

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Parallel Algorithms for the Solution of

the Schrodinger Equation

b y

Xu Huang

A Thes is Submit ted in Fu lf i lm ent o f the R equ i rem en ts

for the Degree of Maste r o f Science

in the Depar tment of C om put ing Science

ill the Univers ity o f G lasgow

M ay 1989

ProQuest Number: 10999245

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 10999245

Published by ProQuest LLC(2018). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

ACKNOWLEDGEMENTS

I am greatly indebted to my superv isor P ro fesso r A. C. All ison

for sugges ting (his interest ing subject , for his co n t inued ass is tance,

g u id a n ce and interest .

M any thanks must undoubted ly go to P ro fesso r H.Y. W ong for

his gu idance and ass is tance in m any ways th ro u g h o u t the whole

per iod . My thanks are also due to the High E duca t io n B ureau of

G u a n g d o n g Prov ince and Shantou U n ive rs i ty for g iv ing m e the

opportun i ty to study this course and financia l support .

F ina l ly I would like to thank m y family and all m y fr iends for

the i r he lp and en co u rag em en t .

A b s tr a c t

Many o f t h e t r a d i t i o n a l numerical algorithms do not map easily

onto the arch i l e c t u r e o f parallel com pute rs that have em erged

recently. For the economic use of these expensive machines and to

re d u c e the total co m p u t in g t ime, it is n e ce s sa ry to deve lop

eff ic ient parallel algorithms.

The purpose of the thesis is to d e v e lo p severa l para l le l

a lgorithms for the numerical solution of the Schrodinger equation

which arises in many branches of a tomic and molecular physics.

Common models of systems which are of interest may represent

s tab le c o n f ig u ra t io n s o f two p a r t i c le s , the b o u n d sta te or

e igenva lue problem. Alternate ly one may cons ider e ither s ing le

c h a n n e l or m u l t i - ch a n n e l s ca t te r in g . All th ree m a th e m a t i c a l

models will be investigated in this work.

Emphasis is placed on parallel algor ithms for M IM D machines.

All the a lgo r i thm s have been im p le m e n te d and tes ted on a

tr anspu ter ne twork which is a M IMD m ach ine w i thou t shared

m e m o r y .

Existing numerical methods such as those ascr ibed to Numerov

and De Vogelaere have been investigated and parallel versions of

them have been developed. Two exponentia lly fi t ted versions of

the De Vogelaere algori thm have been deve loped and they are

found to be more e f f ic ien t than the norm al De V oge lae re

a lg o r i t h m .

Table of Contents

Chapter 1: Introduction

1.1 In trod uction .. 1

1.2 Parallel computer models and performance measures.............................. 2

1.3 Transputer array.. 4

1.4 Applications arising from the Schrodinger equation................................ 4

1.5 C o n te n ts .. 7

Chapter 2: Numerical Methods for Schrodinger Equation

2.1 Introduction .. 10

2.2 Linear multi-step method for second order differential equation.............. 11

2.3 Numerov m ethod.. 12

2.3.1 D e r iv a t io n .. 12

2.3 .2 Local and global error.. 13

2.3 .3 S ta b i l i ty .. 16

2.4 Raptis-A llison m ethod.. 17

2.5 Numerov-like scheme: Futher investigation of Raptis-Allison method 19

2 .6 De Vogelaere m ethod.. 28

2.6.1 D e r iv a t io n .. 28

2.6.2 Local and global error.. 31

2.6.3 St abi l i t y .. 33

2.7 Simple modification of De Vogelaere's algorithm.................................... 35

2.8 Exponential-fitting De Vogelaere method.. 36

Chapter 3: Transputer Network

3.1 Transputer and O ccam .. 40

3.2 An actual network configuration.. 43

3.3 Parallel algorithms for transputer networks.. 45

Chapter 4: Paral l e l A l g o r i t h m s for Eigenvalue Problem

4.1 E i g e n v a l u e p r o b l e m .. 50

4 . 2 N u m e r i c a l a n a l y s i s .. 50

4.3 M atching m ethods.. 52

4.4 Method 1: four processes method.. 55

4.5 Method 2: 4x4 matrix formalism.. 56

4.6 Method 3: 2x2 matrix formulism.. 59

4.7 Method 4: secant method with 2x2 matrix formulism............................... 63

4.8 M odel prob lem ... 66

4.9 Im p lem en tat ion ... 67

Chapter 5: Parallel A lgorithm s for Phase Shift Problem

5.1 Phase shift problem ... 78

5.2 Parallel a lgorithm .. 80

5.3 Im p lem en tat ion ... 85

Chapter 6: Parallel Algorithms for Solving Coupled Differential

Equations

6.1 Coupled......equations .. 90

6.2 Numerical Integration M ethods.. 92

6.3 Parallel a lgorithm .. 96

6.4 Im p lem en tat ion .. 103

C h a p te r 7: C o n c lu s io n .. 109

R e f e r e n c e s .. 112

Chapter 1

I n tr o d u c t io n

1.1 Introduction

The past few years have seen a tremendous growth in interest in

p a ra lle l a rch itec tu res and para lle l p rocess ing . V arious new

m achine designs, p ro to types and languages for para lle l and

d istributed com puting have been proposed and some parallel

systems have been made com m ercially available. Examples of

parallel computers are the CRAY-XMP, Amdahl's VP series, BBN

A d v an ced C o m p u te rs ' B u t te r f ly P a ra l le l P ro c e sso r , CD C's

CYBERPLUS, Goodyear Aerospace Corporation's MPP and ASPRO,

N C U BE's NCUBE parallel P rocessing System s, Sension's TES

(Jesshope, 1987). This achievement is largely due to the advances

in VLSI technology.

The developm ent of parallel algorithm s, however, seems to

have lagged behind the rapidly growth of parallel computers. For

m any problem s, the availab le a lgorithm s are sequentia l and,

certainly, can not take the advantage of the parallel machines. In

the area of numerical computation, much effort has been applied

to the development of parallel algorithms for various applications.

For example, many parallel algorithms in numerical linear algebra

have been developed (Ahmed, 1981; Schendel, 1984). However,

there is still a long way to go for many applications. Problems

arising from the radial Schrodinger equations are the examples.

For these problems, few parallel algorithm have been seen in the

literature. In this thesis, we will investigate these problems and

manage to develop corresponding parallel algorithms.

1

1.2 Parallel computer models and Performance measures

Since parallelism is possible in three main units of a computer:

control unit, processor and store, parallel com puters can be

designed in various forms, depending on the application. Flynn

in troduced a classification based on how the m achine relates

instructions to the data being processed. He defined instruction

stream as a sequence of instructions executed by a processor and

a data stream as a sequence of data on which the processor

operates (Flynn, 1972). According to whether the instruction or

data stream are simple or m ultiple, he proposed four broad

classifications of machine organizations:

SISD: Single Instruction stream, Single Data stream;

SIMD: Single Instruction stream, Multiple Data stream;

MISD: Multiple Instruction stream, Single Data stream;

MIMD: Multiple Instruction stream, Multiple Data stream.

SISD machine is the conventional von Neumann model and the

MISD category is empty (there are not this kind of machines

yet). Only the SIMD and MIMD com puters are considered as

parallel machines.

The SIMD category consists typically of array processors. All

the processors interpret the same instructions and execute them

on different data. These processors are under the control of a

central control unit which provides instructions and operands for

them. A m achine of this kind can have a large num ber of

processors. Early examples include the ICL/DA P (Distributed

A rray Processors) consisting of 4096 processors , the 16384

processor Goodyear MPP (Massively Parallel Processor). The DAP

2

has recently been reborn as a 1024 processor array design by

A M T (A ssocia tion M em ory T echnology). To achieve higher

performance, algorithms for SIMD machines are best formulated

in terms of vector and matrix operations.

MIMD machines consist of more than one processor, each

executing a separate instruction stream. There are two kinds of

these m achines, depending on whether or not processors share

their memory. On the shared memory model, all processors share

a global memory accessed by a processor-memory interconnection

netw ork while the alternative is actually a netw ork with a

number of processors, each with its own local memory and each

with the ability to com m unicate with other processors in the

network. Networks of transputers fit this latter model and it is

on those that we will concentrate since an actual hardware

configuration is available.

To achieve high perform ance, the algorithm s for paralle l

computers should have parallel structures. It is of the utmost

importance that the algorithm can assess the speed gain expected

from the operation of p processors in parallel. For this purpose

the speed-up ratio S is introduced. It is defined as

S(o n A) = ^ m e r e Qu i r e d by the s e r ia l a lg o r i th m
T (p , n, A)

where T(p, n, A) is the time required by parallel algorithm A to

com pute a problem of size n on a paralle l m achine with p

p ro cesso rs .

Another useful m easure of parallel algorithm perform ance is

efficiency E(p, n, A) defined by

3

E(P) n , A)= T ^P’ A >
P

1.3 Transputer array

The transputer array is a nonshared m em ory MIMD machine

which is built around an innovative chip called the transputer,

designed by INMOS Ltd. The transputer consists of a CPU,

communication channels and some memory on a single chip. The

com m unication channels, or links, make it possible to build

f le x ib le m u lt i t ran sp u te r ne tw orks by co nnec ting transpu te rs

through links(Hey, 1988).

1.4 Applications arising from the Schrodinger equation

Differential equations play an important role in scientific research

and engineering. In many branches of atomic, m olecular and

nuclear physics, we often encounter the Schrodinger equation.

Usually, there are no analytical solutions for these equations and

solution must be obtained numerically.

The one-dimensional radial form of the Schrodinger equation

may be written as

y"(r) + f(r)y(r) = 0 (1 . 1)

w h e r e

f = E - l(l+ l)/r2 - V(r) and the potential function V(r) vanishes as r

in c reases .

Boundard conditions are imposed over the semiinfinite range

[0, 03), the solution vanishing at the origin, i.e. y(0)=0. The

4

b eh av io u r fo r large values of r is d ec ided by physica l

considerations. Here are two problems arising from eq .(l . l) :

1) In the case of E<0, the solution will tend to an exponential

function. It is only for some special values of E that the solutions

display decreasing exponential behaviour and vanish for large

values of r. These particular values of E determine the bound

eigensta tes of the system. The boundary conditions for the

eigenvalue problem (or bound state problem) are

y(r) = 0 at r= 0 ,

y (r) - » 0 at r ^ ° ° (1 -2)

2) In the case of E>0, the solution of the equation will increase

rapidly and then oscillate exhibiting sinusoidal behaviour. The

solu tion is param eterised by the phase shift. The boundary

conditions for the problem are thus

y(r) = 0 at r= 0 ,

y (r)—»Asin(cor-l/27t+8) as r—>°° (1 .3)

where co=Ve and 8 is the phase shift required (Allison, 1970;

Raptis, 1977; Raptis and Allison 1978).

3) A nother application of the Schrodinger equation is in

molecular scattering where the model is represented by sets of N

coupled differential equations. The coupled differential equations

have the form :

Y " (r)+F(r) Y (r)=0 (1 .4)

where F, Y are NxN matrices and the elements in F are given by

5

F ij=5ij [ki2-li(li- l) /r2] as (1.5)

The boundary conditions are

yij(r) = 0 at r= 0

y ij (r) ^ k irjii(k ir)5 ij + (ki/kj)1/2R ijkirn ii(k ir) at r->°°, (1.6)

where ji(x) and ni(x) are the spherical Bessel and Neumann func

tions, respectively . The R m atrix contains all the necessary

i n f o r m a t io n a b o u t th e p h y s ic a l sy s te m (A r th u r s and

Dalgarno,1960; Allison, 1970).

For the above three problem s, there are m any num erical

methods available. Allison(1988) has given an up-to-date review

of the num erical methods that have been developed over the

years to address these problems. The usual approach is direct step

by step numerical integration and two of the mostly widely used

methods are Numerov's method (Allison, 1970) and De Vogelaere's

method (De Vogelaere, 1955; Allison, 1970; Coleman, 1980). Much

effort has been made in enhancing the effic iency of these

algorithms. The accuracy of some numerical formulae have been

s ig n i f i c a n t l y im p ro v e d by u s in g e x p o n e n t i a l f i t t in g

techniques(Raptis and Allison, 1978; Ixru and Rizea, 1980). For

coupled equations, the s tandard m ethods generalise to matrix

form and, in principle, matrix inversion is required. Efficient

algorithms without matrix inversion have been developed(Lester,

1968; Allison, 1970; Baylis and Peel, 1982).

All the algorithm s available are based on some recurrence

formulae and the integrations are carried out step by step. They

are clearly sequential algorithms which make poor use of parallel

6

and vector computers. Though some of them are written in terms

of matrices where parallel algorithms of linear algebra could be

applied, the parallelism of most of them has to be exploited by

users in the light of the specific computer model they use. For the

phase shift problem, an initial investigation has been studied by

Ishibashi et al.(1989), who suggested the use of a matrix

formalism on vector computers and high performance has been

ach ieved . Ish ib ash i 's approach is based on a C auchy-type

propagation matrix. In this thesis, parallel algorithms for single

equation are developed by using matrix formalism but Numerov-

like methods are used.

1.5 Contents

Since the N um erov and the De V ogelaere a lgorithm s are

frequently used methods for direct integration of these equations,

we will give more details about the two algorithms in Chapter 2.

These will include their derivations, truncation errors, global

errors and stabilities. The Exponential-fitting Numerov algorithm

proposed by Raptis and Allison(1978) is studied. The exponential-

fitting technique is generalized to both the Numerov and the De

Vogelaere algorithms, resulting in various new formulae which are

more efficient than the original versions. These new formulae can

be applied to parallel com putation in a similar fashion to the

original methods.

Chapter 3 contains a brief introduction to our Transputer

network, which is considered as one kind of nonshared memory

M IM D m achine, and to Occam, the native language for the

transputer. A actual model is illustrated and is used to test all the

parallel algorithms in latter chapters. Some simple examples are

7

given to describe w hat para lle l a lgorithm s for transputer

networks look like.

In Chapter 4, parallel algorithms for the eigenvalue problem

arising from the Schrodinger equation are investigated. For this

problem, one technique is 'matching in the middle'. We integrate

both forwards and backwards and then the two solutions are

matched at one or two points which are, normally, close to the

middle of the integration range. The eigenvalues are calculated by

solving the matching equations. In this chapter, we present four

parallel algorithms which are based on the 'matching technique'

for the problem (Fox, 1968). Three of them are based on the

Newton process for the solution of the matching equations while

the other is based on the secant method. One of them is obtained

d ire c t ly from the co n v en tio n a l seq u en tia l a lgo rithm . High

perform ance can be achieved if only four processors are

available and the matching points are properly chosen. The other

three are developed by using 4x4 or 2x2 matrix formalisms and

they can be run on a parallel m achine with any num ber of

processors. Numerov method is the difference formula for these

algorithms. All the variants of Numerov method can be similarly

used and we take the Exponential-Fitting Numerov method as an

ex am p le .

Phase shift problems are dealt with in Chapter 5. K. Ishibashi

et al (1989) have described an algorithm designed for a vector

computer. The algorithm is based on a Cauchy-type propagation

matrix(Gordon, 1971). In this chapter, we generalize the matrix

form alism technique to Numerov method and change of the

8

stepsize is implemented. Emphasis is placed on the treatment of

the stepsizes which are arranged in advance.

The parallel algorithms for coupled equations are presented in

Chapter 6 . The technique used is to treat the solution of each

equation as an independent process which com m unicates with

other processes only when a coupling term is encountered. Since

communication depends on the topology of the network, two kinds

of structures, the pipeline structure and the loop structure, are

under investiga tion . The I te ra tive N um erov m ethod and De

Vogelaere method show their superiority since they are relatively

independent of the coupling.

Chapter 7 contains the conclusion.

9

Chapter 2

Numerical methods for Schrodinger equation

2.1 Introduction

The radial form of the Schrodinger equation can be written

y"=f(r)y (2 . 1)

where f(r)= - [E - l (l+ l) / r 2 -V (r)] and V(r) vanishes as r increases.

At the present time, there are several general direct integration

methods available for solving initial value problems of the form

of eq.(2.1). One approach uses linear multi-step methods such as

the N um erov a lgo r ithm (A llison , 1970), w hich is based on

polynomial approximation. Due to the oscillatory (or decreasing

exponen tia l) behaviours of the so lu tion , some authors have

suggested the use of special function approximation and many

effic ien t algorithm s, which exactly in tegra te a special set of

functions, have been developed in the past few years(Isaru &

Rizea, 1980; Raptis & Cash, 1986). Such methods are generally

classified under the heading "exponential fitted".

One problem of most linear m ulti-step methods is that they

require a matrix inversion at each step in solving coupled

equations. Though it can be tack led by e ff ic ien t ite ra tive

mechanisms(Allison, 1970), the additional computation would still

take a significant proportion of total time consumption. Some

hybrid m ethods, such as De V ogelaere algorithm , have more

advantages in handling coupled equation and, therefore, are still

widely used in multi-channel problem(De Vogelaere, 1954; Lester,

1968; Allison, 1970; Coleman and Mohamed, 1978).

10

In this chapter, we investigate some of the direct integration

m ethods and assess their suitab ility for para lle l com putation.

Since it is not easy to exploit the paralle lism of com plicated

m ethods, we only choose the simple and effic ien t methods:

Num erov method, De V ogelaere m ethod and their exponential

fitted versions.

2.2 L in e ar m u l t i - s t e p m eth o d for seco n d order

different ia l equation

Following Lambert(Lam bert, 1973), for the initial-value problem

of second-order differential equation

y ,(r)=f(r,y), r e [a , b] (2 .2)

the linear multi-step formula may be written as

k k
£ &iyn+i = h2£ Pi f(rn+i, yn+i)- (2.3)

i=0 i=0

where ak= l and laol + Ipol >0 .

