

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

On The Utilisation of Persistent Programming
Environm ents

Richard Cooper

A thesis submitted to the Faculty of Science,
University of Glasgow

For the degree of Doctor of Philosophy
September, 1989

© R. L. Cooper, 1989

ProQuest Number: 10999281

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10999281

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration

The material presented in this thesis, except where stated below, is the
product of my own independent research carried out at the Department of
Computing Science, University of Glasgow under the supervision of
Professor Malcolm Atkinson. Sections 4.2, 4.4, 6.1, 7.1 and some of section
4.1 represent work carried out by other workers in the persistent
programming projects, which is used in this thesis to elicit a common
methodology. Any published or unpublished material used by me has been
given full acknowledgement in the text.

Acknowledgements

I would like first of all to thank ICL Ltd. for their financial support for
the major part of this work.

I would also like to acknowledge the assistance of my colleagues in the
PISA project at Glasgow who proved stimulating co-workers: Jack Campin,
who so often finds a simple way to put a complex idea, Paul Philbrow, who
was always eager to fix problems and facilitate other people’s work, and
Francis Wai, a much-interrupted room-mate. My indebtedness extends to
our colleagues at the University of St. Andrews for many useful
conversations, for their excellent hospitality and for providing PS-algol
systems which while being experimental exhibited a remarkable degree of
robustness and efficiency. In particular, I would like to acknowledge the
example of A1 Dearie, both for introducing me to diving and for the title for
the thesis borrowed from him (an indication of the quality I would like to find
in my own work), and of Professor Ron Morrison for illuminating shafts of
sanity when the murky waters of confusion thickened.

I would also like to acknowledge my other colleagues in Glasgow too
numerous to mention in total, but in particular David Harper, Phil Gray,
Kevin Waite, Kieran Clenaghan, Phil Trinder and Ray Welland, from each of
whom I gained insights into some part of the work presented here. Some of
the work was performed collaboratively with Djamel Abderrahme and
Zhenzhou Qin, whose collaboration I acknowledge with gratitude. The
work in Chapter 8 benefited both from the advice of Dr. Chris Marlin and
from many discussions with David Kerr, while Prof. John McLeish gave me
a great deal of confidence boosting assistance at the beginning of my thesis.

My principal thanks however are due to two people. My supervisor,
Malcolm Atkinson, showed support for me and a commitment to my work
far exceeding all reasonable expectation. Every meeting with him has
resulted in some growth in my research work and my working life. My wife,
Rosemary McLeish, has also shown a level of love and support which is
exceptional and without which this thesis would not have come to be.

Abstract

There is a growing gap between the supply and demand of good
quality software, which is primarily due to the difficulty of the programming
task and the poor level of support for programmers. Programming is
carried out using software tools which do not match very well either real
world understanding of a problem or even the other tools which need to be
used. In every phase of software production, the programmer must master
new tools which function in a different way from each other.

The Persistent Programming Paradigm attempts to reduce these
problems by providing a programming environment which gives consistent
methods of accessing program values of various kinds. Long-term and
short-term data are treated in the same way. Numbers, text, graphical
values and even program objects are all referred to in the same consistent
way. Languages which support persistence provide considerable power
within a simple environment, so that programmers can perform most if not
all parts of the programming task in a coherent and uniform manner.

This thesis tests the hypothesis that programmers do in fact derive
some benefit from this - the simplification of the program and faster
implementation of complex programs. The persistent language PS-algol is
introduced and used to build: user-interface and compiler tools; a database
application; some data modelling tools, both relational and semantic; a
rapid prototyping system; an object-oriented language; and software
support systems. In doing so, the thesis demonstrates the breadth of work
which can be achieved using a Persistent Programming Language, and the
ease with which these various projects can be implemented.

Further, the thesis derives the beginnings of a methodology for using
such a language and analyses how PS-algol could be improved. In doing so,
the work aims to put the Persistent Programming Paradigm on a firm basis
following significant use and experimentation.

Table of Contents
Chapter 1. Introduction... 1

1.1 The Software Engineering Crisis...1
1.2 The Claim of Persistent Programming..3
1.3 The Programming System Used.. 6
1.4 The Need for a Culture, Methodology and Support Environment................ 7
1.5 The Thesis Statement.. 7
1.6 An Outline of the Experiments and the Structure of the Thesis.....................8

Chapter 2. A Survey of Approaches..11
2.1 Three Approaches... 11

2.1.1 The Development of Better Programming Languages..........................11
2.1.2 The Development of Better Database Systems....................................... 14
2.1.3 Software Engineering Solutions... 16

2.2 Some Relevant Approaches... 17
2.2.1 The Semantic Data Modelling Approach.. 17

2.2.1.1 The Semantic Binary Data Model...19
2.2.1.2 The Entity Relationship Model...19
2.2.1.3 The Semantic Data Model...20
2.2.1.4 The Functional Data Model..21
2.2.1.5 TAXIS..23
2.2.1.6 The IFO Data Model...25
2.2.1.7 The Event M odel..26
2.2.1.8 Summary... 27

2.2.2 The Object-Oriented Approach.. 28
2.2.2.1 Simula - a first step towards Object-Orientation..................... 29
2.2.2.2 Smalltalk...30
2.2.2.3 C Extensions.. 32
2.2.2.4 Eiffel.. 32
2.2.2.5 Object-Oriented Database Systems.. 33
2.2.2.6 Summary... 35

2.2.3 Database Programming Languages..37
2.2.3.1 Relational Programming Languages... 37
2.2.3.2 Galileo...38
2.2.3.3 Polymorphic Database Programming Languages................... 39
2.2.3.4 Persistent Programming Languages...40
2.2.3.5 Conclusions..42

2.2.4 Software Development Systems... 43
2.2.4.1 SCCS.. 43
2.2.4.2 RCS.. 43
2.2.4.3 UNIBASE/ DAMOKLES..43
2.2.4.4 Gandalf... 44
2.2.4.5 Eclipse... 45
2.2.4.6 Conclusions..46

2.2.5 Specification and Rapid Prototyping Systems.. 46
2.2.5.1 RML...46
2.2.5.2 Formal Specification Systems..47
2.2.53 ADABTPL.. 48
2.2.5.4 Some RPT Systems.. 48
2.2.5.5 Conclusions..49

2.3 The Persistent Programming Research Group... 49
2.3.1 The Concept of Persistence and the Birth of the PPRG........................ 49
2.3.2 S-algol.. 50

4.5 Conclusions 107

Chapter 5. Building a Database Application in PS-algol..109
5.1 Document M anipulation Program s... 109
5.2 System Overview.. I l l

5.2.1 Introduction to Using the System... 114
5.2.2 Getting Started... 116
5.2.3 The Set Editors..117
5.2.4 Editing the Set of Known Field Nam es... 117
5.2.5 Editing the Set of Default Reference Types..118
5.2.6 Editing the Reference Formats.. 119
5.2.7 Editing a Sort Order.. 120
5.2.8 Editing The Topics... 121
5.2.9 The Reference Editor... 122
5.2.10 Producing A Bibliography..123
5.2.11 Finishing Off...124

5.3 Implementation Decisions...124
5.3.1 The Bibliographic Database Organisation...126
5.3.2 The Software Modules.. 128
5.3.3 The User Interface.. 129
5.3.4 The Transaction Mechanism..130
5.3.5 Object Identity...132
5.3.6 Further W ork...132

5.4 Conclusions.. 133

Chapter 6. Building Database Systems in PS-algol...135
6.1 A Database Architecture With Several Interfaces..135

6.1.1 The TABLES Interface... 135
6.1.2 The RAQUEL Interface.. 137
6.1.3 Functional Query Language..138
6.1.4 The Report Generator.. 138

6.2 Implementation Details of the RAQUEL System... 139
6.2.1 Overview...139
6.2.2 The Benefits of PS-algol.. 141

6.3 A Polymorphic Architecture For Relations... 142
6.3.1 A Static Internal Model for GRAPE.. 142
6.3.2 An Adaptive Internal Model for GRAPE.. 145
6.3.3 Further Speeding Up By Memo-ising .. 148

6.4 Conclusions.. 148

Chapter 7. Building Data Models in PS-algol.. 151
7.1 EFDM: The Extended Functional Data Model... 151

7.1.1 The Functionality of EFDM...152
7.1.2 The Implementation..153
7.1.3 The Benefits of PS-algol.. 157

7.2 A Requirements Modelling Tool..158
7.2.1 Requirements Modelling and PS-algol.. 158
7.2.2 The Language RML and Some Descendants..159
7.2.3 PSRML: The Goals...161
7.2.4 PSRML: The Language..162
7.2.5 PSRML: The User Interface... 164
7.2.6 The Implementation of Entities.. 167
7.2.7 The Implementation of Activities.. 170
7.2.8 PSRML Conclusions.. 173

7.3 The Implementation of the IFO Data Model... 174

7.3.1 The PS-algol Interface to IFO..174
7.3.2 Schema Definition in PS-algol IFO... 175
7.3.3 Data Manipulation and Update Semantics...176
7.3.4 Implementation Details...177

7.3.4.1 The User Interface...177
7.3.4.2 The Representation of Types.. 177
7.3.4.3 The Representation of Data... 178
7.3.4.4 The Structure of the Program ..178

7.3.5 Summary... 178
7.4 The Implementation of a Minimal Object-Oriented Language.........................179

7.4.1 A Minimal Object-Oriented Language... 180
7.4.1.1 Type creation..180
7.4.1.2 Instantiation... 181
7.4.1.3 Assignment... 182
7.4.1.4 Operation Application.. 182
7.4.1.5 System Provided Operations... 182
7.4.1.6 Extra Redundant Syntax... 183
7.4.1.7 Expressions.. 183

7.4.2 The Implementation.. 183
7.4.2.1 The Type Structure and Base Types... 184
7.4.2.2 The Interpreter and Expression Evaluation............................... 184
7.4.2.3 Type Creation...186
7.4.2.4 Automatic Generation of the System O perations..................186
7.4.2.5 User-Defined Operations... 188
7.4.2.6 Polymorphic O perations.. 189
7.4.2.7 Object Instantiation... 190
7.4.2.8 Assignment and Operation Execution...................................... 190
7.4.2.9 Inheritance.. 190
7.4.2.10 Summary..190

7.4.3 Conclusions Regarding the MINOO Interpreter.....................................191
7.5 Issues in the Implementation of Semantic Data Models....................................192

7.5.1 The Human Computer Interface...193
7.5.2 The Representation of Types.. 193
7.5.3 The Representation of Instances... 194
7.5.4 The Representation of Operations..196
7.5.5 Active Objects... 197
7.5.6 Meta-data Access.. 199
7.5.7 Discussion.. 199

Chapter 8. Supporting Software Development..201
8.1 M odular Program Construction in PS-algol..201
8.2 A Simple Library of Utility Procedures.. 204

8.2.1 The Structure of the Library...204
8.2.2 Software Support for these Structures...205

8.2.2.1 The Initialising Program - dbm aker...205
8.2.2.2 Retrieving Procedures - prcget.. 205
8.2.2.3 Storing Procedures - prcput..206
8.2.2.4 The Library Lister - dblister.. 207

8.2.3 Discussion.. 207
8.3 A Simple Module Management System With Version Control..................... 207

8.3.1 System Requirements..209
8.3.2 The Storage of Modules...210
8.3.3 The Retrieval of Modules...212
8.3.4 Language Extensions to Simplify Version M anagement.....................214
8.3.5 System Implementation - the Objects.. 215

8.3.6 System Implementation - the Operations...217
8.4 Conclusions... 220

Chapter 9. A Methodology for Persistent Programming..222
9.1 Program Specification and Data Modelling..223

9.1.1 Modelling Simple Data Attributes.. 223
9.1.2 Graph-based Programming..224

9.2 Starting the Program Design..225
9.2.1 Providing Abstract Data Types and Object-Oriented Systems............. 226
9.2.2 Operations as Object Components...229
9.2.3 M odular Programming Development and Software Libraries............230

9.3 Polymorphic Programming in PS-algol... 230
9.3.1 Partitioning the Program Using Deferred Type Checking................... 232
9.3.2 Overloading Using "is"..233
9.3.3 The Run-time Compiler and Parametric Polym orphism................... 234
9.3.4 The pntr Type and Inclusion Polymorphism.. 234

9.4 M anipulating the Persistent Store..235
9.5 Organising the User Interface... 236
9.6 Deficiencies of PS-algol... 237

9.6.1 The Divided Type System... 237
9.6.2 Unspecified pntr References.. 237
9.6.3 Run-time Compiled Procedures Break the Uniformity........................238
9.6.4 Sharing Data With Run-time Compiled Procedures.............................239
9.6.5 Constancy.. 239
9.6.6 Concurrency control..239
9.6.7 Commit and Database Update...240
9.6.8 Distribution...241
9.6.9 Garbage Collection.. 241
9.6.10 Summary of Deficiencies...242

9.7 Conclusions..................................... 242

Chapter 10. Conclusions..243
10.1 Summary..243
10.2 The Major Findings...245
10.3 Future W ork..247

Bibliography... 251

.9

.20

.25

.60

.62
,63
.68
.72
.73
.76
.77
.78
.79
.80
.82
.85
.87
.88
,90
,91
.91
.92
,93
,96
,96
97
97
98
99
100
101
101
102
104
106
110
115
116
118
119
120
121
123
127
136
139
140
143
144
145
146
147

Figures.

The Structure of the Thesis..
An Entity Relationship Diagram..
A Sample IFO Schema...
Baselm with a Checkerboard Image...
A List Processing Package for Strings.....................................
A Polymorphic List Processing Package.................................
Run-time Compilation..
A String List Processing Package as an Abstract Data Type
A Fully Polymorphic List Printing Procedure.....................
The Standard Procedure string.to.tile......................................
A Message Display Procedure..
A more Facility..
An Example of Using the menu Procedure.........................
An Outline of the menu Procedure..
A Sample Chooser M enu...
A Simple String Editor..
A Telephone Directory Database...
Some Browser Menus...
A Structure Traverser..
A First General Purpose Traversal Procedure.....................
A Second General Purpose Traversal Procedure................
A First Traverser Maker..
A Second Traverser M aker...
Some Cyclical Structures...
Printing a Phone Entry..
A General Purpose Deep Print Procedure.............................
An Automatically Generated Print Procedure.................... .
A Print Procedure for a Vector Field......................................
The Core of the Printer M aker..
A Structure Description for Printing..................................... .
The Print Out of the Structure..
Two Examples of Equality Test Procedures.......................... .
Two Examples of Deep Copy Procedures.............................. .
Lexical Analysis Using Igen..
Parsing Using pgen...
An Architecture for Document Production...........................
The Menu Hierarchy...
The Initial Screen and First Level M enus.............................
The Reference Type Editor...
The Reference Format Editor...
The Sort Order Editor..
The Topic Editor and Reference Editing M enu.....................
The Reference Editor...
The Bibliographic Database Organisation...............................
A Sample TABLES Query..
RAQUEL System Architecture..
The Initial Setup of the Relations in RAQUEL.....................
Storage Structure for a Relation in GRAPE...........................
Indirect Storage Scheme for an A ddress................................
The Simple Form of the MakeRel Procedure.........................
Part of MakeRel Using the Run-time Com piler..................
AddTuple Generated for the address Structure....................

Figure 7.1 A Block Diagram of the EFDM Program Structure...153
Figure 7.2 Data Storage in EFDM..155
Figure 7.3 Multi Argum ent Functions in EFDM..156
Figure 7.4 An RML Entity Type Definition... 160
Figure 7.5 An RML Activity Definition... 160
Figure 7.6 An RML Assertion Definition.. 160
Figure 7.7 A Teeny Entity Type Definition... 161
Figure 7.8 A Teeny Activity Definition..161
Figure 7.9 A PSRML Entity Type Definition... 162
Figure 7.10 A PSRML Activity Definition... 163
Figure 7.11 PSRML Initial Screen.. 163
Figure 7.12 PSRML Testdrive M enu...165
Figure 7.13 PSRML Object Selection..166
Figure 7.14 PSRML Object Display..166
Figure 7.15 The Overall Structure of the PSRML Database..167
Figure 7.16 The Structure of PSRML Entities and Types... 168
Figure 7.17 Sample Constructed makenull and changeField Procedures.......................169
Figure 7.18 The Structure of PSRML Activities.. 172
Figure 7.19 Schema Design in IFO.. 174
Figure 7.20 Generated Code for Expression Evaluation..185
Figure 7.21 The Automatically Generated Operation s...187
Figure 7.22 A User Defined Operation in MINOO...188
Figure 7.23 The Polymorphic Automatically Generated Operation, g 189
Figure 7.24 The Structure of the MINOO Value Space.. 191
Figure 8.1. Storing a Procedure in the Persistent Store... 202
Figure 8.2 Calling a Stored Procedure..202
Figure 8.3 Retrieving the Retrieval Procedure... 206
Figure 8.4 Module Dependency Graphs for a System with Four Applications........... 208
Figure 8.5 Initial Code for Creating a Module Instance...210
Figure 8.6 Three Different Ways to Create Module Versions... 211
Figure 8.7 Initial Code for Retrieving a Procedure....................................... 212
Figure 8.8 Always use the first version found... 212
Figure 8.9 Always use the latest version... 213
Figure 8.10 Using the alternative "myver"... 213
Figure 8.11 Using a bug-fix of original version...213
Figure 8.12 Choose alternative at commit tim e... 214
Figure 8.13 Let the user choose the alternative.. 214
Figure 8.14 A Source Module for minvec ..217
Figure 8.15 The runapp facility...218
Figure 8.16 Automatically Generated Module Storage.. 219
Figure 9.1 An Incremental Design Process.. 222
Figure 9.2 An Abstract Data Type...226
Figure 9.3 Preserving Object References...227
Figure 9.4 A More Generalised Abstract Data Type... 228
Figure 9.5 Polymorphism in PS-algol...231

Chapter 1. Introduction.
This thesis examines the claim that persistent program m ing languages facilitate

the production of software. The need for better tools for software production is
discussed, the claim of persistent systems in this regard is presented and then this
claim is investigated w ith reference to the first significant persistent language, PS-
algol. Several experiments using PS-algol are described, from which a methodology
for using the language is derived. The thesis ends with some conclusions on the
overall effectiveness of the language and the approach.

A program m ing paradigm comprises a computational model, languages that
realise this model and a culture and conventions for the use of those languages. The
persistent paradigm is developed in this work. The model and languages are the
result of earlier work, but this thesis aims to provide a major contribution to the
culture and conventions.

1.1 The Software Engineering Crisis.

It is a recurrent challenge to the Com puter Scientist that the dem and for
software exceeds the ability to produce it [ACARD, 1986, Warren, 1988]. Computers are
used for a widening range of increasingly complex tasks. The growth is due largely to
the provision of cheaper and more powerful hardware, but also to social factors such
as the greater tolerance for computers among the public and rising expectations from
all users of information systems. This, in turn, is due to the im proved quality of
software produced. This is a measure of the success of software developers and results
in a growth of demand for software which outstrips the rate at which programmers are
trained.

There are a num ber of possible approaches to this problem. For instance, the
problem could be accepted as insoluble and the cost of software production be allowed
to increase and in this way dem and would be controlled. Alternatively, even more
hum an resources could be diverted into software production although this loses sight
of the secondary nature of most of the computer industry. It is there to produce tools
to support other tasks, not to drain manpower away from them. The most satisfactory
approaches, however, include making program m ing easier to do, making it easier to
prove programs correct and reducing the amount of code required for a given task.

The intrinsic reason why programming is difficult is that computers operate in
a formally defined symbol space. They can only do w hat is told to them in a way
which can be represented formally and precisely - and people are not particularly
skilled at the precise specification of tasks. The fact that the representation is formal is
a necessary limitation of the use of computer systems - even apparently informal,
m ouse-driven interactive systems operate according to formal rules. However, the
nature of the formalism can be controlled. In the earliest computers, the formalism
consisted of bit-strings, which only the arithm etically skilled could m anipulate.
Program ming languages were then developed which at least began to overcome the
memory load imposed by bit-strings. The computer took the program and produced
the bit-strings itself. However, the languages have traditionally tended to reflect to a
greater rather than a lesser degree the structure of the computational model.

Chapter 1 1 Introduction

The central task of the program m er, then, is to take an ad hoc inform al
description of a problem and transform it into a description in a formal language. For
a given problem, the difficulty of this process is dependent on the nature of the formal
language. The more the language reflects the structure of the computational model,
the easier the task for the computer to turn the formal description into bit-strings and
the m ore difficult the task for the program m er to produce the formal description in
the first place. One way to make program m ing easier is, then, to make the formal
languages m ore closely resem ble the languages w ith which people are used to
describing the world. This can now be done, because as computers become more
powerful, more and more of the translation task can be thrown onto the computer and
the program m er can be freed from the w orst of the task - the identification of
program m ing constructs which correspond to real-world intuitions and the routine
repetition of low-level tasks. Note that this does not reduce the requirem ent for
precise form ulation of the problem , bu t rather factors out recurrent detail and
provides a more direct m apping between the objects in the real application domain
and their computer representations.

The second approach is to make programs easier to prove correct. If it is possible
to know that a program (or even a part of it) is definitely in accordance w ith its
specification, then there will be a great saving in the debugging time which dominates
software development. Two approaches which lie outside of the scope of this thesis
are the developm ent of functional program m ing languages [Glaser et al., 1984, Bird
and W adler, 1988] and formal specification techniques [Gehani and McGettrick, 1986,
Bjorner and Jones, 1982]. One problem with these approaches is that they do not yet
appear to cover many of the aspects of long-lived systems, which are the particular
concern of the persistent program m ing paradigm. One aspect of proving correctness
which is discussed here is the use of strongly typed languages. It has been estimated
that 70% of all program m ing errors are type-mismatch errors [Buneman, 1988]. The
use of a strongly typed language gives the earliest possible detection of such errors and
thus saves debugging.

The third approach is to cut down on the amount of program m ing there is to
do. Two themes appear here. Database systems are examples of program s in which
code is provided to give a range of facilities to a num ber of applications w ithout those
facilities having to be reprogram m ed. The database system is program m ed in a
"machine-oriented" language and provides an interface for the application designer to
pick and choose the facilities required in sim pler or m ore "hum an-oriented"
languages. Applications of considerable power can be produced quickly using such
systems. The DBMS designer made a once and for all a priori choice of the functions
to be factored out. One of the particular benefits of the persistent program m ing
paradigm is that this factoring can be postponed and used increm entally - thus
providing the ability to produce personalised versions of the application development
env ironm ent.

The other theme is that of software re-use. Code is stored in libraries accessible
to program m ers, thus obviating the need to code facilities more than once. This
activity may be viewed as a kind of database application in which the data being stored
are code fragments. Support for such a library is one of the experiments described in
this thesis (Chapter 8). Im provem ents in Software D evelopm ent Environm ents
facilitate access to such code, whilst the Object-Oriented paradigm brings facilities for
the re-use of code into the language. This is one example of the use of polymorphism
to perm it the same piece of code to be usable over a variety of types.

Chapter 1 2 Introduction

The two principal elements of application development are the storage of data
and the specification of the code m anipulating the data. In an application of any
m agnitude, both of these will be complex and interacting tasks. Most applications
which are primarily concerned with data storage and retrieval will eventually develop
a need for some computation. Similarly, most computationally intensive programs
will w ant to store partial results. However, the approaches above make little attempt
to integrate these two tasks. Traditionally programming languages are targeted at the
data manipulation part, while database systems, file managers, etc. deal with the data
storage part. To do so, each takes a somewhat different view of the structure of data.
The developm ent of database program m ing languages is intended to bring these two
parts into a common framework, but has to contend with the discrepancy between
these views (called the "impedance mismatch" problem in the literature).

Moreover, the approaches above take the view that one or other of program and
data dominates. In traditional languages the application is developed first and then
data are added. In Object-Oriented systems the data structure dominates, with program
being added in the context of the data structure. In reality, application development
needs to occur incrementally, with data and program being added independently in
whichever order is required. The Persistent Program m ing paradigm takes the view
that program and data have equal status in the application space.

A nother tension which will be produced on try ing to benefit from the
approaches above is that between strong typing and polymorphism. Specification of
polymorphic code may save on coding, while strong typing may save on debugging,
but these two techniques may conflict. The design of languages which provide a good
compromise is an active research area. Persistent Programming resolves this tension
by permitting a mixture of static and dynamic type checking. Therefore static checking
occurs whenever possible, but the checking of polymorphic code is deferred for as long
as possible.

This thesis concentrates on the claims of Persistent Program m ing Systems. The
term P ersisten t Program m ing System arises since they prov ide "orthogonal
persistence" for data. This means that every piece of data in a program has the same
rights to outlast the program (or be transient) as any other - no matter w hat type it is.
This principle sits inside a general concept that a Persistent Program m ing System
should not present the program m er with arbitrary distinctions between the way in
which different types of data are m anipulated. Thus it is satisfactory to insist that
strings and integers can be distinguished because strings cannot be m ultiplied together,
but not because strings can be stored but integers cannot - that would be an arbitrary
restriction. Such arbitrary restrictions litter program m ing languages - consider what
can and cannot be done with procedures in Pascal. A Persistent Programming System,
then, is one in which all such arbitrary restrictions are removed and the claim of such
systems to provide better program m ing environm ents will be discussed next and
examined in the rest of the thesis.

1.2 The Claim of Persistent Programming.

The persistence of a value is the length of time for which it may be used by a
program. A given value can exist for very short time (until the end of the block); for
the length of the program run; for the lifetime of the database; or even longer if the
data are switched to a new database when the initial one is replaced.

Chapter 1 3 Introduction

The concept of a Persistent Program m ing System embraces two principles.
Firstly, that any value can have any degree of persistence. That is, all values of any
type have the same rights to be short-lived or long-lived. Secondly, that the way an
object is referred to should not depend on its persistence. That is, there is not one way
of referring to values which cease to exist when the program term inates (these are
called tran sien t values) and another for referring to long-lived (or persisten t) values.
W hat emerges from these principles is the notion that to make values persist beyond
the end of the program should take little effort.

One example of explicitly making values persist is the use of file systems (for
instance within Pascal programs). In such programs, the piece of code implementing
the algorithm on which the program is based m ust be augmented by two further pieces
of code. The first starts the program by reading data out of files, while the second
finishes the program by writing it back to files. It has been estim ated that the code
involved in these two pieces takes 30% of the program m ing effort on average [IBM,
1978]. These two pieces of code are not central to the program m er's intention - they
are extra tasks to be done, in order to get the main section to work. Worse than that,
they require a completely new way of conceptualising the data, which complicates the
program in the following way.

W hen the central part of the program is being written, a structure is imposed on
the data which is suitable for the algorithm being programmed. The programmer thus
m ust have two views of the world: the external reality; and this "algorithmic model";
and m ust keep in m ind two translation processes between these two views. The use of
a filing system imposes a third, wholly unnecessary view of the world: the structure
the data has in the filing system. Now the programmer has three views instead of two
and six translation processes instead of two - a significant increase in the complexity of
the system and to achieve what? Putting away the data, so that it can be re-accessed
another time.

Persistent Program m ing Systems avoid this extra complexity by using the
algorithmic model to store the data. Take for example a program that requires a tree-
structure for its data. A file-based approach means that the nodes of the tree m ust be
flattened into some arbitrary but im portant order at the end of the program and then
retrieved in the same order at the beginning of the next run. A superior approach
w ould seem to be just to state "store the tree". More specifically "store the root of the
tree" and, as a consequence of this being a tree, all of the other nodes would be stored
as well. The structure within which it is stored is of no concern to the program m er -
the system should decide upon the most efficient structure. The only im portant aspect
is that the program m er can retrieve the tree, again by specifying the retrieval of the
root node. This technique, which consists of storing one object with the consequence
that any object it refers to is also stored, is referred to as persistence by reachability.

Another technique used to provide a form of persistence is em ployed by
languages such as Prolog and ML. In these languages, at the end of a program run, the
whole program space can be saved so that, when a program is restarted, its data space
will be exactly as it was when the program was last quit. This is a very coarse way of
providing persistence. Firstly, it is all or nothing - everything gets saved, whether it is
useful or not. Secondly, it seems to preclude the possibility of two program s sharing
data - each program lives in its own little world - and hence inhibits concurrency and
incremental system development.

Chapter 1 4 Introduction

In fact, Persistent Programming Systems generalise this notion of removing the
arbitrary restriction on the persistence of objects in most program m ing languages to a
general program m e for rem oving any such discontinuities. That they can do this is
due to the increase in hardw are performance. In the previous paragraph, it was
blithely stated that storing the root node causes the rest of the tree to follow. The
construction of a system which will do this is an extremely complex programming task
[Cockshott, 1983, Brown and Cockshott, 1985, Dearie, 1988, Brown, 1989] and relies for
even reasonable performance on good hardware.

Discontinuities in computing systems arise for a num ber of reasons:

i) historical reasons - for instance, independently developed technology being
made to interwork;

ii) engineering limitations - some of which have ceased to be significant, while
others can be hidden by automatic means;

iii) different hum an perspectives dictating the design of different parts of the
system;

iv) systems being partitioned during design in order to achieve large-scale and
complex systems;

v) a lack of fundamental understanding of the total computational process.

W ith increased understand ing of the nature of the underlying problem s,
Com puter Science is now in a better position to begin to remove these discontinuities,
replacing ad hoc and badly matched components with single coherent systems. In
doing so, more of the program m ing tasks will be brought into a common framework
thus making them simpler and more manageable.

Some approaches to the removal of these discontinuities include:

• the use of any kind of value in expressions, as variables or as the parameters
of procedures (as compared with Pascal procedures in which the results
may not have compound types);

• the provision of consistent m echanism s for in troducing objects into
programs;

• the inclusion of richer types, including multimedia types, thus extending the
simplicity with which different values may be expressed in the language;

and • the extension of the scope of the language to include m ore of the
program m er's activity, for instance the HCI and persistent parts of the
program.

In conceiving the program , a program m er is likely to view as values: simple
things such as strings and integers; complex objects, such as ships; and processes or
activities involving those objects. The program m ing language should reflect this, by
perm itting the program m er to refer to all of these same values in the same way. In
particular, the facilities most languages provide for m anipulating procedures are
restricted to defining them and applying them. A language which allows procedures

Chapter 1 5 Introduction

to be first-class objects provides significantly greater modelling pow er than one in
which only static objects can be described. One which supports processes would
probably be a further advance [Morrison et al, 1989].

These requirements can be w rapped up into one over-riding principle - that the
language be data-type com plete (there are no arbitrary distinctions between the way
values of different types can be manipulated) [Morrison, 1982]. There is an additional,
implicit expectation of such a system that this completeness will be provided by
leveling-up. If type X can do operation O, but type Y cannot, the system will be
changed so that both can do O, and not so that neither can. The system therefore
becomes more powerful as well as simpler. A PPS is, therefore, one in which the
program m er is provided with a program m ing environm ent w ith as few distracting
distinctions as possible. The claim is that such a system will greatly increase
program m ing efficiency, because:

a) the programmer is not distracted by discontinuities;

b) the language is easier to learn;

c) the language provides a single model of all the data held or processed by the
computer;

d) it is easier to argue about program correctness if the code is more transparent
and there are fewer effects taking place outside the form ally defined
system;

and e) the code is more succinct.

1.3 The Programming System Used.

The experimentation has been carried out in the context of the program m ing
language, PS-algol. This m em ber of the algol fam ily provides persistence by
reachability, is data-type complete, has graphical data types and conveys simplicity of
expression combined with power. The language was developed at the Universities of
Edinburgh, St. Andrews and Glasgow, as described in section 2.3, and is essentially a
research vehicle for experimenting with the ideas presented here. The constructs
provided by the language will be described in more depth in Chapters 3 and 4.

The language has been implemented on a variety of hardw are - DEC VAX 11
series under VMS and UNIX, ICL series 39 under VME, ICL Perq workstation under
PNX, Sun workstations under UNIX and the Apple M acintosh. PS-algol has been
designed to be machine independent in the sense that if two machines have the same
facilities they will be made available in the same way. The bulk of the work described
here was carried out on the Perq and Sun workstations. These both provide large high
resolution screens, a mouse driven input device and a UNIX-like operating system.
As such the two implementations were identical (apart from performance) from the
viewpoint of the programmer.

A PS-algol system consists of a compiler, an interpreter, a persistent store and a
num ber of systems programs. The compiler takes PS-algol source code and produces
an abstract machine code, which is then executed by using the interpreter. The
persistent store consists of a set of PS-algol "databases" (described in section 3.2.5) and

Chapter 1 6 Introduction

the system is initiated to contain databases containing system code and fonts. Using
the system consists of w riting program s which m anipulate this persistent store -
adding, modifying and removing objects in it. There is one system program provided
which allows the user to browse the persistent store, navigating through the store by
following object references. This browser and its implementation is described in more
detail in section 4.2.

1.4 The Need for a Culture, Methodology and Support Environment.

The last section describes the supplied PS-algol system and, when this work
began, this was a Spartan system within which to start writing programs. A new user
also has access to the user manual [PS-algol, 1987], a few tools and maybe the source
code of those parts of the system written in PS-algol itself. To tackle program m ing
using a new paradigm with such small assistance would seem a daunting task. Since
then more tools, such as the browser, and an introductory tutorial to PS-algol [Carrick
et ah, 1987] have been added. However, it has been one of the principal aims of this
research to im prove this situation by the addition of fresh com ponents and the
developm ent of methodological guidelines. The author had the advantage that the
work was carried out in the context of a group of PS-algol program m ing enthusiasts,
who had, at least implicitly, developed an initial culture and an initial understanding
of such languages.

Program m ing in any conventional language is facilitated by the considerable
experience available from those who have used it in the past. There is a reasonably
clear idea of how best to program any kind of problem in Pascal, for instance. There is
normally a considerable am ount of code available for inspection, modification and re
use. Similarly, every UNIX system comes with a significant library of C routines and
these can be easily added to from any of a number of sources depending upon the kind
of application that is required.

A new language in a new paradigm provides no such support. The num ber of
PS-algol experts was restricted to a small num ber of people in Scottish Universities
and one departm ent of STC Technology Ltd., with a scattered following in Australia.
No m atter how good the language might be, there will reasonably be a considerable
reluctance to use it if there is a significant unsupported learning task to be performed.
Persistent program m ing is a new paradigm and will benefit from different ways of
performing familiar tasks.

A central aim of this research was to develop a systematic way of using the
language, together with supporting software tools and a library of re-usable modules.
The developm ent of some re-usable m odules are described in Chapter 4 and their
organisation into a library in Chapter 8. Chapter 9 then provides a m ethodology
which may be followed when writing programs in the language. Chapter 10 concludes
with some overall impressions of persistent programming in general.

1.5 The Thesis Statement.

For a new program m ing paradigm which purports to improve the economy of
programming, several questions need to be asked to'substantiate this claim:

Chapter 1 7 Introduction

W hat program m ing tasks can the language be used for? There is a need to
verify that languages like PS-algol are sufficient for a range of programming problems.

How do the novel aspects of such a language sim plify program m ing? Do
persistence, data-type completeness and the other features simplify programming?

Is there any cost in using such languages? Are they inevitably slower? Is
expressive power reduced?

W hat are the im plications of any weaknesses? Are they due to a failure of the
paradigm or are they a consequence of experimenting with an early prototype?

This research attempts to find answers to these questions by making use of PS-
algol to implement sophisticated, large-scale programs. The experiments include the
implementations of: a traditional data-intensive application; higher-level data models;
and systems tools such as compilers and software support environments. In doing so,
the limits of complexity, power, speed or functionality available in the language will
be tested.

The research depends on the assumption that PS-algol is a useful representative
of the potential of Persistent Programming. Programs w ritten in the language by
others were analysed to determ ine the influence of the paradigm on program
structure. Further programs were written both to develop the paradigm and to carry
out further evaluation. One difficulty this method encounters is that the evaluation is
influenced by the development of the paradigm. From the observations it is necessary
to extrapolate in order to judge the overall effectiveness of the paradigm.

The statements examined in this research are:

Persistent programming, as exemplified by PS-algol, is a sufficient
and effective foundation for the development of large, complex
and long-lived systems.

The paradigm beneficially influences the style of program m ing
carried out.

A methodology can be developed which facilitates this style of
program m ing.

1.6 An Outline of the Experiments and the Structure of the Thesis.

Figure 1.1 shows an overall m ap of the structure of the thesis. After the
introductory chapter, there is a chapter surveying a variety of approaches to the
problem of improving the economy of software production from the perspectives of
language design, database systems and software engineering. This chapter also
introduces the Persistent Program m ing Paradigm in more detail. Chapter 3 then
introduces the principle features of PS-algol.

Chapter 1 8 Introduction

Background Experiments Results

9
A Software
Library

PS-algol
TutorialProblem

Statement

Producing
Software
Tools

The Claim of
Persistent
Programming

A Methodology
forPS-algol

The Thesis
Statement Conclusions

A Databas
Application

Survey of
ther

Approaches

\The Persistent
^ogram m ing
Paradigm

Relational
Data Models
Built in
PS-algol

Chapter
Number

Semantic
Data Models
Built in
PS-algol

hapter
ontents

PS-algol
Introduced

Figure 1.1 The Structure of the Thesis.

Chapter 4 is intended as a tutorial in the language, but is also used to describe an
experiment in providing re-usable software components. This demonstrates the ease
with which a software library to perform some basic functions can be built up in PS-
algol.

Chapter 5 describes the implementation of a data-intensive application - that of
maintaining a database of bibliographic references. This is a dem onstration that PS-
algol is sufficient for a task of this sort.

C hapter 6 describes two experim ents in p rov id ing a classical database
environm ent for developing applications. These both implement relational databases
and demonstrate PS-algol power as a meta modelling tool for database design.

Chapter 1 9 Introduction

C hapter 7 takes this idea som ewhat further and dem onstrates how even higher-
level data m odelling systems can be built in PS-algol. These comprise three semantic
data m odelling systems and an object-oriented program m ing language.

C hapter 8 describes experim ents for the m anipulation of softw are itself. The
persistent store as a repository for software components is at once extremely powerful
and w ithou t any kind of supporting structure. Experim ents here show how such
su p p o rtin g struc tu res can be bu ilt, includ ing notions of version control and
configuration m anagem ent.

These experim ents, taken together, will then be held to dem onstrate that PS-
algol has sufficient expressive power to perform a great num ber of program m ing tasks.
C hapter 9 then takes the experience of im plem enting these program s and derives from
it a m ethodology for program m ing in PS-algol. The chapter also describes certain
deficiencies in the language, due principally to its prototypical nature.

Finally, the concluding chapter re-states the evidence for the overall thesis that
persisten t program m ing is an effective paradigm and that a m ethodology for the
paradigm can be produced. Necessary prerequisites are identified and either produced
or show n to be feasible via prototypes. The thesis concludes w ith recom m endations
for fu tu re w ork to develop the parad igm and to use it for fu rth er com plex
program m ing tasks.

Chapter 1 10 Introduction

Chapter 2. A Survey of Approaches.
This chapter surveys a variety of approaches to the problems of constructing

software on a large scale. This is carried out in the context of three main lines of
approach - provid ing increasingly effective program m ing languages; providing
increasingly effective database systems; and providing increasingly sym pathetic
environments w ithin which to develop software. Much current work, including that
reported in this thesis, attempts to combine these lines of approach in order to gain the
benefits of all worlds.

In particular, the effective provision of usable software environments is shown
to be eased by using database technology to store the code. It is also shown that
integrating a program m ing language w ith a database as a single system gives the
benefits of computational completeness and data access efficiency without the need to
switch continually between two program m ing worlds. This last point is part of the
underlying concept behind all of this work. Efficient program m ing depends on
having a program m ing environm ent which is at once simple and powerful. This
means that the program m er should be given as few tools as necessary; a uniform
program m ing environment; as few exceptions to overcome as possible; and should
be enabled to express requirements as naturally as possible.

This thesis synthesises ideas from these three dom ains, in order to support
persistent and large scale programming. Consequently, it is necessary to review each
area in turn.

2.1 Three Approaches.

2.1.1 The Development of Better Programming Languages.

The history of the developm ent of program m ing languages has show n that
poor design is due to a number of factors. Firstly, the constituents of a good language
are difficult to determine. Secondly, compromises have been necessary to produce
languages which could be implemented efficiently. Thirdly, language design has been
influenced to a great degree by the architecture of computer systems. Considering the
software crisis described in section 1.1, it may now be time to tailor the computer
architecture to good language design, rather than vice-versa.

It is now possible to make some general statements on the constituents of a
good programming language. The language should be designed to produce simple and
natu ra l descriptions of applications. The correctness of program s should be
determ ined as soon as possible. The language should be simple w ithout forfeiting
power. There should not be too many constructs and there should be no arbitrary
exceptions to the semantic and syntactic rules of the language.

Program m ing languages were originally designed to be appropriate for the
specification of arithmetical algorithms. This was seen as the prime use for computers
and therefore languages such as algol and Fortran proliferated. They concentrated on a
store model of computation and were sufficient for small scale programming. These
languages as well as contemporaneous languages for other application areas such as
COBOL and LISP all took a microscopic view of the program m ing task. The

Chapter 2 11 A Survey of Approaches

program m er had to do the bulk of the translation work from the task into the small
impoverished world of the programming language.

The experience with these languages led to a num ber of developments. Firstly,
superior "traditional" languages such as Pascal, algol-68 and PL/1 appeared with an
increasing num ber of features and overall increase in complexity which offset their
gain in expressive power. This line of development culminated in the language ADA,
w hich strives for m axim al pow er by p rov id ing a considerable num ber of
program m ing constructs, supplem entary to the basic computational model of algol
and Pascal. There also appeared the notion of structured program m ing as a
conceptually simplifying framework within which to produce programs. A top-down
developm ent of program s was recommended, which resulted in cleaner programs.
The drawback of this approach is that it may be alien to the way in which many people
work. An incremental approach, specifying parts of a system in no particular order,
fits better with the way many people conceptualise very large tasks.

A second line of development is functional program m ing [Glaser et ah, 1984;
Bird and Wadler, 1988]. This imposes an even more stringent structure on a program.
All computation is specified in the form of functions which use no variables to store
partial results. No "side effects" are perm itted and an exact correspondence between a
program and its specification can be demonstrated. Once again, however, there is a
cost to the program m er. W here it feels natural to store information for later use,
other, less direct, m echanisms m ust be used. Furtherm ore, the basic problem of
storage and access to large amounts of long-lived data has not been effectively resolved
w ithin the functional paradigm.

The m ost recent line of developm ent has been that of object-oriented
program m ing languages [Dahl and Nygard, 1966; Goldberg and Robson, 1983; Meyer
1988]. These argue strongly for a natural way of describing tasks to be given to the
computer, bu t also impose a rigid structure upon the program. An object-oriented
program consists of the descriptions of a number of kinds (or classes) of object that are
to be manipulated. A class describes the passive features or attributes and the active
feature or operations that are common to all objects of the class. This bringing
together of the passive and active descriptions certainly produces a conceptual
simplification for the programmer, but has two drawbacks.

Firstly, the common way that the two sets of features are specified has an
unfortunate im plication which causes confusion. A passive feature describes a
component of an object of the class. Each object of the class will have a component or
attribute of the specified type whose value will vary from object to object. Conversely
an active feature is an operation which is common to all objects of the class. That is, a
class attribute describes a set of things, while a class operation describes only one thing.
This violates a basic principle of the natural representation of objects in a language -
the same sort of description is used for things of greatly differing nature.

In fact this violation is due to the non-orthogonal provision of two features.
There is no intrinsic reason why object-oriented languages should not provide the
ability to specify attributes and operations which are specific to instances and attributes
and operations which are general to the class. This ability to factor out common
descriptions is a major benefit of the object-oriented approach, which is lost if this is
not provided orthogonally to other facilities.

Chapter 2 12 A Survey of Approaches

The second problem with object-orientation is considerably more serious. The
only place where program code may appear is as the operations associated with a class.
This constraint on where code can appear forces the program into severe contortions
w hen trying to achieve fairly straightforw ard tasks. M ention is m ade here of the
problems of representing code that is not easily viewed as being associated with some
class; code that represents dyadic operations; and code that is essentially a component
of some object. Section 2.2.2 goes in much more detail into these problems and on
object-oriented systems in general.

Two other sorts of language have appeared recently: specification languages and
rap id pro to typ ing languages. The form er provide the ability to m ake precise
statem ents at a very high level about selected aspects of a program 's functionality.
This is intended as an aid for conceptualising the design of the program and for
verifying the design and is independent of the computational paradigm . As these
languages are currently provided, such specifications are not usually executable,
although if the specifications really represent the functionality required this should be
possible w ithout the need to respecify in another language. One of the goals of this
research is to show how, given a persistent environm ent, it is possible to produce
im plem entations w hich are executable. H ow ever, if specifications are m ade
executable, the differences betw een them and program m ing languages have been
reduced to nothing, thus rendering them redundant.

Rapid Prototyping Languages, on the other hand, give the appearance of being
executable. They resemble the stage set of a film or theatre, providing the appearance
of som ething that works, bu t not the reality. These languages are used to provide a
system quickly according to a specification for experim entation purposes. Used
extensively in the context of user-interface design, prototypes can, for instance, allow
users to test how a program will feel, before it is actually built. The user interface can
then be modified in the light of any criticisms. Rapid prototyping can also fulfill a
different role in the developm ent of very large systems. Each com ponent can be
prototyped so that inter-component interfaces can be verified by the prototype, before
the actual components are implemented [Cooper et ah, 1989].

One issue which cuts across the different paradigms is the kind of type checking
provided. The type system of a language is a framework within which data can be
structured. To indicate that a piece of data is of a given type means that its structure
and w hat can be done with it are completely defined. Therefore, if an attem pt is made
to use it in different ways or as if it had a different structure, this will result in a
reported program error and not in the corruption of the data. Buneman claims that
such attem pts to misuse data account for 70% of all program m ing errors [Buneman,
1988].

Therefore two conclusions may be drawn. A program should provide a type
system, which cannot be violated - otherwise this kind of error will give rise to obscure
and potentially catastrophic errors. Secondly, the sooner the program m er is m ade
aware of these errors, the less costs will be incurred. Languages in which all use of data
and program m ust comply with their type specifications are said to be strongly typed.
If these languages perform all the type checking as the program is being compiled, they
are said to be statically type checked, while if all these checks are deferred until the data
are used at run-time, they are said to be dynam ically type checked. The persistent
paradigm provides languages which use a mixture of both.

Chapter 2 13 A Survey of Approaches

Clearly strong typing is essential and static type checking is desirable since the
errors will be detected before the program is run. However, static type checking
requires that all code is written to run against explicitly stated types and this means
that no code can be w ritten to run over a range of types. In order to write such
po lym orphic code, the decision on which data types the code uses in a particular run
m ust be deferred until run-time. The consequence is that if the savings of code re-use
supplied by polymorphism are required, a degree of dynamic type checking is required.
However, polym orphism is not required everywhere in a program. There are some
parts of the program which can be written to run against some explicitly stated types.
W hat the language should provide, then, is a judicious mixture of static and dynamic
type checking, so that the compiler checks any part of the program which it can, while
the polymorphic types are left unresolved until run-time.

All of these paradigm s exhibit two chief failings. Firstly, in order to provide a
good mechanism to achieve one purpose, other purposes are ignored. Secondly,
languages tend to be either insufficiently powerful or too complex. The paradigm of
Persistent Programming attempts to tackle these issues. The underlying philosophy of
the approach is to provide coherence, firstly in that the same mechanism is not used
for doing two different things, and secondly that two mechanisms are not used for
doing similar things.

For a language to be persistent means that the mechanism for handling long
term and short-term data is unified. Such languages do away with all of the baggage
other languages require to store and retrieve data explicitly. A similar unification is
also achieved by m aking a language data-type complete [Morrison, 1982; Tennent,
1981]. This means that all kinds of data can be handled in the same way. Making
procedures values and giving them first-class status in this "data type complete"
dom ain allows similar m anipulation of program . Such unification of mechanisms
and removal of arbitrary exceptions should have a greatly simplifying effect on the
task of programming. It is the aim of this research to test whether or not this is so.

2.1.2 The Development of Better Database Systems.

Databases grew out of an attem pt to reduce the amount of software that had to
be written by factoring out the common elements of data intensive applications. Such
facilities as security, concurrent access to data, distribution of data and so on were
provided by a program called a Database Management System. The user would then
interact with the DBMS via an interface that was easy to use (relative to using a full
program m ing language). The interface was either via a small set of simple high-level
languages (the Data Definition Language, the Data M anipulation Language and the
Query Language) or, latterly, via graphical tools [Zloof, 1977; Odesta, 1984].

To accommodate a variety of applications being built on top of a single program,
this program had to supply a model for the structure to which the data it could handle
m ust conform. Early experience with these "data models" led to the development of
the Classical Data Models: the Network, the Hierarchical and the Relational Data
Models. The Relational Model [Codd 1970] proved to be a particularly elegant model
w ithin which to structure all kinds of data. It took the view that all data could be
represented in the form of rectangular tables, w ith columns that were nam ed and
typed and rows which were undistinguished. The m athematical properties of this
model led to a great deal of research on how to optimise data storage and retrieval.

Chapter 2 14 A Survey of Approaches

Not only was the production of the facilities of the application factored out, but also
research into how to optimise them.

D atabase system s based on the Relational M odel began to proliferate
[Stonebraker et al., 1976; Oracle, 1983] and standards began to be set. For instance a
common query language (SQL) is a provisional standard. Many business applications
can be framed in terms of relations and so Relational Databases have become effective
and enduring products for reducing the coding effort for simple data intensive
applications.

However, many new application areas have opened up for which the Relational
Model seems som ewhat inadequate. These include Com puter-A ided Design and
M anufac tu rer (CA D /CA M), C om puter-A ided Softw are Engineering (CASE),
Com puter-Aided Engineering (CAE) and Office Automation (OA). These all require
the m anipulation of objects with complex structures, which may be forced into the
relational m ould only w ith difficulty. M anipulating these kinds of objects is
intrinsically so conceptually complex that the software producer requires all the help
available in conveying the complexity to the computer. An underlying data model
which is as simple as the Relational Model enforces a translation process from the real
world which imposes an insupportable cognitive load on the software engineer.

[Kent, 1979] provides an excellent analysis of the limitations of the RM from the
point of view of someone wishing to represent complex objects. Essentially, he argues
that the simple nature of the RM provides two mechanisms for relating two pieces of
data: either they are in different fields of the same tuple; or they are in two tuples with
a common field. These two mechanisms are each used for a variety of purposes, thus
causing semantic overloading. The function of each part of a Relational Schema may
not be imm ediately obvious to someone brought to examine a database set up by
someone else. The other limitation of the RM is that it lacks the ability to provide a
consist way of describing single objects. Sometimes they are tuples. Sometimes they
are whole relations. Sometimes they are d istributed over a num ber of tuples.
Sometimes they are just a part of a tuple. In short, the model falls short in expressing
the structure of complex objects in a coherent way. Furthermore, there is no support
for object identity and reference. Linking any two objects uses one of the two
mechanisms above in an ad-hoc way. The most systematic attem pt to extend the RM
to deal with these points was given in [Codd, 1979], but the mechanisms proposed for
providing automatic support for semantic content seem merely to bring the problems
into sharper focus.

Therefore, there began to be proposed a num ber of m odels w ith richer
structures, which more closely model relationships found in the real world. These
Semantic Data M odels (SDM's) will be discussed in more detail in section 2.2.1, but the
growing expressive power that SDM's provide in a database context is noted here.
They take the idea of factoring out common facilities and extend this to factor out
m ore of the problem of translating a real-w orld application into a com puter
representation.

Thus, w ithin the database context, im proved facilities are em erging for
expressing data intensive applications as simply and naturally as possible. The
development of SDM's greatly eases the description of the structure of the database.
However, another restriction imposed by the classical data models is in the expression
of the active aspects of a data application and SDM's do not, in general, contribute a
solution to this. Database systems tend not to provide the ability to describe the active

Chapter 2 15 A Survey of Approaches

aspects of an application. The languages they provide are very simple, rarely
computationally complete and weak, in general, at describing data transformations.

This need for more program m ing power in this area resulted in another trend
starting in the mid-70's - the database programming language (DBPL). The essential
feature of the developm ent of DBPL's was an attem pt to circumvent the lack of
expressive pow er of database systems, by m erging them with full program m ing
languages. Section 2.2.3 briefly describes some work in this area, which is intended to
give the program developer more flexibility to express the active aspects of the
application. The critical problem here is merging two wholly contrasting views on the
m anipulation of data. This was a central issue in the development of the Persistent
Programming paradigm, and PS-algol in particular.

Database systems were an early attem pt to factor out whole areas of programs
dealing w ith data. At first they provided an unnaturally passive view of data,
although the need to describe the active aspect has long been recognised. An early
example of this was the introduction of database procedures in [CODASYL, 1971]. The
technology for their convenient provision has only appeared with the advent of the
Persistent Program ming Language. More recently, more natural ways of describing
data have been included along with facilities for describing the active components of a
database. Yet better languages are needed for manipulating data. These will push the
trends towards simplicity, power and naturalness still further.

2.1.3 Software Engineering Solutions.

One further trend is that of providing better environments in which to develop
software. These environments provide a coherent context in which to produce new
software modules, and store, retrieve and link them together. Given support of this
kind, the m anufacture of large software products becomes a much more tractable
proposition, compared with using an unstructured environm ent. However, such
environm ents are, at present, either restricted in the kinds of software they can
manage, restricted in the kinds of language they can use, or restricted in their facilities.
Many environm ents grow from a particular context (for instance, X-windows for
graphics [Jones, 1989]). Their semantics is therefore independent of and possibly
incompatible with the semantics of other environments which are in use.

The key to producing better environments is to view the software itself as data
objects being m anipulated w ithin the Software Developm ent Environm ent (SDE).
Once this view has been taken, then two consequences emerge. Firstly, if program is
data, database technology can be brought to bear on the problem of m anaging the
software. Secondly, to do this languages are required which manage program as if it
were data.

M anaging software includes a num ber of tasks. There is the problem of
introducing new software modules into the environment, by means of some source
code editor, say. New modules must be inserted in a structured way, so that they can
be retrieved for subsequent re-use. The process of finding modules which already exist
is a second task. Another task is that of managing versions of modules. These can
arise for a number of reasons, each of which might require slightly different handling.
Finally, there is a need for a mechanism to configure modules into a final product.
These mechanisms are described in more detail in Chapter 8.

Chapter 2 16 A Survey of Approaches

These tasks are all database tasks, provided only that program can be viewed as
data and the software environm ent as a database. In order to produce good SDEs,
therefore, database languages capable of supporting this view are required.

2.2 Some Relevant Approaches.

2.2.1 The Semantic Data Modelling Approach.

Section 2.1.2 introduced the notion of the data model and the limitations of the
classical data models, which led to the development of models which strive to capture
more of the meaning of the application. The best summary of work on Semantic Data
Models is the survey in [Hull and King, 1987], to which the reader is referred for
greater detail. There appear also such terms as "Conceptual Data Models" [Brodie et
ah, 1984], but there seems to be no difference between conceptual and semantic data
models.

In essence, a Semantic Data Model (SDM) includes constructs which m irror
different kinds of concepts in the real world. These may include:

entities: the objects which are to be modelled;

identity : these objects will have a fixed representation, which can be referred to
from any num ber of other objects, whilst encompassing the same set of
values;

entity types or classes: groups of objects with common properties;

attributes: a dependent value of an object;

com ponents: an object which is part of another object;

relationships: a link between two or more entities;

constrain ts and assertions: statements which are invariant about the modelled
world;

ac tiv itie s, p rocesses or even ts: descriptions of the way the system reacts to
events;

and exceptions - descriptions of rare deviations from constraints and processes.

Any given SDM will provide a subset of the above m odelling constructs and the
application designer frames the design in terms of these. The design is constructed by
use of some Data Description Language, which may very well be graphical, and this
will be transform ed into a lower-level description, such as a relational one. The
central idea behind SDM's is that the description will be more naturally related to the
real-world application.

Several questions come to m ind when surveying SDM's. Most crucially comes
the question of how many different kinds of constructs are provided. Some models,
for instance the FDM (see below section 2.2.1.4), model everything in terms of one

Chapter 2 17 A Survey of Approaches

m ain construct (in this case the function), while others, such as the Semantic Data
Model of H am m er and McLeod (see section 2.2.1.3), provide a great variety and
intricacy of constructs. In the one case, simple models may be built, although one
mechanism does duty for a num ber of meanings (i.e. there is semantic overloading).
In the other case, a great deal of meaningful detail can be built into a model, but the
m odelling language may be much less easy to use. The question is whether or not
more means better, or do more constructs just mean a confusion of alternatives in the
m odelling process. Just one illustration of this problem concerns the nature of
attributes and components in the list above. Consider an address. It has dependent
properties house num ber, street, etc. Are these attributes or components? Does it
matter? Will people be confused if they can represent them as either? Does the choice
affect the underlying implementation anyway?

A second question is w hether the model is able to discrim inate betw een
different kinds of entity type. This question breaks dow n into a positive and a
negative aspect. Can the differences between entity types be specified sufficiently? Are
certain kinds of entity unavailable in certain parts of the model? The kind of
distinction to be made between entity types separates basic or printable entity types,
such as integers or strings, from complex entity types. Then complex entity types may
be divided into prim ary types and subordinate ones. These distinguish the central
object types of the system from those which are dependent on them. Thus a
university database might include a primary entity type for people and secondary sub-
types for staff members and students.

The question then is whether a given model provides these distinctions. The
ER model (section 2.2.1.2) has just such distinctions (between strong and weak entity
sets), but also specifies the considerable restriction that attributes m ust be printable. A
subsidiary question is w hether such a taxonom y of entity types provides any
m odelling value or is it just a carry over from im plem entation detail which only
serves to confuse?

Another question concerns the nature of relationships between objects. What
kinds of relationships are provided? A ttribution and aggregation (the component
relationship) have already been m entioned. Most models also include w hat is
variously described as subtyping, specialisation, inheritance, "IS-A", etc. The precise
notion involved, however, varies from model to model, so that a great num ber of
different concepts may be clustered together under the one umbrella, partly because
the same concept is being used for a number of purposes [Atkinson, 1988].

Two other questions concern derived data and meta-data description. Is there
the ability to describe inter-component structure so that data does not have to be
entered or stored more than once, but derivation rules can be entered instead? Can
the model describe itself? If so, meta-data can be modelled in the same way as ordinary
data, which means both that the model is conceptually simplified and that the same
facilities can do double duty in manipulating data and schema.

Most SDM's concentrate purely on a passive description of the database. Some
(such as the Event m odel described in section 2.2.1.7) also include an active
component. These allow a straightforward description of processes with which the
database can be changed. Although much of the m odelling ideas of SDM's were
incorporated into the Object-Oriented approach, the notion of freely describing process
objects was avoided, as will be discussed in section 2.2.2.

Chapter 2 18 A Survey of Approaches

2.2.1.1 The Semantic Binary Data Model.

The first Semantic Data Model intended for databases was the Semantic Binary
Data Model proposed by Abrial [Abrial, 1974]. This was intended as a design tool for
relational databases, but introduced constructs for describing entity types and binary
relationships between entities. It takes an extensible view of database design, in which
statements are made that there are "categories" of object and then that objects in these
categories may be inter-related in particular ways. Thus a start of a database design
may look like:

PERSON = CATEGORY

introduces a new entity type

P E R S O N N A M E = RELATION(P E RSO N , N A M E , has_name, names)

introduces two relationships: has_name from P E R S O N to N A M E a n d
names from NAM E to PERSON.

PERSONADDRESS = RELATION(PERSON , ADDRESS,
lives_at = AFN(1,1), residents_of = AFN(0, °o))

introduces cardinality constraints on the relationships, in this case all
people have exactly one address, while any number from 0 to <» may live
at a given address.

All database design is then carried out with these two constructs, although there is also
a piece of syntax that allows attributes, called properties, to be described which is
merely a short-hand for describing an attribution relationship.

There is also a language for performing data manipulation and querying. Data
m anipulation proceeds by generating instances of categories and then creating
relationship links betw een the categories. Querying is perform ed by providing
conjectures in the form of predicates and validating them against the database. The
m ost significant feature of this model is that program s can be built w ith these
languages and such programs can be used to model constraints or to perform activities.
In particular, the SBDM provides the ability to specify an activity which is to occur
when an object is created. This idea became the whenjcreated operation common to
most Object-Oriented data models. The SBDM was, then, a very simple modelling
system, but it set the precedent for modelling real-world notions directly.

2.2.1.2 The Entity Relationship Model.

This model was introduced in [Chen, 1976] and was the model which first
popularised the Semantic Data Modelling concept. It remains the most popular data
model. It too was created to be an off-line graphical design tool for relational systems
and is similar to the Bachman diagrams previously proposed for CODASYL databases
[Bachman, 1969]. It may be viewed as an extension of the SBDM above in modelling
power in that there are now: entity sets which are equivalent to categories; attributes
are allowed on entity sets; and relationship sets which interconnect entity sets. There
is also the ability to model different kinds of entity type. Prim ary types are those
considered central to the definition of the data, have prim ary keys and are known as

Chapter 2 19 A Survey of Approaches

strong entity sets. Subordinate entity types derive their key from some primary type
and are known as w eak entity sets. All of this is easily transformed into a relational
database schema.

Figure 2.1 shows an example (drawn from [Korth and Silberschatz, 1986]), in
which there are three strong entity sets, for the customer, the account and the branch,
interconnected by the relationship CAB. There is also a weak entity set, transaction,
which depends on account connected by the relationship, log. All of the entity sets
have attributes.

ccustomer
name

social
security balance 3

customer account log transaction

caddress \ Branch)
^ sorting C date ^ ^ amount ^

Figure 2.1 An Entity Relationship Diagram.

The ER model thus provides a som ewhat richer m odelling environm ent for
describing the passive structure of the basic objects in a database. It is easily mastered,
but does not add much depth to the description.

2.2.1.3 The Semantic Data Model.

O ther passive data m odels centred around the notions of entity types and
relationships were proposed, of which the richest was the Semantic Data Model
[Hammer and McLeod, 1981]. Its basic modelling construct for entity types is the class,
which is defined to have:

a name;
a set of members;
a description for documentation purposes;
a set of m em ber attributes (i.e. defined on each member, e.g. age);
a set of class attributes (i.e. defined on the class as a whole, e.g. cardinality);
whether it is a base-class (i.e. is it defined independently of others) or not;
if it is a base-class, the set of attributes which form the key;
does it contain duplicates or not?

Non- base classes are defined either by sub-classing, which is done by one of:
a filtering membership predicate;
the intersection of two classes;
the range of some attribute on another class

e.g. if PERSON has an attribute age: integer then the class of
integers that are ages for some PERSON can be specified.

Chapter 2 20 A Survey of Approaches

user-defined (the user will explicitly select objects from the super-class to
go in the sub-class).

or by grouping, in which a partitioning expression splits a class into a group
of sub-classes.

A ttrib u te s can be of a large num ber of kinds: single-valued or multi-valued;
m andatory or optional; changeable or not; exhaustive (i.e. every value in the attribute
range m ust be the value of at least one object); non-overlapping (i.e.unique); or
derived (by some expression from other attributes).

There are m any kinds of derived data and constraints and there are inheritance
mechanisms between the classes. In short, this is a modelling world which is very rich
indeed. The paper ends with a sample database of ships and inspections, which seems
to capture a considerable number of the facts one would know about the data structure
of the modelled world. The authors claim that the model has been used with success
in designing applications. The problem w ith such data m odels is defining and
understanding their semantics.

2.2.1.4 The Functional Data Model.

The Functional Data Model [Shipman, 1981] goes to the other extreme in
providing a single modelling construct for the whole job of data modelling. Using
functions, one can model: entity types, attributes, sub-typing, relationships, m ulti
valued and single-valued data, base- and derived data and meta-data.

Entity types are modelled by functions which have no arguments which return
the set of values of that type. There is one top type, called ENTITY, and other types are
declared as in:

DECLARE PERSONQ » ENTITY
DECLARE STUDENTQ » PERSON

which creates a new prim ary type P E R S O N as well as S T U D E N T , a sub-type of
P E R S O N . Inheritance from PE RSO N to ST U D E N T then occurs automatically. Note
that there is semantic over-loading of the type names - they mean both the type and
the function which returns the values of the type. All entity types hold single valued
entities and so there is no such thing in the model as multi-valued types.

Attributes are also defined as functions, such as

DECLARE NAME(P E R S O N) -> STRING
DECLARE COURSESi STUDENT) » COURSE
DECLARE GRADE(STUDENT, COURSE) - » INTEGER

in which a single-valued attribute N A M E has been defined on PE R SO N and a multi
valued (two-headed arrow) attribute C O U R S E S has been defined on S T U D E N T .
Points to note include: the existence of predefined types, STRING, etc for the printable
types; the fact that COURSE does not have to be defined before COURSES; there is
freedom to re-use names so that the same named attribute can be defined on two
different types and the system will resolve the overloading by using the type; multi
argum ent functions are allowed.

Chapter 2 21 A Survey of Approaches

D erived a ttrib u tes can be defined by using constructs which are essentially
functionals (functions which map functions into functions) such as INVERSE OF and
TRANSITIVE CLOSURE OF; or by function composition; or by aggregating functions
such as A V E R A G E . D erived en tity types can also be defined by using functionals
which mimic aggregation and set union and intersection.

Shipman also provides DAPLEX, a data manipulation and querying language.
The language stands up reasonably well as a query language, with queries such as:

FOR EACH STUDENT SUCH THAT FOR SOME COURSES(STU D E NT)
SUCH THAT NAME(LECTURER(COURSES)) = "Richard"

PRINT NAM E(S T U D E N T)

which have a fairly natural language feel to them. The DML, although consistent with
this, seems overly verbose, on the other hand:

FOR A NEW STUDENT
BEGIN

LET N A M E (STU D ENT) = "Bill"
LET DEPT(S T U D E N T) = THE DEPARTMENT

SUCH THAT NA M E (D EPARTM ENT) = "CS"
END

is too m uch code for the job. Note one more use for the variable S T U D E N T , which
now means all of an entity type, the function which returns the values of that type and
a variable that ranges over instances of that type.

One of the strong features of the FDM is the ability to model the m eta-data
within the model itself. There is an entity type called F U N C T IO N and attributes of
this type to hold the name, arguments, result type, etc. of functions. The schema is
thus manipulable by the DML and queryable by the QL.

The FDM is the strongest example of a simple m odelling system with great
power. There is a feeling when trying to use it, however, that a lot of the semantic
content of the database is lost. When looking at a schema, it is not always clear what
role a given function is playing, nor is it obvious whether the semantic overloading of
names in the system is simplifying or complicating. An implementation of this model
is described in section 7.1.

A separate functional approach is FQL [Buneman and Nikhil, 1984] in which a
purely functional language for the description of database schemas and queries is
proposed. It provides functionals for describing sets, aggregates and attributes and
permits simple queries to be built using them. Intended as a front-end to relational
databases, it uses the functional style of lazy evaluation to reduce data access time and
presum ably will carry with it the formal properties which are the raison d'etre of the
functional paradigm. As such, it is a particular elegant example of the coming together
of two approaches. One implementation of FQL was carried out in the context of the
work on RAQUEL systems described in section 6.1.

Chapter 2 22 A Survey of Approaches

2.2.1.5 TAXIS.

TAXIS is a system which is designed for the creation of interactive information
system s [M ylopoulous et al., 1980]. It resembles the FDM in that everything is
m odelled in terms of one construct, this time the class. Classes are used to model
passive objects and active objects, like transactions, constraints, exceptions and even
expressions. There is a two-way taxonomy of objects - an inheritance hierarchy, in
which any kind of object can take part, and division into tokens (or entities) which are
grouped into classes (or types), which are grouped into m eta-c lasses (cf Cardelli's
kinds).

P r o p e r t ie s are defined on tokens, e.g. (j o h n _ s m i th , has_ n a m e , "JOHN
SMITH"), on classes < P E R S O N , has_name, P E R S O N _ N A M E > and on meta-classes
<PERSON_CLASS, average_age, AGE_VALUE >. The first of these represents a single
fact from the database, the second a function from the P E R S O N class to the
P E R S O N _ N A M E class, while the third represents a function from a collection of
classes to the AGE_VALUE class.

