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Abstract

Euclidean solutions to the classical Yang-Mills equations
(instantons,merons,e.t.c.) are important for the non-perturbative
description of gauge theories.lt is believed that these (topological
in nature) solutions should provide a hint of confinement,chiral
synmmetry breaking e.t.c.

It was realised by ‘'t-Hooft that there are several types of
boundary conditions(Twisted Boundary Conditions) for the gauge
field which preserve the periodicity of non-local gauge invariant
quantities.

In this work we present numerical evidence that on a lattice and
using Twisted Boundary Conditions we can have topological objects
with non-integer topological charge (second Chern class).

The theory of fibre bundles (Chapter 2) is discussed and emphasis
is given on its connection with the topological properties of the
Gauge Theories.We introduce the gauge invariants twists Ny and

we define non-Abelian fluxes.

Since the Z(N) Group does not act identically on the matter field we
have to introduce the flavor twist in addition to the color twist on
the w-field.

We express(Chapter 3) the winding number in terms of the twist
transition functions in a finite Euclidean box in the continuum and
its implications on the lower bounds of the action are discussed.
Various combinations of the Nypy'S were constructed and applied on

the lattice. The only assumption for the incorporation of the twist
on the lattice is the periodicity of the plaquette.

We evaluated (Chapter 4) the eigenvalues of T'gM (M is the Fermion

Matrix) both for Wilson and Kogut-Susskind Fermions. The
spectrum of the eigenvalues showed that under the introduction of
color and flavor twist for the fermion field there is evidence for
the restoration of a "form" of the Index Theorem on a Lattice.

The eigenvalue problem for specific twisted configurations was
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studied and arguments are presented for the discrepancy between
our numerical results and the number of zero modes obtained via
the Index Theorem.




CHAPTER ONE

1. Introduction
1.1 Generalities on Lattice Gauge Theories

It is now believed that the strong nuclear force is a reflection of
the color force between quarks and gluons via the gauge theory of
Quantum Chromodynamics(QCD). Since the peculiar characteristic
of the force due to the color number of quarks is that it is weak at

short distances, "high momentum transfers" QZ2, (asymptotic
freedom), and becomes strong at large scales (confinement, bound
colourless states), we should find a way to approach QCD at low
energies beyond the regime of perturbation theory. This could
enable us to study non-perturbative phenomena, such as long-range
topological objects, confinement, chiral symmetry breaking, and to
calculate the mass spectrum of hadrons.

There is no full explanation of how the quark confinement works.
The most popular scenario to explain the confinement problem is
based on the application of the ideas of superconductivity to
particle physics. A linear potential between the quarks leads to
electric flux lines "squeezed" into flux tubes which bind the quarks.

.......... e ¢ memmmmmana-
............ e ¢ emmmmmmaan-
Q Q
..... e mmmmmmeaeaaa-
............ e 4 mmamanea
Fig.1.1 Colour Electric Flux Lines between Q, @ Quarks

The analogy with the superconductor comes from the fact that

there we have confinement of magnetic flux lines since CDB=O.

Using duality arguments between the electric and magnetic color
fields, we should ,in principle ,find a way to rigorously describe
the electric confinement of quarks.



In the perturbative field theory, the main idea is to use a
perturbative expansion in terms of the coupling constant and to use
a renormalisation technique by redefining the mass and the
coupling constant to regulate the ultra-violet divergences. In the
case of the QCD, the coupling at small distances gets greater than
one and the perturbation expansion fails.

Using the lattice automatically, we have a minimum distance "a"
between neighbouring points, and so a maximum momenta A~1/a
which leads to an ultra-violet finite theory. K.Wilson[1] introduced
the lattice method of regularisation of gauge theories on a
discretised Euclidean space and proved confinement at the strong
coupling limit. At the same time in the lattice regularisation
scheme, we have a finite number of degrees of freedom and so we
can use computer tricks. Another advantage of the lattice is the
close analogy between a Quantum Field Theory formulated on the
lattice, and a Statistical Mechanical System.

Once the equivalence of a model field theory to a Statistical Spin
System in equilibrium was established, we could exploit all the
existing techniques for studying spin systems in order to solve the
model field theory.

In the limit a =0, (V—©°°) (continuum limit) the physics should not
depend on the lattice regulator and the correlation length & should

be £ >>a (§ — oo ). This corresponds to a second order phase

transition. The analogy between various quantities in Field Theory
(F T) and a Statistical Mechanical system (SM) follows:

FT SM

Propagator G Correlation Function G
G=<0P> G=<SS>
G~e'(E1"EO)ar G~e-r/§

E=[1/(Eq-Eg)a]=1/m,a

So, at the continuum limit, a— 0, mg = fixed =§ — °° < 2nd order
phase transition.



1.2 Path Integrals on the Lattice

In the path integral formalisml2] the expectation value of an
observable is expressed by averaging over classical field

configurations "weighted" by the factor e i S where S is the
action of the configuration and h is the Planck's constant. For a

scalar theory with a ¢4 interaction, the action is
4 2 2 2
S(0,3 01=[d'L (@ 0)7 +m*e2 +g%%  (12.1)

The propagator (2-point Green's function) is given by :

G[x, y] =<O|<I>(x)cb(y)|O>=-822(j)/5®(x)8d)(y)|j=0 (1.2.2)
= (1/Z )Jdcl)(x)CD(x)@(y)ei/hs(q)'ﬂuq)), where
Z = [do(x)eHS(9.9,0). (1.2.3)

For the free case (g = 0), it is easy to find all the n-point Green
functions, but for the case where g 0 we have to expand the
interacting part of the action to find G(x,y). In this case the
resulting integrals are divergent but with a renormalisation of the
mass and the coupling the various observables are finite.

In order to improve the situation we use the lattice approximation
by approaching the space-time by a finite hypercubic lattice of N

sites in every direction separated by the lattice spacing a, and
replacing the derivatives by finite differences, i.e,

8, ®@=4,0(n) =(1/a,) [®(n+ap ) - ®(n)], (1.2.4)

p= unit vector in the u direction and the action (1.2.1) becomes

S=(1/2)a122n u[A,LL<1>(n)]2+(1/2)a4zn[m2‘<1>(n)?—'+g2o1>4(n)].
(1.2.5)



The continuum limit is recovered by taking the limits N| — oo,
a —»0 with N = aN|_ fixed.

We now apply the lattice approximation to the free scalar field
theoryl[3]

S= fd4x[(1/2)13u<D13“<D*+(1/2)m2cD2]. (1.2.6)

Using Ja4 x »a4 Zn (where on the Lattice n = (nq,np,n3,n4) and
®(x)— ®(n)) we get:

S=a4zn ILL{(1/2a12) [@(n+ap) - d(n)]2 + (172)m202(n)} (1.2.7)
The Z-functional:

Z =[do(x) e-S(9.9,9) is now given by:

Z=andd>n e's=(Dewt(M/21t))_1/2 (1.2.8)
where M is defined by

To gain familiarity with the techniques used in solid state physics,
we consider the Fourier transforms of any cpn to be:

T =2, 0n e 2 kunu/N - g=N 43§ e-2ikuny/N|

where N is the lattice size. Now the kinetic part of (1.2.7) can be
written as

10



(1/2)8,, @0H®” = (1/2)a2[@ [, Ppyy + PP -

‘D*n+uq>n -®p® n+u] =

2
A 5 (2-2c08( 2nk /N }F 2
WL

4
2N« U
(1.2.10)

and the total action becomes:

S=(a2/(2N ), [2-2c0s2nky/N, 118y(2+(a%/2N| 4)m? 1By |
(1.2.11)

The scalar propagator is given by:

(1.2.12)

with ap :2nku/aNL. If we take the lattice spacing to zero, and

expand the cosine we regain the continuum scalar free field
propagator.

1.3 One-Dimensional Ising Model

We have a chain of N spins with periodic boundary conditions.

Fig.1.3 Ising Model with Periodic Boundary Conditions
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The Hamiltonian is given by:
N
H=-d% i=1SiSi+1' h/2 (Si+Sj.1) (1.3.1)
and the partition function

A
Z= ZS (e BH||+1) ZS1=+1 <S4|T] Sg > ... < SN |'|’:|S1>.

j=t1
(1.3.2)
h . .
(where T is the transfer matrix).
Consider now a quantum mechanical system in a 2-dimensional

Hilbert space with Hamiltonian H = -[c4 -Acg3], 64 o3 the Pauli-
matrices.

We can express the transition amplitude between stakes | a > and
| b>in time Tby <ble-HT|a > and dividing T into N segments,
T = N (AT) we have

<ble’HTja > = <bje-HNAT |35 =

gt ZSN . +1< ble'HAT|S1><S1| e-HATlsz S e

< Sp.qle’HAT a5, (1.3.3)

We then define the transition matrix by

s1eHAT g5 =cs(fis > =eV(SS) (1.3.4)

and from (1.3.3), (1.3.4) we get

[V(b,Sq)+...V( )]
e s e 1 Sy.1

If we consider it as a lattice b—»1—-2 ... N-1— a and make site a
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coincide with site b then it is clearly an Ising Model with a general
coupling V (S;, Sj,1).

For small AT, equation (1.3.4) becomes

' A
eV(S:S) _ (g|T|S'> = < S|[14AT (01 - Aog) [S'>  (1.3.5)
Then

A 1 - AAT AT
< S|TIS'> = =
AT 1+ AAT

[ v1, V(-
a (1,1) o (1,-1)

e-V(-1,1) e-V(-1,-1)

and this means that the more general form of V is
V(S, S') = (K/2 )(S-S)2 + h/2 (S+S) (1.3.6)

with e 2K = AT, el = 14 AAT.

For the quantum mechanical system, the partition function is:

N

z =TreHT-3 <ajetTia>- V (S;, Siyq)

D
> {Si=41} & it

=2{si=+1} exp [ -2 i=1N (K2+KS; Sj,1 + (h/2)S))] (1.3.7)

which is the partition function of the 1-dimensional Ising Model
with general coupling K. So the analogy:

QFT path integral = Statistical Mechanics partition function.

The Free Energy "Density" of the 1-dimensional Ising model is given
by

13



(1.3.8)
So in QFT ground state energy = Statistical Mechanics free energy.
1.4 Gauge Action on the Lattice
The essential idea to put gauge theories on the lattice is to make

the theory well defined as possible even losing Lorentz invariance
but preserving the most important gauge invariance. In order to

achieve this, Wilson[1] set up the whole theory from the scratch,
i.e. by redefining the degrees of freedom of the theory.

In the continuum for every path joining x and x' we define the
parallel transport from x to x' by

Uyyr = olaJA (y)dyk (1.4.1)

where A = AuaTa (T2 are the generators of the group under
consideration) and U,,' belongs to the group (a runs from 1 to the
dimension of the group).

Under a gauge transformation U(x) on Au(x) the parallel transport
Uyx' undergoes the transformation:

Uyx' = U(X)U g U(X') (1.4.2)

The rotation of the frame in the charge space along a path through
the points i{ = ip .......... —iN s

U'Y: UiN iN_1 UiN_1 iN"2 ...... Ui2 i1

and under a gauge transformation it transforms as

14



Uy - UinUyY;,

In particular, for a closed path Uy — UiqUy Ui1'1 and this shows

that the trace of Uy is gauge invariant. On the lattice the parallel
transport operator Uy, is the basic dynamical variable which is
defined on the link connecting the sites x and x'. So on the lattice,
the dynamical variables Uyy' always represent finite group
transformations since they correspond to the transport along a
path with finite length. This means that on the lattice, we should

have not only Lie groups, but we could have also discrete finite
groups as gauge groups.

The pure gauge action (for SU(N) groups) in the continuum is

Sg=(2/g2) JtrFuyFHY (1.4.3)

where Fpvis the convariant field strength.Denoting Uy by U“(x) as

the link joining the lattice sites x and x+ap, we write the simplest
possibie gauge invariant action on the lattice (no fermions
included):

SG=BNIREIE, o es ULV (xrai)U* (xrav) U ()]
(1.4.4)

U (x+ v)
X+ Vv £ » X+ pu+v
U 7 3 U
L) AU )
X > X+u
U (x)
V)

Fig. 1.4.1 Elementary Plaquette on a Lattice
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Writing Up(x) = e1390AuX) and using
eaX gay _ eax+ay+(1/2)e:12[x, yl, 0(a3)
we get Sg=(B/2N)Z, . VTra4Fqu”V+ 0(a°)

which is the continuum action if we identify B = 2N/go2.

Some notable remarks follow:

(i) From the above we see that on the lattice, the dynamical
variables are elements of the gauge group associated with every
link of the lattice.

From Uu(n) = eiagoAu(n) and the fact that agoAu(x) ranges from

[-7, =] (in SU(N) groups (compact groups)), we have noticed that the
values of Ay (n) are restricted to(-n/ago,n/ago).

(i) From (1.4.2) we see that U(x) lives on the lattice sites and is
not a dynamical degree of freedom. These are used just to gauge
transform the dynamical variables Uu(x).

(iii)  The generating functional

z-[n  duePV

links |

(where dUj is the gauge invariant Haar measure[4] and B = 2N/go~2)

is well defined as a multiple integral of a finite number of
integrals and so we do not need to introduce gauge fixing a la

Fadeev-Popov[4].

(iv) Even if it is not necessary, we can do a gauge fixing on the
lattice eliminating a few degrees of freedom. This can be done by
choosing the group elements U(x) and U(x+pn) such that (1.4.2)
becomes Up(x) — U'u(x) = 1.

16



We can continue in this way for more links of the lattice up to a
point where we have a maximal gauge fixing. Figure 4 shows two

ways of gauge fixing in a 2-dimensional 42 |attice.

Key —— Fixed Link

- - -Unfixed Link

Fig. 1. 4. 2. Axial Gauge Fixing

Fig. 1. 4. 3. Random Gauge Fixing

The important point about gauge fixing on a periodic lattice is that
since the boundary links "curve back" to the lattice edges, they
cannot be fixed.

