

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A Critical Review of

Temporal Database Management Systems

By

Fang, Weiqi B.Sc.

Dissertation Submitted in Fulfilment of the Requirements

fo r

the Degree of Master of Sc ience

in the Department of Computing Sc ien ce

at the University of Glasgow

© 1989 Fang, Weiqi

ProQuest Number: 10999246

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10999246

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

To my motherland

A c k n o w le d g m e n ts

I would like first of all to express my gratitude to my supervisor Ray Welland,

for introducing me to the excitement of Temporal Databases as an inter-disciplinary

research area; for his many helpful discussions that contributed to clarifying the ideas in

this dissertation and their presentation herein and his encouragement in my study.

I am greatly indebted to Professor H.Y. Wong (Professor of Aeronautics &

Fluid Mechanics). He suggested and organized a Special Training Programme for a

group of Guangdong students from China. After that, I became a student in Glasgow

University. His keen interest and his thoughtful comments on our group brought

progresses to my postgraduate study.

My deep thanks should be expressed to the Shantou Government in China for

their financial support and the opportunity they gave me to study for Double Master

Degrees in Scotland. Professor D.C. Gilles and Professor M.P. Atkinson deserve

credit for accepting me to study in the department of Computing Science.

Dr. Jeacocke pointed out the problem of what a tuple represents in a temporal

database. This emphasizes the need to discuss the concepts of entity, entity state,

observation of entity, and observation of entity state in depth in this dissertation. I am

grateful to Professor Snodgrass and his colleagues for their contributions on TDB and

TQuel, which have been taken as a basic model in my study; and to my colleagues for

insightful observations that greatly improved the dissertation.

Finally, I wish to thank my family, especially my wife, and all my friends here

and in China for their help, understanding, assistance and encouragement.

C onten ts

Chapter 1 Introduction (1)

1.1 The Role of Time (1)

1.2 Time in Databases (2)

1.3 Dissertation Plan (5)

1.3.1 The basic model (5)

1.3.2 The language semantic s (6)

Chapter 2 The Basic Concepts of Time (7)

2.1 Topology of Time (7)

2.1.1 Interval time vs. event time (7)

2 .1 .2 Discrete or continuous (9)

2.1.3 Bounded or unbounded (10)

2 .1 .4 Linear, parallel, or branching (10)

2.2 Different Types of Time Attributes (11)

2.2.1 The different viewpoints of researchers (12)

2.2.1.1 Rescher and Urquhart's views (12)

2.2.1.2 Bubenko's views (12)

2.2.1.3 Lum's views (13)

2.2.1.4 Snodgrass and Ahn's views (14)

2 .2 .2 Discuss ions (15)

2.2.2.1 The valid time and user-defined time (15)

2 2 2 2 Logical time (17)

2.2.2.3 Assertion time vs reference time and physical time (17)

2 .2 .3 The new classification (18)

2 .2 .4 A tree-like hierarchy of time (19)

Chapter 3 Temporal Database Classifications (23)

3.1 Snapshot Databases (23)

3.2 Rollback Databases (26)

3.3 Historical Databases (30)

3.4 Temporal Databases (33)

3.4.1 Embedding a temporal relation, versionl (36)

3 .4 .2 Embedding a temporal relation, version2 (38)

3 .4 .3 The domain for time attributes (42)

3 .4 .4 Entity, entity state, observation of entity,

observation of entity state and tuples (44)

3 .4 .5 Merging temporal tuples (45)

3.5 Some Temporal Queries (48)

Chapter 4 Some Proposed Temporal Databases and

Their Languages (53)

4.1 The Model of TDB (54)

4.2 The Query Language of TDB - TQuel (54)

4.2.1 The basic model - Quel (54)

4.2.1.1 Quel retrieve statement (55)

4.2.1.2 Tuple relational calculus statements for Quel (56)

4 .2 .2 Temporal c la u ses , predicate operators and

constructors in TQuel (57)

4.2.2.1 Three temporal clauses of TQuel statements (57)

4.2.2.2 Temporal predicate operators and temporal constructors (62)

4.3 Two Other Temporal Models (65)

4.3.1 The model of TODM (65)

4 .3 .2 The model of Legol (70)

4.4 Language Comparisons (71)

4.4.1 Four bas ic properties (71)

4.4.1.1 A formal semantics (71)

4.4.1.2 Supporting historical queries (72)

4.4.1.3 Rollback transaction (76)

4.4.1.4 Implementable (77)

4 .4 .2 The where, while, and when c la u ses (77)

4 .4 .3 Dealing with disjoint time intervals (82)

4 .4 .4 Summary (84)

Chapter 5 New Semantics for TQ uel’s

M odification Statem ents (86)

5.1 The Before Predicate in TQuel (86)

5.1.1 The problem of the Before predicate (86)

5 .1 .2 The new definitions for temporal constructors

and predicate operators (89)

5.2 Allen's Method of Representing the Relationships

between Temporal Intervals (90)

5.3 The Modification Statements (95)

5.3.1 Modification s tatem ents of Quel (95)

5.3.1.1 The tuple calculus semantics for

Quel modification statements (95)

5.3.1.2 Examples for Quel modification statements (97)

5 .3 .2 The modification s ta tem en ts for interval relations

in TQuel (98)

5.3.2.1. The problems with the replace statements (98)

5.3.2.2 The actual modified intervals (107)

5.3.2.3 The semantics of modification statements for intervals (109)

5.3 .3 The modification s ta tem ents for event relations (115)

5.3.3.1 The temporal relationships between the existing tuple

and the tuple to be modified (115)

5.3.3.2 The rules for event modifications (115)

5.3.3.3 The TQuel calculus statements for append, delete,

and replace operations (116)

Chapter 6 Conclusion and Further Research (119)

6.1 W ork which has been done (119)

6.2 Treating Time as A Component of Tuples (120)

6.3 Operations for Entity, Entity State, Observation of Entity,

Observation of Entity State and Tuple (123)

6.4 Temporal Schema Evolution (125)

6.5 Integrity of Time Attributes (128)

6.6 Im plementation (129)

R e fe re n c e s (130)

A p p e n d ic e s (135)

Appendix A. The Syntax of TQuel (135)

Appendix B. TQuel Defaults (137)

Appendix C. Semantics of TQuel (139)

Appendix D. The Syntax of TOSQL (145)

Sum m ary

There have been significant research activities in Temporal Databases during the last

decade. However, the developments of a semantics of time, a temporal model for efficient

database systems and temporal query languages still need much study.

Based on the researches of the TDB group [Snodgrass 1987], the review of

research about TDBMS in this dissertation mainly emphasises three aspects as follows.

1) The formulation o f a semantics o f time at the conceptual level. A topology of

time and types of time attributes are introduced. A new taxonomy for time attributes is

presented: assertion time, event time, and recording time.

2) The development o f a model fo r TDBMS analogous to relational databases.

Based on Snodgrass' classification, four kinds of databases: snapshot, rollback, historical

and temporal are discussed in depth. But the discussion distinguishes some important

differences from the representation of the TDB model:

• historical relation for most enterprises is an interval relation, but not a

sequence of snapshot slices indexed by valid time.

• the term "tuple" no longer simply refers to an entity as in traditional

relational databases. It refers to different level representations of an object:

entity, entity state, observation of entity, and observation of entity state in

different types of databases.

3) The design o f temporal query languages. We do not present a new temporal

query language in this dissertation, but we discuss a Quel-like temporal query language,

TQuel, in some depth. TQuel is compared with two other temporal query languages

TOSQL and Legol 2.0. We centre the main discussion on TQuel's semantics for tuple

calculus. The classification for the relationships between overlapping intervals suggests an

approach using temporal logic to classify the derived tuples in tuple calculus. Under such

an approach, a new presentation for tuple modification calculus is proposed, not only for

interval relations, but also for event relations.

Chapter 1 Introduction

1.1 The Role of Time

Information about the constantly evolving real world need to be interpreted in the

context of time. Causal relationships among events or entities are embedded in the

temporal information. For example, since the early age of human beings, the birth date

has been taken as an attribute to stamp a man when he was bom (valid) in the world. This

attribute seems to be the first time stamp attribute of data (personnel) in information

processing. In most information management applications time is a universal attribute and

deserves special treatment as such.

With the development of information processing, the problem of representing the

time aspect of information arises in a wide range of disciplines, specially, in computer

science, philosophy, temporal logic and linguistics. In computer science, it is a core

problem of information system modelling, software engineering, artificial intelligence,

distributed systems, and other areas involving data structure.

In information systems, for instance, the traditional approach to deal with the

problem of outdated data is simply to delete it; however, this eliminates the possibility of

accessing any information which is not presently current. In order to consider queries

such as, "Which students were members of the library last year and borrowed over

twenty books," we need to represent temporal information. In some applications, such as

booking tickets and making appointments, the time course of events becomes a critical

part of data. In artificial intelligence, models of problem solving require sophisticated

world models that can capture change. Making decisions in a banking system, for

instance, one must model the effects of the currency trends to ensure that a decision will

be effective. In natural language processing, extracting and capturing temporal and tense

information in sentences are necessary. Temporal knowledge is necessary to be able to

1

answer queries about the sentences later. Further progress in these areas requires more

powerful representations of temporal knowledge than have been available previously.

1.2 Time in Databases

Database technology plays an important role in all of these areas to present a good

mechanism to record information. Temporal database M anagement Systems are an

important research area studying how to represent time aspects in database management

systems.

"Databases supposedly model reality, but conventional database management

systems (DBMSs) lack the capability to record and process time-varying aspects of the

real world. With increasing sophistication of DBMS applications, the lack of temporal

support raises serious problems in many cases. For example, conventional DBMSs

cannot support historical queries about past status, let alone trend analysis (essential for

applications like decision support systems). There is no way to represent retroactive or

proactive changes, while support for error correction or audit trail necessitates costly

maintenance o f backups, checkpoints, or transaction logs to preserve past states."

[Snodgrass & Ahn 1986] In general, none of the traditional data models (relational,

network, hierarchic databases and so on) explicitly addresses temporal or historical

aspects of the data.

In the practical realm of information systems, time aspects are usually either

neglected, treated only implicitly, or explicitly factored out, in spite of the abundance of

temporal references in common data. As a result, most inform ation systems and

generalized data m anagem ent tools do not treat "present" data and "past" data

symmetrically, but typically differentiate between them in terms of accessibility - both

logical and physical. The conventional database in the core of many information systems

is a "thin", tenseless, and temporally inconsistent snapshot of latest available data. Data

items within an instance of such a database pertain to various points in time, newly

recorded data eventually replaces previously recorded ones. If kept at all, "forgetfully"

2

replaced values are usually retained on "log" files, meant mainly to allow recovery of

damaged data. All these practices imply substantial limitations on the range and economic

feasibility of historical inquiries and "what if" analyses that information systems can

support.

On the other hand, traditional databases also lack the capability to present the

evolution of future objects. A future object is not really the same as a historical object in

that the object in the future is not yet a reality. Some instances may come to be true and

some may not; one has to separate the future instances from those which are current and

those which form the history chain. Those future instances (projected events) which

"happen" will become current and eventually pass into the history chain. However, those

future instances which do not happen will have to move into a different history chain, or

be maintained in some special way.

Obviously, in order to retain complete information about an object, the current

data of its attributes, as well as their histories and future trends, should be stored and

managed by the DBMS.

Time logically adds another dimension to a data model. The concept of time is

crucial to all databases, but is only treated implicitly in the existing database models.

Many applications have been forced to manage temporal information in an ad-hoc

manner. For example, time is simply modelled as an attribute in such databases. In a

library model [Oxborrow 1986], for instance, date due back and date reserved are both

time-oriented objects which are modelled as attributes. In such an approach, first, the

effect of time is completely hidden in the "current view" model. Under this circumstance,

much o f the information about events that have occurred is not available. For example,

we cannot record the activities of renewing books with such a model. After an update has

been made we do not know whether it was a new attribute value assumed by an object or

it was a correction. All we can do is either to ignore the requirement of renewing, or to

forget (delete) the historical data of last borrowing activity, or to keep two tuples with the

same candidate key values causing confusion about which tuple is presently true.

3

Secondly, deletion, in the model, means that the data is modified and the values from

that time on will be nonexistent. Therefore, the integrity of time-oriented objects cannot

be guaranteed. In addition, the two time attributes are not candidate keys (candidate keys

may be the book number and so on), but one must include the time aspect with the

candidate keys in order to uniquely identify the tuple being addressed. We have to

manage temporal information in an ad-hoc manner. While such an approach may have

been satisfactory in some cases, its success is limited and its use is restrictive. What is

used in one application may have to be implemented again in another.

Databases exist in time and model changes that occur temporally in the world via

database state changes. In order to have a proper understanding of how an explicit

representation of time interacts with all of the data in the database, it is not enough simply

to allow users to utilize "time attributes" where they seem appropriate. It is necessary to

embed time aspects into the system level in databases, both at the conceptual level and

internal level. By incorporating general temporal semantics directly within the database

model, not only do we spare the user the task of defining such a semantics, but we also

can ensure that time is treated in a uniform and consistent manner. Moreover, if the

temporal semantics are built into the model, implementations of a temporal database can

take advantage of this standard semantics to increase the efficiency of database

operations.

The need for providing temporal support in DBMS has been recognized since the

last decade [Bubenko 1977]. There have been significant research activities in

formulating a semantics of time at the conceptual level, developing a model for time

varying databases analogous to the relational model for static databases [Clifford &

Warren 1983, Codd 1979], and the design of temporal query languages [Ariav & Morgan

1981, Snodgrass 1982]. In particular, a working group of TDB (Temporal DataBases),

led by Professor Snodgrass, in the Department of Computer Science at the University of

North Carolina has developed a model of temporal databases and its language TQuel - an

extension of the database language of INGRES since that time. They presented a new

4

taxonomy of three distinct time concepts (termed as transaction time, valid time, and user-

defined time), and four distinct kinds of database(snapshot, rollback, historical, and

tem poral), differing in their support of the new time concepts.

1.3 Dissertation Plan

Based on the researches of TDB group, the discussion in this dissertation will

focus on a relational temporal database model and the semantics for its language, and thus

can be mainly divided into two parts:

1.3.1 The basic model

There are two chapters discussing the topology of time, taxonomy of time

attributes and database models.

1) In Chapter 2, the basic concepts of time will be introduced. A linear, step-wise

constant and semi-closed time model is discussed. To fully capture time-varying

information, as the information environment is being classified into user level, event

level, and system level, time attributes will be classified into three types: assertion time,

event time and recording time which is a different taxonomy of time attributes from that

of researchers.

2) In Chapter 3, differentiated by their ability to represent temporal information,

four types of databases are introduced:

snapshot databases - representing the current content of data only,

• rollback databases — representing the history of database system activity,

• historical databases - representing the history of real world,

• temporal databases — providing support for representing the enterprise

being modelled and the history of database activities at the same time and

fully capture the history of retroactive and proactive changes of data.

5

To represent the enterprise modelled in the database, a new taxonomy of entity,

entity state, observation of entity, and observation of entity state will be presented. This

classification clarifies the different concepts between tuple and entity in the four distinct

database types and would be useful to capture more temporal meaning of entities in the

real world.

1.3.2 The language semantics

We will not design a new temporal language, but will discuss almost all semantics

statements in TQuel. Chapter 4 will present the background material for TDB and

comparison of TQuel with another two temporal languages: TOSQL and Legol 2.0. The

discussion shows that it is worth taking TDB and TQuel as the central model in this

dissertation.

To correct semantic problems in TQuel, specially in modification statements, an

approach which proposes a temporal logical classification for the relationships between

overlapping intervals will be introduced. The basic predicate Before will be modified as

less than, but not less than or equal to to avoid the semantics problem as well. Chapter 5

is the main chapter to describe such modifications.

6

Chapter 2 The Basic Concepts of Time

It is necessary to distinguish the basic points of view about time concepts before

discussing how to embed time into databases. The most important concepts are the

topology of time and the types of time attributes in temporal databases. In this chapter

both concepts will be discussed. The discussion is based on reviewing previous

characterizations presented by many researchers, specially on the work on TDB and

TQuel by Snodgrass et al [Snodgrass 1987, Ahn & Snodgrass 1986]. We shall argue that

the types of time attributes should be classified into a new taxonomy with three time

concepts: assertion time, event time and recording time and that these concepts differ in

the level at which they are applied:

~ the user level,

~ the event level, or

~ the system level.

2.1 Topology of Time

The means to express and explore the consequences of the structure of time is

very different in different studies of Tem poral D ataBase M anagem ent Systems

(TDBMS). These differences influence:

~ the structure modelling of TDBM, i.e., temporal schema creation;

~ the temporal algebra;

~ the semantics and syntax of TDBM languages.

Several topologies of time which have been proposed are now discussed.

2.1.1 Interval time vs. event time

Time can be referred as points or intervals. We say that, for instance, the quantity

of new books in the library increased by the amount of 400 in this October. We consider

7

the fact of quantity increasing happened at the time point of this October. If we say that

the quantity of new books in the library has increased by the amount 400 during this

October, then the time, October, is considered as a time interval. We define time point as

event time and time interval as interval time.

Representing time as a point is simple and requires less storage space. However,

to determine the time duration over which a value is valid, the successor pair has to be

examined. This creates com plications in expressing and interpreting the algebra

operations [Clifford & Tansel 1985, Allen 1983].

The representation of an event in most approaches we have studied is a tuple that

exists for exactly one valid time, with the snapshot slices of the previous and next valid

times not containing the tuple. This representation is problematic because time is

continuous: It is misleading to talk about the previous and next time values. Therefore,

only states that exist for a finite interval of time may be represented, while events,

occurring instantaneously, are more difficult to model.

There are examples which provide counter-intuitive results if we allow zero-width

time points. For instance, consider the situation where a light is turned on. To describe

the world changing we need to have an interval of time during which the light was off,

followed by an interval during which it was on. The question arises as to whether these

intervals are open or closed. If they are open, then there exists a time (point) between the

two where the light is neither on nor off. Such a situation would provide serious semantic

difficulties in a temporal logic. On the other hand, if the interval is closed, then there is a

time point at which the light is both on and off. This presents even more semantic

difficulties than the former case. One solution to this would be to adopt a convention that

intervals are closed in their lower end and open on their upper end1. The intervals could

then meet as required, but each interval would have only one end point. The artificiality

of this solution merely emphasizes that a model of time based on points on the real line

does not really correspond to our intuitive notion of time.

1 See Section 2.1.3 Bounded or unbounded.

8

Most temporal databases only support event time or interval time, but Snodgrass'

TDBMS model supports both of them in valid time and user-defined time attributes (see

Chapter 4 Some Proposed Temporal Databases and Their Languages)). However, the

model only supports event time for each transaction event.

We summarize some researches which support event time, or interval time, or

both of them in Figure 2.1.

Reference Model Event time Interval time

[Findler & Chen 1971] AMPPL-1I v v

[Bubenko 1977] - V v
[Reed 1978] SWALLOW V
[Jones & Mason 1980] Legol 2.0 v
[Klopprogge 1983] TERM a/
[Ben-Zvi 1982] TRM V
[Clifford & Warren 1983] ILs v
[Lum et al. 1984] AIM v
[Clifford &Tansel 1985] HDBM 1/HDB 2 V V
[Snodgrass & Ahn 1985] TDB V V
[Ariav 1986] TODM (TOSQL) V
TGadia & Yeung 19881 MHM V

Figure 2.1 Event Time and Interval Time

2 .1 .2 Discrete or continuous

Time is universal continuous and can be treated as dense, essentially isomorphic

to the set of reals. However, we can consider it as being discrete. For example, if one is

dealing with facts which only vary on a time scale consisting of whole numbers of days,

then one can take a day as an indivisible unit and use a discrete time model. Again,

suppose we have n property-variables, each of which is present or absent at any one

time, and that we define an epoch to be a maximal period over which none of the

variables changes value. Then the succession of epochs constitutes a discrete time

1 Clifford's model. It supports event time.
2 Tansel's model. It supports interval time.

9

structure1 imposed on what may very well be an intrinsically continuous underlying

temporal model.

For two reasons, we prefer to treat time as discrete, and isomorphic to the natural

numbers. First, it is clear that any recording instrument must have at best a finite

sampling unit, and second, any practical language that we might define for time attributes

in a TDBM would have at most a countably infinite set of names for time points or time

intervals. Thus while it may be philosophically or theoretically interesting to consider a

continuum of moments of time, from a practical standpoint the natural numbers seem a

more useful candidate for modelling the properties of database time.

2.1.3 Bounded or unbounded

Is time bounded or unbounded? This means that either every time is succeeded by

a later time (unbounded in the future) or there is a last moment in time (bounded in the

future), and likewise in the direction of the past. As stated in Section 2.1.1, if we present

the time as interval time and the interval is closed (may be bounded by a later time), then

there is a time point at which two events both exist or do not exist. Under such a model,

the time intersection operation may generate some redundant tuples which have the same

lower end and upper end (see Chapter 5 New Semantics for TQuel M odification

Statements). One solution to this would be to adopt a convention that intervals are closed

in their lower and open on their upper end, i.e., are unbounded (or semi-closed).

2.1 .4 Linear, parallel, or branching

Generally, time is considered as a linear order, because in Newtonian physics

time is modelled as a real line. The relationship of two time points in the historical chain

can be expressed as a predicate "Before", (or a notation "<"). In such an approach, the

predicate "Before" is restricted to be transitive and connected.

1 Some papers defined such a topology of time as step-wise constant type (see [Segev & Shoshani
1987]).

1 0

However, the idea of branching time has been put forward as a way of handling

uncertainty about the future, the idea being that from each moment forward there exist

many possible alternative futures. For instance, those future instances which 'happen'

will become current and eventually pass into the history chain. And those future instances

which do not happen will have to move into a different history chain, or be maintained in

some special way. The time of such instances have a branching structure. Consider the

following example: during 1980 to 1988, the department D1 of a store sold an item 12 . If

the item 12 was supplied by company C l from 1980 to 1988, and additionally by

company C2 from 1985 to 1988, then the time of the event: The department D1 sold item

12, has a branching time structure to distinguish different suppliers.

As for parallel times: we could perhaps regard this as a model of the different

subjective time-scales of different people, but again, it would seem necessary to establish

correlations between the different times, and the robustness of such correlations is a

measure of how well-founded is the idea of an objective time underlying all the different

subjective time-lines.

Circular time is an interesting possibility, too, for in this, past, present and future

coalesce. It is hard to take circular time seriously as an account of physical time, but the

associated logic could be useful in reasoning about repetitive processes, for instance the

effectively endless repetition of cycles in the traffic signals at a road junction.

In the following discussions, the TDB presented by Snodgrass et al. is based on a

topological structure of time which is linear, step-wise constant and semi-closed

(unbounded), and supports both event time and interval time as well.

2.2 Different Types of Time Attributes

So far, many researchers have proposed a variety of time terminologies. They

have treated time aspects of conceptual information models in different ways, argued

distinct taxonomies of time attributes, then presented different types of TDBMS

(Temporal Database Management System) models. In discussing these concepts to

1 1

exam ine their contributions to temporal database research, we introduce a new

classification of time attributes. In the new taxonomy of time, two time attributes are

defined as almost the same as logical time and physical time which were presented by

Lum et al. in 1983. However, we shall point out that another time attribute is also

necessary to fully capture time-varying information. These three new time attributes are

different from the classification of time attributes by Snodgrass et al. [Snodgrass & Ahn

1985] as well. We shall proceed by stating different viewpoints presented by major

authors, then follow with an analysis of these views, comparing their differences and

linking their common characteristics.

2.2.1 The different viewpoints of researchers

2.2.1.1 Rescher and Urquhart's views

In [Rescher & Urquhart 1971], the authors stated that there were two time

attributes associated with a statement which describes a situation or a state of affairs. The

first attribute is the time of reference of a statement which expresses when a particular

condition exists or an event happens. The second attribute is the time of assertion of the

statement which expresses when the statement is asserted or uttered by someone. Often

the reference time depends on the assertion time. As in the statement, "it is now raining",

which was issued on 15/10/88, the assertion time is "15/10/88", and the reference time is

"now" which refers to "15/10/88". If we issued the statement, "it was raining yesterday",

on last Sunday, then the assertion time is "last Sunday", and the reference time is

"yesterday" and is relative to "last Sunday", i.e., is last Saturday.

2.2.1.2 Bubenko's views

In an abstract model realm in [Bubenko 1977], time also plays two kinds of roles:

extrinsic and intrinsic. The extrinsic time is the time when a particular assertion is made

or conclusion is drawn. Whether this time relationship is explicitly recognized or not it

1 2

always exists. However, different applications have different views of this dimension.

Therefore, extrinsic time is application-specific. Intrinsic time plays a role as part of the

definition of an association type, i.e., it constitutes parts of its "meaning". An association

type may or may not contain intrinsic time components.

Consider the following examples: we draw a conclusion on 15/10/88 (tl): "The

quantity on hand of ACM magazines is 8". Here, "15/10/88" (tl) is an extrinsic time.

Next, consider the assertion on 25/10/88 (t2) about the above conclusion "On 15/10/88

the quantity on hand of ACM magazines was 8". Observe that the latter is true for all

extrinsic t2 > tl and that tl has now moved to an intrinsic role, i.e., "15/10/88" now is an

intrinsic time and the extrinsic time is "25/10/88". Consequently, t2 will also move to an

intrinsic role if we assert at t3 > t2 the assertion about the first conclusion etc. That means

that an extrinsic time can move to an intrinsic role with the development of history. In

most applications, we will normally have events which depend on the extrinsic time. In

some applications there are some events which do not depend on time, these represent

"static data" where intrinsic time relation implicitly or explicitly always is present. For

example, we said "he is a man" last Monday. We still draw the same conclusion this

Monday, "he is a man". We never say, "he was a man last Monday". The statement, "he

is a man", is static. Clearly, extrinsic time is assertion time and intrinsic time is reference

time in [Rescher & Urquhart 1971].

2.2.1.3 Lum's views

In [Lum et al. 1984], the concepts of time were classified into two categories,

physical time and logical time. Physical time is characterized as the time when the data

concerning the event was stored in the database, while logical time is characterized as the

time that an event occurs in reality. The physical time is used to record all database

actions. It is running on a non-stop running clock (e.g., system calendar), and cannot be

modified by users at all. Some literature named such a time attribute as transaction time

[Snodgrass & Ahn 1985], or recording time [Ariav 1986]. Physical time is automatically

1 3

processed by DBMS. It is taken as a time stamp embedded within each transaction in a

database. Considering only single user applications, physical time is in linear order and

its integrity can be guaranteed by DBMS.

While physical time is necessary to be the reference point, the authors argued that

there was another aspect of time that must be considered. That is, the time associated with

the user's application perspective. They referred to this time aspect as logical time.

Logical time concerns modelling time-varying reality. It states when an event became

effective. And it is considered as a second reference point in time based on the real

physical time as a reference. It can be defined by users explicitly. Therefore, it is

application dependent and its integrity must be maintained by the user. For any system,

only one physical time attribute can exist, while there may be several logical time

attributes. Comparing the definitions in [Bubenko 1977, Rescher & Urquhart 1971],

logical time is intrinsic time or reference time. In [Ariav 1986], logical time is observation

time.

2.2.1.4 Snodgrass and Ahn's views

In [Snodgrass & Ahn 1985, Snodgrass & Ahn 1986], the authors identified three

kinds of time that a database management system needs to support: valid time, transaction

time and u se r -d e fin e d time. The new definition was based on reality versus

representation.

The transaction time of an event is the transaction number (an integer) of the

transaction that stored the information concerning the event in the database. It concerns

the storage of information in the database. Such a time can be considered as a daily

calendar. When the data are recorded into databases, this time attribute will be embedded,

as with a time stamp. It may not be changed. Therefore, a database dealing only with

transaction time will permit only appends, no m odifications will be allowed. The

transaction time is automatically processed by TDBMS. If the value can be processed

automatically by the DBMS, the value must necessarily be independent of any particular

1 4

application and must have a simple semantics. Hence, the transaction time must be

application independent.

The valid time of an event is the clock time that the event occurred in the world,

independent of the recording of that event in some databases. A database concerned only

with the valid time permits modifications, because valid time concerns modelling time-

varying reality and is always subject to change. However, the authors argued that valid

time is application-independent.

User-defined time is an uninterpreted domain for which the DBMS supports the

operations of input, output, and perhaps comparison and minimal computation. Such

domains will be present in the relation schema. The values of user-defined temporal

domains are not interpreted by the DBMS. The semantics of user-defined time is

provided by the user or application program.

Transaction time is most closely associated with physical time while valid and

user-defined times are associated with logical time.

2.2 .2 Discuss ions

2.2.2.1 The valid time and user-defined time

In [Snodgrass & Ahn 1985J, the authors presented a new taxonomy of time by

arguing that there has been some confusion concerning terminology and the definition of

physical time and logical time attributes presented in [Lum et al. 1984]. The user-defined

time differs from valid time only because it is application dependent. According to the

definition, user-defined time is application dependent, while valid time is application

independent. But both o f them are most closely associated with logical time.

