VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Parallel Algorithms for the Solution of

the Schrodinger Equation

by

Xu Huang

A Thesis Submitted in Fulfilment of the Requirements
for the Degree of Master of Science
in the Department of Computing Science

at the University of Glasgow

May 1989

ProQuest Number: 10999245

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10999245

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106- 1346

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor Professor A. C. Allison
for suggesting this interesting subject, for his continued assistance,

guidance and interest.

Many thanks must undoubtedly go to Professor H.Y. Wong for
his guidance and assistance in many ways throughout the whole
period. My- thanks arc also due to the High Education Bureau of
Guangdong Province and Shantou University for giving me the

opportunity to study this course and financial support.

Finally 1T would like to thank my family and all my friends for

their help and encouragement.

Abstract

Many of the wraditional numerical algorithms do not map easily
onto the architecture of parallel computers that have emerged
recently. For the economic use of these expensive machines and to
reduce the total computing time, it 1is necessary to develop

efficient parallel algorithms.

The purpose of the thests is to develop several parallel
algorithms for the numerical solution of the Schrodinger equation
which arises in many branches of atomic and molecular physics.
Common models of systems which are of interest may represent
stable configurations of two particles, the bound state or
eigenvalue problem. Alternately one may consider either single-
channel or multi-channel scattering. All three mathematical

models will be investigated in this work.

Emphasis is placed on parallel algorithms for MIMD machines.
All the algorithms have been implemented and tested on a
transputer network which is a MIMD machine without shared

memory.

Existing numerical methods such as those ascribed to Numerov
and De Vogelaere have been investigated and parallel versions of
them have been developed. Two exponentially fitted versions of
the Dc Vogelacre algorithm have been developed and they are
found to be more efficient than the normal De Vogelaere

algorithm.

Table of Contents

Chapter 1: Introduction

1.1 IntroduCtion . e e 1
1.2 Parallel computer models and performance measures........oeveeeerevnnen 2
1.3 TTanspULer QITAY..i.ciiiiiiiiitiiiiiiiiiiniitriiieeettiiersasrstestersssnsnenees 4
1.4 Applications arising from the Schrodinger equation........ccccoeeeieivennnee 4
1.5 Contents.......ooovvivninnnne, ettt et 7

Chapter 2: Numerical Methods for Schrodinger Equation

2.1 INtrodUuCtion ..iiiiiiiiiiii e 10
2.2 Linear multi-step method for second order differential equation............. 11
2.3 Numerov method. s 12
P B B O =1 4 A N A o | N 12
2.3.2 Local and global error.........ccoociiviiiiiiniiiiiinnen, 13
2.3.3 StabIlitY . e e 16
2.4 Raptis-Allison method......coiiiiiiiiiiiiii e 17
2.5 Numerov-like scheme: Futher investigation of Raptis-Allison method...... 19
2.6 De Vogelaere method....ccooviiiiiiiiiiiiniiinin e ceeeeeeeeennaeees 28
2,01 DerIVaION e et e e e e e e 28
2.6.2 Local and global error..ciiiiiii e 31
2.0, 3 S Y e e e eas 33
2.7 Simple modification of De Vogelaere's algorithm...................oooniie. 35
2.8 Exponential-fitting De Vogelaere method.........ccvviiiiiniiiiiiiniiininne 36

Chapter 3: Transputer Network
3.1 Transputer and OCCAML. . oiiiiiiiiiiii e 40
3.2 An actual network configuration.......cccceeiiiiiiiiiiniiiiniiiniiinnienenene. 43

3.3 Parallel algerithms for transputer NELWOIKS......cccccivviiiiiiiinininnnnneinn, 45

Chapter 4: Parallel Algorithms for Eigenvalue Problem

4.1 Eigenvalue problem.. 50
4.2 Numerical analysis. i 50
4.3 Matching methods. oo e 52
4.4 Method 1: four processes method..........ccoooiiiiiiiiiininnn 55
4.5 Method 2: 4x4 matrix formalism......cooooiiiiiiiiiiiiiiiiiinn. 56
4.6 Method 3: 2x2 matrix formuliSm.......cccoiiiiiiiiiiiiiiiiiiiiireenecencernnnee 59
4.7 Method 4: secant method with 2x2 matrix formulism........cccccevcueeenn. 63
4.8 Model problem.. e 66
4.9 ITMplementation. oo e 67

Chapter 5: Parallel Algorithms for Phase Shift Problem

5.1 Phase shift problem.......ooooiiiiiiiiiiiiii 78
5.2 Parallel algorithm. ... 80
5.3 IMpPlemMentaAtioN . ottt ie e er et reae e e eeeeeaeaanaans 85

Chapter 6: Parallel Algorithms for Solving Coupled Differential

Equations
6.1 Coupled €qUAtIONS...iiiiiiiiiii i e 90
6.2 Numerical Integration MethodS.......ccooieiiiiiiiiiiiiiiiin 92
6.3 Parallel algorithm.. ... 96
6.4 I pPlemMENtaAtION. i e e e eeaas 103
Chapter 7: ConcluSion. . ..o ae e 109

) S N O N T 112

Chapter 1
Introduction

1.1 Introduction

The past few years have seen a tremendous growth in interest in
parallel architectures and parallel processing. Various new
machine designs, prototypes and languages for parallel and
distributed computing have been proposed and some parallel
systems have been made commercially available. Examples of
parallel computers are the CRAY-XMP, Amdahl's VP series, BBN
Advanced Computers' Butterfly Parallel Processor, CDC's
CYBERPLUS, Goodyear Aerospace Corporation's MPP and ASPRO,
NCUBE's NCUBE parallel Processing Systems, Sension's TES
(Jesshope, 1987). This achievement is largely due to the advances
in VLSI technology.

The development of parallel algorithms, however, seems to
have lagged behind the rapidly growth of parallel computers. For
many problems, the available algorithms are sequential and,
certainly, can not take the advantage of the parallel machines. In
the area of numerical computation, much effort has been applied
to the development of parallel algorithms for various applications.
For example, many parallel algorithms in numerical linear algebra
have been developed (Ahmed, 1981; Schendel, 1984). However,
there is still a long way to go for many applications. Problems
arising from the radial Schrodinger equations are the examples.
For these problems, few parallel algorithm have been seen in the
literature. In this thesis, we will investigate these problems and

manage to develop corresponding parallel algorithms.

1.2 Parallel computer models and Performance measures
Since parallelism is possible in three main units of a computer:
control unit, processor and store, parallel computers can be
designed in various forms, depending on the application. Flynn
introduced a classification based on how the machine relates
instructions to the data being processed. He defined instruction
stream as a sequence of instructions executed by a processor and
a data stream as a sequence of data on which the processor
operates (Flynn, 1972). According to whether the instruction or
data stream are simple or multiple, he proposed four broad
classifications of machine organizations:

SISD: Single Instruction stream, Single Data stream;

SIMD: Single Instruction stream, Multiple Data stream;

MISD: Multiple Instruction stream, Single Data stream;

MIMD: Multiple Instruction stream, Multiple Data stream.

SISD machine is the conventional von Neumann model and the
MISD category is empty (there are not this kind of machines
yet). Only the SIMD and MIMD computers are considered as

parallel machines.

The SIMD category consists typically of array processors. All
the processors interpret the same instructions and execute them
on different data. These processors are under the control of a
central control unit which provides instructions and operands for
them. A machine of this kind can have a large number of
processors. Early examples include the ICL/DAP (Distributed
Array Processors) consisting of 4096 processors, the 16384

processor Goodyear MPP (Massively Parallel Processor). The DAP

has recently been reborn as a 1024 processor array design by
AMT (Association Memory Technology). To achieve higher
performance, algorithms for SIMD machines are best formulated

in terms of vector and matrix operations.

MIMD machines consist of more than one processor, each
executing a separate instruction stream. There are two kinds of
these machines, depending on whether or not processors share
their memory. On the shared memory model, all processors share
a global memory accessed by a processor-memory interconnection
network while the alternative is actually a network with a
number of processors, each with its own local memory and each
with the ability to communicate with other processors in the
network. Networks of transputers fit this latter model and it is
on those that we will concentrate since an actual hardware

configuration is available.

To achieve high performance, the algorithms for parallel
computers should have parallel structures. It is of the utmost
importance that the algorithm can assess the speed gain expected
from the operation of p processors in parallel. For this purpose

the speed-up ratio S is introduced. It is defined as

S(p, n, A) =—1me requiredT:pr tlileAS;arial algorithm

where T(p, n, A) is the time required by parallel algorithm A to
compute a problem of size n on a parallel machine with p

Processors.

Another useful measure of parallel algorithm performance is

efficiency E(p, n, A) defined by

E(p, n, A)= ﬂ}&;fb_f*_l

1.3 Transputer array

The transputer array is a nonshared memory MIMD machine
which is built around an innovative chip called the transputer,
designed by INMOS Ltd. The transputer consists of a CPU,
communication channels and some memory on a single chip. The
communication channels, or links, make it possible to build
flexible multitransputer networks by connecting transputers

through links(Hey, 1988).

1.4 Applications arising from the Schrodinger equation

Differential equations play an important role in scientific research
and engineering. In many branches of atomic, molecular and
nuclear physics, we often encounter the Schrodinger equation.
Usually, there are no analytical solutions for these equations and

solution must be obtained numerically.

The one-dimensional radial form of the Schrodinger equation

may be written as
y'(r) + f(ny() =0 (1.1)
where

f = E - 1(+1)/r2 - V(r) and the potential function V(r) vanishes as r

increases.

Boundard conditions are imposed over the semiinfinite range

[0, =), the solution vanishing at the origin. i.e. y(0)=0. The

behaviour for large values of r is decided by physical

considerations. Here are two problems arising from eq.(1.1):

1) In the case of E<O0, the solution will tend to an exponential
function. It is only for some special values of E that the solutions
display decreasing exponential behaviour and vanish for large
values of r. These particular values of E determine the bound
eigenstates of the system. The boundary conditions for the

eigenvalue problem (or bound state problem) are
y(r)=0 at r=0,
y(r)=0 at r» (1.2)

2) In the case of E>0, the solution of the equation will increase
rapidly and then oscillate exhibiting sinusoidal behaviour. The
solution is parameterised by the phase shift. The boundary

conditions for the problem are thus
y(r)=0 at r=0,
y(r)— Asin(or-1/2x+8) as r—® (1.3)

where o=\VE and & is the phase shift required (Allison, 1970;
Raptis, 1977; Raptis and Allison 1978).

3) Another application of the Schrodinger equation is in
molecular scattering where the model is represented by sets of N
coupled differential equations. The coupled differential equations

have the form :
Y"(r)+F(r)Y(r)=0 (1.4)

where F, Y are NxN matrices and the elements in F are given by

Fij=38;j[ki2-1i(1i-1)/r2] as r— (1.5)
The boundary conditions are
yi;j()=0 at r=0

yij(r)—>kirji(kir)8;; + (ki/kj)1/2Rjjkirny(kir) at 1—> @, (1.6)

where ji(x) and nj(x) are the spherical Bessel and Neumann func-
tions, respectively. The R matrix contains all the necessary
information about the physical system(Arthurs and

Dalgarno,1960; Allison, 1970).

For the above three problems, there are many numerical
methods available. Allison(1988) has given an up-to-date review
of the numerical methods that have been developed over the
years to address these problems. The usual approach is direct step
by step numerical integration and two of the mostly widely used
methods are Numerov's method (Allison, 1970) and De Vogelaere's
method (De Vogelaere, 1955; Allison, 1970; Coleman, 1980). Much
effort has been made in enhancing the efficiency of these
algorithms. The accuracy of some numerical formulae have been
significantly improved by using exponential fitting
techniques(Raptis and Allison, 1978; Ixru and Rizea, 1980). For
coupled equations, the standard methods generalise to matrix
form and, in principle, matrix inversion is required. Efficient
algorithms without matrix inversion have been developed(Lester,

1968; Allison, 1970; Baylis and Peel, 1982).

All the algorithms available are based on some recurrence
formulae and the integrations are carried out step by step. They

are clearly sequential algorithms which make poor use of parallel

and vector computers. Though some of them are written in terms
of matrices where parallel algorithms of linear algebra could be
applied, the parallelism of most of them has to be exploited by
users in the light of the specific computer model they use. For the
phase shift problem, an initial investigation has been studied by
Ishibashi et al.(1989), who suggested the use of a matrix
formalism on vector computers and high performance has been
achieved. Ishibashi's approach 1is based on a Cauchy-type
propagation matrix. In this thesis, parallel algorithms for single
equation are developed by using matrix formalism but Numerov-

like methods are used.

1.5 Contents

Since the Numerov and the De Vogelaere algorithms are
frequently used methods for direct integration of these equations,
we will give more details about the two algorithms in Chapter 2.
These will include their derivations, truncation errors, global
errors and stabilities. The Exponential-fitting Numerov algorithm
proposed by Raptis and Allison(1978) is studied. The exponential-
fitting technique is generalized to both the Numerov and the De
Vogelaere algorithms, resulting in various new formulae which are
more efficient than the original versions. These new formulae can
be applied to parallel computation in a similar fashion to the

original methods.

Chapter 3 contains a brief introduction to our Transputer
network, which is considered as one kind of nonshared memory
MIMD machine, and to Occam, the native language for the
transputer. A actual model is illustrated and is used to test all the

parallel algorithms in latter chapters. Some simple examples are

given to describe what parallel algorithms for transputer

networks look like.

In Chapter 4, parallel algorithms for the eigenvalue problem
arising from the Schrodinger equation are investigated. For this
problem, one technique is 'matching in the middle’. We integrate
both forwards and backwards and then the two solutions are
matched at one or two points which are, normally, close to the
middle of the integration range. The eigenvalues are calculated by
solving the matching equations. In this chapter, we present four
parallel algorithms which are based on the 'matching technique’
for the problem (Fox, 1968). Three of them are based on the
Newton process for the solution of the matching equations while
the other is based on the secant method. One of them is obtained
directly from the conventional sequential algorithm. High
performance can be achieved if only four processors are
available and the matching points are properly chosen. The other
three are developed by using 4x4 or 2x2 matrix formalisms and
they can be run on a parallel machine with any number of
processors. Numerov method is the difference formula for these
algorithms. All the variants of Numerov method can be similarly
used and we take the Exponential-Fitting Numerov method as an

example.

Phase shift problems are dealt with in Chapter 5. K. Ishibashi
et al (1989) have described an algorithm designed for a vector
computer. The algorithm is based on a Cauchy-type propagation
matrix(Gordon, 1971). In this chapter, we generalize the matrix

formalism technique to Numerov method and change of the

stepsize is implemented. Emphasis is placed on the treatment of

the stepsizes which are arranged in advance.

The parallel algorithms for coupled equations are presented in
Chapter 6. The technique used is to treat the solution of each
equation as an independent process which communicates with
other processes only when a coupling term is encountered. Since
communication depends on the topology of the network, two kinds
of structures, the pipeline structure and the loop structure, are
under investigation. The Iterative Numerov method and De
Vogelaere method show their superiority since they are relatively

independent of the coupling.

Chapter 7 contains the conclusion.

Chapter 2
Numerical methods for Schrodinger equation

2.1 Introduction

The radial form of the Schrodinger equation can be written

y"=f(r)y (2.1)
where f(r)= -[E-1(1+1)/r2-V(r)] and V(r) vanishes as r increases.

At the present time, there are several general direct integration
methods available for solving initial value problems of the form
of eq.(2.1). One approach uses linear multi-step methods such as
the Numerov algorithm(Allison, 1970), which is based on
polynomial approximation. Due to the oscillatory (or decreasing
exponential) behaviours of the solution, some authors have
suggested the use of special function approximation and many
efficient algorithms, which exactly integrate a special set of
functions, have been developed in the past few years(Isaru &
Rizea, 1980; Raptis & Cash, 1986). Such methods are generally

classified under the heading "exponential fitted".

One problem of most linear multi-step methods is that they
require a matrix inversion at each step in solving coupled
equations. Though it can be tackled by efficient iterative
mechanisms(Allison, 1970), the additional computation would still
take a significant proportion of total time consumption. Some
hybrid methods, such as De Vogelaere algorithm, have more
advantages in handling coupled equation and, therefore, are still
widely used in multi-channel problem(De Vogelaere, 1954; Lester,

1968; Allison, 1970; Coleman and Mohamed, 1978).