The associated operator of (2.3) is

k k
L[y(r), h] = £ <Xiy(r+ih) - h2£ pi y"(r+ih). (2 .4)

i=0 i=0

where y(r) is an arbitrary function, continuously differentiable on

the interval [a, b]. If we assume that y(r) is m times continuously

differentiable, then, on Taylor expanding about the point r, we

o b ta in

11

m-1

L[y(r), h] = 2 C .h V ^ r) + Ctnhmy (m)(r+k0h) (2 .5)
i=0

where 0 < 0 <1

a n d

Co= a 0 + otj + . . . + a k

C i= a i + 2 a 2 + . . . + k a k (2 .6)

C2= (a i + 2 2a 2 + . . . + k2a k) -((3o + Pi + . . . + pk)

C i= “t t (cx i + 2 ^ 2 + . . . + k*ak)
i !

- + 2 i ' 2« 2 + • • • + k‘’2ak) for i> 2

The linear multi-step method is said to be of order p if, in(2.5),

Co=Ci=. . .=Cp+i=0, Cp+2 ^ 0 .

or equivalently

L [r‘, h] = 0, i=l,2, . . .p+1, L(rp+2) * 0 (2 .7)

C p + 2 is defined as the error constant ,and Cp+2 h p y lp *(rn) the

principal local truncation error at rn. The truncation error can

also be represented as

L[y(r„), h] = Cp+2hp+2y (I>+2)(rn+ k 0 h) (2 .8)

where 0 < 0 < 1 .

2.3 T h e N u m e ro v m eth o d

2 .3 .1 D e r iv a t io n

Consider the two-step method

12

yn+i + a i y n + aoyn-i = h2(p2yn+i + Piyil+ PoyS-i) (2 .9)

Since there are five unknown coefficients in the equation, they

can be chosen so that they the first five coefficients given in (2.7)

are exact to zero.

Q = 0 i = 0, 1 ,2 , 3, 4

Solving this system we obtain

a 0= l, cci= 2

0 2 = Po= Y 2 ’ P i= Y §

The formula (2.9) take the form

yn+1 + 2 yn + y n-i =Y j<yn+i + 1 0 yn+ yS-i) (2 . 1 0)

It is also be found that

C5=0

C‘= - 2 l 0 (2 ' “ >

and the local truncation error reaches the order of six. The two-

step method (2.10) is known as 'Numerov method' .

2.3.2 L ocal a n d global e r r o r

According to (2.5), (2.11) , the truncation error of eq.(2.10) is

UyCrn.O, h] = C6 h6 y <6)(r„.1+ 2eh)

= ' 2 4 0 h6y<6>(r"-1+2eh) (2 ’12)

where 0 < 0 <1 .

13

When a differential equation is solved on the interval [a, b] the

global error is the difference between the exact solution and the

calculated value at the end point r=b. To investigate the global

error of the Numerov method, we choose a stepsize h=(b-a)/N and

establish an upper bound valid for all sufficiently small values of

h. To make thing simple, we just consider the equation of (2.1)

w h e r e

fn=f(rn) , rn=a + nh.

Suppose y(rn) is the exact solution of the initial value problem, the

global error after n steps is

en=y(rn) - yn

which satisfy the recurrence relations

y"=f(r)y

In that case, the Numerov formula is

fn+lYn+l + 1 0 f n y n + fn - iyn - l) (2 .13)

0 " ^ 2 ^ 2fn+i)en+i - (2 + “-^h 2fn)en + (1 - -“ h 2fn-i)en-i = L[y(rn_i),h]

(2 .14)

By substituting

£ n - (l - ^ 2fn)e n *

an=

14

5n= L[y(rn-i), h]

Eq.(2.14) becomes

en+ i= (2+ anh)en - £n-i + $ n (2 .1 5)

Summing out the fitst n terms gives

n n

£ £i+i = £ [(2+aih2)Ei - Bi-i +5i]
i=l i=l

which leads to the relation

n n

£n+i=£n+ h2X aiEi + X 8i + ei- eo
i=l i=l

(2 .16)

Let D, A the upper bounds of 8 i, ai, respetively, and

ri^m axfleil, I82I,. . .Jsil}

T h e n

len+il ^ lenl+h2nArin +nD +lei-6ol

Notice that r|n+1=max{rin , en+i)

so

Tln-t-l — l̂n"*"̂ 2nArln +nD +'ei-B0l

= (l+ h 2nA)r|n+(nD -4-Ibi-boO

The sulution of this recurrence relation is

<nD -4-Ibi-bqI)

Now

15

(l + h 2n A) " '1= (l + h (r n-r0)A)n‘1S e A(r“‘r0)2 ,

we obtain

T)n < e A('rn"r°)Z r | j+ 1/A(eA('rn_r° ^ - l) { h ‘2D + h '1lei-eol/(rn- ro)}

(2 .17)

and, at the final point,

leNl ^ %

< (cileil-i-C2h "1 lei-eol }+c3h '2D (2 .18)

w h e r e

C l = e A(b_a)2 , c3= (c i - 1)/A , c 2= c 3/ (b - a)

If M is the upper bound of y(6)(r),then, in the absence of rounding

error D can be chosen as

D- 5 I o h‘ M

a n d

leNl = 0 (h 4)

We have shown that the global error in the Numerov methods is

0 (h4).

2.3.3 Stability

To investigate the absolute stability of the method we apply it to

the equation

y "=ky.

Then eq(2.10) becomes

y n+i - ayn + y„.i = 0 (2 .19)

where a = 2 +

The characteristic equation of (2.19) is

V - - aX + 1 = 0 (2 .20)

and the method is absolutely stable when neither IX,1 1 nor IX2 I

exceeds unity. Since X iX2 = 1, the condition required is satisfied if

and only if both X \ and X 2 lie on the unit circle and this happens

w h e n

a 2 -4< 0 or 0 < -kh2< 6 .

2.4 Raptis/Allison method

For general second order equation without first order derivative,

the Numerov method is considered as the best two-step method.

H ow ever, for our problem , the so lution of the Schrodinger

equation exhibits sinusoidal behaviour in the case of E>0 or

decreasing exponential behaviour in the case of E<0 when r is

large enough. Therefore, the use of polynomial approximation is

not the natural approach and several techniques based on special

function approximation have been proposed. The pioneer work is

the m ulti-s tep m ethod with exponential fitting developed by

Raptis and Allison(1978).

17

In the m u lti-s tep m ethod w ith e x p o n en tia l f it t in g , the

coefficients may depend on the interval h. The formula becomes
k k
£ a i (h) y n+i = h2E pi(h)f(rn+i, yn+i) (2.21)

i=0 i=0

and the linear operator L is

k k
L[y(r), h] =Z (Xi(h)y(r+ih) - h2Z pi(h)y"(r+ih). (2 .22)

i=0 i=0

where a 2(h)=l .

Raptis and Allison's method is a two-step form ula of (2.21)

which exactly integrates the solution of equation

y"=ky

If k>0, we let the operator L integrate exactly the functions

1, r, r2, r3, e±Mr

where co2=k and then the coefficients are

a 2(h) = a 0(h) = 1, ai(h) = 2

(I - e ^ 2 - w 2 h 2 e tor
p0(h) = p2(h) S h- 6 (2.23)

co2h 2(l - e®1-)

„ co 2 h 2(1 - e 2mr) - 2 (1 - e “ r) 2
P l (h) = -----------------— --------------------------------

co2h 2(l - e wr) 2

In the case of k<0, let the operator L in tegrate exactly the

fu n c t io n s

1 , r, r2, r3, sin(cor), cos(cor)

where co2=-k and then the coefficients are

18

a 2(h)=a0(h)=l, ai(h)=2

Po(h)= p2(h)=
co2h2 -2(l-cos(coh))
2 co2h2(l-cos(coh))

(2 .2 4)

2 -(co2h2 +2)cos(coh)
1 co2h2(l-cos(coh))

The above formulae are affected by servere concellation for small

value of h and can be efficiently computed by their power series

e x p a n s io n

where z2= k h 2

It can also be found that the leading term of the local

truncation error of both cases is given by

2.5 N u m erov - l ik e schem e: F ur ther in v e s t ig a t io n of

Raptis -All ison's method

The basis set chosen by Raptis and Allison(1978) is { 9 i , 9 2 ,1, r, r2,

r 3 } where cpi,cp2 are the linear independent solutions of equation

y"=ky. One may consider that if there exists other basis sets { <pi,

92* 93* 9 4 * 9s> 9 6) suitable for constructing similar methods. The

generalised schemes of Raptis-Allison 's m ethod should have the

p ro p e r t ie s .

a 2(h)= a 0(h)=l, ai(h)=2

1 1 1

(2 .25)

(2 .26)

19

1. Accuracy. For an arbitrary function y, which is sufficiently

differentiable, the local truncation error should be of order h6.

2. The equation y"=ky should be integrated exactly.

3. Independence. The coefficients of the formula are independent

of r.

4. Symmetry. It is desirable that the coefficients ao (h) , a 2 (h) ,

Po(h), p 2 (h) should satisfy ao(h)=<X2 (h), p o (h) = p 2 (h) so that the

fo rm ula can be reduced to the a ttrac tive form obtained by

substituting u = (ao(h) - h2 Po(h)f}y:

Un+i + anu n + un_i = 0 (2 .27)

a o (h) -h 2 |Jo(h)f

Efficient parallel algorithm can be developed from eq.(2.27).

A nother advantage of the symmetry is that there are no odd

order terms in the truncation error. Therefore, if the leading term,

i.e. the sixth-order error term, of truncation error vanishes, the

truncation error will be reduced to an eight-order error term.

Therefore, we choose oco(h)=a2 (h)= l, Po(h)=P 2 (h) and the formula

b eco m es

yn+i + « i(h)y „ + yn-i = h2 (p0 (h)yn+i + P i(h)yS+ Po(h)yn-i)

The three unknown coefficients a i (h) , Po(h), P i(h) may be written

in the form of power series.

ai(h)=ao +a2(kh2)+a4(kh2)2+a6(kh2)3+. . .

p i(h)= b o + b 2(kh2)+b4 (kh2)2+b6 (kh 2)3+. . . (2 .28)

20

Po(h)=co +C2 (kh2)+C4 (kh2)2+C6 (kh2)3+. . .

T h e n

L[y(r), h]= y(r+h)+ai(h)y(r)+ y(r-h)-h2(p oy(r+h)+P i(h)y(r)+ p0y(r-h))

=F0(y)+F2(y)h2+F4(y)h4+F6(y)h6+ . . . (2 .29)

w h e r e

F 2n(y)= ~ \ , y {2n)+ a2ny for n=0 ,(2 n)!

F 2n(y)= 7^ T T y (2n)+ a2ny(2 n)!

'{ — — y(2n)H — y(2n-2)+ + 2c2n- 2 y ^ + b 2 n - 2 y ^ }
1 (2n -2)! (2n-4)! 2n 2y 2n 2y i

= (— -----------—) v (2n)_______ i/(2n-2) . - 2 c 2 n-4v (4)
(2n)! (2n-2)! (2 n -4)T 2! y

-(2C2n-2+b2n-2)y(2)+a2ny for n>0 (2 .30)

The first four operators of F2n(y) are

Fo(y) = (ao + 2)y

F 2(y) = (1 - 2 c0 - b0)y" + a2k y

F 4 (y) = (j j - c0)y (4) - (2c 2 + b2)ky" + a4 k 2y

F 6 (y) = (3 ^ 0 ■ n Co)y(6> - C2 kyW - (2c4 + b4)k2y" + a6 k3y (2 .3 1)

To give a method of 0 (h4), the first three term above must be

zero. i.e.

2 + ao = 0,

21

1 - 2c0 - bo = 0, a2 = 0,

- co = 0 , 2 c2 + b2 = 0 , a4 = 0 ,

So, a0 = 0, b0 = f - , c0 = , a2 = 0, m = 0, 2c2 + b2 = 0 and
O 1 2

Fg(y) = - ~ - y (6) - C2ky(4) - (2 c4 + b4)k 2 yM + a6k 3y (2 .32)

Since we expect that the formula exactly integrates solutions of

the equation y"=ky, we obtain

F s(y)= - —j - h 6(D 2 -kI) {D4+(1 +240c2)kD2+240afik2I) y (2 .34)

Eq.(2.34) provides sufficient information for the derivation of a

new class of methods. There are two free parameters in eq.(2.34).

For given C2 , a6 , there are six linear independent functions

corresponding to the solutions of F6(y)=0. We can prove that there

ex is t un iq u e c o e f f ic ie n ts a i (h), p i (h) , p 2 (h) so that the

co rrespond ing fo rm ula in teg ra tes the six l inear independen t

solutions of F6 (y) = 0 exactly.

Let P2n(^) be the characteristic polynomial of the differential

operator F 2n(y). (n>2)

240 '

j j Y - C2 - (2 c4 +b4)+ a6= 0 (2 .33)

Define the operators D,I by

Dy=y’ , Iy=y

T h e n

2 c 2 _ _ 2C2n-4o,4
(2 n -4)! * ' ‘ 2!

22

-(2C2n-2+b2n-2)^2+a2n

Clearly, the condition that the method can exactly integrates the

solution of F6(y)=0 are that p6 (^) is a factor of P2n(^) (n=4, 5,

6 ,...)- Since there are three free coefficients C4 , (2c6+b6), a g in

p s (X) , we can uniquely determine them by letting the remainder

P 8 (^) / P 6 (M be zero. Similarly, C2 n, (2c2n + b 2 n), a2 n can be

obtained in the same way.

The algorithm is:

1. Choose C2 , a6 .

2. calculate 2 c4+ b 4 by Eq(2.33)

3. For n=3, 4, 5, ..., calculate C2n-2 , (2c2n+b2n), a2n+2 by letting

p 6 (^) be a factor of p 2 n+2 (^) and then ca lcu la te b 2 n -2 from

(2 c 2n-2 + b 2n-2) and c2n-2 -

From the algorithm, we can easily obtain the following existing

methods. The algorithm generates the coefficients in the form of

power series where z=kh2. A REDUCE package is used to yield the

explicit forms of the coefficients(Hearn, 1985).

Raptis-Allison method (1978):

This method is obtained by choosing a6=0, C2=- t t t t -
2 4 0

The leading term of L[y,h] is - —j —h 6(D 2-kI)D 4y.

The basis set is {1, r, r2, r3 , e®1-, e-£or) in which co2 =k. The series

expression of the coefficients a i (h) ,p i (h) ,p 2 (h) are

23

cti(h) = -2

(3o(h) = —— f 1 - —-—z2 + —-— - — 76 +)
12 1 2 0 5 0 4 1 4 4 0 0 ‘

Pi(h) = 4" {5 + “ rz2 — ■—z4 + — i z6 + . . . }
6 1 2 0 5 0 4 1 4 4 0 0 J

where z = kh2.

Ixaru and Rizea's method I (1980):

By choosing a6=0, C2=- —̂ , we obtain this method. The leading
X Z* \J

term of L[y,h] is

1
2 4 Qh 6(D 2 - kI)2D 2y

The basis set is {1, r, ewr, e"“ r, re®1-, re_(Dr). The coeffic ien ts

cc i(h),p i(h),p 2(h) are

a i (h) = - 2

o zs inh (z)-2 cosh (z) + 2

Po(h) z3sinh(z)

= _ L { J . _ L j2 + _ L _ z 4 . 3J z6 . .}
1 2 1 10 1680 3 0 2 4 0 1

Pi(h) - 2 ^co s^ 2^z^"^co s^^z ^"zs n̂ ^^z ̂
z 3sinh(z)

= - { 5+ ——z ̂+ - 2 9 z<v. . }
6 1 10 3 3 6 3 0 2 4 0 ;

Ixaru and Rizea’s method II (1987):

This new method is generated by letting a6 = 2 4 9 "’ ° 2="

The leading term of L[y,h] is

24

L[y,h]= ' 2 4 0 h6<D2-kI)3y

The basis set is { e001-, e '0)r,rea)r, re"™ ,^® 1, r2e -cor.}

oc i (h)= 2 zsin h 2(z)~3 sin h(z)cosM z)~z
3sinh(z)+zcosh(z)

=-2 + — 2 .6 - - J - ^ z 8+ ---- 5---- zio. . .
2 4 0 2 0 1 6 1 1 5 2 0

E..fhl- zco sh (z)-s inh (z)
z2(3sinh(z)+zcosh(z))

= X - { i . - L g 2 + - £ L z4 . . 1 2 1 9 6
1 2 1 2 0 1 6 8 0 3 0 2 4 0 0 ' ' ' J

B (h)= 2 zs n̂ ^ 2^z^+s n̂^^z^cos^^z^~z
1 z 2(3sinh(z)+zcosh(z))

± [5 + 1 * 2 + 1 1 * 4 . J . 8 1 1 . z6)
6 1 2 0 3 3 6 3 0 2 4 0 0 " ‘

G a u ts c h i 's m e th o d 1 (1961):

It is obtained by leting a6=0, C2=- the leading term of L[y,h] is
4 o

1 h 6 (D 2-k I)(D 2 -4kI)D 2y
2 4 0

The basis set is {1, r , e“ r, e_(or, e2cor, e '2cor). and the coefficients

oci(h),p i(h),p2(h) are

a i (h) = - 2

R v _ cosh(2z)-4cosh(z)+3
0 4 z 2(cosh(2z)-cosh(z))

= - L f l _ l z 2 + _ Z — z 4 . 8 0 9 Z6 ,
1 2 4 1 2 0 6 0 4 8 0 "

a /u\ _3cosh(2z)cosh(z)-4cosh(2z)+cosh(z)
1 2 z 2(cosh(2 z)-cosh(z))

25

- L { 5+ 1 ^ 2 - —L-^4 . . .391 6 |
6 1 4 2 4 6 0 4 8 0 ' ' '*

G a u ts c h i ’s m e th o d II:

3 7
To yield this formula, we let a6= — , C2=- | 2 0 * êa^ nS term °f

L[y,h] is

1
2 4 0 h6(D 2-kI)(D 2-4kI)(D 2-9kI)y

The basis set is { ewr, e‘“r, e2cor, e'2(or, e3ojr, e‘3o)r}. the coefficients

a i(h) ,p i(h) ,p 2(h) are

2 ^co sh (3z)cosh (2z)-32cosh (3z)cosh (z)+ 27cosh (2z)cosh(z)
ttl 27cosh (3z)-32cosh (2z)+ 5cosh (z)

= - 2 + -2-z3 - - ^ 4 + . .
2 0 1 2 8 0 0

r (u\- 3cosh(3z)-8cosh (2z)+ 5cosh (z)
0 z 2(27cosh (3z)-32cosh(2z)+ 5cosh (z))

=JL f 1 . 1 ^ 2 + I l i z 4 . 5 3 3 9 9 . ,
12 1 10 2 4 0 1 5 1 2 0 0 "

B (h)~ 2 ^co sk(3 z)cosh (2 z)-8 cosh (3 z)cosh (z)+ 3 cosh (2 z)cosh(z)
1 z 2(27cosh (3z)-32cosh(2z)+ 5cosh (z))

- 1 r 5 , 7 - , , 35 , 5 5 4 4 1
6 1 0 4 8 1 5 1 2 0 0 ‘ ‘

Other schemes can be derived by choose the free parameters c2

and a6 . Here is an example:

Exam ple : a6=0, c2=0:

L[y,hl= - — h6 (D 2-kI)(D 2+kI)D 2y

26

The basis set is {1, r , ewr, e '“ r, sin(cor), cos(cor)} in which co2=lkl.

a i (h) = - 2

Since there are numerous methods, it is essential to determine the

best one, i.e. the one with the sm allest truncation error for

e q u a t io n

where V and its derivatives V', V", V<3), V<4) are significantly

smaller than k. This is equivalent to finding C2, (2 c 4 + b 4), a6 so that

for a given solution y of (2.35), F6 (y) has its smallest value.

