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Abstract

Waves propagating in an inhomogeneous medium differ from waves in uni
form surroundings through the dependence of their properties on the variation of the 
physical parameters of the medium. In this thesis, we will investigate the effects of 
inhomogeneity on wave propagation in two different cases - introducing the subject 
via propagation of waves in non-uniform atmospheres and culminating in a full ana
lytic solution of the cold plasma equations describing wave propagation in a plasma 
with a spatially rotating magnetic field. Plasmas can support a wide variety of 
waves. In non-uniform plasmas, it is of great interest to consider the possibility of 
one type of wave undergoing mode conversion to a completely different wave - a 
phenomenon used to heat plasmas in fusion reactor experiments.

In Chapter 1, we present an overview of plasmas in general and consider their 
widespread natural occurrence and the vast range of their characteristic parameters. 
This chapter also contains the definition of certain basic plasma quantities, such as 
plasma frequency, which will be used extensively in later chapters and a discussion 
of plasma confinement systems, illustrating the magnetic field configurations of 
interest in the context of fusion reactors.

Mode conversion is introduced formally in Chapter 2 where various 
approaches are discussed. The philosophy behind the powerful WKBJ theory, which 
applies to slowly-varying media, is presented as a natural extension of the descrip
tion of waves in uniform media. The "local dispersion relation" method favoured by 
many authors is examined critically and an alternative description is outlined which 
is derived from the full differential equation including the gradient terms.

The equations of fluid theory are derived from kinetic theory in Chapter 3 
using the method of moments. We discuss how a cold (pressureless) plasma may be 
described satisfactorily using these equations. Thus, we conclude that the same 
basic set of equations may be applied to propagation of waves in a cold plasma and 
a neutral atmosphere (with the removal of electromagnetic forces and addition of a 
gravitational field).

As a simple introduction to the study of wave propagation in inhomogeneous 
media, we consider the propagation of waves in an atmosphere where the tempera
ture (and hence sound speed) varies with height. Oscillations in an isothermal atmo
sphere are shown to possess two branches corresponding to acoustic and gravity
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waves. In considering non-uniform atmospheres, the work of authors in the fields of 
atmospheric and solar physics is combined and reviewed. The isothermal dispersion 
relation is demonstrated to be inadequate in describing waves in temperature strati
fied atmospheres. It is found that the ordinary differential equation constructed only 
has solutions for a limited number of special cases of temperature variation and, in 
general, requires numerical solution.

Chapter 5 contains the analysis of the propagation of cold plasma waves in a 
constant magnetic field. In particular, we examine propagation perpendicular to the 
magnetic field direction in order to provide the background for the equivalent inho
mogeneous case of Chapter 6.

In Chapter 6 we solve the problem of wave propagation in a spatially rotating 
magnetic field. It is shown that, in order to balance the gradient of the equilibrium 
magnetic field, a current is required which we partition between the ions and elec
trons. The number of non-vanishing equilibrium quantities is therefore considerably 
extended from the uniform situation of Chapter 5, leading to a significant alteration 
of the form of the Ohm’s Law which must now contain the electric field plus its 
first two derivatives. By transforming reference frame, it becomes possible to elim
inate the position-dependent coefficients of the differential equations and thus 
derive a dispersion relation describing waves in such a field structure. It is shown 
that the waves consist of a propagating part modulated by a periodic envelope 
induced by the periodicity of the field.

Finally, in Chapter 7, we make suggestions for extensions of the work of 
Chapter 6.
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Chapter 1 - Introduction

1. Plasma - what is it ?

"A plasma is a quasineutral gas of charged and neutral particles which exhibit 
collective behaviour." But what is the definition of quasineutrall And what do we 
mean by collective behaviour ?

It is generally stated that as much as 99% of the matter in the universe is in the 
plasma state. On the Earth, however, there are so few naturally occurring plasmas 
because the temperature is seldom high enough to produce the degree of ionisation 
required for a plasma. Short-lived plasmas may be created in the Earth’s atmo
sphere by the energy released in flashes of lightning but generally we must look 
further afield for naturally occurring plasmas. In our immediate neighbourhood of 
the Solar system, for instance, we can observe the Van Allen radiation belts and the 
solar wind - both composed of highly energetic charged particles. Beyond this, the 
Sun, the stars and interstellar space contain a wealth of plasmas of widely differing 
properties.

In the search for new sources of energy, thermonuclear fusion has been proposed as 
the perfect solution to our needs but there remains a great deal of research to be 
done and a major role in this will be played by plasmas - the conditions for sus
tained fusion requiring temperatures and densities not attainable by any other state 
of matter. A more recent application of plasma physics has been in the electronics 
industry where the electrons and holes in a semiconductor display similar properties 
to a gaseous plasma.

There is thus great scope for applications of plasma physics and a resultant need for 
a more stringent definition of the criteria prescribing a plasma.

1.1. Debye length

The behaviour of a plasma is very different from a neutral gas because of the 
interactions between its charged particles. We will use the effects of these charges 
to define the criteria for a charged gas to be a plasma. First we will examine the 
concept of quasineutrality. Consider what happens when a ball of charge is intro
duced into a neutral plasma of ions and electrons. The plasma particles with oppo
site charge will move towards the ball until the potential difference vanishes and 
the plasma is overall neutral with a sheath of charge around the ball. To quantify
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this, we consider the effect of a potential (|)o lying along the line x -  0 and calcu
late the general form of the potential, (J)(jt). We take the ions to be singly charged 
and infinitely more massive than the electrons and therefore fixed. The ion number 
density must be equal to the electron number density at infinity, /t,- = /i0. Poisson’s 
equation in one dimension is:

e0— r  = - e ( n i~ n e). (1.1)
dxz

We now substitute Boltzmann’s relation, ne = n0Qxp(e< /̂kBTe), where e is the 
electronic charge, Te is the electron temperature and kB = 1.38xlO“23JK" _1 is 
Boltzmann’s constant, into equation (1.1). Applying a Taylor expansion, valid for 
the region where I e §/kB Te I 1, i.e. away from the immediate vicinity of the line 
of charge, yields:

eo - r f  = e n °(- r ! _ + 1/2(T £! _ )2 +  "  ‘ ( U)d x  /cB 1 e k.B l e

Retaining only the linear term on the right hand side, we see that the solution of 
equation (1.2) is given by:

