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Abstract 
 

In young adults, spatial attention typically manifests in a processing advantage 

for the left side of space (“pseudoneglect”)(Bowers & Heilman, 1980), whereas 

older adults tend to display no strongly lateralised bias, or a preference towards 

the right side of space (Benwell, Thut, Grant, & Harvey, 2014; Schmitz & 

Peigneux, 2011). However in addition, in recent studies, pseudoneglect has also 

been found to be maintained into old age (Brooks, Darling, Malvaso, & Della 

Sala, 2016; Brooks, Sala, & Darling, 2014; Friedrich, Hunter, & Elias, 2018). This 

suggests that the traditional view of an attenuated spatial asymmetry bias with 

increasing age may be too simplistic and that the spatial biases observed could 

be sensitive to a range of influences besides age. In addition, the traditionally 

observed shifts in spatial asymmetry in older adults have been attributed to 

neuroanatomical changes in the right hemisphere (with age), however as yet, 

there is limited evidence linking neurophysiological results to such behavioural 

shifts.   

To this end, for older adults, spatial attention research lacks systematic 

investigation of intra- and inter-task consistency. In the first of the four 

experiments of this thesis, I built on an earlier study which investigated young 

adults (Learmonth, Gallagher, Gibson, Thut, & Harvey, 2015, see 2018), and 

addressed this issue by investigating the magnitude and direction of spatial 

asymmetry in older adults aged between 60 to 86 years in five commonly used 

spatial tasks (line bisection, landmark, grey and grating scales and lateralised 

visual detection). I also compared the obtained spatial biases to a driving task. 

Results confirmed a stable retest reliability of all spatial tasks across two testing 

days in older adults. The line bisection and greyscales tasks elicited significant 

left spatial biases, in accordance with pseudoneglect, while the other tasks 

showed no significant biases to either side of space. Interestingly, in the driving 

task a right bias emerged for older adult and was stable across testing sessions. 

Yet, it failed to correlate with the other spatial measures. In comparison to the 

young adults’ sample from Learmonth et al. (2015, 2018), only the landmark task 

was age sensitive. However, none of the task showed significant inter task 

correlations. This replicates the findings of Learmonth et al. (2015, 2018) for an 

older age group. So in view of my findings of no significant inter-task 
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correlations, as well as the inconsistent directions of the observed spatial biases 

for the older adults, I present supporting evidence that pseudoneglect is a multi-

component phenomenon and highly task sensitive. Each task may reflect a 

distinct neural mechanism, likely to be impacted differently by age or other non- 

spatial modulators.  

In fact, the influence of other non -spatial modulators on spatial attention was 

the central topic of the other three experiments presented in Chapters 3 and 4. I 

employed a dual task paradigm (Chapters 3 and 4) and electroencephalography 

(EEG) (Chapter 4 only) to investigate behaviourally as well as 

neurophysiologically if an increase in attentional load has a reducing effect on 

spatial asymmetry and whether this would be more pronounced with old age. 

Interestingly, for the last experiment including EEG (Chapter 4) in particular, 

results showed that although older adults perform similarly well to young adults 

on a behavioural level, changes are visible on a neuronal level. Specifically, I 

found that older adults showed an age related reduction in the right 

hemisphere, for right lateralized targets at the early stages of stimuli 

processing, indexed by the N1 component, which was absent in young adults. 

Moreover, the results suggest that older adults used additional neuronal 

recruitment in the later stages of stimuli processing (P3), to compensate for 

increased task difficulty and increased resource allocation, likely improving the 

behavioural results of the older adults so that they were similar to young adults. 

The work presented in this thesis thus suggest that ageing per se does not result 

in an attenuated spatial asymmetry (that would be seen as equal to a decline in 

spatial attention ability). Instead I would argue that, independently of age, a set 

of underlying non spatial factors (such as load for example) influence the 

magnitude and direction of spatial asymmetry. In addition, additional neuronal 

recruitment and intrinsic mechanisms are used in older adults to compensate for 

possible deficits and this results in maintained performance in this age group.  
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Chapter One 
A general introduction to spatial attention and its  

changes throughout the lifespan 

As visual input often exceeds our attentional capacities, adequate information 

processing is a challenge apparent across the lifespan. Spatial attention in 

particular, allows us to selectively attend relevant from irrelevant information in 

space, when navigating through our environment (Posner, 1980). With age, 

cognitive resources are thought to decline thus influencing the ability of 

cognitive processes such as spatial attention, due to changes in neuronal 

activity, as well as possible cortical decline. Some studies argue for a lower 

overall baseline performance with older age (above 50 years old), in contrast to 

young adults (Learmonth, Thut, Benwell, & Harvey, 2015; Madden et al., 2007), 

resulting in greater task difficulty for older adults at baseline (Benwell, Harvey, 

& Thut, 2014). Other studies suggest a faster depletion of attentional resources 

in older adults (Swan, Hutchinson, Everard, & Shimozaki, 2015), which are 

thought to be more susceptible to increased attentional load and increased task 

demands. Spatial attention is also posited to suffer from changes with age, 

reflected in changes of spatial asymmetry likely indicative of neuroanatomical 

changes throughout the lifespan. 

With an increasingly aging population it becomes imperative to understand how 

healthy cognitive ageing is characterized, especially in the domain of spatial 

attention. In a wider context, understanding healthy ageing is beneficial for 

informing methods that hope to improve and maintain functionality throughout 

the lifespan. A better, systematic investigation could also identify ways to 

accommodate challenges in everyday life such as navigating through the 

environment or driving well into the late decades of life. A better understanding 

of the underlying neuronal mechanism of spatial attention with age is also 

beneficial in order to identify possible markers of cognitive decline. Yet, to 

date, little is known about the impact of ageing processes on spatial attention, 

and its progression over the lifespan. Our current understanding of spatial 

attention still lacks systematic investigation of its specific manifestation and the 

associated cortical activations, especially in context of healthy aging. This is 
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specifically relevant for the completion of multiple tasks where a shift of 

attention is imperative, or attentional load is increased, as for example in 

driving a car. Older adults are thought to be more prone to accidents and an 

overall decline in attentional processes, however, it may be too simplistic to 

attribute these changes to aging effects alone. 

Visuospatial attention in healthy adults (Pseudoneg lect) 

In the research literature on visuospatial attention, the emphasize is on a 

particular phenomenon called pseudoneglect, which was firstly reported by 

Bowers and Heilmann (1980). The name was intended to mirror the condition of 

hemispatial neglect, in which patients show inattention to the left side of space, 

due to brain damage to the, often, right hemisphere after stroke (Bowers & 

Heilman, 1980; Jewell & McCourt, 2000). Conversely in pseudoneglect, cognitive 

healthy adults show the opposite pattern, a preference for processing stimuli in 

the left visual field when orienting attention in space (for a review see Jewell & 

McCourt, 2000). For spatial tasks, pseudoneglect is characterised as a relatively 

consistent finding for young healthy adults to err to the left side of space when 

asked to identify the veridical centre of a line (i.e. as in the case of a Manual 

line bisection task). This spatial bias towards the left side of space is interpreted 

as resulting from an asymmetrical distribution of spatial attention resources, 

with a right hemisphere dominance over the left hemisphere that favours the 

left visual field of space when allocating spatial attention (Bowers & Heilman, 

1980; Brooks et al., 2014; Jewell & McCourt, 2000). Interestingly, pseudoneglect 

appears across multiple components, as it has been found in different spatial 

task that require, apart from judgement of size as in the more classic tasks of 

line bisection or landmark task (McCourt & Jewell, 1999), luminance judgements 

(Nicholls, Bradshaw, & Mattingley, 1999), spatial frequency judgements 

(Niemeier, Stojanoski, & Greco, 2007), lateralized visual detection (Hilgetag, 

Théoret, & Pascual-leone, 2001) or emotion discrimination for chimeric faces 

(Failla, Sheppard, & Bradshaw, 2003; Luh, 1995). Moreover, pseudoneglect has 

been repeated in different modalities, in the absence of vision, such as in tasks 

based on auditory, and tactile judgements, as well as in mental representation 

(see Brooks et al., 2016), suggesting that this phenomenon is a manifestation of 

an attentional preference for the left side of space in young cognitive healthy 

adults per se and not purely visual.  
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Age related changes in spatial attention  

A range of studies suggest that with age, this leftward spatial bias is reduced, 

indicating an attenuation of this lateralised spatial attention, resulting in either 

a reduced, or even reversed, spatial bias to the right side of space . However 

over recent years, mixed results of spatial bias manifestations in older adults 

have emerged, including studies arguing for the continuity of pseudoneglect into 

old age(Brooks et al., 2016, 2014). This suggests that a consistent bias to the 

right side with age may be too simplistic a view. As a more detailed review is 

discussed in Chapter 2, here I will give only a brief overview of the research into 

spatial attention in older adults leading to these mixed results.  

An early study of a manual line bisection task showed that, across three 

different age groups (young, middle and older adults), attention shifts to the 

right side tended to increase with age (Fujii, Fukatsu, Yamadori, & Kimura, 

1995), yet, this trend was not significant. Further studies in older adults and the 

use of other commonly used spatial attention tasks, such as a computerised 

version of the manual line bisection task i.e. Landmark task, have reported both 

reduced and reversed spatial biases (i.e. rightward shifts) in older adults 

(Benwell, Thut, et al., 2014; Failla et al., 2003; Fujii et al., 1995; Goedert, 

Leblanc, Tsai, & Barrett, 2010; Hatin, Sykes Tottenham, & Oriet, 2012; Jewell & 

McCourt, 2000; Learmonth, Benwell, Thut, & Harvey, 2017; Learmonth, 

Gallagher, et al., 2015; Loureiro-Silva, D’Almeida, Mateus, Oliveiros, & Castelo-

Branco, 2010; Nagamatsu, Carolan, Liu-Ambrose, & Handy, 2011; Stam & Bakker, 

1990; Veronelli, Vallar, Marinelli, Primativo, & Arduino, 2014) , as well as a 

stable leftward bias (pseudoneglect), which survived into old age (Brooks et al., 

2016, 2014).These findings could be the result of asymmetrical aging of the brain 

but also a consequence of deficits of attentional modulations in elderly people, 

such as decreased sustained attention for example (Benwell, Thut, et al., 2014). 

It is thus important to investigate visuospatial biases throughout the lifespan, in 

order to assess possibly altered perception, as well as the underlying neural 

dynamics as these could be diagnostic of poor cognitive function.  

In Chapter 2, I investigated spatial attention in older adults behaviourally, as the 

current research literature lacks systematic investigation: specifically my aim 

was to understand the direction of spatial bias in older adults on five commonly 
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used spatial attention tasks, namely the Manual Line Bisection task, the 

Landmark task, Gratingscale task, the Greyscale task and a Lateralized Visual 

Detection task. I based this work on the study of Learmonth et al. (2015, 2018) 

who tested healthy young adults, and found that while these common measures 

of spatial bias offer a stable test-test reliability over testing days, they did not 

elicit the predicted leftward bias (pseudoneglect) in all the tasks. Only the 

Landmark and MLB task showed a significant deviation to the left side for young 

adults. In response to these findings and the mixed results for older adults 

reported earlier, I wanted to systematically investigate the direction and test-

retest reliability of spatial bias over multiple testing days for older adults, and 

assess just how they differ from the collected young adults sample by Learmonth 

et al. (2015, 2018). I predicted that with age, there might be a greater degree of 

variability between testing days in that older adults might be more heavily 

influenced by external factors such as changes in alertness between testing 

sessions. In addition, I wanted to investigate the correlation between the spatial 

measures as repeatedly now, a lack of inter task correlation has been shown 

(2015, 2018) and this poses a limitation on translating bias changes into real life 

scenarios.  

In fact especially for an ageing population, even though a change of asymmetry 

of spatial attention may indicate cortical changes virtually nothing is known of 

possible adverse effects to everyday life. Only a very limited amount of studies 

have investigated the relationship between spatial bias and everyday life 

scenarios such as navigation through the environment. Research suggest that 

people overestimate the left side of space, which results in a behavioural shift 

to the right side of space in a form of compensation during navigation, i.e. 

bumping into obstacles or doorways (Nicholls et al., 2010; Nicholls, Loftus, 

Mayer, & Mattingley, 2007; Thomas et al., 2017). Moreover, there appears to 

also be a link between increased right bias in older adults and increased risk of 

falling (Nagamatsu, Liu-Ambrose, Carolan, & Handy, 2009). This highlights the 

importance of investigating laboratory based spatial biases and ‘real life’ 

behaviour further. Therefore, in chapter 2 I was also interested in investigating 

possible existing relationships between a simulated driving task and the obtained 

measures of spatial attention. In particular I investigated whether a deviation 
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from true centre in spatial measures to either side, translated into lane 

positioning in a simulated driving task. 

Hemispatial Neglect 

As briefly mentioned earlier, there has thus been an implicit assumption that 

pseudoneglect equates to healthy cognitive performance in spatial attention and 

that any deviation from the leftward bias, especially with age, may suggest 

changes in the neuroanatomy or neurophysiology, such as a reduction of right 

hemisphere activity with age. Yet, at present, the current research literature 

offers little insight into the neural correlates underpinning visual attention in 

the healthy ageing brain. Thus far, our understanding of visuospatial attention 

stems predominantly from young to middle aged healthy participants or clinical 

studies based on patients with hemispatial neglect (typically resulting from right 

hemisphere stroke (Heilman & Valenstein, 1979; Jewell & McCourt, 2000). 

Investigations into hemispatial neglect in particular, have influenced the 

development of cognitive models that attempt to explain spatial attention and 

pseudoneglect. From the phenomenon of hemispatial neglect, we know that (in 

most cases) damage to the right hemisphere after stroke leads to an inability for 

patients to attend to the space contralateral to the damage damaged part of 

their brain(Heilman, Bowers, Valenstein, & Watson, 1987; Heilman & Abell, 

1980; for a review Rode, Pagliari, Huchon, Rossetti, & Pisella, 2017). This often 

translates into a large asymmetry bias towards the right side of space, as the 

left space is neglected (unattended) and patients are unable to respond, attend 

or report to stimuli in this neglected space unless their attention is directed 

towards it (see (Heilman et al., 1987). Unsurprisingly, this has dramatic effects 

on the patients’ everyday life, including their ability to securely manoeuvre and 

navigate through their environment without collision to obstacles that they are 

not aware of, as well as social interactions or mundane everyday activities such 

as eating, resulting in i.e. not attending to/ eating one side of the plate(Nijboer, 

Kollen, & Kwakkel, 2013). Despite continuous research, there is, to date, no 

reliable therapy to rehabilitate hemispatial neglect (Bowen, Hazelton, Pollock, 

& Lincoln, 2013; K. P. Y. Liu, Hanly, Fahey, Fong, & Bye, 2019). In the same 

vein, understanding the neurological/physiological as well as behavioural 

patterns of spatial attention in healthy aging is vital also for uncovering critical 
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markers of decline and also possible avenues for future therapies to rehabilitate 

disruption of spatial attention.  

Models of spatial attention and cognitive ageing 

So largely derived from patient studies of hemispatial neglect, several models of 

visuospatial attention have been suggested to explain pseudoneglect. A 

prominent model is the right hemisphere (RH) dominance model which suggests 

that spatial selective attention results from stronger activation of the RH over 

the left hemisphere (LH), which leads to an overestimation of features within 

the contralateral left space ( Heilman & Van Den Abell, 1979).  

Alternatively, the interhemispheric competition model of spatial attention 

(Benwell, Thut, et al., 2014; Kinsbourne, 1977) suggests that attentional 

asymmetries arise due to different activation of the LH and RH. Instead of a RH 

dominance, both sides compete in activation, leading to a relative imbalance of 

activity within the left and right hemispheres, giving rise to a spatial attention 

bias. In this model, attention is thought to be balanced across both hemispheres 

(J. Chen & Niemeier, 2017; Dolcos, Rice, & Cabeza, 2002; Kinsbourne, 1977). 

Yet, the right inferior parietal lobe is thought to be dominant in tasks involving 

bilateral allocation of attention, which links to the observation of greater 

impairment (Cicek, Deouell, & Knight, 2009), such as in neglect, after brain 

damage to the RH (Weintraub & Mesulam, 1987). According to this approach, 

damage to the RH, as typically observed in such neglect patients, would lead to 

a rightward attentional shift and reduced leftward attention due to an 

imbalance between the hemispheres. Thus, both models suggest a contribution 

of the two hemispheres to the contralateral visual field, although they differ in 

their precise involvement.  

Another influential model of spatial attention describes shared networks that 

modulate and shift spatial attention and rely predominantly on a bilaterally 

activated dorsal fronto- parietal network (DAN) and a right hemisphere dominant 

ventral attention network (VAN) (Corbetta, Patel, & Shulman, 2008; Kinsbourne, 

1977; Mesulam, 1999). Therefore, any observed asymmetries in spatial attention 

are mediated in the dorsal orienting network (DAN) which controls top down 

attention towards stimuli (location in space) (Chandrakumar et al., 2019; 
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Corbetta et al., 2008; Corbetta & Shulman, 2011). The dorsal network is 

bilaterally active across both hemispheres, anatomically connecting the 

intraparietal sulcus with the frontal eye fields, via the superior longitudinal 

fasciculus white matter tracts (Corbetta & Shulman, 2011; de Schotten et al., 

2011; Ptak, 2012). In contrast, the ventral network is proposed to be lateralised 

towards the right hemispheres. Anatomically, it connects the temporoparietal 

junction (TPJ) and the ventral frontal cortex (Corbetta & Shulman, 2011; de 

Schotten et al., 2011). This VAN controls the interhemispheric competition of 

the bilateral dorsal orienting network (Corbetta et al., 2008). The ventral 

attention network is therefore more sensitive to changes that can influence 

spatial attention such as decreased attention, i.e. during prolonged time-on -

task (Benwell, Thut, Learmonth, & Harvey, 2013; Nagamatsu et al., 2011, 2009; 

Nagamatsu, Munkacsy, Liu-Ambrose, & Handy, 2013; Newman, O’Connell, & 

Bellgrove, 2013) or possibly ageing (Benwell, Thut, et al., 2014; Schmitz, Dehon, 

& Peigneux, 2013; Schmitz & Peigneux, 2011). Such non-spatial factors are 

proposed to have a decreasing effect on the activation of the ventral network 

and are meant to result in decreased RH activation, which is reflected in 

attenuated spatial biases to the right side of space (Corbetta & Shulman, 2011; 

Newman et al., 2013; Takio, Koivisto, & Hämäläinen, 2014)  

With respect to ageing, no neural model underpinning spatial processing has 

been proposed specifically as yet. The Hemispheric Asymmetry Reduction in 

Older Adults (i.e. the HAROLD) model(Cabeza, 2002; Cabeza, Anderson, 

Locantore, & McIntosh, 2002; Cabeza et al., 2004, 1997; Dolcos et al., 2002; 

Huang, Polk, Goh, & Park, 2012; Reuter-Lorenz et al., 2000) proposes that with 

age lateralized processes observed in young adults are more represented 

bilaterally, leading to a reduction of asymmetry between the hemispheres. 

Although the HAROLD model has been investigated predominantly with memory 

tasks (Bäckman et al., 1997; Cabeza et al., 2004; Grady, Bernstein, Beig, & 

Siegenthaler, 2002; Logan, Sanders, Snyder, Morris, & Buckner, 2002; Schmitz et 

al., 2013), such reduction in asymmetry could be the result of compensatory 

mechanisms to counteract processing deficits with age (Cabeza, 2002) and could 

also apply for spatial attention (see Cabeza, 2002; Cabeza et al., 2004; Dolcos et 

al., 2002).  
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Another newer model attempting to incorporate age related changes in 

attention is the ‘compensatory-related utilisation of neural circuits hypothesis’ 

(CRUNCH) Model (Reuter-Lorenz & Cappell, 2008), which suggests additional 

recruitment as a form of compensation of declining cognitive processes with 

age, via additional neural resources. While the HAROLD model differentiates 

between the 2 hemispheres, the CRUNCH model suggests that additional 

neuronal resources could be recruited from any part of the brain to compensate 

processes(Reuter-Lorenz & Cappell, 2008). The CRUNCH is therefore not limited 

to lateralization but could account for the observed  shift to more anterior 

activity from posterior processes with age (Huang et al., 2012). At present, the 

field lacks a model that can fully account for possible healthy age related 

changes in spatial attention, yet the proposed models provide a good framework 

for investigating the underlying neuronal mechanism at play.  

Attentional load modulates spatial attention 

Past research has established already that the degree of spatial bias can be 

influenced by non-spatial modulators. Research in patients and participants with 

acquired deficits in sustained attention (ADHD) (Bellgrove, Eramudugolla, 

Newman, Vance, & Mattingley, 2013) have reported changes in spatial bias with 

increase and decrease of vigilance or alertness (Bellgrove, Dockree, Aimola, & 

Robertson, 2004). Generally, increased alertness leads to a shift towards the left 

side of space while a reduction of alertness can attenuate spatial bias towards 

the right side of space, even in healthy young adults, in a variety of tasks 

(Bellgrove et al., 2004; Fimm, Willmes, & Spijkers, 2006; Manly, Dobler, Dodds, 

& George, 2005; Matthias et al., 2009; Schmitz, Deliens, Mary, Urbain, & 

Peigneux, 2011) but see Chandrakumar et al. (2019)for a review. Modulating 

factors that impact on attention can also include extended time-on task 

(Benwell, Harvey, Gardner, & Thut, 2013) or increased task difficulty through 

cognitive load (Dodds et al., 2008; Peers, Cusack, & Duncan, 2006), in addition 

to possible age related factors with healthy aging. 

In addition, O’Connell et al.(2011) and Bonato et al.(2015) suggest a modulating 

effect of increased attentional load on spatial attention, reflected in the 

attenuation of behavioural spatial bias as well as changes in the neuronal 

processing under increase of load (see O’Connell et al., 2011): Using a dual task 
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paradigm in which attentional load was increased via three levels (no load, low 

attentional load and high load), O’Connell et al. (2011) investigated the 

perceptual processing of lateralized stimuli in healthy adults, and reported 

evidence for an asymmetrical effect of early visual orienting on a neuronal level, 

as indexed by changes in the P1 and N1 components due to changes in 

attentional load. In particular, they reported increased recruitment of 

attentional resources when attentional load was engaged the most (high 

attentional load condition), and reflected in enhanced P1 and N1 waveforms at 

the early visual processing stage of stimuli processing. Further, they found a 

slower processing of and response to the peripheral stimuli when central load 

was increased (from no load), reflected in reduced peripheral P2 and P3 

components. In light of ageing, changes in the neuronal correlates may be more 

pronounced when attentional load is increased and tasks become more difficult. 

Perhaps, for older adults the results would show reversed effects in behavioural 

spatial bias as well as on a neuronal level indicating structural changes with age. 

Yet, until now this has not been investigated systematically.  

So in Chapters 3 and 4 I aimed to investigate exactly this. Firstly, I studied the 

modulating effect of attentional load on spatial attention to see if attentional 

load had greater attenuating spatial bias effects in older adults. The results 

informed my final experiment where I employed EEG in order to investigate 

possible age related changes at the electrophysiological level. In the absence of 

behavioural differences between young and older adults, it is possible that age 

related changes are still present at the neuronal level, due to differences in 

resource allocations or internal motivation  

Decline of hemispheric lateralization with age 

The previously discussed (and also questioned) trend towards a behavioural 

attenuation of spatial bias, or a reversal into the right side of space for older 

adults (as well as models of neurocognitive aging such as the CRUNCH (Reuter-

Lorenz & Cappell, 2008) and HAROLD model (Cabeza, 2002; Dolcos et al., 2002)) 

highlight the right hemisphere as a likely area for observing a decline of 

lateralized neural activity. In young adults, spatial attention tasks such as the 

landmark task have been found repeatedly to elicit greater right hemisphere 

activity when comparing the engagement of lateralised attention networks 
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(Benwell, Thut, et al., 2014; Foxe, McCourt, & Javitt, 2003; Longo, Trippier, 

Vagnoni, & Lourenco, 2015), with a particular emphasis on the right parieto- 

occipital cortex and the right temporoparietal junction (TPJ) (Benwell, Harvey, 

et al., 2014; Benwell, Thut, et al., 2014; Foxe et al., 2003; Learmonth, Benwell, 

et al., 2017) as the source location for the spatial bias.  

Only a few studies have, at present, investigated age related reductions of 

asymmetric lateralization in spatial attention specifically. However, they 

confirm the notion of a lateralized reduction of the right hemisphere. For 

example, Nagamatsu et al. (2011) identified a reduction in the ability to allocate 

spatial attention in a top down manner for the left visual field in older adults, 

indicting a decline in activity for the right hemisphere. For the ‘anterior 

directing attentional negativity’ (ADAN) component, older adults showed an 

advantage for right targets in the contralateral hemisphere, but left targets 

elicited only a small advance in amplitude activity for the contralateral RH over 

the LH. In contrast, young adults showed much stronger ADAN amplitudes for 

both left and right targets in their contralateral hemispheres. This supports age 

related changes in lateralization.  

A more recent EEG study by Learmonth et al. (2017) also confirmed this age 

related reduction of lateralization.  They reported an absence of lateralization 

in older adults as compared to larger right parieto – occipital response in young 

adults for spatial bias in a landmark task. In Chapter 4, I thus aimed to 

investigate the neuronal mechanisms of spatial attention in older adults by 

manipulating attentional load. With the use of EEG, I aimed to investigate the 

following: does a change in attentional load modulate spatial attention and if 

yes, are such effects more pronounced in older adults? Moreover, I was 

interested in understanding how the modulating effects of attentional load were 

reflected in the neuronal activity in older adults, and if an increase in 

attentional load would be reflected in a greater reduction of RH lateralization or 

an absence of lateralization, in contrast to young adults. 
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Overview of Thesis 

The present thesis presents results of four experimental studies investigating 

spatial attention in cognitive healthy older adults.  

In the first study (Chapter 2), my focus was on the behavioural evidence of age 

related changes in visuospatial attention. I aimed to identify and understand the 

magnitude and direction of spatial attentional biases in an older adult sample 

and understand how they may differ from a sample of young adults, with respect 

to their robustness over different days of testing and across different tasks of 

spatial attention. I investigated the test-retest reliability of 5 commonly used 

spatial measures of spatial attention in healthy older adults and contrasted the 

findings with the earlier obtained young adults sample from Learmonth et al. 

(2015, 2018). I also investigated if and how, the obtained spatial biases translate 

into driving behaviour as measured in lane positioning in a driving simulation 

task.  

In the following two experiments, I aimed to explore how an increase of 

attentional load (and therefore indirectly assessing the impact of task difficulty 

and/or sustained attention), modulates spatial attention. Again, with a special 

focus on the aging population, I wanted to map age related differences in spatial 

attention and how they might translate into the neuronal correlates, using 

electroencephalography (EEG). 

Specifically, in Chapter 3 I investigated the direction of young and older adults’ 

behavioural spatial bias in a spatial dual task while attentional load was 

increased in a low and high attentional load condition. The results of this study 

informed the final EEG experiment in Chapter 4, where I argue that age related 

changes in spatial attention might be absent in behavioural shifts of spatial 

attention, but visible in the neural mechanisms underlying spatial attention. I 

used EEG and investigated stimuli evoked event related potentials, to uncover 

age related differences as a result of cortical structural changes and possible 

resource distribution with healthy aging, and compared them to behavioural 

measures of possible spatial shifts.  
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In the final Chapter Five, I discuss the findings of the thesis in relation to the 

wider literature concerning healthy aging. I conclude by suggesting possible 

future directions for research into age related changes of spatial attention 

asymmetries in healthy cognitive ageing.  
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Chapter Two  
Investigating intra-and inter task reliability of 

spatial attention measures in healthy older adults 

As stated in chapter 1, with a growing senior population in our society, 

understanding healthy cognitive ageing is imperative for identifying possible 

markers of cognitive decline. Yet, to date, little is known about the impact of 

ageing processes on spatial attention, and its progression over the lifespan. Thus 

far, research investigating visuospatial attention in healthy, predominantly 

young to middle aged participants, describes an attention asymmetry towards 

the left visual space, termed “pseudoneglect” (Bowers & Heilman, 1980). In 

pseudoneglect, young adults show an attention asymmetry, typically displaying a 

leftward spatial bias, when asked to estimate the veridical centre of a centrally 

presented line in the line bisection task (Jewell & McCourt, 2000). In contrast, 

patients with neglect (typically resulting from right hemisphere stroke) show the 

opposite pattern: a large rightward spatial attention bias due to perception 

deficits in the contralesional side of visual space (K. M. Heilman & Abell, 1980). 

There has thus been an implicit assumption that the presence of pseudoneglect 

equates to healthy cognitive performance in the spatial attention domain. In 

addition, across the lifespan, older adults have been thought to show a 

reduction of this lateralised spatial attention, resulting in either a reduced or 

even reversed spatial bias to the right side of space, comparable to patients 

suffering from hemispatial neglect (Harvey, Milner, & Roberts, 1995; Olk & 

Harvey, 2002). However, the evidence paints a mixed picture, with some recent 

studies reporting maintained leftward biases into older age e.g. (Brooks et al., 

2016; Friedrich, Hunter, & Elias, 2016). As such, the premise of a rightward shift 

occurring in all older adults, and across all spatial attention measures, is likely 

to be too simplistic.  

Five commonly used spatial tasks  

Recently Learmonth et al.(2015, 2018) investigated the inter- and intra- task 

reliability of five common measures of spatial attention in young adults; 

(Landmark task (LM), computerised Manual Line Bisection task (MLB), Greyscale 

task (GREY), Gratingscale tasks (GRA), Lateralised Visual Detection task (LVD). 