Unfortunately, it should be pointed out that valid time is also application dependent in

most applications. We cannot separate valid time from user-defined time. As an example,

consider the promotion relation shown in Figure 2.2 from [Snodgrass & Ahn 1985].

1 5

Name Rank effective valid time transaction time

date fat) f start) fend)

Merrie associate 01/09/77 25/08/77 25/08/77 oo

Merrie full 01/12/82 11/12/82 15/12/82 oo

Tom full 05/12/82 05/12/82 01/12/82 07/12/82

Tom associate 05/12/82 07/12/82 07/12/82 oo

Mike assistant 01/01/83 01/01/83 01/01/83 oo

Mike left 01/03/84 25/02/84 25/02/84 oo

Figure 2.2 A Promotion Example

Merrie's retroactive promotion to full (professor) was signed four days before it

was recorded in the database. Tom in the full rank was recorded four days before it was

valid. And a correction was made to this event seven days after: Tom should have had the

rank of associate.

The effective date is the date shown on the promotion letter that the promotion

was to take effect; the valid date is the date the promotion was signed, i.e., the date the

promotion was validated; and the transaction date is the date the information concerning

the promotion was stored in the database. The authors argued that the effective date is

application-specific while the valid time should be application independent. However,

consider that the letter must be signed by many authoritative persons, the letter may not

be signed within one day. There should be multiple valid at time attributes to fully capture

the history of promotion. It is totally dependent on the application how many valid at time

attributes are enough. Therefore, the valid time is application dependent as well.

On the other hand, the valid time attributes can be defined and specified by the

user, e.g., retrieved by issuing the when clause and modified by using the valid clause

in TDBMS (this will be discussed in Chapter 4 in more detail). Because the valid time can

be modified by users, the TDBMS cannot guarantee the integrity of valid time values.

1 6

Therefore, the valid time attribute cannot be considered as being application independent.

In fact, the valid time is a kind of user-defined time. We classify valid time with user-

defined time into the same taxonomy, logical time. All of them are characterized as the

time that an event occurs in reality.

2 2 .2 2 Logical time

As stated above, physical time and logical time classify two different concepts of

time. Physical time states the concept of time from the viewpoint of machines (at the

internal level of system). On the other hand, logical time views the concept of time of an

object from an external level. Unfortunately, there has been some confusion concerning

the viewpoint from external level. In a database system, we can view an object from an

internal level of system or an external level. At external level, there still are two aspects of

the object. One is viewing the object from the user points of view. Another is from the

viewpoint of the object itself. As will be stated below, time also can be viewed from these

two distinct aspects which are independent of each other.

2.2.2.3 Assertion time vs reference time and physical time

Both assertion time and reference time view time concepts from the external level

of system as well. The assertion time is the time when someone at some point in time

asserts or utters a statement which states the fact of an event happening. It concerns a

different level of time concept from the reference time. The concept of reference time

associates the time with an event itself, while the concept of assertion time differs from

reference time in the fact that it concerns the time of observation by someone, although

assertion time can become reference time with history changing. Assertion time really

views time concepts of an object from the user level and reference time views time

concepts from an event view. We term reference time as event time to make the

terminology clear. Assertion time is also different from physical time with the fact that

1 7

physical time views the concepts of time from the system level, not from the external

level. We term physical time as recording time to make the terminology clear as well.

2.2 .3 The new classification

Now, we can redefine three orthogonal time concepts as follows to classify the

types of time attributes for temporal database systems:

The assertion tim e is the time when someone at some point in time asserts or

utters a statement which states the fact of an event happening. It views the concept of time

of an object from the user level.

The event tim e is the time that an event occurs in reality. It states the aspect of

time from the event level. With the development of history, assertion time can be

changed into event time.

Assertion time depends on different users and different applications, while event

time depends on different applications but does not depend on users. Both of them are

application dependent. Assertion time tends to be changed at any time by relative users,

while event time is changeable in future relations, but unchangeable in historical relations.

This is due to the fact that an event, once it occurs, never becomes false. However,

because events are recorded into DBMS by users and recording errors may be generated,

events which have been recorded into the system should be allowed to be modified and

event time can also be replaced in historical relations.

The record ing tim e is characterized as the time when the data concerning the

event was stored in the database. It views the time concept of an object from the system

level. There will be not any recording time before the event is recorded into the TDBMS.

After an event is recorded into the system, it is stamped with a recording time which

cannot be changed at all. Therefore, recording time does not exist in the future chain and

is not allowed to be changed in the present and the past by any user. It is automatically

maintained by TDBMS after each transaction.

According to such definitions, a new classification can be drawn as Figure 2.3.

1 8

Concepts of Time

Terminology

Reference

Logical time Phvsical time

Assertion time Event time Recording time

[Reseller & Urquhart 1971] assertion time reference time

[Findler & Chen 1971] start/finish time

[Bubenko 1977] extrinsic time intrinsic time

[Reed 1978] start/end time

[Jones & Mason 1980] start/end time

[Ben-Zvi 1982] effective time registration time

[Clifford & Warren 1983] state

[Mueller & Steinbauer 1983 data-valid time

[Lum et al. 1984] logical time logical time physical time

[Copeland & Maier 1984] event time transaction time

[Clifford &Tansel 1985] time1

[Snodgrass & Ahn 1985] user-defined valid time / transaction time

time user-defined time

[Ariav 19861 observation time recording time

Figure 2.3 A Classification of Time Concepts.

2 .2 .4 A tree-like hierarchy of time

For most objects, there is not just one aspect of time with them, but many

aspects. Time is multi-dimensional. Different points of view associate different time

attributes (time dimensions) with one object. Although we only classify time concepts

into three aspects, they can be developed into multiple time attributes. The result is that

time has a tree-like hierarchy.

For instance, time can be divided into logical time (external level view) and

physical time (internal level view). The external level view of time also can be classified

at two further levels: user level and event level. Assertion time and event time can be

defined as above. For the same object, in different applications, different event times can

1 This paper was a combination of two individual papers. One was written by James Clifford, and the
other by Abdullan Uz Tanscl. Here, we present Tansel's viewpoint. Clifford's viewpoint is as the same as
stated in [Clifford & Warren 1983].

1 9

be obtained. Different users and different applications can view assertion time in different

ways. We summarize the time concepts into a simple diagram as shown in Figure 2.4:

Time
(Universal level)

Physic;
(Interna

il time
1 level)

Logic;
(Extern

d time
al level)

Recording time
(Svstem level)

Assertion time Event time
(User level) (Event level)

sysl sys2 sysL userl user2 userM appl.l appl.2

Figure 2.4 The Tree-like Hierarchy of Time

appl.N

Some examples will help clarify the subtle differences among the three types of

time attributes above and highlight their similarities:

1) Promotion example.

For promotion event, we can assert that the event happens to somebody at

different views. We can assert the statement at the time when the promotion is discussed,

or at the time when we make an agreement for the promotion, or at the time when the

promotion document is signed. Therefore, three assertion time attributes can be obtained

for the same event by the same user (but different applications).

There would be a promotion effective time as the event time. Such a time attribute

may refer to any one of three assertion times above. We also can consider promotion

activity in different applications. If we focus on the discussion of promotion, for

instance, we have promotion discussion event time. If we focus on promotion agreement

or signature of promotion, we have promotion agreement event time, or promotion

20

signature event time. Clearly, for the same object (promotion), in different applications,

we have different event times. At the same time, we can see that assertion times can be

evolved into event times in the history chain.

For such an example, obviously, the recording time is the time when an event is

recorded into the system.

2) Birthday example.

The date a person was born is the birthday of that person. It is the event time of

the event that the person comes into being. While the date when a certificate is signed to

certify the valid being for that person is the assertion time for such an event. The

assertion time can be taken as a reference time for the event time. The recording time is

the time when such information is recorded into an information system.

3) Deposit example

A customer deposits some money at a branch of a large bank (event). The branch

transmits the details of the payment to the central bank (assertion) at a later time, and

finally the payment is recorded in a central computer (recording). The deposit transaction

therefore has three times associated with it, but the bank's computer system may only

record the final one. This makes it difficult for the customer to reconcile his deposit event

with the bank's recording of this event.

4) Business transaction example

Thinking about the customer's point of view, he writes a cheque and sends it to a

supplier of goods (payment assertion). The cheque is sent to the supplier's bank several

days later by the supplier and money is really transferred from the customer's account to

the supplier's one (payment event happens). The recording time is the time when the

transaction happens in the bank's computer system.

Thinking about the bank's point of view, when the bank accepts the cheque, a

payment event happens, but some time later the bank asserts the payment to the supplier

and the customer on their bank statements (different assertions).

21

Taking the supplier's view, he accepts the cheque (payment assertion) and

records the event proactively into his own computer (different recording time), although

the payment event really happens several days later.

22

Chapter 3. Temporal Database Classifications

Most conventional databases represent the state of the dynamic real world at a

single moment of time. Although the contents of the database continue to change as new

information is added, these changes are viewed as modifications to the state, with the old,

out-of-date data being deleted from the database. The current contents of most databases

are viewed as a snapshot of the real world.

Temporal databases represent the progression of states of the real world over

different time dimensions. In such databases, changes are viewed as additions to the

information in the database. Temporal databases are thus generalizations of conventional

databases and their underlying snapshot model.

Extending conventional databases into temporal databases, the models of temporal

databases are different in supporting different types of time attributes (different time

dimensions) and different topologies of time. In general, according to the presentation in

[Snodgrass & Ahn 1985], these models can be classified into four distinct kinds of

databases on the basis of supporting different time attributes. The four kinds of databases

are snapshot databases, rollback databases, historical databases, and temporal databases.

Unfortunately this classification means that "temporal database" is being used in two

different ways: generically for all databases where time is supported, specifically for

databases where event and recording time are supported.

Many non-relational database management systems are in used in commercial

organisations such as banks and building societies. However, it is easier to add time to

the relational model [Codd 1979] so the discussion here is limited to this model.

3.1 Snapshot Databases

In the relational model, a database is a collection of relations. Each relation

consists of a set of tuples with the same set of attributes and is usually represented as a

23

two-dimensional table as in Figure 3.1. Only after changes in the real world being made,

changes to the databases can be made. Thus a state or an instance of a database does not

necessarily reflect the current status of the real world.

"Updating the state of a database is performed using data manipulation operations

such as insertion, deletion, or replacement, taking effect as soon as they are committed.

In this process, past states of the database, representing those of the real world object, are

discarded and forgotten. We term this type of database a snapshot database."[Snodgrass

1987] An entity only has one state or one observation in the snapshot database at a time.

Thus, a tuple in the snapshot database refers to an entity.

Snapshot databases do not support DBM S-m aintained time attributes. For

example, they do not support recording time at all. However, they support some kinds of

assertion times or event times in the schema for the relations. Such time attributes are not

interpreted by DBMS, and their domains will appear in the schemas of relations. In

relational models, snapshot databases are exactly those databases supported by the

relational algebra. Unfortunately, they cannot answer queries on past states or for the

future.

Attributes ------------------►

Tuples

▼ --

Figure 3.1 A Snapshot Relation

Taking a library model [Oxborrow 1986] as an example, we have a relation as

follows,

BOOK-LOCATION (Book#. Isbn, Shelf)

The underlined attribute, Book#, is the identifier of the relation. At a certain

moment an instance of the relation BOOK-LOCATION may be as shown in Figure 3.2.

24

Book# Isbn Shelf

00023 0-999-99999-0 cbOOl

00065 0-999-99999-0 cb003
00012 0-12345-123-x cb002

00080 0-5656-5566-2 cb003

Figure 3.2 A BOOK-LOCATION Relation Instance

and a query in Quel [Held et al. 1975] as to the location of Book# 00023,

range of b is BOOK-LOCATION

re trieve (b.Shelf)

w here b.Book# = "00023"

yields the result that Shelf = cbOOl.

This snapshot database is adequate in some applications, but inadequate in many

applications. For example, it cannot answer queries such as

1) Where was Book# 00065 last July (assume that we have rearranged the books

in library at least once since that time) ? (historical query)

2) How did the number of copies of each book change over the last two months?

(trend analysis)

nor record facts like

3) There has been another copy Book# 00094 for the book, Isbn 0-999-99999-0,

since last October, (retroactive change)

4) The book # 00080 will be moved to the shelf cb004 next month, (proactive

change)

Clearly, without system support, many applications have had to maintain their

temporal information in an ad-hoc manner; such operations have to be handled by

specially-written application programs.

25

3.2 Rollback Databases

To retrieve the queries on past states, an approach can be presented in which a

database is regarded as a sequence of snapshot relations indexed by recording time which

serves as the time axis. Under this approach a database can be illustrated conceptually in

three dimensions (see Figure 3.3 A Rollback Relation). We can view a snapshot of the

database as of some moment before {an observation) by querying on that database along

the time axis and selecting this observation. We term the operation of selecting an

observation as rollback, and a database supporting it is termed a rollback database.

5
4

2

1

4

3

2

1

3
2
1

 ►

Recording Time

Figure 3.3 A Rollback Relation

A rollback database is a set of observations of entities in the real world. Because

an entity can be observed many times, i.e., it can have many observations, one

observation of an entity refers to one tuple in the rollback database. Embedding the

recording time attribute, tuples in such a database are called rollback tuples.

Rollback databases only support recording time. By recording the history of

database activity, rollback databases allow relations to be rolled back to one of their past

snapshot states (observations) for querying. The distinction between snapshot databases

and rollback databases is that the latter have the ability to return to any previous

observation to execute a snapshot query.

One limitation of supporting recording time is that the history of database

activities is recorded, rather than the history of the real world. A tuple becomes valid as

26

soon as it is entered into the database as in a snapshot database. Retroactive and proactive

changes of events are not recorded, and errors in past observations cannot be corrected.

As an example, we extend the BOOK-LOCATION relation (a snapshot relation)

into a rollback relation by embedding the recording time attribute as shown in Figure

3.4. The relation is sorted along the recording time dimension.

(a)

(b)

(c)

Book# Isbn Shelf

00023

00012

00030

0-999-99999-0

0-12345- 123-x

0-332-42233-1

cbOOl

cb002

cb004

Book# Isbn Shelf

00023

00012

00030

00065

0-999-99999-0

0-12345-123-x

0-332-42233-1

0-999-99999-0

cbOOl

cb002

cb004

cbOOl

Book# Isbn Shelf

00023

00012

00065

00080

0-999-99999-0
0-12345-123-x

0-999-99999-0

0-5656-5566-2

cbOOl

cb002

cb003

cb003

Recording time

12/4/88

25/6/88

1/ 10/88

Figure 3.4 BOOK-LOCATION Relation (rollback relation version 1)

(Note: Examples are given in terms of calendar dates. In practice, the granularity

of time is dependent on the application and the system. It can be other date form.)

There are three observations for the relation BOOK-LOCATION in Figure 3.4.

Each presents one transaction applied to it, starting from a null relation:

(a) creation of three new entities on 12th April, 1988,

(b) addition of one entity (Book# 00065) on 25th June, 1988,

27

(c) deletion of one entity (Book# 00030), addition of another entity (Book#

00080) and replacement of one entity (Book# 00065 has been moved to the shelf cb003

since 15th September, 1988) on 1st October, 1988.

Note: We cannot record the fact that Book# 00065 has been moved to the shelf

cb003 since 15th September, 1988 (retroactive change), because the event was recorded

on 1st October, 1988.

Implementing a rollback relation in this way is impractical, due to excessive

duplication: the tuples that do not change between observations must be duplicated in the

new observation. Another approach that partially addresses this difficulty appends the

start and end points of the recording time to each tuple, indicating the points in time when

the observation of an entity was valid in the database. The relation above in this approach

looks like Figure 3.5. More space is saved.

Book# Isbn Shelf

Recording time

start end

00023

00012

00030

00065

00065

00080

0-999-99999-0
0-12345-123-x

0-332-42233-1

0-999-99999-0

0-999-99999-0

0-5656-5566-2

cbOOl

cb002

cb004

cbOOl

cb003

cb003

12/4/1988

12/4/1988

12/4/1988

25/6/1988

1/10/1988
1/10/1988

oo

oo

1/10/1988

1/10/1988
OO

oo

Figure 3.5 BOOK-LOCATION Relation (rollback relation version 2)

On the other hand, the recording (end) time attribute can be used as a deletion

label to mark an observation of an entity which has been deleted or terminated. A current

observation always has an infinite end time value. While a rollback tuple with a finite end

recording time may represent either:

a) an observation of an entity which has been terminated in the database, such as

Book# 00030;

28

b) an observation of an entity which has changed its state, such as Book# 00065

which was deleted from Shelf cbOOl and placed on Shelf cb003.

Treating two time attributes for one time dimension is very useful in historical and

temporal databases as well, because we need not really delete (move away) tuples from

the database, and we can keep the observations or states of deleted entities as long as we

like and view the history of the database as is/was best known to fully capture the

temporal concept of TDBMS. This viewpoint will be discussed deeply in Section 3.4,

Temporal databases and Chapter 4, Some Proposed Temporal Databases and Their

Languages.

Finally, we can have disjoint tuples which are terminated at some time and started

at another time. This could occur when a particular entity has an unknown history for a

period of time.

Any query language may be converted to a query which can execute a rollback

operation by adding a clause effecting the rollback. TQuel augments the retrieve statement

with an as of clause to specify the relevant recording time (that is, to execute a rollback

operation). The TQuel query

range of b is BOOK-LOCATION

retrieve (b.Shelf)

where b.Book# = 00065

as of "July 1988"

will find the location of Book# 00065 as it was recorded in (the beginning of)

July 1988 (by the system). In this example, the result is Shelf cbOOl. (Note that the result

of a rollback operation is a pure snapshot relation)

The concept of recording time has appeared in several systems, including

TODM/TOSQL [Ariav 1986], TDB/TQuel [Snodgrass 1987], SWALLOW object store

[Reed 1978], and HDB in [Clifford & Tansel 1985]. (c.f. Section 2.2.3, Figure 2.3 A

Classification of Time concepts)

29

3.3 Historical Databases

W hereas rollback databases support recording time to represent the history of

database activities, historical databases support assertion time, or event time, or both

(logical times) to represent the history of the real world. However, assertion time and

event time in historical databases are maintained by TDBMSs themselves, not maintained

by users as in snapshot databases. Their domains do not appear in the schema for the

relation and their semantics are provided by the database, not by the user or application

program.

An historical database may also be illustrated in three dimensions (see Figure

3.6). The label of the time axis has been changed to logical time (assertion time and event

time), and "the semantics are more closely related to reality, rather than update history."

[Snodgrass 1987] Historical databases record a single observation per relation, storing

the history as is best known. We always assume that the state of the real world being

modelled does not change until next new state being recorded, thus the historical relation

is an interval relation and the tuples in the historical databases are step-wise constants.

B ook#00023
0001 2

0 0 0 3 0

0 0 0 6 5

0 0 0 6 5

0 0 0 8 0
oo
oo

c\j £
o
c

Figure 3.6 An Historical Relation

30

An entity can have many states along its historical dimension. Tuples in historical

databases refer to entity states because the databases represent the history of the real

world. An entity state is currently valid until the entity changes its values in the real

world. When an entity changes its state, a new tuple is generated and the old one is

simply terminated (but not deleted from the database). Thus, an entity can refer to many

tuples, e.g., the entity Book# 00065 has two tuples in the database because it has two

states in the real world.

As errors are discovered, they are corrected by modifying the database; previous

states are not retained, so the database may not be viewed as it was in the past. No record

is kept of the errors that have been corrected; historical databases are similar to snapshot

databases in this respect.

The distinction between historical and rollback databases is that historical

databases support arbitrary modification, whereas rollback databases not allow the

observation of entities to be modified. Rollback databases can rollback to an incorrect

previous observation; historical databases can represent current knowledge about the

past. For instance, a sequence of transactions, which are almost the same as the three

transactions that resulted in the rollback relation in Section 3.2 Rollback Databases, is as

follows, starting from a null relation as well:

(a) addition of three new books in shelf on 12th April, 1988 (Book# 00023,

Book# 00012, and Book# 00030),

(b) appendage of another new book (Book# 00065) on 25th June, 1988,

(c) termination of one book (Book# 00030), appendage o f a new one (Book#

00080) and rearrangement of one book (Book# 00065 has been moved to the shelf cb003

since 15th September, 1988) on 1st October, 1988,

(d) correction of the information about Book 00012 (Book# 00012 was not

available before 20th May, 1988) on 18th October, 1988.

These transactions will result in an historical relation in Figure 3.7.

31

Book# Isbn Shelf

Event time

from to
00023

00012

00030

00065

00065

00080

0-999-99999-0

0-12345-123-x

0-332-42233-1

0-999-99999-0

0-999-99999-0

0-5656-5566-2

cbOOl

cb002

cb004

cbOOl

cb003

cb003

12/4/1988

20/5/1988

12/4/1988

25/6/1988

15/9/1988

1/10/1988

oo

oo

1/10/1988

15/9/1988
OO

OO

Figure 3.7 BOOK-LOCATION Relation (historical relation)

Some comments should be made that:

(1) The time axis has been changed to event time. Event time has an interval

structure with the fro m time and to time attributes. This approach is based on the

discussion about the model of rollback databases.

(2) The time attributes are now concerned with the reality of enterprises, not the

reality of transactions. For instance, the updating of the entity - Book# 00030 - is

expressing its termination in the real world, but not expressing the deletion from the

database.

(3) There is still no way to record retroactive/proactive changes. After the

transactions, the entity, Book# 00065, is valid in the shelf cb003 since 15th September,

1988, not since 1st October as in the rollback database! However, the fact that the

modification was made on 1st October cannot be recorded. The reason is that there is no

mechanism to record the time when an event was recorded into the database. We need

two time attributes, the event time and the recording time, to fully capture the retroactive

and proactive changes.

(4) There is no way to record correction activities. Book# 00012 has been

changed into being valid from 20th May, 1988, but there is not any record for the

previous information, Book# 00012 used to be valid from 12th April, 1988. Hence, the

database was inconsistent with reality for that period of time.

32

(5) the entity Book# 00065 has two states in the database which are represented

by the fourth and fifth tuples. Other tuples have only one state respectively in the relation

at the moment.

Historical databases require more sophisticated query languages. Two such

languages which have been developed are: Legol 2.0 [Jones & Mason 1980], based on

the relational algebra, and TQuel [Snodgrass 1984], based on Quel [Held et al. 1975], a

relational calculus query language. We will discuss them in Chapter 4. Here, we give an

example, in TQuel, requesting the location of Book# 00065 on 1st October, 1988, as is

best known. A w hen clause is used to specify the temporal relationship of tuples

participating in a derivation. The o v e rla p operator specifies that the event and/or

intervals overlap the time (see Chapter 4 for detail).

range of b is BOOK-LOCATION

re triev e (b.Shelf)

w here b.Book# = 00065

w hen b overlap "1/10/1988"

The result will be Shelf cb003.

Most studies about temporal databases support historical databases as models, for

example, AMPPL-II [Findler & Chen 1971], ILs [Clifford & W arren 1983], MHM

[Garia & Yeung 1988], Legol 2.0 [Jones & Mason 1980] and TDB [Snodgrass & Ahn

1985]. There is a good reference for the relative researches in the paper [McKenzie

1986].

3.4 Temporal Databases

Whereas rollback databases only provide support for recording time to represent

the reality of the history of database activities and historical databases support assertion

time/event time to retrieve the history of the real world, we need a kind of database which

can represent a relation as a sequence of the enterprise being modelled and the history of

database activities. Temporal databases provide such an ability. They support all three

33

types of time attributes and make it possible to view tuples as being valid at some moment

relative to some other moment, completely capturing the history of retroactive and

proactive changes.

A temporal relation may be regarded as a sequence of historical relations indexed

by recording time, each a completed historical relation indexed by logical time (assertion

time/event time). Therefore a single temporal relation can be viewed as a four dimensional

object as shown in Figure 3.8.

The snapshot relational database model is utilized as the underlying model of

temporal database by embedding the four-dimensional temporal relation in a two-

dimensional snapshot relation. There have been several ways to implement such a model

proposed during the last decade. We will introduce two approaches, analysing their

advantages and disadvantages, then, give some more complex examples to clarify the

concepts of temporal databases well, and discuss the domain of time attributes under the

approach of version 2.

The discussion will concern a temporal relation result of four transactions, the

same as the sequence of events in Section 3.3, starting from a null relation:

(1) Book# 00023, Book# 00012, and Book# 00030 were stored on the shelf on

10th April, 1988 (the fact was retroactively recorded on 12th April, 1988);

(2) Book# 00065 was added to the shelf on 26th June, 1988 (the fact was

proactively recorded on 25th June,1988);

(3) Book# 00030 was deleted due to being missing, and Book# 00080 was added

to the shelf on 1st October; Book# 00065 has been moved from the shelf cbOOl to cb003

since 15th September, 1988, and the fact was recorded on 1st October, 1988;

(4) a correction was made on 18th October, 1988, for Book# 00012 being not

available before 20th May, 1988.

34

Re
co

rd
in

g
Ti

m
e

00oo
o
oo

m
(Noo

omooo

o
00

in(N
O Oo=fc ©

/

/

m
(NO©o

ooo

omooo

>n ins s § 8 8 §

kZZT7
<N 1—1 ^)Qo O O oo o O ©o O O o

/

v s / /
m<Nooo

omo

c
mO
gqj

1j
04

c3
o
B<D

H
<
oo
rn

.3P
tn

35

3.4.1 Embedding a temporal relation, vers ionl

The most straightforward implementation is to combine two approaches shown in

last two sections: appending two event time attributes to the user-defined time attributes to

form a series of historical relations; each with a recording time for rollback. Figure 3.9

shows such an approach.

Recording time

12/4/88

(a)

25/6/88

(b)

1/ 10/88

(c)

18/10/88

(d)

Figure 3.9 A BOOK-LOCATION Relation(temporal relation version 1)

Book# Isbn Shelf event from time event to time
00023 0-999-99999-0 cbOOl 10/4/88 OO

00012 0-12345-123-x cb002 10/4/88 oo

00030 0-332-42233-1 cb004 10/4/88 oo

Book# Isbn Shelf event from time event to time

00023 0-999-99999-0 cbOOl 10/4/88 OO

00012 0-12345-123-x cb002 10/4/88 oo

00030 0-332-42233-1 cb004 10/4/88 oo

00065 0-999-99999-0 cbOOl 26/6/88 oo

Book# Isbn Shelf event from time event to time

00023

00012

00030

00065

00065

00080

0-999-99999-0

0-12345-123-x

0-332-42233-1

0-999-99999-0

0-999-99999-0

0-5656-5566-2

cbOOl

cb002

cb004

cbOOl

cb003

cb003

10/4/88

10/4/88

10/4/88

26/6/88

15/9/88

1/10/88

OO

oo

1/10/88

15/9/88
oo

oo

Book# Isbn Shelf event from time event to time

00023

00012

00030

00065

00065

00080

0-999-99999-0

0-12345-123-x

0-332-42233-1

0-999-99999-0

0-999-99999-0

0-5656-5566-2

cbOOl

cb002

cb004

cbOOl

cb003

cb003

10/4/88

20/5/88

10/4/88

26/6/88

15/9/88

1/10/88

oo

oo

1/10/88

15/9/88
oo

oo

36

Each update operation involves copying the previous historical relation, then

applying the update to the newly created historical relation; hence, temporal relations are

append only.

In such an approach, there is only one recording time attribute for each historical

state. As mentioned in Section 3.2, implementing a temporal relation in this way is

impractical, because the tuples that do not change between states must be duplicated in the

new state. The storage requirements are increased very quickly in such an approach.

However, the approach is more clear in its logical concepts than the following one which

will be introduced in Section 3.4.2.

In Figure 3.9, the database has five entities in it. An entity is defined as a

presentation of a real world object in the database. After being recorded into the temporal

database, entities can not be removed from the database any more.

Along the recording time dimension, we can capture the observations of those

entities. There are four observations for the entities: Book# 00023, Book# 0012, and

Book# 00030; three observations for Book# 00065; and two observations for

Book#00080. Some observations are the same because entities have not changed their

values or no error has been discovered, but some are different, for instance, the

observations of Book# 00012 are different in Figure 3.9 (c) and (d), because an error

was discovered on 18th October: Book# 00012 was not available before 20th May.

While along the event time dimension, we can retrieve the states of some entity.

For example, in Figure 3.9 (c), Book# 00065 changed its state firstly, thus, two states

are presented for it. However, we should note that states of an entity do not change

correspondingly with its observations. In Figure 3.9 (d), the states for Book# 00065 are

the same as in (c) although there are two different observations.

To fully capture the temporal semantics, tuples in temporal databases do not

correspond to the states or the observations o f entities, but to the observations o f entity

states, like the fifth tuple in (e) referring to the third observation and the second state of

the entity Book# 00065. There are three observations for Book# 00065 in the shelf cbOOl

37

and two for it in the shelf ct>003. Thus, there are five observations of entity states for

Book# 00065. We term such tuples as temporal tuples to mean those snapshot tuples

embedded with two time dimensions: one in physical level and one in logical level and

viewed in these two different ways at the same time.