10

In this chapter, we investigate some of the direct integration
methods and assess their suitability for parallel computation.
Since it is not easy to exploit the parallelism of complicated
methods, we only choose the simple and efficient methods:
Numerov method, De Vogelaere method and their exponential

fitted versions.

2.2 Linear multi-step method for second order
differential equation
Following Lambert(Lambert, 1973), for the initial-value problem

of second-order differential equation
y"(0=f(r,y), refa, b] (2.2)

the linear multi-step formula may be written as

K K
T iyn+i = h2Z By f(tu+i, Yo+i)- (2.3)
i=0 i=0

where ox=1 and lagl + IBo! >0.

The associated operator of (2.3) is

k k
Lly(r), h] =X ajy(r+ih) - h2¥ B; y"(r+ih). (2.4)
i=0 i=0

where y(r) is an arbitrary function, continuously differentiable on
the interval [a, b]. If we assume that y(r) is m times continuously
differentiable, then, on Taylor expanding about the point 1, we

obtain

11

m-1

Liy@), h] = Z Cih'y®(r) + Cnh™y™(r+k6h) (2.5)
i=0

where 0O< 6 <1

and
Co=0g+ o1+... + ok
Ci= o] + 200+ ...+ ko (2.6)
Cy= Tl!(oz1+220c2+...+k2ak) Bo+ Bi+... +Po

i= -i—l'-(ocl + 2ia2+ co.+ kiock)

) (i;Z)’(Bl + 220+ .. +K20) for i>2

The linear multi-step method is said to be of order p if, in(2.5),
CO-:C]:. . .=Cp+]=0, Cp+2¢ 0 .

or equivalently
L{rl,h] =0, i=1,2,...p+1, L@**?) =0 (2.7)

Cp+2 is defined as the error constant ,and Cp+2hP*2y®*2)(r,) the
principal local truncation error at r, The truncation error can

also be represented as

LIy(rn), h] = Cps2hP*?y®*I(r,+keh) (2.8)
where 0 <6 < 1.
2.3 The Numerov method

2.3.1 Derivation

Consider the two-step method

12

Yo+l + 01Yn + €oYn-1 = h2(B2yns1 + B1yn + Boyn-1) (2.9)

Since there are five unknown coefficients in the equation, they
can be chosen so that they the first five coefficients given in (2.7)

are exact to zero.
G =0 i=0,1,2,3,4
Solving this system we obtain
op=1, o1=2

P _10
Bz—Bo—l2 , B1—12

The formula (2.9) take the form

2
Ynet + 290 +¥n1 =To{Yie +10¥3+ i-1) (2.10)

It is also be found that
Cs=0

1
Co=- 575 (2.11)

and the local truncation error reaches the order of six. The two-

step method (2.10) is known as 'Numerov method' .

2.3.2 Local and global error
According to (2.5), (2.11) , the truncation error of eq.(2.10) is
Lly(ra1), h] = Ceh®©(ry.1+26h)

1

= - mhﬁy(@(rn_l_,_zgh) (2.12)

where 0< 0 <1 .

13

When a differential equation is solved on the interval [a, b] the
global error is the difference between the exact solution and the
calculated value at the end point r=b. To investigate the global
error of the Numerov method, we choose a stepsize h=(b-a)/N and
establish an upper bound valid for all sufficiently small values of

h. To make thing simple, we just consider the equation of (2.1)

y"=f(r)y

In that case, the Numerov formula is

h2
Yo+l + 2yYn + Yn-1 ='H(fn+IYn+l +10fpyn + fn-1Yn-1) (2.13)

where
fnzf(rn) N rn=a + I'lh.

Suppose y(rp) is the exact solution of the initial value problem, the

global error after n steps is

€n=Y(In) - ¥n

which satisfy the recurrence relations

1 10
(1 - 50 nsn)enst - 2 + 0% m)en+ (1 - <5h o)ens = Lly(ta.),h]

(2.14)
By substituting

1
en=(1 - Ehzfn)en ,

14

8= L[y(rn-1), h]
Eq.(2.14) becomes
€n+1=(2+anh®)en - €n-1 +3n

Summing out the fitst n terms gives

n n
T gip1 = Z [(2+aih?)g; - &3y +3i]

i=1 i=1

which leads to the relation

n n
Ens1=En+ h2Z ajg; + 2 & + €1- €0

i=1 i=1

Let D, A the upper bounds of §;, a;, respetively, and
n;=max{leil, leal,. . .lgil}

Then
len+1! < lenl+h®nAn, +nD +le;-gol
Notice that n,, ,=max{n,, €n+1}
SO
Nyt S nn+h2nAnn +nD +lep-gopl
=(1+h*nA)n_+(nD +le;-gol)

The sulution of this recurrence relation is

(1+h%nA)™1-1
h2n A

n, < (1+h*nA)"In + (nD +le1-ggl)

Now

15

(2.15)

(2.16)

2
(1+h2nA)"!=(1+h(ry-10)A)" 1< A (70"
we obtain

2 2
M, <ermT0 q 4+ YA AT 1) (h'2D +hlle;-gol/(Tn-T0))

(2.17)
and, at the final point,
len] <my
< {cqlejl+coh g -ggl }+c3h™2D (2.18)
where

2
c1=eA® D ca=(ci-1)/A, cr=cs/(b-a)

If M is the upper bound of y(6)(r),then, in the absence of rounding

error D can be chosen as

1 6
D=saor M

and
lenl=O(h*)

We have shown that the global error in the Numerov methods is

O(hH.

2.3.3 Stability

To investigate the absolute stability of the method we apply it to

the equation

16

y" =ky.
Then eq(2.10) becomes

Yn+l - @yn+ Yn1 =0 (2.19)

where a=2+—1— and q = kh2.
1-q/12

The characteristic equation of (2.19) is
A2-ah+1 =0 (2.20)

and the method is absolutely stable when neither |A;l nor IA,l
exceeds unity. Since AjA; =1, the condition required is satisfied if
and only if both A; and A lie on the unit circle and this happens

when

a2-4< 0 or 0< -kh2< 6.

2.4 Raptis/Allison method

For general second order equation without first order derivative,
the Numerov method is considered as the best two-step method.
However, for our problem, the solution of the Schrodinger
equation exhibits sinusoidal behaviour in the case of E>0 or
decreasing exponential behaviour in the case of E<0 when r is
large enough. Therefore, the use of polynomial approximation is
not the natural approach and several techniques based on special
function approximation have been proposed. The pioneer work is
the multi-step method with exponential fitting developed by
Raptis and Allison(1978).

17

In the multi-step method with exponential fitting, the

coefficients may depend on the interval h. The formula becomes

k k
T ai(h)yn+i = h2Z Bi(h)f(tn+i, yn+i) (2.21)
i=0 : i=0

and the linear operator L is

k k
L[y(r), h] =X aj(h)y(r+ih) - h2X B;j(h)y"(r+ih). (2.22)
i=0 i=0

where as(h)=1.

Raptis and Allison's method is a two-step formula of (2.21)
which exactly integrates the solution of equation
y"=ky
If k>0, we let the operator L integrate exactly the functions

1, 1, 2, 13, e*®*

where 2=k and then the coefficients are

a2(h) = agth) =1, ajth) =2

(1-e°)2- w2h2e®’
h) = h) =
Bo(h) = Ba(h) oZh2(1 - oo1)2

©2h2(1 - e2®%) - 2(1 - e®T)2
®2h2(1 - e®r)2

(2.23)

Bi(h) =

In the case of k<0, let the operator L integrate exactly the

functions
1, r, 12, 13, sin(wr), cos(wr)

where ®2=-k and then the coefficients are

18

az(h)=0p(h)=1, a;i(h)=2

®2h? -2(1-cos(wh))

(2.24)
2w2h2(1-cos(wh))

Bo(h)= Ba(h)=

2-(w2h2 +2)cos(wh)
®2h2(1-cos(wh))

B1(h)=

The above formulae are affected by servere concellation for small
value of h and can be efficiently computed by their power series

expansion

az(h)= ao(h)=1, a;i(h)=2

NS 1

Bo(h)= Ba(h)= { 1- —22+—‘2504 e+,

Bi(h)= = {5222 zts. .) (2.25)
6' 7720 504" T ‘

where z2=kh?

It can also be found that the leading term of the local

truncation error of both cases is given by

- 2; 6(y(6)-ky(4) (2.26)

2.5 Numerov-like scheme: Further investigation of
Raptis-Allison's method

The basis set chosen by Raptis and Allison(1978) is { ¢1,¢3,1, 1, 12,
r3 } where ¢i,p3are the linear independent solutions of equation
y"=ky. One may consider that if there exists other basis sets { ¢,
02, 93, P4, 5, P } suitable for constructing similar methods. The
generalised schemes of Raptis-Allison's method should have the

properties.

19

1. Accuracy. For an arbitrary function y, which is sufficiently

differentiable, the local truncation error should be of order hS,
2. The equation y"=ky should be integrated exactly.

3. Independence. The coefficients of the formula are independent

of r.

4, Symmetry. It is desirable that the coefficients og(h), o2(h),
Bo(h), B2(h) should satisfy ag(h)=a2(h), Bo(h)=P2(h) so that the
formula can be reduced to the attractive form obtained by

substituting u = {ag(h) - h2Bo(h)f}y: -

Upst + apup+ U1 =0 (2.27)

o1 (h)-h2B, (h)f
ag(h)-h2Bo(h)f

where a =

Efficient parallel algorithm can be developed from eq.(2.27).
Another advantage of the symmetry is that there are no odd
order terms in the truncation error. Therefore, if the leading term,
i.e. the sixth-order error term, of truncation error vanishes, the

truncation error will be reduced to an eight-order error term.

Therefore, we choose og(h)=az(h)=1, Bo(h)=B2(h) and the formula

becomes

Y1 + a1(h)yn + yn.1 = h2(Bo(h)ynet + B1(h)yn + Bo(h)yn-1

The three unknown coefficients o;(h), Bo(h), B1(h) may be written

in the form of power series.
a1(h)=ag +az(kh2)+as(kh2)2+ag(kh2)3+. . .

B1(h)=bg +ba(kh2)+bs(kh2)2+bg(kh2)3+. . . (2.28)

20

Bo(h)=cg +ca(kh2)+c4(kh2)2+c(kh2)3+. . .
Then
Lly(r), hl=y(r+h)+ai(h)y(r)+y(r-h)-h2(Boy(r+h)+B1(h)y(r)+Boy(r-h))
=Fo(y)+F2(y)h2+F4(y)h4+Fg(y)ho+. . . (2.29)
where

Fan(y)= (—2%7)7 (20)+ agyy for n=0,

2
Fon(y)= W m+ asyy

(oo 2y Cn s, ot o2y Drbanay®)

_ 2 _ 200 (211)- 2C2 (2n_2) _ _ 2C2n_4 (4)
Gl G " Zn4)] R Y

-(2¢an-2+b2n-2)y@+asyy for n>0 (2.30)
The first four operators of Fa,(y) are
Fo(y) = (ap + 2)y
Fa(y) = (1 - 2c0 - bo)y" + asky

Fay) = (5 - o)y ® - (2c2+ b)ky” + agky

Fo(¥) = (355~ 7500 - cky® - Qea+ bok?y" + agkly (2.31)

To give a method of O(h4), the first three term above must be

zero. 1i.e.

2+ay=0,

21

1-2cHp-bp=0, a=0,

11—2-c0= 0, 2cp+by=0, as=0,
S _ _5 _ 1 _ B _
0, ag=0, bo—g‘,co—ﬁ, ay=0,a4=0, 2co+ bp=0 and
Fe(y) = - Ei_d.y(w - coky® - (2c4 + ba)k2y" + agk3y (2.32)

Since we expect that the formula exactly integrates solutions of

the equation y"=ky, we obtain

1
- T - = .33
540 c2 - (2c4+byg)+ ag=0 (2.33)

Define the operators D,I by
Dy=y", Iy=y
Then

Fe(y)= - 5;—0h6(D2-kI){D4+(1+24002)kD2+240a6k2I}y (2.34)

Eq.(2.34) provides sufficient information for the derivation of a
new class of methods. There are two free parameters in eq.(2.34).
For given c», ag, there are six linear independent functions
corresponding to the solutions of Fg(y)=0. We can prove that there
exist unique coefficients o (h), Bi(h), B2(h) so that the
corresponding formula integrates the six linear independent

solutions of Fg(y)=0 exactly.

Let p2n(A) be the characteristic polynomial of the differential

operator Fon(y). (n>2)

(2 _2c0 yyon._2C2 aona . _2Con-444
PNt 5 ST Gy D Gt T T

22

-(2¢an-2+b2n-2)A2+as,

Clearly, the condition that the method can exactly integrates the

solution of Fg(y)=0 are that pg(A) is a factor of p2n(A) (n=4, 5,
6,...). Since there are three free coefficients c4, (2c¢+bg), agin
pg(A), we can uniquely determine themby letting the remainder
ps(A)/ps(A) be zero. Similarly, c2n, (2c2p+b2y), a2n can be

obtained in the same way.
The algorithm is:

1. Choose c3 , ag.

2. calculate 2c4+by by Eq(2.33)

3. For n=3, 4, 5, ..., calculate cyp.2, (2cap+bay), a2 by letting

ps(A) be a factor of pan+2(A) and then calculate by,.2 from

(2¢2n-2+bap-2) and cp-2.

From the algorithm, we can easily obtain the following existing
methods. The algorithm generates the coefficients in the form of
power series where z=kh2. A REDUCE package is used to yield the

explicit forms of the coefficients(Hearn, 1985).

Raptis-Allison method (1978):

This method is obtained by choosing ag=0, ca=- ﬁ(;

The leading term of L[y,h] is - 2;—0h6(D2-kI)D4y.

The basis set is {1, r, r2, r3, e®", e®") in which w2=k. The series

expression of the coefficients o(h),B1(h),B2(h) are

23

oi(h) = -2

1 1 1 1
h) = — 1_.__22 4 _ Z6 ..
Bo(h) 12{ 20 +504Z 14400 *)
1 1 1 1
h)= —{5+—=—22 - ——4 76 + . ..
P1(h) 6{ +20 504 +14400 * }

where z = kh2.

Ixaru and Rizea's method I (1980):

By choosing ag=0, cp=- 11% , we obtain this method. The leading

term of L[y,h] is

- 1 6(D2 - 2D2
ﬁ—o-h(D kI)Dy

The basis set is {1, r, e®f, e ®", re®’, re’®"). The coefficients

o1(h),B1(h),B2(h) are

al(h)=-2
_zsinh(z)-2cosh(z)+2

Po(h) = z3sinh(z)
oo o T 4 31 6
12 1" T0" " T680° ~30240° "7

2cosh2(z)-2cosh(z)-zsinh(z)
z3sinh(z)

Bich) =2

6 (102 Y336 302400

}

Ixaru and Rizea's method II (1987):

. . 1 1
1 1 - —— T e—
This new method is generated by letting ag 240 () 20

The leading term of L[y,h] is

24

1
L[y,h]= - ——h6(D2-kI)3
[y,h] 540 (D2-kI)3y
The basis set is { e®T, e @ ,re®’, re® r2e®’, r2¢ .}

zsinh?2(z)-3sinh(z)cosh(z)-z
3sinh(z)+zcosh(z)

oth)= 2

1 1 1
=2 6- 8 710
T 240° " 2016% T 11520

_zcosh(z)-sinh(z)
Bo(h) z2(3sinh(z)+zcosh(z))

1 3,41 , 1219
12 V1207 " T680% " 302400%" "

}

_ ~zsinh2(z)+sinh(z)cosh(z)-z
Pih)= 2 z2(3sinh(z)+zcosh(z))

1 3 .17 1811
={5 2 z4 - z6.. ..
6 L7 30°"336% 302400

}

Gautschi's method I(1961):

It is obtained by leting ag=0, cp=- Zlg, the leading term of L[y,h] is

1
- ——h6(D2-kI)(D2-4kI)D2
240 (D2-kI)(kI)D2y

The basis set is {1, r, e®F, e®T, e29T ¢29T) and the coefficients

a1(h),B1(h),Ba(h) are

oy(h)=-2

_cosh(2z)-4cosh(z)+3
“4z2(cosh(2z)-cosh(z))

Bo(h)

1 7 .. 809
12477 120° 60480

6...}

B.(h) _3cosh(2z)cosh(z)-4cosh(2z)+cosh(z)
! - 2z2(cosh(2z)-cosh(z))

25

Gautschi's method II:

To yield this formula, we let ag= 23—0, Cy=- ILZO-’ the leading term of

L[y,h] is

; 2170116@2-k1)(D2-4k1)(D2-9k1)y

The basis set is { €®F, e"®T, e29F, ¢ 20r 39r ¢-30r}y the coefficients
a1(h),B1(h),B2(h) are
Scosh(3z)cosh(2z)-32cosh(3z)cosh(z)+27cosh(2z)cosh(z)

h)= 2
aq(h) 27cosh(3z)-32cosh(2z)+5cosh(z)
=- 3 3. L 4 49 5
_2+;2'—OZ 122 +800
Bo(h)= 3cosh(3z)-8cosh(2z)+5cosh(z)

22(27cosh(3z)-32cosh(2z)+5cosh(z))

1l 1,0, 119, 53399

12 10 240 151200 °°°

}

Scosh(3z)cosh(2z)-8cosh(3z)cosh(z)+3cosh(2z)cosh(z)
z2(27cosh(3z)-32cosh(2z)+5cosh(z))

Bi(h)= 2

=%{5+—7—22+-3—524-55441 .