<KJC) =  (t>0 e “ ljcl/:^ .

where

eokBT, lA

n Qe z

is the Debye length which measures the thickness of the sheath of charge - the 
depth of plasma required to shield an externally applied potential - or the distance 
over which charge neutrality is not necessarily valid. Thus we may describe a 
plasma as quasineutral if the overall dimension of the plasma, L , is much greater 
than the shielding distance:

XD « :L .

As a result of quasineutrality, the total ion and electron densities must be approxi
mately equal so that ~ ne ~ n , where n is called simply the plasma density, but 
not so equal that local perturbations to this neutrality cannot take place.



1.2. Collective behaviour

Because a plasma is subject to electromagnetic forces, its particles interact 
with each other over great distances, not just when they undergo short-range 
interactions. Collisions are the only way neutral gas particles affect each other but 
every particle of a plasma is affected by every other one through the Coulomb force 
and so exhibits collective behaviour. One result of this collective behaviour is the 
shielding phenomenon. Debye shielding would be impossible if there were not 
enough particles to surround the introduced charge and so we must also require that 
the number of particles in the sphere of radius XD, ND = 4 /37 t^rc0’ much 
greater than 1:

Nd »  1.

This limit may be considered to define a second criterion for a plasma.

1.3. Collision frequency

As we discussed above, plasmas interact through electromagnetic forces as 
well as collisions. In order to ensure that the gas behaves like a plasma and not 
simply as a neutral gas with collisions dominating, the frequency of typical collec
tive plasma oscillations, (£>p , must be much higher than the frequency of hydro- 
dynamic collisions with neutral atoms IK. We therefore require:

CDp T >  1

which allows the electrons in the plasma to behave independently without being
forced by collisions into complete equilibrium with the neutrals.
This condition is not independent of that in §1.2.

2. Two basic plasma frequencies

2.1. Plasma frequency

Plasma oscillations were originally postulated by Penning (1926) and were 
verified experimentally soon afterwards by Tonks and Langmuir (1929). We will 
consider what happens when a plasma is slightly perturbed from its equilibrium. In 
Chapter 3 we will derive the equations of continuity and momentum but for now 
we simply write down their linearised forms which are:
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where we have again assumed the ions to be singly charged and stationary. \ e 
represents the electron velocity while me is its mass and we have taken the electron 
density to be the sum of the equilibrium density, n 0 and a small perturbed part, ne . 
The motion of the charged particles leads to a perturbed electric field which can be 
related to the charge density using one of Maxwell’s equations. We therefore have:

Taking the time derivative of equation (1.3) and the divergence of equation (1.4) 
yields, on substituting for the electric field from above:

where the electron plasma frequency is given by:

Thus ne ~ exp(- i (tipe t ) and the motion resulting from the small perturbation is a 
harmonic time variation at the plasma frequency. The plasma frequency is the 
natural frequency of vibration of a plasma.

Having defined the plasma frequency, we will now consider the passage of a plane 
harmonic wave through the plasma with all the perturbed quantities varying as 
expi (k-r-cor). In this way, we will demonstrate the significance of the plasma fre
quency to electromagnetic waves propagating in a plasma. From equations (1.3) and

The current flowing in the plasma due to the motion of the electrons is:

J = - e n e\ e .

Finally, in order to construct a wave equation, we require Maxwell’s equations:

(1.4):

come
E.

(1.5)

( 1.6)



- 5 -

Taking the curl of equation (1.5), substituting from equation (1.6) and using the 
definition of the plasma frequency yields:

VxVxE = i co|i0 ( -  ene \ e -  i coe0E )

2nee
= i copo (i i coe0) E,

co me

i.e. 42E-(k-E)k = - ^ ( l - - ^ f - ) E .  (1.7)
c z or

For transverse oscillations (k perpendicular to E) the wave equation, (1.7), tells us 
that the dispersion relation for an electromagnetic wave propagating in an unmag
netised plasma has been modified from its free space form and is given by:

co2 = k 2C2 +  0dp e .

For very high frequencies, co » (£>pe, electromagnetic waves will propagate as if in a 
vacuum but at lower frequencies their behaviour will be altered until they reach a 
cutoff at the plasma frequency below which they cannot propagate. (The terms cut
off and resonance are used to describe points where the refractive index goes to 
zero and infinity respectively. Since the refractive index is directly proportional to 
wavenumber and inversely proportional to wavelength, cutoff corresponds to infin
ite wavelength and resonance to zero wavelength.) Applied fields of lower frequen
cies cannot penetrate the plasma because the more rapid plasma oscillations neutral
ise the applied field. Plasmas are therefore opaque to radiation of co < <£pe. In fact, 
this is not quite true. If the disturbing wave has a sufficiently high electric field, the 
electrons cannot shield out the effect of the wave completely and the wave can in 
fact propagate into the plasma. This phenomenon, related to the collisionless skin 

depth, c/(£>pe, thus allows a very large electric field to build up in the plasma, accelerating the 
electrons along it and raising them to relativistic energies. This acceleration process 
may be involved in producing cosmic rays and the relativistic electrons of radio 
sources in astrophysical plasmas (Tayler, 1982).

