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Abstract 

The East Asian Monsoon (EAM) is an active component of the global climate 

system and has a profound social and economic impact in East Asia and its 

surrounding countries. Its impact on regional hydrological processes may 

influence society through industrial water supplies, food productivity and energy 

use. In order to predict future rates of climate change, reliable and accurate 

reconstructions of regional temperature and rainfall are required from all over 

the world to test climate models and better predict future climate variability. 

Hokkaido is a region which has limited palaeo-climate data and is sensitive to 

climate change. Instrumental data show that the climate in  Hokkaido is 

influenced by the East Asian Monsoon (EAM), however, instrumental data is 

limited to the past ~150 years. Therefore down-core climate reconstructions, 

prior to instrumental records, are required to provide a better understanding of 

the long-term behaviour of the climate drivers (e.g. the EAM, Westerlies, and 

teleconnections) in this region.  

The present study develops multi-proxy reconstructions to determine past 

climatic and hydrologic variability in Japan over the past 1000 years and aid in 

understanding the effects of the EAM and the Westerlies independently and 

interactively. A 250-cm long sediment core from Lake Toyoni, Hokkaido was 

retrieved to investigate terrestrial and aquatic input, lake temperature and 

hydrological changes over the past 1000-years within Lake Toyoni and its 

catchment using X-Ray Fluorescence (XRF) data, alkenone palaeothermometry, 

the molecular and hydrogen isotopic composition of higher plant waxes (δD(HPW)).  

Here, we conducted the first survey for alkenone biomarkers in eight lakes in the 

Hokkaido, Japan. We detected the occurrence of alkenones within the sediments 

of Lake Toyoni. We present the first lacustrine alkenone record from Japan, 

including genetic analysis of the alkenone producer. C37 alkenone concentrations 

in surface sediments are 18µg C37 g
−1 of dry sediment and the dominant alkenone 

is C37:4. 18S rDNA analysis revealed the presence of a single alkenone producer in 

Lake Toyoni and thus a single calibration is used for reconstructing lake 

temperature based on alkenone unsaturation patterns. Temperature 

reconstructions over the past 1000 years suggest that lake water temperatures 
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varies between 8 and 19°C which is in line with water temperature changes 

observed in the modern Lake Toyoni. The alkenone-based temperature 

reconstruction provides evidence for the variability of the EAM over the past 

1000 years. The δD(HPW) suggest that the large fluctuations (∼40‰) represent 

changes in temperature and source precipitation in this region, which is 

ultimately controlled by the EAM system and therefore a proxy for the EAM 

system. In order to complement the biomarker reconstructions, the XRF data 

strengthen the lake temperature and hydrological reconstructions by providing 

information on past productivity, which is controlled by the East Asian Summer 

monsoon (EASM) and wind input into Lake Toyoni, which is controlled by the East 

Asian Winter Monsoon (EAWM) and the Westerlies.  

By combining the data generated from XRF, alkenone palaeothermometry and 

the δD(HPW) reconstructions, we provide valuable information on the EAM and the 

Westerlies, including; the timing of intensification and weakening, the 

teleconnections influencing them and the relationship between them. During the 

Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM 

was suppressed, whereas, during the Little Ice Age (LIA), the influence of the 

EAWM dominated with time periods of increased EASM and Westerlies 

intensification.  The El Niño Southern Oscillation (ENSO) significantly influenced 

the EAM; a strong EASM occurred during El Niño conditions and a strong EAWM 

occurred during La Niña. The North Atlantic Oscillation, on the other hand, was 

a key driver of the Westerlies intensification; strengthening of the Westerlies 

during a positive NAO phase and weakening of the Westerlies during a negative 

NAO phase. A key finding from this study is that our data support an anti-phase 

relationship between the EASM and the EAWM (e.g. the intensification of the 

EASM and weakening of the EAWM and vice versa) and that the EAWM and the 

Westerlies vary independently from each other, rather than coincide as 

previously suggested in other studies.  
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Introduction 

1.1 Motivation 

1.1.1 The importance of climate reconstructions over the past 
1000 years 

In the past 1000 years, the Earth’s climate has fluctuated as a result of natural 

forcing (e.g. volcanic and solar changes) (Crowley, 2000), which have resulted in 

two globally recognised climate events; the Medieval Warm Period (MWP) and 

the Little Ice Age (LIA). However, in recent times, the rate and magnitude of 

climate change cannot be explained by natural variability alone. Anthropogenic 

forcing, through the release of green-house gases by human activities, has been 

attributed to the recent rise in temperature (IPCC, 2013). These greenhouse 

gases will continue to rise and are superimposed on natural climate variability. 

To understand how regional climate has and will respond to anthropogenic 

forcing, we need to analyse climate change prior to 1850AD. Climate 

reconstructions from the past 1000 years are particularly important, because 

they encompass a period of natural climate forcing (prior to 1850AD) into a 

period of extreme anthropogenic forcing (post 1850AD). Although there is 

considerable uncertainty about what measures humans will put in place to abate 

further climate change, it is clear that the Earth will continue warming and the 

legacy of CO2 that is currently in the atmosphere will continue to pose 

consequences for climate. In order to understand future climate change better, 

it is therefore necessary to have an understanding of how and why the natural 

climate has varied in the past. 
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Projecting future climate change is achieved by using climate models and the 

accuracy of climate models relies on using past climate reconstructions for 

validation (Li et al., 2010). The accuracy of models is important for projecting 

future climate in response to different scenarios of greenhouse gas 

concentrations and thus for quantifying climate change over the next century (Li 

et al., 2010). Climate reconstructions, particularly over the past 1000 years, are 

therefore imperative for understanding natural climate variability as a baseline 

and in-turn to better project future climate variability.  

1.1.2 Reconstructing East Asian Monsoon in Northern Japan  

In particular, variables such as temperature and precipitation are important to 

understand at the regional scale. In East Asia, temperature and precipitation are 

controlled by the strength of the East Asian Monsoon (EAM), which has two 

components; a winter component (EAWM) and a summer component (EASM). The 

EAM is characterised by the annual reversal of the meridional wind system due 

to the thermal contrast between the Pacific Ocean and the Asian continent 

(Wang et al., 2001). The intensity of the EASM and the EAWM is driven by the 

intensity of the North Pacific sub-tropical High (NPSH) (Zhou et al., 2009b, Wang 

et al., 2013a) and the Siberian High (SibH) (Ding, 1990, Zhang et al., 1997, Wu et 

al., 2006a, Gong et al., 2001), respectively. The EAM is connected to the global 

climate system as it influences, and is influenced by ENSO (e.g. Wang et al., 

2003, Zhang et al., 1996, Hong et al., 2005) and changes in the North Atlantic 

(Liu et al., 2013c, Wang et al., 2001). As a result, investigating how the monsoon 

has behaved in the past, and the driving forces behind this variability, are 

required for a better understanding of future climate variability.   

In addition to the global climate system, the EAM also has profound social and 

economic impacts in East Asia and its surrounding countries. Severe damage has 

been caused to the region’s water resources, as well as, agricultural and 

industrial production due to the variability of the EAM. For example, the 

economic loss due to droughts and floods can reach over 200 billion yuan (21 

billion pounds) (Huang et al., 1999, Huang and Zhou, 2002). Monsoon failure can 

also have a devastating impact on droughts in East Asian countries. For example, 

in the summer of 1994, the EAM failed and caused massive droughts, particularly 

in the southern half of Korea, Japan, and central China (World Meteorological 
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Organization 1995). The cause for monsoon failure is not fully understood and 

more research into past monsoon failure events, along with the mechanisms 

responsible for monsoon failure, are imperative.  

The combination of the scientific and societal importance of the EAM is a key 

reason for investigating the variability of monsoon over the past 1000 years.  

High-resolution records from a variety of archives (e.g. stalagmites, lake 

sediments, marine sediments) from East Asia have documented the variability of 

the intensity of the EAM over the past 1000 years (Yamada et al., 2016, Hu et 

al., 2008, Yamada et al., 2010, Lee and Park, 2015). Although there are some 

general similarities in the variability of the EAM between these records, there 

are also large inconsistencies in the magnitude and timing of the strengthening 

and weakening of the EAM between the various reconstructions. Significantly, 

there are even inconsistencies between different stalagmites within the same 

cave (Dykoski et al., 2005, Wang et al., 2005). Recently, it has also been 

suggested that the source of the water vapour recorded in the 18O values of 

stalagmites East Asia (southern and northwestern China) reflect the Indian 

summer monsoon (ISM) area (Yang et al., 2014), rather than the EASM, as 

previously reported. In addition, the relationship between the EASM and the 

EAWM is currently poorly understood. Some researchers’ suggest that the EASM 

and the EAWM are inversely connected, e.g. a strong EASM occurs when the 

EAWM weakens and vice versa (Liu et al., 2009b, Sagawa et al., 2014). Whilst 

others suggest that there is no inverse relationship between the EASM and the 

EAWM, e.g. a strong EASM and strong EAWM occur together and a weak EASM and 

weak EAWM occur together (Yan et al., 2011b).  

Although the climate in Hokkaido is mainly driven by the EAM, the Westerlies 

also influence climate in this region. The Westerlies transport cold, dry air-mass 

to Hokkaido (Fukusawa, 1999). The variability of the impact of the Westerlies 

over the past 1000 years in Japan is limited (Fukusawa, 1999). Often the 

intensification of the Westerlies is associated with the EAWM in Japan (e.g. 

Yamada, 2004, Yamada and Fukusawa, 1999).Therefore multi-proxy records from 

EAM-dominated regions, which are isolated from the interference of the ISM are 

required to investigate the (1) magnitude and the timing of the variability of the 

EAM, (2) the driving mechanisms of the EAM (3) the relationship between the 
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EASM and the EAWM and (4) the relationship between the EAM and the 

Westerlies, over the past 1000 years. 

 

1.2 Lake Toyoni as a palaeo-climate archive 

Natural archives such as lacustrine sediments, speleothems, tree-rings, ice cores 

or loess can be utilised to reconstruct past climate variability. Lacustrine 

sediments are advantageous because they provide unique and continuous 

sedimentary archives and they also have high sediment rates, which facilitate 

high-resolution climate records (Castañeda and Schouten, 2011). As a result, 

lake sediments provide valuable palaeo-climate reconstructions (Castañeda and 

Schouten, 2011). Lacustrine sediments from numerous lakes, using various 

proxies, provide detailed information of past changes in climate and the 

environment.In particular, Lake Toyoni represents a key natural archive to 

reconstruct past climate ariabiliity because  the lake is situated at the boundary 

of the northern edge of the EASM (34-44°N; Xu et al., 2010b) making it sensitive 

to the enhancement of the EASM (Schöne et al., 2004). 

1.3 Climate and environmental proxies 

Instrumental records provide the most reliable information to understanding 

natural climate variability. However, the short length of human instrumental 

records (ca. 150 years) does not provide us with a long enough time-series to 

provide a natural baseline from which human induced changes deviate. Prior to 

instrumental records, we must rely on climate reconstructions using proxies. 

Proxies of climate can either be from historical documents (historical proxies) or 

from natural recorders of climate (natural proxies).  

Molecular organic proxies are a common tool in the reconstruction of past 

biological assemblages, climate and environmental conditions (review by 

Castaneda and Schouten. 2011). Biomarkers, or chemical fossils, are specific 

organic compounds indicating the existence, past or present, of living organisms 

(Castañeda and Schouten, 2011). Analysis of biomarkers preserved in lake 

sediments can provide a wealth of information (Castañeda and Schouten, 2011) 

as they provide an indicator of environmental conditions at the time of 
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deposition (Eglinton and Eglinton, 2008) and they are easy to analyse. Due to 

these strengths, the use of lipid biomarkers for climate reconstruction is 

becoming increasingly established in the lacustrine environment (Castañeda and 

Schouten, 2011). The following sections provide an overview of the biomarkers 

used in this PhD research.  

 

Figure 1-1: Diagram of Lake Toyoni and they key proxies (e.g. higher plant waxes and 
alkenones) used in this study. Wind and run-off input into Lake Toyoni are key processes in 
this lake, which can be studying using XRF elemental data.  

 

1.3.1 n-alkanes 

n-Alkanes (n-alkanols and n-alkanoic acids) are stable organic compounds that 

are generally well preserved in sediments. n-Alkanes are relatively easy to 

extract and all hydrogen atoms in n-alkanes are carbon-bound and therefore 

non-exchangeable, at least at lower temperatures (Schimmelmann et al., 1999). 

n-Alkanes originate from different biological sources. The long-chain homologues 

(C27-C35) are derived from terrestrial higher plants waxes (Eglinton and Hamilton, 
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1967; Figure 1-1). Whereas the short chain homologues (C17–C21 n-alkanes) are 

derived from aquatic algae (Giger et al., 1980, Cranwell et al., 1987). In 

between are the mid-chain homologues (C23, C24 and/or C25 n-alkanes), which 

are produced by submerged aquatic macrophytes (Ficken et al., 2000). 

Terrestrial plants waxes are synthesised on plant leaf surfaces (Sachse et al., 

2012), which protect the leaf surfaces (Eglinton and Hamilton, 1967). They 

protect the leaf from water loss (Cameron et al., 2006; Daly, 1964) and insect 

damage (Eglinton and Hamilton, 1967). Leaf wax n-alkanes are removed by rain 

and wind and subsequently transported to the lacustrine sediments via water 

(Castañeda and Schouten, 2011) or wind erosion (Hou et al., 2007).  

The molecular compositions of n-alkanes provide a number of n-alkane based 

indices; for example, the carbon preference index (CPI index), Average Chain 

Length (ACL) and the proportion aquatic (Paq). The CPI index gives information 

of the extent of odd over even carbon number predominance (Bray and Evans, 

1961). It is calculated using the following equation developed by Bray and Evans 

(1961; Equation 1). n-Alkanes produced by higher plants have a strong odd over 

even carbon number predominance (expressed as the CPI). In contrast, algal n-

alkanes do not contain the strong odd over even carbon number predominance. 

Variations in the CPI index provides information on the biological origin of the 

source (e.g. Simoneit et al., 1979). For example, high CPI values (>3) results 

from a strong odd/even predominance which is a characteristics of higher plant 

wax n-alkanes. In contrast, n-alkanes from bacteria and algae show a weak 

odd/even predominance and give low CPI values (~1) (Cranwell et al., 1987).  

 

    
 

 
 
                   

                   
   

                   

                       
  

 

Equation 1: Carbon preference index (CPI). Cx represents the abundance of an n-alkane with a 

particular number of carbons in its chain (Bray and Evans, 1961). 

Average chain length values indicate the dominant odd-chained n-alkane. The 

ACL value of a sample is calculated for the most abundant odd chained n-alkanes 
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of a homologous series using the equation below (Equation 2; Schefuß et al., 

2003). Variations in the ACL of n-alkanes of terrestrial higher plants occur in 

response to plant stresses (e.g. temperature and/or aridity) (Gagosian and 

Peltzer, 1986, Kawamura et al., 2003) and vegetation type (Cranwell, 1973). By 

investigating the ACL index in lacustrine sediments, palaeo-temperature, 

palaeo-aridity conditions, as well as vegetation change can be inferred.  

    
          

     
 

Equation 2: Average chain length (ACL); Xi represents the n-alkane and Ci the concentration of the n-

alkane. 

 

The Paq index was developed to reflect the relative contribution of aquatic 

macrophytes and emergent aquatic and terrestrial plants (Ficken et al., 2000). It 

is calculated using the following equation developed by Ficken et al. (2000; 

Equation 3). According to Ficken et al (2000), Paq values greater than 0.4 

indicate the dominance of submerged and floating macrophytes (Ficken et al., 

2000). By investigating the Paq index in lacustrine sediments, the contribution of 

n-alkanes from submerged/floating plants can be inferred.  

    
         

                 
 

Equation 3: Proportion aquatic (Paq). Cx represents the abundance of an n-alkane with a particular 

number of carbons in its chain (Ficken et al., 2000).  

 

In addition to the molecular composition of n-alkanes, the hydrogen isotopic 

composition of n-alkanes derived from higher plant waxes (δDHPW) are analysed 

using an isotope ratio mass spectrometry (IRMS). The δDHPW provide a powerful tool 

for investigating hydrological change(e.g. Hou et al., 2008, Sachse et al., 2006) 

because the δD of terrestrial and aquatic n-alkanes records the isotopic signal of 

their environmental water; e.g. rainwater, groundwater, and snow-melt, which 

are all derived from precipitation. Previous studies have found that the δD of 

precipitation (δDPRECIP) is a key control on the δDHPW values (Sauer et al., 2001, 

Sessions, 2006, Hou et al., 2008), therefore; the δDHPW can be used to 
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reconstruct changes in δDPRECIP over a given period of time (e.g. Schefuss et al., 

2005, Pagani et al., 2006). In general, the δDPRECIP reflects a variety of 

hydrological and climate processes including temperature, precipitation amount, 

altitude, latitude, and moisture source (Dansgaard, 1964). Knowledge of the 

controls of the δDPRECIP at the study site is important for interpreting the δDHPW 

from palaeo-climate archives. Therefore prior to using DHPW to reconstruct 

hydrological variability, it is important to identify the controls on the δDPRECIP in 

Hokkaido.  

1.3.2 Alkenones 

Long chain alkenones are a class of C35–C40 unsaturated ketones produced by 

members of the division Haptophyceae. The producer of alkenones in the marine 

environment is dominated by calcifying haptophytes Emiliania huxleyi and 

Gephyrocapsa oceanica in the open ocean (de Leeuw et al., 1980, Volkman et 

al., 1995) and by non-calcifying species Isochrysis galbana and Chrysotila 

lamellosa in the coastal marine setting (Marlowe et al., 1984). However, in 

lacustrine environments, the diversity of haptophytes producing alkenones varies 

according to their ecology and environment. 

Alkenones are of interest because analysis of these compounds provides a 

method for quantitative reconstruction of past water temperature based on the 

degree of unsaturation in the ketone molecule (e.g. Prahl and Wakeham, 1987, 

Brassell et al., 1986, Herbert et al., 2003). The most abundant alkenones 

produced, are those with chain lengths of 37 and 38 carbon atoms with two, 

three or four double bonds (Table 1.1). The carbonyl functional group is either 

located at the second or third carbon in the chain. The relative abundances of 

C37:2, C37:3 and C37:4 alkenones within the synthesising haptophyte species 

changes with growth temperature (Brassell et al., 1986, Prahl and Wakeham, 

1987). When the temperature is warmer, the relative abundance of more 

unsaturated alkenones decreases resulting in high    
  values. This relationship 

has led to the formulation of the alkenone unsaturation index (   
 ; Equation 4a) 

by Brassel et al. (1986). Subsequent research showed that in the marine 

environments there was no empirical benefit to including the tetra-unsaturated 

ketone in the paleo-temperature equation because this alkenone is not abundant 

outside polar and sub-polar regions (Prahl and Wakeham, 1987). The    
   Index 
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was suggested (Prahl and Wakeham, 1987) and has been widely adopted 

(Equation 4b). Calibration equations are used to convert    
 

 and    
   values into 

water temperatures resulting in quantitative reconstructed past water 

temperature.  

Table 1-1: alkenones and their shorthand notation 

Shorthand 
notation 

IUPAC nomenclature 

C37:4Me heptatriaconta-8E,15E,22E,29E-tetraen-2-one 

C37:3Me heptatriaconta-8E,15E,22E-trien-2-one 

C37:2Me heptatriaconta-15E,22E-dien-2-one 

C38:4Et octatriaconta-9E,16E,23E,30E-tetraen-3-one 

C38:4Me octatriaconta-9E,16E,23E,30E-tetraen-2-one 

C38:3Et octatriaconta-9E,16E,23E-trien-3-one 

C38:3Me octatriaconta-9E,16E,23E-trien-2-one 

C38:2Et octatriaconta-16E,23E-dien-3-one 

C38:2Me octatriaconta-16E,23E-dien-2-one 

C39:4 nonatriaconta-10E,17E,24E,31E-tetraen-one 

C39:3 nonatriaconta-10E,17E,24E-trien-one 

C39:2 nonatriaconta-17E,24E-trien-one 

 1 

 

   
  

             

                    
         

   
       

              
 

 

Equation 4: A:    
  calibration equation (Brassell et al., 1986). B:    

   calibration equation (Prahl and 

Wakeham, 1987). 

The global    
   core top calibration equation produced by Conte et al., (2006) 

was developed using 742 samples from around the world. The use of this 

calibration makes it possible to reconstruct SST using marine sediments from any 

location in the world. Whereas the temperature calibration used in lacustrine 

settings depend on the alkenone-producer(s) present within the lake.  

Although the alkenone producers in the marine environment are well 

constrained, the alkenone producer(s) in a given lake depends on their ecology 

and environment. In addition, there can be several alkenone-producers in one 

given lake (Theroux et al., 2010). Alkenone producers in lacustrine environments 

are similar to the haptophyte species Isochrysis galbana (Coolen et al., 2004a) 
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and Chrysotila lamellosa (Sun et al., 2007). In addition, several novel alkenone 

producers, which have not been fully classified taxonomically, have also been 

discovered (D'Andrea et al., 2006). Recently, there have been several key studies 

using environmental genomics to identify the alkenone-produce(s) in lakes (e.g., 

D'Andrea et al., 2006, Randlett et al., 2014) using the 18S molecular marker. The 

18S molecular marker is present in all eukaryotes (Olsen et al., 1986, Woese, 

1987) and therefore provides species level taxonomic resolution (Sogin et al., 

1986, Edvardsen et al., 2000).   

The identification of the alkenone-producer(s) in lakes prior to reconstructing 

temperature is important in order to chose the correct calibration as different 

alkenone-producers have the potential to produce different temperature 

calibrations, individual alkenone-containing lakes require unique calibration 

datasets dependent on species of haptophyte algae present (Chu et al., 2005, 

D'Andrea et al., 2006). Therefore prior to alkenone-based temperature 

reconstructions in lacustrine settings, it is important to identify the alkenone-

prodcer(s) within the lake and determine the response of haptophyte species to 

temperature. There has been several studies which have successfully produced 

temperature calibrations for lakes based on a number of different calibration 

methods. The main site-specific temperature calibration methods are; examining 

surface sediments (Zink et al., 2001; Chu et al., 2005), isolation and culturing of 

alkenone producer(s) to create an experimental calibration (Sun et al., 2007) and 

also filtering water column samples over an extended time period (Toney et al., 

2010; D’Andrea et al., 2011) to produce an in-situ calibration. Zink et al (2001) 

established a temperature calibration by examining surface sediments from a 

transect of lakes in Germany. During this study the best correlation existed 

between the UK’
37 Index and the summer average lake surface temperature (r2 

=0.90). This calibration approach makes large assumptions that all lakes sampled 

contain the same haptophyte species or that different species have the same 

relationship to temperature. Chu et al (2005) also adopted this calibration method 

and examined 37 surface sediments of lakes in China. This study found a good 

correlation between UK’
37 and mean annual air temperature (MAAT) (r2

 = 0.83). 

Toney et al (2010) provide an in-situ calibration for UK
37 for Lake George, ND 

covering a temperature range from 2°C to 22°C. The in-situ calibration was 

derived from sampling temperature and LCA signatures from the lake water 

column at different depths during the haptophyte bloom to establish the 
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relationship between temperature and alkenone signature. They found a 

significant relationship between the UK
37 Index and water temperature (r2

 = 0.75) 

but in contrast to other studies, they found no relationship between UK’
37 and water 

temperature (r2 = 0.14). D’Andrea et al (2011) developed a temperature calibration 

for Lakes in Kangerlussuaq, West Greenland based on UK
37 of filtered alkenones 

and in situ temperature. The combined the results with Zink et al (2001) to extend 

the narrow temperature range. On the other hand, Sun et al (2007) collected and 

isolated Chrysotila lamellosa from an inland saline Lake in China. They created a 

culture-based calibration using the UK’
37 Index that correlated with growth 

temperature varying from 10°C to 22°C. 

Although it is evident that alkenones produced by haptophytes have a unique 

relationship with temperature, it is still not known why haptophytes produce 

alkenones and hence why the variations in alkenone ratios are related to 

temperature. Some early studies have suggested that alkenones are membrane 

lipids, which are produced for fluidity and rigidity (Prahl et al., 1988). This 

would also explain why the unsaturation ratio of alkenones are related to 

temperature; e.g. increased unsaturation at lower temperatures would decrease 

the melting point of the lipids and hence keep membranes fluid. However, other 

studies have suggested that alkenones are not membrane lipids and instead are 

produced for buoyancy (Fernández et al., 1994, Epstein et al., 2001) or energy 

storage (Pond and Harris, 1996, Epstein et al., 2001, Eltgroth et al., 2005). On 

the other hand, the function of alkenones may not be related to the relationship 

between temperature and unsaturation.  Instead, the temperature dependence 

of alkenone unsaturation may reflect different biochemical pathways (Epstein et 

al., 2001). Epstein et al. (2001) suggested that the synthesis and degradation of 

alkenones may require different enzymes with different temperature optima.  

1.3.3 Elemental composition of lacustrine sediments 

In order to compliment the biomarker proxies, bulk elemental compositions via X-

ray Fluorescence (XRF) scanning and carbon/nitrogen (C/N) ratios provide an insight 

into terrestrial and biological processes influencing the sedimentary record, which 

in-turn strengthens palaeo-climate reconstructions. XRF scanning offers a method 

for providing quick, non-destructive, high-resolution palaeo-climate records 

(Croudace et al., 2006) to investigate changes in terrestrial input and 
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productivity within the lake and it’s catchment. The C/N ratio is used to assess 

the relative contributions of terrestrial and aquatic OM in lake sediments 

(Meyers, 1997). The C/N ratio of bulk sediments changes with respect to the 

concentration cellulose in the plant sources of OM (Meyers and Ishiwatari, 

1993a).  Nonvascular aquatic plants or algae have low concentrations of 

cellulose and typically have a C/N ratio between 4 and 10. In comparison, land 

plants contain high concentrations of cellulose and have C/N ratios ≥20 (Meyers, 

1994). The C/N ratio found in the bulk sediments of lakes mostly reflects a mix 

of both aquatic and terrestrial sources of OM (Meyers, 1994). XRF scanning and 

C/N ratios therefore provides a wealth of information on terrestrial and 

biological input into the lake.  

1.4 Objectives  

The key objective of this thesis therefore was to reconstruct past climatic and 

hydrologic variability in East Asia using a multi-proxy approach from Lake 

Toyoni. This variability is controlled by the two key atmospheric systems; the 

Westerlies and the EAM, so the present study develops multi-proxy 

reconstructions to determine past climatic and hydrologic variability in Japan 

over the past 1000 years and aid in understanding the effects of the Westerlies 

and the EAM independently and interactively. The hypothesis being tested is: 

The climate in Northern Japan was strongly influenced by the intensity of 

the EAM (EASM and the EAWM) and the Westerlies over the past 1000 years. 

1.5 Thesis organisation 

This thesis is organised into 9 Chapters: 

 Chapter 2: “Climate drivers in Hokkaido, Japan”, aims to identify how 

natural climate drivers (e.g. the East Asian Monsoon [EAM], the Pacific 

Decadal Oscillation [PDO], the Arctic Oscillation [AO] and El Nino Southern 

Oscillation [ENSO]) in this region currently influence modern climate (e.g. 

temperature, rainfall and snowfall) at our study site. Modern data (1958-

2014) was used from Hiroo weather station (25km from study site).  
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 Chapter 3: “Site location and methods”, reports on the study site and 

the methods used in this PhD research.  

 Chapter 4: “Decadal-resolved terrestrial and biological input into 

Lake Toyoni”, aims to reconstruct EAM variability in Lake Toyoni using 

productivity proxies: Magnetic Susceptibility (proxy for magnetite 

preservation), Si/Rb (proxy for diatom productivity), Inc/Coh (proxy for 

OM), and molecular composition of n-alkanes; CPI, ACL and Paq (proxies 

for source of n-alkanes, temperature and productivity, respectively).  

 Chapter 5: ”Assessing the contribution of global and regional wind 

patterns”, aims to reconstruct wind input into Lake Toyoni to infer 

changes in the EAWM and the Westerlies. The contribution of dust 

(transported to Hokkaido via the Westerlies and the EAWM) into Lake 

Toyoni was determined by the Ti/Rb proxy. The contribution from the 

Westerlies and the EAWM was separated based on the fine and coarse 

grain size of the dust, respectfully. 

 Chapter 6: “18S rDNA analysis of the alkenone-producer(s) in lake 

Toyoni, Japan“, aims to identify the alkenone producer(s) in Lake Toyoni 

using 18S rDNA analyses of planktonic, phototrophic algae that are 

preserved in the surface sediment and examine alkenone distribution 

variability between Lake Toyoni and other known haptophyte algae 

species. 

 Chapter 7: “Alkenone-based temperature reconstruction from Lake 

Toyoni”, aims to reconstruct water temperatures (which correspond to 

changes in air temperature) over the past 1000 years. The study site is 

located in the northern boundary of the EASM and the air temperature is 

currently strongly influenced by the variability of the EASM. Therefore 

reconstructions of temperature from this region will provide information 

on the intensity of the EASM.  

 Chapter 8: “Hydrogen isotopic composition of higher plant waxes in 

the catchment and down-core sedimentary records of Lake Toyoni”, 

aims to (1) determine the parameters controlling the hydrogen isotopic 
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composition of n-alkanes in the catchment of Lake Toyoni and (2) 

reconstruct hydrological variability (driven mainly by the EAM system) in 

Hokkaido, Japan.  

 Chapter 9 “Synthesis” aims to bring together all results to provide a 

multi-proxy EAM reconstruction from Lake Toyoni and determine past 

climatic and hydrologic variability in Japan over the past 1000 years to (1) 

aid in understanding the effects of the Westerlies and the EAM 

independently and interactively (2) determine the factors driving changes 

in the EAM and the Westerlies and (3) define the link between global and 

East Asian climate variability.  

 Chapter 10 “Conclusions and future work” provides a summary of the 

main results and provides some suggestions for future work. 



 

 
 

 

 

2  

Climate drivers in Hokkaido, Japan 

2.1 Instrumental data 

Weather station data from Hiroo meteorological station (42°17′02″N, 

143°19′09″E; elevation of 24m; 1958–2014), which is the closest station to the 

sampling site, is used to determine average monthly and annually temperature 

(°C), rainfall (mm), snowfall (cm) and relative humidity (%) at our study site 

(Figure 2-1). The average (1958-2014) annual mean temperature is 6.8°C (ranges 

between 5.7 and 8°C). The warmest month is August (18.5°C; ranges between 

15.4 and 21.9°C) and the coldest month is January (-4.8°C; ranges between -8.2 

and -2.1°C). The average (1958-2014) annual rainfall is 1723mm (ranges between 

1051 and 2431mm). The wettest month is September (249mm; ranges between 

201 and 308mm) and the driest month is February (64mm; ranges between 57 

and 297mm). The average (1958-2014) annual snowfall is 318.9cm (ranges 

between 145 and 566cm). There is no snowfall between June and October. The 

most snowfall falls in January (91.1cm; ranges between 20 and 198cm) and the 

lowest amount falls in May (2.9cm; ranges between 0 and 11cm). Relative 

humidity at our site is relatively high all year round. The annual average is 74.3% 

(ranges between 71 and 78%). The highest values occur in July (89.0%; ranges 

between 82 and 96%) and the lowest values occur in December (63%; ranges 

between 52 and 72%).  
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Figure 2-1: Weather station data from Hiroo weather station (averaged between 1958-2014). 
A. Temperature (°C), B. Rainfall (mm), C. Snowfall (cm) and D. relative humidity (%). Months 
are on the X-axis. Climate drivers in Hokkaido 

 

2.2 Climate drivers in Hokkaido 

The climate (temperature, rainfall and snowfall) in Hokkaido is ultimately 

controlled by seasonal variations in the East Asian Monsoon (EAM) (D'Arrigo et 

al., 2001, Davi et al., 2002, Tsuji et al., 2008, Igarashi et al., 2011). Various 

teleconnections also influence Hokkaido, which in turn also influence the 

intensity of the EAM. The teleconnections that influence Hokkaido are the inter-

annual patterns of the El Niño Southern Oscillation (ENSO) (Davi et al., 2002) and 

the decadal-to-centennial scale variations relating to the Pacific Decadal 

Oscillation (PDO) (Davi et al., 2002, Tsuji et al., 2008) and Arctic Oscillation 

(AO) (Tsuji et al., 2008). In this section, the influence of the EAM at Lake Toyoni 

will be examined by comparing strong and weak EAM years to the weather 

station data. In addition, we examine the influence of teleconnections at this 

site, and any influence teleconnections have on the EAM. 
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2.2.1 East Asian Monsoon (EAM) 

The EAM comprising the summer (EASM) and winter (EAWM) sub-system, is 

characterised by the annual reversal of the meridional wind system (Figure 2-2) 

due to the thermal contrast between the Pacific Ocean and the Asian continent 

(Wang et al., 2001). The EAM exerts a strong control on the climate (e.g. 

temperature, rainfall and snowfall) in Hokkaido (D'Arrigo et al., 2001, Davi et 

al., 2002, Tsuji et al., 2008, Igarashi et al., 2011). Significantly, Lake Toyoni 

(42°N) is situated at the boundary of the northern edge of the EASM (34-44°N; 

Xu et al., 2010b) making it sensitive to the enhancement of the EASM (Schöne et 

al., 2004).  The boundary of the northern edge of the EASM is the location where 

the warm tropical air meets the cold polar air-mass, termed the polar front. 

When the Pacific High intensifies the polar front is located further north than 

usual and as a result there is an increased influence from the tropical maritime 

air-mass from the Pacific Ocean to Hokkaido. When the polar front is located 

further south there is a reduction in the influence of the Pacific Ocean and an 

increased influence from the sub-polar maritime air-mass to Hokkaido. Although 

much research has focussed on the past variations and controls of the EAM, 

further research on the magnitude of the EAM and its relationship with other 

components of the global climate system are required, particularly over the past 

1000 years, which has had limited research conducted. In addition, with multiple 

climate systems impacting regional climate here, we aim to distinguish the 

various drivers where possible. Our knowledge of the EAM will also be greatly 

improved with additional records from different regions of the EAM domain. This 

site is therefore a key location for expanding our knowledge on the variability of 

the EAM over the past 1000 years.  
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Figure 2-2: Seasonal changes in the wind system of the EAM. During winter a high pressure 
system develops over the Asian continent and the wind blows cold air-mass from the Asian 
continent towards the Pacific Ocean. In summer, a high pressure system develops over the 
Pacific Ocean and the wind blows warm air-mass towards the Asian continent (Figure from: 
Yi, 2011). Blue and red solid arrows indicate the dominant vectors of surface winds in winter 
and summer, respectively. Blue and red dashed arrows indicate the mean location of the 
East Asian jet stream in winter and summer, respectively. Green dashed arrow indicates the 
southern limit of cold surges in winter.   

2.2.1.1 East Asian Summer Monsoon (EASM) 

Monsoon circulation occurs because the land responds to seasonal changes in 

solar radiation faster than the ocean. In summer, strong solar radiation heats the 

land much more intensely than the ocean, which causes air to warm, expand and 

rise over the continents creating an area of low pressure at the surface. At the 

same time, a high pressure system develops in the northwest sub-tropical Pacific 

(the North Pacific sub-tropical High [NPSH]). The difference in pressure between 

the land and the ocean promotes the transport of moist air from the Pacific 

Ocean towards this low pressure region, which also warms and rises and 

contributes to monsoonal summer rainfall (April to September) (Seki et al., 

2012). Hence, warm and wet conditions are experienced during summer in East 

Asia as a result of the EASM.  

The influence of the EASM on climate in Hokkaido is demonstrated in modern 

(1958-2015) weather station data (Figure 2-3 and Figure 2-4). Zhou et al (2009a) 

defined strong EASM years in the period between 1958-2000 are 1958, 1959, 

1960, 1961, 1962, 1963, 1964 and weak EASM years are 1980, 1986, 1991, 1996, 

1997 (Zhou et al., 2009a). Strong EASM and weak EASM years are shown in Figure 

2-3 (temperature) and Figure 2-4 (rainfall). When comparing strong and weak 
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EASM years to averaged temperature and rainfall data from Hiroo weather 

station, we find that temperatures during strong EASM years (6.8°C) are 

consistent with averaged temperature values (6.8°C). However, we find that 

during weak EASM years, the temperatures during August are significantly lower 

by about 2°C lower than averaged values. In comparison to temperature, rainfall 

values vary significantly depending on strong and weak EASM years. For example, 

averaged annual rainfall values between 1958 and 2014 are 1723mm. During 

strong EASM years, rainfall increases to 1849mm and during weak EASM years, 

rainfall decreases to 1608mm. Particularly noticeable are the months where 

rainfall increases (decreases) during strong (weak) EASM years in June and 

August, which is associated with the early monsoon rainy season.  

There are two rainy seasons associated with the EASM in Japan. The first is 

called Baiu and is associated with the northward travelling rain-belt (Qian et al., 

2002a). The northward movement of the rainband is closely associated with the 

northward shift of the NPSH (Huang et al., 2005, Huang et al., 2003, Lu and Kim, 

2004). This rainy season occurs in the month of June (Lee, 1974, Sampe and Xie, 

2010). The Baiu rain-band usually occurs between 30-40°N (Sampe and Xie, 2010) 

and therefore Lake Toyoni (42°N) is usually unaffected by this monsoonal 

rainfall. This is demonstrated in the average monthly rainfall values in Figure 

2-1, which show low rainfall in June. However, we find that when there is a 

strong EASM, rainfall in June increases at our site, suggesting that the Baiu rainy 

season extends further north (Figure 2-4). Rainfall increased from 1723mm 

(averaged between 1958 and 2014) to 1849mm during strong EASM years. 

The second rainy season is called Shurin and this is a southward travelling rain-

belt (Qian et al., 2002a). Shurin occurs in August and September (Kimura, 1966). 

The NPSH, which is associated with the EASM migrates to its annual 

northernmost position in August. The Shurin rainy season in Japan is complex 

because it is also the timing of the typhoon season (Lee, 1974, Nogami et al., 

1980, Ho et al., 2004). As a result of monsoon and typhoon rainfall, autumn has 

the highest amount of rainfall. We find that rainfall increases in August during 

both strong and weak EASM years. Rainfall during September is lower than 

average in September during strong EASM and higher than average during weak 

EASM. However, in both strong and weak EASM years, most rainfall occurs during 

August and September (during the Shurin rainy season). The key difference 
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between strong and weak EASM years is the influence of Baiu (June) rainfall in 

this region.  

 

Figure 2-3: Monthly temperature averages during strong EASM (small dashed line) and weak 
EASM (large dashed line) years compared with average (1958-2014) monthly temperature 
values (solid line). 

 

Figure 2-4: Monthly rainfall averages during strong EASM (small dashed line) and weak 
EASM (large dashed line) years compared with average (1958-2014) monthly rainfall values 
(solid line). 
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2.2.1.2 East Asian Winter Monsoon (EAWM) 

During winter, solar radiation is considerably weaker than summer and air over 

land cools faster and becomes denser than the air over the ocean and sinks from 

higher levels in the atmosphere. This downward movement creates an area of 

high pressure over Siberia (Siberian High; [SibH]). The overall movement of cold, 

dry air flow is down-and-out from land to ocean. The cool, dry winter air from 

the Siberian High pressure system picks up heat and moisture as it flows over the 

Tsushima Current in the Sea of Japan resulting in heavy snowfall to Hokkaido. IN 

order to determine the influence of the EAWM on the climate in Hokkaido, a 10-

year period of a strong EAWM (1976-1985) and weak EAWM (1988-1997) are used 

based on the EAWM index by Jhun and Lee (2004b). This index uses data from 

the National Centres for Envirnmental Prediction-National Centre for 

Atmospheric Research and it reflects the 300-hPA meriodonal wind shear 

associated with the jet stream. The EAWM index is defined as the difference in 

the area-averaged zonal wind speed at the 300-hPa level between the two boxed 

regions ([27.5°–37.5°N, 110°–170°E] and [50°–60°N, 80°–140°E]) . During a strong 

(weak) EAWM, the upper-level jet stream is stronger (weaker), the SibH and 

Aleutian low is stronger (weaker) and low-level northeasterly winds are 

increased (decreased). We find that the 10-year period associated with a strong 

EAWM (1976-1985; Jhun and Lee, 2004b) shows a large decrease in temperature 

(Figure 2-5) and rainfall (Figure 2-6) throughout the year. For example, the 

average temperature between 1958 and 2014 was 6.8°C, whereas during strong 

EAWM years the temperature decreased to an average of 6.3°C and during weak 

EAWM years the average temperature increased to 7.0°C. The difference in 

temperature is particularly apparent during winter months Figure 2-5). The 

average rainfall amount is 1723mm per year (averaged from 1958-2014), during 

strong (weak) EAWM years, rainfall decreases (increases) to 1486mm (1837mm). 

On the other hand, a 10-year period associated with a weakening of the EAWM 

(1988-1997; Jhun and Lee, 2004b) shows higher than average winter 

temperatures and an increase in rainfall. Notably, rainfall increases significantly 

in August and September during weak EAWM years (Figure 2-6), which is 

associated with EASM rainfall (Shurin rainfall). Rainfall is also slightly increased 

in June, which is associated with Baiu monsoonal rainfall. This suggests that a 
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weakening (strengthening) of the EAWM results in a strengthening (weakening) of 

the EASM at this site.  

In addition to temperature and rainfall, snowfall depth (cm) was also influenced 

by the strength of the EAWM (Figure 2-7). During strong (weak) EAWM years, 

annual snowfall depth (cm) increased (decreased) to 326.8cm (287.9cm) 

compared to average values (318.9cm; 1958-2014). This increase in snowfall 

depth (cm) is particularly apparent during the month of March, which received 

on average 103.3cm of snowfall compared to the average amount of 78.1cm. 

Thus, strong (weak) EAWM years are associated with lower (higher) 

temperatures, decreased (increased) rainfall and increased (decreased) 

snowfall, particularly during the month of March.  

 

Figure 2-5: Monthly temperature averages during strong EAWM (small dashed line) and 
weak EAWM (large dashed line) years compared with average (1958-2014) monthly 
temperature values (solid line). 
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Figure 2-6: Monthly rainfall averages during strong EAWM (small dashed line) and weak 
EAWM (large dashed line) years compared with average (1958-2014) monthly rainfall values 
(solid line). 

 

Figure 2-7: Monthly snowfall averages during strong EAWM (small dashed line) and weak 
EAWM (large dashed line) years compared with average (1958-2014) monthly snowfall 
values (solid line). 
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2.2.2 Arctic Oscillation (AO) 

A teleconnection known to significantly influence climate in Hokkaido is the AO 

(Tsuji et al., 2008). The AO refers to the difference in sea level pressure (SLP) 

averaged between middle and high latitudes in the Northern Hemisphere. It is 

the dominant mode of atmospheric circulation in the Northern Hemisphere and 

has significant influence on the Asian climate. In particular, temperature and 

rainfall patterns in the Northern Hemisphere are strongly influenced by the AO 

(Thompson and Wallace, 1998, Thompson et al., 2000). During positive AO, 

warmer surface temperatures, weaker weather variances, and less frequent cold 

surges are observed over Asia (Mao et al., 2010). The reverse is true for a 

negative AO phase.  

 

In order to analyse the effect of the phase of the AO on temperature and rainfall 

in Hokkaido, we used data from NOAA’s Centre for weather and climate 

prediction (2016; Figure 2-8). We identified strong positive (negative) AO years 

based on values higher (lower) than 0.5 (-0.5). Positive AO years were; 1967, 

1989, 1990, 1994 and 2011. Negative AO years were 1958, 1960, 1963, 1965, 

1966, 1968, 1969, 1980, 1985, 1987, 1996, 2010. We find that increased 

temperatures in both winter and summer months during the positive phase of 

the AO (
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Figure 2-9). Annual temperatures are 0.7°C (0.1°) warmer (cooler) in positive 

(negative) AO years. Pronounced temperature variations were found in February 

and August. In August, temperatures were on average 1.2°C (0.4°C) warmer 

(colder) during the positive (negative) phase of the AO. In February, 

temperatures were 1.8°C warmer than average. The influence of the AO on 

rainfall is presented in (Figure 2-10). We find that annual rainfall increases 

(decreases) during the positive (negative) phase of the AO. For example during 

positive (negative) AO years, rainfall was 1771mm (1675mm) compared to the 

average of 1723mm. Rainfall during the positive phase of the AO is greatly 

increased in September, with 404mm of rainfall during this month compared to 

the average of 249mm. The influence of the AO on snowfall at this site is 

presented in Figure 2-11. We find that the negative (positive) phase of the AO 

results in increased (decreased) snowfall amount (Figure 2-11).  

 

Figure 2-8: Variations in the phase of the AO since 1950 from from NOAA’s Centre for 
weather and climate prediction (2016). 
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Figure 2-9: Monthly temperature averages during strong positive (small dashed line) and 
negative (large dashed line) AO years compared with average (1958-2014) monthly 
temperature values 

 

Figure 2-10: Monthly rainfall averages during strong positive (small dashed line) and 
negative (large dashed line) AO years compared with average (1958-2014) monthly rainfall 
values. 
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Figure 2-11: Monthly snowfall averages during strong positive (small dashed line) and 
negative (large dashed line) AO years compared with average (1958-2014) monthly snowfall 
values. No snowfall occurs in June, July, August and September. 

 

2.2.2.1 AO and the EASM 

In section 1.2.1, it was identified that the intensification of the EASM/weakening 

of the EAWM results in increased rainfall in June (Baiu) and August and 

September (Shurin). We find that during the positive phase of the AO, rainfall 

increased in June and September (Figure 2-10), suggesting that the positive 

phase of the AO has a positive influence on the intensity of the EASM in 

Hokkaido. Previous studies have also found a connection between EASM intensity 

and the positive phase of the AO (e.g. Gong and Ho, 2003). The positive phase of 

the AO influences the intensity of the NPSH as well as the position of the East 

Asian subtropical jet (EASJ), which in turn influences the EASM. During the 

positive phase of the AO, the EASJ migrates northwards, resulting in a strong 

EASM (Lee and Park, 2015). The EASJ is usually located around ~40°N during 

summer (Lake Toyoni is located at 42°N) (Figure 2-2). However, during years 

with positive AO values, the EASJ is located to ~45°N (Gong and Ho, 2003).  
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2.2.2.2 AO and the EAWM 

Strong (weak) EAWM years are associated with lower (higher) winter 

temperatures, decreased (increased) rainfall and increased (decreased) 

snowfall. We find that the positive phase of the AO results in increased winter 

temperatures, increased rainfall and a decrease in snowfall suggesting that the 

positive phase of the AO weakens the EAWM. Previous studies have suggested 

that the negative AO has strong influence on intensifying the EAWM. We find 

that the negative phase of the AO results in a decrease in rainfall and increased 

snowfall. However, winter temperature was unaffected by the negative phase of 

the AO. This suggests a potential influence of the negative phase of the AO on 

the strengthening of the EAWM.  

 

The negative phase of the AO influences the EAWM due to its association with 

the westerly jet and the SibH. When the AO is in its negative phase there is high 

pressure in the high latitudes and low pressure in the lower latitudes resulting in 

a advection of polar air mass to more southerly locations (Hurrell, 1995, 

Thompson and Wallace, 1998). The westerly jet transports this cold air from the 

arctic region to mid-latitude East Asia, resulting in colder winters  and a stronger 

EAWM (Jhun and Lee, 2004b). An increase in cold air-mass in Asia increases snow 

and ice cover extent. Increased snow and ice also increases the albedo, reduces 

the amount of solar radiation absorbed and lowers air temperatures, creating an 

enhanced SibH, which refers to the semi-permanent pressure system that 

accumulates cold, dry air in northeastern Siberia. The AO therefore positively 

influences the SibH (Gong et al., 2001), which in turn intensifies the EAWM 

(Ding, 1990, Zhang et al., 1997, Wu et al., 2006a). 

 

2.2.2.3 AO and the Westerlies 

The Westerlies are a global wind pattern that transport cold dry air-mass across 

Eurasia to Japan (Fukusawa, 1999). The air-mass originates from the Atlantic 

Ocean. The annual cycle of the Westerlies, described by Kuang and Zhang (2005) 

and Lim and Matsumoto (2008), shows that the Westerlies strongly influence the 

study site in July during their northward migration and in September during their 

southward migration. Variations in the Westerlies are mainly related to changes 

in the North Atlantic Oscillation (NAO) and the AO (Hurrell et al., 2003).   
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In order to investigate the influence of the Westerlies at our study site, we 

compared average (1958-2014) temperature and rainfall data from Hiroo 

weather station to temperature and rainfall data from positive AO years (

 

Figure 2-9 and Figure 2-10). Significantly, we found that in positive AO years, 

rainfall in July, when the Westerlies significantly influence our site, is reduced 

(Figure 2-10). The NPSH is also enhanced by intensive Westerlies (Mishima et al., 

2010) and as a result rainfall during August and September is enhanced when the 

Westerlies intensify (during positive AO years) (Figure 2-10). The intensification 

of the Westerlies therefore has a strong influence on the precipitation in 

Hokkaido, with a reduction in July during the northward migration of the 

Westerlies and an increase in September during the southward migration of the 

Westerlies.  

2.2.3 Pacific Decadal Oscillation (PDO) 

Another teleconnection known to significantly influence Hokkaido is the PDO 

(Tsuji et al., 2008). The PDO is a long-lived ENSO-like pattern of climate 

variability in the North Pacific (Mantua and Hare, 2002) (Figure 2-12). The 

spatial distribution is similar to ENSO except the PDO can persist for several 

decades in comparison to a single year with ENSO. During a positive (negative) 

PDO mode, warmer (colder) conditions prevail in the eastern side of the Pacific 

Ocean (e.g. USA) and colder (warmer) temperatures are experienced in the 
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western side of the Pacific Ocean (e.g. Asia) (Zhang et al., 1998, Mantua and 

Hare, 2002).  

 

Figure 2-12: sea surface temperature differences during the positive and negative phase of 
the PDO (Figure adapted from; Goddard, 2014) 

 

The variations in the phase of the PDO since 1990AD have been reported by 

Mantua et al. (1997) using observed Pacific sea surface temperature (SST) and 

SLP patterns. Notably, during the time period of weather station data (1958-

present), negative PDO regimes prevailed between 1960 and 1976 and positive 

PDO regimes prevailed between 1977 and 1988. We find that during years with 

negative (positive) PDO values, temperature is 6.6°C (6.2°C) compared to the 

average (1958-2014) of 6.8°C. Notably, winter temperatures are lower during the 

positive phase of the PDO, for example, in February the temperature is -6°C 

compared to the average -4.5°C (Figure 2-14). Precipitation during the negative 

(positive) phase of the PDO increases (decreases) to 1743mm (1538mm) 

compared to the average (1958-2014) of 1723mm (Figure 2-15). The negative 

phase of the PDO has increased precipitation in June and September (Figure 

2-15). The positive phase, on the other hand, has slightly increased precipitation 

in August (Figure 2-15). During years with negative (positive) PDO values, 

snowfall is 321.7cm (335.2cm) compared to the average (1958-2014) of 318.9cm. 