10 48 151200 o)

Other schemes can be derived by choose the free parameters c;

and ag, Here is an example:
Example : ag=0, c2=0:
Liy,h]= - 2}ﬁm(b2-1<1)(D2+1<1)1)2y

26

The basis set is {1, r, e®T, ¢, sin(wr), cos(wr)} in which w2=lkl.

o1(h)=-2
1 11
BO(h)_lZ { 1 -mz4+. ..}
_Ll,g 23
Bl(h)— 6 {5 W4+...}

Since there are numerous methods, it is essential to determine the
best one, i.e. the one with the smallest truncation error for

equation
y"=(k+V)y (2.35)

where V and its derivatives V', V", V3 V() are significantly
smaller than k. This is equivalent to finding c3 (2c4+bs), ag so that

for a given solution y of (2.35), Fe(y) has its smallest value.
Let

a=240c,, b=240(2c4+by), c= -240a¢

then

Fe(y) = - ﬁ)ﬁy“)- coky®-(2¢c4+ba)k2y"+ agk3y

= - 5ooly©+aky@+bk2y"+ ckdy)

- '2}70{ (a+b+c-1)k3y+(2a+b+3)k2Vy +2(a+3)kV'y'

+k(aV2+aV"+3V2+7V")y +2(3VV'+2V))y'

+V3+7VV"+V)+4V'V')y} (2.36)

27

Since lly'll= Iklllzllyll, the first three dominant terms for large k are

(a+b+c-1)k3y, (2a+b+3)k2Vy, 2(a+3)kV'y'
They vanish only when a, b, ¢ satisfy
a+b+c-1=0, 2a+b+3=0, a+3=0.

or a=-3, b=3, c=-1

1 , 2C4+by= 1—

Th f s = = C2=-
erefore, ag 2400 80 30

and the corresponding

setis { e, e ¥, re®, re"®" r2e®’, 2"}
In that case, we also have

Fe(y) ={V@®+4V'V'+TVV"+V3+4V"k) }y+2(2V3) +3VV)y'

2.6 The De Vogelaere's Algorithm

2.6.1 Derivation

The Numerov and Numerov-like methods such as Raptis/Allison
are implicit. This causes no problem when they are applied to a
single channel equation of form (2.1). However, when generalize
them to coupled equations, we need to do some additional
computation for matrix inversion or equivalent. De Vogelaere
constructed a hybrid algorithm, which involves the calculation of
y', and which is explicit for the equation y"=f(r, y). This
algorithm does not require any matrix inversion for coupled

equations.

Consider the relations

28

k k k

T &iynsi = h2Z Biyn+i + hZ yiyn4i (2.37)
i=0 i=0 i=0
k K
Z ojyn+i =hZ Blyn+i (2.38)
1=0 =0

where ag=1, ai=1.

The associated operators are, respectively,

k k k
Lily(r), h] =X a; y(r+ih)- h2X B; y"(r+ih)- hZ yy'(r+ih). (2.39)
i=0 i=0 i=0
k k
La[y'(r), h] =X ajy'(r+ih) + hZ Bjy"(r+ih) (2.40)
=0 1=0

Eq.(2.38) is clearly the general multi-step formula. The values of
y, y' at the mesh points can be calculated by the two formulae.
Since we are interested in explicit method, at least one of the two
formulae must be explicit. In order to balance the accuracy of the
two formulae, we let the first one be explicit. In the case of k=2,

the coefficients of the formula of (2.37) with highest order are

a2=1, a1 = -(1+ o) ,

Bo= 3 (3 - ao), B1=-5(1+a)

1 1
= - = 1 N
Y0 —(12 7 - ®0), M1 —(12 7 + ap)

The error constant Cs is (31-09)/6!. The formula is zero stable

when og lies in [-1, 1](Lambert,1973). When o =1, it has the

29

smallest error constant. But if we choose ag =-1, the formula has

its tidest form:

1] h2 11] "
}’n+2=}’n+2h}’n+?’(4yn+1+2yn) (2.41)

The best formula for (2.38) is of order O(hS) is obviously Simpson'

role

1] 1] h 114 " "
Yn+2=Ynt E(Yn+4)’n+l +Yn+2) (2.42)

With (2.41) and (2.42), ya+2, yn+2 can be calculated step by step.
The starting values y;, y1 must be calculated by other formulae.
De Vogelaere found that it is not necessary to calculate the first
derivative y' at every point if yn41 can be obtained from yy, yn-1,

yn . In his method, one general step consists of two steps:

1 h2 " "
Yon+1 = Yon + hydn +F(4YZn - Y2n-1) (2.43a)
1 h2 " "
Y2n+2 = Y2n + 2hyig +?(4y3n+1 + 2Y3n) (2.43b)
] 1 h 1" " "
Y2n+2 = yn-Fg{yzn + 4y5n+1 + Yin+2) (2.43c)

The neglected terms for yonsi, Yon+2, Y2n+2 are of order h4 ,h5 hS
respectively. Though the local truncation error in yan4+; is of order
h4, it contributes a term of order h6to the error in yzp+2 and hS

in yn+2. More details about the error are discussed later.

One may notice that the above method is not self-starting. To start

the integration, y.; can be calculated from

y-1=yo-hyo +-;-h2y6 (2.44)

30

Though the leading error of (2.44) is h3, its contribution to y1 is

h5 which is less important than the truncation error in y;.

2.6.2 Local and global error
From (2.43), the linear operators for yzn+1, Y2n+2, Y2n+2 are,

respectively,

Lily().h]==chty®(r+01h)

Laly().hl=2hsy P (r+05h) (2.45)
L N S ()

3[y(r),h]=- §—Oh y (r+63h)

where 0< 01,02,03<1.

We investigate the global error in a manner similar to section

2.2.1 and fix the interval h=(b-a)/2N.
Let
egll) =h(y(r2n-1) - Y2n-1), eg) =y(I2n) - ¥Y2n » e;a) =y'(T2n) - ¥2n

as recall that from (2.1), y"(r2n) = f2ny(r2n).

From (2.37)-(2.39), e (i=1,2,3) satisfy the recurrence relations

el),=hL[y(r2q),h] - —h2f2n el + h(1+ -32-h2f2n)e‘2) + h2el”

e®. = Ly[y(rzn);h] + h(1+ thfzn)e‘z) + 2he® + 2hfyn,1el)

Cn+1= 3 n+1

4
fﬁzl_ L3[y(r2n),h] +"hf2ne(2) + e,(,a) + fan +len+1 +hf2n+23n+1

The relation may be written in matrix form as

31

Anens1=Bpe, +3,

where
1 0
4
A= -ghf2n+1
0=
‘i'f2n+1 'th2n+2 1
3 3
1,2 2,3 2
’gh fan-1 h+§h fon h
B, = 0 1+%h2f2n 2h
0 1§h2f2n 1

dn=(hL1[y(r2n),h] , La[y(r2a),h] , L3[y(r2q),h])"
Hence

The sums of the absolute values of the row elements of the

matrix A;lB, are
h + O(h2), 1 + 2h + O(h2), 1 +%(4If2n+1l + Ifa2nDh + O(h2)

and therefore for all sufficiently small h there exists a positive

constant b such that

A 1Bylle <1+bh

Similarly, the absolute values of the elements of the vector A;16,

are
f—6h5ly“"(rzn>l+0(h6), ﬁmy‘s’(rzn)nom),

Th3ane1ly D (ran)l g hly O (r20) +O(hS)

32

Therefore, there exists a constant M>0 so that
[Af18plle < hSM
so,
len+1lle < (1+bh)lleplle + h5SM
1+bh)n+1-1

1+bh)n+lleplle + M
<(e oh

hb._
< e@+Dhbllegll., —g)——lh’*M (2.46)

If yo, yo are exact, lleglle is O(h4) which comes from the
estimation of y.; and the global errors in ysN, y3>n are bounded by
a term proportional to h4. The error in yjN.; is, however, only to

h3 (notice that h(y(rzn-1)-y2n-1)=0(h4))
Thus the global error in De Vogelare method is O(h4).

2.6.3 Stablity
To investigate the absolute stability of the De Vogelaere's method

we apply it to the equation

y"=ky
Then with p=kh?

Y2n+1=Y2n+ hy2, + £(4y2n‘y2n-l)
Yon+2=y2n+2hyjn+ g—(4y2n+1+2Y2n)
hyén+2=hyh+§(Y2n+4yzn+1 +Y2n+2)

Let vn=(Y2n-1, Y2n, hysn)T, we obtain vpi1=Av, where

33

10 o\.1f-Lp 1+%p 1
4 1 0 °
A= 3P 01+p 2
gy 1 1 1
§-p Ep 0 313 1
1 2
gp 1+§-p 1
2., 2 4 4
= 9P (1+3p)(1+3p) 2+3P

2,1 8 , .14 4
S202(1 2 2
oP (1+3P) pG5p* +5P+2) 1+2P+§P

The characteristic polynomial of matrix A is

det(M-A)=A3-Ep2+ 22102 22+ Zp- el

It can be found that none of the eigenvalues of A exceeds
unity only when p falls in [-2, 0]. Thus the region of absolute
stability is [-2, 0]. (Coleman and Mohamed, 1978)

Coleman (1980) has enhanced the de Vogelaere's method by
attaching another term onto the first formula. The accuracy is
slightly improved since the local trancation error of the first
formula is of order O(h3) rather than O(h4). However, this formula
becomes implicit for the equation y"=f(r,y) and the algorithm is
not suitable for coupled equations. Ixaru and Berceanu (1987)
applied the exponential fitting technique to Coleman's scheme.
Their exponential fitting version retains the major defect of
Coleman's method. In the following sections, we will directly

improve the de Vogelaere's method.

34

2.7. Simple modification of De Vogelaere's algorithm
When we apply the algorithm to equation (2.1), we can estimate
the higher order derivatives of y by Blatt's method(Blatt, 1967).

That is, for sufficient large r,
y(P+2)=fy(P) Pp=0,1,...)
or y(zﬂ)zfny, y(2n+l)zfny’ , (n=1,2,...)

Then the leading terms of the local truncation errors of (2.43a),

(2.43b), (2.43c) are approximatively given by

3 3

Ra= Rh4y(4)~ﬁh4f2nhn
2 2

RB=4_§hSy n) Zgh f2nyzn
1 6

RC_ ﬁhsy(n)"- 90 szny2n

By adding the error corrections to the formulae, we obtain the the

Modified De Vogelaere's algorithm for eq(2.1):

. , h? 3
Y2n+1=Y2n+ hy2n +?(4f2ny2n'f2n-1y2n-l) + 1_6h f3,Y2n (2.47a)
Y2n+2=y2n+2hyon+ ‘—(4fn+1Y2n+1+2f2ny2n) + 4 5 2n}’2n (2.47b)

Yan+2=Ynt —(fznyzn+4f2n+1y2n+1 +2n+2y2042) - —Oh f3,¥2n (2.47¢)

where now the leading terms of the truncation error are:

RMma= 1—h4(y(4) nYZn)

Rmp= 4—h5(y‘5’ £2,Y2n) (2.48)

35

1 ys,006) 63
Rume=- gon3(v53)- ,y2n)
When t is a constant, all the three leading terms vanish and the
truncation errors of the three formulae are of order h3,h6 h6

respectively.

2.8. Exponential-fitting De Vogelaere method

Similar to Raptis/Allison method, the special function fitting
technique can be also applied to the De Vogelaere's method. The
three formulae can be treated individually. Since there are four
coefficients in each formula, for any basis set come from a forth
order homogeneous linear differential equation with constant
coefficients, there exist the corresponding formulae. Consider the

following formulac:

L h2 " 7
Y2n+1=0A 1Y2n +BA,1hyd, + ?(4YA,1Y 5n-YA,0Y 3n-1)) (2.49a)
1 h2 " "
Y2n+2=0B,0Yn+2BB,0hy2n+ 3 4YB,1Y 2n+1+2YB,0Y 2n) (2.49b)
1 L} } 4 " 1" ”"
Yan+2=Bcoynt ’31(\\/(.'.,())'2n+4YC,1y'2n+1 +YC,2Y 2n+2) (2.49c)

Allowing all the cocfficients to depend on h, we choose {1, r,e®’,

e-®"} and {e®, e, 1e®", re-®} as basis sets.
Case 1: {1, r, e“", e-“"} as basis set
OLA’1=1, BAJ:]

sinh(z)-z
_gSinh(z)
A0 z2sinh(z)

36

3 2sinh(z)cosh(z)-sinh(z)-zcosh(z)
2 z2sinh(z)

YA 1=

19 ,, _1

=1 Z4
"120° T To08” T

og,0=1, Bg,o=1

zésinhg2zg-22
B " Z22sinh(z)

3¢ 35200

~zcosh(z)-sinh(z)
z2sinh(z)

YB,0=

1, 2 ,
=TI b

Bc,o=1

—ve =3 sinh(z)-z
YC,0=YC,2 Z(cosh(z)-1)

=1- 2 ——z4
3—(—)Z+840 *

y _3 zcosh(z)-sinh(z)
172 Z(cosh(z)-1)

1 14,

=1 2- ey 2.
T60° 1680 (2.50)
where ®2=k, z2=kh2.
The leading terms of truncation errors are

Rea= —'h"'(y(d') ky3n)

Rep= Z—-h5(y‘5’ ky$)) (2.51)

Rec=-5 65 (y§2- ky?)

37

Case 2: The basis is { e®", e-®f re®’ re-®%}

oA, 1=cosh(z){1- Lanhjgl }

tanh(z)+z

=1- =z%+ ..

*

Ool%;—i

sinh(z) 2tanh(z)
zZ tanh(z)+z

Ba,1=

=1+ Lz4+

360

zcosh(z)-sinh(z)
z2(sinh(z)+zcosh(z))

YA,0=6

T 0, 11 4

=130 " 1260

+

_3 cosh(z)(z2sinh(z)-sinh(z)+zcosh(z))
) 22(sinh(z)+zcosh(z))

sinh(z)(z2+zsinh(z)cosh(z)-2sinh2(z))
sinh(z)+zcosh(z)

ap,0=1-

1
=1- —z6+, ..
45

sinh2(z)(2cosh(z)-zsinh(z))
z(sinh(z)+zcosh(z))

BzB.0

_3 2zcosh(2z)-sinh(2z)
=5 z2(sinh(z)+zcosh(z))

= ——74 4,
=1+ 757504

3 z2sinh(z)-zcosh(z)(1+cosh2(z)) +sinh(2z)cosh(z)
0= z2(sinh(z)+zcosh(z))

38

157 315
Bc,o=1
=1- -11—522+ 3_3324 +

3 s1nhg222 -2z
=7 z2sinh(z)

e Lo, 13 4.
=+ 357+ 55205 (2.52)

The leading terms of truncation errors are
REA=13—6h4(y(4>-2ky;n+k2y2n)
Rgp= 4—-hS(y<5> 2ky$3+k2y;) (2.53)

R _hs (6)_ (4)
EC= 50 (Y2r)

The REDUCE package 1is used to generate all above
coefficients(Hearn, 1985).

39

Chapter 3
Transputer Network

3.1 Transputer and Occam

The launch of the transputer designed by INMOS has opened the
way to construct low-cost MIMD computer systems with great
flexibility and enormous amounts of processing power. The
transputer is a powerful 32bit reduced instruction set computer
with some memory on one chip. Unlike other microprocessor
chips, the transputer is designed to communicate with other
transputers by means of high-speed point-to-point serial ‘links'
rather than the usual 'bus'. Moreover, these links are entirely
implemented on the transputer chip. Present transputers have

four links each, with no need for any external support logic.