The TAXIS language allows a fairly straightforward description of types and
properties, which resembles the SDM. Classes are defined as instances of meta-classes,
which m ust therefore be defined first, as in:

m etaclass PERSONjCLASS w ith
attribute_properties

average_age: A G E _ V A L U E
end

Then a class description can be written:

PERSONJCLASS PERSON w ith
keys: person_id: (name, address)
characteristics:

name: P E R S O N _ N A M E
address: A D D R E S S _ V A L U E
phone#: P H O N E _ V A L U E

attribute_properties:
age: A G E _ V A L U E
sex: SEX_VALUE

end

which introduces PERSON, w ith five properties, three invariant (characteristics) and
two variable.

There are some system-defined metaclasses for particular types of class. These
include: VARIABLE_CLASS, whose members are classes which support insertion and
deletion of members; F IN IT E L Y _ D E F IN E D , whose m em bers are classes whose
instances are explicitly listed; TEST_DEFINED, whose members are classes whose
instances are determined by a predicate; AG GREGATE_CLASS, whose members are
classes which are aggregates of other classes; and F O R M A T T E D _ C L A S S , whose
members are classes of STRINGS with a common format. Using these meta-classes
and inheritance, classes can be created with different features. As defined above,
PE RSO N _C LA SS classes would not support insertion and deletion. To achieve this
the following should be specified:

Chapter 2 23 A Survey of Approaches

m etaclass PERSON_CLASS is-a VARIABLE_CLASS w ith

The inheritance hierarchy extends throughout the class and metaclass network
and there are specially defined classes A N Y and N O N E , such that for any class, X, X isa
A N Y and N O N E isa X. There are equivalent m etaclasses, A N Y _ C L A S S and
NO_CLASS, as well as other classes such as AN Y_VARIABLE, etc.

There is a special metaclass called T R A N S A C T I O N _ C L A S S which contains
class objects which are not really sets of tokens, but are essentially program objects. An
example of this is

T R A N S A C T IO N _CLASS RESERVE_SEAT w ith
param eter_ lis t reserve_seat: (p,f);
locals p:PERSON;

f'.FLIGHT;
x: INTEGER;

prereqs
sea tsJe f t : f.seats_left > 0

actions
m ake_reserva t ion :

insert_object_in RESERVATIO N w ith
person <- p, fl ight < -/;

deerementjseats: f .seatsJe ft <-f.seatsJleft -1
assign_aux_vars: x <-f.seats_left

returns
rtrn: x

end

which is a full specification of the input parameters and local variables, a precondition
for the transaction to execute smoothly and then a list of sub-actions which constitute
the transaction's behaviour. These are specified in a QUEL-like language.

Transactions are used to model any active component of the system, including
the procedures which defined test-defined classes and exception triggers and exception
handlers.

TAXIS is a very consistent, coherent system which, like FDM, uses one
mechanism, this time inheritance over classes, to model all sorts of things. It has
some lim itations and some things, like exceptions, feel a bit unnatural to use.
How ever, it is a very clear specification language. The designers have been
ambivalent about whether or not it should be compilable. An early effort was made to
compile it to PASCAL /R. Attempts have been made to provide toolsets for Taxis and
its derivatives and to use it in conjunction with other languages [Borgida et al., 1989].
Another drawback may be the three-level world of tokens, classes and meta-classes
which seems to violate a basic principle of Com puter Science, which is that there
should be 0, 1 or an infinite num ber of anything. It may be that there are systems
whose optimal data model includes meta-meta-classes, for instance.

Chapter 2 24 A Survey of Approaches

2.2.1.6 The IFO Data Model.

This model proposed in [Abiteboul and Hull, 1988] attempts to bring a common
and precisely defined framework to Semantic Data Models. It is also used to place a
framework for the analysis of updates, which is beyond the range of this survey. It
provides a sophisticated taxonomy of types, which will be discussed with reference to
the following diagram given as Figure 2.2.

Person

Vehicle-ownerNami Owned vehicles

Address

Vehicle
Hous Sheet

BoatCar
Key to nodes

| I | Printable

Abstract

o Free

Aggregate

Set

Key to arcs
 ► Attribute

Component
Specialisation
Generalisation

Figure 2.2 A Sample IFO Schema

Firstly, there are three kinds of atomic type: prin table types, which are the usual
base types, string, integer, etc.; abstract types, which represent the basic entities the
schema is modelling, and have "no underlying structure"; and free types, which are
defined with reference to other types (sub-types are an example of this). There are also
the following complex type constructors: set or collection creates a multi-valued object;
while aggregate creates single objects out of component parts (address in the example).
Using these constructs, the space of objects can be thought of as being partitioned into
sets, each of which is controlled by one of the abstract types.

The entity types are connected by a num ber of different re la tio n sh ip s . A
fragm ent is any graph of types and relationships and a schem a is the complete graph
representing the model. The relationships available in the model are a ttribu tion (X is
an attribute of Y); co m p o n en t (X is a p a rt of aggregate type Y); or the sub-typing
relationships specia lisa tion and generalisation . Specialisation represents the notion
that type X is a sub-type of Y in the senses that X inherits the properties of Y and all X's

Chapter 2 25 A Survey of Approaches

are also Y's. The specialised type, X, will be a free type, since it is defined relative to the
type being specialised. Generalisation, on the other hand, creates a free type which is
the super-type of a set of other types. It encompasses the notion that every instance of
this type m ust also be an instance of one of the sub-types (thus vehicle is constructed
out of car and boat).

One bonus of this model is that it allows the definition of relationships between
relationships, by nesting. For instance, in the FDM, to represent the grade of a student
on a course, a two argum ent function is needed - G R AD E (C O U RSE ,ST U D E N T)->
STRING . In IFO, this can be represented by an attribute of COURSE, which contains a
set of students, and then an attribute of the members of this set which returns the
grade. This better models the notions involved, whereas the FDM representation
essentially loses the order between the concepts.

IFO allows some local constrain ts to be specified, such as that a relationship is
1:1, etc. It also allows constraints on specialisation relationships - that the subtypes of X
must be d is jo in t or that they cover X. There are also global constraints which are
enforced by the system: the sub-type graph m ust be acyclic; no type can be the
specialisation of more than one atomic type; no free type can have been created
simultaneously by generalisation and specialisation. The first of these is intuitively
obvious - it makes little sense to say X is a sub-type of Y, which is a sub-type of Z, which
is a sub-type of X. If the sub-typing (or subsetting) relationship adds more information
at every stage, X now has more information than X! The second global constraint
means that inheritance from more than one super-type is acceptable as long as these
both eventually inherit from the same atomic type. This makes some sense in that
whereas a type which specialises both S T U D E N T and STAFF, them selves both
specialisations of PERSON, seems reasonable, a type which specialises both SHIP and
PERSON does not. (Note however that the type of potential vehicle owners may be the
sub-type of both PE RSO N and COMPANY.) The third constraint is a consequence of
the system. Free types are either created by specialisation or by generalisation and to do
both at once suggests that a type gets its defining information from two possibly
conflicting sources. Thus VEHICLE may be created as a specialisation of M O V I N G
THING or as a generalisation of BOAT, PLANE and CAR, but not both at once. If the
model m ust capture all this, either MOVING THING is a generalisation of VEHICLE
(and other types) or CAR, etc are specialisations of VEHICLE.

IFO places the concepts which were introduced in the preceding models into a
relatively sim ple fram ew ork in which the intrinsic nature of the constructs is
revealed. This allows the first step to be made towards analysing data models formally
[Abiteboul and Hull, 1988]. Section 7.3 describes an implementation of this model.

2.2.1.7 The Event Model.

The next model incorporates active object descriptions into the data model. The
Event Model [King and McLeod, 1984] is designed to model a database by making
statements about the database which are true for all time. To do so, it needs some
notion of active objects and then it can make statements like "Event E modified object
O at time T".

There are two types of passive object in the system: descriptor objects are strings
and hold identifiers and printable values; abstract objects are complex objects. The
latter consist of a ttribu tes, of which one (the prim ary attribute) uniquely defines the

Chapter 2 26 A Survey of Approaches

object. Attributes are modelled by functions and can be specified to be unique, single
valued, non-null, exhaustive or the inverse of another attribute. Objects may be sub
typed, using restricting predicates or adding more attributes. Some examples of the
definition of object types:

T ype: Correspondence
prim ary attributes: ID from Correspondence-ID-#s

(single-valued, non-null)
dependen t attributes: Kind from Correspondence-Kinds (single-valued)

subtype: Bills
all Correspondence w here Kind = "Bill"

subtype: Requests
all Correspondence w here Kind = "Request"

Events are divided into ap p lica tio n events (which model transactions) and
perusal events (which model queries). They may be param eterised and require the
specification of objects ("working subtypes") to be used in the event and the sub
actions involved. An example:

T yp e: Process-Correspondence
param eters: Item from Correspondence-ID-#s
w o rk in g sub types: P is Correspondence w here Correspondence = Item
actions: if P.Kind = "Request"

th en (Select-Porm{ P), Complete-Form{ P))
else if P.Kind = "Bill" then

(Perform-Account-Fcns(P), Write-Cheque(P)) ,
Transmit-Responsei P),
Archive-Request / Bill-and-Response

Given these kinds of object, the goal of this work is to provide a graphical tool
for producing a "design schema" of the database and to map this automatically into the
textual descriptions described above, "the conceptual schema". There will be a set of
m odelling events which do this translation.

2.2.1.8 Summary.

This has been a very quick tour through a number of data modelling systems.
There now follows a short discussion on their usefulness.

Models which capture more of the semantic information of the application than
do the classical models are essential to facilitate the creation of complex database
applications by non-specialist application im plem enters. There is an array of
constructs they may be given to achieve this. From this work should emerge a data
model which is capable of expressing entity types and relationships between then
which at least include attribution, aggregation, grouping and sub-typing. The system
should optionally provide some of the richness in modifying these basic constructs as
shown by the SDM. It is not so obvious that there is any m odelling value in providing
a taxonomy of entity types into printable, primary complex and subsidiary complex,
although the system m ight infer these kinds and then im plem ent them in different
ways. These constructs should be adequate for specifying the data structure of the
database.

Chapter 2 27 A Survey of Approaches

However, there is an increasing need to use the same modelling tool to describe
the active properties of the database. For instance, the worlds of CAD, CAM, CASE and
Office Automation increasingly need the ability to describe "active" objects in the same
way as the passive objects. Models, such as the Event Model, may be thought of as
providing a step in this direction. They are to be compared with Object-Oriented
Database, in that OODBs typically tie the active component to the passive component,
which in an overall model of some active system may not be an adequate description
of the real world activity.

2.2.2 The Object-Oriented Approach.

The Object-Oriented approach takes the ideas of Semantic Data Modelling and
puts them into a structure within which the passive and active components of an
application area can be described. The origins of the Object-Oriented approach lie
variously in the domains of programming languages [Dahl and Nygard, 1966], database
systems [e.g. Smith and Smith, 1977] and artificial intelligence [e.g. Hewitt et al., 1973].
There are a num ber of good short surveys of the approach (for instance [Stefik and
Bobrow, 1985] and [Bancilhon, 1988]). However, the best exposition of the approach is
[Meyer, 1988].

Meyer develops the m otivation behind the 0 - 0 approach and derives the
following definition:

Object-Oriented design is the construction of software systems as structured
collections of abstract data type implementations.

This definition dem onstrates at once the strengths and weaknesses of the model.
There is the m odular construction of a system in a highly structured way, but the
structure imposes a straight jacket in the form of the abstract data type.

To extend this definition, a system will usually be thought of as Object-Oriented
if it exhibits the following features:

c la ss if ic a tio n - the division of all data values into sets, called classes, with
common structure and behaviour;

iden tity - the values associated with a given object will be collected together and
m anipulated as a single unit;

reference - this unit may be referred to from any other object and any change to
the constituents of the unit will be visible to all these references;

controlled nam ing - all naming will occur relative to the objects;

encapsu la tion - the grouping together of the descriptions of the data structure
and behavioural aspects of a class - this often has a further implication
that the data structure is hidden and the only way of using an object is via
a set of operations which are made publicly available;

sub-typing - the ability to describe one class as a being a more specialised form of
one or more other classes;

Chapter 2 28 A Survey of Approaches

inheritance - the automatic availability of the definition of one class, to any of
its sub-classes;

overriding - the ability to replace inherited definitions by sub-class specific ones;

and deferred b ind ing - the ability to refer to the operations of an object, knowing that
at run-tim e its class will determine which version of the operations will
be used.

These will be described in more detail in the following sections.

2.2.2.1 Simula - a first step towards Object-Orientation.

The first language to exhibit properties later associated w ith Object-Oriented
languages was Simula 67, an extension of algol developed by Dahl and N ygard [Dahl
and N ygard, 1966], principally as a language for discrete event sim ulation. The
language has m any features, but the interest here is primarily in the class constructor,
first seen in this language.

All objects in Simula are either of basic algol types, such as real or integer, or are
instances of classes. Classes are defined as in:

Shape class Polygoni n); in teger n
v irtual: procedure setVertices;
begin

in te g e r indexNumber
ref (P o in t) centroid;
procedure scale;

begin
.... appropriate code body

end
end

This class definition contains a num ber of different components. Firstly comes a
name for the class, P o ly g o n , a class which this is a sub-class of, Shape , and a
specification of param eter values which must be provided when an instance is created,
in this case n the order of the polygon. Secondly there are some virtual or deferred
procedures. These are specifications only and defer an implementation until a sub
class is defined. In this case the setVertices procedure will be specified w ithin the
definitions of subclasses of Polygon, such as Triangle. Thirdly come some local state
variables. Finally there are some fully defined procedures. Instances of this class can
be produced by the following lines which declare and instantiate a Polygon variable:

ref(Polygon) p;
p :- new Polygoni 5);

Notice the syntax, which distinguishes assignment to a complex object () and to a
basic value (":=" as usual). This distinction was dropped in later languages as it was
found to be unhelpful.

Chapter 2 29 A Survey of Approaches

Object properties and class procedures are accessed by using the dot notation as
in:

c :- p.centroid

and p.scale

The variable p can now be used wherever a Polygon is allowed. Moreover, it
may also be used wherever a Shape is allowed. Thus a degree of polym orphism is
introduced through subclassing. M oreover, inheritance also obtains, in that any
procedure defined on Shapes is also available to Polygons . Finally, a notion of
deferred binding is available, in that if versions of the scale procedure on Shape and
Polygon are defined, then an instance declared on Polygon will automatically use the
scale for polygons. An object which is actually a Polygon, bu t which is declared as
Shape will usually use the scale of Shape, but may use the scale of Polygon by doing:

ref (Shape) s
(s qua Polygon).scale

Simula thus introduces most of the range of Object-Oriented concepts: classes,
inheritance, encapsulation and deferred binding.

2.22.2 Smalltalk.

Smalltalk [Goldberg and Robson, 1983] was developed at Xerox by a group led by
Kay, Goldberg and Ingalls, and was influenced by Simula, but used the same concepts
in a dynamically typed system akin to Lisp. The critical difference betw een this
language and other 0 - 0 languages is that there is no static type checking. A check is
made that a given operation can actually be run against a given object each time the
operation is applied. This violates the requirement that type errors, the dom inant
programming error, should be detected at the earliest possible time. An example of the
way in w hich this hurts the program m er will be given shortly. Another, less
significant, draw back to Smalltalk is that the language has freely in troduced
neologisms for concepts which have already got perfectly acceptable names. Thus
there are methods instead of procedures or operations; and sending a message instead
of applying a procedure. These terms will be ignored in this discussion, as they only
serve to confuse.

On the other hand, the significant contribution of Smalltalk is to frame
everything in terms of objects. Sometimes some sleight of hand has to be performed
behind the scenes to achieve this, but this brings considerable conceptual simplicity. It
has also been im plem ented in an interpretive way that throws the class hierarchy
open for brow sing and modification at run-time. This is a great aid to program
debugging. Finally the language adds, in a way that is reminiscent of TAXIS, the
notion of a meta-class, w ithin which it is possible to describe class operations in the
same way as instance operations.

Classes are defined in Smalltalk in very much the same way as in Simula.
However, Smalltalk takes the view that classes them selves are objects and this
simplifying concept means that operations can be defined on the class of classes, Class,
which means that instance-specific and class-specific operations can be described in the

Chapter 2 30 A Survey of Approaches

same framework. For instance, there is a class operation, new, which creates a new
instance of whichever class it is applied to. Instance creation is therefore written:

p -> Polygon new

in which Polygon refers to a class object and the new means apply its new operation.

Further distinctions between Smalltalk and Simula are that Smalltalk takes the
view that all state variables are hidden and that only operations may be public and that
instance operations are defined relative to a local variable called self. Operations to
change the state are defined using the self variable and then these are the only way of
manipulating the state data. Finally Smalltalk only provides single inheritance.

There are a num ber of inelegancies, which are general to the 0 - 0 approach.
Firstly the representation of dyadic operations. These appear as in:

2 add: 3

where the operation add of the integer is applied. This then picks up the 3, produces
the 5 and then returns it. The expression of addition as a property of a single integer,
instead of as an operation which takes two integers and produces a th ird seems
extremely cumbersome and unnatural.

Secondly, the unavailability of the local state, whilst often being desirable, seems
equally often to be a constraint on programming style which leads to overly verbose
and unnatural code. Again, the natural notion is to m anipulate an attribute of an
object directly and not via a procedure call.

The problem with the lack of typing is illustrated by the following Smalltalk
operation which is defined on a class of strings and returns the length of the string.

m e th o d length
begin

length -> 0
... iterate through string and add to length
T length

end

The final clause, w ith the t length, returns the value of length, an integer. If the
programmer omits the t , then the operation returns self, in this case a string. This has
introduced not only a logical error, but also what in most languages would be a type
error. N ot in Smalltalk, though. This will compile correctly and run, giving a very
strange run-tim e error which, w ithout the excellent debugging tools in the system,
would be difficult to track down.

Smalltalk therefore falls down in its lack of typing. This is compensated for to a
large degree by a sophisticated software development environment. This provides
templates for creating classes and operations. It also provides a debugger for
examining the structure of the program and a sophisticated set of system-defined
classes which enable the rapid construction of such aspects of the program as the user
interface. Therefore the language has been used as a starting point for a range of

Chapter 2 31 A Survey of Approaches

remarkable work, including the GemStone 0 - 0 Database System (see section 2.2.2.6)
and the Alternative Reality Kit [Smith, 1987].

It is interesting to speculate what could have been achieved if the same effort in
developing softw are developm ent environm ents and m ethodologies had been
expended on other languages. This thesis presents an investigation of these matters
for the language PS-algol which is very small in relation to the investm ent in
Smalltalk.

2.2.2.3 C Extensions.

The other language which it is fashionable to extend in an 0 - 0 way is C. Three
such extensions are briefly mentioned:

C ++ w as designed by Bjorne Stroustrup of AT&T [Stroustrup 1984]. It
introduces the notion of classes into C and cleans up the language somewhat. C++
provides complete encapsulation, although some of the operations in the interface
may be declared to be friend operations. This means that they take the object they will
operate on as an extra param eter. The language also provides a single inheritance
hierarchy and virtual operations, like Simula.

Objective C was produced by Brad Cox [Cox 1986] and is a kind of marriage of C
and Smalltalk. It provides the same sort of polymorphism and dynamic binding. The
language remains typed, but all complex objects are declared to be of the same type, ID.
This is similar to the pn tr type of PS-algol.

E [Richardson and Carey, 1987] is an extension of C++ to assist in the
implementation of database systems (not applications). It adds a subsidiary kind of
class, called the dbclass,w ith which implem entation details, buffering and pointer
control can be added. It furthers adds persistence to the language, by a special class
kind called a file. Finally, it adds a notion of generic classes, which were derived from
CLU [Liskov et al., 1977]. This leads to a rich language, with sufficient low level detail
to perm it the efficient implementation of database systems.

The response to all of these languages depends largely on one's view of C, itself,
a language whose usefulness has been largely due to the slowness of hardw are on
which UNIX systems were originally supplied. Given improved hardw are with novel
architectures, there is no reason to believe that languages which encourage the
specification of low-level detail will survive. The inefficiency which will count
increasingly will be that of the production of software and not of its run-time speed.

2.2.2.4 Eiffel.

Eiffel [Meyer 1988] is an attempt to pull together the best features of the above
languages w ith m odern concepts of software engineering and as such w ould seem to
be the 0 - 0 language of choice. It incorporates the typed class world of Simula within a
much simpler architecture similar to Smalltalk. It includes the following features:

S trong sta tic ty p in g - the case for this has been m ade above and Eiffel
dem onstrates that strong typing and object-oriented program m ing can fit well
together.

Chapter 2 32 A Survey of Approaches

Access to any "exported" operations and attributes of a class via the dot notation
- note that this means that in requesting a feature of an object, there is no way of
telling whether it is an attribute or an operation.

A ssertions - any operation may have pre- and post-conditions specified for it,
while a class m ay have invariants specified. The inclusion of assertions in this way
greatly enhances the probable correctness of class descriptions.

E xceptions - provided in a slightly different way from CLU or PS-algol. If an
operation fails then a retry clause is executed to try to patch things up - if this fails or
does not appear then the exception is transmitted to the calling operation.

G enericity - classes with type parameters may be specified, such as STACK OF
[T], meaning stack of unknown type. Such classes are instantiated by supplying a type
in place of the type parameter.

M ultiple inheritance with name clashes resolved by renaming.

Dynamic b ind ing and feature overriding - so that any feature may be respecified
in a sub-class and the im plem entation of the feature for a given object will be
determined at run-time.

D eferred classes - the inheritance mechanism is extended to include a special
form of the subtyping relationship. Some of the features of a given class may be
specified to be d e fe rre d - i.e. implementations of this feature will only appear in
subclasses. Such classes may not have direct instances - all instances m ust appear only
in a subclass having implementations of any deferred features. Thus there may be a
VEHICLE class with a deferred operation, register, which is implemented in different
ways for the sub-classes, B O A T and CAR. Note that this is a similar notion to the
generalisation in IFO and has similar modelling value. The particular value for
software engineering is that classes may be described at a high-level as deferred classes,
with implementations being left to a later stage.

In short, the language seems to strip away a lot of the surface weaknesses of 0 - 0
languages and reveals the critical one: the limitations upon the ways in which active
objects can be expressed, i.e. the lack of first-class procedures.

2.2.2.5 Object-Oriented Database Systems.

The developm ent of Smalltalk and other 0 - 0 languages has led to several
attempts to m arry together database and 0 - 0 technology. The systems described have
been implemented with a varying degree of success.

G em Stone/O pal [Maier et al, 1986, ServioLogic 1987]. This system is in effect a
typed, persisten t form of Sm alltalk - the language O pal is in m any ways
ind istinguishable from Smalltalk. The environm ent how ever p rov ides data
management, security mechanisms, concurrent access and database browsers. It also
provides interfaces to programs written in C or Smalltalk.

V-base [Ontologic 1986]. This system was thought to be the one which typified
the best aspects of OODBs and was regarded as the most likely to produce a commercial

Chapter 2 33 A Survey of Approaches

success. Yet the product was withdrawn and replaced by a system which is a back-end
to C++. The system provided two languages. The Type Definition Language is used to
describe the structure of the database. This includes a description of attributes and
specifications of operations, triggers, etc. The implementation of these "active" objects
is then produced in a quite separate language, COP - yet another extension to C. The
product ran into two problems of user-acceptance. Firstly, TDL and COP were new
languages, which brought the customary problems to potential buyers (particularly as
there were two and not one new language). Secondly, the product was extremely slow
and, as would be expected from*a prototype product, somewhat unreliable.

T rellis/O w l [O'Brien et al, 1987]. This database system was designed at Digital
Equipment Corporation and initially had high research visibility. Recently that has
reduced, which m ay mean that the company are planning to market it. The system is
in some ways the database equivalent of Eiffel as it offers m ultiple inheritance,
overriding and static type checking and also has exceptions, although this time in the
CLU style. It adds persistence in a manner similar to PS-algol. There is a distinguished
class called D B _ C O L L E C T IO N , which has the operations insert, remove, elements
(return all the elements) and select (return all elements for which some predicate is
true). Finally it includes concurrent access by a sharing-by-copy mechanism. That is, a
user wishing to change an object checks it out, changes it and checks it back in. While
the object is checked out, the old copy is still available for reading. The system is
provided in the form of a single, well-engineered language.

O 2 [Lecluse et a l , 1988] is an Object-Oriented Database System produced by
Altair. Programs in O2 describe classes in a slightly different way from the foregoing,
for example:

new _type CAR is
{supertype VEHICLE

structure tupleof (noWheels: integer r; capacity: integer r;fueh integer rw)
m ethods

f i l lup
begin

self.fuel := self.capacity
end

persist as Car }

In this specification, CAR is defined to be a sub-type of VEHICLE; w ith the additional
information given in the form of a tuple. The attributes noWheels and capacity will
have read operations automatically created for them, while fuel will have read and
write operations created. There is a set of operations (in this case only fillup) followed
by a name under which the class will be stored. The special points to mention are: that
read and write operations can be automatically created for any attributes; and that the
underlying structure of a class is not restricted to being a tuple, as in this case. The
structure clause can be replaced by:

structure integer

or structure set of VEHICLE

That is, a class can be a set of base type values or a set of sets.

Chapter 2 34 A Survey of Approaches

The persistence of objects in O2 is entirely determined by the class in which they
are created. Thus, if a class does not have a persist as clause, its objects will not persist.
If it does have a persist as clause, they will persist. This seems to be confusing two
orthogonal issues - the type of an object and its persistence. There is no way to specify
a type, some of whose objects persist, while some don't.

The O2 program m ing language [Lecluse and Richard, 1989] is multi-language in
two senses. In the positive sense, the O2 environment may be program m ed in more
than one co-operating language, such as extensions to C or BASIC, (with a common
data definition language which provides a common reference definition for these data
m anipulation languages) and in the negative sense, these extension languages are
essentially two languages glued together. To take the positive point first, it is intended
that program s can be w ritten in any of a set of languages (C 02, BO2 , etc) so that a
programmer will have access to a favoured style of programming. Modules written in
different languages will be m utually accessible. The negative point is that the
syntactical device for extending languages to fit O2 is to provide an O2 language and
then to push bits of this language into m odules otherwise w ritten in the host
language. These two languages are then separated by an escape character ("$") in a
very ugly way. This problem is not just syntactic for there is also a semantic
dissonance and consequently a very low-level interface.

These systems are a subset of those that have been described recently, such as
(IRIS [Fishman et al, 1987], ENCORE [Hornick and Zdonik, 1987], ORION [Bannerjee et
ah, 1987], etc.) and they all suffer from a num ber of problems. Firstly, it has not yet
been possible to im plem ent any of these efficiently. 0 - 0 database technology is
roughly in the same position as relational technology was in the mid-70's. Making
these systems run fast is clearly a more difficult problem, but, as part of the goal is to
achieve systems which make use of enhanced technology to throw more work onto
the computer, the problem may be expected to be solved.

A m ore serious lim itation seems to lie in the ways those systems combine
program m ing language and database ideas. In particular, there is a problem in
requiring a program m er to m anage two languages. This is not to criticise those
systems, like O 2 , which seek to provide a num ber of parallel languages for users,
within each of which a whole application can be specified. This seems a highly
laudable architectural decision. W hat seem unacceptable are systems like V-base with
TDL and COP, which require an application programmer to know two languages, one
for specification and one for implementation. Conversely, the way in which O2 glues
together two program m ing paradigm s seems inferior to the provision of a seamless
language as provided by Trellis-Owl. OODB systems are facing the problem of
providing a program m ing language interface to program m ers who wish to retain a
particular favourite paradigm which may be inappropriate for the kinds of application
they are build ing. There is also a fundam ental choice to be m ade betw een
seam lessness and suppo rt for in terw orking of system s bu ilt using different
program m ing technologies.

2.2.2.6 Summary.

The 0 - 0 approach has been described and is seen to include the following
notions:

Chapter 2 35 A Survey of Approaches

objects are single, identifiable entities;

all objects belong to classes;

classes are organised into an inheritance hierarchy;

there can sometimes be a kind of polymorphism in that an object can be treated
as being in any class which is above its actual class in the hierarchy;

there may be a separation of class specification and implementation;

the attributes and operations applicable to a class are encapsulated into a single
description and frequently all access to objects is restricted to calling the
operations;

no code can exist anywhere except in the operations of classes.

There is no problem with any of those statements except the final two. The other
statements seem to imply a systematic and clear description of the passive nature of
the application w orld and a clear structure within which to place a great deal of its
active component as well. Strict encapsulation (access restricted to operations) leads to
verbose code, but the mechanisms of Eiffel and Trellis/Owl resolve this.

The 0 - 0 architecture is most deficient on the final point. There are at least
three kinds of active feature that are not well represented in this architecture:

Active com ponents: Consider a light button object. This will have components
such as its icon and where it is on the screen. It also has a component which is the
operation which will be called when the button is pressed. This is not the same as an
operation associated w ith a class. A component will have a different value for every
light button - a different operation that will be carried out when each button is pressed.
A class operation will be the same code for every button, although it will be bound to
different objects.

D yadic operations: This has already been mentioned but to reiterate, dyadic
operations seem most naturally viewed as operations which take two objects of the
same type, not as operations over the class which accept another m em ber as a
parameter.

Processes: These are stand-alone active objects, not tied to any specific class,
which the program m er may wish to m anipulate and reason about as though they
were objects in their own right. One example of this is getting program s started.
Section 5.6 of [Meyer, 1988] identifies this as a problem some people have with 0 - 0
systems and then proceeds to show how an Eiffel program is started, which only seems
to underline the contorted thinking that is required.

It is hard to see how to model any of the above naturally within the 0 - 0 world
of Abstract Data Types. Therefore a paradigm which has been introduced principally to
provide natural and intuitive program m ing constructs has failed to do so for some
critical parts of the programming problem.

Chapter 2 36 A Survey of Approaches

2.2.3 Database Programming Languages.

The next area of the survey concerns attem pts to m arry together database
technology w ith program m ing languages, by extending existing program m ing
languages or design ing new ones w hich bring database functionality and
programming language expressiveness into one facility. The area is fully surveyed in
[Atkinson and Buneman, 1987] and this section will concentrate on a few major
examples.

The in teg ra tion of database system s and program m ing languages has
traditionally either been achieved by providing an interface between the two in the
form of a set of low-level subroutine calls or by em bedding one language within
another. W hat DBPL's strive to provide is a single language within which to express
computation and data m anipulation and storage. This raises a number of issues, some
of which are already familiar.

W hat kind of type system should be provided? A strongly typed language will
provide early detection of type errors. There should also be a degree of polymorphism
in order to provide general purpose procedures. What is the relationship between the
type system of a program m ing language and the notion of a class in a OODB system?
Clearly they both describe the properties of a set of objects, but their use from then on
is somewhat different. The type system of a language is there to provide support in
program compilation. The class of a database provides not only a description but a set
of values. Should the type description be matched with a specific extent or not?

Does the language provide persistence, in the sense that any object can exist for
as long as required w ithout special handling? Many languages only perm it certain
types of value to persist. Others use special mechanisms, such as file systems, to make
objects persist.

Atkinson and Buneman provide a list of desiderata for DBPL's including: most
of the common program m ing constructs; strong type checking; as m uch static type
checking as possible; data type completeness; a consistent naming system for all objects;
a bulk type; inheritance; polym orphism ; and orthogonal persistence. They also
recom mend that the program m er should be free from all concerns about the
placement and movement of data.

In this short survey, some of these issues will be considered with reference to a
few languages.

2.2.3.1 Relational Programming Languages.

There are several languages which integrate the Relational M odel w ith a
programming language. Pascal/R [Schmidt, 1977] will be discussed, but the successor
languages M odula/R [Koch et al., 1983] and DBPL [Schmidt and Mall, 1983] as well as
Plain [W asserman et al, 1981] and Rigel [Rowe and Shoens, 1979] should also be
mentioned. Pascal/R uses the record type as a platform on which to build types for
relations and databases.

The definition of a database begins with the definition of a record type for the
tuple of a relation as follows:

Chapter 2 37 A Survey of Approaches

type bookTuple = record
catalogueNumber: 0..9999;
author : packed array [1..30] of char;
title: packed array [1..100] of char

end;

and then the declaration of a relation to hold books, w ith catalogueNumber as a
primary key:

BookRel = re la tio n catalogueNumber of bookTuple;

and finally, a library database is declared, as in:

LibraryDB = database
Book: BookRel;
Borrower: BorrowerRel;
Loan: LoanRel

end;

All of these are types in the program and these can then be used as follows:

var library: LibraryDB;
begin

w ith LibraryDB do
for each B in Book: B.author = "Elizabeth Taylor" do

w rite ln (B.catalogueNumber, B.title)
end.

These features, together with operations which are equivalent to the relational
calculus, show that it is possible to embed mechanisms for handling relations within a
programming language. Two different kinds of problem can be found in Pascal/R.
Some of the inadequacies of the language are due to its innovative nature. The
language extensions make Pascal/R even less data type complete than Pascal. For
instance, for each is provided over relations, but not files or arrays, while not every
type is allowed to be the field of a record or tuple and, more seriously, of a database.
Such problems can potentially be fixed using the same approach, as shown in successor
languages, such as DBPL.

A more serious problem concerns the extensibility of an application program
written in such a language. In essence, the schema must be verified and fully type
checked at compilation time. Thus in subsequent runs, the schema cannot simply be
extended w ithout editing and recompiling the software and furnishing translation
mechanisms from the old schema to the new one. The eager static type checking of
such languages creates a barrier to schema evolution. Another serious problem lies in
basing the language on the relational model. As described in section 2.1.2, this raises
severe difficulties in capturing the m eaning of the application in the database
description.

2.2.3.2 Galileo.

Galileo [Albano et al., 1985] is a database programming language which tries to
avoid this last problem by centring the language design around Semantic Data

Chapter 2 38 A Survey of Approaches

Modelling concepts. It is a strongly, statically typed language w ith constructs for
persistence, m odularisation, higher-order functions and data modelling. Providing a
persistent library database in Galileo looks like:

use LibraryDB :=
(type address = (House: in teger

and Street: string
and PostCode: string)

and book class
book <->

(CatalogueNumber: in teger
and author: string
and title: string)

and borrower class

)

Here LibraryDB is an environment within which a set of type and class objects
is maintained, which has been made persistent by the use keyword. Environments are
thus used as the unit of modularisation of an application. There are a great many type
constructors for both concrete and abstract types and sub-typing can be either explicitly
stated or, for concrete types, inferred. There is also a notion of subclassing in that the
definition:

f iction isa book

has the expected inheritance of the fields from book. Galileo adds to this
programming constructs, in a functional style, to make the language sufficient for the
expression of the computational aspects of the database.

W hereas Galileo has provided a significant step forward in combining data
modelling ideas, persistence, and functional description, to permit a complete database
description to be made, it seems to have two main defects. As with Pascal/R, the static
type checking gets in the way of database extension, while its data modelling constructs
are extremely confused, particularly as regards the concepts of class and type. Two
mechanisms for introducing the description of a type are supplied. One is used for
those types which have an extent maintained and the other is used for those types
whose extent is not maintained. It would be preferable to introduce one construct for
describing all types and another for describing their extents. As things stand, in the
above example, there is no possibility of creating an extent over addresses at a later
point, nor of creating books not held in a class. This point will be discussed further in
the conclusions to this chapter.

There is also a dizzying set of syntax for introducing abstract types, which are
distinguished from concrete types for reasons which are far from clear. Finally type
inferencing is introduced into the system. The problems with this are discussed in the
next section.

2.2.3.3 Polymorphic Database Programming Languages.

The problem w ith most statically typed languages, illustrated clearly in the
language Pascal/R, is their inability to express code which uses data types draw n from a

Chapter 2 39 A Survey of Approaches

set which has yet to be defined. The next group of languages has been designed with
this in mind. Although not explicitly designed for use with databases, ML [Milner,
19841 and Poly [Matthews, 1985] provide mechanisms for writing polymorphic code
and thus address this problem. Poly which is derived from Russel [Demers and
Donahue, 1979] is a language which provides param etric polym orphism - i.e. the
ability to describe types which are parameterised by other types. Thus a type for a stack
of any similarly typed objects can be defined with the types of the elements being a
parameter. This stack will then be available to any subsequently defined types.

ML on the other hand provides polym orphism through type inferencing
(touched on in the previous section). This idea is extended in the language
Machiavelli [Ohori et al, 1989], which has been designed within the fram ework of
database program m ing, so the discussion on polymorphic languages will centre on
Machiavelli.

M achiavelli's design starts from the desire to provide the following kind of
polymorphic code: given any relation which has an age and a salary field, produce the
salaries of persons aged 28 (or typles for which the age field = 28). This query m ust be
expressible in a statically typed environment, with no run-tim e type checking. It
would be expressed:

fun salary28(X) = select x.salary where x <- X with x.age = 28;

This is type checked to the type:

{[("<9) salary: "fi;age: int]) -> { "fi }

which roughly m eans that the function will take a set of values ("{}") which are
records ("[]") which have at least a salary field of indeterminate type and an integer
age field and return a set of objects which are the same type as the salary field. The key
part of the preceding sentence was the "at least" - any other fields may appear and are
irrelevant to the type checking.

U sing th is m echanism , not only can M achiavelli rep resen t relational
operations, but also Object-Oriented or Semantic Data Modelling ideas. The notion of
class X isa Y is represented by listing the fields of class Y in its definition and then
listing all the fields of Y and the additional fields of X in X's definition. The sub-typing
is then inferred. Using the type inferencing mechanism in this free and orthogonal
style certainly provides a great deal of power, but seems to run into problems in a
m ulti-language environm ent. It seems likely that one user m ight introduce type
slimmer, say, which has merely name and weight fields, and another introduce a type
ship, which also has those fields and maybe others, and a completely erroneous
inference m ight therefore be made. This might not harm the com putation but if it
becomes apparent the programmer could be confused. Therefore, it may be preferable
to provide some syntax which limits type inference.

2.2.3.4 Persistent Programming Languages.

Amber [Cardelli, 1984] takes a similar course to provide polymorphism with a
universal union type, dynam ic, out of which types may be projected or coerced.
Rather confusingly, it ties this mechanism to persistence since only objects of type
dynamic may persist since this ensured that the actual type information was stored

Chapter 2 40 A Survey of Approaches

with persistent objects. The language is rich in type constructors, having tuple, record,
variant, array, function and channel (for concurrency communication) constructors.

The coercion strategy, which is essentially the same as used by PS-algol, permits
objects of as yet unknown type to be assigned the temporary type dynamic. Objects of
this type may be passed around, but in order to use them, they m ust be forced into a
concrete type, at which point the operations for that type become available. These
operations can be statically type checked because the coercion operation m ust appear in
the code before the operations and so the concrete type of the operand is known.
Objects are made persistent by converting them from concrete types to type dynamic, at
which point the concrete type is stored alongside the object's value, and then exporting
them from the current m odule . The importation and exportation of objects between
modules makes Amber a language which begins to support the basic mechanisms
required for large software development (see section 2.2.4).

The types are arranged into an inheritance hierarchy by an autom atic ty p e
inclusion algorithm which asserts, for instance, that a record with a set of fields is
included in a type which includes only a sub-set of these fields. Similar inclusion
rules are developed for varian t, array , channel, tup le and functions (the
contravariance rule). This is sim ilar in every respect to the type inference of
Machiavelli (which was developed from it) and means that Amber, too, can supply the
basic functionality of Object-Oriented systems in a properly typed environment.

The ideas in Amber are developed further in [Cardelli and Wegner, 19851 and
[Cardelli, 1988]. The former paper puts the type systems of such languages onto a firm
basis within a single type calculus, with a basic set of types, some type constructors and
universal and existential quantification. The type system of any of the languages
referred to here should be describable in terms of this calculus. This work may supply
the kind of basic theory to type systems of database program m ing languages which
Codd provided for relational systems.

[Cardelli, 1988] adds a new concept for polymorphism, the k ind. A kind is a set
of types in much the same way as a meta-class is a set of classes in Taxis. There will in
general be a kind called Type, for instance, which is the set of all types, and there could
be a kind, which is the set of all tuples having an integer field called age. Thus, the
parameters of functions can have either their type or the kind of their type specified.
Producing such a fram ework for describing types should produce program m ing
languages (like Quest [Cardelli, 1988b]) within which it is convenient to describe
everything known about the types in the database. A caveat, however, is that a three
level world of values, types and kinds, still feels restrictive. It may be that one will
eventually want to talk about a set of kinds. However, the present system is probably
complicated enough to describe any conceivable application, and any increase in
complexity will surely produce an untenable cognitive load. Also, it is not clear
whether or not languages of this kind can be implemented or type-checked.

FAD [Bancilhon et al., 1987] is a language which divides the object space of a
program into a transient and a persistent section. W ithin this division m ay be
specified objects which are defined as tuples, sets or variants or belong to some abstract
type. The main construct added by FAD is that of actions. These are pieces of program
which may be m anipulated like other objects. The language provides inheritance
mechanisms, but seems to concentrate on the fine details of language design, without
developing a clear underlying semantics. In many respects, it resembles PS-algol.

Chapter 2 41 A Survey of Approaches

2.2.3.5 Conclusions.

This section has briefly introduced some of the difficulties in producing a
program m ing language which combines com putational com pleteness, database
operations and sufficient simplicity to render the language usable. There follows a
survey of some of the problems tackled in these languages:

Persistence. This is usually provided as a bulk object type, all of whose members
and components will persist between runs. Thus Pascal/R has the relation, Galileo the
persistent environm ent and Amber the dynamic type. The introduction of such types
minimally disturbs the syntax of the language, which is one of the principal intentions
of orthogonal persistence. However, in some cases, some of the other types could not
be put into these bulk types and so could not be made persistent.

N am ing system s. The ability to name persistent and transient objects in a
consistent way has proved problematic to language designers, when faced with the
problem of extensibility. A complex type system may overcome the problem for types,
but the names of objects are either lost when an object is stored or provided as a string
component of the object.

E xtensib ility . Allowing the names of types and their components to persist is
usually easily achieved, but in a statically typed system this results in types which are
cast in stone and thus not extensible. None of the systems really surm ount this
problem, but some (e.g. Amber) manage to finesse it by providing a type (dynamic)
which defers type checking until run-time by performing type coercion then.

Set O pera tions. All of the languages, except ML and Poly (which can be
extended by the user), include sufficient set constructs to perform the usual database
operations (iteration, selection, projection, etc.). Therefore, in providing database
operations on statically determined data sets, all prove sufficient.

P o lym orph ism . There are a number of approaches which allow a single code
body to be bound to data of differing types. The parametric polymorphism of Poly
allows types to be defined which are generic versions of a set of concrete types. These
parametric types can then be used for the parameters of any operation. The Object-
oriented systems described in 2.2.2 permit the explicit specification of type hierarchies,
so that an operation specified over one type is applicable to all of the types below it.
ML and its extensions (Galileo, Machiavelli, FAD and Amber) provide the automatic
inference of sub-type relationships. The types required by an operation are inferred
from the objects it uses. Any object supplied to the operation will be checked to be a
subtype of the inferred type for this parameter. This mechanism may be sufficient for
most purposes, but may be overinclusive as discussed above.

Data Type Com pleteness. The single most simplifying language design goal is
the removal of arbitrary distinctions between the way objects of different types can be
manipulated. N ot all of the languages provide this, but any failings in this regard
could be viewed as design choices to get prototype systems running. Any ultimate
DBPL will surely be data type complete.

As a final point, the history of the development of DBPL's is quite short (1978
for Pascal/R). The work has proceeded by attempting to build languages in order to
reveal the significant problems. These are now sufficiently understood (e.g. [Atkinson
and Buneman, 1987]), that rapid progress towards better languages can be expected.

Chapter 2 42 A Survey of Approaches

2.2.4 Software Development Systems.

A completely different approach to the provision of improved languages or data
modelling tools is to supply improved programming environments. This section will
describe a few of these systems and outline a few desiderata.

2.2.4.1 SCCS.

The Source Code Control System [Rochkind 1975] is a fairly prim itive tool
designed for use w ithin the UNIX system, to aid program m ing projects to control
changes to the source code. A new software module is supplied to the system and its
source code is stored. Subsequent changes to this code are then stored in the form of
deltas. Deltas are created by editing the last version and supplying the edited form -
the delta being automatically derived by comparing the two. Using the original code
and the deltas, any version of the code can be recaptured. All versions of a module
form a purely linear structure, although the naming system has a 2 dimensional feel
to it. The first version is Release 1, Level 1 or version 1.1. Subsequent versions are
called 1.2, 1.3, etc until a stable form emerges for a new release, at which point the
numbering system continues with 2.1, 2.2, etc.

W ithin this fram ework, very little control over the software developm ent
process is possible. There is no provision for the splitting of versions; nor is there any
way that you can successfully go back to an old version and insert a new version
between two old ones. Therefore there is no way of testing two lines of development
simultaneously and merging the results.

2.2.4.2 RCS.

The Revision Control System [Tichy 1985] is a developm ent of SCCS which
handles the organisation of versions and configurations. It uses the same concepts of
versions and deltas of source files as SCCS and the same m ethod of creation and
submission of new versions. However, it also includes concurrency control in the
form of a check-out/ check-in mechanism. Someone wishing to edit a module checks
out and locks that m odule until finished with it, whereupon he checks it in again and
clears the lock. Thus two people will not be trying to change the module in different
ways at the same time.

However, RCS does perm it multiple versions of a module to be created at any
point of the version history, although there is still no automatic m erging of these
versions provided. The problem of automating this process is extremely complex, but
is common to any design process of complex objects. A sophisticated check-in/ check
out m echanism w ith a rich taxonomy of locks, including notification locks, etc.
[Fernandez and Zdonik, 1989] may eventually emerge.

2.2.4.3 UNIBASE/DAMOKLES.

The UNIBASE project [Dittrich et al, 1986] is attem pting to provide an open,
integrated environm ent for UNIX called DAMOKLES. The authors note that file
based systems such as the above fail to provide the database facilities required, such as
data integration, security, access control, etc. They also note that traditional database
systems are also insufficient in that they their modelling constructs are too simple, do

Chapter 2 43 A Survey of Approaches

not integrate consistency constraints automatically and give poor support to long
transactions. They therefore propose a system which is Object-Oriented and provides
traditional database facilities such as transactions, concurrency control, security
mechanisms, etc. It is intended to manage the whole of the software, include source,
object code and documentation.

DAMOKLES is built on a data model called DODM (Design Object Data Model).
The description of complex object types in DODM contains a num ber of simple (i.e.
integer, string, etc.) attributes and a number of sub-components with other complex
object types. Object types may then be related by relationships which link any number
of types and on w hich cardinality constraints may be im posed. A variety of
navigational aids are provided to retrieve information from this structure. The model
is used to m odel software developm ent by incorporating the following notion of
versions.

Every object has a generic form. All versions of an object will have the same
structure, although the values of attributes and actual sub-components m ay vary.
Versions are num bered and ordered either in a list, in a tree or in an acyclic graph.
Operations are provided to locate particular versions, to insert versions anywhere in
the graph, to locate the generic object and to remove versions.

Further features of the system include the ability to handle multiple databases -
an object resides in one database but may be copied to others. Relationships may hold
between databases, thus perm itting shared software libraries, for instance. A check
out/check-in transaction paradigm is provided to facilitate the long transactions typical
of software development. This allows a developer to check out one or more program
objects for modification and later to check the modified version back in. This permits
other users to access (but not to modify) the objects checked out.

All of this, w hen applied to a database containing program s, sub-programs,
libraries, source code, object code, diagrams of various kinds, etc., seems to promise a
very rich environm ent within which to develop software.

2.2AA Gandalf.

Gandalf [Haberm ann and Notkin 1986] is a project to develop the ability to
generate software developm ent environm ents quickly and cost effectively. In a
Gandalf environment, the centrepiece is a syntax-directed editor for the programming
language, called an ALOE editor. This is produced by supplying an abstract syntax (e.g.
"WHILE = %bool-exp %assign"); a concrete syntax (e.g. "WHILE = @1 do @2" meaning
that two param eters, whose types are described in the abstract syntax, m ust be
described); and a set of action routines, which are called as a given syntax tree is built.
These action routines may perform a number of functions, including semantic checks
and window and memory management.

Programs are developed using one of the ALOE editors. This permits the user
to select program constructs by giving simple commands. Thus typing in "WH"
specifies that the next piece of the program is a while statement. Placeholders are
supplied for the boolean expression and the assignment command and these are next
filled in by clicking over the placeholder icon and (again using structured commands)
typing in the code.

Chapter 2 44 A Survey of Approaches

One example of an environment developed using this technology is a prototype
system (GP) for softw are developm ent, including version control, increm ental
compilation and project management. GP was developed by producing an abstract
syntax for software development structures (modules, versions, access control lists and
documentation). From this an ALOE editor is available for a meta-language, which
includes the ability to refer to different versions of modules, to specify modules as
exporting various facilities and to compose modules into complete systems. Thus, an
impressive feature of Gandalf is its ability to use the same mechanism to specify
software and the software control system.

2.2.4.5 Eclipse.

Eclipse [Bott 1989] is an Integrated Project Support Environment developed in
an Alvey project, together with tools for software development (rather than project
management). Eclipse is built round a kernel, which consists of the Public Common
Tool Environment [PCTE, 1986], augmented by another component called the Public
Tools Interface, which contains the following:

a two-tier database in which the higher level is a PCTE object description, while
the lower level is a description of a component object;

an underlying data m odel and interface description language (IDL), which is
specific for the support of objects typical of the production of software;

configuration control mechanisms for glueing together particular versions of
objects;

a high quality user interface; and

a table driven design editor for manipulating diagrams.

On top of this kernel has been built a number of tool sets:

M A SCO T 3 - a tool set which perm its program designs to be captured,
m anipulated and checked graphically;

LSDM - this supports requirements analysis and system design by providing
graphical editors for dataflow diagrams, logical data structures and entity
life histories; and

Integrated Ada Developm ent System (IADS) - this supports the whole life cycle
of Ada software, including source creation and editing, program libraries,
com pilation, linking, execution, symbolic debugging and version
m anagem ent.

Hood [Welland, 1989] is a Hierarchical Object-Oriented Design tool generated for
the European Space Agency.

Eclipse tackles a great m any of the issues of software creation, from the
relatively low-level notions of a single-language software development system (IADS)
to higher-level project support methodologies. It does so, in an environm ent with a

Chapter 2 45 A Survey of Approaches

common kernel into which a num ber of complementary m odules can be plugged.
Presumably, it w ould not be difficult to produce tool sets to support any software
design methodology of whatever level in Eclipse.

2.2.4.6 Conclusions.

The systems described here all attem pt in one way or another to supply a
structure w ithin which to manage efficiently the development of software. They vary
greatly in their sophistication, bu t the trend is towards the integration of database
components to m anage the software objects. In order for the database system to be
sufficiently powerful, it m ust have a way of storing code. Although relational systems
have been used for this purpose, the contorted nature of using relational schemas to
do this is not encouraging. In order to manage this problem, more sophisticated data
models m ust be used. Thus DAMOKLES appeals to a general purpose Object-Oriented
paradigm, while Eclipse has a data model specific to project support. The provision of
a sophisticated database system with a language which can manipulate program objects
would thus be an enabling technology for this work. In particular, it would mean that
the application developm ent environm ent could be view ed as ju st another
application, which could be produced in the same way as any other. Chapter 8
describes the contribution PS-algol has to make in this area.

2.2.5 Specification and Rapid Prototyping Systems.

Attention is now switched to earlier stages of the software design process - the
requirements and im plem entation specification stages. Firstly, a requirem ents
modelling language, developed as part of the Taxis project, is described. The aim of
this work is to perm it the description of the requirements of an application in such a
way that it can be checked for internal consistency. Then SAGA is examined. This
includes facilities for w riting executable specifications. Next, the major formal
specification systems are briefly touched on and ADABTPL is considered as an example
of integrating formal specification and database techniques. This is followed by a brief
survey of rapid prototyping systems. From all of these it is noted that several different
activities are being discussed in very much the same terms. It is possible to conceive of
systems in which all stages of the software creation process can be specified in an
executable and checkable form. All stages would linked together by a common syntax
and a common model of software production, but would allow different levels of
detail to appear.

2.2.5.1 RML.

Requirements M odeling Language (RML) [Greenspan, 1984] is a spin-off from
the Taxis project. It perm its the specification of the entities, activities and assertions
that may be defined for an application in a syntax that is essentially the same as that of
Taxis. It will be described more fully in section 7.2, but this section touches on a few of
the design decisions.

RML is designed to perm it the description of the "problem situation" rather
than on the "solution system". Definitions in RML are designed to be statements of
what m ust be included in any program modelling the application domain. Such
statements are:

Chapter 2 46 A Survey of Approaches

PATIENT in PATIENT_CLASS w ith
association ward: H O S P IT A L _ W A R D

doctor: DOCTOR
producer register: ADMIT_PATIENT(pat: self)

or A D M IT JP A T IE N T in ACTIVITY_CLASS w ith
in p u t p: PERSON
precondition inyet ?: not IN(p, PATIENT)
part check_ID: CHECK_ID(p)

Put: CHOOSE_WARD(w)

or I N J I O S P I T A L in ASSERTION_CEASS w ith
argum ent p: PERSON
part patient?:IN(p, PATIENT)

present: PH Y SIC ALLY _PRESENT(who: p)

All of these statem ents describe groups of objects as types by supplying
everything that is known about such objects at a highly abstract level, within a syntax
in which every piece of knowledge is labelled. The first example describes the class of
all patients and mentions two other object types with which they may be associated, a
ward and a doctor, and an activity which creates such an object, A D M IT_PA TIE N T.
All of these are labelled, so that the producer is called register and may be referred to as
such. Similarly, an activity has associated objects and assertions and then consists of
an unordered set of sub-activities. An assertion can also refer to objects and be
composed of sub-assertions.

A specification in this system can be checked only insofar as if A refers to B, then
B must have the inverse relation to A. For instance, a. P A T I E N T is created by
AD MIT_PATIENT and A D M IT _ P A T IE N T operates on PATIENTs . The references in
the description can, though, be left dangling - for instance CHECK_ID need not be
specified if it is small scale enough to be understood. Given a requirem ents
specification in such a language, it would be a relatively small step to provide an
executable version. Section 7.2 shows how to do this by supplying some basic objects
and an object creation environment.

2.2.5.2 Formal Specification Systems.

The ability to express with mathematical precision the desired behaviour of an
application under construction leads to automatic techniques of system verification.
The production of complex software is such an error-prone task that anything which
increases confidence that a given program does what it is supposed to do is clearly of
great value.

A num ber of languages and methodologies have been developed to fulfill this
purpose. VDM [Bjorner and Jones, 1982], Z [Hayes, 1987] and OBJ3 [Goguen and
Winkler, 1988] are three such m ethods in common use. All perm it the formal
description of functional (rather than performance) specifications, and these fall into a
number of categories [Liskov and Berzins, 1979]. For procedures, there m ay be
input/ou tpu t specifications (which essentially describe the conditions which are to
hold at the start and finish of a procedure) and operational specifications, which give a

Chapter 2 47 A Survey of Approaches

highly abstract description of the computation involved in the procedure. For data
types, there are again two approaches: an axiomatic approach, in which all the base
statements known to be true for that type are recorded; and abstract data models, which
correspond to data models described above, except that the data abstractions (tuple, set,
etc.) are formally defined.

The SAGA project has designed a software developm ent system, called
ENCOMPASS, which attem pts to provide an automatic framework for each stage of
the software developm ent life cycle [Campbell and Terwilliger, 1986]. It starts from a
formal specification of the problem domain written in a language called PLEASE. This
specification, which consists of a series of pre- and post-conditions for operations, is
executable and so the specification can be tested. Transformation and refinement rules
can then be specified w hich take this specification and transform it, m ostly
automatically, into program modules. These modules are developed using version
control techniques and then combined into working program s by configuration
techniques similar to those described in section 2.2.4.

The value of a system which introduces the notion of rigorous specification
with automatic aids to produce implementation needs no underlining. Provided the
specification can make powerful enough statements, this would seem to be one of the
ways in w hich softw are developm ent m ust proceed. H ow ever, the form al
methodologies rely on separating out the various aspects of software development
into discrete stages. The lack of realism in this approach will be further discussed in
the conclusions to this chapter.

2.2.5.3 ADABTPL.

ADABTPL [Stemple, 1989] is a system which attem pts to combine data
modelling and formal specification approaches. It is essentially a three stage process.
Initially, using a sem antic data model, the user specifies the database schema
informally. This is transformed into a formal specification in the ADABTPL language,
the theory of w hich is a version of Boyer-Moore com putational logic. This
specification can then be augmented by the programmer before being automatically
transformed into an implementation in a lower-level language with a persistent object
server.

This combined system provides an excellent example of the convergence of the
various approaches. A quick intuitive description of the data model is generated in
the first phase. This can then be extended in the second within a formal framework,
which means that mechanical techniques can be brought to bear to verify constraints
on transactions. This kind of convergence will become more common as application
implementation systems develop.

2.2.5.4 Some RPT Systems.

Rapid Prototyping is another area of growing utility [Hartson and Smith, 1987].
The ability to lash up a version of a system is an alternative method of verification of
requirements to the formal specification techniques. The essence of the technique is
embodied in the name. A rough prototype is quickly assembled and demonstrated to
customers. Performance criteria aside, the prototype should strongly resemble the

Chapter 2 48 A Survey of Approaches

finished product and so dem onstrate the effectiveness of the design. One sample
language is described to give the flavour of rapid prototyping .

Peridot [Myers and Buxton, 1986] is a program which permits the construction of
user interfaces by example. The user draws the screen layouts required for the
interface and dem onstrates the user's interaction with it by clicking the mouse or
typing on the keyboard. The behaviour of the dem onstrator is stored as simple
condition-action rules and turned into code in the form of procedures, which are
combined to create a complete user-interface for the application. In this way, the user
interface can be experimented with quickly in a more realistic fashion than by using
pencil and paper designs.

2.2.5.5 Conclusions.

This section has described some higher level software production techniques,
which can be grouped together since they all deal with "pre-implementation" phases
of software development. They all also share the notion that even if they perm it a
program to be written, it will not be the final product, but a specification or a prototype.
Moreover, the final product cannot automatically be derived from the specification.
However, it seems that in the long term it is conceivable that all of these high-level
tasks will be accomplished in a single language or matched set of languages. This will
produce not just executable versions for testing, but finished products which will be
reliable and provable according to specification.

This is all the more important since these separate systems depend on a notion
of separation of program m ing into discrete stages which is clearly at odds with the
real-world developm ent of com puter system. Requirements are usually poorly
specified and the customer only really knows what is required when products which
are unsuitable are delivered. Each of the phases of m odelling, specification,
prototyping and implementation are generally intertwined [S war tout and Balzer, 1982]
in a way which belies the separation of these activities. Integrating them in a single
system seems the only sensible solution.

2.3 The Persistent Programming Research Group.

2.3.1 The Concept of Persistence and the Birth of the PPRG.

The persistence of an object is the length of time for which it is accessible by a
program. This can range from variables which exist only during the block in which
they are declared, to payroll data which will outlast the program run that creates them
and probably even the com puter system on which they are created. Typically,
programming languages manage short-term or transient data, and database systems or
file managers handle long-term or persistent data. What is required is for these to be
unified into a simple system that manages all kinds of data.

This involves two distinct ideas. Firstly, any type of data should have the right
to any degree of persistence. Secondly, the way in which data are referenced should
reflect their persistence as little as possible. Taken together, these concepts embody the

Chapter 2 49 A Survey of Approaches

Principle of O rthogonal Persistence. Any language conforming to this principle is a
persistent program m ing language.

The need for orthogonal persistence in systems was first expressed in [Atkinson
1978]. Atkinson noted that engineers and scientists were slow to make use of database
systems because the data models underlying databases matched poorly with those
underlying the program m ing languages which they were dependent upon in order to
express their complex computations. The database systems provided the power to
store data on a long term basis in a systematic way. The program m ing languages
provided the pow er to ensure that the data were in a form which m atched the
intended algorithm (via their type systems). When the data from a program were
stored in a database, however, this typing information was lost. The recommendation
was to extend program m ing languages to allow them to store any long-term data in a
simple way.

The first attem pts to implement the idea, by Malcolm Atkinson, Paul Cockshott
and Ken Chisholm, were proposed extensions to Pascal and Algol 68 at the University
of Edinburgh [Atkinson et ai, 1981]. This led to the proposal of NEPAL as a brand new
persistent language [Atkinson et al, 1982]. At the same time, work at the University of
St. Andrews by David Turner and Ron Morrison developed elegant simple forms of
algol called algol-s and S-algol [Cole and Morrison, 1982]. S-algol proved to be a
suitable language w ith which to experiment with persistence and so the two groups
joined together to create PS-algol [Atkinson et al., 1983a, 1983b, 1983c and 1983d], with
the Edinburgh group moving to the University of Glasgow in the process.

From 1983, the two groups began collaborating with ICL Ltd. and from 1985 to
1988, the three groups combined together to form the PISA project, funded under the
Alvey initiative. During this period, the bulk of the work reported in this Thesis was
carried out, as part of an evaluation of the language. Simultaneously, a successor
language, called Napier, was designed and has now been implemented. This language
will be briefly discussed in the conclusions to this Thesis.

2.3.2 S-algol.

S-algol [M orrison 1982, Cole and M orrison, 1982] was developed at the
University of St. Andrews. Chapter 15 of [Cole and Morrison, 1982] describes the
design philosophy behind the language. This was to take the facilities provided by
algol-like languages (block-structure, param eterised procedures and static type
checking) and to add to these some principles derived from work by Strachey and
Landin in the 1960's [Strachey, 1967, Landin, 1966], which should produce simpler
languages. These were:

The Principle of Correspondence. This states that the ways in which named
objects are introduced should be the same everywhere. In particular,
variable declaration and parameter declaration should correspond. One
example of a violation of this principle is that types in Pascal may be
declared but not passed as parameters.

The Principle of Abstraction. This states that for any semantically meaningful
syntactic category of a language, there will be a facility to provide an
abstraction over it. One example of this is the provision of functions as
an abstraction of expressions.

Chapter 2 50 A Survey of Approaches

The Principle of Data-Type Completeness. Mentioned in section 1.2, this means
that every data type should have the same rules for manipulation, with
no exceptions. Pascal provides a number of examples of violations of this
principle - for instance, only some types of object can be the elements of
sets.

Using these principles, S-algol was designed as a language with a relatively
simple type system, consisting of five scalar types (integer, real, boolean, string and
file), the ability to construct freely vectors of any type, and a facility to create types
which are the nam ed cross-products of other types (structures). At any point of the
program, new objects could be declared to be of any of these types. Furthermore,
objects of any type could be declared to be constants at their point of creation.
Procedures were introduced which could take any number of parameters and return at
most one result. Param eter passing is by call-by-value. There are a small num ber of
control structures in the language.

The fine detail of these facilities will not be discussed here as they have been
inherited by PS-algol and will be discussed in Chapter 3. Adherence to the principles
stated above resulted in a language of great simplicity and elegance. Many of the
irritating arb itrary distinctions between the ways different types of objects are
m anipulated in other algols have been removed. Indeed the University of St.
Andrews have found it an ideal vehicle for introducing students to programming for
a number of years, because this simplicity has permitted the instructor to concentrate
on the critical notions involved and not to be distracted by having to explain the
irrelevant exceptions found in other languages.

2.3.3 PS-algol.

The development of PS-algol came about as a result of the Data Curator group at
the University of Edinburgh combining with the S-algol group at the University of St.
Andrews in order to turn S-algol into a persistent language. Given the power of S-
algol, this proved a relatively straightforward task - at least in the domain of syntax
extension. The basic syntax was not changed significantly - the added functionality was
achieved by functionally extending the language. System procedures were added
which provided orthogonal persistence.

This extension relied on a consequence of the data type completeness of S-algol -
that the scope and extent of objects need not be the same. If an object was declared in
the closure of a procedure or placed in a structure, then it would persist by virtue of
being an intrinsic part of the procedure or complex object, even if it went out of scope.
The only step that rem ained to be taken was to establish objects which outlasted the
run of a program and to provide some mechanism for attaching other objects to them.

These basic long-lived objects were called, perhaps unfortunately, "databases"
and a format for these was created called a "table". The "language extension" required
was the provision of the system functions to create new databases and open old ones,
to insert and look up objects in tables and to commit any changes to any opened
databases. Persistence was then available since any kind of data can be stored in a
structure and any structure can be linked into a database. The simple storage of any
kind of data em bodied the Principle of Orthogonal Persistence and so PS-algol
qualified as the first persistent language. This change in semantics required new

Chapter 2 51 A Survey of Approaches

implementation strategies [Cockshott, 1983, Brown and Cockshott, 1985, Dearie, 1988,
Brown, 1989].

2.3.4 The Place of this Work.

The work reported in this Thesis was part of the effort to investigate the use of
PS-algol. It was funded under the PISA project, which was part of the Alvey initiative,
as an ICL University Fellowship. The work attempts to be a thorough examination of
the language and its ability to provide implementations of data intensive applications,
data modelling tools and system building tools, as well as providing the beginnings of
a programming methodology for the language.

2.4 Summary of Work Surveyed.

This has been an extensive exam ination of the various techniques and
programming systems proposed for facilitating the task of software production. From
this, an attem pt will be made to draw a number of conclusions.

Firstly, the various techniques for data modelling, specification, prototyping,
software m anagem ent and program m ing need to be combined into a coherent and
integrated system. It is no surprise to discover that the same techniques of data and
procedural abstraction crop up over and over again. These should be brought together
into a software developm ent environm ent which includes at least the following: a
data model; a database for software; a database program m ing language; and user
interface tools.

The data model is required for producing schemas of all the applications which
are to be produced. Any of the more sophisticated data models may be used, enhanced
with a construct for processes or activities as first-class objects of the model.

The software database schema should be written using this data model and
include no tions of m odules, versions, configurations, docum enta tion and
specifications.

The database programming language should be designed to have a type system
which reflects the underlying data model rather than one which conflicts with it. It
should be as simple as possible, using design principles such as data type completeness
to control complexity. In so far as possible, the computational model should also be
simple, but perm it a variety of styles of programming. Moreover, a matched language
(perhaps a subset) should be supplied for writing specifications an d /o r prototypes.

The user interface should be specified in the same data model and written in the
same language as the rest of the application.

In short, there is an increasing need to bring the research work from a number
of areas together to facilitate software development. Here, a claim will be m ade that
PS-algol represents a first step towards bringing these worlds together.

Chapter 2 52 A Survey of Approaches

Chapter 3. The Persistent Programming Language,
PS-algol.

The language PS-algol was introduced by the Persistent Programming Research
Group (PPRG) as the first in a series of persistent programming languages. The ideas
of the PPRG have been described in Chapter 2. These ideas have resulted in languages
which are simple and coherent and derive their power from the extension of facilities
to remove arbitrary restrictions. With these features, a Persistent Program m ing
Language (PPL) becomes a language for describing two kinds of programming task.

Firstly, it is an app ropria te language for program m ing data-in tensive
applications. The provision of orthogonal persistence removes the problems of low-
level data storage from the application program m er's concern. The provision of
graphical types enables the production of the user-interface in the same language as
the rest of the program. At the same time, all the usual constructs for programming-
in-the-large are available. However, a PPL can also be used for a separate, higher-
order, task - the construction of data modelling tools, such as Semantic Data Models
and Object-Oriented Data Bases. The program m er of such systems makes use of
persistence and of the graphical types, but depends crucially on the provision of first-
class procedures, implicit in the data type completeness of the language.

This two-level nature of programming in PS-algol can be confusing, so the first
part of this chapter consists of an overview of the features of PS-algol which are typical
of languages of the algol family. The second section will then describe the more
unusual features of the language. The rest of the chapter consists of detailed
consideration of a num ber of critical aspects of the language which affect its use as an
application program m ing language, followed by some small examples.

3.1 An Introduction to PS-algol.

PS-algol is a block-structured language of the algol family. It is derived from S-
algol, a language developed at the University of St. Andrews by Professor Ron
Morrison [Cole and Morrison, 1982]. This in turn was derived from a language called
algol-s built by David Turner at St. Andrews. The prime emphasis of these languages
is on sim plicity - a small num ber of constructs embodying a simple, universal,
recursively applicable set of construction principles. The simplicity of PS-algol is one
of its most attractive features. The power of the language has not been bought at the
cost of complex semantics and a baroque syntax, but rather by increasing the power of
already existing language features by extending their scope. For the program m er this
results in a language which is very easy to learn. There are no exceptions to syntactic
rules. There are no arbitrary restrictions on what may go where - if it makes sense to
use an object in a given place, there will be no artificial barriers to doing so.

A formal definition of the language may be found in [PS-algol, 1987] and
tutorials in the use of the language in [Carrick et al., 1987] and [Cooper, 1987]. This
section introduces the reader to some of the more familiar features of the language.

