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Abstract

Euclidean solutions to the classical Yang-M ills equations 
(instantons.m erons.e .t.c .) are important for the non-perturbative 
description of gauge theories.lt is believed that these (topological 
in nature) solutions should provide a hint of confinement.chiral 
synm m etry breaking e.t.c.

It was realised by 't-Hooft that there are several types of 
boundary conditions(Twisted Boundary Conditions) for the gauge 
field which preserve the periodicity of non-local gauge invariant 
q u a n tit ie s .

In th is work we present numerical evidence that on a lattice and 
using Twisted Boundary Conditions we can have topological objects 
with non-integer topological charge (second Chern class).

The theory of fibre bundles (Chapter 2 ) is discussed and emphasis 
is given on its connection with the topolog ical properties of the 
Gauge Theories.W e introduce the gauge invariants tw ists r i ^  and 

we define non-Abelian fluxes.

Since the Z(N) Group does not act identically on the matter field we 
have to introduce the flavor twist in addition to the color tw ist on 
the  4Mield.

We express(C hapter 3) the winding number in terms of the twist 
transition functions in a finite Euclidean box in the continuum and 
its im plications on the lower bounds of the action are discussed. 
Various combinations of the T|j.v,s were constructed and applied on

the lattice. The only assumption for the incorporation of the twist 
on the lattice is the periodicity of the plaquette.

We evaluated (Chapter 4) the eigenvalues of TgM (M is the Fermion 

M atrix) both fo r W ilson and Kogut-Susskind Ferm ions. The 
spectrum of the eigenvalues showed that under the introduction of 
co lor and flavor tw ist for the ferm ion fie ld there is evidence for 
the restoration of a "form" of the Index Theorem on a Lattice.

The e igenvalue problem for specific  tw isted configura tions was

5



studied and arguments are presented for the discrepancy between 
our numerical results and the number of zero modes obtained via 
the Index Theorem.
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CHAPTER ONE

1. In tro d u c t io n

1.1 Generalities on Lattice Gauge Theories

It is now believed that the strong nuclear force is a reflection of 
the co lor force between quarks and gluons via the gauge theory of 
Quantum Chromodynam ics(QCD). Since the peculiar characteristic 
of the force due to the color number of quarks is that it is weak at

sho rt d is tances , "high m om entum  tra ns fe rs " Q 2 , (asym pto tic  
freedom), and becomes strong at large scales (confinement, bound 
colourless states), we should find a way to approach QCD at low 
energies beyond the regime of perturbation theory. This could 
enable us to study non-perturbative phenomena, such as long-range 
topolog ical objects, confinement, chiral sym m etry breaking, and to 
calculate the mass spectrum of hadrons.

There is no full explanation of how the quark confinement works.
The most popular scenario to explain the confinement problem is 
based on the application  of the ideas of superconductiv ity  to 
particle physics. A linear potential between the quarks leads to 
electric flux lines "squeezed" into flux tubes which bind the quarks.

 <_ <— ........................
 <— <— ........................

Q Q
 <— <— ...........................

-------------------------<_ f . .........................

Fig.1.1 Colour Electric Flux Lines between Q, Q Quarks

The analogy with the superconductor comes from the fact that
there we have confinem ent of magnetic flux lines since 0  = 0 .

D

Using duality arguments between the electric and magnetic color 
fie lds, we should ,in principle .find a way to rigorously describe 
the e lectric confinem ent of quarks.
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In the pertu rba tive  fie ld  theory, the main idea is to use a 
perturbative expansion in terms of the coupling constant and to use 
a renorm a lisa tion  techn ique by redefin ing the mass and the 
coupling constant to regulate the ultra-violet divergences. In the 
case of the QCD, the coupling at small distances gets greater than 
one and the perturbation expansion fails.

Using the lattice autom atically, we have a minimum distance "a" 
between neighbouring points, and so a maximum momenta A ~ 1 /a  
which leads to an u ltra-vio let fin ite theory. K.W ilson[1] introduced 
the la ttice  m ethod of regu la risa tion  of gauge theories  on a 
discretised Euclidean space and proved confinement at the strong 
coupling  lim it. At the same tim e in the lattice regularisation 
scheme, we have a finite number of degrees of freedom and so we 
can use com puter tricks. Another advantage of the lattice is the 
close analogy between a Quantum Field Theory formulated on the 
lattice, and a Statistical Mechanical System.

Once the equivalence of a model field theory to a Statistical Spin 
System in equilibrium  was established, we could exploit all the 
existing techniques for studying spin systems in order to solve the 
model field theory.

In the limit a ->0 , (continuum limit) the physics should not

depend on the lattice regulator and the correlation length ^ should

be £, »  a (£ -> 0 0  ). This corresponds to a second order phase 
transition. The analogy between various quantities in Field Theory 
(F T) and a Statistical Mechanical system (SM) follows:

FT SM

Propagator G Correlation Function G

G=< 0 0 > G=<SS>

G~e-(Er Eo)ar G-e-'A

! = [ 1 / ( E - |  - E 0 ) a ] = 1 / m ra

So, at the continuum limit, a-> 0 , mR = fixed =>^ -> 0 0  <=> 2 nd order 
phase transition.

8



1 .2  Path Integrals on the Lattice

In the path in tegra l f o r m a l i s m ^ ]  the expectation value of an 
o b se rva b le  is expressed  by ave rag ing  over c la ss ica l fie ld

con figu ra tions  "weighted" by the fac to r e S where S is the 
action of the configuration and h is the Planck's constant. For a 
scalar theory with a <|>4 interaction, the action is

S(<M * ) = J d H  { ( 3  * ) 2  + m V  + g V )  (1 .2 .1 )
M- J d. r1

The propagator (2-point Green's function) is given by :

Gfx, y] =<0|0(x)4»(y)|0>=-52Z(j)/50(x)5<I>(y)|.=0 ( 1 .2 .2 )

= (1/Z )Jd<J>(x)0(x)<l>(y)eî ^ ’*^^), where

Z = Jd*(x)ei//l'*s((l)’V t>). (1-2.3)

For the free case (g = 0), it is easy to find all the n-point Green 
functions, but for the case where g *  0  we have to expand the 
in te racting  part of the action to find G(x,y). In th is case the 
resulting integrals are divergent but with a renormalisation of the 
mass and the coupling the various observables are finite.

In order to improve the situation we use the lattice approximation 
by approaching the space-time by a finite hypercubic lattice of N|_

sites in every direction separated by the lattice spacing a, and 
replacing the derivatives by finite differences, i.e,

^ |I0 =A ^ 0 (n) =(1/a^) [0>(n+a|x ) - O(n)], (1.2.4)

(i= unit vector in the p. direction and the action (1 .2 .1 ) becomes

S =(1 /2 )a2 Z  [ALi<D(n)]2 + (1 / 2 )a4 I  [m 2 0 (n)2 +g 2 0 4 (n)].
n ,|i M’ n

(1.2.5)
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The continuum limit is recovered by taking the lim its N|_-><*>, 

a -»0 with N = aN[_ fixed.

We now apply the lattice approxim ation to the free sca lar field 
th e o ry [3 ]

S = Jd4x [(1 /2 )i}M4>«^<E>*+(1/2)m2 <I>2 ]. ( 1 .2 .6 )

Using Jd4  x -> a 4  X n (where on the Lattice n = (n-j ^ ^ 3 ^ 4 ) and 

0 (x)-> O(n)) we get:

S =a4 Z  {(1 /2 a 2 ) [0 (n+a|i) - <D(n) ] 2  + (1 / 2 )m 2 <D2 (n) } (1.2.7)
n , p.

The Z-functional:

Z=JdO(x) e-S(<|).^<t>) is now given by:

Z = J n nd<l>n e 's = (D et(M /2 ic ) ) ‘ 1 / 2  (1.2.8)

where M is defined by

S = ^m ^m n^n (1.2.9)

To gain fam iliarity with the techniques used in solid state physics, 
we consider the Fourier transforms of any <j>n to be:

l>k= I n <|>n e 2i kM--n|i/N L ^k= N L '4£ k<?k e' 2 ik^ nM-/N L

where N|_ is the lattice size. Now the kinetic part of (1.2.7) can be 
w ritten  as

10



(1 /2 )^ < t> flN > * = (1 /2 )a2 [® *n+(l® n+[l + 4 .n-c>n -

*  n+n^n  - n+n] = 

a -Z {2-2cos( 2itk /N , )} |ff , 2

2 N* k , | I  H L k

( 1.2 .10 )

and the total action becomes:

~ 2
12-2cos2iek . . / im .  n o u ^ + f a ^ / ^ N i  “M m *- \ "  '

( 1 .2 . 11 )

S = (a2 /(2N L4 ) ) I k [2 -2 cos 2 Jty N L] |$ k |2 +(a 4 / 2 NL 4 )m 2  | |$ k |:

The scalar propagator is given by:

nta S  -iqx. j. j. . f d x e<+-♦„> “ J ---- 7 --------------m
-rc/a (2 jc) m2  + 2 a‘2X  (1 -cosaq )

M-
( 1.2 .12 )

with = 2 jrk ^ /a N L - If we take the lattice spacing to zero, and

expand the cosine we regain the continuum  sca lar free field 
propagator.

1.3 One-Dimensional Ising Model

We have a chain of N spins with periodic boundary conditions.

1 -» 2............  ........N-1 -> N -> 1

F ig .1.3 Ising Model with Periodic Boundary Conditions

11



The Hamiltonian is given by:

H -  *J I  j= i^ i^ i+ 1 "  ^  (S j+S j+ i ) (1 .3 .1)

and the partition function

Z = Z g  ± i n .( e "PH i,i+1) = I s  < s l l T l s 2 > ........... < SN lT ls 1 >-

(1.3.2)

A

(where T is the transfer matrix).
C onsider now a quantum mechanical system in a 2-dim ensional 
H ilbert space with Ham iltonian H = -[cr-( -X c 3 ], a 1 a 3  the Pauli-

m at rices .

We can express the transition amplitude between stakes | a > and 
| b > in time T by < b|e_HT|a > and dividing T into N segments,
T = N (AT) we have

<b|e_HT|a > = <b|e-^NAT |a > =

Z s i  = ± 1 ............ ^ S N 1  _ ±1  <  b|e-HAT|S l > < S l  I e - H A T | s 2  > .............

< SN_i |e H AT| a >. (1.3.3)

We then define the transition matrix by

<s I e - H A T |  s< >  _  <  s  |^ |  g .  >  _  e - V ( S , S ' )  ( 1 . 3 . 4 )

and from (1.3.3), (1.3.4) we get

< b |e 'H T |a>=X s  S „  e[v (b-s i ) + - v (s 'a>l-
1= ± 1  N-1 = ± 1  N ' 1

If we consider it as a lattice b -> 1 -> 2  ... N-1-> a and make site a

12



coincide with site b then it is clearly an Ising Model with a general 
coupling V  ( S j ,  S j + 1 ).

For small AT, equation (1.3.4) becomes

with e"2 K _ a t ,  = 1 + ^AT.

For the quantum mechanical system, the partition function is:

which is the partition function of the 1 -d im ensional Ising Model 
with general coupling K. So the analogy:

QFT path integral = Statistical Mechanics partition function.

The Free Energy "Density" of the 1 -dimensional Ising model is given 
by

e-V(S,S ’) = <S|T|S'> = < S|1+AT (cr-t - Xc3) |S' > ( 1 .3.5)

Then

1 - ^AT AT
<  S |T |S '  >  =

AT 1 + XA T

and this means that the more general form of V is

V(S, S') = (K/ 2  )(S-S ' ) 2  + h/ 2  (S+S') (1.3.6)

Z = Tr e-HT = Z  <a | e - H T  | a > = Z  , c  _  . e- £  i = 1  N  V  (S j ,  S i + 1 )
a w i - + 1 /

= S {S;=+1> e X p [ ' Z i = l N  (K2+ K S i S i+1 + (h/2)Sj)] (1.3.7)

13



- 1 In Z = lim 1 . T -HT- — InTr e
N(AT) T — » OO T

(1.3.8)

So in QFT ground state energy = Statistical Mechanics free energy.

1.4 Gauge Action on the Lattice

The essential idea to put gauge theories on the lattice is to make 
the theory well defined as possible even losing Lorentz invariance 
but preserving the most important gauge invariance. In order to 
achieve th is, W ilson! 1 ] set up the whole theory from the scratch,
i.e. by redefining the degrees of freedom of the theory.

In the continuum  for every path join ing x and x' we define the 
parallel transport from x to x' by

u xx. = (1.4.1)

w here = A ^ T 3  (T a are the generators of the group under 

consideration) and Ux x ' belongs to the group (a runs from 1 to the 

dimension of the group).

Under a gauge transformation U(x) on A ^fx ) the parallel transport 

Uxx- undergoes the transformation:

Uxx.^ U (x )U xx-U(x’) (1.4.2)

The rotation of the frame in the charge space along a path through 
the points i-| \2 ...........-> 's

U y =  U iN iN _ 1 u iN --| i|s|-2....... Ui2 '1

and under a gauge transformation it transforms as

14



UY -> U iN U yU i^1

In particular, fo r a closed path Uy -> Ui-| Uy Uj ' 1 and th is shows

that the trace of Uy is gauge invariant. On the lattice the parallel 
transport opera to r Ux x - is the basic dynamical variable which is

defined on the link connecting the sites x and x'. So on the lattice, 
the dynam ica l va riab les  UXX' a lw ays represent fin ite  group 

transfo rm ations since they correspond to the transport along a 
path with fin ite  length. This means that on the lattice, we should 
have not only Lie groups, but we could have also discrete finite 
groups as gauge groups.

The pure gauge action (for SU(N) groups) in the continuum is

SG =(2 /g 2 ) jt rF ^ v F ^ v (1.4.3)

where Fjj.v is the convariant field strength.Denoting Uxx> by U ^ x )  as

the link joining the lattice sites x and x+a \l , we write the simplest 
poss ib le  gauge inva rian t action on the la ttice  (no ferm ions 
inc luded):

SG= (p /N )R e [Ix ^ p|aquettesTr[U^(x)Uv (x+a n )U ^ (x +av)U+v (x)]

(1.4.4)

U (x+ v )
x+ | I  + V 

U ( x ^ )
V

X +|I 

U (x)

Fig. 1.4.1 Elem entary Plaquette on a Lattice
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W riting U^(x) = e 'iagoAM-^ and using

e ax eay = ea x + a y + (1 /2 )a 2 [x, y] + 0(a3)^

we get Sg = (P /2 n )2 x vTra4 F^vF^v+ 0(a5 )

which is the continuum action if we identify p = 2N/gQ2 .

Some notable remarks follow:

(i) From the above we see that on the lattice, the dynam ical
variab les are elements of the gauge group associated with every
link of the lattice.

From U(I(n) = eia 9oA f i( n) and the fact that ag0 A JI(x) ranges from

[-71, 7t] (in SU(N) groups (compact groups)), we have noticed that the 
values of Ajj,(n) are restricted to(-7c/ago,7u/ago).

(ii) From (1.4.2) we see that U(x) lives on the lattice sites and is
not a dynamical degree of freedom. These are used just to gauge
transform  the dynamical variables UjI (x).

(iii) The generating functional

Z = Jn dU.e"P(U)
links I

(where dU| is the gauge invariant Haar m e a s u r e d ]  and p = 2N/gQ2 )

is well defined as a m ultip le in tegral of a fin ite  num ber of 
integrals and so we do not need to introduce gauge fixing a la 
Fadeev-Popov[4].

(iv) Even if it is not necessary, we can do a gauge fixing on the
lattice elim inating a few degrees of freedom. This can be done by 
choosing the group elem ents U(x) and U(x+|a.) such that (1.4.2) 
becomes U|j,(x) -> U'|n(x) = 1 .

16



We can continue in this way for more links of the lattice up to a 
point where we have a maximal gauge fixing. Figure 4 shows two

ways of gauge fixing in a 2-dimensional 4 2  lattice.

, --------  Fixed LinkKey

-  -  -  Unfixed Link

Fig. 1. 4. 2. Axial Gauge Fixing

I I
I i

Fig. 1. 4. 3. Random Gauge Fixing

The important point about gauge fixing on a periodic lattice is that 
since the boundary links "curve back" to the lattice edges, they 
cannot be fixed.