Snowfall increases in February during the negative phase of the PDO, whereas 

snowfall increased in March during the positive phase of the PDO (Figure 2-16).  
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Figure 2-13: Variations in the phase of the PDO since 1990 by Mantua et al.,(1997). 

 

 

Figure 2-14: Monthly temperature averages during negative (small dashed line) and positive 
(large dashed line) PDO years compared with average (1958-2014) monthly temperature 
values (solid line). 
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Figure 2-15: Monthly precipitation averages during negative (small dashed line) and positive 
(large dashed line) PDO years compared with average (1958-2014) monthly precipitation 
values (solid line). 

 

Figure 2-16: Monthly snowfall averages during negative (small dashed line) and positive 
(large dashed line) PDO years compared with average (1958-2014) monthly snowfall values 
(solid line). 
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2.2.3.1 PDO and the EASM 

When the EASM is enhanced in this region, we find that EASM-precipitation in 

June (Baiu rainfall) increases. Although the highest precipitation occurs in 

September, although this is slightly lower than average (1958-2014) values. This 

suggests that the negative phase of the PDO has a positive influence on the EASM 

in this region. However, it is noteworthy that precipitation in August was 

enhanced during the positive phase of the PDO. This suggests that the positive 

phase of the PDO may also have an influence on the EASM during the Shurin 

rainfall (late summer/autumn).  

The phase of the PDO has a strong influence on the EASM through its influence 

on the position of the NPSH. During positive phase of the PDO, the summer 

monsoon is weak (less rainfall), and the strong NPSH is located southward (Gong 

and He, 2002).  Within Hokkaido, Tsuji et al. (2008) also found that relative 

humidity, a proxy for the EASM, increased when the PDO was in its negative 

phase due to the intensification of the NPSH.  

2.2.3.2 PDO and the EAWM 

When the EAWM is enhanced at our site, we find that temperature (Figure 2-5) 

and precipitation (Figure 2-6) is lower and there is increased snowfall in March 

(Figure 2-7) at our site. Based on these findings, the positive phase of the PDO 

appears to have an influence on the intensity of the EAWM at our site. During 

the positive phase of the PDO, we find that temperatures are lower in winter, 

precipitation decreases and snowfall increases in March, suggesting that the 

positive phase of the PDO has a strong influence on the EAWM in this region.  

2.2.4 ENSO 

An El Niño (La Niña) event is a phenomenon in which SSTs are higher (lower) 

than normal across a wide area from the centre of the equatorial Pacific to the 

region off the coast of Peru for a period of between half a year and 1.5 years. El 

Niño and La Niña events occur once every few years and have an impact on 

global atmospheric and weather conditions.  
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The prominent El Niño and La Niña episodes in the tropical Pacific are defined 

using 3-month running mean Nino-3.4 SST anomalies and the following two 

criteria. (a) The maximum (minimum) SST anomaly exceeds one standard 

deviation (about 1.0°C), and (b) SST anomalies exceeding 0.5°C persist for at 

least 8 months. According to these criteria, seven major El Niño (1958, 1965, 

1972, 1982/83, 1986/87, 1991/92, 1997/98) and five major La Niña (1970/71, 

1973/74, 1975/76, 1984/85, and 1988/89) episodes are identified for the period 

from 1958 to 1998. (after Wang et al., 2000).   

At our site, we findalthough annual averages are slightly lower during La Niña 

years, summer temperatures are above-average during La Niña years and below-

average during El Niño years. For example during La Niña (El Niño July, August 

and September temperatures were 16.0°C (15.7°C), 18.8°C (17.8°C) and 15.2°C 

(15.6°C), respectively (Figure 2-17). These findings are also supported by a tree-

ring temperature reconstruction in Hokkaido by Davi et al. (2002). The authors 

found that the temperature reconstruction was significantly and positively 

correlated with ENSO; with low summer temperatures linked to El Niño and 

higher summer temperatures linked to La Niña episodes.  

Annual precipitation amount between El Niño, La Niña and average years were 

very similar. Slightly higher annual precipitation values occurred during La Niña 

years (1727mm) and slightly lower annual precipitation values occurred during El 

Niño years (1717mm), compared to average values (1723mm). However, it was 

notable that the months of increased precipitation were different in El Niño and 

La Niña years. For example, during El Niño years, rainfall increases in July, 

August and September from average (1958-2014) value of 158mm, 221mm and 

249mm to 177mm, 254mm and 324mm, respectively (Figure 2-18). It is notable 

that increased precipitation in September is also associated with typhoon season 

in Japan (Lee, 1974, Nogami et al., 1980), suggesting that El Niño conditions 

influence the strength and/or occurrences of typhoons in this region. Previous 

studies have also found a connection between the strengthening of typhoons in 

Japan during El Niño years (Woodruff et al., 2009). Precipitation in January and 

February also increased during El Niño years. However, precipitation during 

spring and early summer is lower. We also found that snowfall increased in 

January and February, and decreased in March during El Niño years (Figure 

2-18). During La Niña years, on the other hand, we found that precipitation was 
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increased in March, June and October and was lower in the remaining months 

(Figure 2-18). Annual snowfall amount was lower during El Niño years (306.4cm) 

than average years (318.9cm), however there was notably higher values in 

January and February (Figure 2-19). Annual snowfall amount was similar 

between La Niña years (318.5cm) and average years (318.9cm), however higher 

values were noted in March (Figure 2-19). 

 

 

Figure 2-17: Monthly temperature averages during El Niño (small dashed line) and La Niña 
(large dashed line) years compared with average (1958-2014) monthly temperature values 
(solid line). 
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Figure 2-18: Monthly precipitation averages during El Niño (small dashed line) and La Niña 
(large dashed line) years compared with average (1958-2014) monthly precipitation values 
(solid line). 

 

Figure 2-19: Monthly snowfall averages during El Niño (small dashed line) and La Niña 
(large dashed line) years compared with average (1958-2014) monthly snowfall values (solid 
line). 
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2.2.4.1 ENSO and the EASM 

El Niño has been identified as a strong influence on the intensity of the EASM 

(e.g. Zhang et al., 1996, Wang et al., 2003, Hong et al., 2005). However, 

classifying EASM intensity simply according to strong El Niño years is not 

meaningful because the influence of El Niño on the intensity of the EASM occurs 

in the summer after El Niño reaches its mature phase, rather than the actual 

year when El Niño develops (Wang et al., 2001). A suggested reason for this is 

due to the westward movement of the western NPSH in the summer following 

the mature phase of El Niño, which in turn enhances the EASM (Wang et al., 

2001). We find that when we separate El Niño developing years (e.g., 1965, 

1968, 1972, 1976, 1982, 1986, and 1997; after Wang and Chan, 2002) and the 

years after the mature phase of El Niño (e.g., 1970, 1983, 1992, 1995, and 1998; 

after Wang and Chan, 2002) there is a clear difference in the intensity of the 

EASM (Figure 2-20). In the years following the mature phase of El Niño, we find 

that precipitation at our site increases in June (Baiu precipitation) and August 

(Shurin precipitation); which is associated with EASM precipitation. However, in 

El Niño developing years, we find that precipitation is lower in June and August. 

Temperature also slightly increased in August and September during the summer 

following the mature phase of El Niño compared to El Niño developing years. In 

August and September, temperature was 18°C (17.8°C) and 15.6°C (15.4°C), 

respectively during the mature phase and developing phase of El Niño. This 

suggests that during El Niño developing years, El Niño has no influence on the 

EASM intensity, however, in the summer following the mature phase of El Niño, 

the EASM intensity increases.  
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Figure 2-20: Monthly precipitation averages during the summer following El Niño (small 
dashed line) and El Niño developing (large dashed line) years compared with average (1958-
2014) monthly precipitation values (solid line). 

2.2.4.2 ENSO and the EAWM 

The EAWM is weak during El Niño years and strong during La Niña years (Tomita 

and Yasunari, 1996, Zhang et al., 1996, Chen et al., 2000, Chen et al., 2013, 

Chen et al., 2014, Wang and Chen, 2014). We identified that a strong EAWM 

results in increased snowfall, particularly during the month of March (Figure 

2-7). We find that during La Niña years snowfall in March increases, suggesting 

that the EAWM is stronger during La Niña years. A suggested reason for La Niña 

positively influencing the EAWM is due to the correlation between ENSO and the 

inter-annual variation of winter northerlies and cold surges near the South China 

Sea (Zhang et al., 1997). La Niña conditions result in cooling over the equatorial 

Eastern Pacific, however the western Pacific is not influenced by this cooling 

and therefore remains warm during La Niña conditions (Chen et al., 2000) During 

La Niña events, the occurrence of East Asian cold surges increases and also the 

strength of the northerlies increases (Zhang et al., 1997), this triggers a 

decrease in temperature in East Asia. As a result, there is a large land-sea 

thermal contrast during La Niña conditions which results in a movement from the 

Asian continent towards Japan. 
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2.2.5 Summary 

Table 2-1: Sumary table detailing the average temperature, precipitation and snowfall 
change during stron/weak EASM/EAWM years, the positive and negative phase of the 
AO/NAO and the PDO and also during El Niño and La Niña years. Average annual values 
between 1958 and 2014 provided in bold.  

 

 Temperature 
change 

Error Precipitation 
change 

Error Snowfall 
change 

Error 

Average (1958-
2014) 

6.8°C ±0.6°C 1723mm ±303mm 319cm ±88mm 

Strong EASM No change  ↑126 mm ±343mm   

Weak EASM ↓0.3°C  ±0.7°C ↓115 mm ±100mm   

Strong EAWM ↓0.5°C   ±0.6°C ↓237 mm ±277mm ↑8cm ±52cm 

Weak EAWM ↑0.2°C   ±0.3°C ↑114 mm ±282mm ↓31cm ±55cm 

Positive AO/NAO ↑0.7°C   ±0.5°C ↑48 mm ±363mm   

Negative 
AO/NAO 

↓0.1°C   ±0.6°C ↓48mm ±297mm   

Positive PDO ↓0.6°C   ±0.3°C ↓185mm ±268mm   

Negative PDO  ↓0.2°C   ±0.5°C ↑ 20mm ±270mm   

El Nino No change  ↓6mm ±360mm ↓13cm ±70cm 

La Nina ↓0.2°C ±0.5°C ↑ 4mm ±404mm No 
change 

 

 



 

 
 

 

3  
Study site and methods 

3.1 Location 

3.1.1 Lake survey 

In the summer of 2008, surface sediment samples were collected from eight 

lakes in Hokkaido, Japan (Table 1) using an Ekman grab sampler and Kajak corer. 

Following the detection of alkenones in surface sediments of Lake Toyoni (Table 

1), this location was chosen for palaeo-climate investigations.   

 

Figure 3-1: Location of lakes surveyed in 2008 
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Table 3-1: Lakes surveyed in Hokkaido for alkenones in 2008.  

Lake Name Lat long 
Elevation 

(m) 
Depth  
(m) 

Temp 
(°C) 

pH 
Salinity 
(g/L) 

Alkenones 
(Detected/not-

detected) 

Lake 
Abashiri 

N: 43°58’20.9’’ 
E:144°10’36.5’’ 

 
0 

16.1 20.6 8.7 2.8 Not-detected 

Lake 
Hangetsu 

N: 42°50.952’’ 
E: 140°45.216’’ 

 
295 

17 18 8.3 0 Not-detected 

Lake 
Kussharo 

N: 43°39’10.6’’ 
E:144°19’24.9’’ 

 
127 

42.3 14.5 7.8 0.1 Not-detected 

Lake 
Kuttara 

N: 42°29’967’’ 
E: 141°10’945’’ 

 
297 

145 18 7.8 0 Not-detected 

Lake 
Ohnuma 

N: 42°53’47.6’’ 
E:140°37’02.3’’ 

 
847 

14 12 7.7 0 Not-detected 

Lake 
Shikaribetsu 

N:43°16’19.15’’ 
E:143°06’21.54’ 

 
810 

98.5 15.3 8.4 0.1 Not-detected 

Lake Touro 
N: 43°09’02.4’’ 
E:144°33’06.6’’ 

 
25 

4 20 9.4 0 Not-detected 

Lake Toyoni 
N: 42°05’.443’ 
E: 143°16.226’ 

 
256 

19 16 7.2 0 Detected 

 
 

3.1.2 Site description 

Lake Toyoni is located on Japan’s northern island, Hokkaido (Figure 3-2; 

42°05’N; 143°16’E) and is a small (0.3km2), dimictic freshwater (0psu) lake. 

Lake Toyoni is a closed-basin lake with an average water depth of 12m and a 

maximum water depth of 19m. The lake is ice-covered from the end of 

November until early April. The catchment of Lake Toyoni is densely covered in 

vegation and has steep slopes surrounding the lake (Figure 3-3). The nearest 

local habitation is 25km from Lake Toyoni and there is a weather station located 

in this town (Hiroo).  
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Figure 3-2: Location of Lake Toyoni, Hokkaido, Japan.  

 

 

Figure 3-3: Pictures of Lake Toyoni and the catchment area.  
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3.1.3 Water probe data 

Water probe data (temperature [°C], pH, dissolved oxygen [mg/L]) was collected 

from the lake on a monthly basis between September 2010 and October 2011 

(during the ice-free season). Monthly temperature is presented in Figure 3-4. 

The data show that the water column was well mixed in April and November 

suggesting that the lake overturns in spring and autumn (Figure 3-4). In addition, 

we find that when we compare surface temperature values to the average 

temperature during that particular month and year (from Hiroo weather 

station), the surface water temperatures in Lake Toyoni corresponds to changes 

in air temperature (Figure 3-5; R2=0.97). Small differences are due to weather 

station data being a monthly average and water probe data being taken on a 

single day. In addition, the water probe data was usually taken in the last week 

of very month and is therefore bias towards end of month temperatures. Monthly 

dissolved oxygen (mg/L) data is also presented in Figure 3-6. The bottom water 

of Lake Toyoni becomes hypoxic (O2 <2.0mg l−1, (Diaz, 2001, Zimmerman and 

Canuel, 2000) between July and October (Figure 3-6) due to thermal 

stratification occurring (Figure 3-4) and a lack of mixing within the water 

column. Monthly pH values are presented in Figure 3-7. The pH data show that 

Lake Toyoni is a slightly acidic lake.  
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Figure 3-4: Water temperature against depth between April and November.  

 

Figure 3-5: A: Comparison between surface water column temperature and air temperature. 
B: Scatter plot between lake surface temperature and air temperature.  
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Figure 3-6: Dissolved oxygen against depth between April and November.  

 

Figure 3-7: pH against depth between April and November 
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3.1.3.1 Geology  

The majority of the catchment surrounding Lake Toyoni consists mainly of Late 

Cretaceous to Early Oligocene muddy turbidite of accretionary complex. The 

main rock types consist of alternation of sandstone and mudstone (muddy) 

(Figure 3-8). West of the catchment is Eocene to Oligocene migmatite plutonic 

rocks (Hidaka) (Figure 3-8).  

 

Figure 3-8: Geology of Lake Toyoni 

 



CHAPTER 3: Study site and methods  
 

47 
 

3.2 Core collection 

In July 2009, a 250cm long sediment core (TY09) (from 3 overlapping drives) was 

recovered from a water depth of 19m from Lake Toyoni using a platform 

deployed Livingstone corer. In September 2012, a 12cm long sediment core 

(TY11) was recovered from a water depth of 19m from Lake Toyoni using a 

gravity corer. The core was sub-sampled at Hokkaido University Sapporo (Japan).  

 

3.3 Age model 

TY11 was plutonium (Pu) dated (Figure 3-9) and TY09 was radiocarbon dated 

(Table 3-2). The cores will be discussed separate throughout the text.   

 

3.3.1 TY11  

High-resolution (every 0.5cm) Plutonium (Pu) dating on sediment core TY11 was 

completed in February 2012 at the department of chemistry and biochemistry, 

Northern Arizona University by Michael E. Ketterer. The sediment intervals were 

processed in order to chemically isolate Pu fractions in aqueous ammonium 

oxalate solution suitable for measurements by quadrupole inductively coupled 

plasma–mass spectrometry (ICP-MS). A Thermo X Series II instrument equipped 

with a ESI Scientific APEX HF high-efficiency sample introduction system with 

concentric PFA nebulizer was used. The chemical procedures for isolation of Pu 

followed Ketterer et al. (2004). Sediment samples were dry-ashed at 600°C for 

16 hours to remove organic matter, then mixed with a 242Pu spike (NIST 4334g 

solution, 0.00468Bq or 32.03 picograms) and 5mL of 16 mol Nitric acid (HNO3) 

(Ketterer et al., 2004). Samples were leached at 80°C for 16 hours, then diluted 

to 10mL, filtered through a cotton wool plug, and then treated with aqueous 

Ferrous Sulfate (FeSO4) and Sodium Nitrite (NaNO2) to convert Pu to Pu(IV) 

(Ketterer et al., 2004). The Pu was retained on a 30mg TEVA resin column (bulk 

resin from EIChrom, Lisle, IL, USA); the columns were rinsed a series of 2M Nitric 

acid (HNO3) and 8 mol Hydrogen Chloride (HCl) solutions to remove matrix 

elements, Uranium (U) and Thorium (Th). Pu was eluted with water (H2O) and 

0.05M aqueous ammonium oxalate to produce 1.4mL aqueous fractions that were 

analysed directly by ICPMS. The results show TY11 exhibits a clear 239+240Pu 

activity maximum in the 2.0 cm interval (Figure 3-8), which is associated with 
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atmospheric bomb testing between 1963-1964AD.  The ratio results all agree 

well with the known 240Pu/239Pu of 0.180 ± 0.014 for Pu of stratospheric fallout 

origin deposited in the mid-latitude regions of the Northern Hemisphere (Kelley 

et al., 1999). Therefore an age model is not available for TY11 as we only have 

one age at 2cm (1963). This core will therefore be discussed against depth, 

rather than age.  

 

Figure 3-9: Pu dating of TY11. Quadrupole inductively coupled plasma mass spectrometry 
has been used to rapidly establish the chronology of recent sediments from Lake Toyoni 
(TY11) via measurements of the activities of 

239
Pu, 

240
Pu, and the atom ratio 

240
Pu/

239
Pu. 

Bq/Kg 
239+240

Pu exhibits maximum activity at 2cm horizon which is interpreted as spanning 
the 1963-1964AD time frame associated with atmospheric testing of nuclear weapons. 

 

3.3.2 TY09 

Five range finder 14C dates from TY09 were analysed in 2010 at the National 

Institute for Environmental Studies (NIES), Japan (Table 2). Subsequently, three 

additional radiocarbon dates were completed on terrestrial plant material at the 

National Environmental Research Council (NERC) facility (East Kilbride), which is 

hosted by Scottish Universities Environmental Research Centre (SUERC). Dates 

were calculated using CALIB (V6.0). The age model for TY09 was reconstructed 

using the Heegard model (Heegard, 2005; R version 3.1.2) (Figure 3-10). Two 

sampls were identified as outliers (16cm and 192cm). A suggested reason for the 
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outliers are that they were small single leaf samples and potentially there was 

not enough material to get an accurate date. Both samples were also analysed at 

a different lab, several years after the rest of the samples (except 100cm). 

 

Table 3-2: Age model of core TY09. It is based on six 
14

C dates of leaf samples and one bulk 

sediment 
14

C date 

Depth 

in TY09 

Depth + 10cm 

(lost core) 

Material 

dated 

Accession # 14C 

age 

14C 

age 

error 

Age 

(AD) 

16cm 26cm Leaves 
SUERC-55214 

261 38 1689 

30cm 40cm Plant 
material 

TERRA-
102510b27 

224 42 1814 

70cm 80cm Leaf TERRA-
102510b28 

370 47 1637 

100cm 110cm Leaves 
SUERC-55217 

387 36 1563 

191cm 201cm Plant 
material 

TERRA-

102510b33 

973 54 1193 

192cm 202cm leaf SUERC-55219 604 38 1346 

211cm 221cm Leaves TERRA-
102510b34 

992 54 1167 

231cm 241cm Bulk 
sediment 

TERRA-
102510b34 

1175 70 990 
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Figure 3-10: Age depth model for TY09  

 

3.3.3 Lithological description 

A stratigraphic and sedimentological description of a sediment core is important 

for palaeo-limnological studies. Information gathered during visual description of 

the cores helps to understand past environmental changes. The classification of 

the sediment core TY09 was divided into different units that were defined by 

identifying colour with a Standard Munsell soil colour chart (Munsell Colour 

Company, 1994) and/or structural changes along the core. The texture of the 

sediment was also noted, with particular reference to tephra layers and changes 

in grain size. 

3.3.4 X-ray Fluorescence (XRF) and magnetic susceptibility (MS) 

In February, 2012, the archived core (TY09) was scanned for bulk elemental 

composition, digitally photographed and subjected to X-ray Fluorescence (XRF) 

at 0.5mm resolution using an Itrax® XRF core scanner equipped with a 3 kW 

molybdenum target tube that can operate up to 60kV and 50mA at Aberystwyth 

University in collaboration with Dr. Andrew Henderson. In addition, the archived 

core was scanned for magnetic susceptibility (MS) using a Geotek Multisensor 
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Core Logger (MSCL) at 1cm resolution. MS was used in order to match the 

overlapping sections in sediment core TY09.  

The quality of data obtained from XRF can also be affected by gaps and cracks in 

the sediment sequence. To account for this, sharp drops in elemental peak area 

integrals were detected from the stratigraphic profiles and mean standard error 

readings and removed from the measurement sequence before down core 

variations were graphically presented. To look at longer terms trends in the very 

highly resolved XRF dataset (0.02cm resolution), running averages have been 

used to smooth the XRF data to generally average out or mask very high and low 

values that make the signal noisy. This was achieved using Excel moving average 

functions. 150 sample running means were conducted to achieve decadally-

resolved palaeo-climate record.  

3.3.4.1 Normalising data 

The XRF data was normalised to Rb (Guyard et al., 2007), a conservative 

element, unless otherwise stated. By normalising elements to a conservative 

element, background input is removed (Rothwell and Rack, 2006). Al is 

commonly used to normalise elemental data; however, corrections using Al could 

not be made due to low detection of Al.  

3.3.5 Particle size analysis (PSA) 

Particle size analysis took place in April 2013 at Glasgow University using a 

Coulter LS 230. 1.5-3.5g of sediment taken at ~4cm resolution was placed into a 

furnace for 8 hours at 600°C to remove organic carbon. 60ml of Calgon (pre-

made using 35g Sodium Hexametaphosphate and 7g Sodium Carbonate to 1 litre 

of distilled water) was added to the sediment to disperse the sediment. Every 

sample was run 3 times and an average of the three runs was used. Samples 

were statistically analysed using GRADISTAT (Blott and Pye, 2001).  
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3.3.6 Organic C/N ratio 

20mg (±2mg) of freeze-dried sediment was placed into a 2ml ampoule. 

Carbonate was removed following the adapted methodologies of Verardo et al. 

(1990). 0.8ml of sulphurous acid was added to the ampoule, and the vial was 

gently tapped to remove reaction bubbles from the sediment. The samples were 

then left overnight to react in a fume cupboard and transferred to a vacuum 

desiccator and held under vacuum for 2-3 hours to degas. Samples were then 

frozen and placed in freeze drier for 24 hours. The dry residue was agitated 

using a vortex and was placed into a 5x9mm tin capsule. These were then sealed 

by folding prior to loading into the auto-sampler. 

Carbon and nitrogen analysis was completed using the methodologies of Roleda 

et al. (2013) by Dr. Richard Abell at the Scottish Association for Marine Science 

(SAMS). A Costech International Elemental Combustion System (ECS) 4010 with 

Helium (>99.9%) as the carrier gas was used for carbon and nitrogen analysis 

(Roleda et al., 2013). The temperature in left and right combustion furnace was 

set at 950°C and 630°C, respectively (Roleda et al., 2013). The gas 

chromatographic separation oven was set to 50°C (Roleda et al., 2013).  

Before analysis took place, three empty tin capsules were measured to correct 

for any carbon and nitrogen within a blank sample. Three standards of 

acetanilide (BDH Chemicals – 10.36% Nitrogen, 71.09% Carbon) with weights 

ranging from 0.1 mg to 1.0mg (Roleda et al., 2013) were also measured prior to 

analysis. In addition a standard was also run every 15 samples to correct for drift 

within the instrument (Roleda et al., 2013). Each sample was run for 30 minutes 

on the ‘Semi-μ’ setting.  

3.3.7  rDNA haptophyte identification 

3.3.7.1  Surface sediment collection 

A surface sediment sample for rDNA analysis was retrieved in September 2011 

using an Ekman grab sampler. The surface sample was kept at 4°C until DNA 

extraction took place. 
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Figure 3-11: DNA sample procedure © Dr Jillian Couto, Science and Engineering, University 
of Glasgow 

3.3.7.2 Extraction 

DNA was extracted from 0.5g of wet surface sediment from Lake Toyoni using a 

FastDNA™ Spin Kit for soils and sediments (MP Biomedical) according to the 

manufacturing specifications. Total extracted DNA yields were quantified using a 

QUBIT (Invitrogen) fluorescence assay. The quality and fragment length of DNA 

in the extracts were checked by agarose gel electrophoresis (Figure 3-11).  

3.3.7.3 Amplification and sequencing  

An 887 base pair (bp) fragment of the gene that encodes haptophyte 18S 

ribosomal DNA (herein referred to as rDNA) was amplified using a BIOTAQ PCR kit 

(bioline BIO-2107). Polymerase chain reaction (PCR) was performed using the 

following thermal cycle conditions: 4 minutes of initial denaturing at 95°C, 35 

cycles of denaturing for 30 seconds at 95°C, 40 seconds of primer annealing at 

57°C, and 40 seconds of primer extension at 72°C, with a final extension of 10 

minutes at 72°C. 18S rDNA amplification was completed using a forward 

universal eukaryotic primer (EUKA-F; AC CTG GTT GAT CCT GCC AGT) and a re-
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designed haptophyte-specific reverse primer (Prym887-Ra; 

DVAATACGARTRCCCCYRAC) targeting 18S rRNA coding regions (Table 3). 

Genomic DNA extracted from isolated strains of haptophyte algae (Emiliania 

huxleyi; CCAP 920/8 and Chrysotila lamellosa; CCAP 918/1) were used for 

positive control during PCR amplification.  

The PCR amplicon was resolved on a 0.8% gel and cleaned using a Macherey-

Nagel NuceloSpin Extract II kit according to manufacturing guidelines. The 

amplicon was then cloned using an Invitrogen TOPO TA Cloning® Kit for 

sequencing. 100 colonies were screened for unique clones using a restriction 

digest with Hpa II. Colonies that contained unique clones were grown overnight 

and plasmids were extracted using a Qiagen Mini-Prep Spin Kit, (Qiagen, 

Germany). Clones were sequenced from both the 5' and 3' directions using 

standard T7F and T3 primers by Source biosciences (Nottingham, UK). 

3.3.7.4 Bioinformatics and phylogenetic reconstructions 

The closest relatives to our 18 environmental clone sequences (OTU1-18) were 

identified using the GenBank database (NCBI) with the Basic Local Alignment 

Search Tool (BLAST) (Altschul et al., 1997). Bayesian analysis of our samples was 

performed using MrBayes under the GTR model of substitution considering 

invariants and a gamma-shaped distribution of the rates of distribution among 

sites. The number of cycles for the Markov Chain Monte Carlo (MCMC) analysis 

was set to 1,000,000 generations with trees sampled every 100 generations. The 

first 10,000 trees were discarded as burn-in for the tree topology and posterior 

probability. OTU1-18 were analysed to infer OTU species’ identities along with 

full-length 18S rRNA gene sequences from reference taxa after Theroux et al., 

(2010). In addition, a partial-length phylogenetic tree was constructed using OUT 

7 along with partial-length 18S rRNA sequences from Prymnesiophytes isolated 

from Ace Lake, Antarctica (Coolen et al., 2004c), Greenland lakes (D'Andrea et 

al., 2006) and also lakes in Canada, China and the USA (Theroux et al., 2010). 

Cyclonexis annularis, Chrysoxys sp., Ochromonas danica, Odontella sinensis and 

Thraustochytrium multirudimentale were selected as outgroups for both full-length 

and partial-length Bayesian analyses (after de Vargas et al., 2007).  
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3.3.8 Lipid analysis 

All samples were freeze dried for 72 hours prior to the sample work-up and all 

sediment samples were homogenised using a solvent cleaned agate mortar and 

pestle. All glassware (e.g. test tubes, pipettes etc) used in the following 

processes were cleaned and then furnaced at 450°C for 8 hours prior to use. All 

samples presented in this thesis followed the general method in Figure 3-12, 

except the analysis of the vegetation samples in Chapter 8, which were slightly 

adapted (discussed further in Section 3.3.10). The hydrogen isotopic 

measurements of the n-alkanes in Chapter 8 also required additional sample 

work-up, which is further discussed in Section 3.3.11.  

 

Figure 3-12: BECS sample procedure for organic lipid analysis (figure from Dr. Jaime 
Toney). 
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3.3.8.1 Extraction 

Sediment samples (ranging from 1-5g) were placed in a pre-weighed 30 ml test 

tubes. 20 ml of a solvent mixture of dichloromethane:methanol (DCM:MeOH; 3:1) 

were added into the test tube and each sample was suspended using a vortex 

mixer. The samples were then ultrasonicated for 20 minutes and were placed on 

a hotplate and heated at 55 °C for one hour. Following this heat treatment, the 

samples were placed in a centrifuge at 3300 rounds per minute (rpm) for 3 

minutes to separate the sediment from the solvent. The solvent was then 

transferred into another 30ml test tube using a pipette (9” borosilicate Pasteur). 

This processes was repeated at least three more times, or until the solvent was 

completely clear, using 10 ml of DCM:MeOH (3:1) each time. All extracts of the 

samples were combined and the solvent was evaporated using a rotary 

evaporator. The total lipid extract (TLE) obtained from each sample was 

transferred into a pre-weighed 8ml vial, dried down under N2, and stored. 

3.3.8.2 Column chromatography  

3.3.8.2.1 Acid and neutral separation 

The TLE’s were separated into neutral and acid fractions via flash 

chromatography with LC-NH2 SPE silica gel eluted with DCM:isopropanol (v 1:1) 

and 4% acetic acid in ether, respectively  (Huang et al., 2002). No more than 

10mg of the TLE was used for the column chromatography. Samples containing 

more than 10mg were split and the remaining TLE was archived. The silica gel 

columns were made by adding glass wool to a pipette (5 ¾” borosilicate 

Pasteur), which acted as a stopper to prevent Si-gel beads from passing, but 

allowing flow of solvent. 1.2g (~4cm) of silica (LC-NH2 SPE) was then added on 

top of the glass wool and a small amount (~4mm) of furnaced sand was added on 

top of the silica gel.  The LC-NH2 SPE column was cleaned with 3 bed-volumes (8 

ml) of 1:1 DCM:isopropyl alcohol. The TLE was re-dissolved and transferred to 

the column using a small amount of 1:1 DCM:ISO (x3). The TLE then seeps into 

the silica gel. The Total Neutral Fraction (TNF) was eluted with 4ml of 1:1 

DCM:ISO and the TNF was collected into an 8ml sample vial. The Total Acid 

Fraction (TAF) was eluted with 4ml of ether with 4% acetic acid and the TAF was 

collected into an 8ml sample vial. 
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3.3.8.2.2 Neutral separation 

 
The neutral fraction was further separated into four fractions. The silica gel 

columns were made following the same process as the acid and neutral silica 

columns except the silica used for neutral separation was 230-400 mesh/35-70 

micron silica powder. The Silica gel was cleaned by eluting with 4ml of hexane. 

The TNF was re-dissolved in a small amount of hexane (~200ul, x3), using 

sonication. The aliphatic hydrocarbons were eluted with 4ml of n-hexane. The 

alkenones were eluted with 4ml of dichloromethane (DCM). The alcohols were 

eluted with 4ml of ethyl acetate:hexane (v 1:3) and the polar fraction was 

eluted using 4ml of methanol (MeOH) (Toney et al., 2010). Each of the four 

fractions was transferred into a 2.5 ml GC-vials, dried down under N2, and stored 

in a fridge.  

3.3.9 Gas chromatography and mass spectroscopy 

The aliphatic hydrocarbons fraction (N1) and the alkenone fraction (N2) were 

analysed on a Shimadzu 2010 Gas Chromatograph Flame Ionization Detector (GC-

FID) for quantification.  A BP-1 GC Column (60m × 0.25mm × 0.25μm) was used 

with the following temperature program: an initial temperature of 60 °C (hold 2 

minute), ramp 30°C/min to 120°C (hold 0 min) then 3 °C/minute to 350°C, GC 

temperature program (hold 20 minute). All analysed compounds were identified 

by comparing the retention time (RT) of the compounds in the samples to the RT 

of standard substances. In addition, a Shimadzu OP2010-Plus Mass Spectrometer 

(MS) interfaced with a Shimadzu 2010 GC using the same temperature 

programme as the GC-FID was also used to identify compounds. The carrier gas 

for the GC-MS was Helium and the ion source temperature was 200 °C and the 

interface temperature was 300°C. When using the GC-FID and the GC-MS, three 

standards were analysed before every run, as well as a standard every 10 

samples and a standard at the end of every run was analysed. This was 

performed to check the conditions of the machine were optimal and there was 

no contamination before and during every run.  
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3.3.10 Vegetation samples 

Vegetation samples were collected from the catchment of Lake Toyoni in July 

2012. Leaf samples were freeze dried and soaked in dichloromethane:methanol 

(3:1) and ultrasonicated for 15 min to extract lipids. This extraction procedure 

was repeated three times (method adapted from Hou et al., (2008)). All 

vegetation samples were separated and analysed using the same procedure as 

the sediment samples (see above).  

3.3.11 Compound specific hydrogen isotopes 

Hydrogen stable isotopic values (δD) of n-alkanes derived from higher plant 

waxes (δDHPW) were performed on sediment and vegetation samples at the 

Institute of Low Temperature Science at the Hokkaido University, Japan in 

collaboration with Dr. Osamu Seki. The δDHPW of the sediment samples were 

analysed in summer 2014 by Jill McColl as part of a Japanese Society for the 

Promotion of Science (JSPS) funded trip to Hokkaido. Additional sediment 

samples as well as all of the vegetation samples were measured by Dr. Osamu 

Seki.  

δDHPW were determined using a GC/thermal conversion system consisting of a HP 

6890 gas chromatograph connected to a Finnigan MAT Delta Plus XL mass 

spectrometer. The chromatographic separation of the n-alkanes was 

accomplished using a HP5-MS column (30m length).The following GC oven 

temperature program was used: the temperature was ramped up from 50 to 

120°C at 30°C min-1 , and then from 120°C to 310°C at 5 °C min-1 , where the 

temperature was held for 15 minutes. Thermal conversion was performed at 

1450 C in a microvolume ceramic tube coated with glassy carbon.  

The δDHPW was calculated relative to the isotopic composition of an internal 

standard (methyl ester of n-C20 alkanoic acid) with a known hydrogen isotopic 

value. The isotopic values are expressed as per mil (‰) vs. Standard Mean Ocean 

Water (SMOW) for the hydrogen isotopic measurements. In order to evaluate the 

instrument accuracy, an external standard consisting of an n-alkane mix (C16-C30) 

with a known hydrogen isotopic composition was injected daily. 



 

 
 

 

4  
Decadal-resolved terrestrial and biological 

input into Lake Toyoni.  

4.1 Introduction  

Lakes, such as Lake Toyoni, are valuable palaeo-climate archives for 

investigating aquatic productivity variability because they have continuous high 

sedimentation rates, which allows for high-resolution palaeo-productivity 

reconstructions. The sedimentation rates in Lake Toyoni are mainly controlled by 

the amount of terrestrial material entering the lake and also the extent of 

productivity within the lake. A 2.5m sediment core taken from Lake Toyoni 

records 1000 years of sedimentation, which is an important time period for 

investigating both natural- and human-driven environmental change.  

4.1.1 Human controls on environmental change during the 
past 1000 years in Hokkaido, Japan 

Hokkaido offers an ideal location for investigating human-induced environmental 

change, because the population of this island substantially increased from 

120,000 in 1872 (Bureau of Statistics, Imperial Cabinet, Japan, 1993) to 

2,360,000 in 1920 (Bureau of Statistics, Imperial Cabinet, Japan, 1924). This 

large increase in population size in Hokkaido occurred after Japan took over the 

island, following a perceived threat from Russia (Kitayama et al., 2006). At the 

same time, Japan went from being controlled by feudal government to being 

controlled by the emperor, known as the Meiji period (Kitayama et al., 2006). As 

a result of the change in government, Samurais (feudal warriors) lost their 
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means of living and were recruited to Hokkaido to create settlements (Kitayama 

et al., 2006). Prior to Japan taking control over Hokkaido, the island was known 

as Ezo and was inhabited with Ainu indigenous population. Following the initial 

settlements by the Samurais, Japan encouraged additional Japanese people to 

Hokkaido through the development of new laws allowing the use of land for 

development and immigrant support which not only allowed people to move to 

Hokkaido and use the land for agricultural practises but also provided financial 

support with travelling expenses, housing, food and farming tools. The new laws 

made it attractive for people to move to Hokkaido and start a new life there; 

therefore, the population dramatically increased during a relatively short period 

of time.  

Increased human activities following the settlement of Japanese people in 

Hokkaido in the 1870’s resulted in an increase in agriculture activities, 

deforestation and also building activities (e.g. roads, housing and dams) 

(Kitayama et al., 2006), which has been attributed to the main cause of a 

decline in Japanese wolf (Knight, 1997) and the Blakiston’s fish owl (Omote et 

al., 2015)  in recent years. In addition, Matsubayashi et al. (2014) also found 

that increased human activities in Hokkaido during this time period caused a 

long-term shift in feeding activities of brown bears due to increased human 

population in their feeding grounds. Moreover, eutrophication in Omuna Lake, 

Hokkaido, has also been report in recent years due to increased nutrient input 

from human activity in the surrounding area (Ochiai et al., 2015, Sun et al., 

2015). Hokkaido therefore records environmental changes due to increased 

human activity in this region. The effect of increased human activities (e.g. 

agricultural and building activities) will be recorded in an increase in 

productivity in Lake Toyoni due to an increase in nutrient run-off into the lake 

Toyoni. 

4.1.2 Environmental controls on productivity in Lake Toyoni 

In addition to nutrient input, the extent of aquatic primary production in 

lacustrine systems is controlled by a number of factors, including temperature 

(Xiao et al., 1997a, Liu et al., 2009b), light availability (Karlsson et al., 2009), 

the degree of mixing within the lake (Qiu et al., 1993, Meyers, 1997, Zimmerman 
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and Canuel, 2000, Diaz, 2001, Chu et al., 2002), which in return can provide 

information on the climatic conditions (Xiao et al., 1997b).  

In sub-arctic lakes, such as Lake Toyoni, the extent of productivity is influenced 

by temperature change through its effect on the duration of the ice-free season 

(Shiomoto et al., 2012, Wang et al., 2012). The duration of the ice-free season 

has a significant effect on light and nutrient availability, which are essential 

requirements for photosynthesis to occur (Wang et al., 2012). In Lake Toyoni, 

the timing of ice-off is consistent with the timing when the lake overturns and is 

well-mixed (Chapter 3), which occurs during the spring overturning (April-May) 

and also during autumn (October-November). The degree of mixing within the 

lake is responsible for recycling of nutrients within the lake, which increases 

primary productivity (Qiu et al., 1993, Meyers, 1997, Zimmerman and Canuel, 

2000, Diaz, 2001, Chu et al., 2002). During winter, when there is extensive ice-

cover on Lake Toyoni, dissolved oxygen becomes depleted at the bottom of the 

lake by bacteria by respiration (Denys, 2010). Respiration releases nutrients 

from the sediments to the water column (e.g Nowlin et al., 2005, Burt et al., 

2013) and when the lake overturns, the water column becomes mixed resulting 

in circulation of oxygen and nutrients throughout the water column (Denys, 

2010). The duration of the ice-cover on Lake Toyoni therefore influences the 

extent of aquatic productivity through the duration of time the lake remains 

well mixed.  

The duration of the ice-cover on Lake Toyoni likely occurs between December 

and March, when the temperatures are below 0°C in Hokkaido (Chapter 2). The 

duration of ice-cover is ultimately controlled by temperature, which is 

dependent on the intensity of the EAWM during winter in Hokkaido. When the 

EAWM winds intensifies, it brings more cold air and temperatures in EAWM 

domain decrease significantly due to the strong advection by strong EAWM winds 

(Jhun and Lee, 2004a). As a result of this cold temperature, the ice stays on 

Lake Toyoni for a longer period of time. On the other hand, when the EAWM 

weakens the temperature becomes warmer earlier (Chapter 2) and results in ice-

off occurring earlier in the lake. The ice-cover will therefore remain on the lake 

longer when the EAWM intensifies and will remain on the lake for a shorter time 

when the EAWM weakens.  In addition to changes in the ice duration, a weak 

EAWM also has a profound influence on the precipitation during summer 
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(Chapter 2). Periods of low productivity therefore reflect an intensification of 

the EAWM and periods of high productivity therefore reflect a weakening of the 

EAWM.  

In addition to the variability of the EAWM determining the timing of ice-off in 

Lake Toyoni, previous studies have also suggested a link between 

teleconnections (e.g. PDO, NAO, ENSO) and the timing of the ice-off in other 

lakes (Todd and Mackay, 2003, Bonsal et al., 2006, Ghanbari et al., 2009, Mishra 

et al., 2011, Katsuki et al., 2012). The hydro-climate in Hokkaido is significantly 

influenced by the PDO (Tsuji et al., 2008). Variations in both temperature and 

precipitation are expected depending on the phase of the PDO. The positive 

phase of the PDO is associated with a decrease in sea surface temperatures; 

whereas in the eastern part of the Pacific Ocean (e.g. US) temperatures increase 

(Mantua et al., 1997), the opposite is true during the negative phase. A negative 

correlation exists between relative humidity and the PDO in Hokkaido (Tsuji et 

al., 2008). When the PDO is in its negative phase, an increase in humid southerly 

winds blows towards Hokkaido resulting in warmer and wetter conditions (Tsuji 

et al., 2008). This is demonstrated in the weather station data from Hiroo 

weather station (25km from Lake Toyoni). The most predominant change from 

“negative” to “positive” phase occurred in 1976. The negative phase (1960-1975) 

had average temperatures of 6.6°C and average rainfall was 1771mm compared 

with the positive PDO phase (1976-1988), which had average temperatures of 

6.2°C and average rainfall of 1517mm. (Chapter 2) The time period of the 

positive PDO is consistent with the timing of a strong EAWM time period, 

because the EAWM and the positive phase of the PDO are also linked (Ding et al., 

2014). The temperature change associated with the change in the phase of the 

PDO directly influences the timing of ice-off on Lake Toyoni. During the positive 

phase of the PDO there are colder conditions in Hokkaido and hence the timing 

of ice-off will be later and productivity is lower as a result. In comparison, when 

the PDO is in its negative phase, there are warmer conditions in Hokkaido which 

results in ice-off occurring earlier and productivity being enhanced during this 

time period. The PDO therefore influences productivity in Lake Toyoni through 

its influence on ice duration on the lake (controlled by temperature). In 

addition, the PDO also influences productivity in the lake through increased 
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precipitation associated with the negative phase resulting in increased run-off 

and soil erosion transporting nutrients into the lake.  

Run-off into lakes is usually controlled by rivers; however, Lake Toyoni has no 

river input into the lake. The main method of fluvial transport in Lake Toyoni is 

therefore ephemeral streams that form during times of increased rainfall or 

during the snowmelt season in spring. The steep slopes surrounding Lake Toyoni 

promote downward movement of terrestrial material during intense run-off 

events. In Hokkaido, precipitation during the ice-free season is associated with 

the EASM (D'Arrigo et al., 2001, Davi et al., 2002, Tsuji et al., 2008, Igarashi et 

al., 2011), which supplies lakes with nutrients via run-off into the lake and as a 

result enhances productivity (Xiao et al., 1997a, Chu et al., 2002, Zeng et al., 

2014). Palaeo-climate studies in EAM domain have therefore used lake 

productivity to infer changes in the EASM (e.g. Liu et al., 2009b). The timing of 

monsoonal precipitation in Hokkaido is associated with August and September 

when precipitation significantly increases. The increase in nutrients transported 

into Lake Toyoni during monsoonal precipitation in August and September 

supports the second bloom in October-November when the water column of Lake 

Toyoni overturns and becomes well-mixed once again (Chapter 3). Based on 

meteorological data from a nearby weather station, a 10 year period associated 

with a weakening of the EAWM (1988-1997; Jhun and Lee, 2004a) show a large 

increase in precipitation in August and September (Chapter 2), which is 

associated with EASM precipitation. This suggests that a weakening of the EAWM 

results in an intensification of the EASM at this site. An increase in precipitation 

and soil erosion, through an enhanced EASM, results in higher productivity in 

Lake Toyoni. On the other hand, when the EASM weakens and/or the EAWM 

intensifies, there is less run-off and soil erosion through a decrease in 

precipitation and as a result productivity in the lake also decreases. Therefore, 

the record of productivity over the past 1000 years in Lake Toyoni will provide 

valuable insights into the variability of the East Asian Monsoon (EAM) over the 

time scale. Increases in productivity suggest warm and wet environment with an 

extended duration of the spring mixing time and hence an enhancement of the 

EASM. A decrease in productivity, on the other hand, suggests that the ice-cover 

on the lake was extended as a result from an enhanced EAWM. The extended 

duration of the ice-cover negatively influence productivity in the lake through a 
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decrease in the duration of mixing in the lake. In addition, rainfall in summer is 

also reduced during an enhanced EAWM, which limits the supply of nutrients for 

the secondary bloom in late autumn (October-November).  

4.1.3 Climatic significance of the proxy indices in the 
sedimentary record of Lake Toyoni 

4.1.3.1 Magnetic susceptibility as a proxy for tephra layers, anoxic 
conditions and transportation processes  

A multi-proxy approach to elucidate changes in productivity over the past 1000 

years has been adopted. Firstly, the magnetic susceptibility (MS) in the down-

core record, which records the response of sediments to magnetism. This has 

been used in a number of palaeo-climate records from marine (e.g. Somayajulu 

et al., 1978, Larrasoaña et al., 2008), lacustrine (e.g. Yancheva et al., 2007, 

Wang et al., 2008b, Gebhardt et al., 2013) and aeolian sediments (e.g. Chen et 

al., 1997, An, 2000, Vandenberghe et al., 2004) from locations all over the 

world. 

The MS response within lake sediments will vary between different lakes 

depending on what climatic processes MS is controlled by, because all lakes are 

unique (Shouyun et al., 2002). In order to use MS in lakes it is therefore 

important to understand processes controlling MS within the sedimentary record 

at that given site (Shouyun et al., 2002). Although MS mainly reflects the supply 

of allochthonous magnetic minerals from the catchment into the lake (Dearing et 

al., 1981, Wang et al., 2008b), other sources such as the presence of tephra 

(Lozano-Garcia et al., 1993, Calanchi et al., 1998, Haberle and Lumley, 1998, 

Hallett et al., 2001), dust from aeolian processes (Yancheva et al., 2007), 

biogenic materials (Lowenstam, 1981), dissolution under reduction conditions 

(Nowaczyk et al., 2002, Yancheva et al., 2007, Gebhardt et al., 2013) and 

minerals that form within the lake, referred to as authigenic minerals (Shouyun 

et al., 2002) also influence the MS of the sedimentary record.   

In Lake Toyoni, MS likely represents the presence of tephra layers because 

Hokkaido is tectonically active; therefore, fallout from volcanic eruptions into 

Lake Toyoni will significantly increase the MS in the down-core record. In 

addition, MS in the Lake Toyoni record also provides valuable information on 
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past anoxic events. Magnetic minerals can become dissolved when the oxygen 

content of the sediments is low (hypoxic; O2<2.0mg l−1) (Diaz, 2001, Zimmerman 

and Canuel, 2000) or absent (anoxic; O2<0.2mg l−1) (Zimmerman and Canuel, 

2000). Low oxygen content results in dissolution of magnetic minerals and hence 

a lower MS (Nowaczyk et al., 2002, Yancheva et al., 2007, Gebhardt et al., 

2013). In comparison, when there are oxic conditions magnetic minerals are well 

preserved (Nowaczyk et al., 2002). The bottom water of Lake Toyoni becomes 

hypoxic (O2<2.0mg l−1) between July and October in the modern day 

environment due to thermal stratification occurring and a lack of mixing within 

the water column (Chapter 3). MS in Lake Toyoni likely reflects oxygen content 

of the bottom sediments; with high values representing oxic conditions 

(increased mixing and reduce thermal stratification) and low values representing 

anoxic conditions reduced mixing and increased thermal stratification). Anoxic 

conditions can also prevail following time periods of increased biological activity 

(e.g. Nowaczyk et al., 2002, Zimmerman and Canuel, 2000, Diaz, 2001, Kemp, 

1996). When biological productivity increases, there is an increase in the flux of 

OM to the lake bottom resulting in degradation, which in turn results in less 

oxygen content (Nowaczyk et al., 2002, Diaz, 2001).  

MS in the Lake Toyoni sedimentary record may also reflect weathering processes 

within the catchment and the mechanisms associated with the transport of 

magnetic minerals into the lake, e.g. fluvial and aeolian processes.  The 

influence of aeolian processes on the MS in the Lake Toyoni sedimentary record 

is further discussed in chapter 5.  Fluvial input into Lake Toyoni is controlled by 

the amount of precipitation, which in Hokkaido is supplied in summer (August 

and September) by the EASM (568mm of precipitation based on data from 1958-

2014) and in winter (November, December, January and February) by the EAWM 

(366mm of precipitation based on data from 1958-2014); therefore, both 

monsoon systems result in high precipitation amount in this region. Run-off into 

lakes is usually controlled by rivers; however, Lake Toyoni has no river input into 

the lake. The main method of fluvial transport in Lake Toyoni is therefore 

ephemeral streams that form during times of increased rainfall or during the 

snowmelt season in spring. The steep slopes surrounding Lake Toyoni promote 

downward movement of terrestrial material during intense run-off events. 

Fluvial input into the lake also influences productivity and hence increased 
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precipitation in the catchment of Lake Toyoni results in an increase in OM from 

the catchment and also promotes productivity in the lake.  

4.1.3.2 Rb/Sr ratio as a chemical weathering proxy 

Precipitation, as well as temperature, can influence the amount of chemical 

weathering (Chen et al., 1999a, Jin et al., 2001, Wu et al., 2006b) and hence 

the amount of terrestrial input within the lake. An increase in precipitation and 

chemical weathering results in an increase in terrestrial material transported by 

fluvial processes into the lake. Lakes therefore act as a trap for weathering 

material within the catchment making them excellent palaeo-archives to study 

chemical weathering within the catchment.  

