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Abstract 

Large-area electronics, including printable and flexible electronics, is an emerging concept 

which aims to develop electronic components in a cheaper and faster manner, especially on 

those non-conventional substrates. Being flexible and deformable, this new form of electronics 

is regarded to hold great promises for various futuristic applications including the internet of 

things, virtual reality, healthcare monitoring, prosthetics and robotics. However, at present, 

large-area electronics is still nowhere near the commercialisation stage, which is due to several 

problems associated with performance, uniformity and reliability, etc. Moreover, although the 

device’s density is not the major concern in printed electronics, there is still a merit in further 

increasing the total number of devices in a limited area, in order to achieve more electronic 

blocks, higher performance and multiple functionalities.  

In this context, this Ph.D. thesis focuses on the printing of various nanomaterials for the 

realisation of high-performance, flexible and large-area electronics. Several aspects have been 

covered in this thesis, including the printing dynamics of quasi-1D NWs, the contact problem 

in device realisation and the strategy to achieve sequential integration (3D integration) of the 

as-printed devices, both on rigid and flexible substrates. Promisingly, some of the devices 

based on the printed nanomaterial show a comparable performance to the state-of-the-art 

technology. With the demonstrated 3D integration strategy, a highly dense array of electronic 

devices can be potentially achieved by printing method.  

This thesis also touches on the problem associated with the circuit and system realisation. 

Specifically, graphene-based logic gates and NW based UV sensing circuit has been discussed, 

which shows the promising applications of nanomaterial-based electronics. Future work will 

be focusing on extending the UV sensing circuit to an active matrix sensor array. 
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1. Chapter 1. Introduction 
The shrinking of the individual electronic device is expected to approach its physical limits in 

the very near future. The Moore’s law, which provided a development roadmap for IC 

technology, is likely to lose its magic [1, 2]. In order to further advancing the development of 

IC technology, various solutions have been proposed including the use of 3D integration: a 

stack of electronic devices on different layers, unlike current CMOS technology, which 

arranges all the devices on the same plane, can further increases the device’s density without 

tackling the barriers existing in the device miniaturisation. Another benefit of 3D integration 

of the devices is that the layout and interconnect of the circuit/system can be greatly simplified 

[3]. In general, the concept of realising electronics in a 3D manner is appealing and to meet 

this target various gaps need to be filled. 

Meanwhile, large-area electronics, including flexible and printable electronics, is an emerging 

concept, which adopts a new way to make and use electronic devices and circuits [4]. Being 

flexible and printable, this can have applications in various aspects such as healthcare 

monitoring, the internet of things, robotics and prosthetics in a cost-effective manner, leading 

to a profound and revolutionary consequence to the daily life of people in the post-silicon era 

(see Figure 1.1) [5-8]. 

 
 

 
Figure 1.1: The schema showing the two possible roadmaps of electronics development, 
which can be classified as “More Moore” and “More than Moore”. 
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While achieving a high device density is not the top priority in large-area electronics, merits 

still exist in utilizing the 3D integration strategy. For example, interconnects is studied to 

greatly limit the performance of an electronic system in terms of power consumption and signal 

delay [9]. And this aspect will become increasingly serious if various electronic systems with 

multiple functionalities are integrated together. The 3D integration, in the meanwhile, can 

greatly reduce the wiring length and increase the performance [3, 9]. Therefore, realising 

electronic components in a 3D manner by printing technology has its benefit and few studies 

have explored this direction. 

This thesis aims to study the printing of various nanomaterials on flexible substrate and to 

further realising electronic devices and circuits in a 3D manner. Specifically, the objectives of 

this thesis can be summarised as follows: 

a) To study the printing of nanomaterials including quasi-1D NWs and quasi-2D 

graphene, on both rigid and flexible substrates. 

b) To realise functional devices and circuits from those printed nanomaterials, on both 

rigid and flexible substrates. 

c) To realise the 3D stacking of these devices and circuits. 

This thesis covers these aspects and is arranged into seven chapters. Meanwhile, during the 

development of 3D integrated electronics, some other meaningful results, such as the study on 

contact problem in printed electronics, were also obtained and detailed research into them was 

carried out. These studies were included in this thesis as well. Here, a brief description of the 

content of each chapter is given to provide some more detail about this Ph.D. thesis. 

Chapter 2 presents an overview of the state of the art in printed and 3D integrated electronics. 

For this, various printing techniques are reviewed, including inkjet printing, screen printing, 

contact printing, transfer printing, and their roll-to-roll equivalents. A comparison between the 

listed printing techniques are made to highlight their advantages and disadvantages. 

Afterwards, the advances in 3D integration techniques are summarised, including a brief 

overview of 3D integration of chips and ultra-thin chips (parallel integration) and recently 

developed 3D printed devices and circuits (mainly sequential integration). A comparison 

between the listed works on 3D integrated electronics is made to highlight the advantages and 

disadvantages of the 3D integration by printing techniques. 

Based on the literature review in Chapter 2, Chapter 3 explores and further advances the 

printing technology used in this thesis. This chapter is arranged in 3 sections. The first section 

(3.1) provides an in-depth study of the NW printing process. For this, a home-made contact 
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printing setup was realised with a close-loop control system, which enables precise control of 

the printing parameters including the printing pressure, the sliding speed and the sliding 

distance over the entire process. Afterwards, a data analysing method, which could extract the 

important figure of merits from the SEM images of printed NWs, is described and verified. 

This was achieved by slightly modifying a software (GTFiber) proposed in a previous work on 

organic fibres [10]. With these prerequisites, the NW printing mechanism is studied, clarifying 

the NW printing mechanism on flexible and uneven substrates. Section 3.2 presents a brief 

process flow for graphene transfer. The impact of extrinsic factors, such as solvent cleaning 

and rapid thermal annealing process is investigated. In Section 3.3, a study on screen printed 

Ag ink is presented. The influence of the processing parameters has been investigated. The 

study described in this chapter lays the foundation for later work presented in this thesis, which 

aims to realise a 3D integrated, flexible electronic system in a printable manner. 

Chapter 4 discusses the contact problems in printed electronics. Unlike traditional CMOS 

technology where the contact is achieved by high temperature annealing and silicide formation, 

the contact obtained by printing methods are often weakly bonded with a vdW interaction. 

Such contacts can be achieved at low temperature (<150 °C), which is compatible with flexible 

substrate, but its contact quality is a major concern. In this regard, this section presents an 

experimental study of the vdW contact for various materials including graphene and ZnO NW. 

The experimental results show a completely different contact quality for these two materials: 

while a low contact resistance can be achieved between graphene and Au, the vdW contact 

appears to be unreliable for ZnO NWs, showing a Schottky type contact. A qualitative 

explanation has been proposed for this significant contrast. Next, effort has been made to 

further understand the graphene-Au vdW contact. Raman characterisation has been performed 

to reveal the mechanical properties of graphene-Au contact. A model proposed in previous 

studies have been adopted to determine the change of fermi level of graphene with respect to 

the change of graphene-Au separation [11]. A direct tunnelling equation has been utilised to 

calculate the vertical current in a uniformly biased graphene-Au junction. And this was further 

extended into a FET by combining with a modified resistor network model. The calculated 

results have been compared with the experimental data. Finally, the limitation of this theory 

has been indicated and future work following this direction has been discussed.   

Chapter 5 discusses the realisation of flexible devices and circuits. This is discussed in various 

aspects including substrate preparation, contact strategy validation, dielectric material 

examination, device fabrication and circuit realisation. Specifically, flexible GFETs and ZnO 
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NW based UV photodetectors have been realised and characterised. The GFET is also used to 

realise logic circuits, which could potentially lead to flexible circuits over large area. 

Chapter 6 discusses the realisation of 3D integrated electronics. For this, technical challenges 

in realising 3D integration is discussed in Section 6.1. Afterwards, two kinds of layout, which 

are Wheatstone bridge and 1 transistor-1 sensor (1T1S) structure based on printed NWs, have 

been discussed and realised in Section 6.2 and 6.3, respectively. 

Chapter 7 concludes this thesis and indicated some future work which may be worth pursuing. 

The key findings in this thesis are summarised as follows: 

a) A systematic study of NW printing mechanism on soft and uneven substrates has been 

carried out, which provides a preliminary guideline for NW printing on flexible 

substrates in a 3D manner.  

b) In order to realise the study described in a), a user-friendly, home-made contact printing 

setup with close-loop control has been built, enabling the controllable and uniform NW 

printing over large-area. 

c) Regarding the vdW contact between graphene and Au, before the study carried out in 

this thesis [12], no systematic investigation is available, and its nature is not clearly 

understood. The mainstream of the research in this field focuses on strategies of top-

contact and edge contact. However, these two approaches have their benefits as well as 

drawbacks and they may not be so suitable for flexible electronics under the limitation 

of the thermal sensitive flexible substrate. For these reasons, a bottom contact method 

with a vdW graphene-Au interaction was adopted and systematically studied. An 

excellent contact performance has been achieved by engineering the graphene-Au vdW 

contact without the use of harsh thermal annealing. In addition, the vdW contact was 

realised on flexible substrate and its stability upon mechanical deformation was 

examined. Because of these benefits, a promising future is revealed to the long 

underestimated vdW contact. 

d) A 3D integrated electronic system with a stack of transistors and sensors has been 

realised by using a layer-by-layer printing method. 

Considering the key achievements listed here, this Ph. D. thesis may be of interest to a wide 

range of readers, including the researchers who work on 1D and 2D materials, printed and 

flexible electronics, etc. 
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2. Chapter 2. The State of the art in printed 

and 3D integrated electronics 
This chapter presents an overview of the current state of the art in printed and 3D integrated 

electronics. It starts with a review of various mainstream printing techniques from both material 

and equipment perspectives, covering the electronic devices and circuits realised by inkjet 

printing, screen printing, contact printing, transfer printing, and their roll-to-roll equivalents. 

Then, a comparison is made between the listed printing techniques to highlight their advantages 

and limitations. The mainstream 3D integration technologies are described and reviewed, 

including parallel integration and sequential integration. Finally, the recent advances in 3D 

integration realised by printing technologies are summarised and compared, as these open up 

a new frontier in using printing technologies for large-area, high density, flexible electronics. 

2.1 Printing technologies 
In the film “Minority Report”, people are reading newspapers on the subway. It is the year 

2054 and the newspapers are not only ‘papery’, but also electronic: they are composed of a 

flexible display on the paper substrate and they can be bent, flexed and disposed of after reading. 

This is one example given by Prof. Zhenan Bao, when answering why and where flexible and 

disposable electronics are needed [13]. Researchers are currently working towards these aims, 

in which electronics are not realised on rigid substrates, but on flexible, stretchable, bio-

compatible and even disposable platforms. The device size and density are not the primary 

concern for this new form of electronics. Instead those novel properties, such as bendability 

and disposability, take a greater priority. This innovation requires a change in fabrication 

technology. It should be cost-effective, realised under a low temperature and also capable of 

obtaining a high performance for various electronic applications. 

One technology which potentially meets those requirements is printing. Unlike conventional 

micro-fabrication techniques which usually involve a high temperature process, printing can 

be realised at room temperature. Therefore, printing has been regarded as a promising approach 

to be used in flexible electronics, where most of the currently used deformable substrates are 

thermally sensitive. Various types of materials, including conductors, semiconductors and 

dielectrics, have been demonstrated to be achievable via printing [14], which has fostered the 

possibility of the realisation of all printed devices and circuits (see Subsection 2.1.4). This 

section aims to provide a general overview of printing technologies and is arranged as follows: 

first, typical donor materials of various bandgap have been summarised (Subsections 2.1.1 to 
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2.1.4). Then, several mainstream printing techniques for electronic applications have been 

reviewed with their advantages and challenges (Subsection 2.1.5). Finally, a comparison is 

made between the listed printing techniques (Subsection 2.1.5). 

2.1.1 Conductors 

Generally, all printing techniques can be classified into two categories, which are wet printing 

and dry printing (See Figure 2.1). Wet printing refers to a printing process where liquid is 

involved, either in the form of “ink” or in the form of transfer medium. Dry printing refers to 

a process without involving any liquid. Some printing techniques can be classified into both 

categories, depending on the actual environment of the printing process. For example, transfer 

printing can be realised in a dry condition, where the contact interface between the donor and 

receiver does not involve any other materials [15]. It can also be achieved in a wet condition, 

where a liquid transfer medium is used to modify the interaction between the donor and the 

receiver [16]. A similar classification can be found in contact printing as well, where mineral 

oil is optionally used as a lubricant to improve the printing process [17]. Overall, this form of 

classification depends on specific printing techniques (Figure. 2.1) and detailed discussion can 

be found in Subsection 2.1.5.  

With regard to the conductive film obtained by wet printing, the conductive ink needs to be 

prepared (see Figure 2.2 for wet printing). Therefore, three main types of ink have been 

developed and they are a) metal precursor ink, b) conductive polymers and c) carbon based ink 

 

Figure 2.1: The block diagram showing the classification of various printing techniques. 
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[14, 18]. A typical example of the first type is an ink based on metal nanoparticles such as Ag 

[19, 20], Au [21], Pt [22], and Pd [23]. These varieties provide not only more freedom in 

controlling the band structure of the metal semi-conductor contact but also more functions for 

other applications. For example, Au nanoparticles show good bio-compatibilities. In this regard, 

they are widely used in various bio-medical applications [24] (Figure 2.2 a, b and c). Other 

considerations involve aspects such as the cost, the mechanical flexibility, the stretchability 

and the magnetic properties [25]. For various applications, different metal nanoparticles can be 

used accordingly as the variety of the metal nanoparticle inks facilitates various conductor 

applications in a printable manner.  

Commercial metal nanoparticles based inks are dispersed in suspension. However, one of the 

biggest problems is the agglomeration between the nanoparticles, since they have large 

 
 

Figure 2.2: The schema and examples for wet printed and dry printed contact pads.                      

(a). (b) and (c) The typical schema and example of wet printed contacts. (d) and (e) The typical 

schema and example of dry printed contacts. (f) The example of metal contacts fabricated by 

conventional microfabrication process including photolithography and metal deposition on to 

the active material, leading to a contact with many defects and surface states Reprinted and 

adapted with permission. (a), (b) and (c) are from Ref [24]. Copyright © John Wiley and Sons. 

(d), (e) and (f) are from Ref [46]. Copyright © Springer Nature. 
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Hamaker constants that make them strongly attractive to each other [26]. This is addressed by 

decorating the metal particles’ surface with non-conductive ligands, which significantly 

increases their dispersibility and stability, leading to a long shelf life [27, 28]. Meanwhile, 

although this is crucial for the ink stability, it leads to a concern in electrical property as most 

of the ligands are insulating, forming a transport barrier between the metal nanoparticles. 

Therefore, the thickness of the ligands should be carefully controlled. Practically, a sintering 

step is adopted to partially remove the ligands after printing. This can be done by a thermal 

approach, which is the most common method [29]; or by other methods such as chemical 

sintering [30], electrical sintering [31], laser beam exposure [32] and microwave radiation [33]. 

In flexible electronics, additional concern is raised because of the use of mechanically flexible 

but thermally sensitive polymeric substrate. Therefore, the method of sintering should be 

chosen depending on the proposed use of the specific substrates. Another technical problem in 

this process is the adhesion between the printed materials and the substrate. This can be 

addressed by using a polymer-based binder following an increase in the surface energy [34]. 

Currently, three types of binder have been principally investigated, which are poly(4-vinyl-

phenol) (PVP), poly (methyl methacrylate) (PMMA) and teflon. However, unlike the ligands 

which are necessary, the polymer binders are only adopted in certain cases as they further 

complicate the electrical transport because of their insulating nature. 

The second type of commonly used conductive ink are conductive polymers such as 

polyacetylene and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). 

Compared to the metal nanoparticle based inks, the conductive polymers generally have greater 

flexibility as a result of the smaller Young’s modulus from organic materials [35]. However, 

this would lead to concerns in terms of stability as some inks show vulnerability when exposed 

to various conditions such as UV light, heat stimuli, moist environment or even ambient 

conditions [36], and, to this end, suitable encapsulations are often necessary. Since this is not 

the major focus of this Ph.D. research, details in the recent advances for encapsulation are not 

included. Relative studies can be found in several previous reviews and books [37, 38]. 

Carbon based materials such as carbon nanotube (CNT), graphene and their derivatives have 

also been explored as good candidates for conductor applications. To that end, the preparation 

of their suspensions is a crucial step towards printing. Typical strategies include oxidation 

assisted dispersion [39], surfactant assisted dispersion [40] and distillation assisted dispersion 

[41]. The printed films show a high flexibility and good resistance to external environment, but 

their conductivity is a concern (~103 S/m for carbon based ink and ~107 S/m for metal 
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nanoparticle ink [18]). Therefore, the carbon based ink is usually used in applications where 

high conductivity is not required. 

While these approaches are all based on a wet printing strategy, researchers have also 

developed dry printing methods for realising conducting films. This mainly refers to a physical 

transfer process (transfer printing or stamp printing) where an elastomer polymer is used to 

pick up and release the pre-fabricated metal films [42-45] (see Figure 2.2 for dry printing). The 

advantage of this approach is that it enables the merging of the traditional micro-fabrication 

process with the flexible electronics: the conventional micro-fabrication process which 

involves the high temperature treatment can be first realised on the rigid substrate and the as-

fabricated materials and devices can be then transferred onto the flexible platform.  

Unlike the conventional micro-fabrication process which inevitably introduces impurities (as 

a result of photoresist or solvent residues) and damages (as a result of physical bombardments 

on the material surface)  the interface between donor and receiver, the dry printing method can 

achieve a pure and intrinsic interface as a result of a van der Waals (vdW) contact (see Figures 

2.2 d, e and f) [46]. Recently, interesting results have been realised by exploring the vdW 

contact between metal film and MoS2, leading to the experimental validation of the long 

hypothesised Schottky-Mott relationship in the system of metal-MoS2 vdW contact [46]. The 

vdW contact between metal and 2D material is another important part of this research which 

focuses on the exploration of graphene-Au vdW contact as realised by the transfer printing 

method and its applications in large-area flexible electronics. This will be discussed in Chapters 

4 and 5.  

Finally, a table has been included to compare the properties of the conducting materials printed 

by different methods. 

Table 2.1: Summary of printed conductive materials. 

Material Fabrication 
method 

Minimum 
thickness  

Conductivit
y 

Special 
requirement 

Ref # 

Ag ink Ink-jet or 
screen 
printing 

Down to ~ 10 
nm 

~106 S/m Sintering 
required  

[19,20
] 

Au ink Inkjet 
printing 

Down to ~ 10 
nm 

~107 S/m Sintering 
required 

[21] 

PEDOT:
PSS 

Inkjet 
printing 

Down to ~10 
nm 

10-1~103 
S/m 

Lack of 
stability 

[35] 



 
 

30 

 

Carbon 
based 
ink 

Inkjet 
printing 

Down to ~10 
nm 

~103 S/m NA  [18] 

Metal 
film 

Transfer 
printing 

Down to ~1 nm 108~109 
S/m 

NA [46] 

 

2.1.2 Semiconductors 
Various semiconducting materials including organic molecules and polymers [47, 48], 

inorganic nanowires (NWs)/nanotubes (NTs) [17, 49], thin films [50] and quantum dots [51], 

can be realised by a printing method over a large-area. As discussed earlier, the printing of 

semiconductors is categorised into dry and wet methods and promising results have been 

obtained using both approaches. 

The mainstream of the wet printing for semiconductor applications include methods such as 

inkjet printing and screen printing. For this, suitable “inks” or “pastes” containing the desired 

semiconducting materials, both organic and inorganic, need to be prepared. Unlike the scenario 

for conductor applications where a binder can be used, the polymer binders are not favoured in 

preparing semiconducting inks, especially for printing organic films, since it introduces 

impurities to the device channel and reduces the performance. Instead, crystalline, high quality 

semiconductor film is regarded as indispensable for realising high carrier mobility of the FET 

and sustained efforts have been made to realise high crystalline organic film by using printing 

methods [52]. Although initial results of printed organic FET exhibit a low performance (~0.01 

cm2V-1s-1) with bad crystallinity [53], significant advances have been made in this direction 

with single crystal up to several hundred micrometres achievable [52] (see Figure 2.3a). This 

leads to devices with a mean carrier mobility ~16.4 cm2V-1s-1, comparable to the best reported 

organic field-effect transistor (device mobility up to 43 cm2V-1s-1 [54]). Given the abundant 

material library for organic semiconductors, various functional electronic components with 
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high-performance can potentially be realised in a cost-effective manner over the large area, 

both on rigid and flexible substrates.  

The wet printing approach can also be used to print inorganic semiconductors such as ZnO 

NWs, semiconducting CNTs and amorphous indium-gallium-zinc oxide (InGaZnO) nanofilms 

[55-58] (Figure 2.3 b and c). Often the printed inorganic semiconductor films are composed of 

randomly stacked inorganic crystals without any alignment preference, leading to complex and 

uncontrolled carrier transport properties [57, 59, 60]. In contrast, for inorganic semiconductors, 

because of their high stability and crystallinity, transfer or contact printing are more popular 

[61-64], since this provides greater freedom in material processing and alignment, and benefits 

the realisation of high-performance electronics (see Subsections 2.1.5.3 and 2.1.5.4). It should 

be noted that these two methods can be realised without the use of liquid, thus categorizing 

 
Figure 2.3: Typical examples of printed semiconductors. (a) The inkjet printing of single 
crystal of C8-BTBT layer and its characterisations. The POM image shown on the bottom 
left indicates its crystallinity. (b) The inkjet printing of graphene based FET. (c) The wet 
printed CNT circuits with reasonable performance. (d) Printed quantum dots for 
illuminating application. Reprinted and adapted with permission. (a) and (d) is from Ref 
[52].and [51], respectively. Copyright © Springer Nature. (b) and (c) are from Ref [98] 
and [58], respectively Copyright © American Chemical Society. 
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them as dry printing approaches. Compared to wet printing, dry printing of semiconductors 

leads to much cleaner interfaces. This is one crucial aspect towards the realisation of high-

performance electronics based on nanomaterials, and has been demonstrated in many systems 

including organic and 2D materials [65-67].  

Finally, a table has been included to summarize the properties of the printed semiconductors 

listed here for various applications. 

Table 2.2: Summary of printable semiconducting materials. 

Material Printing 
method 

Product 
quality 

Applicati
on 

Ref # 

Organic 
semiconduct
ors 

Inkjet or 
screen 
printing 

Comparab
le to the 
SOA 

FETs, 
solar 
cells, etc 

[52] 

Inorganic 
NWs/NTs 

Inkjet, 
transfer or 
contact 
printing 

Comparab
le to the 
SOA 

FETs, 
sensors, 
etc 

[60] 

2D materials Transfer 
printing 

SOA FETs,  [61, 67] 

Quantum 
dots 

Transfer 
printing 

NA LEDs, etc [51] 

 

2.1.3 Dielectrics 
Dielectrics are the final building blocks for electronic devices. However, in the development 

of printable electronics, such as FETs, many of the studies used a Si substrate with SiO2 layer 

acting as a gate dielectric by a bottom gate strategy. This strategy avoids the fabrication of the 

gate terminal thus dramatically decreasing the process difficulties, but it is at the cost of high 

operation voltage as well as the inability to control the device individually. Therefore, for those 

circuit applications with an array of FETs, realising locally controlled gate terminals with low 

film thickness, high dielectric constant and strength, is desired. At present,  two major types of 

materials have shown promising compatibilities with printing technologies and these are a) 

cross-linked polymer blend dielectrics and b) sol-gel based dielectrics [14]. The first type of 

materials are organic polymers, with typical examples of polystyrene (PS), and PMMA. 

Compared to conventional inorganic dielectrics such as SiO2 and Si3N4, the organic polymers 

show a better suitability with soft-electronics because of their higher flexibility [68]. Therefore, 

replacing the brittle insulator to these polymer-based dielectrics would potentially lead to a soft 
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electronic device with greater flexibility. However, various limitations exist for the organic 

polymers when compared to standard dielectrics from a conventional micro-fabrication process. 

To be more specific, one major drawback of polymer based dielectric materials is their low 

dielectric constant (<10) [69]: this value is usually >20 for those high-κ materials. It should 

lead to a much higher requirement in thickness control, if the same level of areal capacitance 

is to be achieved. Other problems with the printed organic polymer dielectrics include low film 

quality with pinholes and uncontrolled film thickness via printing, which can be seen in the 

pioneering work during the initial stage [70-72]. Promisingly, all these concerns have been 

largely solved. This is because, thanks to the abundant material library for organic materials, 

organic polymers with high dielectric constant (>60), low surface roughness (~0.72 nm) and 

well controlled film thickness have been successfully found and achieved by printing 

technologies [69]. 

