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A b s tr a c t

Many o f  t h e  t r a d i t i o n a l  numerical  algorithms do not map easily

onto  the arch i l e c t u r e  o f  parallel  com pute rs  that  have  em erged

recently.  For the economic use of these expensive machines  and to 

re d u c e  the  total co m p u t in g  t ime, it is n e ce s sa ry  to deve lop  

eff ic ient parallel  algorithms.

The  purpose  of  the thesis  is to d e v e lo p  severa l  para l le l  

a lgorithms for the numerical  solution of  the Schrodinger  equation 

which arises in many branches of a tomic and molecular  physics.  

Common models of systems which are of  interest  may represent 

s tab le  c o n f ig u ra t io n s  o f  two p a r t i c le s ,  the  b o u n d  sta te  or 

e igenva lue  problem. Alternate ly  one may cons ider  e ither s ing le

c h a n n e l  or m u l t i - ch a n n e l  s ca t te r in g .  All  th ree  m a th e m a t i c a l  

models will be investigated in this work.

Emphasis  is placed on parallel  algor ithms for M IM D  machines.

All  the  a lgo r i thm s  have  been im p le m e n te d  and tes ted  on a 

tr anspu ter  ne twork  which is a M IMD m ach ine  w i thou t  shared 

m e m o r y .

Existing numerical  methods such as those ascr ibed to Numerov 

and De Vogelaere have been investigated and parallel  versions of 

them have been developed. Two exponentia lly  fi t ted versions of 

the  De Vogelaere  algori thm have been deve loped  and they are 

found to be more e f f ic ien t  than the norm al  De V oge lae re  

a lg o r i t h m .
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Chapter 1

I n tr o d u c t io n

1.1 Introduction

The past few years have seen a tremendous growth in interest in 

p a ra lle l  a rch itec tu res  and para lle l  p rocess ing . V arious new 

m achine  designs, p ro to types  and languages for para lle l  and 

d istributed  com puting have been proposed and some parallel 

systems have been made com m ercially  available. Examples of 

parallel computers are the CRAY-XMP, Amdahl's VP series, BBN 

A d v an ced  C o m p u te rs ' B u t te r f ly  P a ra l le l  P ro c e sso r ,  CD C's 

CYBERPLUS, Goodyear Aerospace Corporation's MPP and ASPRO, 

N C U BE's  NCUBE parallel P rocessing System s, Sension's TES 

(Jesshope, 1987). This achievement is largely due to the advances 

in VLSI technology.

The developm ent of parallel algorithm s, however, seems to 

have lagged behind the rapidly growth of parallel computers. For 

m any problem s, the availab le  a lgorithm s are sequentia l and, 

certainly, can not take the advantage of the parallel machines. In 

the area of numerical computation, much effort has been applied 

to the development of parallel algorithms for various applications. 

For example, many parallel algorithms in numerical linear algebra 

have been developed (Ahmed, 1981; Schendel, 1984). However, 

there is still a long way to go for many applications. Problems 

arising from the radial Schrodinger equations are the examples. 

For these problems, few parallel algorithm have been seen in the 

literature. In this thesis, we will investigate these problems and 

manage to develop corresponding parallel algorithms.
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1.2 Parallel computer models and Performance measures

Since parallelism is possible in three main units of a computer: 

control unit, processor and store, parallel com puters can be 

designed in various forms, depending on the application. Flynn 

in troduced a classification based on how the m achine relates 

instructions to the data being processed. He defined instruction 

stream as a sequence of instructions executed by a processor and

a data stream as a sequence of data on which the processor

operates (Flynn, 1972). According to whether the instruction or 

data stream are simple or m ultiple, he proposed  four broad 

classifications of machine organizations:

SISD: Single Instruction stream, Single Data stream;

SIMD: Single Instruction stream, Multiple Data stream;

MISD: Multiple Instruction stream, Single Data stream;

MIMD: Multiple Instruction stream, Multiple Data stream.

SISD machine is the conventional von Neumann model and the 

MISD category is empty (there are not this kind of machines

yet). Only the SIMD and MIMD com puters are considered as

parallel machines.

The SIMD category consists typically of array processors. All 

the processors interpret the same instructions and execute them 

on different data. These processors are under the control of a 

central control unit which provides instructions and operands for 

them. A m achine of this kind can have a large num ber of

processors. Early examples include the ICL/DA P (Distributed

A rray Processors) consisting of 4096 processors , the 16384 

processor Goodyear MPP (Massively Parallel Processor). The DAP
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has recently been reborn as a 1024 processor array design by 

A M T (A ssocia tion  M em ory T echnology). To achieve higher 

performance, algorithms for SIMD machines are best formulated 

in terms of vector and matrix operations.

MIMD machines consist of more than one processor, each 

executing a separate instruction stream. There are two kinds of 

these m achines, depending on whether or not processors share 

their memory. On the shared memory model, all processors share 

a global memory accessed by a processor-memory interconnection 

netw ork while the alternative is actually  a netw ork with a 

number of processors, each with its own local memory and each 

with the ability to com m unicate with other processors in the 

network. Networks of transputers fit this latter model and it is

on those that we will concentrate since an actual hardware

configuration is available.

To achieve high perform ance, the algorithm s for paralle l 

computers should have parallel structures. It is of the utmost

importance that the algorithm can assess the speed gain expected

from the operation of p processors in parallel. For this purpose 

the speed-up ratio S is introduced. It is defined as

S(o n A )  = ^ m e r e Qu i r e d by the  s e r ia l  a lg o r i th m
T (p ,  n, A)

where T(p, n, A) is the time required by parallel algorithm A to 

com pute a problem  of size n on a paralle l m achine with p 

p ro cesso rs .

Another useful m easure of parallel algorithm perform ance is 

efficiency E(p, n, A) defined by

3



E(P) n , A )=  T ^P’ A >
P

1.3 Transputer array

The transputer array is a nonshared m em ory MIMD machine 

which is built around an innovative chip called the transputer, 

designed by INMOS Ltd. The transputer consists of a CPU, 

communication channels and some memory on a single chip. The 

com m unication channels, or links, make it possible to build 

f le x ib le  m u lt i t ran sp u te r  ne tw orks  by co nnec ting  transpu te rs  

through links(Hey, 1988).

1.4 Applications arising from the Schrodinger equation

Differential equations play an important role in scientific research 

and engineering. In many branches of atomic, m olecular and 

nuclear physics, we often encounter the Schrodinger equation. 

Usually, there are no analytical solutions for these equations and 

solution must be obtained numerically.

The one-dimensional radial form of the Schrodinger equation 

may be written as

y"(r) + f(r)y(r) = 0  ( 1 . 1 )

w h e r e

f = E - l(l+ l)/r2 - V(r) and the potential function V(r) vanishes as r 

in c reases .

Boundard conditions are imposed over the semiinfinite range 

[0, 03), the solution vanishing at the origin, i.e. y(0)=0. The
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b eh av io u r  fo r large  values  of r is d ec ided  by physica l 

considerations. Here are two problems arising from eq .( l . l ) :

1) In the case of E<0, the solution will tend to an exponential 

function. It is only for some special values of E that the solutions 

display decreasing exponential behaviour and vanish for large 

values of r. These particular values of E determine the bound 

eigensta tes  of the system. The boundary conditions for the 

eigenvalue problem (or bound state problem) are

y(r) = 0  at r= 0  ,

y (r ) - » 0  at r ^ ° °  ( 1 -2 )

2) In the case of E>0, the solution of the equation will increase 

rapidly and then oscillate exhibiting sinusoidal behaviour. The 

solu tion  is param eterised  by the phase shift. The boundary 

conditions for the problem are thus

y(r) = 0  at r= 0  ,

y (r)—»Asin(cor-l/27t+8) as r—>°° (1 .3)

where co=Ve and 8  is the phase shift required (Allison, 1970; 

Raptis, 1977; Raptis and Allison 1978).

3) A nother application  of the Schrodinger equation is in 

molecular scattering where the model is represented by sets of N 

coupled differential equations. The coupled differential equations 

have the form :

Y " (r)+F(r) Y (r)=0 (1 .4)

where F, Y are NxN matrices and the elements in F are given by
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F ij=5ij [ki2-li(li- l) /r2 ]  as (1.5)

The boundary conditions are 

yij(r) = 0  at r= 0

y ij ( r ) ^ k irjii(k ir)5 ij + (ki/kj)1/2R ijkirn ii(k ir) at r->°°, (1.6)

where ji(x) and ni(x) are the spherical Bessel and Neumann func

tions, respectively . The R m atrix  contains all the necessary

i n f o r m a t io n  a b o u t  th e  p h y s ic a l  sy s te m ( A r th u r s  and  

Dalgarno,1960; Allison, 1970).

For the above three problem s, there are m any num erical

methods available. Allison(1988) has given an up-to-date review 

of the num erical methods that have been developed over the 

years to address these problems. The usual approach is direct step 

by step numerical integration and two of the mostly widely used 

methods are Numerov's method (Allison, 1970) and De Vogelaere's 

method (De Vogelaere, 1955; Allison, 1970; Coleman, 1980). Much 

effort has been made in enhancing the effic iency of these 

algorithms. The accuracy of some numerical formulae have been 

s ig n i f i c a n t l y  im p ro v e d  by  u s in g  e x p o n e n t i a l  f i t t in g  

techniques(Raptis and Allison, 1978; Ixru and Rizea, 1980). For 

coupled  equations, the s tandard m ethods generalise  to matrix 

form  and, in principle, matrix inversion is required. Efficient 

algorithms without matrix inversion have been developed(Lester,

1968; Allison, 1970; Baylis and Peel, 1982).

All the algorithm s available are based on some recurrence 

formulae and the integrations are carried out step by step. They 

are clearly sequential algorithms which make poor use of parallel

6



and vector computers. Though some of them are written in terms 

of matrices where parallel algorithms of linear algebra could be 

applied, the parallelism of most of them has to be exploited by 

users in the light of the specific computer model they use. For the 

phase shift problem, an initial investigation has been studied by 

Ishibashi et al.(1989), who suggested the use of a matrix 

formalism on vector computers and high performance has been 

ach ieved . Ish ib ash i 's  approach  is based  on a C auchy-type  

propagation matrix. In this thesis, parallel algorithms for single 

equation are developed by using matrix formalism but Numerov- 

like methods are used.

1.5 Contents

Since the N um erov and the De V ogelaere  a lgorithm s are 

frequently used methods for direct integration of these equations, 

we will give more details about the two algorithms in Chapter 2. 

These will include their derivations, truncation  errors, global 

errors and stabilities. The Exponential-fitting Numerov algorithm 

proposed by Raptis and Allison(1978) is studied. The exponential- 

fitting technique is generalized to both the Numerov and the De 

Vogelaere algorithms, resulting in various new formulae which are 

more efficient than the original versions. These new formulae can 

be applied to parallel com putation in a similar fashion to the 

original methods.

Chapter 3 contains a brief introduction to our Transputer 

network, which is considered as one kind of nonshared memory 

M IM D m achine, and to Occam, the native language for the 

transputer. A actual model is illustrated and is used to test all the 

parallel algorithms in latter chapters. Some simple examples are
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given to describe  w hat para lle l  a lgorithm s for transputer 

networks look like.

In Chapter 4, parallel algorithms for the eigenvalue problem 

arising from the Schrodinger equation are investigated. For this 

problem, one technique is 'matching in the middle'. We integrate 

both forwards and backwards and then the two solutions are 

matched at one or two points which are, normally, close to the 

middle of the integration range. The eigenvalues are calculated by 

solving the matching equations. In this chapter, we present four 

parallel algorithms which are based on the 'matching technique' 

for the problem  (Fox, 1968). Three of them are based on the 

Newton process for the solution of the matching equations while

the other is based on the secant method. One of them is obtained 

d ire c t ly  from  the co n v en tio n a l seq u en tia l  a lgo rithm . High 

perform ance can be achieved if  only four processors  are

available and the matching points are properly chosen. The other 

three are developed by using 4x4 or 2x2 matrix formalisms and

they can be run on a parallel m achine with any num ber of 

processors. Numerov method is the difference formula for these 

algorithms. All the variants of Numerov method can be similarly 

used and we take the Exponential-Fitting Numerov method as an 

ex am p le .

Phase shift problems are dealt with in Chapter 5. K. Ishibashi 

et al (1989) have described an algorithm designed for a vector 

computer. The algorithm is based on a Cauchy-type propagation 

matrix(Gordon, 1971). In this chapter, we generalize the matrix 

form alism  technique to Numerov method and change of the

8



stepsize is implemented. Emphasis is placed on the treatment of 

the stepsizes which are arranged in advance.

The parallel algorithms for coupled equations are presented in 

Chapter 6 . The technique used is to treat the solution of each 

equation as an independent process which com m unicates  with 

other processes only when a coupling term is encountered. Since 

communication depends on the topology of the network, two kinds 

of structures, the pipeline structure and the loop structure, are 

under investiga tion . The I te ra tive  N um erov m ethod and De 

Vogelaere method show their superiority since they are relatively 

independent of the coupling.

Chapter 7 contains the conclusion.
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Chapter 2 

Numerical methods for Schrodinger equation

2.1 Introduction

The radial form of the Schrodinger equation can be written

y"=f(r)y  ( 2 . 1 )

where f(r)= - [E - l ( l+ l ) / r 2 -V (r)]  and V(r) vanishes as r increases.

At the present time, there are several general direct integration 

methods available for solving initial value problems of the form 

of eq.(2.1). One approach uses linear multi-step methods such as 

the N um erov  a lgo r ithm (A llison , 1970), w hich  is based  on 

polynomial approximation. Due to the oscillatory (or decreasing 

exponen tia l)  behaviours  of the so lu tion , some authors  have 

suggested the use of special function approximation and many 

effic ien t algorithm s, which exactly  in tegra te  a special set of 

functions, have been developed in the past few years(Isaru & 

Rizea, 1980; Raptis & Cash, 1986). Such methods are generally 

classified under the heading "exponential fitted".

One problem of most linear m ulti-step methods is that they 

require  a matrix  inversion at each step in solving coupled 

equations. Though it can be tack led  by e ff ic ien t ite ra tive  

mechanisms(Allison, 1970), the additional computation would still 

take a significant proportion of total time consumption. Some 

hybrid  m ethods, such as De V ogelaere  algorithm , have more 

advantages in handling coupled equation and, therefore, are still 

widely used in multi-channel problem(De Vogelaere, 1954; Lester, 

1968; Allison, 1970; Coleman and Mohamed, 1978).

10



In this chapter, we investigate some of the direct integration 

m ethods and assess their suitab ility  for para lle l com putation. 

Since it is not easy to exploit the paralle lism  of com plicated 

m ethods, we only choose the simple and effic ien t methods: 

Num erov method, De V ogelaere m ethod and their exponential 

fitted versions.

2.2  L in e ar  m u l t i - s t e p  m eth o d  for  seco n d  order  

different ia l  equation

Following Lambert(Lam bert, 1973), for the initial-value problem 

of second-order differential equation

y ,(r)=f(r,y), r e [a , b] ( 2 .2 )

the linear multi-step formula may be written as 

k k
£  &iyn+i = h2£  Pi f(rn+i, yn+i)- (2.3)

i=0 i=0

where ak= l and laol + Ipol >0 .

The associated operator of (2.3) is

k k
L[y(r), h] = £  <Xiy(r+ih) - h2£  pi y"(r+ih). (2 .4 )

i=0 i=0

where y(r) is an arbitrary function, continuously differentiable on 

the interval [a, b]. If we assume that y(r) is m times continuously 

differentiable, then, on Taylor expanding about the point r, we 

o b ta in

11



m-1

L[y(r), h] = 2  C .h V ^ r )  + Ctnhmy (m)(r+k0h) (2 .5)
i=0

where 0 < 0  <1 

a n d

Co= a 0 + otj + . . .  + a k

C i=  a i  + 2 a 2 + . . .  + k a k (2 .6)

C2= (a i + 2 2a 2 + . . . + k2a k) -((3o + Pi + . . . + pk)

C i= “t t  (cx i + 2 ^ 2  + . . . + k*ak) 
i !

- + 2 i ' 2« 2  + • • • + k‘’2ak) for i> 2

The linear multi-step method is said to be of order p if, in(2.5), 

Co=Ci=. . .=Cp+i=0, Cp+2 ^ 0  .

or equivalently

L [r‘, h] = 0, i=l,2, . . .p+1, L(rp+2) * 0 (2 .7 )

C p + 2  is defined as the error constant ,and Cp+2 h p y lp *(rn) the 

principal local truncation error at rn. The truncation error can

also be represented as

L[y(r„), h] = Cp+2hp+2y (I>+2)(rn+ k 0 h) (2 .8)

where 0  < 0  < 1 .

2.3 T h e  N u m e ro v  m eth o d

2 .3 .1  D e r iv a t io n

Consider the two-step method

12



yn+i + a i y n + aoyn-i = h2(p2yn+i + Piyil+ PoyS-i) (2 .9)

Since there are five unknown coefficients in the equation, they 

can be chosen so that they the first five coefficients given in (2.7) 

are exact to zero.

Q = 0  i = 0, 1 ,2 , 3, 4

Solving this system we obtain

a 0= l, cci= 2

0 2 = Po= Y 2  ’ P i= Y §

The formula (2.9) take the form

yn+1 + 2 yn + y n-i =Y j<yn+i + 1 0 yn+  yS-i) ( 2 . 1 0 )

It is also be found that 

C5=0

C‘= - 2 l 0  (2 ' “ >

and the local truncation error reaches the order of six. The two-

step method (2.10) is known as 'Numerov method' .