1.5 Strong Coupling Expansion and the Confinement of
Heavy Quarks

In the statistical analogue the strong coupling expansion

17



corresponds to the high temperature limit. In the continuum theory
the strong coupling is difficult to be treated but on the lattice this
limit is easy since we exponentiate in the path integral

Bz ' Splaq
e Plags and B=2N/go2.

Consider the vacuum expectation value of the Wg =TrnIe cU|’ Cisa

closed contour on the lattice and b, denote links of the lattice,

< We > =(1/2)TpdUp Tri_ JU|TT eBSp. (1.5.1)
plag

We can expand the exponential when B << 1 and since,

Jauj =1, (1.5.2)

Jauujj=o (1.5.3)
and

Jduuju*y = (1/N)8j8 | (1.5.4)
where i,j are color indices , we get < Wc > ~ ¢ @2 _ Writing

<W> = e V(R)T (since the quarks are static and are used as external
sources only), we get V(R) ~ R where R is the spatial distance
between the quarks and V(R) is the potential between the static
quarks. (This is to leading order in strong coupling expansion and
for large loops).

In general we expect:
V(x)=0(gp)x, (1.5.5)
where o = string tension. So we have a linearly confining potential

at the strong coupling limit.

18



1.6 Renormalisability and Scaling

Physical quantities should be independent of the lattice cut-off a.
This is the requirement of renormalisability which in
mathematical form is written as:

a(d/da)m(a,g)=a(a/aa—E (g)a/og)m(a, g)a_) 0 =0,

(1.6.1)
m(a,g) = some physical mass.
The cut-off independence determines
B(g) = - dglda, (1.6.2)

(B = the Gell-Mann beta function) which is equivalent to:

juglcexpk f_gg_ )
a(g,) o B(9)
(1.6.3)

In perturbation theory and at 2-loops (for the SU(N;) group),

B(a) = Bog® - B19%+.... | (1.6.4a)
Bo = 11Nc /482, By = (34/3 )/ (Ng1672)2 (1.6.4b)
So, if
lattice 1(go)exp(- : 2)
ZBogo

is a cut-off independent parameter, then:

19



o B
233

a=K' _exp(-——)(B,a")

lattice 2

28,9
(1.6.5)

On the lattice we calculate (at various g's) dimensionless
quantities mja, (m;=any hadron mass for example) and if we want

to be consistent with the continuum limit we should have:

m a=const.ex Jgrdg—
i PRy

gO
(1.6.6)
which implies:
(mia/mja) = constant(Scaling) (1.6.7)

For g—0, E(g) should approximate (1.6.4a) and this results to:

-
2
2P

ma=const.exp(- 12)(Bogz)

28,9

SO,

(ma/a(2-loops)=CcA m (asymptotic scaling). (1.6.8)

lattice

1.7 Monte Carlo Theory
Monte Carlo (MC) simulation is a method[S] which is used to
approximate integrals by summing over randomly selected points in

the integration space.

In field theories, it is applied to the calculation of quantities like

20



<O> = [dUpO[UplePS(Up) (1.7.1)

where the operator O[Up] is a function of the lattice
configurations{Up} (a lattice configuration is a set of U, matrices
of the gauge group on every link b of the lattice).

The essence of the method is to generate lattice configurations one
after the other in the following sense: let 1 be the discrete
computer time (also called the "fifth time") in the course of which
these configurations are generated in a step by step fashion. We
define the probabilities:

(a) the normalised transition probability Pij of going from the
configuration {me} to the configuration {Ub(j)} in the computer 1

time step t and,

(b) the normalised probability of each configration which for a
system in thermal equilibrium is given by the Boltzman
distribution

-BS

m=TI{U, }]=z-1e

)
With the M.C. method (1.7.1) is approximated by :

O(r)=(1/)z% __ O[U(i)] (1.7.2)

So what we need is to generate in the computer time t a number of
lattice configurations and then we calculate <O>.

The method is expected to work if we generate configurations
{Ub(i)} at each fifth time step i with the Boltzman distribution
(importance sampling). This can be achieved by the Metropolis

et.al. algorithm [5]. This involves a generation of states with an
initially symmetric transition probability P*ij. We then define the

transition probability from {Uj} to {Uj} configuration as

21



Pi= P*ijnj/ni if Hj/Hi<1 (1.7.3a)

and

with
nj,niNe-BAS , AS = S[U(j)]-S[U(i)].

Since it turns out that Pj; satisfies all the requirements of Markov

chain theory, all we need to do is ensure that the computer updates
configurations, calculates the change in the action AS and accept
or reject the update with criterion (1.7.3).

An important point of the method is the requirement of the
detailed balance condition, i.e., TIjPj=T;P;; While it is possible
to have the general rules on which MC simulations are based, there
are some other practical factors which enter in the game, such as
the observables we measure, the lattice size, the boundary
conditions, the initial configurations and the length of the
simulation. For example, the importance of choosing the boundary
conditions is seen by the fact that an 8% lattice has 84-6% = 2800
points on its boundary and only 1296 points in its interior. Usually
the lattice is assumed to be periodic to avoid finite size effects
(even if we have not used a periodic lattice in this work!). Despite
the fact that there are specific rules for MC simulations, in
practice we have to deal with many other 'experimental' factors.

1.8a Lattice Fermion Schemes

In order to have a complete lattice model of QCD we must have a
lattice model including fermions. This is quite a difficult problem
since the discrete space-time structure of the lattice affects the

chiral properties of the theory.

Consider the Dirac action for a fermion field coupled via the
minimal subtraction to the gauge field Ap in the continuum:

S_=2X [T s permy] (1.8a.1)

F flavors

22



where the index f stands for the different flavors. Beyond the
local gauge symmetries, the action has the following global
symmetries with generators acting on the flavor space:

i) Uy(1):¥i>el0w;
ii) SUy(Nj):¥ioel Ty,
1) Up(1):¥ioe @l Sy

V) SUA(Np) e T 5y
(1.8a.2)

(0 is the chiral rotation and Iy acts on the spin space). We want

to keep these chiral symmetries on the lattice but there is no way
to do this[6], and we can have only some remnants of these
symmetries, recovering the full symmetries in the continuum
limit.

The first step to put fermions on the lattice is to find the lattice

approximation to the Dirac operator T'Hoy+m.  To preserve
hermiticity we approximate the derivative d, by the symmetric
difference

IV (x)—uY(x) = (Y(n+p)-¥(n-p))/2a
where the T matrices satisfy { I'}, I'y}=23,, with I'5=T'1I'p I'3T4.

Under a gauge transformation g(n) on a lattice site n we have:

¥(n) - g(n)¥(n) ¥(n) — ?(n)g'1 (n) (1.8a.3)

and the object TIJ-(n)Uu(n)‘P(nﬂL) is gauge invariant. The action

(1.8.1) can now be written as:
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S=a*Zn[{Zy1(1/2a)[F(n)THUR(N)¥ (n+11)-F (n)TRU*u(n) ¥ (n-p)

+ mP(n)¥(n)] (1.8a.4)
Rescaling W¥(n) to ¥(n) = 21125312 ¥(n) we get

Se=Zn[{Zu[T(n)rHUR(n) ¥ (n+1)-F(N)TRU () ¥ (n-p)]+2ma® (n)¥ (n)]
(1.8a.5)

which in matrix form is written as SF =¥Y[M +2ma]¥.

Consider now the free field case (Uy(n) = 1). The equation for the
propagator reads:

ZuFH[G(nm,o) -G(n-p,0)]+2ma G(n,0)=8n,0

which (after usual Fourier transformations) gives:

G(q) = (2ma-iz F“sinqu)/[(2ma)2+>:usinqu] (1.8a.6)

T

and when m = 0, G(q) has poles at qu= 0 or =. So there are16 poles

(in 4-dimensions) and 16 degenerate fermions. This is often called
the "doubling problem". We present now a scheme proposed by
Wilson which avoids the "doubling problem" at the expense of a non
-chirally symmetric action.

1.8b Wilson Fermions

In this scheme the chiral symmetry is broken explicitly by a term
in the action which is proportional to the lattice spacing a. For the
free field case the action is

S witson=1/2Zn,w E(MITH-r 1) (nep)-(Th+r ¥ (n-p) ] +m ¥ (n) ¥ (n)
(1.8b.1)
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where r is the Wilson r-parameter. The equation satisfied from
the propagator is ( for the free case)

12 3, [(Ty-r1)G(n+p) - T+ 1)G(n-)+m(G(n) = 8po,

hence
G(q)=[m+Z, (iTksingy-rcosqy,)] !

So the values of the propagator are:

m+4r  at qu = (m,m,m,7)
m+2r at q = (0,m,m,m)
m at qu = (0,0,m,m (1.8b.2)

)
m-2r at qu = (0,0,0,m)
m-4r  at qy = (0,0,0,0)

The case r = 1 is special. In this case we have the 1i1“M projection

operators in the action and the free field propagator is recovered
for m = 4 or (defining the Wilson's hopping parameter k as

k = 1/2m) k = 1/8.We notice that even at m=0,r#0, there is no
chiral symmetry.

1.8¢c Kogut-Susskind Fermions

On a lattice with an even number of sites in each direction, we can
have 4 degenerate flavors instead of 16. This is done by a unitary
site dependent transformation which diagonalises the action in the
spin space.
We define

¥(n) =Tq 1T 2rg"3ra"™ X(n), n=(ny,np ng.n4) .
Then (18a.4) becomes

n1+n2+---nu_1 -

X(n)U,, (n)X(n+p)-h.c.+maX(n)X(n)].

(1.8¢.1)

SF(‘P.@,U)=Zn[Eu('1) T8
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The action now is diagonal in the spin space since the X's are not
spinors but just complex numbers.

1.9 Fermion Calculations

The X fields in the Kogut-Susskind scheme are Grassmannian fields
which obey the alegbra:

{X;, X}} = 8ij

(X, Xj} = {Xi.X}} = 0
(1.9.1)
Jaxx = 1, JdX = 0.

The action (1.8c.1) can be written as
S(X,X,U) = X[M(U)+2ma]X, (1.9.2)
and the path integral becomes

IdXdX[dux,u]e'S(U)‘S(XXU) (1.9.3)

Since the X's belong to a Grassmannian algebra, it is not practical
to use Monte Carlo techniques on the fermionic part of the action.
However, since the fermionic part of the action is Gaussian we can
integrate out the fermionic degrees of freedom resulting in

Z = [[dUy, u]Det[M(U)+2ma] e-S(V)- (1.9.4)

For the propagator we now have:

<XyXy>= [dXdX[dUy, Xy x e SU)-S(XXU) =
J{duy ylIM(U)+2ma] !y Det[M(U)+2ma]e-S(Y)
(1.9.5)

The determinant describes the creation and annihilation of quark-
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antiquark pairs in the vaccum and [M(U)+2ma] runs over all possible
paths from x to y. To incorporate fermion loops in the construction

of the vacuum we should calculate the determinant
Det [M(U) + 2ma].

The matrix [M(U) + 2ma] is very large and the calculation of the Det
[M(U)+2ma] is not easy. Most of the calculations have been done in
the so-called quenched approximation, i.e., Det(M(U)+2ma] =1.

1.10 Chiral Symmetry Breaking

To test the breaking of chiral symmetry[7], we use as an order
parapeter the Vacuum Expectation Value (VEV) of XX. Chiral

symmetry is broken if lim M 0 <XX(m)>=0. Since the lattice is a

finite system we have to take care of all the different degenerate

minima of the effective potential which lead to<XX(m)>=0 even if
the symmetry is broken. The correct criterion is:

lim lim <XX(m)> #0
m— 0 volume—

(the limits do not commute).

We can express <XX(m)> in terms of the density of the eigenvalues
of [M(U)+2ma] near to zerol8], i.e.,

lim  lim <XX(m)>a3=3rp(0) (1.10.1)

m-0 volume— oo

which shows that it is the zero modes of the matrix which signal
whether or not the chiral symmetry is broken.
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CHAPTER TWO

2.1 An Introduction to Continuum Topology

In this chapter we present a brief outline of some aspects of the
continuum topology. The main framework will be the theory of

fibre bundles[®l. Some invariants, topological in nature, which
have the form of a group (homotopy, cohomology groups) are also
discussed.

A bundle is the collection (E T X G U,) where E is the total space, X

is a topological space ( base space), [1is a map from E - X, F is the
fibre of the bundle and G is a group of homeomorphisms acting on
the elements of the fibre F. U,'s are the covering patches of X and

for each U, there is a homeomorphism
0y 11 (Ug) > Ug x F:II®-1, (xf) =x x eUa, feF.

A physical interpretation of this rather abstract mathematical
terminology is as follows:

On the intersection UynUpg#d we have :
D @p-1:(UanUB )xF — (UanUB)xF
and for fixed xe UynUg, ®,®g-1 is @ homeomorphism from F—F.

The function ®,®g-1(x) is called a transition function and is
denoted by gaB(x)' Later it is shown that it represents, what we
call, in physics, the transition function between two overlapping
patches . Actually the transition functions represent the change of

coordinates between the two patches. The transition functions
satisfy the following properties:
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i) gy (X)=Identity, xeUg, (2.1.1a)
i) gaB(x]=g-1|3a xe Ugn Uﬁ

(2.1.1b)

iﬁ)sg»?:gaB(X)gBy(x), xe UynUgNU, (cocyle condition)
(2.1.1¢c)

If we fix the coordinate system in the base space and change & to
K o, then by defining g (x) = @Ky 1, x eUy and gB(x) = cDBKB~1,
X € Uﬁ, we see that:

g'aB(x) = KQKB-1 = 9o 1 (X)gop(X)gp(X), x eUgnlUp  (2.1.1d)

Before we explain the mathematical terminology used in this
work, some other useful points on the theory of bundles are
outlined.

In physics we mainly use principal bundles and a principal bundle P
is a bundle where the group G is identified with the fibre F. A
section from Ua to P is the map S: Ua — P which somehow undoes
the work that the map Il does. So, if w is a form on P as usual
S*w e T*Ua, where w e T*P (T*P is the contangent space of P). If
we denote the coordinates of a point in the bundle as (x, g),

x e X, ge G, then by defining = g'1dg'1+g-1Ag (w e T'P), we
have (by doing the transformation: (x,g) — (x,g’), x = x),

g-1dg' + g-1A'g'= g-1dg + g-'Ag (i.e. demanding invariance of w),
which implies that:

A'= hAh-1+hdh-1 with g' = hg, he G (2.1.2)

Relation (2.1.2) gives clearly the identification of the gauge
transformation as a map from fibre to fibre.

