugate). This stain failed to detect higher receptor presence in 

transfected cell lines (Figure 3.6C and D), which would be expected based on 

the transcript data from Table 3.2 and the D61D5 flow cytometry data shown in 

Figure 3.6A and B. This antibody also failed to detect any internalisation of the 

receptor post short term stimulation (Figure 3.8C, D, E, and F) unlike the D61D5 
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clone (Figure 3.8A, B, E, and F). Therefore, using this protocol we were unable 

to get robust PAR2 staining. The reason behind the discrepancy between our 

data and previously published data, which demonstrated that SAM-11 could 

detect surface PAR2 in transfected cells lines and could also detect 

internalisation post stimulation300, is unknown. It is possible that there are some 

manufacturing discrepancies between batches of this antibody. This would be 

likely in the case of a polyclonal antibody which is expected to have lot to lot 

variation due to uncontrolled or defined clones present. However, this would not 

be expected from a known monoclonal antibody. 
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3.4 Conclusion 

Taken together the data presented in this chapter provides evidence to support 

the D61D5 antibody clone as a reliable means of detecting cell surface human 

PAR2 via flow cytometry. Since the primary technique to be used in this thesis to 

detect changes in surface receptor expression was planned to be cytometry, this 

antibody clone was taken forward for PAR2 detection in human cells for the 

remaining experimental studies reported in this thesis. In order to confirm 

suitability of this clone for western blot applications, further validation is 

required. Using knock down techniques in the naive cell line to ensure negative 

staining would be valuable to confirm suitability in this technique. However, the 

staining intensity found with IF is less than optimal for discriminating expression 

changes. Nuclear focused staining identified in IF indicates that this antibody 

could potentially be bound to something non-specific in this application and 

therefore the IF staining protocol would not be recommended with this clone. By 

utilising flow cytometry to only stain the cell surface membrane should 

eliminate any concern with regards to potential non-specific nuclear staining. 

Any intracellular staining experiments should be performed in the knowledge 

that the specificity of this stain has not been confirmed. Confirmation of 

specificity for cell surface flow cytometry detection should also be conducted in 

all new cell types, through detection of receptor internalisation. 

Conversely, the other antibodies failed to robustly detect PAR2 expression 

differences between wildtype and transfected cells across all applications 

tested. The Alomone polyclonal antibody failed to determine differential 

expression of human PAR2 in transfected vs naive cells using western blotting 

techniques and stained proteins of varying molecular weight. While the SAM-11 

antibody did detect the presence of protein in transfected cells and none in 

naive cells, there was still large variation of bands present and different band 

patterns when using different lysates. This antibody also failed to detect 

differential expression of PAR2 between the 2 cell lines using flow cytometry 

techniques and failed to detect internalisation of protein post stimulation. 

Therefore, for these reasons the SAM-11 clone and Alomone polyclonal were not 

taken any further for human studies in this thesis. 
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4 Expression and Function of PAR2 in Human 
Monocytes 

4.1 Introduction 

Monocytes are an integral cell type in the inflammatory response. In chronic 

disease settings such as RA they are continually recruited to the inflamed joint. 

Due to heightened demand during chronic inflammation, these cells undergo 

premature egress from the bone marrow, which is thought to contribute to their 

altered phenotype186. Furthermore in RA, monocytes have an altered 

transcriptome when compared to healthy individuals 319. In addition to altered 

state, RA patients have higher numbers of monocytes present in peripheral 

blood, and increased numbers of monocytes in patients correlates with non-

responsiveness to both methotrexate320 and anti-TNF therapy321. When these 

cells are recruited into the joint they are capable of playing a dual role in the 

inflamed arthritic joint. They have capacity to differentiate into macrophage, 

producing inflammatory cytokines and chemokines, further perpetuating the 

chronicity of the disease; or alternatively, they can develop tissue specific 

functions and fuse into multinucleated, bone resorptive, osteoclasts contributing 

to end stage joint damage through bone erosion. 

The RA joint is a site of high inflammatory activity, with active immune cells and 

stroma producing a plethora of cytokines and chemokines, as well as catabolic 

proteases. These enzymatically active components not only function to break 

down the surrounding tissue but they also act in a hormone like manner, through 

activation of the G protein coupled receptors responsive to proteases (PARs, 

reviewed in the introduction, see section 1.4). PAR2 is responsive to proteases 

highly associated with active immune cells, such as neutrophil elastase and mast 

cell tryptase. Thus it is hypothesised that upon entering the inflamed RA joint, 

cells expressing PAR2 will be responsive to the inflammatory proteases present. 

The expression of PAR2 in human monocytes and their subsequent macrophage 

or osteoclast differentiation potentials and whether they can respond to 

proteases via PAR2 is debated in the literature. Some papers have previously 

reported that human monocytes do not express PAR2272. While other reports 

have shown consistent expression of both transcript and cell surface protein in 
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around 50% of the human monocyte population 286. It has been established 

through adoption of murine models of disease that PAR2 plays a functional role 

in multiple inflammatory diseases264,276,283,322,323. In addition, multiple studies 

have also found an increase in the expression of PAR2 in human monocytes in the 

context of inflammatory diseases, including severe asthmatic patients 299, and 

RA patients 297,324. 

Previously, research conducted in our group demonstrated increased PAR2 

expression in peripheral blood monocytes from RA patients compared with 

matched healthy controls297. This increase in expression correlated with disease 

activity, with patients in severe flare showing significant enhancement in PAR2 

expression. However, this data was generated using the SAM-11 clone of anti-

PAR2 antibody, and data from chapter 3 of this thesis established that this 

antibody could not reliably detect PAR2 expression in transfected cells known to 

express this receptor. 

Overall the aims of this chapter were to: 

1. Adopt the optimised protocol for PAR2 cell surface detection using clone 

D61D5 from chapter 3 of this thesis, in order to: 

a. Determine expression of PAR2 in monocytic cell line THP-1 

b. Clarify PAR2 expression levels in primary healthy human monocyte 

subsets 

c. Measure PAR2 expression in response to differentiation signals and 

inflammatory signals 

d. Confirm enhanced expression of PAR2 in RA patients with new 

antibody clone  
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4.2 Results 

4.2.1 PAR2 Expression in Human Monocyte Cell line THP-1 

THP-1 cells are a spontaneously immortalised human monocyte cell line which 

were originally isolated from a patient with acute monocytic leukaemia in 1980 
325. As an immortalised cell line these “monocyte-like” cells could be a valuable 

tool for dissecting the functions of PAR2 in monocyte biology. However, in order 

to assess if this cell line is suitable for investigation of PAR2 function the 

expression of this receptor in this cell line had to be confirmed. Therefore, PAR2 

cellular staining techniques validated in the previous chapter were applied for 

the detection of PAR2 in THP-1 cells. This method utilises a primary antibody 

detection of PAR2 (clone D61D5) and secondary antibody conjugated to a 

fluorophore (in this case AF647) binding to the primary and enhancing the 

detectable signal. Optimisation of the secondary antibody concentration for both 

surface and intracellular stains was initially conducted . Notably, the secondary 

antibody was associated with increased fluorescence due to non-specific binding 

Figure 4.1A. Based on this data, 1µl per sample was chosen the in order to 

minimise non-specific staining. This was then applied to PAR2 stains of THP 1 

cells for surface expression (Figure 4.1B) and intracellular stores (Figure 4.1C). 

PAR2 surface expression was consistently negative in naïve THP-1 cells which is 

consistent across increasing concentrations of antibody (Figure 4.1B). However, 

these cells do appear to express some intracellular stores of receptor (Figure 

4.1C). 

A lack of PAR2 expression in naïve THP-1 cells suggests that they may not be a 

valuable tool to assess PAR2 function in naïve monocytes. However, the 

presence of intracellular storage of this receptor (Figure 4.1C) suggests that it 

could be recruited to the surface under certain circumstances. To determine 

whether maturation of THP-1 cells alters receptor expression (i.e., increased 

surface expression), which would make a THP-1 knock out of this receptor a 

valuable for assessing PAR2s function in differentiated monocytes, the cells were 

differentiated into macrophage-like cells. 
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Figure 4.1 Naive Human Monocyte Cell Line - THP1- do not Express Cell Surface PAR2 but 
do Contain Intracellular Stores of Receptor 
Titration of the anti-rabbit-AF647 secondary antibody was conducted on THP1 cells for both cell 
surface and intracellular staining. (A) Cells were incubated with an Fc block and either 1, 2, or 5ul 
of anti-rabbit AF647 and histograms were plotted to demonstrate the different AF647 baselines 
compared with unstained cells. (B) THP1 cells were then incubated with Fc Block and either 1µl of 
D61D5, followed by 1µl of secondary AF647 cell surface staining or (C) permeabilised for 
intracellular staining with secondary only staining controls. Histograms presenting with logarithmic 
X axis. N=1, 1 experiment shown representative of 2 experimental repeats. 

 

In order to generate THP-1 derived macrophage like cells, naïve THP-1s were 

stimulated with 10ng/ml of phorbol 12-myristate 13-acetate (PMA). This 

promoted naïve THP-1 cells to adhere to tissue culture plastic and adopt a more 

elongated, macrophage-like morphology. The expression of PAR2 was assessed in 

response to both initial PMA stimulation events of 1 and 4 hours (Figure 4.2 A, B, 

C) and then across a differentiation time course including 24 hours (D), 48 hours 

(E), until full differentiation at 72 hours (F). At no point in the differentiation 

process assessed did THP-1 cells express surface PAR2. Thus, differentiation into 

macrophage-like cells does not transport intracellular stores of PAR2 to the 

surface of THP-1 cells. 
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Figure 4.2 Adherence of THP-1 Cells via PMA Differentiation Does Not Induce Cell Surface 
PAR2 Expression 
THP1 cells are stimulated with PMA (10ng/ml) and cells were analysed for PAR2 expression 
multiple times across a time course of (A) early response and (E, F) later responses when cells 
begin to adhere. Early time points included (B) 1 hour, (C) 4 hours, or (D) 24 hours. Extended time 
points included (E) 48, or (F) 72 hours. All staining was conducted on ice. N=1, 1 experiment 
shown representative of 2 experimental repeats 

 

Although PAR2 was not detected in naïve or macrophage-like THP-1 cells, it is 

possible that it would be expressed on alternative differentiation states. Prior 

studies 326 have suggested that it is possible to differentiate THP-1 cells into 

osteoclast-like cells. Thus, using this published protocol THP-1s were stimulated 

with an initial high dose of PMA (100ng/ml) for 3 days, and then exposed to 

50ng/ml of both M-CSF and RANKL for a further 6 days (Figure 4.3A). At the end 

point of this culture the cells were TRAP stained, in order to identify an 

osteoclast associated enzyme - Tartrate-Resistant Acid Phosphatase. Osteoclasts 

were defined as TRAP+ cells which contain at least 3 nuclei. In this setting, 

TRAP+ multinucleated osteoclasts were formed and these are highlighted with 

red arrows (Figure 4.3B). Interestingly, while many of the cells fused into 

multinucleated cells several of these cells did not stain positively for TRAP 

enzyme (black arrowhead, Figure 4.3B). To evaluate PAR2 expression in this 

setting, the cells were lifted from plastic using trypsin replacement cell 

dissociation buffer TrypLE (in order to limit potential PAR2 activation) and these 
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cells were stained for PAR2 surface expression. Expression was evaluated on 

both day 5 (prior to osteoclast maturation)(Figure 4.3C) and also at terminal 

differentiation (Figure 4.3D). At both time points assessed the osteoclast-like 

cells did not express any surface PAR2. 

Taken together, it was clear that THP-1s are not a valuable cell line for the 

investigation of PAR2 biology in monocytes/macrophage or osteoclasts. Thus, 

although plans were in place to generate PAR-2 knockout THP-1 cells, due to a 

lack of detectable receptor in these differentiated cells there would not be any 

value in taking them forward to generate a human monocyte par2-/- line. 

 

Figure 4.3 Differentiation of THP-1s into Osteoclast-like Cells does not Promote Surface 
PAR2 Expression 
(A) THPs were first matured with 3 days of PMA (100ng/ml) promoting cellular adherence to 
plastic, addition of M-CSF and RANKL (50ng/ml) was then added to the culture for another 6 days, 
with a media change every 3 days. (B) TRAP stain was conducted at day 9, with TRAP positive 
multinucleated cells shown with a red arrowheads and multinucleated cell TRAP negative are 
displayed with a black arrowheads. Cells were detached from the plates and stained for PAR2 (or 
control stain) on (C) Day 5 or (D) Day 9 of the culture. N=1, 1 experiment shown representative of 
2 experimental repeats   
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4.2.2 PAR2 is Expressed on the Cell Surface of Healthy Human 

Monocytes 

As previously discussed, the literature contains conflicting data surrounding the 

presence of PAR2 on the plasma membrane of human monocytes300. This may 

largely be due to the application of different antibody clones across laboratories 

for the detection PAR2; including polyclonal antibodies generated “in-house”. In 

order to clarify this issue the staining technique optimised in chapter 3 using the 

validated anti-PAR2 antibody clone D61D5 for PAR2 detection was applied to 

primary healthy human monocytes. 

Peripheral blood mononuclear cells (PBMCs) were isolated from healthy human 

buffy coat. These cells were then stained to exclude (a) dead cells (DAPI: V450), 

and (b) lineage markers (FITC) for T cells (CD3), B cells (CD19), NK cells (CD56), 

and granulocytes (CD15). To identify monocytes, cells were stained with  HLADR-

PECy7 (MHC II expression), CD14 (BV605), and CD16 (PE). Samples were also 

stained with the anti-PAR2 D61D5 clone for both surface expression and 

intracellular stores. A secondary anti-rabbit conjugated AF647 was used to 

detect the PAR2 stain via fluorescence. Monocytes were identified by positive 

gating of the PBMC population, excluding doublets, excluding lineage positive 

cells and positively gating for HLADR, CD14, and CD16 (Figure 4.4A). Monocyte 

populations were further sub-divided based on CD14 and CD16 expression with 

classical monocytes expressing CD14hiCD16-, intermediate CD14+CD16+, and non-

classical CD14loCD16hi (Figure 4.4A). 

PAR2 expression on each of these subsets was analysed for both surface PAR2 

expression (Figure 4.4B) and intracellular stores (Figure 4.4C). To ensure that 

negative fluorescence baseline (secondary only staining) remained unchanged 

across the different subsets of monocytes, the secondary only control MFI of 

each subset was compared (Figure 4.4D). This was conducted to ensure there 

was no differential influence of non-specific antibody binding on PAR2 

expression analysis between different subsets. The secondary only antibody 

surface stain ranged from 300 to 800 MFI, which represents variation across the 

human population (Figure 4.4D). Importantly, it was consistent across the 

subsets. Thus the PAR2 expression was comparable across these groups. 
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All samples consistently expressed intracellular PAR2 stores at consistent levels 

across all the monocyte populations (Figure 4.4C). All healthy donors expressed 

surface PAR2 in intermediate and classical monocyte populations, with PAR2 

absent in some donor non-classical monocytes (Figure 4.4B). Across the 14 buffy 

coats sampled each individual had the highest PAR2 expression levels in their 

classical monocyte population, with slightly decreased expression in 

intermediate monocytes and significantly reduced surface PAR2 expression in 

non-classical monocytes (Figure 4.4F). Therefore, with the validated anti-PAR2 

clone, D61D5, this data confirmed that healthy human monocytes do express 

surface PAR2 and the population with the highest expression of this receptor are 

the classical monocytes. 
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Figure 4.4 Healthy Human Peripheral Blood Monocytes Express Plasma Membrane PAR2 
Peripheral blood mononuclear cells were isolated from healthy donors and stained for monocyte 
discrimination – HLADR positive, Lineage (CD3, CD19, CD56, CD15) negative, CD14 and/or CD16 
positive – and PAR2. Gating strategy for analysis is shown in A. Monocyte subpopulations were 
discriminated based on expression levels of CD14 and CD16, Classical monocytes CD14hi CD16lo, 
Intermediate monocytes CD14+ CD16+, Non-classical CD14lo CD16hi. (B) Surface expression of 
PAR2 was measured in subpopulations of monocytes and (C) intracellular expression of PAR2 
found through permeabilization prior to PAR2 stain for each subpopulation, histograms show 
representative graphs from 1 donor. The unadjusted PAR2 stain MFI for each sample is 
represented in figure D the MFI values for the control stains shown in E and the delta MFI for 
surface PAR2 stain (subtraction of the control MFI from the PAR2 stain MFI) is represented in 
figure F. One way ANOVA with paired analysis using the Geisser-Greenhouse correction which 
does not assume sphericity was conducted with Turkey’s multiple comparisons test. * p < 0.05, **** 
p < 0.0001 N=14. 
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Since this was the first time using human monocytes for PAR2 stain with this 

antibody, much like the 1321N1 cell line it was important to confirm this staining 

was specific and reliable in the context of these cells. In order to demonstrate 

antibody specificity in human monocytes, activation-dependent internalisation 

was performed to determine if a loss of surface stain upon internalisation could 

be detected. On this occasion 3 healthy donor PBMCs were isolated in the same 

fashion as above and were left either unstimulated (Figure 4.5A) or stimulated 

with 2µM of PAR2 activating peptide FLIGRL for 20 minutes (Figure 4.5B). Once 

again these stains were compared with a control secondary only stain (Figure 4.5 

A and B). Unstimulated surface PAR2 stains of all 3 donors were low but 

detectable (range from 118-191 DMFI). After 20 minutes of FLIGRL stimulation, 

PAR2 expression in all donors dropped to undetectable levels as can be seen in 

the histogram comparisons with secondary only antibody (Figure 4.5B). The 

difference in PAR2 expression MFI between unstimulated and FLIGRL 

internalisation is shown in Figure 4.5C and the DMFI (subtraction of control stain) 

differences are represented in graphical form in Figure 4.5D. From this it can be 

determined that the PAR2 surface stain appears to be reliably detecting PAR2 on 

the plasma membrane, which is completely lost upon stimulation-dependent 

internalisation of the receptor. 
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Figure 4.5  D61D5 Antibody Clone Can Detect FLIGRL Internalisation of PAR2 in Human 
Monocytes. 
Peripheral blood mononuclear cells were isolated from healthy human blood and either left (A) 
unstimulated or (B) stimulated with 2µM PAR2 activating peptide FLIGRL for 20 minutes. Cells 
were then immediately put on ice and stained for surface markers (CD3, 20, 56, 15, HLADR, CD14, 
CD16) and PAR2. Using surface marker expression monocytes were gated as in Figure 4 and 
PAR2 expression assessed for (A) unstimulated and (B) FLIGRL and (C) PAR2 expression was 
compared between these 2 groups. (D) The delta MFI was calculated by subtraction of the control 
2nd only antibody stain from PAR2 D61D5 stain and these were plotted for each donor for both 
unstimulated baseline levels of PAR2 and FLIGRL stimulated; lines connect paired data. N=3, data 
form 1 experiment shown representative of 2 experimental repeats. 
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4.2.3 PAR2 Expression in Monocyte Derived Differentiation States 

The experiments conducted in 4.2.2 established reliability of our PAR2 surface 

measurement in human monocytes and confirmed that primary human 

monocytes express PAR2 with some population variation. Therefore, differences 

in PAR2 expression in response to stimulation and monocyte differentiation could 

subsequently be conducted, which will hopefully provide indication of the 

function of this receptor in monocyte biology. As previously discussed, 

monocytes can differentiate (given the appropriate signals) into either 

macrophage or osteoclasts. The next step was therefore to evaluate the effect 

of monocyte differentiation on PAR2 expression levels. To achieve this, 

optimised in vitro methods were used to recapitulate these differentiation 

states. 

Prior to initiating in vitro monocyte differentiation verification of a pure CD14+ 

monocyte isolation was conducted, as contamination with other immune cells 

could influence experimental outcomes. A CD14 positive EasySep Cell isolation 

kit was used to selectively isolate CD14 expressing cells from PBMCs. The 

positive selection method was chosen because the CD14 high monocyte 

population expresses the highest levels of PAR2 (Figure 4.4), and thus they 

represented a monocyte population that may be most influenced by PAR2-

mediated signalling. Cells were isolated from peripheral blood using this kit; and 

the original PBMC sample, the negative discarded sample, and the positively 

isolated monocyte sample, were all stained for flow cytometric analysis to 

determine the purity of the resulting monocyte isolation. The original PBMC 

sample proportionally contained 65.5% T cells, 10.7% B cells, 3.88% NK cells, and 

8.52% monocytes (Figure 4.6A). These frequencies are within the standard range 

expected for healthy human PBMCs 327. The negative fraction proportionally 

increased levels of T cells, B cells, and NK cells in response to monocyte 

depletion (Figure 4.6B), and while monocytes were depleted in this sample some 

remained (proportionally 2.87% of the sample acquired). Which meant a small 

number of monocytes was lost to this method. The purity of the monocyte 

isolation was very high at 91.3% (Figure 4.6C). This is a reliable purity level to be 

certain that the measurable biological effects observed in upcoming assays will 

be from the monocyte compartment, with negligible influence from other PBMC 

components. 
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Figure 4.6 Assessment of Monocyte Purity using CD14 Positive Isolation 
Peripheral blood mononuclear cells are separated from blood via density based centrifugation and 
CD14+ Monocytes isolated using Stem Cell Easy Sep Isolation Kit II. The purity of this isolation 
was assessed using flow cytometry. (A) The total PBMC population, (B) negative fraction which is 
discarded, (C) and isolated CD14 monocyte fraction were all stained for T cells (CD3), B cells 
(CD20), NK cells (CD56), and Monocytes (CD14 and CD16). N=1, 1 experiment shown 
representative of 2 experimental repeats 
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Macrophage colony stimulating factor (M-CSF) is a haemopoietic cytokine/growth 

factor found endogenously in the body, required for the survival, proliferation 

and the differentiation of monocytes, their precursors and their differentiation 

potentials328,329. It is therefore a central growth factor in the maintenance of 

monocytes in cell culture. When monocytes encounter this growth factor in vitro 

they begin to adhere to plastic and over time develop an elongated morphology 

resembling monocyte derived macrophages (Figure 4.7A). 

As well as monocyte derived macrophage differentiation, it was also of interest 

to investigate PAR2 expression upon monocytic differentiation into OCs. PAR2 

has previously been implicated in bone biology 330 and now with known 

expression in OC precursor monocytes (Figure 4.4) it is of interest to further 

clarify the role of this receptor in monocyte derived osteoclast differentiation. 

The protocol followed to differentiate human monocytes into osteoclasts is 

shown in Figure 4.7 B. OCs will positively stain for the TRAP enzyme (appears 

purple), while macrophage-like differentiated cells will not express this enzyme 

and will not stain (Figure 4.7 C and D). These protocols were sufficient to 

generate adherent monocyte derived cells which morphologically resemble 

macrophages (Figure 4.7 A and C) and TRAP positive, multinucleated OCs (Figure 

4.7 B and C). Using these in vitro differentiation states the plasma membrane 

expression of PAR2 in monocyte differentiation potentials could be explored. 
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Figure 4.7 Protocols for Monocyte Differentiation Successfully Generate Monocyte derived 
Macrophages and Osteoclasts. 
The monocyte fraction isolated from PBMCs was then cultured in (A) M-CSF alone as a 
macrophage control, or (B) cultured in the presence of M-CSF and RANKL to differentiate into 
multinucleated osteoclasts. At the end point of these cultures both (C) macrophage controls and 
(D) osteoclasts were TRAP stained in order to observe and quantify osteoclastogenesis, 
representative images of 1 donor are shown. 

 

To assess whether monocyte differentiation via M-CSF changed the plasma 

membrane expression of PAR2, a time-course of PAR2 detection was conducted 

throughout monocyte differentiation (Figure 4.7A). In the first instance, 

monocytes were isolated from buffy coats and immediately stained for surface 

PAR2 (Figure 4.8A), this ex vivo plasma membrane stain was positive in both 

donors. To evaluate whether this expression changed over time 

monocytes/monocyte-derived macrophages were harvested and stained for PAR2 

(Figure 4.8A). After 24 hours of culture in M-CSF, monocytes lost PAR2 

expression (Figure 4.8A and C). Further differentiation was then completed and 

fully adherent and matured macrophages were harvested on days 5 and 6 post M-

CSF culture and stained for PAR2. The expression of PAR2 on the plasma 

membrane of macrophages re-surfaces on day 5 of this culture, and then is 

reduced to undetectable levels again on day 6 (Figure 4.8 A and C). 
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One confounding factor with regard to this longitudinal data was that the non-

specific staining increased over time as the monocytes differentiated down the 

macrophage lineage (Figure 4.8B). The secondary only control is a control stain 

which sets the baseline of non-specific antibody binding. The increase in non-

specific antibody binding may be attributed to an increase in the expression of 

IgG receptors. Further optimisation of this assay could be conducted for its use 

in macrophages. Modification of the protocol to include higher levels of FcR 

blocking agent or additional washes could be employed to limit the non-specific 

binding of antibodies with these highly adherent cells. The enhanced baseline 

fluorescence levels detected could also be ascribed to influences out-with 

additional antibody binding. For example, macrophages have an increase in 

autofluorescence levels. Overall the change in baseline fluorescence between 

monocytes and matured macrophages may limit their direct comparison to other 

time points and the enhanced baseline fluorescence may influence the reliability 

and interpretation of the data. This data as a whole indicates that freshly 

isolated monocytes express high levels of plasma membrane PAR2 which is less 

consistently expressed during macrophage differentiation and culture (Figure 

4.8). 
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Figure 4.8 PAR2 Expression Across M-CSF Macrophage Differentiation. 
A time course of M-CSF dependent macrophage differentiation was conducted to analyse PAR2 
surface expression in response to differentiation. (A) Initially PBMCs were stained for PAR2 and 
monocyte PAR2 expression shown. (A) Cells were then cultured as per protocol outlined previously 
and lifted on days 1, 5, and 6 for flow cytometry PAR2 detection in 2 donors. (B) The Mean 
fluorescence intensity was plotted across time for the secondary only stain and (C) delta MFI 
calculated from this for the PAR2 stain (D61D5 stain – 2nd only stain) and also plotted against time. 
N=2,no additional experimental repeats. 

