

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Logical-Linguistic Model and Experiments
in

Document Retrieval

by

Tengku Mohd Tengku Sembok

A thesis submitted to the
Faculty of Science

University of Glasgow
for the degree of

Doctor of Philosophy

Department of Computing Science
University of Glasgow
August 1989

(c) T.M.T. Sembok, 1989

ProQuest Number: 10999229

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10999229

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Dedicated to my parents,
Yak and Wak.

Declaration

This thesis is entirely on my original work and no part is done in
collaboration. Where the work of others is used, explicit reference is
made in the text. No part of this thesis has been, or is being submitted
for a degree at any other university.

CONTENT

I. Abbreviations

II. Acknowledgem ent

IE. Sum m ary

Chapter 1: Introduction 1

1.1 Information Retrieval 1

1.2 Document Retrieval Systems 1

1.3 State-of-the-art 6

1.3.1 Conventional Models 6

1.3.2 Keywords vs Meaning 9

1.4 Logical-Linguistic Model 10

1.5 An Approach 12

Chapter 2: Linguistic Processing in Document Retrieval Systems 13

2.1 Introduction 13

2.2 Content Analysis and Representation 14

2.3 Natural Language Processing in Document Retrieval

Systems 17

2.4 Parsing in Document Retrieval Systems 20

2.4.1 Parsing as Part of Document Indexing Process 20

2.4.2 Parsing as Part of Retrieval Process 21

2.5 Translation in Document Retrieval Systems 22

Chapter 3: Montague Semantics 25

3.1 Introduction 25

3.2 Montague's PTQ 26

3.2.1 Introduction to Montague's Intensional Logic (IL) 26

3.3 Jowsey's SMG 28

3.3.1 Theory of Montague Semantics: A five sorted

extensional first order logic 28

3.3.2 Syntactic Categories and Types 29

3.3.3 Translating Basic English Expressions 32

3.3.4 Syntactic and Translation Rules 34

Chapter 4: A Semantic Translation for SILOL 41

4.1 Introduction 41

4.2 Generalised-relationship Concept 42

4.3 Simple Unification Noun-Phrase Grammar (SUNG) 43

4.3.1 Syntactic Categories and Types 44

4.3.2 Translation of Basic English Expressions 44

4.3.3 Translation of Complex Expressions 45

4.3.3.1 Adjective-Noun Compounds 45

4.3.3.2 Noun-noun Compounds 47

4.3.3.3 Postmodifiers 48

4.3.3.3.1 Relative Clauses 48

4.3.3.3.1.1 Such-that relative clauses 48

4.3.3.3.1.2 Wh Relative clauses 51

4.3.3.3.2 Verb-by Postmodifiers 53

4.3.3.4 Conjunctions 54

4.3.3.5 Prepositions 55

Chapter 5: Parsing and Translation Strategy 57

5.1 Introduction 57

5.2 Unification Grammar 57

5.3 Partial Translation in SUNG 60

5.4 Bottom-up Shift-Reduce Parser 62

5.5 Handling of Ambiguities 63

Chapter 6: Translation as Part of Document Retrieval System 67

6.1 Introduction 67

6.2 Translation as Part of Document Indexing Process 68

6.2.1 Simplification Process 70

6.2.2 Reduction Process 71

6.3 Translation as Part of Retrieval Process 72

6.3.1 Simplification and Partial Reduction Process 73

6.3.2 Uncertain Implication Process 74

6.3.2.1 Calculation of Propagated Value 75

6.3.2.2 Uncertain Implication Language (UNIL) 77

6.3.2.2.1 Combination Operators 78

6.3.2.2.2 Uncertain Construct - cf(Const)' 79

6.3.2.2.3 No-chaining Construct - d: 80

6.3.2.2.4 Checking Query Index - q: 81

6.3.2.2.5 Cut - ! 82

6.3.2.2.6 Macro Predicates 82

6.3.2.2.7 Strict Construct - s' 83

6.3.2.2.8 Example of Implication Rules and

Synonyms 84

Chapter 7: Experimental Setup 87

7.1 The Test Collection 87

7.2 Translation Statistics on the Test Collection Documents 87

7.3 Organisation of Retrieval Strategies 88

7.3.1 Non-feedback Retrieval 89

7.3.2 Retrieval with Nearest Neighbour Relevance

Feedback 90

7.4 Translation Statistics on the Experimental Queries 91

7.5 Methods of Evaluating Retrieval Effectiveness 92

7.5.1 Recall Cutoff Evaluation 93

7.5.2 Document Cutoff Evaluation Across Rank 94

7.5.3 Significant Test 95

Chapter 8: Experimental Results of the Non-feedback Retrieval 96

8.1 Benchm ark 96

8.2 Presentation and Analysis of Results 97

8.2.1 E xperim en ts: Most rigid set implication rules 97

8.2.2 Experiments^ No-typed Retrieval Strategy

8.2.3 Experiments* No-typed and No-ordered Retrieval

98

Strategy

8.2.4 Experiment_4: No-duplicates allowed Retrieval

99

Strategy 100

8.2.5 E xperim en ts: Average Weight Strategy 101

8.2.6 E xperim en ts: Sum Weight Strategy

8.2.7 Experiments* Counting the Types and Orders of

103

Dependencies 103

8.2.8 Experiments* Transitive Dependency 105

8.2.9: Experiment_9: Retrieval with a set of Synonyms 106

8.3 Conclusion 109

Chapter 9: Nearest Neighbour Relevance Feedback Experiments 112

9.1 Introduction 112

9.2 Cluster-based Retrieval 114

9.3 Definition and Determination of Nearest Neighbours 118

9.4 Updating the Scores 123

9.5 Evaluating Imaging Retrieval 126

9.6 Experimental Results 126

9.6.1 Benchmark 127

9.6.2 Experiment_A: Using Closest Nearest Neighbours 127

9.6.3 E x p erim en ts: Using Ten Nearest Neighbours 132

9.6.4 Experiment_C: Cutoff Point Experiments 134

9.6.5 Experiment_D: Multi-stage Imaging Retrieval 137

9.6.5.1 Method of Evaluating Multi-stage Imaging

Retrieval 138

9.6.5.2 Results of Multi-stage Imaging Retrieval

Experiment 139

9.7 Conclusion 143

Chapter 10: Conclusions 145

IV. References

V. Appendix_A: The SUNG Implementation Rules

VI. Appendix_B: Grouping of the Grammar rules

149

156

159

Abbreviations

AI - Artificial Intelligence

DRS - Document Retrieval System

IR - Information Retrieval

NLP - Natural Language Processing

NLU - Natural Language Understanding

PTQ - Proper Treatment of Quantification in English

Fragment

SILOL - Simple Logical-Linguistic Document Retrieval System

SMG - Simplified Montague Grammar

SUNG - Simple Unification Noun-Phrase Grammar

TMS - Theory of Montague Semantics

UNIL - Uncertain Implication Language

Acknowledgement

There are many people that I would like to thank and convey my

gratefulness. Foremost is my first supervisor, Prof. C.J. van Rijsbergen,

who provided me, over the years, with the ideas and supply of the

relevan t m aterial to this work. I am grateful to Dr. Fairouz

Kamareddine, my second supervisor, especially for her supervision

and comments in the writing phase of this thesis. My thanks also go to

Dr. Ruben Leon and Ian Campbell, for their help in the system related

problems and C. I also like to thank my colleagues Roslan, Riaz, Saeed,

Hakim, Djamal, Khaled, Francis and others for m any happy and

unforgettable moments that we all shared together as students in this

department. Special thanks go to my colleague Shona Douglas for the

reading and comments on parts of the thesis.

Last but not the least, I would like to thank my wife Nora and my

daughters, Madeehah and Qanitah, for their patience and support over

the years we spent in Glasgow.

Financial support and study leave were provided by the Public

Service D epartm ent of Malaysia and the N ational U niversity of

Malaysia, which are highly appreciated and gratefully acknowledged.

Summary

Conventional docum ent retrieval systems have relied on the

extensive use of the keyword approach with statistical parameters in

their im plem entations. Now, it seems that such an approach has

reached its upper limit of retrieval effectiveness, and therefore, new

approaches should be investigated for the developm ent of future

systems. With current advances in hardware, programming languages

and techniques, natural language processing and understanding, and

generally, in the field of artificial intelligence, there are now attempts

being made to include linguistic processing into document retrieval

systems. Few attempts have been made to include parsing or syntactic

analysis into docum ent retrieval systems, and the results reported

show some improvements in the level of retrieval effectiveness.

The first part of this thesis sets out to investigate further the use of

linguistic processing by including translation, instead of only parsing,

in to a docum ent re trieva l system . The tran sla tion process

implemented is based on unification categorial grammar and uses

C-Prolog as the building tool. It is used as the main part of the indexing

process of documents and queries into a knowledge base predicate

representation. Instead of using the vector space model to represent

documents and queries, we have used a kind of knowledge base model

which we call logical-linguistic model. A developm ent of a robust

parser-translator to perform the translation is discussed in detail in the

thesis. A method of dealing with ambiguity is also incorporated in the

parser-translator implementation.

The retrieval process of this model is based on a logical implication

process implemented in C-Prolog. In order to handle uncertainty in

evaluating similarity values between documents and queries, meta

level constructs are built upon the C-Prolog system. A logical meta

language, called UNIL (UNcertain Implication Language), is proposed

for controlling the implication process. Using UNIL, one can write a set

of implication rules and thesaurus to define the matching function of a

particu lar retrieval strategy. Thus, we have dem onstrated and

im plem ented the m atching operation between a docum ent and a

query as an in ference using u n i f ic a t io n . An inference from a

docum ent to a query is done in the context of global information

represented by the implication rules and the thesaurus.

A set of well structured experiments is perform ed w ith various

retrieval strategies on a test collection of documents and queries in

order to evaluate the performance of the system. The results obtained

are analysed and discussed.

The second part of the thesis sets out to implement and evaluate the

imaging retrieval strategy as originally defined by van Rijsbergen. The

imaging retrieval is implemented as a relevance feedback retrieval

w ith nearest neighbour information which is defined as follows. One

of the best retrieval strategies from the earlier experiments is chosen to

perform the initial ranking of the documents, and a few top ranked

documents will be retrieved and identified as relevant or not by the

user. From this set of retrieved and relevant documents, we can obtain

all other unretrieved documents which have any of the retrieved and

relevant documents as their nearest neighbour. These unretrieved

documents have the potential of also being relevant since they are

'close' to the retrieved and relevant ones, and thus their initial

sim ilarity values to the query will be updated according to their

distances from their nearest neighbours. From the updated similarity

values, a new ranking of documents can be obtained and evaluated.

A few sets of experiments using imaging retrieval strategy are

perform ed for the following objectives: to search for an appropriate

updating function in order to produce a new ranking of documents, to

determ ine an appropria te nearest neighbour set, to find the

relationship of the retrieval effectiveness to the size of the documents

shown to the user for relevance judgem ent, and lastly, to find the

effectiveness of a multi-stage imaging retrieval. The results obtained

are analysed and discussed.

Generally, the thesis sets out to define the logical-linguistic model in

document retrieval and demonstrates it by building an experimental

system which will be referred to as SILOL (a Simple Logical-linguistic

docum ent retrieval system). A set of retrieval strategies will be

experim ented w ith and the results obtained will be analysed and

discussed.

Chapter 1: Introduction

1.1 Information Retrieval

Information Retrieval (IR) can be defined broadly as the study of

how to determine and retrieve from a corpus of stored information

the portions which are responsive to particular information needs. Let

us assume that there is a store consisting of a large collection of

inform ation on some particular topic, or a combination of various

topics. The information may be stored in a highly structured form or in

an unstructured form, depending upon its application. A user of the

store, at times, seeks certain information which he may not know. He

therefore has to express his inform ation need as a request for

information in one form or another. Thus IR is concerned with the

determining and retrieving of information that is relevant or likely to

be relevant to his information need as expressed by his request. Some

recent research in IR has dem onstrated a w ide range of topics

encom passed by this definition, e.g. docum ent retrieval systems,

database management systems, office automation, question-answering

systems, expert systems, etc. [Cooper 84].

In w hat follows, we shall explain one class of IR systems, i.e

document retrieval systems, which is the main focus of this thesis.

Then we will discuss the state-of-the-art in document retrieval systems,

and explain the aims and the approach that we are going to take.

1.2 Document Retrieval Systems

i
Document retrieval systems constitute one class of IR systems and

l

are considered by some researchers as the main focus of interest in IR

[BCS 87]. Research in this area is concerned with the investigation of

techniques to effectively retrieve more relevant material, and the use

of software or hardw are techniques to efficiently im plem ent the

retrieval operations.

I Feedback

Queries

Processor

Documents

Output

Input

Figure_l. 1: A Typical Document Retrieval System

A typical docum ent retrieval system can be illustrated by the

diagram in Figure_l.l as a system constituting of inpu t, processor and

o u tp u t [van Rijsbergen 79]. The main input to the system are queries

and documents which are originally in the form of natural language

which are not suitable for computers. Therefore, the main problem

here is to find a suitable representation of each document and query for

com puter use. The representation could be based upon a list of

keyw ords, or extracted words which are considered to be important,

and an artificial language in which the queries and documents can be

formulated. During a search session, it is possible for a user to input a

feed b ack to the system after a sample or initial retrieval in order to

2

improve the subsequent retrieval. The feedback can be in the form of

upda ting or revising the request or identification of relevant

documents from the output of the initial retrieval.

The processor is the com ponent which is concerned w ith the

retrieval process which perform s the actual retrieval function in

response to a query. The retrieval process may also involve structuring

of the documents in some appropriate way, such as classifying and

clustering them in order to improve the retrieval effectiveness.

The output of the system is usually in the form of a set of citations

or document numbers. As far as an operational system is concerned,

this is the end product of the system. But in an experimental system,

the output is evaluated in order to assess the performance of the

system.

Figure_1.2 illustrates a general structure of a document retrieval

system in more details [Harper 80]. The necessary processes of the

system are query formulation, query indexing, document indexing,

storage, and retrieval. Associated with each process is a processor and

the object generated from it. For example, the query form ulation

process is associated with a processor, the user, which generates a query

out of an information need. The query indexer and the document

indexer are two im portant processors of the system, in which the

content analyses of the query and the documents are performed to

generate their reduced representations. The storage processor organises

the whole document representations and stores them in the system.

The retrieval processor performs similarity calculations between the

query representation and the stored document representations in order

to retrieve the relevant documents which fulfill the user's information

3

need.

In the following section, we will describe the state-of-the-art of

document representation and retrieval strategy.

#

4

Information
. need ^

USER

QUERY

INDEXER

QUERY
REPRESEN'
TATION

RETRIEVAL
PROCESSOR

STORED
DOCUMENTS

.REPRESENTATIONS

STORAGE

DOCUMENT
INDEXER

DOCUMENT

O
ZM

>H X
ps wW Q
Z Z O w

CJZ z< M> to W CO m ca os o h o
W PS
PS Oi

to
Eh C3
Z Z pa m 2 X
d pa O Q
O Z
Q M

Figure_1.2: A General Structure of a Document Retrieval System

5

P
R

O
C

E
SS

E
S

1.3 State-of-the-art

Since natural languages are not suitable for computer use, models

have been constructed w ithin which docum ents and queries are

represented and retrieval strategies formulated to retrieve documents

which are relevant with respect to a query. In this section we will

describe some models which are commonly used in conventional

document retrieval systems.

1.3.1 Conventional Models

In conventional docum ent retrieval system s, docum ents are

represented by sets of keywords, or index terms of the form

Dj = (ti1,Wi1; tj2 ,Wi2; . . . ; tin ,w in)

where wij represents the value or weight of term t̂ j which is assigned

to document Di. In ordinary retrieval environments which are based

on the set theoretic model, the terms are unw eighted. Thus, the

values of the wjj are restricted to either 0 or 1 for terms that are

respectively absent from, or present in, a given document. The requests

are expressed as Boolean combinations of index terms using logical

o p e ra to r s and, or, and n o t . For example, a query Qj m ight be

expressed as

Qj = ((tj. and tj2) or tj3).

In response to the query given above, all documents indexed either

6

by the combination of tj^ and or by tjg would be retrieved.

The systems which are based on this model exhibit several well

known disadvantages, for examples [Salton&Buckley 88]:

1) the generation of Boolean queries is a complex task and,

therefore, trained search intermediaries are needed;

2) the ranking of the documents retrieved, in decreasing order

of relevance with respect to a particular query, cannot be

provided;

3) there is no obvious way of limiting the number of documents

retrieved;

4) term importance cannot be assigned to search terms since

there is no weighting scheme.

The vector space model offers a solution to the shortcomings

m entioned above. In this model, both documents and queries are

expressed as a set of weighted index terms, and Boolean operators are

not used in formulating the queries. In a vector space system using n

different index terms {ti,t2, . . . ,tn}, a document Dj and a query Q can be

expressed as n-dimensional vectors of the form

Di = (du,di2, • • • /din) and Q = (q i ^ • • • /qn>

where dij and qj represent the weights of term j in document Df and

query Q, respectively. The basic weights for the terms throughout the

docum ent collection are norm ally calculated using statistical

techniques. For example, using the inverse document frequencyiidf)

7

weighting scheme, the basic weight for term tj is calculated as

wj = - log (Freq(tj) / N)

w here Freq(tj) is the num ber of documents in which the term tj

appears at least once and N is the total number of documents in the

system. Then, the weights of term tj assigned to the vectors Dj or Q are

the values of some functions of wj which may include the frequency of

the term tj occuring in Dj or Q. The terms that are absent from the

respective vectors are given zero weights.

There are many ways of computing similarity coefficients between a

given query and each stored document. For example, one can use the

well-known inner-product function or the cosine similarity function as

follows:

Inner Product Function:

sim(Di,Q) = S j=l n (q j. dy)

Cosine Function:

sim(Di,Q) = (£j=l n d i j . q j) / ^ ^ dy2 . V2j=j n qj2)

W ith the availability of sim ilarity coefficients, the documents

retrieved can be ranked in decreasing order of the similarity values.

The num ber of documents to be retrieved can also be lim ited by

imposing a threshold value on the similarity coefficients that m ust be

achieved by documents which are to be retrieved. Nevertheless, vector

space systems suffer from one main disadvantage. The sy n o n y m

specifications, reflected by or-clauses, and phrases, represented by and-

clauses, cannot be expressed in vector space representation. These two

concepts are considered very useful in enhancing the effectiveness of

retrieving relevant documents. Because, some words are highly specific

and thus identify a narrow range of concepts, whereas some are very

general and thus are associated with a broad range of concepts. A highly

specific word will retrieve too few documents, and on the other hand, a

very general word will retrieve too many documents. In order to avoid

the problems posed by words having too high or too low specificity, it

is often suggested that thesaurus and phrases be used in indexing.

Thus, to tackle part of the problem, the simple vector space model have

been refined to have more than one vector to represent a query or

document [Fox 83]. Each of the vectors may represent different kind of

information. The use of extended vectors for phrase indexing has been

implemented by Fagan in [Fagan 87].

There are other models besides the two main ones discussed above,

such as the fuzzy set theoretic [Radeckf 77], the extended boolean

[Salton 88] and the probabilistic [Harper 80] models. They are either

variants of the two main models or closely related to them, at least, as

far as document and query representations are concerned.

1.3.2 Keywords vs Meaning

Until now, almost all of the work in information retrieval (IR) has

been based on the assumption that a formal notion of meaning is not

requ ired to solve IR problem s. The keyw ords approach as

demonstrated by the set theoretic model and the vector space model,

where absence or presence of keywords and their distributions are the

only information being considered, has been typically assumed by

many researchers to be sufficient. However, some have concluded that

this assum ption is wrong [van Rijsbergen 86]. The Keywords

approach with its statistical techniques is judged to have reached its

theoretical limit and further attempts for improvement are considered

9

a waste of time.

On the other hand, progress towards new models which incorporate

the notion of meaning has been very slow. It has been suggested that

some attem pt should be made to develop a naive model which uses

more than just keywords as the content indicator of each document in

the system. Thus, one of the objectives set out in this thesis is to

investigate, to im plem ent, and to evaluate a docum ent retrieval

system using a new model which is based on a logical-linguistic

framework. In this model the indexing of documents and queries is

achieved through semantic translation of natural language into a

predicate representation. Its retrieval process is perform ed through

logical implication using Prolog matching and unification primitives

coupled with meta level constructs to handle uncertainty in evaluating

similarity values between documents and queries.

In w hat follows, we will introduce the notion of logical-linguistic

model and then we shall discuss our approach.

1.4 Logical-linguistic Model

A logical-linguistic model of document retrieval systems, in our

view, must have both logical and linguistic capabilities as defined by

Cooper [Cooper 78]. The term logical is used generally to include

deductive and inductive inference, probability theory and statistical

decision theory, whilst, linguistic is used to include syntax, semantics

and pragmatics of language.

The need for linguistic capability is obvious in document retrieval

systems where documents are in the form of natural language texts and

10

queries are form ulated using natural language. Through linguistic

processing a limited representation of the meaning of documents and

queries can be obtained.

The logical capability is necessary because the facts expressed directly

by stored docum ents are too particularised in expression to be

responsive to a w ide variety of requests, whereas, their logical

consequences may be sufficient to satisfy a range of related requests.

Ideally, the logical and linguistic components of a logical-

linguistic document retrieval system should be based upon a common

unified theory of logic and language. A Montague-style semantics

[Dowty et al 81] could be an appropriate choice in this type of work.

A nother possible choice can be the logical representation used in

Metamorphosis Grammar as proposed by Colmerauer [Colmerauer 78]

and extended by Warren [Warren 82] and Saint-Dizier [Saint-Dizier 86].

Both representations have not yet been chosen as a basis for an IR

system. The current state-of-the-art in IR is yet far away from this ideal.

Even if we had an appropriate semantics which could be computed

efficiently, we still w ould not know how to use it to retrieve

documents in response to requests [van Rijsbergen 86].

Thus, our aim is to investigate, implement and evaluate a simple

system which is based on this model. The proposed system will be

referred to as SILOL (Simple LOgical-Linguistic document retrieval

system). In w hat follows, we will describe the approach taken in

implementing SILOL.

11

1.5 An Approach

The approach generally adopted in implem enting SILOL is that

proposed in [van Rijsbergen 86], where a document is viewed as a set of

sentences which is partially translated into a semantic representation,

and like-wise, a query or request is viewed as sentences or noun

phrases and similarly translated.

The retrieval strategy is to find the relationship or the similarity

between the semantics of the stored documents and the semantics of a

request. This process is carried out by a sort of uncertain logical

i m p l i c a t i o n , th ro u g h a m atch ing and un ifica tion process

implemented in a Prolog system. There should always be a measure of

uncertainty associated with such an implication since documents rarely

strictly imply request. The relationships between the documents and

the request are then ranked according to their similarity coefficients,

and the ones with top scores are retrieved and presented to the users.

This approach is similar to the one adopted in DBMS's and

question-answering systems in the sense that the answer is obtained

through a process of logical satisfaction. But it is different in the sense

that a request in IR systems is a closed sentence contain ing no

variables, and the answer is derived from the relationships between

the documents and the request. Whereas in DBMS's, a request is an

open sentence which contains variables and the answ er is an

instantiation of those variables based on the semantics of the data

stored.

12

Chapter 2: Linguistic Processing in Document Retrieval Systems

2.1 Introduction

W ith the advancement made in the field of Artificial Intelligence

(AI), attempts have been made to use some of the AI techniques in IR

w ork [Salton 86]. N atural language processing (NLP), or linguistic

processing, is one of the areas which are under active investigation

currently for the purposes of content analysis. The idea of using

linguistic m ethods in IR is not new. In 1959, Zellig H arris had

suggested the application of syntactic analysis to content analysis in

inform ation retrieval. However, up to the present date, very little

research has been done in this area to be able to give a s tr o n g

conclusion with respect to the value of using linguistic methods in IR

[Fagan 87]. Furthermore, most of the work that had been carried out is

on the syntactic analysis rather than on the semantic side. Some

researchers have po in ted out that syntactic analysis w ithout

correspondingly sophisticated sem antic inform ation m ay not be

sufficient to provide significant im provem ent in content analysis

[Walker 81]. But, the progress towards achieving this goal seems to be

very slow. It may be due to the complexity of natural language

understanding coupled with the problem of not knowing how to apply

it to document retrieval systems.

In this chapter, we will discuss the problem faced w ith content

analysis and representation, applications of NLP in document retrieval

systems, and finally, introduce the application of translation in a

document retrieval system.

13

2.2 Content Analysis and Representation

In conventional docum ent retrieval system s, docum ents and

queries are represented by an unstructured collection of simple

descriptors, i.e. the keywords. This representation is not an ideal

document or query content indicator for use in IR systems. Given the

following titles of documents:

(1) N ew c u rr icu lu m and com puter facility for m anagem ent

science students,

(2) The undergraduate curriculum in computer science,

(3) 1989 undergraduate computer science curriculum.

It is easy to see that the three independent terms, c u rr ic u lu m ,

computer and science, characterise all the three titles equally well.