To give a clearer picture, we write on the overlap of 2 coordinate
patches UgnUp#d, A %(x) = goB(x)[A,B(x)], whereA,%(x) is the
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gauge field in U, and Auﬁ(x) is the gauge field in UB'
x e UynUg and gup(x) is the transition function on the overlap
UamUB.

The notation gaB(x)[AuB(x)] is the compact notation for

9B (AP (x)g " aB(x) - g*P3 g1 P(x).

Then doing a gauge transformation in Ugand in Ug, we have (the
primed fields are the gauged transformed fields):

Apl®x) = g %x) (An¥) x e U, and

APl = gProp 14, Pl x e U

it AW ®x)= gaBx)[ALBIX)],

we get goB(x) = g*(x)g®P(x)g - "B(x), and this reflects the
connection with physics of the above terminology. So ,using
language  more familiar to a physicist, we arrive again at (2.1.1d),
which was derived previously by the theory of fibre bundles.

We now give some general aspects of the topology in the
continuum which refer to the theory of characteristic classes.
Generally, using topological arguments (mainly continuity
arguments) and differential geometry, we find some topological
invariants for various manifolds. The main topological invariants
we will use are the homotopy and cohomology groups and the
characteristic classes of bundles which are mappings from
cohomology groups to cohomology groups.

We start with the well known result
M3(SU(2)] = 3[S3] = Z. (2.1.3)

This leads to SU(2) (and to the extent that SU(2) is embedded in
SU(3), to SU(3) instantons) instantons. Ii3 is the third homotopy
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group of the SU(2) group space (i.e. S3) and physically shows how
many times we go around SU(2) when we have been around S3 once.

The significance of the above relation comes from the following:
we start from the requirement of finite energy solutions to Yang-
Mills (Y-M) equations in E4.

i 4
The action S = (1/2) Jd xTrFquuv must have a finite value at
|x|—oo and for this to happen Fpuv —>le_> 0.  This is satisfied by

AH(X) = 0 or by the pure gauge Au(x)—> g‘l(x)aug(x), where g(x)

[x|—>e0
is the gauge transformation at |x|—oo.

We can consider then g(x) as a map from S3 [sphere at infinity in
R4 so |x|—>] to SU(2) and we saw above that this map is classified
by I3 [SU(2)] = Z. We can therefore associate with every g(x) an
integer KeZ which we call the winding number. This number

actually classifies all the bundles over S4 with gauge group(fibre)
SuU(2).

In the case of SU(3), the picture is not so simple but we can
consider the SU(3) group as a D = 8 manifold and consider this as a

bundle over a S° sphere with gauge group SU(3) (the S5 spheres
come from the fact that for every row of an SU(3) matrix with

elements a,b,c we have |aj2+|b|2+ |c|2=1 and this picture of the
manifold structure of the SU(3) group is useful when we try to

construct the topological charge[m] for the SU(3) case).

Now we consider the characteristic classes for the SU(2) bundle

over S4, i.e. the cohomology classes defined over the s4 with fibre
the SU(2) group. For the cohomology class to be non-trivial it has
to consist of closed but non-exact forms.

Some characteristic classes (Pontrjagin, Chern, Euler) are are
obtained by Lie algebra invariant polynomials of the curvature
tensor Fuv and here we just denote the result. If C,(P) is the Chern

class (P is the principal bundle of the SU(2) group) then Cj» (P)
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e Hi (X,R), where H is the cohomology group over the base space-
time space X with coefficients in R, and i represents the order of
the cohomology group. In terms of the above mentioned polynomials
of Fuy, we can write:

Ci(P)=P;i(F) (P; = polynomial of Fy) and since Fpy = AuAvdx”de is a
2-form, Ci(P) must be a 2i-form. The polynomials P; appear when
we expand the

Dimension of the Group m

Det(t1 +iF/2n)=% i=0t”Pm_j(F) (2.1.4a)

and so for the SU(2) group, C4(P) = 0, Co(P) = ~(1/16n2)F/\F.
(2.1.4b)

This is the result for which we were looking. Co(P) is, what is
called in 'instanton physics', the winding number. Integrating C,
over S4 and since H4 [S4; Z] = Z, we get Coe Z.

We now give further details on the winding number in the following
way:

Define
Q = 4eHVAPTI[A 23 A+(2/3)A A)A ] (2.1.5)
then
ey
0,k = 2TrF F* (2.1.6)
(FHV = (1/2)ehVPOF (F ,, is called the dual tensor). So
Ja4xTer, P = (172) jsdoligu (2.1.7)

and since the winding number is
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N = (1/162)[d4xTrF, FHY (2.1.8)

we get

n = (1/3272) JSdGuQ“ (2.1.9)

In the Euclidean space (Fuy * 'I:‘“V)Z = 2(Fyv FHV £ Fyy Fhv)
(since elVPO = 25 KV 5).  Hence

Tr [ F2d4x > | [TrFFd4x | =16m2q (2.1.10)

Since the Euclidean action
SEyclidean = (1/2)Jd4xTrFuyFRY (2.1.11)
we finally get
Sk >8m2/92
E= | (2.1.12)

So the action is minimized when Fy = +FIY and solutions with this
property are called (anti)-selfdual solutions. The (anti)-selfdual
gauge fields are the most important extrema of the action.,i.e. they
are always absolute minima for a given winding number. Belavin et
al.[11] constructed solutions which satisfy the (anti)-selfduality
condition for n = 1. The somewhat hidden point in the construction
of the 1 = 1 instanton solution is that the possibility to construct
such a solution comes from the fact that we compactify on a
sphere.

Now we give the expression for n in terms of the transition

functions, which we will use when we discuss the form of n
using twisted boundary conditions (TBC).
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Using (2.1.7)
N=(1/16n2) Jd4xTrFuvFHY =
(1/1672) Zujd3o'u[Q'u(xu=au]—Q'u(xu=O] (2.1.13)

and Q‘u=2(2u,(QLL as defined in (2.1.5)). Here we work in a finite

Euclidean box Xy represents a point in the 4-dimensional
Euclidean box and a, are the sizes of the box in the p direction.

Denoting by

A()UA(J)U

(where i,j represent 2 coordinate patches which overlap and Uij is

the transition function on the overlap), we getl12]

] 1]

L (BRA)E | [d2S | eHVPOTH(UR Ujj)(Ujid Ukj)}}

n=(1/24n2)% Jd3c5uel“’p°{Tr[( i u”)(u % U,J)(U1 2 Uil

(2.1.15)

2.2 Introduction to Twisted Boundary Conditions
(TBC)

Here we present in a pedagogical way, the basic ideas which
concern the twisted boundary conditions. The TBC were first

introduced by 't Hooftl13], when nhe presented a general formulation
for the definition of electric (®g) and magnetic (®g) fluxes in the
non-Abelian gauge theories in such a way to make them gauge
invariant. His definition "gave" them properties characteristic of
fluxes (from our experience in the Abelian case), such as
additivity, to be covariantly constant and to be related to the
space-time topology. These properties distinguish the fluxes from
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the Wilson loop which is not necessarily covariantly constant and
additive.

TBC have appeared in various papers (see Ref. [14] for example)
where it was shown that the QCD vacuum is a condensate of
chromomagnetic vortices whose flux is quantized according to the
centre of the SU(N), i.e. Z(N), and the so-called twist transition
functions correspond to the phase of the unstable mode of the
gauge field.

't Hooft showed that it is possible to have topologically stable
fluxes if the space is not simply connected (i.e. the first homotopy
group is not trivial). The main idea underlying the TBC is that all
physical quantities must be periodic but since the gauge field Ay is
not an observable, it can be periodic up to a gauge transformation.

As we saw in section 2.1, Euclidean solutions to the classical Y-M
equations were found when we compactified on S4 and since

H1(84) =0 and H1 is the 1st homotopy group, we have to seek for a

manifold M with H1(M) # 0 if we want a manifold with non-trivial

first homotopy group. So, instead of S4, we choose the base space-

time manifold Mto be T4 = S1x St x St x S? and it is known that
Mq (ST x S1x S1xS1) = ZoZoZeZ

Now instead of compactifying on S4, we work on T4(the 4-torus
will be labelled by a 4-dimensional hypercube, i.e-0<xy<ay and
inside the space is flat). On the torus, the TBC lead to electric and
magnetic fluxes without the necessity to introduce explicit
sources (in the form of a quark anti-quark pair at opposite edges
of the box to create these fluxes[19]). These fluxes are labelled
by 6 integers (in D = 4) which are topological invariants and
express the non-triviality of the bundle over T4. The general form

of the TBC is [13]

Av(xp=ap)=0 (x)A, (x,=0)Q - 1() -i Quavgik1 (2.2.1)
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where A, is the gauge field in the v direction and Q,, the transition

function in the p direction. Because we must have a single valued
gauge field at the corners of the box, we deduce:

Av(x;fau,xk=ax)=9u(x)[AV(XFax)]:QX(X)[Av(Xu=au)] (2.2.2)
where we use the compact notation

AV(Xu =ay x) = a;J:Qu(x) [Ay(xy = ay)l
for
A =3y, Xy =ay) =y (x, =0, X3 =ay) A (x,=0,x) =a)

Q‘lu (X“ =0, Xy =ay) - Q“ (XM =0,x) = a;L)av Q—lu (XH =0,xy = ay)

This leads to

Q (x+ay) ()= Qy(x+ay) Q) (x)Z (2.2.3)

uX ey

The factor Z, enters from the invariance of the gauge field under

the Z(N) Group, i.e. A‘H=ZA Z-1=Au and so Z,,€Z(N), i.e.:

m n

Zpv = e"2ImMyy/N (2.2.4)

where N corresponds to the order of the SU(N) group and npv is the

antisymmetric twist tensor with integer values. Geometrically,
nuv labels the different twist bundles over T4 with gauge group

SU(N)/Z(N) and corresponds to the instanton number  which
classifies the bundles over S4.

We can now define the electric and magnetic fluxes in the
following way:

Ki= n,.(i=1,2,3) ( we are working in 4-dimensions) is the electric

4i(
flux (@g)and My =egim'l (i,j=1,2,3) is the magnetic flux (®g)in
the k-direction. This is a very simplified picture and if we want to

define the fluxes more rigorously on T4, we should define the order
and disorder operators of 't Hooft which satisfy the Z(N) algebra,
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i.e. A(C)B(C‘):B(C')A(C)Zuv, where A(C) measures &g through C (A(C)
is identified as the usal Wilson loop operator) or ®g along C and
B(C') measures ®g through C' or &g along C'(Fig.2.2.1). So if [m> is
a state with magnetic flux m,

2itm/N 2ir(m+1)/N
e e

AC)m> = m> and A(C) B(C') Im> = B)IM>,

i.e. B(Cj creates one unit of magnetic flux through C’

Fig.2.21 Fluxes & la ‘t-Hooft
Here we give a realization of 't Hooft's fluxes in a simple way.
Working only in the 1-2 level we have from the consistency
condition (2.2.3)
Qq(xq1,X0+a2)Qo(X1,X2) = Qo(x1+21,X2)Q1(X1,X2)Z12 (2.2.5)

We now define

() =Q'1x,xQ'1x+a,xQx,x+an,x
t-Hooft 1(x1,X2)Q7 " 2(x1+21,X2)Q1 (X1,X2+22)Q2(X1,X2)
(2.2.6)
which is covariantly constant and additive.
For the SU(N) groups
_e2 TN/, (2.2.7)

b =
t'-Hoof
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This reminds us of the definition of the fluxes in the Abelian

gauge theories where the fluxes are defined as e'gcb

We now discuss the effect of the gauge transformation on the
transition 'twist' functions Qu.

After a gauge transformation on the gauge field Au we get:

A'p(ag+xq, xp) =g(@g+xq, xp)Ay(aq+x4, x2)g'1(a1+x1, X2)
(i/9)(9,9(a1+x1.x2))a" @1 +x1, %2) , (2.2.8)

where g(x) represents the gauge transformation.

Using the TBC conditions we get:

A'u(a1 +Xq, X2) =Q'1 (X4 ,X2)A'H(X1 , X2) Q'Y -1 (X1,X2)

-(i19)(3, "1 (x1.x2))2'1 T (xq.x2) (2.2.9)
and

Au(a1 +Xq, X2) =Q4(Xxq ,X2)Au(X1 » X2)Q4 -1 (X4 1X2)
-(i/g)(@, 21 (x1.%2))21 71 (x1.X2) (2.2.10)

Solving the above equations we get:

Aulxq X2)=(i19)2 " (x1,x2)(2,Q, (X1 xp))+

(i1g)Q (x1,%2)9 1@y +xq, Xp) (aug(a1+x1,x2))§21(x1 Xo)+
-1 _ ,
Q" (x1.x2)9 1(a1+x1,x2)§21(x1,x2)g(x1,x2)

Au(xq, X2)g7 T (xq, x2)@' "1 (xq,%2)g(a1+X1,X2)Q2, (X1, Xp)-

38



(1), (x1.x2)8" (a1+x1,x2)[Q'1 (x1,X2)(3,, 8 (X1 X2))+

auQ'1(x1,x2)]Q'1'1(x1,x2)g(a1+x1,x2)£21(x1,x2) (2.2.11)

which is satisfied for
Q'4(x1,x2)=g(a +x1,x2)Q1(x1,x2)g'1(x1,x2) (2.2.12a)
In a similar way :

Q' (x1,x2)=9(x4 ,XQ_+&12)02(X1,Xz)g'1 (X1,X2).
(2.2.12b)

This gives us the freedom to pick up a gauge with Qq=1or Qo=1 and
one such choice which satisfies the TBC is(for the SU(2) group) :

i ~x
91(x1,x2)=emn12 3,0,=1 (2.2.13)

inn
In this case Qq(xq,a1.,x2) =e 12Qq(xq,x0) and, if we denote by
h(p) a curve in SU(N)/Z(N) i.e.,

h(p)= Q1-1(x1.x2) Q1 (x1.x2+p)  ap2p20,

we see that h(p) varies from 1 (p=0)to ei’m12 (p=a,). From this

example we have a better understanding of the geometrical
meaning of PP as a label of the different equivalent classes in

SU(N)/Z(N), i.e., MuvE IT{[SU(N)/Z(N)]=Z(N) and from the values of My

we can classify whether or not a bundle is trivial (n12 =0

corresponds to untwisted trivial bundles).