If k is parallel to E, (longitudinal wave) equation (1.7) reduces to:

which represents the electron plasma oscillations discussed above. Because 
kxE = 0, we may see from equation (1.5) that the perturbed magnetic field must 
also vanish - the wave is therefore also electrostatic. These plasma oscillations, 
often called Langmuir waves, do not depend on the wavenumber of the wave and
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so the group velocity of the wave, d(i)/dk = 0. The wave is therefore stationary 
and does not propagate in the limit which we have considered. In a real plasma, 
however, Langmuir waves will propagate to some extent due to two effects which 
we have not included. First, the oscillating electric field in a finite plasma extends 
beyond the region of the initial disturbance and so couples the oscillation into 
neighbouring layers of the plasma. Second, if the plasma has a non-zero tempera
ture (and pressure), the velocity equation, (1.4) is modified and the dispersion rela
tion for plasma waves gains a wavelength-dependent term:

“ 2 = + k2Ve2.

Here V }  = ykB Te /me is the electron sound speed derived from y  the ratio of the 
specific heats at constant pressure to constant volume, Boltzmann’s constant and the 
electron temperature and mass. (The temperature characterises the width of the 
Maxwellian velocity distribution function and so is a measure of the mean kinetic 
energy of the random particle motion. In three dimensions, Eav = 3/2kBT is the 
average kinetic energy possessed by the plasma particles.)

Langmuir waves are used as a diagnostic device by astrophysicists. In the early 
1940’s solar radiation with wavelengths of a few metres was observed causing 
interference with radio communications. Since then, this radiation has been studied 
in detail, classified into 5 main categories and its origins in the solar corona postu
lated. The so-called Type II radio bursts accompany solar flares and last some 
minutes, with the main spectral features drifting from low to high frequencies 
throughout their duration. Shklovsky (1946) was one of the first to suggest that 
these radio emissions were due to plasma oscillations. In this model, some source 
of excitation (possibly a shock wave) travelling out through the corona excites large 
amplitude plasma waves of successively lower frequencies, leading to the frequency 
drift in the observed spectra.

2.2. Cyclotron frequency

The motion of charged particles in a plasma is considerably altered by applica
tion of an external electric or magnetic field. The simplest context in which to 
examine this influence is orbit theory where the electromagnetic fields are taken to 
be known quantities and the fields created by the moving particles themselves are 
neglected.

A uniform, stationary electric field will simply serve to accelerate the particles 
along it. However a uniform magnetostatic field, B has a more subtle effect. Sup
pose that B = B z. The equation of motion (which will be derived in Chapter 3) for 
a particle of charge q and mass m , moving with velocity v is:
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n t ~ -  = q (vxB).dt ( 1.8)

Taking the components of equation (1.8) and writing ‘ = d/dt:

m v x = q Bwy m vy = - q B v x m v z = 0 .

Differentiating the first two of these again with respect to time gives:

v.x (1.9a)

v.y
q B v x q B *  
 = - ( - — ) v, (1.9b)

m m

Thus the parallel velocity is zero and both perpendicular velocity components vary 
harmonically with the cyclotron frequency defined to be always non-negative:

We recognise that the solutions of equation (1.9) are:

v* t y =v± exp(± i Qt + i &xy)

where ± denotes the sign of the charge q , v± is the constant speed of the particle in 
the x ,y -plane and the phase factors 5 may be chosen in such a way that:

Integrating these expressions and taking the real parts of the displacements, we find 
that the resulting motion of the particle obeys:

where rL -  v, IQ. is the Larmor radius of the orbit which has guiding centre (xQ,yo). 
Equation (1.10) indicates that particles of opposite charge will gyrate in opposite 
senses. Also, since ions are much more massive and the Larmor radius is propor
tional to mass, the ion orbits will be much larger than those of electrons. The direc
tion of gyration is always such that the magnetic field generated by the moving 
charged particles tends to reduce the ambient magnetic field - plasmas are diamag
netic.

When both electric and magnetic fields are present, the rotation round the magnetic 
field lines is modified by the electric field. If the electric and magnetic fields are 
not parallel, the particles drift under the influence of the non-zero ExB force acting 
perpendicular to the plane of both fields with a velocity of magnitude E IB . This

m

vx = \ e ‘a‘ , \ y =±iwx .

x  = x 0+rL sinQt , y = y 0±rLcosQt, ( 1. 10)



drift velocity is independent of the mass and charge of the particle and so both ions 
and electrons will drift in the same direction. The three-dimensional orbit is there
fore a slanted helix of changing pitch.

As the particles gyrate around the field lines, they emit radiation which may be 
used to infer the characteristics of the plasma. The line intensity is often used to 
provide information about the electron temperature whereas the width of the cyclo
tron emission spectrum may give evidence about the electron-ion collision fre
quency.

3. Applications of plasma physics

3.1. Astrophysical plasmas

In the universe, the plasma state is encountered almost everywhere but the 
variation in the plasma parameters - density and temperature - is immense as 
demonstrated in Figure (1.1). On the largest scale, over intergalactic distances of 
the order of 105 light years, space may consist of a low density plasma with a den
sity of 10"1 to 10m-3 while between clusters of galaxies there seems to be a gas of 
density ~102m-3. The interstellar medium inside a typical galaxy contains ionised 
hydrogen with n ~ 106m-3 although dense gas clouds may reach n -  1012m-3. Stars 
such as the Sun contain a wide variety of densities from 1015m-3 in the solar 
corona and 1022m~3 on the visible surface to 1030rrf3 in the stellar interior. Even 
higher densities are possible in such compact objects as white dwarfs and neutron 
stars. Of course, these changes in density do not occur at rigid boundaries and, in 
fact, the universe is inhomogeneous over all scalelengths.