1 .5  Strong Coupling Expansion and the Confinement of 
Heavy Quarks

In the  s ta tis tic a l analogue the s trong  coup ling  expansion

17



corresponds to the high temperature limit. In the continuum theory 
the strong coupling is d ifficu lt to be treated but on the lattice this 
lim it is easy s ince  we exponen tia te  in the path in tegra l

S p laq

e P|aq’s and p=2N/gQ2.

Consider the vacuum expectation value of the W q  = T rri|eC U|, C is a 

closed contour on the lattice and b,l denote links of the lattice,

< Wc > =(1/Z)JnbdUbTrri|eCU|n e^SP. (1.5.1)
plaq

We can expand the exponential when (3 «  1 and since,

JdUjj = 1 . (1.5.2)

JdUUjj = 0  (1-5.3)

and

JdUUijU+k| = (1 /N)5jj5k| _ (1.5.4)

where i,j are color indices , we get < Wc > ~ e_area . Writing

<W> = e"V(R )T (since the quarks are static and are used as external 
sources only), we get V(R) ~ R where R is the spatial distance 
between the quarks and V(R) is the potential between the static 
quarks. (This is to leading order in strong coupling expansion and 
for large loops).

In general we expect:

V (x)=a(g 0 )x, (1.5.5)

where a = string tension. So we have a linearly confining potential 
at the strong coupling limit.

18



1 .6  Renormalisability and Scaling

Physical quantities should be independent of the lattice cut-off a. 
T h is  is the  re q u ire m e n t o f re n o rm a lis a b ility  w h ich  in 
mathematical form is written as:

a(d /da)m (a ,g)=a(a /3a-p  (g ) d /d g ) m ( a, g ) = 0 ,
a —> 0

( 1 .6 . 1 )

m(a,g) = some physical mass.

The cut-off independence determ ines

p(g) = - dg/da, ( 1 .6 .2 )

(p = the Gell-Mann beta function) which is equivalent to:

-a iS l^e x p *- M S L  ) 
a(g0) ' P(g)

9o

(1.6.3)

In perturbation theory and at 2 -loops (for the SU(NC) group),

P(9) = -PoS3  - P l9 5+ -  (1.6.4a)

P0  = 11 No /48n2 , Pt = (34/3 )/ (Nc 1 6 jt2 )2 (1.6.4b)

So, if

A ,attics " a ' 1^ e X P ( -  “ T T )

2 P090

is a cut-off independent parameter, then:

19



1 2 
a=A ' 1 . e x p (— -— )(p g )

lattice 2 0lattice
2 p0g

(1.6.5)

On the lattice we ca lcu la te (at various g's) d im ension less 
quan tities mja, (m,=any hadron mass for example) and if we want

to be consistent with the continuum limit we should have:

For g->0, (3(g) should approximate (1.6.4a) and this results to:

(m a /a (2 -loops)=cA  . =m (asymptotic scaling). (1.6.8)

1 .7  Monte Carlo Theory

Monte Carlo (MC) s im ulation is a method[5] which is used to 
approximate integrals by summing over randomly selected points in 
the integration space.

In fie ld theories, it is applied to the calculation of quantities like

m .a=const.exp(

( 1 .6 .6 )

which im plies:

(m ja /m ja ) = constant(Scaling) (1.6.7)

ma=const.exp(- 1 2)(P09 )
2 P0g

SO,
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<0> = JdUbO[Ub]e-Ps <u p)

w h e re  th e  o p e ra to r  O [ U ^ ] is a func tion  of the la ttice  

c o n f ig u r a t io n s ^ ^ }  (a lattice configuration is a set of matrices 

of the gauge group on every link b of the lattice).

The essence of the method is to generate lattice configurations one 
a fte r the o ther in the fo llow ing sense: let x be the d iscrete 
com puter time (also called the "fifth time") in the course of which 
these configurations are generated in a step by step fashion. We 
define the probabilities:

(a) the norm alised transition probability  Py of going from the 

con figu ra tion  {U b(j)} to the configuration {U b (jj} in the computer x 

time step x and,

(b) the norm alised probability of each configra tion  which for a 

system  in the rm a l eq u ilib rium  is g iven  by the B o ltzm an 

d is t r ib u t io n

n r " | u b ( j» |- z ' ' , ' PS

With the M.C. method (1.7.1) is approximated by :

0(x)=(1 /x ) IT.=10[U(i)] (1.7.2)

So what we need is to generate in the computer time x a number of 
lattice configurations and then we calculate < 0 >.

The method is expected to work if we generate configurations 

{ U b ( i)} at ea°h time steP ' w ith the B o ltzm an d is tr ib u tio n  
(im portance sampling). This can be achieved by the Metropolis

et.al. algorithm  This involves a generation of states with an 
in itia lly  sym m etric transition probability P*y. We then define the 
transition  probability from {U ;} to {U;} configuration as
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P i=  p*ijn j/n i if n j/n i<i (1.7.3a)

and
P r P*ij if n j/P i>i (1.7.3b)

wi th

nj/n i..e-PAS , AS = S[U(j)]-S[U(i)].

Since it turns out that Pjj satisfies all the requirements of Markov 

chain theory, all we need to do is ensure that the computer updates 
configurations, calculates the change in the action AS and accept 
or reject the update with criterion (1.7.3).

An im portan t point of the method is the requirem ent of the 
detailed balance condition, i.e., n jP y =  n jP jj While it is possible

to have the general rules on which MC simulations are based, there 
are some other practical factors which enter in the game, such as 
the observab les we m easure, the la ttice  size, the boundary 
cond itions, the in itia l con figu ra tions  and the length of the 
simulation. For example, the importance of choosing the boundary 
conditions is seen by the fact that an 8 4  lattice has 8 4 - 6 4  = 2800 
points on its boundary and only 1296 points in its interior. Usually 
the lattice is assumed to be periodic to avoid fin ite size effects 
(even if we have not used a periodic lattice in this work!). Despite 
the fact that there are specific  rules fo r MC sim ula tions, in 
practice we have to deal with many other 'experimental' factors.

1.8a Lattice Fermion Schemes

In order to have a complete lattice model of QCD we must have a 
lattice model including fermions. This is quite a difficu lt problem 
since the discrete space-tim e structure of the lattice affects the
chiral properties of the theory.

C onsider the Dirac action fo r a ferm ion fie ld coupled via the
minimal subtraction to the gauge field A p. in the continuum:

SF = (1'8a’1)
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where the index f stands for the d iffe rent flavors. Beyond the 
local gauge sym m etries, the action has the fo llow ing  global 
sym m etries with generators acting on the flavor space:

i)  Uv (1 ) :¥ f- * e ia)'Ff

i i )  S U v (N f ) : ^ f^ e ico*TvPf

i i i )  U a (1

iv) SUA(Nf) :,i 'f^ e l“ *Tr5T f

( 1 .8 a .2 )

(co is the chiral rotation and acts on the spin space). We want 

to keep these chiral symmetries on the lattice but there is no way 
to do th is [6 ], and we can have only some remnants of these 
sym m etries, recovering the fu ll sym m etries in the continuum  
l im i t .

The first step to put ferm ions on the lattice is to find the lattice 

approximation to the Dirac operator rM ^ + m . To preserve 

herm itic ity  we approxim ate the deriva tive  3 ^  by the symmetric 
d if fe re n c e

a ^ x ^ V ^ x )  = (V(n+|j.)-V(n-|i))/2 a

where the r  matrices satisfy { T^, r v }=25fxv w ith r $ =  ^ 3 ^ .

Under a gauge transformation g(n) on a lattice site n we have:

^ ( n) -> g(n)'F(n) 'F(n) -> ^ (n jg " 1 (n) (1 .8 a.3)

and the object 'F (n)U p.(n)'F (n+p.) is gauge invariant. The action

(1 .8 .1 ) can now be written as:
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s F=a4^n [{^ |i(1 /2 a )[4 /(n)rM'U|j.(n)vF(n+|j.)-4/ (n)r^LU+|i(n)vF(n-fj.)

+ m ^ n j^ f n ) ]  (1.8a.4)

Rescaling 4*(n) to ^ (n )  = 2 ^ 2 a 2 ^ 2  ^ (n )  we get

s F= 2 :n [ { 2 | i[4 7 (n)r ^ u | i(n)vF(n+M.)-;i 7(n)r ^ u + |i(n)lI/ (n-|Li)]+2 ma T (n)^ (n ) ]

_  (1.8a.5)
which in matrix form is written as Sp = 'FfM +2ma]vF.

Consider now the free field case (Ujj.(n) = 1). The equation for the 
propagator reads:

E|jrM-[G(n+|j.,o) -G(n-fi,o)]+2ma G(n,o)=5n,o

which (after usual Fourier transform ations) gives:

G(q) = (2ma-iZJIrF s in q |I)/[(2m a)2 +ZjI sin2 qF] (1 .8a .6 )

and when m = 0, G(q) has poles at q(I= 0  or n. So there are16 poles

(in 4-dimensions) and 16 degenerate fermions. This is often called 
the "doubling problem". We present now a scheme proposed by 
Wilson which avoids the "doubling problem" at the expense of a non 
-ch ira lly  sym m etric action.

1 . 8b Wilson Fermions

In this scheme the chiral symmetry is broken explicitly by a term 

in the action which is proportional to the lattice spacing a. For the 

free field case the action is

S14ri = 1 / 2 Z n n 7 (n) [( r^ - r1  m n + H H r ^ + r l  ) 'P (n -n )]+ m In? (n )T (n )  
Wilson

( 1 .8 b .1 )
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where r is the W ilson r-parameter. The equation satisfied from 

the propagator is ( for the free case)

1/2 [ ( i y r 1  )G (n+n) - (r^+ r1  )G(n-n)]+m(G(n) = 8no , 

hence

G (q)=[m +ZfI(irM'SinqfI-rcosq|I )]_1 

So the values of the propagator are:

m+4r at (ft, 71,71,71:)

m+2r at
< v  = (0,71,71, K)

m at qH = (0,0,7C,7C)

m-2r at (0,0,0,7r)

m-4r at q^ = (0,0,0,0)

The case r = 1 is special. In this case we have the 1±T^ p ro jec tion

operators in the action and the free field propagator is recovered 
for m = 4 or (defining the Wilson's hopping parameter k as 
k = 1/2m) k = 1/8.We notice that even at m =0,r*0 , there is no 
ch ira l sym m etry.

1.8 c Kogut-Susskind Fermions

On a lattice with an even number of sites in each direction, we can 
have 4 degenerate flavors instead of 16. This is done by a unitary 
site dependent transformation which diagonalises the action in the 
spin space.
We define

¥ (n ) = r-| n i r 2 n2r 3 n3r 4 n4 X(n), n=(n-| ,n2>n3 ,n4 ) .

Then (18a.4) becomes

SF(^ ,? ,U )= Z n[Z|a(-1)n i+ n 2 + ' " n^ 1X(n)U|I(n)X(n+p)-h.c.+maX(n)X(n)].

(1 .8 c .1)
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The action now is diagonal in the spin space since the X's are not 
spinors but just complex numbers.

1 . 9  Fermion Calculations

The X fields in the Kogut-Susskind scheme are Grassmannian fields 
which obey the alegbra:

{X j.X j} = Sij 

{X j.X j} = {Xi.Xj} = 0

(1.9.1)

JdXX = 1, JdX = 0.

The action (1.8c.1) can be written as

S(X,XU) = X[M(U)+2ma]X, (1.9.2)

and the path integral becomes

ld X d 7 [clU w le -S (U |-S |X X U ' 11 9 3 1

Since the X's belong to a Grassmannian algebra, it is not practical 
to use Monte Carlo techniques on the ferm ionic part of the action. 
However, since the fermionic part of the action is Gaussian we can 
integrate out the ferm ionic degrees of freedom resulting in

Z = |[d U x,|i]Det[M(U)+2ma] e 's (u )- (1.9.4)

For the propagator we now have:

<)TxXy>= jdXdX[dUx,n]XxXye-s (u )-s (X.X,U) =

J[dUXiMJ[M (U)+2m a]-1yxDet[M(U)+2ma]e-s (u )

(1.9.5)

The determ inant describes the creation and annihilation of quark-

26



antiquark pairs in the vaccum and [M(U)+2ma] runs over all possible 

paths from x to y. To incorporate fermion loops in the construction 

of the vacuum we should calculate the determinant 
Det [M(U) + 2ma].

The matrix [M(U) + 2ma] is very large and the calculation of the Det 
[M(U)+2ma] is not easy. Most of the calculations have been done in 
the so-called quenched approximation, i.e., Det[M(U)+2ma] =1.

1.10 Chiral Symmetry Breaking

To test the breaking of chiral sym m etry !7], we use as an order 
parapeter the Vacuum Expectation Value (VEV) of XX. Chiral 
symmetry is broken if lim <X X (m )>^0. Since the lattice is a

fin ite system we have to take care of all the different degenerate 
m inima of the effective potential which lead to<XX(m )>=0 even if 
the symmetry is broken. The correct criterion is:

lim lim < ^ X (m )> *0
m -»  0 v o lu m e -* «,

(the lim its do not commute).

We can express <XX(m)> in terms of the density of the eigenvalues 
of [M(U)+2ma] near to zero[8], i.e.,

lim lim <XX(m )>a3=37ip(0) (1.10.1)
m -*  0 v o lu m e -* °°

which shows that it is the zero modes of the matrix which signal 
whether or not the chiral symmetry is broken.
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CHAPTER TWO

2.1 An Introduction to Continuum Topology

In th is chapter we present a brief outline of some aspects of the 
continuum  topology. The main fram ework will be the theory of

fib re  bund les !9 ]. Some invariants, topological in nature, which 
have the form of a group (homotopy, cohomology groups) are also 
discussed.

A bundle is the collection (E U X G  U J  where E is the total space, X

is a topological space ( base space), n  is a map from E ->X, F is the 
fibre of the bundle and G is a group of homeomorphisms acting on 
the elements of the fibre F. Ua 's are the covering patches of X and

for each Ua there is a homeomorphism

Oa : n  1 (Ua ) -» Ua x F : 110-1  ^  (x ,f) = x, x e Ua, fe F.

A physica l in te rpre ta tion  of th is  rather abstract m athem atical 
term inology is as follows:

On the intersection Ua n U p * 0  we have :

OaOp-1 :(UanUp )xF - » (UanUp)xF 

and for fixed xe U a nU p, is a homeomorphism from F->F.

The fu nc tion  <Da O p - 1  (x)  is ca lled a trans ition  function and is 

denoted by 9 (Xp (x )* i-ater 's shown that it represents, what we

call, in physics, the transition function between two overlapping 
patches . Actually the transition functions represent the change of 
coord inates between the two patches. The transition functions 
sa tis fy  the fo llow ing properties:
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i) g a a (x)=ldentity, x e U a (2.1.1a)

ii) ga p M = g _1pa x e U an, Up

- ' (2.1.1b)

Lu)3U>ga p(x)gp7(x)> xe U a n U p n U 7 (cocyle condition)

“ * (2.1.1c)

If we fix the coordinate system in the base space and change o a to 

K a , then by defining ga (x) = Oa Ka - i ,  x e U a and gp(x) = OpKp-1, 

x e Up, we see that:

g 'a p M  = Ka K p '1 = 9 a '1(x)ga p(x)gp(x). x EU a n U p (2 . 1 . 1  d)

Before we explain the m athem atical te rm ino logy used in this 
work, some other useful points on the theory of bundles are 
outlined.

In physics we mainly use principal bundles and a principal bundle P 
is a bundle where the group G is identified with the fibre F. A 
section from Ua to P is the map S: Ua -> P which somehow undoes 
the work that the map 11 does. So, if co is a form on P as usual 
S*co e T *U a , w he re  co eT*P  (T*P is the contangent space of P). If 

we denote the coordinates of a point in the bundle as (x, g),

x e X, g e G, then by defining co = g~1d g "1 + g -iA g  (co e T*P), we
have (by doing the transformation: (x,g) -> (x'.g'), x = x'),
g '- id g ’ + g '- iA 'g '=  g -idg  + g-1Ag (i.e. demanding invariance of co), 

which im plies that:

A ’= hAh-i+hdh-1 with g '= hg, h e  G (2.1.2)

R elation (2.1.Z) gives c learly  the iden tifica tion  of the gauge
transform ation as a map from fibre to fibre.