Meanwhile, inorganic dielectric layers, such as metal oxides, have also shown their printability 

with a sol-gel method. For example, highly smooth AlOx film with low leakage current and 

high areal capacitance have been demonstrated by printing, with well-controlled thickness 

down to 10 nm (see Figure 2.4 a) [73]. The performance of the printed metal oxide layers has 

become comparable to those materials realised by conventional microfabrication technologies 

such as atomic layer deposition (ALD) and sputter, enabling the realisation of high-

performance printed electronics. 

 
Figure 2.4: Typical examples of printed dielectrics. (a) The printing of solution based 
dielectric materials and corresponding characterisations. (b) The stamp printing of hBN 
for dielectric and encapsulation of GFET. Reprinted and adapted with permission. (a) is 
from Ref [73]. Copyright © John Wiley and Sons. (b) is from Ref [82]. Open access 
article. 
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Apart from these wet printing approaches, dry printing has also been explored for the 

realisation of dielectrics. This mainly refers to those studies where hexagonal boron nitride (h-

BN) is used as the dielectric layer and transferred onto the target location of the receiver 

substrate by a transfer printing method (Figure 2.4 b). The novelty of these studies is partly 

because of the material itself, since h-BN has been suggested as an ideal dielectric material 

with unique advantages of ultralow thickness (~0.33 nm for monolayer), ultra-flat surface, high 

breakdown voltage (>0.5 V/layer) and a perfect crystal plane without any dangling bonds [74-

79]. In this regard, much research has explored the h-BN as a dielectric material in FETs, 

leading to the realisation of many novel devices with unprecedented performance [78, 80-82].  

Despite these advantages, barriers exist in realising an ideal h-BN/semiconductor interface 

from a technical point of view. This includes the high-quality synthesis of h-BN and its 

subsequent clean, controllable and reproducible transfer. Specifically, how to achieve a 

uniform contact interface between the dielectric and semiconductor, by using the transfer 

printing method, is a critical problem. Although this aspect has seldom been mentioned in 

related research articles (possibly because of a different focus) [80, 81], the non-uniform vdW 

gap with bubble formations has been observed in the transfer printing process, and reported in 

other research from different groups [79, 83, 84]. In this regard, how to achieve a high-quality 

contact interface over large-area between h-BN and various semiconductors is a problem yet 

to be solved for near future printed electronics. 

Finally, Table 2.3 directly compares all the dielectric materials mentioned in this section. 

Table 2.3: Dielectric properties of various materials. 

Material Fabricatio
n method 

Minimum 
thickness  

Dielectric 
constant 

Dielectric 
strength 

Surface 
roughness  

Young’s 
Modulus 

Ref # 

SiO2 Thermally 
grown 

Down to 1 
nm 

3.9 107 V/cm Ra ~ 0.2 
nm 

6.6×1010 
N/m2 

[85] 

BaTiO3 Inkjet 
printed 

NA NA NA Particle 
size of 
100 ~ 200 
nm  

NA [71] 

Benzocy-
clobutene 

Spin-
coated 

Down to 
10 nm 

NA >3×106 
V/cm 

NA  NA [72] 

PMMA Spin-
coated 

Down to 
100 nm 

2.89~3.66 >2×106 
V/cm 

Ra ~ 0.3 
nm 

1×109 
N/m2 

[86, 
87] 
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AlOx Bar 
pulling 

Down to 
10 nm 

NA >2×106 
V/cm 

RRMS ~ 
0.08 nm 

NA [73] 

P(VDF-
TrFE-CFE) 

spin-
coated 

~160 nm >60  >2.5×106 
V/cm 

RRMS 
~0.72 nm 

NA [69] 

h-BN Mechanic
al 
exfoliated 

Down to 
~0.3 nm 

3.38 or 
6.61 
depending 
on the 
field 
direction 

~ 106 or 
107 V/cm 
depending 
on the 
field 
direction 

Ra < 0.1 
nm 

~8.6×1011 
N/m2 

[76, 
88, 89] 

 

2.1.4 All printed electronics 
In Subsections 2.1.1 to 2.1.3, the printing of materials with various bandgaps has been 

summarised and some of the preliminary device applications have been demonstrated. 

However, the examples listed above are only “partially printed”: the devices are realised by 

combining the printing techniques with the standard microfabrication processes. One may 

wonder with the advances in printing technology described above, if it is possible to achieve 

an “all printed” device. This subsection explores this direction by reviewing the state of the art 

in various “all printed device”, including solar cells, sensors, memories and FETs. Surprisingly, 

some of these prototype devices have shown a comparable performance to those state-of-the-

art non-printed devices, which shows the great potential held by printing technology for the 

development of near future large-area electronics. 

All printed solar cells 

As previously highlighted, an inkjet printer is able to print various types of materials in a “drop 

on demand” manner. With suitable inks (semiconductors and conductors), a solar cell can be 

successfully realised in ambient condition by printing technology [90]. The printed device 

shows reasonable power conversion efficiency, with an average value of 2%. This is partially 

limited by the top contact (Ag electrode, as shown in Figure 2.5a), since the replacement of the 

printed Ag film by vacuum evaporated contacts would lead to a dramatic increase of the 

efficiency to 5%. Further study also indicates that the inkjet printed poly[N-9-heptadecanyl-

2,7-carbazole-alt-5,5-(4ˊ,7ˊ-di-2-thieny-2ˊ,1ˊ,3ˊ-benzothiadiazole)]:[6,6]-phenyl-C71-butyric 

acid methyl ester (PCDTBT:PCBM) layer shows similar behaviour to the spin-coated film, 

which has revealed the potential of the printing technologies in energy harvesting applications.  

All printed sensors 
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A ZnO NW based UV photodetector is demonstrated by an inkjet printing method [91] (see 

Figure 2.5 b). ZnO is a wide-bandgap semiconductor and its allotropes, such as NWs and thin 

films, have been widely used for various sensing applications including UV detection [92, 93]. 

Unlike conventional NW based UV photodetectors where the channel is based on a single 

crystal material, this work adopted a thermal calcination method where the ZnO NW is 

converted from the printed zinc acetate (ZnAc) film and leads to a polycrystalline ZnO NW. 

Notably, such a change appears to reversely benefit the photodetector performance with a much 

lower dark current and ultra-high detectivity up to 3.3 × 1017 Jones. This enhancement is 

attributed to the band-edge modulation because of the existence of the grain boundaries. This 

study suggests that, although the printed film would be of low quality in the materials 

perspective (polycrystalline vs monocrystalline), such properties may reversely benefit the 

intended application and lead to a higher performance by the device. 

All printed memory devices 

Memristor is a device whose state (resistance) is dependent on its operational history of 

electrical stimuli. Because of its high endurance [94], high on/off ratio [95], long retention time 

[94, 96] and great potential for scaling down, memristor has been suggested as a promising 

candidate for next generation data storage device. Memristor usually has a metal-insulator-

metal configuration, and is made by mature microfabrication techniques such as lithography, 

metal deposition, ALD and sputtering. With the development of printing technologies, there is 

a strong interest in developing electronics by printing method. For example, Lien et al. realised 

a C/TiO2/Ag based memory cell by using all printing methods (screen printing and inkjet 

printing, see Figure 2.5 c) [97]. The performance of the as-realised cell is still in its initial stage, 

with an endurance of ~100. However, the benefit of this method is in large scale processing on 

an arbitrary substrate, for example on a paper substrate which can be disposed after usage. This 

study, although quite preliminary, can encourage advances in future disposable electronics. 

All printed FETs 

FET is one basic building block for electronic circuits and systems. Realising high performance 

FET by a printing approach can greatly benefit the development of printable electronics. One 

exploration in this direction is the ability to print 2D materials for FETs’ application and in this 

regard both dry printing and wet printing have been realised. With regard to wet printing, this 

refers to a process where 2D material based ink is prepared and then printed by tools such as 

an inkjet printer. A typical example is the work done by Torrisi et al., where  graphene ink was 
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prepared and printed as the channel for the FET [98] (see Figure 2.5 d). The benefit of this 

process is its low cost and extendibility to large-area process, but its performance is limited 

(~95 cm2V-1s-1, one to two orders of magnitude lower than the state of the art). This is a result 

 
Figure 2.5: All printed electronic devices. (a) The solar cell fabricated by inkjet printing 
(b) The photodetectors realised by inkjet printing (c) All printed memory device (d) A all 
2D material based transistor realised by transfer printing. Reprinted and adapted with 
permission. (a) is from Ref [90]. Copyright © John Wiley and Sons. (b) is from Ref [91]. 
Open access. (c) is from Ref [97]. Copyright © American Chemical Society. (d) is from 
[81]. Copyright © American Chemical Society. 
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of an imperfection from the channel materials, as well as the poor-quality interface. Therefore, 

the dry printing approach is more favoured. 

With respect to the dry printing of 2D materials, often this refers to a process where various 

materials are picked up from a donor substrate and mechanically transferred to the target 

location of the receiver substrate, forming a vdW contact or vdW heterostructures [99, 100]. 

As no thermal annealing is required, this strategy is compatible with flexible electronics. 

Meanwhile, unlike the inkjet printed devices, the device realised by transfer printing shows a 

far greater performance [46, 67]. Specifically, by using this physical transfer method, a total 

2D materials based FET has been realised, with a device mobility of up to 33 cm2V-1s-1for 

MoS2 [81, 101]. This value is comparable to the state-of-the-art device, showing the great 

potential of the dry printing method for high performance electronics. 

In summary, this subsection reviews the recent advances in all printed electronic devices. 

Indeed, some of the listed devices show a limitation in performance as a result of restricted 

processing conditions and the gaps between those printed devices are not insurmountable. In 

fact, in some scenarios, the performance of these two types of devices is even comparable. 

Considering the advantages held by printing technology and its compatibility to flexible 

electronics in a roll-to-roll processing manner (See the discussion in Subsection 2.1.5), printing 

is believed to be one of the most promising techniques for the realisation of near future large-

area, flexible electronics.  

2.1.5 Methodologies in printable electronics  
The focus of this section is on printing methodology. In order to provide a comprehensive 

overview, various mainstream printing approaches are summarised with their advantages and 

disadvantages. Furthermore, the possibility of extending printing technologies to roll-to-roll 

fabrication is discussed, with several pioneering laboratory scale demonstrations. Finally, a 

comparison between the listed printing methods is made, showing their unique properties and 

suitability for different applications. 

Inkjet printing and e-printing 

Inkjet printing is a technique which enables the ink to be printed at the desired location of the 

substrate from a computer-controlled nozzle, in either a continuous manner or a “drop-on-

demand” manner. In a conventional inkjet printer, the ink is pushed out of the nozzle and forms 

a droplet for printing under heat or force stimuli. Other parameters, such as the size and the 

moving speed of the nozzle, the voltage bias used to drive the printing, the ink and the substrate 
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(stage) temperature, can also control the quality of the printed ink [102, 103] (see Figure 2.6 

a). For conventional inkjet printer, its resolution is a major concern, with a minimum printed 

feature size down to ~20 µm [104]. This is as a result of the limitation of the diameter of the 

nozzle as the flow of the ink will be drastically blocked in a nozzle smaller than 20 µm. 

Therefore, a traditional ink-jet printer is mainly used for realisation of a large size device, 

especially for those materials such as organics which are vulnerable to a conventional micro-

fabrication process [47, 48].  

In the meantime, researchers are working to improve the resolution of the inkjet printer for a 

wider range of applications. This has been achieved by either modifying the printed substrate 

or the printing setup. With respect to the first approach, “dewetting” of the printed ink was 

studied and utilised, leading to a controlled gap formation (down to 250 nm) in the printed film 

[105]. This structure can serve as the source and drain electrodes of a short channel FET. 

Although this overcomes the inject printer’s limitation in resolution, an additional lithography 

step is needed to pattern the surface of the target substrate for the dewetting. In this regard, the 

 
Figure 2.6: Schema of various printing technologies. (a) Inkjet printing (b) Screen printing 
(c) Transfer printing and (d) Contact printing. Reprinted and adapted with permission. (a) 
is from Ref [90]. Copyright © John Wiley and Sons. (b) is from Ref [107]. Copyright © 
American Scientific Publishers. (c) is from Ref [64]. Open access. (d) is from [123]. 
Copyright © Cambridge University Press. 
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benefit of the simple printing is obscured. Alternatively, researchers have been working on 

modifying and updating the conventional inkjet printing system, targeting a reliable printing 

method with features down to microns or sub-microns. First reported by Park et al., an e-jet 

printer is developed as an advanced version of an inkjet printer. Unlike the conventional setup 

which utilises thermal or physical stimulus to extrude the ink, a high electric field is adopted 

to provide a more precise control of the ink formation and printing in the e-jet printer, leading 

to a significant resolution increase from tens of micrometres to several hundreds of nanometres 

[106]. However, it should be noted that this improvement results in a slower printing speed, 

since the operation and control of a high electric field takes longer than the conventional 

thermal or mechanical methods.  

Screen printing and stencil printing 

Screen printing and stencil printing refer to a similar process where pastes (inks) are poured 

onto a mask and are slid over the mask using a squeegee. By doing so, the pastes are forced to 

penetrate through the mask, forming a film on the target substrate in a reverse pattern (see 

Figure 2.6 b) [107]. The mask can be made of various materials. Generally, a mesh mask is 

used in screen printing while for stencil printing the mask is made of metal or other materials. 

Another difference between the two printing technologies is the distance between the sample 

and the mask. In stencil printing, the mask is in direct contact with the sample while in screen 

printing there is a gap between the two. 

The resolution is also a major problem for screen or stencil printing. In this scenario, it directly 

depends on the mask, whose resolution is limited by the resolution of the emulsion; the 

minimum feature size that can be achieved on this material is ~100 µm [108]. In the meantime, 

unlike inkjet printing where a film down to several nanometres can be reliably printed [52], 

thickness control is another concern for screen printing, with a typical printed film of several 

micrometres in thickness [109]. This is detrimental for printing an organic semiconductor for 

electronic devices such as FETs, since a thicker channel material leads to an increased Schottky 

barrier width, suppressed tunnelling probability and a much poorer device performance with 

worse contact [109]. To this end, researchers have attempted to decrease the thickness of 

printed film down to several tens of nanometres. This is achieved by using a low viscosity ink 

combined with two polymer banks in order to maintain the shape and crystallinity of the film 

[109]. This, although increasing the complexity of the fabrication, can successfully facilitate 

the screen printing of thinner films, leading to a screen printed OFET with better contact. 
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Transfer printing 

Along with the development of nanomaterial and technology, the term “transfer printing” has 

been used to describe two similar processes which are used to transfer the specific materials 

from the donor to the receiver substrate. One process refers to a method which uses an 

elastomer stamp with a sticky surface to “pick up” the target materials from their carrying wafer, 

and release them onto the desired location at the receiver substrate [42, 110] (see Figure 2.6 c). 

To achieve this, the contact interface property is crucial and needs to be controlled in order to 

successfully deliver the picking up and releasing steps at specific locations over the large area. 

To be more precise, the interaction between the materials and substrate is quantified by a 

characteristic energy release rate G. To achieve the successful picking up of the material from 

the donor, the requirement is ���������	
���� < ���������	
	����; similarly, to realise the 

releasing step, the contact interface should meet the requirement of ���������	
	���� <
���������	
�������� [111]. These can be experimentally achieved by various approaches, such 

as surface functionalisation and control of the peeling rate [112, 113]. 

Resolution is another concern for transfer printing and is limited by the feature size of the inks 

(materials) as well as the alignment accuracy. While the former is determined by the material 

itself, it is not very relevant to the research on printed electronics. In contrast, the alignment 

accuracy is a more fundamental problem for transfer printing, and, to this end, sustained efforts 

have been devoted to improve this figure of merit [114-116]. At present, an alignment accuracy 

down to 100 nm has been successfully achieved over large-area [117], showing much promise 

for future development of large-area, high-performance electronics via a stamp printing method. 

As well as this method where an elastomer stamp was used for the materials transfer, transfer 

printing also refers to a process where a polymer solution is spin-coated onto the donor 

substrate and the as-formed polymer film is used for the realisation of the transfer process. 

Unlike the previous approach, the detachment of the active materials is achieved by either 

etching the underlying substrate or mechanically peeling off the coated polymer film. In this 

regard, this method does not require any control of the picking up process, and therefore it has 

been developed to transfer those nanomaterials which are strongly bonded to the donor 

substrate [118, 119]. In terms of the material releasing step, this is achieved by similar means 

used in stamp printing where the interaction of the material and receiver substrate is guaranteed 

by a physical contact and further promoted by some dry and wet approaches [15, 16, 120]. 

After this, the polymer film is removed by dissolving it in the solvent. While this method does 
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not need a precise control of interface properties, disadvantages exist because of the 

involvement of other chemicals. It has been suggested that this, in many cases, can lead to a 

contamination of the as-transferred nanomaterials and alter their electrical properties [16, 121]. 

Contact printing 

Contact printing is an approach which is specifically developed to transfer and align quasi-1D 

materials [17, 122, 123]. It refers to a process where the donor substrate with vertically grown 

NWs and NTs is pressed towards the receiver substrate and directionally slides one over the 

other. By doing so, the NWs can be detached from the donor and anchored onto the receiver, 

with preference alignment in the sliding direction (see Figure 2.6 d). Currently, the research 

interest in NW printing studies is mostly focused on the following two kinds: a) a highly aligned, 

closely packed NW film; and b) a single NW located at a specific location with controlled 

orientation. Both of these have been explored via the contact printing approach. The 

performance of the FET, based on the latter, can probe the electrical property of a single NW. 

With such devices, creating a device array with uniform performance over a large area is 

challenging since the NW to NW variations (such as diameter and doping) can lead to a large 

variation in their electrical characteristics [124]. In contrast, the printed NW film with high 

density, uniform distribution and good alignment shows a much smaller variation in device 

performance because of the average effect from a group of NWs. However, such devices 

usually show a higher off-current and thus increased power consumption as a trade-off for the 

high uniformity. Therefore, both types of device have their own benefits and are of interest on 

their own. 

With respect to the realisation of highly aligned, close-packed NW film printing, initial studies 

have revealed the influence of contact pressure and surface functionalisation on the contact 

printing results [17]. With these parameters controlled, good printing performance (in terms of 

NW length, density, alignment and uniformity) has been successfully achieved over large area. 

A subsequent study indicated that the anchoring force hinders the precise alignment of NWs. 

By separating the anchoring region and aligning region, the NW alignment can be dramatically 

improved by using the “combing method” [125]. Notably, contact printing can not only be 

achieved on a conventional substrate like Si, but also on some unconventional receivers such 

as polymeric flexible substrates and rigid substrates but with a non-planar surface. This has 

shown the great compatibility of the contact printing approach and opens new avenues for the 

fabrication of near future flexible and 3D integrated electronics [17, 126, 127].  
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The other research interest is in using the contact printing approach to print single NWs at 

specific location. This has been explored by fabricating anchors with specific shape and 

dimension on the receiver substrate to “capture” the single NW, because of the drastic local 

friction increase by introducing the NW catcher on the receiver substrate [125, 128]. For 

example, by using a combing method along with narrow (~1 µm wide) coplanar electrodes, a 

single NW can be captured with a high yield (~90%) [125]. A similar trial has also been shown 

to be effective by using a dry printing process, but with a triangular or more complicated “NW 

catcher” [128]. Overall, these initial studies have shown the feasibility of the single NW 

transfer at the desired location with the contact printing method, indicating its great potential, 

good compatibility and versatility for various applications.  

Roll-to-Roll printing  

Potentially, all of these methods can be extended to a roll-to-roll process for a flexible substrate 

as an advantage of the printing technology. With respect to the inkjet printing, screen printing 

and stencil printing, roll-to-roll fabrication can be realised by mounting the flexible substrates 

on some gear-controlled rollers and integrated with the printer in the desired alignment [129] 

(see Figure 2.7).  

 
Figure 2.7: Roll-to-Roll printing technology. The Roll-to-Roll version of (a) inkjet 
printing, (b) screen printing, (c) contact printing, (d) polymer assisted transfer printing 
and (e) stamp assisted transfer printing. Reprinted and adapted with permission. (a) and 
(b) are from Ref [129]. Copyright © John Wiley and Sons. (c) is from Ref [133]. 
Copyright © AIP Publishing. (d) is from [131]. Copyright © Springer Nature. (e) is from 
Ref [130]. Copyright © John Wiley and Sons. 



 
 

44 

 

With respect to the transfer printing method, roll-to-roll transfer has also been demonstrated by 

several groups [130-132]. For example, as shown in Figure 2.7 e, a flexible stamp with angular 

posts has been wrapped around a cylinder surface, serving as the roller. The stickiness of the 

stamp can be tuned by changing its movement direction [130]. In this regard, the roll-to-roll 

pickup and releasing of materials can be realised. Meanwhile, the concept of roll-to-roll 

production has also been demonstrated for polymer assisted transfer. By integrating the 

polymer adhesion gear, a metal etching chamber and a polymer releasing gear, the effective 

roll-to-roll transfer of graphene up to 30 inch has been demonstrated [131] (Figure 2.7 d). 

Finally, the roll-to-roll version of contact printing is realised by a differential roll printing 

method [133]. This uses a donor substrate in a cylindrical shape with NWs vertically grown on 

the surface, and rolls it on the receiver substrate under certain pressure. As described earlier, 

the alignment of NWs is a result of the sheer force generated in the printing process. Similarly, 

in order to realise successful NW printing and alignment with this method, a relative movement 

between the inner and outer roller, which generates the sheer force, is essential. This is achieved 

by adopting an intentionally mismatched pair of inner and outer rollers with different diameters 

(Figure 2.7 c). By doing this, the NW can be printed in a highly aligned manner with roll-to-

roll configuration over large-area. Compared to the contact printing process where the contact 

between the donor and receiver is planar, the cylindrical donor delivers a small contact area at 

a time, which mostly preserves the freshness of the donor substrate. This unique property is 

highly beneficial for realising uniform NW printing over large area. 

Overall, unlike a traditional micro-fabrication process, the printing technologies are simple and 

cost effective, and can be easily extended to roll-to-roll production, which holds great promise 

for the development of future, flexible electronics over large-area. To conclude this section and 

to summarise these printing technologies, Table 2.4 illustrates the advantages and 

disadvantages of each printing method.  

Table 2.4: Comparison of the properties of various printing techniques. 

Technology Lateral 
resolution 

Thickness  Donor 
format 

Printing 
speed 

Applications Ref # 

Inkjet printing Down to 
~20 µm 

10~1000 
nm 

Ink Medium FETs, circuits, 
solar cells, 
photodetectors
, etc 

[22, 47, 
48, 52, 59, 
104] 

e-jet printing Down to 
~100 nm 

1~100 nm Ink Slow FETs, circuits, 
solar cells, 

[105, 106] 
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photodetectors
, etc 

Screen/Sten-cil 
printing 

~100 µm 5~100 µm Paste Fast Mainly for 
conductive 
layers such as 
contacts  

[108] 

Transfer 
printing 

Down to 
~100 nm 

Not limited Materials 
on a donor 
substrate 

Depends FETs, circuits, 
solar cells, 
photodetectors
, etc 

[61, 110, 
111, 120] 

Contact 
printing 

NA Not limited Quasi-1D 
materials 

Fast Mainly for NW 
based devices 

[17] 

 

2.2 3D integration technologies 
The idea of 3D integration can be traced back to the 1980s, when there were attempts to further 

increase packaging density by exploring its vertical dimensions [134, 135]. However, this idea 

did not draw much attention at that time since the device scaling in the 2D plane was an easier 

and cheaper option. Currently, since the conventional scaling of individual devices has almost 

approached its physical limit, the 3D integration concept has again been picked up and is 

regarded as one of the major strategies to extend the life of Moore’s Law. Until now, 3D 

integration has become a very broad concept which is used to describe a number of strategies 

for the realisation of electronics stacked on the vertical dimension, including 3D wafer-level 

packaging (3D WLP), 3D stacked ICs (3D-SICs), 3D system in package (3D SIP) and 

monolithic 3D ICs [136]. Technologically, these strategies can be mainly categorised into two: 

parallel integration and sequential integration. Parallel integration refers to a process where 

several electronic layers are fabricated individually, and then bonded together to achieve the 

3D integration. The above-mentioned 3D WLP, 3D SIC, 3D SIP all belong to this strategy. By 

contrast, sequential integration, also known as 3D integration, describes a concept where the 

electronic layers are built in sequence on the same substrate, from the bottom to the top. Both 

of these strategies can significantly increase the device density.  