Temperatures also vary dramatically - from 103K on the surface of the coolest stars 
to 10n K in the central regions of ageing stars. Away from conditions of thermo
dynamic equilibrium, there is no uniquely defined temperature. When the particles 
of the interstellar gas have a Maxwellian distribution, the temperature is found to 
lie between 102 and 104K. The intracluster gas is observed from X-rays to have a 
temperature of the order of 108K. Over and above this, there are highly energetic 
constituents such as cosmic rays and emissions from various radio sources.

Finally, magnetic fields appear to occur throughout the universe - also with a wide 
range of variation. The general interstellar field is around 1(T10T with higher fields 
of 10_7T existing in radio galaxies and pulsars having fields of 106 to 108T. 
Nearby, the Sun’s average surface field is 10_4T but far stronger fields (10_1T) 
occur near sunspots. The Sun’s field seems to be divided into regions of strong 
field and other regions of practically no field, as will be discussed in Chapter 4, and 
so the magnetic field of the Sun is highly inhomogeneous.
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From this brief description, it is apparent that the properties of naturally- occurring 
plasmas are far from constant. As the plasma parameters change throughout the 
universe, all plasmas are to different degrees non-uniform and therefore far from 
the idealised description of the homogeneous theoretical models with which they 
are usually described.

3.1.1. Pulsars

Pulsars are distant objects, discovered by He wish et al. (1968), which are of 
great interest to plasma physicists. They are observed through their emissions of 
pulsed high frequency radiation and it is from this radiation that their properties 
have been deduced. The shortest known period of a pulsar is 30ms for the pulsar in 
the Crab Nebula (although the recently-discovered optical pulsar (Kristian et al., 
1989) in the supernova remnant, SN1987A, is thought to have a frequency of 1968  

s-1). If the period is the result of rotation, the pulsar must have an enormously 
high density to remain intact - a density comparable with a neutron star, around 
1042m-3. It therefore seems likely that pulsars are rotating neutron stars. Like most 
of the plasmas in the universe a pulsar’s behaviour is governed by its magnetic 
field. Pulsar periods are known to increase gradually with time so that the pulsar 
rotation must be slowing down. This may be explained if the axis of its magnetic 
dipole moment is not aligned along the axis of rotation, which would result in a 
variable magnetic dipole radiating low frequency waves which would carry away 
angular momentum (Ostriker and Gunn, 1969). The observed variation in period 
can be explained if the pulsar magnetic field strength is of the order of 108T. It is 
thought that pulsars are formed in supemovae explosions when most of the star is 
ejected into space but a small fraction implodes leaving a high density neutron star 
or a black hole. If this view is correct and magnetic flux is conserved in the implo
sion, the magnetic field of an ordinary star could easily increase by a factor of 1010 
which would be commensurate with the calculated field strength. The low fre
quency waves emitted would have sufficiently strong fields to pass through plasma 
and accelerate the particles to relativistic energies, as described before, and it is 
believed that it is the radiation from these relativistic electrons which we observe at 
radio frequencies. The radiation from pulsars may be used as a diagnostic tool in 
the study of the interstellar medium. Because of the large distance through which 
the waves travel, any small effect is enhanced and, for example, the dispersion of 
these waves may be used to estimate the density of the interstellar plasma. Simi
larly, the rotation of a polarised wave as it passes through an electromagnetic field 
(Faraday rotation) may be used to deduce the mean longitudinal component of the 
magnetic induction between the source and the observer.
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3.1.2. Earth’s radiation belts

Much closer to home, plasmas also play an important role in the region 
immediately beyond the Earth’s atmosphere where charged particles from the Sun 
interact with the Earth’s magnetic field. The thermonuclear reactions in the Sun’s 
interior produce very high temperatures and maintain the entire Sun in a gaseous 
state - the divisions of the Sun’s atmosphere will be discussed fully in Chapter 4 
but our only concern here is how the changes in the solar atmosphere affect the 
Earth. The solar surface is an extremely turbulent region, presenting a constantly 
changing appearance to observers on Earth. Most of the dramatic activity occurring 
on the Sun is correlated to magnetic activity. Sunspots are dark regions of the pho
tosphere with fields of ~10-1T which are significantly stronger than their surround
ings. They are not constant and grow, often coalescing with nearby sunspots into 
one large area which may persist for up to several months (Durrant, 1988). The 
number of sunspots also varies and possesses a regular cycle with a period of 22 
years. These cycles have been associated with long-term weather patterns on Earth. 
Other solar activity which has a direct bearing on the Earth includes huge explo
sions on the solar surface called solar flares which are plasma jets accelerated up 
to 500km s-1. Flares occur near sunspots and their frequency has also been related 
to that of sunspots. Both cosmic rays and visible radiation are increased by solar 
flares while particularly large flares may cause shock waves to travel through inter
planetary space, compressing the Earth’s magnetic field and leading to geomagnetic 
storms a few days later.

As a result of the supersonic expansion of the corona (the Sun’s hottest, 2xl06K, 
outermost layer) a stream of highly energetic particles, mostly composed of protons 
and electrons which are collectively known as the solar wind, is ejected into inter
planetary space. The electron number density of the solar wind is around 5xl06m~3 
and particle velocities range between 300 and 600km s-1 - the exact values of both 
being closely linked to flare and sunspot activity. The magnetic field of the solar 
wind is ~5xl0~9T. When the solar wind impinges on the Earth’s dipole magnetic 
field, a collisionless shock is formed, causing a boundary known as the magneto
pause beyond which most of the particles in the solar wind do not pass. Instead, 
they flow at supersonic speeds, round the outside of the magnetopause which is 
roughly spherical on the sunward side and cylindrical in the direction away from 
the Sun, as illustrated in Figure (1.2). As a result of compression by the solar wind, 
the Earth’s magnetic field is also asymmetrical - with the field lines closer together 
on the side nearer the Sun and extended on the "downwind" side.