To give a clearer picture, we write on the overlap of 2 coordinate 

patches U a n U p * 0 ,  A)Ia (x) = gaP fxJtA ^P fx)], w hereAJIa (x) is the
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gauge field in Ua and A^P(x) is the gauge field in Up, 

x e  Ua n U p a n d  ga p(x) is the transition function on the overlap

The notation ga P(x)[A (IP(x)] is the compact notation for

g a |3 (x )A |/(x )g ‘ 1aP(x) - ga ^ g ' l a ^(x).

Then doing a gauge transform ation in Ua and in Up, we have (the 

primed fie lds are the gauged transformed fields):

A'p.(a )(x) = g^a )(x) [A p .^ ] ,x g Ua and

A 'g (P)(x) = g(P)(x)] [A ^ (p)(x)l ,x e Up 

If A '^ a )(x)= g'“ P(x)[A'^(P)(x)],

we get g'a P(x) = ga (x )g a P (x )g "1 P(x), and this reflects the 
connection with physics of the above terminology. So .using
language more familiar to a physicist, we arrive again at (2.1.1 d), 
which was derived previously by the theory of fibre bundles.

We now give some general aspects of the topo logy in the
continuum  which refer to the theory of cha racte ris tic  classes. 
G e n e ra lly , using to p o lo g ica l a rgum en ts  (m a in ly  co n tin u ity  
argum ents) and d iffe rentia l geometry, we find some topological 
invariants for various manifolds. The main topological invariants 
we will use are the homotopy and cohom ology groups and the 
ch a ra c te ris tic  c lasses of bund les which are m appings from 
cohomology groups to cohomology groups.

We start with the well known result

n3(SU(2)] = n 3[S3] = z. (2 .1 .3 )

This leads to SU(2) (and to the extent that SU(2) is embedded in 
SU(3), to SU(3) instantons) instantons. n 3 is the third homotopy
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group of the SU(2) group space (i.e. S3) and physically shows how 
many times we go around SU(2) when we have been around S3 once.

The sign ificance of the above relation comes from the fo llow ing: 
we start from the requirement of fin ite  energy solutions to Yang- 
Mills (Y-M) equations in E4.

The action S = (1/2) j d 4 x T rF ^ v Fp.v m us t have a finite value at

Ix l—>°° and for this to happen . °* This is satisfied by
|x|—>°o

A u(x) = 0 or by the pure gauge Au (x)-> g '^ x R . g M .  where g(x)
^  ^  |x|^oo M-

is the gauge transformation at |x|-»«>.

We can consider then g(x) as a map from S3 [sphere at infinity in
R 4  so |x|—>°°] to SU(2) and we saw above that this map is classified
by n 3 [SU(2)] = Z. We can therefore associate with every g(x) an

integer Ke Z which we call the w inding number. This number 
actually classifies all the bundles over S4 with gauge group(fibre) 
SU(2).

In the case of SU(3), the picture is not so simple but we can 
consider the SU(3) group as a D = 8 manifold and consider this as a

bundle over a S^ sphere with gauge group SU(3) (the S5 spheres
come from the fact that for every row of an SU(3) matrix with

elements a,b,c we have |a|2 + |b |2 + |c|2 =1 and this picture of the 
manifold structure of the SU(3) group is useful when we try to

construct the topological charget1^  for the SU(3) case).

Now we consider the characteristic classes for the SU(2) bundle

over S4, i.e. the cohomology classes defined over the S4 with fibre 
the SU(2) group. For the cohomology class to be non-trivial it has 
to consist of closed but non-exact forms.

Some characteristic classes (Pontrjagin, Chern, Euler) are are
obtained by Lie algebra invariant polynom ials of the curvature
tensor F and here we just denote the result. If Cj(P) is the Chern 

pv
class (P is the principal bundle of the SU(2) group) then Ci/2 (P)
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e H i (X,R), where H is the cohomology group over the base space­
time space X with coefficients in R, and i represents the order of 
the cohomology group. In terms of the above mentioned polynomials 
of F|j.v. we can write:

C j ( P ) = P j ( F )  (P j  = polynomial of F(xV ) and since F |j,v  = A(IAvdx*xd xv is a 

2-form , C j ( P )  must be a 2i-form. The polynomials P j  appear when 

we expand the

and so for the SU(2) group, C-|(P) = 0, C2 (P) = -(1 /1 6 ti^ )F a F  .
(2.1.4b)

This is the result for which we were looking. C 2 (P) is, what is 
ca lled in ’ instanton physics', the w inding number. Integrating C2 
over S4 and since H4 [S4; Z] = Z, we get C2 ^ Z.

We now give further details on the winding number in the following 
w ay:

Det(t1+iF/27c)=£
Dimension of the Group m

,tJ Ip  m-j(F) (2.1.4a)i = 0

D efine

£}p = 4 e ^ P T r [A vaxAp+(2/3)AvA xAp] (2.1.5)

then

8  n^=2TrFpvFflv (2 .1.6 )

(pM-v _ (1 /2)eM'vPa Fpa(F|iV is called the dual tensor). So

Jd4xT rF „vF ^v = (1/2) |
s (2.1.7)

and since the winding number is
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rj = (1/167i2)Jcj4xj rp ^ vpM-v (2 .1 .8)

we get

r\ = (1/327i2 )Jgda^Q^ (2 .1 .9)

In the Euclidean space (Fp.v ± F^v)2 = 2(FjiV F^v ± Fjxv FM-v)

(since eM-v Pa = 25 ^ vpa). Hence

Tr J F2d 4x > | jT rF F d 4x |  = 1 6 7 1 2 ^ (2 .1 .10)

Since the Euclidean action

®Euclidean -  (1/2)Jd4xTrF(ivFliv  (2.1.11)

we finally get

SE >8Jl2 /g2 (2 .1 .12 )

So the action is minimized when F ^v = ±FM-V and solutions with this 
property are called (anti)-selfdual solutions. The (anti)-selfdual 
gauge fields are the most important extrema of the action.,i.e. they 
are always absolute minima for a given winding number. Belavin et

a l.M 1 ] constructed so lu tions which sa tis fy  the (an ti)-se lfdua lity  
condition for rj = 1. The somewhat hidden point in the construction 
of the r| = 1 instanton solution is that the possibility to construct 
such a solution comes from the fact that we com pactify on a 
sphere.

Now we give the expression for r\ in terms of the transition  
functions, which we will use when we discuss the form of n 
using tw isted boundary conditions (TBC).
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Using (2.1.7)

n=(1/16rc2 ) jd 4xTrF|i.vlHtv =

(1/1 6ji2 ) Z | iJd3a ^ [£ i 'R(x|x=a|i] -Q ,t l(x^=0] (2 .1 .13)

and Q '(I= 2 q ^ ( q )I as defined in (2.1.5)). Here we work in a finite 

Euclidean box , rep resen ts a po in t in the 4 -d im ensiona l 

Euclidean box and a^ are the sizes of the box in the direction. 

Denoting by

A p ( i ) = u ijA H( j ) u i j ' 1 + u ij8 U jj-1 (2 .1 .14)
M-

(where i,j represent 2 coordinate patches which overlap and Ujj is 

the transition function on the overlap), we g e t l ^ ]

n = (1/247t2 ) I  Jd3a^eM-v P0 {T r [ (U -1ijav Uij) (U 1ij3pU ij) (U 1ijaa U ij)]

+ ( 1/ 8 - 2 ) ^ ^ d 2 S ^ v e ^ v P ° T r ( ( U j i8 p U i j ) ( U j k a a U k j ) } }

(2.1.15)

2.2 In tro du ctio n  to Tw isted B oundary  C onditions  
(TBC)

H ere  we present in a pedagogical way, the basic ideas which 
concern the tw isted boundary conditions. The TBC were first

introduced by 't H ooftl1^  when he presented a general formulation 
for the definition of electric (O e ) and magnetic (O e ) fluxes in the 
non-Abelian gauge theories in such a way to make them gauge 
invariant. His definition "gave" them properties characteristic of 
fluxes (from our experience in the Abelian case), such as 
additiv ity , to be covariantly constant and to be related to the 
space-time topology. These properties distinguish the fluxes from
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the W ilson loop which is not necessarily covariantly constant and 
a d d itive .

TBC have appeared in various papers (see Ref. t 14], for example) 
where it was shown that the QCD vacuum is a condensate of 
chrom om agnetic vortices whose flux is quantized according to the 
centre of the SU(N), i.e. Z(N), and the so-called tw ist transition 
functions correspond to the phase of the unstable mode of the 
gauge field.

't Hooft showed that it is possible to have topologically stable 
fluxes if the space is not simply connected (i.e. the first homotopy
group is not trivial). The main idea underlying the TBC is that all
physical quantities must be periodic but since the gauge field A jj. is 
not an observable, it can be periodic up to a gauge transformation.

As we saw in section 2.1, Euclidean solutions to the classical Y-M 
equations were found when we compactified on S4 and since

n^(S4) = 0 and is the 1st homotopy group, we have to seek for a

manifold M with n (M ) *  0 if we want a manifold with non-trivial
1

first homotopy group. So, instead of S4, we choose the base space­

time manifold M to be T4 = S1 x S1 x S1 x S1 and it is known that 
n-| (S1 x S1 x S1 x S1) = z©z©z©z.

Now instead of com pactifying on S4 , we work on T4 (the 4-torus 
will be labelled by a 4-dimensional hypercube, i.e-0<X|I < a )1 and

inside the space is flat). On the torus, the TBC lead to electric and
m agnetic  fluxes  w ithou t the necess ity  to in troduce  exp lic it
sources (in the form of a quark anti-quark pair at opposite edges 
of the box to create these fluxes[15]). These fluxes are labelled 
by 6 integers (in D = 4) which are topo log ica l invariants and 
express the non-triviality of the bundle over T4. The general form

of the TBC i s ! 13!

Av(x^=aM.)=a(I(x)Av(x̂ l=0)Q}I-i(x) -i (2.2.1)
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where Av is the gauge field in the v direction and the transition

func tion  in the 11 direction. Because we must have a single valued 
gauge field at the corners of the box, we deduce:

Av(xjj,=a| i,xX,=:aX,)=:̂ ]j.(x)[^v (x A.=aA,)]=:̂ A,(x)[Av(X|jj=a|>i)] (2.2.2)

where we use the compact notation

^ v (xp = ap,x X = aA,)=^ j i ( x) [Av(xA. = a^)l
fo r

AV(XH = V  x\  = ax> = (>y = °. xX = a)J Av (xn = xX = ax)

« - ‘ n (x|i = °- xX = ax) -  Qn (xn = °> xX = aA.)9v « " V  (x jx = 0 ,x x  = ax ) 

This leads to

£2^(x+av) a v(x)= a v(x+aH) n ^ (x )z ^ v (2.2.3)

The factor Z ^v enters from the invariance of the gauge field under 

the Z(N) Group, i.e. A '^ Z A ^ Z - ^ A ^  and so Z ^ e Z fN ) , i.e.:

Z nv = e '2iTCTl(iv/N (2.2.4)

where N corresponds to the order of the SU(N) group and t\ is the

an tisym m etric  tw ist tensor with in teger values. G eom etrica lly, 
ti labels the d ifferent tw ist bundles over T4 with gauge group

S U (N )/Z(N ) and corresponds to the instanton num ber which 
classifies the bundles over S4.

We can now define the e lectric  and m agnetic fluxes in the 
fo llow ing  way:

K.= r |^ .( i= 1 ,2,3) ( we are working in 4-dimensions) is the e lectric

flux (<E>e ) and = e^jjri'J ( i,j= 1 ,2,3) is the magnetic flux ( O g ) in  

the k-direction. This is a very simplified picture and if we want to 
define the fluxes more rigorously on T4, we should define the order 
and disorder operators of 't Hooft which satisfy the Z(N) algebra,
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i.e. A (C )B(C ')=B(C ')A(C)Z)av, where A(C) measures O b through C (A(C) 

is identified as the usal Wilson loop operator) or along C and 

B(C') measures O e through C' o rO g  along C'(Fig.2.2.1). So if |m> is 
a state with magnetic flux m,

2i7im/N , . 2i7i(m+1)/N ,
A(C)|m> = e m> and A(C) B (C ) |m> = e fc(c',)lm>>

i.e. B (C j creates one unit of magnetic flux through C '

C’

Fig.2.21 Fluxes it la 't-Hooft

Here we give a realization of ’t Hooft's fluxes in a simple way. 
W orking only in the 1-2 level we have from  the consistency 
condition (2.2.3)

Q-! (x-| ,x2+ a2)Q2 (x-| .x2> = Q 2<x 1 + a1 -X2)Q 1 (X1 -x2 )z 1 2 (2.2.5)

We now define

® = Q '11 (X1 ,x2)n ‘ 12(X! +a! ,x2) n 1 (x-j ,x2+a2)Q2(x1 ,x2)

(2 .2 .6 )

which is covariantly constant and additive.

For the SU(N) groups

O = e2l7CTl12/N . (2.2.7)
t ’-Hoof v '
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This rem inds us of the defin ition of the fluxes in the Abelian 

gauge theories where the fluxes are defined as e 1̂ 0 .

We now discuss the effect of the gauge transform ation on the 
transition  'tw ist' functions

After a gauge transformation on the gauge field A^ we get:

A'j j .(a i  + X1 . x2 ) = g ( a i+ x - | ,  x2 ) A ^ ( a i + x - | ,  x2 ) g - 1 ( a i + x - | ,  x2)

- ( i / g ) ( 3 ^ g ( a i + x i , x 2 ) ) g ‘ 1 ( a 1 + x 1 , x2) , (2 .2 .8 )

where g(x) represents the gauge transformation.

Using the TBC conditions we get:

A'(j.(a-| + x  1 , x2 ) =£2'i ( x i , x 2 ) A ' ^ ( x 1 , x2 )£2'1 ' 1 ( x 1 ,x2 )

- ( i / g ) ( 9 ^ ^ ' l  (X 1 ,X2 ) ) Q '1 " 1 (X1 , x 2 ) (2 .2 .9 )

and

A ^ ( a i + x i ,  x2 ) = Q - | ( x 1 ,x2 ) A ^ ( x 1 , x2) Q 1 - 1 (x 1 ,x2 )

- ( i / g ) (a^£ l l  (x 1 , x 2 ) ) n 1 ‘ 1 (x-i , x 2 ) (2.2.10)

Solving the above equations we get:

A ^ ( x i  ,x2 )= ( i /g )£21 (X! , x 2 ) ( 3 ^ n i  (x-, , x 2 ))+

( i / g )H 1 ' 1 (x-i ,x2 ) g ‘ 1 (a-, +X-, , x2 ) (a^g fa- ,  + x i  , x 2 ) ) n i  (x-| , x 2 ) +

(x i  . x 2 ) g ' 1 ( a ^ x !  . x g j n ^  (x t , x 2 ) g ( x 1 ,x2 )

A , j . ( x i ,  x2 ) g - 1 (x. |,  x2 ) n ' 1 - 1 ( x 1 ,x2 ) g ( a 1 + x 1 ,x2 )£21 ( x 1 ,x2 )-
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(i/g)£21 (X1 ,x2 )g 1 (a 1+x i ,x2)[Q '1 (x-, ,x2 )(3 ^g (x i ,x2 )) +

3 HQ 'l  (x l  'x 2 )1q ’ i ' 1 ( X 1 ’x2 )9 (a 1 + X 1 •x2 ) ^ 1 ( X 1 .x 2 > (2 .2 . 1 1 )

which is satisfied for

£ > ' 1  (x i ,x2 )= g (a1 + x1 ,x2) n i (x-, ,x2 ) g '1 (x1 ,x2) (2 .2 .12a)

In a sim ilar way :

^ ’2 ( x 1 . x 2) = g ( x 1 ,x 2 + a 2 )£22 ( x l ,x 2 ) g ' 1 (XT ,x 2 ).

(2.2.12b)

This gives us the freedom to pick up a gauge with Q-|=1or Q 2 =1 and 

one such choice which satisfies the TBC is(for the SU(2) group) :

a i (x1 ,x2 ) = em n12'3’3 , n 2 = 1 (2.2 .13)

i7iri
In this case Q-| (x-| + a-j ,x2 ) = e 12 Q -1 (x-j ,x2 ) and, if we denote by

h(p) a curve in SU(N)/Z(N) i.e.,

h(p)= a 1- l ( x 1,x2 ) a 1(x1,x2 +p) a2>p>0,

we see that h(p) varies from 1 (p=0)to e17lTll2  (p=d2V  From this 
example we have a better understanding of the geometrical 
meaning of a lal3el tlie  d ifferent equivalent classes in

SU(N)/Z(N), i.e., n-j [SU(N)/Z(N)]=Z(N) and from the values of r \^ v

we can c lass ify  whether or not a bundle is triv ia l (ri = 0
1 2

corresponds to untwisted trivial bundles).