2.3.2 L ocal a n d  global e r r o r

According to (2.5), (2.11) , the truncation error of eq.(2.10) is

UyCrn.O, h] = C6 h6 y <6)(r„.1+ 2eh)

= '  2 4 0 h6y<6>(r"-1+2eh) ( 2 ’12)

where 0 < 0  <1  .

13



When a differential equation is solved on the interval [a, b] the 

global error is the difference between the exact solution and the 

calculated value at the end point r=b. To investigate the global 

error of the Numerov method, we choose a stepsize h=(b-a)/N and 

establish an upper bound valid for all sufficiently small values of

h. To make thing simple, we just consider the equation of (2.1)

w h e r e

fn=f(rn) , rn=a + nh.

Suppose y(rn) is the exact solution of the initial value problem, the 

global error after n steps is

en=y(rn) - yn 

which satisfy the recurrence relations

y"=f(r)y

In that case, the Numerov formula is

fn+lYn+l + 1 0 f n y n +  fn - iyn - l ) (2 .13)

0  " ^ 2 ^ 2fn+i)en+i - (2 + “-^h 2fn)en + (1 - -“ h 2fn-i)en-i = L[y(rn_i),h]

(2 .14)

By substituting

£ n - ( l  - ^ 2fn)e n *

an=

14



5n= L[y(rn-i), h]

Eq.(2.14) becomes

en+ i= (2+ anh )en - £n-i + $ n (2 .1 5 )

Summing out the fitst n terms gives

n n

£  £i+i = £  [(2+aih2)Ei - Bi-i +5i] 
i=l i=l

which leads to the relation

n n

£n+i=£n+ h2X aiEi + X 8i + ei- eo 
i=l i=l

(2 .16)

Let D, A the upper bounds of 8 i, ai, respetively, and 

ri^m axfleil, I82I,. . .Jsil}

T h e n

len+il ^  lenl+h2nArin +nD +lei-6ol 

Notice that r|n+1=max{rin , en+i) 

so

Tln-t-l — l̂n"*"̂ 2nArln +nD +'ei-B0l

= ( l+ h 2nA)r|n+(nD -4-Ibi-boO

The sulution of this recurrence relation is

<nD -4-Ibi-bqI)

Now
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( l + h 2n A ) " '1= ( l + h ( r n-r0 )A )n‘1S e A(r“‘r0)2 ,

we obtain

T)n < e A('rn"r°)Z r | j+  1/A( eA('rn_r° ^ - l ) { h ‘2D + h '1lei-eol/(rn- ro )}

(2 .17)

and, at the final point, 

leNl ^ %

< (cileil-i-C2h "1 lei-eol }+c3h '2D (2 .18)

w h e r e

C l = e A(b_a)2 , c3= ( c i - 1)/A ,  c 2= c 3/ ( b - a )

If M is the upper bound of y(6 )(r),then, in the absence of rounding 

error D can be chosen as

D- 5 I o h‘ M

a n d

leNl = 0 ( h 4)

We have shown that the global error in the Numerov methods is 

0 (h4).

2.3.3 Stability

To investigate the absolute stability of the method we apply it to 

the equation



y "=ky.

Then eq(2.10) becomes

y n+i - ayn + y„.i = 0 (2 .19)

where a = 2  +

The characteristic equation of (2.19) is

V -  - aX + 1  = 0 (2 .20 )

and the method is absolutely stable when neither IX,1 1 nor IX2 I 

exceeds unity. Since X iX2 = 1, the condition required is satisfied if 

and only if both X \  and X 2  lie on the unit circle and this happens 

w h e n

a 2 -4< 0 or 0 < -kh2< 6 .

2.4 Raptis/Allison method

For general second order equation without first order derivative, 

the Numerov method is considered as the best two-step method. 

H ow ever, for our problem , the so lution of the Schrodinger 

equation exhibits sinusoidal behaviour in the case of E>0 or 

decreasing exponential behaviour in the case of E<0 when r is 

large enough. Therefore, the use of polynomial approximation is 

not the natural approach and several techniques based on special 

function approximation have been proposed. The pioneer work is 

the m ulti-s tep  m ethod with exponential fitting developed  by 

Raptis and Allison(1978).
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In the m u lti-s tep  m ethod  w ith  e x p o n en tia l  f it t in g ,  the

coefficients may depend on the interval h. The formula becomes 
k k
£ a i ( h ) y n+i = h2E pi(h)f(rn+i, yn+i) (2.21)

i=0 i=0

and the linear operator L is

k k
L[y(r), h] =Z (Xi(h)y(r+ih) - h2Z pi(h)y"(r+ih). (2 .22)

i=0 i=0

where a 2(h)=l .

Raptis and Allison's method is a two-step form ula of (2.21) 

which exactly integrates the solution of equation

y"=ky

If k>0, we let the operator L integrate exactly the functions 

1, r, r2, r3, e±Mr

where co2=k and then the coefficients are

a 2(h) = a 0(h) = 1, ai(h) = 2

( I  - e ^ 2 - w 2 h 2 e tor
p0(h) = p2(h)  S  h- 6 (2.23)

co2h 2( l  - e®1-)

„ co 2 h 2( 1 - e 2mr) - 2 ( 1  - e “ r ) 2
P l (h)  = -----------------— --------------------------------

co2h 2( l  - e wr) 2

In the case of k<0, let the operator L in tegrate  exactly the 

fu n c t io n s

1 , r, r2, r3, sin(cor), cos(cor)

where co2=-k and then the coefficients are

18



a 2(h)=a0(h)=l, ai(h)=2

Po(h)= p2(h)=
co2h2 -2(l-cos(coh)) 
2 co2h2(l-cos(coh))

(2 .2 4 )

2 -(co2h2 +2)cos(coh) 
1 co2h2(l-cos(coh))

The above formulae are affected by servere concellation for small 

value of h and can be efficiently computed by their power series 

e x p a n s io n

where z2= k h 2

It can also be found that the leading term  of  the local 

truncation error of both cases is given by

2.5 N u m erov - l ik e  schem e:  F ur ther  in v e s t ig a t io n  of

Raptis -All ison's  method

The basis set chosen by Raptis and Allison(1978) is { 9 i , 9 2 ,1, r, r2, 

r 3 } where cpi,cp2 are the linear independent solutions of equation 

y"=ky. One may consider that if there exists other basis sets { <pi, 

92* 93* 9 4 * 9s> 9 6  ) suitable for constructing similar methods. The 

generalised schemes of Raptis-Allison 's m ethod should have the 

p ro p e r t ie s .

a 2(h)= a 0(h)=l, ai(h)=2

1 1 1

(2 .25)

(2 .26)
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1. Accuracy. For an arbitrary function y, which is sufficiently 

differentiable, the local truncation error should be of order h6.

2. The equation y"=ky should be integrated exactly.

3. Independence. The coefficients of the formula are independent 

of r.

4. Symmetry. It is desirable that the coefficients ao (h ) ,  a 2 (h ) ,  

Po(h), p 2 (h) should satisfy ao(h)=<X2 (h), p o ( h ) = p 2 (h) so that the 

fo rm ula  can be reduced to the a ttrac tive  form  obtained  by 

substituting u = (ao(h) - h2 Po(h)f}y:

Un+i + anu n + un_i = 0 (2 .27)

a o (h ) -h 2 |Jo(h)f

Efficient parallel algorithm can be developed from eq.(2.27). 

A nother advantage of the symmetry is that there are no odd 

order terms in the truncation error. Therefore, if the leading term,

i.e. the sixth-order error term, of truncation error vanishes, the 

truncation error will be reduced to an eight-order error term.

Therefore, we choose oco(h)=a2 (h )= l,  Po(h)=P 2 (h) and the formula 

b eco m es

yn+i + « i(h )y „  + yn-i = h2 (p0 (h)yn+i + P i(h)yS+  Po(h)yn-i)

The three unknown coefficients a i (h ) ,  Po(h), P i(h) may be written 

in the form of power series.

ai(h)=ao +a2(kh2)+a4(kh2)2+a6(kh2)3+. . .

p i(h )= b o + b 2(kh2)+b4 (kh2)2+b6 (kh 2)3+. . . (2 .28)
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Po(h)=co +C2 (kh2)+C4 (kh2)2+C6 (kh2)3+. . .

T h e n

L[y(r), h ]= y(r+h)+ai(h)y(r)+ y(r-h)-h2(p oy(r+h)+P i(h)y(r)+ p0y(r-h))  

=F0(y)+F2(y)h2+F4(y)h4+F6(y)h6+ . . . (2 .29)

w h e r e

F 2n(y)= ~ \ , y {2n)+ a2ny for n=0 ,(2 n)!

F 2n(y)= 7^ T T y (2n)+ a2ny(2 n)!

'{ — — y( 2n)H — y(2n-2)+ + 2c2n- 2 y ^ + b 2 n - 2 y ^  }
1 (2n -2 )!  (2n-4 )!  2n 2y 2n 2y i

= ( — -----------— ) v ( 2n)_______ i/(2n-2) .  - 2 c 2 n-4v (4)
(2n)! (2n-2 )!  (2 n -4 )T  2! y

-(2C2n-2+b2n-2)y(2)+a2ny for n>0 (2 .30)

The first four operators of F2n(y) are 

Fo(y) = (ao + 2 )y 

F 2(y) = (1 - 2 c0 - b0)y" + a2k y  

F 4 (y) = ( j j  - c0 )y (4) - (2c 2 + b2)ky" + a4 k 2y

F 6 (y) = ( 3 ^ 0  ■ n Co)y(6> - C2 kyW  - (2c4 + b4 )k2y" + a6 k3y (2 .3 1 )

To give a method of 0 (h4), the first three term above must be 

zero. i.e.

2 + ao = 0,
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1 - 2c0 - bo = 0, a2 = 0,

- co = 0 , 2 c2 + b2 = 0 , a4 = 0 ,

So, a0 = 0, b0 = f - , c0 = , a2 = 0, m  =  0, 2c2 + b2 = 0 and
O 1 2

Fg(y) = - ~ - y (6) - C2ky(4) - (2 c4 + b4 )k 2 yM + a6k 3y (2 .32)

Since we expect that the formula exactly integrates solutions of 

the equation y"=ky, we obtain

F s(y)= - —j - h 6(D 2 -kI) {D4+( 1 +240c2)kD2+240afik2I) y (2 .34 )

Eq.(2.34) provides sufficient information for the derivation of a 

new class of methods. There are two free parameters in eq.(2.34). 

For given C2 , a6 , there are six linear independent functions 

corresponding to the solutions of F6(y)=0. We can prove that there 

ex is t  un iq u e  c o e f f ic ie n ts  a  i (h), p i ( h ) ,  p 2 (h) so that the 

co rrespond ing  fo rm ula  in teg ra tes  the six l inear  independen t 

solutions of F6 (y) = 0  exactly.

Let P2n(^) be the characteristic polynomial of the differential 

operator F 2n(y). (n>2 )

240 '

j j Y  - C2 - (2 c4 +b4)+ a6= 0 (2 .33)

Define the operators D,I by

Dy=y’ , Iy=y

T h e n

2 c 2 _ _ 2C2n-4o,4
(2 n -4 )!  * ' ‘ 2!
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-(2C2n-2+b2n-2)^2+a2n

Clearly, the condition that the method can exactly integrates the 

solution of F6(y)=0 are that p6 (^ )  is a factor of P2n(^ )  (n=4, 5, 

6 ,...)- Since there are three free coefficients C4 , (2c6+b6), a g in  

p s ( X ) ,  we can uniquely determine them by letting the remainder 

P 8 ( ^ ) / P 6 ( M  be zero. Similarly, C2 n, (2c2n + b 2 n), a2 n can be 

obtained in the same way.

The algorithm is:

1. Choose C2 , a6 .

2. calculate 2 c4+ b 4 by Eq(2.33)

3. For n=3, 4, 5, ..., calculate C2n-2 , (2c2n+b2n), a2n+2 by letting 

p 6 ( ^ )  be a factor of p 2 n+2 ( ^ )  and then ca lcu la te  b 2 n -2 from 

( 2 c 2n-2 + b 2n-2) and c2n-2 -

From the algorithm, we can easily obtain the following existing 

methods. The algorithm generates the coefficients in the form of 

power series where z=kh2. A REDUCE package is used to yield the 

explicit forms of the coefficients(Hearn, 1985).

Raptis-Allison method (1978):

This method is obtained by choosing a6=0, C2=- t t t t -
2 4 0

The leading term of L[y,h] is - —j —h 6(D 2-kI)D 4y.

The basis set is {1, r, r2, r3 , e®1-, e-£or) in which co2 =k. The series 

expression of the coefficients a i ( h ) ,p i ( h ) ,p 2 (h) are
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cti(h) = -2

(3o(h) = —— f 1 - —-—z2 + —-— - —   76 + )
12  1 2 0  5 0 4  1 4 4 0 0  ‘

Pi(h) = 4" {5 + “ rz2 — ■—z4 + — i z6 + . . . }
6  1 2 0  5 0 4  1 4 4 0 0  J

where z = kh2.

Ixaru and Rizea's method I (1980):

By choosing a6=0, C2=- —̂  , we obtain this method. The leading
X Z* \J

term of L[y,h] is 

1
2 4 Qh 6(D 2 - kI)2D 2y

The basis set is {1, r, ewr, e"“ r, re®1-, re_(Dr). The coeffic ien ts  

cc i(h),p i(h ),p 2(h) are

a i ( h ) = - 2

o zs inh (z)-2 cosh (z ) + 2  

Po(h)   z3sinh(z)

= _ L  { J .  _ L j2  +  _ L _ z 4 . 3J  z6 . .}
1 2 1 10  1680  3 0 2 4 0  1

Pi(h) - 2 ^co s^ 2^z^"^co s^^z ^"zs n̂ ^^z  ̂
z 3sinh(z)

= -  { 5+ ——z  ̂+ - 2 9  z<v. . }
6 1 10 3 3 6  3 0 2 4 0  ;

Ixaru and Rizea’s method II (1987):

This new method is generated by letting a6 = 2 4 9 "’ ° 2=" 

The leading term of L[y,h] is

24



L[y,h]= ' 2 4 0 h6<D2-kI)3y

The basis set is { e001-, e '0)r,rea)r, re"™ ,^® 1, r2e -cor.}

oc i (h)= 2 zsin h 2(z )~3 sin h(z )cosM z )~z 
3sinh(z)+zcosh(z)

=-2 + — 2 .6 - - J - ^ z 8+ ---- 5---- zio. . .
2 4 0  2 0 1 6  1 1 5 2 0

E..fhl-  zco sh (z )-s inh (z )
z2(3sinh(z)+zcosh(z))

= X -  { i . - L g 2 + - £ L z4 . .  1 2 1 9  6 
1 2 1 2 0  1 6 8 0  3 0 2 4 0 0  ' '  ' J

B (h)= 2 zs n̂ ^ 2^z^+s n̂^^z^cos^^z^~z 
1 z 2(3sinh(z)+zcosh(z))

± [ 5 + 1 * 2 + 1 1 * 4 .  J . 8 1 1 .  z6 )
6  1 2 0  3 3 6  3 0 2 4 0 0  " ‘

G a u ts c h i 's  m e th o d  1 (1961):

It is obtained by leting a6=0, C2=- the leading term of L[y,h] is
4 o

1 h 6 (D 2-k I)(D 2 -4kI)D 2y
2 4 0

The basis set is {1, r ,  e“ r, e_(or, e2cor, e '2cor). and the coefficients 

oci(h),p i(h),p2(h) are

a i ( h ) = - 2

R v _ cosh(2z)-4cosh(z)+3
0 4 z 2(cosh(2z)-cosh(z))

= - L f  l _ l z 2  +  _ Z — z 4 .  8 0 9  Z6 ,
1 2  4 1 2 0  6 0 4 8 0  "

a /u\ _3cosh(2z)cosh(z)-4cosh(2z)+cosh(z)
1 2 z 2(cosh(2 z)-cosh(z))
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-  L  { 5+ 1 ^ 2  - —L-^4 . . .391  6 |
6  1 4 2 4  6 0 4 8 0  ' ' '*

G a u ts c h i ’s m e th o d  II:

3 7
To yield this formula, we let a6= — , C2=- |  2 0 * êa^ nS term °f

L[y,h] is 

1
2 4 0 h6(D 2-kI)(D 2-4kI)(D 2-9kI)y

The basis set is { ewr, e‘“r, e2cor, e'2(or, e3ojr, e‘3o)r}. the coefficients 

a i(h ) ,p i(h ) ,p 2(h) are

2 ^co sh (3z)cosh (2z)-32cosh (3z)cosh (z)+ 27cosh (2z)cosh(z)  
ttl 27cosh (3z)-32cosh (2z)+ 5cosh (z)

= - 2  + -2-z3 - - ^ 4 + . .
2 0  1 2  8 0 0

r (u\-  3cosh(3z)-8cosh (2z)+ 5cosh (z)
0 z 2(27cosh (3z)-32cosh(2z)+ 5cosh (z))

=JL  f 1 . 1 ^ 2  + I l i z 4 . 5 3 3 9 9  .  ,
12  1 10  2 4 0  1 5 1 2 0 0  "

B (h)~ 2 ^co sk(3 z )cosh (2 z )-8 cosh (3 z)cosh (z)+ 3 cosh (2 z)cosh(z)
1 z 2(27cosh (3z)-32cosh(2z)+ 5cosh (z))

-  1 r 5  , 7 - , ,  35 ,  5 5 4 4 1
6  1 0 4 8  1 5 1 2 0 0  ‘ ‘

Other schemes can be derived by choose the free parameters c2 

and  a6 . Here is an example:

Exam ple : a6=0, c2=0:

L[y,hl= - — h6 (D 2-kI)(D 2+kI)D 2y
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The basis set is {1, r ,  ewr, e '“ r, sin(cor), cos(cor)} in which co2=lkl. 

a i ( h ) = - 2

Since there are numerous methods, it is essential to determine the 

best one, i.e. the one with the sm allest truncation error for 

e q u a t io n

where V and its derivatives V', V", V<3), V<4) are significantly 

smaller than k. This is equivalent to finding C2, (2 c 4 + b 4 ), a6 so that 

for a given solution y of (2.35), F6 (y) has its smallest value.