Although the Rb/Sr ratio mainly reflects the chemical weathering within the 

catchment, physical weathering can also influence this ratio. In particular, 

physical weathering is important to consider on short times scales, e.g. decadal 

timescales (Xu et al., 2010a). When physical weathering increases within the 

catchment, more clastic material (e.g. Rb) is transported into the lake, which 

can dilute the Sr signal (Xu et al., 2010a). Chemical and physical weathering are 

both influenced by precipitation; however, this is recorded in the Rb/Sr ratio in 

opposite directions. For example, chemical weathering will be recorded with 

decrease in Rb/Sr values; whereas, physical weathering would record an 

increase in Rb/Sr values due to Sr being diluted by other terrestrial material (Xu 

et al., 2010a). The dilution effect in the Toyoni record is not likely to influence 

the Rb/Sr ratio in Hokkaido since the record extends throughout the last 

millennium; whereas, the dilution effect by physical weathering mainly only 

influences Rb/Sr ratio at decadal time-scales.    

To determine the extent of chemical weathering within the catchment, the ratio 

between Rb and Sr is used (Jin et al., 2001, Jin et al., 2006, Chu et al., 2013, Liu 

et al., 2014a, Zeng et al., 2014). Warm and wet conditions enhance chemical 

weathering within the catchment, which preferably releases Sr over Rb (Dasch, 

1969, Liu et al., 1999, Chen et al., 1999a) resulting in more Sr being transported 

into the lake (Jin et al., 2001, Jin et al., 2006). This leads to an increase in the 

Rb/Sr ratio within catchment and a decrease in the Rb/Sr proxy within lakes 

since Sr is lost from the catchment and increased in lakes with respect to Rb (Jin 
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et al., 2001, Jin et al., 2006). In comparison, when conditions are cold or dry or 

both, Sr is not leached from the catchment rocks and therefore less Sr is 

transported into the lake, reflected by an increase in the Rb/Sr ratio within lake 

sediments (Chen et al., 1999a, Jin et al., 2001, Wu et al., 2006b).  

4.1.3.3 Inc/Coh ratio as a proxy for OM content of sediments 

The Inc/Coh ratio is used to infer information on OM content of the sediments 

(Guyard et al., 2007, Burnett et al., 2011, Liu et al., 2013b, Liu et al., 2014b). 

The Inc/Coh ratio is dependent on the loss of energy between two different 

types of scattering during the scanning of the core. A loss of energy occurs 

during the scanning process when the atomic number of the target atom is 

lighter than the X-Ray photon resulting in stronger incoherent scatter (Kylander 

et al., 2012). No loss of energy during scattering occurs when measuring 

elements with a larger atomic number (weaker incoherent scattering) (Kylander 

et al., 2012). OM produces higher incoherent scatter and as a result the Inc/Coh 

ratio will have a greater value when sediments contain more OM and a lower 

value when measuring inorganic materials (Guyard et al., 2007). 

Sources of OM in lacustrine sediments are primarily controlled by the ecology 

within the lake as well as the surrounding catchment (Meyers and Ishiwatari, 

1993b). Thus, OM in lake sediments can be either provided by primary 

production in the lake (autochthonous component) or terrestrial plant material 

(allochthonous component) washed into the lake by run-off via rainfall and/or 

snow-melt (Meyers, 1997).  An increase in precipitation favours soil erosion and 

an increase in transport of OM into the lake (after Zeng et al., 2014). Algae 

production is also enhanced due to an increase in nutrients during increased run-

off into the lake. As a result, Inc/Coh ratio can provide information on past 

precipitation history of the lake. 

4.1.3.4 C/N ratio as a proxy for the source of OM 

Where the Inc/Coh ratio provides information on the extent of OM within the 

sedimentary record, the C/N ratio provides information on the source of the OM. 

The C/N ratio is therefore an important proxy to assess the relative 

contributions of terrestrial and aquatic OM in lake sediments (Meyers, 1997). The 

C/N ratio of bulk sediments changes with respect to the concentration cellulose 
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in the plant sources of OM (Meyers and Ishiwatari, 1993a).  Nonvascular aquatic 

plants or algae have low concentrations of cellulose and typically have a C/N 

ratio between 4 and 10. In comparison, land plants contain high concentrations 

of cellulose and have C/N ratios ≥20 (Meyers, 1994). The C/N ratio found in the 

bulk sediments of lakes mostly reflects a mix of both aquatic and terrestrial 

sources of OM (Meyers, 1994).  

The C/N ratios in the sedimentary record of Lake Toyoni is strongly influenced 

by terrestrial OM from the dense vegetation in the catchment of Lake Toyoni. In 

addition, aquatic productivity in the lake also influences the C/N ratios in Lake 

Toyoni. During time periods of enhanced aquatic productivity, the C/N ratio in 

the sedimentary record will decrease and vice versa. As previously discussed, 

productivity in Lake Toyoni is enhanced when the EASM intensifies and/or the 

EAWM weakens, resulting in increased nutrients run-off into the Lake. The 

duration of time available for primary production in Lake Toyoni to occur is 

dependent on the ice-cover duration. As a result, when the ice-cover duration 

decreases; productivity increases in the lake. Lower C/N ratios in the down-core 

record are used to indicate increased aquatic productivity within the lake due to 

warmer conditions and an enhanced contribution from the EASM. Higher C/N 

ratios, on the other hand, suggests an increase in terrestrially derived OM. The 

catchment of Lake Toyoni is densely covered in vegetation and wind and fluvial 

input transports this material into the lake. High C/N ratios therefore reflect an 

increase in wind and/or fluvial transport into the lake.  

4.1.3.5 n-Alkane biomarkers as a proxy for source of OM 

In addition to the C/N ratios, n-alkanes can also provide valuable information on 

the contribution of terrestrially- and aquatic-derived OM based on the fact that 

aquatic algae and terrestrial higher plants produce distinctly different chain 

lengths. Aquatic algae produce short chain homologues (C17–C21 n-alkanes) (Giger 

et al., 1980, Cranwell et al., 1987), whereas terrestrial organisms produce long-

chain n-alkanes (C25–C33 n-alkanes). In between are the mid-chain homologues 

(C23, C24 and/or C25 n-alkanes), which are produced by submerged aquatic 

macrophytes (Ficken et al., 2000). The difference between short-chain and long 

chain n-alkanes therefore reflects the source organism. When conditions in the 

lake change (e.g. nutrient levels, mixing extent, ice-cover), the contribution of 
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short-chain n-alkanes will change accordingly. For example, when environmental 

conditions change and there is a corresponding increase in aquatic productivity, 

more short-chained n-alkanes will be produced and vice versa. The changes in 

the molecular composition of n-alkanes in the down-core sedimentary record 

therefore provides valuable information on changes in aquatic versus terrestrial 

productivity over a given time period.  

n-Alkanes derived from terrestrial higher plants are transported into Lake Toyoni 

by fluvial and/or aeolian processes. Due to the dense vegetation in the 

catchment of Lake Toyon it is assumed that the majority of n-alkanes in the Lake 

Toyoni sedimentary record are sourced from the catchment area and washed 

into the lake during run-off during the spring melt and summer rainfall and also 

transported via aeolian processes. n-Alkanes derived from aquatic algae (short 

chained) and submerged plants (mid chains) (Ficken et al., 2000) increase when 

aquatic productivity increases. The molecular compositions of n-alkanes 

therefore provide information on variations on terrestrial- and aquatic input in 

the lake.  

The molecular compositions of n-alkanes provide a number of n-alkane based 

indices; for example, the carbon preference index (CPI index), Average Chain 

Length (ACL) and the proportion aquatic (Paq). The CPI index gives information 

of the extent of odd over even carbon number predominance (Bray and Evans, 

1961). n-Alkanes produced by higher plants have a strong odd over even carbon 

number predominance (Eglinton and Hamilton, 1967). In contrast, algal n-

alkanes do not contain the strong odd over even carbon number predominance. 

Biomarkers from different biological origins have different CPI values; therefore, 

the n-alkane CPI in sediment is an indicator of the sources of biological origin 

(e.g. Simoneit et al., 1979). High CPI values (>3) results from a strong odd/even 

predominance which is a characteristics of higher plant wax n-alkanes. In 

contrast, n-alkanes from bacteria and algae show a weak odd/even 

predominance and give low CPI values (~1) (Cranwell et al., 1987). In addition, 

n-alkane distributions in sediments altered by  diagenesis or bacteria may lack 

the strong odd over even preference of primary plant-wax n-alkanes (Meyers and 

Ishiwatari, 1993a); therefore, low CPI values may also indicate increased 

microbial activity during the time of deposition.  
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Variations in the CPI values offer insights into the source of n-alkanes. Xie et al. 

(2004) have shown that CPI values from loess/paleosol sequences of western 

Chinese Loess Plateau demonstrated that low CPI values of paleosol layers 

represent warmer and wetter climatic conditions; whereas, high CPI values 

represent colder and drier climatic conditions (Xie et al., 2004). Similarly, this 

trend was also found in two Japan Sea marine sediment cores which indicated 

that the variation of CPI values was in consistent with glacial/interglacial cycles, 

with lower CPI values occurring in warmer and wetter interglacial periods 

(Ishiwatari et al., 1994, Yamada and Ishiwatari, 1999). The variability of the CPI 

values in the Japan Sea was attributed to species variations of terrestrial higher 

plants due to changes in the climate; CPI values were lower in warmer climates 

(Ishiwatari et al., 1994). In the case of Lake Toyoni, an increase in temperature 

would promote aquatic productivity in the lake and a decrease in CPI values. 

Lake Toyoni will also be strongly influenced by the dense vegetation in the 

catchment area of the lake, and hence high CPI values.  

Another n-alkane molecular composition proxy is the ACL proxy. Vegetation 

types are the main influence on chain length of terrigenous leaf lipids. For 

example, n-alkanes derived from grasslands have longer chain lengths than leaf 

lipids from plants in forests (Cranwell, 1973). In the case of Lake Toyoni, the 

understory in the modern day environment is bamboo, which will have a 

significant influence on the ACL values. Changes in the vegetation over time are 

reflected in the ACL values. In addition to ACL value and vegetation type, a 

relationship between ACL and plant stresses (e.g. temperature and/or aridity) 

have been previously suggested (Gagosian and Peltzer, 1986, Kawamura et al., 

2003). The humidity in Hokkaido during the growing season (June-September; 

Seki et al., 2010) is >70%; therefore, aridity will not influence the ACL values at 

this site. Temperature on the other hand may influence ACL values. Increasing 

the ACL raises the melting point of protective leaf surface waxes and thus plants 

growing at higher temperatures may synthesize longer chain n-alkanes in order 

to maintain the protective waxy coating on their leaves (Rommerskirchen et al., 

2003). Hence, plants produce longer chain compounds; therefore, higher ACL 

values, in warmer climates (Poynter et al., 1989).  
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The Paq index was developed to reflect the relative contribution of aquatic 

macrophytes and emergent aquatic and terrestrial plants based on a survey of 

African Lakes, which found that the distribution of n-alkanes from 

floating/submerged marophytes maximise at C23 and C25 (Ficken et al., 2000). 

Emergent aquatic plants, on the other hand, had n-alkane distributions similar to 

those of the terrestrial vegetation, typically dominated by the long-chain length 

homologues (>C29). According to Ficken et al. (2000), Paq values greater than 

0.4 indicate the dominance of submerged and floating macrophytes (Ficken et 

al., 2000). For the modern plants, this proxy gives average values of 0.09 for 

terrestrial (range 0.01–0.23), 0.25 for emergent (range 0.07–0.61) and 0.69 for 

submerged/floating species (range 0.48–0.94). However, mid-chained n-alkanes 

are not exclusively produced by emergent and floating/submerged macrophytes. 

Mid-chained n-alkanes are also produced by higher plants (Eglinton and 

Hamilton, 1963), which is particularly important with respect to Lake Toyoni, 

because higher plants from the catchment of Lake Toyoni will have a strong 

influence on the n-alkane distributions in the down-core sedimentary record. 

Mid-chained n-alkanes in Lake Toyoni are unlikely to be exclusively derived from 

emergent and floating/submerged macrophytes, however, the Paq index will 

provide an approximate measure of variations in the sedimentary contribution 

from submerged/floating aquatic macrophytes in Lake Toyoni however will not 

reflect the dominance of floating/submerged macrophytes.   

4.1.3.6 Si/Rb as a proxy for diatom productivity 

Where the C/N ratios and n-alkane proxies provide general information on 

variations in aquatic versus terrestrial contribution to the sedimentary record, 

the ratio between Si and Rb is used to reflect the deposition of biogenic silica 

(BSi) (e.g. Melles et al., 2012, Gebhardt et al., 2013, Liu et al., 2013b), which 

indicates increased diatom productivity (Johnson et al., 2002), because diatoms 

form cell walls made of silica (SiO2) (Peinerud, 2000).  

Diatom productivity in lakes is associated with a well mixed water column; in 

Lake Toyoni this occurs during spring (April-May) and autumn (October-

November). The timing of ice-off in Lake Toyoni determines the time period the 

lake stays well mixed before thermal stratification occurs in June. When ice-off 

occurs earlier in the year, the timing of a well mixed water column, and hence 
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productivity, is extended. Similarly, a previous study from a lagoon north of Lake 

Toyoni found the duration of diatom blooms increased when the ice-cover was 

reduced during winter (Shiomoto et al., 2012) Typical diatom blooms in this 

Lagoon are ~1 month; however, this was extended to ~3 months when ice-cover 

is reduced (Shiomoto et al., 2012). Therefore, a change in diatom productivity in 

Lake Toyoni provides information on the timing of ice-off conditions in Lake 

Toyoni.  The timing of ice-off in Hokkaido is driven by the intensity of the EAWM 

and the PDO; therefore, the extent of BSi in Lake Toyoni provides information on 

the phase of the PDO and the intensity of the EAWM. Higher Si/Rb values 

represent time period when diatom productivity increased due to a reduced ice-

cover on the lake during a weakened EAWM and/or a negative phase of the PDO. 

Low Si/Rb values represent time period when the ice-cover remained on the lake 

for longer time periods, during an enhanced EAWM and/or positive phase of the 

PDO, reducing the time period of diatom productivity and hence the Si/Rb ratio 

in the sedimentary record.  

Table 4-1: Summary table  of the different climatic influences (EAM and PDO) on the 
processes  involved in Lake Toyoni.  

 Temperature Run-off Preservation 
of magnetite 

Ice-free 
season 

productivity 

Strong EASM/ 
weak EAWM 

↑ ↑ ↓ ↑ ↑ 

Weak EASM/ 
strong EAWM 

↓ ↓ ↑ ↓ ↓ 

Positive PDO ↓ ↓ ↑ ↓ ↓ 

Negative PDO ↑ ↑ ↓ ↑ ↑ 

 

 

4.1.3.7 Aims 

It is hypothesised that productivity in Lake Toyoni has varied in response to 

changes in the EAM intensity and the phase of the PDO over the past 1000 years 

in Hokkaido. The key aims of this chapter are: 

1. To determine how productivity varied over the past 1000 years 

2. To determine possible forcing mechanisms (e.g. solar irradiance and the 
PDO) driving productivity changes, and hence EAM variability, in Northern 
Japan. 



 

 
 

 

Figure 4-1: Diagram outlining the key processes influencing Lake Toyoni.  



 

 
 

 

4.2 Results 

4.2.1 Core description 

The core was split and described using a Munsell colour chart. Seven lithofacies 

were identified in  

Table 4-2. Lithofacies A is characterised by very dark greyish brown (3/2) 2.5Y 

with faint laminations (5/2 greyish brown 5/2 Y). Lithofacies B is characterised 

by 3/1 very dark grey 2.5Y. Lithofacies C is characterised by very dark greyish 

brown (3/2) 2.5Y. Lithofacies D characterised by 5/3 light olive brown 2.5Y with 

laminations. These sections of the core are relatively small (averaging around 

5cm thick). Lithofacies E is characterised by greyish brown (5/2). Lithofacies F is 

characterised by 4/2 dark greyish brown. Lithofacies G is characterised by 4/3 

olive brown 2.5Y and visually has a change in grain size from finer to coarse 

grains. In addition, two tephra layers were visually identified in the sedimentary 

record.  Tephra 1 at ~1250AD and tephra 2 at ~1630AD were both characterised 

by 6/4 light yellowish brown 2.5 Y.   

4.2.2 MS 

MS is lowest in the earliest part of the record (1000-1170AD), followed by a 

sharp increase around 1174AD (Figure 4-2). Between 1174AD and 1879AD, MS is 

variable and there is a second spike in MS around 1604AD >1879AD, MS is 

relatively low.  Visible tephra explain maxima in MS at 1187AD and 16040AD 

(Figure 4-2).   

4.2.3 Rb/Sr 

The highest values of Rb/Sr are recorded in the earliest section of the record 

(1000-1200AD). High values are also recorded between 1450-1500AD, 1575-

1620AD and 1804-18540D. Low values are recorded between 1300-1450AD, 1500-

1575AD and 1610-1800AD (Figure 4-3). 
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4.2.4 Inc/Coh 

High Inc/Coh ratios between 1000 and 1300AD are recorded in the earliest part 

of the record. A sharp decrease between 1300-1350AD was followed by low 

values to 1600AD. After 1600AD, Inc/Coh ratio generally increases to the most 

recent part of the record (Figure 4-3). 

4.2.5 C/N ratios 

In the earliest part of the record to 1200AD, C/N values are ~16. C/N ratios then 

increase to ~21 at 1500AD and remain high till 1600AD. There is a sharp decrease 

in values to ~18 between 1600 and 1700AD. C/N values then remain relatively 

constant to ~1900AD (Figure 4-3).  

Table 4-2: Lithofacies and visual description of the core.  

lithofacies 

 
Description/colour 

 
depth 

 
Cal. Age (AD) 

A Very dark greyish brown (3/2) 2.5Y 
with faint laminations (greyish 
brown 5/2 Y) 
 

10-61cm 
202-end of 
core 

1960-1746  
1183-end of 
core 

B very dark grey (3/1 ) 2.5Y 61-85cm 1750-1656 

C Very dark greyish brown (3/2) 
2.5Y, coarser grain size noted 

85-121cm 1656-1511  
 

D 5/3 light olive brown 2.5Y with  
laminations 
 

121-126cm 
183-189cm 
197-202cm 

1511-1490 
1260-1239 
1203-1183 

E greyish brown (5/2  )2.5 Y 126-154cm 1490-1377 
 

F olive brown (4/3) 2.5Y (change in 
grain size) 

154-161cm 1377-1349 

G dark greyish brown (4/2) 
 

161-183cm 
189-197cm 

1349-1260 
1203-1239 
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Figure 4-2: Magnetic susceptibility and lithofacies changes in the down-core sedimentary record. 



 

 
 

4.2.6 n-Alkanes 

4.2.7 CPI 

The CPI25-35 values significantly vary between 0.6 and 15.3 over the late 

Holocene (~1000 years; Figure 4-4). The oldest sample at ~955AD has a CPI25-35 

value of 7.3. The CPI25-35 values initially rise to 11.4 at ~1053AD followed by a 

general decrease to 7.7 at ~1308AD. The CPI25-35 values rise again to 10.7 at 

~1413AD, followed by a decrease to 6.8 at ~1490AD. CPI25-35 values then increase 

to 12.5 in ~1563AD followed by another decrease to 7.0 at ~1628AD.  There is a 

sharp increase in CPI25-35 values at ~1897AD to the highest values recorded 

(15.3). 

4.2.8 ACL 

The ACL25-35 values show significant variations over the past 1000 years (ACL25-35 

values ranging from 27.3 to 29.4; Figure 4-4). Between ~955 and ~1110AD, the 

ACL values range from 29.0 and 28.3. There is a general decrease in ACL25-35 

values between 1110 and 1357AD to 8.3 followed by an increase to 29.2 at 

1446AD. ACL25-35 values were variable with a general decrease to 28.3 in 1782. 

Following this decrease, ACL25-35 values steadily increase to 29.2 in ~1952AD.  

4.2.9 Paq 

The Paq values show significant variations (0.2-0.8) over the period of the late 

Holocene (~1000 years; Figure 4-4). Between 955 and ~1033AD Paq values 

decrease to 0.2, followed by an increase to 0.4 at 1098AD. The Paq values then 

decrease to 0.2 at 1118AD, followed by an increase to 0.4 at 1357AD. Between 

1357 and 1563AD, Paq values are variable with a general decrease in values. Paq 

values increase to 0.5 at 1628, followed by a general decrease to 0.2 at 1897AD.   

4.2.10 Si/Rb 

In the earliest part of the record (955-1170AD), the Si/Rb ratio is high. Between 

1200 and 1610AD, Si/Rb is relatively low and constant. At 1620 AD there is a 

large increase in Si/Rb to 1660AD, followed low values to the most recent 

section of the core. 
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Figure 4-3: Variations in productivity over the past 1000 years in Lake Toyoni. From bottom 
to top; Rb/Sr ratio, Inc/Coh ratio, C/N ratio, Paq and Si/Rb ratio. Grey bar represent missing 
XRF data. 
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Figure 4-4: Variations in molecular composition of n-alkanes over the past 1000 years. From 
bottom to top; ACL, CPI and Paq proxies. ACL and CPI equations are both derived using the 
same data (C25-33). The P(aq) equation  also uses short chain n-alkanes and will be used as a 
representative for the molecular composition of n-alkanes in future discussions. Higher 
resolution sampling (half cm resolution) at the start of the core therefore higher resolution 
between 1900 and 2000AD.  

 

4.3 Discussion 

4.3.1 Productivity during the MWP (955-1300AD) 

At Lake Toyoni, the Inc/Coh ratio indicates the OM content of the sediments. OM 

input is enhanced from ~1000-1300AD (MWP; Figure 4-3). While this is likely due 

to organic material being washed into the lake during increased precipitation, 

we also expect that the amount of precipitation also influenced productivity in 

the lake. Increased precipitation enhances run off, and hence nutrient input into 

the lake, which in turn promotes productivity. An increase in productivity during 
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the MWP is supported by high Si/Rb and low C/N ratios, suggesting that warm 

and wet conditions during the MWP promoted productivity in the lake.  

The lowest MS is recorded in the earliest part of the record (1000-1170AD) 

(Figure 4-2) suggesting that during this time period there is a reduction in input 

of magnetic minerals (e.g. from wind and run-off input) into Lake Toyoni. 

However, high Inc/Coh ratio values suggest an increase in precipitation during 

this time period, which in turn would transport magnetic minerals into the lake. 

An alternative explanation is the low MS may represent anoxic conditions within 

the lake.  Closed lakes, such as Lake Toyoni, are particularly prone to anoxic 

conditions. Low oxygen conditions (<2mg/L) prevail in Lake Toyoni when the 

water column becomes thermally stratified between June and October. When 

anoxia occurs, magnetic minerals within the sediments are dissolved or 

transformed into authigenic iron sulphides resulting in a decrease in MS 

(Nowaczyk et al., 2002, Ortega et al., 2006, Ao et al., 2010). Anoxic conditions 

in lakes also occur when the duration of ice-cover on the lake increases 

(Gebhardt et al., 2013) and also when productivity increases (Diaz, 2001, 

Nowaczyk et al., 2002). The time period between 1000-1200AD is characterised 

by low C/N ratios and high Si/Rb suggesting that productivity increased during 

this time period and may be responsible for anoxic conditions during this time 

period.  Alternatively, the high OM content, as inferred from Inc/Coh ratio, may 

be responsible for low MS values. Anoxic conditions can preserve organic 

material that has a lower MS than clastic material. Within this time period, 

Lithofacies D appears once for a relatively short time period. Lithofacies D is 

characterised by faint laminations. Faint laminations are formed when the 

bottom water is anoxic (Kemp, 1996, Kotilainen et al., 2007), providing further 

evidence for anoxic conditions during this time period.  Low MS values during the 

MWP is a result of high content of OM and/or dissolution processes during this 

time period as a result of anoxic sediments from increase productivity in the 

lake. 

The anoxic conditions associated with the MWP suggest that thermal 

stratification during this time period was intense. When there is low oxygen 

content in the sediments, bacteria respire and nutrients are released into the 

water column. These nutrients will be available during the spring and autumn 

overturn of the lake. This combined with an increased in runoff (as inferred from 
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increase in Inc/Coh ratio values; Figure 4-3) supplying nutrients into the lake and 

increased temperatures during the MWP promoted an increase in biological 

production during this time period. An increased biological productivity would 

increase the amount of OM supplied to the lake floor. The increased flux of OM 

would in turn facilitate keeping sediments anoxic. 

Based on the high productivity (high Si/Rb and low C/N ratios) and increased 

precipitation (high Inc/Coh ratios), it is suggested that the EASM intensified 

and/or the EAWM weakened during this time period. The warm conditions during 

the MWP resulted in stratification of the water column, which led to low oxygen 

conditions in the sediments, which are beneficial to the preservation of OM in 

sediments (Bralower & Thierstein, 1984). The duration of the ice-cover on Lake 

Toyoni during the MWP was significantly reduced resulting in an increase in the 

mixing time period in the lake during spring. At the same time, precipitation 

associated with an intense EASM increased during August and September, which 

transported nutrients into the lake. During the autumn overturn, the combined 

nutrients from run-off into the lake, along with nutrients released from anoxic 

bottom waters, resulted in a strong autumn bloom.  

In addition to the high productivity of the MWP, high Rb/Sr values are also 

recorded during the MWP (Figure 4-3). Temperature reconstructions show 

warming during the MWP in Japan (e.g. Sakaguchi, 1983, Kitagawa and 

Matsumoto, 1995, Yamada et al., 2010). As previously stated, warm and wet 

conditions promote chemical weathering. If temperature was controlling the 

Rb/Sr ratio during this time period, we would expect to see a reduction in Rb/Sr 

values. Therefore, temperature is not controlling the Rb/Sr proxy, at least 

during this time period. Another control is precipitation, with increased 

precipitation leading to increased chemical weathering, and hence lower Rb/Sr 

values. It was suggested that precipitation increased during this time period 

based on an increase in Inc/Coh ratios. However, the Rb/Sr ratio is high during 

this time, which indicates a drier environment with reduced chemical 

weathering, opposite to findings based on Inc/Coh ratio. Furthermore, the Rb/Sr 

values are opposite to Jin et al. (2006) (Figure 4-6) showing lower Rb/Sr values 

during the MWP. It is suggested that the high Rb/Sr values during this time 

period are not reflecting chemical weathering but in fact other chemical 

processes within the sediments. In the previous section, it was suggested that 
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anoxic conditions were present during the MWP based on very low magnetic 

susceptibility values. Anoxic conditions prevail when increased organic material 

is transported to the bottom of the lake, which increases respiration of bacteria, 

resulting in low oxygen levels. The chemical composition of material transported 

form water column to sediments is changed by digenetic processes (Billon et al., 

2002). Billon et al. (2002) found that Sr can interact with calcium carbonate, 

which removes Sr from the sediments by precipitation and adsorption with 

calcite or a combination of both processes. Anoxic conditions decreased the 

amount of Sr within the sediments resulting in high Rb/Sr values even during a 

time period when chemical weathering was enhanced. 

4.3.1.1 Productivity LIA (1300-1850AD) 

The highly productive time period of the MWP was followed by low productivity 

(low Si/Rb values) and OM (low Inc/Coh values) at the onset of the LIA (Figure 

4-3). The reduction in aquatic productivity and increased terrestrially derived 

OM (as inferred from high C/N ratios) continued between 1300-1610AD (Figure 

4-3). The slight increase in Inc/Coh ratio around ~1500AD (Figure 4-3) is 

explained due to an influx of terrestrially derived OM via increased run off or 

wind input into the lake. Another explanation for the reduction in BSi could be 

competition between diatoms and with other species (e.g. cyanobacteria, 

haptophyte algae). However, the C/N ratios also increased during this time 

period suggesting an increase in terrestrial material and a reduction in overall 

productivity in the lake.  

Within this reduced productivity time period, Lithofacies D appears ~1511-

1490AD (Figure 4-2), which is characterised by faint laminations. Faint 

laminations are interpreted as anoxic bottom water (Kemp, 1996, Kotilainen et 

al., 2007), which may be caused by increased ice-cover of the lake and therefore 

less mixing time and low oxygen levels in the sediments (Gebhardt et al., 2013). 

An alternative explanation for laminations during this time period is clastic 

material gathering on top of the ice of the lake during winter resulting in a large 

input of material into the lake during melting period.  

Subsequent to the low Si/Rb ratios between 1300 and 1620AD, there is a sharp 

increase in Si/Rb ratios ~1620AD (Figure 4-3) suggesting increased productivity. 
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This increase in Si/Rb ratios is consistent with a significant decrease in C/N 

ratios (Figure 4-3). This time period is also associated with a tephra layer (Figure 

4-2) suggesting increased Si/Rb ratios (Figure 4-3)  may also be attributed to the 

water column becoming enriched with nutrients following the deposition of ash 

from volcanic fall out (Lotter et al., 1995). As a result, diatom concentrations 

have been shown to increase after tephra deposition (Telford et al., 2004).  

Alternatively, since Silica is deposited into the lake as part of the tephra layers, 

the increased Si/Rb during this time period (Figure 4-3) may not be related to 

increased productivity but rather reflecting the increased Si from the tephra 

layer (as inferred from high MS values). We suggest that productivity increased 

during this time period, because the C/N ratios sharply decrease (Figure 4-3) 

suggesting an increased influence of algae OM during this time period. If tephra 

is having an effect on productivity due to increased nutrients in the lake Toyoni 

record during this time period, it is a short-term event and is not prolonged for 

long periods of time after the deposition of tephra in Lake Toyoni.  

Ash associated with volcanic eruptions influences the MS during this section of 

the core. In general the LIA is characterised by an increase in MS (Figure 4-2); 

however, this is highly variable. The presence of two tephra layers within this 

time period may also be responsible for the increase in MS due to ash remaining 

within the catchment and being transported into the lake after the timing of the 

tephra layer via run off processes. The increase in C/N ratios suggests an 

increased influence from terrestrial input during this time period. The high MS 

values therefore likely represent an increase in terrestrial input (e.g. increased 

wind activity and run–off via precipitation and/or snow-melt) into the lake. It is 

suggested that wind activity increased during this time period, which would have 

also kept the water column well mixed and the sediments oxic, which is 

conducive for preserving magnetic minerals (wind processes are further 

discussed in the following chapter).  

The oxic conditions during the LIA will not negatively influence the Rb/Sr ratio 

during this time period suggesting that the proxy is reliable during the LIA 

compared to the MWP where it was influenced by anoxic conditions. High Rb/Sr 

values are recorded in 1445-1500AD, 1575-1620AD and 1800-1840AD (Figure 4-3) 

suggest a decrease in chemical weathering within the catchment. Between 1445-

1500AD there is a reduction in solar irradiance (Figure 4-7). Colder 
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temperatures, associated with a decrease in solar irradiance, decrease the rate 

of chemical weathering in the catchment. Therefore, it is suggested that cold 

conditions during this period of time resulted in a reduction in chemical 

weathering. In comparison, solar irradiance between 1750-1850AD is higher 

(Figure 4-7) and therefore a decrease in chemical weathering may be associated 

with drier conditions, via reduced rainfall or snowfall. 

Chemical weathering increased (reduction in Rb/Sr ratio) between 1300-1450AD, 

1570-1575AD and 1610-1800AD (Figure 4-3) suggesting that terrestrial material 

increased during this time period suggesting this time period received more 

precipitation via rainfall and/or snowfall during this period of time. Jin et al. 

(2006) found an enhancement of chemical weathering in both record between 

1300-1450AD (Figure 4-6). This time period has variable temperature 

reconstructions with some records showing cooling (Ge et al., 2011) during this 

time and some records showing warming (Tan et al., 2003) (Figure 4-6). 

Increased warming during this time period is suggested possibly due to an 

intensification of the EASM increasing rainfall in this region and promoting 

increased chemical weathering. The lowest Rb/Sr values are ~1640AD, which is 

also the timing of tephra 2 and also increased productivity (increased Si/Rb and 

decreased C/N ratios) in the core (Figure 4-3). Low Rb/Sr values during this time 

suggest that the drop in the Rb/Sr ratio is associated with tephra deposition 

rather than increased chemical weathering in the core.  

 

 



 

 
 

 

 

 

Figure 4-5: Variations in C/N ratios and the molecular composition of n-alkanes (ACL, CPI and Paq) in short core TY11.   



 

 
 

 

4.3.1.2 Productivity recorded in short core TY11 

The short core (12cm) taken from Lake Toyoni records a dramatic decrease in 

C/N and Paq values in comparison to the data from TY09 (Figure 4-5). This 

suggests that the productivity increased significantly during his time period. This 

time period is also associated with an increase human population in Hokkaido 

also increased significantly. It is suggested that aquatic productivity increased 

during this time period in Lake Toyoni is mainly driven by human-induced 

environmental change rather than natural climate factors. A previous study from 

a lake in Hokkaido, Lake Onuma (N:42°00’09’’, E:140°41’28’’), also found an 

increase in algae productivity over the past ~100 years. The authors’ suggested 

the increase in algae productivity reflects an increased input of inorganic 

nutrients into the lake. The increased anthropogenic nitrogen inflow, for 

example from livestock and sewage water, promoted eutrophication of Lake 

Onuma, which is recorded in higher δ15N values. Lake Toyoni is relatively close 

to Lake Onuma, we therefore suggest that anthropogenic influence has also 

affected Lake Toyoni in recent years by increasing nutrient content of the lake 

and promoting productivity. We suggest that the increased nutrients associated 

with an increase in human activity led to an increase in aquatic production in 

the lake. In particular the influence of submerged and floating macrophytes, as 

inferred from higher Paq values and low ACL values (Figure 4-5). This increase in 

productivity resulted in anoxic sediments and stimulated a large increase in 

bacterial growth in the sediments, which have C/N ratio values lower than 4 

(Lamb et al., 2006). Further evidence for bacterial degradation is the low CPI 

values (Figure 4-5) during this time period.  
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Figure 4-6: Variations in the Rb/Sr ratios and temperature records from Asia. A is a 
temperature record derived from Shihua Cave, Beijing, China (Tan et al., 2003).  B i is a 
temperature reconstruction using proxy temperature data with relatively high confidence 
levels from five regions across China  (Ge et al., 2011). C is the Rb/Sr ratio from Daihai Lake 
(Jin et al., 2006) and D is the Rb/Sr ratio from Lake Toyoni. 
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4.3.2 Possible forcing mechanisms 

4.3.2.1 Solar irradiance 

The results have clearly shown that productivity in Lake Toyoni has varied 

significantly over the past 1000 years, and in particular responded to changes in 

the EAWM and EASM intensity. In order to determine the possible forcing 

mechanisms, the results are discussed in relation to solar irradiance and the 

phase of the PDO.  

The link between increased solar irradiance and a stronger EAM is also well 

documented (e.g. Dykoski et al., 2005, Wang et al., 2005, Xiao et al., 2006, Liu 

et al., 2009b, He et al., 2013, Sagawa et al., 2014). The influence of solar 

activity on the EAM is based on amplified solar radiation causing increased 

warming the land over middle and high latitudes compared to lower latitudes 

(Zhou et al., 2011). In addition, land warms at a faster rate than oceans 

promoting a temperature difference between the land and ocean (Zhou et al., 

2011). Moist air is transported from the ocean to the land resulting in warm and 

wet conditions in Hokkaido, which enhances productivity in Lake Toyoni via 

increased run-off into the lake. When solar activity decreases, there is less 

heating of the land resulting in a higher-pressure system developing over Siberia 

and as a result the EAWM strength increases (Kim et al., 2013).   

To establish the relationship between solar activity and the EASM precipitation 

in Hokkaido, the Inc/Coh record (proxy for monsoonal precipitation) is compared 

to the reconstructed solar irradiance record of Bard et al. (2000). Bard et al. 

(2000) derived solar irradiance variations based on the production rates of 

cosmogenic nuclides (14C and 10Be) from an ice-core record at the South Pole 

(Bard et al., 2000). When solar irradiance is high, the magnetic fields of solar 

winds deflect proportions of the charged cosmic particles, resulting in lower 

production of cosmogenic nuclides. On the other hand, when solar irradiance is 

low, there is a higher production of cosmogenic nuclides. The record has been 

geomagnetically corrected based on records proposed by Korte and Constable 

(2005) and also assuming that the geomagnetic modulation is reduced by a 

factor of 0.8 at the pole (Bard et al., 2000). The record of solar irradiance from 

Bard et al. (2000) over the past 1000 years is presented in Figure 4-7. As 
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expected, the results show a clear relationship between the Inc/Coh values at 

Lake Toyoni and the solar activity over the past 1000 years (Figure 4-8; higher 

Inc/Coh values (suggesting enhanced EASM precipitation) generally corresponds 

to higher solar irradiance; whereas, lower Inc/Coh values (suggesting a reduction 

in EAWM precipitation) correlates to lower solar irradiance.  An exception is 

~1700AD which shows an increase in precipitation despite a reduction in the 

EASM (Figure 4-8). This time period is associated with a change from the positive 

phase of the PDO to a negative phase of the PDO and is further discussed in the 

following section. The lowest solar irradiance values occur during the LIA and 

the highest during the MWP. As expected, the Inc/Coh values also follow the 

same trend, with increased EASM precipitation during the MWP and decreased 

EASM precipitation during the LIA. The similarity between the Inc/Coh ratio and 

the solar irradiance record suggests that they vary together over the past 1000 

years (Figure 4-8) suggesting that solar activity is a key control on the EASM 

precipitation in Hokkaido, Japan. Significantly, productivity (as inferred from 

Si/Rb and C/N ratios) also increased when the EASM precipitation was enhanced 

suggesting that the EASM positively influences productivity in Lake Toyoni.  

4.3.2.2 PDO 

In addition to solar irradiance, another climate driver in Hokkaido is the PDO 

(Tsuji et al., 2008). It was found that, in addition to the strength of the EAM, the 

PDO exerts the strongest control on precipitation in Hokkaido. For example, 

there is a 200mm difference in precipitation between the positive and negative 

phase of the PDO in the instrumental data (Chapter 2). To examine the 

relationship between the PDO and productivity in Lake Toyoni, the productivity 

results (Inc/Coh, C/N and Si/Rb ratios) are compared to the PDO index from 

Macdonald and Case (2005) for the past 1000 years and is presented in Figure 

4-7. The PDO Index was reconstructed using tree-ring chronologies from Pinus 

flexilis in California and Alberta (western Canada). The two sites are located at 

opposite ends of the PDO precipitation dipole and hence the hydrological 

variability associated with the PDO is opposite signs in the two regions; making 

these tree-ring records sensitive to the variability of the PDO. The relationship 

between the phase of the PDO and precipitation, as inferred from the Inc/Coh 

ratio, is apparent over the past 1000 years. During the negative phase of the 

PDO there is increased Inc/Coh ratio values, and vice versa.  
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The PDO record shows that the MWP is characterised by the negative phase and 

there is a distinct shift to the positive phase during the LIA. The negative phase 

of the PDO is characterised by warmer and wetter conditions in Hokkaido. The 

negative phase of the PDO positively influenced the productivity during the MWP 

through a reduction in ice duration on the lake, which extended the mixing 

period in the lake and enhanced productivity. In addition, an increase in 

precipitation resulted in an increase in nutrient input into the lake, which also 

positively influenced productivity in Lake Toyoni.  

Productivity during the positive phase of the PDO was significantly reduced 

during the LIA (1300-1800AD). A reduction in precipitation and longer ice 

conditions on the lake resulted in lower productivity. An exception is ~1600AD, 

where there was enhanced productivity in the lake, as inferred from a reduction 

in C/N values and increased Si/Rb values. The large spike in Si/Rb values is likely 

due to the visible tephra layer at this time period; however C/N values remain 

lower throughout this time period suggesting that productivity continued to be 

high after the tephra-induced diatom bloom. This time period is associated with 

a reduction in the EASM intensity (Figure 4-8). Significantly, the phase of the 

PDO changed from positive to negative during this time period, which increased 

precipitation and supplied the lake with nutrients required for productivity to 

occur. This suggests that although the EASM intensity has a key role in 

controlling productivity in Lake Toyoni on a seasonal basis, the phase of the PDO 

further modifies productivity in the lake on decadal time scales, which may 

overshadow the seasonal influence of the EASM on productivity in the lake. 

During the LIA, the PDO shifted from positive to negative at the same time that 

the C/N ratios dramatically decreased (~1600AD; Figure 4-7). This shift in the 

phase of the PDO may be responsible for the large change in lake productivity 

during this time period, combined with increased run-off due to the dramatic 

increase in human population. The increased run-off into Lake Toyoni during this 

time period, as a result of the negative phase of the PDO or/and human-induced 

environmental change significantly changed the productivity status of the Lake. 

Significantly, models indicate a weak shift towards more occurrences of the 

negative phase of the PDO (IPCC, 2014). In addition, the IPCC report also 

suggests that the climate will warm by 0.8-2.6°C by 2050 (IPCC, 2014). The 

combination of the warming and also increased occurrences of the negative 
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phase of the PDO in Hokkaido will result in enhanced productivity in Lake 

Toyoni. An enhancement of primary productivity in Lake Toyoni may lead to 

eutrophication of the lake.  
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Figure 4-7: Variations in lake productivity compared with solar irradiance (W/m2) and the 
PDO index. From top to bottom; Si/Rb, CN and Inc/Coh ratio values (all from present study), 
PDO Index by Macdonald and case., (2005) and solar irradiance (W/m2) by Bard et al., 
(2000). 
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Figure 4-8: Comparison of monsoonal precipitation variations (as inferred from Inc/Coh 
ratio; bottom graph) over the past 1000 years with solar irradiance (Bard et al., 2000) and 
EAM record of Hu et al. (2008). The top graph is the original δ

18
O values from the Heshang 

stalagmite (Hu et al., 2008), the middle graph is solar irradiance (Bard et al., 2000) and 
bottom graph is Inc/Coh ratio. 
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4.4 Conclusions 

A multi-proxy reconstruction of productivity variability over the past 1000 years 

from Lake Toyoni includes; MS (proxy for magnetite preservation), Si/Rb (proxy 

for diatom productivity), Inc/Coh (proxy for OM), and molecular composition of 

n-alkanes; CPI, ACL and Paq (proxies for source of n-alkanes, temperature and 

productivity, respectively). Sediment transport into Lake Toyoni is restricted to 

the ice-free months when temperatures are above 0°C, which usually occurs 

between ~March-December. During spring, ice-off occurs in Lake Toyoni and 

precipitation and melt-water from ice on top of the lake and snow in the 

catchment enters the lake. Thermal stratification occurs between June-

September and the bottom waters of the lake become hypoxic during this time 

period. Oxic bottom water conditions, when thermal stratification weakens, 

results in good preservation of magnetite and degradation of OM. Whereas 

anoxic bottom water conditions, when thermal stratification in Lake Toyoni is 

more intense, results in magnetite dissolution and well-preserved OM content of 

the sediments.  

Seasonally, the climate of Hokkaido is strongly influenced by the EAM (the EASM 

during summer and the EAWM during winter). On decadal time-scales, the 

climate of Hokkaido is further modified by the phase of the PDO. The negative 

phase of the PDO is associated with warmer and wetter conditions in Hokkaido; 

whereas, the positive phase is associated with colder and drier conditions. Lake 

Toyoni is therefore influenced by the EAM and the PDO, resulting in a key 

location to assess the relationship between the EAM and PDO on lake 

productivity. The phase of the PDO, along with the intensity of the EASM, 

significantly influences productivity in Lake Toyoni over the past 1000 years.  

During the MWP (~955-1300AD), the climate conditions in  Hokkaido were warm 

and wet (due to an increased EASM and negative phase of the PDO) resulting in a 

increased duration of the mixing time period during spring due to ice-off 

occurring earlier in the year. In addition, the increased precipitation associated 

with the negative phase of the PDO and the EASM resulted in increased run-off 

into the lake, which sustained the autumn bloom when the water column in Lake 

Toyoni becomes mixed. Thermal stratification during the MWP was intense and 

also productivity was high leading to anoxic bottom waters and hence low MS. 
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Based on the high productivity and increased precipitation during the MPW, it is 

suggested that the EASM intensified and/or the EAWM weakened during this time 

period.   

The highly productive MWP was followed by a period of low productivity during 

the early LIA (1300-1600AD). Conditions during this time period were colder 

resulting in an increase in the ice duration and a reduction in the thermal 

stratification of the water column. Nutrient input from run-off was reduced 

during this time period resulting in a decrease in productivity. A combination of 

a reduction of productivity and reduction in thermal stratification resulted in 

oxic bottom waters, leading to good preservation of magnetite and degradation 

of OM. Based on the low productivity and decreased precipitation during the LIA, 

it is suggested that the EAWM intensified and/or the EASM weakened during this 

time period. Productivity was enhanced during the late LIA (~1600-1800AD) due 

to a significant shift in the phase of the PDO from positive to negative. The 

phase change resulted in increased run-off into the lake following increased 

precipitation associated with the negative phase of the PDO.   

Following the LIA, the population of Hokkaido abruptly increased (~1870AD). The 

increase in population resulted in an increase in agriculture activities, road and 

house development and increased pollution. We find that the conditions of the 

lake changed significantly in the short core (TY09), possibly reflecting human-

induced environmental change.  We suggest that the increased nutrients 

associated with an increase in human activity led to an increase in aquatic 

production in the lake (e.g. submerged and floating macrophytes and also 

algae). An increase in productivity resulted in anoxic sediments and stimulated a 

large increase in bacterial growth in the sediments. 

 



 

 
 

 

 

5  

Assessing the contribution of dust from global 

(the Westerlies) and regional (the EAWM) wind 

patterns 

5.1 Introduction 

Asian dust plays an important role in palaeo-climate studies because it can be 

used as a proxy of changes in global and regional wind systems (Uematsu et al., 

1983, Porter and Zhisheng, 1995, Xiao et al., 1995, Xiao et al., 1999, Xiao et al., 

1997b, Yamada et al., 2010) as well as continent environmental (temperature 

and aridity) conditions (Rea et al., 1998, Mischke et al., 2009, Wang et al., 

2013b). In Japan, previous studies have found the amount of dust transported to 

Japan was consistently higher during cold periods, for example, the last glacial 

maximum (LGM) (Yoshinaga, 1996, Ono and Naruse, 1997). Dust is accumulated 

in terrestrial settings (e.g. lakes and peat bogs) and marine settings allowing 

variability in past aeolian input to be analysed.  

Aeolian activities are common in the arid and semi-arid environment of Central 

Asia, which is usually regarded as a major dust source in the world (Prospero et 

al., 2002). Japan is located down-wind of these dust source regions and 

therefore offers a key location for investigating past variability in aeolian 

activity. Moreover,  terrestrial settings within Hokkaido are key places for the 

investigation of variability in dust into in the past because most of the dust is 
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expected to occur between 25-55°N (Tsunogai et al., 1988), reaching 40m/s, 

occurring between 30°N and 40°N (Duce et al., 1980). Lake Toyoni is situated at 

42°N and is therefore a key location for studying variability in dust input over 

the past millennium. Lake Toyoni is also expected to record a strong aeolian 

input because there are no rivers or permanent streams into the lake therefore 

this lake is natural trap for aeolian input. Thus, the dust record from Lake 

Toyoni is important for understanding in global and regional wind circulation 

patterns and changes of the regional environmental (temperature and aridity) 

variability in the dust source regions.  

5.1.1 Global and regional wind circulation patterns 

The main wind patterns transporting dust to Hokkaido are the East Asian Winter 

Monsoon (EAWM) (Porter and Zhisheng, 1995, Xiao et al., 1995, Xiao et al., 

1997b) and the Westerlies (Uematsu et al., 1983). Dust transported to Japan via 

the Westerlies and the EAWM originates from different sources (Ferrat et al., 

2011) and can be distinguished by the grain size of the dust.  

5.1.1.1 Westerlies 

The Westerlies are a global wind pattern which transport fine-grained dust (1-

10μm) (Mikami et al., 2006) to Hokkaido from the Taklimakan desert ( 

Figure 5-1) (Lim and Matsumoto, 2006), which is entrained to an elevation of 

5000m (Lim and Matsumoto, 2006, Mikami et al., 2006). The Westerlies intensify 

during spring (Tsunogai et al., 1988, Uematsu et al., 1983) bringing an increase 

in dust input during this time and weaken during summer, reducing the amount 

of dust is transported to Japan (Uematsu et al., 1983).  This means that 

increases in fine-grained particles (1-10μm) at Lake Toyoni should indicate 

increased input from the Westerlies in Hokkaido.  

5.1.1.2 The EAWM 

In contrast, the EAWM is a regional wind pattern and transports coarse-grained 

dust (Xiao et al., 1997a, Yamada et al., 2010, An et al., 2011) from the Gobi 

Desert in southern Mongolia and the adjoining Gobi and sand deserts in China ( 

Figure 5-1) (Lim and Matsumoto, 2006, Liu et al., 2014c) and can only be 

entrained to an elevation of <3000m (Lim and Matsumoto, 2006, Mikami et al., 
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2006). Coarse-grained dust particles as a proxy for the EAWM has been defined 

as 50-200μm by Yamada et al. (2010), based on lacustrine sediments from 

northern Japan and also >63μm by An et al. (2011), based on lacustrine 

sediments from arid Central Asia. We interpret coarse-grained sediment input by 

the EAWM as 50-200μm based on the close proximity between Lake Toyoni and 

Lakes Ni-no-Megata and San-no-Megata, northeastern Japan (Yamada et al., 

2010). As a result, increases in coarse-grained particles (50-200μm) at Lake 

Toyoni should indicate an enhancement of the EAWM in Hokkaido. There are two 

main indices of the EAWM; firstly, is the temperature in East Asia (Gong et al., 

2001). Secondly, the intensity of the Siberian High (SibH) (Ding, 1990, Zhang et 

al., 1997, Wu et al., 2006a, Gong et al., 2001) which is defined as the average 

sea level pressure (SLP) (Gong et al., 2001). The SibH is strongly influenced by 

the negative phase of the Arctic Oscillation (AO) (Wu and Wang, 2002, Gong et 

al., 2001, Chen et al., 2013). When the SibH intensifies and/or temperatures 

decrease, the EAWM is more intense, resulting in an increase of coarse-grained 

dust into Lake Toyoni.  

Environmental conditions at the dust source region 

Environmental conditions (e.g. aridity and/or temperature) can be a potential 

cause of an increase in dust storm frequency (Yang et al., 2007). Dust storm 

frequency increases when the environment is arid due to its influence on soil 

moisture content and vegetation cover. When precipitation increases, vegetation 

cover also increases, which in turn reduces storm frequency. In contrast, when 

aridity increases, soil moisture and vegetation is reduced. As a result, dust 

particles are more prone to movement and dust storms increase. In addition to 

aridity, temperature also influences the occurrence of dust storms at the source 

region. Qian et al. (2002b) found that when temperatures decrease, the Siberian 

High intensifies and is located further south. These conditions results in cold 

surges and an increase in dust storm frequency. The occurrence of dust storms 

at the source regions also influence other regions, such as Hokkaido, as dust can 

be transported long distances. Therefore an increase in dust storms within the 

source regions will also be reflected in the Lake Toyoni sedimentary record.  
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Figure 5-1: Map of the locations of the Talkamakan Desert in northwestern China (source region of the 

Westerlies) and also the Gobi Desert in northern and northwestern China as well as southern Mongolia 

(source region of the EAWM). 