A transputer network consists of a master transputer and a set
of several slave transputers. The master transputer handles the
user interface and responds to requests to transfer programs and
data to slave transputers. Since each transputer has four links, a
wide range of topologies can be configured. Fig3.1 illustrates the

examples of link topologies of eight slave transputers.

The pipe structure is the simplest one and it is easy to
program. Comunication among transputers may require many
steps. For example, it takes 7 steps to sent a message from T; to
Tg. This structure is suitable to parallel algorithms requiring less

communication.

In the tree structure, transputers are arranged in a hierachical

structure. Communication is controlled by parent transputers.

40

For example, Tg controls T; and Tg. The maximum length of

communication, in this case, is 4.

The skip structure uses all four links of each transputer. Any
communication can be completed within two steps. This structure
is designed to reduce the total communication time for general

algorithms.

Fig3.1

Pipe: —T1 T2 T3 T4 TS T6 T7 T8

T3

Tree: ~1T1 T2

T6

Skip: —T1 T2 T3 T4 TS5 T6 T7 T8

I]

The transputer is programmed in Occam, a parallel programming
language associated with the design of the transputer. The most
important features of Occam is the use of processes and channels.
In Occam, a process is an independent computation, with its own
program and data, which can communicate with other processes
executing concurrently. A channel provides a one way connection
between two concurrent processes. There are three primitive

processes in Occam:

41

vi=e assign expression e to various v.

cle output the value of expression e to channel ¢

c?v input various v from channel c.
A collection of processes is also a process. Communication between
processors is synchronized. If a process sends a message to
another by a channel, communication takes place when both
processes are ready. The sending and receiving processes then
proceed, and the message to be sent are copied from the sending
process to the receiving process (INMOS 1985, 1986, Pountain
1986, Burn 1988).

To run a program on a transputer network, one has to map the
processes of the program to individual processors. If there are p
transputers available, the program should be written as p
processes (a collection of processes is also a process), and each will
be allocated to a corresponding transputer. External channels of
each process would be finally placed onto the corresponding
physical links of the network. Since the connecting graph of the
logical network should be the subgraph of the connecting graph of
the physical network, some adjustment is required. For example,
suppose threc concurrent processes Pp, P, P3 are connected to
each other and we wish to map them to a transputer network
consisting of three transputers Tp, Tz, T3 on which T1 and T3 are
not connected directly. We can attach a process A to P2 which
deals with the communication between process P; and P3 and is

under the control of Py See fig 3.2.

42

Fig 3.2

2 @)

Cr—() (o
©

P
adjust
] /!
map
T] @& T2 |g—p T3 ——

3.2 An actual network configuration
The transputer network for the implementation of parallel
algorithms presented in later chapters consists of five transputers,
one on board IMS BO004 and four on board IMS B003. The IMS
B004 is connected to an IBM PC XT which provides the access to
the terminal and the filing systems. The transputer on IMS BO004
serves as the master transputer which provides links for the use
of multitransputer systems. The configuration of the complete
system is shown in the diagram on Fig3.3. It can be seen that
there are some free links which can be connected to other
transputers to form a larger network.

The transputer network is run under the Transputer
Development System (TDS) which provides a complete enviroment
for the editing, compiling, configuring and executing of Occam?2

programs.

43

A complete program for the network consists of two parts, the
EXE part and the PROGRB’M part. The EXE part runs on the master
transputer and the PROGRB’M part runs on the array. Only the EXE
part can communicate with I/O devices. An executable unit for a
transputer is an independent procedure with only commnication
channels on the heading. The PROGR,éM part contains several
procedures and placement statements which map the procedures
onto transputers and logical channels in the headings onto
physical links. Procedures mapped onto Ty or T3 may have
placement statements within them which make communication

between the array and the master transputer possible.

Fig3.3

Link map of a network of transputers

B003 borrd
1 0
IBM PC
0 TO 2 3 T1 1
3 2
B004 boarg 0 2 3
1 3 2 0
_3. Master ! T3 T2 -
5 0 1

44

3.3 Parallel algorithms for transputer networks

It is impossible to describe what a parallel program for a
transputer network looks like because of the topological
difference between the algorithm and the network. In general,
the program comprises of a number of processes which will be
assigned to different transputers. The algorithm for each
processor consists of two basic phases: computation and
communication. In the computation phase, the processor performs
some basic computation. In the communication phase, the
processor exchanges necessary results, including some information
with its immediate neighbours and may have the task of
transferring data to other processors. To illustrate the problems
and possible ways of overcoming them we follow through the

example of Jacobi iteration in same detail.

Jacobi method for the solution of simultaneous linear
equations Ax=b

The Jacobi method is
Dx@+)=b -(L+U)x® |
or x@+D=-D-}(L+U)x(™ + D-1b , n=0,1, ...

where A =L+D+U. The iteration is terminated when all the
differences between the new values and the old values are less
than some tolerance. One approach to implement the iteration is
to divide it into N processes for a NxN matrix A, each processing

one component of the vector x. Here we consider N=4.

45

The algorithm for the i-th component of x looks like:

P;: while not converged do
begin
CPi: compute xi(“”) and a local convergent message ¢;

(n+1) _

which is true if x x (™ falls within the required

limit required.

CMi: send x i(““), ¢ to the neighbours of Pj and receive all

the necessary xj(““)‘ ¢j (j<>i)for the next iteration.
CONVErgence:=CjACoAC3AC4 -- a simple calculation to decide whether or
not the process continues.

end;

CMi depends on the practical network. It may depend on the
structure of A(for sparse matrix) if we want to reduce the cost of
communication. Fig3.3 gives the examples of three practical
networks and we will use each in turn on our example. Suppose P;
is mapped to transputer Ti. We let L;; represent the link from Ti

to Tj. The link sets of network a, b, ¢ are
a: {Lj2, L21, La3, L3, L3s, La3}.
b: {Li2, L1, L13, L31, L14, Lai1, L23, L32, Laa, La2, L3a, Las}.

c: {Ly2, L2y, La3, L3a, Log, Laz}.

46

fig 3.3

a) T1 T2 T3 T4
T1
T1 T2
T2
b) c)
T4 T3
T3 T4
Case 1: A is a dense matrix
a) The communication can be completed in three step. CM1 is
similar to CM4 and CM2 to CM3. We consider CM1and CM2:
SEQ {CMi} SEQ {CMz}
1: PAR PAR
Liz! x ™D, ¢ Li2? x ™D, ¢
Ly ? Xg”l), () Loy ! Xén”), c2

Lzt x D, ¢

L2 ? x D, ¢

PAR
20 L;? X_§,““’, c3 Ly! x g"*l), c3
Lzt x ™D ¢
9 (n+1)
L32? x,77, ca
3: Ly ? xft"*l), Ca Ly ! x 5“*1), Ca

b) Pi can reach all the other processes and therefore all CMi are

similar. To illustrate, CM1 can be written as

47

PAR

Lio! x g““), 1 { send to Py }
Liz! x g“*l), c1 { send to P3 }
Lis! x g"”), c1 { send to P4 }
L1 ? x g‘*l), c2 { receive from P3 }
L3 ? x g““), C3 { receive from P3 }
L4 ? xg“*l), C4 { receive from P4 }

c) Only P, can communicate with all the other processes. CM,

may be written as

SEQ

PAR
Ly ! x{M™D, ¢y { send to Py)
Lx! x 5““’, c2 { send to P3 }
Los! x g’“), C2 { send to P4 }
Li2? x g“”), c { receive from Py }
L3 ? x g’”l), c3 { receive from P3 }
L4y ? x‘g“*l), C4 { receive from P4 }

PAR {transfer data for other Processes}
Ih! x g“*l), c3, X i“*l), C4 { send to Py }
Lys! x‘(;‘*l), Cq, X (l“+1), c1 { send to P3 }
Lys! x g"*l), X g‘“), c3 { send to P4 }

CM;, CM3, CMy are similar and they must correspond to CMj.

Case 2: A is a tridiagonal matrix.
if A is tridiagonal, it is not necessary to access all x }“”) for the

next iteration. However, since the convergence parameter is
determined by all ¢; (i=1,.. 4), every process still requires to
communicate with all other processes. If the number of iteration
can be estimated, then we can get rid of the communication of c;
This would be very beneficial since for a large network the it is

time- consuming and very difficult to handle.

48

a) The communication can be completed in one step. CMi only

requires to communicate with its immediate neighbours once.

PAR {CM1} PAR {CM2}
Lig! x (D Lip? x ™D
1
Ly ? x D Ly ! x (D

L23 1 x §n+1)
(n+1)
L32 ?7x 3

b) CMi in a) can be used for network b)

c) Since T3 and T4 are not connected, the communication
between them proceeds through T;. CM; is

SEQ {CM3}
PAR
I-Ql ! x§n+1)

(n+1)
La! x,
9 (n+1)
Li2? x 1
9 4 (n+l)
L3y ? x 3

PAR {transfer data for other Processes}

Ly! x ‘("n+1)
] (n+1)
Log! x 3

For a dense matrix of A, the number of communication steps
on network a), b), ¢) are 3, 1, 2 respectively while they are 1, 1, 2
for a tridiagonal matrix of A. From the example we can find that a

good network need not be one with small diameter.

The above examples demonstrate the level of programming
thought and action required to distribute computation efficiently

over a number of processors.

49

Chapter 4
Parallel Algorithms for an Eigenvalue Problem

4.1 Eigenvalue Problem
A common problem involves a differential system which has
solutions only for some particular values of parameter occurring
in the system. These particular values are the eigenvalues of
the system and the corresponding solutions are the eigenfunctions.
For example, the equation y"= -Ay has the general solution

y=A sin(¥1 1) + B cos(V4 1).
If we impose the boundary condictions y(0)=y(n)=0, we find first
that B=0, and then that A=0 unless VA is integral. The system
therefore has nontrivial solutions only if A=k2, k=1,2,3,These
are the eigenvalues and the corresponding eigenfunctions are

y=A sin(kr).

A typical problem arising from the radial Schrodinger equation

is the system:
y"'=(A+g(r))y
y(0)=0, y(*)=0 (4.1)

where g(r)= L(L+1)/r2+V(r) and the potential V(r) vanishes as r
increases. The above system has nontrivial solutions only for

certain positive values of A, the eigenvalues. These eigenvalues

correspond to the bound states in physics.

4.2 Numerical analysis
The approach for solving the eigenvalue problem numerically

invokes initial-value methods. We may replace the system by one

50

of 1initial type, for which A is estimated and ultimately adjusted
until the solution satisfies the boundary conditions. If we impose
another initial condition, say, y'(0)=1, the actual solution, for a
given A, will increase quickly in the region between the origin and
the inner turning point (i.e. the first zero of A+g(r)). Then it will
oscillate in the region in which A+g(r) is negative. After the outer
turning point, it exhibits exponential behaviour. For large r, the
solution is a combination of exp(\f; r) and exp(—\lz r). If A is an
eigenvalue, the positive exponential must not be present and the
solution tends to a negative exponential function. Otherwise, the
solution will not satisfy the boundary condition.

Since the solution is a continuous function of A, if the solution
for given A; increases exponentially for large value of r and the
solution for another value Aj, say, grows to the opposite sign,
there must be at least one eigenvalue between A; and A;. The
eigenvalue can be calculated by a binary search technique.

The disadvantage of the above method is that although we can
obtain accurate eigenvalues, the calculated eigenfuntions are
poor. The reason is that even if A is the exact eigenvalue, any
minor error (rounding error or truncation error) will introduce a
component of the increasing solution and will lead to a divergent
solution. If we only integrate forward, we can not get rid of the
unwanted increasing solution in the outer region.

For small r, the solution is a combination of rl+lp;(r) and
r-lpo(r) in which p;i(r) and pa(r) are polynomials. If we simply
integrate backward, the numerical solution will diverge at the
orgin since we can not suppress the term of rlpy(r). The similar
phenomenon will occur. Integration over the whole range in either

direction is unsatisfactory.

51

4.3 Matching method

To tackle this problem, the technique of "matching in the middle"
can be used(Fox, 1962). That is that we integrate both forward
from the origin and backward from a large value of r and then let
the two solutions meet at a reasonable point in the middle. The A
is adjusted until the forward solution and backward solution agree
at the matching point.

THe choice of the matching point is not critical for a single
equation of this type. However, the matching point should be
normally between the inner turning point (the first zero of A+g(r))
and the outer turning point (the last zero of A+g(r)). The most
convenient matching point is the point at which g(r) reaches its
minimum because at that point A+g(r) is always negative for any
possible eigenvalue.

Since g(r) is singular at the origin and very large and positive
for small value of r, the forward solution will increase rapidly
and numerical integration near the origin is impossible. We prefer
to choose a small value of ro as starting point rather than the
origin. For the forward solution, we can take the initial conditions
y#(rg)=0, yg(r;)=h. For the backward solution, we start at a large
value ry of r with the conditions are yp(rn)=t, yb(rN-1)=te\f7 h The
t cannot be fixed arbitrarily, and in fact its value must be
calculated in the iterative process, which attempts to match the
solutions yf, yp at some common point rp. “"Matching” is

equivalent to the relations

YE=Yb, Y=Yy At I=Ta (4.2)

52

Since we are concentrating on Numerov-like methods, we prefer

the equivalent approach of matching the two solutions at two

adjacent points
Yf = Yb, at r=rp

Yf = Yb, at r=r1p (4.3)

Obviously, yr is a function of A and yp is a function of both A

and t. Eq(4.3) can be written as a set of non-linear equations

about A and t:
ye(ta, A) - yp(ta, A, t) =0
ye(r, A) - yb(re, A, t) =0 (4.4)

The above matching equations are conventionally solved by a

Newton process, which suggests changes 8A, 6t derived from the

simultanous equations.
d d
SKa(yf(rA,l) - yo(ra,A,0) + Sta(}’f(rAJ») - Yb(TA,A,t))
+ yr(tA,A) - yo(raAst) = 0
d d
57»8—7L(Yf(rs,7&) - yb(rB,A 1) + Stgt-(yf(ra,?») - yb(1B,A,t))
+ ye(rB,A) - yb(rB,A,0) =0 (4.5)

These functions are obtained by solving initial-value problems.

oy dy

The quantities z= Y T= satisfy the systems

zy = f(r)zs + ys, z¢(ro)=0, z£(r;)=0 (4.6)

zy = f(f)zp + ¥b, zp(tN)=t, ze(rn-1)=teVA1/(2V 1) (4.7)

53

Ty = f(OTs, Th(rn)=1, To(rx.1)=eVrh (4.8)
where f(r) = A + g(r)
From (4.8),we have

To=t-lyp (4.9)
Eqs(4.5) then reduce to the form
OA(ze(ra,A) -zo(1A,A 1)) - Stt-lyp(ra,A,t) + ye(ra,A) - yu(ra,A,t)=0
8A(z¢(rB,A) - zp(1B,A,1)) - Btt-lyp(r,A.t) + ye(re,A) - yb(rB,A,t)=0

The Newton process requires integration in both directions
twice for each iteration: the first for the solution of yy, yp at
matching points and the second for z¢ z,. The zf and z, satisfy
the same equation, though the initial cenditions are different.
Therefore, we can use the same method for both forward and
backward solutions. Applying Numerov method to the equations

about y and z, we get
(1- “=h2f0e1)Yne1-CH+ oh2fy)yn+(1- ssh2fn.1)yn1 = O (4.10)
12 12 12

(1- £5h26ne1)zne1-(2+ 190 2fa)zat(l- 150 2fn1)Z01 =

]lz'hz()'nﬂ"‘lo}'n‘*'Yn-l) (4.11)
12 h2f
et 10=24—n
Let an= 1577 - 0= 2 1er 12
2
ba h (4.12)

= (1-h2f,/12)2
and substitute (Allison, 1970)

up= (1- 750 2f0)ya , (4.13)

54

1 1
Vo= (1- 5h2f0)zn - h2yn (4.14)

where f =24 + g(ry), in to Eqs(4.10),(4.11), we obtain
Un+1 = aplp - Up-g (4.15)
Vi+l = Dyup+ apgvy - vy (4.16)

The integrations can be carried out efficiently by the
recurrence formulae (4.15) and (4.16). Each step for both u and v
requires 14 arithimetic operations: 8 for coefficients a, and by, 6
for recurrence formulae (4.15) and (4.16). We only calculate u,
and vy during the integrations. The values of y and z at matching
points are finally derived from u and v through relations

(4.13) and (4.14).