 

The same donors that were assessed in the above macrophage differentiation 

staining (Figure 4.8) were also used to detect PAR2 during OC differentiation. On 

each day of differentiation cells were harvested and stained for PAR2 (Figure 

4.9A). The expression of plasma membrane PAR2 is reduced in response to 

differentiation and culture comparative to freshly isolated monocytes (Figure 4.9 

A and C). Once again the baseline fluorescence, as represented with the 

secondary only control stain, is significantly increased as the monocytes develop 

down the route of osteoclast differentiation (Figure 4.9B), with comparable 

levels of non-specific binding found in the M-CSF differentiated cells (Figure 

4.8B). Therefore, while there appears to be moderate fluctuation in low levels 

of PAR2 expression in matured OCs, the reliability of this low expression level is 

limited by the enhanced baseline fluorescence. 
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Figure 4.9 PAR2 Expression Across Human Osteoclast Differentiation. 
A time course of M-CSF and RANKL dependent osteoclast differentiation was conducted to 
analyse PAR2 surface expression in response to differentiation. (A) Initially PBMCs were stained 
for PAR2 and monocyte PAR2 expression shown. Cells were then cultured as per protocol outlined 
previously (Figure 4.7) and lifted every day for 6 days for flow cytometry PAR2 detection in 2 
donors. The Mean fluorescence intensity was plotted across time for (B) the secondary only stain 
and (C) delta MFI calculated from this for the PAR2 stain (D61D5 stain – 2nd only stain) and also 
plotted against time. N=2, no additional experimental repeats.  
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4.2.4 PAR2 Expression Changes in Response to Monocyte 

Maturation or Inflammatory Signals 

While the limitations of the current stain are appreciated, when comparing with 

the control stain differentiated cells appear to down-regulate their PAR2 

expression once in culture, with either M-CSF or M-CSF and RANKL. There are 

multiple potential interpretations that could be made from this data. 1) The 

growth factor M-CSF downregulates the PAR2 surface expression; 2) In vitro 

culturing conditions downregulate PAR2 expression; 3) In vitro differentiating 

monocytes begin to produce serine proteases which stimulate PAR2 and result in 

continual internalisation of the receptor making detection difficult. Short term 

incubations of human monocytes with monocytic growth factors; M-CSF, and GM-

CSF, were then conducted to limit the issues experienced with long term 

maturation. This would determine whether monocytes downregulate PAR2 in 

response to these maturation signals. Analysing the response to 2 distinct growth 

factor signals allows interpretation of whether a change in PAR2 levels was M-

CSF pathway specific. 

PBMCs were isolated from 6 new buffy coat donors and 90 minute stimulations 

with 50ng/ml of M-CSF (Figure 4.10A) or GM-CSF (Figure 4.10B) were performed 

and samples then stained for PAR2. Each monocyte population was plotted 

separately to identify potential differences between classical, intermediate, and 

non-classical PAR2 responses. Due to the high proportion of classical monocytes 

in the blood, the total monocyte population is heavily biased by the response of 

these cells, and the possible influence on other monocyte populations is often 

lost in this analysis. Further analysis of each monocyte subpopulation was 

conducted in order to observe potential changes in the intermediate (Figure 

4.10E and I) and non-classical populations (Figure 4.10F and J). Overall no 

change in PAR2 expression was found in response to M-CSF in any monocyte 

population (Figure 4.10 C-F). There was also no change in plasma membrane 

PAR2 expression in response to short term GM-CSF responses (Figure 4.10B, G-J). 

This data indicates that short term exposure to monocyte associated growth 

factors which initiate cell differentiation do not robustly change PAR2 plasma 

membrane expression in primary human monocytes. 
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Figure 4.10 Monocyte PAR2 Surface Expression Does Not Change in Response to short 
term M-CSF and GM-CSF. 
PBMCs were isolated from healthy human blood and left unstimulated in media (red histogram) or 
stimulated (orange histogram) for 90 mins with (A) 50ng/ml M-CSF or (B) 50ng/ml GM-CSF. The 
DMFI was then calculated by subtracting the control 2nd only antibody (blue histogram) from the 
D61D5 stain and plotted with paired analysis to unstimulated conditions for both (B) M-CSF 
stimulation and (C) GM-CSF stimulation. N=6, no additional experimental repeats performed. 

 

To expand on this, investigation of the impact of inflammatory signals on PAR2 

surface expression of human monocytes was conducted. Ligands which drive 

alternate inflammatory signals were chosen; TLR4 stimulation via LPS, and NFkB 

stimulator and RA associated cytokine, TNF. Again short term stimulation of 
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these inflammatory signals (90 minutes) was analysed. The same 6 PBMC donors 

from the previous experiment (Figure 4.10) were stimulated for 90 minutes with 

TNF (Figure 4.11A) or LPS (Figure 4.11B). All staining was subsequently 

conducted on ice in order to prevent modulation of surface antigens out-with 

this time frame. Deeper analysis of the MFI for each donor was then conducted 

to interrogate the influence of stimulation on each subpopulation of monocytes 

for TNF (Figure 4.11C-F) and LPS (Figure 4.11G-J) responses. There was no 

consistent modulation of PAR2 expression in any population of human monocytes 

in response to short term TNF stimulation (Figure 4.11 C-F). 

Analysis of subpopulations of monocytes in response to short term LPS 

stimulation identified that CD14hi classical monocytes consistently, across 

donors, reduce PAR2 expression (Figure 4.11 H). This shift in PAR2 surface 

expression is not replicated in either the intermediate or classical monocytes 

(Figure 4.11 I and J respectively). From this data it is clear that PAR2 expression 

is consistently reduced across multiple donors in response to TLR4 stimulation, 

but only in the classical subpopulation of healthy human monocytes. While PAR2 

expression does not appear to be robustly altered in any monocyte population in 

response to a short term alternative inflammatory signal TNF. 
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Figure 4.11 . Monocyte PAR2 Surface Expression is Reduced in Response to short term LPS 
Stimulation. 
PBMCs were isolated from healthy human blood and left unstimulated in media (red histogram) or 
stimulated for 90 mins with (A) 100ng/ml TNF or (B) 100ng/ml LPS (orange histogram). The delta 
MFI was then calculated by subtracting the control 2nd only antibody (blue histogram) from the 
D61D5 stain and plotted with paired analysis to unstimulated conditions for both (C-F) TNF 
stimulation and (G-J) LPS stimulation. Wilcoxon paired analysis test was used for statistical testing, 
this does not assume gaussian distribution of data as not enough samples were collected to 
confirm normal distribution. N=6, no additional experimental repeats performed.  
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4.2.5 PAR2 Expression in Monocytes Isolated from Rheumatoid 

Arthritis Patients 

Prior work and publications from our group analysed PBMCs from individuals with 

RA for PAR2 plasma membrane expression. This study concluded that within the 

PBMC populations monocytes had the strongest differential PAR2 expression, 

with increased surface PAR2 in RA patients compared with age and gender 

matched individuals with no joint disease297. It was also concluded that PAR2 

expression was further enhanced on monocyte plasma membrane when 

individuals were admitted into hospital with flare, compared with those 

experiencing lower disease activity in outpatient clinics. Moreover, PAR2 

expression in CD14+ monocytes correlated with blood markers of systemic 

inflammation in these patients such as CRP and ESR. This study was conducted 

using the SAM-11 clone for detecting surface expression of PAR2. The data 

presented in Chapter 3 of this thesis demonstrated that this particular clone of 

antibody could not reliably detect differential expression of PAR2 in transfected 

cells versus naïve control cells. The assessment concluded that this clone was 

not suitable for PAR2 expression assessment using flow cytometry. In light of 

this, reassessment of the PAR2 expression on monocytes from individuals with 

RA, utilising the antibody clone (D61D5) and the optimized staining assays, 

would be valuable to ensure the robust nature of this finding. 

To conduct this study outpatients were recruited from rheumatology clinics 

across hospitals in the Greater Glasgow and Clyde area. In total, peripheral 

blood was collected from 25 patients and the demographic and clinical 

information of these patients is shown in Table 4.1. The samples collected had a 

female to male ratio of 19:6, which reflects the generally female dominant 

epidemiology of this condition. The mean age of patients was 64, ranging from 

37 to 88 years. These demographics were matched as closely as possible with 

healthy human samples collected as comparison. The details of this population 

are shown in Table 4.2. Again, a more female predominant population of healthy 

controls was collected (62.5% female), with a median age of 60.5 (ranging 56-

64). 
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Table 4.1 Clinical Parameters of RA Patients 

 

 

Table 4.2 Demographics of Healthy Control Samples 

 

Utilising the same panel used for all the healthy human monocyte analysis from 

PBMC populations shown in Figure 4.4 and used throughout 4.2.2, PAR2 plasma 

membrane expression was analysed. A secondary only control for D61D5 staining 

was performed for all samples so the DMFI of the PAR2 stain was calculated 

against internal controls. The DMFI (subtracted from control stain) was 

calculated for all RA patients and healthy controls in each subpopulation of 

monocytes and this data is shown in Figure 4.12A. Each monocyte population is 

also represented individually for ease of viewing, with classical monocytes in 

Figure 4.12B, intermediate monocytes in Figure 4.12C, and non-classical 

monocytes in Figure 4.12D. Firstly, there were no robust detectable differences 

in monocyte PAR2 expression between individuals with RA and healthy controls 

in any subpopulation of monocytes (Figure 4.12A-D). There is an observable 

difference in the mean MFI of PAR2 in the classical subset, with RA samples 

averaging at 1127.65 and healthy samples at 731.75 (Figure 4.12B). This is 

mirrored in intermediate monocyte populations, with RA samples mean at 651.3 

while healthy samples 447.125 (Figure 4.12C). This is driven by a very small 

population of RA patients which appear to express high levels of PAR2 (Figure 
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4.12E), compared with RA patients with low to moderate PAR2 expression 

(Figure 4.12F) and the healthy controls (Figure 4.12G). However, this could be 

purely based on general variability in PAR2 expression within the population. 

From this data we cannot be certain that if the sample size of healthy controls 

was increased (a group which is currently under powered) that these samples 

would not also contain high PAR2 expressors. One valuable observation that 

remains consistent from previously analysed buffy coat monocytes is that 

classical monocytes have the highest PAR2 expression in RA patient samples as 

well, with receptor expression decreasing as monocytes mature to the non-

classical phenotype (Figure 4.12 B-D). 

This study did not confirm the previously established statistical differences 

between health samples and samples from people with RA, in terms of their 

monocyte PAR2 expression. Despite this further investigation of PAR2 expression 

in relation to clinical parameters was still conducted. It was previously 

established that PAR2 expression in monocytes correlated with clinical 

measurements of disease activity and systemic inflammation297. The relationship 

between clinical measurements and PAR2 expression was therefore investigated 

in this data set and the clinical parameters examined were extended beyond 

what was analysed in the original study by Crilly et al 297. 
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Figure 4.12 Monocyte Surface Expression of PAR2 is not Altered in RA Patients Compared 
with Healthy Controls. 
Blood samples were collected from RA patients attending out-patient clinics in the Great Glasgow 
area (N=25) and healthy individuals with no joint pathology or anti-inflammatory treatments (N=8). 
PBMCs were isolated from blood samples via gradient dependent centrifugation and whole PBMC 
population was stained on ice with a panel of antibodies to identify monocytes and PAR2 
expression via flow cytometry. Monocytes were gated for as shown in Figure 4.4, with classical, 
intermediate, and non-classical populations located based on CD14 and CD16 expression. Each 
sample was stained with the anti-PAR2 D61D5 antibody and subsequent secondary conjugated 
with AF647 fluorophore, or alternatively stained with the secondary only as a control negative stain. 
The AF647 MFI of the negative control stained sample was subtracted from the PAR2 stained 
sample to generate a 𝛥MFI of PAR2 expression. (A) This is plotted individually for each sample 
with RA samples in green and healthy samples in purple. The PAR2 expression in the total 
monocyte population, and in each subpopulation of monocytes is plotted in A. Each monocyte 
population; (B) classical, (C) intermediate, and (D) non-classical is also plotted separately for ease 
of viewing. Expression pattern of PAR2 followed normal Gaussian distribution in the healthy control 
samples but not in RA patients as tested with the D’Agostino & Pearson test, and therefore non 
parametric Mann-Whitney statistical tests were applied to the data. Representative histograms of 
(E) high PAR2 expressing RA patients, (F) low PAR2 expressing RA patients, and (G) healthy 
controls, for total monocytes and each sub population of monocytes. PAR2 stain in red, and control 
stain in blue. 
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The primary clinical measurements to gauge and measure disease activity in RA 

patients involves calculation of the Disease Activity Score 28 (DAS28). This 

American College of Rheumatology (ACR) approved assessment of disease 

activity involves calculation of the number of swollen joints, the number of 

tender joints (out of a possible 28 joints included in this measurement), a blood 

marker of inflammation (either ESR or CRP) and finally incorporation of the 

patients global assessment of health. Therefore, the correlative relationship 

between the DMFI of PAR2 expression on monocyte populations and the ESR 

value (Figure 4.13A), and then the DAS28-ESR (Figure 4.13B) was assessed. The 

DMFI of PAR2 expression in monocyte subsets was then compared to CRP (Figure 

4.13C) and DAS28-CRP (Figure 4.13D) for all of the individuals with RA recruited. 

PAR2 expression in all monocyte populations failed to correlate with any of these 

recognised measurements of disease activity (Figure 4.13). This new data set 

fails to replicate the previous observations from the former cohort of patients 

stained with SAM-11 antibody clone which identified correlation between both 

CRP and ESR and PAR2 expression in CD14+ monocytes 297. 
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Figure 4.13  PAR2 Surface Expression in RA Monocytes Does Not Correlate with Clinical 
Disease Measurements. 
The 𝛥MFI for PAR2 expression in each monocyte sub population (classical, intermediate, and non-
classical) was plotted against clinical measurements of disease activity, (A) ESR, (B) DAS28-ESR, 
(C) CRP, and (D) DAS28-CRP. The linear regression of the data was plotted. N=25 

 

Subsequently, correlation analysis was extended to include more clinical and 

general demographic data for comparison with levels of PAR2 plasma membrane 

expression. Based on clinical measurements patients can be grouped into active 

disease or remission status, a binary representation of disease activity. This 

cohort contained a significant group of patients in remission (15/25), therefore 

this binary status descriptor may be a better method of analysis for this 

particular cohort. The PAR2 expression DMFI of each monocyte population was 
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split dependent on whether the patient had active disease or was in remission 

(Figure 4.14A). This type of analysis was not performed in the Crilly study 

because they did not recruit any patients in remission. Again there were no 

distinctions in PAR2 expression between monocytes from active disease or 

remission in any subpopulation of monocytes (Figure 4.14A). PAR2 expression in 

relation to years since diagnosis was then investigated, which may suggest 

whether this receptor has more prevalence in early development/ establishment 

of disease, or if its more prominent in chronic long term stages of disease. There 

was no correlation between PAR2 expression and duration of symptoms in any of 

the monocyte populations measured (Figure 4.14C), indicating that it is not 

prominently expressed at any particular stage of disease progression. 

Generic demographics unrelated to disease activity were then analysed to 

ensure PAR2 expression wasn’t related to these factors which may be 

overshadowing disease associated differences. There were no significant 

differences in PAR2 expression dependent on gender (Figure 4.14B) and there 

was also no correlation between PAR2 and the age of the patients, consistent 

across all monocyte populations (Figure 4.14D). Therefore, overall there were no 

measured general demographics which associate with PAR2 expression. 



4  159 
 

 

Figure 4.14 PAR2 Surface Expression in RA Monocytes Does Not Correlate with Disease 
status, Gender, Age, or Symptom Duration. 
Patient samples collected at out-patient clinics were separated clinically as those with active 
disease (blue, N=10) or those in remission (purple, N=15), and (A) the 𝛥MFI of PAR2 expression in 
total monocytes and classical, intermediate, and non-classical monocyte subsets of these patients 
plotted individually. (B) The samples were then separated by gender; female (blue; N=19), or male 
(purple, N=6). (C) The 𝛥MFI of PAR2 expression in each monocyte population was plotted against 
symptom duration in years for each patient and linear regression calculated (N=25). (D) The 𝛥MFI 
of PAR2 expression in each monocyte population was plotted against the age of each patient and 
linear regression calculated (N=25). 

 

Immuno-suppressing treatments were taken by all patients recruited to this 

study in order to control their disease. These systemic therapies will influence 

immune cell behaviour and in-turn could impact PAR2 plasma membrane 

expression in circulating immune cells. There was a large breadth of variation in 

treatment options employed in this cohort, thus the samples could not be 

divided by their exact treatment regime. Patients were sub-categorised based 

on whether they were receiving methotrexate or not (Figure 4.15A), or whether 

they were currently on any biologics (Figure 4.15B). In short, none of the 
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treatment conditions analysed were associated with a significant difference in 

PAR2 expression (Figure 4.15). 

 

 

Figure 4.15 Analysis of Monocyte PAR2 Surface Expression in Rheumatoid Arthritis 
Patients and Treatment Status 
Patients were sub divided based on treatment status and again plotted for 𝛥MFI of PAR2 
expression in each monocyte population. Patients were separated by (A) methotrexate treatment, 
with those receiving methotrexate in green (N=14) and individuals not in purple (N=11), and (B) 
separated by biologic status, with those receiving biologics in green (N=6) and biologic naïve in 
purple (N=19). Each population was statistically tested using Mann Whitney to identify any 
significant differences in PAR2 expression with treatment status, no populations had significantly 
differential PAR2 expression based on drug treatment. 

 

Table 4.3 Sero-status of RA Patient Cohort 

 

 

The final analysis of the patient data investigated the relationship between PAR2 

expression and auto-antibody status. The sero-status of recruited patients was 

known and thus individuals were sub-divided based on the presence or absence 

of both rheumatoid factor (RF) and antibodies against cyclic citrullinated 

peptides (CCP). Most of the samples collected were from sero-positive patients, 

with only 3 completely sero-negative patients included in the study (Table 4.3). 
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It is therefore challenging to draw any comparisons between seropositive and 

seronegative patients with one group having such low sample numbers (Figure 

4.16A). This was further divided to separate RF positive patients and RF negative 

patients. No relationship between PAR2 expression and the presence of RF was 

identified (Figure 4.16B). The same analysis was also applied for CCP positive 

and negative samples (Figure 4.16C). Again this analysis is challenging to 

interoperate due to very few CCP negative patients (N=4). The data was then 

further divided to display double positive, RF alone positive, CCP alone positive 

and sero-negative samples separately (Figure 4.16D, E). However, the double 

positive autoantibody group was so prominent in this cohort it is challenging to 

make any comparisons. Overall, it may be of value to expand this study to 

include a larger variety of autoantibody positive combinations which would open 

up this data for further analysis on this clinical parameter. 
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Figure 4.16  Analysis of Monocyte PAR2 Surface Expression in Rheumatoid Arthritis 
Patients and Autoantibody Status. 
Patient samples were sub divided based on Rheumatoid Factor and anti-CCP autoantibody status. 
The 𝛥MFI of PAR2 expression was plotted for total monocytes and each monocyte population for 
(A) sero-positive (N=18) vs sero-negative (N=3), (B) separated by Rheumatoid factor positive 
(N=16) and negative (N=5), and (C) by anti-CCP positive (N=15) and negative (N=6). (D) Patients 
were then separated as double RF and CCP positive (N=13), single positive for either CCP (N=2) 
or RF (N=G), or sero-negative (N=3) and (E) then plotted each monocyte population separately. 
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4.3 Discussion 

Despite the abundant data in the current literature surrounding the role of PAR2 

in the immune system and the inflammatory response284,295,331-337, there is 

limited confidence in our current knowledge of PAR2 expression in immune cells. 

This uncertainty is reinforced by conflicting published data and a lack of 

confidence in the reliability of the antibodies currently available to detect PAR2 

protein300. The literature remains conflicted on whether monocytes express PAR2 

on their surface. Some papers have confirmed expression of PAR2 on healthy 

human monocytes286, while others report no detectable expression272. Further to 

this, within studies that find positive staining, some display extremely low 

expression levels 270 while others report much higher levels of detection286. 

While the majority of these papers use the SAM-11 clone of anti-PAR2 there is 

also the use of other commercially available antibodies and generation of 

polyclonal antibodies in house to further complicate this issue. Differences 

between clones in detection level of PAR2 was also noted by Lopez et al, who 

found different levels of expression in cell line HT-29 with SAM-11 and clone 

344222 from R&D286. However, an evaluation of studies which only used the SAM-

11 clone for monocytic PAR2 detection also did not provide consistent findings, 

with some analyses reporting very low or no expression with this antibody270-272, 

while others reported strongly positive staining338. It is therefore not only an 

issue resulting from the application of different antibody clones. Overall, the 

literature is not lacking in publications attempting to clarify PAR2 expression on 

monocytes, but thus far has failed to resolve the issue. 

Our ability to detect this receptor, or conversely confirm its lack of expression in 

human monocytes, would be extremely valuable. This would inform us as to 

whether it is worth pursuit of determining the functional influence of PAR2 on 

this cell type. Also with the reported increased expression of this receptor in 

many disease settings297,299,324 this may present a potential distinguishing feature 

of different phenotypes of disease or be indicative of disease activity. 

The data presented in chapter 3 determined that SAM-11 was not reliable for 

detection of this receptor via flow cytometry in our hands. One anti-PAR2 

antibody clone that generated reliable flow cytometric detection of PAR2 in 

transfected cells line was D61D5. This clone has featured in a limited number of 
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cancer publications, where it has only been used for western blot analysis 339, or 

immunohistochemistry (IHC) 340. Using the optimised methodology from chapter 

3 PAR2 expression was consistently detected in healthy human monocytes, with 

substantial donor to donor variation in detected levels (Figure 4.4). Positive 

PAR2 expression was detected in all of the 14 healthy samples acquired from 

SNBTS. The expression level of PAR2 was also analysed in each subset of 

monocytes; classical, intermediate, and non-classical, which has never been 

published before. From this it was determined that classical CD14hi monocytes 

express significantly higher levels of PAR2 compared with other monocyte 

populations. A significant reduction in PAR2 expression was detected in 

intermediate monocytes and a further, highly significant reduction in non-

classical monocytes, with some donors expressing no detectable PAR2 on their 

non-classical cells. 

The down regulation of this receptor upon monocyte conversion towards a 

luminal patrolling state may be indicative of its functional role in monocyte 

biology. Classical monocytes are the inflammatory responders with rapid 

recruitment into inflamed tissue sites, while intermediate and non-classical 

monocytes do not as readily migrate to these sites to enhance the inflammatory 

response. This could suggest that PAR2 may play a role in the recruitment, the 

transmigration, or the inflammatory activity of classical monocytes when in an 

inflamed tissue. Its lack of expression in the “less inflammatory” monocyte 

subsets may be suggestive of its role in inflammation. 

The expression pattern found on healthy primary monocytes was very different 

from that in THP-1s, which had no detectable PAR2 expression (Figure 4.1). It is 

well recognised that there are many differences between primary monocytes 

and the immortalised monocytic cancer cell line THP-1341 and it is therefore not 

surprising to identify differences in PAR2 expression levels between these cell 

types. However, previous data published by Kang and colleagues determined 

using the SAM-11 clone of antibody that THP-1 cells expressed PAR2 protein on 

their cell surface, as well as transcript levels of FRL2R as detected via endpoint 

PCR. They also demonstrated that PAR2 activation in naive THP-1s via both 

classical trypsin cleavage and activating peptide resulted in activation of MAP-

kinase signalling pathway, increased THP-1 proliferation, and the production of 
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TNF342. It is well recognised that cancer cell lines evolve very quickly due to 

positive clonal selection driven by cell culture conditions. This genetic drift 

results in the same cell line from different labs expressing a very different 

genetic profile, leading to irreproducible results from one lab to another343. 

Further functional testing such as ERK phosphorylation could have been 

performed to determine if there was a functional receptor in our THP-1 cells. 

However, this was beyond the scope of the current project and fundamentally if 

work could be conducted in primary monocytes this would be a more preferable 

method of determining PAR2 function in human monocytes. 

A lot of work has been conducted looking at the role of PAR2 in monocyte 

derived macrophages. Detection of this receptor has been reported in 

macrophages located in synovial biopsies from RA patients344. Previous studies 

have shown that human in vitro monocyte derived macrophages respond to PAR2 

activation, through production of inflammatory mediators271,345. Low levels of 

surface PAR2 have been detected in human monocyte derived macrophages, 

differing slightly between M-CSF and GM-CSF matured macrophages271. 

Additionally, a study conducted by Colognato and colleagues proposed that 

CD14+ human monocytes do not express PAR2 but begin to upregulate this 

expression upon differentiation with M-CSF in culture272. Surface expression of 

PAR2 in cultured monocyte derived macrophages was not reliably detected in 

our hands (Figure 4.8). This may be due to the staining protocol used being 

unsuitable for the cells type they were applied to, as demonstrated with the 

differentiation time dependent increase in non-specific staining (Figure 4.8B). 

However the lack of detectable PAR2 in human monocytes and positive 

expression in macrophages found by Colognato completely contradicts our 

findings with the D61D5 antibody in human monocytes and macrophages. The 

data generated in the Colognato and the Steven study were both acquired with 

the SAM-11 clone of anti-PAR2. The difference in antibody clone used may be 

the significant factor resulting in disparate results from these 2 studies. 

It is also possible that the reason a down regulation of PAR2 was detected for 

both the macrophage and osteoclast differentiation cultures is in fact not 

dependent on the differentiation response. Instead, this could be the result of a 

response to the static, 2 dimensional nature of this cell culture which does not 
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deliver the additional stimuli provided in vivo through bio mechanical activation, 

or fluid flow. It has been previously reported at the bone research society 

meeting in 2015 that chondrocyte cell line SW1353s did not express PAR2 in 

static cell culture conditions, but when this cell was exposed to fluid flow sheer 

stress for only 1 hour there was a marked increase in the expression of this 

receptor 346. This mechanism may not be limited to this cell type and may be a 

requirement for expression in other cell types. It may also explain differences in 

PAR2 detection found between THP-1 cell line which has been maintained in 

static cell culture, versus ex vivo primary human monocytes recently isolated 

from peripheral blood under constant flow stress. 

