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Abstract 

Peptides are crucial in biological processes: depending on their structure and location in the 

body they play different important roles. In vivo, peptides can be cleaved by proteases that 

degrade and reduce their activity. Studies have shown that peptide bonds can be mimicked 

in order to prevent cleavage in vivo while retaining bioactivity and increasing the solubility 

as well as the ability to control the folding of the peptide. Furthermore, synthetic targets that 

mimic conformational features of biologically active protein’ domains have raised an intense 

interest for organic and medicinal chemists. The target in peptidomimetics nowadays is to 

get a better biological activity than natural occurring peptides by mimicking their structure.  

This project focuses on the synthesis of peptidomimetics containing a cyclopropane as an 

amide bond isostere. Incorporation of a cyclopropane allows the molecule to be constrained 

conformationally, bringing hydrogen bond donor and acceptor groups together and 

facilitating reverse turn formation. To demonstrate this concept, the racemic and 

enantioenriched {GlyΔGly} dipeptide replacement units were synthesised and then 

incorporated at the centre of different short peptide chains. Optimisation and development 

of a new strategy is described in this thesis along with spectroscopic analyses to identify the 

secondary structure adopted by the peptides.  

IR, concentration-dependant NMR, 2D NOESY NMR and circular dichroism (CD) analyses 

were conducted to prove the formation of this secondary structure. The studies were 

performed on peptides with different lengths, in order to demonstrate the propensity of b-

turn formation depending on number of residues (from two to five) but also depending on 

the solvent. Intramolecular hydrogen bond formation was determined by NMR and IR 

spectroscopy, which allowed identification of the conformation. 2D NMR and CD 

spectroscopy allowed to isolate precisely the conformation adopted by the mimics.  
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Promising results from these model systems were obtained and applied to the synthesis of 

novel cyclopropane-based Leu-enkephalin and TrpZip peptide analogues. Those peptides 

are known to form b-turn and b-hairpin respectively, so controlling hydrogen bonding and 

the folding properties is particularly important.  

 

Herein is described the synthesis of the longer analogues using the Gly-Gly surrogate 

designed and their full conformational analysis. CD and 2D NMR conformational analysis 

were conducted in order to identify the folding pattern of the analogues designed. 

This project was achieved with the kind help of Dr. Drew Thomson and his PhD student 

Selma Crecente Garcia who provided MD calculation and helped with the acquisition of the 

different NMR experiments followed by the assignments of protons of the TrpZip peptides; 

Dr. Brian Smith who kindly provided the 600 MHz NMR spectrometer and his expertise in 
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protein conformational analysis; and Dr. Sharon Kelly for the CD measurements and 

interpretation.  
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Chapter 1  

Introduction 

1.1. Proteins and peptides: structure and function 

Proteins and peptides are of fundamental importance in most biological processes. They 

perform a variety of important roles both within and outside of the cells of all organisms. 

The role can be a structural (collagen or elastin),1 a dynamic function such as transport 

(myoglobin)2, a metabolic control (hormones, receptors),3 muscle contraction agent 

(myosin),4 or catalysis of a chemical reaction (enzymes, Figure 1).5  

 

Figure 1: 3D structure of collagen (PDB 4CLG), myoglobin (PDB 3GRK), myosin (PDB 2V26) 
and enzyme-substrate complex 

Proteins and peptides are polymers of amino acids linked together by a peptide bond. The 

large number of natural amino acids means that a vast range of proteins with unique 

properties is possible. Variation of the sequence of the amino acids, the length of the chain 

and/or the intramolecular interactions within the protein and therefore the conformation of 

the protein leads to huge number of peptide and protein structures.6 Around 500 different 

amino acids can be found in nature but 22 are encoded by human codons (Figure 2).7 Nine 

of these amino acids (Phe, Trp, Val, Thr, Met, Leu, Ile, Lys, His) are called essential amino 

acids, which means that they must be supplied in the diet to have a sufficient production of 

them. A further six (Arg, Cys, Gln, Pro, Gly, Tyr)  are considered “conditionally essential 

amino acids” meaning that the synthesis can be disturbed by some pathologic conditions.8 

The rest (Ala, Asp, Asn, Glu, Ser) are non-essential amino acids because they can be 

+

Enzyme Substrate [enzyme-substrate] 
complex
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synthesised in the body in sufficient quantities. The last two (Sec and Pyl) are present in 

proteins by a specific mechanism.9,10 Peptides differ from proteins on the basis of size and 

are defined as having a chain of 50 or fewer amino acids.11 The structure that comes from 

the assembly of the amino acids will determine the function and the location of the protein 

in the body. 

 
Figure 2: 22 natural α-amino acids and side chains’ pKa value. 
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An amino acid is a small molecule or monomer, with a carboxylic acid (C-terminus) and a 

primary amine (N-terminus) functional groups (except for Pro), connected by carbon that 

bears a side chain of variable length depending on the nature of the specific amino acid. 

Natural amino acids (those encoded by the genome) have the side chain located on the α-

position relative to the carboxylic acid as the S-enantiomer (except Gly), and so they are 

therefore referred as α-amino acids.12 The amino acids are classified depending on the 

properties of their side chains as shown below and each is designated by a three-letter or 

single-letter code.  

Since the discovery of amino acids, peptides and proteins in the 19th century,13 various 

methods have been developed to synthesise natural or non-natural proteins/peptides and in 

recent years the use peptide synthesizers or genetically modified organisms has come to the 

fore. The advantage of using proteins as potential therapeutic agents, is that they can be more 

selective for their targets than conventional drugs with fewer side effects. Unfortunately, in 

most cases, proteins fail to meet the criteria of Lipinski’s rule of five because they usually 

have a molecular weight above 500 Da, and possess too many hydrogen-bond 

donors/acceptors.14 The Lipinski’s rule of five describes the five key physiochemical 

parameters and the molecular properties that confer favourable pharmacokinetic properties 

(absorption, distribution, metabolism and excretion) on a drug and make it likely to be orally 

active. The components are: the molecule must have five or fewer hydrogen bond donor 

groups (HBD), 10 or fewer hydrogen bond acceptor groups (HBA), a molecular weight of 

less than 500 Da, and a logP (a measure of the lipophily, thus the membrane permeability of 

molecules) of 5 or less.  By using this method of “Lipinski rule of five” it was possible to 

categorised compounds as drug-like or lead-like molecules and filter libraries to remove 

poor candidates.15,16 Moreover, proteins usually bear a charge at physiological pH ~ 7.4 

[pKa(C-ter) ~ 1.7–2.3, pKa(N-ter) ~ 7–9,17 the pKa of the side chains substituent can vary 

between 3 and 12], thus their ability to cross the membrane is reduced. That is why research 

is conducted into small peptides and peptidomimetics in order to satisfy the Lipinski’s rule 

of five by synthesising smaller and more cell permeable molecules. In addition, small 

peptides and peptidomimetics can represent a biologically active section of a protein of 

interest and be used without the need to synthesise and purify an entire protein (which can 

be expensive and time consuming).18  
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1.2. The peptide bond: generality and isosteres 

Proteins and peptides are polymers of amino acids joined through amide linkages. The 

resonance energy of the peptide bond is around 16 kcal/mol (in comparison benzene has a 

resonance energy of 46 kcal/mol) and possesses extra stability as a consequence of its partial 

double bond character (Figure 3). This is due to the delocalisation of the nitrogen lone pair 

into the antibonding orbital π∗ of the carbonyl group. The energy required for rotation about 

a single C–C bond is approximately 3 kcal/mol and about 60 kcal/mol for a C=C double 

bond. Rotation around an amide C–N bond with its partial double-bond character requires 

greater energy, which limits rotation about this bond.6,19 Due to this partial double bond 

character, the entire amide group is planar and so there are two possibilities: trans- or cis- 

conformation.  

         

Figure 3: peptide bond resonance structures and dihedrals angles 

The trans-conformation is the conformer that usually occurs in all open peptide chains,20 

implying that the side chains of adjacent amino acids lie on opposite sides of the main 

chain.21 The cis-conformation is less stable as a consequence of the steric hindrance between 

the side chains; nevertheless, it can be found in peptide bonds between any amino acids and 

Pro (Xaa-Pro). A peptide bond is defined by three dihedral angles: ϕ, ψ and ω. The ϕ angle 

of the i residue is defined by the torsion Ci–1-Ni-Cαi-Ci, ψ by the torsion Ni-Cαi-Ci-Ni+1, and 

ω by the torsion Cαi-Ci-Ni+1-Cαi+1. These angles are an important feature for protein folding 

analysis.22 By definition, the trans-conformation is that in which the dihedral angle ω (Cα-

C-N-Cα angle) is 180 ° and the cis-conformation is the one where ω is 0 °.23  

The peptide bond presents a paradox in terms of its stability when one considers how it 

behaves chemically: vigorous conditions are required (concentrated acid or base at elevated 

temperature) to promote hydrolysis but on the other hand protease-mediated in vivo by 

O

N
HR1

R2

N
R1

R2O

NH
R1 R2

O

Trans

Cis

O

N
H O

H
N

O

R
N
H

ϕ ψR ω

R

H
N



 

 5 

hydrolytic cleavage occurs under mild conditions (physiological pH and temperature). 

Proteases comprise four different mechanistic classes: serine proteases, cysteine proteases, 

aspartyl proteases and metalloproteases (Figure 4).24 

                          a)    b)  

                c)                d)  

Figure 4: proteases and their mechanism. a) Serine protease, b) cysteine protease, c) aspartyl 
protease, d) metalloprotease 

In serine proteases (Figure 4a) there is a catalytic triad formed by Asp, His and Ser amino 

acids in the active site. His deprotonates the Ser-OH, with the help of the proton-withdrawing 

Asp, and allows nucleophilic attack of the nucleophilic Ser onto the carbonyl group of the 

peptide bond. The cysteine proteases (Figure 4b) work in a similar way to the serine 

proteases, but in this case a strongly nucleophile sulphur atom on the Cys residue is 

deprotonated by His in the active site. Aspartyl proteases (Figure 4c) function via acid-base 

mechanism in which a water molecule serves as a nucleophile. In this case, water coordinates 

with the Asp carboxylate and is then activated by the abstraction of a proton and the polarised 

water can now attack the carbonyl of the peptide bond. Metalloproteases (Figure 4d) use a 

coordinated metal, usually Zn, in the catalytic mechanism. The metal coordinates to the 

imidazole groups of two His residues and an acidic side chain, or with the imidazole groups 

of three His residues and a water molecule hydrogen bonded to a Glu residue, the activated 

water can then attack the carbonyl group.  

In addition to its stability, the peptide bond possesses two hydrogen-bond acceptors and one 

hydrogen-bond donor. Hydrogen bonds play a critical role in stabilizing secondary structure,  

facilitating inter- and intramolecular interactions and protein-protein recognition processes 

(enzyme-substrate for example).25 In principle, the folding and shape, and thus consequently 

intramolecular interactions, of a protein can be controlled in order to increase its specificity 
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and/or the mode of action, by replacement of the peptide bond with a suitable isostere. An 

isosteres is a functional group with similar chemical or physical properties to the group that 

it replaces; a molecule containing an isostere should produce the same biological response 

as the natural substrate. In medicinal chemistry, isosteres are used frequently in drug design 

to improve the pharmacodynamic and pharmacokinetic properties of a drug.26 In order to 

avoid degradation by peptidase, some studies have been focused on replacing the peptide 

bond by different isosteres.  

For example, the peptide bond can be replaced by another functional group such as a urea, 

without modification of the synthesis strategy commonly employed for peptide synthesis.27 

Liskamp et al. have demonstrated that a peptidomimetic can be synthesised using the Fmoc 

protection strategy in a peptide synthesiser. Every peptide bond was replaced by a urea 

moiety and every residue was replaced by its β-equivalent without significant losses in the 

overall yield or purity (Figure 5).  

 

Figure 5: urea peptidomimetic 

Other researchers have reported that replacement of a peptide bond by a triazole unit does 

not alter the biological activity of the compound.28 V. D. Bock et al. have synthesised mimics 

of the natural product cyclo-[Pro-Tyr-Pro-Val] (Figure 6).  

 

Figure 6: cyclo-[Pro-Tyr-Pro-Val] peptide and one of the analogues 

In this study, three peptidomimetics were synthesised. In two of them, a triazole was used to 

replace one peptide bond on each side (red in Figure 6), and in the third one both peptide 

bonds were replaced with triazoles. The inhibitory effect of these analogues was then 

evaluated on mushroom tyrosinase and compared to the activity of the natural product. The 
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inhibitory activity was not only retained but increased for two of the analogues. Nonetheless, 

in most cases replacement of a peptide bond resulted in a loss of a hydrogen bond, which 

could be crucial for inter- and/or intramolecular interaction, making the mimics a good tool 

for the understanding of such interactions.29  

1.3. Structure of proteins and peptides 

Proteins and peptides can be described in terms of their level of organisation by use of the 

term primary, secondary, tertiary and quaternary to describe structure. The general folding 

of a protein is stabilised by multiple weak interactions and so it is essential to describe them 

before discussing the different levels of organisation. These weak interactions are non-

covalent and reversible.  

1.3.1. Interactions stabilising the folding of a protein/peptide 

1.3.1.1. Hydrophobic interactions 

Hydrophobic interactions occur between non-polar groups. In peptides and proteins, this 

corresponds to the interactions between the hydrophobic side chains of non-polar residues 

(such as Ala, Val, Phe etc.). Water can repel these hydrophobic residues causing them to be 

buried in the native state of the protein (i.e. the folded protein). An example of a hydrophobic 

interaction in a peptide is aromatic-aromatic side chain interaction stabilising β-hairpin 

formation.30  

1.3.1.2. Ionic interactions 

Ionic interactions are electrostatic interactions between two charged or partially charged 

groups of opposite polarity. These interactions occur between two groups having significant 

electronegativity differences. In peptide stabilisation, ionic interactions correspond to the 

interactions between paired anionic and cationic amino acid side chains (e.g. between Lys 

and Asp).   
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1.3.1.3. Van der Waals interactions 

Van der Waals and hydrogen bonding interactions are crucial for the stability and function 

of molecules.31 They are weak electrostatic interactions between two permanent or induced 

dipoles. They have three major contributions and are distance dependant:  

Permanent dipole-dipole interaction, or Keesom force: this interaction can be attractive or 

repulsive; the dipole of opposite signs will be attracted and dipoles of opposite signs will be 

repelled.  This is represented in the figure 7 by the dipole moment of a molecule (a carbonyl 

group for example). 

 

Figure 7: Keesom force 

Dipole-induced dipole interactions, or Debye forces: these attractions result when a polar 

molecule induces a dipole in a nonpolar molecule/atom by disturbing the arrangement of 

electrons around it (induction or polarisation). They are always attractive and depend on the 

polarizability of a molecule.32 For instance, a carbonyl group with a dipole moment can 

induce a dipole in an adjacent aromatic ring (Figure 8) because π-electrons are more 

polarizable than σ-electrons.  

 

Figure 8: Debye force 

Dispersive interactions, or London forces: they correspond to attractive interactions between 

any pair of molecules or atoms caused by the instantaneous multipole interactions. As in the 

case of Debye forces, they depend on the polarizability of molecules. In a folded protein, 

there are numerous dispersive interactions (mainly involving aromatic residues) that make 

important contributions to its overall stability.32 
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1.3.1.4. Hydrogen bonds 

A hydrogen bond is an electrostatic attractive interaction between a hydrogen atom that is 

covalently bonded to an electronegative atom (N, O, S, F) and the lone pair of an 

electronegative atom (N, O, S, F). These groups are called, respectively, the hydrogen bond 

donor (HBD) and the hydrogen bond acceptor (HBA). A hydrogen-bonding interaction is 

weaker than a covalent bond or an ionic interaction but is stronger than hydrophobic or van 

der Waals interaction. The electronegative bonding partner pulls the electrons away from 

the hydrogen in the HBD and the hydrogen nucleus is exposed on the back side, which 

becomes electron deficient (δ$). This allows an electrostatic interaction to be established 

with a Lewis basic electron pair of an electronegative atom which is partially negatively 

charged (Figure 9).  

 

Figure 9: Hydrogen bond and cooperativity of hydrogen bonds 

In biology, the hydrogen bonds are responsible for base pairing in DNA and RNA, the 

formation of elements of secondary structure in proteins/peptides and intermolecular 

protein-protein interactions. In biological systems, hydrogen bonds can have a cooperative 

character, which means that the strength of a hydrogen bond will be increased by an adjacent 

hydrogen bond (Figure 9). The hydrogen bond increases the acidity of the proton and the 

basicity of the oxygen (or any electronegative atom). This greatly stabilises base pairing and 

protein folding.  
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1.3.2. Primary and secondary structure 

The primary structure corresponds to all the amino acids linked together by peptide amide 

bonds. It is the denatured state where the peptide/protein is unfolded and inactive. With 20 

different natural amino acids, an infinite combination of these is possible, allowing huge 

diversity in primary structure. For example, a dipeptide involves two residues, thus 202 = 

400 different combinations are possible. However, a sequence of amino acids will not 

usually adopt a linear, extended conformation, but instead will fold into a complex three-

dimensional structure of lower energy, stabilised by hydrogen bonds and other 

intramolecular interactions (electrostatic, π-stacking, hydrophobic etc.). The structure based 

on this hydrogen bonded arrangement is the secondary structure. It includes turns, α-helices 

and β-sheets.  

1.3.2.1. α-helix 

Linus Pauling was the first to report the a-helix conformation in 1951.33 It is described as 

right-handed helical conformation with 3.6 residues per turn and a distance of 5.4 Å. In this 

structure, the peptide C=O bond of the ith residue points towards the peptide N–H group of 

the i-4th residue to generate a 13-membered pseudocyclic structure (Figure 10). a-Helices 

represent the most prevalent type of the secondary structure in proteins (about 30% in 

globular proteins),34 and could play an important role in the early stage of protein folding. 

Pace et al. observed that certain amino acid residues are more frequently found in a-helices 

such as Ala, Leu and Glu because of their favourable enthalpic contribution of between 0–

0.4 kcal/mol (0–1.67 kJ/mol) compared to Gly which contributes around ~1 kcal/mol (4.18 

kJ/mol) as a consequence of its greater flexibility, which reduces its propensity to stabilise 

a-helices. Proline does not stabilise an a-helix because it does not have a free N–H to form 

a peptide bond with another residue.  
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Figure 10: structure of an α-helix and of myoglobin protein 

a-Helices perform a variety of functional roles, such as recognition (protein-protein or 

protein-nucleic acid),35,36 membrane spanning and other mechanical properties,37 which 

means that the a-helix is a good target for medicinal chemistry research.  

 
1.3.2.2. β-sheet 

Another prominent secondary structure unit is the β-sheet, it is formed by successive β-

strands joined by a turn. A strand is an almost fully extended chain of amino acids (3 to 10 

residues). The dihedral angles ϕ and ψ of the strands’ residues are near 135° and –135° 

respectively, whereas these angles are at 180° and –180° in an extended conformation, which 

gives a characteristic twist in the sheet conformation.38 The two β-strands, comprising the β-

sheet, are stabilised by cross-strand hydrogen bonds between peptide bonds. They can align 

themselves to be parallel or antiparallel (Figure 11a and b). Hydrogen bonds are planar 

(HBA and HBD in front of each other, the hydrogen bond is perpendicular to the strands) in 

an anti-parallel β-sheet, and non-planar (HBA and HBD slightly deviated), therefore slightly 

less stable, in a parallel β-sheet. The strands don’t necessarily follow each other in the 

sequence and may be located at different regions of the protein/peptide. β-hairpin 

corresponds to the simpliest motif of the β-sheet consisting of two β-strands joined by a loop 

(Figure 11c).  

5.4 Å 
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a)                           b)  

c)  

Figure 11: a) parallel β-sheet from pectate lyase, b) anti-parallel β-sheet from human PCNA, c) 
zoom on anti-parallel β-hairpin.  

In both parallel and anti-parallel, the side chains along the strands alternate above and below 

the plane (Figure 11c), while the side chains of the opposite residues on neighbouring strands 

lie in the same plane and in close proximity, facilitating interactions across the strands.  
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1.3.3. Tertiary and quaternary structure 

The tertiary structure is the overall folded form of the protein where the energy is usually 

minimised and includes the three-dimensional arrangement of the protein including 

orientation of the side chains. It is an assembly of secondary structures and disordered 

conformations in a protein/peptide. The formation of tertiary structure depends on the 

interactions between amino acids in close proximity to each other to form secondary 

structure, and also between side chains of distant amino acid residues in the primary 

sequence by ionic, hydrophobic, disulfide or other interactions.  

Many proteins are composed of a single chain protein but some feature more than one 

subunit forming a stable folded structure. The subunits can be strictly identical in their amino 

acid sequence (Tobacco mosaic virus, Figure 12a), relatively similar (a and β subunits of 

the haemoglobin, shown in blue and red in Figure 12b) or completely different (aspartate 

transcarbamylase, Figure 12c). Once completely folded, the protein is in its so-called “native 

state”, this is the quaternary structure of proteins.  

       a)                          b)  

c)  

Figure 12: quaternary structure of a) tobacco mosaic virus, b) haemoglobin, c) aspartate 
carbamylase 
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Many large proteins do not fold spontaneously and instead are assisted by proteins called 

chaperones. These chaperones help the newly formed proteins to fold and avoid misfolding 

or aggregation, which can result in the formation of proteins that are potentially toxic. 

Molecular chaperones are described as “any protein that interacts with, stabilises or helps 

another protein to acquire its functionally active conformation, without being present in its 

final structure”.39 Some of these proteins are known as heat-shock protein (HSP), as they are 

upregulated under conditions of stress, in which more aggregated intermediates are formed. 

Chaperones are then classified accordingly to their molecular weight given in kilodaltons 

(e.g. HSP40, HSP70 etc.).  

Combinations of amino acids (the primary sequence) and their interactions will produce the 

three-dimensional shape of the protein on folding and are therefore responsible for the 

functionally active conformation.40 This will determine the role and location of the protein 

in the body. Elements of secondary structure, such as the β-turn, have piqued a keen interest 

of medicinal chemists in recent decades as possible target sites for drug development 

because they often play a critical role in protein folding, stability and molecular recognition.  
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1.4. β-turn, generality and medicinal chemistry 

target 

1.4.1. Definition and interest  

Segments with regular secondary structures such as a-helices or b-sheets are usually joined 

by stretches of polypeptide (typically 4 residues) that promote abrupt changes of direction, 

which are referred to as U-turns or reverse turns. Depending on the number of residues 

involved in the turn, a variety of distinct types of turn can form: γ-turns involve three 

residues, β-turns involve four residues and α-turns involve five residues. Consequently, NH-

-OC hydrogen bonded pseudo-rings of various sizes can be formed: 7-, 10- or 13-membered 

rings correspond to γ-, β- and α-turns respectively (Figure 13).41  

 

Figure 13: different types of reverse turn 

Another characteristic of turns is that the distance between Cαi and Cαi+4 has to be less than 

7 Å. The most common and stable turn found in peptides and proteins is the β-turn. The 

work presented in this thesis will focus only on a mimic of the β-turn. 

β-Turns are classified according to the value of the dihedral angles of the i + 1 and i + 2 

residues (central residues of the turn, Table 1). Nine established β-turn conformations have 

been reported by Thornton et al..42 All turns have specific, well-defined torsion angles (or 

dihedral angles) with the exception the type IV β-turn, in which the dihedral angles are not 

well-defined but a stable turn structure is formed nevertheless.  
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Table 1: β-Turn types and their corresponding dihedral angles and general representation of a 
β-turn stabilised by a hydrogen bond 

 
 
 
            

  

       

 

 

All types of β-turn are stabilised by a hydrogen bond between the oxygen atom of ith residue 

and NH of the i + 3th residue. In most cases b-turns are composed of hydrophobic residues 

such as Gly (also gives more flexibility), Pro or Asn.43 A β-turn with strands on N-terminus 

and C-terminus sides is known as β-hairpin (basic component of a β-sheet), it is stabilised 

by cross-strand hydrogen bonds between opposite residues. It is important to note that β-

hairpins do not necessarily involve a β-type turn, it could be any type of turn.44,45  

b-Turns are often composed of hydrophobic amino acids and they occur between regions of 

regular secondary structure (such as helices and sheets), consequently they tend to be located 

at the surface of the protein, and play a role in ligand-receptor or substrate-enzyme 

interaction recognition, making it a potentially interesting motif and target for novel 

medicinal agents.41,46 b-Turns are also thought to play an important role in the process of 

protein folding where formation of stable secondary structures is initiated by turns, which 

position strands in close proximity so that they interact with one another.47 In contrast, it is 

possible that β-turns form passively during the process of protein/peptide folding and arise 

as a consequence of folding rather than functioning as folding promoters. Hydrophobic side 

chains can interact with each other across strands and this will allow a turn to be formed, 

this is known as hydrophobic collapse.  

β-Turns are an important feature in protein secondary structure as well as in the native state 

of proteins (in GPCR ligands for example),41 which makes it a challenging and important 

target in peptidomimetic research. Within the last few decades many studies concerning b-

turn mimicry have been conducted, especially in relation to the use of carbon-carbon single 

or double bonds as peptide bond replacements.  

β-Turn type Dihedral angles (°) 
 ϕi+1 ψi+1 ϕi+2 ψi+2 

I –60 –30 –90 0 
I’ 60 30 90 0 
II –60 120 80 0 
II’ 60 –120 –80 0 

VIa1 –60 120 –90 0 
VIa2 –120 120 –60 0 
VIb –135 135 –135 160 
VIII –60 –30 –120 120 
IV All other values 
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1.4.2. Conformational analysis tools for β-turn identification 

1.4.2.1. Infrared spectroscopy 

Vibrational spectroscopy is a particularly useful method for the detection of hydrogen 

bonded structures in peptides, thanks to the strong infrared (IR) bands of the amide group 

present.48 In the early 50s, Elliot and Ambrose demonstrated that IR spectroscopy could 

provide useful data about the secondary structure of proteins and peptides.49 The method has 

evolved in the decades since then, with the arise of the Fourier-transform infrared 

spectroscopy (FT-IR). The advantage of using FT-IR, is that high quality spectra can be 

obtained with relatively small amounts (1 mM is usually enough) of the protein/peptide under 

investigation in a variety of environments (aqueous, miscellaneous or organic). Furthermore, 

IR spectroscopy relies on vibrational bond energy, so no external probes are required for the 

conformational study (unlike NMR or CD). The bands arising in IR spectra as a consequence 

of the vibration of the peptide groups provide information about the secondary structure of 

peptides and proteins, an additional chromophores are not required.50 The IR spectrum of a 

protein is characterised by nine different absorption regions known as amide modes, which 

means a planar CONH group would give nine amide bands, commonly called amide mode 

A, B, I to VII (table 2).51  

Table 2: Amides mode and their approximate frequencies 

Amide Approximate 
Frequency (cm−1) 

A 3300 
B 3100 
I 1650 
II 1550 
III 1300 
IV 725 
V 625 
VI 600 
VII 200 

Amide mode A arises from NH stretching, amide mode I from C=O stretching vibrations, 

amide mode II from NH bending with a contribution from CN stretching. Amide mode III 

is usually weak and rarely seen in conventional IR spectra but arises from NH bending and 

CN stretching. The other modes, are usually not used to interpret IR spectra and most 

conformational studies based on IR spectroscopy have been performed with reference to 

amide I and A bands exclusively.52,53  
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The wavenumber corresponding to each amide vibrational mode can be influenced by the 

environment of the peptide/protein. Hence, the wavenumber can be influenced by the 

intermolecular interactions between various molecules or interactions with the solvent, and 

by intramolecular interactions. The major type of bond that can be analysed with IR 

spectroscopy is the hydrogen bond, because bonding of this type changes the vibrational 

characteristics and dipole moment of a bond. Typically, in the case of hydrogen bond 

formation, the amide modes A and I will shift to lower wavenumbers, while amide mode II 

will shift to a higher wavenumber.  

With this technique, it is possible to analyse whether or not the NHs of a small peptide are 

involved in intramolecular hydrogen bonds in various solvents; in the event of a β-turn study, 

it is possible to analyse the formation of the 10-membered hydrogen bonded system by use 

of an appropriate model, as described in a following section.54 

1.4.2.2. Circular dichroism 

Circular dichroism (CD) is an essential tool for probing the structure of peptides. The 

technique was developed in the 1970s for the structural analysis of the secondary structure 

of peptides/proteins.48 CD results as a consequence of the interactions of polarised light with 

chiral molecules. Proteins, which are composed by chiral amino acids, are chiral by 

definition and display a unique spectrum depending on their 3D conformation. Indeed, it is 

important to note that the CD spectrum of a protein is not simply the sum of the CD spectra 

of its residues but is the result of a chiral macromolecule greatly influenced by its the 3D 

structure, and therefore the secondary structure. CD allows secondary structures (α-helix, β-

sheet, β-turn) to be analysed in solution with great accuracy because each secondary 

structure unit results in the generation of a specific CD spectrum (Figure 14).55 
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Figure 14:CD spectra in the far-UV of “pure” secondary structures56 

The far-UV (180–260 nm) corresponds to the region of the spectrum where there is a great 

sensitivity to the backbone conformation of peptides/proteins.57 Near-UV (250–320 nm) 

acquisition can provide information about the contribution of aromatic side chains to the 

folding process.  

α-helix has a high positive peak around 190 nm followed by two negatives at 210 and 225nm. 

β-sheet and β-turn present a positive at respectively 195 and 205 nm followed by a negative 

curve. In early studies, β-turns were overlooked in terms of their contribution to the folding 

of a protein,58 thus CD spectra were not recorded. Within the past few decades CD spectra 

of type I and II β-turns have been obtained and it is now known that they are the most found 

in proteins.59,60,61 

1.4.2.3. Nuclear Magnetic Resonance 

All chemists are aware of the power of the NMR spectroscopy for the determination of 

molecular structure and conformation but also for the elucidation of the selectivity and 

stereocontrol of some reactions. NMR is also a major tool for the determination of the 3D 

structure of macromolecules such as proteins or peptides.  

The folding pattern of a peptide/protein can be analysed through by the use of various NMR 

techniques. In the case of relatively small peptides (less than 10-12 residues), it is possible 

to study the formation of intramolecular hydrogen bonds between amides within the peptide 

directly. Concentration-dependent NMR studies provide good evidence to indicate the 
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presence and strength of both intra- and inter-molecular hydrogen bond formation. In this 

study the chemical shift of a selected NH of the peptide is targeted. If the chemical shift 

changes with the log of the concentration, it indicates that this NH is involved in an 

intermolecular hydrogen bond.62 Indeed, the higher the concentration the more the molecules 

will interact with one another. If the chemical shift does not change significantly with the 

concentration, this provides evidence that the NH is intramolecularly hydrogen bonded 

because the degree of hydrogen bonding is not dependent on concentration in this case.63 

The same observation can be made with data from temperature dependant NMR studies. In 

this case, the chemical shift-temperature dependence ratio &'
&(

  is measured and the lower it 

is, the stronger the intramolecular hydrogen bond.64 Another NMR experiment that is used 

to detect hydrogen bond formation consists of calculating the exchange rate between a 

hydrogen and deuterium present in a protic NMR solvent. The hydrogen concerned is usually 

the NH of an amide bond, but it can also be from an acidic side chain (attached to N, O or S 

atom as C-H exchange very slowly with the solvent).65 The rate is calculated over time and 

is a good indicator of the formation of a hydrogen bond and how stable it is. Indeed, if an 

NH does not appear in a deuterated solvent (D2O, MeOD, d-TFE etc.) it means that it is 

exchanging rapidly with the solvent so is solvent-exposed and not protected by an 

intramolecular hydrogen bond. The techniques described above are useful for the detection 

of hydrogen bonds, but NMR spectroscopy can provide much more information about the 

overall 3D structure of a peptide or protein thanks to 2D NMR. 

Homonuclear 2D NOESY (Nuclear Overhauser Effect) NMR is important for the 

determination of the structure of organic and biological molecules. Indeed, cross-peaks in 

the 2D spectrum correspond to the interaction between protons that are close in space. This 

is a powerful tool for the identification of the stereochemistry of complex molecules, but 

also the general configuration of a peptide. By identifying the cross-peaks between protons 

at the α-position of the residues composing the peptide, it is possible to tell, for instance, in 

a four-residue peptide, if Hα of residue i is interacting with Hα of residue i+3. If it is, this 

suggests that the peptide is adopting a turn conformation.  
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1.5. β-Turn peptidomimetics 

1.5.1. Introduction to peptidomimetics and examples  

Natural peptides and proteins should be, by their structure and function, attractive drug-

candidates because they are essential to every biochemical process. Even though large 

peptides have great stability and are more specific than small-molecule drugs with respect 

to their targets and fewer side effects, they do have several disadvantages: they have poor 

bioavailability (short half-life), are rapidly degraded by proteases in the blood stream, suffer 

rapid clearance and have poor oral absorption characteristics.66 These parameters are the 

pharmacokinetic properties of ADME (Absorption, Distribution, Metabolism, Excretion). 

Low ADME means that a molecule is not a good drug-candidate. For instance, some natural 

peptide-derived inhibitors such as pepstatin, a pepsin inhibitor (pepsin is a protease found in 

the stomach that degrades proteins into smaller peptides), have shown promising 

hypertensive activities in biological tests, but their low bioavailability and lack of target 

selectivity have precluded their further development.67 Wiley and co-workers defined a 

peptidomimetic as “a small nonpeptide structure that can mimic the activity of a native 

peptide or protein”. Nowadays, the challenge is to find a low-molecular-weight molecule 

with desired pharmacokinetic properties (superior to those of native peptides) that would 

bind specifically to a target receptor. Expansion of our knowledge of proteins and their 

domains has allowed the peptidomimetic field to develop. Indeed, determining the 3D 

structure of a key point of contact between the protein and the receptor is important as this 

develops understanding of exactly which structural features and functional groups are 

important for activity to take place.68 The structure-based design of molecules that can mimic 

the binding site to a specific target (structurally and functionally) or so-called structure-

activity relationship (SAR) has developed rapidly over the past few decades and is essential 

for designing new peptidomimetic drug candidates.69,70 Once the targeted conformation for 

biological activity is known, a small molecule can be designed to form and stabilise the 

required conformation with the same functional group in place for interactions. A library of 

similar compounds can then be synthesised following a generic synthetic route and screened 

for biological activity. Features that improve or decline the activity can then be identified 

and the structure refined for a better biological activity. Peptidomimetics that possess peptide 

bond surrogates or transition state analogues have been developed in which the main 

polyamide chain is absent or interrupted by a non-peptidic group, which makes the molecule 

less susceptible to proteolytic degradation.71 
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Hanessian and Auzzas have reported the synthesis of conformationally constrained azacyclic 

peptidomimetics that contain proline and pipecolic acid building blocks (with a 5- and 6-

membered ring respectively, Figure 15).72   

 

Figure 15: Proline and pipecolic acid building block and PPACK peptidomimetics. 

In spite of the synthetic challenges presented by these constrained amino acids, the 

researchers pursued the synthesis of the polycyclic proline analogues 1a,b and 2, which are 

peptidomimetics of PPACK (Phe-Pro-Arg chloromethyl ketone) peptides. PPACK is a 

potent inhibitor of thrombin, a serine protease that is involved in the coagulation process, 

with an IC50 of 110 nM. The synthesis of 1a and b proved to be challenging but the 

compound was obtained with good stereocontrol. The three analogues were tested against 

thrombin and the hydroxyl analogue 1a was found to be five-fold less active than the amine 

analogue 1b (IC50 = 4 nM in vitro). Co-crystallisation of 1a with thrombin followed X-ray 

analysis revealed that the peptidomimetic was interacting with the protease at the same 

amino acid residue as the native peptide and therefore has the same binding mode.  

G-protein-coupled receptors (GPCRs) are a large family of proteins with seven 

transmembrane helices as a common structural motif. They are located at the surface of cells 

and are implicated in the transduction of extracellular signals into intracellular responses. 

The natural ligands of the GPCRs are extremely diverse, ranging from hormones to 

nucleosides or lipids and Ca2+ ions. Such a variety of ligands indicates a great diversity of 

actions, and GPCRs are potential targets for various disorders, such as allergies, 

hypertension, cancer and asthma, etc. (Figure 16).70 Around 50% of the drugs that have been 
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launched on the market recently target GPCRs. These receptors are attractive targets for 

medicinal chemists and amenable to the development of peptidomimetics.73  

 

 

Figure 16: rhodopsin GPCR and some examples of drugs targeting GPCRs 

It has been demonstrated than GPCR ligands often interact with the receptor via a turn 

structure,41 implying that the turn is generally located at the surface of the protein. Therefore, 

they are interesting targets to study in order to gain an understanding about the molecular 

interactions between receptors and ligands as well as other interactions involved in 

biological process.  
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1.5.2. β-Turn peptidomimetics, synthesis and analysis  

1.5.2.1. Robinson’s work on synthetic vaccines 

The application of peptidomimetics is not only drug design and development but is also in 

the field of synthetic vaccines. Natural peptides have several weaknesses in this area. They 

are usually too flexible and unable to preserve a specific conformation that is required for 

recognition with the antibody. An epitope is the part of the antigen that binds with the 

antibody and b-hairpin are a known structure found in epitopes. Furthermore, it has been 

described that the interaction is possible or not depending on the loop sequence. So, 

constraining the loop to stabilise the hairpin is an important progress in synthetic vaccines. 

Immunoglobin contains six domains where the antigens will bind, they are called the 

complementary-determining regions (CDRs).74 Some of them adopt a b-hairpin 

conformation. Robinson has designed CDRs mimic containing a D-Pro-L-Pro loop to fix the 

b-turn position in the peptide (Figure 17).75 

 

Figure 17: Hairpin mimetic based on CDR loop 

3D average conformations extracted from solution NMR study of both cyclic peptides 3 and 

4 overlay perfectly respectively with the 3D structure of CDR loops of antibody HC19 

(influenza) and antibody TE33 (anticholera). Accurate structural mimetics are possible by 

replacing a flexible loop by a more rigid moiety such as Pro and could be valuable tool for 

small molecule antibody mimetics. 
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1.5.2.2. Gellman et al., alkene as a peptide bond isostere and β-turn 

initiator 

Within the last few decades many studies have been conducted in the field of b-turn mimicry, 

especially in relation to the use of carbon-carbon single or double bonds as peptide bond 

replacements. Gellman et al. have worked on the use of trans-alkenes as peptide bond 

surrogates and have obtained promising results.63 In order to retain the backbone flexibility 

of an authentic dipeptide a mimic of  the Gly-Gly sequence was chosen because the absence 

of any stereogenic centres simplified its synthesis. Initially, simple di- and tetra-substituted 

alkene dipeptide mimics were synthesised and analysed (Schemes 1 and 2):  

 

 

Scheme 1: Gellman dipeptide mimic synthesis and acetal replacement mechanism 

The synthesis of the mimetics 7 and 8 was achieved in 9 steps starting from 1,4-dibromo-

2,3-dimethyl-3-(E)-butene. The synthesis started with the installation of thioacetal 

protecting group, followed by nucleophilic substitution using sodium azide. The resulting 

azide 5 was subjected to a Staudinger reaction to obtain the corresponding amine, which was 

acylated with isobutyryl chloride to yield the corresponding amide 6. The dithiane was then 

replaced by a dimethyl acetal under acidic conditions, which was then cleaved to yield the 

corresponding aldehyde. Pinnick oxidation afforded the corresponding carboxylic acid, 

amenable to peptide coupling using DCC and HOSu affording 7 and 8 depending on the 
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amine used for the final coupling. The disubstituted alkene equivalent was also synthesised 

in just six steps (Scheme 2).76  

 

Scheme 2: disubstituted alkene dipeptide mimetic designed by Gellman et al. 

(E)-Hex-3-enedioic acid was submitted to a mono-esterification under acidic conditions and 

subsequent conversion of the remaining carboxylic acid into a Boc protected amine using 

DPPA afforded 9. Saponification and coupling followed by N-deprotection and acylation of 

the primary amine afforded the desired disubstituted alkene mimics 10 and 11.  

The conformational studies on the mimics started with an analysis of solvent effects in order 

to identify the most suitable solvent for NMR studies.54 The solvent needed to exhibit no 

hydrogen bond donor or acceptor behaviour in order to avoid hydrogen bonding between the 

compound and the solvent. In addition, the compound had to be soluble in the chosen 

solvent. Acetonitrile (MeCN) and dichloromethane (CH2Cl2) were chosen, but unfortunately 

interactions between the mimic and solvent were apparent when MeCN was used. Therefore, 

concentration dependent NMR studies of compound 7 (Figure 18) were undertaken in 

dichloromethane. The variation in NH chemical shift highlighted at different concentrations, 

from 0.05 mM to 20 mM, is presented in the figure below.  

 

Figure 18: concentration dependent NMR study of 777 

Both NHs shifted significantly when the concentration was increased above 1mM, meaning 

that they started forming intermolecular hydrogen bond above this concentration. The 

concentration of 1mM is the highest at which intramolecular hydrogen bond formation is 
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predominant and so this was chosen by Gellman and co-workers as the reference 

concentration for subsequent IR studies. Two different intramolecular hydrogen bonds can 

be formed in this case, either between the external CO-NH hydrogen bond (red) to form a 

10-membered ring, or between the internal CO-NH hydrogen bond (blue) to form an 8-

membered ring. In order to understand which hydrogen bond is formed and which stabilises 

the system best, Gellman and co-workers undertook an IR study on the four mimics 

synthesised (Figure 19). 

 

Figure 19: : IR study of tetra and disubstituted alkenes77 

Compounds 7 and 10 allow understanding of which hydrogen bond is formed, if not both. 

The mimetics 8 and 11 has the terminal amide capped with two methyl groups, which 

prevents hydrogen bond from the nitrogen (NH is absent). Consequently, only one hydrogen 

bond can be formed and that is the one that does so through an 8-membered ring system. 

Figure 19 shows NH-stretch region in the IR spectrum for these compounds. Four bands 

were shown for compound 7 – the band at 3329 cm–1 occurs in the region expected for an 

intramolecularly hydrogen bonded NH and the other bands at higher wavenumber 

correspond to solvated NHs or intermolecularly hydrogen bonded NHs. Intramolecular 
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hydrogen bonds were observed in both 7 and 10, but there is less hydrogen bonding in the 

disubstituted mimic (smaller area for the band corresponding to the intramolecularly 

hydrogen bonded NH). When the external hydrogen bond was blocked (compound 8 and 

11), only one band at 3440 cm–1 was observed, which suggests that there is only interaction 

with the solvent or intermolecular hydrogen bond so the 8-membered ring system is not 

formed. The system 7 displays extensive 10-membered ring hydrogen bonding but no 8-

membered ring hydrogen bonding. The presence of an intramolecular hydrogen bond in 

compound 11, as shown by the presence of a band at 3307 cm–1, indicates that the avoidance 

of allylic strain results in good conformational control.   

Encouraged by promising results, Gellman and co-workers extended their study to include 

the tri- and tetra-peptide mimics of Ac-Val-Gly-Gly-NMe2 and Ac-Val-Gly-Gly-Leu-NMe2 

that contained the tetrasubstituted alkene These compounds were synthesised in the same 

manner as the dipeptides and the same NMR and IR analyses were conducted. The 

concentration-dependent NMR study showed that both externals NHs (NHi and NHi+3) were 

concentration independent and so were involved in intramolecular hydrogen bond. The peak 

corresponding to the internal NH started to shift at 5 mM, meaning the 8-membered ring is 

the less stable hydrogen bonded ring formed.  
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Figure 20: NH-stretch IR of tri- and tetra-peptides and NOE cross peaks observed77 

The IR spectrum of compound 12 indicates formation of intramolecular hydrogen bond to a 

greater extent (bigger area in region corresponding to intramolecular hydrogen bond NHs 

than in the solvent-exposed region, Figure 20) and suggests that probably all NHs are 

involved in intramolecular hydrogen bond. The mimic 13 was analysed in order to 

understand which intramolecular hydrogen bond was the driving force of the β-turn 

formation. In this case, two hydrogen bonds can be formed within the molecule: an 11-

membered or an 8-membered hydrogen bonded system. As was the case with the previous 

results, the 8-membered ring is not favourable and not formed, but neither is the 11-

membered ring because the IR spectrum contains only one band at 3429 cm–1, which 

indicates that the NHs are solvated. Consequently, no intramolecular hydrogen bonds are 

formed and so a β-turn is not observed for this analogue showing that the 10-membered ring 

hydrogen bonded system is the driving force of the folding. Additionally, NOESY 

experiments were undertaken on 12 and long-range NOE cross peaks between the acetamide 

and the dimethyl groups and between the internal NHs were observed, which demonstrates 

that the tetrapeptide is adopting a folded conformation in CH2Cl2. The Gly-Gly surrogate 

placed at the centre of a peptide is useful for the development of an understanding of β-turn 

formation.  
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1.5.2.3. Leu-enkephalin analogues by Dory et al. 

Enkephalins are endogenous pentapeptides that bind to opioid receptors. Three classes of 

opioid peptides have been described: enkephalins, endorphins and dynorphins (Figure 21). 

They are naturally produced in the central nervous system by the action of peptidases and 

by post-translational modification.78  

 

Figure 21: endogenous opioids peptides and structure of morphine 

Opioid receptors belong to the superfamily of GPCR described earlier.79 They can be 

activated by endogenous or exogenous agents (such as morphine or heroin). Opioid receptors 

can be divided into three categories: μ-opioid receptors (MOR), activated by compounds 

such as morphine an opiate analgesic; δ-opioid receptors (DOR) and κ-opioid receptor 

(KOR)s.  These last two receptor types have also been targeted for the development of 

analgesic agents, which have fewer side effects than compounds binding to MOR. Indeed, 

MOR is also responsible for tolerance to and dependence on narcotics and opioid drugs.80  
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Enkephalins were discovered in the 1970s as endogenous agonists with high affinity for 

DOR and MOR, with a preference for the DOR.81 Two pentapeptides differing in their last 

residue were isolated from pig brain and were named Leu-enkephalin and Met-enkephalin. 

The ratio between them in the body seems to depend on the species. Once the structure of 

Leu-enkephalin had been elucidated, it was shown by X-ray crystallography that it can adopt 

two kinds of β-turn in its unbound form (4→1 or 5→2), stabilised by antiparallel hydrogen 

bonding between Tyr-Phe or Gly-Leu residues (Figure 22).82,83 Aside from the X-ray 

crystallography data, there is no evidence that this conformation is the one adopted by Leu-

enkephalin when interacting with its receptor. Furthermore, there is no spectroscopic data 

(IR, CD, NMR) to indicate β-turn formation of this peptide in solution.  

 

Figure 22: enkephalins and -turn conformation stabilised by hydrogen bond 

Recently, Dory and Gendron investigated the replacement of the peptide bonds in Leu-

enkephalin by either a trans-alkene or a triazole, and studied the affinity and activity of the 

resulting conformationally constrained analogues towards DOR. 84,85 Initially, each peptide 

bond was replaced with an (E)-disubstituted alkene to analyse the roles that the various 

amide bonds play in binding affinity to DOR or MOR (Figure 23).  
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Figure 23: Leu-enkephalin and the alkene analogues 

Binding affinity tests showed that the replacement of the Gly-Gly or Gly-Phe and Phe-Leu 

amide bonds (15, 16 and 17) resulted in a significant decrease in affinity for the DOR (Ki 

values were 761 ± 32 nM, 587 ± 19 nM and 196 ± 29 nM respectively compared to 6.3 ± 

0.9 nM for the native peptide), this indicates that these amide bonds are essential for efficient 

binding to the receptor. The replacement of the first amide bond (14) does not change the 

affinity for the receptor significantly. The hybrid peptides 14, 16 and 17, are still active to 

DOR, albeit to a lesser extent, while compound 15 is completely inactive, proving once more 

that this amide bond is essential for the binding and activity of the agonist. The sequential 

replacement of amide bonds by an E-alkene is an efficient way to understand the role and 

nature of interactions involving peptide bonds. The loss of affinity and activity for all 

analogues might be due to the loss of a crucial hydrogen bond to the binding pocket of the 

DOR. In order to address this issue, Dory et al. replaced selected peptide bonds with a 

triazole in order to retain rigidity in the system and provide two hydrogen bond donors; 

consequently, the hydrogen bonds could still be formed with the binding site of the receptor 

(Figure 24). 
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Figure 24: Leu-enkephalin and its triazole analogues 

The affinities and potencies of the analogues towards DOR were tested. In all cases, it was 

found that the affinity is greatly diminished even more than the analogues with an alkene 

isoster. Only the analogue 21 in which the final amide bond was replaced with a triazole 

showed a modest affinity and activity (Ki = 89 ± 12 nM, EC50 = 830 ± 66 nm), but even this 

compound was almost 13-fold less active than the native peptide. This study showed that a 

triazole is not a good peptide bond isostere because all analogues demonstrate lower activity 

and affinity for the DOR than the native peptide.  

These examples suggest that the replacement of peptide bonds by more rigid moieties may 

be useful for pharmaceutical and molecular design application. However, it is clear that 

careful design of the mimic is required and replacement of an amide bond can result in the 

loss of important hydrogen bonds or produce unfavourable steric interactions. 
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1.5.2.4. Enkephalin and endorphin mimetics by Kahn et al.  

Opioids analogues are a widely described target for peptidomimetics and β-turn mimics. The 

examples exposed by Dory and Gendron exhibited a decrease of the affinity and activity 

when a peptide bond is replaced by an alkene or a triazole. Other studies were investigated 

towards the replacement of the turn sequence by a more constraint peptide in which a 

bicyclic core is used (Scheme 3). This peptide developed by Kahn and co-workers has the 

advantage to have four different sites readily accessible by solid phase synthesis.86 The aim 

of this study was to find a potent and selective ligand towards one of the opioid receptors 

(MOR, DOR or KOR).  

 

Scheme 3: β-Turn and its bicyclic analogue general synthetic route 

The synthesis started from the commercially available bromoacetal resin which underwent 

nucleophilic substitution with various primary amine to afford the corresponding secondary 

amine 22. This is then submitted to peptide coupling with the Fmoc-protected amino acid to 

yield peptoid 23. Fmoc is then removed using 25% piperidine following by coupling with 
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β-alanine and HOBt leading to 24. After deprotection the amine was treated with the 

corresponding aryl p-nitrophenyl carbonates in the presence of DIEA to afford 25. Treatment 

with formic acid allowed cleavage of the acetal resin followed by cyclisation via aldehyde-

amide condensation to give the bicyclic peptide 26.87 With this general synthesis a library of 

compound could be accessed easily with various substituents (Figure 25). Binding affinity 

study was then undertaken by looking at competitive selective binding on radioligand 

[3H]naloxone for relatively nonselective opioid receptors in rat cerebral cortex. 