It is found that almost all the computing time is spend on the
computation of these integrations. The total time for each iteration
can be sharply reduced by using parallel integration algorithms.
The following sections give four parallel algorithms for the

calculation of the integrations.

4.4 Method 1: four process’es method

For the Newton method, we notice two facts: the forward
integration and the backward integration are independent; in
each direction, y and z can be coped with in parallel. We can
divide the integrations into four concurrent processes Pj, Py, P3,
P4, which compute ur. Vg, up, Vp respectively. Since the
computation of v involves the value of u, Pyand Pj3are required
to pass the values of uy, uyto Ppand P4 The nth step for P;and P,

are:

55

Pi: temp = 1.0 - hi*(A+gy); | hy= Tl_zhz }
ap := 12.0/temp -10.0;
sent temp, a,, U, to Ps;

Up+] 0= dp*ly - Upps

Ps: receive temp, a,, U, from Py ;
by 1= 12.0=h/(temp=temp) ;

Vnil = Dpxlp +dpevy - vy

P3and P4are are similar to Pyand P, The four processes of P;
can be mapped to four transputers of a transpter network and
implement in parallel. This method is the most efficient provided
the match points are near the middle of the range of integration.
In practice, the cost of communication, which is required by each
integration step, should be taken into account and the efficiency

cannot reach 100 percent.

4.5 Method 2: 4x4 matrix formalism
The above algorithm is only suitable for a system with four
processors. For a system with an arbitrary number of processor,

we should try other approaches.

Let

ﬂn O "1 ()
b, a, 0-1

Dn=l 1 g o 0| 1lsns NI
0 1 0 0
Ufn+l
VEn+! <

Wf,n: U[’,n O<ns M
V{,n

56

Wi n= , M+1< nsN

where 1y is the first matching point (rm =ra Tm41 =T)

Hence eq.(4.15) + eq.(4.16) become

Wf’n = Dan,n..l 0 £snsM™M
Win = DaWpne1 M+1 £ n <N
Finally,

Wia=DaDa.1..D2D1 Wiy
Wp,B = DDg+1...DN.2DN-1Wh N (4.17)

The solutions at matching points can be obtained from Wga and
Wy, B by (4.13) and (4.14). Expressions (4.17) are ideal forms for
parallel calculation. Since the two expressions are similar, we just

consider the forward solutions.

Suppose there are p (A>>p) processors available. We can let

processor i calculate the matrix product:
Ei:= DeiDci-l--DsiHDsi

and finally let the first processor calculate the result of Wrg 4.
Wia = EpEp-1 .. E1Wgo

s; and e; may be decided in this way:

L=|M/p], s1=1, e1=M-(p-1)L,

si+1 =ei + 1, ej41 =ejy1 + L-1 i=2,3,..p

57

The algorithm for P; (i > 1) is

Ei:=1;
for n:=s; to e;do
begin
calculate a,, b, ;
E; :=DE;;
end;

send E;j to P; through communication;

The algorithm for Py is

Wi A= Weo;

for n:=sy to e; do
begin
calculate a,, by, ;
Wea :=DyWia;
end;

fori:=2topdo

begin

receive E; ;
Wia :=EWga;
end;

Fig 4.1 illustrate the algorithms through an example in which p=3,
A=9.

The matrix D, is sparse and the number of arithmetic
operations for each matrix multiplication, together with the
calculation of a, and b,, is 24 and the efficiency of this method

might approach 0.58 (14/24).

58

Figd.1

) !
! '
! 1
Processort X Processor2 ' Processor3
! :
t 1
|]
! 1
w9 i :
1 1
| 1
1 '
!]
I_ - 1
L T 1
W3] €-~.____ Egg-"- - E9
) ! ----F8 ":' T e.-a
w2 /'-‘r ! E5 : ES8
M } - ¥
1]
i 1
1]
Yo Dt D2 D3 D4 D5 D6 D7 D8 DY
--- - indicates communication between processors

4.6 Method 3 : 2x2 matrix formulism

One of the disadvantage of method 2 is that the 4x4 matrix
multiplication requires more arithmetic operations. The
alternative approach 1is that we calculate y firstly at all pivotal
points and then calculate the values of v at matching points.

Instead of 4x4 matrix multiplications, we only form 2x2 matrices.

Let
an -1 bnyn
D, = o Cy= 1 < nsN-1
1 0 0
Yin+l VEn+l
Y = VI',n= , I<nsM
Yfn Vfin
Ybom-1 Vb,n-1
Yon= . V= , M+l € nsN
Yb,n Vb,n

then Eqgs(4.15) and (4.16) become

Yn=DnYna

Vn = DnVn_l + Cn

From (4.18) we get

We let processor i tackle Y, where s;< n

Yin = DnDn-1..DgYsk-1 l<k<nsM

A

P; (i<>1) is:

P;Y:

calculate ag; ;
for n:=s;+1 toe; do
begin
calculate aj ;
Ej:=DnEn-1;
end;
receive Yy, 1 from Pj.1;
Yf,ei = EciYsi-I;
if i<>p then send Yt¢g, to Pi+1;
for n :=s; toej-1;
Y¢n:=EnYfe;1; { Inpractice, we only calculate the

first component of Yfp }

For Py, it is

PiY:

for n:=s; toe; do
begin
calculate ap ;
Ytn:=DnYfn.1;
end;

send Ye, toP2;

60

(4.18)

(4.19)

(4.20)

e;. The algorithm for

After all the Y¢p, have been calculated, we can calculate VA

Following Eq(4.18), we have the general relation:
Vin = DpVing + Cy
=DnDn-1Ven2 + G+ DpCig
=DnDp-1...DxVik1 + Co+ DpCpag +. . . + DyDp.q. Dis1Cx
Let k = sj, n = ¢;, then

Yrfe; = Ee; Yis;-1 + Ti

where

Tl= Cei + DeiCei-l +.. .+ DeiDCi-l...D81+1CSi i > 1 (4.21)

and finally,
Vf,A = EepEep-l"' E32Vf,el + Tp +Eepr-1 +... + EcpEep_l... Ee3T2 (4.22)

Ee; (i=2,..., p) have been available in the calculation for Yn, Ti can
be calculated in processor i independently. The algorithm for

processor i is:

P;V:

calculate by ;

Tii=Cs;;

for n:=sj+1toe; do
begin
calculate by ;
Tj := Cp + DyTj;
end;

send Eg;, Tj to Pp;

61

P1V:

Via = Vio

for n:=s; toe; do
begin
calculate by, ;
Vea:=DpVia + Cy
end;

for i:=2 top do
begin
receive Ee;, T ;
Via:=EeVia +Tj ;

end;

This method requires

19

arithmetic operations

for each

integration step and therefore the efficiency is estimated to be

0.74 (14/19).

The fig4.2 and figd.3 show how P;Y and P;V work.

Figd.2 : :
Processori : Processor2 : Processor3
: :
]]
1 1
. 1 Y8
] 1
: Y5 A 44
: Y4 ' Y9
1 -
Y3 i .:YS E6 : E9
Y2 : ES ! E8
A . E4 . E7
1 1
t !
1]
--- indicate communication between processors

62

Figd.3

Processor1

X Processor2 , Processor3
! 1
i 1
[}]
1]
Ve ! 1
1 !
}:—‘ 1 []
1 t
L \.q L !
FN T ~-a. - 1

V3 1\4_ ________ T.2- -~ -<J| ______ T3
V2 : T2 : T3
V1 T2 i T3
1) t
] 1
1
Vo D1 D2 D3 D4 D5 D6 D7 D8 D9
C1 c2 C3 C4 Cs5 Cé Cc7 cs cq
--- indicates communication between processors

4.7 Method J4: sccant method with 2x2 matrix formulism
It can be scen that the values of y at the matching points can be
easily calculated in parallel by 2x2 matrix formulism but the

. . J g .
calculation of v (e.g. 5(-7?/) is far more complicated. To calculate v,

we not only have to solve a nonlinear equation, but calculate y at
all pivotal points. This additional calculation takes a large
proportion of the computing time and makes programming in
parallel more difficult. However, the values of v are not required
to high accuracy and can be calculated by simple approximation
method. For example, we can obtain them approximately from the

values of current and previous y at matching points.

Notice that

Jd .
ve(r, Ay = (. hy)
f(.) a)v)f(n

= |yp(r. 2n)- ye(r, An-1) 1/ - An1) + O(An-Anoal) (4.23)

63

and that yp satisfies:
Yb(r, lv tu) = tu/tv)’b(r,)\'a tV) (4.24)
From the Taylor series

Yb(r,)"n-l, tn-l)

th-1
"tH—Yb(l', An-1, tn)

tn-1)
T (@ Any) + (et - An)=yb(T, An, tn) + O(1ha - Aal?)

So,

0
o b(T,An,tn)

={yo(r,An,ta) - ta/tn-176(FA0-1,ta-1) }/(An-An-1) + O(p.1-Anl) (4.25)
Let TAn(r)=[ys(r,An) - yi(1,An-1)1/(An - An-1)
TBa(r)=[ybp(r,An,tn) - ta/tn-1Yb(r,An-1,t0-1)1/(An - An-1) (4.26)
The iterative scheme is now
(An+1 - An)(TAn(ra) - TBa(1a)) - (ta+1 - tn)/tayb(ra,An,tn)
+ y(TA,An)yb(rA,An,ta) = 0
(An+1- An)(TAn(rg) - TBn(rg)) - (tas1 - tn)/tnYb(TB,An,tn)
+ yf(rB,An) - yb(IB,An,tn) = 0 (4.27)

Scheme(4.27) is actually the secant method. Its order of
convergence is 1.6 (approx.), compared with the second order

Newton method. However, it only requires the values of yr, ypat

matching points. The parallel algorithm is similar to that in

method2, but only uses 2x2 matrix multiplication.

Let
an -1
Dy = : 1<ns<N-1
1 0
Ufn+l
Yin= , l<nsM
Uf n
Up,n-1
Y= , M+l < n<N
Ub,n
Hence
Ytn= DnYgn1 Os<sns<M
Yb’n = Dan’n.}.l M+1 < n < N
Finally,

Yia=DaDa.1...D2D1 Y5
Yp,B = DgDpg.+1...DN-2DN-1 Yo N (4.28)

Details of the parallel algorithm for (4.28) can be found in method

2.

The iteration cannot start until the second integration is
completed. Therefore, we have to provide two starting values Ao
and A; for the first two integrations. The choice of starting values

of A is more restrictive than the Newton method.

65

The algorithm requires 9 arithmetic operations for each
integration step while the sequential algorithm needs 7. The

efficiency is expected to be 0.78 (7/9).

4.8 Model Problem
To illustrate how the four algorithms work, we take the Morse

potential
Vo(r) = D{e20(r) . g¢ () (4.29)

where D = 0.18349, o =1435 and 1. = 2.31.

The equation is
y" = B(-e + Vo(1r))y (4.30)

where B = 29156.0 and e is the unknown energy. Since the
minimum value of of Vy(r) is -D, the possible values of e should

fall in (-D, 0).

In this problem, the difference between e and the minimum
value of the potential Vy(r), e+D, is what we actually require. In
practice, it is conventional to multiply by a physical constant,
which transform the eigenvalue from atomic units into c.g.s. units.
So, the eigenvalue is actually E =cm(D+e) where cm = 219474.62.

Eq.(4.30) is rewritten as
y" = B(D - E/cm + Vo(r))y (4.31)

E is the required eigenvalue. For the Morse potential analytic

solutions are known and given, in this case, by
Ex =ci(k + 0.5) - cok + 0.5)2, k=0, 1, ... (4.32)

66

where c¢1 = 1580.1868088..., ¢,=15.501016...

Values for the first 11 eigenvalues are listed as Eexact within

following tables.

To transform the equation into standard form, we let A = B(D -

E/cm) , g(r) = BV(r), then E can be obtained from A by
E =cm(D - A/B). (4.33)

4.9 Implementation

We only consider the first eleven results and choose rp=1.5 as
starting point and r1N=3.5 as end point. 1.=2.31 is the best choice
for matching point. We tolerate relative errors up to 0.1x10-4 for
the iteration. In the secant method, we choose Aj=Ag- 0.1 as the
second starting value of A. For comparison, three different
stepsizes h=0.01, 0.005, 0.0025 are considered. The corresponding
numbers of integration are 200, 400, 800, respectively. All real

variables in the programs are double precision.

Tables 4.1&4.2 display the numerical results and errors of the
first eleven (0 to lb) eigenvalues calculated by the Newton
method and the secant method respectively. There is no
significant difference in accuracy between the two methods. The
second columns of both tables indicate the initial values for

iteration, which are chosen close to the exact eigenvalues.

The times, in seconds, required by the four parallel methods
for the calculation of the three eigenvalue Egp, Es and Ej¢ are
shown in Table 4.3 through Table 4.6 (The times spent on the
calculation of ‘the potential are not taken into account). The

speedup and efficiency are calculated by comparison with the

67

corresponding sequential algorithms with the same parameters.

We find that in principle they are consistent e with the estimation.

For method 1, the speedup and efficiency are largely
dependent of the choice of matching point. The ideal matching
point for which the load is well balanced over the 4 processors is
in the middle of the integration region. For comparison, the
algorithm are tested on two different choices of matching points.
One is the general choice r=r, and another is in the middle i.e.
r=(ro+rn)/2. Results are shown in Table 4.3.1 and Table 4.3.2

respectively.

All the other three methods can be run on any number of
processors. Here we run them on 2, 3 and 4 four processors.
Results are shown in Table 4.4 to Table 4.6. Each table consists of

3 sub-tables which correspond to three different stepsizes.

The final calculation of eigenvalue is inherent sequential. This
will slightly affect the efficiency and speedup of all the four

methods.

All the algorithms in method 1 to 4 are developed from
Numerov formula. As mentioned in chapter 2, exponential fitting
Numerov formulae can be efficiently applied to these parallel
algorithms with little modification. For an exponential fitting

Numerov formula with the symmetric form
Ynet + 01(h)yn + yn1 = h3(Bo(h)yne1 + B1(h)yn + Bo(h)yn-1) (4.34)

we define

_ -1 (h)+h2By(h)fn
T 1-h2Bo(h)fq

68

_ h2(-o, (h)Bo(h)+B1(h))

" (AR (4:39)
and substitute

us= (1- Bo(h)h2fy,)yn | (4.36)

vn= (1- Bo(h)h2fy)z, - Bo(h)h2y, (4.37)
We can still obtain eqgs.(4.15) and (4.16). i.e.

Up+1 = apup - Up-)

Vn+l = bpUunt apvn- vpog (4.38)

Therefore, the formula (4.34) can be applied to all the four

parallel methods in a similar fashion to the Numerov formula.

In eigenvalue problems, the potential varies in integration
interval and the coefficients should be adjusted at each step.
Since the calculation of the coefficients at each step by explicit
formulae is time consuming, we prefer the power series formulae.
We take the Raptis and Allison algorithm as the example (Raptis

and Allison, 1978). In this case, the coefficients satisfy
ay(h)= -2, B1(h)=1-2B¢(h) (4.39)

From (4.35)

_con(h)+h2Bi (W _,, _ h2fy
~ 1-h2Bg(h)fn 1-h2Bo(h)fn

n

_ h2(-a1(h)Bo(h)+B1(h)) _ h?
(1-h2Bo(h)f)2 (1-h2Bo(h)fn)?

n

69

1 1 . .
where Bo = E(l- Elﬂfn +. . .) and , in practice, we only consider

the first two terms.

In parallel implementation, The Raptis and Allison method
requires three more arithmetic operations on the calculation of
coefficients at each step than the standard Numerov method, but
it is far more accurate. The comparison in accuracy is shown in
Table 4.7. Three different stepsizes h=0.01, 0.005, 0.0025 are
used. Table 4.8 shows the times required by method 3 with

Raptis and Allison's formula for the calculation of eigenvalues.