L e t

a = 2 4 0 c 2 , b=240(2c4+b4), c= -240a6

th e n

F 6 (y) = - C2k y (4)-(2 c 4+ b 4)k 2y"+ a6k 3y

= - ^ y(6)+aky(4)+bk2y"+ ck3y)

= - - i —{ (a+b+c-l)k3y+(2a+b+3)k2Vy +2(a+3)kV’y’
^ T v

+k(aV2+ aV "+3V 2+7V")y +2(3VV'+2V(3))y'

P o (h) = ^ t 1 - 5 0 4 0

y"=(k+V)y (2 .35)

+(V3+7VV”+V(4)+4V'V')y) (2 .36)

27

i 1 / 2Since lly'll— Ikl llyll, the first three dominant terms for large k are

(a + b + c - l)k 3y, (2a+b+3)k2Vy, 2(a+3)kV’y’

They vanish only when a, b, c satisfy

a+b+c-l=0, 2a+b+3=0, a+3=0.

or a=-3, b=3, c=-l

Therefore, a$= C2=" 'go’» 2 c4 + b 4= ^ and the corresponding

set is { e®r, e 'G)r,re tor, re-®r.r2e®r, r2e'®r.}

In that case, we also have

F6(y) ={V(4)+4V,V,+7V V ,,+V3+4V,,k)}y+2(2V(3) +3VV,)y’

2.6 The De Vogelaere’s Algorithm

2.6.1 Derivation

The Numerov and Numerov-like methods such as Raptis/Allison

are implicit. This causes no problem when they are applied to a

single channel equation of form (2.1). However, when generalize

them to coupled equations, we need to do some additional

com putation for matrix inversion or equivalent. De Vogelaere

constructed a hybrid algorithm, which involves the calculation of

y', and which is explicit for the equation y"=f(r, y). This

algorithm does not require any matrix inversion for coupled

eq u a tio n s .

Consider the relations

28

k k k
S aiyn+ i = h2 E P iy J +i + hX nyi+ i

i=0 i=0 i = 0
(2 .3 7)

k k
2- a iyn+i = h Z PiyH + i

i=0 i=0
(2 .38)

where a k = l , a k = l .

The associated operators are, respectively,

k k k
L i[y(r), h] =Z on y(r+ih)- h2 Z Pi y"(r+ih)- h S yiy’(r+ih). (2 .39)

i=0 i=0 i = 0

k k
L 2 [y'(r), h] =Z aiy'(r+ih) + hZ piy"(r+ih) (2 .40)

i= 0 i= 0

Eq.(2.38) is clearly the general multi-step formula. The values of

y, y' at the mesh points can be calculated by the two formulae.

Since we are interested in explicit method, at least one of the two

formulae must be explicit. In order to balance the accuracy of the

two formulae, we let the first one be explicit. In the case of k=2,

the coefficients of the formula of (2.37) with highest order are

012= 1, a i = -(1+ ao) ,

P o = j (3 - a o) , Pi = - j (l + a o) ,

T o = 7 ‘ a o) > W = j ^ 1 7 + a °) ’

The error constant C5 is (31-ao)/6!. The formula is zero stable

when a o lies in [-1, l](Lam bert,1973). W hen a o =1, it has the

29

smallest error constant. But if we choose ao =-1, the formula has

its tidest form:

yn+2=yn+2hyn+-^-{ 4yn+i+2yn) (2 .4 1)

The best formula for (2.38) is of order 0 (h 5) is obviously Simpson'

ro le

yn+2=yn+ j{yn+4yn+i +yS+2) (2 .42)

With (2.41) and (2.42), yn+2 , yn+2 can be calculated step by step.

The starting values y i, yi must be calculated by other formulae.

De Vogelaere found that it is not necessary to calculate the first

derivative y' at every point if yn+i can be obtained from yn, yn_i,

yn . In his method, one general step consists of two steps:

y 2n+l = y2n + hy2n + ^ “ (4 y 2n " y5n-i) (2 .43a)

y 2n+2 = y2n + 2 hy2n + 4 y2n+i + 2 y2n) (2 .43b)

y in +2 = yn + | (y 2 n + 4yS„+i + y 'in+2) (2 .43c)

The neglected terms for y2n+i, y 2n+2, y 'in+ 2 are of order h4 ,h 5 ,h 5

respectively. Though the local truncation error in y2n+i is of order

h 4 , it contributes a term of order h6 to the error in y2n+2 and h5

in yin+2 - More details about the error are discussed later.

One may notice that the above method is not self-starting. To start

the integration, y_i can be calculated from

Though the leading error of (2.44) is h3, its contribution to yi is

h 5 which is less important than the truncation error in yi.

2.6.2 Local and global error

From (2.43), the linear operators for y2n+i, y 2n+2, y 2 n+2 are,

r e sp e c t iv e ly ,

L i[y (r) ,h]J U y 4 > (r+e lh)
1 o

L 2 [y (r) , h] = ^ h 5 y <5)(r + e 2 h) (2 . 4 5)

L 3 [y (r) , h] = - i h 5 y (6) (r + e 3 h)

where 0 < 0 i,0 2 ,0 3< l .

W e investigate the global error in a manner similar to section

2.2.1 and fix the interval h=(b-a)/2N.

L e t

ej,u =h(y(r2 „-i) - y2n-i), e{,2) =y(r2„) - y2n , e” > =y'(r2n) - y2n

as recall that from (2 .1), y"(r2n) = f2ny(r2n).

From (2.37)-(2.39), e ^ (i= l ,2,3) satisfy the recurrence relations

e ^ h L i t y f o n) , ! !] - | h 2 f 2n. i e ^ + h (l + | h 2 f2n)e<,2> + h2e<3>

e ^ ! = L 2 [y(r2n),h] + h(l+ | h 2f 2n)e<,2) + 2heJ13) + | h f 2n+ieJ11] 1

e ^ j = L3 [y(r2„),h] -t2*f2ne® + e£3) + | - f 2n+ie ^ 1 +hf2n+2e ' 1] 1

The relation may be written in matrix form as

31

■̂ n̂ n+1- Bnen +8n

w h e r e
0 \
0

1
J

^ - |h 2 f 2„.i h + |h 3 f 2n h 2 ^

0 l + | h 2 f 2n 2 h

V
8 n= (h L ,[y (r2n),h] , L2 [y(r2n),h] , L3 [y(r2n),h])T

H ence

llen+lll- < IIAn-lBnlUlenIL + IIAi^Snlloo

The sums of the absolute values of the row elements of the

matrix A ^B n are

and therefore for all sufficiently small h there exists a positive

constant b such that

N A n l B n l l o o < l + b h

Similarly, the absolute values of the elements of the vector A^Sn

a r e

h + 0(h2), 1 + 2h + 0(h2), 1 + | (4 l f 2n+il + lf2„l)h + 0(h2)

■T2h 5 l y (4)(r 2 n) l + 0 (h 6) , ^ h 5 | y (5)(r 2 n) |+ 0 (h 6) ,
1 0 4 j

J h 5 f 2 n + l l y <4)(r 2 n) l - ^ h 5 l y <6) (r 2 „) l + 0 (h 6)

Therefore, there exists a constant M>0 so that

lA^nlloo < h5M

so,

llen+illoo < (l+bh)llenlloo + h5M

S (l+ b h) n+1lle0 ll~ + -̂ 1 - lv>)n*1- 1hsM
b h

s e (n+i)hb||e0||M + e(n+')hb- V m (2.46)
b

If yo> yo are exact, lleolloo is 0 (h4) w h i c h comes from the

estimation of y_i and the global errors in y2N, y2N are bounded by

a term proportional to h4. The error in y2N-i is, however, only to

h3 (notice that h (y (r 2 N - l) - y 2 N - i) = 0 (h 4))

Thus the global error in De Vogelare method is 0 (h 4).

2.6.3 Stablity

To investigate the absolute stability of the De Vogelaere's method

we apply it to the equation

y"=ky

Then with p=kh2

y 2n+l=y2n+ hyin + ^ (4 y 2n-y2n-l)

y2n+2=y2n+2hy2n+ 4 y2n+l+2 y 2n)

hy2n+2=hyn+^(y2n+4y2n+l +y2n+2)

Let vn= (y 2n-i, y2n, hy2n)T , we obtain vn+i= A v n where

33

A=

r i
4

- 3 P
4 1

v ' ? ‘ 3P

r
2 2 "7TP

O V i

0

1

f 1 1 ^ 2

e 9 l + 3 »

J

\

o l 4 | p 2

0
3* J

1+? 1

2 + | p

P (^ P 2 + Y P + 2) l + 2 P + | p 2

The characteristic polynomial of matrix A is

de t(X I-A)= X 3-(^p2+ 4p+2)X2-(|p 2 + i p - l) X - 4 p
o j 3 3 o

It can be found that none of the eigenvalues of A exceeds

unity only when p falls in [-2, 0]. Thus the region of absolute

stability is [-2, 0]. (Coleman and Mohamed, 1978)

Coleman (1980) has enhanced the de Vogelaere's method by

attaching another term onto the first formula. The accuracy is

slightly im proved since the local trancation error of the first

formula is of order 0 (h 5) rather than 0 (h 4). However, this formula

becomes implicit for the equation y"=f(r,y) and the algorithm is

not suitable for coupled equations. Ixaru and Berceanu (1987)

applied the exponential fitting technique to Coleman's scheme.

Their exponential fitting version retains the m ajor defect of

Colem an's method. In the following sections, we will directly

improve the de Vogelaere's method.

34

2.7. Simple modification of De Vogelaere’s algorithm

When we apply the algorithm to equation (2.1), we can estimate

the higher order derivatives of y by Blatt's method(Blatt, 1967).

That is, for sufficient large r,

y (p + 2)~ fy (p) (p = 0 , 1, . . .)

or y (2n) ~ f n y , y (2 n + l)~ fn y ' ? (n=l, 2 , . . .)

Then the leading terms of the local truncation errors of (2.43a),

(2.43b), (2.43c) are approximatively given by

By adding the error corrections to the formulae, we obtain the the

Modified De Vogelaere's algorithm for eq(2.1):

y2n+l = y 2n+ hyin + ^ (4 f 2ny2n-f2n-iy2n-l) + ^ h 4 f2ny 2 n (2 .4 7 a)

y 2 n + 2 = y 2 n + 2 h y 2 n + 4 f 2n+l y 2n+l+2 f 2ny 2n) + ^ h 5 f2ny 2 n (2 .47b)

h 1
y 2n+2= y n + j (f 2nY2n+4 f 2n+iy2n+l +f2n+2y 2n+2) - ^ Q ^ ^ n y 2 n (2 .47c)

where now the leading terms of the truncation error are:

R M A = ^ h 4 (y 24n - f2„y 2n)

R M B = ^ h 5 (y^5„) - f 2ny 2n) (2 .48)

35

RMC=' 9 0 h 5 (y 2"' f2ny2n)

When f is a constant, all the three leading terms vanish and the

truncation errors of the three formulae are of order h5 ,h 6 ,h 6

re sp e c t iv e ly .

2.8. E x p o n e n t ia l - f i t t in g De V ogelaere m e th o d

Sim ilar to Raptis/A llison method, the special function fitting

technique can be also applied to the De Vogelaere’s method. The

three formulae can be treated individually. Since there are four

coefficients in each formula, for any basis set come from a forth

order hom ogeneous linear d ifferentia l equation with constant

coefficients, there exist the corresponding formulae. Consider the

following formulae:

Allowing all the coefficients to depend on h, we choose {1, r,e“ r,

e _wr} and {ewr, e '(or, recor, re 'wr} as basis sets.

Case 1: (1, r , ewr, e '051*} as basis set

« a ,i=1, Pa ,1 = 1

y2n+l = a A, i y2n + p A j h y 2n + ^ ^ Y A .iy 2irYAf0y 2n-l)) (2 .49a)

y2n + 2=OCB,oyn + 2 pB,ohy2n+ ”3 ^ ^Yb,iy2n+l+2 YB,0y 2n) (2 .49b)

y2n+2=Pc,0yn+ t(YC,0V 2n+4 yc,iy 2n+l +YC,2y 2n+2) (2 .49c)

36

_3^2sinh(z)cosh(z)-s inh(z)-zcosh(z)
A>1 2 z 2sinh(z)

= 1+ - —~ - z2h----- -— z4 +. . .
1 2 0 1 0 0 8

a B , o = l , Pb ,o= 1

3 s in h (2 z)-2 zYr i =>— i
’ 4 z 2sinh(z)

= 1 + J - z 2 + . 1 3 z 4 +
3 0 2 5 2 0

Ozcosh(z)-sinh(z)
YB-0 = 3 " Z2Sinh(z)

=1- J _ z2 + _ 2 ^ j4 + . . .
15 3 1 5

Pc,0= l

~ s inh(z)-z
Yc ,o=Yc ,2 = 3 — s /

z (c o sh (z) - l)

= 1 - J ^ 2+ _ i —z4+.
3 0 8 4 0

3 zcosh(z)-sinh(z)
^ C>1 2 z (c o sh (z) - l)

=1+ - i - z 2 — z4 +.
6 0 1 6 8 0

where co2=k, z2= k h 2.

The leading terms of truncation errors are

REA= ^ h 4 (y (4)- k y 2„)

R E B = ^ h 5(y^5„) - k y ^)

R e c = - ^ h 5 (y 26„- k y ^)

(2 .50)

(2 .51)

37

Case 2 : The basis is { ecar, e-®? re®? re-® 1}

a A.i= cosh (z){l- }
tanh(z)+z

= 1- ——ẑ -f-
8

o _ s inh(z) 2 tan h (z)
A>1 z tanh(z)+z

= 1+ t^ 7tZ4 +. . .
3 6 0

zcosh(z)-sinh(z)
z 2(sinh(z)+zcosh(z))

= 1 . ^ 2 + ^ U 4 +. . .
3 0 1 2 6 0

_3 cosh(z)(z2sinh(z)-sinh(z)+zcosh(z))
2 z2(sinh(z)+zcosh(z))

= 1 + 1 9 z 2 . _ L 7 ^ 4 + . . .
6 0 2 5 4 0

sinh(z)(z2+zsinh(z)cosh(z)-2 s inh2(z))
B,° sinh(z)+zcosh(z)

4 5

R _[Sinh2(z)(2cosh(z)-zsinh(z))
8 ,0 z(sinh(z)+zcosh(z))

4 5

_3 2zcosh (2z)-s inh (2z)
^ 8>1 4 z2(sinh(z)+zcosh(z))

=1+ _ L z2+ _ L _ z4 +. . .
1 5 5 0 4

3 z2s in h (z)-zco sh (z)(l+ c o sh 2(z)) +sinh(2z)cosh(z)
^B,° 2 z2(sinh(z)+zcosh(z))

38

= 1— ——Z2 1—z4 4.
15 3 1 5

Pc,o=l

~zcosh(z)-sinh(z)
YC,0~YC,2= 3 z 2 gW (z)

= 1 - -Uz2+ +. . .
15 3 1 5

3 s in h (2 z) -2 zy c 1 =3— * •••'
’ 4 z 2sinh(z)

(2 ' K)

The leading terms of truncation errors are

3
R E A =fgh 4 (y (4)-2 k y ^n+ k 2y 2n)

REB = ^ h 5 (y^5n) - 2 k y ^ + k 2 y i n) (2 .53)

Rec=- k y ^)

The R E D U C E package is used to genera te all above

coefficients(Hearn, 1985).

39

Chapter 3

Transputer Network

3.1 Transputer and Occam

The launch of the transputer designed by INMOS has opened the

way to construct low-cost MIMD computer systems with great

f lex ib ili ty and enorm ous amounts of p rocess ing power. The

transputer is a powerful 32bit reduced instruction set computer

w ith some memory on one chip. U nlike other m icroprocessor

chips, the transputer is designed to com m unicate with other

transputers by means of high-speed poin t-to-point serial 'links'

rather than the usual 'bus'. Moreover, these links are entirely

im plem ented on the transputer chip. Present transputers have

four links each, with no need for any external support logic.