Alternatively, loss of detectable PAR2 in cell culture maintained monocyte 

derived cells could also be the result of endogenous protease production in 

culture, causing continuous internalization of the receptor, making it challenging 

to detect. Macrophages are also known protease producers, especially cysteine 

proteases such as cathepsin S347,348. In addition, the primary function of 

osteoclasts is the production of acids and proteases in order to break down the 

mineral content of bone, making them more catabolically active than 

macrophages287. While the protease which is most highly produced by osteoclasts 

is cathepsin K, a cysteine protease, which does not have reported interaction 

with PAR2, this protease does have known activity with PAR3 and PAR4. 

Cathepsin K results in platelet aggregation in a PAR3 and PAR4 dependent 

mechanism, inducing the MAPKinase signalling pathway through these 

receptors349. Other cysteine proteases such as cathepsin S have been reported to 

cleave PAR2 and result in alternative signalling pathways, in a non-canonical 

activation of the receptor350. Therefore, while it has not been widely reported 

that osteoclasts produce PAR2 activating proteases, it would be possible that 

they do, given their known proteolytic activity. Both macrophage and osteoclast 

in vitro cultures may therefore contain endogenously produced proteases which 

cause internalisation of PAR2, limiting our capacity to detect it on the cell 

surface. 

Further to this it is also possible that the method of removal of these adherent, 

differentiated cells using TrypLE still activated PAR2. Cells had to be put into 

suspension in order to run through the flow cytometer. This method of 
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dissociation was chosen because TrypLE buffer does not contain trypsin, however 

it does still have enzymatic activity. The proteases used in this solution are 

proprietary information and could not be checked for known PAR2 activators. 

Attempts were also made to dissociate cells from the tissue culture plastic using 

non-enzymatic methods of high concentrations of EDTA and ice, however these 

methods were ineffective and cells remained adherent. 

In order to limit the effect of long term culture and removal on potential 

alteration of the surface expression of PAR2 short term stimulations of freshly 

isolated monocytes were conducted. There was no consistent impact on PAR2 

expression by monocyte growth factors M-CSF and GM-CSF in the short term 

(Figure 4.10). It is most likely that these stimuli do not have a direct impact 

upon PAR2 expression. Of all the growth factors and stimulations tested for short 

term impact on PAR2 expression a consistent change in receptor expression was 

only found with LPS stimulation (Figure 4.11). Every donor (N=6) had reduced 

PAR2 expression in the classical monocyte compartment. This was somewhat 

surprising as previous reports have shown LPS stimulation elevated PAR2 

expression and responsiveness in endothelial cells351. 

The LPS receptor, TLR4, has been associated with PAR2 in multiple publications, 

which is interesting as these receptors both function as an innate sensor of 

damage and infection. It has been proposed that these signals work co-

operatively, with one receptors activity enhancing the other. Synergistic 

enhancement of PAR2 signals through TLR4 activity have been observed by Chi 

and colleagues in 2001, when they observed PAR2 dependent IL-6 release in 

HUVECs was enhanced with LPS co-stimulation352. Evidence of co-operation of 

these receptors and their signals was further demonstrated when PAR2 

activating peptides were shown to enhance tlr4 mRNA expression and LPS 

stimulated F2RL1 mRNA expression353. When these signals were stimulated in 

combination this further enhanced the migratory potential of PAR2 and TLR4 

expressing carcinoma cell line SW620, over single stimulation with either of 

these signals353. In airway epithelial cells PAR2 activating peptide alone and LPS 

alone induce production of chemokine IL-8. However, when these stimulations 

are used in combination the production of IL-8 by epithelial cells is significantly 

enhanced, confirming the role for this synergistic signal enhancement in 
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directing increased cellular migration354. Further to this an increase in PAR2 

induced NFkB signal was found to be dependent on the presence of TLR4. 

Indicating that inflammatory NFkB signalling through PAR2 protease detection 

was somewhat dependent on co-operation with TLR4355. 

Current working models for how these receptors interact includes both 

interaction via crosstalk of signalling intermediates and adaptor proteins but also 

through direct interaction at the plasma membrane and within endosomes. 

Direct interaction of these receptors was proposed after detection of these 

receptors by co-immunoprecipitation 355. In the system adopted by Rallabhandi 

and colleagues, the physical interaction of these 2 receptors was dependent 

upon the presence of PAR2 activating peptide. It is known that in CD14 

expressing cells such as monocytes and macrophages TLR4 stimulation results in 

endosomal dependent internalization of the TLR4 receptor and initiation of 

MyD88 independent signalling 356. Internalisation of TLR4 can be initiated by LPS 

activation, in a LPS Binding Protein (LBP) dependent fashion, and this has been 

observed within 1 hour of LPS stimulation 357. It is therefore possible that our 

observed reduction in PAR2 expression after short term LPS stimulation (30 mins 

to 2 hours) is the product of internalization of PAR2-TLR4 heterodimers upon 

TLR4 stimulation and not necessarily an LPS dependent regulation of PAR2 

expression. To test this hypothesis FRET technology could be applied to identify 

whether these receptors closely interact during LPS stimulation and internalise 

together. Protein FRET probes were not available for these receptors to explore 

this question further, but it may be valuable to do so in the future. 

The report which previously demonstrated an increased PAR2 expression in 

endothelial cells found that this was only detected after 12 hours of LPS 

treatment and increased responsiveness to PAR2 activators observed only after 

12 hours of LPS pre-treatment 351. The method of detection used in these assays 

was western blot which would reflect total PAR2 protein as opposed to only 

surface expression. Therefore, it is entirely possible that initial responses to LPS 

involve PAR2 internalisation and subsequent, later timepoints could show an 

enhanced expression. However, timepoints beyond 2 hours were not examined 

and this cannot be confirmed. 
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With confirmation that healthy monocytes expressed cell surface membrane 

PAR2, this investigation could be taken further to analyse PAR2 monocyte 

expression under inflammatory conditions. Previous research from our group 

determined that RA peripheral blood monocytes had significantly enhanced 

expression of PAR2 over healthy comparisons. This study was conducted with the 

SAM-11 clone of antibody so it was important to ensure that the same enhanced 

expression was found using the optimised D61D5 clone protocol. The data 

generated with this anti-PAR2 clone did not show any significant difference in 

PAR2 expression between healthy individuals and RA patients (Figure 4.12) and 

no correlation of PAR2 MFI with any of the clinical parameters known (Figure 

4.13, Figure 4.14, and Figure 4.15). While there was no significant difference 

between healthy and RA in our study, there is an observable small subset of 

patients (N=6 out of 25 total patients) which had higher PAR2 expression than 

the highest expressing healthy control. The distribution of RA patient PAR2 stain 

data was not normally distributed as found by D’Agostino & Pearson test (data 

not shown), while the healthy control data spread did follow Gaussian 

distribution. This is likely a reflection of the small subset of patients with 

enhanced PAR2 expression. This trend is also observed in the Crilly et al 

paper297. Out of the total 75 patients recruited in this previous study, only 15-20 

appear to have an enhanced % of PAR2 expressing monocytes over the general 

expression found in healthy individuals. It is possible that the statistical 

significance achieved in this study was aided by a higher powered study (N=94 

RA, N=15 healthy controls). The patients in our study which had enhanced PAR2 

expression over healthy controls were not further defined by any clinical 

parameter that was assessed. So whether the observation of a small subset of 

high PAR2 expressors in this study has any clinical relevance is unlikely. 

According to the Crilly et al paper their enhanced PAR2 expression did correlate 

with systemic inflammation clinical measures ESR and CRP, however the plots 

for this are not shown297. 

There were also significant differences in the demographics and clinical severity 

of the patient samples collected in this cohort in comparison with the previous. 

The study conducted by Crilly et al, only included patients with active disease. It 

also included patients during a flare which resulted in hospital admission, the 

most severe phase of disease. This study included more patients that were 
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currently in remission, and people with active disease with lower DAS scores; the 

maximum DAS28-ESR was 6.37, with only 8 recruited patients having a DAS28-

ESR of over 3.5. Therefore, patient cohort presented here had significantly 

lower disease severity overall. From this it cannot be identified whether the 

differences observed between the 2 studies was the result of a different patient 

demographic with regards to disease severity, lower powered trial in terms of 

number of recruited patients and healthy controls, or whether this can be 

attributed to the antibody used. 

In order to directly compare to the previous study, the same demographic and 

clinical severity of patients could have been recruited. However, given the 

frequency of samples from in-patient flare, and the number of patients required 

for appropriately powered experiment, this recruitment could not be conducted 

within the time-frame available. Another method of directly comparing SAM-11 

and the D61D5 antibodies, would be to stain the current cohort with both of 

these and compare the staining intensity. For the first few patients this was 

performed, and while the D61D5 protocol staining procedure resulted in positive 

PAR2 expression in patient samples, SAM-11 stain was consistently negative, 

both for healthy controls and patient samples (data not shown). The use of SAM-

11 was then discontinued in this study. Overall, the use of SAM-11 during this 

study did not mimic the staining patterns reported previously. The cause of this 

is still unknown, and could possibly be the result of inconsistencies between the 

batch production of this clone. Overall, the D61D5 clone provided a more 

reliable PAR2 stain, and in the current demographic and number of patients 

collected the PAR2 expression measured with this method did not correlate with 

disease activity. 

In addition, the type of analysis conducted between this study and the Crilly 

cohort also differed297. In the previous study the percentage of PAR2 positive 

monocytes were compared, while the data presented here was the DMFI of the 

PAR2 stain. This method of data representation was chosen as it was observed 

that the population adjusted as a whole and never presented as distinct 

populations of PAR2 expression. The spread of data found by Crilly et al was 

never shown in the publication and the reported MFI was significantly lower than 

what our stain and panel set up detected. The MFI detected by Crilly et al was 
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on average 0 for healthy controls and 0.7 for RA patients. The staining protocol 

used in this study detected an average of 683.1 DMFI for healthy controls and 

1070.1 DMFI in the RA patient cohort. This indicates that the detection levels of 

PAR2 with SAM-11 in the previous study are extremely low in comparison with 

the detected PAR2 expression presented here, which brings into question the 

reliability of the previous observations. When looking at other published studies 

of PAR2 expression in inflammatory disease a similar problem is encountered. A 

study investigating PAR2 expression in peripheral blood monocytes of asthmatic 

patients using the SAM-11 antibody clone also detected very low MFI of PAR2 

expression (average MFI of 3) 299. While this expression is very low they did find 

that it correlated with clinical parameters of disease severity (airway function 

and total inhaled corticosteroid dose). 

In terms of comparing clinical data with PAR2 expression it would also be more 

valuable to increase the number of active disease samples so that there isn’t a 

skew towards lower disease activity in our cohort. As mentioned in the results 

section it may also be of interest to increase the diversity of auto-antibody 

expression in our samples in order to further explore the impact of auto-

antibody types on PAR2 expression. This cohort is highly dominated by double 

positive (RF and anti-CCP) sero-status with a lack of single positive and sero-

negative patients. 

Replicating the previously published study of RA patient samples was not the 

central priority of this thesis. Because of this, the time that could be dedicated 

to recruitment of patient and aged matched healthy controls was limited and 

this is the most complete study that could have been conducted in the time 

frame available.  
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4.4 Conclusion 

Overall the data presented in this chapter confirmed that healthy human 

monocytes do express cell surface PAR2. This expression level is highest in the 

classical monocyte population, with reduced expression in intermediate and non-

classical populations. PAR2 expression on classical monocytes is reduced upon 

short term TLR4 activation via LPS, further supporting previous research which 

closely linked these 2 immune associated receptors. 

Previous findings which correlated PAR2 expression rates in RA patient 

monocytes with clinical disease severity measurements were not reproduced in 

this study with the new anti-PAR2 clone D61D5. There were additional 

modifications to the study cohort this time around. The clinical severity of 

patients recruited in this study was significantly lower than the previous cohort, 

reducing the comparability of the 2 independent studies. However, the data 

presented in this chapter did not detect significant changes in RA patient PAR2 

expression from healthy donors. Nor did it correlate PAR2 expression with any 

clinical parameters in this cohort of patients. Overall, the experiments 

presented in this chapter refute the hypothesis that PAR2 plasma membrane 

expression on RA circulating monocytes correlates with measurements of the 

clinical severity of disease. 
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5 Investigating the Function of PAR2 in Murine 
Osteoclastogenesis 

5.1 Introduction 

Monocytes are found in the peripheral blood (PB) and arise from a common 

myeloid progenitor (CMP) in the bone marrow (BM). Both BM and the PB 

monocytes exist as a heterogeneous population, which reflects their 

differentiation state and function. As discussed in the previous chapter, human 

monocytes in PB exist in 3 populations, classical (CD14hiCD16lo), intermediate 

(CD14+CD16+), and non-classical (CD14lo CD16hi) 358. Murine monocytes have 

similar distinct populations based on function, however these differ from the 

human cells in the markers distinguishing these populations and also the 

proportions of these populations. Similar to CD14hi classical human monocytes, 

Ly6Chi CD11b+ monocytes reflect this population in the murine system16. These 

cells are rapidly recruited to inflamed sites, developing into inflammatory 

monocyte derived phagocytes, while Ly6Clo CD11b+ monocytes reflect the non-

classical population of human monocytes, which patrol the luminal vessel 

walls24. The differentiation potentials of human monocytes are also mirrored in 

the murine system. Upon entering the tissue they can develop monocyte-derived 

phagocytic functions, or acquire tissue specific functions, for example at the 

bone surface where they can fuse to become osteoclasts. 

Osteoclasts (OCs) are large multinucleated, catabolically active cells, 

responsible for the resorption of bone during skeletal development and 

remodelling. Not all monocytes have the same potential to develop into OCs and 

the optimal precursors of these cells are termed osteoclast progenitor cells 

(OCPs). OCPs have been more specifically defined in the murine system than in 

human cells, with some myeloid precursors identified as more capable than 

other monocyte populations at differentiating into osteoclastogenic cells in 

vitro. Through adoption of a murine KO of the OC master transcription factor 

NFATc1 these OCPs were also shown to be capable of repopulating the osteoclast 

repertoire in these OC deficient nfatc1-/- animals. Julia Charles and colleagues 

defined this sub-population of myeloid cells as Ly6Chi, CD11blo, CX3CR1+, CD11c- 

63. Current understanding of defined OCPs has been fully explored in the 

introduction chapter (see section 1.2.1). To summarise, it is now recognised that 
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an embryonic source of OC is essential for skeletal development, while 

hematopoietic monocyte contributions to the osteoclast pool are most relevant 

post development, during bone remodelling and maintenance throughout life64. 

The fusion and differentiation of monocytic OCP into multinucleated osteoclasts 

is dependent upon the direct action of M-CSF and RANKL on OCPs as discussed in 

detail in the introduction of this thesis (see section 1.2.2). In vivo, the 

regulation of OC generation is largely conducted by stromal osteoblasts (OBs); 

the partnering cell type during bone remodelling (see section 1.2.5). The 

crosstalk between OCs and OBs is crucial for the regulation of the activity of 

both of these cell types. OBs produce a number of both soluble and cell surface 

factors which activate or inhibit the action/formation of OCs and thus prevent 

excessive or inadequate bone resorption. The primary example of this is the 

production of RANKL on both the membrane of osteoblasts and released as a 

soluble factor stimulating osteoclastogenesis via direct cell-cell interactions and 

within the environment. This cell type then also releases osteoprotegerin (OPG), 

which acts as decoy receptor for RANKL, reducing the availability of this protein. 

Thus OBs regulate the activity of OCs through a ratio of RANKL to OPG 

production and thus regulation of the availability of osteoclast stimulatory 

factors. 

There are many other mechanisms which regulate osteoclast differentiation and 

activity, either directly or indirectly via osteoblasts and known mechanisms are 

detailed in the introductory chapter of this thesis (see section 1.2.5). Serine 

protease sensing via PAR2 is one pathway that has been briefly explored for its 

role in the bone remodelling process. Thus far, experimental work has indicated 

that the loss of this receptor in mice resulted in modest changes to the gross 

architecture of the skeleton, and slower initial recovery in response to bone 

injury76. The receptor has known expression on OBs285, monocyte precursors of 

OCs in humans (see section 4.2.2), and increasing transcript expression in murine 

cell line RAW 264.7 in response to OC differentiation signals75. During in vitro 

bone marrow cultures, activation of PAR2 has been shown to inhibit 

osteoclastogenesis75, while other studies in contradiction have shown a reduction 

in osteoclast formation in bone marrow lacking PAR2 76. Overall, the current 

literature indicates that PAR2 plays a role in bone remodelling and maintenance, 
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however the nature of that function is still conflicting and largely unknown. In 

addition, PAR2 has been shown to drive pathological bone changes in bone 

associated diseases. For example, in murine models of osteoarthritis osteophyte 

formation and volume were limited in par2-/- animals288. 

In the previous chapter of this thesis we established that human monocytes, a 

pre-cursor of OCs, express PAR2. However, we also established that the 

expression levels of this receptor were highly variable between human donors. 

Thus, inhibition or activation of PAR2 in human monocyte assays may have a high 

degree of variability in the potential response of the cells, as a result of their 

differential receptor expression rates. We chose to utilise par2-/- animals to 

investigate the function of PAR2 in the process of osteoclast differentiation in 

order to establish a clear biological influence of this receptor. Phenotypes 

identified in mice could then be applied and tested using PAR2 inhibitors and 

activators in a human system. 

Overall the aims of this chapter are: 

1. To clarify the role of PAR2 in the differentiation of murine BM cells into 

osteoclasts 

2. Determine the stromal and myeloid roles of PAR2 in driving or regulating 

osteoclastogenesis 

3. Determine the role of PAR2 in inflammatory-driven osteoclastogenesis 
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5.2 Results 

5.2.1 Analysis of par2-/- Bone Marrow Monocyte Compartment 

Prior to conducting in vitro assays with bone marrow from C57BL/6 WT and par2-

/- mice, gross changes to the composition of the monocyte compartment were 

assessed to check the BM myeloid composition was not impacted by PAR2 

deletion. Previous reports had highlighted a significantly greater number of bone 

marrow cells in the par2-/- mice. It was also proposed that despite this there 

were lower numbers of stromal cells and osteoblast precursors76. With this in 

mind, the frequency of monocytes in the par2-/- bone marrow was assessed to 

identify potential alteration from WT composition. Moreover, it was also 

important to evaluate monocyte subpopulations to ensure no significant change 

to the frequency of OCP, inflammatory, or patrolling monocytes were caused by 

the loss of PAR2. An alteration in the composition of the monocyte compartment 

in par2-/- would not only skew in vitro assay results, it would also be of 

significant biological interest for the role of PAR2 in haematopoiesis. 

In order to do this bone marrow from long bones of 6-8 week old WT and par2-/- 

mice was extracted. BM cells were stained with a panel of markers to 

discriminate granulocytes (Ly6G), T cells (CD3), B cells (B220), and monocytes 

(Ly6C and CD11b). Monocytes were identified as lineage negative ( Ly6G-, CD3-, 

B220-) and divided by CD11b and Ly6C expression levels (Figure 5.1). 

Representative FACS plots of WT and par2-/- monocytes from the bone marrow 

are shown in Figure 5.2A and B respectively. Further analysis of the percentage 

of gated populations from total bone marrow cells (from single cells) or the 

percentage of gated monocyte populations from the Ly6C+ total monocyte 

population was conducted. There were no changes in the frequency of total 

monocytes in the BM compartment (Figure 5.2B), and no alteration in the 

frequency of inflammatory monocytes (Figure 5.2C), patrolling monocytes 

(Figure 5.2D), or OCPs (Figure 5.2E) in the monocyte compartment in par2-/- BM. 

Therefore, from these data, we concluded that there were no changes in the 

monocyte frequencies in KO bone marrow and thus any differences observed in 

future assays was not the result of different monocyte frequencies at the 

beginning of the culture. 
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Figure 5.1 Gating Strategy for Monocyte Analysis in Murine Bone Marrow 
Bone marrow was isolated from the long bones of adult WT and par2-/- mice and resuspended in a 
homogenous solution in FACS buffer for subsequent staining. Non-specific binding of antibodies to 
Fc receptors was prevented by pre incubation (10mins) of anti-CD16/32 to block these FcRs. BM 
was then stained with a cocktail of antibodies to identify T cells (CD3-PE), B cells (B220-PECy7), 
granulocytes (Ly6G AF700), and monocytes (Ly6C-PerCP Cy5.5, and CD11b-APC Cy7). Cells 
were then washed in FACS buffer before running on the BD LSRII flow cytometer. The gating 
strategy employed to identify monocytes in this mixed population is shown above. (A)Initially 
erythrocytes and other waste was excluded and (B) single cells were positively gated for. (C) 
Gating to exclude both T and B cells was performed, (D) and then on this non-T and B cell gate 
granulocytes were excluded from further analysis. (E) The granulocyte, T cell, and B cell negative 
gate was further sub divided based on Ly6C and CD11b expression to identify BM monocytes. 
Monocytes were further subset based on expression levels of these surface markers, with 
inflammatory monocytes expressing a Ly6ChiCD11bhi profile, patrolling monocytes Ly6Clo and 
CD11bhi, while OCPs were Ly6C+ CD11b-. Representative FACS plots shown of N=1. 
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Figure 5.2 No Difference in Monocyte Cell Composition in par2-/- Bone Marrow. 
FACS plots detailing the BM monocyte compartment composition of inflammatory, patrolling, and 
OCP populations are shown for both WT and par2-/- . (A) Representative plots from a biological 
sample size of 5 for each genotype are shown. (B) The frequency of monocytes in the total bone 
marrow compartment was calculated from single cells. Further analysis of the frequency of (C) 
inflammatory, (D) patrolling, and (E) OCPs in the monocyte compartment is shown for all samples. 
WT N=5, par2-/- N=5. 1 representative experiment shown of 3 experimental repeats. 
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5.2.2 Enhanced CD11b Expression on Patrolling Monocytes from 

par2-/- Bone Marrow 

While conducting flow cytometric analysis of the bone marrow to analyse the 

frequencies of monocytic cells in WT and par2-/- an observation was made 

regarding the expression level of CD11b, one of the markers used to distinguish 

monocyte populations. Notably, the monocyte FACS plots between WT and par2-

/- looked consistently different with regards to fluorescence levels of CD11b. 

Upon further investigation of the MFI of CD11b staining, it was confirmed that 

patrolling monocytes from par2-/- bone marrow had significantly elevated levels 

of CD11b expression. This same phenomenon was not identified on any other 

subset of bone marrow monocytes. This finding was consistent across multiple 

experiments (Figure 5.3 A and B). 

 

Figure 5.3 Increased Expression of CD11b in Patrolling Monocytes from par2-/- Compared 
with WT Patrolling Monocytes. 
(A) The mean fluorescent intensity (MFI) of CD11b staining for each monocyte subset 
(inflammatory, patrolling, OCP) was compared between WT and par2-/- BM monocyte; N=5 for each 
genotype. (B) An independent repeat experiment; N=4 WT and N=5 par2-/-. Multiple T tests were 
conducted, with Holm-Sidak correction for multiple comparison, adjusted p values as follows *** = 
p<0.005, * = p<0.05. 

 

In order to conduct osteoclast assays, total bone marrow from long bone was 

extracted, cultured overnight, and non-adherent cells (NA-BM) taken forward for 

further culture. A change in integrin expression could potentially alter the 

capacity for these cells to adhere to tissue culture plastic359. Monocyte 

proportions and CD11b expression were subsequently analysed in WT and par2-/- 

post overnight culture to identify if this enhanced integrin expression is 

maintained in cell culture and thus potentially altering the cellular adherence of 

BM cells. Flow cytometric analysis was conducted on both the non-adherent BM 
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and the adherent fraction of BM post overnight culture. For this, the same panel 

used above (Figure 5.1A) was applied. After overnight culture monocytes did not 

maintain the phenotypic markers that allow the identification of patrolling, 

inflammatory, and OCP populations. Instead these cells became a more 

homogenous population of monocytes in terms of CD11b and Ly6C expression 

(data not shown). Thus, the total cultured monocyte population was evaluated. 

Interestingly, a higher frequency of monocytes was found in the adherent 

fraction of both WT and KO BM cells, when compared to the non-adherent 

fraction (Figure 5.4A). Considering the non-adherent fraction is most commonly 

used for murine bone marrow macrophage and osteoclast assays this was 

somewhat surprising. No changes in the frequency of monocytes in the non-

adherent fraction of bone marrow was identified between genotypes. However, 

when PAR2 was absent (par2-/-) an enhanced proportion of monocytes was 

identified in the adherent fraction of bone marrow (Figure 5.4A). This may 

reflect the increased adhesion capacity of monocytes in knock out cells, as 

reflected by the observed enhancement in integrin subunit CD11b expression in 

the previous figure (Figure 5.3). However, it is also worth considering that 

frequency based analysis was used and therefore this enhanced monocyte 

proportion could in fact reflect a reduction in the proportion of another type of 

adherent cells. As mentioned above, a reduction in the stromal compartment 

has been observed in par2-/- bone marrow76, so this may skew proportional 

analysis of populations within the adherent bone marrow. 

In order to investigate whether the observed increase in par2-/- CD11b expression 

was sustained, subsequent analysis was conducted of CD11b expression on 

monocytes post overnight culture. Interestingly, after overnight culture we 

observed a significant reduction of CD11b expression level in par2-/- monocytes 

comparative to WT monocytes, reflected by the reduction of MFI (Figure 5.4B). 