While, the phrase computer science is only applicable to titles (2) and

(3) only. The representation of a document containing the phrase

computer science would be more accurate if the phrase can be derived

or established from the document's representation itself. This would

allow a query containing the same phrase to fully m atch with

documents like (2) and (3), but not with documents like (1). Going a

step further, a good content indicator representation would allow a

query w ith a phrase computer science curriculum to m atch

documents (2) and (3) equally, but not document (1); eventhough, only

docum ent (3) has exactly the same phrase computer science

curriculum. In order to do this the retrieval processor, in one way or

another, m ust be provided with enough information to recognise

phrases. In this particular example, a conventional document retrieval

system w ould w rongly m atch the query containing the phrase

computer science curriculum with all the three documents equally

14

well since the information provided by the keyword representation is

not informative enough.

The example given above illustrates an obvious shortcoming of the

conventional docum ent representation models, such as the vector

space model, used in most automatic document retrieval systems. In

these systems, a document is represented by an unstructured collection

of keywords or terms which are generally assumed to be statistically

independent. The representation does not include any information on

syntactic or semantic relationships among those terms. We feel that

this kind of representations is too simplified to be highly effective.

Thus, the major work carried out in this thesis is generally addressed

towards an improvement in the method of automatic content analysis

and document representation. We hold the view that a more accurate

representation can be constructed if the method of content analysis

takes into account information about the structure of document and

query texts, i.e. the information concerning the syntactic and the

semantic structure of the texts.

In order to achieve a more accurate representation of documents

and queries, the simple keyword representation ought to be replaced by

a knowledge representation. Four of the most im portant knowledge

rep re se n ta tio n form alism s can be sum m arised as follow s

[McCalla&Cercone 83] [Allen 87]:

1. Semantic Networks: A data structure consisting of nodes and

links betw een nodes, represen ting concepts and their

relationships. There is a set of specialised inference procedures

that operate on the data structure. For example, the semantic

network for "Mary likes the horse" is represented as follows:

15

OBJECT
o r s e l

PREDICATE

l ikes

A semantic network representation of 'Mary likes the horse'.

2. Logic: Many of the logical representations used in AI are

variants or subsets of the first-order predicate calculus (FOPC).

Logic was developed as a formal notation to capture the

essential properties of natural language and reasoning. In

FOPC, there are terms which identify objects and propositions

which assert properties of objects and identify relationships

between objects. Most logic-based systems used the resolution

m ethod as inference process. A sentence Mary likes her

mother is expressed in FOPC as the proposition :

LIKES(M ARY,mother(M ARY)).

3. Frame: A frame is simply a cluster of facts and objects that

describe some situation, together with specific inference rules

for reasoning about the situation. The situations represented

could be anything such as visual scenes, structures of physical

objects or methods by which some actions are performed. For

example, a frame for FLIGHT in an airline system can be

represented as follows:

16

FLIGHT:

ID: fl igh t_num ber

Destination: city

Source: city (default Glasgow)

DepartTime: time

ArrTime: time

4. Production Systems: In these systems knowledge is represented

as a set of production rules of the form :

pattern -> action.

A control loop tries each rule in turn, executing the action if

the pattern matches.

The knowledge representation formalism we chose to represent

documents and queries in our work is logic base, which is a subset of

FOPC and will be referred to as predicate representation. Since a Prolog

system has been used as the basis of implementing SILOL, we also use

production rule formalisms in our system for defining retrieval

strategies and the thesaurus.

2.3 Natural Language Processing in Document Retrieval Systems

N atural language processing (NLP) has been defined as the

fo rm u la tio n and investiga tion of com puta tiona lly effective

mechanisms for communication through natural language and it is

divided into two major areas [Smeaton 87] :

1) General NLP : The goal is to make models of hum an language,

and to test these models in story understanding or dialogue

17

m odelling systems. A general NLP system requires a large

am ount of real-world knowledge and, therefore, can only cover

a narrow domain area.

2) Applied NLP : It is simply concerned with providing people with

the facilities to com m unicate w ith m achines in natural

language. It doesn’t matter how it is done so long as it serves the

purpose.

It seems that the using of linguistic processing in document retrieval

work can be classified as applied natural language processing. It doesn't

m atter whether the system understands its natural language input in a

cognitively plausible way or not, as long as it improves the level of

retrieval effectiveness !

It has been generally assumed that the application of linguistic

p rocessing could im prove the level of retrieval effectiveness.

Experiments to test this assumption have been carried out recently by

several people, e.g. [DeFude 84], [Dillon&Gray 83], [Berrut&Palmer 86],

[Croft&Lewis 87], [Fagan 87] and [Smeaton 87]. Our interest lies in the

last two, the work of Fagan and Smeaton, in which the basis of our

retrieval strategies can be found.

Smeaton has incorporated parsing of queries only, into retrieval

strategies using the CACM collection [Fox 83] for his experiments. In

sum m ary, a user’s natural language query is parsed and from the

resulting parse tree dependencies between pairs or triples of words

from the user's input are identified based on the syntactic classes of

word occurrence. The words from the user's query are used to initially

assign a score to each document. These document scores are then

incremented if any of the identified dependencies between words in

the user's query co-occur within the same sentence in the text of the

18

stored documents. The documents are then ranked based on this

incremented score and the top documents are presented to the user.

This retrieval strategy is capable of providing retrieval for the user

requiring documents about some phrase. The grammatical coverage of

the query language is restricted only to noun-phrase constructs. After a

query is parsed, the parser returns a fixed-format predefined tree

structure where the leaf nodes are lists of terminal symbols. A set of

heuristic rules are used to derive word dependencies from these leaf

nodes. The dependencies are restricted to only pairs or triples of word

stem dependencies. For example, the noun-phrase big green apple will

produce the following dependencies: (big green), (big apple), (green

apple) and (big green apple). The results obtained by Smeaton indicate

that significant im provem ents in retrieval effectiveness can be

obtained by incorporating syntactic inform ation into docum ent

retrieval strategy.

Smeaton has only applied the automatic syntactic analysis to queries

and not to document texts. The syntactic analysis should be applied

both to the queries and the documents so that more informative

m atches between them could be achieved. Fagan in his work as

reported in [Fagan 87] has applied automatic syntactic analysis to both

queries and documents. He has used the PLNLP parser [Jensen 86] to

parse both the document texts and the user queries of the CACM

collection. The PLNLP system provides a broad-coverage syntactic

gram m ar, a large general purpose dictionary, and facilities for

manipulating the output of the syntactic analyser. Using these facilities,

the texts are processed into parse trees of noun phrases where the

modifiers and headnouns are combined according to certain rules to

form pairs of words to be used as phrase indexing terms. These terms

are incorporated with single terms to form a vector representation of

documents or queries, and the retrieval strategy based on the vector

19

space model is used. The results obtained by Fagan have indicated a

significant improvem ent in retrieval effectiveness.

2*4 Parsing in Document Retrieval Systems

M ost of the work done in applying NLP in docum ent retrieval

systems is in the application of syntactic processing in content analysis,

m ore specifically the use of syntactic parsing of document and query

texts. Smeaton has classified this application into two principle areas.

Firstly, using parsing as part of docum ent indexing process, and

secondly, using parsing as part of retrieval process. He has summarised

in [Smeaton 87] some important work in these areas.

2.4.1 Parsing as Part of Document Indexing Process

Dillon and Gray [Dillon&Gray 83] and Fagan [Fagan 87] have used

syntactic parsing in perform ing fully autom atic docum ent indexing

process. In the work of Dillon and Gray, the indexing process is carried

ou t by assigning syntactic categories to all w ords in an inpu t text,

ex tracting content-bearing term s and phrases by searching for

p redefined syntactic patterns, and finally grouping synonym ous

concepts together.

Fagan has used an existing natural language processing system

PLNLP to parse document texts into parse trees of noun phrases. Ff om

these parse trees, words are combined based on the idea of constructing

phrase descriptors that consist of the head of a noun phrase construct

together with the head of its modifier. For exam ples, the phrase

curriculum in computer science produces the follow ing phrase

w

descriptors: science curriculum and computer science.

2.4.2 Parsing as Part of Retrieval Process

There are quite a number of systems that used parsing as a part of

the retrieval process [Smeaton 87]. In IRES Document Retrieval System

[DeFude 85], user is provided with natural language interface, and his

query is parsed to recognise the im portant concepts and logical

relationship between those concepts. In order to turn those concepts

and relationships into a query representation, they are checked against

the thesaurus which has been generated automatically using statistical

and syntactic methods as described in [DeFude 84].

In the work by Smeaton, a user's query is parsed into parse trees

which are used to generate dependencies between terms of the query

using a set of heuristic rules. These syntactically identified

dependencies are then used as an aid to statistically-based retrieval by

searching for the co-occurrences of dependent terms w ithin the

document texts. The statistically-based retrieval performs a tf x idf (i.e.

term frequency x inverse docum ent frequency) ranking on the

documents, and the top 50 documents from this ranking are reranked

based on the identified dependencies.

In the work of Fagan [Fagan 87], a user's query is parsed, as

documents are parsed, into parsed trees. From these parsed trees single

term descriptors and phrase descriptors are derived to form the query

represen tation or index. The phrase descriptors are form ed by

combining words based on head-modifier relationships. Since the

system is based on the extended vector space model, thus a document

or a query index is constructed of two subvectors. One contains single

21

term descriptors, and another contains phrase descriptors. In order to

calculate the similarity between a query vector and a document vector,

a partial similarity is calculated for each subvector, and the overall

sim ilarity is then calculated as a weighted sum of the two partial

similarities. The similarities are calculated using a normalised tf x idf

weighting. The weight of a phrase descriptors is calculated by taking the

average weight of the terms involved in forming the phrase.

2.5 Translation in Document Retrieval System

Several other possibilities might be considered in im proving

further automatic indexing methods using linguistic processing. These

can range from complex semantic analysis based on the knowledge

gathered on particular domain, to simple syntactic analysis as discussed

above. Both Smeaton and Fagan have used only syntactic analysis

coupled w ith some heuristic rules to enhance representation of

documents an d /o r queries with phrases as part of the indexes. It has

been argued that in order to implement semantic analysis of texts, as in

Question-Answering Systems, we need detailed semantic knowledge

on a particular domain. We agree with that, but the lack of detailed

knowledge about the domain must not stop us from using some of the

techniques used in semantic analysis for document retrieval problems.

Some semantic techniques may not require the knowledge of domain

at all. An example is the technique of translating natural language to

sem antic representation as used in M ontague's PTQ1 or Jowsey's

Simplified M ontague Grammar(SMG) which can be used w ithout

detailed knowledge of the domain. These two grammars have their

1 p t q is an abbrev ia tion for "The P roper T re a tm en t of Q uantification in Ordinary

English", which rep rese n ts Montague's efforts to apply the techn iques developed within

m athem atical logic to the sem antics of natural languages.

22

own semantics of representing the m eanings of natural language

expressions. The first is based on a high order intensional logic and the

second is based on a sorted first order logic. These semantics can only be

applied to document retrieval system if we know how to use them to

retrieve documents in response to requests. That is the main problem

we are facing today in trying to use an established grammar and its

semantics in a document retrieval system.

Hence, in this thesis, we will apply a semantic translation process in

SILOL by adopting an established grammar as a basis of translation

technique and altering or simplifying its semantic representation to

suit our purpose. The grammar chosen is Jowsey's SMG. SMG is a type

of categorial grammar which uses the unification process in the parsing

and translation. We have chosen this grammar because of three main

reasons, namely:

1) In SMG, the semantic translation is based on the principle of

compositionality, i.e. the translation of a constituent is built up

by using the translations of its subconstituents [Allen 87]. Thus

the semantic representation produced from the interpretation

is structurally similar to the syntactic representation. The

concept of com positionality is suitable for im plem enting

partial translation where there are many unknown words and

uncovered grammar constructs.

2) Since SMG parsing and translation is based on unification

process, therefore, it can be implemented nicely using Prolog.

Hence, we can built the whole SILOL system using Prolog,

since the information representation and retrieval process are

all based on logic.

23

3) More importantly, we have chosen this grammar in our work

because it will be a first step towards the understanding of how

to use a Montague-style grammar and semantics in the work of

docum ent retrieval. Montague-style semantics is a rich and

pow erfu l sem antics w hich includes the no tions of

intensionality, modality, tenses and quantification. Thus, this

type of grammars has lately become quite appealing to some

researchers in the field of IR [van Rijsbergen 86][Frost 88].

With regards to the semantic representation, the document or query

is translated into a set of first order predicates , in the form of one-place

and multi-place predicates, which is used as its content indicator or

index. One-place predicates are equivalent to single term descriptors in

conventional system, and syntactic term dependencies can be derived

from m ulti-place predicates. Thus, the sim plest form of retrieval

strategy can be based on the approach taken by Fagan and Smeaton.

24

Chapter 3: Montague Semantics

3.1 Introduction

Since we have chosen Jowsey's SMG as the basis of semantic

translation technique in our work, in this chapter we will give an

overview of it in order to illustrate how the translation process is

carried out.

SMG is a simplified version of Montague's PTQ in a first order

form. The translation technique adopted in these grammars is based on

the principle of compositionality. Eventhough, it is a controversial

subject in com putational linguistic, it has the advantage that it

simplifies the semantic translation process [Lewis et al 89]. The

principle of compositionality has made partial translation of texts

easier, and helps in building a robust parser.

We have pointed out that, ideally, the logical and linguistic

components of a logical-linguistic document retrieval system should be

based upon a common unified theory of logic and language. Thus, any

Montague-style semantics can be considered as one of the candidates.

But, for a preliminary investigation into this area of applied NLP, we

will be contented with a very simple semantic theory which can be

implemented quite easily and shows the potential for improving the

level of retrieval effectiveness. Since we do not yet know how to use

the notions of intensionality, modality, tenses and quantification in

retrieving relevant documents with respect to a query, we have made

some alterations and simplifications in the semantic representation of

documents and queries to exclude the above notions. Nevertheless, we

believe that these notions are important and should be exploited and

25

used in the document retrieval systems of the future. Especially in legal

document retrieval systems, where the law regarding crimes already

committed and the intentions of committing crimes are different and

also when the 'world' or circumstances in which crimes are committed

is important. But it will take sometimes for this ideal to materialise.

3.2 Montague's PTQ

PTQ is an abbreviation for "The Proper Treatment of Quantification

in Ordinary English", which represents Montague's efforts to apply the

techniques developed within mathematical logic to the semantics of

natural languages. PTQ is used to derive the truth-conditional model-

theoretic semantic interpretation for a fragm ent of the English

language. The gram m ar does not give a direct m odel-theoretic

interpretation of English. But instead, each English expression is first

translated into an expression of Montague's intensional logic IL. The

interpretation in IL serves indirectly as the interpretation of the

English fragment.

3.2.1 Introduction to Montague's Intensional Logic (IL)

This section includes a brief discussion of some basic notions

underlying IL and how an English expression is translated into an IL

expression. More elaborate and comprehensive accounts of it can be

found in [Dowty et al 81] and [Frost 86].

Montague's Intensional Logic (IL) is a formal system that employs a

type hierarchy, h igher-order quantification (i.e. variables and

quantifiers for each type), lambda-abstraction for all types, tenses,

26

m odal operators, intension and extension operators, and a model

theory which is based on co-ordinate semantics. The view of the

universe as regarded by IL consists of two truth values (True and False),

a set of entities E, a set of possible worlds W, a set of time points T, and

a function space constructed from the basic t^pes.
j

M ontague follows a rigorous formalised procedure in translating

expressions from English into IL. The basic components of the

translation procedure are as follows:

1) The natural language expression is analysed using a set of

syntactic rules. A syntactic rule contains inform ation

specifying how a complex expression of a given syntactic

category can be constructed from simpler components of given

syntactic categories. The output from this analysis is one or

more parse trees.

2) Every syntactic rule has a translation rule associated with it. A

translation rule specifies the translation of the output from a

syntactic rule in terms of its inputs. Thus, the translation rules

specify how to translate the syntax trees, produced in (1), to

expressions in IL. In order to avoid the problem of ambiguity,

M ontague has imposed that each English w ord or basic

expression is translated into only one IL expression.

The above translation procedure has ensured that the translation

obeys the principle of compositionality, i.e. the translation of the whole

English expression is determined by the translation of its parts and the

syntactic rules used in forming it. In the following section, we will

discuss in more details the translation process based on the PTQ

approach carried out in Jowsey's SMG.

27

3.3 Jowsey’s SMG

Jowsey in [Jowsey 87] has used a simplified version of Montague

Grammar (SMG) as a front end to a general reasoning system. Instead

of using a higher-order logic in translation, a five-sorted extensional

first order logic is chosen and a standard theorem proving technique

such as resolution is used.

3.3.1 The Theory of Montague Semantics: A five sorted extensional first

order logic

In place of M ontague’s higher-order Intensional Logic IL, used in

M ontague's PTQ, Jowsey has used his own Theory of M ontague

Semantics(TMS) in defining the semantics for SMG. TMS is a five

sorted extensional first-order logic which is capable of translating every

sentence of the English fragment in PTQ into a first-order expression.

The five sorts used in TMS are as follows:

1. e - the sort entity.

2. s - the sort time-index which refers to a point in time; the

relation ’<’ denotes temporal anteriority, e.g. I<J, where I

and J are of sort s, denotes that I is earlier than J; the

symbol ! is used to denotes the point in time now.

3. o - the sort proposition; for this sort, a truth predicate true is

defined to relate objects of type o to indices, e.g. true(U,I)

expresses the fact that the proposition U is true at the

index I.

4. p - the sort property; for this sort, a function ’ is defined to

express propositions relating the relationships between

properties and entities, e.g. V’X expresses the proposition

28

that the entity X has the property V.

5. q - the sort q u a n ti ty which is defined as a property of

properties; for this sort, a function " is defined to express

propositions relating the relationships between quantities

and properties, e.g. W"V expresses the proposition that

the property V has the quantity W.

The logical connectives, quantifiers and predicates used in TMS are

as defined below, where a and b are well-formed expressions of TMS:

~ a - it is not the case that a

a & 3 - both a and p

a v P - either a or p or both

a => p - if a then p

a <=> P - a if and only if P

p ii TZ> - a is equivalent to p

all(X:x, a) - for all X of sort x such that a

exists(X:x, a) - there exists at least one X of sort x such

that a

anypredicate(X,Y,.. .,Z,I) - the predicate anypredicate w ith

argum ents X,Y,...,Z of some sorts

and index I.

3.3.2 Syntactic Categories and Types

Following Montague's PTQ, the categories of the English fragment

covered by SMG are given by the set Cat:

Cat = {S, AS, AUX,T,DET, ACN,CN,I V ,T V ,S V ,IV V ,1AV ,T A V}

29

The elements of Cat are symbols representing the following English

categories: sentences(S), sentence adverbs(AS), auxiliary verbs(AUX),

noun phrases(T), determ iners(DET), adjectives(ACN), common

nouns(C N), verb phrases(IV), transitive verbs(TV), sentence

com plem ent verbs(SV), infinitive complement verbs(IVV), adverb

phrases(IAV) and prepositions(TAV).

In order to handle tenses, genders and cases em bedded in English

grammar, three of the categories defined in Cat are given additional

feature specifications. These three categories are noun phrases(T),

common nouns(CN) and verb phrases(IV). The category T is given two

types of feature specifications, Gender and Case. The category CN is

given only Gender feature specification. Gender can take the value of

masculine(masc), feminine(fem) or neuter(neut), and Case can take the

value of subject(subj) or object(obj). These feature specifications can be

used in resolving anaphora references of pronouns such as he, him,

she, her, it, etc. The category IV is given one type of feature

specification, Tense, which may take the value of base, present(pres), or

past. Thus, in a sentence 'A computer talks', the categories assigned to

the components of this sentence is as shown in derivation tree Tree_l.

(Tree_l): Note: the symbols in the parentheses are syntactic categories of the

expressions. Feature specifications may not be shown in later trees.

A computer talks (S)

A computer (T(neut,subj)) talk (IV(pres))

A (DET) computer (CN(neut))

30

The syntactic categories S, CN, and IV are defined as basic syntactic

categories. All other complex categories can be defined in terms of these

basic categories based on the following definition:

1. S, CN and IV are syntactic categories.

2. If A and B are any syntactic categories, then A /B is a syntactic

category.

The ' / ' notation is based on the categorial grammar developed by

Ajdukiewicz [Ajdukiewicz 35]. An expression of category A /B when

combined with an expression of category B gives an expression of

category A. Thus, the notation suggests a kind of algebraic cancellation

as in the division-multiplication operation of (A /B . B = A). This

operation is known as the rule of functional application. Following are

some examples of complex categories defined in terms of the basic

categories: T = S/IV, DET = T/CN, and TV = IV/T.

Every English expression of a particular syntactic category is

translated into a semantic expression of a corresponding type. Types are

defined as follows:

1) e is a type, representing objects of sort entity.

2) t is a type, representing truth values.

3) If a and b ar,e types then <a,b> is a type, representing a class of

functions from objects of type a to objects of type b.

4) If a is a type then <s,a> is a type representing functions from

time indexes to objects of type a.

The correspondence between syntactic categories and semantic types

can be defined using a function type which maps syntactic categories

into semantic types as follows:

31

1. type{S) = <s,t>

2. type{CN) = type(TV) = < e ,< s ,t»

3. For all categories A and B, type{A/B) = <type(B),type(A)>.

For example, the corresponding type for category T is derived as

follows:

type(T) = type(S/lV)

= < type(YV), type(S) > !

= « e ,< s , t » ,< s , t»

3.3.3 Translating Basic English Expressions

Every word, or basic expression, used in the fragment has to be

defined and given a semantic representation. A collection of these basic

expressions will serve as a semantic dictionary or lexicon which

represents a collection of semantic representations of the words used in

the fragment. Each basic expression is translated into a semantic

representation in Prolog list notation, called a tem plate, of an

appropriate type depending on its syntactic category. The template is

written in the form [input I output]. The output part is the actual first

order translation of the expression, whilst, the input part defines the

input variables to the expression. For example, the basic expression

'horse' of a basic category CN is translated into [X,I I horse(X,I)] of type

< e ,< s ,t» , which is equivalent to the intension of a 'horse' in PTQ. If

the expression is not a basic category then the input part also defines

the pattern of the template that the expression can be combined with.

For example, the adjective 'red' of category ACN, which is defined in

terms of the basic categories as CN/CN, is translated into

32

[[Y,J I A],Y,J I red(Y,J) & A]

where the head of its input part, i.e. [Y,J I A], conforms to the pattern of

the CN template that it can be combined with. Thus in the ' / ' notation

the template for 'red' is written as

[Y,J I red(Y,J) & A] / [YJI A]

w here [Y,J I A] is known as its active part. Basic expressions are

combined to form complex expressions through unification processes.

There are several ways of combining expressions, the main one used in

categorial grammar is the rule of functional application which consists

of two steps as follows [Zeevat et al 87]:

1) Instantiating of the active part w ith the tem plate of the

expression to be com bined w ith. For exam ple, in the

combination of the basic expressions 'red' w ith 'horse', the

instantiating process of the two templates can be illustrated as

follows (the components to be instantiated are w ritten in

italics):

[[YJ I A],YJ I red(Y,J) & A]] instantiated with [X,I I horse(XJ)]

becomes

[[XJI horse(XJ)J,X,I I red(X,I) & horse(X,I)]

where Y is unified with X, J with I and A with horse(X,I).

2) Stripping of the active part. In the example above, the template

obtained after the instantiating process is stripped of its

instantiated active part [X,I I horse(XJ)] becomes:

33

[X,I I red(X,I) & horse(X,I)].

This unification process will be discussed further in the following

section.

The SMG translations of some basic expressions into template

representations are given in Table_l.

Word
Category
(its equivalent) Semantic

c o m p u te r CN [X ,l |com puter(X ,l)]

red ACN(CN/CN) [[X, 11A],X, l|red(X, 1) & A]

a DET(T/CN) [[X,l |A],[X,l|B],l |exists(X:e,A & B)]

John T (S/IV) [[j 1 A] | A]

ta lk IV [X, l|ta lk(X, I)]

ca tc h TV(IV/T) [[[Y ,l |ca tch(X ,Y , 1), l,A],X,l|A]

bel ieve SV(IV/S) [[J |A],X,l |exists(U:o, believe(X,U,l) &
all(J:s, true(U,J) <=> A))]

rap id ly lAV(IWIV) [[Y,J |A],X,l |exists(V:p, rapid(X,V,l) &
all(Y:e, all(J:s, true(V'Y,J) <=> A))]

conce ive TV(IV/T) [[[Y ,J | t rue (V 'Y ,J)] ,J |A] ,X ,l |ex is ts (W :q ,
conceive(X,W,l) & all(V:p, all(J:s,
true(W"V,J) <=> A)))]

Table_3.1: Translation of Some Basic English expressions.

3.3.4 Syntactic and Translation Rules

The syntactic and translation rules of SMG are equivalent to the

rules defined in PTQ. Each rule is given its implementation rule in

34

Prolog which is written in the following form:

fn » syntaxi:semanticsi + . . . + syntaxn:semanticsn => syntaxr:semanticsr

[<- predicate(arg1/arg2 / . . . ,argn)]

where:

fn - is the label given to the rule.