A transputer network consists of a master transputer and a set

of several slave transputers. The master transputer handles the

user interface and responds to requests to transfer programs and

data to slave transputers. Since each transputer has four links, a

wide range of topologies can be configured. Fig3.1 illustrates the

examples of link topologies of eight slave transputers.

The pipe structure is the simplest one and it is easy to

p rogram . C om unication among transputers may require many

steps. For example, it takes 7 steps to sent a message from Ti to

Tg. This structure is suitable to parallel algorithms requiring less

co m m u n ica tio n .

In the tree structure, transputers are arranged in a hierachical

structure. Com m unication is controlled by parent transputers.

40

For exam ple, controls T7 and Ts. The maximum length of

communication, in this case, is 4 .

The skip structure uses all four links of each transputer. Any

communication can be completed within two steps. This structure

is designed to reduce the total communication time for general

a lg o r ith m s .

Fig3.1

Pipe: “ T 1 T 2 T3 T4 T5 T6 T7 T8 —

Tree:

T3
T4

T5

T6
T7

T8

T2

T3 T4 T5T2 T6 T8— T1 T7

The transputer is programmed in Occam, a parallel programming

language associated with the design of the transputer. The most

important features of Occam is the use of processes and channels.

In Occam, a process is an independent computation, with its own

program and data, which can communicate with other processes

executing concurrently. A channel provides a one way connection

betw een two concurrent processes. There are three prim itive

processes in Occam:

41

v:= e a s s i g n expression e to various v.

c ! e o u t p u t the value of expression e to channel c

c ? v in p u t various v from channel c.

A collection ol processes is also a process. Communication between

processors is synchronized. If a process sends a m essage to

another by a channel, com m unication takes place when both

processes are ready. The sending and receiving processes then

proceed, and the message to be sent are copied from the sending

process to the receiving process (INMOS 1985, 1986, Pountain

1986, Burn 1988).

To run a program on a transputer network, one has to map the

processes of the program to individual processors. If there are p

transpu ters availab le , the p rogram should be w ritten as p

processes (a collection of processes is also a process), and each will

be allocated to a corresponding transputer. External channels of

each process would be finally placed onto the corresponding

physical links of the network. Since the connecting graph of the

logical network should be the subgraph of the connecting graph of

the physical network, some adjustment is required. For example,

suppose three concurrent processes P i , P2 , P3 are connected to

each other and we wish to map them to a transputer network

consisting of three transputers T j, T2 , T3 on which T1 and T3 are

not connected directly. We can attach a process A to P2 w h ic h

deals with the communication between process P i and P3 and is

under the control of P2 . See fig 3.2.

42

Fig 3.2

P 2

P2

a d ju s t

P3 P3

m a p
T3T1 T2

P2

3.2 An actual network configuration

The transpu te r netw ork for the im plem enta tion of para lle l

algorithms presented in later chapters consists of five transputers,

one on board IMS B004 and four on board IMS B003. The IMS

B004 is connected to an IBM PC XT which provides the access to

the terminal and the filing systems. The transputer on IMS B004

serves as the master transputer which provides links for the use

of m ultitransputer systems. The configuration of the complete

system is shown in the diagram on Fig3.3. It can be seen that

there are some free links which can be connected to other

transputers to form a larger network.

T he tra n sp u te r ne tw o rk is run u n d er the T ran sp u te r

Development System (TDS) which provides a complete enviroment

for the editing, compiling, configuring and executing of Occam 2

p ro g ra m s .

43

A complete program for the network consists of two parts, the

EXE part and the PRO G Rpfa part. The EXE part runs on the master

transputer and the PROGRAM part runs on the array. Only the EXE

part can communicate with I/O devices. An executable unit for a

transputer is an independent procedure with only commnication

channels on the heading. The PROGRAM part contains several

procedures and placement statements which map the procedures

onto transputers and logical channels in the headings onto

physica l links. P rocedures m apped onto Tq or T3 may have

p lacem ent statem ents within them which make com m unication

between the array and the master transputer possible.

Fig3.3

Link map of a network of transputers

TO T1

T2T3M a s te r

IBM PC

B004 boarc

44

3.3 P a ra l le l a lg o r i th m s fo r t r a n s p u te r n e tw o rk s

It is im possib le to describe what a paralle l p rogram for a

tra n sp u te r ne tw ork looks like because of the topo log ica l

d ifference between the algorithm and the network. In general,

the program comprises of a number of processes which will be

as s ig n ed to d iffe ren t transpu ters . The a lgo r ithm for each

p ro c e sso r cons is ts of two basic phases: com p u ta tio n and

communication. In the computation phase, the processor performs

som e basic com putation . In the com m unica tion phase, the

processor exchanges necessary results, including some information

w ith its im m ediate neighbours and may have the task of

transferring data to other processors. To illustrate the problems

and possible ways of overcoming them we follow through the

example of Jacobi iteration in same detail.

J a c o b i m e th o d fo r th e so lu t io n o f s im u l ta n e o u s l in e a r

e q u a t io n s Ax=b

The Jacobi method is

Dx(n+l)=b -(L+U)x(“) ,

or x(*+D=-D-i(L+U)x(n) + D_1b , n=0,l, . . .

w here A =L+D+U. The iteration is term inated when all the

differences between the new values and the old values are less

than some tolerance. One approach to implement the iteration is

to divide it into N processes for a NxN matrix A, each processing

one component of the vector x. Here we consider N=4.

45

The algorithm for the i-th component of x looks like:

Pi: while not converged do

begin

CPi: compute xfn+1̂ and a local convergent message q

which is true if x fn+1̂ - x falls within the required

limit required.

CMi: send x fn+1\ q to the neighbours of Pi and receive all

the necessary x fn+1̂ q (jo i) for the next iteration.j 1 J
convergence:=ciAC2AC3AC4 — a simple calculation to decide whether or

not the process continues.

end;

CM i depends on the practical network. It may depend on the

structure of A(for sparse matrix) if we want to reduce the cost of

communication. F ig3.3 gives the exam ples of three practical

networks and we will use each in turn on our example. Suppose Pi

is mapped to transputer Ti. We let Ly represent the link from Ti

to Tj. The link sets of network a, b, c are

a: {L12, L21, L23, L32, L34, L43}.

b: {L12, L21, L13, L31, L14, L41, L23, L32, L24, L42* L34, L43} •

c: {L12, L21, L23, L32, L24, L42).

46

fig 3.3

a) Tl T2 T3 T 4

b)
T3

T2

T4

Tl
Tl

T2
c)

T3 T4

Case 1: A is a dense matrix

a) The communication can be completed in three step. CMi is

similar to CM4 and C M 2 to CM3. We consider CM i and CM2 :

SEQ {CMi}
1: PAR

Ll2 ! X <n+1>, Cl

Lm ? x ' n+1>,C2

L21 ? X<n+1), C3

3: L2 1 ? x ln+1),c 4

SEQ {CM2)
PAR

L12 ? X <n+1), Cl

L2 1 ! X<n+I>,C2

L2 3 ! x f +1>,C2

L32? x < n+1), C3

x < n+1), c 3

PAR
L2 1 ' « 3

L23! x ‘n+1),c i
L3 2 ? x<n+1), C4

L21 ! x ' n+1), C4

b) Pi can reach all the other processes and therefore all CMi are

similar. To illustrate, CMi can be written as

47

PAR

L12! x ;n+i), Cl { send to P2 }

L13! x<n+1), Cl { send to P3 }

L14! x<n+1>,ci { send to P4 }

L21 ? X<n+1),C2 { receive from P2 }

L31? x f +1),C3 { receive from P3 }

L41? x ' n+1),C4 { receive from P4 }

c) Only P2 can communicate with all the other processes. CM2

may be written as
SEQ

PAR

L21! X 2n+1), C2 { send to P i }

L23! X<n+1>,C2 { send to P3 }

L24 ! x '" +1),C2 { send to P4 }

L12? x <n+1), Cl { receive from P i }

L32 ? x f +1),C 3 { receive from P3 }

L42? x 'n+1), C4 { receive from P4 }

PAR {transfer data for other Processes}
L21! x^n+1), C3, X^n+1), C4 { send to P i }

L23! (n+1) (n+1)
4 9 1 ’ 1 { send to P3 }

L24! X £n+1), Cl t X (3n+1), c3 { send to P4 }

C M], CM3 , CM4 are similar and they must correspond to CM2 .

Case 2: A is a tridiagonal matrix.
if A is tridiagonal, it is not necessary to access all x jn+1) for the

next itera tion . However, since the convergence param eter is

determined by all cj (i= l, . . 4), every process still requires to

communicate with all other processes. If the number of iteration

can be estimated, then we can get rid of the communication of c*

This would be very beneficial since for a large network j) x € it is

time- consuming and very difficult to handle.

48

a) The communication can be completed in one step. CMi only

requires to communicate with its immediate neighbours once.

PAR {CMi} PAR {CM2}
L12! x j n+1> L 12? x <"+1>

L 2 1 ? x < " +1> L21! x < " +1>

L23! x<n+1)
L32? x

b) CMi in a) can be used for network b)

c) Since T3 and T4 are not connected, the com m unication
between them proceeds through T2 . CM2 is
SEQ {CM2}

PAR
L2i ! x<n+1)
T 1 (n+1)L23 • X 2

Lj2 ? x <n+1>

L32? x f +1>

PAR {transfer data for other Processes}
t I (n+1)L23 • x 4

L24 ! x<n+1)

For a dense matrix of A, the number of communication steps

on network a), b), c) are 3, 1, 2 respectively while they are 1, 1, 2

for a tridiagonal matrix of A. From the example we can find that a

good network need not be one with small diameter.

The above examples dem onstrate the level of programming

thought and action required to distribute computation efficiently

over a number of processors.

49

Chapter 4

Parallel Algorithms for an Eigenvalue Problem

4.1 Eigenvalue Problem

A com m on problem involves a differential system which has

solutions only for some particular values of parameter occurring

in the system. These particular values are the eigenvalues of

the system and the corresponding solutions are the e ig e n fu n c t io n s .

For example, the equation y"= -A,y has the general solution

y=A sin(V X r) + B cos(Vx r).

If we impose the boundary condictions y(0)=y(7c)=0 , we find first

that B=0, and then that A=0 unless V X is integral. The system

therefore has nontrivial solutions only if X = k 2, k= l,2 ,3 , These

are the eigenvalues and the corresponding eigenfunctions are

y=A sin(kr).

A typical problem arising from the radial Schrodinger equation

is the system:

y"=(k+g(r))y

y(0)=0, y(co)=0 (4.1)

where g(r)= C (t+ l) / r 2 +V(r) and the potential V(r) vanishes as r

increases. The above system has nontrivial solutions only for

certain positive values of A,, the eigenvalues. These eigenvalues

correspond to the bound states in physics.

4.2 Numerical analysis

The approach for solving the eigenvalue problem numerically

invokes initial-value methods. We may replace the system by one

50

of initial type, for which X is estimated and ultimately adjusted

until the solution satisfies the boundary conditions. If we impose

another initial condition, say, y'(0)=l , the actual solution, for a

given X, will increase quickly in the region between the origin and

the inner turning point (i.e. the first zero of A,+g(r)). Then it will

oscillate in the region in which X+g(r) is negative. After the outer

turning point, it exhibits exponential behaviour. For large r, the

solution is a combination of exp(V X r) and exp(-V X r). If X is an

eigenvalue, the positive exponential must not be present and the

solution tends to a negative exponential function. Otherwise, the

solution will not satisfy the boundary condition.

Since the solution is a continuous function of X , if the solution

for given A,i increases exponentially for large value of r and the

solution for another value X 2 , say, grows to the opposite sign,

there must be at least one eigenvalue between A,i and X 2 . The

eigenvalue can be calculated by a binary search technique.

The disadvantage of the above method is that although we can

obtain accurate eigenvalues, the calculated eigenfuntions are

poor. The reason is that even if X is the exact eigenvalue, any

minor error (rounding error or truncation error) will introduce a

component of the increasing solution and will lead to a divergent

solution. If we only integrate forward, we can not get rid of the

unwanted increasing solution in the outer region.

For small r, the solution is a combination of r1+1p i (r) and

r-1p 2 (r) in which p i(r) and p 2 (r) are polynomials. If we simply

in tegra te backward, the numerical solution will diverge at the

orgin since we can not suppress the term of r 1p 2 (r). The similar

phenomenon will occur. Integration over the whole range in either

direction is unsatisfactory.

51

4.3 M atching method

To tackle this problem, the technique of "matching in the middle"

can be used(Fox, 1962). That is that we integrate both forward

from the origin and backward from a large value of r and then let

the two solutions meet at a reasonable point in the middle. The X

is adjusted until the forward solution and backward solution agree

at the matching point.

THe choice of the matching point is not critical for a single

equation of this type. However, the matching point should be

normally between the inner turning point (the first zero of ^+g(r))

and the outer turning point (the last zero of ?t+g(r)). The most

convenient matching point is the point at which g(r) reaches its

minimum because at that point ^+g(r) is always negative for any

possible eigenvalue.

Since g(r) is singular at the origin and very large and positive

for small value of r, the forward solution will increase rapidly

and numerical integration near the origin is impossible. We prefer

to choose a small value of ro as starting point rather than the

origin. For the forward solution, we can take the initial conditions

y f(r0)=0, yf(ri)=h. For the backward solution, we start at a large

value tn of r with the conditions are yb(rN)=t, yb(rN -i)=teV ^h. The

t cannot be fixed arbitrarily, and in fact its value must be

calculated in the iterative process, which attempts to match the

so lu t io n s yf, yb at some common point rA . "Matching" is

equivalent to the relations

yf = yb , yf=yj, at (4 -2)

52

Since we are concentrating on N um erov-like m ethods, we prefer

the equivalent approach of matching the two solutions at two

adjacent points

yf = yb, at r= rA

yf = yb, at r= rB (4.3)

O bviously , yf is a function of X and yb is a function of both X

and t. Eq(4.3) can be written as a set of non-linear equations

about X and t:

yf(rA, h) - yb(rA, X, t) = 0

yf(rB, - yb(rB, X, t) = 0 (4.4)

The above matching equations are conventionally solved by a

Newton process, which suggests changes Sk, 5t derived from the

s im ultanous equations.

d d
(y ^ u A) - yb(rA,X,t)) + 8 t—(yf(rA,X) - yb(rA,7 ,t))

dX d t

+ yf(rA,X) - yb(rA,M) = 0

8 X ^ - (y f (r B A) - y b (r B ,M)) + s A y K r E . X) - y b (r B , M))
dX d t

+ y f(rB ^) - yb(r B»^»t) = o (4.5)

These functions are obtained by solving initial-value problems.

The quantities z= T= satisfy the systems

Zj = f(r)zf + y f , Zf(ro)=0, Zf(ri)=0 (4.6)

zj = f(r)zb + yb , zb(rN)=t, Zf(rN.i)= teV ^h /(2V I) (4.7)

53

Tb = f(r)Tf , T b(rN)=l, Tb(rN. I) = e '^ h

where f(r) = X + g(r)

(4.8)

From (4.8),we have

Tb=t- 'yb (4.9)

Eqs(4.5) then reduce to the form

8A,(zf(rA,A.) -zb(rA,A,,t)) - Stt-iybCrA^t) + yf(rA,k) - yb(rA,X,t)=0

8X(zf(rB,^) - zb(rB,X,,t)) - S t t - iy ^ r^ M) + yf(rB,k) - yb(rB,X,t)=0

The Newton process requires integration in both directions

twice for each iteration: the first for the solution of yf, yb at

matching points and the second for Zf, zb. The Zf and zb satisfy

the same equation, though the initial cenditions are different.

Therefore, we can use the same method for both forward and

backward solutions. Applying Numerov method to the equations

about y and z, we get

(1- ■jTjh2fn+l)yn+l-(2+ y |h 2fn)y n+ (l - Y2h 2fn-l)yn-l - 0

(1- -~h 2fn+i)zn+i-(2+ ~ h 2fn)zn+(l- - ^ h 2fn-l)Zn-l =

T2h2(y n+1 + 1 0 yn+yn.i)

(4 .10)

(4 .11)

" (l - h 2 f„/1 2) 2

and substitute (Allison, 1970)

(4 .12)

Un= (1 - ,j 2*l 2fn)yn , (4 .13)

54

Vn - (1 - Y2*l 2 f n) Z n ' Y2 l̂ 2 y n , (4 .1 4)

where fn - X + g(rn), in to Eqs(4.10),(4.11), we obtain

u n + 1 — anUn (4 .15)

Vn + 1 — 6 nUn + ^nvn " vn-l (4 .16)

T h e in te g ra t io n s can be ca r r ied ou t e f f i c i e n t ly by the

recurrence formulae (4.15) and (4.16). Each step for both u and v

requires 14 ari thimetic operations: 8 for coefficients an and bn, 6

for recurrence formulae (4.15) and (4.16). We only calcula te un

and vn during the integrations. The values of y and z at matching

points are finally derived from u and v through relations

(4.13) and (4.14).

It is found that almost all the computing t ime is spend on the

computa tion of these integrations. The total t ime for each iteration

can be sharply reduced by using parallel in tegra tion algorithms.

The fo l lowing sections give four para llel a lgor i thms for the

calculation of the integrations.

4.4 M ethod 1: four processes m ethod

For the Newton method , we not ice two facts : the fo rw ard

in teg ra t ion and the backward in tegra t ion are independent ; in

each di rec tion, y and z can be coped with in parallel . W e can

div ide the in tegra tions into four concurrent processes P i , P 2 , P3 ,

P 4 , which com pu te u/-, v f , ub , vb r e s p e c t iv e ly . S in ce the

computation of v involves the value of u, Pi and P 3 are required

to pass the values of uj, ub to P2 and P4. The n*h step for Pi and P 2

are :

55

Pj: temp 1.0 - hi*(A.+gn) ; { hj— y ĵh ̂ }

an := 12.0/temp -10.0;

sent temp, an , u„ to P2 ;

t ln+l • — a n *Un " tln_] ;

P2: receive temp, an , un from Pi ;

bn := 12.0*hi/(temp*temp) ;

v-n+i .= bn*un + an*vn - vn_i

P 3 and P4 a re are similar to Pi and P 2 . The four processes of Pi

can be mapped to four transputers of a transpter ne twork and

im plem ent in parallel . This method is the most efficient provided

the match points are near the middle of the range of integration.