 

5.1.2 Proxies for dust input into Lake Toyoni 

In order to assess dust input into Lake Toyoni, we investigated the Titanium (Ti) 

content within the lake (Yancheva et al., 2007). Significantly, using Ti as a proxy 

aeolian input, Yancheva et al. (2007) reconstructed the EAWM intensity over the 

past 16,000 from lacsutrine sediments in South China. Ti is particularly useful for 

determining the variability of aeolian input because it is not influenced by redox 

conditions (Yancheva et al., 2007). Subsequently, Zhou et al. (2007) responded 

to the validation of Ti being used as an aeolian proxy and suggested that Ti in 

Lake Huguang Maar sediment reflected hydrological variability within the 

catchment. Therefore in order to use Ti as a proxy for aeolian input, we must 

first be sure that Ti is not solely coming from the catchment of the lake. In the 

present study, we correct for the catchment effect by normalising Ti to Rb to 

highlight the proportion of Ti transported by aeolian input.  
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In addition, magnetic susceptibility can also provide information on aeolian input 

into lakes (e.g. Yancheva et al., 2007). Yancheva et al. (2007) suggested that 

wind processes can influence the MS in two ways; firstly, an increase in 

magnetite minerals, which are two times denser than other common minerals 

(e.g. aluminosilicates) (Yancheva et al., 2007) transported by the EAWM can 

increase the MS response within sediments (Yancheva et al., 2007). Secondly, 

stronger winds can promote mixing within the water column preventing 

stratification of the water column and as a result preventing less oxygen 

conditions within the bottom water (Yancheva et al., 2007, Nowaczyk et al., 

2002). Low oxygen content can result in dissolution of magnetic minerals and 

hence a lower MS (Nowaczyk et al., 2002, Yancheva et al., 2007, Gebhardt et 

al., 2013). In comparison, when there are oxic conditions magnetic minerals are 

well preserved (Nowaczyk et al., 2002). 

To sum up, the distribution of the flux (Ti/Rb ratio and magnetic susceptibility), 

the grain size of aeolian dust in palaeo-climate archives (e.g. lake sediments) 

reflect the environmental conditions (aridity and temperature) of the source 

region as well as the strength and pattern of the wind system (Zhou et al., 2007, 

Leinen et al., 1986). The deposition of dust into Lake Toyoni over the past 1000 

years is discussed in relation to the MWP, LIA and the CWP. The aims of this 

chapter are to: 

1. Distinguish time periods of intensification of the EAWM and the Westerlies 

2. Determine if the environmental conditions at the source region influences 

dust deposition in Lake Toyoni 

3. Determine the key teleconnections influencing the Westerlies and the 

EAWM 
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5.2 Results 

5.2.1 PSA 

Percent (%) coarse-gained sediments (50-200µm) and % fine-grained sediment (1-

10µm) are presented in Figure 5-2. Fine-grained sediments are the dominant 

grain size within the sedimentary record. Coarse-grained sediments (%) varies 

between 1.5-61.5% in the down-core record and fine-grained sediments (%) 

varies between 38.5-98.5%. The coarse-grained sediment content was generally 

low between 1000AD and 1200AD. High values are recorded between 1215-

1460AD, with the highest values recorded at 1458AD. Values then decrease to 

17.2% in 1543AD and then sharply increase again between 1556-1632AD. Values 

then decrease again to 14.8% in 1681 and remain low until 1745AD; a slight 

increase in coarse-grained sediments in recorded within this time period 

between 1700 and 1715AD. There is a sharp increase to 52.1% in 1794AD, 

followed by a sharp decrease to 9.9% in 1822 where values remain low to 

1887AD, which is the most modern data point.  All increases in coarse-grained 

sediments (%) are associated with a decrease in fine-grained sediments(%). 

5.2.2 Ti/Rb 

The earliest part of the record has high Ti/Rb values (1000-1170AD), followed by 

a period of low values between 1170-1320AD. Ti/Rb values then increase briefly 

between 1350 and 1715AD, decrease between 1715 and 1800AD, followed by 

increased values between 1800-1950AD (Figure 5-2) 

5.2.3 Magnetic susceptibility (MS) 

MS has been previously discussed ion section 4.2.2.  
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Figure 5-2: Proxies for aeolian input and transport mechanisms into Lake Toyoni. The top graph is 

percent fine-grained sediments (1-10µm), which is a proxy for the Westerlies. Below is the percent 

coarse-grained sediments (50-200µm), which is a proxy for the EAWM. Below is the Ti/Rb ratio and the 

bottom graph is magnetic susceptibility, which are proxies for general aeolian input into Lake Toyoni 

over the past 1000 years.  
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5.3 Discussion 

5.3.1 Grain-size and dust input (Ti/Rb ratio) as a proxy for 
global and regional wind systems 

Dust is transported to Hokkaido via global and regional wind systems; the 

Westerlies and the EAWM, respectively. The Westerlies transport fine-grained 

aeolian material into Lake Toyoni. Time periods associated with increased fine-

grained sediments and also an increase in Ti/Rb proxy are 1000-1120AD, 1490-

1600AD, 1680-1730AD and 1810-1957AD, which suggests an enhancement of 

input by the Westerlies during these time periods (Figure 5-2). The EAWM 

transports coarse-grained aeolian material into Lake Toyoni. Time periods 

associated with increased coarse-grained sediments and also an increase in 

Ti/Rb proxy occur 1340-1460AD and 1555-1630AD, which suggests an 

enhancement of input by the EAWM during these time periods (Figure 5-2). Dust 

input into Lake Toyoni is discussed in relation to the MWP, the LIA and the 

current warm period (CWP). Potential drivers of the EAWM and/or Westerlies are 

also investigated.  

5.3.2 MWP (~1000-1300AD) 

The lowest values of coarser-grained sediments, magnetic susceptibility and 

Ti/Rb ratios were recorded in the earliest part of the record (1000-1300AD), 

suggesting a weak EAWM. This time period is associated with an enhancement in 

the East Asian Summer Monsoon (EASM) (e.g. Hu et al., 2008; Lee and Park, 

2015), which results in increased precipitation in Hokkaido. It is suggested that 

the fine-grained sediments deposited during the MWP are a result of increased 

catchment erosion under an enhanced EASM being transported into the lake via 

ephemeral streams that form during times of increased rainfall.  

Within the context of a strong EASM during the MWP, an exception is 1050-

1120AD, which shows a marked increase in the Ti/Rb ratio. Particle size data 

shows an increase in fine-grained sediments in this section of the core, which is 

interpreted as transport via Westerlies. Previous studies have reported a brief 

dry event around the same time period (~1100AD) in other Asian records (Wang 

et al., 2007; Liu et al., 2013). This has been attributed to a weakening of the 
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EASM for a short time period within the MWP (Liu et al., 2013a). We find that 

during the weakening of the EASM, the Westerlies intensified, which may be 

responsible for the cold and dry conditions reported in previous studies.  

This time period (1050-1120AD) is also associated with a slight increase in the 

SibH intensity (blue shading; Figure 5-3). The reconstruction of the SibH is based 

on non sea-salt potassium content in a Greenland ice core. Potassium within the 

ice-core is interpreted as dust input from central Asia (Meeker and Mayewski, 

2002). An intensified SibH positively influences dust transport by both the 

Westerlies and the EAWM to Hokkaido. The SibH intensifies when temperatures 

decrease resulting in an increase in cold surges in the dust source regions, which 

increases dust storm activity. The cold temperatures associated with a strong 

SibH increases dust storm frequency in the source regions. When dust storm 

frequency increases at the dust sources regions, particles are picked up and 

transported towards Japan by both the Westerlies and the EAWM. In addition, an 

intensified SibH also enhances the EAWM, which also increases dust transport 

towards Japan. When temperatures are cold, the SibH is located further south 

and becomes more intense leading to an enhanced EAWM. 
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Figure 5-3: Variations in the aeolian input into Lake Toyoni and the SibH intensity. The top graph is a 

reconstruction of the SibH intensity by Meeker and Mayewski, (2002) based on non sea-salt potassium 

content in a Greenland ice core (values are in sea level pressures). The bottom graph is the Ti/Rb ratio, 

which is a proxy for dust input into Lake Toyoni. Grey shading indicates time periods of the 

intensification of the EAWM and blue shading indicates timing of the intensification of the Westerlies. 

 

5.3.3 LIA (~1300-1800AD) 

In addition to the SibH intensifying briefly during the MWP (1050-1120AD), the 

SibH was notably stronger within the LIA. Yoshino (1978) suggested that the SibH 

and the polar front shifted southward during the LIA, which significantly 

strengthened the EAWM. The polar front is the boundary of the northern edge of 

the EASM, where the warm tropical air meets the cold polar air mass. When the 
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polar front is located further south, the influence of the warm air mass from the 

south is reduced and colder temperatures are experienced in Hokkaido and East 

Asia. 

A reconstruction of the SibH is presented in Figure 5-3. The SibH reconstruction 

shows that the SibH was strongest between 1400-1700AD (Figure 5-3). This time 

period is associated with an increase in dust in the Lake Toyoni record (as 

inferred from an increase in the Ti/Rb ratio and magnetic susceptibility; Figure 

5-2), suggesting that the intensity of the SibH has an important influence on dust 

input to Hokkaido. The increase in dust input into Lake Toyoni during the LIA 

suggests an intensification of the EAWM and/or Westerlies. The intensification of 

the EAWM during the LIA has also been suggested in other work (e.g. Qiao et al., 

2011, Liu et al., 2009b). Using grain-size data, we can determine the main 

transport mechanisms of the dust input into Lake Toyoni. We find that the EAWM 

(as inferred from coarse-grained sediments) intensified between 1340-1460AD 

and 1555-1630AD and the Westerlies intensified between 1490-1600AD and 1680-

1730AD.  

5.3.3.1 EAWM intensification during the LIA 

We find that the EAWM intensified in 1340-1460AD and 1555-1630AD based on an 

increased coarse-grained material and increased dust input, as inferred from 

Ti/Rb proxy (Figure 5-2). In addition to increased wind activity, the EAWM is also 

associated with a decrease in temperature. We compared our record with a 

winter temperature (October-April) record from central region of eastern China 

over the past 2000 years (Figure 5-4; Ge et al., 2003). The temperature record 

was reconstructed using phenological cold/warm events recorded in Chinese 

historical documents (Ge et al., 2003). This region is sensitive to the EAWM and 

therefore the winter temperatures recorded likely reflect the EAWM. We find 

that the temperatures in 1340-1460AD and 1555-1630AD were lower than normal 

providing further evidence for an intensification of the EAWM during these time 

periods. In the brief time period between these EAWM intensification events, Ge 

et al. (2003) reported slightly warmer temperatures. The warm winter 

temperatures and a decrease in coarse-grained sediments suggest a weakening 

in the EAWM. The highest Ti/Rb ratio values during the LIA are associated with 

an increase in coarse-grained sediments suggesting that the EAWM is responsible 



CHAPTER 5:  Assessing the contribution of dust from global and regional wind patterns 
 

107 
 

for the highest levels of dust input into Lake Toyoni. An intensification of the 

EAWM during the LIA has been reported in other palaeo-climate records. For 

example, dust input using quartz isolate from bulk sediments into a marine core 

in the East China Sea also found that the EAWM intensified during the LIA (Qiao 

et al., 2011). Previous studies have also suggested an inverse relationship 

between the EAWM and the EASM (e.g. Yamada et al., 2010). 

To further evaluate the relationship between the EAWM (Ti/Rb and coarse-

grained sediments [%]) and the EASM, we compared our findings with a 

stalagmite Δδ18O record by Hu et al. (2008) (Figure 5-5). The Δδ18O stalagmite 

record records regional precipitation, and hence the intensity of the EASM.  This 

particular record was chosen to compare with the Toyoni record because the 

authors chose to use the difference between two stagalmite records (Hershang 

and Dongge caves) in a close range from each other. By choosing to do this, any 

site-specific effects on the Δδ18O record are removed whereas the regional signal 

is preserved (Hu et al., 2008). As a result, the Hu et al. (2008) EASM record 

offers a reliable reconstruction to compare with findings on the East Asian 

Mosnoon (EAM) system from the Lake Toyoni sedimentary record. We find that 

during time period when the EASM weakened, there is an intensification of the 

EAWM (highlighted with grey bars in Figure 5-5). In particular, the time periods 

of EAWM intensity correspond to a weakening of the EASM occur in 1340-1460AD 

and 1555-1630AD (Hu et al., 2008; Zhou et al., 2011). Our results therefore show 

that time periods associated with a weakening in the EASM are associated with 

an intensified EAWM, providing evidence for an inverse relationship between the 

EASM and EAWM, at least during these time periods.  
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Figure 5-4: Relationship between winter temperatures and dust input into Lake Toyoni. The 
top graph is a winter (October-April) temperature reconstruction by Ge et al (2003) based on 
historical documents in central region of eastern China. The bottom graph is Ti/Rb ratio, a 
proxy for aeolian input into Lake Toyoni. Grey bars represent time periods where there is 
low temperature and increased aeolian input (higher Ti/Rb values). 
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Figure 5-5: Variations in the Westerles, the EAWM and the EASM over the past ~1000 years. 
Blue bars indicate time periods of the Westerlies intensification and grey bars indicates 
time periods of intensification of the EAWM. A:  Δδ

18
O  (‰VDB) from Hu et al. (2008); a 

proxy for the EASM and B: dust record (present study).  

 

5.3.3.2 Westerlies intensification during the LIA 

Following an intensification of the EAWM in 1340-1460AD, the Westerlies were 

enhanced briefly between 1490-1600AD and 1680-1730AD, as inferred from an 

increase in fine-grained sediments (Figure 5-2). Interestingly, this time periods 

are associated with a stronger SibH providing further evidence for a relationship 

between the SibH and the intensity of the Westerlies.  
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Laminations can be formed in the sedimentary record when dust input is high. 

For example, (Yamada et al., 2010) interpreted laminations in the sedimentary 

records of Lakes Ni-no-Megata and San-no-Megata in northeastern Japan to be a 

result of dust accumulating on of top of ice and being deposited as a distinct 

layer in the sedimentary record after ice-melt. This would also be a suitable 

mechanism at Lake Toyoni, which freezes annually. We find a change in 

lithofacies between 1490-1511AD, which is associated with faint laminations 

(lithofacies D; Chapter 4). These faint laminations may have been caused by a 

thick layer of dust accumulating on top of the ice on Lake Toyoni as a result of 

intensified Westerlies, which was then deposited rapidly during the ice-melt 

season. We suggest that this time period (1490-1511AD) was cooler than the rest 

of the 50-year Westerlies intensification period (1490-1600AD). The colder 

weather resulted in a longer time period of ice cover on Lake Toyoni and hence 

increased the timing for dust accumulation on top of the ice.  

5.3.3.3 EAWM weakening during the LIA 

Although most of the LIA is associated with an increase in the intensity of the 

EAWM, the EAWM appeared to weaken at the end of the LIA (1740-1800AD). 

During the time period, the Ti/Rb ratio dramatically decreased and the magnetic 

susceptibility also decreased, which is interpreted as a reduction in dust 

deposition. The timing of the EAWM weakening is consistent with the timing of 

warm winter temperatures in China (Figure 5-4) and also a significant decrease 

in the intensity of the SibH (Figure 5-3). The weakening of the EAWM is not 

surprising because the EAWM intensifies when there is cold temperatures and 

when the SibH is more intense.   

This time period is also consistent with the timing of the intensification of the 

EASM (Figure 5-5; Hu et al., 2008). This provides further evidence for an inverse 

relationship between the EASM and the EAWM; when the EASM intensifies, the 

EAWM weakens. The grain size in this section of the sedimentary record shows 

an increase in coarse-grained sediments. This may be due to ash from a possible 

tephra layer, as inferred from a large spike in magnetic susceptibility (Figure 

5-2). On the other hand, the increase in coarse-grained sediments may be 

related to an increase in run-off from increased rainfall associated with the 

EASM.   
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5.3.4 >1800AD  

The period between 1800AD and 1957AD is characterised by high dust input 

(Ti/Rb ratios), a decrease in magnetic susceptibility and fine-grained sediments 

(Figure 5-2). Based on increased dust input and fine-grained sediments, we 

suggest an enhancement of the Westerlies. Similarly to the intensification of the 

Westerlies between 1500-1500AD, the NOA is also in its positive phase between 

1800-1957AD. The North Atlantic Oscillation (NAO) index is being used as a proxy 

for the AO in this study. The link between the positive phase of the NAO and the 

Westerlies provides further evidence for the positive phase of the AO resulting in 

an intensification of the Westerlies (after Hurell et al., 2015). 

Dust input into Lake Toyoni as a proxy for environmental 
changes in dust source regions 

Environmental conditions (e.g. aridity and/or temperature) can be a potential 

cause of an increase in dust storm frequency (Yang et al., 2007), which can 

result in increased dust input into Lake Toyoni. Therefore dust input may reflect 

environmental conditions at the source regions.   

5.3.4.1 Climate in the Taklimakan Desert (Westerlies source region) 

Previous studies have suggested that increased dust deposition reflects increased 

aridity in the dust source regions (Rea et al., 1998, Wang et al., 2013b) with 

increased aridity favouring an increase in dust flux. In order to compare our dust 

record (as inferred from Ti/Rb ratio) to the environmental conditions in the 

Taklimakan Desert (the source region for dust transported via the Westerlies), 

we use net accumulation and δ18O from Guliya ice-cap (Thompson et al., 1995, 

Yao et al., 1995), which is located on the southern border of the Taklimakan 

Desert (35°17N, 80°29E) (Figure 5-6). Since the publication of the net 

accumulation and δ18O, these records have been used for precipitation and 

temperature, respectively. The precipitation record is based on the net 

accumulation record from Guliya ice-gap (Thompson et al., 1995), which has 

been shown to be correlated (r2=0.55 p<0.01) with standardised precipitation 

variations in the Xinjiang region (Yang et al., 2004). The temperature record is 

based on δ18O record from Guliya ice-core (Yang et al., 2004, Thompson et al., 

2003).  
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The records show that the MWP was generally warm and dry, whereas the LIA 

was cold and wet (Figure 5-6). A warm and dry MWP and cold and wet LIA is also 

consistent with 34 hydro-climate records from Arid Central Asia (ACA) (Chen et 

al., 2015b). Our record suggested that the Westerlies intensified during the MWP 

between 1000-11200AD, briefly within the LIA between 1490-1600AD and 1680-

1730AD and also between 1810-1957AD. Although the MWP was characterised by 

generally warm and dry conditions, temperature (Yang et al., 2004) and rainfall 

(Thompson et al., 1995) decreased between ~1070-1170AD (Figure 5-6). 

Temperature and aridity between 1000-1120AD in the Taklimakan Desert region 

was therefore cold and dry based on reconstructions of Yang et al. (2004) and 

Thompson et al. (1995). Climate conditions between 1490-1600AD on the other 

hand were cold and wet (Figure 5-6). This time period is associated with the 

wettest conditions over the past 1000 years, based on the reconstruction of 

Thompson et al. (1995). Temperature and aridity between 1680-1730AD was cold 

and drier. Temperature and aridity between 1810-1957AD was slightly colder and 

drier. This suggests that a decrease in temperature, and to a lesser degree, 

increased aridity in the Taklimakan Desert region has an important influence on 

dust input into Lake Toyoni via the Westerlies.  

5.3.4.2 Climate in the Gobi Desert (EAWM source region) 

In order to compare our dust record (as inferred from Ti/Rb ratio) to the 

environmental conditions in the Gobi Desert (the source region for dust 

transported via the EAWM), we use δ18O from Dunde ice-cap (Thompson et al., 

1989), which is located to the south of the Gobi Desert (38°06'N, 96°24'E). The 

δ18O from Dunde ice-cap is controlled by temperature therefore provides a 

record of temperature over the past 1000 years (Thompson et al., 2003). In 

addition, we use a precipitation record using ring-width chronologies from 

Delingha (Qinghai Basin) by Shao et al (2005) (Figure 5-7). This record is justified 

given its location close to the Gobi Desert and also because annual precipitation 

accounts for 63% of the variance in the calibration period (1955-2002) making 

this a good quality precipitation reconstruction to compare our findings with. 

Our records suggest that the EAWM intensified in 1340-1460AD, 1555-1630AD. We 

also suggest that the EAWM weakened ~1750AD. The climate between 1340 and 

1460AD in the Gobi Desert was cold and wet amd the climate between 1555 and 
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1630AD was also cold and wet (Figure 5-7). This suggests that cold temperatures 

at the source region control dust input to Hokkaido via the EAWM. Interestingly, 

the climate in the Gobi Desert region between 1740-1800AD (EAWM weakening) 

was warm and wet (Figure 5-7). This suggests that temperature at the source 

region does have an influence on the supply of dust to Hokkaido via the EAWM.   

Based on the comparison of our dust record and climate at the dust source 

regions (Talkaman and Gobi Deserts), we find that overall temperature has a 

larger influence on dust input into Lake Toyoni compared with aridity. 

Temperature at the source regions is strongly influenced by the SibH, which was 

previous identified as a controlling factor of dust input into Lake Toyoni. The 

SibH not only influences the strength of the Westerlies and the EAWM, but also 

influences the temperatures at the dust source regions, which in turn influences 

dust input into Lake Toyoni.  
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Figure 5-6: comparison of dust input into Lake Toyoni via the Westerlies and environmental 
conditions in the Taklimakan Desert (the source region for dust transported via the 
Westerlies). Bottom graph; Ti/Rb ratio (present study), middle graph; temperature record is 
based on δ

18
O record from Guliya ice-core (Yang et al., 2004, Thompson et al., 2003). Top 

graph; a precipitation record is based on the net accumulation record from Guliya ice-gap 
(Thompson et al., 1995). Blue shading highlights time periods identified as an intensification 
of the Westerlies (increase in fine-grained sediments and Ti/Rb ratio values). 
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Figure 5-7: comparison of dust input into Lake Toyoni via the EAWM and environmental 
conditions in the Gobi Desert (the source region for dust transported via the EAWM). 
Bottom graph; Ti/Rb (present study), middle graph δ

18
O isotope record from Dunde ice-core 

and top graph is a precipitation record using ring-width chronologies from Delingha (Shao 
et al., 2005). Grey shading highlights time periods identified as an intensification of the 
EAWM (increase in coarse-grained sediments and Ti/Rb ratio values) and red shading 
highlights time period identified as a weakening in the EAWM (low Ti/Rb ratio values).  
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5.3.5 Potential climate drivers 

In order to evaluate the influence of teleconnections on the Westerlies and the 

EAWM, the down-core dust record from Lake Toyoni is compared with: 

1. A record of El Niño Southern Oscillation (ENSO) variability (Yan et al., 

2011a) over the past 2000 years, which is based on precipitation records 

from Indo-Pacific and Galapagos (Figure 5.8). The Indonesian rainfall was 

derived from a salinity reconstruction based on planktonic-foraminifera 

δ18O and the magnesium/calcium (Mg/Ca) ratio (Oppo et al., 2009). The 

precipitation variability in the Galapagos is derived from a lake level 

reconstruction which is based on the grain size data from the Lago El 

Junco sediment core (Conroy et al., 2008). The Southern Oscillation Index 

(SOI) is positively correlated with precipitation over the Indo-Pacific warm 

pool, and negatively correlated with precipitation over the eastern and 

mid-tropical Pacific and as a result, ENSO can be reconstruction by the 

difference between these precipitation records (Yan et al., 2011a).  

2. The Pacific Decadal index (PDO) index from Macdonald and Case (2005) 

over the past 1000 years (Figure 5.8). As previously discussed in Chapter 

4, the PDO Index was reconstructed using tree-ring chronologies from 

Pinus flexilis in California and Alberta (western Canada). The two sites 

are located at opposite end of the PDO precipitation dipole and hence the 

hydrological variability associated with the PDO is opposite signs in the 

two regions; making these tree-ring records sensitive to the variability of 

the PDO.  

3. A record of the AO over the past 1000 years is not available, however, the 

AO index is closely related to the NAO index (Thompson and Wallace, 

1998) and therefore the NAO index by Trouet et al. (2009) will represent 

the AO in this study (after Lee and Park, 2015) (Figure 5.8). The NAO 

index was reconstructed using a combination of high-resolution proxy 

records and model simulations.   
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5.3.5.1 ENSO 

The ENSO record over the past millennium (Yan et al., 2012) is shown in Figure 

5.8. We find that the intensification of the EAWM occurs during La Niña 

conditions. Notably, the first intensification of the EAWM occurred during a 

change from predominantly El Niño to La Niña conditions. The Westerlies, on the 

other hand, intensified during both El Niño and La Niña conditions.  

5.3.5.2 PDO 

The PDO record over the past millennium (MacDonald and Case, 2005) is shown 

in Figure 5-8. The reconstructed PDO index shows a negative PDO phase during 

the MWP, and a shift to a positive phase during the LIA (Figure 5-8). Comparison 

of the PDO record with our results shows that the EAWM intensified twice within 

the LIA (as inferred from increases in the Ti/Rb ratio and coarse-grained 

sediments). The timing of the intensification of the EAWM occurred when the 

PDO was in its positive phase (highlighted with grey shading Figure 5-8) 

suggesting a negative PDO strengthens the EAWM. Lee and Park. (2015) 

suggested a relationship between the EASM and the PDO in a recent study. They 

found that the EASM intensified and weakened when the PDO was in its negative 

and positive modes, respectively. Therefore, when the PDO is in its positive 

mode, the EASM weakens (Lee and Park. 2015) and we find evidence for the 

intensification of the EAWM. It is suggested that the PDO may play an important 

role in the inverse relationship between the EASM and the EAWM; where by one 

intensifies and the other weakens. 

5.3.5.3 NAO/AO 

The relationship between the AO and the Westerlies has been previously 

suggested by Hurrell et al. (2015). In order to investigate the relationship 

between the Westerlies and the AO in Hokkaido, we compared our results to a 

record of the NAO by Trouet et al. (2009), which is closely related to the AO 

(Thompson and Wallace, 1998) (Figure 5-8). Our relationships show a clear 

relationship between the intensification of the Westerlies and the positive phase 

of the NAO/AO (previously discussed throughout). The Westerlies intensified 

between 1000-1120AD during the MWP, between 1490-1600AD and 1680-1730AD 

during the LIA and between 1810-1957AD during the CWP, which are all 
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associated with the positive phase of the NAO/AO. Previous studies have 

suggested that the positive phase of the NAO/AO enhances the Westerlies 

(Hurell et al., 2015). During time periods where the AO is in its negative phase, 

there is higher pressure in the Arctic and weaker Westerlies (Hurell et al., 2015). 

The opposite occurs when the AO is in its positive phase and hence the 

Westerlies intensify.  

The positive phase of the NAO persists for the entire MWP (Figure 5-8). However 

the LIA has frequent shifts to the negative phase of the NOA. These phases occur 

between 1441-1464AD, 1557-1569AD, 1598-1624AD, 1665-1690AD, 1713-1731AD 

and 1750-1795AD). Our results show that during the two time periods of EAWM 

intensification during the LIA (e.g. 1340-1460AD and 1555-1630AD)  is associated 

with the negative phase of the NAO. The negative phase of the AO strongly 

influences the SibH (Wu and Wang, 2002, Gong et al., 2001, Chen et al., 2013), 

which in turn also influences the EAWM (Ding, 1990, Zhang et al., 1997, Wu et 

al., 2006a, Gong et al., 2001). The AO therefore influences the strength of the 

EAWM through the intensity of the SibH. Overall, this suggests that there is a 

relationship between the positive phase of the NAO/AO and the intensification 

of the Westerlies and a relationship between the negative phase of the NAO/AO 

and the intensification of the EAWM.  
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Figure 5-8: Variations in the aeolian record compared with the PDO index by Macdonald and 
Case (2009) (top graph; please note that the axis has been inversed) and the NAO index by 
Trouet et al. (2009) (Middle graph). The bottom graph shows down-core variations in the 
Ti/Rb values. Grey bars highlights the time periods interpreted as a strong EAWM. Blue bars 
highlights time periods interpreted as strong Westerly input.   
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5.4 Conclusions 

The variations of the Westerlies and the EAWM during late Holocene (past 1000 

years) is recorded in grain-size, magnetic susceptibility and Ti/Rb ratios in the 

Lake Toyoni sedimentary record. The transport mechanisms by the Westerlies 

and the EAWM are separated by grain-size. The Westerlies transport fine-grained 

sediments whereas the EAWM transports coarser-grained sediments. The results 

show a general weakening of the EAWM during the MWP and an intensification of 

the EAWM during the LIA. In particular, the EAWM increased in intensity between 

1340-1460AD and 1555-1630AD. The intensity of the EAWM was controlled by 

temperature in the source regions as well as the strength of the SibH. When the 

SibH was strong and temperatures were colder, the EAWM intensified, bringing 

more coarse-grained sediments to Lake Toyoni. There is a relationship between 

the negative phase of the NAO/AO and the intensity of the EAWM. When the 

NAO/AO is in its negative phase, the SibH intensifies and hence a stronger EAWM 

prevails. On the other hand, the EAWM weakened and the EASM intensified 

between 1430-1800AD, which was also associated with a decrease in the 

intensity of the SibH. The results show a clear anti-phase relationship between 

the EAWM and the EASM. The Westerlies, on the other hand, increased between 

1000-1120AD during the MWP, between 1490-1600AD and 1680-1730AD during 

the LIA and between 1810-1957AD during the CWP, which are all associated with 

the positive phase of the NAO/AO. To sum up, dust input into Lake Toyoni is 

controlled by the EAWM and the Westerlies as well as temperature at the dust 

source regions. All three mechanisms are influenced by the SibH therefore the 

dust record from Lake Toyoni (as inferred by the Ti/Rb ratio) is strongly 

reflecting the intensity of the SibH over the past 1000 years.  



 

 
 

 

 

6  

18S rDNA analysis of the alkenone-producer(s) 

in Lake Toyoni, Japan 

 

6.1 Introduction 

Long chain alkenones are a class of C35–C40 unsaturated ketones that have been 

extensively used as a proxy for quantitative sea surface temperature (SST) based 

on the degree of unsaturation in the ketone molecule (e.g. Brassell et al., 1986, 

Prahl and Wakeham, 1987, Herbert et al., 2003). Since Cranwell (1985) first 

reported the occurrence of alkenones in lakes, this successful SST proxy has 

started to be applied to lacustrine settings, with a number of calibration studies 

and down-core lake surface water temperature reconstructions (Wang and 

Zheng, 1997, Zink et al., 2001, Chu et al., 2005, D'Andrea and Huang, 2005, Liu 

et al., 2006b, Sun et al., 2007, Pearson et al., 2008, Toney et al., 2010, Toney 

et al., 2011). Alkenones are produced exclusively by certain species of 

haptophyte algae (Volkman et al., 1980, Marlowe et al., 1984, Volkman et al., 

1995, Coolen et al., 2004c, D'Andrea et al., 2006, Theroux et al., 2010) and one 

of the remaining challenges for applying the alkenone unsaturation index as a 

temperature proxy in lake systems is determining the precursor organism.  

The producer of alkenones in the marine environment is dominated by calcifying 

haptophytes Emiliania huxleyi and Gephyrocapsa oceanica  in the open ocean 

(de Leeuw et al., 1980, Volkman et al., 1995) and by non-calcifying species 
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Isochrysis galbana and Chrysotila lamellosa in the coastal marine setting 

(Marlowe et al., 1984). However, in lacustrine environments, the diversity of 

haptophytes producing alkenones varies according to their ecology and 

environment. As a result it is not possible to make general assumptions about 

the likely alkenone producer(s) in lakes. Previous studies have identified 

alkenone producers that are similar species to the coastal haptophyte species 

Isochrysis galbana (Coolen et al., 2004a) and Chrysotila lamellosa (Sun et al., 

2007). In addition, several novel alkenone producers, which have not been fully 

classified taxonomically, have also been discovered (D'Andrea et al., 2006, 

Theroux et al., 2010). As haptophyte algal species have the potential to produce 

different temperature calibrations, individual alkenone-containing lakes require 

unique calibration datasets dependent on species of haptophyte algae present 

(Chu et al., 2005, D'Andrea et al., 2006). Identifying the alkenone precursor 

organism prior to down-core temperature reconstructions is therefore essential 

for selecting the most appropriate temperature calibration and validating the 

interpretation of alkenones in the lacustrine system.  

Identifying a lacustrine alkenone producer through microscopy is challenging due 

to their relatively small size and seasonal production (Zink et al., 2001). Instead, 

researchers using lacustrine alkenones have shifted approaches to using 

environmental genomics to identify precursor organisms (e.g., D'Andrea et al., 

2006, Randlett et al., 2014). The ultimate species-specific biomarkers are genes 

that code for small subunit ribosomal RNA (rRNA) (18S in Eukaryotes, 16S in 

Prokaryotes). The 18S molecular marker is present in all eukaryotes (Olsen et 

al., 1986, Woese, 1987) and therefore provides species level taxonomic 

resolution (Sogin et al., 1986, Edvardsen et al., 2000). Analysis of such genes in 

the sedimentary record provides information on past microbial diversity and 

ecology (Coolen et al., 2004a). The use of DNA as a biomarker is unfortunately 

hindered by the unstable nature of DNA in many geological archives (D'Andrea et 

al., 2006). Conveniently, when remnants of DNA are preserved within 

sedimentary archives they can be used in conjunction with alkenone biomarkers 

to provide valuable information when the precursor organism(s) are unknown.  
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The aims of this chapter are: 

1. Identify the alkenone producer(s) in Lake Toyoni using 18S rDNA analysis 

2. Examine alkenone distribution variability between Lake Toyoni and other 

known haptophyte algae species.  

6.2 Results 

6.2.1 18S rDNA Haptophyte Identification  

Eighteen operational taxonomic units (OTUs) were identified based on restriction 

digest and sequence analyses. Based on BLAST analysis, 17 out of the 18 OTUs do 

not belong to any known haptophyte species previously catalogued in GenBank. 

OTU 7 was identified as 96% similar to a haptophyte found in Lake BrayaSø 

(Greenland) (Table 6-1).  

6.2.2  Full-length 18S rRNA gene-based phylogeny 

A phylogeny was constructed using the sequence for each OTU along with 

previously published full-length haptophyte 18S rRNA genes (Figure 6-1). OTU7 

falls within the Isochrysidales (posterior probability value of 1.0 ) and shares a 

distinct clade with a haptophyte amplified from water column filters from Lake 

BrayaSø (Greenland) (posterior probability of 0.98) (D'Andrea et al., 2006). The 

Greenland haptophyte sequence is a full-length sequence (~1800bp) compared to 

OTU7, which is a partial length sequence (887bp). OTU7 also branched basal to a 

lineage of coastal/lacustrine haptophytes (posterior probability of 0.90) and 

shares a common ancestry with marine haptophyte species E. huxeyli and G. 

oceanica (posterior probability of 1). 

According to the full-length 18S rDNA gene-based phylogenies (~1800bp) (Figure 

6-1), the remaining PCR-amplified sequences do not occupy the haptophyte 

phylotype and were more closely related to other groups of algae in the Bayesian 

inference (posterior probability of 0.90).  This means that only one haptophyte 

species is found in Lake Toyoni and other algal taxa fall outside the haptophyte 

group.   
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6.2.3 Partial length 18S rDNA gene-based phylogeny 

A partial-length phylogeny was constructed using a representative OTU7 

sequence along with previously published, partial-length haptophyte 18S rRNA 

genes. According to partial-length (~500bp) (Figure 6-2) 18S rDNA gene-based 

phylogenies (Figure 6-2), the Isochrysidales clustered into three distinct groups 

(all with posterior probabilities of 1). OTU7 grouped within Group 1 along with 

previously published sequences from the Greenland lakes (D'Andrea et al., 2006), 

Chinese Lakes (Tso Ur and Keluke Hu), American Lakes (Skoal Lake and Medicine 

Lake) and a Canadian Lake (Upper Murray Lake) (Theroux et al., 2010). Group 2 

comprises of the coastal alkenone producers; C. lamellosa, I. galbana, I.litoralis 

and P. paradoxa and the alkenone producers from Ace Lake, Antarctica Coolen 

et al. (2004a) and Chinese Lakes (Tso Ur and Lake Keluke Hu), American Lakes 

(Skoal Lake, Medicine Lake, Pyramid Lake and Lake George) (Theroux et al., 

2010). Group 3 comprises of the marine haptophyte species E. huxleyi and G. 

oceanica and unidentified marine coccoid haptophyte (U40924).  

6.2.4 Alkenone Distribution at Lake Toyoni 

C37-C39 long-chain alkenones were discovered in surface sediments of freshwater 

Lake Toyoni, Japan and were absent from all other lake sites surveyed. 

C37 alkenone concentrations in surface sediments of Lake Toyoni are 18μg 

C37 g
−1 of dry sediment. Generally, alkenones of the same carbon number are 

dominated by the more unsaturated forms (i.e., tetraenoic > trienoic > dienoic), 

except C39 alkenone where C39:3 dominates over C39:4 (Figure 6-3) and the C40 

alkenone is not present. C37:4 is the dominant C37 alkenone in the surface 

sediments accounting for 55% of the C37 alkenone production compared with 43% 

C37:3 and 2% C37:2 (Figure 6-3).  
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Table 6-1: Closest BLAST hits to OTUs 

OTU Closet Blast hit Max 
identity 
(%) 

%query 

OTU1 Chlamydomonas sp. SAG 75.94 18S ribosomal 
RNA gene, partial sequence 

99% 
 

97% 

OTU2 Uncultured alveolate clone PAA8SP2005 18S 
ribosomal RNA gene, partial sequence 

95% 99% 

OTU3 Chlorophyta sp. I-155 clone A1 18S ribosomal 
RNA gene, partial sequence 

98% 99% 

OTU4 Uncultured alveolate clone PAA8SP2005 18S 
ribosomal RNA gene, partial sequence 

95% 99% 

OTU5 Uncultured Woloszynskia clone ESS220206.046 
18S ribosomal RNA gene, partial sequence 

96% 99% 

OTU6 Uncultured alveolate clone PAA8SP2005 18S 
ribosomal RNA gene, partial sequence 

95% 99% 

OTU7 Uncultured haptophyte clone 
BrayaSo_water_18S 18S ribosomal RNA gene, 
partial sequence 

96% 99% 

OTU8 Dinobryon sertularia small subunit ribosomal 
RNA gene, partial sequence 

99% 99% 

OTU9 Uncultured alveolate clone PAA8SP2005 18S 
ribosomal RNA gene, partial sequence 

96% 99% 

OTU10 Uncultured Woloszynskia clone ESS220206.046 
18S ribosomal RNA gene, partial sequence 

96% 99% 

OTU11 Uncultured Woloszynskia clone ESS220206.046 
18S ribosomal RNA gene, partial sequence 

98% 99% 

OTU12 Uncultured alveolate clone PAA8SP2005 18S 
ribosomal RNA gene, partial sequence 

95% 99% 

OTU13 Uncultured alveolate clone PAA8SP2005 18S 
ribosomal RNA gene, partial sequence 

95% 99% 

OTU14 Uncultured eukaryote clone Ch8A2mF4 18S 
ribosomal RNA gene, partial sequence 

97% 95% 

OTU15 Uncultured Banisveld eukaryote clone P2-3m3 
18S ribosomal RNA gene, partial sequence 

98% 99% 

OTU16 Uncultured eukaryote clone KRL01E15 18S 
ribosomal RNA gene, partial sequence 

99% 99% 

OTU17 Uncultured alveolate clone PAA8SP2005 18S 
ribosomal RNA gene, partial sequence 

95% 99% 

OTU18 Chlorophyta sp. I-155 clone A1 18S ribosomal 
RNA gene, partial sequence 

99% 99% 
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Table 6-2: The range of primers used to target haptophyte rDNA. rDNA amplification was 
completed using a forward eukaryotic oligonucleotide primer (EUKA-F; AC CTG GTT GAT 
CCT GCC AGT) and a re-designed haptophyte reverse primer (DEG Prym887-R; 
DVAATACGARTRCCCCYRAC; where D = A/G/T; V = A/C/G; R = A/G; Y = C/T) 

 

Primer name 5’-3’ Tm Reference 

 Euk A AC CTG GTT GAT CCT GCC AGT 57 (Medlin et al., 1988) 

 Euk B C TTC TGC AGG TTC ACC TAC 53 (Medlin et al., 1988) 

Prym429F GCG CGT AAA TTG CCC GAA 65 (Coolen et al., 2004a) 

Prym887R GGA ATA CGA GTG CCC CTG AC 62 (Simon et al., 2000) 

887DegR DVA ATA CGA RTR CCC CYR AC 
 

62 This work 

 

 

Table 6-3: Number of base pairs targeted and successful/unsuccessful PCR with different 
primer combinations. Successful haptophyte amplification was only found using 
Prym429(F) + Prym887(R) and EukA(F) + 887DEG(R).  

 

Primer combination Number of base pairs 
(bp) 

Successful/unsuccessful PCR 

EukA(F) + EukB(R) 1792bp Unsuccessful 

Prym429(F) + Prym887(R) 461bp Successful 

Prym429(F) + EukB(R) 1372bp Unsuccessful 

EukA(F) + Prym887(R) 887bp Unsuccessful 

EukA(F) + 887DEG(R) 887bp Successful 
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Table 6-4: Alkenone trends among haptophyte algae. (A) Marine haptophytes, (B) Coastal 
haptophytes, (c) Lacustrine haptophytes. Adapted from Theroux et al.(2010). 

Haptophyte 
species 

Dominant 
alkenone C37/C38 C38 MeK C40 

Phylogenetic 
group 

Marine      

 Emiliania 
huxleyi C37:3 1-2 Present Absent Group III 

 Gephyrocapsa 
oceanic C37:3 < 1 Present Absent Group III 

Coastal      

Chrysotila 
lamellosa  > 2 Absent Present Group II 

Isochrysis 
galbana  > 3 Absent Present Group II 

Lacustrine      

Chrysotila 
lamellosaa C37:3 > 2 Absent Present Group II 

 
Ace Lake, 
Antarcticab  

C37:4 & 
C37:3 > 2 Absent Present Group II 

Lake George, 
USAc C37:4 2 Present Trace Group II 

Lake BrayaSø  
Greenlandd C37:4 1.3 Present Absent Group I 

Upper Murray 
Lakee     Group I 

Skoal LakeC     Group I 

Medicine 
Lakec C37:4    Group I 

Tso Urf  <2 Present Absent Group I 

Lake Toyonig C37:4 1.9 Present Absent Group I 
a (Sun et al., 2007);  
b (Coolen et al., 2004b);  
c (Toney et al., 2010);  
d (D'Andrea and Huang, 2005);  
eBesonen et al. (2008); 
 f http://www.homepages.ucl.ac.uk/~ucfasdt/Tibet/index.htm;   
g (present study) 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0012821X10006436#bb0030
http://www.homepages.ucl.ac.uk/~ucfasdt/Tibet/index.htm
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6.3 Discussion 

6.3.1  Haptophyte DNA amplification and diversity in Lake 
Toyoni 

The production of alkenones is limited to haptophytes within the order 

Isochrysidales. The successful PCR amplification of haptophyte rDNA confirms 

the presence of haptophyte algae in Lake Toyoni. Haptophyte rDNA was targeted 

during PCR-amplification using a range of primers (summarised in Table 6-2). 

Amplification was successful using haptophyte-specific primers (Prym 429(F) & 

Prym887(R)) and also a combination of a eukaryotic-specific primer (EukA(F); AC 

CTG GTT GAT CCT GCC AGT) and a re-designed haptophyte reverse primer 

(Prym887(Ra); DVAATACGARTRCCCCYRAC) targeting 18S rRNA coding regions 

(Table 6-3). 

Haptophyte-specific primers show significant diversity in lacustrine environments 

(Coolen et al., 2004a, D'Andrea et al., 2006, Theroux et al., 2010) and although 

these primers target the most variable region of the haptophyte 18S rDNA gene 

(Theroux et al., 2010), they produce relatively short  sequences (461bp). Using 

short sequences limits the ability to match the haptophyte DNA to other 

haptophyte sequences within GENBANK. In order to target a larger region of the 

haptophyte 18S rDNA gene, additional amplification using a combination of a 

eukaryotic forward primer and a redesigned haptophyte reverse was important 

to target a larger sequence of haptophyte rDNA (887bp compared to 461bp using 

haptophyte-specific primers), which results in a longer sequence to compare 

with other haptophyte sequences. 

In this study the haptophyte reverse primer was re-designed (Prym887(Ra)) and 

combined with the EukA(F) primer. The new combination of EukA(F) primer and 

re-designed haptophyte primer offers an alternative method that allows for 

longer sequence amplification. Conversely, since the degenerate bases increase 

variability, this combination of primers can result in amplification of other 

eukaryotic species other than just haptophyte algae. Indeed, this present study 

found using this combination of primers, 18 OTUs are identified in Lake Toyoni 

surface sediments and only one OTU sequence occupied the haptophyte 

phylotype. The remaining PCR-amplified sequences were more closely related to 
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other groups of algae in the neighbour joining analysis (posterior probability of 

0.90).  

Ideally the best primers for haptophyte amplification would be general primers 

for the domain Eukarya (EukA(F) and EukB(R)) (1792bp using Eukaryotic-specific 

primers compared to 461bp using haptophyte-specific primers) since the size of 

the sequence obtained increases the posterior probability.  For example, 

Theroux et al. (2010) found that posterior probability increased from 0.66 to 

0.92 when using eukaryotic-specific primers compared to using the haptophyte-

specific primers during PCR-amplification. Amplification of the Lake Toyoni 

surface sediment was however, unsuccessful using generic eukaryote-specific 

primers. Previous studies have also reported problems using eukaryotic-specific 

primers to target haptophyte rDNA in the marine (Bittner et al., 2012) and 

lacustrine environments (Coolen et al., 2004a). Only low concentrations of 

haptophyte DNA were found in sediments from Ace Lake, Antarctica with 

eukaryotic-specific primers (Coolen et al., 2004a). In comparison, by using 

haptophyte-specific primers, haptophyte sequences were detected in sediments 

where alkenone concentrations were low (Coolen et al., 2004a).  As a result, 

four additional haptophyte sequences, which were missed using the eukaryotic-

specific primers, were identified (Coolen et al., 2004a). Empirical obstacles, 

such as low haptophyte abundance, primer mismatches and a high guanine (G) 

and cytosine (C) content (up to 57%; (Liu et al., 2009a). GC content can result in 

unsuccessful amplification means there sometimes unsuccessful amplification 

using eukaryotic-specific primers (Liu et al., 2009a, Stoeck et al., 2010). 

6.3.2 Haptophyte identification 

Based on the phylogeny of the alkenone producer in Lake Toyoni it is a newly 

discovered member of the algal class Haptophyta. This species is 96% similar to 

an amplified haptophyte sequence from Lake BrayaSø (Greenland) (D'Andrea et 

al., 2006; Table 6-1). In addition, the alkenone distributions at both these lake 

sites are very similar including high %C37:4 and the presence of C38Me alkenones 

(Figure 6-3).  

The full 18S rDNA sequence (Figure 6-1) from Lake Toyoni and Braya Sø diverged 

before the lacustrine and coastal I. galbana and C. lamellosa species. The 



CHAPTER 6: 18S rDNA analysis of the alkenone-producer(s) in Lake Toyoni, Japan 
 

130 
 

alkenone signature of the Lake Toyoni haptophyte shares some features with the 

well characterised marine alkenone signature, i.e., the presence of C38 MeK, 

absence of C40, low C37/C38. However, the key exception is the high 

concentrations of the C37:4  homologue compared to the low, and in some cases 

absent C37:4 homologue, in most marine environments. This alkenone signature is 

very similar to the signature from Lake BrayaSø, Greenland (D'Andrea and Huang, 

2005; Figure 6-3). Theroux et al. (2010) attribute the high tetra-unsaturated 

alkenones in Lake BrayaSø sediments to very cold temperature waters and/or 

low salinity. 

The partial-length 18S rRNA sequence phylogeny shows the Lake Toyoni grouped 

within Group 1 of the Isochrysidales (Figure 6-2) along with previously published 

sequences from Greenland lakes ( BrayaSø, HundeSø and LimnaeSø), Chinese 

Lakes (Tso Ur and Keluke Hu), American Lakes (Skoal Lake and Medicine Lake) 

and a Canadian Lake (Upper Murray lake) (Theroux et al., 2010). Haptophyte 

species are therefore able to be transported great distances (for example via 

wind) and may potentially encyst to survive transport (Theroux et al., 2010).  

Since Lake Toyoni shares a phylogenetic group with haptophytes found in other 

Asian Lakes (e.g. down-core sediment sample from 20cm at Tso Ur and Keluke 

Hu), a similar haptophyte could be responsible for alkenone production in many 

other Asian Lakes. The surface sediment in Tso Ur however grouped within 

Group II of the Isochrysidales (Figure 6-2). The Lake Toyoni alkenone signatures 

are similar to Tso Ur signatures (i.e. C37/C38 values of < 2, the presence of 

C38 MeK), with the exception that Tso Ur contains C40 compounds (Table 6-4). 
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Figure 6-1: A consensus Bayesian phylogenetic tree depicting 18S rRNA gene-inferred 
relationships among haptophyte algae using only full length sequences An asterisk (*) 
indicates posterior probability values of 1.00; all other values as shown. Order classification 
after de Vargas et al. (2007), with number of sequences per order as indicated. The 
evolutionary distance for the number of changes per site is represented by the scale bar. 
GenBank accession numbers follow species and sequence names. 

http://www.sciencedirect.com/science/article/pii/S0012821X10006436#bb0090
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Figure 6-2: A consensus Bayesian phylogenetic tree depicting 18S rRNA gene-inferred 
relationships among haptophyte algae using partial length sequences. An asterisk (*) 
indicates posterior probability values of 1.00; all other values as shown. The evolutionary 
distance for the number of changes per site is represented by the scale bar. GenBank 
accession numbers follow species names and sequence names. 
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6.3.3 Alkenone occurrence 

The presence of alkenones (and by inference, the presence of prymnesiophyte 

algae) in the surface sediments in Lake Toyoni, Japan extends the known 

geographic range of alkenones in lacustrine settings. We suggest elevated 

salinity is not a strict requirement for the occurrence of alkenones in Japanese 

lakes and therefore another factor is responsible for the presence of lacustrine 

alkenone producers (e.g. surrounding geology and/or lake chemistry). Although 

alkenones have been previously reported from freshwater lakes (e.g. Zink et al., 

2001, Zhao et al., 2013) they are more frequently reported from lakes with 

elevated salinity (Li et al., 1996, Thiel et al., 1997, Chu et al., 2005, D'Andrea 

and Huang, 2005, Sun et al., 2007, Liu et al., 2008, Pearson et al., 2008). The 

relationship between lacustrine alkenone occurrence and salinity needs to be 

further explored. Although salinity is not a strict requirement for alkenone 

occurrence in lake systems, we suggest salinity may influence the species of 

algae present at an individual lake site. Hence, the alkenone producer present in 

Lake Toyoni may also be present in other low salinity/freshwater lacustrine 

systems (although no alkenones were detected in the other seven lakes surveyed 

in Hokkaido in this study).   