They reported moderate-to-strong correlations of the 5 tasks across different 
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testing days, suggesting that each of them are reliable measures of spatial bias 

on their own. However, only the landmark and line bisection task displayed a 

leftward bias, (pseudoneglect) in young adults across both days. Moreover, they 

reported a lack of correlation between the spatial tasks. This is a problem across 

a variety of spatial tasks used in the current literature (Heber, Siebertz, Wolter, 

Kuhlen, & Fimm, 2010; Luh, 1995; Nicholls et al., 1999). Hence, to reliably 

assess and differentiate between age related changes in pseudoneglect, when 

testing older adults, and neurological deficits linked to neglect in older adults, it 

is important to understand spatial attention as a multi component phenomenon 

(see Learmonth, Gallagher, et al., 2015) and understand the components 

assessed when using different spatial measures 

Spatial attention in older adults  

It recently become apparent that the direction of the spatial biases in 

cognitively healthy older participants are even less consistent across the wider 

literature (Friedrich et al., 2018) and below I briefly present findings for the 5 

most commonly used spatial tasks described above. 

Manual Line Bisection Task 

So far, line bisection tasks have yielded varied results, with some reporting a 

shift of bias towards the right side of space in older adults compared to young 

adults (Barrett & Craver-lemley, 2008; P. Chen et al., 2011; Failla et al., 2003; 

Fujii et al., 1995; Goedert et al., 2010). Specifically, an early study on a manual 

line bisection task showed that, across three different age groups (young, middle 

and older adults), older adults generally shifted towards favouring the right side 

of space, with the largest rightward biases in the oldest group (Fujii et al., 

1995). In contrast, studies also report a lack of spatial bias , as well as a lack of 

age related differences in spatial bias between young and older adults, with 

older adults showing no directional bias at all (De Agostini, Curt, Tzortzis, & 

Dellatolas, 1999; Halligan, Manning, & Marshall, 1990; Hatin et al., 2012; 

Learmonth, Märker, McBride, Pellinen, & Harvey, 2018). Moreover, a more 

recent study by Brooks, Darling, Malvaso, and Della Sala (2016) identified a 

maintained leftward spatial bias in older adults, reporting pseudoneglect in both 

young and older groups. This was also true for tasks which did not allow visual 
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involvement such as the rod bisection task, which uses tactile information for 

bisection, or the mental number representation which requires a mental 

visualisation to allow estimation of the median number between a pair of 

numbers. 

Landmark task 

Similarly, in the landmark task, results have spanned from reduced to reversed 

spatial biases (i.e. rightward shifts) in older adults(Benwell, Thut, et al., 2014; 

Learmonth, Benwell, et al., 2017; Schmitz et al., 2013; Schmitz & Peigneux, 

2011) while others found no age differences for group level spatial biases despite 

a trend towards the right side of space in older adults compared to young adults 

(Learmonth, Benwell, et al., 2017; Learmonth, Märker, et al., 2018).  

Greyscale task 

Other tasks probing spatial lateralisation involving target features have been the 

Greyscale (Nicholls et al., 1999) and the procedurally similar Gratingscale 

(Niemeier et al., 2007) task. For both tasks, pseudoneglect has been reported in 

young adults (Nicholls et al., 1999; Niemeier et al., 2007). With regard to spatial 

lateralisation in older adults, results are sparse and tend to focus on patient 

groups with hemispatial neglect. So far, only two studies have reported on the 

performance of older adults on the greyscale task, both suggesting a reliable 

leftward bias in older adults (pseudoneglect) (Friedrich et al., 2016; Mattingley 

et al., 2004). Interestingly, investigating seven age groups, Friedrich et al. 

(2016) highlighted that all age groups showed a leftward bias, with the strongest 

leftward bias in the oldest age group (80-89 years), as compared to the youngest 

age group (18-29 years). This shows further evidence for leftward biases with 

increased age rather than a reduced pseudoneglect pattern.  

Gratingscale task 

Particularly, the Gratingscale task has not yet been investigated in cognitively 

healthy older adults. Based on the results from Niemeier et al.(2007), young 

participants are more likely to judge the left visual side of space as higher-

frequency patterned if the side included a portion of “thin stripes”. However, 
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Learmonth et al.(2015) reported no spatial bias in young adults when judging 

High spatial frequencies over multiple days. 

Lateralised Visual Detection task 

The same variation in spatial asymmetry was reported for the lateralised visual 

detection task, displaying a leftward bias in young adults (Hilgetag et al., 2001; 

Learmonth, Thut, et al., 2015), as well as an absence of bias in young adults 

when targets were not titrated (Learmonth, Gallagher, et al., 2015). Older 

adults showed no spatial bias to either side of space, even with titrated targets 

(Learmonth, Thut, et al., 2015), suggesting an attenuation of spatial bias.   

Lane Keeping Task  

Finally, the relationship between laboratory based measures of spatial bias and 

real life simulations of everyday navigation is still contentious, especially for the 

ageing population. Akin to the spatial attention tasks described, investigations 

tend to focus on young adults. Research suggest that people overestimate the 

left side of space, which results in a behavioural shift to the right side of space 

as a form of compensation during navigation, i.e. bumping into obstacles or 

doorways (Nicholls et al., 2010, 2007; Thomas et al., 2017). Moreover, visuo-

spatial skills, like mental rotation (Turnbull, Carey, & McCarthy, Rosaleen, 

1997), appear to correlate with manual line bisection tasks (Roberts & Turnbull, 

2010), suggesting an underlying mechanism that influences both tasks. In 

Learmonth et al. (2018)the present sample of older adults was compared to 

young adults on a simulated driving task and the LM and MLB task. Results 

showed a negative correlation for young adults between a right lateralised lane 

positioning in the driving task and a leftward bias (pseudoneglect) in the 

landmark task. Whereas older adults also maintained a rightward bias in lane 

positioning during the driving task, the obtained spatial measures did not inter 

correlate between the tasks. This highlights the importance to investigate 

laboratory based spatial biases and ‘real life’ behaviour further in order to 

investigate whether a deviation from true centre in spatial measures translate 

into driving behaviour. 
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Aims and Hypotheses 

Given this lack of consensus, it is thus important to investigate visuospatial 

biases across the lifespan in order to assess underlying neural dynamics in older 

age, as well as potentially identifying diagnostic markers of pathological 

visuospatial perception. This paper expected to achieve two aims: As the 

majority of spatial attention research focuses on young adults, there is a lack of 

understanding whether spatial biases in healthy older adults are 1) stable over 

time and 2) stable across different tasks. Taking previous findings into 

consideration (Learmonth, Gallagher, et al., 2015, 2018), I tested the inter-task 

and intra-task reliability for five commonly used measures for spatial attention: 

1) Manual Line Bisection 2) Landmark, 3) Greyscales, 4) Gratingscales, and 5) the 

Lateralised Visual Detection task in an ageing population. It was predicted that 

older adults would show weaker correlations in terms of their spatial attention 

bias across different measures and across testing sessions, similar to previous 

results using the lateralised visual detection task (2015, 2018). Furthermore, I 

investigated whether the spatial tasks used here reflect a spatial bias in a more 

complex driving task. A maintained pseudoneglect with age should result into an 

overcompensation and drift to the right side of space in the driving task. A 

correlation between testing sessions of the spatial tasks in older adults would 

provide evidence that the employed measures are reliable and sensitive 

measures of spatial attention, even in an older population. As previous results 

have been mixed, this study is expected to give valuable insights into the 

accuracy and sensitivity (within and across) each of these measurements, and 

ultimately guide researchers and clinicians into choosing the most sensitive task 

to assess spatial bias across the life span.  
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Methods 

Participants 

Thirty-seven cognitively healthy older adults aged between 60 to 86 years were 

tested (19 Females, M = 71 years; S.D. = 6.05). The study received ethical 

approval from the University of Glasgow, College of Science and Engineering 

Ethics Committee, and participants gave written informed consent before 

participation. 

Pre-screening measurements 

All participants were right handed and had normal or corrected-to-normal vision, 

as per Snellen chart (280 cm viewing distance). Participants were pre-screened 

for possible visual field changes and detection accuracy of small stimuli with a 

short computerised assessment (see Learmonth, Benwell, et al., 2017): Over 36 

different positions, a small black dot (10 x10 pixel) appeared for 150ms. 

Participants were instructed to press the spacebar if they perceived the dot 

anywhere on the screen, while fixating on the cross in the middle of the screen. 

The 36 locations extended to 12.0° visual angle (VA) from the fixation along the 

vertical axes and 16.06 ° VA along the horizontal axis (see Figure 3). A total of 

72 trials were presented (36 locations x2) including 24 ‘catch’ trials where 

responses were withheld. No participants were excluded based on this visual 

acuity screening. Furthermore, participants were screened for mild cognitive 

decline with the Montreal Cognitive Assessment test (MOCA) (Nasreddine, 

Charbonneau, & Cummings, 2005) and all showed normal performance (M = 

28.61; S.D. = 1.06).  

Procedure  

The procedure was identical to Learmonth et al. (2015), however a pilot phase 

in 3 older adults highlighted that the LVD task used in Learmonth et al. (2015) 

was too perceptually challenging for older adults, and was adapted for this 

study. The study was conducted over two separate sessions (a minimum of 24 

hours apart) lasting around 1.5 hours (short breaks included). Participants were 

asked to rate their subjective alertness (from 0 = almost asleep to 100 = fully 

alert) on a linear scale before and after each session. They were seated in a dark 
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room in front of a computer screen. The viewing distance was kept constant at 

60cm from the screen using a chin rest. Each participant completed 5 common 

spatial tasks: 1) Manual Line Bisection (MLB), 2) Landmark task (LM), 3) 

Greyscale task (GREY) 4) Gratingscale task (GRA), 5) Lateralised Visual Detection 

Task (LVD). The test order was counterbalanced across the participants. On both 

testing days, the task order was kept identical for each participant. Each task 

was introduced with written and verbal instructions and a practice trial of 

around 20 trials. The blocks lasted roughly 5 minutes each and allowed for a 

break afterwards. The data of the total 40 participants for the MBL, LM and 

driving task on day one have been described in Learmonth, Märker, et al. (2018). 

Stimuli 

 
Figure 1 Schematic representation of the Stimuli 
Examples of the (a) manual line bisection (MLB), (b ) landmark (LM), (c) greyscales (GREY) 
and (d) gratingscales (GRA) stimuli. See Learmonth et al. (2015) PLOS ONE doi: 
https://doi.org/10.1371/journal.pone.0138379.g001 ,   

The stimuli were presented using E-Prime 2.0 (Psychology Software Tools Inc., 

Pittsburgh, PA) and obtained measures of reaction time and accuracy. The study 

was executed on a Dell Precision 380 PC and a 19” Dell 1908FP Ultra Sharp LCD 

flat screen monitor, with a 1280x1024 pixel resolution. The five spatial tasks 

described in Learmonth et al. (Learmonth, Gallagher, et al., 2015)(and identical 

in method and measures) were used, with only the viewing distance shortened 

from 70 to 60cm  to accommodate the older sample. The LVD task was also 

slightly modified to meet the requirements of this older adult sample (see task 

description below).  
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Manual Line Bisection task (MLB) 

Participants were asked to indicate the horizontal centre of a line with the 

mouse cursor. They completed (108 trials) in which a horizontal white line (805x 

15 pixels / 23. 5cm x 0.4cm with a 22.16 x 3.81° visual angle, (VA)) was 

presented for a maximum of 6 seconds on a grey background (Figure 1a). The 

position of the line varied laterally on a trial by trial basis, presented at 9 

different positions repeated for 12 times along the horizontal axis to the left and 

to the right of veridical centre (0 = centred, and 40, 80, 120 and 160 pixels, 

1.01, 2.02, 3.03, 4.04 ° VA). The mouse pointer appeared at the top centre of 

the screen (screen co-ordinates: X = 640, Y = 40 pixels; 16.06° above fixation) at 

the start of each trial and was dragged down by the participant to bisect the line 

using the left-click of the mouse as accurately as possible. A response triggered 

the onset of a new trial, with the stimulus appearing after 1000ms. If no 

response was given, the next trial started after 6 seconds had elapsed. 

Landmark task (LM) 

In each trial, participants were instructed to indicate which side of a pre-

transected centrally presented line was shorter using the ‘v’ (left) or ‘b’ (right) 

keys (Jewell & McCourt, 2000; Learmonth, Gallagher, et al., 2015; Milner, 

Brechmann, & Pagliarini, 1992). The trial started with a central fixation cross 

(15x15 pixels; 0.38° VA) for 1000ms followed by a stimulus that appeared for 

150ms. A forced-choice response was required in order to move to the next trial. 

The stimuli consisted of horizontal 100% black and white Michelson contrast lines 

(800 x14 pixels; 23.5cm x 0.4cm; 20.01 x 0.35° VA). The shading of the upper 

left and lower right was randomised, with half of the trials involving a dark 

upper left/lower right, and half lower left/upper right (see Figure 1b).  The line 

was vertically transected at the veridical centre of the screen. The asymmetry 

of the line varied across trials, resulting in 17 different stimuli with 8 

repetitions. The left and right sides of the most asymmetric lines differed by 24 

pixels (0.6° VA). Stimuli varied in size, with a decrease of 3-pixels (0.08° VA) per 

stimulus. One final stimulus involved lines where both sides were equally long.  



29 
 
Greyscale task (GREY) 

Participants were instructed to indicate which of two horizontally parallel 

rectangular bars were darker overall (Learmonth, Gallagher, et al., 2015; 

Mattingley et al., 2004). The bars were gradually shaded from black to white 

until 100% luminance in black on one side and white on the other side was 

reached, resulting in a steady luminance gradient. The upper bar was then 

flipped along the vertical axis so that the lower bar was shaded from black to 

white in the inverse direction relative to the upper bar (Figure 1c) To allow for 

an analysis method of psychometric curve widths, a “window of interest” which 

spanned 640 pixels (80% if the line length, 16.06° VA) was shifted along the 

horizontal axis to create the stimuli. A total of 17 different stimuli were used, 

were each window was moved in 10- pixel instalments (0.25 VA) to either side of 

space (800 x 100 pixels (approximately 23.5cm x 2.9cm; 20.01 x 2.53° VA) with a 

distance of 41 pixels (1.04°) between the bars. Prior to each trial, a fixation 

cross was presented for 1000ms, followed by the stimulus for 150ms, and a key 

press choice indicating if the upper or lower bar was darker overall, with 

participants using the “upwards arrow” or the “downwards arrow” with their 

right hand. The maximum deviation from symmetry differed by 80 pixels (2.02°; 

-10% or +10% of total length). The remaining part of the bar was completed with 

either white or black. The block entailed 136 trials with 17 Stimuli which were 

repeated 8 times, half of which showed black in the upper left and lower right 

and vice versa.  

Gratingscale task (GRA) 

Participants had to indicate via key press (up or down arrow) which horizontal 

rectangular had more thin stripes over all: the top bar or the parallel presented 

bottom bar (Learmonth, Gallagher, et al., 2015; Niemeier et al., 2007). One 

block entailed a total of 136 trials with 17 Stimuli which were repeated 8 times 

in a trial. A fixation cross appeared for 1000ms followed by the stimulus for 

150ms, and a response which triggered the next trial. The stimuli were identical 

to Learmonth et al. (2015) (see for stimuli details). The rectangular bar was 

sine-wave grated with high-frequency grating (35 pixels per cycle; 1.15 cycles 

per degree of visual angle (cpd)) at one end and low-frequency (11 pixels per 

cycle; 3.49 cpd) at the other end (Figure 1d). Half of the stimuli had high 
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frequency grating on the upper left and lower right side, and the other half had 

higher grating on the upper right and lower left side. A central segment of 400 

pixels (50% of the total length, 10.08°) was shifted in 12-pixel (0.30°) 

instalments to either the left or right side to compile 17 different stimuli with 

the maximum deviation from symmetry at 96 pixels (2.43°; -12% or +12% of total 

length), and the rest filled with high or low frequency pattern to continue the 

gradient pattern. Identical to Learmonth et al.(2015, 2018), consisting of 5 

spatial frequencies, the central segment included 4 sine wave cycles per 

frequency. The frequencies ranged from the lowest frequency at 35 to 26, 19, 14 

and the highest frequency at 10 pixel per cycle (i.e. the number of pixels per 

cycle reduced by a factor of approximately x 0.74).    

Lateralised Visual Detection task (LVD) 

Participants were instructed to indicate whether they saw a small target 

appearing on their left or right side, with a key press (“v” for left, “b” for right) 

or no response when no dot appeared (catch trial) (Hilgetag et al., 2001; 

Learmonth, Gallagher, et al., 2015).A fixation cross appeared for 1000ms 

followed by the stimulus for 40ms. Participants had to make a response within 

1750ms before the next trial started, in order to allow “catch trials” and false 

negatives. The stimuli consisted of a small target presented either to the left (-

145mm; -13.78° VA) or right visual field (+145mm; +13.78° VA)., In contrast to 

the young sample, the current stimuli consisted of 10 different sizes (1x2, 2x2, 

2x3, 3x3, 3x4, 4x4, 4x5, 5x5, 5x6, 6x6 pixels ; ranging from 0.03 x 0.05° VA to 

0.13 x 0.15° VA), to accommodate the greater variability in detection sensitivity 

in the older adults (Learmonth, Thut, et al., 2015). The block consisted of 126 

trials for the ten different dot sizes (6 left and 6 right for each of the 10 

stimulus sizes, i.e. 60 total targets), plus 6 catch trials. In Learmonth et 

al.,(2015, 2018), young adults were presented with stimuli of 5 different sizes 

only (1x2, 2x2, 2x3, 3x3, 3x4 pixels yet 132 targets).  
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Lane -Keeping task (LK) 

 
Figure 2: Lane Keeping –task  
The screen shot displays the setup of the driving s imulation.  

The procedure and set up were identical to Learmonth et al. (2018) where I 

presented a small subset of the data (but see (Mattes, 2003) for technical details 

also). Older participants completed the task, in a different laboratory to the 

spatial tasks, on a Dell Precision T7400 PC with a Dell Ultrasharp 2408WFP 24” 

LCD computer screen (1680x1050 pixel resolution). Viewing distance was kept at 

approximately 1m to the screen, while participants operated a steering wheel 

and 3 pedals, focussing on the break and gas, simulating a realistic driving set 

up. They were instructed to keep a steady speed of (simulated) 60mph and to 

place themselves in the centre of the simulated street lane (before passing a 

yellow start sign), and to hold a central position throughout driving. Each 

participant completed 3 laps with the 1st lap as a practice trial. The parkour 

entailed a right bend curve which transitioned into a straight lane. Throughout 

the duration of one lap, participants had to keep to a centred position within 

the middle lane and where instructed to make adjustments via the wheel, when 

deviating from the centre of the lane. Furthermore, they were told to ignore any 

road signs displayed along the parkour (18 signs with an interval of 150ms) but 

instead focus on the task instructed. However, for each participant, 18 time 

points were extracted from these signs to calculate the mean lane position (in 

simulated meters) across the two laps, separately for testing Day 1 and Day 2. 

Participants took approximately 3 minutes to complete one lap (simulation of 

3km x 3,85m per lap) (see (Learmonth, Märker, et al., 2018; Mattes, 2003). 
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Analyses 

Analysis of PSE and Curve Widths 

The point of subjective equality (PSE) was analysed for the five tasks in order to 

estimate the magnitude of a spatial bias. Results were then transformed into % 

of total line length, relevant to the stimuli. The Landmark (LM), Greyscales task 

(GREY) and Gratingscale (GRA) were analysed in a similar manner. A percentage 

score was calculated for each of the 17 stimuli separately, where the 

participants perceived the stimulus to be either longer (LM) / darker (GREY) / 

have more “thin stripes” (GRA) on the right side of space. 

Following this, the data were plotted as psychometric curves (17 stimuli vs 

percentage of trials where target was judged to be on the right) per individual 

and per task, and psychometric functions were fitted to this data using the curve 

fitting toolbox for Matlab (Borgo, Soranzo, & Grassi, 2012) to calculate the point 

of subjective equality (PSE) and curve widths. The psychometric function used 

the cumulative logistic function described by the equation: 

�(�, �, �) = 1/(1 + exp �� − �
� �) 

In this function,  � is the point on the x-axis that equates to 50% left and 50% 

right-response rate, � represents the transector locations and � describes the 

psychometric curve width. The curve widths were then converted to percentage 

line length. Specifically, curve widths indicate an individual’s precision on the 

task. A narrow curve width can be interpreted as a good performance on the 

task.  

For the MLB task, the subjective midpoint was calculated by subtracting the x- 

co-ordinate, obtained through the mouse click, from the co-ordinate from the 

veridical centre of the line. The mean bias and standard deviation on a subject 

by subject basis indicated the overall spatial bias for this task. 
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Analysis of D’Prime (d’) and PSE in the LVD Task 

As per Learmonth et al. (2015) the LVD task was analysed in two ways: a) D-

prime (d’) to determine the visual detection sensitivity, b) fitting a psychometric 

function to the data (PF 50%).  

For the D-prime (d’) calculation I used visual detection sensitivity. D’ was 

calculated using the function: 
�′ = �(����) − �(����� ������) 

where z represents the z-score for each side of space. “Hits” represent the 

percentage accuracy for each target side (i.e. dots correctly perceived to the 

left side or right side of space), subtracted by the number of “false alarms” in 

response to catch trials. Here, enhanced sensitivity to detected targets is 

represented in a greater d’ score. Subtracting the Left visual field (VF) d’ from 

Right VF d’, created a d’ lateralisation index (Learmonth, Gallagher, et al., 

2015). 

Similar to the analysis of the LM, GRA– and GREY tasks, a psychometric function 

was fitted to the 10 stimulus sizes of the LVD task separately for each visual 

field, and PSE and curve widths were calculated. The stimulus sizes were 

labelled 1-10, with 1 = the smallest (1x2 pixel) target up to 10 = the largest (6x6 

pixel) target. Thus, a small PSE of 1.5 indicates a relatively good visual 

detection accuracy, placing the 50% accuracy (PF 50%) between the 1x2 and 2x2 

target size.  

Subtracting the Right VF PSE from the Left VF PSE calculated a lateralised spatial 

bias. Again, as  reported by Learmonth et al. (Learmonth, Gallagher, et al., 

2015, 2018) both measured of the lateralised visual detection task (The PF 50% 

and d’ methods) correlate on both testing days with each other (Day 1: r= .88, 

p<.001; Day 2: r= .96, p<.001; Mean Days 1+2: r= .94, p<.001), confirming their 

reliability. 

  



34 
 
Analysis of the Lane- Keeping task 

As per Learmonth, Märker, et al. (2018) the mean lane position was analysed to 

estimate the magnitude of the left or right side deviation. The deviation from 

the midpoint of the middle lane was recorded by the LCT software and indicated 

by either positive (right side deviation) or negative values (left deviation from 

centre). Over an interval of 150ms, time points were averaged to calculate the 

mean deviation from the midpoint across the last two laps of each participant. 

The final mean lane positions of Day1 and Day 2 were then averaged across both 

testing sessions. 

Outlier detection and winsorized means 

Rather than excluding participants due to individual outliers, the group-level 

spatial biases of each testing day were winsorized Firstly, the individual spatial 

biases per day and spatial tasks where screened for outliers that exceeded a 

spatial bias above 3 x standard deviation o the group level mean. Once a spatial 

task was identified to have outliers, the whole sample of this testing day (37 

individual biases) was winsorized to adjust the spatial biases. The winsorized 

mean is calculated by replacing 20% of the complete 37 individual biases. The 

smallest and largest spatial biases are replaced with the values closest to them 

(Wilcox & Keselman, 2003).There were no outliers identified that deviated by 3 

times from standard deviation in the LM and MLB tasks, and these remained 

untrimmed. For the GREY, GRA and LVD tasks 20% winsorized (modified) means 

were used. The average bias of both testing days for a spatial task was 

calculated on the original (unmodified) means and then winsorized by 20%. In 

addition, one participant was excluded from the LVD task due to perceptual 

difficulties despite the task modifications made (PSE= -22), but they were not 

excluded from the other 4 tasks. This resulted in 37 participants for LM, MLB, 

GREY and GRA tasks, and 36 participants for the LVD task, thus maintaining 

cross-task comparability as much as possible. 
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Results 

Subjective alertness 

Performance of a 2x2 analysis of variance (ANOVA) (TIME: pre- vs post- 

experiment x Day: Day 1 and Day 2) revealed that participants showed 

significantly reduced subjective alertness after the experiment (pre- test Day 1: 

M = 84.7 %; S.D. = 11.17 vs. Post-test Day 1: M = 77.97% ; S.D. = 13.09 and  

pre– test Day 2: M= 87.32%; S.D. = 10.13 vs. Post-test Day 2: M = 81.05%; 

S.D. = 10.31), Main effect of Time F(1, 36) = 44.11, p< .001. There was a main 

effect of Day also F(1,36)= 4.61, p = .04, with participants more alert overall in 

the second testing session (Day 1: M = 81.38% ; S.D. = 11.52 vs. Day 2: M = 

84.18%; S.D. = 9.37).  

Post Day1 vs Day 2 t(36) = -2.15, p= .04. 

 Importantly, there was no significant interaction between Time and Day of 

testing, with no indication of a larger deterioration of alertness on one day over 

the other. 
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Visual acuity screening 

 
Figure 3 : Overall percentage of detection errors f or visual acuity detection Task. 
Each of the 6x6 squares displays the error rate acr oss participants made at this position 
equalling to the screen and visual field of the par ticipant. A colour bar on the right side 
indicates the percentage of errors made (0-50% dete ction error rate). The blue square in the 
centre indicates the region of interest, where the spatial tasks were presented  

Results of the visual acuity screening (Learmonth, Benwell, et al., 2017) showed 

that participants made most detection errors in the periphery.  

The most extreme values were at the outer corners, ranging from 30% – 42 %  

(M = 35.8%; S.D. = 5.2) both within and between participants. Most importantly, 

in the middle of the visual field that corresponded to the area where the stimuli 

were presented had an accuracy detection rate of M = 98.2%; S.D. = 1.18  

across 16 positions, excluding the outer positions. Detection accuracy was at an 

average of M = 91.25 %; S.D. = 10.91 collapsed across all 36 positions. No single 

participant fell below this. Detection accuracy was at an average of M = 91.2%; 

S.D. = 10.91, collapsed across all 36 positions.  
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Inter- Task Spatial Biases 

Manual Line Bisection task (MLB) 

Repeating the analysis per Learmonth et al. (See (Learmonth, Gallagher, et al., 

2015, 2018), the average spatial bias across both testing days for the MLB task 

for older people was analysed. Each of the 9 different positions of the MLB 

stimuli were analysed separately and the one-sample t- tests against zero (i.e. 

no bias) revealed a significant leftward bias for the 5 most leftward positions 

(left120 t(36) = -2.68, p = .01, left80 t(36)= -2.76, p = .009, left 40 t(36)= -2.51, 

p = .02, veridical t(36)= -2.31, p= .03 , right160 t(36)= -2.11, p = .04. When the 

line was jittered to the left side of space, participant showed a greater spatial 

bias to the left side. 

 
Figure 4: MLB task line positions jittered across t he visual field. 
The bars show the 9 different line positions from - 160 to +160 pixel from the veridical centre 
of the screen. The individual Mean spatial biases a re presented in % line length and overlaid 
on the group mean. A significant group bias per pos ition is marked with a red asterisk (*).  
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A repeated measures ANOVA for the different positions showed a main effect for 

Position [F(1, 36) = 10.46, p = .003)]. In order to determine when leftward bias 

was lost, paired samples t-tests were performed on neighbouring line positions. 

A significant leftward shift of bias was found when the line was shifted 40 pixels 

left of centre compared to when positioned in the centre of the screen (the 

veridical position (0)): t(36) = -2.46, p = .02 (see Figure 4). There was a larger 

leftward bias when the line was positioned 40 pixels, compared to 80 pixels, to 

the right of centre: t(36) =-2.32, p =.03. Furthermore, a trend was found for a 

difference in bias for 0 - +40 right of centre: t(36)= -1.92, p = .06, and +80 – 

+120 at the right side of space t(36)= 1.93, p=. 06. No other pairs showed 

significant differences in bias. 

A one-sample t-test over all positions and participants, displayed a significant 

leftward bias (pseudoneglect) t(36)= -2.73, p = .01 (M =-.64, S.D.= 1.42). 

[Day 1: t(36)= -2.48, p = .02, M = -.65, S.D. = 1.59, Day 2: t(36)= -2.57, p= .01, 

M=-.63, S.D. = 1.48]. 

Landmark (LM), Greyscale (GREY) and Gratingscale (G RA) task: 

The PSE for the LM task did not display significant biases, on either testing days 

or when collapsed together.  

Day 1: t(36)= -.65, p = .52, M = -.08; S.D. = .78,  

Day 2: t(36) = -.51, p = .61, M = -.05 ; S.D.= .64,  

Average of testing days: t(36)= -.66, p = .51, M = -.07, S.D. = .65. 

However, the GREY showed a significant leftward bias (pseudoneglect) on each 

testing day and when averaged across testing days.  

Day1: t(36)= -2.23, p = .03, M = -1.05; S.D. =2.86,  

Day 2: t(36)= -2.13, p= .04, M = -.92; S.D.= 2.62,  

Average of testing days: t(36) = -2.65, p = .01, M =-.95, S.D.= 2.19.  

The GRA task, showed no significant bias to either side across testing days.  

Day 1: t(36)= 1.30, p = .20, M= .37, S.D.= 1.73;  

Day 2: t(36)= 1.07, p = .29, M = .31, S.D.=1.75;  

Average of testing days: t(36)= 1.27, p= .21., M = .31, S.D.= 1.49 
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Lateralised Visual Detection task (LVD) 

D-Prime  

Collapsed over both testing days, participants at a group-level correctly rejected 

95% of catch trials and correctly identified an average of 40% of the presented 

targets in LVF and 37% in the RVF. The lateralisation index, which was collapsed 

over both testing days �′ !��	�′"!� � �′�#�$%&	'���� was M= -.05, and did not 

support a significant lateralisation bias in older adults when tested against zero 

Day 1: t(35) = -1.04, p = .31, M = -.07, S.D. = .38,  

Day 2: t(35)= -.23, p = .82, M = -.02, S.D.= .50,  

Average of both days: t(35)= -.65, p = .52, M = -.05, S.D.= .42.  

LVD (PF 50%) 

 
Figure 5 Performance on the LVD task.  
The figure shows the detection accuracy in % for ea ch of the 10 different stimuli sizes (in 
pixels) averaged over both sessions. Each violin pl ot shows the detection separated in left- 
(green bars) and right visual field (orange bars) p resentation. Boxplots display the group 
level mean as a black bar within the box displaying  95% HDI. The group level PSE per target 
size is indicated with a red box, showing a 50% acc uracy.  