In practice, the cost of communication, which is required by each

integra tion step, should be taken into account and the efficiency

cannot reach 1 0 0 percent.

4.5 M ethod 2: 4x4 m a tr ix fo rm alism

The above a lgor i thm is only suitable for a system with four

p rocessors . For a system with an arbitrary number of processor,

we should try other approaches.

L e t

Dn =

a n 0 - 1 0 "
b n a n 0 - 1

1 0 0 0

- 0 1 0 0 -

L n ^ N-l

W f|n=

Uf,n+1

v f,n+1
u f pi

56

W b,n=

Uf,n-1
Vf,n-1
Uf,n

>- Vfn ■

where rM is the first matching point (rM =rA , r M+1 =rB)

Hence eq.(4.15) + eq.(4.16) become

Wf,n = DnW f>n_i 0 ^ n < M

W b,n — DnW b>n+i M+l < n £ N

Finally ,

Wf>A= D a D a - i - .^ D iW ^ o

Wb,B = DBDB+l-DN-2DN-lWb,N (4.17)

The solutions at matching points can be obtained from Wf>A an d

W b.B by (4.13) and (4.14). Expressions (4.17) are ideal forms for

parallel calculation. Since the two expressions are similar, we just

consider the forward solutions.

Suppose there are p (A » p) processors available. We can let

processor i calculate the matrix product:

Ei := DejDej-i..DSi+iD Si

and finally let the first processor calculate the result of Wf>A:

W f,A := EpEp_i.. E iW fio

Sj and ej may be decided in this way:

L=|_M/pJ, s i= l , e i=M -(p-l)L ,

si+i —ei + 1, ej+i —Cj+i + L-l i—2, 3, ... p

57

The algorithm for Pj (i > 1) is

Hi := I;
for n:= Sj to ej do

begin
calculate an , bn ;
Ei := DnE i;
end;

send Ej to Pi through communication;

The algorithm for Pi is

Wf,A := Wf5o ;
for n:= si to ei do

begin
calculate an , bn ;
Wf,A:=DnWf,A;
end;

for i:= 2 to p do
begin
receive E j ;
Wf>A:= EiWf,A;
end;

Fig 4.1 illustrate the algorithms through an example in which p=3,

A=9.

The m atrix Dn is sparse and the num ber of arithm etic

opera tions for each matrix m ultip lica tion , together with the

calculation of an and bn, is 24 and the efficiency of this method

might approach 0 .58 (14/24).

58

F i g 4 .1

P r o c e s s o r l P r o c e sso r 2

W9

W3
W2

W1

YO D1 D2 D3 D4 D5 D6

P r o c e sso r 3

>•

D7 D8

 -------► indicates com m unication betw een processors

4.6 M e t h o d 3 : 2x2 m a t r i x f o r m u l i s m

One of the d isadvan tage of method 2 is that the 4x4 matrix

m u l t i p l i c a t i o n re q u i re s m ore a r i t h m e t i c o p e r a t io n s . The

a lternat ive approach is that we calculate y firstly at all pivotal

poin ts and then calcula te the values of v at matching points.

Instead of 4x4 matrix multiplications, we only form 2x2 matrices.

L e t

’ a n - 1 ' " b n y n'

lia II

u

1 0 0

1 < n ̂ N - l

y f . n+ 1 Vf , n + 1

Y f , „ = , V f,n =

- y f . n . . Yf^n .

y b , n - 1

icx>>1

Ybfn= Y b,n —

. y b , n - . Vb;n _

then E q s (4 .15) and (4.16) become

59

Yn = DnYn_i (4.18)

Vn — DnVn.i + Cn (4.19)

From (4.18) we get

Yf,n = DnDn.i...DkYf>k,i 1 < k < n < M (4.20)

We let processor i tackle Yf>n where sj ̂ n ̂ e*. The algorithm for

Pi (i o l) is:

PiY:
calculate a ^ ;
ESi:= DSi;
for n :=Si +1 to ei do

begin
calculate an ;
En := DnEn_i;
end;

receive YftSi_i from Pi_i;

Y f>ei := EejYsj-i;

if i o p then send Yf>ei to Pi+i;

for n :=Si to ei -1;
Yf,n := EnYf,ei-i; { In practice, we only calculate the

first component of Yf>n }

For P i s it is

PlY:
for n :=si to ei do

begin
calculate an ;
Yf,n := DnYf,n-l 5

end;
send Yei to P2 ;

60

After all the Yf<n have been calculated, we can calculate Vf,A-

Following Eq(4.18), we have the general relation:

Vf}n = DnVf^.! + Cn

= DnDn_iVf>n.2 + Cn + DnCn_i

=DnDn-i--*DkVfk.i + Cn + DnCn.i +. . . + DnDn.i...Dk+iCk

Let k = si, n = ei, then

Yf,ei = Eej Y f>Sj-i + Ti

w h e r e

Ti= Cej + DejCei-i +. . . + DejDej-i...Dsi+lCsi i > 1 (4 .21)

and finally,

Vf,A= EepEep.j... Ee2Vf,ei + Tp +EepTp-i +... + EepEep_i... E,e3T2 (4 .22)

E ei (i=2 ,..., p) have been available in the calculation for Yn . Tj can

be calculated in processor i independently. The algorithm for

processor i is:

PiV:
calculate bSi;
Ti:= CSi;
for n :=Si +1 to ei do

begin
calculate bn;
Ti := Cn + DnTii
end;

send Eei, Ti to P i ;

61

PlV:
Vf,A := Vfto

for n :=si to ei do
begin
calculate bn;

Vf,A *•= D nVf,A + Cn

end;
for i : = 2 to p do

begin
receive E^, Ti ;

Vf,A := EejVf.A + Ti ;

end;

This m ethod requ ires 19 arithm etic operations for each

integration step and therefore the efficiency is estimated to be

0.74 (14/19).

The fig4.2 and fig4.3 show how PiY and PjV work.

F i g 4 .2

P r o c e s s o r !

Y3

P r o c e s so r 3P r o c e sso r 2

Y8

Y7Y5
Y9Y4

Y6

Y3

indicate com m unication betw een p rocessors

62

F ig 4 .3
P ro ce ss o r l Processor2 P r o c e s so r 3

VG

-

T 3

T3

VO D1 D2 D3 D4 D5 D6 D7 D8 D 7

C7 C8 C 7C1 C2 C3 C4 C5 C6

!► in d ica te s com m unication betw een p rocessors

4.7 M ethod 4: secant m ethod with 2x2 m a tr ix fo rm ulism

It can be seen that the values of y at the matching points can be

eas ily ca lcu la ted in parallel by 2 x2 matrix formulism but the

calculation of v (e.g. — y) is far more complicated. To calculate v,
d X

we not only have to solve a nonlinear equation, but calculate y at

all pivota l points. This addit ional calcula tion takes a large

p ropor t ion of the comput ing t ime and makes p rogram m ing in

parallel more difficult. However, the values of v are not required

to high accuracy and can be calculated by simple approximation

method. For example, we can obtain them approximately from the

values of current and previous y at matching points.

Notice that

= | y f (r . Xn)- y r (r , ^ n - i) l / (^ n - k » - i) + 0(IA.n -A,n - i l) (4 . 2 3)

63

and that yb satisfies:

y b(r, X> tu) = tu/ tvy b(r, X, tv) (4 .24)

From the Taylor series

y b(r, A.n-1, tn-i)

= T “Vb(r, ^n-l. tn)ln

In -1 d
= ~r~~(yb(r» tn) + (^n.i - Xn)—-yb(r, Xny tn) + 0(IXn-i - knl2)

ln o X

So,

“ y b(r,Xn,tn)
ok

= {y b(r An»tn) " tn/tn-iyb(r An-l>tn-l)}/(A.n-A,n-l) + 0(IA,n-l~A,nl) (4 .25)

L e t T A n(r)= [y f(r , y - yf(rAn-i)]/(^n - V i)

T B n(r)= [y b(r ,^ n,tn) ■ tn/tn-iyb(r,A,n-i,tn-i)]/(A.n ■ A,n-i) (4 .26)

The iterative scheme is now

(A-n+l “ ^ n) (T A n(rA) ~ T B n(rA)) ■ (tn+l ■ tn) / t n y b(rA»A,n»tn)

+ yf(rA,>-n)yb(rA^n,tn) = 0

(A-n+i- A,n) (T A n(rB) - TBn(rB)) - (W i ■ tn)/tny b(rBAn4n)

+ yf(rB,kn) - yb(rBAn,tn) = 0 (4 .27)

Schem e(4.27) is actually the secant method. Its order of

convergence is 1 .6 (approx.), compared with the second order

Newton method. However, it only requires the values of yf, yb a t

64

m atching points. The parallel algorithm is similar to that in

method2 , but only uses 2 x2 matrix multiplication.

L e t

D n =

Yf,n=

Y b,n=

a n - 1 '

1 0

Uf,n+1

L U f >n .

Ub,n-1

Ub,n J

1 ̂ n < N-l

M+l < n < N

H ence

Y f >n - D nY f >n_i

Yb,n ~ DnYb,n+l

Finally ,

Y f,A= D a D a -i . . .D2D iY fo

Yb,B = D BD B+i. . .DN.2D N.iYb,N (4 .28)

Details of the parallel algorithm for (4.28) can be found in method

2 .

The ite ra tion cannot start until the second in tegration is

completed. Therefore, we have to provide two starting values

and A-i for the first two integrations. The choice of starting values

of X is more restrictive than the Newton method.

65

The a lgo rithm requires 9 arithm etic opera tions for each

in tegra tion step while the sequential algorithm needs 7. The

efficiency is expected to be 0 .78 (7 /9).

4.8 M o d e l P ro b le m

To illustrate how the four algorithms work, we take the Morse

p o te n t ia l

V 0 (r) = D {e '2ot(r-r=) - 2e‘a(r-r«)) (4 .29)

where D = 0.18349, a = 1.435 and re = 2.31.

The equation is

y" = B(-e + V0(r))y (4 .30)

where B = 29156.0 and e is the unknown energy. Since the

minimum value of of Vo(r) is -D, the possible values of e should

fall in (-D, 0).

In this problem, the difference between e and the minimum

value of the potential Vo(r), e+D, is what we actually require. In

practice, it is conventional to multiply by a physical constant,

which transform the eigenvalue from atomic units into e.g.s. units.

So, the eigenvalue is actually E =cm(D+e) where cm = 219474.62.

Eq.(4.30) is rewritten as

y ” = B(D - E/cm + V0(r))y (4 .31)

E is the required eigenvalue. For the Morse potential analytic

solutions are known and given, in this case, by

Ek = ci(k + 0.5) - c2(k + 0.5)2, k=0, 1, ... (4 .32)

66

where Ci = 1580.1868088..., C2=15.501016...

Values for the first 11 eigenvalues are listed as E exact within

following tables.

To transform the equation into standard form, we let X = B(D -

E/cm) , g(r) = BV 0 (r), then E can be obtained from X by

E =cm(D - X / B) . (4 .33)

4.9 I m p l e m e n t a t i o n

We only consider the first eleven results and choose r0 =1.5 as

starting point and rN=3.5 as end point. re=2.31 is the best choice

for matching point. We tolerate relative errors up to 0.1 xlO *4 for

the iteration. In the secant method, we choose Xi = X,o- 0.1 as the

second starting value of X. For comparison, three different

stepsizes h=0.01, 0.005, 0.0025 are considered. The corresponding

numbers of integration are 200, 400, 800, respectively. All real

variables in the programs are double precision.

Tables 4.1&4.2 display the numerical results and errors of the

first eleven (0 to 10) eigenvalues calculated by the Newton

m ethod and the secant method respectively. There is no

significant difference in accuracy between the two methods. The

second columns of both tables indicate the initial values for

iteration, which are chosen close to the exact eigenvalues.

The times, in seconds, required by the four parallel methods

for the calculation of the three eigenvalue Eo, E 5 and E 10 are

shown in Table 4.3 through Table 4.6 (The times spent on the

calcu la tion of the potential are not taken into account). The

speedup and efficiency are calculated by comparison with the

67

corresponding sequential algorithms with the same parameters.

We find that in principle they are consistent e with the estimation.

F or m ethod 1, the speedup and effic iency are largely

dependent of the choice of matching point. The ideal matching

point for which the load is well balanced over the 4 processors is

in the m iddle of the integration region. For comparison, the

algorithm are tested on two different choices of matching points.

One is the general choice r=re and another is in the middle i.e.

r= (ro + rN)/2 . Results are shown in Table 4.3.1 and Table 4.3.2

re sp e c t iv e ly .

All the other three methods can be run on any number of

processors. Here we run them on 2, 3 and 4 four processors.

Results are shown in Table 4.4 to Table 4.6. Each table consists of

3 sub-tables which correspond to three different stepsizes.

The final calculation of eigenvalue is inherent sequential. This

will slightly affect the efficiency and speedup of all the four

m e th o d s .

All the a lgorithm s in method 1 to 4 are developed from

Numerov formula. As mentioned in chapter 2 , exponential fitting

Num erov form ulae can be efficiently applied to these parallel

algorithm s w ith little modification. For an exponential fitting

Numerov formula with the symmetric form

yn+l + OCi(h)yn + yn-l = h2(Po(h)yn+l + Pl(h)yn+ Po(h)yn-l) (4 .3 4)

we define

_ - a i (h) + h 2p 1(h)fn
an l-h2po(h)f„ ’

68

b _ h 2(- a i (h) p 0(h)+ p i (h))
(l - h 2p 0(h) fn)2 (4 .35)

and substitute

Un= (1- Po(h)h2fn)y n (4.36)

v n= (1- Po(h)h2fn)zn - p0(h)h 2y n (4.37)

We can still obtain eqs.(4.15) and (4.16). i.e.

un+l — <hiun Un -1

v n+i = b nu n+ anv n - vn_i (4 .38)

Therefore, the formula (4.34) can be applied to all the four

parallel methods in a similar fashion to the Numerov formula.

In e igenvalue problems, the potential varies in integration

interval and the coefficients should be adjusted at each step.

Since the calculation of the coefficients at each step by explicit

formulae is time consuming, we prefer the power series formulae.

We take the Raptis and Allison algorithm as the example (Raptis

and Allison, 1978). In this case, the coefficients satisfy

<xi(h)= -2, P i (h) = l - 2 p 0(h) (4 .39)

From (4.35)

- a i f l O + h ^ f l Q f n _ 2 | h 2fn
l - h 2Po(h)f„ l - h 2po(h)fn

h 2(- « i (h) p n(h)+ p 1(h)) h 2
" (l - h 2p 0(h)f„)2 (l - h 2Po(h)f„)2

69

where po = 2 0 ^ 2^n + ’ an<̂ * *n Pract ĉe’ we on^y consider

the first two terms.

In paralle l im plem entation , The Raptis and Allison method

requires three more arithmetic operations on the calculation of

coefficients at each step than the standard Numerov method, but

it is far more accurate. The comparison in accuracy is shown in

Table 4.7. Three different stepsizes h=0.01, 0.005, 0.0025 are

used. Table 4.8 shows the times required by method 3 with

Raptis and Allison's formula for the calculation of eigenvalues.