L e t

a = 2 4 0 c 2 , b=240(2c4+b4), c= -240a6 

th e n

F 6 (y ) = - C2k y (4)-(2 c 4+ b 4 )k 2y"+ a6k 3y

= - ^ y(6)+aky(4)+bk2y"+ ck3y)

= - - i —{ (a+b+c-l)k3y+(2a+b+3)k2Vy +2(a+3)kV’y’
^ T v

+k(aV2+ aV "+3V 2+7V")y +2(3VV'+2V(3))y'

P o ( h ) = ^  t 1 - 5 0 4 0

y"=(k+V)y (2 .35)

+(V3+7VV”+V(4)+4V'V')y) (2 .36)
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i 1 / 2Since lly'll— Ikl llyll, the first three dominant terms for large k are 

( a + b + c - l )k 3y, (2a+b+3)k2Vy, 2(a+3)kV’y’

They vanish only when a, b, c satisfy

a+b+c-l=0, 2a+b+3=0, a+3=0.

or a=-3, b=3, c=-l

Therefore, a$= C2=" 'go’» 2 c4 + b 4= ^  and the corresponding

set is { e®r, e 'G)r,re tor, re-®r.r2e®r, r2e'®r.}

In that case, we also have

F6(y) ={V(4)+4V,V,+7V V ,,+V3+4V,,k)}y+2(2V(3) +3VV,)y’

2.6 The De Vogelaere’s Algorithm

2.6.1 Derivation

The Numerov and Numerov-like methods such as Raptis/Allison 

are implicit. This causes no problem when they are applied to a 

single channel equation of form (2.1). However, when generalize 

them to coupled equations, we need to do some additional 

com putation for matrix inversion or equivalent. De Vogelaere 

constructed a hybrid algorithm, which involves the calculation of 

y', and which is explicit for the equation y"=f(r, y). This 

algorithm  does not require any matrix inversion for coupled 

eq u a tio n s .

Consider the relations
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k k k
S aiyn+ i = h2 E P iy J +i + hX nyi+ i 

i=0 i=0 i = 0
(2 .3 7 )

k k
2- a iyn+i = h Z PiyH + i

i=0 i=0
(2 .38)

where a k = l ,  a k = l .

The associated operators are, respectively,

k k k
L i[y(r), h] =Z on y(r+ih)- h2 Z Pi y"(r+ih)- h S  yiy’(r+ih). (2 .39 )

i=0 i=0 i = 0

k k
L 2 [y'(r), h] =Z aiy'(r+ih) + hZ piy"(r+ih) (2 .40)

i= 0  i= 0

Eq.(2.38) is clearly the general multi-step formula. The values of 

y, y' at the mesh points can be calculated by the two formulae. 

Since we are interested in explicit method, at least one of the two

formulae must be explicit. In order to balance the accuracy of the

two formulae, we let the first one be explicit. In the case of k=2, 

the coefficients of the formula of (2.37) with highest order are

012= 1, a i  = -(1+ ao) ,

P o = j ( 3 - a o ) ,  Pi = - j ( l + a o ) ,

T o  =  7  ‘  a o ) >  W  =  j ^ 1 7  +  a ° ) ’

The error constant C5 is (31-ao)/6!. The formula is zero stable 

when a o  lies in [-1, l](Lam bert,1973). W hen a o  =1, it has the
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smallest error constant. But if we choose ao =-1, the formula has 

its tidest form:

yn+2=yn+2hyn+-^-{ 4yn+i+2yn) (2 .4 1 )

The best formula for (2.38) is of order 0 (h 5) is obviously Simpson' 

ro le

yn+2=yn+ j{yn+4yn+i +yS+2) (2 .42)

With (2.41) and (2.42), yn+2 , yn+2 can be calculated step by step.

The starting values y i,  yi must be calculated by other formulae. 

De Vogelaere found that it is not necessary to calculate the first 

derivative y' at every point if yn+i can be obtained from yn, yn_i, 

yn . In his method, one general step consists of two steps:

y 2n+l = y2n + hy2n + ^ “ (4 y 2n " y5n-i ) (2 .43a)

y 2n+2 = y2n + 2 hy2n + 4 y2n+i + 2 y2n) (2 .43b)

y in +2 = yn + | (y 2 n  + 4yS„+i + y 'in+2)  (2 .43c)

The neglected terms for y2n+i, y 2n+2, y 'in+ 2  are of order h4 ,h 5 ,h 5 

respectively. Though the local truncation error in y2n+i is of order 

h 4 , it contributes a term of order h6 to the error in y2n+2 and h5 

in yin+2 - More details about the error are discussed later.

One may notice that the above method is not self-starting. To start 

the integration, y_i can be calculated from



Though the leading error of (2.44) is h3, its contribution to yi is 

h 5 which is less important than the truncation error in yi.

2.6.2 Local and global error

From  (2.43), the linear operators for y2n+i, y 2n+2, y 2 n+2  are, 

r e sp e c t iv e ly ,

L i[ y ( r ) ,h ]J U y 4 > (r+e lh)
1 o

L 2 [ y ( r ) , h ] = ^ h 5 y <5)( r + e 2 h )  ( 2 . 4 5 )

L 3 [ y ( r ) , h ] = -  i h 5 y ( 6 ) ( r + e 3 h )  

where 0 < 0 i,0 2 ,0 3< l .

W e investigate the global error in a manner similar to section

2.2.1 and fix the interval h=(b-a)/2N.

L e t

ej,u =h(y(r2 „-i) - y2n-i), e{,2) =y(r2„) - y2n , e” > =y'(r2n) - y2n

as recall that from (2 .1 ), y"(r2n) = f2ny(r2n).

From (2.37)-(2.39), e ^  ( i= l ,2,3) satisfy the recurrence relations 

e ^ h L i t y f o n ) , ! ! ]  - | h 2 f 2n. i e ^  + h ( l + | h 2 f2n)e<,2> + h2e<3>

e ^ ! =  L 2 [y(r2n),h] + h(l+  | h 2f 2n)e<,2) + 2heJ13) + | h f 2n+ieJ11] 1

e ^ j =  L3 [y(r2„),h] -t2*f2ne®  + e£3) + | - f 2n+ie ^ 1 +hf2n+2e ' 1] 1

The relation may be written in matrix form as
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■̂ n̂ n+1- Bnen +8n

w h e r e
0 \
0

1
J

^ - |h 2 f 2„.i h + |h 3 f 2n h 2 ^  

0  l + | h 2 f 2n 2 h

V
8 n= (h L ,[y (r2n),h] , L2 [y(r2n),h] , L3 [y(r2n),h] )T

H ence

llen+lll- < IIAn-lBnlUlenIL + IIAi^Snlloo

The sums of the absolute values of the row elements of the 

matrix A ^B n  are

and therefore for all sufficiently small h there exists a positive 

constant b such that

N A n l B n l l o o < l + b h

Similarly, the absolute values of the elements of the vector A^Sn 

a r e

h + 0(h2), 1 + 2h + 0(h2), 1 + | ( 4 l f 2n+il + lf2„l)h + 0(h2)

■T2h 5 l y (4)( r 2 n ) l + 0 ( h 6 ) ,  ^ h 5 | y (5)(r 2 n ) |+ 0 ( h 6 ) ,
1 0  4 j

J h 5 f 2 n + l l y <4 )( r 2 n ) l - ^ h 5 l y <6 ) ( r 2 „ ) l + 0 ( h 6 )



Therefore, there exists a constant M>0 so that 

lA^nlloo < h5M

so,

llen+illoo < (l+bh)llenlloo + h5M

S ( l+ b h ) n+1lle0 ll~ + -̂ 1 - lv>)n*1- 1hsM
b h

s  e (n+i)hb||e0||M + e(n+' )hb- V m  (2.46)
b

If  yo> yo are exact, lleolloo is 0 (h4) w h i c h  comes from the 

estimation of y_i and the global errors in y2N, y2N are bounded by 

a term proportional to h4. The error in y2N-i is, however, only to 

h3 (notice that h ( y ( r 2 N - l ) - y 2 N - i ) = 0 ( h 4 )  )

Thus the global error in De Vogelare method is 0 (h 4).

2.6.3 Stablity

To investigate the absolute stability of the De Vogelaere's method 

we apply it to the equation

y"=ky

Then with p=kh2 

y 2n+l=y2n+ hyin + ^ ( 4 y 2n-y2n-l)

y2n+2=y2n+2hy2n+ 4 y2n+l+2 y 2n)

hy2n+2=hyn+^(y2n+4y2n+l +y2n+2)

Let vn= (y 2n-i, y2n, hy2n)T , we obtain vn+i= A v n where
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A=

r i
4

- 3 P
4 1

v ' ?  ‘ 3P

r
2  2 "7TP

O V i

0

1

f 1 1 ^ 2

e 9  l + 3 »

J

\

o l 4 | p  2

0
3* J

1+? 1

2 + | p

P ( ^ P 2 + Y P + 2 ) l + 2 P + | p 2

The characteristic polynomial of matrix A is

de t(X I-A )= X 3-(^p2+  4p+2)X2-( |p 2 +  i p - l ) X - 4 p  
o j  3 3 o

It can be found that none of the eigenvalues of A exceeds

unity only when p falls in [-2, 0]. Thus the region of absolute

stability is [-2, 0]. (Coleman and Mohamed, 1978)

Coleman (1980) has enhanced the de Vogelaere's method by 

attaching another term onto the first formula. The accuracy is 

slightly im proved since the local trancation error of the first

formula is of order 0 (h 5) rather than 0 (h 4). However, this formula 

becomes implicit for the equation y"=f(r,y) and the algorithm is 

not suitable for coupled equations. Ixaru and Berceanu (1987) 

applied  the exponential fitting technique to Coleman's scheme.

Their exponential fitting version retains the m ajor defect of 

Colem an's method. In the following sections, we will directly 

improve the de Vogelaere's method.
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2.7. Simple modification of De Vogelaere’s algorithm

When we apply the algorithm to equation (2.1), we can estimate 

the higher order derivatives of y by Blatt's method(Blatt, 1967). 

That is, for sufficient large r,

y (p + 2 )~ fy (p )  (p  = 0 ,  1, . . . )

or y ( 2n) ~ f n y ,  y (2 n + l )~ fn y '  ? (n=l, 2 ,  . . . )

Then the leading terms of the local truncation errors of (2.43a), 

(2.43b), (2.43c) are approximatively given by

By adding the error corrections to the formulae, we obtain the the 

Modified De Vogelaere's algorithm for eq(2.1):

y2n+l = y 2n+ hyin + ^ ( 4 f 2ny2n-f2n-iy2n-l ) + ^ h 4 f2ny 2 n (2 .4 7 a)

y 2 n + 2 = y 2 n + 2 h y 2 n + 4 f 2n+l y 2n+l+2 f 2ny 2n) + ^ h 5 f2ny 2 n (2 .47b)

h 1
y 2n+2= y n + j ( f 2nY2n+4 f 2n+iy2n+l +f2n+2y 2n+2) - ^ Q ^ ^ n y  2 n (2 .47c)

where now the leading terms of the truncation error are: 

R M A = ^ h 4 (y 24n - f2„y 2n)

R M B = ^ h 5 (y^5„) - f 2ny 2n) (2 .48)
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RMC=' 9 0 h 5 ( y 2"' f2ny2n)

When f is a constant, all the three leading terms vanish and the 

truncation errors of the three formulae are of order h5 ,h 6 ,h 6 

re sp e c t iv e ly .

2.8. E x p o n e n t ia l - f i t t in g  De V ogelaere  m e th o d

Sim ilar to Raptis/A llison method, the special function fitting 

technique can be also applied to the De Vogelaere’s method. The 

three formulae can be treated individually. Since there are four 

coefficients in each formula, for any basis set come from a forth 

order hom ogeneous linear d ifferentia l equation with constant 

coefficients, there exist the corresponding formulae. Consider the 

following formulae:

Allowing all the coefficients to depend on h, we choose {1, r,e“ r, 

e _wr} and {ewr, e '(or, recor, re 'wr} as basis sets.

Case 1: (1, r ,  ewr, e '051*} as basis set

« a ,i=1, Pa ,1 = 1

y2n+l = a A, i y2n + p A j h y 2n + ^ ^ Y A .iy  2irYAf0y 2n-l)) (2 .49a)

y2n + 2=OCB,oyn + 2 pB,ohy2n+ ”3 ^ ^Yb,iy2n+l+2 YB,0y 2n) (2 .49b)

y2n+2=Pc,0yn+ t(YC,0V 2n+4 yc,iy 2n+l +YC,2y 2n+2 ) (2 .49c)
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_3^2sinh(z)cosh(z)-s inh(z)-zcosh(z)  
A>1 2  z 2sinh(z)

= 1+  - —~ - z2h----- -— z4 +. . .
1 2 0  1 0 0 8

a B , o = l ,  Pb ,o= 1

3 s in h (2 z )-2 zYr i =>— i
’ 4 z 2sinh(z)

= 1 +  J - z 2 +  . 1 3  z 4  +
3 0  2 5 2 0

Ozcosh(z)-sinh(z) 
YB-0 = 3  "  Z2Sinh(z)

=1- J _ z2 + _ 2 ^ j4 + . . . 
15 3 1 5

Pc,0= l

~ s inh(z )-z
Yc ,o=Yc ,2 = 3 —  s /

z (c o sh (z ) - l )

= 1 - J ^ 2+ _ i —z4+. 
3 0  8 4 0

3 zcosh(z)-sinh(z) 
^ C>1 2  z (c o sh (z ) - l )

=1+ - i - z 2  — z4 +.
6 0  1 6 8 0

where co2=k, z2= k h 2.

The leading terms of truncation errors are

REA= ^ h 4 (y (4 )- k y 2„)

R E B = ^ h 5(y^5„) - k y ^ )

R e c = - ^ h 5 (y 26„- k y ^ )

(2 .50)

(2 .51)
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Case 2 : The basis is { ecar, e-®? re®? re-® 1}

a A.i= cosh (z){l- }
tanh(z)+z

= 1- ——ẑ -f- 
8

o _ s inh(z) 2 tan h (z )
A>1 z tanh(z)+z

= 1+ t^ 7tZ4 +. . .
3 6 0

zcosh(z)-sinh(z)
z 2(sinh(z)+zcosh(z))

= 1 . ^ 2 + ^ U 4 +. . .
3 0  1 2 6 0

_3 cosh(z)(z2sinh(z)-sinh(z)+zcosh(z))
2  z2(sinh(z)+zcosh(z))

= 1 + 1 9 z 2 . _ L 7 ^ 4 + . . .
6 0  2 5 4 0

sinh(z)(z2+zsinh(z)cosh(z)-2 s inh2(z))
B,° sinh(z)+zcosh(z)

4 5

R _[Sinh2(z)(2cosh(z)-zsinh(z))
8 ,0  z(sinh(z)+zcosh(z))

4 5

_3 2zcosh (2z)-s inh (2z )
^ 8>1 4 z2(sinh(z)+zcosh(z))

=1+ _ L z2+ _ L _ z4 +. . .
1 5 5 0 4

3 z2s in h (z )-zco sh (z )( l+ c o sh 2(z)) +sinh(2z)cosh(z) 
^B,° 2  z2(sinh(z)+zcosh(z))
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= 1— ——Z2  1—z4 4.
15 3 1 5

Pc,o=l

~zcosh(z)-sinh(z)
YC,0~YC,2= 3  z 2  gW (z)

= 1 - -Uz2+ +. . .
15 3 1 5

3 s in h (2 z ) -2 zy c  1 =3— * •••'
’ 4 z 2sinh(z)

( 2 ' K )

The leading terms of truncation errors are 

3
R E A =fgh 4 (y (4 )-2 k y ^n+ k 2y 2n)

REB = ^ h 5 (y^5n) - 2 k y ^ + k 2 y i n) (2 .53)

Rec=- k y ^ )

The R E D U C E package  is used to genera te  all above 

coefficients(Hearn, 1985).
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Chapter 3 

Transputer Network

3.1 Transputer and Occam

The launch of the transputer designed by INMOS has opened the 

way to construct low-cost MIMD computer systems with great 

f lex ib ili ty  and enorm ous amounts of p rocess ing  power. The 

transputer is a powerful 32bit reduced instruction set computer 

w ith  some memory on one chip. U nlike other m icroprocessor 

chips, the transputer is designed to com m unicate  with other 

transputers by means of high-speed poin t-to-point serial 'links' 

rather than the usual 'bus'. Moreover, these links are entirely 

im plem ented  on the transputer chip. Present transputers have

four links each, with no need for any external support logic.

A transputer network consists of a master transputer and a set 

of several slave transputers. The master transputer handles the 

user interface and responds to requests to transfer programs and 

data to slave transputers. Since each transputer has four links, a 

wide range of topologies can be configured. Fig3.1 illustrates the 

examples of link topologies of eight slave transputers.

The pipe structure is the simplest one and it is easy to 

p rogram . C om unication among transputers  may require  many

steps. For example, it takes 7 steps to sent a message from Ti to

Tg. This structure is suitable to parallel algorithms requiring less 

co m m u n ica tio n .

In the tree structure, transputers are arranged in a hierachical 

structure. Com m unication is controlled by parent transputers.
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For exam ple, controls T7 and Ts. The maximum length of 

communication, in this case, is 4 .