Embedding temporal dimension in this way, temporal databases are not only

concerned with the reality of enterprises' history, or the reality of the database

transactions, but both of them. Retroactive and proactive changes can also be captured

now. For instance, the event from time of the fourth tuple in Figure 3.9 (b), Book#

00065 in shelf cbOOl, is 26th June, 1988, while the recording time is 25th June.

Therefore, the proactive change is presented; the event from time of the entity state,

Book# 00023 in the shelf cbOOl, is 10th April, 1988, but the state was recorded two

days later, i.e., 12th April, 1988. Retroactive change is captured in this way.

Meanwhile, the correction activity of Book# 00012 is captured in the database.

The observation of the entity state of Book# 00012 being valid since 10th April, 1988 has

become unavailable in the database since 18th October, 1988. A new tuple with the same

keys is added to the relation to present a new valid interval of Book# 00012. However,

the entity state, Book# 00012 is stored in the shelf cb002, is still valid in the new

observation. Therefore, the event to time still has an infinite value. The correction

activities of events in the database are fully recorded. We can not only retrieve the history

of a particular tuple as is best known, but also can retrieve it as was known at some other

moment.

3 .4 .2 Embedding a temporal relation, vers ion2

Another approach introduced in [Snodgrass 19871 to embed the temporal

dimension in a snapshot relation is to append four time attributes, two each denoting

intervals of event and recording time. The BOOK-LOCATION temporal relation is

illustrated in Figure 3.10.

38

Book# Isbn Shelf
Event time Recording time

from to Start end
00023 0-999-99999-0 cbOOl 10/4/88 OO 12/4/88 OO

00012 0-12345-123-x cb002 10/4/88 oo 12/4/88 18/10/88
00012 0-12345-123-x cb002 20/5/88 oo 18/10/88 oo

00030 0-332-42233-1 cb004 10/4/88 oo 12/4/88 1/10/88
00030 0-332-42233-1 cb004 10/4/88 1/10/88 1/10/88 oo

00065 0-999-99999-0 cbOOl 26/6/88 oo 25/6/88 1/10/88
00065 0-999-99999-0 cbOOl 26/6/88 15/9/88 1/10/88 oo

00065 0-999-99999-0 cb003 15/9/88 oo 1/10/88 oo

00080 0-5656-5566-2 cb003 1/10/88 oo 1/10/88 oo

Figure 3.10 A BOOK-LOCATION Relation (temporal relation version 2)

In the version 2, the semantics of entity, entity state, observation of an entity and

observation of an entity state are not as visual as in the version 1. Some tuples only

present the observations of the related entities individually, like the second and the third

tuples. They are different observations, but present the same state of Book# 00012; some

tuples not only present the observations of the relative entities but also those entity states,

like the tuples of book# 00065; while some tuples present not only both observations and

states of entities but the entities themselves, for instance, the first and the last tuples.

However, it is clear that each tuple still presents one observation of an entity state of the

related entity.

Looking at the tuples of Book# 00065, the sixth and the seventh tuples present

the first state of the entity Book# 00065, and the eighth tuple presents the second state;

while in the system view, the sixth tuple presents the first observation of this entity, but

the seventh and the eighth tuples represent the second one. Thus, some comments can be

made that:

• In the same observation, the tuples relating to an entity have the same recording

start time and at most have one infinite event to time',

39

• In the same state, the values of the same user-defined attributes are the same and

only one infinite recording end time exists for this entity state.

In such an approach, tuples are assumed to be coalesced in that tuples with

identical values for the explicit attributes neither overlap nor are adjacent in time.

Specially, the tuples of an entity should be continuous in recording time, the system time.

Examples: a sequence of examples is treated here to explain the concepts of the

temporal database model (version 2) and how the modification operations can be carried

out on such an model. The discussion continues from the temporal relation in Figure 3.10

and focuses on the evolution in the entity of Book# 00030. Thus, a relation drawn from

Figure 3.10 is

Book# Isbn Shelf

Event time Recording time

from to Start end

00030

00030

0-332-42233-1

0-332-42233-1

cb004

cb004

10/4/88

10/4/88

oo

1/10/88

12/4/88

1/10/88

1/10/88
OO

1) If on the 18th October, 1988, Book# 00030 was found actually being

unavailable on 10th September, then the relation is modified to

Book# Isbn Shelf

Event time Recording time

from to Start end

00030

00030

00030

0-332-42233-1

0-332-42233-1

0-332-42233-1

cb004
cb004

cb004

10/4/88

10/4/88

10/4/88

OO

1/10/88

10/9/88

12/4/88

1/10/88

18/10/88

1/10/88

18/10/88
OO

2) Assume that Book# 00030 was found again on 25th October and put back into

the shelf and database at the same date. A new tuple should be appended to the database

to state the new entity state of Book# 00030 in this case, because the early state is still

available in the database. Thus, the third tuple keeps an infinite value for the recording

end time.

40

Book# Isbn Shelf
Event time Recording time

from to Start end
00030
00030
00030

00030

0-332-42233-1
0-332-42233-1
0-332-42233-1
0-332-42233-1

cb004

eb()04
cb004

cb004

10/4/88
10/4/88
10/4/88
25/10/88

OO

1/10/88
10/9/88

oo

12/4/88
1/10/88
18/10/88

25/10/88

1/10/88

18/10/88
OO

oo

Now we have two infinite recording end times for the same entity. However, two

different states of this entity have been explained. Retrieving the information about the

Book# ()()()3() as best known, two states can be obtained, one for the early life of that

book, and one for the later life.

3) On 12th November, we discovered that Book# 00030 was really lost on 15th

September. We make a correction to the third tuple, and the relation will look like

Book# Isbn Shelf
Event time Recording time

from to Start end

00030

00030

00030
00030

00030

0-332-42233-1
0-332-42233-1

0-332-42233-1

0-332-42233-1
0-332-42233-1

cb()04

cb()04
cb004
cb()04
cb()04

10/4/88
10/4/88
10/4/88
10/4/88
25/10/88

OO

1/10/88

10/9/88
15/9/88

oo

12/4/88
1/10/88

18/10/88
12/11/88
25/10/88

1/10/88

18/10/88
12/11/88

OO

oo

4) Suppose Book# 00030 was really found on 20th October, and the fact was

discovered on 15th November, then, the relation is modified into

Book# Isbn Shelf

Event time Recording time

from to Start end

00030 0-332-42233-1 cb004 10/4/88 oo 12/4/88 1/10/88

00030 0-332-42233-1 cb004 10/4/88 1/10/88 1/10/88 18/10/88

00030 0-332-42233-1 cb004 10/4/88 10/9/88 18/10/88 12/11/88

00030 0-332-42233-1 cb004 10/4/88 15/9/88 12/11/88 OO

00030 0-332-42233-1 cb()04 25/10/88 OO 25/10/88 15/11/88

00030 0-332-42233-1 cb()04 20/10/88 oo 15/11/88 oo

41

5) Finally, we discovered on 20th November that Book# 00030 was never lost,

then we must make a modification to the relation as follows

Book# Isbn Shelf
Event time Recording time

from to Start end
00030 0-332-42233-1 cb(X)4 10/4/88 oo 12/4/88 1/10/88
00030 0-332-42233-1 cb()04 10/4/88 1/10/88 1/10/88 18/10/88
00030 0-332-42233-1 cb()04 10/4/88 10/9/88 18/10/88 12/11/88
00030 0-332-42233-1 cb()04 10/4/88 15/9/88 12/11/88 20/11/88
00030 0-332-42233-1 cb()04 25/10/88 oo 25/10/88 15/11/88
00030 0-332-42233-1 cb()04 20/10/88 oo 15/11/88 20/11/88

00030 0-332-42233-1 cb()04 10/4/88 oo 20/11/88 oo

There is only one entity state in 5), although there were two entity states in 4)!

This is because the relation only represents one state during the lifespan of the entity

Book#(X)030 finally. However, there are seven observations for this entity.

The evolution history of the book 00030 was fully captured in this series of

examples. The examples also give out all possible values for the time attributes. We will

discuss the domain of time attributes in next section.

3.4.3 The domain for time attributes

There are two time attributes, each containing two time values, in the temporal

database model of version 2. They are

event from time: denoting the beginning of an entity state in one observation;

event to time: denoting the end of an entity state in one observation;

recording start time: the beginning of an observation of an entity state in the

database; and

recording end time: the end of an observation of an entity state in the database.

The beginning of the times, both event time and recording time, always has a

finite value, because temporal databases actually are still concerned with historical (past

or present) data. Historical data have finite values for their beginning of time intervals. (If

42

future data w ere to be con sid ered , the d om ain for the b eg in n in g o f tim e attributes should

in c lu d e an in fin ite (or u n k n ow n) v a lu e to id en tify an o b ject b e in g not a v a ila b le at the

m om en t till som etim e in the future.) Both even t to tim e and recording end tim e can have a

fin ite va lu e or an in fin ite value.

A n y reason ab le tim e v a lu e can be represen ted as a f in ite in teger v a lu e . A fin ite

tim e v a lu e (f) can n ot be ch an ged at all after b ein g recorded in to the d atabase. H o w ev er ,

an in fin ite t im e v a lu e w ill tend to be ch a n g ed . O n ly c o n s id er in g h isto r ica l data, four

p o ssib le co m b in a tio n s o f tim e va lu es can be obtain as sh ow n in F igure 3 .11 .

from to start end

1) f r oo fs OO

2) f r oo fs f c

3) t> f's OO

4) fr fs f c

Figure 3.11 The Combinations of Time Values

1) A n en tity has been valid in the real w orld s in ce the tim e fj-, and has ex isted in

the database s in ce the tim e f s .

2) A n entity w as thought currently valid by the sy stem during the interval fs to fc .

That is, the observation for a current valid en tity state w as o n ly valid from fs to fc .

3) A n en tity has ch an ged its state in the real w orld , but the ob serv a tio n for this

state is still valid in the database.

4) A n en tity has ch an ged its state in the real w orld and the re la tive ob servation is

con sid ered availab le in the database on ly until the tim e fc .

T h e v a lu es o f ev en t from tim e and record ing start tim e d en o te the retroactive or

p ro a c tiv e c h a n g e o f an ev en t in a d a tab ase, w h ile the v a lu e s o f e v e n t to tim e and

record ing end tim e d en ote w hether an entity state or an ob servation is still ava ilab le in the

real w orld or in the database. For exam p le , if

43

ff = fs , then the entity state w as recorded w hen it started;

f f > fs , then the entity state w as proactively recorded into the database;

ff < f s , then the entity state w as retroactively recorded in the database;

f t = oo, the state is still active;

fc = oo, the observation is still available;

ft = finite integer, the state has been changed;

fc = finite integer, the observation has been superseded.

Therefore w e can fully capture the w h o le history o f retroactive/proactive ch an ges

into temporal databases, and retrieve the temporal information o f an object.

3.4 .4 Entity, entity state, observation of entity, observation of

entity state and tuples

A representation o f a distinguishable ob jec t in the real w orld is w id e ly termed as

an entity in databases; w hile the term tuple in a database corresponds approxim ately to the

notion o f a f la t record instance. That is, tuple is a physical con cep t and entity is a log ica l

o n e .

A n entity can h ave m a n y states a lon g the e v e n t t im e d im e n s io n and can be

o b served m any t im es a long the recording time d im ension . A lo n g both time d im e n s io n s at

the sam e time, w e v ie w an entity through the observations o f its entity states.

In the snapshot database, no time d im ension exists . O n ly on e instance o f an entity

is captured. A tuple can refer to an observation o f this entity, a lso to a state o f this entity,

and therefore to the entity it se l f as w ell . An update to the snapshot database w ill cau se a

ch an ge to the entity state and an observation o f that entity at the sam e time.

In the historical database, a tuple refers to an entity state becau se the database m ay

present m a n y states for on e entity. W h ile in the rollback database, a tuple refers to an

observation o f the entity to capture different observations o f the entity along the recording

t im e d im e n s io n . O f cou rse , updates cause ch a n g es to entity states in historical databases

and to observations o f entities in rollback databases.

44

In the tem poral databases, an entity is v ie w e d in both t im e d im e n s io n s . T o fu lly

present the tem poral activ ity o f the entity, a tuple should refer to an ob servation o f o n e

entity state o f the entity. H ow ev e r , a tuple in any type o f database a lw a y s represents one

s in g le p h ysica l record.

T o su m up the d iscu ss ion , a s im p le d iagram sh o w n in F igure 3 .1 2 presents the

re lationships betw een entity, entity state, observation o f entity, observation o f entity state

and tuple in four d ifferent databases, t d en o te s a s in g le tuple, T a set o f tup les , T s a

subset o f tuples con cern ed with an entity state, and T o a subset o f tuples con cern ed with

an observation o f an entity; E m ean s entity, Es m ean s entity state, Eo m ean s observation

o f entity, and E os m ean s observation o f entity state. X d en otes an im p oss ib le expression .

snapshot rollback historical temporal

E t T T T

Es t X t T s

Eo t t X T o

Eos t X X t

Figure 3.12 The Relationships between Entity, Entity State,

Observation of Entity, Observation of Entity State and Tuples

3.4.5 Merging temporal tuples

In order to reduce the amount o f space required for storing temporal information it

is p oss ib le to con sid er m erging tuples. W e will approach this by m ean s o f an exam p le .

A fter the transaction on 1st O ctob er , B o o k # 0 0 0 6 5 has three tu p les in the

database, as sh o w n b e lo w ,

B o o k # Isbn S h e lf

Event tim e Recording time

from to Start end

0 0 0 6 5

0 0 0 6 5

0 0 0 6 5

0 - 9 9 9 - 9 9 9 9 9 - 0

0 - 9 9 9 - 9 9 9 9 9 - 0

0 - 9 9 9 - 9 9 9 9 9 - 0

cbOOl

cbOOl

cb()03

26 /6 /8 8

26 /6 /88

15/9/88

oo

15/9 /88

OO

2 5 /6 /8 8

1/10/88

1/10 /88

1/10/88

OO

oo

45

T h e first and the second tuples present the sam e first entity state, B o o k # (XX)65 in

S h e l f cbOOl. T h e s e tw o tuples can be com b in ed together without ch an ging any sem antics

for them by the fo l lo w in g rule:

i f ordinary t im e attributes o f tuples , w h ich are related to the sa m e entity , have

va lu es in the form o f F igure 3.13

from to start end

a oo b c

a d c oo

d oo c oo

Figure 3.13 Time Attributes of Tuples to be Merged

(T h is m e a n s that in the first state, the first tuple is f o l lo w e d co n t in u o u s ly by

another tuple w hich is obtained in the sam e transaction o f recording the next state for this

even t .)

then the intervals o f first tw o tuples can be m erged together to p roduce Figure

3 .14 :

from to start end

a d b OO

d oo c oo

Figure 3.14 Merged Tuples' Time Attributes

In the ex a m p le o f B o o k # 0 0 0 6 5 , the fo l lo w in g result is obta ined w hen the tuples

are m erged .

Event time Record ing time

B o o k # Isbn S h e lf from to Start end

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 26 /6 /88 15/9/88 2 5 /6 /8 8 oo

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cb 0 0 3 15/9/88 oo 1/10 /88 oo

46

W e can k n o w that, from the table ab ove , the b o o k 0 0 0 6 5 has a period l iv in g in

S h e l f cbOOl and s in ce 15th Septem ber, it has b egun a n e w lifespan in S h e l f c b 0 0 3 . The

fact that the term ination o f the early l ife o f B o o k # 0 0 0 6 5 w a s into d atabase on 1st

O c to b e r can be retrieved by the recording start t im e o f the last tuple. U n d er such an

approach, m ore storage can be saved.

H o w e v e r , m er g in g can n ot be applied e v e ry w h er e . For in stance , the tem poral

tuples for B o o k # 0 0 0 3 0 in the original exam p le o f Figure 3 .1 0 are

B o o k # Is bn S h e lf

Event time R ecording time

from to Start end

0 0 0 3 0

0 0 0 3 0

0 - 3 3 2 -4 2 2 3 3 - 1

0 -3 3 2 -4 2 2 3 3 -1

cb()04

c b 0 0 4

10/4/88

10/4/88

oo

1 /10/88

12/4/88

1 /10/88

1/10/88

OO

If the tw o tuples are m erged, the result w ill be

B o o k # Isbn S h e lf

Event time Recording time

from to Start end

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 cb()04 10/4/88 1/10 /88 12/4 /88 oo

W e have lost the inform ation about w hen the term ination w a s recorded into the

datab ase totally , b eca u se there is no tuple fo l lo w in g for the later life o f B o o k # 0 0 0 3 0 .

S u p p o s e another transaction sp e c i fy in g the later l ife o f B o o k # 0 0 0 3 0 is m a d e again:

B o o k # 0 0 0 3 0 w as found in the sam e date, 1st October, but the fact w a s recorded on 25th

October, then the lifespan o f B o o k # 0 0 0 3 0 w as recorded as

B o o k # Isbn S h e lf

Event time R ecording time

from to Start end

0 0 0 3 0

0 0 0 3 0

0 0 0 3 0

0 - 3 3 2 -4 2 2 3 3 - 1

0 -3 3 2 -4 2 2 3 3 -1

0 -3 3 2 -4 2 2 3 3 -1

cb()04

c b 0 0 4

cb()04

10/4/88

10/4/88

1/10/88

oo

1/10/88

oo

12/4/88

1/10/88

2 5 /1 0 /8 8

1/10/88

OO

oo

4 7

W e still can n ot m erge the early tw o tup les , b e c a u se the last tw o tu p les are

different observations o f the entity.

Therefore, the condition for m erging tuples is tw o tuples w hich are relative to the

sa m e entity state are f o l lo w e d by another tuple w h ich is the sam e o b servation as the

secon d tuple (i.e ., the third tuple has a recording start time: c), and presents the n ew state

o f the sam e entity (i.e., the third tuple m ust be c o a le sc e d with the secon d tuple in event

t im e and have an event from time: d).

3.5 Some Temporal Queries

B a se d on the four k inds o f d istinct relations g iv e n a b o v e , w e represent so m e

q uer ie s in T Q u e l to h igh light the d if fer en ce s and s im ilar it ies a m o n g the four types o f

re lations, snapshot, rollback, historical, and tem poral. W e u se the qualifiers: snapshot,

rollback, historical and temporal to distinguish different relations.

(1) W here is the b oo k # 0(X)65?

T o answ er this question, the query for the snapshot relation should be as

range of b is B O O K -L O C A T IO N .sn a p sh o t

retrieve (b .S h e lf)

where b .B o o k # = "00065"

the query for the rollback relation should be

range of b is B O O K -L O C A T IO N .r o l lb a c k

retrieve (b .S h e lf)

where b .B o o k # = "00065"

as of 1 "now"

and the historical query is

range of b is B O O K -L O C A T IO N .h is to r ic a l

retrieve (b .S h e lf)

where b .B o o k # = "00065"

when b overlap "now"

48

w h ile the query for the temporal relation (temporal query) is

range of b is B O O K -L O C A T IO N .te m p o r a l

retrieve (b .S h e lf)

where b .B o o k # = "00065"

when b overlap "now"

as of "now",

w h ich m anipulates both kinds o f tim e in a query.

Four queries have the sam e result, S h e l f cbO()3, but in rather d ifferent w ays . For

the snapshot relation, the query searches the w h o le relation for the derived tuples; for the

rol lback relation, the current snapshot state is used; for the historical relation, the tuples

currently ac t ive are searched; and for the temporal relation, the tuples currently act ive in

the current historical state are searched.

(2) W h ere w as the b o o k # (X)065 as know n by the sys tem on 20th October?

T h is is a query to ex e cu te a rollback operation. It cannot be applied to either the

sn apsh ot relation or the historical relation, b ecau se they d o not support the sy stem tim e

attribute, recording time. The query for the rollback relation w ill be

range of b is B O O K -L O C A T IO N .r o l lb a c k

retrieve (b .S h e lf)

where b .B o o k # = "00065"

as of "20/10/88".

Thus, the result w ill be S h e lf cb()03.

H ow ev e r , for the temporal relation, the query is

range of b is B O O K -L O C A T IO N .te m p o r a l

retrieve (b .S h e l f)

where b .B o o k # = "00065"

when b overlap b

as of "20/10/88"

4 9

T h e result is S h e l f cb(X)3 or cbOOl! The derived relation is a historical relation as

sh o w n in Figure 3 .15.

S h e lf

Even time

from to

cbOOl

cb()03

26 /6 /88

15/9/88

15/9 /88

OO

Figure 3.15 A Derived Historical Relation — BOOK65

A s s u m e that the query w a s carried out on 25th N o v em b e r , 1988 (one recording

tim e). W e must note that such a relation is on ly valid for the best know n by the sy stem on

20th O ctober , 1988 (a secon d recording time); and tw o entity states w ere recorded into

the sy s te m on 1st O ctober , 1988 (a third recording t im e). There is no m e c h a n ism to

record such system times. Thus the derived v ie w cannot be taken as a temporal relation to

carry further tem poral q u er ie s1. M ore sem antics study is need ed to present a m ech an ism

to record them. W e w ill d iscu ss a little bit about it in Chapter 6, C o n c lu s io n and Further

Research.

(3) W here w as the b o o k # 0(X)65 on 20th October?

For this query , w e can n ot get any result from either the snapshot or rollback

relations, b ecau se neither o f them support the event t im e at all. H o w ev e r , w e can have

queries as fo l lo w s to apply to the historical relation and temporal relation.

For the historical relation, the query is

range of b is BOOK-LOCATION.historical

retrieve (b .S h e lf)

where b .B o o k # = "00065"

when b overlap "20/10 /88"

1 In [Snodgrass & Ahn 19851, the authors suited that the result is a temporal relation, and in [Snodgrass
1987], a semantics was supported in retrieve tuple calculus sUitcment to derive a temporal relation.
However, the semantics in the two articles arc different. The former presented a mechanism to record the
third recording time only, while the latter supported a semantics to record the first recording time. None
supports the second one or all of them. To support three kinds of recording time together, the schema
evolution should be discussed.

50

Th e result should be S h e lf cb()()3 for the historical query.

For the temporal query

range of b is BOOK-LOCATION.tem poral

retrieve (b .S h e lf)

where b .B o o k # = "00065"

when b overlap "20/10/88"

as of "n ow "

the result w ill be S h e lf cbO()3 too.

(4) W h ere w as the b o o k # 0 0 0 6 5 on 20th S ep tem b er as w as k n ow n by the sy stem

on 20th October?

O n ly a tem poral relation can an sw er such a query , b e c a u se it supports both

rol lback operation and historical query; the rollback operation on a tem poral relation

se le c ts a particular historical state, on w hich a historical query m a y be perform ed. The

query is

range of b is BOOK-LOCATION.tem poral

retrieve (b .S h e lf)

where b .B o o k # = "00065"

when b overlap "20/9 /88"

as of "20/10/88"

T h e result is S h e l f cb()()3. If w e issue the query as

range of b is BOOK-LOCATION.tem poral

retrieve (b .S h e lf)

where b .B o o k # = "00065"

when b overlap "20/9/88"

as of "20/9/88"

that is, to retrieve the inform ation about the location o f B o o k # 0(X)65 on 20th

S e p te m b e r as w a s k n o w n by the sy s tem at the sam e date, the result, S h e l f cbOOl, is

different from the former.

51

There have been som e m od e ls around this approach. T h e w e ll -k n o w n one is T D B

presented by S nod grass et al. [Snodgrass & A hn 1985]. Its query lan guage is a temporal

la n g u a g e w h ich supports both log ica l t im e and recording time. T h e m o d e l a lso supports

all four k ind s o f databases. T R M (T im e R ela t ion a l M o d e l) is another e x a m p le o f a

tem poral database [B en -Z v i 1982]. H ow ever , the query language def ined for T R M is not

a tem poral query lan guage , b ecau se it can derive o n ly snapshot relations. In the m o d e l

A IM , L u m et al. propose tw o time concepts , logical t ime and physical t ime, but the m odel

is l im ited to o n ly the d es ig n and im p lem en ta t ion a sp ect o f the p h y s ic a l t im e. M H M

(M u l t iH o m o g e n e o u s M o d e l) |G ad ia & Y e u n g 1988] p ro p o ses a g en er a l iz ed relation

m o d e l for a tem poral database w h ich a l lo w s tim e s tam p in g w ith respect to a B o o lea n

algebra o f m u lt id im en sion a l t im e stamps. A s an application , a tw o d im e n s io n a l m od e l

w h ich a l lo w s objects with real world and transaction oriented tim e stamps can be used to

query the past states o f databases. It can also be used to g ive a precise c lassif ication o f the

errors and updates in a database, and is a p rom is in g approach for q uery in g these errors

and updates.

52

Chapter 4 Some Proposed Temporal Databases and

Their Languages

T em p ora l databases h ave been d e v e lo p e d u s in g m an y database m o d e ls . A list o f

o n g o in g projects and b ib l iograp hy can be found in [S n od grass & M c K e n z ie 1986] and

[S n o d g r a ss 1986J. In th ese tw o papers, at least 25 research g rou p s s tu d y in g t im e in

d a ta b a ses w er e m en tio n ed . T h e research act iv ity m a y be c la s s i f ie d lo o s e ly into three

em p hases: the form ulation o f a sem antics o f t im e at the conceptual leve l , the d eve lop m en t

o f a m o d e l for T D B M S , an a logous to the relational m o d e l for snapshot databases, and the

d esign o f temporal query languages.

T h e m o d e l o f T D B p rop osed by S n od grass et al. w a s p resen ted in a series o f

papers [S n o d g r a ss 1 9 8 4 , S n od grass & A hn 1985 , S n o d g ra ss & A hn 1986 , M c k e n z ie

19 8 6 , S n o d g ra ss 1986 , M c k e n z ie & S n od grass 1 9 8 7 A , M c k e n z ie & S n od grass 1 9 8 7 B ,

M c k e n z ie & S n od grass 1 987C , S n od grass & G o m e z 1986], A tem poral query lan guage

T Q u e l , a superset o f Q u el , w as d ef ined and form alized in the papers [S n od grass 1984 ,

S n od grass 1987], A prototype o f the tem poral database m an a g e m e n t sy stem w as built by

e x t e n d in g Ingres to support the tem poral q uery la n g u a g e T Q u e l [A h n 1986 , A hn &

S n o d g ra ss 1986] ,

In this chapter , w e shall ro u g h ly in trodu ce the m o d e l o f T D B and n ote its

d if fer en ce s with the p roposed general tem poral databases m o d e ls in Chapter 3, although

w e u se the sa m e c la ss if ic a t io n for the tem poral d atabases. W e pay sp ec ia l attention to

T D B 's query la n g u a g e - T Q u e l and w ill in troduce three tem poral c la u se s and temporal

predicate operators and constructors which play important roles in TQ uel.

T h e in troductions in S ect ion 4.1 and S ect ion 4 .2 w ill be taken as a background

m aterial for the d isc u ss io n in Chapter 5. In S ec t io n 4 .3 , tw o o ther tem poral d atabase

m o d e ls w i l l be in trodu ced as w e ll . T h e d i f f e r e n c e s a m o n g three la n g u a g e s w ill be

53

co m p a re d in S ec t io n 4 .4 to em p h a s ize the need o f taking T D B (T Q u e l) as an underly ing

m o d e l for the d iscu ss ion about temporal databases.

4.1 The model of TDB

There are at least tw o p ossib le approaches to the d eve lop m en t o f a relational m odel

for T D B M S w h ic h have been su ggested . O n e is to ex tend the sem an tics o f the relational

m o d e l to incorporate t im e directly. The other is to base a T D B M S on the snapshot m odel,

with t im e appearing as additional attributes. T h e secon d approach w as taken in the papers

a b o v e in m o d e l l in g T D B s: utiliz ing the snapshot m odel. The snapshot relational database

m o d e l is u sed as the u n d er ly in g m o d e l o f T D B by e m b e d d in g the fo u r -d im en s io n a l

tem poral relation in a tw o -d im e n s io n a l snapshot relation. T h is approach has a lso been

in troduced in Chapter 3 to exp ress the basic co n ce p ts o f four kinds o f tem poral databases.

T h e d i f f e r e n c e b e tw e e n them is that the T D B in the U n iv e r s i ty o f North C aro lina is

c o m p o s e d o f a s e q u e n c e o f o b se r v a t io n s in d e x e d by transaction time, w ith each

o b servation co n s is t in g o f a sequence o f snapshot slices in d exed by valid time, w h ile the

m o d e l in S ec t io n 3 .4 is c o m p o s e d o f a se q u en ce o f o b serva tion s in d e x ed by recording

time, w ith each observation b eing an interval relation in dexed by logical time (or event

time).