70

Table 4.1

Numerical results of Newton process(method 1-3), h is the stepsize
and Error = E - Eexact

k Einitial Eexact h=0 .0 1
E Error

h=0.005
E Error

h=0.0025
E Error

0 700.0 786.2182 786.2175 -0.0007 786.2181 -0.0000 786.2182 0.0000
1 2400.0 2335.4029 2335.3984 -0.0045 2335.4027 -0.0003 2335.4029 0.0000

2 3800.0 3853.5857 3853.5703 -0.0153 3853.5847 -0.0010 3853.5856 -0.0001

3 5400.0 5340.7664 5340.7295 -0.0368 5340.7641 -0.0023 5340.7662 -0.0001

4 6700.0 6796.9451 6796.8731 -0.0720 6796.9406 -0.0045 6796.9448 -0.0003

5 8300.0 8222.1217 8221.9989 -0.1228 8222.1141 -0.0077 8222.1212 -0.0005

6 9700.0 9616.2963 9616.1054 -0.1910 9616.2844 -0.0119 9616.2956 -0.0007

7 10900.0 10979.4689 10979.1917 -0.2772 10979.4517 -0.0173 10979.4678 -0.0011

8 12400.0 12311.6395 12311.2574 -0.3820 12311.6157 -0.0238 12311.6380 -0.0015

9 13700.0 13612.8080 13612.3029 -0.5051 13612.7766 -0.0314 13612.8060 -0.0020

10 14850.0 14882.9745 14882.3285 -0.6460 14882.9343 -0.0401 14882.9720 -0.0025

Table 4.2

Numerical results of Secant process(method 4), h is the stepsize and Error = E - E

k Einitial Eexact h=0.01
E Error

h=0.005
E Error

h=0.0025
E Error

0 700.0 786.2182 786.2175 -0.0007 786.2181 -0.0000 786.2181 -0.0000

1 2400.0 2335.4029 2335.3985 -0.0045 2335.4027 -0.0002 2335.4030 0.0000

2 3800.0 3853.5857 3853.5704 -0.0153 3853.5847 -0.0009 3853.5856 -0.0000

3 5400.0 5340.7664 5340.7295 -0.0369 5340.7641 -0.0023 5340.7662 -0.0002

4 6700.0 6796.9451 6796.8731 -0.0720 6796.9405 -0.0046 6796.9447 -0.0004

5 8300.0 8222.1217 8221.9979 -0.1238 8222.1131 -0.0086 8222.1202 -0.0015

6 9700.0 9616.2963 9616.1036 -0.1928 9616.2827 -0.0137 9616.2938 -0.0025

7 10900.0 10979.4689 10979.1939 -0.2750 10979.4540 -0.0149 10979.4702 -0.0013

8 12400.0 12311.6395 12311.2564 -0.3831 12311.6146 -0.0248 12311.6369 -0.0026

9 13700.0 13612.8080 13612.3021 -0.5059 13612.7759 -0.0321 13612.8053 -0.0027

10 14850.0 14882.9745 14882.3285 -0.6460 14882.9343 -0.0402 14882.9720 -0.0025

71

Table 4.3.1

Time (in seconds) for method 1 with 4 processor. re=2.31 as matching point

k \h h=0 .0 1 h=0.005 h=0.0025

0 0.3719 (0.7882) 0.6874 (1.5295) 1.3125 (3.0138)

5 0.3740 (0.7897) 0.5505 (1.5302) 1.0544 (2.2650)

10 0.4487 (0.9863) 0.6881 (1.9137) 1.3194 (3.7740)

speedup 2.12 2.23 2.30

efficiency 0.53 0.56 0.57

*figures in brackets indicate the time required by the corresponding sequential program
with the same matching point

Table 4.3.2
Time (in seconds) for method 1 with 4 processor, choose r=(ro+rN)/2 as matching
point.

k \h h=0 .0 1 h=0.005 h=0.0025

0 0.3428 (0.9853) 0.6532 (1.9137) 1.2733 (3.7681)

5 0.3433 (0.7892) 0.6522 (1.1485) 1.2739 (2.2645)

10 0.3437 (0.7891) 0.6515 (1.5311) 1.2707 (3.0208)

speedup 3.06 3.26 3.39

efficiency 0.76 0.82 0.85

^figures in brackets indicate the time required by the corresponding sequential program
with the same matching point

72

Table 4.4.a h=0.01

Time (in seconds) for method 2

k \ p 1 2 3 4

0 0.7882 0.7207 0.5219 0.4327

5 0.7897 0.7216 0.5226 0.4337

10 0.9863 0.9004 0.6513 0.5401

speedup 1.09 1.49 1.82

efficiency 0.55 0.50 0.45

Table 4.4.b h=0.005

Time (in seconds) for method 2

k\p 1 2 3 4

0 1.5295 1.3738 0.9613 0.7614

5 1.5302 1.3734 0.9611 0.7596

10 1.9137 1.7153 1.1986 0.9472

speedup 1.11 1.59 2.00

efficiency 0.56 0.53 0.50

Table 4.4.c h=0.025

Time (in seconds) for method 2

k \p 1 2 3 4

0 3.0138 2.6901 1.8364 1.4156

5 2.2650 2.0173 1.3762 1.0607

10 3.7740 3.3578 2.2895 1.7644

speedup 1.12 1.64 2.13

efficiency 0.56 0.55 0.53

73

Table 4.5.a h=0.01

Time (in seconds) for method 3

k \p 1 2 3 4

0 0.7882 0.5862 0.4171 0.3354

5 0.7897 0.5866 0.4168 0.3363

10 0.9863 0.7320 0.5201 0.4185

speedup 1.34 1.89 2.35

efficiency 0.67 0.63 0.59

Table 4.5.b h=0.005

Time (in seconds) for method 3

k \ p 1 2 3 4

0 1.5295 1.1188 0.7750 0.6033

5 1.5302 1.1167 0.7724 0.6001

10 1.9137 1.3976 0.9641 0.7490

speedup 1.37 1.97 2.54

efficiency 0.68 0.66 0.63

Table 4.5.C h=0.0025

Time (in seconds) for method 3

k \ p 1 2 3 4

0 3.0138 2.1852 1.4850 1.1358

5 2.2650 1.6389 1.1123 0.8500

10 3.7740 2.7377 1.8548 1.4122

speedup 1.38 2.03 2.65

efficiency 0.69 0.68 0.66

74

Table 4.6.a h=0.01

Time (in seconds) for method 4

k \p 1 2 3 4

0 0.4989 0.3400 0.2452 0.2013
5 0.3992 0.2730 0.1963 0.1616
10 0.6982 0.4745 0.3411 0.2799

speedup 1.47 2.03 2.48
efficiency 0.73 0.68 0.62

Table 4.6.b h=0.005

Time (in seconds) for method 4

k \ p 1 2 3 4

0 0.9565 0.6494 0.4534 0.3575

5 0.7630 0.5188 0.3617 0.2844

10 1.3350 0.9033 0.6298 0.4951

speedup 1.47 2.11 2.68

efficiency 0.74 0.70 0.67

Table 4.6.C h=0.0025

Time (in seconds) for method 4

k \ p 1 2 3 4

0 1.8709 1.2709 0.8678 0.6675

5 1.4954 1.0141 0.6922 0.5308

10 2.6153 1.7665 1.2034 0.9253

speedup 1.47 2.16 2.80

efficiency 0.74 0.72 0.70

75

Table 4.7
The deviations of numerical results from the exact ones for Numerov scheme and
Raptis/Allison scheme. 0.0000 indicates the error is less than 0.00005.

k Einitial Eexact Error
(h=0 .0 1)

N R/A

Error
(h=0.005)

N R/A

Error
(h=0.0025)
N R/A

0 700.0 786.2182 -0.0007 -0.0007 -0.0000 -0.0000 -0.0000 -0.0000
1 2400.0 2335.4029 -0.0045 -0.0021 -0.0003 -0.0001 0.0000 -0.0000
2 3800.0 3853.5857 -0.0153 -0.0034 -0.0010 -0.0002 -0.0001 -0.0000

3 5400.0 5340.7664 -0.0368 -0.0047 -0.0023 -0.0003 -0.0001 -0.0000

4 6700.0 6796.9451 -0.0720 -0.0060 -0.0045 -0.0003 -0.0003 -0.0000

5 8300.0 8222.1217 -0.1228 -0.0073 -0.0077 -0.0004 -0.0005 -0.0000

6 9700.0 9616.2963 -0.1910 -0.0086 -0.0119 -0.0005 -0.0007 -0.0000

7 10900.0 10979.4689 -0.2772 -0.0101 -0.0173 -0.0005 -0.0011 -0.0000

8 12400.0 12311.6395 -0.3820 -0.0117 -0.0238 -0.0006 -0.0015 -0.0000

9 13700.0 13612.8080 -0.5051 -0.0134 -0.0314 -0.0007 -0.0020 -0.0000

10 14850.0 14882.9745 -0.6460 -0.0154 -0.0401 -0.0008 -0.0025 -0.0001

76

Table 4.8.a h=0.01

Time (in seconds) for method 3 with R/A formula

k \ p 1 2 3 4

0 0.9555 0.6636 0.4719 0.3784
5 0.9571 0.6645 0.4720 0.3798
10 1.1950 0.8297 0.5894 0.4735

speedup 1.44 2.02

efficiency 0.72 0.67

Table 4.8.b h=0.005

Time (in seconds) for method 3 with R/A formula.

k \ p 1 2 3 4

0 1.8547 1.2655 0.8771 0.6817

5 1.3923 1.2644 0.8746 0.6781

10 2.7814 1.5719 1.0909 0.8468

speedup 1.46 2.10 2.71

efficiency 0.73 0.70 0.68

Table 4.8.C h=0.0025

Time (in seconds) for method 3 with R/A formula.

k \ p 1 2 3 4

0 3.6534 2.4745 1.6812 1.2849

5 2.7446 1.8552 1.2594 0.9614

10 4.5729 3.0907 2.0939 1.5983

speedup 1.48 2.17 2.84

efficiency 0.74 0.72 0.71

77

Chapter 5

Parallel Algorithms for Phase Shift Problem

5.1 P h a s e s h if t p ro b le m

The radial form of the Schrodinger equation with positive energy

may be written as

w here f (r)= - (k 2 - L (C + l) /r2 -V(r)) and V(r) vanishes for large r.

The boundary condition imposed at origin is

Therefore the solution of eq.(5.1) has the asymptotic form

where 8 is the "phase shift".

To calculate the phase shift, we can im pose the second initial

condition y'(0) = t and integrate to sufficiently large r for which

the contribution to 8 of the term L(C +l)/r2 +V(r) can be ignored.

The phase shift 8 can then be obtained by com paring the solution

with (5.4).

In practice V(r) converges to zero much faster than t (L + l) / r 2

so the latter is the dominant term for large r. It is well known

that the two linear independent solutions of the equation

y"= f(r)y (5 .1)

y(r) = 0 at r = 0 , (5 .2)

From eq.(5.1) it can be seen that for large r we have

(5 .3)

y(r) ~ Csin(kr - Ctc/2 + 8) (5 .4)

78

y ”= -(k2 - C(D+l)/r2)y (5 .5)

are krji(kr) and krni(kr) where ji(kr) and ni(kr) are the spherical

Bessel and N eum ann functions respectively.

The asymptotic solution of eq(5.1) may take the form

y(r) ~ kr(Ajj(kr) + Bn^kr)) (5 .6)

which is valid as soon as the effect of V(r) can be neglected.

S ince

. v s in (k r - I k / 2) , , s c o s (k r - l % / 2)
Ji(kr) _ , nj(kr) _ ^

k r k r

(5.6) may be rewritten as

y(r) _ Asin(kr - I k / 2) + Bcos(kr - C7c/ 2) (5 .7)

and the phase shift can be determined uniquely by

8 = arctan(B/A) (5 .8)

If ra, rb are suffic ien tly large, y (ra), y(rb) can be represented by

the asymptotic form (5.6):

y (ra)= k ra(A ji(k ra) + Bni(kra)),

y (rb)= k rb(A ji(k rb) + Bm (krb))

so 8 = arctan(B/A)

f y (r b) r ai i (k r a) - y (r a) r b j i (k r b) ^
= arctan y (r b) r an i (k r a) - y (r a) r bn ! (k rb) (5.9)

Therefore, to calculate a phase shift, it is necessary to solve the

equation (5.1) from the origin to the asymptotic region in which

79

the V(r) becomes negligible. The phase shift is then obtained by

(5 .9).

5.2 Parallel algorithm

W e have seen the phase shift problem can be reduced to the

solution of eq.(5.1). Applying the Num erov algorithm to it, we

h a v e

(1 - j ^ h 2f„+l)y„+l-(2 + i5h2fn)y n+ (l- y ^ n - l ^ n - l = 0 (5 - 10>

where fn= f(rn) .

The technique of matrix formalism used in the in the previous

chapter can be applied to the problem. In the eigenvalue p ro b

lem, the in tegra tion region is under restr ic tion and the parallel

algorithm s given in the previous chapter do not involve changing

the stepsize. However, in the phase shift problem, the integration

reg ion is semi-infinite, though in num erical com putation we can

stop the integration at sufficient large r. Since f(r) is large and

positive for small r, we must start the integration with a rather

small stepsize. Unless we are prepared to change the stepsize as

the f(r) decreases, we will waste a lot of m achine time in the

region where f(r) is small in absolute value. Changing the stepsize

in the integration is imperative. At present, the best approach for

stepsize control is to monitor the global error and change the step

size automatically if the estimated error satisfies some conditions.

In parallel com putation, this m ethod would be very difficult to

realize. To change the stepsize, the simple way we can use in

parallel computation is to arrange the stepsize in advance accord

ing the behaviour of the function f [Blatt, 1967], That is, we in te

grate ni steps at the stepsize h i , then n 2 at the stepsize h 2,... a n d

80

f ina lly nm at hm. (W e only consider doubling the s tepsize i.e.

h 2= 2 h i , ..., hm= 2 h m_i and assume np>2 for i= l,2 ,..m .) The stepsize is

changed m -1 times and the points at which the stepsize is changed
j

are r t : w h e r e tj = £ n i (j= l ,2 , . . .m - l) . The to tal num ber of
J i = 1

m
integration steps is N = S n i

Let w „(h)= l- -j^h2 fn

u n = w n(h)y n , an= 1 2 /w n(h) -1 0 , h=rn-rn.i

(5 .1 1)

(5 .1 2)

Then if n*tj (0<j<m), the stepsize is not changed (e.g. rn+ i-rn=h,

rn-rn- i = h) and eq.(5.10) can be written as

U n + l — Un Un _ Un - l

or
U n + l 'an - 1" ’ Un "

. U n . .1 0. . U n -1.

(5 .1 3)

If the n=tj (0<j<m) and h is the new stepsize, that is rn+ i-rn=hj+i = h,

rn-rn- i = r n- i - r n -2 = h j= l i / 2 . (5.10) become

(1- ■j^h2fn+l)yn+l-(2+ p |b 2fn)y n+ (l- j ^ h 2 fn-2)yn -2 = 0 (5 .1 4)

Or w n+i (h) y n+i - (12-10w n(h))y n + wn-2(h)y n-2 = 0

N otice that from (5.12),(5.13)

u n= w n(h / 2) y n , u n-2 = w n-2 (h / 2)y n -2

U n - 2 = ^n- 1 u n-l " Un

H en ce

1 2 - 1 0 w n(h) , w n-2 (h) , , - u 1 - 0U n + l -------------/ , u n + / u / o \ v a n - 1 u n-l Un ,J — Uw n(h / 2) w n. 2 (h / 2)

81

Rearrange the equation and we have

Un+1= {an q (h) + J K°:.? W]Un_ w ,n-2(h)
w „ (h / 2) w „ _ 2 (h / 2) w n_2 (h / 2)

Similarly, we have

w n(h)
u n + 2 ~ an + l U n+l _ UnW n(h /2)

L e t

b = w n(h) = w n.2 (h)
n w n(h / 2) n w n. 2 (h / 2) ’

(5 .1 5)

T h e n

"un+ f

. Un . -

"Un + 2"
f"

-Un+1.

a n^n'^Cn -an_iCn

1 0

a n + l “b n

1 0

Ui

L U n -l J

’un+l" a n+ 1 - r ' 1 0 “ U n + l

. U n . 1 0. ico
1 . Un _

Therefore, we define matrix Dn b y

a n - 1
Dn=

1 0
n*tj (0 <j<m) (5 .1 6 a)

a n d

Dn=
1 0

0 b n J

^nbn^Cn _an-lCn

1 0

a nbn"*"^n “a n - l ^ n

b n 0 .

n=tj (0 <j<m) (5 .1 6 b)

in which an, bn, cn are defined by (5.12),(5.15).

82

" UN " ’u f
= Dn . iD n.2...Di

-UN-1. -UO.

The values of u at the final points tn and can be represented

b y

(5 .1 7)

Similar to method 4 of last chapter, the N - l matrix multiplications

can be carried out in parallel by p processors. To do this, we

d iv ide the N - l m atrices into p groups, each consists of the

average num ber of matrices. Let the ith processor Pj calculate the

product of

Ei := DejDei-i..DSi+iD Si (5 .18)

where Si, ej can be determined by the following scheme

L=|_N-l/pJ,

s i = l , e i= (N - l) - (p - l)L ,

Si+i =ei + 1, ei+i =ei+i + L-l i=2, 3, ... p

The Ei produced by Pi is then sent to Pi on which un and un- i are

genera ted by

" u f
(5 .19)

’ UN ’ " u f
=EpEp-i...Ei

.UN-1. -uo.

The phase shift can be finally calculated from un and u n - i .

Since the stepsize is changed at r tj (0<j<m), the processor Pi

should know not only the parameters are k, 1, the potential V(rn)

(n = S i , S i + l , . . . , e i) , but the starting point rSi and starting stepsize. It

also requires the parameters for changing the stepsize. To do this,

83

we let PRi, PHi be the s tarting poin t r Sj and the starting

s tep s ize ,re sp ec t iv e ly , POINTERj the pointer to the first stepsize

changing point from si to e*. T o illustrate, we take the example of

p=3, m=5, ni = n 2 = n 3=20, n4=30, n5=50, ro=0.0, h] =0 .01 . Then

N=140 and we have the following tables:

J 1 2 3

h 2 0 4 0 6 0

1 2 3
s 1 4 8 94
e 4 7 93 1 3 9

PR 0 .0 1 0 . 9 2 3.8
PH 0 .01 0 . 0 4 0 .1 6

POINTER 1 3 0

W e can find from the above tables that t3=60 is the first stepsize

changing point handled by processor P2 since POINTERi=3.

These param eters can be generated by a simple algorithm on the

host processor and are sent to all other processors.

The skeleton of the algorithm for P* can be written as

r:=PRi;
h:=PHi;
Ei:=I;

j:= POINTER*;
If j=0 then ITURN:=0 else ITURN:= tj;
for n:= s* to e* do

begin
if n= ITURN then

begin

j :=j+^
ITURN:= t,*;
h:=2*h;

84

{Dn is formed by (5.16b) }
end

else

{Dn is formed by (5.16a) }
r:=r+h;
end;

At each norm al point, the calculation of an requires 8 arithm etic

operations (for 0 0) and therefore each in tegration step takes 13

a r i th m e tic o p e ra tio n s to c o m p le te . C o m p a re d w ith the

co rrespond ing sequentia l a lgorithm w hich requ ires 11 arithm etic

operations, the efficiency of the parallel algorithm is expected to

be 0.85 (11/13).

5 .3 I m p le m e n ta t io n

T he p a ra lle l a lg o rith m has been te s ted on a w ell-know n

exam ple (B e rn s te in ,1968; R aptis and A llison , 1978) w here in

W e choose ro=0.7 as starting po in t and tn= 8.7 as the final

m atching point. The algorithm has the ability to handle d ifferen t

a rran g e m en t of s tep s ize , h e re we te s t the fo llo w in g th ree

e x a m p le s .

a : 800 steps at 0 .0 1 ;

b : 400 steps at 0 .0 1 , 2 0 0 steps at 0 .0 2 ;

c: 200 steps at 0.01, 100 steps at 0.02, 100 steps at 0.04.

e q .(5 .1),

85

The total num ber of in tegration steps of the three cases are 800,

600 and 400, respectively .