Another interesting aspect for 3D integration is that it has a very wide applicability. With regard 

to the printed electronics, the device density is greatly limited due to the printing resolution. 

However, by stacking the printed components in the third dimension, the total number of 

printed devices can be significantly increased. This is another important aspect which will be 

explored in this Ph.D. study. 



 
 

46 

 

This section is arranged as follows: First, a brief overview is given on 3D integration by 

stacking thinned chips (3D WLP, 3D-SICs, 3D SIP) in subsection 2.2.1. Then the recent 

advances in using printing techniques to realise 3D integration (monolithic 3D) are reviewed 

(Subsection 2.2.2). Finally, a comparison is made between the listed works on monolithic 3D 

integration by printing technologies (Subsection 2.2.2). 

2.2.1 Parallel integrated 3D electronics 
As explained earlier, parallel integration refers to a strategy where several strata are fabricated 

individually and stacked together. Each stratum is realised by mature industrial manufacture 

technology such as CMOS. The as-fabricated components are thinned down and stacked 

together by various bonding techniques to achieve the 3D integration. This section provides a 

brief summary and overview of the major steps towards parallel integration, including thinning, 

bonding and interconnects realisation [137]. 

Thinning technologies 

Usually, the as-fabricated wafers and chips need to be thinned before the 3D integration. One 

main reason for this is the requirement for interconnect formation through silicon vias (TSV) 

techniques: the strata need to be etched through and filled with metallic leads to connect the 

electronic devices on each layer. With thinner substrates, the TSV process could become easier 

and cheaper. In addition, the decrease in vertical dimension for each stratum also provides a 

possibility for a higher packaging density, but to achieve this, other factors also need to be 

considered.  

In general, various techniques are available to decrease the thickness of the wafers and chips, 

including grinding, wet etching, dry etching, chemical mechanical polishing (CMP), proton 

induced exfoliation and layer transfer [137, 138]. For example, grinding refers to a process 

where a grinding wheel is used to mechanically remove the substrate material by continuous 

pressing and rotating. The rear of the wafer is faced towards the wheeler while the top is 

covered by a protection layer. This strategy provides a fast route to thin down the wafers and 

chips, but it can potentially lead to some damage to the crystal structure inside the substrate, 

which may pose issues for the later process. Moreover, the uniformity of this process is another 

concern since the material removal process is not precisely controlled [137]. Meanwhile, the 

dry etch provides a precise way to uniformly thin down the substrate, but at a relatively slow 

rate with a higher cost. Overall, various techniques are capable of thinning down the wafers or 

chips with their own advantages and disadvantages. 
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Bonding 

The as-thinned strata are stacked together in order to realise 3D integration. For this, a bonding 

step is required for a strong and reliable mechanical attachment. Typical bonding techniques 

include metal-metal bonding, SiO2-SiO2 bonding and hybrid bonding [137]. With regard to the 

metal-metal bonding, materials such as SnAg [139], Cu–Sn [140], and Cu–Cu [141], have been 

explored. In general, the advantage of metal-metal type bonding is its conductivity, which 

could provide a direct electrical connection between the bonded wafers and chips. However, 

such bonding shows a low stability, especially with thermal stimuli. As a result, the metal-

metal bond is mostly used for two wafers’ integrations [137]. Meanwhile, the SiO2-SiO2 bond 

has also been explored to bond the wafers or chips. Unlike the previous type, this bond shows 

a good stability upon mechanical or thermal stimulus, but it cannot provide an electrical 

connection because of its material nature [142]. In this regard, an extra process is needed to 

connect the two wafers and chips electrically. With respect to the hybrid bonding, it uses 

multiple materials to bond the wafers. Normally by using this bond, the stability and electrical 

conductivity can both be achieved at the same time. However, such bonding requires a more 

complicated process with better alignment accuracy and a much cleaner surface [143]: its 

applicability is a concern. 

Interconnects 

After bonding, there is a need to realise an electrical connection between some modules from 

different strata. In this regard, an interconnect which bridges different layers is needed. Several 

methods have been used for this purpose including wire bonding [144] and TSV techniques 

[145]. Wire bonding is a technique which is widely used at the packaging level. This is one of 

the most mature interconnect techniques, but its density is a concern. The density of the bonded 

wires is limited for the sake of reliability as well as to avoid crosstalk problems [137]. 

Meanwhile, TSV refers to a process where the silicon substrates are totally etched through and 

metal connections are filled inside. Compared to the wire bonding technique, it has the 

advantage of high density, good reliability and less resistance as a result of its shorter length. 

Therefore, it is widely used in 3D integration technologies [145].  

Other concerns in 3D integration 

These three processes are major steps towards parallel integration. However, this does not mean 

the wafers or chips can be stacked infinitely. There are several concerns which limit the number 
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of the total stacks. One of the major concerns is the heat dissipation as a stack of various strata 

will greatly increase the heat generation so that the layout of the total system should be designed 

to accommodate this problem [146]. In practice, this problem is usually relieved by arranging 

the logic module near a thermal sink. Another problem in 3D integration is its success yield. 

For example, if the fabrication yield of each stratum is x and the success rate of making the 

inter-connect realisation is y, then for the 3D integrated system, the final success rate should 

be ��, where n represents the total number of layers in the 3D integrated system. It can be 

seen that, with more stacked layers, the yield of the entire system would greatly decrease. 

Therefore, the number of the stacked layers should be limited and determined by the yield and 

the cost [137].  

2.2.2 Monolithic 3D electronics by printing techniques 
While these strategies are all for parallel integration, they are more mature and some of them 

have been realised at an industrial level. Another strategy for realising vertical stacked 

electronics is monolithic 3D integration. This refers to a process where the entire system is 

realised in a layer by layer manner, starting from the bottom. This strategy provides more 

freedom from the material and device perspective. Considering that the focus of this study is 

on printable electronics, this section has only summarised the work on monolithic 3D 

integration by printing techniques.  

Printing of quasi-1D materials for monolithic 3D electronics 

As discussed earlier, quasi-1D semiconducting NWs can be printed in an aligned manner by a 

contact printing approach. This method is also capable of printing NWs on a 3D surface, which 

holds the possibility of the realisation of 3D integrated electronics. Demonstrated by Javey et 

al. [127], the 3D stacking of NW FETs has been successfully realised. This is achieved by 

layer-by-layer NW printing and FET fabrication (Figure 2.8). One crucial requirement of the 

3D stacked devices is that the fabrication of the new layer should not impact the previous 

realised devices. For this, an isolation material is needed to electrically isolate the devices from 

the previous layers. In this work, a thick (300 nm) SiO2 layer is deposited by PECVD or Ebeam 

evaporation as the intervening material, which largely preserves the electrical properties of the 

FET over the entire 3D integration process.  



 
 

49 

 

This methodology is also capable of developing NW based electronics with more functionality 

on non-conventional substrate.  For example, a NW based electronic system composed of NW 

logic devices and NW based floating memories has been successfully realised by printing NWs 

on a flexible Kapton tape [127]. 

Single wall, semiconducting CNT is another type of quasi-1D materials which can be used for 

device application. Demonstrated by Zhao et al.[147], the 3D integration of the CNT based 

circuits has been fabricated on flexible PI substrate. Taking advantage of the 3D integration, 

the p-type and n-type FETs can be realised on different layers with a common gate terminal 

(shared gate). In this regard, the fabrication process as well as the layout of the logic circuits, 

is greatly simplified. It should be noted that in this work a randomly distributed NW network 

 
Figure 2.8: Contact printing NWs for the realisation of 3D electronics [127]. (a) The 
schema illustration of contact printing process. (b) The schema illustrating the method to 
achieve 3D integrated electronics. Reprinted and adapted with permission. (a) and (b) are 
from Ref [127]. Copyright © American Chemical Society. 
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is used for the channel of the FET, which would lead to a degradation of the device performance. 

 
Figure 2.9: The fabrication process flow for realisation of 3D integrated electronics from 
quasi-2D materials and corresponding characterisation images. (a) Transfer of MoS2. (b) 
Metallisation of the source and drain contacts for 1st layer device. (c) The deposition of 
dielectric material for 1st layer device. (d) The deposition of the shared gate electrodes. (e) 
The deposition of gate material for 2nd layer device (f) The transfer of WSe2 on the 2nd 
layer. (g) Metallisation of the source and drain contacts for 2nd layer device. (h) The TEM 
characterisation of the cross section of the fabricated 3D device. Reprinted and adapted with 
permission. (a) to (h) are from Ref [151]. Copyright © John Wiley and Sons. 
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Ideally, contact printed, highly aligned NWs could serve for the channel materials for the FETs, 

which could potentially lead to a higher performance.  

Taking one step further, a concept of “X3D” was proposed and demonstrated to realise the 

heterogeneous integration of arbitrary NWs and NTs [148]. Benefiting from the advantages of 

each material, its 3D integration holds great promise for a wide range of applications. Moreover, 

this method also uses the same fabrication process for each layer, which greatly simplifies the 

process flow. Although the quasi-1D materials in this concept are realised by solution based 

drop-casting, dry printing techniques with aligned NWs/NTs can be potentially used and lead 

to better device performance. 

Printing semiconducting 2D materials for monolithic 3D electronics 

As alternatives for silicon, layered semi-conductors have shown great potential for various 

electronic applications including FETs and circuits. In addition, because of its ultra-thin nature, 

these materials are considered to be a promising candidate for flexible electronics [149, 150]. 

In the past fifteen years, various prototype devices based on 2D materials have been 

demonstrated on flexible substrates, but these have mostly been limited to a planar arrangement 

and the 3D integration of the 2D materials based devices have not been realised for a long time. 

First demonstrated by Sachid et al.[151], monolithic 3D CMOS have been successfully 

achieved with 2D materials in a laboratory scale demonstration with the EBL process. PMOS 

and NMOS were respectively fabricated by using WSe2 and MoS2 as the channel. A shared 

gate strategy was adopted to act as the common gate terminal for the devices on both layers. 

Compared to the 2D arrangement, the monolithic 3D layout provides an area reduction of 42%, 

as per design rules for the 14 nm technology node (Figure 2.9).  

From the fabrication point of view, transfer printing is widely used in the study related to 2D 

material and this technique is potentially compatible with large-area flexible electronics. 

However, the current work is often limited within a small area on a rigid substrate. Two major 

barriers are in the way of its mass production. One is the large-area, high quality material 

synthesis and transfer; the other is the efficient contact realisation between metal and 2D 

materials, especially on flexible substrates. If these problems are overcome in the future, high-

performance, printed electronics based on 2D materials over large area should be relatively 

straightforward. 

Printing semiconducting organics for monolithic 3D electronics 



 
 

52 

 

The exploration of organic semiconductors for electronic applications can be dated back to the 

1980s [152], and since then extensive explorations have been made in this area to improve their 

performance as an alternative to Si [52, 53, 70, 90]. Although still not comparable to the Si 

based CMOS technology in terms of their electrical performance, organic materials have shown 

great potential in flexible electronics as a result of their low Young’s modulus [35, 153]. To 

this end, some flexible electrical components, which do not require a high carrier mobility (e.g., 

display), have already been demonstrated in a laboratory scale demonstration and have been 

commercialised [154]. However, with regard to the 3D integration of organic based electronics, 

there was little exploration until 2008, when the stack of bottom gate, top contacted organic 

FETs, based on pentacene, were proposed and demonstrated [155]. The first prototype 

demonstration was realised by conventional micro-fabrication methods including lithography 

and metal deposition. A passivation layer was needed to protect the devices on the first layer 

from potential damage from the later micro-fabrication processes. In addition, since the 

operation voltage for organic FETs is usually higher than inorganic based FETs, the 3D stack 

of the OFETs would require a thick isolation layer, to totally isolate the electrical influence 

from the devices on different layers. In this regard, a 40 mm thick poly (urethaneacrylate) (PUA) 

layer was used for isolation as well as serving as the substrate for the fabrication of the second 

layer [155]. The 3D integration of the printed organic FETs was demonstrated few years later, 

where a drop-on-demand inkjet printer was used to print the semiconducting materials and the 

conductive contacts [156, 157] (Figure 2.10). In general, although the mobility of the OFET is 

 
Figure 2.10: The schema showing the fabrication process flow to realise the 3D 
integrated electronics based on organic material by inkjet printing. (a) The realisation of 
single gate device. (b) The realisation of dual gate device. (c) The realisation of the 
vertically stacked two transistors by inkjet printing. (d) The realisation of the vertically 
stacked 3 transistors by inkjet printing. Reprinted and adapted with permission. (a) to (c) 
are from Ref [158]. Open access. 
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still limited~10 cm2V-1s-1, the barriers to device yield and stability have been solved [157, 158], 

showing good promise for those low-end electronic components where high mobility devices 

are not required. 

Finally, a table is made to compare the work have been done so far in the field of printed and 

3D integrated electronics.  

Table 2.5: Comparison of various parameters and strategies for 3D integrated electronics by 
printing techniques. 

Channel 
Materials 

Channel 
width/length 

Source 
and 
drain 
contacts  

Adopted 
printing 
method 

Isolation 
layer and 
thickness 

Targeted 
Applications 

Ref # 

Ge/Si 
(core/shell) 
NWs 

200 µm/2 µm Ebeam 
evaporat
ed Ni  

Contact 
printing 

SiO2 
(~300 nm) 

Flexible logic 
and memory 
circuits 

[127] 

Single wall 
CNT 

100 µm/20 
µm 

Ebeam 
evaporat
ed Ti/Au 

Transfer 
printing 

Si3N4 

(NA) 
Flexible logic 
gates and ring 
oscillator  

[147] 

MoS2 and 
WSe2 

NA Ebeam 
evaporat
ed Ni 
and 
Pt/Au 

Transfer 
printing 

ZrO2 

(NA) 
Digital and 
analog circuits 
on rigid 
substrate 

[151] 

P(NDI2OD
-T2) and 
diF-TES-
ADT 

~900 µm 
/10~90 µm 

Inkjet 
printed 
Ag 

Inkjet 
printing 

Parylene 
diX-SR 
film 
(230~440 
nm) 

Logic gates on 
rigid substrate 

[157] 

TU-3 and 
DTBDT-
C6 

~900 µm 
/10~90 µm 

Inkjet 
printed 
Ag 

Inkjet 
printing 

Parylene 
diX-SR 
(NA) 

Logic gates on 
flexible 
substrate 

[158] 

Note: P(NDI2OD-T2) refers to poly{[N,Nˊ-bis(2-octyldodecyl)naphthalene-1,4,5,8-

bis(dicarboximide)-2,6-diyl]-alt-5,5ˊ-(2,2ˊ-bithiophene)} and diF-TES-ADT refers to 2,8-

Difluoro-5,11-bis-(triethylsilylethynyl)anthradithiophene. TU-3 denotes benzobis(thiadiazole) 

derivative and DTBDT-C6 denotes dithieno[2,3-d;2ˊ,3ˊ-dˊ]benzo[1,2-b;4,5-bˊ]dithiophene 

2.3 Summary 
This chapter has presented the state of the art in printed electronics, both from a material and 

technology perspective. So far, various materials, including conductors, semiconductors and 

dielectrics, have shown their compatibility with printing. Moreover, some of the printed 
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materials have shown an outstanding performance, which is comparable with the state of the 

art. This opens the possibility to realize high-performance, printed electronics. With these 

advancements, it is possible to achieve “all printed device”, as have been explored by some 

pioneering work listed in Section 2.1.4. Afterwards, several popular printing techniques, 

including inkjet printing, screen printing, contact printing and transfer printing have been 

reviewed and their applicability have been discussed. The possibility to extend each of these 

technologies to a roll-to-roll process has also been discussed.  

Then, a discussion on the use of 3D integration technology in printed electronics has been 

provided. It starts with a brief review on various 3D integration techniques and then the focus 

is fixed on the monolithic 3D integration due to its compatibility with printed electronics. 

Several recent works on using printing methods, such as contact printing, inkjet printing and 

transfer printing, to realize vertical integration of electronic components have been discussed 

and compared.  

Overall, this chapter clarifies the background of this Ph.D. thesis and highlights the importance 

of the printing technologies to the development of large-area, flexible electronics. Moreover, 

by adopting the vertical integration strategies, some of the fundamental limitations of printed 

electronics, such as low density of devices, can be alleviated. These also lay the foundation for 

the rest of work presented in this thesis, which aims to print NWs and graphene for large-area, 

flexible electronics.  
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3. Chapter 3. Printing nanomaterials on rigid 

and flexible substrates 
As was discussed in Chapter 2, the printing approach has been regarded as one of the most 

promising strategies for large-area, flexible electronics. This chapter presents an experimental 

study on the printing process of several kinds of nanomaterials, which will be later used for the 

development of 3D integrated electronics. Specifically, Section 3.1 discusses the printing of 

the quasi-1D NWs. A shear force assisted printing method was used to transfer and align NWs 

from donor to receiver substrates. In order to obtain controllable printing over large-area, a 

home-made set up was developed with a close-loop control on the printing parameters over the 

entire process. The as-printed NWs were analysed by SEM. In order to compare the printing 

results quantitatively, an image analysis process has been adopted, which vectorises the NWs 

in the SEM images and analyses the results automatically. With these two prerequisites, the 

NW printing mechanics were studied, especially on soft (flexible) and uneven (3D) surfaces 

(Section 3.1.3).  

In Section 3.2, the transfer printing process for 2D material (graphene) is discussed. A detailed 

experimental process flow has been provided to transfer chemical vapour deposition (CVD) 

grown graphene from copper foil to other substrates. The as-transferred film is subjected to a 

rapid thermal annealing (RTA) treatment and characterised by various tools including AFM, 

Raman, and electrical characterisation. The quality of the transferred film is evaluated.  

The final part of this chapter (Section 3.3) presents a study on the screen printing process for 

interconnect application. Basic properties of the screen-printed Ag films are analysed and 

characterised. The as-printed layer will be used for the later development of flexible and 3D 

integrated electronics.  

3.1 Printing of quasi-1D NWs for large-area, flexible 

electronics 
Vertical NWs (ZnO and Si) synthesised by top-down and bottom-up approaches were used in 

this study and printed by a shear force assisted process (contact printing, see Section 2.1.5). As 

has been discussed in Chapter 2, contact printing was developed to directionally transfer quasi-

1D materials. Since its development, studies have been carried out in this area on both the 

printing mechanism and the realisation of functional devices by using this method. However, 

some gaps still exist in this field, especially for the NWs’ printing process achieved on flexible 

and uneven substrates. To this end, this section provides the experimental details for the 
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realisation of NW printing on flexible and uneven substrates as well as the characterisations of 

the as-printed NWs. In addition, the NW printing mechanism has been explored in a series of 

comparative studies. This section is arranged as follows: (1) a brief literature review is made 

to clarify why and how NW is good for flexible electronics (3.2.1); (2) a contact printing set-

up has been developed and tested to achieve precisely controlled, uniform NW printing over 

large-area (3.2.2); (3) an image analysis process has been set up to quantify the figure of merits 

from printed NWs (3.2.3); (4) with these two prerequisites, the NW printing mechanism has 

been explored under various conditions (3.2.4). 

3.1.1 Why and how NW is good for flexible electronics? 
With the advent of the end of Moore’s law, there is a shift from using bulk semiconductor 

materials to their low dimensional counterparts for electronic application, which could 

potentially address the physical limitation in individual device realized by CMOS technology. 

NW is one of the quasi-1D materials with the diameter ranging between 1 nm to 100 nm. Due 

to its high aspect ratio and low dimension, it has many unique properties, such as quantum 

confinement effect, enhancement of sensitivity to external stimuli, etc [91, 93, 124]. Moreover, 

the NW show significant higher bendability than its bulk counterpart, which holds a great 

promise in developing next generation flexible electronics. During the last two decades, 

sustained efforts have been made in using NWs for various flexible device applications 

including FETs, photovoltaics, sensors, LEDs, etc [159-161]. This thesis focuses on using ZnO 

NWs for FETs and UV photodetector applications, especially in a printable manner. Here, a 

short review on NW synthesis and alignment techniques have been summarized below and 

their compatibility with flexible electronics is clarified. 

NW Synthesis 

Generally speaking, there are two philosophically different approaches to synthesis NWs, 

which are top-down and bottom-up methods [162]. Top-down approach refers to a process 

where bulk material is selectively etched to achieve NW. This can be realized by wet method, 

with the use of noble metal as catalyst; or by means of dry etch such as RIE [162]. Such 

methods could potentially achieve NWs with extremely fine diameter, but its surface 

smoothness and further crystalline structure should be carefully examined.  

Meanwhile, the bottom-up method focuses on the synthesis of NWs from molecular growth, 

which comprises chemical vapor deposition (CVD), molecular beam epitaxy (MBE), laser 

ablation and solution-based growth and etc [162]. Among these, the CVD method is the most 

popular one because of its low cost and high quality outcome. So far, such technology is mature 

enough to produce the NWs with uniform diameter, controlled doping concentration, well 
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defined NW-to-NW spacing and reasonable NW length, which lays a strong foundation in 

using NWs for various electronic applications [162]. 

However, it should be noted that despite of these achievements, most of the NW synthesis 

methods are realized under harsh conditions and are not compatible with flexible substrate. In 

order to tackle this, one general strategy is to transfer the as-synthesized material onto the 

flexible substrate is needed. 

NW Transfer 

There are multiple criteria of a good transfer of NWs, such as control over the NW density, 

alignment, transfer yield, etc. Overall, a highly controlled NW transfer technique is still a 

matter of interest in the research community. Towards that, several methods have been 

developed so far such as Langmuir-Blodgett (LB) method, Blown bubble method, field-

assisted alignment and contact printing method [163]. While all of these methods are 

compatible with flexible electronics, most of them requires the use of liquid in the transfer 

process, which can have negative impact on the devices realized based on that as discussed in 

Section 2.1.2. By contrast, contact printing can be realized in a dry condition, with high transfer 

yield, good NW density and alignment, as have been previously discussed in Section 2.1.5. 

Therefore, this thesis adopted the contact printing method for the later study. 

3.1.2 A home-made, close-loop controlled contact printing set-up 
Although the contact printing method has been known for over a decade [17], an instrument 

which can precisely control the printing parameter over the entire process has not yet been 

reported. In this section, a home-made, close-loop controlled contact printing setup has been 

realised, with the aim of achieving uniform NW printing over a large area. This also lays the 

foundation for further studies of the contact printing process, since each experiment can be 

controlled precisely with this set-up.  

The contact printing process principally involves two steps: (a) the realisation of conformable 

contact between the donor substrate (with vertically grown NWs) and the receiver substrate at 

certain pressures; (b) the sliding of a donor with respect to the receiver at certain speeds. To 

meet these requirements, a set-up comprising of several linear stages integrated on a load cell 

was developed (Figure 3.1). This was achieved by cooperation with Dr. Carlos Garcia Nunez. 

Specifically, the researcher conceived the general idea of the setup and assembled the 

individual components. Dr. Nunez made the Labview code which enables the close-loop 

control on the printing parameters. 
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As illustrated in Figure 3.1a, the contact printing system consists of five parts, which are: (1) a 

linear motor which could move vertically; (2) a load cell which enables the monitor of the 

contact force; (3) a spring which enables a conformable contact between the donor and the 

receiver substrate; (4) an optical microscope which enables the in-situ observation of the entire 

process and (5) another linear motor which is able to move horizontally to provide the sliding 

motion. The logic diagram of this home-made contact printing system is shown in Figure 3.1b. 

 
Figure 3.2: The self-adjustable platform used in the 2nd version of the contact printing 
system. 

 
Figure 3.1: The photograph (a) and the schematic illustration (b) of the contact printing 
setup, version 1. Reprinted and adapted with permission. (a) and (b) are from Ref [176]. 
Open access. 
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Briefly, the load cell (2) monitors the force applied by the vertical motor (1). By comparing 

this value with the set-point, the later movement of the vertical motor can be determined and 

the motor moves downwards (upwards) if the monitored force is less (larger) than the set-point. 

Such close-loop control of the force is executed during the entire printing process, with a force 

difference tolerance of 2.5%. By using this arrangement, a precise control of the force to the 

set point throughout the printing process can be guaranteed. Meanwhile, the sliding of the 

receiver substrate is determined by the horizontal linear stage (5) with a precision given in 

micrometres. These are two important aspects which guarantee the controllable and uniform 

NW printing.  

Another aspect which governs successful NW printing is the conformable contact between the 

donor and the receiver substrates throughout the sliding, without which the uniform NW 

printing cannot be achieved. In the first version of the contact-printing set-up, this aspect was 

realised by a spring-attached platform. While this arrangement can facilitate the conformable 

contact under static scenario, it cannot be guaranteed for the sliding process, especially when 

the sliding motion is fast. To solve this problem, the second version of the contact printing set-

up was developed.  