As per Learmonth, Gallagher, et al. (2015, 2018) a psychometric curve was fitted 

to the LVD data. In the first instance, separating the PSE of the mean group 

average (PF50%) per visual field revealed that averaged over both testing days, 

the 50% detection rate for a stimulus for the left visual filed was at M =6.7 and 
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at M= 7.1 for the right visual field. This is equivalent to a 50% detection rate at 

target size 4x4 to 4x5 (see red highlight in Figure 5). Thus, suggesting a slightly 

lower mean threshold for perceiving stimuli in the left visual field than the right. 

Yet, this difference was not significant  

(LVF vs. RVF: t(35)= -.986, p = .33). 

A one-sample t-test against zero on the lateralisation index  

  !� � "!� = ()*(#�$%& '���), did not support a significant lateralisation bias 

Day 1: t(35) = 1.81, p = .08, M = .46; S.D.= 1.51, 

Day 2: t(35)= 1.69, p = .10, M = .45; S.D. = 1.58,  

Average of both testing days t(35)= 1.33, p = .19, M= .30; S.D. 1.36. 

Furthermore, a 2 (Side) x 2(Day) Repeated Measures ANOVA PF(50%) revealed no 

differences across position LVF vs. RVF and testing days.  

No main effect for day F(1, 35)= .18, p=.67 or side F(1, 35) = .97, p= .33, and no 

interaction F(1, 35)= .02, p= .90.  

  



41 
 
Overall task bias summary 

  
Figure 6 : Overall Spatial Bias for the MLB, LM, GR EY and GRA task. 
The spatial biases are shown for testing Day 1, Day  2 and collapsed over both testing days. 
The violin plots are overlaid with the raw data of the spatial biases per individual to show 
the distribution of PSE in % of total line length. Boxplots display the group level mean and 
95% HDI. Significant values compared to 0 are marke d with an asterisk (*). Only the MLB 
and GREY tasks displayed a significant bias. 

 
Figure 7: Overall spatial bias for LVD Task across testing Days 
The violin bars show the mean spatial bias and the individual biases are overlaid for Day 1, 
Day 2 and mean of both testing days across the LVD task and its two analyses (D’Prime and 
PF50%). Group level means are displayed as black ba r within a box displaying 95% HDI. 
None of the biases were significant.  

Across the five common spatial measures, only the MLB and GREY task showed a 

significant leftward spatial bias (pseudoneglect) in older adults. The GRA, LM, 

and LVD tasks did not show a lateralised bias on either testing day in older 

participants. 
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Intra-task reliability 

 
Figure 8: Intra-task correlation plots 
Showing the MLB, LM, GREY, GRA and LVD tasks with D ’Prime and PF50% analysis 
between Day 1 and Day 2. The red line displays the polynomial best fit and the dotted lines 
display the 95% confidence bounds. 
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In order to assess the test-retest reliability between both testing days, the five 

spatial tasks were analysed separately with a series of Spearman rho correlations 

on the biases obtained on Day 1 versus Day 2 (see Figure 8). Results showed 

significant correlations between both testing days on all tests (see Table 1). 

Table 1 Intra-task correlation 
 MLB LM  GRA GREY LVD (d’)  LVD (PF 

50%) 
  95% 
Confidence 
Interval 

rs= .84 rs=.40 rs= .54 rs=.64 rs=.57 rs=.36 

p=.001** p=.01* p=.001** p=.001** p=.001** p=.03* 

Lower .61 .06 .23 .32 .25 -.02 

Upper .96 .70 .78 .87 .80 .66 
This table shows the results of the Spearman’s rho (rs) correlation and p- value for the 5 
spatial tasks tested between two testing sessions. Significant correlations at p= .01, 
corrected for multiple comparison are marked with d ouble asterisk (**), p = 0.05 with (*) 
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Inter- task reliability 

 
Figure 9: Inter- task correlation plots for MLB, LM , GREY, GRA and LVD task 
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Figure 10: Inter- task correlation plots for LVD, G REY and GRA task.  
Plots showing the correlation of the spatial tasks with each other MLB, LM, GREY, GRA and 
LVD task with D’Prime across the mean of both testi ng days. The red line displays the 
polynomial best fit and the dotted lines display th e 95% confidence bounds. 

Following on from the confirmed test-retest reliability of the tasks, Spearman’s 
rho correlations were used to investigate whether the magnitude of spatial bias 
in one task was correlated with the magnitude of spatial bias in the other 4 
tasks. 

Table 2: Inter-task correlation  
 LM  GRA GREY LVD (d’)  LVD (PF 

50%) 

N= 37 37 37 36 36 
MLB rs = .07 rs= -.06 rs= -.14 rs= .08 rs= -.001 

p= .70 p= .73 p = .42 p= .65 p= .98 
95%  CI Lower  = -.31 = -.44 = -.44 = -.23 = -.30 

95% CI Upper  = .42 = .31 = .26 = .40 = .32 
LM  rs= .27 rs= .36 rs = -.26 rs= .19 

 p= .11 p= .03 p= .13 p=.27 

95% CI Lower   = -.12 = -.54 = -.54 = -.21 

95%  CI Upper   = .60 = .08 = .08 = .52 

GRA   rs= .36 rs = .01 rs= .03 
  p= .03 p= .95 p = .85 

95% CI Lower    = .02 = -.35 = -.35 

95%  CI Upper    = .65 = .35 =.45 
GREY    rs = .14 rs=-.004 

   p =.42 p= .98 
95% CI Lower     = -.16 = -.37 
95%  CI Upper     = .43 = .34 

LVD (d’)     rs= -.71** 

    p= .001 
95% CI Lower      = -.92 
95%  CI Upper                            = -.45 

This table shows the results of the Spearman’s rho (rs) correlation and p- value for the 5 
spatial tasks tested. Significant correlations at p = .003, corrected for multiple comparison 
are marked with an asterisk (**) 
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Results showed that collapsed over both testing days, only the LVD task 

measures of D’Prime and PF 50% were strongly correlated (rs= .71, p = .001), 

confirming the reliability between the analysis methods The LM and GRA as well 

as the GRA and GREY task showed a small correlation, which did not survive 

Bonferroni correction. No other tests were correlated with each other.  

Task precision (Curve Width) 

Curve width was analysed for the tasks LM, Grating-, Greyscales and LVD tasks as 

a measure of precision of task engagement and sustained attention over both 

testing days. High task precision is reflected in a steep curve.  

Correlating the intra-task curve widths (Spearman’s rho) over both testing days 

confirmed a consistency of precision between the testing sessions in older adults 

(LM rs= .62, p = .001, GRA rs= .63, p=.001, GREY rs=.67, p= .001, LVD Left visual 

field rs=.55, p =.001, Right visual field rs= .65, p= .001). Paired samples t-tests 

for Day 1 vs Day 2 showed that precision improved on the second day for the LM 

t(36)= -2.85, p = .007 (Day 1 M = -.89 , S.D. = .48, Day 2 M= -.71, S.D. = .47) and 

GRA task t(36)= -2.04, p = .05 (Day 1 M = -6.36, S.D.= 3.49, Day 2 M= -5.41), S.D. 

= 2.82, as reflected in a narrower curve on the second day. 
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Lane- Keeping task (LK) 

The Lane keeping task showed a significant rightward bias on both testing days. 

Day 1: t(35)= 5.24, p < .001 M= .22, S.D. = .25, 

Day 2: t(35)=5.69, p < .001 , M = .23, S.D. = .25, 

Average on both testing days: t(35)= 5.92, p< .001, M = .23, S.D. = 23,  

Spearman’s rho confirmed a significant correlation between both days, as a 

further example of a stable spatial bias over separate testing sessions 

rs=.70, p=.001 (see Figure 11). Against the predictions, none of the five spatial 

tasks showed a significant correlation with the driving task (see Table 3 for 

results).  

 
Figure 11 : Correlation of the LK task across testi ng days.  
The red line displays the polynomial best fit and t he dotted lines display the 95% confidence 
bounds. The figure shows the correlation between te sting Day 1 and 2 for LKT 

Table 3: Correlation with the LK task and the five spatial tasks  
N= 36  MLB LM GREY GRA LVD 

D’Prime) 
** N= 35 

Lane 
Keeping 

Task  

rs =.12 rs =-.08 rs = .01 rs = -.10 rs = -.11 

p = .47 p =.64 p =.95 p =.56 p =.54 

The table shows the correlation between the Lane Ke eping task and the other five spatial 
measures. 
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Comparison between young and older adults 

Despite the slight difference in viewing distance between the two age group 

samples (present study vs. Learmonth, Gallagher et al.,(2015, 2018)), four of the 

five spatial tasks were procedurally identical in the older group (N = 37) 

reported here, relative to the young adult sample investigated by Learmonth et 

al. (Learmonth, Gallagher, et al., 2015, 2018)(N = 50). I therefore performed a 

direct, between-group comparison between the young and older adults to assess 

age-related differences in spatial biases across the 4 tasks. A one-way MANOVA 

on the mean data obtained on Days 1&2 revealed a significant effect of age on 

spatial biases. F(4, 82)= 3.58, p =. 01, +&²=.15, Wilks’ ∆ = .85. The ANOVA 

revealed an interaction between LM x Age = F(1, 85) =4.26, p = .04, +&² = .05 

but no other measures yielded a significant interaction. Welch’s t-tests revealed 

that the Landmark task elicited significantly different biases in young and older 

adults, t(84,6)= -2.14, p = .04). While young adults showed a leftward bias  

(M = -.39) (pseudoneglect), older adults had no mean spatial bias for this task  

(M = -.08), thus not showing pseudoneglect. All other measures did not differ 

significantly between age groups (see Figure 12).  

 
Figure 12 Spatial Biases of the younger and older A dults 
The violin plots display the group mean spatial bia ses collapsed over both testing days for 
four spatial tasks. The individual spatial biases a re overlaid. The boxplots display the mean 
per task with 95% HDI. A significant spatial bias i s depicted with a black asterisk (*). A 
significant difference between age groups within a task is depicted with a bracket and a red 
asterisk (*). 
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Discussion 

The present study investigated possible age related changes in spatial 

asymmetry and its impact on the intra and inter task reliability of five commonly 

used spatial tasks. Summing up the results of the older adults in the first 

instance, according to our hypothesis, the 5 tasks present here elicited 

consistent spatial biases in older adults when tested on different testing days. In 

contrast to reports of a higher variability in re-retest reliability(Manning, 

Halligan, & Marshall, 1990), the present tasks proved as reliable measures of 

spatial attention asymmetry with a good re-test reliability for an older age 

group. Overall, only the line bisection and greyscales tasks elicited significant, 

stable leftward biases (pseudoneglect), whereas the remaining tasks did not 

reveal a significant spatial asymmetry. Secondly, no relationship was found 

between any of the tasks, when investigating the inter- task correlation, 

replicating the results by Learmonth et al. (2015, 2018) in young adults. Most 

importantly, a direct comparison between the young and older adult datasets 

indicated that the landmark task separated the groups in terms of spatial bias, 

with young adults demonstrating pseudoneglect that was not present in the 

older group.  

Intra-task correlations  

Encouragingly, the stable test-retest reliability for each of the five measures of 

spatial attention that were previously reported for young adults (Learmonth, 

Gallagher, et al., 2015, 2018) were also found in the present, older age group. 

This seems to support the conclusion by Learmonth et al. (2015, 2018) that each 

of the five spatial measures that were investigated, activate a consistent 

property of the attention network, each dependent on the respective task-

demands at hand.  

Leftward biases in older adults 

Interestingly, none of the tasks tested here displayed a critical rightward bias in 

older adults. On the contrary, in accordance with Brooks et al.(Brooks et al., 

2016) I demonstrated that pseudoneglect remains present throughout the aging 

process when assessed using some spatial attention tasks. Here I have replicated 
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the previously reported maintained leftward bias for the line bisection task 

(Beste, Hamm, & Hausmann, 2006; Brooks et al., 2016; Alice Varnava & Halligan, 

2007), as well as the greyscales task, which has been found to elicit a strong 

leftward bias in very elderly adults aged 80 -89 (Friedrich et al., 2016). These 

findings support prior claims that right hemisphere attentional orienting can be 

retained into old age (e.g. Brooks et al., 2016).However, here I add to this 

literature by identifying that this may only hold true for certain visuospatial 

tasks. The current results are in line with previous work, where it has been 

argued that different spatial attention tasks place a unique set of cognitive and 

motor demands on the spatial attention networks (Learmonth, Gallagher, et al., 

2015; Verdon, Schwartz, Lovblad, Hauert, & Vuilleumier, 2010). Here I have 

replicated this finding within a healthy older sample and suggest that the neural 

resources that are involved in the line bisection and greyscales tasks are less 

susceptible to age-related neural changes.  

Presence of ageing effects on measures of spatial b ias 

In a direct comparison with the young adult sample of Learmonth et al. 

(Learmonth, Gallagher, et al., 2015, 2018), I found that only the landmark task 

was modulated by ageing (i.e. a leftward bias in young adults and no significant 

bias in the older group). The attenuated spatial bias in the older adults here 

could potentially reflect a selective age-related decline of right-hemispheric 

processes that are involved in undertaking this task (e.g. as described by the 

‘Hemispheric Asymmetry Reduction in Older Adults’ (HAROLD) model of 

cognitive aging (Dolcos et al., 2002)). In fact, our group recently reported 

evidence for decreased right hemisphere activity in older adults when 

performing the landmark task in EEG recording (Learmonth, Benwell, et al., 

2017). Similar to the present results, that sample of older adults also showed an 

absence of leftward bias in comparison to young adults. In addition, there was a 

time-window of right-sided lateralisation of neural activity in young adults, 

which was absent in the older group. It may be that, in line with the HAROLD 

model, the older participants recruited supplementary contralateral brain areas 

when dealing with this task to maintain their performance (for a discussion see 

(Dolcos et al., 2002; Learmonth, Benwell, et al., 2017; Reuter-Lorenz & Park, 

2010). In fact, all of the current participants were within normal range on the 

MOCA test, which is further evidence that this observed shift is likely to be 
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attributed to healthy neuronal mechanisms of aging, rather than cognitive 

decline. However, the difference in behavioural performance between the 

groups was subtle, with a substantial overlap in the range of biases in both young 

and older adults (see Figure 12). The specific mechanism, and indeed the 

relevance of this age-related shift in the landmark task must now be clarified.  

Inter-task correlations  

The spatial measures showed no significant correlation between each other, 

even if they were procedurally similar. Only the GREY and GRA and LM and GREY 

showed small between task correlations, however these did not survive 

Bonferroni correction. On the basis of the earlier results in young adults (2015, 

2018), and findings in the past and current literature (Heber et al., 2010; Luh, 

1995; Nicholls et al., 1999) this lack of between task correlations is independent 

of age. However, it poses a critical problem when assessing spatial attention, 

and generalising spatial biases across tasks should be treated with caution. This 

highlights the importance of understanding spatial attention as a multi 

component phenomenon as has been proposed by Learmonth et al.(2015, 2018). 

They previously suggested that the five commonly used spatial tasks in the 

current literature appear to measure subcomponents of spatial attention, in 

terms of: size judgement (MLB, LM), luminance judgement (GREY) and spatial 

frequency detection(GRA) (Learmonth, Gallagher, et al., 2015, 2018). To reliably 

assess and differentiate between age related changes in pseudoneglect and 

possibly also neurological deficits linked to neglect in older adults(Verdon et al., 

2010) , it is important to understand these subcomponents of spatial attention in 

an ageing context, as they might be impacted differently by age, resulting in the 

observed spatial biases at present.  

Specific task effects 

Despite their procedural similarity, the LM and MLB task yielded different spatial 

biases, with leftward biases for the MLB and an absence of spatial bias for the 

LM task. Both measurements have been previously found to engage right 

lateralized brain activity and involve the right intra-parietal sulcus (IPS) and 

right lateral peristriate cortex (Cicek et al., 2009) and in our younger sample I 

found directional effects to be the same (Learmonth, Gallagher, et al., 2015, 
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2018). Nonetheless two studies have now reported a lack of correlation between 

these two tasks in young adults (Cicek et al., 2009; Learmonth, Gallagher, et al., 

2015, 2018) and together with our reported findings in this older sample, 

equivalence between these tasks can no longer assumed to be a given. 

For the first time, I tested older adults on the Gratingscale (GRA) task, which is 

procedurally similar to the Greyscale (GREY) task. Again, as for LM vs MLB, I 

report divergent spatial biases with significant pseudoneglect for the GREY task 

but no significant spatial asymmetry in the GRA task. Both results resemble the 

spatial bias observed in young adults in Learmonth et al.(Learmonth, Gallagher, 

et al., 2015, 2018), who reported no bias for the GRA task and also a significant 

leftward bias on day one for the GREY task, which then attenuated at re-test. 

These findings were somewhat contrary to findings of a robust preference in 

young adults for the left visual field in both tasks (GRA, GREY), as well as an 

intra-task correlation between them (Niemeier et al., 2007). It is worth noting 

that in the GRA task here, participants assessed the number of stripes, directing 

their attention to the largest amount of “thin stripes”. Low spatial frequencies 

(SFs) are processed in the left hemisphere, while high spatial frequencies (SFs) 

are more likely processed in the right hemisphere (Niemeier et al., 2007; Piazza 

& Silver, 2017). With the focus on the high SF (more “thin stripes”), the right 

hemisphere should be more involved in spatial judgements, leading to the 

observed leftward bias and confirming the claims made by Niemeier et 

al.(Niemeier et al., 2007) for a robust measure of spatial bias. Our finding of an 

absence of a leftward bias for older adults, could reflect the finding  that older 

adults become less sensitive to spatial frequency processing (Costa, Nogueira, 

Pereira, & Santos, 2013; Elliott & Werner, 2010; McGrath & Morrison, 1981; 

Santos, Simas, & Nogueira, 2004), so while the task may not have been sensitive 

enough for young adults, it might have been sufficed to elicit a spatial shift in 

the older sample.  

The results of the LVD task did not elicit a significant bias in older adults, 

confirming our earlier findings of an absent bias (Learmonth, Benwell, et al., 

2017; Learmonth, Gallagher, et al., 2015) and poor consistency over testing days 

(Learmonth, Gallagher, et al., 2015, 2018). Despite adjustments in the design to 

ensure an adequate range for older participants to perceive a threshold of 
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stimuli, which included 10 different stimulus sizes, the task difficulty varied 

vastly among older participants, with some perceiving the task as either very 

difficult (or others not challenging enough).  

Finally, I tried to investigate a more ‘naturalistic’ spatial bias obtained from a 

Lane keeping driving simulation. While the Lane keeping task elicited a 

significant rightward bias, which again remained stable over testing sessions, I 

again failed to find a correlation with the five spatial tasks described above. The 

presence of a rightward bias (positioning to the right side), in the Lane keeping 

task makes sense, as in a more realistic setting, a rightward positioning would 

result from an overestimation of the left side of space (i.e. Pseudoneglect), as a 

compensative strategy. However, as would be expected if this were indeed the 

case, Learmonth, Märker, et al. (2018) found a correlation between Lane 

keeping task and LM in young adults, yet this correlation was absent in the older 

population. This absence of such a correlation could reflect a true shift of 

spatial asymmetry in older adults, elicited in this more complex driving task (see 

also (Benwell, Thut, et al., 2014), for a similar argument). Yet again, at present 

this is speculation only. 

In accordance with Brooks et al.(2016) I demonstrated that pseudoneglect 

remains stable throughout the lifetime in some spatial attention tasks. However, 

I found the exact direction and magnitude of the spatial bias to be task as well 

as age sensitive. Several studies demonstrate that spatial asymmetry is present 

across different modalities and not confined to perception alone, i.e. tactile and 

mental representation (Brooks et al., 2016), or auditory representation (Eardley, 

Darling, Dumper, Browne, & Velzen, 2017). I replicated the reported retained 

leftward bias for the MLB task (Beste et al., 2006; Brooks et al., 2016) but report 

a loss of spatial bias in contrast to young adults in the LM task. None of the tasks 

tested here displayed a critical rightward bias but instead a stable leftward bias 

in the GREY and MLB task. The absence of spatial bias in any given task, such as 

the LM, GRA and LVD task is difficult to interpret:  on the one hand such an 

absence of spatial bias could be a result of right hemisphere decline due to 

healthy ageing or possibly even unidentified presence of mild neglect in an 

otherwise healthy older adult. On the other hand it could be simply a task 

effect.  
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Limitations 

In light of the present findings, the variability in the direction of spatial bias 

reported here and in previous studies suggest that the effects are task 

dependent rather than task general. Perhaps, there is another underlying factor 

such as changes in sustained attention or differences in task difficulty across the 

spatial measures that drives the observed leftward bias, rather than spatial 

attention. An increase in task difficulty could result in an attenuation of a 

leftward bias and this might be individual rather than driven by age effects. It 

should be noted, that it is possible that the tasks which elicited a leftward bias 

in the present older sample are in fact the better tasks to estimate spatial 

attention then the tasks which did not elicit a spatial bias (i.e LM GRA and LVD 

task). The mixed results of older adults’ retained and attenuated spatial bias 

across the tasks tested, may also relate to differential vs overlapping brain 

regions required for each task demand. Ultimately only further in depth EEG, 

fMRI and meta-analyses will provide definite answers to characterize such 

possible modulators of pseudoneglect and the following chapters address these 

questions also.  
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Conclusion 

Similar to earlier findings in young adults, I report good test- retest reliability of 

five spatial measures taken over different days, in a population of cognitive 

healthy older adults. I confirm that the direction of the spatial bias is task 

sensitive rather than task general. The MLB and GREY tasks showed a spatial bias 

to the left side of space, with older adults demonstrating pseudoneglect for 

these tasks. In a direct comparison to the young adults sample (Learmonth, 

Gallagher, et al., 2015, 2018), only the LM task showed an attenuated spatial 

bias in older compared to younger adults, possibly consistent with neuronal 

findings of an age-related reduction of the right hemisphere (Learmonth, 

Benwell, et al., 2017). As our participants did not score clinically on measures of 

early neurological decline, this is likely a result of healthy aging. Yet, the 

inconsistent bias results found here and in the more recent literature seem to 

point to other factors possibly driving these effects. An increase in task difficulty 

or sustained attention for example, could account for the absence of leftward 

biases described here (and these modulators could be age dependent or 

independent). Fitting with this assumption are the (now repeatedly observed) 

lack of inter-task correlations. This complicates generalisation and comparability 

of pseudoneglect effects across different tasks and age groups. 

  



56 
 

Chapter Three 
Investigating the impact of attentional load on 

spatial attention in young and older adults with a 
behavioural paradigm 

As described in the previous chapter 2, young adults typically show a preference 

for the left side of space (pseudoneglect), resulting in faster reaction or 

behavioural overestimation to the left side of space. Yet, results involving older 

adults have been mixed and lack clear consensus, so the view that spatial 

attention declines with age per se may be too simplistic. Results of my recent 

study (See chapter 2) have shown that older adults show both, a maintained 

leftward bias (pseudoneglect) as well as no bias to either side of space. Thus my 

data expand previous findings of mixed results for older adults, i.e. no spatial 

bias, or a trend towards the right side of space in the landmark task (see 

Benwell, Thut, et al., 2014; Schmitz et al., 2013; Schmitz & Peigneux, 2011), 

the MLB (compared to young adults (Barrett & Craver-lemley, 2008; P. Chen et 

al., 2011; Failla et al., 2003; Fujii et al., 1995; Goedert et al., 2010), as well as 

for lateralised visual detection tasks (Learmonth, Thut, et al., 2015; Nagamatsu 

et al., 2011, 2009, 2013). In contrast, there are also reports of maintained 

leftward bias across different tasks in older adults (Chapter 2, Brooks et al., 

2016).  

This variation in the directionality of the spatial bias appears to be highly task 

sensitive and an absence of a leftward bias for the MLB task and LM task (for 

young adults in previous studies), could be due to differences in stimuli size 

(Manning et al., 1990), as well as presentation differences in the horizontal 

plane (see Jewell & McCourt, 2000 for a review). Moreover, differences in 

viewing distances have shown to influence the magnitude of spatial bias, with 

greater leftward biases when stimuli are presented in peripersonal space and an 

attenuation the further stimuli are presented in the extra personal space 

(Dellatolas, Vanluchene, & Coutin, 1996; A. Varnava, McCarthy, & Beaumont, 

2002). However, these factors could also have an influence on the task difficulty 

due to increased attentional demand, which in turn will have an impact on the 

allocation of spatial attention. Thus, instead of hemispatial decline of the right 

hemisphere with age (i.e. HAROLD) (Cabeza, 2002; Dolcos et al., 2002), changes 



57 
 
in load capacity could be an underlying factor of changes in spatial biases that 

are observed in older adults. 

Networks of dorsal (spatial) and ventral attention 

Models of spatial attention describe a right-hemisphere dominance that is 

responsible for selecting and shifting spatial attention, entailing a ventral (VAN) 

and dorsal attentional network (DAN) (Corbetta et al., 2008; Kinsbourne, 1977; 

Mesulam, 1999). The characteristic attention bias towards the left side of space 

in pseudoneglect is linked to enhanced demands on the VAN in the right 

hemisphere (Coull, Frackowiak, & Frith, 1998; Newman et al., 2013). This VAN 

controls interhemispheric competition in the DAN (Corbetta et al., 2008; 

Corbetta & Shulman, 2011).When selectively attending across space and 

executing responses to task relevant or irrelevant stimuli, the bilateral DAN is 

activated. The right lateralised VAN however is associated to non-spatial 

attention capacities (Culham, Cavanagh, & Kanwisher, 2001; Newman et al., 

2013; Schwartz et al., 2005) and alertness regulations (Paus et al., 1997; Sturm 

& Willmes, 2001).A decrease of activation in the VAN is suggested to result into 

a global decrease in the RH activation (Corbetta & Shulman, 2011; Newman et 

al., 2013) due to decreased attention i.e. through time on task (Benwell, Thut, 

et al., 2013; Nagamatsu et al., 2011, 2009, 2013; Newman et al., 2013) or aging 

(Benwell, Thut, et al., 2014; Schmitz et al., 2013; Schmitz & Peigneux, 2011). 

However, it is possible that the observed aging effects might be rather linked to 

changes in the ventral attention networks, rather than a right hemisphere 

decline with age alone (HAROLD) (Cabeza, 2002; Dolcos et al., 2002).  

Attentional load modulates spatial attention 

This is plausible as it has been shown that the degree of spatial bias is 

modulated by non-lateralized processes, such as vigilance and alertness 

(Bellgrove et al., 2004) as well as spatial working memory, either to the left 

(with increased alertness) or the right side of space (reduced alertness) in a 

variety of tasks (see Chandrakumar et al., 2019 for a review). Moreover, in 

participants with chronic reduced alertness such as ADHD or right hemisphere 

damage after stroke, the right spatial bias has been linked to reduced 

alertness(see Bellgrove et al., 2013). In their studies, Bellgrove et al. (2013) 
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found reduced response to left visual stimuli with increased attentional load in 

both patients and children with ADHD. Other studies have found that the 

observed rightward bias in patients with hemispatial neglect was reduced when 

the level of awareness was increased i.e. via a warning tone (Dobler et al., 2005; 

Robertson, Mattingley, Rorden, & Driver, 1998). In contrast, a shift from a 

previous leftward bias towards the right side of space was observed in young 

children and healthy young adults, when alertness was decreased, i.e. through 

prolonged time on task exposure (Bellgrove et al., 2013; Benwell, Thut, et al., 

2013).  

As noted above, older adults show mixed results on spatial biases and in fact do 

not replicate the strong rightward bias observed in patients who showed 

extreme deviation to the right side of space as a result of hemispatial neglect. 

This suggests that advanced age does not equal to a decrease in attention. 

Instead, attentional capacities might be reached quicker and according to the 

HAROLD model (Cabeza, 2002; Dolcos et al., 2002), compensatory strategies 

might be employed, as well as additional neuronal mechanisms recruited to cope 

with attentional load, mirroring the same behavioural patterns observed in 

young adults, yet derived at through different processes. So far this has not been 

investigated systematically and I will address this with a dual task paradigm.  

In patient studies, dual task paradigms have shown that increasing attentional 

load has an asymmetrical impact on spatial attention. Patients with right 

hemisphere damage have shown lateralized deficits in their spatial processing 

(i.e. extinction of the left side) as a result of load constraints on their 

attentional capacities (Bonato, 2015). Interestingly, this lateralisation towards 

the right side of space (neglect) was observed even in patients where neglect 

was not present in the classical clinical measurements or when patients had 

been found to have recovered from previous neglect (Bonato, 2015). 

Similarly perceptual processing was found to be asymmetrically and directly 

influenced by non-spatial processes such as acquired poor attention due to brain 

damage after stroke (Bellgrove et al., 2013). Comparing patients with left visual 

extinction (after stroke) to healthy older adults, using a classical dual visual task 

paradigm to assessing attentional capacities, Bellgrove et al. (2013) found that 

the degree of spatial neglect (the extinction of the left side of space) was 
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correlated with impairments in non-lateralised attention. Attentional load was 

altered in 3 conditions, no load, low load (pop out task) and high load 

(conjunction search task). Greater attentional load resulted in overall increased 

reaction times (RT) to peripheral targets, irrespectively of location. Patients 

further showed significantly decreased detection to left targets, if load was 

increased.  

The same results of asymmetrical lateralization processing when load was 

increased were also found in children with ADHD and matched controls 

(Bellgrove et al., 2013), suggesting a similar pattern even if deficits in attention 

are developmental. With ADHD as an indicator of developmental attention 

disorder, a lateralized spatial bias emerged when load was increased and 

became more apparent with load difficulty (high attentional load), resulting in 

decreased detection of left targets in contrast to the “no attentional load” 

condition and control group. Thus, these findings suggest an overlapping of non-

spatial attentional and spatial orienting networks (see conclusion by Bellgrove et 

al. (2013)) and that by depleting attentional resources, i.e. through acquired 

brain damage or developmental deficiencies, spatial re-orienting decreases in 

efficiency. Based on the HAROLD model that argues for an aging of the right 

hemisphere in older adults, such effects could be also observed as a result of 

healthy aging. 