The resu lts, shown in Table 5.1, for the three cases are the

sam e if only three decim al p lace accuracy is considered . The

tim es, in seconds, req u ired by the a lgo rithm on one to four

processors to calculate a phase shift are shown in Table 5.2 which

also indicates the speedup and the efficiency of the the algorithm .

From Table 5.2, one may note that the overall speedup and

efficiency of the algorithm are not as good as we expect. This is

because the final calcu lation of phase shift, eq .(5 .9), is treated

sequentia lly . In fact, the four function values of j i (k r a), n i(k ra),

ji(k rb), n i(krb) in eq .(5 .9)can be calcu la ted in dependen tly . Even

each Bessel function can be calculated in parallel since the Bessel

function is based on a recurrence form ula. H ow ever, this has not

been done. The original subroutine for B essel functions returns

the values of both Bessel and Neum ann functions. This package

w as d es ig n ed and w ritten to be e ff ic ien t w hen run on a

sequentia l com puter. M odern parallel consideration w ould dictate

that we should separate the calculation of Bessel function from

tha t of N eum ann function so that the four function values of

j i (k r a), n i (k r a), j i(k rb) , n i(k rb) can be c a lcu la ted in d iffe ren t

p ro c e sso rs . T hus we sh o u ld re w rite the o rig in a l p ack ag e .

H ow ever, the final ca lcu la tion of phase sh ift takes up a sm all

p ro p o rtio n of to tal com putation so the im provem ent gained by

parallelising the final calculation of phase shift will be small. Since

Occam language is tedious, it is unlikely that parallelising the final

calculation of phase shift is necessary.

86

JL
T he ex p ec ted speedup can be achij^ed if we ig n o re the

calculation of the phase shift as can be seen in Table 5.3.

Table 5.1

Phase shifts obtained by the algorithm

k I 5

3 0 -0.590
3 2 -1.289
3 4 -0.144

87

Table 5.2.a
Times, in second, required by the algorithm to calculate a phase shift
(800 steps at 0 .0 1)

k, t \ p 1 2 3 4

3 0 0.8385 0.5072 0.3502 0.2712
3 2 0.9522 0.5661 0.3900 0.3019
3 4 0.9551 0.5700 0.3936 0.3053

average 0.9153 0.5478 0.3779 0.2930
speedup 1.67 2.42 3.12
efficiency 0.84 0.81 0.78

Table 5.2.b
Times, in second, required by the algorithm to calculate a phase shift
(400 steps at 0.01, 200 steps at 0.02)

k, C\p 1 2 3 4

3 0 0.6388 0.3905 0.2727 0.2131
3 2 0.7252 0.4361 0.3037 0.2373
3 4 0.7290 0.4385 0.3075 0.2405

average 0.6977 0.4217 0.2946 0.2303
speedup 1.65 2.37 3.03
efficiency 0.83 0.79 0.76

Table 5.2.c
Times, in second, required by the algorithm to calculate a phase shift
(200 steps at 0.01, 100 steps at 0.02, 100 steps at 0.04)

k, t \ p 1 2 3 4

3 0 0.4405 0.2722 0.1942 0.1542

3 2 0.4989 0.3028 0.2157 0.1714

3 4 0.5027 0.3060 0.2189 0.1742

average 0.4807 0.2937 0.2096 0.1666

speedup 1.64 2.29 2.89

efficiency 0.82 0.76 0.72

88

Table 5.3.a
Times, in second, required by the algorithm to integrate from ro to
(800 steps at 0.01)

k, C\p 1 2 3 4

3 0 0.8104 0.4759 0.3188 0.2399
3 2 0.9188 0.5313 0.3552 0.2670
3 4 0.9192 0.5326 0.3562 0.2678

average 0.8761 0.5133 0.3434 0.2582
speedup
efficiency

1.72
0.86

2.57
0.86

3.42
0.85

Table 5.3.b

Times, in second, required by the algorithm to integrate from ro to
(400 steps at 0.01, 200 steps at 0.02)

k, t \ p 1 2 3 4

3 0 0.6088 0.3593 0.2416 0.1821
3 2 0.6921 0.4015 0.2692 0.2028
3 4 0.6933 0.4015 0.2704 0.2035

average 0.6647 0.3874 0.2604 0.1961
speedup 1.72 2.55 3.39
efficiency 0.86 0.85 0.85

Table 5.3.c
Times, in second, required by the algorithm to integrate from ro to
(200 steps at 0 .01 ,100 steps at 0 .02 ,1 00 steps at 0.04)

k, L\p 1 2 3 4

3 0 0.4109 0.2414 0.1635 0.1235
3 2 0.4662 0.2687 0.1815 0.1373
3 4 0.4674 0.2694 0.1815 0.1374

average 0.4482 0.2598 0.1755 0.1327

speedup 1.72 2.55 3.38
efficiency 0.86 0.85 0.84

89

Chapter 6

P a r a l l e l A l g o r i t h m s for S o l v i n g C o u p l e d

Differential Equations

6.1 Coupled Equations

The coupled equations arising from the Schrodinger equation may

be transform ed into the follow ing form

w h ere ji(x) and ni(x) are the sp h erica l B esse l and N eum ann

fu n c tio n s , resp ec tiv e ly .

In m ost applications, the R m atrix is w hat we require. As usual,

the boundary condition problem m ay be sa tisfied by solving an

in itia l value problem . It is obvious that if w is the solution which

sa tis fie s (6 .2), w •c is also a solution satisfy ing (6 .2) for any

arb itrary constant m atrix c . If w is non-singular(i.e, the colum ns of

w are linearly independen t), w c is the general so lution and we

can find a suitable m atrix c such that w c m atches to the correct

asym pto tic form .

(6 .1)

where 1 £ i, N .

The boundary conditions im posed are

yij= 0 at r=0 ,

M/2
y ij-> k ir jii(kir)5ij +L Ry k jr n i^kir) at

/

(6 .2)

(6.3.)

90

For the problem (6.1) in w hich the m atrix elem ents Vjj have no

singularities of order two or higher at the origin, the solutions for

sm all r that satisfy (6 .2) are given by

W ij=o t i j r li+1 (6 .4)

w here a is a constant m atrix. Therefore, the second starting value

can be given by eq .(6 .4) p rov id ing the given m atrix a is non

singular. The corresponding solutions w ill not, in general, satisfy

the asym ptotic boundary conditions (6.3). H ow ever, if the colum ns

of the solutions of (6 .1) are linearly independent, a suitable linear

co m b in a tio n o f the so lu tio n s can be m atch ed to the co rrec t

asym ptotic form . That means

n

yij = 2) w ikCkj , (6 .5)
k=l

o r y = W'C

The solution y can be m atched to the boundary conditions at two

values of r large enough so that the term s Vij are neg lig ib le . Then,

defin ing the follow ing m atrices,

r ’ - f k Y /2R..
ij _ l,. KlJ ’

V J /

M ij=kirJi.(kir)5ij ,

Nij=kirni.(kir)5ij ,

we find that the asym ptotic condition (6.3) can be w ritten as

y —»M + NR' at r -* 00, (6 .6)

Further for large value of r, the m atrix w can be w ritten

91

w=MA+NB, (6 .7)

and a com parison of (6 .6) and (6.7) will lead to the relations

The follow ing is the algorithm for the m atrix R':

1. Choose the second in itial value yi at ro+h. F or exam ple, let

2. In tegrate from ro out to two m atching points r a and rb in the

asym pto tic reg ion N tim es, each tim e ob tain ing one colum n of

solutions corresponding to a d ifferent colum n of a .

3. From (6.7) we have w a= M aA + N aB, W b=M bA +N bB. N otice that

M, N are both diagonal and NM =M N. Therefore

c=A-i , R ’=BA-i (6 .8)

A = - (N by a- N ay b) (N bM a- N aMb)
-l

B = (M by a -M ayb) (N bM a- N aMb)
-l

R = B A
-l

(6 .9)

6.2 Numerical Integration Methods

Eqs.(6 .1) can be rew ritten in m atrix form as

y"+Fy=0 (6 . 10)

w here F ij={k? -) s ij+ (6 . 11)

and V y—> 0 as r->c°

G eneralizing the N um erov form ula, we get

92

yn+i=(I+ ^ h 2F n+i)- i{ (2I- y fh 2F n)yn -KI+ ± h 2F n.i >yn- i } , (6 .1 2)

w here I is a unit m atrix.

A t each in tegration step, the inversion of the m atrix

1+ n h 2F n+i,

is required. The m atrix is strongly diagonally dom inant for sm all r

if the step size is chosen properly and tends to a d iagonal as r

increases. T herefore , an itera tive m ethod w ould rap id ly converge

and A lliso n (1 9 7 0) has p ro p o sed the i te ra tiv e m e th o d by

s u b s t i tu t in g

into Eq.(6.12), which becomes

Y i ?n + 1 ~ 2 Y i ?n + h g i , n -fi ,n.yi,n , (6 .1 3)

w h e r e

v = ^ i - n l / 1 2 h ^ g j <n
y i’n 1 + 1 / I 2 h 2 f i(n

for 1 ̂ i £ n (6 .1 4)

and, in the notation of Eq.(6.1),

(6 .1 5)

n

g i , n _ X V i k y k j
k = l
k*i

(6 .1 6)

Eqs.(6.14) and (6.15) may be rew ritten as

(m+i)
y i , n + l

Y j rn + 1 / I 2 h 2 g ^

1 + l /12h 2fU

(m+1)
i , n + 1 (6 .1 7)

93

and

g , % = 2 v iky ^ +1 + 2 v iky k”
k>i ; k<i

(m) , (m+l)
n+1 (6 .1 8)

to define an itera tive schem e that converges to the solution. To

start the iteration, y[n+i may chose as

y (°) XLs (6 19)
y i 'n+1 l - l / 1 2 h 2 f U ̂ ;

To estim ate the error of the iteration, let

= V ij(l - 8 y)

S 'irn+1 = 2 ^ ik ykji+l
k= l
k*i

D = d ia g (l-h 2 f 1>n/ 12, 1-h 2 f 2y i 2 , . . ., 1-h 2fN,n/ l 2) (6 .2 0)

or in m atrix form

,(m) (m)
g n +l = V y n+l (6 -2 1)

In general, we have

l l g - g (“)|loo S llg-g'(m)IIco = HVXy-y^Olloo < IIV'llcoIl(y-y(m))lIco

H ence, we have

H y n + i - y l + ^ l c o s - j^ h 2 IID-i l lool lg’lloo = ^ h 2 I I D - 1I U I V ' I U I y n + 1 llco (6 . 2 2)

Hyn+i-y(n+’i 1)|l“ s i h 2 H D - i | i » i i g - g ^ i u

< ^ I I D - i l U I I V I U I I y n + i - y ^ l U

94

S (•^h2)m+1IID-1ll™+1|IV'll” +1llyn+ill (6 .2 3)

Since the truncation error of Num erov form ula is 0 (h 6), at m ost

two corrections are actually required. In that case, the error of the

ite ra tio n is s ig n ifican tly sm aller than the tru n ca tio n error. In

practice, one correction is enough near the asym ptotic region. The

in te g ra tio n o v e r th e e n t ire ra n g e is re p e a te d N tim e s ,

co rrespond ing to N d iffe ren t co lum ns of the m atrix a and the

resu ltan t solution m atrices used in the m atch process.

T he D e V o g e lae re 's m ethod can a lso ap p lied to co u p led

equations(L ester,1968; A lliso n ,1970). G eneralizing to eq .(6 .10), De

V ogelaere 's a lgorithm becom es

yn+i/2 = y n + jh yA + - ^ (4 y n - yll-1/2),

yn+l =yn + hyn + ^-{ y n + 2 yJ[+i/2), (6 .2 4)

yi+i = y i + ^(yn + 4yn+1/2 + yil+i),

w h e r e

yj /2 = -Fj/2yj/2 j= - 1 ,0 , 1 , 2 ,.. (6 .2 5)

T he N eq u a tio n s g iven b y (6 .10) m ay be in teg ra te d to the

asym ptotic region N tim es, each tim e corresponding to a d ifferent

co lum n of the m atrix a w hich m ay be reg ard ed as a linearly

in d ep en d en t set o f in itia l deriv a tiv es. To s ta rt the in teg ra tio n ,

there is a extra work to calculate y"i/2 , w hich is readily obtained

from y .1/2 given to sufficient accuracy by

95

1 h 2
y-1/2 = y o - j h y o + — yo (6 .2 6)

6.3 Paralle l algorithm

It is c lea r that each colum n o f y in eq s .(6 .1) can be solved

co m p le te ly ind ep en d en tly . H ow ever, w hat we are in te re s ted in

here is to solve one colum n of y in p ara lle l and therefo re the

algorithm is su itab le for a set of general coupled equations. The

g rea t advan tage o f both the Ite ra tiv e N um erov m ethod and De

V ogelaere 's m ethod is that each equation in the coupled equations

can be handled relatively independently . If the coupled equations

co n sis t o f N equations, w e give each of them to a d ifferen t

p rocess. The N processes w ill finally be d istribu ted to p actual

p ro cesso rs--tran sp u te rs . F or the Ite ra tiv e N um erov m ethod, the

coupling only enters through the term g ^ + i in eq .(6 .18). In the

case o f the De V ogelaere 's m ethod, the coupling is encountered

w hen calculating the term yj'/2 in eq.(6.25). To handle the coupling,

each process has to access the results produced by others and the

co m m u n ica tio n am ong p rocesses is req u ired . On the tran sp u te r

ne tw ork , th is can be done by channel com m unication . F or the

Ite ra tive N um erov m ethod, there is a extra w ork to exchange the

convergence param eters w hich decide w hether or no t the iteration

is com pleted.

D i s t r i b u t i o n

In p rac tica l im plem entation , the num ber o f equations of a set of

coup led equations is varied. Suppose we need to solve a set of

c o u p led eq u a tio n s w ith N eq u a tio n s on a n e tw o rk w ith p

tran sp u te rs . To d is trib u te the N p ro cesses fo r the N equations

96

in to p transputers, we can map the first ni p rocesses onto the

firs t transputer, n 2 processes onto the second one, and np onto

the last one. U[can be chosen by

To illustrate, if p = 5 and n=16 , the series of ni is 4, 3, 3, 3, 3. It is

one of the m ost effic ien t div ision because w hatever d ivision used,

at least one transputer handles m ore than 3 p rocesses.

C o m m u n i c a t i o n

A transpu ter has four links for com m unication. They can connect

to any o ther transputers. To m inim ize the cost of com m unication,

it is d e s irab le to fo rm a ne tw o rk w ith m in im um d iam eter.

H ow ever, it is very d ifficu lt for a program m er to w rite a p ro ce

dure for a com plicated netw ork. To sim plify the problem , we use

a p ipeline or a loop structure. In each transputer, a buffer Y is

declared for the com m unication of y. i.e. Y[i] is used to store y*.

In th e ca se o f a lo o p s tru c tu re w ith p tra n sp u te rs ,

co m m u n ica tio n can be co m p le ted in |_p/2J steps. H ere is the

procedure for com m unication of y for the ith transputer Pf.

PROC COM([]REAL64 Y, CHAN from.left, to.left, from.right, to.right)

SEQ j=0 FOR j_p/2j

PAR
from.left ? [Y FROM S[n.left[j+1]] FOR L[n.left[j+1]]]

to.left ! [Y FROM S[n.right[j]] FOR L[n.right[j]]]

from.right ? [Y FROM S[n.right[j+1]] FOR L[n.right[j-i-l]]]

to.right ! [Y FROM S[n.left[j]] FOR L[n.left[j]]]

| _ N / p J + 1 i < (N m o d p)
(6 .2 4)

I L N / p J e l s e

INTi:

97

In the procedure, S[k] indicates the index of the first equation

assigned to p rocessor Pk a n d L[k] gives the num ber of equations

assigned Pk. So L[k]=nk and S [l]= l, S [2]= n i+1,... ,S[k]=S[k-l] +nk.

For the ith p rocesso r Pj, n.right[j] indicates the processor j steps

to the left of P* w hile n.left[j] indicates the processor j steps to the

right. They can be determ ined by

i+ j f o r i + j s p

* i + j - p + 1 f o r i + j > p

i - j f o r i - j > 0
<

. i - j + p f o r i + j s 0

n.right[j]= <

n.left[j]=

For exam ple, in the case of p - 5, N=16, S[k], L[k] are given by

k 1 2 3 4 5

L[k] 4 3 3 3 3

S[k] 1 5 8 11 1 4

For P 2 , n .left and n.right are given by

j 0 1 2

n .leftfj] 2 1 5

n .rig h t[j] 2 3 4

T he com m unication takes tw o steps to com plete. A t the first

step, P 2 sends ys, y6 , y i to both its neighbours P i and P 3 , w hile at

the same tim e it receives y i , y2 , y3 , y4 from Pi and y 8, y9, y! 0

from P 3 . A t the second step, it sends all it receives from P i in th e

first step to P 3 and all it receives from P 3 to P i. It also receives

98

y 1 1 , y i 2 , y 13 from P 3 and y i 4 , y i 5 , yig f r o m P i . D eta ils are

illu stra ted in F ig.6.1, in which a,b ,c,d ,e represen t the m essages for

exchange (For instance, a represents the package of y i, y2 , y3 , y4).