In the magnetosphere between the Earth and the magnetopause, the Earth’s 
magnetic field lines form "magnetic mirror traps", confining charged particles. The 
magnetic moment,



of a particle is an adiabatic invariant, it remains constant for slow changes of the 
magnetic field in time or space. When a charged particle travels through an axially 
symmetric but slowly increasing magnetic field, p. must therefore be unaltered. 
Since B is increasing, the kinetic energy associated with its velocity perpendicular 
to the magnetic field must increase to compensate and this can only be done at the 
expense of the parallel kinetic energy. The parallel velocity will decrease and may 
vanish, in which case the particles will be reflected, hence the name magnetic mir
ror. If both ends of the magnetic field are configured in this way, the particle may 
be trapped indefinitely by repeated reflections and this is exactly what happens 
within the Earth’s magnetic field lines. (The trapping is not perfect, however, and 
particles with sufficiently small perpendicular velocities lie in a loss cone in velo
city space and are not confined.) The transit time for a particle to cross between 
two mirror points in the geomagnetic field is approximately Is. As the particles fol
low the field lines, they also drift slowly azimuthally - electrons to the East and 
protons to the West - with their guiding centre tracing out a surface of rotation 
which will take about an hour for an electron of 40keV.

These regions of trapped particles, known as the Van Allen radiation belts, were 
discovered by early satellites whose radiation detectors failed at heights above 
1000km but started functioning again when they returned nearer Earth (Massey, 
1964). This was taken to be a sign of very high radiation levels in these regions. 
There are now known to be two main belts - one at a few thousand kilometres 
above the Earth and the second nearer 20,000km - composed mostly of electrons 
and protons but also including a small number of tritons and deuterons. The inner 
belt is attributed to cosmic rays penetrating the Earth’s atmosphere and forming 
proton-electron pairs which are then trapped. Average proton energies in this band 
are 40MeV but are only of the order of 0.1 to a few MeV in the outer band. The 
outer band contains particles ejected from the Sun in periods of intense solar

Q  O
activity. Here, the electron density is approximately n = 10 m and electrons in 
this outer belt typically have energies greater than 40keV.

At much lower heights, plasma effects are significant in the ionosphere which 
begins around 60km (below which there are no free electrons) and extends to over 
10 Earth radii. The ionisation of particles in this region is again caused by solar 
radiation - in the extreme ultraviolet and X-rays. As the radiation penetrates deeper 
into the atmosphere it encounters a higher density of particles and a larger number 
of electrons is emitted, but the radiation is gradually absorbed and so less radiation 
will reach the lower layers. The outcome is a peak in electron production near
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200km. The terrestrial magnetic field has a strong influence on ionospheric 
phenomena, such as radio communication (Budden, 1961). In the ionospheric polar 
regions, fantastic luminous displays - the aurorae - are caused by radiation from 
atmospheric species and particles of solar and cosmic ray origin being accelerated 
down the geomagnetic field lines.

3.2. Solid state plasmas

One rapidly expanding area of plasma physics research is that of solid state 
plasmas which are usually studied under the approximations of the cold plasma 
model, the model which we will use in Chapters 5 and 6. The degenerate electron 
gas in semiconductors, semi-metals and metals constitutes a plasma (Hoyaux, 
1970). Although the number of particles in a Debye sphere of a solid is seldom 
large enough to make ND ^>1, quantum mechanical effects associated with the 
uncertainty principle can give some solids an effective electron temperature suffi
ciently high to satisfy this criterion for a plasma. Because of the lattice effects, the 
effective collision frequency is much less than would be expected for a solid with 
n ~ 1029m-3, complying with the final plasma criterion described earlier. The study 
of solid-state plasmas began in the late 1950’s and concentrated for a long time on 
wave propagation, particularly in semiconductors such as InSb. The crystal lattice 
of the solid can be described in terms of wave mechanics and the two species of 
the solid state plasma are electrons and holes, which are regarded as the positive 
charge carriers. In appropriate materials, free electrons and holes have been 
observed to exhibit similar oscillations and instabilities to gaseous plasmas. (For a 
comparison of the properties of solid state and gaseous plasmas, see Table (1.1)). 
Semiconductor holes may have effective masses as low as 0.01me, leading to very 
high cyclotron frequencies even in moderate magnetic fields. Because of their 
relevance to semiconductors, solid state plasmas are most likely to prove useful in 
the field of electronic circuitry.

3.3. Thermonuclear fusion

Since the 1950’s, much attention has focussed on plasma physics, not because 
of its numerous applications in astrophysics, but because of its potential in provid
ing an almost limitless source of power through controlled thermonuclear fusion. 
When two light nuclei come close enough together, they fuse to form a new ele
ment with an accompanying release of binding energy in the form of kinetic energy 
of the reaction products. Of the many possible fusion reactions, the one of most 
interest in controlled nuclear fusion research is:

D + T 4He + n+17.6MeV.
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where D represents deuterium, T is tritium, n is a neutron and He is helium. The 
main advantages of fusion power are

1) almost limitless, cheap and readily available fuels (seawater) ,

2) reduced environmental impact compared to other energy sources ,

3) less likelihood of misuse as a component of nuclear weapons.

In order for a fusion reaction to take place, the Coulomb repulsion between the two 
nuclei involved must be overcome and this is one reason why fusion reactions with 
the lightest elements are preferable. A beam of deuterons incident on a tritium tar
get is unsuitable since most of the energy is then lost in ionising and heating the 
target and in scattering out of the beam. Also, colliding beams can never be made 
dense enough to produce more energy than that required to accelerate the particles 
in the beam. The solution is therefore to heat the particles to form a Maxwellian 
plasma in which the fast particles in the tail undergo fusion - thermonuclear fusion. 
A  particle undergoing rapid thermal motion in a group of thermal particles has a 
greater chance of colliding and fusing than does a particle moving linearly along 
with a group of particles in a beam.