» - is the delimeter between the label and the rule.

syntaxpsemanticsj - is the syntactic category and the semantic form of the i*h

component to be combined, to form the resultant expression

syntaxr:semanticsr

+ - is the combination symbol

[. . .] - is a meta symbol containing optional predicate to be invoked when

applying the rule.

Through these implementation rules basic English expressions are

com bined to form complex expressions, and at the same time

translated into TMS expressions using the Prolog unification process.

The implem entation rule for the determiner-noun construct, which

states that a determiner(DET) can be combined w ith a common

noun(CN) to form a noun phrase(T), is written as follows^:

f2 » det:[P IQ] + cn(Gend):P => t(Gend,Case):Q

^ L o w e r c a s e le t te rs a re u se d for syntactic c a te g o r ie s in writing im plem enta tion

rules, b e c a u s e upper c a s e letters are used for variables in Prolog.

35

Instead of using h igher-order beta-reduction w ith lam bda-

expressions as in Montague's PTQ, the translation is implemented by

using first-order tem plate unification process. Unifications are

activated by the im plem entation rules which specify the correct

combinations of two or more categories to form a resultant category.

Through the semantic forms in the rule, semantics*, one can specify

how unification has to be carried out to produce the resultant category.

There follows an example of how the templates of a determiner 'a' and

a common noun 'computer' are unified using the rule of functional

application.

The determiner-noun rule is :

f2 » det:[P IQ] + cn(Gend):P => t(Gend,Case):Q

This rule specifies that the semantic template [PIQ] of the determiner is

to be instantiated with respect to the semantic tem plate P of the

common noun, thus, all the variables with the same names will be

unified. Then the instantiated template [PIQ] is to be stripped of its

active part P to produce the semantic template Q for the resultant

expression.

G iven the tem plates for determ iner 'a' and common noun

'computer' respectively as follows:

[[X,I I A],PCI I B],I I exists(X:e,A&B)]

[Z,J I computer(Z,J)]

and based on the determiner-noun rule, the above two templates are

36

then combined, i.e. instantiated and stripped, as shown below to

produce the resultant template:

The active part of the determ iner 'a' tem plate is to be

in stan tia ted w ith the tem plate of the common noun

’computer’, both are written in italics:

[EKI I AJ,[X,11 B],I I exists(X:e,A & B)]

[Z, J I computer(Z, J)]

The variable X is unified with Z, I w ith J and A with

computer(Z,J) to produce the following instantiated template

of the determiner:

[[Z,J\ computer(Z,J)],[Z,J I B],J I exists(Z:e,computer(Z,J) & B)]

The instantiated template is then stripped of its active part to

become:

[[Z,J I B],J I exists(Z:e,computer(Z,J)) & B]

which is the template for the noun phrase ’a computer’.

Tem plates can also be combined and unified by relativisation

processes [Jowsey 87]. For example, a common noun ’computer'

template [X,I I computer(X,I)] can be relativised with a sentence ’it runs’

template [J I run(Y,J)] to produce a resultant template:

[Y,J I computer(YJ) & run(Y,J)]

where X is unified with Y and I with J.

37

Below are examples, illustrated by derivation trees, of how English

phrases or sentences are translated into TMS expressions:

Exam plejk 'A red computer talks' is translated into

exists(X:e, red(X,!) & computer(X,!) & talk(X,!)).

a red computer talks (S)

[l|exists(X:e, red(X,l) & computer(X,l) & talks(X.I))Y

a red computer (T)
[[X,l|B],l|exists(X:e,red(X,l) & computer(X,l) & B]

ta lk (IV)

[X, I |ta lk(X, I)]

a (DET) red computer (CN)

[[X,l|A],[X,l|B],l|exists(X:e,A & B)] [Xfl|red(X,I) & computer(XJ)]

red (ACN) computer (CN)

[[X,l|A],X,l|red(X,l) & A] [X,l|computer(X,l)]

*The variables I's in the final template are then unified with and then it is

stripped to produce the expression exists(X:e, computer(X,!) & red(X,!) & talk(X,!)).

38

Example_2: 'A computer runs some programs' is translated into

exists(Y:e, computer(Y,!) & exists(X:e, program(X,!) & run(Y,X,!))).

a computer runs some programs (S)
exists(Y:e, computer(YJ) & exists(X:e,program(X,!) & run(Y,X,!)))

a computer (T)

[[Y,l|B],l|exists(Y:e, computer(Y,l) & B)]
runs some programs (IV)

[Y,l|exists(X:e,program(X,l) & run(Y,X,l)

run (TV)
[[[X ,l|run(Y ,X , 1)1,1, A],Y,I|A]

some programs (T)
[[X,l|B],l|exists(X:e, program(X.I) & B)]

some (DET) program (CN)

[[X,l|A],[X,l|B],l|exists(X:e, A & B)] [X,l|program (X,l)]

39

Example_3: 'John believes that a computer talks' is translated into

exists(U:o, believe(j,U,!) & all(J:s, true(U J) <=>

exists(Y:e, computer(YJ) & talk(YJ)))).

John believes that a computer talks (S)

exists(U:o, believe(j,U,l) & all(J:s, true(U,J) <=>
exists(Y:e,computer(Y,J) & talk(Y,J))))

John (T)

[[j I A] | A]

believe that a computer talks (IV)

[X,l|exists(U:o, believe(X,U,l) & all(J:s, true(U,J) <=>
exists(Y:e,computer(Y,J) & talk(Y,J)))]

that a computer talks (S)
] [l|exists(Y:e,computer(Y,l) & talk(Y.I))]

believe (SV)
[[J|A],X,l|exists(U:o, believe(X,U,l) & all(J:s, true(U,J) <=> A))]

Chapter 4: A Semantic Translation for SILOL

4.1 Introduction

A complete translation of unrestricted queries and the whole texts

of documents need a wide coverage of English grammar and lexicon.

This seems to be impractical as far as our work is concerned. Thus we

will adopt a partial translation strategy which is based on a limited

noun phrase gram m ar and lexicon which are built solely for

experimental purposes. The translation of stored documents will only

be done partially based on the limited grammar and lexicon, and the

queries are restricted to noun phrase form. This restriction on the

query should not be very constraining to the user, since the objective of

a natural language query is to describe some thing in which the user is

interested and this can be done using noun phrases. Some evidence

has been gathered to support this view [Waldstein 1981]. However, the

queries are allowed to be more than noun phrases, but it will only be

partially translated based on the limited grammar and lexicon.

A nother point to consider, as far as application to document

retrieval system is concerned, is how accurate or how detailed the

translation should be. We are not dealing with question-answering

system where the translation should be as close as possible to the real

m eaning of the natural language phrases, in order to give an exact

answer to a question. In the case of document retrieval systems we are

only trying to retrieve a set of most relevant documents for a query.

Hence, in one way or another, we are performing a plausible matching

between a given query and the stored documents. Thus, the aim of the

translation in this case is to produce good content indicators or indexes

for documents and queries, and not their exact meaning. This means

41

that a simplified version of any semantic theory chosen may be

adequate for our application, and the extent of simplification may

depend upon the basis of retrieval strategies that are going to be used.

However, as the semantic theory is refined and improved the approach

to retrieval may remain the same.

In this chapter we will discuss the generalised-relationship concept

on which we have based our translation. Based on this concept we

have built a limited categorial unification grammar a la Jowsey's SMG.

The foundation of the grammar and the natural language constructs

implemented will be discussed in the following sections.

4.2 Gener alised-relationship concept

Jowsey's TMS is able to translate the whole fragment of English

given in Montague's PTQ into its first order form, which shows the

richness and power of its features and capability. However, even if we

are able to adopt all its features, we still do not know how to use it for

the purpose of retrieving relevant documents in response to a query.

Hence, to make things simpler to meet our purpose, we have left out

the notion of sorts and tenses. Also we have based our semantic

representation on, what we call, the gener alised-relationship concept.

Which means, the dependencies or relationships between words are

represented explicitly by predicates a, r, vso, sv, ov and p , which

respectively stand for the following relationships: ad jec tiv e-n o u n ,

n o u n -n o u n , verb-subject-object, subject-verb, object-verb and

preposition-nouns. In the case of the preposition-nouns predicate p, we

have broken it down into its individual prepositional predicates, i.e. in,

inside, of, on, for, by, with, w ithin, w ithout, and using. The approach

adopted here is related to the approach taken by case grammar which

42

outlines the range of semantic roles, called cases, that a noun phrase

may play when used along with a verb or adjective [Allen 87]. This

representation is adopted in order to suit the basis of the retrieval

strategies which is based on the dependency approach that will be used

in our system. In this way the retrieval process can be implemented

easily and efficiently.

4.3 Simple Unification Noun-Phrase Grammar (SUNG)

Based on our generalised-relationship concept, we have built a

restricted grammar which will be referred to as a Simple Unification

N oun-Phrase Gram m ar (SUNG). The parser-translator of SUNG is

w ritten in C-Prolog. Although SUNG is defined as a restricted noun

phrase grammar, it includes a simple sentence construct and is capable

of accepting any unrestricted natural language input and performing a

partial translation on it. The syntax of SUNG can be summarised by the

following production rules expressed in BNF notation where the

symbols in [...] are optional:

nounphrase : = [determiner] [modifiers] heads [postmodifier]
heads : = head 1 conjunction heads
head : = commonnouns
modifiers : = modifier modifiers 1 conjunction modifiers
modifier : = adjectives 1 verbs(past particip les)

verbs(present participles) 1 commonnouns
postmodifier : = relativeclauses 1 verbbyphrases
sentence : = subject verb object
subject : = nounphrase
object : = nounphrase

The actual syntax of SUNG is defined by the grammar given in

Appendix_A.

43

4.3.1 Syntactic Categories and Types

The syntactic categories defined in SUNG are given in the set CATs:

CATs = {S, T, DET, ACN, ACN2, CN, IV, TV, TAV}

The elements of CATs are symbols representing the following

English categories: sentences(S), noun phrases(T), determiners (DET),

adjectives(ACN), postmodifiers(ACN2), common nouns(CN), verb

phrases(IV), transitive verbs(TV), and prepositions (TAV).

4.3.2 Translation of Basic English Expressions

Generally, the translation of basic expressions or English words into

semantic templates is based on their syntactic categories as follows:

Categories Template Forms

CN [X1 predicate(X)]

IV [S1 predicate(V) & sv(V,S)]

ACN [[Y1 A],Y 1 predicate(X) & A & a(X,Y)]

TV [[[0 1 predicate(V) & vso(V,S,0)] 1 A],S 1 A]

DET [[X1 A],[X 1B] 1 A appropriate-operator B]

TAV [[[X1 predicate(Y,X)] 1 A],[Y 1 C],Y 1 A & C]

where :
'predicate' is the English word of the basic expression,

'a' stands for the adjective-noun relationship,

'vso' stands for the verb-subject-object relationship,

'sv' stands for the subject-verb relationship,

'appropriate-operator' may be & or =>.

44

Following are some examples of the translations:

W ords Template Forms

com puter [X1 computer(X)]
ru n [X1 run(Y) & sv(Y,X)]

fast [[Y1 A],Y 1 fast(X) & A & a(X,Y)]

punch [[[0 1 punch(V) & vso(V,S,0)] 1 A],S 1 A]
a [[X1 A],[X 1B] 1 A&B]

in [[[X1 in(Y,X)] 1 A],[Y 1 C],Y 1 A & C]

Our experimental lexicon of basic expressions is built based on the

dictionary created and used by Smeaton in his experiments [Smeaton

87] which roughly consists of 600 different words.

4.3.3 Translation of Complex Expressions

The gram m ar rules which carry out the translation of complex

expressions are given in Appendix_A. In this section we will discuss

how the translation of the complex expressions is being carried out in

SILOL based on the SUNG.

4.3.3.1 Adjective-Noun Compounds

Keenan and Haltz [Keenan&Faltz 85] have m ade a distinction

between adjectives that introduce a restriction on the noun and those

that do not. The restrictive and non-restrictive adjectives may be

subcategorised further. For example, restrictive adjectives are

45

sub ca teg o rised in to in tersective and subsectives adjectives.

Semantically, different classes of adjectives should have different

representations. For example, Saint-Dizier [Saint-Dizier 86] translates

intersective and subsective adjectives differently, and so does Jowsey

[Jowsey 87]. Jowsey has translated the phrase red horse, where red is an

intersective adjective, into red(XJ) & horse(X,I). The phrase ta l l

horse, w here tall is a subsective adjective, is translated into the

following complex expression:

ex is ts(X l:e ,ex is ts(V 2:-p ,ta ll(X l,V 2,!)&all(M:s,true(V2 ’X3,I4)<=>horse(X3,I4)))).

But for our application, we generalise the translation of any

adjective into just one form, that is, a gener alised-rela tionship form

represented by a two-place predicate a. For example given a phrase red

horse, its translation will read as X is red and Y is horse and there is a

relationship a between X and Y, and in terms of first order predicate

formulae it is written as: red(X) & horse(Y) & a(X,Y). This translation

is illustrated in derivation tree Tree_4.1.

(Tree_4.1):

red horse (CN)

[Y|red(X> & horse(Y) & a(X,Y)l

red (ACN) horse (CN)

[[Y|A],Y|red(X) & A & a(X,Y)] [Y|horse(Y)]

Likewise, those past participles which act as adjectives are treated

similarly. For example poisoned food is translated into: poison(X) &

food(Y) & a(X,Y). In fact, we have based all our translation on this

46

gener alised-relationship form throughout our work. In this form, the

relationships between words or one-placed predicates are explicitly

expressed by multi-place predicates. For example, the relationship

betw een the above predicates poison(X) and food(Y) is explicitly

expressed by the predicates a(X,Y). Thus, one-placed predicates are

equivalent to single term descriptors, and multi-place predicates are

equivalent to term-dependency pairs or triples. With this form, we can

devise retrieval strategies based on the dependency approach as

perform ed by Smeaton and Fagan more easily and efficiently than

Jowsey's form of 'poison(X) & food(X)'.

4.3.3.2 N oun-noun Compounds

N oun-noun Com pound construct has not been discussed in

Jowsey's work [Jowsey 87], but Dowty [Dowty 79] has given several

translations of them based on the writings of several authors such as

Bradley [Bradley 06], Levi [Levi 75] and Downing [Downing 77].

U sing our generalised-relationship form , the noun-noun

com pound phrase system, analysis is translated into: system(X) &

analysis(Y) & r(X,Y)f as illustrated in the derivation tree Tree_4.2. This

translation is almost similar to that of Bradley.

47

(Tree_4.2):

system analysis (CN)
[Y|system(X) & analysis(Y) & r(X,Y)]

system (CN) analys is (CN)
[X |system (X)] [Y | a n a ly s is(Y)]

4.3.3.3 Postmodifiers

There are many types of postmodifiers commonly used to describe

the head noun in noun phrases. We have considered only a few of

them, and below we describe how they are treated with respect to the

framework of the SMG implementation rules and our application.

4.3.3.3.1 Relative Clauses

There are two types of relative clauses that interest us, they are

such-that and wh relative clauses.

4.3.3.3.1.1 Such-that relative clauses

Rules for handling such-that relative clauses are given in

M ontague's PTQ [Montague 73]. A such-that relative clause is a

restrictive postmodifier of a common noun. It derives a predicate from

the sentence modifier in the given phrase in order to intersect the

noun which it modifies. For example, the phrase a computer such that

it runs is translated by Jowsey, following Montague, into:

exists(X:e, computer(XJ) & run(XJ))

48

as illustrated in derivation tree Tree_4.3.

(Tree_4.3):

a computer such that it runs (T)

[[X,l|B],l|exists(X:e,computer(X,l) & run(X,l) & B)]

a (DET) computer such that it runs (CN)

[[X,l|AJ,[X,l|B],l|exists(X:e,A & B)] [X,l|computer(X,l) & run(X.I)]

it runs (S)

[l | ru n (X , l)]

computer (CN) such that
[X,l|computer(X,l)] []

Using our generalised-relationship approach, the translation of the

p h r a s e a computer such that it runs is computer(X) & run(Y) &

sv(X,Y) as illustrated by derivation tree Tree_4.4.

computer such that

[X ,l|co m p u te r(X , I)]

49

(Tree_4.4):

a computer such that it runs (T)

[[X|B]|computer(X) & run(Y) & sv(X,Y)]

a (DET) computer such that it runs (CN)
[[X|A],[X|B],IfA&B] [X|computer(X) & run(Y) & sv(X,Y)]

computer such that (ST) it runs (S)

[X|computer(X)] [X|run(Y) & sv(X,Y)]

computer (CN) such that
[X|computer(X)J []

Instead of having only one predicate r un(X) to translate the

sentence it runs, we have used a conjunction of two predicates run(Y)

& sv(X,Y). This approach is taken in order to explicitly express the

re la tionsh ip s betw een subjects and verbs. In this way, the

im plem entation of retrieval strategies which are based on the term-

dependency approach will be implemented more efficiently. This

approach is also adopted in translating simple sentences having

subjects, verbs and objects. For example, the sentence computer needs

a brain is translated into computer(X) & need(Y) & brain(Z) &

vso(Y,X,Z), where the predicate vso denotes the relationship between

the verb Y, the subject X and the object Z. Likewise, the relationship

between a verb and its object is represented by a predicate ov. The

predicate ov is only used when the parser-translator fails to find the

subject for a transitive verb.

50

4.3.3.3.1.2 Wh relative clauses

A lthough M ontague's semantic treatm ent of such-that relative

clauses is accepted as adequate, its syntax is not considered to be so

[Rodman 76]. The such-that form of relative clauses is only popularly

used in Mathematical notation and it is not ordinary English usage.

Rodman has given syntactic and semantic rules which are necessary for

the production of non-restrictive relative clauses, known as wh-

clauses. Derivation trees Tree_4.5 and Tree_4.6 illustrate Rodman's

way of parsing the wh-clauses:

(Tree_4.5):

the man who ate a fish

the man who ate a fish

man that wh-he1 ate a fish

man he1 ate a fish

(Tree_4.6):
the fish which a man ate

the fish which a man ate

fish that a man ate

fish that a man ate wh-him1

fish a man ate wh-him1

Looking at derivation trees Tree_4.5 and Tree_4-6, it is easy to see

51

how it works from the bottom up, that is, how to produce a wh-clause

from its components. But to parse a wh-relative clause into its

components is not trivial, because of the introduction of a dummy

pronoun, w h-him l in the above example, at the appropriate place

somewhere in the middle of the clause. So, his treatment is difficult to

implement using the SMG implementation rule.

We introduce our own treatment of wh-relative clauses which can

be implemented simply by defining a set of new rules. To illustrate our

treatm ent, consider the same sentence as in Rodman's examples the

man who ate a fish, this same sentence can be equally derived as

shown in derivation tree Tree_4.7 below:

(Tree_4.7):

the man who ate a fish (T)

[[X|B]|man(X) & eat(Z) & vso(Z,X,Y) & fish(Y) & B]

Now, consider the following sentence the fish which the man ate.

This sentence can be derived as shown in the following derivation tree

Tree 4.8:

the (DET) man who ate a fish (CN)
[[X|A],[X|B]|A & B] [X|man(X) & eat(Z) & vso(Z,X,Y) & fish(Y)]

man who (WH) ate a fish (IV)
[X|man(X)] [X|eat(Z) & vso(Z,X,Y) & fish(Y)]

man (CN) who

[X|man(X)] []

52

(Tree_4.8):

the fish which a man ate (T)
[[Y|B]|fish(Y) & man(X) & eat(Z) & vso(Z,X,Y) & B]

the (DET) fish which a man ate (CN)
[[Y|A],[Y|B]|A & B] [Y|fish(Y) & man(X) & eat(Z) & vso(Z,X,Y)]

fish which (WH) a man ate (ACN2)
[Y |fish(Y)] [[Y|D],Y|D & man(X) & eat(Z) & vso(Z,X,Y)]

a man (T)
[[X|B]|man(X) & B]

fish
[Y |f is h (Y)]

which
[]

ate (TV)
[[[Y|eat(Z) &v vso(Z,X,Y)]|A],X|A]

In both cases, the derivations do not involve introduction of a

dum my pronoun wh-he. Thus, this treatment of wh-clauses is more

suitable to the framework of the SMG implementation rule. One of the

new categories introduced is ACN2 which represents postmodifiers. A

similar method is used in [Thomason 76] in handling the preposition

of. In handling the preposition by, which will be discussed in the

following section, the same category ACN2 will be used.

4.3.3.3.2 Verb-by Phrase Postmodifier

A verb combined with a preposition by can form a verb phrase

postm odifier which can be categorised under ACN2. Consider the

sentence a system designed by a computer. This sentence can be

derived as shown in derivation tree Tree_4.9:

53

(Tree_4.9):

a system designed by a computer (T)
[[Y|B]|system(Y)&computer(X)&design(Z)&vso(Z,X,Y)&B]

a JDJETj ^ ^ system designed by a computer (CN)_
A c[[Y|A],[Y|B]|A&B] [Y| system (Y)&computer(Xj&design(Z)&vso(Z,X,Y)]

system (CN)
[Y|system(Y)]

designed by a computer (ACN2)
[[Y|C],Y|C&computer(X)&design(Z)&vso(Z,X,Y)]

[[[Y|design(Z)&vso(Z^X?^|A]I?|A)] [[IB] fj^ l JJ hY | Ĉ c o mputer(X)&B]

by (ACN2/TV/T) a computer (T)
[[[X|B]|A],[[[Y|B][A],X|A],[Y|C], Y|C&A] [[X|B]|computer(X)&B]

4.3.3.4 Conjunctions

Even in a restricted noun phrase grammar, conjunctions are found

to be very complicated. Grammatically, conjunctions can occur almost

anywhere, either within an individual noun phrase or between noun

phrases. The way we handle conjunctions is by using the equivalence

predicate '=' as illustrated by the examples below.

1. Common noun conjunctions.

Phrases Translations

'computer and man'

'computer or man'

[ZI (computer(X) & =(Z,X)) & (man(Y) &

=(Z,Y))]

[ZI (computer(X) & =(Z,X)) v (man(Y) &

=(Z,Y))]

54

2. Term conjunctions.

Phrases Translations

'a computer or a man* [[ZIC] I (computer(X) & =(Z,X)) v

(man(Y) & =(Z,Y)) & C]

'a computer and a man' [[ZIC] I (computer(X) & =(Z,X)) &

(man(Y) & =(Z,Y)) & C]

3. Modifier conjunctions.

Phrases Translations

'sequential and fast' [[WI C],W I ((sequential(X) & =(Z,X)) &

(fast(Y) & =(Z,Y))) & a(Z,W) & C]

'sequential or fast' [[WI C],W I ((sequential(X) & =(Z,X)) v

(fast(Y) & =(Z,Y))) & a(Z,W) & C]

4.3.3.5 Prepositions

I
Generally, prepositions used between noun phrases are classified

under category ACN 2/T. For example, the phrase system for

computers is translated as shown in the following derivation tree

Tree 4.10:

55

(Tree_4.10):

system for computers (CN)
[Y|system(Y) & computer(X) & for(Y,X)]

system (CN) for computers (ACN2)
[Y|system(Y)] [[Y|C],Y|computer(X) & C & for(Y,X)]

fo r (ACN2/ T) computers (T)*
[[[X|for(Y,X)]|A],[Y|C],Y|A &C] H /vxodi

[[X|B]|computer(X)&B]

computer (CN)*

[X|computer(X)]

*This is a case of an invisible determiner where a CN is raised automatically to T

in order to be able to combine with its adjacent component of category ACN2/T.

The introduction of a predicate for(X ,Y) is to establish the

relationship between X and Y. This is the general treatment applied to

all other prepositions implemented in SILOL.

56

Chapter 5: Parsing and Translation Strategy

5.1 Introduction

In this chapter, the parsing algorithm used in implementing the

SUNG will be discussed. SUNG is a type of categorial unification

gram m ar based on Jowsey's SMG where the parsing algorithm is

im plem ented using the Prolog unification mechanism. But SMG is

non-robust in nature, in the sense that it cannot process ill-formed

input texts. There are many reasons why an input may be considered

ill-formed [Salton 89], for example, it is ill-formed if it contains words

which are not in the lexicon or its structure is beyond the scope covered

by the grammar implemented. SUNG adopts a strategy of robust partial

translation to handle all forms of input texts by first locating sequences

of known words and then trying to parse each of them into a shortest

possible string. We will call this approach island focusing.

Dealing with natural language processing, one cannot run away

from ambiguity. Ambiguity may be due to a word having many

meanings or a phrase having many parse trees. In this chapter we will

also discuss how SUNG tries to minimise ambiguities by adopting a

multi-pass parsing strategy.

5.2 Unification Grammar

Unification has been used extensively in the parsing techniques of

categorial grammar due to the combination of theoretical and practical

considerations. The theoretical consideration is to integrate semantics

as tightly as possible with syntax, and the practical consideration is to

57

develop a theory which could be implemented as an efficient parser
[Zeevat et al 87].

Classical categorial grammar consists of a set of rules for the

grammar, a set of categories with a list of basic expressions under each

category, and the functional application rule. For example, given that

noun(N) and predicate(P) are basic categories in a categorial grammar,

then the definition of categories in this grammar is as follows :

a) N and P are categories,

b) If A and B are categories, then A \ B is a category. B is known as

the active part of A \ B .