This was observed in both monocytes present in the non-adherent fraction and 

those that had adhered during overnight culture. 
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Figure 5.4 After Overnight Cell Culture Expression Levels of CD11b are Reduced in par2-/- 

Monocytes. 
Total BM was cultured overnight and the following morning non-adherent cells lifted and counted, 
cell counts of NA-BM from WT and par2-/- cultures are shown in A. Using D’Agostino & Pearson test 
for normality we determined this data conformed to Gaussian distribution and thus unpaired T test 
with Welches correction was conducted; * = p<0.05. (B) The frequency of Ly6C+ monocytes in the 
total cell population of both NA-BM and NA-BM cells after overnight culture is shown for both WT 
and par2-/-.The MFI of CD11b in Ly6C+ monocytes after overnight culture was then analysed for 
both adherent and non-adherent cells. Multiple T test were conducted with Holm-Sidak correction 
for multiple comparisons, adjusted p values as follows: * = p<0.05, ** = p<0.005, *** = p<0.0005. 
WT adherent and non-adherent N=8, par2-/- adherent N=8 and non-adherent N=5. 1 experiment 
shown representative of 2 experimental repeats. 

 

While differences in total expression of integrin subunits indicates there could 

be potential changes in adhesion capacity, total expression does not directly 

translate to functional activity. Integrins are present on the cell membrane in an 

inactive state until, in response to chemokine signals, they change their 

conformation to an active state. In order to test potential differences in the 

functional capacity of par2-/- to adhere to CD11b ligands we conducted a static 

adhesion assay with ICAM-1, a binding partner of the CD11b/CD18 integrin 

heterodimer. A heterogeneous population of cells would not be appropriate for 

this analysis. Therefore in order to conduct this assay monocytes were isolated 

from murine BM using a negative selection magnetic bead method. The binding 

capacity of purified monocytes (Figure 5.5) from both WT and par2 KO, to the 

integrin ligand ICAM-1 was then assessed under different stimuli. Monocytes 

were ultimately defined by their expression of CD115 (M-CSF receptor). The 

total BM compartment contained 13.3% of CD115+ monocytes, while post 

magnetic bead isolation the cell samples contained around 75% of CD115+ 

monocytes. 
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Figure 5.5 Murine Monocytes were Successfully Enriched by Magnetic Separation. 
Using negative magnetic selection murine monocytes were enriched from the total BM 
compartment. Flow cytometry techniques were used to ensure adequate enrichment of monocytes 
from the total population. Total BM and monocyte isolates were stained for stem cells (CD117-
V450), B and T cells (B220, CD3-PE), granulocytes (Ly6G-AF700), and monocytes (Ly6C-PerCP 
Cy5.5, CD11b-APC Cy7, and CD115-APC). The total BM compartment contained T and B cells 
(23%), stem cells (2.3%), and granulocytes (32.4%), with around 19% of BM cells CD115+ 
monocytes. Post enrichment, on average over 75% of cells were CD115+ and a significant 
reduction of T and B cells (9%), stem cells (1%) and granulocytes (6%) observed. Representative 
FACS plots N=1. 

 

Optimisation of this assay for monocyte cell number and appropriate positive 

stimulations was conducted. Different concentrations of murine monocyte 

numbers were assessed with PMA stimulation (positive control), known to 

stimulate activation of integrins. A cell concentration that had clear distinction 

between negative control unstimulated cells and PMA activation was required. 

As a negative control for binding to plastic, some wells were not coated with 

ligand. Importantly, these wells were blocked to eliminate non-specific binding 

in the same way as the ICAM-1 coated wells. A cellular concentration of 1x106 

monocytes was not sufficient to robustly detect monocyte activation and ICAM-1 

binding upon stimulation (Figure 5.6A). In comparison, cells at a concentration 

of 1.5x106 and 2x106 showed a clear induction of ICAM-1 binding upon PMA 

stimulation (Figure 5.6B and C). In order to limit the number of cells required for 

this assay but still detect clear induction of cell adhesion to ICAM-1 a 

concentration of 1.5x106 monocytes/ml was taken forward. This assay was then 

conducted with WT and par2-/- monocytes. The adhesion of unstimulated and 

PMA activated WT and par2-/- cells to ICAM-1 was assessed. In addition, PAR2 
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stimulation was also evaluated for its capacity to impact ICAM-1 binding using 

PAR2 activation peptide 2-Furoyl-LIGRLO-amide (FLIGRL, 2µM). No differences 

were detected between WT and par2-/- monocytes under any condition tested 

(Figure 5.6D). This assay was conducted with just 2 samples per condition, 

however, because no obvious changes were observed it was not pursued any 

further. 

 

Figure 5.6 PAR2 Activation Does Not Impact Monocyte Static Adhesion to ICAM-1. 
Monocytes isolated from murine BM were prepared at 3 different cell concentrations and left 
unstimulated in adhesion assay media or stimulated with PMA (1µg/ml) for 10 minutes. Cells were 
then incubated on plates coated with ICAM1 ligand or uncoated. (A, B, C) The percentage of cells 
which adhered to the plate for each cell concentration N=1. (D)The concentration of 1.5x106 
monocytes was taken forward and monocytes from WT and par2-/- BM were either left 
unstimulated, stimulated with PMA (100nM), or FLIGRL (2µM) for 10 minutes and then 
subsequently incubated at 37ºC in an ICAM1 coated plate (or left uncoated as a negative control) 
for 30 minutes. The frequency of adherent monocytes from the total monocyte addition to the wells 
was calculated. WT and par2-/- N=2, no additional experimental repeats performed.  
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5.2.3 Increased Osteoclastogenic Potential of par2-/- Bone Marrow 

In order to investigate the role of PAR2 in osteoclastogenesis an in vitro OC assay 

system had to be initially tested. There are high levels of variability in published 

protocols however, in all published assays, osteoclastogenesis was dependent 

upon the presence of M-CSF and RANKL. The concentrations and time at which 

these growth factors are employed in these assays are highly variably between 

publications. The method adopted is outlined in Figure 5.7. This involves 

overnight culture of the total BM and then removal of the non-adherent (NA) or 

adherent cells for further culture in M-CSF, followed by addition of RANKL the 

next day. While most published OC differentiation protocols utilise the NA-BM 

fraction some papers generate OCs using the entire BM; not separating any cell 

types. Therefore, the capability of both non-adherent and adherent BM cells to 

differentiate into OCs was assessed initially. The benefit of utilising this assay is 

that if the NA fraction from the BM is used, the stromal cells of the adherent 

fraction can be utilised for other experiments without having M-CSF 

contamination. These stromal cells were required by other members of the lab 

and thus BM from 1 animal could be utilised for multiple experimental 

procedures, as complying with the 3Rs (Replacement, Reduction, Refinement). 

TRAP stain images presented in Figure 5.7 demonstrate that both NA and 

adherent BM cells generated multinucleated, TRAP positive osteoclasts. 

Adherent BM cells actually generated more and larger TRAP OCs (Figure 5.7). 

The observation of a higher frequency of Ly6C+ monocytes in adherent BM over 

NA-BM cells (Figure 5.4A) indicates that the abundance of these cells contributes 

to the enhanced OC number and is therefore somewhat unsurprising. Despite the 

higher rate of OCs generated with adherent BM, this fraction will contain the 

highest level of stromal contamination. The presence of stroma from the bone 

marrow can significantly influence OC generation as these cells can express 

RANKL. Therefore, as is most commonly done in the literature, the non-adherent 

fraction of BM was used for all future OC generation assays. Since this initial 

experiment confirmed that OCPs are still viable post overnight culture without 

additional factors, and OCs were successfully generated with this protocol it was 

determined that OC generation assays would be conducted with the NA-BM from 

the protocol in Figure 5.7. 
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Figure 5.7 Murine BM Osteoclastogenesis Cultures. 
Total BM was cultured overnight without the addition of any cytokine and then addition of M-CSF 
the following day and addition of RANKL on day 2. Both non-adherent and adherent BM cells were 
taken after overnight culture and exposed to the OC generation protocol. (B) Representative TRAP 
stain images at 10x magnification are shown. 

 

The protocol from Figure 5.7A with NA-BM was applied to cell cultures from the 

BM of both WT and par2-/- animals. BM was isolated, cultured overnight, the NA-

BM fraction taken the following day and counted to plate out 1x105 cells per well 

of a 96 well plate. These cells were given 30ng/ml of M-CSF overnight and then 

the following day the media was half changed to include both 50ng/ml of M-CSF 

and RANKL. After 5 days osteoclasts were visible, TRAP stained (Figure 5.8A), 

and counted. To get a complete insight into the level of osteoclastogenesis, 

rather than counting random areas of the well, the entire well area was 

counted. This is important, as OC generation tends to be uneven across the well 

(possibly caused by media changes pushing cells more to one side), and 

therefore a random selection of areas could cause a counting bias. The 

quantification of OC numbers in WT and par2-/- cultures revealed that there was 

an enhanced number of OCs generated from par2-/- BM (Figure 5.8B). Moreover, 

the OCs generated in the par2-/- cultures were visibly larger. In order to quantify 

this, osteoclasts were counted based on the number of nuclei that they 

contained. For example, osteoclasts were group in to those with 3-5, 6-10 nuclei 
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and so on. By applying this form of analysis, it was apparent that there was a 

significant enhancement in all groups in the par2-/- cell cultures (Figure 5.8C). 

The data also revealed that par2-/- cultures also contained very large OC cells 

(11+ nuclei) that were not present in WT cultures. 

In addition to conventional TRAP staining protocols, which enabled 

quantification of cell number and an insight to cellular morphology, 

osteoclastogenesis assays were also conducted on osteo-assay plates, which 

enable quantification of the functional activity of OCs. The same 

osteoclastogenesis assays were conducted on these plates and cells were 

removed with bleaching on day 12. The contrast between resorbed and minerally 

intact areas could easily be discriminated when images were transferred to 8 

bit. The percentage of the total well which had been resorbed was quantified. 

Evaluation of resorbed areas (black) vs non-resorbed (white) did not result in a 

significant difference between WT or par2-/- cultures (Figure 5.8 D and E). This 

suggests that while there are more OCs in par2-/-cultures, the activity of these 

individual cells may not be enhanced. It is also possible that the time point of 12 

days was too long to identify potential differences in cellular activity between 

WT and par2-/- cultures. By this point in the culture WT cells may have caught up 

with the enhanced par2-/- cultures, therefore a time course of cellular activity 

might perhaps have been a better method of assessing true differences in 

resorption between the 2 genotypes. 

In order to assess whether OC activity was altered per cell with a change in 

genotype the % resorption was normalised to OC count (Figure 5.8 F). This 

analysis indicates that while OC size appears larger in par2-/- cultures, resorption 

activity is in fact significantly decreased. Further supporting the possibility that 

PAR2 action in these cultures acts to limit excessive fusion, distinct from OC 

activity. 
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Figure 5.8 Increased Osteoclastogenesis from NA-BM of par2-/- Mice. 
NA-BM from both WT and par2-/- mice was subjected to in vitro osteoclastogenesis assay (Figure 
5.7A) and cultures were TRAP stained on day 5, and osteo-resorption plates bleached to remove 
cells after 12 days. (A) Representative images of WT and par2-/- TRAP stained osteoclasts at 10x 
magnification. (B, C) Quantification was performed of the number of TRAP+, multinucleated 
osteoclasts per well in a 96 well plate for each WT and par2-/- sample, N=4 and N=5 respectively. 
Images of osteo-assay plates were taken at 2x magnification and images were analysed on ImageJ 
software. The colour contrast between areas of resorbed mineral and intact mineral mean that 
these can be easily discriminated. (D) Representative images show resorbed areas in black and 
intact mineral in white. (E) Whole well images were converted to 8 bit grey scale and the threshold 
set between the two contrasting areas and the resorbed area was measured as a percentage of 
the entire well. (F) The area of resorption was then normalised to the number of OC per well. WT 
N=4, KO N=5. There were too few data points to determine normal distribution and therefore a 
Mann-Whitney tests were used to determine significance, * = p<0.05, ** = p<0.005. Representative 
of 3 experimental repeats performed. 

 

To confirm the enhancement of osteoclastogenesis in par2-/- cultures and 

identify specific OC associated pathways which may be specifically enhanced in 

par2-/-, transcript analysis was conducted. RNA was isolated on day 5 (peak OC 

formation) and qPCR was conducted to quantify osteoclast associated genes. 

Monocyte-derived macrophage controls that do not initiate the osteoclastogenic 
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transcriptional cascade, were used for comparison to identify RANKL dependent 

gene expression enhancement. The 2-DCt was calculated using housekeeping gene 

18s for each transcript (Cathepsin K, NFATc1, TRAP, DC STAMP, OC STAMP, 

MMP9, OSCAR) and statistical testing conducted on the 2-Dct. All gene transcripts, 

with the exception of RANK and CD115, were significantly upregulated in 

response to M-CSF and RANKL (MR) for both WT and par2-/-. The fold change 

enhancement with RANKL over M-CSF alone controls of OC associated transcripts 

ranged from 4 to 300 fold depending on the gene (Figure 5.9A). WT and par2-/- 

MR transcripts were then compared to each other directly (Figure 5.9B, C, and 

D). A significant enhancement in expression levels of Cathepsin K, NFATc1, 

TRAP, DC STAMP, MMP9, and OSCAR expression was found in par2-/- cultures. 

This confirmed enhancement of osteoclast generation in these cultures but does 

not provide indication of any specific pathways enhanced in these cultures. 

However, the enhancement in gene expression of these transcripts between WT 

and par2-/- is less than 2 fold. Therefore, despite the robust statistical 

differences due to the consistency of these observations in replication, the 

enhance gene expression measured may have limited biological relevance. In 

addition, transcripts of RANK and CD115 are not enhanced over M-CSF alone 

samples at this time point (data not shown). This is most likely the result of 

downregulation of these receptors at this end stage of osteoclast generation. 
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Figure 5.9 Terminally Differentiated OC Cultures from par2-/- BM have an Enhanced Profile of 
OC Associated Gene Transcripts. 
Transcript analysis was performed on both WT and par2-/- cell cultures differentiated in M-CSF 
alone, or M-CSF and RANKL for 5 days. (A) The fold change of WT MR over WT M alone, and 
par2-/- MR over par2-/- M alone of osteoclast associated genes in MR samples compared with M-
CSF alone cells for Cathepsin K (ctsk), NFATc1 (nfatc1), TRAP (acp5), DC STAMP (dcstp), OC 
STAMP (ocstp), MMP9 (mmp9), and OSCAR (oscar). (B) The 2-𝛥Ct  of MR cultures from WT (green) 
and par2-/- cells (red) of highly expressed genes and (C) independently plotted genes with lower 
expression graphed separately for ease of viewing. (D) The fold change of MR cultures normalised 
to average WT 2-𝛥Ct for par2-/- osteoclasts, with all stats performed on 2-𝛥Ct data. Mann-Whitney was 
applied to determine statistical significance * = p<0.05. WT N=4, par2-/- N=5. No additional 
experimental repeats performed 

 

In order to assess changes in osteoclast transcripts upon MR stimulation and 

potential differences in genotypes at early time points, RNA extraction was 

conducted at 6, 24, 48 and 72 hours after initial RANKL stimulation (Figure 

5.10A). This data was plotted as a fold change over time 0. Time 0 samples were 

NA-BM, which had been exposed to M-CSF overnight but not yet exposed to 

RANKL. Both WT and KO samples were plotted along this time course, with WT 

shown in green and KO in purple. RANK and CD115 were not changed over time. 

These transcript levels will increase in response to M-CSF, and therefore it is 

unsurprising that RANK and CD115 gene expression is not enhanced in response 

to RANKL treatment. In this experiment transcriptional profiles were not 
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compared to naïve NA-BM, so it is not possible to detect these initial changes 

with the current experimental set up. Transcripts such as Cathepsin K, TRAP, 

MMP9 and DC STAMP have a low level of expression at the earliest time points 

and then by 48 hours these genes have high levels of expression, which continues 

to increase at 72 hours. These are late induced transcripts that enable cell 

fusion (DC-STAMP), and initiation of OC resorption functions (Cathepsin K, TRAP, 

MMP9). Central OC transcription factor NFATc1 expression increases at 24 hours, 

continues to increase at 48 hours and then expression levels begin to fall by 72 

hours. This is also to be expected. NFATc1 plays an essential role in the 

induction of OC functional genes and by 72 hours these genes are now being 

highly transcribed. 

Fold change of each gene normalised to the WT samples was then conducted, in 

order to identify any possible changes to the transcript levels in the KO cells at 

each time point. Largely there is no obvious change in expression level of the OC 

associated genes in the KO cells at these earlier timepoints. The only 

statistically significant differences detected are an early increase in cathepsin K 

expression in the KO cells at 6 hours and a higher expression of DC STAMP in 

par2-/- cultures before these cells are exposed to RANKL (Figure 5.10B). 

However, these short term, minimal fold change differences are unlikely to 

reflect biologically relevant observations. Overall, the transcript changes at the 

early time points are very modest and no obvious pathways stand out at the 

initial differentiation stages.  
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Figure 5.10 Early Time Points of M-CSF and RANKL Differentiation do not show Significant 
Alteration in OC Associated Transcripts in par2-/- cultures. 
Transcript analysis was performed on cell cultures from both WT and par2-/- cell cultures 
differentiated in M-CSF and RANKL, at time 0 (M-CSF overnight, not yet exposed to RANKL), 6 
hrs, 24hrs, 48hrs, and 72 hrs post RANKL exposure. The 2-DDCt (fold change) of OC associated 
genes in WT and par2-/- MR cultures across time are shown for RANK (tnfrsf11a), CD115 (csf1r), 
Osteopontin (spp1), Cathepsin K (ctsk), NFATc1 (nfatc1), TRAP (acp5), DC STAMP (dcstp), OC 
STAMP (ocstp), MMP9 (mmp9), and OSCAR (oscar). All statistical tests performed on 2-DCt data. 
Mann-Whitney was applied to determine statistical significance * = p<0.05, WT N=5, par2-/- N=4. 
No additional experimental repeats performed. 

 

The above experiments indicate that PAR2 is a regulator of OC differentiation, 

especially important at later time points of OC fusion. However, these 

experiments provide no insight as to whether active signalling of PAR2 is 

required during the OC differentiation assays to drive this phenotypic difference 

observed between the genotypes. No PAR2 activating proteases or peptides have 

been included in the assays above, thus the impact on OC differentiation must 

either be the result of endogenous protease production and PAR2 activation, or 

this phenotype is present without the requirement of PAR2 signalling within the 

culture. PAR2 activating protease have been previously identified in the murine 

BM compartment including trypsin I/IV, matriptase, and hepsin 76. OCPs may 

have been previously primed via PAR2 within the BM, impacting their activity in 

these cell cultures. Therefore, in order to test whether active PAR2 signalling is 

required during the differentiation process to regulate the formation of OCs, the 

OC assay (as described in Figure 5.7) was repeated with inclusion of PAR2 

activating peptide (FLIGRL, 2µM) or PAR2 inhibitor (AZ8838, 3µM). The repeat of 

the OC assay again resulted in enhanced OC differentiation from par2-/- BM cells 

over WT counterparts(Figure 5.11A). Evaluation of the KO cultures revealed that 

neither FLIGRL nor AZ8838 altered the number of OCs (Figure 5.11D); an 

expected non-response due lack of receptor. Moreover, comparison of WT and 

KO cultures showed that there was a significant difference in OC number when 
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cells were unstimulated and FLIGRL stimulated (Figure 5.11D). Addition of PAR2 

activating peptide to the WT culture did not consistently change the number of 

osteoclasts generated (Figure 5.11B). However, addition of AZ8838 to WT BM 

cells consistently increased the number of OCs generated by each sample (Figure 

5.11C). This observation did not reach statistical significance. Importantly, 

treatment of WT cells with AZ8838 resulted in equivalent osteoclast number to 

those observed in par2-/- cultures (Figure 5.11D). In order to analyse whether 

PAR2 inhibition influences OC size, OC counts were then subdivided based on 

nuclei number and analysed independently (Figure 5.11E). This analysis 

identified that PAR2 inhibition in WT cells did not alter the number of small OC 

(3-10 nuclei) but significantly reduced the number of large cells (10 nuclei +). 

Overall, this data suggests that in this setting active PAR2 signalling, potentially 

through endogenous proteases, is suppressing the formation of giant OC cells. 

This may further indicate the role of this receptor in preventing excessive cell 

fusion. 
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Figure 5.11 Canonical PAR2 Activation Does Not Inhibit in vitro OC Differentiation. 
OC differentiation was repeated with the protocol described in Figure 5.7 (A) with both WT and 
par2-/- BM and OC were counted. (B) PAR2 activating peptide (FLIGRL 2µM) and (C) PAR2 
inhibitor (AZ8838 3µM) were included in this assay with both WT and par2-/- cultures. Multiple T 
tests were conducted with Holm-Sidak correction for multiple comparisons (N=5 WT, N=4 par2-/-), 
adjusted p values as follows: * = p<0.05. The number of OC generated from NA-BM with (B, D) 
FLIGRL (2µM) PAR2 activation and (C, D) AZ8838 (3µM) PAR2 inhibition in WT BM cultures was 
compared with untreated OC culture. (E) Subsequent analysis separated OCs by number of nuclei 
and analysed these OC counts independently. Paired statistical analysis with Wilcoxon T test was 
conducted for WT treatments. WT N=5, par2-/- N=4, no additional experimental repeats performed.  
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5.2.4 PAR2 Regulates Osteoclast Formation via Stromal 

Osteoblasts 

PAR2 regulates the formation of OCs in a hematopoietic OC enriched in vitro 

culture dependent upon M-CSF and RANKL driven conditions. OB stromal cells are 

a central regulator of OC generation in vivo. During homeostatic conditions these 

cells are the primary source of OC stimulatory factors such as RANKL, while also 

regulating this process through the production of RANKL decoy receptor - OPG. 

In addition, it has been previously reported that OB express PAR2. The impact of 

the PAR2 pathway on the ability of OB-like stromal cells to generate OCs was 

therefore investigated. In vitro co-culture of stromal OB-like cells and BM 

monocytes was set up in order to study this, where alternate genotypes for 

stromal cells and immune cell components could be cultured together. Stromal 

OB like cells were generated through digestion of the calvaria of murine pups 

day 3-5 post-natal. These were isolated from both WT and par2-/- pups and 

expanded in culture for 5 days. Once these cells had reached 80% confluency 

they were harvested and plated in 96 well plates and left to settle overnight in 

preparation for monocyte co-culture. Bone marrow was extracted from long 

bones of 6-10 week WT and par2-/- mice (as per section 5.2.3). However, instead 

of using the mixed NA-BM fraction, monocytes were specifically isolated using 

magnetic negative selection kit. This enabled the elimination of contamination 

by other cell types in this culture. These monocytes were then cultured with the 

OB-like stroma in the presence of prostaglandin E (PGE2) and vitamin D (VitD), 

which promotes the production of mediators to support the generation of OCs. 

As a negative control, the vehicle of these growth factors (ethanol) was used 

instead of PGE2 and VitD, resulting in no OC formation (data not shown). The co-

cultures were arranged in a mix and match fashion, meaning WT stroma was 

cultured alongside both WT monocytes and par2-/- monocytes and vice versa 

(Figure 5.12A). 

These cultures were continued for 8-10 days, with OC fusion detectable around 

day 7. Cultures were fixed and TRAP stained when OCs were visibly present in 

the culture (Figure 5.12B) and TRAP stains were quantified as previously outlined 

(Figure 5.12C). Interestingly, the number of osteoclasts generated was 

significantly increased in cultures with par2-/- OB genotype (Figure 5.12C). 

Further analysis of these cultures was conducted to assess the proportional area 
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of the well that contained large TRAP+ cells. This measurement was used as a 

surrogate to provide an indication of the size of osteoclasts generated. This type 

of analysis was employed because in the co-culture stains exact nuclei numbers 

for OCs could not be identified. A significant enhancement in the proportion of 

the well stained TRAP+ was identified when both monocyte and stromal 

genotypes were par2-/-(Figure 5.12D). This data indicates an enhancement in OC 

size in total KO cultures, with TRAP+ area over double that measured in WT 

cultures (Figure 5.12D). There was also a significant enhancement in OC size 

from WT OB/KO OC culture to KO OB/KO OC culture (Figure 5.12D). Again, this 

indicates that the genotype of OB-like cells was essential to the enhancement of 

osteoclast generation. 

  



5  196 
 

 

Figure 5.12 PAR2 Regulates OC Differentiation via OBs 
Osteoblast like cells were digested from the calvaria of 3-5 day old pups of either WT or par2-/- 

genotype and expanded in culture. These were then plated in 96 well plates (2.5x103 cells/well) 
and co-cultured alongside monocytes isolated from adult BM from WT or par2-/- animals. (A) These 
culture combinations were arranged so the genotype of each cell type was cultured with each 
genotype of the other cell type. These cultures were stimulated with 1µM PGE2 and 10nM VitD, or 
left unstimulated with vehicle control (ethanol 0.1%). Media was changed initially after 3 day and 
then subsequently every 2 days until osteoclasts were visible (8-10 days) and then fixed and TRAP 
stained. (B) Representative TRAP stain images for each genotype combination of the co-culture 
were taken at 10x magnification. (C) Quantification of osteoclast number for each condition was 
performed on images taken of the entire well. (D) Using ImageJ software, the area of each well 
which was covered by osteoclasts was calculated as a percentage of the total well area. (C and D) 
WT OB - WT OC (green), WT OB – KO OC (pink), KO OB – WT OC (blue), KO OB – KO OC 
(lilac). One-way ANOVA with Tukey’s multiple comparisons test was used, p values represented as 
follows; * = p<0.05, ** = p<0.005, *** = p=0.0005. WT OB N=2, par2-/- OB N=2, WT OC N=2, par2-/- 
N=2. Representative of 2 experimental repeats. 

 

The primary factors known to regulate OC generation by OBs are RANKL and 

OPG, as mentioned above. Since the par2-/- stroma appeared to have an 

enhanced capability of generating OC cells, transcript analysis of these 2 factors 

was conducted to identify any potential change in their expression with 
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genotype. This was conducted in RNA isolated from OB-like cells just before they 

would have been used for co culture; day 0 of the co-culture protocol. Using 

qPCR analysis of these transcripts, no change in either RANKL or OPG gene 

expression was identified between WT and par2-/- stromal cells (Figure 5.13). 