In healthy participants, such asymmetrical impacts on lateralization processes 

were found for cognitive rather than perceptual load. While both studies (See 

Bellgrove et al., 2013) reported no asymmetries for their healthy controls, Naert 

et al. (2018) reported a diminishing effect of processing advantages in healthy 

young adults when cognitive load was increased: employing a dual task with a 

cognitive load (an uncued working memory task), left peripheral targets were 

negatively impacted, and the left side processing advantage (pseudoneglect), 

reported in the low load condition, diminished. However, cognitive load did not 

affect the processing of the right peripheral targets (see Naert et al., 2018). 

Other studies using multisensory integration (Chen & Spence, 2017) or secondary 

sound discrimination tasks (Peers et al., 2006) have also shown asymmetric 

spatial processing towards the right side of space when cognitive non-spatial 

load was increased in dual task paradigms in healthy participants. Thus, studying 
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the effects of load on spatial attention could uncover asymmetries in 

lateralisation processes for healthy aging that might otherwise not be observed 

and thus give insight into structural and cortical changes with healthy aging. 

Neuronal correlates of cognitive load and spatial a ttention  

So despite some recent advances in uncovering the interplay of attentional 

capacity and spatial attention in dual tasks in healthy aging, the underlying 

neuronal correlates have been hardly been investigated and are not fully 

understood. 

O’Connell et al. (2011) found supporting evidence for an asymmetrical effect of 

early visual orienting due to changes in attentional load. They measured EEG 

using a classic dual task which involved a lateralised visual detection task, and 

allowed an altering of attentional load in a rapid serial visual presentation 

(RSVP) stream. Attentional load was increased by changing the central target 

from no relevant target to a pop out task (low attentional impact) and a 

conjunction search task (high attentional load), while participants had to 

identify a lateralised peripheral target. Their results revealed a behavioural 

processing advantage for stimuli presented to the left hemifield in adults 

(resembling pseudoneglect). This was present across all conditions thus 

suggesting this bias to be unrelated to attentional load. However, in terms of 

neuronal activity, they found that higher attentional load led to increased 

recruitment of attentional resources as evidenced in enhanced P1 and N1 

waveforms at early visual processing. Further, they found that this was related 

to a slower processing of and response to the peripheral stimuli when central 

load was increased (from no load), reflected in reduced peripheral P2 and P3 

components. Age related effects might be more pronounced in similar 

components and might result in reversed effects in older adults. Yet, this has 

until now not been investigated systematically.  

Aims 

In their study O’Connell et al. (2011) did not differentiate between age groups 

and thus, age related effects were not investigated. Therefore, any inferences 

of attentional load effects on healthy cognitive aging nor changes of early visual 
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processing as indexed by ERPs (with age) cannot be made from their results. 

Their testing sample had an average age of M= 24 years, with an age range 18-47 

years, thus not including a senior population (+60 years) at all.  

In the next two chapters I present work that aimed to extend this previous 

research on non-spatial attention modulations on asymmetric spatial attention 

to performance across the lifespan (O’Connell et al., 2011), by making a clear 

separation between young adults and cognitive healthy older adults.  

The following presented behavioural investigations informed a follow up study 

(Chapter 4) where EEG was then employed to investigate the neuronal 

components of attentional load manipulations. Hence the design of the current 

study was adapted from O’Connell et al. (2011) to meet this overall research 

aim. With attentional load expected to impact on age, spatial attention 

performance was investigated in young as well as healthy cognitive older adults 

in a visuospatial dual task paradigm. The current design closely resembled the 

experimental set up of O’Connell et al. (2011). Attentional load was 

manipulated in two conditions to increase the task difficulty to a low and high 

attentional impact (See Method section). Based on the behavioural results by 

O’Connell et al. (2011), I expected to see spatial asymmetry effects when 

detecting peripheral targets. While O’Connell et al.(2011) reported these across 

all load conditions (faster responses for left targets), an increase of attentional 

load might result in different spatial effects in older compared to young adults.  

Hypotheses 

In the presented study, specific age related effects were thus expected. For the 

behavioural responses, I predicted a difference in asymmetry in older compared 

to young adults. When the task gets more difficult, older adults might show a 

right spatial bias, while young adults might continue showing pseudoneglect 

across all attentional load conditions. However, it is also possible that older 

adults recruit additional resources to compensate for the increased task 

demands and depleted attention capacities and that there will therefore be no 

differential behavioural change for the older age group.  
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Methods  

Participants experiment 1 

For the second experiment, two age groups were compared, consisting of a 

young adult age group and an older adult group. The young group consisted of 

twenty young adults between 19 and 25 years (4 males, M = 20.65, S.D. = 1.78). 

The other group consisted of fifteen cognitive healthy older adults (9 males) age 

range 62 – 83 years, M = 71, S.D. = 6.4). Exclusion criteria for participants where 

a history of stroke, colour blindness and dominant left handedness. All 

participants reported normal or corrected to normal vision. To confirm this, all 

participants were pre-screened for visual acuity using the Colenbrander Mixed 

Contrast Card Set (Colenbrander & Fletcher, 2005) and subjected to a 

computerised visual detection task (Learmonth, Benwell, et al., 2017) to screen 

for possible visual field deficits. Moreover, they all completed the colour 

blindness test with colour plates (Ishihara, 1918; Nakajima, Ichikawa, Nakagawa, 

Majima, & Watanabe, 1960). In addition, the older adults completed the MoCA 

(Montreal Cognitive Assessment (Nasreddine et al., 2005) to screen for possible 

mild cognitive decline. The experiment was carried out within the School of 

Psychology, at the University of Glasgow and obtained ethical approval from the 

University of Glasgow, College of Science and Engineering Ethics Committee. 

Design 

Participants completed a computer based task which involved repeated 

measures of a dual task of lateralised dot detection and a central rapid serial 

visual presentation (RSVP) stream containing alphanumeric stimuli (see 

O’Connell et al., 2011). Thus, the study thus had a 2 (Age: young vs. old) x 2 

(Load: Low, High) x 2 (Side: Left vs Right) x 2 (Temporal Position: 3 vs 6) mixed 

measures design.  

Stimuli and Procedure   

Participants received written and verbal information about the experimental 

procedure prior to the study. They were informed that participation was 

voluntary and that they could withdraw from the study at any time. The 
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experiment lasted approximately 1.5 hours including pre-screening 

measurements and breaks.  

Pre-screening procedure 

Upon arrival, participants were greeted by the researcher and completed a 

consent form and a brief questionnaire regarding their demographic information. 

They were screened for visual acuity with the Colenbrander Mixed Contrast 

Chard, which involved reading out letters placed in front of them. No 

participants were excluded based on this visual acuity screening. Furthermore, 

older participants were screened for mild cognitive decline with the Montreal 

Cognitive Assessment test (MOCA) (Nasreddine et al., 2005) and all participants 

for both experiments showed normal performance (M= 28.61, S.D.= 1.06). 

Visual Acuity Measurement 

Participants were assessed also for possible visual field changes and detection 

accuracy of small stimuli. This was done  with a short computerised assessment 

(see Learmonth, Benwell, et al., 2017): Over 36 different positions, a small 

black dot (10 x10 pixels) appeared for 150ms. Participants were instructed to 

press the spacebar if they perceived the dot anywhere on the screen, while 

fixating on the cross in the middle of the screen. The 36 locations extended to 

12.0° visual angle (VA) from the fixation along the vertical axes and 16.06 ° VA 

along the horizontal axis (see Figure 14). A total of 72 trials were presented (36 

locations x2) including 24 ‘catch’ trials where responses had to be withheld.  
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Dual Task with Rapid Serial Visual Presentation (RSVP) 

Participants were instructed to make:  

1) speeded responses to a black asterisk if they perceived it either to the left or 

right side of space (peripheral target) while simultaneously: 

2) monitoring a central alphanumeric RSVP stream for a central target, which 

could be a red letter or a green number (Central Target), depending on the 

attentional load condition. Attentional load was split into two conditions, “low 

attentional load” and “high attentional load”. Participants made a speeded 

response once they perceived a peripheral target (i.e. a black asterisk) and then 

made judgements about the central RSVP at the end of each trial, i.e. about the 

absence or presence of a central target via key press. Each participant 

completed both load conditions, with a break between the first and the second 

condition. Conditions were counterbalanced across all participants. 

 
Figure 13: RSVP Dual Task (adapted from O’Connell e t al. (2011) 
Displayed is the RSVP with alphanumeric red central  targets and a peripheral target to the 
right side.  
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Stimuli were presented using E-Prime 2.0 (Psychology Software Tools Inc., 

Pittsburgh, PA. The experiment was conducted on a Dell Precision T3400 PC and 

19.5′′ Sun Microsystems CRT monitor (33.8 x27 cm with 1280 × 1024 pixel 

resolution and 100Hz refresh rate) in a dark EEG chamber. The stimuli were 

presented on a grey background. The participants’ midsagittal plane was aligned 

centrally to the computer, the viewing distance was fixed at 0.8m via a chinrest. 

At the beginning of each trial, participants fixated a fixation cross for 1500ms 

and were instructed not to blink during the length of a trial. At the beginning of 

each trial, the central fixation cross appeared for 1500ms and was followed by 8 

presentation slides forming the RSVP. Each slide was presented for 400ms, with 

a total of 3600ms per trial after fixation. The load conditions consisted of 6 

blocks with 50 valid trials each, totalling 300 trials. 

One third of the trials contained no peripheral targets (catch trials), nor central 

targets, while the other half of the catch trials contained no peripheral target 

but included a relevant central target. Each peripheral target appeared in the 

middle of either left or right rectangular 2.5 x 2cm placeholder, positioned 16cm 

from the central fixation point. Peripheral targets never appeared 

simultaneously with the central target. Responses to peripheral targets were 

given bimanually, using the key board. Response hands were congruent with 

target side. The left hand responded to left peripheral targets seen and the right 

hand to right targets. Responses towards central targets (at the end of the trial) 

were also bimanual, indicating seen or unseen with either the left or right hand. 

Here, attribution to the response hand was counterbalanced across participants, 

so that a seen response did not always correlate with a right (dominant) hand 

response. 
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Peripheral Targets 

The peripheral target was a black asterisk (Font size 30), appearing either to the 

left or right in rectangular placeholders. Responses were made by pressing 

either “v” for left asterisk or “b” for right asterisk (on the keyboard) and the 

response withheld for catch trials, if no peripheral target (asterisk) was present. 

Participants were instructed to respond as quickly as possible. 

The peripheral stimulus appeared for 400ms randomly at either 800ms (position 

3) or 2000ms after the fixation cross timed out. For every trial only one 

peripheral target was displayed in either the left or right visual field and only at 

one of the two possible time locked positions. Participants were naïve to the 

temporal location and the catch trials should have prevented expectancy 

effects.  

Central Targets 

For the “low attentional load” condition, the central target was a green target 

number within the RSVP stream of red numbers. This “pop out task” requires 

less attentional capacity (Treisman & Gelade, 1980). At the end of each trial, 

participants made judgements as to whether a central target was present or 

absent using the keyboard keys:  x (with their left hand)  or m (with the right 

hand). The meaning of the keys (present: yes, no) was counterbalanced across 

participants.  

For the “high attentional load” condition, participants made speeded responses 

to peripheral targets, while monitoring the central RSVP stream of red numbers 

for a red target letter, essentially a conjunction search task (Treisman & 

Gelade, 1980). After each trial, they indicated if they had seen a central target 

or not identical to the other condition. 



67 
 

Experiment 1  

Results 

Visual acuity screening 

 
Figure 14: Overall detection errors for the visual acuity detection task  
for a) young adults and b) older adults at 80cm vie wing distance.  
Each of the 6x6 squares reflect the screen and visu al field of the participants.  
Different colours display the averaged error rate f rom all participants at this position.  
The colour bar on the right side reflects the error  rate (0 - 50%). 

For young adults, error rates were very low M = 1%, S.D.= 11.7% across all 6x6 

fields, ranging from 0% to 7.5%. For older adults, most errors were made in the 

periphery: The total error range in the periphery ranged from 23% - 43%. 

However, as targets in this task were presented more centrally in a horizontal 

plane, the error rates in this area were low with an average of M = 5%, S.D.= 6% 

ranging from  0% - 23% (across the 24 positions, excluding the upper and lower 

horizontal positions)  total error across the individual fields, suggesting no 

interference for the presented task. 
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Behavioural Results 

 
Figure 15: Overall Reaction times for young and old er adults at all testing variables 
Reaction times towards peripheral targets are shown  for the variables: target side, temporal 
position and attentional load, separately for young  and older adults. The violin plots are 
overlaid with the raw data of the reaction times pe r individual to show the distribution from 
the group mean. Boxplots display the group level me an and 95% HDI. Targets at position 6 
were significantly faster detected than at position  3. Faster reaction times are depicted with 
a black asterisk (*).  

The results of the 2(age: young vs. old) x 2(load: LL, vs. HL) x 2(Side: Left vs. 

Right) x2(Position: 3 vs. 6) mixed model ANOVA revealed a main effect for 

temporal position in the first instance F(1, 33) = 63.99, p < 001 ηp² = .66. 

Unsurprisingly, participants were faster to detect targets appearing later in the 

temporal RSVP stream if side was not considered [M: Position 3 vs. 6 = 608ms, 

S.D. = 12ms > 559ms, S.D.= 9.19 p = .001], this was independent of age. See 

Figure 15, faster reaction times for targets at position 6 are highlighted with a 

black asterisk in comparison to the targets at position 3.  
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Figure 16: Reaction times separated by peripheral t arget side and age 
The violin plots are overlaid with the raw data of the reaction times per individual to show 
the distribution across the whole sample of young ( blue) and older (yellow) adults. Boxplots 
display the group level mean and 95% HDI. A signifi cant difference in reaction times 
between target sides within age groups is depicted with a black asterisk (*). A significant 
difference between age groups within target side is  depicted with a bracket and a red 
asterisk (*). 

Moreover, there was a significant interaction between age and side F(1,33)= 

5.24, p = .03, ηp² = .14. Further investigation revealed that, without the 

separation into temporal positions, younger adults responded faster to targets 

on the right side (M= 486ms, S.D.= 15) then left (M= 501ms, S.D.= 14). Older 

adults showed the opposite pattern and were faster on the left side (M= 658ms. 

S.D.= 18) then on the right (M= 689 ms, S.D.= 95). Between the age groups, 

young adults were faster than older adults for both target sides (see Figure 16, 

difference depicted with brackets and red asterisk).  

Left Targets: Young adults M= 501ms, S.D.= 57< older adults M= 658ms, S.D. = 72 

welches t test t(26)= -6.88, p< -.001. 

Right Targets: Young adults M= 486ms, S.D.= 43< older adults M= 689ms, S.D.= 

95 t(33)= -8.41, p<.001). 
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Figure 17: Reaction time towards peripheral targets  separated into target side and temporal 
position by age. 
The violin plots are overlaid with the raw data of the reaction times per individual to show 
the distribution across the whole sample of young ( blue) and older (yellow) adults separated 
into target side (left, right) and temporal positio n (3 or 6). 
Boxplots display the group level mean and 95% HDI. A significant difference in reaction 
times between target sides within age groups is dep icted with a black asterisk (*). A 
significant difference between age groups within ta rget side is depicted with a bracket and a 
red asterisk (*).  

 

In addition, results revealed a significant three way interaction between Age, 

side and temporal position F(1, 33) = 4.22, p = .048, ηp²= 113.  

A follow-up 2 (Age) x 2 (Side) ANOVA revealed that, if separated into temporal 

positions, there were significant effects for targets earlier in the RSVP stream 

(temporal position 3), revealing an interaction between age and side  

F(1,33) = 5.65, p = .02, ηp² = .15 (See Figure 17). Independent samples t-test 

revealed that young adults were faster to react to both left and right targets 

compared to older adults (see Figure 17, difference between age groups is 

depicted with brackets and a red asterisk). 

Left Targets: M (young) =525ms, S.D.= 70 < M (old) = 680ms, S.D. = 80,  

t(33) = -7.32, p<.001.  

Right Targets: M (young) = 505ms, S.D.= 50 vs M (old) = 722ms, S.D.= 119, 

t(33)= -6.05, p< .001 

Within age groups, young adults detected right targets faster than left targets 

(see Figure 17, significant difference between target sides is depicted as black 

asterisk for young adults).  

Left Targets M = 525ms, S.D. 70 < Right Targets M = 505ms, S.D. = 80  
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t(19)= 2.13, p = .046.  

Older adults were not significantly different.  

Left Targets M = 680ms, S.D. 80 < Right Targets M= 722ms, S.D. = 119,  

t (14)= -1.52, p= .15.  

For temporal position 6, there were no significant main effects nor interactions. 

However, when comparing the reaction times at temporal position 6, young 

adults were again faster than older adults when reacting to peripheral targets 

(see Figure 17, difference between age groups is depicted with dotted brackets 

and a red asterisk).  

Left Targets: Young adults M= 477ms, S.D.= 51 < older adults M= 635ms,  

S.D. = 66, t(33)= -7.95, p< .001,  

Right targets: Young adults M= 467ms, S.D.= 42ms < older adults M= 656ms, 

S.D. = 75, t(33) = 9.33, p< .001.  

Reaction times between left and right targets were not significantly different 

within age groups.   

Experiment 2  

Participants experiment 2 

Twenty young adults (11 of them females, between 19 to 25 years old M= 21.3, 

S.D. =1.28), and 18 older adults (11 of them females, between 60 and 86 years 

of age (M= 66, S.D. = 8.3) completed the modified study. Participants were naïve 

to the study’s predictions and had not taken part in the previous study 

(Experiment 1, Chapter 3). The study received ethical approval from the 

University of Glasgow, College of Science and Engineering Ethics Committee, and 

participants gave written informed consent before participation. 

Design  

I modified the design in line with scientific feedback from the first pilot study. 

Now, viewing distance was decreased from 80 cm to 50 cm to try and elicit a 

more pronounced spatial bias. In previous studies, especially those investigating 

perceptual judgement tasks, presentations in peri-personal space (i.e., closer to 

the participant) have elicited a stronger leftward biases compared to 

presentation in extra personal space. (Heber et al., 2010; Longo & Lourenco, 
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2006, 2007, 2010; Longo et al., 2015; Lourenco & Longo, 2009). In additon, a 

decreased viewing distance to 50cm ensured that the current design was 

identical to O’Connell et al. (2011) who used the same viewing distance. This 

enhanced compareability of the results across both studies. The overall design of 

the experiment was kept identical to experiment 1 (See Figure 13). Participants 

completed again the pre-screening measures from experiment 1 before the 

experiment. 

Results 

Visual acuity screening 

 
Figure 18: Overall detection errors for the visual acuity detection task of experiment 2 
in a) young adults and b) older adults at 50cm view ing distance. 
Each of the 6x6 squares reflect the screen and visu al field of the participants.  
Different colours display the averaged error rate f rom all participants at this position.  
The colour bar on the right side reflects the error  rate (0 - 50%). 

Results of the visual acuity screening (Learmonth, Benwell, et al., 2017) showed 

that young participants had nearly perfect scores, with an overall error rate of 

M= 1.8%, S.D.= 2.8% ranging from 0 -7.5% across all 36 positions (see Figure 18). 

Older adults made most detection errors in the periphery, with most extreme 

values again at the outer corners ranging from 9 – 24%. Excluding the upper and 

lower horizontal positions, older adults had an error rate of M = 1.3%, S.D. = 

2.4% collapsed over 24 positions. There were no visual deficits detected in the 

area the current task was presented. The reduced viewing distance very likely 

yielded these improved detection scores.  
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Behavioural Results Experiment 2 

 
Figure 19: Overall Reaction times for young and old er adults for all testing variables 
Reaction times towards peripheral targets are shown  for the variables: target side, temporal 
position and attentional load, separately for young  and older adults.  
The violin plots are overlaid with the raw data of the reaction times per individual to show 
the distribution from group mean. Boxplots display the group level mean and 95% HDI. 
Targets at position 6 were significantly faster det ected than at position 3. Faster reaction 
times are depicted with a black asterisk (*).  

For the 2(Age: young vs. old) x 2(Load: low, high) x 2(Target Side: left, right) x 2 

(temporal position: 3, 6) ANOVA, results revealed again, a main effect for 

temporal position F(1, 36)= 97.67 p< .001, ηp²= .73. Reaction times were faster 

for targets presented later in the stream. M (position 6) = 529 ms, S.E.= 13.20 ms 

< M (position 3)= 572 ms, S.E.= 14.49 ms, p= .001.  
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Figure 20: Reaction times separated by target side and temporal position.  
The violin plots are overlaid with the raw data of the reaction times per individual to show 
the distribution across the whole sample (young and  old combined) in either the low 
attentional (green) or high attentional (red) load condition. Boxplots display the group level 
mean and 95% HDI. A significant difference between load conditions for left targets at 
position 3 is depicted with a bracket and a red ast erisk (*).  

There was also a three way interaction between Load x Side x Position, 

(independent of age) F(1, 36)= 11.6, p= .002, ηp²= .24. No other main effects or 

interactions reached significance.  

To investigating the three way interaction, the follow up 2x2 ANOVA between 

Load and Side, revealed a significant interaction at position 3 for load and side F 

(1, 37)= 6.88, p = .01, ηp²= .16 . Paired samples t-test showed that left targets 

were detected faster in the low attentional load compared to the high load 

condition. M (Low Load) = 554 ms, S.D. = 108, M (High) = 584ms, S.D. = 149ms, 

t (37) = -2.22, p = .03 (See Figure 20, the difference between the load condition 

for left targets at positon 3 is depicted with a bracket and red asterisk). No 

other pairs were significantly different.  

For position 6 there were no significant main effects or interactions. Reaction 

times did not differ significantly.  
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 Accuracy data for experiment 1 and 2  

Accuracy rates towards both the peripheral and central targets were high in both 

experiments, suggesting that participants of both age groups were able to 

complete the task. In experiment 2, young participants detected the peripheral 

targets at a rate of 95% and the central targets (across both conditions) at 94%, 

while older adults detected 93% of both the peripheral and central targets. 

Interim discussion of the results from experiments 1 and 
2 

In two experiments I investigated the modulating effects of central attentional 

load on spatial attention, with a particular focus on cognitive healthy aging. The 

aim of the presented studies was to extend the findings by O’Connell et al. 

(2011), by differentiating participants into two age groups, comparing young 

adults and cognitively healthy older adults on a dual spatial task. I predicted age 

related differences in the detection of the peripheral targets, with an 

asymmetrical processing advantage to the left visual side of space in young 

adults and a possible attenuation in older adults. Moreover, I predicted that 

increasing the attentional load to high attentional load would impact on the 

spatial bias of the older adults in particular, possibly leading to a processing 

advantage to the right side of visual space.  
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Results experiment 1: 

In the first instance, results of experiment 1 are reported. While there were no 

modulating effects of load observed in this experiment, results revealed an 

interaction between age groups and target side, as well as a three way 

interaction with age group, target side and temporal position. 

Overall young adults detected peripheral stimuli faster than older adults, when 

targets where collapse over both conditions. Yet, when target detection results 

were separated into peripheral target sides, results indicated a difference in 

spatial bias between both age groups. Young adults demonstrated significantly 

faster detection to targets on the right side. In contrast, older adults showed a 

preference towards the left side of space (in accordance with pseudoneglect).   

When splitting the peripheral targets into temporal positions (i.e. targets 

appearing earlier or later in the RSVP stream unsurprisingly, younger adults were 

still overall faster to detect targets than older adults.  

In young adults, right peripheral targets appearing earlier in the RSVP stream 

(position 3, 800ms after fixation) were detected faster than left targets. 

However, this advantage disappeared when targets appeared later in the RSVP 

stream (position 6, 3200 ms after fixation), and no difference in reaction times 

was apparent. In contrast, older adults did not show significant differences 

between target sides and thus no preference for any visual space at either 

temporal position. These effects were present independent of load conditions. 

Overall, participants responded faster to peripheral targets when they appeared 

later in the trial as in contrast to earlier presentation. This replicates the 

findings of O’Connell et al. (2011) and makes sense as this is most likely a result 

of a greater expectancy to encounter a relevant peripheral target, thus resulting 

in faster reaction times. 

Contrary to our predictions, changes of attentional load did not lead to changes 

in spatial bias in experiment 1.  



77 
 
Results experiment 2:  

The design of experiment 2 was kept identical to experiment 1, except for a 

decrease in the viewing distance from 80cm to 50cm. I predicted that moving 

presentation closer into the peri- personal space would enhance possible 

lateralised processing advantages (Heber et al., 2010; Longo & Lourenco, 2006, 

2007, 2010; Longo et al., 2015; Lourenco & Longo, 2009). This was also driven by 

the finding of O’Connell et al. (2011) who reported a spatial bias towards the 

left side in space, with a viewing distance of 50cm.  

Similarly to experiment 1, participants responded faster to targets appearing 

later in the trial, thus replicating the findings from experiment 1, as well as the 

results by O’Connell et al. (2011). Interestingly, this time attentional load 

showed a modulating effect. When separated into temporal positions, left 

targets presented earlier in the RSVP stream were detected faster when 

attentional load was low, compared to high attentional load. No difference was 

found for right targets. However, reaction times were not significantly different 

between loads and target side when they were presented later in the RSVP 

stream (position 6).  

This suggest that attentional load was a modulating factor for the detection of 

left targets. The processing advantage for left targets in the low attentional 

condition was attenuated when attentional load was increased. However, this 

was only observed early in the trial at position 3.  

Results of experiment 2 revealed no significant effects between age groups and 

therefore, did not replicate the observed effects of side and age reported in 

experiment 1. This could suggest similar behavioural results for young and older 

adults. Very likely due to the reduced viewing distance, as this was the only 

parameter changed in this design, older adults appeared to benefit from this 

shift into a closer peri personal space in experiment 2 in comparison to 

experiment 1. The age differences in detecting peripheral targets disappeared in 

experiment 2 and reaction times were overall faster in experiment 2 than 1. 

Reaction times were faster by an average of 20ms in young adults and 45 ms in 

older adults collapsed over both target types in contrast to experiment 1, 

suggesting that older adults reacted faster when viewing distance was reduced 
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to 50 cm. Moreover, visual acuity was enhanced for older adults with a reduced 

error rate from 5% to 1.5 % in experiment 2 at the relevant presentation area. As 

viewing distance was also kept at 50cm for the EEG experiment, the results of 

experiment 2 are more informative for the expected behavioural results of the 

EEG experiment.  
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General discussion 

In two experiments I replicated a processing advantage for targets presented 

later in the RSVP, a finding  also reported by O’Connell et al (2011). It is likely, 

that this effect drove the other interactions too. Yet, with respect to 

investigating differences in the lateralized detection and age related 

differences, results of experiment 1 confirmed that younger adults responded 

faster toward targets than older adults, yet  this effect was attenuated when 

stimuli were presented closer to the participants (as evidenced in experiment 2, 

where no differences between age groups were reported). Encouragingly also, 

there was a processing advantage for left peripheral targets in experiment 2, 

which is in accordance with pseudoneglect. Moreover, this advantage appeared 

to be independent of age. Yet, this effect was only revealed when attentional 

load was low and in targets presented in the beginning of the RSVP stream. It is 

possible that this left processing advantage may have been attenuated through 

adding load (through the central load manipulation). In order to confirm this, an 

additional third condition with no attentional load manipulations will be added 

to the follow up EEG study, in order to measure baseline performance and 

investigate the direction of the spatial bias under no attentional load.  

 
Spatial attention and load in aging 

Although I had predicted age related differences in responses towards peripheral 

targets and a stronger lateralized effect when attentional load was increased, 

the present results tie in to the findings of earlier studies which investigated 

central load as a modulating factor on spatial attention. For example, Bellgrove 

et al. (2013) reported no lateralization effects in their healthy controls (older 

adults and young children) only in patients and children with ADHD as a function 

of poor sustained attention. Yet, the absence of a behavioural spatial bias 

between the age groups may mask age related cortical changes. According to the 

HAROLD model, the right hemisphere declines in activity with age (Cabeza, 

2002; Dolcos et al., 2002). Through increasing task difficulty with attentional 

load, it is possible that other attentional resources are activated in order to 

compensate for attentional resources that are depleted by increased attentional 

load. This may not be reflected in spatial bias changes. Studies on titrated 
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lateralized visual detection task have also shown no spatial bias for older adults, 

even if task difficulty ensured a 50 % detection rate for older adults (Learmonth, 

Felisatti, et al., 2017). Thus, it is important to further investigate the 

neurological underpinning and cortical activities when young and older 

participants carry out these tasks.  

In fact O’Connell et al.(2011) found evidence that increased attentional load, in 

contrast to no additional attentional load, led to asymmetrical processing in the 

early stage processing of the lateralized stimuli, supporting the view of an 

enhanced activity in the right hemisphere during visual orienting. This 

lateralized activity was attenuated when attentional load was increased (from 

no load), thus suggesting that overlapping neural circuits in the right hemisphere 

facilitate an interplay between non spatial attention (manipulated via central 

load) and spatial attention. Moreover, they confirmed that increased attentional 

load at the centre of an RSVP stream, identical to the present design, lead to 

increased recruitment of attentional resources, reflected in enhanced P1 and N1 

in early visual processing (O’Connell et al., 2011). Also, the processing 

advantage for left peripheral targets reported in the right hemisphere, was 

decreased with the increase of attentional load (from no load) (O’Connell et al., 

2011), reflecting the view, that increased non spatial attention can result in a 

rightward shift in spatial attention (Benwell, Harvey, et al., 2013; Dodds et al., 

2008; Manly et al., 2005; Peers et al., 2006). However, it is also possible that 

the absence of the spatial bias reflects an intrinsically lower alertness (as a 

result of the addition of attentional load), as it has been suggested also that 

reduced alertness facilitates a spatial shift towards the right side of space 

(Bellgrove et al., 2004; Matthias et al., 2009; Paladini et al., 2016). Thus, I think 

for my EEG experiment, a baseline condition is necessary to uncover any 

behavioural changes as a function of load. 
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Other modulating factors affecting spatial attentio n and aging 

Although I focus on possible differential effects of attentional load on spatial 

bias changes across young and older age groups, there are other modulators that 

may distinguish the two age groups:  

One such moderating factor could be differences in strategies between young 

and older adults. Some studies suggest that in contrast to young adults, older 

adults prioritize accuracy over speed (Starns & Ratcliff, 2010, 2012) and perform 

tasks more conservatively (Hertzog & Rypma, 1991; Nagamatsu et al., 2011; 

Smith & Brewer, 1985).   