Chapter 3 53 Introduction to PS-algol

3.1.1 Values in PS-algol.

Values in the PS-algol world are strongly typed and may be divided into three
kinds:

scalar values - such as integers, strings, etc;
composite values - such as vectors, procedures and images;

and complex objects.

The latter are structured data objects, in a sense which will be described in
section 3.2.3 below, and are similar to Pascal records or objects in an Object-Oriented
class, in that they have identity and updatable state, sharable via reference assignment
semantics.

In fact, each element representing a value in a program can be considered to be a
quadruple of the following attributes:

name: an identifier starting with a letter, then containing letters, digits or
type: draw n from the type system described below;
value: a value from the domain of the type;

and constancy: this determines whether the value may be changed or not.

Of these, only the value of the element may change and that only if it has been
declared to be variable and not constant.

Objects are introduced solely by let declaration clauses which introduce a new
object, name it, determ ine its constancy, provide an initial value in the form of an
expression and infer its type from the expression. For instance, consider the following
two examples in which two scalars are declared:

let x := 1
and let y = "abc"

Here, x is of type in t, has initial value 1 and is a variable (the colon preceding
the equals indicates this), while y is of type string, has initial value "abc" and this may
never be changed (there is no colon).

3.1.2 The PS-algol Type System.

The scalar types of PS-algol include int, string, real and bool. These come with
the usual operators for arithmetic, boolean and string m anipulation (i.e. sub-string
selection and concatenation) expressions. There are also scalar types for files, p ixels
and pictures. The first of these is to allow PS-algol to gain access to data stored outside
of the persistent store, while pixels and pictures are the basic building blocks of the two
graphical systems supported by the language.

These scalar types may then be combined using a number of type constructors:

• for any variable type, x, the type cx indicates the type of constant objects of type
x - e.g. cint is the type of all constant integers;

Chapter 3 54 Introduction to PS-algol

• the type # p ix e l is the type of an image which is a bitm ap made out of a
rectangle of pixels; (see section 3.2.2)

• for any types Ti,...,Tn and t, proc(xi,...,Tn -> x) is the type of a procedure having
n argum ents of types xi ... xn and one result; (see section 3.1.5)

• for any type x, the type *x is the type of a vector whose elements are all of type
x; (see section 3.1.3)

Finally,

• there is a special type, pntr, which is the type of all complex objects constructed
by a PS-algol structure, (see section 3.2.3)

There is no notion within this type system of union types, except for the
predefined union type, p n tr. For instance, there is no way of stating that the object
named x is either a string or an integer, the precise type being left indeterminate until
run-time. This facility is available in the language Napier88 [Morrison et al, 1988b].
Every value has a type draw n from the above type system which is fixed and is
statically determ inable at compile time. This has the extremely desirable effect of
permitting the earliest detection of type errors, estimated by Buneman to constitute
70% of all program m ing errors [Buneman, 1988]. It would, however, seem to imply a
lot of extra program m ing to overcome the lack of polymorphism. For instance, in
order to provide list-handling facilities for lists of strings, lists of integers, lists of reals
and lists of booleans, one set of procedures would seem necessary for each type. As
will be seen, there are two mechanisms for circumventing this - the p n tr type and the
availability of the compiler as a system function.

3.1.3 Vectors.

Vectors are always composed of sequences of elements of single type - there is
no mechanism for introducing vectors some of whose elements are strings while
others are integers. As a consequence of the data-type completeness of the language,
vectors can be of any type - vectors of constant integers, vectors of procedures or
vectors of vectors of strings, for instance. This is an example of the simplicity of the
language, combined with its power - the programmer can use vectors of procedures if
they are needed and does not have to remember that they are not available.

Vectors of vectors require a little further explanation. The type * * strin g
represents vectors each of whose elements is a vector of strings. This is not the same
as a rectangular array of strings, since each of these elements may be vectors of
different length. Again an increase in the range of objects which can be represented is
accompanied by no increase in complexity - the program m er only has to remember
that vectors can be m ade of any set of objects of a common type.

Chapter 3 55 Introduction to PS-algol

3.1.4 The PS-algol Computational Model.

A PS-algol program consists of a sequence of clauses each of which is either an
atomic clause or a block (a sequence of clauses or blocks delimited by beg in ... end).
Among the atomic clauses provided are: expressions; declarations; assignments; for-
loops; repeat...w hile...do , if..do, if...then..else and case program control clauses; and
input/output clauses. Atomic clauses are typed. An expression can be considered to be
a simple kind of clause and such a clause has the type of the expression. Clauses such
as assignments, which are untyped, are considered to be of type void.

The control clauses repeat...w h ile ...do , if...then ..else and case can be used to
produce typed clauses as their general syntax is, for instance:

if boolean-clause then clausel else clause2

and the only restriction on clausel and clause2 is that they be of the same type. Thus
the two fragments:

if X<0 th en mod := -1 else mod := 1

and mod := if X<0 then -1 else 1

are equivalent. The clause if..do is a degenerate form of if...then ..e lse with a void
alternative. The clause repeat...w hile...do is provided to allow termination condition
testing to occur at the beginning, the end or in the middle of the loop.

Blocks are also typed. In fact, they consist of a sequence of clauses of which all
but the last m ust be void. Then the type of the last clause in the block is the type of the
block.

3.1.5 Procedures.

Procedures are introduced in the same way as any other value with a let clause,
for instance the clause:

let maxint = proc(in t A, B -> i n t)

which introduces a procedure of type cproc(int, int -> i n t). A procedure may have any
number of argum ents, including none, and one or no result. The declaration clause
must then be followed by a clause which constitutes the body of the procedure. The
type of the clause, which is usually a block, must correspond to the result-type of the
procedure. Two possible (equivalent) bodies to maxint are:

begin
let max := A
if max < B do max := B
m a x

end

and if A>B then A else B

Chapter 3 56 Introduction to PS-algol

In checking the type of a procedure, the parameter names are ignored, so maxint
has the same type as:

let minint = proc(in t D,E -> i n t)

PS-algol procedures only come into existence at the end of the body, rather than
at the end of the declaration. This means that recursive procedures cannot be written
simply like

let fact = proc(in t 7 -> i n t); if 7 = 1 then 1 else 7*fact(7-1)

but must be written

let fact := proc(in t I -> i n t); nullproc
fact := proc(in t 7 -> i n t)

if 7 = 1 then 1 else I*fact(7-1)

in which a dum m y declaration of fact has been m ade (using the null procedure
nullproc) so that some reference to fact can be made within the real body. Note here
that PS-algol can be program m ed entirely in a functional style if that is deem ed
appropriate for the application.

3.1.6 Miscellaneous Surface Syntax

Any text appearing on a line following a "!" is a comment.

The block delimiters beg in and end may be replaced by "{" and "}" to make the
code more concise.

Clauses may be separated by semi-colons, but these may be omitted if a clause
ends at the end of a line. Thus none of the examples above show semi-colons, except
the two versions of fact which separated the procedure specification and body by a
semi-colon. Conversely, if a clause needs to be broken into two lines, care m ust be
taken to ensure that the clause is not syntactically complete up to a line break or the
rest of the clause will be taken as a new clause.

Programs should be terminated with a "?".

3.2 Advanced Features of PS-algol.

This section will introduce those features of PS-algol which are not typically
found in other algol-like languages: the graphics facilities; the use of the extensible
union type, pntr, to model complex objects and provide a degree of polymorphism; the
mechanisms which provide persistence; the use of first-class procedures; and the
availability of the compiler as a function at run time.

Chapter 3 57 Introduction to PS-algol

3.2.1 The Graphics Facilities 1 - Pictures.

There are two separate systems in PS-algol for handling graphical data and these
are fully described in [Morrison et al, 1986a, Morrison et al, 1986b]. As described above,
PS-algol provides corresponding types for the two systems. The type pic is the type of
pictures constructed as line drawings in the Cartesian plane, while the types pixel and
#pixel are the types respectively of single pixels and bitm apped images which are
rectangles of pixels.

The picture handling facility is a version of the Outline system [Morrison 1982]
and manipulates pictures which are logical rather than visible. The simplest kind of
picture is the infinitessimal dot, which is introduced by a clause of the form:

let dot := [4.5,5.6]

dot is now a single point at 4.5, 5.6 in two-space, More complex draw ings are
constructed by the recursive use of the following operators:

let two.dots:= [4.5, 5.6] & [6.7, 7.8] ! & puts 2 drawings without joining
! them with a line,

let line.= [4.5,5.6] A [6.7,7.8] ! A joins 2 drawings with a line.

Text can be pu t into drawings by clauses like:

let text.pic = text "hello" from 4.5,5.6 to 6.7, 7.8

which means place the string "hello" onto the Cartesian plane between points 4.5, 5.6
and 6.7, 7.8, rotating and scaling the text to fit.

Drawings can then be manipulated by the following clauses:

rotate drawing by 45 ! rotate the drawing clockwise 45°

scale drawing by 2.0, 3.5 ! scale the drawing

shift drawing by 2.0, 3.5 ! shift the drawing

Finally, the command

draw(im, drawing, 1.1, 3.5, 2.2, 5.7)

maps the part of the draw ing from 1.1, 2.2 to 3.5, 5.7 onto the image, im. This is the
method used for making drawings visible. None of the applications called for pictures
and so the picture system has not been used in any of the experiments reported in this
thesis. However, at the very least PS-algol pictures seem a good m echanism for
storing some kinds of pictorial data, maps for instance, and for constructing user
interfaces on-line. The reader is referred to [Abdullah, 1990] for a use of the picture
system to represent m ap data - pictures being particularly useful if zooming to arbitrary
levels of detail is required.

Chapter 3 58 Introduction to PS-algol

3.2.2 The Graphics Facilities 2 - Images.

Pixels are objects which in the simple case have one of the values on or off. In
fact, pixels also have depth, for instance on & off & on is a pixel object of depth 3 and
individual "planes" of the pixel may be selected in a similar m anner to sub-string
selection. Images may similarly have depth, but this will be ignored in the discussion
as no use has been m ade of depth here.

Images are of two kinds - base images and aliases. The former are introduced for
instance as follows:

let Baselm = image 10 by 10 of off

which creates a 10 by 10 rectangle of pixels all of which are off. This is, once again, a
logical non-visible object - making it visible will be covered later.

Aliased images are introduced as in:

let Quadrant = lim it Baselm to 5 by 5 at 0, 6

which creates Quadrant to be the upper left quadrant of Baselm (pixels are num bered
from 0, 0 - the bottom left hand corner of an image). Quadrant is not a separate
rectangle of pixels in its own right, but merely an alias of a quarter of the pixels in
Baselm. Therefore any change to any of the pixels in Q uadrant will affect that
quadrant of Baselm and vice versa.

The contents of an image are modified by use of a set of 8 raster operations (the
other 8 possible raster operations can be simply derived by combining two of these).
The operations available are: copy, not, xor, xnor, ror, rand, nand and nor and they all
have the general form:

rasterop Im l onto Im2

which causes the pixels of the image expression, I m2, to be modified by combining
them one pixel at a time with the pixels of image expression, Im l , subject to clipping.

For the purposes of this thesis only three of these operators will be illustrated:

copy image 2 by 2 of on onto Quadrant

copies the new image onto the Quadrant . In this case, as the first image is smaller
than the second, only the bottom left four pixels of Quadrant will be modified.

xor Quadrant onto Quadrant

executes an exclusive or of the first image onto the second. In this case, xor-ing an
image onto itself has the effect of turning all the pixels off. This is the standard
technique of clearing an image.

xnor Quadrant onto Quadrant

Chapter 3 59 Introduction to PS-algol

executes an exclusive nor of the first image onto the second. In this case, xnor-ing an
image onto itself has the effect of turning all the pixels on. This is the standard
technique of making an image completely black.

The use of these techniques will now be demonstrated with a fragm ent which
turns Baselm into a simple 2 by 2 chequer board, as shown in Figure 3.1:

Figure 3.1 Baselm with a Checkerboard Image.

So far, all of these objects are only logical and non-visible. In order to make
them appear on the screen, two system objects are provided:

screen is a base image which contains the screen window in which the program
was started;

while cursor is a small image containing the icon displayed as the cursor which
tracks the mouse.

Images are m ade visible by copying them onto the screen or part of the screen -
for instance:

le t leftUpperQuadrant = lim it Baselm to 5 by 5 at 0, 5
xnor leftUpperQuadrant onto leftUpperQuadrant
let rightLowerQuadrant = lim it Baselm to 5 by 5 at 5, 0
xnor rightLowerQuadrant onto rightLowerQuadrant

left UpperQuadran t

(5,0 rightLowerQuadrant

copy Baselm onto lim it screen at 100,100

will put the chequer board onto the screen at pixel 100, 100.

Chapter 3 60 Introduction to PS-algol

Some of the other facilities available using images are now briefly mentioned:

• the system functions X.dim and Y.dim return the x- and y- dimensions of an
image;

• a print procedure, which rasters the value of any scalar onto any image in any
font, using any of the eight raster operations [Philbrow et a l, 1988a];

• the function string.to.tile takes a string and a font-name and returns the image
which contains the string displayed in that font;

• the function menu takes in a title image, a set of icons, action procedure pairs
and a boolean to determ ine w hether the m enu is to be show n
horizontally or vertically. It returns a procedure which when applied
will pu t up a menu, wait until the mouse is clicked over one of the icons
and then apply the associated action procedure. This is the first example
of the kind of interface tool which can be easily built in PS-algol.

• the functions cursor.off and cursor.on make the cursor image invisible and
visible respectively.

Finally, one other system function must be mentioned - locator. This procedure
of no arguments tracks the mouse and returns a structure which contains the position
of the mouse and w hich buttons, if any, are currently being pressed. Using the
set.locator function, the functionality of locator can be modified, so that, for instance, it
only returns when a m ouse event (movement or button press) occurs. These tools
were themselves w ritten in PS-algol and menu and string.to.tile will be discussed in
some detail in Chapter 4.

3.2.3 Structures.

PS-algol allows the construction of complex objects in a way that is superficially
similar to the Pascal record-type. A class constructor may be defined, which consists of
a name for the class and a set of names and types of the fields which make up the class.
For instance:

structure Addressi int house; string street, city)

defines a class of addresses consisting of three fields, one integer and two strings and a
constructor for generating them. Then:

let CS := Addressi 17, "Lilybank Gdns", "Glasgow")

generates an instance of the class. The type of CS is pntr.

The fields of such an object can be dereferenced and re-assigned, as in:

let CShouse := CS(house)

and CS(house) := 18

Chapter 3 61 Introduction to PS-algol

The variable, CS, can be thought of as holding a reference to the object and so
the assignment:

let alsoCS := CS

will create another reference to the same object. Any changes to any of the fields of CS
will also appear as a change to the same field of alsoCS. The underlying semantics of
the copy operation is therefore reference based. Two value based semantics may be
built on top of this. Shallow copying is simply achieved by:

let newCS := Addressi CS(house), CS(street), CS(city))

The implementation of deep copying is a more complex matter and a general purpose
mechanism is developed in section 4.3.

The semantics of equality is similarly reference based. Thus the tests

alsoCS = CS and newCS = CS

return true and false, respectively.

As PS-algol is data-type complete, the fields of such a structure can be of any
type. They can be vectors or procedures as well as strings or integers. In particular they
can refer to other structure instances - i.e. objects of type p n tr . Structures were
introduced as a technique for modelling complex data. A simple example of this is the
following structure which models a node in a list of strings:

structu re stringNodei string this; pntr next)

Using pn tr fields, structures of arbitrary complexity can be manipulated as single
objects - the list of strings can be transmitted merely by passing the reference to the
head of the list. It is easy to write a list-processing package to manipulate such a list. It
might contain the following three procedures:

let StringList := nil ! introduces a variable which refers to the list

let Clear StringList := p roc()
StringList := nil

! clears the list

let AddStringList:= proc(string new) ! adds a new string to the by making
StringList := stringNodei new, StringList) ! a new node at the head of the list

let PrintStringList := proc()
begin

let P := StringList
while P ~= nil do

begin
print P(this)
P := P(nex t)

end
end

! print the list

Figure 3.2 A List Processing Package tor btrmgs.

Chapter 3 62 Introduction to PS-algol

This illustrates the fact that PS-algol contains some of the features of an object-
oriented language. Complex data objects have identity and can be m anipulated as a
single entity. In this package, the variable StringList at all times contains a reference to
the list as a whole because it refers to the head of the list.

However, the im portant feature is that all objects created as instances of any of
these class constructors are of the same type: pntr. Therefore every pn tr variable object
or structure field can contain a reference to an object of any class. This means that
programs can be written which manipulate objects w ithout knowing which class they
are in. This allows program s to be split into parts which handle objects of any class
and parts which actually dereference the fields of the structure and so have to know
what that structure is. To illustrate this, the list is generalised to contain different
types of value at the nodes, for instance using the structure:

s tru c tu re anyNodei p n tr this, next)

Two packaging structures are introduced for integers and strings:

structu re stringPack(string stringValue)
struc tu re intPack(in t intValue)

and the package can be re-written:

let AnyList := n il ! introduces a variable to hold the list head

let Clear AnyList := p ro c() ! clears the list
AnyList := n il

let AddAnyList:= proc(pntr new) ! adds a new object to the by making a new
AnyList := anyNodei new, A nyL ist) ! node at the head of the list

let PrintAnyList := proc() print the list
begin

let P := AnyList
while P ~= nil do

begin
print if P is stringPack then P(this)(stringValue)

else P(this) (intValue)
P := P(n ex t)

end
end

Figure 3.3 A Polymorphic List Processing Package.

The procedures which clear and add do not need to know w hat class of object
they are handling. The calling program determines the class of the data which is to be
entered into the list. Thus these procedures are truly polymorphic, but the style of
writing polymorphic procedures explicitly identifies the token for the values, p n tr,
which is used in m ost implementations of parametric polymorphism [Cardelli and
Wegner, 1985]. The advantage of exposing this is that there is also a structure with
polymorphic fields, which is exploited extensively.

Chapter 3 63 Introduction to PS-algol

Conversely the print procedure does need to know the class of object, so that it
can correctly dereference the information contained. This procedure has also been
written to be polym orphic, but this time the polymorphism is bounded to the two
packaged classes stringPack and intPack. If any other class is encountered, an error will
be generated. The form of bounded polymorphism seen here is that the parameter is
bound to an explicitly stated set of classes.

What has been achieved by splitting the package is increased software re
usability. The am ount of recoding to be done is minimised when the list is increased
to include other sorts of object, by deferring the binding of program to data-type as
much as possible - in this case until the list has to be printed. This technique of
deferring the binding is one which is used over and over again in PS-algol programs.
As well as reducing the amount of coding and re-coding, it has the effect of clarifying
the nature of the operations which are being coded. The decision to defer the binding
to another part of the program is a conscious one, which can only be made in the light
of a full understanding of what the program is trying to achieve.

The pn tr type has effectively partitioned the type space in PS-algol. On one side
there are scalars, vectors, images and procedures and on the other are the PS-algol
classes. The types of the former are checked at compile time, while the check of classes
is deferred until instances are used. Deferring the type checking of program s is
essential for the incremental development of complex applications and for allowing
applications to be rebound to new databases [Atkinson et al, 1988].

3.2.4 Tables.

The "table", a system supplied example of a PS-algol structure, is used to
illustrate further the notions of structures and of deferred binding. The table structure
is of particular importance as it is used as a principal component in the persistence
mechanism of PS-algol and this will be described next.

A table in PS-algol is a structure which contains a set of one-to-one mappings
from strings or integers to objects of type pntr. This associative mechanism is used to
build keyed sets of objects. For instance, there might be a table of addresses, in which
the string "CS" is inserted as the key paired with the object CS declared in section 3.2.3.
Operations are provided to create an empty table, to insert such a pair, to retrieve the
object from the key and to apply a procedure to all the objects in the table. These will
now be described.

The command:

let T = table()

creates an object of type p n tr which refers to an empty table. Into this table could then
be inserted the pair described above with:

s.enteri "CS", T, CS)

which puts the string key, object pair into the table. The object may then be retrieved
by the command:

Chapter 3 64 Introduction to PS-algol

let retrievedCS = s.lookupi "CS", T)

Finally, the command:

let n = s.scan(T, P)

applies the procedure, P, to every pair in the table. The procedure, P, must be of type
proc(string, pntr -> bool) where the two arguments are local variables which hold the
values of the string key and paired object. The procedure returns a boolean, which is
usually true, but may alternatively be false to bring the scan to a prem ature end. As an
example the fragment:

let double = proc(string S; pntr V -> bool)
begin

V(house) := 2 * V(house)
true

end
let n = s.scan{ T , double)

will double the house num ber of every address in the table, since it will apply the
procedure w ith V pointing to each object in the table in turn. There are also
operations, i.enter, i.lookup and i.scan which behave equivalently with integer keys.

This is a clear use of the notion of deferred binding. These facilities can be used
to create tables which contain any class of data or any mixture of classes of data. The
tables are built up blind, with the operators never knowing what sort of data they are
manipulating. Therefore tables are available to as yet undream t of programs, handling
original data classes w ithout needing to be rewritten at all. The table procedures are
themselves w ritten in PS-algol.

3.2.5 The Persistence Mechanism.

Tables are of particular importance because they are used as the structure within
which persistence is implemented. The notion of persistence in program m ing, as
described in section 2.3, is that the effort to make data outlive the program is
minimised. In PS-algol, the mechanism for making data persist is its insertion into a
structure which is reachable, by following p n tr chains, from some persistent root,
which will itself be an object of type pn tr. Since any data object may be pu t into a
structure, any data object may be made to persist and so the provision of persistence is
orthogonal to data type.

A persistent root of the PS-algol system is called a "database". A database has a
table structure, although in theory this could be replaced by any bulk data structure
into which objects can be inserted. In some implementations there is only one
database, in others there can be many - the more general latter case will be described.
Control of concurrent data access is fixed at the database level - that is, any database can
be open to many readers or one writer. This is the only notion of concurrency control
in PS-algol and an inadequate one (see section 9.6.6).

Databases are created by commands such as:

Chapter 3 65 Introduction to PS-algol

let DB = create.database("mydb", "mypass")

The system function, create.database, returns a table, which is called the top-level table
of the database and which will automatically persist if the commit function is applied.
The creating program has write-access to the database and may now start entering key,
value pairs into it. When commit is executed, any entries in the table will be m ade to
persist and, if the objects in the table have pointers to other objects (they may for
instance them selves be tables), those objects will also persist. In fact, all objects
reachable from the top-level table via pointer chains will be made to persist.

Causing any new or updated objects to persist is achieved with a clause like

if commitQ is error.record then prin t "commit failed"
else prin t "commit succeeded"

where commit is a procedure which returns n il if it has succeeded and an error.record
structure if not. The latter could be caused by lack of disc space or by trying to commit
changes to a database to which the program does not have write-access. Commit can
be applied at any time in the run of the program and when it has succeeded it may not
be undone. Commit makes perm anent all changes to all databases open with write-
access - there is no notion of partial commit. Both of these restrictions are im portant
when considering the structure of a database application, such as the Bibliographic
Reference Database described in Chapter 5.

Having been created, a database can be re-opened with

let DB = open.databasei "mydb", mypass", "read")

which again returns the top-level table, this time with only read-access. To get write-
access instead, the "read" should be replaced with "write". If the database is already
open for writing by someone else, the command will return an error.record, as it will
if it is open for reading and the program tries to open it for writing. There are also
system functions to allow databases to be deleted and have their names or pass-words
changed.

This short section describes the whole persistence mechanism, which is simple
and elegant. For instance, to make the string list persist all that is required is to put
the list header into a structure reachable from a database and to perform commit. The
whole of the list is then saved, since every element is reachable from the head of the
list. The list can be retrieved by re-opening the database and performing sub-object
dereferences until the head of the list is retrieved.

3.2.6 First Class Procedures.

Here the underlying principle which makes PS-algol such a powerful language
is re-iterated - data-type completeness. Its effects have been seen in a number of ways
in the preceding sections:

• since the fields of structures can be of any type, they can be of type p n tr and so
data of arbitrary complexity can be modelled;

Chapter 3 66 Introduction to PS-algol

• since vectors can be of any types, there can be m ulti-dim ensional vectors
which are not purely rectangular;

• since data of any type can be pu t into the structures which are held in
databases, all data types have the same right to persist;

and • most importantly, the programmer's world is greatly simplified, since there is
no need to remember arbitrary restrictions.

This section concentrates on the effect of first-class procedures [Atkinson and
Morrison, 1985a] - i.e. procedures which can be m anipulated in the same way as any
other object. It is one of the main contentions of this thesis that first-class procedures
are an invaluable tool in w riting complex application program s. That "object-
oriented" languages like Smalltalk choose to force procedures into a second-class role
as "methods" will provide the crucial limit on their usefulness and hence durability.

To reiterate, in PS-algol, procedures can be the values of variables, the fields of
structures and the argum ent or result of other procedures. One example of this has
been seen in the s.scan function which takes, as one of its arguments, the procedure to
be applied. Another example is the menu function which takes as arguments, among
other things, parallel vectors of icon images and associated procedures, menu then
builds a procedure which calls locator to see where the mouse is and as soon as it has
been clicked over one of the icons, the associated procedure is applied. This built
procedure is then returned by menu as its result. The type of menu is proc(#pixel,
*#pixel, *proc(), bool -> proof int,int)). That is, its arguments include the title image,
the icons, the actions and w hether it is horizontal or vertical, and its result is a
procedure which takes in an x, y position at which the menu is to appear and then
displays it. These kinds of facilities would be very much more difficult to construct if
procedures could not be referred to in isolation.

Section 3.4 will describe some of the advantages of first-class procedures, but
here is a brief list of their uses:

• the representation of actions as procedural objects with no restriction on what
can be done with them;

• the production of abstract data type representations of data, since packages of
procedures can be returned from data creation procedures;

and • the storage of procedures, which greatly enhances m odular and incremental
application development.

3.2.7 The Callable Compiler.

The existence of first-class procedures in the language has meant that it has also
been possible to provide a function which calls the compiler. A string may be built
which represents a procedure. This can be passed to the compiler function, which
returns the compiled procedure. This may then be used in the same way as any of the
statically written procedures of the program, as in Figure 3.4.

Chapter 3 67 Introduction to PS-algol

structure procHolderi proc() theProc)
let Pstring = "procO; write 12345 "
let emptyHolder = procHolderi procO; nullproc)
let compHolder = compile{ Pstring , emptyHolder)
let Pcompiled = compHolderi theProc)
PcompiledO

Figure 3.4 Run-time Compilation__________________

This will have the same effect as

let Pcompiled = procO; write 12345
Pcompiled ()

In the example of using the callable compiler, note that an empty structure was
provided into which the compiler can put the compiled procedure. This is because the
compiler has been w ritten to be a completely general function which can compile
procedures of any type - another example of deferred binding. The mechanism which
has been used to defer the choice of the type of the procedure is to force the caller to
specify this by providing a package of the correct type - after all, the user knows what
type it is. This means that although the compiler does not know the type of procedure
it is to compile until it is actually called, the type of the resulting procedure is known
at compile-time and so can be statically type-checked. To put it another way, the choice
of type has been deferred when writing the compiler function until writing the calling
program.

To use the compiler as just illustrated would clearly be of little value - there is
no point in compiling a program every time it is run. The mechanism comes into its
own when writing program s designed to run against an unbounded set of different
classes of data. This will be illustrated in section 3.3.10 and used extensively
throughout this thesis.

3.2.8 Exceptions.

PS-algol includes an exception m echanism [Philbrow et ah, 1988b] which
permits program events, which the current procedure is not designed to handle, to be
passed into successive outer blocks, until code which can handle the event is found.
The exception mechanism is based on that designed for the CLU language [Liskov and
Snyder, 1979], but makes extensive use of the pntr type.

In fact an exception in PS-algol is an instance of a PS-algol class. An exception
class is created in the same way as any other. Take for instance an application which
reads some data from a file and requires an exception for the file being exhausted. The
following structure is created:

struc tu re fileExhaustedi s tring whichProc)

which is used as in the following:

raise fileExhausted("Reading a number")

Chapter 3 68 Introduction to PS-algol

The effect of this statement, which appears in some low-level procedure which
reads a number, is to halt execution of the current block and pass execution back into
successively higher blocks until one is encountered which contains some error
handling code. This looks like:

w h en fileExhausted as FE do
p rin t "The file is exhausted in procedure: ", FE(whichProc)

The execution resumes at the end of the block containing the error handler.

The use of this technique is to avoid the necessity for low-level procedures to
return exception inform ation by use of the normal param eter passing mechanism.
For instance, in w riting a compiler w ithout exceptions, the character input procedure
and each procedure that calls it would have to pass back failure codes w hen the file
was exhausted. Using exceptions, execution immediately returns to a higher-level
block where the condition is handled. The system supplies a number of exceptions for
common occurrences.

3.3 The Advantages of the PS-algol Approach.

The features described in the previous section give a num ber of clear
advantages when program m ing a large scale application. The reader is referred to
[Atkinson and M orrison, 1985a, Atkinson and Morrison, 1985b, Morrison et ai, 1986b,
Morrison et ah, 1988a and Atkinson et ah, 1988] for fuller treatment of these and other
issues.

3.3.1 Low level data management is handled for you.

In a persistent system, the sections of program concerned with the organisation
of data for input and output are redundant - a survey by IBM Ltd. estimated that 30%
of the programming effort in producing a large program typically goes into this part of
the program [IBM, 1978]. In PS-algol, the organisation that is imposed on the data in
order to handle it w ithin the program is the structure in which it is stored. To store a
list of strings, all that is required is to enter the head of the list into the database. To
take another example, consider a program dealing with relational databases, in which
a single structure contains a header for the relation. The mechanism for storing a
relation in the persistent store consists merely of entering a pointer to this structure
into the store. All of the data in the database is then pulled into the persistent store as
a consequence of being part of the data structure which is referred to from the header.

A further saving of program m er effort is that there need be no recourse to
external data handling program s, such as file management systems, with a consequent
saving in the am ount of inform ation the program m er needs. In fact, this is an
example of a m ore general advantage of using a persisten t language. All
programming jobs can be done in the same language since the language exists in the
context of a unified w orld. Reducing the complexity of the program m er's world
confers a benefit if the program m ing is, of itself, necessarily complex.

Chapter 3 69 Introduction to PS-algol

3.3.2 Strict type checking gives early detection of data mis-use.

As m entioned before, type information is stored along w ith the object. This
means that it is not possible, for instance, to store a numerical object and re-load it as a
string. Attempts to mis-use data in this way are detected at program compilation time,
data loading time or data reference time, but always before the data is used. The
programmer therefore discovers any error at the earliest possible time, which leads to
a consequent saving in the time to develop a system.

3.3.3 The graphics facilities provide tools to produce user interfaces.

In producing program s for the software market today, a great deal of attention
must be paid to the user interface. Having the necessary tools to produce a good
interface within the language is of great benefit. Using external packages is fraught
with the problems of forcing unnecessary constraints on programs and of restricting
the kinds of interface that can be provided. Again, the programmer has been relieved
of learning other languages - the one used to program the package and the one
provided by the package to interact with the provided operations. W ithin PS-algol,
not only are a num ber of sophisticated tools provided, but the existence of the two
graphics types w ithin the language permits users to provide themselves with their
own set of tools, at small cost. For instance, if the PS-algol pop-up menu is not what is
required, the user may create a personally tailored one.

Using PS-algol, it is relatively simple to produce: a variety of menu- and form-
interfaces; w indow m anagem ent systems; good quality iconic interfaces; and direct
manipulation tools. The development of these is discussed in Chapter 4.

3.3.4 Image and picture objects model graphical data.

Having the types, image and picture, alongside such traditional types as integer
and string, allows graphical data to be stored in exactly the same way as textual or
numerical data. Clearly, this is of value if the application is actually handling pictorial
data - maps, for example. It relieves the programmer from having to invent a coding
strategy to handle the pictures. If an object requires an iconic interface, this can then
appear as one of the fields of the structure which contains its attributes.

3.3.5 First-class procedures model actions.

As stated previously, procedures can also be manipulated in the same way as
graphical, numerical and textual data. Thus it is possible to model and store activities.
This is of interest, for instance, in modelling office systems. It is very useful to be able
to refer to objects which m odel office procedures. If these objects are themselves
compiled procedures then two advantages appear - they run efficiently and they
correspond closely to the object they are trying to model (thus, once more, reducing the
complexity of the program).

Assertions, conditions or triggers may also be modelled by procedures which
take in values for the variables of the assertion and return a boolean result. Further,

Chapter 3 70 Introduction to PS-algol

objects which are pairs of condition procedures and action procedures can be created. It
is then simple to w rite a program fragm ent which loops, testing conditions and
applying the paired action if the condition is true.

Another example of the use of first-class procedures is given in [Cooper, 1987] in
the context of an implementation of the video-game, Snake. In this game, the player
controls a snake as it moves in one of the four directions: up, down, left or right. At
any time, the snake's direction may be changed by 90 degrees by pressing a mouse
button. The program could be written with a flag indicating which direction the snake
is moving in and then contain several tests of this flag. Conversely it could use five
procedure variables:

• move - this contains a procedure which moves the mouse one unit. Its value
will be one of the four constant procedures up, down, left or right.

• varChangeU p - this is the procedure which will be applied when the up
button is pressed - if the current direction is up or down, it will do
nothing, if the current direction is left or right its value will be
ChangeUp, which will be a constant procedure which sets move to up,
and changes all the four varChange procedures appropriately;

• similar procedures varChangeDown, varChangeLeft andvarChangeRight.

Program m ing using these procedure variables was found to be sim pler and
faster than using flags.

3.3.6 First-class procedures facilitate incremental compilation.

Having developed a program in the classical structured way, PS-algol provides
an ideal framework in which to program the modules. Each module is w ritten as a
PS-algol procedure and stored in the persistent store. Dependent modules can then
access this m odule by retrieving it from the store, using any one of a num ber of
different binding styles. Chapter 8 provides much more detail on this.

Several benefits accrue from this:

• source m odules can be kept short with a consequent saving in compilation
and debugging time;

• new versions of modules can replace old ones without having to re-compile
or re-run the whole of the program;

• there is no need for separate library database mechanisms, type checking
linkers or loaders, since procedures are treated like any other value - thus
the p ro g ram m in g env ironm ent is sim plified and the system
im plementation task is reduced;

and • alternative versions of the same module can be provided - for instance, a
num ber of editors could be stored and the user could select which one to
use by menu. If another editor were added, it could be made to appear
automatically on the menu.

Chapter 3 71 Introduction to PS-algol

3.3.7 First-class procedures facilitate Abstract Data Types.

The notion of the Abstract Data Type is the restriction of access to data to a set of
operations defined on it. Since procedures can be put into structures and structures
can be returned as the results of procedures, ADT generating procedures can be
constructed which return a structure containing a package of procedures. To illustrate
this, the string list package could be produced as one procedure which is called to
generate a new list (Figure 3.5).

let newStringList = proc(-> pntr)
begin

structure stringNodei string this; pntr next)
let StringList := n il ! introduces a variable to hold the list head

let Clear StringList := p roc() ! clears the list
StringList := n il

let AddStringList:= proc(string new) ! adds a new string to the by making
StringList := stringNodei new, StringList) ! a new node at the head of the list

let PrintStringList := proc()
begin

le tP := StringList
while P ~= nil do

begin
print P(this)
P := P(next)

end
end

structure stringListPack(procO clear; proc(string) add; procO p rin t)
stringListPacki Clear StringList ,AddStringList,PrintStringList)

end

Figure 3.5 A String List Processing Package as an Abstract Data Type

The string list can then only be used through its operations, i.e.

let SLadt = newStringList ()
SLadt(clear)()
SLadti add)("one")

SLadti p r in t)()

there being no other way to access the list. This prevents users from corrupting the
list. This technique is very similar to "Object-Oriented" objects, which consist of an
invisible state and a visible set of methods. This technique will later be extended to
implement an Object-Oriented system in PS-algol (Section 7.4).

3.3.8 The pntr type models complex data.

Since PS-algol is data-type complete, the fields of a data structure can be of any
type. This m eans that complex data objects can be constructed which combine

Chapter 3 72 Introduction to PS-algol

numbers, textual information, graphical data, activities and assertions. Furthermore,
objects with a more complicated structure can be modelled by using pointer fields to
sub-objects. Lists, trees and graphs of all kinds are simple to m anipulate and traverse
in PS-algol. Even baroque structures like the data for a cricket m atch can be well
handled using structures.

3.3.9 The pntr type permits delayed binding of programs to objects.

As the language is strictly type-checked, the type of each object in a program
must be specified before it is used. However, it is possible to write general purpose
procedures which m anipulate objects of a number of types by packaging the objects of
different types into structures and passing around pointers to those structures. Thus,
for instance, it is possible to provide a list processing package in which the list contains
a number of types. The insert procedure would use a pointer to a package as its
argument and could be used as in:

structure intPack(int intValue)
structure stringPack(int stringValue)
inserti intPack(1))
insert (stringPacki "two"))

The elements of the list can be passed around w ithout reference to their type,
until the values are required, for instance in a procedure which prints out the contents
of the list. Only then, is it required to check the type.

let Pthis := P(this)
let Cl = class.identifier(Pthis) ! returns the class structure as a string
let fieldNantes = ! derived by string manipulation
let source := "proc(pntr PP) ! beginning building the source as a string

begin
structure " ++ Cl ++ ”'n" ! ’n means newline

for i = 1 to upb(fieldNames) do
source := source ++ "print PP(" ++ fieldNames (i) ++ ")'n"

source := source ++ "end’n" ! the end of the source

structure PrintHolder (proc(pntr) PrintProc)
let emptyPackage = PrintHolder (proc(pntr X); nullproc)
let CompiledProcPack=compile(source, emptyPackage)
let CompiledProc = CompiledProcPacki PrintProc) ! unpackage the proc.
CompiledProc (Pthis) ! and apply it (at last!)

Figure 3.6 A Fully Polymorphic List Printing Procedure

3.3.10 The run-time compiler facilitates polymorphism.

The run-tim e com piler allows program s to be written which run against an
unbounded set of data classes. Such programs are written so that they discover the
class of data they are expected to deal with this time and, using string manipulation,
^erge the class information w ith the algorithm and compile the resulting procedure,
or instance, the print procedure of the package for list processing anyNode lists might
e 8eneralised by replacing the clause which does the printing as in Figure 3.6.

Chapter 3 73 Introduction to PS-algol

To explain this, the class description of the object to be printed is discovered by
use of the standard function, class.identifier, which returns it as a string. This
information is m anipulated to derive the field names of the class and these are then
embedded into some code to print the fields. The variable, source, holds the source of
a procedure to do this printing. In the case of the address structure introduced in
section 3.2.3, the following source would be produced:

proc(pn tr P P)
begin

structure Addressi in t house: string street, city)
p rin t PP(house)
p rin t PP(street)
p rin t PP(city_)

end

where the parts which are underlined depend upon the particular class and have been
embedded into a tem plate representing the printing algorithm.

Once compiled, the program would be stored so that it need not be regenerated
every time an object of that class is encountered. Tables with the procedure stored
against the class identifier as a key can be used to "memo-ise" the function. This
binding together of algorithm and data class information to create flexible program s
will be seen a num ber of times. Essentially it has two uses. Firstly, polymorphic
programs can be w ritten which will extend to any subsequent data type. Secondly,
programs can be w ritten which are efficient for any data structure without relying on
interpretation which is intrinsically slow.

An earlier thesis from the Persistent Programming Research Group [Owoso,
1984] noted the need to program "universally applicable" algorithms when behaviour
depends on the type structure of the values being manipulated. At the time, this did
not appear possible in a fully type checked, largely statically bound language. This
combination of the p n t r and the callable compiler not only enables this form of
programming, but also makes efficiency possible.

3.4 Conclusions.

This chapter has described those features of PS-algol which make it attractive for
data-intensive program s. They include the provision of orthogonal persistence,
graphical data types, the ability to model complex objects, the availability of first-class
procedures and the run-tim e compilation system. Together these facilities provide a
sufficient set for use in the programming both of database applications and of data
modelling tools.

The next chapters continue this description with some examples of PS-algol
programming: an application program m ed in PS-algol; an efficient relational system;
some semantic data modelling tools; and finally a use of the language to provide better
application developm ent environments.

Chapter 3 74 Introduction to PS-algol

Chapter 4. Building Tools in PS-algol.
In the last chapter, the basic facilities of the language PS-algol were introduced.

In this chapter, the functionality of the language is extended by building tools which
assist the program m er. Firstly, some user interface tools will be introduced. Then the
PS-algol Database Browser will be described, followed by a description of sets of tools
for dealing w ith complex objects and compiler generation. The chapter will also
provide a tutorial in some of the basic techniques of PS-algol programming.

There are three ways in which these tools can be provided - as stand-alone
programs, as "public standard functions", or as user-defined procedures stored as
objects in the Persistent Store. Examples of the three types described in this chapter are
the Browser, the m en u function and the Chooser. The standard functions are
automatically available w ithout extra programmer effort, but can only be inserted by
reconfiguring the PS-algol system - a privileged operation unavailable to applications
programmers. This is, of course, the same for most program m ing languages.
However, user-defined procedures can easily be inserted into the Persistent Store and
the system functions can act as templates for these.

It is very useful to adopt some discipline when inserting utilities. The PS-algol
system provides com plete freedom in the way procedures m ay be stored in the
database. Therefore any appropriate framework within which to insert user-defined
operations may be created. Chapter 8 describes one method of organising a library of
utilities and fu rther functions which could be added, such as configuration
management and version control. This chapter concerns itself solely with the kinds of
tools themselves.

The principal dem onstration of this chapter is the ease w ith which generally
available functions can be added to the system. An application programmer can create
new procedures which have different functionality to the ready-made software. The
resulting applications are not then constrained by the restrictions of the standard
facilities.

To summarise, this chapter includes the following:

• a demonstration of the usefulness of the primitives of PS-algol;

• a tutorial in the currently accepted methods for using these primitives;

• a dem onstration of the ease with which the system can be extended by any
user;

• an illustration of how complex programs can be written which are usually
outside the range of a strongly typed programming language;

• some criticism of the facilities provided.

4.1 User-Interface Tools.

The graphics facilities of PS-algol were described in sections 3.2.1 and 3.2.2 above
and this section shows how they may be used for constructing user-interface tools.

Chapter 4 75 Building Tools

The section dem onstrates how some of the tools have been built, starting with two
standard functions, string.to.tile and menu. Then more sophisticated m enu tools, a
form interface, some textual display tools and a simple string editor are described.

4.1.1 Multi-Font Display.

The use of different fonts creates a more interesting user interface and helps to
convey information - for instance, the relative importance of the text. PS-algol defines
a structure for fonts and provides a standard procedure for using this structure to
transform a string into an image. The structure is

structu re font(s tr in g fontname;
in t font.height;
*#pixel the.chars;
s tring description)

where the m ost significant field is the the.chars field, which is a vector of images
containing one image for each of the 127 characters in the PS-algol character set. A
specific database, called "FONTS", is set aside to hold these structures.

This is used by string.to.tile, as in the following:

le t hellolmage = string.to.tilei "hello", "cou20")

which will create the smallest image which will hold the w ord "hello" in the font
Courier 20. Figure 4.1 gives the string.to.tile procedure.

let string.to.tile = proc(string S, F -> # p ix e l)
begin

let FontDB = open.databasei "FONTS", "friend", "read")
let theFont = s.lookupi F, FontDB) ! Find the font.
let theW idth := 0 ! Used to calculate the width of the image.

for i = 1 to length^ S) do ! Calculate the total width.
theW idth := theW idth + X.dim(theFonti the.chars)(code(S (i I I))))

! Create the image initialised to white,
let thelmage = ima.getheWidth by theFonti font.height) of off

theW idth := 0
for i = 1 to length(S) do ! Fill the image with the characters,

begin
let theChar := theFonti the.chars)(code{ S (i I I)))
copy theChar onto limit thelmage at theWidth , 0
theW idth := theW idth + X .dim i theChar)

end
thelmage ! Return the image,

end

Figure 4.1 The Standard Procedure string.to.tile.

In this procedure, an image is created to hold the text. The w idth of the image is
sum of the w idths of the constituent characters and its height is obtained directly

!rom the height field of the font. The required characters are then copied into the
lrnage, which is the returned result of the procedure.

Chapter 4 76 Building Tools

This sim ple procedure implements the facility without the expected recourse to
low-level program m ing. The structures of the PS-algol graphics system are s u c h th £
the m anipulation of graphical objects has a similar feel to familiar m anipulations of
textual or num erical values. Furtherm ore, the p rocedure w ill w ork w ithou
modification, re-compihng or even re-loading, if the contents of the fonts database are
changed. It will use any font that is m the database at run-time. The writing of this
procedure has been entirely separated from the choice of font.

4.1.2 Textual Display Tools.

Consider first a message facility which will put a message in a box of a given size
at a given place and then wait for a mouse click on button 1 before it is removed. The
procedure is used as for instance in -

message{ "You shou ldn 't have done that", 100, 100, 400, 50)

which displays the message in a box whose dimensions will be 400 by 50 at 100 100
An additional convention is introduced: if the x-value of the origin is -1, this means
use the centre of the screen, while if the x-value of the size is -1, then the smallest box
which will contain the message with a border of 10 pixels of space around it is used
Figure 4.2 contains such a procedure.

let message = proc(string mess; int xo, yo, xs, ys)
begin

let imess = string.to.tile{ "mess", "met22")
let xim = X.dimi imess); let yim = Y.dim(imess)

! Convert the message into
! an image and find its size.

if xs = -1 do {xs := ximess + 20; ys := yimess + 20}
if xo = -1 do (xo := (X.dimi screen) -xs) div 2

yo := (Y.dimi screen) -ys) div 2 }

let xl = (xs - ximess) div 2
let yl = (ys - yimess) div 2

let box = lim it screen to xs by ys at xo, yo
let save = image xs by ys of off
copy box onto save
xnor box onto box
let inner = limit box to xs - 4 by ys - 4 at 2,2
xor inner onto inner

copy imess onto lim it box at xl, yl
let maxwell := locator{)
w hile ~maxwell(the.buttons)(1) do maxwell
w hile maxwelK the.buttons)(1) do maxwell
copy save onto box

! Border of 10 pixels if x = -1
! Origin set so that the
! centre of the image is the
! centre of the screen.

! The border dimensions - also where
! in the box the message appears.

The location of the box on the screen
The screen area to be remembered.
Remember the screen image.
Clear the box to black.
The interior of the box.
Set the interior to white, thus

leaving a two pixel line.
Copy the text into the box.

:= locator()! Wait for button press.
= locator()! Wait for button release.
! Restore the screen.

end

Figure 4.2 A Message Display Procedure.

This procedure creates an image for the message and then resets the size and
or>gin, if they have been entered as -l's. It then picks out the required part of the
screen as box and saves the current contents of that part of the screen as save. Then it

Chapter 4 77 Building Tools

puts an em pty box into that area by blackening the whole rectangle (xnor) and then
whitening everything except the outerm ost two pixels (xor). This leaves a frameTwo
pixels thick. Then it copies the message into the box and waits until the mouse button
has been clicked and released before removing the error message (actually copying the
saved contents back into position). The m ouse is m onitored by calls to h c a t f r a
function which returns a structure containing the current mouse position and a vector
of boolean* which specify which buttons have been pressed. The procedure keepssr. !rir!gr mouse bu"on h,! ^ •"i •»» keePs »>»„g ̂

Another textual display tool is based on the UNIX™ more facility, it takes in a
vector of strings representing the text to be displayed and an origin. It then displays
the first page the first 15 strings - m a box and uses the mouse buttons so that one
button displays the next page if there is one, another displays the previous page, again
if there is one, and the third button quits the display removing it from the screen. A
procedure to provide this is given as Figure 4.3.

let more = proc(*string text; int xo, yo)
begin

saveScreeni)
let maxLines = 15 ! The page size.
let noLines = upbi t ex t)
let firstLine := 1
let lastLine := mini noLines, maxLines)
showTexti text, xo, yo, firstLine, lastLine) ! Show first page.

let buttons := locatorOi the.buttons) ! Which buttons are pressed?
let finished := fa lse
w h ile ~finished do

begin
case true of

buttonsil): if firstLine ~= 1 do ! Back one page.
{ lastLine := firstLine-1

firstLine := maxi 1, firstLine-maxLines)
showTexti text, xo, yo, firstLine, lastLine) }

buttonsil)-. if lastLine ~= noLines do ! Forward one page.
{ firstLine last Lin e+1

lastLine := mini noLines, lastLine+maxLines)
showTexti text, xo, yo, firstLine, lastLine) }

buttonsi3): finished := true ! Set termination condition.
default: 0

buttons := locatorOi the.buttons) ! Re-sample the buttons.
end

replaceScreeni)
end

Figure 4.3 A more Facility.

This code assum es five procedures: min and max to provide the larger and
smaller of two integers, showText, which displays a subset of strings from a vector at a
given point on the screen, and save Screen and replaceScreen, which store and restore

e Screen. The code for the show T ext procedure is very similar to that for the
Message procedure given above.

Chapter 4 78 Building Tools

Figures 4.2 and 4.3 show once more how a few sim ple constructs can be
combined to create general purpose user interface components in short procedures.
The facilities are sufficiently simple and powerful to allow the resulting procedures to
reflect the algorithm, w ithout distracting details obscuring it.

4.1.3 The PS-algol Menu Function.

The pow er of m enu-based interfaces is well established. For m any purposes,
and particularly for naive users, they are superior to com m and language based
systems. The s tandard procedure, m en u , of PS-algol provides a function for
generating menus. Its use can best be seen from a code fragment in Figure 4.4.

let finished := false; let done := false
let title = string.to.tile("Pick Command", "fixl3")
let icons = @ 1 of #pixel [string.to.tilei "Add", "fixl3"),

string.to.tilei "Delete", "fixl3"),
string.to.tilei "Quit", "fixl3")]

let actions = @ 1 of cproc(int, #p ixel) [! A vector of procedures.
cproc(int I; #pixel /)

 Code for add,
cproc(int /; #pixel /)

 Code for delete,
cproc(int I; #pixel /)

finished := true]
let Menu = menui title , icons , icons , true)
while ~finished do done := Menui 100,100)

_________ Figure 4.4 An Example of Using the menu Procedure.__________

In this piece of code, four input parameters to the menu system function are
specified - an image containing a title icon; a vector of images containing choice icons;
a vector of procedures specifying the actions to be associated with the icons; and finally,
a boolean specifying w hether the menu is to be presented horizontally or vertically.
The function returns a procedure of type cproc(int, int -> b o o l), which when executed
will display the m enu at a position specified as the two arguments. When one of the
icons has been selected, the associated procedure is applied and the procedure exits
with the value true. If the mouse is clicked over some other part of the screen, it exits
with the value false. The action procedures are forced to have type cproc(int, # p ix e l),
so that inside them the integer position in the menu and the icon are also available -
(i.e. if the "add" function is picked the first parameter will have the value 1, while the
second has the "add" icon). The author has never personally found a use for these, but
they may sometimes come in handy.

This facility is constructed from the simplified version of the menu p rocedure
given in Figure 4.5. The procedure builds the image containing the menu from the
title and action icons. Then it returns a procedure which: saves the screen under the
menu; waits for the m ouse to be clicked and released; checks if it has been clicked over
the menu, returning false if not and finding which icon has been chosen and applying
the associated procedure if it is; finally it restores the screen contents, before quitting
with true or false.

Chapter 4 79 Building Tools

let menu = proc(#pixel title;)f#pixel icons; *cproc(int, #pixel) actions;
bool vertical -> proc(int, int -> b o o l))

begin
let theW idth := X.dim (title) ! Calculate the size of the image.
let theHeight := Y.dim (title)
for i = lwb{ icons) to upb(icons) do if vertical

then { if theWidth < X.dim{ icons(i)) do
theWidth := X.dimi, icons(i))

theHeight := theHeight + Y.dim i ic o n s (i)) }
else equivalent for horizontal case

let thelmage:= im age theWidth by theHeight of off ! Create the image.
.... copy title icon into thelmage
for i = lwb(icons) to upb(icons) do if vertical

then copy icon vertically
e lse copy icon horizontally

proc(int X,Y -> b o o l) ! The returned procedure
begin

.... save the screen area and present the menu (as Figure 4.2)
wait for button press and release (as Figure 4.2)

let Xmouse = maxzvelK X.pos) ! The mouse position,
let Ymouse = maxwelK Y.pos)
if Xmouse < X or Xmouse > X + theWidth or

Ymouse < Y or Ymouse > X + theHeight
then {.... restore saved screen area false } ! Mouse not over menu,
else begin

let choice = if vertical ! Find the index of choice,
then function of Ymouse and heights of icons
else function of Xmouse and widths of icons

actions(choice)(choice, icons{ choice)) ! Execute action.
.... restore saved screen area
true ! O.K. exit,

end
end

end

Figure 4.5 An Outline of the menu Procedure.

This procedure has used a similar technique to string.to.tile (Figure 4.1) of
glueing together sm aller images into bigger ones and then rastering these onto the
screen. Then locator is used to m onitor the user's mouse activity and when the
mouse is clicked and released over one of the icons, the equivalent procedure is
activated. All of this is dependent on the availability of first-class procedures, which
are passed in as param eters and then executed having been selected from the vector.
The way in which menu returns a m enu producing procedure, rather than displaying
the menu itself, also relies on first-class procedures. The result of menu is the
procedure defined in the second half of the body of menu. This ability to define one
procedure inside another, b inding into values derived from param eters, is a very
powerful technique which will be used often in this work.

4.1.4 Other Menu Facilities.

This m enu facility can be used as a basis for more sophisticated m enu
operations. For instance, the author built a "variable length menu" procedure. The
call to vmenu, as it is called, is the same as to menu, but the resulting procedure takes

ree parameters. In addition to the X and Y position, it requires a vector of booleans
the same length as the vectors of icons and actions. The effect of this parameter is

Chapter 4 80 Building Tools

that in any call to the m enu only those options whose boolean value is true will be
available during this call. Unavailable items are not shown in this implementation,
but a version could easily be provided which "greyed" the unavailable options. The
code for zmenu differs from that for menu in that a lot of the image building is done
inside the returned procedure, rather than beforehand. This, of course, makes the
returned procedure a little slower.

Another m enu constructor is the Chooser. This creates a m enu interface to the
choice of one m ember from a set of objects. It takes in a vector of strings which are
identifiers for members of the set and returns a package of procedures, among which is
one for presenting a m enu of these identifiers. In designing the Chooser, the author
took account of the following problems:

• the set of identifiers may grow large - in fact very large - and the m ethod of
selection m ust reflect this - not only will all the items not fit on the
screen at once, but there must be some mechanism for going quickly to an
item remote from those currently displayed;

• the image may have to be constructed dynamically for large sets, but need not
be for small ones;

• in a typical application, the membership of the set may be changing, yet to
continually keep creating the menu afresh would make it too slow;

• in PS-algol, tables are often use to contain sets, so one common use of the
Chooser will be to select between the keys of a table.

The use of the package is illustrated in the context of a table of "widgets". To
generate a Chooser, given widgetTable to be a pointer to this table, the following call
would be made:

let widgetChooser = set.up.choose(sort.stringsi table.to.text(widgetTable)))

which makes use of three procedures which are provided together:

• table.to.text - this is a procedure which takes in a table and returns a vector of
all the string keys in the table;

• sort.strings - this is a procedure which takes a vector of strings and sorts them
alphabetically (note: the string keys of the table are n o t held
alphabetically);

• set.up.choose - this procedure takes the alphabetically ordered string keys and
returns a Chooser package.

This package has the following structure:

structure ChooserPacki prod string, int, int -> string) do.choose;
prod string) add.choose;
prod string) remove.choose;
prod int, in t) list.choose)

and its elements do the following:

Chapter 4 81 Building Tools

• do.choose - takes in a title and x- and y-positions, displays the m enu and
returns the selected identifier - this will be described in more detail below;

• add.choose - adds a new identifier to the menu;

• remove.choose - deletes an identifier from the menu;

• list.choose - lists all the identifiers in the m enu using the more facility,
described above.

The add.choose and delete.choose operators are provided to cover the case in
which the program is adding and deleting members of the set. W hen an add or delete
is performed, a call to one of these operators revises the m enu much more efficiently
than a fresh call to do.choose w ould do.

The operation of the resulting m enu addresses the other points raised above.
At any time, a subset of the options is displayed together with forward and backward
scroll tiles if there are earlier or later entries and a "quit with null" tile. Initially, the
first 15 entries are displayed with the "forward" tile and the"quit with null" tile. The
user may now either: select one of the displayed entries; go "forward"; "quit with
null"; or type a letter on the keyboard. The effect of the latter is to restrict the m enu to
entries beginning with that letter. More letters may be typed to restrict the selection
further. Figure 4.6 shows a menu after typing "wa" - note that the typed string appears
just under the title.

1
1 |

wate
wantage
wapbcte
walkins

1 waxman |

| Figure 4.6 A Sample Chooser Menu. |

The forward and backward tiles are available. Selecting one of these displays the
15 entries before or after the current ones as usual and has the effect of cancelling the
typed string. This mechanism gives a neat balance between menu- and text-driven
selection - you can select the object you want by typing enough of its name to identify it
uniquely.

Chapter 4 82 Building Tools

4.1.5 A Dialogue Box Interface.

A dialogue box is a similar mechanism to a menu, except that the layout of the
active boxes, or "light buttons", is not constrained to fit a linear sequence - they can
appear anywhere on the screen - and light buttons can be added or removed from the
screen at any time. To support the use of such dialogue boxes, the author has written a
utility which generates them. The utility manipulates light buttons (rectangular boxes
with textual messages in them) associating each one with a parameterless procedure.
This implements an activity which should occur when the corresponding button is
selected. The functions provided include facilities to add new light buttons, to remove
them and to monitor the box for mouse activity.

The calling program includes a line of the form:

let newForm = Form.generate{)

and now newForm is a package of the following procedures:

structure(prodstringdnLinLinLinLboobprocO/pntr^pntr) Form.add;
proc(pntr) Form.show;
proc() Form.all.show,
procC pntr) Form.remove;
prod string, pntr) Form.update;
prod) Form.clear;
prod -> pntr) Form.mouse;
prod) Fender;
prod) Form.monitor)

Note that this is an Abstract Data Type for dialogue boxes. Each time
formGenerate is called, a new one is created and each dialogue box is m anipulated by
the operations in the structure above. The dialogue box is represented internally as a
vector of light buttons, each of which has the following structure:

structure AR E A (
#pixel under; ! stores what was on the screen before the

! light button was displayed
string strip; ! contains the message displayed in the

! light button
int axo, ayo, axh, ayh; ! the origin and size of the light button
bool redisplay; ! if the LB should be redisplayed after its

! action has been executed - i.e. if the
! action affects that part of the screen

p ro d) action; ! the procedure activated by clicking over
! the button

pntr a fo n t) ! the font that the message is displayed in

The operations have the following effects:

• Form.add - add a dialogue box element. It takes as parameters the string to be
displayed in the box, the origin and size of the box, a boolean for
redisplay, a procedure and a pointer to the font it is to be displayed in - i.e.
values for all the fields of the AR EA structure, except the under field. It
automatically calls Form.show to display the new element.

Chapter 4 83 Building Tools

• Form.show - display a light button, given a pointer to it.

• Form.all.show - display all the light buttons.

• Form.clear - clear all the form elements from the display, by displaying their
under images. NB this only clears the display not the vector.

• Form.remove - remove an element from the form, given a pointer to it. This
removes the light button both from the display and from the vector.

• Form.update - update the text associated with a light button, given the new
string and a pointer to it.

• Form.mouse - return a pointer to the selected element.

• Form.monitor - w ait until a light button is selected and then execute the
procedure associated with it. Continue until a m ouse button associated
with Fender is called.

• Fender - This procedure m ust be associated with one of the light buttons to
term inate the call of Form.monitor.

There is also a procedure:

• Form.null - which acts a bit like form.add, taking all the same param eters
except for the procedure and the boolean. It is used for parts of a form
which are not light buttons.

The most common m ethod of working with the Form Package consists of four
steps: the form is generated by a call to Form.generate) for each light button required, a
series of calls to the Form.add procedure is made; a final call to Form.add is made,
associating fender w ith a button labelled "quit", say; Form.monitor is called to provide
the functionality of the dialogue box.

4.1.6 A Simple String Editor.

Any application will require the ability to edit the objects which it manipulates,
perhaps in the form of a set of syntax-directed editors for those objects, such as that
described in [Blott and Campin, 1987]. Alternatively an object can be transformed into
a textual form and be edited with a text editor, such as that produced by Douglas
MacFarlane and described in [Cooper et al., 1987a]. Here a simpler tool is described,
which could be amplified to form the basis of either of the tools. It permits the editing
of a single string, in a box on the screen which looks as shown in Figure 4.7.

This window contains all or part of the string being edited, with a title above it
ln * smaller font and two small scroll bars to either side. Above the string, a cursor
position is indicated by a vertical bar. The principal purpose of providing such a tool is
t0 it easy for m any program s to present an identical mechanism for users to
supply and adjust text param eters. As procedures are values stored in a persistent
context, this version could be replaced later, automatically changing the way text is

Chapter 4 84 Building Tools

edited for all the program s using this, w ithout further re-compilation or re-loading.
Therefore, a supplied set of software could then be tailored to the customer's needs.

a title goes here

som e text to be edited goes here

 _________________ Figure 4.7 A Simple String Editor.___________________

The editor is called by a line of the form:

let newString = seditor(title, oldString, xo, yo, xh, yh)

where the param eters are two strings containing a title for the editing operation and
the string to be edited, and four integers for the origin and size of the editing box. The
edited string is returned as the result of the procedure.

The editor takes mixed mouse and keyboard input and functions as follows:

• the del key erases one character to the left of the cursor;

• the oops key erases all the characters to the left of the cursor;

• the return key quits, returning the string to the left of the cursor;

• the line-feed key quits, returning the whole string;

• printing characters are inserted at the current cursor point;

• selecting the text area moves the cursor to that point in the string;

• selecting the right-hand scroll bar moves text that is off the screen to the right
into the text w indow so that the character to the right of the cursor is now
the leftmost of the window;

• selecting the left-hand scroll bar similarly moves text to the left of the window
into the w indow so that the character to the left of the cursor is now the
rightm ost in the window.

The editor is im plem ented by a PS-algol procedure. It uses a slightly more
complex form of the box creation - this time the box is divided into two sections, an
upper one containing the title and a lower one with the text to be edited. The
procedure makes use of two inner procedures: CursorDisplay which returns the pixel
position of the cursor; and showText, which clears the text display box and displays the
current text and the cursor. The text state is maintained in variables which contain the

Chapter 4 85 Building Tools

text to the left and right of the cursor and the whole text. The cursor position is also
kept.

The main part of the procedure starts by displaying the text w ith the cursor at its
right hand end. It then circles round a loop, getting input from the mixed input
procedure and reacting as follows:

if it is a mouse-click over the text window, the cursor is m oved and then a new
cursor position is calculated, before the whole text and cursor are re
displayed;

if return is pressed, the exit condition is set;

if the "oops" key is pressed, the left hand text is erased by a call to showText.;

if the "delete" key is pressed, one character is stripped off the left hand text;

any other key press is added to the left hand text.

This p rocedure illustrates further how little code is required to provide
reasonably pow erful facilities. This simple editor has proved a reasonable input
method for short strings.

4.1.7 Summary of User Interface Tools.

A set of tools of increasing complexity has been developed using the bitm ap
graphics facilities. The methods of m anipulating these objects have clear similarities
to the more usual arithm etical and textual operations, and therefore soon become
familiar and easy to use. Indeed, the coherence of the numerical, textual and graphical
facilities makes the m odelling of complex objects with components draw n from all
three of these domains particularly straightforward. It is therefore simple, for instance,
to create and m anipulate light button objects which are a direct representation of the
functionality of a light button.

Furthermore, the ability of the ordinary user to write procedures which directly
manipulate the user interface gives increased freedom in designing the interface.
Most systems provide libraries which are cast in stone and which the user must use for
the interface. If the operation of the components of the library is slightly different
from what is required, then nothing can be done about it. In PS-algol, a fresh
procedure can be written and used instead of the standard one.

Moreover, the Chooser illustrates a further bonus. It perm its the choice
between a set of objects to be varied dynamically. If the membership of the set changes,
this will immediately be reflected in the choice available. That is, if a new object is
inserted into a table w ith the choice being made via the Chooser, then the next time
the Chooser is invoked, the new object will be available for selection.

Therefore, the w ork reported in this section can be sum m arised in two
statements. Firstly, the graphics facilities enable the manipulation of graphical objects
ln a waY that feels the same as manipulating numbers and text. Secondly, the freedom
to create user interface procedures liberates the interface design from control by
eternally produced software.

Chapter 4 86 Building Tools

4.2 A Database Browser.

For application debugging purposes, there is a requirem ent for a general
purpose m echanism for browsing the persistent store, in order that the effects of
programs can be verified. Using the browser, it becomes possible to check that the
structure and contents of the database are consistent with the design of the application.
At first sight, the strong typing of PS-algol would seem to be an insuperable barrier
against creating such a tool. However, Dearie and Brown have created a browser
which can navigate around the persistent store w ithout violating the security of the
type system [Dearie and Brown, 1988]. The only restriction is that there is no way to
enter a procedure closure. Otherwise the browser lets the user traverse the values in
the database, navigating by following pointer chains and lists of vector elements. As
this introduces a technique which will be exploited repeatedly, the browser will now be
described in some detail.

-PHONES", "EAR"

— "modules"-

■"number access"

name access

"retrieve by number" proc(int -> pntr) RetN
"retrieve by name" -----^ proc(string ->pntr) Ret

"enter number" — H proc(pntr) Enter
"delete number" prod pntr) Delete

1234567
7654321
5671234
4321765

Richard Cooper
1234567

t
•"Richard Cooper"
'"Amos Andrews"-----^
•"Bill Bingley" -----
■"Charles Chin" -----^

17
Lilybank Gdns

Glasgow
Strathclyde
G12 8QQ

F ig u re 4.8 A T elephone D irectory D atabase.

4.2.1 A Functional Description of the Browser.

The functionality of the browser will now be described in an idealised form. At
present little consideration has been given to the user interface, which is not quite as
easy to use as the one described. In summary, the user summons the browser and
then selects a database to browse. The browser then provides a menu of the keys of the
hems in the top-level table of the database. The user selects one of these keys and now
the associated object becomes the focus of attention, for which a further m enu is
provided. If the object is another table, this allows selection of one of the objects in the
table. If it is not a table, the m enu shows the names of the fields of the object,
electing one of these names: displays the field value if it is a scalar; displays a menu to

select an element if the field is a vector; or, if the field is another complex object, this
ecomes the focus of attention and another menu is displayed in the same way. All

Chapter 4 87 Building Tools

menus have an entry to return to the previous menu. If the object is a procedure, the
error message "Cannot Traverse a Procedure" is displayed.

To illustrate the facility further, consider the database shown in Figure 4.8. This
is a PS-algol database (name "PHONES", passw ord "EAR") which supports a
telephone directory. The top level table contains just three entries: a table of the
modules comprising the software which implements the access methods to the phone
directory; and two tables which provide different access paths to the directory itself
(one via the num ber, the other by the name). Each entry in the m odule table is a
packaged procedure, while each entry in the directory tables points to a structure of the
following kind:

struc tu re phoneEntryi string Pname; in t Pnumber; p n tr Paddress)

where the address field points to a structure of the form:

struc tu re addressi in t Hnumber; string street, city, county, postcode)

To browse such a database, the browser is called and given the database name
and password. Then m enu A from Figure 4.9 appears.

string key retrieve by number string Pname
integer key retrieve by name int Pnumber

**** enter number pntr Paddress
delete number ****

A: A Table Menu more entries E: A phoneEntry Menu

String Kevs
modules

number access
name access

* * * *

C: The Modules Menu

retrieve bv number
proc(int->pntr) RetN

* * * *

Paddre:

int Hnumber
string street
string city

string county
string postcode

* * * *

B: A String Key Menu D: A Module Package Menu F: An address Menu

Figure 4.9 Some Browser Menus.

This menu reflects the fact that the object being browsed is a table, the top-level
table. The three options have the following effect:

string key: if selected this will provide a menu of all the string keys in the table -
selecting one will mean traverse to the object keyed by that string;

integer key: equivalent to the above, except the menu is of the integer keys in
the table;

Chapter 4 88 Building Tools

****: this appears in all menus and means quit this level of browsing and return
to the previous level - in this case quit the browser all together.