The minimum operating temperature for self-sustaining thermonuclear reactor is 
when the energy released by the fusing of nuclei just exceeds that lost from the 
plasma by radiation losses, mainly bremsstrahlung. This break-even temperature 
occurs for the D-T reaction at about 4keV , being an ideal limit. This tem
perature is calculated by assuming that no particles escape. However, neutrons are 
continually being lost from the plasma and their energy could be partly recirculated 
back to heat the plasma, but this would be costly .The alpha particles remain in 

the plasma, depositing their energy via collisions. Ignition occurs when the reaction 
rate is high enough to give the alpha particles alone sufficient energy to maintain 
the plasma temperature against radiation losses. Ensuring that the energy output is 
greater then the input imposes a condition on the plasma density, n , and confine
ment time, x as well as on the temperature - a limit known as the Lawson criterion 
(Lawson, 1957). The minimum value of the product nx  required for the D-T reac
tion at T ~ 13 keV is n x -  1020m“3 s.

So far we have only discussed the positive side of controlled thermonuclear 
fusion as a source of power but there are, however, many difficulties to be over
come before a practical, large-scale fusion reactor can be built. These may be 
divided into three main categories:

1) Plasma Confinement,
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2) Plasma Heating ,

3) Fusion technology .

We will only be interested in the first two - the first because it helps to demonstrate 
realistic field configurations and the second because of its link with waves in inho
mogeneous media.

3.3.1. Plasma confinement

Material walls could not withstand the high temperatures of the plasma and so 
an alternative method of confining the plasma is needed. Of even more importance 
is the fact that contact with the vessel walls would reduce the temperature of the 
nuclei to such a degree that fusion would be impossible. The majority of proposals 
for controlled fusion reactors have employed the charged nature of the ionised 
plasma to confine it using magnetic fields. The main approaches to confining the 
plasma for long enough to satisfy the Lawson criterion are:

1) Closed systems - toroidal systems which vary in the way they twist the mag
netic field lines.

The internal plasma current in tokamaks produces a poloidal field in addition to the 
toroidal field. In stellarators, the twisting of the magnetic field lines is produced by 
external helical windings. Multipoles have their field lines primarily in the poloidal 
direction, produced by internal conductors and the toroidal field component of 
spheromaks is maintained entirely by plasma currents so that only poloidal field 
coils are required.

2) Open systems - magnetic mirrors

Mirror devices have axial magnetic fields to keep the plasma away from the walls 
and magnetic mirrors at both ends to trap the particles. Such machines therefore 
work on the same principle as the Van Allen radiation belts described earlier. One 
way of reducing particle losses from the ends is by connecting two mirror devices 
together via a central solenoid - the ‘tandem mirror’ concept.

3) Theta pinches

In these devices, a plasma current in the azimuthal direction and a longitudinal 
magnetic field produce a force which compresses the cross-sectional area of the 
plasma.

4) Laser fusion

Lasers are used to heat solid (cold) fuel element very quickly to very high tempera
tures. If the heating is fast enough, a large number of the nuclei will collide, fuse 
and release energy before the pellet has time to expand appreciably. Thus the nuclei 
are confined by their own inertia while they fuse and this is often described as
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inertial confinement. Such laser fusion studies comprise a branch of plasma physics 
in their own right and will not be considered further in this thesis.

Tokamaks and pinches

The plasma pinch phenomenon was first studied by Bennett (1934) who recog
nised that a plasma carrying a large current will contract radially. Suppose that a 
large current flows azimuthally round the exterior of a plasma cylinder, then this 
will cause a longitudinal magnetic field inside the plasma. This, in turn, induces an 
azimuthal current in the plasma in the opposite sense to that outside the cylinder. 
The resulting JxB force in the interior compresses or pinches the plasma until the 
magnetic pressure equals the kinetic pressure due to the particles’ random thermal 
motion. A measure of the relative strengths of these two pressures is given by the 
plasma p:

B o /2(i0

where p  is the plasma pressure and B q is the value of the magnetic induction exter
nal to the plasma (equal to that of the plasma at the boundary). Plasma confine
ment schemes tend to work in either the very high or very low-p limit. Because the 
magnetic field strength is always less than B 0 and the sum of the magnetic and 
kinetic pressures is always constant, p is always less than 1 and the high p limit 
corresponds to P = 1. The device just described is the linear 0-pinch which is rela
tively stable whereas the z -pinch, where an axial current and an azimuthal magnetic 
field combine to produce the pinching effect, is subject to both the kink and 
sausage instabilities.

Linear pinches with the characteristics described above can be constructed 
with magnetic mirrors to reflect the particles but there will, of course, be losses at 
the ends and most of the particles will escape in a time x~LIVsi where L is the 
length of the device and Vsi is the ion sound speed. The simplest way of solving 
this problem appears to be to bend the pinch into a torus which is a closed system 
and will therefore not suffer from end losses. The main difference in closed systems 
is that currents cannot be provided by electrodes but must be inductively coupled.

Figure (1.3) shows a simple torus in which the lines of force are closed. The 
strength of such a toroidal magnetic field, which may be induced by winding 
current-carrying wires around the torus, decreases with increasing radius, \B locr-1. 
As a result, the ions and electrons have unequal Larmor radii in opposite halves of 
their orbits and so tend to drift to the top and bottom of the toms as shown, giving 
rise to an electric field. The interaction of the resulting electric field and the
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toroidal magnetic field produces an ExB drift outwards, of both ions and electrons, 
towards the walls of the container. Obviously, this is one of the first problems 
which must be overcome before equilibrium can be achieved in such a toroidal sys
tem. If there were a slight twist in the lines of force, so that the field lines were not 
closed over one circumference of the torus, particles would drift away from the 
centre of the plasma in one half of a circuit but towards it in the other half, thus 
"shorting out" the electric field. This particle drift may be counteracted by passing a 
current through the plasma. This plasma current leads to a poloidal magnetic field 
superposed on the toroidal field and results in helical field lines. The degree of 
twisting of the magnetic field lines is measured by the rotational transform, i, 
which is the change in the angle of the magnetic field lines with respect to the 
minor axis in one turn around the major axis of the torus. (See Figure(1.4) for the 
geometry of a toroidal system.)