The skip structure uses all four links of each transputer. Any 

communication can be completed within two steps. This structure 

is designed to reduce the total communication time for general 

a lg o r ith m s .

Fig3.1

Pipe: “  T 1  T 2  T3  T4  T5  T6  T7  T8 —

Tree:

T3
T4

T5

T6
T7

T8

T2

T3 T4 T5T2 T6 T8— T1 T7

The transputer is programmed in Occam, a parallel programming 

language associated with the design of the transputer. The most

important features of Occam is the use of processes and channels. 

In Occam, a process is an independent computation, with its own 

program and data, which can communicate with other processes

executing concurrently. A channel provides a one way connection

betw een two concurrent processes. There are three prim itive

processes in Occam:
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v:= e a s s i g n  expression e to various v.

c ! e o u t p u t  the value of expression e to channel c

c ? v in p u t  various v from channel c.

A collection ol processes is also a process. Communication between 

processors is synchronized. If a process sends a m essage to 

another by a channel, com m unication takes place when both 

processes are ready. The sending and receiving processes then 

proceed, and the message to be sent are copied from the sending 

process to the receiving process (INMOS 1985, 1986, Pountain 

1986, Burn 1988).

To run a program on a transputer network, one has to map the 

processes of the program to individual processors. If there are p 

transpu ters  availab le , the p rogram  should be w ritten  as p 

processes (a collection of processes is also a process), and each will 

be allocated to a corresponding transputer. External channels of 

each process would be finally placed onto the corresponding 

physical links of the network. Since the connecting graph of the 

logical network should be the subgraph of the connecting graph of 

the physical network, some adjustment is required. For example, 

suppose three concurrent processes P i , P2 , P3 are connected to 

each other and we wish to map them to a transputer network 

consisting of three transputers T j,  T2 , T3 on which T1 and T3 are 

not connected directly. We can attach a process A to P2 w h ic h  

deals with the communication between process P i and P3 and is 

under the control of P2 . See fig 3.2.
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Fig 3.2

P 2

P2

a d ju s t

P3 P3

m a p
T3T1 T2

P2

3.2 An actual network configuration

The transpu te r  netw ork  for the im plem enta tion  of para lle l

algorithms presented in later chapters consists of five transputers, 

one on board IMS B004 and four on board IMS B003. The IMS 

B004 is connected to an IBM PC XT which provides the access to 

the terminal and the filing systems. The transputer on IMS B004 

serves as the master transputer which provides links for the use 

of m ultitransputer systems. The configuration of the complete 

system is shown in the diagram on Fig3.3. It can be seen that 

there are some free links which can be connected  to other 

transputers to form a larger network.

T he  tra n sp u te r  ne tw o rk  is run  u n d er  the  T ran sp u te r

Development System (TDS) which provides a complete enviroment 

for the editing, compiling, configuring and executing of Occam 2  

p ro g ra m s .
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A complete program for the network consists of two parts, the 

EXE part and the PRO G Rpfa part. The EXE part runs on the master 

transputer and the PROGRAM part runs on the array. Only the EXE 

part can communicate with I/O devices. An executable unit for a 

transputer is an independent procedure with only commnication 

channels on the heading. The PROGRAM  part contains several 

procedures and placement statements which map the procedures 

onto transputers and logical channels in the headings onto 

physica l  links. P rocedures m apped onto Tq or T3 may have 

p lacem ent statem ents within them which make com m unication 

between the array and the master transputer possible.

Fig3.3

Link map of a network of transputers

TO T1

T2T3M a s te r

IBM PC

B004 boarc
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3.3 P a ra l le l  a lg o r i th m s  fo r  t r a n s p u te r  n e tw o rk s

It is im possib le  to describe what a paralle l p rogram  for a 

tra n sp u te r  ne tw ork  looks like because  of the topo log ica l 

d ifference between the algorithm and the network. In general, 

the program comprises of a number of processes which will be 

as s ig n ed  to d iffe ren t transpu ters . The a lgo r ithm  for each 

p ro c e sso r  cons is ts  of  two basic  phases: com p u ta tio n  and

communication. In the computation phase, the processor performs 

som e basic com putation . In the com m unica tion  phase, the 

processor exchanges necessary results, including some information 

w ith  its im m ediate  neighbours  and may have the task of

transferring data to other processors. To illustrate the problems 

and possible ways of overcoming them we follow through the 

example of Jacobi iteration in same detail.

J a c o b i  m e th o d  fo r  th e  so lu t io n  o f  s im u l ta n e o u s  l in e a r  

e q u a t io n s  Ax=b

The Jacobi method is

Dx(n+l)=b -(L+U)x(“) , 

or x(*+D=-D-i(L+U)x(n) + D_1b , n=0,l, . . .

w here A =L+D+U. The iteration is term inated  when all the

differences between the new values and the old values are less 

than some tolerance. One approach to implement the iteration is 

to divide it into N processes for a NxN matrix A, each processing 

one component of the vector x. Here we consider N=4.
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The algorithm for the i-th component of x looks like:

Pi: while not converged do 

begin

CPi: compute xfn+1̂  and a local convergent message q

which is true if x fn+1̂  - x falls within the required

limit required.

CMi: send x fn+1\  q  to the neighbours of Pi and receive all

the necessary x fn+1̂  q  ( jo i )  for the next iteration.j 1 J
convergence:=ciAC2AC3AC4 — a simple calculation to decide whether or

not the process continues.

end;

CM i depends on the practical network. It may depend on the 

structure of A(for sparse matrix) if we want to reduce the cost of

communication. F ig3.3 gives the exam ples of three practical

networks and we will use each in turn on our example. Suppose Pi 

is mapped to transputer Ti. We let Ly represent the link from Ti 

to Tj. The link sets of network a, b, c are

a: {L12, L21, L23, L32, L34, L43}.

b: {L12, L21, L13, L31, L14, L41, L23, L32, L24, L42* L34, L43} •

c: {L12, L21, L23, L32, L24, L42).
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fig 3.3 

a) Tl T2 T3 T 4

b)
T3

T2

T4

Tl
Tl

T2
c)

T3 T4

Case 1: A is a dense matrix

a) The communication can be completed in three step. CMi is 

similar to CM4 and C M 2 to CM3. We consider CM i and CM2 :

SEQ {CMi} 
1: PAR

Ll2 ! X <n+1>, Cl 

Lm ? x ' n+1>,C2

L21 ? X<n+1), C3

3: L2 1 ? x ln+1),c 4

SEQ {CM2 )
PAR

L12 ? X <n+1), Cl 

L2 1 ! X<n+I>,C2 

L2 3 ! x f +1>,C2 

L32? x < n+1), C3

x < n+1), c 3

PAR
L2 1 ' « 3 

L23! x ‘n+1),c i  
L3 2 ? x<n+1), C4 

L21 ! x ' n+1), C4

b) Pi can reach all the other processes and therefore all CMi are 

similar. To illustrate, CMi can be written as
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PAR

L12! x ;n+i), Cl { send to P2 }

L13! x<n+1), Cl { send to P3 }

L14! x<n+1>,ci { send to P4 }

L21 ? X<n+1),C2 { receive from P2 }

L31? x f +1),C3 { receive from P3 }

L41? x ' n+1),C4 { receive from P4 }

c) Only P2 can communicate with all the other processes. CM2

may be written as 
SEQ 

PAR

L21! X 2n+1), C2 { send to P i }

L23! X<n+1>,C2 { send to P3 }

L24 ! x '" +1),C2 { send to P4 }

L12? x <n+1), Cl { receive from P i }

L32 ? x f +1),C 3 { receive from P3 }

L42? x 'n+1), C4 { receive from P4 }

PAR {transfer data for other Processes}
L21! x^n+1), C3, X^n+1), C4 { send to P i }

L23! (n+1) (n+1)
4 9 1 ’ 1 { send to P3 }

L24! X £n+1), Cl t X (3n+1), c3 { send to P4 }

C M ], CM3 , CM4 are similar and they must correspond to CM2 .

Case 2: A is a tridiagonal matrix.
if A is tridiagonal, it is not necessary to access all x jn+1) for the

next itera tion . However, since the convergence param eter is 

determined by all cj ( i= l, . .  4), every process still requires to 

communicate with all other processes. If the number of iteration 

can be estimated, then we can get rid of the communication of c* 

This would be very beneficial since for a large network j ) x €  it is 

time- consuming and very difficult to handle.
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a) The communication can be completed in one step. CMi only

requires to communicate with its immediate neighbours once.

PAR {CMi} PAR {CM2}
L12! x j n+1> L 12? x <"+1>

L 2 1 ? x < " +1> L21! x < " +1>

L23! x<n+1) 
L32? x

b) CMi in a) can be used for network b)

c) Since T3 and T4 are not connected, the com m unication 
between them proceeds through T2 . CM2 is
SEQ {CM2}

PAR
L2i ! x<n+1)
T 1 (n+1)L23 • X 2 

Lj2 ? x <n+1>

L32? x f +1>

PAR {transfer data for other Processes}
t  I (n+1)L23 • x 4

L24 ! x<n+1)

For a dense matrix of A, the number of communication steps 

on network a), b), c) are 3, 1, 2 respectively while they are 1, 1, 2 

for a tridiagonal matrix of A. From the example we can find that a 

good network need not be one with small diameter.

The above examples dem onstrate the level of programming 

thought and action required to distribute computation efficiently 

over a number of processors.
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Chapter 4 

Parallel Algorithms for an Eigenvalue Problem

4.1 Eigenvalue Problem

A com m on problem  involves a differential system which has 

solutions only for some particular values of parameter occurring 

in the system. These particular values are the eigenvalues of 

the system and the corresponding solutions are the e ig e n fu n c t io n s .  

For example, the equation y"= -A,y has the general solution 

y=A sin(V X r) + B cos(Vx r).

If we impose the boundary condictions y(0 )=y(7c)=0 , we find first 

that B=0, and then that A=0 unless V X is integral. The system 

therefore has nontrivial solutions only if X = k 2, k= l,2 ,3 ,  ....These 

are the eigenvalues and the corresponding eigenfunctions are 

y=A sin(kr).

A typical problem arising from the radial Schrodinger equation 

is the system:

y"=(k+g(r))y

y(0)=0, y(co)=0 (4.1)

where g(r)= C ( t+ l ) / r 2 +V(r) and the potential V(r) vanishes as r 

increases. The above system has nontrivial solutions only for 

certain positive values of A,, the eigenvalues. These eigenvalues 

correspond to the bound states in physics.

4.2 Numerical analysis

The approach for solving the eigenvalue problem  numerically 

invokes initial-value methods. We may replace the system by one
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of initial type, for which X is estimated and ultimately adjusted 

until the solution satisfies the boundary conditions. If we impose 

another initial condition, say, y'(0 )=l ,  the actual solution, for a 

given X, will increase quickly in the region between the origin and 

the inner turning point (i.e. the first zero of A,+g(r) ). Then it will 

oscillate in the region in which X+g(r) is negative. After the outer 

turning point, it exhibits exponential behaviour. For large r, the 

solution is a combination of exp(V X r) and exp(-V X r). If X is an 

eigenvalue, the positive exponential must not be present and the 

solution tends to a negative exponential function. Otherwise, the 

solution will not satisfy the boundary condition.

Since the solution is a continuous function of X , if the solution

for given A,i increases exponentially for large value of r and the 

solution for another value X 2 , say, grows to the opposite sign, 

there must be at least one eigenvalue between A,i and X 2 . The 

eigenvalue can be calculated by a binary search technique.

The disadvantage of the above method is that although we can 

obtain accurate eigenvalues, the calculated  eigenfuntions are 

poor. The reason is that even if X is the exact eigenvalue, any 

minor error (rounding error or truncation error) will introduce a

component of the increasing solution and will lead to a divergent

solution. If we only integrate forward, we can not get rid of the 

unwanted increasing solution in the outer region.

For small r, the solution is a combination of r1+1p i ( r )  and 

r-1p 2 (r) in which p i(r)  and p 2 (r) are polynomials. If we simply 

in tegra te backward, the numerical solution will diverge at the 

orgin since we can not suppress the term of r 1p 2 (r). The similar 

phenomenon will occur. Integration over the whole range in either 

direction is unsatisfactory.
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4.3 M atching method

To tackle this problem, the technique of "matching in the middle" 

can be used(Fox, 1962). That is that we integrate both forward 

from the origin and backward from a large value of r and then let 

the two solutions meet at a reasonable point in the middle. The X 

is adjusted until the forward solution and backward solution agree 

at the matching point.

THe choice of the matching point is not critical for a single 

equation of this type. However, the matching point should be 

normally between the inner turning point (the first zero of ^+g(r) ) 

and the outer turning point ( the last zero of ?t+g(r) ). The most 

convenient matching point is the point at which g(r) reaches its 

minimum because at that point ^+g(r) is always negative for any 

possible eigenvalue.

Since g(r) is singular at the origin and very large and positive

for small value of r, the forward solution will increase rapidly

and numerical integration near the origin is impossible. We prefer 

to choose a small value of ro as starting point rather than the 

origin. For the forward solution, we can take the initial conditions 

y f( r0 )=0, yf(ri)=h. For the backward solution, we start at a large 

value tn  of r with the conditions are yb(rN)=t, yb(rN -i)=teV ^h. The 

t cannot be fixed arbitrarily, and in fact its value must be 

calculated in the iterative process, which attempts to match the 

so lu t io n s  yf, yb at some common point rA . "Matching" is

equivalent to the relations

yf = yb , yf=yj, at (4 -2)
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Since we are concentrating on N um erov-like m ethods, we prefer 

the equivalent approach of matching the two solutions at two 

adjacent points

yf = yb, at r= rA

yf = yb, at r= rB (4.3)

O bviously , yf is a function of X and yb is a function of both X 

and t. Eq(4.3) can be written as a set of non-linear equations 

about X and t:

yf(rA, h)  - yb(rA, X,  t) = 0

yf(rB, - yb(rB, X, t) = 0 (4.4)

The above matching equations are conventionally solved by a 

Newton process, which suggests changes Sk, 5t derived from the 

s im ultanous equations.

d d
( y ^ u A )  - yb(rA,X,t)) + 8 t—(yf(rA,X) - yb(rA,7 ,t))  

dX  d t

+ yf(rA,X) - yb(rA,M ) = 0

8 X ^ - (y f ( r B A )  - y b (r B ,M ))  +  s A y K r E . X )  - y b ( r B , M ) )  
dX  d t

+ y f(rB ^) - yb(r B»^»t) = o (4.5)

These functions are obtained by solving initial-value problems. 

The quantities z= T= satisfy the systems

Zj = f(r)zf + y f , Zf(ro)=0, Zf(ri)=0 (4.6)

zj = f(r)zb + yb , zb(rN)=t, Zf(rN.i)= teV ^h /(2V I) (4.7)
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Tb = f(r)Tf , T b(rN)=l, Tb(rN. I) = e '^  h

where f(r) = X + g(r)

(4.8)

From (4.8 ),we have

Tb=t- 'yb (4.9)

Eqs(4.5) then reduce to the form

8A,(zf(rA,A.) -zb(rA,A,,t)) - Stt-iybCrA^t) + yf(rA,k) - yb(rA,X,t)=0

8X(zf(rB,^) - zb(rB,X,,t)) - S t t - iy ^ r^ M ) + yf(rB,k) - yb(rB,X,t)=0

The Newton process requires integration in both directions 

twice for each iteration: the first for the solution of yf, yb at 

matching points and the second for Zf,  zb. The Zf and zb satisfy 

the same equation, though the initial cenditions are different. 

Therefore, we can use the same method for both forward and 

backward solutions. Applying Numerov method to the equations 

about y and z, we get

(1- ■jTjh2fn+l)yn+l-(2+ y |h 2fn)y n+ ( l -  Y2h 2fn-l)yn-l -  0

(1- -~h 2fn+i)zn+i-(2+ ~ h 2fn)zn+(l-  - ^ h 2fn-l)Zn-l = 

T2h2(y n+1 + 1 0 yn+yn.i)

(4 .10)

(4 .11)

" ( l - h 2 f„/1 2 ) 2  

and substitute (Allison, 1970)

(4 .12)

Un= ( 1 - ,j 2*l 2fn)yn , (4 .13)
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Vn -  ( 1 - Y2*l 2 f n ) Z n  '  Y2 l̂ 2 y n  , (4 .1 4 )

where fn -  X  +  g(rn), in to Eqs(4.10),(4.11),  we obtain

u n + 1 — anUn (4 .15)

Vn + 1 — 6 nUn + ^nvn " vn-l (4 .16)

T h e  in te g ra t io n s  can be ca r r ied  ou t  e f f i c i e n t ly  by the 

recurrence formulae (4.15) and (4.16). Each step for both u and v 

requires  14 ari thimetic operations:  8  for coefficients an and bn, 6  

for recurrence  formulae (4.15) and (4.16). We only calcula te  un 

and vn during the integrations.  The values of y and z at matching 

points  are finally derived from u and v through relations 

(4.13) and (4.14).

It is found that almost all the computing t ime is spend on the 

computa tion of these integrations. The total t ime for each iteration 

can be sharply reduced  by using parallel  in tegra tion algorithms. 

The  fo l lowing  sections  give four para llel  a lgor i thms for the 

calculation of the integrations.