 

 

Figure 25: Diversity of component for bicyclic mimetic 26 

 From this study four compounds have been selected because they are representative of an 

enkephalin 5→2 and endomorphin 4→1 β-turn models base on the functional groups located 

at the i and i + 3 positions (Figure 26). Their IC50 has been measured to validate the SAR 

results and understand the effect of the substituent on the activity. 
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Figure 26: Four selected analogues and their IC50 

 The replacement of an alkyl chain in i + 3 position by an aromatic improved the inhibitory 

activity almost two-time fold (26b). When the i + 2 position is modified from benzyl to 

phenethyl (one more carbon in the alkyl chain, 26c), the activity greatly improved from 149 

to 27 nM, and can be further enhanced three-time fold by changing the i + 3 position with a 

benzyl group (26d, IC50 = 9 nM). The two last compounds were further studied in order to 

examine the receptor selectivity and both compounds exhibited an excellent selectivity 

towards MOR. Conformational analyses allowed to identify that 26d was adopting a type III 

β-turn. This study undertaken by Kahn and co-workers allowed the optimisation of a general 

synthesis for a large library of compounds and identify by SAR four potent analogues. 

Among these four peptides, two were further tested and showed high affinity towards MOR 

at nanomolar concentration and their binding conformation has been determined as a type 

III β-turn.  

1.5.2.5. Ellman’s cyclic b-turn mimetic library 

Following the same scheme developed by Kahn et al. with the general synthesis of 

enkephalin and endomorphin analogues, Ellman and co-workers have designed a library of 

b-turn mimetics by solid phase synthesis with various side chains functionality (Scheme 4).88 

A variety of analogues was synthesised via this method. 
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Scheme 4: Ellman's analogues and their general synthesis 

Compound 27 was obtained by treatment of rink amide resin with standard conditions for 

SPPS. Bromo acetic acid was coupled to it using DICI, which then underwent nucleophilic 

substitution with disulphide amine to obtain peptide 29. Further coupling on secondary 

amine using HATU and corresponding amino acid yielded 30. Upon Fmoc deprotection 

coupling with symmetric anhydride, the mixed disulfide was cleaved using 

tributylphosphine in a mixture of polar solvents to give 31. Rapid cyclisation using 

tetramethylguanidine followed by resin cleavage using H2O/TMS/TFA cocktail afforded 32. 

11 compounds were synthesised following this route (Table 3). 
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Table 3: analogues synthesised by Ellman and co-workers 

32 Ri+1 Ri+2 n 
a CH3 CH2-Ph 2 
b CH3 CH2-Ph 2 
c CH(CH3)2 CH2-Ph 2 
d CH2CO2H CH2-Ph 2 
e CH3 (CH2)4NH2 2 
f CH3 CH2CO2H 2 
g H CH2-Ph 2 
h H CH2OH 2 
i CH3 CH2C6H4-4-OH 2 
j CH3 CH2-Ph 1 
k CH2C6H4-4-OH CH3 1 

With this method they accessed to a rapid construction of turn mimic with a low level of 

epimerisation occurring. A 9-membered b-turn mimetic without the p-nitrophenyl alanine 

chromophore and Me chains at i + 1 and i + 2 positions was chosen as a model compound 

for conformational analysis. The 3JNH-Hα of the central amide with Hα of i + 2 residue was 

9.5 Hz, which corresponds to a dihedral angle Φi+2 of –120 ° ± 20 ° (using Karplus equation). 

On the basis of comparison with different types of turn and computational analysis, the 

lowest energy conformer adopted a type II’ b-turn conformation.89  

1.5.2.6. Katzenellenbogen’s type I b-turn mimic 

Constraint cyclic b-turn mimic were largely studied in the past decades. A highly constrained 

ten-membered lactam 33 was developed by Katzenellenbogen et al. that proved to be a good 

mimic of a type I  b-turn mimic by molecular mechanic conformational searching.90 Two 

different routes were investigated to obtain mimic 33, via curtius rearrangement and 

macrolactamisation or by ring closing metathesis (RCM). The Second route proved to be 

more efficient and represented the first example of a ten-membered lactam cyclised using 

RCM (Scheme 5).  
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Scheme 5: Spiro-bicyclic b-turn mimic synthesis 

The synthetic approach started by the alkylation of Schöllkopf’s auxiliary 34 with 1-

bromobutene affording alkene 35 in good yield and de. Diastereoisomers were then 

separated by column chromatography and hydrolysis of the auxiliary under acidic conditions 

afforded the corresponding amine which was then protected yielding protected amino acid 

36. Boc group was removed under acidic conditions affording 37 and 36 was saponified to 

afford corresponding carboxylic acid 38. 37 and 38 were coupled using standard coupling 

conditions (PyBOP and DIEA) to RCM precursor 39. Optimisation of the RCM afforded the 

desired macrolactam in 65% yield. The other diastereoisomer could be obtained following 

the same scheme. With the core turn mimic in hand, tetrapeptide derivatives were prepared 

for conformational analysis (Table 4). 

 

Table 4: tetrapeptides analogues obtained 

33a R R1 
1 Boc-Phe- -Met-NH2 
2 Boc-Phe- -Phe-OMe 
3 Boc-Ala-Phe- -Phe-OMe 

The conformational analysis consisted in temperature dependent, concentration and solvent 

dependent NMR studies and MD calculations. 33a2 was analysed and an intramolecular 

hydrogen bonds were identified between the carbonyl of the Boc group and the ring amide 

proton and between the Boc carbonyl and the NH of the N-ter Phe indicating the formation 

of a b-turn in solution. Vicinal 3J coupling constant were then measured and dihedral angles 
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extracted with the Karplus equation and used the value for torsional constraint for molecular 

modelling, the torsion angles measured were within 30° of the ideal angles for a type I b-

turn. 1D NOE experiment was also undertaken and expected b-turn cross-peaks were 

observed. The spectroscopic data proved that peptide 33a2 was experiencing a type I b-turn 

conformation in solution. Coupling constant was then compared between 33a1, 33a2 and 

33a3 and no significant difference was observed meaning that all derivatives have a similar 

conformation under various conditions. The bicyclic core was a good choice of mimetic to 

stabilise a turn conformation.  

1.5.2.7. Examples of b-turn peptidomimetics including cyclopropane 

moiety 

A small number of research groups have considered using a cyclopropane as a b-turn or b-

strand inducer. Shuto et al. reported the synthesis of conformationally restricted 

peptidomimetics based on the structural features of cyclopropane.91 Depending on whether 

the substituents on the cyclopropane are in a trans- or a cis-configuration, the system could 

mimic either a b-turn or a b-strand (Figure 27).  

 

Figure 27: b-turn or b-strand mimicking regarding cyclopropane configuration 

The natural melanocortin receptor (MCR) ligand possess the key sequence Ac-His-Phe-Arg-

Trp-NH2, which plays an important role in its receptor binding affinity. Considering this, a 

synthesis of analogues of this sequence was developed including cis- or trans-cyclopropane 

by Shuto and co-workers (Figure 28).  
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Figure 28: Designed analogues of MCR ligand 

Biological assays showed that trans-cyclopropane 40 exhibited a higher affinity for the MCR 

than the corresponding cis-cyclopropane 41. Trans-isomer 40 also showed better activity 

and specificity for one of the MCR receptors – hMC4R (Ki = 0.37-0.88 μM) – and also 

possesses a longer half-life than the original tetrapeptide (t1/2 > 24 h and about 1.7 h 

respectively in human serum). Thus, utility of cyclopropane-containing peptidomimetics to 

identify non-peptidic analogues of bioactive peptides as novel lead compounds was 

demonstrated.  

Martin et al. have also explored the use of cyclopropane unit as a rigid peptide bond 

replacement because of its potential ability to preorganised the resulting hybrid peptide into 

a conformation that is similar to the bound conformation of the original more flexible 

peptide92. A part of the peptide bond was substituted, either the NH of the ith amide 

(modification a) or the C=O of the (i + 1)th amide (modification b, Figure 29): 
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Figure 29: peptidomimetics with cyclopropane 

Various peptidomimetics were synthesised and tested on several biological targets (Renin, 

Matrix Metalloprotease, HIV-protease inhibitor and enkephalin assays).91 The results 

showed that the cyclopropyl group enforced an extended or turned conformation in each 

case whilst projecting the amino acid side chains into well-defined positions. In some cases, 

cyclopropyl peptidomimetics were highly active and more potent than the flexible 

analogues, but in other cases it was detrimental to change the peptide amide bond because 

crucial hydrogen bonding was lost. This hydrogen bonding is needed because it allows the 

peptide to bond with the target and thereby inhibit or activate it, as seen with Leu-enkephalin 

analogues. In all cases, a trans-cyclopropane unit appears to be more compatible with locally 

extended structures than a cis-cyclopropane. 
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1.5.3. Cyclopropanes: generality and synthesis 

All carbons of a cyclopropane lie on the same plane and all the C–C bonds have the same 

length which means the three carbons are at the corner of an equilateral triangle. This 

structure is considerably strained due to the bond angle (60 °) deviating greatly from the 

optimum tetrahedral angle of 109.5 °. Any rotation around a simple C–C bond in a 

cyclopropane is impossible, so all of the C–H bonds are forced to be eclipsed (Figure 30). 

The C–C bonds of cyclopropane are bent and can be considered to be intermediate in 

character between s- and p-bonds. In fact, it has been shown that a cyclopropane attached 

to a carbonyl group has roughly the same spectroscopic properties as an α,β-unsaturated 

carbonyl.93 These properties make the cyclopropane much more reactive than other 

cycloalkanes such as cyclohexane and cyclopentane as an amide bond surrogate.  

 

Figure 30: View along C–C bond and orbitals arrangment in cyclopropane 

Cyclopropanes are present in many natural compounds. Indeed, everyone is familiar with 

the ‘salty’ smell of the sea which is actually the dictyopterene (Figure 31), a family of 

volatile cyclopropanes used by female algae to attract male gametes.94 A cyclopropane is 

also present in hypoglycin,95 a blood sugar level lowering agent from the ackee tree. More 

than a hundred pharmaceutical agents contain a cyclopropyl group, such as the antidiabetic 

drug Sexagliptin and U-106305, 96,97 which is a potential therapeutic agent for coronary heart 

disease.  
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Figure 31: natural and synthetic compound containing cyclopropyl group 

The synthesis of cyclopropane was first reported by August Freund in 1881 who treated 1,3-

dibromopropane with sodium leading to the cyclopropane by a Wurtz reaction.98 Most 

chemical syntheses of cyclopropanes involve the addition of a carbene or a carbenoid to an 

alkene. This is well demonstrated by the Simmons-Smith reaction in which an alkene 42 

reacts with a zinc carbenoid species that has been formed in situ from diethylzinc and 

diiodomethane (Scheme 6a).99 In 1998, Charette et al. developed an asymmetric 

cyclopropanation reaction in which one equivalent of the boronate ligand 44 was used as 

chiral auxiliary and used this method to complete the total synthesis of U-106305.100,101 A 

yields of more than 80% were obtained and good enantiomeric excesses (>90%) were 

achieved for a wide range of allylic alcohols 43 (Scheme 6b) by use of this method. Allylic 

alcohols undergo cyclopropanation much faster than the corresponding unfunctionalised 

alkenes because of the coordination between the zinc and the Lewis-basic oxygen of the 

hydroxyl group in the transition state; coordination also explains the high levels of 

stereoselectivity. In 2003, Shi et al. reported the use of modified zinc carbenoids employing 

trifluoroacetate.102 This method increases the rate of conversion considerably via a [2+1] 

pathway at room temperature when a conjugated or symmetric alkene 45 in reacted (Scheme 

6c).  
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Scheme 6: Simmons-Smith reaction and its variations 

An alternative cyclopropane synthesis has been developed recently that involves a different 

transition metal mediated reaction to generate the carbenoid. Fokin et al. developed a 

reaction that involves in situ generation of a rhodium carbenoid from a triazole or 

sulfonyltriazole (Scheme 7).103 When a chiral complex such as Rh2{(S)-NTTL}4 was used, 

cyclopropanes were obtained with yields of up to 99% and with high enantioselectivity (ee 

> 96%) and diastereoselectivity (dr 1:20). However, this method could be only used to 

produce trisubstituted cyclopropanes enantioselectively.  

 

Scheme 7: Fokin's enantioselective cyclopropanation 

Ruthenium was also reported as an excellent transition metal for the generation of carbenoids 

from diazoesters. Indeed, Iwasa and co-workers found that Ru(II)-Pheox could be used to 

catalyse the reaction of ethyl diazoacetate with an enamine to form a cyclopropylamine 

within 5 h in 99% yield and good selectivity (ratio trans/cis 7:3) (Scheme 8).104 In contrast, 

the use of rhodium acetate as the catalyst resulted in poor stereoselectivity. However, it is 

possible to epimerise from the cis-isomer to the trans-isomer in a further step which will be 

described in a future section.  
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Scheme 8: cyclopropanation using diazoester and Ru catalyst 

Despite its explosiveness and toxicity diazomethane has been found to be a good reagent for 

cyclopropanation. Diazomethane is usually generated in situ or immediately prior to use by 

the reaction of Diazald® and a solution of KOH in water (Scheme 9).105 

 

Scheme 9: cyclopropanation using diazomethane generation in situ 

Table 5 summarise some of the conditions that have been described for the formation of 

cyclopropanes from diazomethane. In most of the procedures, alkene possesses an electron-

withdrawing substituent.  

 

Table 5: Cyclopropanation using diazomethane reported in literature 

Entry Alkene Cat. Ligand Results 
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Charette et al. have described the use of a bis-(oxazoline) ligand and copper triflate to 

generate a cyclopropanation catalyst (Table 5, entry 1).106 They noticed that CuOTf or 

Cu(OTf)2 were equally effective for catalyst formation. They reported decent yields with 

acceptable levels of stereocontrol for the trans-cyclopropane formed. Carreira and co-

workers improved the use and formation of diazomethane in situ by using an iron catalyst 

(Table 5, entry 2).107 Indeed, the use of this catalyst combined with very slow addition of 

Diazald® in the pre-mixture allowed the reaction to be performed in open air. This method 

gave relatively good yields and selectivities for formation of trans-cyclopropanes, but an 

asymmetric variant of the reaction was not reported. Cyclopropanation of alkenes with 

diazomethane has also been used for the synthesis of therapeutic targets (Table 5, entry 3).108 

In this case, the synthesis of trans- and cis-cyclopropane in a relatively good yield was 

reported.  
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1.6. Introduction to the design and synthesis of b-

turn mimics in the Clark group 

1.6.1. Previous work in the group 

1.6.1.1. Ynamides and alkynes Leu-enkephalin peptidomimetics 

The first approach of the Clark group towards a b-turn mimetic was to synthesise 

macrocyclic ynamides or alkynes that would mimic the turn conformation of the 

pentapeptide Leu-enkephalin (Figure 32).109  

 

Figure 32: Ynamides and alkyne peptidomimetics 

As shown in Figure 32, it was intended that an ynamide or alkyne would replace the 

hydrogen bond by a covalent bond, restraining the system and forcing it to adopt the turn 

conformation. Those units were chosen for several reasons. Firstly, almost all the functional 

groups remain and the only group to be replaced is the hydrogen bonded carbonyl; secondly, 

the bond distance between atoms 1 and 2 in the figure is similar (Table 6).  
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Table 6: bond lengths of mimetics 

Structure Distance (Å) 

 

4.2183 

 

4.14a 

 

4.21a 
a using known average bond lengths summed up 

The bond length is relatively similar to that in the hydrogen bonded structure, which makes 

the surrogates good choices for use in b-turn mimicry.   

Various models were used in order to explore reactions required to prepare the ynamide and 

alkyne and effect the macrocyclization reaction. The initial strategy involved formation of 

the ring by intramolecular ynamide synthesis from precursor 50, which was obtained by 

coupling between 48 and 49. TFA salt 48 was obtained in two steps from Phe methyl ester 

hydrochloride by amide coupling with Boc-Gly and subsequent deprotection. Alkyne 49 was 

obtained by tosylation of propargyl amine followed by N-alkylation using t-butyl 

bromoacetate affording the desired acetylenic fragment. Bromination of the alkyne with 

NBS and AgNO3 followed by ester cleavage afforded 49 in 65% over 4 steps (Scheme 10).  

 

Scheme 10: precursor 50 synthesis 

The synthesis of compound 50 meant that the intramolecular cyclisation reaction could be 

explored. The initial attempt to construct the ring was performed using Hsung’s second 

generation amidation condition (Table 7, entry 1).110 This revised amidation reaction 

involves the use of copper sulphate pentahydrate as catalyst, phenanthroline as ligand and 

K3PO4 as base. When the loading and temperature described by Hsung was followed, there 

was no reaction. When, loadings of the catalyst and ligand were increased and the reaction 

temperature was raised, decomposition of the substrate was observed.   
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Table 7: macrocyclisation attempts for ynamide formation 

Entry Conditions Results, comments 

1 
10-20 mol% CuSO4·5H2O 

20-40 mol% 1,10-phenanthroline, K3PO4 
Toluene, 70 °C 

Slow or no conversion 
Decomposition with high loading and 

temperature 

2 
FeCl3·6H2O 

DMEDA, K2CO3 
Toluene 90 °C 

No conversion 
SM recovered 

3 
CuI 

KHMDS, Pyridine 
THF, rt 

No conversion 
SM recovered 

4 
CuCN 

K3PO4, Pyridine 
Toluene, 90 °C 

No conversion 
SM recovered 

5 

10 mol% CuSO4·%H2O 
20 mol% 1,10-phenanthroline, K3PO4, 

Ni(acac)2 
Toluene, 70 °C 

Little conversion 
Decomposition with time 

6 
, 

, 
Toluene, 85 °C 

Dimerisation of SM 

The reaction was then performed using conditions described by Zhang et al. using Iron(III) 

chloride hydrated (Table 7, entry 2).111 These workers had used the reaction to couple 

oxazoidinones, sulfonamides and lactam substrates, but had not explored intramolecular 

amidation. Intramolecular cyclisation did not occur under these conditions and starting 

material was recovered. Danheiser and co-workers had reported amidation promoted by a 

stoichiometric amount of CuI.112 Unfortunately, under Danheiser’s conditions, no reaction 

occurred and almost all of the starting material was recovered (Table 7 entry 3). Following 

these disappointing results, Hsung’s first generation conditions were employed in which 

CuCN was used as the copper sources instead of CuSO4 (Table 7 entry 4). This reaction 

resulted in no conversion of the starting material and so attempts were made to optimise the 

reaction conditions, by changing the ligand, the metal, the alkyne, the solvent and the 

reaction temperature. The use of Ni as additive showed promising results for intermolecular 

coupling reaction between (bromoethynyl)benzene and protected Gly (73% yield) and so the 

reaction was tested on substrate 50 (Table 7 entry 5). Unfortunately, this reaction resulted in 

decomposition of the starting material over time and the required product was not obtained.  
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The reaction was then investigated further using various ligand and catalyst combinations 

(Table 7 entry 6), via an allenamide intermediate. In this case, the catalyst was copper 

thiophenecarboxylate (CuTC) and 1,2-dimethylaminocyclohexane was employed as the 

ligand. This procedure produced interesting results for the synthesis of ynamide using 

alkynyl bromide.113 Unfortunately, reactions performed in toluene delivered an undesired 

compound, which appeared to be a dimer of 50. Attempts were made to conformationally 

constrain the system by installing a Pro residue in the peptide chain (Scheme 11) in the 

expectation that this would orientate the alkynyl bromide and the amide for cyclisation and 

reduce the entropic penalty in the transition state.  

 

Scheme 11: Proline analogue and its precursor 

Compound 53 was synthesised in four steps with yield of 34% by a series of deprotection 

and amide coupling reactions. This substrate was then submitted to macrocyclisation under 

the conditions of Hsung’s second general protocol and also reaction with CuTC catalyst. The 

former reaction resulted in no reaction with recovery of the starting material and the latter 

reaction produced an undesired compound that appeared to be the dimer by NMR analysis. 

As a consequence of these negative results and the failed attempts to achieve prepare target 

53 by an amidative cross-coupling reaction, the target was revised and the precursor 55 was 

synthesised (Scheme 12).  
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Scheme 12: synthesis of precursor 57 

The synthesis of 57 started from commercially available glycidol. Epoxide opening was 

accomplished using optimised Yamaguchi-Hirao alkylation conditions with n-BuLi and 

BF3·THF complex.114 This reaction afforded the alkyne 54 in 66% yield. N-Alkylation gave 

55 followed by azide displacement of the tosylate and a Staudinger reaction afforded amine 

56. Subsequent ester cleavage using TFA, produced the cyclisation precursor 57 in 22% 

yield over 6 steps. Efforts were then focused on the cyclisation by amide coupling by use of 

conditions that are summarised in Table 8. 

 

Table 8: amide coupling screening 

Entry Conditions Results 

1 BOP, HOBt, DIPEA 
CH2Cl2/DMF No conversion 

2 EDCI, DMAP 
CH2Cl2/DMF No conversion 

3 FDPP, DIPEA 
DMF Decomposition 

4 DMTMM, DIPEA 
DMF Decomposition 

5 PyBOP, DIPEA 
DMF Decomposition 

6 Co2(CO)8, CH2Cl2 
Then amide coupling reagents No to poor conversion 

Common coupling reagents were used (table 8, entries 1, 2 and 5, Figure 33) in attempts to 

affect the cyclisation reaction. Unfortunately, the required lactam was not obtained, even 

after extended reaction times of several days and addition of further amounts of the coupling 

reagent(s).  
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Figure 33: coupling reagents used for the screening 

It had been reported that pentafluorophenyl diphenylphosphinate (FDPP) and 4-(4,6-

dimethoxy-1,3,5-triazin-2-yl)-5-methylmorpholinium (DMTMM) were efficient coupling 

agents for peptides containing macrolactams.115 Precursor 57 was then submitted to amide 

coupling using FDPP or DMTMM (Table 8, entries 3 and 4) but only decomposition of the 

starting material was observed by NMR of the reaction mixture. A hypothesis that could 

account for the failure of these reaction conditions was that the precursor might be too 

constrained by the triple bond, which prevented cyclisation. In order to address this issue, it 

was decided to form a cobalt-alkyne complex with the expectation that triple bond would 

show more double bond type character and a less strained ring-system would be produced.116 

The cobalt complex of 57 was prepared and isolated, but the subsequent amide coupling 

reaction did not deliver the required target 58 (Table 8, entry 6). The various coupling 

reagents listed in table 5 were used as well, but none gave promising results.  

Optimisation of both ynamide synthesis and alkyne cyclisation reactions to give the desired 

peptide mimic were unsuccessful. The replacement of the non-covalent hydrogen bond by a 

covalent triple bond was considered to be a good strategy considering the atom distance 

mentioned earlier, but another target was required in order to avoid the macrocyclisation 

step, which seemed to be impossible to achieve.  

1.6.1.2. Trans-cyclopropane peptide bond isostere 

The Clark group strategy moved towards the synthesis of a completely different class of 

analogues. It was decided that replacement of a peptide bond by a rigid group such a 

cyclopropane would be better than replacement of the hydrogen bond by a covalent linker. 

This would constrain the system more than in a regular peptide bond and increase the 

stability of the mimic under physiological conditions by preventing proteolytic cleavage at 

this position.  

N
N

N
O

P
N

N

N

BOP

N C N

N

EDCI

O
P
O

F

F
F

F

F

FDPP

N
O

NN

N

O

O

DMTMM

X

N
N

N
O P

N

N N

PyBOP

PF6

PF6



 

 54 

Initial studies towards the synthesis of the protected cis- or trans-cyclopropane-containing 

Gly-Gly surrogate (Figure 34) were undertaken.  

 

Figure 34: trans- and cis- cyclopropane targets 

Several route towards these compounds were investigated. The synthesis of the trans-59 was 

accomplished in 9 steps with an overall yield of 36% starting from the commercially 

available propan-1,3-diol (scheme 13).117  

 

Scheme 13: trans-59 synthesis via HWE olefination and Shi cyclopropanation 

The synthesis started with mono-protection of propan-1,3-diol with a TBDPS group. 

Subsequent Swern oxidation delivered the corresponding aldehyde necessary for the Horner-

Wadsworth-Emmons (HWE) olefination.118 This reaction involved the phosphonate 62 and 

resulted in the stereoselective formation of the (E)-alkene 63. Ester reduction with DIBAL-

H afforded the allylic alcohol 64 and a Simmons-Smith reaction was undertaken using Shi’s 

conditions to give the trans-cyclopropane 65.119 From the alcohol 65, a Mitsunobu reaction 

was performed using phthalimide to introduce the desired protected amine functionality and 
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deliver the imide 66. The silyl ether was cleaved and the resulting alcohol 67 was oxidised 

to the corresponding carboxylic acid trans-59 via stepwise Swern and Pinnick oxidation 

reactions. The synthesis of the racemic protected amino acid trans-59 was completed in 9 

steps.  

An analogous route was used to synthesise cis-60.120 Previously, cyclopropanation of the 

(E)-alkene 64 had resulted in formation of the trans-cyclopropane, but in this case a Still-

Gennari olefination reaction was used instead of the HWE reaction to access to (Z)-alkene 

69.121 cis-Cyclopropane 71 was installed in the next step using the conditions described in 

scheme 14. The synthesis was completed by the same sequence of reactions as above to give 

the racemic target compound cis-60 in 9 steps and in a 10% overall yield.  

 

Scheme 14: cis-60 synthesis via Still Gennari olefination 

The Still-Gennari modification employs two electron-withdrawing trifluoroalkoxy 

substituents on the phosphonate 68 rather than the ethoxy group on the phosphonate 62 

which produced the (Z)-alkene 69 with Z/E a ratio of 20:1. The subsequent steps followed 

the same procedure as described for the synthesis of trans-59.  

This work was promising in that it produced dipeptide mimics that are similar to those 

described by Gellman et al. but in which an alkene is used to replace the amide bond instead 
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of a cyclopropane.76 Both dipeptides were synthesised as racemic mixtures and no analyses 

concerning intramolecular hydrogen bond formation were undertaken. Analysis of hybrid 

peptide that contain cyclopropane-containing peptide mimics to establish whether 

intramolecular hydrogen bonding is present was to be one of the main challenges of the work 

presented in this thesis. 

1.6.2. Aim of this work 

Using the concept of cyclopropane peptidomimetics, the Clark research group was interested 

in synthesising cyclopropane derivatives where a cyclopropane is used to replace a peptide 

bond (Figure 35) in order to induce b-turn formation. The first objective was to synthesise 

both racemic and enantioenriched dipeptide surrogates containing a cyclopropane moiety. 

Following their successful synthesis, the next step was to be the incorporation of these 

isosteres into various peptides. Various NMR and IR spectroscopy techniques would then 

be used to perform conformational analysis to verify formation of intramolecular hydrogen 

bond and identify general conformations adopted by the peptides.  

 

Figure 35: b-turn in a peptide, hypothetic b-turn mimicry, structure of the desired dipeptide 
surrogate 

The length of the peptide was to be varied from 2 to 12 residues in order to understand the 

stability of the peptides and their propensity to adopt the desired conformations. The peptides 

were to be analysed by IR, NMR and CD methods in order to prove b-turn formation. 
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Chapter 2  

Results and discussion 

2.1. Compounds Naming and Abbreviations  

Abbreviations have been used throughout this thesis to simplify the naming of the 

compounds that have been synthesised. Peptides and proteins are named from the N-

terminus to the C-terminus so the nomenclature is consistent. The dipeptide mimic 74 will 

be named PGN-{GlyΔGly}-OH, where PG is the protecting group installed (Figure 36) and 

Δ refers to the cyclopropane that replaces the peptide bond. 

 

Figure 36: PGN-{GlyΔGly}-OH 

The stereocenters are named from N-terminus to the C-terminus, carbon 1 represents the CH 

of the cyclopropane located on the N-terminal side, carbon 2 the CH located on the C-

terminal side. For example, (R,S)-NPG-{GlyΔGly}-OH corresponds to carbon 1 with R-

configuration and carbon 2 with S-configuration. In the case of racemic mixtures, the peptide 

will be named (±)-NPG-{GlyΔGly}-OH. In the event of longer peptides, the residue will be 

incorporated in the name as in the official nomenclature; e.g. (R,S)-PGN-X1-{GlyΔGly}-X2-

OH. The stereochemical assignments given in brackets correspond only to the configuration 

of the cyclopropane, the configuration of the natural amino acids X1 and X2 will not be 

included. 

2.2. Strategy 

b-Turn mimetics have proven to be promising tools in medicinal chemistry as well as 

synthetically challenging targets in organic and peptidomimetic chemistry. Over the past 

few decades, they have allowed chemists and biologists to develop a better understanding of 

protein-protein interactions in biological processes.84,91 From natural peptides to constrained 

peptidomimetics, research in the area of b-turn mimetics has grown rapidly in recent decades 

and promising results have been obtained in the field of drug discovery.122,123,124  

PGN 1*

O

OH2*
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The objective of this project was to demonstrate that b-turn-like structures could be 

generated in small peptides by the synthesis non-natural hybrid peptide analogues that 

contain an amide bond replacement group. Constrained peptides have been shown to be 

capable of b-turn mimicry and at the outset of the project, Gellman et al. had demonstrated 

that it was possible to detect intramolecular hydrogen bonds in non-natural hybrid peptide 

analogues using FTIR and NMR spectroscopy (cf. section 1.6.1.2). In Gellman’s case, a 

combination of FTIR and NMR spectroscopy was used to identify formation of the b-turn 

in hybrids in which a peptide bond between two Gly residues had been replaced by a (E)-

alkene (Figure 37).125,126 Hydrogen bonds between the amide groups present in the 

compounds were identified. Tetrasubstituted alkenes were found to be effective amide bond 

surrogates and enhanced the formation of a b-turn in small peptides. The challenge was to 

identify differences when the peptide bond is replaced by a non-planar moiety such as a 

trans-cyclopropane instead of an alkene. Analogues of the model peptides designed by 

Gellman and co-workers were synthesised and analysed using the same conditions by IR 

and NMR in order to provide a benchmark for our own analogues (Figure 37).  
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Figure 37: Gellman peptidomimetics and our analogues 

The strategy was to prepare the trans-cyclopropane at the start of the synthesis by an efficient 

route that would permit access to significant quantities of both enantiomers. After 

enantioenriched compounds had been obtained, the Gly-Gly surrogates PGN-{GlyΔGly}-

OH were to be synthesised. Before revisiting the first-generation route previously developed 

in the group, the readily available racemic dipeptide mimic (±)-NPhth-{GlyΔGly}-OH 59 

was subjected to peptide coupling to produce the first analogue (±)-75 (Scheme 15). 

 

Scheme 15: Towards the dipeptide mimicry for IR study 

Peptide coupling using EDCI and DMAP was performed to give the amide (±)-81 in 65% 
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reaction did not succeed. Consequently, the Boc group was chosen for N-protection in the 

revised route because the removal of this group does not require harsh conditions. 

2.3. Boc-{GlyΔGly}-OH Synthesis 

2.3.1. Retrosynthetic Analysis 

An optimised route towards the trans-PGN-{GlyΔGly}-OH was designed and the 

functionalised cyclopropane was constructed first so that cyclopropanation of a more 

complex alkene substrate was avoided. Diastereoselective cyclopropanation of butadiene 

has been well described and various methods are available to accomplish this reaction, so 

this was an attractive starting point for synthetic work.127,128,129,130  

 

Scheme 16: Retrosynthesis 

Preliminary retrosynthetic analysis suggested that PGN-{GlyΔGly}-OH 74 could be 

obtained from the boronate ester 83 by successive oxidation reactions (scheme 16).131 The 

boronate ester 83 could be installed by performing a cross metathesis reaction on the terminal 

alkene 84,132 which possesses a protected amine functionality. The amine could be 

introduced by reduction of the carboxylic acid 85 to the corresponding alcohol, followed by 

a Mitsunobu substitution reaction with a suitable N-nucleophile. The carboxylic acid 85 

could be obtained by cyclopropanation of butadiene using diazoester to yield a mixture of 

cis- and trans-cyclopropanes. It was anticipated that a reaction epimerisation would be used 

in order to obtain mainly the trans-isomer and subsequent resolution of the racemic 

carboxylic acid using a chiral amine would deliver two separable diastereoisomers, which 

would then be hydrolysed to give sufficient quantities of the enantioenriched compounds.  
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2.3.2. Towards the Synthesis of 2-Ethenyl-cyclopropanemethanol 

Precursor    for N-terminus Installation  

The first challenge was the synthesis of trans-cyclopropane motif with high 

distereoselectivity (scheme 17). It is known that it is difficult to achieve high levels of 

diastereocontrol when metal carbenes bearing chiral non-racemic ligands are used to 

promote the reaction of diazo compounds with disubstituted alkenes.133 Consequently, the 

decision was made to use Rh2(OAc)4 as catalyst for the cyclopropanation reaction and then 

epimerise the resulting mixture of cyclopropanes to give the more stable trans-isomer as 

describe in literature.134  

 

Scheme 17: Synthesis of 2-ethenylcyclopropane-1-carboxylic acid 85 

The synthesis of cyclopropane 86 was performed by reaction of ethyldiazoacetate with 

butadiene under Rh2(OAc)4 catalysis. When ethyldiazoacetate was added too quickly, 

diethyl fumarate and maleate were obtained as side-products due to dimerization of the 

diazoester. Indeed, the reaction of dimerization of the diazoester is faster than the 

cyclopropane formation. Therefore, optimisation of the reaction conditions was undertaken 

to avoid the formation of these by-products (Table 9). 
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Table 9: Optimisation of the cyclopropanation reaction of butadiene 

Entry 
Butadiene 
in CH2Cl2 

(M) 

Ethyldiazoacetate  
in CH2Cl2 (M) 

Addition 
rate 

(mL.h–1) 

Reaction 
time 86:87–88 ratioa trans:cis 

ratioa 

1 11.4 neat 14  4 h 0:1 - 
2 10.5 neat 7  4 h 1:1 1:1 
3 10.5 1.75 10 2 h 2.5:1 1:1 
4 10.5 1.75 8 1 h 1:0 1:1 

aDetermined by 1H NMR 

In the first experiment, neat ethyldiazoacetate was added at a rate of 14 mL/h (Table 9, entry 

1), but in this case only diethyl fumarate 87 and maleate 88 were isolated. When the reaction 

mixture was diluted slightly and the rate of addition was reduced to 7 mL/h (Table 9, entry 

2), a ratio 1:1 of side-products to products was obtained. The isomers were differentiated by 

NMR by measuring the coupling constant on the CH of the cyclopropane. Separation of the 

isomers by column chromatography was attempted but both compounds and side-products 

eluted together so was attempts were made to further optimise the reaction. 

Ethyldiazoacetate addition rate and concentration seemed to be the main issue so it was 

added as solution in CH2Cl2 (Table 9, entries 3 and 4). The best result was obtained with the 

slowest flow rate (Table 9, entry 4) and in this case only the cyclopropanes were obtained in 

good yield (69%, 1:1 dr). The next objective was to perform based-mediated epimerisation 

of the diastereomeric mixture to obtain a trans-cyclopropane (Table 10).  
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Table 10: Epimerisation Optimisation 

Entry Base Time (days) Product trans:cisa 
1 NaOEt in situ 

(from NaH and EtOH) 
1 R = OEt, 86 3:7 

2 DBU 6 R = OEt, 86 3:2 
3 NaOEt in situ 

(from NaH and EtOH) 
4 R = OH, 85 3:2 

4 NaOEt 2 м 
(from Sigma Aldrich) 

7 R = OEt, 86 3:2 

5 NaOEt in situ 
(From Na solid and EtOH) 

1 R = OH, 85, 95% 9:1 

a Determined by NMR 

DBU is commonly used as a base for epimerisation,135 but the observed ratio of 3:2 did not 

improve after 6 days (Table 10, entry 2). Sodium ethoxide (NaOEt) is also a common based 

used for epimerisation and EtOH has a similar pKa to that of t-BuOH. NaOEt can be 

generated in situ or used as a commercially available solution. When it was generated in situ 

from NaH and ethanol (Table 10, entries 1 and 3), slow epimerisation occurred after a day 

and a ratio 3:7 of isomers was obtained which favoured the cis isomer. After a longer time 

of reaction (4 days) the trans:cis ratio was improved to 3:2 and an acidic work up gave the 

corresponding carboxylic acid instead of the ester, which obviated subsequent ester 

hydrolysis. This was contrasted with the case in which commercially available solution of 

NaOEt was used (Table 10, entry 4).134 However, the ratio observed after seven days was no 

better than that which had been obtained previously. When NaOEt was formed in situ using 

sodium metal dissolved in EtOH (Table 10, entry 5), epimerisation and hydrolysis occurred 

with an acidic work-up to give the carboxylic acid with a 9:1 dr and in 95% yield after only 

one day. Freshly prepared NaOEt was essential for the epimerisation to occur rapidly and 

the source of sodium was essential for in situ generation to produce good quality reagent. At 

this stage of the synthesis is was impossible to establish the configuration on the 

cyclopropane, the compound being an oil and the cyclopropyl hydrogens overlapping on the 

NMR spectrum, no data could be collected towards the obtention of the trans compound. 

However, crystal structure could be obtained from racemic peptide 75 synthesised later 

(Scheme 18). It was clear that this peptide synthesised from the cyclopropanation using 

carbene chemistry described earlier was trans. As no epimerisation could occur along the 

route designed, it was possible to state that trans-cyclopropane was obtained and isolated. 

EtO2C EtO2C

trans-86 cis-86

+
RO2C RO2C

trans cis

+
conditions
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Scheme 18: Resolution of carboxylic acid (±)-85 and hydrolysis of the resulting amide and X-ray 
crystal structure of peptide 75.  

The diastereoenriched carboxylic acid (±)-85 was now available in reasonable quantities and 

so separation of the enantiomers by formation of diastereoisomeric amides with (R)-

phenylglycinol could be investigated (scheme 18).136 The carboxylic acid was deprotonated 

with N-methylmorpholine and converted to its mixed anhydride using i-BuOCOCl. 

Nucleophilic attack of (R)-phenylglycinol on the activated electrophile gave the resulting 

amides 89. The diastereoisomers were obtained in a 1:1 ratio and were easily separable by 

careful column chromatography. Once separated, the synthesis of the dipeptide mimic was 

pursued using both enantioenriched compounds in parallel. Hydrolysis of the amide using 

10% KOH in MeOH afforded (R,S)-85 and (S,R)-85 in yields of 95% and 82% respectively. 

Acidic hydrolysis reactions using various concentrations of sulfuric acid were also attempted 

but only decomposition of the substrate was observed. Reduction of the carboxylic acid was 

performed using LiAlH4 to give the primary alcohols (R,S)-90 and (S,R)-90 in good yield 

but the reaction solvent had to be removed carefully by distillation owing to the volatility of 

the products. Overall, enantioenriched alcohols (R,S)-90 and (S,R)-90 were synthesised in 5 

steps in yields of 9% and 14% respectively.  
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Scheme 19: Amide reduction attempts 

Attempts were made to reduce the amide 89a-b directly to the corresponding primary amine 

in order to avoid the hydrolysis steps (Scheme 19). Various metal hydrides (LiAlH4, LiBH4, 

Red-Al) were tested in small scale reactions but they were unsuccessful. N-Alkylation of the 

amide was undertaken, in order discover if tertiary amides would be more prone to 

reduction.137 Unfortunately, attempts to alkylate the amide were ineffective and only the 

alcohol was alkylated. At this stage, this route was abandoned and alternative approaches 

were considered.  

The difficulties in reproducing some of the steps in good yield combined with the low overall 

yield prompted the design of an alternative synthesis. The new route was designed to avoid 

low-yielding and unnecessary steps such as the epimerisation and resolution reactions. An 

attractive approach to the synthesis of the cyclopropane was evident from the work of Brandi 

and co-workers who has described a 3-exo-cyclisation of an allylic anion generated using 

the superbasic reagent LIDAKOR, (scheme 20).138 The LIDAKOR base is generated from 

n-BuLi, diisopropylamine and potassium tert-butoxide and is similar to the Schlosser’s base 

(BuLi/t-BuOK) except that diisopropylamine is added to the equimolar mixture. The 

presence of a dialkylamine makes the base less nucleophilic and in this case prevents 

elimination of the epoxide directly. This allows LIDAKOR to deprotonate the substrate at 

the α-position of the alkene. The resulting allylic anion undergoes a 3-exo-cyclisation with 

opening of the epoxide to give the thermodynamically stable trans-cyclopropane exclusively 

at low temperature.  
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Scheme 20: LIDAKOR Cyclopropanation and mechanism 

In this case, use of the previously reported reaction conditions gave the cyclopropane 90 in 

quantitative yield (Scheme 20). It was found that the reaction was amenable to scale-up (20 

g) by use of very concentrated 11 M n-BuLi commercially available. Comparison with the 

NMR of enantioenriched alcohol 90 obtained via carbene chemistry allowed to identify that 

only the trans isomer was obtained.  

2.3.3. N-Terminus Functionalisation 

The aim was to convert alcohol 90 into the corresponding primary amine bearing an 

appropriate protecting group. The first approach was installation of the amine by use of a 

Staudinger reaction and subsequent Boc-protection (Scheme 21).  

 

Scheme 21: Towards Staudinger reaction for amine installation 

Elaboration of the alcohol 90 commenced with the activation of the alcohol to generate a 

good leaving group. Generation of a tosylate was attempted but the reaction led to 

decomposition of the starting material.139 It was possible to prepare the mesylate 91 but it 

was unstable and had to be used immediately. Azide substitution using sodium azide was 

successful and the reaction delivered compound 92 in 79% yield over 2 steps.140 

Unfortunately, Staudinger conditions did not deliver the corresponding protected amine 93. 

This method was not only unsuccessful but also considered to contain too many steps for 

efficient installation of the amine.  

An alternative approach, in which the protected amine would be installed by a Mitsunobu 

reaction in a single step, was very attractive (Scheme 22). Reaction with phthalimide was 

explored first and previously described Mitsunobu conditions were employed, the required 
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compound 94 was obtained in quantitative yield (Scheme 22a).141 Conditions for phthalimide 

removal are known to be harsh and it proved very difficult to remove this group. It was 

impossible to remove the protecting group in good yield even when the imide 94 was heated 

at reflux in neat hydrazine; only starting material was recovered. The phthalimide cleavage 

reaction was attempted at later stages of the synthesis but was never successful.  

Le Corre et al. has reported N-Boc ethyl oxamate to be compatible with Mitsunobu 

conditions because of its low NH pKa (pKa = 8.3 in H2O, Scheme 22b).142,143,144 It seemed 

likely that this compound could serve as an N-nucleophile during a Mitsunobu reaction with 

the alcohol 90. The synthesis of N-Boc ethyl oxamate 97 started from the commercially 

available ethyl oxamate, which was treated with oxalyl chloride to produce the isocyanate 

96 in variable yields. Subsequent treatment of the product with 1.1 equivalents of tert-

butanol led to 97. However, the reaction to form the isocyanate was very difficult to 

reproduce and the main product in each case was the bis-oxalate 98 because of the highly 

reactive isocyanate reacting quickly with another isocyanate. Altering of several of the 

reaction parameters (scale, solvent, order and time of addition, temperature of reaction, 

concentration) did not improve matters. Even when reactions were performed under identical 

conditions and in parallel, varying amounts of products were observed by 13C NMR analysis. 

In spite of the poor reproducibility of the reaction, sufficient quantities of the isocyanate 96 

were obtained over the course of this study (Scheme 22b). The Mitsunobu reaction with 

alcohol 90 afforded 99 in very good yield and the oxamate was cleaved by treatment with 

LiOH in H2O/THF to afford the Boc protected compound 93 in a respectable yield.  
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Scheme 22: Mitsunobu reaction 

The synthesis of the oxamate nucleophile required for the Mitsunobu reaction was 

impractical so NH(Boc)2 was investigated as an alternative nucleophile (Scheme 22c). 

NH(Boc)2 is less acidic than the phthalimide or N-Boc ethyl oxamate but is still sufficiently 

acidic to participate in the Mitsunobu reaction.145 The substitution reaction proceeded to give 

the bis protected amine 100 but in slightly lower yield than before owing to the higher pKa. 

As described previously,146 mono-Boc removal was performed by treatment of the bis-

carbamate 100 with 1.5 eq. of TFA to afford the mono-deprotected amine 93 in 83% yield 

after purification by column chromatography. Although, one Boc group could be cleaved 

efficiently, both Boc groups were retained at this stage because of efficiencies later in the 

synthesis.  
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2.3.4. C-Terminus Installation  

Cross metathesis between terminal alkene and vinylboronate and subsequent oxidation is 

known to be an efficient method for the generation of aldehydes from terminal alkenes. Frey 

et al. have also demonstrated that it is possible to perform cross metathesis reactions on 

cyclopropane-containing substrates.147 The cross metathesis reaction was applied to the 

alkene 93 (Scheme 23).  

 

Scheme 23: Cross metathesis using vinyl boronic pinacolic ester 

The substrate was treated with the pinacol vinylboronate as the cross metathesis partner in 

presence of 5 mol% of Grubbs II catalyst. However, little conversion was observed over the 

course of two days and the product 101 degraded rapidly on column chromatography.  Only 

traces of the desired aldehyde 102 were obtained when oxidation was performed on the crude 

reaction mixture using sodium perborate.148 A potential alternative way to obtain the required 

aldehyde 102 from alkene 93 with anti-Markovnikov selective Wacker oxidation (Scheme 

24).149 

 

Scheme 24: Selective Wacker oxidation 

The alkene 93 was subjected to Wacker oxidation under a flow of oxygen overnight. 

However, only traces of aldehyde were detected by NMR analysis of the crude reaction 

mixture and so another approach had to be adopted. The third option was to introduce the 

Grubbs II cat.
CH2Cl2

NaBO3.4H2O
O

BocHN
BocHN

(R,S)-93

(R,S)-101

H2O/THF

(R,S)-102, traces

B
O

O

O
O

B

BocHN

N N

Ru

PCy3

Ph

Cl

Cl

Grubbs II

PdCl2(PhCN)2 (12 mol%)
CuCl2.2H2O (12 mol%)

AgNO2 (6 mol%)

O2
tBuOH/MeNO2 (15:1)

O

BocHN

(±)-102

BocHN
(±)-93



 

 70 

carboxylic acid by hydroboration of the alkene and then oxidation of the resulting alcohol 

(Table 11).150  

 

Table 11: Hydroboration optimisation 

Entry SM NPG Borane source Oxidising agent Product, Yield 
1 (±)-93 NHBoc 9-BBN (2 equiv.) NaOH/H2O2 103, SM recovereda 

2 (R,S)- 93 NHBoc 9-BBN (3 equiv.) NaBO3.4H2O 103, 35% SM 
recovereda 

3 (R,S)- 93 NHBoc BH3.THF NaBO3.4H2O 
pH7 buffer 103, 63% 

4 (±)-93 NHBoc BH3.THF NaBO3.4H2O 
pH7 buffer 103, Quant. 

5 (S,R)- 93 NHBoc BH3.THF NaBO3.4H2O 
pH7 buffer 103, 61% 

6 (±)-94 Phth BH3.THF NaBO3.4H2O 
pH7 buffer 104, 80% 

7 (±)-100 N(Boc)2 BH3.THF NaBO3.4H2O 
pH7 buffer 105, 97% 

8 (R,S)- 100 N(Boc)2 BH3.THF NaBO3.4H2O 
pH7 buffer 105, 91% 

9 (S,R)- 100 N(Boc)2 BH3.THF NaBO3.4H2O 
pH7 buffer 105, 91% 

aDetermined by NMR 

When hydroboration was performed by treatment of the alkene with two equivalents of 9-

BBN and oxidation of the resulting borane with hydrogen peroxide (Table 11, entry 1),151 

poor conversion of the starting material was observed. The reaction was repeated with a 

larger excess of 9-BBN and sodium perborate as oxidant, but once again the required alcohol 

was not produced and some decomposition had occurred (Table 11, entry 2).152 The borane 

source was then replaced by 1 M borane tetrahydrofuran complex solution and oxidation was 

performed with sodium perborate at pH 7 (phosphate buffer).153 This method proved to be 

very efficient and a good yield of the alcohol was obtained which was of sufficient purity 

that it could be used in the next step without any purification. These conditions were then 

applied on the various protected amines used in the course of the project (Table 11, entries 

4 to 9) to give primary alcohols 103-105. 

The next step was oxidation of the primary alcohol 103 to give the C-terminal carboxylic 

acid 106 (Scheme 25). In a two-step process, DMP oxidation gave a poor yield and 

purification of the aldehyde by column chromatography resulted in degradation of the 

product (Scheme 25a). Pinnick oxidation afforded the Boc-protected amino acid 106 in 77% 

yield (31% over two steps). Oxidation of the alcohol 103 under Parikh-Doering conditions 

GPN

1) hydroboration

2) oxidation

OH

GPN
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gave only a trace amount of aldehyde after purification. 154 When aldehyde 102 was not 

isolated but instead submitted directly to the subsequent Pinnick oxidation reaction, the 

carboxylic acid 106 was obtained in 22% yield over two steps (Scheme 25b).155  

 

Scheme 25: Two-step oxidation of the alcohol 103 to access to the carboxylic acid 106 

TPAP oxidation is commonly used to oxidise primary alcohols to give aldehydes and, in this 

case, dry NMO is usually used as the stoichiometric oxidant. In this case, hydrated NMO 

was used as the oxidant to stabilise the resultant aldehyde by forming a 6-membered ring 

(Scheme 26), which activates the aldehyde to further oxidation to the carboxylic acid. NMO 

plays a dual role in this reaction: as a Lewis-base to stabilise the aldehyde hydrate and as a 

co-oxidant to recycle the catalyst.156 This single-step oxidation of the alcohol 106 to give the 

carboxylic acid 107 was performed to avoid dealing with sensitive intermediate aldehyde 

102.157 
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Scheme 26: TPAP Oxidation and its mechanism 

Slow and controlled addition of TPAP was necessary because of the exothermic character 

of the reaction, especially when working on big scale. After optimisation, an addition rate of 

20 mg/20 min resulted in the the best conversion. Carboxylic acid 107 was unstable and 

decomposed during chromatographic purification, so the product was used immediately for 

the next step without purification.  