In the second version a self-adjustable platform has been developed. This part of the work was 

carried out by Mr. Adamos Christou. The design is shown in Figure 3.2, which includes two 

adjustable platforms. Each platform can only be tilted uniaxially. When the two stages come 

into contact, the self-adjustable mechanism could lead to a conformable contact between the 

two platforms.  

3.1.3 An image analysis approach 
The as-printed NWs are characterised by scanning electron microscopy (SEM). To study the 

results in a reliable and efficient manner, an automatic approach to quantify the performance 

of the NW printing is needed. To this end, open source software was adopted with slight 

 
Figure 3.3: Validation of the modified software to vectorise the NWs from the SEM 
image. (a) A specifically cropped SEM image, with the image width covering 10 µm; (b) 
the vectorised NWs from the software. It should be noted that ZnO NWs are used in this 
validation but this method is applicable for all the types of NWs. 
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modifications. The software was developed and used by other researchers to evaluate the 

alignment of organic nanofibers by vectorising the quasi-1D materials in the characterisation 

images [10], and such a process was found to be compatible with inorganic NWs as well. The 

software modification was done by Mr. Christou and details of this are not included in this 

thesis. 

The modified process was first validated on a SEM image of small size (10 µm in width) with 

clearly defined ZnO NWs (Figure 3.3). There are twelve NWs in the original SEM image while 

in the vectorised image, twelve NWs are recognised and plotted. The largest value in terms of 

length and width of NWs from the original image was measured to be ~2.58 µm and 200 nm, 

respectively. The recognised values for these two parameters from the software were ~2.6 µm 

and 198 nm, respectively. These are two important figures of merit in analysing NW printing 

performance, and the results from the two approaches (hand measuring and software 

measuring) were almost the same, indicating a successful NW identification and size 

measurement. It should be noted that there are still some minor discrepancies between the 

original and vectorised images, which usually originate from a bundle of NWs or very fine 

(thus very dim in the SEM image) NWs. However, since the chance of such a recognition error 

is not high, this modified software is still regarded as a reliable and efficient method to quantify 

 
Figure 3.4: The comparison between the wet and dry printed NWs. (a) and (b) show the 
contact force applied in the wet and dry printing process, respectively. (c) and (d) show 
the SEM characterisation of the printed NWs from the wet and dry printing, respectively. 
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the NW printing process. Other important parameters, such as NWs linear density (/µm), NWs 

area coverage (%), NWs alignment and the average length and width of NWs can also be 

automatically obtained from the output of the software.  

3.1.4 The study of the NW printing mechanics 
Wet and Dry printing 

With the second version of the contact printing set-up, a comparative study between wet and 

dry printing was realised. Wet printing involves the use of mineral oil (from Sigma Aldrich) as 

lubricant in the printing process. Dry printing refers to a process where no liquid is used. Two 

donor substrates (in similar size) with ZnO NWs grown under the same conditions were used 

in this study. The receiver substrates are Si with 300 nm SiO2 layer. The printing force was set 

to 5 N. As can be seen in Figure 3.4, by involving lubricant in the NW printing, the process is 

 
Figure 3.5: The SEM image of NWs printed on Si/SiO2 substrate (a) without plasma 
treatment; (b) and (c) with plasma treatment. The results shown in (b) was printed within 
30mins after plasma treatment while in (c) the NWs were printed after 24hrs after plasma 
treatment. The images on left, middle and right represent the original, the vectorised, and 
the overlapped images, respectively. Copyright © 2019 IEEE. Reprinted, with permission, 
from [164]. 
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smoother: the use of lubricant significantly reduces the friction between the donor and the 

receiver substrates (Figure 3.4a). In the case of dry printing, the fluctuation of the force is 

larger, indicating a bumpy motion (Figure 3.4b). The printing results obtained from the two 

processes appear to be completely different although the donor and receiver substrates are 

almost the same. NWs are loosely distributed on the substrate which was printed with the 

lubricant, (Figure 3.4c), showing a low transfer yield of the NWs. By contrast, in the case of 

dry printing, densely packed NWs can be seen on the substrate surface with a good alignment 

(Figure 3.4d). This big difference between the two samples can probably be attributed to the 

difference in friction. With larger friction, a higher chance of NW breakage is expected, leading 

to a higher transfer yield. In order to achieve a high NW density, a dry printing approach is 

used in all later works. However, it should be noted that this conclusion contradicts the 

observation from a previous study [17], where it was suggested that the use of lubricant 

enhances the printing performance, leading to a higher NW printing yield and better NW 

alignment. 

Effect of oxygen plasma treatment 

Then the effects of oxygen plasma treatment to the NW’s printing process has been studied and 

this study has been published in a conference proceeding [164]. Three donor substrates of 

similar size were used in this study, with NWs grown under the same conditions. With regards 

to the receiver substrates, three different conditions were used; (A) no plasma treatment; (B) 

and (C) oxygen plasma treated at 150 W for two minutes. For sample B, the printing process 

was done within thirty minutes of the plasma treatment. For sample C, the printing process was 

done twenty-four hours after the plasma functionalisation. The results of printed NWs are 

shown in Figure 3.5. The figure shows that, with oxygen plasma treatment (Figures 3.5b and 

 
Figure 3.6: Comparison of width density (a) and area coverage (b) for ZnO NWs printed 
onto Si/SiO2 substrates treated under different conditions. Copyright © 2019 IEEE. 
Reprinted, with permission, from [164]. 
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c), the printed NWs show higher density. This is also confirmed by the data analysis shown in 

Figure 3.6: without the oxygen plasma treatment, both the width density and area coverage are 

relatively low, with a value of 1.29 / µm and 21.3%, respectively. With plasma treatment, the 

two figures of merits both increased (1.93 / µm and 27.1% for sample B, 1.78/µm and 27.4% 

for sample C). It is, therefore, possible to conclude that oxygen plasma offers some 

improvement to the NW printing process. This is probably because of the OH- group generated 

by plasma, which leads to a larger interaction between the receiver substrates and the NWs. 

This result also aligns with a previous study in NW printing where particular SAM on the 

receiver substrate was found to increase the NW transfer yield dramatically [17]. Moreover, 

the plasma effect seems quite persistent under ambient condition, as can be seen from Samples 

B and C. As a result, the receiver substrates were treated by oxygen plasma for two minutes in 

all later comparative studies. 

NW printing on rigid and flexible substrates 

In order to understand the NW printing process on flexible substrates, a series of comparative 

studies have been carried out. Two types of receivers were used: the first is a Si/SiO2 wafer, 

which is usually used as the rigid substrate for realising electronic devices and the second is a 

silicon wafer with spin-coated PI film on top; the PI was spin-coated at 4000 rpm for 1 min 

and cured at 250 °C for 1 hour. After curing, it can be mechanically peeled off from the carrier 

wafer, which leads to a freestanding flexible substrate. Previous studies indicate that the change 

 
Figure 3.7: The AFM characterisation of the (a) rigid substrate and (b) flexible substrate. 
The rigid substrate refers to the Si/SiO2 wafer deposited with 100 nm Si3N4, while the 
flexible substrate refers to the spin-coated PI film deposited with 100 nm Si3N4. The 
carrier wafer for the spin-coated PI film is Si/SiO2. Copyright © 2019 IEEE. Reprinted, 
with permission, from [164]. 
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in surface roughness/materials can lead to a significant difference in the NW printing results 

[128]. In order to exclude such effects, a 100 nm Si3N4 layer has been deposited on top of both 

types of samples by a PlasmaPro System 100 ICP180 RIE. By doing this, the difference in the 

printing results can only come from the difference in the substrate’s hardness. This is further 

confirmed by the AFM characterisations from both substrates. As shown in Figure 3.7, the 

surface morphology of the two substrates appear to be similar, with surface roughness Ra~1 

nm. 

The NWs were printed at four different pressures ranging from 0.4×105 Pa to 1.3×105 Pa, and 

characterised by SEM. Typical examples of the SEM images from each printing conditions 

have been shown in Figure 3.8. 

As shown in the figure, the NWs printed on PI substrates show a shorter length, but the printed 

NW density becomes higher. These observations have also been confirmed by the statistical 

data obtained from over 3 locations from each printing condition, as illustrated in Figure 3.9. 

 
Figure 3.8: The SEM characterisations of the NWs printed onto rigid and soft substrates 
under various pressures. WO and W represent without and with, respectively. 

 
Figure 3.9: The statistical results of the NWs printing performance onto rigid and flexible 
substrates. (a) and (b) shows the width density and average length of the printed NWs 
under different pressures, respectively. 
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Notably, the width density of the printed NWs does not show a clear dependence of the printing 

pressure, which may indicate that this parameter only plays a minor role in the NW printing 

process and can be easily obscured by other extrinsic factors. But we do observe a threshold 

pressure for successful NW printing: below a certain pressure, the NW cannot be printed in an 

aligned manner. Nevertheless, all the pressures used here are above that threshold so that 

successful NW printing was carried out.  

In order to further understand the NW printing mechanism on flexible substrate, the NWs were 

printed onto PI films of various thickness and the details of the receiver substrates are 

summarised in Table 3.1. Like the previous study, a 100 nm Si3N4 layer was deposited on top 

of each receiver substrate to exclude the influence from any other factors such as surface 

roughness and materials. All the printing experiments were carried out at the same printing 

pressure (~0.8×105 Pa) with the same donor substrates (ZnO NWs). 

Table 3.1: Details for various receiver substrates used in the contact printing study. 

Substrate Carrier 
substrates 

PI processing conditions Thickness of 
PI film  

A Si/SiO2 Not coated 0 

B Si/SiO2 Spin-coated at 8000 rpm for 
60s, once 

1.35 µm 

C Si/SiO2 Spin-coated at 4000 rpm for 
60s, once 

1.64 µm 

D Si/SiO2 Spin-coated at 2000 rpm for 
60s, once 

2.66 µm 

E Si/SiO2 Spin-coated at 2000 rpm for 
60s, three times 

9.12 µm 

 
Figure 3.10: ZnO NWs printed onto PI film with various thickness. 
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F Si/SiO2 Spin-coated at 2000 rpm for 
60s, five times 

13.89 µm 

 

As can be seen from Figure 3.10, the thickness of the PI film does play a role in the NW printing 

process. When the PI film is very thin (conditions A and B), the length of the printed NWs is 

relatively longer, but fewer NWs can be printed (less areal density); when the PI film is thicker 

(conditions C, D, E, F), more NWs can be printed onto the receiver substrates but they are 

shorter in length. This observation is also consistent with phenomenon shown in Figures 3.8 

and 3.9. It should be noted that point C does not follows the overall trend proposed here, which 

can be attributed to the experiment error. Actually, although each data point is calculated from 

more than 5 SEM images, the experimental error in each experiments is unavoidable. However, 

based on the results showing in Figures 3.8 and 3.9, and also the later results shown in Section 

5.3, it is reasonable to conclude that the NW printed on flexible substrates shows shorter length. 

Here, a qualitative explanation is given to explain the observed phenomenon. Figure 3.11 

shows the schema where a donor substrate with NWs is brought into contact with the receiver 

substrate. Assuming all the NWs are rigid and non-bendable, then only part of the NWs from 

the donor can be in contact with the receiver substrate, if the surface of the receiver substrate 

is also rigid (Figure 3.11a). However, if the surface of the receiver is soft, because of the 

 
Figure 3.11: The schemas showing NW printing on receiver substrates with different 
deformability. 
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deformation of the surface, more NWs can be brought into contact with the receiver substrates, 

which may lead to a greater chance of NW transfer (phenomena seen in Figure 3.8 and 3.9). 

The more deformable the receiver substrate that is used, the more NWs will be in contact and 

transferred (Figure 3.10). This is one possible reason for the impact of the PI’s thickness on the 

 
Figure 3.12: The SEM image showing the surface of the receiver substrate with various 
features on top. 

 
Figure 3.13: The AFM characterisation of the receiver substrates with features of various 
height. 
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NW printing. The real case can be more complicated since both the NWs and the surface of the 

receiver substrate are deformable. This only gives a qualitative explanation for the NW printing 

process on flexible substrate. In addition, the change in NW length as observed in Figures 3.8-

3.10, has not been clearly clarified and well understood. In order to obtain a deeper 

understanding of the NW printing mechanism, the finite element method (FEM) is required to 

simulate the breaking conditions of NWs on flexible substrate. However, since this deviates 

slightly from the main aim of this thesis, this study has not been included in this section and 

can be considered for possible future research. 

NW printing on non-planar surface 

Finally, the NW printing on non-planar surface is briefly explored. Metal lines with various 

width and spacing (see Figure 3.12) were realised on silicon substrates with different 

thicknesses ranging from 20 - 200 nm. Similar to the previous study, a 100 nm Si3N4 layer was 

 
Figure 3.14: Images of NW printing onto uneven substrate. (a) The optical microscope 
image showing the NWs printed on the receiver substrate with features of 20 nm. All the 
scale bars are 50 µm. (b) The SEM characterisation of the printed NWs. 
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deposited on each sample in order to maintain the same surface condition. Before printing, 

AFM was used to characterise the surface of the receiver substrates and the results are shown 

in Figure 3.13. 

ZnO NWs were synthesised under the same conditions on a Si substrate and these were used 

as the receiver substrates. The printing pressure was kept as ~ 0.8×105 Pa for all the samples. 

After printing, an optical microscope, together with SEM, was used to characterise the NW 

printing results. Interestingly, as shown in Figure 3.14, when the features realised on the 

receiver substrate are low in height (i.e. 20 nm), the NWs were printed uniformly across the 

entire substrate. This may indicate that, such small geometry change does not have a significant 

impact on NWs printing; the NWs diameter is ~100 nm. However, by increasing the height of 

the features on the receiver, the difference in the printing becomes significant. For a feature 

height of 200 nm, a significant NW density modulation can be seen. The density of the printed 

 
Figure 3.15: Images of NWs printed onto uneven substrates. Optical microscope (a) and 
SEM images (b and c) showing the results of NWs printed onto uneven substrates, with 
the printing direction parallel to the feature direction. All the scale bars are 50 µm. 
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NWs is lower in the areas with surface features and higher in the featureless areas (gaps). 

Meanwhile, the width of the gap and the printing direction also seem to play significant roles 

 
Figure 3.16: Characterisation of NWs printed onto uneven substrates. Optical microscope 
(a) and SEM images (b and c) showing the results of NWs printed onto uneven substrates, 
with the printing direction perpendicular to the feature direction. All the scale bars are 50 
µm. 

 
Figure 3.17: The AFM characterisations of the features before and after flattening. (a) 
and (b) The AFM scans of the features before and after PI flattening. (c) The line profiles 
of the box indicated in (a) and (b). 
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in the NW printing process, as shown in Figures 3.15 and 3.16. This opens a new avenue in 

 
Figure 3.18: Images of NWs printed onto flattened substrates. (a) and (b) Optical 
microscopy images (c) SEM images. All the scale bars are 50 µm. 
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how to control the printed NW density. By creating gaps with enough depth, NW printing can 

be effectively confined inside. However, since this study also slightly deviates from the aim of 

this study, detailed exploration has not been carried out. The major aim of this research is to 

obtain a uniform NW layer by using a printing method. 

In order to realise uniform NW printing on the non-flat receiver substrate, a flattened step has 

been adopted. A PI film has been spin-coated on the receiver substrates at 4000 rpm for one 

minute and cured at 250 °C. After coating, the sample was characterised by AFM and compared 

with the non-coated sample. As shown in Figure 3.17, the surface of the non-coated sample 

shows an abrupt change in height between those featured and non-featured areas. However, 

with a PI film spin-coated on top, this change in height becomes alleviated and the surface of 

the receiver substrate has been flattened. The same printing experiments have been carried out 

on these flattened receiver substrates and are characterised by an optical microscope and SEM. 

As can be seen in Figure 3.18, the NWs were printed uniformly on both the featured and non-

featured areas. Therefore, by doing so, uniform NW printing in a layer-by-layer manner can be 

successfully achieved. This strategy will be later adopted in the 3D integration and a detailed 

study on PI processing will be included in Chapters 6. 

3.2 Transfer printing graphene for large-area, flexible 

electronics 

3.2.1 Why and how graphene is good for flexible electronics? 
Graphene is a single layer of graphite. It is composed of one layer of carbon atoms packed in 

the honeycomb lattice. Due to its special crystal lattice, the band structure of graphene is 

unique: at K-points, it can be regarded as a Dirac cone as shown in Figure 3.19 [165, 166]. The 

bottom of the conduction band and top of the valence band merges at one point, which is the 

Dirac point. And the carrier density of graphene is zero when its fermi level is at Dirac point. 

 
Figure 3.19: The lattice and band structure of graphene. A The honeycomb lattice 
structure of graphene. B The calculated band structure of graphene. C The schema 
showing the liner dispersion relationship near the Dirac cone. This figure is reused from 
Ref [166]. Copyright © The Royal Society of Chemistry. 
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Since its conduction band is in contact with valence band, graphene is regarded as a semi-

metal. However, unlike the conventional metal with large and untunable carrier density, the 

carrier density of graphene can be modulated by tunning its fermi level [166]. This opens the 

possibility of using graphene as an active material for FET application which is explored later 

in this thesis. 

Another unique property of graphene is its liner dispersion relationship (E-κ). Unlike many 

other semiconductors with “parabolic-like” band structure, the carrier in graphene is Dirac 

fermions, which behaves as a realistic particle with zero rest mass [166]. This leads to many 

unique electrical property, such as a certain value of conductivity even at dirac point, quntum 

hall effect with half integral filling factors, etc. 

Graphene is also regarded as a material with record mechanical strength: the Young’s modulus 

of the single crystal graphene film is 1 TPa and the breaking strength is 42 N/m [167]. However, 

in practice, the defect free single crystal film normally exists in small area and when it comes 

to large-area polycrystalline film, defects and grain boundaries can significantly affect its 

mechanical properties. For polycrystalline CVD graphene, interestingly, as suggested by an 

experimental study, its mechanical property is almost as good as a single crystal film, which 

implies a broad industrial application of CVD graphene [168]. Meanwhile, as a quasi-2D 

material, it has a great flexibility. Being strong and flexible, graphene is regarded to hold great 

promise in flexible electronics.  

Synthesis 

So far, many methods have been developed to synthesis graphene, such as mechanical 

exfoliation, chemical exfoliation, laser reduction, epitaxial growth on SiC and CVD method 

[165]. Among them, the mechanical exfoliation method is able to produce the graphene film 

with highest quality. However, the obtained sample size is limited to several to tens of 

micrometre. In this regard, it is not suitable for large-area electronics [165]. Meanwhile, 

chemical exfoliation and laser reduction method are able to produce large-area graphene in a 

short time. However, the obtained products are of many defects, functional groups and dangling 

bonds, which is not feasible for high-performance FET application [165]. And in this regard, 

these methods are not adopted in this thesis. Considering the requirements in both quality and 

quantity, the CVD method is one of the best method for graphene synthesis. Therefore, CVD 

grown graphene was used to realize FETs and circuits in this Ph.D thesis.  

To give a complete view of the process flow, a description of the CVD process is provided as 

follows: in CVD method, graphene was synthesized with the use of metal catalyst. Copper is 

one of the most common type of catalyst which could lead to monolayer graphene coverage 
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[165]. The process is realized in a CVD furnace at a temperature between 1000 °C to 1075 °C. 

Prior to the synthesis, normally an annealing process of the copper foil is adopted. The 

annealing temperature is between 1050 °C to 1100 °C, which aims to smooth the surface of the 

copper foil. The smooth copper surface is one key factor which guarantees high-quality 

graphene synthesis with large domain. After annealing, a mixture of gas of CH4, Ar and H2 is 

introduced to the CVD chamber. The CH4 serves as the carbon source, decomposes at high 

temperature, gets adsorbed at the surface of copper foil and finally forms graphene. H2 has dual 

roles in the graphene growth process, which is a) acting as a surface active agent for carbon 

element and b) etching the graphene. The change of the ratio of CH4:Ar has been proved to 

affect the morphology and domain size of the synthesised graphene [165]. After synthesis, the 

furnace is cooled down to room temperature with the protection of Ar.  

With regards to the CVD graphene used in the later work, it was purchased from Graphenea. 

(https://www.graphenea.com/collections/buy-graphene-films/products/monolayer-graphene-

on-cu-4-inches). But in general, the synthesis process flow is similar to the one described 

above. 

3.2.2 The graphene transfer process 
In order to realise electronic devices from the CVD-synthesised graphene on the desired 

substrates, a transfer process is needed. Until now, various methods have been developed to 

achieve the graphene transfer process. These processes were detailed in the researcher’s 

Master’s dissertation as well as in some of previous publications from other researchers [120, 

131, 169]. As a result, it is not the main focus of this thesis. However, since this process was 

 
Figure 3.20: AFM characterisation of the transferred graphene. (a) as-transferred film (b) 
transferred film after a thermal annealing process in an RTA furnace. 
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frequently used in the later studies, a general process flow is included here for a complete view 

of the entire device fabrication. 

The transfer process starts with the spin-coating of a PMMA solution on top of copper foil with 

graphene at the rotation speed of 2000 rpm for one minute (twice). The spin-coated sample was 

then dried at room temperature for four hours. Afterwards, the rear of the copper foil was etched 

by a short (20~30 s) and mild (100 W) oxygen plasma to remove the graphene grown on the 

rear side. In order to transfer graphene, the treated copper foil was etched by a FeCl3 solution, 

leaving the PMMA/graphene bilayer in the etchant. This bilayer film then underwent a critical 

cleaning process to thoroughly clean the bottom surface of the film [120]. Finally, the bilayer 

was rinsed in IPA and transferred onto the desired substrate at 150 °C [16]. After transfer, the 

PMMA support layer was removed by acetone and acetic acid. It should be noted that this 

transfer method is compatible with various substrates including polyimide (PI) film with Au 

contacts. This process will be used in work described in Chapter 4 to realise an array of GFETs 

directly from transfer printing.  

The as-transferred film was then subjected to an annealing step (250 °C for 10 mins) in an RTA 

system. Figure 3.20 shows the AFM characterisation results from the as-transferred graphene 

and the transferred graphene after annealing. As shown in the figure, more polymer residues 

and wrinkles can be seen on the graphene surface before thermal annealing, which indicates 

that a process like this does help to clean the surface of graphene [170]. Generally, there are 

several criteria for a high quality transfer of the graphene film: (1) the surface of the transferred 

 
Figure 3.21: The change of the transfer curve of GFET under different conditions 
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graphene should be clean without other contaminations; (2) the film should be intact with 

minimum material loss (pores); (3) the doping of the transferred film can be controlled. 

Therefore, it is important to monitor the doping and the quality of the transferred graphene film 

except for the surface cleanness. To further analyse these factors, a batch of GFETs was 

fabricated and the device performance was measured before and after annealing (fabrication 

details can be found in Chapter 4). As can be seen in Figure 3.21, the Dirac point of the as-

fabricated devices is ~20 V. By exposing the device to the ambient condition for ~5 hrs, the 

Dirac point was shifted to ~34 V. This is probably because of the p-type doping effect from the 

oxygen and water vapour in the air [16]. However, after the annealing process, the Dirac point 

of the GFET was shifted to ~60 V along with a significant decrease in the on/off ratio. This 

indicates that the graphene quality was strongly disturbed and degraded after the RTA process, 

leading to a poorer device performance. This phenomenon was further confirmed by analysing 

the field-effect mobility and the Dirac point for the entire group of devices. As can be seen in 

Figure 3.22, by annealing the graphene FETs in the RTA system, the device mobility decreased 

drastically with a strong p-type doping introduced to the channel. As a result, the annealing 

step was avoided in all later fabrication processes.  

In this section, the device mobility was extracted by a fitting method [171]. However, this 

approach considers the contact resistance to be constant under all carrier densities, and would 

usually lead to a higher estimation of the charge carrier’s mobility. A more precise way to 

extract contact resistance and device mobility is to use a four terminal measurement method, 

 
Figure 3.22: Device performance of GFETs before and after the thermal annealing in an 
RTA furnace at 250 °C. 
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which will be adopted in Chapter 4 to systematically study the contact problem in printed 

electronics.  

3.3 Screen printing of conductive electrodes for 

interconnect application 
Interconnects are required for electrical communication in 3D integrated electronic systems. 

Normally the height difference between adjacent layers is in the range of micrometres. In order 

to realise a reliable electrical connection between the devices that feature different layers, 

especially under bending conditions, a thick and preferably stretchable metal film is required. 