The rule of functional application is defined as follows:

If Ei is an expression of category A I B and E2 is an expression

of category B, then E1 E2 is an expression of category A.

The application of the grammar rules and the basic expressions under

functional application rule will generate a set of complex expressions.

Various extensions to the classical categorial grammar have been

m ade in natural language processing applications. M ontague PTQ,

Unification Categorial Grammar (UCG) [Zeevat et al 87] and Simplified

M ontague Grammar (SMG) are three examples where the notion of

category is expanded, other combination rules are used in generating

complex expressions, and each expression is given a semantic

representation. Each expression in a unification categorial grammar,

i.e. a grammar that uses the unification process in parsing (e.g. UCG

and SMG), is given a semantic representation in the form of a template

which consists of at least:

58

a) a category specification - the category of the expression, and

b) a semantic representation - the semantic translation of the

expression.

In the UCG of [Zeevat et al 87], which consists of three primitive

categories (noun, sentence and noun phrase), each expression is given

a representation called sign. A sign consists of:

a) a description of how the expression is phonologically derived,
b) a category specification,
c) a semantic representation, and
d) an order specification telling where the expression should be

placed when combined with other expression.

In SUNG, based on SMG, each expression is given a semantic

representation called template which is equivalent to sign in UCG

and consists of:

a) W ord or String - which is the description of how the
expression is phonologically derived by specifying the rule
and the constituent expressions

b) Syntax - a category specification
c) Semantics - a semantic representation
d) Store - a working storage for resolving anaphora pronouns

which is represented in a following list notation:

[Syntax#String#Semantics#Store]

For exam ple, the tem plate for a noun phrase a computer is

represented as follows:

[t(neut,Case)#[f2,a,computer]#[[X,I I A] I computer(X)&A]#[]]

59

The Store is not used currently, since we have eliminated

anaphora pronouns resolution routine from the parser. It is difficult to

resolve the referent of an anaphora pronoun (e.g. he, she, it) in a

situation where there are so many unknown words in the texts. This

routine can possibly be included in the system if a commercial online

dictionary is used to solve the unknown word problem.

In unification grammars, the syntactic parsing and semantic

translation process are carried out in parallel. The semantic translation

process is performed through the instantiation and stripping processes

as already described and illustrated in section 3.3.4.

5.3 Partial Translation in SUNG

The parser implemented for SMG by Jowsey is non-robust type

w hich can only accept syntactically well-formed sentences with

syntactically and semantically predefined words. It returns a null value

on receiving ill-formed input. An input is considered an ill-formed if it

contains one of the following:

1. An unknown word - a word that is not predefined in the lexicon,

this includes miss-spelled words.

2. A grammatically illegal syntactic structure - the structure of the

input is grammatically wrong.

3. A not-covered syntactic structure - the structure of the input is

not covered by the rules im plem ented, eventhough it is

grammatically correct.

The lexicon implemented in SILOL is an experimental one and the

set of grammatical rules implemented is very limited, thus, the SUNG

60

parser-translator ought to be robust enough to perform partial

translations on the document collection and the queries. For example,

given a docum ent title as follows (the title of the first CACM

document):

Preliminary Report - International Algebraic Language

and only the words Algebraic and Language are predefined in the

lexicon from among the words of the title. The SUNG parser-translator

m ust be able to produce the following partial translation of it:

preliminary(XI) & report(X2) & international(X3) &

algebra(X4) & language(X5) & a(X4,X5).

Notice that the consecutive known words are parsed to form a

phrase as reflected by the predicate a(X4,X5), and the unknown words

are translated into one-place predicates. Figure_5.1 illustrates the

general strategy of partial translation adopted by the SUNG parser-

translator using the island focusing approach. The strategy is first to

locate the sequences, or the islands, of the known words in between

the unknow n words. Then, the islands are parsed based on the

gram m ar rules available. Some islands might be reduced to a single

syntactic category, or a token, and some might not be. That depends

upon the scope of the grammar implemented.

61

unknown se q u e n c e of known words unknown se q u en c e of known words unknown

S U N G

This island can be
parsed to form a
syn tac t ic ca tego ry

This island cannot be parsed
to a single syntactic ca tegory

one-p lace predicate

a p h rase predicate
r e p re s e n ta t io n

Figure_5.1: Partial Translation Strategy based on Island Focusing

5.4 Bottom-up Shift-Reduce Parser

The parsing algorithm used for SUNG is bottom-up, right to left,

shift and reduce algorithm [Aho&Ullman 77]. The bottom-up parser

attempts to construct a parse tree for an island beginning at the leaves

(the bottom) and working up towards the root (the top). We can think

of this process as one of trying to reduce a sequence of words in an

island to a single syntactic category. At each step, the right-most part of

the sequence which matches the left side of a grammar rule is reduced

to the category on the right of the rule. The bottom-up parser avoids

the problem of infinite loops on parsing left-recursive structures

suffered by top-down approaches. Examples of the left-recursive

structures in SUNG are the postmodifying and noun-noun phrases as

reflected by the following rules:

62

facn2 » cn(Gend):PP + acn2:[PP IP] => cn(Gend):P.

fen » cn(Gendx):[X I A] + cn(Gendy):[Y IB] => cn(Gendy):[Y I A&B&r(Y,X)].

The shift and reduce algorithm is chosen because it is the simplest

m ethod of implementing bottom-up parsing, although it is not an

efficient one. A more efficient algorithm may be investigated as a

further research in this area.

5.5 Handling of Ambiguities

Ambiguity arises when an island can have more than one parse

tree. For example, an island which constitutes the phrase reliable

software packages will have two parse trees as follows:

(Tree_5.2):

reliable software pac k ag e s

/ X
re liab le software pac k ag e s

/ \
s o f tw a r e packages

(Tree_5.1):

reliable softw are p ac k ag e s

reliable so f tw are packages

r e l iab le s o f tw a r e

The parsing algorithm im plem ented for SUNG is a non-

deterministic type, built upon the Prolog built-in non-deterministic

backtracking . Thus, it is capable of deriving all the possible parses for a

given island. The cjuestion now arises as to which of these parses to

chose. In handling this problem, our strategy is, first, to reduce the

num ber of possible parses. For example, the number of possible parses

for the island reliable software packages can be reduced to only one, i.e.

63

Tree_5.2. Our way of doing this is by adopting multiple-pass parsing,

i.e. by setting up groups of grammar rules based on priorities over

which phrase constructs should be formed first, and each parsing pass

is based on one of these grammar groups. In the reliable software

packages example, if the noun-noun compound rule is given higher

p rio rity and grouped for the first pass and the adjective-noun

com pound rule is grouped for the second pass, then the island will

only have one possible parse tree (Tree_5.2) as illustrated below:

reliable software packages

= > pass-l :cn+cn=>cn reliable (software packages)

=>pass-2:adj+cn=>cn (reliable (software packages))

where the subscripted arrows (=>Subscript) denote parsing steps with the

pass numbers and the rules used.

The setting up of grammar groups for each pass is done heuristically

based on the following priority criterion:

priority type of construct

1 conjunction of adjectives

2 noun-noun compounds

3 adjective-noun compounds

4 preposition-noun compounds

5 noun-postmodifier compounds

6 determiner-noun compounds

7 others

We end up having 6 grammar groups, namely: 0, 1, 2, 3, 4 and

Kstands for last). The grammar groups are given in Appendix_B, the

labels prefixing each rule signify the group names. Our multiple-pass

64

parser is implemented in Prolog and is based on a simple blackboard

architecture, where each grammar group acts as an expert operating on

a common blackboard which is initially loaded with the problem to be

solved, i.e. the texts to be parsed and translated. The experts then will

be scheduled one after another to parse the texts on the blackboard

based on their respective knowledge, i.e. their grammar rules. This

architecture is depicted in Figure_5.2. The experts scheduler that we

im plem ented for the parser is a simple one-cycle linear type. The

performance of the parser-translator can possibly be enhanced by a

better grouping of rules and an intelligent scheduler which can direct

the parsing operation, especially in facing ambiguity, to choose a

semantic translation which is highly preferred to others.

BLACKBOARD

j r a m m a r
group 4

gram m ar
group 3

r a m m a r
group 1

j r a m m a r
group 2

j r a m m a r
group 1

j r a m m a r
group 0

E X P E R T S

Figure_5.2: A Simple Blackboard Architecture for a Parser

Although the number of possible parses are reduced by adopting

multiple-pass strategy, ambiguity still persists as long as more than one

parse tree can be derived from a single island. As discussed in section

5.5, an island may be reduced to a single token or more. So, in the case

of ambiguity, our strategy is to choose the parse with the smallest

num ber of tokens. But there may be more than one parse having the

65

smallest number of tokens. In this case, we simply select the first parse

encountered. This is not a bad strategy as it may seem, because we have

constructed the parser to produce preferred translations through the

multi-pass technique. Alternatively, we could collect all the parses with

the smallest number of tokens. But this will increase the parsing time.

W orking in a Prolog environment where execution time is known to

be slow, time saving does matter.

66

Chapter 6. Translation as Part of Document Retrieval System

6.1 Introduction

Instead of using only parsing as part of document retrieval systems,

SILOL has used translation, which of course includes parsing, as part of

its system. N atural language texts are directly translated into logical

form which can be used as a complete contents indicator of a document

or query. The translation technique used is based on the semantic

translation technique as described in the earlier sections. This approach

has contrasted SILOL from those systems described by Smeaton

[Smeaton 87], which parse natural language texts into parse trees and

where words are combined to form phrase descriptors using heuristic

rules. Also, in these systems, single term descriptors are formed

separately using conventional methods and combined with the phrase

descriptors to form a complete content indicator.

In this chapter we will describe how documents and queries are

processed to form their respective indexes through the translation and

the norm alisation process which is composed of simplification and

reduction processes. The similarity values between document and

query indexes are computed using uncertain implication processes

which will also be discussed in this chapter. An uncertain meta Prolog

language, which will be referred to as UNcertain Implication Language

(UNIL), is provided to assist the implication process. This language is

used to define implication rules for any particular retrieval strategy and

for defining synonyms or thesaurus.

67

6.2 Translation as Part of Document Indexing Process

In SILOL, the semantic translation process is being used as a major

part of the document indexing process. All words in the texts should be

identified and given their respective syntactic categories and semantic

templates. But for our experimental purpose, only a set of words are

chosen to be given their syntactic categories and semantic templates to

form an experimental lexicon. Most of these words are those which are

used in the queries that will be used to evaluate the performance of

SILOL. Based on the given SUNG grammar, a document text is

partially translated into its logical representation which is composed of

a set of predicates and logical connectives. Those consecutive words

having syntactic categories and semantic templates are parsed to form

phrases and are translated into a set of predicates joined by logical

connectives. Words which are not defined are translated into one-place

p red icates, and thus, they still serve as parts of docum ent

representations. Thus, in our approach, single term and phrase

descriptors are formed within the same process.

The predicate names, which are actually English words of the texts,

are stem m ed before undergoing further indexing processing. The

stemming algorithm used is Porter's algorithm [Porter 80] written in

Prolog. The stemmed logical representations are then normalised, i.e.

simplified and reduced, to form document indexes. Figure_6.1 shows

the steps of the document indexing process, and Figure_6.2 illustrates

an example of the indexing process.

68

D ocum ents :
T i t le ,
A b s t r a c t ,
A u tho r .

Translation Logical
R e p re se n ta t io n

S im plif ica tion :
Eliminating of
Logical
C onnec t ives

S tem m ed
Logical
R e p re se n ta t io n

Stemm ing of
Predica te N am es

Reduction:
Eliminating of
Incomplete and
Redundant Pred.

P re d ic a te
R e p re se n ta t io n

Document
Indexes

Figure_6.1: Document Indexing Process

69

Indexing of "automatic analysis of information text":

"*"e x t : autom atic ana lysis of information text

V
Logical automatic(w) & analysis(x) & information(y) & text(z) &
R e p re se n ta t io n : a (w ,x) & r(y ,z) & of(x ,z)

V
S tem m ed autom at(w) & analysis(x) & informat(y) & text(z) &
Logical R e p r e s e n ta t i o n : a (w ,x) & r(y ,z) & of(x ,z)

V
Simplified & re d u c e d au tom at(w), ana lysis(x) , informat(y), text(z),
R e p re se n ta t io n (Index): a (w ,x) , r (y ,z) , o f (x ,z)

Figure_6.2: An example of indexing process

6.2.1 Simplification Process

The first step in the simplification process is to get rid of the logical

connectives. This is done for the simple reason that at present our

retrieval strategies do not differentiate them. But instead, the predicates

are all assumed to be joined by logical AND. For example, initially, the

phrase 'slow or fast processor' is translated into the following

representation:

((slow(X) & =(Z,X)) v (fast(Y) & =(Z,Y))) & process(W) & a(Z,W)

but it is simplified by replacing all connectives with logical AND's

which are represented by comas (,):

slow(X), =(Z,X), fast(Y), =(Z,Y), process(W), a(Z,W).

70

The second step of the simplification process is to get rid of the '='

predicates by replacing the representation w ith an equivalent

representation w ithout the '=' predicates. This is done in order to

reduce the complexity and to increase the speed of the implication

process. For example, the above representation with '=' predicates is

simplified into:

slow(X), fast(Y), process (W), a(X,W), a(Y,W).

6.2.2 Reduction Process

The reduction process is to get rid of redundancy which exists in

two forms:

1) duplicates of one-place predicates: i.e. one-place predicates

having the same name,

2) incomplete predicates: i.e multi-place predicates with

dangling arguments.

This redundancy must be eliminated in order to reduce the logical

rep resen tations to its m inim al form. For exam ple, after the

simplification process, we may have the following representation:

comput(X),
comput(Y),
comput(Z),
scienc(A),
scienc(B),
program(C),
r(X,A),
r(Y,B),
of(B,C),
in(A,K).

71

The above representation is not in a m inimal form, since it

contains more than one one-place predicates with the same name (i.e.

computer(X),computer(Y),...) and an incomplete predicate "in(A,K)"

w ith dangling argum ent K. The task of the reduction process is to

reduce it to the following minimal representation:

comput(X),
scienc(A),
program(C),
r(X,A),
of(A,C).

Thus, the reduction algorithm constitutes the following three steps:

1. Deleting incomplete predicates, i.e. predicates with dangling

argument(s) are deleted.

2. Unifying the variables of one-place predicates with the same

name - this process will automatically affect the variables of

the multi-place predicates.

3. Deleting of duplicate predicates - those predicates with the

same names and arguments are deleted.

6.3 Translation as Part of Retrieval Process

A user's query is translated into its logical representation as

documents are translated. This representation is then simplified and

partially reduced. The resulted representation is then ready to be

m atched with the document representations and their similarity

coefficients or values calculated. The matching is performed through

an uncertain implication process where values are combined and

propagated which finally gives similarity values between the query and

the documents. In the following subsections we will describe how the

72

user's query is processed and how its sim ilarity values to the

documents are calculated.

63.1 Simplification and Partial Reduction Process

The simplification process hare is similar to the one used: to process

the documents. The partial reduction process is to remove the

incom plete predicates from the sim plified representation, bu t

duplicates of one-place predicates are not removed and duplicates of

multi-place predicates may or may not be removed depending upon

the retrieval strategy adopted. The duplicates of one-place predicates are

not rem oved because our retrieval strategy is based on the tf x idf

w eighting scheme which takes into account the term frequencies

w ithin-query and within-document. Concerning the duplicates of

multi-place predicates, it depends on the retrieval strategy adopted

w hether to include them or not in calculating similarity values. For

exam ple, after the simplification process is done on the query

representation, we may have the following simplified representation:

comput(X),
comput(Y),
comput(Z),
scienc(A),
scienc(B),
program(C),
r(X,A),
r(Y,B),
of(B,C),
in(A,K).

If the partial reduction process is applied on this query

representation, i.e. by eliminating incomplete predicates only, then we

will have the following partially reduced representation with

duplicates in both one-place and multi-place predicates.

comput(X),
comput(Y),
comput(Z),
scienc(A),
scienc(B),
programme),
r(X,A),
r(Y,B),
of(B,C).

After undergoing the simplification and reduction processes, the

query and the documents are represented by a common representation

scheme, i.e. the predicate representation form. Now, we need an

algorithm to compute the similarity values between the query and the

docum ents. The follow ing section will discuss an uncertain

implication process that is used to perform this task.

6.3.2 Uncertain Implication Process

An uncertain implication process is used to combine and propagate

values that will give a measure of similarity between a document and a

query through a process of deduction under uncertainty. In this process

each successfully instantiated predicate will be given a value to be

combined with other values or propagated to other predicates.

Unsuccessfully instantiated predicates are given a zero value. In a

logically strict implication process, such as in Prolog, a successfully

instantiated predicate is given a TRUE value and an unsuccessfully

instantiated one is given a FALSE value. In our case these values are

not boolean, but real figures based on some statistical calculation. A

basis of calculating these values in our uncertain implication process

will be explained in section 6.3.2.1. An uncertain meta Prolog language,

which will be referred to as UNIL, is provided to assist and control the

74

implication process. The language UNIL will be discussed in section

6.3.2.2.

6.3.2.1 Calculation of Propagated Value

An Implication process is used to combine and propagate values

that will give a measure of similarity between a query index and a

document index. Where should these values come from? It seems that

the statistically-based weighting schemes are the best we have so far for

this purpose. Thus, in our experiments, the values used are the

weights of the stemmed predicate names based on the tf x idf weighting

scheme. This weighting scheme is chosen because it is generally

considered as being the most effective [Salton 86]. Thus, the values that

will be assigned to the successfully instantiated predicates during this

implication process are as follows:

1. For a one-place predicate P(arg), where P is a stemmed

predicate name and arg is its argument: Its weight in a

particular document is the tf x idf weight of the word P in the

document, i.e. the frequency of P in the document multiplied

by its inverse document frequency (idf) value. The idf value

of a word of term t is computed using the following formula:

idf(t) = - log(Freq(t)/N)

where Freq(t) is the number of documents in which the term

t appears at least once, and N is the total num ber of

documents in the system.

2. For a multi-place predicate Relation(argl,...,argn), where

75

Relation can be any one of the generalised-relations: There

are many ways of assigning weight to a multi-place predicate.

One way is to give it a constant value as done by Smeaton.

Another is to take the average weight of the predicates

involved in the relationship as perform ed by Fagan. For

example given the following predicates and weights:

comput(X) weighs 5.6

scienc(Y) weighs 3.7

then the w eight for 'com puter science' noun-noun

relationship predicate r(X,Y) is 4.65.

Instead of using the average, we may also try to use the sum

of the weights of the predicates involved.

The final similarity value between a query and a document is

obtained by summing up the values of all predicates in the query index

which are successfully instantiated during the implication process. This

represents a basis of retrieval strategies that can be applied to our

logical-linguistic model. The results reported in the later chapters are

based on this basis of retrieval strategies.

The architecture of the retrieval process of SILOL is depicted in

Figure_6.3. The Retrieval Processor receives a query from a user and

passes it to the Translator and Indexing Unit which transforms it into

its query index. The Retrieval Processor then invokes the Implication

Unit to compute similarity values between the query index and the

docum ent indexes by consulting the Implication Rules and the

Thesaurus, if there are any. Documents with top similarity values are

then presented to the user.

76

Thesaurus Implication
Rules

(Document
I Indexes

Query
4

Trans la t ion Query Implication
& Indexing Index “ Unit
Unit

t
Retrieval Processor

f Documents
(Retrieved

Figure_6.3: An Architecture of a Retrieval Process

6.3.2.2 Uncertain Implication Language (UNIL)

UNIL is used to define a set of implication rules in the handling of

multi-place predicates for a particular retrieval strategy, and it can also

be used to define a thesaurus. Thus we divide the rules written in

UNIL into two types:

1) implication rules for multi-place predicates, and

2) synonym rules for defining thesaurus.

UNIL is Prolog-like except for additional syntactic constructs that

77

facilitate uncertainty propagation [Abdullah 86] and no-chaining of

rules. A rule is written in the following Prolog-like forms:

r: B A^ op A2 op . . . Am.

where r is the label to differentiate UNIL rules from ordinary Prolog

rules, B and A[are predicates and op's are combination operators. An

operator can be a conjunction(,), a disjunction(;), a summation(@) or a

m ultiplication(&). For example, the following rule defines the

implication between the noun-noun phrases with the adjective-noun

phrases and some prepositional phrases :

r: r(X,Y):- a(X,Y); of(X,Y); on(X,Y).

i.e. a(X,Y), of(X,Y) or on(X,Y) implies r(X,Y).-

6.3.2.2.1 Combination operators

There are four combination operators defined in UNIL, namely:

1. the conjunction operator (,)

2. the disjunction operator (;)

3. the summation operator (@)

4. the m ultiplication^).

The combination operators will determine how the values of the

predicates on the right-hand-side(RHS) of the rule are combined and

p ropagated to the predicate on the left-hand-side(LHS). The

conjunction(,) and disjunction(;) operators, based on Fuzzy Logics

[Zadeh 83], are the minimum and the maximum binary operators

78

respectively. The summation(@) and multiplication(&) operators are

the binary sum and multiplication operators, respectively. Following

are few examples of how the values are com puted using these

operators :

20.0 ; 10.0 = 20.0

1.2,100.3 = 1.2

10.0 @ 20.4 = 30.4

5 @ 2; 4 = 7

5 @ (2; 4) = 9

(1; 2 ; 3) @ (1 ,2 ,3) = 4

2 & 3 = 6. ;

The above expressions are evaluated from left to right and the order of

operator precedence is as follows:

/

&

The use of brackets may specify the precedence explicitly.

6.3.2.2.2 Uncertainty Construct - cf(Const)'

The uncertainty construct in UNIL allows the predicates Aj on the

RHS of the rules to be qualified with uncertainty factor values (cf). This

construct allows us to define partial matching. Any predicate A[can be

qualified with a cf value Const as follows :

cf (Const)' A[

The value given to cf (Const)'A* is the product of Const and the value

of the predicate Ap Following are a few examples of the implication

79

and synonyms rules using the uncertain construct (all implication

rules have to undergo stemming process) :

Implication rules:

r: of(X,Y)cf(0.9)'for(X,Y).

r: a(X,Y)cf(0.5)'(r(X,Y);r(Y,X)).

Synonym rules:

r: computer(X) :- cf(0.6)vminicomputer(X).

r: computer(X) :- cf(0.5)'(machine(X);processor(X)).

6.3.2.2.3 No-chaining Construct - d:

The no-chaining construct is introduced in order to control the

chaining of rules. This construct is used to avoid infinite chaining of

rules. For example, if we have the following implication rules defined

to equate the two multi-place predicates r and a as equivalent:

r: r(X,Y):- a(X,Y).

r: a(X,Y):- r(X,Y).

then we will have the problem of infinite loops. Imagine that a query

index contains a predicate r(A,B) and there is no occurrences of

predicates r and a in the document under investigation. This will cause

the retrieval processor to invoke the implication rules to perform the

inference process. The first rule above will be triggered first, which

subsequently will trigger the second rule, which subsequently will

trigger the first rule, which subsequently will trigger the second rule, . .

. . . until infinitum.

In order to prevent this, we introduce the no-chaining construct

80

by introducing a label'd ' to be written before any predicates in the body

parts, or the RHS, of the rules. The label'd ' before a predicate P means

that the presence of P in a document is check without consulting any

rule. If only the predicate P can be satisfied directly from the document

index then the value or weight of P in the document is calculated,

otherwise, the predicate is considered unsuccessfully instantiated and is

given a zero value. Thus the above two implication rules are rewritten

as follows:

r: r(X,Y)d:a(X,Y).

r: a(X,Y)d:r(X,Y).

6.3.2.2.4 Checking Query Index - q:

Sometimes it is necessary for an implication rule to check the

presence or absence of any predicate in a query index. This is useful in

defining synonyms. Thus, a label 'q' is introduced to implement this

capability. If a predicate with label 'q' cannot be satisfied directly from

the query index then the rule is considered as failed and no values are

propagated. No values are calculated or propagated from predicates

w ith label 'q'. Below is an example of synonym rule which tries to

m atch a phrase 'programm ing language' in a query with a word

'Fortran' in documents with uncertainty factor of 0.9 :

r: language(Xl) :- q:programming(X2), q:r(Xl,X2), cf(0.9)'d:fortran(Y).

6.3.2.2.5 Cut -!

A cut (!) facility is introduced in UNIL in order to speed up the

implication. A cut will terminate further processing of the RHS of a

81

rule if any previous predicate is successfully instantiated. For example,

given the following implication rule :

r: r(X,Y) a(X,Y); of(X,Y); on(X,Y); with(X,Y); using(X,Y).

this rule will cause all the predicates on the RHS to be evaluated and

their maximum value propagated to the predicate on the LHS. But all

of them might be evaluated to the same value, as what happen in our

evaluation scheme where the weights of a(X,Y), of(X,Y), ..., using(X,Y)

are calculated using the same function with X and Y as input, so it is

time saving to stop evaluating the rest of the predicates once a

predicate is successfully instantiated. Thus, the above rule can be

written with cut (!) as follows:

r: r(X ,Y)a(X ,Y);!; of(X,Y);!; on(X,Y);!; with(X,Y);!; using(X,Y).