4.4 M ethod  1: four  processes m ethod

For  the  Newton  method ,  we not ice  two facts :  the  fo rw ard

in teg ra t ion  and the backward  in tegra t ion  are independent ;  in 

each di rec tion,  y and z can be coped with in parallel .  W e can

div ide  the in tegra tions  into four concurrent processes  P i ,  P 2 , P3 , 

P 4 , which  com pu te  u/-, v f , ub , vb r e s p e c t iv e ly .  S in ce  the 

computation of v involves the value of u, Pi  and P 3 are required

to pass the values of uj, ub to P2 and P4. The n*h step for Pi and P 2

are :
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Pj: temp 1.0 - hi*(A.+gn) ; { hj— y ĵh  ̂ }

an := 12.0/temp -10.0; 

sent temp, an , u„ to P2 ; 

t ln+l  • — a n *Un " tln_] ;

P2: receive  temp, an , un from Pi ;

bn := 12.0*hi/(temp*temp) ; 

v-n+i .= bn*un + an*vn - vn_i

P 3 and P4 a re  are similar to Pi and P 2 . The four processes of Pi 

can  be mapped  to four transputers  of  a transpter ne twork  and 

im plem ent  in parallel . This method is the most efficient provided 

the match points are near the middle of the range of integration.  

In practice,  the cost of communication,  which is required by each 

integra tion step, should be taken into account and the efficiency 

cannot reach 1 0 0  percent.

4.5 M ethod 2: 4x4 m a tr ix  fo rm alism

The  above  a lgor i thm is only suitable  for a system with four 

p rocessors .  For a system with an arbitrary number  of  processor,  

we should  try other approaches.

L e t

Dn =

a n 0 - 1 0 "
b n a n 0 - 1

1 0 0 0

- 0 1 0 0 -

L  n ^  N-l

W f|n=

Uf,n+1 

v f,n+1 
u f pi
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W b,n=

Uf,n-1 
Vf,n-1 
Uf,n 

>- Vfn ■

where rM is the first matching point (rM =rA , r M+1 =rB )

Hence eq.(4.15) + eq.(4.16) become 

Wf,n = DnW f>n_i 0 ^ n < M

W  b,n — DnW b>n+i M+l  < n £ N

Finally ,

Wf>A= D a D a - i - .^ D iW ^ o  

Wb,B = DBDB+l-DN-2DN-lWb,N (4.17)

The solutions at matching points can be obtained from Wf>A an d  

W b.B by  (4.13) and (4.14). Expressions (4.17) are ideal forms for 

parallel calculation. Since the two expressions are similar, we just 

consider the forward solutions.

Suppose there are p ( A » p )  processors available. We can let 

processor i calculate the matrix product:

Ei := DejDej-i..DSi+iD Si

and finally let the first processor calculate the result of Wf>A:

W f,A := EpEp_i.. E iW fio 

Sj and ej may be decided in this way:

L=|_M/pJ, s i= l ,  e i=M -(p-l)L ,

si+i —ei + 1, ej+i —Cj+i + L-l i—2, 3, ... p
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The algorithm for Pj (i > 1) is 

Hi := I;
for n:= Sj to ej do 

begin
calculate an , bn ;
Ei := DnE i; 
end;

send Ej to Pi through communication;

The algorithm for Pi is

Wf,A := Wf5o ; 
for n:= si to ei do 

begin
calculate an , bn ;
Wf,A:=DnWf,A; 
end; 

for i:= 2  to p do 
begin 
receive E j ;
Wf>A:= EiWf,A; 
end;

Fig 4.1 illustrate the algorithms through an example in which p=3, 

A=9.

The m atrix  Dn is sparse and the num ber of arithm etic

opera tions  for each matrix m ultip lica tion , together with the

calculation of an and bn, is 24 and the efficiency of this method

might approach 0 .58  ( 14/24 ).
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F i g 4 .1

P r o c e s s o r l P r o c e sso r 2

W9

W3
W2

W1

YO D1 D2 D3 D4 D5 D6

P r o c e sso r 3

>•

D7 D8

 -------►  indicates com m unication betw een processors

4.6 M e t h o d  3 : 2x2 m a t r i x  f o r m u l i s m

One of  the d isadvan tage  of method 2 is that  the 4x4 matrix  

m u l t i p l i c a t i o n  re q u i re s  m ore  a r i t h m e t i c  o p e r a t io n s .  The  

a lternat ive approach is that we calculate y firstly at all pivotal 

poin ts  and then calcula te  the values of v at matching points.  

Instead of 4x4 matrix multiplications, we only form 2x2 matrices.

L e t

’ a n  - 1 ' " b n y  n'

lia II

u

1 0 0

1 < n   ̂ N - l

y  f . n+  1 Vf , n + 1

Y f , „ = , V  f,n =

- y f . n  . . Yf^n .

y  b , n - 1

icx>>1

Ybfn= Y b,n —

.  y b , n  - . Vb;n _

then E q s (4 .15) and (4.16) become
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Yn = DnYn_i (4.18)

Vn — DnVn.i + Cn (4.19)

From (4.18) we get

Yf,n = DnDn.i...DkYf>k,i 1 < k  < n < M  (4.20)

We let processor i tackle Yf>n where sj  ̂ n  ̂ e*. The algorithm for 

Pi ( i o l )  is:

PiY:
calculate a ^ ;
ESi:= DSi;
for n :=Si +1 to ei do 

begin
calculate an ;
En := DnEn_i; 
end;

receive YftSi_i from Pi_i;

Y f>ei := EejYsj-i;

if i o p  then send Yf>ei to Pi+i;

for n :=Si to ei -1;
Yf,n := EnYf,ei-i; { In practice, we only calculate the

first component of Yf>n }

For P i s it is 

PlY:
for n :=si to ei do 

begin
calculate an ;
Yf,n := DnYf,n-l 5 

end; 
send Yei to P2 ;
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After all the Yf<n have been calculated, we can calculate Vf,A- 

Following Eq(4.18), we have the general relation:

Vf}n = DnVf^.! + Cn

= DnDn_iVf>n.2 + Cn + DnCn_i

=DnDn-i--*DkVfk.i + Cn + DnCn.i +. . . + DnDn.i...Dk+iCk 

Let k = si, n = ei, then

Yf,ei = Eej Y f>Sj-i + Ti 

w h e r e

Ti= Cej + DejCei-i +. . . + DejDej-i...Dsi+lCsi i > 1 (4 .21)

and finally,

Vf,A= EepEep.j... Ee2Vf,ei + Tp +EepTp-i +... + EepEep_i... E,e3T2 (4 .22)

E ei (i=2 ,..., p) have been available in the calculation for Yn . Tj can 

be calculated  in processor i independently. The algorithm for 

processor i is:

PiV:
calculate bSi;
Ti:= CSi;
for n :=Si +1 to ei do 

begin
calculate bn;
Ti := Cn + DnTii 
end;

send Eei, Ti to P i ;
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PlV:
Vf,A := Vfto 

for n :=si to ei do 
begin
calculate bn;

Vf,A *•= D nVf,A + Cn 

end;
for i : = 2  to p do 

begin
receive E^, Ti ;

Vf,A := EejVf.A +  Ti ; 

end;

This m ethod  requ ires  19 arithm etic  operations for each 

integration step and therefore the efficiency is estimated to be 

0.74 ( 14/19 ).

The fig4.2 and fig4.3 show how PiY and PjV work. 

F i g 4 .2

P r o c e s s o r !

Y3

P r o c e s so r 3P r o c e sso r 2

Y8

Y7Y5
Y9Y4

Y6

Y3

indicate com m unication betw een  p rocessors
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F ig 4 .3
P ro ce ss o r l Processor2 P r o c e s so r 3

VG

-

T 3

T3

VO D1 D2 D3 D4 D5 D6 D7 D8 D 7

C7 C8 C 7C1 C2 C3 C4 C5 C6

!► in d ica te s  com m unication betw een  p rocessors

4.7 M ethod  4: secant m ethod  with 2x2 m a tr ix  fo rm ulism

It can be seen that the values of y at the matching points can be 

eas ily  ca lcu la ted  in parallel by 2 x2  matrix  formulism but the

calculation of v ( e.g. — y ) is far more complicated. To calculate v,
d X

we not only have to solve a nonlinear equation,  but calculate y at 

all pivota l  points.  This addit ional calcula tion takes a large 

p ropor t ion  of  the comput ing  t ime and makes p rogram m ing  in 

parallel  more difficult.  However, the values of v are not required 

to high accuracy and can be calculated by simple approximation 

method. For example,  we can obtain them approximately from the 

values of  current and previous y at matching points.

Notice  that

=  | y f ( r .  Xn)- y r ( r ,  ^ n - i ) l / ( ^ n  - k » - i )  +  0(IA.n -A,n - i l )  ( 4 . 2 3 )
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and that yb satisfies:

y b(r, X> tu) = tu/ tvy b(r, X,  tv) (4 .24)

From the Taylor series 

y b(r, A.n-1, tn-i)

= T “Vb(r, ^n-l. tn)ln

In -1 d
= ~r~~(yb(r» tn) + (^n.i - Xn)—-yb(r, Xny tn) + 0(IXn-i - knl2)

ln o X

So,

“ y b(r,Xn,tn)
ok

= {y b(r An»tn) " tn/tn-iyb(r An-l>tn-l)}/(A.n-A,n-l) + 0(IA,n-l~A,nl) (4 .25) 

L e t  T A n(r )= [y f( r , y  - yf(rAn-i)]/(^n - V i )

T B n( r )= [y b(r ,^ n,tn) ■ tn/tn-iyb(r,A,n-i,tn-i)]/(A.n ■ A,n-i) (4 .26)  

The iterative scheme is now

(A-n+l “ ^ n ) ( T A n( rA )  ~ T B n(rA))  ■ (tn+l ■ tn) / t n y b(rA»A,n»tn)

+ yf(rA,>-n)yb(rA^n,tn) = 0

(A-n+i- A,n) (T A n(rB) - TBn(rB)) - (W i ■ tn)/tny b(rBAn4n)

+ yf(rB,kn) - yb(rBAn,tn) = 0 (4 .27)

Schem e(4.27) is actually the secant method. Its order of 

convergence is 1 .6  (approx.), compared with the second order 

Newton method. However, it only requires the values of yf, yb a t
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m atching points. The parallel algorithm is similar to that in 

method2 , but only uses 2 x2  matrix multiplication.

L e t

D n =

Yf,n=

Y b,n=

a n - 1 ' 

1 0  

Uf,n+1

L U f >n .

Ub,n-1 

Ub,n J

1  ̂ n < N-l

M+l < n < N

H ence

Y f >n -  D nY f >n_i

Yb,n ~ DnYb,n+l

Finally ,

Y f,A= D  a D a -i . . .D2D iY fo

Yb,B =  D BD B+i. . .DN.2D N.iYb,N (4 .28)

Details of the parallel algorithm for (4.28) can be found in method 

2 .

The ite ra tion  cannot start until the second in tegration  is 

completed. Therefore, we have to provide two starting values 

and A-i for the first two integrations. The choice of starting values 

of X is more restrictive than the Newton method.
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The a lgo rithm  requires  9 arithm etic  opera tions  for each 

in tegra tion  step while the sequential algorithm  needs 7. The 

efficiency is expected to be 0 .78 ( 7 /9  ).

4.8 M o d e l P ro b le m

To illustrate how the four algorithms work, we take the Morse 

p o te n t ia l

V 0 (r) = D {e '2ot(r-r=) - 2e‘a(r-r«)) (4 .29)

where D = 0.18349, a  = 1.435 and re = 2.31.

The equation is

y" = B(-e + V0(r))y (4 .30)

where B = 29156.0 and e is the unknown energy. Since the 

minimum value of of Vo(r) is -D, the possible values of e should 

fall in (-D, 0).

In this problem, the difference between e and the minimum 

value of the potential Vo(r), e+D, is what we actually require. In 

practice, it is conventional to multiply by a physical constant, 

which transform the eigenvalue from atomic units into e.g.s. units. 

So, the eigenvalue is actually E =cm(D+e) where cm = 219474.62. 

Eq.(4.30) is rewritten as

y ” = B(D - E/cm + V0(r))y (4 .31)

E is the required eigenvalue. For the Morse potential analytic 

solutions are known and given, in this case, by

Ek = ci(k + 0.5) - c2(k + 0.5)2, k=0, 1, ... (4 .32)
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where Ci = 1580.1868088..., C2=15.501016...

Values for the first 11 eigenvalues are listed as E exact within 

following tables.

To transform the equation into standard form, we let X = B(D -

E/cm) , g(r) = BV 0 (r), then E can be obtained from X by

E =cm(D - X / B ) .  (4 .33)

4.9  I m p l e m e n t a t i o n

We only consider the first eleven results and choose r0 =1.5 as 

starting point and rN=3.5 as end point. re=2.31 is the best choice 

for matching point. We tolerate relative errors up to 0.1 xlO *4 for 

the iteration. In the secant method, we choose Xi = X,o- 0.1 as the 

second starting value of X.  For comparison, three different 

stepsizes h=0.01, 0.005, 0.0025 are considered. The corresponding 

numbers of integration are 200, 400, 800, respectively. All real 

variables in the programs are double precision.

Tables 4.1&4.2 display the numerical results and errors of the 

first eleven (0 to 10 ) eigenvalues calculated by the Newton 

m ethod and the secant method respectively. There is no

significant difference in accuracy between the two methods. The 

second columns of both tables indicate the initial values for 

iteration, which are chosen close to the exact eigenvalues.

The times, in seconds, required by the four parallel methods 

for the calculation of the three eigenvalue Eo, E 5 and E 10 are 

shown in Table 4.3 through Table 4.6 (The times spent on the

calcu la tion  of the potential are not taken into account). The 

speedup and efficiency are calculated by comparison with the

67



corresponding  sequential algorithms with the same parameters. 

We find that in principle they are consistent e with the estimation.

F or m ethod  1, the speedup and effic iency are largely 

dependent of  the choice of matching point. The ideal matching 

point for which the load is well balanced over the 4  processors is 

in the m iddle  of the integration region. For comparison, the 

algorithm are tested on two different choices of matching points. 

One is the general choice r=re and another is in the middle i.e. 

r= (ro + rN )/2 .  Results are shown in Table 4.3.1 and Table 4.3.2 

re sp e c t iv e ly .

All the other three methods can be run on any number of 

processors. Here we run them on 2, 3 and 4 four processors. 

Results are shown in Table 4.4 to Table 4.6. Each table consists of 

3 sub-tables which correspond to three different stepsizes.

The final calculation of eigenvalue is inherent sequential. This 

will slightly affect the efficiency and speedup of all the four 

m e th o d s .

All the a lgorithm s in method 1 to 4 are developed from 

Numerov formula. As mentioned in chapter 2 , exponential fitting 

Num erov form ulae can be efficiently applied to these parallel 

algorithm s w ith little modification. For an exponential fitting 

Numerov formula with the symmetric form

yn+l + OCi(h)yn + yn-l = h2(Po(h)yn+l + Pl(h)yn+ Po(h)yn-l) ( 4 .3 4 )

we define

_ - a i ( h ) + h 2p 1(h)fn 
an l-h2po(h)f„  ’
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b _ h 2( - a i ( h ) p 0(h)+ p i (h ) )  
( l - h 2p 0(h ) fn)2 (4 .35)

and substitute

Un= (1- Po(h)h2fn)y n (4.36)

v n= (1- Po(h)h2fn)zn - p0(h )h 2y n (4.37)

We can still obtain eqs.(4.15) and (4.16). i.e.

un+l — <hiun Un -1

v n+i = b nu n+ anv n - vn_i (4 .38)

Therefore, the formula (4.34) can be applied to all the four 

parallel methods in a similar fashion to the Numerov formula.

In e igenvalue  problems, the potential varies in integration 

interval and the coefficients should be adjusted at each step. 

Since the calculation of the coefficients at each step by explicit 

formulae is time consuming, we prefer the power series formulae. 

We take the Raptis and Allison algorithm as the example (Raptis 

and Allison, 1978). In this case, the coefficients satisfy

<xi(h)= -2, P i ( h ) = l - 2 p 0(h) (4 .39)

From (4.35)

- a i f l O + h ^ f l Q f n  _ 2 | h 2fn 
l - h 2Po(h)f„ l - h 2po(h)fn

h 2( - « i ( h ) p n(h )+ p 1(h)) h 2
" ( l - h 2p 0(h)f„)2 ( l - h 2Po(h)f„)2
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where po = 2 0 ^ 2^n + ’ an<̂  * *n Pract ĉe’ we on^y consider

the first two terms.