Another non spatial attribute benefitting older adults could be their increased 

intrinsic motivation to complete a task well (Hess, Emery, & Neupert, 2012; 

Staub, Doignon-Camus, Després, & Bonnefond, 2013; Tomporowski & Tinsley, 

1996) or simply an interest in the study and the wish to contribute to research 

(in contrast to younger adults). Such intrinsic motivation could benefit reaction 

times and accuracy (Hess et al., 2012; Staub et al., 2013; Tomporowski & 

Tinsley, 1996)and could account for an absence of age differences in the present 

task performance.  

Predominantly, it is thought that older adults’ performance is inferior to that of 

young adults as a result of cortical and neuronal changes. Some research 

suggests that attentional resources are depleted faster and that attention is 

decreased more when attentional load is added to a task, with a resulting 

greater negative impact for older than for young adults (Swan et al., 2015). 

Other studies however suggest that a lower baseline performance for visual 

attention tasks in older adults (Learmonth, Thut, et al., 2015; Madden et al., 

2007) might mask any beneficial or adverse effects of increased attentional load 

with cognitive ageing. There is also evidence showing better performance in 

older compared to young adults or similar performance on a variety of tasks 

(Brache, Scialfa, & Hudson, 2010; Carriere, Cheyne, Solman, & Smilek, 2010; 

Jackson & Balota, 2012; McVay, Meier, Touron, & Kane, 2013; Tomporowski & 

Tinsley, 1996), but see (Staub et al., 2013) for a review on sustained attention in 

cognitive aging. Mind wandering is a failure of attention and older adults appear 

to engage less in task unrelated thoughts (i.e. mind wandering) (Giambra, 1989; 
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Jackson & Balota, 2012; Krawietz, Tamplin, & Radvansky, 2012; McVay et al., 

2013) and in everyday life (Maillet et al., 2018), which benefits performance and 

sustains attention in time on task settings. One example of this are Go/No Go 

paradigms in which older adults have been found to sustain vigilance and 

attention over the course of the respective task and thus maintained 

performance compared to young adults who showed a decrease and less 

accurate performance overall (Jackson & Balota, 2012; McVay et al., 2013; 

Staub, Doignon-Camus, Bacon, & Bonnefond, 2014). This type of paradigm is 

similar to a dual task paradigm in the sense that attention needs to be switched 

and decisions made between task response and withheld response, akin to my 

present paradigm of withholding the response to a central target until the end of 

task. It is thus possible that such beneficial effects have been present in the 

current experiments, leading to the absence of age related differences.  

Limitations and methodological considerations.  

Finally, there have been numerous studies on the effects of handedness and 

response hand on spatial attention (See for a review Chandrakumar et al., 2019). 

The current study investigated right handed participants only, yet I asked 

participants to make use of both hands in response to the peripheral targets. 

Although some studies suggest no significant effect of response hand on spatial 

bias if presented congruently (i.e. left hand for left target response) (Peers et 

al., 2006), others suggest an enhancing effect on left spatial bias when only the 

left hand is used, and a reduction in the right side bias with the use of the right 

hand only (Bradshaw, Bradshaw, Nathan, Nettleton, & Wilson, 1986; Brodie & 

Pettigrew, 1996; Fukatsu, Fujii, Kimura, Saso, & Kogure, 1990). This may have 

been a confounding factor. It has been found repeatedly that handedness plays 

an important role in the relationship between alertness and spatial bias 

(Chandrakumar et al., 2019). In recent fMRI studies, results for the ventral 

attentional network have shown clear cortical differences between right handed 

and left handed participants, and that these cortical differences drive spatial 

biases (H. Liu, Stufflebeam, Sepulcre, Hedden, & Buckner, 2009). In right 

handed participants, the ventral attentional network is lateralised towards the 

right side  but left and right hemispheres are activated equally for left hand 

participants (H. Liu et al., 2009). In addition, the dorsal front parietal network 

(DAN) has been found to predominantly activate the right hemisphere in left 
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handed participants, instead of a bilateral activation for in right handed 

participants (Petit et al., 2015).This difference in cortical structure may possibly 

influence the behavioural spatial bias. Moreover, for my experiments, the use of 

bimanual responses might explain the observed preference for the right targets 

in young adults. It could be explained by the use of the dominant right hand 

rather than a processing advantage. In order to decrease any impacting effect of 

motor activity on the neuronal correlates and reduce confounding factors, the 

responses to the peripheral stimuli will be changed to right hand response only 

in the following EEG experiment. 

Conclusion 

Taken together, the behavioural results of the current studies present promising 

findings for the follow up EEG study. Both experiments showed different results 

and were only uniform in the finding of a processing advantage for targets 

presented later in the RSVP. This was also reported by O’Connell et al (2011), 

likely reflecting a higher expectancy for targets appearing later in the trial. 

Encouragingly, there was a processing advantage for left peripheral targets in 

experiment 2, which is in accordance with pseudoneglect. This was found to be 

independent of age, suggesting that older adults were indeed able to perform 

the dual task and did not perform significantly worse than young adults (also 

indexed by reaction time and accuracy performance). Yet, this processing 

advantage to the left side of space was only revealed when attentional load was 

low and in targets presented at the beginning of the RSVP stream. It is possible, 

that this processing advantage was attenuated with increased attentional load or 

time in the trial, as a result of depleted attention. In order to confirm this, an 

additional third condition with no attentional load manipulations will be added 

to the follow-up EEG study. This will enable me to investigate the direction of 

the spatial bias under no attentional load influences and establish baseline 

performance. In this final EEG study (Chapter 4), I aim to investigate the 

neuronal underpinnings of central load and its influence on spatial attention, as 

indexed by ERPs, with a particular focus on the senior population. I aim to 

compare these findings to current models of attentional networks and the 

models of healthy cognitive aging (i.e. HAROLD) (Cabeza, 2002; Dolcos et al., 

2002) and investigate how and if lateralisation changes when non spatial 

attention processes are taxed in older adults specifically. 
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Chapter Four 
 Investigating impact of attentional load on spatia l 
attention and the neuronal correlates in young and 

older adults with the use of EEG 

The experiments described in chapter 3 informed the design of the EEG 

experiment presented here: although the two experiments showed different 

results, encouragingly, there was a processing advantage for left peripheral 

targets in experiment 1 (chapter 3), in accordance with pseudoneglect. This was 

found to be independent of age, yet revealed only when attentional load was 

low and when targets were presented at the beginning of the RSVP stream. As it 

is possible, that this processing advantage was attenuated with increased 

attentional load or time in the trial, possibly as a result of depleted attentional 

resources, I added a third, no attentional load manipulation to this EEG study. 

This enabled me to investigate the direction of the spatial bias under no 

attentional load influences and establish the baseline performance of the 

participants. So in this final EEG study, I investigated the neuronal underpinnings 

of central attentional load (at fixation) and its influence on spatial attention, as 

indexed by ERPs, with a particular focus on the senior population. I compared 

these findings to current models of attentional networks and models of healthy 

cognitive aging (i.e. HAROLD (Cabeza, 2002; Dolcos et al., 2002) and 

investigated how and if lateralisation changes, when non- spatial attention 

processes are taxed in older adults specifically.  

In the following, I will describe now, current electrophysiological findings on the 

effects of attentional load on spatial attention as well as the few studies that 

have focused on age-related differences. 

Attentional load modulates neuronal correlates 

As discussed in chapter 3, attentional load has been suggested to play a 

modulating factor in visuospatial orienting (Bonato et al., 2015; Dodds et al., 

2008; O’Connell et al., 2011; Peers et al., 2006; Pérez et al., 2009) and 

O’Connell et al. (2011) were the first to report an asymmetrical processing in 

the first stages of visual orienting, as indexed in the electrophysiological P1 and 

N1 components. They stated that under the influence of attentional load, the 
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right hemisphere showed reduced activity in response to lateral stimuli in 

comparison to no attentional load (where there was greater RH activity) (see 

O’Connell et al., 2011). This suggests that there are overlapping neural circuits 

in the right hemisphere that facilitate an interplay between non-spatial (possibly 

sustained) attention and spatial attention. Specific effects of load were seen in 

the N1 components predominantly. The processing advantage for left peripheral 

targets reported behaviourally and at for the right hemisphere was decreased 

with an increase in attentional load. For the baseline condition (no additional 

attentional load), elicited by contralateral stimuli, N1 was enhanced over both 

hemispheres. With the addition of load (for both low and high attentional load), 

activity in the RH for N1 was attenuated for left stimuli (contralateral to the 

orienting response). This reported RH reduction in relation to the left stimuli can 

be seen as possible support for the model of Corbetta et al. (2008). 

In O’Connell et al.(2011) the later positive P2 and P3 components were also 

affected by increased load. P2 was enhanced in low and high load in contrast to 

no load, but equally over both hemispheres. P3 instead was reduced when load 

was increased. The later P3 component is interpreted predominantly to reflect 

resource allocation, as well as stimulus categorization and response decision : 

(Anderer, Semlitsch, & Saletu, 1996; Falkenstein, Hoormann, & Hohnsbein, 2002; 

Picton, Stuss, Champagne, & Nelson, 1984; Polich, 1996, 2007; Polich & Kok, 

1995). An increase in load thus seemed to lead to decreased allocation of 

attentional resources (reflected in the increased reaction times with load). 

Although there were methodological differences, load effects on the early 

components of target processing have also been reported by Bonato et al. 

(2015). Bonato et al. (2015) investigated increased load on spatial attention 

from a single to a dual task paradigm across modalities, either increasing visual 

or acoustical load in the dual task. They also reported load effects on the early 

components of target processing. For visual duals tasks,  they found increased P1 

amplitudes for the high load condition, while O’Connell et al. (2011) found the 

same effect at fixation when participants were assessing central targets. Bonato 

et al. (2015) conclude that the increase in P1 activity reflects the greater impact 

of high load on attentional orienting, and thus enhances recruitment of the RH 

posterior activity during early target processing. Moreover, the negative N2 
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component was found to be influenced by high attentional load. Right 

lateralized targets evoked contralateral activation of premotor areas and left 

target activated the contralateral SMG (supramarginal gyrus), thus supporting a 

load impact on the RH and early visual orienting which was disrupted by 

increased load. 

Age related differences  

Focusing on the neurophysiological effects of aging, healthy aging has been 

identified to impact on later components, such as the N2 and P2 and also 

significant age differences in the late P3 component (see Staub et al., 2014). 

Age related differences in the P300 are typically shown as enhanced amplitudes 

and interpreted as either reflecting enhanced resource allocation as 

compensatory mechanisms in older adults (Staub et al., 2014), or reflecting 

stimulus categorization and response decision in Go No Go paradigms: (Anderer 

et al., 1996; Falkenstein et al., 2002; Picton et al., 1984; Polich, 1996, 2007; 

Polich & Kok, 1995). In a Go/ No go task, Staub et al. (2014) found that 

behaviourally, older adults maintained sustained attention during the time 

course of the task, as indexed by accuracy and reaction time, leading older 

adults to perform equally well as younger adults on the task. This maintained 

level of sustained attention in the older adults was matched in the neuronal 

results and reflected in larger P2 and P3 (here for GO targets) amplitudes in 

contrast to young adults.  

Studies investigating age related differences in spatial attention further suggest 

a right hemisphere decline pointing towards a reduction of hemispheric 

lateralisation with age (Learmonth, Benwell, et al., 2017; Nagamatsu et al., 

2011). This is again accompanied with neuronal activity differences in the late 

P3 components. For example, Nagamatsu et al. (2011) reported evidence for 

possible age related change in RH function using  a cued spatial orienting task 

and EEG. In contrast to young adults, older adults showed a reduced top down 

attention allocation for the left side of space as evidenced in a reduction of 

amplitudes in the late component (375 – 430ms post cue for their older adult 

sample) anterior directing attentional negativity (ADAN), which is assumed to 

reflect visual attentional control (Green, Teder-Sälejärvi, & McDonald, 2005; 

Jongen, Smulders, & Van der Heiden, 2007; Seiss, Gherri, Eardley, & Eimer, 
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2007). Behaviourally, this was supported by greater left visual field errors shown 

for the older adults. Nagamatsu et al (2011) conclude that age related 

differences are even visible in processes involved with executive attentional 

control, likely derived from cortical differences in the aging brain (See 

Nagamatsu et al., 2011).  

In a landmark paradigm, Learmonth et al. (2017) report again a reduction of 

hemispheric lateralisation that was age related but also stimulus driven. 

Behaviourally, older adults showed no spatial bias to either side of space at 

group level, in contrast to young adults who displayed a left bias for long line 

stimuli. At the neuronal level, Learmonth et al.(2017) reported greater right 

parieto occipital ERP response for their long as opposed to short landmark lines 

in young adults, that was absent in the older adults. Older adults further showed 

no lateralised clusters while young adults showed a phase of right lateralisation 

elicited by the long line stimuli, thus suggesting an age related attenuation of 

such a lateralization. Older adults further showed a reduced P300 component. In 

both studies (Learmonth, Benwell, et al., 2017; Nagamatsu et al., 2011), age 

related differences were therefore apparent in the P300 component, with older 

adults showing a reduction in the P300 amplitude in contrast to young adults, 

likely reflecting an increased recruitment of resources in the older adults to 

achieve task completion. 

Topographic shifts reported for older adults  

Interestingly, for the P3 component specifically, age related differences appear 

to be correlated also with a topographic shift in cortical activity. A variety of 

studies have reported a shift of peak P300 amplitudes from posterior electrodes 

towards more anterior electrodes with old age (Fjell & Walhovd, 2004; 

Friedman, 2003; O’Connell et al., 2012; Polich, 1997; West, Schwarb, & Johnson, 

2010). A frontal P3 activity in a sustained attention context for example, is 

generally interpreted as reflecting an increased recruitment of frontal regions in 

order to compensate and counteract possible processing deficits that arise in the 

posterior areas. For interpretation see (Learmonth, Benwell, et al., 2017; Lucci, 

Berchicci, Spinelli, Taddei, & Di Russo, 2013; O’Connell et al., 2012; Reuter-

Lorenz & Park, 2010).  
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Aims  

So in the final experimental study I aimed to assess how attentional load (as a 

non-spatial attentional factor) impacts on spatial attention. I focussed on 

differences between young and older adults in particular as I intended to 

uncover neuronal mechanisms that underlie the behavioural differences 

observed sometimes with spatial attention. Building on the research conducted 

by O’Connell et al.(2011), the current design resembled their experimental set 

up closely (see O’Connell et al., 2011) yet adapted to accommodate EEG 

analyses in an older adult sample (see Method section).Employing 

electroencephalography measurement, continuous EEG activity was recorded to 

investigate post stimulus (peripheral targets) event related potentials (ERPs) and 

compare these between attentional loads and age groups in order to answer the 

following research questions: 

 I investigated: 1) if increased attentional load modulated spatial attention and 

if such effects were more pronounced with healthy ageing. 2) how the 

modulating effects of attentional load were reflected in the neuronal correlates 

in an ageing context (i.e. a reduction in RH lateralization for older adults?). 3) if 

possible age related spatial asymmetry changes observed in the behavioural 

results were reflected in the neuronal correlates.  

Specific hypotheses 

Based on the current literature and my own pilot behavioural data I predicted 

the following results: 

As described in chapter 3, behaviourally the two age groups did not show 

significant differences in reaction times and accuracy between low and high 

attentional load. With the addition of a no load condition, I thus predict any age 

related differences in responses towards peripheral targets to be visible in the 

no load condition, with the possibility of these being attenuated with additional 

attentional load. As such, young adults might display a  preference for left 

peripheral targets (see O’Connell et al. (2011)but this may be attenuated in the 

low and high load conditions. Older adults might not show a preference for 

either side of space in the baseline condition and although attentional load may 
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slow down reaction times, I think it unlikely that load would lead to a shift to 

the right side of space (rightward bias).  

Derived from previous studies on the neuronal correlates using EEG, I will also 

investigate the typical ERP components of N1, P1, N2, P2 and P3 O’ Connell et 

al.(2011) showed decreased processing of right hemifield stimuli at N1, when 

load was high. This was seen predominantly at the occipital and inferior parietal 

regions of the RH. Moreover, at P1 (90ms- 140ms) perception was enhanced for 

left side stimuli with increased load, when attention was allocated toward the 

target (fixation) (in contrast to slower processing of stimuli on the right side of 

space, with decreased amplitudes in the left but increased amplitudes in the 

right hemisphere). Thus, in the present study, ERP differences between the age 

groups were expected. Specifically, it is possible that older adults recruit 

additional neuronal resources to compensate for increased task demands and 

depleted attention capacities. This may result in similar behavioural results to 

the young adults but should be reflected in the ERPs, especially in the late P3 

component.  

Method 

Participants 

Forty cognitively healthy adults were tested in two age groups. The young age 

group consisted of 20 (15 female) participants, between 18-25 years of age  

(M= 22, S.D. = 2.35). The majority were undergraduate students and were 

sampled through the Psychology subject pool. The older adult group consisted of 

20 (15 female) participants aged 63-76 years (M =70, S.D. = 3.89), who were 

opportunistically recruited. The exclusion criteria for participants were the same 

as described in chapter 3: a history of stroke colour blindness and dominant left 

handedness. The study received ethical approval from the University of Glasgow, 

College of Science and Engineering Ethics Committee, and participants gave 

written informed consent before participation. 
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Pre-screening Measurements 

As for the previous experiments, each participant was right handed and had 

normal to corrected to normal vision as per Colenbrander Mixed Contrast Card 

Set (Colenbrander & Fletcher, 2005) for mid and close range vision. All 

participants were pre-screened for visual acuity using the computerised visual 

detection task to screen for possible visual field deficits (see chapter 3 and 

Learmonth, Benwell, et al., 2017). Again they completed the colour blindness 

test with colour plates (Ishihara, 1918; Nakajima et al., 1960) and older adults 

completed the MOCA (Montreal Cognitive Assessment (Nasreddine et al., 2005) 

to screen for mild cognitive decline. As for the previous experiments. all 

participants showed normal cognitive performance (M= 28.56, S.D.=1.24) (with 

scores greater than 26  defined as normal in the MOCA test (See Nasreddine et 

al., 2005)).   

Design 

Participants completed a behavioural task with a 2 (age: young vs. older)  

x 3 (load: no load, low load, high load) x 2 (target side: left vs. right) mixed 

measures design, closely adapted from O’Connell et al (see O’Connell et al., 

2011), while EEG was recorded. Reaction times to the peripheral targets (left 

asterisk, right asterisk) as well as accuracy were measured. Responses towards 

the central targets (alphanumeric targets in low and high condition) were 

unspeeded and only accuracy was measured. 

Procedure and Stimuli 

The study was conducted over two separate sessions (a minimum of 24 hours 

apart) lasting around 1.5 to 2.5 hours (short breaks included). This included the 

time needed for preparing and setting up the EEG equipment. The first session 

typically included pre-screening measures, the EEG set up and two experimental 

conditions. EEG recordings were collected using a 64- electrodes BioSemi 

system, sampled at 1000Hz. In between the two experimental conditions, 

participants took a break. On the second day, participants completed the third 

condition in a shorter session (~ 1.5 h), also using EEG.  
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Figure 21: Schematic display of an experimental tri al (adapted from O’Connell et al. (2011) 
Displayed is the RSVP with alphanumeric red central  targets and a peripheral target to the 
right side.  

Participants were seated comfortably in a dark room in an EEG chamber 50 cm 

away from the computer. Their midsagittal plane was centrally aligned to the 

computer via a chinrest. The task involved a 2 (Age: Young, Old) x 3 (Load: 

Neutral, Low, High) x 2 (Side: Left vs Right) repeated measures dual task. It 

comprised of a lateralised target detection task and a central RSVP stream which 

contained alphanumeric stimuli (O’Connell et al., 2011). The stimuli were 

presented using E-Prime 2.0 (Psychology Software Tools Inc., Pittsburgh, PA) on 

a Dell Precision T3400 PC and 19.5′′ Sun Microsystems CRT monitor (33.8 x27 cm 

with 1280 × 1024 pixel resolution and 100Hz refresh rate) in a dark EEG 

chamber. The stimuli were presented on a grey background. 
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Participants made a speeded response once they perceived a peripheral target 

(i.e. a black asterisk, Font size 30), followed by an unspeeded response towards 

a central probe event at the end of each trial. Participants fixated a fixation 

cross for 1500ms at the beginning of each trial, and were instructed to withhold 

blinking during the length of a trial. Each trial consisted of 8 consecutive slides 

of alphanumerical stimuli forming a RSVP stream (See Figure 21). Within this 

stream, peripheral targets could appear to either the left or right side within 

rectangular place holders (2.5 x 2cm), 16cm away from the central fixation 

point. Peripheral targets never appeared simultaneously with the central target. 

The peripheral stimulus appeared for 400ms randomly at either 2300ms (Slide 3) 

or 3500ms (Slide 6) after trial onset (See Figure 21). Participants were not 

informed of this time-locked event. In every trial only one peripheral target was 

displayed to either left or right visual field, or was absent in the event of a catch 

trial.  

In the presence of the researcher (to confirm participants understood the 

instructions), participants completed 24 practice trials per condition, before 

completing the condition on their own. The results of the practice trial were not 

analysed and only the completed conditions were submitted to further analyses. 

Each participant completed 300 trials (50 trials across 6 Blocks) per attentional 

load condition. Each block contained a total of 16 peripheral targets per side. As 

for the previous experiments, one third of the trials were catch trials, half of 

which contained no peripheral targets (asterisk) but central targets 

corresponding with the load condition. The other half contained neither 

peripheral nor central targets. Between conditions, participants took a break of 

~10-20 minutes to rest before continuing the experiment. 

Load conditions 

Attentional load was manipulated by altering a central target in the 

alphanumeric RSVP stream. Instructions for each of the 3 conditions were given 

verbally and presented on the computer screen, omitting the label of the 

attentional load only. Instructions for the peripheral target were identical 

throughout the conditions, only the task for the central target responses 

changed.  
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No attentional load:  

Participants were instructed to pay attention to the peripheral targets (black 

asterisk, font size 30), while keeping their eyes fixated in the centre. Using only 

their right hand, responses were ‘v’ key for left asterisk and ‘b’ for right 

asterisk. They were asked to monitor the central RSVP stream but no central 

target was presented and no decision had to be made at the end of a trial. This 

condition was used as a baseline measure to assess any changes of load on the 

brain activity measured with EEG. 

Low attentional Load: 

Participants were instructed to make a speeded response to the peripheral 

target, identical to the no attentional load condition. In addition, they were 

instructed to monitor the central stream for a central target and make 

judgements if the central target was present or not at the end of each trial, 

using the same response keys (‘v’ for yes  or ‘b’ for no; the response keys were 

counterbalanced between participants). For the low load condition, the central 

target was always one green number (from a range of 1-8) that appeared 

amongst the stream of red numbers in a given trial. This manipulation is 

considered to impact on attention with a low load, due to the pop out 

characteristic of the salient colour change (Treisman & Gelade, 1980).  

High attentional load condition: 

In addition to detecting peripheral targets in the left or right visual field, 

participants monitored the central stream for a central target consisting of one 

red letter amongst a stream of red numbers in a given trial. The response keys 

used were identical to the low load condition. This condition was intended to 

increase the level of attentional load due to its characteristic to a conjunction 

search task, requiring more attentional resources to complete the task at hand  

(Treisman & Gelade, 1980).  
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EEG acquisition and pre-processing 

The neurophysiological data was recorded using a 64 channel BioSemi EEG 

system. Additionally, 2 external ocular electrodes (EOG) were placed on the 

outer side of the left and right eye and used to record eye movements and blinks 

during a trial. Continuous EEG was acquired using ActiveView. The data was re 

sampled at a rate of 1000Hz. Pre-processing and analyses of the data were 

performed in MATLAB using the EEGLAB toolbox (Delorme & Makeig, 2004) 

including customised scripts.  

Only valid trials, in which both peripheral targets and central targets were 

correctly detected or rejected, were analysed. During the pre-processing, the 

EEG data was resampled to 1000 Hz and re-referenced offline to an average 

signal across all of the scalp electrodes. The data was first epoched around trial 

onset (-100 to 4.500ms) with invalid trials deleted manually based on the 

behavioural data (due to incorrect responses) and visual inspection for 

abnormalities in the recorded signal. The data was then re-epoched in -100ms to 

600ms segments around the peripheral target onset. The data was high pass 

filtered to 0.3 Hz and low pass filtered to 40 Hz and baseline corrected (-100 to 

0ms) and again visually inspected for noisy epochs. The data was then combined 

across all conditions per individual and submitted to independent component 

analysis (ICA), including all 64 electrodes and the external eye electrodes (to 

filter out systematic eye movements). ICA was used to reject abnormal trends in 

the data. After components were removed, the data was de-trended and again 

re-epoched in segments around the peripheral trial onsets (-100 to 600ms). ERPs 

were generated for trials with peripheral targets, separated into left and right 

peripheral targets for each attentional load condition, collapsed over both 

temporal positions (3 and 6).  
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Total trials  

A series of independent t -tests showed that between both age groups, there 

was no significant difference between the total of trials submitted to the EEG 

analysis per load condition.  

Mean trials:  

No Load Young:  295, S.D.= 4.2 vs Older: 293, S.D. = 6.3, t(38)=-1.18, p= .24   

Low Load Young: 288, S.D.=4.3 vs Older: 287, S.D. = 6.2, t(38)= .71, p= .48 

High Load Young: 288, S.D.= 4.5 vs Older : 288, S.D.= 6.1, t(38)= -.03, p= .97 

A series of paired t-tests compared the amount of total trials across load 

conditions. Results revealed that the amount of trials were reduced in both, the 

low load condition and high load condition in comparison to the no load 

condition. No Load = 294, S.D.= 5.3 > Low Load= 287, S.D.= 5.3,  

t(39)= 7.31, p <.001 and High Load = 288, S.D. = 5.3, t(39)= 6.93, p <.001. 

However, the amount of total trials were not different in the low and high 

condition p = .54  
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Results 

Visual acuity screening 

 
Figure 22 : Overall percentage of detection errors for visual acuity detection task 
for a) young and b) older adults.  
Each of the 6x6 squares displays the error rate acr oss participants made at this position 
equalling to the screen and visual field of the par ticipant. A colour bar on the right side 
indicates the percentage of errors made, ranging fr om no errors to a 50% detection error 
rate. 

Results of the visual acuity screening (Learmonth, Benwell, et al., 2017) showed 

that participants made most of their detection errors in the periphery, with 

most extreme values at the outer corners, ranging here from 30% – 42 %  

(M = 35.8%, S.D.= 5.2) both within and between participants. Most importantly, 

for the middle of the visual field that corresponded to the area where the 

stimuli were presented, the accuracy detection was at a rate of  

M= 98.2%, S.D. = 1.18 (across the 16 positions, excluding the outer positions). 

Detection accuracy was at an average of M = 91.25 %, S.D. = 10.91 collapsed 

across all the 36 positions. No single participant fell below this. (See Figure 22). 
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Behavioural results 

Accuracy 

1) Central Target: 

The 2(Age) x2 (Low and high Load only) ANOVA for central target accuracy 

revealed no main effects of load nor age. Overall, there were no accuracy 

differences in detecting central targets in either the low or  high load condition 

and accuracy was high for both conditions Low M = 93%, S.D. = 3.8, 

High M= 94% , S.D. = 6.1. However, there was a significant interaction between 

load and age F(1, 38)= 11.58, p= .002 ηp² = .23. Independent samples t-tests to 

further investigate the direction of this interaction revealed that between the 

age groups, there was a difference for high but not low attentional load targets. 

Interestingly, for the high load condition, older adults were significantly more 

accurate in detecting central targets (a red letter) than young adults  

t(38)= -2.97, p = .005, M (young) = 92%, S.D. = 7.3 < M (older) = 97% , S.D.= 3.03. 

For the low load condition, both young and older adults identified the central 

target similarly well M (young) = 94%, S.D. = 2.87, M (older) = 92% S.D. =4.58. 

2) Peripheral Targets: 

A 2 (Age) x3 (Load) x 2 (Side) ANOVA with age as a between factor revealed no 

main effect for age but there was a main effect for load  

F(2, 76)= 25.99, p = <.001, ηp² = .41. 

The baseline condition (No attentional load) was significantly higher in detection 

accuracy M = 97,5%, S.E. = .32 than both low load M = 94, S.E. = .57 and high 

load condition M = 94%, S.E. = .33 p <.001, suggesting a significant effect of load 

on peripheral detection accuracy when any additional type of load was added. 

There was no difference between low and high attentional load.   

Interestingly, although there were no differences between the age groups there 

was a significant interaction between load and side  

F(2, 76)= 219.74, p< .001 ηp²= .85.  

For low attentional load, left targets were more accurately detected than right 

targets. This pattern was reversed in the high attentional load condition.  

Low Load: Left Target (M= 97, S.D. = 3.85) > Right Target (M = 91, S.D. = 3.71) 
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High Load: Right Target (M= 97%, S.D. = 2.3) > Left Target (M= 92%, S.D. = 2.51). 

In addition for left targets, accuracy was significantly reduced from no load 

condition compared to high load condition t(39)= 8.22, p<.001 and low load to 

high load condition t(39)= 11.06, p <.001.  

For right targets, accuracy was significantly reduced from no load to low load 

t(39)= 10.73, p < .001. Accuracy increased from low load to high load conditions 

t(39)= -10.76, p < .001. 

3) Reaction Times for Peripheral Targets 

 
Figure 23: Reaction Times for peripheral Targets 
Violin plots depicting reaction times across load c onditions for left and right targets in 
young and older adults. Individual RTs are overlaid  as scatterplots. The box depicts the 95% 
HDI with the group level mean as a black bar. Faste r reaction times for peripheral targets in 
the no load condition are depicted with a black ast erisk (*).   