In addition to the two components of the field discussed above, toroidal systems 
also have a vertical magnetic field component to balance the natural tendency of a 
current ring to expand. Since the magnetic pressure of the poloidal field, B q /2\i 0, is 
larger on the inside, the major radius of the plasma tends to increase. The vertical 
field, Bv, acts so that JxBv is directed radially inwards. This field is often supplied 
by external coils but may be provided by transient eddy currents (image currents) 
induced in a copper stabilising shell surrounding the torus.

Figure (1.5) shows a suitable combination of externally applied fields for inducing 
the toroidal, poloidal and vertical magnetic fields in a tokamak. This is the basic 
design of large-scale tokamaks such as JET in England and JT-60 in Japan. Since 
the plasma current must be induced by a transformer, a tokamak cannot operate in a 
steady state and plasma is created and destroyed in each pulse of the transformer. 
To maintain stability in a tokamak, it has been found that the Kruskal-Shafranov 
limit, i = 271, must not be exceeded. Helical displacement of the plasma as a whole 
is prevented if its wavelength exceeds the major circumference of the plasma, i.e.

<}>2na—-  > 2kR ,

where a and R are the minor and major radii of the plasma and B ̂  and B 0 are the 
toroidal and poloidal fields. This condition is equivalent to requiring 
q = aB fy/RB 0 > 1, where q is the called the safety factor. (This is the limit for a cir
cular cross-section.) In the presence of resistivity, the safety factor may have to be 
increased to avoid disruptive instability and generally q > 3.

The plasma (3 must be greater than 1% for economic reasons since the energy pro
duced by a reactor is proportional to n2 while the cost of the magnetic container
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increases as some power of the magnetic field. It is also desirable to make the 
plasma (3 as high as possible, to balance the kinetic pressure, since large magnetic 
fields are costly and difficult to maintain. Unfortunately, in a tokamak, the max
imum value of (3 is limited to low values by the onset of magnetohydrodynamic 
(MHD) instabilities . Large tokamaks, such as JET, currently operate
with (3 up to 10%.

MHD instabilities, which lead to wholesale motions where the plasma behaves like 
a conducting fluid, can also be eliminated by ensuring that the confining magnetic 
field passes through a minimum at some point in the plasma - the so- called 
minimum-5 configuration. Tokamaks are in an average minimum-5 configuration 
automatically since the poloidal field increases away from the minor axis and parti
cles spend more time, on average, inside the magnetic well than outside. Microin
stabilities, involving relative motion between the ions and electrons, may be 
reduced by altering the pitch of the helical field lines. Microinstabilities (e.g.

drift waves) also occur despite this shear and may lead to anomalous transport.

The tokamak field is sheared because the toroidal field varies 
slowly across the cross section and the poloidal field has a minimum at the minor 
axis of the torus and a maximum near the outer edge. The magnetic field variation 
across a tokamak is illustrated in Figure (1.6a).

There are several difficulties with tokamak operation, mostly related to the equili
brium configuration. Plasma equilibria are far more complicated than for devices 
where all the confining fields are produced by external sources since changes in 
plasma properties lead to changes in toroidal current which then lead to changes in 
poloidal field which can alter confinement and the plasma parameters. Also, 
because the plasma is heated by Joule dissipation of the plasma current and this 
current is also needed to provide the rotational transform for equilibrium, the prob
lems of confinement and heating cannot be treated separately. Tokamaks are rela
tively easy to construct because of their symmetry and because the complicated 
magnetic field geometry is produced by a simple arrangement of external coils. The 
plasma current required for the poloidal magnetic field has the additional effect of 
Ohmically heating the plasma - the problem of plasma heating will be discussed in 
the following section. They have been studied more extensively than most other 
confinement devices and, as a result, more is known about their optimum operating 
range than about any other. Perhaps this is why they, at present, seem to provide 
the best prospect for a full-scale working reactor.

Figure (1.6b) illustrates the distribution of toroidal and poloidal fields in a 
second type of toroidal pinch - the reverse field, pinch. This device is characterised 
by a relatively weak stabilising toroidal field where B ^ ~ B Q so that the field lines
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spiral round the magnetic axis many times in going once around the torus. In addi
tion, the toroidal field has the opposite sign at the centre of the plasma to its sign at 
the plasma’s outer edge. Thus, the plasma must undergo a reversal of field near its 
axis and, at this point, the purely poloidal field is equivalent to the spatially rotating 
magnetic field which will be envisaged in Chapter 6. The result of this field rever
sal is a strong twisting of the field lines and this shear is primarily responsible for 
the stability of the reverse field pinch (RFP). Image currents induced in a toroidal 
shell encircling the plasma also help to stabilise the plasma when the shell is suffi
ciently closely fitting. This is a disadvantage in design which the RFP has over the 
tokamak. One particularly attractive feature of the RFP is that it can produce a 
very high ratio of plasma energy to magnetic energy, i.e. a high p, which is 
economically desirable, as argued above. In fact, the theoretical P limits for RFP’s 
seem to be at least 3 times those for tokamaks.