F ig.6.1
Step 1:

P I P 2 P 3

D

\ P 5 P 4

c

7
Step 2:

P I P 2 P3

P 5 P 4

Final Results:
P I P 2 P 3

D
P 5 P 4

In the case o f a p ip e lin e s tru c tu re w ith p t r a n s p u te r s ,
co m p le ted com m unication can be co m ple ted in p - 1 steps. The
procedure for com m unication of y for the ith p rocessor Pi is:

99

PROC COM([]REAL64 Y, CHAN from.left, to.left, from.right, to.right)
INT j, left.in.c, left.out.c, right.in.c ,left.in.c:
SEQ

left.in.c:=left.in.no
left.out.c:=left.out.no
right.in.c:=right.in.no
right.out.c:=right.out.no
PAR j=0 FOR p-1

IF
left.outcoO

SEQ
to.left ! [Y FROM S[i+j] FOR L[i+j]]
left.out.c:=left.out.c- 1

TRUE
SKIP

IF
left.in.cO0

SEQ
from.left ! [Y FROM S[(i-j)-l] FOR L[(i-j)-l]]
left.in.c:=left.in.c- 1

TRUE
SKIP

IF
right.in.coO

SEQ
from.right ! [Y FROM S[(i+j)+l] FOR L[(i+j)+l]]
right.in.c:=right.in.c- 1

TRUE
SKIP

IF
right.outcOO

SEQ
to.right ! [Y FROM S[i-j] FOR L[i-j]]
right.out.c:=right.out.c- 1

TRUE
SKIP

100

In the p ro ced u re , the four p aram eters le ft.in .n o , le ft.o u t.n o ,

r ig h t.in .n o , r ig h t.o u t.n o in d ic a te th e re q u ire d n u m b ers of

com m unication steps for the by the co rresponding channels. For

the pth p rocessor, Pi, they can be calculated by

left.in .no = i - 1 ,

righ t.in .no = p - 1 ,

left.out.no=

right.out.no=

0 f o r i = l

, r i g h t . i n . n o + 1 e l s e

0 f o r i = p

k l e f t . i n . n o + 1 e l s e

F o r th e sam e ex am p le o f p = 5 , N = 1 6 , th e c o m p le te

c o m m u n ica tio n req u ire s 4 s teps. F ig 6 .2 il lu s tra te s the w hole

p ro c e ss .

Take the exam ple of the second processor P 2 .

Step 1: P 2 sends ys, y6 , y7 to both its neighbours P i and P 3 , w hile

at the sam e tim e it receives y i , y2 , y3 , y4 from Pi and yg, y9 , y io

from P 3 .

Step 2: P 2 sends y i , y2 , y3 , y4 to P3 and y 8, y g , yio to P i w hile it

receives y n , y i 2 , yi3 from p 3-

Step 3: P2 sends y n , y i 2, yi3 to P i and it receives y i 4 , y i 5 , yi 6

from P 3 . A fter this step, P 2 has received all y, but it still has to

tran sfe r y i4, y n , y i6 for P i.

Step 4: P2 sends y i4, y n , yi6 to P i.

101

F ig .6 .2

Step 1:

t r

p i

Step 2 :
P I

L

Step 3:
P I

P I

L

P2 P3

P 5 P 4

c

7
P 2 P 3

P 5 P 4

D c

7
P 2 P 3

P 5 P 4

Step 4:
P 2 P 3

P 5 P 4

F inal Results:
P I P 2 P 3

D

P 5 P 4

3

102

6.4 Im p le m en ta t io n

The paralle l algorithm s of both the Iterative N um erov m ethod and

the De V ogelaere 's m ethod are im plem ented on a netw ork of 5

tran sp u te rs(T 4 1 4). The te s t exam ple com es from the coup led

equations w hich arise from the ro ta tional excitation of a diatom ic

m olecule by neutral partic le im pact(A llison ,1970). U sing the no ta

tion o f the lite ra tu re (A rth u rs and D algarno ,1960), deno ting the

en trance channel by the quantum num bers(j, 1), the exit channels

by 0» and the total angular m om entum by J= j+ l= j'+ l', the equa

tion can be w ritten by

d 2
• +Ki r j y j i w = .

j" V
t £ 2 +4 j - }^r<r) = E E (r) (6 .2 6)

k?., = ^ E + | y { j (j + 1) - j ’(j' + 1))

w here

k , - Jj h 2

The coupling m atrix elem ent are given by

<jT;JIVIj"r,;J>=8j-j-5irV o(r) + f2(jTf j"l”; J)V2(r)

w here the fo rm u lae fo r the co effic ien ts can be found in the

litera tu re(A rthu rs and D algarno,1960). The scattering m atrix S for

the problem can be obtained from the R m atrix by the relation

S = (I+ iR)(I-iR) _1

W e choose the physica l param eters and num erica l param eters

from the litera tu re (A llison, 1970). The param eters are

=1000.0, £ = 2 .3 5 1 , E = 1.12,
h 2 I

and V 0(r)=r-i2 - 2r<\ V 2(r)=0.2283V0(r).

103

W e take J = 6 and consider excitation of the ro tor from the j=0

state to levels up j'=2,4 ,6 and 8 giving rise to sets of 4,9,16 and 25

coup led equations, respectively .

The range of integration was chosen to be

T he O CCA M 2 program s are m ainly translated from A llison 's

Fortran program . Only the in tegration sections, w hich take a large

proportion of tim e, are im plem ented in parallel.

F o r c o m p a riso n , w e c h o o se tw o d if f e re n t c o n v e rg e n c e

p a ram ete rs e= l and e = 1 0 ‘4 for itera tive N um erov m ethod. e= 1

m eans that we requ ired only one correction at each step. The

m atrices I SI2 for N=4 with the two convergence param eters are

shown in Table 6.1 and Table 6.2. The De V ogelaere's m ethod does

not require any iterations, the m atrix ISI2 for N =4 calculated from

it is given in Table 6.3.

T he tim es, in seconds, req u ired by the ite ra tiv e N um erov

m ethod and the De V ogelaere 's m ethod to calcu late the square of

the m odulus of the S m atrix are shown in Table 6.4 through Table

6.7 w here N is the size of set and p the num ber of processor. The

com putation can be divided into four phases, they are: preparation

the elem ents of coupling m atrix and p o ten tia l at m esh po in ts,

in teg ra tin g to m atching po in ts, ca lcu la ting the values o f B essel

functions at m atching points, the final calculation of S m atrix. We

rO 0 .7 5

100 steps at 0.007

350 steps at 0.014

F inal m atching point

0 .7

4 .9

6 .3 5

104

have d istrib u ted the com putation of the in teg ra tio n w hich takes

the m ajority of to tal com puting tim es. Though the com putation of

the other phases can be done in parallel, we do not do so since

little im provem ent is expected. The sum of the tim es spent on the

there phases is listed as 'ELSE'. Table 6.4 and Table 6.5 are due to

N um erov m eth o d w ith loop s tru c tu re and p ip e lin e s tru c tu re ,

respectively . T ab le6 . 6 and Table 6.7 show the Sim ilar results for

the De V ogelare 's m ethod.

S ince the loop structure requ ires less steps in com m unication

than the p ipeline structure , it should be m ore effic ien t than the

la tter. B ut the d ifference is very sm all. The effic iency for both

structures can be very high. For exam ple, using the De V ogelaere's

m ethod on pipeline structure for N=25, p=5, the efficiency reaches

0.99 in the integration phase w hile the overall efficiency is 0.96.

The m ost im portan t factor affecting the effic iency is the load

balance. Take the De V ogelaere 's m ethod on p ipeline structure as

the exam ple. For N =16, the com putation on 5 transputers take as

long as on 4 transputers. W hen p=4, each transpu ter handles the

sam e num ber o f eq u a tio n s ,i.e . 4 eq u a tio n s. W hen p=5, one

tra n s p u te r h a n d le s 4 e q u a tio n s and th e o th e r h a n d le 3.

Im p lem en ta tio n , in th is case , req u ire s the sam e tim e on 5

transpu ters as on 4 transputers. That is why som e figures look

u n u s u a l .

105

Table 6.1

IS I2 Calculated by iterative Numerov method for N=4 with e=1.0 (i.e. one correction)

Values of j andl

j ’ 1' 0 6 2 4 2 6 2 8

0 6 0.4133 0.1890 0.1518 0.2460

2 4 0.1891 0.6630 0.1140 0.0340

2 6 0.1517 0.1139 0.6740 0.0599

2 8 0.2459 0.0340 0.0599 0.6601

Table 6.2

I SI2 Calculated by iterative Numerov method for N=4 with e=10-4

Values of j and 1

j ’ 1’ 0 6 2 4 2 6 2 8

0 6 0.4134 0.1890 0.1517 0.2460

2 4 0.1890 0.6631 0.1140 0.0340

2 6 0.1516 0.1139 0.6744 0.0599

2 8 0.2459 0.0340 0.0599 0.6601

Table 6.3

IS I2 Calculated by De Vogelaere's method for N=4

j' 1’

Values of j and 1

0 6 2 4 2 6 2 8

0 6 0.4136 0.1888 0.1516 0.2457

2 4 0.1890 0.6632 0.1139 0.0339

2 6 0.1517 0.1140 0.6745 0.0599

2 8 0.2460 0.0340 0.0600 0.6602

106

Table 6.4

Times, in second, to calculate ISI2, iterative Numerov method for integration,

processors are connected in loop structure. Upper entries e=10-4, lower entries e=1.0.

INTEGRATION ELSE

NV 1 3 5

4 26.203 13.625 7.768 1.310
22.359 11.562 6.526

9 173.547 60.992 41.268 2.765
138.190 47.840 32.399

16 716.800 278.396 186.639 8.525
530.113 202.686 135.467

25 2115.068 827.251 457.800 25.425
1552.157 569.106 314.677

Table 6.5

Times, in second, to calculate ISI2, iterative Numerov method for integration,

processors are connected in pipeline structure. Upper entries £=10'4, lower entries

e= 1 .0 .

INTEGRATION ELSE

N V 1 2 3 4 5

4 26.203 13.505 13.773 7.686 7.996 1.310
22.359 11.460 11.671 6.445 6.669

9 173.547 98.529 61.443 61.972 41.878 2.765
138.190 70.901 48.200 48.598 32.815

16 716.800 374.182 279.385 187.266 188.125 8.525
530.113 273.031 203.338 135.946 136.599

25 2115.068 1185.535 828.684 648.489 461.006 25.425
1552.157 822.941 570.040 445.160 316.654

107

Table 6.6

Times, in second, to calculate ISI2, De Vogelaere's method for integration, processors

are connected in loop structure.

INTEGRATION ELSE

NV 1 3 5

4 37.477 19.177 10.504 2.186

9 239.097 82.688 55.244 3.641

16 938.468 358.698 238.912 9.401

25 2793.089 1025.405 564.169 26.301

Table 6.7
Times, in second, to calculate ISI2, De Vogelaere's method for integration, processors
are connected in pipeline structure.

INTEGRATION ELSE

N V 1 2 3 4 5

4 37.477 19.047 19.274 10.408 10.696 2.186

9 239.097 134.453 83.020 83.438 55.646 3.641

16 938.468 483.779 359.098 239.169 239.849 9.401

25 2793.089 1481.057 1025.098 799.243 566.219 26.301

108

Chapter 7

C o n c l u s io n

S everal e ffec tiv e p a ra lle l a lgorithm s for som e app lica tions

a ris in g from S ch ro d in g er eq u a tio n s have been d ev e lo p ed and

im plem ented on transpu ter netw ork. N um erov 's m ethod and De

V o g e la e re 's m ethod , from w hich the p a ra lle l a lg o rith m s are

developed , have been investigated .

D eveloping para lle l algorithm s is a in teresting and challenging

ta sk . I t is u n lik e ly th a t th e re are u n iv e rsa l m e th o d s fo r

developing parallel algorithm s. Though it m ay obviously exist for

som e a p p lic a tio n s , such as so lv in g a c o u p le d e q u a tio n s ,

para lle lism has to be exploited by some special transform ations in

m ost cases.

P ara lle l a lgorithm s are d iffe ren t from serial ones. H ere are

som e facts d iscovered in developing para lle l algorithm s:

1. A se ria l a lgo rithm m ay be genera lly ap p lied to several

applications. In contrast, a corresponding paralle l algorithm is only

su itab le for few particu lar applications. For exam ple, the N um erov

a lg o rith m can be used for all th ree app lica tions w hile we use

m atrix fo rm alism fo r a single equation and com m unications for

coup led equations.

2. Even fo r one app lication , there m ay be several d ifferen t

p a ra lle l a lg o rith m s, w hich are d eveloped from the sam e seria l

a lgo rithm . T heir effic iency m ay depend on the p rac tica l lim its,

such as the num ber of processors. To illustrate, in the bound state

109

prob lem , m ethods 1-3 are based on the sam e serial algorithm .

M ethod 1 is the m ost efficient, but it is only suitable for a parallel

m achine w ith four processors.

3. Some algorithm s, w hich are considered poor and ignored in

se ria l co m p u tin g , w ou ld perh ap s be m ore easily and m ore

e ffic ien tly p a ra lle lised . The secan t m ethod for the bound state

p roblem gives the evidence.

4. W e cannot expect that an effective parallel algorithm w ill be

as f le x ib le as the co rrespond ing serial one. F o r exam ple , we

arrange the in terva l sizes in advance ra ther than changing them

au tom atically according to the estim ated error.

The e ffic ien cy o f a p ara lle l a lgo rithm can never reach 100

percent. The factors affecting the overall efficiency are

1. C o m p lex ity : A p a ra lle l a lg o rith m m ay have g rea te r

com plexity than a serial one. This decides the upper lim it of the

p a ra lle l a lgorithm .

2. D istribu tion : A task can not alw ays be decom posed into

subtasks w ith the sam e size. The effic iency w ill be decreased

because of the im balance of d istribution.

3. C om m unication: The cost of com m unication depends on the

p h y sica l env ironm ent. On a tran sp u ter netw ork , the tim e for a

flo a tin g -p o in t arithm etic operation is very m uch longer than the

tim e to pass a rea l datum betw een p ro cesso rs . F or a sm all

netw ork, the cost of com m unication is relatively low.

110

4. S equential factor: Som e operations are strongly sequentia l.

B ecause of their effects, the efficiency o f the algorithm will fall

W ith the increasing of the num ber of processors.

I l l

R e f e r e n c e s

Allison, A. C., / . C o m p u t . P h y s . 6 (1970) 378.

Allison, A. C., A d v a n c e s in A t o m i c a n d M o l e c u l a r P h y s i c s , 2 5 (1 9 8 8)

A rthurs, A.M. and Dalgarno, A., P r o c . R o y . S o c . S e r ., A 256(1960) 540.

A hm ed, H.S., T u t o r i a l o n P a r a l l e l P r o c e s s i n g , edited by R.H. Huhn

and D.A. Padua (IEEE, 1981) 412.

Baylis, W .E. and Peel, S.J., C o m p . P h y s . C o m m . 25 (1982) 7.

Blatt, J.M ., J . C o m p u t . P h y s . 1 (1967) 382.

Burns, A., "P r o g r a m m i n g in O c c a m 2," A ddison-W esley, 1988.

Colem an, J. P. and M ohamed, J., M a t h . C o m p . 32 (1978) 751.

Colem an, J. P., C o m p . P h y s . C o m m . 19 (1980) 185.

De V ogelaere, R., J . R e s . N a t . B u r . S t a n d a r d s , 5 5 (1955) 119.

Flynn, M .J., I E E E T r a n s . C o m p t r , C-21, (Sept. 1972) 948.

Fox, L. and M ayer, D. F., " C o m p u t i n g M e t h o d s f o r S c i e n t i s t s a n d

E n g i n e e r s ," C larendon, Oxford, 1968.

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., W alker, D.

" S o l v i n g P r o b l e m s o n C o n c u r r e n t P r o c e s s o r s ," Vol. 1.

P ren tice -H all, 1988.

G autschi, W ., N u m e r . M a t h . 3 (1961) 381.

Gordon, R.G., in " M e t h o d s in c o m p u t a t i o n a l P h y s i c s ," V o l.10, edited

by B .A lder et al. Academic Press, New York, 1971.

112

Hearn, A. C., R e d u c e U s e r ' s M a n u a l , Rand Publication CP78, 1985.

H enrich, P., " D i s c r e t e V a r i a b l e M e t h o d s in O r d i n a r y D i f f e r e n t i a l

E q u a t i o n s " W iley, New York, 1962.

Hey, A.J.G ., J . C o m p u t . P h y s . 50 (1988) 23.

INM OS , " T r a n s p u t e r " 1985.

INM OS , " th e T r a n s p u t e r F a m i l y " 1986.

Ishibashi, K., Takada, H., Sakae, T., M atsumoto, Y., Katase, A.,

J . C o m p u t . P h y s . 80 (1989) 17.

Ixaru, L. G. and Rizea, M., C o m p . P h y s . C o m m . 19 (1980) 23.

Ixaru, L. G. and Berceanu, S., C o m p . P h y s . C o m m . 4 4 (1987) 11.

Ixaru, L. G. and Rizea, M., / . C o m p u t . P h y s . 73 (1987) 306.

Jesshope, C., " M a j o r A d v a n c e s in P a r a l l e l P r o c e s s i n g , " Gower

Technical Press, England, 1987.

Lam bert, J. D., " C o m p u t a t i o n a l M e t h o d s in O r d i n a r y D i f f e r e n t i a l

E q u a t i o n s " W iley, New York, 1973.

Lester, W .A., J . C o m p u t . P h y s . 3 (1968) 322.

Lyche, T., N u m e r . M a t h . 19 (1972) 65.

Pountain, D ., "a Tutorial Instroduction to Occam Program ," INMOS

L td, 1986.

Raptis, A. D., Ph.D. Thesis, Glasgow Univ (1977)

Raptis, A. D. and Allison, A. C., C o m p . P h y s . C o m m . 14 (1978) 1.

113

Raptis, A. D. and Cash, J. R., C o m p . P h y s . C o m m . 44 (1987) 95.

Schendel, U. "I n t r o d u c t i o n to n u m e r i c a l M e t h o d s f o r P a r a l l e l

C o m p u t e r s ," E llis Horwood, Chichester, 1984.

W a lla c h ,Y ., "L e c t u r e N o t e s i n C o m p u t e r l 2 7 : A l t e r n a t i n g

S e q u e n t i a l ! P a r a l l e l P r o c e s s i n g ," Springer-V erlay , N ew Y ork,

1 9 8 2

114