In paralle l im plem entation , The Raptis and Allison method 

requires three more arithmetic operations on the calculation of 

coefficients at each step than the standard Numerov method, but 

it is far more accurate. The comparison in accuracy is shown in 

Table 4.7. Three different stepsizes h=0.01, 0.005, 0.0025 are 

used. Table 4.8 shows the times required by method 3 with 

Raptis and Allison's formula for the calculation of eigenvalues.
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Table 4.1

Numerical results of Newton process(method 1-3), h is the stepsize 
and Error = E - Eexact

k Einitial Eexact h=0 .0 1  
E Error

h=0.005
E Error

h=0.0025
E Error

0 700.0 786.2182 786.2175 -0.0007 786.2181 -0.0000 786.2182 0.0000
1 2400.0 2335.4029 2335.3984 -0.0045 2335.4027 -0.0003 2335.4029 0.0000

2 3800.0 3853.5857 3853.5703 -0.0153 3853.5847 -0.0010 3853.5856 -0.0001

3 5400.0 5340.7664 5340.7295 -0.0368 5340.7641 -0.0023 5340.7662 -0.0001

4 6700.0 6796.9451 6796.8731 -0.0720 6796.9406 -0.0045 6796.9448 -0.0003

5 8300.0 8222.1217 8221.9989 -0.1228 8222.1141 -0.0077 8222.1212 -0.0005

6 9700.0 9616.2963 9616.1054 -0.1910 9616.2844 -0.0119 9616.2956 -0.0007

7 10900.0 10979.4689 10979.1917 -0.2772 10979.4517 -0.0173 10979.4678 -0.0011

8 12400.0 12311.6395 12311.2574 -0.3820 12311.6157 -0.0238 12311.6380 -0.0015

9 13700.0 13612.8080 13612.3029 -0.5051 13612.7766 -0.0314 13612.8060 -0.0020

10 14850.0 14882.9745 14882.3285 -0.6460 14882.9343 -0.0401 14882.9720 -0.0025

Table 4.2

Numerical results of Secant process(method 4), h is the stepsize and Error = E - E

k Einitial Eexact h=0.01  
E Error

h=0.005
E Error

h=0.0025 
E Error

0 700.0 786.2182 786.2175 -0.0007 786.2181 -0.0000 786.2181 -0.0000

1 2400.0 2335.4029 2335.3985 -0.0045 2335.4027 -0.0002 2335.4030 0.0000

2 3800.0 3853.5857 3853.5704 -0.0153 3853.5847 -0.0009 3853.5856 -0.0000

3 5400.0 5340.7664 5340.7295 -0.0369 5340.7641 -0.0023 5340.7662 -0.0002

4 6700.0 6796.9451 6796.8731 -0.0720 6796.9405 -0.0046 6796.9447 -0.0004

5 8300.0 8222.1217 8221.9979 -0.1238 8222.1131 -0.0086 8222.1202 -0.0015

6 9700.0 9616.2963 9616.1036 -0.1928 9616.2827 -0.0137 9616.2938 -0.0025

7 10900.0 10979.4689 10979.1939 -0.2750 10979.4540 -0.0149 10979.4702 -0.0013

8 12400.0 12311.6395 12311.2564 -0.3831 12311.6146 -0.0248 12311.6369 -0.0026

9 13700.0 13612.8080 13612.3021 -0.5059 13612.7759 -0.0321 13612.8053 -0.0027

10 14850.0 14882.9745 14882.3285 -0.6460 14882.9343 -0.0402 14882.9720 -0.0025
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Table 4.3.1

Time (in seconds) for method 1 with 4 processor. re=2.31 as matching point

k \h h=0 .0 1 h=0.005 h=0.0025

0 0.3719 (0.7882) 0.6874 (1.5295) 1.3125 (3.0138)

5 0.3740 (0.7897) 0.5505 (1.5302) 1.0544 (2.2650)

10 0.4487 (0.9863) 0.6881 (1.9137) 1.3194 (3.7740)

speedup 2.12 2.23 2.30

efficiency 0.53 0.56 0.57

*figures in brackets indicate the time required by the corresponding sequential program
with the same matching point

Table 4.3.2
Time (in seconds) for method 1 with 4 processor, choose r=(ro+rN)/2 as matching
point.

k \h  h=0 .0 1 h=0.005 h=0.0025

0 0.3428 (0.9853) 0.6532 (1.9137) 1.2733 (3.7681)

5 0.3433 (0.7892) 0.6522 (1.1485) 1.2739 (2.2645)

10 0.3437 (0.7891) 0.6515 (1.5311) 1.2707 (3.0208)

speedup 3.06 3.26 3.39

efficiency 0.76 0.82 0.85

^figures in brackets indicate the time required by the corresponding sequential program
with the same matching point
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Table 4.4.a h=0.01

Time (in seconds) for method 2

k \ p 1 2 3 4

0 0.7882 0.7207 0.5219 0.4327

5 0.7897 0.7216 0.5226 0.4337

10 0.9863 0.9004 0.6513 0.5401

speedup 1.09 1.49 1.82

efficiency 0.55 0.50 0.45

Table 4.4.b h=0.005 

Time (in seconds) for method 2

k\p 1 2 3 4

0 1.5295 1.3738 0.9613 0.7614

5 1.5302 1.3734 0.9611 0.7596

10 1.9137 1.7153 1.1986 0.9472

speedup 1.11 1.59 2.00

efficiency 0.56 0.53 0.50

Table 4.4.c h=0.025

Time (in seconds) for method 2

k \p 1 2 3 4

0 3.0138 2.6901 1.8364 1.4156

5 2.2650 2.0173 1.3762 1.0607

10 3.7740 3.3578 2.2895 1.7644

speedup 1.12 1.64 2.13

efficiency 0.56 0.55 0.53
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Table 4.5.a h=0.01

Time (in seconds) for method 3

k \p 1 2 3 4

0 0.7882 0.5862 0.4171 0.3354

5 0.7897 0.5866 0.4168 0.3363

10 0.9863 0.7320 0.5201 0.4185

speedup 1.34 1.89 2.35

efficiency 0.67 0.63 0.59

Table 4.5.b h=0.005

Time (in seconds) for method 3

k \ p 1 2 3 4

0 1.5295 1.1188 0.7750 0.6033

5 1.5302 1.1167 0.7724 0.6001

10 1.9137 1.3976 0.9641 0.7490

speedup 1.37 1.97 2.54

efficiency 0.68 0.66 0.63

Table 4.5.C h=0.0025

Time (in seconds) for method 3

k \ p  1 2 3 4

0 3.0138 2.1852 1.4850 1.1358

5 2.2650 1.6389 1.1123 0.8500

10 3.7740 2.7377 1.8548 1.4122

speedup 1.38 2.03 2.65

efficiency 0.69 0.68 0.66

74



Table 4.6.a h=0.01

Time (in seconds) for method 4

k \p 1 2 3 4

0 0.4989 0.3400 0.2452 0.2013
5 0.3992 0.2730 0.1963 0.1616
10 0.6982 0.4745 0.3411 0.2799

speedup 1.47 2.03 2.48
efficiency 0.73 0.68 0.62

Table 4.6.b h=0.005 

Time (in seconds) for method 4

k \ p 1 2 3 4

0 0.9565 0.6494 0.4534 0.3575

5 0.7630 0.5188 0.3617 0.2844

10 1.3350 0.9033 0.6298 0.4951

speedup 1.47 2.11 2.68

efficiency 0.74 0.70 0.67

Table 4.6.C h=0.0025 

Time (in seconds) for method 4

k \ p  1 2 3 4

0 1.8709 1.2709 0.8678 0.6675

5 1.4954 1.0141 0.6922 0.5308

10 2.6153 1.7665 1.2034 0.9253

speedup 1.47 2.16 2.80

efficiency 0.74 0.72 0.70

75



Table 4.7
The deviations of numerical results from the exact ones for Numerov scheme and 
Raptis/Allison scheme. 0.0000 indicates the error is less than 0.00005.

k Einitial Eexact Error
(h=0 .0 1 )

N R/A

Error 
(h=0.005) 

N R/A

Error 
(h=0.0025) 
N R/A

0 700.0 786.2182 -0.0007 -0.0007 -0.0000 -0.0000 -0.0000 -0.0000
1 2400.0 2335.4029 -0.0045 -0.0021 -0.0003 -0.0001 0.0000 -0.0000
2 3800.0 3853.5857 -0.0153 -0.0034 -0.0010 -0.0002 -0.0001 -0.0000

3 5400.0 5340.7664 -0.0368 -0.0047 -0.0023 -0.0003 -0.0001 -0.0000

4 6700.0 6796.9451 -0.0720 -0.0060 -0.0045 -0.0003 -0.0003 -0.0000

5 8300.0 8222.1217 -0.1228 -0.0073 -0.0077 -0.0004 -0.0005 -0.0000

6 9700.0 9616.2963 -0.1910 -0.0086 -0.0119 -0.0005 -0.0007 -0.0000

7 10900.0 10979.4689 -0.2772 -0.0101 -0.0173 -0.0005 -0.0011 -0.0000

8 12400.0 12311.6395 -0.3820 -0.0117 -0.0238 -0.0006 -0.0015 -0.0000

9 13700.0 13612.8080 -0.5051 -0.0134 -0.0314 -0.0007 -0.0020 -0.0000

10 14850.0 14882.9745 -0.6460 -0.0154 -0.0401 -0.0008 -0.0025 -0.0001
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Table 4.8.a h=0.01

Time (in seconds) for method 3 with R/A formula

k \ p 1 2 3 4

0 0.9555 0.6636 0.4719 0.3784
5 0.9571 0.6645 0.4720 0.3798
10 1.1950 0.8297 0.5894 0.4735

speedup 1.44 2.02

efficiency 0.72 0.67

Table 4.8.b h=0.005

Time (in seconds) for method 3 with R/A formula.

k \ p 1 2 3 4

0 1.8547 1.2655 0.8771 0.6817

5 1.3923 1.2644 0.8746 0.6781

10 2.7814 1.5719 1.0909 0.8468

speedup 1.46 2.10 2.71

efficiency 0.73 0.70 0.68

Table 4.8.C h=0.0025

Time (in seconds) for method 3 with R/A formula.

k \ p  1 2 3 4

0 3.6534 2.4745 1.6812 1.2849

5 2.7446 1.8552 1.2594 0.9614

10 4.5729 3.0907 2.0939 1.5983

speedup 1.48 2.17 2.84

efficiency 0.74 0.72 0.71
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Chapter 5

Parallel Algorithms for Phase Shift Problem

5.1 P h a s e  s h if t  p ro b le m

The radial form of the Schrodinger equation with positive energy 

may be written as

w here  f ( r )= - (k 2 - L (C + l) /r2 -V(r)) and V(r) vanishes for large r. 

The boundary condition imposed at origin is

Therefore the solution of eq.(5.1) has the asymptotic form

where 8  is the "phase shift".

To calculate the phase shift, we can im pose the second initial 

condition y'(0 ) = t and integrate to sufficiently large r for which 

the contribution to 8  of the term L(C +l)/r2 +V(r) can be ignored. 

The phase shift 8  can then be obtained by com paring the solution 

with (5.4).

In practice V(r) converges to zero much faster than t ( L + l ) / r 2 

so the latter is the dominant term for large r. It is well known 

that the two linear independent solutions of the equation

y"= f(r)y (5 .1 )

y(r) = 0  at r = 0  , (5 .2)

From eq.(5.1) it can be seen that for large r we have

(5 .3)

y(r) ~  Csin(kr - Ctc/2 + 8 ) (5 .4 )
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y ”= -(k2 - C(D+l)/r2 )y  (5 .5 )

are krji(kr) and krni(kr) where ji(kr) and ni(kr) are the spherical

Bessel and N eum ann functions respectively.

The asymptotic solution of eq(5.1) may take the form

y(r) ~  kr(Ajj(kr) + Bn^kr)) (5 .6 )

which is valid as soon as the effect of V(r) can be neglected.

S ince

. v s in (k r  - I k / 2 )  , ,  s c o s (k r  - l % / 2 )
Ji(kr) _   , nj(kr) _   ^

k r  k r

(5.6) may be rewritten as

y(r) _  Asin(kr - I k / 2)  + Bcos(kr - C7c/ 2  ) (5 .7 )

and the phase shift can be determined uniquely by

8  = arctan(B/A) (5 .8 )

If  ra, rb are suffic ien tly  large, y (ra), y(rb) can be represented  by 

the asymptotic form (5.6):

y ( ra)= k ra(A ji(k ra) + Bni(kra)),

y ( rb)= k rb(A ji(k rb) + Bm (krb))

so 8  = arctan(B/A)

f  y ( r b) r ai i ( k r a) - y ( r a) r b j i (k r b) ^
= arctan y ( r b) r an i ( k r a) - y ( r a) r bn ! (k rb) (5.9)

Therefore, to calculate a phase shift, it is necessary to solve the 

equation (5.1) from the origin to the asymptotic region in which
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the V(r) becomes negligible. The phase shift is then obtained by 

(5 .9).

5.2 Parallel algorithm

W e have seen the phase shift problem can be reduced to the

solution of eq.(5.1). Applying the Num erov algorithm  to it, we 

h a v e

( 1 - j ^ h 2f„+l)y„+l-(2 + i5h2fn)y n+ ( l-  y ^ n - l ^ n - l  = 0  ( 5 - 10>

where fn= f( rn) .

The technique of matrix formalism used in the  in the previous 

chapter can be applied to the problem. In the eigenvalue p ro b 

lem, the in tegra tion region is under restr ic tion  and the parallel 

algorithm s given in the previous chapter do not involve changing 

the stepsize. However, in the phase shift problem, the integration 

reg ion  is semi-infinite, though in num erical com putation  we can 

stop the integration at sufficient large r. Since f(r) is large and

positive  for small r, we must start the integration with a rather 

small stepsize. Unless we are prepared to change the stepsize as 

the f(r) decreases, we will waste a lot of m achine time in the 

region where f(r) is small in absolute value. Changing the stepsize 

in the integration is imperative. At present, the best approach for 

stepsize control is to monitor the global error and change the step

size automatically if  the estimated error satisfies some conditions. 

In parallel com putation, this m ethod would be very difficult to 

realize. To change the stepsize, the simple way we can use in 

parallel computation is to arrange the stepsize in advance accord

ing the behaviour of the function f [Blatt, 1967], That is, we in te

grate ni steps at the stepsize h i ,  then n 2  at the stepsize h 2,... a n d
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f ina lly  nm at hm. (W e only consider doubling  the s tepsize  i.e.

h 2= 2 h i ,  ..., hm= 2 h m_i and assume np>2 for i= l,2 ,..m .) The stepsize is

changed m -1  times and the points at which the stepsize is changed
j

are r t : w h e r e  tj = £  n i ( j= l ,2 , . . .m - l ) .  The to tal num ber of 
J i = 1

m
integration steps is N = S n i

Let w „(h )= l-  -j^h2 fn

u n = w n(h )y n , an= 1 2 /w n(h) -1 0 , h=rn-rn.i

(5 .1 1 )

(5 .1 2 )

Then if n*tj (0<j<m), the stepsize is not changed ( e.g. rn+ i-rn=h, 

rn-rn- i = h  ) and eq.(5.10) can be written as

U n + l  — Un Un _ Un - l

or
U n + l 'an - 1" ’ Un "

.  U n . .1 0. . U n -1.

(5 .1 3 )

If the n=tj (0<j<m) and h is the new stepsize, that is rn+ i-rn=hj+i = h, 

rn-rn- i = r n- i - r n -2 = h j= l i / 2 .  (5.10) become

(1- ■j^h2fn+l)yn+l-(2+ p |b 2fn)y n+ ( l-  j ^ h 2 fn-2)yn -2 = 0 (5 .1 4 )

Or w n+i (h ) y n+i - (12-10w n(h ) )y n + wn-2(h )y n-2 = 0 

N otice that from (5.12),(5.13)

u n= w n( h / 2 ) y n , u n-2 = w n-2 ( h / 2 )y n -2

U n - 2 =  ^n- 1 u n-l  " Un

H en ce

1 2 - 1 0 w n(h )  , w n-2 (h )  , , - u 1 - 0U n + l -------------/ ,  u n + /  u / o  \ v a n - 1 u n-l Un ,J — Uw n( h / 2 ) w n. 2 ( h / 2 )
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Rearrange the equation and we have

Un+1= {an q (h ) + J K°:.? W  ]Un_ w ,n-2(h)
w „ ( h / 2 ) w „ _ 2 ( h / 2 ) w n_2 ( h / 2 )

Similarly, we have

w n(h)
u n + 2 ~  an + l U n+l _ UnW n( h /2 )

L e t

b = w n(h )  = w n.2 (h )  
n w n( h / 2 ) n w n. 2 ( h / 2 ) ’

(5 .1 5 )

T h e n

"un+ f

.  Un . -

"Un + 2"
f"

-Un+1.

a n^n'^Cn -an_iCn 

1 0

a n + l  “b n  

1 0

Ui

L U n -l J

’un+l" a n+  1 - r ' 1  0 “ U n + l

. U n . 1 0. ico
1 . Un _

Therefore, we define matrix Dn b y

a n - 1
Dn=

1 0
n*tj ( 0 <j<m ) (5 .1 6 a )

a n d

Dn=
1 0  

0 b n J

^nbn^Cn _an-lCn 

1 0

a nbn"*"^n “a n - l ^ n

b n 0  .

n=tj ( 0 <j<m ) (5 .1 6 b )

in which an, bn, cn are defined by (5.12),(5.15).
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"  UN " ’u f
= Dn . iD n.2...Di

-UN-1. -UO.

The values of u at the final points tn and can be represented  

b y

(5 .1 7 )

Similar to method 4 of last chapter, the N - l  matrix multiplications 

can be carried out in parallel by p  processors. To do this, we 

d iv ide  the N - l  m atrices into p groups, each consists  of the 

average num ber of matrices. Let the ith processor Pj calculate the 

product of

Ei := DejDei-i..DSi+iD Si (5 .18)

where Si, ej can be determined by the following scheme 

L=|_N-l/pJ,

s i  = l ,  e i= (N - l ) - (p - l )L ,

Si+i =ei + 1, ei+i =ei+i + L-l i=2, 3, ... p

The Ei produced by Pi is then sent to Pi on which un and un- i are 

genera ted  by

" u f
(5 .19)

’ UN ’ " u f
=EpEp-i...Ei

.UN-1. -uo.

The phase shift can be finally calculated from un  and u n - i .

Since the stepsize is changed at r tj ( 0<j<m ), the processor Pi

should know not only the parameters are k, 1, the potential V(rn) 

( n = S i ,  S i + l , . . . , e i ) ,  but the starting point rSi and starting stepsize. It

also requires the parameters for changing the stepsize. To do this,
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we let PRi, PHi be the s tarting poin t r Sj and the starting  

s tep s ize ,re sp ec t iv e ly ,  POINTERj the pointer to the first stepsize 

changing point from si to e*. T o illustrate, we take the example of 

p=3, m=5, ni = n 2 = n 3=20, n4=30, n5=50, ro=0.0, h] =0 .01 . Then

N=140 and we have the following tables:

J 1 2 3

h 2 0 4 0 6 0

1 2 3
s 1 4 8 94
e 4 7 93 1 3 9

PR 0 .0 1 0 . 9 2 3.8
PH 0 .01 0 . 0 4 0 .1 6

POINTER 1 3 0

W e can find from the above tables that t3=60 is the first stepsize 

changing point handled by processor P2 since POINTERi=3.