70

Table 4.1

Numerical results of Newton process(method 1-3), h is the stepsize
and EI'I‘OI' = E - Eexact

k Einitiat Eexact h=0.01 h=0.005 h=0.0025

E Error E Error E Error
0 700.0 786.2182 786.2175 -0.0007 786.2181 -0.0000 786.2182 0.0000
1 2400.0 23354029 2335.3984 -0.0045 2335.4027 -0.0003 2335.4029 0.0000
2 3800.0 3853.5857 3853.5703 -0.0153 3853.5847 -0.0010 3853.5856 -0.0001
3 5400.0 5340.7664 5340.7295 -0.0368 5340.7641 -0.0023 5340.7662 -0.0001
4 67000 6796.9451 6796.8731 -0.0720 6796.9406 -0.0045 6796.9448 -0.0003
5 83000 8222.1217 8221.9989 -0.1228 8222.1141 -0.0077 8222.1212 -0.0005
6 9700.0 9616.2963 9616.1054 -0.1910 9616.2844 -0.0119 9616.2956 -0.0007
7 10900.0 10979.4689 10979.1917 -0.2772 10979.4517 -0.0173 10979.4678 -0.0011
8 12400.0 12311.6395 12311.2574 -0.3820 12311.6157 -0.0238 12311.6380 -0.0015
9 13700.0 13612.8080 13612.3029 -0.5051 13612.7766 -0.0314 13612.8060 -0.0020
10 14850.0 14882.9745 14882.3285 -0.6460 14882.9343 -0.0401 14882.9720 -0.0025
Table 4.2

Numerical results of Secant process(method 4), h is the stepsize and Error = E - Eexact

k Ejnital Eexact h=0.01 h=0.005 h=0.0025

E Error E Error E Error
0 700.0 786.2182 786.2175 -0.0007 786.2181 -0.0000 786.2181 -0.0000
1 2400.0 2335.4029 2335.3985 -0.0045 2335.4027 -0.0002 2335.4030 0.0000
2 3800.0 3853.5857 3853.5704 -0.0153 3853.5847 -0.0009 3853.5856 -0.0000
3 5400.0 5340.7664 5340.7295 -0.0369 5340.7641 -0.0023 5340.7662 -0.0002
4 67000 6796.9451 6796.8731 -0.0720 6796.9405 -0.0046 6796.9447 -0.0004
5 8300.0 82221217 8221.9979 -0.1238 8222.1131 -0.0086 8222.1202 -0.0015
6 97000 96162963 9616.1036 -0.1928 9616.2827 -0.0137 9616.2938 -0.0025
7 10900.0 10979.4689 10979.1939 -0.2750 10979.4540 -0.0149 10979.4702 -0.0013
8 12400.0 12311.6395 12311.2564 -0.3831 12311.6146 -0.0248 12311.6369 -0.0026
9 13700.0 13612.8080 13612.3021 -0.5059 13612.7759 -0.0321 13612.8053 -0.0027
10 14850.0 14882.9745 14882.3285 -0.6460 14882.9343 -0.0402 14882.9720 -0.0025

71

Table 4.3.1

Time (in seconds) for method 1 with 4 processor. re=2.31 as matching point

k\h h=0.01 h=0.005 h=0.0025

0 0.3719 (0.7882) 0.6874 (1.5295) 1.3125 (3.0138)
0.3740 (0.7897) 0.5505 (1.5302) 1.0544 (2.2650)

10 0.4487 (0.9863) 0.6881 (1.9137) 1.3194 (3.7740)

speedup 2.12 2,23 2.30

efficiency 0.53 0.56 0.57

*figures in brackets indicate the time required by the corresponding sequential program
with the same matching point

Table 4.3.2

Time (in seconds) for method 1 with 4 processor. choose r=(rp+rn)/2 as matching
point.

k\h h=0.01 h=0.005 h=0.0025

0 0.3428 (0.9853) 0.6532 (1.9137) 1.2733 (3.7681)

5 0.3433 (0.7892) 0.6522 (1.1485) 1.2739 (2.2645)

10 0.3437 (0.7891) 0.6515 (1.5311) 1.2707 (3.0208)

speedup 3.06 3.26 3.39

efficiency 0.76 0.82 0.85

*figures in brackets indicate the time required by the corresponding sequential program

with the same matching point

72

Table 4.4.a h=0.01

Time (in seconds) for method 2

k\p 1 2 3 4
0 0.7882 0.7207 0.5219 04327
5 0.7897 0.7216 0.5226 0.4337
10 0.9863 0.9004 0.6513 0.5401
speedup 1.09 1.49 1.82
efficiency 0.55 0.50 0.45
Table 4.4.b h=0.005

Time (in seconds) for method 2

K\p 1 2 3 4
0 1.5295 1.3738 0.9613 0.7614
5 1.5302 1.3734 0.9611 0.7596
10 1.9137 1.7153 1.1986 0.9472
speedup 1.11 1.59 2.00
efficiency 0.56 0.53 0.50
Table 4.4.c h=0.025

Time (in seconds) for method 2

k\p 1 2 3 4
0 3.0138 2.6901 1.8364 14156
5 2.2650 2.0173 1.3762 1.0607
10 3.7740 3.3578 2.2895 1.7644
speedup 1.12 1.64 2.13
efficiency 0.56 0.55 0.53

73

Table 4.5.a h=0.01

Time (in seconds) for method 3

k\p 1 2 3 4
0 0.7882 0.5862 04171 0.3354
5 0.7897 0.5866 04168 0.3363
10 0.9863 0.7320 0.5201 04185
speedup 1.34 1.89 2.35
efficiency 0.67 0.63 0.59
Table 4.5.b h=0.005
Time (in seconds) for method 3
k\p 1 2 3 4
0 1.5295 1.1188 0.7750 0.6033
5 1.5302 1.1167 0.7724 0.6001
10 1.9137 1.3976 0.9641 0.7490
speedup 1.37 1.97 2.54
efficiency 0.68 0.66 0.63
Table 4.5.c h=0.0025
Time (in seconds) for method 3
k\p 1 2 3 4
0 3.0138 2.1852 1.4850 1.1358
2.2650 1.6389 1.1123 0.8500
10 3.7740 27377 1.8548 1.4122
Speedup 1.38 2.03 2.65
efficiency 0.69 0.68 0.66

74

Table 4.6.a h=0.01

Time (in seconds) for method 4

k\p 1 2 3 4
0 0.4989 0.3400 0.2452 0.2013
0.3992 0.2730 0.1963 0.1616
10 0.6982 0.4745 0.3411 0.2799
speedup 1.47 2.03 2.48
efficiency 0.73 0.68 . 0.62
Table 4.6.b h=0.005
Time (in seconds) for method 4
k\p 1 2 3 4
0 0.9565 0.6494 04534 0.3575
0.7630 0.5188 0.3617 0.2844
10 1.3350 0.9033 0.6298 0.4951
speedup 1.47 2.11 2.68
efficiency 0.74 0.70 0.67
Table 4.6.c h=0.0025
Time (in seconds) for method 4
k\p 1 2 3 4
0 1.8709 1.2709 0.8678 0.6675
1.4954 1.0141 0.6922 0.5308
10 2.6153 1.7665 1.2034 0.9253
speedup 1.47 2.16 2.80
efficiency 0.74 0.72 0.70

75

Table 4.7

The deviations of numerical results from the exact ones for Numerov scheme and
Raptis/Allison scheme. 0.0000 indicates the error is less than 0.00005.

k Einitial Eexact Error Error Error

(h=0.01) (h=0.005) (h=0.0025)

N R/A N R/A N R/A
0 7000 7862182 -0.0007 -0.0007 -0.0000 -0.0000 -0.0000 -0.0000
1 24000 23354029 -0.0045 0.0021 -0.0003 -00001 0.0000 -0.0000
2 38000 3853.5857 -0.0153 -0.0034 -0.0010 -0.0002 -0.0001 -0.0000
3 5400.0 5340.7664 -0.0368 -0.0047 -0.0023 -0.0003 -0.0001 -0.0000
4 67000 6796.9451 -0.0720 -0.0060 -0.0045 -0.0003 -0.0003 -0.0000
5 8300.0 8222.1217 -0.1228 -0.0073 -0.0077 -0.0004 -0.0005 -0.0000
6 9700.0 9616.2963 -0.1910 -0.0086 -0.0119 -0.0005 -0.0007 -0.0000
7 10900.0 10979.4689 -0.2772 -0.0101 -0.0173 -0.0005 -0.0011 -0.0000
8 12400.0 12311.6395 -0.3820 -0.0117 -0.0238 -0.0006 -0.0015 -0.0000
9 13700.0 13612.8080 -0.5051 -0.0134 -0.0314 -0.0007 -0.0020 -0.0000

10 14850.0 14882.9745 -0.6460 -0.0154 -0.0401 -0.0008 -0.0025 -0.0001

76

Table 4.8.a h=0.01

Time (in seconds) for method 3 with R/A formula

k\p 1 2 3 4
0 0.9555 0.6636 0.4719 0.3784
0.9571 0.6645 04720 0.3798
10 1.1950 0.8297 0.5894 0.4735
speedup 1.44 2.02 2.53
efficiency 0.72 0.67 0.63
Table 4.8.b h=0.005
Time (in seconds) for method 3 with R/A formula.
k\p 1 2 3 4
0 1.8547 1.2655 0.8771 0.6817
1.3923 1.2644 0.8746 0.6781
10 2.7814 1.5719 1.0909 0.8468
speedup 1.46 2.10 271
efficiency 0.73 0.70 0.68
Table 4.8.c h=0.0025
Time (in seconds) for method 3 with R/A formula.
k\p 1 2 3 4
0 3.6534 2.4745 1.6812 1.2849
2.7446 1.8552 1.2594 0.9614
10 45729 3.0907 2.0939 1.5983
speedup 1.48 2.17 2.84
efficiency 0.74 0.72 0.71

71

Chapter §
Parallel Algorithms for Phase Shift Problem

5.1 Phase shift problem
The radial form of the Schrodinger equation with positive energy

may be written as

y'= f(r)y (5.1)

where f(r)=-(k2 - [(L+1)/r2-V(r)) and V(r) vanishes for large r.

The boundary condition imposed at origin is
y@)=0 at r=0, (5.2)
From eq.(5.1) it can be seen that for large r we have
y"' ~ K2y. (5.3)
Therefore the solution of eq.(5.1) has the asymptotic form
y(r) ~ Csin(kr - [n/2 +) (5.4)
where & is the "phase shift".

To calculate the phase shift, we can impose the second initial
condition y'(0) =t and integrate to sufficiently large r for which
the contribution to & of the term L[(L+1)/r2+V(r) can be ignored.
The phase shift 8 can then be obtained by comparing the solution

with (5.4).

In practice V(r) converges to zero much faster than [([+1)/r2
so the latter is the dominant term for large r. It is well known

that the two linear independent solutions of the equation

78

y'= -(k2- [([+1)/r2)y (5.5)

are krjj(kr) and krnj(kr) where ji(kr) and nj(kr) are the spherical

Bessel and Neumann functions respectively.
The asymptotic solution of eq(5.1) may take the form
y(@) ~ kr(Ajikr) + Bny(kr)) (5.6)
which is valid as soon as the effect of V(r) can be neglected.

Since

sin(kr - [n/2) cos(kr - Ln/2)

Jikkr) o e , m(kr) _ T
(5.6) may be rewritten as
y(r) _ Asin(kr - [n/2) + Bcos(kr - [n/2) (5.7)

and the phase shift can be determined uniquely by

d = arctan(B/A) (5.8)

If 1y, 1p are sufficiently large, y(ra), y(rp) can be represented by

the asymptotic form (5.6):
y(ra)=kra(Aji(kra) + Bny(kra)),
y(ro)=krp(Aji(kry) + Bny(krp))

SO d = arctan(B/A)

arctan (Y(rb)rajl(kra) - y(ra)rpji(kry)) (5.9)

y(rp)rani(kra) - y(ra)rpni(kry)

Therefore, to calculate a phase shift, it is necessary to solve the

equation (5.1) from the origin to the asymptotic region in which

79

the V(r) becomes negligible. The phase shift is then obtained by
(5.9).

5.2 Parallel algorithm
We have seen the phase shift problem can be reduced to the
solution of eq.(5.1). Applying the Numerov algorithm to it, we

have

(1- 11—2h2fn+1)yn+1-(2+ ll—g-h2fn)yn+(1- 11—2h2fn-1)yn.1 =0 (5.10)

where f,=f(r,).

The technique of matrix formalism used in—the in the previous
chapter can be applied to the problem. In the eigenvalue prob-
lem, the integration region is under restriction and the parallel
algorithms given in the previous chapter do not involve changing
the stepsize. However, in the phase shift problem, the integration
region is semi-infinite, though in numerical computation we can
stop the integration at sufficient large r. Since f(r) is large and
positive for small r, we must start the integration with a rather
small stepsize. Unless we are prepared to change the stepsize as
the f(r) decreases, we will waste a lot of machine time in the
region where f(r) is small in absolute value. Changing the stepsize
in the integration is imperative. At present, the best approach for
stepsize control is to monitor the global error and change the step-
size automatically if the estimated error satisfies some conditions.
In parallel computation, this method would be very difficult to
realize. To change the stepsize, the simple way we can use in
parallel computation is to arrange the stepsize in advance accord-
ing the behaviour of the function f [Blatt, 1967]. That is, we inte-

grate nj steps at the stepsize hj, then n; at the stepsize h; and

80

finally nn at hp, (We only consider doubling the stepsize i.e.
hp=2hy, ..., hy=2hy.; and assume n;>2 for i=1,2,..m.) The stepsize is

changed m-1 times and the points at which the stepsize is changed

j
are Ii; where tj= Zlni (j=1,2,...m-1). The total number of
1=

m
integration steps is N=2 n;
i=1

Let wpn(h)=1- 11—2h2fn (5.11)
Un =wn(h)yn, an=12/wn(h) -10, h=ry-Tn.1 (5.12)

Then if n=t; (0<j<m), the stepsize is not changed (e.g. rn4+1-1p=h,

In-In-1=h) and eq.(5.10) can be written as
Un+1= apUp - Up-1

Un+1l an -1 Un
or = , (5.13)
Uy 1 0] Lun-1

If the n=t; (0<j<m) and h is the new stepsize, that is 1n4+1-rn=hj+1=h,

In-Tn-1=Tn-1-Tn-2=h;=h/2. (5.10) become

(1- 020 1)yne1-2+ h2)ynt(l- T0202)yn2 = 0 (5.14)
Or Wasi(h)yne1 = (12-10Wn(h))yn + Wn-2(h)yn2 =0
Notice that from (5.12),(5.13)

up=wn(h/2)yn, un.2=wn-2(h/2)yn.2

Up.2= an.1Up-1 - Up

Hence

) 12-10Wn(hl + Wn-2(h) J - =0
Un+1 woa(h/2) Un Wn_z(h/z)\an-lun-l Un)

81

Rearrange the equation and we have

wn(h) + Wq-2(h)

Up+1= {an Jup - W_n-z(‘}‘l—)—an-lun-l
wn(h/2) wn.2(h/2) Wwn-2(h/2)
Similarly, we have
= . wn(h)
Un+2= An4+1Un+l wa(h/2) Up
Let
bn=—m£L,cn=M£L, (5.15)
wn(h/2) Wq-2(h/2)
Then

[Un+1| [anbn+cn -an.icn] [up

L ua J L1 0 Huj

(Un+2] [an+1 -bn] [uns1] [ans1 -17[1 0} {Un+l}
lunat] L1 oHunHl oHo bal L un |

Therefore, we define matrix Djby

ap -1

D,= , n=t; (0<j<m) (5.16a)
1 0

and
1 O anbn+Cn 'an-ICn
0 by 1 0
anbp+cn -ap.1Cn
- n=t; (O<j<m) (5.16b)
bn 0

in which ap, bp, ¢n are defined by (5.12),(5.15).