4.2 The Query Language of TDB - TQuel

4.2.1. The basic model - Quel

T h e la n g u a g e o f T D B , T Q u e l , is d e s ig n e d to be a m in im a l e x t e n s io n , both

syn tac t ica l ly and se m a n tica l ly , o f Q uel. A ll legal Q u el statem ents are a lso valid T Q uel

statem ents, and such statements have identical constructs def ined in Q u el and T Q uel when

the tim e dom ain is f ixed, and the additional constructs defined in TQ uel to handle time have

direct a n a lo g u e s in Q uel. T h e three additional tem poral con stru cts (valid, when and as

54

of c la u se s) d ef ined in T Q uel w ere sh ow n to be direct sem antic an a logu es o f Quel's where

c lau se and target list.

4 .2 .1 .1 Q u el retrieve statement

Q u el is the query language o f a relational data base and graphics sy stem , IN G R E S

(IN terac t ive G raph ics and R etrieval S y s te m) [H eld et al. 19 7 5] . It is a c a lc u lu s based

lan guage . Each query o f Q u el con ta ins on e or m ore R a n g e -S ta te m e n ts and on e or m ore

R etr ieve-S ta tem en ts . The retrieve statem ent con s is ts o f tw o basic com p on en ts : the target

l ist, s p e c i fy in g h o w the attributes o f the relation b e in g d erived are co m p u ted from the

attr ibutes o f the u n d er ly in g re la t ion s , and a w h ere c la u s e , s p e c i f y in g w h ic h tup les

participate in the derivation. The form o f a query in Quel can be outlined as

Query

= {R ange-Statem ent} {Retrieve-Statem ent}

Range-Statem ent

= range of {V ariab le} is Relation

Retrieve-Statement

= retrieve [into R esu lt-n am e] (Target-L ist)

where Qualif ication

Target-List

= { R esu lt-D om ain = Function}

Qualification

= expression o f attribute-references and literals through com parison

operators (e .g ., =, >, <), or B o o lea n operators (A N D , O R , and N O T).

Note: {} d en otes "one or more", and [] den otes "zero or one".

T h e goa l o f a query is to create a n ew relation for each R etr ieve-S ta tem en t. The

relation so created is named by the "Result-Name" clause or by default a temporary relation

w hich is d isp layed (R e su lt-N a m e is optional) , and the d o m a in s in that relation are named

by the "Result-Domain" nam es given in the Target-List. T o create the desired relation, first

55

co n s id er the product o f the ranges o f all variables w h ich appear in the Target-L ist and the

Q u alif ica tion o f the Retrieve-Statem ent. Each term in the Target-List is a function and the

Q u alif ica t ion is a truth function , i .e., a function with va lu es true or fa lse , on the product

space . T h e desired relation is created by eva lu a tin g the T arget-L ist on the subset o f the

product space for w hich the Qualification is true, and elim inating duplicate tuples.

E x a m p le 4 .1 .1

Relation: B O O K -L O A N (B ook # . Isbn, N am e, Address, D ate -due-back)

Query: F ind the b o o k num bers o f all b ook s w h ich have been borrow ed by Peter

and should be returned in f ive days,

range of b is B O O K - L O A N

retrieve into B ook -R etu rn (B o o k # = b .B o o k #)

where b .N a m e = "Peter"

and b .D ate-due-back < = "5/12/88"

Note: A ssu m e the transaction took place on 1/12/88.

4 .2 .1 .2 T uple relational ca lcu lus statements for Q uel

Let D \ ,D 2 , D n be nonem p ty sets, not necessar ily distinct. A subset R o f the

product D \ xD 2 x.,..D n is ca l led a relation, and D j are ca lled the d o m a in s o f R. Let u be

an e le m e n t o f R, then u is an « - tu p le (u \ , u 2 , ■■■, u n) w here u j b e lo n g s to D\ . Then ,

tuple relational calcu lus statements are o f the form

{f W | vf(t)}

w here the variable t d en otes a tuple o f arity /, and 1// (t) is a first-order predicate ca lcu lus

e x p r e s s io n c o n ta in in g o n ly the free tuple variable t. Th en 1// (t) d e f in e s the tuple u

con ta ined in the relation R sp ec if ied by the Q uel statement. T h e tuple ca lcu lu s statement

for the skeletal Quel retrieve statement

range of t I is R y

range of tk is R k

56

retrieve (Hj.Dj,, . . . ,tir Djr)

where i//

is

{U (r,| (B t ,) . . . (3 . . . A R k(tk)

AU [1] = f/r [/,] A . . . A U [r] = ti^Jr]

A t /) }

w h ic h states that each t ; is in R[, that each result tuple u is c o m p o s e d o f r particular

c o m p o n e n ts , that the m th attribute o f u is equal to the j mih attribute (hav in g an attribute

n am e o f Djm) o f the tuple variable tjm, and that the con d ition I//' (t// m od if ied for attribute

n a m e s and Q u el syntax co n ven t ion s) holds for u. T h e first line corresponds to the relevant

range statements, the second to the target list, and the third to the where clause.

4.2.2 Temporal c lauses , predicate operators and

constructors in TQuel

B a sed on Q uel, T Q uel extend s Quel in time d im en s ion by adding three additional

tem pora l con stru cts , valid, when, and as of c lauses .

4 .2 .2 .1 Three temporal c lauses o f TQ uel statem ents1

Valid, when and as of c la u se s are three additional tem poral co n stru cts d ef in ed

in TQ uel. T h ey operate on tw o time attributes, valid time and transaction time.

1) The when c la u se

"The when c lau se is the tem poral an a logu e to Q uel's where c la u se ." !S n o d g ra ss

1987] A when p redicate sp e c if ie s the tem poral re lationship o f tup les participating in a

d erivation (i .e . , re tr ieves the valid tuples on im p lic it valid tim e attributes). T h is c lau se

c o n s is t s o f the k ey w o rd when f o l lo w e d by a temporal predicate on the tuple variable

1 TQuel statements arc presented in Appendix C, and the syntax of TQuel is stated in Appendix A.
Appendix B presents the defaults of the three temporal clauses.

57

representing the im plic it t ime attributes o f the associated relations. The syntax is similar to

pa th expressions, w h ich are regular exp ressions augm ented with parallel operators.

T ak in g the snapshot relation B O O K -L O A N in E xam p le 4.1.1 as a basic m od e l, w e

em b ed tw o t im e d im ensions , valid time and transaction time, into it and obtain a temporal

relation w h ich conta ins the data about w h o borrowed b ook s as sh ow n in Figure 4 .1 .

Date-due Valid 1I m e Trans. Tim e

B o o k # Isbn Name Address -back from to start stop

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 Peter Park A vn. 12/6/88 12/4/88 OO 12/4 /88 23/5/88

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 Peter Park A vn. 12/6 /88 12/4 /88 2 3 /5 /8 8 2 3 /5 /8 8 oo

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 T ony Kelvin St. 12 /12 /88 6 /1 0 /8 8 oo 6 /1 0 /8 8 oo

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x Peter Park Avn. 3 /1 2 /8 8 9 /9 /88 oo 10 /9 /88 oo

0 0 0 3 0 0 - 3 3 2 -4 2 2 3 3 - 1 R ob Kelvin St. 10 /11 /88 10/9 /88 oo 10/9/88 1/10/88

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 - 1 R ob K elvin St. 10 /11 /88 10/9/88 1/10/88 1/10 /88 oo

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 Peter Park Avn. 9 /1 2 /8 8 5 /10 /88 oo 6 /1 0 /8 8 oo

0 0 0 8 0 0 - 5 6 5 6 - 5 5 6 6 - 2 T ony K elv in St. 12 /12 /88 6 /1 0 /8 8 oo 6 /1 0 /8 8 7/11/88

0 0 0 8 0 0 - 5 6 5 6 - 5 5 6 6 - 2 T on v K elvin St. 12 /12 /88 6 /1 0 /8 8 4 /1 1 /8 8 7 /1 1 /8 8 oo

Figure 4.1 A Temporal Relation

A query lis ting the b ook s borrowed by Peter in N o v e m b e r 1988 from Figure 4.1 is

sh o w n as f o l lo w s , w hich e m p lo y s the when c lau se to sp ec ify an overlap re lationship o f

tuples. T h e result is B o o k # 0 0 0 1 2 and 0 0 0 6 5 .

E x a m p le 4.2 .1 range of b is B O O K - L O A N

retrieve (B o o k # = b .B o o k #)

where b .N a m e = "Peter"

when b overlap "11/88"

T h e query w as carried on the current historical relation by the default. The overlap

operator sp e c i f ie s that tuples' valid t im e intervals over lap the time w e are con cern ed with

(N o v e m b e r 1988) . It w ill be d ef in ed in S ect ion 4 .2 .2 .2 . A n oth er e x a m p le o f the when

c lause fo llow s:

58

E x a m p le 4 .2 .2 W hat b ooks w ere borrowed by Peter this year (1 9 8 8)?

range of b is BOOK-LOAN

retrieve into B o o k b y P e te r (B o o k # = b .B o o k # , Isbn = b .Isbn)

where b .N a m e = "Peter"

when "1/1/88" precede (begin of b)

and (end of b) precede "now"

precede is another tem poral p red icate operator, and begin of and end of are

tem pora l unary constructors. A ll o f them w il l be d isc u sse d in S ec t io n 4 .2 .2 .2 as w ell .

W h ile and is a log ica l operator as normal. T h e result o f this query is B o o k # 0 0 0 2 3 , 0 0 0 1 2

and 0 0 0 6 5 . A lth ou gh the b ook 0 0 0 2 3 has been returned by Peter (the b orrow ing activity

has b een terminated), it can a lso be p icked up by this query. It is im p o ss ib le for snapshot

datab ases to p ick up such a tuple. It m ust be very c lear that the query w a s carried out on

the current historical relation as well.

2) T h e valid c lau se

"The valid c lause serves the sam e purpose as the target list: sp e c i fy in g the va lue

o f an attribute in the derived relation"[Snodgrass 1987] and h o w the tim e during w hich the

derived tuples are valid is com puted . "If the derived relation is to be an even t relation, the

valid at variant s p e c if ie s the va lu e o f the s in g le t im e in the tem poral attribute." "The

variant valid from . . . to . . . is used w h en the d er iv ed relation is to be an interval

relation."] S n od grass 1987]

TQ uel supports historical queries by augm enting the retrieve statement with a valid

c la u se and a when predicate . T h e d if fer en ce b e tw e e n when and valid c la u se s is the

when c la u se retrieves the im plic it valid t im e attributes for a derivation , w h i le the valid

c lause states the n ew valid time in a derivation.

T h e f o l lo w in g q uery e m p lo y s a valid c la u se to s p e c i fy the n e w valid t im e o f

derived relation.

E x a m p le 4 .2 .3 M o d ify the B O O K -L O A N relation (Peter ren ew ed the b ook 0 0 0 1 2

on 1st D e c e m b e r 1988).

59

range of b is B O O K - L O A N

replace b (D ate-d ue-b ack = "1/1/89")

valid from begin of "12/88"

where b .B o o k # = "00012" and b .N a m e = "Peter"

T h e result is sh ow n in Figure 4.2.

Date-due V alid 14 m e Trans. T im e

B o o k # Isbn Name Address -back from to start stop

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 Peter Park A vn. 12/6 /88 12/4 /88 oo 12/4/88 23/5/88

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 Peter Park A vn. 12/6 /88 12/4/88 2 3 /5 /8 8 2 3 /5 /8 8 OO

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 T ony K elvin St. 12 /12 /88 6 /1 0 /8 8 oo 6 /1 0 /8 8 oo

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 - 1 R ob K elvin St. 10 /11 /88 10/9/88 oo 10/9/88 1/10/88

0 0 0 3 0 0 - 3 3 2 -4 2 2 3 3 - 1 R ob K elv in St. 10 /11 /88 10/9 /88 1/10/88 1/10/88 oo

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 Peter Park A vn. 9 /1 2 /8 8 5 /1 0 /8 8 oo 6 /1 0 /8 8 oo

0 0 0 8 0 0 - 5 6 5 6 - 5 5 6 6 - 2 Tony K elv in St. 12 /12 /88 6 /1 0 /8 8 oo 6 /1 0 /8 8 7/11/88

0 0 0 8 0 0 - 5 6 5 6 - 5 5 6 6 - 2 Tony K elvin St. 12 /12 /88 6 /1 0 /8 8 4 /1 1 /8 8 7 /1 1 /8 8 oo

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x Peter Park Avn. 3 /1 2 /8 8 9 /9 /88 OO 10/9 /88 1/12/88

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x Peter Park A vn. 3 /1 2 /8 8 9 /9 /88 1 /12/88 1 /12 /88 oo

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x Peter Park Avn. 1 /1 /89 1/12/88 OO 1 /12 /88 oo

Figure 4.2 A Derived Relation

Note: * marks the m odif ied tuples.

3) T h e as of c lau se

"The as of c lau se is sim ilar to the where and when c lau ses , in that it p rov id es an

additional constraint on the underlying tuples participating in the query."| Snodgrass 1987)

It sp e c i f ie s the relevant transaction tim e and supports the rollback operation. T h e rollback

operation on a temporal relation se lec ts a particular historical state, on w h ich a historical

query can be executed .

E x a m p le 4 .2 .4 W h o borrowed the book 0 0 0 3 0 as best k n ow n in S ep tem b er 1988?

range of b is B O O K - L O A N

retrieve (N a m e = b .N am e)

w'here b .B o o k # = "00030"

60

as of begin of "9/88" through end of ”9/88"

T h e result is Rob, although such a tuple has been terminated in the relation.

Valid and when c la u se s can be e m p lo y e d in T Q u e l m o d if ic a t io n sta tem ents ,

w h e re a s as of c la u se o n ly supports rollback retrieve. For m o d if ica t io n statem ents , the as

of c la u se is f ixed as the default as of "now", representing the m ost recent state.

T h e re lationships a m on g eight distinct retrieve queries and four kinds o f databases

can be p resen ted in F igu re 4 .3 to exp la in the fu n ct io n s o f three tem pora l con stru cts .

A ssu m e that the derived times are intervals.

D er ived Query

relations

Databases

with:

valid

with:

w hen

with:

as -o f

with:

valid

when

with:

valid

a s -o f

with:

w hen

a s -o f

with:

valid

when

a s-o f

with:

none

o f them

Snapshot X X X X X X X snap.

Rollback X X snap. X X X X snap.

Historical hist. hist. X hist. X X X snap.

Tem poral hist. hist. hist. hist. hist. hist. hist. hist.

Figure 4.3 Temporal Queries and Temporal Databases

T h e c o lu m n h e a d in g s s h o w w h ic h tem pora l c la u s e s (valid, when, or as of)

appear in the query. T h e queries w ithou t a v is ib le as of c la u se actually take a default

c la u se as of "now" (c.f. A p p en d ix C). T h e row labels state four d istinct datab ases w hich

are to be operated on. The sym bol x m eans an im p oss ib le operation.

If a T Q u e l s tatem ent d o e s not contain a valid, when and as of c la u se , then it

lo o k s identica l to the a n a logou s standard Q u el retrieve statement; thus it should h ave an

id en tica l se m a n tic s , and can be applied to any database. T h e d er iv ed relation can be

considered as a snapshot relation (except to temporal databases) as best know n now.

Q u e r ie s with valid or when c la u se s can n ot op erate on sn a p sh o t or ro llback

databases, but can be applied to historical databases and the derived relation is a historical

relation. S o , further historical relations can be derived again from it. Q u er ies on ly with as

61

of c la u s e ca n n o t be applied to snapshot or historica l datab ases , but can be applied to

rollback databases. T h e derived relation w ill be a snapshot relation as best k n ow n o f som e

m o m e n t in tim e. A n y kind o f retrieve queries applied to temporal databases w il l derive an

historical relation as a result which can on ly be further used to an sw er historical queries. It

c o u ld be p resen ted as a tem poral re lation, but to present record in g t im e for it, m ore

sem an tics d iscu ss ion are needed (c.f., Chapter 6 The C on clu sion) . H o w e v e r , i f the queries

state m o d if ica t io n operation, then the result w il l b e c o m e a tem poral relation accord in g to

the sem an tics for m odification queries (c.f., Chapter 5 or A p p en dix C)

4 .2 .2 .2 Tem poral predicate operators and temporal constructors

T h e three temporal c lau ses em p lo y four temporal constructors and three predicate

operators in tem poral e x p r e ss io n s to sp e c i fy the d er ived t im e attributes. T h e tem poral

ex p re ss io n s are E -exp ress ion s and I-expressions. W e w ill d iscu ss them in turn.

1) E -exp ress ion s and I-express ions

T Q uel supports both event time and interval time. E -exp ress ion s and I-express ions

are em p lo y ed to deal with these tw o times.

"An e -e x p re ss io n is s im p ly an ex p re ss io n con ta in in g tuple variables , tem poral

constants , and temporal constructors, with the constraint that the exp ress ion m ust result in

an ev e n t . E -e x p r e ss io n s are used in the valid and as of clau ses . S in c e the as of c la u se

sp e c if ie s rollback to a particular transaction time, the e -e x p r ess io n in an as of c lau se must

eva lu a te to a tem poral constant. An equ ivalent constraint is that an e -exp ress ion within an

as of c la u se m ust not contain a tuple variable."! S nodgrass 1987]

"An i-expression is an exp ress ion con ta in ing tuple variables , tem poral constants ,

and tem poral constructors that evaluates to an interval."!Snodgrass 1987] An i-express ion

can e m p lo y e -e x p r e s s io n s , and an e -e x p r e ss io n can a lso e m p lo y i-e x p r e s s io n s . In the

f o l lo w in g valid c lause , w e g iv e a s im ple exam p le o f e-e x p r ess io n s and i-exp ress ion s . 1 he

valid c la u se

valid at begin of (f l overlap a)

62

sp ec if ies that the time value returned should be the first instant w hen both tuples are

valid . In this c lause , f l overlap a is an i -exp ress ion w hich returns an interval time, w hile

begin of (f l overlap a) is an e -e x p r ess io n w h ich returns a t im e point. E -e x p r e s s io n s

m ust h ave begin of or end of constructors as top - leve l operators.

2) Tem poral constructors

"A temporal constructor is a unary or binary operator that takes o n e or tw o even ts

or in terva ls as argum ents and returns an even t or interval." "The unary prefix tem poral

con stru ctors are begin of and end of, both returning even ts . T h e binary in fix tem poral

constructors are overlap and extend, both returning in tervals ." !Snodgarss 1987]

A s s u m e the B e fo r e pred icate as: B e f o r e (a , (3) ::= a < (3, then the tem poral

con structors w ere d ef ined as fo l lo w s after d ef in in g a f e w auxiliary fu n ct ion s on integers

(First, L a s t) and tuple variables (event, interval) in |S n odgrass 1987]:

First (a , (3) = a (i f Before (a , (3)), or (3 otherw ise

Last (a, (3) = (3 (i f Before (a, (3)), or a otherw ise

event (t) = <tal, ta[>

interval (t) = <tfrim , tlg>

beginof (<a, (3>) = <a, a>

endof (<a , [3>)=<(3, (3>

overlap (<a, (3>,<y, 5>)-<Last (a, y), First ((3, 5)>

extend (<a, P>,<y, b>)=<First (a , y), Last (P, 8)>

3) Tem poral predicate operators

"A temporal predicate operator is a binary in fix operator that takes e v e n ts or

intervals as argum ents and returns a B oo lean value. The three temporal predicate operators

are precede, overlap, and equal."[S nod grass 1987]

T h e temporal predicate operators are replaced by the an a logous predicate Before on

ordered pairs o f integers as fo llow s:

precede (<a, P >,<y, 5 >) = Before (P, y)

overlap (<a, P >,<y, 8 >) = Before (a, 8) aBefore (y, P)

63

equal (< a , (3 >,<y, 8 >) = Before (a , y)ABefore (y, a)

ABefore ((3, 5)a Before (5, (3)

T h e lo g ic a l operators (and, or, not) are a l lo w e d as w e ll in tem poral ex p ress io n s

ex c ep t the e-express ion and i-expression.

4) Temporal predicate

A tem pora l p red ica te is an exp ress ion con ta in ing log ica l operators (and, or, not)

op era t in g on ex p re ss io n s con ta in ing temporal predicate operators (precede, overlap, or

equal), operating on e -e x p r ess io n s and i-exp ress ion s . T em p ora l predicates are used on ly

in when clauses. T h e temporal predicate in the when clause d eterm ines w hether the tuples

m a y partic ipate in the derivation by e x a m in in g their re la t ive order. T h is p red icate is

gen era ted in three steps: First, the tuple var iab les and the tem pora l con stru ctors are

rep laced by the fu n ct io n s d ef in ed in the p rev ious su b sect ion . S e c o n d , the and, or, and

not operators are rep laced by the lo g ic a l pred icates . F in a l ly , the tem pora l pred icate

operators are replaced by analogous predicates on ordered pairs o f integers.

A s an exam p le , applying the First step to the temporal predicate

(begin of (a overlap b) precede (end of (b extend c))) or (c precede a)

w here , a ::= < a , (3>, b <y, 5>, and c <0, X>

results in

(beginof(overlap(<a, (3>, <y, 8>)) precede(extend(<y, 5>, <0, X>)))

or (<0, X> precede <a, (3>)

—» (beginof (<L ast (a, y), First ((3, 5)>) precede

(endof (<First (y, 0), Last (6, X) >))) or (<0, X> precede <a, (3>)

(<Last (a, y), Last (a, y)> precede (<Last (5, X), Last (8, X) >))

or (<0, X> precede <a, (3>).

The second step results in

(<L ast (a, y), Last (a, y)> precede (<L ast (8, X), Last (8, >i)>))

v (<0, X> precede <a, (3>),

and third step results in

6 4

Before (Last (a , y), Last (5, X)) v Before (X, a).

4.3 Two Other Temporal Models

T O D M [Ariav 1986] and L e g o l [Jones & M ason 1980] are tw o other tem poral

relational database m an agem ent sy stem s similar to T D B . T h ey share the sam e p h ilo sop h y

on m odelling: em b ed din g the time dim ension into traditional relational databases (snapshot

databases) as time sequ en ce attributes. H o w ev er , there are so m e d ifferen ces b etw een them

in se m a n t ic s and syntax. In this sect ion , w e are g o in g to d iscu ss their s im ilar it ies and

d i f f e r e n c e s w ith T D B . T O D M w a s c h o s e n for c o m p a r iso n b e c a u se it supports an

ex ten s io n o f S Q L , the "standard" relational query language. L ego l 2 .0 is included because

it is w id e ly referenced as an early source o f ideas on temporal database representation.

In the ap proach o f e m b e d d in g addit ion a l tem p ora l attr ibutes in to sn ap sh ot

d atab ases , the lo g ic o f the m o d e l d o e s not incorporate t im e at all; instead , the query

la n g u a g e m u st translate q u e r ie s and u p d ates in v o lv in g t im e in to re tr ie v a ls and

m o d if ic a t io n s on the underlying snapshot relations. In particular, the query lan guage must

p rovide the appropriate va lu es for these attributes in the relation be in g derived. Therefore,

the d iscu ss ion will be concerned with the query languages o f these three database system s.

4.3.1 The model of TODM

T O D M is con sid ered as a cu be, w hich has tw o standard relational d im e n s io n s as

w ell: o b je c t and a t t r ib u te , and a d en se and co n t in u o u s representation o f the tem poral

d im e n s io n o f the relation. T h e t im e d im e n s io n reflec ts the sy s tem tim e, record in g time

(R T). T h e state o f the relation at any point in t im e is d eterm in ed by s l ic in g the cu b e

h orizon ta l ly in a depth corresp ond ing to the sp ec if ied time, and o b ser v in g the v a lu es o f

data that prevail for each o f the objects represented in the relation. T h e fo l lo w in g figures

ex p la in the sa m e database, B O O K -L O C A T I O N from Figure 3 .4 , in T O D M form. I he

65

datab ase is recorded as a series o f snapshot re lations s e q u en tia l ly a lo n g the R T time

d im e n s io n in Figure 4 .4 . (Note: Figure 4 .4 (a) - (c) exp la in a w h o le database).

B o o k # Isbn S h e lf (a)

0 0 0 2 3 0 - 9 9 9 -9 9 9 9 9 - 0 cbOOl The relation on 12/4/88

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x c b 0 0 2

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 cb()04

B o o k # Isbn S h e lf (b)

0 0 0 2 3 0 - 9 9 9 -9 9 9 9 9 - 0 cbOOl T he relation on 2 5 /6 /88

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x cb()02

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 cb()04

0 0 0 6 5 0 - 9 9 9 -9 9 9 9 9 - 0 cbOOl

B o o k # Isbn S h e lf (c)

0 0 0 2 3 0 - 9 9 9 -9 9 9 9 9 - 0 cbOOl T he relation on 1/10/88

0 0 0 1 2 0 -1 2 3 4 5 -1 2 3 - x cb()02

0 0 0 6 5 0 - 9 9 9 -9 9 9 9 9 - 0 cb()03

0 0 0 8 0 0 - 5 6 5 6 -5 5 6 6 - 2 cb()03

Figure 4.4 The BOOK-LOCATION Relation in TODM Form

S uch a database is ca l led a rollback database rather than a tem poral database,

b e c a u s e the e v e n t t im e d im e n s io n has not been presen ted here. T h u s , the m o d e l is

considered as a three time d im ensional object. T o deal with temporal databases, event time

is taken as an u se r -d e f in e d t im e in T O D M . For e x a m p le , the d a ta b a se , B O O K -

L O C A T IO N , in T D B temporal version is presented as Figure 4 .5 . A nd it can be presented

as a series o f historical relations in T O D M form in Figure 4 .6 (a) - (c):

66

B o o k # Isbn S h e lf

Event time Record ing time

from to Start end

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 10/4/88 oo 12/4/88 oo

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x c b 0 0 2 10/4/88 oo 12/4/88 oo

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 c b 0 0 4 10/4/88 oo 12/4 /88 1/10/88

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 c b 0 0 4 10/4/88 1/10/88 1 /10/88 oo

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 26 /6 /88 oo 2 5 /6 /8 8 1/10/88

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 2 6 /6 /88 15/9 /88 1/10/88 oo

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cb()03 15/9/88 OO 1/10/88 oo

0 0 0 8 0 0 - 5 6 5 6 -5 5 6 6 - 2 cb 003 1/10/88 oo 1 /10/88 oo

Figure 4.5 A Temporal Database (BOOK-LOCATION)

B o o k # Isbn S h e lf event time . (a)
0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 10/4/88 The relation on 12/4/88

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x cb 0 0 2 10/4/88

0 0 0 3 0 0 - 3 3 2 -4 2 2 3 3 -1 cb 0 0 4 10/4/88

B o o k # Isbn S h e lf event time . (b)

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 10/4/88 The relation on 2 5 /6 /88

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x cb()02 10/4/88

0 0 0 3 0 0 - 3 3 2 -4 2 2 3 3 -1 cb()04 10/4/88

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 2 6 /6 /8 8

B o o k # Isbn S h e lf event time . (c)
0 0 0 2 3 0 - 9 9 9 -9 9 9 9 9 - 0 cbOOl 10/4/88 The relation on 1/10/88

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x cb 0 0 2 10/4/88

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cb 003 15/9/88

0 0 0 8 0 0 - 5 6 5 6 -5 5 6 6 - 2 cb 0 0 3 1/10/88

Figure 4.6 BOOK-LOCATION Temporal Database in TODM Form

D e a l i n g w ith e v e n t t im e in this w a y , T O D M can be c o n s id e r e d as a fo u r ­

d im ens iona l object as well.

C om p aring Figure 4 .6 with Figure 4 .5 , it can be seen that T O D M co n ce rn s i tse lf

with ev e n t relations. It contributes on ly on e attribute for each t im e d im e n s io n . H ow ev e r ,

67

the tem poral database in Figure 4 .5 is a series o f interval relations. A s stated in Chapter 3

(T h e T e m p o ra l D a ta b a se C la ss i f ic a t io n s) , in in terval re la t ion s , su p p ortin g o n ly o n e

attribute for o n e time dim ension is impractical due to the information duplication.

In m o re detail , w e a lso can find that so m e in form ation w a s lo s t in the T O D M

approach . F irst, there is no m e c h a n ism to record w h en B o o k # 0 0 0 3 0 term in ated its

l i fe sp an in the real w orld . The point to note is that the ev e n t t im e and the recording tim e

can be different.

S eco n d , an event w hich has been terminated but its information is still availab le in

the d a tab ase cannot be exp la in ed properly (e .g . B o o k # 0 0 0 6 5 in S h e l f cbOOl). N o w no

c h a n g e can be m a d e to the even t , B o o k # 0 0 0 6 5 used to be in S h e l f cb O O l. If such

information w ere kept in the database, w e cannot explain w hen d oes this event terminate in

the real world. The fact is that w e only have on e event time attribute w hich states the event

start tim e. T h erefore , on ly those even ts w hich have been valid and are still va lid (active)

can be recorded. Such an approach can satisfy the application o f presenting the history o f

a c t iv e e v e n t s , but ca n n o t sa t is fy the n eed to capture the a c t iv i ty o f dead e v e n t s in

databases.