In summary, the Gly-Gly surrogate was synthesised in good yield and on multigram scale 

by a route that involved sequential super-base-mediated rearrangement of 1,2-epoxy-5-

hexene, Mitsunobu, hydroboration and oxidation (Scheme 27). The key cyclopropane 

peptide mimic (±)-Boc2-{GlyΔGly}-OH 106 was now available for incorporation into 

various peptides to give hybrid compounds  

 

Scheme 27: Synthesis of the racemic mixture of (±)-Boc2-GlyΔGly-OH 107 
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2.4. Synthesis of Single Enantiomer Mimics by 

Resolution of Racemic Intermediates 

2.4.1. Early Stage Resolution 

Now that an efficient route to racemic Boc2-{GlyΔGly}-OH 107 had been developed, the 

next challenge was to find the optimal method to resolve the enantiomers. The resolution of 

epoxides to provide enantioenriched building blocks is a well-established strategy in organic 

chemistry,158,159 and so it seemed likely that the terminal epoxide starting material could be 

resolved and each enantiomer could be taken through the whole synthesis separately with 

the main challenge being chirality transfer during the LIDAKOR-mediated rearrangement 

reaction. The kinetic resolution procedure developed by Jacobsen was selected because it 

has been used on similar substrates to generate an enantiopure epoxide and an enantiopure 

diol (Scheme 28). 

 

Scheme 28: Jacobsen resolution 

The epoxide was subjected to resolution with both (S,S)- and (R,R)-Co-salen catalyst in 

parallel. After a reaction time of 8 h, the NMR analysis showed that a mixture of epoxide 

108 and diol 109 had been generated in a 2:1 ratio when either enantiomer of the catalyst 

was used. Unfortunately, the epoxide was difficult to handle due to its volatility and 

separation of the epoxide from the diol could only be achieved by column chromatography 

(100% EtOAc) because distillation was unsuccessful on both a small and large scale. The 

epoxide could not be obtained without traces of water, which was an issue for the LIDAKOR 

reaction, and so this approach was abandoned.  
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2.4.2. Alcohol Resolution by Steglich Esterification 

Another method to resolve racemic intermediates was investigated. The Steglich 

esterification reaction is often used to resolve alcohols into diastereoisomeric esters with 

chiral acids and coupling agents.160,161 Alcohol 90 was subjected to Steglich esterification 

using enantiomerically pure (R)-mandelic acid to produce diastereomeric esters (Scheme 

29).  

 

Scheme 29: Steglich esterification on alcohol 90 

The esterification reaction was performed at room temperature overnight but several 

products were obtained following purification of the crude product by column 

chromatography. The small amount of the required ester that was obtained suggested that 

separation of the diastereomers would be difficult and so various chiral acids were explored 

as resolving agents (Scheme 30).  
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Scheme 30: Resolution optimisation on alcohol 88 by Steglich esterification and TLC of the 
scope 

 

Six chiral carboxylic acids (111 to 116) were used for the resolution reaction. Unfortunately, 

as shown by TLC, the starting material (alcohol 90) was still present in all reactions after 

heating overnight at reflux and there was little conversion. Furthermore, only one other spot 

was visible in all of the reactions. HPLC analysis of one of the reactions (that performed 

with acid 114) showed both diastereoisomeric esters had been formed but they were 

inseparable by chromatography. Altering TLC eluent (PET/EtOAc 1:1, 6:1, 6:2, 8:2, 1:2) 

did not make any difference to the separation.  
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2.4.3. Amide Coupling Resolution on Protected Amine 

Resolution of the racemate by ester formation was unsuccessful and so attention was turned 

to the formation of diastereoisomeric amides because these had been successful earlier 

(Table 12).  

 

Table 12: resolution of 93 by amide coupling 

Entry Chiral acid Conditions Results 

1 
(R)-mandelic acid 

 

N-methylmorpholine 
i-BuOCOCl decomposition 

2 

 
(S)-(+)-a-methoxyphenyl acetic acid 

 

N-methylmorpholine 
i-BuOCOCl decomposition 

3 
(R)-mandelic acid 

 

HOBt, EDCI, DIPEA no conversion 

4 
(S)-(+)-a-methoxyphenyl acetic acid 

 

HOBt, EDCI, DIPEA no conversion 

The mixed anhydride method used for the resolution of carboxylic acid 85 was performed 

on 93 using N-methylmorpholine and i-BuOCOCl.136 This method led to  decomposition of 

the product (Table 12, entries 1 and 2). Amide formation mediated by HOBt and EDCI was 

attempted because these reagents are known to give efficient formation of tertiary amides.162 

Attempts to form an amide with either (R)-mandelic acid or (S)-(+)-a-methoxyphenyl acetic 

acid (Table 12, entries 3 and 4) did not result any conversion of the starting material into the 

required products. At this stage, resolution of the initial epoxide, the alcohol 90, and the 

protected amine 93 had failed and so attention was turned to resolution of (±)-BocH-

{GlyΔGly}-OH.   

  

BocHN R OH

O conditions

(±)-93
Boc

O

R
N

(R,S)

Boc

O

R
N

(S,R)

Ph (R)(R)
OH

O

OH

(S)(S)O OH

O

Ph

Ph (R)(R)
OH

O

OH

(S)(S)O OH

O

Ph



 

 77 

2.4.4. Resolution of Carboxylic Acid Intermediates 

Instead of using the amine to form an amide suitable for resolution, the carboxylic acid on 

C-terminus of final dipeptide mimetic was considered as a site for diastereomer formation. 

Under the same procedure as before, mono protected (±)-Boc-{GlyΔGly}-OH 106 or bis 

protected (±)-Boc2-{GlyΔGly}-OH 107 were treated with N-methylmorpholine, i-

BuOCOCl and (R)-phenylglycinol. After a reaction time of several hours, there was no 

evidence that amide coupling had occurred (scheme 31).  

 

Scheme 31: Resolution on final dipeptide mimic 

Next, resolution was attempted by coupling of a carboxylic acid intermediate with a chiral 

amino acid by use of common amide coupling procedures (EDCI, DMAP, Scheme 31). As 

previously discussed, the amide obtained after purification was subjected to HPLC analysis 

and was found to be a mixture of diastereoisomers. Finally, attention was reverted to the 

previously successful method (cf. Scheme 18). To explore this method, it was necessary to 

oxidise the alcohol 90 to produce the carboxylic acid 85 (Scheme 32).  
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Scheme 32: Resolution of enantioenriched alcohol 90 at an early stage in the synthesis  

The alcohol (±)-90 was submitted to a TPAP oxidation in the presence of water in order to 

obtain the corresponding carboxylic acid (±)-85 directly. Addition of 20 mg/20 min of TPAP 

was required to control the exothermic character of the reaction and so the procedure was 

time consuming on large scale. It was found that Swern oxidation followed by a Pinnick 

oxidation was more practical on larger scale (≥ 20 mmol of alcohol).163 The carboxylic acid 

(±)-85 was obtained by use of these two methods in yields of 30% and 69%, respectively. 

The racemate reacted with (R)-phenylglycinol as chiral agent to produce two 

diastereoisomers (R,R,S)-89a  and (R,S,R)-89b that were separable by column 

chromatography. Absolute configuration was determined as in the initial route by their [𝛼],. 

Each diastereomer was then hydrolysed to yield the enantioenriched carboxylic acids (R,S)-

85 and (S,R)-85. The enantioenriched carboxylic acids were then reduced using LiAlH4 to 

provide the alcohols (R,S)-90 and (S,R)-90 in 14% yield over 4 steps. 
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2.4.5. Summary 

The initial route designed started with a cyclopropanation using carbene, a mixture of 

diastereoisomer was obtained (cis/trans ratio 1:1) and required epimerisation followed by 

resolution to get only the trans enantioenriched cyclopropane which was considered to be 

too many steps. The challenge of the cyclopropanation reaction was overcome by using a 

superbase-mediated rearrangement reaction to produce the racemic trans-cyclopropane 90 

in a very good yield. Resolution of the racemic mixture at various stages of the synthesis 

was attempted and the best method was found to be the amide coupling of the acid 85, 

obtained by two-stage oxidation of the alcohol 90, to (R)-phenylglycinol as described in the 

initial route. The diastereoisomeric amide were easily separable by column chromatography 

and were obtained in reasonable yields (scheme 33).  

 

Scheme 33: Summary of the synthesis of the enantioenriched dipeptide 

Synthesis of the enantioenriched carboxylic acids allowed the dipeptide mimics 107 to be 

achieved in 5 steps by sequential Mitsunobu reaction to install the bis-protected N-terminus, 

optimised hydroboration and subsequent oxidations at the C-terminus. This new route was 

designed and optimised to reduce the number of steps and improve the overall yield from 

1% to 8%. The enantioenriched mimic Boc2-{GlyΔGly}-OH 107 was obtained in 8 steps (9 

in the inital route).  
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2.5. Synthesis of Model Peptides Containing the 

Dipeptide Mimic 

2.5.1. Capped Dipeptide Synthesis 

In order to investigate the formation and extent of intramolecular hydrogen bonds within 

cyclopropane-containing peptide hybrids, two molecules were designed (Figure 38). The 

targets selected were analogues of the peptides used by Gellman et al. to demonstrate the 

formation of intramolecular hydrogen bonds in systems where the peptide bond has been 

replaced by an alkene (cf. section 1.6.1.2, Scheme 1).  

 

Figure 38: Dipeptide mimics 

β-Turns are stabilised by a 10-membered hydrogen bonded ring (cf Figure 13); and so the 

systems were designed to explore formation of this type of hydrogen bond.  The peptide 75 

contains two amide bonds that are able to form hydrogen bonds (Gly-NH and NH-i-Pr). In 

contrast, the peptide 76 is capped with a dimethylamino group at the C-terminus to removal 

hydrogen bond donor capability at this position and allow only one hydrogen bond to be 

formed. 

Unfortunately, the polar Boc2-{GlyΔGly}-OH dipeptides decomposed during purification 

due to the presence of a free carboxylic acid and the corresponding methyl ester 117 was 

prepared to enable purification (Scheme 34).164  

 

Scheme 34: Methyl ester formation and attempted amide synthesis 

The ester 117 was prepared by treatment of the carboxylic acid (±)-107 with sodium 

bicarbonate and iodomethane in solution at reflux. The reaction was performed overnight 

and methyl ester was obtained after column chromatography in 47% yield over two steps. 
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Attempts to perform amide formation directly by treatment of the ester 117 with 

isopropylamine were unsuccessful.165 Consequently, the carboxylic acid 106 was used in 

subsequent coupling without purification to avoid problems encountered during 

chromatography. 

The peptide coupling reaction of crude Boc2-{GlyΔGly}-OH 107 with isopropylamine and 

dimethylamine was investigated under a variety of conditions (Table 13).  

 

Table 13: First amide coupling optimisation 

Entry Amine Coupling agent Base Product Yield 
1 HNMe2

(a) DCC HOSu (±)-119 -(b) 
2 iPrNH2 DCC HOSu (±)-118 -(b) 
3 iPrNH2 EDCI DMAP (±)-118 31% 
4 HNMe2

(a) T3P Et3N (±)-119 33% 
5 HNMe2

(a)  T3P Et3N (±)-119 37% 
6 iPrNH2 T3P Et3N (±)-118 46% 

(a) 2 M in THF 
(b) hard purification, impure after column chromatography 

Initially, DCC coupling agent was used in presence of hydroxysuccinimide (HOSu) as an 

additive in order to avoid side reactions.166,167 However, reaction of the carboxylic acid 107  

with dimethylamine or isopropylamine in THF (Table 13, entries 1 and 2) afforded coupled 

product that was contaminated with undetermined impurities and HOSu. When EDCI was 

used in combination with DMAP (Table 13, entry 3), the formation of water-soluble by-

products facilitated purification of the product. Unfortunately, a low yield of the coupled 

product 118 was obtained and so the use of T3P (propylphopshonic anhydride) instead of a 

carbodiimide was explored (Table 13 entries 4,5 and 6).168 The yield was improved when 

the coupling reaction was performed with dimethylamine over a longer reaction period. The 

amides 118 and 119 were produced in a satisfactory yield and sufficient pure material was 
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obtained for the next coupling reaction. These conditions were used for the synthesis of all 

N-terminus amide (Table 14, T3P coupling).  

 

Table 14: summary of dipeptide synthesis 

Entry Isomer R1, R2 T3P coupling yield Final product, yield 
1 (±) R1 = H, R2 = iPr (±)-118, 46% (±)-75, 69% 
2 (S,R) R1 = H, R2 = iPr (S,R)-118, 52% (S,R)-75, 17% 
3 (R,S) R1 = H, R2 = iPr (R,S)-118, 35% (R,S)-75, 31% 
4 (±) R1 = R2 = Me (±)-119, 37% (±)-76, 7% 
5 (S,R) R1 = R2 = Me (S,R)-119, 48% (S,R)-76, 65% 
6 (R,S) R1 = R2 = Me (R,S)-119, 74% (R,S)-76, 40% 

N-Deprotection was performed using 10 equivalents of TFA to afford the free amine which 

was then treated (iPrO)2O and trimethylamine to give the analogue of interest. The final 

capped dipeptide mimics were obtained in low to reasonable yield (from 7 to 69% over 2 

steps), but sufficient material was produced to undertake the intended spectroscopic 

analyses. Racemic and enantiomerically enriched (both antipodes) samples of both peptides 

were synthesised and then used to explore hydrogen bond formation in the hybrid model 

turn mimics (Figure 39).  

 

Figure 39: Dipeptide mimics 

  

OH

O

(Boc)2N

T3P, Et3N
HNR1R2

N

O

(Boc)2N

R2
R1

CH2Cl2, 
reflux, o/n

i) TFA, CH2Cl2
    rt, o/n

ii) (iPrCO)2O, Et3N
    CH2Cl2, rt, o/n

N

O

NH

R2
R1

O

118
119

75
76

N

O

NH
O

(±)-iPrOC-{GlyΔGly}-NMe2 76
(R,S)-iPrOC-{GlyΔGly}-NMe2 76
(S,R)-iPrOC-{GlyΔGly}-NMe2 76

HN

O

NH
O

(±)-iPrOC-{GlyΔGly}-N-iPr 75
(R,S)-iPrOC-{GlyΔGly}-N-iPr 75
(S,R)-iPrOC-{GlyΔGly}-N-iPr 75



 

 83 

2.5.2. Synthesis of Tri- and Tetra-peptide Hybrids that Contain the 

Mimic 

Longer peptides were synthesised in order to mimic the loop section of a β-hairpin, with the 

{GlyΔGly} surrogate mimicking the i + 1 and i + 2 turn residues and the two external 

residues (i and i + 3) playing the role of the strands. The influence of the lengths of the 

peptide and the addition of extra amide bonds on the stability of the conformation adopted 

by the hybrid was analysed and the contribution of the side chains was also studied. 

To this end the hybrid peptides Ac-Val-{GlyΔGly}-Leu-NMe2 77 and 78 and Ac-Val-

{GlyΔGly}-NMe2 79 and 80 were synthesised.54 The principle was to study hydrogen bond 

formation and discover whether the analogues possessed the hydrogen bonding arrangement 

observed in the native dipeptide system. The more flexible analogue Ac-Gly-{GlyΔGly}-

Gly-NMe2 120 was also synthesised and studied in order to understand how the side chains 

contribute to the folding process. The synthetic strategy adopted was similar to that used to 

prepare the simple dipeptides and amino acids were modified beforehand if needed (scheme 

35).  

 

Scheme 35: Tri- and tetra-peptides 77-80 and modified amino acid 121 and 122 synthesis 

Boc-Gly-NMe2 121 was synthesised in 86% yield following the approach used to prepare 

the dipeptide mimics described previously and using T3P as the coupling reagent. Boc-Val-

NMe2 122 was synthesised in a 65% yield by use of a DCC coupling reaction.169  

Two coupling reactions were performed on the C-terminus of Boc2-{GlyΔGly}-OH 107 
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entries 1–6) and the corresponding C-terminal amide was obtained with variable yields (48–

85%). The TFA mediated deprotection of the N-terminus proceeded without incident and 

the resulting crude amine was used directly in the second peptide coupling reaction, which 

was performed using the same coupling agent (Table 15, 2nd coupling, entry 1).  The product 

120 was found to be sensitive and further purification was performed by trituration using 

cold pentane twice after column chromatography. 

 

Table 15: Tri- and tetrapeptide synthesis 

Entry isomer 
1st coupling 2nd coupling 

Amine Yield Acid, coupling agent Product Yield(a) 
1 (±) Boc-Gly-NMe2 123 63%(a) Ac-Gly-OH, T3P 120 52% 
2 (S,R) R1 = R2 = Me 119 48% Ac-Val-OH, T3P 80(b) -(b) 
3 (S,R) Boc-Leu-NMe2 124 72%(a) Ac-Val-OH, T3P 78(b) -(b) 
4 (S,R) R1 = R2 = Me 119 48% Ac-Val-OH, HATU  80 12% 
5 (R,S) R1 = R2 = Me 119 74% Ac-Val-OH, HATU  79 14% 
6 (S,R) Boc-Leu-NMe2

 124 72%(a) Ac-Val-OH, HATU  78 76% 
7 (R,S) Boc-Leu-NMe2 124 85%(a) Ac-Val-OH, HATU  77 17% 

aYield over two steps  
bepimerisation occured, ratio 3:2 of diastereoisomers observed 

Submission of substrates 123 and 124 to the second peptide coupling reaction under these 

conditions resulted in a doubling of peaks in the NMR spectra (Table 15, 2nd coupling, entries 

2–3). This observation could have resulted from restricted rotation around one of the amide 

bonds giving rise to rotamers or epimerisation at the acidic α position of Val after activation 

with T3P and oxazolone formation. Techniques such as variable-temperature NMR, solvent 

switching and selective NOE NMR have been used to determine whether conformers or 

diastereomers are present and so careful NMR analyses were performed on the mimics 78 

and 80.170,171 Samples were prepared in various solvents of differing polarity (CDCl3, CDCl2, 

CD3CN, MeOD) and their 1H NMR spectra were compared (Figure 40). The peaks 

highlighted correspond to the Hα of the Val residue. Doubling of peaks was observed in all 

spectra (except those obtained for samples in MeOD, where peaks overlapped) and the ratios 

of isomers / rotamers were compared. The polarity of solvent would be expected to influence 

the population of rotameric conformers, but in these experiments all solvents gave a 

consistent 3:2 ratio.  
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Figure 40: 1H NMR spectrum of 78 in different solvents 

Variable temperature NMR analyses were also undertaken. The barrier to rotation around 

the amide bond generally decreases with increasing temperature. However, the 1H NMR 

spectra were obtained at 20 °C and 50 °C and the ratios of the key peaks were the same at 

both temperatures. Consequently, it was concluded that epimerisation had occurred when 

T3P was used to facilitate the second peptide coupling reaction and a diastereoisomeric 

mixture of products had been formed.  

In an attempt to avoid this problem, the use of HATU as an alternative coupling agent was 

explored.172 The reaction sequence was repeated as before but the yields obtained for the 

tripeptides were lower than before and the reactions suffered from poor reproducibility 

(Table 15, 2nd coupling, entries 4–7). Importantly, there was no doubling of peaks in the 

NMR spectra of the final products, which indicated that epimerisation had been avoided by 

the use of HATU as a coupling reagent.  
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Figure 41: Peptidomimetics synthesised based on Gellman’s work 

Although the sequence was not fully optimised, sufficient material was obtained for the 

conformational analysis to be undertaken. Five peptides were synthesised, including 

enantioenriched (both antipodes) and racemic variants (Figure 41) 

2.6. Synthesis of Ester Analogous of the Turn 

Mimics 

An alternative way in which the hydrogen bonding network within a peptide can be probed 

is by selective replacement of amides with the corresponding esters. The ester and amide 

have similar conformations but have different hydrogen bonding properties: an amide bond 

can act as hydrogen bond donor whereas an ester cannot and an ester is a much weaker 

hydrogen bond acceptor than an amide. A series of esters was designed to probe the deletion 

of single hydrogen bonds. The N-terminus amide was the first to be replaced by an ester 

group (Scheme 36). 
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Scheme 36: Synthesis of iPrCOO-{GlyΔGly}-N-iPr 127  

The key ester bond was introduced when alcohol 90, obtained from the original LIDAKOR 

rearrangement reaction, was esterified using (iPrCO)2O to produce the ester 125 in 48% 

yield. Subsequent alkene hydroboration and oxidation, following the same conditions 

described for Boc2-{GlyΔGly}-OH synthesis, delivered the alcohol 126 in a very poor yield. 

The alcohol was then oxidised directly to the corresponding carboxylic acid using TPAP and 

hydrated NMO. The carboxylic acid was not purified but instead was submitted to the T3P-

medaited amide coupling reaction with isopropylamine to give the amide 127 in 51% yield 

over two steps. A second analogue, in which the ester and amide functionality are reversed, 

was synthesised from Boc2-{GlyΔGly}-OH (106) (Scheme 37). 

 

Scheme 37: iPrCO-{GlyΔGly}-OiPr Synthesis 129 

The protected amino acid was subjected to Steglich esterification with isopropanol to 

produce the ester 128 as a mixture 3:1 of N(Boc)2 and NHBoc compounds. Global 

deprotection of the mixture by treatment with 10 equivalents of TFA afforded the 

corresponding amine, which was submitted for amide formation by reaction with isobutyric 

anhydride. Analogue 129 was obtained in 40% yield over 7 steps. Only a racemic mixture 

was prepared because the spectroscopic properties of the individual enantiomers were 

expected to be the same. 
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2.7. Conformational Analysis of Peptide Hybrids 
that Contain Turn Mimics 

2.7.1. Preliminary Results, NH Chemical Shift Comparison 

In 1H NMR spectroscopy, the chemical shift of  the signal for a given proton is sensitive to 

its chemical environment.173 In particular, the 1H NMR signal of an N-H or O-H  can display 

an important variation in its chemical shift depending on its environment and interaction 

with polar groups . Therefore, by considering the various NMR spectra in a library of related 

peptides, it should be possible to explore the presence or absence of hydrogen bonds.  

In this study, performed at 1 mM in CD2Cl2, the reference values of N-H chemical shifts 

were compared between the β-turn mimics and compounds that could not form turns, either 

because there was no hydrogen bond donor on the C-terminus available to form a 10-

membered ring (esters 129, and dimethyl amides 76 and 78) or the main chain was too short 

for a turn too form (Ac-Val-NHMe 130 and Ac-Leu-NMe2 131). It was anticipated that a 

significant difference in NH chemical shift value would indicate the presence of a hydrogen 

bond. In particular, when a NH is involved in an intramolecular hydrogen bond the chemical 

shift tends to move downfield. The NH chemical shift of Ac-Val-NHMe, Ac-Leu-NMe2 and 

alkene analogues had been measured previously by Gellman and co-workers’.76  

The data in Table 16 indicates extensive folding of tetrapeptide 12 designed by Gellman (the 

different NH bonds are colour coded for clarity). Val-NH and Gly-NH of peptide 13 have 

chemical shift values that are similar to those of the reference substrate 130 meaning 

hydrogen bonds are not formed with the NCO peptide bond and the peptide is in a linear 

conformation. Therefore, 8- or 11-membered ring hydrogen bonding is not expected in the 

tetrapeptide 12. The Val-NH of 12 is shifted downfield by 1.2 ppm relative to 13 and 130, 

which suggests that this NH is involved in a strong intramolecular hydrogen bond that 

results in formation of a 14-membered ring.  
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Table 16: Chemical shift comparison 

Entry Peptide NH NH NH 
1 Ac-Val-NHMe 130 5.99 5.77 - 
2 Ac-Leu-NMe2 131 - - 6.17 
3 Ac-Val-{Gly//Gly}-Leu-NMe2 12 7.24 6.55 6.80 
4 Ac-Val-{Gly//Gly}-NMe2 13 6.03 5.73 - 
5 (±)-iPrOC-{GlyΔGly}-iPr 75 - 6.79 5.44 
6 (R,S)-iPrOC-{GlyΔGly}-iPr 75 - 6.77 5.45 
7 (±)-iPrOC-{GlyΔGly}-NMe2 76 - 7.58 - 
8 (R,S)-iPrOC-{GlyΔGly}-NMe2 76 - 7.66 - 
9 (±)-iPrOC-{GlyΔGly}-O-iPr 129 - 6.40 - 
10 (±)-iPrOCO-{GlyΔGly}-N-iPr 127 - - 5.61 
11 (R,S)-Ac-Val-{GlyΔGly}-NMe2 79 6.62 8.12 - 
12 (S,R)-Ac-Val-{GlyΔGly}-NMe2 80 6.44 8.11 - 
13 (±)-Ac-Gly-{GlyΔGly}-Gly-NMe2 120 6.43 7.51 6.65 
14 (R,S)-Ac-Val-{GlyΔGly}-Leu-NMe2 77 6.34 7.70 6.34 
15 (S,R)-Ac-Val-{GlyΔGly}-Leu-NMe2 78 6.38 7.70 6.58 
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As it was expected, racemic and enantioenriched peptides have similar NH chemical shifts, 

showing that they behaved the same way in terms of their intramolecular interactions. The 

Gly-NH of both variants of 75 is shifted by 1 ppm downfield when compared to the reference 

compound 130 and the NH-i-Pr is shifted upfield of more than 0.7 ppm. This indicates that 

in the iPrOC-{GlyΔGly}-i-Pr peptide the Gly-NH is involved in considerable 

intramolecular hydrogen bonding to form an 8-membered ring rather than the expected 10-

membered ring. Peptide 75 has only Gly-NH free to interact and the chemical shift for this 

proton was found to be almost 2 ppm downfield relative to the relevant amide protons in 

compounds 13 and 130. The data suggest that a strong intramolecular hydrogen bond is 

formed between Gly-NH and CO group at the C-terminus of the mimic. The NMR data for 

this dipeptide mimic suggests that the peptide adopts hydrogen bonding arrangement I 

predominantly (Figure 42).  

 

Figure 42: Possible hydrogen bonding arrangements for dipeptide 75 

The ester 129 lacks the hydrogen bond donor required to form the 10-membered ring system. 

The Gly-NH chemical shift lies 0.7 ppm downfield compared to reference compound 130, 

which suggests that the intramolecular hydrogen bond observed in peptide 76 is also formed 

in the ester analogue. In contrast, it is not possible to form an 8-membered hydrogen bonded 

ring in the ester 127, but the chemical shift of NH-i-Pr is similar to that of 75, which suggests 

that intramolecular hydrogen bonding with C-ter carbonyl group does not occur. 

Consequently, conformation III in figure 42 is unlikely to occur in the dipeptide mimic. This 

data for the dipeptide mimetic suggests that an 8-membered hydrogen bonded ring is formed 

and this feature would be expected in tetrapeptide 120 and tripeptide 77. 

Each of the two NH chemical shifts of peptides 79 and 80 were found to be shifted downfield 

by 0.6 and 2.3 ppm when compared to corresponding signals for the compounds 13 and 130. 

An incredibly strong intramolecular hydrogen bond that involves Gly-NH and C-ter 

carbonyl group is formed along with a 14-membered hydrogen bonded ring produced by an 

interaction between Val-NH and the same carbonyl group. So, 8- and 14-membered were 

expected in tetrapeptides 120, 77 and 78 and could adopt conformation IV (Figure 43). The 
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chemical shifts of all three NH of flexible peptide 120 are shifted more than 0.4 ppm 

downfield compared to the reference peptides which suggests that they were all involved in 

intramolecular hydrogen bonding., Gly-NH is the most strongly hydrogen bonded. Gly-NH 

and Gly-NH have a similar variation in chemical shift which suggests that they form weaker 

intramolecular hydrogen bonds. Tetrapeptides 77 and 78 could adopt any of the 

arrangements I, II, III or IV because Val-NH is involved in the strongest hydrogen bonding 

as shown by data obtained for tripeptide 79 and 80.  

 

Figure 43: Possible hydrogen bonding arrangements adopted by peptides 77 and 78 

Ac-Val-{GlyΔGly}-Leu-NMe2 77 and 78 have chemical shift values that are very similar to 

the more flexible compound Ac-Gly-{GlyΔGly}-Gly-NMe2 120. These peptides behave 

similarly and the side chains seem to have little effect and our located on the outside of the 

turn. This completely excluded conformation V and VI to be adopted. The data obtained for 

peptides 77 and 78 show that Gly-NH can form an 8- or 11-membered hydrogen bonded 

ring (conformation I to IV, Figure 43) and it is always involved in intramolecular hydrogen 

bonding as indicated by the large shift downfield when compared to data for reference 

peptides. These data differ from the observations made by Gellman et al. on compounds 12 

and 13. The cyclopropyl mimic was not stabilised by the same intramolecular hydrogen 

bonds, furthermore the 10-membered ring that is supposed to stabilise a β-turn was not the 

most favoured ring as demonstrated by data for the dipeptide 76 and tripeptides 79 and 80 

which suggest that there is a strong intramolecular hydrogen bond between Gly-NH and C-

ter carbonyl group. It appears that all of the peptides containing the cyclopropyl peptide 

mimic adopt a folded conformation that is greatly stabilised by the cyclopropyl group. 
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Moreover, cyclopropyl group constrains the system more than the tetrasubstituted alkene 

group used by Gellman and co-worker and brings the Gly-NH hydrogen bond donor and the 

Gly-CO hydrogen bond acceptor into close proximity.  

2.7.2. Hydrogen bond formation analysis 

2.7.2.1. Dipeptides 75 and 76 

The conformation adopted by a peptide can be determined by measuring the intramolecular 

hydrogen bonds formed. This analysis started with the analysis of the racemic dipeptide turn 

mimetics 75 and 76. The C-terminus NH can be involved in a hydrogen bond with the 

carbonyl at the N-terminus to form a 10-membered ring system and this is the basis for 

stabilisation of β-turns (Figure 44). The other hydrogen bond network that can be formed is 

between the N-terminus NH and C-terminus carbonyl group, which results in a less stable 

hydrogen bonded 8-membered ring system. 

 

Figure 44: Two intramolecular hydrogen bonds possible in dipeptide 75 

The chemical shifts of both NHs (shown in green and orange in Figure 44) were measured 

at six different concentrations: 20, 10, 5, 1, 0.5 and 0.1 mM in CD2Cl2. Measurements were 

performed in deuterated dichloromethane CD2Cl2 because it is less polar than MeOD or 

deuterated acetonitrile and because the peptide cannot form hydrogen bonds with the 

solvent. 

The chemical shifts of both the amide protons NH-i-Pr and Gly-NH in (±)-iPrOC-

{GlyΔGly}-iPr 75 varied with the logarithm of the concentration above 1 mM but remained 

constant at lower concentrations (Figure 45). This suggests that at low concentrations, there 

are consistent strong intramolecular hydrogen bonds and that intermolecular hydrogen 

bonding occur at higher concentrations. The fact that both NH behave in the same way 

suggests that hydrogen bonded systems that contain 8- and 10-membered rings are formed. 

It could be that a secondary hydrogen bonded 8-membered ring arises after the formation of 

the expected 10-membered ring. In the dimethyl equivalent – (±)-iPrOC-{GlyΔGly}-NMe2 
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76 – no variation of Gly-NH chemical shift was observed across all the concentrations 

studied. In this case, only one hydrogen bond is possible and this leads to formation of an 8-

membered ring. The invariance of chemical shift was surprising because it suggests that the 

usually less favourable 8-membered ring system was being formed and that the cyclopropane 

forces the molecule into what would normally be considered to be an unfavourable hydrogen 

bonding arrangement.  

 

Figure 45: Racemic dipeptides mimic NMR and IR study, and Gellman’s analogue IR77 

The region of the IR spectrum studied corresponds to amide mode A, which is the NH stretch 

region showing intermolecular or intramolecular hydrogen bonded NH or solvent-exposed 

NH. According to the data obtained from the concentration-dependent NMR studies, the 

intramolecular hydrogen bonds were occurring at concentrations below 1 mM for (±)-

iPrOC-{GlyΔGly}-N-iPr 75. This concentration was the optimum one at which to analyse 

hydrogen bond formation by solution IR spectroscopy. Unfortunately, measurements could 

not be carried out at 1 or 5 mM due to poor quality data produced by the spectrometer at 

these concentrations. Consequently, the solution IR spectra of the compounds were 
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obtained at a concentration of 10 mM in dry CH2Cl2. For consistency, this concentration was 

used for all IR measurements.  

(±)-iPrOC-{GlyΔGly}-N-iPr 75 displays a strong band at 3318 cm–1, which arises from an 

intramolecularly hydrogen bonded NH, and a band at 3433 cm–1 due to NH exposed to 

solvent. These data suggest that intramolecular hydrogen bonds are still formed in peptide 

at concentrations above 1 mM and imply that the peptide exists in an equilibrium between a 

folded conformation (I, II or III in Figure 42) and an open conformation at 10 mM. The IR 

NH-stretch data for (±)-iPrOC-{GlyΔGly}-NMe2 76 has only one band at 3306 cm–1, which 

arises from an NH involved in intramolecular hydrogen bonding. This data is supported by 

the observation made by NMR that this Gly-NH is involved in a strong intramolecular 

hydrogen bond exclusively and excludes the presence of arrangement III (Figure 42) in 

CH2Cl2. In comparison, the IR spectrum of the analogous alkene system 8 synthesised by 

Gellman and co-workers was reported to have a single band at 3340 cm–1 which corresponds 

to solvent exposed NH (Figure 45), a finding that implies an absence of intramolecular 

hydrogen bonding in the alkene system. This comparison suggests that the cyclopropane was 

more effective than an alkene at folding a small hybrid peptide system into a hydrogen 

bonding arrangement.  

Considering these results, it was interesting to determine which of the two possible hydrogen 

bonds was the strongest and thus responsible driving the folding process. To this end, the 

two ester analogues (±)-iPrOCO-{GlyΔGly}-N-iPr 127 and (±)-iPrOC-{GlyΔGly}-O-iPr 

129 were analysed by IR spectroscopy (Figure 46). In (±)-iPrOCO-{GlyΔGly}-N-iPr 127, 

the Gly-NH is replaced by an ester Gly-O and so only the NH-iPr can be involved in 

intramolecular hydrogen bonding to form a 10-membered inner ring. In the case of (±)-

iPrOC-{GlyΔGly}-O-iPr 129, the Leu-NH is replaced by an ester O and so only the Gly-

NH can be involved in an intramolecular hydrogen bond to form an 8-membered ring. 

However, it is important to note that changing the amide group to an ester group also 

weakens the hydrogen bond, because esters are generally less effective hydrogen bond 

acceptors than the corresponding amides.174  
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Figure 46: NH-stretch IR of ester analogues 127 and 129 

Only one band at 3433 cm–1 was observed for ester (±)-iPrOCO-{GlyΔGly}-N-iPr 127. This 

sharp band indicates hydrogen bonding with the solvent, or intermolecular bonding with 

another amide was in operation for 127.  In contrast, two bands were observed for (±)-iPrOC-

{GlyΔGly}-O-iPr 129. The sharp band observed at 3441 cm–1 suggests intermolecular 

hydrogen bonding and the broad band at 3365 cm–1 is attributed to intramolecular hydrogen 

bonding. The presence of two bands suggests an equilibrium is established between folded 

and unfolded states in the case of this system. Again, the presence of an intramolecular 

hydrogen bond supports the role of the cyclopropane in helping to form a turn motif, 

especially given the reduced propensity that esters have for hydrogen bond formation. 

The spectra of the (R,S)-enantiopure variants of the above racemic mixtures were also 

recorded under the same conditions (Figure 47). The Gly-NH of (R,S)-iPrOC-{GlyΔGly}-

iPr 75 did not vary significantly with concentration although a small shift was observed at 

the highest concentrations studied. This suggests that a very strong 8-membered hydrogen 

bond is formed in this system. The NH-iPr chemical shift was also found to be constant at 

low concentrations but more variation at higher concentration (> 1 mM). However, this still 

suggests that a strong intramolecular hydrogen bond is formed, but the increased degrees of 

freedom in the larger 10-membered system make it more susceptible to alternative hydrogen 

bonding patterns at higher concentrations. 
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Figure 47: NMR and IR studies of (R,S)-dipeptide mimics 75 and 76 

This finding confirmed that conformations I and II were more plausible than conformation 

III (Figure 42). The IR spectrum acquired was similar to obtained for the racemic mixture 

showing solvent exposed NHs and intramolecularly hydrogen bonded NH with observation 

of the same bands at 3429 and 3318 cm–1 respectively.  

A concentration dependent study of (R,S)-iPrOC-{GlyΔGly}-NMe2 76 showed that the 

chemical shift varied at between 1 and 5 mM and reverted to the same chemical shift at higher 

concentration. This implied intermolecular hydrogen bonds are not formed but some can be 

formed with the water present in the NMR solvent. However, the NH can be considered to 

be intramolecularly hydrogen bonded at all concentrations because the chemical shift is the 

same at very low and high concentrations. Two bands were observed by IR in the NH-stretch 

region. The one at 3306 cm–1 is suggestive of intramolecular hydrogen bonding, and the 

small peak at 3441 cm–1 indicates that Gly-NH is slightly solvent exposed at 10 mM, a 

finding which supports the variation observed by NMR.  
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In summary, the {GlyΔGly} surrogate was proven to promote the formation of a turn by 

spectroscopic measurements. Furthermore, iPrOC-{GlyΔGly}-NMe2 variants 76 were 

shown to be exclusively intramolecularly hydrogen bonded, which implies that an 8-

membered cyclic hydrogen bonded system is formed. The size of this hydrogen bonded 

system is unusual and suggests that the cyclopropane has a propensity to stabilise this type 

of interaction. Therefore the “β” designation could no longer be used for the turn motif 

adopted by the mimics prepared in the course of this project because the system is stabilised 

by formation of an 8-membered rather than the usual 10-membered cyclic hydrogen bonded 

network defined for β-turns. 

2.7.2.2. Analysis of Tri- and Tetrapeptide Systems 

After completion of studies on the small peptides, attention turned to the analysis of longer 

peptide systems. This was achieved by extending the amide sequence at both ends with 

glycine to form a tetrapeptide mimic. Based on the data obtained from the NMR chemical 

shift studies, it was clear that Gly-NH is involved in the formation of a strong intramolecular 

hydrogen bond that results in the formation of an 8- or 11-membered ring. The two other 

amide protons – Gly-NH and Gly-NH – have more freedom to rotate and interact either with 

solvent or intermolecularly with another molecule of the hybrid peptide (Figure 48).  

 

Figure 48: Possible hydrogen bonding arrangements adopted by hybrid peptide 120 in solution 

To discover which hydrogen bonded network was formed, concentration-dependant NMR 

studies were undertaken and solution IR spectra was recorded. The samples were prepared 

at concentrations that varied between 0.1 and 20 mM and 1H NMR spectra were recorded in 

CD2Cl2. The solution IR spectrum was recorded at 10 mM in CH2Cl2 (Figure 49). 
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Figure 49: Ac-Gly-{GlyΔGly}-Gly-NMe2 120 Hydrogen bond formation analysis 

The Gly-NH slightly varied above 5 mM, which suggests that at high concentration this 

peptide starts to interact with the solvent or intermolecularly. The hydrogen bonded 

arrangement III is probably the most populated at high concentrations (Figure 48). In 

contrast, Gly-NH and Gly-NH did not vary with concentration, even at relatively high 

concentrations, which suggests that they are protected by intramolecular hydrogen bonds.  

Bands at 3431 and 3327 cm–1 were observed in the NH-stretching region of the IR spectrum. 

The peak at higher wavenumber arises from NH that is either solvent exposed or 

intermolecularly hydrogen bonded and the other peak arises from intramolecularly 

hydrogen bonded NHs. These data show that there is a population of solvent exposed or 

intermolecularly hydrogen bonded NH and excludes network I as major conformer while 

showing that an equilibrium between folded and open systems is established. It is important 

to note that network I (Figure 48) is not the preferred arrangement but is a possible one.  

Results suggested formation of a turn structure for the peptide that contains glycine residues 

at either end so attention was focused on systems bearing more functionalised amino acids. 

The increased functionality was expected to lead to a decrease in conformational flexibility 
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of the molecule, which could alter the hydrogen bonding network. (R,S)-Ac-Val-

{GlyΔGly}-Leu-NMe2 77 was analysed first (Figure 50). The concentration-dependent 

NMR study had the same profile to that observed for (±)-Ac-Gly-{GlyΔGly}-Gly-NMe2 

120, which lacks amino acid side chains. The chemical shifts for Leu-NH and Val-NH were 

found to vary at concentrations above 5 mM in CD2Cl2, indicating that they are disposed to 

form intermolecular hydrogen bonds at higher concentrations. In contrast, the chemical shift 

for Gly-NH was observed to be completely independent of the concentration, which suggests 

that it is protected by formation of an intramolecular hydrogen bond.  

 

Figure 50: Hydrogen bond analyses on peptide 77 

Unfortunately, IR spectra obtained over a range of concentrations were inconclusive. The 

best acquisition was at 10 mM in CH2Cl2. Bands at 3421 and 3310 cm–1 were evident in the 

spectrum and these arise from solvent exposed / intermolecularly hydrogen bonded NHs and 

intramolecularly hydrogen bond NHs. Fully hydrogen bonded network I in Figure 48 can be 

excluded as major contributor. Gly-NH was protected by an intramolecular hydrogen bond, 

consequently networks II, III or IV could be adopted in solution. However, when steric 

hindrance between the side chains and data obtained from flexible peptide 120 are 

considered, it is unlikely that the peptide adopts the hydrogen bonded network IV (Figure 

43).  
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Figure 51: Hydrogen bond formation analysis of peptide 78 

The IR spectrum obtained for this peptide was of higher quality than that obtained for 

compound 77 and these results are supported data obtained by NMR analysis. The bands at 

3418 and 3306 cm–1 shows that there is an intramolecular hydrogen bonding network in this 

peptide with some flexibility of both the external residues constituting the strands. In 

comparison, Gellman and co-workers prepared the analogous tetrasubstituted alkene and 

observed that Gly-NH was the most exposed to intermolecular hydrogen bonding (or 

interaction with the solvent) and Leu-NH the most strongly intramolecularly hydrogen 

bonded (cf. section 1.6.1.2 Figure 20).  

Overall, the data demonstrate that Gly-NH is strongly intramolecularly hydrogen bonded in 

the tetrapeptide. Within the peptide, it is possible for Gly-NH to form two different hydrogen 

bonds, either with NH-CO or NMe2-CO (with formation of an 8- or 11-membered ring, II 

and III Figure 48). Therefore, the tripeptides 79 and 80, in which one carbonyl group is 

removed and hydrogen bond donor sites are restricted, were considered as a system for 

exploration of the hydrogen bonded network. 
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Figure 52: Possible hydrogen bonded ring formed with Gly-NH and possible conformers of 
79/80 

The enantioenriched variants of the peptides were analysed and similar results were obtained 

and so only results for (R,S)-Ac-Val-{GlyΔGly}-NMe2 79 are shown (Figure 53).  Analysis 

of the NMR spectra showed that the chemical shift for Val-NH showed a slight variation 

with concentration and Gly-NH chemical shift showed no variation. This suggested that 

these NH were both involved in intramolecular hydrogen bonding. Therefore, the two 

conformations presented in Figure 52 were likely to be in equilibrium in CH2Cl2 solution. 

 

Figure 53: Hydrogen bond formation analysis of peptide 79 
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Furthermore, when the NH-stretch IR spectrum at 10 mM in CH2Cl2 is considered, the band 

at 3418 cm–1 suggests that intermolecular interaction occurring in solution and so the 

network II is probably not the only one present. This conclusion is supported the NMR 

chemical shift data.  

In this work, cyclopropane-containing peptides have been analysed by NMR and IR 

spectroscopy. Evidence for intramolecular hydrogen bonds obtained by IR and NMR 

analysis in dipeptides and in longer peptides. However, the analogues presented in this work 

have demonstrated an interesting feature: replacement of the peptide bond with 

cyclopropane seems to favour formation of an 8-membered hydrogen-bonded ring as 

opposed to more common 10-membered cyclic system observed natural β-turns. Overall, the 

data suggest that the cyclopropyl unit is an efficient and compact tool to constrain small 

peptides to adopt a turn conformation stabilised by strong intramolecular hydrogen bonds.  

2.7.3. Use of Circular Dichroism to Probe Peptide Structure 

Circular dichroism (CD) is an essential tool for structural analysis of the secondary structure 

of peptides and proteins.175 Over the past few decades, systems that contain β-turns, 

especially type I and II turns, have been the subject of structural studies,  and characteristic 

CD spectra have been identified for these types of turn in both MeCN and H2O.176,177,178 For 

type I β-turns, two different shapes have been described: one has a negative band around 

205–210 nm, while the other has a positive band at around 195 nm and large negative band 

at around 225 nm (Figure 54). Type II turns can be identified by a positive band at around 

200 nm going to neutral ellipticity, and β-sheet structure presented the same positive band 

at 200 nm and a negative band around 210–220 nm.179  
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Figure 54: Type I, Type II and extended configuration CD spectra180 

To obtain additional information about our peptide mimics and study their secondary 

structure, the peptides previously described were analysed by circular dichroism. Previous 

conformational studies had demonstrated that turn sequence having a Gly in i + 2 position 

was more likely to produce a type II β-turn.181 The analogues designed in this work contained 

Gly mimic in i + 1 and i + 2 position, therefore it was possible to compare the results with 

those reported previously. The CD spectra were recorded and analysed with the help of Dr. 

Sharon Kelly at the University of Glasgow. 

Tri- and tetrapeptide analogues 77-80 were analysed by CD spectroscopy at 1 mg/mL in 

three solvents with differing polarity. The solvents selected were water, acetonitrile and 

trifluoroethanol (TFE). Acetonitrile was selected because the peptide should exhibit similar 

behaviour to that in CH2Cl2 (chlorinated solvents are not compatible with CD). 

Trifluoroethanol (TFE) was selected as a solvent because in enhances intramolecular 

interactions and secondary structure even in small systems. In water, the peptide was 

expected to adopt an extended conformation due to extensive solvation.   
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Figure 55: Far-UV CD spectrum of (S,R)-Ac-Val-{GlyΔGly}-Leu-NMe2 78 as a 1 mg/mL 
solution  in various solvents. 

The CD spectrum for tetrapeptide 78 in H2O (blue in Figure 55) was found to have a large 

positive band at 205 nm which looks similar to a type II turn shown in Figure 54. However, 

the peptide was probably sampling some other random conformations given the largely 

negative peak towards 190 nm. The peptide seems to adopt a turn structure in water, which 

was not expected for such a small peptide in a polar solvent. In MeCN (purple), the spectrum 

experienced a more intensive positive and negative peaks at 205 and 235 nm respectively. 

This CD spectrum suggests that the peptide contains features similar to a type II β-turn and 

β-sheet in this solvent. The peptide appears to be more structured in trifluoroethanol (1:1 

TFE/H2O in red and 100% TFE in green) with an ellipticity almost two times higher than 

that in H2O at 200 nm. Analysis of (S,R)-Ac-Val-{GlyΔGly}-Leu-NMe2 77 by CD suggests 

formation of a type II turn in all solvents, but the large negative peaks at around 190 nm in 

H2O and MeCN suggest that the peptide experiences other conformations so a complex 
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mixture of conformers seems to be present in solution. The same conditions were used to 

analyse (R,S)-Ac-Val-{GlyΔGly}-Leu-NMe2 77 and similar results were obtained (Figure 

56). Once again, CD data suggests that the peptide is more structured in TFE than in other 

solvents, and that it displays the characteristic features of a type II β-turn or β-sheet. The CD 

spectra obtained for samples in H2O and MeCN suggest that the peptide is probably 

experiencing another random conformation because a large negative is observed around 190 

nm.  

 

 

Figure 56: Far-UV CD spectrum of (R,S)-Ac-Val-{GlyΔGly}-Leu-NMe2  77 78 as a 1 mg/mL 
solution  in various solvents. 

The formation of turns in the cyclopropyl analogues that had been established by the 

hydrogen bonding network analysis described previously, was supported by the CD data. In 

addition, CD spectra provided supplementary information about the folding pattern of the 

tetrapeptides by displaying features found in a type II β-turn. Nevertheless, in all of the 

solvents studied, the peptides were found to adopt complex mixtures of conformations. 
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Variants of the tripeptides 79 and 80 displayed strong intramolecular hydrogen bonding as 

shown by the NMR and IR studies and so it was expected that features indicative of turn 

formation would be observed by CD spectroscopy. In this case, only solution in H2O and 

TFE (1 mg/mL) were used as solvents and features of any type of β-turn were absent in the 

CD spectra obtained in both solvents (Figure 57). Even in TFE, a solvent in which peptides 

are supposed to be more structured, negative bands at 198 and 215 nm were observed in the 

CD spectra of both isomers. These bands correspond to π-π* and n- π transitions and are 

usually assigned to random coil formation.182  

 

Figure 57: CD Spectra of variants of 79 and 80 in TFE (red) and H2O (blue) (1 mg/mL) 

However, the peaks were more intense in TFE than in H2O and, given the small size of the 

peptides and the intramolecular interactions observed by NMR and IR spectroscopy, we can 

assume that the peptide is adopting a turn structure but that it is not the preferred 

conformation adopted by the peptide within the whole population in solution. An 

equilibrium with a disordered conformation would display this type of spectrum.  
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2.7.4. NMR analysis of tetrapeptides 77 and 78 

In addition to chemical shift analysis, information can be obtained about molecular 

conformation by the use of 2D NMR experiments. The compounds described here were 

analysed by a variety of 2D experiments (COSY, TOSCY, HSQC, HMBC and NOESY). 

These experiments were performed by Dr Brian Smith at the University of Glasgow. 

Previous studies have allowed to determine and assign various NOE cross peaks depending 

on the type of β-turn that was present (figure 58).178,183  

 

Figure 58: Characteristic NOE cross peaks found in type I (red), I' (blue), II (green) and II' 
(orange) turn  

It is important to remember that in the analogues synthesised for this work a cyclopropane 

is employed as a peptide bond isostere. As a consequence, the bonds of one NH and one CO 

have been replaced by CC and CH bonds (that cannot be used to study β-turn) and two atoms 

in the amide that have sp2 character have been replaced by a sp3 atoms, which can alter the 

dihedral angles significantly and thus change the turn adopted. Cross peaks observed with 

CH protons cannot be used as evidence for β-turn formation. (R,S)-77 and (S,R)-78 were 

prepared and analysed. The same cross peaks were observed in the two variants and the 

absolute configuration of the stereocenters in the trans-cyclopropane did not influence the 

folding pattern of the peptide, a finding that supports the data obtained by IR and CD 

spectroscopy. 
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Figure 59: NOE Cross peaks of 77 measured in 1 mM in CD2Cl2 at 293 K (red) and in 1mM 
H2O/5 % D2O at 278 K (blue) 

Two interesting cross peaks were observed, NHi-NHi+1 and NHi+1-NHi+3 in TFE (Figure 59). 