6.3.2.2.6 Macro Predicates

j F'

Some macro predicates are provided in order to make the writing of

the rules more simpler. They are as follows:

exists_pair(X,Y) : Evaluated to zero if there is no two-place

predicates betw een X and Y, in that order.

Otherwise, it is evaluated to the value of the multi

place predicate between X and Y. This macro is to

help in specifying a retrieval strategy which does

not differentiate dependency types.

82

sum_pair(X,Y) : Evaluated to zero if there is no two-place

predicates betw een X and Y, in that order.

Otherwise, it is evaluated to the sum of values of

all predicates with arguments X and Y in that order.

average(X,Y,..,Z) : Evaluated to the average weight between

X,Y,...,Z. This macro is used when the values of the

multi-place predicates are calculated as the average

weight of their arguments.

sum(X,Y,...,Z) : Evaluated to the sum of the weights of X,Y,...,Z.

This macro is used when the values of the multi

place predicates are calculated as the sum of the

weights of their arguments.

pa ir_constan t : Gives the Sm eaton's constant for pair

dependencies. This macro is used when the values

of the m ulti-place predicates are calculated as

Smeaton's constant.

trip le_constant : Gives the Sm eaton’s constant for triple

dependencies. This macro is used when the values

of the m ulti-place predicates are calculated as

Smeaton's constant.

pair(X,Y) : Evaluated to TRUE or FALSE depending upon whether

there is an occurrence of dependency between X and

Y, in that order. This is a strict boolean predicate

which returns a boolean value.

6.3.2.2.7 Strict Construct: s'

Sometimes it is useful to be able to imbed in the UNIL implication

rules some strict implications which handle only the boolean values 0

and 1. A strict construct is provided in UNIL to implement this by

m arking the predicates which need to be instantiated or processed

strictly with s , as illustrated in the following examples :

r: one_or_zero(X,Y) s'r:(X,Y).

r: a(X,Y) exists_pair(X,Y) @

average(X,Y) & s'(vsoQOCJ;vso(X,^Y);vso(_^,Y)).

Those predicates which are marked with strict tag s' will only be

evaluated strictly using the Prolog resolution mechanism to a value of

1 or 0 depending on whether they are successfully instantiated or not.

It is possible to invoke an ordinary Prolog rule from a UNIL rule by

using the strict construct. The following example will illustrate this

invocation in looking for transitive dependencies:

r: weight_pair(X,Y) :- exists_pair(X,Y); average(X,Y) &

s' transitive_pair(X,Y).

transitive_pair(X,Y) :- pair(X,Z), (pair(Z,Y); pair(Y,Z)).

6.3.2.2.8 Examples of Implication Rules and Synonyms

In the previous section we have described the language UNIL

designed solely to provide the facilities for controlling and defining the

implication process. In this section we will give some examples of how

this language is used.

Following is an example of implication rules in UNIL for a retrieval

strategy which does not distinguish multi-place predicates but take into

consideration the order of their arguments:

r: a(X,Y):- anytype(X,Y).
r: r(X,Y):- anytype(X,Y).
r: in(X,Y):- anytype(X,Y).
r: inside(X,Y):- anytype(X.Y).
r: of (X,Y):- anytype(X,Y).
r: on(X,Y):- anytype(X,Y).
r: for(X,Y):- anytype(X,Y).
r: by(X,Y):- anytype(X,Y).
r: with(X,Y):- anytype(X.Y).
r: within(X,Y):- anytype(X.Y)..
r: without(X,Y):- anytype(X,Y).
r: using(X,Y):- anytype(X.Y).
r: sv(X,Y):- anytype(X,Y).
r: ov(X,Y):- anytype(X,Y).
r: anytype{X,Y):- exists_pair(X,Y);

pair_constant & s'(d:vso(XIYIJ;d:vso(X,_,Y);
d:vso(_,X,Y)).

r: vso(X,Y,Z):- d:vso(X,Y,Z);
(exists_pair(X,Y);exists_pair(X,Z);

exists_pair(Y,Z)).

Synonyms can be defined by experts in the domain knowledge

concerned. Study has to be made of how to combine and propagate the

weights in defining the synonym rules. Following are few examples of

synonym rules in the area of computer science :

1. tss is an abbreviation of time sharing system:

r: system(X):- q:time(Y), q:sharing(Z), q:r(Y,X), q:(Z,X), d:tss(_).

2. intermediate language is synonymous to intermediate code:

language(X):- q:intermediate(Y), q:a(Y,X), drintermediate(A),

d:code(B), d:(A,B).

85

3. lexical analysis, syntax analysis, code generation and

optimization are components of a compiler:

compiler

(d:lexical(A),d:analysis(B),d:a(A,B))@

(d:syntax(C),analysis(D),r(C,D)) @

(d:code(E),d:generation(F),r(E,F)) @

(d:code(G),d:optimization(H),r(G,H)).

4. monitor, semaphore, guard, and synchronization are relevant to

communicating processes:

communicating(X):- q:processes(Y), q:r(X,Y),(d:monitor(_) @

d:semaphore(_) @ d:guard(_) @ d:synchronization(_)).

5. security is synonymous to privacy, cryptography, protection and

encryption:

securityd:privacy(_)@ d:cryptography(_) @ d:protection(_) @

d:encryption().

86

Chapter 7: Experimental Setup

7.1 The Test Collection

In order to perform experiments with our system, a familiar CACM

test collection of documents and queries gathered by Fox at Cornell

[Fox 83] has been used. This collection contains 3204 "Communications

of ACM" articles and 64 natural language queries together with their

relevance assessments. From the collection of articles we use only the

title, author and abstract fields to represent our corpus of stored

documents in performing our experiments. Regarding the queries for

the experiments, we have chosen the same 48 queries selected by

Smeaton from the above collection. These 48 queries have been

transformed to noun phrase queries by Smeaton due to the limitation

of his grammar which only covers noun phrases.

7.2 Translation Statistics on the Test Collection Documents

The corpus of stored documents was translated by the SUNG parser-

translator, and the statistics obtained after simplification and reduction

process are shown in Table_7.1.

87

No. of documents: 3204
No. of occurrences of each
multi-place predicate:-

r : 3034
for: 299
a: 1826
with 39
within 4
without 4
sv 335
ov 209
of 932
vso 66
in 147
by 30
using 1 3
on 45

Total number of dependencies
(or multi-place predicates): 6983

Average no. of dependencies
per document: 2.18

Table_7.1: Translation Statistics on the Documents

In spite of having a very limited grammar and lexicon, the number

of multi-place predicates obtained after simplification and reduction

process is very encouraging: an average of 2.18 per document. We

envisage that by using a commercial on-line dictionary, the number of

unknown words will be reduced and thus the translation statistics will

be much improved.

7.3 Organisation of Retrieval Strategies

There are two sets of retrieval experiments to be performed. One is,

a set of experiments based on retrieval strategies without relevance

feedback which will be referred to as non-feedback retrieval

experiments. Another is a set of experimetits with relevance feedback

based on the imaging approach as proposed by van Rijsbergen [van
Rijsbergen 89].

7.3.1 Non-feedback Retrieval

Ideally, what should be done is to evaluate the retrieval strategies

exhaustively with all values of all the control parameters. But, this

w ould lead to an unmanageable large set of experiments, since there

are too many parameters and variants to control. It is im portant to

stress that it is not our intention to produce the best retrieval strategy

for our system, but the aim is merely to demonstrate the viability of

this model and to show that it is more effective than the conventional

approach.

In order to make the number of experiments manageable, we have

organised our retrieval strategies based on several control parameters.

There are four main parameters used in defining retrieval strategies,

and they are as follows:

1. The weighting scheme for multi-place predicates:

a) constants - the weighting is based on Smeaton's constants.

b) average - the average scheme as used by Fagan.

c) sum - the weight of a multi-place predicate is calculated as

the sum of the weights of the predicates involved in the

relationship.

2. Types of Relationships:
a) typed - names of multi-place predicates are being distinguished

ixnplication process. In this case, the predicate r(x,y) does

89

not imply a(x,y).

b) non-typed - names of multi-place predicates are regarded as

equivalent in the implication process. In this case, predicate
r(x,y) implies a(x,y).

3. Order of arguments:

a) ordered - the order of arguments of multi-place predicates is

taken into consideration in the implication process. Thus, r(x,y)

does not imply r(y,x).

b) non-ordered - the order of arguments of multi-place predicates

is immaterial. Thus, r(x,y) implies r(y,x).

4. Duplication of multi-place predicates:

a) duplicates allowed - duplication of multi-place predicates

having the same name and arguments are not eliminated from

the query indexes.

b) duplicates eliminated - the above duplicates are eliminated

from the query indexes.

7.3.2 Retrieval with Nearest Neighbour Relevance Feedback

After performing experiments on various retrieval strategies using

the param eters as described above, we would then like to perform

experim ents using relevance feedback with nearest neighbours

information. One of the best retrieval strategies from the non-feedback

retrieval experiments will be chosen to perform the initial ranking of

documents with respect to a query and a few top ranked documents

will be retrieved and identified as relevant or not. From this set of

retrieved and relevant documents, we can obtain all other unretrieved

documents which have any of the retrieved and relevant documents as

90

their nearest neighbour. This set of unretrieved documents have the

potential of also being relevant since they are 'close' to the retrieved

and relevant ones, and thus their initial similarity values to the query

will be updated based on their distances to their nearest neighbours.

From the updated similarity values, a new ranking of documents can

be obtained and evaluated.

The detailled implementation of this retrieval and its results shall

be discussed in Chapter 9.

7.4 Translation Statistics on the Experimental Queries

Likewise, the translation statistics on the 48 experimental queries

are obtained. The figures obtained are shown in Table_7.2. The average

num ber of dependencies per query obtained is 5.9 when duplicates are

a llow ed. The range of average number of dependencies per query

obtained by Smeaton is between 3.75 to 9.98, depending upon which

heuristic rules he used. The results obtained by Smeaton, show that the

quality of dependencies rather than the num ber of dependencies

im proves the retrieval effectiveness. The average num ber of

dependencies obtained by our method seems to lie in the middle of his

range. This may be an indication of its quality.

91

No. of queries: 4 8
Total no. of occurrences of each
multi-place predicate:-

r : 147
for: 21
a: 50
with 5
sv 6
ov 1 0
of 26
vso 1
i n 9
by 3
using 5
on 2

Total number of dependencies
(or multi-place predicates): 285

Average no. of dependencies
per query: 5.9

Table_7.2: Translation Statistics on the Queries

7.5 Methods of Evaluating Retrieval Effectiveness

To evaluate and compare retrieval effectiveness we have used

mainly the Recall Cutoff evaluation technique [van Rijsbergen 79], i.e.

by taking the average precision values at standard recall points of 10, 20,

. . . , 100, and using macro-evaluation approach to get the overall

average precision values.

An additional evaluation method, Document Cutoff across rank,

which is less opaque than the precision-recall evaluation is used to

assist the evaluation process further. Below we explain the methods in

details.

92

7.5.1 Recall Cutoff Evaluation

Given the following table :

RELEVANT *NON-RELEVANT

RETRIEVED AnB AnB B

NOT RETRIEVED AnB AnB B

A A N

where A is the set of relevant documents, B is the set of retrieved

documents and N is the set of all documents in the collection. The

m easures of effectiveness Precision and Recall are then defined as

follows:

For each query submitted to a retrieval system, a number of tables as

shown above can be constructed by varying some parameter. Possible

param eters are the rank position of the document or the document

score. Based on each of these tables a precision-recall value can be

calculated. If X is the parameter, then P^ denotes precision, R^ denotes

recall, and a precision-recall value will be denoted by the ordered pair

(R^,P^). A precision-recall curve can be obtained by plotting and

joining these pairs. The curves for all the queries are subsequently

averaged to obtain the overall performance curve.

We have used rank position for the parameter X, and tied ranks due

Precision = I AnB I / IB I

Recall = I AnB I / IAI

93

to documents having the same score are resolved by ordering them

using their serial numbers. To obtain the set of observed points we

specify a subset of the parameters X. Thus (Rq,P0) is an observed point

if 0 corresponds to a value of 1 at which an increase in recall is

produced. We now have a set of observed points:

Gs = {(Res, Pes) }

which is then used in interpolating precision at the standard recall

values R = {10, 20, ..., 100}. To interpolate between any two points we

define:

PS(R) = {sup P:R’>=R s.t. (R’,P) e Gs}

where R is a standard recall value. The average precision value at the

standard recall value R is calculated as :

P(R) = SsesPs(R)/lSl.

This calculation of the average precision is known as the macro

evaluation approach.

7.5.2 Document Cutoff Evaluation Across Rank

As addition to recall cutoff evaluation, we will also use document

cutoff evaluation across rank. It simply gives the number of relevant

documents retrieved at specified rank positions summed over all the

queries. It is also possible to include the number of queries which fail to

retrieve any relevant document by these same rank positions in this

evaluation.

94

7.5.3 Significance Test

The reason for evaluating retrieval strategies is to compare their

retrieval effectiveness. Suppose that we have evaluated two retrieval

strategies using precision-recall evaluation. To decide whether there is

any significant difference in their performance, we can use the

significance test proposed by Spark-Jones and Bates which uses a crude

rule of thumb based on the areas under the precision-recall curves

[Harper 80]. The difference is considered to be significant if the

difference between the areas is a least 5% of the smaller area. Or in

other words, at each standard recall value, the precision of one strategy

should be more than 5% of the other strategy. An increase of 10% is

considered as material. It has become a common practice to estimate

the differences in area by eyes rather than by program.

95

Chapter 8: Experimental Results of the Non-Feedback Retrieval

8.1 Benchmark

We have chosen to use tf x idf weighting scheme as part of our

retrieval strategies, thus, the tf x idf ranking using only one-place

predicates in the query index without any implication rule will be the

basis of our benchmarks retrieval strategy. This retrieval strategy

implemented on the CACM test collection uses within-query, within-

docum ent and collection-wide term frequencies. The score for each

document is computed as the sum of the individual term (predicate in

our case) weights of the index terms which occur in the document

texts. If there is more than one occurrence of an index term in either

the document or query then all of them are counted. The tf x idf score

for the jth docum ent (dp is calculated as given in the following

form ula:

s dj = £ igQ wi • freqdj)

where Q is the set of terms in the query index, wi is the individual idf

term weight of the ith term and freq(i,j) is the number of times the ith

term occurs in the document dj.

The set of precision figures at standard recall points for the

benchmark retrieval is given in Table_8.0.

96

BENCHMARK

w
0

1 0 5 2 .2 2
2 0 3 8 .5 2

>0 3 0 3 1 .9 0
_ J 4 0 2 4 .4 9
15o

5 0 21.01
60 17.59o

CC 7 0 12.13
8 0 10.23
90 7 .04
1 00 6 .09

A v e r a g e 2 2 .1 2

Table 8.0: Benchmark

8.2 Presentation and Analysis of Results

Several retrieval strategies have been performed and the results

obtained are given and analysed individually in the following sections.

8.2.1 Experiment_l: Most rigid set of implication rules.

In the first few experiments, we have adopted the constant

weighting scheme and allowed duplicates of multi-place predicates in

the query index. This strategy is generally assumed unless otherwise

stated.

The first retrieval strategy experimented with is the one with the

most rigid implication rules, i.e. the retrieval strategy with typed and

ordered param eters which distinguishes the names of multi-place

predicates and takes the order of their arguments into consideration in

performing matching operation. The results obtained for this strategy

are given in Table_8.1.

97

S t r a t e g i e s : E x p _ l

P
ar

am
et

er
s we igh t

ty p e
o r d e r
duplicate BE

NC
H

M
AR

K

con s t an t
y e s
y e s
y e s

(0 10 52 .2 2 54 .3 2
-i 20 38 .5 2 40 .9 6
5 30 3 1 .9 0 3 3 .0 5
® 40 2 4. 49 24.61
= 50
o 60

21.01 2 1 .6 7
1 7 .59 18 .32

rr 70 12 .13 12.4 6
80 1 0 .23 10 .69
90 7.04 7 .24
1 00 6 .09 6.1 7

A v er ag e

% Increase

2 2 .1 2 2 2 .9 5

3 .7

Table_8.1: The Most Rigid Retrieval Results

The average precision obtained shows a marginal improvement of

3.7% over the benchm arks. This is quite predictable, since the

implication rules are too strict to strike a good number of matches. In

this strategy the phrase information technology is not considered to be

fully matched with the phrase technology of information.

8.2.2 Experiment_2: Non-typed Retrieval Strategy

We have seen that a set of most rigid implication rules has given

just a marginal improvement over the benchmark. The next retrieval

strategy to try is the one with less rigid implication rules. In this

strategy, the implication rules defined do not distinguish the types of

d ep en d en c ies , i.e. the m u lti-p lace p red ica te nam es are

indistinguishable. Thus, r(x,y) implies a(x,y), sv(x,y), etc. But the

ordered parameter, which differentiates between r(x,y) and r(y,x), still

holds. The results obtained are given in Table_8.2.

S t r a t e g i e s : Exp 1 Exp_2

wk_
05
a

weigh t
cc

c o n s ta n t co ns ta n t
ty p e IE y e s no

E
a:

o r d e r O
z:
LU
CO

y e s y e s
a:

CL
dupl icate y e s y e s

1 0 52 .2 2 54 .3 2 5 4 .4 0
(0 20 3 8 .5 2 40 .9 6 4 1 .4 2
15 3 0 3 1 .9 0 33 .0 5 3 3 .1 0
3 4 0-J 50

2 4 .4 9 24.61 2 4 .8 7
21.01 21 .6 7 2 1 .7 0

= 60 17.59 18.32 19.32
o 70 12.13 12.46 13.49
8 0 10.23 10.69 1 1.73

90 7.04 7 .24 8 .2 8
100 6.09 6 .17 7.21

A v e r a g e

% Increase

22 .1 2 2 2. 95

3 .7

2 3 .5 5

6.4

Table_8.2: Exp 2 non-tvped Retrieval Results

The average precision value obtained shows a substantial

im provem ent over the previous results (from 3.7% to 6.4%). This

means that a less rigid implication rule has increased the number of

matches which brings improvement to the effectiveness of retrieval.

8.2.3 Experiment_3: Non-typed and Non-ordered Retrieval Strategy

The strictness of the last implication rules can be lessened further by

adopting non-ordered param eter. This strategy will increase the

number of matches further, since r(x,y) will now implies r(y,x), a(x,y),

a(y,x), etc. The results obtained are shown in Table_8.3.

99

S t r a t e g i e s : Exp 2 Exp_3

P
ar

am
et

er
s we igh t

typ e
o r d e r
dupl icate

cc

o
z
LU
QQ

c o n s ta n t
no
y e s
y e s

c on s ta n t
no
no
y e s

1 0

1 § 2
5 40
-J 5 0
= 6 0
o 7 0
S 8 0

9 0
1 00

5 2 . 2 2
3 8 . 5 2
3 1 . 9 0
2 4 . 4 9
2 1 . 0 1
1 7 . 5 9
1 2 . 1 3
1 0 . 2 3
7 . 0 4
6 . 0 9

5 4 . 4 0
4 1 . 4 2
3 3 . 1 0
2 4 . 8 7
2 1 . 7 0
1 9 . 3 2
1 3 . 4 9
1 1 . 73
8 . 2 8
7.21

5 4 . 7 4
4 1 . 2 3
3 3 . 1 0
2 4 . 8 5
2 1 . 7 6
1 9 . 3 7
1 3 . 5 2
11.81
8 . 2 8
7 .21

Av er ag e 2 2 . 1 2 2 3 . 5 5 2 3 . 5 9

% Increase 6 . 4 6 . 6

Table 8.3: Exp 3 Non-tvped and non-ordered retrieval

The results obtained for this strategy are better than the previous

one, eventhough the level of improvement is not substantial. Now we

can conclude that a less strict set of implication rules performs better

than a strict one in terms of retrieval effectiveness. The experiments

have shown that the percentage increase in the average precision value

obtained by the current least strict set of implication rules is almost

double the value obtained by the most strict set (from 3.7% to 6.6%).

8.2.4 Experiment_4: No-duplicates allowed Retrieval Strategy

The retrieval strategies in all previous experiments allow duplicates

of multi-place predicates which have the same name and arguments in

the query index. Our next experiment is to test whether the absence of

these duplicates affects the retrieval effectiveness. So the next retrieval

strategy is similar to the one in Experiment_3 (Exp_3) except for the

100

no-duplicate parameter. The results obtained are given in Table_8.4

which shows a slight decrease in the average precision value obtained

by Exp_3. But when we observe closely the values obtained for all the

recall levels, we find that the values of the first three recall levels

(10,20,30) are less than their counter-parts in Exp_3. Since the first few

recall levels are more important than the rest in evaluating retrieval

effectiveness, we can conclude that the retrieval strategy which allows

duplicates in the query representation is better than the one which

doesn't. From the results obtained by Smeaton, it can be concluded that

the quality of word dependency improves retrieval effectiveness. This

suggests that the quality of the word dependencies obtained from the

multi-place predicates is high, and therefore we surmise that the more

we include them in the calculation the better.

S t r a t e g i e s : Exp 3 E x p _ 4

03k_G
DC

wei gh t cons tan t cons tan t

G ty p e T.
O
zLU

no no
En: o r d e r no no

a
a.

dupl icate CD y e s no

1 0 5 2 . 2 2 5 4 . 7 4 5 4 . 1 4
. 2 0 3 8 . 5 2 4 1 . 2 3 4 0 . 7 3

% 3 0
> 4 0

3 1 . 9 0 3 3 . 1 0 3 2 . 4 8
2 4 . 4 9 2 4 . 8 5 2 5 . 5 4

5 0 21 .0 1 2 1 . 7 6 2 2 . 0 5
= 6 0 1 7 . 5 9 1 9 . 3 7 1 9 . 6 6
8 7 0 1 2 . 1 3 1 3 . 5 2 1 3 . 5 4

4 809 0
1 0 . 2 3 11.81 1 1 . 8 3
7 . 0 4 8 . 2 8 8 . 3 4

1 00 6 . 0 9 7.21 7 . 2 6

A v e r a g e

% Increase

2 2 . 1 2 2 3 . 5 9

6 .6

2 3 . 5 6

6 . 5

Table_8.4: Exp 4 The no-duplicate Retrieval Results

8.2.5 Experiment_5: Average Weight Strategy

In all the experiments so far, the weights given to multi-place

predicates are based on Smeaton's constants. Fagan used a different

m ethod of calculating these weights, i.e. the average m ethod as

described in section 6.3.2.1, where the weight for a particular m ulti

place predicate is the average weight of all the predicates involved. Our

next experiment is to compare which of these two weighting schemes

performs better in our system. The retrieval strategy adopted for this

experiment is similar to Exp_4, except in this experiment the average

w eighting scheme of Fagan is used for multi-place predicates. The

results obtained are given in Table_8.5. There is a substantial increase

in the average precision value obtained, 8.2%, as compared to the

results obtained using Smeaton's constants (6.6%). The precision

values obtained at all recall levels also give better results. This strongly

concludes that Fagan averaging scheme perform s better than

Smeaton's constants in our system.

S t r a t e g i e s : Exp_3 Exp 5

w
a
"S

cc
weigh t cons tan t av e r ag e
t y p e X

o
z
LU

no no
E
cc

o r d e r no no
L-
cc

CL
dupl icate QQ y e s y e s

1 0 52 .2 2 54.74 55.51
2 0 38 .5 2 4 1. 23 4 2. 36

• § 30 31 .90 3 3 . 10 3 4. 35
% 40 24 .49 24 .8 5 2 4. 86
G)

_ J 50 21.01 21 .7 6 2 1. 94
= 60 17.59 19.37 19.46
o 70 12.13 13.52 13.54
nr 80 10 .23 11.81 11.85
* 90 7 .04 8 .28 8 .29

100 6.09 7.21 7 .23

A v er ag e

% Increase

22 .1 2 23 .5 9

6.6

23 .9 4

8 .2

Table 8.5: Exp 5 The Average Weight Retrieval Results

102

8.2.6 Experiment_6: Sum Weight Strategy

The next weighting scheme for the multi-place predicates to try is

the sum weighting scheme which calculates the weight of a multi-place

predicate as the sum of the predicates involved in the relationship.

This weighting scheme gives more weighting or importance to the

occurrences of multi-place predicates. The retrieval strategy of Exp_6 is

perform ed with this weighting scheme and the results obtained are

shown in Table_8.6. The results obtained show an increase of the

average precision by 4.3% over the benchmark. Thus, we can conclude

that this weighting scheme is not as good as Fagan's average or

Smeaton's constants scheme.