82

The values of u at the final points ry and ry.; can be represented

by
' uN
uN'l

Similar to method 4 of last chapter, the N-1 matrix multiplications

= DN-1Dn-2...D

uj
} (5.17)

uo

can be carried out in parallel by p processors. To do this, we
divide the N-1 matrices into p groups, each consists of the
average number of matrices. Let the ith processor P; calculate the

product of

Ej := De¢;Deg;-1..Ds;+1Ds; (5.18)
where sj, ejcan be determined by the following scheme

L=[N-1/p],

s1=1, e1=(N-1)-(p-1)L,

Si+1 =€i + 1, €i+1 =ej+1 + L-1 i=2,3,...p

The E;j produced by P; is then sent to P; on which uyn and uyn.; are

generated by

uN uj
=EEp.1...E1 (5.19)
UN-1 uo

The phase shift can be finally calculated from uy and un.i,

Since the stepsize is changed at rtj(0<j<m), the processor P;

should know not only the parameters are k, 1, the potential V(r,)

(n=s;, si+1,...,e;), but the starting point rg; and starting stepsize. It

also requires the parameters for changing the stepsize. To do this,

83

we let PR;, PH; be the starting point rg; and the starting
stepsize,respectively, POINTER; the pointer to the first stepsize
changing point from s;to e; To illustrate, we take the example of
p=3, m=5, n;=n;3=n3=20, n4=30, ns=50, 1p=0.0, h;=0.01. Then
N=140 and we have the following tables:

J 1 2 3 4
t; 20 40 60 90
i 1 2 3
Si 1 48 94
e; 47 93 139
PR; 0.01 0.92 3.8
PH; 0.01 0.04 0.16
POINTER; 1 3 0

We can find from the above tables that t3=60 is the first stepsize

changing point handled by processor P;since POINTER;=3.

These parameters can be generated by a simple algorithm on the

host processor and are sent to all other processors.

The skeleton of the algorithm for Pjcan be written as

r:=PR;;
h:=PH;;
E;:=I;
j:= POINTER;;
If j=0 then ITURN:=0 else ITURN:=t;;
for n:=s; to ¢; do
begin
if n=ITURN then
begin
ji=j+l
ITURN:= ts
h:=2xh;

84

Ei:=D,E;; {D,, is formed by (5.16b) }
end
else
E;j:=DE;. {D,, is formed by (5.16a) }
r:=r+h;
end;

At each normal point, the calculation of a, requires 8 arithmetic
operations (for [#0) and therefore each integration step takes 13
arithmetic operations to complete. Compared with the
corresponding sequential algorithm which requires 11 arithmetic
operations, the efficiency of the parallel algorithm is expected to

be 0.85 (11/13).

5.3 Implementation
The parallel algorithm has been tested on a well-known

example (Bernstein,1968; Raptis and Allison, 1978) where in
eq.(5.1),

1 1
V(I‘) = 500(—5 - —r-a-}
We choose rp=0.7 as starting point and rn=8.7 as the final
matching point. The algorithm has the ability to handle different

arrangement of stepsize, here we test the following three

examples.
a: 800 steps at 0.01;

b: 400 steps at 0.01, 200 steps at 0.02;

c: 200 steps at 0.01, 100 steps at 0.02, 100 steps at 0.04.

85

The total number of integration steps of the three cases are 800,

600 and 400, respectively.

The results, shown in Table 5.1, for the three cases are the
same if only three decimal place accuracy is considered. The
times, in seconds, required by the algorithm on one to four
processors to calculate a phase shift are shown in Table 5.2 which

also indicates the speedup and the efficiency of the the algorithm.

From Table 5.2, one may note that the overall speedup and
efficiency of the algorithm are not as good as we expect. This is
because the final calculation of phase shift, eq.(5.9), is treated
sequentially. In fact, the four function values of ji(kr,), n(kry),
ji(kry), ni(kry) in eq.(5.9)can be calculated independently. Even
each Bessel function can be calculated in parallel since the Bessel
function is based on a recurrence formula. However, this has not
been done. The original subroutine for Bessel functions returns
the values of both Bessel and Neumann functions. This package
was designed and written to be efficient when run on a
sequential computer. Modern parallel consideration would dictate
that we should separate the calculation of Bessel function from
that of Neumann function so that the four function values of
ji(kra), m(kry), ji(kry), m(krp) can be calculated in different
processors. Thus we should rewrite the original package.
However, the final calculation of phase shift takes up a small
proportion of total computation so the improvement gained by
parallelising the final calculation of phase shift will be small. Since
Occam language is tedious, it is unlikely that parallelising the final

calculation of phase shift is necessary.

86

L
The expected speedup can be achifed if we ignore the

calculation of the phase shift as can be seen in Table 5.3.

Table 5.1
Phase shifts obtained by the algorithm

3

-0.590

-1.289
-0.144

W W ~
A O =

87

Table 5.2.a

Times, in second, required by the algorithm to calculate a phase shift
(800 steps at 0.01)

k, [\p 1 2 3 4
3 0 0.8385 0.5072 0.3502 0.2712
3 2 0.9522 0.5661 0.3900 0.3019
3 4 0.9551 0.5700 0.3936 0.3053
average 09153 0.5478 0.3779 0.2930
speedup 1.67 2.42 3.12
efficiency 0.84 0.81 0.78
Table 5.2.b

Times, in second, required by the algorithm to calculate a phase shift
(400 steps at 0.01, 200 steps at 0.02)

k, [,\p 1 2 3 4
30 0.6388 0.3905 0.2727 0.2131
3 2 0.7252 04361 0.3037 0.2373
3 4 0.7290 0.4385 0.3075 0.2405
average 0.6977 0.4217 0.2946 0.2303
speedup 1.65 2.37 3.03
efficiency 0.83 0.79 0.76
Table 5.2.c

Times, in second, required by the algorithm to calculate a phase shift
(200 steps at 0.01, 100 steps at 0.02, 100 steps at 0.04)

k, L\p 1 2 3 4
3 0 0.4405 0.2722 0.1942 0.1542
3 2 0.4989 0.3028 0.2157 0.1714
3 4 0.5027 0.3060 0.2189 0.1742
average 0.4807 0.2937 0.2096 0.1666
speedup 1.64 | 2.29 2.89
efficiency 0.82 0.76 0.72

88

Table 5.3.a

Times, in second, required by the algorithm to integrate from rg to ry. N=800.
(800 steps at 0.01)

k, L\p 1 2 3 4
30 0.8104 0.4759 0.3188 0.2399
3 2 0.9188 0.5313 0.3552 0.2670
3 4 0.9192 0.5326 0.3562 0.2678
average 0.8761 0.5133 0.3434 0.2582
speedup 1.72 2.57 3.42
efficiency 0.86 0.86 0.85
Table 5.3.b

Times, in second, required by the algorithm to integrate from rg to ry. N=600.
(400 steps at 0.01, 200 steps at 0.02)

k, [\p 1 2 3 4
30 0.6088 0.3593 0.2416 0.1821
3 2 0.6921 0.4015 0.2692 0.2028
3 4 0.6933 0.4015 0.2704 0.2035
average 0.6647 0.3874 0.2604 0.1961
speedup 1.72 2.55 3.39
efficiency 0.86 0.85 0.85
Table 5.3.c

Times, in second, required by the algorithm to integrate from rp to rn. N=400.
(200 steps at 0.01, 100 steps at 0.02, 100 steps at 0.04)

k, [\p 1 2 3 4
30 04109 02414 0.1635 0.1235
3 2 0.4662 0.2687 0.1815 0.1373
3 4 04674 0.2694 0.1815 0.1374
average 0.4482 0.2598 0.1755 0.1327
speedup 1.72 2.55 3.38
efficiency 0.86 0.85 0.84

89

Chapter 6

Parallel Algorithms for Solving Coupled
Differential Equations

6.1 Coupled Equations
The coupled equations arising from the Schrodinger equation may

be transformed into the following form

d? Li(li+1 -
{ @“‘21) '1(—;2—) -Vii}yii= E—;alvik}’kj (6.1)
k=i

where 1 <1, j< N.
The boundary conditions imposed are
yij=0 at r=0, (6.2)

K
: (K,
yij—=kir ju(kir)d;; + GE—IJ Rj kit ny(kir) at r—, (6.3)
j

where ji(x) and nj(x) are the spherical Bessel and Neumann

functions, respectively.

In most applications, the R matrix is what we require. As usual,
the boundary condition problem may be satisfied by solving an
initial value problem. It is obvious that if w 1is the solution which
satisfies (6.2), w-c is also a solution satisfying (6.2) for any
arbitrary constant matrix c¢. If w is non-singular(i.e, the columns of
w are linearly independent), w-.c is the general solution and we

can find a suitable matrix ¢ such that w-c matches to the correct

asymptotic form.

90

For the problem (6.1) in which the matrix elements Vjhave no
singularities of order two or higher at the origin, the solutions for

small r that satisfy (6.2) are given by
Wij=ocijr1i+1 (6.4)

where o is a constant matrix. Therefore, the second starting value
can be given by eq.(6.4) providing the given matrix o is non-
singular. The corresponding solutions will not, in general, satisfy
the asymptotic boundary conditions (6.3). However, if the columns
of the solutions of (6.1) are linearly independent, a suitable linear
combination of the solutions can be matched to the correct

asymptotic form. That means
n
Yij = kz_lWikaj , (6.5)

or y=wW-C

The solution y can be matched to the boundary conditions at two
values of r large enough so that the terms Vjjare negligible. Then,

defining the following matrices,
, \1/2
Rjj = G%J Rij
M;=kir]y (kir)d;; ,
Njj=kirny (kir)dij ,
we find that the asymptotic condition (6.3) can be written as

y—>M +NR' at r—, (6.6)

Further for large value of r, the matrix w can be written

91

w=MA+NB, (6.7)

and a comparison of (6.6) and (6.7) will lead to the relations

c=A-1, R'=BA-l (6.8)
The following is the algorithm for the matrix R":

1. Choose the second initial value y; at rg+h. For example, let

aj=0ij.

2. Integrate from ry out to two matching points r, and 1 in the
asymptotic region N times, each time obtaining one column of

solutions corresponding to a different column of o.

3. From (6.7) we have w;=M,A+N,B, wp=MpA+N,B. Notice that
M, N are both diagonal and NM=MN. Therefore

-1

A=-(Npya-Nayp)(NpM,a-NyMyp)
-1

B=(Mpya-Mayp)(NpM,-NaMp)

R'=BA" (6.9)

6.2 Numerical Integration Methods

Eqgs.(6.1) can be rewritten in matrix form as
y"+Fy=0 (6.10)

li(li+1
k? - I—(;TZ}SU+ Vi (6.11)

where Fjj={

and V;—0 asr—o®.

Generalizing the Numerov formula, we get

92

1
Yne1=(l+ $5h2Fne1) {2l 3020)yn +(1+ toh2Fnt Dy}, (6.12)

where I is a unit matrix.

At each integration step, the inversion of the matrix

I+ 25h2Fp, 1,

is required. The matrix is strongly diagonally dominant for small r

if the step size is chosen properly and tends to a diagonal as r

increases. Therefore, an iterative method would rapidly converge

and Allison (1970) has proposed the

substituting
Yin=(1+ 11—2h2fi,n)Yi,n- ll—zhzgi,n

into Eq.(6.12), which becomes
Yin+1=2Yin +h2(gin-finyin)-Yin-1

where

Yin+ 1/12h2g; 4
1 + 1/12h2f; 4

Yin=

and, in the notation of Eq.(6.1),

fin=(2 - LD vy,

b

n

gin= X Vikykj
k=1
k=i

Egs.(6.14) and (6.15) may be rewritten as

1
(m+1) _ Yin*t 1/12h2g(ifr;1)
Yin+1 = 1 + 1/12h2f;

93

for 11 < n,.

iterative method by

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

and

g = X Vi, + kZ_VikySf;Tf (6.18)
<1

k>i

to define an iterative scheme that converges to the solution. To

start the iteration, (0) may be chose as

yi,n+1
0 _ _ Yin 6.19
Y1,n+1 1'1/12h2fi,n (.)
To estimate the error of the iteration, let
V’ij =Vij(1-83)
(m) ¢
g i,n+1=Z vikyﬁ?n)ﬂ
k=1
k=i
D = diag(1-h2f; /12, 1-h2f34/12, ..., 1-h2fN 5/12) (6.20)
or in matrix form
,(m) , . (m)
gn+1 = Y Yns1 (6.21)

In general, we have
llg-gmMlle < lig-g'Mlie = NIV'(y-ym)llw £ [IV'lleoll(y-y (™)l
Hence, we have

0)

1 1 1
yn+1-Ynpllee < Toh2 ID-lesllglleo = Zh2ID- eIV leollyparlle (6.22)

1

1 i . (m)
s 2Dl IV ll ol 1-Ypp le
< (Tlihznb-lnwnv'n@)muyn“-yﬂ)lnm

94

m+1
o]

< (Sh2)m+ DT VI lynan e (6.23)

Since the truncation error of Numerov formula is O(h6), at most
two corrections are actually required. In that case, the error of the
iteration is significantly smaller than the truncation error. In
practice, one correction is enough near the asymptotic region. The
integration over the entire range 1is repeated N times,
corresponding to N different columns of the matrix o and the

resultant solution matrices used in the match process.

The De Vogelaere's method can also applied to coupled
equations(Lester,1968; Allison,1970). Generalizing to eq.(6.10), De

Vogelaere's algorithm becomes

1 1 h2 ” "
Yn+1/2 =Yn + EhYn + 52(4}’11 - ¥Yn-172)»
| h2 1" n"
Ynt1 =Yn t+ hYn +?(Yn + 2)'n+1/2); (6.24)

1 1 h " " "
Yn+1 =Yn +g(}’n + 4yni2 + Yn+1)s

where
vir = -Fipy;e j=-1,0,1, 2,.. (6.25)

The N equations given by(6.10) may be integrated to the
asymptotic region N times, each time corresponding to a different
column of the matrix o which may be regarded as a linearly
independent set of initial derivatives. To start the integration,
there is a extra work to calculate y'i,» , which is readily obtained

from y.j; given to sufficient accuracy by

95

_ 1, , h2 ,
yip = YO-EhYM?yo (6.26)

6.3 Parallel algorithm

It is clear that each column of y in eqs.(6.1) can be solved
completely independently. However, what we are interested in
here is to solve one column of y in parallel and therefore the
algorithm is suitable for a set of general coupled equations. The
great advantage of both the Iterative Numerov method and De
Vogelaere's method is that each equation in the coupled equations
can be handled relatively independently. If the coupled equations
consist of N equations, we give each of them to a different
process. The N processes will finally be distributed to p actual
processors--transputers. For the Iterative Numerov method, the
coupling only enters through the term g(i’_‘:lll in eq.(6.18). In the
case of the De Vogelaere's method, the coupling is encountered
when calculating the term yjp in eq.(6.25). To handle the coupling,
each process has to access the results produced by others and the
communication among processes is required. On the transputer
network, this can be done by channel communication. For the
Iterative Numerov method, there is a extra work to exchange the

convergence parameters which decide whether or not the iteration

is completed.

Distribution

In practical implementation, the number of equations of a set of
coupled equations is varied. Suppose we need to solve a set of
coupled equations with N equations on a network with p

transputers. To distribute the N processes for the N equations

96

into p transputers, we can map the first n; processes onto the
first transputer, n; processes onto the second one, and n, onto
the last one. n; can be chosen by

IN/p] +1 1< (N mod p)

LN/p | else

To illustrate, if p=5 and n=16 , the series of n;is 4, 3, 3,3, 3. Itis
one of the most efficient division because whatever division used,

at least one transputer handles more than 3 processes.

Communication

A transputer has four links for communication. They can connect
to any other transputers. To minimize the cost of communication,
it is desirable to form a network with minimum diameter.
However, it is very difficult for a programmer to write a proce-
dure for a complicated network. To simplify the problem, we use
a pipeline or a loop structure. In each transputer, a buffer Y is

declared for the communication of y. i.e. Y[i] is used to store y;.

In the case of a loop structure with p transputers,

communication can be completed in | p/2] steps. Here is the

procedure for communication of y for the ith transputer P;:

PROC COM([]JREAL64 Y, CHAN from.left, to.left, from.right, to.right)
INT i:
SEQ j=0 FOR | p/2 |

PAR
from.left ? [Y FROM S[n.left[j+1]] FOR L[n.left[j+1]]]
to.left ! [Y FROM S[n.right[j]] FOR L[n.right[j]]]
from.right ? [Y FROM S|n.right[j+1]] FOR L[n.right[j+1]]]
to.right ! [Y FROM Sn.left[j]] FOR L[n.left[j]]]

97

In the procedure, S[k] indicates the index of the first equation
assigned to processor Py and L[k] gives the number of equations

assigned Px. So L[k]=ny and S[1]=1, S[2]=n; +1,... ,S[k]=S[k-1] +ny

For the ith processor P;, n.right[j] indicates the processor j steps
to the left of P; while n.left[j] indicates the processor j steps to the

right. They can be determined by

{ i+] for i+j<p
n.right[j]=
i+j-p+1 for i+j>p
i-j for i-j>0
n.left(j]= {
i-j+p for i+j<0

For example, in the case of p=5, N=16, S[k], L[k] are given by

k 1 2 3 4 5
L[k] 4 3 3 3 3
S[k] 1 5 8 11 14

For P;, n.left and n.right are given by

j 0 1 2
n.left[j] 2 1 5
n.right[j] 2 3 4

The communication takes two steps to complete. At the first
step, Py sends ys, ys, y7 to both its neighbours P; and P3, while at
the same time it receives yi, y2, ¥3, y4 from Py and yg, yg, yi0
from P3. At the second step, it sends all it receives from Pjin the

first step to P3 and all it receives from P3 to P;. It also receives

98

Y11, Y12, Y13 from P3and y;4, y15, yie from P;. Details are
illustrated in Fig.6.1, in which a,b,c,d,e represent the messages for

exchange (For instance, a represents the package of yi, y2, y3, y4).