In order to investigate differences in reaction times between the age groups 

across the three load conditions, I performed a 2 (Age) x 3 (Load) x 2 (Side) 

mixed model ANOVA, with age as the between group variable. The results again 

revealed no main effect of age but this time only main effects for load and side, 

not an interaction (see Figure 23).  

The main effect of load was F(2, 76)= 71.59, p< .001, ηp²= .65 and a series of 

paired samples t- tests revealed that there were significantly faster reaction 

times for the No load condition (M= 487 ms, S.D.= 13.84) than both the Low load 

condition (M= 557 ms, S.D. = 16.37), t(39)= -9.86, p< .001 and the High load 
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condition (M= 578 ms, S.D.= 16.70) t(39)= 8.53, p= .001. However, the reaction 

times of the low load condition and high load condition did not differ 

significantly t(39)= -.15, p= .88. 

The main effect of Side was F(1, 38)= 19.01, p< .001, ηp²= .33 and paired 

samples t-test comparing the left versus right side collapsed over all load 

conditions revealed that overall, participants reacted quicker towards targets on 

the right side (M= 536 ms, S.D. = 89.18) of space then the left side  

(M = 559 ms, S.D. = 101), t(39)= 4.33, p .001.  

No other effects or interactions were significant. 

EEG statistical analysis: 

The peripheral targets elicited standard visual –evoked potentials at P1, N1, P2, 

and P3 (see Figure 24). Peak amplitudes and latencies for these components 

were analysed using, similar to O’Connell et al. (2011) and Learmonth et al. 

(2017), a left and right region of interest (ROI).  

Left ROIs included the 8 electrodes: P1, P3, P5, P7, P9, PO7, PO3, O1 (20 – 27) 

and right ROIs: P2, P4, P6, P8, P10, PO8, PO4, O2 (57 – 64).  

Firstly, the electrophysiological data were averaged across all trials associated 

with either the left or right peripheral target per condition per person. This 

created an averaged waveform for the left hemisphere and an averaged 

waveform for the right hemisphere per person and condition.  Individual peak 

amplitudes and latencies were calculated for the LH and RH separately. They are 

referred to as raw data in the results section, depicting the raw peak amplitudes 

and latencies on a group level and are depicted in the tables (see Table 4- Table 

6). The obtained peak components for the LH and RH were then subtracted from 

each other on a subject-by-subject basis (RH – LH) in order to analyse the 

lateralization difference between peaks per individual and per component. The  

lateralization difference between peak latencies and amplitudes were calculated 

for left and right targets across all conditions and analysed using SPSS in a  

2(Age) x 3 (Load) x 2 (Side) design. This method allowed me to interpret the 

results in terms of changes in the lateralised activity across the two hemispheres 

for the peak components P1, N1 and P2.  
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The P3 component was analysed regarding a possible topographic shift from 

parietal to more frontal activity with age, instead of a lateralization between 

the RH and LH. I used a similar approach to the above but focussed on the 

contrast between parietal and frontal ROI. The data was averaged across all 

relevant trials per condition on a subject-by-subject basis, creating an averaged 

waveform for the frontal ROI, which included the electrodes F3, Fz, F4 and an 

averaged waveform for the parietal ROI including the electrodes P3, Pz, P4. 

Peak latency and amplitude for the P300 were calculated for the frontal and 

parietal ROI separately. Again, raw group level peak amplitudes and latencies 

for the two ROI are presented in the tables (see Table 4 till Table 6).  

The obtained peak amplitudes and latencies for the parietal and frontal ROI 

were then subtracted from each other on a subject-by-subject basis (parietal – 

frontal), calculating the difference between peaks per individual and per 

condition between parietal and frontal ROI. This difference was computed for 

left and right targets and analysed using SPSS in a 2(Age) x 3 (Load) x 2 (Side) 

design.  

The selected component windows were kept identical between the young and 

older adults and were derived from the grand average waveforms and 

preliminary peak amplitude detections for the young and older adults  

(see Figure 24 and Figure 25). Figure 24 shows the grand average EEG waveforms 

for 64- channels illustrating the grand average waveforms of young (black) and 

older adults (red). They are overlaid with the scalp topographies of the mean 

component peaks (P1, N1, P2) collapsed over all conditions for young and older 

adults. The topographic plots show a similar distribution across the scalp for P1 

and N1 between young and older adults and are in accordance with the 

predictions for the respective components. However, the scalp topographies for 

P2 are deviating from my expectations and concerns will be mentioned below. 

Figure 25 depicts the grand average ERP waveforms generated from the 

averaged ROI (Left and Right electrodes) for young and older adults, illustrating 

the amplitude and latency for the peak components (P1, N1, P2). While the 

magnitude of the waveforms show differences between young and older adults, 

they follow a similar time course. Thus, the following time windows were used 

to calculate peak latency and amplitudes in all conditions (see Figure 25); 

P1 (80 – 150ms), N1(150 - 250), P2 (190 - 260), P3 (280 – 400ms).  
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A preliminary peak analysis for young and older adults for the N2pc(190 - 260) 

component did not elicit a distinct peak amplitude and this component was 

therefore not analysed any further.  

P2 (cautionary comment):  

Based on the topographies derived from the grand average waveforms 

(see Figure 24), the later positive P2 component should be interpreted with 

caution. I decided to select the window for this component based on the results 

by Learmonth et al.(2017) with a range of 190ms -260ms, yet on a group level 

(see topographical plots) older adults showed not the expected pattern of a 

positive activation in the posterior region when collapsed over all conditions, but 

a negativity. This could hint that the latency range for this component was not 

ideal and in fact maxed out for both age groups.  

 
Figure 24: Butterfly plots showing the grand averag e EEG waveforms for 64- channels. 
illustrating the scalp topographies of the mean com ponent peaks (P1, N1, P2) collapsed 
over all conditions, contrasting the grand average waveforms of young (black) and older 
adults (red). 
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Figure 25:  Grand average ERP from the averaged ROI  (Left ROI and Right ROI electrodes). 
The waveform illustrates the amplitude and latency of the peak components (P1, N1, P2) for 
young (blue) and older adults (red), averaged acros s all trials and conditions.  
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ERP results 

 

 
Figure 26: Mean ERPs for young and older adults sho wing the lateralization between LH and 
RH for left and right targets in the load condition s. 
Mean ERPs are presented for left and right hemisphe res for young adults (blue) and older 
adults (red). 
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Table 4: Raw data of mean amplitudes and latencies per target side and across the load 
conditions  

 

No Load 
 

Left Target Right Target 
 

ROI 
 

LH RH LH RH 

P1 Amplitude YA 1.30 2.33 1.61 1.52 
  

OA 0.93 1.15 1.05 1.01 
 

Latency YA 122.45 127.10 122.95 124.30 
  

OA 128.35 125.00 118.20 130.60 

N1 Amplitude YA -1.77 -2.33 -2.68 -2.33 
  

OA -1.95 -3.60 -3.56 -1.56 
 

Latency YA 203.55 199.95 193.15 213.20 
  

OA 220.75 217.10 219.05 216.70 

P2 Amplitude YA 0.96 1.41 1.48 0.74 
  

OA 0.06 -1.19 -1.41 0.31 
 

Latency YA 228.45 242.80 250.10 227.65 
  

OA 221.45 225.45 225.10 215.35 
   

Frontal  Posterior  Frontal  Posterior  
P3 Amplitude YA 0.83 4.69 0.94 5.03 

  

OA 1.72 1.88 1.78 1.73 
 

Latency YA 337.35 360.15 338.70 361.50 
  

OA 338.85 389.55 343.50 391.85 

       
 

Low Load  Left Target  Right Target 
   

LH RH LH RH 

P1 Amplitude YA 1.47 2.30 1.55 1.61 
  

OA 1.14 1.28 1.25 1.27 
 

Latency YA 128.25 127.35 116.05 134.60 
  

OA 138.75 125.40 122.15 137.85 

N1 Amplitude YA -1.99 -2.58 -2.50 -2.35 
  

OA -1.82 -3.16 -3.06 -1.57 
 

Latency YA 205.70 205.55 195.50 221.70 
  

OA 227.05 218.55 221.75 213.10 

P2 Amplitude YA 0.50 0.50 0.86 0.34 
  

OA 0.13 -0.76 -1.11 0.39 
 

Latency YA 231.70 244.70 237.00 230.85 
  

OA 210.00 222.70 220.15 215.55 
 

 Frontal  Posterior  Frontal  Posterior 
P3 Amplitude YA 1.12 3.16 0.87 3.47 

  

OA 1.58 0.73 1.61 0.59 
 

Latency YA 326.45 373.25 320.40 369.10 
  

OA 335.95 374.60 338.75 379.35 
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High Load  Left Target  
 

Right Target 
   

LH RH LH RH 

P1 Amplitude YA 1.44 1.92 1.61 1.72 
  

OA 1.06 1.35 1.05 1.52 
 

Latency YA 132.30 129.80 119.25 129.45 
  

OA 133.65 124.30 117.60 138.00 

N1 Amplitude YA -1.91 -2.57 -2.35 -2.20 
  

OA -2.02 -2.99 -3.15 -1.69 
 

Latency YA 216.35 206.35 203.45 218.95 
  

OA 220.50 214.55 219.80 220.30 

P2 Amplitude YA 0.34 0.30 0.21 0.22 
  

OA -0.02 -0.83 -0.98 0.36 
 

Latency YA 228.00 238.50 240.50 224.60 
  

OA 218.70 226.40 222.20 212.50 
   

Frontal  Posterior  Frontal  Posterior 
P3 Amplitude YA 1.07 2.31 1.02 2.27 

  

OA 1.22 0.54 1.32 0.51 
 

Latency YA 326.10 364.90 328.10 370.85 
  

OA 312.70 370.40 328.60 381.05 

The table shows mean amplitudes and latencies for y oung and older adults at each target 
side and within and across load conditions. The raw  data of the peak components were 
analysed separately for LH and RH as well as fronta l and posterior ROI.  

Table 5: Mean peak amplitudes and latencies per loa d conditions averaged across target 
sides.    

No Load Low Load High Load 
 

ROI  LH RH LH RH LH RH 

P1 Amplitude YA 1.46 1.92 1.51 1.95 1.52 1.82   

OA 0.99 1.08 1.20 1.27 1.05 1.44 
 

Latency YA 122.70 125.70 122.15 130.98 125.78 129.63 
  

OA 123.28 127.80 130.45 131.63 125.63 131.15 

N1 Amplitude YA -2.23 -2.33 -2.25 -2.46 -2.13 -2.38 
  

OA -2.76 -2.58 -2.44 -2.36 -2.58 -2.34 
 

Latency YA 198.35 206.58 200.60 213.63 209.90 212.65 
  

OA 219.90 216.90 224.40 215.83 220.15 217.43 

P2 Amplitude YA 1.22 1.07 0.68 0.42 0.27 0.26 
  

OA -0.68 -0.44 -0.49 -0.19 -0.50 -0.23 
 

Latency YA 239.28 235.23 234.35 237.78 234.25 231.55 
  

OA 223.28 220.40 215.08 219.13 220.45 219.45 
   

Frontal  Posterior Frontal  Posterior Frontal  Posterior 

P3 Amplitude YA 0.89 4.86 0.99 3.32 1.05 2.29 
  

OA 1.75 1.81 1.59 0.66 1.27 0.52 
 

Latency YA 338.03 360.83 323.43 371.18 327.10 367.88 
  

OA 341.18 390.70 337.35 376.98 320.65 375.73 

The table shows the mean amplitudes and latencies f or young and older adults at each 
attentional load condition, averaged across target sides. The raw data of the peak 
components were analysed separately for LH and RH a s well as frontal and posterior ROI.  
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Table 6: Mean peak amplitudes and latencies per tar get side     

Left Target Right Target 
 

ROI 
 

LH RH LH RH 

P1 Amplitude YA 1.40 2.18 1.59 1.62 
  

OA 1.04 1.26 1.12 1.27 
 

Latency YA 127.67 128.08 119.42 129.45 
  

OA 133.58 124.90 119.32 135.48 

N1 Amplitude YA -1.89 -2.49 -2.51 -2.29 
  

OA -1.93 -3.25 -3.26 -1.61 
 

Latency YA 208.53 203.95 197.37 217.95 
  

OA 222.77 216.73 220.20 216.70 

P2 Amplitude YA 0.60 0.73 0.85 0.43 
  

OA 0.06 -0.93 -1.17 0.35 
 

Latency YA 229.38 242.00 242.53 227.70 
  

OA 216.72 224.85 222.48 214.47 
   

Frontal Posterior Frontal Posterior 
P3 Amplitude YA 1.01 3.39 0.94 3.59 

  

OA 1.51 1.05 1.57 0.94 
 

Latency YA 329.97 366.10 329.07 367.15 
  

OA 329.17 378.18 336.95 384.08 

The table shows mean amplitudes and latencies for y oung and older adults for the left and 
right peripheral target collapsed across the load c onditions. The raw data of the peak 
component were analysed separately for LH and RH as  well as frontal and posterior ROI.  

All statistical results are presented below. As they are complex I present a short 

table listing the main findings for each component at the start of each section 

(see Table 7 - Table 10). The raw amplitude and latency data separated by LH 

and RH as well as frontal and posterior ROI are presented for young and older 

adults in the Table 4 till Table 6 above for reference. 
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P1: 

Table 7 : P1 Summary of significant results with ag ing effects in bold 
Amplitude  

Main effect: Target side F(1, 38)= 7.25, p = .01, ηp² = .16 
Interaction: Target side x Age F(1, 38)= 5.15, p = .03, ηp² = .12 
Interaction: Load x Target Side F(2, 76)= 4.05, p = .02,  

  
Latency  

Main effect: Target side F(1,38)= 14.63, p < .001 ηp²=.28 
Interaction: Load x Target side  F(2, 76)= 3.41, p = .04, ηp²= .08 

 

4) P1 Amplitude 

Effect of Side: 

There was a main effect of Side F(1, 38)= 7.25, p = .01 ηp² = .16. Based on the 

raw data, left targets elicited a greater amplitude over the right hemisphere  

M= 1.7 S.D. = 1.18 than the left hemisphere M = 1.22, S.D. = .78. Importantly, 

there was a significant greater lateralization for left than right targets, with a 

difference of M = .50, S.E = .156 between the RH and the LH, rather than M= 

.09, S.E. = .158 p = .01 for the right targets. 

This effect was qualified by the age and side interaction F(1, 38)= 5.15, p = .029, 

ηp² = .12. Paired samples t-test revealed that within age groups, young adults 

showed a significant difference in lateralization between left and right targets. 

They had a greater lateralization between the hemispheres for left targets with 

a difference of M = .77, S.D. = 1.26 between left and right ROI peak amplitudes, 

compared to right targets M= .02, S.D. = 1.17, t(19)= 2.79, p = .01.  

The raw amplitude data showed that left targets had higher amplitudes over the 

RH M = 2.18 S.D. = 1.49 than LH M= 1.4, S.D. = .98 (see Table 6). This 

lateralization difference was not significant for older adults. 

 
Effect of Load:  
In addition there was a significant interaction between load and side  

F(2, 76)= 4.05, p = .02. Paired samples t –test revealed a significant difference 

between left and right targets for the No load and Low Load conditions. 

Separating the results into load conditions the following results were revealed:  
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No Load 

For the no load condition results showed a greater lateralization for left targets 

M = .62, S.D. = 1.28 than for right targets M= -.06, S.D. = 1.09,  

t(39)= 3.07, p = .004. The raw peak amplitude data revealed that left targets 

elicited greater P1 amplitudes over the RH M = 1.74 S.D. = 1.34 than the  

LH M= 1.12, S.D.= 0.75. In contrast, right targets showed a smaller difference 

between the hemispheres and elicited a greater amplitude over the  

LH M = 1.33, S.D.= 0.9 than the RH M = 1.27, S.D.= 0.95  

(see Figure 26, panel 1 and 2).  

Low Load 

For the low load condition, paired t-tests also revealed a greater lateralization 

for the left target M= .48, S.D= 1.28 than the right targets M= .03, S.D.= 1.05, 

t(39)= 2.15, p = .037. The raw data confirmed greater peak amplitudes for left 

targets over the RH M = 1.79, S.D.= 1.33 than the LH M= 1.30, S.D.= 0.94. In 

contrast, amplitudes in the LH and the RH for right targets were similar LH M= 

1.40, S.D.= 1.00 vs. RH M= 1.44, S.D.= .96 (see Figure 26, panel 3 and 4).  

Right Target and Load 

Focussing only on the right targets between the three load conditions, revealed 

that there were significant differences in lateralization between the No load and 

High attentional load conditions, as well as between the Low and High 

attentional load condition (see Figure 26, right panels). Right targets elicited 

greater lateralization in the High load condition than the No load condition 

M= .29, S.D.= 1.19 > M= -.06, S.D.= 1.09, t(39)= -2.16, p = .04.  

Based on the raw data P1 amplitudes for right targets in the High load condition 

were enhanced over the ipsilateral RH M= 1.62, S.D.= 1.15 in contrast to the 

contralateral LH M= 1.22, S.D.= 1.09.  

Right targets in the no load condition showed enhanced P1 amplitudes over the 

contralateral LH M= 1.33, S.D= .09 over the RH= 1.27, S.D. = .95 but the 

lateralization difference was smaller.  
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High load 

The high load condition elicited greater lateralization than the low load 

condition also M= .29, S.D= 1.19 > M= .04, S.D. = 1.05, t(39)= -2.14, p = .038. 

The raw data showed enhanced amplitudes for right targets in the High load 

condition over the RH M= 1.62, S.D.= 1.15 in contrast to the  

LH M= 1.22, S.D.= 1.09.The enhanced amplitude over the RH was repeated in the 

Low Load condition but with a smaller lateralization difference  

LH M= 1.4, S.D.= 1.00 vs RH = 1.44, S.D= .96.  

 
5) P1 Latency  
 
Effect of Side 
For the P1 latency, there was again no effect of age but there was a main effect 

of side F(1,38)= 14.63, p < .001 ηp²=.278. There was a significant difference 

between latencies for the left and right targets p= .001. Right targets showed a 

greater lateralized difference in latencies between the LH and the RH M= 13.1, 

S.E. = 2.4 compared to left targets which only had a difference of  

M = - 4.1, S.E.= 2.4 . The raw data revealed that according to predictions, peak 

latencies for both target types were apparent earlier in the contralateral 

hemisphere. Right targets elicited earlier peak amplitudes in the contralateral 

LH M= 119.37ms, S.D= 20.4 over the RH M= 132.47ms, S.D= 18.2, which peaked 

before left targets, which elicited earlier peak amplitudes over the contralateral 

RH M= 126ms, S.D. = 18. 4 over the LH M= 130ms, S.D. 21.  

Effect of Load  
Furthermore, the P1 latency revealed an interaction between load and side 

F(2, 76)= 3.41, p = .038 ηp²= .083.  

Subsequent paired samples t-tests revealed a significant difference between left 

and right target latencies in the Low load and High load condition. 

Low Load 

For the low load condition, right targets showed greater difference in latencies 

between the LH over the RH than left targets.  

M = 17.12, S.D. = 23.08 vs M= -7.12, S.D. = 28, t(39)= -3.65, p = .001.  

The raw data of the P1 peak amplitude latency revealed that right targets 

elicited earlier amplitudes over the LH M= 119ms, S.D.= 21.74 than the RH M= 
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136ms, S.D.= 14.17. Left targets in contrast elicited earlier amplitudes over the 

RH M= 126ms, S.D= 18.41 vs the LH M= 133ms, S.D. = 21.69  

(see Figure 26, panel 3 and 4). 

High Load 

For the high load condition, this pattern was repeated with greater differences 

for right targets over left targets  

M= 15.3, S.D. = 20.8, vs M= - 5.9, S.D. = 27.54, t(39)= -4.45, p< .001.  

The raw data revealed that right targets elicited earlier latencies over the 

contralateral LH M= 118ms, S.D. = 20.09 than over the RH = 133ms, S.D. = 18.06. 

In contrast, left targets elicited earlier peak amplitudes over the contralateral 

RH M= 127ms, S.D. = 20.12 vs the LH = 132ms, S.D. = 18.45 although with an 

overall smaller difference between both hemispheres compared to the right 

targets (see Figure 26, panel 5 and 6).  

N1: 
 

Table 8: N1 Summary of significant results with agi ng effects in bold 
N1 Amplitude  

Main effect: Target side F(1, 38)= 39.98, p< .001, ηp²= .51 
Interaction: Target side x Age F(1,38)= 12.77, p = .001 ηp²= .23 
Interaction: Load x Target side F(2, 76)= 4.46, p = .01, ηp²= .10 

Latency  
Main effect: Target side  F(1,38)= 7.64, p = .009, ηp²= .17. 

Interaction: Target side x Age  F(1, 38)= 5.09, p = .03, ηp²= .12 
 
6) N1 Amplitude 
 
Effect of Side: 
There was a main effect of side F(1, 38)= 39.98, p<.001, ηp²= .51. Overall, there 

was a greater lateralization to the right hemisphere for left targets  

M = -.96, S.E. =.20, versus right targets M= .94, S.E. = .22.  

The raw data revealed enhanced negative N1 amplitudes for left targets over the 

RH M= -2.87 S.D. = 1.87 compared to the LH M= -1.91, S.D. = 1.34.  

For right targets, negative N1 amplitudes were enhanced in the contralateral  

LH M = -2.88, S.D. = 1.64 over RH M = -1.95, S.D. = 1.46. 

This main effect was qualified by the interaction between age and side  

F(1,38)= 12.77, p = .001, ηp²= .23. Investigating this interaction further with a 

series of independent t-tests revealed that: 
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Between Age groups 

Right targets showed a significant difference in peak amplitudes between the LH 

and the RH. Older adults showed a greater difference M= 1.65, S.D. = 1.25 than 

young adults M= .22, S.D.= 1.54, t(38)= 36.43, p< .001. Investigating the 

distribution between the hemispheres further, the raw data revealed that older 

adults had enhanced negative N1 amplitudes in the LH M= -3.26, S.D. = 1.41 with 

fewer negative peaks in the RH M= -1.6, S.D. = 1.58. Young adults also showed 

more negative peak amplitudes over the LH but with less of a difference in 

magnitude between the LH and the RH.  

LH M= -2.51, S.D. = 1.80, RH M= -2.29, S.D. = 1.26 (see Table 6) 

Within Age groups 

Within age groups, paired samples t-tests revealed a significant difference 

between left and right targets in the older adults.  

There was a greater difference between the hemispheres for right targets M= 

1.65, S.D. = 1.25, than left targets M= -1.32, S.D.= 1.32, t(19)= -8.59, p< .001.  

For right targets, older adults showed enhanced negative N1 peak amplitudes 

over the LH M= -3.26, S.D. = 1.41 than RH -1.61, S.D. = 1.58.  

Left targets elicited greater negative N1 peak amplitudes over the contralateral 

RH M= -3.25, S.D.= 2.10, LH M= -1.9, S.D.= 1.45 (see Table 6).  

Effect of Load: 

There was also an interaction between load and side 

F(2, 76)= 4.46, p = .01. ηp² = 105.  

Subsequent paired samples t-tests to investigate the direction of the interaction 

revealed significant differences between left and right targets for all three load 

conditions. According to the predictions, targets elicited more negative N1 peak 

amplitudes in the contralateral hemispheres. 

No Load  

As expected, left and right targets showed a pattern of contralateral 

lateralization for N1 peak amplitudes. Peak N1 amplitudes were more negative 

over the RH M= -2.96, S.D.= 1.8 than the LH M= -1.8, S.D.= 1.5 for contralateral 

left targets. In contrast, right targets elicited greater negative amplitudes over 

the LH M= -3.12 S.D. = 1.9 than the RH M= -1.94, S.D.= 1.5  

(see Figure 26, panel 1 and 2). 
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Low load  

This pattern was repeated in the low load and high load condition. Results 

revealed a difference in lateralization between left M= -.96, S.D. = 1.57 and 

right targets M= .82, S.D. = 1.65, t(39)= -4.63, p< .001 pointing towards greater 

negative amplitudes over the contralateral hemispheres. For left targets, the 

raw data revealed greater negative N1 over the RH M= -2.87, S.D. = 1.96 than 

the LH M= -1.91, S.D. = 1.37. For right targets, N1 amplitudes were more 

dominant in the contralateral LH M= -2.78, S.D. = 1.53, than  

RH M= -1.96, S.D. = 1.50 (see Figure 26, panel 3 and 4).  

High load condition  

There was again a greater difference in lateralization for left targets  

M= -.82, S.D. = 1.37 than right targets M= .80, S.D. = 1.44, t(39)= -4.90, p <.001. 

The raw data revealed the same pattern as above, negative amplitudes in the 

contralateral hemispheres.  

Left Targets: RH M= -2.78, S.D. = 1.76 vs. LH M= -1.96, S.D. = 1.18.  

Right Targets: RH M= -1.94, S.D. = 1.36 vs LH M= -2.75, S.D. = 1.53.  

There was no significant difference for left or right targets between loads (see 

Figure 26, panel 5 and 6). 

7) N1 Latency 
 
Effect of Side: 
There was a main effect for side F(1,38)= 7.64, p = .009, ηp²= .17.  

Collapsed over both age groups, the differences between the hemispheres was 

greater for right targets than left targets  

(left target M= -5.30, S.D. = 23 <right target M= 8.54, S.D.= 26.98, p = .012) 

Right targets elicited earlier negative N1 amplitudes over the contralateral  

LH M= 208ms, S.D. = 26.17 than the RH M =217ms, S.D. = 27.411.  

Left targets elicited earlier negative N1 amplitudes over the  

RH M= 210ms, S.D. = 25.54 than the LH M= 215ms, S.D. = .27.32  

This main effect was qualified by the interaction between age and side  

F(1, 38)= 5.09, p = .03 ηp²= .12 for the N1 latency.  

Further analyses revealed that, within age groups, only young adults revealed 

differences between target sides. 
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Within age groups 

Young adults showed greater latency differences in right over left targets.  

L M= -4.58, S.D. = 26.37, R M= 20.58, S.D.= 26.31, t(19)= -3.19, p= .005 , with 

earlier latencies over the contralateral hemispheres.  

Based on the raw latency data, N1 amplitudes peaked earlier for right targets in 

the LH M= 193ms, S.D. = 25.44 over the RH M= 217ms, S.D. = 25.97.  

Left targets showed earlier latencies in the contralateral RH M = 203ms, S.D. = 

28.22 over the LH M= 208ms, S.D. = 30.18 (see Table 6).  

Between age groups 

Independent samples t-tests revealed that between age groups, right targets 

showed significant differences in latency between the hemispheres, with a 

greater difference between the LH and the RH in  

Young M= 20.59, S.D.= 26.31 over older adults M= -3.5, S.D.= 22.38,  

t(38)= 3.12, p = .003.  

The raw latency data revealed that right targets in young adults elicited earlier 

N1 amplitudes in the contralateral LH.  

LH M= 197ms, S.D. = 25.44 over the RH M= 217ms, S.D. = 25.97.  

For older adults, this pattern was reversed with earlier amplitudes in the  

RH M = 216ms, S.D. = 29.08 over the LH M= 220ms, S.D. = 21.76 although the 

difference between the LH and the RH in the older adults was small  

(see Table 6).   
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P2  

Table 9: P2 Summary of significant results with agi ng effects in bold 
P2 Amplitude  

Main effect: Target side F(1,38)= 11.44, p = .002, ηp²= .23 
Interaction: Target side x Age F(1,38)= 28.12, p< .001, ηp²= .43  

Interaction: Age x Load x Target 
Side  

F(2, 76)= 6.02, p =.004, ηp²= .14 

Latency  
Main effect: Target side F(1,38)= 11.43, p = .002, ηp² = .23 

 
8) P2 Amplitude 
Effects of Side: 
There was a significant main effect for side F(1,38)= 11.44, p = .002, ηp²= .23, 

with greater difference in the lateralization of the P2 amplitudes between the 

hemispheres for right targets M= .55, S.D.= 1.6 than left M= -.42, S.D.= 1.49.  

The activity was stronger in the opposite direction to the previous components, 

showing enhanced amplitudes in ipsilateral rather than contralateral 

hemispheres.  

The raw data revealed that for right targets, P2 amplitudes were surprisingly 

more enhanced over the RH M= .39, S.D. = 1.36 with smaller in activity in the LH 

M= -.16, S.D. = 1.80. For left targets, P2 amplitudes were also more enhanced 

over the ipsilateral LH M= .033, S.D.= 1.26 and smaller in the RH M= -.10,  

S.D. = 2.04. 

There was also an interaction between age and side F(1,38)= 28.12, p< .001, 

ηp²= .43 . 

Right Targets: 

Independent samples t-test revealed that between age groups, right targets 

showed significant differences in lateralization, with a larger difference for the 

older adults M= 1.5, S.D.= 1.17 than young M= -.41, S.D.= 1.46.,  

t(38)= -4.63, p< .001.  

Moreover, the two groups revealed dominant activation in opposing 

hemispheres: based on the raw data (see Table 6), right targets in older adults 

showed larger peak activity over the ipsilateral RH M= .35, S.D. = 1.23 and a 

smaller, negative amplitude over the LH M= -1.17, S.D. = 1.38.  
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Young adults in contrast showed enhanced peak P2 amplitudes over the 

contralateral LH M= .85, S.D. = 1.59 vs. the RH M= .43, S.D. = 1.50.  

This could suggest an age related lateralization shift.  

Left Targets: 

Again, for left targets, older adults showed a greater difference between the 

hemispheres than the young adults.  

Older M= -.98, S.D. = 1.45 > Young M= .13, S.D.= 1.35 t(38)= 2.52, p = .016. 

Based on the raw P2 amplitude data (see Table 6), older adults showed again 

more positive P2 amplitudes over the ipsilateral LH M= .06, S.D. = 1.2  

and a negative amplitude over the contralateral RH M = -.93, S.D. = 1.68.  