S t r a t e g i e s : Exp 3 Exp_5 Exp_6

L_
a:
a

DC
w eig h t cons tan t a v e r a g e sum
ty p e X

oz
LD

no no no
ECl o r d e r no no no

a:a
duplicate CD y e s y e s y e s

1 0 5 2 . 2 2 5 4 . 7 4 55 .51 5 4 . 2 9
. 2 0 3 8 . 5 2 4 1 . 2 3 4 2 . 3 6 4 0 . 6 7

•§ 3 0
£ 40

3 1 . 9 0 3 3 . 1 0 3 4 . 3 5 34 .0 1
2 4 . 4 9 2 4 . 8 5 2 4 . 8 6 2 4 . 7 5

.3 5 0 21 .01 2 1 . 7 6 2 1 . 9 4 2 2 . 0 2
= 6 0 1 7 . 5 9 1 9 . 3 7 1 9 . 4 6 1 8 . 4 7
o 7 0 1 2 . 1 3 1 3 . 5 2 1 3 . 5 4 1 2 . 4 5

& 809 0
1 0 . 2 3 11.81 1 1 . 8 5 1 0 . 7 3
7 . 0 4 8 . 2 8 8 . 2 9 7 . 2 5

1 00 6 . 0 9 7.21 7 . 2 3 6 . 9 6

A v e r a g e

% Increase

2 2 . 1 2 2 3 . 5 9

6 .6

2 3 . 9 4

8 . 2

2 3 . 0 8

4 . 3

Table_8.6: Exp 6 Sum Weight Retrieval Results

8.2.7 Experiment_7: Counting the Types and Orders of Dependencies

In experiment Exp_5, each dependency in a query is only checked

for its absence or presence in the documents regardless of the existence

103

of different types of its dependencies and different orders of its

arguments. For example, in matching a dependency r(x,y) in a query to

a document which contains r(x,y), r(y,x) and a(x,y), only one match is

considered by the retrieval strategy such as the one in Exp_5.

However, in the above example, the number of matches can be

considered as three if we take into consideration the type of

dependencies and the order of arguments, i.e. r(x,y), r(y,x) and a(x,y).

Thus, the next retrieval strategy to try is similar to the strategy used in

Exp_5, but with the counting of the types and orders included. The

results obtained for this retrieval is shown in Table_8.7. The average

precision obtained is 25.86 which is an increase of 16.8% over the

benchmark. This is the highest precision that we got so far. The

im provem ent in the results suggests that the existence of different

kinds of relationships between a set of words in a document increases

the importance of its dependencies in that document.

S t r a t e g i e s : Exp 5 Exp 7

M
V . weigh t

cc
av er age a v e r a g e

CD
flD t yp e X

o
XLU

no no(+count)
Ero o r d e r no no(+count)
»_ra

o.
duplicate 00 y e s y e s

1 0 5 2 . 2 2 55 .51 5 7 . 4 4
2 0 3 8 . 5 2 4 2 . 3 6 4 4 . 6 2

15 3 0
> 4 0

3 1 . 9 0 3 4 . 3 5 3 7 . 4 3
2 4 . 4 9 2 4 . 8 6 2 7 . 4 7

21 5 0 21.01 2 1 . 9 4 2 4 . 7 6
= 60 1 7 . 5 9 1 9 . 4 6 2 0 . 9 8
o 7 0 1 2 . 1 3 1 3 . 5 4 1 5 . 0 6
£ 8 0 1 0 . 2 3 1 1 .85 1 3 . 2 0
C l 9 0 7 . 0 4 8 . 2 9 9 . 5 6

1 0 0 6 . 0 9 7 . 23 8 . 0 4

Av er ag e

% Increase

2 2 . 1 2 2 3 . 9 4

8 .2

2 5 . 8 6

1 6 .8

Table_8.7: Exp 7 Counting of Types and Orders Results

104

Figure_8.1 shows the precision recall curves obtained from the

results of Exp_5 and Exp_7 which show improvements occurring at all

levels of recall over the benchmark.

60

50 -

40 - h Benchmark
♦ Exp_5
■ Exp_7

•2 30 -M VV

20 -

6 0 8 0 1 004 0 1 20200
Recall %

Figure_8.1: Precision recall curves of Exp-5 and Exp-7

8.2.8 Experiment_8: Transitive Dependency

If there are dependencies between x and y and between y and z in a

document, such as r(x,y) and a(y,z), then x and z are said to be

transitively dependent. The next retrieval strategy to try is the one that

105

takes into consideration this kind of one level transitive dependencies.

The implication rules used in this experiment are the same as Exp_7

bu t w ith the addition of an implication rule for the transitive

dependency. The results obtained by this strategy are given in Table_8.8

which show an improvement of only 4.6% over the benchmark. The

strategy in Exp_7 which does not consider transitive dependency

perform s far better than the current strategy. This means that the

transitive dependency does not portray the true dependency.

S t r a t e g i e s : Exp 5 Exp 7 Exp_8

VIL-
03
03

weigh t
IX

av e ra ge a v e r a g e av e r ag e
ty p e X

o
2
LU
00

no no(+count) no(+count)
E
Cti

o r d e r no no(+count) no(+count)
k_
03

Cl
dupl icate
o th e r s

y e s y e s
counting

y e s
counting &
t r a n s i t i v e

1 0 5 2 . 2 2 55 .51 5 7 . 4 4 5 6 . 3 9
. 2 0 3 8 . 5 2 4 2 . 3 6 4 4 . 6 2 4 1 . 6 2

-5 3 0 3 1 . 9 0 3 4 . 3 5 3 7 . 4 3 3 5 . 4 2
& 4 0

_ J 5 0
2 4 . 4 9 2 4 . 8 6 2 7 . 4 7 26 .0 1
21 .01 2 1 . 9 4 2 4 . 7 6 2 2 . 5 8

= 6 0 1 7 . 5 9 1 9 .4 6 2 0 . 9 8 1 7 . 1 7
8 7 0 1 2 . 1 3 1 3 . 5 4 1 5 . 0 6 1 1 . 4 7
S 8 0

9 0
1 0 . 2 3 1 1 .85 1 3 . 2 0 9 . 7 8
7 . 0 4 8 . 2 9 9 . 5 6 6 . 0 4

1 00 6 . 0 9 7 . 2 3 8 . 0 4 4 . 9

A v er ag e

% Increase

2 2 . 1 2 2 3 . 9 4

8 .2

2 5 . 8 6

1 6 . 8

2 3 . 1 4

4 . 6

Table 8.8:Exp 8 Transitive Dependency Results

8.9 Experiment_9: Retrieval with a set of synonyms

The uncertain implication language, UNIL, provides the facility to

define synonyms to be used with any retrieval strategy. Based on the

experimental queries, we have defined a set of synonyms to be used

with the retrieval strategy of Exp_7. We know that the formulation of

these rules is ad hoc and biased, and therefore, the results obtained may

106

not reflect the true situation when an operational thesaurus is used.

But this experiment is performed just to demonstrate the usage of

synonyms in our system. The synonym rules are defined as follows:

1. tss is an abbreviation of time sharing system:

r: system(X):- q:time(Y), q:sharing(Z), q:r(Y,X), q:(Z,X), d:tss(_X

2. intermediate language is synonymous to intermediate code:

language(X):- q:intermediate(Y), q:a(Y,X), d:intermediate(A),

d:code(B), d:(A,B).

3. lexical analysis, syntax analysis, code generation and

optimisation are components of a compiler:

compiler(_):- (d:lexical(A),d:analysis(B),d:a(A,B))

(sKdisyntaxCCXanalysisCDXrCQD)) @

(d:code(E),d:generation(F),r(E,F)) @

(d:code(G),d:optimization(H),r(G,H)).

4. monitor, semaphore, guard, and synchronization are relevant

to communicating processes:

communicating(X):- q:processes(Y), q:r(X,Y),(d:monitor(_) @

d:sem aphored) @ d :guard(J @ d:synchronization(J).

5. security is synonymous to privacy, cryptography, protection and

encryption:

securityd:privacy(_)@ d:cryptography(_) @ d:protection(J @

d:encryption.

6. parallel is synonymous to concurrence and synchronization.

p a r a l l e l d:concurrence(J @ d:synchronization(J.

107

7. microcode is synonymous to low level code:

m ic ro c o d e d :lo w (X) , d:level(Y), d:code(Z), d:r(X,Z), d:r(Y,Z).

8. modelling is synonymous to simulation:

modelling(_):- d:simulation(_).

9. paging and fragmentation are components of memory

m anagem ent:

memory(X):- q:management(Y), q:r(X,Y), (d:paging(_) @

d:fragmentation(_)).

10. ELI is synonymous to ELI, and ELII to EL2:

e l i e l l (_).

elii(_):- el2(_).

The results obtained for this experiment with synonyms are given

in Table_8.9 which shows an improvement of 24.3% when compared

to the 16.8% achieved by the retrieval w ithout synonyms. This

experiment shows that with a set of synonyms properly defined by an

expert in the domain knowledge can improve the effectiveness of

retrieval tremendously.

108

Si r a te g ie s : Exp_5 Exp 7 Exp 9

weigh t
cc

k_
<r av e ra ge av e r ag e av e ra ge
CD t y p e io no no(+count) no(+count)
E
CC o r d e r z:

LU
QQ

no no(+count) no(+count)
k_
cc

Q.
dupl icate
o th e r s

y e s y e s
counting

y e s
counting &
sy non ym s

1 0 5 2 . 2 2 55 .51 5 7 . 4 4 5 8 . 7 4
co 2 0 3 8 . 5 2 4 2 . 3 6 4 4 . 6 2 4 5 . 6 4
a) 3 0 3 1 . 9 0 3 4 . 3 5 3 7 . 4 3 3 8 . 0 6
5 4 0 2 4 . 4 9 2 4 . 8 6 2 7 . 4 7 2 8 . 6 4
“ 5 0 21 .0 1 2 1 . 9 4 2 4 . 7 6 2 6 . 0 0
= 6 0
2 7 0

1 7 . 5 9 1 9 . 4 6 2 0 . 9 8 2 2 . 9 9
1 2 . 1 3 1 3 . 5 4 1 5 . 0 6 1 7 . 6 8

r r 8 0 1 0 . 2 3 1 1 .85 1 3 . 2 0 1 5 . 6 2
9 0 7 . 0 4 8 . 2 9 9 . 5 6 1 1 . 5 5
1 00 6 . 0 9 7 . 2 3 8 . 0 4 1 0 . 1 4

A v e r a g e

% Increase

2 2 . 1 2 2 3 . 9 4

8 . 2

2 5 . 8 6

1 6 . 8

27 .51

2 4 . 3

Table 8.9:Exp 9 Retrieval with Synonyms Results

8.3 Conclusion

All strategies experimented above have shown better performances

than the tf x idf benchmark. Our best retrieval strategy from Exp_7 has

produced an increase of 16.8% in average precision over the

benchmark. This figure is very encouraging when compared with the

figures obtained by Smeaton and Fagan which are 5.07% and 8.7%

respectively. The level of improvement we obtained can be considered

as significant, see the precision recall curves in Figure_8.2. When the

same retrieval strategy is used with a small set of synonyms in Exp_9,

the increase in average precision obtained is 24.3%. Although the set of

synonyms used is biased to the queries experimented with, the results

obtained suggest that there is scope for further improvement.

Figure_8.2 also shows the precision recall curve obtained from Exp_9.

109

50

□ Exp_7
♦ Exp_9
■ Benchmark

40

>50s
Co
<0
' o 30
2 0.

20

10

0

200 4 0 6 0 8 0 100 120
Recall %

Figure 8.2: Precision Recall Curves

Table_8*10 shows the results of the Document Cutoff evaluation

performed on the best four retrieval strategies carried out in the above

experiments, i.e. Exp_3, Exp_5, Exp_7, and Exp_9. The results of this

evaluation confirm and strengthen the results obtained from the recall

cutoff evaluation regarding the grading of the effectiveness of each

strategy. One obvious improvement of the retrieval with synonyms

over the others is in the Qfail figures, i.e. the number of queries which

fail to retrieve any relevant document at each cutoff rank position. At

cutoff 30, the value of Qfail is 0 for this strategy. This is probably what

caused the large increase in the average precision obtained by this

110

strategy over the others.

Number of Documents Retrieved & Relevant (Qfail*)

Benchmark

Exp_3 Exp_5 Exp_7 Exp_9

P
ar

am
et

er weigth
typ e
o r d e r
dup
o th e r

con s t an t
no
no
y e s

av e r ag e
no
no
y e s

av e r ag e
no
no
y e s
count

av e ra ge
no
no
y e s
count &
synonyms

5 7 4 (1 2) 7 6 (1 1) 7 5 (1 1) 7 8 (9) 7 6 (7)

1 0 1 1 1 (4) 1 1 9 (3) 1 20 (3) 1 2 9 (2) 13 1(1)

1 5 1 5 5 (2) 1 56 (2) 15 6(2) 1 7 7 (2) 1 7 6 (1)

2 0 1 8 8 (2) 1 88 (2) 1 89 (2) 2 0 7 (2) 2 0 8 (1)

2 5 2 0 3 (2) 2 0 7 (2) 2 1 0 (2) 2 3 1 (2) 2 3 3 (1)

Li 3 0 2 2 8 (2) 2 2 9 (2) 2 3 2 (2) 2 5 5 (1) 2 5 5 (0)

ft 4 0 2 5 5 (2) 2 6 1 (2) 2 6 1 (2) 2 8 8 (1) 2 8 4 (0)

5 0 281 (2) 2 8 4 (2) 2 8 5 (2) 3 1 5 (1) 3 1 5 (0)

1 0 0 3 6 0 (1) 3 6 5 (1) 3 6 4 (1) 3 9 7 (1) 3 9 9 (0)

2 0 0 4 5 8 (1) 4 6 0 (1) 4 6 0 (1) 4 9 3 (1) 5 0 4 (0)

4 0 0 5 5 8 (1) 5 5 8 (1) 5 5 8 (1) 5 5 3 (1) 5 6 3 (0)

6 0 0 5 9 8 (1) 5 9 9 (1) 5 9 9 (1) 5 9 2 (1) 6 0 3 (0)

8 0 0 6 2 1 (1) 621 (1) 6 2 1 (1) 6 1 7 (1) 6 3 0 (0)

1 0 0 0 6 2 8 (1) 6 2 8 (1) 6 2 8 (1) 6 2 4 (1) 6 3 7 (0)

% increase
prec is io

in ave rage
n 6 .6 8 . 2 1 6 . 8 2 4 . 3

*Qfail = Number of quer ies which fail to retrieve any relevant document .

Table_8.10: Document Cutoff evaluation on the best four strategies

ill

Chapter 9: Nearest Neighbour Relevance Feedback Experiments

9.1 Introduction

After performing non-feedback experiments on various retrieval

strategies as described in Chapter 8, the second part of the thesis is to

perform experiments using relevance feedback with nearest neighbour

information. The retrieval strategy of Exp_7 is chosen to perform the

initial ranking of documents with respect to each query, and from this

ranking a few, say C, top ranked documents will be retrieved and

identified as relevant or not by the user. C is the cutoff point which can

be varied and experimented upon to obtain the best possible value. The

C top ranked documents which are judged as relevant will be referred

to as 'retrieved and relevant' documents or simply as RR. From this set

of retrieved and relevant documents, we can obtain all the unretrieved

documents which have any of the RR as their nearest neighbour as

illustrated in Figure_9.1. This set of unretrieved documents have the

potential of also being relevant since they are 'close' to the RR, and

they will be referred to as potentially relevant documents or simply as

PR.

112

Initial Ranking
of documents

r ank 1
Retrieved
Documents RR

Cutoff
nearest
neighbour
links

PR
Unretrieved
Documents

r ank n

Figure_9.1: Determining the potentially relevant documents (PR)

The nearest neighbours for each document are determined using

dissim ilarity coefficients or 'distance' measurements between each

document. The initial similarity values or scores of the PR to the query

will be updated according to their distances from the RR. With these

updated scores a new ranking of documents is obtained and evaluated.

This relevance feedback retrieval strategy is an implementation of the

imaging retrieval as defined and given theoretical foundation by van

R ijsbergen in [van Rijsbergen 1989]. The stra tegy in our

implementation focuses on looking for 'images' of the retrieved and

relevant documents from among the unretrieved documents.

In the following sections we will discuss how our experiments on

imaging retrieval are related to cluster-based retrieval, how the nearest

neighbour set for each document is determined, how the scores of PR

are updated, and the method of evaluation which determines the

effectiveness of the imaging retrieval. Finally, we will discuss various

experiments carried out within this strategy and the results obtained.

113

9.2 Cluster-based retrieval

Van Rijsbergen proposed the cluster hypothesis which simply states

that closely associated documents tend to be relevant to the same

requests [van Rijsbergen 79]. Clustering is a process of picking out

closely associated documents and grouping them together into one

cluster. It is assumed that clustering of documents will increase the

level of retrieval effectiveness. Croft has given the following simple

example to support this assumption [Croft 1978]. A relevant document,

because of an error in the indexing process, may lack a term which

w ould cause it to be retrieved. However, if the documents are

clustered, this docum ent may be clustered w ith other relevant

documents that do have the required term. Therefore, it could be

retrieved by a cluster search.

One exam ple of clustering algorithm s is the single-link as

experimented with by [van Rijsbergen 1972] and [Croft 1978]. The basic

inpu t to the single-link clustering algorithm is the dissimilarity

coefficient and the output is a hierarchy with associated numerical

levels called a dendrogram. The hierarchy can be represented by a tree

structure such that each node represents a cluster, as illustrated in

Figure_9.2. The numerical level of a cluster can be defined as follows: if

a cluster has a numerical level of L, this implies that every document

in that cluster must have a dissimilarity value less than L for at least

one other document in the cluster.

114

L5

L
L3“

L2-
L1~

L4

A B C D E F GB C D E F G

Figure_9.2: A dendrogram with corresponding tree

There is a variety of search strategies that can be performed on the

hierarchy. The search strategies used for cluster-based retrieval can be

grouped into two types: top-down and bottom-up. In a top-down search

strategy, the search starts at the root of the tree, i.e. node_0 as illustrated

in Figure_9.3. The search proceeds by evaluating a matching function

at the node immediately descendent from node_0, i.e. node_l and

node_2 in Figure_9.3. This process repeats itself down the tree. The

search is directed by a decision rule and a stopping rule. The decision

rule decides at each stage which node is to be expanded further

according to the values of the matching function. The stopping rule

decides when the search should be terminated and retrieval should be

perform ed. The decision rule and the stopping rule used in the

example as illustrated in Figure_9.3 are as follows:

decision rule: chose the node with the maximum value of the

matching function obtained within a filial set.

stopping rule: stop when the current maximum is less than the

previous maximum.

115

Start
° A

Ret r i eve

A

Figure 9.3: A Top-down search strategy

A bottom-up search is one which starts the search at one of the

terminal nodes and proceeds upwards towards the root. A decision rule

is not required in this search strategy. But a stopping rule is needed and

it can be simply a cut-off. A typical search is to find and retrieve the

largest cluster containing the document represented by the starting

node and not exceeding the cut-off in size. To start the bottom-up

search, it is necessary to know an appropriate document with respect to

the query. This may be an identification of a relevant document given

by the user. Figure_9.4 illustrates a bottom-up search strategy. Croft has

performed an evaluation of bottom-up searches in terms of efficiency

and effectiveness in [Croft 1978] and he has concluded that the bottom-

up search is better than the conventional serial/inverted search.

116

Re t r i eve

A

S t a r t

Figure_9.4: A bottom-up search strategy

In our experiments on relevance feedback using nearest neighbour

information, for each document D there is a cluster or set of documents

which are identified as documents having D as one of their nearest

neighbours, as illustrated in Figure_9.5. The distance information

between the neighbours is also included in these clusters which will be

used for further processing. The relevance feedback information, in

terms of identifications of some relevant documents, obtained from

the user, will select the clusters which are identified with those

relevant documents to be looked into for further processing. The

selected clusters are actually the potentially relevant documents, i.e. the

PR set.

The data structure given in Figure_9.5 which is used to represent

the nearest neighbour inform ation has m ade the process of

determining the PR set much easier. By knowing the RR set, through

the relevance feedback, we can directly determine the PR set. This data

structure will be discussed further in the next section.

117

COLLECTION

Dr,dr . . . [
A

D1 , s

Potential ly Re levant Potentially Re levant

Legend
Di - document i © j

Relevance Feedback!
| si - similarity score of Di
| from initial retrieval
\ di - distance to nearest
! neiohbourneighbour

. !

Figure 9.5: Relevance Feedback with Nearest Neighbours

9.3 Definition and Determination of Nearest Neighbours

We define nearest neighbours of a document as a set of documents

whose members satisfy certain conditions based on their 'distances' to

the docum ent concerned. The distances between documents are

m easured using dissimilarity coefficients calculated using Dice's

coefficient [van Rijsbergen 79]. The dissimilarity coefficient between

two documents represented by X and Y are calculated as below:

where IAI gives the size of the set A. A dissimilarity coefficient

denotes a m easure of distance between two documents. Our

determ ination of nearest neighbour sets is based on this distance

m easurem ent. The following example illustrate how dissimilarity

coefficients are calculated in our system. Given two documents X and Y

dissimilarity coefficient = 1 - Dice's coefficient

= 1 -2lXnYI /(IXI + IYI)

in our predicate representation form:

X:

[1988(V),undergraduate(W)/curriculum(X)/computer(Y)/science(Z),r(W,X)/in(X,Z)]

Y:

[1987(A),undergraduateCBXcomputerCCXscienceCD^curriculumCE^KD^XrCQEXrCB/E)]

the results of the intersection between X and Y, which is computed

using unification process as illustrated in Figure_9.6, is :

XnY:

[undergraduate(W),curriculum(X),computer(Y),science(Z),r(W,X)]

Thus, the dissimilarity coefficient or distance between X and Y is :

1-21 XnY I / (IXI + IYI)

= 1 - 2(5/ (7+8))

= 1 - 0.67

= 0.33

[1988 (V) , undergraduate (W) , curriculum (X) , computer (Y) , science (Z) , r (ijf, X) , in (X, Z)

[1987(A),undergraduate(W),computer{Y),science(Z),curriculum(X),r(Z,X),r(Y,X),r(W,X)

Figure_9.6: XnY

In perform ing the intersection operation between documents,

implication rules for matching the multi-place predicates have to be

defined. Due to execution time factor, the calculation of dissimilarity

119

coefficients betw een docum ents is im plem ented in C and the

implication rules adopted are equivalent to the non-typed and ordered

parameters as defined for retrieval strategies. In fact, all programs that

implement imaging retrieval are written in C.

There are many ways by which the nearest neighbour set of each

document can be determined, for example:

1) by selecting only the closest documents to the document

concerned,

2) by setting a threshold value on the distance and limiting the

number of nearest neighbours for each document.

In our experiments, we have used two methods for determining

nearest neighbour sets. They are:

1. The Closest Nearest Neighbours.

The nearest neighbour set of a document is formed by selecting

only the documents with the shortest distance to it. There may be

more than one documents with the shortest distance.

To illustra te how the nearest neighbour inform ation is

represented in our implementation, assume that the collection

contains n documents: DI, D2, . . . , Dn. If the closest nearest

neighbour sets of some documents are given as follows :

120

docum ent closest nearest neighbour set

with distance

DI {D3,0.1}

D2 {D7,0.2; D9,0.2)

DIO {D3,0.4; D7,0.4; D1002,0.4}

Dn {Dl,0.3}

then, based on the structure in Figure_9.5, the nearest neighbour

information represented in our system for the above collection is

depicted in Figure_9.7.

Figure_9.7: The representation of the closest nearest neighbour

inform ation

2. The Ten Nearest Neighbours.

The sizes of the closest nearest neighbour sets determined by the

above method may be too small and may not alter the initial

COLLECTION

D1,s1 ... D 3 , s3 D 7, s 7 D9 ,s9 D1002,&1D02 ...

Dn,0.3 D 1 ,0.1
D1 0 , 0 .4

D 2.0 .2
D1 0 , 0 .4

D 2,0 .2 D1 0 ,0 .4

Legend
Di - document i
si - similarity score of Di

from initial retrieval

121

ranking of the documents much. Thus, we decided to increase

their sizes by selecting at least the first ten closest documents

instead of selecting only the closest documents into the nearest

neighbour sets. The size can be greater than ten if the number of

the closest nearest neighbours is more than ten, and the size can

be less than ten if the number of the neighbours with distances

less than 1 is less than ten.

The representation of the nearest neighbour information in the

case of using the ten nearest neighbours is similar to the case

when the closest nearest neighbours are used. Assume the

collection contains the same n documents as in the example

above, and the ten nearest neighbour sets of some documents are

given as follows :

docum ent closest nearest neighbour set

with distance

DI {D3,0.1; D7,0.2; D5,0.9}

D2 {D7,0.2; D9,0.2; D3,0.3; D21,0.4; Dl,0.4;

D4,0.5; D5,0.5; D6,0.6; D8,0.7; D1002,0.9}

DIO {D3,0.4; D7,0.4; D1002,0.4; D5,0.9}

Dn {Dl,0.3}

Then, the representation of the nearest neighbour information

for this example is given in Figure_9.8.

122

COLLECTION

D1,s1 D 3 , s 3 D 4 , s 4 D 5 , s5 D 6 , s 6 D 7 , s 7 D 8 , s8 D 9 , s 9 D21 , s21 D1002 , s10 02 ...