As in the instanton case (transition from one vacuum to the other
happens by changing the winding number) here also (using TBC) we
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cannot transfe r from one hom otopic class to the other w ithout 
changing

Some last remarks follow:

(a) When we will apply the TBC on the lattice, the only assumption 
we will make is the periodicity of the non-local quantities and not 
of the gauge field itse lf (demanding periodicity of the gauge field 
itse lf excludes the possib ility to introduce non-trivial r i ^ 's ) .  We 

present now an example(in D = 2) of the periodicity of the non­

local Wilson loop operator in a finite box in the c o n t i n u u m ^ 6 ] ;

We use 2 gauges (Fig.2.2.2) :

In Gauge 1:

A-, (1 )(x) = 0 A2(1)(0 x 2 ) = 0

and in Gauge 2:

A - | ( 2 ) ( x ) = 0 A2(2) (a1t x2) = 0

and by relating

A ^ 2) = g(x)[AH(1)(x)] (2 .2.14a)

we deduce that g(x) = g(x2) . From the periodicity of the Wilson

loop Pexp JA ^dx*1 (P stands for the path ordering) and using 
(2.2.14a) :

A 2 C) (a-|+ x-|, x2) = Q-| (x2) [A2(1) (x -, , x2)], (2.2.14b)

with Q i (x2)= g _1 (x2 )

i.e ., the  tra n s itio n  func tion  is the inverse  of the gauge 
tra n s fo rm a tio n .
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(X,. * 2 ) (X1 + a i ’ X 2 }

(x.,,0) (X1 + a 0 )

Fig.2.2.2 Periodicity o f the Wilson loop

(b) The second point we want to refer to is the following:

From the general theory of classical solutions to Y-M equations 
(Solitons), it is known that these solutions have a quantized flux 
and a finite energy. We noted earlier that the 't Hooft fluxes were 
quantized and the quantization comes through the Z(N) group.

The point which rem ains to be estab lished is w hether the 
c lassica l energy of the configurations which satisfy the TBC is
bounded from below by a positive lower bound.

In Chapter 3, we give the explicit formula for the action under the 
TBC which shows there could be a positive lower limit, but here

we follow H ?] to present some arguments, qualita tive in nature, 
fo r the con figu ra tions  which sa tis fy  the TBC. Am bjorn and

Flyvbjerg showed that it is possible to have magnetic flux
different from zero and EC|assjca( = 0 (in the non-Abelian case only). 
As an illustration, we present their example. Since, under a gauge 
tra ns fo rm a tion  t̂ v is invariant, we choose as

Q 1 =1, Q 2= 1 for m3 =0 

(m3 = magnetic flux in the 3 r(j  direction) = e iq 1 2 ) and
O \ cL
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Q.-1 = ia , 0.2 =ia for m = 1. a a are the Pauli matrices.
I O O \ 2

We can easily check that the configurations Au = H(x-| )5 U2a 3 /2 ’ 
a n t  i ^  ^

with H(x-| )Aperiodic in x -j, and A „ = 0 can have (and so non-
(,-f o r

zero m agnetic flux O g )  but/^EC|assica| = 0. The mathematical

reasoning for th is is simple and is attributed to the fact that two

constant trans ition  functions on a torus T2 do not give a trivial 
bundle but for a sphere we have only one coordinate patch (since a 
sphere is covered by two patches) at the overlap and a constant 
transition function maps everything to a single point and of course 
a bundle over a single point is obviously trivial ( a base space 
contractib le  to a point results to trivial bundle).

(c) We now present a simple example of a system which satisfies 
the Z(N) algebra.

We w ork in 2 + 1 D im ensions and consider the fo llow ing 
Hamiltonian describing a Z(N) gauge theory (Fig.2.2.3)

H  =  -g Slinks [A |+ + A |-2 1 -S  p ia q ’s [Q1 n i ) Q1 n2 )Q ( n3 ) Q ( n4 )+ h .c . -2

(2.2.15)

The operators A|,Q| are associated with the links of the lattice and 

obey the Z(N) algebra

A|N = Q,N = 1 , Aj+= A],' Q|+=Q]1 and 

A ^  = Q |A|e2 i* /N  

(A|,Q | commute for different links 1,1’, [A j,Q |.]=0 if W ) .
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n 3

n 4 n 2

£=

Fig-2-2 .3 A lattice notation

From the above equations we can have (since A| is unitary):

A |n>=e^'7t/̂ |n>  and Q|n> = |n +1 > ,n = 0 ,1  ,N-1

and with the above representation for A|,Q| we get Q A e 2 l7 t/N  =  aQ.

If we denote by E |,A m the electric fie ld and the vector potential 

respective ly  (with [E j,A m ]= i5 |m ) by writing A| = e(2 irc/N )E j a n ^ 

Q |= e iA l we get again:

A|Q|=Q|A|2i7c/N.

From the instanton case we know that there is an operator (call 
th is  T) which, acting on a vacuum with w inding number |n>,
transfers th is to |n+1 >, i.e., T|n> = |n+1> and th is operator
commutes with the Hamiltonian. If we then consider the

0-vacuum |0> =Xne ''n0|0>, we have T|0> = e 'e|0>.

In the above example, the corresponding operator to T is defined as 
(i = a lattice site):

T(i) = n. A+ .n. .Aie l(+ )  l(+) le l( - )  l(-)
(2.2.16a)

(+ corresponds to the positive direction - to the negative direction).
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T(i) generates a symmetry transform ation:

Q| _> 2i7c/N j e j

Q |-> Q |is i  (2.2.16b)

P| P| Vi

We can easily see that [T(i), H] = 0 and

T ( i)= e (' 2i,c/N)[zE|(+ )- z E |(. )] (2.2.16c)

with [T (i)]N = 1.

In the non-trivial sector of the Hilbert space we have T(i)*1 and 
this corresponds to v .e =£E -ZE ' *o , i.e., the Gauss law.

We now express the Hamiltonian (2.2.15) in terms of E |,A m and  

this results to

H = -g ^ lin ks [1 -C0 S(2 l tE l/N )]+ 2 s p laq ’s [ 1 -C0 S(Bp)] (2.2 .17)

with Bp|aq = +?in -A n „ - A n and from (2.2.17) we can identify a

link with E | * 0  as carrying electric flux and a plaquette with Bp * 0  

as carrying magnetic flux.

d) We now elaborate on the inclusion of a kind of twist on the 
matter field while we have applied TBC for the gauge field. This is 
a non-trivial problem since the gauge field while transform ing in 
the ad jo int of the group is invariant under Z(N) transform ations 
(for the SU(N) case), the ¥  (matter) field,because it belongs to the 
fundam enta l representation, transform s non triv ia lly  under Z(N).
To overcome this problem we introduce a flavor tw ist for the T -

field in the following sense ! 1 ®l:
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¥  (x+L, y, z, t) ^ j 0*001-0 0 ) (y_ Z| t)T  (X_ y> z t ) n l f(FLAV0R,' 1(y,z.t)

(2 .2.18a)

*V (x, y +L,z,t)=Q 2C(COLOR) (y. z. W x ,  y, z, t )£2 2 f < F L A V O R > ' 1 (y ,z ,t) 

etc. (2 .2.18b)

w here (c,f) refer to (color, flavor) indices of ¥  r e s p e c t i v e l y .

The consistency condition (single-valueness) of the ¥ -field at the 
boundary leads to:

4'(x+L,y+L)=£2C1(y+L)4'(x, y+L) a ^ - l fy + L )  = 

n c 1(y+L)£2c 2 (x)4'(x, y )n f2 - i(x )  n^-Hy-t-L) = 

n C2(x+L)i2C1 (x)4»(x, y jn ^ -H x )  a f2 -1(x+L) (2.2.19)

=> *F(x,y)= £2c 2-1 (x+L)nc 1 -1 (y+L)£ic2 (x+L)£2c 1 (y)T(x,y)

* . f . f f £2 1 -1 (y)£2 2 -1 (x+L)£2 1 (y+L)£2 2 (x)

and since

Q l ( a 2 + X2) Q 2 ( X - | ) = Q 2 (a 1+ x l ) ^ 1  ( x 2 ) Z ° 1 2

=» nC12 = 11*12 (mod N)- (2 .2 .2 0 )

In Chapter 4 we deal with the eigenvalues of the fermion matrix 
under the inclusion of color and flavor twist.
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CHAPTER THREE

3. TOPOLOGY AND LATTICE

Numerical evidence is presented for the existence of non-integer
topological charge on a lattice using TBC.

As was shown in the previous chapter, the w inding number t\ 
(which, from now on, we call topological charge Q) is expressed in 
term s of the transition functions, and we now show that under 
the TBC, it contains an integer part plus a part which depends on 
the tw is t tensor n ^y  and for some com bina tions of the tw ist

integers (n^y) it leads to a non-integer Q.

We mainly use non-constant transition ^ ( x )  but in some cases we

also use constant transition  functions which still sa tis fy  the 
tw ist algebra (2.2.3.). In the case of constant Q ^'s we verify what 
we expected: the action is not bounded from below by a positive 
bound and it can be lowered to zero. We also have cases where 
the ^ j / s  are not constant but by arranging the n^y 's in a way to be

clear later we again have an action which could reach a zero value. 
The latter cases are reminiscent of the instanton case where we 
have a plateau of the action which ends to a zero value.Also, in 
D = 4 and in the case of the SU(2) group we capture a topological 
object of charge 1/4 using constant Q ^ 's  in only two directions.

3.1.  Dependence of the Topological Charge on the Twist 
Transition Functions.

We start from the expression (2.1.13) and denoting by Q ^ t h e  

transition functions we get t 1 9];
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Q = (1/247t2)Z,J d3G ^ vpa(1 /3 ){T r ([n ^ vn^l- 1]

M [^|x^a^(x ^]+3vTr[(1/i)(Qp ^ p ^ p ^ a ( x(i=^)]J

(3.1.1)

Using the consistency condition (2.2.3) we can calculate the 5V 

derivative term as the difference between xv = av and xv = 0  with 

xp, = 0  (fixed) and we get:

T r[(1 /i)[Q ^ ^  A q (xp. = 0,xv = av )

( 1 /i)[^|o, _ g ^ a (Xjĵ  = 0 ,Xy =0 )] - (p<-»v) =

Tr[([Qv ^3pQv]| 1]| -(p.<-»v).
xp - a|i xv=u

Using this we end up with:

Q=(1/247i^)Z^Jd^a^L8^Vpa {T r([Q ^3vn |l  [Q ^p Q ^ ^ ] [Q|^90Qp

+ (1 /8 t i2 ) I ^  J  d 3 S ^ v8 ^ vPa {T r [Q v 1 3pa v ]|x^ ^ a^ [Q p ^ Q ^  1 1|Xv=q}

(3.1.2)

with

3 2 33 34 33 34
d3Si = Jdx2Jdx3Jdx4 , d2S i2= Jdx3Jdx4 , etc...

0 0 0 0 0

We now present some comments on the general form of the
"tw ist" trans ition  functions as well as the general m ethod of 
constructing the transition functions for the constant and non-
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constan t tw is t.

In the case of constant transition functions, the general method is 
based on the ex is tence  of m atrices A,B w ith  the p roperty

A .B = B .A .e 2i7l/N’ w here  A,B are NxN matrices which belong to the 
SU(N) group. The method consists of finding the Q ^ 's  by taking the

powers of some specially chosen U,V m a trices^? ]. For the case of 
the SU(2) group we have the matrices

1
0  1 e 0

u = V =
. 1  0 .

. 0  1 .

and

n i  = u U 1  v V 1  ,a 2 = u U2 v V2 ,Q3 = u U3 v V 3  ( 3 - 1 -3a )

where u-| U2  U3  v-| Z(2).

This leads to 8  combinations in 3 dim ensions (generally there are 
mD (D -1 )/2 )
™ different classes for N = dimension of the group under
consideration and D = dimension of space-time).

Two of the eight classes are:

u _ V r -1
1 1 1 0

U 2 = 1 1
V

2
= 0

u 0 V . 1 .
3 . 3 .

w ith tw is t functions

a i = g 1 >Q2 = = -a3  (3 .1 .3 b)
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i.e., we are using tw ists only in the 1-3, 2-3 levels.

and

' u/ 1 '
V

1 1 '

U 2 = 1 1
V

2
= 0

. Y
. 0  .

. V3 .
. 1 .

w ith tw ist functions

= -a 1, Q 2  = a 1, = -a 3  (3 .1 .3c)

i.e. we have tw ists only in the 1-2, 2-3, 1-3 levels.

In the case of the SU(3) group and in 3-dimensions we have 27 
classes, two of which are:

0 1 o’ 0 0 1' 2in/3
e 0 0

n =i 0 0 1 , a =2 1 0 0 IIa

0 -2i7c/3
e 0

.1 0 0. .0 1 0. 0 0 0.

(3.1.3d)
and :

0
-2iw/3

e 0

0 0 1

2i7t/3
e 0 0
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0 0 1 '
2\n/3

e 0 0

Q =
2

0 0 1

IIa

0
-2irc/3

e 0

. 0 1 0 .
0 0 1 ,

with spatial tw ists at all levels.

F o llo w in g  I2^] we write Q jI = P SM-q V  wi t h

(3.1.3e)

P =

0 1 . 
0  1

o
0

.0

0

Q = e

1 0

_ 2i7t/N
0  e 

0  0  e

0

2hc(1-N)/N

and PQ = QPe2i7t/N (Z(N) algebra).

Then :

= PsvQtvPsjxQV = Psv[Qtv,Ps|i]Q V  - 

Psy[Q tv,Ps(i]Q V  +Psp.Qt|iPsvQtv =*
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a ^ Q v = n vn |iz - (V sv - tvs M-\ 

where we used:

[Qm ,Pn] = ( i - z mn)Q m Pn and Z = e2ilt/N.

We identify t i ^  as r |^ v =s)Itv- s vt|1 (modN).

From (3.1.2) it can be shown that [19 ,20 ]

Q = (g2/1 6 tu2 )J d 4 xTrF^ivF^v=v-k/N vgZ (3.1.4)  
box

and
/- /r,x M-vpa

k “ (1/8)£ T'^v,lpa“ T,12T,34+1>13T>42+T' l 4 1'23
(3.1.5).

From

SE=(1/2)/TrFpvFHv > |(1 / 2 )jTrFn-vFM-v| =»

S E>m in (8 7 t 2 /g 2 ) |v -k /N | , (3 .1 .6 )

(where the equality holds for F^v = iF ^ y  i.e  ( a n t i ) - s e l f d u a l

configurations), we notice that for only spatial tw ist we have 
k = 0 and the action can be lowered to zero(i.e., F^y = 0). A

solution to Fpv = 0  is, of course, = 0  and in th is case the

transition functions must be constant for the inhomogeneous term

in (2 .2 .1 ) to vanish (we use the gauge 3 ^ 0 ^ =  0 ).

We now deal with the construction of the non-constant transition

func tions !2^ .  The method consists of decomposing the SU(N) group 
into a direct sum of smaller SU(N) groups and applying the twists 
in every subgroup, i.e., we decompose

SU(N) =>SU(k) © SU(I) 0  U(1) with k+l = N.
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Using

co= 2tt

k - t i m e s

■I
- k

- k l - t i m e s

• - k

and denoting by the subscripts 1 , 2  the two sm aller sub-groups of 
SU(N), we write

k<gk

1

k®k
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p
2

 ̂ k<gk
0

0
I ®l

—m

with

P ^  = 0 ^  e2i7t/k , P2 Q 2  = Q2 P 2  e2i,t/l.

Hence the commutation relations for P-|,2 , Q i , 2  are 

P 1 Q 1 = Q 1 P 1 e2i7t/N+io3/Nk 

and P 2 Q 2  =Q2 P 2 e 2i7c/N' ico/NI (3.1.8)
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Defining

a  (x) = 
M-

0

0

j coZ a ___
X, |i X.

e a

(3.1

(S|x,tp.,u|i,v|j. g Z and a^v = -av^e R) and using (2.2.2)

(2 ) / O )  /
a p.v“a v | i _  *n j iv ' ( N I )  “H jj,v / ( N k )

with

and

(2 ) (1) 
V  = T1 Vv +11 M-V

(3.1

(3.1

n nv = V v _sv V  +integer 

(2 )
V  Vv = V V-UV'V  integer

(3.1

(3.1

We now present some examples of non-constant which

used when we applied the TBC on the lattice.