Therefore, in this case selecting "****" will quit the browser, selecting "integer
key" will display the message "no integer keys to select from" and selecting string key
will provide m enu B from Figure 4.9. From M enu B, selecting "****", as m ight be
expected returns to m enu A. Selecting each of the others results in other "table"
menus, similar to the previous one, except with a different heading.

Assuming "modules" is selected, the three options of the resulting table m enu
now have the following effects: "****" returns to m enu B; "integer key" displays the
message "no integer keys to select from"; while "string key" displays a m enu of all the
modules. Suppose "string key" is selected, the menu of keys from the procedure table
appears (menu C in Figure 4.9). Selecting "retrieve by number", a m enu of two entries
is given (menu D). Selecting "procO retrieveProc" results in the message "Cannot
Traverse Procedures" - the lim itation of this technique has been reached. It is not
possible to look inside procedure closures.

If another branch of the database is traversed instead - say "number access", a
table menu now appears whose options result in: "****" - back to the top-level table
menu; "string key" - message "no string keys to select from"; but "integer key" now
provides a Chooser m enu of numbers. When a num ber is selected, m enu E from
Figure 4.9 is shown.

The four options have the following effects:

string Pname: this displays the message "String field Pname has value "Richard
Cooper" ";

int Pnumber: this displays the message "Integer field Pnum ber has value
"1234567" ";

pntr Paddress: this provides a fresh menu (Menu F) to access the address object;

****: this returns to the m enu of phone number keys.

Selecting a pntr field corresponds to traversing to a component object of the
current object - in this case moving from a PhoneEntry object to an address object - and
results in a fresh m enu (menu F), this time with six entries - one for each of the five
fields of the structure (selecting any of these displays the value of the field), and one
for the "****", which quits back to the PhoneEntry m enu.

Vector objects have a special menu of their own. This consists of three entries:

index on: provide an integer and traverse to the object w ith that index in the
vector;

show all: traverse each object in the vector in turn;

****: quit and return to previous menu, as usual.

Chapter 4 89 Building Tools

Using this technique of following pointer references, it is possible to browse all
the objects in the persistent store except, as has been mentioned, when they lie within
a procedure closure. The next section describes how it has been possible to write such a
program, without breaking the type security of the object store. The browser is written
in PS-algol and is not a C-program which interprets the objects as bit-strings. All
objects are only used within the restrictions of their type.

4.2.2 The Implementation of the Browser.

The strategy used for implementing the Browser is well described in [Dearie and
Brown, 1988] and this section is a summary of that paper, with slight amendments to
the user interface.

Taking the elements of the program in the same order as Dearie and Brown, the
procedure in Figure 4.10 will produce the phoneEntry menu.

let traversePhoneEntry = proc(pntr p)
begin

structure phoneEntry(string Pname; int Pnumber; pntr Paddress)
let return := false
let entries = @ 1 of string ["string Pname",

" int Pnumber",
"pntr Paddress",
mnnm-H j

let procs = @ 1 of proc() [
procO; messagei "Pname has value" ++ p(Pname)),
procO; messagei "Pnumber has value" ++ p(Pnumber)) ,
procO; traverse(p(Paddress)) ,
procO; return := true]

let thisMenu = menu("phoneEntry", entries, procs)
w hile ~return do thisMenui)

end

__________________ Figure 4.10 A Structure Traverser.__________________

This example uses a special version of message, which displays a string in a box
in the centre of the screen, and a special version of menu, which now takes a string
title, string entries and param eterless action procedures and executes w ithout
returning any value. The part of this procedure which provides a problem is the call
to the procedure traverse. This is being passed an address object and m ust handle it -
how can it do so?

One technique consists of creating a table of traverse... procedures, contained in
structures with just one field of type, proc(pn tr), and keyed by some information
which identifies which class they operate on. PS-algol provides a standard function
which can be used for this purpose. The clause

let phoneEntry Cl ass = class.identified p)

(where p points to a mem ber of the class phoneEntry) returns all the class information
as a string. Figure 4.11 shows how this is used to traverse any structure.

Chapter 4 90 Building Tools

let traverse = proc(pntr p)
begin

structure traversePacki proc(pntr) traverser)
let class = class.identifier^ p) ! Find the class.
let look = s.lookupi class, traverseTable) ! Find the procedure for this
if look is traversePack

then look(traverser)(p) ! Unpack and apply the procedure,
else errorO ! Somebody forgot to put it in.

end

Figure 4.11 A First General Purpose Traversal Procedure.

The procedure works by trying to find an appropriate m enu-producing facility
for an object of p's class and then using that traverser or reporting an error. In order to
use such a traversal mechanism, program m ers w ould have to rem em ber to write
traversal procedures for each class of object they wish to store - an unacceptable
programming overhead. It would be better to populate the table automatically.

This can be achieved by making use of the compiler function described in 3.3.10.
The extended form of traverse, which constitutes the Browser, replaces the call to error
by code to create, store and use an appropriate traverser. This builds a traversal
procedure for the object class, then compiles it, stores it in the table for re-use and then
calls it. Figure 4.12 shows a revised version of Figure 4.11, this time calling a general
purpose traverser maker, if one does not already exist.

let traverse = proc(pntr p)
begin

structure traversePacki proc(pntr) traverser)
let class = class.identified p) Find the class.
let look = s.lookupi class, traverseTable) Find the procedure for this
if look = nil do

begin Traverser not found.
look := makeTravProci class) Make a new procedure.
s.enter(class, traverseTable, look) Store the new procedure.

end
look(traverser)(p) Unpack and apply the procedure.

end

Figure 4.12 A Second General Purpose Traversal Procedure.

As this piece of code is extremely complex and also provides a tem plate for
many examples in the following chapters, it will be defined incrementally. The first
attempt at producing a procedure which, given the class identifier of an object, will
produce a traversing procedure is shown in Figure 4.13.

This traverser-m aking procedure builds up a procedure of the form shown in
Figure 4.10 in the string variable, program, and then compiles it. The m ethod for
automatically building a procedure is illustrated here for the first time and requires
amplification. A tem plate for the procedure is created as a string, held in program in
this case. The tem plate consists of m ixtures of code and dum m y names for
information dependent on the class structure.

Chapter 4 91 Building Tools

let makeTravProc = proc(string class - > pntr)
begin

let program := ! Program Template as per Figure 4.10
proc(pntr p)

begin
#STRUCTURE ! Dummy class structure,
let return = false
let entries = @ 1 of string [#ENTRYVEC TOR)] ! Dummy entries,
let procs = @ 1 of procO [#PROCVECTOR] ! Dummy procedures,
let thisMenu = menu(#CLASSNAME, entries, procs)! Dummy class name,
while return do thisMenuO

end

let className = getClassName{ class) ! String handling procedures to
let classStruc = getClassStruci class) ! information from the class
let cFieldTypes = getClassTypesi class) ! structure,
let cFieldNames = getClassFieldNamesi class)

replaced program, #STRUCTURE, classStruc) ! Insert structure,
for i = 1 to upb(cFieldTypes) do ! Insert Entries.

replaceVector (program,
#ENTRYVECTOR,cFieldTypes(i) ++ "" ++cFieldTypes(i))

replaceVector (program, #ENTRYVECTOR, "****")
endVector{ program, #ENTRYVECTOR)
for i = 1 to upb(cFieldTypes) do if cFieldTypesi i) = "pntr" ! Insert procedures,

then replaceVectori. program, #PROCVECTOR,
procO; traverse(p(” ++ cFieldNames(i) ++ ”))")

else replaceVectori program, #PROCVECTOR,
procO; message(++ cFieldNames(i) ++ " has value"'

++ p(" ++ cFieldNames(i) ++ "))"
replaceVector (program, #PROCVECTOR, "procO; return := true")
endVector(program, #PROCVECTOR)
replace(program, #CLASSNAME, className) ! Insert class name.

structure traversePacki proc(pntr) traverser)
let dummy = traversePacki proc(pntr p); nullproc)
compilei program, dummy)

end

_______________Figure 4.13 A First Traverser Maker._________________

In this case, the tem plate contains placeholders for the class structure; the
entries in the m enu (being field name, field type pairs); the action procedures (either
calls to message for scalar values, or further calls to traverse for p n tr values); and the
class name. These placeholders are then filled by use of the following three
procedures:

• replace - this takes a place holder and makes a simple replacement by a string
provided as a parameter;

• replaceVector - this takes a place holder for a vector and inserts a string
followed by a comma before it;

and • endVector - takes a place holder and removes it (and a preceding comma) to
tidy up a vector definition.

Chapter 4 92 Building Tools

The text of the code using these procedures has been simplified by assuming
four string handling procedures which take the class identifier and re tu rn the
following: the structure name; a PS-algol structure definition; a vector of field type
names; and a vector of field names. The problem however is that program will not
compile as it stands, because it has no referend for traverse any more than it had one
in Figure 4.10. In order to make a reference, traverse will have to be passed in as a
parameter as Figure 4.14.

let makeTravProc = proc(string class - > pntr)
begin

let program := ! Program Template as per Figure 4.10
proc(proc(pntr pntr) doTraverse -> proc(pntr)) ! * * *

proc(pntrp) !***
begin

#STRUCTURE ! Dummy dass structure,
let return = false
let entries = @ 1 of string [#ENTRYVEC TOR)] ! Dummy entries,
let procs = @ 1 of procO [#PROCVECTOR] ! Dummy procedures,
let thisMenu = menu(#CLASSNAME, entries, procs)! Dummy class name,
while return do thisMenuO

end

let className = getClassName(class) ! String handling procedures to
let classStruc = getClassStruci class) ! information from the class
let cFieldTypes = getClassTypesi class) ! structure,
let cFieldNames = getClassFieldNamesi class)

replace(program, #STRUCTURE, classStruc) ! Insert structure,
for i = 1 to upbi cFieldTypes) do ! Insert Entries.

replaceVector (program,
#ENTRYVECTOR,cFieldTypesi i) ++ "" ++cFieldTypesi i))

replaceVector (program, #ENTRYVECTOR, "****")
endVectori program, #ENTRYVECTOR)
for i = 1 to upbi cFieldTypes) do if cFieldTypes(i) = "pntr" ! Insert procedures,

then replaceVectori program, #PROCVECTOR,
procO; doTraversef p(" ++ cFieldNamesf i)++"))") !***

else replaceVectori program, #PROCVECTOR,
procO; messagef ++ cFieldNamesf i) ++ " has value"'

++ p(" ++ cFieldNamesf i) ++ "))"
replaceVector (program, #PROCVECTOR, "procO; return := true")
endVectori program, #PROCVECTOR)
replacei program, #CLASSNAME, className) ! Insert class name.

structure genTraversePacki proc (procf pntr) ->proc(pntr)) genTraverser) !***
let dummy = genTraversePacki proc (proc(pntr) D-> procf pntr)); nullproc) !***
let genTraverser = compile(program, dummy) !***
genTraverseri traverser) !***

end

________ Figure 4.14 A Second Traverser Maker.

This procedure now has been complicated by an extra level of indirection (the
changes from the previous version are in lines ending with !***). program now
contains, not a procedure which traverses a structure, but a procedure which generates
such a procedure given the general traverser as input. The changes necessary to
accompHsh this are as follows:

Chapter 4 93 Building Tools

• replace the simple procedure signature with a signature which indicates that
the procedure expects traverse as a parameter;

• m ake the procedure return a procedure by placing a signature for this
resulting procedure as the second line of program;

• in the action for pn tr types, call the input param eter, doTraverse , instead of
calling traverse

• adjust the structures associated with the call of the compiler;

• call the compiled procedure to bind traverse into the procedure.

This general traverser can now be written as in Figure 4.12. There is nothing
left to do except to add some details to deal w ith vectors and tables in the ways
described above. The core of the browser is in the last two procedures given.

This experiment shows how a relatively small amount of code has provided a
facility of high order. The availability of first-class procedures and, in particular, of a
compiler which is a first class object has allowed the resolution of two apparently
incompatible goals. Now here in this code is the type system violated and yet the
program is able to adapt in a polymorphic way to new classes of data.

4.3 Operations on Whole Objects.

Section 3.2.3 introduced structures and the pn tr type, showing that the copy and
equality testing operations have reference semantics. That is, two variables of type
pntr are the same if they refer to the same objects, while making an assignment of one
pntr variable to another makes them both point to the same object. Thus, following
the fragment:

let my Address = addressi 17, "Lilybank Gdns", "Glasgow")
let your Address - my Address

any change to any of the fields of my Address also affects your Address. Similarly, after:

let his Address = address{ 17, "Lilybank Gdns", "Glasgow")

the test myAddress = hisAddress returns false as there is only comparison of pointers,
not of contents. Com pare this w ith FAD [Bancilhon et al.f 1987], which has three
notions of equality:

• identity equality - as described above;

• shallow equality - the fields of the object are the same;

and • deep equality - two objects are the same if they have the same structure and
values down to arbitrary levels of pointer chains.

Given the following:

Chapter 4 94 Building Tools

structure outeri string one; pntr into)
structure inner(integer two)
let II = inneri 1)
let 02 = outer("A", II)
let 02 = 01
let 03 = outeri "A", II)
let 0 4 = outeri "A", inneri 1))
let 05 = outeri "B", inneri 2))

then, the following hold:

• 02 and 02 have identity, shallow and deep equality;

• 02 and 03 have shallow and deep equality;

• 02 and 0 4 have deep equality only;

and • 02 and 05 are not equal in any sense.

That is, deep equality implies shallow equality, which in turn implies identity
equality. Deep versions of copy and equality (and display as well) which use the whole
of the object are som etim es wanted. These will enable general purpose prin t
operations, value based equality tests for objects and the ability to take a fresh copy of
an object for m odification, for instance. In this section, the m ethod of building
operations on whole objects on top of the p n tr type using the run-tim e compiler will
be described.

Some care is required over cyclical pointer references. Consider the following
example:

let A := outeri "X", n i l)
A i into) := A
let B := outeri "X", n i l)
B(into) := B

In testing A - B, there are two problems. Firstly, the program m ust not circle
endlessly. To avoid this, a check is kept of all objects encountered so far, so that objects
are not decomposed more than once. Secondly, the semantics must be correct. A and
Bare different objects and their into fields point to different objects, so they certainly
do not exhibit identity or shallow equality. With regard to deep equality, there is a
choice of interpretation. The two objects have the same structure and the same "base"
data value (the "X"), so they seem to be the same in the deep equality sense. What,
however, should the test make of the following example?

let C := outeri "X", n i l)
let D := outeri "X", C)
C(in to) := D

Now C and D point to a two-elem ent cycle of objects and therefore they are not
structurally the same as A and B . They should not have deep equality. Figure 4.15
s ows a structure diagram for these objects.

Chapter 4 95 Building Tools

Figure 4.15 Some Cyclical Structures.

Using reference semantics, however, it is very difficult to distinguish these two
cases. The deep equality test here essentially consists of: the structures are the same;
the scalar field is the same; the p n tr field points to an object of the same structure;
therefore they m ust be the same. The implementation choice is w hether or not to
follow cyclical pointer chains. If they are followed, then A, B, C and D are all the same.
If not, then none of them are the same. In this work, the former choice is taken
arbitrarily, since either is possible.

4.3.1 Deep Print Operations.

A procedure is required which, when given a pointer to a phoneEntry object, for
instance, will prin t something like

The structure name is: phoneEntry
Pname: "Richard Cooper"
Pnumber: 0413398855
Paddress:

The structure name is: address
Hnumber: 17
street: "Lilybank Gardens"
city: Glasgow
county: Strathclyde
postcode: G12 9QQ

A specific printer for phoneEntry objects is given as Figure 4.16.

let printPhoneEntry = procf pntr X ; string IND)
begin

structure phoneEntryi string Pname; int Pnumber; pntr Paddress)
print IND, "The structure name is: phoneEntry"
print IN D ," Pname:.... ,X(Pname),......
print IN D ," Pnumber: ",X(Pnumber)
print IN D ," Paddress:"
printAddressi X(Paddress), IND ++ " ")

end

Figure 4.16 Printing a Phone Entry.

Chapter 4 96 Building Tools

This is a fairly straightforward piece of code - the IND string is the current level
of indentation, increased every time a sub-object is printed.

To generalise this, the same technique is used as in the browser - the creation of
a general printer procedure which takes in an object and an indentation. The general
printer then calls specific printers from this table, creating them as required. The
specific printers take in the object, the table and the indentation and also a copy of the
general printer. The procedure is given in Figure 4.17 and shows a m arked similarity
to the general purpose traverser in Figure 4.12.

let deepPrint = proc(pntr X; string IND)
if X = nil then print IND," NIL"
begin

structure PrinterPacki proc(pntr, pntr, string, proc(pntr, pntr, string)) Printer)
let class = class.identifier(X)
let packedPrinter := s.lookup(class, printerTable)
if packedPrinter = nil do

begin
packedPrinter := makePrintProc(class)
s.enter(class, printerTable packedPrinter)

end
packedPrinter(Printer)(X, IND , deepPrint)

end

_________ Figure 4.17 A General Purpose Deep Print Procedure.__________

For this procedure to function properly, the automatically generated printer
procedures need to have recursive calls to deepPrint. A reference to deepPrint is
therefore passed in as a parameter to the printer, as shown in Figure 4.18.

proc(pntr X; string II; proc(pntr,pntr,string) D P)
begin

structure phoneEntryi string Pname; int Pnumber: pntr Paddress)
print IND, "The structure name is: phoneEntry"
print IN D ." Pname:.... ,X(Pname)........
print IN D ." Pnumber: ",X(Pnumber)
print IN D ." Paddress:"
DP(X(Paddress). IND ++ " ")

end

 Figure 4.18 An Automatically Generated Print Procedure.________

Now a makePrintProc procedure to generate such procedures is written. It is
very similar to traverser m aker shown in Figure 4.14 and consists of the following
steps:

i) Provide a tem plate for the procedure. Essentially it looks like the Figure 4.18,
except that the underlined structure-specific information is replaced by
place holders - two scalar ones for the structure and structure name and
one vector of statements for dealing with each of the fields.

ii) Decompose the class structure into its fields.

hi) Replace the simple place holders for the structure and the structure name.

Chapter 4 97 Building Tools

iv) For each scalar field add a line of the form:
p rin t IN D , " fieldname:", X(fieldname).

and for each p n tr field, add two lines of the form:
p rin t IN D , " fieldname:"
DP(X(fieldname), IN D ++ " ").

v) Compile the procedure and return it.

The procedure is still deficient in two respects: it does not handle cyclical
structures; and it does not handle the whole type system, notably constants and
vectors. The first deficiency is corrected by making some additions to deepPrint so that
it maintains a list of the objects it has already printed. After checking from n i l
structures, deepPrint checks to see if the object is already on this list. The procedure
numbers all objects, so that it can print references to previously displayed objects.

The second deficiency is more difficult to rectify and requires the parsing of the
type description of each field. The procedure, cFieldTypes, now no longer returns a
vector of strings, but a vector of lists of parsed types. The structure of a list element is:

structure typeList{ string S, R; pn tr N)

where S contains a parsed atom, R contains the rest of the type descriptor (used only in
the deep copy procedure) and N a pointer to the parsing of R. For instance the type
V in t would result in a list of three elements:

El = type lis t i "*", "*int", E2)
E2 = type lis ti "c", "int", E3)
E3 = type lis ti "*", "int", E4)
E4 = type lis ti "int", "", n i l)

Using this structure, the loop in makePrinter can be expanded to handle any
type. This is illustrated for the output of a vector field with the structure:

struc tu re arrayi *c*int element)

for which a print procedure is given as Figure 4.19.

proc(pntr X; string IND; proc(pntr,pntr,string) D P)
begin

structure arrayi V i n t element)
print IND, "The structure name is: array"
print IN D ," element: ***"
for i = Iwbi X (element)) to upbi X(element)) do ! Outer loop.

begin
print IND , i:5," : ***"
for ii = Iwbi X (element)(i)) to upbi X(element)(i)) do !Inner Loop.

begin
print IN D , i:5 ," , ", ii:5, X(elem ent)(i) (i i) ! Process Element.

end
end

end

Figure 4.19 A Print Procedure for a Vector Field.

Chapter 4 98 Building Tools

Step (iv) of the description of the printer maker given above is replaced with a
more general purpose description.

Given the following:

FT - the type description of the object;

CIV - the current vector index variable - initially i with another i added at each
recursion;

COB - the name of the current object - initially " XX(field name)" but with "("
++ CIV ++ 11) added at each vector recursion;

IN D X S - the string used to print the indexes - initially "i:5," then "i:5, ii:5, ", etc.
- note the ":5" merely means use 5 character positions.

a recursive procedure, oneField, is provided which returns the string which will
handle a single field. It proceeds as follows:

i) If the next part of the type descriptor is a "c" (meaning constant field), ignore it
and recursively call oneField, with the rest of the type descriptor;

ii) If it is a scalar, return the current object, surrounded by quotes for strings,
angle brackets for booleans or nothing for numbers.

iii) If it is a pntr field, return a call to deep print on the field value, as before.

iv) If it is a vector, embed a recursive call to oneField (changing the values of
CIV, COB and IN D X S appropriately) in a block which indexes over the
whole of a vector object, using CIV as the index variable and COB as the
object whose bounds are used to delimit the scan.

let oneField := proc(pntr FT; string CIV, COB, INDXS); nullproc
oneField := prod pntr FT; string CIV, COB, INDXS)

case FT(S) of
"c": oneField(FT(N),CIV, COB, IND XS)
"string": "#Q #Q," ++ COB + + ", #Q "#Q#Q"
"bool": ":<#Q," + + COB ++ ", #Q>#Q"
"int", "real": ": # Q ," + + COB + + ""

"pntr": ": #Q'n DP(" + + COB + + " , TT, II + + #Q # Q)"
•1 * M .

begin
": ***#Q
for" + + CIV + + " = lw b(" + + COB + + ”) to upb(" ++ COB ++ ") do

begin
print II, ” ++ INDXS ++ "#Q"

oneFieldi FT(N), CIV ++ "i", COB ++ "(" ++ CIV ++ ")",
INDXS ++ "#Q, # Q ," ++ CIV ++ "i:5,") ++

" end’n"
end

default: 0
oneField(cFieldTypes(i), "", "i", " X(" + + cFieldNamesi i) + + ")", "i:5, ")

Figure 4.20 The Core of the Printer Maker.

Chapter 4 99 Building Tools

xt ^ re shows this recursive procedure, followed by a typical top-level call to
it. Note there is one slight syntactical simplification in this figure. The program needs
to place quotation marks into the program. In PS-algol this means putting into the
strings w ich m ake up the procedure and this makes the text unreadable. These
escaped quotation marks have been replaced by the string "#Q" which is automatically
translated back into before compilation.

Finally, the whole of the deepPrint program was produced, w ith one added
sophistication to be noted. The procedure also takes in a table to hold the printers.
Therefore the calling application manages the printers in its ow n space, for two
reasons. I t e printers for all applications were held together this w ould be a large set
to scan and therefore retrieval would be slow. More critically, if there is a single table
for all applications, this m ust be held in a table opened in write-mode. Only one
application could therefore function at a time, and this would be unacceptable. The
section is concluded with the output generated by the fragment given as Figure 4.21.

Structure Diagram
SI

"ABC

Vstruct

PS-algol Description

structure Vstruct(int NX; *cint NCN; c*int CNN; **int NNN; *c* cpntr PPP)
structure S2(string F I)
structure S2(string F2; int F3)
structure S3(string F4; pntr F5)
let XI := Sl("ABC")
let X2 = S2("DEF',3)
let X3 = S3(”G H r,X 2)
let VV = Vstructi 1,

@ 3 of cint [2,3,4,5],
@77 of int [9,10,11],
@ 5of*int[@ 17 of int [12,13],

@ 27 of int [15,16]],
@ 3 of c*cpntr [@ 47 of cpntr [XI, X2],

@ 57 of cpntr [X2, X3]])
DeepPrint(VV, "")

 Figure 4.21 A Structure Description for Printing.

The output is given as Figure 4.22

Chapter 4 100 Building Tools

Object number 1 ppp. ***
The structure name is: Vstruct 2 • ***
NCN: *** 3 , 47 : Object number 2

3 : 2 The structure name is: SI
4 : 3
5 : 4

FI: "ABC"

6 : 5 3 , 48 : Object number 3
CNN: *** The structure name is: S2
77 : 9 F2: "DEF"
78 : 10
79 : 11

F3: 3

NNN: *** ̂ . >M-X-
5 :*** 4 , 57 : ALREADY OBJECT 3
5 , 17: 12 4 , 58 : Object number 4
5 , 18 : 13 The structure name is: S3
6 :*** F4: "GHI"
6 , 27: 15 F5: ALREADY OBJECT 3
6 , 28 : 16

NX: 1

Figure 4.22 The Print Out of the Structure.

4.3.2 Deep Equality Testing.

proc(pntr X, Y,; proc(pntr, pntr -> b oo l) EQ -> boo l)
begin

structure phoneEntryi string Pname; int Pnumber; pntr Paddress)
let result := true
result := result and X(Pname) = Y(Pname)
result := result and X(Pnumber) = Y(Pnumber)
result := result and EQ(X(Paddress), Y(Paddress))
result

end

_____________ a) Equality Test for the phoneEntry structure.______________

proc(pntr X, Y; proc(pntr,pntr-> bool) EQ -> boo l)
begin

structure arrayi *c*int element)
let result := true
for i = lzub(X (element)) to upb(X(element)) do

begin
for ii = lwb(X (element) (i)) to upb(X(element) (i)) do

begin
result := result and

X(elem ent) (i) (i i) = Y(elem ent) (i) (i i)
end

etui
result

end

 b) Equality Test for the Vector Structure. _______________
Figure 4.23 Two Examples of Equality Test Procedures.

The deep equality procedure builds procedures appropriate to the required
structure of which two examples are given in Figure 4.23. The general m ethod of

Chapter 4 1 0 1 B u i ld in g T o o ls

these procedures is to ''a n d " together the equality tests on each field. For scalar fields
these tests are straightforw ard. For vector fields, they require a scan of a l l lh e
elements. For p n tr references, recursive calls to the equality procedure are made.

The equality procedure is in all respects the same as the traverser in Figure 4 12
and the deep printer m Figure 4.17. It finds the structure of the objects (c h e S that
they are the same). Then a specific equality test procedure of the type shown in I g u r e
4.23 is either retrieved from a table, or generated by the equality test m aker Thfs in
turn is sim ilar to the one described in the previous section for m aking printer
procedures. Care has to be taken when following cyclical pointer chains.

4.3.3 Deep Copy Operations.

The final mem ber of the set of three similar procedures is one to take a copy of
an object. This automatically generates procedures like those given in Figure 4.24. In
these procedures, the copy is created with dummy values and then the fields are re
assigned to the copied values, one at a time. For scalars, this is a simple assignment.
For pntr values, this requires a recursive call to the deep copy procedure. For vectors,
some extra work has to be done to create a vector of the correct dimensions. This is
then populated by element-at-a-time assignments.

proc(pntr X,; proc(pntr, pntr -> b o o l) DC -> pntr)
begin

structure phoneEntryi. string Pname; int Pnumber; pntr Paddress)
let result := p h o n e E n t r y i 0, n i l)
resulti Pname) := Y(Pname)
resulti Pnumber) := Y(Pnumber)
resulti Pname) := DCi X i Pname))
result

end

___________ a) Deep Copy for the phoneEntry structure.________________

proc(pntr X, Y; proc(pntr,pntr-> b oo l) DC -> b oo l)
begin

structure arrayi *c*int element)
let result := arrayi vector 0::0 of vector 0::0 of 0)
resulti elem ent) := vector Iwbi X (element))::upbi X(element)) of vector 0::0 of 0
for i = Iwbi X i element)) to upbi X(element)) do

resultielem ent) (i) :=vector Iwbi X (element) i i)) v.upbi X(element) (i)) of 0
for i = Iwbi X i element)) to upbi Xi element)) do

begin
for ii = Iwbi X (element) (i)) to upbi X(element) i i)) do

begin
resulti element) (i) i i i) := Y(elem ent) (i) i i i)

end
end

result
end

___________ b) Deep Copy for the Vector Structure. ________________
Figure 4.24 Two Examples of Deep Copy Procedures.

Chapter 4 102 Building Tools

The deep copy facility consists of a general purpose procedure, w ith the same
structure as the traverser in Figure 4.12 and the deep printer in Figure 4.17, and a copy
procedure maker, similar to that described for making printers.

4.3.4 Summary.

These three procedures have exploited the power of a compiler callable at run
time. Purely polym orphic program s have been w ritten to achieve functions
apparently unavailable in a strongly typed programming language. The technique of
binding together string representations of data structure and algorithm and then
compiling the result is a safe way of circumventing the restrictions of the type system,
without any loss of data security.

4.4 Compiler Tools.

Some of the m ost pow erful tools available in UNIX™ are those for the
automatic generation of com pilers, such as LEX and YACC. In the PS-algol
environment an equivalent set of tools has been created by Stephen Blott, working as a
vacation student for three m onths. These are: Igen, which is a lexical analyser
generator; pgen, a parser generator; and sgen a syntax-directed editor generator [Blott
and Campin, 1987].

4.4.1 A Lexical Analyser Generator.

Lexical analysis is the process of taking a stream of characters and returning
them as a stream of semantically meaningful tokens or "lexemes". The structure of a
lexical analyser will be similar for all languages and so the creation of lexical analysers
is a process which may be automated. If programmers create lexical analysers directly,
they end up rew riting m uch the same code. Igen is a program which, given the
description of a language, will return a lexical analyser for that language.

In essence, Igen is a procedure which takes in a string containing a description of
the language and returns a lexical analyser. The description consists of a set of triples,
each containing: a token name; a pattern to match; and a private/public flag. The
latter indicates whether this token will be returned by the lexical analyser or is only for
internal use. The pattern is in the form of a stylised regular expression (RE) which can
be either: a literal; the token name of another lexeme; a repeated RE; an optional RE; a
sequence of REs; or an alternative between a number of REs. Some examples are:

capital: A I B I I Z ! alternative literals
letter: "capital" I a I b I I z ! alternative token and literals
name: "capital" ["letter"] ! sequence of token and repetition of token
title: "Mr" I "Mrs" I "Ms" I "Dr" I "Sir"
fullname: <"title"> ' "name" [' "name"] ! sequence of optional token,

! space (indicated by '), token and
! repetition of space and token.

Chapter 4 103 Building Tools

The lexical analyser returned by Igen is also a procedure - this time taking in a
pointer to an "input stream" and returning a package of a table of all the lexemes
found and a lexical analyser bound to this input stream. The input stream consists of a
pair of procedures, one of which returns the next character in the input while the
other takes back a character into the input stream for re-use. The bound lexical
analyser returns the next lexeme found in the input stream as a triple: the actual string
which makes up the lexeme; the token name of the lexeme class; and a pointer which
is available to the user to add extra information if required. By next lexeme is meant
the longest string starting at the next character and representing a single lexical unit.
In the above language, the lexical analyser would return a fullname, if it could match
one, and not the title, etc.

Figure 4.25 shows the use of Igen for the case in which the lexemes of the string,
INPUT, are to be retrieved according to the above grammar.

structure lexan.boxi proc(pntr -> pntr) lexan.place) ! Holds a lexical analyser.
structure l.streami proc(-> string) get; proc(string) p u t) ! An input stream.
structure l.packi pntr spellings; proc(-> pntr) lexan) ! A bound lexical analyser.
structure s.entryi string s.lexeme, s.token; pntr s.ta il) ! A lexeme.

let language = "..... the language as given above.... tt

let inputstream - ! An input stream which
begin ! takes for its input, the

let inputPointer = 0 ! string, INPUT.
let thelNPUT := INPUT
let theGet = proc(-> string) ! Get next character.

{ inputPointer := inputPointer +1; theINPUT(inputPointer 1 1) }
let thePut = proc(string IN) ! Put back a character.

{ thelNPUT := IN ++ theINPUT(inputPointer + 1 1)
inputPointer = 0 }

l.stream(theGet; thePut)
end

let genLexan = lgen{ language) (lexan.place) ! Generate a lexical analyser for the
language.

let my Lexan Pack = genLexani inputStream) ! Generate a procedure which will
analyse INPUT.

let m ylexan = myLexanPack (lexan) ! Unpack the lexical analyser.
while true do

begin
let next = myLexani) ! Return the next lexeme.
print "A ", next(s.token) , " has been found with value ", next(s.lexeme)

end

Figure 4.25 Lexical Analysis Using Igen.

The details of Igen, which uses a series of standard algorithms, are bey
scope of this thesis. In outline, Igen proceeds as follows.

1/ Take the string containing the language and produce a vector o p
structures containing the various lexeme classes.

2/ Take the vector of lexemes and produce a non-determmistic
machine - this will be very large.

3/ Turn this into a deterministic finite-state machine.

Building ToolsChapter 4 1 0 4

4 / Turn this into the smallest finite-state machine.

5 / Optimise the implementation of this machine to produce simpler and more
efficient code.

6 / Produce and return a procedure which interprets this final machine and
requires an input and output stream.

It is clear tha t none of the parts of this im plem entation are intrinsically
revolutionary, but that their implementation has been facilitated by using a language
which combines: (a) object identity; (b) computational completeness; and (c) first-class
procedures. At each stage, it is possible to create structure classes which exactly
correspond to the objects being handled. (The input stream structure is a case in point.)
A lexical analyser is represented directly by a procedural object. This can be created by
the generator and stored and manipulated as if it were a procedure entered by hand.
This greatly simplifies the program m er’s view of the world.

4.4.2 A Parser Generator.

The second in this set of tools is a generator for parsers, which take the lexemes
found by the lexical analyser and form them into a structure which reflects the
meaning of the input as a whole. The generator, pgen, takes in a BNF description of
the language and returns a parser, which takes in a lexical analyser and returns a parse
tree of the string.

pgen takes two param eters, a vector of specifications and a vector of the names
of nonterminals for which parsers are required. The specifications are objects with two
fields, a string containing a textual specification of some rule in the BNF gram m ar and
a user-defined procedure which is to be executed whenever a grammatical unit of this
type is encountered. This procedure can be used for any incidental computation to be
executed as the tree is being built up.

A rule is of the form:

name ::= list of names of constituents separated by spaces

where the constituents are either non-terminals or terminals of the language. The
latter are essentially lexemes and are distinguished by being preceded by "#".

The associated procedure takes in a vector of pointers to "values" of the
children of this node and returns a "value" for this node. This procedure may be used
to maintain an abstract syntax tree, keep a current value, or for any other activity.

The result of pgen is a PS-algol table of parsers, one for each rule in the
specification, whose nam e is in the required list. Each of these parsers takes in an
l-pack produced by Igen and returns a pointer to a parse tree, whose leaf nodes are
sxntry nodes produced by the lexical analyser and whose other nodes reflect the tree
structure of the result using the following PS-algol structure:

Chapter 4 105 Building Tools

structure p.treei p n tr gSymbol;
*pntr children;
p n tr parent;
p n tr ufl/we)

points to a symbol of the language
point to child nodes
points to the parent node
points to the value manipulated

by the user-defined procedure.

The use of pgen will be illustrated by returning to the name example given in
the description of Igen. The lexical language is modified by removing the last rule,
which is now m oved to the parser. The decision between where lexical analysis ends
and parsing begins can be a nice one. The division is indicated by deciding which rules
go in the lexical language and which in the parser description. The tension is usually
between over-com plicating the parser and retaining sufficient structure after the
lexical analysis stage. A program to parse names into their component parts is given
as Figure 4.26

structure a.parseri prod pntr -> pntr) the.parser)
structure nameBoxi string aName)
let buildName = proc(*pntr V -> pntr) ! This procedure will build up the name

begin ! as it is parsed into a string,
let fullname = ""
for i = lwb(V) to upbi V) do fullname := fullname ++ Vi i) (s.lexeme)
nameBoxi fullname)

end
let spec = @ 1 of pntr [p.speci "fullname ::= #title #name #name", buildName)]
let required = @ 1 of string ["fullname"]
let parsers = pgeni spec, required) ! Generate a set of one parser, for fullname.
let parserPack = s.lookupi "fullname", parsers) ! Retrieve the parser,
let nameParser = parserPacki the.parser) ! Unpack the parser,
let wholeNameTree = nameParseri myLexanPack)! Apply it to the lexical analyser.

Figure 4.26 Parsing Using pgen.

The result of this, when run on an I N P U T value of "Mr Richard Cooper",
results in a parse tree of four nodes. wholeNameTree points to a p.tree node whose
value is the whole input string (rebuilt by buildName when the parser encounters a
fullname). The three children nodes to this one are three lexemes returned by the
lexical analyser for the three parts of the name.

4.4.3 Compiler Tools Summary.

These two tools and the syntax directed editor which accompanies them
illustrate once more the power of first-class procedures in the language. At each point
in which the object being m anipulated is a piece of computation, a PS-algol procedure
is used to represent it. Igen creates lexical analysers and the program representing it
produces procedures. The ability to pass around procedures in this way greatly
simplifies the implem entation of an otherwise extremely complex task.

The other simplifying construct used here is the p n tr type. As the fields of the
complex objects of this type can be of any type, the implementation has been able to
create object classes for any kind of object, whatever its constituent parts. It was
decided, for instance, that the most appropriate constituents of an input stream are a
§ct procedure and a pu t procedure. The implementation of the input stream reflects

Chapter 4 106 Building Tools

this exactly. This ability to create structures which truly reflect the nature of the
modelled objects clarifies the program greatly.

4.5 Conclusions.

This chapter has described a number of tools that have been provided for use
within PS-algol's persistent environment, all of which have been written in PS-algol
and thus within the environment. These have ranged from relatively low-level user
interface tools to sophisticated tools such as the browser or the compiler tools. They
have been provided in three different ways. The menu facility is a standard function
of PS-algol, which is automatically available to any PS-algol program. The browser is a
stand-alone program . The other tools are procedures which have been stored in the
Persistent Store for retrieval by any program that knows where to find it. The question
of supporting the storage and retrieval of procedures in a systematic way is tackled in
Chapter 8.

It has been relatively easy to construct the tools. Here is a list of facilities which
have been found beneficial:

• the language is com putationally complete. Unlike in some database
program m ing languages, any tool can be specified in PS-algol;

• the persistence m echanism provides a simple m ethod for storing utilities
once created;

• data-type completeness simplifies the writing of any program, since exceptions
to general rules do not have to be remembered;

• the complex object structures are invaluable for setting up program objects
which correspond exactly to the object being modelled - it was easier to
create a dialogue box when a "light button" object could be referred to;

• the graphics constructs are powerful enough to create user interface tools in a
simple and consistent way;

• the graphics constructs also allow these interface tools to be stored and
retrieved in the same way as other tools, thus eliminating the need for a
library of interface tools reached in one way, while other tools are reached
in another way;

• the provision of first-class procedures facilitates the writing of tool generators -
utilities which create tools appropriate for particular data structures;

• first-class procedures also enable the direct m anipulation of processes or
operations - again a m enu or dialogue box facility is much easier to
implement if procedures may be directly associated with the event which
invokes them;

• first-class procedures further enable the representation of some objects as
abstract data types - a dialogue box, for instance, is represented as an
abstract data type;

Chapter 4 107 Building Tools

• the availability of the first-class compiler enables the w riting of procedures
which are polymorphic over any data class w ithout violating the type
security of the persistent store.

Therefore, the chapter has shown that the persistent environm ent is at least
sufficiently pow erful to provide the low-level aspects of application programming.
The language has powerful primitives and can be extended with suitable tools for a
number of purposes.

The next three chapters continue to consider the construction of applications in
PS-algol: firstly, how to construct a database application directly in PS-algol; then how
to construct a Relational Database System which can be used to w rite database
applications; and finally, how Semantic Data Models can be constructed in PS-algol.
Chapter 8 shows how to augment the PS-algol system with system construction tools.

Chapter 4 108 Building Tools

Chapter 5. Building a Database Application in PS-
algol.

PS-algol can be used either as a language in which to program database
applications or as an im plem entation vehicle for higher-level data models. In this
chapter, a typical example of program m ing an application is described, leaving until
Chapters 6 and 7 descriptions of building data models. This chapter presents the
methodology for designing and constructing an application.

In particular, the m odular and incremental construction of the system will be
described, w ith particu lar em phasis on the identification of re-usable software
components and the coherent structure which was imposed on the structure of the
whole program. At the same time, problems in using PS-algol will be identified and
mechanisms for circumventing them described. These include the developm ent of a
transaction system on top of the primitive constructs of PS-algol - a further illustration
of the extensibility of the system as a whole.

The specific application described here is a database for bibliographic references
[Cooper et 0 /., 1987b]. The program provides facilities for bulk loading and dum ping of
references, ed iting and brow sing of references, and the autom atic creation of
bibliographies. The program is described as an example of the kind of facility which
can be created in PS-algol. In doing so, the graphics facilities are used to provide a good
user interface, persistence is used to limit the programming of data storage and first-
class procedures are used to model the operations provided.

First the setting for such a program is described, then an overview of the
facilities provided is given. The implementation method is described and, finally, the
benefits and draw backs of the PS-algol language in this particular exercise are
discussed.

5.1 Document Manipulation Programs.

A persistent store is ideally suited to the developm ent of software which
supports the production of all kinds and sizes of document. The storage within the
same space of the text and diagrams of papers, a body of references and all the software
to maintain them provides an extremely powerful environment for developing both
the system and the docum ents. Such a system could encompass, among other
functions, w ord -p rocessing , d iagram m anipulation , au tom atic b ib liography
construction, the production of indexes, page make-up and the m aintenance of
mailing lists. A persistent environm ent has the particular merit of facilitating the
replacement of code, so that im proved versions of tools can be easily inserted and
more than one tool could be provided for any function. The user can pick a favourite
word processor or choose a simple one for a simple job, turning to a more powerful
one where necessary.

When producing software for document production, a num ber of problems
arise:

• the conflict betw een ease of use and fine control over the structure of the
docum ent;

Chapter 5 109 Bibliographic Database

• the past history of users of other products who want to be able to use all the
features to which they are accustomed and thus avoid relearning;

• the docum ent's layout may need to be completely re-shaped, while its
contents rem ain the same;

• the desirability of linking together the various components of a document,
systematically and flexibly.

A persistent environm ent assists in the solution of these problems. Versions of
software may be provided w ith equal availability so that the user can choose the most
appropriate or the m ost fam iliar. These versions can be constructed using
components such as the tools described in Chapter 4, with all versions re-using the
same components, w ithout any unnecessary recompilation. M oreover, all of the
versions may be m ade available through the same mechanism, either by providing a
set of program s as usual, or by by providing a dynamically varying m enu of the
versions, using the Chooser (see Section 4.1.4), for instance. The result could be a
complete document preparation system, in which the user may specify which editor is
used, which indexing system, etc. The architecture for such a system is shown as
Figure 5.1, in which is seen a complete system depending upon a set of editors, which
in turn depend on a set of low-level components.

Document Preparation System

Chooser Etc.

A Set of Editors Set of Pane Makers

Low-level Utility Software

Figure 5.1 An Architecture for Document Production.

Chapter 5 110 Bibliographic Database

Two simplifications are present in this architecture. Firstly, if one of the low-
level modules is replaced, the calling modules can be m ade to rebind automatically to
the new. Secondly, if a new version of a higher-level m odule is inserted, this can
immediately be linked into the calling program . All of the links are updated
automatically and so the insertion of new versions is simplified.

Software can be provided which presents a different "view" of the same
document to vary its presentation. It also becomes easier to provide facilities for
mixing classes of data in a system which allows any data structure to be stored. For
instance, it is simple to describe the insertion of a diagram into a piece of text in a more
meaningful way than, say, the Macintosh Clipboard [Apple 1984], which merely copies
the component in one particular representation and keeps no dependency record.
Viewing all the various components of the system, including simple data, complex
data structures, pictures and operations, as objects has a considerable effect in reducing
the information load on the program m er and gives the resulting program a closer
relation to the system being m odelled. The p n t r type enables ap p ro p ria te
polymorphism, in that objects of any type may be put into and rem oved from the
"clipboard" by the same code, whatever their type and representation.

As a start to developing a complete system for m anipulating docum ents, a
bibliographic reference database program, based on parts of the Scribe system [Unilogic,
1985], has been im plem ented. This includes both facilities for the m aintenance of
references (they can be entered, edited, deleted and browsed) and for scanning a
document for references and then automatically creating a bibliography for all or part
of the document. A variety of procedures is available for producing the bibliography
in a number of different text processing languages. The database also holds the
formats required by a num ber of journals and there are facilities for m aintaining this
set of formats. The m ethod for incrementally adding compiled code, for generating
different formats and supporting a variety of hosted text processors illustrates the
significant advantage provided by first class procedures in a persistent store.

5.2 System Overview.

The Bibliographic Reference Database Program (BRDP) m anipulates references.
A reference may be regarded as potentially consisting of the following information:

• the type of reference it is - whether it is a book, a paper, etc.;

• a citation key for insertion into the paper to be processed;

• a set of fields and their values, such as "author", "title", etc.;

• a set of key-words;

• an abstract of the paper;

and • for a complete library system, the text of the paper itself.

Chapter 5 111 Bibliographic Database

The present system only makes use of the first three of these. The set of
available Reference Types is derived from the Scribe M anual [Unilogic, 1985].
Associated w ith each Reference Type is a set of fields essential to the specification of
the kind of publication, as well as a set of fields which may optionally be present. For
instance, a reference of the "Article" Type m ust have a pages field, bu t one of the
"Book" Type need not. The way in which a reference will be laid out in the
bibliography produced by the program will vary from Type to Type and so each Type
has two associated layout specifications. One of these describes the way the citation
keys will appear in the final text and the other describes the way each reference in the
bibliography will be laid out.

Like Scribe, the system supports a num ber of "Reference Formats", which
determine the preferred layout styles for various publishing organisations, such as
"IEEE", "CACM" and "SIAM". For each of these Reference Formats, the Reference
Types available and the required fields and layout specifications for those Types may
vary. Each Reference Format also contains a specification for the order in which the
references will appear in a bibliography - for instance alphabetically on author name or
in the order in which they are cited in the paper.

To support this taxonomy, the BRDP maintains the following structural data:

• a set of all the field names known to the system;

• a set of all the Reference Types known to the system, with default values for
the fields required for this type and a layout specification.

• a set of all the Reference Formats known to the system, each containing a set
of Reference Types and a sort order specification.

The references are divided into Topic areas for storage. The BRDP maintains a
set of such Topics, each of which contains a set of abbreviations, a set of references and
a set of all the authors in the set of references. The abbreviations consist of pairs of
strings containing the short and long forms of the abbreviated string. They are used to
shorten the am ount of data which needs to be entered and stored in the table of
references. Within this table, the long form of any abbreviated string may be replaced
by "©value"* followed by the short form. These data, together with the structural data
and the program m odules, are stored in a database in the manner shown in Figure 5.9
later in the chapter. The organisation of this database will be described in more detail
below.

The BRDP supports the following functions:

• a facility to set up a fresh database;

• editors for each of the sets of structural data (fields, Types and Formats);

• an editor for the set of Topics, enabling Topics to be added and deleted;

0ur research is not about bibliographic systems per se, most of the notations were copied from

Chapter 5 \ \ 2 Bibliographic Database

• an editor for the abbreviations in a Topic;

• bulk load and bulk dum p facilities for a Topic, perm itting the data to be
transferred between this program and others;

• a facility to browse the references by author name;

• an editor for the set of references in a Topic;

and • a facility for creating the bibliography for a paper.

The last of these reads through the text of the paper, replacing the following:

• ©cite followed by a citation key in brackets is replaced by the citation key in the
layout required by the chosen Reference Format;

• © p artb ib liograp h y is replaced by a list of references. This is the set of
references found since the last (©partbibliography or since the start of the
text if this is the first one. The layout of the references and the order in
which they appear also depend on the Reference Format;

• ©bibliography is replaced by the list of all the references since the start of the
text.

When creating a bibliography, the user specifies the following:

• the Reference Format to be used;

and • the Output Medium to be used.

The former determ ines the layout of the final document, by referring to three
strings:

• the sort order associated with the Reference Format. This consists of a series
of letters which specify the order of fields on which the references are to
be sorted. For instance "AY" means sort first on author, then on year.

• the key layout associated with the Reference Type within this Format. This is
a set of strings concatenated with the following structure:

• "@" followed by a field name means print the value of the field;

• "#" followed by a string means print that string;

• '"n" and "’t" m ean newline and tab, respectively.

• the reference layout associated with the Reference Type within this Format is
a string structured in the same way as the key layout.

Chapter 5 113 Bibliographic Database

The O utput Medium determines the way in which the output will be produced,
whether to the screen or to a text file or to a file suitable for input in a text processor,
like TpX [Knuth 1984], for instance.

To appreciate the scale of the implementation task, the reader may read next the
functional description given in the rem ainder of Section 5.2. The im portant issue is
the extent to w hich the im plem entation was facilitated by using a Persistent
Programming Language. This is discussed in Section 5.3.

5.2.1 Introduction to Using the System.

The m odules of the system are controlled through an interface consisting of a
hierarchy of m enus and dialogue boxes of the type described in Section 4.1, each of
which contains options to obtain help and to quit to the next highest level. The other
options either generate a further sub-m enu or provide a dialogue which controls
interaction with the user to achieve the operation selected.

The structure of the m enu hierarchy is shown in Figure 5.2. Menus are shown
in rectangular boxes and forms in rounded boxes. Moving down the hierarchy is
achieved by clicking over a light button on one of the forms or menus. At the end of a
chain of selections, the user interacts via a dialogue consisting of operations provided
by different modules of the program or the following tools described in Chapter 4: the
simple String Editor (4.1.6) indicated as"S.edit"; the Chooser (4.1.4) to select an object of
the required kind; and the More facility (4.1.2) to show the requested text or list of
object names. "Select" means that the user indicates which object is to be operated on
by clicking the m ouse over the form element corresponding to that object. "Sord"
means call the Sort O rder Editor (see Figure 5.6), while "Refer" means enter the
Reference Editor (see Figure 5.8).

Chapter 5 114 Bibliographic Database

Edit
Fields

Edit /
Types

Edit
Format:»

Edit
Topics^

Scan

Clear
Up

Field Editing Menu

Initial Men

Initialise

Add S.edit
Delete Choose
Edit Choose; S.edit
List More

Type Editing Menu
Show Choose
Add S.edit; Choose
Delete Choose
Edit -----------------------
List More

TypeEditor Form
^ the Type name ^

the layout lines

the required fields

Add a req field

Delete req field

Insert a key line

Insert an output line

Delete line

Format Editing Menu Format Editor F$ rm
Choose

S.edit
S.edit

Choose
Select

Select;
S.edit

Select

Show
Add

Delete
Edit
List

S.edit; Sord;
Choose

Choose

More

the Format na

the sort orde

the types

Add new type

Delete type

S.edit

Choose

Topic Editor Form

Abbreviation
Editing Menu

S.edit

Topic Editing Menu
Add S.edit

Choose
------:-------

Delete
Edit -
List More

Topic nam S.edit

Abbrevs

S.edit;
Choose

Choose

Edit Refs

Add
Delete
Edit
List

Choose
S.edit
More

Show
Add

Reference Editing Menu
Choose
S.edit; Refer
Choose
Choose; Refer
More

Delete
Edit
List

Figure 5.2 The Menu Hierarchy.

Chapter 5 115 Bibliographic Database

5.2.2 Getting Started.

The initial display and the first level of menus is shown as Figure 5.3. The start
up screen consists of the heading and the vertical m enu shown in bold on the left-
hand side of the screen. The options of this menu have the following functions:

• H elp - displays a short description of the options of this m enu at the centre of
the screen, until the mouse button is clicked. All "help" buttons function
in this way;

• Edit fields - allows the vector of field names to be edited;

• Edit types - allows the table of Reference Types to be edited;

• Edit form ats - allows the tables of Reference Formats to be edited;

C H *)
The Bibliographic Database System.

(Initialise)—
< B) 0 ^ 9 f a n P C 5 D l a a)

(fields y ~ CHeip) CAddJ C Delete) CEdit3 C List 3 (Qui0

(types
(^Help) (ŜhoW) QMdT) (^Delete) (^Edit)̂

{ Edit Vf̂ormats J ^Help} (^Show) (^AdcT) (^Delete) (^Edit^ List ^

f Edit Vt̂opics) CHelp} CAdd3 CDelete3 CEdit3 C List3 CQui13

(s S T)

(Clear Up̂)— (Help3 Ccomm3 Sm 'm i) (^tSndon)

Figure 5.3 The Initial Screen and First Level Menus.

Chapter 5 116 Bibliographic Database

• Edit topics - allows the set of Topics to be edited;

• Scan - initiates the dialogue which leads to the building of a bibliography;

• C lear Up - handles both the committal of data to the database and exit from
the program.

5.2.3 The Set Editors.

Four of the options of the initial m enu lead to sub-m enus which control the
editing of a set of objects. These sub-menus have similar structures. They all contain
the options:

A dd - add an item. Typically, this calls the String Editor to allow the user to
specify an identifier for the new item and then makes further calls to the
String Editor, to the Chooser or to the editor specific to an item of this
kind to generate the values of other attributes of the item.

Delete - delete an item. The item to be deleted is selected via the Chooser.

Edit - edit the value of the item. Again an item is selected via the Chooser and
then the current value is provided to the editor of the appropriate kind,
which will announce itself by creating a new window in the screen in
which to operate. If the identifying information is edited (for instance,
the Reference Type name), a new object is created and the old object is left
intact. If only a change to the identifier is required, then after the editing
has been done, the old object m ust be explicitly deleted. This design
decision is discussed further below (5.3.5).

List - provide a list of the identifiers of every item of this kind with the M ore
m odule.

Additionally, the m enus for editing the Formats and the Types include:

Show - display one of the items of this kind. The item to be displayed is selected
by use of the Chooser. The information remains on the screen until the
mouse button is clicked.

5.2.4 Editing the Set of Known Field Names.

To edit the set of field names, choose the Edit fields option of the initial menu.
The sub-menu contains the options, A dd, Delete, Edit and List, which operate as just
described. In particular:

• adding a field name consists of typing a new name into the String Editor;

• editing consists of choosing a field name and then changing it with the String
Editor.

Chapter 5 117 Bibliographic Database

The Reference Type Editor

Current name
book

Key layout Required fields Output layout
#: author 'n^A uthor'n
@ code p u b lish er 't@title

title # published @ year
year ’t@publisher

’n

Adda Delete Insert a Insert an Delete
H$ req field req field keySne output line be Quit

Edit the name

bock

Figure 5.4 The Reference Type Editor.

5.2.5 Editing the Set of Default Reference Types.

Selecting the Edit types option of the initial menu summons the sub-menu,
with all of the usual options, including Show, with the following particular details:

• Adding a new Type requires three calls to the String Editor to supply the Type
name, a citation key layout and a reference layout. Then fields are added
to the required fields list by menu selection from the vector of valid field
nam es.

• Editing a Type requires the Type to be edited to be selected with the Chooser
and then uses the Type Editor (Figure 5.4). This announces itself as a new
w indow on the screen, within which the Type name is displayed at the
top, under which is shown the information about the Type in three
columns: one each for the key layout, output layout and the list of
required field names. Selecting the Type name or any of the layout lines
summons the String Editor to change them. The editor also has a row of

Chapter 5 118 Bibliographic Database

light buttons at the bottom of the display, which include "help" and
"quit" buttons and also:

Add required field: select a field to add via the Chooser;

Delete required field: click the mouse over the field to be deleted;

Insert key layout line: click over the position at which the line is to be
inserted and then input it via the String Editor;

Insert output layout line: as for inserting a key layout line;

Delete layout line: click the mouse over the line to delete.

• A Type is displayed by choosing the show option and then using the Chooser
to pick which one to display. The Type is then displayed in a consistent
fashion to the layout of the editor.

The Reference Format Editor
Current Name Sort Order

AYR

Reference Types
article
book
inprocedings
manual
unpublished

He(D Delete type Add type Quit

Figure 5.5 The Reference Format Editor.

5.2.6 Editing the Reference Formats.

The Edit form ats option of the initial menu brings up a sub-menu, which has
the full set of five options which operate as already described, with the following
particulars:

• Adding a new Reference Format consists of providing a new name via the
String Editor and a sort order via the Sort Order Editor (described in the

Chapter 5 119 Bibliographic Database

next section). Then the user loads in Reference Types from the default
Reference Type table, via the Chooser.

• Editing a Reference Format is done via the Reference Format Editor shown as
Figure 5.5, after selection of a Format to edit by use of the Chooser. This
displays the name and the sort order at the top of its w indow and the set
of Reference Types vertically. Each of these m ay be clicked over to
sum m on the String Editor, the Sort O rder Editor or the Type Editor,
respectively. There are further light buttons at the bottom of the display,
including "help" and "quit" as usual, as well as buttons to add a new Type
(via the Chooser) and delete a Type (by clicking the mouse over it).

• Displaying a Format requires selecting which one to show using the Chooser.
It is then displayed in a layout similar to the editor's.

Sort Order Editor
Current Sort Order
rv----------------

Sort next On
Main

Year
Other Citation

author authors kev

Delete Restore
last initial Clear Help

Quit

Figure 5.6 The Sort Order Editor.

5.2.7 Editing a Sort Order.

The sort order for a Reference Format is changed by using the Sort Order Editor
shown in Figure 5.6. The current value of the sort order is displayed towards the top
of the display, and under this there are nine light buttons, including the "Help" and
Quit" buttons. The buttons on the top line insert further sort key letters into the sort
order string, thus adding fields to break ties between references which can be
distinguished on the sort order so far. The other options give the following
operations:

• Delete last - remove the last sort key letter;

• Restore in itial - return to the sort order string as it was on entry to the editor;

• Clear - clear the string to nothing.

Chapter 5 Bibliographic Database

The Topic Editor

Current name
PISA

Hep Edit the
Abbrevs

Quk
Load

Dirrp
Topic Browse Edit the

Refs
Quit

9 t w Add Delete Edit List Quit

Figure 5.7 The Topic Editor and Reference Editing Menu.

5.2.8 Editing The Topics.

The set of Topics may be edited by selecting the Edit topics option of the initial
menu. The sub-m enu which then appears does not include a "show" option, as there
is too much information stored for each Topic to fit on the screen. The Delete and List
options function as previously described, while:

Adding a new Topic requires a new name to be entered via the String Editor. A
new entry in the database is created pointing to three empty tables which will hold the
abbreviations, the author lists and the entries.

Selecting the edit option summons the Topic Editor which is shown as Figure
5.7. It displays the name of the Topic at the top and this may be clicked on to call the
String Editor to change it. The operations of the Topic Editor are selected by the row of
light buttons underneath this name. They include "Quit", "Help" and the following:

Edit the A bbrevs - a sub-m enu appears with the usual structure for menus
which control the editing of sets of objects. D elete, List and Show all
function in the usual way. The other options work as follows:

adding an abbreviation requires two strings - the abbreviation and the full
form - both of which are entered via the String Editor;

ed iting an abbreviation proceeds by selecting which to edit from a menu
of the short forms and then modifying the short and long forms
using the String Editor.

Chapter 5 121 Bibliographic Database

Bulk Load - a file name is requested using the String Editor and the format of
the file is requested using the Chooser. All of the references and
abbreviations found in the file are loaded into appropriate slots in the
Topic's structure. At present, the file m ust be in Scribe form at or Refer
form at.

Dum p Topic - the contents of the Topic are dum ped in a format selected by the
Chooser from those available. If they are to be dum ped in a re-loadable
format (e.g. Scribe), then a file name is requested using the String Editor.
If, on the other hand, the dum p is for viewing purposes, an O utput
M edium is selected via the Chooser. For further description of the
O utput Media, see the section on producing the bibliography.

Browse - the contents of the Topic are opened for browsing. The only browsing
mechanism implemented as yet consists of traversing lists of papers with
the same author. Therefore the browse option starts by requesting an
author name by menu and then traversing the list by using a m enu of the
following options:

List - display a list of all the keys;

Show - display details of the current paper;

Next - proceed to the next paper;

and Find - supply a year and go to the first paper of that year.

Edit the Refs - a sub-menu appears underneath the row of light buttons, which
includes the same set of options that have been seen in the higher level
menus. This is the lower set of buttons, shown boxed in Figure 5.7. The
options D elete and List behave in the expected way, while Show displays
an entry in a form compatible with the Reference Editor. The A dd option
requests a key via the String Editor and then calls the Reference Editor to
fill in the fields. The Edit option calls the Chooser to select an entry to
edit and then calls the Reference Editor.

5.2.9 The Reference Editor.

The Reference Editor is shown in Figure 5.8. At the top the b lo w in g are
displayed: the key under which it has been stored m the database; the Type of reference
it is; and the list of authors. Underneath this field are shown the required fields and
under these, the optional fields. Selecting the key or any o t e le s resu
String Editor being called to modify these. Selecting t e YPe a ows 1 . ,
using the Chooser. Towards the bottom, there is a row of light buttons, including
"Quit", "Help" and the following:

Add field - a new field name is selected from t o set of .vaUp
added to the list of optional fields. Then the String Editor is called to
enter a value for the field.

Chapter 5 122 Bibliographic Database

The Reference Editor
The Key The Type The Authors

COOP87b techreport Cooper / Btott / Atkinson

The Requited Fields
author
title

organisation
date

Cooper, RL, Blott, SM and Atkinson, MP
Using a Persistent Environement to Maintain
a Bibliographic Reference Database

The Persistent Programming Research Group
February, 1987

nurtier
adctess

The Optional Fields

24

Dept, of Computing Science, University of Glasgow,
Glasgow, G12 8QQ

Hep Add field Delete field Abbrevs Quit

Edit the title

ent Environement to Maintain a Bibliographic Ref

Figure 5.8 The Reference Editor.

Delete field - the field to be deleted is clicked over. Only optional fields can be
deleted.

A b b rev s - clicking over this button throws a switch between displaying
abbreviated strings in their short form (e.g. "@value[PPRR]) or their
long form (e.g. "Persistent Programming Research Report").

5.2.10 Producing A Bibliography.

Having set up the database with all of the required information, using it to
produce a bibliography proceeds as follows:

Create a text file containing the paper with all citations entered in the form
"@cite[ckey]", w here ckey is the citation key for the reference. The

Chapter 5 123 Bibliographic Database

position of the bibliography should be indicated by a line containing just
"©bibliography", to get all the citations from the start to the current
point, or "©partbibliography" to get all the citations from the last
bibliography to the current point.

Enter the Bibliographic Database System and select "Scan" from the initial
m enu .

Supply, via the String Editor, a file name for the paper.

Choose a Reference Format from the menu provided.

Finally, supply an O utput Medium, also by menu. This will be one of the
following:

Screen - this option displays the output on the screen via More, that is,
paged with mouse button clicks to "turn" the page;

F ile - this sends the ou tpu t to an ASCII file, the nam e of which is
requested via the String Editor;

TEX - this sends the output to a file which formatted for input to a TpX
processor.

5.2.11 Finishing Off.

The final option of the initial m enu is labelled "Clear Up" and provides
facilities for m aking the changes to the database perm anent and for leaving the
program. Selecting the option leads to a sub-menu, which includes a "Help" option as
well as:

Com m it - make any changes to the database perm anent and continue within
the system;

Q uit/Com m it - commit the changes and quit the system;

and Q uit/A bandon - quit the system losing all the changes since the last commit.

5.3 Implementation Decisions.

When s ta rtin g the im plem entation several criteria w ere taken in to
consideration:

• the need for a consistent user interface;

• the identification of low-level modules, which would be re-usable in later
programs;

• the desirability of a coherent structure to manage a large implementation task,

Chapter 5 124 Bibliographic Database

• the provision of a program which was flexible to use;

and • the identification of a method for managing software modules.

W ith this in m ind, the task was given a m odular structure and the software
partitioned into six sets of modules:

(i) a database initialisation program;

(ii) a program which starts the system, summoning the top-level menu;

(iii) a set of m odules corresponding to each of the major tasks of the program
(the browser, the various editors, etc.);

(iv) a set of low-level, but application-specific modules, such as one to return a
list of references for a given author;

(v) a set of m ore generally useful modules, such as the Chooser or the String
Editor;

and (vi) sets of parallel versions of the same utilities, such a bulk loaders.

Given this partitioning of the software, an implementation m ethodology was
adopted which specified a location for each of the modules in sets (iii), (iv) and (v).
Each of these modules was implemented as a program which stored the module in the
persistent store. Such a program consists of three parts: retrieval of any values
required by the m odule from the persistent store; one or m ore procedures to
implement the functions of the module; and storage of the procedure(s) in the
persistent store. (For storage, the procedures were packaged into structures.) The
values retrieved might include both data and other procedures called by this one.

This m eant that the modules could be implemented in any order. If a top-down
method was chosen then a calling module, A say, could be written which dereferenced
a called module, B say, after retrieving it from its designated location. This program for
A would then compile correctly, whether or not B was already in place, and moreover
the program would run and store A in its correct location. Alternatively, if a bottom-
up approach seemed more appropriate, the program for B could be written and run
first, in which case A could be tested as soon as it was inserted.

The methodology for managing the modules is not discussed in detail here as it
forms the central theme of Chapter 8. Briefly, the three sets of modules were stored in
tables whose structure was designed for holding inter-related modules. The structure
makes explicit the binding between modules so that, for instance, when a low-level
module was replaced, all calling modules would be rebound to the new version.

Another im plem entation technique was used for those m odules for which
several parallel versions were created ((vi) above). There were several bulk loading
procedures, for instance, for different file formats. The mechanism provided here was
for one module representing the Bulk Load operation and a table of loaders for the
various formats. The Bulk Load operation used the Chooser to elicit from the user the
choice of which loader to use. Moreover, Bulk Load functioned properly as soon as a

Chapter 5 125 Bibliographic Database

new loader was added to the table, always reflecting the contents of the table. These
points are elaborated in Section 5.3.2.

The database structure (discussed in more detail in Section 5.3.1) was designed to
maintain coherence. All of the data and the two application-specific m odule sets ((iii)
and (iv) above) were kept in a single database. The maintenance in a single space of
both the data and the software specific to an application has a considerable simplifying
effect on the task of implementing the application. The only other databases which
were used were the system-provided database of fonts and a database of the utilities
(module set (v) above) designed for this application, but later shared by num erous
other programs.

In this section, details of the design and im plem entation m ethodology are
discussed. The organisation of the underlying database is described to show one way of
structuring a persistent store. Then the structure of the program is described, with
emphasis on the ease with which a modular structure can be developed incrementally.
Next, the value of the PS-algol graphics system in producing a consistent interface is
discussed. It was found that the im plementation was ham pered by the lack of a
transaction m echanism . The reasons for this are discussed next and then a
mechanism is described which has been designed to overcome the lack of fine grained
concurrency control. Finally, a number of minor points concerning object identity are
discussed.

5.3.1 The Bibliographic Database Organisation.

The organisation of the database used by the system is shown as Figure 5.9. In
this diagram, a table is represented by a vertical line, with horizontal lines extending
rightwards from it. These lines represent entries in the table, which are shown as the
key joined to its associated object by an arrowed line. The key is either shown literally
as a string or as a generic description. In the diagram are shown:

0 The top level table of the database which is nam ed "Bibliography", with
passw ord "Reference".

© A table of low-level procedures, accessed via the key "% $procedures". The
table is organised in the systematic way described in Chapter 8, with each
procedure accessed via its name.

© A table of the high-level modules, accessed via the key "% $m odules", also
organised in the structure described in Chapter 8.

© The help information, accessed via the key "%$help". The text for each help
screen is stored with a string key which the program uses to find it.

© A table of post-processors, accessed via the key "%$media".

© A vector of all the valid field names known to the system, accessed via the
key "%$fields".

Chapter 5 126 Bibliographic Database

"Bibliography","Reference"

O — "%$procedures"-

— ,,% $m odules-

©

©

"%$help"

"%$media"-

Q

©

procedure
nam es

module
nam es

help
keys

media

nam es

structures

containing

procedures

help
texts

structures
containing

output
procedures

"%$fields"
©

vector of valid field nam es
(saved in lower case)

— "%$types"- Reference
Type

nam es

structures containing
citation key and reference

layouts and a list of
required fields

'^/oSformats^
© Reference"

Format
nam es

<D

a structure of
topic —► pointers t
nam es © three tab|e s

"sort order"
Referenc

Type
nam es

abbreviations

(D
citation

keys

© author
nam es

sort order string

as for the
%$types table

long
versions

database
entries

author
lists

Figure 5.9 The Bibliographic Database Organisation.