These param eters can be generated by a simple algorithm  on the 

host processor and are sent to all other processors.

The skeleton of the algorithm for P* can be written as

r:=PRi;
h:=PHi;
Ei:=I;

j:= POINTER*;
If j=0 then ITURN:=0 else ITURN:= tj; 
for n:= s* to e* do 

begin
if n= ITURN then 

begin

j :=j+^
ITURN:= t,*; 
h:=2*h;
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{Dn is formed by (5.16b) }
end

else

{Dn is formed by (5.16a) }
r:=r+h;
end;

At each norm al point, the calculation of an requires 8 arithm etic 

operations (for 0 0 )  and therefore each in tegration  step takes 13 

a r i th m e tic  o p e ra tio n s  to  c o m p le te . C o m p a re d  w ith  the  

co rrespond ing  sequentia l a lgorithm  w hich requ ires  11  arithm etic  

operations, the efficiency  of the parallel algorithm  is expected  to 

be 0.85 (11/13).

5 .3  I m p le m e n ta t io n

T he p a ra lle l a lg o rith m  has been te s ted  on a w ell-know n  

exam ple  (B e rn s te in ,1968; R aptis and A llison , 1978) w here in

W e choose ro=0.7 as starting po in t and tn= 8.7 as the final 

m atching point. The algorithm  has the ability  to handle d ifferen t 

a rran g e m en t of s tep s ize , h e re  we te s t the fo llo w in g  th ree  

e x a m p le s .

a : 800 steps at 0 .0 1 ;

b : 400 steps at 0 .0 1 , 2 0 0  steps at 0 .0 2 ;

c: 200 steps at 0.01, 100 steps at 0.02, 100 steps at 0.04.

e q .(5 .1 ),
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The total num ber of in tegration steps of the three cases are 800, 

600 and 400, respectively .

The resu lts, shown in Table 5.1, for the three cases are the 

sam e if  only three decim al p lace accuracy is considered . The 

tim es, in seconds, req u ired  by the a lgo rithm  on one to four 

processors to calculate a phase shift are shown in Table 5.2 which 

also indicates the speedup and the efficiency of the the algorithm .

From  Table 5.2, one may note that the overall speedup and

efficiency  of the algorithm  are not as good as we expect. This is 

because the final calcu lation  of phase shift, eq .(5 .9 ), is treated 

sequentia lly . In fact, the four function values of j i ( k r a), n i(k ra), 

ji(k rb ), n i(krb) in eq .(5 .9 )can  be calcu la ted  in dependen tly . Even 

each Bessel function can be calculated in parallel since the Bessel 

function  is based on a recurrence form ula. H ow ever, this has not 

been done. The original subroutine for B essel functions returns 

the values of both Bessel and Neum ann functions. This package 

w as d es ig n ed  and w ritten  to be e ff ic ien t w hen run  on a

sequentia l com puter. M odern parallel consideration  w ould dictate 

that we should separate the calculation of Bessel function from 

tha t of N eum ann function  so that the four function  values of 

j i ( k r a), n i (k r a), j i(k rb ) , n i(k rb ) can be c a lcu la ted  in d iffe ren t 

p ro c e sso rs . T hus we sh o u ld  re w rite  the  o rig in a l p ack ag e . 

H ow ever, the final ca lcu la tion  of phase sh ift takes up a sm all

p ro p o rtio n  of to tal com putation  so the im provem ent gained  by

parallelising the final calculation of phase shift will be small. Since 

Occam  language is tedious, it is unlikely that parallelising the final 

calculation of phase shift is necessary.
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JL
T he ex p ec ted  speedup  can be achij^ed if  we ig n o re  the 

calculation of the phase shift as can be seen in Table 5.3.

Table 5.1

Phase shifts obtained by the algorithm

k I 5

3 0 -0.590
3 2 -1.289
3 4 -0.144
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Table 5.2.a
Times, in second, required by the algorithm to calculate a phase shift 
(800 steps at 0 .0 1 )

k, t \ p 1 2 3 4

3 0 0.8385 0.5072 0.3502 0.2712
3 2 0.9522 0.5661 0.3900 0.3019
3 4 0.9551 0.5700 0.3936 0.3053

average 0.9153 0.5478 0.3779 0.2930
speedup 1.67 2.42 3.12
efficiency 0.84 0.81 0.78

Table 5.2.b
Times, in second, required by the algorithm to calculate a phase shift 
(400 steps at 0.01, 200 steps at 0.02)

k, C\p 1 2 3 4

3 0 0.6388 0.3905 0.2727 0.2131
3 2 0.7252 0.4361 0.3037 0.2373
3 4 0.7290 0.4385 0.3075 0.2405

average 0.6977 0.4217 0.2946 0.2303
speedup 1.65 2.37 3.03
efficiency 0.83 0.79 0.76

Table 5.2.c
Times, in second, required by the algorithm to calculate a phase shift 
(200 steps at 0.01, 100 steps at 0.02, 100 steps at 0.04)

k, t \ p 1 2 3 4

3 0 0.4405 0.2722 0.1942 0.1542

3 2 0.4989 0.3028 0.2157 0.1714

3 4 0.5027 0.3060 0.2189 0.1742

average 0.4807 0.2937 0.2096 0.1666

speedup 1.64 2.29 2.89

efficiency 0.82 0.76 0.72
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Table 5.3.a
Times, in second, required by the algorithm to integrate from ro to 
(800 steps at 0.01)

k, C\p 1 2 3 4

3 0 0.8104 0.4759 0.3188 0.2399
3 2 0.9188 0.5313 0.3552 0.2670
3 4 0.9192 0.5326 0.3562 0.2678

average 0.8761 0.5133 0.3434 0.2582
speedup
efficiency

1.72
0.86

2.57
0.86

3.42
0.85

Table 5.3.b

Times, in second, required by the algorithm to integrate from ro to 
(400 steps at 0.01, 200 steps at 0.02)

k, t \ p 1 2 3 4

3 0 0.6088 0.3593 0.2416 0.1821
3 2 0.6921 0.4015 0.2692 0.2028
3 4 0.6933 0.4015 0.2704 0.2035

average 0.6647 0.3874 0.2604 0.1961
speedup 1.72 2.55 3.39
efficiency 0.86 0.85 0.85

Table 5.3.c
Times, in second, required by the algorithm to integrate from ro to 
(200 steps at 0 .01 ,100  steps at 0 .02 ,1 00  steps at 0.04)

k, L\p 1 2 3 4

3 0 0.4109 0.2414 0.1635 0.1235
3 2 0.4662 0.2687 0.1815 0.1373
3 4 0.4674 0.2694 0.1815 0.1374

average 0.4482 0.2598 0.1755 0.1327

speedup 1.72 2.55 3.38
efficiency 0.86 0.85 0.84
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Chapter 6

P a r a l l e l  A l g o r i t h m s  for  S o l v i n g  C o u p l e d  

Differential Equations

6.1 Coupled Equations

The coupled  equations arising from  the Schrodinger equation  may 

be transform ed into the follow ing form

w h ere  ji(x )  and ni(x) are the  sp h erica l B esse l and  N eum ann 

fu n c tio n s , resp ec tiv e ly .

In m ost applications, the R m atrix is w hat we require. As usual, 

the boundary  condition  problem  m ay be sa tisfied  by solving an 

in itia l value problem . It is obvious that if  w is the solution which 

sa tis fie s  (6 .2 ), w  •c  is also a solution satisfy ing  (6 .2 ) for any 

arb itrary  constant m atrix  c .  If  w is non-singular(i.e, the colum ns of 

w  are linearly  independen t), w  c  is the general so lution and we 

can find a suitable m atrix c  such that w  c  m atches to the correct 

asym pto tic  form .

(6 .1)

where 1 £ i, N .

The boundary conditions im posed are

yij= 0  at r=0 ,

M/2
y ij-> k ir jii(kir)5ij +L Ry k jr n i^kir) at

/

( 6 .2 )

(6.3.)
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For the problem  (6.1) in w hich the m atrix elem ents Vjj have no 

singularities of order two or higher at the origin, the solutions for 

sm all r that satisfy (6 .2 ) are given by

W ij=o t i j r li+1 (6 .4 )

w here a  is a constant m atrix. Therefore, the second starting value 

can be given by eq .(6 .4) p rov id ing  the given m atrix  a  is non

singular. The corresponding  solutions w ill not, in general, satisfy 

the asym ptotic boundary conditions (6.3). H ow ever, if  the colum ns 

of the solutions of (6 .1 ) are linearly  independent, a suitable linear 

co m b in a tio n  o f the  so lu tio n s can be m atch ed  to the co rrec t 

asym ptotic form . That means

n

yij = 2) w ikCkj , (6 .5 )
k=l

o r  y  =  W'C

The solution y can be m atched to the boundary conditions at two

values of r large enough so that the term s Vij are neg lig ib le . Then,

defin ing  the follow ing m atrices,

r ’ - f k Y /2R..
ij _  l,. KlJ ’

V J /

M ij=kirJi.(kir)5ij ,

Nij=kirni.(kir)5ij ,

we find that the asym ptotic condition (6.3) can be w ritten as

y —»M + NR' at r -* 00, ( 6 .6 )

Further for large value of r, the m atrix w  can be w ritten
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w=MA+NB, (6 .7 )

and a com parison of (6 .6 ) and (6.7) will lead to the relations

The follow ing is the algorithm  for the m atrix R':

1. Choose the second in itial value yi at ro+h. F or exam ple, let

2. In tegrate  from  ro out to two m atching points r a and rb in the 

asym pto tic  reg ion  N tim es, each tim e ob tain ing  one colum n of 

solutions corresponding to a d ifferent colum n of a .

3. From  (6.7) we have w a= M aA + N aB, W b=M bA +N bB. N otice that 

M, N  are both diagonal and NM =M N. Therefore

c=A-i , R ’=BA-i ( 6 .8 )

A = - ( N by a- N ay b ) (N bM a- N aMb)
-l

B = ( M by a -M ayb ) (N bM a- N aMb)
-l

R = B A
-l

(6 .9 )

6.2 Numerical  Integration Methods

Eqs.(6 .1) can be rew ritten in m atrix form  as

y"+Fy=0 ( 6 . 10)

w here F ij={k? - ) s ij+ ( 6 . 11)

and V y—> 0  as r->c°

G eneralizing the N um erov form ula, we get
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yn+i=(I+ ^ h 2F n+i)- i{ (2I-  y fh 2F n )yn -KI+ ± h 2F n.i >yn- i } , ( 6 .1 2 )

w here I is a unit m atrix.

A t each in tegration step, the inversion of the m atrix

1+ n h 2F n+i,

is required. The m atrix is strongly diagonally  dom inant for sm all r 

if  the step size is chosen properly  and tends to a d iagonal as r 

increases. T herefore , an itera tive  m ethod w ould rap id ly  converge 

and  A lliso n  (1 9 7 0 ) has p ro p o sed  the  i te ra tiv e  m e th o d  by 

s u b s t i tu t in g

into Eq.(6.12), which becomes

Y i ?n + 1 ~ 2 Y i ?n +  h g i , n -fi ,n.yi,n , (6 .1 3 )

w h e r e

v  =  ^ i - n l / 1 2 h ^ g j <n 
y i’n 1 + 1 / I 2 h 2 f i(n

for 1  ̂ i £ n (6 .1 4 )

and, in the notation of Eq.(6.1),

( 6 .1 5 )

n

g  i , n _  X  V i k y k j  
k = l  
k*i

(6 .1 6 )

Eqs.( 6.14) and (6.15) may be rew ritten  as

(m+i) 
y  i , n + l

Y j rn +  1 / I 2 h 2 g ^  

1 + l /12h 2fU

(m+1)  
i , n + 1 (6 .1 7 )

93



and

g , %  = 2  v iky ^ +1 + 2  v iky k”
k>i ; k<i

(m) , (m+l)  
n+1 (6 .1 8 )

to define an itera tive schem e that converges to the solution. To 

start the iteration, y[ n+i may chose as

y (°)   XLs  ( 6  19)
y i 'n+1 l - l / 1 2 h 2 f U   ̂ ;

To estim ate the error of the iteration, let

= V ij( l - 8 y)

S 'irn+1 = 2  ^ ik ykji+l 
k= l  
k*i

D = d ia g ( l-h 2 f 1>n/ 12, 1-h 2 f 2y i 2 , . . ., 1-h 2fN,n/ l 2 ) (6 .2 0 )

or in m atrix form  

,(m) (m)
g n +l = V y n+l ( 6 -2 1 )

In general, we have

l l g - g ( “ )|loo S llg-g'(m)IIco = HVXy-y^Olloo < IIV'llcoIl(y-y(m))lIco

H ence, we have

H y n + i - y l + ^ l c o  s  - j^ h 2 IID-i l lool lg’lloo =  ^ h 2 I I D - 1I U I V ' I U I y n + 1 llco ( 6 . 2 2 )  

Hyn+i-y(n+’i 1)|l“  s i h 2 H D - i | i » i i g - g ^ i u

< ^ I I D - i l U I I V I U I I y n + i - y ^ l U
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S (•^h2)m+1IID-1ll™+1|IV'll” +1llyn+ill (6 .2 3 )

Since the truncation error of Num erov form ula is 0 ( h 6), at m ost 

two corrections are actually required. In that case, the error of the 

ite ra tio n  is s ig n ifican tly  sm aller than the tru n ca tio n  error. In

practice, one correction is enough near the asym ptotic region. The

in te g ra tio n  o v e r th e  e n t ire  ra n g e  is re p e a te d  N tim e s ,

co rrespond ing  to N  d iffe ren t co lum ns of the m atrix  a  and the 

resu ltan t solution m atrices used in the m atch process.

T he D e V o g e lae re 's  m ethod  can a lso  ap p lied  to co u p led

equations(L ester,1968; A lliso n ,1970). G eneralizing to eq .(6 .10), De 

V ogelaere 's  a lgorithm  becom es

yn+i/2 = y n + jh yA  + - ^ ( 4 y n -  yll-1/2),

yn+l =yn + hyn + ^-{ y n  + 2 yJ[+i/2), (6 .2 4 )

yi+i = y i + ^(yn + 4yn+1/2 + yil+i),

w h e r e

yj /2 = -Fj/2yj/2 j= - 1 ,0 , 1 , 2 ,.. (6 .2 5 )

T he N eq u a tio n s  g iven  b y (6 .10 ) m ay be in teg ra te d  to  the

asym ptotic region N  tim es, each tim e corresponding to a d ifferent

co lum n of the m atrix  a  w hich m ay be reg ard ed  as a linearly

in d ep en d en t set o f in itia l deriv a tiv es. To s ta rt the in teg ra tio n ,

there is a extra work to calculate y"i/2 , w hich is readily  obtained 

from  y .1/2 given to sufficient accuracy by
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1 h 2 
y-1/2 = y o - j h y o  + — yo (6 .2 6 )

6.3 Paralle l  algorithm

It is c lea r that each colum n o f y in eq s .(6 .1 ) can be solved

co m p le te ly  ind ep en d en tly . H ow ever, w hat we are in te re s ted  in

here is to solve one colum n of y in p ara lle l and therefo re  the

algorithm  is su itab le for a set of general coupled equations. The

g rea t advan tage o f both the Ite ra tiv e  N um erov m ethod and De

V ogelaere 's  m ethod is that each equation in the coupled equations

can be handled relatively  independently . If the coupled equations

co n sis t o f N  equations, w e give each of them  to a d ifferen t

p rocess. The N processes w ill finally  be d istribu ted  to p  actual

p ro cesso rs--tran sp u te rs . F or the Ite ra tiv e  N um erov m ethod, the 

coupling  only enters through the term  g ^ + i  in eq .(6 .18). In the

case o f the De V ogelaere 's m ethod, the coupling  is encountered  

w hen calculating  the term  yj'/2 in eq.(6.25). To handle the coupling, 

each process has to access the results produced by others and the 

co m m u n ica tio n  am ong p rocesses is req u ired . On the tran sp u te r 

ne tw ork , th is can be done by channel com m unication . F or the 

Ite ra tive  N um erov m ethod, there is a extra w ork to exchange the 

convergence param eters w hich decide w hether or no t the iteration  

is com pleted.

D i s t r i b u t i o n

In p rac tica l im plem entation , the num ber o f equations of a set of 

coup led  equations is varied. Suppose we need to solve a set of 

c o u p led  eq u a tio n s  w ith  N  eq u a tio n s  on a n e tw o rk  w ith  p  

tran sp u te rs . To d is trib u te  the N p ro cesses fo r the N  equations
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in to  p  transputers, we can map the first ni p rocesses onto the 

firs t transputer, n 2 processes onto the second one, and np onto 

the last one. U[ can be chosen by

To illustrate, if  p =  5 and n=16 , the series of ni is 4, 3, 3, 3, 3. It is 

one of the m ost effic ien t div ision because w hatever d ivision used, 

at least one transputer handles m ore than 3 p rocesses.

C o m m u n i c a t i o n

A transpu ter has four links for com m unication. They can connect 

to any o ther transputers. To m inim ize the cost of com m unication, 

it  is  d e s irab le  to  fo rm  a ne tw o rk  w ith  m in im um  d iam eter. 

H ow ever, it is very d ifficu lt for a program m er to w rite  a p ro ce

dure for a com plicated netw ork. To sim plify the problem , we use 

a p ipeline or a loop structure. In each transputer, a buffer Y is

declared for the com m unication of y. i.e. Y[i] is used to store y*.