Young adults in contrast showed the expected enhanced P2 amplitudes over the 

contralateral RH M= .73, S.D. = 2.03 and a smaller amplitude over the  

LH M = .60, S.D. = 1.27.  

Within age groups 

Within age groups only older adults showed significant differences in asymmetry 

between left and right targets (left target M= -.98 S.D. = 1.45 vs 

right target M= 1.52), pointing towards a greater difference for right targets 

between the hemispheres t(19) = -5.66, p < .001.  

The raw data revealed that older adults showed more positive P2 amplitudes in 

the ipsilateral hemispheres, while contralateral hemispheres showed negative 

peaks.  

Left Targets LH M= .06, S.D. = 1.2 vs. RH M=-.93, S.D. = 1.68,  

Right Targets LH M= -1.17, S.D. = 1.38 vs. RH M= .35, S.D.  = 1.23 (see Table 6). 

Effects of Load:  

Finally, there was a three way interaction between age, load and side  

F(2, 76)= 6.02, p =.004 ηp²= .14. 

Left Targets : 

A follow up 2 Age x 3 Load ANOVA for the left targets revealed no significant 

effects or interactions.  
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Right Targets: 

A follow up 2 Age x 3 Load ANOVA for the right targets revealed no significant 

main effect but a significant interaction between Load and Age  

F(2, 76)= 4.19, p=.019 ηp²= .10.  

In order to investigate the direction of the interaction a series of t-tests were 

calculated. Between age groups, there were significant differences in all three 

load conditions (see Figure 26). 

No Load 

NL Young M= -.74, S.D.= 2.28 , Old M= 1.772, S.D.= 1.42, t(38)= 4.09, p< .001 

There was a greater difference between the hemispheres in older adults 

compared to the young adults. Young adults showed enhanced peaks over the LH 

M= 1.48, S.D. = 2.01 than the RH M= .74, S.D. = 1.94.  

Older adults showed enhanced peak amplitudes over the RH M= 0.31, S.D. 1.40 

and a negative amplitude over the LH M= -1.4, S.D. = 1.58 (see Table 4).   

Low Load 

The same pattern was repeated for Low load young M= -.52, S.D.= 1.25,  

Older M= 1.5, S.D.= 1.11, t(38)= -5.15, p< .001, with the raw data showing the 

following amplitudes for young adults:  

LH M= 0.86, S.D. = 1.58 > RH M= 0.34, S.D. = 1.41.  

Older adults:  

LH M= -1.11, S.D.= 1.33. < RH M= .39, S.D.= 1.20 (see Table 4).   

High Load 

In the High load condition, older adults also showed significantly greater 

differences between the hemispheres than the young adults. 

Young M= .01, S.D.= 1.31, Old M= 1.33, t(38) = -3.26, p= .002.  

Older adults showed a lateralization to the RH M=.36, S.D.= 1.09 > LH M= -.98, 

S.D. = 1.22, while young adults showed minimal differences in lateralization  

LH M= 0.21, S.D. = 1.17 < RH M= 0.22, S.D.= 1.14 (see Table 4). 
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Within age groups 

Within age groups, paired samples t-tests revealed a significant difference for 

young adults between low load and high load right targets  

Low M= -.52, S.D.= 1.36 vs High M= .01, S.D.= 1.31 t(19)= -2.30, p = .03.  

No other pairs were significant. The raw peak data revealed that in the low 

attentional load, RH lateralization was more pronounced and a difference 

between the hemispheres nearly absent in the High load condition. 

Low Load: Young adults LH M= 0.86, S.D. = 1.58 > RH M= 0.34, S.D. = 1.41.  

High Load: LH M= 0.21, S.D. = 1.17 < RH M= 0.22, S.D. = 1.14 (see Table 4 ).   

9) P2 Latency  
 
Effect of Side: 
There was a main effect of Side F(1,38)= 11.43, p = .002 ηp² = .23, with a  larger 

difference between the hemispheres for right targets M= -11.42, S.D.= -14.83 

than left targets M = 10.37, S.D.= 12.6, p= .002, again with asymmetry going in 

different directions: The raw latency data revealed that for right targets, P2 

amplitudes peaked earlier in the ipsilateral RH M= 221ms, S.D. = 29.78 than in 

LH M= 232ms, S.D. = 30.13. For left targets, P2 amplitudes peaked earlier in the 

LH M= 233ms, S.D. = 32,04 than RH M= 233.4ms, S.D.= 30.84  

P3 

 Table 10: P3 Summary of significant results with a ging effects in bold 
P3 Amplitude  

Main effect: Load F(2, 76)= 12.10, p< .001 ηp² = .24 
Interaction: Load x Age F(2, 76)= 3.42, p= .04, ηp² =.08 

Latency No effects 
 
10) P3 Amplitude 
 
Effect of Load  
 
A 2(Age) x 3 (Load) x 2 (Side) x 2 (ROI: frontal vs. posterior ROI) ANOVA revealed 

a main effect of load F(2, 76)= 12.10, p< .001 ηp² = .24.  

No attentional load condition elicited a greater lateralization in the posterior 

ROI than the low load condition  

(No Load M= 2.01, S.D. = 0.46 > Low Load M = .69, S.D. = .78, p = .004).  

The raw data revealed that for the no load condition, the posterior ROI elicited 

enhanced P3 amplitudes in comparison to the frontal ROI  
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(frontal ROI M= 1.32, S.D. = 2.35. < posterior ROI M = 3.34, S.D. = 2.81).  

For the low load condition, the posterior ROI also elicited higher amplitudes than 

the frontal ROI, although the difference was smaller than for the No load 

(frontal ROI M= 1.29, S.D. = 1.57 < posterior ROI M= 1.99, S.D. = 2.36).  

Moreover, the difference in the No load condition was larger than for the high 

load condition. p= .001. NL M= 2.01, S.D. = 0.46 > HL M= .25, S.D. = .51.  

An enhanced P3 amplitude was observed over the posterior ROI for the high load 

condition. Frontal ROI M= 1.16, S.D. = 1.62, posterior ROI= 1.41, S.D. = 2.12 

There was also an interaction between age and load  

F(2, 76)= 3.42, p= .04, ηp² =.08.  

Subsequent independent t-tests revealed that there were differences in 

asymmetry for the no load and low load conditions but not the high load 

condition between both age groups. Unsurprisingly, there was a larger difference 

between posterior and frontal peak amplitudes in young adults than in older 

adults.  

No Load 

There was a greater difference for young adults than older adults between the 

ROI Young M= 3.9, S.D. = 4.59, Old M= .05, S.D. = 3.43 t(38)= 3.05, p = .004. The 

raw data revealed that for young adults, enhanced P3 amplitudes were elicited 

over the posterior ROI rather than the frontal ROI.  

Young Frontal ROI =0.89, S.D. = 2.58 < Posterior ROI = 4.86, S.D. = 2.80.  

Older adults showed a smaller difference between frontal and parietal ROI, 

although with higher peaks for the parietal ROI.  

Frontal ROI = 1.75, S.D. = 2.08, Posterior ROI = 1.81, S.D. = 1.86 (see Table 5). 

Low Load 

In the Low Load condition, young adults showed a greater difference than the 

older adults.  

Young M= 2.32, S.D. = 3.64, Old M= -.936, S.D. = 2.14, t(38)= 3.44, p = .001.  

The raw data revealed that while young adults showed enhanced peak 

amplitudes over the posterior ROI, older adults showed higher activity over the 

frontal ROI.  

Young Frontal ROI = 0.99, S.D. = 1.72 < Young Posterior ROI = 3.32, S.D. = 2.37.  
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Older Frontal ROI= 1.59, S.D. = 1.38 > Older Posterior ROI = .66, S.D. = 1.44  

(see Table 5).    

Young adults confirmed the prediction that posterior electrodes would elicit 

enhanced P3 amplitudes rather than frontal electrodes.  Paired samples t-tests 

revealed that differences in asymmetry were only present in young adults but in 

all three load conditions, while asymmetry between the frontal and posterior 

ROI showed no significant difference in older adults. For young adults, 

differences were reduced with increase of attentional load, likely driven by a 

reduction of activity in the posterior ROI. Comparing the attentional load 

conditions with each other for young adults, differences between the ROI were 

greatest in the no load conditions and reduced in the low load and high load 

conditions.  

Young adults:  

No Load M = 3.97, S.D.= 4.59 > Low Load M= 2.32, S.D.= 3.6, t(19)= 2.88, p = .01, 

Low Load M= 2.3, S.D. = 3.64> High Load M = 1.25, S.D.= 3.3, t(19)= 2.5, p = .02,  

No Load M= 3.97, S.D.= 4.6 > High Load M=1.25, S.D.= 3.3, t(19)= 4.42, p< .001. 

The raw data revealed that enhanced P3 amplitudes were elicited over the 

posterior ROI rather than the frontal ROI in all three conditions.  

No Load: Frontal ROI M= 0.89, S.D. = 2.58 < Posterior ROI M= 4.86, S.D. = 2.80,  

Low Load: Frontal ROI = 0.99, S.D. = 1.72 < Posterior ROI = 3.32, S.D. = 2.37,  

High Load: Frontal ROI = 1.05, S.D. = 1.6< Posterior ROI= 2.29, S.D. = 2.00  

(see Table 5). 

Based on these results, the P3 amplitudes elicited over the posterior electrodes 

were investigated further with a 2(Age) x (Load) x (Side) ANOVA and revealed an 

interaction between age and load F(2, 76)= 5.4, p = .007 ηp² = .12. As expected, 

young adults had higher P3 peak amplitudes for the posterior electrodes than 

older adults in all three load conditions.  

No Load: young M =4.8, S.D. = 2.7 > older M=1.8, S.D.= 1.8, t(38)= 4.17, p< .001, 

Low Load: young M =3.3, S.D.= 2.3 > older M=.65, S.D.= 1.4, t(38)= 4.47, p<.001, 

High Load: young M =2.29, S.D=1.9 > older M= .52, S.D.=1.8 t(38)= 3.00, p=.005.  
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Moreover, according to the predictions posterior activity was reduced with 

increased attentional load. Separated into age groups, young adults showed the 

highest activity in the no load condition  

No Load M= 4.9, S.D= 2.7 > Low Load M= 3.31, S.D.= 2.28 t(19)= 5.43, p <.001,  

Low Load M= 3.31, S.D.= 2.28 >High Load M= 2.29, S.D.= 1.91, t(19)= 3.42, 

p=.003.  

For the older adults, posterior activity was also reduced with the addition of 

attentional load:  

No Load M= 1.8, S.D. = 1.8 > Low Load M=.66, S.D. = 1.35, t(19)=4.65, p< .001, 

No Load M = 1.8, S.D. = 1.8 > High Load M =.52, S.D. = 1.8 , t(19)= 3.49, p = .002, 

however the difference between low and high attentional load was non –

significant but amplitudes were reduced in the high attentional load.  

Low M=.65, S.D. = 1.3 >High M= .52, S.D. = 1.8 (see Table 5).  

11) P3 Latency 
For the P3 latency, there were, against my predictions no main effects of age, 

side or load and no interactions.  
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Discussion 

My aim was to investigate if increased attentional load modulated spatial 

attention and if such effects were more pronounced with healthy ageing. 

Moreover, I aimed to investigate just how the modulating effects of attentional 

load were reflected in the neuronal correlates in an ageing context. In view of 

the reported absence of any age related differences in the behavioural results, 

the neuronal correlates provide an intriguing insight in the processing of the 

presented task. 

My findings show some evidence for age related differences on how attentional 

load effects the processing of peripheral targets. Although attentional load did 

not lead to a spatial bias shift in neither the behavioural nor the 

neurophysiological data, the increase in reaction times between the different 

task conditions (no load to high load) confirmed that the manipulation worked 

and this also reflected in the ERPs of the peak components. Interestingly, while 

attentional load had an effect on the lateralization between left and right visual 

targets, there were no specific age load effects differentiating young from older 

adults in the early visual processing components. I had predicted a decrease of 

lateralization with increase of load that may have been more pronounced in 

older adults. Yet, the results revealed that older adults matched the 

performance of young adults behaviourally as well as for the neurophysiological 

data in all three load conditions. Solely in the late P3 components were age 

related differences observable, showing a reduction of parietal amplitudes in 

older adults and hinting at a possible age related topographical shift towards 

more frontal electrodes. In addition, the present results revealed age related 

differences that suggest a reduction of right hemisphere activity with age, which 

was independent of attentional load. These effects were seen predominantly 

over the early positive components P1 (80 – 150ms) and N1 (150 - 250) where I 

observed a shift towards the right spatial side as well as an increase of LH 

lateralization for older adults.  
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Influence of attentional load on spatial attention 

Summing up the behavioural results in the first instance, it was revealed that 

there were no significant age related difference in performance between older 

and younger adults. Comparing the processing of peripheral targets between 

young and older adults revealed no significant differences in reaction times 

between the age groups. Collapsed across participants, reaction times increased 

exponentially with load with high attentional load resulting in the longest 

reaction times. This supports the premise that increased task demand through 

increased attentional load resulted indeed in a slower processing of peripheral 

targets. However, the difference between low and high attentional load was 

non-significant. It is  possible that these two manipulations required similar 

effort despite the argument of a higher task demand for a conjunction search for  

the “high load” condition (O’Connell et al., 2011; Treisman & Gelade, 1980). 

Secondly, between peripheral targets, reaction times were significantly faster 

for right over left targets. This was reported for all three load conditions and 

again, was found to be independent of age.  

In fact one of the more surprising results of this study is the absence of a spatial 

bias towards the left visual field, as was reported by O’Connell et al. (2011) who 

had found, although small, a stable left spatial bias in their study. Instead, my 

study revealed both a behavioural and electrophysiological processing advantage 

for right sided stimuli for both age groups. I had predicted to find a left or no 

spatial bias between target sides based on the results of the behavioural pilot 

studies, which closely resembled the present set up (See Chapter 3). The current 

results might support the findings that an increase of non-spatial attention leads 

to a rightward shift of attention in behaviour (Dodds et al., 2008; Peers et al., 

2006). However, I did not find a leftward bias in the no load (baseline) 

condition, which would have been  expected if increased task demand had led to 

a shift of attentional bias. Despite the procedural similarity between the 

behavioural pilot study and the current EEG set, I have found a preference for 

the right sided stimuli.  

Yet, this preference of the right visual field targets appeared to be reflected in 

the reaction times only and not in the neurophysiological data which instead 
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suggested a preference for the processing of left over right visual targets, at 

least in the first stages of stimuli processing.  

I also measured percentage accuracy in response to both central and peripheral 

target detection. Similarly to O’Connell et al. (2011) and the pilot study (See 

Chapter 3), detection was again high (> 90 % allowing) for an adequate amount 

of trials to be analysed. Although accuracy plays a minor role in the measure of 

spatial bias, a more detailed analysis of the accuracy measures revealed an 

interesting pattern: first of all investigating the percentage accuracy towards 

the central targets revealed high detection accuracy and no significant 

differences between low and high attentional loads, suggesting equally strong 

detection of targets in both conditions (and further) reflecting the results of the 

reaction times. This suggests also that while both load conditions that included 

attention towards a central target were more taxing than the baseline condition 

(no load), the difference in task difficulty from low to high appeared to be less 

than may have been expected. This was likely driven by the result of older 

adults who outperformed young adults in the high attentional load condition, 

showing significantly higher accuracy, another interesting finding that has been 

reported before in a variety of tasks (Brache et al., 2010; Carriere et al., 2010; 

Jackson & Balota, 2012; McVay et al., 2013; Tomporowski & Tinsley, 1996). 

The detection of peripheral targets was similarly high, ranging from 94-97%. 

Here, older adults performed as well as young adults, with no difference 

between the age groups, yet an increase in load led to slightly reduced 

accuracy, confirming the increase in task demand. Furthermore, there was a 

change in spatial bias in accuracy between the load conditions: while at baseline 

there was no difference between left and right targets, results showed higher 

accuracy for left than right targets in the low load condition and the reversed 

pattern in the high load condition. This is very similar to the effect I had 

predicted for young adults for reaction times, yet, as said already, reaction 

times proved to be faster for right over left targets throughout. It thus hard to 

interpret this effect, especially as accuracy was virtually at ceiling.   
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Electrophysiological evidence for attention load mo dulations on 
spatial attention 

The electrophysiological data revealed that attentional load modulated the early 

positive P1 amplitude and N1 significantly, yet there were no age related 

reductions of hemispheric lateralization between or within attentional load 

conditions. Collapsed across all participants, the current data revealed 

differences in lateralization between both hemispheres for left and right 

targets. The P1 amplitudes in particular, were more lateralized for left targets 

than for right ones, showing a RH dominance. This suggests a processing 

preference for stimuli in the left visual field that is in accordance with 

pseudoneglect. I found this for both the no load baseline and the low load 

conditions. Yet, when attentional load was high and the task thus most difficult 

there were no significant differences in lateralization between left and right 

targets, which may suggests a possible increase of RH activation for both targets 

in order to deal with increased task demand at the high attentional level at an 

initial stimuli processing stage(Clark & Hillyard, 1996; Luck, 1995; Natale, Marzi, 

Girelli, Pavone, & Pollmann, 2006). 

Focussing on the right targets only, the electrophysiological data revealed that 

for the P1 amplitudes there were significant differences in lateralization 

between the load conditions, which were absent for the left targets. While the 

lateralization between the LH and the RH for left targets did not change 

significantly, increase of attentional load lead to a significant change in 

lateralization for right targets. The LH dominance observed in the no load 

condition shifted to a more balanced activation over the LH and the RH for the 

low load condition, although this difference between the hemispheres was non-

significant. Finally, for the high load condition, lateralization shifted to a 

significant RH dominance compared to the LH, with an enhanced P1 amplitude 

over the RH in contrast to the other two load conditions. This suggest that with 

increase of attentional load, processing of right targets became more lateralized 

to the right hemisphere during the early stages of visual processing, as a 

function of increased attentional demand. High task demand lead to an increase 

of P1. This suggests an increase in the allocation of spatial attention in a top 

down manner, (Taylor, 2002) similar to the findings of O’Connell et al.(2011). 

Interestingly, when comparing young and older adults at P1 amplitudes directly, 
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the activity was not significantly different, suggesting no decline with age but 

instead similar patterns of activity during early visual processing. 

For the N1 amplitudes, my results showed a pattern of contralateral 

lateralization for both left and right targets. There were no differences between 

load conditions, suggesting an absence of significant attenuation of the 

dominant hemisphere with increase of attentional load. However, within load 

conditions, right targets showed greater lateralization towards the contralateral 

LH and an enhanced negative N1 amplitude in the no load condition compared to 

left targets. In the other load conditions, left targets showed greater 

lateralization over right targets, with enhanced negative N1 amplitudes over the 

contralateral RH in the low and high load condition. Therefore, my findings of 

the lateralization of the N1 component are somewhat different to the findings of 

O’Connell et al.(2011) who reported a processing advantage for left stimuli over 

the RH that was attenuated with task demand via central load.  

My findings with increased attentional load are similar to O’Connell et al (2011) 

and Bonato et al. (2015), in terms of an increased commitment of attentional 

resources at a low level early visual processing (as indexed in the P1 and N1 

components) (Bonato et al., 2015; O’Connell et al., 2011). I also found an 

increase in reaction times that was associated with increase of load. The 

enhanced P1 amplitude with load repeats, in the main, the findings of Bonato et 

al. (2015) who also found an enhanced P1 amplitude with an increase in task 

demand as represented with a dual task characterized by a simultaneous 

multitasking design in their healthy adult sample: In my study, introducing an 

additional multitasking component with the instruction to pay attention to a 

central target in the central stream, in addition to detecting peripheral targets, 

shifted activity towards the RH for both types of lateralized targets. In the high 

load condition, this increase of attentional resource allocation was reflected in a 

shift and increase of RH activity for right targets at an early processing level. 

The results of the P2 component should be interpreted with caution (see result 

section). Unfortunately, based on the topographies derived from the grand 

average waveforms, the mean peak amplitudes for the P2 component with a 

range of 190ms -260 ms, appeared to be maxed out for both young and older 

adults. The obtained results showed the most positive peak at the beginning of 
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the interval for older adults and at the end for young adults and despite 

adaptation from Learmonth et al. (2017), the P2 peak amplitudes were not well 

defined across participants. Hence, while the obtained results might suggest an 

age shift in lateralization from a contralateral dominance towards a more 

ipsilateral activation, it is more likely that the results are skewed due to an 

artificial definition of the latency for this component. Moreover, the ROI for 

both hemispheres, in the grand average waveforms, showed negative activity for 

older adults, reflecting the current results of negative activity in the 

contralateral hemispheres for older adults. Based on the grand average and scalp 

topographies, the analysis of the P2 component would likely benefit from an 

analysis in separate time windows (for young and older adults), instead of my 

current approach of a combined window. 

Similarly to O’Connell et al.(2011) who did not report on the N2pc component, 

my results also failed to elicit a separate second negative component (based on 

the grand average waveforms and preliminary peak detection on the group 

level). Therefore, I will not further discuss the P2 and N2pc component but 

instead focus on the later P3 component.  

To sum up this far, the present results suggest that older adults were similarly 

able to process targets and the task at hand, under the dominant recruitment of 

the RH when discriminating between lateralized and central targets in the 

increased load conditions (low and high load) during the early stages of 

processing targets. Yet, there were age-related changes in the later stage of 

stimuli processing. My results revealed a significant influence of attentional 

load, were attentional load influenced the P3 component differently between 

the age groups:  

Overall, the increase of attentional load lead to a reduction of the posterior ROI 

activity in the P3 (280 – 400ms) component, likely reflecting an increase in 

resource allocation as the tasks became more difficult. Particularly, the parietal 

P3b is thought to reflect the allocation of attentional resources in a ‘top down 

manner that benefits the evaluation of stimuli see (Donchin, 1981; Nieuwenhuis, 

Aston-Jones, & Cohen, 2005; O’Connell et al., 2012; Polich, 2007; Verleger, 

2008). This replicates and corroborates the findings by O’Connell et al. (2011), 

who reported a reduction of P3 components with attentional load. I found that 
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greater attentional load lead to greater resource allocation and the attenuation 

of the amplitude possibly indicating compensation mechanisms for the decreased 

ability for stimulus categorisation. This became more apparent in older adults 

who showed a reduction of the posterior ROI P3 amplitude for all conditions, in 

contrast to the young adults, suggesting an age related decline in activity. This 

fits well with earlier studies who have linked a reduction in the P3 component to 

normal aging (Friedman, 2003; Polich & Criado, 2006; Rossini, Rossi, Babiloni, & 

Polich, 2007; Sutton, Braren, Zubin, & John, 1965). 

In view of an age related topographical shift towards the frontal electrodes, the 

present findings indicate that while older adults showed less activity in the 

parietal electrodes compared to young adults, additional recruitment of frontal 

electrodes possibly served as a compensatory mechanism that benefitted the 

target processing, so that older adults were able to match the behavioural 

performance in young adults. Compensatory recruitment in older adults is 

thought to be reflected in additional recruitment of neuronal resources. For the 

late positive P3 component, this has been specifically found in an increased 

neuronal recruitment of frontal electrodes to compensate parietal decline with 

age. Earlier studies have repeatedly reported a posterior- anterior shift of P300 

with healthy aging (Fjell & Walhovd, 2004; Friedman, 2003; Learmonth, Benwell, 

et al., 2017; O’Connell et al., 2012; Polich, 1997; West et al., 2010). In addition, 

it is also possible that factors such as higher intrinsic motivation in older adults 

or compensatory strategies were employed in older adults benefitting 

performance and attenuate disadvantages with increased load. 

Age- related effects on spatial attention  

As pointed out above, behaviourally, my results showed no difference between 

the age groups as all participants responded faster to right over left peripheral 

targets. However, the electrophysiological data revealed age related differences 

on spatial attention during the early stages of visual processing (indexed by the 

P1 (80 – 150ms) and N1(150- 250 ms) components) which suggest changes in 

lateralization with age. Particularly for the negative N1 component, older adults 

showed a processing preference for right visual targets and a shift of 

lateralization towards the contralateral LH that was absent in young adults:  
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Collapsed over both age groups, my results showed a processing advantage for 

targets in the left visual field during early stimuli categorization and processing 

(as indexed by P1 component). Left targets were more lateralized to the 

contralateral RH than right targets, which also showed a RH dominance yet a 

smaller difference between the peak amplitudes over both hemispheres. 

However, when I compared the lateralization of the P1 peak amplitudes in both 

age groups, there were age related differences apparent in this early processing 

stage. Young adults showed greater lateralization to the RH for left targets and a 

smaller difference between the hemispheres for right targets (possibly driving 

the overall effect of a left visual field preference in the P1 component observed 

when age was discarded). In contrast, older adults showed no significant 

difference in lateralization for left and right targets, with both targets eliciting 

similar P1 amplitudes in the dominant RH thus showing reduced amplitudes over 

the RH in comparison to young adults. This suggests a preference for left visual 

stimuli and a RH dominance in the early processing stage for young adults that is 

attenuated with age. This finding fits well with earlier studies which reported an 

attenuation of the P1 component in an older population in contrast to young 

adults(Gilmore, 1995; Kutas, Iragui, & Hillyard, 1994; Nagamatsu et al., 2009). 

The observed age related differences in the sensory aspects of attention, as 

evident in the P1 and N1 components, confirm changes in early sensory 

processing and orienting of attention towards attended stimuli (Mangun, 

Hillyard, & Luck, 1993) , where the P1 indexes the low level sensory processing 

and the N1 the discriminative processing (Vogel & Luck, 2000).  

Here, age related effects of spatial attention became even more prominent for 

the N1 component. Again to recap, across all participants left targets were more 

lateralized than right targets at the N1 peak amplitudes showing an enhanced 

negative N1 over the contralateral RH. Right targets also showed an enhanced 

N1 over the contralateral LH but with less lateralized difference between the 

hemispheres. 

Yet when investigating the N1 component within age groups, older adult showed 

a preference for processing right targets over left. Although for right targets 

only, I found a shift in the N1 amplitude activation from a dominant RH to the 

LH for older adults. I think this reflects a decrease in right hemisphere 
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dominance towards a lateralization in favour of the LH with age. It supports the 

claim of a reduction in a processing advantage for left visual stimuli 

(pseudoneglect) that has been observed for young adults in these 

electrophysiological components, as well as a spatial attention orienting towards 

the right side of space with age (Benwell, Thut, et al., 2014; Failla et al., 2003; 

Fujii et al., 1995; Learmonth, Thut, et al., 2015; Nagamatsu et al., 2011, 2009, 

2013; Schmitz & Peigneux, 2011; Stam & Bakker, 1990). In the absence of a 

behavioural effect, the present finding represent an age related shift of spatial 

attention on a neuronal level. On this basis, the present results accord well with 

the HAROLD model (hemispheric asymmetry reduction in older adults) (Cabeza, 

2002; Cabeza et al., 2004; Dolcos et al., 2002; Huang et al., 2012; Reuter-Lorenz 

et al., 2000): It is thought that RH lateralized cognitive functions decreases in 

lateralization with age and in turn a more bilateral recruitment is used as a 

compensation for a reduction in the activation of the RH in older adults (to 

maintain cognitive performance (Cabeza, 2002)). This model has been supported 

by PET and fMRI studies showing an increase of bilateral activation when task 

difficulty was increased for older adults (Cabeza, 2002; Cabeza et al., 2004; 

Dolcos et al., 2002; Huang et al., 2012; Reuter-Lorenz et al., 2000). My results 

thus add to the present research literature arguing for a reduced preference for 

left visual space (pseudoneglect) with age that is also observed in 

neurophysiological correlates in the later negative N1 component (and underpins 

the preserved behaviour). 

Furthermore, source localization of the right lateralization of activity in previous 

studies has identified a reduction of RH resources for attentional processing and 

highlighted the right temporo parietal junction (TPJ) in the ventral attention 

network as a vital area for generating spatial bias at an early processing stage 

(Benwell, Harvey, et al., 2014; Benwell, Thut, et al., 2014; Foxe et al., 2003; 

Learmonth, Benwell, et al., 2017). The TPJ has been linked also to visuospatial 

attention orienting as well as maintenance of arousal (Benwell, Thut, et al., 

2014; Corbetta & Shulman, 2011) and has been found to map on to the timing of 

the N1 component (Benwell, Harvey, et al., 2014). TPJ activity likely plays an 

important role in explaining the present findings of a shift towards the LH in 

older adults. With age, it is possible that the RH TPJ activity reduces and thus 

impacts on the regulation of bihemispheric dorsal frontoparietal network which 
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then results in shifts of spatial bias to the right side (Benwell, Harvey, et al., 

2013) (but note I did not find this behavioural effect). This might also lead to a 

reversal of the RH dominance towards the LH in older adults, which in turn leads 

to a possible reduction of left visual field preference with age (attenuated 

pseudoneglect). It has been suggested that the sometimes observed behavioural 

rightward shift of spatial attention in older adults is linked to a more general 

diminished alertness in older adults and a reduction of RH dominance (Benwell, 

Thut, et al., 2014; Buysse, Monk, Carrier, & Begley, 2005; Goedert et al., 2010; 

Nebes, Buysse, Halligan, Houck, & Monk, 2009; Robinson & Kertzman, 1990), 

possibly in addition to a decrease in the interaction between the VAN and DAN of 

the RH, which supports visuospatial attention (Benwell, Harvey, et al., 2013; 

Benwell, Thut, et al., 2013; de Schotten et al., 2011). 