6.3.4  Alkenone distribution 

The presence of the tetra-unsaturated alkenones in Lake Toyoni sediments 

appears to be a characteristic feature of many lacustrine alkenone distributions 

(Cranwell, 1985, Thiel et al., 1997, Wang and Zheng, 1997, Schouten et al., 

2001, Zink et al., 2001, Chu et al., 2005, D'Andrea and Huang, 2005, Sun et al., 

2007, Toney et al., 2010). A key exception where the tetra-unsaturated 

homologues are not detected is in the lakes of the Nebraska Sand Hills (Toney et 

al., 2010). The dominant homologue in Lake Toyoni is C37:4, which appears to 

be a common feature from all lakes with Group 1 of Isochrysidales present 

(Figure 6-2) (e.g. Medicine Lake; Toney et al., 2010) and Greenland lakes 

(D'Andrea et al., 2006). In comparison, most open waters in the marine 

environment alkenone distributions are generally characterised by abundant di- 

and tri-unsaturated compounds and the C37:4 homologues are present in only 

minor abundances or are absent completely (Castañeda and Schouten, 2011). 

Exceptions are in low salinity marine environments where the relative 
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abundance of C37:4 (%C37:4) is generally higher compared with high salinity 

environments e.g. coastal/brackish basins (Bendle et al., 2009); the Baltic Sea 

(Schulz et al., 2000b) and in the open ocean in sub-polar and polar water-masses 

(Rosell-Melé, 1998, Rosell-Melé  et al., 2002, Sicre et al., 2002, Harada et al., 

2003, Bendle et al., 2005, Harada et al., 2012). The highest ever reported %C37:4 

in the marine realm, (>77%) was extracted from POC samples collected between 

sea-ice floes (Bendle et al., 2005).  

There is some evidence for increased C37:4 with decreasing salinity in the 

lacustrine environments in Asia (Liu et al., 2006b, Chu et al., 2005, Liu et al., 

2008). Toney et al. (2010) however found no relationship based on findings in 13 

North American lakes. Further studies by Toney et al. (2011) also found no 

relationship (r2 = 0.00061) based on findings from 13 lakes in Canada. Theroux et 

al. (2010) also does not support the relationship based on 15 lakes from various 

geographical regions. Toney et al. (2011) suggested the reason for these 

differences is either C37:4 is related to salinity in only some lakes, or that 

differences in percent C37:4 and salinity may be related to other factors such as 

SO4/CO3 ratios.  

Although lacustrine LCAs are often characterised by the dominance of tetra-

unsaturated alkenones and higher C37/C38 ratios, the presence of C38 MeK has 

been previously attributed to marine haptophyte presence (Schulz et al., 2000a).  

While many differences between marine alkenone producers and the Lake 

Toyoni alkenone producer exist (e.g., phylogenetic placement, dominance of 

C37:4, differences in the C37/C38 ratio), the main similarity is the presence of the 

C38 MeK (Table 6-4). This was also found in Lake George, USA (Toney et al., 

2012) and Greenland lake sediments, as well (D'Andrea et al., 2006). Theroux et 

al. (2010) also found the presence of the C38 MeK in multiple lakes with Group II 

Isochrysidales (Figure 6-3) (e.g. Great Salt Lake and Pyramid Lake), which are 

more closely related to lacustrine Isochrysis and Chrysotila species than marine 

species. There appears to be no relationship between the grouping of 

Isochrysidales and the presence of the C38 MeK homologue.  
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Figure 6-3: Comparison of molecular composition of lacustrine alkenones from Lake Toyoni 
and Greenland lakes. (A) The molecular composition of alkenones from Lake Toyoni surface 
sediment and (B) Lake Toyoni water column and (C) Greenland Lake alkenone producer 
(D’Andrea et al, 2006) all showing the dominance of the tetra-unsaturated alkenones.   
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6.3.5  Paleotemperature implications 

The presence of one haptophyte (OTU7) and the similarity between the alkenone 

homologue from the water and the surface sediment suggests the alkenones 

discovered in the surface sample are being produced by a single haptophyte 

species in the water column. The presence of a single haptophyte phylotype, 

conservative to the Isochrysidales, in Lake Toyoni is promising for the use of this 

site as a paleotemperature archive. Multiple alkenone producers contributing to 

the alkenone sedimentary record could influence the reliability, or at least 

complicate the interpretation, of the alkenone derived palaeotemperature proxy 

(Theroux et al., 2010) because different haptophytes can have different 

temperature relationships to unsaturation. Alkenone-based temperature 

reconstructions from Lake Toyoni would therefore only require a single 

temperature calibration for the single alkenone producer present. Currently, 

there is no standard calibration available that is applicable for different 

alkenone producers at different lake sites. As a result, site-specific or a species-

specific calibration for lacustrine environments must be developed to 

significantly improve the use of the lacustrine alkenone proxy. 

An example of a site-specific temperature calibration in lacustrine systems is>>> 

The temperature calibration (T= 14.3 [   
 ] + 32.3; R2 = 0.97; n = 26) for lakes in 

Kangerlussuaq, West Greenland was developed based on    
   of filtered 

alkenones and in situ temperature (D’Andrea et al., 2011). However, the in situ 

calibration from BrayaSø only provides a calibration for temperatures between 

~3.5 and 6.5°C during the production time between mid-June and mid-July. 

Therefore a combination of the in situ data from BrayaSø was combined with 

published data from German/Austrian lakes from Zink et al. (2001) to expand 

the temperature range of the calibration. The Zink et al. (2001) calibration 

provides averaged summer surface water temperature reconstructions. The 

resulting temperature calibration is; T= 40.8 [   
 ] + 31.8 (R2=0.96; n=34; Figure 

6-4), with a mean standard error estimation of 1.3°C. The justification for 

expanding the temperature calibration using samples from German/Austrian 

lakes is that the alkenone producer in the West Greenland and German/Austrian 

lakes are similar based on the dominance of  tetra-unsaturation and presence of 

C38 MeK (D’Andrea & Huang, 2005). A key assumption, therefore, is that the 

alkenone-producer in the lakes in Europe (Zink et al., 2001) and the lakes in 
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Greenland (D’Andrea et ak., 2011) are the same or at least have the same 

relationship with temperature. This hypothesis, however, has not been tested 

using genetic fingerprinting therefore the identity of the alkenone-producers in 

lakes in Europe used in the Zink et al (2001) study is currently unknown. If the 

alkenone-producers in the lakes in Europe are not the same as the alkenone 

producers from Greenland lakes, this would result in a large error in the 

combined temperatre calibration because different alkenone-producers have 

different relationships to temperature.  

 

Figure 6-4: Temperature calibration developed for Greenland lake using a combination of in-
situ water filter samples from Braya Sø collected during summer 2007 (red diamonds) and 
2009 (blue squares) and a previously published calibration from Europe (black circles) by 
Zink et al (2001). 

 

A site-specific calibration is currently not developed for Lake Toyoni therefore 

we suggest that a suitable calibration for this lake is the temperature calibration 

from Greenland lakes by D’Andrea et al. (2011). Justification for choosing to use 

this calibration is based on the phylogenetic analysis showing that the 
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haptophyte in Lake Toyoni is 96% (posterior probability of 0.98) similar to the 

haptophyte in water filter samples from BrayaSø, Greenland (D'Andrea et al., 

2006). In addition there is a strong similarity of alkenone distributions in Lake 

Toyoni and the haptophyte in water filter samples from Lake BrayaSø, Greenland 

(Figure 6-3). The combination of the 18S rDNA analysis and the alkenone 

distributions between the lake Toyoni haptophyte and the Greenland lakes 

haptophytes provides a basis for applying this calibration to a down-core 

sedimentary record in Lake Toyoni.  The similarity of alkenone distributions and 

18S rDNA in Lake Toyoni and the haptophyte in water filter samples from Lake 

BrayaSø, Greenland, (D'Andrea et al., 2006) provides a basis for applying this 

calibration to a down-core sedimentary record in Lake Toyoni. Applying the 

Greenland lake calibration to Lake Toyoni surface sediment unsaturation indices 

(   
  value=-0.49) gives a reconstructed temperature estimate of 11.8°C.  

Alkenones record the temperature during the time period that they are 

produced which means the alkenone-based temperature reconstruction may 

have a seasonal bias. To determine a potential seasonal bias at Lake Toyoni, 

seasonal filter samples were collected on a monthly basis, excluding months 

where there was ice-cover on the lake. Unfortunately, alkenones were not 

detected in the filter samples, possibly due to low concentrations of alkenones 

in the 1L of water collected. As a result, the timing of alkenone production in 

Lake Toyoni is currently unknown.  

Another method for determining the link between the timing of alkenone 

production and temperature is to use the core-top temperature estimate and 

compare it with LST’s from Lake Toyoni. The core-top temperature estimation 

based on the application of the calibrate developed by D‘Andrea et al. (2011) to 

the Lake Toyoni surface sediment    
  values produces a water temperature 

estimate of 11.8C. The comparison shows that the core-top alkenone 

temperature is within the range of observed lake temperature during the ice-

free months (April-November (14°C) and also late summer (11.6 in October 

2011). We suggest that alkenones are being produced through-out the ice-free 

time period (~March-November; please note no data available for March LST, 

although this temperature would likely lower the average ice-free months 

temperature closer to the core-top value). It is likely that alkenone production 
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ceases to occur when the lake is covered by ice due to the reduction in light 

required for photosynthesis. It is therefore suggested, based on the comparison 

with the core-top    
  temperature that alkenone production in Lake Toyoni 

likely records an average temperature of the ice-free months in Lake Toyoni 

rather than a mean annual temperature, which would take into account winter 

temperatures.  

6.4 Conclusions   

This study reports the first occurrence of alkenones (and by inference, the 

presence of Prymnesiophyte algae) in Japanese Lakes. A phylogenetic analysis of 

the Lake Toyoni haptophyte rDNA sequences suggests a single haptophyte alga of 

the class Prymnesiophyceae produce alkenones in Lake Toyoni. This species 

represent a new taxon of haptophyte algae that occupies a phylogenetic clade 

with the BrayaSø Greenland lake haptophyte, which is distinct from the well-

studied marine alkenone producers Emiliania huxleyi, Gephyrocapsa oceanica 

and coastal alkenone producers Isochrysis galbana and Chrysotila lamellosa. The 

presence of a single alkenone producer in Lake Toyoni, which is closely related 

to alkenone producers in Greenland lakes supports the application of alkenone-

based temperature reconstructions using the Greenland lake temperature 

calibration (D'Andrea et al., 2011).  

In conclusion, rDNA analysis has been used in conjunction with lipid biomarkers 

to identify the alkenone producer in Lake Toyoni. In order for alkenones to 

become a useful continental temperature proxy, additional lake surveys 

examining alkenone presence, abundance, and distribution need to be 

determined. Much still remains unknown about the lacustrine alkenone 

producers, however further genetic studies will provide insights into 

understanding the ecology of lacustrine haptophytes which is essential for 

interpretation of its associated molecular signature.  



 

 
 

7  

Alkenone-based temperature reconstruction 

from Lake Toyoni.  

7.1 Introduction  

Lake Toyoni is located in southern Hokkaido, whose climate is dominated by the 

variability of the East Asian Monsoon (EAM); the East Asian Summer Monsoon 

(EASM) and the East Asian Winter Monsoon (EAWM). The EAM influences a region 

which is densely populated therefore changes in the variability of the EAM also 

has an extensive influence on society through its influence on severe flooding 

and agriculture (e.g. Tao et al., 2004, Huang et al., 2007). The EAM is connected 

to the global climate system as it influences, and is influenced by El Niño 

southern oscillation (ENSO) (e.g. Zhang et al., 1996, Wang et al., 2003, Hong et 

al., 2005) and changes in the North Atlantic (e.g. Liu et al., 2013c). The 

combination of the scientific and societal importance of the EAM is a key reason 

for investigating how the monsoon has behaved in the past, and the driving 

forces behind this variability, is required for a better understanding of future 

climate variability.   

The EAM is driven by the seasonal reversal of the monsoon winds, which in turn 

is driven by the thermal contrast between the Asian continent and the Pacific 

Ocean. During summer, the variability of the EAM is associated with the 

development of the North Pacific Subtropical High (NPSH). The southerly winds 

along the western edge of the NPSH transports heat and moisture to Japan in 

summer resulting in warm and wet conditions. Whereas in winter, the variability 

of the EAM is associated with the development of the Siberian High (SibH) 
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resulting in cold air mass being transported to Japan in winter. 

Intensification/weakening of the EAWM and the EASM result in changes in 

temperature in summer in Hokkaido, Japan. For example, when the EASM 

intensifies (weakens), the temperature in summer is higher (lower) than average 

(1958-2014; instrumental data from Hiroo weather station; Chapter 2). It was 

also noted that the lowest summer temperatures occur when the EAWM is 

strengthened (Chapter 2), suggesting that a strong EAWM results in a weak EASM. 

Due to the temperature change in response to intensity of the EAM (EASM and 

the EAWM), we anticipate that a temperature reconstruction from Hokkaido will 

reflect the intensity of the EAM.  

The most reliable records of temperature variability are from instrumental 

records, however these records rarely span more than the last ~150 years. In the 

case of Hokkaido, the first instrument-based meteorological observations began 

with the establishment of a meteorological station in Hakodate in 1872. Prior to 

1872, we must rely on temperature reconstructions from this region using 

proxies. Proxies of climate can either be from historical documents (historical 

proxies) or from natural recorders of climate (natural proxies). Here we will 

investigate, develop and apply the alkenone paleothermometer to evaluate 

temperature change from Hokkaido, Japan over the last 1000 years. 

One of the most well-established quantitative temperature proxies in the marine 

realm is alkenone paleothermometry. Alkenones not only provide quantitative 

temperature reconstructions, but their occurrence is widespread and abundant 

in marine sediments (e.g. Brassell et al., 1986, Rosell-Melé et al., 1994, Bendle 

and Rosell-Melé, 2004) and  they have detected in sediments up to 160 million 

years old (Brassell and Dumitrescu, 2004). The successful application of 

alkenones as a quantitative sea surface temperature (SST) proxy has therefore 

captured the interest of palaeo-limnologists. Since then, alkenones have been 

detected in many lacustrine sediments from around the world including; England 

(Cranwell, 1985) China (Li et al., 1996, Wang and Zheng, 1997, Sheng et al., 

1999, Sun et al., 2004, Chu et al., 2005, Liu et al., 2006b, Sun et al., 2007, Liu 

et al., 2008, Chu et al., 2011, He et al., 2013, Zhao et al., 2013), Turkey (Thiel 

et al., 1997, Randlett et al., 2014), Antarctica (Volkman et al., 1998, Coolen et 

al., 2004c),  Norway (Innes et al., 1998), Austria, Gemany, Russia (Zink et al., 

2001), USA (Zink et al., 2001, Toney et al., 2010), Mongolia (Sun et al., 2004), 
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Greenland (D'Andrea and Huang, 2005, D'Andrea et al., 2011, von Gunten et al., 

2012), South America (Theissen et al., 2005), Spain (Pearson et al., 2008), 

Canada (Toney et al., 2011) and Svalbard (D'Andrea et al., 2012), South Africa 

(Schmidt et al., 2014). Recent progress also shows alkenones can be used to 

successfully reconstruct water temperature in lacustrine systems (Liu et al., 

2006b, Chu et al., 2011, D'Andrea et al., 2011, D'Andrea et al., 2012, von Gunten 

et al., 2012, He et al., 2013, Zhao et al., 2013). The development of alkenone-

based temperature records from lacustrine sediments have provided key insights 

into human migration patterns in Greenland (D'Andrea et al., 2011) and the link 

between temperature and solar irradiance (He et al., 2013).  

In Asia, considerable effort has been applied to developing the alkenone proxy in 

Chinese lakes. For example, Chu et al. (2005) investigated 50 lakes in China and 

detected alkenones in 45 of them. A relationship was derived between the    
    

index and mean annual air temperatures:    
   = 0.025T + 0.153. Significantly, the 

slope is very similar to the    
  -temperature relationship from culture 

experiments of lake species Chrysotila lamellosa under controlled growth 

temperatures (   
   = 0.026T–0.261; Sun et al., 2007). Until now, alkenones have 

not been reported from lakes in Japan therefore Lake Toyoni represents the first 

Japanese lake from which alkenone-based temperature reconstructions are 

developed. 

Prior to the application of alkenones as a temperature proxy in Lake Toyoni, the 

precursor organism must be indentified (e.g. D'Andrea et al., 2011). Chapter 6 

reported on the phylogenetic analysis of the Lake Toyoni haptophyte rDNA 

sequences. The results found a single haptophyte alga of the class 

Prymnesiophyceae produces alkenones in Lake Toyoni. This species represents a 

new taxon of haptophyte algae that occupies a phylogenetic clade with the 

BrayaSø Greenland lake haptophyte, which is distinct from the well-studied 

marine alkenone producers Emiliania huxleyi, Gephyrocapsa oceanica and 

coastal alkenone producers Isochrysis galbana and Chrysotila lamellosa. The 

presence of a single alkenone producer in Lake Toyoni, which is closely related 

to alkenone producers in Greenland lakes, supports the application of alkenone-

based temperature reconstructions using the Greenland lake temperature 

calibration: T= 40.8 [   
 ] + 31.8  (D'Andrea et al., 2011).  
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Lake water surface temperature (LST) in Lake Toyoni corresponds to changes in 

air temperature (Chapter 3), which is strongly influenced by the EAM (e.g. 

D'Arrigo et al., 2001, Davi et al., 2002, Igarashi et al., 2011). Significantly, Lake 

Toyoni (42°N) is situated at the boundary of the northern edge of the East Asian 

Summer Monsoon (EASM) (34-44°N; Xu et al., 2010b) making it sensitive to the 

variability of the EASM (Schöne et al., 2004). The boundary of the northern edge 

of the EASM is the location where the warm tropical air meets the cold polar air 

mass, termed the polar front. When the NPSH intensifies, the polar front is 

located farther north than usual (37°N) and as a result there is an increased 

influence from tropical maritime air mass from the Pacific Ocean. When the 

polar front is located farther south, there is a reduction in the influence of the 

Pacific Ocean and an increased influence from the sub-polar maritime air mass 

to Hokkaido. For example, in 1978, the NPSH was located farther north than 

usual. Instrumental data from a nearby meteorological site (Hiroo; 25km from 

Lake Toyoni) recorded temperatures during June, July and August were 2.3, 2.8 

and 1.9°C warmer. When the polar front is located farther south, there is a 

reduction in the influence of the EASM and an increased influence from the sub-

polar air mass and hence lower air temperatures in Hokkaido. As a result, it is 

hypothesised that Hokkaido is a key location for investigating variability in past 

temperatures to infer information on the EAM.  

 

7.1.1 Objectives of research 

The prime objective of this study is to investigate lake water temperature, and 

hence air temperature variability, over the past 1000 years in Hokkaido, Japan. 

The following questions will be considered; 

 

1. Is the Lake Toyoni alkenone-based temperature record driven by the 

variability of the EAM (EASM and the EAWM)? 

2. Does the alkenone-based temperature record provide evidence for 

globally recognised events (e.g. the MWP, LIA and the CWP) and if so, are 

the timings of these events synchronous with records with East Asia? 

3. Is there a relationship between temperature and famine frequency in 

Japan? 

 



CHAPTER 7: Alkenone-based temperature reconstruction from Lake Toyoni 

144 
 

7.2 Results 

The     
  values are calculated using the following equation: 

   
  

             

                    
 

Equation 7.1:    
 calibration equation (Brassell et al., 1986). 

Based on the similarity between the alkenone producers in Greenland Lakes and 

Lake Toyoni (Chapter 6), the raw    
  data is then converted to temperature 

using the following temperature calibration: T= 40.8 [   
 ] + 31.8 (D'Andrea et 

al., 2011). The down-core alkenone-based temperature reconstruction is 

presented in (Figure 7-1). We found that the average temperature in the down-

core record was 12.5°C. In Lake Toyoni, the temperature between 1000 and 

1240AD was generally warm with two periods of cooling (~1198AD and ~1187AD). 

Average temperatures for this time periods is 13.2°C, however temperatures 

fluctuated between 10.7–16.6°C (Figure 7-1). Following this warm period, 

temperatures dropped, and the period from 1330AD to 1450AD was marked by 

cold temperatures with a mean value of 9.7°C; in particular, the lowest 

temperature (8.1°C) occurred at 1427AD (Figure 7-1). Between 1300AD and 

1800AD, the average temperature was 11.7°C, 0.6°C cooler than the average 

temperature. Following the notable cool period between 1330-1450D, the 

average temperature between 1450-1800AD was 12.7, which is slightly warmer 

than average temperatures and 0.4°C cooler than the MWP. There are two 

notable peaks in temperature between 1474 and 1482AD (with temperatures 

reaching 15°C) and also between 1584 and 1640AD (with temperatures reaching 

16°C; Figure 7-1). The temperatures then rose to a maximum of 18.3°C between 

1843-1887AD and decreased to 10.4 °C in 1956AD.   
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Figure 7-1: Alkenone-based temperature reconstruction  reflecting averaged temperature 

values from the ice-free seasons (spring and summer) over the past 1000 years from Lake 

Toyoni 

7.3 Discussion 

7.3.1 Application of the D’Andrea et al (2011) temperature 
calibration in Lake Toyoni 

The justification for using the D’Andrea et al (2011) temperature calibration in 

Lake Toyoni has been previously discussed in Chapter  6 (section 6.3.5). As 

previously discussed, the largest assumption is that the alkenone-producers in all 

the lakes used in the combined calibration are the same species. This has not 

been tested using genetic fingerprinting therefore has the potential to introduce 

errors in the temperature calibration.  Another key assumption is that the 

alkenone-producers are all reflecting the a similar time period. For example, 

alkenones were found to be produced for a very narrow time period between 

mid-June and mid-July in Greenland lakes (D’Andrea et al., 2011). Zink et al 

(2001) suggested that alkenones in the lakes studied in Europe reflected an 

averaged summer temperature, therefore a larger temperature range than the 

Greenland lakes. The timing of the alkenone production in Lake Toyoni is yet to 

be determined. As previously discussed in Chapter 6, we suggest that the 

alkenone-based reconstruction from Lake Toyoni is reflecting a averaged 

temperature of the ice-free time period (e.g. spring and summer). The 

temperatures during this time period range from 4.9°C to 18.5°C, which is in line 

with the temperatures reconstructed using the D’Andrea et al (2011) 

temperature calibration.   Key assumption of using the D’Andrea et al (2011) 
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calibration is that seasonal differences between the production in the different 

lakes does not produce a large error using the combined calibration. 

 
The mean standard error on the D’Andrea et al (2011) calibration in 1.3°C. This 

is an important consideration because a large majority of the temperature 

changes in the alkenone-based temperature reconstruction from Lake Toyoni 

may be explained by the error associated with the calibration. The temperature 

range over the past 1000 years is 8.1°C - 18.3°C, implying that lake water 

temperature in Lake Toyoni has varied as much as 7.6°C over the past 1000 

years. Key time periods where the calibration reconstructs temperatures greater 

than the error range are; 1090-1110AD, ~1187AD, ~1639AD and ~1867AD (Figure 

7-2) and key time periods where the calibration reconstructions temperatures 

less that the error age are 1378-1426AD and ~1770AD (Figure 7-2). These key 

time periods therefore provide more reliable reconstructed temperatures 

compared to all other time periods, which have temperature changes within the 

mean standard error. 

 

 

Figure 7-2: Standradised alkenone-based temperatures over the past 1000 years. Values 
above and below 1.3°C are out with the mean standard calibration error.  
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7.3.2 Alkenone-based temperature reconstructions: comparison 
with EAM records 

Question 1: Is the Lake Toyoni alkenone-based temperature record driven 

by the variability of the EAM (EASM and the EAWM)? 

 

The alkenone-based temperature record from Lake Toyoni provides information 

on changes in temperature over the past 1000 years. It is hypothesised that 

because Lake Toyoni is situated within the northern limit of the EASM, and the 

air temperature is influenced by the variability of the EASM in the modern day 

(Chapter 2), therefore this location is particularly sensitive to the intensification 

of the EASM and hence will also record a strong EAM climate signal. In order to 

test this hypothesis, the alkenone-based temperature record from Lake Toyoni is 

compared with records of the EASM. However, considerable variability in the 

intensity of the EAM over the past 1000 years has been noted. As a result, the 

records of the EAM over the past 1000 years do not always match up and hence 

more reconstructions of the EAM from locations all over East Asia are required to 

determine the variability of the EAM over the past 1000 years. The chosen 

records and the justification are as follows: 

1. The centennial-scale variations in the EASM over the past 1700 years were 

investigated using the δ18O of shells from the ostracode Bicornucythere 

bisanensis from Lake Nakaumi, Japan, which reflects the bottom salinity 

changes (Yamada et al., 2016). The bottom water salinity in Lake 

Nakaumi was negatively correlated with monthly precipitation between 

April and August 2006–2011 and hence, the bottom salinity of Lake 

Nakaumi is associated with precipitation during summer, which is 

controlled by the EASM. Lower salinity values (low δ18O values) therefore 

suggest an increase in precipitation and hence a strong EASM and vice 

versa. Yamada et al. (2016) also detrended time-series variations by 

subtracting the 50 yr moving mean from the 500 yr moving mean. By doing 

this, any changes due to environmental conditions were removed and the 

50-500 years periodicity in the EASM was retained. The data was also 

standardised using the standard deviation of the anomaly (Figure 7-3). 

The periods in which the standard deviation exceeded 0.5 or was <-0.5 

were defined as statistically significant. This study is a key EASM 
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reconstruction to compare with the alkenone-based temperature records 

from Lake Toyoni because it is a centennial-scale EASM record from 

Japan.  

2. EAM record from Lakes Ni-no-Megata (39°57'N, 139°43'E) and San-no-

Megata (39°56'N, 139°42'E) on the Oga Peninsula of northeastern Japan 

over the past 2000 years by Yamada et al. (2010). Lake San-no-Megata 

was used to provide information on the EASM because Lake Ni-No-Megata 

is influenced by human activity. The sulphur content of Lake San-no-

Megata was used to gain information on the EASM because it is a proxy for 

anoxic-oxic bottom water conditions. When the EASM intensifies 

(weakens), precipitation increases (decreases) and hence lake levels 

increase (decrease). Yamada et al. (2010) suggested that when lake levels 

increase (decrease), there is less (more) vertical mixing and anoxic (oxic) 

bottom waters; which have high (low) sulphur content in Lake San-no-

Megata. Lake Ni-no-Megeta was used to infer information on the EAWM by 

the coarse-grained input into the lake. When the lake freezes, dust 

material transported via the EAWM is deposited on the top of the lake. 

When conditions in winter are colder, and hence a strong EAWM, the ice 

stays on the lake for longer and hence more dust material is accumulated. 

When the ice melts, the coarse-grained material is released into the lake. 

Lake Ni-no-Megata is more likely to freeze than Lake San-no-Megeta 

therefore Lake Ni-no-Megata is more sensitive to temperature changes in 

winter.  This study is a key EASM reconstruction to compare with the 

alkenone-based temperature records from Lake Toyoni because both 

records are located in northern Japan and are sensitive to the variability 

of the intensification of the EASM.    

3. A reconstruction of Holocene rainfall from southwest China, which is 

strongly influenced by the EAM by Hu et al. (2008) (Figure 7-3a and b). 

There are two records associated with this reconstruction; the first record 

is the original δ18O values from the Heshang stalagmite (30°27 N, 

110°25 E) and the second record is the corrected δ18O record. The δ18O of 

stalagmites in this region reflect precipitation amount, with higher 

(lower) δ18O values suggesting increased (decreased) precipitation, which 

in turn provides information on the EASM. The δ18O of stalagmites provide 
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robust EASM records because of their very precise age controls (e.g. 

Cheng et al., 2009, Wang et al., 2005). The original stalagmite Δδ18O 

record by Hu et al. (2008) may be subjected to site-specific bias. The 

corrected record is the difference between the original Heshang 

stalagmite and another stalagmite from a nearby cave (Dongge cave) by 

Wang et al. (2005). The difference between the two records offers a 

unique opportunity to remove any site-specific effects on the Δδ18O 

record, whereas the regional signal is preserved (Hu et al., 2008). As a 

result, the Δδ18O record by Hu et al. (2008) offers a EASM reconstruction, 

representing south east China, to compare with findings on the EASM 

system from the Lake Toyoni sedimentary record. 

4. Sea surface temperatures (SST’s) as inferred from alkenone-based 

temperature reconstructions and salinity reconstructions as inferred from 

planktonic foraminiferal oxygen isotope ratio analyses by Lee and Park. 

(2015)(Figure 7-4). These proxies are robust and well known and provide 

reliable reconstructions of EASM viability. The alkenone proxy works in 

the same way in marine sediments as it does in lake sediments (present 

study). The oxygen isotopic values of planktonic foraminiferal calcite are 

controlled by temperature of calcification and the local oxygen isotopic 

composition of sea water, which is a function of salinity. The combination 

of temperature and salinity reconstructions provides a record of EASM 

variability because stronger EASM result in warmer and wetter conditions 

and hence increased SST and freshening of the water column due to 

increased run-off. This study was chosen to compare with the alkenone-

based temperature reconstruction from Lake Toyoni because the 

reconstruction provides a continuous reconstruction of EASM variability 

over the past 1300 years, which is a similar time scale as the alkenone-

based temperature reconstruction from Lake Toyoni (the past 1000 years) 

and both records are decadally-resolved and therefore have a similar to 

the age resolution of Lake Toyoni. 

5. A March-temperature reconstruction from Kyoto, Japan (Aono and Kazui, 

2008; Figure 7-4). This temperature reconstruction is based on records of 

the timing of cherry blossoms in newspapers, personal diaries, poetry 

since 800AD (Aono and Kazui, 2008). The authors found that the timing of 
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the cherry blossom is linked to the temperature in March. The authors 

compared the cherry blossom-inferred temperature record with summer- 

and winter-temperature reconstructions and found that the cherry 

blossom-inferred temperature reconstruction records winter temperatures 

(Aono and Kazui, 2008). We have used this record as a EAWM 

reconstruction because temperatures in winter are controlled mainly by 

the EAWM in this region. This record provides a unique opportunity to 

investigate if the variability of the EAWM (as inferred from cherry blossom 

temperature record) influences temperatures during the ice-free months 

in Lake Toyoni (as inferred from the alkenone-based temperature 

reconstruction) in Japan over the past 1000 years. 

In summary, we have chosen two studies from Japan, three studies from East 

Asia and one study from the Sea of Japan, which all cover the past 1000 years to 

compare with the alkenone-based temperature reconstruction. The combination 

of these studies provides good spatial coverage of the variability of the EASM and 

also covers a range of archives including stalagmites, lake and marine sediments. 

We also chose an EAWM reconstruction from Japan to compare with the 

alkenone-based temperature reconstruction from Lake Toyoni to determine if 

the EAWM influences the temperatures during the ice-free months in Lake 

Toyoni.  
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Figure 7-3: Comparison of the alkenone-based temperature record with EASM records. A: 
Corrected δ

18
O values from the Heshang stalagmite, B: original δ

18
O values from the 

Heshang stalagmite, C: δ
18

O of shells from the ostracode Bicornucythere bisanensis from 
Lake Nakaumi, Japan, D: alkenone-based temperature reconstruction (present study).  

 

7.3.2.1 Comparison with EASM records 

The alkenone-based temperature record from Lake Toyoni is compared to the 

EASM record of Yamada et al. (2016), Yamada et al (2010), Lee and Park (2015) 
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and Hu et al (2008) to determine the link between the EASM variability and 

temperature recorded at Lake Toyoni.  

Yamada et al (2016) indentified six time periods of EASM intensification and six 

time periods of EASM weakening over the past 1000 years based on the δ18O of 

shells from the ostracode Bicornucythere bisanensis from Lake Nakaumi, Japan. 

The EASM intensified (values less than -0.5) in 1192-1268AD, 1447-1174AD, 

1545AD and 1769-1809AD and weakened (values more than 0.5) in 1299AD, 1350-

1395AD, 1492AD, 1627AD, 1898-1953AD. When comparing these findings with the 

alkenone-based temperature record from Lake Toyoni, we find that the 

alkenone-based temperature record also records the same warming and cooling 

trends, however there is a lag between the two sites. For example, we find 

evidence for a strong EASM between 1166-1235AD (with a slight decrease 

~1134AD, time lag 26 years), 1470AD (time lag of 23 years) and 1644AD (time lag 

17 years). We also found weak EASM in 1324-1450AD (26 year time lag), 1515AD 

(23 year time lag) and 1644AD (17 year time lag) Reasons for the time lag are (1) 

age model errors and (2) the data from Yamada et al (2016) has been detrended 

to focus on the 50-500 year variations in the EASM using moving means. There is 

an age error on all radiocarbon dates from leaf samples ranging from ±36-54 

years and a ±70 year age error on the radiocarbon measurement from the bulk 

sediment sample at the base of the core. All time lags therefore fall into the 

range (±36-54 years) of the age model errors providing evidence that age models 

errors may be responsible for differences between the records. Overall the 

strong similarities between the EASM record by Yamada et al. (2016) and the 

alkenone-based temperature record provides strong evidence that the alkenone-

based temperature record from Lake Toyoni is recording an EASM signal.  

Another EAM record from Japan shows that the EASM was strong between 1000-

1200AD and weak between 1200-1500AD and 1700-1820AD (Yamada et al., 2010). 

This EASM record is based on Sulphur content from Lake San-No-Megata, 

northern Japan (39°N). Given that this site is closer in location to Lake Toyoni 

rather than Lake Nakaumi (35°N), we therefore might expect the timing of the 

changes in the intensity of the EASM to be synchronous. The alkenone-based 

temperature record also shows warming between 1000-12000, which supports 

findings of a strong EASM during this time period. Although we find evidence for 

a weak EASM between 1200-1500AD, the timings are slight different between the 
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records. For example, we find that the EASM weakened between 1300-1457AD. 

We do not find strong evidence for a weakened EASM between 1700-1820AD, 

however cold temperatures are recorded between 1733-1774AD. The EASM 

record by Yamada et al (2016) found that the EASM weakened between 1729-

1769AD and was strengthened between 1769-1809AD. The alkenone-based 

temperature record from Lake Toyoni shows low temperatures between 1733 

and 1774AD. However, between 1769 and 1809AD the temperature fluctuated 

around the average temperature, providing no evidence for a strong or weak 

EASM during this time period. The key difference between these records is 

therefore the weakening of the EASM 1700-1820AD.  

The alkenone-based temperature record is also compared with EASM records 

outside of Japan (southwest China; Hu et al., 2008). There are three stalagmite 

records from south china, which all provide valuable information on the 

centennial-scale variability of the EASM; Hershang Cave: (Hu et al., 2008), 

Dongge Cave: (Dykoski et al., 2005, Wang et al., 2005) and Lianhua Cave: 

(Cosford et al., 2008). Cosferd et al. (2008) compared these records and found 

that although there was a general agreement between the patterns and timings 

of the variability of the δ18O records, there are also large differences within the 

region and significantly also differences between different stalagmites from the 

same cave. Cosferd et al. (2008) suggested the reasons for the differences were 

due to local environmental factors at the individual sites (e.g. water residence 

times) and also environmental factors between different stalagmites (e.g. 

growth rates). We chose the δ18O record by Hu et al. (2008) because they 

attempted to remove local environmental factors by subtracting the original 

Heshang stalagmite and another stalagmite from a nearby cave (Dongge cave) by 

Wang et al. (2005). The corrected record therefore should represent the 

variability of the EASM, without the influence of site-specific bias. We present 

the original Δδ18O record and also the corrected Δδ18O record in Figure 7-3. We 

find that overall there are strong similarities (Figure 7-3) between the two 

records. Similarities include strong EASM conditions between 1050 and 1300AD. 

In addition, the EASM also increased in both records between 1450-1600AD. Both 

records also show weak EASM conditions between 1300-1450AD, ~1650AD and 

1900AD-present. A significant difference between the EASM reconstruction by Hu 

et al. (2008) and the alkenone-based temperature reconstruction from Lake 
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Toyoni is the strong EASM recorded at ~1750AD in the Hu et al. (2008) record. 

Although we find a slight increase in temperatures (Figure 7-3), we do not find 

evidence for a strong EASM during this time period. A suggested reason for 

differences between the records is that the  δ18O values from the Heshang 

stalagmite is also potentially influenced  by precipitation from the Indian 

monsoon (Yang et al., 2014) and hence may not only record a EASM signal. 

However, the EASM reconstruction by Yamada et al. (2016) also shows a strong 

EASM during this time period. In addition, the strong similarities between the 

alkenone-based reconstruction and the δ18O values from the Heshang stalagmite 

for the majority of the record provides evidence that the δ18O values from the 

Heshang stalagmite is responding to EASM, rather than the Indian monsoon. This 

therefore suggests that a strong EASM occurred during this time period, 

however, the alkenone-based temperature reconstruction in Lake Toyoni does 

not record this strong EASM time period. A suggested reason for this is that 

another climate driver is controlling the climate in Hokkaido during this time 

period (e.g. NOA; further discussed in following section 7.4.1).  

The alkenone-based temperature reconstruction is also compared with another 

record outside of Japan by Lee and Park. (2015; Figure 7-4). The EASM record by 

Lee and Park. (2015) shows a strong EASM during the MWP (950-1250AD), a 

weakening between 1250-1400AD, followed by stronger EASM intensity between 

1400-1950AD, with increases in temperature in the late 1400’s, ~1550AD and the 

early 1600’s. There are notable similarities between the alkenone-based 

temperature record from Lake Toyoni and the EASM reconstruction by Lee and 

Park. (2015; Figure 7-4). This is expected as both sites are strongly influenced by 

the intensity of the EASM. The temperatures between 100 and 1250AD were high 

in both records, followed by a decrease in temperatures to lowest values 

between 130-140AD. Lee and Park. (2015) found that the temperatures post 

1400AD increased with three notably warming periods within the LIA, including; 

late 1400’s, ~1550AD and the early 1600’s, which is consistent with the timing of 

the warm periods identified in the Lake Toyoni sedimentary record. Both records 

also show warming ~1850AD. The strong similarities between these 

reconstructions are attributed to the two sites being influenced by the EASM and 

hence there is evidence to support the hypothesis that the alkenone-based 

temperature record from Lake Toyoni records EASM variability. Although the 
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trends are similar, we find that the temperature changes at Lake Toyoni are of 

higher magnitude than temperature changes recorded in the Sea of Japan. Lake 

surface temperatures are mediated by local factors such as lake surface area 

and depth (Schmid et al., 2014) and ice-cover (Austin and Colman, 2007). A 

potential reason for alkenone-based temperatures from Lake Toyoni recording a 

larger variability than the alkenone-based temperatures from the Sea of Japan is 

that increased temperatures reduces the ice-cover on the lake and summer 

stratification occurs earlier than usual, resulting in surface water warming at a 

faster rate than air for a longer period of time (Austin and Colman, 2007).  

 

 

Figure 7-4: SST and salinity records from the Japan Sea compared with solar irradiance 
over the past 1300 years (Lee and Park., 2015). A: alkenone based SST, B: total solar 
irradiance (Delaygue and Bard, 2011), C: planktonic foraminferal oxygen isotope ratio 
analyses (all data from Lee and Park., 2015). 
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7.3.2.2 Comparison with the EAWM 

The alkenone-based temperature reconstruction is also compared with a winter 

temperature reconstruction by Aono and Kazui. (2008; Figure 7-5). The authors 

found that temperatures between 1200-1300AD, 1350-1500AD and 1550 and 

1670AD were warm as well as significant warming over the past 200 years (Figure 

7-5). They also recorded five cold periods; 1170-1210AD, 1300-1350AD, 1500-

1550AD, 1670-1710AD and 1825-1830AD. We also find that both records show 

warming in 1200-1300AD, 1450-1500AD and 1550-1650AD and cooling in 1150-

1200AD, 1300-1350AD and 1500-1550AD. This suggests that in some parts of the 

record, there is a strong similarity between winter temperatures (cherry 

blossom-inferred temperatures) and the climate in the ice-free season (April-

November) (alkenone-inferred temperatures). Similarities between the winter 

temperature reconstruction (Aono and Kazui, 2008) and the alkenone-based 

temperature reconstruction (present study) suggests that the intensity of the 

EAWM (as inferred from cherry-blossom temperature record) has a strong 

influence on temperature during the ice-free season (April-November (as 

inferred by alkenone-based temperature reconstruction at Lake Toyoni). Using 

instrumental data from a nearby weather station, we also found that the 

intensification (weakening) of the EAWM results in cooler (warmer) summer 

temperatures. This suggests that a weakening (strengthening) of the EAWM 

results in a strengthening (weakening) of the EASM; and hence a potential 

inverse relationship may exist between the two sub-systems. However, there are 

differences between the two records, which suggest that the relationship 

between the EASM and the EAWM may not be as simple as an inverse 

relationship. Alternatively, differences in the alkenone- and cherry blossom-

inferred temperature records also may be due to the 7° latitudinal difference 

between Hokkaido and Kyoto.  

We find a key difference in the temperature records between 1350-1540AD. The 

Lake Toyoni record shows significant cooling whereas the March temperatures 

record warmer temperatures (Figure 7-5). A reason for this may be due to the 

southern location of the EAWM being located farther north and not influencing 

this site to the same degree as Lake Toyoni. In addition, March temperatures 

decreased between 1670-1710AD in the cherry blossom temperature 

reconstruction, whereas alkenone-based temperatures increased to ~14°C 
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(almost 2°C higher than average) during this time. The alkenone-based 

temperature record from Lake Toyoni also shows significant warming ~1865AD 

whereas the temperature reconstruction for March shows cooling during this 

time period. A suggested reason why the intensity of the EAWM is not influencing 

ice-free temperatures at Lake Toyoni during these time periods is that another 

dominant climate driver (e.g. PDO) has a stronger influence during these time 

periods. The positive phase of the PDO results in colder than average winter 

conditions and can also intensify the EASM (chapter 2). Significantly, the PDO 

was in its positive phase during these time periods (1680-1695AD and 1832-

844AD) based on a PDO reconstruction by Macdonald and Case (2009), providing 

evidence to support this suggestion.  Significantly, the cherry blossom- inferred 

temperature records also shows a clear warming over the past 100 years, 

whereas the alkenone-inferred temperature reconstruction shows cooling during 

this time period. This suggests that there is a weakening of both the EAWM and 

the EASM during this time period.   

We also compared the alkenone-based temperature record with an EAWM record 

from northern Japan (Yamada et al., 2010). The authors’ found that the EAWM 

was strong between 1300-1500AD, 1600-1700AD and 1720-1820AD. We find 

evidence for an increase in the EAWM between 1300-1500AD and between 1600-

1700AD, however we find no evidence for the EAWM intensification between 

1720-1820AD. Aono and Kazui. (2008) also show that the temperature during this 

time period was warmer rather than colder, which suggests that the EAWM was 

not strong during this time period. 
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Figure 7-5: Comparison of the alkenone-based temperature records with winter temperature 
reconstruction from Japan. A. temperature reconstruction from the month of March in 
Kyoto, Japan, based on the flowering time of cherry blossoms. The bottom graph is the 
alkenone-based temperature reconstruction from Lake Toyoni. 

 

7.3.2.3 Summary 

To sum up, the intensity of the EAM is recorded in the instrumental data from 

Hiroo weather station, 25km from Lake Toyoni and therefore we hypothesised 

that the intensity of the EAM would also control temperature variability over the 

past 1000 years. We find strong similarities between EASM records from Japan 

and the Sea of the Japan with the alkenone-based temperature reconstruction 

confirming that this site records EASM variability over the past 1000 years. We 

also suggest a possible inverse relationship between the intensity of the EAWM 

on the EASM based on a comparison between a winter temperature record by 

Anon and Kazui. (2008) and the alkenone-based temperature record from Lake 

Toyoni.   

However, there are some key differences between the alkenone-based 

temperature reconstruction and the EASM records of Hu et al. (2008) and 

Yamada et al. (2016). Significantly, between ~1750AD strong EASM conditions are 
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recorded in both EASM records (Figure 7-3). However, the alkenone-based 

temperature reconstruction only records a slight warming during this time 

period. This suggests that another climate driver is controlling the climate in 

Hokkaido during this time period.  

7.3.3 Alkenone-based temperature reconstructions: comparison 
with NAO/AO reconstruction 

Although air temperature in Hokkaido is mainly controlled by the EAM, the 

NAO/AO also has a strong influence on air temperature based on instrumental 

data between 1958 and 2014 (Chapter 2). When the NAO is in its positive 

(negative) phase, temperatures are higher (lower) in Hokkaido (Chapter 2). In 

addition, there is also a connection between the EAM and the NAO/AO. The 

positive phase of the NAO/AO results in a strong EASM and the negative phase of 

the NAO/AO results in a strong EAWM (e.g. Gong and Ho, 2003, Gong et al., 

2001). In order to determine if the NAO/AO is controlling air temperature over 

the past 1000 years in Hokkaido, we compare the alkenone-based temperature 

record with a NAO reconstruction by Trouet et al. (2009; Figure 7-6). As 

previously discussed in Chapter 5, the NAO index was developed using a 

combination of high-resolution proxy records and model simulations. It was 

found that overall the positive (negative) phase of the NAO coincided with 

warmer (colder) temperatures. Negative NAO periods occurred between 

~1450AD, 1550-1600, 1750-1800AD, ~1850AD and 1920-1960AD. All of these 

negative NAO time periods were associated with cooling except 1850AD. 

Therefore a suggested reason for the alkenone-based temperature reconstructed 

only showing slightly warmer temperatures during this time period is due to the 

influence of the negative NAO. Positive NAO periods occurred between 1050-

1400AD, 1450-1550AD and 1850-1950AD. Overall these periods were also 

associated with warming except between 1300-1400AD, which shows cooling. 

The cooling between 1300-1400AD is consistent with EASM records, which show a 

decrease in the intensity of the EASM.  This time period is therefore being 

strongly influenced by the intensity of EASM, rather than the phase of the NAO. 

Overall the results suggest that alkenone-based temperature reconstructions 

from Lake Toyoni are recording a strong EAM signal, however, this is further 

modulated by the phase of the NAO. When the NAO is in a strong negative phase, 

air temperatures in Hokkaido are lower.  
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Figure 7-6: Alkenone-based temperature record compared to the NAO Index (Trouet et al., 
2009). Grey shading indicates negative NAO time periods.  

 

Alkenone-based temperature reconstructions: comparison 
with Asian temperature records 

Question 2: Does the alkenone-based temperature record provide evidence 

for globally recognised events (e.g. the MWP, LIA and the CWP) and if so, 

are the timings of these events synchronous with records within Asia? 

 

In order to address question 2, the alkenone-based temperature record from 

Lake Toyoni is compared with records from Asia. A description of the chosen 

records and how the proxy provides information on temperature are as follows: 

1. A regional temperature series  by Shi et al. (2015), which provides a 

record of Asian (eastern and south central) temperature variability during 
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summer (June-July-August) to compare with the alkenone-based 

temperature reconstruction (Figure 7-7). The temperature series is based 

on 418 temperature proxy records and modelling from across Asia.   

2. A regional decadal-resolved temperature series from China by Ge et al. 

(2013), which provides a record of East Asia temperature variability to 

compare with the alkenone-based temperature record from Lake Toyoni. 

The temperature reconstruction was developed over the past 2000 years 

in China using statistical software (specifically principal component 

regression and partial least squares regression) using 28 records from the 

whole country and a range of climate proxies (Figure 7-7) This record is an 

example of an East Asian temperature record which responds to northern 

hemisphere climate variability (Ge et al., 2013), which is mainly driven by 

changes in solar activity and volcanic forcing (Crowley, 2000).  

3. A local temperature reconstruction based on pollen assemblages 

(Sakaguchi, 1983) from Japan. Sakaguchi. (1983) investigated percentage 

of Pinus in a peat record spanning the past 8000 years from Oxheghara 

moor, 150km north of Tokyo (Figure 7-8). Pinus pollen increases when 

conditions are colder therefore higher Pinus pollen suggest cooler 

conditions (Figure 7-8). 

4. A temperature record based on total organic carbon (TOC) and total 

organic nitrogen (TON) over the past 1300 years from Lake Nakatsuna, 

central Japan by Adikari and Kumon. (2001). TOC and TON are related to 

summer temperature in Lake Nakatsuna because these parameters 

increases (decreases) when productivity increases (decreases) under a 

warm (cold) climate (Figure 7-8). 

5. A local temperature reconstruction using the stable carbon isotope ratio 

(δ13C) tree-rings of Japanese cedars from Yakushima Island, southern 

Japan, over the past 2000 years by Kitagawa and Matsumoto. (1995).  The 

δ13C tree-rings of Japanese cedars is controlled by the difference between 

the intercellular δ13C and the δ13C of the air which is affected by the 

concentration of atmospheric CO2, and hence temperature. This record is 

a key record to compare with the alkenone-based temperature record 



CHAPTER 7: Alkenone-based temperature reconstruction from Lake Toyoni 

162 
 

from Lake Toyoni as it a record which is strongly influenced by global 

climate drivers (e.g. solar variations) rather than local factors (e.g. the 

EAM).  

The records chosen therefore represent Asia (Shi et al., 2015), East Asia (Ge et 

al., 2013), central Japan (Sakaguchi, 1983, Adhikari and Kumon, 2001) and 

southern Japan (Kitagawa and Matsumoto, 1995), which provides a good spatial 

representation to compare with the alkenone-based temperature record from 

Lake Toyoni. Given the large latitudinal range, the local climate in Japan varies 

from temperate in the north and tropical in the south. As a result, we might 

expect that palaeo-climate records from different regions in Japan over a given 

time period would show clear differences, reflecting local-scale differences. On 

the other hand, the climate of Japan is ultimately controlled by the EAM, 

therefore similarities in the records would show a strong regional climate signal 

(e.g. the EAM). 
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Figure 7-7: Comparison of the alkenone-based temperature variations over the past 1000 
years with Asian temperature records. A: a combination of temperature reconstructions in 
Asia by Shi et al. (2015). B: a combination of temperature reconstructions in China using 
statistical software by Ge et al. (2013). C: the alkenone-based temperature variations over 
the past 1000 years (present study). 
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Figure 7-8: Comparison of the alkenone-based temperature record with palaeo-climate records from 

Japan: A. Alkenone-based temperature record from Lake Toyoni (Present study). B. Pollen record 

Sakaguchi. (1983). The percentage (%) of Pinus in a peat record spanning the past 2000 years from 

Oxheghara moor, 150km north of Tokyo. Higher Pinus pollen (%) is interpreted as lower temperatures 

and vice versa. C. δ13C record of a Japanese cedar tree from Yakushima Island, southern Japan, over 

the past 2000 years (Kitagawa and Matsumoto, 1995). The average value of pre-1850 year (-22.05 ‰) 

is indicated by horizontal line. The temperature in the right scale is estimated using the relationship 

between δ13C and temperature (please note the axis is reversed; temperature decrease going up and 

temperature increase going down).  

 

The alkenone-based temperature reconstruction is compared with temperature 

records from Asia (Shi et al., 2015) and more specifically from East Asia (Ge et 

al., 2013). The temperature record from Asia takes into account records from 

eastern Asia as well as central and southern China. The record shows that during 

the past millennium, there were three warm periods; the 11th, 12th, and 20th 

centuries. The late 20th century was the warmest period. Following the warm 

conditions in the 11th and 12th centuries, temperatures in Asia decreased 

between 1300-1400AD, and low temperatures were recorded during the 17th 

century (Figure 7-7). Similar to the Asian temperature reconstruction, we find 
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warm temperatures between 1000-1200AD, however, there are also strong 

differences. For example, the Asian temperature reconstruction shows cold 

temperatures between 1800-1900AD whereas the alkenone-based temperature 

reconstruction shows significant warming during this time period (Figure 7-7). 