Figure_9.8: The representation of the ten nearest neighbours

inform ation

9.4 Updating the Scores

After determining the set of the potentially relevant documents PR

from the nearest neighbour inform ation by knowing the RR

documents, their scores have to be updated in order to produce the

new ranking of the documents. The question now is "by how much

should their scores be increased?". In what follows, we will describe

one way of calculating this increment.

The initial ranking of the documents produces the following set of

document identifications and their scores :

Initial Ranking = { Dj, score^; D2, score2; • • •; Dn, scoren }

where score* is the score of the document Dp From the initial ranking,

we can obtain the C top ranked documents and thus produce the

Dn,0 .3 D 1 ,0.1
D 2 ,0 . 4 D 1 0 , 0 .4

D 2 ,0 .3

D1.0 . 9
D 2 .0 .5
D1 0 , 0 . 9

D 2.0 . 2
D1 0 ,0 .4

D2.0 . 2 D1 0 , 0 .4
D2 ,0 .9

D 2.0 .5 D 2,0 .6 D2 .0 .7 D 2,0 .4

Legend
Di - document i

si - similarity score of Di
from initial retrieval

123

relevant and retrieved set RR, in descending order of scores, as follows:

RR = { Dri, scorer i; Dr2, scorer2; . . . ; Dri, scorer i }

where scorer . is the score of document Dr .. The highest score in this set

is scoreri and for the sake of clarity, we rename this score as scorermax-

From this RR set we can obtain a set of potentially relevant documents

PR whose members having at least a nearest neighbour which is a

member of RR:

PR = {Dp i, dp ii; Dp2, dp2j ; .. ,Dpm, dpmk }

where Dp. is a potentially relevant document with a distance of d p j to

its nearest neighbour Dj which is a member of RR. Dp. and Dpk, where

i ^ k, may refer to the same document. If this happens, the increment

value to the score will take the highest increment value of the two.

If Dr is a member of RR and Dp is a member of PR whose nearest

neighbour is Dr, then a similarity diagram of Dr and Dp with respect to

a query Q can be depicted as in Figure_9.9, where (l-d p r) is the

similarity value between Dp and Dr .

124

scorer (Query

Figure_9.9: Similarity Diagram

|y
One of the possible ways of updating the scorep isAincreasing it with a

value calculated using the increment function as follows:

increment = K * [(l-dpr) * scorer * (scorer /scorermax)]

where (l-dp r) is the similarity coefficient between the documents Dp

and Dr, (scorer /scorermax) is the relative similarity coefficient of Dr to

Q with respect to the highest score obtained by RR, and K is some

constant greater than 0 and less than or equal to 1. Which means, the

increment is some percentage of the score scorer based on:

1) the distance between the potentially relevant document and the

relevant document concerned, and

2) the importance of the relevant document concerned with respect

to the other documents which are judged to be relevant.

125

9.5 Evaluating Imaging Retrieval

The m ethod used to evaluate the effectiveness of our imaging

retrieval is the residual ranking evaluation technique as described in

[Harper 80] and [Salton&Buckley 88]. When comparing the initial

ranking with the new ranking obtained after the feedback, the feedback

docum ents which have already been seen by the user should be

removed from both rankings. A ranking with the feedback documents

removed is known as a residual ranking. The initial residual ranking is

obtained by removing the C top ranked documents which have been

judged by the user from the initial ranking. The new residual ranking

is obtained by removing the same C documents as above from the new

ranking generated after the feedback. Then, the precision-recall cutoff

evaluation as described in Chapter 7 is performed on both residual

rankings. In this residual evaluation technique, the queries that

retrieve all the relevant documents within the C top ranked

documents of the initial ranking are excluded from the evaluation,

since there are no more relevant documents remaining to be retrieved.

The document cutoff evaluation as described earlier in Chapter_7

can also be performed on both the initial and the new rankings. This

evaluation is less opaque than the precision-recall cutoff evaluation,

since it gives the actual number of the relevant documents retrieved at

specified rank positions summed over all the queries.

9.6 Experimental Results

In this section we will discuss the experimental results obtained in

performing the imaging retrieval as described above.

126

9.6.1 Benchmark

The precision-recall cutoff evaluation is done on the initial residual

ranking with the cutoff point C equal to 10, and the results obtained are

given in Table_9.1. The average precision obtained is 15.81.

Benchmark
P r e c i s i o n

a)
o

DC

1 0 3 7 . 3 9
2 0 2 8 . 7 0
3 0 2 2 . 3 6
4 0 1 6 . 7 5
5 0 14.41
6 0 1 1 .67
7 0 9 . 6 9
8 0 7.01
9 0 5 . 3 6
1 00 4 . 6 9

Aver age 15.81

Table_9.1: Benchmark with cutoff C=10

9.6.2 Experiment_A: Using Closest Nearest Neighbours

A few experiments are performed using the closest nearest

neighbour sets with different increment functions as follows:

A l: increment = 0.5 * (l-dpr) * scorer * (scorer /scorermax)

A2: increment = (l-dpr) * scorer * (scorer /scorermax)

A3: increment = (1- dpr) * scorer

The cutoff point C used in these experiments is 10. The purpose of

this set of experiments is to find a suitable increment function. The

results obtained from these experiments are shown in Table_9.2 with

the average precisions for Al, A2 and A3 respectively as follows. 16.0,

127

15.54 and 15.33. The precision recall bar-chart of these results is shown

in Figure_9.10. The results show that the function which gives the

greater increment values produces a lower average precision. In fact,

the increment function A2 and A3 give the average precision values

which are worse than the benchmark. This is probably because the

increment values added to the PR document scores are too big and

many of the PR documents are not really relevant at all.

P r e c i s i o n s

In crem en t F u n c t i o n s

B ’ chmark
Al A2 A3

■§ 2 0

5 58
= 5 0
g 6 0
f i 7 0

8 0
9 0
1 0 0

3 7 . 3 9
2 8 . 7 0
2 2 . 3 6
1 6 . 7 5
14.41
1 1 . 6 7
9 . 6 9
7.01
5 . 3 6
4 . 6 9

3 8 . 2 5
28.91
22.41
17 .0 7
1 4 . 5 4
1 1 .99
9 .6 7
6 . 9 6
5 . 3 2
4 . 8 2

40.01
2 8 . 5 3
2 1 . 3 2
1 5 .9 6
1 3 .7 8
1 0 .8 8
8.61
5 . 8 9
4 . 2 5
3 . 9 8

4 2 . 3 4
2 7 . 9 8
2 1 . 5 3
1 6 . 0 0
1 4 . 2 9
1 0 . 6 2
8 . 5 4
5 . 8 7
4 . 2 3
3 . 9 6

A v e r a g e 15.81 1 6 .0 0 1 5 .3 2 1 5 . 5 4

% Increase 1.2 -3.1 - 1 . 7

Table_9.2: Results of Experiments using A1,A2 and A3

50

40 -

30 -

8
a 20

10 _

0

■ Benchmark
B A1
M A2
0 A3

I m n , ■» h* T -

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 00

Recall %

Figure_9.10: Prlcision recall bar-chart for the increment function

experiments

The next experiment to carry out is with an increment function

which gives lesser increment values than Al. The function is .

A4: increment = 0.25 * (1- dpr) * scorer * (scorer /scorermax)

The average precision obtained using this function, as shown in

Table 9.3, is 15.89; which is inferior to the value obtained when using

A l.

129

P r e c i s i o n s

In cerem en t F u n c t i o n s

B ’ chmark
Al A4

« 10 d) 20
5 30
-J 40
= 50
o 60 g 70

80
90
100

37.39
28.70
22.36
16.75
14.41
11 .67
9 .69
7.01
5 .36
4 .69

38.25
28.91
22.41
17.07
14.54
11.99
9 .67
6.96
5 .32
4 .82

37 .50
28 .86
2 2.3 6
16.88
14.52
11.99
9 .69
7.02
5 .36
4 .69

Aver age 15.81 16.00 15.89

% Increase 1.2 0.3

Table 9.3: The Results using A4

Looking at the results in Table_9.2, eventhough the average

precisions obtained using the functions A2 and A3 are lower than the

benchmark, but the precisions obtained by these functions at recall

level 10% are higher than the precisions obtained by the benchmark

and A l. This is probably the result of giving higher increment values

to the PR, which has pushed the relevant documents among the PR

further up the rank. A similar argument can be given to explain the

drop in the average precision obtained by A2 and A3, that is, the non-

relevant documents among the PR have been pushed too high up the

ladder and caused the drop in the overall precision.

130

Number of Documents Retrieved & Relevant

Document
Cutoff
Point s:

Benchmark
Increment Function:

A1 A2 A3

1 0 1 2 9 - - -

1 5 1 7 7 179 181 1 8 6

2 0 2 0 7 2 1 3 2 1 7 2 2 0

2 5 231 2 3 8 2 3 5 2 3 7

3 0 2 5 5 2 6 2 2 6 3 2 6 3

4 0 2 8 8 2 9 0 291 2 9 4

5 0 3 1 5 3 1 7 3 1 9 3 2 0

1 00 3 9 7 3 9 7 3 9 8 3 9 8

2 0 0 4 9 3 4 9 4 4 9 5 4 9 8

4 0 0 5 5 3 5 5 5 5 5 4 5 5 5

6 0 0 5 9 2 5 9 2 5 9 3 5 9 3

8 0 0 6 1 7 6 1 8 6 1 8 6 1 8

1 0 0 0 6 2 4 6 2 5 6 2 5 6 2 5

Table_9.4: Document Cutoff Evaluation for the increment function

experiments

The document cutoff evaluation on the results obtained in the

above experiments is given in Table_9.4. This evaluation has shown

that for document cutoff points at 50 and below, A3 has outperformed

A2 and A2 has outperformed Al. But the performance seems to level

up at higher document cutoff points, and based on the precision-recall

figures, A l will finally outperform A2 and A3. Thus the increment

function A3 seems to be the best choice for an operational system, but

for our experimental purpose we will chose Al since it has given a

constant improvement over the benchmark at almost all the levels of

recall and in the overall average precision.

131

9.5.3 Experiment_B: Using Ten Nearest Neighbours

It is felt that the number of documents in the PR set may be too

small to be able to have many really relevant documents which could

significantly alter the initial ranking and produce better results. If the

size of the PR set is increased then there is a better chance that it will

contain more relevant documents, but the chance of having more

non-relevant documents also increases. In order to increase the size of

the PR set, we have to increase the number of documents in the

nearest neighbour sets. Thus, in the following experiments we have

used the ten nearest neighbour sets with the following increment

functions:

Bl: increment = 0.5 *(l-dpr) * scorer * (scorer /scorermax)

B2: increment = (l-dpr) * scorer * (scorer /scorermax)

P r e c i s i o n s

In crement F u n c t i o n s

Benchmark
Al Bl B2

10
■g 2 0
® ? ° _J 4 0
= 5 0
g 6 0
& 7 0

8 0
9 0
1 0 0

3 7 . 3 9
2 8 . 7 0
2 2 . 3 6
1 6 . 7 5
14.41
1 1 .67
9 . 6 9
7.01
5 . 3 6
4 . 6 9

3 8 . 2 5
28.91
22.41
17 . 07
14 . 54
11 . 99
9 .67
6 .96
5 . 32
4 .8 2

3 8 . 4 6
2 9 . 7 9
2 2 . 6 7
1 5 . 84
1 3 . 7 3
11 .3 3
8 . 5 3
6 .1 3
4 . 4 8
3 . 9

3 6 . 9 3
28.01
21.51
1 6 . 1 0
13.41
1 0 . 8 7
8 . 5 8
5 . 9 0
4 . 2 5
3 . 5 8

Av er ag e 15.81 16 .0 0 1 5 . 49 1 4 .9 2

% Increase 1.2 - 2 . 0 - 5 . 6

Table_9.5: Results of Experiments using Bl and.BZ

The results of the experiments using the above two increment

functions are given in Table_9.5 which show that the average precision

132

obtained for the functions Bl and B2 are 15.49 and 14.92, respectively.

These results are worse than the benchmark. The reason is, probably,

that there are too many non-relevant documents in the PR set. In order

to filter some of them out, we can impose a threshold value on their

distance measurements. The following two increment functions are

introduced to impose this threshold value:

B3: If dpr < 0.7 then

increment = 0.5 *(l-dDr) * scorer * (scorer /scorer)r 1 1 1 1max
else increment = 0.

B4: If dpr <0.6 then

increment = 0.5 *(l-dpr) * scorer * (scorer /scorermax)

else increment = 0.

P r e c i s i o n s

In crem ent F u n c t i o n s

B 1chmark
Al B3 B4

tn 10
-§ 20

_i 40
= 50
8 60 £ 70

80
90
1 00

3 7 .3 9
28.70
2 2.3 6
16.75
14.41
11.67
9.69
7.01
5 .36
4 .69

38.25
28.91
22.41
17.07
14.54
1 1.99
9.67
6.96
5 .32
4 .82

37.71
28.97
22.47
17.02
14.52
11.99
9 .69
7.01
5.36
4 .69

37.56
28.87
22.53
16.92
14.41
11.67
9.69
7.01
5.36
4 .69

A v er ag e 15.81 16.00 15.94 15.87

% Increase 1.2 0.8 0.4

Table_9.6: Results of Experiments using B3 and B4

The average precisions obtained for B3 and B4 are 15.94 and 15.87,

respectively, as shown in Table_9.6. Although there is some

improvement over the results of Bl and B2, the results obtained are no

133

better than when using the closest nearest neighbour sets with the

increment function Al. Therefore, we can conclude that it is better to

use the closest nearest neighbour sets because the results obtained are

slightly better and the amount of calculations involved is less.

The best results obtained so far in our relevance feedback retrieval is

w hen using the closest nearest neighbour sets and the increment

function A l. The average precision obtained is 16.0 which is an

increase of 1.2% over the benchmark. Although the improvement is

not very significant, it shows that this sort of relevance feedback

retrieval strategy is viable and valid. The level of improvement might

be increased by doing further experiments in order to find the more

effective increment function and the cutoff point.

9.6.4 Experiment_C: Cutoff Point Experiments

In order to investigate the performance of various cutoff points in

imaging retrieval, experiments with cutoff points at 5,10, 15, and 20 are

perform ed and their results are evaluated. The results of the residual

ranking evaluation are given in Table_9.7. The results have shown

that the cutoff point with higher value gives greater improvement

over its respective benchmark. The cutoff point at 5 shows a negligible

difference from its benchmark, in fact, it shows a decrease of 0.2% in

average precision over the benchmark. As the value of the cutoff point

is increased to 10, 15 and 20 the respective improvements in average

precision obtained are 1.2,1.14 and 9.6. The results obtained suggest that

there is a relationship between the performance and the cutoff points,

i.e. higher cutoff points tend to give better results.

134

P r e c i s i o n s

cutoff = 5 cutoff = 10 cutoff = 15 cutoff = 20

Benchmark new
ranking Benchmark

new
ranking Benchmark new

ranking Benchmark
new

ranking

1 0
-5 2 0

*_i 4 0
= 5 0
2 6 0
& 7 0

8 0
9 0
1 0 0

3 8 . 3 3
2 9 . 8 6
2 2 . 8 7
1 9 . 0 0
1 6 . 2 0
1 1 . 1 6
8 . 9 7
6 . 1 0
4.31
3 . 4 7

3 7 . 3 5
2 9 . 8 2
2 3 . 0 9
1 9 . 2 0
1 6 . 4 7
1 1 . 2 9
8 . 9 5
6 . 0 4
4 . 2 8
3 . 6 3

3 7 . 3 9
2 8 . 7 0
2 2 . 3 6
16 .7 5
14.41
1 1 . 67
9 .6 9
7.01
5 . 3 6
4 . 6 9

3 8 . 2 5
28 .91
22 .41
1 7 . 0 7
1 4 . 5 4
1 1 . 9 9
9 . 6 7
6 . 9 6
5 . 3 2
4 . 8 2

2 4 . 4 6
2 0 . 5 5
1 7 . 1 9
1 4 . 2 8
1 1 . 6 3
9 . 1 2
5 . 7 3
4 . 6 9
3 . 3 5
2.71

2 7 . 0 3
2 0 . 8 2
1 7 . 6 0
14.41
1 1 . 2 2
8 . 7 7
5 . 3 5
4 . 3 0
2 . 9 6
2 . 4 9

2 3 . 9 5
1 4 . 5 6
1 1 .77
9 . 1 3
7 . 3 7
4 . 8 9
3 . 7 8
2.91
2 . 0 3
1 .28

2 8 . 1 9
1 6 . 9 7
12 . 63
9 .2 6
7 .4 0
4 . 9 7
3 . 7 9
2.91
2 . 0 3
1 .48

A v e r a g e 1 6 . 0 3 1 6 . 0 2 15.81 1 6 . 0 0 1 1 .37 1 1 .5 0 8 . 1 7 8 . 9 6

% Inc rease - 0 . 0 6 1 .2 1 .14 9 .6

Table 9.7: Residual Ranking Evaluation Results

30

□ Benchmark
♦ cutoff=20

1 008 06 04 020
Recall %

P,-r . ^ a n - PrpH sion recall n ir v e of experiment with cutoff=20

135

Figiire_9.ll compares the precision recall curve obtained from the

experiment with cutoff point at 20 to the benchmark's curve. There are

large differences in precisions at the lower recall levels, but the

differences are negligible at the level of recall 40% onwards.

Table_9.8 shows the results of the document cutoff evaluation

performed on the results of the above experiments. As suggested in the

above analysis, the number of retrieved and relevant documents

obtained are slightly higher in the experiment with higher value of

cutoff point.

Number of Documents Retrieved & Relevant

Document
Cutoff
Po in t s :

B' chmark
Imaging Retrieval with cutoff C at:

5 1 0 1 5 2 0

5 7 8 - - - -

1 0 1 2 9 13 0 - - -

1 5 1 7 7 1 79 17 9 - -

2 0 2 0 7 2 1 2 2 1 3 2 1 4 -

2 5 231 2 3 6 2 3 8 2 3 8 2 3 9

3 0 2 5 5 261 2 6 2 2 6 2 2 6 2

4 0 2 8 8 2 9 0 2 9 0 2 9 0 2 9 0

5 0 31 5 3 1 6 3 1 7 3 1 8 3 1 9

1 00 3 9 7 3 9 7 3 9 7 3 9 6 3 9 6

2 0 0 4 9 3 4 9 4 4 9 4 4 9 4 4 9 4

4 0 0 5 5 3 5 5 4 5 5 5 5 5 5 5 5 5

6 0 0 5 9 2 5 9 2 5 9 2 5 9 2 5 9 2

8 0 0 6 1 7 6 1 7 6 18 6 1 8 6 1 8

1 0 0 0 6 2 4 6 2 5 6 2 5 6 2 6 6 2 6

Table_9.8: Dnn.ment Cutoff Evaluation for cutoff experiments

136

9.6.5 Experiment_D: Multi-stage Imaging Retrieval

In the above experiments we have performed only a one-stage

relevance feedback retrieval as depicted in Figure_9.12, i.e. the user

only gives the feedback on the relevant documents once. The number

of stages could be increased to n, where the user gives feedback on the

relevant documents n times and there are n times of reranking of the

documents as depicted in Figure_9.13. At each stage the user will be

given the C top ranked documents to be judged. The user will decide

which documents are relevant and which are not. With this feedback

information, a new residual ranking is obtained and again the C top

ranked documents from the new residual ranking will be given to the

user for relevance judgement. The relevance judgement process will be

repeated n times for n-stage relevance feedback retrieval. This n-stage

relevance feedback retrieval will be referred to as multi-stage imaging

retrieval.

Initial new
Ranking Relevance residual

feedback ranking
Cutoff
P o i n t ------►

i i i

stage_1

p;c„ r0_Q 17- One-stage Imaging Retrieval

137

Initial
Ranking Relevance

feedback
Cutof f
Point

s tage_1
residual
ranking Relevance

feedback

s t a g e _ 0

s t a g e _ 2
residual
ranking

Cutoff
Point

Cutoff
Point

Relevance
feedback

s tage_n
residual
ranking

stage_1 s t a g e _ 2 s tage_n

Figure 9.13: Multi-stage Imaging Retrieval

9.6.5.1 M ethod of Evaluating Multi-stage Imaging Retrieval

The method used in evaluating the effectiveness of the multi-stage

imaging retrieval is based on the residual ranking evaluation. The

effectiveness of the retrieval at stage_n is determined by comparing the

average precision value obtained by the stage-n residual ranking to the

value obtained by the residual of the stage_(n-l) residual ranking, as

illustrated in Figure_9.14. The initial ranking is labeled as stage_0.

138

Ranking Relevance
________ feedback

residual
ranking Relevance

feedback

s ta g e _ 2
residual
ranking Relevance

feedback

s tage_n
residual
ranking

a) icompare w Icompare w Icompare

Initial s tage_1

Cutoff
Point -

s t a g e _ 0 s tage_1 s ta g e _ 2 s tage_n

Figure_9.14: Evaluating the Effectiveness of Imaging Retrieval

9.6.5.2 Results of Multi-stage Imaging Retrieval Experiment

A 3-stage imaging retrieval is performed with a value of C being

equal to 10. The increment function used in this retrieval is the A1

function as used in the earlier experiments. The results obtained from

this experiment will be discussed stage by stage as follows:

Stage_l:
The precision-recall values obtained by the initial residual ranking

and the stage_l residual ranking are given in Table_9.9 where the

average precisions obtained are 15.81 and 16.00, respectively. This

shows that the stage_l ranking is better than the initial residual

ranking by 1.2%. These results are equivalent to the one-stage

retrieval with cutoff point at 10.

139

Preci sions

B'chmark stage_1

* 10
■§ 2 0
I 3 0
-J 4 0
= 5 0
8 6 0
4 7 0

8 0
90
10 0

3 7 . 3 9
2 8 . 7 0
2 2 . 3 6
16 .7 5
14.41
1 1 .67
9 .6 9
7.01
5 . 3 6
4 . 6 9

; 3 8 . 2 5
28.91
22.41
1 7 .0 7
1 4 . 5 4
1 1 . 9 9
9 . 6 7
6 . 9 6
5 . 3 2
4 . 8 2

Average 15.81 16 . 00

% Increase 1.2

Table_9.9: Recall Cutoff Evaluation at Stage-1

Stage_2: j

The precision-recall values obtained byjthe stage_2 residual ranking

are given in Table_9.10 with an average!precision of 7.82. In order to
i
j

determine the effectiveness of the retrieval at this point, the values

obtained should be compared to the values obtained by the residual

of the stage_l residual ranking which is also given in Table_9.10

w ith an average precision of 7.55. This means that the residual

ranking at this stage is better than the previous residual ranking by

3.5%.

Precis ions

residual of
s tage_1

s t a g e_ 2

10
■5 2 0

_i 4 0
=5 5 0g 60
£ 70
^ 8 0

90
100

2 1 . 3 2
13 .7 7
11 .0 0
7 .90
6 . 69
4 . 86
3 . 63
2 . 88
2.01
1 .47

2 3 . 2 3
14.31
11 .1 0
7 .9 4
6 .7 5
4 . 8 6
3 . 6 3
2 . 8 8
2.01
1 .47

Average 7 . 55 7 .8 2

% Increase 3 . 5

Table_9.10: Kprall Cutoff Evaluation at Stage-2

140

The results obtained at this stage can be compared to the results of

the one-stage retrieval with cutoff point at 20. In order to do this, we

performed document cutoff evaluation on these two sets of results.

Table_9.ll gives the results of the document cutoff evaluation,

where it appears that at document cutoff points 200 and below the

performance of the multi-stage retrieval is better than the one-stage

retrieval and the performance seems to be the same at the higher

docum ent cutoff points. The improvement obtained at this stage

may also be due to the improvement obtained by the previous stage.

Number of Documents
Retrieved & Relevant

Document
Cutoff
Points:

one -s tage
with
cutoff =20

mul t i - s t age
at s tage-2
with cutoff
= 10

2 5 2 3 9 2 4 0

3 0 2 6 2 2 6 3

4 0 2 9 0 2 9 2

5 0 3 1 9 321

1 0 0 3 9 6 3 9 8

2 0 0 4 9 4 4 9 5

4 0 0 5 5 5 5 5 5

6 0 0 5 9 2 5 9 2

8 0 0 6 1 8 ,f 6 1 8

1 0 0 0 6 2 6 6 2 5

Table 9.11: Document Cutoff Evaluation at Staged

Stage_3:
The precision-recall values obtained by stageJS residual ranking are

given in Table_9.12 with an average precision of 5.83. For

comparison, the values obtained by the residual of the stage J2

141

residual ranking are also given in Table_9.12 with the average

precision of 6.19. At this stage the average precision obtained is

worse than the previous residual ranking by 5.8%. This tell us that

the performance at each stage is not necessarily better than the
previous stage.

Precis ions

residual of
s t a g e_ 2

s t a g e _ 3

I 2 0

1 58
= 5 0
8 6 0
£ 1° 8 0

90
100

14 .0 7
11 .6 5
7 . 79
6 . 90
6.01
4 . 4 9
3.71
3 .1 5
2 .3 9
1 .73

1 3 . 26
1 1 . 23
7 . 28
6 .4 4
5.61
4 . 1 9
3 . 4 6
2 . 9 4
2 . 2 4
1.6

Average 6 . 19 5 .8 3

% Increase - 5 . 8

Table_9.12: Recall Cutoff Evaluation at Stage-3

As in the previous stage, the results obtained at this stage can be

compared to the results of one-stage retrieval with cutoff point at 30

using the document cutoff evaluation. ,Table_9.13 gives the results

of the document cutoff evaluation, where it appears that the

performance at this stage is worse than jthe one-stage retrieval.