A )  SU(2) case with k = 1 , i.e., (k/N) =1/2 :

We choose = -1,t/ 2^ .  = 1, other 's zero, with:
1 2  34 j iv

s ^ = ( - 1 ,0 ,0 ,0 ) / = ( 0 ,1 ,0 ,0 ), u ^= ( 0 ,0 , 1 ,0 ) ,v^= ( 0 ,0 ,0 , 1 ). 

This choice leads to :
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n-)(x) = e2iltCT3a i 2 X2/a 2,

£22 (x) = e '2i7tc3 a i 2 X l / a 1 (3 .1 .11 )

f l 3 (x) = e2ilta3a34x4/a 4

Q 4 ( x ) = e-2ilta3a34x3/a 3, a i2  = a 34 = (1/4)

Clearly

Q-l (x2  =  a2 ) n 2 (x-j = 0 )  =  Q 2 ( x -| =  a-| )Q-j (x2  = OJe' 71 

and Z-| 2  = -1.

In this case we expect the action to be bounded from below, i.e. 

S E >(8n2 /g2 ) |v - 1 /2 1 .

B) SU(2 ) group with k = -3, (k/N) = 3/2 

We choose:

V 1) = -1  T!(1) = -1  T!(1> = -1
12 ’ ^ 1 3  ’ ^ 1<f

ti^2 ^3 4 = 1 »t1 ^ 2 ^ 4 2  = 1 )TI ^ 2 3 = 1> other t / 1’2^ v 's zero,

with

= (-1,0,0,0), = (0,1,1,1), i / 1 = (0,0,-1,1), v^ =  (0,1,0,-1),

and we get :
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(x)=e (i3t/2^cT3 { ( x2 / a 2 ) + (X3/ a 3 )+ (x 4 / a 4 )}

Q (x )= e (i7t / 2 )cF3 ^ x 1 / a 1 >+(x 3 /a 3 ) - (x 4 /a 4 ) }

f l 3 ( x ) . e ( i « /2 ) a 3 { - ( x 1 / a 1 ) - ( x 2 / a 2 ) + ( x 4 / a 4 ) } i ^  ^

n  ( x )= e (', l / 2 )a 3 { - ( x 1/ a l ) + < x 2 /a 2 ) - (x 3 / a 3 ) } j

which satisfy the twist algebra (2.2.3) .

C) Now we proceed to the SU(3) group with: k =*1, (k/N) =^1/3.

Then

Q(x) =

0  1 0  

1 0  0  

0  0  1

(in/6) (x2 /a 2 )o>

« 2 (X) =

(-in/2)e 0 0

0

0

(in/2)
0

0  1

q 3(x).  e (i7t /3 » x4^a4 )« (3.1.13)

n 4(x)= e(' iic

and
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1 0 0

CO = 0 1 0

0 0 -2

D) SU(3), k = 2 ,(k/N) = 2/3 

Here

O ^ x )-  e1' 1* /3 ) (x 2 /a 2 ) “ ,

e Hic/2) 0 0

Q2(x) = 0 e(in/2) 0

0 0 1

( in /3 )(x  /a  )co
e 1 1

n 3 (x )-  e (i*  /3 ) (x 4 /a 4 )«  

£2 4 (x)= e(_i*  W x3/a 3)a (3.1.14)

with co the same as in case C above.

( 1 ) (2 ) (1*2)
In this case we pick V  12 = 2 , r f  7 = \  and the other rj ^ ' s

zero. We used the above four cases when we apply the TBC on the 
lattice and we discuss our results in Section 3.3.

3 .2  T o p o lo g ic a l  p ro p e r t ie s  o f  the  Pure  Gauge F ie ld  on  
the  L a tt ic e

From the strict point of view, topology is lost on the lattice, 
firstly because of the loss of continuity (which is recovered only 
in the continuum limit for the lattice spacing a -» 0 ), and also 
since there are no surface terms on the lattice which contribute

57



to the winding number (topological charge Q) in the continuum. 
Despite these not too encouraging factors  for looking for 
topological "freaks" on the lattice, there have been considerable 
efforts to put topology on the lattice and the indications we have 
show a rather optimistic picture. Until now, efforts on the lattice 

| have concentrated on the existence or non-existence of instantons,
| the m easurem ent of the topolog ical susceptib il i ty  xt and the

| resolution of the U(1) problem (we refer to these just as an
| indication of the various lattice topological explorations). The
| methods devised to compute these topological "freaks" on the 

lattice, provide an example of how MC simulation and pure 
mathematics can be "married" in a nice way.

A long standing problem on the lattice is the definition of the
topological charge density. Its calculation is plagued by technical 
and conceputa l d iff icu lt ies. The first a ttem pts to attack this

problem used as I21] Q lattice(n), n = a lattice site, the following 
| expression :

| Q |attice(n)=-(i/32jc2 )eM-vPa ReTr[U^v (n)Upa( n ) ] ^ o->a4Q(x)

(3.2.1a)

i

| ( U m v  is the elementary plaquette at the p-v level) and (3.2.1) is a

| direct "translation" on the lattice of the continuum expression:
!
»

j
Q(x) = -(1/327t2)#vP°Tr[F|l v (n)Fpa(n)] (3.2.1b)

The analogy comes from the expansion of

U (n) = eiAj i (n)eiAv (n+ll )0-iA| i(n+v)eiAv(n) =
| a- » 0

1 1 +ga2 FjIV (n )+ g 2 a 4 F2 JIV + ,g = coupling constant of the simple

| gauge group under consideration.

The consequences!21! of using (3.2.1) to measure the topological
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charge are bad since in this expression the perturbative terms

contribute (in the form of powers of ga2 ) to making the search for 
the contribution of the more important non-perturbative modes 
quite difficult. To resolve this problem various methods have 
appeared in the literature and the situation seems to be like

baroque(for a general review (c.fl22 !). The advantage of one method 
over the other is not clear yet. For example, the geometric method 
based on the interpolation of the gauge field in adjacent cells of 
the la tt ice , while  seem ing to be ra ther r igo rous  and 
mathematically elegant, does not give "good" results for xt (p j[2 3 ] .

In this work we have used the cooling method t24l which we now 
describe. The main idea is to minimise the action (the standard 
W ilson action) in a systematic  way and so to reduce the 
fluctuations of the original Monte-Carlo generated configuation and 
at the same time to produce quite stable configurations. By using 
the cooling method it is believed that the main difficulty in 
measuring Qlattice(n) referred above, (i.e., the contribution of the 
perturbative modes) is resolved, since this procedure renders the 
configurations smoother (by minimising the action), and so (3.2.1) 
can be safely used to a good approximation during the cooling 
process. The algorithm for minimising the action consists of 
concentrating at one link UjI (n) of the lattice and changing this

link to U'^(n), (while all the other links which multiply the UJI(n) at 

the six plaquettes around U^(n) are kept fixed) in such a way that 

S [U '( I(n)] <S[U)I(n))]. We make this change for every link of the

lattice ( 1  sweep) and repeat this process several times until the 
action plateaus at a value and remains there for a number of 
cooling sweeps. The configuration at the point where the action 
reaches a plateau is a solution to the equations of motion and by 
measurement of the action we find the value of the topological 
charge. As an act of faith we believe that when the action plateaus 
and gets its minimum the contributions to Q lattlce (i.e. the so-called 
lattice artefacts) from the perturbative modes have disappeared 
and only long-distance modes are left. In the case of the 
instantons, in a periodic lattice it has been observed that the 
action gets a plateau after a few cooling sweeps and remains 
there for some t im e [2 4 ]) before decaying to a zero value. The 
reason for this is that the instanton action on the lattice is quite

different from the Scontmuumjnstanton at scales where the instanton
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size is smaller than the lattice spacing, i.e., when p(instanton size)
|attice

« a  (a = lattice spacing) then S instanton - >  °> w h ile  in th e  

continuum

0  continuum ro p . p .
S  instanton — ^9 (p )] n~̂ >0° -p-»0

lattice
When p »  a, S instanton Scontinuum instanton a n d  if P ~ 0(a) 
the instanton shrinks through the lattice sites and disappears, 
while at the same time its action drops to zero.

The lesson from the instanton search on the lattice is that if we 
want to have a clear picture of what is going on, we must have
instanton sizes larger than the lattice spacing and the larger the
instanton size the longer the lifetime of the object on the lattice. 
When the action plateaus

S = [8 ;c2 /g2 ]Q (3.2.3)

and we find the topological charge by measuring the action.

The technical points of the algorithm for the minimization are as 
fo l lo w s :

The SU(2) case is simple since the staple which multiplies the 
link we cool consists of a sum of SU(2 ) matrices, which is still an
SU( 2 ) matrix if we divide it by its de term inant. Using the
Lagrange's multiplier method we find that, if the staple matrix is 
denoted by A, the choice

U jj= A +/DetA minimises the action.

The SU(3) case is not so simple, since the sum of SU(3) matrices 
is not generally an SU(3) matrix. The main idea of our algorithm is 
to find a matrix which belongs to SU(3) and is very close to A. We 
have checked the algorithm for the SU(3) case by comparing the 
results using the NAG Library, and this confirmed that, after a 
number of hits, we reached the minimum of the action.
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3.3 Numerical Results

We now present our MC results and comments on them.

Figs. A-| to A 4  refer to the SU(2 ) case, where we set up the twists 

r i ^ ' s  in such a way to get topological charge of 3/2. Fig. A-j was
y i v

taken with 600 thermalized sweeps from a configuration obtained 
by a hot start while Fig. A 2  was taken from a configuration with 

a cold start (gauge links were fixed equal to the unit matrix). We 
observe that in the Fig. A-j we get topo log ica l charge of 1/2

instead of 3/2 as in Fig. A 2 , despite the fact that the r i ^ ' s  are the

same in both the cases. Comparing these results with other 
results we will present next leads us to interpret this as coming 
from the integer part of the twist, i.e. the integer v in re lation
(3.1.4). We conclude that when we thermalize a configuration the 
instanton(s) can always be there and from the previous paragraph 
we know that their existence depends (among other things) on the 
lattice size and that a fter some cooling sw eeps they shrink 
through the lattice. So it could be the case that the integer v in
(3.1.4) is 1 for the configuration of A 2  case .F ig . A 2  shows a

somewhat unstable plateau at 3/2, which decays to 1/2, which 
seems to be quite pertinent. From Fig. A-| we also observe that

the topological structure we get does not d isappear, even after 

about160 cooling sweeps, which leads us to believe that the 
topological objects with TBC seem to have a size larger than the 
instanton size (even if we have not any analytical reasoning for 
this).

Figs. A 3  and A 4  have been obtained by cooling from a cold

start (U =1 ,p = 0 0 ) and their twist was set up for Q = 3/2. We got 
exactly Q = 3/2, and so all the topological charge is attributed to 
the twist part of (3.1.4) (i.e. the k/N of this relation).

Fig. B refers to an object of topological charge Q=1/4. This was
created by using constant tw ist matrices, along the 1 and 2  

directions. The physical analogue of this is a magnetic flux at a
link pointing in the third direction in space. This is quite similar

to a Z(N) solution to the equations of motion [2 5 ,2 6 ] |n ^ j s case
the action does not decay to zero and this can be explained using

61



the Schwartz’s identity for the U(1) subgroup of the SU(2) group, 
i.e.*

^  c lassical =  ( 1 / 2 ) J ( F 1 2 )2d 4x>( 1 / 2 )  | (J f 1 2d S )2/(a-, a2a3a4 ) |
(3.3.1a)

The action for such a configuration is

S = cos (F12)-1 . (3.3.1b)

where F-j 2 = 7t/a-| a 2 , so E = (1/2)7i2/(a-| a 2 )2 .

A configration, in the continuum, which has the same action as in 
(3.3.1), is given by Ap = [(71X -j /a-j a 2 ),0,0,0], which corresponds to

a magnetic field = 7 t/a-|a2 . We justify that Q = 1/4 (for the 

above case) by comparing the value of the action with that for 
Q = 1 on the same lattice. To measure the topological charge on 
the lattice we are using the relation (for the SU(2) group, and for a

6 ^  lattice in 4-d imensions):

(4 /g 2 )6 4 x 6 x (1 -  Sp |a q )=[8rc2 /g 2 ]Q (3.3.2)

where Sp|aq is the plaquette at one level.

For Q=1, 1- Sp|aq = [jr2 /(64 .3)].

For the U(1) group, if we consider the action (which corresponds to 
a configuration with a twist only in 2 directions)

c o s ( F 1 2 )-1 s (1 /2 )n 2 / ( a 1 a 2 )2 ,

we get 7t 2 / ( 2 x 6 4 ) = 6(1- Sp |a q ) and so (1- Sp |a q ) = tc2 / ( 2 x 6 5 ).

Compared with 1- Sp |aq = 7t2 / (6 4 .3), (for Q = 1 ) we see that for the 

U(1) subgroup of SU(2) we get

Q = 1/4 (3.3.3)
U(1)
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(w ifh constan t tw ists in 2 d irections).

Category C contains results for SU(2 ) with Q = 1/2 on a 6 4  lattice, 
where the matrices of (3.1.11) were used.

Fig. C-| shows clearly that the action plateaus to Q = 1 / 2  after ~ 50

cooling sweeps and remains there for ~ 350 cooling sweeps. This 
shows again that this topological object is quite stable. We could 
specula te  that the "size" p of these objects is s ign if icantly  larger 
than the instanton size, since the ir s tability  leads us to believe 
that even after a large number of cooling sweeps their size is p>> a 
(a = lattice spacing). Of course, we expect that after a number of 
cooling sweeps the action will go to zero, but our observation is 
that we need a lot of sweeps for the action to decay to zero.

Figs. C 2  and C 3  are taken by cooling from a cold start (p=°°). We 

see again Q = 1 / 2 . C 3  is taken by fixing the gauge so that

q 2  = ^ 4  = 1 , £2 1 *  1 ,Q 3  *  1 , and still preserving the tw ist a lgebra

(2.2.3).

Category D contains results for an 8 4  lattice. In this case 
twists for Q = 1 / 2  were used.

Fig. D-j was taken from a configuration which was thermalized for

1 0 0 0  thermalization sweeps starting from a cold start at p = 2 . 2 . 
We observe that at around the ~ 140th cooling sweep we have a
plateau for Q = 1 / 2 . When we therm alized this configura tion
again, for 2 0 2 0  thermalization sweeps, starting from a cold start, 
we got Fig. D2  where we have two quite stable plateaus at 

Q = 3/2 and Q = 1 / 2 . We interpret this as the appearance of an 
instanton in the lattice since we now have a larger lattice than the 
one in Fig. A2 .

Fig. D 3  shows that at p = 0 0  on the same lattice we have only the 

"pure" twist case, i.e. Q = 1 / 2 .

Class (E) contains graphs concerning the cases where we have to 
use non-constant twists so that k/N =1, i.e. a twisted instanton. If 
we want a (anti)-selfdual solution we have of course to satisfy,
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F|xv = ± F |x v  From the analysis of 't-Hooft [^0 ] j we know that in 
ordei* to satisfy the (anti)-selfduality condition of the gauge field, 
we have to arrange the ratio (a i> a 2 > a 3 > a 4  a re th e
lattice s izes in D = 4). This restricts the lattice size we can use 
(depending always on the twists we use), and, for example, for the 
SU(2) group and for Q = 1 , we should use a lattice with 
(a-j 8 2 / 3 3 3 4 ) = 2  (for the (an t i) -se lfdua li ty  cond it ion  to be 
s a t is f ie d ) .

The case Q = 1  for a 1 2 x 6 ^ la t t ice  at p = 0  is shown in F ig .E-j.

From the graph we see clearly two small plateaus close to Q = 3

and Q = 2 , respectively, and a stable plateau at Q = 1 .

Fig. E2  was taken for p = °o, and again we obtained Q = 1.