Moreover, the Asian temperature record shows that the warmest temperatures 

are between 1900-200AD, however, the warmest temperatures in the alkenone-

based temperature record ~1867AD. Suggested reasons for the differences in 

these records are (1) the temperature at Lake Toyoni is recording an EAM signal 

whereas the climate within Asia is also influenced by other factors such as the 

South East Asian Monsoon (2) the temperature reconstruction of Shi et al. (2015) 

is based on summer (June–July–August) temperatures whereas Lake Toyoni is 

recording the entire ice-free season which takes into account temperatures from 

March-November.   

The alkenone-based temperature record is also compared to a temperature 

record from East Asia (Ge et al., 2013). Individual climatic regions of China are 

driven by different factors, for example, the Northeast is driven by the 

westerlies, the Northeast, Central East and Southeast are influenced by the 

Asian monsoon and the Tibetan Plateau is driven by a mixture of the Westerlies 

and the Asian Monsoon. Therefore, there are local differences in all the records 

used in this study. However, the reconstruction by Ge et al. (2013) shows that 

the temperature variations in China are overall in phase with northern 

hemisphere climate variability. Two key warm periods were identified; 951-

1320AD and >1921AD. Within the warming between 951-1320AD, there was two 

particularly warm events; 981-1100AD and 1201-1270AD. Between 1100-1200AD 

there was cooling in East Asia. However, Ge et al. (2013) found large 

inconsistencies between temperature records during the warm periods recorded 

between 981-1100AD and 1201-1270AD. The authors’ suggested more 

reconstructions from this time period were required from East Asia to determine 

if the warming during these time periods is comparable to the temperatures o 

the 20th century. We find evidence for a cold period between 1110-1180AD and 

warming between 1200-1266AD, with a brief cold period in 1251AD. Based on the 

alkeone-based temperature reconstruction from Lake Toyoni, we find that the 

temperatures between 1200-1266AD were 0.4° warmer than average 

temperatures. Although the Lake Toyoni records a warm period between 1050 



CHAPTER 7: Alkenone-based temperature reconstruction from Lake Toyoni 

166 
 

and 1300AD, the warming between 1900-2000AD is not recorded in the alkenone-

based temperature record from Lake Toyoni. The temperatures between 1900-

2000AD were actually lower than average rather than higher than average. The 

temperature record by Ge et al. (2013) shows that temperatures between 1321-

1920AD were lower than average, with three particular cold periods. These cold 

time periods indentified in the Ge et al. (2013) temperature record by Hao et al. 

(2016) were 1390-1460, 1600-1700 and 1800-1900AD, with the coldest periods 

being between 1631 and 1690AD and 1811 and 1870AD (Ge et al., 2013). The 

alkenone-based temperature record also recordsa cold time period between 

1390-1460 and cooling between 1600-1700AD, however the length of the cold 

period is shorter in the Lake Toyoni record (1635-1690AD) and is not as 

pronounced as the temperature reconstruction by Ge et al. (2013). The final 

cold period between 1800-1900AD shows strong differences between the two 

records. This time period is associated with the warmest temperatures in the 

Lake Toyoni record, whereas this time period is associated with cooling in China. 

The cold period between 1635 and 1690AD is characteristic of northern 

hemisphere cooling events because this time period is the timing of the coldest 

time periods recorded in the northern hemisphere. As a result, we find that 

although there are some similarities between the alkenone based temperature 

record from Lake Toyoni and the regional temperature record from China (Ge et 

al., 2013) suggesting a northern hemisphere control on the temperature record, 

our site is more controlled by the strengthening and weakening of the EASM. 

In addition to temperature records from Asia (Shi et al., 2015, Ge et al., 2013), 

we also compare the alkenone-based temperature reconstruction to climate 

records from Japan. Due to its wide latitudinal range, the local climate in Japan 

varies from temperate in the north and tropical in the south. As a result, we 

might expect that palaeo-climate records from different regions in Japan over a 

given time period would show clear differences, reflecting local-scale 

differences. On the other hand, the climate of Japan is ultimately controlled by 

the EAM, therefore similarities in the records would show a strong regional 

climate signal (e.g. the EAM).  

A number of climate records exist from Japan over the Late Holocene to 

compare with the alkenone-based temperature reconstruction record from Lake 

Toyoni.  A key climate reconstruction to compare our record to is based on 
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pollen assemblages (e.g. Sakaguchi. 1993). Strong similarities between the 

alkenone-based temperature reconstruction and the Pinus pollen reconstruction 

occur with a brief cold event between 1100-1200AD and the warm conditions 

~1200AD within the MWP. Both records also show significant cooling between 

1300-1400AD. During the LIA, both records show warming to 1500AD, followed by 

cooling ~1550 and warming again to 1600AD. Warming was also found in both 

records around 1700’s. In the Pinus pollen reconstruction, the warming in the 

1700’s was the most pronounced within the LIA whereas in the alkenone record 

from Lake Toyoni, the most pronounced warming occurred in the early 1600’s.  

Another temperature record from central Japan is compared with the alkenone-

based temperature record. The record is based on TOC and TON content of a 

lake sediment core, which provides information on past productivity, and hence 

temperature, over the past 1300 years (Adhikari and Kumon, 2001). Adikari and 

Kumon. (2001) found three noticeable cold events between 1300 and 1950AD; 

including 1300-1470AD, 1700-1760AD and 1850-1950AD. These cold events are 

similar to the timings of the cold events recorded at Lake Toyoni (e.g. 1300-

1450AD, 1717-1754 and 1850-1900AD). The time periods of these cooling events 

are also similar to the time periods of EASM weakening recorded by Yamada et 

al. (2010) and Yamada et al. (2016) (Figure 7-3). This suggested that this site is 

recording an EASM signal, similarly to Lake Toyoni, and hence a reason for the 

strong similarities between the two records.  

The alkenone-based temperature record is also compared with a temperature 

record from Southern Japan based on the δ13C  tree-ring records (Kitagawa and 

Matsumoto, 1995), which varies with atmospheric CO2 and hence temperature.  

Spectral analysis of the δ13C time series provided information on the 

periodicities present in the record. The significant temperature periodicities 

were 187, 89, 70, 55 and 44 years. The 187-year cycle closely corresponds to the 

well-known Suess cycle of solar activity, and that the 89-year cycle compares 

well with the Gleissberg solar cycle, therefore they concluded that their findings 

support for a sun-climate relationship. The δ13C tree-ring record and the 

alkenone-based temperature reconstruction both show a general warm MWP, 

with a cooling event ~1150-1200AD. This cooling event is slightly earlier in the 

Lake Toyoni record. Both records also show cooling at the start of the LIA 

~1300AD. Although this cooling event lasts longer in the Lake Toyoni in northern 
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Japan record compared to the δ13C record from southern Japan. For example 

~1400AD shows warming in the δ13C record whereas the Lake Toyoni record is 

still cool during this time period. Between 1450 and 1500AD, the Lake Toyoni 

record shows warming whereas the δ13C of Japanese cedars records cooling 

during this time period. Significantly, a large cooling event is recorded between 

1600-1750AD in the δ13C record, with a brief warm event in the middle. Although 

the alkenone-based temperature reconstruction also shows cooling at the start 

of the 1600’s and the middle 1700’s and warming in the middle, the cooling in 

the Lake Toyoni record is not on the same magnitude as the δ13C record. 

Between 1750AD and present, the δ13C record shows distinct warming. The 

alkenone-based temperature reconstruction shows warming between 1750 and 

1850AD, which is then following by cooling.  A suggested reason for the key 

differences between the alkenone-based temperature record from Lake Toyoni 

and the temperature record by Kitagawa and Matsumoto. (1995) is that the δ13C 

tree-rings of Japanese cedars from Yakushima Island, southern Japan are 

recording a strong northern hemisphere temperature signal which is strongly 

influenced by solar activity and volcanic activity (Crowley, 2000). Whereas the 

Lake Toyoni temperature record is mainly being driven by changes in the EAM 

system, which is driven by changes in land-sea thermal contrast and the 

intensity of the SibH (EAWM intensity) and the NWPH (EASM intensity).  

7.3.3.1 Medieval warm period 1050-1300AD 

The alkenone-based temperature reconstruction shows that the MWP was 

generally a warm time period in Lake Toyoni, however, there is substantial 

variability in lake temperatures during this time period. 

7.3.3.1.1 Timing of the MWP in Hokkaido, Japan 

The MWP has not been fully captured in our record because it should go back to 

~900AD, therefore we can determine the timing of the end of the MWP however 

not the start of it. The end dates of the MWP are highly variable depending upon 

the geographic region. As a global estimate, the timing of the end of the MWP is 

~1250AD (e.g. Mann et al., 2009). Based on the temperature records from Lake 

Toyoni, we suggest that locally the end of the MWP was ~1300AD, because post 

1300AD temperatures are generally lower than average (highlighted in grey; 

Figure 7-8). This finding is similar to tree-ring records in southern Japan over the 
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past 2000 years (Kitagawa and Matsumoto., 1995), which also found that the 

MWP occurred between 750-1300AD and also to pollen record of Sakaguchi. 

(1984), which also found the end of the MWP was at 1300AD. However, Adhikari 

and Kumon. (2001) used sedimentary characteristics in Lake Nakatsuna, Japan to 

reconstruct climate variability over the past 1300 years and identified the timing 

of the end of the MWP to be 100 years shorter (1200AD). Yamada et al. (2010) 

also identified the end of the MWP to be 1200AD based on EAM record from 

Lakes Ni-no-Megata (39°57'N, 139°43'E) and San-no-Megata (39°56'N, 139°42'E) 

on the Oga Peninsula of northeastern Japan. In a more regional context, several 

studies have suggested that the MWP ended ~1250AD based on a EAM record 

from the Sea of Japan (Lee and Park, 2015) (Figure 7-4), whereas a statistical 

study taking into account several palaeo-climate reconstructions from China 

found that the MWP ended ~1320AD (Ge et al., 2013) (Figure 7-7). The timing of 

the end of the MWP (1300AD) in the Lake Toyoni alkenone-based temperature 

record therefore falls within the time periods suggested by other studies in 

Japan and East Asia.  

7.3.3.1.2 Magnitude of warming 

Despite the cool events within the MWP, the alkenone-based temperature 

reconstructions from Lake Toyoni suggest that overall the MWP was 0.7°C 

warmer than the average temperature, although in extreme time periods (e.g. 

1098-1110, 1158-1195 and ~1235AD) temperatures reached ~4°C warmer than 

average. The average temperature rise during the MWP is slightly lower than 

other studies in Japan. For example, Kitagawa and Matsumoto (1995) 

investigated the δ13C of Japanese cedars from Yakushima Island, southern Japan 

and found that the MWP was on average 1°C warmer than average. Differences 

between the magnitude in temperature difference in the MWP between the Lake 

Toyoni record in northern Japan and the δ13C tree-ring record in southern Japan 

may be due to (1) the difference in geography between the two records and/or 

(2) the alkenone-based temperatures are averages of several years whereas the 

tree-ring record is annually resolved.  

Within the MWP, there is generally a 100-year warm event, which is referred to 

as the MWP optimum. Previous studies have suggested that the MWP optimum 

occurred between 1000–1100AD for Lake Sugan and 1100–1200AD for Lake Gahai 

and alkenone-based temperatures were higher by ~4.0°C and ~1.9°C (He et al., 
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2013). The difference in the magnitude of temperature change between Lake 

Sugan and Lake Gahai is suggested to be a result of water volume changes in 

small lakes (as a result of hydrological variability) potentially affecting lake 

water temperatures. Our alkenone-based temperature record does not record a 

100-year warm event during the MWP.  

7.3.3.1.3 EAM variability during the MWP 

 
The alkenone-based temperature record shows that temperature was increased 

during the time between 100-1300AD (the MWP), with the highest temperatures 

occurring between 1098 and 1110AD. This suggests that the EASM intensified 

during this time period. When the EASM is strong, the NPSH is located further 

north and warm and wet conditions occur in summer in Hokkaido. Previous 

studies have also found that the MWP was characterised by a strong EASM. For 

example, Hu et al. (2008) also found that the EASM was strong between 1000-

1300AD. Lee and Park. (2015) found that the EASM was strong until 1250AD, with 

the strongest EASM occurring between 1100 and 1200AD in both records. Within 

this warm period, there are also several cooling events, suggesting that the EASM 

weakened and/or the EAWM strengthened during the MWP. Other records in 

Japan have identified cooling within the MWP (Yamada et al., 2010, Zhang et 

al., 2008, Liu et al., 2011). Therefore although the MWP is characterised by an 

overall strengthening of the EASM, there is variability during this time period. 

7.3.3.2 Little Ice Age 1300-1850AD 

The alkenone-based temperature reconstruction shows that the LIA was 

generally a cooler time period in Lake Toyoni, however, there is substantial 

variability in lake temperatures during this time period rather than a long period 

of sustained cold conditions. 

7.3.3.2.1 Timing of the LIA in Hokkaido, Japan 

 
The LIA is globally recognised between 1400-1700AD (Mann et al., 2009). The 

alkenone-based temperature record from Lake Toyoni suggests the LIA occurred 

between 1300 and 18050AD because 1300AD is the time period of significantly 

reduced temperatures and 1850AD is the time period when the temperatures 

significantly increased (Figure 7-1). In Japan, Sakaguchi. (1983) suggested the 

onset of the LIA was 100 earlier than the global average (1300AD).  Since the 
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publication of the pollen record from Sakaguchi. (1983), other authors’ have also 

provided evidence for the onset of the LIA to occur before the global average of 

~1400AD. For example, Adhikari and Kumon. (2001) suggested that although the 

onset of the Little Ice Age in central Japan (36°N) was 1200AD, the first major 

cooling event occurred between 1300-1470AD. The authors found that within the 

LIA (defined in their study as 1200-1950AD), there were three major cold phases 

which broke up the LIA event; 1300-1470AD, 1700-1760AD and 1850-1950AD Also 

within central Japan, a study by Yamada et al. (2010) suggested that the start of 

the LIA occurred between 1200-present. However, other studies have found that 

the LIA occurred later than the global average. For example, Kitagawa and 

Matsumoto. (1995) suggested the LIA occurred between 1580 and 1700AD in 

southern Japan (30°N).  

Within the regional records of East Asia, the timing of the LIA is variable (Figure 

7-7). For example Ge et al. (2013) suggested that the LIA occurred between 

1321-1920AD, based on a variety of proxy records from China (Figure 7-7). Most 

recently, Lee and Park. (2015) suggest that the LIA was shorter and occurred 

between 1400-1700AD. They also found a cooling event between 1250-1400AD, 

however they did not interpret this as the onset of the LIA (Lee and Park. 2015). 

Although we find evidence for cooling at 1230AD in our alkenone-based 

temperature record, we suggest that the onset of the LIA occurs at 1300AD; 

when there is a substantial and extended time period of cooling. 

7.3.3.2.2 Magnitude of cooling 

 
Within the LIA (1300-1850AD), there is considerable variability including warming 

of up to 3.2°C warmer than average (Figure 7-1). Despite these warm events 

within the LIA, the alkenone-based temperature reconstructions from Lake 

Toyoni suggest that overall the LIA (1300-1820AD) was 0.6°C cooler than the 

average temperature of the past 1000 years, although in extreme cool time 

periods (e.g. ~1400AD) temperatures reached ~8°C (4°C lower than the 

average). Previous studies have suggested that the annual air temperature 

during the LIA in Japan was 2°C cooler than average (Kitagawa and Matsumoto, 

1995). 
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The cold period between 1300-1450AD has been noted in palaeo-archives in 

Japan (Adhikari and Kumon, 2001, Aono and Kazui, 2008) and also East Asia (Ge 

et al., 2013), although the exact time period of cooling is variable in all records. 

For example, Aono and Kazui (2008) suggested that this was a short period of 

cooling (1330-1350AD) based on the flowering times of cherry blossoms in Kyoto, 

Japan. On the other hand, Adhikari and Kumon (2001) suggested that the cooling 

associated with this time period lasted between 1300 and 1470AD, which is very 

similar to the cooling in the Lake Toyoni record. This reduction in temperature 

at the onset of the LIA (~1300AD) occurred fairly rapidly. The average water 

temperature during the MWP was 13.1°C and the water temperatures dropped to 

~8.1°C by 1427AD, the rate of change equates to ~0.3°C per year. This rate of 

cooling is rapid for the relatively short time scale (~160 years). 

7.3.3.2.3 EAM variability during the LIA 

 
The onset of the LIA is characterised by the lowest temperatures (1300-1450AD) 

based on alkenone-based reconstruction from Lake Toyoni. Hu et al. (2008) 

found that the EASM was weakened till ~1550AD, whereas Lee and Park. (2015) 

found that the weakest time period of the EASM over the past 1000 years was 50 

years earlier; between 1250-1400AD. Although we find evidence for cooling 

starting at 1250AD, temperatures were not below average (over the past 1000 

years) until 1300AD (Figure 7-1). While we do not find that the start and end 

times of the weak EASM event exactly match up in all records, we do find 

consistency between the cooling in all records ~1300-1400AD, providing evidence 

that the alkenone-based temperature record from Lake Toyoni records a 

weakened EASM during this time period.  

A potential reason for the large cooling event at the onset of the LIA may be 

attributed to monsoon failure during this time period. Lee and Park. (2015) have 

previously suggested that this time period was the coldest time period over the 

past 1000 years from an alkenone record in the Japan Sea. The authors’ 

suggested that the reason for the low temperatures during this time was a result 

of monsoon failure. Their record also shows higher salinity during this time 

period based on the δ18O of planktonic foraminifera. The conditions during the 

monsoon failure were cold and dry in this region (Lee and Park, 2015). Hu et al. 

(2008) also found that the EASM was the weakest (lowest δ18O values) over the 
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past 1000 years during this time period (~1450AD) (Figure 7-3). Hokkaido is 

located on the northern boundary of the EASM resulting in this location being 

very sensitive to changes in the EASM. This time period is where we the most 

substantial cold period in the record, providing further evidence for EASM failure 

in Hokkaido during this time period.  

The remainder of the LIA (1470-1850AD) is generally characterised by warmer 

temperatures with notable increases between 1450-1470AD and 1580-1640AD 

and cold temperatures were recorded between 1500-1600AD. The time period 

between 1680-1820AD is slightly warmer than average, however there is 

considerable variability within this time period. The EASM records from Lee and 

Park. (2015) and Hu et al., (2008) are significantly different between in this 

section of the record. For example, Lee and Park. (2015) show that 

temperatures are steadily increasing between 1470-1800AD. The alkenone-based 

temperature record from the Sea of Japan also shows notable increases in 

temperature, and hence strengthening of the EASM, ~1500AD and ~1600AD which 

is similar timings to the increase in temperature based on alkenone 

reconstructions from Lake Toyoni (Figure 7-4). Whereas Hu et al., (2008) finds 

that the EASM is weak between 1470 and 1700AD and strong between 1700-

1800AD (Figure 7-3). The differences between the EASM reconstructions during 

this time period demonstrates the need to further clarify the EASM variability in 

this region over the late Holocene. Adhikari and Kumon, (2001) also found 

considerable temperature variability with a notably cold period between 1700-

1760AD and slightly warmer periods <1700AD and >1760AD. Out with Japan, Lee 

and Park. (2015) found three warm events within the LIA late 1400’s, ~1550AD 

and the ~1600’s, consistent with the timing of the warm periods identified in the 

Lake Toyoni sedimentary record. 

There are also differences in the magnitude of the cool events within the LIA. 

For example, the Lake Toyoni record shows that the coldest event was ~1400AD 

and the cold conditions associated with the late LIA were not as cold as the 

onset of the LIA. Sakaguchi. (1983) also found the most pronounced cooling of 

the LIA occurred at the onset ~1400AD. However, this is the opposite in the 

temperature record by Kitagawa and Matsumoto (1995), which shows a smaller 

cold event at the onset of the LIA compared to a much larger cooling event in 

the within the LIA (e.g. ~ 1600AD; Figure 7-8). Outside Japan, Ge et al. (2013) 
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found that the coolest period of the LIA is ~1650AD (Figure 7-7). The reason for 

this is that the Kitagawa and Matsumoto. (1995) and the Ge et al. (2013) are 

responding to northern hemisphere climate drivers (solar and volcanic activity) 

whereas the alkenone-based temperature reconstruction from Lake Toyoni and 

the Sakaguchi. (1983) record is responding to variability of the EAM. 

7.3.3.3 >1850AD 

The past ~200 years has been characterised by warming in Asian records (Figure 

7-7). However, we find that there was warming in the 1800’s to a maximum of 

18.3°C between 1850-1880AD. The warm temperatures ~1860AD is shown in the 

temperature record from the EASM records of Hu et al. (2008; Figure 7-3) and 

Lee and Park. (2015; Figure 7-4), however, the warm event is not recorded in 

regional records from Asia (Shi et al., 2016) or China (Ge et al., 2013; Figure 

7-7), which instead show cooling during this time period. Significantly, the 

presence of this warm period in EASM records and not in regional records from 

Asia and East Asia provides further evidence that the alkenone-based 

temperature record at Lake Toyoni is recording EASM variability.  

Following this warm period, the alkenone-based temperature reconstruction 

shows cooling in the  early 1900’s in the Lake Toyoni alkenone record (Figure 

7-1), and hence a weakening in the EASM or a strengthening of the EAWM. The 

cold temperatures associated with this time period are the opposite of the 

regional records from Asia in Figure 7-7, which all show warming during this time 

period; consistent with global temperature increase. A suggested reason why the 

alkenone-based temperature record does not show warming in this time period is 

due to a weakened EASM and/or strengthened EAWM over the past 100 years. A 

weakened EASM over the past ~100 years has been documented in other records 

from EASM records by Hu et al. (2008) and Yamada et al. (2016) (Figure 7-3). 

Other studies have suggested that over the past period ~50 years the EASM has 

weakened (Xu et al., 2006, Ding et al., 2008, Hu et al., 2008, Zhu et al., 2012). 

The alkenone-based temperature record from Lake Toyoni suggests that the 

EASM weakened before ~50 years ago and instead has been weakened over the 

past 1000 years.  
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7.3.4 Famines in Japan over the past 1000 years 

Question 3: Is there a relationship between temperature and famine 

frequency in Japan? 

 

Detailed records of famine frequencies in Japan exist (Figure 7-9), which allow 

us to test the link between temperature and famine frequency. We compare our 

alkenone-based temperature reconstruction with a famine reconstruction since 

the 1300’s (Saito, 2010; Figure 7-9). The famine record is based on a famine 

point system, for example, 1 point was assigned to a famine which occurred 

regionally across 5 or more provinces and half a point (0.5) was assigned to 

famine which occurred in one region. The results show a clear relationship 

between temperature and famine frequency (Figure 7-9), with a decrease in 

temperature resulting in an increase in famine frequency. The famine frequency 

increased from 10 famine points in 1300AD to 15 famine points in 1400AD (Figure 

7-9). The corresponding temperature change was from 10.9°C to 9.4°C. The 

famine frequency decreased to 11.5 famine points in 1450AD and the 

temperatures increased to 12.9°C. The famine frequency increase to 17 famine 

points in 1500-1550AD and the average temperature during this time decreased 

to 12.1°C (Figure 7-9). Between 1550-1600AD, the famine points decreased to 7, 

corresponding to an increase in temperature to 13.4°C. Famine points increased 

slightly to 7.5 between 1600-1650AD corresponding to a decrease in temperature 

to 12.5°C (Figure 7-9). Famine points decreases slightly between 1650-1700AD 

and the average temperature during this time period increases to 13.3°C (Figure 

7-9). Another decrease in famine points to 3 occurred between 1700-1750AD 

corresponded with a slight temperature rise. Between 1750-1800AD, famine 

frequency increased to 7.5 and temperatures decreased to 11.9°C (Figure 7-9). 

Between1800-1850, famine frequency decreased to 5 and temperatures 

increased to 14.3°C (Figure 7-9). Between 1850-1900AD, famine frequency was 

0.5 and temperatures remained high at 13.6°C (Figure 7-9).  

The alkenone-based temperature reconstruction shows a reduction in 

temperatures at the start of the 1400’s and also between 1500-1550AD. This is 

consistent with an increase in famine points (Figure 7-9). This suggests a link 

between cold temperatures and the occurrence of famines in Japan. The 
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temperature in summer is particularly important for the rice crop, which is the 

staple diet of Japanese people, because rice requires warm and wet conditions 

in late summer for a successful yield. The strong relationship between famine 

frequency and alkenone-based temperatures provides further evidence that 

alkenones are recording summer temperature in Lake Toyoni.  

 

Figure 7-9: Relationship between temperature and famine points in Japan. The top graph is 
the famine point plot from Saito (2010) per half century. The bottom graph is the average 
alkenone-based temperature per half century. 
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7.4 Conclusions 

This study contributes to a better understanding of temperature variability in 

Northern Japan over the past 1000 years. LST was reconstructed using alkenones 

preserved in the sediments of Lake Toyoni, which corresponds to air 

temperatures at this site. Air temperature in Hokkaido is currently controlled by 

the variability EAM therefore alkenone-based temperature reconstructions from 

Lake Toyoni provide valuable EAM reconstructions in this region. Air temperature 

in Hokkaido is also related to the phase of the NAO/AO. Therefore, in addition to 

recording the variability of the EAM, the alkenone-based temperature record 

from Lake Toyoni is also influenced by the phase of the NAO/AO. 

The temperature in Japan shows a large variability over the past 1000 years, 

such as the Medieval Warm Period (1000-1300AD) and the Little Ice Age (1300-

1850AD). We found that the MWP was generally warm and the EASM was intense 

during this time period. The alkenone-based temperature record shows a distinct 

cooling event at the onset of the LIA, which has been attributed to monsoon 

failure. As a result of the monsoon failure during this time period, the conditions 

were very cold and dry during summer in Hokkaido. The later part of the LIA 

(1450-1850AD) was characterised by warmer temperatures compared to the 

onset of the LIA. The past 200 years is characterised by warming in the ~1860AD 

followed by a decrease in temperature. It is suggested that the EASM has 

weakening uring this time period in Hokkaido, Japan.  

In addition, we find evidence for strong relationship between the frequency of 

famines and temperature in Japan. During time periods with cold summers, the 

frequency of famines in Japan increases. This demonstrates that natural forcing 

mechanisms, without modern human activities, can also lead to strong climate 

variability and also strongly influence society through agriculture loss.  

 

 



 

 
 

 

8  
Hydrogen isotopic composition of higher plant 

waxes in the catchment and down-core 

sedimentary records of Lake Toyoni 

8.1 Introduction 

Long-chain (C25–C35) n-alkanes with a strong odd-over-even carbon number 

preference are produced by vascular plants (Eglinton and Hamilton, 1967). They 

are a component of the leaf epicuticular waxes, which protect the leaf surfaces 

(Eglinton and Hamilton, 1967). Leaf wax compounds are mainly transported into 

lacustrine sediments from the surrounding catchment area by wind (Hou et al., 

2007). In addition, wind can transport n-alkanes over vast distances (Yamamoto 

et al., 2011). Although the influence of long-range transport of n-alkanes in Lake 

Toyoni is possible, the catchment surrounding Lake Toyoni has the steep slopes 

and thick vegetation suggesting that n–alkanes are primarily derived from the 

higher plants within the catchment rather than from long-rang transport. n-

Alkanes within lacustrine sedimentary records are of interest as palaeo-climate 

proxies, because they are generally abundant and well-preserved (Meyers, 

1997), and their hydrogen isotopic signal is not easily exchanged, because all the 

hydrogens are covalently bonded to carbons (Sessions et al., 2004, Pedentchouk 

et al., 2006).  
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8.1.1 Leaf wax n-alkane δD as a recorder of δD of precipitation 

The δDHPW from lake sediments are a powerful tool for investigating hydrological 

change. The main hydrogen source of for plants is environmental water, for 

example, rainwater, groundwater, and snow-melt, which are all derived from 

precipitation. Investigations of the δDHPW values with local precipitation and/or 

catchment water δD values suggest that δDPRECIP is the primary control on δDHPW 

(Sauer et al., 2001, Sessions, 2006, Hou et al., 2008), therefore; the δDHPW can 

be used to reconstruct changes in δDPRECIP over a given period of time (e.g. 

Schefuss et al., 2005, Pagani et al., 2006). In general, the δDPRECIP reflects 

hydrological and climate processes including temperature, precipitation amount, 

altitude, latitude, and moisture source (Dansgaard, 1964). Knowledge of the 

controls of the δDPRECIP at the study site is important for interpreting the δDHPW 

from palaeo-climate archives.  

Although knowledge of the origin of the precipitation and factors controlling the 

δDPRECIP in Japan is essential to interpret the δDHPW, the coverage of data 

available with respect to isotopes in precipitation in Japan is sparse. Araguàs-

Araguàs et al. (1998) used data from the Global Network of Isotopes in 

Precipitation (GNIP) program and found that the δDPRECIP from locations above 

30°N in Asia are mainly influenced by temperature. In order to visually show the 

difference in the “amount effect” and the “temperature effect” in Japan, we 

produced a schematic showing  a north-south transect of the monthly average 

temperature and δDPRECIP using temperature data from meteorological sites and 

the corresponding δDPRECIP from the “The Online Isotopes in Precipitation 

Calculator” (OIPC) 

[http://wateriso.utah.edu/waterisotopes/pages/data_access/oipc.html], 

respectively; in order to explore the spatial and temporal variability of the 

hydrogen isotopes in precipitation in Japan (Figure 8-1). The OPIC model 

equation is based on a function of latitude and altitude (which is based on 

findings from real data). The key assumption that the OPIC makes is that the 

oxygen lapse rate is similar at all geographic locations. The OIPC estimates the 

δDPRECIP at a given site by combining an empirical model for isotopic trends 

related to latitude and altitude based on real isotope data from stations in GNIP. 

The OIPC data showed that the δDPRECIP in Hokkaido is mainly influenced by 

temperature (hereby referred to as the “temperature effect”). Temperature 

http://wateriso.utah.edu/waterisotopes/pages/data_access/oipc.html
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influences the δDPRECIP due to favoured removal of deuterium from air-mass 

during condensation when it cools, resulting in lower δD values remaining in the 

air-mass (Dansgaard, 1964). This also results in a latitudinal trend of decreasing 

δD vaules with increasing latitude (Dansgaard, 1964). In addition to 

temperature, the δDPRECIP also reflects the source of the precipitation. In winter, 

precipitation is cold and originates from the Asian continent as part of the East 

Asian Winter Monsoon (EAWM) system (Figure 8-2); whereas, in summer 

precipitation is warm and originates from the Pacific Ocean as part of the East 

Asian Summer Monsoon (EASM) system (Figure 8-2). The combined influence of 

temperature and the source of the precipitation are ultimately controlled by the 

East Asian Monsoon (EAM) system. As a result the δDHPW from the sedimentary 

record of Lake Toyoni is an indicator for regional atmospheric circulation 

changes, mainly the intensity of the EAM system.  

 

8.1.2 Environmental controls on the δD values of terrestrial leaf 
waxes in Hokkaido, Japan 

Although δDHPW initially records the δDPRECIP, the δDHPW can be further modified by 

evapotranspiration, which is influenced by environmental conditions and plant 

physiological and morphological characteristics of the plants (Chikaraishi et al., 

2004, Liu et al., 2006a, Smith and Freeman, 2006, Hou et al., 2007, Pedentchouk 

et al., 2008, Feakins and Sessions, 2010, Duan and Xu, 2012, Sachse et al., 

2012). Therefore, plants using the same precipitation water exhibit different 

δDHPW values.  The difference between the δDPRECIP and δDHPW range between 

−30‰ to −200‰ (Sachse et al., 2012).  

The first explanation for this offset is that in addition to the δDHPW being 

primarily controlled by δDPRECIP, the δDHPW is also affected by deuterium 

enrichment in water via evapotranspiration (soil evaporation and leaf 

transpiration); which is ultimately controlled by climatic factors such as relative 

humidity (RH) and temperature (e.g. Sachse et al., 2012). The effect of RH on 

the δDHPW dominates in dry regions and is not a significant control in humid 

environments, such as Hokkaido. Significantly, Sachse et al. (2012) suggests that 

the role of RH on  δDHPW only becomes significant below 70%. In Hokkaido the 

main growing season occurs between June and September (Seki et al., 2010), 

which is when the transpiration effect is most important for influencing isotopic 
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fractionation in leaf waxes. RH ranges between 73% and 89% during the growing 

season; therefore, the RH is always above the threshold value (70%) and is not 

likely to have a large effect on the δDHPW values. The δDHPW from Lake Toyoni 

sedimentary record is therefore not recording changes in RH.  

Another possible explanation for the offset between the δDHPW and δDPRECIP is 

variations amongst different plant types due to physiological and morphological 

characteristics of the plants (Chikaraishi et al., 2004, Hou et al., 2007, 

Pedentchouk et al., 2008, Duan and Xu, 2012, Sachse et al., 2012). For example, 

deep-rooted plants are not as influenced by soil evaporation (Feakins and 

Sessions, 2010), compared to swallow-rooted grasses (Smith and Freeman, 2006). 

In addition, photosynthetic pathways (C3 versus C4; Chikaraishi et al., 2004), 

taxonomic ( e.g. angiosperm versus gymnosperm; Chikaraishi and Naraoka, 2003, 

Liu et al., 2006a), and growth forms (e.g. monocotyledons versus dicotyledons; 

Liu et al., 2016) all contribute towards to the offset between the δDHPW and 

δDPRECIP. For example, the average δDHPW for C3 angiosperms is -152±26‰ , C3 

gymnosperms is 149±16‰ and C4 plants is 171±12‰ (Chikaraishi and Naraoka, 

2003), whereas, monocotyledonous species values averaging −140‰ and 

dicotyledonous species averaging  −107‰ (Liu et al., 2016). The differences in 

δDHPW values between different plant types may contribute to changes in the 

down-core record if the vegetation surrounding the lake changes. Therefore, 

before applying the δDHPW as a proxy for δDPRECIP, an understanding of the 

hydrogen isotopic composition of the n-alkanes in different plant types growing 

in the catchment area, and hence contributing to the sedimentary record, is 

important. 

 

8.1.3 Aims 

 Although the plants in the catchment are ultimately recording the δDPRECIP, 

understanding the environmental controls on the δDPRECIP in the modern 

environment in Hokkaido is essential in order for the δDHPW from the Lake Toyoni 

sedimentary record to provide accurate interpretations of δDPRECIP over the last 

1000 years in this region. The overall aims of the chapter are: 
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1. To determine the environmental controls of δDPRECIP in the modern 

environment in Hokkaido, Japan to aid in the interpretation of the δDHPW 

from the sedimentary record of Lake Toyoni. 

2. Reconstruct hydrological variability over the past 1000 years in Hokkaido, 

Japan.  
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Figure 8-1: North-South transect of the monthly average temperature and δDPRECIP developed using temperature data from meteorological site and the corresponding 

δDPRECIP from the OIPC. X axis is month (1=Jan, 2=Feb, 3=Mar...). 
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8.2 Background 

8.2.1 Source of precipitation in Hokkaido, Japan 

Japan’s northern island, Hokkaido, is strongly influenced by both polar and 

tropical air-masses (Figure 8-2). During winter, the air-masses influencing 

Hokkaido are controlled by a high-pressure system that develops over Siberia 

(Siberian High [SibH]) resulting in cold dry air-masses being transported towards 

the Pacific Ocean. This air-mass picks up moisture from the Sea of Japan 

resulting in heavy snowfall conditions. During summer, the wind systems reverse 

and Hokkaido comes under the influence of the sub-tropical air-mass originating 

from the Pacific High (NPSH), which is formed in the northwest sub-tropical 

Pacific. In August, the NPSH moves northward exposing Hokkaido to the 

influence of the monsoonal winds of the Pacific Ocean. Prior to the movement of 

the NPSH, the polar air-mass influences Northern Japan. The polar air-mass is 

enhanced by the influence of a high-pressure system develops over the Okhotsk 

Sea (referred to as the Okhotsk High [OH]), which results in cool summers in 

Hokkaido.  

The moisture source of precipitation in Hokkaido is therefore strongly influenced 

by the EAM (e.g. D'Arrigo et al., 2001, Davi et al., 2002, Tsuji et al., 2008, 

Igarashi et al., 2011). In addition, Lake Toyoni (42°N) is situated at the boundary 

of the northern edge of the EASM (34-44°N; Xu et al., 2010b) making it sensitive 

to the enhancement of the EASM (Schone et al., 2004). The boundary of the 

northern edge of the EASM is the location where the warm tropical air meets the 

cold polar air-mass, termed the polar front. When the NPSH intensifies the polar 

front is located further north than usual and as a result there is an increased 

influence from tropical maritime air-mass from the Pacific Ocean. When the 

polar front is located further south, there is a reduction in the influence of the 

Pacific Ocean and an increased influence from the sub-polar maritime air-mass 

to Hokkaido.  

The difference in precipitation sources between EASM and EAWM is reflected in 

the deuterium-excess values of precipitation, which is negatively correlated to 

RH and temperature at the source region of the precipitation (Merlivat and 
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Jouzel, 1979, Froehlich et al., 2001). The deuterium excess is defined as d = δD – 

8 x δ18O (Dansgaard, 1964) and can therefore be used to track changes in the 

source of moisture in precipitation (Masson-Delmotte et al., 2005). The seasonal 

trend in monthly deuterium excess values is illustrated for Lake Toyoni using δD 

and δ18O data from the OIPC. At Lake Toyoni, deuterium excess values ranged 

from 0.8 to 16 (Figure 8-3). During winter, deuterium excess values are high 

(average of 8.9 between December and March) due to the incorporation of 

moisture from the Sea of Japan by the EAWM. During summer, deuterium excess 

values are low (average of 5.1 between June and September) due to the moist 

air-mass originating from the OH in early summer and the moisture generated 

under high humidity from the Pacific Ocean, which is brought to Japan by the 

EASM. 

 

Figure 8-2: Map of Japan and the air-masses influencing Hokkaido. The averaged δDPRECIP 

value is also provided for the different air-masses. There is an average of 24.5‰ difference 
between the δDPRECIP from the EAWM and the EASM.  
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Figure 8-3: The monthly deuterium excess values (top graph) and the correlation between 
deuterium excess and RH (%) from Lake Toyoni, Southern Hokkaido. The deuterium excess 
values were taken from the OCIP website and represent values from Lake Toyoni. Relative 
humidity values were taken from Hiroo weather station (25km from Lake Toyoni). The 
correlation is R

2 
=0.76 suggesting a strong correlation between deuterium excess and RH 

(%). 

 

8.2.2 Temporal and spatial pattern of modern-day precipitation δD 
in Hokkaido, Japan 

In addition to the change in the moisture source between summer and winter, 

the EAM system also controls the temperature and the precipitation amount in 

Japan, which is ultimately reflected in the δDPRECIP. The EASM brings warm and 
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wet conditions to Japan; whereas, the EAWM brings cold and heavy snowfall 

conditions to Japan.  

The δDPRECIP in Japan is mainly influenced by the temperature effect or the 

amount effect or a mixture of the temperature and the amount effect (Araguàs-

Araguàs  et al., 1998). The temperature effect and the amount effect influence 

the δDPRECIP in opposite directions. For example, if temperature is the controlling 

factor of the δDPRECIP, an increase (decrease) in temperature will correspond to 

an increase (decrease) in δD values. Alternatively, if the amount effect is the 

controlling factor of the δDPRECIP, an increase (decrease) in precipitation will 

correspond to a decrease (increase) in δD values.  

The dominant control (temperature versus precipitation amount) on the δDPRECIP 

is dependent on the latitude of the study site in Japan. The islands of Japan 

cover a large latitudinal gradient (30-45°N), and as a result the controls of the 

δDPRECIP in Hokkaido (northern Japan) are not the same for the other regions in 

Japan (Figure 8-1). For example, the seasonal variation in precipitation is 

controlled by temperature effect at higher latitudes of Japan; whereas, lower 

latitudes are controlled by the amount effect (Araguàs-Araguàs  et al., 1998). 

Locations in between (e.g. central Japan) are controlled by a mixture of the 

temperature effect and the amount effect (Figure 8-1). Dansgaard (1964) 

suggested that the temperature effect controls winter δDPRECIP values; whereas, 

the amount effect controls summer δDPRECIP values in Tokyo (35°N).  

To evaluate the temperature control on the δDPRECIP, we present the seasonal 

trend in monthly temperature and δDPRECIP for the study site (Lake Toyoni) using 

weather station data from a nearby metrological site 25km from Lake Toyoni and 

δDPRECIP data from IPOC. A positive correlation between monthly temperature 

and δDPRECIP exists (R2=0.65; Figure 8-5) showing that temperature is the 

dominant control on the δDPRECIP in this location. If the amount effect influenced 

the δDPRECIP in Hokkaido, we would see a reduction in δDPRECIP values when rainfall 

increased. However, in Hokkaido the opposite trend is present, which 

demonstrates that the amount effect will not complicate the δDPRECIP signal in 

this location.  
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Figure 8-4: Monthly air temperature data from Hiroo weather station (averaged 1958-2014) 
and δDPRECIP from OCIP. Lower δDPRECIP values are recorded during winter and higher 
δDPRECIP values are recorded during summer. The highest δDPRECIP values occur when the 
NPSH moves North in August and exposes Hokkaido to the influence of the EASM.   

 
 

Figure 8-5: Scatter plot of monthly air temperature data from Hiroo weather station 
(averaged 1958-2014) and δDPRECIP from OCIP.   
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For temperature to be the only control, we would expect to see the hottest 

month (August) to have the highest δDPRECIP values and the coldest month 

(January) to have the lowest. However, the results show that the highest δDPRECIP 

values are in September and the lowest δDPRECIP values are in February suggesting 

there is a one-month lag between temperature and the δDPRECIP. The other 

control on the δDPRECIP is the origin of the precipitation, which is ultimately 

linked to latitude and temperature during formation.  

Precipitation during winter in Hokkaido originates from higher latitudes and is 

associated with the EAWM and records lower δD values due to condensation 

associated with lower temperatures. Precipitation in Hokkaido during summer 

has two main sources: (1) the sub-arctic air-mass, which results in cold summers 

in Hokkaido and has lower δD values; and (2) the Pacific Ocean air-mass that 

exposes Hokkaido to the influence of the EASM winds when the NPSH moves 

north during late summer. Air-masses originating from the Pacific have higher δD 

values due to evaporation under higher temperatures (summarised in Figure 

8-4). These different moisture sources are strongly influenced by the EAM 

system. This means that the δDHPW, which records the signal of the δDPRECIP, can 

be used to infer information on the variability of the EAM over the past 1000 

years in Hokkaido. 

 

8.2.3 Interpretation of the δDHPW  

The application of δDHPW as a proxy for the variability in the EAM is based on the 

assumption that the plants in the Lake Toyoni catchment are using precipitation 

from winter as well as summer. Although the growing season in Hokkaido is 

restricted to a short summer (June to September) (Seki et al., 2010), the plants 

around Lake Toyoni likely use winter precipitation in the form of snowmelt. 

Winter precipitation contributes to the signal recorded in the plant leaf waxes 

when the soils retain water from the spring snowmelt. Given the high RH in 

Hokkaido and shading from the densely vegetated catchment, the soils in the 

catchment do not dry out and therefore retain their winter precipitation signal. 

Therefore, although plants may be slightly bias towards summer precipitation, 
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water from winter precipitation is also utilised by plants in the catchment of 

Lake Toyoni, and hence record an EAM signal.  

 

The EAM is driven by temperature differences between the Asian continent and 

the surrounding Oceans (the Pacific Ocean and the Indian Ocean). The EASM and 

the EAWM are significantly different from each other based on two key 

characteristics; the wind direction (from the South in summer and the North in 

winter) and the prevailing climate (warm and wet associated with the EASM and 

cold and drier/heavy snowfall associated with the EAWM). As a result, in this 

study, we can infer the change of the wind direction and temperature based on 

the differences in the δDHPW. For example, when the wind direction is northerly 

during winter, the δDPRECIP is low, thus δDHPW will also be low. On the other hand, 

the δDPRECIP during summer is high and has a southerly wind direction. There are 

three different air-masses that influence Hokkaido (summarised in Figure 8-2).  

 

8.2.3.1 Sub-tropical maritime air-mass (high D values) 

A stronger influence from southerly winds enhances moisture transport from the 

Pacific Ocean and advances the northern limit of the EASM to Northern Japan 

resulting in increased exposure to the EASM in Hokkaido. In the modern day, 

wind input from the Pacific Ocean occurs in August when the high-pressure 

system advances northward and exposes Hokkaido to the influence of the Pacific 

Ocean air-mass. When the EASM intensifies, the NPSH-pressure system is located 

further north for a longer period of time resulting in an increased influence from 

the Pacific Ocean. This is documented in the modern day weather station data, 

which shows an increase in precipitation in August and September (Shurin 

precipitation) when the EASM intensities (Chapter 2). The EASM is intensified in 

the year following an El Niño episode (Wang et al., 2001), the negative phase of 

the PDO (Tsuji et al., 2008) and the positive phase of the North Atlantic 

Oscillation (NAO)/Arctic Oscillation (AO)(Gong and Ho, 2003). These findings are 

also supported by modern day data from Hokkaido (Chapter 2). High δDHPW values 

therefore reflect an intensification of the EASM, which results in warmer and 

wetter conditions in Hokkaido.  
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8.2.3.2  Sub-polar maritime air-mass (low D values) 

Sub-tropical air-mass therefore influences Hokkaido in August and September, 

whereas during early summer Hokkaido is influenced by sub-polar air-mass. The 

influence of sub-polar air-mass is increased when the OH develops over the 

Okhotsk Sea in early summer.  

 

The occurrence and frequency of the OH is intermittent throughout the summer 

(Nakamura and Fukamachi, 2004), which results in cold summer conditions in 

Northern Japan. An example is in summer of 1993, when the frequency of the 

OH increased during July and August. Figure 8-6 shows a surface weather chart 

for the 21st July 1993 from Nakamura and Fukamachi. (2004). The figure shows 

the southward extension of the high-pressure system. The presence of the OH 

over Hokkaido resulted in colder than average conditions. Average temperature 

in July and August from the Hiroo weather station is 16.2 and 18.5°C (based on 

temperature data from between 1958 and 2014). In 1993, temperatures were 

13.5 and 16.9°C, respectively. July temperatures were therefore 2.7°C lower 

than average and August was 1.6°C lower than average. Some locations have 

observed temperatures lowering as much a 5°C below normal during years when 

the OH increased in frequency. Similarly to the EASM, the intensity of the OH is 

also influenced by the positive phase of the AO (Ogi et al., 2004). 

 

When the OH intensifies and moves further south, it prevents the northward 

shift of the NPSH during summer (Yafei et al., 2003, Park and Ahn, 2014). This is 

demonstrated in Figure 8-6. The OH is a blocking high (Park and Ahn, 2014); 

when the blocking frequency increases (positive blocking years), the OH 

enhances and the NPSH weakens (Nakamura and Fukamachi, 2004, Park and Ahn, 

2014). As a result, cold summers occur in Hokkaido due to the boundary where 

the warm pacific air meets the cold polar air being located further south. When 

the polar front is located further south, the influence of the Pacific air-mass is 

reduced in Hokkaido and the influence of the polar air-mass increases, which 

will record lower δDHPW values in the Lake Toyoni sedimentary record. Whereas, 

when the boundary is located further north, the influence of the Pacific air-mass 
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is increased and higher δDHPW values will be recorded in the Lake Toyoni 

sedimentary record.  

 

 

Figure 8-6: A surface weather chart from 21
st

 July 1993 in Japan based on the NCEP/NCAR 
reanalyses (Figure from: Nakamura and Fukamachi, 2004). The polar front is the toothed line 

between the high-pressure system to the North - OH) and the high-pressure system to the South 
(NPSH). The figure shows the OH covering a large part of Hokkaido, preventing the NPSH from moving 
north. The polar front therefore remained further south than usual and prevented the influence of 
monsoon precipitation during this summer. Rainfall is therefore associated with the OH rather than 

the NPSH when the OH intensifies and moves south.  

8.2.3.3 Sub-polar continental air-mass (low D values) 

Another sub-polar air-mass contributing to low δD values in the down-core 

sedimentary record of Lake Toyoni is associated with the EAWM from the SibH 

pressure system. Precipitation during winter has the lowest δD values due to the 

formation at high latitudes and also the low temperatures during this season. 

When the snow melts in spring, plants leafing out at this time can use water 

from the spring melt. This water will contribute to soil moisture and 

groundwater, which plants can use during photosynthesis.  

 

The variability of the EAWM depends on the extent of the SibH, Aleutian Low and 

subtropical westerly jet-stream (Ha et al., 2012). The strength of the SibH is 

influenced by the AO, with an increase in intensity occurring when the AO is in 
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its negative phase (Gong et al., 2001, Jhun and Lee, 2004b). Therefore, when 

the NAO/AO is negative and the EAWM enhances; lower δDHPW values will be 

recorded in the Lake Toyoni sedimentary record.  

 

8.2.4 Summary 

To better understand the hydrological variability of Hokkaido, we present a 

reconstruction of hydrology from Lake Toyoni spanning the past millennium. In 

Northern Japan, the δDPRECIP precipitation reflects temperature and the source of 

the precipitation. Hokkaido is influenced by sub-polar and sub-tropical air-

masses, which is ultimately controlled by the EAM and the OH. The δD values for 

the leaf waxes are an indicator of past changes in the EAM and the OH over the 

past 1000 years. Higher δDHWP values suggest an increased influence from the 

Pacific Ocean resulting in warm and wet conditions. The increased Pacific Ocean 

influence is related to the strength of the NPSH, which also drives the intensity 

of the EASM (a strengthened NPSH resulting in a strengthened EASM and vice 

versa). Therefore high δDHPW values suggest an enhancement of the EASM. Lower 

values, on the other hand, represent [1] an intensification of the EAWM, [2] a 

reduction in the influence from the EASM, [3] an increased influence from sub-

polar air-masses from the OH.  

The down-core record of the δDHPW therefore provides a record of EAM variability 

of the past 1000 years. The specific aims of this chapter are: 

1. To determine how δDHPW differ in different plant types under the same 

precipitation at a single site. 

2. To determine the apparent fractionation between δDPRECIP and the δDHPW.  

3. To determine if solar irradiance is a key driver of EAM variability in 

Northern Japan. 

4. To determine the main teleconnections (e.g. NAO/PDO/ENSO) driving EAM 

variability. 
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8.3 Results 

8.3.1 δD values of vegetation samples 

Eleven vegetation samples were collected and analysed for their δD values. We 

found that the δD C27 n-alkane varied from -225‰ to -146 ‰ with an average 

value of -168‰, the δD C29 n-alkane varied from 227‰ to 153‰ with an average 

value of -183‰ and the δD C31 n-alkane varied from 210‰ to -150‰ with an 

average value of -175‰. 