These peaks do not correspond to any features of natural peptides described in literature, but 

the last interaction establishes the close proximity between Gly-NH and Leu-NH in space 

and provides further evidence for formation of an 8-membered ring that stabilises the folded 

conformation of the tetrapeptide. This is also supported by an NH-CHi+2 cross peak that is 

observed in spectrum obtained in CD2Cl2. Sequential cross peaks NHi-Hαi–1 were observed 

in water and CD2Cl2. These cross peaks are characteristic features of β-hairpin strands and 

of a type II turn (green in Figure 58). This supported the data obtained by CD spectroscopy 

which showed that the peptide adopts a type II or II’ turn (as they differ by rotation of 180° 

the CD spectrum would be identical). Nevertheless, a NHi-NHi+3 interaction cannot be 

observed because the peaks for these two NHs have very similar chemical shifts (6.67 and 

6.47 ppm respectively), and it was difficult to identify cross peaks in this region.  

The NOE interactions within peptide 77 were studied as TFE-d3 solution. This solvent 

promotes formation of the strongest intramolecular interactions. The NMR experiments 

were also performed at a lower temperature (278 K) to further enhance intramolecular 

interactions and obtain clearer signals. It was observed that Leu-NH and Val-NH were 

exchanging with the deuterium of TFE-d3 slowly over time (Figure 60, blue t = 0, red t = 20 

min, green t = 8 h), whereas Gly-NH exchanged immediately. This can be explained if the 

Leu-NH and Val-NH are protected from exchange with the solvent because they form 

intramolecular hydrogen bonds, while the Gly-NH was exposed to solvent. This suggested 

intramolecular hydrogen bonding to form of a 10-membered ring, which contrasts with the 

findings of the NMR shift experiments that had been performed in CH2Cl2 described earlier. 

This finding suggests that intramolecular interactions and the conformation adopted by our 

analogues are highly dependent on the solvent used.  
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Figure 60: NMR Spectrum of 77 at 10 mM in TFE-d3 showing H/D exchange of Leu-NH and 
Val-NH. t = 0 min (blue), t = 20 min (red), t = 8 h (green) at 278 K.  

2D NOESY spectra of 77 were also acquired in TFE-d2 because substrate cannot undergo 

deuterium exchange with the solvent. The same cross peaks that had been observed in 

CD2Cl2 were observed in this solvent, which was not surprising considering that the CD 

spectra were similar in all solvents, and suggests the same conformation is adopted. 

Nevertheless, the intramolecular hydrogen bonding pattern is different (Figure 61).  

 

Figure 61: NOE Cross peak of 77 observed at 10 mM in TFE-d2 at 278 K. 

Results were inconclusive and suggested that a defined, exclusive and stable type of turn 

was not being adopted by these peptides. The spectroscopic data provided evidence for 

intramolecular hydrogen bond formation and suggested that structured and folded 

conformations are formed but that this varied depending on the solvent. Consequently, it had 

been demonstrated that replacement of a planar peptide bond by a non-planar cyclopropane 

was an efficient way to constrain the system and form intramolecular hydrogen bonds in 

organic solvents even in small dipeptide mimics.  
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2.8. Towards Leu-Enkephalin Mimicry 

Leu-enkephalin is a pentapeptide that binds to opioid receptors, with a particular affinity for 

the δ-opioid receptor.184 Leu-enkephalin can adopt a β-turn at two different positions with 

the formation of two hydrogen bonds and so is simple yet biologically important system in 

which the effectiveness of the cyclopropane dipeptide mimetics in promoting β-turns could 

be explored (Figure 62). The intention at the outset was to prepare two Leu-enkephalin 

analogous in which the Gly-Gly or the Tyr-Gly peptide units were replaced with a suitable 

cyclopropyl mimic.  

 

 

Figure 62: Leu-enkephalin and cyclopropyl analogues 
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2.8.1. Synthesis of {GlyΔGly}-Leu-enkephalin 132 and 133  

The first targets – {GlyΔGly}-Leu-enkephalin 132 and 133 – were synthesised from the 

Boc2-{GlyΔGly}-OH 107 building block. Boc-Phe-Leu-OMe 135 was first obtained in 88% 

yield by peptide coupling using HATU and DIPEA at rt (Scheme 38a). 

 

Scheme 38: {GlyΔGly}-Leu-enkephalin Analogues synthesis 

The synthesis commenced with Boc removal from dipeptide 136 using TFA and then 

coupling to the acid (R,S)- or (S,R)-107 using HATU to give respectively 137 and 138 

following the same scheme described for the synthesis of the other analogues (Scheme 38b). 

Removal of both Boc groups and coupling of the resulting amine to Boc-protected tyrosine 

afforded the protected analogues 139 and 140 respectively in good yield. The protected 

peptides were fully deprotected in one pot using 4 M HCl to give (R,S)-{GlyΔGly}-Leu-

enkephalin 132 and (S,R)-{GlyΔGly}-Leu-enkephalin 133 after purification by semi-

preparative HPLC in yields of 40% and 48% respectively.  

For comparison purposes, natural Leu-enkephalin 141 was also synthesised on a peptide 

synthesiser using Fmoc-Leu Wang resin (0.84 mmol/g loading) in a 0.1 mmol scale. The 

peptide was obtained in 43% yield after purification on semi-preparative HPLC.  
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2.8.2. Conformational Analysis of {GlyΔGly}-Leu-enkephalin 132 and 

133  

The conformational studies of the Leu-enkephalin analogues were performed in order to 

explore whether a β-turn was formed. CD spectra were recorded of solutions in H2O and 

TFE at 1 mg/mL (Figure 63). The CD spectra of (R,S)-{GlyΔGly}-Leu-enkephalin 132 in 

water showed a large negative around 190 nm that suggests a random conformation (green, 

Figure 63). The random population of conformations might be increased by the presence of 

the free N- and C- termini. The peptide displayed a more ordered structure in TFE, but it did 

not correspond to any type of β-turn described previously. This does not mean that the 

peptide is not adopting the expected conformation but it might adopt a different, currently 

undefined arrangement at equilibrium. Furthermore, the peptide contains two chromophore 

residues (Phe and Tyr) which could modify the CD signal due to their intermolecular and / 

or intramolecular interactions resulting in a unique CD profile. Nevertheless, the positive 

and negative peaks were observed at around 198 and 220 nm in TFE and H2O, which 

suggests similar conformational features are formed in both solvents.  

The diastereoisomeric compound, (S,R)-{GlyΔGly}-Leu-enkephalin 133 displayed a similar 

CD spectrum in water, which again suggests that the peptide does not adopt a well-defined 

structure due to interactions with the solvent (blue, Figure 63). The spectrum obtained from 

a sample in TFE was slightly different with three sharper positive peaks at 192, 205 and 223 

nm, suggesting a better-defined structure in this isomer when compared to the diastereomeric 

compound.  
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a)  

b)  

Figure 63: Far-UV CD comparison in a) TFE and b) H2O of Leu- enkephalin 141 (orange), 
(R,S)-132 (green) and (S,R)-133 (blue) 

  

H2N
H
N

O

H
N N

H

O

COOH

OH

O

(R,S)-{GlyΔGly}-Leu-enkephalin 132
(S,R)-{GlyΔGly}-Leu-enkephalin 133

H2N
H
N

O

H
N N

H

O

COOH

OH

O

Leu-enkephalin 141

N
H

O

-10

-8

-6

-4

-2

0

2

4

185 200 215 230 245 260

C
D

 [m
de

g]

Wavelength (nm)

(R,S)-{GlyDGly}
(S,R)-{GlyDGly}
Leu-enkephalin

-4

-2

0

2

4

6

185 200 215 230 245 260C
D

 [m
de

g]

wavelength (nm)

(R,S)-{GlyDGly}
(S,R)-{GlyDGly}
Leu-enkephalin



 

 114 

Comparison of the data obtained for the two analogues with the data for the native peptide 

in TFE (Figure 63a) and H2O (Figure 63b) was undertaken with a sample concentration of 

1 mg/mL. Similar features were evident in the spectra of all three peptides in water, with a 

large negative peak at 190 nm (suggestive of a random conformation) and a positive peak at 

around 220 nm was common to all peptides, which suggests that they adopt similar 

conformations in water. In TFE, the positive peaks at 192 and 220 nm were preserved in all 

of the peptides, which is evidence for a structure that is better defined for all peptides. 

However, differences between the conformations were clearly observable in the region of 

the spectrum around 200 nm. These results indicated that cyclopropane-containing 

analogues adopted similar conformational features to those found in the native peptide and 

demonstrated that the cyclopropane moiety is able to stabilise the conformation adopted by 

the peptide.   

Conformational NMR studies were undertaken in order to identify secondary structures that 

could be adopted by the peptides. Only sequential cross peaks (i.e. those between adjacent 

residues) were observed for the three peptides, providing no evidence to support any 

secondary structure adopted by Leu-enkephalin and its analogues. The Leu-NH, Gly2-NH 

and Phe-NH had similar chemical shifts in both solvents showing that they are in the very 

similar chemical environment (Figure 64). However, the downfield shift of the NH peaks 

when the spectra were recorded in TFE suggests a more ordered conformation. Both isomers 

of {GlyΔGly}-Leu-enkephalin 132, 133 and Leu-enkephalin 141 did not exhibit the 

characteristic features of β-turn when analysed by either NMR or CD spectroscopy. Indeed, 

no evidence of typical NOE crosspeaks of turns were shown and the CD spectra did not 

correspond to any type of turn described in literature.  
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a)              

 

b)   

Figure 64: NH Chemical shifts for (R,S)-132, (S,R)-133 and 141 in a) TFE and b) H2O/5 % D2O 
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2.8.3. Towards the Synthesis of {TyrΔGly}-Leu-enkephalin 134 and 

135 

Leu-enkephalin contains two glycine residues and the CH2 bonds within the residues allow 

free rotation about these bonds. The replacement of glycine with more substituted tyrosine 

restricts the number of accessible conformations of the molecule. The cyclopropane-

containing mimic with a Tyr side chain was also investigated to see if location of the mimic 

in a different position within the hybrid structure would have an effect. The synthesis 

commenced with the intermediate alkene 142 which was subjected to stereoselective 

cyclopropanation reaction (Scheme 39). It was expected that diastereoisomers of 143 would 

be formed and that separation of the diastereoisomers would be possible. The isomers could 

then be submitted to peptide coupling to obtain compound 144 and subsequent deprotection 

in order to obtain Leu-enkephalin analogues. Another approach was to proceed a 

cyclopropanation on terminal alkene using carbenes chemistry. Once the carboxylic acid 

143 obtained, it be submitted to Arndt-Eister homologation to produce the amide 144.185,186 

Finally, a standard peptide coupling procedure would be used to deliver the mimic 

{TyrΔGly}-Leu-enkephalin 134 and 135. 
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Scheme 39: Initial strategy for the synthesis of {TyrΔGly}-Leu-enkephalin 134 and 135 

Alkene 142 was obtained following the synthesis described by Dory et al..85 It consisted of 

sequential PMB protection of the Tyr, DiBAl-H reduction of the ester and Wittig reaction of 

the aldehyde to give a terminal alkene. This alkene was then subjected to a cross metathesis 

reaction with benzyl but-3-enoate.  

It was expected that cyclopropanation of the alkene would be unselective leading to a 

mixture of diastereoisomers that could be separated for further study. 
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Table 17: Cyclopropanation conditions on alkene 142 

 Entry Conditions Results 

1 Et2Zn, CH2I2, CH2Cl2 
–78 °C to rt 20% conversion 

2 CH2N2, Et2O, Pd(OAc)2 Decomp. 

The general procedure for Simmons-Smith cyclopropanation, in which diethyl zinc is used 

in combination with diiodomethane, was employed in an attempt to cyclopropanate the 

alkene 142 but there was poor conversion and the expected product was not obtained (Table 

17 entry 1).187  The use of diazomethane to cyclopropanate vinyl amides has been 

described.188 The reaction was attempted on allylic ester 142 using Pd(OAc)2 as the catalyst 

(Table 17, entry 2). TLC analysis of the reaction showed that multiple products had been 

generated but the cyclopropane 143 was not isolated following column chromatography. 

After the failure of the reactions above, an alternative cyclopropanation method was 

explored. Following the success of cyclopropanation of a terminal alkene by a Rh2(OAc)4-

catalysed reaction with ethyldiazoacetate, these conditions were applied to the 

functionalisation of the alkene 145 (Table 18, entry 1). A solution of ethyl diazoacetate was 

added slowly to a solution of the alkene and the catalyst at low temperature and the mixture 

was stirred for 18 h. The crude product was purified by column chromatography and traces 

of compound 146 were detected by mass spectroscopy, but the compound could not be 

further purified to give the required product. 
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Table 18: Cyclopropanation on terminal alkene 

Entry Diazoester Cat. Ligand Diazoester:143 Results 

1 Ethyl Rh(OAc)2 

3 wt% 
- 2:1 Traces of 146a 

2 Ethyl CuOTf 
1 mol% 

147 
1 mol% 

2:1 Traces of 146a 

3 BHT 
CuOTf 
1 mol% 

147 
1 mol% 5:1 - 

4 BHT CuOTf 
5 mol% 

147 
5 mol% 5:1 - 

aDetermined by low res. MS 

In 1991, Evans et al. described the use of a chiral copper(I) bisoxazoline complex to perform 

the asymmetric cyclopropanation of alkenes with good enantioselectivity.189 This reaction 

required the formation of the copper-ligand complex prior to addition of the alkene and 

diazoester under an inert atmosphere (Table 18, entry 2). This reaction was attempted and a 

trace of the desired product was detected but it could not be isolated.  

 

Scheme 40: Synthesis of the BHT diazoester 150 

The diazoacetic acid ester derived from BHT has been described as a good substrate for 

carbene reactions (Scheme 26).190 The synthesis of the reagent commenced with the 

treatment of BHT with 2,2,6-trimethyl-4H-1,3-dioxin-4-one. The keto ester 148 was 

obtained in 44% yield from this reaction as a mixture of keto and enol tautomers (45:55 

keto/enol). This compound was then submitted to a reaction with tosyl azide to give 

intermediate 149, which was not isolated but instead submitted to a hydrolysis reaction in 

8% aq. KOH to produce the diazoester 150 in 66% yield. The cyclopropanation reaction was 
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performed on alkene 145 using diazoester 150. The copper sources CuOTf or Cu(OTf)2 were 

used along with the ligand 143 and catalyst loadings of 1 and 5 mol% were employed (Table 

18, entries 3 and 4). Unfortunately, poor conversion was observed and the required 

cyclopropane was not obtained.  

Cyclopropanation can be accelerated by the presence of an allylic alcohol in the substrate. 

The presence of a polar group results in coordination between the alcohol and the catalyst 

complex or reagent which delivers the reactant in an intramolecular fashion.191 In an attempt 

to exploit this reactivity, the allylic alcohol 151 and its corresponding protected version 152 

were synthesised from alkene 145, a compound obtained previously, by cross metathesis 

using Hoveyda-Grubbs second generation catalyst (Scheme 41). This reaction gave only the 

(E)-alkene isomer in modest yield and silyl protection afforded the alkene 152 

 

Scheme 41: Cross metathesis and subsequent cyclopropanation 

The Simmons-Smith cyclopropanation reaction was performed on free alcohol 151 and on 

the protected alcohol 152. Unfortunately, complex mixtures of products were obtained and 

neither of the required cyclopropanes 153 and 154 was obtained even after purification.  

The final attempt to perform a cyclopropanation reaction involved the acrylate substrate 155 

(Scheme 42). The substrate was synthesised from alkene 145 by cross metathesis using 

Grubbs II catalyst.  
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Scheme 42: Corey Chaykovsky Cyclopropanation 

The (E)-alkene 155 was obtained in 40% yield and this compound was then submitted to a 

Corey-Chaykovsky cyclopropanation reaction.192 This procedure can be used for the 

synthesis of epoxides, aziridines and cyclopropanes and a chiral or achiral ylide salt can be 

reacted with α,β-unsaturated esters. Unfortunately, when alkene 155 was submitted to the 

cyclopropanation reaction, only traces of the compound 156 were detected by LCMS after 

column chromatography. Due to the failure of all routes to required cyclopropyl 

intermediate, this approach was abandoned.  
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Chapter 3  

Tryptophan Zipper, turn replacement and 

analysis  

3.1. Introduction 

Results obtained by incorporation of cyclopropyl amide bond isosteres into small peptides 

were promising and there was evidence that {Gly∆Gly} mimic was enhancing the formation 

a β-turn in some cases. However, short peptides rarely adopt stable secondary structure in 

solution.193 and so was essential to identify a better system to evaluate the mimic. An ideal 

peptide would be longer, more stable, well-defined and fully characterised in literature, in 

order to evaluate the conformation adopted by the new peptide following incorporation of 

the dipeptide mimic and compare it to the native peptide.  

To this end, the TrpZip peptide 157 was selected and its analogues were investigated. TrpZip 

stands for Tryptophan Zipper, a system designed by Cochran at al.194 that is a water soluble 

12-residue peptide (H-SWTWEGNKWTWK-NH2). This peptide adopts a stable and 

monomeric β-hairpin, which is the minimal structural unit of an antiparallel β-sheet.195 The 

hairpin is stabilised by two cross-strand Trp-Trp pairs,  the indole groups of which stack in 

an edge-to-face manner (Figure 65).196 Aromatic stacking is one of the strongest side-chain 

interactions in tertiary structure adopted by peptides and proteins.197,198 These interactions 

along with multiple intramolecular hydrogen bonds make the structure remarkably stable 

(Tm = 323 K) and TrpZip 153 has been reported to be the smallest peptide to adopt an unique 

tertiary structure without additional metal binding or formation of a disulfide bridge.194  
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Figure 65: TrpZip 157 and Trp interactions 

The interactions between indoles are considered to be hydrophobic in nature.199 Folding of 

a β-hairpin can be initiated in two different ways: either the residues present in the peptide 

have a high propensity to form a turn structure which then brings the β-strands into close 

proximity (hydrogen bonds or side-chain interactions), or hydrophobic interactions between 

complementary residues on each strand allow formation of cross-strand hydrogen bonds 

which results in turn formation.200  Hydrophobic interactions are known to be a powerful 

driving force for formation of secondary structure201 and TrpZip 157 has features which 

make it an excellent model for hydrophobic collapse and contribute to the structural stability 

of the β-hairpin.  

Due to interactions between the indoles, its 3D structure and its overall sequence, TrpZip 

157 displays a unique circular dichroism (CD) spectrum with intense positive-negative 

exciton coupled bands (Figure 66) in the far UV at 228 and 214 nm.202  
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Figure 66: Far-UV CD spectrum of TrpZip 157 

Because of the strong coupling of the chromophores in this region, the CD spectrum arising 

from their π–π* transitions masks the weaker amide CD bands that are usually used for the 

determination of the secondary structure (positive bands at 195–220 nm).203 Which is why, 

the spectrum does not show the usual features expected of a β-sheet or a β-turn.  

TrpZip and three analogues that vary in their turn sequence were synthesised and analysed 

(Figure 67). TrpZip was used as a reference peptide and GG-TrpZip 158 was synthesised in 

order to see the effect of replacing the Asn residue by a more flexible and achiral Gly residue. 

A new hybrid peptide 159 and 160 was then synthesised in which the turn sequence was 

replaced by the {Gly∆Gly} dipeptide mimic described previously. The TrpZip analogues 

158-160 were analysed and compared with the native form.  
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Figure 67: TrpZip and analogues synthesised 

TrpZip was reported to fold to give a β-hairpin with a type II’ turn involving the E-G-N-K 

amino acid sequence.194 The aim of this study was to understand what happens when one or 

more of the amino acids is replaced in the turn sequence and to determine whether this is 

detrimental to β-hairpin formation.194,197,201,204 In particular, replacement of a peptide bond 

by a cyclopropane was to be explored to discover whether it stabilises the system or 

destabilises the β-hairpin to produce a random coil. To this end, all peptides were synthesised 
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and then analysed under the same conditions to obtain results that would permit direct 

comparison.  

3.2. Synthesis of the TrpZip and its analogues 

Microwave assisted solid phase peptide synthesis was used to synthesise the four compounds 

of interest. TrpZip 157 and GG-TrpZip 158 were synthesised using Tentagel S RAM resin 

(0.24 mmol/g loading) and Fmoc chemistry. A total of 4 equivalents of Fmoc protected L-

amino acids and 4 equivalents of HCTU as coupling agent were used for the coupling 

reaction. After purification by reverse phase HPLC and lyophilisation, peptide content was 

determined by measuring the absorbance in 300 μL of H2O using a Nanodrop at 280 nm. 

The cycle in the synthesiser includes: Swelling of the resin, deprotection of the resin, 

coupling at 75 °C, deprotection of the amino acid that has been coupled, washing after each 

coupling and deprotection step, and precleavage in CH2Cl2. The resin was cleaved using 

TFA/TIS/H2O (95:2.5:2.5) cocktail, which was then removed with a flow of N2.  

The synthesis of the {G∆G} analogues 159 and 160 was slightly different. H-KWTWK-

Tentagel first sequence was synthesised on the peptide synthesiser using the method 

described before. Once the last Lys residue had been deprotected, (R,S)-Fmoc-{Gly∆Gly}-

OH 161 and (S,R)- Fmoc-{Gly∆Gly}-OH 162 were coupled manually (1.1 and 2 equivalents 

respectively of dipeptide and 2 equivalents of HATU were used). The coupling was mixed 

overnight at rt for maximal conversion. Unreacted peptide was capped using acetic 

anhydride to avoid further coupling on it (truncated product was determined by LC-MS). 

The resin was then put in the synthesiser and the rest of the sequence was constructed 

following the same procedure as described previously.  
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3.3. Circular dichroism 

3.3.1. Materials and methods 

Far- and near-UV spectra were acquired with a Jasco J-810 spectropolarimeter using 

respectively a 0.01 cm and 0.1 cm pathlength cell. Peptide concentrations were determined 

by measuring the absorbance at 280 nm using a Nanodrop instrument (0.77–0.93 mg/mL in 

20 mM phosphate buffer, pH 7). Thermal denaturation was measured in the near UV, using 

a 0.1 cm pathlength cell and the temperature varied from 5 °C to 80 °C in steps of 5 °C. 

Melting curves were acquired at 295 nm.  

3.3.2. Results and discussion 

TrpZip 157 exhibited a unique CD spectrum in near- and far-UV due to the interactions 

between the Trp residues. Two aromatic rings can interact to form a chiral pair of 

chromophores, which can be seen in the near UV (characteristic bands are observed between 

250 and 320 nm),9 which indicated that the pairs of Trp of the peptides were in a chiral 

environment and in a well-defined tertiary structure. It was apparent that two cross-strand 

pairs of Trp were stacking with each other in this peptide resulting in bands at 287 and 295 

nm. Bands in this region are generally taken as evidence for presence of a fixed and stable 

tertiary structure in proteins. 
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Figure 68: Near- and far-UV CD spectra, TrpZip 157 (blue), GG-TrpZip 158 (red), (R,S)-
{G∆G}-TrpZip 159 (pink), (S,R)-{G∆G}-TrpZip 160 (green) 

The CD spectra were normalised at the most intense peak for both regions (Figure 68). The 

exciton bands at 214 and 228 nm were observed in the far-UV as well as the two negative 

bands at 287 and 295nm in the near-UV that were conserved in all the peptides. The 

interactions between the Trp were maintained and they were in the same environment. 

Comparison of the CD data for the analogues with that of the native form showed that the 

interactions were not changing in their nature; even though the turn sequence was modified, 
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either by swapping one residue or by replacing a planar peptide bond by a chiral non-planar 

cyclopropane unit. It was clear that cross-strand Trp pairs were still interacting with each 

other in the analogues 158, 159 and 160. Because this kind of interaction stabilises the β-

hairpin and initiates the formation of it, it was possible to state that the analogues were also 

forming the β-hairpin. However, it was not clear whether they are as stable as the TrpZip 

157.  

TrpZip peptide 157 had been reported to exhibit a reversible thermal unfolding. The CD 

spectra in the near-UV were recorded at 5 °C (blue), prior heating to 80 °C at which stage 

the peptide will be unfolded, and once it had been cooled back to 5 °C (red) (Figure 69). 

a)  

b)  
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c)  

d)  

Figure 69: Near UV CD of a) TrpZip 157, b) GG-TrpZip 158, c) (S,R)-{G∆G}-TrpZip 160 and d) 
(R,S)-{G∆G}-TrpZip 159 at 5 °C, prior  prior (blue) and following heating to 80 °C and cooling 

to 5 °C (red).  

Following unfolding, the analogues behaved in a similar manner to the TrpZip 157 and they 

refolded to give exactly the same structure. The analogues all exhibited reversible thermal 

unfolding because the curves matched perfectly before and after heating. The near-UV CD 

spectrum is influenced by the behaviour of the side chains with regard to their position before 

and after heating. The data show that the interactions between the side chains were not 

modified after refolding. The analogues and the native peptide exhibited very similar 

stabilities in terms of their folding, which means they adopt the same preferred and stable 

conformation.  
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The evidence that the Trp side chains of the analogues were in a similar arrangement to those 

of the native form of TrpZip 157 prompted a more detailed study of the stability. The melting 

temperature (Tm) is the temperature at which 50% of the peptide is in an unfolded state. The 

higher it is, the greater the stability of the peptide. The data were acquired from 5 to 80 °C 

in increments of 5 °C for each peptide in the near UV (Figure 70). The arrow indicates the 

trend as a function of increasing temperature.  

 

Figure 70: Thermal denaturation monitored by near-UV CD of TrpZip 157, GG-TrpZip 158, 
(S,R)-{G∆G}-TrpZip 160 and (R,S)-{G∆G}-TrpZip 159 

All peptides followed the same trend and the CD intensities decreased upon heating, which 

indicates a secondary structural change from the hairpin to a disordered conformation by 

destabilising the intramolecular interactions. The data suggest a loss of the Trp cross-strand 

pairs interactions resulting in conformational mobility and a loss of signal. With this data it 

was possible to plot the thermal denaturation at a specific wavelength, which was chosen to 

be 295 nm (the most intense negative peak in near-UV, Figure 70), and also the fraction of 

peptide that is folded as function of the temperature, and thereby establish the stability of 

the peptides. Both sets of data demonstrated that the three analogues follow the same trend 

as the native peptide because the slope was similar for all peptides which indicates similar 
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stability (and consequently Tm). The two graphs allowed the degree of folding and the Tm 

to be estimated.  

 

Figure 71: Thermal denaturation at 295 nm and fraction folded as function of the temperature 
of TrpZip 157 (blue), GG-TrpZip 158 (red), (R,S)-{G∆G}-TrpZip 159 (pink), (S,R)-{G∆G}-

TrpZip 160 (green) 
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The fraction folded at any given temperature α was calculated by use of the following 

(equation 1):205  

𝜶 =	
𝜽𝒕 − 𝜽𝑼
𝜽𝑭 − 𝜽𝑼

 

Equation 1: fraction folded equation 

Where θt is the observed ellipticity at any temperature, θF is the ellipticity of the fully folded 

form (chosen to be that at 278K), and θU is the ellipticity of the unfolded form (chosen to be 

that at 353 K, the highest temperature used). Subsequently, the Tm was calculated from the 

graph, it corresponds to the temperature where α = 0.5. For the TrpZip native form 157, the 

Tm was calculated to be 316.8 K (43.7 °C) which is similar to that reported in literature.194 

The GG-TrpZip analogue 158 showed slightly higher stability than the native peptide, with 

a Tm of 319.8 K (46.7 °C)  i.e. 3 K higher than the original peptide. The Gly residue that 

had been used to replace the Asn residue in this analogue gave more flexibility in the turn 

sequence than that in the native peptide which results in less constraint in the interaction 

between the side chains of the peptide allowing it to adopt the most favourable and stable 

conformation. Both (R,S)-159 and (S,R)-160 (pink and green respectively in  Figure 71) of 

the {G∆G} surrogate were incorporated into the peptide. The resulting analogues had similar 

stability with a Tm differing of less than 1.5 K (respectively 311.6 K/38.5 °C and 312.9 

K/39.8 °C). Both of calculated Tm values were lower than for the native peptide and so they 

are slightly less stable than either the native or GG-TrpZip peptide 158. This outcome is 

expected because replacement of the peptide bond with a cyclopropane delivers a  more 

constrained system in which there is likely to be a difference in the strength or in the angle 

of the Trp interactions because the rings don’t have the same degree of liberty to stack in the 

edge-to-face approach.  

The results described above showed that there are stability differences between the various 

peptides but they adopt very similar conformations. The GG analogue 158 was found to have 

a higher stability than the native form, whereas the {G∆G} analogues 159 and 160 were 

found to be slightly less stable, suggesting a change in the interactions between the Trp, or 

a difference in the free energy of folding of the peptides (in ∆S or ∆H, and therefore in ∆G) 

MD calculations were undertaken in order to understand the differences in the interactions 

(and thus the stability) and if these have an impact on the type of β-turn formed. Dr Drew 

Thomson has kindly provided all this data as part of a collaboration on this project.  
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3.4. MD calculation, a tool to understand the 
stability and folding pattern of peptides  

The small size of this peptide allowed full-atom computation to be carried out. MD 

calculations have been performed in order to predict the conformation of the TrpZip 157 and 

its analogues 158-160. Moreover, the measurements gave information on the nature of the 

β-turn formed. In this case, the turn sequence was examined closely by measuring the 

distance between the Glu-CO and Lys-NH and calculating the associated N-H-O angle 

(Figure 72), thus evaluating the formation of a crucial hydrogen bond within the turn or not. 

 

Figure 72: NH--OC distance and NHO angle within the turn studied 

In proteins and peptides, the hydrogen bond between the COi and NHi+3 residues of the turn, 

has a length of 2.5 to 3.2 Å, the N-H-O angle from the same residues is about 130–180 °.206 

Distance and angle were recorded for every 10th frame and plotted for each peptide (Figure 

73). The red line corresponds to the maximum length of a hydrogen bond (3.2 Å).  
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Figure 73: NH-CO distance in the turn for TrpZip 157, GG-TrpZip 158, (S,R)-{G∆G}-TrpZip 
160 and (R,S)-{G∆G}-TrpZip 159 

The distance between the Glu-CO and Lys-NH for the TrpZip peptide 157 (Figure 73, top 

graph), were within the range expected for a hydrogen bond (with an average distance of 

2.91 Å within the 50000 frames). This vindicated our choice of the peptide as a reference 

because a β-turn was undoubtedly formed in this model system. GG-TrpZip 158 (Figure 73, 

2nd graph) was for most of the frame within the hydrogen bond distance range (with an 
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average distance of 2.75 Å). It had been shown already that changing a residue within the 

turn was not detrimental to β-hairpin formation, but the results presented here supported this 

finding and showed that the crucial hydrogen bond is formed within the turn. (S,R)-{G∆G}-

TrpZip 160 (Figure 73, 3rd graph) showed a slightly different pattern and on average the 

distance was 3.07 Å (still within the range), but the graph showed more variation out of the 

range of distance with most of the frames having a distance smaller than 2.8 Å. This isomer 

brought the HBA and HBD groups into closer proximity than in the native peptide and thus 

enhanced hydrogen bond formation. In the case of (R,S)-{G∆G}-TrpZip 159 (Figure 73, 

bottom graph), the simulation showed that the distance is out of the range for most of the 

frames (4.88 Å on average), suggesting that hydrogen bond could not be formed for this 

analogue. It corresponded to the analogue having the lowest Tm as measured by CD and so 

it is the least stable peptide (cf figure 71). Hydrogen bonds stabilise the secondary structure 

of peptides/proteins and so the higher the degree of hydrogen bonding, the higher will be the 

Tm because it will take more energy to break all of them when unfolding the peptide/protein. 

In a small system like TrpZip peptide, if a single hydrogen bond is missing, less energy is 

required to destabilise the whole system and so the Tm is lower. The lower stability of the 

system could be because the cyclopropane has separated the hydrogen bond donor and 

acceptor groups compared to native TrpZip 157 and so they might not be aligned with the 

required angle (between 130 and 180°). In order to explore this issue, the N-H-O angle of 

the hydrogen bond was measured (see Figure 72) for all peptides and they were shown to be 

within the expected range (Figure 74, only (R,S)-159 peptide is shown as they are all similar).  

 

Figure 74: N-H-O angle within turn of (R,S)-{G∆G}-TrpZip 159 

Even though, (R,S)-{G∆G}-TrpZip 159 had the correct angle in most of the frames of the 

simulation, the hydrogen bond donor and acceptor groups were located too far away in space. 
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Nevertheless, when the CD results are considered, the reduced hydrogen-bonding 

capabilities of the system did not appear to have any consequences with regard to formation 

of the β-hairpin (as the CD was very similar to that of the native peptide, see Figure 68). 

This finding supports the argument that the turn was not initiating the formation of the β-

hairpin, but instead Trp-Trp interactions were initiating and stabilising the secondary 

structure leading to formation of the β-turn. The next challenge was to discover whether 

different types of turn were formed by determining the torsion angles within the turn.  

The torsion angles (φ, ψ and ω) are the main factors in dictating how the protein folds.  As 

already described in the introduction chapter, the φ angle of the i residue is defined by the 

torsion Ci–1-Ni-Cαi-Ci, ψ by the torsion Ni-Cαi-Ci-Ni+1, and ω by the torsion Cαi-Ci-Ni+1-

Cαi+1 (Figure 75).207 The φ and ψ angles provide the flexibility required for the fold, ω is 

restricted due to the planarity of the peptide bond and is set to 180 °.  

 

Figure 75: torsion angles in a peptide chain 

Ramachandran plots are a convenient way in which to visualise the distribution of the 

dihedral angles (or torsion angles) of every amino acid in a protein structure (Figure 76).208 

They are used to identify the secondary structure of a peptide or a protein.  Ramachandran 

plots of a particular protein can also provide a good indication on the stability of its 3D 

structure.209 It is a PDB (protein data bank) distribution based on energy for all residues that 

comprise proteins.  
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Figure 76: Ramachandran plot.210 

The plots are typically split in two regions: the forbidden and allowed regions. The forbidden 

region corresponds to the combination of angles where there would be unfavourable steric 

interactions between the atoms in the chain (white “background” in the figure). The allowed 

region represents the distribution of torsion angles favourable for formation of a stable 

secondary structure (black dots).211  

β-Turns are classified according to the value of the dihedral angles of the central residues 

(in our case, Gly-6 and Gly-7, Asn-7 or ∆Gly-7). Three rules need to be respected for the 

system to be classified as a β-turn: the distance between the i and i + 3 Cαs is less than 7 Å, 

the two central residues (i + 1 and i + 2) should not show helical properties (determined  by 

their torsion angles), and a cross-strand hydrogen bond between residue i and i + 3 should 

be present.212   

 

Figure 77: Dihedral angles in TrpZip and analogues 

For the the {G∆G} analogues 159 and 160, the angles were measured following the same 

rules as for native peptides (i.e. defined by four points in space, through the atoms on the 

main chain of the turn, not through the methylene group of the cyclopropane); φ67  by the 

torsion CE-NG-Cα-CH, ψ67  by the torsion NG-Cα-CH-CH, φ97  by the torsion CH-CH-Cα-CG 

H-SWTWE

O

N
H O

H
N

O

O

H2N

KWTWK-NH2N
H

TrpZip 157

ϕ1

ϕ2

ψ1

ψ2

H-SWTWE

O

N
H O

H
N

O
KWTWK-NH2N

H

GG-TrpZip 158

ϕ1

ϕ2

ψ1

ψ2 H-SWTWE

O

N
H

O

N
H
KWTWK-NH2

ϕ1’ψ1’
ϕ2’ ψ2’

{GΔG}-TrpZip 159/160

Left handed 
α-helix 

Right handed 
α-helix 

β-sheet 



 

 139 

and ψ97  by the torsion CH-Cα-CG-NK). de Brevern has described and created Ramachandran 

plots for various types of β-turn (figure 78). The arrows represent the direction going from 

the i+1 residue’s dihedral angle (φ1, ψ1) to the i + 2 angles (φ2, ψ2). It is important to note 

that the dihedral angles chosen for the cyclopropane mimics cannot be used as a proof for β-

turn formation. In the case of the analogues, a planar moiety has been replaced by a non-

planar cyclopropane (sp2 hybridized atoms are replaced by sp3 centres) and so their physical 

and chemical properties are different. Consequently, the Ramachandran plots for the {G∆G} 

analogues 159 and 160 provide qualitative rather than quantitative information.  

 

Figure 78: Ramachandran plot for different type of turn212 

The MD calculations provided by Dr. Drew Thomson, allowed the dihedral angles of the 

central residues of the turn to be measured for 5000 frames i.e. every 10th frame among 

50,000. This allowed prediction of the type of turn adopted by the native form (and whether 

it corresponds to that reported by Cochran et. al.) and by the GG-TrpZip 158. The black dots 

correspond to the φ1, ψ1 angles (i+1 residue) and the blue dots to the φ2, ψ2 angles (i + 2 

residue).  

The Ramachandran plot of TrpZip 157 (Figure 56) showed that a type II’ β-turn is formed, 

a finding that agrees with the finding of Cochran et al.. The CD spectrum of GG-TrpZip 158 

(see Figure 68) overlays closely with the native form of the TrpZip, and consequently they 

adopt the same conformation. However, the Ramachandran plots for the peptides are 

different which indicates that GG-TrpZip 158 adopts another type of turn. The φ1, ψ1 angles 

were found to be in the same region, which was expected as is it the unchanged Gly residue, 

and the rotations around the bonds (thus the torsion angles) were not impacted by 
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replacement of the adjacent residue. While, φ2 and ψ2 were found to have almost opposite 

values when compared to those of TrpZip 157.  

 

Figure 79: Ramachandran plots for TrpZip 157 and GG-TrpZip 158 

The direction taken did not correspond to any of the types of turn that had been described by 

de Brevern. Several hypotheses may be ventured to explain this finding: another type of β-

turn, not described in literature, could have been formed (possibly a new type IV turn); a 

turn other than a β-turn could have been formed (e.g., a γ-turn); or a turn has not been formed 

because the two Gly residues provide too much flexibility and so a turn is not crucial for a 

stable conformation to be adopted by the peptide.  

(S,R)-{G∆G}-TrpZip 160 (Figure 80) had φ67  and ψ67  angles that are the same region as the 

TrpZip. Pleasingly, the torsion angles measured on the C-ter of the dipeptide surrogate, φ97  

and ψ97 , were also in the same region as the native form and so it appeared that this analogue 

was forming a type II’ β-turn. This finding is in agreement with the CD spectrum in the near-

UV (see figure 68), which matched that of TrpZip 153 perfectly and thereby showed the Trp 

were in the same chiral environment and interacting in the same way in both compounds. 

Because the Trp initiate formation of the β-hairpin, if the interactions are very similar the 

same type of turn would be expected.  

For the (R,S)-159 (figure 80), the key torsion angles were rotated by 180 °. φ97  and ψ97  were 

found to have opposite values compare to the (S,R)-160. φ67  was found to be unchanged 

whereas ψ67  was also found to be the opposite. Fundamentally, all dihedral angles appear to 

be flipped except φ67 , resulting in a different type of turn that has the features of a type I’ 
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turn when compared to de Brevern’s Ramachandran plots. The stacking might be slightly 

deviating due to the rigidity of the cyclopropane. Surprisingly, despite the fact that the turn 

lacked a hydrogen bond (see Figure 73), a type of turn could still be discerned in the plot.  

 

 
Figure 80: Ramachadran plot of cyclopropane analogues 

The results presented above show that there are changes in the turn conformation of the 

analogues when compared to that of the native TrpZip 157. However, these changes did not 

have an impact on the hairpin conformation adopted by all peptides (as shown by CD 

spectroscopy). The CD spectra were obtained in the near-UV region and show the Trp side 

chain contribution. Pleasingly, all peptides have essentially the same CD spectrum, which 

proves that the Trp side chains are in the same environment and interact in the same way as 

in TrpZip. Furthermore, the non-natural unit incorporated within the peptide is equally 

stabilising the β-hairpin (Tm slightly lower, which indicates similar stability). The 

cyclopropane is a rigid and compact group and the hypothesis is that the ∆H is similar to that 

of TrpZip 157 but ∆S (defined by the side chains) varies between the peptides. As a 
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consequence, the value of ∆G would be expected to vary, which could explain why the Tm 

values for the analogues are slightly different.  

3.5. NMR conformational analysis  

3.5.1. Material and method 

NMR samples contained 0.25 to 1.30 mM peptide (measured by absorbance at 280 nm) in 

95 % H2O/5% D2O-TSP (TSP used as chemical shift reference) in 10 mM pH 5.5 acetate 

buffer (AcOD was used for the preparation of the buffer and the pH was adjusted using aq. 

10 mM KOH solution). All spectra were acquired on 600 MHz Bruker spectrometer at 

various temperatures (278–308 K). Double quantum filtered correlation spectroscopy (DQF-

COSY), total correlation spectroscopy (TOCSY), and nuclear Overhauser effect (NOESY) 

spectroscopy were acquired with gradient selection and excitation sculpting for water 

suppression. 

3.5.2. Results and discussion 

Techniques in NMR spectroscopy have been well developed rapidly over the past 40 

years.213 Secondary structure can be determined by several methods: the proton (Hα) and 

carbon (Cα) chemical shifts,214 the spin-spin coupling or 3𝐽;<=>< coupling constant and the 

Karplus equation,215 NOE cross peaks,216 etc… Furthermore, NMR spectroscopy is a great 

tool to use to determine whether the peptide is a monomer (concentration dependant study, 

chemical exchange), and to detect and differentiate between intra- and inter-molecular 

hydrogen bonds (chemical shift varying with temperature or hydrogen-deuterium 

exchange).217  

2D NOESY experiments are a convenient tool to determine the conformation adopted by a 

peptide. If the peptide adopts an antiparallel β-sheet, the NOESY spectrum shows intense 

sequential cross peaks between NHi and Hαi–1. 2D NOE experiments were investigated in 

this work in order to analyse the folding of TrpZip and its analogues. The protons were 

assigned using the sequential assignments method on 2D COSY and TOCSY spectra.218 

Characteristic sequential NOE cross peaks were observed for TrpZip 157. The presence of 

long range Hα-Hα or NH-Hα cross-peaks is a good indicator of secondary structure and 

backbone interactions that stabilise the system. It is particularly important in the case of 

TrpZip 157, because its main structural characteristic is stacking between the indole groups 

of the Trp residues bringing the Hαs of these residues in close proximity. Intense cross-peaks 
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were observed between Hαs of Trp 2-Trp 11 and Trp 4-Trp 9 (Figure 81), indicating that 

these Trp residues were interacting with each other in this order confirming the conformation 

adopted by this peptide.  

 
Figure 81: Hα-Hα cross-peaks (red) and NH-Hα cross-peaks (blue) representation in TrpZip 

157* 

*In the interests of clarity, not all cross-peaks have been represented.  

Some other Hα-Hα cross-peaks were observed between cross strand Trp-2 and Thr-10, 

supporting the interactions between Trp-4 and Trp-9. NH-Hα cross peaks were also observed 

between residues located on both strands of the peptide (e. g. NH-Trp-2 with Hα-Trp-11, 

blue in Figure 81). The observation of these cross-peaks in addition to the CD data that had 

been obtained provides conclusive confirmation that TrpZip 157 is adopting a β-hairpin 

conformation.  

The aim was then to analyse the other peptides and identify the cross peaks observed. All of 

the peptides were assigned using the same method described previously (sequential 

assignments from COSY and TOCSY spectra). Sequential NHi-Hαi–1 cross-peaks, which are 

a distinctive feature of antiparallel β-sheet, were observed for the all the analogues. 

Therefore, all analogues adopted the same conformation, which supported the the CD data 

that had been obtained. However, Hα-Hα NOESY cross-peaks for GG-TrpZip 158 were 

slightly different (Figure 82). In this case, Trp-Trp cross-peaks were present, showing that 

there are interactions between them, but there are also through-space interactions between 

Trp-4 and the two Gly residues that were not observed in TrpZip 158 (with Gly and Asn). 

The turn was more flexible due to the replacement of the Asn residue with Gly, allowing 

more interactions between the side chains around the turn and this was also showing that the 

Trp-4 is stacking on the top of Trp-9.  

NH
O

Asn N
H

O

N
H

O

H
N

O

H
N

O
N
H

N
H

O

O H
N

O

H
N

O

N
H

O

N
H

O

NH2

O

NH2

Glu

Trp

Thr

Trp

Ser

Lys

Trp

Thr

Trp

Lys

TrpZip

H H H

HHH

H
H

HH

H



 

 144 

 

Figure 82: Hα-Hα cross-peaks (red) and NH-Hα cross-peaks (blue) representation in GG-
TrpZip 158* 

*In the interests of clarity, not all cross-peaks have been represented.  

More NH-Hα NOESY cross-peaks were observed from residues on the two strands, which 

supports the hypothesis of a more stable flexible system, as determined by the CD spectra 

obtained and the higher Tm calculated (see Figure 71). Other expected cross-strand cross-

peaks were also observed for this analogue.  

When the 2D NOESY of the {G∆G} analogues were analysed, that of (S,R)-{G∆G}-TrpZip 

160 exhibited an interesting feature (Figure 83). The NHs of the backbone, shown in the 

spectrum below, were exchanging with other NHs with smaller intensity (cross peaks 

highlighted in the figure).  
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Figure 83: NOESY spectrum in NH region of (S,R)-{G∆G}-TrpZip 160 

Two different circumstances could explain this: either the protons were exchanging with the 

protons of another molecule (intermolecular interactions), which implies dimer formation, 

or it was exchanging with another conformation adopted by the peptide. A concentration 

dependant NMR study was then undertaken to discover whether the “exchanged” peaks get 

smaller with the concentration. If the peaks are reduced in size with a decrease in the 

concentration, it means that the peptide is interacting with another molecule. To this end, 1H 

NMR of the peptide was acquired at four different concentrations, from 0.125 mM to 1 mM 

(Figure 84).  
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Figure 84: Concentration dependant NMR spectra of (S,R)-{G∆G}-TrpZip 160 

The small peak (indicated with an arrow), became smaller with the concentration, which 

meant that this peptide was interacting with another molecule at higher concentration and 

forming a dimer. This observation might explain why a lower Tm was observed for this 

peptide. The 2D NMR experiments were performed at 0.25 mM because the signals were of 

better quality than those at lower concentration. The other enantiomer (R,S)-{G∆G}-TrpZip 

159 did not show this concentration dependency and was behaving as expected for a 

monomer. Therefore, a higher concentration could be used for the 2D experiments and a 0.4 

mM sample was prepared. For both analogues, long range NH-Hα and Hα-Hα NOE cross 

peaks were not observed, but all sequential NHi-Hαi–1 were present. The intensities of long-

range NOE cross peaks are lower than those of the sequential cross peaks, so these peaks 

could probably not be observed at low concentration. It would be necessary to perform the 

NMR experiments at higher concentration in order to observe such cross peaks.  
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3.6. Conclusion  

The β-hairpin conformation adopted by TrpZip peptide 157 has been confirmed by the 

combination of CD and NMR analysis. The replacement of the Asn-6 by a Gly did not 

prevent β-hairpin formation and the analogue was found to be slightly more stable than the 

native peptide with a higher Tm calculated. The analogues (S,R)-{G∆G}-TrpZip 160 and 

(R,S)-{G∆G}-TrpZip 159 also have features consistent with a β-hairpin conformation when 

analysed by CD and have similar stabilities to the native peptide. NMR analysis of (S,R)-

{G∆G}-TrpZip 160 showed that this analogue has concentration-dependent behaviour for 

and it appears to be interacting intermolecularly with another molecule and forming a dimer 

at higher concentrations. The spectra obtained from NOESY experiments did not exhibit any 

long-range cross peaks that had been observed for TrpZip 157 and GG-TrpZip 158. 

However, characteristic sequential cross peaks were present in the spectra of both analogues. 

The promising CD data obtained for samples at higher concentration than used for NMR 

analysis, indicate that the NMR experiments would need to be performed at higher 

concentration in order to observe the expected long-range cross peaks. These experiments 

alongside other conformational analysis are currently undertaken by collaborators in order 

to better understand the folding properties of our analogues.  
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Chapter 4  

Conclusions 

In conclusion, the cyclopropane moiety was initially installed via a carbene mediated 

cyclopropanation, resulting in a mixture of cis- and trans-isomers. Epimerisation followed 

by resolution allowed to access to enantioenriched precursors 90. Due to poor reproducibility 

and low overall yield, the route was revised towards the synthesis of racemic mixture of 90 

in one step by using superbase-mediated rearrangement affording exclusively trans-90 in a 

very good yield. It was then possible to install the N-terminus under Mitsunobu conditions. 

The terminal alkene present in the molecule allowed to access to the C-terminus by 

hydroboration and successive oxidations in decent overall yield. The racemic (±)-Boc2-

{GlyΔGly}-OH 106 was obtained in 4 steps (Scheme 43). 

 

Scheme 43: (±)-Boc2-{GlyΔGly}-OH 107 synthesis 

Attempts to resolve the racemic mixture at different stage of the synthesis were investigated 

and the best route was found to be the amide coupling on carboxylic acid 85 using (R)-

phenylglycinol after optimised oxidations. The two diastereoisomers were obtained in a 

reasonable yield (Scheme 44). After hydrolysis and reduction enantioenriched alcohol 90 

was obtained, which then underwent the same reactions as the racemic mixture.  
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Scheme 44: enantioenriched 107 synthesis and crystal structure of racemic peptide 75 

This new route was designed and optimised to reduce the number of steps towards the 

synthesis of enantioenriched bisprotected Boc2-{GlyΔGly}-OH 107 in 8 steps and 8% 

overall yield. trans-Cyclopropane was assigned by the crystal structure obtained for racemic 

peptide 75, proving the exclusive formation of trans-compound in both carbene and 

LIDAKOR reaction. Once the dipeptide surrogate obtained, incorporation into various 

lengths of peptides was possible using common coupling conditions. Although the synthesis 

was not fully optimised, sufficient material was obtained for the conformational analysis. 

Eleven peptides were synthesised, including enantioenriched and racemic variants (Figure 

85)  
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Figure 85: Peptides designed during this work 

Esters (±)-iPrOCO-{GlyΔGly}-N-iPr 127 and (±)-iPrOC-{GlyΔGly}-O-iPr 129 were 

synthesised from intermediates previously obtained in this work. They allowed a better 

understanding of the hydrogen bonding network formed in the turn mimetics.  

The {GlyΔGly} surrogate was proven to promote the formation of a turn by spectroscopic 

measurements by showing evidence of strong intramolecular hydrogen bonds in dipeptides 

as well as longer peptides. Furthermore, iPrOC-{GlyΔGly}-NMe2 76 variants were shown 

to be exclusively intramolecularly hydrogen bonded, implying an 8-membered ring 

hydrogen bonded system formation. This size of hydrogen bonding network is unusual for a 

β-turn suggesting the cyclopropane has a unique ability to stabilise this type of interaction. 