When the ratio of RANKL and OPG transcripts were analysed there was no 

significant change based on genotype, possibly due to large levels of variation. 

 

Figure 5.13 Freshly Isolated Calvarial OB-like cells from WT and par2-/- Do Not Have 
Significantly Differing Expression of OC Regulatory Factors RANKL and OPG. 
Calvaria from 3-5 day old pups was digested for OB extraction and expanded in culture for 4 days 
prior to RNA isolation. (A) Transcript levels of RANKL and OPG were measured by qPCR and 
normalised to house-keeping gene 18s. (B) The transcript level of RANKL was divided by OPG to 
measure the ratio of these genes. WT N=5, par2-/- N=5, no additional experimental repeats 
performed. 

 

Osteoclastogenic factors are not highly expressed in naïve calvarial stromal OB-

like cells. The expression of RANKL is driven over time with culture in stromal 

growth factors such as PGE2 and VitD. Enhanced OC generation by par2-/- may be 

due to faster maturation of OB-like cells from par2-/- genotype, resulting in 

enhanced RANKL expression quicker than WT counterparts. To determine if 

maturation of OB-like stroma will impact enhanced OC generation of par2-/- OB, 

a pre-maturation stage was conducted prior to co-culture. OB maturation is 

commonly conducted with a combination of ascorbic acid (AA), dexamethasone 

(Dex), and glycerol-2-phosphate (bGP), in order to generate mineralising OBs. 

Two methods of pre maturation and osteoblast stimulation were compared, AA, 

Dex, and bGP (ABD), or the growth factor combination used previously, PGE2 and 

VitD (PV) (Figure 5.12A). Calvarial stroma was expanded in 75cm tissue culture 

flasks for 5 days in growth factor free medium (as above) and then flasks were 

split and for each OB sample one flask was exposed to AA, Dex, and bGP, and 

the second flask was cultured in PGE2 and VitD. Maturation was conducted for 8 
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days with media replaced every 3 days and cells split as and when required 

(Figure 5.14). 

 

 

Figure 5.14 Additional Maturation of OB-like Cells was Conducted Before Co-culture. 
After calvarial OB digestion and expansion, OBs were then matured in a growth factor cocktail of 
1µM PGE2 and 10nM Vit D, or 100µM AA, 10nM Dex, and 2mM βGP, for 8 days. The co-culture 
was then conducted again with isolated BM monocytes from WT and par2-/-. Growth factor cocktails 
that were used for maturation were maintained during co-culture. 

 

In order to asses if the maturation enhanced RANKL transcript and assess 

whether either maturation protocol was more effective than the other, we again 

analysed transcript expression of these factors 3 days into maturation and after 

the 8 day maturation period. Transcripts were normalised to ABD WT cultures 

and fold change between genotypes and maturation protocols compared (Figure 

5.15). Interestingly, maturation of stromal OB-like cells differed between the 

differentiation protocols. Transcript levels of OC stimulatory (RANKL gene, 

tnfsf11) and regulatory (OPG gene tnfsf11b) factors were analysed as a starting 

point to gauge OC stimulatory potential. Cells matured in PGE2 and Vit D had 

higher expression levels of tnfsf11 (RANKL) over cells cultured in AA, Dex, and 

bGP (Figure 5.15), on both day 3 (A) and day 5 (B) of the maturation protocol. 
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Transcript levels of tnfsf11b (OPG), on the other hand, remained fairly 

consistent across different protocols (Figure 5.15 A and B). This indicates PV 

cultures will have more available RANKL and thus a higher capacity to stimulate 

the generation of OC cells. The genotype of these cells did not influence their 

production of tnfsf11 or tnfsf11b transcripts (Figure 5.15). However, only 2 

biological replicates were matured with these protocols, so it is difficult to 

identify any potential differences, especially considering the level of variation 

between the samples. 

 

Figure 5.15 Maturation of OB-like cells in PGE2 and Vit D Primes Cells for More Efficient OC 
Differentiation than AA, Dex, and bGP Maturation. 
Calvarial OB-like stromal cells were matured in a growth factor cocktail of 1µM PGE2 and 10nM 
VitD, or 100µM AA, 10nM Dex, and 2mM bGP for a total of 8 days prior to co-culture. RNA was 
isolated on (A) day 3 and (B) day 8 of maturation from both protocols and transcript analysis for 
RANKL (tnfsf11) and OPG (tnfsf11b) expression levels performed. Gene transcript was normalised 
to housekeeping gene 18s and fold change in transcript expression calculated over WT samples 
matured in AA, Dex, and bGP. N=2 for both WT and par2-/- samples, no additional experimental 
repeats performed. 

 

After maturation, these cells were then co-cultured with monocytes in the same 

way as above. OBs which were matured in AA, Dex, and bGP were maintained in 

this growth factor combination throughout the co-culture (Figure 5.16C and D). 

When OCs were visible in this culture all plates were TRAP stained and 

quantification conducted as above. OBs which had been matured in PGE2 and 
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VitD were more capable of generating OCs than AA, Dex, bGP matured, which 

can be seen in cell culture images and in cell number quantification (Figure 

5.16A and C respectively). This is reflected in the quantification of OC 

activity/resorption, which was also higher in PV cultures (Figure 5.16 C and D). 

This was to be expected after detection of higher level of RANKL transcript 

levels in the OB-like cells from PGE2 and VitD matured cultures (Figure 5.16). 

As with the previous unmatured culture, in the PGE2 and VitD matured OB cell 

culture, the double KO (both OC and OB) contained significantly more 

osteoclasts than double WT co-cultures. However, differences were not as 

pronounced as the non-matured OB cultures and there were no differences 

between any other cell combinations. OC activity measured in these cultures 

found no change in cellular activity in these assays between genotype 

combinations (Figure 5.16B and D), and when resorption levels were normalised 

to OC number no change in OC activity per cell was found (Figure 5.16E). This 

may be partially due to significant variation in osteoblast samples after 

maturation. No significant differences in OC number were found between 

genotype combinations in AA, Dex, and bGP cultures. This may be reflective of 

the limited osteoclastogenic potential of this protocol. While resorption activity 

appeared slightly increased when OC genotype was par2-/-, this did not reach 

significance, and when resorption levels were normalised to OC number no 

change in OC activity per cell was found (Figure 5.16F). Again, the variability 

between samples and low osteoclastogenesis limited the interpretation of this 

assay. 
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Figure 5.16 Osteoblast Maturation Limits the Potential for par2-/- Stroma to Enhance 
Osteoclast Differentiation. 
OB-like cells were differentiated in (A, B) 1µM PGE2 and 10nM VitD, or (C, D) 100µM AA, 10nM 
Dex, and 2mM β-GP, for 8 days and then co-cultured with BM monocytes from WT or par2-/- 

maintained in the same growth factor. (A, C) Cultures were fixed and TRAP stained after 10 days. 
Representative images of TRAP stained cultures (10x magnification) and quantification of OC 
numbers from all genotype combinations are shown for both (A) PGE, VitD and (C) AA, Dex, bGP 
cultures. (B, D) Representative images of cultures conducted on osteo-assay wells were bleached 
after 14 days to analyse resorptive activity of the culture. Images of osteo-assay plates were taken 
at 2x magnification and images were analysed on ImageJ software. The colour contrast between 
areas of resorbed mineral (black) and intact mineral (white) enable discrimination of these areas. 
The proportion of the total mineral area resorbed was calculated for both (B) PGE, VitD and (D) 
AA, Dex, bGP cultures. The levels of resorption were normalised by OC number for both (E) PGE, 
VitD and (D) AA, Dex, bGP cultures. One-way ANOVA with Tukey’s multiple comparisons test was 
used, p values represented as follows; * = p<0.05. WT OB N=2, WT OC N=2, par2-/- OB N=2, par2-

/- OC N=2. No additional experimental repeats performed. 
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To observe any potential changes in osteoblast maturation with the loss of PAR2, 

a time course of RNA transcript analysis was conducted across OB-like 

maturation in response to PGE2 and VitD signals (Figure 5.17), or AA, Dex, and 

bGP (Figure 5.18). RNA was isolated from OB-like cell cultures on days 1, 3, 6, 

and 9 post culture in maturation media. A panel of osteoblast associated 

transcripts was analysed which included RANKL (tnfsf11), OPG (tnfsf11b), 

alkaline phosphate (ALP, alpl), osterix (sp7), osteocalcin (bglap), RunX2 (runx2), 

and osteopontin (OSP, spp1) (Figure 5.17 and Figure 5.18). Data represented as 

fold change over WT samples on day 1. There were no significant changes to the 

panel of OB-associated transcripts measured between WT or par2-/- for either 

method of maturation. However, there was an observational enhancement of 

OSP transcript with a loss of PAR2, in both PGE2 and VitD maturation (Figure 

5.17G), and AA, Dex, and bGP (Figure 5.18G) especially after 9 days of 

maturation. This change was not significant for PV maturation, and due to low 

sample number in AA, Dex, and bGP cultures (N=3 WT, N=2 par2-/-), the 

statistical significance could not be assessed in this culture. With this 

observation analysis was then conducted with OB-like cells in these conditions 

with the addition of AZ8388 PAR2 inhibitor (Figure 5.17 H Figure 5.18 H). Once 

again this could indicate whether endogenous signals within the culture were 

driving the change in OSP. WT OB like cells in PV maturation media did not 

respond to PAR2 inhibition with any change in OSP transcription (Figure 5.17 H). 

This may indicate that in this environment OSP transcript is not directly 

regulated by PAR2 signals. However the inhibition duration was not throughout 

the culture period, only in the 4 hours prior to cell lysis. Therefore the OSP 

transcript may be regulated by PAR2 signals received prior to this 4 hour 

window. In contrast, WT OB-like cells matured in ABD maturation media did 

respond to short term PAR2 inhibition with AZ8388, increasing transcript levels 

over untreated WT counterparts (Figure 5.18 H). Again, statistical significance 

could not be assessed in these experiments due to low N numbers. Overall, this 

observation may be worth follow up as it could suggest a role for the PAR2 

pathway in regulating the production of bone mineral components essential for 

OC adherence which includes OSP. 

Thus far the data presented in this chapter demonstrates that during a 

homeostatic state, a loss of PAR2 in both the OC/myeloid cultures and in OB 
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stromal driven cultures results in excessive OC formation. The loss of this 

receptor increased both the size and number of OCs formed in these cultures. 

This data indicates that endogenous proteases are functioning in an autocrine or 

paracrine manner within the culture to act upon OCs or OBs to regulate pro-

osteoclastogenic signals or responses. 

 

Figure 5.17 Loss of PAR2 does not Result in Significant Difference in OB Associated Gene 
Transcripts During Maturation of OB-like cells with PGE2 and VitD. 
OB-like stromal cells isolated from the calvaria of WT and par2-/- animals were matured in 1µM 
PGE2 and 10nM VitD for up to 9 days. RNA was extracted from cells on day 1, day 3, day 6, and 
day 9 post growth factor maturation initiation. Transcript analysis was conducted for OB associated 
genes, (A) tnfs11, (B) tnfsf11b, (C) alpl, (D) sp7, (E) bglap, (F) runx2, and (G) spp1, using qPCR 
methods. Gene expression was normalised to housekeeping gene 18s, and fold change calculated 
over WT samples on day 1. (H) Cells were also treated with or without AZ8838 4 hours prior to 
RNA isolation and these samples were further analysed for spp1 transcript levels. N=4 WT and 
par2-/-, no additional experimental repeats performed. 
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Figure 5.18 Loss of PAR2 does not Result in Significant Difference in OB Associated Gene 
Transcripts During Maturation of OB-like cells with AA, Dex, and bGP. 
OB-like stromal cells isolated from the calvaria of WT and par2-/- animals were matured in 100µM 
AA, 10nM Dex, and 2mM b-GP for up to 9 days. RNA was extracted from cells on day 1, day 3, day 
6, and day 9 post growth factor maturation initiation. Transcript analysis was conducted for OB 
associated genes, (A) tnfs11, (B) tnfsf11b, (C) alpl, (D) sp7, (E) bglap, (F) runx2, and (G) spp1, 
using qPCR methods. Gene expression was normalised to housekeeping gene 18s, and fold 
change calculated over WT samples on day 1. (H) Cells were also treated with or without AZ8838 
for 4 hours prior to RNA isolation and these samples were further analysed for spp1 transcript 
levels. N=3 WT, N=2 par2-/-, no additional experimental repeats performed. 
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5.2.5 PAR2 Contributes to TNF Enhanced Osteoclastogenesis 

The data shown in the previous sections indicate that PAR2 plays a regulatory 

role in preventing excessive osteoclastogenesis and the formation of giant OC 

cells under certain homeostatic conditions. PAR2 is known to have a role in 

inflammation, with reports of the receptor both enhancing inflammation but also 

contributing to resolution of inflammation. TNF is the central cytokine known to 

enhance RANKL induced osteoclastogenesis, especially in rheumatic conditions, 

but also in other bone disorders 360. TNF has been shown to enhance RANKL 

induced OC differentiation from murine BM-derived precursors 46. In addition, 

therapeutic blockade of TNF in RA patients shows marked reduction in bone 

erosion361. In order to assess the impact of PAR2 on the process of inflammatory 

enhanced osteoclastogenesis, NA-BM from WT and par2-/- animals were 

subjected to a TNF enhanced osteoclast differentiation protocol. There have 

been multiple publications involving this type of OC assay, but these all vary 

slightly. Therefore, optimisation of the TNF enhanced OC assay was performed 

to find the protocol that was most effective at enhancing OC differentiation. 

In order to assess TNF enhanced osteoclastogenesis, a suboptimal concentration 

of RANKL should be used that does not result in overt osteoclastogenesis and 

allows enhancement to be easily observed. Reduced concentrations of RANKL 

including 1ng/ml and 10ng/ml were assessed in conjunction with M-CSF with NA 

BM cells. However, 1ng/ml of RANKL failed to generate any OCs (data not 

shown). Therefore 10ng/ml was taken forward for this culture in order to 

differentiate a reduced number of OCs for the detection of TNF enhancement 

without losing OC generation entirely. Optimisation of the concentration of TNF 

used and time point for addition to the culture was conducted on NA-BM from 

WT mice. Two concentrations of TNF were tested: 20ng/ml and 40ng/ml, as this 

was within the range of various concentrations reported for this purpose in the 

literature. While TNF is known to enhance osteoclastogenesis, if this cytokine is 

added into monocyte cultures too early it will instead inhibit osteoclastogenesis. 

This was first demonstrated by Lam and colleagues, who found that when TNF 

was added on the same day or the following day post RANKL exposure, 

osteoclastogenesis was completely inhibited. In comparison, if TNF is added on 

days 2 to 5 post RANKL addition there is enhanced osteoclast differentiation46. In 

light of this, addition of TNF to the cell cultures was assessed at 2 or 3 days post 
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RANKL exposure, which equates to day 4 or 5 of the culture (Figure 5.19A). Low 

numbers of osteoclasts were generated in reduced RANKL (10ng/ml) cultures as 

can be seen in the representative light microscopy images (Figure 5.19B), and 

quantification of OC numbers (Figure 5.19C). The protocol which generated the 

most consistent and highest increase in osteoclast number in response to TNF 

was 40ng/ml of TNF added on day 4 of the culture (Figure 5.19C). Therefore, 

this protocol was taken forward for comparison of WT and par2-/- BM. 

 

Figure 5.19 Optimisation of TNF Enhanced Osteoclastogenesis. 
(A) BM was flushed from the long bones of adult WT and par2-/- mice and cultured overnight. The 
following day (Day 1) NA-BM was removed and cultured overnight in 30ng/ml M-CSF. On day 2 
media was half changed to include 10ng/ml RANKL and 50ng/ml M-CSF. On days 4 or 5 of the 
protocol 20 or 40ng/ml of TNF was added to the cell culture. Media was half changed every 3 days 
maintaining the M-CSF, RANKL, and TNF cytokine concentrations until well were TRAP stained on 
day 9. (B) Representative TRAP images of negative control MR, and all possible TNF addition 
concentrations and time points. (C) Osteoclast numbers were quantified in all conditions; individual 
points reflect technical replicates of the same murine BM donor (N=1), no additional experimental 
repeats performed. 

 

In WT and par2-/- cultures TRAP stain quantification of osteoclast number was 

conducted for both M-CSF and RANKL (MR) and M-CSF, RANKL, and TNF (MRT) 

conditions. Significant enhancement of osteoclast numbers upon TNF addition 

were found in both WT and par2-/- cultures (Figure 5.20A). However, the WT NA-

BM had a higher induction of osteoclast formation upon TNF addition with 4-8 

times more osteoclasts generated under inflammatory conditions. While par2-/- 
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NA-BM only had an average of 2 fold increase in total osteoclast number in 

response to TNF addition (Figure 5.20B). Visually the TRAP stain images of WT 

cultures looked as though they contained more large OC cells, representative 

images shown in Figure 5.20C. In order to quantify this, osteoclasts were 

subdivided based on the number of nuclei they contain. The number of 

osteoclasts containing 11-15 nuclei (large OC cells) were significantly reduced in 

par2-/- cultures (Figure 5.20C). This data demonstrates that par2-/- BM-NA cells 

have a limited enhancement of OC formation in response to TNF, especially the 

formation of large OCs. This suggests that PAR2 partially drives enhanced OC 

formation during TNF osteoclastogenesis. The impact of PAR2 during 

inflammatory OC formation completely opposes the impact of this receptor 

during homeostasis (5.2.3). During homeostatic M-CSF and RANKL alone driven 

OC formation par2-/- cells generate increased numbers of OCs with more nuclei. 

Overall, this suggests that the mechanism of PAR2 in OC formation changes 

depending on the signals it is partnered with. How this receptor impacts these 

cultures differently, dependent on the inflammatory TNF signal is still elusive 

and merits further investigation. 
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Figure 5.20 NA-BM from par2-/- has Limited TNF Enhanced Osteoclastogenic Potential. 
NA-BM from WT and par2-/- were exposed to TNF enhanced osteoclast differentiation protocol. (A) 
Representative images of TRAP stained cultures from both sub-optimal MR, and MRT TNF 
enhanced OC differentiation, taken at 10x magnification. (B) Quantification of OC numbers 
compare the reduced MR assay with the enhanced MRT for both WT and par2-/-, with MR 
quantification points shown in blue and MRT shown in pink. (C) Fold change increase in osteoclast 
numbers with the addition of TNF to cultures over control MR was calculated, (D) OC quantification 
was further subdivided to separate larger and smaller OCs, grouping into 4 categories based on 
the number of nuclei present. The smallest osteoclasts counted had 3-5 nuclei, then a further group 
of 6-10, 11-15, and finally the largest cells were defined as more than 15 nuclei per cell. (C and D) 
WT data points in green and par2-/- in pink. Multiple T test were conducted with Holm-Sidak 
correction for multiple comparisons, adjusted p values as follows: * = p<0.05, ** = p<0.005. WT 
N=5, par2-/- N=4, no additional experimental repeats performed. 
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5.3 Discussion 

Despite a known role for protease sensing via PAR2 in inflammation, the impact 

of a loss of this receptor on the bone marrow cellular compartments has not 

been reported. It has been suggested that the total number of BM cells is 

increased in PAR2 KO animals76. However, this finding has not been followed up 

and no subsequent analysis of the bone marrow components were performed. 

The central focus of this thesis is the role of the PAR2 pathway in cells from the 

monocytic lineage. Therefore, prior to investigation of the function of PAR2, 

potential changes to the BM monocyte compartment as a result of the knock out 

was investigated. Flow cytometry techniques were employed to analyse the 

frequency of monocytes and monocyte subsets in the BM compartment of WT 

and par2-/- animals (Figure 5.1). The frequency of monocytes and their 

subsequent populations (inflammatory, patrolling, and OCPs) were unchanged 

between genotypes (Figure 5.2). This suggests that PAR2 does not impact 

monocytic haematopoiesis, or retention of monocytes in the bone marrow under 

homeostatic conditions. 

Interestingly, while analysing the cellular composition of the BM, the expression 

levels of CD11b – a cell surface protein used to identify monocyte populations - 

was enhanced in the patrolling subset of monocytes from par2-/- animals. CD11b 

is an integrin subunit also known as integrin aM that pairs with the b2 subunit 

also known as CD18, to form a complete integrin heterodimer. This integrin 

binds ligand ICAM-1 and this interaction is essential for monocyte cell adhesion 

and migration. ICAM-1 binds to all b2 associated integrins; CD11a/CD18, 

CD11b/CD18, CD11c/CD18, CD11d/CD18. Members of the b2 integrin family are 

crucial regulators of myeloid cell function, by directing cellular migration, the 

ability for cells to partake in cell-cell adhesion, as well as mediating-signalling 

cascades. While all of these subunits are expressed in myeloid cells including 

monocytes, macrophages and DCs, expression patterns change with each myeloid 

cell type. The CD11b subunit is the most highly expressed in monocytes, hence 

its use as a discriminatory marker for identifying monocytes via flow cytometry. 

CD11b is thought to be essential in mediating the migration of monocytes from 

the blood into tissue, through adhesion to endothelial cells. While it may be 

initially thought that this drives migration of monocytes to inflamed sites, it 



5  210 
 
appears that CD11a and b are dispensable in the recruitment of myeloid cells 

during inflammation. The role of these subunits is more important in 

homeostatic migration to tissues1. The enhanced expression of the CD11b 

subunit on patrolling monocytes in par2-/- is then of further interest. The 

primary function of these cells is adhesion and rolling on the endothelial surface 

monitoring endothelial function, as opposed to migrating into tissues upon 

inflammatory assault 24. 

Total expression levels of integrins are not necessarily important in terms of 

their function. The activation status of integrins is essential for mediating their 

functions appropriately. Integrins in an inactive state have very low affinity to 

their ligands. However, upon activation integrin heterodimers change their 

conformation and their affinity to ligands increases significantly362. Despite 

increased expression levels of CD11b in par2-/- monocytes, there was no 

enhancement in par2-/- monocyte ICAM-1 binding capacity (Figure 5.6B). 

Essentially, isolated BM monocytes from par2-/- did not have enhanced ICAM-1 

binding with PMA stimulation, nor did WT cells have any change in ICAM-1 

binding over unstimulated conditions with FLIGRL PAR2 stimulation. Alternative 

forms of PAR2 activation with proteases were not tested, as the generated data 

suggests that while there is enhanced CD11b expression in par2-/- monocytes, 

this does not seem to translate to a functional outcome in this experimental 

setting. However, it is also of note that the observed enhancement of this 

protein was only found in patrolling monocytes, and the cell population used in 

these experiments were total BM monocytes. Patrolling monocytes make up 

around 20-30% of the total monocyte population and so it is possible that 

potentially enhanced binding of par2-/- patrolling monocytes was not observable 

using this assay. FACS sorting of these specific cells could have been conducted, 

however, the cell numbers were very low, and this would have required 

significantly more animals. Whether the observed enhancement in total surface 

levels of CD11b has any functional implications in vitro or in vivo is yet to be 

determined. 

The PAR2 pathway has previously been associated with integrin expression, 

cellular adhesion, and migration in other cell types. In vivo work by Nathalie 

Vergnolle demonstrated that intra-peritoneal (IP) injection of PAR2 activating 
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peptides drove the recruitment of leukocytes to the peritoneal cavity282. 

Shaoheng He and colleagues found that trypsin stimulated mast cell 

accumulation via PAR2 and ICAM-1 driven mechanisms363, while McDougall and 

colleagues showed PAR2 activation in the rat knee joint resulted in leukocyte 

rolling and adherence at the site364. In addition, in vitro activation of PAR2 in 

neutrophils drove enhanced migration within a 3D lattice, as well as the 

modulation in the expression of selectins and integrins, and stimulated 

chemokine production in these cells365. Furthermore, trypsin was shown to 

stimulate a5b1 dependent adhesion of gastric carcinoma cells to fibronectin via 

PAR2366. Therefore, the data presented in this chapter is not the first recorded 

association between PAR2 and mechanisms of cellular adhesion, migration and 

integrin expression. This function of PAR2 signalling may contribute to some of 

the many observed phenotypes with the loss of PAR2; such as reduced 

inflammation in arthritis models276, and reduced cancer cell migration and 

metastasis367,368. This mechanism could also play a role in processes which 

depend upon cell-cell interaction such as OCP fusion. 

Previous work has suggested a role for the PAR2 pathway in bone remodelling285, 

injury response76, and bone related diseases288. As well as the conformation of 

PAR2 expression in human monocytes in chapter 4 (see section 4.2.2), an 

interesting link between monocyte integrin expression and the PAR2 pathway 

was presented in this chapter. The role of PAR2 in the differentiation of OCs was 

subsequently investigated. Under the standard M-CSF and RANKL driven in vitro 

OC differentiation assay, par2-/- NA-BM produced a significantly enhanced 

number of TRAP+, multinucleated OCs (Figure 5.8 A and B). Enhancement of the 

number of larger osteoclasts (more than 5 nuclei) was more significant than 

smaller osteoclasts of 3-5 nuclei (Figure 5.8C), indicating that OCPs from par2-/- 

BM are more likely to fuse to form giant OC cells as opposed to their WT 

counterparts. There was no significant enhancement in the overall activity of 

par2-/- OCs despite the significant enhancement in size and number of OC cells. 

This indicates that while there are more OCs formed, these large cells are in 

fact less active than their WT counterparts (Figure 5.8D and E). The par2-/- OC 

cultures have a more prominent enhanced fusion phenotype rather than an 

enhancement of all OC associated functions, suggesting that protease signalling 

via PAR2 prevents excessive fusion and the formation of giant OCs. Alternatively, 
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the duration of the culture was too long to identify differences in resorption 

between genotypes, WT cultures potentially caught up with the KOs. In order to 

confirm there were no differences in OC activity between genotypes it would be 

valuable to conduct a time-course of resorption osteoassay plates, which 

included earlier points in the culture. 