Because the resolution needed for an interconnect is not high (feature size of ~100 µm), a 

screen printing approach, together with a stretchable silver paste, was adopted for this purpose. 

The stretchable silver ink (PE873) was purchased from DUPONTTM. And detailed information 

regarding the silver ink can be found in the supplier’s website: 

https://www.dupont.com/content/dam/dupont/amer/us/en/products/ei-

transformation/documents/PE873.pdf. 

 
Figure 3.23: The SEM characterisations of the screen printed silver film. (a) Sample A 
(b) Sample B (c) The enlarged SEM image (from sample A), showing the polymer binder 
in the screen-printed Ag paste. 
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This section provides a preliminary study on the screen-printed Ag ink, including the process 

flow of the printing and the characterisation of the printed film using various tools, such as 

SEM and a profile meter. It should be noted that the work presented in this section was realised 

by cooperation with Miss Martina Costa Angeli, who was a visiting Ph. D. student in the BEST 

group. Specifically, the screen printing process and the profile meter characterisation were 

done by Miss Angeli and the author contributed to the SEM characterisation of all the samples. 

Both contributed to the electrical characterisation and data analysis. 

The printing process involved a few simple steps. A mask with desired features was placed on 

the screen holder from the printer. The receiver substrate was loaded into the equipment and 

aligned with the mask. During the printing, a squeegee applied the necessary pressure to bring 

the mesh into contact with the substrate. Simultaneously, the paste, having previously been 

poured on the topside of the screen, was forced to penetrate through the openings and to be 

transferred on the substrate to form the desired pattern. 

The as-printed sample was then subjected to a curing process in an oven. In order to obtain a 

preliminary understanding of the screen printing process, various samples were prepared under 

different conditions, and characterised as shown below. 

3.3.1 The influence of the surface treatment of the receiver substrate 
Silicon with a 300 nm oxide layer was used as the substrate for printing. In order to reveal the 

impact of the surface treatment on the printing process, the following comparative study was 

carried out and two substrates, named Sample A and Sample B, were prepared for screen 

printing. Sample A was exposed to oxygen plasma for 2 minutes with a power of 150 W; for 

Sample B no plasma treatment was employed. Then silver ink was printed on both surfaces 

using the same printing and curing conditions (160 °C for 10 minutes). The printed Ag ink was 

first analysed by SEM. As shown in Figure 3.23 the printed film was composed of individual 

flakes and particles. No obvious differences were found from the SEM images from either of 

the substrates. The thickness of the printed ink was then analysed by a profile meter. Both of 

the samples showed a thickness of ~4.5 µm, which indicates that the plasma treatment did not 

have an observable impact on the screen printing process. This was further confirmed by the 

electrical characterisation: indeed, both samples show a similar resistance ~ 3.5 Ω. 

3.3.2 The influence of the curing temperature and duration 
To study the influence of the curing temperature and its duration, three different curing 

conditions were used, which were: (i) 160 °C for 10 minutes, (ii) 60 °C for 10 minutes and (iii) 

60 °C for 60 minutes, respectively. The other parameters were all kept the same in this 
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comparative study. All samples show similar surface morphologies and thickness, as confirmed 

by SEM and profile meter characterisations. However, in terms of the resistance, a major 

difference was observed: the resistance of the film cured at 160 °C shows a significantly lower 

resistance (~ 3.5 Ω) when compared to the sample cured at a lower temperature (60 °C). With 

respect to the curing time, little increase was observed when it was increased from 10 minutes 

to 60 minutes. As a result, the curing temperature dominates the resistance of the printed film, 

which can probably be attributed to the different level of polymer binder residue left in the 

printed films under various curing conditions.  

3.3.3 The influence of printing cycles 
Finally, the relationship between the film thickness and the number of printing cycles were 

studied. The Ag ink was printed on the same substrates under the same conditions, but for one, 

two and three cycles, respectively. After each printing, a curing process was adopted in order 

to stabilise the film. The thickness of the printed film was characterised by a profile meter. As 

can be seen from Figure 3.24, the thickness of the printed film shows a near linear dependence 

on the printing cycles; each one corresponds to a layer of ~4.5 µm. The width of the printed 

film was also monitored. As can be seen from Figure, no observable difference can be found 

in the three samples, showing a good ability to maintain the lateral resolution.  

 

 
Figure 3.24: The profile of the printed ink characterised by Contact Profiler Dektak. 
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3.4 Summary 
In summary, this chapter has outlined the printing process for quasi-1D materials, quasi-2D 

materials and a conductive Ag film. The as-printed materials have been characterised by 

various tools such as AFM, SEM and Contact Profiler (Dektak). Specifically, the printing of 

quasi-1D NWs on flexible and uneven substrates have been studied. And how to achieve a 

uniform printing of NWs on these special substrates have also been explored. The printing 

methods described here lay the foundation for the later studies in this thesis. 
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4. Chapter 4: Contact problem in printed and 

flexible electronics  
In CMOS technology, contact realisation requires a sophisticated process involving doping and 

sintering at a high temperature (450 °C) [172]. Due to the thermal sensitive nature of the flexible 

polymeric substrates, such a strategy cannot be used in flexible electronics and instead the 

fabrication techniques realised under low temperatures are needed. Luckily, the contact 

realisation for nanomaterials may not need such a critical process. This chapter discusses the 

contact problem in printed and flexible electronics in the system of quasi-1D ZnO NW and 

quasi-2D graphene. This chapter is arranged as follows: first, two philosophically different 

approaches, which are contact electrodes first (bottom-contact) and nanomaterials first (top-

contact), are explained and discussed (4.1). Afterwards, bottom- and top- contacted ZnO NW 

FET are studied and compared. The output characteristics of bottom-contacted ZnO NW FET 

shows a rectifying behaviour, which indicates an inefficient contact. Meanwhile, top-contacted 

ZnO NW FET shows a linear output characteristic, which is proof of Ohmic type contact 

between ZnO NW and metal electrodes. In this way, the contact strategy for ZnO NW related 

devices have been determined. 

Then, the discussion is shifted to graphene-based devices, where the motivation for using the 

bottom contact strategy to realise large-area GFETs is clarified (section 4.2). The experimental 

process of the proposed strategy has been discussed and the device performance has been 

analysed; a comparison between the contact resistances with the state-of-the-art technology has 

been made to show the potential of the vdW contact for GFETs (section 4.3). In order to further 

elucidate the nature of vdW contact between graphene and Au, the Raman spectrum has been 

utilised, followed by a discussion of the tunnelling current of a uniformly biased graphene-Au 

junction. Such discussion is extended to FETs by combining with the classic resistor network 

model. In this way, the obtained experimental results can be qualitatively explained; and the 

contact strategy for graphene-based devices have been determined for all later studies in this 

thesis.  

Finally, the big difference between the vdW contacted GFET and ZnO FET have been briefly 

discussed. The reason has been attributed to both the material aspect and the morphology aspect 

(section 4.4). It should also be noted that the majority of the results discussed in Chapters 4 and 

5 have been published in some scientific journals and conference proceedings [12, 173]. 

Copyright permissions have been obtained from the publishers in order to include these 

materials in this Ph. D thesis. 
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4.1 The vdW contacted ZnO NW FET 

For nanomaterial-based devices such as FETs and sensors, there are two philosophically 

different manners to realise the metal contact, which are metal electrodes first and 

nanomaterials first, respectively. The first strategy refers to a process where metal contacts 

have been first realised on the substrates in a desired layout. The nanomaterials, such as ZnO 

NWs and graphene, are then printed on top of the as-realised contacts. The benefit of such a 

strategy is that it minimises the micro-fabrication processes which need to be carried out on 

nanomaterials, thus substantially avoiding many technical problems such as material 

degradation and difficulty in lift-off [174, 175]. However, realised by a physical transfer 

process, the interaction between the transferred nanomaterials and pre-fabricated metal 

 
Figure 4.2: The electrical characterisations of the vdW contacted ZnO NW FET. (a) 
transfer curve (b) output curve. 

 
Figure 4.1: The schema showing the fabrication process flow of botton- and top- 
contacted ZnO NW FET. 
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electrodes usually lies in the vdW interaction regime. How well the contacts held by the “weak” 

vdW force perform is a concern. In contrast, the second strategy refers to a process whereby 

nanomaterials have been first printed onto the substrates, followed by the standard 

photolithography, metallisation and lift-off process to realise the device. In this manner, the 

interaction between the deposited metal atoms and nanomaterials are stronger, thus the contact 

realised by this method is more reliable. 

This section specifically discusses the bottom- and top- contacted ZnO NW FETs. 

The fabrication process flow of the bottom- and top- contacted ZnO NW FET is shown in 

Figure 4.1. The ZnO NWs were synthesised by using the CVT method on Si substrate as 

reported previously [176], which serves as the donor of the NWs. Meanwhile, the receiver 

substrate (Si with 300 nm SiO2 layer) patterned with the contact electrodes (Au) was realised 

by the same method which will be described later (Section 4.3). After that, a contact printing 

process has been used to transfer the ZnO NWs from the donor to the receiver substrate. The 

sliding direction is perpendicular to the pre-patterned contacts, which leads to a highest chance 

of the transferred NWs bridging across the two neighbouring electrodes. This method presents 

a way to realise ZnO NW based devices by direct printing. The sample was subjected to a 

heating process on a hotplate at 180 °C for 5 minutes before measurement. The realisation of 

top-contacted ZnO NW FET is similar. The ZnO NW was synthesised by the same method as 

has just been discussed. The receiver substrate was a Si wafer with 300 nm SiO2 layer. After a 

contact printing process, the ZnO NWs were directionally transferred onto the receiver. Then 

the sample was subjected to a heating process on a hotplate at 180 °C for 5 minutes to increase 

the interaction between ZnO NWs and the underlying substrate. After heating, a UV 

 
Figure 4.3: The electrical characterisations of the top-contacted ZnO NW FET. (a) 
transfer curve (b) output curve. 



 
 

84 

 

photolithography process was employed to define the desired pattern for source and drain, 

followed by metallisation by the E-beam evaporator and standard lift-off process. 

The electrical characteristics of the bottom-contacted ZnO is shown in Figure 4.2. As shown 

in the figure, the vdW contact seems to be an inefficient contact strategy for ZnO NW based 

FETs, judging from the non-linear and noisy output characteristics. Actually, in our 

experiments, ~30 devices were tested with a ConH of 80 nm as well as a ConH of 1.8 nm. 

However, only several devices can be successfully operated as FETs. This is because the large 

contact resistance between the NW and the source and drain contact. The influence of the 

contact resistance is so large that no channel property can be reflected by the FET; it only 

shows an open-circuit behaviour. In the meantime, top-contacted ZnO NW FETs have also 

been fabricated and tested. The typical results of the top-contacted ZnO NW FET have been 

shown in Figure 4.3. The device shows an ohmic contact with linear output characteristics, 

which indicates that the quality of the top contact is far better than that from a vdW contacted 

device. As a result, it is concluded that the vdW contact is not a promising strategy for realising 

ZnO NWs based devices such as FETs.  

4.2 Motivation for realising bottom contacted GFETs 
Graphene and GFETs have attracted broad interests for various applications including sensors 

and RF devices since its discovery in 2004 [177-179]. One barrier towards the realisation of 

high-performance GFETs is the contact realisation. Although ultra-low contact resistance (< 

100 Ω·µm) has been achieved by top- and edge- contact strategies (see Figure 4.4), it is mostly 

realised by EBL process and thus restricted to a small area; UV photoresist has been suggested 

to lead to a serious residue problem on the surface of graphene which hinders the realisation of 

good contact [174, 175]. Other methods such as ozone/ion beam treatment are also capable to 

realise a clean contact interface and thus low contact resistance, but they require a delicate 

 
Figure 4.4: The schema showing the concept of bottom-, top- and edge- contacted 
GFETs. Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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control over the process in order to maintain the quality of the graphene. And in this regard 

they are less promising for large-area electronics [174, 180-186].  

Recently, bottom-contacted GFETs with a vdW interaction have drawn increasing research 

interests and have been used for various applications [15, 187-190]. In this strategy, the contact 

is achieved by transfer printing graphene to a pre-patterned substrate and thus circumvents 

cumbersome lithography process for realising contacts, which holds natural suitability for 

large-area electronics. Nevertheless, compared to the top- and edge- graphene-metal contact 

which has been studied for long time, the nature of the vdW contact has not been thoroughly 

elucidated. Specifically, there are three fundamental but unanswered questions associated with 

vdW contacted GFETs:  

1) What is the influence of the geometry on the contact properties in a bottom contact device? 

2) What is the range of transfer length in these devices as the contact geometry is varied?  

3) What are the major differences in carrier transport mechanism between vdW and non-vdW 

contacted GFETs? 

Without an understanding of these problems, it is rather inevitable that high contact resistance 

could arise in bottom-contacted GFETs as have been confirmed by several preliminary studies 

[187, 190]. 

In this regard, a systematic study has been performed on the bottom contacted GFETs, which 

is discussed in the later sections (section 4.3 to 4.6). 

 
Figure 4.5: The schema showing the fabrication process flow of bottom-contacted GFET 
on rigid substrate. 
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4.3 The experimental process to realise bottom 

contacted GFETs 
The bottom contacted GFETs were realised by transfer printing monolayer graphene onto the 

pre-patterned substrate with Au contacts as shown in Figure 4.5. The monolayer graphene was 

purchased from Graphenea. The fabrication process started with the fabrication of pre-

patterned substrate on silicon wafer with 300 nm thick thermal oxide layer. UV lithography 

was used to define the desired patterns on top, followed by metallisation and a standard lift-off 

process. In order to avoid the residue problems on the developed metal contacts, the baking 

temperature was modified from 115 °C (as suggested by the photoresist supplier) to ~ 65 °C. 

Such modification is crucial for the realisation of the metal electrodes with clean surface. To 

illustrate the influence of this, AFM characterisations have been performed. As shown in Figure 

4.6, when realised at high temperature, the surface of the metals are partially covered by 

photoresist residues, especially on the edge of the feature. Meanwhile, the metal pads realised 

under low temperature show a clean surface without photoresist contamination. Notably, this 

aspect is important for the realisation of the low contact resistance from bottom contact, since 

 
Figure 4.6: The AFM characterisations of the surface of the metal contacts. (a) The metal 
contacts realised at high temperature and its line profile. (b), (c), (d) and (e), metal contacts 
realised at low temperature with various ConH. A monolayer graphene has been transferred 
on top. Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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the existence of the polymer residue would decrease the carrier injection between the two 

materials. 

By using the modified process, metal contacts with various thickness ranging from 1.8 nm to 

80 nm have been used in order to reveal its influence on the contact quality. Specifically, in 

order to realise a metal contacts with an effective thickness of 1.8 nm, a trench ~20 nm was 

first created by RIE (reactive-ion etching) process with a mixture of CHF3 and Ar. Afterwards, 

a metal film with thickness of ~21.8 nm was deposited inside the trench, leading to a net height 

of 1.8 nm.  

Monolayer graphene was then transferred to the pre-patterned substrate with the methods 

described in Section 3.2. In order to electrically isolate each device on the sample, an additional 

etching step was required. This was achieved by spin-coating PMMA2041 as interfacial 

material and photoresist s1805 as a photosensitive layer to define the desired pattern. After 

lithography and development, the graphene and the interfacial PMMA were etched by RIE 

(Oxford instrument, Plasmalab 80 plus) with the oxygen plasma. Finally, the PMMA and 

photoresist was removed by acetone and rinsed by IPA to leave the patterned graphene at the 

surface. In order to determine the quality of the transferred graphene film, Raman spectrum 

was employed. As can be seen from Figure 4.7, the intensity ratio of the 2D: G bands I2D/IG is 

larger than 2.75, which indicates the single layer nature. No significant D band has been 

observed, which implies a high-quality transfer. The as-fabricated devices were then subjected 

to the electrical measurement without any post annealing process. 

 
Figure 4.7: The Raman spectrum of the as-transferred graphene on Si/SiO2 substrate. 
Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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4.4 The measurement of vdW contacted GFETs on rigid 

substrate 
The device was measured by semiconductor parameter analyser Keysight B1500A. A gated 

four terminal measurement method is used to extract the value of the contact resistance with 

the equation [181]:
  

 (1) 

 

Typical transfer and output characteristics have been shown in Figure 4.8. From the figure, one 

can see that the on/off ratio of the device is larger under higher contact height (ConH). This is 

attributed to the change of contact quality—the on state current of devices with lower ConH 

deteriorate significantly thus leads to a lower on/off ratio [191-193]. Such difference is also 

observable from the output characteristics: the two terminal and four terminal output curve (at 

gate voltage of -80 V) shows an insignificant (significant) change under high (low) ConH, 

which indicates a big difference in the contact resistance from the two type of devices.  
One fact should be highlighted is that the output curve was obtained at Vg of -80 V, 

corresponding to a gate induced carrier density ~1.75×1012 cm-2. For both a transfer line method 

(TLM) and a 4T measurement method, the reliability of the RC extraction depends on the 

homogeneity of the doping of the channel [183, 194, 195]. Under high gate bias voltage (Vg=-

80 V in this case), the gate-induced carrier density is far larger than the fluctuation of the 

residual carrier density in the channel, which guarantees a reliable estimate of the contact 

2 4

1
( )

2C T TR R R= × −

 
Figure 4.8: The Electrical characterisation of the bottom contacted GFETs. (a) The 
transfer curves obtained at ConH of 1.8 and 80 nm, respectively. (b) and (c) The output 
curves obtained at ConH of 80 and 1.8 nm, respectively. The ConL is 30 µm for the data 
shown in this figure. Copyright © American Chemical Society. Reprinted, with 
permission, from [12]. 
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resistance. Another fact which should be noted is that the calculated contact resistance includes 

the contribution both from the lead resistance (resistance of metal) and the graphene-metal 

contact resistance. While this is almost negligible if the real RC is far larger than the resistance 

of metal leads (under low ConH), it plays a nonnegligible role for those devices with a small 

RC [183]. In this regard, the estimation of RC should therefore take the lead resistance into 

account.  

Here, the bottom-contacted GFETs with a ConH of 80 nm and ConL of 30 µm has been used 

as an example to illustrate the extraction of the contact resistance. 10% of these devices exhibits 

a contact resistance lower than 100 Ω·µm and more than half shows a contact resistance less 

than 200 Ω·µm (at the gate voltage of -80 V). Typical output curve for 2T and 4T measurements 

are plotted in Figure 4.9. As has been discussed, the measured resistance not only includes the 

junction resistance between graphene and Au, which is twice the real contact resistance, but 

also includes the lead resistance, which is comprised of the resistance of the metal lead and the 

resistance of the probe tip-metal electrode contact resistance. The estimation of the graphene-

metal contact resistance should exclude the contribution from the lead resistance when the 

 
Figure 4.9: Bottom-contact GFETs with contact resistance lower than 100Ω·µm. (a), (d) 
are the output curves from 2T measurements @VGS=-80V; (b), (e) are the output curves 
from 4T measurements @VGS=-80V; (c), (f) are the transfer curves from 2T measurements. 
Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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value of the two is comparable [183]. In our work, the lead resistance RLead is estimated by 

probing two points, A and B, on the same electrodes, as shown in Figure 4.10 (left). The tested 

result is plotted in Figure 4.10 (right), indicating a resistance of ~12 Ω (the lowest value we 

could obtain). We thus estimate the lead resistance in our system is ~10 Ω, which is an 

underestimation of the lead resistance. Correspondingly, since the real contact resistance RC is 

equal to
���
���
�����

� , the result of the contact resistance is overestimated. The subtraction of 

the lead resistance was employed to calculate the contact resistance of all the devices. 

Thus, the normalised contact resistance extracted from DEV1 (device 1) and DEV2 (device 2) 

shown in Figure 4.7 are 64.8 ± 6.6 Ω·µm and 78.2 ±5.8 Ω·µm, respectively. Although the 

devices are based on wet-transferred CVD graphene and measured under ambient atmosphere 

at room temperature, they still show a high-performance. For both devices, their on/off ratio 

are both higher than 10 (Figure 4.7 c and f), with the on-state resistance ~15 kΩ·µm. 

Comparatively, current state-of-the-art bottom-contacted GFETs show a contact resistance of 

910 ± 340 Ω·µm, with an on/off ratio of ~3 and an on-state resistance~125 kΩ·µm [187]. By 

 
Figure 4.10: (Left) A schematic of how the lead resistance was estimated by probing point 
A and point B in the same electrode. (Right) A plot of a voltage-current sweep showing the 
value of the lead resistance. Copyright © American Chemical Society. Reprinted, with 
permission, from [12]. 
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comparison, for top-contacted GFETs based on wet-transferred CVD graphene (requiring EBL 

and thermal annealing), the state-of-the-art contact resistance is ~124.6 Ω·µm [183], still higher 

than the value obtained in this work. A detailed comparison is presented in Table 4.1. 

 

Table 4.1: Comparison of device performance with the state of art CVD graphene FET. 
Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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Bottom-
contact 
(Au) 

UV 
lithography/ 
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ure 
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6 >10 15 2271 This 
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Figure 4.11: The dependence of the contact resistance on various ConL and ConH. 
Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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Further, by using the methods described above, the contact resistance has been extracted for 

the devices with various ConH and ConL, and plotted in Figure 4.11. Interestingly, for the 

bottom-contacted devices used in the study, a large dependence between ConL and the 

normalised RC has been observed, which contradicts the result from top-contacted GFETs from 

previous studies. In conventional top-contacted GFETs, normally no significant dependence 

between the normalised RC and the ConL should be observed under a contact length (ConL) in 

the range of several micrometres or longer, which is attributed to the so called “current 

crowding effect” [196, 197]. Such dependence only becomes significant under nanoscale 

contact, where ConL is much smaller than the transfer length LT [198]; the LT ranges from 

approximately 100 nm to 1.7 µm for top-contacted GFETs [194, 198, 199]. This result indicates 

that for bottom-contact GFETs, especially for those devices with low ConH, the current does 

not crowd at the edges. According to the Figure 4.11, the LT is expected to be larger than 30 

µm for a ConH of 1.8 nm. With the increase of the ConH, the LT decreases. With a ConH of 

80 nm, no significant dependence between ConL and normalised RC has been observed, which 

may indicates a fact that the LT is lower than 10 µm. Overall, the bottom contacted GFETs with 

 
Figure 4.12: The comparison between the contact resistance versus carrier density from 
various work. Copyright © American Chemical Society. Reprinted, with permission, from 
[12]. 
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a weak vdW interaction shows a much larger LT compared to the conventional top contacted 

GFETs realised by deposition. And the impact of this unique fact depends on the targeted 

applications. For example, there will be a serious problem in device miniaturisation for the 

FETs with large LT, thus such FETs are not favoured for those devices which requires high 

density. However, with large LT, the local heat at contact can be significantly reduced along 

with a decrease in the 1/f noise [200]. Considering the fact that this Ph.D. study focuses on 

large-area electronics with high performance, the ability to achieve low contact resistance is 

more important than the density/dimensions of devices. As a result, a FET with longer transfer 

length is not regarded as a disadvantage. And therefore, in this section it is focused on the 

width-normalised (Ω·µm) rather than the area-normalised (Ω·µm2) contact resistance. Another 

interesting phenomenon in Figure 4.11 is that the normalised RC decreases with the increase of 

ConH as has been previously discussed in Figure 4.6. With a ConH of 80 nm, 60% of devices 

show a contact resistance under 200 Ω·µm (ConL of 30 µm). The lowest value obtained from 

our devices is ~65 Ω·µm (see Figure 4.9 and 4.10), which is the best reported value to date 

among both bottom- and top- contacted GFETs and is comparable to state-of-the-art edge-

contacted GFETs produced via expensive EBL process techniques [172, 186], delicate thermal 

annealing processes [201, 202] and complex contact optimisation (see Table 4.2 at the end of 

this section) [181, 203]. While many contact strategies with top- and edge- contact are less 

promising for large-area electronics due to the reasons mentioned in section 4.1, the method 

described here is well-suited to this application (see Figure 4.12). The only critical step in this 

method is the realisation of clean metal electrodes without photoresist contaminations, which 

have been previously described in Section 4.3. Given the recently developed large-area, high 

quality and low-cost graphene synthesis and transfer technique [204, 205], potentially this 

method can be used for large-area, cost-effective GFETs fabrication. Attempt has also been 

made to increase the ConH of the devices to 100 nm. However, in this scenario, breakage of 

the graphene film along the contact edge was observed, leading to a decreased successful rate 

[87]. In addition, those working devices show no significant additional decrease in contact 

resistance. It is therefore concluded that the 80 nm is an optimised value of ConH for large-

area electronics.  