As in the instanton case (transition from one vacuum to the other
happens by changing the winding number) here also (using TBC) we
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cannot transfer from one homotopic class to the other without
changing U

Some last remarks follow:
(a) When we will apply the TBC on the lattice, the only assumption
we will make is the periodicity of the non-local quantities and not

of the gauge field itself (demanding periodicity of the gauge field
itself excludes the possibility to introduce non-trivial “uv's)- We

present now an example(in D = 2) of the periodicity of the non-
local Wilson loop operator in a finite box in the continuuml16]:

We use 2 gauges (Fig.2.2.2) :
In Gauge 1:
AiM(x) =0 Ax1)(0x,) =0
and in Gauge 2:
A(2)(x) =0 Ar(2) (aq, x2) =
and by relating
Au(2) = g(x)[Au“)(x)] (2.2.14a)

we deduce that g(x) = g(xo) . From the periodicity of the Wilson

loop Pexp IAuqu (P stands for the path ordering) and using
(2.2.14a) :

A2(1) (a1+ X1, X2) = Q1 (Xz) [A2(1) (X1,X2)], (2.2.14Db)
with Q4 (X2)=g"I (X2)

i.e., the transition function is the inverse of the gauge
transformation.
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(x1,x2) (X1+a1, x2)
(x1,0) (x1+a1, 0)

Fig.2.2.2 Periodicity of the Wilson loop

(b) The second point we want to refer to is the following:

From the general theory of classical solutions to Y-M equations
(Solitons), it is known that these solutions have a quantized flux
and a finite energy. We noted earlier that the 't Hooft fluxes were
quantized and the quantization comes through the Z(N) group.

The point which remains to be  established is whether the
classical energy of the configurations which satisfy the TBC is
bounded from below by a positive lower bound.

In Chapter 3, we give the explicit formula for the action under the
TBC which shows there could be a positive lower limit, but here

we follow [17] to present some arguments, qualitative in nature,
for the configurations which satisfy the TBC. Ambjorn and

Flyvbjerg [17] showed that it is possible to have magnetic flux
different from zero and E_ ,qsicai = O (in the non-Abelian case only).
As an illustration, we present their example. Since, under a gauge
transformation n,, is invariant, we choose as

Q1 =1, Q2=1 for mga =0

(mz = magnetic flux in the 3,q direction) = 8312T]12) and
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Qq =io, , Qo =ic, form, =1. c,, 0, are the Pauli matrices.

1 3 3

We can easily check that the configurations AM = H(xq)8 120372

ontr
with H(xq),periodic in x4, and A, =0 can have m3=0 (and so non-
. (for Ap=0) .
zero magnetic flux @pg) butyEgjaggicar = 0. The mathematical

reasoning for this is simple and is attributed to the fact that two

constant transition functions on a torus T2 do not give a trivial
bundle but for a sphere we have only one coordinate patch (since a
sphere is covered by two patches) at the overlap and a constant
transition function maps everything to a single point and of course
a bundle over a single point is obviously trivial ( a base space
contractible to a point results to trivial bundle).

(c) We now present a simple example of a system which satisfies
the Z(N) algebra.

We work in 2 + 1 Dimensions and consider the following
Hamiltonian describing a Z(N) gauge theory (Fig.2.2.3)

H = g Sjinks [A"+A 2] -2 Plaq'slQ(n1)Q{n2)Q(n3)Q(ng)+h.c.-2
(2.2.15)

The operators A,Q; are associated with the links of the lattice and

I
obey the Z(N) algebra

AN = QN =1, A= A Q*=Q}' and
AQ, = QAe2im/N

(A,Q; commute for different links LI, [A},Q]=0 if l2I').
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Fig.2.2.3 A lattice notation

From the above equations we can have (since A is unitary):

2in/N

Aln>=e In>and Q|n>=|n+1>,n=0,1,....,N-1

and with the above representation for A;,Q we get QAe2i™/N - AQ.

If we denote by E|,Km the electric field and the vector potential
respectively (with [El,/“\'m]=i6|m) by writing Aj = e(2i®/N)Ejand

Q|=eiAl we get again:

From the instanton case we know that there is an operator (call
this T) which, acting on a vacuum with winding number |n>,
transfers this to |n+1 >, i.e., T|n> = |n+1> and this operator
commutes with the Hamiltonian. [f we then consider the

6—-vacuum  [6> =Zne'i”9|€)>, we have T[0> = eiele>.

In the above example, the corresponding operator to T is defined as
(i = a lattice site):

TO =T AT TP 1 (2.2.16a)

(+ corresponds to the positive direction - to the negative direction).
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T(i) generates a symmetry transformation:

Q - 2in/N |lei
Q - Q) ei (2.2.16b)
Pi— Py Vi '

We can easily see that [T(i), H] = 0 and

T(i)=e(-2in/N)[ZEl(+)—ZEl(_)] (2.2.16¢)

with [THIN = 1.

In the non-trivial sector of the Hilbert space we have T(i)x1 and
this corresponds to V.E=ZEI(+)-ZEI(_)¢O, i.e., the Gauss law.

We now express the Hamiltonian (2.2.15) in terms of E|,A, and
this results to

with Bplaq = Kn1+Kn2-Kn3-X and from (2.2.17) we can identify a

N4
link with E;#0 as carrying electric flux and a plaquette with Bp;to
as carrying magnetic flux.

d) We now elaborate on the inclusion of a kind of twist on the
matter field while we have applied TBC for the gauge field. This is
a non-trivial problem since the gauge field while transforming in
the adjoint of the group is invariant under Z(N) transformations
(for the SU(N) case), the ¥ (matter) field,because it belongs to the
fundamental representation, transforms non trivially under Z(N).
To overcome this problem we introduce a flavor twist for the W-

field in the following sensel18l:
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C(COLOR) FLAVOR)-1(

Y (x+L, y, z, t) =Qq (y, z, )9 (x, y, z, t)Qlf( y,z,t)

(2.2.18a)

f
QzC((;QL()R) (FLAVOR)-1

¥ (x, y +L,z,t)= (¥, z )X Y, z, 1)Qy (y,z,t)
etc. (2.2.18b)

where (c,f) refer to (color, flavor) indices of ¥ respectively.

The consistency condition (single-valueness) of the ¥-field at the
boundary leads to:

P (x+Ly+L)=0C. (y+L)¥(x, y+L) Qf1-1 (y+L) =

Q. (y+L) © 0¥e ya',-1(x) ' -1(y+L) =

QC,(x+1)Q%, (¥, y)Qf1-1(x) Qf2-1(x+L) (2.2.19)
= P(x,y)= Q%51 (x+1)% 1(y+1)Q° ,(x+L)Q%  (y)¥(x.y)
PR f f
Q 1 (y)Q 5" (x+L)Q 1(y+L)Q 2(x)
and since

Qq(as+Xxa) Qo(X1)=Q2 (a1+X1)Q1(x2)Z>

In Chapter 4 we deal with the eigenvalues of the fermion matrix
under the inclusion of color and flavor twist.
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CHAPTER THREE

3. TOPOLOGY AND LATTICE

Numerical evidence is presented for the existence of non-integer
topological charge on a lattice using TBC.

As was shown in the previous chapter, the winding number n
(which, from now on, we call topological charge Q) is expressed in
terms of the transition functions, and we now show that under
the TBC, it contains an integer part plus a part which depends on
the twist tensor n,, and for some combinations of the twist

integers (”uv) it leads to a non-integer Q.

We mainly use non-constant transition Qu(x) but in some cases we

also use constant transition functions which still satisfy the
twist algebra (2.2.3.). In the case of constant Qu's we verify what
we expected: the action is not bounded from below by a positive
bound and it can be lowered to zero. We also have cases where
the Qu's are not constant but by arranging the n“\,'s in a way to be

clear later we again have an action which could reach a zero value.
The latter cases are reminiscent of the instanton case where we
have a plateau of the action which ends to a zero value.Also, in

D = 4 and in the case of the SU(2) group we capture a topological
object of charge 1/4 using constant Qu's in only two directions.

3.1. Dependence of the Topological Charge on the Twist
Transition Functions.

We start from the expression (2.1.13) and denoting by Q, the

0
transition functions we get [19].
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Q = (1/24n2)z, | dPote o (1/3){Tr(Qu9,2, 7"

uvpo

[Quapﬂu_l][ﬁuacﬂu“l]+avTr[(1/i)(Qu—lapQu)Ac(xu=0)]}

(3.1.1)

Using the consistency condition (2.2.3) we can calculate the o,
derivative term as the difference between x, = a,, and x,, = 0 with
xp = 0 (fixed) and we get:

Tr[(1/i)[QM—lapglu]|XV _a, Aglxy = Oxy = ay) -

(”i)[gu_lapgu“xv _oPo (X = 0%, =0)] - (nev) =

Tr{([Q, 13,0 Q3507 - :
r(1Qy "9, V]lxuza}ll ncriu ]lxv=0 ()
Using this we end up with:

2 3 -1 1 -1
Q=(1/2472)z, [d c“gwpc{Tr([QluaVQu 110,952, 1112952,
2 3 vpo -1 -1
+ (1/8n )ZWI PSP {TrQ, aPQV}IXu=au 2,052, “xv=o}
(3.1.2)
with
a a

a, a, a, X X
d331=fdngdxsjdx4 : d2812= desfdx4 , etc...
0O 0 0 0o o0

We now present some comments on the general form of the
"twist" transition functions as well as the general method of
constructing the transition functions for the constant and non-
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constant twist.

In the case of constant transition functions, the general method is
based on the existence of matrices A,B with the property

A.B=B.A.e2im/N, where AB are NxN matrices which belong to the
SU(N) group. The method consists of finding the Qu's by taking the

powers of some specially chosen U,V matrices[17].  For the case of
the SU(2) group we have the matrices

and
Q4 =UU1VV1,92=UU2VV2,Q3=UU3VV3 (3.1.3a)
where uy Up ug vq Vp Vge Z(2).

This leads to 8 combinations in 3 dimensions (generally there are
D(D-1)/2)

N different classes for N = dimension of the group under

consideration and D = dimension of space-time).

Two of the eight classes are:

u, 1 v, 0
ul =| 1], v 0
u 0 v 1

with twist functions

o
I

(3.1.3b)
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i.e., we are using twists only in the 1-3, 2-3 levels.

u, 1 v, 1
u,l = | 1|, |l =1]o
u 0 v 1

with twist functions

and

Q, =0,,Q.=0,,Q.=-0 (3.1.3¢c)

i.e. we have twists only in the 1-2, 2-3, 1-3 levels.

In the case of the SU(3) group and in 3-dimensions we have 27
classes, two of which are:

010 00 1 e 0 0

Q]=001,Qz=100 ,Q3= 0 e-2i1t/3 0
100 010 0 0 0
(3.1.3d)
and :
0 -2in/3 O.
Q] = 0 0 1
2in/3 0 0-
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00 1 eZin/3 0
Q =100 1}, Q = -2in/3
2 3 0

010 o 0

with spatial twists at all levels.

Following [20] we write QM=PSHQtFL with

01 et 0

01 et 0

| o

........... 1
T 0

i n(1-N) 1 0 0
Q-=-e N 0 2in/N 0
0 0 2in(1-NyN

and PQ = QPe2in/N (Z(N) algebra).

Then :

Q,Q, = PSvQlvPSuQly = PSviQly,PSp)Qty -

PSy[Qlv,PSpIQly +PSpQiuPSVQly =
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Q,0, _ ,Q,z- -1,

mn

where we used:

1-Z"Q™P" and z = 2N,

[QM P = (
We identify n,,,, as mnyy =s,ty-syt,(modN).
From (3.1.2) it can be shown that [19,20]

Q- (g216n2)  dXTrFWFRV=vkiN  veZ  (3.1.4)

box
and
_ (1/8)*VPO _
k=(1/8)e" " Moo= M12M34+ 1342+ 14"03
(3.1.5).
From
P
Sg=(1/2)TrFuvFKY > |(172)[TrFuvFRY| =
Sgzmin(8n2/g2)|v-k/N| , (3.1.8)

(where the equality holds for FLW = iﬁFuv i.e (anti)-selfdual

configurations),  we notice that for only spatial twist we have
k = 0 and the action can be lowered to zerofi.e., F,, =0). A

solution to Fuv = 0 is, of course, A, = 0 and in this case the
transition functions must be constant for the inhomogeneous term
in (2.2.1) to vanish (we use the gauge auQH = 0).

We now deal with the construction of the non-constant transition

functions[20].  The method consists of decomposing the SU(N) group
into a direct sum of smaller SU(N) groups and applying the twists
in every subgroup, i.e., we decompose

SU(N) 5SU(k) @ SU(I) ® U(1) with k+l = N.
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Using

w= 2r

and denoting by the subscripts 1, 2 the

SU(N), we write

B

=X
i

| k-times

T
-k
-k

ok

I-times

P
ek 0
0 |
Q
ek 0
0 1
| I
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1 0
k @k
P =
2 B
0 | &
1
kek 0
2=
: %,

with
P1Qq = QP e2™K | pPyQ, = QyP, 2/,

Hence the commutation relations for Py,5, Q1,5 are

]5161 = Q4P e2in/N+iw/Nk

and P 25 5 =QoPoe2im/N-iw/NI
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Defining :

~ S .t o 7] )
[ [ s A
1 1 i o Xaul
Q(X) = e a;\
i ~U oV
) NQ K
| 0 2 2 _

(3.1.9)

(sp,tp,up,vp € Z and auy = -ayp€ R) and using (2.2.2) =

2 1
auv'avu“‘“( )uv/(Nl) ' )uv /(NK)
(3.1.10)

with
2 1
'ﬂuv=ﬂ( )uv +T]( )uv (3.1.10a)
and
(1) B , b
N v = Suty—Syty +integer (3.1.10Db)
2) _ _ :
N Ty = UyVy—uyvy +integer (3.1.10¢c)

We now present some examples of non-constant Q,'s, which were

u
used when we applied the TBC on the lattice.