CD spectra added a supplementary information about the folding pattern of the tetrapeptides 

by displaying features found in type II β-turn. Nevertheless, in all solvent studied, a complex 

mixture of folded arrangements was adopted by the peptides (conformation I-IV in Figure 

86).  
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Figure 86: possible hydrogen bonding arrangements adopted by tetrapeptide 77/78 

Further conformational NMR analysis of the tetrapeptides 77 and 78 showed folded 

conformation in CH2Cl2 and TFE but different interactions took place. As a matter of fact, 

Gly-NH was exchanging with TFE-d3 solvent immediately, so it was not protected by 

intramolecular hydrogen bond as observed in CH2Cl2. The 8-memebered ring system was 

not formed in TFE. Therefore, the folding pattern of the mimetics designed was dependent 

on the solvent used. Overall, this suggests that cyclopropyl unit is efficient and compact tool 

to constrain small peptides to adopt a turn conformation stabilised by strong intramolecular 

hydrogen bonds. Folded conformation was determined for all enantioenriched compound 

synthesised. The stereochemistry on the cyclopropane did not impact the formation of the 

turn, and do not change the hydrogen bond network formed or the general conformation 

adopted as no differences have been observed by NMR, IR or CD.  

To extend the study towards the formation of a reverse turn, dipeptide 107 was incorporated 

in the turn sequence of longer known peptides, in the 5-residue Leu-enkephalin 141 and 12-

residue TrpZip 157. {GlyΔGly}-Leu-enkephalin 132 and 133 were synthesised in 4 steps 

from enantioenriched variants of Boc2-{GlyΔGly}-OH 107. Conformational analysis did not 

reveal that these peptides adopted a defined and structured folded conformation. However, 

the analogues presented similar conformational features with the native peptide, proving the 

ability of the cyclopropane moiety to stabilise the conformation adopted by the peptide.  
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Figure 87: Leu-enkephalin and TrpZip analogues 

The β-hairpin conformation adopted by native TrpZip peptide 157 has been confirmed by 

the combination of CD and NMR analysis. The analogues (R,S)-{G∆G}-TrpZip 159 and 

(S,R)-{G∆G}-TrpZip 160 have features consistent with a β-hairpin conformation when 

analysed by CD and have similar stabilities to the native peptide (determined by calculation 

of the Tm). However, the spectra obtained from NOESY experiments were not conclusive 

but characteristic sequential cross peaks of β-hairpin were present in the spectra of both 

analogues. The analogues were adopting a β-hairpin conformation but the intramolecular 

interactions are still to be determined. The NMR experiments would need to be performed 

at higher concentration in order to observe the expected long-range cross peaks. Other 

conformational analysis, such as CD recorded in the far-UV to understand the behaviour of 

the peptide backbone, analytical ultracentrifugation and other NMR experiments need to be 

undertaken to have better comprehension on the behaviour of the analogues synthesised. As 

well as shorter peptide, the stereochemistry of the cyclopropane did not impact a change on 

the formation of the β-hairpin, and stability of both analogues 159 and 160 was identical. 

However, MD calculation showed a difference in the turn and the hydrogen bond stabilising 

it (not present in the case of (S,R)-{G∆G}-TrpZip 160). Extra NMR measurements are 

currently running to understand which type of turn is formed and to obtain a 3D structure 

extracted from the NMR and MD calculation.  
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Overall, the cyclopropane used as a peptide bond isostere is an excellent tool to constrain a 

system into a turn conformation by stabilising the system with strong intramolecular 

hydrogen bond. When placed in a peptide adopting a β-hairpin conformation stabilised by 

cross-strand indoles stacking, the general folding adopted was similar. The dipeptide 

surrogate designed during this work promoted the turn formation or stabilised it.  
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Chapter 5 

Experimental 

General information  

Air and/or moisture sensitive reactions were performed under an atmosphere of argon in 

flame dried apparatus. Tetrahydrofuran, toluene, dichloromethane, acetonitrile and diethyl 

ether were purified using a Pure-SolvTM 500 Solvent Purification System. Other dry organic 

solvents and starting materials were obtained from commercial sources and used as received. 

Petroleum ether used for column chromatography was the 40–60 ºC fraction. All reactions 

were monitored by thin layer chromatography (TLC) using Merck silica gel 60 covered 

alumina plates F254. TLC plates were visualised under UV light and stained using either 

potassium permanganate solution, acidic ethanolic anisaldehyde or ninhydrine solution. 

Flash column chromatography was performed with silica gel (Merck 40–63 μm). Peptides 

were purified using a Gilson semi-preparative HPLC system equipped with a Phenomenex 

Synergi 10μ C18 80 Å, (250 x 21.2 mm) column. Peptides were lyophilized using a Christ 

Alpha 2−4 LDplus freezedryer.  

IR spectra were recorded at ambient temperature using a Shimadzu IR instrument. All 1H 

NMR spectra were recorded on Bruker 400 MHz Spectrospin, Bruker 500 MHz Spectrospin 

and Bruker 600 MHz Ultrashield 600 Plus spectrometers at ambient temperature. Data are 

reported as follows; chemical shift in ppm relative to CDCl3 (7.26), CD2Cl2 (5.32) or D2O 

(4.80) on the d scale, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, 

m = multiplet, br = broad, app. = apparent or a combination of these), coupling constant(s) 

J (Hz) and assignment. All 13C NMR spectra were recorded on a Bruker 400 MHz 

Spectrospin, Bruker 500 MHz Spectrospin and Bruker 600 MHz Ultrashield 600 Plus 

spectrometers at 101 MHz, 126 MHz and 151 MHz at ambient temperature. Data are 

reported as follows; chemical shift in ppm relative to CHCl3 (77.16), CD2Cl2 (53.5) on the 

d scale and assignment. Mass spectra were recorded using positive chemical ionization 

(CI+), positive ion impact (EI+), positive electrospray (ESI+), negative electrospray (ESI-) 

techniques on Jeol MStation JMS-700 instrument. The intensity of each peak is quoted as a 

percentage of the largest, where this information was available.  
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(±)-Phth-{Gly∆Gly}-N-i-Pr 81  

 

A solution of (±)-NPhth-{GlyΔGly}-OH 59 (1.56 g, 6.01 mmol) in CH2Cl2 (280 mL) was 

treated with DMAP (730 mg, 6.01 mmol) at rt, EDCI (1.27 g, 6.60 mmol) and isopropyl 

amine (620 µL, 7.21 mmol) were added to the solution. The reaction mixture was stirred 

overnight at rt. The solvent was evaporated under vacuum, and the resulting oil was 

dissolved in EtOAc (50 mL), washed with H2O (50 mL), 1 м aq. HCl (50 mL), sat. aq. 

NaHCO3 (50 mL) and brine (30 mL). The organic phase was dried over MgSO4, filtered and 

concentrated under vacuum to give the title compound (657 mg, 65%) as a brown solid. 

Rf (EtOAc/PE 1:1) 0.38; m.p.: 176–177 °C; nmax 3483, 1710, 1541, 1378, 1261, 1121 cm−1; 
1H NMR (500 MHz; CDCl3): δ  7.84 (2H, d, J = 5.5, 3.0 Hz, CH-Phthalimide), 7.72 (2H, 

dd, J = 5.5, 3.0 Hz, CH-Phthalimide), 5.67 (1H,  d, J = 6.2 Hz, NH), 4.03–3.97 (1H, m, 1H, 

CH-C7), 3.71 (1H, dd, J = 14.2, 6.2 Hz, CH2-C6), 3.52 (1H, dd, J = 14.2, 7.0 Hz, CH2-C6), 

2.15 (1H, dd, J = 16.2, 6.2 Hz, CH2-C2), 2.05 (1H, dd, J = 16.2, 7.0 Hz, CH2-C2), 1.11 (3H, 

d, J = 6.6 Hz, CH3-C8), 1.07 (3H, d, J = 6.6 Hz, CH3-C8), 1.08–1.04 (2H, m, CH-C3 + CH-

C5), 0.67 (1H, ddd, J = 8.2, 5.2, 5.2 Hz, CH2-C4), 0.43 (1H, ddd, J = 8.2, 5.3, 5.3 Hz, CH2-

C4); 13C NMR (126 MHz; CDCl3): δ 170.9 (CO-C1), 168.7 (2 ´ CO-Phthalimide), 134.2 

(C-Phthalimide), 134.0 (C-Phthalimide), 132.4 (CH-Phthalimide), 132.2 (CH-Phthalimide), 

123.5 (CH-Phthalimide, 123.3 (CH-Phthalimide), 41.4 (CH-C7), 41.3 (CH2-C6), 40.8 (CH2-

C2), 22.86 (CH3-C8), 22.82 (CH3-C8), 18.1 (CH-C5), 14.1 (CH-C3), 10.6 (CH2-C4). HRMS 

(ESI+) for C17H20N2NaO3 [M+Na]+ calcd 323.1366, found 323.1353.  
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Ethyl-[(1S*,2R*)-2-ethenylcyclopropane-1-carboxylate] and ethyl-[(1R*,2R*)-2-

ethenylcyclopropane-1-carboxylate] 86 

 

At - 4 °C, a solution of ethyl diazoacetate (5.00 g, 43.8 mmol) in CH2Cl2 (25 mL) was added 

dropwise (8 mL/h with a syringe pump) to a solution of butadiene (35.0 mL, 438 mmol) and 

Rh2(OAc)4 (150 mg, 0.8 mol%) in CH2Cl2 (40 mL). The reaction mixture was stirred for one 

hour after the addition. Solvent was evaporated, and the crude material was dissolved in PE 

(100 mL) and filtered through a plug of silica gel. The solution was concentrated under 

vacuum to give the vinylcyclopropane (4.24 g, 69%) as a mixture of diastereoisomers (1:1 

dr). 

Rf (EtOAc/PE 1:1): 0.54; nmax 2983, 1722, 1637, 1381, 1163 cm−1; 1H NMR (400 MHz; 

CDCl3) δ  5.82-5.72 (0.5H, m, CH-C2 cis), 5.39 (0.5H, ddd, J = 17.1, 10.2, 8.4 Hz, CH-C2 

trans), 5.23 (0.5H, dd, J = 17.2, 1.9 Hz, CH2-C1 cis), 5.16 (0.5H, dd, J = 17.1, 0.9 Hz, CH2-

C1 trans), 5.04 (0.5H, dd, J = 10.3, 1.9 Hz, CH2-C1 cis), 4.98 (0.5H, dd, J = 10.2, 1.6 Hz, 

CH2-C1 trans), 4.15–4.10 (2H, m, CH2-C7 cis + CH2-C7 trans), 2.03–1.98 (0.5H, m, CH-

C3 trans), 1.95–1.89 (1H, m, CH-C3 cis + CH-C5 cis), 1.63 (0.5H, ddd, J = 8.4, 5.2, 4.0 Hz, 

CH-C5 trans), 1.36 (0.5H, ddd, J = 8.9, 5.2, 4.3 Hz, CH2-C4 cis), 1.26 (1.5H, t, J = 7.1 Hz, 

CH3-C8 trans), 1.25 (1.5H, t, J = 7.1 Hz, CH3-C8 trans), 1.30–1.19 (1H, m, CH2-C4 cis + 

CH2-C4 trans), 0.96 (0.5H, ddd, J = 8.3, 6.2, 4.4 Hz, CH2-C4 trans); 13C NMR (101 MHz; 

CDCl3): δ 173.5 (CO-C6 trans), 172.1 (CO-C6 cis), 138.3 (CH-C2 trans), 135.5 (CH-C2 

cis), 116.2 (CH2-C1 cis), 114.9 (CH2-C1 trans), 60.72 (CH2-C7 trans), 60.60 (CH2-C7 cis), 

25.7 (CH-C3 trans), 24.9 (CH-C3 cis), 22.0 (CH-C5 trans), 21.1 (CH-C5 cis), 15.7 (CH2-

C4 trans), 14.47 (CH2-C4 cis), 14.38 (CH3-C8 trans), 14.24 (CH3-C8 cis); m/z (CI+) 

[M+H]+ 141 (68%).* 

*molecular weight too low to get accurate mass 
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(1S*,2R*)-2-Ethenylcyclopropane-1-carboxylic acid and (1R*,2R*)-2-

ethenylcyclopropane-1-carboxylic acid 85 

 

Procedure A: 

Sodium solid (4.92 g, 214 mmol) was dissolved in anhydrous EtOH (40 mL). When the 

sodium was completely dissolved, a solution of ethyl-[(1S*,2R*)-2-ethenylcyclopropane-1-

carboxylate] and ethyl-[(1R*,2R*)-2-ethenylcyclopropane-1-carboxylate] 86 (9.08 g, 64.8 

mmol) in EtOH (20 mL) was added dropwise at rt. The reaction mixture was heated to reflux 

and stirred for 24 h. Et2O (50 mL) was added to the reaction mixture and the solution was 

washed with sat. aq. NH4Cl (3 ´ 20 mL), H2O (3 ´ 20 mL), and brine (20 mL). The organic 

phase was dried over MgSO4 and concentrated under vacuum. The aqueous phase was 

acidified to pH 1 using conc. aq. HCl and extracted with Et2O (3 ´ 40 mL). The combined 

organic extracts were dried over MgSO4, filtered and concentrated to give the carboxylic 

acid (4.22 g, 95%), as a dark oil with trans-85 as the major isomer (9:1 dr).  

Procedure B: 

(1R*,2S*)-2-ethenyl-cyclopropanemethanol 90 (1.00 g, 10.2 mmol) and NMO×H2O (11.9 g, 

102 mmol) were dissolved in MeCN (41 mL). TPAP (358 mg, 1.02 mmol, 10 mol%) was 

added portionwise (20 mg/20min) at rt. The solution was stirred overnight at rt and the 

reaction was then quenched by the addition of an excess of isopropanol. H2O (30 mL) was 

added and pH was carefully adjusted to 1 using 2 м aq. HCl. The aqueous phase was 

extracted with Et2O (3 ´ 50 mL) and the combined organic extracts were then washed with 

brine (20 mL), dried over MgSO4, filtered and concentrated under vacuum. The residue was 

purified by silica gel column chromatography (PE/EtOAc 1:1) to afford the title compound 

(371 mg, 30%) as a brown oil.  
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Procedure C: 

A solution of DMSO (10.4 mL, 146 mmol) in CH2Cl2 (70 mL) was added dropwise at –78 

°C, under Ar, to a solution of oxalyl chloride (6.1 mL, 73.1 mmol) in CH2Cl2 (50 mL). The 

solution was stirred at this temperature for 30 min and (1R*,2S*)-2-ethenyl-

cyclopropanemethanol 90 (4.78 g, 48.7 mmol) in CH2Cl2 (50 mL) was added dropwise at –

78 °C. The reaction mixture was stirred for 3 h at this temperature. Et3N (40 mL, 292 mmol) 

was carefully added at –78 °C and the solution was allowed to warm to rt. H2O (200 mL) 

and CH2Cl2 (200 mL) were added and the phases were separated. The organic phase was 

washed with 1 м aq. HCl. (3 ´ 150 mL), H2O (150 mL), sat. aq. NaHCO3 (150 mL) and 

brine (150 mL). The organic phase was dried over MgSO4 and CH2Cl2 was removed by 

distillation. The resultant aldehyde was used without further purification. 

The aldehyde (48.7 mmol), 2-methyl-2-butene (52 mL, 487 mmol) and NaH2PO4×2H2O 

(15.6 g, 97.4 mmol) were dissolved in t-BuOH (500 mL). The solution was cooled to 0 °C 

and NaClO2 (15.4 g, 170 mmol) was added. The reaction mixture was stirred for 2 h at rt. 

The mixture was cooled to 0 °C and 1 м aq. HCl (20 mL) was added. The solution was 

extracted with CHCl3 (3 × 60 mL). The combined organic extracts were washed with brine, 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by silica gel column chromatography (PE/EtOAc 1:1) to afford the title compound 

(3.76 g, 69% over 2 steps) as a yellow liquid.  

Data for the major isomer is presented.  

Rf (EtOAc/PE 1:1): 0.48; nmax 2957, 1692, 1229 cm−1; 1H NMR (400 MHz; CDCl3): δ  10.99 

(1H, bs, OH), 5.39 (1H, ddd, J = 17.0, 10.2, 8.3 Hz, CH-C2), 5.18 (1H, ddd, J = 17.0, 1.4, 

0.6 Hz, CH2-C1), 5.02 (1H, ddd, J = 10.2, 1.4, 0.4 Hz, CH2-C1), 2.13–2.06 (1H, m, CH-C3), 

1.64 (1H, ddd, J = 8.3, 5.0, 4.2 Hz, CH-C5), 1.43 (1H, ddd, J = 8.6, 5.0, 4.4 Hz, CH2-C4), 

1.06 (1H, ddd, J = 8.6, 6.4, 4.2 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 179.9 (CO-

C6), 137.6 (CH-C2), 115.4 (CH2-C1), 26.6 (CH-C3), 21.7 (CH-C5), 16.3 (CH2-C4). m/z 

(CI+) [M+H]+ 113 (72%).* 

*molecular weight too low to get accurate mass 
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(1R,2S)-2-ethenyl-N-[(R)-2-hydroxy-1-phenylethyl]cyclopropanecarboxamide 89a and 

(1S,2R)-2-Ethenyl-N-[(R)-2-hydroxy-1-phenylethyl]cyclopropanecarboxamide 89b 

 

To a well stirred solution of carboxylic acid (±)-85 (4.0 g, 54 mmol) in THF (160 mL) were 

added dropwise, at -20 °C, N-methylmorpholine (3.9 mL, 54 mmol), followed by i-

BuOCOCl (4.6 mL, 54 mmol). The solution was stirred at this temperature for 15 min and 

(R)-phenylglycinol (4.9 g, 54 mmol) was added portionwise over a period of 30 min. The 

reaction mixture was stirred at -20 °C for 1 h and then allowed to warm to rt. The solvent 

was removed under vacuum. The residue was then dissolved in EtOAc (70 mL) and washed 

with H2O (3 ´ 20 mL), aq. sat. NaHCO3 (3 ´ 20 mL), 2 м aq. HCl (3 ´ 20 mL) and brine (20 

mL). The organic phase was dried over MgSO4 and concentrated under reduced pressure. 

The crude product was then purified by silica gel on column chromatography (PE/EtOAc 

1:0 to 0:1) to give (R,R,S)-89a (1.53 g, 37%) and (R,S,R)-89b (1.63 g, 39%). Each product 

was then recrystallized from EtOAc to obtain colourless crystals (100% recovery for both).  
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• (R,R,S)-89a  

Rf (EtOAc/PE 1:1): 0.31; [a],9?: −17.5 (c = 1.05, in CH3Cl); νmax (CHCl3): 3310, 2961, 1634, 

1545, 1059 cm–1; 1H NMR (400 MHz; CDCl3): δ 7.40–7.36 (2H, m, 2 ´ CH-Ph), 7.34–7.30 

(3H, m, 3 ´ CH-Ph), 6.25 (1H, d, J = 5.4 Hz, NH), 5.42 (1H, ddd, J = 17.0, 10.2, 8.5 Hz, 

CH-C2), 5.18 (1H, dd, J = 17.0, 1.5 Hz, CH2-C1), 5.07 (1H, td, J = 6.2, 3.8 Hz, OH), 5.00 

(1H, dd, J = 10.2, 1.5 Hz, CH2-C1), 3.97–3.87 (2H, m, CH2-C8), 2.73 (1H, dd, J = 7.3, 5.4 

Hz, CH-C7), 2.09–2.02 (1H, m, CH-C3), 1.47–1.37 (2H, m, CH-C5, CH2-C4), 0.91 (1H, 

ddd, J = 8.0, 6.2, 4.1 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 172.8 (CO-C6), 139.0 

(C-Ph), 138.6 (CH-C2), 129.1 (2 ´ CH-Ph), 128.2 (CH-Ph), 126.9 (2 ´ CH-Ph), 114.7 (CH2-

C1), 67.2 (CH-C7), 56.7 (CH2-C8), 25.0 (CH-C3), 24.1 (CH-C5), 15.0 (CH2-C4); HRMS 

(ESI–) for C14H16NO2 [M–H] calcd 230.1186 found 230.1187.  

 

• (R,S,R)-89b 

Rf (EtOAc/PE 1:1): 0.20; [a],9?: +9.89 (c = 1.05, CHCl3); νmax (CHCl3): 3298, 2959, 1634, 

1548, 1051 cm–1, 1H NMR (400 MHz; CDCl3): δ  7.40–7.37 (2H, m, 2 ´ CH-Ph), 7.34–7.30 

(3H, m, 3 ´ CH-Ph), 6.23 (1H, d, J = 5.4 Hz, NH), 5.40 (1H, ddd, J = 17.1, 10.2, 8.5 Hz, 

CH-C2), 5.14 (1H, dd, J = 17.1, 1.5 Hz, CH2-C1), 5.07 (1H, td, J = 6.4, 4.0 Hz, OH), 4.97 

(1H, dd, J = 10.2, 1.5 Hz, CH2-C1), 3.96–3.86 (2H, m, CH2-C8), 2.77 (1H, dd, J = 7.2, 5.4 

Hz, CH-C7), 2.05–2.01 (1H, m, CH-C3), 1.47–1.40 (2H, m, CH-C5, CH2-C4), 0.97–0.93 

(1H, m, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 172.6 (C-C6), 139.4 (C-Ph), 138.8 (CH-

C2), 128.8 (2 ́  CH-Ph), 127.8 (CH-Ph), 126.9 (2 ´ CH-Ph), 114.4 (CH2-C1), 66.7 (CH-C7), 

56.4 (CH2-C8), 24.6 (CH-C3), 23.9 (CH-C5), 14.9 (CH2-C4); HRMS (ESI–) for C14H16NO2 

[M–H] calcd 230.1186 found 230.1187. 
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(1S,2R)-2-Ethenylcyclopropane-1-carboxylic acid 85 

 

(1S,2R)-2-Ethenyl-N-[(R)-2-hydroxy-1-phenylethyl]cyclopropanecarboxamide 89b (1.86 g, 

8.08 mmol), was dissolved in a mixture of 10% KOH in MeOH (60 mL) and H2O (30 mL). 

The solution was heated to reflux and stirred overnight. MeOH was then removed under 

vaccum and the aqueous solution was extracted with EtOAc (3 ´ 10 mL). The combined 

extracts were dried over MgSO4 and concentrated under vacuum to recover (R)-

phenyglycinol. The aqueous layer was acidified using conc. aq. HCl until pH 1, and the 

mixture was extracted with EtOAc (3 ´ 10 mL). The combined extracts were washed with 

brine (10 mL), dried over MgSO4, filtered and the solvent was removed under reduced 

pressure to give the title compound (863 mg, 95%) as a colourless oil. 

Rf (EtOAc/PE 1:1): 0.62; [𝛼],9@ +115 (c = 1.00, CHCl3); νmax 3219, 1697, 1462, 1198 cm−1; 
1H NMR (400 MHz, CDCl3): δ 11.27 (1H, bs, OH), 5.40 (1H, ddd, J = 17.0, 10.2, 8.3 Hz, 

CH-C2), 5.18 (1H, dd, J = 17.0, 1.6 Hz, CH2-C1), 5.01 (1H, dd, J = 10.2, 1.6 Hz, CH2-C1), 

2.14–2.02 (1H, m, CH-C3), 1.64 (1H, ddd, J = 8.3, 5.1, 4.2 Hz, CH-C5), 1.43 (1H, ddd, J = 

8.6, 5.1, 4.4 Hz, CH2-C4), 1.05 (2H, ddd, J = 8.6, 6.4, 4.2 Hz, CH2-C4); 13C NMR (126 MHz, 

CDCl3): δ 179.6 (CO-C6), 137.7 (CH-C2), 115.4 (CH2-C1), 26.6 (CH-C3), 21.8 (CH-C5), 

16.3 (CH2-C4); m/z (CI+) [M+H]+ 113 (80%).* 

*molecular weight too low to get accurate mass 
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(1R,2S)-2-Ethenylcyclopropane-1-carboxylic acid 85 

 

The procedure applied to the synthesis of (1S,2R)-2-ethenylcyclopropane-1-carboxylic acid 

85 was followed using (1R,2S)-2-Ethenyl-N-[(R)-2-hydroxy-1-phenylethyl]

cyclopropanecarboxamide 89a (2.43 g, 10.5 mmol) to give the title compound (964 mg, 

82%) as a yellow oil. 

Rf (EtOAc/PE 1:1): 0.62; [𝛼],9? –100 (c = 1.00, CHCl3); νmax 3219, 1697, 1462, 1198 cm−1; 
1H NMR (500 MHz, CDCl3): δ 5.40 (1H, ddd, J = 16.9, 10.2, 8.3 Hz, CH-C2), 5.18 (1H, dt, 

J = 16.9, 1.1 Hz, CH2-C1), 5.02 (1H, dd, J = 10.2, 1.1 Hz, CH2-C1), 2.17–2.03 (1H, m, CH-

C3), 1.64 (1H, ddd, J = 8.5, 5.1, 4.1 Hz, CH-C5), 1.44 (1H, ddd, J = 8.8, 5.1, 5.1 Hz, CH2-

C4), 1.06 (1H, ddd, J = 8.8, 6.4, 4.1 Hz, CH2-C4). 13C NMR (126 MHz, CDCl3): δ 180.0 

(CO-C6), 137.7 (CH-C2), 115.5 (CH2-C1), 26.6 (CH-C3), 21.8 (CH-C5), 16.3 (CH2-C4); 

m/z (EI+) [M+H]+ 113 (99%).* 

*molecular weight too low to get accurate mass 
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(1S,2R)-2-Ethenyl-cyclopropanemethanol 90 

 

A solution of acid (S,R)-85 (1.50 g, 13.3 mmol) in THF (19 mL) was added dropwise, at 0 

°C, to a slurry of LiAlH4 (1.10 g, 26.6 mmol) in THF (19 mL). The mixture was heated to 

reflux for 5 h. The reaction was then quenched by the sequential addition of H2O (1 mL), 1 

м aq. NaOH (1 mL) and H2O (3 mL) at 0 °C. The resulting mixture was stirred for 15 min 

and an excess of MgSO4 was added. The resulting suspension was stirred for extra further 

15 min and filtered. The majority of the solvent was removed by distillation at atm. pressure 

to give (1S,2R)-2-ethenyl-cyclopropylmethanol 90 (1.18 g, 41 wt%, 59%) as a orange 

solution in THF.  

Rf (PE/EtOAc 1:1, Anisaldehyde): 0.75; [𝛼],9@ +51 (c = 1.0, CHCl3); νmax 3333, 2924, 1636, 

895 cm−1; 1H NMR (500 MHz, CDCl3) δ 5.38 (1H, ddd, J = 17.1, 10.2, 8.5 Hz, CH-C2), 

5.03 (1H, dd, J = 17.1, 1.6 Hz, CH2-C1), 4.84 (1H, dd, J = 10.2, 1.6 Hz, CH2-C1), 3.55–3.40 

(2H, m, CH2-C6), 1.34–1.29 (1H, m, CH-C3), 1.18–1.08 (1H, m, CH-C5), 0.70–0.56 (2H, 

m, CH2-C4); 13C NMR (126 MHz, CDCl3): δ 140.8 (CH-C2), 112.3 (CH2-C1), 66.2 (CH2-

C6), 23.0 (CH-C5), 20.6 (CH-C3), 11.7 (CH2-C4).* 

*Molecular weight too low to obtain a nominal or accurate mass.  
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(1R,2S)-2-Ethenyl-cyclopropanemethanol 90 

 

The procedure for the synthesis of the other enantiomer (S,R)-90 was followed using acid 

(R,S)-85 (1.40 g, 12.4 mmol) to give (1R,2S)-2-ethenyl-cyclopropylmethanol 90 (1.51 g, 49 

wt%, 62%) as an orange solution in THF.  

Rf (PE/EtOAc 1:1, Anisaldehyde): 0.88; [𝛼],9@ −61 (c = 1.0, CHCl3); νmax 3337, 2924, 1636, 

895 cm−1; 1H NMR (500 MHz, CDCl3) δ 5.37 (1H, ddd, J = 17.1, 10.2, 8.7 Hz, CH-C2), 

5.02 (1H, dd, J = 17.1, 1.6 Hz, CH2-C1), 4.83 (1H, dd, J = 10.2, 1.6 Hz, CH2-C1), 3.47 (1H, 

dd, J = 11.2, 6.8 Hz, CH2-C6), 3.44 (1H, dd, J = 11.2, 6.8 Hz, CH2-C6), 1.31 (1H, dddd, J = 

8.7, 8.7, 4.6, 4.6 Hz, CH-C3), 1.16–1.06 (1H, m, CH-C5), 0.67–0.57 (2H, m, CH2-C4); 13C 

NMR (126 MHz, CDCl3): δ 140.8 (CH-C2), 112.2 (CH2-C1), 66.1 (CH2-C6), 23.0 (CH-C5), 

20.6 (CH-C3), 11.6 (CH2-C4).*  

*Molecular weight too low to obtain a mass.  
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(1R*,2S*)-2-Ethenyl-cyclopropanemethanol 90 

 

 To THF (110 mL) cooled to –78 °C under Ar was added carefully, n-BuLi (40.0 mL of an 

11 м solution in hexane, 440 mmol). The resultant solution was stirred for 10 min at this 

temperature.  Diisopropylamine (62.0 mL, 440 mmol) was added dropwise followed by t-

BuOK (49.0 g, 440 mmol). The reaction mixture was stirred at –78 °C for 45 min. 1,3-

Epoxy-5-hexene (5.60 mL, 50.0 mmol) was added dropwise at –78 °C and the reaction 

mixture was allowed to stir for 15 h at –50 °C. The reaction was quenched at –50 °C with 

H2O (30 mL) and allowed to warm to rt. The solution was extracted with Et2O (3 × 15 mL), 

the combined organic layers were dried over MgSO4, and filtered. The majority of the 

solvent was removed by distillation at atm. pressure to afford (1R*,2S*)-2-ethenyl-

cyclopropanemethanol 90 (35.13 g, 68 wt%,  quant.) as a solution in THF  as an orange 

solution in THF.   

Rf (EtOAc/PE 1:1): 0.68; νmax (CHCl3): 3329, 2924, 1636, 1173, 1049, 1040 cm−1;  1H NMR 

(500 MHz; CDCl3): δ  5.41 (1H, ddd, J = 17.1, 10.3, 8.5 Hz, CH-C2), 5.06 (1H, dd, J = 17.1, 

1.6 Hz, CH2-C1), 4.88 (1H, dd, J = 10.3, 1.6 Hz, CH2-C1), 3.54–3.47 (2H, m, CH2-C6), 1.51 

(1H, bs, OH), 1.35 (1H, m, CH-C3), 1.21–1.13 (1H, m, CH-C5), 0.70–0.64 (2H, m, CH2-

C4) ; 13C NMR (126 MHz; CDCl3): δ 140.7 (CH2-C2), 112.5 (CH-C1), 66.4 (CH2-C6), 23.1 

(CH-C3), 20.7 (CH-C5), 11.7 (CH2-C4). 
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2-[(1R*,2S*)-2-Ethenylcyclopropyl]methyl-2,3-dihydro-1H-isoindole-1,3-dione 94 

 

DEAD (3.60 mL, 22.8 mmol) was added dropwise at 0 °C to a solution of alcohol (±)-90 

(893 mg, 9.10 mmol), PPh3 (5.98 g, 22.8 mmol) and phthalamide (3.35 g, 22.8 mmol) in dry 

THF (91 mL). The reaction mixture was heated to reflux and stirred overnight. Solvent was 

removed and the resulting residue was purified by silica gel column chromatography in 

PE/EtOAc (10:1 to 9:1) to afford the title compound (2.11 g, quant.) as an orange oil. 

Rf (EtOAc/PE 1:1): 0.34; nmax (CHCl3): 3466, 3080, 3001, 1771, 1709, 1635, 1393, 1037 

cm–1; 1H-NMR (400 MHz; CDCl3): δ 7.80–7.75 (2H, m, 2 ´ CH-Phth), 7.68–7.63 (2H, m, 

2 ´ CH- Phth), 5.28 (1H, ddd, J = 17.1, 10.2, 8.6 Hz, CH-C2), 4.98 (1H, dd, J = 17.1, 1.7 

Hz, CH2-C1), 4.77 (1H, dd, J = 10.2, 1.7 Hz, CH-C1), 3.58 (1H, dd, J = 14.1, 7.1 Hz, CH2-

C6), 3.50 (1H, dd, J = 14.1, 7.3 Hz, CH2-C6), 1.46 (1H, dddd, J = 8.6, 8.6, 4.9, 4.9 Hz, CH-

C3), 1.26–1.19 (1H, m, CH-C5), 0.77 (1H, ddd, J = 8.5, 4.9, 4.9 Hz, 1 ´ CH2-C4), 0.57 (1H, 

ddd, J = 8.5, 5.0, 5.0 Hz, CH2-C4). 13C NMR (126 MHz; CDCl3): δ 168.2 (2 ´ CO- Phth), 

140.2 (CH-C2), 133.8 (4 ´ CH-Phth), 123.2 (2 ´ C-Phth), 112.5 (CH2-C1), 41.4 (CH2-C6), 

21.6 (CH-C3), 19.7 (CH-C5), 12.6 (CH2-C4). HRMS (ESI+) for C14H13NNaO2 [M+Na]+ 

calcd 250.0838, found 250.0829. 
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Ethyl 2-isocyanato-2-oxoacetate 96 

 

Oxalyl chloride (863 µL, 10.2 mmol) was added to a suspension of ethyl oxamate (1.00 g, 

8.54 mmol) in CH2Cl2 (13 mL) at rt. The reaction mixture was heated to reflux and stirred 

overnight. The solvent was removed under vacuum to afford the isocyanate 96 (1.30 g, 

100%) as a white solid. 

Rf (EtOAc/PE 1:1) 0.15; νmax 1790, 1732, 1713, 1306 cm−1; 1H NMR (400 MHz; CDCl3) δ 

4.46 (2H, q, J = 7.2 Hz, CH2-Et), 1.43 (3H, t, J = 7.2 Hz, CH3-Et). 13C (126 MHz, CDCl3) δ 

158.1 (CO-CONCO), 157.6 (CO-COOEt), 134.3 (NCO), 65.7 (CH2-Et), 14.0 (CH3-Et).* 

*Product decomposed quickly, unable to obtain a mass of pure product without 

decomposition at rt and atm. pressure. 
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Ethyl 2-(t-butoxycarbonyl)amino-2-oxoacetate 97 

 

A solution of t-BuOH (1.23 mL, 12.8 mmol) in toluene (5 mL) was added to a solution of 

ethyl 2-isocyanato-2-oxoacetate 96 (8.54 mmol) in toluene (9 mL). The solution was heated 

to reflux and stirred for 24 h. The solvent was removed, and crude purified by silica gel 

column chromatography (PE/EtOAc from 9:1 to 1:1) affording the title compound (519 mg, 

28%) as a colourless oil. 

Rf (EtOAc/PE 1:1): 0.83; nmax (CHCl3): 1734, 1705, 1248, 1152 cm−1; 1H NMR (400 MHz; 

CDCl3): δ  10.42 (1H, bs, NH), 4.42 (2H, q, J = 7.1 Hz, CH2-Et), 1.59 (9H, s, t-Bu), 1.41 

(3H, t, J = 7.1 Hz, CH3-Et); 13C NMR (126 MHz; CDCl3): δ 158.4 (COOEt + CONHBoc), 

157.5 (CO-Boc), 86.4 (C-Boc), 63.5 (CH2-Et), 27.8 (3 ´ CH3-Boc), 14.0 (CH3-Et).* 

*Values match what is reported in literature 
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Ethyl 2-{(t-butoxycarbonyl)[(1R*,2S*)-2-ethenylcyclopropyl]methylamino}-2-

oxoacetate 99  

 

DEAD (2.17 mL, 13.8 mmol) was added dropwise at 0 °C to a solution of (±)-90 (723 mg, 

5.53 mmol), PPh3 (3.62 g, 13.8 mmol) and ethyl 2-[(t-butoxy)carbonyl]amino-2-oxoacetate 

(3.00 g, 13.8 mmol) in  THF (14 mL). The reaction mixture was heated to reflux and stirred 

overnight. Solvents were removed under vacuum and the resulting residue was purified by 

silica gel column chromatography in PE/EtOAc (10:1 to 9:1) to give the title compound 

(1.47 g, 90%) as an orange oil.  

Rf (EtOAc/PE 1:1): 0.95; νmax (CHCl3): 2982, 2938, 1740, 1698, 1636, 1369, 1145, 1024 

cm−1; 1H NMR (400 MHz; CDCl3): δ 5.35 (1H, ddd, J = 17.1, 10.2, 8.4 Hz, CH-C2), 5.04 

(1H, dd, J = 17.1, 1.6 Hz, CH2-C1), 4.86 (1H, dd, J = 10.2, 1.6 Hz, CH2-C1), 4.34 (2H, q, J 

= 7.2 Hz, CH2-Et), 3.64 (1H, dd, J = 14.0, 7.0 Hz, CH2-C6), 3.59 (1H, dd, J = 14.0, 7.2 Hz, 

CH2-C6), 1.52 (9H, s, t-Bu), 1.48-1.42 (1H, m, CH-C3), 1.36 (3H, t, J = 7.2 Hz, CH3-Et), 

1.10–1.02 (1H, m, CH-C5), 0.77 (1H, ddd, J = 8.6, 5.2, 5.2 Hz, CH2-C4), 0.63 (1H, ddd, J 

= 8.6, 5.2, 5.2 Hz, CH2-C4).  13C NMR (126 MHz; CDCl3): 163.7 (COCOOEt), 162.0 

(COCOOEt), 151.9 (CO-Boc), 140.4 (CH-C2), 112.7 (CH2-C1), 85.3 (CH-Boc), 62.2 (CH2-

Et), 46.6 (CH2-C6), 28.0 (3 ´ CH3-Boc), 21.6 (CH-C3), 19.5 (CH-C5), 14.0 (CH3-Et), 12.6 

(CH2-C4). HRMS (ESI+) for C15H23NNaO5 [M+Na]+ calcd 320.1468, found 320.1460. 
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t-Butyl-N-[(1R*,2S*)-2-ethenylcyclopropyl]methylcarbamate  93 

 

A solution of 4 м aq. LiOH (6.2 mL) was added dropwise to a solution of (±)-99 (1.47 g, 

4.95 mmol) in THF (2.20 mL). The reaction mixture was stirred overnight at rt. The solvent 

was then removed under reduced pressure and the residue was dissolved in CH2Cl2 (20 mL) 

and washed with sat. aq. NaHCO3 (7 mL) and brine (7 mL). The organic phase was dried 

over MgSO4, filtered and concentrated under vacuum to afford the title compound (801 mg, 

82%) as a colourless liquid.  

Rf (EtOAc/PE 1:1): 0.83; nmax (CHCl3): 3356, 2083, 2001, 2978, 2934, 2877, 1694, 1636, 

1368, 1169, 1030 cm−1; 1H NMR (500 MHz; CDCl3): δ 5.37 (1H, ddd, J = 17.1, 10.2, 8.6 

Hz, CH-C2), 5.04 (1H, dd, J = 17.1, 1.6, CH2-C1), 4.86 (1H, dd, J = 10.2, 1.6 Hz, CH2-C1), 

4.62 (1H, s, NH), 3.10–2.98 (2H, m, CH2-C6), 1.44 (9H, s, t-Bu), 1.30 (1H, dddd, J = 8.6, 

8.6, 4.4, 4.4 Hz, CH-C3), 1.04–0.98 (1H, m, CH-C5), 0.65–0.59 (2H, m, CH2-C4). 13C NMR 

(126 MHz; CDCl3): δ 156.0 (CO-Boc), 140.8 (CH-C2), 112.4 (CH2-C1), 79.3 (C-Boc), 44.5 

(CH2-C6), 28.6 (3 ´ CH3-Boc), 21.2 (CH-C3), 20.7 (CH-C5), 12.6 (CH2-C4). HRMS (ESI+) 

for C11H19NNaO2 [M+Na]+ calcd 220.1308, found 220.1275. 
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Ethyl 2-{(t-butoxycarbonyl)[(1S,2R)-2-ethenylcyclopropyl]methylamino}-2-oxoacetate 

99 

 

The procedure applied to the synthesis of (±)-99 (AN-01-83) was followed using (S,R)-90 

(159 mg, 1.62 mmol), and ethyl 2-(t-butoxycarbonyl)amino-2-oxoacetate (879 mg, 4.05 

mmol). The title compound (289 mg, 59%) was obtained as an orange oil.  

Rf (EtOAc/PE 1:1): 0.95; [𝛼],96 +73 (c = 0.01, in CH3Cl); nmax (CHCl3): 2982, 2938, 1740, 

1698, 1636, 1369, 1145, 1024 cm−1; 1H NMR (500 MHz; CDCl3): δ 5.35 (1H, ddd, J = 17.1, 

10.2, 8.4 Hz, CH-C2), 5.04 (1H, dd, J = 17.1, 1.1 Hz, CH2-C1), 4.86 (1H, dd, J = 10.2, 1.1 

Hz, CH2-C1), 4.34 (2H, q, J = 7.2 Hz, CH2-Et), 3.64 (1H, dd, J = 14.1, 7.0 Hz, CH2-C6), 

3.59 (1H, dd, J = 14.1, 7.2 Hz, CH2-C6), 1.52 (9H, s, t-Bu), 1.46–1.43 (1H, m, CH-C3), 1.36 

(3H, t, J = 7.2 Hz, CH3-Et), 1.20–1.17 (1H, m, CH-C5), 0.77 (1H, ddd, J = 8.6, 5.2, 5.2 Hz, 

CH2-C4), 0.63 (1H, ddd, J = 8.6, 5.2, 5.2 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 

163.7 (CO-C7), 162.0 (CO-C8), 151.9 (CO-Boc), 140.4 (CH-C2), 112.7 (CH2-C1), 85.3 (C-

Boc), 62.3 (CH2-Et), 46.7 (CH2-C6), 28.6 (C-Boc), 28.0 (3 ´ CH3-Boc), 24.0 (CH-C3), 19.5 

(CH-C5), 14.0 (CH3-Et), 12.6 (CH2-C4); HRMS (ESI+) for C15H23NNaO5 [M+Na]+ calcd 

320.1468, found 320.1459. 
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t-Butyl-N-[(1S,2R)-2-ethenylcyclopropyl]methylcarbamate 93  

 

The procedure applied to the synthesis of (±)-93 was followed using (S,R)-99 (285 mg, 0.96 

mmol). The title compound (99 mg, 32%) was obtained as a clear oil.  

Rf (EtOAc/PE 1:1): 0.85; [a],96: +73 (c = 0.10, in CH3Cl); nmax (CHCl3): 3348, 3078, 3003, 

1695, 1636, 1366, 1271 cm−1; 1H NMR (400 MHz; CDCl3): δ 5.37 (1H, ddd, J = 17.1, 10.2, 

8.5 Hz, CH-C2), 5.05 (1H, dd, J = 17.1, 1.6 Hz, CH2-C1), 4.86 (1H, dd, J = 10.2, 1.6 Hz, 

CH2-C1), 4.62 (1H, s, NH), 3.10–2.98 (2H, m, CH2-C6), 1.44 (9H, s, t-Bu), 1.34–1.27 (1H, 

m, CH-C3), 1.05–0.97 (1H, m, CH-C5), 0.66–0.59 (2H, m, CH2-C4); 13C NMR (126 MHz; 

CDCl3): δ 156.0 (CO-Boc), 140.8 (CH-C2), 112.4 (CH2-C1), 79.3 (C-Boc), 44.5 (CH2-C6), 

28.6 (3 ´ CH3-Boc), 21.2 (CH-C3), 20.7 (CH-C5), 12.6 (CH2-C4); HRMS (ESI+) for 

C11H19NNaO2 [M+Na] calcd 220.1308, found 220.1302. 
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Ethyl 2-{(t-butoxycarbonyl)[(1R,2S)-2-ethenylcyclopropyl]methylamino}-2-oxoacetate 

99 

 

The procedure applied to the synthesis of (±)-99 was followed using (R,S)-2-90 (100 mg, 

1.02 mmol), and ethyl 2-(t-butoxycarbonyl)amino-2-oxoacetate (879 mg, 4.05 mmol). The 

title compound (300 mg, 99%) was obtained as an orange oil.  

Rf (EtOAc/PE 1:1): 0.95; [a],9A: –374 (c = 0.032, in CHCl3); nmax: 2982, 2938, 1740, 1698, 

1636, 1369, 1145, 1024 cm-1; 1H NMR (500 MHz; CDCl3): δ 5.35 (1H, ddd, J = 17.0, 10.2, 

8.4 Hz, CH-C2), 5.04 (1H, dd, J = 17.0, 1.6 Hz, CH2-C1), 4.86 (1H, dd, J = 10.2, 1.6 Hz, 

CH2-C1), 4.34 (2H, q, J = 7.2 Hz, CH2-Et), 3.64 (1H, dd, J = 14.1, 7.0 Hz, CH2-C6), 3.59 

(1H, dd, J = 14.1, 7.1 Hz, CH2-C6), 1.52 (9H, s, t-Bu), 1.46–1.43 (1H, m, CH-C3), 1.36 (3H, 

t, J = 7.2 Hz, CH3-Et), 1.21–1.16 (1H, m, CH-C5), 0.77 (1H, ddd, J = 8.6, 5.2, 5.2 Hz, CH2-

C4), 0.63 (1H, ddd, J = 8.6, 5.2, 5.2 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 163.7 

(CO-C7), 162.0 (CO-C8), 151.9 (CO-Boc), 140.4 (CH-C2), 112.7 (CH2-C1), 85.3 (C-Boc), 

62.3 (CH2-Et), 46.6 (CH2-C6), 28.0 (3 ́  CH3-Boc), 21.6 (CH-C3), 19.5 (CH-C5), 14.0 (CH3-

Et), 12.6 (CH2-C4); HRMS (ESI+) for C15H23NNaO5 [M+Na] calcd 320.1468, found 

320.1455. 
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t-Butyl-N-[(1R,2S)-2-ethenylcyclopropyl]methylcarbamate 93 

 

The procedure applied to the synthesis of (±)-91 was followed using (R,S)-2-99 (300 mg, 

1.01 mmol). The title compound (132 mg, 66%) was obtained as a yellow oil.  

Rf (EtOAc/PE 1:1): 0.85; [a],96: –374 (c = 0.028, in CH3Cl); nmax (CHCl3): 3348, 3078, 3003, 

1695, 1636, 1366, 1271 cm−1; 1H NMR (400 MHz; CDCl3): δ 5.37 (1H, ddd, J = 17.1, 10.2, 

8.6 Hz, CH-C2), 5.04 (1H, dd, J = 17.1, 1.6 Hz, CH2-C1), 4.86 (1H, dd, J = 10.2, 1.6 Hz, 

CH2-C1), 4.62 (1H, s, NH), 3.09–3.02 (2H, m, CH2-C6), 1.44 (9H, s, t-Bu), 1.34–1.27 (1H, 

m, CH-C3), 1.04–0.98 (1H, m, CH-C5), 0.65–0.59 (2H, m, CH2-C4); 13C NMR (126 MHz; 

CDCl3): δ 156.0 (CO-Boc), 140.8 (CH-C2), 112.4 (CH2-C1), 79.3 (C-Boc), 44.5 (CH2-C6), 

28.6 (3 ´ CH3-Boc), 21.2 (CH-C3), 20.7 (CH-C5), 12.3 (CH2-C4); HRMS (ESI+) for 

C11H19NNaO2 [M+Na] calcd 220.1308, found 220.1300. 
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t-Butyl-N-(t-butoxycarbonyl-N-[(1R*,2S*)-2-ethenylcyclopropyl]methylcarbamate 

100  

 

(±)-90 (3.00 g, 30.6 mmol), HN(Boc)2 (16.6 g, 76.5 mmol) and PPh3 (20 g, 76.5 mmol) were 

dissolved in  THF (310 mL). DEAD (12.1 mL, 76.5 mmol) was added dropwise at 0 °C. The 

mixture was warmed to rt and stirred for 12 h. The solvent was removed under vacuum, and 

the residue was purified by silica gel column chromatography (PE/EtOAc 10:0 to 9:1) to 

afford the title compound (6.05 g, 61%) as an orange oil.  

Rf (EtOAc/PE 1:1): 0.96; nmax (CHCl3): 3080, 2980, 2934, 1732, 1694, 1635, 1366, 1175, 

1034 cm−1; 1H NMR (500 MHz; CDCl3): δ 5.35 (1H, ddd, J = 17.1, 10.2, 8.6 Hz, CH-C2), 

5.01 (1H, dd, J = 17.1, 1.6 Hz, CH2-C1), 4.83 (1H, dd, J = 10.2, 1.6 Hz, CH2-C1), 3.53 (2H, 

d, J = 7.5 Hz, CH2-C6), 1.51 (18H, s, 2 ́  t-Bu), 1.47–1.40 (1H, m, CH-C3), 1.21 (1H, ddddd, 

J = 7.5, 5.0, 4.0, 1.1, 1.1 Hz, CH-C5), 0.73 (1H, ddd, J = 8.5, 5.2, 5.2 Hz, CH2-C4), 0.58 

(1H, ddd, J = 8.5, 5.0, 4.9 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 152.9 (2 ´ CO-

Boc), 141.0 (CH-C2), 112.2 (CH2-C1), 82.3 (2 ´ C-Boc), 49.5 (CH2-C6), 28.2 (6 ´ CH3-

Boc), 21.5 (CH-C3), 20.4 (CH-C5), 12.3 (CH2-C4); HRMS (ESI+) for C16H27NNaO4 

[M+Na]+ calcd 320.1832, found 320.1819. 
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t-Butyl N-(t-butoxycarbonyl)-N-[(1S,2R)-2-ethenylcyclopropyl]methylcarbamate 100 

 

The procedure applied to the synthesis of (±)-100 was followed using alcohol (S,R)-90 (213 

mg, 2.17 mmol), and DIAD (1.10 mL, 5.43 mmol) instead of DEAD. Purification by silica 

gel column chromatography (PE/EtOAc 99:1 to 85:15) afforded the title compound (412 

mg, 64%) as an orange oil.  