Finally, the device mobility has been extracted based on the 2T and 4T measurements, with the 

equation 
����
���� =

!"#�$
% . Generally, the device mobility extracted by 2T measurement should be 

less than that extracted from 4T measurement, due to the contribution from the contact 

resistance. This is also reflected in the results shown in Figure 4.13 for all the ConH (ConL of 
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30 µm). Further, as can be seen from the figure, the ratio of the 
&��
&�� increases while the ConH 

of the devices increases, which further confirms the dependence between the contact resistance 

and the ConH.  

Table 4.2: Comparison of monolayer graphene-metal contact properties at room temperature. 
Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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5×1012 [196
] 

Ti/Au 
or 
Cr/Au 
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contact 

Mechanical 
exfoliated 

103 to 106 NA No (Annealed 
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300°C/EBL) 

5×1012 [196
] 

Ni or 
Au 
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Pd Top-
contact 

CVD grown ~1000 NA NA 6.1×1012 [192
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Figure 4.13: The comparison between the field-effect mobility extracted by 2T and 4T 
measurement under different ConH. 
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Ti Top-
contact 

Mechanical 
exfoliated 

700±500 NA No (Annealed 
at 
300°C/EBL) 

NA [206
] 

Pd/Au Top-
contact 

Mechanical 
exfoliated 

185±20 NA NA 1.8×1012 [194
] 

Ti/Au Top-
contact 

CVD grown <200 NA No (Delicate 
ozone 
treatment) 

1.1×1012 [174
] 

Ni Top-
contact 

Mechanical 
exfoliated 

NA ~1000 No (EBL) 0.9×1012 [207
] 

Pd/Au Top-
contact 

Mechanical 
exfoliated 

69 NA No (EBL) 0.9×1012 [183
] 

Pd/Au Top-
contact 

CVD grown 124.6±37.
9 

NA No (EBL) 1.1×1012 [183
] 

Pd Top-
contact 

CVD grown 570 NA No (RTA) 5.2×1012 [193
] 

Ti/Au A mix of 
top and 
edge-
contact 

CVD grown 23 NA No (EBL) NA [182
] 

Au A mix of 
top and 
edge-
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CVD grown 23 NA No (EBL) 0×1012 [185
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under 500 
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top and 
edge-
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) 
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] 
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top and 
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growth on 
SiC 

125 NA No (Annealed 
at 
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NA [203
] 
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top and 
edge-
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exfoliation 

100 NA No (Anneal at 
580°C/EBL) 
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Pd/Au A mix of 
top and 
edge-
contact 

CVD grown ~150 0.22 No (Annealed 
at 
300°C/EBL) 

NA [200
] 

Cr/Pd/
Au 

Edge-
contact 

Mechanical 
exfoliation 

150 NA No (EBL) 2.5×1012 [180
] 

Ti/Pd/
Au 

Top and 
bottom 
contact  

CVD grown 320, with 
lowest 
value 
~260 

NA No (EBL) 1.2×1012 [191
] 

Au Bottom-
contact 

CVD grown 910±340 NA Yes <9.2×101

0 
[187
] 

Au Bottom-
contact 

CVD grown 1200±250 NA Yes 1×1012 [190
] 

Au Bottom-
contact 

CVD grown Most of 
under 200 
with 
lowest 
value~65 

~1000 Yes 1.8×1012 This 
wor
k 

 

4.5 Analysis of graphene-Au separation in vdW and 

non-vdW contacted devices 
To clarify the large difference in RC at ConH of different values (Figure 4.11), the transfer 

process used for realising the contacts was investigated. As have been discussed in chapter 3, 

the transfer process started with poly (methyl methacrylate) (PMMA) spin-coating on Cu foil, 

which serves as a mechanical support. After etching and cleaning procedures, the 

PMMA/graphene film was transferred to a substrate pre-patterned with metal electrodes. In 

order to realise an intimate contact between graphene and the underlying substrate, slowly the 

sample was heated to 150°C on a hotplate [120]. This leaded to the evaporation of the transfer 

medium (isopropanol) and the generation of a capillary force on the film towards the substrate. 

Meanwhile, increasing the temperature above the glass transition temperature of PMMA 

(~115°C) causes the film to change from a hard, glassy state to a rubbery state, guaranteeing a 

uniform, close contact between graphene and the underlying substrate with a strong, reliable 

vdW interaction. It is rational to speculate that the close contact within the vdW interaction 

regime was not attained all together for the whole PMMA/graphene film, but rather certain 

isolated areas of the film attach to the substrate in the first instance. These areas are referred as 
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“anchor points” and the total length between two anchor points across the metal-dielectric 

interface (see Figure 4.14 a). In this scenario, the length of the film should follow the equation: 

 (2) 

After the transfer printing of graphene, the film forms a stable vdW interaction with the 

substrate separated by a vdW gap. The film was locally strained, and, length of the film should 

be given by: 

  (3) 

Such localised strain in graphene has been further confirmed by Raman spectroscopy. The 

results of the two-dimensional mapping of the graphene 2D band across the metal-dielectric 

interface were respectively illustrated in Figure 4.14 b and Figure 4.14 c, corresponding to a 

2 2
total top bottomL L L h= + +

'
total top bottom

L L h L≈ + +

 
Figure 4.14: (a) The schema showing the transfer process of graphene/PMMA bilayer onto 
substrates patterned with metal contacts. (b) and (c) The Raman mapping of 2D peak of 
graphene transferred onto metal/dielectric interface, with ConH of 1.8 nm and 80 nm, 
respectively. Copyright © American Chemical Society. Reprinted, with permission, from 
[12]. 
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ConH of 1.8 nm and 80 nm, respectively. While almost no shift of the 2D band has been 

observed in Figure 4.14b, there is a drastic shift of the band in Figure 4.14 c. According to 

previous study, such band shift would correspond to a tensile strain of ~ 0.6% [209]. Meanwhile 

the strain of the film ε can be calculated by: 

       (4) 

By assuming Ltop is equal to Lbottom, we can roughly estimate the Ltop and Lbottom to be ~ 15 µm 

(ℎ = 80	+,). Regarding the applied stress σ, it is proportional to the strain under elastic 

deformation: 

       (5) 

where E stands for the Young’s modulus of the PMMA film (~1×109 Pa) [87]. As a result of 

that, the PMMA/graphene bilayer is anticipated to receive an applied stress of ~6×106 Pa 

(illustrated by the red arrow in Figure 4.14 a). Such a big pressure applied to the film is expected 

to reduce the vdW gap between the electrode and graphene film. The real scenario may be more 

complex since it may involve a redistribution of the strain along the film; the above analysis 

only provides an approximate, semi-quantitative explanation. However, it is enough to 

conclude that the graphene-Au vdW contact can be engineered by transferring graphene film 

to metal contact with different ConH. In the meanwhile, we checked the intensity of the D peak 

by Raman spectroscopy for the graphene transferring across the metal-dielectric interface. The 

typical result of the measurement has been shown in Figure 4.15: no significant D peak has 

been detected, which indicates that the defects are insignificant in the strained graphene film. 

'
total total

total

L L

L
ε −=

Eσ ε= ×

 
Figure 4.15: The typical Raman spectrum obtained from the graphene at the edge of the 
metal contact. Copyright © American Chemical Society. Reprinted, with permission, from 
[12]. 
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It is thus believed that the carrier injection from defects (edge contact) is not dominating in this 

scenario.  

For comparison, the graphene-Au separation for the case of a top-contact GFET, which has 

been previously studied at the level of density functional theory [11], is discussed below. When 

the species of wetting metal (Co, Ni, Pd, etc.) evaporated on a graphene surface, the metal 

atoms are more aggressive and chemisorbed on the surface. In this scenario, the equilibrium 

separation between the metal atoms and the graphene is considered to be smaller than 2.3 Å 

[11, 191, 210]. By comparison, in the scenario of a non-wetting metal (Au, Pt, Al, Cu, Ag, etc.) 

deposited onto graphene, the metal atoms are less aggressive; graphene only interacts weakly 

with these metal atoms, which leads to mainly physisorption (vdW interaction) at the surface. 

The equilibrium separation between metal atoms and graphene is thus larger (ca. 3.2~3.3 Å) 

[11, 198]. In previous studies, one major approach to decrease the graphene-metal contact 

resistance is to minimise the equilibrium separation. This can be achieved by means such as 

using Pd to form a layer of palladium-carbide at the contact interface [194, 210] and exploiting 

the edge-contact strategy resulting from a shorter bonding distance (~1.42 Å) and a larger 

orbital overlap [180]. However, for the case of vdW contacted GFET, the effective gap between 

the two is much larger (>3.3 Å, normally ~1 nm as suggested in Ref. [211]), which would 

superficially appear to lead to worse contact. 

4.6 Carrier transport mechanism in graphene-Au vdW 

and non-vdW contact 
Considering the above discussion, the carrier transport mechanism is first studied in a vertical 

graphene-Au junction. Various transport regimes exist, including thermionic emission, 

Fowler–Nordheim tunnelling and direct tunnelling. The output characteristic is linear without 

any rectifying behaviour. Therefore, the thermionic emission is not deemed as a dominanting 

mechanism in graphene-metal contact [172]. Fowler–Nordheim tunnelling usually takes place 

at high electric field (> 109 V/m) [212, 213]. In these devices, the voltage difference between 

source and drain is smaller than 300 mV (lower than 100 mV in a high gate bias of -80 V). By 

assuming the voltage drop on the channel equals the voltage drop on the contact, the voltage 

dropped on the graphene-Au junction should be lower than 25 mV under a high gate voltage 

bias, which corresponds to an electric field of 2.5×107 V/m (assuming a vdW gap of 1 nm). 

This is almost two orders of magnitudes lower than the required electric field for Fowler–

Nordheim tunnelling, which suggests that Fowler–Nordheim tunnelling is not likely occurring 

in these devices. Therefore, the vertical carrier transport in the graphene-Au vdW junction is 
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attributed to a direct tunnelling process [206], which has already been extensively used to 

describe the vertical current for graphene based vdW heterostructures [215-217]. The vertical 

current Ivertical and the contact resistivity ρC (Ω·µm2) of the graphene-metal junction follows the 

equations: 

       (6) 

        (7) 

Here, E denotes the energy; V denotes the bias between graphene and Au; k is the normalisation 

constant (in the unit of µm2); DOST(E) and DOSB(E) respectively represent the density of states 

for graphene and Au; f(E) is the Fermi-Dirac distribution; m* is the effective mass of the 

tunnelling process; ħ is the reduced Planck constant; ρC denotes the contact resistivity, and d 

and U are the barrier width and barrier height respectively. T(E) is the is the tunnel probability 

and follows the equation [215]: 

       (8) 

In principle, the density of states of graphene would be zero at the Dirac point, which would 

result in an ultra-large contact resistivity. However, when the graphene film is contacted with 

Au, there would be charge transfer between the two materials which leads to the doping of the 

graphene [11, 218]. Under thermal equilibrium, the relationship between the Fermi level shift 

∆Ef in graphene and the graphene-metal separation d can be modelled by approach proposed 

in Ref. [11]. Thus, the Fermi level shift under different contact scenarios can be modelled. The 
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Figure 4.16: The relationship between the fermi level shift of graphene and the graphene-
metal separation d. Copyright © American Chemical Society. Reprinted, with permission, 
from [12]. 
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relationship between the fermi level change of graphene and the change of separation d has 

been plotted in Figure 4.16.  

In a top-contacted FET, Au is deposited on the surface of graphene, the separation between the 

two is suggested to be ~ 3.3 Å (as previously discussed). In this scenario, the Fermi level of 

graphene is strongly affected by the formation of interfacial dipoles, which leads to a ∆Ef with 

a value of ~-0.103 eV (see Figure 4.16 and Figure 4.17a). In the meanwhile, for the bottom-

contacted FET, there is only a weak vdW interaction between graphene and Au; the separation 

between the two is much larger (normally >1 nm) [211]. Under this condition, the effects from 

the interfacial dipole is suggested to be significantly reduced, the Au work function is 

determined only by the charge transfer between graphene and Au (Figure 4.17b). Hence, the 

doping of the graphene film (∆Ef) under certain graphene-Au separation (Figure 4.16) can be 

significantly larger than that seen in the top-contact case. However, the further increase in the 

vdW gap between graphene and Au decreases the doping of the graphene film significantly, 

which signifies, graphene is not influenced by the existence of Au (Figure 4.17c). The two can 

be regarded as not in contact.  

With these understandings, the contact resistivity in a simple graphene-Au junction (graphene 

is uniformly biased) can be clarified: the contact resistivity is determined by the density of 

states of graphene as well as the tunnelling probability through the tunnelling barrier. Although 

the equilibrium separation between Au and graphene is believed to be much larger in a vdW 

contact than that in a top-contact, the difference in the density of states (or ∆Ef) can compensate 

for the negative influence from the decrease of the tunnelling probability. This implies that in 

the case of a vdW contact with certain equilibrium separation, the contact resistivity can be 

similarly low to that in a top-contact, even though the latter has a much smaller graphene-Au 

 
Figure 4.17: The fermi level of graphene under various graphene-Au separation and its 
influence on the current density. (a), (b) and (c) The schema showing the influence of 
graphene-metal separation d to the change of the fermi level of graphene. (d) The calculated 
unit area current under various graphene-Au separations. Copyright © American Chemical 
Society. Reprinted, with permission, from [12]. 
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separation (d and hence zd). This statement can be quantitatively illustrated by fitting ∆Ef into 

equation (6) with different values of d. As shown in Figure 5.4d, the unit area current is almost 

the same under d = 3.3 Å and d = 9 Å. In the meantime, further increasing d to 29 Å can result 

in a reduction in both the doping level (Figure 4.16) and the tunnel probability, which leads to 

a decrease in the tunnelling current by two orders of magnitude. 

4.7 Carrier transport mechanism in vdW contacted 

GFET 
In this section, the carrier transport mechanism in a FET is discussed. Here, presumptions are 

made that the carrier transported in the graphene lattice can either: (a) horizontally propagate 

within the graphene plane or (b) irreversibly inject into the Au pad [194]. With these two 

presumptions, a modified resistor network model is employed to clarify the problem. The 

schematic of the resistor network model is illustrated in Figure 4.18. Since the polycrystalline 

CVD graphene has been used in this study, it is reasonable to assume a total diffusive transport 

within the CVD graphene plane at room temperature. V(x) and I(x) refer to the voltage and 

current along the graphene plane and are given by: 

        (9) 

 (10) 

where w is the contact width, RS is the sheet resistance of a CVD graphene film in contact with 

Au and ρC is the contact resistivity. Combining the equations (6), (7), (8), (9), (10) with the 

boundary conditions, i.e. V(0)=0.025 V (start of the contact), I(L)=0 (end of the contact), the 

voltage drop on the contact, contact resistivity and normalised contact resistance with respect 

( ) ( )

C

dI x V x

dx

w

ρ
= −

 
 
 

( )
( ) SdV x R

I x
dx w

= −

 
Figure 4.18: The illustration of the resistor network model. (a) The schema showing the 
graphene-metal bottom contact. (b) The schema showing the resistor network model for the 
graphene-metal bottom contact. Copyright © American Chemical Society. Reprinted, with 
permission, from [12]. 
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to ConL can thus be calculated (Figure 4.19). As has been previously discussed, the ∆Ef for 

graphene in top-contact with Au is assumed to be -0.103 eV with a value of d~3.3 Å. The ∆Ef 

in vdW contacted scenario can be obtained from Figure 4.16 by inputting different vdW gap, 

d. By assuming the tunnelling effective mass m* is equal to the electron mass, me and the 

tunnelling barrier height is ~7.8 eV [219, 220], the calculated curve fits well with our 

experimental results (Figure 4.19 d), with d = 9 Å, 19 Å, 25.5 Å and 29 Å for bottom-contact 

GFETs with ConH = 80 nm, 53 nm, 20 nm and 1.8 nm, respectively. The sheet resistance of 

the CVD graphene is assumed to be 550 Ω/□ for top-contact GFET and 150 Ω/□, 390 Ω/□, 460 

Ω/□, 480 Ω/□, respectively for bottom-contact GFET with ConH values of 80 nm, 53 nm, 20 

nm and 1.8 nm, respectively (since the doping level changes according to Figure 4.16).  

Thus, the influence of ConL on other contact parameters can be evaluated. Assuming a voltage 

bias is connected to graphene at the start of contact (X = 0) with a value of 0.025 V (Figure 

 
Figure 4.19: The calculated contact parameter under various vdW gap. The voltage drop 
(a), contact resistivity (b) and normalized contact resistance (c) under various contact 
length. (d) The comparison between the calculation and the experimental data in terms of 
contact resistance. Copyright © American Chemical Society. Reprinted, with permission, 
from [12]. 
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4.18 a), the voltage drop on graphene in the contact region with varying ConL can be obtained 

(see Figure 4.19a). Further, with this curve, the transfer length LT in the top-contact GFET can 

be calculated to be ~1.6 µm, which is consistent with previous reported values (1.4~1.65 µm 

for holes) [199]. In contrast, the transfer length in a bottom-contacted GFET is 3 µm when the 

tunnelling barrier width equals to 9 Å (i.e. corresponding to a bottom-contact GFET with a 

ConH of 80 nm). As a decrease in ConH leads to an increase of the vdW gap (barrier width), 

the calculated LT becomes larger. Specifically, the GFET with a ConH of 1.8 nm shows a LT 

larger than 30 µm. In all calculated cases listed in Figure 4.17 a, the transfer length of a vdW 

contacted device is larger than that from a top-contacted device. This is attributed to: (1) a 

smaller sheet resistance of graphene in the bottom contact scenario due to a higher doping level 

and (2) a comparable or much larger contact resistivity in the bottom contacted device with a 

large vdW separations. According to the classic resistor network model, a lower sheet 

resistance and higher contact resistivity together lead to a longer LT. And this still holds true 

for a graphene-metal contact.  

Another measure of the quality is the contact resistivity. With respect to the top-contacted FET, 

the calculated contact resistivity is ~950 Ω·µm2, which is consistent with previously reported 

value [196, 207]. In the meantime, the contact resistivity in a bottom-contacted GFET increases 

significantly with the increase of the vdW gap d from 9 Å to 29 Å. This is similar to the results 

shown in Figure 4.15, as the contact resistivity varies slightly over different ConL (Figure 4.19 

b). 

Finally, the normalised contact resistance is discussed, which is determined by the LT and the 

contact resistivity ρC together. In principle, an obvious optimum option to achieve a good 

contact is a low contact resistivity (strong coupling) combined with a long LT (long efficient 

contact). However, since the LT is positively associated with the contact resistivity, such option 

is not possible. Then the next two choices left are either a high contact resistivity (weak 

coupling) combined with a large LT or a low contact resistivity combined with a small LT (short 

efficient contact). Coincidently, the same problem has been studied in the system of CNT, 

which reveals the latter is more favourable for the realisation of lower contact resistance [221].  

Interestingly, this phenomenon is also valid in graphene-metal contacts. As can be seen in 

Figure 4.19 c, the width normalised contact resistance from a bottom-contacted FET with ConH 

= 80 nm (a weak coupling but long transfer length, d = 9 Å LT = 3.5 µm) shows a lower value 

than that from a traditional top-contacted device (a strong coupling but short transfer length, d 

= 3.3 Å LT = 1.6 µm), provided that ConL is longer than 2.5 µm. However, this becomes invalid 

when the Au-graphene coupling is too weak, even if the LT is expected to be higher than 30 µm 
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in this scenario. The calculated results from this model match reasonably well with most of our 

experimental data, as plotted in Figure 4.19 d.  

It should be noted that a negative bias (V=-0.025 V) was hypothesised above to extract the 

contact resistance (Figures 4.18 and 4.19), where the Au contact has a lower voltage potential 

than the graphene film. However, in a real bottom-contacted (or top-contacted) GFET, the two 

cases coexist; on one side the Au has a higher voltage potential while on the other side the 

graphene’s potential is higher. Therefore, the contact resistance measured in the experiments 

should lie between the above described two extremes. To get an idea of another extreme 

condition, the contact resistance is calculated under a positive bias (V=+0.025 V). and 

presented in Figure 4.20. It can be seen that the calculated contact parameters were found to be 

almost the same. Therefore, the assumption made in Figure 4.18 would not lead to much 

deviation.  

However, it should be noted that the model discussed in this section does not consider the 

junction resistance arisen due to a carrier transported from graphene under metal to graphene 

in the channel. While this part is almost negligible at high doping concentration for holes due 

to the Klein tunnelling [194, 222], it cannot be neglected for electrons. Therefore, the model 

discussed in this section is expected to lead to a lower estimation of the contact resistance (or 

higher estimation of the vdW gap). Nevertheless, from the beginning we do not aim to extract 

any parameters quantitatively from this calculation since many extrinsic factors affects the 

performance of the CVD graphene-based FET. Rather, the intention of this calculation is to 

offer a mean to qualitatively or semi-quantitatively illustrate the big difference between 

bottom-contact and top-contact GFETs. 
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Figure 4.20: Comparisons of voltage drop, contact resistivity and width normalized contact 
resistance calculated at positive and negative bias. (a)-(c) show the scenario of a top-
contacted GFET. (d) to (f), (g) to (i), (j) to (l) and (m) to (o) show the situations of a bottom-
contacted GFET with vdW gap of 9, 19, 25.5 and 29 Å, respectively. Copyright © American 
Chemical Society. Reprinted, with permission, from [12]. 
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4.8 Difference in graphene-Au vdW contact and ZnO-

Au vdW contact 
Here, a qualitative explanation has been made to explain the two distinct behaviours observed 

in graphene-Au and ZnO NW-Au vdW contact. Graphene is a semi-metal with its fermi level 

controlled by external stimuli such as field-effect. The contact between graphene and Au is 

regarded as a metal-metal contact without any Schottky barrier. However, the graphene-metal 

contact can still show a large contact resistance. This is mainly due to the small DOS of 

graphene near the Dirac point. With respect to the vdW contact between graphene and Au, due 

to its single layer nature, the DOS of graphene can be largely modulated by its contact with Au 

in vdW regime, leading to a high doping of the graphene film. Such doping is beneficial to 

achieving low contact resistance. In contrast, ZnO NW is a wide bandgap semiconductor with 

a cylindrical shape. By using the vdW contact approach, the carriers in the NW need to 

overcome two barriers for carrier injection, which is a tunnelling barrier and a Schottky barrier. 

This reason itself makes the vdW contacted ZnO NW FET less efficient. Moreover, with 

respect to the tunnelling barrier, it is dependent on the distance between NW and the contact 

electrode. Unlike graphene, the cylindrical shaped NW cannot lead to any intimate contact 

between the NW and the contact electrode in the bottom contact scenario, which further 

deteriorates the contact quality. Therefore, vdW contact strategy cannot lead to a good contact 

for ZnO NW based device. 

4.9 Summary 
To conclude, the contact resistance from the vdW contacted GFETs depends largely on the 

vdW separation between graphene and the Au contact. Two effects co-exist and play a role on 

the contact resistance by decreasing the vdW gap. They are: a) the tunnelling probability of the 

charge carriers decreases exponentially, which decreases the contact resistivity; b) the doping 

of the graphene increases due to its coupling with Au [11]. Compared to the undoped graphene, 

doped graphene results in not only a higher tunnelling current (because of larger DOS of 

graphene) but also a longer transfer length. In a FET, a higher tunnelling current (lower contact 

resistivity) and longer transfer length can both improve the quality of the contact. This 

demonstrates the overall possibility of achieving low contact resistance by vdW gap 

engineering. 
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5. Chapter 5: Realising flexible electronics by 

printing approaches 
This chapter discusses the methodology and challenges to realise electronic devices and circuits 

on flexible substrate, including 1) how to prepare the flexible substrate and further carry out 

standard microfabrication processes on top (Section 5.1); 2) how the dielectric material (a 100 

nm thick Si3N4 layer) behaves in various bending conditions (Section 5.2); 3) how to realise 

the ZnO NW based UV photodetector, together with their performances under various bending 

conditions (Section 5.3). In addition, the previous chapter proposes that vdW contact between 

graphene and Au could be an excellent alternative to top- and edge- contacted GFET. In this 

chapter, the reliability of the graphene-Au vdW contact under various flexible scenarios has 

also been examined and discussed (Section 5.4). Finally, flexible GFET and logic circuit, based 

on vdW contact, have been realised (Section 5.5). The stability of the as realised device has 

been tested up to 100 bending cycles, with a bending radius of 40 mm. 