A) SU(2) case with k = 1, i.e., (k/N) =1/2 :

(1) =-1,n(2) = 1, othern

12 34

(1,2)

We choose 1 uvls zero, with:

s%=(-1,0,0,0).t*=(0,1,0,0), u"*=(0,0,1,0),v*=(0,0,0,1).

This choice leads to :
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Qq(x) = ezinc3a12x2/az,
Q5 (x) = e2ino3a, ,X1/24 (3.1.11)
Qg(x) = e2incs3a\,34x‘,,/a4
Qq(x) = e72in038,,X3/a3  a,, =834 = (1/4).

Clearly
Q1(xp = a) Qa(xq = 0) = Qo(x1= a1)Q1(xs = 0)el™

and Zyp = -1.
In this case we expect the action to be bounded from below, i.e.

Sg 2(8n2/g2)|v-1/2|.

B) SU(2) group with k = -3, (k/N) = 3/2

We choose:
(1 (1 1 _ .
Tl 12 - 1: n 13 1: Tl 11{ = 1
2 _, @ _, (2 _ (1,2) ,
M gy =1m =101 ",5=1, otherq uv'S zero,
with

st = (-1,000), t*=(01,11), *=00-1,1) V= (010-1),

and we get :
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Q, (X)_e(in/z)c3{(x2/éz) +(x3/ag)+(xq/ag)}

QZ(X)=e(in/2)c3{-(x1 /aq)+(x3/ag)-(x4/a4)}

93(x)_e(in/2)c3{-(x1/a1)-(X2/a2)+(x4/a4)}, G112

Q4(X)=e(in/2)03{-(X1 /aq )+(X2/32)-(X3/a3)}

H

which satisfy the twist algebra (2.2.3) .

C) Now we proceed to the SU(3) group with: k =-1, (k/N) =1/3.

Then
0 (in/6) (x,/a,)
ITT X /a_)o
o) =|100|e 22
001
e(-in:/?_) 0 0
. (-in/6)(x  /a_ )w
Q,(x) = | o o2 ol e 1%
|0 0o 1)
Qg(x)= ol /3)(xa/as)e (3.1.13)
Q)= el '™ /3)(x3/az)0
and
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o= 0 1 0
0 0 -2

D) SU@3), k =2 ,(kN) = 2/3

Here
Q1 (%)= e(-lﬂ: /3)(X2/82)(1)’
Cin2) o 0
(n/3)(x/
) = | | T
0 0 1
Qa(x)= e(m I3)(x4/a4)o
Q(x)= el 1T /3)(xa/az)e (3.1.14)

with @ the same as in case C above.

(1) (2) (1.2)
12 34~ 1 and the other n Wy

zero. We used the above four cases when we apply the TBC on the
lattice and we discuss our results in Section 3.3.

In this case we pick n =2,1 S

3.2 Topological properties of the Pure Gauge Field on
the Lattice

From the strict point of view, topology is lost on the lattice,
firstly because of the loss of continuity (which is recovered only
in the continuum limit for the lattice spacing a — 0), and also
since there are no surface terms on the lattice which contribute
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to the winding number (topological charge Q) in the continuum.
Despite these not too encouraging factors for looking for
topological "freaks" on the lattice, there have been considerable
efforts to put topology on the lattice and the indications we have
show a rather optimistic picture. Until now, efforts on the lattice
have concentrated on the existence or non-existence of instantons,
the measurement of the topological susceptibility x; and the

resolution of the U(1) problem (we refer to these just as an
indication of the various lattice topological explorations). The
methods devised to compute these topological "freaks" on the
lattice, provide an example of how MC simulation and pure
mathematics can be "married” in a nice way.

A long standing problem on the lattice is the definition of the
topological charge density. lts calculation is plagued by technical
and conceputal difficulties. The first attempts to attack this

problem used as [21] Qlattice(n) n = a |lattice site, the following
expression :

Q'amce(n)=—(1/32n2)e”VPoReTr[qu(n)Upg(n)]a 0—>a40(><)

(3.2.1a)

—

(qu is the elementary plaquette at the p-v level) and (3.2.1) is a
direct "translation” on the lattice of the continuum expression:

Q(x) = -(1/82r2)eHVPOTI[F,,, (n)F y(n)] (3.2.1b)
The analogy comes from the expansion of

Ay (N)giAy(n+11)g-iA (N+V) iy (n)

qu(n) =e =

a—0

1+ga2Fw(n)+g2a4F2uv +......,g = coupling constant of the simple
gauge group under consideration.

The consequences[zﬂ of using (3.2.1) to measure the topological
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charge are bad since in this expression the perturbative terms

contribute (in the form of powers of gaZ) to making the search for
the contribution of the more important non-perturbative modes
quite difficult. To resolve this problem various methods have
appeared in the literature and the situation seems to be like

baroque(for a general review (c.f[22]). The advantage of one method
over the other is not clear yet. For example, the geometric method
based on the interpolation of the gauge field in adjacent cells of
the lattice, while seeming to be rather rigorous and
mathematically elegant, does not give "good" results for Xt(R)[23]-

In this work we have used the cooling method [24] which we now
describe. The main idea is to minimise the action (the standard
Wilson action) in a systematic way and so to reduce the
fluctuations of the original Monte-Carlo generated configuation and
at the same time to produce quite stable configurations. By using
the cooling method it is believed that the main difficulty in

measuring Q'atticé(n) referred above, (i.e., the contribution of the
perturbative modes) is resolved, since this procedure renders the
configurations smoother (by minimising the action), and so (3.2.1)
can be safely used to a good approximation during the cooling
process. The algorithm for minimising the action consists of
concentrating at one link Uu(n) of the lattice and changing this

link to U'u(n), (while all the other links which multiply the Uu(n) at
the six plaguettes around Uu(n) are kept fixed) in such a way that
S[U'u(n)] <S[U,(n))]. We make this change for every link of the

lattice (1 sweep) and repeat this process several times until the
action plateaus at a value and remains there for a number of
cooling sweeps. The configuration at the point where the action
reaches a plateau is a solution to the equations of motion and by
measurement of the action we find the value of the topological
charge. As an act of faith we believe that when the action plateaus
and gets its minimum the contributions to Qlattice (j.e. the so-called
lattice artefacts) from the perturbative modes have disappeared
and only long-distance modes are left. In the case of the
instantons, in a periodic lattice it has been observed that the
action gets a plateau after a few cooling sweeps and remains
there for some time[24], before decaying to a zero value. The
reason for this is that the instanton action on the lattice is quite

. ti ‘
different from the S°°" muuminstamon at scales where the instanton
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size is smaller than the lattice spacing, i.e., when p(instanton size)

<<a (a = lattice spacing) then Slamceinstamon — 0, while in the

continuum

Sc:ontinuum

instanton = [81‘t2/92(p)] —>00,
p—0

lattice . ]
When p>>a, S instanton — Secontinuum. . . and if p . 0(a)

the instanton shrinks through the lattice sites and disappears,
while at the same time its action drops to zero.

The lesson from the instanton search on the lattice is that if we
want to have a clear picture of what is going on, we must have
instanton sizes larger than the lattice spacing and the larger the
instanton size the longer the lifetime of the object on the lattice.
When the action plateaus

S = [8n2/g2]Q (3.2.3)
and we find the topological charge by measuring the action.

The technical points of the algorithm for the minimization are as
follows:

The SU(2) case is simple since the staple which multiplies the
link we cool consists of a sum of SU(2) matrices, which is still an
SU(2) matrix if we divide it by its determinant. Using the
Lagrange's multiplier method we find that, if the staple matrix is
denoted by A, the choice

UH=A+/DetA minimises the action.

The SU(3) case is not so simple, since the sum of SU(3) matrices
is not generally an SU(3) matrix. The main idea of our algorithm is
to find a matrix which belongs to SU(3) and is very close to A. We
have checked the algorithm for the SU(3) case by comparing the
results using the NAG Library, and this confirmed that, after a
number of hits, we reached the minimum of the action.
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3.3 Numerical Results
We now present our MC results and comments on them.

Figs. Aq to A4 refer to the SU(2) case, where we set up the twists
nuv‘s in such a way to get topological charge of 3/2. Fig. Ay was

taken with 600 thermalized sweeps from a configuration obtained
by a hot start while Fig. Ao was taken from a configuration  with

a cold start (gauge links were fixed equal to the unit matrix). We
observe that in the Fig. Ay we get topological charge of 1/2

instead of 3/2 as in Fig. Ao, despite the fact that the Tluv's are the

same in both the cases. Comparing these results with other
results we will present next leads us to interpret this as coming
from the integer part of the twist, i.e. the integer v in relation
(3.1.4). We conclude that when we thermalize a configuration the
instanton(s) can always be there and from the previous paragraph
we know that their existence depends (among other things) on the
lattice size and that after some cooling sweeps they shrink
through the lattice. So it could be the case that the integer v in
(3.1.4) is 1 for the configuration of A, case.Fig. Ao shows a

somewhat unstable plateau at 3/2, which decays to 1/2, which
seems to be quite pertinent. From Fig. Ay we also observe that
the topological structure we get does not disappear, even after
about160 cooling sweeps, which leads us to believe that the
topological objects with TBC seem to have a size larger than the

instanton size (even if we have not any analytical reasoning for
this).

Figs. A3 and A4 have been obtained by cooling from a cold

start (U =1,B = c0) and their twist was set up for Q = 3/2. We got
exactly Q = 3/2, and so all the topological charge is attributed to
the twist part of (3.1.4) (i.e. the k/N of this relation).

Fig. B refers to an object of topological charge Q=1/4. This was
created by using constant twist matrices, along the 1 and 2
directions. The physical analogue of this is a magnetic flux at a
link pointing in the third direction in space. This is quite similar
to a Z(N) solution to the equations of motion [25,28]  |n this case
the action does not decay to zero and this can be explained using
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the Schwartz's identity for the U(1) subgroup of the SU(2) group,
i.e.,

Ectassical = (1/2)J(F12)2d%x2(1/2)|([F12dS)2/(a1apazay)|
(3.3.1a)

The action for such a configuration is

S =cos (Fyo)-1, (3.3.1b)
where Fyp =m/ajap, so E = (1/2)n2/(ajas)2.

A configration, in the continuum, which has the same action as in
(3.3.1), is given by Au = [(nrx{/aqa5),0,0,0], which corresponds to

a magnetic field B3 - n/ajans. We justify that Q = 1/4 (for the

above case) by comparing the value of the action with that for
Q = 1 on the same lattice. To measure the topological charge on
the lattice we are using the relation (for the SU(2) group, and for a

64 lattice in 4-dimensions):

(4/g2)64x6x(1- Sp|aq)=[81t2/92]() (3.3.2)
where Splaq is the plaguette at one level.
For Q=1, 1- Spjaq = [%2/(64.3)].

For the U(1) group, if we consider the action (which corresponds to
a configuration with a twist only in 2 directions)

cos(Fqo)-1 = (1/2)n2/(ajaz)?,

we get n2/(2x64) = 6(1- Spjaq) and so (1- Spjaq) = n2/(2x69).
Compared with 1- Splaq = n2/(64.3), (for Q = 1) we see that for the
U(1) subgroup of SU(2) we get

Qyq) = 14 (3.3.3)
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(with constant twists in 2 directions).

Category C contains results for SU(2) with Q = 1/2 on a 64 lattice,
where the matrices of (3.1.11) were used.

Fig. C4 shows clearly that the action plateaus to Q = 1/2 after ~ 50

cooling sweeps and remains there for ~ 350 cooling sweeps. This
shows again that this topological object is quite stable. We could
speculate that the "size" p of these objects is significantly larger
than the instanton size, since their stability leads us to believe
that even after a large number of cooling sweeps their size is p>> a
(a = lattice spacing). Of course, we expect that after a number of
cooling sweeps the action will go to zero, but our observation is
that we need a lot of sweeps for the action to decay to zero.

Figs. Co and Cg3 are taken by cooling from a cold start (B=cc). We
see again Q =1/2. Cg is taken by fixing the gauge so that

Qo =Qy =1 Qq#1,Q3 1, and still preserving the twist algebra
(2.2.3).

Category D contains results for an 84 lattice. In this case
twists for Q = 1/2 were used.

Fig. Dy was taken from a configuration which was thermalized for

1000 thermalization sweeps starting from a cold start at § =2.2.
We observe that at around the ~140th cooling sweep we have a
plateau for Q = 1/2. When we thermalized this configuration
again, for 2020 thermalization sweeps, starting from a cold start,
we got Fig. Do where we have two quite stable plateaus at

Q = 3/2 and Q = 1/2. We interpret this as the appearance of an
instanton in the lattice since we now have a larger lattice than the
one in Fig. Ao. ,

Fig. D3 shows that at B = o= on the same lattice we have only the
"pure" twist case, i.e. Q = 1/2.

Class (E) contains graphs concerning the cases where we have to
use non-constant twists so that k/N =1, i.e. a twisted instanton. If

we want a (anti)-selfdual solution we have of course to satisfy,
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Fuv = £Fpv. From the analysis of 't-Hooft [20], we know that in
ordes to satisfy the (anti)-selfduality condition of the gauge field,
we have to arrange the ratio ajap/agay (aq,ap, ag,ay arethe

lattice sizes in D = 4). This restricts the lattice size we can use
(depending always on the twists we use), and, for example, for the
SU(2) group and for Q=1, we should use a lattice with
(aqap/agay) = 2 (for the (anti)-selfduality condition to be
satisfied).

The case Q =1 for a 12x63 |attice at B=0 s shown in Fig.Eq.

From the graph we see clearly two small plateaus close to Q = 3
and Q = 2, respectively, and a stable plateau at Q = 1.