Fig. E 3  refers to a case where our lattice (6^x12 ) does not satisfy 

the  (a n t i ) -s e l fd u a l i ty  cond it ion  and w as o b ta in e d  by 1 0 0 0  

th e rm a liz a t io n  i te ra t ion s  at p = 2.2. Again, we see a small 
curvature at Q = 2 , and quite a stable plateau at "Q" = 1 .2 , which
decays to zero (before it decays to zero it stays for some time at

Q = 0.1). In the case of Figs. E-j and E 2  the lattice ( 1 2 x 6 3 )

satis fied the (anti)-se lfdua lity  condition and Q was exactly 1, 
but th is is unlikely in this case of Fig. E 3  where we have small

fluctuations around Q = 1. Similarly, in Fig. E4  we see that (using

3 .2 .3 ) "Q" = 0 . 6  despite the fact that we arranged the twists to 
correspond to Q = 1 / 2 .

In all the above cases we plot the value of the average plaquette 
versus the number of cooling sweeps, and we use (3.2.3) to measure 
the topological charge. When the configuration does not satisfy the 
(a n t i) -se lfd ua li ty  cond it ion  it is not leg it im a te  to use (3.2.3), 
since th is  holds only for (anti)-se lfdual configura tions. This 
explains why "Q" = 0.6 for the case plotted in Fig. E4 .

Now we present a more formal "proof" why "Q" = 0 .6 .

The twists r i |Llv,s were arranged such that
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^ 1 2  = ‘ 1’ ^ 3 4  = 1’ '-e- Q =1/2-
ft

Then

TrF(ivFM-v = (1/2)eM-v PCTTrF(j,vFpa =

(16 jt2/a i  a 2 a3a 4 )[ri( ivT[|l v ]/(4N), N = 2.

So for the above choice of rt 's TrF|xv'Ftlv = (8 7 t 2 /a-| a 2 a 3 a 4 ) and
|XV

th is  va lue corresponds to topo log ica l charge Q = 1 / 2 . If the
configura tion  is (anti)-selfdual then

S = ( 1 / 2 ) J T rF F d 4 x = 4 jt2 ' 

but if the configuration does not satisfy

Fjxv = ±FHV, TrF|xvFflv  = 2 (TrF1 2 2  + TrF342 ) = 

4ic2 [1 /(a - |a 2 ) 2  +1 /(a 3 a 4 )2 ]

and

S = 2 t i2  (x + ( 1 / x)), x = a-| a 2  /a 3 8 4 .

C om paring  the actions for (anti)-se lfdual and non-(an ti)-se lfdua l
configura tions we have:

(^ (a n ti)-s e lfd u a /^ n o n -(a n ti)-s e lfd u a l ) = 2/(x+(1/x)). (3.3.4)

If X = 1 then ^ a ntj(Self)-dual = ^non-(anti)-selfdual.

From (3 .3 .4 ) we can now deduce that "Q" = 0 .6 , provided we accept
th a t even fo r  a n on-(an t i) -se lfdua l co n f igu ra t io n  S is still
proportional to Q. Then

( S ( a n t i ) - s e l f d u a | / S n o n  (anti)-selfdual ) = 2/(x+(1/x)) = 0.5/0 . 6  =

Q (a n .i) -s e lfd u a l/"Q "n c n  (an.i)-selfdual ■ and for this to hold X =1.2, i.e., we
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should have a 63 x12  lattice.

Therefore using (3.2.3) with a 6 3 x 1 2  lattice and twists for 
Q =1/2 we should expect to find "Q" = 0 .6 .  With the same logic we 
can justify the value "Q" = 1.2 for the case shown in Fig. E3 .

We now present the results of our numerical study for the SU(3) 
group.

Figs. F-jand F2  refer to the case with topological charge Q = 1/3, 

where in o rder to satisfy (anti)-selfduality condition, we have to 
use a lattice with a -|a 2 / a 3 a 4  = (1/2). We see clearly Q = 1/3.

Fig. F 3  refers to the case where we constructed the twists i i ^ v 's

for Q = 4/3, but we find again Q = 1/3. Our interpretation of this 
is that an instanton was lost or, by the modulus law of the twist 
in (3.1.4), there is a possibility that Q = 1/3 can actually be the 
same as Q = 4/3. In (3.1.4) we think k/N is equal to (k/N)modN 
and so Q = 4/3 belongs to the same topological class as Q = 1 / 3 .

Fig. G1 shows a very interesting sequence of plateaus. We set up 
the l i l y ' s  for Q = 2/3 in a 64 lattice (using a configuration obtained

by 790 thermalization sweeps) starting with a hot start at (3 = 5.5. 
The graph shows topological charges with values at Q = 1/3, 4/3, 
7/3. This is not surprising since the occurence of instantons is 
quite probable  when we use a thermalized configuration. This
interplay between the instantons and the TBC can be justified also 
by graph G 2 . We used the "twisted" thermalized configuration of

G 1 , and coo led it w ithout the twist. If instantons exist they

would be seen by a small plateau (or curvature) of the graph, since 
they are unstable. This was actually the case, and in Fig. G 2  there

is an indication of Q = 1 at around 25 cooling sweeps, which is
about the time that the first plateau of Fig. G-| occurs.

Class H conta ins the graphs which refer to Q = 2/3, where our 
Monte C arlo  genera ted  con figu ra tion  was ob ta ined  a fte r  650

thermalization sweeps from a hot start on a 6 ^  la t t ice .

Now the action plateaus at Q = 2/3, where there is an indication of 
a small plateau at Q = 5/3. In contrast, at (3 = °°(Fig. H2 ), there are
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no instantons and Q = 2/3. Of course Q=( 1/3,4/3,7/3) does not 
be loqg to the same vacuum as Q=(2/3,5/3). Here we have an 
example of how the initial conditions (in this example the number 
of the rm a liza tion  sweeps) affect the topo log ica l nature of the 
gauge field.

The cho ice for the twist transition functions, for a particu lar set 

° f  'njj.v s > ‘s not unique. For example, it is possib le to have 2

d iffe rent n ^ ’s which correspond to the same twist (i.e., the same

topo log ica l charge Q), but they have d ifferent 'nfXV’s. To give an

example: the £2 ^ ’s

k
k

N-k times

k.
2 i n k-N  k - t im e s  

k-N

' k-N

1-N

both correspond to the same twist k, but
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E ^  - E ^  ~ (k2 -k)
classical classical v '

and in general is d ifferent from zero.

If we consider the case of the SU(3 ) group for Q = 2/3, we see that 
if instead of co in (3.1.14) , we use

2 0 0 

co =  0 - 1 0

0 0-1

then the transition functions have the form

q 2 (x )_ e (2 iic /3 )(x1/ a 1 ) « t

1 0 0

n 3(x) = 0 0 1

0 1 0

(irc/6)(x /a  )w
e 4 4

(3 .3 .5)

£2 (x) =

1 0  0

0  -i 0  

0  0  i

(- i« /6 )(x  /a  )co
e 3 3

and still satis fy  the twist algebra (2 .2 .2 ) for Q = 2/3. Obviously, 
the action  of th is  "tw is t" cho ice is d if fe ren t from the action 
chosen in (3.1.14) and in addition to this the choice (3.3.5) cannot 
be used to measure the topological charge via (3.2.3) on a 64 
lattice, since it is not (anti)- selfdual on this lattice.
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Cases I i J 2 > * 3  re*er t 0  a twisted instanton for the SU(3) case

at p 0 , p = p = oo, where the third graph was taken by changing 
the number of hits on the link during the cooling method from 2 0  to 
1. Clearly there is a strong indication of Q = 1 in the SU(3 ) case.

We also used constant ^ ' s  for the SU(2) and SU(3) groups using

the matrices (3 .1.3,b,c,d,e) and we found Q = 1 (we do not present 
the plots here).

It has been seen from Section 3.1 that for k *  0(mod N), we have to 

use non-constant ^ ' s  (see also R e f i l l ) ,  w hen  k = 0 (modN) we 

can have "tw is ted" instantons with constant and non-constan ts  
S-

It has been a rg ued !2 8 ! that the effect of the twist for the SU(2 ) 
case can be incorporated in a factor in front of the elementary

plaquette in the action, i.e.

^twisted = ^-n,p,v T r[ 1 'Zpv Splaql 

where ZpA,=e2 '7nV v / N-

The author of ! 2 8 l used anisotropic lattices and found topological 
charges 1/2, 3/2 (for the SU(2) group). It is not clear to us that by 
incorpora t ing  the tw isted boundary condition  on the lattice the 
Wilson action has an overall factor ZpV in front of Sp|aq. We could

only see a minus sign at the right corner plaquette (Fig. K) when 
we used constant twist matrices for t\ = - 1  in 2 -dimensions for

the SU(2) group.
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Fig. K TBC with constant in D = 2
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CHAPTER FOUR

4.1 G eneralities on the Index Theorem

In th is chapter we deal with the index theorem and its verification
on a lattice. We start, firstly ,by giving a general outline of the 
index theorem in the continuum.

The index theorem  basica lly  reflects the non-tr iv ia l topo log ica l 
p rope rt ies  of the gauge fie ld and rem arkab ly  connects  these 
p ro p e r t ie s  w ith  the  num ber of ze ro  m odes of the  D irac 
o pe ra to r [2 9 ].
We d iscuss briefly the "proof" of the index theorem  and we 
comment on some points referring to the conditions under which it 
is applicable.

It is well k n o w n [ 3 0 ]  that the Eculidean path - integral measure is 
not invariant under the chiral transform ation ,and it g ives rise to

an anomalous Jacobian factor Z n ^ / + n ( x ) r 54/ n (x) (where 'F n (x) are

the e igenfunctions of the Dirac operator) which is not well defined
and may be regularised with a Gaussian cut-off, i.e.,

I  4 '+ n ( x ) r 54 ' ( x )  = Lim y + n(x ) r 5e x p ( -^ 2/M 2) ¥ n(x) = 
n M —

Lim M _ 00T r r 5e x p (9(2 /M 2) ^  ^ n M ^ n ^  = (1/16^ 2)T rF javFpv .
x->y

So the factor in the path integral which gives the anomaly is 

Jdx <o(x) £ n vF + n( x ) r 54/ n (x) = J d x w M f l / i e ^ T r F ^ F ^

(co(x) is the chiral rotation of ^ ' ( x ) - > e '0)(x)r 5 'F(x)).
In the limit in which co<x) becomes a constant we can use this 
result to generate  a proof of the index theorem  for the Dirac
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operator. To see this we note that jd 4xEn 'I, + n(x ) r5'F n(x) = 0 for

eigenfunctions with eigenvalues X.n* 0  so the only contribution is 
from the zero modes of r 5 and :

J d 4 x ( E  positive chirality zero modes +

J d 4 x ( E  negative chirality zero modess

SO

n . - n _ =  ( i / i67 t2)jTrF FFV
pv

The chirality is defined by the eigenfunctions of r 5:

r 5vP = ± 4 / (4.1.2).

We now discuss some points concerned with the index theorem.

1) Most of the work so far,in the continuum, and on the lattice, has 
been restricted to the case of the instanton field and the number of 
zero modes of D in the presence of the instanton field in various 
simple compact groups. Obviously, when we consider the case of

the instantons we deal with S4 as our base space (compact space),

or,us ing the conformal mapping from R4 u {  0 0  } to S4 , R4 . This 
ju s t i f ie s  a ttem p ts  to verify  the index theo rem  on a la tt ice , 
considering the lattice as a compact flat space.

2) Solving the equation

for fixed winding number,provides the number of parameters on 
which the instanton solution depends. For example ,for the SU(2) 
case with Pontryagin number P (in th is chapter we will denote 
som etim es the topo log ica l charge Q by P ) the num ber of 
parameters for the instanton solution is 8P-3. For the SU(3) case

F|iv=±F|iv (4 -1-3)
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for P = 1 we have 5 parameters and for P > 1 we have 12P-8 
param eters . The fluc tua tion  problem (expansion around known 
instanton so lutions which preserves (4.1.3)) has been considered 
for the instanton case and it should be formulated also using TBC. 
For the instanton case there are known solutions for the gauge

field ,for example, for Q=1 the solution was found in l3 ^], and by 
expanding around it we are able,in principle, to find the spectrum 
of the Dirac operator for a general gauge field, as well as the 
number of parameters on which this gauge field depends .

While much work has been done concerning instantons,in the case

of the TBC the only known solution is that o f!2 2 ! and we should 
formulate the fluctuation problem by expanding around the Abelian

solutions of I2 0 !.

3) The form (4.1.1) is a special case of the index theorem for an 

elliptic operator.Genera lly ,the index is defined as i ( - 1 ) ' ( h j ) ,  where 

every Betti number hj is the dimension of the cosett32!

Hj = KerDj/lmage Dj_i and Dj's form a complex [33 ,34 ] which, in the 

case of gauge theories, can be represented by

D-1 D0 D1 D2

0—> Tq—> r 1 t 2—> ®

where Tq = the space of scalar fields, r 1 =the space of vector 

fields, and r 2  = the space of (anti)-selfdual tensors and D j + 1 D j

= 0. Physically, H 1 gives the number of non-gauge equiva lent 

solutions to Yang-M ills equations which satisfy duality and H ° the 

dimension of the holonomy group of the gauge group. The number h2 

for the case of the sphere is zero. The number h ° - h 1 is what we 
call the index of the operator D which maps r Q + T 1 to r 2 a n d

the index

D = d imKerD-dimkerD = h ° - h 1 -

4) Atiyah et a l. I35 ! have shown that
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index D = avQ +cx
t

(4.1.4)

w h e re  a v = the Dynkin index of the representation of the fermion 

field and x =the signature of the base-space manifold. In the case 
of the sphere and the torus x = 0 and av = s(s-1 )(s+1 )/6 where s is

the d im ension of the fermion representa tion.For the case of the 
SU(2) group with the fermions in the fundamental representation, 
index D = n + - n_ = P, where P = topological charge Q.

4.2 The Index Theorem on a Lattice

We applied the MTBC (Multi Tw isted Boundary Condit ions of 
Section 2.2) on a lattice both for W ilson and Kogut-Sussk ind  
ferm ions. We used thermalised configurations as well as explicit 
c o n f ig u ra t io n s  with cons tan t f ie ld  s treng th  F(IV which were

co n s tru c te d  accord ing  to !2 0 !. We start by giving some of the 
explic it so lu tions for the gauge field which we used to find the 
e igenvalues of the fermion matrix.

For the SU(2) group a configuration with P = 1/2 is given by l2^]. 

4.2A

A •] (x )= (7t/2 )X 2(?3 /a^  A2 (x)=-(7t/2)X-| ^ 3 /a ^  a  *

A3(x)=(7 i/2)X4<33/£ ^  , A 4 (x)=-(rc/2 )X 3 0 3 / a  a  ,
3 4 3 4

(4.2.1)

where denotes the gauge field in the continuum, a 1 , a2 , a3 , a4

are the s izes of a 4 -d im ens iona l Euclidean box along the 4 
d irections, x 1 , x2 , x3 , x4 are the coordinates of a point and a 3 is

the Pauli c^ -m a tr ix .  The twists ti^ ' s which were used for (3.1.11)

were used also to construct (4.2.1). This solution has constant 
fie ld strength  in the 1-2,3-4 levels and satisfies the Yang-M ills  
equations of motion:

74



:  d hfm-v=3h^ v +i[An .F^v] = 0.

It has been shown I 3 6 ], th a t s tab le  e x trem a  of the ac t ion ( fo r  
com pact manifolds) are always (anti)-selfdual. Since the solutions
o f  [20 ] are constant(they have constant fie ld strength), we should 
expect them to be stable.

Another example of an explicit configuration is:

4.2B  Group SU(2)colorxS U (4)flavor

In th is  exam ple  we have the pecu lia r cha rac te r is t ic  tha t the 
num ber of colors is d ifferent from the number of flavors ,but the 
MTBC still apply.

In this case, to be consistent with (2.2.20), we chose

^(color) _ 1  (flavo r) 
12 2 12

The gauge field is now the same as in (4.2.1) since it depends only 
on the  co lo r  tw is t, but we have to change  the f lavo r tw is t 
transition functions for them to match the ^  (flavor)

12
(flavor)

So we construct the Q ^  's such that

x' II

p *

p*

p
>Of2(x)=

- i q

iq

q*

‘ p. q * .

75



a 3(X):

z X.

z
»Q')X)=

X.

z* 4 -iX,*

z* f t * .

(4 .2 .2 )
In (4.2.2)

p = e i7ix2 /2 a 2 

q=e  iycx 1 /2 a i 

z = e '7CX4^2 a 4 

^ = e " i7lX3 /2 a 3

We now give an explicit configuration for the SU(3) group for 
P = 2/3.