In  th e  ca se  o f a lo o p  s tru c tu re  w ith  p tra n sp u te rs ,

co m m u n ica tio n  can be co m p le ted  in |_p/2J steps. H ere is the

procedure for com m unication of y for the ith transputer Pf.

PROC COM([]REAL64 Y, CHAN from.left, to.left, from.right, to.right)

SEQ j=0 FOR j_p/2j 

PAR
from.left ? [Y FROM S[n.left[j+1]] FOR L[n.left[j+1]]]

to.left ! [Y FROM S[n.right[j]] FOR L[n.right[j]]]

from.right ? [Y FROM S[n.right[j+1]] FOR L[n.right[j-i-l]]]

to.right ! [Y FROM S[n.left[j]] FOR L[n.left[j]]]

| _ N / p J  + 1 i <  ( N  m o d  p )
(6 .2 4 )

I L N / p  J e l s e

INTi:
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In the procedure, S[k] indicates the index of the first equation 

assigned  to p rocessor Pk a n d  L[k] gives the num ber of equations 

assigned Pk. So L[k]=nk and S [ l]= l,  S [2 ]= n i+1,... ,S[k]=S[k-l] +nk.

For the ith p rocesso r Pj, n.right[j] indicates the processor j steps 

to the left of P* w hile n.left[j] indicates the processor j steps to the 

right. They can be determ ined by

i+ j  f o r  i + j  s p

* i + j - p  + 1 f o r  i + j > p

i - j f  o r  i - j > 0
<

. i - j  + p  f o r  i + j  s 0

n.right[j]=  <

n.left[j]=

For exam ple, in the case of p - 5, N=16, S[k], L[k] are given by

k 1 2 3 4 5

L[k] 4 3 3 3 3

S[k] 1 5 8  11 1 4

For P 2 , n .left and n.right are given by

j 0  1 2

n .leftfj] 2  1 5

n .rig h t[j]  2 3 4

T he com m unication  takes tw o steps to com plete. A t the first 

step, P 2 sends ys, y6 , y i  to  both its neighbours P i and P 3 , w hile at 

the same tim e it receives y i ,  y2 , y3 , y4 from  Pi and y 8, y9, y! 0 

from  P 3 . A t the second step, it sends all it receives from  P i in th e  

first step to P 3 and all it receives from  P 3 to P i.  It also receives

98



y  1 1 , y i 2 , y  13 from  P 3 and y i 4 , y i 5 , yig f r o m  P i .  D eta ils  are 

illu stra ted  in F ig.6.1, in which a,b ,c,d ,e represen t the m essages for 

exchange (For instance, a represents the package of y i, y2 , y3 , y4 ).

F ig.6.1 
Step 1:

P I P 2 P 3

D

\ P 5 P 4

c

7
Step 2:

P I  P 2  P3

P 5 P 4

Final Results: 
P I P 2 P 3

D
P 5 P 4

In the  case  o f a p ip e lin e  s tru c tu re  w ith  p  t r a n s p u te r s ,  
co m p le ted  com m unication  can be co m ple ted  in p - 1 steps. The 
procedure for com m unication of y for the ith p rocessor Pi is:
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PROC COM([]REAL64 Y, CHAN from.left, to.left, from.right, to.right) 
INT j, left.in.c, left.out.c, right.in.c ,left.in.c:
SEQ

left.in.c:=left.in.no 
left.out.c:=left.out.no 
right.in.c:=right.in.no 
right.out.c:=right.out.no 
PAR j=0 FOR p-1 

IF
left.outcoO

SEQ
to.left ! [Y FROM S[i+j] FOR L[i+j]] 
left.out.c:=left.out.c- 1

TRUE
SKIP

IF
left.in.cO0

SEQ
from.left ! [Y FROM S[(i-j)-l] FOR L[(i-j)-l]] 
left.in.c:=left.in.c- 1

TRUE
SKIP

IF
right.in.coO

SEQ
from.right ! [Y FROM S[(i+j)+l] FOR L[(i+j)+l]] 
right.in.c:=right.in.c- 1

TRUE
SKIP

IF
right.outcOO

SEQ
to.right ! [Y FROM S[i-j] FOR L[i-j]] 
right.out.c:=right.out.c- 1

TRUE
SKIP
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In the p ro ced u re , the four p aram eters  le ft.in .n o , le ft.o u t.n o , 

r ig h t.in .n o , r ig h t.o u t.n o  in d ic a te  th e  re q u ire d  n u m b ers  of

com m unication  steps for the by the co rresponding  channels. For 

the pth p rocessor, Pi, they can be calculated by

left.in .no = i - 1 ,

righ t.in .no  = p - 1 ,

left.out.no=

right.out.no=

0  f o r  i = l

, r i g h t . i n  . n o + 1 e l s e  

0  f o r i  = p

k l e f t . i n . n o + 1 e l s e

F o r  th e  sam e ex am p le  o f p = 5 ,  N = 1 6 , th e  c o m p le te

c o m m u n ica tio n  req u ire s  4 s teps. F ig 6 .2  il lu s tra te s  the  w hole 

p ro c e ss .

Take the exam ple of the second processor P 2 .

Step 1: P 2 sends ys, y6 , y7 to both its neighbours P i and P 3 , w hile

at the sam e tim e it receives y i ,  y2 , y3 , y4 from  Pi and yg, y9 , y io  

from  P 3 .

Step 2: P 2 sends y i ,  y2 , y3 , y4 to P3 and y 8, y g ,  yio to P i w hile it

receives y n ,  y i 2 , yi3 from  p 3-

Step 3: P2 sends y n ,  y i 2, yi3 to P i and it receives y i 4 , y i 5 , yi 6

from  P 3 . A fter this step, P 2 has received all y, but it still has to 

tran sfe r y i4, y n ,  y i6 for P i.

Step 4: P2 sends y i4, y n ,  yi6 to P i.
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F ig .6 .2 

Step 1:

t r

p i

Step 2 :
P I

L

Step 3:
P I

P I

L

P2 P3

P 5 P 4

c

7
P 2 P 3

P 5 P 4

D c

7
P 2 P 3

P 5 P 4

Step 4:
P 2 P 3

P 5 P 4

F inal Results: 
P I P 2 P 3

D

P 5 P 4

3
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6.4 Im p le m en ta t io n

The paralle l algorithm s of both the Iterative N um erov m ethod and 

the De V ogelaere 's  m ethod are im plem ented  on a netw ork  of 5 

tran sp u te rs(T 4 1 4 ). The te s t exam ple  com es from  the coup led  

equations w hich arise from  the ro ta tional excitation  of a diatom ic 

m olecule by neutral partic le  im pact(A llison ,1970). U sing the no ta

tion  o f the lite ra tu re (A rth u rs  and D algarno ,1960), deno ting  the 

en trance channel by the quantum  num bers(j, 1), the exit channels 

by 0»  and the total angular m om entum  by J= j+ l= j'+ l', the equa

tion can be w ritten by

d 2
• +Ki r  j y j i w  = .

j" V
t £ 2  +4 j - }^r<r) = E  E  ( r )  (6 .2 6 )

k?., = ^ E + | y { j ( j  + 1) - j ’(j' + 1))

w here

k , -  Jj h 2

The coupling m atrix elem ent are given by

<jT;JIVIj"r,;J>=8j-j-5irV o(r) + f2(jTf j"l”; J)V2(r)

w here the fo rm u lae  fo r the co effic ien ts  can be found  in the 

litera tu re(A rthu rs  and D algarno,1960). The scattering  m atrix  S for 

the problem  can be obtained from  the R m atrix by the relation

S = (I+ iR )(I-iR ) _1

W e choose the physica l param eters and num erica l param eters 

from  the litera tu re  (A llison, 1970). The param eters are

=1000.0, £ = 2 .3 5 1 ,  E = 1.12,
h 2 I

and V 0(r)=r-i2 - 2r<\ V 2(r)=0.2283V0(r).
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W e take J = 6  and consider excitation of the ro tor from  the j=0 

state to levels up j'=2,4 ,6  and 8  giving rise to sets of 4,9,16 and 25 

coup led  equations, respectively .

The range of integration was chosen to be

T he O CCA M 2 program s are m ainly translated  from  A llison 's 

Fortran  program . Only the in tegration  sections, w hich take a large 

proportion  of tim e, are im plem ented in parallel.

F o r  c o m p a riso n , w e c h o o se  tw o d if f e re n t  c o n v e rg e n c e  

p a ram ete rs  e= l and e = 1 0 ‘4 for itera tive N um erov m ethod. e= 1 

m eans that we requ ired  only one correction  at each step. The 

m atrices I SI2 for N=4 with the two convergence param eters are 

shown in Table 6.1 and Table 6.2. The De V ogelaere's m ethod does 

not require any iterations, the m atrix ISI2 for N =4 calculated  from 

it is given in Table 6.3.

T he tim es, in seconds, req u ired  by the ite ra tiv e  N um erov 

m ethod and the De V ogelaere 's m ethod to calcu late the square of 

the m odulus of the S m atrix are shown in Table 6.4 through Table 

6.7 w here N  is the size of set and p the num ber of processor. The 

com putation can be divided into four phases, they are: preparation 

the  elem ents of coupling  m atrix  and p o ten tia l at m esh  po in ts, 

in teg ra tin g  to m atching  po in ts, ca lcu la ting  the values o f B essel 

functions at m atching points, the final calculation of S m atrix. We

rO 0 .7 5

100 steps at 0.007 

350 steps at 0.014 

F inal m atching point

0 .7

4 .9

6 .3 5

104



have d istrib u ted  the com putation  of the in teg ra tio n  w hich takes 

the m ajority  of to tal com puting tim es. Though the com putation of 

the other phases can be done in parallel, we do not do so since 

little  im provem ent is expected. The sum of the tim es spent on the 

there phases is listed as 'ELSE'. Table 6.4 and Table 6.5 are due to 

N um erov  m eth o d  w ith  loop  s tru c tu re  and p ip e lin e  s tru c tu re , 

respectively . T ab le6 . 6  and Table 6.7 show the Sim ilar results for 

the De V ogelare 's m ethod.

S ince the loop structure requ ires less steps in com m unication  

than  the p ipeline  structure , it should be m ore effic ien t than the 

la tter. B ut the d ifference is very sm all. The effic iency  for both 

structures can be very high. For exam ple, using the De V ogelaere's 

m ethod on pipeline structure for N=25, p=5, the efficiency  reaches

0.99 in the integration phase w hile the overall efficiency is 0.96.

The m ost im portan t factor affecting the effic iency  is the load 

balance. Take the De V ogelaere 's m ethod on p ipeline structure as 

the exam ple. For N =16, the com putation on 5 transputers take as 

long as on 4 transputers. W hen p=4, each transpu ter handles the 

sam e num ber o f eq u a tio n s  ,i.e . 4 eq u a tio n s. W hen p=5, one 

tra n s p u te r  h a n d le s  4 e q u a tio n s  and  th e  o th e r  h a n d le  3. 

Im p lem en ta tio n , in th is  case , req u ire s  the sam e tim e on 5 

transpu ters  as on 4 transputers. That is why som e figures look 

u n u s u a l .
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Table 6.1

IS I2 Calculated by iterative Numerov method for N=4 with e=1.0 (i.e. one correction)

Values of j andl

j ’ 1' 0 6 2 4 2 6 2 8

0 6 0.4133 0.1890 0.1518 0.2460

2 4 0.1891 0.6630 0.1140 0.0340

2 6 0.1517 0.1139 0.6740 0.0599

2 8 0.2459 0.0340 0.0599 0.6601

Table 6.2

I SI2 Calculated by iterative Numerov method for N=4 with e=10-4

Values of j and 1

j ’ 1’ 0 6 2 4 2 6 2 8

0 6 0.4134 0.1890 0.1517 0.2460

2 4 0.1890 0.6631 0.1140 0.0340

2 6 0.1516 0.1139 0.6744 0.0599

2 8 0.2459 0.0340 0.0599 0.6601

Table 6.3

IS I2 Calculated by De Vogelaere's method for N=4

j' 1’

Values of j and 1

0 6 2 4 2 6 2 8

0 6 0.4136 0.1888 0.1516 0.2457

2 4 0.1890 0.6632 0.1139 0.0339

2 6 0.1517 0.1140 0.6745 0.0599

2 8 0.2460 0.0340 0.0600 0.6602
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Table 6.4

Times, in second, to calculate ISI2, iterative Numerov method for integration, 

processors are connected in loop structure. Upper entries e=10-4, lower entries e=1.0.

INTEGRATION ELSE

NV 1 3 5

4 26.203 13.625 7.768 1.310
22.359 11.562 6.526

9 173.547 60.992 41.268 2.765
138.190 47.840 32.399

16 716.800 278.396 186.639 8.525
530.113 202.686 135.467

25 2115.068 827.251 457.800 25.425
1552.157 569.106 314.677

Table 6.5

Times, in second, to calculate ISI2, iterative Numerov method for integration, 

processors are connected in pipeline structure. Upper entries £=10'4, lower entries 

e= 1 .0 .

INTEGRATION ELSE

N V 1 2 3 4 5

4 26.203 13.505 13.773 7.686 7.996 1.310
22.359 11.460 11.671 6.445 6.669

9 173.547 98.529 61.443 61.972 41.878 2.765
138.190 70.901 48.200 48.598 32.815

16 716.800 374.182 279.385 187.266 188.125 8.525
530.113 273.031 203.338 135.946 136.599

25 2115.068 1185.535 828.684 648.489 461.006 25.425
1552.157 822.941 570.040 445.160 316.654
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Table 6.6

Times, in second, to calculate ISI2, De Vogelaere's method for integration, processors 

are connected in loop structure.

INTEGRATION ELSE

NV 1 3 5

4 37.477 19.177 10.504 2.186

9 239.097 82.688 55.244 3.641

16 938.468 358.698 238.912 9.401

25 2793.089 1025.405 564.169 26.301

Table 6.7
Times, in second, to calculate ISI2, De Vogelaere's method for integration, processors 
are connected in pipeline structure.

INTEGRATION ELSE

N V 1 2 3 4 5

4 37.477 19.047 19.274 10.408 10.696 2.186

9 239.097 134.453 83.020 83.438 55.646 3.641

16 938.468 483.779 359.098 239.169 239.849 9.401

25 2793.089 1481.057 1025.098 799.243 566.219 26.301
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Chapter 7 

C o n c l u s io n

S everal e ffec tiv e  p a ra lle l a lgorithm s for som e app lica tions

a ris in g  from  S ch ro d in g er eq u a tio n s  have been d ev e lo p ed  and 

im plem ented  on transpu ter netw ork. N um erov 's m ethod and De 

V o g e la e re 's  m ethod , from  w hich  the p a ra lle l a lg o rith m s are

developed , have been investigated .

D eveloping  para lle l algorithm s is a in teresting  and challenging  

ta sk . I t is u n lik e ly  th a t th e re  are  u n iv e rsa l m e th o d s  fo r

developing parallel algorithm s. Though it m ay obviously exist for 

som e a p p lic a tio n s , such  as so lv in g  a c o u p le d  e q u a tio n s ,

para lle lism  has to be exploited  by some special transform ations in

m ost cases.

P ara lle l a lgorithm s are d iffe ren t from  serial ones. H ere are

som e facts d iscovered  in developing para lle l algorithm s:

1. A se ria l a lgo rithm  m ay be genera lly  ap p lied  to several 

applications. In contrast, a corresponding paralle l algorithm  is only 

su itab le  for few  particu lar applications. For exam ple, the N um erov 

a lg o rith m  can be used for all th ree app lica tions w hile we use

m atrix  fo rm alism  fo r a single equation  and com m unications for

coup led  equations.

2. Even fo r one app lication , there  m ay be several d ifferen t 

p a ra lle l a lg o rith m s, w hich  are d eveloped  from  the sam e seria l 

a lgo rithm . T heir effic iency  m ay depend on the p rac tica l lim its, 

such as the num ber of processors. To illustrate, in the bound state
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prob lem , m ethods 1-3 are based on the sam e serial algorithm .

M ethod 1 is the m ost efficient, but it is only suitable for a parallel 

m achine w ith four processors.

3. Some algorithm s, w hich are considered  poor and ignored in 

se ria l co m p u tin g , w ou ld  perh ap s be m ore easily  and m ore 

e ffic ien tly  p a ra lle lised . The secan t m ethod for the bound state

p roblem  gives the evidence.

4. W e cannot expect that an effective parallel algorithm  w ill be 

as f le x ib le  as the co rrespond ing  serial one. F o r exam ple , we 

arrange the in terva l sizes in advance ra ther than changing  them  

au tom atically  according to the estim ated  error.

The e ffic ien cy  o f a p ara lle l a lgo rithm  can never reach  100

percent. The factors affecting the overall efficiency are

1. C o m p lex ity : A p a ra lle l a lg o rith m  m ay have g rea te r  

com plexity  than a serial one. This decides the upper lim it of the 

p a ra lle l a lgorithm .

2. D istribu tion : A task can not alw ays be decom posed  into

subtasks w ith the sam e size. The effic iency  w ill be decreased  

because of the im balance of d istribution.

3. C om m unication: The cost of com m unication depends on the 

p h y sica l env ironm ent. On a tran sp u ter netw ork , the tim e for a 

flo a tin g -p o in t arithm etic  operation  is very m uch longer than the 

tim e to pass a rea l datum  betw een  p ro cesso rs . F or a sm all 

netw ork, the cost of com m unication is relatively  low.
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4. S equential factor: Som e operations are strongly  sequentia l. 

B ecause of their effects, the efficiency o f the algorithm  will fall 

W ith the increasing of the num ber of processors.

I l l
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