Fig. Eo was taken for B = oo, and again we obtained Q = 1.

Fig. E3 refers to a case where our lattice (63x12) does not satisfy
the (anti)-selfduality condition and was obtained by 1000
thermalization iterations at f = 2.2. Again, we see a small
curvature at Q =2, and quite a stable plateau at "Q" = 1.2, which
decays to zero (before it decays to zero it stays for some time at
Q = 0.1). In the case of Figs. E{ and E, the lattice (12x63)
satisfied the (anti)-selfduality condition and Q was exactly 1,
but this is unlikely in this case of Fig. E5 where we have small
fluctuations around Q = 1. Similarly, in Fig. E4 we see that (using

3.2.3) "Q" = 0.6 despite the fact that we arranged the twists to
correspond to Q = 1/2.

In all the above cases we plot the value of the average plaquette
versus the number of cooling sweeps, and we use (3.2.3) to measure
the topological charge. When the configuration does not satisfy the
(anti)-selfduality condition it is not legitimate to use (3.2.3),
since this holds only for (anti)-selfdual configurations. This
explains why "Q" = 0.6 for the case plotted in Fig. E4.

Now we present a more formal "proof" why "Q" =0.6.

The twists nuv's were arranged such that
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n12 = -1, n34 =1,i.e.Q =1/2.

Then
TrFuv'I;“V = (1/2)eMVPOTrFuvFpo =

(16n2/ajapagag)(ny iy /(4N), N = 2.

So for the above choice of nuv's TrFqulW = (8n2/a1a2a3a4) and

this value corresponds to topological charge Q = 1/2. If the
configuration is (anti)-selfdual then

S = (1/2) | TrFFd%x = 42,

but if the configuration does not satisfy
Fuv = tFUV,  TrFuvFRY = 2(TrFy 92 + TrFg,2) =
4n2[1/(aqan)? +1 /(agay)?]

and
S =212 (x +(1/ X)), x = ajap /agay.

Comparing the actions for (anti)-selfdual and non-(anti)-selfdual
configurations we have:

(S(anti)-selfdual/Snon-(anti)-selfdual) = 2/(x+(1/x)). (3.3.4)

If x =1 then Sami(self)-dual = Snon-(anti)-selfdual.

From (3.3.4) we can now deduce that "Q" =0.6, provided we accept
that even for a non-(anti)-selfdual configuration S is still
proportional to Q. Then

(S(anti)-selfduaI/Snon (anti)-ssalfdual) = 2/(x+(1/x)) = 0.5/0.6 =

Q(anti)‘selfdual/"Q“non (anti)-selfdual and for this to hold x =1.2, i.e., we
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should have a 63x12 lattice.

L]

Therefore using (3.2.3) with a 63x12 lattice and twists for
Q =1/2 we should expect to find "Q" = 0.6. With the same logic we
can justify the value "Q" = 1.2 for the case shown in Fig. Ejs.

We now present the results of our numerical study for the SU(3)
group.

Figs. Fqand F, refer to the case with topological charge Q = 1/3,

where in order to satisfy (anti)-selfduality condition, we have to
use a lattice with ajas/agay = (1/2). We see clearly Q = 1/3.

Fig. F3 reters to the case where we constructed the twists Muy'S

for Q = 4/3, but we find again Q = 1/3.  Our interpretation of this
is that an instanton was lost or, by the modulus law of the twist
in (3.1.4), there is a possibility that Q = 1/3 can actually be the
same as Q = 4/3. In (3.1.4) we think k/N is equal to (k/N)modN
and so Q = 4/3 belongs to the same topological class as Q =1/3.

Fig. G1 shows a very interesting sequence of plateaus. We set up
the nuv's for Q = 2/3 in a 64 lattice (using a configuration obtained
by 790 thermalization sweeps) starting with a hot start at B = 5.5.
The graph shows topological charges with values at Q = 1/3, 4/3,
7/3. This is not surprising since the occurence of instantons is
quite probable when we use a thermalized configuration. This
interplay between the instantons and the TBC can be justified also
by graph Go. We used the "twisted" thermalized configuration of
G4, and cooled it without the twist. If instantons exist they
would be seen by a small plateau (or curvature) of the graph, since
they are unstable. This was actually the case, and in Fig. G, there

is an indication of Q = 1 at around 25 cooling sweeps, which s
about the time that the first plateau of Fig. G4 occurs.

Class H contains the graphs which refer to Q = 2/3, where our
Monte Carlo generated configuration was obtained after 650

thermalization sweeps from a hot start on a 64 lattice.

Now the action plateaus at Q = 2/3, where there is an indication of
a small plateau at Q = 5/3. In contrast, at p = o (Fig. Hy), there are
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no instantons and Q = 2/3. Of course Q=(1/3,4/3,7/3) does not
belong to the same vacuum as Q=(2/3,5/3). Here we have an
example of how the initial conditions (in this example the number
of thermalization sweeps) affect the topological nature of the
gauge field.

The choice for the twist transition functions, for a particular set
of nuv's, is not unique. For example, it is possible to have 2

different Qu's which correspond to the same twist (i.e., the same
topological charge Q), but they have different Muv's: To give an
example: the Qu's

K
kN-k times
Q (x) = e N k-N
v
k-N
—1 —
2i Tk
2)
s& (x) = e N 1
v
1-N

both correspond to the same twist k, but
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(1) | @) (k24K
classical classical

and in general is different from zero.

If we consider the case of the SU(3) group for Q = 2/3, we see that

if instead of w in (3.1.14) , we use
2 00
o = 0 -10
0 0-1

then the transition functions Qu have the form

Qq(x)= e(-2|7t/3)(X2/32)0.)
Qp(x)= e(2m/3)(x1/a1)m, )
1 0 0
in/6)(x /
93()() _ 0 0 e(m )(x4 a4)w
o t O '
(3.3.5)
1 0 O
(-in/6)(x _/a )
Q) =]o 4 of e e
4
0O 0 i

and still satisfy the twist algebra (2.2.2) for Q = 2/3. Obviously,
the action of this "twist" choice is different from the action
chosen in (3.1.14) and in addition to this the choice (3.3.5) cannot
be used to measure the topological charge via (3.2.3) on a 64
lattice, since it is not (anti)- selfdual on this lattice.

68



Cases lq,lp,I3 refer to a twisted instanton for the SU(3) case

at B0, B =00, B=0co, where the third graph was taken by changing
the number of hits on the link during the cooling method from 20 to
1. Clearly there is a strong indication of Q = 1 in the SU(3) case.

We also used constant Qu‘s for the SU(2) and SU(3) groups using

the matrices (3.1.3,b,c,d,e) and we found Q = 1(we do not present
the plots here).

It has been seen from Section 3.1 that for k # O(mod N), we have to
use non-constant Qu's (see also Ref.[27]). When k = 0 (modN) we
can have "twisted" instantons with constant and non-constants

QH S.

It has been argued[28] that the effect of the twist for the SU(2)
case can be incorporated in a factor Z,, in front of the elementary

plaquette in the action, i.e.
Stwisted = Zn,u,v 1111-Zyy Splag)

where Zu\,:ezimluv/N*

The author of [28] used anisotropic lattices and found topological
charges 1/2, 3/2 (for the SU(2) group). It is not clear to us that by
incorporating the twisted boundary condition on the lattice the
Wilson action has an overall factor Z, in front of Sp5q. We could
only see a minus sign at the right corner plaquette (Fig. K) when
we used constant twist matrices for My, = -1 in 2-dimensions for

the SU(2) group.
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. CHAPTER FOUR

-

4.1 Generalities on the Index Theorem

In this chapter we deal with the index theorem and its verification
on a lattice. We start, firstly ,by giving a general outline of the
index theorem in the continuum.

The index theorem basically reflects the non-trivial topological
properties of the gauge field and remarkably connects these
properties with the number of zero modes of the Dirac
operator[29].

We discuss briefly the "proof" of the index theorem and we
comment on some points referring to the conditions under which it
is applicable.

It is well known[30] that the Eculidean path - integral measure is
not invariant under the chiral transformation,and it gives rise to

an anomalous Jacobian factor 2 yt (x)Ts'¥ (x) (where W (x) are

the eigenfunctions of the Dirac operator) which is not well defined
and may be regularised with a Gaussian cut-off, i.e.,

Zn‘l’+n(x)l“5‘l’n(x) = Lim W ()Tsexp(-D2M2)Y (x) =

M— oo

: 2/M2 + _ 2 Tuv
leM_>°°TrI‘Sexp(¢ /M )zn PE ()Y L(y) = (1/16n )TerF _

Xy

So the factor in the path integral which gives the anomaly is

Jdx o(x) ¥ T (X)Ts¥ 5 (x = [dxw(x) 1/16n2)TrFu FW

(o(x) is the chiral rotation of ¥ (x)—el@(X)I's ¥ (x)).
In the limit in which w{x) becomes a constant we can use this
result to generate a proof of the index theorem for the Dirac
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operator. To see this we note that fd4x):n‘P+n(x)F5‘Pn(x) =0 for

eigenfunctions with eigenvalues An#0 so the only contribution is
from the zero modes of I's and :

4 positive chirality zero modes +
Jd4x(Z ¥ (0T (%) -

i=1

J‘d4x(z negative chirality zero modess\y +.

i(X)Ts¥ _(x) =n_-n

i=1 -

SO

n,-n_= (1/16n2)fTrFquuV (4.1.1).

The chirality is defined by the eigenfunctions of I's:
Is'¥=t¥ (4.1.2).

We now discuss some points concerned with the index theorem.

1) Most of the work so far,in the continuum, and on the lattice, has
been restricted to the case of the instanton field and the number of
zero modes of D in the presence of the instanton field in various
simple compact groups. Obviously, when we consider the case of

the instantons we deal with S% as our base space (compact space),

or,using the conformal mapping from R4u{°° } to S4, R4, This

justifies attempts to verify the index theorem on a lattice,
considering the lattice as a compact flat space.

2) Solving the equation
~
Fuv=tFpv | (4.1.3)

for fixed winding number,provides the number of parameters on
which the instanton solution depends. For example ,for the SU(2)
case with Pontryagin nuinber P (in this chapter we will denote
sometimes the topological charge Q by P ) the number of
parameters for the instanton solution is 8P-3. For the SU(3) case
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for P = 1 we have 5 parameters and for P > 1 we have 12P-8
parameters. The fluctuation problem (expansion around known
instanton solutions which preserves (4.1.3)) has been considered
for the instanton case and it shouid be formulated also using TBC.
For the instanton case there are known solutions for the gauge

field ,for example, for Q=1 the solution was found inl31] and by
expanding around it we are able,in principle, to find the spectrum
of the Dirac operator for a general gauge field, as well as the
number of parameters on which this gauge field depends .

While much work has been done concerning instantons,in the case

of the TBC the only known solution is that ofl20] and we should
formulate the fluctuation problem by expanding around the Abelian

solutions of [20].

3) The form (4.1.1) is a special case of the index theorem for an
elliptic operator.Generally,the index is defined as Z(-1)i(hi), where

every Betti number h; is the dimension of the coset[32]

H; = KerDj/image D;.4 and Dj's form a complex [33,34] which, in the
case of gauge theories, can be represented by

D.y Dp Dy Dy

0- FO—-> IZ| - F2—> 0

where T = the space of scalar fields, I'y =the space of vector
fields, and I, = the space of (anti)-selfdual tensors FMV, and D;, 1D;
- 0. Physically, H! gives the number of non-gauge equivalent
solutions to Yang-Mills equations which satisfy duality and HO the

dimension of the holonomy group of the gauge group. The number h2

for the case of the sphere is zero. The number hO-h1 is what we
call the index of the operator D which maps g +Tyt0 T, and

the index
D = dimKerD-dimkerD™ = h0-n1-

4) Atiyah et al.[35] have shown that
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index D = a,Q +ct (4.1.4)
where ay = the Dynkin index of the representation of the fermion

field and 1 =the signature of the base-space manifold. In the case
of the sphere and the torus 1= 0 and a, = s(s-1)(s+1)/6 where s is

the dimension of the fermion representation.For the case of the
SU(2) group with the fermions in the fundamental representation,
index D =n_-n_= P, where P = topological charge Q.

4.2 The Index Theorem on a Lattice

We applied the MTBC (Muiti Twisted Boundary Conditions of
Section 2.2) on a lattice both for Wilson and Kogut-Susskind
fermions. We used thermalised configurations as well as explicit
configurations with constant field strength F,, which were

constructed according tol20]. we start by giving some of the
explicit solutions for the gauge field which we used to find the
eigenvalues of the fermion matrix.

For the SU(2) group a configuration with P = 1/2 is given by[20].

4.2A

Aq(x)=(n/2)X50 ., Ag(x)=-(n/2)X1 O ,
3/a1 a2 3/a1 al2

A3(x)=(n/2)X403/5 g - Aq(x)=-(n/2)X303/5 g -
3 4 3 4

(4.2.1)

where Au denotes the gauge field in the continuum, a4, a,, ag, a4

are the sizes of a 4-dimensional Euclidean box along the 4
directions, xq, Xo, X3, X4 are the coordinates of a point and c3 is

the Pauli 03-matrix. The twists nuv's which were used for (3.1.11)

were used also to construct (4.2.1). This solution has constant
field strength in the 1-2,3-4 levels and satisfies the Yang-Mills
equations of motion:
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+ DyFHV_5, FHV 4i[A FWV] = 0.

It has been shown [36]that stable extrema of the action(for
compact manifolds) are always (anti)-selfdual. Since the solutions

ofl20] are constant(they have constant field strength), we should
expect them to be stable.

Another example of an explicit configuration is:

4.2B Group SU(2)colorxsy(4)flavor

In this example we have the peculiar characteristic that the
number of colors is different from the number of flavors ,but the
MTBC still apply.