0 A table of all the Reference Types known to the system, accessed via the key
"% $types". Each entry in this table is accessed via a Type name, e.g.
"book", and contains default values for this Type of reference. The
information stored is:

• a string which defines the citation key layout;

Chapter 5 127 Bibliographic Database

• another string defining the reference layout;

and • a vector of the names of the required fields.

O A table of all the Reference Formats known to the system, accessed via the
key "%$formats". Each entry is accessed via a format name, e.g. "IEEE",
and points to a table (marked (D), which contains the bibliography sort
order, accessed via the key "sort order", and an entry for each Reference
Type know n to this format. These entries have the same structure as
those in the "%$types" table (0). When producing the citation keys and
references in the bibliography, the builder looks for its form atting
inform ation in the selected Reference Format table((D) and if the type is
not there, looks for the default values in the "%$types" table (©).

© The other entries in the top level table are accessed by Topic names and point
to a structure containing all the data about a given Topic. This structure
consists of pointers to three tables:

(D a table of abbreviations which consists of entries accessed by
abbreviations pointing to packaged full forms, e.g. "CJ" points to
"Computer Journal" packed into a structure with a string field;

(D a table of authors which contains an entry for each author name in the
set of references of this topic - the entry points to a list of the
references of which he or she is an author (this is used by the
browser);

and © a table of the references, which uses the citation key as a key for the
table.

There are two m ain points to be observed in this structure. Firstly, the
hierarchical structure of the database fits the data, which naturally subdivides into
objects of different types. Secondly, the modules of the program can co-exist with the
data, thus keeping all the information specific to this task together in the Persistent
Store. This simplifies the program m er's conceptual view of the world. It can also be
imagined that, in a large store this coupling of program w ith data will have
performance benefits, in that all the objects in a given database may be kept "close
together".

As previously m entioned, the program also makes use of the fonts database and
the utilities library database. This library is also organised as described in Chapter 8. In
general, an application program can expect to use "system" databases to get access to
communal facilities, together with one or more "owned" databases.

5.3.2 The Software Modules.

The software is divided into six parts as described above. Here a little more
detail is supplied about these six parts.

Chapter 5 128 Bibliographic Database

(i) The program which installs a skeletal database creates the database and
provides initial values for the set of valid fields; the table of Reference Types; and the
table of Reference Formats. It also sets up empty tables for the procedures, modules,
media and help information.

(ii) The startup program m ust be run to initiate a session with the database. It
provides the main m enu and calls the high-level modules as requested by the user.

(iii) The main operations of the program, stored in the "% $m odules" table, are
called directly from the startup program. There is one program to insert each of these
in the table. It is im portant to emphasise that it does not m atter in which order the
modules are written, nor whether they are written before or after the startup program,
as each will compile and run separately. If the startup program is to be tested first, the
modules can be represented by stubs until they are replaced by the real version. The
program im plem enting them will effect this replacem ent w ith no extra effort
concerning the startup program.

(iv) The set of low-level utilities which are specific to this program are stored in
the "% $procedures" table. These are called by the modules or by other low-level
procedures. Once again, procedures can be written before or after those which call
them. It is noted here that straightforward static binding of one procedure to another
is not sufficient, since the called procedure might need to be replaced. Fortunately, PS-
algol permits a range of binding strategies including dynamic, static and optional
forms of binding, provided that a sufficient structure is available to make the binding
explicit. Chapter 8 describes the various techniques for this and the chosen strategy
used for this and the other programs described in this thesis.

(v) The utilities in the standard utilities database include the Dialogue Box
Package (4.1.5); the Chooser (4.1.4),; the String Editor (4.1.6); the Message Facility (4.1.2)
and the More facility (also 4.1.2). These are called from the procedures in sets (iii) and
(iv), but do not themselves call any procedures in the application database, since they
are designed to be a stand-alone set of utilities.

(vi) There are three se ts of procedures which provide parallel versions of a
given operation - the bulk loaders, the bulk dumpers and the specialised media output
packages. Each of these sets is represented as a table and for each different version
there is a separate program to put it into its appropriate table. These tables are
organised so that new versions of an operation can be installed for immediate use by
users without any re-running of other programs. Each version is implemented and
installed by a separate program and access to this table is controlled by a procedure,
which calls the Chooser to select a version and then loads and uses the selected
version. The im m ediate update of the table shows through to the user because the
Chooser dynamically builds its menu.

5.3.3 The User Interface.

The principal goal of the design of the User Interface was to make it uniform.
At every phase of the interaction with the system, the user initiates the same sort of
action in the same sort of way. Thus, having edited one sort of object, the user will
fiud that to edit any other sort of object will require a similar process. This should
speed the familiarisation process and give the user confidence in the program.

Chapter 5 129 Bibliographic Database

Another unifying feature is that display and edit modules are compatible. For
instance, the w indow s to display and edit a reference look very similar. The only
apparent differences are a slightly different heading and the presence of light buttons
for commands in the edit window. There is, also, a non-apparent difference - the
information display items which are passive in the display w indow become light
buttons in the edit window.

Another goal in the design of the user interface is to reduce the am ount of
information the user needs to provide - the more that is typed, the more errors will be
made. It is felt that the user should not have to provide information that the program
already has, like the names of objects, nor have to type in commands in a strict syntax.
This led to the m enu-dom inated interface style. All operations are selected by mouse
dicks over light buttons of one sort or another. Another consequence of this was the
design of the Chooser (4.1.4). This tool allows the user to select objects by m enu and
not by a name that m ust be remembered.

Thus a User Interface has been created which is coherent, consistent and easy to
use. Some writers have questioned over-reliance on a menu-based style, claiming that
for some users or for some situations, chiefly those when the user is very familiar
with the domain of the program , a command-input style is faster and less frustrating.
For the present task, menus seem to be the best path - although there is a nod in the
command-input direction, by providing the keyboard input for the Chooser. It has
also been pointed out that the menu-based style was inappropriate for the Sort Order
editor. A direct-m anipulation style, in which the various ordering attributes were
represented by tiles which could be "dragged" into order might very well have been
easier to use and could easily have been implemented in PS-algol.

However, the m ain point to be m ade is that the presence in PS-algol of
sophisticated graphics prim itives allows the program designer to m ake choices
between these options w ithout undue cost. Given the system, the customer could
rewrite the interface software if that was required and run the rest of the system intact.
Indeed, it w ould be possible to provide a choice of editors for users w ith different
requirements.

5.3.4 The Transaction Mechanism.

The system requires a fine-grained control over object update. That is, there is a
need for changes to individual objects to be atomically reversible. In changing a
particular object, the user m ust be able to undo the changes, without undoing changes
to other objects. However, it should be recalled from Section 3.2.5 that PS-algol has a
very crude notion of object update. In order to change an object in the database, its
reachable value m ust be over-w ritten and then com m it m ust be performed. The
problem is that there is no way of committing only some of the changes that have
been made. Thus if changes are made directly to the database and an error is made,
either the error m ust be accepted or all the other changes since the last commit will be
i°st. Calling commit after every update would get round this, but then all changes
would be made im m ediately irreversible. It is also a lim itation of PS-algol, that
changes cannot be abandoned w ithout leaving the program by performing abort. It
would also be useful to be able to reverse a number of changes after making them.

Chapter 5 130 Bibliographic Database

To sum m arise this, atom ically reversible updates available on all objects,
including bulk objects, are required. For these purposes, a system of transactions has
been implemented. This will now be illustrated and then discussed.

The process of editing one of the default set of Reference Types is here taken as
an illustration of the nested transaction mechanism. The user m ust follow this
procedure:

i) Select the "Edit types" option in the top level m enu. This initiates the
transaction, "Edit the set of Types".

ii) Select the "Edit" option of the Type Editing Menu to edit a particular Type.
This starts a sub-transaction, "Edit a Type".

iii) Edit the Type .

iv) Respond to the question "Do you want to preserve your changes?". If the
response is "y", the Type Editor returns a new Type object w ith the
modified values. Otherwise, the editor returns the original object. Thus,
after the Type has been modified, the user can abandon the modifications
at the end of the "Edit Type" transaction if so desired. If the modifications
are kept, then they are held as part of the modifications in the current
"Edit the set of Types" transaction.

v) Edit m ore Types and when no more changes to the set of Types are to be
m ade, respond to another "Do you w ant to preserve your changes?"
question. This again gives the user the option of abandoning all changes
done during the transaction by responding "n". If the response is "y"
control returns to the initial menu and all the modifications are m ade to
the database itself.

vi) To make the changes permanent, the user must select the Clear Up option
and then select the "Commit" option to carry on, or the "Quit/Commit"
option to finish.

To support this mechanism, copies of every edited object and set of objects is
made. Thus in the above, at step (i), an empty table is created which will hold the set
of modified or new Types. At step (ii), a new Type object is created, whose attribute
values are the same as the object selected for editing. At step (iii), this new object is
modified - not the original. At step (iv), either the old object or the new one is
returned by the editor. If it is the new object, this is put into the table of modifications.
At step (v), if the user responds "n", this table is thrown away. Otherwise, it is merged
into the table of Types. Finally, at step (vi), with the call of commit, the changes are
made permanent and irreversible.

This mechanism is cumbersome and has not proved popular with users. In
order to make changes perm anent, it is necessary to go right back to the initial menu.
To continue, the user m ust then use the menus to return to the data that was being
changed. A modification of the system is under way, in which the user has a commit
button in every window. This would merge the changes in all transactions of which

Chapter 5 131 Bibliographic Database

the current one is a part and make them permanent. However, the real solution to
this problem lies in a better design for object sharing, update and committal, which is a
major research issue for the future. It has been shown in this section, however, that
whatever transaction mechanisms are proposed it is likely that they can be built on top
of the PS-algol primitives.

5.3.5 Object Identity.

One of the m inor design issues concerned the editing of lexical identifiers. It
was decided that editing an identifier created a new object, bu t did not affect the old
one. This m ethod has been chosen so that many objects of the same type and with
largely the same values can be created easily. For instance, a new Reference Type can
be created which is identical in most cases to an already existing one. Changing the
identifier of an object and yet maintaining object identity seems to the author to be an
unusual activity and one that should not be directly supported. The mechanism for
identifier update is as follows.

The major objects in the database all have an identifying string associated with
them. Fields, Types, Formats and Topics have names and the references themselves
have a key. W hen the identifier of an object is changed by use of an editor, this
corresponds to creating a new object. If the editor is entered with an object identified
as "X", some changes are made to values within the object, the identifier is changed to
"Y" and then more changes are made, a new object identified as "Y" w ill be created.
This will be a copy of "X" with all the modifications made, whether before or after
modifying the identifier. This edit will leave "X" totally unchanged. Not even the
changes made before the identifier will be made on "X".

This brings up a point about identifiers and persistence. Objects in the persistent
store have a unique invariant Persistent Identifier (PID) and thus have no logical need
for data dependent identifiers - this is one of the selling points of persistence, with the
claim that space is saved. The PID plays a similar role to the surrogates in RM /T
[Codd, 1979]. Although the PID represents a sufficient mechanism for the program to
keep track of objects, the user also requires a lexical reference to the object. All of the
objects have some field which uniquely identifies them and this is used to provide the
user with a m nem onic for the object. The author believes that, in most database
applications like this one, this kind of identifier will be essential.

5.3.6 Further Work.

The system is operational as specified and its limitations have become apparent.
For instance, the system w ould be more satisfactory if there were an option for the
papers themselves to be stored in the persistent store. There is no technical reason
why they should not be, bu t until word processing power has been added to the
system, the disadvantages of having two copies of the paper probably outweigh the
advantages.

Providing a page m ake-up system using the persistent store w ould give
processing economy. Most runs of such a system are of iterations of the document, in
which the docum ent is only slightly perturbed. Retaining the data structures

Chapter 5 132 Bibliographic Database

describing the layout of the generated pages would yield economies or an accelerated
WYSIWYG response.

The larger accumulations of data will w arrant better retrieval tools than the
browser. These should be built on the basis of current inform ation processing
techniques, including some browsing on key words. At the same time, it w ould be
desirable for the user to be able to build up an owned set of references in an ad hoc
manner and then produce a bibliography using the same ou tpu t facilities currently
used by the autom atic bibliography builder. The ability given by persistence to bind
new code to existing, highly structured data, held in a strongly typed form, should
prove particularly helpful when adding such computationally sophisticated modules.

5.4 Conclusions.

The developm ent of a system for the maintenance of bibliographies has been
described. All of the software was developed in a matter of four man-months. The
speed of developm ent was due to program m ing w ithin a persistent environm ent.
The system was developed in an incremental fashion, using fairly small, easily
debugged modules. The modules were themselves stored in the same space as the
data in the form of data structures containing properly bound first-class procedures.
Therefore, it was easy to re-use sections of code to perform similar tasks. It was also
easy to replace partially working modules with better ones.

However, the main benefit was the ability to store new modules alongside old
ones and then to generate m enus to decide which m odule to use. For instance,
initially the only bulk loader available was for Scribe files. As soon as a Refer format
file was encountered, a Refer format loader was written, plugged in and was then
immediately available since the Chooser permits the selection of a loader by use of a
dynamically produced menu.

As the w ork proceeded, modules were identified which were of more general
usefulness than just for this program. These modules, such as the Chooser and the
String Editor, were abstracted from the bibliographic database and placed in a database
which made them generally available to other applications. These modules will be re
used in later chapters.

Managing such a large set of modules threw up problems concerning the
relationships betw een them. W hen PS-algol is used "cold", the way in which one
module is bound to another is not explicitly available after the binding has happened.
Chapter 8 describes a num ber of ways this binding may be made and some techniques
for making the binding explicit. A major conclusion from this chapter is that trying to
manage a complex application w ithout such techniques is laborious and would
become infeasible for really large-scale applications.

Another finding was that the lack of a transaction management system had a
significant effect, but also that a suitable system could be built on top of the available
primitives. This is a clear example of the extensibility of PS-algol. If a given feature
does not exist, it can usually be supplied on top of the primitives, using the language
itself. This seems to be a greatly superior environm ent than one in which any
^tension to the system requires delving down into the implementation language

Chapter 5 133 Bibliographic Database

(usually C) and hacking the implementation itself. Many of the features of the system,
the menus, the p rin t statement, etc., were written in PS-algol itself.

Finally, of course, the application shows a clear advantage of a persistent system
in maintaining a single com puter model of the application. Figure 5.9 shows the
database structure, included in which are the structured objects of the application. The
structure in which the objects are conceptualised in the program is exactly the same as
the one in w hich they are conceptualised in the database. There is no m apping
between the two and the application never had to concern itself w ith dissecting up an
object to store it. For these reasons it is concluded that PS-algol proved a suitable
implementation vehicle for the application.

Chapter 5 134 Bibliographic Database

Chapter 6. Building Database Systems in PS-algol.
Chapter 5 showed how database applications can be built directly in PS-algol.

This chapter and the next one move up a level and describe how data modelling
systems m ay themselves be implemented in PS-algol. The implication of this is that
the functionality of data models can be added to PS-algol and so any application
requiring, say, the facilities of the relational model can make use of a component
programmed in the same way as the rest of the application. It is only possible to do
this because PS-algol is sufficiently high-level that program m ing systems can be
described in it.

In this chapter, two implementations of the Relational Model are discussed,
before describing higher-level models in Chapter 7. The first of these is the RAQUEL
system of Pedro H epp and the other is a relational system constructed by the author
and Djamel A bderrahm ane which provides improved storage and retrieval m ethods
for relational data.

6.1 A Database Architecture With Several Interfaces.

The first relational database system was im plem ented at the University of
Edinburgh by Pedro H epp [Hepp, 1983a, Hepp, 1983b, Norrie, 1985]. The goal of this
research was the creation of a system which provided a multiplicity of user interfaces
to a uniform internal data model. In the system produced by Hepp, a relation is called
a table and the columns are typed - each column being of type integer, bool, string, date
or time.

The provision of a num ber of interfaces to the same database gives data access to
different classes of user. The Query Languages provided were: TABLES, a screen
oriented query and update language for a relational database, similar in style to QBE
[Zloof, 1977]; RAQUEL, a relational algebra language, also for querying and updating a
relational database; and FQL [Buneman et al, 1982]. It is envisaged that naive users
will use TABLES, which is simple to use but limited, while more sophisticated users
will move on to RAQUEL or FQL. There is also a Report Generator - a document
producer, which takes in commands to specify page layout, headings, etc.

6.1.1 The TABLES Interface.

The first interface provided is called TABLES. This is a QBE-like interface to the
underlying relational model. The queries which can be specified are persistent objects
in their own right and are m ade up of selects, projects and joins. A query is
formulated by filling in items in skeletal tables. The commands in TABLES permit the
following operations:

• select a table to use for subsequent work;

• traverse the table - commands for this manipulate a cursor (which is initially
in the top left cell) and move it left, right, up or down or to the top or
bottom row or to a column having a specific value in a specific row;

Chapter 6 135 Building Database Systems

• bulk load some data;

• m anipulate user views;

• update data - includes commands for the insertion and deletion of rows and
the modification of individual values;

• define queries, see below;

• output a table or the result of a query.

As has been said, queries are formulated in terms of tables on the screen and
uses a now out-of-date character addressable i /o model of interaction. For instance,
the query in Figure 6.1 specifies the query which will return the two column relation
as an answer to "give the staff numbers and matriculation num bers of all teachers
who are over 40 and also students of the science faculty".

STUDENT 1 NAME 1 MATRIC 1 FACULTY
1 s
1

1 i
1

1 s
1

1 (TEACHER) 1 P 1 "science"

TEACHER 1 NAME 1 STAFFNO 1 AGE
1 s 1
1 1

i 1 i
1

1 (STUDENT) 1 #p 1 >40

Figure 6.1 A Sample TABLES Query.

In the diagram : the "#" indicates the current cursor position; a '‘p" indicates
include this column in the output (i.e. project); a table name in brackets indicates a
join to another table; a constant value indicates a selection to determine rows in the
output (the rows m ust have this value in this column); an expression starts with one
of "=", ">=" or "<>" and indicates a condition for row inclusion in the
output (i.e. select). M ultiple rows in the same table in the query indicate disjoint
alternatives.

To support these queries, the interface has the following operations:

• move the cursor up, down, left or right;

• add or delete tables to the query;

• join two tables;

• insert a "p", a constant value or an expression at the current cursor point;

• delete the item at the current cursor point.

Using TABLES, it is possible to build up complex queries which are made up of
selections, projections and joins. I t is envisaged that TABLES will p rovide a good

Chapter 6 136 Building Database Systems

introduction to relational systems for novice users, who can then m igrate to RAQUEL
to build up more complex queries.

6.1.2 The RAQUEL Interface.

RAQUEL is a textual relational query language with far more facilities than the
TABLES interface. N ot only are selection, projection and join available, but a num ber
of other functions which will now be briefly illustrated with reference to the relations
given in Figure 6.1.

Projection is achieved by a command of the form:

query STUDENTNAMES := STUDENT projected on N A M E

Selection is indicated as in:

query OLDIES := TEACHER selected on AGE > 40

Systematic data modification can also be done, as in

query OLDERTEACHERS := TEACHER modified on
if AGE < 65 then AGE := AGE + 1

Ordering of results can be done:

query STU D ENTSBYM AT := STUDENT order on MATRIC = a

where the order can be either "a", ascending, or "d", descending.

Extending a table can be done:

query RETIRALS := TEACHER extended to
N A M E , STAFFNO, AG E : RETIRAL := if AGE > 65 then "R" else ""

which is a projection followed by the creation of a new column.

Grouped column creation is the last of the unary operations, as in:

query STUDENTSBYFAC := STUDENT grouped on
F A C U L T Y : TOTAL := count

which projects to a column for FACULTY and then adds a second column which uses
the system function, count, to calculate the number of students in each faculty. Other
numerical functions are min, max, avg and sum, each of which can be followed by a
selecting expression. There are also two boolean functions, all and any, which return
true if all or any of the contributing rows return true for a following expression.

Natural join is performed by:

query STUDENTTEACHERS := STUDENT joined by
N A M E =NAME TEACHER

Chapter 6 \ y j Building Database Systems

O uter join is similar:

query ALLPEOPLE := STUDENT oj N A M E = N A M E TEACHER

but here all rows from both columns are included, with columns that appear in only
one column being filled out with nulls.

There are also facilities for set union, set intersection and set difference.

Using these commands, queries of arbitrary complexity can be built up and
RAQUEL becomes a good tool for teaching the richness of the relational algebra.

6.1.3 Functional Query Language.

This is an im plem entation of Buneman's FQL [Buneman et a l , 1982]. In this
language, all of the elements of the database are represented by functions. For
instance,

Relations are represented by functions which return sequences of objects, such
as ! STUDENT.

Columns are selected by a dot operator (STUDENT.NAME).

Rows are built up as in ["A student", 12345, "science"].

Operators are also seen as functions. Thus [1, 2] + is a representation of 1 + 2,
w ith the square brackets creating a tuple of integers and the following
plus operator summing over it.

Using FQL, complex queries can be built up against the same database as
TABLES and RAQUEL. It is interesting to compare this component of Hepp's system
with the im plem entation of the Functional Data Model [Shipman, 1981] described in
Chapter 7.

6.1.4 The Report Generator.

This tool, which will not be described in detail, permits the user to create a
structure for the output from a table interactively. It includes facilities to define report
and page titles, to set the page length, to define the layout characters which separate
rows and columns, to provide some basic statistical information such as the averages,
maxima and m inim a of colum ns, and also allows graphs and histogram s to be
produced.

The Report Generator was written before the graphical facilities of PS-algol were
added and so reports are generated only for character devices, but the resulting reports
show how sum m arising information can easily be derived from databases using PS-

Chapter 6 138 Building Database Systems

6.2 Implementation Details of the RAQUEL System.

6.2.1 Overview.

The m odel p roduced by H epp contains three com ponents: an Internal
Conceptual Schema (ICS), containing m eta-data; an In ternal Data M anipulation
Language (IDML); and an Internal Query Language (IQL). A modified subset of the
extended relational model, RM /T [Codd, 1979] with the following architecture was
proposed, illustrated in Figure 6.2.

RAQUELTABLES FQL Report Generator

Name Handler Syntax Analyser

Update Handler Query EvaluatorStorage Handler

Database

Figure 6.2 RAQUEL System Architecture.

The Q uery Language interfaces interact with the database only through the
Name Handler, which translates names into internal identifiers. It uses the ICS to
make all its checks and this itself has been organised as a set of relations, so that as
with EFDM, the same procedures can be used to access meta-data and user data. The
ICS starts off with two relations, one containing a list of all the relations in the system
and one containing a list of attributes. User-defined relations and attributes are
gradually added to these. The other components shown include the Storage Handler
(SH), the Query Evaluator (QE) and the Update Handler (UH). The SH controls the
creation, m aintenance and deletion of relational structures, such as relations and
tuples. The QE processes queries specified in the IQL and the UH ensures database
consistency by m onitoring update requests to detect integrity violations.

The program itself consists of a set of 43 procedures held in a single structure,
together with an initiating program (which starts RAQUEL up). There is one source
module to create this procedure package as a persistent object and five more to insert
the evaluator p rocedures, the storage handler procedures, the nam e handler
procedures, the syntax analyser and a set of utilities into this package. The procedures
which provide the various user interfaces form another set of source modules.

As in the Bibliographic Database, all the program and data is stored in a single
PS-algol database. The top-level table of this contains 9 entries, one to the packaged
procedures and the others to further tables. In these are stored the relations, the
columns, the constraints, the queries, evaluated queries, tem porary relations, some

Chapter 6 139 Building Database Systems

global data and the views. The latter are PS-algol tables with the same structure as the
top-level table. The user switching views merely switches which table is the current
one.

,,tablesH-

ralumns"

relation header
last tuple first tuple order card columns temp

3 2 false

tuple

cdurm
header

— "n" "n" default

"S" "s" "s" type
nil nil nil constraint
7 9 8 width

previous next values

nil "tables" "tab name = a" "dr dc"

>0)Q
.)US next values

nil "columns" "tabname = a" "dr dc"

relation header
last tuple first tuple order card columns temp

5 8 false

tuple

T

cotrm
header

— "n" ---- ---- -----
"S" "s" "s" "s" "s"
nil nil nil nil nil
7 10 1 1 19

previous next values

nil "columns" "tabname" "s" t v r t "isin table.tabname"

t
previous next values

I nil "tables" "protection" "s" tfti "n"

All data and m eta-data are stored in the form of re la tio n s . The data for a
re at*on are stored in a doubly linked list of tuples, with a relation header containing
summary information at the head of the list. Included in the summary information is
some information about each attribute or column of the relation, stored in a co lum n
eader. Figure 6.3 shows the data structure used to represent two relations, in this case

Chapter 6 140 Building Database Systems

the two holding the metadata, as these are stored in the same way as ordinary data.
The tw o relations are "tables", w hich holds one tup le for each relation, and
"columns", which holds one tuple for each column of each relation. At start up time,
the system contains only these relations, as shown in Figure 6.3. As can be seen, tables
has 2 tuples, one for each m etadata relation, while co lumns has 8, one for each
metadata column.

Note that H epp has used a crude strategy for getting a kind of polym orphism
into his program - every value is represented as a string. His program relies on there
being a few types of columns and he provides, for each type, a pair of translation
procedures - string.to.type and type.to.string. This is a fairly inefficient m ethod of
storing data, both in terms of space and in terms of time to search and to dereference
data.

6.2.2 The Benefits of PS-algol.

Pedro H epp used an early version of PS-algol - one that d id not have the
graphics systems, nor first-class procedures. In his arguments for using PS-algol, Hepp
puts forward m any of the reasons mentioned in Chapter 3 - uniformity of approach,
lack of arbitrary exceptions, relieving the programmer from concern about the physical
mapping of data to store, and the simplicity of the language. However, the main
benefit he found in using PS-algol is not stated directly, but is implicit in every section
of his thesis: the ability to create a program incrementally. He m ade use of this in four
ways (and also reduced compilation time by breaking down source code into smaller
modules).

Firstly, he built his system incrementally. At first a very small system was
implemented, with crude versions of the modules. Later, he replaced these with more
sophisticated versions, using the persistent store to hold the most recent. This enabled
him to develop each m odule separately. As the database access implicitly provided by
PS-algol is based on lazy fetching from disc and strict type checking, program
construction is perform ed as necessary by an incremental type-checked linker - the
persistent system itself. It is possible for the program m er to arrange to use
permanently one particu lar im plem entation of the m odule, or to use the latest
version, or one chosen by any other algorithm. Thus the incremental construction
depended on the delayed binding supplied by the pntr type.

Secondly, once the internal model was pu t into the persistent store, as many
user interfaces as were required could be added, one at a time. In fact, having got the
RAQUEL interface working (with all of the modification and debugging of the internal
system implied by this), H epp got the TABLES interface working "in less than a week"
and the FQL interface "in approximately one week of work".

Thirdly, in m aking the decision on which underlying storage structures to use,
he could try independently a number of different options before selecting the best one.
This was done by replacing the storage handler with a number of variants and testing
the resulting system for speed of access, storage requirem ents and ease of
programming. He tested w hether to represent a relation by lists or vectors and
whether to represent tuples as strings, vectors of strings, vectors of pointers or as a list

pointers. His analysis led him to choose to represent his tuples as a vector of
strings.

Chapter 6 141 Building Database Systems

Fourthly, he used the persistent store to record patterns of usage of the various
interfaces and m odified them to overcome user problem s. For instance, certain
inelegancies in the syntax of RAQUEL queries were ironed out after examining the
pattern of user errors. Furthermore, an analysis of the frequency of usage of objects in
the system revealed that "a small set of columns and relations are used more
frequently in query composition than the rest." Clearly this fact could have been used
to provide more efficient storage and retrieval methods.

H epp m ade no use of the run-tim e compilation system, not then available.
With the advent of the run-tim e compiler, the analysis of usage, which was performed
off-line, could be perform ed regularly by the system itself. For example, a daemon,
activated at times of low system usage, would carry out some analysis of the usage of
each data object, refer to some normative data on usage, and, if necessary, change the
storage to be more appropriate for the pattern of usage found. The user w ould not
notice the change in the underlying storage structure, except that response times
would be improved. These ideas are similar to those put forward by Stocker [Stocker,
1973], but the freedom to devise and manipulate any data structure w ould facilitate
experiment and implementation. This idea is left undeveloped at the present time,
but it is noted that a Persistent Store which can contain programs and data is an ideal
implementation environm ent.

6.3 A Polymorphic Architecture For Relations.

In this section, another improvement due to the run-time compiler is explored.
The storage structures for the data, which in RAQUEL are forced to be static, could be
created dynamically, according to the nature of the data. This new internal model is
called GRAPE (Glasgow Relational Adaptive Persistent Environment) [Cooper et aL,
1987c]. The starting point is a data storage model similar to that used by Hepp and uses
the universal pointer type to provide a polymorphic storage scheme for the tuples of a
relation. The interface is am ended to take advantage of PS-algol's facility for
producing Abstract Data Types and the storage of the tuple structures is tailored to the
form of the relation using the compiler function. This exploits PS-algol’s ability to
implement polym orphic schemes by use of late or early binding to achieve efficient
data representations.

6.3.1 A Static Internal Model for GRAPE.

After some investigation, a storage scheme for a relation was produced, which is
structured as shown in a simplified form in Figure 6.4. The header for the relation
consists of four fields: the relation name; a pointer to the body, which is a doubly
linked list of tuples; a pointer to the primary key header (here shown to be a single
column, but in general a list of columns); and a pointer to the rest of the column
headers of the relation (also pointed to by the primary key). The column headers are
organised into a linked list of structures each containing the column's name and a
pointer to an instance of an Abstract Data Type defined on domains. In the initial
scheme, each tuple consists of a vector of pointers to value containers.

Chapter 6 142 Building Database Systems

domain ADTdomain ADT

value
container

value
container

column
name

column
name

prior
tuple

next
tuple

tuple values

relation
name body primary

key , columns

Figure 6.4 Storage Structure for a Relation in GRAPE.

The interfaces provided to both relations and domains are in the form of
Abstract Data Types. Domains are represented by an ADT that contains at least the
following operations:

proc(s tring -> p n tr) putDomVal ! package a value
proc(p n tr -> string) getDomVal ! unpack a value
proc(pn tr, pn tr -> b o o l) compDomVal ! compare two values

Domains are created by calls to a creation procedure by the user interface programs and
stored in a table in the persistent store.

Relations are created using the following procedure -

MakeRel = proc(string description -> p n tr)

This is given a description of the relation in the form of a string (containing attribute
names, attribute dom ain types and those attributes which are used as the key) and
returns a packaged set of procedures which contain all of the operations permitted on
this relation, such as adding a tuple, looking up a tuple from the key, traversing the
tuples, checking w hether or not the relation is empty, etc. Each call of MakeRel binds
the same code bodies to a new instance of data structures with the same definition.

Take as an example the relation

AD D RE SS(s tring name I in t house, string street)

in which the field name is to be used as the primary key. The construction of a

Chapter 6 143 Building Database Systems

simplified polymorphic representation in PS-algol (corresponding to Figure 6.4) of the
tuple "R. Cooper, 73, Bow Rd." is shown in Figure 6.5.

structure tuple(pntr last, next; "'pntr values) ! Relation independent tuple and
structure stringContainer(string stringValue) ! data containers,
structure intContainer(int intValue)
let RC = tuple{ ..., @ 1 of pntr [stringContaineri "R. Cooper"),

intContainer{ 73),
stringContaineri. "Bow Rd.")])

Figure 6.5 Indirect Storage Scheme for an Address________

This creates an instance of the tuple structure, RC, consisting of pointers to the
adjacent tuples in the list and a vector of pointers to the three field values. The 73
would be de-referenced by

RC(values)(2) (intValue)

which first takes the values field of RC, takes the second element of the vector and
then unpacks it - thus the operation requires three levels of indirection.

A version of MakeRel using this storage method is shown simplified in Figure
6.6. The procedure constructs all the information it needs from description (looking
up the domain information from the domain table). It then creates an instance of the
relation structure as ThisRel. Then it defines operations on ThisRel, of which only
the AddTuple operation is shown. This adds a new tuple to the relation from values
supplied by the calling program. Finally, it packages the operation procedures as an
ADT for export to the calling program. AddTuple merely looks in the body of the
relation to find w here it should put the tuple, constructs the tuple from the values
input and then inserts it. Note that MakeRel creates a new instance of the relation
structure and then binds a copy of the operation procedures to it.

This version of MakeRel can be w ritten once to handle any kind of relation
since all the values are stored via pointers. It achieves polymorphism by using the fact
that the pntr type corresponds to the union of all possible structures and hence of all
possible containers.

^ a p te r 6 144 Building Database Systems

structure RelHead(string rname; pntr body, pkey, columns)
structure ColHead(string cname; pntr domType, nextCol)
structure tuple{ pntr prior, next; *pntr values)
let MakeRel = proc(string description -> pntr)

begin
let RelName =
let PkeyName =
let PkeyType
let ColNames =
let Pkey A D T = s.lookupi PkeyType, DomainTable)
let ColTypes = ...
let ColADTs = ...
let PkeyComp - Pkey AD T (compDomVal)

Get these from
the description
by string
manipulation.

Get domain types of the
primary key and the
other columns.

Get an ordering procedure.

! Make the relation header.let TheseCols := n il
for i = 1 to upb(ColNames) do

TheseCols := ColHead(ColNamesi i), ColADTsi i), TheseCols)
let ThisPkey := ColHeadi PkeyName, Pkey ADT, TheseCols)
let ThisRel = RelHeadi RelName; n il, ThisPkey, TheseCols)

let AddTuple = proc(pntr PKVal; *pntr ColVals) ! Procedure to add a tuple,
begin

let before:= ThisReK body) ! Find the tuple’s place in
w h ile before ~= ThisRel and ! primary key order.

PkeyComp (beforet values)(1), PKVal) do
before := beforei n e x t)

let after = beforei n e x t)
let NewTuple := tuple(before, after, ColVals)
beforei next) := NewTuple
afteri last) := NewTuple

! Create and insert the
! new tuple.

end
! other operations of the ADT

structure relationADT{proc(pntr,*pntr) addTuple;
....)

relationADT(AddTuple,)
end

! Other procedure holders.
! Return this and other
! operations as an ADT.

Figure 6.6 The Simple Form of the MakeRel Procedure.

6.3.2 An Adaptive Internal Model for GRAPE.

In the above model, the operation to dereference the "73" field of RC required
three levels of indirection. The new model proposes to replace the tuple structure
given above with one that is more appropriate to the particular relation. It would be
preferable to create RC by

AddressTuplei p n tr prior, next; s tring name; in t house; s tring s tree t)
let RC = AddressTuplei "R.Cooper", 73, "Bow Rd.")

and de-reference the 73 by

RC{ h o u se)

but to do this, the AddressTuple structure m ust be bound into the program. When

Chapter 6 145 Building Database Systems

writing the system, however, the relations the user will create are unknow n and yet
there m ust not be any restrictions on the relations that can be created. A mechanism is
needed which operates dynamically (as does the original structure) and produces a
structure like the above, which has im proved access speed and occupies less space.
The MakeRel procedure therefore has to use a new strategy.

let TupleClass = ...
let FieldTypes = ...
let PKeyName =

Get these from the
description by
string manipulation.

let MakeAddTuple =
"proc(pntr TheRel -> proc(pntr, *pntr))

begin
structure RelHead(.... ! as above
structure #TUPLECLASS ! Place holder for tuple structure,
structure intContainer(int intValue)
 ! more containers for string, bool, etc.
let PkeyComp = TheRel(pkey) (compDomVal) ! Get an ordering procedure.

let New AddTuple = proc(pntr PKVal; *pntr ColVals)
begin

let before= ThisReK body) ! Find the tuple's place in
while before ~= ThisRel and ! primary key order.

PkeyComp (before(#PKEYNAME), PKVal) do ! Place holder for
before := before(next) ! key field name,

let after = before(n ext)
let NewTuple := tuple(before, after, #PKEYVAL, ! Place holders for

#COLLIST) ! derefs of Primary Key and
before(next) := NewTuple ! Column values.
after(la s t) := NewTuple

end
NewAddTuple

end"

replaced MakeAddTuple , "#TUPLECLASS", TupleClass)
replaced MakeAddTuple , "#PKEYNAME", PKeyName)
replacei MakeAddTuple , "#PKEYVAL", "PKVal("++ FieldTypes{ 1) ++ ’’Value) ’’
for i = 1 to upb(FieldTypes) -1 do

replaceVector(MakeAddTuple , "#COLLIST",
"ColValsC ++ iformat(i) ++ ")(" ++FieldTypes(i+ l)++"Value)"

endVectori "#PKVALLIST")

structure ProcBoxiproc(pntr -> proc(pntr,*pntr)) Makeproc)
let CompiledForm = com pilz(MakeAddTuple,

ProcBoxi prod pntr -> proc(pntr, *pntr)); nullproc)
let AddTuple = CompiledFormi Makeproc)(ThisRel)

Figure 6.7 Part of MakeRel Using the Run-time Compiler._______

To exploit the efficiency of the second structure and still retain polymorphism,
use is made of the technique introduced in the PS-algol Database Browser (Section 4.2).
This is to construct all those procedures which make use of the tuple structure at run
time. Note that this need not be done for all of the operations of the ADT. For
^stance, the operation which checks whether a relation is empty can be statically
determined. This only references the relation header and this has the same statically
determined structure for all relations. In contrast, procedures like AddTuple cannot be
specified in advance as they make use of the dynamically produced tuple structure.

Chapter 6 146 Building Database Systems

The parts of MakeRel which are concerned with these procedures are rew ritten to be
generated automatically as shown in Figure 6.7.

In this second version, AddTuple cannot be directly specified, since this would
not perm it the specific structure of the tuples of the relation to be bound into the
procedure. A dding references to an object called ThisRel into the string defining
AddTuple will not make them refer to the required object, since AddTuple m ust be
compiled separately. Instead a procedure-generating procedure, MakeAddTuple, itself
constructed as a string, takes in a pointer to ThisRel and produces a version of
AddTuple which operates on ThisRel.

MakeRel takes in a pointer to the relation and generates the string containing
the tuple structure, TupleClass, and the vector of field types, FieldTypes, from the
input description. Then it constructs the MakeAddTuple procedure as a string which
varies only in the tuple structure, dereferencing the prim ary key value in the
comparison w ith before and the line of code constructing the tuple. In this line, the
values of the fields are unpacked from their containers by dereferencing the field of
the container. If the field is an integer field, for instance, it is contained in an
intContainer, whose field name is intValue. Conventionally the fields of a container
structure are always of the form type ++"Value", and so can be simply created by
MakeAddTuple . In the case of the address structure above, MakeAddTuple w ould be
as shown in Figure 6.8.

proc(pntr TheRel -> proc(pntr, *pntr))
begin

structure RelHeadi string rname; pntr body, pkey, columns)
structure tuplei pntr prior,next; string name; int house; string street)
structure intContainer(int intValue)
 ! more containers for string, bool, etc.
let PkeyComp = TheReKpkey) (compDomVal) ! Get an ordering procedure.

let New AddTuple = proc(pntr PKVal; *pntr ColVals)
begin

let before= ThisReK body) ! Find the tuple's place in
w h ile before ~= ThisRel and ! primary key order.

PkeyComp (beforei name), PKVal) do
before := before(n e x t)

let after = beforei next)
let NewTuple := tuplei before, after, PKVal(stringValue),

ColValsi 1) (intValue), ColValsi 2)(stringValue))
beforei next) := NewTuple
afteri last) := NewTuple

end
New AddTuple

end

Figure 6.8 AddTuple Generated for the address Structure.

MakeAddTuple is then compiled and run with ThisRel as its argument. It
returns the appropriate AddTuple procedure as its resu lt It is at this point that the
relation structure is bound to the AddTuple code to return a procedure which adds a
tuple to this relation. This procedure is then packaged as part of the ADT returned by
M a k eR e l .

Chapter 6 147 Building Database Systems

6.3.3 Further Speeding Up By Memo-ising.

There are some overheads when using this method. Relation creation is a
more expensive operation as it involves compilation. Although this should be offset
by more efficient access to the relation once it has been created, something can be done
to cut dow n on the need to compile every time a relation is created. Again, a
technique is used which was introduced in the PS-algol Browser. This is to transform
the tuple structure definition into a canonical form involving only the types of the
columns. Thus the address structure would be referred to as a s tr in g .in t .s t r in g
'structure and the structure defined in MakeAddTuple above would be:

structure tuple(string stringl; in t int2; string string3)

W hen the address structure is encountered, MakeRel refers to a table in the
database to find if it has already encountered a structure keyed by "string.int.string". If
it has, compiled forms of the procedure generating procedures, like MakeAddTuple in
the example above, are retrieved from the database and re-used. Otherwise, it will
compile new versions and enter them into the table, ready for any other structure, for
instance:

struc tu re studenti s tring sname; in t snumber; s tring class)

which will be m apped onto the same canonical form and will look up and use the
same procedures. Further savings still are achieved by perm uting the column types
into a canonical order. This method of "memo-ising" a structure is supported by PS-
algol tables.

6.4 Conclusions.

This chapter described two relational database systems program m ed in PS-algol.
An examination of Pedro H epp’s work showed how he used the persistent store to
develop his system increm entally. The program was divided into m anageable
modules, each of w hich w as im plem ented separately. This allow ed him to
experiment by trying different versions of modules with compatible interfaces, by
dynamically b inding them with the unchanged and with extant data. The cost of
rebinding and reloading in a less dynamic system should not be underestimated. It
also allowed him to provide a num ber of user interfaces which operate independently
of each other. He used the persistent store to record information about system usage,
an analysis of which enabled him to make improvements to it. He transformed all of
his data types to strings to defer data binding. Notice also the natural way in which
meta-data (the table and column information) was stored in the same way as user-
defined data. The clarity of the program structure means that this was much easier to
do than would normally be the case.

The GRAPE im plem entation has centred around attem pts to increase system
efficiency by using a callable version of the compiler to factor out these bindings. The
database engine" was program m ed to provide a relation as an Abstract Data Type.

The motive for this was an enforced and formal definition of m odule boundaries,

Chapter 6 148 Building Database Systems

guaranteeing that m odule replacement was feasible. Access to a compiler at run-time
has enabled the generation of the ADT using a more efficient representation as its
internal model. Finally, a m ethod was shown which reduces the cost of creating a
relation by using a canonical representation of relations, which enable those with the
same types to share code. This work points the way to systems which overcome the
objections of Donahue [Donahue, 1987] to the use of persistent environments.

W hen p ro d u c in g da tab ase system s in co n v en tio n a l p ro g ram m in g
environments, the program m er faces many kinds of problem. The production of the
system is significantly sim plified if these problem s are separated and tackled as
different modules. However, in most implementation environm ents such separation
usually involves significant complexity in inter-m odule comm unication. Thus the
task of organising data on backing store may be provided by a file system, while the
user interface is usually in the form of library modules. Therefore effort which should
be concentrated on ensuring that the most efficient storage structure is used and
providing the interface best suited to the task in hand is diffused into controlling the
complexity of the inter-module interfaces.

It is also difficult in conventional environments to provide a flexible system. It
is well know n that different applications require different storage m ethods, while
different interfaces suit different users' needs. However, providing more than one
storage m ethod or user interface will usually create a considerable increase in the
complexity of the system.

The prov ision of a persisten t environm ent allows the p rogram m er to
concentrate on the issues of basic functionality and user interface and to leave to
others problems of optimising the underlying system. In particular, the program m er
will not have to refer to any mechanisms extraneous to the program m ing language
(such as file m anagers) to handle the storage of data. Persistence by reachability
ensures that if the data are relational, storing all the data in a relation is achieved by
entering a pointer to the relation's header into the backing store. All of the associated
data (tuples, colum n names, etc.) will then be stored automatically. Furthermore,
GRAPE is a dem onstration that, given an efficient underlying im plem entation, the
description of the functionality can be both very high-level and efficient.

The particular features of PS-algol which have proved of most value have been
the pntr type and the callable compiler. By judicious use of the feature that complex
objects all share a common type, which is the union of all conceivable PS-algol classes,
the program has been m odularised in two ways. The functions of the program are
split into modules, stored in PS-algol structures and linked through p n tr references.
This perm its in d iv id u a l m odules to be replaced w ithout the need for any
compensatory w ork on the rest of the system. At the same time, the data have been
stored in PS-algol structures and therefore programs which run over an infinite range
of classes have been created. For instance, the header of a relation refers to a list of
tuples and in GRAPE, the structure of these list nodes varies from relation to relation,
without any effect on this header. Therefore, there is a static type check on the type of
the relation header and a dynamic type check on the type of the tuple.

This dynamic type check may be performed in two different ways. It may be
Performed for a limited set of types by a kind of type case statement using the is test for
c|ass membership. Alternatively, as seen in GRAPE, it may be performed by the run-
tlme compiler. This latter m ethod does the dynamic type checking by binding the type

Chapter 6 149 Building Database Systems

of the object into the operations required and then compiling these operations. In this
way, GRAPE binds the structural information about any relation into the operations
required of a relational system.

In sum m ary, this chapter has shown that program m ing a DBMS in a persistent
environment frees the program m er from the tim e-consum ing issues involved in
organising backing store and allows concentration on more im portant problems, such
as a more efficient access to data and a more ergonomic user interface. It has also been
shown that the program m er should be provided with a range of options on w hen the
binding of data to the program occurs. In particular, it has been show n how the
availability of run-tim e compilation w ithin the im plem entation language perm its
storage schemes which are both efficient and type-secure. A further implication is that
if many models can be implemented within the same system, they can be m ade to co
exist. In m uch the same way as the various bulk loaders co-exist in the BRDP, so a
database system in which the user is given a choice of m odelling system could be
constructed.

Chapter 6 150 Building Database Systems

Chapter 7. Building Data M odels in PS-algol.
Chapter 6 showed how classical data models such as the Relational Model have

been implemented in PS-algol. This chapter turns to higher level data modelling tools
and shows how they too may be implem ented. The background to this work is
described in 2.2.1, but to summarise, Semantic Data Models were introduced in the
mid-seventies to provide better tools for the design of databases. Initially they were
introduced as conceptual off-line tools and only lately have they been available as
software tools.

The reasons for this are twofold: to run these tools requires considerable
computational power; while to write the software involves complex program m ing
techniques. The form er restriction is reduced by the fall in hardw are costs.
Consequently the com puter can be used to perform more and more im plem entation
work, leaving the software engineer to concentrate on the design. This them e unites
the provision of high-level data modelling tools for database design and the provision
of helpful environments within which to produce software (see the next chapter).

The complexity of program m ing data m odelling tools, on the other hand, is
only reduced by the availability of better programming tools, such as PS-algol. Thus
the first im plem entation of the Functional Data Model was Kulkarni’s EFDM, which
is the first exam ple system considered in this chapter. W ritten in the same early
version of PS-algol as RAQUEL (see Chapter 6), Kulkarni provides a complete
implementation of the FDM within which useful database applications can be written.

The second system to be considered is PSRML. This is a Requirem ents
Modelling tool, which manipulates entities and activities involving those entities and
enables models of such objects to be populated and tested. The construction of this
system relies heavily on the callable compiler and the availability of first-class
functions. Object-Oriented systems, such as Smalltalk, in which behaviour is tied to
data instances, are too limited to enable all applications to be specified. 'Free-standing
units of behaviour' greatly facilitate the production of dynamic models.

The third exam ple is an implementation of Hull and Abiteboul's IFO model
carried out by Zhenzhou Qin at the University of Glasgow. This shows how a high-
level data model with a good quality user interface may be constructed using PS-algol.

Finally, the implementation of a minimal object-oriented language is described.
This language, MINOO, was designed to incorporate the essential features of Object-
Oriented program m ing, while omitting standard and well-understood program m ing
constructs. The purpose of the implementation was to show that the hard problems of
implementing such a system are tractable within the language.

The chapter concludes with some thoughts about the production of high level
semantic data m odelling tools and Object-Oriented systems within which efficient
database applications can be constructed.

7.1 EFDM: The Extended Functional Data Model.

EFDM is an implem entation of the Functional Data Model (FDM), described by
Shipman [Shipman, 1981] and discussed in Section 2.2.1.4. EFDM was constructed by

Chapter 7 151 Data Models

Krishna K ulkarni at the U niversity of Edinburgh [Kulkarni, 1983, Kulkarni and
Atkinson, 1986, Kulkarni and Atkinson, 1987]. The FDM m odels data, as its name
implies, using functions as the basic modelling unit for database design. An entity
type is represented by a function which creates objects of that type. Attributes are
modelled as functions between one entity type and another. Functions can be single
valued or m ulti-valued and they can be either base functions, having their data
explicitly stored, or derived, having their data implicitly derived from other functions.
This latter facility avoids duplicated storage of data and also provides inherent
integrity constraints. The FDM comes w ith DAPLEX, a sim ple update and query
language. The model forms the basis of the ADAPLEX project [Smith et al, 1983].

7.1.1 The Functionality of EFDM.

EFDM is a text-based interface to the Functional Data Model. A database
manipulated by the program consists of a schema with associated data, program s and
queries. The interface permits the bulk loading from files of the schema or the data, or
the input of data or schema by an interactive command language.

Schema definition is supplied by function definitions, such as:

declare personi) - » entity
declare s tu d e n t i) - » person

and declare name(person) -> string

which may appear in bulk loaded files or commands to the system.

Data input is either by specially formatted files for bulk loading or by DAPLEX
commands, such as:

for a new s in student
let cname(s) = 'Moyana'
let sname(s) = 'Johns';

or delete the s in student such that cnames(s) = 'Moyana' and
sname(s) = 'Johns';

Queries are entered in DAPLEX, as in:

for each s in student print cname(s), snameis);

DAPLEX commands and queries may be stored as named objects in the database,
as in:

program printFemaleStudents is
for each s in student such that sex(s) = "F" print cname{s), sname(s);

such a query can then be retrieved from the database and executed as required.

Chapter 7 152 Data Models

Interpreter

Syntax
Analyser

Lexical
Analyser Database

Database
Handler

Figure 7.1 A Block Diagram of the EFDM Program Structure.

User
requests

7.1.2 The Implementation.

The EFDM system consists of a single PS-algol program of some 3000 lines. The
layout of the program is shown in Figure 7.1. A user request passes through the
Lexical Analyser and the Syntax Analyser, emerging as a syntax tree. Schema
modification requests are handled by direct calls to the Database Handler, while data
update and retrieval requests pass through the Interpreter, which in tu rn calls the
Database H andler as required. The construction of the system is m uch simplified by
having user data and meta-data stored in the same way, thus allowing the functions of
the Database Handler to be used for both.

Three kinds of data object are stored in EFDM:

• entities;

• functions;

and • program s, which include updates, queries and the code for the body of derived
functions.

Program s are stored as binary parse trees, which consist of triples at each node
induding the operation at this node and pointers to left- and right-subtrees. These
trees are interpreted to derive values. The details of this are not relevant here.

The data stored about functions (as distinct from the values of the function) are
stored in two separate structures, a function structure and an entity structure. The
function structure has a num ber of fields, including:

• a string containing the name;

• a string containing the type of the function;

• a string containing the text specifying the function;

• an integer containing the number of arguments;

• a pointer to its associated entity structure;

Chapter 7 153 Data Models

and • a pointer to the values of the function, which is either:

• a program, in the case of a derived function;

or • a list of entities, in the case of a base function.

The user has no access to this structure. However, the m eta-data is m ade
available to the user in the following way. There is a system function, called function,
which creates functions in the same way that person creates person objects. This
system function is stored in the same way as all other functions and in particular has a
list of entities which are its values. In this case the entities represent the functions
which have been declared. Now the program is simplified, since adding a function to
the system is the same operation as adding any other entity. M oreover, this allows
functions to be declared which take functions as arguments, such as

declare nameifunction) -> string

which returns the name of a function. Eight such functions are automatically inserted
into the database when the system is started up. The data for these functions are stored
in exactly the same way as for the base functions defined on students, that is, the
values are associated with the function entity. For instance, there will be an entity
associated w ith the function grade and the entry in its function value vector
corresponding to "name" will be a pointer to the string "grade". Therefore, the user
can list all the functions in the schema by the query

for each / in function print nameifunction)

Entities are stored in lists with the other objects produced by the same entity
creating function. Each entity is an instance of the same PS-algol structure which has
four fields:

• a pointer to the function which generated it;

• a pointer to the next entity in the list of objects of this type;

• a pointer to a super-type entity (if there is one);

and • a vector of pointers to attribute values.

To illustrate this, Figure 7.2 shows part of the database after the following
declarations have been made:

declare personQ - » entity
declare nameiperson) -> string
declare sexiperson) -> string
declare studentQ -> person
declare matricistudent) -> integer
declare coursesistudent) - » string

arul then two students Bill, male, num bered 503, taking courses "ISl" and "CS2" and
male, 504, taking only "ISl" are introduced.

Chapter 7 154 Data Models

function "student"
values type entityname textno.args

entitystudeni declare student()-»perso

The Function

► function "function"

► n ext function entity

► vector of 8 pointers to 8
functions over functions.

Student Entity Student Entity "Jim'

IS1503 CS1 IS1504

function 'person'
name values type entity textno.args

entity declare person()-»entity

to a function
entity

Person Entity "Jim'

other people

Jim maleBill

Figure 7.2 Data Storage in EFDM.

The figure shows two function objects and four entity objects, two for each
student - one being his student entity and one being his associated person entity. All
°f the relevant inform ation is accessible from each object in the system. Thus, from
each function, the list of associated entities is accessible. From each entity, the

Chapter 7 155 Data Models

associated function and other entities of the same type are accessible, as are the base
values of attributes (functions defined on this type).

The values may be packaged in various structures - there is one for instance for
packaging integers, another for strings, as in GRAPE. The universal pointer type of PS-
algol allows references to any of these to be held within a structure of the same type (a
vector of pointers) and further allows values of m ulti-valued functions to be held in
the same way. For instance, name is a single-valued function whose result is a string,
so the pointer to a name will point to a string container. The function, courses, on the
other hand, is m ulti-valued, and the pointer to the courses points to a list of values.
Thus, a totally polymorphic structure has been imposed on the data and the bulk of
the program can handle entities w ithout needing to know which type they are.

Notice that, unlike m any DBMS structures, no identifier is stored w ith the
entity. The pointer to the entity is unique and consistent and may be used as the
internal identifier for the entity. Wherever the data for the entity actually reside, they
will always be referred to by the same pointer value. The only time in writing such a
system in which it is necessary to provide such an identifier is when the user requires
such an identifier for such tasks as indexing. This was the case for the BRDP, as argued
in Section 5.3.5. EFDM only permits scanning over object sets or content-based access
and has no need for user identifiers.

The values of m ulti-argum ent functions are stored slightly differently, bu t also
as a list of values, each value having associated with it a list of its argum ents and a
pointer to the result value. Thus, if the following base function is declared:

declare grade{ student, course) -> string

then the data that M oyana Johns got an "A" for course "ISl" is stored as shown in
Figure 7.3. The value pointer out of the function structure for grade points to a special
structure containing three fields:

Grade function

rf

I

Argumeqfr-

I
Moyanna Johns entity IS1 entity

Value "A"

next value of grade

Figure 7.3 Multi Argument Function Storage.

• a pointer to a list of the argum ent values for one instance of the grade
function;

• a pointer to the associated value of grade for those arguments;

Chapter 7 156 Data Models

• a pointer to the next instance.

All of this data is stored in the same database. None of the program is stored in
the database as it has been written as a single unit, w ith none of the m odularisation
described in the next chapter being used. The top-level table of the database points to a
number of views, of which only "global" is available initially. Each view is a
subsidiary table and this table contains pointers to all of the functions, queries and
programs defined in this view - these are all jumbled up together in the same table,
which m ay be inefficient and might confuse maintenance program m ers. All data is
accessed via these function objects and programs.

7.1.3 The Benefits of PS-algol.

K ulkarni's initial a ttem pt at im plem entation used the PASCAL language.
However, this required interfacing the system to a low-level data m anagem ent system
and when the first version of PS-algol became available, he re-im plem ented EFDM
entirely in PS-algol. There was a reduction in the am ount of source code to about a
third compared w ith the earlier PASCAL version. Among the benefits identified by
Kulkarni were:

• the organisation of data movement being handled by the system;

• the reduction in data misuse due to type security;

• the ability to organise the data in a uniform way through PS-algol's universal
pointer type;

• and an increase in speed of access to database items due to efficient heap
m anagem ent.

The construction of the system is much simplified by having user data and
meta-data stored in the same way, thus allowing the facilities of the database handler
to be used for both. The fact that function values are referred to via pointer fields,
whether they are single base values explicitly stored in container structures, multiple
base values stored in a list of values, or derived values stored as a program for
retrieving them, greatly simplifies the programming. Kulkarni was in fact able to
write a polymorphic system by making his system interpretive.

Kulkarni could have made yet more gains by using two more facilities offered
by the PS-algol system. Firstly, the program as it stands is a single unit of about 3000
lines of code. PS-algol offers the ability to break the program into small modules,
compile them separately and store them in the database. This means that the program
could be developed incrementally, with consequent savings in compilation time and
debugging time. Secondly, the code for queries, programs and derived functions is
stored as a parsed tree and is then executed by the interpreter. This is an example of
deferred binding. The speed of the system is reduced by this. Using the callable
compiler (not available in the version of PS-algol he used), EFDM could factor out the
binding by compiling the code instead. It could transform the tree into a PS-algol
program and then compile it and store it in a form which would have a much faster
execution speed.

Chapter 7 157 Data Models

7.2 A Requirements Modelling Tool.

The history of Com puter Science m ay be view ed as the developm ent of
m ethodologies w hich enable hum an beings to specify com plex com m ands to
machines with increasing informality and greater levels of abstraction. In the field of
Software Engineering, the R equirem ents M odel has been described as the first in the
series of m odels w ith which an informal specification of requirem ents is transformed
into a m achine executable form. A desirable development, therefore, w ould be the
production of software which enables Requirements Models to be specified and then
executed. This has proved difficult to achieve in conventional program m ing systems,
but w ith the appearance of Persistent P rogram m ing Languages, m any of the
difficulties, which are arbitrary in nature, disappear.

This section describes the first steps in an attem pt to produce an executable form
of Greenspan's Requirements Modeling Language (RML) [Greenspan, 1984; Greenspan
et al.f 1986], introduced briefly in Section 2.2.5.1, in PS-algol. The program , PSRML
[Cooper and Atkinson, 1988], provides a graphical interface to a system in which
Entities and Activities can be specified. It is planned to extend the program in a
variety of ways.

7.2.1 Requirements Modelling and PS-algol.

In his thesis, G reenspan stated that w hat was needed for Requirem ents
Modelling was a formal language for specifying "a model that reflects the content and
structure of the application world" [Greenspan, 1984]. He further stated a num ber of
principles to be adopted when designing such a language:

• it should be object-centred - that is, the elements of the language should be
objects representing the concepts and entities of the modelled world;

• it should provide mechanisms of abstraction to assist the m anagem ent of
complex data;

• of particular usefulness are the well-known abstraction mechanisms -

aggregation - the creation of entities out of their component parts;

classification - the collection of similar objects into sets;

and generalisation - the organisation of classes of objects into ISA hierarchies;

• the language should be capable of expressing assertions, entities and activities;

• there should be uniform ity in the way in which objects within the language
are treated;

• the language should be formally expressed;

and • stress is also pu t on the value of "box-and-arrow" languages to provide a
visual bridge between the mental model and the formal one.

Chapter 7 158 Data Models

To implement such a language has, in the past, proved to be extremely difficult
using conventional program m ing languages. The in troduction of Persistent
programming Languages takes a significant step in reducing these difficulties, since the
facilities of PS-algol fit well with Greenspan's principles.

As has been stated already, if it is not an "object-oriented" language, PS-algol is
certainly a language which orients the program m er tow ards handling
objects.

The abstraction mechanisms are simply implemented in PS-algol as follows:
PS-algol structures are an aggregating facility;
sets can be implemented in a number of ways, by vectors, tables or linked

lists, for example;
generalisation hierarchies can be linked by pointer fields as discussed in

section 7.5.3.

It is also clear that PS-algol can model all three object types:
structure instances could be a good model for entities;
procedures could be used to model activities;

and procedures with a boolean result could model assertions.

The data-type completeness, orthogonal persistence and presence of graphical
types naturally leads to a uniformity of approach.

and The graphical types also facilitate the provision of a "box-and-arrow" language
alongside the formal language. Several experiments at the University of
Glasgow are in progress, for instance, on the construction of graphical
interfaces to standard database systems.

The conclusion is that PS-algol provides a fitting language in which to
implement such a system. The RML language used as a basis will now be described
and then the implem entation details will follow.

7.2.2 The Language RML and Some Descendants.

R equirem ents M odeling Language (RML) was developed as part of the TAXIS
project at the University of Toronto by Sol Greenspan. It is fully specified in his thesis
report [Greenspan, 1984], but its essentials are now described.

RML attem pts to model three kinds of object: the en tity , the ac tiv ity and the
assertion. Classes of each of these are defined by a syntax which makes the three
abstraction mechanisms immediately apparent. For instance, a new class of en tity is
introduced by a specification in which the class it is in, the aggregated properties and
the classes supertype(s) are explicitly stated as in Figure 7.4. This means that the class
of children is in the pow er set of people, that the class is a subclass of P E R S O N , has
reading__age as an intrinsic part, has an associated guardian entity and the constraint
that its guardian is over 21 years of age.

Chapter 7 159 Data Models

CHILD in PERSON_CLASS isa PERSON with
part readingjige: AG EJVALUE
association guardian: PERSON
invariant guardian*age > 21

Figure 7.4 An RML Entity Type Definition.

Similarly, activities have components and supertypes and are grouped together,
as is shown in Figure 7.5, in which the "arguments", "local variables" and "results" of
the activity are specified, followed by assertions representing pre- and post-conditions.
Finally, the body of the activity is described as an u n o rd e re d set of "calls" to other
activities, with values of their parameters being supplied.

ADMIT_PATIENT in ACTIVITY_CLASS with
input p: PERSON
control w: HOSPITAL_W ARD

phys: P H YSIC IA N
output pt: PATIENT
precondition arrvl: ARRIVAL(who:p)
postcondition admitted?: IN_HOSPITAL(who:p)
part check-id: CH ECK_ID (p)

put: CHOOSE_WARD(zu, phys)

Figure 7.5 An RML Activity Definition.

Finally, a sse rtio n s may be specified, an example being given as Figure 7.6, in
which the assertion is presented as a list of arguments followed by an unordered set of
sub-specifications, which together constitute the assertion.

IN_HOSPITAL in ASSERTION_CLASS w ith
argument p: PERSON
part patient?: IN(p, PATIENT)

present?: PHYSICALLY_PRESENT(who:p)

______________ Figure 7.6 An RML Assertion Definition.

In RML, a m odel consists of a set of definitions of these objects and Greenspan's
thesis describes how m odels are developed by use of the diagramm atic language,
SADT [Ross, 1977]. Greenspan lays out plans to provide a consistency checker for
models, but nowhere does he set out any thoughts on how to provide an "executable"
version. This w ould be useful in that the behaviour of a model could be examined
under various input conditions.

As part of the Alvey project to develop a semi-intelligent IPSE, attention was
focussed on Greenspan's ideas, extended to a process model by adding a new object
class, the role, which m ay be viewed as an entity whose subparts include activities.
Again, this was tied to a diagram m atic language, this time via the RAD - "Role
Activity Diagram".

Chapter 7 160 Data Models

In order to create a version they could use, the me-too project then created a
language which is essentially an executable subset of RML, called Teeny [Bennet and
Rowles, 1986]. Teeny is an interactive interpreter, which understands definitions like
those given in Figures 7.7 and 7.8.

(CHILD
IN (PERSON_CLASS)
ISA (PERSON)
WITH ((part ((reading_age AG E _V A LU E)))

(assoc ((guardian PERSON)))))

Figure 7.7 A Teeny Entity Type Definition.

(ADMIT_PATIENT
I N (ACTIVITY_CLASS)
I S A (ACTIVITY)
W I T H ((input ((p PERSON))

(control ((a; HOSPITAL_WARD)
(phys P H Y S IC IA N)))

(output ((pt PATIENT)))
(precond ((arrvl ARRIVAL(p to 'who))))
(postcond ((admitted? IN_HOSPITAL(p w h o))))
(apart ((check-id (exec 'CHECK_ID(m akeff('p who))

(put (exec 'CHOOSE_WARD(makeff(u> ward))
(makeff ('phys doc)))))))))))

________________ Figure 7.8 A Teeny Activity Definition.________________

Entities can then be instantiated, for instance by:

(in s t 'peter (makeset 'CHILD) 12 nil)

which would create a child object, called peter, whose reading age was 12. Activities
can then be executed by for instance:

(exec 'ADMIT PATIENT (makeff(peter 'who)
('hisward 'ward)
('hisdoc 'doc)))

Notice that Teeny has introduced "system" activities, which essentially form a
basis on top of which other activities can be defined, including activities to create
objects and execute other activities. In order to execute an activity, the sub-activities
are queued and executed as their pre-conditions become satisfied. Clearly the syntax of
this language leaves a lot to be desired, although this is understandable given the
speed with which the language was implemented. The traditional command-line
form interface can also be improved upon.

7.2.3 PSRML: The Goals.

PSRML is a version of RML w ritten in PS-algol. It aims to provide a fully
working environment within which models may be developed. It will provide:

Chapter 7 161 Data Models

• a complete well-defined language for the specification of models;

• a graphical interface for the construction of models;

• commands to examine the behaviour of models by instantiating entity classes
and executing activities;

• the graphical display of models as they are executed.

It is envisaged that a system with these features would be a powerful tool for the
development of software systems. Given the description of PS-algol above, there
seems no intrinsic reason w hy an elegant version of such a system could not be
written. There follows a description of a first pass in the developm ent of such a
system, describing first of all the PSRML language, then the user interface and finally
some im plem entation details.

7.2.4 PSRML: The Language.

At present, PSRML supports only activities and entities. A full description of
PSRML Syntax is given in [Cooper and Atkinson, 1988] and will be illustrated here
with examples. Figure 7.9 exemplifies the specification for entity classes. PSRML
permits attributes to be specified to be m andatory or not, whereas RML distinguishes
intrinsic parts and associated entities. The types of the attributes can either be one of
the PS-algol scalar types - bool, in t or string - or a previously defined entity type. Note
that throughout PSRML, all elements encountered m ust already have been defined,
except that self-recursive definitions are permitted. This is a weakness of the language
that will eventually be removed, since m utually defined types are essential to many
designs.

entity CHILD isa PERSON with
required guardian: PERSON
optional reading Age : int
modifier changeReadingAge;

Figure 7.9 A PSRML Entity Type Definition.

An activity definition is illustrated in Figure 7.10, in which the specification of
"variables" has been left essentially as in RML, but the syntax for specifying the body of
the activity (which corresponds to part in RML) is slightly changed. Each element of
the body is a partially specified activation of some other activity. That is, each element
of the body consists of:

• an identifier;
• the nam e of some activity which is either a base activity or has been already

specified;
• an opening bracket;
• an optional list of param eter values separated by commas which are either

literal values or parameter names from which a value will be extracted at
"run-tim e";

Chapter 7 162 Data Models

• also optionally, an arrow followed by a list of param eter names, which are to
receive the output values from the called activity;

• a closing bracket.

activity ADMITPATIENT with
input p: PERSON
control w: HOSPITAL_WARD,

phys: PHYSICIAN
output pt: PATIENT
body checkID: CHECK_ID(p),

assignDoc: pick("DOCTOR" -> phys),
assignWard: CHOOSEWARD(phys -> w),
makePatient: make("PATIENT", p, phys, w -> pt);

Figure 7.10 A PSRML Activity Definition.

Two points need to be noted. Firstly, the param eters have been passed in the
specified order for the activity. Secondly, a set of base activities had to be provided in
order to give the executing system a bottom. In the example, the two base activities
pick and make are used. The former, given the name of an entity type, provides a
menu of all instances of the type for the user to choose between, make also takes in a
dass name together with a list of values for the attributes of the object and returns an
instantiation of the class, with the given attribute values. Two other base activities
which have so far been provided are: makenull, which given the nam e of a class,
returns an instance of the class, with its field values set to null; and changeField,
which, given an object, the name of an attribute of such an object and a new value for
that attribute, sets the field to the value provided.

Clearly this language is still too limited for serious work. Extensions to create a
more powerful language are described later.

P S R M L
Edit the set
of models

Current Model

My ModelSelect
— model
Display the

model

Edit the
model

Start a
Testdrive

Re-start a
Testdrive

Load/Compile
Source

help Commit quit

Figure 7.11 PSRML Initial Screen.