4.2C Using the twists for Q = 2/3 (c.f 3.1.14) we have

A- j  ( x ) = ( t c / 3 ) X 2 G ) / o  q  , A 2 ( x ) = - ( 7 c / 3 ) X -j CD/a  a  ,

1 2  1 2

A 3 (x)=(rc/3)X4 G)/a  a  , A 4 (x )= -(K /3 )X 3 CO/a  a  ,
3 4 3 4

(4.2.3)

w he re

( 0 =

1 0 1

0 1 0

0 0 - 2
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When we apply the color-flavor twist on the lattice we do this in 
the fo jlow ing way. Every time we reach a boundary site of the
lattice; i.e.,when for example the coordinate of a lattice site in the 
x -d ire c t io n  is N X+ 1 ( N X = lattice size in the x-d irec tion ), we

m ult ip ly  the gauge fie ld matrix with the matrix we obtain after
the application  of the co lor-flavor tw ist on the 'P field. We now 
present, as an example, the application of the co lo r-f lavor tw ist

for the group SU(2)<color)x S U (2 ) (flavor).

If
a b 

■b* a*
, represents the SU(2) gauge field matrix,

then the app lica t ion  of the co lo r- f lavo r tw is t on the ' P - f i e l d  
results in:

1st flavor

a b ’ 1 o ’ a bp*2

JL

-b* a* .0 P*2. -b* a*p*2 .

(4.2.4a)

For the other directions (and using Q c JX(x) = Q ^ ( x ) )

we replace p = e'7:X2^2a 2 by (c.f.3.1.11)

q=e"'7lX1 ^ a 1 (jx = 2)

z=e'7CX4 ^ a 4 (p. = 3)

^ = e ' i7CX3/2 a 3 0i = 4),

For the 2nd flavor we have:

(4.2.4b)
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a b oCNJQ. ap2 b

-b* a*. .0  1 . . - b * p 2 a*.

(4 .2 .4c)

(for the other directions we replace p by q,z,l of (4.2.4b)).

S ince  we use a local f lavo r tw is t(w ithou t in troduc ing  " f lavo r 

bosons"), we have to specify the coordinates x of ^ ^ ( x )  for every

particu lar f lavor we deal with.In the case of Wilson's ferm ions this 
does not seem to create any conceputal problem since each flavor 
field lives on one lattice site.

For the K-S fermions we have really to think about the argument to 
be used for the flavor twist functions,since each flavor is spread 
over the 16 (in D=4) corners of the hypercube. For a periodic lattice 
the X fields on the boundary sites of the lattice are identical to the
ones in the interior of the lattice. Under the MTBC of section 2.2
we have to take into account the influence of the twist on the X -
f ie lds ,and  th is can be done by constructing  the f lavor fie ld in
te rm s of the X-fie lds and then applying the co lor-flavor tw ist on 
the f lavo r field.
We label the sites of each flavor box as in Fig.4.2.2 and using 

q ^ =  £ nr ^ f n U U n X n , where \i = Dirac index, f = flavor index 

(c.f. Appendix A) we arrive at :

1
q =

X'(1) +iUU'(1') X'(V)

X’(2)UU'(2) +iUU'(2,)X,(2')

2
q =

X'(1) - iUU’(1 ')X’(1 ’) 

X'(2)UU'(2) - iUU,(2,)X,(2')

(4.2.5)

where the prime(') fields refer to the boundary flavor box, i.e., box
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1 at Fig.4.2.1 and we work in D=2.

(4 ,0 )

( 1 )

(5 ,0 )

Fig. 4.2.1 Flavor boxes on a lattice for the K-S ferm ions in D=2

In Fig. 4.2.1 we suppose that along the x- axis the lattice has four 
sites and so the sites of box 1 do not belong in the lattice. In
(4.2.5) we label the four sites of any flavor box as in Fig.4.2.2., and 
this relation without the primes on the U's and the X's can also be 
used fo r  every f lavor box of the lattice and not only fo r the 
boundary flavor boxes.

. (0 , 1 )

(0 ,0 ) ( 1 ,0 )

F ig .4 .2 .2  A flavor box for K-S fermions In D=2
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The indices 1,2 on the q's correspond to the 2 flavors in D = 2 and 
we used representation of the r  m a tr ices

r  = o

A ls o

UU(1) = 1 

UU(2) = 1^(00)

UU(2') = U2 (00)

0 1" o - i '
’ r r.1 0 . . ' 0 .

UU'(1) = 1 

UU'(2) = 1 ^ (4 0 )  

UU'(2') = U2 (40)

UU(1') = U 1(00)U2 (10) UU'(1’) = U 1(40)U2 (50) .

We now perform a flavor twist on (q1 q2 ) and we get:

X’(1) +iUU'(1,)X,(1') 

X '(2 )UU '(2 ) +iUU,(2')X,(2')

X'(1) -iUU'(1 ')Xf(1') 

X'(2)UU'(2) -iUU'(2,)X,(2’)

x ( i)+ iu u ( i ')X (r ) X(1) -iUU(1 ’)X(1') ' p o ‘

X(2)UU(2) +iUU(2,)X(2’) X(2)UU(2) -iUU(2')X(2') o q.

(4.2.6)
In (4.2.6) the matrix 

"p 0"

.0  q_

is equal to with argument x of n ^ ( x )  the center of the
M'

pa rt icu la r f lavor box being considered. Solving (4.2.6) for the 
primed fie lds and applying the color twist on the gauge field ,if it 
is at the boundary, we express the X fields on the boundary flavor 
boxes in terms of the X fields of the flavor boxes in the lattice. If 
we concentrate on boxes 1,2 of Fig. 4.2.1 then we find X(4,1),
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which in the notation of Fig.4.2.2 is the X'(2) site, X(4,0), X(5,0), 
X (5 ,1J in terms of X(0,0), X(1,0), X(0,1), X(1,1).

W e now cons ide r the in teraction : X(3,1) U-| (3,1) X(4,1). For a 
period ic  lattice with antiperiodic boundary conditions for the 
X- fields it equals -X(3,1) U i(3 ,1 )  X(0,1). Now, using (4.2.6),

X(41) = (1 /2 i)Q l (3 /2 )U + 2 (0 0 )(p -q )X (1 0 )U 1(00 )+

(1/2)C2l (3 /2 ) (p + q )X (0 1 )

and finally

X(31)U-,(31)X(41)=

(1 /2 i)X (3 1 )U 1 (3 1 )Q l (3 /2 )U + 2 (0 0 )(p -q )X (1 0 )U 1 (00)+

(1 /2)X(31 )U«| (31 j n ^ ^ H p + q W O I )

From th is  we notice that the first term  is not a ne ighbour 
in te ra c t io n .

W e can proceed to the calculation of qq in D = 2 for each flavor 
after the inculsion of the MTBC.

We present the condensate qq in D = 2 for one of the flavor boxes. 
W ithout tw ist (using (4.2.5))

q 1q 1=X(00)X(00)+iX(00)U1(00)U2 (10)X(11) -

iX(11 )U+2 (10)U + i  (00)X (00)+X(11 )X (11 )+X(10)X (10) +

iX(10)U+ 1(00)U2 (00)X(01)-iX(01)U+ 2 (00)U 1(00)X(10)+

X(01)X(01)

and
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q 2q 2 = X(00)X(00) - iX (0 0 )U i(0 0 )U 2 (10)X(11) +
%

iX(11)U+2 (1 OIU+T (00)X (00)+X(11 )X (11 )+X(10)X(10) -

iX(10)U+ 1 (00 )U 2 (00)X(01 )+iX(01 )U+ 2 (0 0 )U 1 (00)X(10) + 

X(01)X(01).

In the presence of the twist (color-flavor fo r the same flavor box) 
we have, by solving (4.2.6),

X ( 4 0 ) = n l color(1/2){cose X(00)+sine U-| (0 0 )U 2 (1 0 )X (1 1 >} 

X ( 5 1 ) = a l color(3 /2){cose X(11)-sin6 U+2 (0 0 )U + i (00)X (00)} 

X(5O)=£2l color(1/2){cos0 X(1O)+sin0 U+ -| (00 )U 2 (00 )X (01 )} 

x(41 )= Q 1color(3 /2){cos0 X(01) -sin© U+ 2 (0 0 )U 1 (0 0 )X (10)}

with cos0=y(p+ q) and s in 0 = jy (p -q )

Finally .after some algebra ,we find that:

^ t w i s t e d  ~~ ^ w i t h o u t  tw is t (4-2.7)

and this holds for each flavor separately.

We should expect that (4.2.7) is independent of the incorporation of
the twist, since qq is a local quantity and it must not be affected
by the global effects of topology. In contrast,
<qa> *  <QQ> . since when we consider the VEV of <qq>,

tw isted  untw isted
we take into account the updating of the gauge field under the TBC, 
which affects <qq> (c.f. 1.9.5). In all the cases on which MTBC were 
applied on the lattice we did not consider the f lavor group to be 
gauged,as th is would require the introduction of "flavor" bosons. 
The flavor tw ist is used in this work purely as a transformation
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which acts on the flavor indices of the *¥ field. Gauging the flavor 
group should make the flavor index into a gauge quantum number.

4.3 N um erica l R esults

From the Section 4.1 we expect that,since for the SU(3) case av = 4  

and for the SU(2) case av =1,

n+ -n_=4NfP for the SU(3) group (4.3.1a)
and

n+ -n_=NfP for the SU(2) group (4.3.1b)

We now d iscuss our numerical results. In the numerical analysis 
the Lanczos algorithm (Appendix B) was employed and we worked in 
the quenched approximation. We now present the plots for the K-S 
fe rm io n s .

Figs. 4.3.1 a,b,c show the eigenvalues of the fermion matrix for the 
configuration of Fig. G1. (G1 was taken for the SU(3) group at p=5.5

for a 64 la tt ice). We have p lotted on ly the f irs t six small 
e igenva lues and we used antiperiodic boundary conditions for the 
|erwiiDV}field,i.e. a minus sign in front of (2.2.18).

C om paring  Figs. 4.3.1 a ,b,c and G-j , makes it c lear that the 

d is t r ib u t io n  of the sm all e igenva lues  is co rre la ted  w ith the 
sequence of plateaus in G-j. One is now tempted to ask whether the

index theorem (4.3.1) is verified by the above figures.We believe 
that th is  is not achieved convincingly. Certainly, the e igenvalues 
fo llow the behaviour of the pure gauge action, and in the sweeps 
where the changes of the topological charge occur (where we lose 
one unit of topological charge), we are able to see an induced 
change in the form of the eigenvalues.

We now consider the case of periodic twisted boundary conditions, 
(Figs. 4.3.2a,b,c.)

Here we observe a rather different behaviour, in the sense that the 
f i rs t  and  the  se cond  f la vo rs  seem  to fo l lo w  the sam e 
pattern,while  the 3rd flavor does not "suffer" very sharp changes 
at the  crit ica l sweep num bers(about 25,100,400). We there fore
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conclude that no s ignificant insight can be gained into the exact
reproduction on the lattice of (4.3.1) using periodic MTBC.

%

In Figs. 4.3.3a,b,c we examined the influence on the eigenvalues of 
the H-j configuration. We recall that H-j refers to the pure gauge

action for the SU(3) group for a 64 lattice at (3 = 5.5 and Q= 2/3. 
A lthough  we have devia tions from (4.3.1) we be lieve that our 
results show that there are some remnants of the index theorem on 
the lattice. There are zero modes which remain even after about 
200 cooling sweeps. We also observe the similarit ies between the 
first and the second flavors. Where the first p lateau (Q = 5/3) 
appears, at around the 44th sweep, the 5th and the 6th eigenvalues 
for the third flavor rapidly disappear, and at the same time we lose 
the last four e igenvalues for the first and second flavors. At the 
final and stable plateau, at Q = 2/3, we are left with eight small 
e igenvalues, in agreement with (4.3.1).

Fig.4.3.4 presents the case where we found the eigenvalues for the 
SU (2) g ro up  us ing a n t ipe r io d ic  boundary  co n d it io n s  fo r  the 
configuration of Fig. Dp. Again there is a correspondence between

these two graphs.
When one instanton disappears at about the 50th sweep and we 
move from the Q = 3/2 to the Q = 1/2 vacuum,we lose zero modes. 
In th is plot we give the results for only the 1st flavor, since the 
2nd f lavo r behaved identically. The fact that the form of the 
e igenva lues does not d istinguish between the flavors is explained 
by the  e x is te n ce  of the fo l low ing  s im ila r i ty  t ra n s fo rm a t io n  
(c.f.4 .2 .4a,c):

a bp * 2 ap2 b

_-b* a*p * 2

C\J

II

- - b * p 2 a*- ° 2

and a  is the Pauli op matrix 
2 *

We now study the eigenvalues for the case of the Wilson's fermions 
for the SU(3) group. In all the cases we studied to find the 
eigenvalues, we used the Hermitian r $ M  matrix, and, of course, the 

zero modes of this matrix are the same as the zero modes of M (M
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is the fermion matrix) and vice versa.
t

Figs. ^ .3 .5a to 4.3.5g deal with the e igenvalues of the first flavor 
us ing  a n t ip e r io d ic  bounda ry  co n d it io n s  and all the  f ig u res
correspond to the G-j configuration. We examine the behaviour of 

the e igenva lues by again varying the sweep number and also 
studying the variation of the form of the eigenvalues with respect 
to the Wilson parameter k.

We notice there are no zero modes at k = 0.125, while at the sweep 
num bers  (about 25,100,400) and even at k = 0.125, all the
eigenvalues show small "curvature " effects. At k = 0.130 we have 
reached the real eigenvalues of M and there is a strong indication 
of zero modes, which actually appear at k = 0.135 and at about the 
25th and 400th sweeps,where the plateaus occur. Counting the 
number of zero modes of at each k we verify that the number

of small eigenvalues is different at around the 25th ,the 100th and 
400th sweeps. So, at every cooling sweep, we have a choice of one

particular k, such that the eigenvalues X of M are X = W 37 !.
Going from k=0.130 to k=0.135 we observe a "tunnelling" of a whole 
line of eigenvalues from the left to the right of the axis . As we go 
to higher k's we reach a point where there is no zero mode. For the 
o the r two flavors the behaviour is about the same. The above 
figures indicate that "a form" of the index theorem is satisfied on 
a lattice.

We now discuss the case of the H-| configuration. (Figs. 4.3.8a to

4.3.1 Og). Obviously there is a dramatic change at about the 44th 
sweep, i.e. when the instanton d isappears .R em arkab ly  again at 
k=0.125 there is no zero mode and as we go to higher k's we find
the movement of whole lines of eigenvalues through the axis.
Again we have exact zero modes (c.f. at k=0.140 for the 2nd flavor 
for example). There are no substantial differences in the behaviour 
of the eigenvalues for the three flavors.

We now give a description of our results for the cases where 
explic it configurations were used.

Figs. 4.3.11 a,b,c and Figs. 4.3.12a,b,c (P = 2/3 at both cases) show 
that at k = 0.131 there are zero modes for all the flavors, while in
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both cases the e igenvalue distribution for the th ird  f lavor differs
from that of the first two flavors. At k = 0.131 there are four*
eigenvalues of r § M  very close to zero.

Figs. 4.3 .13a,b,c and 4.3.14a,b,c correspond to results for a P=4/3 
configuration.W e therefore conclude that even although there are 
zero modes for k = 0.139 and k = 0.141 thare is a deviation from
(4.3.1).

Figs. 4.3 .15a,b were obtained by setting only color twist for the 
- field. This, of course .leads to a non single -valued fermion

field and comparison with Figs. 4.3.11 and 4.3.12 shows that the
number of small e igenvalues is s ignificantly less when we apply

only a color twist. In all the above cases our lattice size was 6 4 , 
with the exception of the case with P = 4/3 where the lattice size

was 8 x4 ^ .

Results for the SU(2) group are as follows:.

F ig.4.3.16 shows the dependence of the small eigenvalues on k.
Again we do not plot the 2nd flavor, since it behaves exactly as

the 1st one. Our lattice size is 64 and we see one mode very close
to zero at k = 0.129.

Figs. 4 .3 .17a,b are for the case where we had only a color twist

(the lattice size is still 64 ) . No zero modes were seen.