In this case, to be consistent with (2.2.20), we chose

n(color) =1_ (flavor)
12 2 12

The gauge field is now the same as in (4.2.1) since it depends only
on the color twist, but we have to change the flavor twist
transition functions for them to match the o, (flavor) _2

12
(flavor)
So we construct the Q m 's such that
p* -iq
p* iq
Qf1(x)= ,sz(X)= . )
P q
| P i q*
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. z A
Qf (x)= ‘ | .
(0 . peo- "
z* | iA*
(4.2.2)
In (4.2.2)
p=einx2/282
q___.einX1/281

We now give an explicit configuration for the SU(3) group for
P = 2/3.

4.2C Using the twists for Q = 2/3 (c.f 3.1.14) we have

A4 (x)=(n/3)Xo . Ag(x)=-(n/3)X1® ,
/a1 a2 /a1 a2

Ag(X)=(r/3)X40/q g . A4(x)=-(n/3)X30/3 7 .
3 4 374
(4.2.3)

where
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When we apply the color-flavor twist on the lattice we do this in
the fo.llowing way. Every time we reach a boundary site of the
lattice; i.e.,when for example the coordinate of a lattice site in the
x-direction is Ny+1(N, = lattice size in the x-direction), we
multiply the gauge field matrix with the matrix we obtain after
the application of the color-flavor twist on the ¥ field. We now
present, as an example, the application of the color-flavor twist

for the group SU(Q)(CO"”)xSU(2)(flavor)

a b
if [ o ], represents the SU(2) gauge field matrix,
- * a*

then the application of the color-flavor twist on the W¥-field
results in:

1st flavor

1 a b T 0 a bp”
H o

-b* 0 p“2 b* a.p*2
(4.2.4a)
For the other directions (and using ch(x) = qu(x))
we replace p = e®%X2/282 py (c1.3.1.11)
q___e-inx1/281 L = 2)
z=ei™X4/284 (u = 3) (4.2.4b)

r=g-iTX3/223 (= 4),

For the 2nd flavor we have:
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C [ ab ]lp2 0] ap® b
-b*  a*Jlo 1 _b*pz a*
(4.2.4¢)

(for the other directions we replace p by q,z,| of (4.2.4b)).

Since we use a local flavor twist(without introducing "flavor
bosons"), we have to specify the coordinates x of qu(x) for every

particular flavor we deal with.In the case of Wilson's fermions this
does not seem to create any conceputal problem since each flavor
field lives on one lattice site.

For the K-S fermions we have really to think about the argument to
be used for the flavor twist functions,since each flavor is spread
over the 16 (in D=4) corners of the hypercube. For a periodic lattice
the X fields on the boundary sites of the lattice are identical to the
ones in the interior of the lattice. Under the MTBC of section 2.2
we have to take into account the influence of the twist on the X -
fields,and this can be done by constructing the flavor field in
terms of the X-fields and then applying the color-flavor twist on
the flavor field.

We label the sites of each flavor box as in Fig.4.2.2 and using

quf= an“ufn UU, X, where p = Dirac index, f = flavor index

(c.f. Appendix A) we arrive at :

o oxay +ivuan x) ] )

[ X(1) -UU ()X (1)
Txeuue uueExe) X'(

2)UU'(2) -IUU'(2)X'(2)
(4.2.5)

where the prime(') fields refer to the boundary flavor box, i.e., box
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1 at Fig.4.2.1 and we work in D=2.

T T T

(0,05

(4,0) (5,0)

Fig. 4.2.1 Flavor boxes on a lattice for the K-S fermions in D=2

In Fig. 4.2.1 we suppose that along the x- axis the lattice has four
sites and so the sites of box 1 do not belong in the lattice. In
(4.2.5) we label the four sites of any flavor box as in Fig.4.2.2., and
this relation without the primes on the U's and the X's can also be
used for every flavor box of the lattice and not only for the
boundary flavor boxes.

(0,1) (1,1)

2' 1
1 2
(0,0) (1,0)
Fig.4.2.2 A flavor box for K-S fermions in D=2
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The indices 1,2 on the g's correspond to the 2 flavors in D = 2 and
we used representation of the I matrices

0 1 0 -i
I' = I' =
°frol" *lio

Also
uu() = 1 uu(1) = 1
UU(2) = U4(00) UU'2) = Uq(40)
UU(2') =- U»(00) UU'(2) = Us(40)

UU(T") = Uq(00)Up(10)  UU'(1") = U4(40)U(50) .

We now perform a flavor twist on (q1 q2) and we get:

X'(1) +iUU(1)X'(1") X'(1) -AUU(1)X(1") ]

X'(2)UU'(2) +iUU'(2)X'(2) X'(2)uU'2) -ivu@)x@)|
[ 7X(1)+iUU(1')X(1‘) X(1) -UU(1)X(1" ][p o]
X(2)UU(2) +iUU(2')X(2) X(2)UU(2) -ivu@)x@)flo q
(4.2.6)

In (4.2.6) the matrix
0 gq

is equal to @' (0 with
particular flavor box being considered. Solving (4.2.6) for the
primed fields and applying the color twist on the gauge field ,if it
is at the boundary, we express the X fields on the boundary flavor

boxes in terms of the X fields of the flavor boxes in the lattice. If
boxes 1,2 of Fig. 4.2.1 then we find X(4,1),

argument x of pr(x)‘ the center of the

we concentrate on
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which in the notation of Fig.4.2.2 is the X'(2) site, X(4,0), X(5,0),
X(5,1) in terms of X(0,0), X(1,0), X(0,1), X(1,1).

We now consider the interaction: X(3,1) U1(3,1) X(4,1). For a
periodic lattice with antiperiodic boundary conditions for the
X- fields it equals  -X(3,1) U1(3,1) X(0,1). Now, using (4.2.6),
X(41) = (1/2i)Q1(3/2)U+5(00)(p-q)X(10)U1(00)+
(1/2)Q1(3/2)(p+q)X(01)
and finally

—

X(31)U4(31)X(41)=

(1/2i)X(31 )U4(31)Q(3/2)U*5(00)(p-q)X(10)U(00)+
(1 /2)-)2(31 JU1(31)Q2,(3/2)(p+q)X(01)

From this we notice that the first term is not a neighbour
interaction.

We can proceed to the calculation of qG in D = 2 for each flavor
after the inculsion of the MTBC.

We present the condensate qq in D = 2 for one of the flavor boxes.
Without twist (using (4.2.5))

31q1=X(00)X(00)+iX(00)U4(00)Uo(10)X(11) -
X(11)U* 5(10)U*1(00)X(00)+X(11)X(11)+X(10)X(10) +

iX(10)U* 4 (00)U5(00)X(01)-iX(01)U* 5(00)U+ (00)X(10)+
X(01)X(01)

and
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G292 = X(00)X(00) -IX(00)U1(00)Us(10)X(11) +

[
-

IX(11)U*5(10)U* 1 (00)X(00)+X(11)X(11)+X(10)X(10) -

iX(10)U* 1 (00)U(00)X(01)+iX(01)U*5(00) U1 (00)X(10) +

X(01)X(01).

In the presence of the twist (color-flavor for the same flavor box)
we have, by solving (4.2.6),

X(40)=0°0!07(1/2){cos® X(00)+sine U4 (00)Uo(10)X(11)}

X(51)=0,°0/07(3/2){cos® X(11)-sind U+5(00)U*4(00)X(00)}

X(50)=Q0'0"(1/2){cos8 X(10)+sin® U+1(00)Uo(00)X(01)}

x(41)=Q¢0l07(3/2){cos6 X(01) -sind U*5(00)U4(00)X(10)}
with cose=15(p+q) and sine=—21—i(p-q)

Finally ,after some algebra ,we find that:

9%wisted = Ywithout twist (4.2.7)

and this holds for each flavor separately.

We should expect that (4.2.7) is independent of the incorporation of
the twist, since qqg is a local quantity and it must not be affected
by the global effects of topology. In contrast,

<QQ> ieq * <a9> | visted” since when we consider the VEV of <qg>,

we take into account the updating of the gauge field under the TBC,
which affects <gg> (c.f. 1.9.5). In all the cases on which MTBC were
applied on the lattice we did not consider the flavor group to be
gauged,as this would require the introduction of "flavor" bosons.
The flavor twist is used in this work purely as a transformation
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which acts on the flavor indices of the ¥ field. Gauging the flavor
group should make the flavor index into a gauge quantum number.

4.3 Numerical Results

From the Section 4.1 we expect that,since for the SU(3) case a,=4
and for the SU(2) case a,=1,

n,-n_=4N¢P  for the SU(3) group (4.3.1a)
and
n -n_=NP for the SU(2) group (4.3.1b)

We now discuss our numerical results. In the numerical analysis
the Lanczos algorithm (Appendix B) was employed and we worked in
the quenched approximation. We now present the plots for the K-S
fermions.

Figs. 4.3.1a,b,c show the eigenvalues of the fermion matrix for the
configuration of Fig. G1. (G1 was taken for the SU(3) group at f=5.5

for a 64 lattice). We have plotted only the first six small
eigenvalues and we used antiperiodic boundary conditions for the
férmionﬁeld,i.e. a minus sign in front of (2.2.18).

Comparing Figs. 4.3.1a,b,c and Gy, makes it clear that the

distribution of the small eigenvalues is correlated with the
sequence of plateaus in Gq. One is now tempted to ask whether the

index theorem (4.3.1) is verified by the above figures.We believe
that this is not achieved convincingly. Certainly, the eigenvalues
follow the behaviour of the pure gauge action, and in the sweeps
where the changes of the topological charge occur (where we lose
one unit of topological charge), we are able to see an induced
change in the form of the eigenvalues.

We now consider the case of periodic twisted boundary conditions,
(Figs. 4.3.2a,b,c.)

Here we observe a rather different behaviour, in the sense that the
first and the second flavors seem to follow the same
pattern,while the 3rd flavor does not "suffer" very sharp changes
at the critical sweep numbers(about 25,100,400). We therefore
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conclude that no significant insight can be gained into the exact
reproduction on the lattice of (4.3.1) using periodic MTBC.

In Figs. 4.3.3a,b,c we examined the influence on the eigenvalues of
the H4 configuration. We recall that H{ refers to the pure gauge

action for the SU(3) group for a 64 lattice at B= 55 and Q= 2/3.
Although we have deviations from (4.3.1) we believe that our
results show that there are some remnants of the index theorem on
the lattice. There are zero modes which remain even after about
200 cooling sweeps. We also observe the similarities between the
first and the second flavors. Where the first plateau (Q = 5/3)
appears, at around the 44th sweep, the 5th and the 6th eigenvalues
for the third flavor rapidly disappear, and at the same time we lose
the last four eigenvalues for the first and second flavors. At the
final and stable plateau, at Q = 2/3, we are left with eight small
eigenvalues, in agreement with (4.3.1).

Fig.4.3.4 presents the case where we found the eigenvalues for the
SU(2) group using antiperiodic boundary conditions for the
configuration of Fig. Do. Again there is a correspondence between
these two graphs.

When one instanton disappears at about the 50th sweep and we
move from the Q = 3/2 to the Q = 1/2 vacuum,we lose zero modes.
In this plot we give the results for only the 1st flavor, since the
2nd flavor behaved identically. The fact that the form of the
eigenvalues does not distinguish between the flavors is explained
by the existence of the following similarity transformation
(c.f.4.2.4a,c):

a bp™ ] I:ap2 b}
-b*  a'p*2 ={(52 b*p? a* 02}

P a
and S, is the Pauli oo matrix

We now study the eigenvalues for the case of the Wilson's fermions
for the SU(3) group. In all the cases we studied to find the
eigenvalues, we used the Hermitian TgM matrix, and, of course, the

zero modes of this matrix are the same as the zero modes of M (M
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is the fermion matrix) and vice versa.

Figs. 4.3.5a to 4.3.5g deal with the eigenvalues of the first flavor
using antiperiodic boundary conditions and all the figures
correspond to the Gy configuration. We examine the behaviour of

the eigenvalues by again varying the sweep number and also
studying the variation of the form of the eigenvalues with respect
to the Wilson parameter k.

We notice there are no zero modes at k = 0.125, while at the sweep
numbers (about 25,100,400) and even at k = 0.125, all the
eigenvalues show small "curvature " effects. At k = 0.130 we have
reached the real eigenvalues of M and there is a strong indication
of zero modes, which actually appear at k = 0.135 and at about the
25th and 400th sweeps,where the plateaus occur. Counting the
number of zero modes of I'sM at each k we verify that the number

of small eigenvalues is different at around the 25th ,the 100th and
400th sweeps. So, at every cooling sweep, we have a choice of one

particular k, such that the eigenvalues A of M are A = 1k[371
Going from k=0.130 to k=0.135 we observe a "tunnelling" of a whole
line of eigenvalues from the left to the right of the axis . As we go
to higher k's we reach a point where there is no zero mode. For the
other two flavors the behaviour is about the same. The above
figures indicate that "a form" of the index theorem is satisfied on
a lattice.

We now discuss the case of the Hy configuration. (Figs. 4.3.8a to

4.3.10g). Obviously there is a dramatic change at about the 44th
sweep, i.e. when the instanton disappears.Remarkably again at
k=0.125 there is no zero mode and as we go to higher k's we find
the movement of whole lines of eigenvalues through the axis.

Again we have exact zero modes (c.f. at k=0.140 for the 2nd flavor
for example). There are no substantial differences in the behaviour
of the eigenvalues for the three flavors.

We now give a description of our results for the cases where
explicit configurations were used.

Figs. 4.3.11a,b,c and Figs. 4.3.12a,b,c (P = 2/3 at both cases) show
that at k = 0.131 there are zero modes for all the flavors, while in
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both cases the eigenvalue distribution for the third flavor differs
from tpat of the first two flavors. At k = 0.131 there are four
eigenvalues of I'sM very close to zero.

Figs. 4.3.13a,b,c and 4.3.14a,b,c correspond to results for a P=4/3
configuration.We therefore conclude that even although there are

zero modes for k = 0.139 and k = 0.141 thare is a deviation from
(4.3.1).

Figs. 4.3.15a,b were obtained by setting only color twist for the

¥ - field. This, of course ,leads to a non single -valued fermion
field and comparison with Figs. 4.3.11 and 4.3.12 shows that the
number of small eigenvalues is significantly less when we apply

only a color twist. In all the above cases our lattice size was 64,
with the exception of the case with P = 4/3 where the lattice size

was 8x43.