Table 8-1: δD values of n-alkanes extracted from leaf samples in the catchment of Lake 
Toyoni (SD=standard deviation). Duplicate analysis were carried out to obtain the standard 
deviation.  

 

Species name δD C27 SD δD C29 SD δD C31 SD 

Cherry 
-148 2 -153 3 -150 5 

Maple 
-178 2 -189 3 -175 1 

Oak 
-174 2 -179 3 -172 1 

Ash 
  -207 2 -208 1 

Birch 
    -158 1 

Prunis 
-146 1 -154 3 -152 1 

Mulberry 
-161 0 -200 0 -177 0 

Fraxinus 
-163 0 -188 3 -188 5 

Bamboo 
-225 0 -227 7 -210 1 

Fern 
-166 0 -175 10 -181 0 

Hippocastanceae 
acsculus -156 4 -156 1 -152 0 
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8.3.2 δD values of down-core n-alkanes 

A Pearson correlation was used to test the correlation between D C27, D C29 

and D C31. When   values are lower than 0.02 the correlation is significant. All 

values are below 0.02 (highlighted in bold in Table 1), confirming that the D 

values of the C27, C29 and C31 are all significantly correlated (Table 1). The 

highest correlation was between the C29 and C31 (0.91), followed by C27 and C29 

(0.84) and the lowest correlation was between the C27 and C31 (0.81). Based on 

the strong significant correlation, an average of the D C27, C29 and C31 is used 

for the discussion of the results.  

Table 8-2: Pearson correlations between D C27, D C29 and D C31. Bonferroni correction for 

multiple pair-wise comparisons lowered the  value to 0.02 (=0.05/3=0.02). Pair-wise 

relationship (n= 3). 

 D C27 D C29 D C31 

D C27  1.93E-16 2.42E-14 

D C29 0.84  1.77E-23 

D C31 0.81 0.91  

 
Each sample was run three times on the GC-IRMS and the average values for the 

D C27, D C29 and D C31 are present in Figure 8-7. An average of the C27, C29 and 

C31 is also presented in Figure 8-7. The results from the averaged C27, C29 and C31 

D values are termed DHPW. The results show that the DHPW values are variable 

between 1082 and 1273AD, with a large decrease to -202‰ at 1156AD. DHPW rise 

in 1361AD to the highest values recorded in the sedimentary record (-169%), 

followed by a sharp decrease to -196‰ in 1376AD, where values continued to 

decrease to -207‰ in 1446AD. DHPW values increase to -178‰ in 1615AD, 

followed by a sharp decrease to the lowest values recorded in the record (-

209‰) in 1684AD and remained low (~200‰) till 1703AD where DHPW values 

gradually increase to -175‰ in 1820AD. DHPW values decreased and remained at 

-192‰ between 1850 and 1879AD where DHPW values increased to -177‰ in 

1925AD and DHPW values generally decrease to the present day.



 

 
 

 

Figure 8-7: Variations in the D C27, D C29 and D C31 over the past 1000 years from Lake 
Toyoni, Japan. Error bars represent the (SD=standard deviation). Tripilcate analysis were 
carried out to obtain the standard deviation. 

 

8.4 Discussion 

8.4.1 δDHPW in the catchment surrounding Lake Toyoni 

Modern vegetation samples were collected from the catchment of Lake Toyoni in 

order to evaluate how the δDHPW differ in different plant types under the same 

precipitation in the catchment of Lake Toyoni. We found that the δD C27 n-

alkane varied from -225‰ to -146 ‰ with an average value of -168‰, the δD C29 

n-alkane varied from 227‰ to 153‰ with an average value of -183‰ and the δD 

C31 n-alkane varied from 210‰ to -150‰ with an average value of -175‰.  
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The results show that the δD of different plant types differs in a single 

catchment, despite the precipitation in the catchment being the same for all 

plants. For example, the δD values of the C27, C29 and C31 n-alkanes are 80‰, 

74‰ and 60‰, respectively. Although these differences appear high, Hou et al. 

(2008) also found large differences (as much as 70‰) in the δDHPW values in 

vegetation samples collected from Blood pond, Massachusetts. A suggested 

reason for the differences between the δD of different plant types is that 

different source water being utilised due to different depths of roots. Rooted 

plants are not as influenced by soil evaporation (Feakins and Sessions, 2010), 

compared to swallow-rooted grasses (Smith and Freeman, 2006).  

For example, some roots are deep into the ground are not as influenced by soil 

evaporation (Feakins and Sessions, 2010), whilst others are swallow, the 

difference in depth is reflected in the δD values; with less depleated δD values 

in shallow soil due to evaporation (Barnes and Turner, 1998, Smith and Freeman, 

2006). Another reason for differences in the δDHPW from different plants is due to 

differences in evapotranspiration. For example, some plants are taller and in 

direct sunlight (resulting in more evapotranspiration), whereas others are 

smaller (e.g. Fern) and are shaded by the larger trees (resulting in less 

evapotranspiration (Hou et al., 2008). However, given the small data set (eleven 

leaf samples), we are unable to determine the key factors driving the 

differences in the δDHPW.  

Although we cannot pin point the exact reason for the differences in the δD of 

individual plant waxes, the results clearly indicate that the apparent 

fractionation between δDHPW and δDPRECIP is not constant for different plant 

types; therefore, changes in the δDHPW may be influenced by changes in 

vegetation type. However, we suggest that significant changes in vegetation are 

minor over the past 1000 years in this catchment. Further evidence for this that 

the ACL values do not show any major changes during the past 1000 years 

(Chapter 4) which is an indication of vegetation change. Therefore the δDHPW in 

the sedimentary record of Lake Toyoni represents a mixture of all the different 

δD of different plant types. 

Despite inter-species differences influencing the primary δDPRECIP signal 

preserved in the δDHPW, the δDHPW has been successfully used to provide reliable 
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hydrological reconstructions (Schefuss et al., 2005, Kuechler et al., 2013, 

Feakins et al., 2014, Fornace et al., 2014, e.g. Aichner et al., 2015). This 

suggests that although it is important to account for factors that can contribute 

to differences between the δDPRECIP and δDHPW, the offset may not be as large in 

the sedimentary record in comparison to the modern environment, especially 

when large shifts in vegetation have not been experienced. A potential reason 

for this is that lakes, such as Lake Toyoni, integrate the δD signal from all living 

plants in the catchment resulting in an average value for the system. 

 

8.4.2 Apparent fractionation between precipitation and leaf wax 

In this study, the fractionation between δDPRECIP and the δDHPW was calculated 

based on subtracting the modern core top C29 δDHPW value (-194‰) from the 

annual average δDPRECIP values from the OIPC data (-65‰). This assumes that 

plants are using mean annual precipitation.  This results in an apparent 

fractionation value of -130‰.  

Fractionation= modern δDHPW (194‰) - average annual δDPRECIP (-65‰) 

A fractionation value of -129‰ is reasonable given that Sachse et al. (2012) 

found that the C29 n-alkane for terrestrial C3 plants has a fractionation value of 

−149 ± 28‰ (n = 47) and −134 ± 28 ‰ (n = 53) for C4 plants. In Figure 8-8, we 

present the fractionation corrected δDHPW (referred to as δDHPW-COR) values, 

which are simply the δDHPW values subtracted by the apparent fraction (-129‰). 

This allows us to put the 1000-year sedimentary δDHPW values in the context of 

modern precipitation values. The (δDHPW-COR) estimations fall within a range of -

79 to -39‰, which is similar to the range of modern precipitation values (-82 to -

50‰). In order to evaluate changes in moisture source (EAWM versus the EASM) 

over the past 1000 years, changes in moisture source over the past 1000 years, 

average δDPRECIP values from August-September (EASM precipitation) and 

December-February (EAWM precipitation) were determined. δDPRECIP values in 

August and September (EASM precipitation) ranged from -55 to -50‰, whereas 

δD values from December-February (EAWM precipitation)  ranged from -82 to -

72‰. We have chosen threshold values of -55‰ and -72‰ to define intense EASM 

and EAWM, respectively (Figure 8-8). Values higher than -55‰ are interpreted as 
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an intensification of the EASM and values lower than -72‰ are interpreted as an 

intensification of the EAWM (Figure 8-8). Based on this, the EAWM intensified 

briefly ~1434AD and 1670-1700AD and the EASM intensified 1030-1050AD, 1324-

1341AD, 1588-1640AD and 1814-1847AD.   

 

Figure 8-8: The fractionation corrected (-130‰) δDHPW values to show the δDPRECIP over the 
past 1000 years in Hokkaido, Japan. Values range from -79 to -39‰. Values above -55‰ 
(highlighted with dotted line) suggest an intensification of the EASM. Values below -72‰ 
(highlighted with a dotted line) suggest an intensification of the EAWM.  

 

The use of δDHPW to record changes in moisture source is dependent on the 

assumption that the n-alkanes in Lake Toyoni are from the surrounding 

catchment. It is possible that n-alkanes could be transported via the EAWM 

winds to this site. Research on biomarkers from snow samples in Sapporo, 

Hokkaido shows evidence for long-range atmospheric transport of organic matter 

derived from higher plant waxes by the EAWM is possible (Yamamoto et al., 

2011). However, the catchment of Lake Toyoni is surrounding by dense 

vegetation, which suggests that most of the n-alkanes in Lake Toyoni originate 

from the catchment area.  
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8.4.3 δDHPW as a proxy for EAM variability 

8.4.3.1 Solar activity and the EAM 

The EAM is driven by seasonal changes in the heating contrast between the 

Pacific Ocean and the Asian continent and the pressure systems associated with 

these systems (mainly the SibH in winter and the NPSH in summer). Although 

cooling results in high-pressure systems (e.g., the SibH), high-pressure systems 

during summer can be intensified due to increased temperature contrast 

between the East Asian continent and the NW Pacific (e.g. the NPSH).  

During summer, the thermal contrast between the Asian continent and the North 

Pacific ocean is defined as the Asian-Pacific Oscillation (APO) Index (Figure 8-9), 

which has a close link to changes in Northern Hemisphere air temperatures and 

also solar activity (Zhou et al., 2009c). Significantly, the APO index and solar 

activity both share 90-year and 11-year periodic oscillations (Zhou et al., 2009c), 

which further confirms the fundamental link between solar irradiance and the 

APO index.  

Solar activity is a forcing for the APO index, because increased solar activity 

heats the land faster than the ocean causing increased thermal contrast 

between land and sea, and hence increased solar irradiance contributes towards 

higher APO index values. When the temperature contrast increases during 

summer (high APO index), the low-pressure system over the Asian continent 

becomes stronger, which intensifies the NPSH resulting in a northward 

movement of the NPSH (Zhou et al., 2011). The movement of this high-pressure 

system results in an increased influence of the southwesterly monsoonal winds 

from the Pacific Ocean to Hokkaido. There is therefore a link between the 

positive summer APO index and the intensity of the EASM in the modern day. To 

establish if there is relationship between land-sea thermal contrast and changes 

in moisture source to Hokkaido over the past 1000 years, the δDHPW record is 

compared to the APO index from Zhou et al. (Zhou et al., 2009c). The APO index 

is related to surface air temperatures in the mid-latitudes of Asia and sea 

surface temperatures (SSTs) in the extratropical North Pacific therefore the APO 

index was reconstructed using reconstructions of temperatures in the eastern 

Asian land and the Pacific SST (Zhou et al., 2009c). APO values are generally 
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high between 1000-1400AD. During this time period the EASM intensified several 

times (e.g. 1030-1050AD and 1324-1341AD). The EASM also increased between 

1588 and 1640AD, which is associated with a significant change from negative to 

positive APO values. The EASM intensified again between 1814 and 1847AD, 

which is associated with positive APO values. This confirms that strong EASM 

time periods occur during time periods of positive APO index values, which 

suggests a link between solar irradiance and the EAM at our site also. 

The link between increased solar irradiance and a stronger EASM is also well 

documented (Dykoski et al., 2005, Wang et al., 2005, Xiao et al., 2006, Liu et 

al., 2009b, He et al., 2013, Sagawa et al., 2014). The influence of solar activity 

on the EAM is based on amplified solar radiation causing increased warming the 

land over middle and high latitudes compared to lower latitudes (Zhou et al., 

2011). In addition, land warms at a faster rate than oceans promoting a 

temperature different between the land and ocean (Zhou et al., 2011). Moist air 

is transported from the ocean to the land resulting in warm and wet conditions. 

When solar activity decreases, there is less heating of the land resulting in a 

higher-pressure system developing over Siberia and as a result the EAWM 

strength increases (Kim et al., 2013).  

To establish the relationship between solar activity and the EAM in Hokkaido, 

the δDHPW record is compared to Bard et al. (2000). This record is based on the 

production rates of cosmogenic nuclides (14C and 10Be) from an ice core record at 

the South Pole (Bard et al., 2000). Chapter 4 describes how the production rates 

of cosmogenic nuclides record solar irradiance; briefly, lower production rates 

occur during high solar irradiance due to the increased influence of magnetic 

fields of solar winds, which deflect proportions of the charged cosmic particles. 

The record of solar irradiance from Bard et al. (2000) over the past 1000 years is 

presented in Figure 8-9.  

We compared the EAM record, as inferred from δDHPW, at Lake Toyoni and the 

variation of solar activity during the last 1000 years (Figure 8-9). Based on the 

above discussion, we would expect high solar radiation to drive the intensity of 

the EASM and low solar radiation to drive the intensity of the EAWM. The results 

show a clear relationship between the δDHPW values at Lake Toyoni and the solar 
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activity over the past 1000 years (Figure 8-9); less depleated δDHPW (suggesting 

enhanced EASM) generally corresponds to higher solar irradiance, whereas more 

depleated δDHPW (suggesting enhanced EAWM) correlates to lower solar 

irradiance. The lowest δDHPW values corresponded to the Spörer minimum (1402–

1516AD). All time periods associated with low δDHPW values corresponded with 

minima including; the Wolf (1280-1350AD), the Maunder (1645–1715AD) and the 

Dalton (1770-1820AD) minima. The similarity between the δDHPW record and the 

solar irradiance record suggests that they vary together on over the past 1000 

years (Figure 8-9) suggesting that solar activity is a key control on the EAM in 

Hokkaido, Japan.  

Although there are generally high δDHPW values during the MWP, the relationship 

between high solar irradiance and high δDHPW values is not as pronounced during 

the MWP. This suggests that there is an influence of the (1) EAWM, (2) or the 

sub-arctic maritime precipitation (e.g. the OH). The δDHPW values during the 

MWP do not record values lower than -72‰ (threshold for EAWM intensification). 

This suggests that the MWP also has an influence from the OH, rather than the 

EAWM, during this time period. This suggests that solar irradiance or another 

climate driver, further discussed in following section, also intensified the OH as 

well as the NPSH during this time period. This resulted in a strong influence from 

the Pacific Ocean as well as from the Okhotsk Sea during this time period. 
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Figure 8-9: Variations in δDHPW compared with the APO index and solar irradiance over the 
past 1000 years. (a) Reconstructed summer APO index by Zhou et al., (2011a). (b) APO index 
simulated by the FGOALS_gi model (Man and Zhou, 2011) by Zhou et al., (2011b). Both (a) 
and (b) are normalised and are a 31 year running mean. (c) Solar Irradiance (w/m

2
) by Bard 

et al., (2000) and (d) the variations in C29 δDHPW from Lake Toyoni, Japan (present study). 

 

8.4.3.2 Teleconnections 

The forcing mechanism of small changes in solar activity on the EAM system is 

complex. It is likely that other factors (e.g. teleconnections) may 

amplify/dampen the solar irradiance signal, and in turn affect the variability in 



CHAPTER 8: Hydrogen isotopic composition of higher plant waxes in the catchment and down-
core sedimentary records of Lake Toyoni 
 

204 
 

the EAM (e.g the PDO, NAO/AO and ENSO). In order to evaluate the influence of 

these teleconnections on the down-core reconstruction of the EAM variability, 

the down-core record of the δDHPW from Lake Toyoni is compared with a PDO 

(MacDonald and Case, 2005), NAO (Trouet et al., 2009) and ENSO (Yan et al., 

2011a) reconstructions. Information on how the indices were reconstructed was 

outlined in Chapter 5. 

8.4.3.2.1 EAWM 

 
The EAWM intensified twice based on δDHPW data; ~1434AD and 1670-1700AD 

(highlighted in grey in Figure 8-10). Based on these findings, the PDO does not 

have a strong influence on the intensity of the EAWM (Figure 8-10a). The NAO, 

on the other hand, may be linked to the intensity of the EAWM. The two EAWM 

intensifications (~1434AD and 1670-1700AD) both occurred during time periods 

when the NAO shifted from a positive to a negative phase (Figure 8-10b). 

However, the strongest control on the intensity of the EAWM is ENSO. It was 

found that the intensity of the EAWM corresponds to the positive ENSO index (La 

Niña conditions). The influence of La Niña on the EAWM was also noted in 

modern climate data from Hiroo weather station (Chapter 2). During La Niña 

events, the occurrence of East Asian cold surges increases and also the strength 

of the northerlies increases (Zhang et al., 1997), this triggers a decrease in 

temperature in East Asia and hence a stronger EAWM.  

8.4.3.2.2 EASM 

 
The EASM intensified 1030-1050, 1324-1341, 1588-1640 and 1814-1847AD based 

on the down-core δDHPW data (highlighted in red; Figure 8-10). Based on these 

findings, the EASM occurs during both positive and negative phases of the PDO 

(Figure 8-10a) and NAO (Figure 8-10b). A strong control on the intensity of the 

EASM is ENSO. It was found that low ENSO index values (El Niño conditions) 

resulted in strong EASM. A connection between ENSO and the EASM was also 

noted in modern climate data from Hiroo weather station (Chapter 2). It was 

found that a strong EASM occurs during the mature phase of El Niño, rather than 

the developing year.  The EAM record, based on δDHPW data, therefore further 

confirms the relationship between El Niño and EASM on timescales exceeding 

instrumental data  
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Figure 8-10: Variations in the δDHPW record compared with teleconnections; A.  PDO index 
by Macdonald and Case (2009) (scale inverted), B. the NAO index by Trouet et al. (2009), C. 
ENSO Index by Yan et al. (2011), D. the down-core variations in the δDHPW values (present 
study). Grey bars highlights time periods identified as strong EAWM time periods and red 
bars highlights time periods identified as strong EASM time periods. 
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8.4.4 Hydrological variability in Hokkaido during the MWP and LIA 

8.4.4.1 δDHPW during the MWP 

The MWP is defined here as 1000-1350AD because this time period is associated 

with higher than average δDHPW values. The MWP (1000-1350AD) is characterised 

by high solar irradiance and positive APO index values (Figure 8-9). The 

teleconnections affecting this time period are negative PDO, positive NAO and El 

Niño conditions (Figure 8-10). High solar irradiance, positive APO index values 

and El Niño conditions were all identified to contribute towards a stronger EASM 

in the previous sections. The strong EASM during the MWP has been documented 

in many East Asian palaeo-climate studies (e.g. Hu et al., 2008; Figure 8-11). 

Zhou et al. (2011) also suggested that the EASM was in fact at its the strongest 

during this time period over the past 1000 years. Within Japan, previous studies 

have found that the MWP in Japan is characterised by warm and wet climate 

(Yamada et al., 2010), suggesting the increased intensity of the EASM during the 

MWP influenced Japan.  

A strong EASM during the MWP would result in the northward movement of the 

NPSH, which would expose Hokkaido to an increased influence from air-masses 

originating from the Pacific Ocean and hence record higher δDHPW values. 

Corresponding to stronger EASM during the MWP, we would therefore expect to 

see high δDHPW values throughout this time period. Although δDHPW values are 

generally increased during this time period in the Lake Toyoni down-core 

sedimentary record (Figure 8-7), the MWP is also characterised by considerable 

variability. Moreover, compared to the relationship between solar irradiance and 

δDHPW values in the rest of the record, the relationship during the MWP is less 

pronounced. A suggested reason for this is that the OH was also enhanced during 

this time period and acted as a barrier for the northward movement of the 

strengthened NPSH and dampened the influence of the EASM in Hokkaido (e.g. 

Nakamura and Fukamachi, 2004) (Figure 8-6).  

Evidence that suggests that the OH was enhanced during the MWP is the 

increased thermal contrast and the positive phase of the NAO/AO during this 

time. In the same way that the increased thermal contrast positively influences 

the strength of the NPSH, it also influences the strength of the OH (Nakamura 



CHAPTER 8: Hydrogen isotopic composition of higher plant waxes in the catchment and down-
core sedimentary records of Lake Toyoni 
 

207 
 

and Fukamachi, 2004). Therefore, the influence of land-sea thermal contrast can 

positively influence both the EASM intensity as well as the OH intensity and for 

the Hokkaido region; it appears that the OH had a stronger influence on climate 

during the MWP. 

In addition to increased land-sea thermal contrast, the strength of the OH (Ogi 

et al., 2004) and the EASM (Gong and Ho, 2003, Lee and Park, 2015) are also 

both influenced by the positive phase of the NAO/AO. When the NAO/AO is in its 

positive phase, there is northward shift of westerly jet stream during summer, 

which causing an increase in the intensity of the EASM (Lee and Park, 2015). As a 

result, the positive NAO/AO (Figure 8-10) and APO index values (Figure 8-9) 

create conditions for an intensified OH, as well as, a strong EASM, which can 

work against each other in their climate forcing mechanisms. 

 

8.4.4.2 δDHPW during the LIA 

In comparison to the high solar irradiance and high APO index values during the 

MWP, the LIA is characterised by relatively low solar irradiance and low APO 

index values (Figure 8-9). This is reflected in more depleated δDHPW values for 

the most part of the LIA (Figure 8-9) and suggests that the polar air-masses 

(from the EAWM and OH) dominated the moisture supply to Hokkaido in 

comparison to the influence of the EASM (an exception being ~1600AD, which is 

further discussed in Section 1.5.4.3.3). There are two time periods with 

enhanced EAWM intensity are recorded in the Lake Toyoni sedimentary record 

(δDHPW-COR values <72‰; Figure 8-8). Both time periods are associated with solar 

minima events, namely the Spörer minimum and the Maunder Minimum (Figure 

8-9). The presence of two cold events within the LIA has been identified in other 

Japanese records (e.g. Adhikari and Kumon, 2001; Yamada et al., 2010). The 

timing of the cooling events is slightly different in all records; the timings 

roughly correspond to the 15th century and 18th century. The timings of these 

cold events are consistent with the timing of EASM weakening, as documented in 

high δ18O values in Heshang stalagmite (Figure 8-11; Hu et al., 2008), suggesting 

a potential inverse relationship between the EASM and the EAWM (further 

discussed in section 8.4.7).  
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8.4.4.2.1 15TH century cooling 

 
The first intensification of the EAWM during the LIA occurs directly at the onset 

of the LIA and is associated with the Spörer minima. The cooling at the onset of 

the LIA was abrupt based on the δDHPW values from Lake Toyoni (Figure 8-7). The 

abrupt change is associated with a distinct decrease in solar activity to the 

lowest values of solar irradiance recorded over the past 1000 years (Figure 8-9) 

and a shift to the negative phase of the NAO/AO and positive phase of the PDO 

(Figure 8-10). Solar forcing can cause a shift in the NAO/AO patterns, with 

increases in solar forcing resulting in a positive AO phase and decreased solar 

forcing causes shifts to a negative AO phase (Shindell et al., 2001). The dramatic 

decrease in solar activity during this time period have may resulted in a shift to 

a negative NAO/AO phase, as well, which results in a decrease in the EASM 

intensity and an increase in the EAWM (Lee and Park, 2015). Within the Lake 

Toyoni sedimentary record, all shifts to negative NAO/AO time periods are 

associated with low δDHPW values (highlighted with grey bars in Figure 8-10). This 

suggests that the negative phase of the AO strongly influences the intensity of 

the EAWM at this site.  

8.4.4.2.2 18th century cooling 

The second intensification of the EAWM (δDHPW-COR values <72‰; Figure 8-8) 

occurred during the Maunder minima (Figure 8-9). The lowest δDHPW values in the 

down-core sedimentary record are recorded during this time. Significantly, 

D’Arrigo et al. (1997) also found the lowest value in the record for a ring-width 

chronology of Kashiwa oak for north coastal Hokkaido occurred in 1784AD 

(D'Arrigo et al., 1997). Larger ring-widths occur when the growth of the trees 

increase, which is related to warm early summers. Smaller ring-widths therefore 

occur when summers are cold, providing further evidence for cold conditions 

during this time period. In addition, Yamada et al. (2010) also found a large 

increase in coarse-grained input into lakes Ni-no-Megata and San-no-Megata, 

Northern Japan, which was interpreted as a EAWM signal. This provides further 

evidence for an enhanced EAWM in Hokkaido during this time.  
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Similar to the 15th century cooling, the 18th century cooling is also associated 

with the positive phase of the PDO and the negative phase of the NAO/AO. 

However, the magnitude of these shifts in the PDO and the NAO/AO are much 

smaller during the 18th century cooling in comparison to the 15th century cooling, 

despite δDHPW values during the 18th century being lower. It is suggested that 

other forcing mechanisms in addition to the PDO and the NAO/AO are 

responsible for the extremely low values during this time period. For instance, 

the very low δDHPW values within this time period may be associated with 

volcanic eruptions in Japan and Iceland during the 1700’s (after Davi et al., 

2002). The cooling associated with volcanic eruptions and low solar irradiance 

may have prevented the northward movement of the NPSH and therefore the 

influence of the EASM is reduced, or even absent, during this time period. In 

addition to volcanic eruptions during the Maunder minimum, the glaciers 

advanced to their maximum extent in the southeastern Tibetan Plateau (Xu et 

al., 2012). The presence of increased glaciated conditions positively influences 

the intensity of the EAWM through a southward shift in the latitudinal position of 

the SibH (Chen and Huang, 1998). This suggests that the stronger EAWM during 

this time period brought cold air from the intensified SibH towards Hokkaido. 

8.4.4.2.3 17th century warming  

The cold conditions associated with the LIA were disturbed by an intensification 

of the EASM leading into the 1600’s (δDHPW-COR values >-55‰; Figure 8-8). This 

time period is also associated with a solar maximum and a switch from negative 

to positive APO index values. This switch from negative to positive APO index 

values provides further evidence for the influence of increased land-sea thermal 

contrast resulting in a stronger NPSH. The increased strength of this high-

pressure system allowed Hokkaido to come under the influence of the EASM, and 

hence record higher δDHPW values. Unlike the MWP, the OH did not block the 

movement of the NPSH at this time, possibly as a result of the lower NAO/AO 

index values compared to the MWP values. The climate at this time in Hokkaido 

was characterised by warm and wet conditions as a result of an enhanced EASM.  

A warm event was also found within the LIA based on alkenone-derived 

temperature reconstructions from two lake records (Lake Gahai and Lake Sugan) 

on the northern Tibetan Plateau (He et al., 2013). This warm event was between 
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1590 and 1650AD, which is similar in timing to the warming event at Lake 

Toyoni. He et al. (2013) found a strong relationship between temperature 

changes at solar activity on the northern Tibetan Plateau. This provides further 

evidence to suggest the warming in Hokkaido was associated with high solar 

irradiance values during this time period. We found a strong control of the EASM 

was El Niño (previous section). During the intensification of the EASM ~1600’s, 

we find that the ENSO index decreases; suggesting more El Niño occurrences. In 

addition to ENSO, a potential mechanism for the EASM intensifying during this 

particular time period may be associated with the switch from a positive PDO to 

a negative PDO (Figure 8-10). When the PDO is in its negative phase, the NPSH 

intensifies (Tsuji et al., 2008) resulting in an increased influence from the 

southerly monsoonal winds in Hokkaido from the Pacific Ocean (high δDHPW 

values).  

 

8.4.5 Post 1800 AD 

The time period between 1800-present is characterised by a strong EASM 

between 1814 and 1847AD (less depleated δDHPW values). The time period 

between 1814 and 1847AD is associated with a strong EASM (δDHPW-COR values >-

55‰; Figure 8-8). This strong EASM is also documented in other EASM records 

(Figure 8-12). Suggested reasons for the intensification during this time period 

are (1) a decrease in ENSO index values (more El Niño conditions) and (2) 

positive APO values. Both of these factors were identified to contribute towards 

a strong EASM.  

 

8.4.6 Short core TY11 

We also have δDHPW values for the shot core taken in 2011 (TY11). This sediment 

core, howeer, does ot have an age model and is therefore discussed against 

depth. Overall, the δDHPW values from the short core records a decrease in the 

EASM intensity, however, there was a brief intensification between 4-2cm 

(Figure 8-11). Particularly there was aa weakening between 1963 (2cm) and 

present (0cm). Temperatures over the past ~50 years have increased as a result 

of human-induced climate change. We might expect that the EASM would in fact 



CHAPTER 8: Hydrogen isotopic composition of higher plant waxes in the catchment and down-
core sedimentary records of Lake Toyoni 
 

211 
 

increase in intensity due to the warmer conditions (Xu et al., 2006); however, 

the EASM has weakening during this time (Xu et al., 2006, Ding et al., 2008, Hu 

et al., 2008,  Zhu et al., 2012). The weakening of the EASM during this time 

period has been attributed to [1] a weakening of southwesterly winds due to 

human-induced increased temperatures (emissions of greenhouse gases; [GHG]) 

(Zhu et al., 2012) and [2] cooling over south central China as a result of air 

pollution and warming over the western North Pacific Ocean (Xu et al., 2006). 

Given that the emissions of GHGs and also increased air pollution are as a result 

of human activities, it is suggested that the weakening of the EASM during this 

time period is as a result of anthropogenic-induced climate change. Conversely, 

Dabang and Huijun. (2005) suggested that the weakening of the EASM during this 

time period is a result of natural variability rather than anthropogenic warming. 

If the weakening of the EASM is due to anthropogenic-induced climate change, 

there will have future implications as greenhouse gases and air pollution 

continue to increase.  
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Figure 8-11: Variations in the D C29 from short core (TY11) from Lake Toyoni, Japan. Red 
dot represents Pu dating at 2cm giving a date of 1963.  

 

8.4.7 Relationship between the EASM and the EAWM 

The relationship between the EASM and the EAWM is currently poorly 

understood. Whilst some researchers’ suggest that the EASM and the EAWM are 

inversely connected, e.g. a strong EASM occurs when the EAWM weakens and 

vice versa (Liu et al., 2009b, Sagawa et al., 2014), others suggest that there is 

no inverse relationship between the EASM and the EAWM, e.g. a strong EASM and 

strong EAWM occur together and a weak EASM and weak EAWM occur together 

(Yan et al., 2011b). In order to investigate the relationship between the EASM 

and the EASM, we compared the δDHPW record with EASM and EAWM records. 
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The δDHPW record was firstly compared with EASM records of Hu et al. (2008) and 

Yamada et al. (2016) (Figure 8-10). There is a clear resemblance between the 

records from Heshang stalagmite and Lake Toyoni. A key finding when comparing 

the δDHPW record from Lake Toyoni to Heshang stalagmite is that when the δ18O 

values increase (highlighted with grey bars in Figure 8-12), suggesting a 

weakening in the EASM, we find an intensification of the EAWM record at the 

same time (δDHPW-COR values <72‰; Figure 8-8). This provides strong evidence for 

an inverse relationship between the EASM and the EAWM, at least during these 

time periods. Based on the evidence of the consistency in the timing between 

the intensification of the EAWM (once during the MWP and twice during the LIA) 

in the Lake Toyoni record and the timing of the weakening of the EASM in the 

Heshang stalagmite record, we provide further evidence to support the idea that 

a weakening of the EASM results in a strengthening of the EAWM.  

To provide further evidence for the relationship between the EASM and the 

EAWM, we compared the δDHPW record with a reconstruction of the SibH by 

Meeker and Mayewski. (2002; Figure 8-12). The EAWM is controlled by the 

intensity of the SibH therefore by comparing the δDHPW record with 

reconstruction by Meeker and Mayewski. (2002), we can investigate the 

relationship between the EASM and the EAWM. The record shows that time 

periods identified as strong EASM time periods (less depleated δDHPW values) 

occurred when there was a weak EAWM (low SLP values). This suggests that a 

weakening of the intensity of EAWM has a positive influence on the 

strengthening of the EASM. It was therefore found that there appears to be an 

inverse relationship between the EASM and the EAWM over the past 1000 years 

at this site.  
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Figure 8-12: Comparison of the normalised δDHPW variations over the past 1000 years with 
EASM records. A: The corrected Hershang stalagmite record (Hu et al., 2008), B: the original 
δ

18
O values from the Heshang stalagmite (Hu et al., 2008) (Note: values have been 

normalised and the axis is also reversed to show the EASM all going in same direction), C: 
The bottom graph is the normalised δDHPW variations over the past 1000 years (present 
study). Grey shadding indicates time periods when the EASM weakened based on the 
corrected Hershang stalagmite record (Hu et al., 2008) (graph A).  
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Figure 8-13: Comparison of the δDHPW variations over the past 1000 years with the intensity 
of the SibH. Top graph: SibH reconstruction by Meeker and Mayewski. (2002). Bottom 
graph: δDHPW variations over the past 1000 years (present study). Red shading indicates 
time periods when the EASM strengthened based on the findings from this study. 

 
 

8.5 Conclusions 

The δDHPW preserved in sedimentary record of Lake Toyoni provides a unique 

archive of the source of precipitation (and hence the EAM) in Hokkaido and the 

competing influences of solar irradiance and teleconnections (e.g. 

ENSO/PDO/AO) over the past 1000 years. We find that the EAM intensity shows a 

clear resemblance to changes in solar irradiance with the EASM increasing in 

intensity during solar maxima and the EAWM increasing in intensity during solar 

minima. In addition, we found that the EAWM was strongly influenced by El Niño 

conditions and the EAWM was influenced by the negative phase of the NAO/AO. 
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The high solar irradiance and positive AO (NAO) during the MWP resulted in key 

conditions for an intensified EASM, as well as, a strong OH. Although the EASM 

was strong during this time period, the presence of the intensified OH during the 

MWP resulted in a reduced influence of the EASM in Hokkaido compared to other 

records within in the EAM domain. Within the LIA, the EAWM enhanced in the 

15th century and the 18th century associated with the time periods of the Spörer 

Minimum and the Maunder Minimum, respectively. The cooling during the LIA 

was disturbed with an enhancement of the EASM leading in the 1600’s. The 

increased influence of the EASM during this time is likely associated with the 

negative phase of the PDO enhancing the strength of the NPSH. The EASM was 

strong between 1814-1847AD. Over the past ~50 years, we found a decrease in 

the intensity of the EASM and attributed this change as a result of human-

induced climate change.  

The δDHPW record was compared with an EASM record from δ18O record from 

Heshang stalagmite (Hu et al., 2008) and a SibH (and hence EAWM 

intensification) reconstruction by Meeker and Mayewski. (2000) to establish if a 

relationship exists between the EASM and the EAWM. It was found that when the 

EAWM was enhanced in the Lake Toyoni record, the δ18O record from Heshang 

stalagmite recorded a weakening in the EASM, suggesting a possible inverse 

relationship between the two EAM systems during these time periods. We also 

found that the EASM intensified when the SibH (and hence EAWM) weakened, 

providing further evidence for a possible inverse relationship between the EASM 

and the EAWM over the past 1000 years.   

 



 

 
 

 

 

9   

Synthesis 

9.1 Summary  

Two atmospheric circulation systems, the Westerlies and the East Asian monsoon 

(EAM), play a key role in East Asian climate variability. However, the 

interactions between the Westerlies and the EAM over the past 1000 years 

remain unclear. In particular, there is debate about the relationship between 

the East Asian Summer Monsoon (EASM) and the East Asian Winter Monsoon 

(EAWM); some suggest that the two subsystems are inversely correlated (Liu et 

al., 2009b, Sagawa et al., 2014), whilst others suggest that they are not (Yan et 

al., 2011b). In addition, some studies in Japan group the intensification of the 

Westerlies and the EAWM together (e.g. Yamada and Fukusawa, 1999, Yamada, 

2004). A comparison of multi-proxy investigations is necessary to develop 

reconstructions of the intensity changes and teleconnections between the 

Westerlies and EAM systems in Asia. The key objective of this thesis therefore 

was to reconstruct past climatic and hydrologic variability in East Asia using a 

multi-proxy approach from Lake Toyoni. This variability is controlled by the two 

key atmospheric systems; the Westerlies and the EAM, so the present study 

develops multi-proxy reconstructions to determine past climatic and hydrologic 

variability in Japan over the past 1000 years and aid in understanding the effects 

of the EAM and the Westerlies independently and interactively.  
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The EAM is divided into two sub-systems; the East Asia Summer monsoon (EASM) 

and the East Asian winter monsoon (EAWM). The EASM intensity can be directly 

represented by precipitation and temperature in Hokkaido, Japan: stronger 

(weaker) EASM circulation carries more (less) water vapour from the Pacific 

Ocean, resulting in higher (lower) precipitation and warmer (colder) 

temperatures (as previously demonstrated in chapter 2). In turn, warm and 

wet conditions positively influence lake productivity. The EASM was therefore 

investigated using; incoherent/ coherent (Inc/Coh) ratio as a precipitation proxy 

(Chapter 4), Silica/Rubidium (Si/Rb) and Carbon/Nitrogen (C/N) ratios as a 

productivity indicators (Chapter 4) and alkenones as a summer lake surface 

temperature (LST) proxy (Chapter 7). The EAWM intensity can be directly 

represented by coarse-grained aeolian input into Lake Toyoni and was 

investigated using the Titanium/Rb (Ti/Rb) as a proxy for aeolian input in 

combination with grain size analysis (Chapter 5). Similarly, the Westerlies 

intensity can be directly represented by fine-grained aeolian input into Lake 

Toyoni and was investigated using the Ti/Rb as a proxy for aeolian input in 

combination with grain size analysis (Chapter 5). Although all three climate 

modes are investigated independently from one other, the final chapter 

(Chapter 8) reports on the hydrogen stable isotopic values (δD) of n-alkanes 

derived from higher plant waxes (δDHPW) over the past 1000 years, which 

provides information on the EASM and the EAWM. The multi-proxy findings are 

discussed in relation to each other, global climate variability and the controlling 

climate driver mechanisms. The presence of globally recognised events; namely 

the Medieval Warm Period (MWP) and the Little Ice Age (LIA) suggests that the 

climate in Hokkaido responded to global climate fluctuations. Over the past 

~1000 years, global climate variability was driven by variations in volcanic 

forcing along with the variability of climate modes such as El Niño–Southern 

Oscillation (ENSO) and the North Atlantic Oscillation (NAO)/Arctic Oscillation 

(AO) (Jones et al., 2001). The findings from this study are therefore discussed in 

relation to global climate records.  
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9.2 Dominant climate modes over the past 1000 years 

9.2.1 Climate modes during the MWP (1050-1350AD) 

Multi-proxy climate and hydrological reconstructions reveal that the MWP (1000-

1350 AD) in Hokkaido was characterised by high productivity (as inferred from 

high Si/Rb and low C/N ratios; Chapter 4), increased precipitation (as inferred 

from high Inc/Coh ratios; Chapter 4), increased summer LST (as inferred from 

alkenone-based LST reconstructions; Chapter 7), which suggests that it was 

strongly influenced by the EASM. In contrast, the EAWM was weakened during 

the MWP as inferred from a decrease in coarse grain size sediments and a 

decrease in Ti/Rb ratio values; Chapter 5. An intensification of the EASM and a 

weakening of the EAWM are further supported by a slight increase in δDHPW 

values during this time period (Chapter 8).  

 

Within the MWP, there was also an intensification of the Westerlies during the 

MWP between 1050-1122AD and 1277-1308AD, which is clearly defined by the 

combined evidence of increased fine-grained aeolian input (Chapter 5) and low 

δDHPW values (Chapter 8). The Westerlies transport cold, dry air towards Japan 

and hence more depleated δDHPW values that reflect the enhancement of the 

Westerlies during this time period.  

 
9.2.2 Climate modes during the LIA (1360-1850AD) 

The EASM- and Westerlies-dominated MWP came to an abrupt end ~1350AD in 

Hokkaido, Japan, and was followed by the colder conditions of the LIA (1350-

1850AD). The LIA is split and discussed in two separate time periods below; the 

early LIA (13650-1600AD) and the late LIA (1600-1850AD).  

 

9.2.2.1 Early LIA (1360-1580AD) 

The onset of the LIA is characterised by an abrupt change in the EAM system. 

Morrill et al. (2003) also suggested that ~1350AD was the most prominent abrupt 

change in the EASM intensity over the past 4000 years based on a moving t-test 

calculation of a complication of 36 palaeo-climate records. Since this 

publication, Lee and Park. (2015) also found an abrupt change in the EASM 

during this time period and attributed this as monsoon failure. 



CHAPTER 9: Synthesis 
 

220 
 

We find that the climate during the early LIA is driven by an intensification of 

the EAWM (1350-1600AD), as inferred from an increase in coarse-grained aeolian 

input (Figure 9-1). However, a brief period of EAWM weakening and an 

intensification of the Westerlies occurred between 1450-1520AD. In addition to a 

strong EAWM, the EASM weakened as inferred from a decrease in productivity (as 

inferred from low Si/Rb and high C/N ratio values), a decrease in precipitation 

(as inferred from low Inc/Coh ratio values) and an abrupt drop in summer LST 

(as inferred from alkenone-based temperature reconstructions). The 

intensification of the EAWM and a weakening of the EASM are further reflected 

in the more depleated δDHPW values (Figure 9-1).  Based on the multi-proxy 

reconstructions, we provide further evidence for an abrupt change in the EASM, 

suggesting monsoon failure during this time period.  

 

9.2.2.2 Late LIA (1600-1850AD) 

Although the EAWM was a dominant climate driver during the early LIA, its 

influence on the late LIA was reduced. In contrast, a mixture of the EASM 

(highlighted in red; Figure 9-1) and the EAWM (highlighted in grey; Figure 9-1) 

play key roles in determining the climate in Hokkaido during this period. The 

start of the late LIA (1600-1640AD) is associated with an enhancement of the 

EASM based on a sharp decrease in C/N ratio values and an increase in Si/Rb 

ratio values suggesting an increase in productivity (Figure 9-1). In addition, 

water temperatures (as inferred from alkenone-based reconstructions) show 

warming and high δDHPW values provide further evidence for the enhancement of 

the EASM. (Figure 9-1). The aeolian record shows an increase in Ti/Rb ratio 

values and coarse-grained sediments. In other sections of the record, we 

interpret this as an intensification of the EAWM. However, we suggest that the 

EAWM was not enhanced during this time period based on the presence of a 

visible tephra layer in this section of the core. Volcanic ash contains Ti and 

therefore the high Ti/Rb values can be explained by the presence of volcanic 

ash. The presence of coarse-grained sediments is potentially from an increase in 

run-off into the lake under an enhanced EASM climate. Further evidence for 

increased rainfall during this time period is based on increased Inc/Coh values 

(Figure 9-1); a proxy for organic matter and hence run-off into Lake Toyoni.  
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The EASM also intensified between 1800AD and 1850AD based on warmer LST 

conditions (as inferred from alkenone-based reconstructions), increased 

precipitation (Inc/Coh ratio values) and increased δDHPW values. At the same 

time, there is evidence for a significant decrease in the EAWM, as inferred from 

low Ti/Rb ratio values (Figure 9-1).  

 

In between the two enhancements of the EASM during the LIA, the EAWM 

enhanced (1640-1780AD), as inferred from a reduction in the δDHPW values. This 

time period was initially interpreted as an intensification of the Westerlies 

(Chapter 5), however, the more depleated δDHPW values and a slight increase in 

coarse-grained aeolian input (increased Ti/Rb ratio values) (Figure 9-1). An 

enhancement of the EAWM brings cold air-mass towards Japan during winter and 

also results in colder summer temperatures based on the instrumental data 

(1958-2014AD; Chapter 2). Although the instrumental data suggests that strong 

EAWM time periods are associated with a decrease in summer temperatures 

(Chapter 2), the summer LST’s do not show a decrease in temperatures 

associated with the intensification of the EAWM. A suggested reason for this will 

be provided in this discussion.  

 
9.2.3 Climate modes 1850-1950AD 

Climate during the 1850-19590AD appears to be driven mainly by the Westerlies 

based on presence of fine-grained sediments in this section of the record. The 

EASM was also active based on increased precipitation (increased Inc/Coh ratio 

values) and warm alkenone-based LST (Figure 9-1).  

 

9.2.4 Short core 

There are no XRF data for TY11, therefore the wind patterns cannot be 

determined. However, we do find a dramatic increase in productivity (lower C/N 

ratios) suggesting that a change in environmental conditions occurred during this 

time. The δDHPW data record relatively high values with a decreasing trend. This 

suggests that the EAWM intensified and/or the EASM weakened. The dramatic 

decrease in the C/N ratios, however, does not reflect an increase in the 

EAWM/weakening of the EASM, because an increase in productivity in the rest of 

the record is indicative of the intensification of the EASM. We suggest that the 
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C/N ratios in this section of the record are responding to human-induced 

environmental change rather than climate-induced environmental change. The 

population in Hokkaido increased substantially over the past 100 years. 

Accompanying this increased population, there was an increase in building 

activity and agriculture activity. As a result of these activities, an increase in 

nutrients into the lake may have temporarily increased the productivity in the 

lake. This hypothesis is supported by the fact that an increase in productivity 

would result in anoxic sediments, which would stimulate a large increase in 

bacterial growth in the sediments with C/N ratio values lower than 4 (Lamb et 

al., 2006). Further evidence for bacterial degradation are the low CPI values 

during this time period. 
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Figure 9-1: Multi-proxy climate reconstructions from Lake Toyoni over the past 1000 years. From top 

to bottom; δDHPW as a proxy for temperature and source of precipitation, alkenones as a LST proxy, 

Ti/Rb as an aeolian input proxy, Inc/Coh ratio as a precipitation proxy, C/N ratio and Si/Rb ratio as 

productivity proxies. Higher values on graphs indicate a stronger EASM (highlighted in red) and lower 

values indicate a stronger EAWM (highlighted in grey) and/or Westerlies input (highlighted in blue).



 

 
 

 

 

Figure 9-2: Downcore variations in C/N, ACL, CPI, P(aq) and δDHPW from TY11. 

 



 

 
 

 

9.3 Potential climate drivers of EASM intensification 

Multi-proxy reconstructions from Lake Toyoni, Japan, show that the EASM was 

generally stronger during the MWP and the late LIA and weaker during the early 

LIA. However, there is a large degree of variability of the EASM within both the 

MWP and the LIA. Particular intensifications of the EASM occurred 1122-1277AD, 

1308-1350AD, 1600-1640AD and 1800-1850AD.  

 

9.3.1 The EASM and the NAO/AO 

A teleconnection known to significantly influence climate in Hokkaido is the AO 

(Tsuji et al., 2008). The temperature patterns of the NAO and the AO are well 

connected (Thompson and Wallace, 1998) therefore we will use the NAO index 

by Trouet et al. (2009) to represent the AO in this study (after Lee and Park, 

2015), because a record of the AO over the past 1000 years is not available 

(Figure 9-3). The positive phase of the NAO/AO persists for the entire MWP 

(Figure 9-3), which has been interpreted as a response to high solar forcing 

during this time period and was a driving factor for the warm MWP conditions 

(Trouet et al., 2009). A shift to the negative phase occurred at the onset of the 

LIA, which was characterised by weaker NAO phases. Similarly to the MWP, the 

positive phase of the AO has also been suggested as a link to the observed 

warming over the past 30 years in mid- to high-latitudes (Thompson et al., 

2000). Within Asia, the positive phase of the AO also has a significant influence 

on the northward movement of the East Asian Subtropical Jet (EASJ), resulting in 

a strong EASM (Lee and Park, 2015). Our records show that the EASM is generally 

stronger when the NAO/AO is in its positive phase, providing further evidence for 

the link between the positive NAO and the EASM. 

9.3.2 The EASM and the PDO 

Hokkaido is adjacent to the North Pacific, and is therefore sensitive to SST 

anomalies that are influenced by the PDO. Therefore another teleconnection 

known to significantly influence the EASM is the PDO (Tsuji et al., 2008). 

Significantly, Schwing et al. (2003) investigated the decadal changes in the NAO 

and the PDO post 1900AD and suggested they are teleconnected on decadal 



CHAPTER 9: Synthesis 
 

226 
 

scales.  Over the past 1000 years, there also appears to be a relationship 

between the positive NAO/AO and the negative PDO and vice versa (Figure 9-3). 

We find that the EASM generally intensifies during time periods associated with 

the negative PDO. Tsuji et al. (2008) also found that relative humidity increased 

when the PDO was in its negative phase due to the intensification of the North 

Pacific High. Furthermore, we investigated the phase of the PDO and its 

relationship with temperature and precipitation using modern day 

meteorological data (presented in Chapter 2) and found that the negative phase 

of the PDO resulted in wet conditions in June and September, which is 

associated with a strong EASM. In addition to the modern day meteorological 

weather data, the down-core sedimentary record also shows a strong 

relationship between the negative phase of the PDO and a strong EASM. The 

connection between the EASM and the negative PDO was particularly clear 

during the MWP ~1000-1300AD, which is associated with a persistent negative 

phase of the PDO. An exception is the intensification of the EASM ~1300AD, 

which occurred despite a positive phasing of the PDO. This suggests that the NAO 

is a stronger control on the EASM than the PDO.   

9.3.3 The EASM and ENSO 

The strongest control on the EASM, however, appears to be ENSO. We find that 

the EASM intensifies during El Niño conditions and also when there is a decrease 

in La Niña conditions (Figure 9-3). The ENSO reconstruction (Yan et al., 2011a) 

over the past 2000 years is based on precipitation records from Indo-Pacific and 

Galapagos. The Indonesian rainfall was derived from a salinity reconstruction 

based on planktonic-foraminifera δ18O and the magnesium/calcium (Mg/Ca) ratio 

(Oppo et al., 2009). The precipitation variability in the Galapagos is derived 

from a lake level reconstruction which is based on the grain size data from the 

Lago El Junco sediment core (Conroy et al., 2008). The Southern Oscillation 

Index (SOI) is positively correlated with precipitation over the Indo-Pacific warm 

pool, and negatively correlated with precipitation over the eastern and mid-

tropical Pacific. As a result, ENSO can be reconstructed by the difference 

between these precipitation records (Yan et al., 2011a).  

The connection between El Niño and the EASM has resulted in contradictory 

theories. Some studies suggest that El Niño conditions results in a weaker EASM  

(e.g. Chen et al., 2015a), whilst others suggest that that El Niño events are 
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consistent with a strong EASM (e.g. Zhang et al., 1996, Wang et al., 2003, Hong 

et al., 2005). A suggested reason for the weakening of the EASM in response to El 

Niño conditions is provided by Chen et al. (2015). Chen et al. (2015) suggested 

that that the warming in the eastern Pacific Ocean induces an eastward 

propagating Kelvin wave resulting in warm western Pacific Ocean temperatures 

during El Niño (Chiang and Sobel, 2002, Xie et al., 2009), that weaken the land-

sea thermal contrast and in turn weakens the Asian monsoon (Chen et al., 

2015a). However, Wang et al. (2000) suggest that the resultant warming in the 

central Pacific in response to El Niño conditions plays a key role in cooling the 

western Pacific. Cooling in the western Pacific in turn provides key conditions 

for the development of the NPSH, which is a dominant control on the EASM 

(Wang et al., 2013a). Furthermore, Wang et al. (2001) found that the response 

of the intensification of the EASM to El Niño events occurred in the summer 

following the event. The authors found that the WPSH extends unusually 

westward in the summer following El Niño, which results in a strong EASM. We 

found a distinct relationship between the years following El Niño events and the 

intensification of the EASM in the instrumental record (Chapter 2). Significantly, 

in the years following the mature phase of El Niño, we find that precipitation at 

our site increases in June (Baiu precipitation) and August (Shurin precipitation); 

which is associated with EASM precipitation. We therefore suggest that El Niño 

positively influences the EASM in Hokkaido via its influence on the development 

and position of the WPSH (after Wang et al., 2001).  