Chapter 7 163 Data Models

7.2.5 PSRML: The User Interface.

PSRML is provided as a m enu-based system , re-using m any of the same
modules as the Bibliographic Reference Database System described in Chapter 5. One
of the main factors which accelerated PSRML development was the availability of a re
usable set of modules, planned as part of the BRDP development. The program starts
with a m enu display as shown in Figure 7.11.

The seven boxes on the left-hand side of the screen are light buttons which
provide the following functions:

Edit the set of models: activate a sub-menu in which the user is allowed to
view, add to and delete from the list of models, and to display or edit a
particular model.

Select model: select, from the set of models, one to be currently active.

D isplay the model: display the currently selected model.

Edit the model: edit the currently selected model.

Start a Testdrive: initiate an instantiation of the current model.

Re-start a Testdrive: re-enter an instantiation of the current model.

Load / com pile source: load a file from backing store and subm it it to the
compiler, storing compiled objects in the currently active model.

The display m odule shows a list of all the entity types, activities and "testdrives"
which have been specified in the displayed model. Further work will implement the
ability to select elements in these lists to view further details. The editor m odule,
when im plem ented, will provide guided editing of parts of the model in a format
compatible w ith the display module. Again, Chapter 5 describes how such a feature
has been implemented in the BRDS system. The source loader is a compromise with a
non-persistent world in that it allows bulk-loading of a model from the file store.

The concept of the "testdrive" is that of a mixture of instantiation and execution
of the current model. Starting or restarting a testdrive brings up Figure 7.12, which
largely obscures the initial display. W ithin the test drive, five more options become
available:

make an entity: The program requests by menu the type of entity which is to be
instantiated and then requests, via a simple string editor, an identifier for
the new object. Then, by recursively calling a system -supplied set of
input procedures, the system requests values for the attributes of the new
object. The new object is inserted into the set of objects of the given type.
If the entity has supertypes, then values for the inherited properties will
also be requested and appropriate structures will be inserted into the sets
of objects of those supertypes.

list the entities: A new window is opened which lists all the types of entities
together w ith all instances of them.

Chapter 7 164 Data Models

Hdit the
of mod

Select
mode

"Display"
model

fcdit th
model

Re-stai
Testdr

Load/Con
Source

P C P A/f T

TestDrive ONE of M y Mod

make an
- e n t i ty

list the
entities

display an
entity

specialise
an entity

activate ar
activity

quit

Figure 7.12 PSRML Testdrive Menu.

specialise an entity: Having selected an object of a given type, a m enu of all
entity types which are sub-types of the current one is given The user
selects one of these sub-types and all of the property values required to
specialise the current object so that it is of the new type are requested.
Note that the converse, generalising an entity, has not been implemented
- the inheritance hierarchy has been implemented in only one direction.
This again m ight be seen as a restriction which can later be rem oved if
desirable. There should be no significant difficulty in achieving this.

activate an activity: Values for the input parameters are sought and a symbol
table is set up with these values in it. Then all of the sub-activities are
pu t into a queue. Each sub-activity is examined to check if all of its input
param eters can be evaluated (that is are they literals or values already on
the symbol table). If so, the sub-activity is started and all of its sub
activities are pu t onto the queue. Sub-activities are recursively queued
until a base activity is encountered, w hereupon this base activity is
executed. W hen a sub-activity completes, its results are returned to its
parent. The paren t then updates its symbol table from the values
re tu rned . N on-base activities are com pleted w hen all of their sub
activities complete. Eventually, either all of the original activity's sub
activities are completed or no more can be initiated - the latter leading to
an error message. When an activity is successfully completed, the user is
asked for identifiers for each of the activity's results. These are then
stored in their appropriate sets in the database. This whole process
should eventually be animated for the user's benefit.

display an entity: Again, a type of entity is requested, followed by the identifier
for the object to be displayed. Both are requested by menu, following the
general principle of preventing the user from making a syntactic error (in
this case by having to type in the identifier again). The menus appear as
shown in Figure 7.13.

Chapter 7 165 Data Models

Edit the
of mod

Select
m ode

Display
m ode

Edit th
mode

Re-stai
IfiStdl

L oad /C o t
Source

P 7? A/f T

TestDrive O N E of M y Mod

m ake an
entity

list the
entities

d i s p l a y an

e n t i t y

specialise
an entity

activate an
activity

quit

S e l e c t t y pe

j” ? 1.staff
doctor
ruse
patient
inpatient
outpatient

S e l e c t pat ient
W
backwards
waison
went
western
wtae
wilkinson
wiamson
wslon
wood
woofe
forwards

Figure 7.13 PSRML Object Selection.

The object is shown as in the diagram, with all the information for a patient,
together w ith all the specific information inherited from any supertype. Note that if
the object, PAT1, had been requested from the PERSON class, its properties which are
relevant to the PATIENT class would not have been displayed. Figure 7.14 shows the
information displayed.

Edit the
of mod

Select
mode

"Display”
mode

Edit th
mode

Re-star
Testdr

Load/Con
Source

P g 7? A/f T

TestDrive ONE of M y Mod

make an
entity

list the
entities

display an

specialise
an entity

activate an
activity

quit

Display of patient "wilkinson "

Patient Number - 2463

Name - Ellen Wilkinson

Figure 7.14 PSRML Object Display.

Chapter 7 166 Data Models

7.2.6 The Implementation of Entities

The implementation makes full use of the persistence mechanism of PS-algol to
store the software, the schemas and the instances. The structure of the database is
given as Figure 7.15. The top level table contains four system entries and then one
entry for each model defined. The four system entries contain: the base activities; i /o
procedures for the base types; various software components organised in the m anner
described in Chapter 8; and help information. Each contains a table from which hang
three other tables, one each for the entities, activities and testdrives of the model.

”PS1LML", "greenspan"

"%$baseActivities" —

"%$Eprocs" ---- Table
— and e

"%$utilities" —►---- Tabl

"%$help" “ ►— Table(

---------- "UniversityModel"------- 0

---------- Other Models

Table of base activities,
makenull etc.

2 of procedures which input
Dutput the base type values.

e of low-level software components,

}f help information.

p---------"Entities'* Table of
Z Z Entity Types

-------- "TestDrives" ►r - Table of
— Testdrives

-------- "ActvUies"— Tableof
Activities

Figure 7.15 The Overall Structure of the PSRML Database.

In im plem enting the entities, full use is m ade of the callable compiler to
simplify the instantiating program . The im plem entation uses the same type of
technique as has been used in the GRAPE system (see section 6.3). The problem to be
overcome is the implem entation of polymorphic base operations for the entities. For
instance, there is a need for a display procedure which can operate over any kind of
object and yet allow the objects to be stored in an efficient structure.

When compiling an entity type definition in PSRML, PS-algol builds a structure
and enters it int the Entities table. The structure of the Entities and Testdrives part of
the database is illustrated in Figure 7.16, for the following example:

en tity PERSO N w ith required cname, sname: string;
en tity STAFF isa PERSON w ith required staffNo: int;
en tity STU DENT isa PERSON w ith required matricNo: int;
en tity TUTORIAL w ith requ ired tutor: STAFF, tutee: STUDENT ;

Chapter 7 167 Data Models

entity Type
Entities'

’PERSON' {nil}Source {nil} nil nil PERSON'

System Type
"string"

System Type
"string"

 cname
Four Procedures bound
tothe structure: >
EPERSON(string EPERSON .cname,

string EPERSON.sname)
sname

’STAFF’ Soun {nil} nilnil'STAFF'

 "staffNo1Four procs ...

’STUDENT’ Structure very similar to "STAFF'

'TUTORIAL' Source {nil} {nil} nil nil'TUTORIAL'

Four procs ... tutee'

tutoi PERSON
Type'TestDrives'

FIRST’ RLG’PERSON’ Richard Cooper nil

’DK’ David Kerr nil

— "STUDENT’ ’DK" 4321’SECOND’

STAFF
Type

'RLC-'STAFF’ 1234

TUTORIAL
Type

TUTORIAL’ 'RD' nil

Figure 7.16 The Structure of PSRML Entities and Types.

Each entity type is represented by a structure containing a num ber of fields,
including

• the type name;
• the definition in PSRML source language - so that it may later be edited;
• vectors of pointers to sub- and super-types;
• pointers to lists of required, optional and modifier fields;

Chapter 7 168 Data Models

and • a group of four procedures which are automatically built to be efficient for the
given entity type.

These four procedures form an Abstract Data Type of the operations allowable
on an entity. At present, these are:

makenull - returns an empty instance of the class;
makeuser - returns an instance of the class, requesting from the user values for

all the fields (including inherited fields);
printer - prints the values of the fields (including inherited fields);
changeField - changes a field of an entity to a given value.

The procedures operate on structures holding entity instances, w hich are
tailored to be efficient representations for this type. For instance, a person w ould be
represented by

structure EPERSON(string PERSON.cname', string PERSON.sname;
pntr PERSON .type; *pntr PERSON.inherits)

in which all of the inform ation required to construct this structure definition is
derived from the type definition by string m anipulation. The last two fields are
common to all such structures and are om itted from Figure 7.16 for brevity. They
point to the type of entity and vectors of inherited information respectively.

let makenull = proc(pntr TD, IP -> pntr)
begin

structure ECHILD(int CHILD.reading Age; pntr CHILD .guardian;
pntr CHILD, type *pntr CHILD .inherits)

structure TYPE{ string TypeName;....; *pntr SuperTypes;
proc(pntr/pntr->pntr) TYPE.makenull;....)

let superVec = TD(SuperTypes)
let inheritVec = vector IwbisuperVec):: upbi superVec) of nil
for i = lzub(superVec)to upb(superVec) do

inheritVeci i) := superVeci i)(TYPE.makenull)(superVeci i), IP)
ECHILD(0, nil, TD, InheritVec)

end

let changeField = proc(pntr ENT; string Fname; pntr Fvalue)
begin

structure ECHILD(int CHILD .reading Age; pntr CHILD .guardian
pntr CHILD.type *pntr CHILD.inherits)

structure TYPE(string TypeName;....; *pntr SuperTypes;
prod pntr,pntr->pntr) TYPE.changeField;....)

structure intBox(int intValue) ! ditto for string and bool
let superVec = ENT(CHILD.type) (SuperTypes)
case Fname of

"readingAge": ENT{ CHILD.readingAge) := Fvalue(intValue)
"guardian": ENT(CHILD.guardian) := Fvalue
default: for i - lwb(superVec)to upb(superVec) do

superVeci i)(TYPE.changeField)(ENT(CHILD.inherits) (i), Fname, Fvalue)
end

Figure 7.17 Sample Constructed makenull and changeField Procedures.

The p rocedures then em bed this struc tu re defin ition in to code which
constitutes the required algorithm, again by string m anipulation. For instance, the
Wukenull and changeField procedures for the entity class CH IL D are as shown in

Chapter 7 169 Data Models

Figure 7.17. The makenull procedure gives default values for the two direct fields,
readingAge and guardian and then recursively calls the versions of makenull tailored
for the supertypes to create null sets for the inherited information.

Note how these procedures are polymorphic over any entity type, using the pn tr
type to provide polym orphism . For instance, the changeField procedure has three
arguments: a p n tr to an entity, a string field name and another p n tr to the new value.
The last m entioned will either be an entity in its own right or a canonically packaged
base type value. The meat of the procedure is then a case statement, which contains
one branch for each field of the structure. If that field is a base type field, the resulting
code unpackages the value and puts it into the field. If the field was an entity, the
assignment is a direct assignment of pn tr references. If the field was neither of the two
fields specified for a child, any inherited data are searched next by a call to the version
of changeField tailored to the supertypes.

Similarly, the makeuser and printer procedures are constructed to make use of
the tailored ECHILD structure, but are slightly more complex. They have to make calls
to two system procedures one of which gets values from the user while the other
prints objects of the base types. All four procedures are, of course, constructed using
the callable compiler technology seen in the descriptions of the browser (section 3.2),
the whole object operations (section 3.3) and GRAPE (section 6.3).

Referring back to Figure 7.16, the lower half of the figure shows a testdrive in
which three entities have been introduced: a staff member called "Richard Cooper",
number, 1234; a student "David Kerr", with matriculation number, 4321; and a tutorial
linking the two. All instances are stored in tables for each type. Note that two entity
objects have been created for the student and the staff m em ber, linked by an
inheritance pointer. Data are available only from higher up the inheritance chain.
Following "DK" from STUDENT, all three pieces of information can be reached, while
following "DK" from PERSON, the matriculation num ber is inaccessible.

7.2.7 The Implementation of Activities.

Contrary to expectation, the implementation of activities makes no use of the
callable compiler. This is essentially because all activities are im plem ented in the
same structure w ith no tailoring of structure to activity. Each activity is implemented
by a structure with the following fields:

• the activity name;
• the definition in PSRML source language;
• vectors of pointers to sub- and super-activities;
• a pointer to the body, a list of sub-activities, used to keep a record of which

sub-activities have been completed;
and • pointers to lists of formal input, control and output param eters (these lists are

simply specified as a structure with two string fields, containing the field
nam e and type, and two pointer fields to the value and the next
param eter on the list).

Each sub-activity is represented by a structure with:

• the sub-activity identifier;
• a pointer to the activity concerned, either user-defined or a base activity;

Chapter 7 170 Data Models

• a list of the actual input parameters, each containing the param eter name, its
type and a value which is either a literal or a variable name;

• a similar list of the actual output param eters, except that all values will be
names of variables;

• a progress record, currently either true (i.e. done) or false;
and • a pointer to the next sub-activity.

Figure 7.18 shows the activity table after the following activities have been
defined:

activity SetStNum with
input stffmem: STAFF, n e w n u m : int;
body D oSet: changefield("staffNo", s tf fmem, newnum);

activity pkstStaff5 with
control aStaff: STAFF
body DoPick: pick("STAFF" -> aStaff)

DoSet5: SetS tNum (aStaff, 5);

which change the staff num ber of a staff member, where both the staff mem ber and
the new num ber are input; and instruct the user to pick a staff member and set their
staff num ber to 5.

The process of activating an activity consists of calling the interior procedure
which runs all the sub-activities of an activity, setting the input list to n il, and then
taking any outputs returned from the activity, requesting identifiers from the user and
storing them in the persistent store. The interior procedure works as follows:

O Take any inputs and put them into the symbol table.

© Set all the progress records of all the sub-activities to false.

© Circle round the set of sub-activities until all have been completed. For each
uncompleted sub-activity do the following:
(D For each required input, either it is a literal, which is the value, or the

symbol table is checked to find a value. If any value is unavailable,
the sub-activity is not started.

d> If the sub-activity is a base activity, call it w ith the supplied inputs
augm ented by some system information, such as the model and
testdrive names.

(D If the sub-activity is user-defined, activate it with a recursive call to the
interior procedure.

© W hen the sub-activity completes, add any outputs to the symbol table.

© At the end of each cycle of the sub-activities, either:
there are more sub-activities to complete and some completed this time

round - in this case the cycle is repeated;
there are more sub-activities to complete but none completed this time -

the activity will never complete and so an error is signalled;
or all the sub-activities are completed.

© In the last case, all the required outputs are built into a list and returned to
the caller.

Chapter 7 171 Data Models

"Activities"
activity

"SetStNu

subactivity

"SetStNum’ Source {nil} {nil} nil nil

— "stffmem" -

— "newnum

"DoSet"

"pkstStaff5-

Type staff

System Type
"integer"

To System
Activity
Changefield

nil False nil

"Field"

System Type
"string"

"staffNo"

"Object"
+

Type Staff

"stffmem"

"Value" nil newnum

System Type
"integer"

"pkstStaff5" Source {nil} {nil} nil nil

I— "aStaff'-^Type staff

"DoPick" +To System
Activity Pick

False

'Return"

System Ty
" entity"

£
nil

"Type" nil "staff*

System Type
"string"

"astaff

"DoSet5" *To Activity
SetStNum

i nil False nil

"stffmem" t
Type Staff

"aStaff

newnum nil

System type
"integer"

Figure 7.18 The Structure of PSRML Activities.

Chapter 7 172 Data Models

7.2.8 PSRML Conclusions.

It has been possible to implement a minimal Requirements M odelling System
in PS-algol. The program m ing effort for this task was less than one m an-fortnight as
the implem entation language was so suited to the task in hand. The reasons for this
speed may be listed as follows:

• PS-algol structures perm it the m odelling of com plicated objects such as
activities with considerable freedom.

• The PS-algol pntr type permits the creation of polymorphic code bound to no
specific data structure and yet typed within the language.

• The callable compiler further permits this code to be dynamically bound to an
infinite variety of structures at run-time.

• First-class procedures greatly simplify the code which executes activities as this
code circles a set of unexecuted sub-activities, executing them as soon as
possible until no more are left. This code makes use of the ability to store
procedures which represent the sub-activities, retrieve them and execute
them as appropriate.

• The orthogonal persistence, w hen coupled w ith first-class procedures,
facilitates the construction of user interface modules in the BRDP, which
could be directly re-used in PSRML.

• Furtherm ore, access to these procedures is sim plified by use of the
m ethodology for m odule control outlined in Section 8.2. No doubt, it
would have been furthered aided by use of a version control system such
as that presented in Section 8.3.

Further discussion of the im plem entation strategy is given in Section 7.5, in
which several issues concerning the implementation of these systems are discussed.

There has been insufficient experimentation to see to w hat degree inconsistent
models can be created in the system, but it would seem that the system can be made
proof against such misuse. It is clear that the system is reasonably powerful and easy to
use. PSRML code compiles m uch more quickly than w ould have been expected.
However, m any extensions need to be made.

Firstly, the syntax might be considerably expanded. Some developments in the
near future could be:

• a return to Greenspan's part and association separation of entity properties;
• the ability to specify the constancy of properties;
• the ability to specify sets of objects;
• the inclusion of the whole PS-algol type system as base types, thus allowing

the use of pictures as properties, for instance;
• the removal of the need for the definitions to be ordered with only backwards

references - this is a real restriction in a requirem ents m odelling
language, much more so than in a programming language.

Chapter 7 173 Data Models

Secondly, assertions should be added, together with some notion of processes.
The value of free standing assertions is doubtful, but as condition fields of activities
and entities, they are very useful. They can be simply im plem ented in PS-algol as
procedures which return a boolean result.

Finally, an anim ated display of the activation of an activity m ight prove
informative and helpful.

7.3 The Implementation of the IFO Data Model.

U nder the superv ision of the au tho r, Mr Z henzhou Q in created an
implementation of Hull and Abiteboul's IFO Model [Abiteboul and Hull, 1987]. This
provides a graphical language with which to m anipulate a Semantic Data Model and is
further described in section 2.2.1.6. The m odel distinguishes various sorts of
relationship between entities and is designed for the analysis of update semantics in a
high order data model [Cooper and Qin, 1989].

7.3.1 The PS-algol Interface to IFO.

The p rogram provides a graphical interface to both schem a and data
manipulation. These are well m atched and, as in PSRML, make use of the user
interface m odules created for the BRDP. Interaction starts w ith an initial m enu with
options to edit the schema, entering a graphical schema m anipulation m ode, and to
edit the data, entering a graphical data m anipulation mode. These different modes
will now be described.

Vehicles

Schem a O p s
Help
Create Node
Create Attribute

Specialise
Generalise
Move Node
Delete Node
Delete Arc
Redraw
Print
Save Schema
Quit

Vehicle N umberOfWheels
I

Car Trolleybus

0 0 0 0 OO & ® q
Figure 7.19 Schema Design in IFO.

Chapter 7 174 Data Models

7.3.2 Schema Definition in PS-algol IFO.

The schema definition interface breaks the screen into three w indow s as
displayed in Figure 7.17. The schema under construction is in the upper right window
of the screen. At the bottom is a row of light buttons representing different node types.
These include:

square boxes w ith "S", "I", "B" and "R" for the basic types: string, integer,
boolean and real;

a diam ond for atomic types;

a circle for "free” types, i.e. types which are specialisations or generalisations of
other types;

a circle with a star in it for sets;

a circle with a cross in it for aggregate types;

and a box with a "q" in it.

This last box does not represent a node type, but instead is used to quit the creation of
relationships involving more than one object.

On the left of the schema definition w indow is a m enu w ith a num ber of
options for modifying the schema. Note first that the general m ethod of adding to the
schema is to create nodes and then the relationships between them. The options are:

create node - the user m ust select one of the symbols from the row in the
bottom window of the display for the kind of node. Then the position in
the graph is selected, by clicking over a point in the w indow when a
name for the node is entered. For set nodes, the user m ust then select the
node of which this one is a set. For aggregate nodes, the user m ust
successively select the component nodes, ending the selection by clicking
over the "q" box.

create a ttribu te - the user selects a node and then selects other nodes to be its
attributes, ending by selecting the "q" box.

specialise - the user selects a free node on the graph and then selects the node(s)
of which it is a specialisation. The creation of specialisation arcs is halted
by selecting the "q" box.

generalise - is similar to specialise. Again, a free node is selected and then the
nodes of which this one is to be a generalisation are selected.

delete a node - the node is selected. If the type has no data instances and there
are no dependent nodes, it will be deleted. Otherwise, the user is warned
and, only if a direction to continue is given, does the node and all of its
dependent information get deleted.

Chapter 7 175 Data Models

delete an arc - the user draws the mouse across the arc with the button held
down. The relationship is removed from the schema, but if there are
data instances which use this relationship, again the user will be warned.

m ove a node - the user clicks and drags the node to be m oved. All the
relationship arcs are moved in sympathy.

redraw - sometimes the movement and deletion options cause disturbance to
the schema diagram. This option refreshes the diagram on the screen.

print - send the current diagram to be printed by a laser printer.

save the schema - the schema is made persistent and is given an identifying
nam e.

7.3.3 Data Manipulation and Update Semantics

A similar m enu is given for data manipulation:

add an instance - not allowable over printable nodes. The user is requested for
values of any attributes of the node. For different kinds of node, further
information may be demanded:

set nodes - values to go into the set are requested;

specialisation nodes - attributes of the nodes being specialised are also
requested.

generalisation nodes - select first which subtype it is and then proceed as
if that node had been selected, except that the value will also be
added to the set of instances of the generalised node.

Note that each time a value of a given node is created, it is added to the
set of instances of the node. Thus, if A is a specialisation of B, creating an
A calls for the creation of a B as well. Instances are created both in sets of
A and sets of B, with a link between the two instances. Selecting a value
for a printable node requires a value to be typed in. Selecting a value for
any other type is done by first providing a menu of instances, using the
Chooser. The user may select one of these or create a completely new
instance.

delete an instance - remove an object selected by menu. Check if there are any
dependencies upon it. If there are, warn the user and give the option of:
aborting the delete; deleting the dependents; or replacing the dangling
reference.

edit an instance - display the instance and use the display as a m enu giving a
choice of which attribute to edit. Changing a base attribute calls an editor
of the appropriate type. Changing a complex attribute calls a m enu of all
the objects of its type.

176 Data Models

display an instance - select a node and then an instance of that node, which will
then display the instance with all of its dependent data.

These operations are designed to preserve data integrity. W henever an instance
is created, all of its relationships are given values. W henever an instance is deleted or
edited, or a type is deleted, all of the references to changed or edited objects are kept
secure. That is, a referend can only be removed if the reference is transferred to some
object of the appropriate type. M aintaining these sorts of integrity constraints was
considerably simplified by Hull and Abiteboul's analysis of update semantics.

7.3.4 Implementation Details.

7.3.4.I The User Interface.

The user interface has been constructed to provide the kind of graphical support
for schema and data management that semantic data models potentially facilitate. The
interface was constructed easily by using the following:

The tools described in Chapter 4 were used to provide m enus of operations
(menu); error-m essages (error.message); the entry of integer and string data (ieditor
and seditor); and the automatic generation of menus of objects (chooser).

The picture type was used to create the various icons of nodes and arcs.

The raster operations were used to do all of the manipulation of the schema and
data graphs. Very little code was required to specify these operations.

7.3.4.2 The Representation of Types.

The types form a graph of type nodes, all of which are stored in a PS-algol table.
There are different kinds of nodes, but all are represented with the following common
structure:

structure Node(string NodeName; a name for the type
string NodeType; whether "set”, "aggregate", "string", etc.
integer Xc; the X position in the schema graph
integer Yc; the Y position in the schema graph
pntr setOf; if a set type, the node which it is a set of
pntr inSet; the reverse link to the above
pntr attr; a list of attribute nodes
pntr inAttr; a reverse link to the above
pntr aggOf; if aggregate type,list of nodes aggregated
pntr inAgg; a reverse link to the above
pntr speSub; a list of nodes which specialise this one
pntr speSuper; a list of nodes specialised by this one
pntr genSub; a list of nodes generalised by this one
pntr genSuper; a list of nodes which generalise this one
pntr instances) a table of instance objects.

every node, w hether it is a set node or not, has a slot for a reference to the node of
which it is a set.

Chapter 7 177 Data Models

The operations to create and delete type nodes are sim ple pieces of code.
Creation consists of making a new node and forming the correct kind of bi-directional
link to existing nodes and then draw ing the new node in the type graph window.
Deletion consists of breaking all the links and removing the node from the screen.

7.3.4.3 The Representation of Data.

All data instances also make up a graph, the nodes of which are similarly stored
in a common structure. This has been set up to perm it the retrieval of the whole of a
data object by following pointers. This results in a structure w ith a lot of one way links
so that when retrieving an object, one also can retrieve: all of its attributes; the objects
of which it is a set or an aggregate; or the object of which it is a specialisation or
generalisation. The structure is as follows:

structure Instancei string InstanceName;
pntr self;
pntr IsetOf;
pntr IattrOf;
pntr laggOf;
pntr IspeSuper;
pntr IgenSub;
pntr genSuper;
pntr instances)

the identifier for the instance
if of a printable object, the packaged value
if a set object, a list of objects in the set
a list of the object's attributes
if an aggregate object, a list of objects aggregated
a list of objects specialised by this one
a list of objects generalised by this one
a list of nodes which generalise this one
a table of instance objects.

Again, there is a great deal of redundancy, with a consequent simplification of the code
which creates objects and the code for browsing over the data values.

The object creation procedure is recursive, starting from a given node, where it
creates a new object with a new identifier, and visiting any subordinate node. W hen
the procedure reaches a new subordinate node, the user is given a m enu of all objects
of that type to choose between (by a call to the Chooser). If none is chosen, a new object
can be created instead. Thus there may be a cascading creation of objects, all handled by
a short piece of code.

Data retrieval is similarly straightforward. The user selects a type node and then
gets a m enu of instances of that type. A recursive procedure then retrieves and
displays the subordinate information by traversing the instance graph.

7.3.4.4 The Structure of the Program.

The operations are coded as a set of parameterless procedures, which are all
short. The operations are held together by a simple hierarchy of m enus and the
consequent code comes to about 1000 lines of PS-algol code.

7.3.5 Summary.

The functions of the data model have been provided in a convenient graphical
form in a relatively short program. Note that the program has not used any of the
complex run-tim e compilation techniques used in PSRML, since the model does not
encompass user-defined polymorphic operations, nor has there been an attem pt to
provide optimal efficiency. The decision between using interpreted and compiled code

Chapter 7 178 Data Models

will be discussed in Section 7.5. The model is relatively sophisticated and it may be
concluded from this that the implementation of any data model which deals purely
with the description of the data structure of objects may be simply program m ed in PS-
algol, even one providing such a rich set of modelling tools as Hammer and McLeod's
SDM [Hammer & McLeod, 1981].

The facilities of PS-algol that have been of most use here are the graphical types;
the sim ple re-use of the tools described in Chapter 4; the ability to use first-class
procedures to form hierarchies of menus; and above all the p n tr type. This allowed
the structures shown in section 7.3.4 to be set up simply, w ithout concern for the type
of the referend, and perm itting the choice of that type to be determ ined at run-time.
These features all contributed to the simplicity of the code and the consequent brevity
of the program.

The im plem entation was tried out on a small group of relatively sophisticated
users. The general feeling was that the model was somewhat fussy in its restrictions
and that the variety of node types tended to confuse rather than clarify the schema
design. Some of this may have been due to implementation and user interface design
decisions, but the response seems mainly due to the model itself, which was compared
unfavourably with the more familiar Entity Relationship model. On the other hand,
some of the aspects of the implementation received favourable comments. The direct
manipulation style makes the program easy to learn. The ability to populate the
schema with small data sets also proved a useful test of the structure. Most popular of
all, however, was the facility that allowed the schema to be printed and taken away for
further offline work.

7.4 The Implementation of a Minimal Object-Oriented Language.

One of the outcom es of the interest in Semantic Data M odelling is the
development of O bject-O riented program m ing languages (OOPLs), in w hich
programming in general is eased by the closer correspondence of program elements
with the real-world objects being modelled (see section 2.2.2 for further discussion of
OOPL's). The elements of an Object-Oriented language are typically: object identity; the
classification of objects; inheritance; and encapsulation.

The im plem entation of an OOPL is clearly a different proposition from the
provision of an applicative or even a functional language. Much of the organising
work is being done for the programmer by the language environment. This cannot be
without cost to those providing that environment. Organising methods, inheritance
and encapsulation in a software environm ent which gives the program m er as little
help as writing C under UNIX, for instance, is a daunting prospect. The compiler and
run-time support system m ust be pieced together with the semantic detail of the
supporting software being lost in the programming detail.

The crucial difference between PPL's and OOPL's lies in the support for dynamic
aspects of the software system in these languages. In an OOPL, these are tied to the
objects of the system, whereas in a PPL, data and program co-exist as elements with
equal rights. W hat emerges from this comparison is that the m ethods of Smalltalk
can be program m ed in PS-algol, with its first-class procedures, although the converse
is difficult to imagine. In this section, methods of building the significant facilities of
an OOPL into a small PS-algol program are described. The language, called MINOO

Chapter 7 179 Data Models

[Cooper, 1989b] (minimal Object-oriented language), has been designed consciously to
omit as m any as possible of the common and well understood program m ing language
features. There are no com putational constructs, expressions or arbitrary length
names. There are typed objects, inheritance, the description of operations and
attributes, overloading and dynam ic binding. All data access could proceed via
message passing, although it was decided to provide direct access to the attributes as
well, because this was felt to be useful.

The rest of the section will consist of: a description of MINOO; the ways in
which the various com ponents of MINOO w ere im plem ented in PS-algol; and
conclusions about the suitability of PS-algol for the task and for program m ing
languages of the future.

7.4.1 A Minimal Object-Oriented Language

Before discussing MINOO and its implementation, the nom enclature used will
be defined, since the nomenclature in the literature is varied. The basic entities of the
language are called objects. A type is the abstract description of a set of objects with
common properties. An attribute is a passive property of a type. An operation is an
active property of a type. An object may be referred to as an instance of a type.

Each object in the language is an instance of a particular type. A type consists of
sets of (notionally private) attributes and (public) operations. The basic commands of
the language perm it the creation of types, the creation of instances, the assignment of
values to objects and the execution of operations. The commands have been provided
in the form of old-fashioned single-character named commands (":" for type creation,
"I" for object instan tiation , etc.) to ease the im plem entation. C om m ands are
terminated by semi-colons and all layout characters are ignored. There is no benefit in
analysing the syntactic quality of MINOO, as its only purpose is to demonstrate how
the relevant semantics may be implemented in PS-algol.

7.4.1.1 Type creation

There are three base types, "s" string, "i" integer and "b" boolean. User-defined
types can be added by type creation commands. The syntax of type creation allows the
user to specify a name for the type, the name of a supertype, a set of attributes and a set
of operations. The example:

:A :B
. k:s, /, m: C
! /(q: s) !$!p(N="k", V=cj); R; ;,

r(- C) I z:C = $\g(N = "1"); Rz; ; ;

which is explained as follows:

introduces a type definition;
"A" is the name of the type (all names are single letter);
":B" means A is a sub-type of B (inherits all B's attributes and operations);

introduces the new attributes ;

Chapter 7 180 Data Models

"k:s" introduces an attribute of type s (a system-defined base type for strings),
whose name is k;

",/,m:C" introduces two more attributes I and m of user-defined type C;
"!" introduces the new operations, defined on type A ;
"/(q:s)" is the signature of the first operation - its name is / , it takes in a string

param eter q and has no result;
"!$!p(N = "k”, V = q);" is the first command of the operation - it takes object $

(which means "self" in MINOO) and applies the operation p, passing in
actual param eter values "k" and q, for formal param eters N and V . p is a
system defined attribute-setting operation (see Section 7.4.1.5) which, in
this case, sets the attribute named k to value of q;

"R;;" term inates the operation, returning nothing;
"," means there are more operations;
"r(- C)" is the signature of the second operation, which returns an instance of

typeC;
"Iz:C = $ l g (N = "1");" - this command creates z, an instance of type C, and

initialises it to the result of executing another system operation, g, on
"self". This operation returns the value of the nam ed attribute in this
case /. The effect of the command is to create z as the value of attribute /.

"Rz;;" terminates the operation, returning the value of z;
";" - the last semi-colon finishes the type definition.

So operation / sets the value of the k attribute to the input param eter, while r returns
the value of the / attribute.

Thus, a type definition consists of its name, an optional supertype, a list of typed
attributes and a list of operations. The super type may be om itted, in which case the
supertype is e or "entity". An operation has a list of typed argum ents of arbitrary
length and one or no result types. The body of an operation consists of a sequence of
commands separated by semi-colons and these are d raw n from instantiation ,
assignment and operation invocation commands and term inated by an operation
return command.

7.4.1.2 Instantiation

Objects are introduced into the system by Instantiation comm ands. These
require the specification of the object's name and type. The values of the attributes of
the object may also be specified. For instance, in the command

I a:A = (fc="abc", /=X);

"I" introduces the instantiation command;
V is the new object identifier;
":A" introduces its type;
"=" introduces attribute values - this could be omitted and default values for the

attributes would be assumed;
" /r="abc" " gives k a string literal value;
" ,1 =X" gives 1 the value of object X, which m ust be of type C, or one of C’s sub-

types, of course;
" ; " ends the instantiation - note property m takes a default value.

Chapter 7 181 Data Models

The values of the attributes can be specified as expressions of arbitrary
complexity as described below.

7.4.1.3 Assignm ent

Object assignment is performed by commands like

A a = b or A a - clf(q = "abc")

where the "A" introduces assignment and the right hand side of the assignment may
be any expression of the type established for a when it was instantiated.

7.4.1.4 O peration Application

The application of an operation of an object is introduced as in

! c!/(q = "xyz")

where c is the object name, / the operation name, q the name of a param eter and "xyz"
its input value. At command level, the interpreter prints out the value of the result of
applying the operator. Use of the "!" command indirectly within an operation itself is
only valid for operations that do not return a result, although other operations can
appear as part of an expression.

7.4.1.5 System Provided Operations

Each type needs to have four operations automatically defined on it. These are:

"c": create an instance - "c" takes in a set of attribute name, value pairs and
returns the created object. It is only called by an "I" command.

"s":

"p":

(show) prin t an object - "s" recursively traverses the properties of the
object, printing any base-type information it can find. Thus the program:

: A. k:s;
: B. ks, m:A ;

I a:A = (k ="abc");
I b:B = (I = "def", m - a);

! blsO;

which will give

Create type A, with one string field, k.
Create type B, with string field, I and a

field m of type A.
Create an A called a, field set to "abc".
Create a B called b, with fields set to

"def" and a.
Apply the show operation.

("def", ("abc"))

pu t an attribute value - "p" takes a attribute nam e as param eter N, a
string, and a value as param eter V, and sets the a ttribu te’s value
appropriately, as in:

! fl!p(N = "k", V = "ghi");
lalsQ; will give ("ghi")

Chapter 7 182 Data Models

"g": retrieve a property value, given the attribute value -

! alp(N = "k", V = b \g (N = "1"));

retrieves property I of b and sets property k of a to it. Note that handling
these operations "p" and "g", which have a polymorphic param eter, V, in
a strongly typed environment may be expected to give some problems.

7.4.1.6 Extra Redundant Syntax

A lthough the above is sufficient, some extra syntax was added to make the
process of testing the interpreter tolerable.

a) The usual dot notation for attributes was added - thus

b.l could replace b\g(N = "1")

in the above example. The effect, however, is identical, although it does mean that the
attributes have been rendered public, which might be desirable anyway.

b) Similarly, a print command was added:

P a,b; is the same as ! a!s(); ! bls();

c) A dum p facility was added - thus

D;

applies the "s" operation to everything in the symbol table.

d) Finally "?" quits the interpreter.

7.4.1.7 Expressions

Given the two notations, an expression handler was built which perm its the
free mixing of ".'"s and "!'"s. Thus, imagining type C, w ith an attribute y of type D,
where D has an operation o which takes a string parameter p, then

fl!r().t/!o(p='T23")

is an expression which takes a of type A, applies its r operation, returning something
type C. This has the y attribute dereferenced and the resulting object has its o

operation applied. The type of the expression is the same as the type of operation o.

7.4.2 The Implementation

The first point to be noted was that the interpreter was written w ithout recourse
to automatic compiler-generation tools. Secondly, it was decided to im plem ent the

Chapter 7 183 Data Models

language incrementally, starting with the base types and gradually adding the other
features.

7.4.2.1 The Type Structure and Base Types

A simple PS-algol structure was created to hold types:

structure type{ s tring tname;
p n tr subtypes;
p n tr supertype;
p n tr properties;
p n tr operations;
p n tr class)

a table of subtypes
a single supertype
a table of name -> type

ditto
a table of instances

Two base structures, a table of types and the symbol table were set up at this
point. Then a m ost general type, "e" was created to act as the bottom of the type
hierarchy. This looks like:

le t eType = type{ "e", tableQ, n il, tableQ, tableQ, tableQ)

and is unique in having n il in its super-type field.

The three base types were then set up. They required, first of all, PS-algol
structures to hold their instances. These were:

structu re stringBoxi string str ingVal)
structu re intBoxi in t i n tV a l)
s tru c tu re boolBox(bool boolVal)

Then the three type structures were created. For strings, the type looked like:

le t sType = type("s", n il, eType, tableQ, tableQ, tableQ)

That is, there are no sub-types of a base-type, the super-type is eType and the
three final fields all initially contain em pty tables. The attributes table will rem ain
empty, the operations table will have the four basic operations ("c", "s", "p " and "g")
inserted, and the class table will have strings inserted as they are created. After sType
is created, a reference to it in the sub-types field of eType is made.

The basic operations for these base types are fairly trivial. The "c" operation
creates a new instance of a stringBox structure, for instance. The "s" operation will
unpackage a stringBox structure and print the contents. The "g" and "p" operations,
on the other hand, do nothing as these base-type structures have no attributes to
manipulate.

7.4.2.2 The Interpreter and Expression Evaluation

The basic operation of the interpreter consists of a single control loop which
seeks command characters and then continues to interpret a command of this type.
The commands it expects are:":", "I", "A", "P", "D" and

Chapter 7 184 Data Models

The com m ands "I", "A", "!" and "P" all involve calls to an evaluator for
expressions as described in Section 7.4.1.7. Expressions can appear in two places in the
language. Here, they are to be directly evaluated w ith their results being used
im m ediately by the com m and. They can also, how ever, appear in operation
definitions, in which case they are to be stored for later evaluation. Therefore, the
expression evaluator comes in a double form. It may be called either to evaluate the
expression or to return a piece of PS-algol code, which when executed will perform the
evaluation. The evaluator can handle base-type literals or complex expressions. The
evaluation of complex expressions is a mixture of look-ups to get attribute values and
executions of operations. This mixture is illustrated with the expression

a!r().i/!o(p="123")

already encountered.

In com m and mode, this finds the object a; finds its type; finds the r operation
and applies it; it then finds the resulting type and calls the g operation, w ith input N
="y"; this results in another object whose type is found; operation o is then found and
applied w ith p set to "123". The result of this operation is the result of the whole
expression.

If the expression appears in the definition of an operation, the code illustrated
in Figure 7.20 is created.

let typ eA := s.lookupi "A", T)

let p a ra m e te rs l := tablei)
let p a ra m e te rs ! := tablei)
s .en teri "N", pa ra m eters l , s tr ingB ox i "y"))
let t y p e Y := s.lookupi "Y”, T)
let param eters^ := tableO
s .enteri "p", parameters3, s tr ingB oxi "123"))
let typ eO := s.lookupi "O", T)

Type A looked up when a
was instantiated.

The parameters for r
The parameters for g, which

was inferred from the dot.
The type of the y attribute.
The parameters for o found

explicitly.
The type of the O operation.

s tr in g B o x i s . lookupi "o", typeO iopera tions))(ocode)(
T , S T , s .lookupi "g", typeYioperations))(ocode)(

T, S T , s .lookupi "r", typeAioperations))(ocode)(
T, ST, a, param etersl), param etersl),

parameters3)(s t r i n g V a l))

Figure 7.20 Generated Code for Expression Evaluation.

That is, the program sets up references to tables for the param eters to the three
operations and then does look-ups for the operations and applies them . The
applications are perform ed from the innerm ost outw ards. That is, the code for
operation r of type A is applied to an empty parameter set (parametersl). Then the g
operation of type Y is retrieved and applied w ith the param eter N set to "y"
(parameters2). Finally, the o operation of type O is retrieved and applied to the result
of this, w ith param eter p set to "123" (parameters3). The result is packaged into a
stringBox.

Chapter 7 185 Data Models

7.4.2.3 Type Creation

This part of the interpreter proceeds as follows:

a) Create a new type structure, with the name in it and all other fields empty.

b) Scan the input for a supertype. If there is one, pu t a reference to it in the
relevant field, otherwise use the default, etype. At the same time, put a
reference to the new type in the subtypes field of the supertype.

c) Read the attribute names and types and insert them into the properties table,
using the attribute name as the key and the type as the value.

d) Autom atically generate the "c", "s", "p" and "g" operations and insert them
into the operations table - see next section.

e) Read and parse the operation specifications and create operations for
insertion into the operations table.

f) Insert the type into the table of types and quit.

Steps (a) - (c) and (f) need no further elaboration, bu t the generation of the
system and user-defined operations are complex tasks and will be described in the next
two sections.

7.4.2.4 Automatic Generation of the System Operations

This technique will be described with respect to the type:

: B.hs, m:A.

where A is some previously defined type. From this input, the five lexemes B, I, s, m
and A are available, where s and A have been checked to be valid types.

These can be used to build an appropriate PS-algol structure for B, which is

structu re TypeB{ string B.l; p n tr B.m; pn tr B.super, B.type)

(where the last two fields point to inherited attributes of the object and the object's
type) and around this are built the four procedures. It was decided to create a
procedure type sufficient to cater for user-defined operations as well and this is

proc(p n tr theTypes, SymbolTable, self, params -> p n tr)

where the first two param eters are required to import the local MINOO environm ent
into a procedure so that the procedure can be compiled independently. In order to
store these operations in tables, they need to be packaged into PS-algol structures. The
following was chosen for the purpose:

s tru c tu re operationi s trin g oname;
proc(pntr, pntr, pntr, pn tr -> p n t r) ocode;
p n tr arguments, resultype)

Chapter 7 186 Data Models

in which the four fields hold the name, the compiled code, a table of argum ent name,
type pairs, and a pointer to the type of the operation's result type.

The operation building technique is illustrated with respect to the "s" operation
which prints out an instance, as shown in Figure 7.21. The purpose of this operation is
to p rin t ou t the attributes of an object separated by commas and surrounded by
parentheses. If the attribute is complex, this in turn is prin ted in a further set of
parentheses. Inherited attributes are also printed, preceded by a colon.

The operation receives a pointer to the object as its th ird param eter, OBJECT.
The first and second param eters im port the type and symbol tables from the current
environm ent, while the fourth param eter is a dum m y since s does not take any
parameters. Following some initialisation, including building in the structure for this
type and the general purpose structures for types and operations, the operation finds
the object's type. Then it starts the printing with a "(", before directly printing field /,
which it can do imm ediately as it is a base type. Printing the other field is more
complicated. The operation m ust look up the field's type 04 in this case) and then find
the "s" operation for type A, which can then be called with the value of field m as its
principal (third) parameter. The inherited information is printed out in the same way
as for complex attributes. The "s" operation is found from the type's supertype and it
prints the structure containing the inherited attributes.

proc(pntr T, S, OBJECT, dummy -> pntr)
begin

structure B(string BA; pntr B.m; pntr B.super, B.type)
structure typei string tname, tstruct;

pntr subtypes, supertype, properties, operations, class)
structure operation(string oname; proc(pntr, pntr, pntr, pntr -> pntr) ocode-,

pntr arguments, resultype)
let thetype = OBJECTS B_.type)
let TT := nil; The type of an attribute.
let subshow := nil The s operation of TT.
let dummyResult := nil Receives dummy result form
write "(" recursive calls.
let commas := "" Flag to omit comma before
write commas first field.
commas :="," Print commas from now on.
write,iOBJECTi BA),....
write commas
TT := s.lookupi "A", T) Lookup type A.
subshow := s.lookupi "s", TT(operations)) Get A's s operation.
dummyResult := subshowiocode)i T, S, OBJECTi B.m), n i l) ! Print attribute.
let superT = thetypei supertype)
if superTi tname) ~= "e" do Print inherited data if there are

begin any, i.e. the supertype is not "e".
write ”
dummyResult := s.lookupi "s"juperTi operations))iocode)

(T, S, OBJECTi B.super), n i l) ! Print inherited values.
erri

write ")"
nil A dummy result.

end

Figure 7.21 The Automatically Generated Operation s.

Chapter 7 187 Data Models

This procedure was built entirely by string m anipulation w ith only the parts
underlined being derived from the type information. This string is passed to the
compiler and the resulting compiled code is pu t into an operation structure, with
name "s", a blank table of arguments and a n il for result type. This structure is then
inserted into the operations field of the type being created.

7.4.2.5 User-Defined Operations

The in terpretation of user-defined operations will be illustra ted for the r
operation of type A given above. This results in the creation of the PS-algol procedure
given in Figure 7.22.

proc(pntr T, ST, OBJECT, PARAMS -> pntr)
begin

structure typei string tname, tstruct;
pntr subtypes, supertype, properties, operations, instances)

structure operationi string oname; proc(pntr, pntr, pntr, pntr -> pntr) ocode;
pntr arguments, resultype)

structure plisti string pname; pntr pvalue, p n e x t)
structure A(pntr A.l; pntr A.m; string A.k; pntr A.super, A.type)
structure stringBoxi string stringVal)
structure intBoxi int in tV a l)
structure boolBoxi bool boolVal)
let vobject := nil; let initials := nil
let parameters := nil; let dummy := nil
let ztype := s.lookupi "C", T)
let parametersl := tablei)
s.enteri "N", parametersl, stringBoxi "1"))
let typeA := s.lookupi "A", T)
let z := s.lookupi "g", typeAioperations))(ocode)

(T, ST, OBJECT, parametersl)
z

end

___________ Figure 7.22 A User Defined Operation in MINOO.____________

This procedure takes in the table of types, the symbol table, the object and a table
of the input parameters. It starts of by defining all of the structures it needs, including
its own type structure. Certain dum m y variables are declared, not all of which are
used in the context of this particular procedure. Then the command "I z:C = $!g(N=
"1")" is transform ed into code which does the following:

looks up the type of z as ztype - this is not used here but would have been used
if the initialisation had involved creating a new object rather than
copying one;

sets up a table of actual parameter values, with one entry pairing N and "1";

finds operation "g" of type A and applies it to the current object, OBJECT - the
result is z.

Lastly, the "Rz" command is compiled by placing a reference to z as the last line
of the procedure -this has the effect of returning the pointer to the object z.

Chapter 7 188 Data Models

Thus a general purpose com pilation of MINOO "methods" into PS-algol
procedures has proved possible. The basic m ethod of this compilation is to turn
strings in MINOO into strings of PS-algol code, noting any objects which need to be
looked up from the environm ent. Those look-ups are then inserted into the
procedure before the code which uses them.

7.4.2.6 Polymorphic Operations

It has been noted above that the system operations deal polymorphically with
attributes of any type. There is no trouble in providing "s" (as show n in Section
7.4..2.3) and "p", since the calling program will know the type of the object which it
sends. In the case of "g", however, there is a problem, since it returns an object of
unknown type. This point may be illustrated by looking at the procedure for "g" of
type A in Figure 7.23. Here the procedure picks up the property nam e from the
parameter table and checks which of the three attributes of A it is. If it does not find
the attribute in the current type, it refers to the super-type to find it. Whichever it is, it
dereferences the field value from the structure and in the case of the string attribute
packages it up in order to return it as a structure. W hat also happens, however, is that
the type of the result is inserted into the slot for the result type of the operation. This
means that the calling program can use this field to check the type of the result in the
same w ay as is done for non-polymorphic procedures. The procedure is given as
Figure 7.23.

proc(pntr T, ST, OBJECT, PARAMS -> pntr)
begin

structure typei string tname, tstruct;
pntr subtypes, supertype, properties, operations, instances)

structure operationi string oname; proc(pntr, pntr, pntr, pntr -> pntr) ocode;
pntr arguments, resultype)

structure plisti string pname; pntr pvalue, p n ex t)
structure Ai pntr A.I; pntr Am; string A.k; pntr A.super, A .type)
structure stringBoxi string stringVal)
structure intBoxi int in tV a l)
structure boolBoxi bool boolVal)
let propname = s.lookupi "N”, PARAM S)(stringV al)
let theT = s.lookupi "A", T)
let theO = s.lookupi "g", theTi operations))
case propname of

"1”: { theOi resultype) := s.lookupi "C", T); OBJECTi A . l)}
"m": { theOi resultype) := s.lookupi "C", T); OBJECTi A.m)}
"k": {theOi resultype) := s.lookupi "s",T);stringBoxi OBJECTi A .k)) }
default:

begin
let superGet =s.lookupi "g", theTisupertype)i operations))
let temp =superGeti ocode)(T, S, OBJECTi A.super), PARAM S)
theOi resultype) := superGet (resultype)
tem p

end
end

Figure 7.23 The Polymorphic Automatically Generated Operation, g.

This is an instance of a generally applicable technique installed directly into this
Procedure by the system. However, the technique could be extended by replacing the

Chapter 7 189 Data Models

result type field of the operation structure with two fields, one for its expected type and
another for the returned type, which would be a sub-type of the expected type. In the
case of "g" the operation expects to return an entity object, but would actually return
some other type which it would report in the returned type field. Using techniques of
this kind, the various sorts of polymorphism and overriding discussed in Section 2.2.2.
are im plem ented.

7.4.2.7 Object Instantiation

The instantiation com m and depends heavily on the system -generated "c"
operations. The command passes to the appropriate "c", the type table and symbol
table, the type of the new object and a list of attribute name and initial value pairs.
The values are derived by calls to the expression evaluator. The "c" operation then
does the following:

an instance of the type structure is created with a pointer to its type;
if the type has a super-type, the "c" function of that type is called and a pointer to

the resulting object is put in the super field;
the list of initial values is scanned and fields of the structure filled in as

appropriate;
the new object is returned.

The returned object is then put into the class of the type and into the symbol
table, which completes the functions of the "I" command.

7.4.2.8 Assignment and Operation Execution

The "A" com m and finds an object to be assigned to and then calls the
expression evaluator to provide the new value. O peration execution is also a very
short piece of code, which receives an operation, builds a table of input param eter
values and calls the operation. If the operation has a result, this is printed by a call to
the appropriate "s" operation.

7.4.2.9 Inheritance

Inheritance is achieved by pointer links. The type structure has two-way links
between sub- and super-type. The instances have links from sub- to super-type values.
When an a ttribute for an object is requested by a call to the "g" operation, the
operation passes the request up to the super-type if the attribute is not defined in this
type. When an operation is requested, again the search for the operation starts at the
current type and is passed up the inheritance tree.

7.4.2.10 Summary.

In this section, some of the detail of the implem entation has been described.
The diagram in Figure 7.24 shows the layout of the underlying data structures. The
user-defined types are shown in rectangular boxes split into five parts (the base types
appear in single boxes). The type hierarchy is shown as diagonal lines. The five
compartments represent the name, the sub-types, the operations, the attributes and the

Chapter 7 190 Data Models

instances. Instances are shown in rounded boxes, attributes in rectangular boxes with
two com partm ents (the name and the type) and operations are shown as lozenges
containing the name, the table of argum ents and the result type. Using this simple
structure, together with two system objects containing tables of all the types and all the
instances, all of the object-oriented data has been represented.

123")

Figure 7.24 The Structure of the MINOO Value Space.

7.4.3 Conclusions Regarding the MINOO Interpreter.

This section has shown how an interpreter for a m inim al Object-oriented
Programming Language has been implemented in PS-algol. While not tackling some
of the w ell-understood problems of compiler construction, this work dem onstrates
how implementations of the critical parts of such a language can be achieved. Types
and objects are represented by PS-algol structures. Inheritance is achieved by following
pointer chains. M ethods or operations are compiled into PS-algol procedures which,
heing first-class elements of the language, may be m anipulated freely and stored,
retrieved and applied as required. Access to objects can be restricted to procedures
stored as part of their associated type.

This w ork could proceed by developing the language to include further base
types, m ulti-valued types, computational constructs and expressions, although it is

Chapter 7 191 Data Models

believed tha t this w ould require no new technology. Experim ents on the
representation of types as objects in the system, on the other hand, may provide added
simplicity in the resulting structure. More interestingly, m ultiple inheritance could be
included as a m ethod for investigating the semantic problems of inheriting from more
than one super-type. The inclusion of parameterised or generic types is a significantly
more difficult problem, but would perm it experimentation w ith the various notions
involved. The language could be given a sophisticated user interface, using the
graphical tools described previously, and including software developm ent tools like
syntax-directed editors. Finally, the language could be m ade persistent. This
implementation was never designed to include persistence, which was covered in the
previous experim ents. From these, it is know n that add ing persistence w hen
implementing in PS-algol is a very small task.

The constructs of PS-algol have been exercised and found sufficiently robust to
handle the dem ands of the implementation. The simplicity of the language is a great
assistance in developing program s quickly. The pow er of language structures and
types which m anifest m any of the im portant features of object-orientation (notably
object identity and polymorphism) enabled a straightforw ard im plem entation of the
interpreter. The ability to write general purpose procedures using the p n tr type and
the callable compiler simplified the program , within the security of a strongly typed
system and w ithout the environment becoming full of type-ambiguous objects.

The m ain conclusion to be d raw n from this experim en t is th a t an
implementation language like PS-algol greatly simplifies the task of implementing an
Object-Oriented language. The components of such a language are naturally modelled
in PS-algol and so the implementation is kept to a reasonable length (about 1200 lines
of code for MINOO). For the implementation of real OOOPLs, such as Smalltalk or
Eiffel, the reduction in complexity of the task makes it possible to begin to tackle
efficiency issues - for instance, by using the run-time compiler to tailor efficient code.
Furthermore, compilers for dynamically typed languages such as Smalltalk can be
written which extract statically inferrable types wherever they can and impose them
with a resulting efficiency gain. Implementation in a language which simplifies the
overall compiler construction task renders the task of doing this more tractable.

7.5 Issues in the Implementation of Semantic Data Models.

This chapter has presented four examples of implementations of high-level data
models and program m ing languages and now, in the concluding section, some
general principles concerning their implementation are extracted. The suitability of a
Persistent Program ming Language like PS-algol is demonstrated.

Before discussing the implementation techniques used for these m odels, the
nomenclature used is defined:

the basic entities in a database will be called objects;

a type is an invariant abstract description of an infinite set of potential objects
w ith common properties;

an attribute is a passive property of a type;

Chapter 7 192 Data Models

an operation is an active property of a type;

a class is a collection of objects of the same type;

an object m ay be referred to as an instance of a type or a m em ber of a class.

Here the meaning of type is restricted to an intension, w ith classes playing the
role of the extension - although in some models there may be more than one class to a
type. A schema in a given data model will in general be a graph of types, with a
database compliant w ith that schema being a graph of objects which are instances of
those types.

F irstly the role of the interface is m entioned and then m ethods for
implementing types, objects and operations in PS-algol are described. Then follows a
discussion of the im plementation of first-class "active" objects, i.e. objects exhibiting
behaviour, such as processes. Finally, it is show n how the schema itself m ay be
brought into the database, giving a desirable reduction in code and improved access to
metadata.

7.5.1 The Human Computer Interface.

The principal benefit intended from the use of Semantic Data Models is the
formation of sufficiently abstract defin itions of the app lica tion w orld for
communication during requirements analysis and design. From this should follow a
clear definition for im plem entation and operation, although this aspect was often
neglected in early SDM's. The model should be accompanied by effective tools for
constructing a schema using appropriate HCI techniques. M any SDM's were only
initially envisaged as off-line diagrammatic tools e.g. [Chen, 1976]. These w ould be
used only to design the database schema and this would then be m anually translated
into some traditional form. With the emergence of good quality terminals and m uch
more powerful hardware, it has become possible to provide graphically-based SDM’s as
on-line database design tools. Once, the abstract m eta-data has been captured and
refined in this way, further tools can be used to assist in producing a corresponding
implementation [Borgida et ah, 1989], once again requiring appropriate HCI tools.

The IFO im plem entation showed how the graphical facilities of PS-algol
supported the diagrammatic "languages" of an SDM as an interface for the database
designer and user. Appropriate diagrams can easily be constructed using PS-algol and,
more crucially, as the language is data-type complete, the correspondence between an
object and its graphical representation can be internally recorded by explicit references.
A given type or object can be associated with an icon representing it. Furthermore,
animation of data m anipulation may also be provided. W hereas all of these facilities
can, and indeed are, being im plem ented using other technologies, the direct
manipulation of graphical values in PS-algol eases the task considerably.

7.5.2 The Representation of Types.

The graph of types should be represented in such a way that the relationships
between types are revealed. This requires two constructs that will represent the nodes
and arcs of the type graph. The nature of these arcs will vary from model to model.

Chapter 7 193 Data Models

For instance, IFO recognises several different relationships between types: attribution;
aggregation; set inclusion; generalisation; and specialisation. There is a further
complication in IFO in that there are different kinds of type node and, in general, they
cannot all take part in all the different kinds of relationship. An im plem entation
environm ent should provide powerful enough constructs to avoid baroque code to
handle the various kinds of types and relationships.

In all of the PS-algol implementations discussed, a type has been represented by
a single instance of a PS-algol structure, while relationships between types have been
represented by p n tr fields w ithin those structures. This is a fairly obvious way of
representing a graph, no m atter w hat the graph represents. In creating one of these
type graphs, there is one more design choice. Either a common structure can be used
for all nodes of the graph, or there can be different structures for each kind of node.
All of the examples described have taken the first of these routes, as this seems to
simplify the code involved. The COM ANDOS type m odel has been im plem ented in
such a way as to have different structures for each kind of type (unparam aterised,
parameterised and instantiated) [Cooper et al., 1989]. This m ethod has dem onstrated
no clear benefits, but has produced rather more elaborate code w hich perform s
efficiently those operations, such as type checking by com pilers, which are not
frequently carried out.

The type node structures contain essentially three groups of fields: some
containing descriptive information, such as the name of the type; some containing the
pntrs representing the type relationships; and, in some models in which the database
and schem a have been bound together, a single p n tr which points to the set of
instances of the type. Section 7.5.4 will show that a fourth kind of field is also needed
to hold the operations of the type, as they are normally factored out of the instances of
the type. This will be a pointer to a set of operations defined for this type. This
analysis begins to suggest how to develop a meta-model for describing the types of any
data modelling system.

7.5.3 The Representation of Instances.

The discussion is illustrated w ith objects which represent P E R S O N s, w ith
attributes name, sex and age and STUDENTs, which represent PERSONS w ith an extra
attribute, matriculation number. The first decision in representing instances is
whether all the data including inherited information for a given object are to be kept
together or not. That is, will the representation for a S T U D E N T keep the four things
known about the student together (as in Simula, most Object-Oriented systems and in
variants of Pascal); or will there be one structure for the three PE RSO N attributes and
another linked structure for the matriculation number ?

The latter choice seems preferable for a num ber of reasons associated w ith
behavioural modelling. Firstly, all PERSO N objects can easily be scanned since they
will be kept together in a set. Secondly, if an object is specialised (for instance a
PERSON becoming a STUDENT) or generalised (the reverse) there is no need to move
data around. Thirdly, there is also no need to duplicate data in the case where an
object is specialised in the two ways simultaneously. For instance, if the student also
becomes a mem ber of staff, there will now be two copies of the P E R SO N data, which
might lead to inconsistency.

Chapter 7 194 Data Models

This decision implies the loss of object-identity - there is not one program object
which represents the real w orld object. In fact, there is no difficulty in tying the
sections of data for a given object together via a ring of pointer fields. Although this
representation is intended to facilitate access to objects via the extent of their type,
there is no difficulty in accessing other information about it using this ring structure.

A general structure is needed for the fragm ent of a particular instance, one
which holds the values of the attributes of one of its types and connects them to
instances of other types as appropriate. The general structure for fragm ents of
instances will look something like:

structure fragmenti pntr theType, ! Points to the associated type structure.
 ! A reference to a set of attribute values.
 ! References to inherited values.
) ! References to inheriting values.

in which the second line holds some representation of the attributes specific to this
type and the third and fourth lines point to one or more fragment structures. Each
object of the system will have one instance structure for each type to which it can be
considered to belong. The third line will be either a pointer to a single fragment, if the
model supports single inheritance, or a vector of pointers to fragments, if the model
supports m ultiple inheritance. The fourth will be a vector of pointers, if access to
inheriting data is permitted. (It is not in PSRML or MINOO, for instance.)

In representing the attributes, there are two basic strategies:

a) provide a general structure for instances of every type;

or b) use the callable compiler to tailor instances for each type.

In the examples above, EFDM and IFO do (a), while PSRML and MINOO do (b).
In (a) there is a single field, theValues , which points to a set of values - either
packaged base values or other fragment structures. Implementations of this set may be
ordered, such as a list or vector of pointers, or could use a table keyed on attribute
name pointing to the values. This technique, which is essentially interpretive, is a
little slower and takes much more space, but slightly eases the w riting of general
programs to traverse the graph of values. A version of fragment which provides
single inheritance, access to inheriting values and uses m ethod (a) for attributes looks
like:

structure fragmenti pntr theType, ! Points to the associated type structure.
pntr theValues; ! A reference to a set of attribute values,
pntr super; ! References to inherited values.
*pntr subs) ! References to inheriting values.

The alternative technique adds a set of fields specific to each type, for instance

string PERSONname; bool PERSONsex; int PERSONage

by string m anipulation and the callable compiler. This leads to much more efficient
storage and retrieval, bu t seems to prohibit the use of general purpose traversal and
implies the existence of type specific, tailored access procedures. However, several
demonstrations of the power of the run-time compiler have been given, which show
bow to provide general purpose traversal, as in the browser (Section 3.2), and tailored

Chapter 7 195 Data Models

access, in GRAPE (Section 6.3). Using these techniques, fragment can be made to look
like:

structure fragmenti pntr theType, ! Points to the associated type structure.
! Three fields to holdstring PERSONname;

bool PERSONsex;
int PERSONage
*pntr super Multiple Inheritance.

No access to inheriting information.

the set of
attribute values.

which also shows the alternative choices for the inheritance links (a vector for the
inherited link, and no inheriting link). This is more efficient and yet can be traversed
with the automatically generated procedures.

N ote how, within this general framework, type evolution fits quite comfortably.
At any time, an object is associated with a num ber of types. For an object to change
type means that it drops some type associations (and their attributes) and gains other
type associations (picking up attribute values from the user or from defaults).

In fact, the question of how objects get their attribute data has a num ber of
possible answers. In every system, there will be some code to create objects. In systems
like EFDM and IFO, this code exists as a single statically determinable piece of PS-algol
which proceeds in an interpretative way. In the tailored systems like PSRML and
MINOO, the system generates operations for the creation of instances. In either case,
this code can provide null values when creating the objects; ask the user for initial
values; or allow values to be provided by any calling code. PSRML provides both the
first two options and MINOO provides the third.

U pdating attributes is similar to creating objects and there will be pieces of code
similar to the creation code for changing the value of an attribute. Again, this is a
single procedure in EFDM and IFO, but an operation tailored to the type for PSRML
and MINOO. Note that these tailored operations, like a statically written operation,
can be w ritten within a single program section. Note also that persistence allows the
tailored code to be remembered for future use with similar types, rather than having
to be regenerated.

7.5.4 The Representation of Operations.

The previous section shows that even those m odelling systems which do not
permit the user to define operations themselves, do require operations (such as
createObject) to be stored. In systems like EFDM and IFO, these operations are
provided as schema independent programs. Such program s examine the m eta-data
and behave interpretively. Owoso refers to these as Universal Programs [Owoso, 1984].

In implem entations like PSRML and MINOO, the operations are particularised
for each type and so each type has references to the operations available on it. In an
implementation like MINOO this provides a convenient place to store user-defined
operations as well. The im plem entation of MINOO show s how user-defined
operations m ay be processed. A compiler for the language in which the operations are
written m ust be constructed. This generates PS-algol procedures to represent the
operations and stores the procedures, as described above. MINOO also shows how
such operations can be used. An interpreter for calls to the operations was written

Chapter 7 196 Data Models

which allow ed the user to invoke the operation by nam e or indirectly via the
execution of other operations.

M ethods have been dem onstrated with which systems containing typed objects
can be constructed, where the types contain attributes and operations. Instances of the
types can be generated, where only the operations can be accessed outside the object or
where the attributes may be m anipulated directly. Again, this seems to point the way
to an analysis of the relative merits of encapsulated and "open" systems.

7.5.5 Active Objects.

Initially, Semantic Data Models could only refer to passive objects. Later
models, such as RML [Greenspan 1984] and the Event Model [King and McLeod, 1984],
extended the notion of an object to cover "active" entities such as activities, processes,
etc. The need for this has arisen in such fields as Office Automation, in which there is
a requirement to refer to certain activities as entities in their own right. Thus, the job
"Produce the Departm ental Booklet" is an activity with a certain structure, including
constituent sub-activities and associated static objects (people, information, etc.). Note
that this differs significantly from the Object-Oriented approach in that OO data
models subordinate activities to some data type. It is expected that, in the future,
languages which do not have the facility to describe processes in their own right will
lose favour in the production of complex systems. Process m odelling, in which
processes are described at a very high level of abstraction, is the basis for a design
methodology for such a system.

In order to analyse the production of m odels w ith active objects, a firm
understanding of the nature of such an object is required. Here the view is taken that
an active object is an aggregate object, whose components are calls to other active
objects, and w hich also has attributes which are the param eters and variables
associated with the object. It is then possible to specify active objects in the abstract
manner of RML, so that all of its references (parameters and calls) can be checked for
correctness. Thus a model could be checked for consistent references betw een its
constituents before implementation. This was all that was intended in the RML work.

If, on the other hand, there is a desire to go further and check whether the active
object behaves as expected, something more is required. In order to "execute" an
active object, there needs also to be a mechanism for launching the object and there
also need to be some objects which will execute when called, rather than refer to
further sub-objects. These objects form the bottom of the lattice of sub-object
references and will be called base active objects. In PSRML, the base activities are
supplied by the system to perform low-level functions, such as creating an instance. It
would not be difficult to provide user-defined base active objects, which w ould be
specified in the im plem entation language rather than the m odelling language.
PSRML could perm it users to specify PS-algol procedures, which become installed as
base activities, although this would require some care in designing an appropriate
environment w ithin which to compile them.

Im plem enting models with active objects in a language which has first-class
procedures is greatly simplified. Launching an active object is straightforw ard to
program w hen it becomes possible to retrieve procedures from structures and then
execute them. Similarly, providing mechanisms for making sub-activity calls is easier.

Chapter 7 197 Data Models

There are essentially two strategies for implementing activities, both of which
rely on storing each active object in a common structure, for instance:

structu re activityi string activityName; p n tr doActiv i ty ;)

in which the doActivity field points to some representation of the functionality. For
base activities this will be the procedure packaged, while for the other activities, a
choice of representations is available, either

store a list of pointers to the component sub-activity calls, which contain a
b inding of the sub-activities to the literals and variables, which will
constitute their input when they are called;

or com pile a PS-algol p rocedure, w hich includes calls to the com ponent
procedures.

In PSRML, the former strategy was chosen for a num ber of reasons. One
"Universal Program " will work, since all activities have the same structure, as
compared with entities which all have different structures. This also m ade it easier to
enable com ponent sub-activities to be unordered. These were im plem ented as a list
together w ith an activity execution procedure. This procedure cycled through the list,
attempting activities until no more could be executed or all were completed.