Fig.6.1
Step 1:
P1 P2 P3
l_a b ————P c
P5 P4
e [—> d
Step 2:
Pl P2 P3
[2Tb o lae—fa o] e— [o]c [
P5 P4
a d| ¢ [&— cld]e

Final Results:
P1 P2 P3

rabcde [abcde alblcjd]e

In the case of a pipeline structure with p transputers,
completed communication can be completed in p-1 steps. The
procedure for communication of y for the ith processor P is:

99

PROC COM([]JREAL64 Y, CHAN from.left, to.left, from.right, to.right)
INT j, leftin.c, left.out.c, right.in.c ,left.in.c:

SEQ

left.in.c:=left.in.no

left.out.c:=left.out.no

right.in.c:=right.in.no

right.out.c:=right.out.no
PAR j=0 FOR p-1

IF

IF

IF

IF

left.out.c<>0
SEQ
to.left ! [Y FROM S[i+j] FOR L[i+j]]
left.out.c:=left.out.c-1
TRUE
SKIP

left.in.c<>0
SEQ
from.left ! [Y FROM S[(i-j)-1] FOR L[(i-j)-1]]
left.in.c:=left.in.c-1
TRUE
SKIP

right.in.c<>0
SEQ
from.right ! [Y FROM S[(i+j)+1] FOR L[(i+j)+1]]
right.in.c:=right.in.c-1
TRUE
SKIP

right.out.c<>0
SEQ
to.right ! [Y FROM S[i-j] FOR L[i-j]]
right.out.c:=right.out.c-1
TRUE
SKIP

100

In the procedure, the four parameters left.in.no, left.out.no,
right.in.no, right.out.no indicate the required numbers of
communication steps for the by the corresponding channels. For

the pth processor, Pj, they can be calculated by
left.in.no = i-1,

right.in.no = p-1,

0 for i=1
left.out.no= {

right.in.no+1 else

0 for i=p
right.out.no= {

left.in.no+1 else

For the same example of p=5, N=16, the complete
communication requires 4 steps. Fig6.2 illustrates the whole

process.
Take the example of the second processor Ps.

Step 1: P, sends ys, ys, y7 to both its neighbours P; and P3, while
at the same time it receives Yy, y2, y3, Y4 from P and yg, yo, y10

from Pj.

Step 2: P, sends yi, y2, ¥3, ¥4 to Pzand yg, yg, yio to P; while it

receives yii, Y12, Y13 from Ps.

Step 3: P, sends yi11, y12, Y13 to Py and it receives yj4, Y15, Y16
from P3;. After this step, P> has received all y, but it still has to

transfer yi4, y15, y16 for Pp.

Step 4: P, sends yi4, y15, Y16 to P;.

101

Fig.6.2

Step 1:
P1 P2 P3
|—a e E— b c
P5 P4
¢ >
Step 2:
P1 P2 P3
l_a b g— a| b| ¢ > cl d
P5 P4
d| ¢ c e
Step 3:
P1 P2 P3
|_a bl ¢ ——— a| b| ¢|d +— cld
PS5 P4
cld ¢ gt b c e
Step 4:
P1 P2 P3
l_a bl ¢ |d af b| ¢c|d e_l a c|d
PS5 P4
bf{ cld] ¢ alb c e
Final Results:
P1 P2 P3
I_a bl cldle [a bl cf dle a c |d
P5 P4
alb| cf d| © al bl ¢ e-l

102

6.4 Implementation

The parallel algorithms of both the Iterative Numerov method and
the De Vogelaere's method are implemented on a network of 5
transputers(T414). The test example comes from the coupled
equations which arise from the rotational excitation of a diatomic
molecule by neutral particle impact(Allison,1970). Using the nota-
tion of the literature(Arthurs and Dalgarno,1960), denoting the
entrance channel by the quantum numbers(j, 1), the exit channels
by (§', I'), and the total angular momentum by J=j+l=j'+l', the equa-

tion can be written by

'+1)
dr2 J'.] B r2 }y.]

{

2 1) . .
42 e Ud U = Z<jraviTasyl. () (6.26)
o

where

2 h2, .. s
kJ?.j=B%[E + 2—f{J(J +1)-3'G" + 1)}}

The coupling matrix element are given by
<j'T5JIVI" T 3>=8;811"Vo(r) + £2G'T, j'1"; T)Va(r)

where the formulae for the coefficients can be found in the
literature(Arthurs and Dalgarno,1960). The scattering matrix S for

the problem can be obtained from the R matrix by the relation
S=(I+iR)(I-iR)-!

We choose the physical parameters and numerical parameters

from the literature (Allison,1970). The parameters are

21 _1000.0, E_ 2351, E = 1.12,
h? I

and Vo(r)=112 - 216, V(r)=0.2283V(r).

103

We take J=6 and consider excitation of the rotor from the j=0
state to levels up j'=2,4,6 and 8 giving rise to sets of 4,9,16 and 25

coupled equations, respectively.

The range of integration was chosen to be

r0 0.75
100 steps at 0.007 0.7
350 steps at 0.014 4.9
Final matching point 6.35

The OCCAM?2 programs are mainly translated from Allison's
Fortran program. Only the integration sections, which take a large

proportion of time, are implemented in parallel.

For comparison, we choose two different convergence

parameters €=1 and e€=10- for iterative Numerov method. e=1
means that we required only one correction at each step. The
matrices ISI2 for N=4 with the two convergence parameters are
shown in Table 6.1 and Table 6.2. The De Vogelaere's method does
not require any iterations, the matrix [SI2 for N=4 calculated from

it is given in Table 6.3.

The times, in seconds, required by the iterative Numerov
method and the De Vogelaere's method to calculate the square of
the modulus of the S matrix are shown in Table 6.4 through Table
6.7 where N is the size of set and p the number of processor. The
computation can be divided into four phases, they are: preparation
the elements of coupling matrix and potential at mesk points,
integrating to matching points, calculating the values of Bessel

functions at matching points, the final calculation of S matrix. We

104

have distributed the computation of the integration which takes
the majority of total computing times. Though the computation of
the other phases can be done in parallel, we do not do so since
little improvement is expected. The sum of the times spent on the
there phases is listed as 'ELSE'. Table 6.4 and Table 6.5 are due to
Numerov method with loop structure and pipeline structure,
respectively. Table6.6 and Table 6.7 show the Similar results for

the De Vogelare's method.

Since the loop structure requires less steps in communication
than the pipeline structure, it should be more efficient than the
latter. But the difference is very small. The efficiency for both
structures can be very high. For example, using the De Vogelaere's
method on pipeline structure for N=25, p=5, the efficiency reaches

0.99 in the integration phase while the overall efficiency is 0.96.

The most important factor affecting the efficiency is the load
balance. Take the De Vogelaere's method on pipeline structure as
the example. For N=16, the computation on 5 transputers take as
long as on 4 transputers. When p=4, each transputer handles the
same number of equations ,i.e. 4 equations. When p=5, one
transputer handles 4 equations and the other handle 3.
Implementation, in this case, requires the same time on 5
transputers as on 4 transputers. That is why some figures look

unusual.

105

Table 6.1

ISI2 Calculated by iterative Numerov method for N=4 with £=1.0 (i.e. one correction)

Values of jand 1
i r 0 6 2 4 2 6 2 8
0 6 0.4133 0.1890 0.1518 0.2460
2 4 0.1891 0.6630 0.1140 0.0340
2 6 0.1517 0.1139 0.6740 0.0599
2 8 0.2459 0.0340 0.0599 0.6601
Table 6.2

ISI2 Calculated by iterative Numerov method for N=4 with £=10-4

Values of jand 1
it T 0 6 2 4 2 6 2 8
0 6 04134 0.1890 0.1517 0.2460
2 4 0.1890 0.6631 0.1140 0.0340
2 6 0.1516 0.1139 0.6744 0.0599
2 8 0.2459 0.0340 0.0599 0.6601
Table 6.3

ISI2 Calculated by De Vogelaere's method for N=4

Values of j and 1
i I 0 6 2 4 2 6 2 8
0 6 0.4136 0.1888 0.1516 0.2457
2 4 0.1890 0.6632 0.1139 0.0339
2 6 0.1517 0.1140 0.6745 0.0599
2 8 0.2460 0.0340 0.0600 0.6602

106

Table 6.4
Times, in second, to calculate ISI2, iterative Numerov method for integration.

processors are connected in loop structure. Upper entries =104, lower entries €=1.0.

INTEGRATION ELSE
Ny 1 3 5

4 26.203 13.625 7.768 1.310
22.359 11.562 6.526

9 173.547 60.992 41.268 2.765
138.190 47.840 32.399

16 716.800 278.396 186.639 8.525
530.113 202.686 135.467

25 2115.068 827.251 457.800 25.425
1552.157 569.106 314.677

Table 6.5
Times, in second, to calculate ISI2, iterative Numerov method for integration.

processors are connected in pipeline structure. Upper entries £=104, lower entries

e=1.0.
INTEGRATION ELSE
Ny 1 2 3 4 5
4 26.203 13.505 13.773 7.686 7.996 1.310
22.359 11.460 11.671 6.445 6.669
9 173.547 98.529 61.443 61.972 41.878 2.765
138.190 70.901 48.200 48.598 32.815
16 716.800 374.182 279.385 187.266 188.125 8.525
530.113 273.031 203.338 135.946 136.599
25 2115.068 1185.535 828.684 648.489 461.006 25.425
1552.157 822.941 570.040 445.160 316.654

107

Table 6.6
Times, in second, to calculate ISI2, De Vogelaere's method for integration. processors

are connected in loop structure.

INTEGRATION ELSE
Ny 1 3 5
4 37.477 19.177 10.504 2.186
9 239.097 82.688 55.244 3.641
16 938.468 358.698 238912 9.401
25 2793.089 1025.405 564.169 26.301

Table 6.7
Times, in second, to calculate ISI2, De Vogelaere's method for integration. processors
are connected in pipeline structure.

INTEGRATION ELSE
Ny 1 2 3 4 5
4 37.477 19.047 19.274 10.408 10.696 2.186
9 239.097 134.453 83.020 83.438 55.646 3.641
16 938.468 483.779 359.098 239.169 239.849 9.401
25 2793.089 1481.057 1025.098 799.243 566.219 26.301

108

Chapter 7
Conclusion

Several effective parallel algorithms for some applications
arising from Schrodinger equations have been developed and
implemented on transputer network. Numerov's method and De
Vogelaere's method, from which the parallel algorithms are

developed, have been investigated.

Developing parallel algorithms is a interesting and challenging
task. It is unlikely that there are universal methods for
developing parallel algorithms. Though it may obviously exist for
some applications, such as solving a coupled equations,
parallelism has to be exploited by some special transformations in

most cases.

Parallel algorithms are different from serial ones. Here are

some facts discovered in developing parallel algorithms:

1. A serial algorithm may be generally applied to several
applications. In contrast, a corresponding parallel algorithm is only
suitable for few particular applications. For example, the Numerov
algorithm can be used for all three applications while we use
matrix formalism for a single equation and communications for

coupled equations.

2. Even for one application, there may be several different
parallel algorithms, which are developed from the same serial
algorithm. Their efficiency may depend on the practical limits,

such as the number of processors. To illustrate, in the bound state

109

problem, methods 1-3 are based on the same serial algorithm.
Method 1 is the most efficient, but it is only suitable for a parallel

machine with four processors.

3. Some algorithms, which are considered poor and ignored in
serial computing, would perhaps be more easily and more
efficiently parallelised. The secant method for the bound state

problem gives the evidence.

4. We cannot expect that an effective parallel algorithm will be
as flexible as the corresponding serial one. For example, we
arrange the interval sizes in advance rather than changing them

automatically according to the estimated error.

The efficiency of a parallel algorithm can never reach 100

percent. The factors affecting the overall efficiency are

1. Complexity: A parallel algorithm may have greater
complexity than a serial one. This decides the upper limit of the

parallel algorithm.

2. Distribution: A task can not always be decomposed into
subtasks with the same size. The efficiency will be decreased

because of the imbalance of distribution.

3. Communication: The cost of communication depends on the
physical environment. On a transputer network, the time for a
floating-point arithmetic operation is very much longer than the
time to pass a real datum between processors. For a small

network, the cost of communication is relatively low.

110

4. Sequential factor: Some operations are strongly sequential.
Because of their effects, the efficiency of the algorithm will fall

With the increasing of the number of processors.

111

References
Allison, A. C., J. Comput. Phys. 6 (1970) 378.
Allison, A. C., Advances in Atomic and Molecular Physics, 25(1988)
Arthurs, A.M. and Dalgarno, A., Proc. Roy. Soc. Ser., A256(1960) 540.

Ahmed, H.S., Tutorial on Parallel Processing, edited by R.H. Huhn
and D.A. Padua (IEEE, 1981) 412.

Baylis, W.E. and Peel, S.J., Comp. Phys. Comm. 25 (1982) 7.
Blatt, J.M., J. Comput. Phys. 1 (1967) 382.

Burns, A., "Programming in Occam 2,'; Addison-Wesley, 1988.
Coleman, J. P. and Mohamed, J., Math. Comp. 32 (1978) 751.
Coleman, J. P., Comp. Phys. Comm. 19 (1980) 185.

De Vogelaere, R., J. Res. Nat. Bur. Standards, 55 (1955) 119.
Flynn, M.J., IEEE Trans. Comptr, C-21, (Sept.1972) 948.

Fox, L. and Mayer, D. F., "Computing Methods for Scientists and
Engineers," Clarendon, Oxford, 1968.

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D.
"Solving Problems on Concurrent Processors," Vol. 1.

Prentice-Hall, 1988.
Gautschi, W., Numer. Math.3 (1961) 381.

Gordon, R.G., in "Methods in computational Physics," Vol.10, edited
by B.Alder et al. Academic Press, New York, 1971.

112

Hearn, A. C., Reduce User’s Manual, Rand Publication CP78, 1985.

Henrich, P., "Discrete Variable Methods in Ordinary Differential
Equations," Wiley, New York, 1962.

Hey, AJ.G., J. Comput. Phys.50 (1988) 23.
INMOS , "Transputer ," 1985.
INMOS , "the Transputer Family," 1986.

Ishibashi, K., Takada, H., Sakae, T., Matsumoto, Y., Katase, A.,
J. Comput. Phys. 80 (1989) 17.

Ixaru, L. G. and Rizea, M., Comp. Phys. Comm. 19 (1980) 23.
Ixaru, L. G. and Berceanu, S., Comp. Phys. Comm. 44 (1987) 11.
Ixaru, L. G. and Rizea, M., J. Comput. Phys. 73 (1987) 306.

Jesshope, C., "Major Advances in Parallel Processing," Gower

Technical Press, England, 1987.

Lambert, J. D., "Computational Methods in Ordinary Differential
Equations," Wiley, New York, 1973.

Lester, W.A., J. Comput. Phys.3 (1968) 322.
Lyche, T., Numer. Math. 19 (1972) 65.

Pountain, D., "a Tutorial Instroduction to Occam Program,” INMOS

Ltd, 1986.
Raptis, A. D., Ph.D. Thesis, Glasgow Univ (1977)

Raptis, A. D. and Allison, A. C., Comp. Phys. Comm. 14 (1978) 1.

113

Raptis, A. D. and Cash, J. R., Comp. Phys. Comm. 44 (1987) 95.

Schendel, U. "Introduction to numerical Methods for Parallel

Computers," Ellis Horwood, Chichester, 1984.

Wallach,Y., "Lecture Notes in Computerl27: Alternating

Sequential/Parallel Processing," Springer-Verlay, New York,
1982.