Third, c o n s id e r in g the record ing t im e, the term ination o f a tup le can not be

prop erly e x p la in e d as w e ll . For instance, i f w e found the b ook (X)()3() again on 18th

N o v e m b e r and recorded it into the database tw o days after, then the database in the Figure

4 .6 should be ex tend ed by another relation as sh ow n in Figure 4 .7 .

B o o k # Isbn S h e lf event time

0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 10/4/88 T he relation on 2 0 /1 1 /8 8

0 0 0 1 2 0 - 1 2 3 4 5 - 123-x cb 0 0 2 10/4//88

0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cb 003 15/9/88

0 0 0 8 0 0 - 5 6 5 6 - 5 5 6 6 - 2 cfc>003 1/10/88

0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 c b 0 0 4 18/11/88

Figure 4.7 The Relation on 20/11/88O

68

N o w w e w ill m ake con fu s ion w hen w e m ake the ch an ge for B o o k # 0 0 0 3 0 in the

database. B o o k # 0 0 0 3 0 appeared in Figure 4 .6 (a) and (b), d isappeared from (c) and then

reappeared as sh ow n in Figure 4.7. T h is cau ses co n fu s io n b eca u se it is not o b v io u s what

h appened to B o o k # 0 0 0 3 0 b etw een 25 /6 /8 8 and 2 0 /1 1 /8 8 . W e cannot properly identify the

l i fe sp an s o f the B o o k # 0 0 0 3 0 in the database. C learly, to represent interval relations, on e

attribute for o n e time d im ension is not enough.

F o r tu n a te ly , T O D M can be e x p a n d e d to p ro c e s s m u lt ip le u se r -d e f in e d t im e

d im e n s io n s (c .f . , S ect ion 4 .4 L an gu age com p arison s) . M ore than o n e u ser -d ef in ed tim e

attribute can be handled within T O D M . Taking event to time as another user-defined time,

the p ro b lem o f capturing the ev en t termination in form ation as d isc u sse d a b o v e can be

so lved . On the other hand, if w e consider the termination o f transaction presenting another

entity s ta te , the recording (en d of) t im e can be con sid ered as the recording s ta r t t im e o f

n ew entity state. Therefore, T O D M can handle interval relations properly as well.

F or in stance , the tem poral database in Figure 4 .5 w il l be e x p la in ed as sh o w n in

Figure 4 .8 in T O D M form:
R ecord ing time

12/4/88B o o k # Isbn S h e lf event from time event to time
0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 10/4/88 oo
0 0 0 1 2 0 - 1 2 3 4 5 - 123-x c b 0 0 2 10/4/88 oo
0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 c b 0 0 4 10/4 /88 oo

B o o k # Isbn S helf event from tim e event to time
0 0 0 2 3 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 10/4/88 oo
0 0 0 1 2 0 - 1 2 3 4 5 - 123-x cb 0 0 2 10/4/88 oo
0 0 0 3 0 0 -3 3 2 -4 2 2 3 3 -1 c b 0 0 4 10/4/88 oo
0 0 0 6 5 0 - 9 9 9 - 9 9 9 9 9 - 0 cbOOl 2 6 /6 /8 8 oo

2 5 /6 /8 8

B o o k # Isbn S helf event from time event to time
0 0 0 2 3
0 0 0 1 2
0 0 0 3 0
0 0 0 3 0
0 0 0 6 5
0 0 0 6 5
0 0 0 8 0

0 - 9 9 9 - 9 9 9 9 9 - 0
0 - 1 2 3 4 5 - 123-x
0 -3 3 2 -4 2 2 3 3 -1
0 -3 3 2 -4 2 2 3 3 -1
0 - 9 9 9 - 9 9 9 9 9 - 0
0 - 9 9 9 - 9 9 9 9 9 - 0
0 - 5 6 5 6 - 5 5 6 6 - 2

cbOOl
cb 0 0 2
eb 0 0 4

cbOOl
cb 003
cb 003

10/4/88
10/4/88
10/4/88
1/10/88
26 /6 /88
15/9/88
1 /10 /88

oo
oo

1/10/88
oo

15/9 /88
oo
oo

1/ 10/88

Figure 4.8 The Temporal Database in TODM (BOOK-LOCATION)

69

This almost has the same form as the temporal databases in Figure 3.9. Of course,

excessive duplications have not been reduced to minimum. Meanwhile, due to determining

the time duration over which an entity state is valid, successive observations have to be

examined. This will slow down the performance of TODM and create complications with

operations [Snodgrass 1987J.

4.3.2 The model of Legol

A database in Legol is defined as a pure three dimensional object: a traditional

relational flat file (or table) embedded with a time dimension. Along this time dimension,

the history of events can be captured. Legol has not provided another time dimension

(recording time) to capture the evolution of the database itself. Therefore, Legol cannot be

considered as temporal-complete. A database in Legol can only be considered as a

historical database, rather than a temporal database.

By extension to the basic relational idea, the time dimension has two attributes:

start and end dates, defining the whole period of existence associated with the information

in each table entry. The end time can be undefined to identify the current information with

the historical information which has a defined end time value. For example, a historical

database, BOOK-LOCATION, in Figure 3.7 can be explained in Legol as Figure 4.9.

Book-Location (Book# Isbn) start end

cbOOl 00012 0-999-99999-0 12/4/1988 -

cb()02 00023 0-12345-123-x 20/5/1988 -

cb004 00030 0-332-42233-1 12/4/1988 1/10/1988

cbOOl 00065 0-999-99999-0 25/6/1988 15/9/1988

cb0()3 00065 0-999-99999-0 15/9/1988 -

cb()03 00080 0-5656-5566-2 1/10/1988 -

Figure 4.9 The BOOK-LOCATION Database in Legol

The leftmost attribute is called the "characteristic” in Legol; it has a label which is

the same as the name given to the relation and may be used by default in operations where

70

only a single attribute is required. In Figure 3.7, it is the attribute "Shelf". The other two

attributes are called "identifiers" in Legol. A reference to the whole relation would take the

form Book-Location (Book# Isbn) including the time attributes by default.

A point to note is that although Legol can deal with other user-defined times as

well, it has not presented any mechanism to operate on these time attributes at the system

level. Thus, Legol cannot be considered as a multi-dimensional object.

4.4 Language Comparisons

TDB supports a temporal query language: TQuel, which is based on the model of

the Quel language; TODM supports a SQL-like language, TOSQL; while Legol 2.0 is a

temporal query language for Legol.

To compare TQuel with other relational temporal query languages, Snodgrass

suggested 17 characteristics to check their properties. Four of the characteristics are

essential according to Snodgrass.

4.4.1 Four basic properties

4.4.1.1 A formal semantics

The first requirement is that a temporal query language must be well defined. It

should have a formal semantics. Without a formal semantics, the meaning of each

construct, and the interaction between constructs, is unclear.

TQuel is formalized using the tuple calculus [Ullman 1982], It has a formal

semantics for the retrieve statement because embedding temporal dimensions into retrieve

tuple calculus causes no problems. However, there were some semantic problems with the

modification statements which will be discussed in Chapter 5. We will improve the

semantics of modification statements in TQuel by introducing a new definition for Before

predicate and using thirteen temporal relationships defined by Allen. Thus, TQuel can be

said to have a formal semantics.

71

Unfortunately, TOSQL and Legol 2.0 have not presented formal semantics.

4.4.1.2 Supporting historical queries

TQuel, TOSQL and Legol 2.0 also support historical queries. Historical queries

are the queries which can be formulated that derive information valid at a point in time

from information in underlying relations valid at other points in time. Two aspects are

captured under such a definition: the ability to refer to the time that the information was

valid and the ability to perform "join-like" operations on logical time over multiple

relations.

For the first aspect, all three languages automatically meet the needs because all of

them can handle logical time:

1) TQuel accomplishes this through its valid and when clauses;

Example 4.4.1 in TQuel: What books have been borrowed by Peter this year?

We employ a temporal database below for the query:

BOOK-LOAN (Book#, Isbn, Name):

Book# Isbn Name from to start end

The query is:

range of b is BOOK-LOAN

retrieve into BookbyPeter(Book# = b.Book#, Isbn = b.Isbn)

where b.Name = "Peter"

when b overlap "1988"

Assume the year is 1988, and the transaction was executed on 15th November.

2) TOSQL supports a special temporal component <time-spec> to deal with user-

defined time inclusive event time through AT, WHILE, DURING, BEFORE and APrER

operators (see Appendix D Syntax specifications of TOSQL for detail);

Example 4.4.1 in TOSQL:

The model will be changed into:

7 2

BOOK-LOAN {Book#, Isbn, Name, event-from-time, event-to-time, RT}

and the query is:

SELECT b.Book#, b.Isbn

INTO BookbyPeter.Book#, BookbyPeter.Isbn

FROM BOOK-LOAN b

WHERE b.Name = "Peter"

WHILE event-from-time < 15/11/88 AND event-to-time > 1/1/88

DURING (-oo — +oo) ALONG event-from-time, event-to-time

AS-OF PRESENT ALONG RT

Note:event-from-time and event-to-time define the valid time interval of event and

are assumed to be logical time dimensions for the relation BOOK-LOAN. RT stands for

the recording time (i.e., transaction time in TQuel) dimension.

3) Legol 2.0 supports historical queries via the while , since , until, and during

operators;

Example 4.4.1 in Legol 2.0:

The model for BOOK-LOAN database in Legol form is:

BOOK-LOAN f Isbn Name) start end

while the query becomes a succinct rule as below:

BookbyPeter (Isbn) <= Book-Loan (Isbn, "Peter")

while YEAR

Note: "<=" is an update symbol. BookbyPeter not only is a new view, but also

presents the characteristic of the view. It is actually the attribute, Book#, in the TQuel

model. The "while" is a time intersect operator. This can be considered as a relational join

which also identifies overlapping time periods. YEAR is a single entry table defining the

derived time interval for the query:

YEAR start end

1988 1/1/88 15/11/88

73

For the second aspect, TQuel via Quel-like tuple calculus processes multiple

relations on valid time because the tuple calculus in Quel can deal with multiple relations

(c.f., Section 4.2.1.2).

TOSQL can be satisfied with this property1 as well. In a query (Appendix D.

Syntax specifications of TOSQL), the component <time-spec> specifies the derived logical

time intervals:

<query> ::= <b-query><obj-specxtime-specxtime-qualif>

<time-spec> <time-periodxtime-dimension>

<time-dimension> ::= ALONG RT I ALONG <tsa>

<tsa> means Time-Stamp Attribute which standards for both logical time and

physical time dimensions. "In general, a relation scheme has at least one TSA, the

internally controlled RT (Recording-Time, i.e., physical time), but it no doubt may have

more than one TSA." [Ariav 1986] This means that <tsa> can be explained as:

c tsa l, tsa2, ..., tsan>, or

<tsa list>

to satisfy with the need of operating on multiple time dimensions.

Considering that SQL can process multiple relations via the explicit range variable

names [Date 19871 and TOSQL is a minimal extension of SQL, TOSQL should be able to

process multiple relations as well.

Example 4.4.2. What books have been borrowed by staff during April 1988?

Suppose we have two relative relations:

BOOK-LOAN: Book#, Isbn, Name ; and

EMPLOYMENT: Employment, Name.

1) In TQuel, the model will be as following temporal relations:

1 In [Snodgrass 19871, Snodgrass criticized: TOSQL falls short because only one relation may participate
in the query, although aggregates, which arc only mentioned, may provide a measure of valid-time support.

74

BOOK-LOAN (Book#, Isbn, Name):

 Book# Isbn__________Name from_____ £o_____ start end

EMPLOYMENT (Employment, Name):

Emplovment Name from to start end

and the query is:

range of a is BOOK-LOAN

range of b is EMPLOYMENT

retrieve into BookbyStaff (Book# = a.Book#, Isbn = a.Isbn)

where a.Name = b.Name and b.Employment = "staff"

when (a overlap b) and (a overlap "4/88")

as of "now"

2) In TOSQL, the model and the query will be taken as the following forms:

The model,

BOOK-LOAN {Book#, Isbn, Name, event-from-time, event-to-time, RT}

EMPLOYMENT {Employment, Name, event-from-time, event-to-time, RT};

The query,

SELECT a.Book#, a.Isbn

INTO BookbyStaff.Book#, BookbyStaff.Isbn

FROM BOOK-LOAN a, EMPLOYMENT b

WHERE a.Name = b.Name, AND b.Employment = "staff"

WHILE a.event-from-time < b.event-to-time

AND a.event-to-time > b.event-from-time

AND a.event-from-time < 30/4/88

AND a.event-to-time > 1/4/88

DURING (-oo - +°o) ALONG a.event-from-time,

a.event-to-time, b.event-from-time, b.event-to-time

AS-OF PRESENT ALONG RT

75

3) As stated above, the "while" operator supplies a temporal join operation to

enable Legol 2.0 to process multiple relations. The model and query for Example 4.4.2 in

BOOK-LOAN (Isbn Name) end

EMPLOYMENT (Name) start end

BookbyStaff (Isbn) <= BOOK-LOAN (Isbn, Name)

while EMPLOYMENT (Name) = "staff while (MONTH)

Note: MONTH is a table defining the valid time interval.

MONTH start end

April 1/4/88 30/4/88

4.4.1.3 Rollback transaction

A temporal query language must support rollback, and hence physical time. A

query language supporting historical queries but not rollback is properly termed historical,

rather than temporal. Only TQuel and TOSQL support rollback, both through as-of

clauses. Legol 2.0 does not support physical time, thus, it is a historical query language.

An example for TQuel is as follows:

Example 4.4.3 Who borrowed the book 00030 as best known September 1988?

range of b is BOOK-LOAN

retrieve into Book#30(Name = b.Name)

where b.Book# = "00030"

as of "9/88"

7 6

While TOSQL supports the following query for the same example:

SELECT b.Name

INTO Book#30.Name

FROM BOOK-LOAN b

WHERE b.Book# = "00030"

AS-OF "9/88" ALONG RT

4.4.1.4 Implementable

TDB and Legol both have a prototype implementation ([Ahn & Snodgrass 19861

and [Jones & Mason 1980]). No prototype for TODM has been presented in the published

literature, but some research has been carried out [Shiftan 1986].

4.4 .2 The where, while, and when clauses

TQuel modifies the retrieve statement of Quel to include two additional components

that deal with the temporal aspects of the query, namely, (1) a definition of the

"mechanism" by which the implicit time attributes of the derived relation are to be

constructed from the corresponding attributes of the source relations, i.e., the valid

clause, and (2) a temporal conditional: a temporal predicate concerning the implicit time

attributes of the associated relation, i.e., the when clause.

The when clause is the temporal analogue to Quel's where clause. Where clause

selects the derived objects, while when clause singles periods of time in which the

derived objects existed. The interaction between this "when" clause and the regular

"where" in a query is through a logical AND relationship.

TOSQL employs WHERE and WHILE clauses as the basis for selecting source

tuples. WHERE plays almost the same role as the where clause in TQuel to qualify the

derived tuples, while WHILE clause, similarly with the when clause in TQuel, identities

the valid interval in which the derived tuples existed. However, they are different to each

other in some sense.

7 7

They are different in specification syntax.

The where clause in TQuel is a general first-order predicate calculus expression in

Quel to define the derived tuples. It consists of only attribute-references and literals

through comparison operators or Boolean operators. The when clause consists of the

keyword, when, followed by a temporal predicate on the tuple variable of representing

the implicit time attributes of the associated relations;

But, in TOSQL, WHERE and WHILE clauses include a similar type of

expression:

WHERE <selection-expressionxprevalence-mode>

WHILE <selection-expression><temp-boundaries>

<selection-expression> relates attribute-references and literals through

comparison operators or Boolean operators

<prevalence-mode> ::= EVERYWHEN I SOMEWHEN

<temp-boundaries> ::= DURING (-©o — +°o) | DURING (<t> -- <t>)

Of cause, WHERE and WHILE clauses are different as stated before. WHERE is

embedded in the temporal context eventually designated by WHILE.

On the other hand, TQuel and TOSQL are different in handling multiple relations.

Time attributes are explicit (visible) in WHERE and WHILE clauses and handled in a

nearly ad-hoc manner. One example shows that the where and when clauses in TQuel

seem more sensible than the WHERE and WHILE in TOSQL. The example is translating a

query, which is drawn out from [Snodgrass 1987], from TQuel form to TOSQL form.

The query is based on two temporal databases:

Faculty: Name, Rank ; and

Associates: Name

Example 4.4.4 Who got promoted from assistant to full professor while at least

one other faculty member remained at the associate rank ?

The model of databases in TDB takes the form as below:

78

Faculty (Name, Rank):

Name Rank from to start end

Associates (

Name

\ ame):

from to start end

and the query in TQuel should be:

range of fl is Faculty

range of f2 is Faculty

range of a is Associates

retrieve into stars (Name = fl.Name)

valid from (begin of fl) to (end of f2)

where fl.Name = f2.Name and fl.Rank = "Assistant"

and f2.Rank = "Full"

when (fl overlap a) and (f2 overlap a)

as of "now"

The model for the databases in TDBM form is:

Faculty {Name, Rank, from-time, to-time, RT}; and

Associates {Name, from-time, to-time, RT}.

The query in TOSQL is:

SELECT Fl.Name

INTO stars.Name

FROM Faculty F l, Faculty F2, Associates

WHERE Fl.Rank="Assistant" AND F2.Rank = "Full"

AND Fl.Name = F2.Name

AND NOT(Fl .Name = Associates.Name)

WHILE F 1.from-time < Associates.to-time

AND Fl.to-time > Associates.from-time

7 9

AND F2.from-time < Associates.to-time

AND F2.to-time > Associates.from-time

DURING (- 0 0 — h°o) ALONG Fl.from-time, Fl.to-time,

F2.from-time, F2.to-time,

Associates.from-time, Associates.to-time

AS-OF PRESENT ALONG Fl.RT, F2.RT, Associates.RT

Fl.RT, F2.RT and Associates.RT are recording time attributes for each relation.

Other time attributes are taken as user-defined times. Clearly, in TOSQL, time attributes

are still maintained in a nearly ad-hoc manner.

In TQuel, we note that neither is there any statement in the where clause to link

the relation Associates with the other two relations nor is there in the when clause.

However, in TOSQL query, due to taking event time as user-defined time, more

specifications are needed for maintaining TOSQL statements. We must find out a primary

key in Associates relation and a foreign key in Fl relation to link three relations. If not, we

cannot identify the relative tuples in Associates relation. In this special example, the

primary key of Associates relation is the attribute "Name". Correspondingly, the foreign

key of F l is the attribute "Name" as well. Thus, the clause, AND NOT(Fl .Name =

Associates.Name), is used in the WHERE clause, but this is not sufficient in the case

where Associates is empty. It should be noted that there is not any general rule for finding

out a primary key. But, the overlap operators in the when clause of TQuel can fetch

relative tuples among multiple relations automatically! Thus, the when clause seems more

intelligent than is immediately obvious.

Legol 2.0 selects source tuples mainly via the while operator. The while operator

not only supports an intersection over derived tuples, but also identifies all overlapping

periods of time on relative time attributes. It combines two functions, object selection and

temporal selection, together. Actually, it plays a role of temporal join on relative relations.

Take Example 4.4.2 as an example, and suppose three basic relations have values as the

following tables:

80

BOOK-LOAN (Isbn Name') start end
00023 0-999-99999-0 Peter 12/4/88 23/5/88
00012 0-12345-123-x Peter 9/9/88 - -

00030 0-332-42233-1 Rob 10/9/88 1/10/88
00065 0-999-99999-0 Peter 5/10/88 —

00080 0-5656-5566-2 Tony 6/10/88 9/11/88
00023 0-999-99999-0 Tony 6/10/88 —

EMPLOYMENT (Name 1 start end
student Rob
staff Tony

staff Peter
staff Rob

25/9/86
11/2/87
1/9/87
10/6/88

10/6/88

MONTH start end

April 1/4/88 30/4/88

The query is:

BookbyStaff (Isbn) <= BOOK-LOAN (Isbn, Name)

while EMPLOYMENT (Name) = "staff while (MONTH)

Here, the equality operator " = " selects the derived tuples from the

EMPLOYMENT (Name) relation:

staff Tony

staff Peter

staff Rob

11/2/87

1/9/87

10/6/88

while "while (MONTH)" intersects out two new derived tuples and identifies valid

time intervals from the derived relation:

staff Tony

staff Peter

1/4/88 30/4/88
1/4/88 30/4/88

The valid durations for the two derived tuples are set as the overlapping intervals

between two relations.

81

The first ’’while" operator in the statement,

BOOK-LOAN (Isbn, Name) while EMPLOYMENT (Name) = "staff'

while (MONTH),

joins the relation BOOK-LOAN and the derived relation above and identifies all

overlapping periods of time. The derived tuple is

00023 0-999-99999-0 Peter staff || 12/4/88 30/4/88

Update operator "<=" projects two specified attributes into the final derived

relation, BookbyStaff. The result wi

00023 0-999-99999-0

be:

12/4/88 30/4/88

4.4 .3 Dealing with disjoint time intervals

Sometime, dealing with disjoint intervals is necessary. For example, to answer the

query: what books have been borrowed during the months of March in each of the years

1985-1989? the retrieve statement should be able to select out a series of disjoint intervals

which covers the range of time from the beginning of the earliest interval to the end of the

latest one.

Legol 2.0 can deal with such queries, because the derived intervals are specified as

a table. Each disjoint interval is stated as an entity in the table. And the query can process

each entity as one of derived time intervals. To answer the query above, a rule in Legol

2.0 is:

Book (Isbn) <= BOOK-LOAN (Isbn, Name) while (MONTH)

The table of MONTf
MONTH

is:
start end

March 8 5 1/3/85 31/3/85

March 8 6 1/3/86 31/3/86

March87 1/3/87 31/3/87

March88 1/3/88 31/3/88

March89 1/3/89 31/3/89

TOSQL is said to be able to deal with both continuous time and disjoint intervals

[Ariav 1986 p:509]. But actually it has not presented a specification syntax to deal with

82

disjoint intervals. It only supports the query which processes event time (time point), or

coalesced intervals. For instance, ideally we would like to write the query as follows:

SELECT a.Book#, a.Isbn

INTO Book.Book#, Book.Isbn

FROM BOOK-LOAN a

WHILE a.event-from-time > "1/3/*" AND a.event-to-time < "31/3/*"

DURING (1985 — 1989) ALONG a.event-from-time, a.event-to-time

AS-OF PRESENT ALONG RT

However, the time specifications "1/3/*" and "31/3/*" do not appear to be legal.

We have to deal with disjoint intervals in an ad-hoc manner. The query above has to be

explained as:

SELECT a.Book#, a.Isbn

INTO Book.Book#, Book.Isbn

FROM BOOK-LOAN a

WHILE (a.event-from-time > "1/3/85"

AND a.event-to-time < "31/3/85")

OR (a.event-from-time > "1/3/86"

AND a.event-to-time < "31/3/86")

OR (a.event-from-time > "1/3/87"

AND a.event-to-time < "31/3/87")

OR (a.event-from-time > "1/3/88"

AND a.event-to-time < "31/3/88")

OR (a.event-from-time > "1/3/89"

AND a.event-to-time < "31/3/89")

DURING (-<*> -- +°°) ALONG a.event-from-time, a.event-to-time

AS-OF PRESENT ALONG RT

83

Tuples are assumed to be coalesced in TQuel. Such tuples with identical values for

the explicit attributes neither overlap nor are adjacent in time. To keep this attribute with

derived relations, TQuel has not supported operations on disjoint intervals. To deal with

disjoint intervals, TQuel has to maintain its query in an ad-hoc manner as in TOSQL.

range of a is BOOK-LOAN

retrieve into Book (Book# = a.Book#, Isbn = a.Isbn)

when (begin of a > "1/3/85" and end of a < "31/3/85")

or (begin of a > "1/3/86" and end of a < "31/3/86")

or (begin of a > "1/3/87" and end of a < "31/3/87")

or (begin of a > "1/3/88" and end of a < "31/3/88")

or (begin of a > "1/3/89" and end of a < "31/3/89")

as of "now"

4.4.4 Summary

Comparing TQuel with other two temporal languages on four main criteria and the

mechanisms handling time attributes, TQuel shows itself more interesting and sensible than

the other two.

It has a well defined formal semantics. The temporal concepts were developed on

both retrieval semantics and operational semantics. Under such definitions, the temporal

meaning of each construct in the language and the interaction between constructs are clear.

TDB supports real temporal retrieve operations to interval temporal databases, both

in logical time dimension and physical time dimension. In both dimensions, time is

maintained by DBMS itself (i.e., at the system level). The values of temporal domains are

not handled by users, but interpreted by the system automatically.

Time attributes are implicit in the language. The implicit time attributes ol the

derived relation can be constructed directly from the corresponding attributes of the source

relations because temporal predicates concern the implicit time attributes of the associated

relations directly.

84

Finally, TQuel can handle multiple relations more properly. It is not necessary to

include the prim ary key and foreign key in an ad-hoc manner. More criteria and

discussions of comparisons can be found in the paper [Snodgrass 1987].

85

Chapter 5 New Semantics for TQuel's Modification Statements

A temporal query language must be well defined. More specifically, it should have

a formal retrieval semantics and a well-defined operational semantics. W ithout a formal

semantics, the meaning o f each construct, and the interaction between constructs, is

unclear. TQuel is formalized using the tuple calculus with temporal predicates to capture

the temporal semantics of query. The extension is natural on the retrieve statement but it is

not well-defined on the modification statements. The problems first come out from the

basic temporal predicate Before.

In this chapter, we are going to argue that the basic predicate Before causes an

indeterminacy problem, in Section 5.1, and introduce the relationships between Allen's

time interval relations and TQuel's temporal predicate operators, in Section 5.2, as an

outline of new semantics of TQuel modification statements to avoid semantic confusions.

In the following section, Section 5.3, the modification statements will be discussed and the

semantics of TQuel modification statement will be developed and redefined. In particular,

event modification statements are going to be presented. We will present the new

definitions for the Before predicate and the new semantics for the modification statements

at the same time.

5.1 The Before Predicate in TQuel

5.1.1 The problem of the Before predicate

The Before predicate was defined as a linear order "<" predicate on integer time

values, i.e., Before = {Q tj I ti is less than or equal to *.}• h rneans that one event is

before a second event if the time value of the first, expressed as an integer or real value, is

less than or equal to (<) the time value of the second. This set served as the underlying

domain of times for the entire database [Snodgrass 1987].

86

However, its sem antics may be confounded when various situations are

considered. For instance, let us assume: <a, p> is a time interval of an existing tuple, <y,

8> is a time interval to be deleted on the existing tuple, and < a , p> overlaps <y, 8> as

shown in Figure 5.1. Both time intervals are assumed to be closed at their lower end,

shown by "I", and open at their upper end, indicated by ")". The intervals are highlighted

by dashed lines.
al--------------)p

yl-------------------)5

Figure 5.1 <a, p> overlaps <y, 5>

According to the semantics of TQuel [Snodgrass 1987], for the delete operation,

the actual deleted interval is <y, p>, and we should add back another tuple with a time

interval < a , y>. There is a predicate statement for two such intervals by the definition of

the Before predicate:

Before(a, y) a Before(p, 5) a Before(y, p)

However, according to the definition of the Before predicate,

Before = [Q f. I ti is less than or equal to f.}>

four other interval relationships can be obtained as shown in Figure 5.2.

1) a 1-----
v I____

-------- } p

Y 1
2) a 1-----) P

y i— - -) 5 ,
3) a 1----- - -) P

y i-.....
4) a 1----- - —) P

y I) 5 .

Figure 5.2 The Four Other Overlapping Relationships for The Predicates
B efore(a, y) a Before(P, 8) a Before(y, P)

87

In case 1 the two intervals have the same start time, but 5 is later than p. For case 2

the two time intervals are exactly the same. In case 3 the upper bound p in the first interval

is equal to the lower one y in the second interval. The two upper bounds of intervals are

the same in case 4, but a is before y.

There is no need to add anything back for the cases 1), and 2). For the case 3), the

delete operation deletes nothing, because the two intervals are only overlapped at the

bounds. However, for the case 4), the actually deleted interval is <y, 8>, and the tuple

with a time interval < a , y> should be added back. The results are quite different. It is

obvious that the definition of Before predicate does not give a unique result. It can confuse

the semantics to apply such a definition to the temporal tuple calculus of TQuel.

Once we change the Before predicate instead as a linear order "<" predicate on

integer time values, i.e., one event is before a second event if the time value of the first,

expressed as an integer or real value, is less than (<) the time value of the second, and add

another linear order predicate, Equal (=), to state one event is equal to second event if the

time value of the first is equal to (=) the time value of the second:

Before(a, P) ::= a < p

Equal(a, P) ::= a = P

a , P : integers,

no confusion is made for the example above. For example, the predicate

Before (a , y) a Before (p, 8) a Before (y, p)

can only explain the case of < a , P> overlapping <y, 5>:

a l - - - - - - - - - - - - -)P
Yl-------------------)8 >

while the other four overlapping situations are presented as the following predicates:

1) Equal (a , y) a Before (p, 8),

2) Equal (a , y) a Equal (p, 8),

3) Equal (y, p),

4) Before (a , y) a Equal (p, 8).