We now present the case of a "twisted" instanton configuration on

a 1 2 x 6 ^ lattice. In 4 .3.18 .where we had a co lo r-f lavor tw ist 
there were zero modes, while at F ig.4.3.19 (only a color twist) no 
zero modes were observed.

c f
The final graph (Figs. 4.3.20a,b,c,d) is for the group SU (2)xSU  (4). 
There are no small e igenvalues for the first two flavors but there 
are small ones for the third and the fourth flavors.
In th is  case, s ince the ¥ -  fie ld  be longs to the fundam enta l 
reprentation of the SU(2) group, we expect that av =1 and, from

(4.3.1) that n+ - n. = 2.This was found to be the case.
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In all the cases, where Wilson fermions were referred, we kept the 
Wilson* r- parameter equal to 1, but we also ran some cases with 
r = 0.50 and r = 0.25 for explicit configurations only. Since as 
r-» 0 the Wilson term (c..f. 1.8b.1) in the action goes to zero too, 
the chiral symmetry is restored and there are no zero modes. We 
confirmed this although the results are not presented here.
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Appendix A

Spin D iagonalisation

Here we w ill present an exp lic it construction  of the flavo r quark
fie lds in term s of the x fields.

(a) Free Case

W e s ta rt w ith  the naive Euclidean action on a D -d im ensiona l 
hypercub ic  la ttice :

S = (1/2)ad_11 ["5,(n)rM-4/ (n + [i)-vF (n+}i) rM -^fn) (A1)
n i

where n = .n ^ )  is a lattice site.

For every lattice site (4 ', 't ')  ha ve  2  com ponents, D an even
integer. We choose representation of the r  m atrices

{ r R, r v} =-25^v r +|x = -r> , r> + r>  = 1

At every site, we perform  a unitary transform ation :

y tn H T ^ X tn ) (A2)

H '(n )= X (n )T + (n) (A3)

where

T + (n )r^T (n + p )= A F (n ) (A 4)

T+(n)T(n)=T(n)T+(n)=1 (A 5)

(R) 0  **
and AM-(n)eU(1) is a diagonal unitary matrix (C=(D/2)). A fte r th is  
transfo rm ation  the action becomes:
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S=(1/2)aD"1Z [X(n)AM-X(n+|i)+X(n+n>A^X(n)]. (A6)
n, [j.

One possible choice for T(n) is

t\a
t° (n) = ri r2 r3 3r4 (A7)

w hich  g ives

V V  \-1
(A 8)

From  the  above equa tions we observe  tha t A (n) obeys the 

c o n s tra in t:

i.e., its paralle l transport around a plaquette is -1.

C onverse ly , if we have A ^(n ) m atrices which obey (A9) we can

recover the form of the action (A1) from the action in term s of the 
X fie lds. So all the different choices for T(n) are equivalent.

W e now present the construc tion  of the d iffe ren t quark flavors 

fie lds in term s of the X fie lds !8 8 !-

W e w rite

(f = flavo r index, a = sp inor index) and we work exp lic itly  in four 
d im ensions with

A P = - (A9)

(A 10)
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Labelling tl>e sites of the hypercube as fo llows:

(tj labe ls the 16 corners o f the hypercube)
77n ( - 1)

(0, 0, 0, 0) 1 + 1
(1, 1, 1, 1) 2 + 1
0 . 1, 0, 0) 3 + 1
(0, 0, 1, 1) 4 + 1
(0, 1, 1, 0) 5 + 1
(1. 0, 0, 1) 6 + 1
(1. 0, 1, 0) 7 + 1
(0, 1, 0, 1) 8 + 1
0 . 0, 0, 0) 9 - 1
(0, 1, 1, 1) 10 - 1
(0, 1, 0, 0) 11 - 1
(1. 0, 1, 1) 12 - 1
(0, 0, 1, 0) 13 - 1

(1. 1, 0, 1) 14 - 1
(1 . 1, 1, 0) 15 - 1
(0, 0, 0, 1) 16 -1

and choosing as r  m atrices representation

r  =
1

0 0 0 -1 0 0 0 i

0 0 -1 0
, r  =

0 0 -i 0

0 1 0 0 2 0 -i 0 0

1 0 0 0. i 0 0 0

r 3=

0 0 -1 o ' *0 0 i o'

0 0 0 1
, r  =

0 0 0 i

1 0 0 0 4 i 0 0 0

0 -1 0 0. .0 i 0 0.

we get
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4'1 = 1/8

- I X ■IX

X -  IX„
7 5

IX +X, j 
15 14

•x« +X
2 1

-IX -X 
6 8

+IX -X 
16 13

-X. •fix +X -fix „  
11 10  12

¥  =  1/8 
2 IX

' 12

13

-|X 5

+ix ,

+X
10

+ix
15

■IX

+IX

-IX

14

+x

-IX 11

-IX
1 6

¥  =  1/8

13
-IX

15

-ix
11

- ix ,  

-ix .

+X
14

+X

■IX

+IX
1 6

+IX
10 12  

-fix +x_

+x

¥  =  1/8
13

-IX 11

■IX
15

-ix
5

+ix

+x
10

14

+ix i

-ix

-ix
1 2

+IX
1 6

-X

+x

where the indices 1, 2, 3, 4 for the w  refer to the 4 groups of the 4 
degenera te  flavors.
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In teracting  Case

Here, we have:

q fa = (1 /g  )£ nr n,a U n(y )X n (y) (A 11 )

where

U n(y)=[U l(2y)]n1[U2(2y+n1)]n2U3[2yfri2)]n3

U 4[2y+n1+n2+n3]n4 .

For example, U (0,0,0,0) =1,

11(1,1,1,1) = U(1,1) U(9,2) U(3,3) U (15,4) etc. and the construction 
of the d iffe ren t quark flavors fo llow s the same pattern as in the 
free fie ld  case.

92



Appendix B

The Lanczos Algorithm

To find the eigenvalues of the ferm ion matrix on the lattice we use
[3 9 ]

th e  L a n czo s  A lg o r ith m 1 \w h ic h  we d iscuss  w itho u t g iv ing  
d e ta ils .

W e requ ire  a s im ila rity  trans fo rm a tion  to produce a trid iagona l 
sym m etric  (real) matrix T from a general Herm itian matrix H, i.e.,

X "1 HX = T  with

a, P. 0 0 .

T=

Write X as a series of orthonormal column vectors:

X = (x-|, X2 , X3  )

the Lanczos equations are given by:

HX-) = a-|Xi +P1X 2 (B1a)

Hxi = Pi-1xi-1+aixi+Pixi+1 (B1b)

Using the Lanczos equations recursive ly, we ca lcu la te  all the a’s, 
b's and x's starting ,by choosing the x i to be a unit vector.



Appendix C

The eigenvalue problem for specific configurations

Here we deal with the calculation of the e igenvalues of the Dirac
o p e ra to r , u s in g , as b a ckg ro u n d  gauge  fie ld , an e x p lic it
co n fig u ra tio n  w ith  P=1/2(P  deno tes the to p o lo g ica l charge) 
Ins tead  of us ing the c o n fig u ra tio n (fo r P=1/2) of (4 .2 .1 ) ,we
cons truc t a gauge equ iva len t con figu ra tion  which is d iffe ren t
from zero at only two directions.

It is easy to show that the gauge field

A|x = (0 , A 2 , 0, A 4 ) w here  A2 = 2 jtx1 /a i &2< A4 = 2rcx3 /a i a2

(C1)

sa tis fies (2.2.1) .
In th is gauge, the transition functions are :

i j iX p /p -  '7tx4 /a o
Q 1 (x) = e 2 , n 2 (x ) = 1 , i2 g (x ) = e 2 , n4 = 1

(C2)

W e now proceed to find the eigenvalues of iD.
Since

D2+(1 Dv] =D2+(1/4)(-2 ia tiV)[D ^ ,D v] =

D 2 - ( i /2 )< /v F ^ v = D2 -(2 io 12F 12), ° 12= 2 ia 3 (C3)

the eigenvalue equation becomes

02vp__^2vj/ _  ̂[ ( 9 - |  -hiA-j )^-t-(02+ iA2)^+(33+ iA3)^ +

(94+ iA 4 )2 +  4 a 3 F-| 2] ' t '  =-X2 'F , (C4)

where 4/ = 4/(x-j,X2,X3,X4).

Using the gauge field in (C1) we notice that (C4) has no explicit 
dependence on x2 , x4 and therefore we write
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¥ (X 1 ,x2 ,x3 ,X 4 ) = e l (pX 2 +k X 4 )0 ( x 1 ,x3 ) (C5)

This reduces (C4) to

[(32 0 /3 x 1 2 )+ (32 0 /3 x 3 2 )+ (-p 2 -k 2 -2 A 2 P -2 A 4 k -A 2 2 = - 

A 2 4 + 4 o 3 F 1 2 + ^ 2 ]<I>(x-| ,x3 ) = 0 (C 6 )

S ince the cho ice  of P = 1 / 2  co rresponds to r i ^  ^   ̂^ 3 4  = 1>we

choose the boundary conditions for the 4* field to correspond to a 
g loba l co lo r tw is t,i.e .,

\Tl
' f ' ( x i , x 2 + a 2 ,X3 ,x4 ) = e ^ ( x i  ,x 2 ,x 3 ,x4 ), (C7)

ijc
4 / (x 1 ,X2 ,x 3 ,X4 + a 4 ) = e vF (x 1 ,x2 ,x 3 ,x4 ) (C 8 )

=*> pa 3  = (2 n+ 1 )7i, ka4  = (2 m + 1 )7r, m ,neZ. (C9)

If A = (27i/a1 3 2 ), =>

(32 0 /3x-| 2 )+ (5 2 0 /3 x 3 2 )+ (-p 2 -k 2 -2Ax-j p -2 A x 3 k -A 2 x-| 2 - A 2 x 3 2  + 

4 a 3A + A,2 ]0 (x -j ,x3 ) = 0 (0 1 0 )

=> (32 0 /3 x i 2 ) + [-A 2 (x-| 2 + (p /A ) 2 +2x-| p /A )+ 4 a 3 A+ A2 ] 0  

= - 0 2 O /ax 3 2 )+ [A 2 (x 3 2 + (k /A )2 + 2 x 3 k/A)]<l> (C11)

If C>(xi ,x3 ) = X (x 1 )Z (x3 ), then we get:

(X"/X)+{-A 2 (X i + p /A )2 + 4 a 3 A+X 2 }= -(Z '7 Z + A 2 (x 3 + k /A ) 2 3 -g 2 .

The above equations are the equations fo r a sh ifted  harm onic 
oscilla to r with frequency co = A = k and energy:
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(X2+H2 +4a A )=(n ’+1/2)k (C12a)

-H2 = (m '+1/2)k (C12b)

X2 = (n '+1 /2 )k+ (m '+ 1 /2 )k+  4A , (C13)
n',m' e Z

The form al part of the calculation of the eigenvalues of D is now 
fin ishe d  and it is tim e to com pare (C13) w ith our num erical 
results.In the ca lcu la tion we used boundary conditions for the 4* - 
fie ld  w hich did not correspond to a local tw is t.T h is  renders the 
fe rm ion  fie ld  m u lti-va lued and com paring our num erica l results, 
using the bondary conditions (C7),(C8), w ith the ones for co lor- 
flavor o r only a co lor tw ist ,we notice that in the latter cases the 
sm all e igenva lues are sm aller than the first small e igenvalues of 
the firs t case.
A lso the num ericar result for the case we set only a global color 

tw ist on the fie ld does not agree with what we expect from 
(C13).

Now we present the same problem in 2 dimensions.
Using the configuration:

Ai=(7c/2)(x2/a-j a2>, A2=-(7c/2)(xi/a-j a2). (C14)

i.e., tw ist t11 2 =1 at the 1-2 leve1, anci the e*9enva,ue equation is 

read:

[(0 ! 2+922 )-A 2 (x 1 2 + x22 )+2A+X2 }V (x 1 ,x 2 )=0, (C15)

A=— 2—

Using polar coordinates,

V 2 = (d 2 /d r2 )+ (1/r)(d /dr) =>
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(d 2 R /d f2 ) + (1 /r)(dR /dr)-A2 r2 +X2 + 2 A )R (r)= 0 . (C16)

A fte r tria l we use:

R (r )= ^ e P ^ u (^ )  => 5 u "+ (K )u '+ { -1 /2  +(X2 + 2A )/4A )}u (^)= 0

(C17)
Th is  is a con fluen t hypergeom etric  equation and fo r the series
so lu tion  to te rm inate  we require:

(-1 /2)+(X2 + 2 A )/4 A )e  Z =>

(X2/4A) = n => X2 = (2nn/a i a2 ), neZ  (C18)

If we define the topological charge in D=2 as:

Q = (1/27t)Jd2xF-|2 then

Q = (1/27i)a'j a2?t/a-| ^2 (019)
In [40 ] transition functions for Q = 1 were used (and periodicity of 
the lattice was preserved i.e. Q = 1) ,and it was found that for the

2
eigenvalues of the Dirac operator X -  4n7i/a-ja2-



Conclusions

As in the  cases of p e riod ic  boundary co n d itio n s  and the 
in ve s tig a tio n  fo r ins ta n to ns  on the la ttice , the re  are s trong 
ind ica tions tha t we should be able to find topo log ica l ob jects of 
non-in teger topolog ical charge on the lattice. In C hapter 3 it was 
show n tha t num erica l resu lts  provide s trong ev idence  fo r the 
existence of ob jects w ith non-in teger charge and the ir life tim e is 
rem arkably longer than that of the instantons. Cooling from a cold 
s ta rt we w ere  ab le to have exact "tw is t"  ob je c ts  and fo r 
th e rm a liz e d  c o n fig u ra tio n s  th e re  w as a lw ays  at lea s t one 
instanton around..

In all the cases we therm alized a "tw isted" configuration, the time 
needed to reach the equilibrium was bigger than that for a periodic 
configuration. This is justified due to the fact that, under TBC, we 
a c tu a lly  s im u la te  a b igge r la ttice  from  the la ttice  we had 
orig inally. C Michael [41] had also also made this observation .

In chapter 4 we see that despite the fact that continu ity  is lost on 
the lattice, there are remnants of the index theorem  on the lattice. 
O f course, the d ifficu lties  of putting the ferm ions on the lattice 
(the spread of the flavors around the corners of the hypercube for 
the K-S fe rm ions and the 15 "unw anted" flavors fo r the W ilson 
case) obscure the full evidence for the index theorem  on the 
la ttice .T he  W ilson ferm ion action v io la tes the ch ira l sym m etry, 
hence zero m odes of the eigenvalue equation M vf' = ?ivF,M is the 
fe rm ion  m a trix ,a re  not e igenvectors of ch ira lity ,b u t approx im ate  
eigenvectors,i.e . T5VF ~ ± VF.

Another notable point regards our lattice. Since our lattice is not 
a torus since we do not identify the gauge field at sites x, x + Nx 
(Nx = lattice size in the x-direction) , we should actually find from 
a pure m athem atica l point of view  the va lues of the constants 
w hich appear in 4.1.4 (in 4.1.4 there is no the Eu ler-Poincare 
num ber w hich genera lly  ,for an a rb itra ry  m an ifo ld , is d iffe ren t 
from zero and equals to 2 for a topological sphere). This is also 
ano the r possib le  exp lanation for the d iscrepancy betw een the 
form ula  (4.3.1) and our numerical results.

In th is  thesis we dealt with the application of the TBC regarding
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only the 'purfe matematical part' of the 'tw ist'. We believe that we 
can extend th is work to the physical applications of the TBC.

There are some papers which have dealt with this, fo r example, in

the ana lys is  considers the e lim ina tion  of the fin ite  size 
effects on the lattice using the TBC.

It cou ld be interesting to exam ine the dependence of the various 
therm odynam ical quantities (free energy etc.) on the TBC. 
G enera lis ing  the so lutions of [20] ,to non -abelian ones ,it should 
provide a way to calculate the energy of the magnetic fluxes.Using

th e n  d u a lity  a r g u m e n t s ! 1 3] w e j n p rinc ip le , cou ld  be able to 
com pute the energy of an electric flux tube.

A lso , s ince  from  (1.10.1) we see tha t the ch ira l sym m etry  is 
connected to the density of the zero modes, we consider that this 
cou ld  give a way to study the connection between topo logy and 
ch ira l sym m etry b r e a k i n g [ 4 3 ] .
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