142

Number of Documents
Retrieved & R f i l e v a n t

Document
Cutoff
Points:

one-stage
with
cutoff = 30

multi-stage
at stage-3
with cutoff
= 10

35 27 4 270
4 0 29 2 286

45 301 302

50 31 9 330

1 00 3 9 7 401

2 0 0 49 4 488

4 0 0 5 5 5 54 7

60 0 59 2 584

8 0 0 618 610

1000 626 : 617

2 0 0 0 665 656

3 0 0 0 716 708

Table_9.13: Document Cutoff Evaluation at Stage-3

9.7 Conclusion

From the one-stage experiments we have found an increment

function which gives consistence improvements in precision at all

levels of recall. We also discovered that the size of cutoff for relevance

feedback influences the level of retrieval effectiveness. A larger cutoff

increases the number of relevant documents which are fed back to the

system and therefore increases the effectiveness of the subsequent

retrieval.

The results from the multi-stage experiments show that a two-stage

imaging retrieval performed with cutoff point at 10 is better than the

one-stage imaging retrieval with cutoff point at 20. But when the

143

num ber of stages is increased to three, there is a reduction in

perform ance. Thus, it suggests that there is an optimal number of

stages. In our limited experiments, it suggests that two is one of the

possibilities.

Chapter 10: Conclusions

The first part of the thesis sets out to investigate further the use of

linguistic processing in the work of IR. Instead of using parsing and a

set of heuristic rules in the indexing process, we have used semantic

translation of natural language into a predicate representation which

has been adopted as the content indicator representation. Several

retrieval strategies have been investigated experimentally to evaluate

the retrieval effectiveness of our system. All strategies experimented

with have shown better performance than the benchmark. Our best

retrieval strategy has produced an increase of 16.8% in average

precision over the benchmark. This figure is very encouraging when

compared with the figures obtained by Smeaton and Fagan which are

5.07% and 8.7% respectively. When the same retrieval strategy is used

w ith a small set of synonyms, the increase in average precision

obtained is 24.3%. This result suggests that there is a wide scope for

further improvement. The language UNIL has provided the facility to

the experts in the domain knowledge concerned to define the

synonyms at any time for any particular retrieval.

There are a number of obvious extensions that can be made to the

experiments carried out in the first part of the thesis, among them are.

1) Extension to the scope of the grammar.

The gram m ar that has been used in the experiments is very

limited. With a better grammar more semantic relationships can

be captured from the document and the query texts. The

docum ent and the query representations can then be more

accurate, and thus more informative matching can be

performed.

145

2) Extension to the lexicon.

It would be interesting to see how the system performs with a

large lexicon. In the experiments performed, many words in the

docum ent texts are unknow n to the system and are just

translated into one-place predicates. With a larger lexicon there

will be more multi-place predicates generated and in this

situation the experiment of retrieval strategy w ith transitive

dependency might perform better.

3) More complex retrieval strategies.

More complex retrieval strategies can be investigated to improve

the performance. For example, by having a partial matching on

the types of dependencies with implication rules such as :

r: on(X,Y) :- cf(0.5)'of(X,Y).

To do this we need to study the semantics of each multi-place

predicate carefully in order to assign the uncertainty factors (cf).

In tran sla tin g na tu ra l language texts in to the p red ica te

representation we have followed the technique adopted by Jowsey’s

SMG. Ideally, we should have used his semantic representation in its

entirety to represent the documents and the queries. But, it has been

m entioned at the beginning that even if we had an appropriate

semantics which could be computed efficiently, we still w ould not

know how to use it to retrieve documents in response to requests. We

think that this is the main problem that has to be tackled when trying

to use an established semantic theory in document retrieval systems.

Due to this problem, we have decided to take easier solution by using

our own sem antic representation which is based on the retrieval

146

strategies used. Based on the basis of retrieval strategies adopted in our

experiments, i.e. retrieval based on dependencies, we have adopted the

generalised-relationsh ip concept to represen t the sem antic of

docum ents and queries. Further study has to be m ade of this

representation if the scope of the grammar used is to be expanded.

In the first part of the thesis we also have dem onstrated and

im plem ented matching as a simple inference using the unification

process of a Prolog system. The inference from a document to a query is

perform ed in a context of global information represented in the form

of im plication rules and the thesaurus. In doing this one of the

problems we faced is the speed of the Prolog system used. Nevertheless,

w ith the availability of parallel m achines and para lle l logic

program m ing languages, there is scope for research to improve the

efficiency in execution time. Moreover, there is parallelism inherent in

the document retrieval operation that can be exploited to increase the

speed. The simplest is that the inference between each document and

the query could be done in parallel.

The second part of the thesis is concerned with an implementation

of the im aging retrieval strategy and the evaluation on its

performance. The results obtained by the experiments performed are

very encouraging. In the one-stage imaging retrieval experiments, we

have obtained an increase in average precision by 9.6% over the

benchmark when using a cutoff point at 20 (the number of documents

show n to the user for relevance feedback). In the m ulti-stage

experiments, we have found that a two-stage imaging is better than its

benchmark, and a three-stage imaging is worse than its benchmark. We

envisage that imaging retrieval with number of stages higher than two

will give worse result than its benchmark due to the reason that the

scores of the non-relevant documents in the potentially relevant set

147

are updated too often. The results obtained for the two-stage imaging

retrieval w ith cutoff point at 10 is in fact better than a one-stage

retrieval with a cutoff point at 20. These results are enough to show the

viability and validity of the imaging retrieval strategy and to support it

as something worth looking into further.

The m ethod used in determ ining the increm ent function to

produce a better new ranking of documents is based on intuition rather

than on a well founded formulation. Therefore, this is another area

where further research can be undertaken in order to produce a better

increm ent function.

Generally, the thesis has defined the logical-linguistic model of

document retrieval systems, demonstrated how a system called SILOL

is im plem ented based on this model, and evaluated the retrieval

effectiveness of this system.

148

References

[Abdullah 86]

Abdullah W.A.T.W., "Fuzziness and Clausal Logic", Malaysian

Journal of Computer Science, Vol.2, pp. 17-21, 1986.

[Aho&Ullman 77]

Aho,V.A., Ullman, J.D., Principles of Compiler Design, Addison-

Wesley, 1977.

[Ajdukiewicz 35]

Ajdukiewicz K., "Die syntakische konnexitat", Studia Philosophica 1

(1935):l-27; translated as "Syntactic connnexion", Polish Logic, pp. 207-

231, S.McCall(Ed.), Oxford:Clarendon Press, 1967.

[Allen 87]

Allen J., Natural Language Understanding, The

Benjamin/Cummings Publishing Company, Inc., 1987.

[Berrut&Palmer 86]

Berrut, C., Palmer, P., "Solving grammatically ambiguities within a

surface syntactical parser for automatic indexing", in F. Rabitti, editor,

Proceeding of the ACM Conference on Research and Development in

Information Retrieval, pp .123-130, 1986.

[BCS87]

British Computer Society Information Retrieval Specialist Group,

Report of Joint Meeting on Information Retrieval: Current Trends

and Future Prospects, Newsletter of the BCS IR Specialist Group, Issue

32, May 1987.

[Bradley 06]

Bradley H., The Making of English, Macmillan, 1906.

[Colmerauer 78]

Colmerauer, A., "Metamorphosis grammars", in Bole L. (Ed.), Natural

Language Communication with Computers, Springer-Verlag, 1978.

149

[Cooper 84]

Cooper W.S., "Bridging the Gap between AI and IR", In van

R ijsbergen(Ed.) Research and Development in Information Retrieval,

pp.259-265,1984.

[Cooper 78]

Cooper W.S., Foundations of Logico-Linguistics, D.Reidel Publishing

Co., 1978.

[Croft 78]

Croft, W.B., "Organizing and Searching Large Files of Document

Descriptions", Ph.D. Thesis, Churchill College, University of

Cambridge, 1978.

[Croft&Lewis 87]

Croft, W.B., Lewis, D.D., "An Approach to Natural Language

Processing for document retrieval", in C.T. Yu and van Rijsbergen,

editors, Proceedings of the 10th ACM SIGIR Conference on Research

and Development in Information Retrieval, pp.26-32, June 1987.

[DeFude 84]

DeFude B., "Knowledge based systems vs thesaurus: an architecture

problem about expert system design". In C.J. van Rijsbergen(Ed.),

Research and Development in Information Retrieval, Proceedings of

the 3rd BCS ACM Symposium, pp.267-280, 1984.

[DeFude 85]

DeFude B., "Different Levels of Expertise for an Expert System in

Information Retrieval", Proceedings of the 8th ACM SIGIR

Conference, Montreal, ppl47-153, 1985.

[Dillon&Gray 83]
Dillon M., Gray A.S., "FASIT: A Fully Syntactically Based Indexing

System ", Journal of the American Society for Information Science

34(2), pp.99-108,1983.

150

[Downing 77]

Downing Pamela, "On the Creation and Use of English Compound

Nouns", Language 53, 4, pp.810-842, 1977.

[Dowty 79]

Dowty D.R., Word Meaning and Montague Grammar: The Semantics

of Verbs and Times in Generative Semantics and in Montague's PTQ,

D.Reidel Publishing Company, 1979.

[Dowty et al 81]

Dowty D.R., Wall R.E., Peters S., Introduction to Montague

Semantics, D. Reidel Publishing Co., 1981.

[Fagan 87]

Fagan J.L.,"Experiments in Automatic Phrase Indexing For Document

Retrieval: A Comparison of Syntactic and Non-Syntactic Methods",

Ph.D. Thesis, Department of Computer Science, Cornell University,

Ithaca, New York, 1987.

[Fox 83]

Fox E.A., Characterization of Two New Experimental Collections in

Computer and Information Science Containing Textual and

Bibliographic Concepts, Technical Report 83-561, Department of

Computer Science, Cornell University, September 1983.

[Frost 88]

Frost, R., "A Knowledge Base System with a Natural Language Front-

End", Technical Report, School of Computer Science, University of

Windsor, Canada, Jan. 1988.

[Harper 80]
Harper D.J., "Relevance Feedback in Document Retrieval Systems: An

Evaluation of Probabilistic Strategies", Ph.D Thesis, Jesus College,

Cambridge University, 1980.

151

[Jensen 86]

Jensen K., "Parsing Strategies in a Broad-Coverage Grammar of

English", Technical Report RC12147, IBM Research Report, 1986.

[Jowsey 87]

Jowsey E., "Montague Grammar and First Order Logic", Edinburgh

Working Papers in Cognitive Science, Vol.l, University of Edinburgh,

1987.

[Keenan& Faltz 85]

Keenan E.L., Faltz L.M., Boolean Semantics for Natural Language,

Vol. 23, Reidel, 1985

[Levi 75]

Levi Judith N., "The Syntax and Semantics of Non-predicating

Adjectives in English", University of Chicago dissertation, 1975.

[Lewis et al 89]

Lewis, D.D., Croft, W.B., Bhandaru, "Language-Oriented Information

Retrieval", to appear in International Journal of Intelligent Systems,

1989.

[McCalla&Cercone 83]

Approaches to Knowledge Representation", IEEE Computer, 16(10),

pp.12-18,1983.

[Montague 73]

Montague R., "The proper treatment of quantification in ordinary

English", Reprinted in R.H.Thomason (ed.)(1974), Formal Philosophy:

Selected Papers of Richard Montague, Yale University Press, New

Haven, Conn., 1973.

[Porter 80]
Porter M.F., "An Algorithm for suffix stripping", Program, 14(3),

pp.130-137,1980.

152

[Radecki 77]

Radecki, T., "Mathematical model of time-effective information

system based on the theory of fuzzy sets", I.P.&M., Vol.13, pp.313-318,

1977.

[Rodman 76]

Rodman R., "Scope phenomena, 'Movement Transformations', and

Relative clauses", In Partee B.H.(ed.), Montague Grammar, Academic

Press, 1976.

[Salton 86]

Salton G., "Recent trends in Automatic Information Retrieval", Proc.

of 1986 ACM Conference on Research and Development in

Information Retrieval, Rabitti F.(Ed.), pp.1-10, 1986.

[Salton&Buckley 88]

Salton, G., Buckley, C., "Parallel Text Search Methods",

Communication of the ACM, Vol.31, pp.202-215, 1988.

[Salton 88]

Salton,G., "A Simple Blueprint for Automatic Boolean Query

Processing", Information Processing & Management, Vol.24, No. 3,

pp.269-280,1988.

[Salton 89]

Salton, G., Automatic Text Processing: The Transformation, Analysis,

and Retrieval of Information by Computer, Addison-W esley, 1989.

[Saint-Dizier 86]

Saint-Dizier P., "An approach to Natural-Language Semantic in Logic

Programming", J. Logic Programming 4, pp.329-356, 1986.

[Smeaton 87]
"Using Parsing of Natural Language as part of Document Retrieval",

Ph.D. Thesis, Department of Computer Science, University College

Dublin, Ireland, 1987.

153

[Thomason 76]

Thomason R.H., "Some Extensions of Montague Grammar", In Partee

B.H.(ed.), Montague Grammar, Academic Press, 1976.

[Thurmair 86]

Thurmair, G., "A common architecture for different text processing

techniques in an information retrieval environment". In

F. Rabitti(Ed.), Proceedings of the ACM Conference on Research and

Development in Information Retrieval, pp .138-143, 1986.

[van Rijsbergen 72]

van Rijsbergen, C.J., "Automatic Information Structuring and

Retrieval", Ph.D. Thesis, University of Cambridge, 1972.

[van Rijsbergen 79]

van Rijsbergen, C.J., Information Retrieval, 2nd edition, 1979.

[van Rijsbergen 86]

van Rijsbergen C.J., "A non-classical logic for information retrieval",

The Computer Journal 26(6), pp.481-485, 1986.

[van Rijsbergen 89]

van Rijsbergen C.J., "Towards an Information Logic", Research Report

CSC/89/R8, Dept, of Computing Science, University of Glasgow, 1989.

[Waldstein 81]

Waldstein R., "The role of Noun Phrases as Content Indicators", Ph.D.

Thesis, School of Information Studies, Syracuse University, Syracuse,

New York, 1981.

[Walker 81]

Walker, D.E., "The Organisation and use of Information:

Contributions of Information Science, Computational Linguistics, and

Artificial Intelligence", Journal of the American Society for

Information Science, 32, pp.347-363, 1981.

154

[Warren 82]

W arren D.H.D., Pereira F.C.N., "An Efficient Easily Adaptable System

for Interpreting Natural Language Queries", American Journal of

Computational Linguistics, Vol.8, No.3-4, July-December 1982.

[Zadeh 83]

Zadeh L.A., "A Theory of Approximate Reasoning", in Machine

Intelligence 9, J. E. Hayes, D. Michie, and L.I. Kulich, eds., Wiley,

pp.407-428,1979.

[Zeevat et al 87]

Zeevat H., Klein E., Calder J., "Unification Categorial Grammar",

Edinburgh Working Papers in Cognitive Science, Vol.l, University of

Edinburgh, 1987.

- "X • h \ [XjBmX wV&BU. .

 ■ j : ""
■ . • .: \ ; L

s- TIM?*

155

APPENDIX_A: The SUNG Im plementation Rules

% noun-noun phrase

fn » cn(Gendx):[Y IB] + cn(Gend):[X I A]

=> cn(Gend):[X IA & B & r(Y,X)].

% sentence - past and present tense being treated equally.

f4 » t(Gend,subj):[P IF] + iv(Tense):P => s:F.

% Determ iner-noun

f2 » det:[P IPP] + cn(Gend):P => t(Gend,Case):PP.

% Adjective

fa » acn:[P IQ] + cn(Gend):P => cn(Gend):Q.

% Transitive verb

f5 » tv(Tense):[PP IP] + t(Gend,obj):PP => iv(Tense):P.

%WH Relative Clauses

fr » cn(Gend):P + who(Case):[] => wh(Gend,Case):P.

fr » wh(Gend,subj):Seml + iv(Tense):Sem2 => cn(Gend):Sem

<- relativisewho(X,Seml,Sem2,Sem).

relativisewho(X, [X I A], [XIB], [XI A&B]).

fr » t(Gend,Case):[[X IB] I A] + tv(Tense):[[[YIB] I C],X IC]

=> acn2:[[YI D],Y I D&A].

fr » wh(Gend,Case):PP + acn2:[PP IP] => cn(Gend):P.

% preposition %

fp » prep:[PP IP] + t(Gend,Case):PP => acn2:P.

156

%preposition by

fby » by:[PP IP] + t(Gend,Case):PP => tby:P.

fby » tv(past):PP + tby:[PP IP] => acn2:P.

facn2 » cn(Gend):PP + acn2:[PP IP] => cn(Gend):P.

% type raising from cn to t

fby » by:[PP IP] + cn(Gend):CN => tby:P

<- raise(CN,PP).

fp » prep:[PP IP] + cn(Gend):CN => acn2:P

<- raise(CN,PP).

f4 » cn(Gend):CN + iv(Tense):P => s:F

<- raise(CN,[P IF]).

f5 » tv(Tense):[PP i P] + cn(Gend):CN => iv(Tense):P

<- raise(CN,PP).

raise([X I A],[[X IB] I A&B]).

% Coordination or Conjunction

% Sentential Coordinators

Fn » s:[A] + c(Co):[] + s:[B] => s:[C]

<- co_ordinate(Co, Fn, A, B, C).

co_ordinate(and, f8, A, B, A & B).

co_ordinate(or, f9, A, B, A v B).

% Predicate Coordinators

Fn » iv(Tense):[X I A] + c(Co):[] + iv(Tense):[X IB] =>

iv(Tense):[X (C]

<- co_ordinate(Co, Fn, A, B, C).

% Common noun Coordinators

f9 » cn(_):[X I A] + c(or):[j + cn(J:[V IB] =>

cn(neut):[Z I (A & B)&('=,(X,Z) v Y,Z))]*

157

f8 » cnO:[X I A] + c(and):[] + cn(_):[Y IB] =>

cn(neut):[Z I (A & B)&('='(X,Z) & ’='(Y,Z))].

% Term Coordinators

(9 » t(Gendl,Case):[[Y I ’=’(Y,X)] I A] + c(or):[] +

t(Gend2,Case):[[Z I ’=’(Z,X)] IB]

=> t(Gend,Case):[[X IC] I (A v B)&C].

f8 » t(_,Case):[[Y I '=’(Y,X)] I A] + c(and):[] +

t(_,Case):[[Z I ’='(Z,X)] IB]

=> t(_,Case):[[X IC] I (A v B)=>C].

% Modifier Coordinators

Fn » acn:[[X I '='(X,Z)],X IP] + c(Co):[] + acn:[[Y I '='(Y,Z)],Y | Q] =>

acn:[[Z I C],Z I R&C]

<- co_ordinate(Co, Fn, P, Q, R).

158

APPENDIX_B: Grouping of the Grammar rules

0:Fn » acn:[[X I ’='(X,Z)],X IP] + c(Co):[] + acn:[[Y I '='(Y,Z)],Y IQ] =>
acn:[[Z I C],Z I R&C]
<- co_ordinate(Co, Fn, P, Q, R).

l:fn » cn(Gendx):[Y IB] + cn(Gend):[X I A]
=> cn(Gend):[X IA & B & r(Y,X)].

l:fa » acn:[P IQ] + cn(Gend):P => cn(Gend):Q.
I:f9 » cn(J:[X I A] + c(or):[] + cn(J:[Y IB] =>

cn(neut):[Z I (A & B)&(’='(X,Z) v '='(Y,Z))].
I:f8 » cn(J:[X I A] + c(and):[] + cn(_):[Y IB] =>

cn(neut):[Z I (A & B)&(’=’(X,Z) & '=’(Y,Z))].

2:facn2 » cn(Gend):PP + acn2:[PP IP] => cn(Gend):P.
2:fby » by:[PP IP] + cn(Gend):CN => tby:P

<- raise(CN,PP).
2:fp » prep:[PP IP] + cn(Gend):CN => acn2:P

<- raise(CN,PP).
2:f5 » tv(Tense):[PP IP] + cn(Gend):CN => iv(Tense):P

<- raise(CN,PP).
2:fr » cn(Gend):P + who(Case):[] => wh(Gend,Case):P.

3:fr » wh(Gend,subj):Seml + iv(Tense):Sem2 => cn(Gend):Sem
<- relativisewho(X,Seml,Sem2,Sem).

4:facn2 » cn(Gend):PP + acn2:[PP IP] => cn(Gend):P.
4:f2 » det:[P IPP] + cn(Gend):P => t(Gend,Case):PP.
4:f9 » t(Gendl,Case):[[Y I '='(Y,X)] I A] + c(or):[] +

t(Gend2,Case): [[ZI ’=’(Z,X)] IB]
=> t(Gend,Case):[[X IC] I (A v B)&C].

4:f8 » tCCase):[[Y I ’=’(Y,X)] I A] + c(and):[] +
t(_^Case):[[Z I ’=’(Z,X)] IB]
=> tCCase):[[X IC] I (A v B)=>C].

4:fp » prep:[PP IP] + t(Gend,Case):PP => acn2:P.

%preposition by
l:fby » by:[PP IP] + t(Gend,Case):PP => tby:P.
l:fby » tv(past):PP + tby:[PP IP] => acn2:P.
I:facn2 » cn(Gend):PP + acn2:[PP IP] => cn(Gend):P.

159

% preposition %
l:fp » prep:[PP IP] + t(Gend,Case):PP => acn2:P.

% noun-noun phrase %
l:fn » cn(Gendx):[Y IB] + cn(Gend):[X I A]

=> cn(Gend):[X I A & B & r(Y,X)].

% sentence - past and present being treated equally (notice Tense)
l:f4 » t(Gend,subj):[P IF] + iv(Tense):P => s:F.

I:f2 » det:[P IPP] + cn(Gend):P => t(Gend,Case):PP.

l:fa » acn:[P IQ] + cn(Gend):P => cn(Gend):Q.

I:f5 » tv(Tense):[PP IP] + t(Gend,obj):PP => iv(Tense):P.

% raising:-
l:fby » by:[PP IP] + cn(Gend):CN => tby:P

<- raise(CN,PP).
l:fp » prep:[PP IP] + cn(Gend):CN => acn2:P

<- raise(CN,PP).
I:f4 » cn(Gend):CN + iv(Tense):P => s:F

<- raise(CN,[P IF]).
1:£5 » tv(Tense):[PP IP] + cn(Gend):CN => iv(Tense):P

<- raise(CN,PP).

raise([X I A],[[X IB] I A&B]).

% Change Tense to pres to cater for tenses
l:fr » cn(Gend):P + who(Case):[] => wh(Gend,Case):P.
l:fr » wh(Gend,subj):Seml + iv(Tense):Sem2 => cn(Gend):Sem

<- relati vise who(X,Semi ,Sem2,Sem).
relativisewho(X, [XI A], [XIB], [XI A&B]).

l:fr » t(Gend,Case):[[X IB] I A] + tv(Tense):[[[YIB] I C],X IC]
=> acn2:[[YI D],Y I D&A].

l:fr » wh(Gend,Case):PP + acn2:[PP IP] => cn(Gend):P.

160

% CONJUNCTION
% Sentential Coordinatorsl:
Fn » s:[A] + c(Co):[] + s:[B] => s:[C]

<- co_ordinate(Co, Fn, A, B, C).

co_ordinate(and, f8, A, B, A & B).
co_ordinate(or, f9, A, B, A v B).

% Predicate Coordinators
l:Fn » iv(Tense):[X I A] + c(Co):[] + iv(Tense):[X IB] =>

iv(Tense):[X IC]
<- co_ordinate(Co, Fn, A, B, C).

% Common noun Coordinators
l:f9 » cn(_):[X I A] + c(or):[] + cn(_J:[Y IB] =>

cn(neut):[Z I (A & B)&('='(X,Z) v '='(Y,Z))].

I:f8 » cn(_):[X I A] + c(and):[] + cn(_):[Y IB] =>
cn(neut):[Z I (A & B)&('='(X,Z) & '='{Y,Z))l

% Term Coordinators
1:£9 » t(Gendl,Case):[[YI ’=’(Y,X)] I A] + c(or):[] +

t(Gend2,Case):[[Z I ’='(Z,X)] IB]
=> t(Gend,Case):[[X IC] I (A v B)&C].

I:f8 » t(_,Case):[[Y I ='(Y,X)] I A] + c(and):[] +
tCCase):[[ZI'=’(Z,X)]lB]
=> tCCase):[[X IC] I (A v B)=>C].

% Modifier Coordinators
l:Fn » acn:[[X I '='(X,Z)],X IP] + c(Co):[] + acn:[[Y I ^ '(Y ^L Y IQ] =>

acn:[[Z I C],Z I R&C]
<- co_ordinate(Co, Fn, P, Q, R).

GLASGOW 1
UNIVERSITY I
LIBRARY I

161