9.3.4 The intensification of the EASM and global climate 
variability 

Our study confirms that the EASM is significantly influenced by global climate 

drivers (e.g. NAO/AO ad ENSO). To further define the link between global and 

East Asian climate variability, we compare our records with: 

1. A record of CO2 (Frank et al., 2010; Figure 9-3). The record is based on a 

combination of proxy-based temperature reconstructions and CO2 data 

from three ice-core records from Antarctica. Higher (lower) values 

suggest an increase (decrease) in atmospheric CO2 levels.  

2. A record of dust input to the Arctic (Meeker and Mayewski, 2002) (Figure 

9-4). As discussed in previous chapter, the reconstruction is based on non 
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sea-salt potassium content in a Greenland ice core. Potassium within the 

ice-core is interpreted as dust input from central Asia when the SibH 

intensified (Meeker and Mayewski, 2002). An increase in the SibH 

(increase Sea Level Pressure [SPL] values Figure 9-3) suggests an increase 

in dust transport from Asia to Greenland.  

3. A Norwegian glacial retreat record (Bakke et al., 2005) (Figure 9-4). The 

record is based on bulk density of glaciolacustrine sediments retrieved 

from two glacier-fed lakes and a peat bog north of the ice cap. Low bulk 

density values suggest increased organic sediments and high bulk density 

values suggest fine-grained poorly sorted minerogenic sediments. A 

correlation (r2=0.86) was noted between bulk density and the 

temperature-precipitation equilibrium-line altitude (TP-ELA). A regression 

model was then used to transfer the bulk density record to TP-ELA values. 

4. A Northern Hemisphere temperature record (Mann and Jones, 2003) 

(Figure 9-4) based on a compilation of 23 temperature reconstructions 

from 8 distinct regions, including records from different seasons, latitudes 

(e.g. tropical to polar environments) and includes both marine and 

terrestrial records. The reconstruction is consistent with previous 

reconstructions and model simulations of Northern Hemisphere mean 

temperatures over the past millennium within estimated uncertainties 

providing a reliable record of Northern Hemisphere temperature 

variability over the past1000 years to compare with palaeo-climate 

reconstructions from Lake Toyoni.  

Previous studies have provided evidence that the EASM responds to Northern 

Hemisphere climate (Guo et al., 1996, Morrill et al., 2003, Wang et al., 2005, 

Porter and Weijian, 2006, Wang et al., 2008c, Sun et al., 2012). The 

intensification of the EASM in Hokkaido is usually associated with notable 

decreases in dust input to the Arctic (Meeker and Mayewski, 2002), global 

warming (Mann and Jones, 2003) and glacial retreat (Bakke et al., 2005) (Figure 

9-4), supporting the theory that the EASM responds to Northern Hemisphere 

climate. During warmer climates, there is a decrease in sea-ice extent, snow 

accumulation and a retreat in glaciers. The reduction in sea-ice and snow 

accumulation results in a stronger EASM (Tao et al., 2004, Zhao et al., 2004). A 
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suggested reason for this is that a decrease (increase) in snow cover results in 

warmer (colder) land temperatures over the Tibetan Plateau, which enhances 

(reduces) the land-sea temperature gradient and results in a strong (weak) EASM 

(Wu and Qian, 2003).   

 

9.4 Potential climate drivers of EAWM intensification 

A strong EAWM is defined as strong northerly winds, cold temperatures on the 

Asian continent and warm SST in the tropical western Pacific Ocean (Chen et al., 

2000, Wang and Chen, 2014). Cold continental and warm oceanic conditions 

results in a high pressure system over the continent (e.g. the Siberian high; 

[SibH]) and a low pressure system over the adjacent ocean and hence a strong 

land-sea thermal contrast. A strong EAWM occurs  when there is a strong SibH 

(Ding, 1990, Zhang et al., 1997, Wu et al., 2006a), the Ural-Siberian blocking 

increases (Cheung et al., 2012) and cold surges increase resulting in strong 

northerly winds, colder winter temperatures and increased snow cover in East 

Asia (Wen et al., 2009, Sun et al., 2010, Wang et al., 2011, Li and Wang, 2012). 

 

Although Lake Toyoni is not located on the Asian continent, our study shows that 

the site is sensitive to changes in the EAWM. Multi-proxy reconstructions from 

Lake Toyoni, Japan, show that the EAWM was generally weak during the MWP 

and stronger during the LIA; in particular during the early LIA (1350-1450AD, 

1520-1600AD and 1640-1780AD). Various teleconnections (e.g. AO and ENSO) can 

amplify/dampen these components resulting in a stronger/weaker EAWM. The 

relationship between teleconnections and the EAWM is now further discussed in 

relation to our findings from Lake Toyoni. 

9.4.1 Impacts of the NAO/AO 

We find that the EAWM (highlighted in grey Figure 9-2) is more associated with 

the negative phase of the NAO/AO than the positive phase of the NAO (Figure 

9-3). The relationship between the EAWM and the AO was investigated in 

Chapter 2 using instrumental data from Hiroo weather station and shows a clear 

link between the EAWM intensification and the negative phase of the AO. 

Other studies show that the intensity of the EAWM is related to the strength of 

the SibH (Ding, 1990, Zhang et al., 1997, Wu et al., 2006a), which refers to the 
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semi-permanent pressure system that accumulates cold, dry air in northeastern 

Siberia. In turn, a strong SibH closely relates to the negative phase of the AO 

(Gong et al., 2001) and hence the negative phase of the AO has a distinct 

influence on the strength of the EAWM. The mechanism behind the influence of 

the AO on the EAWM is due to the difference in pressure between high and low 

latitudes. When the AO is in its negative phase there is high pressure in the high 

latitudes and low pressure in the lower latitudes resulting in an advection of 

polar air mass to more southerly locations (Hurrell, 1995, Thompson and 

Wallace, 1998).  An increase in cold air-masses in Asia increases snow and ice 

cover extent. Snow and ice extent also influence the strength of the SibH, and in 

turn the EAWM. Increased snow and ice increases the albedo, reduces the 

amount of solar radiation absorbed and lowers air temperatures, creating an 

enhanced SibH.   

9.4.2 Impacts of ENSO 

In addition to the NAO/AO, variability of ENSO is also an important forcing of the 

intensity of the EAWM. Notably, the intensification of the EAWM occurred 

contemporaneous with a change in ENSO conditions; from a dominant El Niño 

phase during the MWP to a dominant La Niña phase during the LIA. The 

consistency in the timing of a change of La Niña conditions and the enhanced 

EAWM suggests a relationship between ENSO and the EAWM system (Figure 9-3). 

All intensifications of the EAWM occur when there are increased La Niña years. 

This relationship between ENSO and the EAWM has been found in previous 

studies (Tomita and Yasunari, 1996, Zhang et al., 1996, Chen et al., 2000, Chen 

et al., 2013, Chen et al., 2014, Wang and Chen, 2014). A suggested reason for La 

Niña positively influencing the EAWM is due to the correlation between ENSO and 

the inter-annual variation of winter northerlies and cold surges near the South 

China Sea (Zhang et al., 1997). La Niña conditions result in cooling over the 

equatorial Eastern Pacific; however, the western Pacific is not influenced by this 

cooling and therefore remains warm during La Niña conditions (Chen et al., 

2000). During La Niña events, the occurrence of East Asian cold surges and the 

strength of the northerlies increase (Zhang et al., 1997). This triggers a decrease 

in temperature in East Asia, resulting in a large land-sea thermal contrast during 

La Niña episodes and a movement of air from the Asian continent towards Japan.  

In the instrumental record (1958-2014AD; Chapter 2), we find that the 

intensification of the EAWM is associated with a decrease in summer 
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temperatures. The relationship between low summer temperatures (as inferred 

from alkenone-based LST’s) and the EAWM intensification is demonstrated 

between 1350-1450AD in the sedimentary record. However, the EAWM 

intensification between 1520-1600AD and 1640-1780AD do not show a decrease 

in summer temperature (highlighted in grey in Figure 9-1). This is likely due to 

the strong La Niña episodes during these time periods, particularly associated 

with the EAWM intensification between 1640 and 1780AD. In the instrumental 

data we find that La Niña episodes are associated with slightly warmer summer 

temperatures (Chapter 2). As a result, La Niña episodes influence the intensity 

of EAWM (recorded as low δDHPW values at Lake Toyoni) resulting in cold winters 

with heavy snowfall. However, summer temperatures remain high (as inferred 

from alkenone-based temperature reconstructions) during the La Niña years 

In comparison, the summer temperatures are low during the EAWM 

intensification between 1350-1450AD.  This time period is also associated with a 

change from the positive to the negative phase of the PDO (Figure 9-3).  

Previous studies have suggested that the influence of ENSO on the EAWM is weak 

during the positive phase of the PDO and strong during the negative phase of the 

PDO (Wang et al., 2008a). If this is the case, the reconstructed shift from a 

positive phase to a negative phase of the PDO ~1350AD may be an important 

reason behind the strong response of the EAWM to La Niña conditions. This time 

period is also associated with an abrupt change in the EASM in other records 

(Morrill et al., 2003, Lee and Park. 2015) therefore we suggest that the influence 

of the phase change of the PDO combined with a change from El Niño to La Niña 

conditions may have resulted in monsoon failure in this region.  

9.4.3 The intensification of the EAWM and global climate 
variability 

The abrupt intensification of the EAWM (increased input of coarse-grained dust) 

occurred ~1350AD; whereas, the decrease in global temperature occurred 

~1430AD (Mann and Jones, 2003) (Figure 9-4). We find that the EAWM intensified 

~80 years before a decrease in global temperatures (Figure 9-4). Although the 

timing may be influenced by errors in the age model, for example, the error on 

the age model at 1360AD is between 1491-1213AD. However, we suggest that 

there is potentially a relationship between the strengthened EAWM over East 

Asia and the initiation and also intensification of Northern Hemisphere cooling. 

Our hypothesis is that an increase in the EAWM increases input of dust transport 
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to the Pacific and the Arctic Ocean will result in increased iron input into the 

Pacific and Arctic Oceans, which is an essential and often limiting nutrient, 

resulting in increased phytoplankton production. Increasing phytoplankton 

production will act as a natural sink for carbon dioxide from the atmosphere and 

hence result in cooler climate conditions in the Northern hemisphere. In 

addition, previous studies also suggest that the biological pump is also more 

efficient during colder climates due to the complete consumption of nutrients by 

algae in locations where a large supply usually goes unutilised (Sigman and 

Boyle, 2000).This is supported by increased dust levels in the Greenland ice core 

(Meeker and Mayewski, 2002) during the intensification of the EAWM (~1350AD) 

increased (Figure 9-5).  

 

Increased dust input will results Cooling in the Northern Hemisphere would then 

lead to a positive feedback loop between the EAWM and temperatures in the 

Northern hemisphere. For example, cooling in the high latitudes of the North 

Atlantic ocean, produce more extensive glacial conditions, which positively 

influences the intensity of the EAWM through a southward shift in the latitudinal 

position of the SibH pressure system (Chen et al., 1999b). The reconstruction of 

the SibH shows significant intensification during this time period, providing 

further evidence and winter temperature reconstructions based on historical 

documents by Ge et al. (2003) also show significant cooling. On the other hand, 

another reason for the cold temperatures ~1450AD may be due to the strong 

volcanic eruptions in 1453AD (Crowley, 2000) and low solar activity (Bard et al., 

2000). Based on climate models, 41-64% of temperature variability over the past 

1000 years is attributed to changes in solar irradiance and volcanism (Crowley, 

2000). However, the subsequent intensification of the EAWM (1550-1580-AD) also 

occurred before Northern Hemisphere cooling and resulted in a decrease in 

temperatures. Although we suggest a possible connection between the 

intensification of the EAWM leading Northern Hemisphere cooling, the 

relationship between the timing of the EAWM and Northern Hemisphere cooling 

needs further investigation to determine the leads and lags between the EAWM 

and Northern Hemisphere cooling.  

 

The transition between the MWP and the LIA (~1350AD) is associated with a time 

period of EAWM intensification. In addition to this change in atmospheric 
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processes, this transition period was also associated with changes in oceanic 

processes. For example, Bianchi and McCave (1999) use centennial-scale, 

Holocene-long North Atlantic sediment records of sortable silt that provides 

information of the strength of bottom currents, which were reduced during this 

time period (Bianchi and McCave, 1999). This suggests that the Atlantic 

Meridional Overturning Circulation (AMOC) was reduced and suggests that a 

possible connection exists between the AMOC and the EAM system. The 

connection between the AMOC and the EAM system has been previously studied 

by Sun et al. (2012). The authors suggested that the AMOC is a driver of abrupt 

changes in the EAWM and EASM systems using a coupled climate model 

simulation. When the AMOC was reduced, the heat transport northward is also 

reduced, which in turn results in the expansion of sea-ice conditions in the North 

Pacific and the Atlantic (Sun et al., 2012). In association with the cooling in the 

North Atlantic, there is a southward shift of the Intertropical Convergence Zone 

(ITCZ), significant strengthening of the EAWM and a weakening of the EASM (Sun 

et al., 2012). We see this expressed at Lake Toyoni as a cold time period.  

 

9.5 Potential climate drivers of Westerlies intensification 

Similar to the EAWM, an intensification of the Westerlies brings a cold air mass 

to Hokkaido (Fukusawa, 1999). The annual cycle of the Westerlies described by 

Kuang and Zhang (2005) and Lim and Matsumoto (2008) shows that the 

Westerlies influence the study site in July during their northward migration and 

in September during their southward migration. Multi-proxy reconstructions from 

Lake Toyoni, Japan, show that the Westerlies intensified at the study site 

between 1050-1122, 1277-1308, 1450-1520 and 1880-1945AD. We find that an 

enhancement of the Westerlies is often associated with increasing solar 

irradiance.  

 

9.5.1 Impact of the NAO/AO 

The AO is a measure of the strength of the polar vortex (stronger during the 

positive phase and weaker during the negative phase). Our results show that the 

Westerlies are enhanced when the NAO/AO is in its positive phase. The 

relationship between the positive phase of the NAO/AO and the Westerlies has 

been suggested in previous studies (e.g. Hurrell, 1995, Lee and Zhang, 2011). In 
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addition to the enhancement of the Westerlies during the positive phase of the 

NAO, the Westerlies are also located further north (Lee and Zhang, 2011). We 

suggest that when the Westerlies are located further south during the negative 

phase of the NAO, they do not influence our site to the same degree as during 

the positive phase of the NAO, when the Westerlies migrate northwards and 

their influence on this site is greatly increased. The southern migration of the 

Northern Hemisphere (NH) Westerlies has also been noted during the Last Glacial 

Maximum (LGM) (Ono and Irino, 2004). Accompanying the shift in the Westerlies 

during this time period is the EASJ, which shifted by around 3–5° of latitude 

during the LGM (Ono and Irino, 2004). The latitudinal shift of the Westerlies is 

demonstrated in Figure 9-5 (positive NAO/AO in Box A and B and the negative 

phase of the NAO/AO in Box C and D).  

 

The accompanied shift in the EASJ with the Westerlies is responsible for the 

high summer temperatures (based on alkenone-temperature reconstructions) 

often recorded during time periods of strong Westerlies (highlighted in blue 

Figure 9-1).  An enhancement of the Westerlies, like the EAWM, also results in 

an increase in cold air-masses to Hokkaido (Fukusawa, 1999), and hence low 

δDHPW values. However, unlike the enhancement of the EAWM, we find that an 

enhancement of the Westerlies does not necessarily accompany cold summer 

temperatures. In fact, as previously stated, time periods associated with an 

enhancement of the Westerlies (increased in fine-grained dust and more 

depleated δDHPW values) are also associated with slightly warmer summer 

temperatures due to the northward position of the EASJ. The northward 

location of the EASJ results in a stronger EASM and hence warmer summer 

temperatures (Figure 9-5).  

 

The findings from the present study, therefore, show that there are strong 

differences between the climate in Hokkaido when the EAWM and the Westerlies 

are enhanced. This is significant because previous studies have grouped the 

EAWM and the Westerlies to occur in sync with one another (e.g. Yamada and 

Fukusawa, 1999, Yamada, 2004), whereas we find that although these systems 

both bring cold air-mass to Japan, they behave independently from each other 

and the mechanisms responsible for their intensification are fundamentally 

different. For example, a key difference is the phase of the NAO/AO. When the 
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AO is positive, the Westerlies are enhanced and located further north and the 

EAWM is weakened (Figure 9-5). On the other hand, when the AO is negative, the 

Westerlies are weaker, which strengthens the advection of polar air southward, 

resulting in a cooler air temperatures (Hurrell, 1995, Thompson and Wallace, 

1998) and a stronger SibH (Gong et al., 2001).  The EAWM is therefore intensified 

and moves further south (Figure 9-5).  

 

9.5.2 Impact of ENSO 

Unlike the phase of the NAO/AO, ENSO is not a strong an influence on the 

intensity of the Westerlies, since they are intensified during both El Niño and 

La Niña. However, we suggest that ENSO has an influence on the location (e.g. 

latitude) of the Westerlies. For example, we find that when there is a positive 

phase of the NAO/AO and the Westerlies are intensified and there is also El Niño 

conditions (e.g ~1200AD), the northern limit of the Westerlies is extended (Box 

A; Figure 9-5). During time periods when there is La Niña conditions and a 

positive phase of the NAO/AO, the Westerlies are located slightly south 

compared to time periods with El Niño conditions and a positive phase of the 

NAO/AO (box B; Figure 9-5). We find that the Westerlies are located directly 

over our study site during these time periods and have a very strong influence on 

the climate in Hokkaido. During the negative phase of the NAO/AO, the 

influence of the Westerlies at Lake Toyoni is weakened regardless of the state of 

ENSO (Figure 9-5).   

 

9.5.3 The Westerlies and global climate variability 

The moisture source for the Westerlies is the Atlantic Ocean. When the NAO is 

in its positive phase and the Westerlies intensify, there is an increased transport 

of a warm and moist maritime air-mass over Northern Europe and Scandinavia 

and hence there are warm and wet conditions in this location (Hurrell and Loon, 

1997). On the other hand, Southern Europe and the Mediterranean experiences 

dry conditions under a positive NAO phase (Hurrell and Loon, 1997). As a result, 

we find that time periods associated with an intensification of the Westerlies 

are also associated with a retreat of glaciers in Norway (Figure 9-4) due to the 

increased transport of the warm, maritime air-mass via the Westerlies. The 

Westerlies therefore link the climates of the North Atlantic and Northern Japan.  
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We also find that the enhancement of the Westerlies is associated with an 

increase in carbon dioxide (CO2) levels (Figure 9-4). There are two possible 

reasons for the elevated CO2 levels during these time periods; firstly, the 

strengthened Westerlies promoted the release CO2 or secondly, the release of 

CO2 (and hence warming) increased the strength of the Westerlies. In the 

Southern Hemisphere, the poleward movement of the Westerlies promoted 

upwelling and the release of CO2 from the ocean (Anderson et al., 2009, 

Toggweiler, 2009). We suggest that the stronger winds during time periods when 

the Westerlies intensified may have also promoted ocean upwelling in the 

Northern Hemisphere and hence the release of old carbon. This has implications 

for future climate variability because it may accerate warming in this region.   
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Figure 9-3: Variations in δDHPW compared with global climate modes. From top to bottom 

the NAO index by Trouet et al. (2009), the PDO index by (MacDonald and Case, 2005), ENSO 

index reconstruction (Yan et al., 2011a); high values are La  Niña and low values are El Niño, 

Solar Irradiance (w/m
2
) by Bard et al. (2000) and the variations in δDHPW from Lake Toyoni, 

Japan (present study). 
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Figure 9-4: Variations in δDHPW compared with global climate reconstructions. Going from top to 

bottom; a CO2 record (50-year smoothed) (Frank et al., 2010), a dust record from a Greenland ice-core 

(Meeker and Mayewski, 2002), a glacier advance and retreat record (Bakke et al., 2005), a Northern 

Hemisphere surface temperature reconstruction (Mann and Jones, 2003) and the present δDHPW data. 
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9.6 Combined impacts of the NAO/AO and ENSO 

ENSO and the NAO/AO have been identified as key drivers of both global and 

regional climate variability. We find that ENSO and NAO/AO separately influence 

the EAM and the Westerlies in Hokkaido, as previously discussed. The combined 

influence of ENSO and the NAO/AO is now discussed in relation to the climate in 

Hokkaido.   

 

ENSO and the NAO/AO are in-phase when  El Niño and the positive phase of the 

NAO/AO are combined (referred to as the positive in-phase; Box A, Figure 9-5) 

and when La  Niña and the negative phase of the NAO/AO are combined 

(referred to as the negative in-phase; Box D, Figure 9-5). ENSO and the NAO/AO 

are out of phase when Niño and the positive phase of the AO are combined Box 

B, Figure 9-5) or when La Niña and the positive phase of the NAO/AO are 

combined (Box C, Figure 9-5).  The combined link between the NAO/AO and 

ENSO on the EAWM has been previously investigated by Cheung & Zhou. (2012). 

Cheung & Zhou. (2012) found a distinct relationship when the AO and ENSO were 

negative in-phase and the intensity of the EAWM. When the AO and ENSO were 

negative (positive) in-phase, they found that the SibH was stronger (weaker), 

the air-temperatures were lower (higher) in East Asia and there was more (less) 

Ural-Siberian blocking and hence a stronger (weaker) EAWM. Our results also 

show a clear relationship between the combined relationship of the NAO/AO and 

ENSO and the intensity of the EASM, EAWM and the Westerlies. We find that 

when the  NAO/AO and ENSO are positive in-phase (e.g. positive AO and El Niño), 

the EAWM, the EASM limit and the EAJS is located further north and as a result 

there is a stronger EASM, weakening of the EAWM and the Westerlies are located 

further north (Box A, Figure 9-5). We also find that when the NAO/AO and ENSO 

are negative in-phase (e.g. negative AO and La Niña; box D, Figure 9-5) the 

EAWM, the EASM limit and the EAJS is located further south resulting in a weaker 

EASM, stronger EAWM and the Westerlies being located further south and hence 

not influencing the higher latitudes of Japan such as Hokkaido.  When ENSO and 

the NAO/AO are out of phase (e.g. La Niña and positive phase of the NAO/AO), 

the EAWM, the EASM limit and the EAJS is located to the north however not as 

far north as when ENSO and NAO/AO are positive in-phase (box A, Figure 9-5). 

ENSO and the NAO/AO are also out of phase when there are El Niño and the 
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negative phase of the NAO/AO (Box C, Figure 9-5), during these time periods the 

EAWM the EASM limit and the EAJS is located slightly south of the study site and 

therefore the influence of the EAWM is stronger than the EASM during these time 

periods.  

 

Figure 9-5: Schematic diagram of the combined influence of ENSO and the NAO/AO. Box A represents El 
Niño and the positive phase of the NAO/AO; during these time periods the EAWM, the EASM limit and 
the EAJS is located further north. Box B represents La Niña and positive phase of the NAO/AO; during 
these time periods the EAWM, the EASM limit and the EAJS is located to the north however not as far 
north as box A conditions. Box C represents El Niño and the negative phase of the NAO/AO; during 
these time periods the EAWM the EASM limit and the EAJS is located slightly south of the study site. 
Box D represents La Niña and negative phase of the NAO/AO; during these time periods the EAWM, the 
EASM limit and the EAJS is located further south. The Blue dotted lines represent the Westerlies, red 
dotted line represents the EASM limit and the red dot represents Lake Toyoni (study site).  

 

9.7 Solar irradiance and climate variability in Hokkaido 

Our multi-proxy climate records show strong similarities to global temperature 

reconstructions suggesting a relationship between global temperature and Asian 

climate variability. However, our records follow solar variability more closely 

than global temperature suggesting that climate variability in Hokkaido responds 
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more strongly to changes in solar irradiance than global temperature. The link 

between solar irradiance and global temperature is not clear in the published 

literature. For example, a recent study suggested that the influence of solar 

forcing on global climate is minor (Schurer et al., 2014), whereas, a climate 

model study suggest  that 41-64% of Northern Hemisphere temperature 

variability over the past 1000 years is attributed to changes in solar irradiance, 

as well as, volcanism (Crowley, 2000). However, the mechanisms involved in the 

influence of solar irradiance and global climate is currently not fully understood. 

The amount of change in solar irradiance is relatively small for the large scale 

temperature recorded and therefore changes in solar irradiance therefore must 

influence feedback loops, which amplify climate changes and transmit them 

globally.  

We find a strong relationship between solar irradiance and the EAM and the 

Westerlies at our site. The link between increased solar irradiance and the EAM 

is well documented in previous studies (e.g. Dykoski et al., 2005, Wang et al., 

2005, Xiao et al., 2006, Liu et al., 2009b, He et al., 2013, Sagawa et al., 2014). 

Similar to their findings, we found that the EAWM increased in intensity during 

low solar irradiance and the EASM and increased in intensity when solar 

irradiance increased (Figure 9-3). We also found a connection between increases 

in solar irradiance and the intensification of the Westerlies.  

It is possible that the strong relationship between solar irradiance and climate 

variability in Hokkaido is due to the influence for solar activity on the EASJ. A 

modelling study revealed that during time periods of increased solar irradiance, 

the stratosphere becomes warmer and this causes a broadened and weakened 

Hadley cell and a poleward shift in the midlatitude Ferrel cell and EASJ, (Haigh, 

1996, Haigh, 1999). The movement of the EASJ influences both the EAM and also 

the Westerlies, as previously discussed. A poleward shift in the EASJ increases 

the intensity of the EASM in Hokkaido resulting in warmer and wetter conditions. 

In addition, the westerlies are therefore positioned over Hokkaido and can 

influence the study site. Conversely, a southward migration of the EASJ during 

low solar activity increases the influence of northerly air-mass to the study site 

and hence an intensification of the EAWM. The broadened and weakened Hadley 

cell and poleward movement of the mid-latitude Ferrel Cell during high solar 

irradiance also occurs during El Niño conditions, which also has a positive impact 
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on the EASM. A poleward movement of the Ferrel Cell will result in strong 

advection of warm air and hence warmer conditions.  

In addition to the effect of stratosphere warming on the EASJ, the warming 

associated with increased solar irradiance also results in an increase in land-sea 

thermal contrast. The EAM is driven by seasonal changes in the heating contrast 

between the Pacific Ocean and the Asian continent and the pressure systems 

associated with these systems (mainly the SibH in winter and the NPSH in 

summer).  The thermal contrast between the Asian continent and the North 

Pacific Ocean is defined as the Asian-Pacific Oscillation (APO) Index, which has a 

close link to changes in Northern Hemisphere air temperatures and also solar 

activity (Zhou et al., 2011). Solar activity is a forcing for the APO index, because 

increased solar activity heats the land faster than the ocean causing increased 

thermal contrast between land and sea, and hence increased solar irradiance 

contributes towards higher APO index values. When the temperature contrast 

increases during summer (high APO index), the low-pressure system over the 

Asian continent becomes stronger, which intensifies the high-pressure system 

over the NW Pacific that then migrates further north (Zhou et al., 2011). The 

movement of this high-pressure system results in an increased influence of the 

southwesterly monsoonal winds from the Pacific Ocean to Hokkaido. The 

influence of solar activity on the land-sea thermal contrast is based on amplified 

solar radiation causing increased warming the land over middle and high 

latitudes compared to lower latitudes (Zhou et al., 2011). In addition, land 

warms at a faster rate than oceans promoting a temperature different between 

the land and ocean (Zhou et al., 2011). Moist air is transported from the ocean 

to the land resulting in warm and wet conditions in Hokkaido, which enhances 

the influence of the EASM in this region. When solar activity decreases, there is 

less heating of the land resulting in a higher-pressure system developing over 

Siberia and as a result the EAWM strength increases (Kim et al., 2013). The 

findings are supported by model simulations of the decadal-centennial variations 

of the EASM over the past 1000 years (Man et al., 2012). The model was driven 

by reconstructions of solar irradiance changes and they found that the land–sea 

thermal contrast change caused by the effective radioactive forcing leads to 

variability in the EASM.  During high solar irradiance, there is a ““warmer land–

colder ocean” anomaly pattern and southerly wind patterns, which this results in 
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a strong EASM. Although the ocean does not cool during higher solar irradiance, 

the magnitude of warmer is weaker than that over the land, so the land–sea 

thermal contrast increases (Man et al., 2012). During low solar irradiance, there 

is a “colder land–warmer ocean” anomaly pattern and northerly wind patterns, 

resulting in a weak EASM (Man et al., 2012). Similarly to time period of high solar 

irradiance, low solar irradiance does not cause warming of the ocean but rather 

the magnitude of cooling is larger over the land (Man et al., 2012).  

Another potential influence of changes in solar irradiance and climate in 

Hokkaido is based on the influence of solar irradiance on teleconnections. The 

influence of the sun on a global level is significantly lower than region level 

(Shindell et al., 2001). A key reason for this is due to the effect of solar 

irradiance on the NAO/AO (Shindell et al., 2001, Boberg and Lundstedt, 2002). 

Changes in solar forcing can cause shifts in the NAO/AO patterns, with increases 

in solar forcing resulting in a positive AO phase and decreased solar forcing 

causes shifts to a negative AO phase (Shindell et al., 2001). We found in this 

study that the NAO/AO has an influence on the Westerlies, the EAWM ad to a 

lesser degree the EASM. A decrease in solar activity causes a shift to negative 

phase of the NAO/AO, which enhances the EAWM. On the other hand, an 

increase in solar irradiance causes a shift to a positive NAO phase and hence 

enhances the Westerlies.  

9.8 Summary 

Table 9-1: Summary table of the key drivers of the EASM, EAWM and Westerlies 
intensification in Hokkaido, Japan.  

 Key drivers 

EASM intensification Positive phase of the NAO/AO, negative phase of the PDO, and El 
Niño conditions.  

EAWM intensification Negative phase of the NAO/AO and La Niña conditions. 

Westerlies intensification Positive phase of the NAO/AO 
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9.9 Conclusions 

In this study, we generated and reported on multi-proxy climate reconstructions 

from Lake Toyoni, Japan, which documents both the Westerlies and also the EAM 

over the past 1000 years. This is a key time period as it is associated with two 

globally recognised climate events; the MWP and the LIA that are frequently 

used to understand the effects of climate extremes at local and global scales. 

During the MWP, we find that the EASM dominated and the EAWM was 

suppressed based on higher, precipitation, productivity and low dust input. 

During the LIA, the influence of the EAWM dominated; prominent dust rich 

intervals and low δDHPW and productivity reflect an intensified EAWM input. The 

EASM and the Westerlies also intensified during the LIA. 

 

A key finding from this study is that there is an anti-phase relationship between 

the EASM and the EAWM (e.g. the intensification of the EASM and weakening of 

the EAWM and vice versa) and that the EAWM and the Westerlies vary 

independently from each other, rather than coincide as previously suggested in 

other studies.  

 

This study also provides insights on the teleconnections influencing the climate 

modes in Hokkaido (e.g. the EAM and the Westerlies). It is evident that the EASM 

is greatly influenced by position and intensity of the WPSH and El Niño events. 

When there is warming in the Western Pacific, e.g. during El Niño events, the 

WPSH shifts westward and as a result impacts the amount of monsoon 

precipitation in Hokkaido.  The EAWM, on the other hand, is greatly influenced 

by La Niña events. The intensity of the EAWM is controlled by the negative phase 

of the AO and the intensity of the SibH, which in turn is regulated by the extent 

of Arctic ice. The Westerlies, on the other hand, are mainly controlled by the 

AO/NAO. During the positive phase of the NAO, the Westerlies are stronger and 

located further north and play a significant role in the climate of Hokkaido. 

ENSO and the NAO/AO have been identified as key drivers of global climate 

variability. We find that ENSO and the NAO/AO also significantly influence the 

local climate of Hokkaido. The combined impacts of ENSO and the NAO/AO show 

that when ENSO and the NAO/AO are in phase (e.g. NAO/AO- La Niña and 

NAO/AO+ El Niño), the climate behaves in a predictable way. For example, when 
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during NAO/AO- La Niña conditions, the EAWM intensifies, the EASM weakens and 

there are also weak Westerlies. The SibH intensifies and migrates further south, 

which increases blocking and cold surges. As a result, the EAWM and the EASM 

limit migrate south. This forces the weakened Westerlies to also migrate south. 

As a result, there is cold winter and summer temperatures, low summer rainfall 

in this region. In the opposite case, NAO/AO+ El Niño, we find that the EAWM 

weakens, the EASM intensifies and the Westerlies are also stronger. The 

Northern limit of the EASM migrates north and Hokkaido becomes under the 

influence of the North Pacific High. At the same time, the Ferrel Cell is 

activated by the active Hadley Cell in El Niño years and strong Westerlies inhibit 

the intensification of the SibH. The combination of the weakened SibH and the 

warming associated with the northward movement of the EASM results in a weak 

EAWM. Therefore the inverse relationship between the EAWM and the EASM 

occurs when the NAO/AO and ENSO are in phase with each other; with a strong 

EAWM and weak EASM occurring when there is NAO/AO- La Niña conditions and a 

weak EAWM and strong EASM occurring when there is NAO/AO+ El Niño 

conditions. The climate conditions when the NAO/AO and ENSO are out of phase 

results in less predictable climate conditions. We find that a combination of La 

Niña and positive phase of the NAO/AO conditions results in the EAWM, the EASM 

limit and the EAJS is located to the north however not to the same extent as 

when El Niño and the NAO/AO are positive in-phase. El Niño and the negative 

phase of the NAO/AO results in the EAWM, the EASM limit and the EAJS being 

located slightly south of the study site. 

 

 

 
 

 
 
 
 
 
 
 
 
 



 

 
 

 
 
 
 

10  

Conclusions and future work 

The EAM drives changes in temperature and precipitation in East Asia via the 

changes in ocean-atmospheric system. The EAM also has a strong interaction 

with other ocean-atmospheric systems including the ENSO, NAO/AO and the 

PDO. The intensity of the EAM has not been constant over the past 1000 years 

and this has led to significant climate variability during this time period. In order 

to understand future climate change better, especially under a global warming 

scenario, it is necessary to have an understanding of how and why the natural 

climate has varied in the past. 

The general aim of this thesis was to test the hypothesis: 

The climate in Northern Japan was strongly influenced by the intensity of 

the EAM (EASM and the EAWM) and the Westerlies over the past 1000 years. 

Climate variability was reconstructed using a multi-proxy approach from a sediment 

core taken from Lake Toyoni.  The multi-proxy study is the most comprehensive 

and high-resolution, organic biomarker based study of climate change in 

Northern Japan over the past 1000 years. To compliment the biomarker based 

paleo-environmental reconstruction, the sediment core (TY09) was also XRF 

scanned to provide information on terrestrial and biological processes in Lake 

Toyoni. In addition to Lake Toyoni being located on the northern boundary of the 

limit of the EASM and hence being sensitive to the intensification of the EASM 
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Lake Toyoni. In addition, Lake Toyoni is also not influenced by the ISM, whereas 

other records of the EASM have this complication. Futhermore, Lake Toyoni also 

provides a key location for investigating the variability of the EAM because of 

the following reasons: 

1. Lake Toyoni seasonally stratifies resulting in anoxic conditions in the 

sediments, resulting in preservation of organic matter. (Chapter  4) 

2. Lake Toyoni is a hydrological closed lake and therefore is strongly 

influenced by terrestrial input via wind rather than fluvial input. The 

EAWM transports coarse-grained dust towards Hokkaido, therefore, 

investigations of the particle size variability in the sedimentary record 

provides valuable information on the EAWM (Chapter 5). 

3. The surface temperatures of Lake Toyoni correspond to air-temperature; 

which in turn is driven by changes in the EAM. Therefore temperature 

reconstruction of Lake Toyoni provides information on past air 

temperatures and hence the EAM over the past 1000 years (Chapter 7). In 

order to study and develop the use of the alkenone biomarker in Lake 

Toyoni, we also completed DNA analysis to determine the identity of the 

alkenone producer(s) in Lake Toyoni (Chapter 6). 

4. The catchment surrounding Lake Toyoni is densely covered in vegetation. 

The vegetation in the catchment uses environmental water (precipitation 

and snow-melt), which is supplied via the EAM. The D/H of higher plant 

waxes preserved in Lake Toyoni therefore provides information on the 

variability of the EAM over the past 1000 years (Chapter 8).  

By combining the data generated from XRF, alkenone palaeothermometry and 

the δD(HPW) reconstructions, we provide valuable information on the EAM and the 

Westerlies, including; the timing of intensification and weakening, the 

teleconnections influencing them and the relationship between them. During the 

Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM 

was suppressed, whereas, during the Little Ice Age (LIA), the influence of the 

EAWM dominated with time periods of increased EASM and Westerlies 

intensification.  The key findings were that the El Niño Southern Oscillation 
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(ENSO) significantly influenced the EAM; a strong EASM occurred during El Niño 

conditions and a strong EAWM occurred during La Niña. The North Atlantic 

Oscillation, on the other hand, was a key driver of the Westerlies intensification; 

strengthening of the Westerlies during a positive NAO phase and weakening of 

the Westerlies during a negative NAO phase. Another  key finding from this study 

is that our data support an anti-phase relationship between the EASM and the 

EAWM (e.g. the intensification of the EASM and weakening of the EAWM and vice 

versa) and that the EAWM and the Westerlies vary independently from each 

other, rather than coincide as previously suggested in other studies.  In the 

following section the main results of this PhD research are summarised. In 

addition we also discuss further work, which has arisen as a result of this study.  

 

10.1 Chapter 4: Decadal-resolved terrestrial and 
biological input into Lake Toyoni.  

The aim of this chapter was to determine palaeoproductivity variability over the 

past 1000 years in Lake Toyoni. Productivity variability over the past 1000 years 

was determined using a multi-proxy approach including; MS (proxy for magnetite 

preservation), Si/Rb (proxy for diatom productivity), Inc/Coh (proxy for OM), 

and molecular composition of n-alkanes; CPI, ACL and Paq (proxies for source of 

n-alkanes, temperature and productivity, respectively). The key findings were: 

1. High productivity during the Medieval Warm Period (MWP) (~1000–1300AD) 

based on; low magnetic susceptibility and high OM content of sediments 

was high suggesting strong thermal stratification and hence warm 

conditions. High Si/Rb suggesting increased productivity and high Inc/Coh 

suggesting increased precipitation. The combined results suggest a 

weakening of the East Asian Winter Monsoon (EAWM) and intensification of 

the East Asia Summer Monsoon (EASM) during the MWP.  

2. Low productivity during the early Little Ice Age (LIA) (1300-1600AD) as 

inferred from a decrease in productivity (as inferred from low Si/Rb and 

high C/N ratio values). The combined results suggest increased ice-cover 

on the lake due to the strengthening of the EAWM. The increased ice-

cover reduces the time period of the bloom in the lake and hence 

reducing productivity. The late LIA (1600-1800AD) was characterised by 
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higher productivity than the early LIA based on an enhancement a sharp 

decrease in C/N ratio values and an increase in Si/Rb ratio values 

suggesting an increase in productivity (Figure 9-1), which is attributed to 

a change in the Pacific Decadal Oscillation (PDO) from positive to 

negative. The negative phase of the PDO is characterised by wetter 

conditions in Hokkaido, which promotes productivity in the lake through 

increased run-off.  

3. Evidence of an abrupt population increase in Hokkaido (~1870AD). We 

found that the rapid environmental change over the past 100 years was 

consistent with the significant population change in Hokkaido at the same 

time. We suggested that the increased nutrients, associated with an 

increase in human activity, led to an increase in aquatic production in the 

lake (e.g. submerged and floating macrophytes and also algae). In turn, 

an increase in productivity resulted in anoxic sediments and stimulated a 

large increase in bacterial growth in the sediments. 

10.2 Chapter 5: Assessing the contribution of dust from 
global (Westerlies) and regional (EAWM) wind 
patterns  

The aim of this chapter was to determine the contribution of dust from global 

(Westerlies) and regional (EAWM) wind patterns. The contribution of dust into 

Lake Toyoni was determined by the Ti/Rb proxy. The contribution from the 

Westerlies and the EAWM was separated based on the fact that the grain size of 

the dust would be fine and coarse, respectfully. The main findings were: 

 

1. The EAWM increased in intensity between 1450-1500AD and 1550-1650AD. 

The intensity of the EAWM was controlled by temperature in the source 

regions as well as the strength of the Siberian high (SibH). When the SibH 

was strong and temperatures were colder, the EAWM intensified, bringing 

more coarse-grained sediments to Lake Toyoni. The EAWM weakened 

between 1700-1800AD, which was also associated with a decrease in the 

intensity of the SibH.  
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2. The Westerlies increased between 1050-1135AD during the MWP, between 

1500-1550AD during the LIA and between 1800-1920AD during the CWP, 

which are all associated with the positive phase of the NAO/AO.  

 

 

10.3 Chapter 6: 18S rDNA analysis of the alkenone 
producer(s) in Lake Toyoni 

The aim of this chapter was to identify the alkenone producer(s) in Lake Toyoni 

using 18S rDNA analyses of planktonic, phototrophic algae that are preserved in 

the surface sediment. The key findings were 

1. Phylogenetic analyses of the rDNA sequences suggest that alkenones are 

produced by a single haptophyte species within the class 

Prymnesiophyceae (order Isochrysidales). This species represent a new 

taxon of haptophyte algae that occupies a phylogenetic clade with the 

BrayaSø Greenland lake haptophyte, which is distinct from the well-

studied marine alkenone producers Emiliania huxleyi, Gephyrocapsa 

oceanica and coastal alkenone producers Isochrysis galbana and Chrysotila 

lamellosa.  

2. The Lake Toyoni alkenone-producer shares a distinct phylotype with a 

haptophyte reported from water filter samples collected in Lake BrayaSø, 

Greenland (D'Andrea et al., 2006; DOI: 10.1029/2005JG000121). Similarity 

between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø 

provides a basis for applying the Greenland lake temperature calibration.  

10.4 Chapter 7: Alkenone-based temperature 
reconstructions from Lake Toyoni 

The aim of this chapter was to reconstruct past water temperatures over the 

past 1000 years from Lake Toyoni Japan. The key findings were: 

1. Surface water temperatures in Lake Toyoni correspond to air 

temperatures therefore the alkenone-based temperatures from Lake 

Toyoni reflect changes in air-temperatures and hence variability of the 

EAM and the NAO/AO. The similarities between the alkenone-based 
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temperature reconstruction and published records on the EASM provide 

evidence for Lake Toyoni recording a strong EAM signal and is also 

influenced by the phase of the NAO/AO.  

2. Temperatures during MWP were generally warm and the EASM was 

intense, whereas, the onset of the LIA recorded a distinct cooling event, 

which has been attributed to monsoon failure. As a result of the monsoon 

failure during this time period, the conditions were very cold and dry 

during summer in Hokkaido. The later part of the LIA (1470-1800AD) was 

characterised by warmer temperatures compared to the onset of the LIA. 

The past 200 years is characterised by warming in the 1800’s and a 

decrease in temperature towards modern day temperatures. It is 

suggested that the EASM has weakening over the past 100 years in 

Hokkaido, Japan; possibly as a result of human-induced climate change.   

3. We found evidence for strong relationship between the frequency of 

famines and temperature in Japan. During time periods with cold 

summers, the frequency of famines in Japan increases. This demonstrates 

that natural forcing mechanisms, without modern human activities, can 

also lead to strong climate variability and also strongly influence society 

through agriculture loss.  

10.5 Chapter 8: Hydrogen isotopic composition of higher 
plant waxes in the catchment and down-core 
sedimentary records of Lake Toyoni 

The aim of this chapter was determine the controlling factors on the hydrogen 

stable isotopic values (δD) of n-alkanes derived from higher plant waxes (δDHPW) 

in the catchment of Lake Toyoni and reconstruct hydrological variability over the 

past 1000 years. The main results were: 

1. The δDHPW are primarily controlled by the δD of the source water taken up 

by the plant during photosynthesis. As a result the δDHPW proxy has been 

successfully used to reconstruct the δD of precipitation (δDPRECIP. The 

δDPRECIP in Hokkaido is controlled by temperature and the source of the 

precipitation, which in turn is controlled by the EAM. During winter, 

temperatures are low and the source of the precipitation is from the Asian 
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continent; this results in low δDHPW values. During summer, temperatures 

are high and the source of the precipitation is from the Pacific Ocean; this 

results in high δDHPW values. The difference between summer and winter 

δDPRECIP values is large; average summer  δDPRECIP values  are -52.5‰ and 

average winter δDPRECIP values  are -77‰. This large difference in δDPRECIP 

values (24.5‰) allows the contribution from the EASM (higher δDHPW 

values) and the EAWM  (lower δDHPW values) to be separated in the down-

core sedimentary record. 

2. The apparent fractionation between δDPRECIP and the δDHPW was calculated 

to be -130‰. Based on the large difference between summer and winter 

δDPRECIP values, we suggested that values above -55‰ were an 

intensification of the EASM and values below -72‰ were an intensification 

of the EAWM. Based on this, the EAWM intensified briefly ~1156AD, 1438-

1446AD and 1655-1688AD and the EASM intensified 1082-1141AD, 

~1163AD, ~1192AD, ~1244AD, 1347-1361AD, 1615-1633AD, 1791-1820AD. 

~1925AD and 1954-1963AD. 

3. The EAM intensity shows a clear resemblance to changes in solar 

irradiance; with the EASM increasing in intensity during solar maxima and 

the EAWM increasing in intensity during solar minima. In addition, we 

found that the EASM was strongly influenced by El Niño conditions and the 

EAWM was influenced by the negative phase of the NAO/AO. An inverse 

relationship exists between the EASM and the EAWM; when the EASM 

intensifies, the EAWM weakens and vice versa. This is likely caused by the 

variations in solar irradiance 

4. High solar irradiance and positive AO (NAO) during the MWP resulted in 

key conditions for an intensified EASM, as well as, a strong Okhotsk High. 

Although the EASM was strong during this time period, the presence of the 

intensified OH during the MWP resulted in a reduced influence of the 

EASM in Hokkaido compared to other records within in the EAM domain.  

5. Within the LIA, the EAWM enhanced in the 15th century and the 18th 

century associated with the time periods of the Spörer Minimum and the 

Maunder Minimum, respectively. The cooling during the LIA was disturbed 
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with an enhancement of the EASM leading in the 1600’s. The increased 

influence of the EASM during this time is likely associated with the 

negative phase of the PDO enhancing the strength of the North Pacific 

Subtropical High (NPSH).  

6. Over the past 200 years, the EASM was strong between 1800-1820AD and 

1900-1963AD and slightly weaker between 1820-1900AD. Over the past 

~50 years, we found a decrease in the intensity of the EASM and 

attributed this change as a result of human-induced climate change.  

 

10.6 Future work 

This research could be further developed in a number of ways: 

The present study uses a temperature calibration by D’Andrea et al. (2011) 

based on the fact that the alkenone producer in Lake Toyoni is the same as the 

alkenone producer in Greenland lakes. To improve this calibration, a site-

specific calibration can be developed filtering the water column for alkenones 

and recording the temperature of the water column at the same time. In 

addition, filter samples from Lake Toyoni would also determine the timing of 

alkenone production in the lake. This was initially a key objective for the 

current PhD research, and filter samples were taken on a monthly basis from 

0m, 5m, 10m and 15m in Lake Toyoni. However, only 1L of water was filtered 

and the alkenone concentrations were too low to be detected. A filtering 

campaign at Lake Toyoni, in order to develop a site-specific temperature 

calibration for Lake Toyoni and to determine the timing of alkenone production, 

would improve the temperature reconstruction at this site. Following on from a 

site-specific calibration at Lake Toyoni, a species specific calibration can also be 

developed using culturing. This is partly in progress by Prof. Yoshihiro Shiraiwa 

at the life and environmental sciences department at Tsukuba University, Japan.  

In addition, we found that there was an inverse relationship between the EASM 

and the EAWM and also that the EAWM and the Westerlies were distinct from 

each other. We also identified that ENSO exerted a key control on the EAM and 
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that NAO influences the intensity of the Westerlies. Based on the findings from 

this research, we developed a schematic diagram of the combined influence of 

ENSO and the NAO/AO on the EAM and the Westelies in Hokkaido, Japan. 

Following on from this study, modelling simulations will provide further 

clarification on the combined influence of ENSO and the NAO in Japan and also 

further afield.  

 

10.7 Future implications 

A key finding of this thesis was that solar irradiance is a key driving force in the 

climate in Hokkaido, Japan. However, the current solar forcing is decreasing in the 

Northern Hemisphere. Based on the findings in this work, we would expect a 

strengthening of the EAWM or/and a weakening of the EASM. The IPCC report found 

that the EASM and the EAWM have both experienced inter-decadal scale weakening 

since the 1970’s. The IPCC report has also found that temperature has increased in 

Asia, and will continue to rise, due to anthropogenic induced warming. Therefore an 

understanding on how anthropogenic induced warming in Asia will influence the EAM 

and Westerlies in the future is required. 

Another key finding in this thesis was that the positive phase of the NAO 

strengthened the Westerlies. We also suggested that the stronger winds during 

time periods when the Westerlies intensified may have also promoted ocean 

upwelling in the Northern Hemisphere and hence the release of old carbon. This 

has implications for future climate variability because climate models project 

that there will be more occurrences of the positive phase of the NAO in the 

future. Furthermore, the Intergovernmental Panel on Climate Change (IPCC, 

2013; chapter 11) predict with medium confidence that the Westerlies will shift 

polewards in the twenty-first century based on climate models (Yin, 2005). This 

suggests that there will be an enhancement of the Westerlies in the future.   
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10.8 Concluding remarks 

This thesis research represents a detailed multi-proxy, multi-disciplinary, paleo-

climate study from Lake Toyoni, Hokkaido, Japan. All proxies, to a certain 

degree, have uncertainties associated with them due to the degree of 

preservation in palaeo-climate archives and also due to complications with other 

environmental factors. The use of a combination of proxies across a range of 

disciplines when addressing questions relating to past climate variability reduces 

these uncertainties. A multi-proxy approach revealed how productivity (Chapter 

4) and wind patterns (Chapter 5) varied over the past 1000 years. In addition, 

the use of a proxy from another discipline (molecular biology) provided 

information on the identity of alkenone producer within Lake Toyoni (Chapter 

6), which ultimately improved the applicability of alkenone-based temperature 

reconstructions from this site (Chapter 7). Furthermore, the isotopic composition 

of higher plant waxes provided key information on hydrological variability over 

the past 1000 years (Chapter 8).  
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