88

We take this definition as the new underlying semantics for the predicates in

TQuel.

5 .1 .2 The new definitions for temporal constructors

and predicate operators

It is necessary to redefine the temporal constructors, the predicate operators, and

the auxiliary functions with new definitions of Before and Equal predicates. Because the

two new predicates are orthogonal, the old definitions [Snodgrass 1987] can be directly

replaced with them1:

1) Auxiliary functions on integers (First, Last) or tuple variables (event, interval):

First (a , p) = a , (i f Before (a , p) v Equal (a , p)) ;

First (a , P) = P , (otherwise) ;

Last (a , p) = p , (i f Before (a , p) v Equal (a , p));

Last (a , p) = a , (otherwise) ;

event {t)=<tat , ^ ;

interval (t)=<tfrom, tlo > .

2) Temporal constructors:

beginof (< a , p>)=<a, a>

endof (< a , P>)=<p, p>

overlap (< a, P>,<y, 5>)=<Last (a , y), First (P, 8)>

extend (< a, P>,<y, h>)=<First (a , y), Last (p, 8)>

assume: the intervals of the overlap function and the extend function do indeed

overlap, i.e., we have constraints for overlap and extend constructors:

{Before (y, p) v Equal (y, P)) a {Before (a , 8) v Equal (a , 8))

3) Temporal predicate operators

precede (< a, p>,<y, S>) =Before (p, y) v Equal (P, y)

11t can be illustrated that the new definitions can take the place of the old definition by checking the
overlapped intervals’ predicates.

89

overlap (<oc, (3>,<y, 5>) = (Before (a , 5) v Equal (a , 5))a (Before (y, p) v

Equal (y, p))

equal (< a, P>,<y, 8>) = Equal (a , y) a Equal (P, 8)

5.2 Allen's Method of Representing the Relationships

between Temporal Intervals

In the paper of [Snodgrass 1987], temporal relations were divided into event

relations and interval relations. For event relations, which consist of tuples representing

instantaneous occurrences, the time attribute contains a single time value (at). For interval

relations, which consist of tuples representing a state valid over a time interval, the

attribute contains two time values delimiting the interval (from, to). The model of TDB

presents both to the user through the valid at and valid from . . . to clauses. To

specify the derived time attributes, TQuel employs two unary prefix temporal constructors,

beginof and endof, to return a single time value and employs two binary infix temporal

constructors, overlap and extend , to return an interval value (an ordered pair of

integers). TQuel also employs three binary infix temporal predicate operators, precede,

overlap and equal to specify the relationships between two relative intervals by returning

a Boolean value.

However, there are two problems with such a presentation:

1) As stated in Section 2.1, a model of time based on points on the real line does

not correspond to the intuitive notion o f time. A time point <t> would not be

decomposable, while time intervals are decomposable;

2) There are only three temporal predicate operators representing the relationships

between temporal intervals. However, as discussed in [Allen 1983], there are at least

thirteen relationships between two overlapped intervals. Therefore, a m ulti-sem antic

90

specification should be applied to one predicate operator. This would cause semantic

problems.

A definition of interval relationships in f Allen 1983] can be applied to solve such

problems. A time point <t> was informally taken as a very small interval <t~, t+>. Time

model was considered as consisting of a fully ordered set of time points, and then an

interval is an ordered pair of points with the first point less than the second.

Under such a time model, interval relationships are classified into seven relations.

Considering the inverses of these relations, there are a total of thirteen ways in which an

ordered pair of intervals can be related in Figure 5.3.

Relation Symbol Relation for Inverse Symbol for Inverse

A before B < A after B >

A meets B m A met by B mi

A overlaps B o A overlapped by B oi

A starts B s A started by B si

A finishes B f A finished by B fi

A during B d A contains B di

A equal B = A equal B =

Figure 5.3 Allen's Interval Relations

(A, B are relative intervals)

91

Assume: the relative intervals are A <ot, p>, and B < y, 8>. Then the overlap

situations can be described as Figure 5.4.

Relation

Equivalent

relations

on endpoints

Pictorial

example Relation

Equivalent

relations

on endpoints

Pictorial

example

A < B p< Y ol»—)P
yI------)5

A > B a > S a l- -) p
yI-----)6

A m B P = Y p_ i i
! 1 1 1 1 Oo

A mi B a = 8 al-----)p
yI------)5

A o B a < y, P<6,
y < 3

d -----)P
li-..........15

A oi B a > y, P>S,
5 > a vl-

a l - -) p
-----)5

A s B a = y ,
B <8

ol......)P
•d................)8

A si B a = y ,
B > 5

a |-----------)p

\---- 18
A f B a > y

B = 5

d ----)p
yI----------------------)&

A fi B a < y
B =5

al-----------)P
yI-—)5

A d B a > y
B <5

d — -)P

.................)§

A di B a < y
B >5

al------------)P
yI—-)5

A = B a = y
0 =5

cd...............)P
-------------)5 _

Figure 5.4 Allen's Interval Relations with Pictorial Examples

According to the definition in [Snodgrass 19871, three tem poral predicate

operators, precede, overlap, and equal can almost cover A llen's thirteen interval

relationships (Figure 5.5). However, Allen's interval relations can be uniquely identified.

One exclusively relates to one overlapping situation. A relation uniquely implies a temporal

predicate, and the relative temporal predicate can only imply that relation (see Figure5.11

The actual M odified Intervals). No semantics are overlapped. The interval temporal

constructors, overlap and extend can also be classified with Allen's thirteen interval

relations (Figure 5.6).

92

Snodgrass Snodgrass

precede overlap equaloverlapequal precede
Allen's Allen's

al—)p undefined

A m B al-~)p A mi B undefined al—-)p

A oi B

al—)P

a l—)p

undefined

Figure 5.5 Snodgrass' Temporal Operators and Allen's Interval Relations

In Figure 5.5 Snodgrass' precede operator can be stated as A before B, (A <

B), and A meet B (A m B). The overlap operator can be defined as more than nine

relationships of interval times (except one event relationship), while Allen's A equal B

relation can be described as either overlap or equal in Snodgrass' definitions. Two

classifications are compared according to their intervals' overlap situations. One situation

(event situation) which can be included in Snodgrass' overlap or equal cases was not

defined in Allen's interval relations. It is needed to wholly define overlap situations.

93

S nodgrass '

Allen's

\ overlap B A extend B

S nodgrass '

A llen 's

A overlap B A extend B

P < y

A < B

d -----)p
yl—)8 und(

null

Tined

a > 8

yl—)5
A > B

d ------)P

undefined
null

P = y

A m B

y\-----)p
yl—)§

<3, B>

d ---------)p
yl)8

<a. 8>

a = 8

A m i B

d -------)P

y|----)8

<oi. a>

d ---------)P

yl)5
<y. P>

a < y , y < p ,
P < 8

A o B

al------------)p
y|------------)8

< 7 , B>

d ------------)P a > y , 8 > a

P > 8

A o i B

d ---------)p d ---------)p

71)°

<oo 8>
71)o

<00 8>
n)°

< 7 . P>

a = y ,

P < 8

A s B

al------------)p d ------------)p a = y ,

P > 8

A si B

a |----------)p al--------------)P

7 1 " /°

<00 P>
71 ")°

<y, 8>
71)°

< y. 8>
n)°

<a. B>
a > y ,

P = 8
A f B

al-.........)P d ---------)p a < y ,

P = 8
A fi B

d ---------)P

y|----)8
<v. 8>

al----------)P

71)°
<oo B>

71 ;o

<y, S>
yi)°

<a. p>
a > y ,

p < 8
A d B

al------)p d ------)P a < y , o
P > 8

A di B

|------------)p al----------)P

71)°
<oo p>

n jo

< y . 8>
71)°
<y. 8> <a, p>

a = y ,

P =8
A = B

x|------------)p

y|)8

< 0 0 B>

d -----------)P

y|)8

<a. B>

a = 8 ,
P = y

undefined

d)P

yl)8
<a. p>

al)P

y 1)5

<a, P>

Figure 5.6 The Temporal Constructors with Allen's Interval Relations

In Figure 5.6, we not only explain the equivalent relation and pictorialize overlap

situations of two relative intervals, but also state the results o f Snodgrass' temporal

constructors. For instance,

A o v erlap B,

if a < y , p < 5 , and y < p (A o B),

then the derived result of overlap temporal constructor is < y , p>;

while if a > y , p > 5 , and 5 > a (A oi B), for the same constructor,

then the result is < a , &>.

94

The result is absolutely different. Hence, the definitions of Snodgrass' temporal

constructors are not clear enough in semantics. We use Allen's interval relations to classify

Snodgrass' time relationships in Section 5.3. Such a classification causes no confusion in

semantics.

5.3 The M odification Statements

5.3.1 Modification s ta tem ents of Quel

Quel permits three commands: replace, delete, and append, which are update

operations. The syntax of the modification statements is nearly identical to that of queries.

Range statements have the same form and interpretation. The modification statements have

the same basic form as retrieve statements:

Command Result-Name (Target-List)

where Qualification

For the append command, "Result-Name" must be the name of some existing

relation, onto which qualifying tuples will be appended. For the replace (and delete)

com mand, "Result-Name" must be a tuple variable which, through the qualification,

identifies the tuples to be modified. The Target-List must contain explicitly (or by default)

the existing Domain-Names for the relation being changed (the delete command has no

Target-List).

5.3.1.1 The tuple calculus semantics for Quel modification statements

The material in this section is reproduced from [Snodgrass 1987].

The skeletal Quel append statement,

append to R (Hj . Dj j , . . . ,Ur D j r)

where \\f

has the following tuple calculus semantics:

95

R '=R y j { u (r)l (3 (3 tk) (R , (t ,) A . . . A R k(tk)

A (V /) (\<l<r. u \l] =t,-([/(l)

A y '))

R ' is combined by the original relation R and the set being appended which may

contain tuples already in R.

The delete statement is

range of ry is R }

range of tk is R k

range of s is R

delete s

where \|/

and the relative tuple calculus statement is:

R = { s (r)l (3 t ,) . . . (3 tk)(3 s)(«y(t;)A . . . A R k(tk)

A i\ |/))

The Quel replace statement

range of tj is R l

range of tk is R k

range of s is R

replace s(r/7.Dy7, . . . ,tir Djr>

where \j/

has the following tuple calculus semantics:

R = { u <r >1 (3 t j) . . . (3 tk)(B s) (R j (t j) A . . . A R k(tk)

A ((m = sA —1\|/')

A((V/) (l< /<r. u [I] ^ [/ '/D A v j/)))}

96

Note that the second line is very similar to the tuple calculus semantics of the Quel

delete statement, and the third line is identical to the semantics of the append statement.

This means that a replace modification in Quel can be considered as one deletion followed

by one append modification.

5.3.1.2 Examples for Quel modification statements

Some examples which are taken from the same relation as shown in Example 4.1.1

are given as below to show the formation of each modification command.

Example 5.3.1

Query: All information about the borrowers who live in Kelvin Street are added to

the relation Kelvin.

range of b is BOOK-LOAN

append to Kelvin(Name = b.Name, Book# = b.Book#, Isbn = b.Isbn,

Date-due-back = b.Date-due-back)

where b.Address = "Kelvin"

Example 5.3.2

Query: Change Peter's address to Hillhead Street,

range of b is BOOK-LOAN

replace b(b.Address = "Hillhead St.")

where b.Name = "Peter"

Example 5.3.3

Query: Delete Book# 00030, because it was lost,

range of b is BOOK-LOAN

delete b

where b.B ook# = "00030"

9 7

5 .3 .2 The modification s ta tem ents for interval relations in TQuel

The literature [Snodgrass 1987] presented the semantics o f the three TQuel

modification statements (append, delete, and replace). Since TQuel is a strict superset

o f Quel, the relative TQuel modification statements and their calculus semantics (see

Appendix C) are given by examining the tuple calculus semantics of the analogous Quel

statements. Particularly, the replace modification was considered as a delete statement

followed by an append statement as in Quel. However, according to such a semantics of

modification, the modification operation, especially the replace modification, can only

operate on a single relational tuple, but neither coalesced tuples nor disjoint tuples which

are overlapped by the derived time intervals1. Such a problem will be argued by examples.

Then, the conclusion is that although replace operation can roughly be thought of as a

deletion followed by an append operation, it cannot be simply considered as a combination

of them. We will discuss the resulting modification operations through the Allen's interval

relationships and the new definitions of Before and Equal predicates as stated in Section

5.1 and Section 5.2 to make a foundation for the new semantics. Finally, according to

such discussions, a new semantics of modification statements for interval relations will be

presented. In the next subsection, the new semantics o f modification statements for event

relations will be presented using the same approach.

5.3.2.1 The problems with the replace statements

The representation of replace statements in [Snodgrass 1987] is semantically

incomplete. First, the w hen clause is not necessary for the replace operation. Second,

there are redundant predicate statements in the tuple calculus, and this will cause a

1 This means that the replace operation cannot take place on tuples: ul5 u2, . . . , un, which have the

same primary key, and the valid time o f uj is < fi', q +>, . . . , the valid time o f un is <1^', , t̂ + <

ti+f (i= l, 2 , . . .,n), and the derived interval « tV , overlaps < t f , tn+>.

98

semantic error. Third, the tuple calculus of replace cannot work properly on multiple

tuples which are overlapped by the derived time intervals. We will show these problems

step by step by examples. An example of a temporal relation, Faculty, is shown in Figure

5.7. This is taken from [Snodgrass 1987]. In the temporal relation, tuples are assumed to

be coalesced, in that tuples with identical values for the explicit attributes neither overlap

nor are adjacent in time.

Faculty (Name, Rank):

Name Rank

valic time transac tion time

from to start stop

Jane

Jane

Jane

Merrie

Merrie

Tom

Tom

Tom

Assistant

Associate

Full

Assistant

Associate

Associate

Assistant

Associate

9-71

12-76

11-80

9-71

12-82

9-75

9-75

12-80

12-76

11-80
oo

12-82
CO

oo

12-80
oo

9-71

12-76

10-80

8-77

12-82

8-75

10-75

11-80

OO

oo

oo

oo

oo

10-75
oo

oo

Figure 5.7 A Tem poral relation

1) First, we examine a simple TQuel replace statement.

Example 5.3.4 Merrie is promoted to full professor. The replace modification is

executed in July 1988.

range of f is Faculty

replace f (Rank = "Full")

valid from "now" to end of f

where f.Name = "Merrie"

when f overlap "now"

as of "now"

The underlined clauses are default clauses. This is a very simple query for

changing Merrie's rank from Associate Professor to Full Professor. It is executed on a

99

snapshot relation w hich is currently valid on both valid tim e and transaction tim e

dim ensions.

According to the sem antics o f m odification statements in [Snodgrass, 1987], there

is the fo llow ing tuple calculus,

R' = {u(2+4> I (3 0 (Faculty (f)

a f[6] — °° a u [l] = f [l] a u[2] = f[2] a u[3] = f[3]

a u[4] = f[4] a U[5] = f[5]

a ((—.(AffectedAu[6] = f[6])v(A ffectedA u[6] = 7 /88)))}

u {u^2+4) I (3 0 (Faculty (f)

a f[6] = °° a u[1] = f [l] a u[2] = f[2]

a A ffected a (C jd v C2d v C3d v C4d)

a u[5] = 7/88 a u[6] = 0 0)}

u {u(2+4) I (3 f) (Faculty (f)

A f[6] = 00 A u [1] = f [l] a u[2] = "Full”

a u[5] = 7/88 a u[6] = 0 0

a f [l] = "Merrie" a Before (f[3], 7 /88) a B efore (7 /88, f[4])

a ((3 0 (Faculty (f) a f [l] = u [l] a f[2] = u[2]

a (C ja v C2a v C3a v C4a))

v (—,(3 0 (Faculty (f) a f [l] = u [l] a f[2] = u[2]

a u[3] = O y a u[4] = O ^)))}

where,

= 7/88

d>z = f[4]

A ffected = (Faculty(f) a f [l] = "Merrie" a B efore (f[3], 7 /88)

a Before (7/88, f[4])

a f[6] = 0 0 A B efore(f[3], O ^) a Before(Ov> f[4]))

C jd = (B efore(f[3j, O y) a Before(d>v, f[4]) a B efore(f[4], O ^)

a u[3] = f[3] a u[4] = O y)

1 0 0

c 2d = (Before(Ov , f[3]) a Before(f[4], <&x) a False)

C3d = (Before(Ov, f[3J) a Before(f[3],Ox) a Before(Ox , f[4])

a u [3] = Ox Au[41 = f[4])

C4d = (Before(fl3], Ov) a Before (0 %, f[4])

a ((U[3] = f[3] a u[4] = Ov) v (u[3] = a u [4] = f[4}))

C ja = (Before(fI3],Ov) a Before(Oy, f[4]) a Before (f[4], <D%)

a u[31 = f[4] a u[4] = 0 %)

C2a = (Before(dV, f[3]) a Before(f[41, 0>x)

a ((u[3] — O v a u[4] = f[3]) v (u[3] = f[4] a u [4] = O ^)))

C3a = (Before(Ov, f[3]) a B efore(f[3],0^) a Before(<I>^, f[4])

a u[3] = Oy a u[4] = f[3])

C4a = (Before(fI3], Oy) a B efore(0^, f[4]) a False)

Here, the underlying tuple participating in the query is the Fifth tuple in Figure5.7.

It is handled by the clauses C jd and C ja. In C xa, u[3]=f[4], u[4]=0^=f[4]; while f[4]=«>

in the relative tuple. It seems impossible for a valid tuple having the same valid from time

and valid to time. We note that if a tuple has a right bound time value of «>, that means that

this tuple is available at the moment (now) till some moment in the future. So the domain

for oo should include both now and some moment in the future, oo. Then the infinite time

value oo is a binary-state variable:

oo = (current transaction id, oo}.

We also note that the left bound of an interval cannot have an infinite value, oo (see

Section 3.4 for detail). Therefore, in C ja,

u[3] = current transaction id,

u[4] = oo.

Then the result of replace operations will be as in Figure 5.8. The transaction stop

time of the fifth tuple in the relation has been changed.

1 0 1

Set 1

Set 2

Set 3

There are two semantic problems with the tuple calculus stated above.

A. There is an useless predicate:

v (—i (3 f) (Faculty (f) a f[l] = u[l] a f[2] = u[2] a u [3] = Oy a u [4] = O ^)

in the calculus. The replace tuple calculus was combined by three sets. The first set

processes the deletion to deal with all tuples in past historical and current historical

relations of R. For the tuples in past historical relations and those tuples which are in the

current historical relation of R, but not Affected, the operation makes no change on them;

for those Affected tuples in the current historical relation of R, the operation effectively

removes them by setting their stop time to current transaction id.

The second set processes with the existing tuples which only partially should be

deleted. Those portions that should not have been deleted are added back.

The third set is exactly a copy of the append operation. It appends the tuples with

those portions which have not existed in the valid interval; and it appends the new tuples

which have not existed during the entire valid time as the predicates stated in the last two

lines.

1 0 2

Name Rank
valic time transaction time

from to start stop
Jane Assistant 9-71 12-76 9-71 oo

Jane Associate 12-76 11-80 12-76 oo

Jane Full 11-80 OO 10-80 oo

Merrie Assistant 9-71 12-82 8-77 oo

Merrie Associate 12-82 OO 12-82 7-88
Tom Associate 9-75 oo 8-75 10-75
Tom Assistant 9-75 12-82 10-75 oo

Tom Associate 12-80 oo 11-80 oo

Merrie Associate 12-82 7-88 7-88 oo

Merrie Full 7-88 OO 7-88 oo

Figure 5.8 The result of replace operation

However, the replace operation cannot replace any non-existent tuple. That is, it is

not necessary to append the tuples which have not existed during the valid interval to the

database. Therefore, the predicate

v (—i(3f) (Faculty (f) a f[l] = u[l] a f[2] = u[2] a u [3] = Oy a u [4] =

is useless in this tuple calculus and should be cut.

B. The when clause is not necessary in the replace operation. In Example 5.3.4,

the when clause, when f overlap "now", specifies the temporal relationship of tuples

participating in the derived relation. It seems to be working properly and selecting the valid

tuples on the current active snapshot relation by the default predicate, r T:

Before(f[3], 7/88) a Before(7/88, f[4])

which is issued in all three sets of statements, specifying in the Affected clause.

However, suppose that the valid clause is changed into

valid from v to x

v = { Oy I * current transaction id };

5C = (^X I ^X > }.

then, the when default clause cannot work properly, because it cannot retrieve the

derived tuples from the current historical relation, except the current active snapshot

relation. Only when the predicates are changed into

Before(f[3], O ^) a Before(Oy, f[4]) ,

i.e., the when clause is changed into

when f overlap <Ov, 0 ^ > ,

will tuple calculus retrieve the valid tuples on implicit valid time attributes.

However, such predicates have been issued by the valid clause and embedded in

C jd , ..., C4d , C ta , ..., C4a , and the Affected clauses.

On the other hand, extending the domain of v to include the current transaction id

(now):

y = { 0 V | any integer time value},

the when default clause can also be equivalently changed into the form

103

when f overlap <Ov , 0 ^ >

Ov = current transaction id

= endof f;

and the predicates are

Before(f[3], fj4J) a Before(current transaction id, f[4]).

These predicates have been stated in C jd , ..., C4d , C }a , C4a , and Affected

clauses as well. Clearly, it is not necessary to keep w h en clause in the rep lace

statements. Therefore, the default when clause for replace should be that there is no

when clause in it.

2) Now, we discuss the major semantic problem with overlapping tuples. The

query as below is supported which has a derived interval time <9/71, 12/80> overlapping

the first three tuples in the relation (Figure 5.7),

Example 5.3.5 range of f is Faculty

replace f (Rank = "Assistant")

valid from " September 1971" to "December 1980"

where f.Name = "Jane"

In the query, the derived interval <9/71, 12/80> overlaps three intervals in the

relation: <9/71, 12/76>, <12/76, 11/80>, and <11/80, « > for the keyword "Jane" as

shown in Figure 5.9.
9/71 I) 12/80

9/71 I-------------) 12/76

12/76 I----------------------) 11/80
H /80 I--) « »

Figure 5.9 Intervals Overlapping

For these three intervals, the actual tuples replaced are really different. According

to the semantics of replace statement in [Snodgrass 1987] (see Appendix C), the replace

operation is deletion followed by an append operation, then we have,

1 04

1) for <9/71, 12/8()> overlapping <9/71, 12/76>, the tuple with interval <9/71,

12/76> to be deleted, a redundant tuple with interval <9/71, 9/71 > to be added back1, and

the new tuple with interval <12/76, 12/80> to be appended;

2) for <9/71, 12/80> overlapping <12/76, 11/80>, the tuple with interval <12/76,

11/80> to be deleted, appending two new tuples with intervals <9/71, 12/76> and <11/80,

12/80>;

3) for <9/71, 12/80> overlapping <11/80, <»>, the tuple with interval <11/80, °o>

to be deleted, the tuple with interval <12/80, <«> to be added back, and the new tuple with

interval <9/71, 11/80> to be appended; then a new derived historical relation with

redundant tuples is shown in Figure 5.10.

Name Rank

valic time transaction time

from to start stop
Jane Assistant 9-71 12-76 9-71 7-88
Jane Associate 12-76 11-80 12-76 7-88
Jane Full 11-80 OO 10-80 7-88
Merrie Assistant 9-71 12-82 8-77 OO

Merrie Associate 12-82 OO 12-82 oo

Tom Associate 9-75 oo 8-75 10-75

Tom Assistant 9-75 12-80 10-75 OO

Tom Associate 12-80 OO 11-80 oo Set 1

Jane Assistant 9-71 9-71 7-88 oo a.

Jane Full 12-80 OO 7-88 oo Set 2

Jane Assistant 12-76 12-80 7-88 oo b.

Jane Assistant 9-71 12-76 7-88 oo c.

Jane Assistant 11-80 12-80 7-88 oo c.

Jane Assistant 9-71 11-80 7-88 oo d. Set 3

Figure 5.10 The Result of Replace Operation

Note: 1) we assume the transaction took place in July 1988;

1 This is due to the Before predicate being ambiguous.

105

2) the results of replace operation are combined by three sets of tuples;

3) a. this tuple is as a result for Case C jd, and can be omitted when

Case C2d is chosen. This is due to the predicate Before being

ambiguous;

b. the result for the tuple with valid time interval <9/71, 12/76>,

Case C ja was chosen; if the case C2a is chosen, there will be a

redundant tuple with the valid interval <9/71, 9/71 > in Set

three.

c. the result for the tuple with valid time interval <12/76, 11/80>,

Case C2a was chosen;

d. the result for the tuple with valid time interval <11/80, °o>,

Case C3a was chosen;

and we can see that the tuples in the derived relation are not coalesced at all now.

We have some duplicate tuples with the intervals as follows:

9/71 I) 9/71
12/761--------------------------) 12/80

9/71 |-------------) 12/76

or:

9/71 I) 9/71

11/80 I) 12/80
9/71 |-------------------------------) n /8 0

We have shown three semantic problems with the TQuel replace statement, and

solved two of them, the redundant predicates and the when clause, by simply deleting

them. However, we have not solved the third problem, the operation on multiple tuples. In

the next section, a model to develop new semantics of modification statements in TQuel

will be presented. This model is based on the approach discussed in Section 5.1 and

Section 5.2 which is the classification of temporal predicates operators and constructors

with Allen's time interval relationships.

106

5.3.2.2 The actual modified intervals

According to the discussions in Section 5.1 and Section 5.2, the modification

operations can be classified by Allen's time interval relationships.

Assume Interval A, <a,(3> as an interval of the relative existing tuple, Interval B,

<y,5> as an interval of the tuple to be modified; and there are constraints: B efo re(a ,p),

and Before(y,5) for them.

Also suppose that, the interval with * means the interval actually added back;

the interval with ** means the interval deleted;

the interval with *** means the new replaced interval;

nil means nothing to be added back;

null means impossible operations.

Then, the actual modified intervals of derived tuples is presented in Figure 5.11.

107

svmbols
pictorial

example predicates

modifications

append delete replace
A < B a l—)p

yl—)5

Before(p,y) * <y,5> null null

A > B a l—)p

yl— -18

B efore(5,a) * <y,5> null null

A m B a l—)p

yl—)5

Equal(p,y) * <y,5> null null

A mi B a l—)P

yl------)5
Equal(5,a) * <y,5> null null

A o B a l------)p

yl--------)5
Before(a,y) ABefore(p, 5;

ABefore(y,p)

* <p,5> * < a ,y>

* * < a ,p >

* < a ,y>

** < a ,p >
*** < y § >

A oi B a l-------)p

yl--------)5
Before(y,a)ABefore(5,P)

ABefore(a,5)

* < y ,a> * <5,P>

* * < a ,p >

* <5,p>

* * < a ,p >
*** < y § >

A s B a l------)P

yl----------- 15

Equal(y, a) ABefore(p, 8) * <p,8> * nil

* * < a .p >

** < a ,p >
** * < y

A si B a l-----------)p

yl------)S

Equal (y, a)ABefore(5, p) * nil * <5 ,p>

**<a,p>
* <6,p>
** < a ,p >

*** < y § >

A d B a l—)p

yi------------

Before(y,a)ABefore(p,5) * <p ,5>

< y .a>

* nil

* * < a .p >

** < a ,p >
** * < y

A d i B a l----------)P

yl—)5

Before(a,y)ABefore(5,P i * nil * <5 ,p>

* < a ,y >

* * < a .p >

*< a,y> ,< 5 ,p>

* * < a ,p >

*** <y.5>

A f B a l--------)P

yl-----------15

Before(y,a)AEqual(5,P) * < y ,a> * nil

* * < a .p >

** < a ,p >
*** ^ y §•>

A f i B a l-----------)p

yl—)5

Before(a,y)AEqual(8,p) * nil * < a ,y >

**<a,p>

* < a ,y>

** < a ,p >
** * <y>§>

A = B a l-----------)p

yl---------- 15

Equal(y,a)AEqual(5,p) * nil * nil

* * < a .p >

** < a ,p >

*** <y.5>

undefined al)P

yiiS

Equal(a,5)AEqual(y,p) * nil * nil

* * < a .p >

** < a ,p >
** * <-y § >

Figure 5.11 The Actual M odified Intervals

108

It is considered that the replace operation simply deletes the relative existing tuples

(with interval (a , (3)), appends new replacing tuples (with interval (y,5)), and adds back the

tuples with portions which should not have been deleted. The deletion here only fixes the

ordinary tuple with a finite recording stop time value, but not really deletes it. The replace

operation can be considered as three orthogonal set operations. Neither operations depend

on another operation, nor results influences each other. Thus, these operations can be

processed in parallel. Due to being orthogonal, the semantics of the three set operations are

not overlapped. Such an approach ensures no redundancy for the derived relations. This

will be taken as an underlying model to discuss the new semantics in Section 5.3.2.3.