5.1 Substrates in flexible electronics  
In flexible electronics, various polymeric thin films, which can facilitate a mechanical 

deformation, have been explored as the substrates for the realisation of flexible electronic 

devices and circuits. In this Ph.D. study, a PI film was used as the substrate for the realisation 

of the flexible devices and circuits. Here, a preliminary investigation into the surface properties 

of the spin-on PI was carried out and compared with other substrates. For a broad study on the 

properties of various flexible substrates, several previous papers can be referenced [223, 224]. 

A PI solution (PI2545 from HD Dupont) was spin coated onto a Si/SiO2 substrate. The spin 

speed was set to 500 rpm for 5 s and 2000 rpm for 60 s. The spinning process was repeated 

twice and after each cycle the sample was heated by a hotplate at 140 °C for 5 minutes (soft 

bake). The film then was fully cured in an oven at 250 °C for 2 hours. The as-cured film can 

be subjected to other microfabrication processes to realise various electronic components on 

top, but the maximum processing temperature is 350 °C; processing at a higher temperature 

would lead to damaging the polymeric substrate. After all the fabrication steps, the PI along 

with the fabricated electronic components, can be peeled off from its carrier wafer, leading to 

freestanding and flexible electronic devices. It should be noted that the successful detachment 

of the PI is guaranteed by two important factors: 1) Si with a 300 nm SiO2 layer, instead of 

pure Si, has been used as the carrier wafer. This is because PI forms a stronger bond with Si, 

which leads to difficulties in the peeling process; 2) Standard process, as suggested by the 
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supplier HD Dupont, requires the substrate to be primed by VM-651 or 652 before the spin-

coating of the PI solution. This procedure was not followed since it would again lead to a 

stronger interaction between the carrier wafer and the spin-coated PI film. The photograph of 

the as-peeled PI film can be seen in later sections. 

Surface roughness is an important factor for the substrates used in electronics. In this regard, 

AFM was used to characterise the surface of the spin-on PI processed under various conditions. 

Furthermore, commercial PI film (Kapton film from RS components) is also available and can 

be used for the development of flexible electronics. In order to compare the quality of both 

substrates, AFM characterisation has also been carried out on the commercial Kapton film. We 

first study the influence of the Primer solution to the surface roughness of the spin-coated film. 

 
Figure 5.1: The comparison of the surface roughness between spin-coated PI and 
commercial PI film. (a) PI2545 spin-coated at 2000 rpm for 1min with Primer, Ra~0.18 
nm. (b) PI2545 spin-coated at 2000 rpm for 1min without Primer, Ra~0.22 nm. (c) PI2545 
spin-coated at 2000 rpm, 1 min for twice without Primer, Ra~0.23 nm. (d) A commercial 
PI film (Kapton film), Ra~1.5 nm. Copyright © 2019 IEEE. Reprinted, with permission, 
from [164]. 
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As can be seen from Figures 5.1 a and b, the use of Primer does not affect the surface roughness 

of the film significantly, with Ra changing from 0.18 nm to 0.22 nm for the film coated with 

and without use of Primer, respectively. The thickness of the PI film can be increased by 

repeating the spinning process multiple times. To check its influence on surface roughness, 

AFM characterisation was employed on the sample coated with PI for two times (Figure 5.1 

c); the Ra in this scenario is ~0.23 nm. And thus, we conclude that multiple spin-coating cycles 

would not significantly affect the surface roughness of the film. Finally, the Kapton film from 

RS components has also been characterised and presented in Figure 5.1d. Compared with the 

images shown in Figure 5.1 a, b and c, the surface of the Kapton film is very rough with many 

contaminations on the surface, even after a standard solvent cleaning process. The Ra of the 

film is ~1.5 nm, which is significantly larger than that of a spin-on PI. As a result, the spin-on 

PI is used as a substrate for all the later realisation of flexible devices. In addition, the thickness 

of the PI film spin-coated under various speeds and cycles have also been characterised by 

 
Figure 5.2: AFM characterisations of a 100 nm Si3N4 deposited at (a) room temperature 
on silicon substrate, Ra ~0.92 nm (b) 200 °C on silicon substrate, Ra ~0.76 nm (c) room 
temperature on PI, Ra ~0.75 nm (d) 200 °C on PI, Ra ~0.68 nm. 
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Contact Profiler Dektak. The result has already been presented in Chapter 3 (Table 3.1) and 

will not be included here. 

5.2 Dielectrics in flexible electronics 
Dielectrics is another problem in flexible electronics. For this, a Si3N4 layer has been deposited 

and characterised, both on Si and PI substrates. 

The Plasmalab System 100 ICP-RIE (Oxford Instruments) was used to deposit Si3N4. The 

processing temperature was fixed at room temperature (RT) and 200 °C, respectively. AFM 

characterisations were first carried out to study the surface roughness of the film. As shown in 

Figure 5.2, the surface roughness (Ra) of the film becomes lower by increasing the deposition 

temperature. Meanwhile, the Si3N4 deposited on PI film shows a slightly lower roughness than 

that deposited on Si.  

In order to study the dielectric constant and dielectric strength of the film deposited under 

various conditions, metal-insulator-metal structured capacitors were fabricated with standard 

 
Figure 5.3: The CV characterisation of the Si3N4 based capacitors. (a) The film was 
deposited at room temperature on silicon substrate (b) The film was deposited at 200 °C on 
silicon substrate (c) The film was deposited at room temperature on PI (d) The film was 
deposited at 200 °C on PI. 
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microfabrication processes on both Si and PI substrates. A 3 nm NiCr and 50 nm Au layer were 

used as the contacts for both top and bottom electrodes. The device geometries for all the 

capacitors were kept the same. After fabrication, CV and IV measurements were carried out. 

As shown in Figure 5.3, the capacitance (thus dielectric constant) of all the devices are similar, 

indicating that the deposition temperature and substrate type (Si or PI) have almost no influence 

on this figure of merit: the calculated dielectric constant for Figures 5.3 a, b, c, d are 7.4, 7.4, 

7.2, 7.2, respectively. In the meantime, the dielectric strength was evaluated by the IV 

measurement and the data was then shown in Figure 5.4. It can be seen that for both substrates, 

the film deposited at a higher temperature shows a lower leakage current under the same 

voltage bias. This result is consistent with the AFM characterisation, where the higher 

deposition temperature would lead to a smoother surface.  

 
Figure 5.4: The leakage current of the Si3N4 based capacitors. The film was deposited at 
(a) room temperature on silicon substrate (b) 200 °C on silicon substrate (c) room 
temperature on PI (d) 200 °C on PI. 
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The dielectric properties of Si3N4 were further examined after mechanical peeling off the PI 

film from its carrier wafer. The as-peeled PI, together with the Si3N4 based capacitors were 

bended at various bending radius by using 3D printed moulds as shown in Figure 5.5. In order 

 
Figure 5.5: The photograph showing the test of flexible capacitors on a specific bending 
condition. 

 
Figure 5.6: The CV and IV measurements under various conditions. (a) and (c): The CV 
and IV measurement of capacitor based on 100 nm Si3N4 deposited at room temperature. 
(b) and (d): The CV and IV measurement of capacitors based on ~123 nm Si3N4 deposited 
at 200 °C. 
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to evaluate the impact of the peeling process, CV and IV measurement were performed before 

and after the peeling process, as well as later at various bending conditions. The measurement 

results have been shown in Figure 5.6. It can be seen that both the capacitance and the leakage 

current did not show significant changes after peeling off the PI film from its carrying substrate, 

which indicates a reliable process for realising flexible devices on spin-on PI film. Moreover, 

under various tested bending conditions, the capacitance remains almost unchanged, which 

indicates that Si3N4 could be used as a dielectric for flexible FETs. We further explored the 

retention of this material under various bending cycles and the results have been plotted in 

Figure 5.7. As can be seen from the figure, the dielectric remains stable for up to 100 cycles of 

bending test, with a bending radius of 40 mm. 

 
Figure 5.8: The printed ZnO NW UV photodetector. (a) The optical microscopy image of 
the flexible ZnO NW based UV photodetector on PI film. (b) The I-V characteristics of 
the device under dark condition and UV illumination (Inset: the enlarged plot of the dark 
current). The power density of the UV light is ~1 µW/cm2.Submitted to EDTM 2020. 

 
Figure 5.7: Cyclic bending test of the flexible capacitor with a bending radius of 40 mm. 
(a) The CV measurement and (b) the IV measurement. 
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For all the capacitors presented here, a leakage current is observable. This indicates that the 

carrier in the capacitor can migrate under external bias. Carrier tunnelling under external 

voltage bias is one of the reasons for this phenomenon despite of the large tunnel barrier 

introduced by the dielectric material. Another reason can be due to the defect in the dielectric, 

which can effectively lower the tunnelling barrier. Overall, it is common for the existence of 

the leakage current for a capacitor. Since the capacitor is crucial for a successful realisation of 

FET, it is reasonable to consider whether such leakage is in the suitable range or not. 

Practically, the FET can work successfully under a leakage current ~10 nA without disturbing 

the field-effect. Therefore, it is conclude that the capacitor realised here can be used later for 

the realisation of flexible FET device.  

 

5.3 Flexible ZnO NW based UV photodetector 
In this section, the fabrication and characterisation of flexible ZnO NW based UV 

photodetectors are discussed. The same process was employed to realise the PI film which 

serves as the flexible substrate. After deposition of a 100 nm thick Si3N4 layer, NWs were 

printed on the PI film, followed by metallisation to define contacts electrodes, as has been 

discussed in Chapter 4. The deposition of the Si3N4 is to encapsulate the as-coated PI film, 

without which further microfabrication processes realised on top would become problematic. 

The as-fabricated devices were characterised before and after the peeling off the film from its 

carrying wafer, as well as at various bending states.  

Figure 5.8 a shows the as-fabricated ZnO NW based UV photodetector on PI substrate. Each 

device contains several ZnO NWs as the channel material. The photoresponse of the as-

fabricated devices were characterised by a UV LED (365< λ <370 nm). As shown in Figure 

5.8 b, the dark current of the device is ~several nano amperes. Once the UV light has been 

shone on the device, a significant increase in the current can be observed, indicating a sensitive 

detection in the UV light. The significant UV sensitivity of the device is attributed to the surface 

states in the ZnO NWs [93, 225]. Under an ambient condition (dark condition), abundant 

oxygen molecules are chemisorbed on the NW’s surface, which leads to electron depletion in 

the NWs by capturing the free electrons (O2 (g) + e− → O2
− (ad)). With UV illumination, the 

electron hole pairs are generated (hν → h+ + e−). The generated holes react with the 

chemisorbed oxygen species and create unpaired electrons in the NWs (h+ + O2
− (ad)→ O2 (g) 

+ e−). These extra electrons are accelerated under external bias and collected by the electrodes, 

leading to a net current (photocurrent). To study the response speed of the photodetector, time 
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resolved measurement was carried out. As can be seen in the Figure 5.9, the device shows a 

fast and drastic rise after the UV LED was switched on. However, once the UV light was 

switched off, the decay of the signal is shown to be relatively slow and smooth. For ZnO NW 

based photodetector, there are generally two ways to define the rise and decay time. The first 

way is to model the change of photocurrent by a sum of exponential functions [124]: 

-�.���/01~34�exp	/80/:�1
;

�<=
 

Where N is the exponential term, Ai is a normalisation constant for each exponential term and 

τi is the parameter to characterise the rise and decay time. As shown in Figure 5.9, the rise time 

can be fitted into one exponential term with τrise ~10.0 s. And the change in the decay of the 

photocurrent can be fitted into two exponential functions, with τdecay1 ~7.6 s and τdecay2 ~47.3 s, 

respectively. However, it should be noted that for photodetectors realised by printing, neither 

the total number nor the diameter of the printed NWs are accurately controlled at this stage. In 

this regard, it is common to fit the photocurrent in various number of exponential terms for 

different device, which may lead to some inconvenience to the later study. Another way to 

define the rise (decay) time is to measure the time it takes for the photocurrent to change from 

 
Figure 5.9: The time resolved measurement showing the rise and decay of the 
photocurrent. The power density of the UV light is ~0.43 µW/cm2. 
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10% (90%) to 90% (10%) of its total value. The τrise 10% to 90% and the τdecay 90% to 10% are 

calculated to be ~18.2 s and 77 s, respectively. And such definition is adopted in later studies. 

We further studied the relationship between the photocurrent and the power intensity of the 

UV illumination. As can be seen in Figure 5.10, the photocurrent increases sub-linearly with 

respect to the power intensity of the UV light. This can be understood by the limitation in the 

surface states: when the illumination power is low, all the photogenerated holes can be trapped 

at the surface states and thus lead to the increase of the unpaired electrons; when the 

 
Figure 5.10: The relationship between the photocurrent and the power of the UV LED. 
Submitted to EDTM 2020. 

 
Figure 5.11: Multi-cycles measurement of the photocurrent. Submitted to EDTM 2020. 
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illumination power is high, only part of the photogenerated holes can be trapped at the surface 

states, which results in a sublinear increase of the photocurrent. Furthermore, with the value of 

the photocurrent under various powers of illumination, it is common to calculate the 

responsivity R of the photodetector by using the equation > = �?@ABA
C , where P represents the 

power of the UV light illuminated on the NWs. However, since the device is composed of 

multiple NWs with various diameters, it is difficult to extract the exact power illuminated on 

the NW channel. Therefore, we can only study the relationship between the photocurrent and 

the power density of the UV illumination, as shown in Figure 5.10.  

To further examine the cyclic sensing performance of the photodetector, the device was 

exposed to periodical UV illumination with a power density of ~1 µW/cm2. As can be seen 

from Figure 5.11, although the on/off ratio of the photodetector decreased during the test (due 

to the long decay time needed), the device showed a robust response to UV illumination.  

In order to investigate the bendability of the flexible UV photodetector, the as-fabricated device 

was subjected to cyclic bending test with a bending radius of 40 mm. The characterisation 

results are shown in Figure 5.12. As can be seen from the figure, the device shows a robust 

response to the UV illumination even after bending for 1000 cycles. Furthermore, we have 

extracted the photocurrent, rise time and decay time of the device under various bending cycles, 

 
Figure 5.10: The characterisations of the flexible UV photodetector. (a) The photograph 
and optical microscopy images of the flexible UV photodetectors based on printed ZnO 
NWs. (b) The relationship between the photocurrent and time. (c) and (d) The 
photocurrent, rise time and decay time under various bending cycles. The power density 
of the UV light is ~0.3 µW/cm2. Submitted to EDTM 2020. 
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all of which have shown an insignificant change upon the bending test. Thus, we conclude that 

the flexible UV photodetector has been successfully realised by a printing method. The 

demonstrated device shows a strong and robust sensitivity to UV illumination and can be bent 

up to 1000 cycles. However, its response time is not fast compared to other materials [226, 

227]. In this regard, it is proposed that the demonstrated sensor is appropriate for UV dosimetry 

application, which does not require a fast response. 

5.4 vdW contact in flexible electronics 
Previous subsection discusses the NW based flexible sensors. In this section, the research 

interest is focused on the graphene. As has been discussed in Chapter 4, vdW contact can lead 

to a high-performance GFET. Moreover, since it is realised by transfer printing, it has a natural 

suitability for flexible electronics [223, 224]. However, compared to other molecular-level 

interactions such as a covalent bond, vdW force is regarded to be a weak force and is highly 

dependent on the vdW separation. In this regard, whether the morphological deformation 

(generated by bending) will lead to a change in the vdW gap and therefore lead to a significant 

variation in the performance of the vdW contact has not been carefully examined. Such an 

understanding is necessary if the proposed vdW contact is going to be used in the flexible 

electronics. Therefore, a study intended to investigate the influence of mechanical deformation 

on the reliability of bottom-contacts was carried out. The graphene-Au vdW contact was 

realised on a PI film (Figure 5.13 a). The fabrication procedure is similar to the one described 

in Chapter 4, except a PI film with a 100 nm Si3N4 has been used as the substrates. Nine 

measurements were performed under different mechanical deformation states, as specified in 

Table 5.1. 

Table 5.1: Tested conditions for graphene-Au vdW contact.  

 
Figure 5.11: The photo and illustration of the graphene-Au vdW contact on flexible 
substrate. (a) The photograph of the graphene-Au vdW contact on PI substrate (b) The 
schema showing the definition of the perpendicular and parallel bending. Copyright © 
American Chemical Society. Reprinted, with permission, from [12]. 
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Serial Number Direction Type of Bending Bending Radius (mm) 

A NA Flat ∞ 

B Parallel type Tensile bending 40 

C Perpendicular type Tensile bending 40 

D Parallel type Tensile bending 20 

E Perpendicular type Tensile bending 20 

F Parallel type Compressive bending 40 

G Perpendicular type Compressive bending 40 

H Parallel type Compressive bending 20 

I Perpendicular type Compressive bending 20 

 

The bending direction used in the table is defined in Figure 5.13 b. The contact resistance was 

extracted under various bending conditions and the data was plotted in Figure 5.14. The ConL 

of the devices is 30 µm for both cases and the ConH is ~80 nm and ~2 nm for the data shown 

in Figures 5.14 a and d, respectively. Typical output characteristics, for graphene-Au vdW 

 
Figure 5.12: The contact resistance under various bending conditions. The 2T and 4T 
output characteristics measured under high (|~80 nm, a) and low (~2 nm, b) ConH. The 
contact resistance extracted under various bending status under high (b) and low (e) ConH. 
The cyclic test of contact resistance under high (c) and low (f) ConH. Notably, the data in 
(b) and (c) are taken from different devices with the same ConH. The ConL is 30µm for all 
the cases. Copyright © American Chemical Society. Reprinted, with permission, from [12]. 
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contact realised under high and low ConH have been plotted in Figures 5.14 a and d, 

respectively. The change in contact resistance is similar to the phenomenon discussed in 

Chapter 4, indicating a significant modulation of contact resistance by controlling ConH. Then, 

we examined the contact resistance under various bending conditions. As can be seen from 

Figures 5.14 b and e, no significant change can be observed, which likely indicates a stable 

vdW interaction upon mechanical deformation. Cycling tests were also performed to study the 

retention of such vdW contact, which has been shown in Figures 5.14 c and f respectively for 

the condition of high and low ConH. The contact resistance only shows minor changes after 

100 cycles of tensile bending (bending direction parallel to the graphene channel) while the 

bending radius was kept as 40 mm. Furthermore, those minor variations are believed to have 

originated from the change of contact resistance between the probe tip and the metal pad on 

the device. Since the morphology of the device varies under different bending conditions, the 

contact between the probe tip and the metal pad is likely to be changed in an uncontrollable 

manner. However, with existing data, it is enough to conclude that the resistance from 

graphene-Au vdW contact shows an insignificant change.  

It should be noted that a low contact resistance is also achievable with a vdW contact approach 

on a flexible substrate. As shown in Figure 5.14 b and Figure 5.15, a contact resistance down 

to ~210 Ω·µm has been achieved (Condition A), similar to previous values extracted on rigid 

substrates (see Chapter 4). This is the first time that a relatively accurate extraction of the 

contact resistance from flexible GFETs has been possible by using four terminal measurement 

methods: all previous work (see Table 5.2) has adopted a fitting method proposed in Ref. [228], 

 
Figure 5.13: The 2T and 4T output characteristics measured under high ConH of ~80 nm 
at condition A. Copyright © American Chemical Society. Reprinted, with permission, from 
[12]. 
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which assumes a constant contact resistance for all carrier densities. Even when considering 

these inaccuracies, the previous minimum contact resistance is ~300 Ω·µm and so it is indeed 

possible to improve on this historic value. 

To conclude, this section studies the graphene-Au vdW contact on flexible substrates. Such 

contact shows a stable nature under various bending tests, which guarantees its reliability for 

large-area flexible electronics. Benefitting from this feature, flexible FETs and circuits can be 

realised with stable performance on flexible substrates (see Section 5.5). 

 

Table 5.2: Comparison of monolayer graphene-metal contact properties on flexible substrate 
at room temperature. Copyright © American Chemical Society. Reprinted, with permission, 
from [12]. 

Electro
de 

Contact 
Architec
ture 

Extraction 
method 

Normalised 
Contact 
Resistance 
(Ω·µm) 

Sub-
strat
e 

Compatibility 
with large-area 
flexible 
electronics 

Carrier 
density 

(cm-2) 

Ref  

# 

Au Top-
contact 

Fitting 
method 

8000 PET No NA [229
] 

Ti/Pd/
Au  

Top-
contact 

Fitting 
method 

300 PEN No NA [230
] 

Ni/Au Top-
contact 

Fitting 
method 

~7500 PI No NA  [231
] 

Au Top-
contact 

Fitting 
method 

~800 PI NA NA [232
] 

NA Top-
contact 

Fitting 
method 

20000 PI No NA [233
] 

Graphe
ne 

Top-
contact 

Fitting 
method 

1164000 PEN Yes NA [234
] 

Au Top-
contact 

Fitting 
method 

~8000 PET No NA [235
] 

Au Bottom-
contact 

Four 
terminal 
measurem
ent 

Down to 210 PI Yes 1.75×1
012 

This 
wor
k 

PET: Polyethylene terephthalate, PEN: Polyethylene naphthalate, PI: polyimide. 

5.5 Flexible GFETs and logic circuits 
This section discusses the fabrication and characterisations of flexible GFETs and 

corresponding logic circuits based on GFET. For this, PI film has been used as the substrate 
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for the flexible devices and circuits; a 100 nm Si3N4 has been used for the dielectric materials, 

and the vdW contact strategy has been adopted to realise the source and drain contacts. The 

detailed fabrication process has been described as follows: 

A polyimide solution was spin coated onto a silicon/silicon dioxide and cured as previously 

described. After the PI process, an isolation layer of 100 nm Si3N4 was deposited at 200 °C. 

The PI/Si3N4 film serves as the substrate for realising flexible devices. Afterwards, a 35 nm Au 

electrode was deposited by E-beam evaporation which acts as the gate contact. A 100 nm Si3N4 

deposited at 200 °C was used as the gate dielectric material. After a short treatment by 

hexamethyldisilazane (HMDS), photoresist S1805 (from MicroChem) was spin coated on the 

substrate at 4000 rpm for 30s, followed by a soft bake at 65 °C for 1 minute. Then UV 

lithography, metallisation and standard lift-off process were each employed to realise the 

source and drain contacts with 80 nm NiCr/Au. Afterwards, monolayer graphene was 

transferred onto the processed flexible substrate to form the contacts between the graphene and 

source and drain terminals. The transferred graphene film was finally patterned into individual 

stripes to realise the large-area GFETs array.  

The as-realised FET was first characterised as shown in Figure 5.16. As can be seen from the 

figure, the device can work successfully even after 100 cycles of bending, with a bending radius 

of 40 mm. No obvious performance degradation has been observed. Only minor shift of the 

Dirac point has been seen in Figure 5.16 a, which can be attributed to the doping from the 

Figure 5.14: The electrical characterisation of flexible GFET. (a) The transfer curves 
measured at various conditions. Vds=50 mV. (b) and (c) The output characteristics of the 
flexible GFETs before and after 100 cycles of bending at a bending radius of 40 mm. 
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ambient environment. Multiple devices were checked to further confirm the stability of the 

flexible devices under the bending test. The changes of transfer curve with respect to the 

bending test have been presented in Figure 5.17 for another two devices. As can be seen from 

the figure, except from the Dirac point shift, no obvious degradation were observed. 

Next, XOR and NAND logic circuits were realised by using the transistor-resistor logic (TRL) 

strategy as shown in Figure 5.18. This strategy minimises the number of transistors used for 

the logic circuits so is suitable for fast demonstration. The resistance of RG and RD was 42 kΩ 

and 10 kΩ, respectively. As can be seen from the Figure 5.18 b and c, the circuits can work 

properly to provide the logic function.  

Here, by taking XOR gate as an example, the working mechanism of the graphene-based logic 

gates has been explained. As shown in Figure 5.18 a, both the voltage inputs A and B were 

connected to the gate terminal of the GFET. Assuming the transfer curve of GFET is symmetric 

with respect to the Dirac point, the value of the input high (1) and low (0) are deliberately 

selected to be two bias voltages on the hole and electron branch of the transfer characteristics, 

and generate the same number of charge carriers. When the input for (A, B) is (1, 0) or (0, 1), 

the gate terminal of the FET is biased at the value of VDirac. In this case, the resistance of GFET 

reaches its highest and thus leads to the largest output voltage from the voltage divider. 

Meanwhile, when the input signal for (A, B) becomes (0, 0) or (1, 1), the |VG-VDirac| has the 

largest deviation from the Dirac point. The resistance of the FET becomes lowest, which further 

 
Figure 5.15: The change of transfer curves under various cycles of bending for another 
two devices.  
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results in a lowest output voltage. In this way, the value of the output voltage can be controlled 

by changing the input (A, B), which provides the function of logic operation. 