How ever, the latter could be achieved by string m anipulation of the object
specification and w ould have the particular merits of unifying the representation of
activities and base-activities and speeding the execution, by m oving from an
interpretive style to a compiled one. For completeness, therefore, there follows a
sketch of w hat such a compiled activity would contain:

i) A signature including the activity name and the input param eters and output
param eter type. The input parameters are transform ed into the PS-algol
type system, i.e. all complex types become p n tr . If the language only
perm its single results then the ou tpu t param eter type is sim ilarly
transformed into a PS-algol type. If the language permits m ultiple results
(like PSRML) the output param eter type is p n tr and the output is a
structure designed to hold all the outputs in a consistent manner.

ii) A set of declarations of any local variables and output parameters.

iii) The set of sub-activity calls. If ordered sub-activity calls are specified, then
this will consist of a list of calls, generated from the descriptions of the
sub-activities. If unordered calls are required, then these are embedded in
a system atically constructed fram ework for cycling through the sub
activities.

iv) The procedure ends either with the result variable, or, if there is no result, it
ends with nil. For multiple results, these are bound into a systematically
generated structure.

A lthough the callable compiler has not been used in the production of active
objects, the p n tr type and the first-class procedures have been used to provide a
common structure for base and complex activities, and this re-affirms that a language

Chapter 7 198 Data Models

with first-class procedures greatly facilitates the production of systems w ith active
objects in them.

7.5.6 Meta-data Access.

It has generally been regarded as useful if a Data Model can describe itself, i.e.
hold meta-data in the same form as ordinary data. This means that the user can query
the schema in the same way as the database, thus simplifying the use of the program.
RAQUEL dem onstrated that the Relational Model can be program m ed to hold meta
data (Section 6.1). There, two relations were set up to hold the relations and the
columns of the schema. In EFDM, the functions were implemented as entities and so
could be queried just like any other object in the database.

The provision in PS-algol of data-type completeness and structures greatly
facilitates im plem entations which support a common view of data and m etadata.
Having been able to store types in general purpose structures, as described in the
previous sections, it becomes possible to distinguish one of the nodes in the graph of
types as representing types themselves. This will have a single-valued attribute for the
names of types and m ulti-valued attributes for the relationships and operations.
Instances of this type will carry descriptions of the type information.

One w ord of warning is required here. It may appear that this approach has
circumvented the necessary distinction between types and objects in program m ing
languages, which avoids theoretically hard problems of having a type "type". All that
has been achieved is that some of the descriptive material about types has been put
into the database, using the same structures and the same access m ethods as the
descriptive m aterial about the modelled objects. These structures no m ore contain
types than they do people or students.

7.5.7 Discussion.

The above approach to the creation of data model im plem entations relies on
the following facilities:

• an extensible union type to allow some parts of the program to ignore the type
of parts of the data not being processed;

• a mechanism for optionally deferring the binding of program to data and the
type-checking of the data as long as necessary;

• a callable compiler so that procedures can be generated and compiled at run
time but whose types are statically determined.

These facilities perm it the m odular developm ent of program s w hich are
efficient, type-secure and yet extensible to data whose types are subsequently defined.

This chap ter has described how to use these m echanism s to p rov ide
implementations of object-based database systems. These have included the ability to
represent:

Chapter 7 199 Data Models

• the passive data about the objects of the database in either a general structure
which is m anipulated interpretatively or in a structure tailored to the
object's type;

• the active inform ation about the database, i.e. the operations which are
available on it;

• an encapsulated, secure interface to objects;

• a m ethod of storing "active" objects in their ow n right and not as operations
of other objects.

W ithin this framework, the rapid im plementation of a num ber of data models
is possible and from this, a taxonomy of data models and a data model for describing
data models within which the models may be compared should emerge.

Chapter 7 200 Data Models

Chapter 8. Supporting Software Developm ent.
This chapter deals with an issue which arises from two directions at once. From

the software engineering point of view, the central problem in the construction of
large software systems is keeping track of the software modules. This includes notions
of version control and configuration m anagem ent, the im plem entation of which
seems to become amenable to database techniques if software m odules are viewed as
data objects. Many systems have been proposed (see section 2.2.4) which use different
techniques to manage the problem. The implem entation of these proposals has been
beset w ith difficulties, largely due to inappropriate developm ent systems [Nestor,
1986].

The other point of view is that of the PS-algol program m er. W hen developing
application program s in the Persistent Program m ing Language, PS-algol, the
program m er makes considerable use of the availability of first-class procedures in
order to develop his program in a m odular fashion. There is little support within the
language, however, for providing a consistent environm ent within which to develop
program modules. In general, it is hard to find what modules have been pu t into the
Persistent Store, if you do not know where to look. Moreover, if one m odule calls
another, there is no explicit record of the dependency, nor any way of finding what
calls what.

The solution of the problem which faces the PS-algol program m er is the
creation of a database of procedures, in which the links are explicitly kept together with
docum entation and version control. In solving this "local" problem , how ever,
techniques have been developed which are relevant to the global problem of software
maintenance. The first-class procedures provide precisely the ability to "view software
modules as data objects".

This chapter starts by describing in more detail the problem encountered in
Chapter 5 - i.e that of maintaining a large PS-algol program. Then a small experiment
is described in which a systematically organised database of PS-algol procedures was
created to solve this problem. Finally, a version control system is described which,
while being unsophisticated, indicates how a more complex system m ight easily be
implemented in PS-algol. Similar version control and naming techniques w ould be
applicable in m any CAD/CAM applications. Persistence and the p n tr type would
allow the code prototyped here to be re-used in any of these applications.

B.l Modular Program Construction in PS-algol.

The provision of first-class procedures in PS-algol encourages the m odular
design and construction of programs. Essentially, the program is analysed into units of
functionality and each is implemented as a PS-algol procedure. The procedure is then
stored in the persistent store for later retrieval by calling modules. For instance, a
minimum function m ight be implemented and stored in the "program "/"Library"
database by the program given as Figure 8.1. Here, the fifth line of code introduces a
structure containing a single field, a procedure which takes two integers as parameters
and returns an integer as its result. The sixth line then creates an instance of this
structure, the value of the field being the min procedure. This is now an object of type
pntr and so may be inserted into the table which contains the library of procedures by
Using an s.enter command.

Chapter 8 201 Software Tools

let min = proc(int a,b -> in t) ! A procedure to return the
begin ! minimum of two integers,

if a>b then a else b
end

structure minpacki proc(int,int -> int) minproc) ! A structure for the proc.
let packedProc = minpacki m in) ! Package the procedure.

let lib = open.databasei "Procedures", "Library", "write") ! Find the library.
s.enter("min", lib , packedProc) ! Enter the packaged proc into the library.

if commitO = nil ! Commit the change to the library,
then write "Procedure min stored'n"
else write "Commit fails'n"

Figure 8.1 Storing a Procedure in the Persistent Store.

The procedure is subsequently available for use by other m odules, such as a
procedure which provides the minimum of a vector of integers. This can be linked to
min as show n in Figure 8.2. Here, the packaged min procedure is retrieved using
s.lookup and the procedure is unpacked by a field dereference. It is then available for
calling by any subsequent part of the program. The body of minvec contains such a call
and this creates a static binding between minvec and the version of min found in the
library w hen this program is run to store minvec . minvec is then entered into the
library in the same way as min. Note that the declaration and body of minvec is
entirely statically type checked, the only dynam ic check occurring w hen min is
unpacked from minPacked.

structure minpacki proc(int,int -> int) minproc)
let m inPacked = s.lookupi "min", lib)
let m in = minPackedi minproc)

Retrieve the packaged
procedure and unpack it
for use.

let minvec = proc(*int V -> in t)
begin

let smallest := V(lw b (V))
for i = lwb(P) to upb(V) do smallest := m ini smallest, V (i))
s m a l le s t

end

A procedure to produce the
minimum of a vector of
integers.

structure minvecpacki proc(* int -> in t) minvecproc) ! A structure for the proc.
let lib = open.databasel "Procedures", "Library", "write") ! Find the library.
s.enteri "minvec", lib , minvecpackiminvec)) ! Package and store minvec in

! one line.

if c o m m i t ()= nil •' Commit the change to the library,
then write "Procedure minvec stored'n"
else write "Commit fails’n"

Figure 8.2 Calling a Stored Procedure._________________

One advantage of this approach is that the min procedure, once stored in the
database, is accessible for use by any other program that knows of its existence in a
database called "Procedures", with password "Library". However, the mechanism is
deficient in a num ber of ways:

Chapter 8 202 Software Tools

• no record of the dependency of one module on another is kept;

• there is no support for the creation of new versions;

• there is no support for documentation;

• the code to store and retrieve modules is unnecessarily complex.

These points will be taken in order. There is an underlying graph of m odule
dependencies (illustrated later in Figure 8.4) which this m echanism obscures. After
the two program s above have been run, the fact that minvec calls min is no longer
visible. The link between the two exists only w ithin the closure of minvec and this is
inaccessible. So, no general purpose program can be written, such as a display facility,
which w hen given a pointer to the "root" m odule of an application w ould traverse
the m odule dependency graph (MDG).

The provision of version control is even more im portant and is totally lacking
here. Imagine the effect of making a change to min, removing the error that exists in
it - yes the error was deliberate! If the source file is edited, re-compiled and re-run, a
correct version of min will be stored in the database as required. However, no effect
will be felt by minvec, as this is still bound to the faulty version of min, as the binding
was static. The m odule containing minvec will also have to be re-run (although not
re-compiled), in order to bind it to the new version. The minvec m odule can be
modified by m oving the lookup of min inside the body of minvec and this will have
the effect of dynamically binding min into minvec every time the latter is run, thus
ensuring that it always uses the latest version. It would be better, however, to provide
more sophisticated control over this binding to reflect the variety of reasons for
providing new versions. Furthermore, as there is no access to the MDG, when min is
mended, there is no way of discovering which m odules call it, nor which program s
need to be re-run to bind these modules to the new version. Finally, the system
should have the capability of retaining a history of versions, as in the system described
in [Davison and Zdonik, 19861.

Perhaps the lack of any encouragement for documentation may be less serious,
but help w ith this as an application is produced should im prove quality and
productivity. The approach above permits, if not encourages, the program m er who
requires a facility to hack in a quick procedure, dum p it in the database, make a call
from the m odule which is under consideration and then forget about it. Allied to this
point is the lack of any method of helping the program m er find m odules as they are
needed. It m ight be guessed that the minimum procedure is called min, but w hat type
are its param eters? At another point in the program , a sorting procedure m ight be
needed. W hat versions are there and how are they accessed?

The final point is that it is tedious to produce the am ount of code required to
package and unpack procedures in PS-algol. The language is designed to simplify code
and reduce the program m ing overheads. The overheads seen in the above programs
we a consequence of features which provide immense benefits in other areas, but
there is no reason w hy some automatic methods to save some program m ing effort
should not be added. The overheads are made worse by the requirem ent that every
name, including the structure and field names of the procedure packaging, m ust be
unique. A less cumbersome syntax is sought for introducing the simple notion: "this
Module uses version V of module M in program library L" and "store this m odule in
Chapter 8 203 Software Tools

the program library L - this is a new m odule or a new version of M introduced for
such-and-such a reason".

To achieve all of these aims, a systematic interm ediate packaging structure is
introduced with which to represent the nodes of the MDG. This will include pointers
to represent dependencies and versions; text fields for docum entation and program
source; a time field to capture module creation time; other fields for author name; and
of course the procedure itself.

8.2 A Simple Library of Utility Procedures.

This section describes a systematically organised library of utility procedures
[Cooper et ai, 1987a] which was used in most of the experiments described in Chapters
5, 6 and 7, and should assist in the faster development of PS-algol programs. Most of
the procedures in the library are those for user interface m anagem ent described in
Chapter 4. The organisation of the library begins to tackle the problem s of m odule
dependency and docum entation. The library has a coherent structure and some
programs which manipulate it have been written. These do the following:

For each procedure in the database, m aintain a list of all the procedures
dependent on it; a short description of the function of the program ; and
the date and time of its insertion into the library.

W hen a new version of a procedure is entered, the user is rem inded of any
dependent procedures which m ust be rebound to use the new version.

Display the list of the procedures in the database, with their information.

The section will proceed by describing the organisation of the database which
holds the library and then the programs which maintain the library.

8.2.1 The Structure of the Library.

The library is created in the form of a PS-algol table. There is one entry in the
table for each procedure in the library, keyed by the procedure name. When a library is
created, the table is set up with two system procedures, prcget and prcput, which
retrieve and store procedures respectively (the function of these procedures will be
described in section 8.2.2). All the procedures, except prcget, are contained in structures
of the form:

s tru c tu re intermedi p n tr procpaki; ’.points to the procedure packaged as below
*string depended; ! a list of the procs which call this one
string datestamp; ! time of insertion
string descriptor) ! short description from prcput

The p n tr field procpaki points to an object with one field containing the packaged
procedure. The structure of this packaging is conventionally of the form:

s truc tu re procpaki p roc(...parameter types specific to proc...) xproc)

Chapter 8 204 Software Tools

so that the structure name and field name is common to all the procedures and only
the argum ent and result types vary. This packaging strategy has been used to simplify
the storing and retrieving programs.

It is envisaged that any large scale application will use two sets of procedures,
one a m ulti-user utilities library, which will be shared between applications, and one a
set of procedures specific to the application, which will be either a separate database or
a table in the application's own database. The structure outlined above is a general
one, which can be used both for the utilities library and for an application-specific
library. The latter can be created using the makelib procedure described below. In
larger projects and larger organisations there may be many such libraries.

8.2.2 Software Support for these Structures.

8.2.2.1 The Initialising Program - dbmaker.

There are two forms of this program . One is a stand-alone program , called
dbmaker, which sets up a database to contain a system library of procedures, initially
containing prcget and prcput (see next section). The other is itself a procedure in this
system library, called makelib. This procedure takes a string param eter, XX, say, and
returns a table of procedures, initially containing XXprcget and XXprcput. This table
can then be stored in the user's database, to create an application-specific library.

A part from the location of the library and the names of the get and pu t
procedures, dbmaker and makelib are essentially the same program , which proceeds as
follows:

i) A new database or table is created.

ii) The procedure which enters procedures, prcput, is created.

iii) The prcget procedure is created.

iv) prcget and prcput are entered in the library - prcget as a simple packaged
procedure and prcput as packaged in the intermed structure.

8.2.2.2 Retrieving Procedures - prcget.

W hen the database or table is set up, it contains two procedures: prcget, which
retrieves procedures from the database, and prcput, which stores them in the database.
The function of these two procedures will now be described.

prcget is a procedure which retrieves procedures. As it needs to be retrieved
before any other procedures, it cannot retrieve itself and so is stored directly as a
procpak structure and not via an intermed structure. It is retrieved by the following
code fragment, which looks it up and unpackages it:

Chapter 8 205 Software Tools

let procsdb:=open.database("rutilities","friend"/"read")
if procsdb is error.record do

{write "No utilities database - do pdbmaker first'n"; abort}
let prcget=

begin
structure procpakiproc(string -> pntr) xproc)
s.lookup(''prcget",procsdb)(xproc)

end

Figure 8.3 Retrieving the Retrieval Procedure,_____________

The procedure is then used by code fragments like:

let prcput={ structure procpa£:(proc(string,pntr,*string,string)jtpro<:)
prcget("prcput")(xproc) }

which retrieves prcput, described below. The first point to be noted about this clause is
that the only parts which vary from procedure to procedure are: the procedure variable
name; the key to the procedure in the library; and the type description of the
procedure. The first two are conventionally the same as each other, but the fact that
the type will vary from procedure to procedure means that the procedures are actually
being stored as different procpak structures. This w ould normally mean that in order
for more than one retrieval to occur in the same module, procpak and xproc w ould
have to be nam ed differently for each procedure type. This would complicate matters,
so instead {..}t have been used to surround a block in w hich the structuring
information appears. By the scope rules of PS-algol, the declaration of that procpak
structure disappears at the "}" and so the retrieval of prcput may be followed by a
similar clause which retrieves another, differently typed, procedure.

The function of prcget is quite simple: it looks up the procedure name in the
library, dereferences the procpaki field and returns it. The procedure itself is then
dereferenced by looking up the xproc field as shown above for prcput.

8.2.2.3 Storing Procedures - prcput.

prcput itself is a somewhat more complex procedure. It is retrieved, as above, in
the same way as any of the utilities in the library. It is then used to store procedures as
in the following fragment:

{structure procpakiproc(string,int -> string) xproc)
prcputCtillstring'^procpakifillstring), vector 0::0 of

"Fill out a string with spaces")}

This uses a similar technique of delimiting the scope with (...) in order to localise the
packaging which uses the same name for different structures. It contains a call to
prcput w ith the following parameters:

s tr in g procname - the name of the procedure;

 ̂Note that {...} and begin ... end are equivalent.
Chapter 8 206 Software Tools

p n tr procpntr - a pointer to the procedure which is packaged in a
structure which is conventionally called
procpak with a single field called xproc;

* string dependson - a list of the procedures which this one calls;
string desc - a short description of the procedure.

The procedure prcput stores the procedure with following steps:

(i) An empty set of dependencies (procedures which call this one) is set up - this
will be filled by the subsequent insertion of procedures which call it.

(ii) Check if the procedure already exists - if not enter it.

(iii) If it does exist, check that it is the same type - if not, the user is given the
option of not entering the new procedure, as a procedure m ay be
destroyed unintentionally - if it is of the same type, it is assumed that this
is a genuine update, although this too could be m ade optional.

(iv) The new version of the procedure is entered.

(v) A list of all the dependent procedures is printed, with a recommendation to
update them as well.

(vi) The list of procedures which this one calls is scanned and the name of the
procedure is entered into their lists of dependencies.

(vii) The procedure is committed.

8.2.2.4 The Library Lister - dblister.

This program lists the library information in a tabular form. It scans the table of
procedures, extracting type inform ation and docum entation and uses various
formatting procedures to create a table which may be displayed, printed or stored in a
file.

8.2.3 Discussion.

A sm all-scale m aintenance system for a database of procedures has been
described which incorporates a check on procedure dependencies and a small amount
of documentation. This was an ad hoc system created due to a local need by PS-algol
programmers. It became clear that this was insufficient in some respects and that a
more ambitious support package could be provided. The next section describes an
experiment which takes a step towards that.

8.3 A Simple Module Management System With Version Control.

Producing an application program consists of a num ber of steps. From systems
analysis, there arises a set of modules which will comprise the final program . There

Chapter 8 207 Software Tools

then should be a search for existing versions of any of these m odules in the
environm ent w ithin which the program is to be created - clearly this search may
influence the first step. Subsequently, there will be modifications to any of these
which only approximate to the requirem ent as well as the production of any module
not found. Finally the modules need to be "glued" together.

The diagram in Figure 8.4 represents a m ulti-application environm ent. In the
centre is a 'system' library of m odules of general applicability. Surrounding it are
application programs which contain modules specific to the application, as well as calls
to system library modules. Each application has a single root m odule from which it is
started and consists of a graph of modules draw n from its own library and the system
library.

Application A Application C

root

System Library

Application DApplication B

Figure 8.4 Module Dependency Graphs for a System with Four Applications.

Given this view of an application, here is a list of some facilities to be provided:

• a display mechanism for the graph, with facilities for traversing it and homing
in on details of individual nodes;

• m ethods for discovering what modules exist;

• support for versions of modules;

• the ability to establish links between modules and determ ine the nature of
these links;

• assistance in painlessly propagating any changes to low-level m odules
through the DAG;

Chapter 8 208 Software Tools

• aid in the p roduction of good quality on-line and off-line program
docum entation.

This section shows how to provide these facilities, in particular concentrating
on version control and the way in which modules are bound to their caller. Support is
required for the variety of reasons for which new versions of m odules are produced.
In particular, a new version may be: the removal of a program error; the extension of
the power of the module; or the provision of an alternative to the already existing
versions (for instance, an implem entation of a new sorting algorithm , applicable in
different circumstances than those already existing).

There is also a need to support a variety of binding styles. This m ay include
once-and-for-all static binding, dynamic binding to get the latest version of the lower-
level m odule or m enu-driven selection between alternatives. In the latter case, the
application program m er may make the selection at the time of building the program
or pass the decision to the user, who can then, for instance, choose an interface style
when starting the program. These different styles can be provided in a language like
PS-algol, as it permits a range of times at which programs are bound to data.

The rest of the section describes a set of program s which provide some of the
facilities above. This is not intended to be a design for a software management system
- that is the business of software engineers. For instance, there is no reference to
version m erging or configuration management. Instead, the section shows how some
of the difficult problems in implementing such systems are eased by using a persistent
programming language. The section concludes by describing a small experim ent in
implementing some of these facilities.

8.3.1 System Requirements.

As stated above, there is no claim that this is a sufficiently powerful version
control system for regular use, merely that it illustrates the elements typically found in
such systems which are difficult to implement. Version control in a software library
contains two components - the storage of a new version and the retrieval of a specified
version. There follows an outline of the kind of facilities required for carrying out
both of these activities, firstly listing the requirem ents and then show ing how to
satisfy them.

W hen a new version of a software module is created this can reflect a num ber
of different intentions on the part of the programmer:

(i) a bug-fix - the program m er intends a complete replacem ent of the old
version by the new because the old version is faulty;

(ii) an "extension" - the new version is more powerful or of w ider applicability
than the old, although the old may still be adequate for some users;

(iii) a new alternative version - this is not intended to replace the old version,
bu t to offer the user a choice (for instance of using a new editor).

The program m er who wishes to use a module in a library may wish to choose:

Chapter 8 209 Software Tools

(a) to retain the original version irrespective of whatever versions are offered;

(b) all changes to permeate through to the application;

(c) to specify a particular version when writing the code;

(d) to accept only bug-fix updates, but otherwise retain the original version;

(e) to choose the version when the calling m odule is stored;

or (f) to allow the user to choose the version when the application is started.

The system will cater for all of these requirements. Neither of these lists can be
seen as complete, but a demonstration of these options generates confidence that the
system could be extended to cater for any other storage or retrieval alternatives.

8.3.2 The Storage of Modules.

There follows an outline of a system which provides all of these facilities. To
start with, consider a two-dimensional taxonomy of versions in which each m odule in
the system can exist as a num ber of a lte rn a tiv e s , w hich are essentially different
methods of im plem enting the module. Each of these alternatives m ay exist in a
number of sequential g e n e ra tio n s , which are different procedures attem pting to
implement the same module in the same way. In the following the word "version" is
used inform ally, while alternative and generation always m ean the above. The
following insertion strategy is adopted, in which one of three conditions can hold:

a) it is a new m odule - a new entry in the library is created;

b) it is a new alternative - a new version node is created, which is inserted into a
list of alternatives;

c) it is a new generation of an already existing alternative - the new generation is
placed at the head of the list of generations of this alternative.

The sim plest PS-algol code to do each of these is given in the three parts of
Figure 8.6 for the case in which a string editor is to be inserted. All three would be
preceded by the code given in Figure 8.5.

let editor = proc(string Xin -> string)
 ! Code which implements the editor.

structure edPack(proc(string -> string) anEditor) ! Packaging for an editor,
structure modVersion{ string Aname, Gnumb, Reason; ! Packaging for a version of

pntr th is Vers, last Alt, lastGen) ! some unspecified object,
let lib = open.databasei "Procedures", "Library", "write") ! Find the library.

Figure 8.5 Initial Code for Creating a Module Instance.

All three approaches use two structures: edPack is a package for an editing
procedure, similar to the minpack structure already seen; modVersion is a structure to
hold a single version of an object in the two-dimensional object space. This structure

Chapter 8 210 Software Tools

contains an alternative name and a generation num ber as identifiers, a reason for the
new version, a pointer to the current packaged procedure, thisVers, and pointers to the
next node in the lists of alternatives, last Alt, and generations, lastGen. Note that this
same structure could be used for version m anagement of any kind of object as it does
not define the type of the object pointed to by the thisVers field. This means that the
version m anagem ent code is sufficiently polymorphic that it could be used to manage
CAD data, for example. Such polymorphism is a direct consequence of the curtailment
of eager type matching on encountering an object of type, pntr. This allows systems to
be composed out of independent components and libraries of those components to
include such things as a choice of version managers.

let firstAlt = ! Create a first alternative.
modVersioni" first", "1", edPack(editor), n il, n il)

s.enter("editor", firstAlt, lib) ! Store the first alternative,
if commitO =nil ! Commit the change to the library,

then write "Procedure edit stored'n"
else write "Commit fails'n"

(a) Inserting the first version of a module.

let oldAlt = s.lookupi "editor", lib) ! Find the last inserted editor alternative,
let newAlt = ! Create new alternative with a link to the old one.

modVersioni"second", "1", edPack{editor), oldAlt, n il)
s.enteri "editor", new Alt, lib) ! Replace the table reference with new one.
if commitO = n il ! Commit the change to the library,

then write "Procedure edit stored'n"
else write "Commit fails'n"

(b) Inserting the second alternative of a module.

let oldGen:= s.lookupt "editor", lib) ! Find the latest version of "second",
w hile oldGeni Aname) ~= "second" do oldGen := oldGeni lastA lt)

Create new version of "second" with
next generation number, the new
generation, a link to the same last
version and a link to the last
generation.

let newGen =modVersion("second",
succ(oldGeni Gnumb)),
edPack(editor),
oldGen (lastAlt),
oldGen)

if oldGen= s.lookupi "editor", lib)
then s.enteri "editor", newGen, lib) ! Was first in list.
else ! List processing to put it in place.

if commitO = nil ! Commit the change to the library,
then write "Procedure edit stored'n"
else write "Commit fails'n"

(c) Inserting a new generation of the second alternative of a module.
Figure 8.6 Three Different Ways to Create Module Versions.

Figure 8.6(a) shows a new m odule being created as a modVersion structure
containing the packaged procedure, an alternative name, "first", a generation number,
1, and n il pointers indicating that there are no other alternatives or generations. This
is then inserted into the system library. Note that while the diagrams show a simple
scheme in which the "root" version of the module has the same structure as all the
others, in the im plementation proper there is another structure which will contain a
"generic" version of the module.

Chapter 8 211 Software Tools

Figure 8.6(b) shows the insertion of a new alternative, nam ed "second". The
last alternative is retrieved from the system library and, when the new modVersion
object is created, it includes a link to the old alternative as one of its fields. This links
the alternatives together in a list.

Figure 8.6(c) shows the insertion of a new generation of "second". N ow the
procedure m ust not only retrieve the first version, bu t also scan dow n the list of
alternatives to find the "second" alternative. The new m odule object now has
references to both the last alternative and to the last generation and is inserted in its
correct place in the list of alternatives.

W hat has been dem onstrated here is a general purpose m odule version
insertion strategy. It could be used to store versions of any data structure, but here,
because procedures are first-class objects and because the p n tr type can be used to delay
type-checking, the strategy is used to make insertions into a software library containing
procedures of a variety of types.

8.3.3 The Retrieval of Modules.

Turning to the method of binding to stored procedures, Figures 8.8-8.13 indicate
six of the m any ways to do this, for the case m aking a call to a string editor in
procedure called caller. These examples must be preceded by the code in Figure 8.7 and
may be succeeded by some code to store the caller procedure (similar to the examples
above) or by immediate use of caller.

structure edPacki proc(string -> string) anEditor
structure modVersioni string Aname, Gnumb, Reason;

pntr thisVers, lastAlt, lastGen)
let lib = open.databasei "Procedures", "Library", "write")

___________ Figure 8.7 Initial Code for Retrieving a Procedure.___________

Retaining the original version is simple to do in a persistent system (see Figure
8.8). The latest editor will be bound into caller and the dependency created can never
be broken by anyone other than the application program m er, by re-running this
program. The creation of new versions of editors will not affect this binding. Not
even "deleting" the version of the editor from the database w ould remove the called
procedure or the link to it. It would instead be retained as it is still reachable, because
of the accessibility rules of PS-algol

let myEdPack - s.lookupi "editor", lib)
let myEditor =myEdPack(thisVers)(anEditor) ! Retrieval performed once only.
let caller = p roc(...)

begin

newString := myEditori oldString) ! Usage.

end

Figure 8.8 Always use the first version found.

Chapter 8 212 Software Tools

To make changes to the implem entation of the editor perm eate through, it is
necessary to move the lookup of the editor into the body of caller, as in Figure 8.9.
Now the editor is bound into caller each time it is called. This has the effect of always
using the latest version inserted into the library.

let caller = p roc(...)
begin

let myEdPack = s.lookupi "editor", lib)
let myEditor=myEdPack(thisVers)(anEditor) ! Retrieval performed every time.

nezvString := myEditor(oldString) ! Usage.

end

________________ Figure 8.9 Always use the latest version.________________

To specify the alternative required, a utility f indNamedAlt could be provided,
which, given the m odule nam e and alternative name, could look up the latest
generation of that alternative. Figure 8.10 shows how this utility could be used to
specify the alternative once and for all. The call to f indNam edAlt could be m oved
inside caller to bind dynamically to the latest generation of the nam ed alternative.

let myEdPack=findNamedAlti"editor","myver")
let myEditor=myEdPack(thisVers)(anEditor) ! Retrieval performed only once,
let caller = p roc(...)
begin

newString := myEditor(oldString) ! Usage.

end

______________ Figure 8.10 Using the alternative "myver"._______________

A more complex retrieval is to fix the alternative required, but only to take later
versions if they are bug-fixes. This is shown in Figure 8.11. Here, an initial alternative
of the editor is selected when the procedure is entered. Each time it is run, the latest
generation of that alternative is retrieved and replaces the original if it is a bug-fix.
The unpacking is now also done inside the procedure, in case there has been a change.

let myEdPack = s.lookupi "editor", lib) ! Get original version and
let oldName = myEdPacki Aname) ! store which alternative.
let caller = p roc(...)
begin

let newEdPack = findNamedAlti "editor", oldName) Retrieve latest generation.
if newEdPack(Reason) = "bugfix" do ! Replace if bug-fix, but not

myEdPack := newEdPack ! otherwise.
let myEditor =myEdPack{thisVers)(anEditor) ! Unpacking.

newString := my Editor (oldString) ! Usage.

end

Figure 8.11 Using a bug-fix of original version.

Chapter 8 213 Software Tools

To leave the choice of which alternative of the editor to use until the procedure
caller is stored, there is a generic utility, paraChoice, w hich is called instead of
s.lookup. If there is only one alternative, it returns the latest generation of it, bu t if
there is m ore than one alternative it builds a m enu of the alternative names and gets
the program m er to choose one, as shown in Figure 8.12.

let myEdPack = paraChoicei "editor") ! Provides menu of alternatives.
let myEditor=myEdPack(thisVers)(anEditor) ! Retrieval.
let caller = p roc(...)
begin

newString := myEditor(oldString) ! Usage.

end

Figure 8.12 Choose alternative at commit time.

The same utility could also be used to pass the choice onto the user by moving
the call inside the caller procedure. Figure 8.13 shows a retrieval which gives the user a
menu of alternatives every time caller is called. Another alternative is to insert a little
more code which presents the m enu only for the first call after the application is
started up.

let caller = p roc(...)
begin

let myEdPack = paraChoice("editor") ! Provides menu of alternatives
! whenever called.

let myEditor=myEdPack(thisVers)(anEditor)

newString := myEditor(oldString) ! Usage.

end

Figure 8.13 Let the user choose the alternative.

These constitute some of the ways a called module may be bound into a caller in
PS-algol. There are many others which are essentially combinations of the above and
provide no more difficulty for the implementer. Use has been m ade of the ability to
manipulate first-class procedures again, but also of the fact that the m om ent at which
the two procedures are bound together can be controlled. Further, use has been made
of the ability to write procedures like paraChoice, which can be bound to dynamically
changing data - in this case the list of alternatives of a given m odule. Finally the
strong typing of PS-algol has been used. Despite the degree of flexibility achieved, type
unsafe operations are not permitted anywhere. When a retrieved procedure is used in
Figs. 8.8 to 8.13, the programmer can be absolutely sure that it is of type proc(string->
string) and not some other type.

8.3.4 Language Extensions to Simplify Version Management.

The flexibility of PS-algol is, however, somewhat offset by the nature of the code
required to generate the different binding styles. It is som ewhat verbose and, in the
Chapter 8 214 Software Tools

previous exam ples, obscures the program m er's intention. The proposed system
makes the program m er's requirements explicit and allows the program m er to create
m odule source files which have clear instructions to the system on w hat binding is
required. Such a source file is taken and translated into a pure PS-algol program of the
forms shown in Figures 8.5 to 8.13, which is then submitted to the compiler.

In the case of storing a m odule, the program m er needs to specify: where the
module is to be stored (i.e. in the system library on in the space associated w ith some
application); some identification of the m odule and the version; and which of the
three operations in Figure 8.6 is required. To do this the program m er will be allowed
the syntax:

"save" ("systemlib" I applicationname) modulenam e
versionname ("new" I "newversion" I "newgeneration")

A line of this form will be placed at the end of the m odule and this will be
transform ed into the code shown in Figures 8.5 and 8.6. The three examples are
written:

(a) save systemlib editor first new
(b) save systemlib editor second new version
(c) save systemlib editor second new generation

For retrieval, far more can be specified. The program m er needs to specify:
where the m odule is stored; which module; and which version. The last of these will
specify which of the binding styles is used. It can be done with a line of the form:

"retrieve" ("systemlib" I applicationname) m odulenam e
("fixed" I " latest" I "bugfix" I "preferred" I "Ichoose" I
"userchoose" ("firsttime" I "everytime") I
("/" versionname ("fixed" I "latest" I "bugfix" I "preferred" I

(" /" generationnum ber))))

at the start of the source file which will be transform ed into the code show n in the
Figures 8.8 to 8.13, which can now be written, respectively, as:

8.8: retrieve systemlib editor fixed
8.9: retrieve systemlib editor latest
8.10: retrieve systemlib editor /myver fixed
8.11: retrieve systemlib editor bugfix
8.12: retrieve systemlib editor Ichoose
8.13: retrieve systemlib editor userchoose everytime

The techniques used in the version control system can be incorporated in a set
of programs to give general support to the applications programmer.

8.3.5 System Implementation - the Objects.

The objects m anipulated by the system and their implementations are described
to detail. A m odule contains the following: a name by which it can be referenced; a
Chapter 8 215 Software Tools

description of its purpose; and a reference to a list of versions. This is represented by
the following structure:

s tru c tu re modulei s tr in g moduleName, description ;
p n tr dynamicCallers, versions)

where the dynamicCallers field points to m odules which are dynamically bound to
this one and so call no specific instance.

A m odule version consists of:

• an alternative name;
• a link to all other alternatives which exist;
• a generation number, the range of which is left unspecified and may vary

from implementation to implementation;
• a link to all other generations of this alternative;
• the reason for storing this version;
• a set of references to the module versions this one calls;
• a set of references to other module versions statically bound to this one;
• the names of the types of the arguments of the version;
• the name of the type of the result of the version (following PS-algol in only

permitting a single result for the purposes of this discussion - extending
to the more general case introduces no new problems);

• the program source which defines the version;
• the procedure which implements the version; and
• sundry documentation material.

Then the structure to contain a module version has the form:

s tru c tu re moduleVersioni
s tr in g versionName;
p n tr lastAlternative;
p n tr next Alternative)
s tr in g geneNumber;
p n tr lastGeneration;
p n tr nextGeneration;
p n tr called;
p n tr staticCallers;

strin g imports;
string export;
strin g theSource;
in teg er storeTime;
strin g author;
s tr in g updateReason;
p n tr packagedProc)

versions held in a
doubly-linked list

string preferred to int
generations also held in a

doubly-linked list
a list of modules called by this one
a list of modules statically bound

to this one
e.g. "int a,b"
the type of the result

! time the m odule was stored

! e.g. "bugfix"
! points to packaged proc.

The last pointer will be to a structure which contains a single field to hold the
procedure. The names of the structure and the field can be generated automatically
from the param eter types of the procedure, for instance m invec w ould use the
following:

Chapter 8

struc tu re VintTintprocpack(proc(*int->int) VintTintproc)

216 Software Tools

A m odule source will be a string, which in the case of minvec, w ould be as
shown in Figure 8.14.

retrieve systemlib min latest
let minvec = proc(*int V -> in t)
begin

let smallest := V(IwbiV))
for i = lwb(V)+1 to upb(V) do smallest := mini smallest, V (i))
smallest

end
save systemlib minvec firstgo new
Richard Cooper
Returns the smallest of a vector of integers.

Figure 8.14 A Source Module for minvec .

More formally, the module source consists of:

• one or more lines retrieving versions of modules to be used from the system
library or from the application library;

• the procedure body implementing the module version being defined;
• a line saving the module version in the system library or application;
• a line w ith the author's name; and
• one or more lines of description.

The system library is a set of modules, none of which calls modules outside of
the system library. This is im plem ented as a PS-algol database w ith nam e
"Procedures" and passw ord "Library". New modules will be entered in the top-level
table of the database. Updates will be linked via the various fields of the m odule
structures.

An application is a set of modules and data held together. None of the modules
call modules which are not in the application itself or the system library. There is one
distinguished root module, of type proc(), which is not called by other modules but by
directly invoking the application. The application is also stored in a PS-algol database.
One entry in the top-level table will point to a table containing the application library,
which will be organised in the same way as the system library. The root m odule is
contained in this table along with the others, and is keyed in the table with the name
"root". This contrasts with the usual PS-algol approach in which the root m odule is a
compiled PS-algol program which initiates the application. All the data connected
with the application will be stored in structures reachable from the other entries in the
top-level table.

8.3.6 System Implementation - the Operations.

There follows an outline of the implementation of two operations provided by
the system, one of which runs an application and the other stores a module version.
There is also a description of the design of three others as yet unimplemented.

C hapter 8 217 Software Tools

To ru n an application, issue the command:

ru n a p p applicationName

and this runs the simple program shown in Figure 8.15.

le t AppD B = open.databasei applicationName, "friend", "read")
let lib - s.lookupi "library", AppDB)
structure voidprocpacki proc() voidproc)
let theApplication = s.lookupi "root", lib)(voidproc)
theApplicationO

____________________ Figure 8.15 The runapp facility.____________________

It finds and unpacks the root procedure and then executes it.

To store a m odule, use the following command:

s to re moduleSource appl icat ionName

where applicationName can be "systemlibrary". This will take in the m odule source
and translate it into a PS-algol program similar to those shown for storing min and
minvec. The program that im plem ents this lies at the heart of the system and
deserves close attention.

It relies on an extension of the PS-algol parser, which analyses the source
module in the form presented above. Using a system like that described in section 4.4,
such a parser can be created, which returns a tree of lexeme, token pairs. This is used
as follows:

1) D ivide the m odule source into six parts: the retrievals; the procedure
definition; the body of the procedure; the storage line; the author's name;
and the description.

2) Scan the retrievals and build open.database calls to the system library and
application databases as required, as a string ODB, say.

3) For each retrieval, build the appropriate code to load the correct module.
This code relies on: a packaging structure which can be built from the type
names found in the imports and export fields; calls to standard procedures,
like f i n d N a m e d A l t and paraChoice - these will be already in the system
library and so m ust be themselves retrieved; the final param eter which will
determ ine w hether the retrieval should occur ou tside or inside the
procedure - two strings staticCalls and dynamicCalls will be built up for these
two cases.

4) The required PS-algol source to this point is ODB followed by staticCalls
follow ed by the procedure definition followed by dynamicCalls and the
procedure body.

C hapter 8 218 Software Tools

5) The list of modules called by this one is created. The list contains a pointer
to the called m odule if the bind is dynamic or to a m odule instance if it is
static. The list is scanned to create backwards links - a general function,
makeBackwardLinks, does this systematically.

6) a) If this is a new module, build a module version object w ith n il fields for
the version and generation lists and "new" for the updateReason field.
Get the initial value of the generation num ber from a system function,
f irs tGen - this allows different systems to have different generation
num bering mechanisms. Create a new m odule object, m ake it point to
the version object and put it into the table.

b) If it is a new alternative, look up the m odule object and create the new
version object so that it is linked into the list of alternatives.

c) If it is a new generation, lookup the m odule and then find the
alternative. Create a new m odule instance to represen t the new
generation and then link it into the list of generations - the generation
num ber will be determined by using another system function succGen, to
generate it.

7) Fill in the other fields of the module version from the appropriate sources.

8) Put the com m it line in.

let lib = open.databasei "Procedure", "Library", "write")
structure intintTintprocpack(proc(int,int -> in t) intintTintproc)
let minvec = proc(*int V -> in t)
begin

let min =s.lookup{ "min", lib Aversions) (intintTintproc) ! Latest version always,
let smallest := V(lw b (V))
for i = lwb{V) to upb(V) do smallest := min(smallest, V(i))
smallest

end

! show that minvec calls min
structure callListipntr call; string bindType ; pntr callNext)
let calledProcs =callList(s.lookup("min", lib), "latest", nil)
makeBackzvardLinksi minvec, calledProcs)

structure VintTintprocpacki proc(*int -> in t) VintTintproc)
structure modulei
structure moduleVersioni....
let version = moduleVersion("firstgo", nil, nil, 1, nil, nil,

calledProcs, nil, "*int V", "int",
"retrieve integers.", !i.e. the whole source.
date(), ! System function.
"Richard Cooper", "new",
VintTintprocpack(minvec))

let Module = module ("minvec", "Returns smallest of a vector of integers.", version)
s.enter("minvec", lib, Module)
if commitQ = n il then write "New module minvec stored ok’n"

else write "Commit of new module minvec failed'n"

Figure 8.16 Autom atically Generated M odule Storage.

219 Software Tools

This is now a complete PS-algol program to place the m odule appropriately.
The PS-algol compiler can be called to compile this and then the program
can be run.

As a final illustration, the m odule source given in Figure 8.14 for m invec
would be translated into the pure PS-algol code given in Figure 8.16.

D isp lay an app lica tion /the system lib rary . The graph of m odules in an
application will be shown to an arbitrary degree of detail. Among the facilities that
may be provided are: scrolling about the MDG; traversing the versions of the modules;
and zooming in on the im ports/exports which flow along the dependencies or on the
details of the modules as required.

Retrieve m odule details. Given a search string, any modules having that string
as part of its name, version name or some subset of the docum entation fields will be
returned for examination. The search can be confined either to the system library or to
an application together with the system library.

Produce program docum entation. The application MDG will be processed in a
systematic way and the documentation fields will be transform ed into a documenting
text.

8.4 Conclusions.

This chapter has shown how to build a set of tools to m anipulate a procedure
database in order to assist in the construction of application programs. This has been
possible in a persistent language because the fine detail of storage has been removed
from the program m er's concern. The provision of first-class procedures and the
extensible union type pn tr have been the major aids. Programs could be w ritten
which m anipulate the procedures which instantiate modules with the same ease as
any other data item and there is access to the compiler at run-tim e. Further, by
making references to the stored procedures via p n tr fields, generic programs could be
written which handle any kind of procedure, although use of any of these will be fully
type-checked. W here specific types were required, these w ere autom atically
constructed in systematically named structure classes. Furtherm ore, the ability to
control binding times has been used to create a m odule version control system in
which the bindings between modules can be of a number of different forms.

There is no attem pt to justify the nature of the tools constructed - it is the
business of softw are engineers to design the kind of tools w hich they require.
However, when the tools have been designed, they can be implemented in a language
like PS-algol. The approach here has some sim ilarity w ith the object-oriented
approaches of [Dittrich et al, 1986; Zdonik, 1986], rather than the traditional file-
oriented [Rochkind, 1976; Tichy, 1985] or record-oriented [Ecklund et a l , 1987]
approaches. This demonstration begins to justify the expectations of [Nestor, 1986] in
the use of Persistent Object Stores and to overcome many of the problems encountered
■ for instance, Zdonik 's statement: "There is hardly a program m ing language to
perform the operations".

Chapter 8 220 Software Tools

In particular, this is a system which is both integrated (all of the modules live in
the very consistent regime of the Persistent Store) and open [Nestor, 1986]. Openness
is provided both in the sense that new modules of any type can be added to the system
indefinitely w ithout compromising system integrity and in the sense that new tools
can be provided to m anipulate the module base, w ithout invalidating existing tools.

There are a num ber of restrictive assumptions in the system as described. For a
start, it is assum ed that each module source produces exactly one procedure. There is
no intrinsic reason why a m odule should not store more than one procedure. N or is
there any reason not to use the same mechanism to store other kinds of object. The
data-type completeness of PS-algol means that any type of object can be m anipulated
with the same ease as any other. Thus future w ork is envisaged im plem enting
systems like those described in [Katz and Chang, 1987]. Restricting the num ber of
procedure exports to one has already been referred to - this was merely to ease the
transformation into PS-algol. All of these restrictions were m ade to simplify the work
by excluding extraneous issues.

W ork is already under way to implement this system. The im plem entation is
taking two paths. A direct implementation in PS-algol of an A utom ated Interactive
Module M anagem ent System, which provides the facilities described here [Kerr and
Cooper, 1989], The storage and retrieval of modules containing any num ber of objects
of any type has been im plem ented, bu t the im plem entation of the docum ent and
display facilities has yet to be tackled. There is also to be an indirect implementation
using the requirem ents m odelling language, PSRML, see section 7.2. In this
im plem entation, the objects and operations will be specified in a very high level
language which should automatically generate the software which implements it.

Chapter 8 221 Software Tools

Chapter 9. A Methodology for Persistent
Programming.

This chapter pulls together the im plem entation techniques used in the
preceding chapters. The concentration is on an overall m ethodology for developing
program s w ithin the PS-algol language, outlining strategies for generating suites of
application program s using higher level m odels of the application dom ain and
describing the w ay in which specific features of the language are used. This
m ethodology will support an incremental developm ent of applications and follow
iterative cycles of design and implementation (as shown in Figure 9.1), rather than a
purely linear sequence of design and implementation phases, rarely usable in practice.
The figure illustrates a design process with three cycles, an inner cycle depicting the
trouble shooting of a particular level of code, a second cycle depicting a successive
refinem ent and addition of detail and finally the process of re-assessing the
requirem ents of a piece of software once it "works". The steps in the methodology
described in this chapter are also subject to these cycles of design and implementation,
so that although the steps are numbered sequentially, it is a particular strength of the
persistence paradigm that they can be taken in any order and freely mixed.

Fault
Evaluation?

Yes No'inished detailZ

Problem

Revision

Requirements

Add more detail
New Problems

Arise

Initial
Implementation

Figure 9.1 An Incremental Design Process.

The basic building blocks of the methodology will be the following features of
PS-algol:

• orthogonal persistence and the ability to store the values of the application
domain in the same form as the structures used during processes;

Chapter 9 222 Methodology

• PS-algol struc tu res and their ability to model objects of arbitrary complexity
with fields of any type;

• the p n tr type and its use to defer the binding of program to data and to delay
the type checking of general purpose code until run-time;

• the run-tim e com piler and its use to tailor code appropriate to a wide variety
of data classes;

• the graphics primitives and their use for creating the user interface.

Perhaps the most im portant point to be m ade at the outset of this chapter,
however, is that throughout this chapter, there will appear alternative developm ent
paths. This is because the ethos behind PS-algol is to facilitate all k inds of
program m ing technique and not to impose a particular program m ing style. For
instance, there is an assignment statem ent in PS-algol, bu t no attem pt to force the
programmer to use it. As PS-algol has first-class procedures, one alternative is to use a
purely functional style of programming. Conversely, if one wishes to use a purely
object-oriented style, this can be achieved without departing from PS-algol [Philbrow et
al., 1989]. In short, PS-algol does not make decisions for the program m er, but provides
sufficient primitives to enable different approaches to the problem.

The first part of the methodology is to specify the data structures of the objects
used in the program using the PS-algol structures, as described in section 9.1. The step
includes specifying attributes of the objects and then other kinds of inter-object
relationships. Next, in section 9.2, the program design is discussed. It is argued that in
general, all code modules can be split into three sets: operations on object classes, as
supported in Object-Oriented systems; modules which are themselves the components
of objects (recall the action procedure associated with a light button); and m odules
which stand outside of the object space, for instance the m odule which starts an
application. Following this, section 9.3 describes polym orphic program m ing; 9.4
describes organising the persistent store; and 9.5 describes organising the user interface.
The chapter concludes with some discussion of the weaknesses of PS-algol as a
programming language, with suggestions for improvement.

9.1 Program Specification and Data Modelling.

9.1.1 Modelling Simple Data Attributes.

The first step in developing a new application suite is to specify the kinds of
object which it will m anipulate. This step, akin to data m odelling, is of general
applicability to all large-scale software development w hether it be data intensive or
"systems" program m ing, such as compiler writing. The structu re constructor of PS-
algol, which permits objects of any type to be components of a complex object, provides
a good device with which to express the objects of the application domain.

Thus, in developing the Bibliographic Database System (Chapter 5), a structure
type was introduced for each of the following: references, reference types, output
media, formats and abbreviations. In a compiler, structures can be created for lexemes,
lexical analysers, nodes in a parse tree, and so on. A large range of the objects of the

Chapter 9 223 Methodology

system from the trivial to the complex can be expressed in a consistent way, providing
a complete description of the data structure of the application domain. Moreover, the
structures may include procedures as components and so they can also provide a
specification of the dynamic features of the world, which are specific to a particular
class of objects. An output m edium in the BRDB, for instance, contains procedures to
process a set of references for output in particular ways. The structure definition of an
output m edium specifies the types of the procedures involved.

However, initial concentration will be on determ ining the simple attributes of
each type. These will include any textual, graphical, numerical or boolean attributes,
including vectors of any of these and a structure definition will be constructed which
contains these fields alone.

One aspect to be remembered when defining these structures is the degree to
which they are extensible. If there is, for example an address structure as follows:

structure addressi in t house; s tring street, city)

and later, a field for postcode is required, there are two ways to cater for this
eventuality. If the program is under developm ent and no real data has yet been
developed, a postcode can be added and all program s using the structure m ust be
edited and re-compiled. Even if there is some hard data, this may be the correct plan.
In addition there will be the creation of a program to copy all of the data from the old
structure to the new one. Note that this is a complex task in a reference based
language, since all references to address objects will also have to be changed. A
separate technique which exploits the pn tr type is to plan for the eventuality by adding
an extension field, as follows:

structu re addressi in t house; s tring street, city; p n tr addressExtension)

When the postcode is required, a new structure is created:

structu re address2(string postcode; p n tr addressExtension2)

which will contain the postcodes (and incidentally leaves room for further expansion).

The first steps in developing an application, then, are as follows:

1 Identify the objects of the program and their simple components.

2 W rite specifications for them as PS-algol structures.

9.1.2 Graph-based Programming.

The next step consists of specifying the inter-relations between objects. In any
application dom ain, various kinds of inter-relations betw een object classes can be
represented using the same PS-algol mechanism, a p n tr field in a structure. This
mechanism, being polymorphic in the sense discussed in section 9.3, is capable of
representing any links between two structures. Thus a p n tr field can represent a
specific link, like that between a reference and a reference type in the BRDB, or a more

Chapter 9 224 Methodology

general link, like an inheritance link between two types, as in IFO, PSRML, EFDM or
MINOO.

In fact, the increase in generality is a consequence of the higher-level nature of
the program - the program m ing is of the same order of complexity. The data
modelling program s m anipulate object types, while the BRDB m anipulates references.
The relationships to be modelled will include all of the following:

• the relationship between an object and a component where that component is
itself a complex object;

• the relationship between an object and a complex attribute;

• the relationship between one object and similar objects, when these all belong
to a structured set object (such as a list, a tree or a table);

• the relationship between an object and other objects which all belong to a
particular sort of graph (such as a type-graph).

In fact, the whole of the programming world consists of a graph of objects, where the
arcs represent these various kinds of relationships. This graph of objects is precisely
the graph which the PS-algol browser navigates through (see section 4.2).

Having identified the inter-relations between objects, the structures for each of
the object classes m ust be extended to include p n t r fields to represen t these
relationships. For instance, the structure for a bibliographic reference is extended to
include a p n tr to a reference type. Here a deficiency of the PS-algol language is found
in that there is no way of asserting that this field m ust point to a structure containing a
reference type. This matter will be discussed in section 9.6.2. Annotation recording
these referend types is recommended and procedures will be developed to m anipulate
them to comply w ith constraints.

Two more steps in the methodology are:

3 Identify all inter-object class relationships.

4 Extend structures for object classes w ith p n t r fields to represent these
relationships, either referring directly to the related object or referring to a data
structure that groups related objects.

9.2 Starting the Program Design.

W hen a cluster of data structures has been defined, it is possible to write code to
manipulate them . W hen there is a description of the data structures of the
application, a start can be made in constructing the code. Two things need to be done.
Firstly, a m odular design of the program m ust be produced in the standard way and,
secondly, a decision m ust be made on how best to place the individual modules with
respect to the object graph. Having first-class procedures, bu t not being tied to an
Object-Oriented style of programming, there is freedom to place a m odule in one of
three ways.

Chapter 9 225 Methodology

• It may be associated with an object class as an operation factored out of the
instances of that type and grouped together with other operations to form
an Abstract Data Type.

• It may be an attribute or component of an object instance.

• It may be an object in its own right - part of a separate program graph, using a
traditional program m ing style.

The next step will therefore be:

5. Divide the program into these three m ethods of implementation.

9.2.1 Providing Abstract Data Types and Object-Oriented Systems.

Given an object class for which the operations are well specified, it is possible to
restrict access to the data structure to those operations. The code in Figure 9.2 shows
how to restrict access to objects in class S,to two operations: 0 2 , which has an
additional string param eter; and 0 2 , which returns an integer as a result. Notice
firstly, that as all object references are passed via the abstract data type, there is now no
need to w rap the state variables into a structure. These have been left as individual
variables, thus speeding the implementation.

let makeAnS = proc(-> pntr)
begin

let VI := ... ! Initial values for the
let V2 = ...

! hidden state variables.
let anOl = prod string P)

begin
... code uses P and the Vi's

end
let an02 = proc(-> in t)

begin
... code uses VTs

end
structure SADT{ proc(string) 02; proc(-> in t) 02)
S A D T (a n 0 1 ,a n 0 2) ! Visible operations.

end

Figure 9.2 An Abstract Data Type.

An object of class S can be created by the following:

le t anS := m a keA n S {)

and then all that can be done with it is to apply its two operations, as in:

anS(OIK "HELLO”)
and let anlnt := anS(02) ()

C hapter 9 226 Methodology

There are many circumstances in which an ADT of this form could be created -
the relational interface of GRAPE (section 6.3) gives one example of this. However,
the m echanism should be used with care. If it is used to describe class S, and
subsequently a database is populated with many instances of S and the class needs to be
changed, there will be major problems. The data can only be accessed by the operations
provided - there is no convenient back-door and therefore no way of changing the
class of already existing objects.

Therefore, if a change of class description (such as adding a new operation) is
likely, there m ust be operations which retrieve all of the data associated w ith an
instance. These can then be used to get out all of the data and restructure the object.
Adding a third operation to retrieve a description of the initial specification of S will
provide this. N ow , w hen an operation 0 3 is to be added to the class, another
operation to take in this description of the state is also added. This permits:

le t anS := m a k e A n S i)
le t Sdescription := anS(retrieveDescription)()
le t anS2 := makeAnS2()
anS2(storeDescription)(Sdescription)

Updated References

U n u sea ^
References.nil nil

First Version Second VersionFirst Version

(ii)

Standari
Object

First Version
Standard First Version
Object

Second Version

State After Object Update.Initial State

Figure 9.3 Preserving Object References.

Chapter 9 227 Methodology

This will then make anS2 be an object of the newly constructed class w ith the same
state as anSl.

N one of this avoids another problem which arises from the previous code
fragm ent - shifting references to objects w hen their struc tu re changes. Two
possibilities are outlined here and shown in Figure 9.3.

i) To every object add a forward reference field, initially n il, but when an object
changes its representation, the field will point to the new version. All
object references check this field, which will be copied back to the referend
so that it only occurs once per reference. This is at the cost, for every
object access, of: a test; sometimes an indirection; and phantom updates.

ii) For every object, keep a unique structure w ith one pointer field to its
representation. Every reference will always be correct as it will point to
this structure. The forward reference is changed automatically every time
a representation change to the object is made. This is at the cost of an
indirection for every object access.

Neither of the possibilities seems superficially attractive. They are intended to
perm it the reference semantics which accompany models attem pting to make the real
world representation as simple as possible, whilst perm itting object type evolution. If
neither is used, when redefinition becomes unavoidable, complex program s have to
be w ritten and run; but normal execution involves none of these costs.

let makeAnS = proc(-> pntr)
begin

structure SADT(string VI; int V2; proc(string) 01; proc(-> in t) 0 2)

end

let HV1 := ...
letHV2 = ...
let ADT := nil
let PV1 :=
let PV2 = 0
let HOI = prod string P)

begin
... code uses P and the Vi's

end
let H02 = prod -> in t)

begin
... code uses VPs

end
let P01 = prod string P)

begin
... code uses P and the Vi's and the HOi's

end
let P02 = prod -> in t)

begin
... code uses Vi's and the HOi's

end

Initial values for the
hidden state variables.

Abstract Data Type Represntation
Initial values for the

public state variables.
Hidden operations.

! Public operations.

ADT := SADT(PV1, PV2, P02, P02)
AD T

! Visible components.

Figure 9.4 A More Generalised Abstract Data Type.

Chapter 9 228 Methodology

Returning to Figure 9.2, another point to notice is that the code of makeAnS
consists of a list of definitions, firstly of hidden state variables, secondly of public
operations. The choice of w hat is hidden and w hat is not was an arbitrary one and,
using exactly the same framework, PS-algol provides the opportunity to choose exactly
which variables and which operations are public and which are hidden. A more
general scheme is presented as Figure 9.4, in which are seen hidden variables (the
HV's), public variables (the PV's), hidden operations (the H O 's) and public operations
(the HP's). This ability to specify with complete orthogonality the pub lic /h idden and
attribute/operation dimensions of any class component is a natural consequence of the
data-type completeness and subsequently appeared in the superior Object-Oriented
systems such as Eiffel [Meyer, 1988].

Thus, the next step of the implementation is:

6. Identify all classes best represented by the generalised Abstract Data Type
form show n in Figures 9.3 or 9.4 and im plem ent them, m aking sure that there are
back-door operations an d /o r indirections to rescue data likely to be trapped in out-of-
date class structures and to allow references to be maintained after object replacement.

Notice that it is the responsibility of the application builder to choose the trade
off appropriate for each part of the application. In many systems, such decisions are
pre-empted by the language.

9.2.2 Operations as Object Components.

Some parts of the code are best seen as modules which are the dependent parts
of objects. The clearest example of this is a light button which is part of a m enu or
dialogue box. One of the components of a light button is the procedure which is
activated when the button is clicked. Note that this is very different from an operation
defined over an object-class as described in the previous section. Operations as
described in the previous section were generally applicable to all instances of a class.
These component operations will vary from object to object. In a given set of light
buttons, one will have a component to produce some help information, another will
quit the m enu, etc. A subsidiary distinction is that a component operation need not
necessarily operate on other components of the object at all, while an operation as
described above will probably manipulate other aspects of the same instance.

To accomm odate these dependent operations, the structure of the class is
extended to include procedure fields. When objects of the class are instantiated, these
procedure fields m ust be given values. Consider the structure:

structu re l ightButtoni string message; proc() activity)

which shows the two fields of light button giving the message on the screen and the
associated activity. To instantiate a light button, first define a procedure, for instance:

le t helpProc = p ro c ()

and then instantiate the button with:

Chapter 9 229 Methodology

le t helpButton = l ightButtoni ... "HELP", helpProc)

This shows the procedure being bound separately into each object in the same way that
a data value w ould be bound. Contrast this w ith the ADT operation, which is
provided as a general purpose piece of code for the whole class, bound w hen the
instance generator is defined.

The next steps are therefore identified as:

7. Extend structure classes to include procedure fields where appropriate.

8. Write the particular instance procedures which will populate these fields.

9.2.3 Modular Programming Development and Software Libraries.

In an Object-Oriented system, all of the coding effort is forced into the structure
described in section 9.2.1. A Persistent Programming Language such as PS-algol gives
more freedom to retain a traditional program m ing style where appropriate. In PS-
algol, any m odules not dealt w ith by the m ethods described in the previous two
sections can be organised in the traditional way, employing a m ethodology like the
one described in Chapter 8. Whereas it has been demonstrated that any m odule can be
constrained into the 0 - 0 style, there are m any instances which do not fit well. A
dum my object may have to be created so that a given m odule can be installed as its
operation or unnatural object classes may be set up to provide a framework for high-
level modules. The code which starts off an application is the most obvious example
of such stand-alone modules. Starting off an application as described in [Meyer, 1988]
requires considerable contortion of the code by the programmer. In general, a module
should be viewed as stand-alone if there is no single object class to which it is clearly
subordinate.

These stand-alone modules will be organised into a graph of procedures in
which the arcs are references to procedures from other code. Each m odule will be
implemented as a PS-algol procedure and stored in the persistent store. For simple
programs, it may be sufficient to allow the graph to be implicitly created by the calls of
one procedure on another. For a program of any complexity, however, it w ould be
better to make the graph explicit as shown in Chapter 8. Use of a structured program
library, version control system and configuration m anager is recom mended. All of
these can be built in PS-algol as described in Chapter 8 and further discussion here
would merely repeat that chapter's contents, so this section concludes with the step:

9. Produce a m odular specification of the program and code each m odule as a
PS-algol procedure. Manage these using any tools which are available.

9.3 Polymorphic Programming in PS-algol.

For any large scale program, there are usually m odules which are required to
manipulate a num ber of different classes of object. It w ould be costly to produce

Chapter 9 230 Methodology

manually versions of the module for each different class to be manipulated, rather
than to provide procedures which operate on more than one class of data. The
justification for wanting to do this is the same as that for introducing loops, arrays and
other constructs into programming languages - the wish to achieve optimum code re
use. There is an obvious tension between wishing to do this and requiring the support
of a strongly typed language to gain an early detection of type errors.

In PS-algol, the pntr type is used to resolve this tension. Essentially, the type
system is split into those types, such as int, proc(int -> int), etc., which cannot be used
polymorphically and the 1%-algol classes which can. The implications of this split will
be discussed in section 9.6.1.

Although the scalars, vectors, procedures, etc. cannot partake in polymorphic
code, the pntr type can be used to provide at least four kinds of polymorphism. These
kinds will be introduced in the terminology of [Cardelli and Wegner, 1985] as outlined
in Figure 9.5. This division, which expands on [Strachey, 1967], firstly divides all
polymorphic operations between universal polymorphism (meaning that the same
function will operate in the same way over an infinite set of types) and ad hoc
polym orphism (meaning that the same function may operate in quite different ways
over a finite set of types). This classification is problematic since it depends on the
level of abstraction with which the operation is viewed. For example, consider a
generic print routine. Abstractly, it produces an external representation for any object.
More specifically, it executes different code depending on the type of each object. Using
the callable compiler technology, a given procedure can be viewed either as a single
parametrically polymorphic procedure, which works by compiling components at run
time, or as a set of procedures exhibiting ad hoc polymorphism.

f parametric

/ universal

deferred type check

run-time compiler

9.3.1

9.3.3

S / 1
I \ inclusion

£ I ^
inheritance links 9.3.4

J
^ | /^overloading

* J
use of is 9.3.2

\ ad-hoc *s

\ \ coercion

Cardelli Polymorphism Type

no technique

PS implementation Section

Figure 9.5 Polymorphism in PS-algol.

Universal polymorphism is further divided into parametric polym orphism ,
(meaning that the universal function receives, either explicitly or implicitly, a type
parameter to instantiate it) and inclusion polymorphism (meaning that a function can

Chapter 9 231 Methodology

operate over a given type or any sub-type of that type). Ad hoc polym orphism can be
divided into overload ing (the same function name refers to different functions in the
context of different types) and coercion (the objects are autom atically translated to
conform to the 'equivalent' value in the type appropriate to the function being
applied). PS-algol provides mechanisms for providing all of these forms, except the
last. In particular, four mechanisms will be discussed:

The first uses the p n tr type to place a limit on the am ount of type checking
which needs to be performed at compile time, delaying the type check to
run-tim e instead [Atkinson et al., 1988]. This is appropriate when the
procedure is independent of the internal structure of an object. One
example of this is a procedure which inserts an object in a list as this does
not need to know anything about the type of the object or of the other
objects in the list.

The second uses the run-tim e compiler to generate autom atically appropriate
procedures for a range of object classes, using the class of the object as an
implicit type parameter. This is appropriate when the code to be executed
depends on the structure of the object. An example of this is a procedure
which prints the objects in a list. In this case, the format of the prin t and
access to the elements of the list depends on their structure.

The th ird m echanism uses in h eritan ce links to p ro v id e inc lu sion
polym orphism . W hen searching for the operations available on an
object, not only the object's class will be checked, but so will all super
classes of this class (by following inheritance links).

Finally, PS-algol provides is, which is a type-case check and m ay be used to
implement overloaded procedures.

Each of these mechanisms will now be discussed in turn.

9.3.1 Partitioning the Program Using Deferred Type Checking.

W hen the program has been specified as in steps 5 to 9, there will usually be
some m odules which perform some polym orphic operation on an object "blind".
They navigate a graph, send objects through some communications channel, etc. Any
module such as this can be rewritten polymorphically by using p n tr references. The
tables package of PS-algol provides both a relevant example and a counter-example.

A table, in general, is the union of two indexes - one from strings to complex
objects, the other from integers to complex objects. Any object to which there is a p n tr
reference can be entered into a table by, for instance:

s.enteri "aStringKey", object)

where the object can have any structure. Thus, a generalised associative access package
has been provided for objects of any structure.

The same package is simultaneously a counter-example, because there are two
sets of procedures for m anipulating the table, one using string keys and one using

Chapter 9 232 Methodology

integers. PS-algol has no simple way of unifying these two sets of procedures (see 9.6.1
for more discussion on this point). A compromise could be achieved by making the
key a pntr reference as well as in:

enter(aPntrKey, object)

However, now the procedure stops being as simply polymorphic as the two procedures
s.enter and i.enter. This is because in order to perform the table insertion correctly, the
procedure has to know the values of the key and therefore to look into its type.
Moreover, the storage algorithm is likely to be different for the two forms and so will
require the ad hoc polymorphism discussed in section 9.3.2.

However, for many purposes, there will be the opportunity to delay the type
check of parts of an object and this should be exploited in the step:

10 For the operations on a given object, partition the program into parts which
can and cannot operate without looking inside the object and code the former as
polymorphic code.

9.3.2 Overloading Using "is".

A polymorphic form of the enter procedure was introduced in section 9.3.1, for
which the internal state of the key was critical. Such a procedure could be w ritten as
follows:

structure intPacki int i n tV a l)
structure stringPack{ string s tr ingVal)
let enter = proc(pntr key, value)

case true of
key is intPack: i.enter(key{ intVal), value)
key is stringPack: s.enteri key(s tringVal), value)
default: ... error code

with further key types being explicitly added at will. This procedure exhibits ad hoc
polymorphism via an overloading of the enter procedure. In PS-algol, this technique
can be used to glue together two or more equivalent procedures containing different
code for different classes.

The payoff here is whether several procedures, all simply described, are better
than a single procedure which does the job polymorphically but is more complex. The
latter has the distinct benefit that there is no need to invent new names for each object
class used. It suffers because the procedure needs to be recoded for any addition of
classes and because it cannot detect a type error until run-time. However, there may
sometimes be procedures which are required to operate over a fixed set of classes,
which will clearly never change. So, the next step is:

11 Identify such procedures and code them using is.

Chapter 9 233 Methodology

9.3.3 The Run-time Compiler and Parametric Polymorphism.

As well as the ad hoc mechanism described above, there is also a need for a
more general param etric polymorphism in which a single procedure is written which
can operate on a potentially infinite set of classes. In PS-algol, this is provided by using
the run-time compiler to produce tailored procedures for each class encountered. This
technique has been illustrated in the PS-algol browser (section 4.2), in GRAPE (section
6.3), in PSRML (section 7.2) and MINOO (section 7.4), so only a brief reiteration here is
in order.

The technique involves discovering the type structure of the incoming object
and inserting strings derived from this (such as the structure definition and field
names and types) into an algorithm tem plate representing the invariant parts of the
required procedure. This procedure is then compiled and run against the input object.
The resulting procedures m ay be memo-ised by the class description to prevent
recompilation. The string m anipulation involved may become complex (see section
9.6.3).

The technique as described so far has been used only to operate on any PS-algol
class. For instance, the browser traverses any structure. There are no extra facilities
required to produce procedures which operate on a bounded set of classes - for
instance, all classes with a string field named name. Thus the kind of polymorphism
provided by a language like Machievelli [Ohori et al., 1989] is implementable in PS-
algol.