Intriguingly, the study by Learmonth et al. (2017) also showed evidence for a 

right hemisphere lateralisation of the N1 and P2 components. Investigating 

spatial attention in a landmark paradigm their study was distinctively different 

as their analyses were based on clusters of lateralised activity, instead of a 

comparison of peak amplitudes at specific components as I did in the present 

study. However, this technique allowed them to identify age related differences 

that were not illuminated with the standard peak component analysis. They 

observed age related differences since no lateralised clusters were present for 

older adults for either stimuli type (lines of varying lengths), yet young adults 

showed a right lateralisation for long lines (Learmonth, Benwell, et al., 2017). In 

addition, they reported a stimulus dependent right parieto occipital activation in 

the right TPJ for long lines that was absent in older adults (no significant 

lateralization) and therefore possibly represents age related changes in 

hemispheric asymmetry. Moreover, they reported a reduction of the parietal 

P300 in the older adults, indexing an age related shift from posterior towards 

anterior activity (Fjell & Walhovd, 2004; Friedman, 2003; Learmonth, Benwell, 

et al., 2017; O’Connell et al., 2012; Polich, 1997; West et al., 2010), also 

observed in the present study. I would thus argue that the age-related 

differences in spatial attention in the N1 component I found, reflect a shift of 

spatial attention that is due to an age- related decline in RH lateralization. 
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Limitations and methodological considerations  

I have to concede that it is also possible that the observed right target reaction 

time advantage found across both age groups may be an effect of time on task, 

as it has been shown in previous studies that prolonged time on monotonous 

tasks shifts spatial attention towards the right side of space. This is deemed to 

be a result of decreased arousal that has been linked to a reduction of activity in 

the right ventral network (Bellgrove et al., 2004; Benwell, Harvey, et al., 2013; 

Benwell, Thut, et al., 2013; Dodds et al., 2008; Dufour, Touzalin, & Candas, 

2007; Manly et al., 2005; Newman et al., 2013). For my results it is possible that 

this rightward shift was induced because of the additional prolonged EEG setup 

on both testing days, in addition to the pre-screening regimes prior the first 

session, which always entailed 2 out of 3 attentional load conditions. It is 

possible that this decrease of arousal lead to less lateralised EEG signals for both 

groups as all trials (of one condition) were combined for analyses. Another 

consideration could be that the EEG set up in itself lad to a greater depletion of 

attention, as participants were instructed to reduce blinking, and may have 

focussed on blinking strategies in addition to task demands. Previous research 

has stated a trade-off between reaction times and accuracy with older adults 

favouring accuracy in particular (Starns & Ratcliff, 2010, 2012)(and central 

target accuracy data). The instructions to control and reduce eye movements 

could have added this as a further factor. However all this is speculation and 

needs to be investigated systematically. 

Conclusion 

I aimed to investigate the influence of non-spatial attentional modulation on 

spatial asymmetry and neural activity as indexed by ERPs. In particular I was 

interested in possible age related differences in both, the processing of 

peripheral lateralized targets and the effect of increased attentional load in 

healthy aging. The results of the behavioural data revealed an absence of age 

related differences, showing  that older adults were able to match young adults 

in performance (as indexed by fast reaction times and high accuracy)  and thus 

suggesting that (for spatial attention), they did not suffer from age related 

cognitive decline. Instead I found a preference for right over left targets that 

was independent of age group and attentional load condition.  
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Investigating the neuronal underpinnings with EEG, first of all again revealed an 

absence of apparent age differences with the increase of attentional load (on 

the peak components of P1 and N1). Nonetheless, older adults showed 

differences in the magnitude and direction of the peak amplitudes, suggesting 

underlying compensatory mechanism: in direct contrast to young adults, older 

adults showed a processing advantage for right instead of left targets for the N1 

component, as well as an increase of resource allocation for left stimuli at early 

processing stages. This was further corroborated by a reduced activity in the 

parietal P3 component (in contrast to young adults across all test conditions) and 

an age related topographical shift of activity towards the frontal electrodes; 

indicating possible additional recruitment of neuronal circuits in order to 

compensate for possible cognitive deficits in the parietal area. So although 

behaviourally older adults showed no significant decrease in performance 

compared to young adults, these physiological differences suggest age related 

differences in lateralisation that might be associated with RH decline in healthy 

aging in line with the HAROLD model (Cabeza, 2002; Dolcos et al., 2002).  

A reduction of RH activity with age has been interpreted as a form of 

compensation against age related cognitive decline in order to preserve 

performance when tasks get increasingly difficult (Cabeza, 2002; Dolcos et al., 

2002). I thus expected to see more age related differences with an increase of 

attentional load. Instead, the presented results revealed an overall larger 

lateralization towards the RH for left targets in comparison to right targets, 

which was apparent in the early stages of visual orienting and processing. Yet 

there was no shift in lateralization to the other hemisphere with an increase in 

task demand. Further research investigating age-related RH changes are 

necessary in order to determine how such changes in lateralization with age are 

impacting on the everyday life and navigation of older adults. There are some 

studies linking real life experiences to changes in spatial bias (i.e. higher risk of 

falls with deficit in processing left visual hemispace (Nagamatsu et al., 2009) so 

it should be possible to estimate possible negative consequences of such 

neuronal changes on healthy aging.  
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Chapter Five 
General discussion 

With the work presented in this thesis, I aimed to investigating age related 

differences in spatial attention between cognitively healthy young and older 

adults and how such changes with age might translate into differences in 

neuronal correlates. Moreover, I attempted to address the question of if and 

how non spatial factors impact on spatial attention. I assessed this through 

changes in attentional load and therefore resource commitment in order to 

further understand healthy cognitive ageing and to possibly uncover markers of 

cognitive decline.   

To address this wider research aim, I carried out four experiments, which 

employed a combination of behavioural as well as electroencephalography (EEG) 

methodology as this allowed me to investigate the neuronal correlates 

associated with shifts of spatial attention. I will summarize the key findings of 

the experiments in the first instance. 

As described in Chapter 2, I found that older adults, similarly to young 

adults, showed reliable spatial biases over two separate testing sessions (for 

young sample see Learmonth et al. (2015, 2018)), contrary to my predictions of 

greater variability in this age group. Moreover, older adults showed similar 

patterns of spatial bias to young adults, where only the landmark task revealed 

an age related decline in bias. Again like Learmonth et al. (2015, 2018). I 

replicated the findings of a consistent lack of inter- task correlations. I argued 

that general assumptions gained from different spatial tasks are not merited 

anymore and that such generalizations should be viewed with caution.   

In chapters 3 and 4, I further explored the influence of non-spatial 

modulators on spatial attention. Again, with particular interest in the aging 

population, I investigated how increases in attentional load, which impact on 

task difficulty and sustained attention, modulated spatial attention at both a 

behavioural (Chapter 3) and neuronal level (Chapter 4). The findings of the two 

behavioural experiments in Chapter 3 informed the follow up study described in 
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Chapter 4 and confirmed that older adults were engaged in the task and 

performed similarly well to young adults.  

Finally in Chapter 4, employing EEG to investigate the neuronal correlates 

associated with spatial shifts in attention, I found that older adults did not differ 

from young adults behaviourally but that they showed a reduction of right 

hemispheric activity for both target sides at the P1 component in comparison to 

young adults. Moreover, for right targets older adults showed at the N1 

component a shift towards increased LH activity over RH, possibly indicating an 

age related reduction of lateralization. Moreover, non-spatial factors such as the 

increased attentional load influenced both behavioural results (via reaction time 

increases) and early visual processing of stimuli (indexed by the P1 and N1 

component). Although I did not observe a shift in asymmetry with increased 

attentional load, as right targets elicited faster reaction times in all conditions, 

attentional load increased reaction times and reduced P3 amplitudes which is 

indicative of greater taxing on the attentional resources. In comparison with 

young adults, older adults showed reduced posterior P3 amplitudes in all 

conditions, possibly indicating age related decline in this area. Moreover, the 

results suggest that older adults used additional neuronal recruitment in the 

later stages of stimuli processing (P3), to compensate for increased task 

difficulty and increased resource allocation, likely improving the behavioural 

results of the older adults so that they were similar to young adults. 

I will now reflect on the obtained results in view of the wider literature and 

their possible implications for future research. Based on the presented results, I 

will suggest possible future directions in spatial attention research that could 

guide our understanding of healthy cognitive ageing further.  

Spatial attention in older adults show presence and  
absence of asymmetry.  

The results of the experiments provide an insight into the magnitude and 

direction of spatial bias in older adults. Based on the previous literature, I 

expected a lack of spatial asymmetry or a reduction towards the right side of 

space, as well as a clear difference in spatial attention behaviour between young 

and older adults (see Barrett & Craver-lemley, 2008; Benwell, Thut, et al., 2014; 



135 
 
Failla et al., 2003; Fujii et al., 1995; Goedert et al., 2010; Hatin et al., 2012; 

Jewell & McCourt, 2000; Learmonth, Benwell, et al., 2017; Learmonth, 

Gallagher, et al., 2015; Loureiro-Silva et al., 2010; Nagamatsu et al., 2011, 

2009, 2013; Schmitz & Peigneux, 2011; Stam & Bakker, 1990; Veronelli et al., 

2014). Perhaps most strikingly, in all four experiments, older adults did not show 

strong spatial biases that would suggest cognitive impairments. Instead, in 

experiments 1, 3 and 4, performance between young and older adults did not 

differ, suggesting no outperforming of young adults or inferior performance of 

the older age group.  

In Chapter 2, I aimed to understand the direction and stability of spatial biases 

across testing session in healthy older adults, as opposed to healthy young adults 

studied previously by Learmonth et al.(2015, 2018). The results offer insight into 

the behavioural patterns of older adults in five spatial tasks but also highlight 

important limitations that will be addressed in the following: 

Firstly, describing the magnitude and direction of bias in older adults, the 

results of chapter 2 offer a systematic overview of five common tasks and best 

reflect the variability between spatial tasks. Building on from the study by 

Learmonth et al.(2015, 2018), my results revealed that older adults showed a 

preference for the left side of space in two tasks (Manual Line Bisection and 

Greyscale task), while they showed a lack of bias in the other three measures. 

This corroborates findings from other studies who also investigated older adults 

in the lateralised visual detection task (Learmonth, Thut, et al., 2015) or the 

landmark task (e.g. Learmonth, Benwell, et al., 2017), as well as the study by 

Brooks et al. (2016), who used a form of the visuospatial line bisection and found 

a maintained leftward bias in older adults, leading to the argument of a 

maintained pseudoneglect into old age. Moreover, older adults also showed a 

reliable and stable bias across testing days, similar to the young adults, although 

I had predicted a greater variability with age.  

Interestingly, in direct comparison to young adults (2015, see Learmonth et al. 

2018) only the landmark task showed an attenuation in spatial bias for older 

adults that may reflect a selective age-related decline of right-hemispheric 

processes. The other tasks did not reveal a difference with age, reflecting the 

overall findings of the other presented experiments, which who suggested that 
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older adults were able to perform the tasks akin to young adults, although 

possibly through different means such as differences in strategy or neuronal 

activity. The observed behavioural rightward shift with age in the landmark task 

presented here, may offer an insight into possible age related changes in the 

neuroanatomy for older adults. The finding fits  with the assumptions of the 

HAROLD (e.g. as described by the Hemispheric Asymmetry Reduction in Older 

Adults) model of cognitive aging (Cabeza, 2002; Dolcos et al., 2002). The 

behavioural shift in spatial bias might be a result of additional recruitment of 

supplementary contralateral brain areas in order to maintain performance in this 

task (for a discussion see (Dolcos et al., 2002; Learmonth, Benwell, et al., 2017; 

Reuter-Lorenz & Park, 2010) and reflect compensatory mechanisms involved in 

healthy cognitive ageing. Learmonth et al. (2017) also reported an absence of a 

leftward bias in older adults in a landmark task, followed by a decreased in right 

hemisphere activity in older adults in the EEG recording (Learmonth, Benwell, et 

al., 2017), further supporting the claim of an association between a spatial 

rightward shift as a consequence of reduced lateralization and RH decline with 

age. Yet, the relevance of such shifts in the context of adapting and navigating 

in the real world remain elusive and further investigations here are necessary 

especially as the other tasks and experiments revealed no age related 

behavioural effects. 

Other important findings gained from the results from Chapter 2 are the now 

repeatedly found  results of variability in both the direction and magnitude of 

spatial biases across tasks, as well as a repeated lack of task correlations; see  

young adults sample by Learmonth et al.(2015, 2018) and also across different 

tasks in the spatial research literature (Heber et al., 2010; Luh, 1995; Nicholls et 

al., 1999). The present results of an absence of a uniform spatial bias (and 

instead task specific variations in spatial bias) suggest that while the tasks share 

aspects of spatial attention, they each also measure different components of 

spatial attention and a direct comparison between tasks should be cautionary. 

This is in agreement with Learmonth et al. (2015, 2018) who also proposed this 

argument and suggested pseudoneglect to be a ‘multi component phenomenon’ 

based on their earlier results. 
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Non spatial modulators influence spatial attention more than age 

In light of the directional variability of the spatial biases reported in Chapter 2 

and in recent studies (which also seem largely independent of age), the current 

results again highlight the importance of task choice, especially when testing for 

age related differences in older adults. In addition, it has been found that 

spatial attention asymmetries are modulated by non-spatial factors such as 

changes in sustained attention likely driven by time on task and reduced 

alertness, increased task difficulty or participant dependent variables (for a 

review see Chandrakumar et al., 2019).Therefore, an observed spatial bias might 

not simply reflect a fixed measure of asymmetrically spatial attention per se but 

might change across tasks and testing time, reflecting changes in other non-

spatial components. The leftward spatial bias that is often observed in young 

adults has long been interpreted as a healthy norm and any deviation from it 

suggested to imply deficits, especially with older age. However, in view of the 

findings of other modulating factors, this view is too rigid and age per se might 

in fact not be influencing the shifts of attention.  

The absence of inter- task correlations in Chapter 2 also reveals the limitation of 

making predictions for the natural environment, as a particular bias in one task 

does not predict the same behaviour for a different task. Moreover, while I 

found that older adults were similarly able to perform the tasks across different 

days I could not estimate which task, in comparison to the other 4, was more 

taxing on the participants as I did not control for task difficulty. Differences in 

task difficulty across the spatial tasks could account for the absence or presence 

of leftward biases in spatial attention. This complicates generalisation and 

comparability of pseudoneglect effects across different tasks, age-groups and 

studies.  

The experiments in Chapters 3 and 4 attempted to address this issue and 

investigated the influence of attentional load on spatial attention in a dual task 

paradigm, while employing EEG (see Chapter 4). The design was adapted from O’ 

Connell et al. (2011), who found modulating effects of attentional load on both 

spatial bias and early visual processing, as indexed in the P1 and N1 components. 

With the three experiments of Chapters 3 and 4, I extended their research by 

investigating if such modulations would be more pronounced in older adults. 
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Moreover, in contrast to the experiment in Chapter 2, this design allowed me to 

increase attentional load systematically from a baseline visual detection task in 

which participants did not monitor a RSVP steam for a target, to an increased 

attentional impact design. Attentional load was increased via an alphanumerical 

central target that participants were required to detect in a RSVP stream of red 

numbers while simultaneously reacting to lateralized peripheral targets. 

Attentional load was defined as either low: a green number as central target 

required low attentional resources due to it being a pop out task or high: a red 

letter within a stream of red numbers, as additional discrimination between 

central target and distracters became necessary (O’Connell et al., 2011; 

Treisman & Gelade, 1980) (see Methods in Chapters 3 and 4 ). 

The behavioural results of experiments 2 and 3 (see Chapter 3) served as pilot 

studies and informed the design of the EEG experiment, were EEG was employed 

in addition, and the obtained results allowed a refinement of the testing 

parameters (see method section Chapter 3). In short, they deviated in 

methodology from the final study, as only low and high attentional loads were 

measured and the viewing distance was decreased to a closer peri- personal 

space (80 to 50cm), which was identical to the viewing distance of the study 

design by O’Connell et al.(2011) and enhancing comparability to the results of 

the previous study. Finally for the EEG study, hand response was limited to the 

right hand only. Spatial preferences between left and right targets shifted 

between experiments 1 and 2 (Chapter 3) based on the changes in viewing 

distance, supporting the argument that spatial biases become stronger at closer 

range (see Dellatolas et al., 1996; A. Varnava et al., 2002). Moreover, this 

finding also ties into the earlier argument that changes in non-spatial factors 

have a strong influence on the spatial biases observed.   

Interestingly, as mentioned above, across experiments 2 (Chapter 3) and the EEG 

experiment (Chapter 4), older and younger adults showed similar behavioural 

results in terms of reaction times and accuracy detection towards the central 

targets in the attentional load manipulation conditions. This suggests that older 

adults were suitably engaged in the task and were able to perform it similarly 

well when compared to young controls. Focussing on the EEG study in particular 

(see Chapter 4), I found supporting evidence that changes in attentional load 
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modulated spatial attention, as indexed by increased reaction times with 

increased attentional load. However, against my predictions this effect was not 

more pronounced in older adults but independent of age. Moreover, in view of 

spatial asymmetry, I found no separation by age but instead all participants 

showed faster reaction times to right over left targets. The observed preference 

of the right visual target is perhaps one of the more surprising results and I have 

discussed possible influencing factors in Chapter 4. Yet, as I did not find a 

decline with age in either visual field, and both reaction times and accuracy 

were good for both target types, this preference does not suggest a decline in 

ability with age. The electrophysiological data suggest instead that during early 

visual processing, left targets were processed better with increased additional 

attentional load (low and high load) as indexed by the greater lateralization and 

enhanced peak amplitudes over the contralateral RH for the N1 component. 

However, this advantage attenuated in the later processing stages, possibly 

driving the behavioural response for the faster right targets. I conclude that 

there was an absence of age related differences, specific to increased 

attentional load, in both the behavioural data and during the early spatial 

processing stages as indexed in P1 and N1 components.  

Age-related reduction in lateralization is visible at a 
neuronal level only 

In Chapter 4, I did report an age related shift in lateralization that was 

independent of attentional load manipulations. The biggest effect was for the 

N1 component were older adults showed a shift in N1 amplitude activation from 

a dominant RH to a LH. Even though I found this shift for right targets only, I 

think it reflects a reduction of right hemisphere dominance with age. 

So in the absence of a behavioural preference for stimuli in the left visual field 

for both age groups with participants responding (on a group level) faster to 

right sided stimuli, the presented finding represents an age related shift of 

spatial attention at a neuronal level. On this basis, it accords well with the 

HAROLD model (hemispheric asymmetry reduction in older adults) (Cabeza, 

2002; Cabeza et al., 2004; Dolcos et al., 2002; Huang et al., 2012; Reuter-Lorenz 

et al., 2000). It is thought that RH lateralized cognitive functions decrease in 

lateralization with age and in turn, a more bilateral recruitment is used as a 
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compensation for a reduction in activation of the RH in older adults (Cabeza, 

2002). The compensatory mechanisms are meant to be driven by increased task 

difficulty in order to maintain performance, and have been supported by PET 

and fMRI studies (Cabeza, 2002; Cabeza et al., 2004; Dolcos et al., 2002; Huang 

et al., 2012; Reuter-Lorenz et al., 2000). The current results thus add to the 

present research literature arguing for a reduced preference for left visual space 

(pseudoneglect) with age that is observed in neurophysiological correlates in the 

later negative N1 component. They also provide further supporting evidence for 

an age related reduction of RH activity for spatial attention orienting that has 

been reported in previous studies of spatial attention (Benwell, Thut, et al., 

2014; Learmonth, Benwell, et al., 2017; Nagamatsu et al., 2009). Nevertheless, I 

had predicted this reduction in lateralization to be more distinct in older adults, 

and related to an increase in task demand (load) in particular. Therefore, in 

order to reliably conclude that older adults show changes of neurophysiology 

that reflect shifts of spatial attention, further research is necessary.    

Methodological considerations and future directions  

The sample size of the presented experiments were driven by previous studies 

rather than based on power analysis. In chapter 2, I aimed to match the young 

adults sample of N = 50 (Learmonth, Gallagher, et al., 2015) to ensure 

comparability between older and younger adults in experiment 1 (Chapter 2). 

From the successful recruitment of 40 older adults, I had to exclude 2 

participants in the final analysis due to changes in the design of the LVD task to 

accommodate changes in older adults’ performance.  

In chapter 3 – 4 the sample size was driven by the study of O’Connell et al. 

(2011) who had a final sample size of 45 participants (aged 18 to 47 years (M = 

24 years, standard deviation = 7.3) (O’Connell et al., 2011). I aimed to collect 40 

naïve volunteers in all three experiments, split even in two age groups to 

adequately address the research questions.  

Despite the advantages of EEG to allow the investigation of temporal event 

related potentials in a non-invasive manner, which is suited especially for 

investigating older adults, its ability to localise the neuroanatomical source of 

activity is limited. With the present approach, the observed right hemisphere 

reduction was associated with the activity of pre-defined posterior ROIs for the 
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left and right hemisphere. In order to further uncover the differences in right 

lateralized activity and the precise activation of brain areas in the healthy aging 

brain, more studies using fMRI could be beneficial. These could give further 

insight into the additional neuronal recruitment of other brain areas that are not 

restricted to hemispheric lateralization, in accordance with the CHRUNCH model 

(Reuter-Lorenz & Cappell, 2008), which suggests that compensatory recruitment 

of additional resources in older adults can be generated from any part of the 

brain. Moreover, it is possible that such sources of activity change at different 

stages of stimuli processing. My EEG results showed that older adults had, at a 

later processing stage (at the P3 component), a reduction of activity with 

increased attentional load. This could be interpreted as a greater resource 

allocation as the task became more difficult and possibly taxed the participants’ 

ability to sustain attention. This was more pronounced in older adults and 

activity deceased exponentially with attentional load. In accordance with the 

CRUNCH model, I found that while older adults did not shift towards an overall 

increased activity in the frontal electrodes (as is proposed for posterior- anterior 

shift in P3 with healthy ageing (Fjell & Walhovd, 2004; Friedman, 2003; 

O’Connell et al., 2012; Polich, 1997; West et al., 2010)), older adults did show 

an additional recruitment of frontal electrodes that was absent in young adults 

(to possibly compensate a parietal decline present with increased task demand). 

In fact Huang et al.(2012) reported that both sides of the posterior parietal 

cortex showed activation to counteract for age related decline (in contrast to 

young adults) and to improve performance in older adults. While Huang et al. 

(2012) conclude that activation in the prefrontal cortex is task independent and 

indicative of healthy ageing, they emphasize that the involvement of the left 

and right parietal contributions for compensatory recruitment is task specific 

(see Huang et al., 2012). With additional fMRI investigations, it would be 

possible to pinpoint whether other areas of the ageing brain further contribute 

to this compensatory resource recruitment in my paradigm and if the left 

parietal contribution would increase with increasing attentional load. Moreover, 

it would be interesting to investigate if this was visible at a group level or if 

individual differences might be more influential.  
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Pupillometry and saccades as measures of cognitive load 

The idea that older adults show greater cognitive decline, lower baseline and 

earlier/ faster reduction of alertness (Learmonth, Thut, et al., 2015; Madden et 

al., 2007; Swan et al., 2015) stands in contrast of the current results reported. 

Therefore, my predominant focus on reaction times as a measure for the impact 

of attentional load on spatial attention, as was the case in Chapters 3 and 4, 

might have masked possible ageing effects in performance in the presence of 

increased attentional load. Especially when investigating age related effects 

reaction times could suffer from a speed / accuracy trade off, towards a greater 

emphasis on correct detection of trials than fast response in older adults (Starns 

& Ratcliff, 2010, 2012), and conservative response strategies (Hertzog & Rypma, 

1991; Nagamatsu et al., 2011; Smith & Brewer, 1985). 

A promising avenue for future research in terms of mapping cognitive changes 

would be therefore the addition of pupillometry and saccade measurements, as 

a valuable addition to investigate top down processing and possible impacts by 

attentional load. Pupillary responses have been shown to reflect increased 

mental load and to be sensitive to cognitive load and decreased sustained 

attention in visual detection tasks (Beatty, 1982; Hoekstra, Morey, Rouder, & 

Wagenmakers, 2014; Lisi, Bonato, & Zorzi, 2015; Partala & Surakka, 2003). In a 

lateralized dual detection task in particular, pupil dilation revealed increased 

task demand in the participants (with an increase of load) and thus evidence for 

a decrease of visuospatial awareness and task engagement (Lisi et al., 2015). In 

addition, monitoring saccades has revealed asymmetries in attention as well as 

differences in screening strategies in healthy young adults (Thomas, Loetscher, 

& Nicholls, 2014). These approaches might be especially beneficial in older 

adults who might rely more on strategies to perform well in a task that requires 

higher attentional demand. Therefore, replicating the experiment presented in 

Chapter 4 with pupillometry or saccade monitoring as an indicator of spatial 

asymmetry may give valuable insight into how attentional load influences older 

adults’ performance in absence of conscious reaction and differences in mental 

strategy in particular. 
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Individual differences as influential factors on sp atial asymmetry  

Another promising avenue for future research would be to investigate individual 

differences and how non-spatial modulators such as attentional load impact on 

them. Previous research has established already that there are sub types of 

participants showing a consistent and stable rightward bias, estimated to cover 

30 to 50% of the general population (for a review see Jewell & McCourt, 2000) 

but see also (Benwell, Harvey, et al., 2013; Braun & Kirk, 1999; Cowie & Hamill, 

2011; Dellatolas et al., 1996; Manning et al., 1990). Moreover, participants with 

good versus poor sustained attention show different results (Bellgrove et al., 

2004, 2013; Staub et al., 2014). As argued before this suggests that a shift to the 

right side of space does not necessarily equate to a reduction of spatial ability. 

In my results, aging differences were predominantly absent and individual 

spatial biases in the older adults group (Chapter 2) as well as asymmetric 

preferences of peripheral targets (Chapter 4) overlapped with measures in young 

adults showing individuals who performed faster than the group mean.  

Cognitive reserve and education   

So for older adults in particular, an enriching environment is thought to preserve 

or enhanced cognitive reserve, which in turn possibly modulates age related 

cognitive decline (Brosnan et al., 2018; Stern, Alexander, Prohovnik, & Mayew, 

1992). Such enriching environments might support, at least in part, a greater 

activation of the fronto parietal network (FPN) with age, which in turn has been 

shown to support better performance in visual processing speed and storage 

capacity, in contrast to peers with less activation of the FPN (Brosnan et al., 

2018; Robertson, 2013, 2014; Wiegand et al., 2014). Moreover, education has 

been identified as prominent factor that supports cognitive reserve (Robertson, 

2014) and allows the aging brain to adapt better to degeneration or disease 

(Stern et al., 1992).  

The older population in the presented studies were recruited from various social 

clubs and had been in higher education predominantly. They were likely 

benefitting from such an enriching environment and therefore possibly a higher 

cognitive reserve. In a more recent study, findings of higher right hemisphere 

activation have been linked to greater cognitive reserve (Brosnan et al., 2018). 
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Moreover, Brosnan et al. (2018) reported an asymmetry in processing targets in 

the left visual field in healthy older adults at baseline, supporting a greater 

activation of the right hemisphere for adults with high cognitive reserve. Akin, a 

higher level of education could result in similar results, benefitting right 

hemisphere activation and therefore processing in the left side of space.  

Focussing on such individual differences in the context of ageing and visual 

spatial attention in the future would give greater insights into the diversity of 

ageing and how cognitive reserves are related to spatial attention. The present 

cohort represent an older generation that is highly active and also predominantly 

highly educated, with a majority of participants that have been in higher 

education. A wider range of participants with different social and educational 

backgrounds would be beneficial to investigate spatial abilities with age. This 

could possibly show a reduction of right hemisphere activity as a consequence of 

reduced cognitive reserve and be reflected in a more rightward shift of spatial 

attention. Moreover, it would be interesting to compare possible changes in 

spatial attention throughout the lifespan, particularly into the late decades of 

life. With a mean age of approximately 70 years the present older adults might 

have been not old enough in order to detect changes in cognitive processes due 

to age related neuronal decline. This could further guide our understanding of 

what factors preserve spatial ability and possibly uncover markers of decline.  

Inferences for real life applications  

Interestingly, none of the tasks tested here displayed a critical rightward bias in 

older adults that would suggest cognitive decline (see Chapter 2) or inability of 

spatial attention akin to neglect (Chapter 3 till 4). An absence of spatial bias 

could be seen as a result of right hemisphere decline due to age or possible 

falsely identified as the presence of mild neglect in an otherwise healthy older 

adult, when in reality the underlying mechanisms of the different tasks might be 

differently affected by age. It remains a vital question to define how healthy 

aging is reflected in spatial measures, for which the experiment in Chapter 2 

present a framework. It is now necessary to define what the spatial measures 

commonly used are assessing under the term of spatial attention. The current 

results are in line with previous work, where the authors have argued that 

different spatial attention tasks place a unique set of cognitive and motor 
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demands on the spatial attention networks (Learmonth, Gallagher, et al., 2015, 

2018; Verdon et al., 2010). As the participants did not score clinically on 

measures of early neurological decline, the reported spatial biases are likely a 

result of healthy aging, therefore the results tentatively recommend the 

Landmark task as the most reliable perceptual spatial measure in older 

populations as none of the participants had to be excluded from the experiment 

in contrast to the Greyscale or Gratingscale task, which could be more sensitive 

to changes in task difficulty on an individual level. However, adopting the view 

of pseudoneglect as a multicomponent phenomenon, the issue remains to select 

a suitable spatial task to measure the particular component in question.  

Finally, at present, it remains an open question if shifts in spatial attention and 

age related reduction of right hemisphere activity translate into navigation 

changes and different adaptation to the environment in everyday situations. 

Only a few studies have found correlations between left visual space deficits and 

real life situations (Nicholls et al., 2010, 2007; Thomas et al., 2017). 

Particularly, Nagamatsu et al. (2009) found supporting evidence for a possible 

negative impact that is associated with left special bias decline. They reported 

an increased risk of falls that were associated with left visual field processing 

deficits. In the present study, I did not find a correlation with driving simulation 

in older adults and the five spatial measures (see Chapter 2), suggesting at 

present that spatial asymmetries measured in spatial tasks does not give a 

predictive insight into declining driving behaviour.   

Therefore, future research investigating the relationship between lab based 

spatial measures and driving simulations could focus on individuals who show a 

rightward spatial bias in order to answer if a shift to the right side of space 

really translates into cognitive and performance decline or if it is a result of old 

age and reflects healthy cognitive ageing of spatial attention throughout the 

lifespan, or indeed just simply reflects a task effect with no further wider 

implications. Further investigation into healthy ageing and if and how this is 

reflected in the neurophysiology and neuroanatomy and behavioural patterns of 

spatial attention thus still remains an important undertaking to find ways to 

prolong and improve the cognitive wellbeing in healthy ageing and to identify 

markers of decline.   
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