As explained above, the performance of the logic gate is directly related to the position of the 

Dirac point as well as the gate capacitance of the dielectric. For the XOR gate fabricated on the 

rigid substrate (data not shown), the Dirac point of GFET was ~14.5 V. In this case, the input 

high and input low should be on each side of the Dirac point, with the value of each being 

chosen as 9 V and 20 V, respectively. Meanwhile, for the XOR gate demonstrated on the 

flexible substrate, the Dirac point was ~3.1 V (data not shown). Thus, the value for input high 

and low could be chosen as ~6 and ~0.2V, respectively. For a decent logic circuit, one 

important criterion is that the input and output signal should match with each other. Although 

it is not realised in Figure 5.17, this aspect can be theoretically achieved by either tuning the 

dielectric thickness to a lower value or controlling the Dirac point position to ~0 V. This will 

be achieved in future work.  

Finally, it should be noted that The logic gate was realized with one single GFET connecting 

three off-the-shelf resistors. This demonstrates the proof of concept that using GFET can realise 

 
Figure 5.16: The electrical characterisation of flexible logic circuits. (a) The logic diagram 
and the truth table for the graphene based logic circuits. (b) and (c) The electrical 
characterisation of the XOR and NAND gate, respectively after 100 cycles of bending. 
Copyright © 2019 IEEE. Reprinted, with permission, from [173]. 
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various logic circuit. Moreover, the same arrangement can work as various logic circuits, 

depending on the selection of the voltage high and low. And a figure showing how to choose 

the input high and low with respect to the Dirac point for various logic circuit application has 

been included in Figure 5.19 [236].  

5.6 Summary 
In summary, this chapter presents a step-by-step fabrication and characterisation of various 

flexible electronic components. Specifically, the use of PI film as a substrate for flexible 

electronic devices and circuits is a common strategy in the research community. This chapter 

follows this methodology and presents the process flow in detail. Such detailed study can 

benefit the new researchers who would like to step into this field. Moreover, this chapter also 

explores the realisation of capacitors on flexible substrate. The as-realised capacitor can work 

reliably under various bending conditions. This lays the foundation for the future realisation of 

various functional flexible devices and circuits. Based on these results and the strategy 

developed in Chapter 4, FETs, sensors and circuits have been demonstrated. All show stable 

performance under the mechanical bending test. Compared to other works, the work presented 

in this chapter “partially printed”. And some of the figure of merits from these devices (for 

example, the contact resistance from GFETs) are comparable to the state of the art. It is believed 

 
Figure 5.17: The figure illustrating the choice of the input voltage with respect to the Dirac 
point for various types of circuit. Inset: the truth table for various circuit. This figure is 
reused from ref [236]. Copyright © AIP Publishing. 
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that these work could benefit the future development of all printed, high-performance flexible 

electronics. 
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6. Chapter 6: 3D integration in printed 

electronics 
As have been discussed in Chapters 1 and 2, 3D integration is a universal strategy to increase 

the device density as well as lowering the power consumption, for both printed and non-printed 

electronics. This chapter discusses the 3D integration of printed electronics and is arranged as 

follows: Section 6.1 discusses the technical problems in 3D integration, which includes the 

isolation material’s deposition, vias opening, and interconnects realisation. Afterwards, the 

strategies to realise 3D integrated circuits based on printed nanomaterials have been discussed 

(Sections 6.2 and 6.3). The circuit diagram, the layout, and the characterisation of individual 

devices on different layers have been presented. Finally, the function of the circuits is briefly 

discussed but not tested, which will be realised in future work. 

6.1 Technical challenges in 3D integration process 
In this section, the general strategies for 3D integration have been discussed, including the 

separation layer deposition, vias opening and interconnect realisation. NWs have been printed 

on each layer to realise resistors and sensors. Various characterisations, including Optical 

Microscopy, AFM and SEM, have been used to characterise the developed 3D integrated 

electronics.  

6.1.1 Separation layer and planarisation problem  
It is common that microfabrication process would lead to an uneven surface, which poses 

problems in the realisation of 3D integration. For example, lithography has been suggested to 

be preferentially realised on a planar substrate. On a non-flat surface, its reliability would be a 

 
Figure 6.1: The characterisation of a step feature (a) The AFM scan (b) The line profile. 
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concern [237]. In this regard, surface planarisation is an important aspect in 3D integration and 

this subsection mainly discusses the problems related to interlayer deposition and the 

subsequent planarisation problem.  

 
Figure 6.2: The characterisation of the step feature after flattening. (a), (b) and (c) The 
AFM characterisations of the metal film after spin-coated with PI solution at 4000 rpm for 
twice. (d) The line profile of the structure. 

 
Figure 6.3: The characterisation of the step feature after flattening. (a), (b) and (c) The 
AFM characterisations of the metal film after spin-coated with PI solution at 4000 rpm for 
four times. (d) The line profile of the structure. 
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Previous studies presented in Chapter 3 have indicated that PI can lead a flattened surface. 

Moreover, NW can be printed uniformly on such samples. Considering this, the PI film (with 

a 100 nm Si3N4) is used to isolate the as-fabricated devices as well as to planarise the surface.  

Here, in order to evaluate the surface change before and after the PI spin-coating process, three 

samples, named Sample A, B and C, have been prepared with the same features on top. The 

feature height is~70 nm as confirmed by AFM. PI solution was spin-coated on Sample B and 

C at 4000 rpm for 60 s. The spin-coating process was repeated for twice and four times for 

Sample B and C, respectively. For sample A, no PI was coated on top. Afterwards, AFM has 

been used to characterise the three samples.  

The AFM image of the Sample A, as well as a line profile scan, have each been shown in Figure 

6.1, with them both indicating a high and sharp step.  

With regard to the Sample B, it was subjected to a PI coating process for twice. And the feature 

step was smoothened with a gradual change in height over a large scale (~20 µm), as shown in 

Figure 6.2. And Locally, the surface after spin-coating is rather flat, as can be seen from the 

zoomed in AFM image. The planarisation can be further improved by increasing the spin-

coating cycle as shown in Figure 6.3. In general, the spin-coated PI film can serve as an 

isolation as well as a planarisation layer. The planarisation effect can then be controlled by the 

number of spin-coating cycles.  

However, it should be noted that a pure PI layer is not suitable for the realisation of further 

devices on top due to a deformation and shrinking problem when immersing in acetone for a 

long time (data not shown, similar to the scenario discussed in Chapter 5). In order to solve this 

issue, a 100 nm Si3N4 layer was deposited on top of the PI film. By doing this, the fabrication 

of new devices on top can be successfully carried out.  

 
Figure 6.4: The optical microscope images of the fully cured PI films after a dry etching. 
The film was spin-coated at 4000 rpm for 60s for once (a) and twice (b), respectively. 
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6.1.2 Vias opening 
The last subsection discussed the using of the PI/Si3N4 stack as the isolation layer for 3D 

integration. In order to get access to the electronic devices underneath the isolation materials, 

vias needs to be created selectively. Here, in this subsection, the methods for etching PI and 

Si3N4 are discussed, respectively, which are later used in the development of 3D integrated 

electronics. It should be noted that the vias opening process described in this subsection is quite 

different from the standard CMOS technology, where TSV is adopted in order to create deep 

Si vias for 3D integration [238]. For this work, since most of the separation material is PI, the 

etching process in this regard is not as critical and complex as the case of Si.  

The PI film can be patterned by dry and wet etch methods. For dry etch, the PI film was fully 

cured by following the method described in Chapter 5. After a conventional photolithography 

and development process, the film was etched by using RIE with a gas flow of 5 sccm CF4 and 

95 sccm O2. Two samples spin-coated with one layer and two layers of PI have been prepared 

for this study. Each layer of PI was spin-coated at 4000 rpm for 60s. As can be seen from Figure 

6.4, the first layer of PI has been completely removed in the 10 mins’ etching process, while 

the sample spin-coated with double layer PI shows an incomplete etching. We can also check 

the film thickness to estimate the etching rate, which is calculated to be around 1.8 µm/10mins. 

The PI film can also be patterned by using a wet etching method. For this, the PI film cannot 

be totally cured until the etching process has been completed and the photoresist has been 

removed. Also, the soft baking process is critical to the wet-etching process. To study this, two 

conditions have been tried. The PI film was soft baked at 140°C for 2.5 minutes and 5 minutes, 

respectively. A treatment of MF-319 for 2.5 minutes was used to etch the film. The results are 

 
Figure 6.5: The optical microscope images of the soft-cured PI film after a wet etching 
process. The PI film was soft cured at 140 °C for (a) 2.5 mins and (b) 5 mins, respectively. 
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presented in Figure 6.5. For both conditions, the film can be completely etched. By increasing 

the soft-baking duration, the definition of the etched pattern is better. But still the resolution is 

not comparably to the pattern defined by dry etching methods (Figure 6.4). Therefore, the dry 

etching process has been adopted for the later development of 3D integration.  

It should be noted that, some damage can be seen on the PI film after the dry etching process 

as shown in Figure 6.4. This is attributed to the complete removal of the photoresist protection 

layer. Such a problem can be avoided by adopting a photoresist layer with higher thickness, 

which can be seen in later results.  

 
Figure 6.7: The optical microscope images of the as-fabricated 3D integrated devices. 
The scale bar in (a) and (b) are, 50 µm and 5 µm, respectively. Copyright © 2019 IEEE. 
Reprinted, with permission, from [164]. 

 
Figure 6.6: The schema showing the process flow of 3D integrated devices.  
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Meanwhile, the Si3N4 film can be etched by RIE using the same recipe as used for the SiO2 

etch (see Chapter 4). The etching velocity and outcome in the two scenarios are almost the 

same and therefore will not be discussed in detail within this subsection. 

 

 

6.1.3 Interconnects realisation 
In this subsection, the technical problems associated with the interconnects realisation to wire 

the devices from both layers have been discussed. In order to clarify this problem more clearly, 

the ZnO NW based devices were fabricated in a layer by layer printing manner. However, the 

performance of these devices will only be discussed in later sections since this section focuses 

on the technical problems towards 3D integration.  

The realisation of the 3D integration is schematically illustrated in Figure 6.6. It starts with 

Si/SiO2 substrate. The ZnO NWs were prepared by CVT methods and printed by a contact 

printing approach as previously discussed (see Chapter 3). After printing, the metal contacts 

were defined by photolithography, metallisation and a standard lift-off process. The processed 

samples were then spin-coated with PI and deposited with a 100 nm thick Si3N4 for device 

isolation (see Subsection 6.1.1). The as-deposited materials planarised the surface and acted as 

 
Figure 6.8: The via opening process.(a) The optical microscope image showing the 
interface between 1st and 2nd layers. (b) The AFM characterisation of the step height 
between 1st and 2nd layers. (c) and (d) The AFM characterisation of the surface from 2nd and 
1st layers. 
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the substrate for the realisation of a new layer of devices. Similar approaches including NW 

printing, photolithography, metallisation and the lift-off process have been employed again in 

order to realise the devices on the second layer. After fabrication, the vias were opened by the 

methods described in Subsection 6.1.2 and interconnects were realised by the screen printing 

method described in Section 3.3. Characterisations, including optical microscope, AFM, and 

SEMs have been used to study the realised 3D devices. As can be seen from Figure 6.7, the 3D 

stacked NWs based devices have been successfully fabricated. The surface roughness of the 

first and the second layers are ~0.22 nm and ~0.95 nm, respectively (Figure 6.8 c and d), which 

 
Figure 6.9: SEM characterisation of the screen printed Ag ink at the interface from the 1st 
and 2nd layers. 

 
Figure 6.10: I-V characteristics of the screen-printed Ag paste. 
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is consistent with previous values. The height difference between the two layers is ~1.65 µm, 

as characterised by AFM (Figure 6.8 a and b). 

In order to bridge the devices from both layers, Ag paste has been printed by using screen 

printing method as discussed in Section 3.3. The as-printed paste has been characterised by 

SEM. As can be seen in the Figure 6.9, no discontinuity has been observed, especially at the 

step region. This is because the thickness of the Ag film (~4.5 µm per layer) is several times 

larger than the step height (~1.65 µm). Electrical measurement has also been performed to 

characterise the resistance of the printed interconnect: both the single layer and double layer 

printing leads to a resistance lower than 5 Ω (Figure 6.10). 

In summary, this section demonstrates the applicability of the screen printed Ag paste for the 

realisation of interconnects in the 3D integration system.  

6.2 3D integrated Wheatstone bridge based on Si and 

ZnO NWs  
The last section discusses the technical problems in realising 3D integrated electronic devices. 

In this section, such a strategy has been adopted to integrate the Si NW based resistors and ZnO 

 
Figure 6.11: The circuit diagram and layout of a 3D integrated Wheatstone bridge. (a) The 
circuit diagram of the Wheatstone bridge. (b) The layout for the 3D integrated Wheatstone 
bridge. b1) The mask for metal contacts on the first layer; b2) The mask for metal contacts 
on the first and second layer; b3) The mask showing the via opening process after the 
fabrication of both layers; b4) The mask showing the location of the screen printed silver 
ink, aiming to connect the devices on both layers. 
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NW based UV photodetectors in a 3D manner, aiming to realise a 3D Wheatstone bridge 

circuit. 

The circuit diagram and the layout of the Wheatstone bridge are shown in Figure 6.11. The 

Wheatstone bridge consists of two voltage dividers (or two arms). Each arm consists of one Si 

NW based resistor and one ZnO NW based UV photodetector, as shown in Figure 6.11 a. This 

arrangement, compared to the single voltage divider, can lead to a higher sensitivity. Here, a 

layer by layer printing method has adopted for the 3D Wheatstone bridge fabrication (see 

Figure 6.11 b for the step by step fabrication layout). Briefly, the Si NWs were printed on the 

initial substrate (Si/SiO2 substrate or a PI film on a carrier wafer), followed by a standard 

photolithography, metallisation and lift-off process to define the source and drain contacts 

 
Figure 6.12: The optical microscopy images showing the as-fabricated 3D integrated 
Wheatstone bridge. The scale bars in both images are 30 µm. 

 
Figure 6.13: The I-V characteristics of the Si NW based resistors. 
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(Figure 6.11 b1). Afterwards, a separation was realised by using the methods discussed in 

section 6.1. This separation layer smoothens the surface and serves as the substrate for the 

device fabrication on the second layer. Similarly, for the devices on the second layer, NW 

printing, metallisation and the lift-off process were employed again to realise the UV 

photodetector based on ZnO NWs (Figure 6.11 b2). Vias were created on the separation layer 

in order to access the devices buried underneath (Figure 6.11 b3). Finally, silver paste based 

interconnects should be printed by screen printing to connect the devices on both layers in a 

configuration of the Wheatstone bridge circuit (Figure 6.11 b4).  

Optical microscopy images have been taken for the as-fabricated sample, as shown in Figure 

6.12. Si NWs were printed vertically on the first layer while the horizontally distributed NWs 

were ZnO NWs. Electrical characteristics have been obtained from the devices from both 

layers, as shown in Figures 6.13 and 6.14, which demonstrates the successful 3D integration 

of ZnO NW based devices on top of Si NWs. It should be noted that the I-V curves shown in 

Figure 6.13 is non-linear, which indicates a non-ohmic contact. This is because the doping of 

the NW, especially in the contact region, is not controlled. Moreover, the resistance of the two 

resistors show a large mismatch. However, such mismatch does not affect the working of the 

Wheatstone bridge since a calibration step can eliminate such difference. Actually, the purpose 

of the Wheatstone bridge is to integrate two arms of voltage dividers in the opposite manner, 

which could lead to double sensitivity compared to the single voltage divider. Further steps 

 
Figure 6.14: The I-t relationship of the photodetector under various conditions. 
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include using screen printed Ag ink to bridge the devices on both layers, and testing its response 

under UV illumination. Limited by time, this part of work will be carried out in the future. 

6.3 3D integrated FETs and sensors for large-area 

active matrix application  
This section presents the fabrication process and characterisation results of the two-layer 

electronic system: the first layer is composed of ZnO NW based FETs and the second layer 

composed of ZnO NW based UV photodetectors. Vias have been opened to enable the access 

to the devices fabricated on the first layer. Strategies on how to connect the sensors and FETs, 

which lead to a 1T1S structure, have been discussed. The implementation of the 1T1S structure 

will be carried out in future work. 

The circuit diagram for the 1T1S structure has been shown in Figure 6.15 a. The drain terminal 

of the transistor is connected to a constant voltage bias while the source terminal is connected 

to a UV sensor. The transistor can be operated like a switch by changing the gate voltage bias 

with respect to the threshold voltage. When the gate voltage is lower than the threshold voltage, 

 
Figure 6.15: The circuit diagram and layout of a 3D integrated 1T1S struture. (a) The 
circuit diagram of the 1T1S structure. (b) The layout for the 3D integrated transistors and 
sensors. b1) The mask for the source and drain contact for ZnO NW based transistors on 
the first layer; b2) The mask for the metal contacts for the UV photodetector on the second 
layer; b3) The mask showing the via opening process after the fabrication of both layers. 
The mask has been repurposed. 
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the transistor is in the OFF state and the entire circuit is open loop; the output of the node A is 

zero. When the gate voltage is higher than the threshold voltage, the transistor is on; the output 

of the node A is D�� E ���F�AG
�HI���F�AGI�JK�. Here, R0, Rsensor and RFET represent the resistance of the 

off-the-shelf resistor, the sensor and the FET, respectively. In this way, by operating the gate 

voltage of the FET, the sensors can be selected and dis-selected. The 1T1S structure presented 

here is the basic building block towards an active matrix sensor arrays, which can be used for 

various wearable applications.  

Here, a step by step fabrication layout of the 3D integrated 1T1S structure has been illustrated 

in Figure 6.15b. A similar layer by layer printing method, as has been discussed previously, 

has been used to realise the 3D integrated 1T1S structure: The ZnO NWs were printed on Si 

substrate with a 300 nm SiO2 as the dielectric layer. After printing, source and drain contacts 

(3 nm Nicr/70 nm Au) were realised by electron-beam evaporation. The as-realised device 

utilised the entire Si substrate as the gate terminal (bottom gate device), and its transfer and 

output characteristics will be discussed later in Figure 6.17. In order to fabricate another layer 

of devices on top of the as realised ZnO NW FET, a separation layer comprising of ~1.55 µm 

PI and 0.1 µm Si3N4 has been deposited. Afterwards, another ZnO NW printing process was 

again carried out, followed by photolithography, metallisation and the lift-off process to realise 

the ZnO NW based UV photodetector on the second layer (see Figure 6.15 b2). After that, an 

 
Figure 6.16: Optical microscopy image showing the 3D integration of UV photodetectors 
on FETs. 
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RIE process was employed to create the vias, which enables access to the devices on the first 

layer (see Figure 6.15 b3). Finally, in order to realise the 1T1S structure, the devices on both 

layers should be connected. This can be achieved by screen printing method, as has been 

discussed previously in Section 6.1.3. Limited by time, this will be realised in the future.  

Figure 6.16 shows the optical microscopy image of the as-realised double layer electronic 

system. The ZnO NW FET is on the first layer with the entire Si/SiO2 substrate acting as the 

 
Figure 6.17: The electrical characterisations of the printed ZnO NW FET after 3D 
integration. The ZnO NW FET is on the first layer. (a) The transfer curve (b) The output 
curve. 

 
Figure 6.18: The UV electrical characterisations of the UV photodetector. (a) The I-t 
relationship under dark condition and UV illumination. The power density of the UV light 
used here is ~1 µW/cm2. (b) The time resolved measurement showing the rise and decay of 
the current under UV and dark conditions. (c) The cyclic test of the sensor with and without 
UV illumination. The power density of the UV light used in (b) and (c) are ~0.43 µW/cm2. 
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back gate. The transfer and output characteristics of the FET after realisation of the second 

layer has been tested and shown in Figure 6.17. As can be seen from the figure, the performance 

of the ZnO NW FET is similar to that has been shown in Chapter 4, which demonstrates that 

the strategy for realising 3D integration is compatible with FET as well.  

Then we measured the ZnO NW based UV sensor on the second layer. As can be seen from 

Figure 6.18, the photo to dark current ratio, rise and decay time, etc, are similar to the data 

presented in Chapter 5. Thus, we conclude that the proposed strategy is also compatible to 

realise the 3D integration of sensors and FETs.  

6.4 Summary 

In summary, this chapter discusses the possible methodology to realise 3D integrated 

electronics in a layer by layer manner The proposed method is compatible with large area 

processing, and can potentially increase the device density, which is a fundamental limitation 

in printed electronics. The demonstrated device is expected to have a long longevity due to the 

robustness of the inorganic materials such as graphene and ZnO. Moreover, compared to other 

work, this chapter for the first time presents the 3D integration of Wheatstone bridge and 1T-

1S structure, which can be further extended to active matrix sensor arrays. This lays a strong 

foundation for the future development of 3D, flexible and printable electronics. 
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7. Chapter 7. Conclusion and Future 

Perspective 
This chapter concludes all the work presented in this thesis and points out the opportunities for 

possible future work. 

7.1 Conclusion 
Large-area electronics is an innovative way to make electronics, where the components are 

fabricated in a cheaper and faster manner. For this, printing technology has been regarded as 

one of the most promising methods. This thesis discusses the problems associated with 

printable electronics and its application within flexible and 3D integrated electronics. The 

major findings are summarised as follows: 

(a) Contact printing is a method used to directionally print quasi-1D NWs from donor to 

receiver substrate. Although it has been more than a decade since its first demonstration, no 

systematic study has been done regarding the NW printing on flexible substrates and the 

substrates with uneven features on top. This thesis presents the first experimental study into 

this and tries to provide a qualitative explanation for the observed phenomenon.  

(b) In addition to (a), a home-made contact printing setup has been realised, which enables the 

precise control of the entire printing process.  

(c). This thesis explores the vdW contact in the system of ZnO NW as well as graphene, with 

Au selected as the example electrode. Regarding the ZnO NW, the vdW interaction between 

ZnO NW and Au leads to an inefficient contact with non-linear output characteristics. In 

contrast, the graphene-Au vdW contact leads to an ohmic type contact. The reason accounting 

for this difference has also been qualitatively explained. 

(d) In addition to (c), a systematic study in graphene-Au vdW contact has been carried out for 

the first time. The contact resistance from vdW contacted GFET has been proven to be on a 

par with the best reported value from the state-of-the-art top- and edge- contacted GFETs. A 

model has also been developed to explain this outstanding performance. Furthermore, the 

graphene-Au vdW contact has also been shown to be stable under various bending conditions, 

which makes it an excellent alternative to top- and edge- contacted GFETs, especially in large-

area flexible electronics.  

(e) This thesis also studies the fabrication and characterisation of flexible devices, sensors and 

circuits based on ZnO NWs and graphene. These devices were achieved by combining printing 

technology with the standard CMOS process.  
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(f) Finally, 3D integrated NW based electronics have been realised by using a layer by layer 

printing method.  

This work is believed to advance the current understanding through various aspects, especially 

on printable and flexible electronics.  

7.2 Future perspective 
It should also be noted that there are several limitations to this thesis. Possible future work, 

which could improve current studies, has also been indicated below: 

(a) Currently, all the NW printing experiments have been carried out under a constant pressure 

and constant sliding speed. With the developed contact printing setup, NW printing in a more 

diverse manner can be realised. How the NWs will be printed in these scenarios has not been 

carefully studied nor clearly understood. This may open new avenues in further controlling the 

NW printing process. Meanwhile, the NW printing mechanics, especially regarding those non-

conventional substrates, are still not very clear. Efforts need to be made in this direction as well 

to further understand the NW printing process. 

(b) Regarding the graphene-Au vdW contact, effort has been made in using C-AFM to 

directionally illustrate the contact resistance under various ConH. However, this has not been 

successful due to significant noises caused by many extrinsic factors. This could initiate the 

need for a potential study to gain further understanding of graphene-Au vdW contact. 

Meanwhile, an attempt has also been made to develop a quantitative model to explain the 

detailed graphene-Au vdW contact. However, it seems to be very challenging since it together 

deals with macroscopical force (pressure during graphene transfer) and microscopic interaction 

(vdW interaction). This could potentially be a future work. 

(c) Regarding the development of the 3D integrated Wheatstone bridge and 1T1S structure, 

interconnects have not been realised to bridge the devices from both layers due to the delay of 

the mask-providing company. But, technically, there are no barriers towards this, as has been 

shown in Chapter 3. 

(d) The 1T1S structure can be further extended to sensor arrays controlled by an active matrix. 

How to realise this, especially on the flexible substrate, will be the final part of the future work. 
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