The differences observed between these 2 genotypes without addition of 

proteases or peptides which activate PAR2, is somewhat surprising. This suggests 

that proteases are produced within the culture and act in an autocrine, or 

paracrine manner via PAR2 to regulate the formation of OCs in WT cultures. This 

form of regulation is thus lost in par2-/- cells. In order to test whether PAR2 

activation within the culture drives this difference between genotypes, another 

NA-BM OC differentiation assay was set up, which included either PAR2 

stimulation via FLIGRL (2µM) or PAR2 inhibition using AZ compound AZ8838 

(Figure 5.11). 

FLIGRL is a modified version of the original activating peptide SLIGRL, which 

mimics the tethered ligand sequence and binds to the 2nd extracellular loop of 

the receptor, inducing non-enzymatic activation. The furoylated derivative of 

the SLIGRL peptide developed by Hollenberg and colleagues369 is a more 

metabolically stable activating peptide with significantly enhanced potency370. 

However, the specificity of these activating peptides has come into question 

when Eleanor Mackie and colleagues reported Ca2+ flux in par2-/- cells, in 

response to both SLIGRL and FLIGRL peptides, albeit attenuated in comparison 

to WT responses 371. They established that the reduction in apoptotic osteoblasts 

(OBs), and the reduction in OB mineralisation observed with PAR2 activating 

peptide treatment was via a PAR2 independent mechanism, as the same effect 

was detected in par2-/- OBs. No scrambled peptide controls were applied in this 

study, so it is possible that the activating peptide contained contaminants (eg. 

lipopolysaccharides), which drove the non-PAR2 related responses. Despite this 

controversy, SLIGRL and FLIGRL remain the primary PAR2 agonists used in the 

literature and are the most cost effective agonists available. Keeping this in 

mind, since par2-/- cells were used in these assays, both WT and par2-/- cells 

could be treated with FLIGRL and the specificity of the observed effects for 

PAR2 determined by examination of par2-/- responses (Figure 5.11). 
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Previous PAR2 antagonists have often failed to fully antagonise the receptor. For 

example GB88 was traditionally used as a PAR2 antagonist, however it is now 

recognised as a biased agonist of PAR2 activity, inhibiting PAR2 induced calcium 

mobilisation but stimulating RhoA activation and ERK phosphorylation via 

PAR2372. New small molecules were developed by AstraZeneca to selectively 

inhibit the activity of PAR2 without causing any partial agonistic effects. The 

crystal structure of the receptor with both of these antagonists, including the 

AZ8838 used in this study, was published in 2017373. This antagonist has slow 

binding kinetics, with 1 hour incubation required for full inhibition. In this study 

we chose to use the inhibitor throughout the culture, with each media change 

containing AZ8838, to thus maintain continuous inhibition of the activity of PAR2 

in this culture. 

Addition of the PAR2 agonist FLIGRL (2µM) in the NA-BM OC differentiation 

cultures had no impact on the number of generated OCs in either WT or PAR2 KO 

cell cultures (Figure 5.11 B and D). If this mode of PAR2 activation within the OC 

assay culture resulted in the regulation of OC formation, we would expect a 

reduction in WT OC numbers with PAR2 activation. However, this was not the 

case. This suggests that either PAR2 activation in this culture system is at a 

maximum, which seems unlikely from endogenous protease production, or that 

“canonical” PAR2 activation is not driving the PAR2 mediated regulation of OC 

formation. Rather there could be alternative PAR2 activation which drives bias 

signalling (PAR2 bias signalling is fully reviewed in Chapter 1, section 1.4.2.1). 

Finally, it could indicate that PAR2 activation within the culture system is not 

what drives the differences, that pre-priming of cells in vivo is altered instead. 

To determine the impact of PAR2 blockade on osteoclastogenesis, the PAR2 

antagonist was used throughout the cell culture. This inhibition of PAR2 in WT 

cells did impact the number of osteoclasts formed (Figure 5.11C, and D). When 

WT cell cultures were treated with AZ8838 each murine donor had enhanced 

osteoclast numbers (Figure 5.11C), however, this enhancement did not reach 

statistical significance. Unlike untreated and FLIGRL treated WT cultures that 

contain significantly lower numbers of OC than par2-/- cells, WT cultures treated 

with AZ8838 no longer had significantly lower OC counts than par2-/- cell 

cultures. While the WT AZ8838 OC count was not significantly enhanced over 
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untreated WT cultures, PAR2 inhibition increased the OC number enough to no 

longer be significantly different from the KO culture. Therefore, this indicates 

that PAR2 activation is required within the cell culture to drive the regulation of 

OC formation. Thus, either maximal activation of PAR2 is occurring endogenously 

within these cell cultures, or a non-canonical PAR2 signal drives the regulation 

of OC formation observed. 

The observation that addition of a PAR2 inhibitor in this assay drives increased 

OC formation also indicates that there is an endogenous activator of PAR2 

present within BM OC cultures. A recent publication isolated the proteases 

released from murine BM-derived OCs and via mass spectrometry identified 42 

proteases preferentially released by osteoclasts over macrophage cultures 287. Of 

these isolated proteases, 2 were of the trypsin family (Try10, and 

2210010C04Rik). While these proteases have not been tested for their ability to 

activate PAR2, it is possible that these trypsin family members could activate 

the receptor. The most highly detected protease was pro-thrombin, the inactive 

form of thrombin. While it was previously thought that PAR2 cannot be activated 

by thrombin, it is now recognised that at higher concentrations than required for 

PAR1, thrombin does activate PAR2374. In addition, this study also identified 

multiple cathepsins (a, b, and j), and MMPs (2, 8, 9, 12, 19) preferentially 

secreted by murine BM osteoclast cultures. While none of the reported proteases 

have been reported as PAR2 activators, new activating proteases are still being 

discovered and the potential for PAR2 activating protease production within 

murine BM OC cultures is entirely plausible. It is also of note that this paper only 

discloses proteases released by BM OC cultures not found in BM macrophage 

cultures; it is eminently possible that PAR2 activating proteases are released by 

both cell types but this was not discussed in the publication. 

The experimental work utilising PAR2 inhibitors therefore indicates that PAR2 

signalling does regulate OC formation and during in vitro OC cultures a source of 

PAR2 activating proteases is produced endogenously, stimulating that regulation. 

Overall, this suggests a regulatory role for non-canonical PAR2 driven G-protein 

coupled receptor signalling in the regulation of OC formation. This is not the 

first occasion where G protein coupled receptor signalling has been attributed to 

the regulation of osteoclastogenesis, and limiting OC formation. A regulatory 
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function of G protein signalling via Ga13 was recently identified, which 

controlled and prevented excessive OC generation375. Using conditional Ga13 

knock out animals, it was identified that the loss of this signal in vitro resulted 

in a significant enhancement in osteoclast size, an observation mirrored in par2-

/- OC cultures (Figure 5.8). An enhanced number and size of osteoclasts in vivo 

was also observed in the Ga13 conditional KOs. Further investigation of this 

phenotype showed osteoclast associated gene expression differences between 

WT and Ga13 KO cultures were only found in late stage OC development genes 

such as cathepsin K, TRAP, and DC-STAMP, and the enhancement of these genes 

were only found after 3-5 days of RANKL exposure. Interestingly Ga13 KO cells 

also had enhanced expression of integrin b3, and faster adhesion and f-actin ring 

formation than WT comparators, suggesting a role for this signal in regulating 

the adhesion of OCs. All of these phenotypes were observed without the addition 

of any activators of G protein coupled receptors to the culture indicating a 

potential endogenous activator, also similar to the observations made in par2-/- 

assays. No specific G protein coupled receptor was proposed as the driver of this 

regulatory signal by the authors, and none of the G protein coupled receptors 

associated with OC function that they tested contributed to this phenotype, 

including GPR103, EBI2, GPR68, GPR55. 

Interestingly the phenotype observed in the Ga13 conditional KO discussed 

above has some striking similarities with those observed in par2-/- cultures. 

Enhancement of OC associated transcripts were only observed at later time 

points of differentiation (Figure 5.9 and Figure 5.10), and the most significant 

feature of our enhanced OC phenotype is the observed larger size of these cells 

(Figure 5.8C). In addition, observed differences in par2-/- BM monocyte integrin 

expression in CD11b also indicates potential roles for this receptor in driving or 

limiting cellular adhesion (Figure 5.3 and Figure 5.4). PAR2 is known to signal via 

multiple Ga subunits including Gaq, Gas, and Ga12/13, and it is now recognised 

that the method of activation of this receptor can influence the signalling route 

taken (PAR2 signalling and bias signalling reviewed in detail in Chapter 1, see 

sections 1.4.2 and 1.4.2.1). For example, neutrophil elastase cleavage of the N 

terminus, at an alternative site from canonical trypsin cleavage, is known to 

induce Ga13 activation and ERK phosphorylation but does not induce Ca2+ flux, 

unlike canonical activation. Drivers of alternate, or selective signalling of PAR2 
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may be a source of the Ga13 signal in this culture, that control OC formation 

and prevention of giant OC formation. For the above reasons PAR2 should be 

considered as one of the potential G protein coupled receptors responsible for 

this regulatory Ga13 signal. 

In the last 20 years, our understanding of the complexity of G-protein coupled 

receptors has been extended to include new modes of activity such as internal G 

protein coupled receptor signalling376. G-protein coupled receptors activated at 

the plasma membrane can signal via b-arrestin during endosomal internalisation. 

In addition to this form of intracellular signalling, it is now appreciated that G-

protein coupled receptors can also reside on intercellular organelles such as the 

mitochondria377, the endoplasmic reticulum378, and lysosomes379, and are able to 

be activated from these intracellular compartments to initiate signalling. There 

have been no reports of intracellular activation of PAR receptors in the 

literature, however, there have been many reports of intracellular stores of 

PAR2, including the intracellular staining in healthy human monocytes reported 

in Chapter 4 of this thesis (Figure 4.4C). It may be possible that the intracellular 

stores observed could be functionally responding to intracellular protease 

activity. This could be a further alternative reason as to why small molecule 

inhibitor AZ8838 impacted cell cultures and activating peptide FLIGRL did not. 

Small molecules such as this inhibitor would be capable of diffusing into the cell 

while peptides such as FLIGRL would only be expected to have cell surface 

activity unless endocytosed. 

In addition to protease signalling via PAR2, sensing of proteases via the PAR1 

receptor has recently been shown to have a regulatory role in controlling 

osteoclast differentiation380. Osteoclasts generated in vitro from par1-/- murine 

BM have a similar phenotype to that found in par2-/- cultures, with enhanced 

number and crucially enhanced size of OCs. Paired with the increase in OC 

differentiation found with the loss of PAR2, this indicates a potential role for 

protease signalling and the PAR family of receptors in the regulation of OC 

formation. The authors of this study found that during TNF driven inflammatory 

osteoclastogenesis, a loss of PAR1 resulted in further enhancement of OC 

differentiation. This was demonstrated in vivo with a TNF induced calvarial bone 

erosion model. In addition, TNF driven OC differentiation was shown to have a 
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direct impact on par1-/- BM OC cultures in vitro, with addition of this 

osteoclastogenic cytokine giving rise to even further enhancement of par1-/- OC 

formation in vitro. 

To identify whether the mechanisms driving PAR2 regulation of OC formation 

were similar to those in PAR1, the effect of a loss of PAR2 in inflammatory TNF 

enhanced OC differentiation was investigated. A TNF enhanced murine OC 

differentiation assay was optimised (Figure 5.19), similar to that applied to PAR1 

KO cultures. However, unlike the further enhancement of OC size and number 

found with the loss of PAR1 in this inflammatory system, a loss of PAR2 resulted 

in significantly limited TNF enhancement of osteoclast numbers (Figure 5.20 A 

and B). While WT cell cultures had 4 to 6 fold enhancement of osteoclast 

formation with the addition of TNF, par2-/- BM was limited to 2 fold (Figure 5.20 

C). Interestingly, when osteoclasts were counted based on number of nuclei in 

order to determine changes to OC size, par2-/- cultures contained significantly 

reduced numbers of larger OCs (11-15 nuclei), compared to WT counterparts 

(Figure 5.20 D). 

This data suggests that PAR2 signalling contributes to TNF enhancement of OC 

differentiation, with opposing functions to PAR1 during in vitro inflammatory OC 

formation. While protease signalling appears to be an important regulator of OC 

formation via multiple receptors, different PARs are most likely driving different 

mechanisms of OC regulation. The study conducted with par1-/- animals 

determined that in this knock out the enhanced OC phenotype was driven by 

enhanced notch 2 activity. Thus, PAR1 serves to limit exacerbated OC 

differentiation by preventing excessive notch 2 activity. We do not show a 

mechanistic connection between PAR2 signalling and OC differentiation. 

However, since there are such opposing effects during TNF enhanced OC 

generation, it is likely that the driving mechanism between PAR2 and OC 

regulation will be different during inflammation. Multiple factors could be at 

play during TNF stimulated OC enhancement which could influence and alter 

PAR2 signalling, driving an alternate response. 

It should be noted that PAR2 having opposing roles to PAR1 during inflammation 

is not surprising. PAR2 has an established role in inflammation and is reported to 

impact multiple inflammatory disease models and human diseases. PAR2 may 
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have a more significant role during inflammation as its activity is driven by 

proteases which are commonly released from active immune cells, whereas the 

primary activators of PAR1 are more highly associated with blood clotting. PAR1 

may therefore play a more significant role in tissue injury response and repair, 

while PAR2 responds more heavily to inflammatory and infectious agents. 

The NA-BM assays are valuable as a basic method for assessing M-CSF and RANKL 

driven OC formation. Overnight adherence of total BM cells before taking the NA 

fraction is conducted in order to limit the stromal contamination of this culture. 

However, OCPs have not been specifically selected or sorted and thus this is still 

a mixed culture system which could potentially contain other non-

osteoclastogenic NA cells or even some adherent cells which have not fully 

bound to the plastic yet. Therefore in this setting, the contribution of other cell 

types (stromal, or other immune cells) is not fully known and cannot be 

dissected. In order to specifically test the role of PAR2 in OC formation in both 

the monocyte compartment and the potential stromal impact, a co-culture 

system of calvaria osteoblasts and BM isolated monocytes was used (Figure 

5.12A). The role of PAR2 in stromal regulation of OC generation has been more 

extensively explored than the role of PAR2 in the monocyte/OCP compartment 

in the bone remodelling literature. Previous work identified PAR2 activation via 

activating peptides inhibited OB driven osteoclastogenesis in a co-culture assay 
75. In our co-culture system we found that par2-/- OBs had a higher potential for 

stimulating OC differentiation, in both non-differentiated calvarial OB-like cells 

(Figure 5.12), and to a lesser extent 8 day differentiated calvarial OB-like cells 

(Figure 5.16). This data appears to support the previous work of Smith and 

colleagues suggesting a regulatory role for PAR2 in preventing excessive 

osteoclastogenesis.  

Smith and colleagues proposed that PAR2 activation limited the production of 

RANKL by OBs, as shown by a reduction in transcript levels of tnfsf11. This was 

the proposed mechanism of PAR2 mediated regulation of OC differentiation. The 

data presented in this chapter also supports a regulatory role for PAR2 in 

homeostatic OC formation. However, an enhanced tnfsf11 expression was not 

found in par2-/- OBs, and therefore the data does not support the hypothesis that 

this regulation is through PAR2 driven RANKL reduction. Freshly isolated OB-like 
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calvarial cells from WT and par2-/- did not have any alteration in tnfsf11 or 

tnfsf11b expression with a loss of PAR2. There was also no difference in cells 

which had undergone 8 days of growth factor maturation prior to co-cultures, 

where investigation of the transcript levels of tnfsf11 and tnfsf11b were 

conducted on day 8 just prior to co-culture (Figure 5.16). In addition to analysis 

of OB transcripts just prior to addition to co-culture, a time course of OB-like 

cell maturation in the presence of growth factors and PAR2 inhibitor (AZ8838) 

was also conducted for further transcript analysis of OB associated transcripts 

(Figure 5.17 and Figure 5.18). No change in the expression of OB associated 

transcripts for RANKL (tnfsf11), OPG (tnfsf11b), RunX2 (runx2), osteocalcin 

(bglap), osterix (sp7), or ALP (alpl) expression between WT and par2-/- was 

found with either maturation protocol (Figure 5.17 and Figure 5.18). However, 

par2-/- OB-like cells had an observable increase in osteopontin (spp1) transcript 

levels over WT comparators. The observed differences did not reach significance 

in PGE2, Vit D matured cells, and due to limited sample number of par2-/- cells 

matured with AA, Dex, and bGP (N=2) statistical testing could not be performed 

on this group. Addition of AZ8838 PAR2 inhibitor for 4 hours prior to RNA lysis 

also increased the expression levels of spp1 in AA, Dex, and bGP matured WT 

OB-like cells to almost the observed levels of the par2-/-, indicating PAR2 activity 

during the culture was responsible for the reduced spp1 levels in WT cells. 

However, there was no change in spp1 levels in WT cells matured in PGE2 and Vit 

D with AZ8838, so that is most likely not the case during PGE2 and Vit D 

differentiation. 

Osteopontin (OSP) is a key non-collagenous component of the bone matrix that is 

highly expressed by osteoblasts and an essential mediator of OC adhesion to the 

bone matrix381 via interactions with integrin aVb3. Its role in bone remodelling 

and OC function is fully explored in section 1.2.3 and 1.2.4 of this thesis. In 

brief, OSP mediated adhesion of OCs is essential in the formation of a ruffled 

border, which mediates the enables active resorption. In addition to adhesion 

and OC activity, OSP also drives the migration of OCPs and OCs382. The enhanced 

expression of this bone matrix component in par2-/- OB-like cells may be one 

method by which these cells drive the enhanced OC formation observed in co-

cultures (Figure 5.12 and Figure 5.16). Elevated expression of OSP in par2-/- OB is 

likely to enhance the osteoclastogenic potential of the environment. One 
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observed phenotype of OC cultured with par2-/- OB-like cells again was their 

enhanced size (Figure 5.12D). Migration of OCPs is crucial for fusion of cells and 

formation of OCs. An enhanced expression of this glycoprotein mediating the 

migration of OCPs could encourage enhanced fusion of cells in OB-like par2-/- 

cultures. This could be mediated by potentially bringing them closer together 

and providing osteoclastogenic signals via OC associated integrins such as aVb3. 

In addition, as mentioned above binding of aVb3 to ligands such as OSP is an 

essential step in mediating the formation of the OC ruffle border, which is 

required to enable directional secretion of acids to perform erosion of the bone 

mineral below. In par2-/- OB cultures an enhanced resorption capacity was also 

detected (Figure 5.16). The increased OSP produced may also encourage 

increased activity of OC, an observation not made when OCs were cultured alone 

(Figure 5.8). Thus, not only is this matrix protein responsible for the migration 

and cellular adhesion of OCs but is required for them to fulfil their resorption 

functions adequately. Therefore an enhanced expression of OSP in these cultures 

may have been mediating the increased OC formation and activity. 

An interesting connection between OSP and PAR2 is that they can both be 

cleaved by serine proteases for functional purposes. Both non-cleaved and 

cleaved forms of this protein are functional. Cleavage of OSP somewhat alters 

the functional responses of OSP as it disrupts the RGD domain, which drives 

interaction with conventional RGD binding integrins for example OC associated 

aVb3. In doing so, OSP gains the ability to bind many non-RGD dependent 

integrins such as a4 containing integrin heterodimers 383. Serine protease 

cleavage of full length OSP results in 2 functional proteins – OSP N-terminus, and 

OSP C-terminus. Previous studies have shown that full length OSP is capable of 

binding multinucleated TRAP positive OCs to mediate their function. However, 

the cleaved portions of this glycoprotein mediate their function via mononuclear 

pre-OCs binding via non-RGD-dependent integrin a4384. 

Analysis of OB-like cells was conducted on pure stromal cultures, where RNA was 

isolated from these cells and transcript analysis for OC stimulating factors 

conducted. This was done to prevent contamination of other cell transcripts in 

our analysis, such as monocytes that may be present in a co-culture. However, 

this means that OB activity and behaviour which will be influenced by their 
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interaction with OCs would not be detected. It is possible that some OB PAR2 

activity may have been dependent upon monocyte or osteoclast protease 

production, and without the interaction of these cells the impact of a loss of 

PAR2 may not be evident. As discussed above, osteoclast cultures are a source of 

active proteases and these can function not only in an autocrine manner but also 

in a paracrine manner to activate PAR receptors in OB-like cells. Smith and 

colleagues conducted transcript analysis on mixed whole bone marrow cultures 

fed with OB stimulatory factors such as IL-11, parathyroid hormone (PTH), and 

Vit D, so the analysis conducted would factor in all cellular interactions and 

their influence. By maintaining purity in our transcript analysis, we may have 

missed the potential influence of OB/OC interactions which occur in the co-

culture and possible PAR2 influences dependent upon the presence and 

interaction with OCs. 
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5.4 Conclusions 

From the data presented in this chapter it has been determined that protease 

signalling via PAR2 plays differential roles in monocyte maturation into OCs, 

which is dependent upon their environment. Under homeostatic OC cell culture 

conditions PAR2 prevents excessive OC formation. This effect is the result of 

active PAR2 signalling within the culture, as shown through a loss of significant 

differences between WT and par2-/- cells when WT cultures are maintained with 

PAR2 inhibitors (AZ8838). However, external activation of PAR2 via activating 

peptide (FLIGRL) does not drive these differences further. This suggests either 

endogenous proteases maximally activate available PAR2 receptors, a potential 

role for internal signalling, or bias signalling driving the phenotype in this culture 

system. 

An observed increase in OC size, paired with increased expression of integrin 

subunits and enhanced production of OSP by stromal compartments all in par2-/- 

cells appears to indicate a role for PAR2 in cellular migration, adhesion, and thus 

fusion, as the driving mechanisms resulting in enhanced OC formation. In 

addition, a failure to observe significantly enhanced resorptive activity in the 

par2-/- OC cultures also indicates this phenotype is more predominantly cellular 

fusion. 

In addition to PAR2 signalling directly regulating OC formation, it was also 

determined from mix-match genotype co-culture of OC and OB-like stromal 

cells, that PAR2 signalling plays a regulatory role in the formation of OCs via the 

stromal compartment. The role of PAR2 signalling in OB and how this regulates 

OC formation has been briefly explored in the literature. The mechanism 

proposed by Smith and colleagues was that PAR2 regulated OC formation via OBs 

by through limiting transcription of tnfsf11 (RANKL). However, no alteration in 

tnfsf11 transcript was observed between WT and par2-/- OB-like cells in the 

experiments presented in this chapter. In turn, the data presented here suggests 

an alternative mechanism, perhaps PAR2 signals in OBs limiting OSP production, 

which in turn would limit OC adhesion and migratory capacity. However, this 

proposed hypothesis requires further testing to be confirmed. 
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Finally, while under TNF stimulated osteoclastogenesis the impact of a loss of 

PAR2 results in an opposing phenotype, indicating that protease signalling via 

PAR2 contributes to TNF enhanced OC formation. The mechanisms by which 

PAR2 drives an alternate response during an inflammatory setting is not 

understood. The surrounding environment could have many potential impacts on 

PAR2 function and could include alterations to endogenous proteases produced 

or available, or changes to receptor heterodimers. Due to time limitations this 

was not explored within this system, but it would be of interest to further 

investigate the changing role of PAR2 in OC formation in health vs disease. 
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6 Functional Role of PAR2 in Primary Human 
Monocytes  

6.1 Introduction  

Thus far the literature concerning PAR2s role in osteoclastogenesis and bone has 

been focused entirely on murine systems and no work has been conducted in 

human OCs. The murine studies have been contradictory in their conclusions, 

with one study implying PAR2 plays an enhancing role in osteoclast formation76 

and another demonstrating and inhibitory role75. In the previous chapter the role 

of PAR2 in osteoclast formation was explored utilising par2-/- animals. By 

applying a total knock out murine system the crude biology could be 

interrogated to clarify the role of this receptor in OC biology. In addition, 

substantial variation in the levels of PAR2 surface membrane expression within 

the human population were observed (Figure 4.4E) and thus immediately testing 

the function of this receptor in a population of primary human monocytes may 

have been limited by a variable response in the general population. The 

experiments presented in chapter 5 suggested that protease signalling via PAR2 

in routine M-CSF and RANKL-driven OC culture assays limited OC formation and 

prevent excessive fusion and formation of giant OC cells. However, during 

inflammatory enhanced OC differentiation driven by M-CSF, RANKL, and TNF, 

PAR2 appeared to contribute to the TNF-driven enhanced OC formation, with the 

KO cells displaying limited OC enhancement under TNF-driven conditions. 

Overall this data demonstrated divergent roles for this receptor, which are 

dependent upon the surrounding environment and partnering signals received. 

While murine systems such as this can provide us with valuable insights to the 

basic underlying biology of PAR2 in OC formation, it is not a perfect system. 

Often observations discovered in murine systems do not directly translate to 

human biology. In order to confirm the relevance of protease signalling via PAR2 

in human biology this chapter explores the role of PAR2 in human peripheral 

blood monocyte differentiation into OCs. To do so, PAR2 activating peptides and 

inhibitors were used in human OC differentiation cultures. 

In addition to observations made regarding OC formation, par2-/- BM cells also 

had altered expression levels of monocyte associated integrin CD11b. This data 
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indicated a potential function of PAR2 in mediating cellular adhesion in 

monocytes. These 2 observations may be connected, suggesting that PAR2 could 

drive or inhibit monocyte adhesion in order to mediate migration or cell fusion. 

Overall this chapter is aimed at translating findings from previous chapters 

(conducted in par2-/- animals), to in vitro primary human monocytes. In doing 

so, these experiments confirm or refute the relevance of the PAR2 functions 

observed in mice, in a human system. The aims of this chapter are: 

To investigate the role of PAR2 in human monocyte function and 

osteoclastogenesis. 