Rf (PE/EtOAc 1:1): 0.86; [𝛼],9@ +6.6 (c = 1.0, CHCl3); νmax 2978, 17.39, 1694, 1636, 1366, 

1173, 1130, 856 cm−1; 1H NMR (400 MHz, CDCl3) δ 5.35 (1H, ddd, J = 17.1, 10.2, 8.5 Hz, 

CH-C2), 5.01 (1H, dd, J = 17.1, 1.7 Hz, CH2-C1), 4.83 (1H, dd, J = 10.2, 1.7 Hz, CH2-C1), 

3.53 (2H, d, J = 6.9 Hz, CH2-C6), 1.50 (18H, s, 2 × t-Bu), 1.46–1.40 (1H, m, CH-C3), 1.19 

(1H, ddddd, J = 8.6, 6.9, 6.9, 5.5, 4.5 Hz, CH-C5), 0.73 (1H, ddd, J = 8.6, 5.5, 4.8 Hz, CH2-

C4), 0.58 (ddd, J = 8.6, 4.9, 4.5 Hz, CH2-C4); 13C (126 MHz, CDCl3): δ 141.0 (CH-C2), 

112.2 (CH2-C1), 82.3 (2 × C-Boc), 49.5 (CH2-C6), 28.2 (6 × CH3-Boc), 21.5 14.9 (CH-C3), 

20.4 (CH-C5), 12.3 (CH2-C4); HRMS (ESI+) calcd for C16H27NO4Na [M+Na]+ 320.1832, 

found 320.1827. 
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t-Butyl N- (t-butoxycarbonyl)-N-[(1R,2S)-2-ethenylcyclopropyl]methylcarbamate 100 

 

The procedure applied to the synthesis of (±)-100 was followed using alcohol (R,S)-90 (743 

mg, 7.57 mmol). Purification by silica gel column chromatography (PE/EtOAc 99:1 to 

90:10) gave the title compound (1.50 mg, 59%) as an orange oil.  

Rf (PE/EtOAc 1:1): 0.86; [𝛼],9@ –6.3 (c = 1.0, CHCl3); νmax 2978, 1748, 1694, 1366, 1173, 

1126, 853 cm−1; 1H NMR (500 MHz, CDCl3) δ 5.35 (1H, ddd, J = 17.1, 10.2, 8.5 Hz, CH-

C2), 5.01 (1H, ddd, J = 17.1, 1.7, 0.6 Hz, CH2-C1), 4.83 (1H, dd, J = 10.2, 1.7 Hz, CH2-C1), 

3.53 (2H, d, J = 6.9 Hz, CH2-C6), 1.50 (18 H, s, 2 × t-Bu), 1.46–1.39 (1H, dddd, J = 8.6, 

8.5, 5.1, 4.9 Hz, CH-C3), 1.19 (1H, ddddd, J = 8.6, 6.9, 6.9, 5.1, 4.9 Hz, CH-C5), 0.73 (1H, 

ddd, J = 8.5, 5.1, 5.1 Hz, CH2-C4), 0.57 (1H, ddd, J =8.5, 4.9, 4.9 Hz, CH2-C4); 13C (126 

MHz, CDCl3): δ 152.9 (2 × CO-Boc), 141.0 (CH-C2), 112.2 (CH2-C1), 82.3 (2 × C-Boc), 

49.5 (CH2-C6), 28.2 (6 × CH3-Boc), 21.5 (CH-C3), 20.5 (CH-C5), 12.3 (CH2-C4); HRMS 

(ESI+) calcd for C16H27NO4Na [M+Na]+ 320.1832, found 320.1828. 
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t-Butyl-N-[(1R*,2S*)-2-(2-hydroxyethyl)cyclopropyl]methylcarbamate 103 

 

A flask with an argon inlet was charged with BH3×THF (1 м in THF, 2.60 mL, 2.60 mmol). 

A solution of (±)- 93 (340 mg, 1.71 mmol) in THF (2.10 mL) was added dropwise at rt. The 

reaction mixture was stirred overnight at rt. H2O (4 mL) was then added carefully followed 

by pH 7 phosphate buffer solution (4 mL). Sodium perborate (526 mg, 3.42 mmol) was 

added and the reaction mixture was stirred for a further 2 h. The excess of sodium perborate 

was removed by filtration and the filtrate was concentrated under vacuum. The aqueous 

residue was extracted with Et2O (3 × 10 mL). The combined organic extracts were washed 

with brine (10 mL), dried over MgSO4, filtered and concentrated under vacuum to give the 

corresponding alcohol (379 mg, quant.) as a colourless liquid.  

Rf (EtOAc/PE 1:1): 0.51; nmax (CHCl3): 3329, 2976, 2928, 2874, 1688, 1366, 1171, 1042, 

1020 cm−1; 1H NMR (500 MHz; CDCl3): δ 4.89 (1H, s, NH), 3.67 (2H, t, J = 6.4 Hz, CH2-

C1), 3.59 (1H, t, J = 6.4 Hz, OH), 3.11 (1H, ddd, J = 13.7, 5.6, 5.6 Hz, CH2-C6), 2.84–2.80 

(1H, m, CH2-C6), 1.65–1.61 (1H, m, 1H ´ CH2-C2), 1.43 (9H, s, t-Bu), 1.27–1.25 (1H, m, 

CH2-C2), 0.72–0.67 (2H, m, CH-C5 + CH-C3), 0.37–0.33 (1H,  m, CH2-C4), 0.31-0.27 (1H, 

m, CH2-C4). 13C NMR (126 MHz; CDCl3): δ 156.4 (CO-Boc), 79.3 (C-Boc), 62.8 (CH2-

C1), 45.0 (CH2-C6), 36.5 (CH2-C2), 28.5 (3 ́  CH3-Boc), 18.4 (CH-C5), 15.0 (CH-C3), 10.0 

(CH2-C4). HRMS (ESI+) for C11H21NNaO3 [M+Na]+ calcd 238.1419 found, 238.1442. 
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t-Butyl-N-[(1R,2S)-2-(2-hydroxyethyl)cyclopropyl]methylcarbamate 103  

 

The procedure used for the hydroboration of (±)-103 was followed using (R,S)-93 (440 mg, 

1.72 mmol). The title compound (379 mg, quant.) was obtained without any further 

purification as a colourless liquid.  

Rf (EtOAc/PE 1:1): 0.51; nmax: 3354, 2928, 1715, 1514, 1244, 1173, 1022 cm–1; 1H-NMR 

(500 MHz; CDCl3): δ 4.95 (1H, s, NH), 3.64 (2H, t, J = 6.3 Hz, CH2-C1), 3.59 (1H, t, J = 

6.6 Hz, OH), 3.13–3.04 (1H, m, CH2-C6), 2.85–2.77 (1H, m, CH2-C6), 1.68–1.57 (1H, m, 

CH2-C2), 1.40 (9H, s, t-Bu), 1.30–1.22 (1H, m, CH2-C2), 0.72–0.62 (2H, m, CH-C5 + CH-

C3), 0.35–0.30 (1H, m, CH2-C4), 0.29–0.24 (1H, m, CH2-C4). 13C NMR (126 MHz; CDCl3): 

δ 156.4 (CO-Boc), 79.3 (C-Boc), 62.7 (CH2-C1), 44.9 (CH2-C6), 36.5 (CH2-C2), 28.5 (3 ´ 

CH3-Boc) 18.3 (CH-C5), 14.9 (CH-C3), 10.3 (CH2-C4). HRMS (ESI+) for C25H21NNaO6 

[M+Na] calcd 464.2044 found 464.2041 
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t-Butyl-N-[(1S,2R)-2-(2-hydroxyethyl)cyclopropyl]methylcarbamate 103 

 

The procedure used for the hydroboration of (±)-103 was followed using (S,R)-93 (99.0 mg, 

0.50 mmol). The title compound (66 mg, 61%) was obtained without any further purification 

as a colourless liquid.  

Rf (EtOAc/PE 1:1): 0.54; [a],96: +0.52 (c = 0.05, in CH3Cl); nmax (CHCl3): 3329, 2976, 2928, 

2874, 1688, 1366, 1171, 1042, 1020 cm−1; 1H NMR (500 MHz; CDCl3): δ 4.99 (1H, s, NH), 

3.61 (2H, t, J = 6.2 Hz, CH2-C1), 3.56 (1H, t, J = 6.2 Hz, OH), 3.09–3.03 (1H, m, 1 ´ CH2-

C6), 2.80–2.78 (1H, m, CH2-C6), 1.60–1.56 (1H, m, CH2-C2), 1.38 (9H, s, t-Bu), 1.26–1.21 

(1H, m, CH2-C2), 0.68–0.63 (2H, m, CH-C5 + CH-C3), 0.32–0.29 (1H, m, CH2-C4), 0.26–

0.22 (1H, m, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 156.4 (CO-Boc), 79.2 (C-Boc), 62.5 

(CH2-C1), 44.9 (CH2-C6), 36.5 (CH2-C2), 28.4 (3 ́  CH3-Boc) 18.3 (CH-C5), 14.9 (CH-C3), 

10.2 (CH2-C4); HRMS (ESI+) for C11H21NNaO3 [M+Na] calcd 238.1419, found 238.1439. 
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[(1R*,2S*)-(2-(2-Hydroxyethyl)cyclopropyl]methyl-2,3-dihydro-1H-isoindole-1,3-

dione 104 

 

The procedure applied to the synthesis of compound (±)-103 was followed using (±)-94 

(2.10 g, 9.23 mmol). The title compound (1.81 g, 80%) was obtained without any further 

purification as a as a yellow oil. 

Rf (EtOAc/PE 1:1): 0.12; nmax (CHCl3): 3381, 2930, 2874, 1771, 1705, 1395, 1059, 1042 

cm–1; 1H-NMR (500 MHz; CDCl3): δ 7.85–7.82 (2H, m, 2 ´ CH-Pht), 7.72–7.69 (2H, m, 2 

´ CH-Phth), 3.70–3.56 (3H, m, CH2-C1 + 1 ́  CH2-C6), 3.44 (1H, dd, J = 14.1, 7.5 Hz, CH2-

C6), 1.39–1.31 (2H, m, CH2-C2), 0.94–0.84 (2H, m, CH-C3 + CH-C5), 0.57 (1H, ddd, J = 

8.3, 4.6, 4.6 Hz, CH2-C4), 0.35 (1H, ddd, J = 8.3, 5.1, 5.1 Hz, CH2-C4). 13C NMR (126 

MHz; CDCl3): δ 168.7 (2 ´ CO-Phth), 134.1 (2 ´ CH-Phth), 132.2 (2 ´ C-Phth), 123.4 (2 ´ 

CH-Pht), 62.8 (CH2-C1), 42.1 (CH2-C6), 19.0 (CH2-C2), 17.5 (CH-C5), 15.3 (CH-C3), 10.5 

(CH2-C4). HRMS (ESI+) for C14H15NNaO3 [M+Na]+ calcd 268.0944, found 268.0948.  
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t-Butyl-N-(t-butoxycarbonyl)-N-[(1R*,2S*)-2-(2-

hydroxyethyl)cyclopropyl]methylcarbamate 105 

 

The procedure applied to the synthesis of (±)-103 (AN-II-75) was applied using (±)-100 

(12.9 g, 43.6 mmol). The title compound (13.3 g, 97%) was obtained as a colourless liquid.  

Rf (EtOAc/PE 1:1): 0.63; nmax (CHCl3): 3464, 2980, 2934, 2674, 1732, 1692, 1368, 1172, 

1126,  1096, 1036 cm−1; 1H NMR (500 MHz; CDCl3): δ 3.66–3.64 (3H, m, CH2-C1 + OH), 

3.62–3.60 (1H, m, CH2-C6), 3.34 (1H, dd, J = 14.3, 7.5 Hz, CH2-C6), 1.63 (1H, dq, J = 13.6, 

6.7 Hz, CH2-C2), 1.50 (18H, s, 2 ´ t-Bu), 1.30–1.24 (1H, m, CH2-C2), 0.90–0.87 (1H, m, 

CH-C5), 0.82–0.75 (1H, m, CH-C3), 0.47 (1H, ddd, J = 8.5, 4.8, 4.8 Hz, CH2-C4), 0.31 (1H, 

ddd, J = 8.5, 5.0, 5.0 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 153.3 (2 ´ CO-Boc), 

82.4 (2 ´ C-Boc), 63.0 (CH2-C1), 50.1 (CH2-C6), 36.8 (CH2-C2), 28.2 (6 ´ CH3-Boc), 17.9 

(CH-C5), 14.9 (CH-C3), 10.2 (CH2-C4); HRMS (ESI+) for C16H29NNaO5 [M+Na]+ calcd 

338.1943, found 338.1917. 
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t-Butyl N-(t-butoxycarbonyl)-N-[(1R,2S)-2-(2-hydroxyethyl)cyclopropyl]methylcarbamate 105 

 

The procedure used for the hydroboration of (±)-103 (AN-04-70) was applied using alkene 

(R,S)-100 (1.32 g, 4.44 mmol). The mixture was stirred for 2 h before the oxidation reaction. 

The desired compound (1.27 g, 91%) was obtained as a colourless oil and used without 

further purification. 

Rf (PE/EtOAc 1:1): 0.59; [𝛼],9B +0.10 (c = 1.0, CHCl3); νmax 3522, 2978, 2932, 1732, 1694, 

1366, 1173, 1130, 856 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.69−3.61 (3H, m, CH2-C1 + 1 

× CH2-C6), 3.34 (1H, dd, J = 14.3, 7.5 Hz, CH2-C6), 1.67−1.60 (1H, m, CH2-C2), 1.50 (18H, 

s, 2 × t-Bu), 1.32−1.23 (1H, m, CH2-C2), 0.94–0.85 (1H, m, CH-C5), 0.82–0.76 (1H, m, 

CH-C3), 0.47 (1H, ddd, J = 8.6, 4.8 Hz, 4.8 CH2-C4), 0.31 (1H, ddd, J = 8.6, 5.0, 5.0 Hz, 

CH2-C4); 13C (126 MHz, CDCl3): δ 153.3 (2 × CO-Boc), 82.4 (2 × C-Boc), 63.0 (CH2-C1), 

50.1 (CH2-C6), 36.8 (CH2-C2), 28.2 (6 × CH3-Boc), 17.9 (CH-C5), 14.9 (CH-C3), 10.2 

(CH2-C4); HRMS (ESI+) calcd for C16H29NO5Na [M+Na]+ 338.1938 found 338.1937.  
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t-Butyl N-(t-butoxycarbonyl)-N-[(1S,2R)-2-(2-hydroxyethyl)cyclopropyl]methylcarbamate 105 

 

The procedure used for the hydroboration/oxidation of (±)-103 was applied using alkene 

(S,R)-100 (1.01 g, 3.40 mmol). The reaction mixture was stirred for 2 h before the oxidation. 

The title compound (970 mg, 91%) was obtained as a colourless oil without any further 

purification. 

Rf (PE/EtOAc 1:1): 0.59; [𝛼],9B +0.5 (c = 1, CHCl3); νmax 3522, 2978, 2931, 1732, 1685, 

1366, 1172, 1126, 853 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.69–3.59 (3H, m, CH2-C1 + 

CH2-C6), 3.61 (1H, dd, J = 8.5, 5.6 Hz, CH2-C6), 3.34 (1H, dd, J = 14.3, 7.5 Hz, CH2-C2), 

1.66–1.60 (1H, m, CH2-C2), 1.50 (18H, s, 2 × t-Bu), 1.31–1.21 (1H, m, CH2-C2), 0.91–0.85 

(1H, m, CH-C5), 0.81–0.73 (1H, m, CH-C3), 0.47 (1H, ddd, J = 8.5, 4.8, 4.8 Hz, CH2-C4), 

0.31 (ddd, J = 8.5, 5.0, 5.0 Hz, CH2-C4); 13C (126 MHz, CDCl3): δ 153.3 (2 × CO-Boc), 

82.4 (2 × C-Boc), 63.0 (CH2-C1), 50.1 (CH2-C6), 36.8 (CH2-C2), 28.2 (6 × CH3-Boc), 17.9 

(CH-C5), 14.9 (CH-C3), 10.19 (CH2-C4); HRMS (ESI+) calcd for C16H29NO5Na [M+Na]+ 

338.1938, found 338.1932. 
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t-Butyl [(1R,2S*)-2-(2-oxoethyl)cyclopropyl]methylcarbamate 102  

 

(±)-103 (545 mg, 2.53 mmol) was dissolved in CH2Cl2 (13 mL). DMP (1.61 g, 3.80 mmol) 

was added to the solution at 0 °C. The reaction mixture was stirred overnight at rt. CH2Cl2 

(10 mL) was added to the reaction mixture and the solution was washed with 1 м aq. NaOH 

(10 mL), aq. sat. NaHCO3 (10 mL), and brine (10 mL). The organic phase was dried over 

MgSO4, filtered and concentrated under vacuum. The crude was then purified by silica gel 

column chromatography (PE/EtOAc 1:1) to give the title compound (212 mg, 40%) as a 

yellow oil.  

Rf (EtOAc/PE 1:1): 0.67; nmax (CHCl3): 3360, 2978, 2930, 2726, 1695, 1366, 1169, 1051 

cm−1; 1H NMR (500 MHz; CDCl3): δ 9.79 (1H, t, J = 1.4 Hz, CHO-C1), 5.01 (1H, s, NH), 

3.29–3.24 (1H, m, CH2-C6), 2.85–2.80 (1H, m, CH2-C6), 2.56 (1H, dd, J = 18.0, 5.5 Hz, 

CH2-C2), 2.21 (1H, dd, J = 18.0, 7.1 Hz, CH2-C2), 1.44 (9H, s, t-Bu), 0.88–0.81 (1H, m, 

CH-C3), 0.77 (1H, ddddd, J = 12.8, 11.0, 8.3, 5.5, 5.1 Hz, CH-C5), 0.53 (1H, ddd, J = 8.4, 

5.1, 5.1 Hz, CH2-C4), 0.40 (1H, ddd, J = 8.4, 5.5, 5.5 Hz, CH2-C4); 13C NMR (126 MHz; 

CDCl3): δ 202.1 (CO-C1), 156.1 (CO-Boc), 79.3 (C-Boc), 47.8 (CH2-C2), 44.8 (CH2-C6), 

28.6 (3 ´ CH3-Boc), 18.4 (CH-C5), 10.7 (CH-C3), 10.0 (CH2-C4); HRMS (ESI+) for 

C11H19NNaO3 [M+Na]+ calcd 236.1257, found 236.1252. 
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{(1R*,2S*)-2-([(t-butoxycarbonyl)amino]methylcyclopropyl}acetic acid [(R*,S*)-Boc-

{Gly∆Gly}-OH] 106   

 

(±)-102 (212 mg, 0.99 mmol), 2-methyl-2-butene (2.10 mL, 19.8 mmol) and NaH2PO4×2H2O 

(308 mg, 1.98 mmol.) were dissolved in t-BuOH (10 mL) and the resultant solution cooled 

to 0 °C. To the mixture was added NaClO2 (313 mg, 3.47 mmol). The reaction mixture was 

stirred overnight at rt. The mixture was cooled down to 0 °C and 1 м aq. HCl was added to 

the solution until pH 1. The solution was extracted with CHCl3 (3 × 15mL). The combined 

organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was purified by silica gel column chromatography (PE/EtOAc 

1:1) to afford (±)-106 (176 mg, 77%) as a yellow oil. 

Rf (EtOAc/PE 1:1): 0.55; nmax (CHCl3): 3350, 2978, 1694, 1638, 1169 cm−1. 1H NMR (500 

MHz; CDCl3): δ 5.07 (1H, s, NH), 3.29 (1H, ddd, J = 12.5, 6.3, 6.3 Hz, CH2-C6), 2.80–2.72 

(1H, m, CH2-C6), 2.54 (1H, dd, J = 16.9, 5.7 Hz, CH2-C2), 2.08 (1H, dd, J = 16.9, 9.2 Hz, 

CH2-C2), 1.44 (9H, s, t-Bu), 0.93–0.85 (1H, m, CH-C3), 0.83–0.79 (1H, m, CH-C5), 0.52 

(1H, ddd, J = 8.4, 5.1, 5.1 Hz, CH2-C4), 0.43 (1H, ddd, J = 8.4, 5.2, 5.2 Hz, CH2-C4); 13C 

NMR (126 MHz; CDCl3): δ 178.3 (CO-C1), 156.2 (CO-Boc), 79.3 (C-Boc), 44.8 (CH2-C6), 

37.9 (CH2-C2), 28.6 (3 ´ CH3-Boc), 18.5 (CH-C3), 12.9 (CH-C5), 10.3 (CH2-C4); HRMS 

(ESI+) for C11H19NNaO4 [M+Na]+ calcd 252.1206, found 252.1207. 
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(R,S)-Boc-{Gly∆Gly}-OH 106 

 

To a solution of (S,R)-103 (56 mg, 0.26 mmol), DMSO (0.19 mL, 2.6 mmol) and DIPEA 

(0.18 mL, 1.04 mmol) in CH2Cl2 (3 mL) at 0 °C was added SO3·pyridine (103 mg, 0.65 

mmol) in two portions over 5 min. The reaction mixture was stirred for 15 min and then 

diluted with sat. aq. NaHCO3 (5 mL). The phases were separated, and the organic phase was 

washed with sat. aq. NaHCO3 (5 mL) and brine (5 mL), then dried over MgSO4, filtered and 

concentrated under vacuum. The crude was used directly in the next step. 

The procedure applied for the synthesis of (±)-106 was then followed using the aldehyde 

previously obtained. The residue was purified by silica gel column chromatography 

(PE/EtOAc 1:1) to yield the acid (S,R)-106 (5 mg, 22%) as dark yellow oil.  

Rf (EtOAc/PE 1:1): 0.35; [a],96: +39 (c = 0.10, CH3Cl), nmax (CHCl3): 3335, 2978, 2930, 

1711, 1368, 1171, 1026 cm−1; 1H NMR (500 MHz; CDCl3): δ 5.03 (1H, s, NH), 3.30 (1H, 

ddd, J = 12.7, 6.0, 6.0 Hz, CH2-C6), 2.83–2.73 (1H, m, CH2-C6), 2.56 (1H, dd, J = 16.8, 5.7 

Hz, CH2-C2), 2.09 (1H, dd, J = 16.8, 8.7 Hz, CH2-C2), 1.45 (9H, s,t-Bu), 0.95–0.86 (1H, m, 

CH-C3), 0.86–0.78 (1H, m, CH-C5), 0.53 (1H, ddd, J = 8.5, 5.2, 5.2 Hz, CH2-C4), 0.44 (1H, 

ddd, J = 8.5, 5.2, 5.2 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 178.3 (CO-C1), 156.2 

(CO-Boc), 79.3 (C-Boc), 44.9 (CH2-C6), 37.9 (CH2-C2), 28.6 (3 ´ CH3-Boc), 18.5 (CH-

C3), 12.9 (CH-C5), 10.3 (CH2-C4); HRMS (ESI+) for C11H19NNaO4 [M+Na]+ calcd 

252.1206, found 252.1203. 
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 (±)-(Boc)2-{Gly∆Gly}-OH 107 

 

(±)-105 (1.46 g, 4.63 mmol) and NMO×H2O (6.26 g, 46.3 mmol) were dissolved in MeCN 

(19 mL). TPAP (10 mol%, 162 mg, 0.46 mmol) was added portionwise (20 mg/20min) at rt. 

The reaction mixture was stirred overnight at rt. The reaction was then quenched by the 

addition of excess of isopropanol. H2O (50 mL) was added and pH was carefully adjusted to 

1 using 2 м aq. HCl. The aqueous phase was extracted with Et2O (3 ́  20 mL). The combined 

organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under 

vacuum to give the protected amino acid, which was used as crude for the next step.  

Rf (EtOAc/PE 1:1): 0.08; nmax (CHCl3): 2980, 2936, 1709, 1694, 1368, 1171, 1126, 1034 

cm−1; 1H NMR (500 MHz; CDCl3): δ 3.52 (2H, dd, J = 6.9, 1.2 Hz, CH2-C6), 2.28 (1H, dd, 

J = 16.2, 7.0 Hz, CH2-C2), 2.21 (1H, dd, J = 16.2, 7.2 Hz, CH2-C2), 1.50 (18H, s, 2 ´ t-Bu), 

1.10–1.02 (2H, m, CH-C5 + CH-C3), 0.61 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, CH2-C4), 0.40 

(1H, ddd, J = 8.5, 5.1, 5.1 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 178.2 (C1), 153.0 

(2 ´ CO-Boc), 82.4 (2 ´ C-Boc), 49.6 (CH2-C6), 38.4 (CH2-C2), 28.2 (6 ´ CH3-Boc), 18.3 

(CH-C5), 13.1 (CH-C3), 10.7 (CH2-C4); HRMS (ESI+) for C16H27NNaO6 [M+Na]+ calcd 

352.1736, found 352.1680.  
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(S,R)-(Boc)2-{Gly∆Gly}-OH 107 

 

The procedure applied to the synthesis of (±)-107 was followed using alcohol (S,R)-105 (646 

mg, 2.05 mmol). (S,R)-(Boc)2-{Gly∆Gly}-OH 107 (588 mg, 87%) was obtained as a black 

oil without any further purification.  

Rf (PE/EtOAc 1:1): 0.15; [𝛼],9? +0.72 (c = 1, CHCl3); νmax 2978, 2935, 1778, 1709, 1694, 

1516, 1439, 1366, 1238, 1173, 1130, 853 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.52 (2H, dd, 

J = 6.9, 5.6 Hz, CH2-C6), 2.30 (1H, dd, J = 16.2, 6.7 Hz, CH2-C2), 2.19 (1H, dd, J = 16.2, 

7.3 Hz, CH2-C2), 1.50 (18H, s, 2 × t-Bu), 1.11–1.02 (2H, m, CH-C3 + CH-C5), 0.61 (1H, 

ddd, J = 8.4, 5.2, 5.2 Hz, CH2-C4), 0.40 (1H, ddd, J = 8.4, 5.2, 5.2 Hz, CH2-C4); 13C (126 

MHz, CDCl3): δ 177.9 (CO-C1), 152.9 (2 × CO-Boc), 82.4 (2 × C-Boc), 49.7 (CH2-C6), 

38.4 (CH2-C2), 28.2 (6 × CH3-Boc), 18.3 (CH-C5), 13.1 (CH-C3), 10.7 (CH2-C4); HRMS 

(ESI+) for C16H27NO6Na [M+Na]+ calcd 352.1731, found 352.1716.   
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 (R,S)-(Boc)2-{Gly∆Gly}-OH 107 

 

The procedure used for the synthesis of (±)-106 was applied using alcohol (R,S)-105 (970 

mg, 3.08 mmol) affording (R,S)-(Boc)2-{Gly∆Gly}-OH 107 (1.04 g, quant.) as a black oil. 

The compound was used without any further purification. 

Rf (PE/EtOAc 1:1): 0.65; [𝛼],9B −0.34 (c = 1.0, CHCl3); νmax 3233, 2978, 2936, 1778, 1709, 

1694, 1516, 1366, 1234, 1173, 1126, 853 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.52 (2H, dd, 

J = 6.9, 1.6 Hz, CH2-C6), 2.29 (1H, dd, J = 16.2, 6.9 Hz, CH2-C2), 2.21 (1H, dd, J = 16.2, 

7.1 Hz, CH2-C2), 1.50 (18H, s, 2 × t-Bu), 1.13–1.01 (2H, m, CH-C5 + CH-C3), 0.61 (1H, 

ddd, J = 8.4, 5.2, 5.2 Hz, CH2-C4), 0.40 (1H, ddd, J = 8.4, 5.1, 5.1 Hz, CH2-C4); 13C (126 

MHz, CDCl3): δ 178.4 (CO-C1), 153.0 (2 × CO-Boc), 82.4 (2 × C-Boc), 49.6 (CH2-C6), 

38.5 (CH2-C2), 28.2 (6 × CH3-Boc), 18.3 (CH-C5), 13.1 (CH-C3), 10.7 (CH2-C4); HRMS 

(ESI+) for C16H27NO6Na [M+Na]+ calcd 352.1731, found 352.1719.   
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 (±)-(Boc)2-{Gly∆Gly}-OMe 117  

 

To a suspension of (±)-(Boc)2-{Gly∆Gly}-OH 107 (789 mg, 2.40 mmol) and NaHCO3 (403 

mg, 4.80 mmol) in anhydrous DMF (7.10 mL) was added MeI (750 µL, 12.0 mmol). The 

reaction mixture was stirred overnight at rt. H2O (10.0 mL) was added dropwise and the 

mixture was then extracted with Et2O (3 ´ 10 mL). The combined organic extracts were 

washed with H2O (10 mL) and brine (10 mL), dried over MgSO4, filtered and concentrated 

under vacuum. The residue was then purified by silica gel on column chromatography 

(PE/EtOAC, 95:5 to 85:15) to give (±)-(Boc)2-{Gly∆Gly}-OMe 117 (359 mg, 47%) as a 

yellow oil. 

Rf (EtOAc/PE 1:1): 0.15; nmax (CHCl3): 2980, 2934, 2849, 1749, 1694, 1234, 1171, 1128, 

1034 cm−1; 1H NMR (400 MHz; CDCl3): δ 3.67 (3H, s, CH3-OMe), 3.51 (2H, dd, J = 6.9, 

3.6 Hz, CH2-C6) [?], 2.25 (1H, dd, J = 15.7, 6.9 Hz, CH2-C2), 2.17 (1H, dd, J = 15.7, 7.2 

Hz, CH2-C2), 1.51 (18H, s, 2 ´ t-Bu), 1.10–1.00 (2H, m, CH-C5 + CH-C3), 0.59 (1H, ddd, 

J = 8.5, 5.1, 5.1 Hz, CH2-C4), 0.37 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, 1 ´ CH2-C4); 13C NMR 

(101 MHz; CDCl3): δ 173.3 (CO-C1), 152.9 (2 ´ CO-Boc), 82.3 (2 ´ C-Boc), 51.8 (CH3-

OMe), 49.7 (CH2-C6), 38.7 (CH2-C2), 28.2 (6 ´ CH3-Boc), 18.3 (CH-C3), 13.4 (CH-C5), 

10.8 (CH2-C4); HRMS (ESI+) for C17H29NNaO6 [M+Na]+ calcd 366.1893, found 366.1883. 
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(±)-(Boc)2-{Gly∆Gly}-N-iPr 118  

 

(±)-(Boc)2-{Gly∆Gly}-OH 107 (700 mg, 2.13 mmol), i-PrNH2 (370 μL, 4.26 mmol) and 

Et3N (1.00 mL, 7.46 mmol) were dissolved in CH2Cl2 (11 mL). The solution was stirred for 

15 min at rt and T3P (1.90 mL, of a 50% solution in EtOAc, 3.20 mmol) was added dropwise. 

The reaction mixture was stirred for 18 h at rt. The solution was washed with H2O (3 ´ 10 

mL) and the phases were separated. The organic phase was dried over MgSO4, filtered and 

concentrated under vacuum. The residue was purified by silica gel on column 

chromatography (PE/EtOAc 1:1) to give the title compound (365 mg, 46%) as a colourless 

oil.  

Rf (EtOAc/PE 1:1): 0.41; nmax (CHCl3): 3287, 2976, 2934, 2874, 1694, 1651, 1366, 1175, 

1132, 1032 cm−1; 1H-NMR (400 MHz; CDCl3): δ 5.91 (1H, d, J = 7.6 Hz, NH), 4.15–4.04 

(1H, m, CH-C7), 3.63 (1H, dd, J = 14.4, 6.0 Hz, CH2-C6), 3.52 (1H, dd, J = 14.4, 6.3 Hz, 

CH2-C6), 2.19 (1H, dd, J = 16.3, 6.7 Hz, CH2-C2), 2.07 (1H, dd, J = 16.3, 6.9 Hz, CH2-C2), 

1.50 (18H, s, 2 ´ t-Bu), 1.16 (6H, d, J = 6.6 Hz, 2 ´ CH3-C8), 1.01–0.88 (2H, m, CH-C5 + 

CH-C3), 0.58 (1H, ddd, J = 8.6, 4.8, 4.8 Hz, CH2-C4), 0.37 (1H, ddd, J = 8.6, 4.8, 4.8 Hz, 

CH2-C4); 13C NMR (126 MHz; CDCl3): 171.2 (CO-C1), 153.2 (2 ´ CO-Boc), 82.7 (2 ´ C-

Boc), 49.1 (CH2-C6), 41.3 (CH-C7), 41.1 (CH2-C2), 28.2 (6 ´ CH3-Boc), 22.9 (2 ´ CH3-

C8), 18.4 (CH-C5), 13.1 (CH-C3), 10.4 (CH2-C4); HRMS (ESI+) for C19H34N2NaO5 

[M+Na]+ calcd 393.2365 found, 397.2337.  
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 (±)-(Boc)2-{Gly∆Gly}-NMe2 119  

 

(±)-(Boc)2-{Gly∆Gly}-OH 107 (1.00 g, 3.04 mmol), HNMe2 (1.60 mL of a 2 м solution in 

THF, 3.19 mmol) and Et3N (1.50 mL, 10.6 mmol) were dissolved in CH2Cl2 (15 mL). The 

solution was stirred for 15 min at rt and T3P (2.70 mL of a 50% solution in EtOAc, 4.56 

mmol) was added dropwise. The reaction mixture was stirred for 18 h at rt. The solution was 

washed with H2O (3 ´ 10 mL) and phases separated. The organic phase was dried over 

MgSO4, filtered and concentrated under vacuum. The residue was purified by silica gel 

column chromatography (PE/EtOAc 1:1) to give the title compound (400 mg, 37%) as a 

colourless oil.  

Rf (EtOAc/PE 1:1): 0.17; nmax (CHCl3): 2978, 1740, 1694, 1649, 1368, 1132 cm−1; 1H NMR 

(500 MHz; CDCl3): δ 3.58 (1H, dd, J = 14.4, 6.7 Hz, CH2-C6), 3.46 (1H, dd, J = 14.4, 7.2 

Hz, CH2-C6), 2.97 (3H, s, CH3-C7), 2.93 (3H, s, CH3-C7), 2.43 (1H, dd, J = 15.3, 5.8 Hz, 

CH2-C2), 2.11 (1H, dd, J = 15.3, 7.6 Hz, CH2-C2), 1.50 (18H, d, J = 1.7 Hz, 2´ t-Bu), 1.13–

1.05 (1H, m, CH-C3), 1.04–0.97 (1H, m, CH-C5), 0.62 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, CH2-

C4), 0.38 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 172.3 

(CO-C1), 152.9 (CO-Boc), 82.3 (C-Boc), 49.9 (CH2-C6), 37.9 (CH2-C2), 37.5 (CH3-C7), 

35.4 (CH3-C7), 28.2 (6 ´ CH3-Boc), 18.2 (CH-C5), 13.8 (CH-C5), 10.9 (CH2-C4); HRMS 

(ESI+) for C18H32N2NaO5 [M+Na]+ calcd 379.2203, found 379.2190. 
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(±)-iPrOC-{Gly∆Gly}-N-iPr 75  

 

A solution of (±)-(Boc)2-{Gly∆Gly}-iPr 118 (57 mg, 0.15 mmol) in CH2Cl2 (1.5 mL) was 

treated with TFA (115 μL, 9.90 mmol) dropwise at rt. The reaction mixture was stirred for 

3 h at rt and solvent was removed under vacuum.  

The resulting TFA salt (0.15 mmol) was dissolved in CH2Cl2 (380 μL) and Et3N (40 μL, 

0.28 mmol) was added. Isobutyric anhydride (46 μL, 0.28 mmol) was added dropwise at rt 

and the reaction mixture was stirred for 36 h. H2O (10 mL) was added and phases were 

separated. The organic phase was washed with aq. sat. NaHCO3 (3 ´ 10 mL) and brine (10 

mL). The organic phase was dried over MgSO4, filtered and concentrated under vacuum. 

The crude product was purified by silica gel column chromatography (PE/EtOAc 9:1 to 2:3) 

to afford the title compound (25 mg, 69% over two steps) as a white powder. 

Rf (EtOAc/PE 1:1): 0.45; m.p.: 107–108 °C; νmax (10 mM, CH2Cl2) 3429, 3325, 2974, 2932, 

1663, 1516, 1277, 1265, 1258 cm−1; 1H NMR (400 MHz; CDCl3): δ 6.77 (1H, s, NH-Gly), 

5.42 (1H, s, NH-iPr), 4.09 (1H, m, CH-C7), 3.72 (1H, ddd, J = 13.5, 6.0, 4.7 Hz, CH2-C6), 

2.61–2.47 (2H, m, CH2-C6 + CH2-C2), 1.18 (3H, d, J = 6.9 Hz, CH3-C11), 1.17 (3H, d, J = 

6.9 Hz, CH3-C11), 1.17 (3H, d, J = 6.5 Hz, CH3-C8), 1.16 (3H, d, J = 6.5 Hz, CH3-C8), 2.43 

(1H, hept, J = 6.9 Hz, CH-C10), 1.70 (1H, dd, J = 16.2, 9.4 Hz, CH2-C2), 0.83–0.70 (2H, 

m, CH-C5 + CH-C3), 0.52 (1H, ddd, J = 8.2, 5.2, 5.2 Hz, CH2-C4), 0.42 (1H, ddd, J = 8.2, 

5.2, 5.2 Hz, CH2-C4); 13C NMR (101 MHz; CDCl3): δ 177.5 (CO-C1), 171.7 (CO-C9), 43.9 

(CH2-C6), 41.6 (CH-C7), 40.0 (CH2-C2), 35.7 (CH-C10), 23.0 (2 ́  CH3-C8), 19.8 (2 ́  CH2-

C11), 18.1 (CH-C3/5), 13.6 (CH-C3/5), 10.2 (CH2-C4); HRMS (ESI+) for C13H24N2NaO2 

[M+Na]+ calcd 262.1730, found 262.1727. 
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 (±)-iPrOC-{Gly∆Gly}-NMe2 76  

  

(±)-(Boc)2-{Gly∆Gly}-NMe2 119 (400 mg, 1.12 mmol) was dissolved in CH2Cl2 (11 mL) 

and treated with TFA (860 μL, 11.2 mmol). The reaction mixture was stirred for 3 h and 

solvent was removed under vacuum.  

The resulting TFA·(±)-H-{Gly∆Gly}-NMe2 salt and Et3N (164 μL, 1.18 mmol) were 

dissolved in CH2Cl2 (1.6 mL). Isobutyric anhydride (196 μL, 1.18 mmol) was added 

dropwise to the solution at rt. The reaction mixture was stirred for 18 h at rt. H2O (10 mL) 

was added and the phases were separated. The organic phase was washed with sat. aq 

NaHCO3 (3 ´ 10 mL), 1 м aq. NaOH (3 ´ 10 mL), 1 м aq.  HCl (10 mL) and brine (10 mL), 

dried over MgSO4, filtered and concentrated under vacuum. The residue was purified by 

silica gel column chromatography (CH2Cl2/MeOH 99:1 to 97:3) to afford the title compound 

(17 mg, 7% over 2 steps) as a colourless semi-solid. 

Rf (PE/EtOAc 1:1): 0.08; νmax (c = 10 mM, CH2Cl2) 3306, 3048, 2963, 2928, 2855, 1636, 

1535 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.57 (1H, br s, NH), 3.91 (1H, ddd, J = 13.5, 6.3, 

4.8 Hz, CH2-C6), 2.96 (3H, s, CH3-C7), 2.94 (3H, s, CH3-C7), 2.88 (1H, dd, J = 17.0, 4.3 

Hz, CH2-C2), 2.46 (1H, hept, J = 6.9 Hz, CH-C9), 2.31 (1H, ddd, J = 13.5, 10.4, 1.9 Hz, 

CH2-C6), 1.65 (1H, dd, J = 17.0, 10.1 Hz, CH2-C2), 1.19 (3H, d, J = 6.9 Hz, CH3-C10), 1.17 

(3H, d, J = 6.9 Hz, CH3-C10), 0.78 (1H, ddddd, J = 10.1, 8.4, 5.3, 5.3, 4.3 Hz, CH-C3), 0.63 

(1H, ddddd, J = 9.6, 8.6, 5.1, 5.0, 4.8 Hz, CH-C5), 0.54 (1H, ddd, J = 8.3, 5.2, 5.2 Hz, CH2-

C4), 0.44 (1H, ddd, J = 8.3, 5.2, 5.2 Hz, CH2-C4); 13C (126 MHz, CDCl3): δ 177.5 (CO-C1), 

172.9 (CO-C9), 44.5 (CH2-C6), 37.3 (CH2-C2), 36.9 (CH3-C7), 35.5 (CH-C9), 35.5 (CH3-

C7), 19.8 (2 × CH3-C10), 17.7 (CH-C5), 13.5 (CH-C3), 10.5 (CH2-C4); HRMS (ESI+) for 

C12H22N2O2Na [M+Na]+ calcd 249.1573, found 249.1570. 
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(S,R)-Boc2-{Gly∆Gly}-N-iPr 118 

 

The procedure applied to the synthesis of (±)-(Boc)2-{Gly∆Gly}-iPr 118 was followed using 

(S,R)-(Boc)2-{Gly∆Gly}-OH 107 (50 mg, 0.15 mmol). The crude was purified by silica gel 

column chromatography (PE/EtOAc 1:1) to give (S,R)-118 (29 mg, 52%) as a colourless oil.    

Rf (PE/EtOAc 1:1): 0.44; [𝛼],6B +8.28 (c = 1.45, CHCl3); νmax 3308, 2975, 2934, 1728, 1700, 

1642, 1368, 1174, 1132, 853 cm−1; 1H NMR (500 MHz, CDCl3) δ 5.91 (1H, d, J = 6.8 Hz, 

NH), 4.15–4.05 (1H, m, CH-C7), 3.63 (1H, dd, J = 14.4, 6.1 Hz, CH2-C6), 3.52 (1H, dd, J 

= 14.4, 6.4 Hz, CH2-C6), 2.19 (1H, dd, J = 16.5, 6.8 Hz, CH2-C2), 2.07 (1H, dd, J = 16.5, 

7.5 Hz, CH2-C2), 1.50 (18H, s, 2 × t-Bu), 1.16 (3H, d, J = 6.3 Hz, CH3-C8), 1.16 (3H, d, J 

= 6.6 Hz, CH3-C8), 1.01–0.88 (2H, m, CH-C5 + CH-C3), 0.59 (1H, ddd, J = 8.5, 5.0, 5.0 

Hz, CH2-C4), 0.38 (1H, ddd, J = 8.5, 5.0, 5.0 Hz, CH2-C4); 13C (126 MHz, CDCl3): δ 171.3 

(CO-C1), 153.2 (2 × CO-Boc), 82.7 (C-Boc), 49.1 (CH2-C6), 41.4 (CH-C7), 41.1 (CH2-C2), 

28.2 (6 × CH3-Boc), 22.9 (CH3-C8), 22.9 (CH3-C8), 18.4 (CH-C5), 13.1 (CH-C3), 10.4 (CH2-

C4); HRMS (ESI+) for C19H34N2O5Na [M+Na]+ calcd 393.2360 found 393.2356. 
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(S,R)-(Boc)2-{Gly∆Gly}-NMe2 119 

 

The procedure applied to the synthesis of (±)-(Boc)2-{Gly∆Gly}-NMe2 119 was followed 

using (S,R)-(Boc)2-{Gly∆Gly}-OH 107 (130 mg, 0.39 mmol). 2 equiv. of HNMe2 (2 м in 

THF) were used in this case. The residue was purified by silica gel column chromatography 

(PE/EtOAc 1:1) to give (S,R)-(Boc)2-{Gly∆Gly}-NMe2 119 as a yellow oil (67 mg, 48%).  

Rf (PE/EtOAc 1:1): 0.34; [𝛼],99 +9.8 (c = 0.50, CHCl3); νmax 2977, 2932, 1744, 1734, 1693, 

1646, 1368, 1171, 1131, 853 cm−1; 1H NMR (500 MHz, CDCl3) δ 3.56 (1H, dd, J = 14.4, 

6.6 Hz, CH2-C6), 3.44 (1H, dd, J = 14.4, 7.2 Hz, CH2-C6), 2.95 (3H, s, CH3-C7), 2.91 (3H, 

s, CH3-C7), 2.41 (1H, dd, J = 15.3, 5.8 Hz, CH2-C2), 2.09 (1H, dd, J = 15.3, 7.5 Hz, CH2-

C2), 1.48 (18H, s, 2 × t-Bu), 1.10–1.03 (1H, m, CH-C3), 1.01–0.96 (1H, m, CH-C5), 0.60 

(1H, ddd, J = 8.4, 5.0, 5.0 Hz, CH2-C4), 0.36 (1H, ddd, J = 8.4, 5.1, 5.1 Hz, CH2-C4); 13C 

(126 MHz, CDCl3): δ 172.2 (CO-C1), 152.9 (2 × CO-Boc), 82.2 (CH-Boc), 49.9 (CH2-C6), 

37.8 (CH2-C2), 37.4 (CH3-C7), 35.4 (CH3-C7), 28.2 (6 × CH3-Boc), 18.2 (CH-C5), 13.8 

(CH-C3), 10.8 (CH2-C4); HRMS (ESI+) for C18H32N2O5Na [M+Na]+ calcd 379.2203, found 

379.2201. 
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 (S,R)-iPr-{Gly∆Gly}-N-iPr 75 

 

The procedure applied to the synthesis of (±)-iPr-{Gly∆Gly}-N-iPr 75 was followed using 

(S,R)-(Boc)2-{Gly∆Gly}-N-iPr 118 (74 mg, 0.20 mmol). After deprotection, 1.5 equiv. of 

Et3N and isobutyric anhydride were used. Trituration of the residue with cold pentane and 

cold Et2O in EtOAc afforded the title compound as a white solid (8 mg, 17% over 2 steps).  

Rf (PE/EtOAc 1:1): 0.08; [𝛼],96 −43 (c = 0.28, CHCl3); m.p.: 134–135 °C; νmax 3300, 2970, 

2924, 1639, 1547, 1238 cm−1; 1H NMR (500 MHz, CDCl3) δ 6.78 (1H, br s, NH-C6), 5.39 

(1H, br s, NH-C7), 4.10 (1H, dh, J = 7.9, 6.5 Hz, CH-C7), 3.73 (1H, ddd, J = 13.5, 5.9, 4.8 

Hz, CH2-C6), 2.60–2.50 (2H, m, CH2-C6 + CH2-C2), 2.43 (1H, h, J = 7.0 Hz, CH-C10), 

1.70 (1H, dd, J = 16.2, 9.4 Hz, CH2-C2), 1.18 (3H, d, J = 7.0 Hz, CH3-C11), 1.18 (3H, d, J 

= 7.0 Hz, CH3-C11), 1.17 (3H, d, J = 6.5 Hz, CH3-C8), 1.16 (3H, d, J = 6.5 Hz, CH3-C8), 

0.83–0.71 (2H, m, CH-C3 + CH-C5), 0.53 (1H, ddd, J = 8.1, 5.3, 5.3 Hz, CH2-C4), 0.42 

(1H, ddd, J = 8.1, 5.3, 5.3 Hz, CH2-C4); 13C (126 MHz, CDCl3): δ 177.5 (CO-C9), 171.7 

(CO-C1), 43.9 (CH2-C6), 41.6 (CH-C7), 39.9 (CH2-C2), 35.7 (CH-C10), 22.9 (CH3-C8), 

22.9 (CH3-C8), 19.8 (2 × CH3-C11), 18.0 (CH-C5/3), 13.5 (CH-C3/5), 10.2 (CH2-C4); 

HRMS (ESI+) for C13H24N2O2Na [M+Na]+ calcd 263.1730, found 263.1725. 
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 (S,R)-iPr-{Gly∆Gly}-NMe2 76 

 

The procedure applied to the synthesis of (±)-iPr-{Gly∆Gly}-NMe2 76 was followed using 

(1R,2S)-(Boc)2-Gly∆Gly}-NMe2 119 (90 mg, 0.25 mmol). After deprotection, 1.5 equiv. of 

Et3N and isobutyric anhydride were used. The residue was purified by silica gel column 

chromatography (CH2Cl2/MeOH 100:0 to 97:3) to afford the title compound (37 mg, 65% 

over 2 steps) as a colourless semi-solid.  

Rf (PE/EtOAc 1:1): 0.08; [𝛼],9C –57 (c = 0.50, CHCl3); νmax 3480, 3295, 2967, 2932, 1636, 

1535, 1265, 1238 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.57 (1H, br s, NH), 3.92 (1H, ddd, 

J = 13.3, 6.3, 4.8 Hz, CH2-C6), 2.97 (3H, s, CH3-C7), 2.94 (3H, s, CH3-C7), 2.88 (1H, dd, J 

= 17.0, 4.0 Hz, CH2-C2), 2.46 (2H, h, J = 6.9 Hz, CH2-C9), 2.32 (1H, ddd, J = 13.3, 10.2, 

2.0 Hz, CH2-C6), 1.65 (1H, dd, J = 17.0, 10.3 Hz, CH2-C2), 1.18 (3H, d, J = 6.9 Hz, CH3-

C10), 1.17 (3H, d, J = 6.9 Hz, CH3-C10), 0.78 (1H, ddddd, J = 10.3, 8.6, 5.3, 5.1, 4.0 Hz, 

CH-C3), 0.63 (1H, ddddd, J = 10.2, 8.6, 5.3, 5.1, 4.8 Hz, CH-C5), 0.55 (1H, ddd, J = 8.3, 

5.1, 5.1 Hz, CH2-C4), 0.45 (1H, ddd, J = 8.3, 5.3, 5.3 Hz, CH2-C4); 13C (126 MHz, CDCl3): 

δ 177.6 (CO-C1), 172.9 (CO-C8), 44.5 (CH2-C6), 37.3 (CH2-C2), 36.9 (CH3-C7), 35.7 (CH-

C9), 35.5 (CH3-C7), 19.8 (2 × CH3-C10), 17.7 (CH-C5), 13.5 (CH-C3), 10.5 (CH2-C4); 

HRMS (ESI+) for C12H22N2O2Na [M+Na]+ calcd 249.1573, found 249.1575. 
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(R,S)-Boc2-{Gly∆Gly}-N-iPr 118 

 

The procedure applied to the synthesis of (±)-(Boc)2-{Gly∆Gly}-N-iPr 118 was followed 

using (R,S)-(Boc)2-{Gly∆Gly}-OH 107 (92 mg, 0.28 mmol). The crude was purified by 

silica gel column chromatography (PE/EtOAc 1:1) to give (S,R)-(Boc)2-{Gly∆Gly}-N-iPr 

118 (36 mg, 35%) as a colourless oil.  