5.3.2.3 The semantics of modification statements for intervals

1) Append

The skeletal TQuel append statement of intervals is:

range of t l is R j

range of tk is R k

append to R (tir D jjf . . . ,tir D jr)

valid from v to %

where \|/

when x

then the tuple calculus statement for interval append is redefined as the following

form:

R =R u { « {r+4 >1 (3 t ,) . . . (3 tk) (R j (t j) A . . . A R k(tk)

A (V /) (l< /< r. u [/] =*;/[//])

Adi [r +3] =current transaction id A u [r +4] =o°

A\j/

a f t

A(V/)(l</<fc.fz [stop] = oo)

1 09

A ((3 s)(fl(s)A(V/) (1 <l<r. s [11 =u [/])

A (C7 aV C 2 V C 3 a V C 4 a V C 5 a)) **

V((3 s)(-t/?(j)A(V/) (l</<r. 5 [/] =u [/])

Aw [r +1] = Oy A u [r +2] = O ^))))}

Note: ** identifies those modified calculus which are different with Snodgrass'

representation,

where,

C; a = (((Before(s[r+l], O v) A Before(Oy,s[r+2])) V Equal(s[r+1], O ^))

A Before(s[r+2], Oy) A u[r+l]= s[r+2] A u[r+2]= O ^)

C2 a = ((B efore(0^? s[r+2]) A Before(s[r+l], V Equal(d>^ ?s[r+2]))

A Before(O y?s[r+l]) A u[r+ l]=O y A u[r+2]= s[r+ l])

C3 a = (Before(Oy5s[r+l]) A Before(s[r+2],0^)

A((u[r+1] = s[r+2]Au[r+2] = 0 %)V (u[r+ l] = OyAu[r+2] = s[r+ l]))

C4 a = (((Before(s[r+lj, Oy) V Equal(s[r+1], Oy))

A (Before(d>^? s[r+2]) V E q u a l(0 ^ ?s[r+2]))

V (Equal(s[r+1], O ^) A Equal(O y>s[r+2])))A False)

C5 a = ((Before(s[r+2J, Oy) V Equal(s[r+2], Oy)

V B e fo re (0 ^ s [r+ l]) V E q u a l(0 ^ ?s[r+ l]))

A u[r+ l]= Oy A u[r+2]= <I>̂)

The interval <s[r+l], s[r+2]> is an interval of the existing tuple, and <Oy, is

an interval to be modified. Due to the Before (<) predicate being changed into Before (<)

and Equal (=) two predicates, the classified predicates in Figure 5.11 are used. In Figure

5.11, there are simply three intervals actually added back after an append operation:

<S[r+2], 0 ^ > and <Oy , S[r+1]> for overlapped intervals, and < O y? for

unoverlapped intervals. According to these three intervals and the predicates, we can

obtain five overlap situations between the tuples to be added and the tuples identical in the

1 1 0

explicit attributes that already exist during this valid interval as stated as C ya , C2 , C3a ,

C4a and C / .

Because C}a , C2a, C3a , C4a and C5a denote the relationships of time intervals in

append tuple calculus statement, and have been modified according to the new definition

of Before predicate, such a tuple calculus statement makes no confusion in semantics. For

instance, the overlap situation, <s[r+l], s[r+2]> overlap <Ov, where Oy < S[r+1]

and < S[r+2], corresponds to C2a case, while the predicate Before(Oy , S[r+1]) A

B efore(0^ , S[r+2]) in C2 can only explain such a situation.

2) Delete

The TQuel delete statement of intervals is:

range of t l is

range of tk is R k

range of s is R

delete s

valid from v to %

where \]/

when t

then the tuple calculus statement is:

R '={« (r+4 }\ (3 t ,) . . . (3 tk)(3 s) (R , (t ,) A . . . A R k(tk)

A (V/)(1 <l<k.tt [stop] = oo)

A (V /) (l</<r. u [/]=s [/]) A u [r+1]=^ [r+1]

A u [r+2]-s [r+2] A u [r+3]=s [r+3]

A ((—lAffected A u [r+4 [r+4])

V(Affected Aw [r+4]=current transaction id)))}

u(M (r+4 >1 (3 t ,) . . . (3 ^)(3 s)(ffy(fy)A . . . A R k(tk)

A(V/)(1 <l<k.tt [stop] = oo)

1 1 1

A (V /) (1 <l<r. u [I]=s | /]) A Affected

A (c / v c / v c / v c /) **

A u \r+3 \=current transaction id A u \r+4]= °o)}

where,

Affected = (R 0)A \|/'A T t A s [r+4 J=oo

A (Before(s [r+1], &%) A Before(O y? s [r+2]))

C j d = (((Before(Ov,s[r+l]) A BeforeC? [r+1], O ^)) V E q u a l(0 y 9s[r+1]))

A B efore(0%js[r+2]) A u[r+l]= Ox A u[r+2]= s[r+2])

C2 d = (((Before(s[r+2],0^) A Before(d>v, s [r+2])) V Equal(s[r+2],0^))

A Before(s[r+l], Oy) A u[r+ l]= s[r+ l] A u[r+2]= Oy)

C3 d = (Before(s[r+l], O v) A B efo re(0^?s[r+2])

A((u[r+1] = O ^A u[r+2] = s[r+2])V (u[r+l] = s[r+l]A u[r+2] = Oy))

C4 d = (((Before(Oy5s[r+l]) V E qual(O y5s[r+l]))

A (B efore(s[r+ 2],0^) V E qual(s[r+ 2],0^))

V (Equal(s[r+l], A Equal(O y5s[r+2])))A False)

There are two sets in the tuple calculus statements of delete operation. One contains

all tuples in past historical relations of R and all tuples in the current historical relation of R

that are not A ffected , that is, that do not satisfy the predicate in the w h e re or w hen

clauses or whose valid intervals do not overlap with the specified valid interval. Another

set deals with the existing tuples that only partially should be deleted. Those portions that

should not have been deleted are added back in the second set. The clauses C7 d , C2 d,

C d, and C4 d calculate the valid times of those tuples using the same approach in Append

modification. Only two intervals are to be added back <S[r+ l], Oy>, and <<&%, S[r+2]>.

Unoverlapped intervals are not allowed in the delete operation and replace operation. This

statement also deals with the A ffected tuples, simply removing them by setting their

stop time to current transaction identifier.

3) Replace

1 1 2

The TQuel replace statement o f intervals is:

range of t t is R t

range of tk is R k

range of s is R

replace s{tiI .D jl , . . . ,Hr D jr)

valid from v to %

where \\f

then the tuple calculus statement for interval replacing has the following form:

R '={« <r+4 >1 (3 t ,) . . . (3 tk)(3 s)(/f; (t;)A . . . A R k(tk)

A (\/l)(\< l< k .tl [stop] = oo)

A (V /) (1 <l<r. u [l]=s [/]) A u [r+1]=s [r+1]

A u [r+2] =.v [r+2] A u [r+3]=s [r+3]

A ((—lAffected A u [r+4]=s [r+4])

V(Affected A u [r+4]=current transaction id)))}

KJlu {r+4 >1 (3 t ,) . . . (3 tk) (3 s)(«J(f;)A . . . A R t (tk)

A(V/)(1 <l<k.tt [stop] = oo)

A (V /) (1 </<r. u [I]-s [I]) A Affected

A (C / V C / V C / V C /) **

A u [r+3 \-current transaction id A u [r+4]= oo)}

u { « {r+4 \ (3 t ,) . . . (3 tk) (R, (t ,) A . . . A R k(tk)

A (VI) (l<I<r. u U ^ U , })

A u [r +3]=current transaction id A u [r +4]=oo

A V

A(V/)(l</<&. t[[stop] = oo)

A ((3 s)(R (s)A (V l) (1 <l<r. s [/]=u [I])

A u [r + l]= O v A u [r +2]=<I>^)))} **

1 1 3

where,

Affected = (R (s)A\\f'As [r+4]=oo

A(Before(.9 [r+1], A Before(<I>v, s [r+2]))

C yd , . . C4 d clauses are as stated in delete statements. Comparing the replace

statement in [Snodgrass 1987] (see Appendix C), we note that there is no need as in

append statements to deal with the tuples which do not satisfy the where predicate or do

not exist during the valid interval. However, in [Snodgrass, 1987] such tuples were

handled. The semantics of replace statement was combined by those of delete and append

statements directly.

Three sets are processed. The first two of them are like the statements in delete

operation, the third is almost like those in the append statements, but just simply appends

new replacing tuples with interval <d>v, to derived relations.

Checking the same query as stated in Example 5.3.5, the historical relation with no

redundant tuples can be obtained in Figure 5.12. The tuples are coalesced in the derived

relation as well.

Faculty (Name, Rank):

valic time transaction time

Name Rank from to start stop

Jane Assistant 9-71 12-76 9-71 7-88

Jane Associate 12-76 11-80 12-76 7-88

Jane Full 11-80 OO 10-80 7-88

Merrie Assistant 9-71 12-82 8-77 oo

Merrie Associate 12-82 OO 12-82 oo

Tom Associate 9-75 oo 8-75 10-75

Tom Assistant 9-75 12-80 10-75 oo

Tom Associate 12-80 OO 11-80 oo

Jane Full 12-80 oo 7-88 oo

Jane Assistant 9-71 12-80 7-88 oo

Set 1

Set 2

Set 3

Figure 5.12 The New Result of Replace Operation

1 14

5 .3 .3 The modification s ta tem en ts for even t relations

Events and intervals are quite similar semantically. A time point <t> can be

informally taken as a very small interval < t, t+>. TQuel presents both to the user through

the valid at and valid from . . . to clauses in the retrieve statement. However, events

and intervals are quite different in the tuple calculus statements, especially in the

modification statements. The literature [Snodgrass 1987] did not present such statements

for events. Fortunately, they are easy to derive. W e represent the append, delete, and

replace statements of events here, and assume that all relations to be operated are event

relations. We give the relationships of events and the rules for event modifications first,

then present the TQuel calculus statements for append, delete, and replace operations.

5.3.3.1 The temporal relationships between the existing tuple and the tuple to be modified

There are three relationships for events (before, equal, and after):

1) 2) 3)

existing tuple s[r+l] 0 s[r+l] 0 s[r+l]

tuple to be
modified

s [r+ l]< O v s[r+l] = s [r+ l]> O v

Figure 5.13 The Relationships of Event M odification

5.3.3.2 The rules for event modifications

For any already existing event, we need not append anything. We only append the

event which is not available at the time and will be valid after the operation. Deleting and

replacing only process the event which is already valid and to be modified.

Therefore, for the append operation, we append nothing in the cases 1) and 2), but

append a new tuple with valid time at to the most recent historical relation in the case

1 15

3); the existing tuples can be modified (deleted or replaced) in the cases 1) and 2), but

cannot be modified at all in the case 3).

5.3.3.3 The TQuel calculus statements for append, delete, and replace operations

1) Append

The skeletal TQuel append statement of events is:

range of tI is R }

range of tk is R k

append to R (Hl .Dj1, . . . ,Hr D jr)

valid at v

where \|/

when t

then the tuple calculus statement for event appending has the following form:

R '=R u { u (r+3 ’l (3 t,) . . . (3 rt)(/?; («;)A . . . A R k(tk)

A (V /) (1</<r. u[l] =f H [/,])

Adi [r +2]=current transaction id Adi [r +3]=°°

A \|/'

A (V/)(1 [stop] = oo)

A ((3 s)(/?(i)A(V/) (1 <!<r. s [t] = u [I]) A (C / V C /))

V ((3 s)(-i« (i)A (V /) (1 </<r. i [/] =« [/]) A u [r+1] =<Dv)))

))

where,

C / = ((Before(s[r+l], Ov) V Equal (s[r+l], O y))A False)

C2a = (Before(O y,s[r+l]) A u[r+l] = Oy)

2) Delete

116

The TQuel delete statement o f events is:

range of t l is

range of tk is R k

range of s is R

delete s

valid at v

where \\f

when x

the tuple calculus statement has the following form:

R '={u {r+3 >1 (3 t,) . . . (3 tk)(3 s)(/?; (r ,)A . . . A R k(tk)

A(V/)(1 <l<k.t{ [stop] = oo)

A (V /) (1 <l<r. u [I [/]) A u [r+1 [r+1]A u [r+2]=.? [r+2]

A ((—(Affected A u [r+3]=s [r+3])

V(Affected A u [r+3]=current transaction id)))}

where,

Affected = (R (s)A\\f*ATX A s [r+3]=°°

A (B efore(s[r+ l], Oy) V Equal (s[r+ l], Oy)))

3) Replace

The TQuel replace statement of events is:

range of tj is Rj

range of tk is R k

range of s is R

replace s(ti} .Djj, . . . ,Hr D jr)

valid at v

w here \\t

117

then the tuple calculus statement for event replacing has the following form:

R '={« {r+3 >1 (3 (3 tk)(3 s)(/f; (r;)A . . . A R k(tk)

A(V/)(1 <l<k.t[[stop] = oo)

A (V /) (1 <l<r. u [/]=s [/]) A u [r+1]=s [r+1]A u [r+2]=s [r+2]

A ((—lAffected A u [r+3]=s [r+3])

V(Affected A u [r+3]=current transaction i d))

) }

u [u ir+3 >1 (3 (3 t ^ R ^ t ^ A . . . A R k(tk)

A (V /) (l< /< r u [l \ = til\J,])

Adi [r +2]=current transaction id A u [r +3]=«>

A\|/'

A(V/)(1 <l<k.tt [stop] = oo)

A ((3 s)(R (s)A (V l) (1 <l<r. s [/]=u [I]) A u [r+1]=Ov)))}

where,

Affected = (R (s)A\\f'A>s [r+3]=oo

A (B efore(s[r+ l], Oy) V Equal (s[r+ l], Oy)))

The two clauses, C f and C2a , handle the various situations between the tuples to

be appended and the tuples identical in the explicit attributes that already exist. Cf

explains the cases 1) and 2) as stated above, and C2a explains the case 3). W hile the

Affected clause states all tuples that satisfy the predicate in the where clauses and whose

event valid time is before or equal to the specified valid time. These tuples can be modified

by the delete and replace statements. There is no need to add any portions back for the

event delete and replace statement. In the statement of event replace operation, the first set

contains all tuples in past historical relations of R . The second set deals with the all tuples

in the current historical relation of R that satisfy the predicate in the where clauses.

118

Chapter 6 Conclusion and Further Research

In this chapter the work of this dissertation is reviewed, in particular: the

conceptual semantics of time, the classification of the different types of temporal

database models and the com parison o f tem poral query languages, including

improvement of the semantics of modification statements.

This dissertation has concentrated on the association of time with tuples and in

the next section alternative approaches are considered. This is followed by further

discussion of the relationship between entities and tuples. Finally, some outstanding

problem s are briefly discussed: temporal schema evolution, the integrity of time

attributes and the implementation of temporal databases.

6.1 W ork which has been done

The review of research about TDBMS in this dissertation has three emphases:

1) The formulation o f a semantics o f time at the conceptual level. This has been

discussed in some depth in Chapter 2. A topology of time and types of time attributes

were introduced. A new taxonomy for time attributes was presented: assertion time,

event time, and recording time. They stamp the information in the real world at three

different levels: user, event, and system, respectively. Because the event time of an

entity in the historical chain can be changed into assertion time, in some sense, it can be

treated as a kind of assertion time. Thus, in most TDBMSs, only two time attributes:

event time (logical time) and recording time (physical time) are supported.

2) The development o f a model fo r TDBMS analogous to the relational model

fo r snapshot databases. Based on Snodgrass' classification, four kinds of databases are

discussed in depth. The discussion notes some differences from the representation of

the TDB model. Main contributions and differences with TDB model in Chapter 3 are:

• historical relation for most enterprises is an interval relation, but not a

sequence of snapshot slices indexed by valid time.

119

• tuple no longer simply refers to an entity as in traditional relational

databases. It refers to different level representations of an object: entity,

entity state, observation of entity, and observation of entity state in different

databases.

• domains for time attributes were discussed. The retroactive and proactive

changes of temporal data are explained through the values o f time

attributes.

• an approach to merge temporal tuples w ithout losing any temporal

semantics was introduced to save more storage in the databases.

3) The design o f temporal query languages. We have not presented a new

temporal query language in this dissertation, but we have discussed a Quel-like

temporal query language, TQuel, in some depth. Comparisons between TQuel and two

other temporal query languages emphasized the need to take TQuel as the main

discussed model. However, TQuel is not perfect in its semantics model. Thus, we

centred the main discussion on TQuel's semantics for tuple calculus. The semantics

problem for the Before predicate has been discussed and a solution presented to it is to

define Before as a single valued predicate, not a bi-valued one. The classification for

the relationships between overlapping intervals suggested an approach using temporal

logic to classify the derived tuples in tuple calculus. Under such an approach, a new

presentation for tuple modification calculus was proposed, not only for event relations,

but also for interval relations.

6.2 Treating Time as a Component o f Tuples

So far, the method to represent temporal database models introduced in this

dissertation is embedding a temporal relation in a snapshot relation by appending two

(or one) time attributes, each containing two (or one) time values, denoting intervals (or

points) of logical time (and/or physical time). Such an approach incorporates temporal

dimensions into the relational model at the tuple level. Several benefits accrue from

such a representation:

1 2 0

1) The snapshot relational model can be used as the underlying model. The

relational database model is simple and is based on the well-developed formalisms of

set theory and predicate calculus; database models directly incorporating time are

significantly more complex and are based on newer and less well-understood logics

such as multiple transaction and temporal logics; and extensions involving aggregates

and indeterminacy are easier to formulate in the standard model. Finally, a temporal

database based on the relational model can be implemented directly on conventional

relational DBMSs.

2) The language can be designed as a minimal extension, both syntactically and

semantically, of one of the well-developed database languages. For instance, Quel is

widely discussed in the literatures; it is particularly simple, but rather powerful; and it

has a simple and well-defined semantics. TQuel is designed as a superset of Quel. All

legal Quel statements are also valid TQuel statements, such statements have an identical

semantics in Quel and TQuel when the time domain is fixed, and the additional

constructs defined in TQuel to handle time have direct analogues in Quel.

3) Ease of formal manipulation and the promise o f rapidly prototyping a

temporal DBMS on top of a conventional snapshot DBMS.

However, treating time as a component of the tuples causes difficulties on

semantics maintenance and performance improvement:

Time attributes in such a model belong to all time-varying attributes (i.e., to the

whole tuple, not only to any one of them!). Changing values of any attribute will cause

at least one new tuple to be generated. However, we cannot say at what time which

attribute was changed according to a derived tuple. Hence, making time stamps only at

tuple level is not clear enough for expressing every time-varying object in the relation.

Embedding time at the tuple level is reasonable from the logic point of view, but

is ineffective from an operational point of view. With the method of appending time

attributes to relations, all tuples belonging to the same relation will be treated as

equivalent, regardless of the time aspect. The history of all the different actions, delete,

update, insert, or create, will be treated as equals and each action will add one or more

new tuples to the database. This will cause the database to grow very fast, unless the

1 2 1

database is static or semi-static. The result is that we will have performance and storage

problem s. A benchmark set of queries was run to study the perform ance o f the

prototype of such an approach [Ahn & Snodgrass 1986]. As expected, the performance

rapidly deteriorated as information was added to the database. Access methods such as

sequential scan, hashing, and ISAM all suffered. In addition, overflow chains increase

exponentially due to all versions of a tuple sharing the same key.

Another approach to incorporating the temporal dimension into the relational

model is embedding the time at the attribute level [Clifford & Tansel 1985, Segev &

Shoshani 1987]. There are several reasons for treating time as a component of the

attributes:

1) attributes vary over time in different ways. D ifferent attributes may be

measurable/recordable at different rates (the granularity may be different). There are

time-dependent and time-independent (static) attributes. When a change occurs, it is

generally to the value of an individual attribute, not to all attributes in a tuple.

2) the projection operator sometimes makes no sense or loses information in a

relation where each tuple is time-stamped. For example, consider the relation Book-

Location shown in Figure 6.1 (drawn from Figure 3.10), and consider how we

"project" out the books on shelf.

Book# Isbn Shelf

Event time Recording time

from to start end

00023 0-999-99999-0 cbOOl 10/4/88 oo 12/4/88 oo

00012 0-12345-123-x cb002 10/4/88 oo 12/4/88 18/10/88

00012 0-12345-123-x cb002 20/5/88 oo 18/10/88 oo

00030 0-332-42233-1 cb004 10/4/88 oo 12/4/88 1/10/88

00030 0-332-42233-1 cb004 10/4/88 1/10/88 1/10/88 oo

00065 0-999-99999-0 cbOOl 26/6/88 oo 25/6/88 1/10/88

00065 0-999-99999-0 cbOOl 26/6/88 15/9/88 1/10/88 oo

00065 0-999-99999-0 cb003 15/9/88 oo 1/10/88 oo

00080 0-5656-5566-2 cb003 1/10/88 oo 1/10/88 oo

Figure 6.1 Book-Location Tem poral Relation

If we simply project out the column, Book#, together with the temporal

attributes, we get a temporal relation like the one shown in Figure 6.2.

1 2 2

Book#
Event time Recording time

from to start end

00023 10/4/88 OO 12/4/88 OO

00012 10/4/88 oo 12/4/88 18/10/88

00012 20/5/88 oo 18/10/88 oo

00030 10/4/88 oo 12/4/88 1/10/88

00030 10/4/88 1/10/88 1/10/88 oo

00065 26/6/88 oo 25/6/88 1/10/88

00065 26/6/88 15/9/88 1/10/88 oo

00065 15/9/88 OO 1/10/88 oo

00080 1/10/88 OO 1/10/88 oo

Figure 6.2 A Derived Relation

Note: assume we can derive a temporal relation (see Section 6.4 for detail).

W e have lost relevant information from the relation. The tuples in the relation

could not make sense, because we do not know which book is in which shelf and what

the time intervals mean. The primary key for the relation in Figure 6.1 is the attributes,

Book# and Shelf, together with temporal information. Without the attribute Shelf, such

a projection result cannot explain the relationships among the tuples.

However, there are at least two important ramifications for such an approach.

The first is that relations in the model are no longer in First Normal Form, since the

domain for time-varying attributes is non-simple. Nested relational databases [Roth et

al. 1988] may be necessary. The second is that with attributes differing along various

time-related dimensions, the increasing complexity both of syntax and semantics can be

imagined. It becomes necessary to define some underlying "basic" view of time for the

database.

6.3 Operations for Entity, Entity State, Observation of Entity,

Observation of Entity State and Tuple

The terminology of entity, entity state, observation of entity, and observation of

entity state is independent of any specific logical data model, such as relational

database. These concepts could be designed for other database models, like nested

123

relational databases [Roth et al. 19881 and the TSC model in [Segev & Shoshani 1987].

However, more semantics study is needed for them. For example, how about the

traditional operations for them? Could they be retrieved using tuple calculus in temporal

relational databases? How about the modification for them? A lthough we have

developed the tuple calculus for temporal tuples and can retrieve an observation o f an

entity state (a tuple) properly, it is necessary to develop more semantics and syntax for

other operations.

Entity, entity state, observation of entity, and observation o f entity state are

respectively represented as a single tuple in four distinct databases, and represent

different sets of tuples in the temporal database. Using tuple calculus, we can handle an

observation of an entity state as stated in the early chapters. However, the retrieval of

entities in the database suffers from the lack of temporal semantics. Taking the database

in Figure 6.1 as an example, to list out the entities (books) in the database, we issue a

query:

range of a is Book-Location

retrieve (a.Book#)

a result will be as:

Book#

00023

00012
00030

00065

00080

but, we have no idea about the lifespans of entities. How to derive the valid

intervals for each entity is still under study.

To retrieve the entity states of Book# 00065 as best known, a query is:

range o f a is Book-Location

retrieve (a.Book#, a.Isbn, a.Shelf)

w here a.Book# = "00065"

as of "now"

and the result is:

1 24

Event time Recording time

Book# Isbn Shelf from to start end

00065 0-999-99999-0 cbOOl 26/6/88 15/9/88 1/10/88 OO

00065 0-999-99999-0 cb003 15/9/88 OO 1/10/88 oo

However, we cannot issue a query to retrieve the observations for an entity in

the temporal database easily. An ideal approach is picking up all tuples for the same

entity first, then according to the comments in Section 3.4.2, searching for the

recording start times, if the value is the same for two tuples, then they are the same

observation for this entity, but for different states of this entity. Clearly, tuple calculus

is not satisfactory for such operations. New syntax for modify operations need to be

developed as well.

6.4 Tem poral Schema Evolution

We define the temporal schema as that part o f the database schema related to

time attributes which is hidden from the user and managed by the system. This

temporal schema may evolve and the following example illustrates this evolution.

As stated in Chapter 3, for the following temporal query on a temporal database

Book-Location (Figure 3.10), we have not presented a good enough mechanism to

record the recording times, and the derived relation is a historical relation not a temporal

one:

range of b is BOOK-LOCATION.temporal

retrieve into BOOK65(Book#=b.Book#, Isbn=b.Isbn, Shelf=b.Shelf)

where b.Book# = "00065"

w hen b overlap b

as of "20/10/88"

A derived relation (assume that the transaction was taken on 25th November) is

125

Book# Isbn Shelf

Event time

from to

00065

00065

0-999-99999-0

0-999-99999-0

cbOOl

cb003

26/6/88

15/9/88

15/9/88
OO

However, there are three recording times which have not been captured:

25/11/88 - the system time for the retrieve transaction;

20/10/88 — the (as of) best known time for the query; and

1/10/88 — the recording start time for the entity states of Book# 00065.

How can we create the mechanism? In [Snodgrass & Ahn 1985], the authors

proposed an example which captured the third recording time 1/10/88. The derived

relation is:

Event time Recording time

Book# Isbn Shelf from to start end

00065 0-999-99999-0 cbOOl 26/6/88 15/9/88 1/10/88 OO

00065 0-999-99999-0 cb003 15/9/88 OO 1/10/88 oo

The result presented the original information about the observation of entity

state of Book# 00065. However, such a representation does not satisfy the definition:

recording time is autom atically m aintained (presented) by TDBM S after each

transaction. To be satisfied with the definition, a semantics for the retrieve tuple

calculus has been proposed in [Snodgrass 1987]:

R '={« (r+4 >1 (3 t j) . . . (3 r*)(fi; (r;)A . . . AR k(tk)

a (V/) (1 <l<r. u [I] =tn [/,])

A u [r +1] = Oy a m [r +2] = a Before(u [r +1], u [r +2])

a u [r +3] =current transaction id a u [r +4] =o°

a \ j/

* rT

a (V /)(1 </</:. (B efore(® a , f/[stop]) a Before{tl [start], O p)))

)}

According to the predicates in the fourth line, a result should be:

126

Event time Recording time

Book# Isbn Shelf from to start end

00065 0-999-99999-0 cbOOl 26/6/88 15/9/88 25/11/88 OO

00065 0-999-99999-0 cb003 15/9/88 OO 25/11/88 oo

We capture the first recording time (25/11/88) here. However, such a time

attribute makes no sense for the observation of entity state! To present the exact

semantics for the transaction, we need to deal with two recording times at the same

time, like:

Book# Isbn Shelf

event time recording time 3 recording time 1

from to start to start to

00065

00065

0-999-99999-C

0-999-999994

cbOO:

cbOO:

26/6/88

15/9/88

15/9/88
oo

1/10/88

1/10/88

OO

oo

25/11/88

25/11/88

OO

oo

For the first tuple in this relation, it means that:

we made an observation on 1st October (and it was still valid before 25/11)

about the entity state: Book# 00065 was on the shelf cbOOl during the time 26/6 - 15/9;

and such an observation was retrieved by the system on 25/11.

W e have got two recording times for one relation! Now the system time is the

first recording time (25/11/88), not the third one (1/10/88) as before. Maybe we would

like to capture another recording time (20/10/88) as well, although it can be included in

the interval (1/10/88 - ©o). They will cause the temporal schema to change after the

transaction. Therefore, a temporal query language should support an evolving temporal

schem a , where the schema is allowed to change over recording time. How to capture

the history of schema is a problem. To interpret the data correctly, one must create the

appropriate data structure from the schema history information corresponding to the

time that data was recorded. The implication is that several versions of the data structure

may be handled even when a query requests only the current data.

M ost temporal languages include no support for temporal schema evolution,

even though non-tem poral schema evolution (i.e., the evolution of user-defined

schemas) [Lum et al. 1984]. If the user-defined schema does evolve there are clearly

127

implications for temporal databases that are distinct from those of temporal schema

evolution. Thus, more study is needed for handling the evolution properly.