1. Using flow cytometric approaches to investigate PAR2 

activation/inhibition and monocyte integrin expression and 

adhesion potential 

2. Utilising PAR2 activating peptides and PAR2 antagonists in 

human osteoclast generation protocols. 
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6.2 Results  

6.2.1 PAR2 Signals via MAPKinase in Human Monocytes  

To demonstrate that PAR2 detected on human monocytes (by the D61D5 

antibody) was functionally active, PBMCs were stimulated with PAR2 activating 

peptide. Notably, in other cell types stimulation of PAR2 with either activating 

peptide or receptor cleavage via trypsin, resulted in activation of the MAPKinase 

pathway and thus ERK phosphorylation 231,385-387. Phosphorylation of ERK was 

therefore used as a surrogate for the detection of PAR2 activation. PAR2 

stimulation experiments were conducted using activating peptide (FLIGRL, 2µM) 

in total PBMC populations, stimulating for a time course of 2, 5, 15, 30, 60, or 90 

minutes, using a 15 minute stimulation with 100nM of PMA as a positive control 

for ERK phosphorylation. The total PBMC population was lysed for protein 

extraction with RIPA buffer and proteins were separated by molecular weight by 

means of gel electrophoresis and transferred to a membrane for western 

blotting. Membrane was blotted for p-ERK and total ERK to check sample loading 

(Figure 6.1A). Visual analysis of the western blot confirmed that PMA stimulation 

resulted in high levels of ERK phosphorylation; thick dark bands on the 

membrane at 40-45kDa weight with anti-pERK staining (Figure 6.1A). In addition, 

a signal for pERK was detected at 2, 5, 15 and 30 minutes post FLIGRL 

stimulation, which returns to baseline levels by 60 minutes (Figure 6.1A). 

Quantification of the intensity of the detected bands was calculated on ImageJ 

and p-ERK was normalised to the total ERK loading control (Figure 6.1A). 

Relative p-ERK levels demonstrated that peak phosphorylation was observed 5 

minutes post-stimulation (Figure 6.1B). This data confirmed that within a total 

PBMC population a proportion of cells were responding to PAR2 activation via 

activation of the MAPKinase signalling pathway. 

In order to specifically show this phosphorylation event in monocytes, the same 

PAR2 stimulation experiment was repeated in a total PBMC population. Instead 

of generating total protein lysates, these cells were processed for phospho-flow 

cytometric analysis of p-ERK. This technique enabled staining for cell surface 

markers in conjunction with the protein of interest and thus enabled 

identification of cell populations whilst simultaneously detecting intracellular p-

ERK. Cells were gated to exclude doublets and then gated on CD14+ monocytes 
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and expression of p-ERK analysed, compared to a secondary only stained control, 

for each timepoint (Figure 6.1C). The DMFI was calculated by subtracting the 

control stain from the p-ERK stain (Figure 6.1D). From this experiment it was 

clear that the monocyte population responded to PAR2 stimulation, resulting in 

phosphorylation of ERK and activation of the MAPKinase signalling pathway. This 

confirmed that the PAR2 expression detected in human monocytes via flow 

cytometry (Figure 4.4) was functional and can be activated via conventional 

activating peptide (FLIGRL) to initiate MAPkinase signalling events. 

 

Figure 6.1 Human Monocytes Respond to PAR2 Stimulation Through MAPkinase Signalling 
Activation. 
PBMCs were isolated from peripheral blood via gradient centrifugation and resuspended in 
complete RPMI. Cells were left unstimulated, stimulated with PAR2 activating peptide (FLIGRL, 
2µM) for 2, 5, 15, 30, 60, or 90 minutes, or stimulated with PMA (100nM) for 15 minutes. Cells were 
fixed in 4% paraformaldehyde to stop cellular activity and cells were spun down and resuspended 
in 200µl RIPA buffer for protein lysate extraction. Cell lysates were separated by molecular weight 
by gel electrophoresis and transferred to a PVDF membrane for western blotting. (A) This 
membrane was blotted for phospho-ERK and loading control total-ERK. (B) Band intensity was 
quantified using ImageJ and p-ERK bands were normalised to the loading control total ERK. This 
experiment was repeated with new healthy donor PBMCs instead of protein extraction cells were 
fixed and permeabilised for intracellular staining of phospho-ERK. Secondary anti-rabbit AF647 
was then used to bind to the anti-p-ERK antibody to amplify the fluorescent signal and these 
samples were run on the LSRII flow cytometry. (C) Histograms are plotted with p-ERK stain (red), 
and secondary antibody only stain (blue) for each time point and PMA positive control. (D) The 
mean fluorescent intensity (MFI) of p-ERK in these samples was plotted. N=1, no additional 
experimental repeats performed.  
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6.2.2 Role of PAR2 in Integrin Expression in Human Monocytes 

The primary function of peripheral blood monocytes is to detect sites of 

inflammation and damage and migrate from the blood into the tissue. Monocytes 

must be able to adhere to the luminal surface and transmigrate through the 

lumen into the tissue. In order to complete these functions, integrin activation 

and adherence to endothelial cells is essential. There are no previous 

publications that reveal a role for PAR2 in monocyte adherence or migration, 

however, there are multiple studies demonstrating a clear role for PAR2 in the 

migration, adherence, and integrin expression of many other cell types363,388-390. 

Therefore, it is possible that adhesion and migration may be an unexplored 

function of PAR2 signalling in monocytes. 

Evaluation of integrin subunit CD11b levels on murine monocyte populations 

revealed that there was increased expression on par2-/- BM patrolling monocytes 

(Figure 5.3), indicating a potential regulatory function of PAR2 in integrin 

expression. Importantly, healthy human monocytes expressed surface PAR2 

(Figure 4.4 )and are able to respond to PAR2 activating peptides (Figure 6.1). 

Thus, it is conceivable that integrin expression levels on human monocytes 

maybe altered via PAR2 activation and inhibition. To test this hypothesis a flow 

cytometry panel was set up to investigate integrin expression on human 

monocytes. 

Initially changes in total integrin expression were tested in response to 

stimulation with a positive control. The TLR4 ligand LPS was chosen to drive 

monocyte activation, as a positive control for activated monocyte phenotype. 

Three time points of LPS stimulation were tested, 30, 60, and 120 minutes, and 

post-incubation cells were immediately put on ice to prevent further modulation 

of surface antigens. At this point cells were stained to identify monocyte 

populations (the same panel as used in sections 4.2.2 and 4.2.5) with the 

addition of antibodies against integrin b2 associated antigens, including CD11a, 

b, c, and CD18. Staining for integrin heterodimer avb3 was also included, as this 

integrin is required for cellular adhesion to bone and osteoclast differentiation. 

Visualisation of the of the difference in fluorescence levels of each integrin stain 

between unstimulated monocytes (blue) and LPS stimulated samples (red) 

revealed an LPS-associated increase in integrin subunit expression (Figure 6.2A). 
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In interpreting this data it important to note that the dotted line gates on each 

histogram represent the point at which staining becomes positive for the protein 

detected. Positive stain was defined as higher fluorescence detection than the 

fluorescence minus one control stain (FMO). The FMO stain is a sample of the 

same cell population stained with all of the other markers used in the flow panel 

without the marker of interest. This accounts for the impact of the presence of 

other fluorescent probes, which may contribute to detection of another 

fluorophore, and is thus a more robust negative control than an unstained 

sample. Primary human monocytes have clear positive expression of CD11b and 

CD18, with both of these surface markers increased upon LPS stimulation. While 

CD11a and CD11c were expressed at low levels in unstimulated monocytes. 

CD11c is highly upregulated upon LPS and CD11a slightly enhanced upon LPS 

stimulation. avb3 was not expressed by monocytes and expression was not 

promoted by LPS stimulation. The fold change over the unstimulated sample for 

each integrin component stained (except avb3 which stained negative both with 

and without stimulation) was calculated at each LPS time point and supported 

the interpretation that CD11a, b, c and CD18 were increased (Figure 6.2B). 
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Figure 6.2 Short Term LPS Treatment Stimulates Increased Surface Integrin Expression in 
Human Monocytes. 
Total PBMCs were isolated from healthy buffy coats by gradient centrifugation. PBMCs were then 
resuspended in RPMI and incubated at 37ºC unstimulated, or stimulated with LPS (100ng/ml) for 
30, 60 or 120 minutes. Cells were then immediately put on ice to stop the modulation of surface 
membrane proteins. Samples were stained in FACS buffer for HLADR, CD14, and CD16 to identify 
monocytes, lineage negative markers (CD3, CD19, CD15, CD56) to exclude other cell populations, 
and integrins (CD11a, b, c, CD18, and aVb3). These samples were run on the LSR II and analysis 
conducted on Flowjo software. (A) Histograms of monocyte events were plotted for each integrin 
with unstimulated samples in blue and 30 minutes of LPS stimulation in red. Dotted line gates 
delineate positive and negative staining – all events right of the dotted line are positive over 
baseline and all events left of the line are negative - as determined by the fluorescence level of 
fluorescence minus one (FMO). (B) MFI for each integrin was normalised to the MFI of the 
unstimulated sample and the fold increase in expression plotted for each time point of LPS 
stimulation. N=1, no additional experimental repeats performed. 

 

After demonstrating that integrin upregulation of b2 integrin (CD18) and its 

associated heterodimer subunits (CD11a, b, and c) could be achieved in 

monocytes, the impact of PAR2 activation and inhibition on expression levels of 

b2 associated integrins could be investigated. PBMCs were isolated from 2 

healthy donors, and these cells were stimulated with or without PAR2 activating 
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peptide (FLIGRL, 2µM), PAR2 inhibitor (AZ3383, 3µM), or LPS (100ng/ml) for 90 

minutes. Again cells were stained on ice for all the surface antigens. Of the 2 

donors analysed, 1 of the donors (shown in the top row of FACS plots) responded 

as expected to LPS, increasing expression of CD11b, CD18, and CD11c (Figure 6.3 

A and B). Interestingly this donor lost expression of CD11b and CD18 (a 

promiscuous integrin heterodimer which binds to ICAM-1, complement protein 

iC3b, alarmin LL-37391) after incubation in PAR2 inhibitor AZ8838. In comparison, 

the PAR2 activating peptide did not have the opposite impact of the PAR2 

inhibitor; increasing expression of these receptors. Surprisingly CD11b was also 

slightly decreased with PAR2 activation via FLIGRL peptide stimulation compared 

with unstimulated controls, but to a much lesser extent than the PAR2 inhibited 

sample. The other donor tested however, had no change in total integrin 

expression in response to LPS (Figure 6.3 A and B, second row). Both PAR2 

activators and inhibitors also had no impact on integrin expression in this donor. 

Without a reliable positive control for a change in integrin expression in this 

donor it is not possible to conclude anything about the PAR2 pathway. 
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Figure 6.3 Integrin Expression on Healthy Human Monocytes was Not Reliably Altered in 
Response to PAR2 Stimulation or Inhibition. 
PBMCs were isolated from 2 healthy buffy coat samples via density gradient centrifugation. PBMCs 
were maintained at 37ºC in RPMI unstimulated, or stimulated with LPS (100ng/ml), FLIGRL (2µM), 
or PAR2 inhibitor AZ8838 (3µM) for 90 minutes. These cells were then immediately placed on ice 
to prevent modulation of surface antigens and stained in FACS buffer for HLADR, CD14, and CD16 
to identify monocytes, lineage negative markers (CD3, CD19, CD15, CD56) to exclude other cell 
populations, and integrins (CD11a, b, c, CD18, and aVb3). These samples were run on the LSR II 
and analysis conducted on Flowjo software. FACS plots were created looking at (A) CD11b on the 
Y axis, vs CD18 on the X axis, and (B) CD11a on the Y axis vs CD11a on the X axis. Stimulated 
samples (blue) were overlaid on unstimulated samples (red). N=2, no additional experimental 
repeats performed. 
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This experiment failed to show consistent response of monocyte integrin 

expression in response to either the positive control of LPS or PAR2 pathway 

interventions. The data from the 1 responding donor indicated that blocking 

PAR2 impacted monocyte associated integrin heterodimer CD11b/CD18 

expression. In order to find a more robust, consistent positive control for 

increased total integrin expression the experiment was repeated instead using 

PMA stimulation as a positive control for increased total integrin expression. This 

experiment was repeated with 3 healthy donors, stimulating with PMA, PAR2 

activating peptide (FLIGRL, 2µM), or PAR2 inhibitor (AZ3383, 3µM). No change in 

total integrin expression for CD11b, c or CD18 was detected in response to PMA 

positive control stimulation (Figure 6.4), while an increase in CD11a expression 

was found in response to PMA (Figure 6.4).This outcome was the same for all 3 

donors, only 1 representative donor for this is shown in Figure 6.4. Interestingly 

integrin aVb3, which had undetectable expression and is not induced by LPS 

stimulation, was brought to the cell surface by PMA stimulation resulting in high 

expression of this integrin (Figure 6.4C). This suggests that different mitogenic 

signals in human monocytes influence the total expression levels of different 

integrins. Some signals proving to be suitable positive controls for the induction 

of some monocyte associated integrins while others more suitable for different 

integrin families. A combination of mitogenic factors or the use of multiple 

different positive controls may be more useful for future investigation into total 

integrin expression modulation. It is of note that none of the buffy coat donors 

(N=3) had any detectable change in integrin expression levels in response to 

PAR2 activation or inhibition in this experiment (Figure 6.4). 

The present data remains inconclusive and further studies are required to 

categorically rule out the potential for PAR2-mediated signalling to influence 

integrin expression. Further investigation of integrin expression requires 

substantial optimisation and possibly alternative approaches to enable 

exploration of the role of PAR2 in this biological response in human monocytes. 
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Figure 6.4 PAR2 activation or Inhibition Does not Alter Total Integrin Expression in Healthy 
Human Monocytes 
PBMCs were isolated from 3 healthy buffy coat samples via density gradient centrifugation, one 
representative donor is shown. PBMCs were maintained at 37ºC in RPMI unstimulated, or 
stimulated with PMA (100ng/ml), FLIGRL (2µM), or PAR2 inhibitor AZ8838 (3µM) for 90 minutes. 
These cells were then immediately placed on ice to prevent modulation of surface antigens and 
stained in FACS buffer for HLA-DR, CD14, and CD16 to identify monocytes, lineage negative 
markers (CD3, CD19, CD15, CD56) to exclude other cell populations, and integrins (CD11a, b, c, 
CD18, and aVb3). These samples were run on the LSR II and analysis conducted on Flowjo 
software. FACS plots were created looking at (A) CD11b on the Y axis, vs CD18 on the X axis, and 
(B) CD11a on the Y axis vs CD11a on the X axis, and (C) histograms looking at the fluorescence 
intensity of ⍺Vβ3. Stimulated samples (blue) were overlaid on unstimulated samples (red). N=3, 
representative data shown for N=1, no additional experimental repeats performed. 
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6.2.3 PAR2 Regulates Human Osteoclast Differentiation 

Suboptimal RANKL Conditions 

As mentioned above (see section 6.1), work conducted in par2-/- murine cells 

identified a regulatory role for PAR2 signalling in the prevention of excessive OC 

formation during M-CSF and RANKL differentiation (Figure 5.8). Previous studies 

have implicated PAR2 in bone related human pathologies such as osteoarthritis. 

However, the current literature exploring the functional mechanisms of PAR2 in 

bone remodelling and specifically osteoclastogenesis have only been conducted 

in murine systems. Thus far no peer reviewed studies have been published 

studying the role of protease signalling via PAR2 in the differentiation of human 

OCs. 

In order to translate the findings from murine in vitro assays and clarify the 

regulatory role of PAR2 extends to human OCs, human osteoclastogenesis assays 

were conducted with peripheral blood monocyte progenitors. This involved 

culture of positively selected CD14+ monocytes overnight in complete a-MEM 

media supplemented with M-CSF. This promotes the upregulation of RANK, 

making these monocytes more receptive to RANKL60. Classic in vitro human 

osteoclastogenesis protocol was followed (Figure 6.5A). Due to the observations 

of reduced PAR2 expression in human monocytes after overnight M-CSF reported 

in the chapter 4 (Figure 4.8) PAR2 intervention with either activating peptide 

(FLIGRL, 2µM) or inhibitor (AZ3383, 3µM) was introduced at the beginning of the 

culture, concurrent with M-CSF exposure (Figure 6.5A). After 7 days cultures 

were fixed and TRAP stained (Figure 6.5 D and E), and the number of OCs per 

well quantified (Figure 6.5 B and C). For both PAR2 stimulation (FLIGRL, Figure 

6.5 B and D) and inhibition (AZ8838, Figure 6.5 C and E) paired analysis was 

performed to take into account variation within human samples. No consistent 

change in osteoclast number was observed with either PAR2 activation or 

inhibition (Figure 6.5B and C). 
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Figure 6.5 No Significant Difference in Human Monocyte Osteoclast Differentiation With 
PAR2 Stimulation or Inhibition. 
(A) PBMCs were separated from healthy buffy coat via density gradient centrifugation and CD14+ 
monocytes were positively isolated via magnetic separation (N=7). Monocytes were cultured in 
complete ⍺MEM media in the presence of 25ng/ml of M-CS, +/- FLIGRL (2µM), +/- AZ3383 (3µM) 
overnight. Media was then half changed the following day to include 25ng/ml M-CSF and RANKL, 
+/- FLIGRL (2µM), +/- AZ8838 (3µM) and cultured for a further 5 days, changing media every 3 
days. Cultures were then fixed in acetone buffered formaldehyde and TRAP stained and 
osteoclasts quantified for (B) MR and MRFLIGRL, and (C) MR and MRAZ. Representative images 
of each condition (10x) are shown in D and E. Wilcoxon test statistical analysis conducted on 
paired samples, which does not assume gaussian distribution. N=7, no additional experimental 
repeats performed. 

 

Based on the observation that murine WT cultures increased numbers of OCs 

generated in the presence of PAR2 inhibitors (Figure 5.11), it was surprising that 

this did not translate to the human cell assay. However, it is conceivable that 

the ability to detect a consistent increase in osteoclastogenesis with this assay 

may be limited, as osteoclastogenic differentiation is potentially maximised due 
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to the concentration of RANKL used. In light of this, the assay was repeated with 

a reduced concentration of RANKL (Figure 6.6A) in order to observe any 

potential increase in osteoclastogenesis. As can be seen from representative 

images chosen at random in Figure 6.6 E, and the quantification of osteoclast 

numbers from 7 donors, inhibition of PAR2 resulted in a consistent increase in 

osteoclast number (Figure 6.6 C). Activation of PAR2 under these culture 

conditions resulted in a more variable response and inconsistent (Figure 6.6 B 

and D). Indicating overall no change in OC formation with activating peptide-

mediated PAR2 activation. These outcomes positively correspond with what was 

found in the murine system, which found increased OC generation and cell size 

in par2-/- cultures, an increase in OC number in WT cells cultured in AZ8838, and 

no change in OC numbers in response to PAR2 activating peptide FLIGRL.  
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Figure 6.6 PAR2 Inhibition Increased Osteoclastogenesis in Suboptimal RANKL Cultures. 
(A) PBMCs were separated from healthy buffy coat via density gradient centrifugation and CD14+ 
monocytes were positively isolated via magnetic separation (N=7). Monocytes were cultured in 
complete ⍺MEM media in the presence of 25ng/ml of M-CS, +/- FLIGRL (2µM), +/- AZ8838 (3µM) 
overnight. Media was then half changed the following day to include 25ng/ml M-CSF and 1ng/ml 
RANKL, +/- FLIGRL (2µM), +/- AZ3383 (3µM) and cultured for a further 5 days, changing media 
every 3 days. Cultures were then fixed in acetone buffered formaldehyde and (D, E) TRAP stained 
and osteoclasts quantified for (B) MR and MRFLIGRL, and (C) MR and MRAZ. Representative 
images of each condition (10x) are shown in D and E. Wilcoxon test statistical analysis conducted 
on paired samples, which does not assume gaussian distribution. * = p<0.05. N=7, no additional 
experimental repeats performed. 
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It is known that TNF contributes to inflammatory enhanced OC formation392. 

Levels of detected TNF in RA patients positively correlates with the level of bone 

erosions360 and direct inhibition of TNF using biologics as therapy in RA patients 

is known to reduce the risk of radiographic signs of bone erosions361. Human 

monocytes appear to respond in the same manner as murine BM cultures to PAR2 

activating and inhibiting reagents in regulating OC differentiation in regular OC 

cultures. The cells from par2-/- NA-BM had opposing OC differentiation responses 

during inflammatory enhanced osteoclastogenesis (Figure 5.20). Under TNF 

enhanced OC cultures instead of further enhancement of OC differentiation 

found in homeostatic conditions, these cells had limited enhancement in 

differentiation in response to TNF. To determine whether PAR2 signalling also 

contributes to TNF enhanced OC formation in human monocytes similar assays as 

above were applied, to inhibit and activate PAR2 during OC differentiation. 

Previous work in our laboratory had optimized an inflammatory, TNF enhanced 

osteoclast assay (Figure 6.7A), which involves addition of TNF on day 4, after 

precursor cells had committed to an osteoclast differentiation route. With this 

protocol a consistent enhancement of osteoclast number was observed across 7 

donors (Figure 6.7B and C). 
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Figure 6.7 Addition of TNF on day 4 of Human Osteoclast Cultures Enhances 
Osteoclastogenesis. 
(A) PBMCs were separated from healthy buffy coat via density gradient centrifugation and CD14+ 
monocytes were positively isolated via magnetic separation (N=7). Monocytes were cultured in 
complete ⍺MEM media in the presence of 25ng/ml of M-CSF overnight. Media was then half 
changed the following day to include 25ng/ml M-CSF and 1ng/ml RANKL and cultured for a further 
3 days. Media was again half changed this time to include 25ng/ml M-CSF, 1ng/ml RANKL, and 
10ng/ml TNF and cultured for a further 3 days. Cultures were then fixed in acetone buffered 
formaldehyde and (C) TRAP stained and osteoclasts quantified for (B) MR and MRT. 
Representative images of each condition (10x) are shown in C, for 2 of the donors. Wilcoxon test 
statistical analysis conducted on paired samples, which does not assume gaussian distribution. * = 
p<0.05. N=7, no additional experimental repeats performed. 

 

In order to test the impact of PAR2 activity during TNF enhanced 

osteoclastogenesis PAR2 activating and inhibiting agents were applied to this 

culture (Figure 6.8A) and the OC number was quantified (Figure 6.8B and C). No 

significant change was found with either PAR2 activation (Figure 6.8B) or 

inhibition (Figure 6.8C). There was no observable difference in OC number with 

PAR2 activation, however, there was a non-significant decrease in OC numbers 

across all donors tested when PAR2 was inhibited, with an average decrease of 

23% in OC number and a standard deviation of 3.799 across the donors (N= 4, 

Figure 6.8C). Suggesting that further studies are required to conclusively 

demonstrate whether PAR2 signalling impacts inflammatory driven human OC 

formation. 
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Figure 6.8 PAR2 Activation or Inhibition does not Significantly Influence TNF Enhanced 
Osteoclastogenesis. 
(A) PBMCs were separated from healthy buffy coat via density gradient centrifugation and CD14+ 
monocytes were positively isolated via magnetic separation (N=4). Monocytes were cultured in 
complete ⍺MEM media in the presence of 25ng/ml of M-CSF, +/- FLIGRL (2µM), +/- AZ8838 (3µM) 
overnight. Media was then half changed the following day to include 25ng/ml M-CSF, 1ng/ml 
RANKL, +/- FLIGRL (2µM), +/- AZ8838 (3µM) and cultured for a further 3 days. Media was again 
half changed this time to include 25ng/ml M-CSF, 1ng/ml RANKL, and 10ng/ml TNF, +/- FLIGRL 
(2µM), +/- AZ8838 (3µM) and cultured for a further 3 days. (D, E) Cultures were then fixed in 
acetone buffered formaldehyde and TRAP stained and osteoclasts quantified for (B) MRT and 
MRTFLI and (C) MRT and MRTAZ. Representative images of each condition (10x) are shown in D 
and E. Wilcoxon test statistical analysis conducted on paired samples, which does not assume 
gaussian distribution. N=4, no additional experimental repeats performed. 
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6.3 Discussion 

Data presented in chapter 3 of this thesis established that PAR2 was expressed 

on the cell surface of primary human monocytes. The expression levels varied 

between donors, indicating variability in the potential for different donors to 

respond to PAR2 activation. Therefore, functional responses of PAR2 in the 

myeloid compartment were initially investigated through the use of par2-/- mice. 

In conducting cellular assays with WT and par2-/- BM cells, 2 key biological 

pathways had observable changes with a loss of this receptor. One of these 

biological pathways was cellular migration and adhesion which has previously 

been associated with PAR2 in other cell types but not yet observed in 

monocytes. PAR2 stimulation in non-immune cells 366,393 and leukocytes282,364,394 

has been associated with the integrin dependent adhesion and migration. This 

receptor has also been strongly associated with the production of chemokine 

mediators that drive cellular migration and integrin activation, especially IL-8 
270,365,395-397. ICAM-1 was one of the integrin binding partners that was highly 

associated with PAR2 stimulation 322,363,365,394. In addition, PAR2 is known to 

signal through Ga13398, a signal utilized by chemokine receptors to regulate 

integrin activation399. 

The role of PAR2 in integrin expression and activity is yet to be explored in 

monocytes, a cell type where cell adhesion and migration is fundamental to 

their function. After identifying an enhanced expression of CD11b in the 

patrolling subset of monocytes from par2-/- BM in chapter 5 (see section 5.2.2), 

it was considered justified to further investigate this in human monocytes. ICAM-

1, one of the known binding partners of CD11b and CD18 heterodimers, had been 

shown to be upregulated in endothelial cells in response to PAR2 activation. 

Monocytes can adhere to endothelial cells via ICAM-1 and other integrin 

interactions in order to transmigrate from the vasculature into the tissue. In 

order to establish whether the observations of enhanced CD11b expression with 

the loss of PAR2 made in the murine system had biological relevance in human 

monocytes, experimental focus was put on the expression of b2 associated 

integrins such as CD11b. b2, also known as CD18, requires partnership with a 

integrin subunits, which include CD11a, b, c, and d to form a functional integrin 

heterodimer. Another integrin of interest in monocytes and their differentiation 
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potential into OCs is avb3. This is required for osteoclast function, migration and 

adhesion to bone400. Therefore the expression of CD18, CD11a,b, and c, and 

avb3 on healthy monocytes was explored using flow cytometric assays. 