Results for the SU(2) group are as follows:.

Fig.4.3.16 shows the dependence of the small eigenvalues on k.
Again we do not plot the 2nd flavor, since it behaves exactly as

the 1st one. Our lattice size is 64 and we see one mode very close
to zero at k = 0.129.

Figs. 4.3.17a,b are for the case where we had only a color twist
(the lattice size is still 64 ) . No zero modes were seen.

We now present the case of a "twisted" instanton configuration on

a 12x63 lattice. In 4.3.18 ,where we had a color-flavor twist
there were zero modes, while at Fig.4.3.19 (only a color twist) no
zero modes were observed.

The final graph (Figs. 4.3.20a,b,c,d) is for the group SUC(2)xSUf(4).
There are no small eigenvalues for the first two flavors but there
are small ones for the third and the fourth flavors.

In this case, since the W¥- field belongs to the fundamental
reprentation of the SU(2) group, we expect that a,=1 and, from

(4.3.1) that n, - n_= 2.This was found to be the case.
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In all the cases, where Wilson fermions were referred, we kept the
Wilson: r- parameter equal to 1, but we also ran some cases with
r = 0.50 and r = 0.25 for explicit configurations only. Since as

r— 0 the Wilson term (c..f. 1.8b.1) in the action goes to zero too,
the chiral symmetry is restored and there are no zero modes. We
confirmed this although the results are not presented here.
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Appendix A
Spin Diagonalisation

Here we will present an explicit construction of the flavor quark
fields in terms of the x fields.

(a) Free Case

We start with the naive Euclidean action on a D-dimensional
hypercubic lattice:

S = (112)ad Tz u[@(n)l‘“‘{!(mu)-‘{’(mu)I‘P“P(n) (A1)

where n = (ny,no,n3 ,np) is a lattice site.

. D/2
For every lattice site (W¥,¥) have 2( /2) components, D an even
integer. We choose representation of the I' matrices

{FH'FV} ='28uv T+ =T, rutrp =1

At every site, we perform a unitary transformation:

¥ (n)=T(n)X(n), (A2)
¥ (n)=X(n)T"(n) (A3)

where , |
T+(n)IHT(n+p)=AK(n) (A4)
T+(n)T(n)=T(n)T+(n)=1 , (A5)

and AK(n)e U(1)®Cis a diagoﬁal unitary matrix (C=(D/2)). After this
transformation the action becomes:
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S=(1/2)aD’1Zn u[)‘((n)AILLX(n+u)+$<'(n+u)AMX(n)]. (AB)

H

One possible choice for T(n) is

n, m, N, 1
112 3 My
TO(n) =Ty T, “T3 “3ry (A7)

which gives
4, @) = (1) (A8)

From the above equations we observe that Au(n) obeys the
constraint:

Ap =-1, (A9)
i.e., its parallel transport around a plaquette is -1.

Conversely , if we have Au(n) matrices which obey (A9) we can

recover the form of the action (A1) from the action in terms of the
X fields. So all the different choices for T(n) are equivalent.

We now present the construction of the different quark flavors
fields in terms of the X fields[38]-

We write

fa f

q =178z I' “Xn) (A10)

(f = flavor index, a = spinor index) and we work explicitly in four
dimensions with

r=ry Tz 2f3 T4 )
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Labelling the sites of the hypercube as follows:

(n labels the 16 corners of the hypercube)

n (-1)"
(0, 0, 0, 0) 1 1
(1,1, 1, 1) 2 +1
(1,1,0,0) 3 +1
0, 0, 1, 1) 4 +1
©, 1, 1, 0) 5 +1
(1, 0,0, 1) 6 +1
(1,0, 1, 0) 7 +1
0, 1, 0, 1) 8 +1
(1, 0, 0, 0) 9 -1
©, 1,1, 1) 10 - 1
0, 1, 0, 0) 11 -1
(1,0, 1, 1) 12 -
0, 0, 1, 0) 13 -
(1,1, 0, 1) 14 -
(1,1, 1, 0) 15 - 1
©, 0, 0, 1) 16 1

0 0 0 -f (0 0 o
0 0 -1 0 0 0 -i
4o 1 o0 o] "o 4 o
1 0 0 0 i 0 o
0 0 -1 0] (0 0 i o0
00 0 1 0 0 0 i
1 0 o of ""¢]i o o o
o1 0 o] _ lo i 0o

we get
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-ix -ix -X
3 4 5 +X
X - ix -ix -X
7 5 6 8
vl = 1/8 .
IX +X +iX -
15 14 16 *13
-X +iX X ix
| o 11 o T 12]
-X -ix -ix X
7 5 e tXg
X +ix +iX -X
1 3 4 2
‘Pz = 1/8 . ' '
-ix +X -ix -i
12 10 9 X,
X +ix - -ix
| 13 15 14 16
-ix +X ix
X3 15 e X
-ix +X +ix
X 9 11 10 12
‘I’3 = 1/8 . _
-ix +ix +X
X, 3 4 2
-ix -ix +X
L X7 5 6 8 |
[ ix +X ix 7
X9 11 10 12
- -ix - +ix
13 15 14 16
v, = 18 _ '
- -ix +iX -X
X 7 5 6 8
iX -ix +X
\. X ¥ 3 4 2 |

where the indices 1, 2, 3, 4 for the ¥ refer to the 4 groups of the 4

degenerate flavors.
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*

Interacting Case
Here, we have:

q"2=(1/g )= T_BUp(y)Xq () (A11)

where
Un(y)=[U1 ()M [U2(2y+n1)]"2Ug2y ¥ H5) "
U4[2y+n1+n2+n3]n.4 :
For example, U(0,0,0,0) =1,
u(1,1,1,1) = U(1,1) U(9,2) U(3,3) U(15,4) etc. and the construction

of the different quark flavors follows the same pattern as in the
free field case.

WATE i
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Appendix B

The Lanczos Algorithm

To find the eigenvalues of the fermion matrix on the lattice we use

the Lanczos Algorithm[39],which we discuss without giving
details.

We require a similarity transformation to produce a tridiagonal
symmetric (real) matrix T from a general Hermitian matrix H, i.e.,

X-THX = T with

Write X as a series of orthonormal column vectors:
X = (X1, X2, X3...... ),

the Lanczos equations are given by:
HX1 = a1Xq +B1X2 (B1a)
Hxj = Bj-1Xj-1+aiXj+BiXi,1 (B1b)

Using the Lanczos equations recursively, we calculate all the a's,
b's and x's starting ,by choosing the x1 to be a unit vector.
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Appendix C
The eigenvalue problem for specific configurations

Here we deal with the calculation of the eigenvalues of the Dirac
operator, using, as background gauge field, an explicit
configuration with P=1/2(P denotes the topological charge)
Instead of using the configuration(for P=1/2) of (4.2.1) ,we
construct a gauge equivalent configuration which is different
from zero at only two directions.

It is easy to show that the gauge field

A“- = (O , A2, 0, A4) where A2 = 27‘(1X1/a_1 ao: A4 = 27[X3/a1 a

(C1)
satisfies (2.2.1) .
In this gauge, the transition functions are :
inX2/a inX4/a
Q,(x) = e 2, Qy(x) =1, Qg(x) = e 2, Q=1
(C2)
We now proceed to find the eigenvalues of iD.
Since
. v
P2 = D2+(1/4)[T,.T (DD, ] =D2+(1/4)(-2ic" )[D,,,D,] =
2 Hv — D2-(o; 12 :
D<-(i/2)c Fuv =D (21012F ), 012=2|03 (C3)

the eigenvalue equation becomes

B2y =229 =[(91+1A1)2+(3p+iA2)2+(dg+iAg)? +
(84+iA4)2+ 403F1 2]‘{’ =-?\,2‘P, (C4)
where ¥ = ¥(x1,X2,X3,X4).

Using the gauge field in (C1) we notice that (C4) has no explicit
dependence on xp, X4 and therefore we write
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i(pxo+kx
lI’(X-I,X2,X3,X4_)=e (P 2 4)‘1)(X1 ,X3) (C5H)
This reduces (C4) to
[(32®@/3%12)+(32®/3x32)+(-p2-k2-2A,p-2A 4 k-A2,=-

A2 +403F 1 5+A2]D(x1,x3) = 0 (C6)

Since the choice of P=1/2 corresponds to nys = 1mgy = 1,we

choose the boundary conditions for the ¥ field to correspond to a
global color twist,i.e.,

in
Y(xq,X0,80,X3,X4) = € '¥(Xq,X2,X3,X4), (C7)
in
W(X1,X0,X3,X4,84) = € Y(Xq,X2,X3,X4) (C8)
= pas = (2n+1)r, kag = (2m+1)r, m,nel. (C9)

i A= (2n/ajap), =

(320 /9x12)+(22®/9x32)+(-p2-k2-2AX 1 p-2Axak-A2x12- A2x72 4
1 3 1 3 1 3
463A + A2]D(xq,x3) = 0 = (C10)

= (220/3x12)+[-A%(x12+(p/A)2+2x {p/A)+403A+ 12]0
= —(32@/ax52)+[A%(xg2+(k/IA)2+2x3k/A)] @ (C11)

If ®(xq1,x3) = X(x1)Z(x3), then we get:
(X"/X)+{-A2 (x1 +P/A) 2+ 403 A+ 2} =-(Z"/Z+A2(xg+k/A)2=-p2.

The above equations are the equations for a shifted harmonic
oscillator with frequency o = A = k and energy:
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(x2+p2+403A)=(n'+1/2)k (C12a)
w2 = (m'+1/2)k (C12b)
= A2 = (N'+1/2)k+(m'+1/2)k3 4A, (C13)

n'melZ2

The formal part of the calculation of the eigenvalues of D is now
finished and it is time to compare (C13) with our numerical
results.In the calculation we used boundary conditions for the ¥ -
field which did not correspond to a local twist.This renders the
fermion field multi-valued and comparing our numerical results,
using the bondary conditions (C7),(C8), with the ones for color-
flavor or only a color twist ,we notice that in the latter cases the
small eigenvalues are smaller than the first small eigenvalues of
the first case.

Also the numericar result for the case we set only a global color

twist on the ¥- field does not agree with what we expect from
(C13).

Now we present the same problem in 2 dimensions.
Using the configuration:

Aq{=(n/2)(xpo/aias), Ao=-(n/2)(x{/aqjap), (C14)

i.e., twist n12=1 at the 1-2 level, and the eigenvalue equation is

read:
(91 2+322)-A2(x1 2+x22)+2A+l2]‘P(x1 X2)=0, (C15)
__ T
23182

Using polar coordinates,

v2-(d2/dr)+(1/r)(d/dr) =
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(d2R/dr2) + (1/r)(dR/dr)-A2r2+A2+2A)R(r)=0. (C186)

After trial we use:

R(r):gueﬁgu(&,) = Eu"+(1-E)u'+{-1/2 +(?\.2+2A)/4A)}u(§)=0

(C17)
This is a confluent hypergeometric equation and for the series
solution to terminate we require:

(-1/2)+(A2+2A)/4A)e Z =
(A2/4A) = n = A2 = (2nn/aqas), neZ (C18)

If we define the topological charge in D=2 as:
_ 2

Q = (1/2r)[d*xF {5 then :

Q = (1/2rn)aqasmjaqas =1/2. (C19)

In [40] transition functions for Q = 1 were used (and periodicity of
the lattice was preserved i.e. Q = 1) ,and it was found that for the

, 2
eigenvalues of the Dirac operator A = 4nm/ajas.
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. Conclusions

As in the cases of pericdic boundary conditions and the
investigation for instantons on the lattice, there are strong
indications that we should be able to find topological objects of
non-integer topological charge on the lattice. In Chapter 3 it was
shown that numerical results provide strong evidence for the
existence of objects with non-integer charge and their lifetime is
remarkably longer than that of the instantons. Cooling from a cold
start we were able to have exact "twist" objects and for
thermalized configurations there was always at least one
instanton around..

In all the cases we thermalized a "twisted" configuration, the time
needed to reach the equilibrium was bigger than that for a periodic
configuration. This is justified due to the fact that, under TBC, we
actually simulate a bigger lattice from the Ilattice we had

originally. C Michael [41] had also also made this observation .

In chapter 4 we see that despite the fact that continuity is lost on
the lattice, there are remnants of the index theorem on the lattice.
Of course, the difficulties of putting the fermions on the lattice
(the spread of the flavors around the corners of the hypercube for
the K-S fermions and the 15 "unwanted" flavors for the Wilson
case) obscure the full evidence for the index theorem on the
lattice.The Wilson fermion action violates the chiral symmetry,
hence zero modes of the eigenvalue equation M¥=A¥,M is the
fermion matrix,are not eigenvectors of chirality,but approximate
eigenvectors,i.e. I's'\V=£'¥.

Another notable point regards our lattice. Since our lattice is not
a torus since we do not identify the gauge field at sites x, x + Nx
(Nx = lattice size in the x-direction) , we should actually find from
a pure mathematical point of view the values of the constants
which appear in 4.1.4 (in 4.1.4 there is no the Euler-Poincare
number which generally ,for an arbitrary manifold, is different
from zero and equals to 2 for a topological sphere). This is also
another possible explanation for the discrepancy between the
formula (4.3.1) and our numerical results.

In this thesis we dealt with the application of the TBC regarding
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only the 'purk matematical part' of the 'twist'. We believe that we
can extend this work to the physical applications of the TBC.

There are some papers which have dealt with this, for example, in

[42] the analysis considers the elimination of the finite size
effects on the lattice using the TBC.

It could be interesting to examine the dependence of the various
thermodynamical quantities (free energy etc.) on the TBC.

Generalising the solutions of [20] ,to non -abelian ones ,it should
provide a way to calculate the energy of the magnetic fluxes.Using

then duality arguments{13] we,in principle, could be able to
compute the energy of an electric flux tube.

Also, since from (1.10.1) we see that the chiral symmetry is
connected to the density of the zero modes, we consider that this
could give a way to study the connection between topology and
chiral symmetry breaking[43].
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