Rf (PE/EtOAc 1:1): 0.35; [𝛼],6B –8.63 (c = 1.80, CHCl3); νmax 3294, 2971, 2929, 1732, 1693, 

1640, 1366, 1173, 1129, 853 cm−1; 1H NMR (400 MHz, CDCl3) δ 5.96 (1H, d, J = 8.1 Hz, 

NH), 4.17–4.04 (1H, m, CH-C7), 3.60 (1H, dd, J = 14.4, 6.0 Hz, CH2-C6), 3.50 (1H, dd, J 

= 14.4, 6.2 Hz, CH2-C6), 2.16 (1H, dd, J = 16.5, 6.7 Hz, CH2-C2), 2.04 (1H, dd, J = 16.5, 

7.2 Hz, CH2-C2), 1.48 (18H, s, 2 × t-Bu), 0.92 (3H, d, J = 6.5 Hz, CH3-C8), 0.92 (3H, d, J 

= 6.5 Hz, CH3-C8), 0.99–0.81 (2H, m, CH-C5 + CH-C3), 0.55 (1H, ddd, J = 8.4, 5.0, 5.0 

Hz, CH2-C4), 0.35 (1H, ddd, J = 8.4, 5.1, 5.1 Hz, CH2-C4); 13C (101 MHz, CDCl3): δ 171.2 

(CO-C1), 153.2 (2 × CO-Boc), 82.6 (C-Boc), 49.1 (CH2-C6), 41.3 (CH-C7), 41.0 (CH2-C2), 

28.2 (6 × CH3-Boc), 22.8 (CH3-C8), 22.8 (CH3-C8), 18.4 (CH-C5), 13.1 (CH-C3), 10.4 (CH2-

C4); HRMS (ESI+) for C19H34N2O5Na [M+Na]+ calcd 393.2360, found 393.2359. 
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 (R,S)-(Boc)2-{Gly∆Gly}-NMe2 119 

 

The procedure applied to the synthesis of (±)-(Boc)2-{Gly∆Gly}-NMe2 119 was followed 

using (R,S)-(Boc)2-{Gly∆Gly}-OH 107 (110 mg, 0.33 mmol). 2 equiv. of HNMe2 (2 м 

solution in THF) were used in this case. The residue was purified by silica gel column 

chromatography (PE/EtOAc 1:1) to give (S,R)-(Boc)2-{Gly∆Gly}-NMe2 119 (87 mg, 74%) 

as a yellow oil.   

Rf (PE/EtOAc 1:1): 0.27; [𝛼],9D –16 (c = 0.50, CHCl3); νmax 2981, 2943, 1736, 1692, 1646, 

1368, 1171, 1131, 853 cm−1; 1H NMR (500 MHz, CDCl3) δ 3.58 (1H, dd, J = 14.4, 7.1 Hz, 

CH2-C6), 3.46 (1H, dd, J = 14.4, 7.1 Hz, CH2-C6), 2.97 (3H, s, CH3-C7), 2.93 (3H, s, CH3-

C7), 2.44 (1H, dd, J = 15.3, 5.0 Hz, CH2-C2), 2.11 (1H, dd, J = 15.3, 7.6 Hz, CH2-C2), 1.50 

(18H, s, 2 × t-Bu), 1.09 (1H, ddddd, J = 7.6, 7.1, 5.0, 5.0, 5.0 Hz, CH-C3), 1.01 (1H, ddddd, 

J = 7.1, 7.1, 7.1, 5.0, 5.0 Hz, CH-C5), 0.62 (1H, ddd, J = 8.5, 5.0, 5.0 Hz, CH2-C4), 0.39 

(1H, ddd, J = 8.5, 5.0, 5.0 Hz, CH2-C4); 13C (126 MHz, CDCl3): δ 172.3 (CO-C1), 153.0 (2 

× CO-Boc), 82.3 (CH-Boc), 49.9 (CH2-C6), 37.9 (CH2-C2), 37.5 (CH3-C7), 35.4 (CH3-C7), 

28.2 (6 × CH3-Boc), 18.3 (CH-C5), 13.9 (CH-C3), 10.9 (CH2-C4); HRMS (ESI+) for 

C18H32N2O5Na [M+Na]+ calcd 379.2203, found 379.2200. 
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(R, S)-iPrOC-{Gly∆Gly}-N-iPr 75 

 

The procedure applied to the synthesis of (±)-iPrOC-{Gly∆Gly}-N-iPr 75 was followed 

using (R,S)-(Boc)2-{Gly∆Gly}-N-iPr 118 (70 mg, 0.19 mmol). After deprotection, 1.5 equiv. 

of Et3N and isobutyric anhydride were used. Trituration of the residue with cold Et2O in 

EtOAc yielded the title compound (15 mg, 31% over 2 steps) as a white solid.  

Rf (PE/EtOAc 1:1): 0.08; [𝛼],96 +48 (c = 0.30, CHCl3); m.p.: 134–135 °C; νmax (10 mM, 

CH2Cl2) 3429, 3325, 2974, 2932, 1663, 1516, 1277, 1265, 1258 cm−1; 1H NMR (500 MHz, 

CDCl3) δ 6.78 (1H, br s, NH-C6), 5.40 (1H, br s, NH-C7), 4.10 (1H, dq, J = 7.6, 6.5 Hz, 

CH-C7), 3.73 (1H, ddd, J = 13.5, 6.0, 4.7 Hz, CH2-C6), 2.60–2.48 (2H, m, CH2-C6 + CH2-

C2), 2.43 (1H, h, J = 6.9 Hz, CH-C10), 1.70 (1H, dd, J = 16.2, 9.4 Hz, CH2-C2), 1.18 (3H, 

d, J = 6.9 Hz, CH3-C11), 1.18 (3H, d, J = 6.9 Hz, CH3-C11), 1.17 (3H, d, J = 6.5 Hz, CH3-

C8), 1.16 (3H, d, J = 6.5 Hz, CH3-C8), 0.83–0.71 (2H, m, CH-C3 + CH-C5), 0.53 (1H, ddd, 

J = 8.1, 5.3, 5.3 Hz, CH2-C4), 0.42 (1H, ddd, J = 8.1, 5.3, 5.3 Hz, CH2-C4); 13C (126 MHz, 

CDCl3): δ 177.5 (CO-C9), 171.7 (CO-C1), 43.9 (CH2-C6), 41.6 (CH-C7), 39.9 (CH2-C2), 

35.7 (CH-C10), 23.0 (CH3-C8), 22.9 (CH3-C8), 19.8 (2 × CH3-C11), 18.0 (CH-C5/3), 13.5 

(CH-C3/5), 10.2 (CH2-C4); HRMS (ESI+) for C13H24N2O2Na [M+Na]+ calcd 263.1730, 

found 263.1726. 
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 (R,S)-iPr-{Gly∆Gly}-NMe2 76 

 

The procedure applied to the synthesis of (±)-iPr-{Gly∆Gly}-NMe2 76 was followed using 

(R,S)-(Boc)2-{Gly∆Gly}-NMe2 119 (122 mg, 0.34 mmol). After deprotection, 1.5 equiv. of 

Et3N and isobutyric anhydride were used. The residue was purified by silica gel column 

chromatography (CH2Cl2/MeOH 100:0 to 97:3) to afford the title compound (31 mg, 40 % 

over 2 steps) as a colourless semi-solid.  

Rf (PE/EtOAc 1:1): 0.08; [𝛼],9C +68 (c = 0.50, CHCl3); νmax (10 mM, CH2Cl2) 3287, 2967, 

2928, 1637, 1539, 1261, 1238 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.57 (1H, br s, NH), 3.92 

(1H, ddd, J = 13.5, 6.4, 4.9 Hz, CH2-C6), 2.97 (3H, s, CH3-C7), 2.95 (3H, s, CH3-C7), 2.89 

(1H, dd, J = 17.0, 3.8 Hz, CH2-C2), 2.47 (1H, h, J = 7.0 Hz, CH-C9), 2.32 (1H, ddd, J = 

13.5, 10.0, 2.0 Hz, CH2-C6), 1.65 (1H, dd, J = 17.0, 10.5 Hz, CH2-C2), 1.18 (3H, d, J = 7.0 

Hz, CH3-C10), 1.18 (3H, d, J = 7.0 Hz, CH3-C10), 0.83–0.75 (1H, m, CH-C3), 0.63 (1H, 

ddddd, J = 10.0, 8.2, 4.9, 4.9, 4.9 Hz, CH-C5), 0.55 (1H, ddd, J = 8.3, 4.9, 4.9 Hz, CH2-C4), 

0.45 (1H, ddd, J = 8.3, 4.9, 4.9 Hz, 1H × CH2-C4); 13C (126 MHz, CDCl3): δ 177.6 (CO-

C1), 173.0 (CO-C8), 44.5 (CH2-C6), 37.3 (CH2-C2), 36.9 (CH3-C7), 35.7 (CH-C9), 35.5 

(CH3-C7), 19.8 (2 × CH3-C10), 17.7 (CH-C5), 13.5 (CH-C3), 10.5 (CH2-C4); HRMS (ESI+) 

for C12H22N2O2Na [M+Na]+ calcd 249.1573 found 249.1566.  
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Boc-Gly-NMe2 121  

 

Boc-Gly-OH (3.00 g, 17.1 mmol), HNMe2 (17.1 mL of a 2 м solution in THF, 34.2 mmol) 

and Et3N (8.30 mL, 70.0 mmol) were dissolved in CH2Cl2 (100 mL). The solution was stirred 

for 15 min at rt and T3P (8.90 mL, of a 50% solution in EtOAc, 30.0 mmol) was added 

dropwise at 0 °C. H2O (20 mL) was added and the phases were separated. The organic phase 

was washed with sat. aq. NaHCO3 (20 mL), 1 м aq. HCl (20 mL), and brine (15 mL). The 

organic phase was dried over MgSO4, filtered and concentrated under vacuum affording 

Boc-Gly-NMe2 121 (2.96 g, 86%) as a colourless solid.  

Rf (EtOAc/PE 1:1): 0.27; m.p.: 129–130 °C, nmax (CHCl3): 3418, 1974, 1713, 1645, 1167 

cm−1; 1H-NMR (500 MHz; CDCl3): δ 5.51 (1H, s, NH), 3.94 (2H, d, J = 4.3 Hz, CH2-C7), 

2.97 (3H, s, CH3-C9), 2.95 (3H, s, CH3-C9), 1.44 (9H, s, t-Bu); 13C NMR (126 MHz; 

CDCl3): δ 168.4 (CO-Boc), 156.0 (CO-C8), 79.7 (C-Boc), 42.4 (CH2-C7), 36.0 (CH3-C9), 

35.7 (3 ´ CH3-Boc), 28.5 (CH3-C9); HRMS (ESI+) for C9H18N2NaO3 [M+Na]+ calcd 

225.1210, found 225.1207. 
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Boc-Leu-NMe2 122 

 

To a solution of Boc-Leu-OH (1.55 g, 6.70 mmol) in CH2Cl2 (10 mL) was added DCC (1.66 

g, 8.04 mmol) portionwise at 0 °C, followed by HNMe2 (6.70 mL of a 2 м solution in THF, 

13.4 mmol). The mixture was heated to reflux and stirred for 8 h. The solid formed was 

filtered and washed with CH2Cl2, the filtrate was concentrated under vacuum. The resulting 

solid was purified by silica gel column chromatography (PE/EtOAc 1:1) to give Boc-Leu-

NMe2 122 (1.12 g, 65%) as a white solid.  

Rf (PE/EtOAc 1:1): 0.65; [𝛼],96 +30 (c = 1.0, CHCl3); m.p.: 54–55 °C; νmax 3314, 2969, 1712, 

1642, 1498, 1397, 1367, 1247, 1193 cm−1; 1H NMR (400 MHz, CDCl3) δ  5.25 (1H, d, J = 

9.5 Hz, NH), 4.64 (1H, ddd, J = 9.5, 9.5, 3.9 Hz, CH-C7), 3.07 (3H, s, CH3-C12), 2.94 (3H, 

s, CH3-C12), 1.80–1.65 (1H, m, CH-C9), 1.47 (1H, ddd, J = 13.9, 9.5, 4.4 Hz, CH2-C8), 

1.42 (9H, s t-Bu), 1.34 (1H, ddd, J = 13.9, 9.3, 3.9 Hz, CH2-C8), 0.99 (3H, d, J = 6.5 Hz, 

CH3-C10), 0.91 (3H, d, J = 6.7 Hz, CH3-C10); 13C (126 MHz, CDCl3): δ 173.1 (CO-C11), 

155.8 (CO-Boc), 79.5 (C-Boc), 48.8 (CH-C7), 42.9 (CH2-C8), 37.1 (CH3-C12), 35.9 (CH3-

C12), 28.5 (3 × CH3-Boc), 24.8 (CH-C9), 23.6 (CH3-C10), 21.9 (CH3-C10); HRMS (ESI+) 

for C13H26N2O3Na [M+Na]+ calcd 281.1836, found 281.1833. 
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 (±)-(Boc)2-{Gly∆Gly}-Gly-NMe2 123  

 

Boc-Gly-NMe2 121 (2.96 g, 14.6 mmol) was dissolved in CH2Cl2 (150 mL) and TFA (11.0 

mL, 146 mmol) was added dropwise at rt. The reaction mixture was stirred overnight at rt 

and then the solvent was removed under vacuum to give TFA·H-Gly-NMe2.  

(±)-(Boc)2-{Gly∆Gly}-OH 107 (2.87 g, 8.72 mmol), TFA·H-Gly-NMe2 (2.91 g, 14.6 mmol) 

and Et3N (4.30 mL, 30.5 mmol) were dissolved in CH2Cl2 (43 mL). The solution was stirred 

for 15 min at rt and T3P (50% in EtOAc, 7.80 mL, 13.1 mmol) was added 0 °C. The reaction 

mixture was stirred for 16 h at rt. The solution was washed with H2O (3 ´ 10 mL), sat. aq. 

NaHCO3 (3 ´ 10 mL) and brine (10 mL). The phases were separated, and the organic phase 

was dried over MgSO4, filtered and concentrated under vacuum. The residue was purified 

by silica gel column chromatography (PE/EtOAc 1:1) to give the title compound (3.26 mg, 

63%) as a colourless oil.  

Rf (EtOAc/PE 1:1): 0.22; nmax (CHCl3): 3312, 2978, 2933, 1690, 1644, 1366, 1125, 1030, 

853 cm−1; 1H-NMR (500 MHz; CDCl3): δ 6.90 (1H, t, J = 4.0 Hz, NH), 4.03 (2H, d, J = 4.0 

Hz, CH2-C7), 3.62 (1H, dd, J = 14.4, 6.0 Hz, CH2-C6), 3.45 (1H, dd, J = 14.4, 6.9 Hz, CH2-

C6), 2.98 (3H, s, CH3-C9), 2.97 (3H, s, CH3-C9), 2.37 (1H, dd, J = 16.0, 5.7 Hz, CH2-C2), 

2.01 (1H, dd, J = 16.0, 7.8 Hz, CH2-C2), 1.48 (18H, s, 2 ´ t-Bu), 1.07–0.97 (2H, m, CH-C3 

+ CH-C5), 0.68 (ddd, J = 8.0, 5.1, 5.1 Hz, CH2-C4), 0.42 (ddd, J = 8.0, 5.1, 5.1 Hz, CH2-

C4); 13C NMR (126 MHz; CDCl3): δ 172.2 (CO-C1), 168.1 (CO-C8), 152.9 (CO-Boc), 82.3 

(C-Boc), 49.5 (CH2-C6), 41.4 (CH2-C7), 40.6 (CH2-C2), 36.0 (CH3-C9), 35.7 (CH3-C9), 

28.2 (6 ´ CH3-Boc), 18.4 (CH-C5), 13.8 (CH-C3), 10.8 (CH2-C4); HRMS (ESI+) for 

C20H35N3NaO6 [M+Na]+ calcd 436.2418, found 436.2402. 
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 (±)-Ac-Gly-{Gly∆Gly}-Gly-NMe2 120  

 

(±)-(Boc)2-{Gly∆Gly}-Gly-NMe2 123 (2.26 g, 5.47 mmol) was dissolved in CH2Cl2 (55 

mL) and TFA (4.20 mL, 54.7 mmol) was added dropwise at rt. The reaction mixture was 

stirred overnight at rt and the solvent was then removed under vacuum. The resulting TFA 

salt was then used without further purification in the next coupling.  

TFA·(±)-H-{Gly∆Gly}-Gly-NMe2 (200 mg, 0.61 mmol), Et3N (300 μL, 2.14 mmol) and 

Ac-Gly-OH (143 mg, 1.22 mmol) were dissolved in CH2Cl2 (3.00 mL). The solution was 

stirred for 15 min at rt and T3P (550 μL of a 50% solution in EtOAc, 0.92 mmol) was added 

dropwise. The reaction mixture was heated to reflux and stirred overnight. The reaction 

mixture was then cooled and washed with H2O (3 × 5 mL). The organic phase was dried 

over MgSO4, filtered and concentrated under vacuum. The residue was triturated with cold 

PE in EtOAc to afford (±)-Ac-Gly-{Gly∆Gly}-Gly-NMe2 120 (100 mg, 52% over two steps) 

as a white solid.  

Rf (EtOAc/PE 1:1): 0.19; m.p.: 138–140 °C; nmax (20 mM in CHCl3): 3408, 3319, 1053, 

2984, 1659, 1651, 1514, 1271, 1263 cm−1; 1H-NMR (400 MHz; CDCl3): δ 7.68 (1H, s, NH-

C6), 6.75 (1H, s, NH-C7), 6.56 (1H, s, NH-C11), 4.10 (1H, dd, J = 17.4, 4.3 Hz, CH2-C7), 

4.04 (1H, dd, J = 17.4, 4.4 Hz, CH2-C7), 3.95 (2H, d, J = 4.8 Hz, CH2-C11), 3.93–3.86 (1H, 

m, CH2-C6), 3.03 (6H, s, 2 ´ CH3-C9), 2.79 (1H, dd, J = 16.6, 3.4 Hz, CH2-C2), 2.45 (1H, 

ddd, J = 13.7, 10.0, 3.2 Hz, CH2-C6), 2.03 (3H, s, CH3-C13), 1.68 (1H, dd, J = 16.6, 10.4 

Hz, CH2-C2), 0.86–0.78 (2H, m, CH-C5 + CH-C3), 0.56 (1H, ddd, J = 8.2, 5.3, 5.3 Hz, CH2-

C4), 0.47 (1H, ddd, J = 8.2, 5.4, 5.4 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 172.6 

(CO-C1), 170.4 (CO-C12), 168.9 (CO-C10), 168.4 (CO-C8), 44.2 (CH2-C6), 42.9 (CH2-

C11), 41.3 (CH2-C7), 39.7 (CH2-C2), 36.2 (CH3-C9), 35.9 (CH3-C9), 23.2 (CH3-C13), 18.1 

(CH-C5), 14.0 (CH-C3), 10.4 (CH2-C4); HRMS (ESI+) for C14H24N4NaO4 [M+Na]+ calcd 

335.1690, found 335.1688. 
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(R,S)-Ac-Val-{Gly∆Gly}-NMe2 79 

 

(R,S)-(Boc)2-{Gly∆Gly}-NMe2 119 (87 mg, 0.24 mmol) was dissolved in CH2Cl2 (3 mL) 

and TFA (184 µL, 2.40 mmol) was added to the solution. The reaction mixture was stirred 

at rt for 8 h. The solvent was then removed, and the compound was used for the subsequent 

coupling without purification.  

To a solution of TFA·(R,S)-H-{Gly∆Gly}-NMe2 (0.24 mmol) in CH2Cl2 (1 mL), was added 

DIPEA (125 µL, 1.35 mmol) dropwise. Ac-Val-OH (38 mg, 0.24 mmol) was added, 

followed by HATU (91 mg, 0.24 mmol). The reaction mixture was stirred overnight at rt. 

The solution was washed with H2O (3 × 5 mL). The organic phase was dried over MgSO4 

and filtered. The solvent was removed under vacuum and the resulting brown oil was 

purified by silica gel column chromatography (CH2Cl2/MeOH 99:1 to 96:4) to afford (R,S)-

Ac-Val-{Gly∆Gly}-NMe2 79 (10 mg, 14%) as a white powder. 

Rf (CH2Cl2/MeOH 9:1):0.57; [𝛼],96 +41 (c = 0.13, CH2Cl2); m.p.: 123–125 °C; νmax (c = 10 

mM, CH2Cl2) 3410, 3306, 2963, 2932, 1678, 1659, 1632, 1551, 1513, 1269, 1261 cm−1; 1H 

NMR (500 MHz, CD2Cl2) δ 8.16 (1H, s, NH-Gly), 6.70 (1H, d, J = 9.2 Hz, NH-Val), 4.34 

(1H, dd, J = 9.2, 5.0 Hz, CHα -Val), 3.98 (1H, ddd, J = 13.4, 7.0, 4.4 Hz, CH2-C6), 2.97 

(3H, s, CH3-C7), 2.93 (3H, s, CH3-C7), 2.97–2.92 (1H, m, CH2-C2), 2.24–2.15 (2H, m, CH2-

C6 + CHβ -Val), 2.03 (3H, s, CH3-Ac), 1.63 (1H, dd, J = 17.5, 10.5 Hz, CH2-C2), 0.93 (3H, 

d, J = 6.9 Hz, CH3γ-Val), 0.86 (3H, d, J = 6.9 Hz, CH3γ-Val), 0.77–0.71 (1H, m, CH-C3), 

0.62–0.56 (2H, m, CH-C5 + CH2-C4), 0.52–0.47 (1H, m, CH2-C4); 13C (126 MHz, CD2Cl2): 

δ 173.6 (CO-C1), 171.5 (CO-Ac), 170.6 (CO-Val), 59.0 (CHα -Val), 44.6 (CH2-C6), 37.5 

(CH2-C2), 37.3 (CH3-C7), 35.9 (CH3-C7), 31.5 (CHβ -Val), 23.6 (CH3-Ac), 19.7 (CH3γ-

Val), 18.5 (CH3γ-Val), 17.8 (CH-C5), 13.6 (CH-C3), 10.8 (CH2-C4); HRMS (ESI+) for 

C15H27N3O3Na [M+Na]+  calcd 320.1945, found 320.1934. 
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(S,R)-Ac-Val-{Gly∆Gly}-NMe2 80 

 

The procedure applied to the synthesis of (R,S)-Ac-Val-{Gly∆Gly}-NMe2 79 was followed 

using (S,R)-(Boc)2-{Gly∆Gly}-NMe2 119 (161 mg, 0.45 mmol). After the work up, cold 

Et2O (5 mL) was added to the residue and a precipitate was formed. Et2O was filtered and 

this was repeated another time to give (S,R)-Ac-Val-{Gly∆Gly}-NMe2 80 (16 mg, 12%) as 

a white powder.  

Rf (CHCl3/MeOH 95:5): 0.69; [𝛼],96 −39 (c = 0.55, CHCl3); m.p.: 130–131 °C; νmax (c = 10 

mM, CH2Cl2) 3418, 3294, 2963, 2932, 1678, 1659, 1632, 1547, 1504, 1273, 1265, 1258 

cm−1; 1H NMR (500 MHz, CD2Cl2) δ 8.18 (1H, bs, NH-Gly), 6.51 (1H, d, J = 9.3 Hz, NH-

Val), 4.33 (1H, dd, J = 9.3, 5.3 Hz, CHα -Val), 3.80 (1H, dd, J = 13.1, 5.2, 5.2 Hz, CH2-C6), 

2.96 (3H, s, CH3-C7), 2.98–2.95 (1H, m, CH2-C2), 2.93 (3H, s, CH3-C7), 2.32 (1H, ddd, J 

= 13.1, 10.6, 2.1 Hz, CH2-C6), 2.17–2.09 (1H, m, CHβ -Val), 2.02 (3H, s, CH3-Ac), 1.63 

(1H, dd, J = 17.3, 11.2 Hz, CH2-C2), 0.93 (3H, d, J = 6.9 Hz, CH3γ-Val), 0.88 (3H, d, J = 

6.9 Hz, CH3γ-Val), 0.74–0.68 (1H, m, CH-C3), 0.68–0.63 (1H, m, CH-C5), 0.58 (1H, ddd, 

J = 8.3, 5.1, 5.1 Hz, CH2-C4), 0.50 (1H, ddd, J = 8.3, 5.2, 5.2 Hz, CH2-C4); 13C (126 MHz, 

CD2Cl2): δ 173.5 (CO-C1), 171.6 (CO-Ac), 170.4 (CO-Val), 58.9 (CHα -Val), 45.0 (CH2-

C6), 37.5 (CH2-C2), 37.3 (CH3-C7), 35.9 (CH3-C7), 31.9 (CHβ -Val), 23.7 (CH3-Ac), 19.6 

(CH3γ-Val), 17.9 (CH3γ-Val), 17.6 (CH-C5), 13.8 (CH-C3), 11.1 (CH2-C4); HRMS (ESI+) 

for C15H27N3O3Na [M+Na]+ calcd 320.1945, found 320.1933. 
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(S,R)-(Boc)2-{Gly∆Gly}-Leu-NMe2 124 

 

Boc-Leu-NMe2 122 (1.12 g, 4.34 mmol) was dissolved in CH2Cl2 (44 mL) and TFA (1.7 

mL, 21.7 mmol) was added at rt. The reaction mixture was stirred for 8 h at this temperature. 

The solvent was removed under vacuum and the residue was used in the next step without 

further purification.  

TFA·NH2-Leu-NMe2 (130 mg, 0.39 mmol) was dissolved in CH2Cl2 (1.3 mL), DIPEA (203 

µL, 1.17 mmol) was added followed by (S,R)-(Boc)2-{Gly∆Gly}-OH 107 (106 mg, 0.39 

mmol). The mixture was stirred for 15 min and HATU (148 mg, 0.39 mmol) was added. The 

reaction mixture was stirred overnight at rt and H2O (10 mL) was added. The phases were 

separated and the organic phase was washed with sat. aq. NaHCO3 (10 mL), brine (10 mL), 

dried over MgSO4 and filtered. The solvent was removed under vacuum and the residue was 

purified by silica gel column chromatography (PE/EtOAc 1:1) to afford (S,R)-(Boc)2-

{Gly∆Gly}-Leu-NMe2 124 (131 mg, 72%) as a yellow oil.  

Rf (PE/EtOAc 1:1): 0.35; [𝛼],99 +15 (c = 0.25, CHCl3); νmax 3287, 2926, 1711, 1634, 1506, 

1366, 1248, 1173 cm−1; 1H NMR (400 MHz, CDCl3) δ 6.52 (1H, d, J = 8.6 Hz, NH-Leu), 

5.01 (1H, ddd, J = 12.8, 8.6, 4.0 Hz, CHα-Leu), 3.66 (1H, dd, J = 14.4, 5.7 Hz, CH2-C6), 

3.47 (1H, dd, J = 14.4, 6.9 Hz, CH2-C6), 3.09 (3H, s, CH3-C7), 2.94 (3H, s, CH3-C7), 2.34 

(1H, dd, J = 15.9, 5.7 Hz, CH2-C2),1.98 (1H, dd, J = 15.9, 7.7 Hz, CH2-C2),  1.70–1.60 (1H, 

m, CHγ-Leu), 1.49 (18H, s, 2 × t-Bu), 1.45–1.36 (2H, m, CH2β-Leu), 1.02–0.95 (2H, CH-

C3 + CH-C5), 0.99 (3H, d, J = 6.5 Hz, CH3δ-Leu), 0.91 (3H, d, J = 6.8 Hz, CH3δ-Leu),  0.65 

(1H, ddd, J = 7.8, 5.1, 5.1 Hz, CH2-C4), 0.40 (1H, ddd, J = 7.8, 5.1, 5.1 Hz, CH2-C4); 13C 

(126 MHz, CDCl3): δ 172.6 (CO-C1), 171.6 (CO-Leu), 152.87 (2 × CO-Boc), 82.3 (2 × C-

Boc), 49.2 (CH2-C6), 47.3 (CHα-Leu), 42.2 (CH2β-Leu), 40.6 (CH2-C2), 37.0 (CH3-C7), 

35.7 (CH3-C7), 28.1 (6 × CH3-Boc), 24.7 (CHγ-Leu), 23.4 (CH3δ-Leu), 21.8 (CH3δ-Leu), 

18.3 (CH-C5), 13.4 (CH-C3), 10.5 (CH2-C4); HRMS (ESI+) for C24H43N3O6Na [M+Na]+ 

calcd 492.3044, found 492.3028.   
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(S,R)-Ac-Val-{Gly∆Gly}-Leu-NMe2 78 

 

(R,S)-(Boc)2-{Gly∆Gly}-Leu-NMe2 124 (310 mg, 0.66 mmol) was dissolved in CH2Cl2 (3 

mL) and TFA (505 µL, 6.60 mmol) was added to the solution. The reaction mixture was 

stirred at rt for 8 h. The solvent was then removed, and the product was used for the coupling 

reaction without purification.  

To a solution of TFA·(1R,2S)-H-{Gly∆Gly}-Leu-NMe2 (0.66 mmol) in CH2Cl2 (3 mL) was 

added DIPEA (345 µL, 1.98 mmol) dropwise. Ac-Val-OH (105 mg, 0.66 mmol) was added 

followed by HATU (251 mg, 0.66 mmol). The reaction mixture was stirred overnight at rt. 

The solution was washed with H2O (3 × 10 mL) and phases were separated. The organic 

phase was dried over MgSO4 and filtered. The solvent were removed under vacuum and the 

resulting brown oil was purified by silica gel column chromatography (CH2Cl2/MeOH 99:1 

to 90:10) to afford (S,R)-Ac-Val-{Gly∆Gly}-Leu-NMe2 78 (130 mg, 76% over two steps) 

as a white powder. 

Rf (CH2Cl2/MeOH 9:1): 0.95; [𝛼],96 −17 (c = 0.55, CHCl3); m.p.: 155–156 °C; νmax (c = 10 

mM, CH2Cl2) 3422, 3306, 2963, 2874, 1659, 1639, 1508, 1278, 1269 cm−1; 1H NMR (600 

MHz, CD2Cl2) δ 7.74 (1H, bs, NH-Gly), 6.63 (1H, d, J = 8.6 Hz, NH-Leu), 6.43 (1H, d, J = 

8.8 Hz, NH-Val), 5.01 (1H, ddd, J = 10.6, 8.6, 3.7 Hz, CHα-Leu), 4.31 (1H, dd, J = 8.8, 6.4 

Hz, CHα-Val), 3.65 (1H, ddd, J = 13.8, 4.2, 4.2 Hz, CH2-C6), 3.11 (3H, s, CH3-C7), 2.96 

(3H, s, CH3-C7), 2.74 (1H, dd, J = 17.0, 3.8 Hz, CH2-C2), 2.57 (1H, ddd, J = 13.8, 10.2, 4.2 

Hz, CH2-C6), 2.12–2.00 (1H, m, CHβ -Val), 1.97 (3H, s, CH3-Ac), 1.70–1.60 (2H, m, CHγ-

Leu + CH2-C2), 1.54 (1H, ddd, J = 14.1, 10.6, 4.3 Hz, CH2β -Leu), 1.41 (1H, ddd, J = 14.1, 

9.5, 3.7 Hz, 1H × CH2β -Leu), 0.99 (3H, d, J = 6.5 Hz, CH3δ-Leu), 0.93 (3H, d, J = 6.2 Hz, 

CH3γ-Val), 0.92 (3H, d, J = 6.2 Hz, CH3δ-Leu), 0.89 (3H, d, J = 6.9 Hz, CH3γ-Val), 0.82–

0.73 (2H, m, CH-C3 + CH-C5), 0.54 (1H, ddd, J = 10.2, 5.4, 5.4 Hz, CH2-C4), 0.46 (1H, 

ddd, J = 10.2, 5.4, 5.4 Hz, CH2-C4); 13C (151 MHz, CD2Cl2): δ 174.1 (CO-C1), 173.3 (CO-

Ac), 172.5 (CO-Leu), 171.9 (CO-Val), 58.7 (CHα-Val), 48.0 (CHα-Leu), 44.4 (CH2-C6), 
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42.3 (CH2β -Leu), 40.2 (CH2-C2), 37.5 (CH3-C7), 36.2 (CH3-C7), 32.0 (CHβ -Val), 25.3 

(CHγ-Leu), 23.7 (CH3-Ac), 23.6 (CH3δ-Leu), 22.0 (CH3δ-Leu), 19.6 (CH3γ-Val), 18.5 

(CH3γ-Val), 18.4 (CH-C5), 14.0 (CH-C3), 11.2 (CH2-C4); HRMS (ESI+) for C21H38N4O4Na 

[M+Na]+ calcd 433.2785, found 433.2782.   
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(R,S)-(Boc)2-{Gly∆Gly}-Leu-NMe2 124 

 

Boc-Leu-NMe2 122 (1.12g, 4.34 mmol) was dissolved in CH2Cl2 (44 mL) and TFA (1.7 mL, 

21.7 mmol) was added at rt. The reaction mixture was stirred for 8 h at this temperature. The 

solvent was removed under vacuum and the residue was used in the next step without further 

purification. 

(R,S)-(Boc)2-{Gly∆Gly}-OH 107 (90 mg, 0.33 mmol) was dissolved in CH2Cl2 (1 mL). 

DIPEA (200 µL, 0.99 mmol) was added followed by TFA·H-Leu-NMe2 (110 mg, 0.33 

mmol). The mixture was stirred for 15 min and HATU (125 mg, 0.33 mmol) was added. The 

reaction mixture was stirred overnight at rt. H2O (10 mL) was added and the phases were 

separated. The organic phase was washed with sat. aq. NaHCO3 (10 mL), brine (10 mL), 

dried over MgSO4 and filtered. The solvent was removed under vacuum and the residue was 

purified by silica gel column chromatography (PE/EtOAc 1:1) to afford (S,R)-(Boc)2-

{Gly∆Gly}-Leu-NMe2 124 (131 mg, 85%) as a yellow oil.  

Rf (PE/EtOAc 1:1): 0.20; [𝛼],9D −13 (c = 0.50, CHCl3); νmax 3304, 2930, 1711, 1634, 1508, 

1366, 1248, 1173 cm−1; 1H NMR (500 MHz, CDCl3) δ  6.52 (1H, d, J = 8.6 Hz, NH), 5.02 

(1H, ddd, J = 9.5, 8.6, 3.9 Hz, CHα-Leu), 3.65 (1H, dd, J = 14.3, 5.8 Hz, CH2-C6), 3.45 (1H, 

dd, J = 14.3, 7.1 Hz, CH2-C6), 3.09 (3H, s, CH3-C7), 2.95 (3H, s, CH3-C7), 2.41 (1H, dd, J 

= 16.0, 5.3 Hz, CH2-C2), 1.92 (dd, J = 16.0, 8.0 Hz, 1H, CH2-C2), 1.71–1.61 (1H, m, CHγ-

Leu), 1.51 (18H, s, 2 × t-Bu), 1.46–1.40 (2H, m, CH2β-Leu), 1.04−0.98 (2H, m, CH-C5 + 

CH-C3), 1.00 (3H, d, J = 6.5 Hz, CH3δ-Leu), 0.92 (3H, d, J = 6.6 Hz, CH3δ-Leu), 0.70 (1H, 

ddd, J = 8.0, 5.1, 5.1 Hz, CH2-C4), 0.43 (ddd, J = 8.0, 5.2, 5.2 Hz, CH2-C4); 13C (126 MHz, 

CDCl3): δ 172.7 (CO-C1), 171.7 (CO-Leu), 153.0 (2 × CO-Boc), 82.4 (2 × C-Boc), 49.5 

(CH2-C6), 47.3 (CHα-Leu), 42.8 (CH2β-Leu), 40.8 (CH2-C2), 37.2 (CH3-C12), 35.9 (CH3-

C12), 28.2 (6 × CH3-Boc), 24.9 (CHγ-Leu), 23.6 (CH3δ-Leu), 22.1 (CH3δ-Leu), 18.4 (CH-

C5), 13.7 (CH-C3), 10.8 (CH2-C4); HRMS (ESI+) for C24H43N3O6Na [M+Na]+ calcd 

492.3044, found 492.3026.   
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 (R,S)-Ac-Val-{Gly∆Gly}-Leu-NMe2 77 

 

The procedure applied to the synthesis of (S,R)-Ac-Val-{Gly∆Gly}-Leu-NMe2 78 was 

followed using (R,S)-(Boc)2-{Gly∆Gly}-Leu-NMe2 124. The crude product was purified by 

silica gel column chromatography (CH2Cl2/MeOH 99:1 to 94:6) to afford (R,S)-Ac-Val-

{Gly∆Gly}-Leu-NMe2 77 (20 mg, 17%) as a white powder. 

Rf (CH2Cl2/MeOH 9:1): 0. 90; [𝛼],96 +47 (c = 0.90, CH2Cl2); m.p.: 95–97 °C; νmax (c = 10 

mM, CH2Cl2) 3418, 3302, 3051, 2963, 1659, 1643, 1512, 1504, 1269, 1261, 1254 cm−1; 1H 

NMR (500 MHz, CDCl3) δ 7.82 (1H, d, J = 6.7 Hz, NH-Gly), 6.44 (1H, d, J = 8.6 Hz, NH-

Leu), 6.37 (1H, d, J = 8.7 Hz, NH-Val), 5.03 (1H, ddd, J = 10.5, 8.6, 3.6 Hz, CHα-Leu), 

4.42 (1H, dd, J = 8.7, 6.0 Hz, CHα-Val), 3.97 (1H, ddd, J = 13.8, 6.7, 4.3 Hz, CH2-C6), 3.13 

(3H, s, CH3-C7), 2.98 (3H, s, CH3-C7), 2.69 (1H, dd, J = 16.3, 3.6 Hz, CH2-C2), 2.35 (1H, 

ddd, J = 13.8, 9.8, 2.7 Hz, CH2-C6), 2.14–2.02 (1H, m, CHβ -Val), 2.01 (3H, s, CH3-Ac), 

1.75–1.69 (2H, m, CHγ-Leu + CH2-C2), 1.53–1.42 (2H, m, CH2β -Leu), 1.02 (3H, d, J = 6.6 

Hz, CH3δ-Leu), 0.94 (3H, d, J = 6.8 Hz, CH3γ-Val), 0.92 (3H, d, J = 6.6 Hz, CH3δ-Leu), 

0.90 (3H, d, J = 6.8 Hz, CH3γ-Val), 0.85–0.74 (2H, m, CH-C3 + CH-C5), 0.54 (1H, ddd, J 

= 8.3, 5.2, 5.2 Hz, CH2-C4), 0.46 (1H, ddd, J = 8.3, 5.4, 5.4 Hz, CH2-C4); 13C (126 MHz, 

CD2Cl2): δ 172.9 (CO-C1), 172.4 (CO-Ac), 171.4 (CO-Leu), 169.8 (CO-Val), 58.1 (CHα-

Val), 47.6 (CHα-Leu), 44.0 (CH2-C6), 42.4 (CH2β -Leu), 39.7 (CH2-C2), 37.2 (CH3-C7), 

36.0 (CH3-C7), 32.0 (CHβ -Val), 24.9 (CHγ-Leu), 23.6 (CH3-Ac), 23.6 (CH3δ-Leu), 21.8 

(CH3δ-Leu), 19.3 (CH3γ-Val), 18.5 (CH3γ-Val), 18.3 (CH-C5), 14.2 (CH-C3), 10.2 (CH2-

C4); HRMS (ESI+) for C21H38N4O4Na [M+Na]+ calcd 433.2785, found 433.2768. 

  

12
O

HN3

45

6

NH
O

HN

N
O

7

7

O
(R,S)-77



 

 215 

(1R*,2S*)-(2-Ethenylcyclopropyl)methyl isobutyrate 125  

 

To a cooled solution of DMAP (24.0 mg, 200 μmol) in pyridine (5.00 mL) a 0 °C, was added 

(±)-90 (1.00 g, 10.2 mmol). Isobutyric anhydride (3.40 mL, 20.4 mmol) was added dropwise 

to the solution and the reaction mixture was stirred for 48 h at rt. H2O (15 mL) was added 

and the resulting aqueous solution was extracted with Et2O (3 ´ 15 mL). The combined 

organic extracts were washed with sat. aq. NH4Cl (10 mL), H2O (10 mL) and brine (10 mL), 

dried over MgSO4, filtered and concentrated under vacuum. The residue was purified by 

silica gel column chromatography (PE/EtOAc 20:1) to afford the title compound (819 mg, 

48%) as a colourless liquid.  

Rf (EtOAc/PE 1:1): 0.46; nmax (CHCl3): 2972, 2362, 1732,  1190, 1152, 897 cm−1;  1H NMR 

(500 MHz; CDCl3): δ 5.39 (1H, ddd, J = 17.0, 10.3, 8.5 Hz, CH-C2), 5.05 (1H, dd, J = 17.0, 

1.5 Hz, CH2-C1), 4.87 (1H, dd, J = 10.3, 1.5 Hz, CH2-C1), 3.97 (1H, dd, J = 11.3, 6.9 Hz, 

CH2-C6), 3.94 (1H, dd, J = 11.3, 6.9 Hz, CH2-C6),  2.54 (1H, p, J = 7.0 Hz, CH-C8), 1.45–

1.34 (1H, m, CH-C3), 1.22–1.17 (1H, m, CH-C5), 1.16 (6H, d, J = 7.0 Hz, 2 ´ CH3-C9), 

0.72 (1H, ddd, J = 8.5, 5.3, 5.3 Hz, CH2-C4), 0.67 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, CH2-C4); 
13C NMR (126 MHz; CDCl3): δ 177.4 (CO-C7), 140.3 (CH-C2), 112.8 (CH2-C1), 67.5 

(CH2-C6), 34.2 (CH-C8), 20.9 (CH-C3), 19.4 (CH-C5), 19.1 (2 ´ CH3-C9), 12.0 (CH2-C4); 

HRMS (ESI+) for C10H16NaO2 [M+Na]+ calcd 191.1043, found 191.1043. 
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[(1R*,2S*)-2-(2-Hydroxyethyl)cyclopropyl]methyl isobutyrate 126  

 

A flask equipped with an argon inlet was charged with BH3×THF (10.0 mL of a 1 м solution 

in THF, 10.0 mL, 9.74 mmol). A solution of (±)-125 (819 mg, 4.87 mmol) in THF (18 mL) 

was added dropwise at 0 °C. The reaction mixture was stirred for 4 h at this temperature. 

H2O (9 mL) was then added carefully followed by pH 7 phosphate buffer solution (9 mL). 

Sodium perborate (2.20 g, 14.6 mmol) was added and the reaction mixture was stirred for a 

further 2 h. The excess of sodium perborate was removed by filtration and the solvent was 

removed under vaccum. The aqueous phase was extracted with Et2O (3 × 20 mL). The 

combined organic extracts were washed with brine (20 mL), dried over MgSO4, filtered and 

concentrated under vacuum. The residue was purified by silica gel column chromatography 

(PE/EtOAc 1:1) to give the corresponding alcohol (83 mg, 9%) as a yellow oil. 

Rf (EtOAc/PE 1:1): 0.58; nmax (CHCl3): 3422, 2931, 1732, 1471, 1192, 1155, 1072, 1044 

cm−1.  1H NMR (500 MHz; CDCl3): δ 4.09 (1H, dd, J = 11.4, 6.2 Hz, CH2-C6), 3.75 (1H, 

dd, J = 11.4, 8.3 Hz, CH2-C6), 3.69 (2H, ddd, J = 6.8, 6.1, 2.4 Hz, CH2-C1), 2.55 (1H, hept, 

J = 7.0 Hz, CH-C8), 1.65 (1H, dddd, J = 13.5, 12.8, 6.1, 6.1 Hz, CH2-C2), 1.36 (1H, dddd, 

J = 14.3, 12.8, 6.8, 6.8 Hz, CH2-C2), 1.17 (3H, d, J = 7.0 Hz, CH3-C9), 1.17 (3H, d, J = 7.0 

Hz, CH3-C9), 1.00–0.87 (1H, m, CH-C5), 0.80–0.69 (1H, m, CH-C3), 0.49 (1H, ddd, J = 

8.5, 4.9, 4.9 Hz, CH2-C4), 0.42 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, CH2-C4) ; 13C NMR (126 

MHz; CDCl3): δ 177.5 (CO-C7), 68.6 (CH2-C6), 63.0 (CH2-C1), 36.4 (CH2-C2), 34.2 (CH-

C8), 19.2 (2 ´ CH3-C9), 17.1 (CH-C5), 14.7 (CH-C3), 9.7 (CH2-C4); HRMS (ESI+) for 

C10H18NaO3 [M+Na]+ calcd 209.1148, found 209.1150. 
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(±)-iPrCOO-{Gly∆Gly}-OH 

 

The procedure applied to the synthesis of (±)-107 was followed using (±)-2-(2-

hydroxyethyl)cyclopropyl]methyl isobutyrate 126 (83 mg, 0.45 mmol). The title compound 

(95 mg) was obtained as a black oil and used as crude for the next step. 

Rf (EtOAc/PE 1:1): 0.38; 1H NMR (500 MHz; CDCl3): δ 3.97 (1H, dd, J = 11.5, 6.7 Hz, 

CH2-C6), 3.92 (1H, dd, J = 11.6, 7.0 Hz, CH2-C6), 2.54 (1H, hept, J = 7.0 Hz, CH-C8), 2.30 

(2H, dd, J = 14.0, 6.9 Hz, CH2-C2), 1.16 (3H, d, J = 7.1 Hz, CH3-C9), 1.16 (3H, d, J = 7.1 

Hz, CH3-C9), 1.09–1.00 (2H, m, CH-C3 + CH-C5), 0.60 (1H, ddd, J = 8.3, 5.3, 5.3 Hz, CH2-

C4), 0.50 (1H, ddd, J = 8.3, 5.3, 5.3 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 178.3 

(CO-C1), 177.4 (CO-C7), 67.6 (CH2-C6), 38.1 (CH2-C2), 34.2 (CH-C8), 19.1 (CH3-C9), 

19.1 (CH3-C9), 17.4 (CH-C5), 12.9 (CH-C3), 10.2 (CH2-C4); HRMS (ESI+) for C10H16NaO4 

[M+Na]+ calcd 223.0941, found 223.0944. 
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(±)-iPrCOO-{Gly∆Gly}-iPr 127  

 

The procedure applied to the synthesis of (±)-118 was applied using (±)-126 (95 mg, 0.47 

mmol). The title compound was obtained as a white solid (55 mg, 51% over 2 steps) after 

the work up.  

Rf (EtOAc/PE 1:1): 0.41; m.p.: > 400 °C; nmax (10 mМ in CH2Cl2): 3429, 3059, 2970, 2928, 

2870, 1724, 1663, 1512, 1466, 1270, 1161, 1157 cm−1; 1H NMR (500 MHz; CDCl3): δ 5.71 

(1H, bs, NH), 4.14–4.10 (1H, m, CH-C10), 4.08 (1H, dd, J = 11.6, 6.4 Hz, CH2-C6), 3.81 

(1H, dd, J = 11.6, 7.6 Hz, CH2-C6), 2.55 (1H, hept, J = 7.0 Hz, CH-C8), 2.18 (1H, dd, J = 

16.1, 6.9 Hz, CH2-C2), 2.11 (1H, dd, J = 16.1, 7.3 Hz, CH2-C2), 1.18–1.13 (12H, m, 2 ´ 

CH3-C9 + 2 ´ CH3-C11), 1.05–0.90 (2H, m, CH-C5 + CH-C3), 0.59 (1H, ddd, J = 8.4, 5.0, 

5.0 Hz, CH2-C4), 0.48 (1H, ddd, J = 8.4, 5.1, 5.1 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): 

δ 177.4 (CO-C1), 170.9 (CO-C7), 67.8 (CH2-C6), 41.4 (CH-C10), 40.7 (CH2-C2), 34.1 (CH-

C8), 22.9 (2 ´ CH3-C9), 19.2 (2 ´ CH3-C11), 17.5 (CH-C5), 13.6 (CH-C3), 10.2 (CH2-C4); 

HRMS (ESI+) for C13H23NNaO3 [M+Na]+ calcd 264.1570, found 264.1572. 
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(±)-(Boc)2-{Gly∆Gly}-O-iPr 128  

 

(±)-(Boc)2-{Gly∆Gly}-OH 107 (90 mg, 0.27 mmol) was dissolved in CH2Cl2 (1.4 mL). 

DCC (62 mg, 0.30 mmol) and i-PrOH (23 μL, 0.30 mmol) were added to the solution. The 

reaction mixture was stirred overnight at rt. The solvent was removed under vacuum. The 

residue was purified by silica gel column chromatography (PE/EtOAc 1:1) to afford the title 

compound as a mixture 0.3:1 NHBoc/N(Boc)2 (87 mg). Only the major compound is 

reported. 

Rf (EtOAc/PE 1:1): 0.41; 1H NMR (500 MHz; CDCl3): δ 5.05 (1H, hept, J = 6.4 Hz, CH-

C7), 3.37–3.28 (1H, m, CH2-C6), 2.71 (1H, ddd, J = 13.0, 8.4, 4.0 Hz, CH2-C6), 2.48–2.44 

(1H, m, CH2-C2), 1.96 (1H, dd, J = 16.8, 9.0 Hz, CH2-C2), 1.44 (18H, s, 2 ´ t-Bu), 1.03 

(3H, d, J = 6.3 Hz, CH3-C8), 1.03 (3H, d, J = 6.3 Hz, CH3-C8), 0.88–0.82 (1H, m, CH-C3), 

0.81–0.75 (1H, m, CH-C5), 0.48 (1H, ddd, J = 8.6, 5.2, 5.2 Hz, CH2-C4), 0.40 (1H, ddd, J 

= 8.6, 5.2, 5.2 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ 172.7 (CO-C1), 152.9 (2 ́  CO-

Boc), 82.3 (2 ´ C-Boc), 68.0 (CH-C7), 45.0 (CH2-C6), 38.7 (CH2-C2), 28.6 (6 ´ CH3-Boc), 

22.0 (2 ´ CH3-C8), 18.3 (CH-C5), 13.3 (CH-C3), 10.2 (CH2-C4); HRMS (ESI+) for 

C19H33N2NaO6 [M+Na]+ calcd 394.2200, found 394.2186. 
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(±)-iPr-{Gly∆Gly}-OiPr 129  

 

(±)- (Boc)2-{Gly∆Gly}-OiPr 128 (88 mg, 0.24 mmol) was dissolved in CH2Cl2 (2.4 mL) and 

TFA (200 μL, 2.40 mmol) was added dropwise. The reaction mixture was stirred for 3 h and 

the solvent was removed under vacuum. The residue was taken up in CH2Cl2 (0.34 mL) and 

Et3N (50 μL, 0.36 mmol) was added followed by isobutyric anhydride (60 μL, 0.36 mmol) 

at rt. The mixture was stirred overnight at rt andH2O (5 mL) was added. The phases were 

separated and the organic phase was washed with sat. aq. NaHCO3 (5 mL), 1 м aq. HCl (5 

mL), brine (5 mL), dried over MgSO4 and concentrated under reduced pressure. The residue 

was purified by silica gel column chromatography (Et2O/PE 9:1 to 7:3) to give the title 

compound (29 mg, 65% over 3 steps) as a colourless solid.  