6.5 Integrity of Time Attributes

Because time is ordered, all of the tuples and attributes of the same entity in a

temporal database are logically time-ordered. Data in temporal databases can be ordered

in following three forms:

1) a temporal database is a sequence of historical relations indexed along the

recording time, each historical relation indexed along event time;

2) we maybe would like data being ordered in entity, entity state, or observation

of entity orders as well;

3) or we maybe only order the data in tuple level (indexed along the recording

start time).

However, the tuples and attributes in traditional relational databases are totally

unordered. The integrity of TDBMS is more difficult to maintain. It is necessary not

only to maintain the integrity of entity (like in traditional databases), but also of entity

state and of observation of entity. How to maintain them is an open question.

On the other hand, consider that the event time can be changed into assertion

time with the changing history of enterprises, and think about the evolution of

recording time, the complexity of maintaining the integrity among time attributes

themselves can be imagined.

Finally, only one time attribute (recording time) is maintained by the system in

the proposed approach. Therefore, the time order integrity of databases can only be

guaranteed along this time dimension. Such a guarantee is not enough for TDBMS.

W hile the event time attributes can be defined and specified by user (retrieved by the

when clause and modified by the valid clause in TDB), the TDBMS cannot guarantee

the integrity of event time values. For example, we maybe input wrong information into

the BOOK-LOAN relation as follows: Book# 00023 was borrowed by Tony on

20/5/88. However, Book# 00023 was returned by Peter on 23/5/88.

1 28

Book# Isbn Name Address

Date-due

-back

Valid Time Trans. Time

from to start stop

00023

00023

00023

0-999-99999-0

0-999-99999-0

0-999-99999-0

Peter

Peter

Tonv

Park Avn.

Park Avn.

Kelvin St.

12/6/88

12/6/88

20/7/88

12/4/88

12/4/88

20/5/88

OO

23/5/88
oo

12/4/88

23/5/88

25/5/88

23/5/8S
OO

oo

According to the tuple calculus in Chapter 5, such a mistake cannot be detected

automatically by the system. Further study is needed for the time order integrity of

TDBMS.

6.6 Im plementation

Most TDBM Ss have not yet supported an im plem entable temporal query

language, but some of them have a well-defined algebra [Snodgrass 1987, Bolour et al.

1982, M cKenzie 1986]. An implementable language may be demonstrated formally

through a semantics based on the algebra [Snodgrass 1987].

To implement, although the models may be based on some sort o f traditional

models (like relational model or hierarchic model), access methods such as sequential

scan, hashing, and ISAM should be studied again. New storage structures are needed

to obtain adequate perform ance [Snodgrass 1987]. To capture m ore tem poral

semantics, the concepts of entity, entity state, observation of entity, observation of

entity state need more discussion and the syntax for them in the language should be

researched. We also suffer from many semantics problems in the tuple calculus. Thus,

to implement a good system, tuple calculus and the algebra for it need more extensions,

e.g., the semantics for dealing with disjoint tuples.

Temporal database management systems show a lot of interesting attributes on

capturing temporal semantics of information and maintaining temporal information.

However, most of studies are at the conceptual levels. To implement such a system is

still a long term study.

129

R e f e r e n c e s

[Ahn 1986] Ahn, I., Towards an implementation o f database management systems,

with temporal support, Proceedings of the International Conference on Data

Engineering, IEEE Press, New York, 1986

[Ahn & Snodgrass 1986] Ahn, I. and Snodgrass, R., Performance Evaluation o f

a Tem poral D atabase M anagem ent System , P roceedings of ACM

SIGM OD’86, SIGMOD Record, Vol.15 No.2, June 1986

[Allen 1983] Allen, J. F., M aintaining K nowledge about Tem poral Intervals,

Communications of the ACM, Vol.26, N o.l 1, November 1983

[Anderson 1983] Anderson, T. L., M odelling Events and Processes at the

Conceptual Level, Proceedings of the Second International Conference on

Databases, Great Britain: Wiley Heyden Ltd., 1983

[Ariav 1 986] Ariav, G., A Temporally Oriented Data M odel , ACM Transactions

on Database Systems, Vol. 11, No. 4, December 1986

[Ariav & Morgan 1981] Ariav, G. and Morgan, H. L., M DM: Handlling the time

dimension in generalized DBMS, Working Paper, Dept, of Decision Sciences,

The Wharton School, University, of Pennsylvania, May 1981.

[Ben-Zvi 1982] Ben-Zvi, J., The Time relational M odel , PhD. D issertation,

University of California, Los Angeles 1982

[Bolour et al. 1982] Bolour, A., Anderson, T. L., Deketser, L. J. and W ong, H.

K. T .,The role o f time in information processing: A survey, ACM SIGMOD

Record, Spring 1982

[Bubenko 1977] Bubenko, J. A., Jr., The Tem poral D im ension in Inform ation

Modelling, in "Architecture and Models in Data Base Management Systems",

North-Holland Publish Co., 1977

[Bubenko 1980] Bubenko, J. A. Jr., Inform ation m odelling in the context o f

system development, Proceedings of IFIP Congress 80, 1980

130

[Clifford & Tansel 1985] Clifford, J. and Tansel, A. U., On An Algebra For

Historical Relational Databases: Two Views, Proceedings of ACM SIGMOD

International Conference on Management of Data. Ed.S. Navathe, May 1985

[Clifford & Warren 1983] Clifford, J. and W arren, D. S., Form al Semantics fo r

Time in Databases, ACM Transactions on Database Systems, V ol.8, No.2,

June 1983

[Codd 1979] Codd, E. F., Extending the database relational m odel to capture more

meaning, ACM Transactions Database System, Vol.4, No.4, December 1979

[C opeland 1 982] Copeland, G., W hat I f M ass Storage Were Free?, IEEE

Computer, Vol. 15, No.7, July 1982

[Copeland & Maier 1984] Copeland, G. and Maier, D., M aking Sm alltalk a

Database System, Proceedings of ACM SIGMOD International Conference on

Management of Data, Ed. B. Yormark, Boston, June 1984

[Date 1982] Date, C. J., A Formal D efinition o f the Relational M odel ACM

SIGMOD Record, Vol. 13, N o.l, September 1982

[Date 1987] Date, C.J., A Guide to the SQL Standard, Addison-W esley Publishing

Company, 1987

[Findler & Chen 1971] Findler, N. and Chen, D., On the problem s o f time

retrieval, temporal relations, causality, and coexistence , Proceedings of the

International Joint Conference on Artificial Intelligence, Imperial College,

September 1971

[Gadia 1 9 8 8] Gadia, S. K., A H om ogeneous R ela tiona l M odel and Q uery

Languages fo r Temporal Databases, ACM Transactions on Database Systems,

Vol. 13, No.4, December 1988

[Gadia & Yeung 1988] Gadia, S. K. and Yeung, C. S., A Generalized M odel fo r

A Relational Temporal Dtabase, Proceedings of ACM SIGMOD International

Conference on Management of Data, 1988

131

[Gallon et al. 1987] Gallon, A. P. et al., Temporal logics and their applications

Academic Press Limited, London 1987

[Garcia & Wiederhold 1982] G arcia-M olina, H. and W iederhold, G., Read-

Only Transactions in a Distributed Database, ACM Transactions on Database

Systems, Vol.7, No.2, June 1982

[Held et al. 1975] Held, G.D., Stonebraker, M.R. and W ong, E., INGRES - A

relational data base system , Proceedings of the 1975 National Computer

Conference, Vol.44, AFIPS Press, 1975

[Jones & Mason 1980] Jones, S. and Mason, P. J., Handling the time dimension

in a database, Proceedings of the International Conference on Data Base,

Heyden, British Computer Society, July 1980

[Jones & Motro 1986] Jones, S. and Motro, A., The Time Warp M echanism fo r

Database Concurrency Control, Proceedings of the International Conference

on Data Engineering, Los Angeles, CA, IEEE Com puter Society Press,

February, 1986

[Katz et al. 1986] Katz, R. H., Anwaruddin M. and Chang, E., A Version Server

fo r Com puter-Aided Design Data, 23rd Design Automation Conference

Proceedings, ACM/IEEE, Las Vegas, NV, June 1986

[Klug 1982] Klug, A., Equivalence o f relational algebra and relational calculus query

languages having aggregate functions, J. ACM, Vol.29, No.3, July 1982

[Klopprogge 1 983] Klopprogge, M. R., Entity and Relationship H istories: A

Concept fo r Describing and Managing Time Variant Information in Databases

, PhD. Dissertation, Universitat Karlsruhe, 1983

[Lum et al. 1984] Lum, V. et al., D esigning DBMS Support fo r the Temporal

Dimension , ACM SIGMOD'84, May 1984

[McDermott 1 9 8 2] M cD erm ott, D ., A tem poral logic fo r reasoning about

processes and plans, Cognitive Science 6, 1982

132

[McKenzie 1986] McKenzie, E., Bibliography: Tem poral D atabases, A C M

SIGMOD Record, V ol.15, No.4, December 1986

[McKenzie & S n od grass 1987A] M cKenzie, E. and Snodgrass, R., Schem e

Evolution and the Relational Algebra, Technical Report TR87-003, Computer

Science Department, University of North Carolina at Chapel Hill, March

1987

[McKenzie & Snodgrass 1987B] McKenzie, E. and Snodgrass, R., Supporting

Valid Time: An Historical Algebra and Evaluation, Technical Report TR87-

008, Computer Science Department, University of North Carolina at Chapel

Hill, April 1987

[McKenzie & S n odgrass 1987C] McKenzie, E. and Snodgrass, R., Extending

the Relational Algebra to Support Transaction Time, ACM SIGMOD Record,

V ol.16, No.3, December 1987

[Oxborrow 1986] Oxborrow, E., Databases and Database Systems: Concepts and

Issues, Chartwell-Bratt, 1987 printed

[Reed 1978] Reed, D., Naming and Synchronization in a Decentralized Computer

System , PhD. Dissertation, M.I.T., September 1978

[R escher & Urquhart 1971] Rescher, N. and U rquhart, A., Tem poral Logic,

Springer-Verlag, New York, 1971

[Roth et al. 1988] Roth, M. A., Korth, H. F. and Silberschatz, A., E x ten d ed

Algebra and Calculus fo r Nested Relational Databases, ACM Transactions on

Database Systems, Vol. 13, No.4, December 1988

[Sacerdoti 1977] Sacerdoti, E.D., A Structure fo r Plans and Behavior, Elsevier

North-Holland, New York, 1977

[Schueler 1977] Scheler, B., Update Reconsidered, In "Architecture and Models

in Data Base M anagem ent Systems", Ed. G. M. N ijssen-N orth Holland

Publishing Co., 1977

133

[S eg ev & Shoshani 1987] Segev, A. and Shoshani, A., Logical M odeling o f

Temporal Data , ACM SIGMOD Record Vol. 16, No.3, December 1987

[Sloman 1978] Sloman, A., The Computer Revolution in Philosophy , Hassocks,

Harvester Press, 1978

[Snodgrass 1982] Snodgrass, R., Monitoring D istributed Systems: A Relational

A pproach , PhD. Dissertation, Computer Science Departm ent, Carnegie-

Mellon University, December 1982

[S n o d g ra ss 1 9 8 4] Snodgrass, R., The Tem poral Query Language TQuel,

Proceedings of the Third ACM SIGAct-SIGMOD symposium on Principles

of Database Systems, April 1984

[Snodgrass 1986] Snodgrass, R., Research Concerning Time in Databases Project

Summaries, SIGMOD Record, Vol. 15, No.4, December 1986

[Snodgrass 1987] Snodgrass, R., The Temporal Query Language TQuel, ACM

Transactions on Database Systems, Vol. 12, No.2, June 1987

[Snodgrass & Ahn 1985] Snodgrass, R. and Ahn, I., A Taxonomy o f Time in

Databases, Proceedings of ACM SIGMOD International Conference on

Management of Data, Ed.S. Navathe, May 1985

[Snodgrass & Ahn 1986] Snodgrass, R. and Ahn, I., Temporal Databases, IEEE

Computer, September 1986

[Snodgrass & G om ez 1986] Snodgrass, R. and Gomez, S., Aggregates in the

temporal query language TQuel, Technical Report TR86-009, Computer

Science Dept., Univ. of North Carolina, Chapel Hill, March 1986

[Steedm an 1977] Steedman, M. J., Verb, time and m odality , Cognitive Science

Vol. 1(2), April 1977

[Ullman 1982] Ullman, J.D., Principles o f Database Systems, 2nd ed. Computer

Science Press, Rockville, Md., 1982

134

Append ix A. The sy n tax of TQuel [Snodgrass 1987]

TQuel augments five Quel statements: create, retrieve, append, delete, and replace.

cbool expression> returns a value of type Boolean

<expression> returns a value of type integer, floating point, or temporal

<attribute> the name of an attribute

<relation> a relation name

<string> a string constant

ctuple variable> the name of tuple variable

<attribute specs> a list of the names and types of the user-specified attributes
e empty

cTQuel augmented> ::= ccreate stmt>

I <retrieve stmt>

I <append stmt>

I<delete stmt>

I <replace stmt>

<create stmt> ::= create <persistent> <history> <attribute specs>
<persistent> ::= e I persistent

<history> ::= e I interval I event

cretrieve stmt> ::= <retrieve head> -cretrieve tail>

<retrieve head> ::= retrieve <into> <target list> cvalid clause>

<retrieve tail> ::= cwhere clause> cwhen clause> <as-of clause>

<into> ::= e I unique I <relation> I into <relation> I to <relation>

ctarget list> := e I (ctuple variable> .all) I (ct-list>)

<t-list> := ct-elem> I ct-list>, ct-elem>

<t-elem> := cattribute> cis> cexpression>

<is> := is I = I by

<append stmt> ::= append cto> ctarget list> cm od stmt tail>

<to> ::= crelation> I to crelation>

<delete stmt> ::= delete ctuple variable> cm od stmt tail>

<replace stmt> ::= replace ctuple variable> ctarget list> cm od stmt tail>

<mod stmt tail> ::= cvalid clause> cwhere clause> cwhen clause>

cvalid clause> ::= cvalid> cfrom clause> cto clause> I cvalid> cat clause>

<valid> ::= e I valid

<from clause> ::= e I from ce-expression>

135

<to clause>

<at clause>
<where clause>

<when clause>

<as-of clause>

cthrough clause>

<e-expression>

<i-expression>

<either-expression>

<event element>

<interval element>

<temporal constant>

<temporal pred>

= e I to <e-expression>

= at <e-expression>
= e I where cbool expression>

= e I when ctemporal pred>

= e I as of <e-expression> cthrough clause>

= e I through ce-expression>

= cevent element>

I begin^ of ceither-expression>

I end of ceither-expression>

I (ce-expression>)

::= cinterval element>

I ceither-expression> overlap ceither-expression>

I ceither-expression> extend ceither-expression>

l (<>)

::= ce-expression> I ci-expression>

::= ctuple variable>

::= ctuple variable> I temporal constant>

::= cstring>

::= cinterval element>

I cevent element>

I ceither-expression> precede ceither-expression>

I ceither-expression> overlap ceither-expression>

I ceither-expression> equal ceither-expression>

I ctemporal pred> and ctemporal pred>

I ctemporal pred> or ctemporal pred>

I ctemporal pred>

I not ctemporal pred>

Note that the create statement has not been discussed in the dissertation. It defines

a new relation and provides a scheme for that relation. Persistent, interval, and

event keywords are present with the create statement. If the persistent keyword is

used, then the relation is either a rollback or a temporal relation. If the interval or

event keyword is used, the relation is either a historical or temporal relation. If none of

these keywords is used, the relation is a conventional snapshot relation.

1 36

Append ix B. TQuel Defaul t s [Snodgrass 1987]

The defaults assumed in the language will be important for the semantics of the

language. The defaults for the additional clauses in TQuel will be discussed as follows.

When one or more of these clauses are not provided by the user, it is assumed to take a

defaults value. The user should be careful when only a few clauses are defaulted,

because the defaulted clause(s) may be inappropriate.

The default of the where clause in TQuel is set as the default in Quel to "where

true".

If only one tuple variable (say, I) is used, and it is associated with an interval

relation, then the defaults of the retrieve statement are as follows:

valid from begin of / to end of /

when I overlap "now"

as of "now"

These defaults say that the result tuple is to start when the underlying tuple started

and stop when the underlying tuple stopped and the query is to be executed on the

current historical state.

When an event relation is associated with the one tuple variable (say, E) the default

is

valid at E

when true

as of "now"

specifying simply that the result tuple was valid at the same instant the underlying

tuple was valid.

When two or more tuple variables are used, and the tuple variables associated with
interval relations involved in the query are tl t2 tk then the default temporal

clauses are the following:
valid from begin of (tl overlap t2 . • • overlap tk) to end of overlap

(tj overlap t2 . . . over lap tk)

when (tj overlap t2 . . . overlap tk) overlap "now"

as of "now"

137

These clauses state that the underlying tuples must be consistent; that is, they are all

valid for the entire interval over which the resulting tuple is valid. Tuple variables

associated with event relations are ignored in this case.

For the append statement, the defaults are as follows:

valid from "now" to "forever"
when (tj overlap . . . overlap tk) overlap "now"

This means that the tuples used to supply values for the new tuples to be appended

should be currently valid, and that the new tuples should be considered to have become

valid immediately.

For the delete statement, the defaults are as follows:
delete t0

valid from "now" to end of t0

when (tQ overlap tl overlap . . . overlap tk) overlap "now"

These defults imply that the deletion only applies to information valid now or in the

future.

If t0 was associated with an event relation, the default is as follows:

delete t0

valid at t0

when (t0 overlap^ overlap . . . overlap tk) overlap "now"

Note that in the original paper "t0 overlap" did not appear; this is assumed to be a

misprint.

For the replace statement, the defaults are as follows:
replace t0

valid from "now" to end of t0

when (t0 overlap tj overlap . . . overlap tk) overlap "now"

These defaults follow from the fact that a replace is roughly equivalent to a delete

followed by an append. As discussed in Section 5.3.2.1, the default for the w hen

clause in the replace statement should be that there is no when clause in it.

138

Appendix C. S e m a n t i c s of TQuel [Snodgrass 1987]

The semantics o f TQuel uses the snapshot relational database model as the

underlying model of TDB by embedding the four-dimensional temporal relation in a

two-dimensional snapshot relation. In this way the semantics can be expressed in a

traditional tuple calculus formalism.

C.l Quel semantics

The tuple calculus statement for the skeletal Quel statement
range of t } is R l

range of tk is R k
retrieve (H1.D jl . . . ,tir D jr)

w here \j/

is
{ u W l (3 t ,) . . . (3 A . . . AR k(tk)

AW f l] =ri/I./y I A . . . AW |> I =(,r[/r]

A Y ') l

Refer to the section 4.2.1.2. No com plete formal semantics of Quel has been

specified. Ullman has defined a tuple relational calculus semantics for Quel statements

without aggregates [Ullman 1982], and Klug has treated aggregates in the more general

case [Klug 1982].

C.2 TQuel retrieve statement's semantics

The tuple calculus statement for a TQuel retrieve statement is very similar to that of

a Quel retrieve statement; additional components corresponding to the valid, when,

and as-of clauses are also present. Although the expressions appearing in all three

clauses are sim ilar syntactically, having their origins in path expressions, their

semantics are quite different.

A formal semantics for the TQuel retrieve statement can be specified as follows. Let
O e be the function corresponding to the e-expression e. Let Tr be the predicate

corresponding to the temporal predicate x. O e and TTwill contain only the functions

First and Last and the predicates Before , a , v , —■; the rest of the functions, and <X>a

(w here a appears in an as-of clause), can be entirely evaluated at "compile time."

Given the query
range of t l is R j

1 39

range of tk is R k

retrieve (H j . D j j . . . ,Hr . D j r)

valid from v to %

w here \|/

w hen x

as of a through (3

the tuple calculus statement has the following form:
[u {r+4)\ (3 tj) . . . (3 tk) (R j (t j) a . . . a R k(tk)

aw [1] a . . . a u [r] = t ir\ j r]

a u [r+ 1] = O y A u [r +2] = a B e f o r e (u [r +1] ,u [r +2])

a u [r + 3] = cu r r e n t t ransa c t ion id a u [r + 4] = OO

A \j/

a (V /) (1 < l < k . { B e f o r e (O a , t t [s top])

a B e fo r e (t l [start], Op)))

)}

The first line states that each tuple variable ranges over the correct relation. The

resulting tuple consists of r explicit attributes and four implicit attributes (f rom, to,

star t , a n d s top). The second line states the origin of the values in the explicit attributes

o f the derived relation. The third line originates in the valid clause and specifies the

values of the f r o m and to valid times. Note that these times must obey the specified

ordering, i .e. , f r o m is before to. The fourth line specifies the values of the s t a r t and

s t o p transaction times, " c u rr e n t t r a n s a c t i o n i d " is replaced with an integer

corresponding to the current transaction time (time granuarity is assumed to be calandar
date in this dissertation). The next line (\j/) originates in the where clause and is from

the Quel semantics. The sixth line (1^) is the predicate from the when clause. The last

two lines originate in the as-of clause and states that the tuple associated with each

tuple variable must have a transaction interval that overlaps the interval specified in the
as-of clause (d>a and d>p will be constant time values).

C.3 The semantics of TQuel modification statements

C.3.1 Append

The semantics for the skeletal TQuel append statement is:
range of t } is R }

140

range of tk is R k
append to R (til .D jj . . . ,nr D jr)

valid from v to %

where y

when x

then the tuple calculus statement for interval append is redefined as the following

form:
R '=R u [u (r*4 \ (3 t ,) . . . (3 t k)(R ,(t,) a . . . a R k(tk)

a (V /) (\<l<r. u [/]

a u [r +3] =current transaction id a u [r +4] = ^

A\J/

a F t

A (V /)(l <l<k.tt [stop] = oo)

A ((3 s)(/?(s)A(V/) (l< /< r. s [l] = u [/])

A (C / v C / v C / v C /))

v ((3 s)(— \R(s)A(yi) (1 <l<r. s [l] = u [I])
a u [r + 1] = O v a u [r +2] = O ^)))

)}

where,
Cj a = (Before(s[r+l], Oy) a Before(Ov, s[r+ l]) a Before(s[r+2], Oy)

a u[r+ l] = s[r+2] a u[r+2] =

C2 a = ((Before(Oy, s[r+ l]) A Before(s[r+2], &%))
a ((u[r+l] = s[r+2] a u[r+2] = v (u[r+l] = Oy a u[r+2] = s[r+l]))

C3 a = (Before(d>y? s[r+l]) a Before(s[r+l], O ^)

a B efo re(0 ^? s[r+2]) a u[r+l] = Oy a u[r+2] = s[r+ l])

C4 a = (Before(s[r+l], O v) a B efo re(0 ^5s[r+2]) a False)

The four clauses C7 a , C2 a , C3 a and C4 a handle the various overlap situations

between the tuples to be added and the tuples identical in the explicit attributes that

already exist during this valid interval. The last two lines o f the expression for the

derived relation R ' state that the valid times are as specified in the valid clause if no

such tuples exist during this valid interval.

C.3.2 Delete

The TQuel delete statement of intervals is:
range of t1 is R }

141

ra n g e o f tk is R k

ra n g e o f s is R

d e le te s

va lid from v to %

w h ere \|/

w h en x

then the tuple calculus statement is:
R ' = { u {r+4 }l (3 t j) . . . (3 tk)(3 sXRj i t j) a . . . a R k(tk)

A (V /)(1 < l < k . [Stop] = oo)

a (V /) (1 </<r. u [l] = s [I]) a u [r+1] =5 [r+1]

a u [r+2] =s [r+2] a u [r+3] =s [r+3]

a ((lAffected a u [r+4] =s [r+4])

v (Affected a u [r+4] =current transaction i d)))}

u { « >1 (3 t,) . . . (3 tk)(3 sXRj i t j) A . . . AR k(tk)

A (V /) (l < / < ^ . t z [Stop] = oo)

a (V /) (l< /< r . u [I] =s [I]) a Affected

a (c / v C / v C / v C /)

a u [r+3]=current transaction id a u [r+4]= oo

)}

w here,

A ffected = (R (s) a \i/'aTt a s [r+4] =©o

a (B efore(5 [r+1], a B efore(O v, s [r+2]))

C j d = (B efore(s[r+ l], <f>v) a B efore(O y, s[r+2]) a B efore(s[r+2],

a u [r+ l] = s[r+ l] a u[r+2] = O y)

C2 d = (B efore(O v, s[r+ l]) a (B efore(s[r+2], a False)

C3 d = (B efore(O v, s [r+ l]) a B efore(s[r+2], O ^) a B e fo r e (0 ^ ? s[r+2])

a u [r+ l] = a u[r+2] = s[r+2])

C4 d = ((B efore(s[r+ l], O v) a Before(d>^5 s[r+2]))

a ((u [r+ l] = a u[r+2] = s[r+2]) v (u [r+ l] = s[r+ l]

a u[r+2] = O y))

There are tw o sets in the tuple calcu lus statem ents o f d e le te operation . One

contains all tuples in past historical relations o f R and all tuples in the current historical

relation o f R that are not A ffe c te d , that is, that do not satisfy the predicate in the

w h e r e or w h en clauses or w hose valid intervals do not overlap with the specified

valid interval. Another set deals with the existing tuples that on ly partially should be

deleted. T hose portions that should not have been deleted are added back in the second

set. The clauses C jd , C 2 d , C3 d , and C4 d calculate the valid tim es o f those tuples.

142

3.3 Replace

The TQuel replace statement o f intervals is:
range of t j is /?y

range of tk is R k

range of s is R
replace s(t i r D j r . . ,tir D j r)

valid from v to %

where \\f

when t

then the tuple calculus statement for interval replacing has the follow ing form:
R ' = { « (r+4 >1 (3 (]) . . . (3 t*)(3 s) (« ; (f ;) A . . . aR k(tk)

A(\ / l) (\<l<k. t l [stop] = oo)

a (V /) (l< /< r . u [I] =s [/]) a u [r+1] =5 [r+1]

a u [r+2] =s [r+2] a u [r+3] =s [r+3]

a ((lAffected a u [r+4] =s [r+4])

A(Affected a u [r+4] =current transaction i d)))}

u { « {r+4 >1 (3 t j) . . . (3 rt)(3 s) (« ; (t y) A . . . A R k(tk)

A(\ f l) (\<l<k. t [[stop] = oo)

a (V /) (l< /< r . u[l] =s [I]) a A ffected

a (C / v C / v C / v C /)

a u [r+3] =current transaction id a u [r+4] = °o

)}

U (M (r+4 }l (3 t ,) . . . (3 tk)(Rj(t ,)A. . . . * R k(tk)

a (V /) (\<l<r. u [l] =tit \ j ,])

a u [r +3] =current transaction id a u [r +4]=°o

a\j/

a F t

a (V /)(1 < /< ^ .^ [stop] = oo)

a ((3 s)(/? (s)a (V /) (l< /< r . .v [/] =u [I])

a (C j flv C / v C / v C /))

v ((3 s)(— \R(s)a (VI) (1 <l<r. s [l] = u [I])

a u [r + 1] = 0>v a u [r +2] = O ^)))

)}

Here, the replace statements are exactly equal to the delete statements com bining

with the append statements. Three sets are processed. The first tw o o f them are like

143

the statements in d e le te operation, the third is almost like those in the a p p e n d

statements. The third set appends the tuples with those portion which have not existed

in the valid interval; and it appends the new tuples which have not existed during the

entire valid time as the predicates stated in the last two lines. However, the replace

operation cannot replace any non-existent tuple. That is, it is not necessary to append

the tuples which have not existed during the valid interval to the database. Therefore,

the predicates in the last two lines are redundent (c.f., Chapter 5).

144

A ppendix D. The Syntax of TOSQL [Ariav 1986]

<query>::= <b-query> <obj-spec> <time-spec> <time-qualif>

<b-query>::= SELECT <att-spec> FROM <cube-name>
<att-spec>::= * I <attj >,..., <attn>

<cube-name::= a name of a properly defined database cube

<obj-spec>::= ALL-OBJECTS I WHERE <selection-expression>

<prevalence-mode>

<selection-expression> relates attribute-references and literals through comparison

operators (e.g., =, >, <), or Boolean operators (AND, OR,

and NOT). Parentheses enforce desired order of evalution.

<prevalence-mode>::= EVERYWHEN I SOMEWHEN

<time-spec>::= <time-period> <time-dimension>

<time-period>::= AT <time-point>

I WHILE <selection-expression> <temp-boundaries>

I DURING (<t> - <t>)

I BEFORE <t>

I AFTER <t>

<time-dimension>::= ALONG RT I ALONG <tsa>

<time-point>::= PRESENT I <t>

<temp-boundaries>::= DURING (-«> - +<») I DURING (<t> - <t>)

<t>::= time value, in Chronons

<time-qualif>::= AS-OF <time-point> <time-dimension>

l • ■ .. w
. J i ' . ' 1 , • ■ ; •

145