Expression of integrin proteins does not necessarily infer activity of these 

proteins. Integrins are expressed on the surface, often in an inactive 

conformation. These proteins can then rapidly respond to activating signals such 

as chemokine detection, and adjust to an active conformation which allows 

binding to ligand and cellular adhesion. In order to detect functionally relevant 

integrin expression active conformations can also be detected using antibodies 

specific for the active conformation of the receptor, in addition to antibodies 

which detect both active and inactive integrins. Differences in the total protein 

(no discrimination between active or inactive integrin) expression of CD11b was 

previously identified in par2-/- monocytes. Therefore as a starting point, total 

integrin expression was measured in human monocytes using antibodies which 

recognise integrins in both their active and inactive forms to determine whether 

PAR2 activation or inhibition influences total integrin expression in human 

monocytes as well. 

Exploration of integrin expression was unable to categorically demonstrate that 

PAR2 influences the expression of these proteins. A positive control for the 

change in the total expression of these integrins was not consistent across 

donors (Figure 6.3A and B) and thus comparison of PAR2 activating peptides and 

inhibitors could not be reliably made. To definitively show that PAR2 alters 

integrin biology future studies should focus on detection of the active form of 

integrins rather than just total protein expression. Importantly, the activation 

status of integrins is a much better indicator of their function, as opposed to 

total expression. Due to time constraints we were unable to optimize and 

perform this assay on human monocytes. 

Previous investigation into the role of PAR2 in bone remodelling76, pathogenic 

bone erosion401 and formation288, and osteoclastogenesis75 has been conducted in 

the murine setting. The findings and interpretation from the current literature is 

contradictory, and thus a clear role for PAR2 in this process still unclear. 

Chapter 5 of this thesis explored the role of PAR2 in osteoclastogenesis during 

both homeostatic and inflammatory TNF enhanced OC culture conditions with BM 
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from par2-/- mice. This data determined that PAR2 plays divergent roles under 

non-inflammatory and inflammatory conditions. During RANKL and M-CSF driven 

OC generation, PAR2 prevented excessive osteoclastogenesis and formation of 

giant cells. While during TNF-driven inflammatory osteoclastogenesis, PAR2 

contributed to the enhancement of OC formation. Utilising the confirmed PAR2 

antagonist from AstraZeneca, with no known agonistic properties, meant PAR2 

inhibition in primary human cultures could be achieved and this could be used to 

explore the role of this receptor during human monocyte in vitro differentiation 

into OCs, similar to culture of par2-/- cells.  

Using conventional osteoclastogenic assays no differences in OC number were 

detected when PAR2 was either stimulated or inhibited (Figure 6.5). This was 

unsurprising in the case of PAR2 activating peptide (FLIGRL) stimulation, which 

also failed to influence WT murine OC cultures (Figure 5.11B). However, 

inhibition of WT murine PAR2 resulted in an increase in OC numbers, comparable 

to quantification of the par2-/- cultures. If PAR2 activity also influenced human 

OCs similarly to murine OCs, an increase in OC number would be expected with 

PAR2 inhibition in these cultures. It was possible that the potential for 

enhancement of osteoclastogenesis may be limited in this assay (Figure 6.5A), 

and potentially OC formation had reached a maximum with this concentration of 

RANKL. For this reason the concentration of RANKL was reduced to 1ng/ml in 

order to create a suboptimal OC differentiation assay, and provide a method to 

interrogate potential OC enhancement. By adopting this protocol with a further 

7 healthy human donors, again no change in OC number was found with PAR2 

activation (Figure 6.6B). However, a modest enhancement in OC number in each 

donor was detected when PAR2 was inhibited with AZ8838 (Figure 6.6C). This 

data suggests that in sub-optimal conditions PAR2 activity regulates the 

formation of human OC. Again due to a lack of response from activating peptides 

this could potentially be the result of non-canonical PAR2 signal, or internal 

PAR2 signalling. Human monocyte surface membrane expression levels of PAR2 

are highly variable (Figure 4.4) which may account for the variability of the 

effect size detected by inhibition of this pathway on osteoclast formation 

between donors. 
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During TNF driven enhanced OC formation PAR2 inhibition with AZ3383 did not 

further enhance the rate of OC formation, like it had in M-CSF and RANKL alone 

cultures. In fact each donor had a modest reduction in osteoclast number during 

PAR2 inhibition (Figure 6.8C). This reduction did not reach significance but was 

observed consistently. The differences observed in this culture with PAR2 

inhibition were very modest. This indicates that in human OC formation, PAR2 

may have a limited biological influence in comparison to the more obvious 

impact observed in murine cultures. 

Overall, the impact of PAR2 intervention in human cultures was not as consistent 

and clear as the murine cultures, which numerically par2-/- had a much bigger 

difference in osteoclast number. Also one observation made in murine par2-/- 

cultures was the significant change in OC size, which was not measured in 

human OC cultures, but also not obviously observed in TRAP stain images. 

Therefore, it may still be worthwhile to investigate the functional activity of 

human cultures through osteolysis assays and transcript pathway analysis to 

identify if the regulation of human OCs is driven by a similar adhesion/fusion 

phenotype as murine cells. Unfortunately, this could not be completed within 

the time frame available but may still be a valuable area of future investigation. 

  



6  246 
 
6.4 Conclusions 

As a first study investigating the role of protease signalling via PAR2 in the 

process of human monocyte differentiation to OCs, this chapter established that 

PAR2 signalling has a modest impact on human OC formation. The data 

presented in this chapter indicates that PAR2 signalling regulates OC 

differentiation in an autocrine manner. Elevated OC numbers with PAR2 inhibitor 

treatment implies autocrine signals present in M-CSF and RANKL cultures 

contribute to the regulation of OC differentiation. No effect of PAR2 activating 

peptides, suggests that this canonical form of PAR2 signalling does not 

contribute to the regulation of human OC differentiation. And similar to murine 

cultures, it appears that alternative PAR2 signalling, such as bias, or 

intracellular signals drive the PAR2 mediated regulation of OC formation. 

However the exact signals which mediate this response are still not understood 

in human cell system. 

Overall the effect of PAR2 signalling in murine OC differentiation is mirrored in 

human cultures, albeit with larger levels of variation. The phenotype of human 

OC with PAR2 activation or inhibition has not been fully explored, in terms of 

resorptive activity and OC associated gene transcripts. Thus whether the OC 

enhancement in PAR2 inhibited cultures has a predominant fusion phenotype like 

the murine cultures is still unknown. 
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7 General Discussion 

This thesis explored the impact of protease dependent signalling in the 

myeloid/monocyte compartment. Proteases are involved in the catabolic aspect 

of normal tissue remodelling402,403. However, these proteolytic enzymes are also 

clinically relevant in disease such as arthritis, where their over activity can 

contribute to tissue destruction404. During inflammatory arthritis such as RA, 

active immune cells such as neutrophils, mast cells, and macrophages are a key 

source of proteases. It is now understood that in addition to these direct matrix 

destructive functions, proteases can also drive cell signalling and thus influence 

cellular behaviour through activation of PARs405. Thus, proteases involved in 

these catabolic tissue remodelling processes may also influence the remodelling 

activity through their action on cells involved in these processes, such as 

osteoclasts. Notably, PAR2 is specifically cleaved by proteases highly associated 

with active immune cells such as mast cell tryptase232, and has been closely 

linked to the immune system and immune pathologies such as asthma299,331, and 

RA297,335,406. Therefore, specifically, this doctoral study focused on the role of 

protease sensing via PAR2 in directing the differentiation of myeloid cells into 

bone resorbing osteoclasts. This exploration aimed to understand how proteases 

may contribute to bone remodelling during homeostasis and bone erosion during 

inflammatory disease settings via their action of PAR2. Overall, it was postulated 

that PAR2 was expressed by OCPs / monocytes, and activation of this receptor 

would impact the capacity for these cells to differentiate into OCs, and thus 

potentially contribute to bone erosion during articular inflammation. 

The previous chapters discussed in detail the results of experiments used to 

explore my hypothesis and discussed the relevance of these in relation to the 

current literature. Taken collectively, the results of each chapter culminate to 

provide a bigger picture of the underlying biology and allow the original 

hypothesis to be refined. 

Before exploring the function of PAR2 in monocytes, confirmation of the 

expression of this receptor was undertaken. The literature was conflicted in its 

reporting of PAR2 expression in leukocytes and monocytes, thus a reliable 

protocol and antibody for the detection of the receptor was optimised in chapter 

3. In humans, PAR2 was detected on the surface plasma membrane of 
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monocytes. In addition, this analysis demonstrated that classical monocytes 

express the highest level of PAR2 on their surface. Interestingly, work conducted 

within the lab had previously shown that this population of monocytes has the 

highest osteoclastogenic potential in vitro (personal correspondence; Cecilia 

Ansalone). Confirmation of PAR2 monocyte expression enabled continuation of 

this work; elucidation of the function of this receptor in myeloid/monocyte 

populations. Due to the variable expression of PAR2 across human primary cell 

samples, initial functional experiments investigating the impact of this receptor 

in the differentiation process was conducted in murine WT and par2-/- animals. 

Thus, limiting the potential variability associated with human cells and providing 

a reliable total knockout setting, which has been used extensively in the field. 

In chapter 5, in vitro OC cell systems were adopted; these identified that PAR2 

contributed to the regulation of OC formation and prevented excessive fusion of 

pre-cursors into giant cells. The increased OC size and number did not have an 

effect on the activity of these cells; despite a greater surface area of OCs, the 

par2-/- differentiated cells did not result in higher levels of mineral resorption. 

These initial observations indicated that the presence of PAR2 is important in 

regulating OC fusion. In order to confirm that this mechanism was driven by 

active signalling of PAR2 these assays were conducted with PAR2 activating 

peptides or inhibitors. PAR2 inhibition in WT cells increase the size and number 

of OC cells to almost comparable levels found in par2-/- cells. Firstly, this 

suggests that endogenous proteases are present within cultures regulating the 

formation of OCs via PAR2. OCs are highly proteolytically active287,407 and 

therefore despite no reported production of PAR2 activating proteases by OCs, 

there is a high probability that activating proteases are released by these cells. 

Similar OC assays have been conducted with par1-/- murine BM cells380. 

Enhancements in OC formation were observed in these cultures without the 

addition of exogenous proteases or activating peptides, further supporting the 

probability of PAR cleaving protease production by OCs or their pre-cursors. 

Moreover, OCs generated in par1-/- cells are also dramatically enhanced in size, 

similar to those observed in the par2-/-. The conclusions drawn by the authors of 

the par1-/- OC work are similar to the conclusions reached from par2-/- cultures 

in this study. Endogenous protease signalling appears to limit excessive fusion of 

pre-cursors without having an impact on other OC driving factors such as NFATc1 
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expression. The gene expression analysis of OC-associated transcripts conducted 

in WT and par2-/- (chapter 5, see section 5.2.3) demonstrate that there are no 

significant differences. Overall, this suggests a phenomenon more consistent 

with altered fusion; potentially via cytoskeletal rearrangement and cell-cell 

adhesion driving enhanced OC formation. 

Interestingly, activating peptide FLIGRL did not further limit the size or number 

of OC in this assay. This indicated that further canonical stimulation of this 

receptor had no impact in OC formation. The potential conclusions from this 

were multi-fold; (a) PAR2 stimulation was at a maximum within this culture and 

no impact could be observed from additional activation, (b) non-canonical 

activation of the receptor is driving OC limitation, and/or (c) PAR2 activation is 

occurring inside the cell, where small molecule inhibitors can gain access but 

peptides cannot. Which, if any of these hypotheses are correct, has not yet been 

determined. Furthermore, there is nothing gleaned from prior studies as, for 

example, the study of par1-/- cells did not add any exogenous PAR1 activators to 

their culture for comparison380. However, other potential associations can be 

inferred from prior studies. For instance, Ga13 signals have been shown to limit 

OC formation, with RNA-seq highlighting cytoskeletal pathway involvement375. 

Combined with the knowledge that bias signalling of PAR2 via elastase cleavage 

preferentially drives Ga12/13408, this may support the suggestion of non-

canonical PAR2 signals limiting OC fusion and formation. This hypothesis merits 

further investigation and may provide insights into the potential pathways which 

link PAR2 and the excessive fusion phenotype observed. To test this it would be 

interesting to measure the levels of Ga13 activity in both WT and par2-/- cultures 

to identify if there are any changes in this signalling mechanism. 

The OC work discussed above was conducted with NA cells of the murine BM, as 

defined by their lack of adhesion after overnight culture of the total BM. Even 

though NA-BM cell assays are the most consistently used in the field they are not 

without limitations. These cultures are mixed in their cellular content, meaning 

other immune cells and also stromal cells, which have incidentally been carried 

over, can influence osteoclastogenesis. Stromal cells and T cells are a key source 

of OC stimulating factor RANKL and can therefore be highly influential in this 

assay. In addition, the reliance on cellular adherence in initial overnight cultures 
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to determine what cells are taken forward can introduce variability before the 

differentiation process has even begun. This is especially problematic if cellular 

adhesion is impacted by the loss of PAR2 in knockout cells. In order to try and 

reduce these limitations a co-culture assay was set up. This had a more precise 

combination of cell types, with stromal cells intentionally added to the culture 

and monocytes specifically selected from the BM using negative isolation kits, 

thus overall limiting the impact of cellular adhesion in the overnight pre-

differentiation step. 

The data generated in this assay demonstrated that the presence of PAR2 in the 

stromal OB-like cell was also regulating OC formation. The only observable 

difference between WT and par2-/- OB-like cells, out of all of the parameters 

analysed, was their production of osteopontin. Interestingly, osteopontin is an 

extracellular matrix component that OCs depend on for their adhesion to the 

bone tissue. This further suggests a role for PAR2 signalling in limiting the 

adhesion of OCPs or OCs, which in turn could limit their fusion potential. 

Overall, the data presented in this thesis clearly indicates that during 

homeostatic conditions PAR2 limits the formation of giant OC cells via both 

direct induction of OC formation and OB-driven OC formation (Figure 7.1). It is 

suggested but not yet confirmed that this could be driven by adhesion or 

migratory-associated mechanisms. Taking an unbiased approach to analyse the 

differences in major pathways between WT and par2-/- OCs and stromal-OB, such 

as RNA-seq, would potentially enable the identification of cellular adhesion / 

migration and/or cytoskeletal remodelling that are impacted by the absence of 

this receptor. Moreover, this method could identify other potentially overlooked 

pathways that PAR2 could influence to regulate the formation of OCs and 

perhaps point us in the right direction in terms of identifying a mechanism which 

connects the PAR2 signal and the process of OC formation.  
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Figure 7.1 PAR2 Limits Osteoclast Formation Through Both Stromal and Hematopoietic 
Arms of the Bone Remodelling Unit 
PAR2 is expressed by monocytes (OCPs) and through non-canonical activation of this receptor the 
fusion and formation of OC is limited, preventing excessive OC formation. In addition the presence 
of PAR2 in OB-like stromal cells also limits stromal driven OC formation. One potential mode of 
action is via the release of osteopontin, a key extracellular matrix component required for OC 
binding to bone tissue via aVb3 integrins. PAR2 signalling limits osteopontin production, which 
regulates the adhesion of OCs and limits the potential ligands for aVb3 integrin signals. 

 

While PAR2 limits OC formation during homeostasis, its actions are reversed 

when paired with inflammatory signals such as TNF, where PAR2 appears to drive 

enhanced OC formation (Figure 7.2). In par2-/- cultures, TNF still drives 

enhancement of OC formation, however, this is limited in comparison with WT 

cultures, indicating that protease signalling in this instance is driving OC 

formation. This is where the role of PAR2 in OC formation differs from the role 

of PAR1. Unlike PAR2 KO BM cells, par1-/- cell cultures have significantly higher 

OC formation in response to TNF driven inflammatory osteoclastogenesis over 

their WT counterparts. Therefore, this suggests that PARs are functioning 

through different mechanisms during TNF-enhanced OC formation. How the role 

of PAR2 becomes reversed in this environment is unknown, as due to time 

limitations, this was not explored in any greater detail. It is possible that TNF 
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signalling influences the action of PAR2 in various ways. For example, TNF may 

impact the proteases released by OCPs, which instead of driving the same “non-

canonical” response proposed previously during homeostasis could drive an 

alternate PAR2 signal, which supports the OC differentiation process. In 

addition, the TNF signal could promote or limit the heterodimerisation of PAR2 

with other receptors such as PAR1409, or EPCR410, all known to dimerise with the 

receptor and influence its function. Furthermore, it is possible that PAR2 

signalling works to enhance TNF signalling. PAR2 has been reported to activate 

NFkB 398 (see chapter 1, section 1.4.2), so this may act to support the TNF-driven 

NFkB signal. Overall, due to limited time, the present studies have not identified 

the mode of action during TNF-driven inflammation that drives an alternate 

activity of PAR2 to promote OC formation. However, the potential drivers of this 

change mentioned above should be investigated further in order to fully 

understand the role of PAR2 in inflammatory-driven OC formation. 

 

 

Figure 7.2 PAR2 Further Enhances Inflammatory-driven OC formation 
TNF enhances the capacity for OC formation if OCPs are exposed to this cytokine at the right time. 
The data presented in this thesis indicates that PAR2 activity further enhances the TNF-driven OC 
formation, resulting in highly excessive OC formation.  

 



7  253 
 
Finally, in chapter 6, using human OC cultures paired with PAR2 activating 

peptides and inhibitors, studies confirmed that the observations made in murine 

system were translatable to the human system. OC formation was enhanced in 

AZ8838 treated human homeostatic M-CSF and RANKL alone assays. In turn PAR2 

inhibition slightly limited the number of OCs formed during inflammatory TNF OC 

assays. However, this observation did not reach significance, and reductions over 

untreated cells were minor but still consistent. Due to the limited reduction in 

human OC numbers and the high level of variability in the number of OC 

generated by different human donors, this experiment will require a high sample 

number to achieve appropriate power. Therefore, it would be valuable to 

increase the number of human samples in the TNF inflammatory experiment to 

confirm this finding. However, gaining statistical significance in this observation 

does not confirm biological relevance. The requirement for high sample number 

is partially driven by the small impact PAR2 inhibition has on OC number (mean 

percentage decrease in OC number was 23% with a standard deviation of 3.8. 

The limited impact in vitro of PAR2 inhibition on human OC formation during 

TNF driven osteoclastogenesis may imply limited biological impact of PAR2 

signalling in this process. Despite the influence of PAR2 on OC size in murine 

cultures, the size of human OCs was not investigated. Human OCs boundaries are 

not as clearly defined by TRAP stain as the murine OC and therefore cell size is 

very difficult to analyse. Further exploration of the impact on PAR2 inhibition in 

human OC differentiation would be valuable. One method to test the migration 

and fusion capacity of these cells in response to PAR2 stimuli could be to limit 

the cell number in these cultures and assess the ability of monocytes to form 

OCs in the presence of PAR2 inhibitors. If the processes of migration and 

adhesion required for OC formation is impacted by PAR2 activity, there will be a 

more profound impact on OC number when cell numbers are limited. If precursor 

cells are not in close proximity, or touching, these cells will be more dependent 

upon cellular migration in order to fuse, therefore this older technique59,60 may 

be valuable as a starting point for human OC assays to assess fusion and 

migratory capacity influenced by PAR2. 

In conclusion, PAR2 signalling does impact OC formation. Across the various 

chapters of this thesis I have identified that PAR2 limits OC formation during 

homeostasis and enhances it when paired with inflammatory signals i.e., TNF. 
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Activity of the receptor is triggered endogenously, through proteases produced 

by OCPs or OCs themselves, which could potentially drive non-canonical activity 

of the receptor to regulate OC formation. In addition, I confirmed that human 

OCPs (monocytes) express high levels of PAR2, and this receptor functions in the 

same way as the murine receptor. When PAR2 was inhibited, OC formation was 

significantly increased in homeostatic human OC formation, while a moderate 

reduction in OC formation was identified during inflammatory TNF-driven OC 

formation. Further work is required to fully identify the mechanism and 

pathways that link PAR2 activity and OC formation, but based on the 

observations made in this thesis, I propose that the influence of PAR2 in cellular 

adhesion, migration, and cytoskeletal rearrangement and the impact this has on 

OC formation warrants further investigation. Unfortunately the role of PAR2 

during inflammatory-driven OC formation could not be fully explored within this 

thesis, however, the preliminary data suggesting an alternate role for PAR2 in 

this environment also warrants further investigation in order to fully understand 

the role of PAR2 during inflammatory bone erosion. 
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Appendix – Media, Buffers and Reagents 

1X Phosphate Buffered Saline pH 7.4 (PBS): 8g NaCl (Sodium chloride, MW 

58.44g/mol), 0.2g KCl (potassium chloride, MW 74.5513 g/mol), 0.2g KH2PO4 

(Monopotassium phosphate, MW 136.086 g/mol) and 1.74g Na2HPO4 (Disodium 

phosphate, MW 141.96g/mol) in 1L dH2O. 

Protein Lysis buffer: 400µl RIPA buffer (Thermo #89900) supplemented with 4µl 

HALT Phosphatase and Protease inhibitor cocktail (100x) (Thermo #78440) 

Protein Gel Electrophoresis Running buffer: 25ml MOPS SDS Running Buffer 

(20x) Novex (CAT #NP0001) in 475ml distilled water. 

Western Blot Wash buffer (PBST 5%): 5ml Tween-20 in 95ml 1XPBS 

Western Blot Blocking Buffer (PBST 5% milk): 5g milk solids in 100ml PBS-T 5% 

Antibody Dilution Buffer (PBST 5% BSA): 5g Bovine Serum Albumin (BSA; 

ThermoFisher; UK) in 100ml PBS-T 5%. 

Cell Permeabilising Buffer for IF microscopy: 20µl of Triton X-100 in 10ml 

1XPBS (0.2%) 

IF Microscopy Blocking Buffer: 48.5ml 1XPBS , 1ml goat serum (5%), 50µl Tween 

20 (0.1%) 

0.5M EDTA Solution: 168.12g EDTA (Ethylenediaminetetraacetic acid; MW 

292.24 g/mol) in 1L dH20 

FACS Buffer: 489.5ml 1XPBS supplemented with 5ml Foetal Bovine Serum (FBS; 

Life Sciences, UK; 1%), 500µl NaN3 (0.1%) and 5ml of 0.5M EDTA (5mM). 

FACS Buffer for Intracellular Stain: 495ml 1X PBS supplemented with 5ml Foetal 

Bovine Serum (FBS; Life Sciences, UK; 1%). 

RNA lysis buffer: 10ml RLT containing 100µl b-mercaptoethanol (1%). 
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2% Agarose ethidium bromide gel: 2.6g agarose (Bio-rad; UK) and 2µl ethidium 

bromide (10mg/ml stock solution, ThermoFisher; UK), 55g of Boric acid (Fisher 

Scientific, UK), 9.3g ethylenediaminetetraacetic (EDTA, Fisher Scientific, UK), 

made up to 1L with dH2O. 

Tris-Acetate-EDTA (TAE) pH 8 Buffer: 4.84 g Tris Base, 1.14 ml glacial acetic 

acid and 0.37 g EDTA in 1L dH20. 

TRAP staining solution: 25µl Fast Garnet GBC Base solution and 25µl NaNO2, 

mixed for 2 minutes. 4.5 ml warm dH20 with 50µl Fast Garnet/NaNO2 solution, 

50µl Napthol As-Bi Phosphoric acid solution, 200µl Acetate solutions, and 250µl 

1M Tartrate solution. 

1M Tartrate solution: 2.8g of K-Na Tartrate tetrahidrate (MW 282.23; 

C4H4KNaO6*4H2O) in 10ml dH2O. 

4% Buffered formalin: For 100ml: 25ml citrate solution (Citric acid, 18 mmol/l, 

sodium citrate, 9mmol/l, sodium chloride, 12 mmol/l, and surfactant, pH 3.6 ± 

0.1), 10ml of 37% formaldehyde and 65ml acetone. 

Complete alpha Minimum Essential Media (complete α-MEM): Supplemented 

with 10% Fetal Bovine Serum (FBS; Life Sciences, UK), 0.02mM L-glutamine, 

10U/ml Penicillin, and 0.1µg/ml Streptomycin 

Complete DMEM: DMEM (Dulbecco modified essential medium; Life technology, 

Thermo Fisher Scientific, UK) supplemented with 10% Foetal Bovine Serum (FBS; 

Life Sciences, UK), 0.02mM L-glutamine, 10U/ml Penicillin, and 0.1µg/ml 

Streptomycin 

Complete RPMI: RPMI 1640 (No glutamine; Life technology, Thermo Fisher 

Scientific, UK) supplemented with 10% Foetal Bovine Serum (FBS; Life Sciences, 

UK), 0.02mM L-glutamine, 10U/ml Penicillin, and 0.1µg/ml Streptomycin 

Cell separation buffer: 489 ml sterile DPBS (Dulbecco's Phosphate-Buffered 

Saline; Life Technologies, UK), 5ml Foetal Bovine Serum (1% FBS; Life Sciences, 

UK) and 1ml 0.5M EDTA (1mM) 
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Calvarial Digestion Media: 1mg/ml of Collagenase II (Lorne Laboratories 

Limited, UK) dissolved in FBS free, a-MEM media 

Static Adhesion Medium: 500ml RPMI1640 (No glutamine; Life technology, 

Thermo Fisher Scientific, UK) 0.5g BSA (0.1%), 2.383g HEPES (20mM; pH 7.25), 

and 95.2mg MgCl2 (2mM) 

Static Adhesion Assay Wash Buffer: 2.5L PBS, 476mg MgCl2 (2mM) 

Static Adhesion Lysis Buffer: 3mg/ml para-nitrophenyl phosphate (PNP) in 

1%TritonX-100/50nM acetate buffer (pH5) 
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