Therefore, there are two more steps in the program development:

12 Identify any procedures that should be program m ed using the run-tim e
compiler and code them as shown in the examples.

13 Any rem aining procedures should then be coded as specific procedures
either stored directly in a procedure library or within other procedures.

9.3.4 The pntr Type and Inclusion Polymorphism.

The final form of polym orphism which can be provided in PS-algol is the
inclusion polym orphism prevalent in Object-Oriented system s. This form of
polymorphism is in evidence in the example of a class P E R S O N w ith an attribute
address and a sub-type ST U D E N T . Associating an operation print Address w ith the
class P E R S O N makes it available to any object of class S T U D E N T as well. Examples
have been shown (PSRML, section 7.2 and MINOO, section 7.4) to illustrate how this is
im plem ented in PS-algol by m eans of inheritance links. For instance, one
implementation of a type system would have nodes whose structure looks like:

struc tu re type(string name; *pntr operations; ; *pntr supertypes)

The code to find an operation for an object starts with a search of the operations
field of that object's type. If the operation is not found there, the super types field is
dereferenced and the supertype nodes are searched for the object.

Chapter 9 234 Methodology

Notice that this mechanism provides the possibility of o v e rrid in g as well. If
there is a printDetails operation defined on class P E R S O N and another printDetails is
defined on S T U D E N T , which prints more details, then starting the search at the
S T U D E N T class will cause the STU D E N T version to operate. Indeed, the mechanism
is flexible in that the code which searches for operations can have a variety of
semantics imposed on it.

The following step summarises this section:

14 If an inclusion polymorphism is required among classes, structure the object
type nodes as in the above example and write an operation dispatcher to traverse the
type graph according to the required semantics.

9.4 Manipulating the Persistent Store.

This section is merely a personal recommendation on the way to set up PS-algol
databases to m axim um advantage. It is envisaged, first of all, that in a m ulti
application environment, there will be a need for central, read-only, databases. The
language comes with programs for setting up a system database and a database of fonts.
A database of utilities should also be set up along the lines described in Chapter 8.

For any specific application, an additional database of the kind illustrated for the
BRDB should be set up. As for the BRDB, this will include a library of code specific to
the application, meta-data and data. Indeed, Figure 5.9 is a reasonable template for any
such database. In general, two top-level programs will be required, one which initiates
the database and one to start the application running. All other code should be written
in the form of programs which insert code into the database.

The internal organisation of the database will be determ ined by the data
structures required for processing. Given the modelling power of the structures, these
may in turn reflect the nature of the objects in the application domain in a way which
mirrors their real-world structure. In fact, each data structure will be chosen either to
support processing where significant computation is expected, or to m odel the real
world where communication predominates. As one example of the internal structure
of a database, a bulk object may be implemented in numerous ways:

as a vector - this means that all of the elements have the same type - vectors are
best used if indexing is of param ount im portance and insertion and
deletion of objects is relatively rare;

as a structure - used for small sets of differently typed elements;

as a list - useful for small sets with many insertions and deletions;

as a table - useful for large sets with many insertions and deletions, also if the
scan operation is required, but objects whose type is other than pntr need
to be packaged.

In general, the choice between these objects is like to depend on the code of the
program and will follow from a choice in the program design. This is one of the most
desirable consequences of orthogonal persistence.

Chapter 9 235 Methodology

Thus the next step is:

15 Write programs which set up the application database, pu t the code modules
in the database and run the application.

9.5 Organising the User Interface.

One of the key benefits of PS-algol is the provision of the graphical types, using
which the user interface can be designed in the same way as the rest of the program.
The separation of user interface design from the rest of the program , although
apparently desirable, has been criticised, e.g. [Coutasz, 1987]. Conversely, the work here
shows that a close integration of the interface and program brings benefits, which will
now be re-iterated.

Firstly, the separation of user interface from the rest of the program is usually
taken to the point where they are implemented in separate environments with a fixed
and difficult to change interface between the two. W indow managers come with tool
sets which reduce the degree of choice available to the interface designer. The PS-algol
approach is to provide tool sets, but leave the program m er with the ability to create
different versions or completely different tools as required. Thus, PS-algol comes with
the menu function, but Chapter 3 showed how different m enu systems could be built
to replace this.

Secondly, it is possible to keep data and their graphical representation together.
The usual technique is to provide a library of symbols, possibly inextensible, and to
have a given object connect to a symbol by a reference. In PS-algol, a structure for an
object can have an extra field containing an icon for that object, thus simplifying the
code required to manipulate the icons.

Thirdly, the pay-off between the cost and speed of storing images can be finely
controlled. For any image on the screen, the program can either store the image itself
(fast, but potentially requiring a lot of space) or store a program to create the image
together with the relevant parameters. Which is chosen depends on the requirements
of the application, bu t PS-algol perm its the choice to be m ade in term s of these
requirements and not in terms of the limitations of the developm ent environment.

Therefore, the organisation of the interface can be determ ined entirely by the
requirements of the application. The various phases of the interface, screen layouts
and interaction styles can be specified and then code written to produce the required
effects. In general, it is possible to produce a module for any particular user interface
tool. These can then be structured into the user interface part of the program . The
consistent style of menus and dialogue boxes used throughout this work is one such
way of organising the interface, although other styles are possible. One alternative is
the event driven architecture developed in [Cutts and Kirby, 1987], in which an Object-
Oriented style of program m ing is provided as a Notifier, which registers actions,
monitors events and initiates appropriate actions when the events happen.

The final step is:

16 Determine an interface style. Provide appropriate primitives and then build
the interface.

Chapter 9 236 Methodology

It should be re-emphasised at this point that the design steps spelled out linearly
may be interwoven and taken in different orders as appropriate to the application or
part of the application under design.

9.6 Deficiencies of PS-algol.

This section discusses a num ber of potential drawbacks of PS-algol found in
producing the software examples given in the body of this thesis. The type system
imposes different m ethods of handling simple and complex data objects. There is no
way to restrict p n tr references to point to objects from a specific class. The run-time
compilation system is cumbersome to use and is poorly interfaced w ith the calling
program. The language lacks facilities for concurrent access. The commit function is
very low-level compared with sophisticated transaction systems. D istribution is not
dealt w ith. The reliance on m em ory garbage collection causes in terrup tions to
program execution.

9.6.1 The Divided Type System.

The type system has two principal weaknesses. Firstly, the types of base and
complex values are not well integrated. Polymorphic procedures can be provided, as
has been shown, which range over any kind of structured value. It would be desirable
to be able to range over all types, including string, int, *int, proc(string -> i n t), etc. For
example, it is not possible to write a procedure which perm utes the elements of an
arbitrary vector type. To operate polymorphically in a world which includes simple
and complex values, it has been found necessary to package and unpackage the simple
values.

Dealing with these exceptional objects constitutes a significant part of the code.
The solution to this problem as proposed in languages such as Amber [Cardelli, 1984]
and N apier88 [Morrison et al, 1988b] is to provide a universal union type, called
variously dynam ic or any, which is truly universal. That is, every type in the type
system of Napier88 is a sub-type of any and so polymorphic procedures can be written
which take arguments which may truly be of any type. Checking these types is then
done by projecting the type of the object into some sub-type or by using param etric
polym orphism .

9.6.2 Unspecified pntr References.

In creating structures with p n tr fields it is often possible to specify the type of
these fields and expect the compiler or run-tim e system to enforce the type. For
instance, in the following structure for nodes of lists of string:

stringListNodei s tring value; p n tr n e x t)

it would be useful to force the next field to point to another stringListNode (or n il of
course), bu t this cannot be specified in PS-algol. These two problems point to the need
for a m ore powerful and uniform type system, for instance that of Napier88.

Chapter 9 237 Methodology

9.6.3 Run-time Compiled Procedures Break the Uniformity.

H aving access to the compiler at run-tim e is one of the back-bones of the
implementation methodology. The m erging of the algorithm and the type description
into a string which is subsequently compiled and then applied to the object is a very
pow erful technique which effectively resolves the tension betw een the security of
strong-typing and the expressive power of polymorphism. It also offers the potential
of very high efficiency by optimisations, performed during the code production, which
depend both on type and values. However, the way in which this is achieved in PS-
algol diverges from the uniform program m ing style which is a prim ary quality of the
language. There are three ways in which this divergence makes itself evident. Two of
them are concerned with the way the string is constructed, while the third concerned
with the way data are shared between procedures, an issue which will be dealt with in
the next section.

The first point seems fairly trivial, bu t illustrates the divergence in the way
string literals are put into a procedure. Suppose the line:

p r in t "Hello mum'n"

is required in a compiled procedure. Because the line needs to be pu t into a string, it
m ust be rewritten:

"print ’"Hello mum "n”"'

because both the quote character and the escape character (') need themselves to be
escaped when inside a string literal. W ritten thus, the form is ugly and difficult to
parse by eye. This can be circumvented, for instance by writing:

"print #QHello m um#N#Q"

where #Q and #N are placeholders for quote and newline characters, which can be
replaced automatically prior to compilation time. However, although this can be said
to clarify the program somewhat, it still means that the line is different from the first
form and implies that some parts of the program m ust be w ritten using different
syntax than other parts.

The second point concerns the way the string is built. Initially, a style was
adopted in which a string variable was successively extended by string concatenation.
This required lines of the form:

le t source := source ++ "print '"Hello m um "n"1 ’n"

which is clearly unsatisfactory. This style was subsequently superceded by the style
introduced in Figure 4.13, in which the whole algorithm is w ritten as a single string
containing placeholders for any type dependent text. These placeholders are
subsequently replaced by the actual text to appear there, using a standard set of
replacement procedures. This technique produces m uch clearer code, although the
implementation of repetitive pieces of text, such as initialising a vector or structure,
can produce slightly unclear code. However, writing a procedure using this style is not
the same as w riting a procedure directly and so the m uch valued uniform ity of PS-
algol as a programming language has been violated.

Chapter 9 238 Methodology

9.6.4 Sharing Data With Run-time Compiled Procedures.

W orse still, a procedure w ritten in this w ay does not exist in the same
environm ent in which it is specified. To explain this point further, if a procedure P is
w ritten in the normal manner, it has available to it all of the variables which are in
scope at the point of its declaration. A compiled procedure, CP say, has no such
variables available to it, except, of course, the variables in the standard environment.

In order to get any interaction or data sharing between CP and the environment
in which it is declared, one of two unsatisfactory methods m ust be used. Either shared
data m ust be p u t into the Persisten t Store and retrieved from there or the
environm ent m ust be passed into the procedure as param eters. In MINOO for
instance, every system- or user-created operation receives the type table and the
symbol table as param eters, which means that it can traverse the environm ent with
freedom as these are the two roots of all information. N either of these techniques
seems to be the natural way to model the programmer's intention.

W hat is required to overcome both of these problems is some mechanism for
saying: com pile algorithm A in the context of environm ent E, w here A is
parameterised. Quite what kind of parameterisation is useful here, whether by type or
by data values, seems a fruitful area for language design research. Clearly the language
Napier88 w ith its richer type system and environments goes a long way to solving all
of the problems described here.

9.6.5 Constancy.

One aspect of the PS-algol type system which has not been exploited to the full
in this w ork is that any value can be declared to be constant. Subsequently its value
cannot be changed and so this mechanism can be used to provide some protection for
data from corruption. This w ould be useful for im plem enting data m odels, for
instance, in which some fields of an entity type are declared to be constant.

However, in this work little conscious use has been m ade of the facility because
of the lim ited way in which it has been provided. In PS-algol, every value is either
constant or it is modifiable. Therefore, if a conscious decision is m ade to declare a part
of the data structure to be constant, then this decision m ay not be subsequently
changed. Furthermore, in PS-algol, this is a property of the type and not of the value,
thus prohibiting the passing of param eters of the wrong constancy to procedures.
Therefore, the decision was usually to leave everything variable. There is an
argum ent to be made that what is required here is a greater range of values for the
constancy of an object, from "this can never be changed" to "this can always be
changed", including some intermediate values such as "this can only be changed with
difficulty". Research into this area is recommended.

9.6.6 Concurrency control.

As has been said, concurrency control in PS-algol is at the "database" level. Any
database can be opened by one writer or multiple readers, but not both. In a multi-user
system, this leads to problems. Consider, for instance, a system library of utility

Chapter 9 239 Methodology

procedures. Applications programs open this in read-m ode to get at the utilities they
require. Two problems occur, however.

Firstly, the utilities m ust not have any persistent state variables, as these would
reside in the utilities database. Therefore, if they were changed, the utilities database
would have to be opened in write-mode and so be inaccessible to other applications.
This problem can be avoided by locating any persistent state in the application
database, although the program m ing of this is often inelegant. More serious is the
problem of library update. If a new or revised utility is pu t in, the utilities database
m ust be opened in write-m ode, and all of the dependent applications m ust be
suspended. Better concurrency provision is required - for instance, locking of finer
granularity.

There are two possible development paths to achieve this. Either the primitives
of PS-algol could be changed or more complex control structures could be built on top
of PS-algol. In fact both paths need to be followed. In retrospect, the "database" is an
unnecessarily heavyw eight object, w hich is used sim ultaneously to p rov ide a
persistent root and a unit of concurrency. Napier88 elim inates the database and
reduces the store to a single persistent root. What is required instead are primitives to
support concurrency. These may be lightweight processes [Wai, 1988], atomic locks and
resources [Krablin, 1985] or mutexes, as proposed for Napier.

F urther research is requ ired to determ ine the n a tu re of the low-level
primitives, but they should be kept extremely simple and very few in number. Then,
higher level facilities can be built on top of them using the techniques illustrated
elsewhere. For instance, [Krablin, 1985] describes an extension to PS-algol called CPS-
algol, which extends the language with primitives for atomic locks and resources.
W ith these few additions, Krablin is able to build transactions which are atomic,
serializable and recoverable, by representing them as Abstract Data Types and using the
first-class procedures to pass "processes" around. This kind of approach, providing few
low-level primitives and then building more sophisticated facilities on top of them,
keeps the language simple and yet provides the power needed.

9.6.7 Commit and Database Update.

A similar granularity problem concerns the com m it command. W hen commit
is executed, every object which has been modified and is reachable from a persistent
root is w ritten to backing store and all the old values are lost. Two problems arise
from this: you cannot commit some of the changes; and you cannot undo a commit.
The form er is of relevance in CAD when, for instance, a ship, in which each of the
sections is in a different part of the same database. Some modifications are m ade to
the hull, but not committed because they are tentative. Then some changes are m ade
to the superstructure which prove useful and they are therefore committed. The hull
changes are now made as well, even though this was not intended. Conversely, if the
changes to the superstructure were to be aborted, the changes to the hull would be lost
as well.

These problem s are part of an overall lack of fine granularity , transaction
control and rollback capabilities at the prim itive level. In fact, however, as the
development of the Bibliographic Database showed (Section 5.3.4), such capabilities can
be built on top of the com m it primitive. Similarly, any mechanism for object version

Chapter 9 240 Methodology

control and database history m aintenance can be built as a re-usable component for
any application. There remains, however, the suspicion that a better primitive would
be a version of commit which took a pointer into the persistent store as a param eter
and committed all the changes reachable from that pointer. But if retract is similarly
parameterised, common sub-structures lead to ill-defined or complex semantics.

9.6.8 Distribution.

PS-algol does not attack the problem of distributed data and computation, which
m ust become a critical issue over the next few years. An extension called Distributed
PS-algol has been produced by [Wai, 1988], which introduces lightw eight processes
coupled by remote procedure calls. It is intended to extend this w ork to perm it a
program to refer directly to remote data. This looks a promising step, bu t there will be
m any problem s encountered w hen trying to run program s against a w idespread
distributed store, which current store technology techniques do not begin to solve.
Some of these problems touch on questions such as where rem otely accessed data
should be held (i.e. should it be replicated locally or moved?), w hat to do if nodes
disappear from a network and how to find a given node. Other questions concern
how to implement remote access efficiently. These questions are outside the range of
this thesis.

9.6.9 Garbage Collection.

Extensive use has been m ade of the availability of procedures as first-class
objects in PS-algol. This feature means that a running program has sometimes to be
suspended so that local store can be statically garbage collected. To see the reason for
this, examine the following code fragment:

begin
let x := 0
let P := proc()

begin

x := x + 1

end
P

end

This is a block which exports a procedure, P. Inside the block, a local variable, x,
is declared. In a language like Pascal, x could be thrown away at the end of the block.
In PS-algol, it cannot be thrown away as it is used in the body of P, which itself may be
referenced outside the block. It is hard, if not impossible, for the compiler to decide
statically which objects it can throw away. Therefore space reclamation is performed at
run-time. All objects which have been used are pu t onto a heap as they are declared.
When there is no more space for the heap to grow, the program suspends itself and
then all objects which are reachable from current objects are m arked (the x w ould be
marked because it is reachable from P if P itself is still referenced). Any unm arked
objects are then discarded and the space they occupied is reclaimed.

Chapter 9 241 Methodology

In the current implementation, this garbage collection process happens during
the run of the program and takes a noticeable time. This will be unacceptable for some
program m ing tasks. Other techniques for managing garbage should be investigated,
both im provem ents in compiler technology and in garbage collector technology. A
m ore sophisticated compiler could discover which values will never be re-used and
eliminate them before garbage collection. One new version of the store m anager has
been brought out which, at each garbage collect, only keeps written-to objects on the
heap. This cuts down the num ber of such garbage collections, as for instance in the
(common) case, in which the whole of a table has been scanned, perhaps to provide
sum m ary information. All of the objects in the table remain on the heap, filling it up,
even though they are not likely to be used again. Other techniques which m ight be
tried include layered garbage collectors, keeping reference counts (problems arise here
w ith circular lists) or ageing (long-term unused objects are rem oved from the heap).
Such im provem ents are required if PS-algol is to be used for production-quality
software.

9.6.10 Summary of Deficiencies.

A num ber of deficiencies have been listed, which can roughly be divided into
three groups: language design deficiencies which have now been superceded; issues
which PS-algol was never designed to face; and im plementation inefficiencies due to
the novelty of the language. Napier88 can be seen as a significant im provem ent over
PS-algol in providing polymorphic types, environm ents, variant types and abstract
data types, as well as having a proposal for concurrency primitives, so many of the
above criticisms are overcome by Napier88. Concurrency and distribution are hard
problems for a database programming language to solve. The simplicity and power of
PS-algol has provided a useful basis on which extensions can be built to test out ideas
for providing such solutions, even though PS-algol itself does not do so. Finally, a fast
industrial quality version of PS-algol w ith an optim ising compiler, code generation
and state-of-the-art garbage collector requires industrial quality resources.

9.7 Conclusions.

A methodology has been presented for creating a program in PS-algol. The data
structures of the program have been described in a way reminiscent of semantic data
modelling techniques. Then the dynamic components were added in a variety of ways
depending upon features of the procedures. The freedom w ith w hich these
p rocedures m ay be m anipu lated in PS-algol con trasts strong ly w ith o ther
program m ing systems in which procedures have arbitrary restrictions placed upon
them. Finally the m ethods of designing a database and the user interface were
described. Using this methodology, it is thought that software for large and complex
tasks can be coded quickly.

A section on the deficiencies of the language was then presented. These
deficiencies, in some cases serious, do not imply that the novel features of PS-algol
must be abandoned, but rather that the language needs to be refined and re-engineered
to circumvent these problems. The language Napier88, which is outside of the scope
of this thesis, would seem to offer solutions to at least some of the problems. Others
will take longer to correct.

Chapter 9 242 Methodology

Chapter 10. Conclusions
In this chapter, the findings of the research are sum m arised, some general

conclusions are draw n concerning the effectiveness of the persistent program m ing
paradigm and recommendations for future work are made.

10.1 Summary.

In the in troduction, the requirem ent for im proving facilities for software
production was introduced. A num ber of approaches were in troduced including
making software specification easier and reducing the am ount of coding there is to do.
The Persistent Programming paradigm was introduced as a potential foundation for
im proving the economy of software production.

The paradigm proposed languages which are sim plified by the rem oval of
discontinuities between the ways different parts of the program m ing task are carried
out. In particular the differences in treatm ent of long-term and short-term data are
removed, which leads to a program m ing environment in which there is only one data
m odel encom passing both the com putational and database aspects of the data.
Another discontinuity which is eliminated in Persistent Program m ing is that between
program and data. The procedures which represent m odules of program code are
treated in the same way as any other data value in the language. One further
discontinuity which is removed is the differences in treatm ent of num erical, textual
and graphical data.

A persistent environment makes uniform the ways in which all kinds of data
values are m anipulated. A persistent program m ing language is designed to be
sufficient to handle more of the program m ing task than is norm ally the case,
including the hum an com puter interface and the storage of long-term data. The
coherence and sim plicity of languages w hich prov ide this are held to ease
program m ing, since the programmer has fewer exceptional cases to remember, fewer
data models to think about and fewer languages to master. The research reported here
was designed to test whether or not these features resulted in the expected benefits.

Firstly, a survey of other approaches to the problem of im proving software
developm ent was carried out, from the standpoints of language design, database
systems and software engineering. In the area of language design, it was found that
languages are providing increasingly useful and high-level program m ing constructs,
w hich perm it sim pler descriptions of algorithm s and the ability to prove the
equivalence of a program and its specification. However, languages tend either to
concentrate on one part of the problem (for instance, functional languages have yet to
solve the problems associated with long-lived data) or to become extremely complex
(for instance, Ada).

Database systems have grown in a num ber of ways. They have developed
efficient storage and retrieval mechanisms, on the one hand, and higher-level data
modelling tools, on the other. The current research activity into Object-Oriented
Database Systems tries to match these two w ith a pow erful com putational model.
However, such approaches seem to suffer because they propose the dominance of data
over program in such a way that the representation of program "objects" no longer has

Chapter 10 243 Conclusions

the generality and power traditionally associated w ith program s. OODBS often re
introduce m ultiple models and m ultiple languages.

Software environments are increasingly viewed as the solution to the crisis in
software production. A utom atic tools to assist program m ers in m aintaining the
coherence of a large program m ing project are built into a support environm ent for the
m anipu lation of program m odules. This m ay be though t of as a database
m anagem ent task, in which the program m odules are the data. Particular software
developm ent tools, version m anagers, configuration m anagers, etc. are applications
w ithin this DBMS. Given a sufficient application developm ent environm ent, it will
be possible to allow different projects to produce the environm ent which best suits
their own needs.

The conclusions from this survey are that none of the approaches have yet
reached the stage at which they can be confidently expected to produce the kinds of
im provem ent in software production which are required. However, individually they
provide parts of the solution: high-level data models; software developm ent tools;
strong type systems; the polymorphic description of code; the ability to prove the
correctness of software; etc. Persistent Program ming picks up m any of these themes
for incorporation into a uniform program m ing system.

Chapter 3 introduced the language PS-algol as the first significant exemplar of a
Persistent Program m ing Language. This language is com putationally complete,
strongly typed and has first-class procedures, orthogonal persistence, graphical types, a
m echanism for describing objects of arbitrary complexity and a compiler which is
callable at run-time. It was concluded that the language had sufficient primitives with
which to describe the data model (at a fairly high level), the com putational model
(with program m ing constructs typical of high-level procedural languages), the hum an
computer interface and such systems functions as compilers and software managers.

Chapter 4 showed how certain tools are developed in PS-algol. These included
such user interface components as menus, editors and dialogue boxes, together with
system tools such as a general purpose database browser and compiler generation tools.
A quick tutorial on the use of the language was given, particularly illustrating how the
callable compiler and the p n tr type are used to generate polymorphic procedures. It
was concluded from this chapter that PS-algol was sufficient for such tasks.

Chapter 5 described how a stand-alone database application could be directly
program m ed in PS-algol. The application maintains a set of bibliographic references
and builds bibliographies automatically. The developm ent of this application was
described, concentrating on: the way in which a database is m anaged in PS-algol; how
the tools described in Chapter 4 emerged naturally from the developm ent of this
application and were stored in a re-usable form; the way in which a facility not present
in PS-algol, a transaction manger, was provided on top of the primitives; and the way
in w hich the user interface was designed and built. The developm ent of the
application was reasonably quick given that a methodology for such program m ing was
being designed simultaneously.

Chapter 6 described two relational DBMS's. One, constructed by Pedro Hepp,
provided a variety of interfaces to the same database, while the other used the callable
compiler to tailor efficient storage mechanisms to particular data classes. Again these

Chapter 10 244 Conclusions

systems were developed rapidly and use was made of the high-level facilities available
in PS-algol to produce this speed.

Chapter 7 moved to higher-level database descriptive systems and showed how
to produce executable data modelling tools quickly. The systems developed included
im plem entations of the functional data model, a requirem ents m odelling language
(illustrating a design tool with rapid prototyping in mind), IFO and a minimal Object-
O riented language. These im plem entations w ere p u t into a common fram ework
which could be used to implement any semantic data model. Again, facilities such as
first-class procedures, the callable compiler and the p n tr type were used to turn
arduous program m ing tasks into rapid constructions.

C hapter 8 returned to the ideas of software engineering and show ed how
having procedures as first-class objects greatly facilitates the ability to create program s
w hich aid softw are developm ent. First, a u tility library m aintenance system ,
developed in the context of the bibliographic database, was described. Then, a more
sophisticated system with version control facilities was described. These prototype
systems were used as examples of the ways in which general purpose m anagem ent
system s could be developed not only for softw are m odules, bu t also for CAD
env ironm ents.

Chapter 9 took the work of the previous chapters and elicited a methodology for
software in the form of a series of discrete steps, which could however be tackled in an
order determ ined by the application and not by the system. These started w ith the
description of the data structure of the application, presented a fram ework w ithin
which the code could be sensibly managed, showed several techniques for producing
polym orphic code, described the organisation of the database and, finally, the
organisation of the code. Such a m ethodology is only an initial step tow ards
producing a framework for the organisation of an application.

10.2 The Major Findings.

Recall the statements of the theses in section 1.5.

Persistent programming, as exemplified by PS-algol, is a sufficient
and effective foundation for the development of large, complex
and long-lived systems.

The paradigm beneficially influences the style of programming
carried out.

A methodology can be developed which facilitates this style of
programming.

In the research described here, a number of highly complex, large and long-lived
systems have been produced. None of them took a long time to produce. Most of
them require significantly less code than might be expected. For instance, the IFO and
MINOO im plem entations take little over 1000 lines of code each. The range of
applications discussed has included user interface tools, compiler construction tools, a

Chapter 10 245 Condusions

general-purpose, polymorphic browser, a database application, several data modelling
tools and software construction tools. From these experiments, it is reasonable to
conclude that PS-algol is a sufficient language for the description of most parts of many
applications.

As discussed in section 9.6, the drawbacks to the use of PS-algol are that it is a
prototype of the paradigm (inadequacies of the type system), a research prototype
(speed) and that it does not successfully tackle certain issues (such as concurrency) yet.
None of these seem drawbacks in the long term. Napier88 already shows a significant
im provem en t in language design , w hile im provem en ts in im p lem en ta tion
techniques, for instance the garbage collector, are on the w ay for both languages.
Providing the other facilities such as concurrency is a m ore long term project,
principally because the semantics of such facilities have yet to be determined. What is
clear is that successor languages in the paradigm will carry with them the powerful
features of PS-algol that have been used here. It is safe to predict, therefore, that
program m ing in such languages will make use of the techniques described here, as
well as other techniques developed in response to the availability of additional
features.

The style of programming shown here is subtly different from program m ing in
other block-structured procedural languages. One principal feature is that a great
variety of styles can be used. As procedures are first-class values in the language, it is
possible to adopt a purely functional style of program m ing for those parts of the
application which are com putationally intensive. [Cutts and Kirby, 1987] and
[Philbrow et ah, 1989] have shown how a purely Object-Oriented style can be used in
PS-algol. PS-algol provides sufficient primitives for most program m ing jobs without
restrictions on how they are to be used.

The other point to be made about program m ing style in PS-algol is that it does
not directly provide m any high-level functions, rather it enables users to program
such facilities themselves. The transaction system (section 5.3.4) developed for the
bibliographic database is a case in point. This was developed as the need arose since
there were sufficient primitives to produce it. When such modules are produced they
may be stored as re-usable modules for later applications to exploit. Conversely, where
high-level functions are provided, they need not be taken as cast in stone. The PS-
algol m enu function, for instance, is a very useful facility, im m ediately available in
the system. If a different form of menu is required, however, this can be produced as
well. Users are not restricted to particular implementations of tools.

The major feature of Persistent Program m ing's style is that it is flexible and
open-ended. The user is not tied to a particular way of w riting program s, nor to
particular toolsets. It is also unusual to write long sequences of code. Normally, a few
procedures at a time are defined and stored in the persistent store for re-use.

Such freedom in a novel parad igm could be in tim ida ting w ith o u t a
methodology for program construction and, in the Chapter 9, a num ber of steps in the
production of PS-algol programs were outlined. This m ust be considered a first cut at
producing a more sophisticated version. However, concentrating as it does on features
of PS-algol which would be expected to be retained in any future persistent languages,
it incorporates m any of the expected features. A persistent language will give the

Chapter 10 246 Conclusions

ability to describe the data structure of an application at a high-level. It will also
include first-class values for program objects and so the program itself will be
amenable to the kinds of analysis presented in section 9.2. Polymorphic programming
may be performed differently, but the mixture of static and dynamic type checking and
deferred binding can be expected to be present in some form since the need for these
has been established. Similarly, the details of how the persistent store and the user
interface will be set up may vary. However, the basic features of these will remain: a
common data model betw een the program and the store; and facilities for user
interface design which are incorporated into the language.

Therefore, the existence of a m ethodology for Persistent Program m ing, albeit
embryonic, has been established. It remains to flesh out the details and improve it via
refinement in the light of experience.

10.3 Future Work.

The discussion of future work is again divided into the areas of program m ing
language design, database work and software engineering. The discussion will centre
a round the tw in topics of the developm ent and exploitation of the Persistent
Program ming Paradigm.

The experience with PS-algol, and in particular problems w ith the type system,
has led to the development of the Napier series of languages [Atkinson and Morrison,
1987, M orrison et al., 1988b]. These are in troducing a num ber of significant
improvements, including a much richer type system, building on the pioneering work
of Luca Cardelli [Cardelli and Wegner, 1985; Cardelli, 1988; Cardelli, 1989], in which the
behaviour of higher-level types is analysed. Some of the features of Napier, which are
additional to those of PS-algol, include:

• a type any which is the union of all Napier types and which may be used for
writing code for which the type check is to be deferred until run-time;

• a type constructor for abstract data types;

• the ability to specify types which have type parameters - i.e. generic types;

• a type env whose instances are environments - containers for sets of values
and for which there are operations to add more values, rem ove values
and to bring the values into scope for the following block of code;

• variant types;

• multi-entry processes.

These features would seem to make Napier a m uch more expressive language
than PS-algol and should make possible yet more program m ing tasks. The type any
has a unifying effect on the type system, overcoming the problems raised in section
9.6.1. The specification of param etric polym orphism (using generic types) and of
abstract data types is m ade explicit. Environments rem ove the need to introduce
values singly as in PS-algol, while also providing a useful structuring mechanism for

Chapter 10 247 Conclusions

those values. Processes, as d istinct from procedures, produce a m ore direct
representation of active objects.

Experim entation w ith the language is now possible, as the first version,
Napier88, is available. It will be interesting to see if these powerful features have the
expected effects on the production of code. Such code should be shorter and more
understandable if the new primitives have been correctly designed. It is possible, on
the other hand, that intellectual difficulty with some of these constructs may prove a
barrier to productivity.

Even richer type systems are being developed, for instance incorporating k inds -
types whose instances are types [Cardelli, 1988] - as are languages such as Machievelli
[Ohori et ah, 1989] which make a great deal of use of type inference. Type inference
w ould seem to shorten program s, since some of the relationships between types are
deduced by the compiler where they would otherwise need to be explicitly stated by the
program m er. Some lim it to any inference (for instance, being w ith in a given
environm ent) would seem to be necessary, since otherwise all kinds of unacceptable
inferences w ould be made between types in widely differing domains. W ork on type
classes to bring more structure to ad hoc polym orphism is another potentially fruitful
area [Wadler and Blott, 1989].

Developments in other paradigm s can be expected to have some im pact on
Persisten t Program m ing. For instance, it is conceivable tha t the functional
program m ing paradigm will find some way of dealing w ith all of the problems of
long-lived data without recourse to state - see for instance [Argo et al, 1987] or [Trinder
and W adler, 1989]. Alternatively, the Object-Oriented paradigm may evolve to include
mechanisms for describing active objects and thus be suitable for the whole application
developm ent task.

In short, languages for data intensive program m ing are still developing and
will do so until they achieve the ability to produce a unified description of the whole
of complex programs involving long-lived data, which are shared and distributed.

Database systems are also developing in a num ber of directions to optim ise
performance, improve high-level descriptive tools and data m anipulation languages.
The research that has gone into optim ising the perform ance of classical database
systems can now be re-used to im prove the perform ance of Object-Oriented and
Persistent systems. On the other, as this work shows, Persistent Languages provide a
suitable tool in which to prototype data modelling tools. The only way of verifying the
acceptability of a modelling tool is to implement and evaluate it. The implementation
work reported here also points the way towards database systems in which the choice
of m odelling tool is left to the user. Indeed, work is in hand to produce a m eta
m odelling program , in which the user specifies which m odelling constructs are
required and w hat the user interface to those constructs is. A m odelling tool is then
constructed for use.

Data m anipulation and query languages are being standardised, while database
program m ing languages are providing a separate route, which may well replace such
languages as SQL. If a full programming language is sufficiently simple and yet can act
as a DML or query language, why construct these separately? One of the future aims of

Chapter 10 248 Conclusions

the Persistent P rogram m ing is the replacem ent of these separate and lim ited
languages.

Another aspect is that of concurrent access to databases and transactions. In
conventional databases with short-term transactions, simple protocols for locking data,
such as tw o-phase locking, were sufficient to prevent m ost problem s. In design
databases w ith long-term transactions, m ore sophisticated, fine-grained locking
mechanisms w ith check-in, check-out protocols are required [Katz and Chang, 1987;
Fernandez and Zdonik, 1989]. Persistent Programming can assist with this research as
prototype locking systems can be built and tested, using Wai's distributed PS-algol
[Wai, 1988] as a foundation. Such work is already in hand.

One other aspect of the performance of databases is the requirem ent that they
store an increasingly rich set of basic types. PS-algol provides a step tow ards the
provision of multimedia types - the graphical constructs. Databases for sounds, music,
maps and other kinds of document will soon become commonplace. It is thus the job
of any long-term database system designer to ensure that future systems will cater for
these types.

M ore traditional database concerns m ust all be tackled by the designers of
persistent systems. Concurrency and distribution have been m entioned previously,
but there is also a need to provide reliable systems with a high degree of security.

Thus Persistent Program m ing is attem pting to replace traditional database
systems in the future, but it is already providing a testbed for the exam ination of
problems with current database technologies.

There are many projects currently working to develop Software Development
Environments. In a short time, no application development of any complexity will be
cost effective without the use of such systems. One of the clearest lacks of a "bare" PS-
algol system is that there is no framework within which software is conventionally
stored. In this work, only the barest outline for such a system has been attempted, but
it has shown that the production of SDE's is facilitated by a language such as PS-algol.
Experiments are in hand to design and implement a proper system for PS-algol, which
will act as a prototype for future languages. This will capitalise on the work produced
in other contexts.

Furthermore, there is a need to design and implement large sharable libraries of
software. This will require not only the specification of suitable components but also
some considerable understanding of how program m ers actually co-operate and
exchange code.

All of these techniques will then need to be brought to bear on the production of
large-scale applications of high quality. This will involve teams of program m ers
working in the iterative m anner outlined in Chapter 9 on applications which are
expected to store data and to evolve over a long period of time. Two examples of such
systems are an OODBMS and a complete programming environment. The production
of a good quality OODBMS using persistent technology w ould both act as a
dem onstrator and show considerable advantages compared with the ad hoc m ethods
used elsewhere. The creation of a total program m ing environm ent (for instance, a

Chapter 10 249 Conclusions

replacem ent for the M acintosh environment) using a persistent kernel should show
large savings in im plem entation cost. It w ould be of interest to see if such an
implementation resulted in any changes of system use.

In sum m ary, Persistent Program ming Systems m ay be expected to develop in
line w ith current developm ents in program m ing language, database and software
engineering research. These findings will be incorporated into Persistent Systems,
keeping them as simple as possible by extending the functionality of the systems in a
uniform m anner.

Chapter 10 250 Conclusions

Bibliography.
Abdullah, 1989

H. Abdullah, Ph.D. Thesis, University of Glasgow, to appear.
Abiteboul and Hull, 1988

S. Abiteboul and R. Hull, "IFO: A Formal Semantic Data Model", A C M TO D S, 12, 4, 525-565, December
1987.

Abrial, 1974
J.R. Abrial, "Data Semantics", Data Base M anagem ent, North-Holland, Amsterdam, 1-59, 1974.

ACARD, 1986
"Software - a Vital Key to UK Competitiveness", Advisory Committee for Applied Research and

Development, HMSO 1986.
Albano et ah, 1985

A. Albano, L. Cardelli and R. Orsini, "Galileo: A Strongly Typed, Interactive, Conceptual Language",
A C M TO D S, 10,2,230-260, June 1985.

Apple 1984
Apple Computers Inc., "The Macintosh Manual", 1984.

Argo et ah, 1987
G. Argo, R.J.M. Hughes, J. Launchbury, P. Trinder and J. Fairbairn, "Implementing Functional

Databases", Proceedings o f the W orkshop on Database P rogram m ing Languages, Roscoff,, (F.
Bancilhon and O.P. Buneman eds.), ALTAIR - CRAI, September 1987.

Atkinson 1978
M.P. Atkinson, "Programming Languages and Databases", Proceedings o f the 4 th In ternational

Conference on Very Large Data Bases, Berlin, (ed. S.P. Yao), IEEE, 408-419, September, 1978.
Atkinson, 1988

M.P.Atkinson, "Persistent Programming and Object-Oriented Databases", Joint International Seminar
on Teaching Computer Science, Computer Laboratory, University of Newcastle-upon-Tyne,
September 1988.

Atkinson and Buneman, 1987
M.P. Atkinson and O.P. Buneman, "Types and Persistence in Database Programming Languages", A C M

Com puting Surveys, 19, 2,105-190, June, 1987.
Atkinson and Morrison, 1985a

M.P. Atkinson and R. Morrison, "Procedures as Persistent Data Objects", ACM T O P LA S, 7, 4, 539-559,
October 1985.

Atkinson and Morrison, 1985b
M.P. Atkinson and R. Morrison, "Integrated Persistent Programming Systems", Proceedings o f the 19th

A nn u a l Hawaii International Conference on System Sciences, (ed. B. D. Shriver), vol IIA, Software,
842-854, January 1986.

Atkinson and Morrison, 1987
M.P. Atkinson and R. Morrison, "Types, Bindings and Parameters in a Persistent Environment", Data

Types and Persistence (M.P. Atkinson, R. Morrison and O.P. Buneman eds.), Springer-Verlag, 1987.
Atkinson et ah, 1981

M.P. Atkinson, K.J. Chisholm and W.P. Cockshott, "PS-algol: An Algol with a Persistent Heap", A C M
SIG P L A N Notices, 17, 7, 24-31, July 1981.

Atkinson et ah, 1982
M.P. Atkinson, K.J. Chisholm and W.P. Cockshott, "Nepal - the N ew Edinburgh Persistent

Algorithmic Language", in Database, Pergammon Infotech State o f the A r t Report, Series 9, No.8,
299-318, January 1982.

Atkinson et ah, 1983a
M.P. Atkinson, K.J. Chisholm and W.P. Cockshott, "Algorithms for a Persistent Heap", So ftw are

Practice and Experience, 13, 3, 259-272, March 1983.
Atkinson et ah, 1983b

M.P. Atkinson, K.J. Chisholm and W.P. Cockshott, "CMS - A chunk management system", Softw are
Practice and Experience, 13, 3, 273-285, March 1983.

Atkinson et ah, 1983c
M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott and R. Morrison, "An approach to persistent

programming", The Computer Journal, 26, 4, 360-365,1983.
Atkinson et al., 1983d

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott and R. Morrison, "PS-algol a language for
persistent programming", 10th Australian Computer Conference, Melbourne, 70-79, September 1983.

B ibliography 251

Atkinson et a l , 1988
M.P. Atkinson, R. Morrison and O.P. Buneman, "Binding and Type Checking in Database Programming

Languages", The Computer Journal, 31, 2, 99-109, 1988.
Bachman, 1969

C.W. Bachman, "Data Structure Diagrams", Data Base, \ , 4-10, Summer 1969.
Bancilhon, 1988

F. Bancilhon, "Object-Oriented Database Systems", Proceedings o f the A C M S IG A C T -S IG A R T
Conference on the Principles o f Dtabase System s, Austin, Texas, May 1988.

Bancilhon et a l , 1987
F. Bancilhon, T. Briggs, S. Khoshafian and P. Valduriez, "FAD: A Powerful and Simple Database

Language", in Proceedings o f the 13^ International Conference on Very Large Databases, Brighton,
England, 97-106, September 1987.

Bannerjee et a l , 1987
J. Banerjee, H-T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou and H-J. Kim, "Data Model Issues for

Object-Oriented Applications", A C M TO O IS, 5, 1, 3-26, January 1987.
Bennet and Rowles, 1986

Bennett, S. and Rowles, J. - "Teeny: an Executable Language Based on RML", me-too Internal Report
SETC/IN/215, STC Technology Ltd., Newcastle-under-Lyme, 1986.

Bird and Wadler, 1988
R. Bird and P. Wadler, "Introduction to Functional Programming", Prentice-Hall International Series in

Computer Science, 1988.
Bjomer and Jones, 1982

Bjorner, D. and Jones, C.B., "Formal Specification and Software Development", Prentice/Hall
International, 1982.

Blott and Campin, 1987
S. M. Blott and J. Campin, "Lgen, Pgen and Sgen: Language Development Tools", PPRR49, Universities

of Glasgow and St Andrews, 1987.
Borgida et a l , 1989

A. Borgida, J. Mylopolous, J.W. Schmidt and I. Wetzel, "Support for Data-Intensive Applications:
Conceptual Design and Software Development", Preliminary Report of the DAIDA Project (ESPRIT
Contract #982), 1989.

Bott 1989
F. Bott (ed.), "ECLIPSE: An Integrated Project Support Environment", IEE C om puting Series 14, 1989.

Brodie et a l , 1984
M.L. Brodie, J. Mylopolous and J.W. Schmidt (eds), "On Conceptual Modelling", Springer-Verlag, New

York, 1984.
Brodie and Mylopolous, 1986

M.L. Brodie and J. Mylopolous(eds), "On Knowledge Based Systems", Springer-Verlag, New York,
1986.

Brown, 1989
A.L. Brown, "Persistent Object Stores", Ph. D. Thesis, University of St. Andrews, 1989.

Brown and Cockshott, 1985
A.L. Brown and W.P.Cockshott, "CPOMS - A Revised Version of The Persistent Object Management

System in C", Persistent Programming Research Report 13, Universities of Glasgow and St. Andrews,
1985.

Buneman 1988
O.P. Buneman - private communication, 1988.

Buneman et a l , 1982
O.P. Buneman, R.E. Frankel and R. Nikhil, - "An Implementation Technique for Database Query

Languages", A C M TODS, 7, 2, June 1982.
Buneman and Nikhil, 1984

O.P. Buneman and R. Nikhil, " The Functional Data Model and its Uses for Interaction with
Databases", in Brodie et a l , 1984.

Campbell and Terwilliger, 1986
R.H. Campbell and R.B. Terwilliger, "The SAGA Approach to Automated Project Mangement",

Proceedings o f the International Workshop in A dvanced P rogram m ing E nvironm en ts, Trondheim ,
N o rw a y , (R.Conradi, T. M. Didriksen and D. H. Wanvik eds.), Springer Verlag Lecture Notes in
Computer Science 244,142-155, June, 1986.

Cardelli, 1984
L. Cardelli, "Amber", A T & T Bell Labs Technical Report, Murray Hill New Jersey, 1984.

Bibliography 252

Cardelli, 1988
L. Cardelli, "Types for Data Oriented Languages" in Advances in Database Technology E D B T 1988,

Venice, Italy, Lecture Notes in Computer Science 303, Springer-Verlag, J.W. Schmidt, S. Ceri and M.
Missikoff (eds), 1-15, March 1988.

Cardelli, 1988b
L. Cardelli, "A preview of the programming language Quest", circulated January 1988.

Cardelli, 1989
L. Cardelli, "Typeful Programming", Digital System s Research Center Reports 45, 1989.

Cardelli and Wegner, 1985
L. Cardelli and P. Wegner, "On Understanding Types, Data Abstraction and Polymorphism, A C M

Com puting Surveys, 17, 4, 471-523, December 1985.
Carrick et al., 1987

R. Carrick, A.J. Cole and R. Morrison, "An Introduction to PS-algol Programming", P ersis ten t
Programming Research Report 31, Universities of Glasgow and St Andrews, 1987.

Chen, 1976
P.P. Chen, "The Entity-Relationship Model - Toward a Unified View of Data", A C M TO D S, 1 , 1, 9-36,

1976.
Cockshott et a l , 1984

W.P. Cockshott, M.P. Atkinson, K.J. Chisholm, P.J. Bailey and R. Morrison, "POMS : a persistent object
management system", Software Practice and Exerience, 14, 1, 49-71, January 1984.

Cockshott, 1983
W.P. Cockshott, "Orthogonal Persistence", Ph. D. Thesis, University of Edinburgh, February 1983.

CODASYL, 1971
CODASYL, "Data Base Task Group Report", A C M , New York City, New York, April 1971.

Codd 1970
E.F. Codd, "A Relational Model of Data for Large Shared Data Banks" CACM, 13, 6, 377-387, June 1970.

Codd, 1979
E.F. Codd, "Extending the Relational Model to Capture More Meaning", A C M TO D S, 4,4 , 397-434, 1979.

Cole and Morrison, 1982
A.J. Cole and R. Morrison, "An introduction to programming with S-algol", Cambridge U niversity Press,

Cambridge, England, 1982.
Cooper, 1987

R.L. Cooper, "Applications Programming in PS-algol", Persistent Program m ing Research Report 25,
Universities of Glasgow and St. Andrews, 1987.

Cooper, 1989a
R.L. Cooper, "Persistent Languages Facilitate the Implementation of Software Version Management",

Proceedings o f the 22nd A nnua l H aw aii In ternational Conference on System Sciences, (ed. B. D.
Shriver), vol II, Software, 56-66, January 1989.

Cooper, 1989b
R.L. Cooper, "The Implementation of an Object-Oriented Language in PS-algol", Proceedings o f the

W orkshop on Persistent Object System s, their D esign, Im plem entation and Use, (J.Rosenberg ed.),
Newcastle, New South Wales, January 1989.

Cooper and Atkinson, 1987
R.L. Cooper and M.P. Atkinson, "The Advantages of a Unified Treatment of Data", Software Tools 87:

Improving Tools, Advance Computing Series, 8,89-96, Online Publications, June 1987.
Cooper and Atkinson, 1988

R.L. Cooper and M.P. Atkinson, "A Requirements Modelling Tool Built in PS-algol", P ers is ten t
Programming Research Report 54, Universities of Glasgow and St. Andrews, 1988.

Cooper and Qin, 1989
R.L. Cooper and Z. Qin, "An Implementation of the IFO Data Model in PS-algol", P e rs is te n t

Programming Research Report, Universities of Glasgow and St. Andrews, 1989.
Cooper et al., 1987a

R.L. Cooper, D.K. MacFarlane and S. Ahmed, "User Interface Tools in PS-algol", P e r s is te n t
Programming Research Report 56, Universities of Glasgow and St. Andrews, 1987.

Cooper et al., 1987b
R.L. Cooper, M.P. Atkinson, and S.M. Blott, "Using a Persistent Environment to Maintain a

Bibliographic Database", Persistent Programming Research Report 24, Universities of Glasgow and
St. Andrews, 1987.

B ibliography 253

Cooper et al., 1987c
R.L. Cooper, M.P. Atkinson, D. Abderrahmane and A. Dearie, "Constructing Database Systems in a

Persistent Environment", in Proceedings o f the 13^ In ternational Conference on V ery Large
Databases, Brighton, England, 117-126, September 1987.

Cooper et al., 1989
R.L. Cooper, J. Campin, D. Chan, D.J. Harper, D.A. Kerr, Z. Qin, F. Wai and R.C. Welland, "A Fast

Prototype of the Most Relevant Components of the Object Data Management System", Deliverable
for the C O M A N D O S Project, (ESPRIT Contract #834), 1989.

Coutasz, 1987
J. Coutasz, "The Construction of User Interfaces and The Object-oriented Paradigm", Proceedings

ECOOP, Paris, 121-130, June 1987.
Cox 1986

B.J. Cox, "Object-Oriented Programming: An Evolutionary Approach", A ddison-W esley, 1986.
Cutts and Kirby, 1987

Q. Cutts and G. Kirby, "A PS-algol Toolset Utilising Event Monitoring", P ersisten t Program m ing
Research Report 47, Universities of Glasgow and St Andrews, 1987.

Dahl and Nygard, 1966
O. Dahl and K. Nygaard, "Simula, an algol-based simulation language", C A C M , 9, 9, 671-678,

September, 1966.
Davison and Zdonik, 1986

J.W. Davison and S.B. Zdonik, "A Visual Interface for a Database with Version Management", A C M
TO O IS, 4, 3, 226-256, July 1986.

Dearie, 1988
A. Dearie, "On the Construction of Persistent Programming Environments", Ph. D. Thesis, University of

St. Andrews, 1988.
Dearie and Brown, 1988

A. Dearie and A.L. Brown, "Safe Browsing in a Strongly Typed Persistent Environment", C om puter
Journal 31,3,1988.

Dearie et al., 1989
A. Dearie, R. Connor, A.L. Brown and R. Morrison, "Napier88 - A Database Programming Language?",

Proceedings o f the 2nd International Workshop on Database Program m ing Languages, Oregon, 213-
230, June 1989.

Demers and Donahue, 1979
A. Demers and J.E. Donahue, "Revised Report on Russell", Technical Report TR 79-389, Cornell

University, 1979.
Dittrich et al., 1986

K.R. Dittrich, W. Gotthard and P.C. Lockeman, "DAMOKLES - A Database System for Software
Engineering Environments", Proceedings o f the International Workshop in Advanced Programming
Environm ents, Trondheim, Norway, (R.Conradi, T. M. Didriksen and D. H. Wanvik eds.), Springer
Verlag Lecture Notes in Computer Science 244,353-371, June, 1986.

Donahue, 1987
J. Donahue, "What’s A Database?", Proceedings o f the 2nd International Workshop on Persistent Object

Stores, Appin, August, 1987.
Ecklund et al., 1987

Ecklund D, Ecklund E, Eifrig R and Tonge F, "DVSS: A Distributed Version Storage Server for CAD", in
Proc 13*h International Conference on Very Large Databases, Brighton,England, 443-454, September
1987.

Fernandez and Zdonik, 1989
M.F. Fernandez and S.B. Zdonik, "Transaction Groups: A Model for Controlling Co-operative

Transactions", Proceedings o f the W orkshop on P ersis ten t O bject S y s tem s, their D esign ,
Implementation and Use, (J.Rosenberg ed.), Newcastle, New South Wales, 128-138, January 1989.

Fishman et al., 1987
D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W. Davis, N. Derrett, C.G. Hoch, W.

Kent, P. Lyngbaek, B. Mahbod, M.A. Neimat, T.A. Ryan and M.C. Shan, "Iris, An Object-Oriented
Database Management System", A C M TO O IS, 5, 1, 48-69, January 1987.

Gehani and McGettrick, 1986
N. Gehani and A.D. McGettrick (eds.), "Software Specification Techniques", A d iso n W esley

In ternational Computer Science Series, 1986.
Glaser et al., 1984

H. Glaser, C. Hankin and D. Till, "Principles of Functional Programming", Prentice-Hall, 1984.

Bibliography 254

Goguen and Winkler, 1988
J.A. Goguen and T. Winkler, "Introducing OBJ3", SRI International Report, SRI-CSL-88-9, 333

Ravenswood Ave., Menlo Park, California CA 94025, August 1988.
Goldberg and Robson, 1983

A. Goldberg and D. Robson, "Smalltalk-80: The Language and Its Implementation", Addison Wesley,
Reading, Mass., 1983.

Greenspan, 1984
S.J. Greenspan, "Requirements modelling: a knowledge engineering approach to software requirements

definition", Technical Report CSRG-155, University of Toronto, March 1984.
Greenspan et a l, 1986

S.J. Greenspan, A. Borgida and J. Mylopoulos, "A Requirements Modeling Language and its Logic", in
Brodie and Mylopolous, 1986.

Habermann and Notkin 1986
A.N. Habermann and D. Notkin, "Gandalf Software Development Environments", IEEE Trans, on

Software Engineering, 12, 2, 1986.
Hammer and McLeod, 1981

M. Hammer and D. McLeod, "Database Description with SDM: A Semantic Database Model", AC M
TODS, 6,3,351-386,1981.

Hartson and Smith, 1987
H.R. Hartson and E.C. Smith, "Rapid Prototyping for the Handbook of Human-Computer Interaction",

Virginia Tech. Technical Report TR 87-26, May, 1987.
Hayes, 1987

I. Hayes (ed.), "Specification Case Studies", Prentice-Hall International Series in Computer Science,
1987.

Hepp 1983a
P.E. Hepp, "A DBS Architecture Supporting Coexisting Query Languages and Data Models", Ph. D.

Thesis, University of Edinburgh, 1983.
Hepp 1983b

P.E. Hepp, "A DBS Architecture Supporting Coexisting User Interfaces: Description and Examples",
Persistent Programming Research Report 6, Universities of Glasgow and St. Andrews, 1983.

Hewitt et a l, 1973
C. Hewitt, P. Bishop and R. Steiger, "A Universal ACTOR Formalism for Artificial Intelligence",

Proceedings of the International Joint Conference on Artificial Intelligence, Palo Alto, California,
August, 1973.

Hornick and Zdonik, 1987
M.F. Hornick and S.B. Zdonik, "A Shared, Segmented Memory System of an Object-Oriented

Database", ACM TOOIS, 5, 1, 70-95, January 1987.
Hull and King, 1987

R. Hull and R. King, "Semantic Data Modeling: Survey, Applications and Research Issues", ACM
Computing Surveys, 19, 3, 201-260, September 1987.

IBM, 1978
IBM Ltd., Internal Report on the Contents of Programs Surveyed, San Jose, California, 1978.

Jones, 1989
O. Jones, "An Introduction to X-Window System", Prentice Hall, Englewood Cliffs, New Jersey, 07632,

1989.
Katz and Chang, 1987

R.H. Katz and E. Chang, "Managing Change in a Computer-aided Design Database", Proc 13^
International Conference on Very Large Databases, Brighton, 339-346, September 1987.

Kent, 1979
W. Kent, "Limitation of Record-Based Information Models", ACM TODS, 4,1,107-131,1979.

Kerr and Cooper, 1989
D.A. Kerr and R.L. Cooper, "An Interactive Module Management System", Persistent Programming

Research Report, Universities of Glasgow and St. Andrews, 1989.
King and Mcleod, 1984

R. King and D. McLeod, "A Unified Model and Methodology for Conceptual Database Design", in
Brodie et a l, 1984.

Knuth 1984
D.E. Knuth, "The Tj?X book", Addison-Wesley Publishing Company, 1984.

B ibliography 255

Koch et al., 1983
J. Koch, M. Mall, P. Putfarken, M. Reimer, J.W. Schmidt and C.A. Zehnder, "Modula/R Report, Lilith

Version", Tech. Report, In s titu te fu r Inform atik, Eidgenossische Technische Hochschule Zurich,
1983.

Korth and Silberschatz, 1986
H.F. Korth and A. Silberschatz, "Database System Concepts", McGraw-Hill International Editions,

1986.
Krablin, 1985

G.L. Krablin, "Building flexible multilevel transactions in a distributed persistent environment,
Proceedings o f Data Types and Persistence Workshop, A ppin , August 1985, 86-117.

Kulkarni, 1983
K.G. Kulkarni, "Evaluation of Functional Data Models for Database Design and Use", Ph. D. Thesis,

University of Edinburgh, 1983.
Kulkarni and Atkinson, 1986

K.G. Kulkarni and M.P. Atkinson, "EFDM: Extended Functional Data Model", Com puter Journal, 29,1,
338-45, 1986.

Kulkarni and Atkinson, 1987
K.G. Kulkarni and M.P. Atkinson, "Implementing an Extended Functional Data Model using PS-algol",

Software Practise and Experience. 17. 3, 171-185, March 1987.
Landin, 1966

P.J. Landin, "The Next 700 Programming Languages", C AC M , 9,3,157-164,1966.
Lecluse et al., 1988

C. Lecluse, P. Richard and F. Velez, "02, an Object-Oriented Data Model", Proceeedings o f the A C M
SIG M O D International Conference on Data M anagement System s, Chicago, 424-433, June 1988.

Lecluse and Richard, 1989
C. Lecluse and P. Richard, "The O2 Programming Language", Proceedings o f the 15th VLD B Conference,

Amsterdam, August 1989.
Liskov et al., 1977

B.H. Liskov, A. Snyder, R. Atkinson and C. Schaffert, "Abstraction Mechanisms in CLU", C A C M , 20, 8,
564-576, August, 1977.

Liskov and Snyder, 1979
B.H. Liskov and A. Snyder, "Exception Handling in CLU", IEEE Trans, on Software Engineering, SE-5, 6,

546-558, November 1979.
Liskov and Berzins, 1979

B.H. Liskov and V. Berzins, "An Appraisal of Program Specifications", in Research D irctions in
Software Technology (P. Wegner, ed.), 276-301, MIT Press, 1979.

Matthews, 1985
D.C.J. Matthews, "Poly Manual", SIG PLAN Notices. 20. 9, September 1985.

Maier et al, 1986
D. Maier, J. Stein, A. Otis and A. Purdy, "Development of an Object-Oriented DBMS", Proc A C M

Conference on O bject-O riented Program m ing S ystem s, Languages and A p p lica tio n s, 472-482,
September-October 1986.

Meyer 1988
B. Meyer, "Object-oriented Software Construction", Prentice-H all In ternational Series in Computer

Science, 1988.
Milner, 1984

R. Milner, "A Proposal for Standard ML", Proceedings o f the 1984 Sym posium on Lisp and Functional
Programming, Austin, Texas, 1984.

Morrison 1981
R. Morrison, "Low cost computer graphics for micro computers", Software Practice and Experience, 12,

767-776, 1982.
Morrison, 1982

R. Morrison, "S-algol: a simple algol", Computer Bulletin 11/31, March 1982.
Morrison et al, 1986a

R. Morrison, A.L. Brown, P.J. Bailey, A.J.T. Davie and A. Dearie, "A persistent graphics facility for
the ICL PERQ", Software Practice and Experience, 14, 3, 1986.

Morrison et al, 1986b
R. Morrison, A. Dearie, A.L. Brown and M.P. Atkinson, "An integrated graphics programming

environment", Computer Graphics Forum, 5, 2, 147-157, June 1986.

B ibliography 256

Morrison et a l , 1988a
R. Morrison, A.L. Brown, A. Dearie and M.P. Atkinson, "Flexible Incremental Binding in a Persistent

Object Store", ACM SIG P LA N Notices, 23, 4, 27-34, April 1988.
Morrison et a l , 1988b

R. Morrison, A.L. Brown, R. Carrick, R.C. Connor and A. Dearie, "The Napier Reference Manual", Dept,
of Computational Science, University of St. Andrews.

Morrison et a l , 1989
R. Morrison, A.L. Brown, R. Carrick, R.C. Connor, A. Dearie, M.J. Livesey, C.J. Barter and A.J. Hurst,

"Language Design Issues in Supporting Process-Oriented Computation in Persistent Environments",
Proceedings o f the 22nd A n n u a l H awaii In ternational Conference on System Sciences, (ed. B. D.
Shriver), vol II, Software, 736-744, January 1989.

Myers and Buxton, 1985
B.A. Myers and W. Buxton, "Creating Highly-Interactive and Graphical User Interfaces by

Demonstration", Proceedings of A C M SIG G RAPH , 20, 4, 249-258, 1986.
Mylopoulous et a l , 1980

J. Mylopolous, P. A. Bernstein and H.K.T. Wong, "A Language Facility for Designing Database-
Intensive Applications", A C M TO D S, 5 ,2 , 185-207, 1980.

Nestor, 1986
J.R. Nestor,"Towards a Persistent Object Base", Proceedings o f the In terna tiona l W orkshop in

Advanced Programming Environm ents, Trondheim, N orw ay, (R.Conradi, T. M. Didriksen and D. H.
Wanvik eds.), Springer Verlag Lecture Notes in Computer Science 244, 372-394, June, 1986.

Norrie 1985
M.C. Norrie, "The Edinburgh Node of the Proteus Distributed Database System", D epartm ent of

Computer Science Report CSR-191-85, University of Edinburgh, 1985.
O'Brien et al, 1987

P.D. O'Brien, D.C. Halbert and M.F. Kilian, "The Trellis Programming Environment", Proceedings
O O P SLA , Orlando, Forida, October 1987.

Odesta, 1984
ODESTA Corporation, "Helix: A Data-based Information Management and Support System", 4084

Commercial Ave., Northbrook, Illinois 60062,1984.
Ohori et a l , 1989

A. Ohori, O.P. Buneman and V. Breazu-Tannen, "Database Programming in Machievelli", Proceeedings
of the A C M SIG M O D International Conference on Data M anagem ent System s, Portland, 424-433,
May-June 1989.

Ontologic 1986
Ontologic Inc, "Vbase Object Manager User Manual", 47 Manning Rd., Billerica, Mass 01821, November

1986.
Oracle, 1983

Oracle Corporation, "The Oracle Users' Guide", Thames Link House, 1 Church Rd., Richmond Surrey,
TW9 2QE, 1983.

Owoso, 1984
G.O. Owoso, "Data Description and Manipulation in Persistent Programming Languages", Ph. D.

Thesis, University of Edinburgh, 1984.
PCTE, 1986

PCTE, "A Basis ofor a Portable Common Tool Environment: Functional Specification 4th Edition", 1986.
Philbrow et a l , 1988a

P. Philbrow, "A Print Facility for PS-algol", 1988.
Philbrow et al, 1988b

P. Philbrow and M.P. Atkinson, "Exception Handling in a Persistent Programming Language", The
Computer Journal, 1988.

Philbrow et a l , 1989
P. Philbrow, D.J. Harper and M.P. Atkinson, "Supporting an Object-Oriented Programnming

M ethodology using PS-algol", Proceedings o f the 2nd In terna tiona l W orkshop on Database
Programming Languages, Oregon, 313-330, June 1989.

PS-algol, 1987
"The PS-algol Reference Manual - Fourth Edition", Persistent P rogram m ing Research Report 12,

Universities of Glasgow and St. Andrews, 1987.
Richardson and Carey, 1987

J. Richardson and M.J. Carey, "Programming Constructs for DatabaseSystem Implementation in
EXODUS", Proceeedings o f the A C M SIG M O D In ternational Conference on Data M anagem ent
System s, San Francisco, 208-219, May 1987.

B ibliography 257

Rochkind 1975
M.J. Rochkind, "The Source Code Control System", IEEE Transactions on Software Engineering, \ , 4, 364-

370, December 1975.
Ross, 1977

D.T. Ross, "Structured Analysis (SA): A Language for Communicating Ideas", IEEE Transactions on
Software Engineering, 3, 16-34, December 1977.

Rowe and Shoens, 1979
L. Rowe and K.Shoens, "Data Abstraction Views and Updates in Rigel", Proceeedings o f the A C M

SIG M O D International Conference on Data M anagem ent System s, Washington D.C., 71-81, May
1979.

Rowe and Stonebraker
L. Rowe and M. Stonebraker, "The POSTGRES Data Model", Proceedings of the 13th VLD B, 83-97,

1987.
Schmidt, 1977

J.W. Schmidt, "Some High-level Language Constructs for Data of Type Relation", A C M Transactions on
Database System s, 2, 3, 247-261, 1977.

Schmidt and Mall, 1983 - DBPL should be
H. Eckhardt, J. Edelmann, J. Koch, M. Mall and J.W. Schmidt, "Draft Report on the Database

Programming Language, DBPL", Johann Wolfgang Goethe - University, Frankfurt am Main, West
Germany, 1985.

ServioLogic 1987
ServioLogic Corporation., "Programming in OPAL", 15025, S.W. Koll Parkway, 1A, Beaverton, Oregon

97006,1987.
Shipman, 1981

D.W. Shipman, "The Functional Data Model and the Data Language DAPLEX", A C M TO D S, 6,1,140-
173,1981.

Smith, 1987
R.B. Smith, "The Alternative Reality Kit: An Animated Environment for Creating Interactive

Simulations", CHI+GI, Proceedings o f IEEE Conference on H um an C om puter In teraction and
Graphical Interfaces, 99-106, 1987.

Smith and Smith, 1977
J.M. Smith and D.C.P. Smith, "Database Abstractions: Aggregation and Generalization", A C M TO D S,

2, 2,105-134,1977.
Smith et a l , 1983

J.M. Smith, S. Fox and T. Landers, "Adaplex: Rationale and Reference Manual - Second Edition",
Computer Corporation of America, Cambridge, Mass., 1983.

Stefik and Bobrow, 1985
M. Stefik and D.G. Bobrow, "Object-Oriented Programming: Themes and Variations", The A l

M agazine, 40-62, 1985.
Stemple, 1989

D. Stemple, "Exploiting the Potential of Persistent Object Store", Proceedings o f the Workshop on
Persistent Object System s, their Design, Implementation and Use, (J.Rosenberg ed.), Newcastle, New
South Wales, 328-342, January 1989.

Stocker, 1973
P. Stocker and P.A. Dearnley, "Self Organising Data Management Systems", The Computer Journal, 16,

2,100-105, 1973.
Stonebraker et a l , 1976

M. Stonebraker, E. Wong, P. Kreps and G.D. Held, "The Design and Implementation of INGRES", A C M
TO D S, i , 3,189-222,1976.

Strachey, 1967
C. Strachey, "Fundamental Concepts in Programming Languages", Oxford U niversity Pres, 1967.

Stroustrup 1984
B. Stroustrup, "The C++ Programming Language", Addison Wesley, Reading, Mass., 1984.

Swartout and Balzer, 1982
W. Swartout and B. Balzer, "On the Inevitable Intertwining of Specification and Implementation",

C A C M , 25, 7,438-440, July, 1982.
Tennent, 1981

R.D. Tennent, "Principles of Programming Languages", Prentice-Hall International Series in Computer
Science, 1981.

Bibliography 258

Tichy 1985
W.F. Tichy, "RCS - A System for Version Control", Software Practise and Experience. 15. 7, 637-654,

Trinder and Wadler, 1989
P. Trinder and P. Wadler, "Improving List Comprehension Database Queries", Proceedings o f TE N C O N

'89, Bombay, India, November 1989.
Unilogic, 1985

UNILOGIC Ltd, "The SCRIBE Document Production User Manual", 1984
Wadler and Blott, 1989

P. Wadler and S.M. Blott, "How to Make ad-hoc Polymorphism Less ad-hoc", Proceedings o f the 16th
A C M Symposium on the Principles o f Programming Languages, Austin, Texas, January 1989.

Wai, 1988
F. Wai, "Distributed Concurrent Persistent Programming Languages: An Experimental Design and

Implementation", PhD Thesis, University of Glasgow, 1988.
Warren, 1988

The Warren Committee, "Parliamentary Trade and Industry Committee First Report on Infromation
Technology", House of Commons Paper 25.1, HMSO 1988.

Wasserman et al., 1981
A.I. Wasserman, D.D. Shertz, M.L. Kersten, R.P. Reit and M.D. van der Dippe, "Revised Report on the

Programming Language, PLAIN", A C M SIG PLAN Notices, 1981.
Welland, 1989

R. Welland - private communication, 1989.
Zdonik, 1986

S.B. Zdonik , "Version Management in an Object-oriented Database", Proceedings o f the International
W orkshop in A dvanced Program m ing E n v iro n m en ts , T rondheim , N o rw a y , (R.Conradi, T. M.
Didriksen and D. H. Wanvik eds.), Springer Verlag Lecture Notes in Computer Science 244, 405-422,
June, 1986.

Zloof, 1977
M.M. Zloof - "Query-by-Example, A New Data Base Language" in IB M System s Journal, 16, 4, 324-344,

1985.

1977

B ibliography 259

l jb ra j^ y !!