Rf (Et2O/PE 1:1): 0.63; m.p.: 103–104 °C; nmax (10 mМ in CH2Cl2): 3437, 3356, 3048, 2982, 

2928, 2866, 1713, 1666, 1516, 1192, 1107 cm−1; 1H NMR (500 MHz; CDCl3): δ 6.56 (1H, 

bs, NH), 5.03 (1H, hept, J = 6.6 Hz, CH-C7), 3.72 (1H, ddd, J = 13.6, 5.7, 5.7 Hz, CH2-C6), 

2.67 (1H, dd, J = 17.3, 4.6 Hz, CH2-C2), 2.51 (1H, ddd, J = 13.6, 9.6, 2.9 Hz, CH2-C6), 2.41 

(1H, hept, J = 7.0 Hz, CH-C10), 1.79 (1H, dd, J = 17.3, 9.9 Hz, CH2-C2), 1.24 (3H, d, J = 

6.6 Hz, CH3-C8), 1.24 (3H, d, J = 6.6 Hz, CH3-C8), 1.17 (3H, d, J = 7.0 Hz, CH3-11), 1.17 

(3H, d, J = 7.0 Hz, CH3-11), 0.82–0.76 (1H, m, CH-C3), 0.76–0.69 (1H, m, CH-C5), 0.53 

(1H, ddd, J = 8.5, 5.2 Hz, CH2-C4), 0.44 (1H, ddd, J = 8.5, 5.2 Hz, CH2-C4); 13C NMR (126 

MHz; CDCl3): δ 177.2 (CO-C9), 173.5 (CO-C1), 68.1 (CH-C7), 44.1 (CH2-C6), 38.2 (CH2-

C2), 35.8 (CH-C10), 22.0 (2 ´ CH3-C8), 19.8 (2 ´ CH3-C11), 17.8 (CH-C5), 13.2 (CH-C3), 

10.4 (CH2-C4); HRMS (ESI+) for C13H23NNaO3 [M+Na]+ calcd 264.1570, found 264.1563. 
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Boc-Phe-Leu-OMe 135   

 

To a solution of Boc-Phe-OH (1.00 g, 3.77 mmol) in CH2Cl2 (13 mL) was added HCl·H-

Leu-OMe (685 mg, 3.77 mmol) followed by DIPEA (1.97 mL, 3.77 mmol). The solution 

was stirred for 10 min and HATU (1.40 g, 3.77 mmol) was added. The reaction mixture was 

stirred for 6 h at rt. H2O (30 mL) was added and the phases were separated. The organic 

phase was dried over MgSO4 and filtered. The solvents were removed under vacuum and 

the resulting brown oil was purified by silica gel column chromatography (PE/EtOAc 1:1) 

to yield Boc-Phe-Leu-OMe 135 (1.30 g, 88%) as a white powder.  

Rf (PE/EtOAc 1:1): 0.88; [𝛼],99 –28 (c = 1.0, MeOH); m.p.: 109–110 °C;  νmax 3287, 2957, 

1748, 1682, 1645, 1535, 1366, 1250, 1171 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.36–7.20 

(5H, m, 5 × CH-Ph), 6.23 (1H, d, J = 8.3 Hz, NH-Leu), 5.01 (1H, s, NH-Phe), 4.59 (1H, ddd, 

J = 8.6, 8.3, 4.8 Hz, CHα-Leu), 4.36 (d, J = 5.6 Hz, CHα-Phe), 3.72 (3H, s, OCH3), 3.12 

(1H, dd, J = 13.7, 6.6 Hz, CH2β-Phe), 3.08 (1H, dd, J = 13.7, 5.6 Hz, CH2β-Phe), 1.65–1.52 

(2H, m, CHγ-Leu + CH2β-Leu), 1.54–1.44 (1H, m, CH2β-Leu), 1.44 (9H, s, t-Bu), 0.93 (3H, 

d, J = 6.2 Hz, CH3δ-Leu), 0.91 (3H, d, J = 6.3 Hz, CH3δ-Leu); 13C (126 MHz, CDCl3): δ 

172.3 (CO-Phe), 171.0 (CO-Boc), 169.7 (CO-Leu), 129.5 (2 × CH-Ph), 128.8 (2 × CH-Ph), 

126. 48 (CH-Ph), 110.0 (C-Ph), 79.5 (C-Boc), 53.4 (CHα-Phe), 52.4 (OCH3), 50.9 (CHα-

Leu), 41.8 (CH2β-Leu), 39.2 (CH2β-Phe), 28.4 (3 × CH3-Boc), 24.8 (CHγ-Leu), 22.9 (CH3δ-

Leu), 22.0 (CH3δ-Leu); HRMS (ESI+) for C21H32N2NaO5 [M+Na]+ calcd 415.2203, found 

415.2197. 
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(S,R)-(Boc)2-{Gly∆Gly}-Phe-Leu-OMe 138  

 

Boc-Phe-Leu-OMe 135 (260 mg, 0.66 mmol) was dissolved in CH2Cl2 (6.6 mL) and TFA 

(100 µL, 0.99 mmol) was added. The reaction mixture was stirred for 5 h at rt and the solvent 

was removed under vacuum.  

TFA·H-Phe-Leu-OMe (122 mg, 0.30 mmol) was dissolved in CH2Cl2 (1 mL) and DIPEA 

(160 µL, 0.90 mmol) was added followed by (S,R)-(Boc)2-{Gly∆Gly}-OH 107 (100 mg, 

0.30 mmol). The mixture was stirred for 15 min and HATU (114 mg, 0.30 mmol) was added. 

The reaction mixture was stirred for 5 h at rt. H2O (10 mL) was added and the phases were 

separated. The organic phase was washed with 1 м aq. HCl (10 mL), H2O (10 mL), brine 

(10 mL), dried over MgSO4 and filtered. The solvent was removed under vacuum and the 

residue was purified by silica gel column chromatography (PE/EtOAc 9:1 to 1:1) to afford 

(S,R)-(Boc)2-Gly∆Gly}-Phe-Leu-OMe 138 (108 mg, 60%) as a colourless solid. 

Rf (PE/EtOAc 1:1): 0.68; [𝛼],6@ –10 (c = 0.40, CHCl3); m.p.: 153–154 °C; νmax 3281, 2957, 

1746, 1694, 1641, 1553, 1368, 1175, 1128 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.27–7.16 

(5H, m, 5 × CH-Ph), 6.45 (1H, d, J = 7.2 Hz, NH-Phe), 6.25 (1H, d, J = 8.3 Hz, NH-Leu), 

4.64 (1H, ddd, J = 14.5, 7.2, 7.2 Hz, CHα-Phe), 4.48 (1H, ddd, J = 8.5, 8.3, 5.2 Hz, CHα-

Leu), 3.66 (3H, s, OCH3), 3.55 (1H, dd, J = 14.3, 6.0 Hz, CH2-C6), 3.42 (1H, dd, J = 14.3, 

6.8 Hz, CH2-C6), 3.07 (2H, d, J = 7.2 Hz, CH2β-Phe), 2.30 (1H, dd, J = 16.4, 6.1 Hz, CH2-

C2), 1.87 (1H, dd, J = 16.4, 8.3 Hz, CH2-C2), 1.60–1.40 (3H, m, CHγ-Leu + CH2β-Leu), 

1.46 (18H, s, 2 × t-Bu), 0.93–0.82 (2H, m, CH-C5 + CH-C3), 0.85 (6H, d, J = 6.3 Hz, 2 × 

CH3δ-Leu), 0.52 (1H, ddd, J = 8.4, 5.0, 5.0 Hz, CH2-C4), 0.23 (1H, ddd, J = 8.4, 5.1, 5.1 

Hz, CH2-C4); 13C NMR (126 MHz, CDCl3) δ 172.9 (CO-Leu), 172.3 (CO-C1), 170.7 (CO-

Phe), 153.1 (2 × CO-Boc), 136.7 (C-Ph), 129.5 (C-Ph), 128.8 (2 × Ph), 127.1 (2 × CH-Ph), 

82.5 (C-Boc), 54.4 (CHα-Phe), 52.4 (OCH3), 51.1 (CHα-Leu), 49.0 (CH2-C6), 41.5 (CH2β-

Leu), 40.7 (CH2-C2), 37.8 (CH2β-Phe), 28.2 (6 × CH3-Boc), 24.9 (CHγ-Leu), 22.8 (CH3δ-
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Leu), 22.1 (CH3δ-Leu), 18.5 (CH-C5), 13.2 (CH-C3), 10.4 (CH2-C4); HRMS (ESI+) for 

C32H49N3NaO8 [M+Na]+ calcd 626.3412, found 626.3389. 
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(S,R)-Boc-Tyr-{Gly∆Gly}-Phe-Leu-OMe 140  

 

(S,R)-(Boc)2-{Gly∆Gly}-Phe-Leu-OMe 138 (108 mg, 0.18 mmol) was dissolved in CH2Cl2 

(2 mL) and TFA (140 µL, 1.80 mmol) was added to the solution. The reaction mixture was 

stirred at rt for 12 h. The solvent was then removed, and the compounds was used for the 

coupling without purification.  

To a solution of TFA·(S,R)-H-{Gly∆Gly}-Phe-Leu-OMe (0.18 mmol) in DMF (600 µL) 

was added DIPEA (94 µL, 0.54 mmol) dropwise. Boc-Tyr-OH (76 mg, 0.27 mmol) was 

added followed by HATU (68 mg, 0.18 mmol). The reaction mixture was stirred overnight 

at rt. The solution was washed with 5% aq. LiCl (4 × 5 mL), 1 м aq. HCl (5 mL) and sat. aq. 

NaHCO3 (5 mL). The organic phase was dried over MgSO4 and filtered. The solvent was 

removed under vacuum and the resulting oil was purified by silica gel column 

chromatography (CH2Cl2/MeOH 99:1 to 95:5) to afford (S,R)-Boc-Tyr-{Gly∆Gly}-Phe-

Leu-OMe 140 (90 mg, 75%) as a white powder. 

Rf (CH2Cl2/MeOH 9:1): 0.76; [𝛼],6A +38 (c = 0.05, CHCl3); m.p.: 152–153 °C; νmax 3276, 

2955, 1732, 1701, 1656, 1519, 1342, 1172, 1129 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.33–

7.18 (5H, m, 5 × CH-Ph), 7.04 (2H, bd, J = 8.3 Hz, 2 × CH-Arom-Tyr), 6.71 (2H, d, J = 8.3 

Hz, 2 × CH-Arom-Tyr), 6.68 (1H, bs, NH-Gly), 6.60 (1H, bs, NH-Phe), 6.38 (1H, bs, NH-

Leu), 5.43 (1H, d, J = 8.3 Hz, NH-Tyr), 4.68 (1H, bs, CHα-Phe), 4.56 (1H, bs, CHα-Leu), 

4.34 (1H, dd, J = 8.3, 6,7 Hz, CHα-Tyr), 3.71 (3H, s, OCH3), 3.48 (1H, bs, 1H × CH2-C6), 

3.09 (2H, bd, J = 5.7 Hz, CH2β-Phe), 3.01 (1H, bs, 1H × CH2β-Tyr), 2.92 (1H, bs, 1H × 

CH2β-Tyr), 2.67–2.59 (1H, m, 1H × CH2-C6), 2.29 (2H, bd, J = 16.7 Hz, 1H × CH2-C2), 

1.91–1.81 (1H, m, 1H × CH2-C2), 1.66–1.48 (3H, m, CHγ-Leu + CH2β-Leu), 1.41 (9H, s,t-

Bu), 0.90 (6H, d, J = 6.0 Hz, 2 × CH3δ-Leu), 0.54 (2H, m, CH-C5 + CH-C3), 0.39 (1H, bs, 

CH2-C4), 0.31 (1H, bs, CH2-C4)**; 13C (126 MHz, CDCl3): 173.0 (CO-OCH3), 172.7 (CO-
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Leu), 171.7 (CO-C1), 171.4 (CO-Phe), 155.6 (CO-Boc), 155.2 (C-Tyr), 136.5 (CH-Arom-

Phe), 130.7 (2 × CH-Arom-Tyr), 129.5 (2 × CH-Ph), 128.8 (CH-Ph), 128.6 (CH-Ph), 127.3 

(C-Ph), 115.7 (2 × CH-Arom-Tyr), 80.0 (C-Boc), 56.3 (CHα-Tyr), 54.6 (CHα-Phe), 52.6 

(OCH3), 51.3 (CHα-Leu), 43.0 (CH2-C6), 41.4 (CH2β-Leu), 39.8 (CH2-C2), 38.4 (CH2β-

Tyr), 38.2 (CH2β-Phe), 28.5 (3 × CH3-Boc), 24.9 (CHγ-Leu), 22.0 (2 × CH3δ-Leu), 18.0 

(CH-C5), 13.0 (CH-C3), 10.7 (CH2-C4); HRMS (ESI+) for C36H50N4NaO8 [M+Na]+ calcd 

689.3521, found 689.3503. 

**Most of the signal are shown broad due to exchange in conformation for this peptide.  
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(S,R)-H-Tyr-{Gly∆Gly}-Phe-Leu-OH 133   

 

(S,R)-Boc-Tyr-{Gly∆Gly}-Phe-Leu-OMe 140 (20.0 mg, 0.03 mmol) was dissolved in THF 

(0.10 mL) and 4 м aq. HCl (0.50 mL). The reaction mixture was stirred overnight at rt. The 

solution was then lyophilised. The crude peptide was purified using semi-preparative HPLC 

system with a flow rate of 8 mL/min. A linear gradient of buffer A (H2O and 0.1% TFA) to 

buffer B (MeCN and 0.1% TFA) was used over 40 min from 35 to 65%. UV detection 

wavelengths were 214 and 280 nm. The title compound was obtained as a white solid (8 mg, 

48%). 

[𝛼],9? –0.87 (c = 0.12, MeOH); HRMS (ESI+) for C28H38N5O7 [M+H]+ calcd 556.2766 found 

556.2752. HPLC: purity 92.56% (50 mins gradient), 90.29% (20 mins gradient); m.p.: 107–

108 °C.  
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(R,S)-(Boc)2-{Gly∆Gly}-Phe-Leu-OMe 137  

 

The procedure applied to the synthesis of (S,R)-(Boc)2-{Gly∆Gly}-Phe-Leu-OMe 138 on 

exactly the same scale. The residue was purified by silica gel column chromatography 

(PE/EtOAc 9:1 to 1:1) to afford (R,S)-(Boc)2-{Gly∆Gly}-Phe-Leu-OMe 137 (118 mg, 65%) 

as a white solid. 

Rf (PE/EtOAc 1:1): 0.68; [𝛼],9? –23 (c = 0.90, CHCl3); m.p.: 122–123 °C; νmax 3275, 3067, 

2957, 1746, 1694, 1639, 1553, 1437, 1368, 1238, 1128 cm−1; 1H NMR (500 MHz, CDCl3) 

δ 7.32–7.22 (5H, m, 5 × CH-Ph), 6.52 (1H, d, J = 7.4 Hz, NH-Phe), 6.23 (1H, d, J = 8.2 Hz, 

NH-Leu), 4.67 (1H, ddd, J = 14.8, 7.4, 7.4 Hz, CHα-Phe), 4.51 (1H, ddd, J = 8.2, 8.2, 5.3 

Hz, CHα-Leu), 3.70 (3H, s, OCH3), 3.60 (1H, dd, J = 14.4, 5.8 Hz, CH2-C6), 3.44 (1H, dd, 

J = 14.4, 6.8 Hz, CH2-C6), 3.12 (2H, dd, J = 7.4, 3.9 Hz, CH2β-Phe), 2.33 (1H, dd, J = 16.4, 

6.2 Hz, CH2-C2), 1.95 (1H, dd, J = 16.4, 8.1 Hz, CH2-C2), 1.65–1.41 (3H, m, CHγ-Leu + 

CH2β-Leu), 1.50 (18H, s, 2 × t-Bu), 0.95–0.82 (2H, m, CH-C5 + CH-C3), 0.89 (3H, d, J = 

6.3 Hz, CH3δ-Leu), 0.89 (3H, d, J = 6.3 Hz, CH3δ-Leu), 0.57 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, 

CH2-C4), 0.31 (1H, ddd, J = 8.5, 5.1, 5.1 Hz, CH2-C4); 13C (126 MHz, CDCl3): δ 172.9 

(CO-Leu), 172.3 (CO-C1), 170.8 (CO-Phe), 153.1 (2 × CO-Boc), 136.8 (C-Ph), 129.5 (C-

Ph), 128.8 (2 × CH-Ph), 127.1 (2 × CH-Ph), 82.5 (2 × C-Boc), 54.3 (CHα-Phe), 52.4 (OCH3), 

51.1 (CHα-Leu), 48.9 (CH2-C6), 41.5 (CH2β-Leu), 40.7 (CH2-C2), 37.8 (CH2β-Phe), 28.2 

(6 × CH3-Boc), 24.9 (CHγ-Leu), 22.8 (CH3δ-Leu), 22.1 (CH3δ-Leu), 18.4 (CH-C5), 13.1 

(CH-C3), 10.4 (CH2-C4); HRMS (ESI+) for C32H49N3NaO8 [M+Na]+ calcd 626.3412, found 

626.3381. 
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(R,S)-Boc-Tyr-{Gly∆Gly}-Phe-Leu-OMe 139 

 

The procedure applied to the synthesis of (S,R)-Boc-Tyr-{Gly∆Gly}-Phe-Leu-OMe 140 was 

followed using (R,S)-(Boc)2-{Gly∆Gly}-Phe-Leu-OMe 137 (107 mg, 0.18 mmol). The 

residue was purified by silica gel column chromatography (CH2Cl2/MeOH 99:1 to 98:2) to 

afford (R,S)-Boc-Tyr-{Gly∆Gly}-Phe-Leu-OMe 139 (130 mg, 76%) as a white powder. 

Rf (CH2Cl2/MeOH 9:1): 0.93; [𝛼],9? –5.5 (c = 0.20, CHCl3); m.p.: 167–168 °C; νmax 3287, 

2953, 2926, 1725, 167, 1533, 1516, 1449, 1368, 1246, 1167 cm−1; 1H NMR (500 MHz, 

CDCl3) δ 7.33–7.19 (5H, m, 5 × CH-Ph), 7.05 (2H, d, J = 8.3 Hz, 2 × CH-Arom-Tyr), 6.72 

(2H, d, J = 8.3 Hz, 2 × CH-Arom-Tyr), 6.41 (1H, d, J = 7.2 Hz, NH-Phe), 6.38 (1H, d, J = 

8.2 Hz, NH-Leu), 6.04 (1H, bs, NH-Gly), 5.43 (1H, d, J = 8.3 Hz, NH-Tyr), 4.70 (1H, m, 

CHα-Phe), 4.60–4.51 (1H, m, CHα-Leu), 4.29–4.22 (1H, m, CHα-Tyr), 3.71 (3H, s, OCH3), 

3.49 (1H, bd, J = 13.5 Hz, CH2-C6), 3.08 (2H, d, J = 7.2 Hz, CH2β-Phe), 3.07–3.01 (1H, m, 

CH2β-Tyr), 2.80 (1H, bdd, J = 11.3, 11.3 Hz, CH2β-Tyr), 2.42 (1H, m, CH2-C6), 2.00–1.86 

(2H, m, CH2-C2), 1.65–1.45 (3H, m, CHγ-Leu + CH2β-Leu), 1.42 (9H, s, t-Bu), 0.90 (3H, 

d, J = 6.1 Hz, CH3δ-Leu), 0.89 (3H, d, J = 6.2 Hz, CH3δ-Leu), 0.57–0.33 (4H, m, CH-C5 + 

CH-C3 + CH2-C4)**; 13C (126 MHz, CDCl3): δ 172.9 (CO-OCH3), 172.5 (CO-Leu), 171.6 

(CO-C1), 171.2 (CO-Phe), 155.4 (C-Tyr), 151.8 (CO-Boc), 136.4 (CH-Ph), 130.6 (2 × CH-

Arom-Tyr), 129.5 (2 × CH-Arom-Phe), 128.8 (CH-Ph), 128.7 (CH-Ph), 127.3 (C-Ph), 115.9 

(2 × CH-Arom-Tyr), 80.0 (C-Boc), 56.6 (CHα-Tyr), 54.7 (CHα-Phe), 52.6 (OCH3), 51.2 

(CHα-Leu), 43.7 (CH2-C6), 41.5 (CH2β-Leu), 39.9 (CH2-C2), 39.0 (CH2β-Tyr), 38.4 (CH2β-

Phe), 28.5 (3 × CH3-Boc), 24.9 (CHγ-Leu), 22.9 (CH3δ-Leu), 22.0 (CH3δ-Leu), 17.2 (CH-

C5), 13.7 (CH-C3), 10.8 (CH2-C4); HRMS (ESI+) for C36H50N4NaO8 [M+Na]+ calcd 

689.3521, found 689.3493. 
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**Almost all peaks are shown broad or multiplet due to exchange in conformation for this 

peptide. 
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(R,S)-H-Tyr-{Gly∆Gly}-Phe-Leu-OH 132  

 

(R,S)-Boc-Tyr-{Gly∆Gly}-Phe-Leu-OMe 139 (59.0 mg, 0.09 mmol) was dissolved in a 

mixture of THF (2 mL) and 4 м aq. HCl (2.25 mL). The reaction mixture was stirred 

overnight at rt. The solution was then lyophilised, and the crude peptide was then purified 

using semi-preparative HPLC system with a flow rate of 8 mL/min. A linear gradient of 

buffer A (H2O and 0.1% TFA) to buffer B (MeCN and 0.1% TFA) was used over 40 min 

from 35 to 65%. UV detection wavelengths were 214 and 280 nm. The title compound (20 

mg, 40%) was obtained as a colourless solid. 

[𝛼],9? +9.5 (c = 0.22, MeOH); HRMS (ESI+) for C30H41N4O6 [M+H]+ calcd 553.3021, found 

553.3013. HPLC: purity 89.56% (50 mins gradient), 89.36% (20 mins gradient), m.p.: 129–

130 °C. 
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Datafile Name:AN-05-89-50min.lcd
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Microwave Assisted Solid Phase Peptide Synthesis: 

Following peptides were synthesised using an Automated Biotage Initiator + Alstra 

microwave synthesizer on 0.1 mmol scale using Tentagel S RAM resin (0.24 mmol/g 

loading) or Fmoc-Leu Wang resin (0.84 mmol/g loading). L-amino acids were used for 

peptide synthesis with N-Fmoc protecting groups (4 equiv.). Analytical HPLC was 

undertaken on a Shimadzu SIL-20AHT equipped with a dual wavelength UV detector and a 

Phenomenex Aeris 5 μm C18 (150 x 46 mm) column at a flow rate of 1 mL/min. A linear 

gradient of buffer A (95:5 H2O/MeCN and 0.1% TFA) to buffer B (95:5 MeCN/H2O and 

0.1% TFA) was used over 20 min and 50 min from 0 to 100% and 100 to 0%. UV 

measurements were recorded at 214 nm and 280 nm. Peptides were purified using a Gilson 

semi-preparative HPLC system equipped with a Phenomenex Synergi 10u C18 80 Å, (250 

x 21.2 mm) column with a flow rate of 8 mL/min. Peptides were lyophilized using a Christ 

Alpha 2−4 LDplus freezedryer. Peptide content was determined using a Nanodrop 2000c 

using UV absorbance at 280 nm when mentioned.  

Peptides were synthesised via the following general procedure on the peptide synthesiser:  

Resin Swelling – Resin swollen in DMF at 70 °C for 20 min.  

Coupling – Coupling reactions were performed using 4 equiv. of amino acid, 4 equiv. of 

HCTU (0.5 м in DMF) and 8 equiv. of DIPEA (2 м in NMP). Natural amino acids were 

coupled at 75 °C for 5 min. 

Deprotection – Fmoc deprotections were carried out using 20% piperidine in DMF, spiked 

with 5% formic acid at 75 °C for 30 s. A second deprotection was then undertaken at 70 °C 

for 3 min.  

Washing – Resin was washed with DMF after each coupling and deprotection step.  

Peptide Cleavage – Resin bound peptide was cleaved and protecting groups removed upon 

addition of 3 mL TFA/TIS/H2O (95:2.5:2.5) and spun for 3 h.  

After filtration through a sintered frit, the cleavage cocktail was evaporated using a stream 

of N2 and the peptide was precipitated with ice cold Et2O and centrifuged at 4500 rpm for 5 

min. After decanting the supernatant, the Et2O wash was repeated a further 2 times. The 
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crude peptide dissolved in 50% MeCN/H2O with 0.1% TFA and was lyophilized before 

purification. 
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Leu-enkephalin 141  

 

Following the procedure described for for SPPS using Fmoc-Leu Wang resin (0.84 mmol/g 

loading), the crude peptide was purified using semi-preparative HPLC system with a flow 

rate of 8 mL/min. A linear gradient of buffer A (H2O and 0.1% TFA) to buffer B (MeCN 

and 0.1% TFA) was used over 40 min from 20 to 70%. UV detection wavelengths were 214 

and 280 nm. Leu-enkephalin 137 (24 mg, 43%) was obtained as a white solid. 

HRMS (ESI+) for C28H38N5O7 [M+H]+ calcd 556.2766, found 556.2752. HPLC: purity 

96.69% (50 min gradient), 97.18% (20 min gradient), m.p.: 157–160 °C.  
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2,6-Di-t-butyl-4-methylphenyl-3-oxobutanoate 148  

 

A mixture of 2,6-di-t-butyl-4-methylphenol (5.00 g, 22.7 mmol) and 2,2,6-trimethyl-4H-1,3-

dioxin-4-one (3.00 mL, 22.7 mL) in xylene (5 mL) was stirred at 140 °C for 2 h. Solvents 

were removed under reduced pressure and the residue was purified by silica gel column 

chromatography (PE/EtOAc 9:1) to give an orange solid which was recrystallised from PE 

to afford the title compound (3.07 g, 44%) as white solid as a mixture (45:55) of keto 

148a/enol 148b compounds. 

Rf (EtOAc/PE 1:1): 0.58; m.p.: 97–98 °C; 1H NMR (500 MHz; CDCl3): δ 12.15 (0.55H, s, 

OH enol), 7.13 (2H, s, CH-Arom), 5.33 (0.55H, d, J = 0.8 Hz, CH-C3’), 3.73 (0.9H, s, CH2-

C3), 2.40 (1.35H, s, CH3-C1), 2.33 (3H, s, CH3-C5 + CH3-C5’), 2.07 (1.65, s, CH3-C1’), 

1.34 (8.1H, s, 2 ´ tBu enol form), 1.33 (9.9H, s, 2 ´ tBu keto form); 13C NMR (126 MHz; 

CDCl3): δ 200.2 (CO-C2), 177.6 (CO-C4’), 167.8 (CO-C4), 145.5 (C-Ar), 145.1 (C-Ar), 

142.4 (C-Ar), 142.0 (C-Ar), 135.2 (C-Ar), 134.8 (C-Ar), 127.3 (C-Ar), 127.1 (C-Ar), 90.6 

(CH-C3’), 50.9 (CH2-C3), 35.4 (CH3-C1’), 34.4 (CH3-C1), 31.7 (tBu keto form), 31.6 (tBu 

keto form), 30.9 (3 ´ tBu keto form), 21.7 (tBu enol form), 21.7 (CH3-C5), 21.3 (CH3-C5’); 

HRMS (ESI+) for C19H28NaO3 [M+Na]+ calcd 327.1931 found 327.1934.* 

*Values match what has been reported in litterature. ref  
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2,6-Di-t-butyl-4-methylphenyl 2-diazoacetate 150  

 

To a solution of 2,6-di-t-butyl-4-methylphenyl-3-oxobutanoate 148 (3.07 g, 10.1 mmol) in 

MeCN (13 mL) was added Et3N (1.8 mL). The solution was cooled to 0 °C and TsN3 (2.20 

g, 11.3 mmol) in MeCN (13 mL) was added dropwise. The reaction mixture was allowed to 

warm to rt and stirred overnight at rt. The solvents were removed and the residue was 

dissolved in Et2O. The solution was washed with 8% aq. KOH solution (3 ´ 40 mL) and the 

organic phase was dried over MgSO4 and concentrated under vacuum. The residue was 

dissolved in MeCN (15 mL) and 8% aq. KOH (25 mL) was added. The mixture was stirred 

for 4 h at rt. H2O (15 mL) was added and the mixture extracted with Et2O (3 ´ 20 mL). The 

combined extracts were dried over MgSO4 and concentrated under vacuum. The crude 

product was purified by column chromatography on silica gel (PE/Et2O 30:1) to afford the 

title product (1.92 g, 66%) as a bright yellow solid. 

Rf (EtOAc/PE 1:1): 0.58; m.p.: 153–154 °C; νmax 2961, 2914, 2110, 1705, 1366, 1335, 1184, 

1144, 1107 cm−1; 1H NMR (500 MHz; CDCl3): δ 7.11 (2H, s, CH-Arom), 2.32 (3H, s, CH3-

C5), 1.35 (18H, s, 2 ´ tBu); 13C NMR (126 MHz, CDCl3) δ 142.6 (CO-C4), 134.9 (2 ´ CH-

Arom), 130.9 (C-Arom)127.2 (CH-C3), 35.4 (C-tBu), 31.7 (2 ́  tBu), 21.7 (CH3-C5); HRMS 

(ESI+) for C19H28NaO3 [M+Na]+ calcd 327.1931, found 327.1934.* 

*Values match what has been reported in litterature. ref   
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t-Butyl-(4S,E)-{5-hydroxy-1-[4-(4-methoxybenzyloxy)phenyl]pent-3-en-2-

yl}carbamate 151 

 

(4S)-t-Butyl-{1-[4-(4-methoxybenzyloxy)phenyl]but-3-en-2-yl}carbamate 145 (50.0 mg, 

0.13 mmol) previously synthesised following a known procedure, REF was dissolved in 

degassed CH2Cl2 (2 mL) and butenediol (39 μL, 0.65 mmol) was added. The solution was 

degassed and Hoveyda-Grubbs 2nd generation catalyst (3 mg, 3.5 mol%) was added. The 

reaction mixture was stirred at reflux for 18 h. The solvents were removed and the residue 

was purified by silica gel column chromatography (PE/EtOAc 9:1 to 1:1) to give the title 

compound (23 mg, 43%) as a white solid.  

Rf (PE/EtOAc 1:1): 0.38; [𝛼],6C +13 (c = 1.0, CHCl3); νmax 3294, 2971, 2929, 1732, 1693, 

1640, 1366, 1173, 1129 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.35 (2H, d, J = 8.6 Hz, 2 × 

CH-Ph-PMB), 7.08 (2H, d, J = 8.6 Hz, 2 × CH-Ph-PMB), 6.90 (4H, dd, J = 10.2, 8.6 Hz, 4 

× CH-Ph), 5.75–5.62 (2H, m, CH-C2 + CH-C3), 4.96 (2H, s, CH2-PMB), 4.48 (1H, bs, NH), 

4.38 (1H, bs, CH-C1), 4.11 (2H, d, J = 3.9 Hz, CH2-C4), 3.81 (3H, s, OCH3-PMB), 2.77 

(2H, d, J = 6.3 Hz, CH2-C5), 1.40 (9H, s, CH3-Boc); 13C (101 MHz, CDCl3): δ 159.6 (CO-

Boc), 157.7 (2 × C-Ph-PMB), 155.3 (2 × C-Ph), 131.8 (CH-C3), 130.6 (2 × CH-Ph), 129.8 

(CH-C2), 129.4 (2 × CH-Ph), 114.9 (2 × CH-Ph), 114.1 (2 × CH-Ph), 80.0 (C-Boc),70.0 

(CH2-PMB), 63.2 (CH2-C4), 55.5 (OCH3-PMB), 52.9 (CH-C1), 40.9 (CH2-C5), 28.5 (3 × 

CH3-Boc); HRMS (ESI+) for C24H31NO5Na [M+Na]+ calcd, 436.2094 found 436.2088.  
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t-Butyl-(4S,E)-{5-(t-butyldiphenylsilyloxy)-1-[4-(4-methoxybenzyloxy)phenyl]pent-3-

en-2-yl}carbamate 152 

 

TPBDPSCl (15 μL, 0.06 mmol) was slowly added to a solution of t-butyl-(4S,E)-{5-

hydroxy-1-{4-(4-methoxybenzyloxy)phenyl]pent-3-en-2-yl}carbamate 151 (20 mg, 0.05 

mmol) and imidazole (7 mg, 0.09 mmol) in CH2Cl2 (0.50 mL). The reaction mixture was 

stirred for 24 h at rt. H2O (7 mL) was added and the phases were separated. The organic 

phase was dried over Na2SO4, filtered and concentrated under vacuum. The resulting oil was 

purified by silica gel column chromatography (PE/EtOAc 1:1) yielding the title compound 

(33 mg, quant.) as a clear oil  

Rf (PE/EtOAc 1:1): 0.79; νmax 2982, 2864, 1715, 1550, 1436, 1248, 1173, 1129 cm−1; 1H 

NMR (400 MHz, CDCl3) δ 7.73–7.70 (4H, m, 4 × CH-Ph-TBDPS), 7.65 (4H, ddd, J = 8.1, 

1.6, 1.6 Hz, 4 × CH-Ph-TBDPS), 7.41–7.36 (2H, m, 2 × CH-Ph-TBDPS), 7.35 (2H, d, J = 

8.7 Hz, 2 × CH-Ph-PMB), 7.17 (1H, s, NH), 7.07 (2H, d, J = 8.7 Hz, 2 × CH-Ph PMB), 6.91 

(2H, d, J = 8.6 Hz, 2 × CH-Ph), 6.87 (1H, d, J = 8.6 Hz, 2 × CH-Ph), 5.69 (1H, dd, J = 15.5, 

5.2 Hz, CH-C2), 5.59 (1H, ddd, J = 15.5, 4.8, 3.5 Hz, CH-C3), 4.94 (2H, s, CH2-PMB), 

4.42–4.36 (1H, m, CH-C1), 4.16 (2H, d, J = 3.5 Hz, CH2-C4), 3.81 (3H, s, CH3-PMB), 2.80–

2.69 (2H, m, CH2-C5), 1.42 (9H, s, t-Bu-Boc), 1.04 (9H, s, t-Bu-TBDPS); 13C NMR (126 

MHz, CDCl3) δ 159.6 (CO-Boc), 157.7 (2 × C-Ph-PMB), 135.7 (4 × CH-Ph), 134.9 (4 × 

CH-Ph), 130.7 (2 × CH-Ph), 129.8 (CH-C2 + CH-C3), 129.6 (2 × C-Ph), 129.4 (2 × CH-

Ph), 127.9 (2 × C-Ph), 114.8 (2 × CH-Ph), 114.1 (2 × CH-Ph), 83.1 (CH-Boc), 70. 0 (CH2-

PMB), 63.9 (CH2-C4), 55. 5 (OCH3-PMB), 41.0 (CH2-C5), 34.0 (C-TBDPS), 28.6 (t-Bu-

Boc), 27.0 (t-Bu-TBDPS); HRMS (ESI+) for C40H49NO5NaSi [M+Na]+ calcd 674.3272, 

found 674.3252.  

  

BocHN 1
2

3

4

OTBDPS

5

PMBO

152



 

 240 

Methyl-(4S,E)-4-[(t-butoxycarbonyl)amino]-5-[4-(4-methoxybenzyloxy)phenyl]pent-2-

enoate 155  

 

A solution of t-butyl {1-[4-(4-methoxybenzyloxy)phenyl]but-3-en-2-yl}carbamate 145 (50 

mg, 0.13 mmol) in CH2Cl2 (300 μL) and a solution of methyl acrylate (20 μL, 0.23 mmol) 

in CH2Cl2 (300 μL) were added simultaneously to a suspension of degassed Grubbs II 

catalyst (3.3 mg, 3 mol%) in CH2Cl2 (700 μL). The reaction mixture was degassed again and 

stirred for 48 h at reflux. Solvents were removed and the residue was purified by silica gel 

column chromatography (PE/EtOAc 9:1 to 1:4) to give the title compound (23 mg, 40%) as 

a clear oil.  

Rf (PE/EtOAc 1:1): 0.48; [𝛼],6C +6.2 (c = 0.75, CHCl3), νmax 3354, 2974, 2928, 1714, 1514, 

1368, 1244, 1172, 1022 cm−1; 1H NMR (500 MHz, CDCl3) 7.35 (2H, d, J = 8.7 Hz, 2 × CH-

Arom PMB), 7.07 (2H, d, J = 8.6 Hz, 2 × CH-Arom), 6.92 (2H, d, J = 6.8 Hz, 2 × CH-Arom-

PMB), 6.90 (2H, d, J = 7.1 Hz, 2 × CH-Arom), 5.85 (1H, dd, J = 15.7, 1.7 Hz, CH-C2), 4.96 

(2H, s, CH2-PMB), 4.56 (1H, bs, CH-C1), 4.49 (1H, bs, CH-C3), 3.82 (3H, s, CH3-PMB), 

3.73 (3H, s, CO2CH3), 2.83 (2H, d, J = 6.6 Hz, CH2-C5), 1.40 (9H, s, t-Bu); 13C NMR (126 

MHz, CDCl3) δ 166.8 (CO-Ac), 159.6 (2 × C-Arom-PMB), 158.0 (CO-Boc), 155.1 (2 × CH-

Arom), 130.6 (2 × CH-Arom), 129.4 (2 × CH-Arom-PMB), 129.2 (2 × C-Arom), 120.8 (CH-

C1), 115.1 (2 × CH-Arom), 114.2 (2 × CH-Arom-PMB), 83.1 (C-Boc), 67.0 (CH2-PMB), 

55.5 (CH3-PMB), 51.8 (CO2CH3), 39.5 (CH2-C5), 28.5 (t-Bu); HRMS (ESI+) for 

C25H31NO6Na [M+Na]+ calcd 464.2044, found 464.2041.  
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TrpZip 157 

 

 

Following the general procedure for SPPS using TentaGel S RAM resin (0.24 mmol/g 

loading). The crude peptide was purified using semi-preparative HPLC system with a flow 

rate of 8 mL/min. A linear gradient of buffer A (H2O and 0.1% TFA) to buffer B (MeCN 

and 0.1% TFA) was used over 55 min from 20 to 70%. UV detection wavelengths were 214 

and 280 nm. TrpZip 157 (15 mg, 9%) was obtained as a colourless solid. 

HRMS (ESI+) for C78H104N20O18 [M+2H]2+ calcd 804.3913, found 804.3943. HPLC: purity 

94.58% (50 min gradient), 93.12% (20 min gradient).  

 

 

 

H
NH2HN

O

HO

S

N
H O

NH

W

H
N

O

OH

H

T

N
H O

NH

W

H
N

O

HO O

E

N
H O

G

H
N

O

O

H2N

N

N
H O

NH2

K

H
N

O

NH

W

N
H O

OH

H

T

H
N

O

NH

W

N
H O

NH2

K

157

Datafile Name:TZ-4-t3-50min.lcd

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 min

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000mV

0

10

20

30

40

50

60

70

80

90

%

0.
19
2/
0.
00
0

19
.2
25
/0
.4
53

22
.0
05
/9
4.
57
8

22
.3
53
/3
.6
59

22
.5
47
/1
.3
11



 

 242 

 

 

  

Datafile Name:TZ-4-t3-20min.lcd

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 min

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000mV

0

10

20

30

40

50

60

70

80

90

%

11
.1
25
/0
.3
24

11
.8
22
/1
.4
33

12
.1
65
/9
3.
12
3

12
.3
46
/4
.5
53

13
.1
98
/0
.5
67



 

 243 

GG TrpZip 158  

  

Following the general procedure for SPPS using TentaGel S RAM resin (0.24 mmol/g 

loading). The crude peptide was purified using semi-preparative HPLC system with a flow 

rate of 8 mL/min. A linear gradient of buffer A (H2O and 0.1% TFA) to buffer B (MeCN 

and 0.1% TFA) was used over 55 mins from 20-70%. UV detection wavelengths were 214 

and 280 nm. GG TrpZip 158 (28 mg, 18%) was obtained as a white solid. Peptide content 

was determined by measuring the absorbance at 280 nm.  

HRMS (ESI+) for C76H101N19O17 [M+2H]2+ calcd 775.8806, found 775.8832. HPLC: purity 

97.54% (50 min gradient), 95.86% (20 min gradient). 
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(R,S)-Fmoc-{GlyΔGly}-OH 161 

 

(R,S)-(Boc)2-{GlyΔGly}-OH 107 (248 mg, 0.75 mmol) was dissolved in CH2Cl2 (8 mL) and 

TFA (0.6 mL) was added. The solution was stirred for 3 h at rt and the solvent was removed. 

The resulting TFA salt was dissolved in a dioxane/H2O mixture (3:1, 13 mL) and K2CO3 

(310 mg, 2.25 mmol) was added. The solution was stirred for 30 min at rt and FmocOSu 

(304 mg, 0.900 mmol) was added. The reaction mixture was stirred overnight at rt. The 

mixture was diluted in 2 м aq. K2CO3 (5 mL) and extracted with EtOAc (3 ´ 5 mL). The aq. 

phase was then acidified carefully to pH 1 using 1 м aq. HCl and then extracted with EtOAc 

(3 ´ 5 mL). The combined extracts were dried over MgSO4, filtered and concentrated under 

vacuum. The residue was purified by silica gel on column chromatography (PE/EtOAc 1:1) 

to give the title compound (40 mg, 15%) as a yellow oil.  

Rf (Et2O/PE 1:1): 0.27; [𝛼],99 +25 (c = 0.50, CHCl3); nmax 3335, 3067, 2932, 1703, 1520, 

1450, 1242, 1034 cm–1; 1H NMR (400 MHz; CDCl3): δ 7.75 (2H, d, J = 7.5 Hz, 2 ´ CH-

Arom-Fmoc), 7.61 (2H, d, J = 7.5 Hz, 2 ´ CH-Arom-Fmoc), 7.39 (2H, t, J = 7.5 Hz, 2 ´ 

CH-Arom-Fmoc), 7.30 (2H, t, J = 7.5 Hz, 2 ´ CH-Arom-Fmoc), 5.39 (1H, bs, NH), 4.35 

(2H, d, J = 6.9 Hz, CH2-Fmoc), 4.22 (1H, t, J = 6.9 Hz, CH-Fmoc), 3.42 (1H, ddd, J = 12.5, 

6.1, 6.1 Hz, CH2-C6), 2.78 (1H, ddd, J = 12.5, 8.4, 4.2 Hz, CH2-C6), 2.60 (1H, dd, J = 17.3, 

5.5 Hz, CH2-C2), 2.04 (1H, dd, J = 17.3, 8.8 Hz, CH2-C2), 0.92–0.77 (2H, m, CH-C3 + CH-

C5), 0.53 (1H, ddd, J = 9.5, 5.3, 5.3 Hz, CH2-C4), 0.45 (1H, ddd, J = 9.5, 5.4, 5.4 Hz, CH2-

C4); 13C NMR (126 MHz; CDCl3): δ  178.6 (CO-C1), 156.6 (CO-Fmoc), 144.2 (2 ´ C-

Arom-Fmoc), 141.4 (2 ´ C-Arom-Fmoc), 127.8 (2 ´ CH-Arom-Fmoc), 127.2 (2 ´ CH-

Arom-Fmoc), 125.3 (2 ´ CH-Arom-Fmoc), 120.1 (2 ´CH-Arom-Fmoc), 66.9 (CH-Fmoc), 

47.4 (CH2-Fmoc), 45.3 (CH2-C6), 37.8 (CH2-C2), 18.4 (CH-C5), 12.9 (CH-C3), 10.3 (CH2-

C4); HRMS (ESI+) for C21H21NNaO4 [M+Na]+ calcd 374.1363, found 374.1356. 
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(S,R)-Fmoc-{GlyΔGly}-OH 162 

 

(S,R)-(Boc)2-{GlyΔGly}-OH 107 (203 mg, 0.61 mmol) was dissolved in CH2Cl2 (6 mL) and 

TFA (0.50 mL, 6.1 mmol) was added. The solution was stirred for 3 h at rt and solvent were 

removed. The resulting TFA salt was dissolved in a dioxane/H2O mixture (3:1, 12 mL) and 

K2CO3 (253 mg, 1.83 mmol) was added. The solution was stirred for 30 min at rt and 

FmocOSu (250 mg, 0.730 mmol) was added. The reaction mixture was stirred overnight at 

rt. The mixture was diluted in 2 м aq. K2CO3 (5 mL) and extracted with EtOAc (3 ´ 5 mL). 

The aq. phase was then acidified carefully using 1 м aq. HCl to pH 1 and extracted with 

EtOAc (3 ́  5 mL). The combined extracts were dried over MgSO4, filtered and concentrated 

under vacuum. The residue was purified by silica gel on column chromatography (PE/EtOAc 

1:1) to give the title compound as a yellow oil (70 mg, 27%). 

Rf (Et2O/PE 1:1): 0.27; [𝛼],6E –18 (c = 0.50, CHCl3); nmax 3325, 3065, 2926, 1707, 1522, 

1451, 1246, 1033 cm−1; 1H NMR (400 MHz; CDCl3): δ 7.76 (2H, d, J = 7.4 Hz, 2 ´ CH-

Arom-Fmoc), 7.62 (2H, d, J = 7.4 Hz, 2 ´ CH-Arom-Fmoc), 7.39 (2H, t, J = 7.4 Hz, 2 ´ 

CH-Arom-Fmoc), 7.31 (2H, dddd, J = 7.4, 7.4, 1.1, 1.1 Hz, 2 ´ CH-Arom-Fmoc), 5.38 (1H, 

bs, NH), 4.37 (2H, d, J = 7.2 Hz, CH2-Fmoc), 4.23 (1H, t, J = 7.2 Hz, CH-Fmoc), 3.44 (1H, 

ddd, J = 12.4, 5.5, 5.5 Hz, CH2-C6), 2.77 (1H, ddd, J = 12.4, 8.2, 4.5 Hz, 1H ´ CH2-C6), 

2.62 (1H, dd, J = 17.6, 5.1 Hz, CH2-C2), 2.11–1.97 (1H, m, CH2-C2), 0.90–0.77 (2H, m, 

CH-C3 + CH-C5), 0.55 (1H, ddd, J = 8.2, 5.2, 5.2 Hz, CH2-C4), 0.46 (1H, ddd, J = 8.2, 4.0, 

4.0 Hz, CH2-C4); 13C NMR (126 MHz; CDCl3): δ  177.0 (CO-C1), 156.6 (CO-Fmoc), 144.2 

(2 ´ C-Arom-Fmoc), 141.5 (2 ´ C-Arom-Fmoc), 127.8 (2 ´ CH-Arom-Fmoc), 127.2 (2 ´ 

CH-Arom-Fmoc), 125.3 (2 ´ CH-Arom-Fmoc), 120.1 (2 ´CH-Arom-Fmoc), 66.9 (CH-

Fmoc), 47.4 (CH2-Fmoc), 45.3 (CH2-C6), 37.5 (CH2-C2), 18.5 (CH-C5), 13.0 (CH-C3), 10.4 

(CH2-C4); HRMS (ESI+) for C21H21NNaO4 [M+Na]+ calcd, 374.1363 found 374.1353. 
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(R,S)-{GlyΔGly}-TrpZip 159 

 

Following the general procedure for SPPS using TentaGel S RAM resin (0.24 mmol/g 

loading), H-K1-W3-T2-W4-K2-resin sequence was synthesised. This was not cleaved from 

the resin for the next coupling.  

(1S,2R)-Fmoc-{GlyΔGly}-OH (39.0 mg, 0.11 mmol, 1.1 equiv.) and HATU (76.0 mg, 0.20 

mmol) were dissolved in 5 mL of DMF. DIPEA (70 μL, 0.40 mmol) was then added. The 

solution was stirred for 5 min for preactivation and then it was added to the resin and spun 

overnight. The reaction was monitored by LCMS ([M+Na] 556.92 g/mol). Unreacted 

peptide was caped using 0.4 mL of acetic acid in 0.6 mL of pyridine and spun for 40 min. 

the resin was then washed with DMF (4 × 10 mL) through a sintered frit.  

The coupling of the rest of the sequence (Fmoc-S-W1-T1-W2-E-OH) to the resin was carried 

out following the procedure for SPPS on a 0.050 mmol scale.  

The crude peptide was purified using semi-preparative HPLC system with a flow rate of 8 

mL/min. A linear gradient of buffer A (H2O and 0.1% TFA) to buffer B (MeCN and 0.1% 

TFA) was used over 50 min from 20 to 70%. UV detection wavelengths were 214 and 280 

nm. (1S,2R)-{GlyΔGly}-TrpZip (15 mg, 19%) was obtained as a colourless solid. Peptide 

content was determined by measuring the absorbance at 280 nm.  
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HRMS (ESI+) for C78H104N18O16 [M+2H]2+ calcd 774.3948, found 774.3944. HPLC: purity 

91.80% (20 min gradient), 85.16% (50 min gradient). 
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 (S,R)-{GlyΔGly}-TrpZip 160 

 

Following the general procedure for SPPS using TentaGel S RAM resin (0.24 mmol/g 

loading), H-K1-W3-T2-W4-K2-resin sequence was synthesised. This was not cleaved from 

the resin for the next coupling.  

(S,R)-Fmoc-{GlyΔGly}-OH (70 mg, 0.20 mmol, 2 equiv.) and HATU (76 mg, 0.20 mmol) 

were dissolved in 5 mL of DMF. DIPEA (70 μL, 0.40 mmol) was then added. The solution 

was stirred for 5 min for preactivation and then it was added to the resin and spun overnight. 

The reaction was monitored by LCMS ([M+Na] 556.92 g/mol). Unreacted peptide was 

caped using 0.4 mL of acetic acid in 0.6 mL of pyridine and spun for 40 min. The resin was 

then washed with DMF (4 × 10 mL) through a sintered frit.  

The coupling of the rest of the sequence (Fmoc-S-W1-T1-W2-E-OH) to the resin was carried 

out following the procedure for SPPS on a 0.050 mmol scale.  

The crude peptide was purified using semi-preparative HPLC system with a flow rate of 8 

mL/min. A linear gradient of buffer A (H2O and 0.1% TFA) to buffer B (MeCN and 0.1% 

TFA) was used over 50 min from 20 to 70%. UV detection wavelengths were 214 and 280 

nm. (S,R)-{GlyΔGly}-TrpZip 155 (15 mg, 19%) was obtained as a colourless solid. Peptide 

content was determined by measuring the absorbance at 280 nm.  

HRMS (ESI+) for C28H38N5O7 [M+H]+ calcd 556.2766, found 556.2752. HPLC: purity 

90.03% (50 min gradient), 95.08% (20 min gradient).  
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