Taylor (1974) showed that the reverse field configuration, at P = 0, corresponds to 
a minimum energy state in a flux conserving shell in the presence of a small 
amount of dissipation. This implies that the reverse field will be generated by the 
plasma and maintained even if it is not supplied from outside. This field reversal 
can be caused by motions similar to those which may produce the Earth’s magnetic 
field. In practice, the reverse field can be established in a controlled fashion by fast 
programming the magnetic fields on microsecond timescales or on millisecond 
timescales by allowing the discharge itself to generate the reverse field. The latter 
process was employed on ZETA and other slow pinches even before Taylor 
explained the "self-reversal" in terms of plasma relaxation to a minimum energy 
state. After an initial unstable phase, the plasma in ZETA was observed to relax 
into a quiescent, stable state which might last up to Sms. The duration of this 
quiescent phase was limited by the decay of the reverse field due to the resistivity 
of the plasma. Proposals have been made to counter this decay using turbulence to 
regenerate the field but the turbulence may lead to unacceptably high losses. Alter
natively, the pitch reversal might be achieved and sustained using currents flowing 
in external helical conductors similar to those used on stellarators.

The safety factor of the RFP need not be less than 1 since local MHD instabilities 
are suppressed by the strong shear. Thus the achievable values of B Q and for a 
given B q are increased by a factor ~3 relative to a tokamak which implies that the 
required toroidal field is less in an RFP. If the losses in large RFP’s were compar
able to those in present day tokamaks, it might be possible to heat the plasma to 
ignition through Ohmic heating alone. There are also significant engineering advan
tages over tokamaks since the aspect ratio, a/R need not be minimised. A signifi
cant problem is that the basic mechanisms operating in an RFP are, thus far, less 
well understood than those in tokamaks.
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Table (1.2) compares a set of toroidal pinch parameters which are of relevance to 
fusion for two tokamaks (JET and DITE) and two RFP’s (ZETA and HBTX), the 
data being taken from the years indicated.

3.3.2. Plasma heating

The problem of raising the plasma temperature to that required for breakeven 
or ignition, and then maintaining that temperature over the lifetime of the plasma, 
has been tackled in several ways. The initial heating mechanism considered was 
Ohmic heating due to the current flowing in the resistive plasma. This type of heat
ing occurs naturally in the two types of toroidal pinch described above but is 
unlikely to produce reactor temperatures because the plasma resistivity decreases 
rapidly with increasing temperature. Also, the plasma current in tokamaks is limited 
to maintain confinement and stability which restricts the power available from 
Ohmic dissipation. Of the many remaining suggestions for heating methods, two of 
the leading contenders are currently:

1) neutral beam injection, - the injection of high power beams of neutral hydro
gen or deuterium atoms which can cross the containing field and are then ion
ised and trapped within the target plasma. This has proven to be the most suc
cessful method of plasma heating to date.

2) radio frequency heating - radio waves at a frequency matching a natural mode 
of the plasma excite a coupling resonance in the plasma.

We will restrict our attention to radio frequency (rf) heating because a great deal of 
work in the field of wave propagation in inhomogeneous media has been motivated 
by radio frequency heating in tokamaks.

The early analysis on rf heating near the ion cyclotron resonance extended the
o

work of Alfven (1942) and Astrom (1950). As we will discuss in Chapter 5, a 
plasma can support a wide variety of wave motions and these provide a method of 
injecting external energy into the plasma, thereby heating it. There are four stages 
to rf heating - each one of which raises obstacles to overcome before the plasma 
can be successfully heated. First, there is the generation of the waves. Because the 
loss of power in the transmission between the generator and plasma is considered to 
be small, the equipment can be sited at a distance from the reactor, outside its high 
radiation area which allows access to the transmitters and is therefore one distinct 
advantage of rf heating.

Next, there is the question of wave penetration into the plasma. The resonance 
of interest may not be accessible to the incoming wave if the density of the plasma 
is too high, resulting in a cutoff where the wave will be reflected before the reso
nance is reached. It may, however be possible for the waves to tunnel through the
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region between the cutoff and resonance if this layer is not too wide (comparable to 
a wavelength) - a phenomenon akin to quantum mechanical tunnelling through a 
potential barrier. Alternatively, if the wave is incident from the inside of the torus, 
where the density is highest, it will meet with the resonance first. This situation is, 
of course, technologically much less convenient.

Third, the radio frequency waves must couple to a natural mode of the plasma 
and this process can involve several stages. When a wave is launched into a nonun
iform plasma, its character will change as it propagates because the parameters of 
the plasma vary from point to point. In fact, if the parameters of the original wave 
are altered until they are sufficiently close to those of another possible oscillatory 
mode, some of the wave may convert into this second mode - the process of linear 
mode conversion. If the incident wave, or a wave into which it converts, encounters 
a resonance where the wavelength goes to zero, the transfer of electromagnetic 
energy to plasma wave energy can take place. This particular property of inhomo- 
geneous plasmas - mode conversion - has motivated much of the work in rf heating 
in recent years (cf. the review article by Swanson, 1985). (There have also been 
parallel investigations of linear mode conversion in other fields of physics where 
wave propagation occurs in a non-constant medium - these will be discussed in 
detail in Chapter 2.) The wave in the inhomogeneous plasma is modelled using 
geometrical optics in which a WKB representation of the wave field is possible. 
Basically, this limits the investigations to "slowly-varying" media because the 
geometrical optics approximation is not appropriate near resonances where the 
plasma parameters vary greatly.

The final stage is to determine the absorption process for converting the 
plasma wave energy into thermal energy, a process which may take place in a 
variety of ways. The wave energy can be transferred directly to the plasma ions and 
electrons by collisions which randomise the directed particle velocity associated 
with the wave motion. Energy transfer may also be achieved through collisionless, 
or Landau damping, where certain particles resonate with the wave field and then 
lose their energy through collisions, or the particles may be heated via radiative dis
sipation.

As well as fundamental theoretical difficulties, rf heating is also technologi
cally demanding because suitable antennae must be designed and built to produce 
the correct wave characteristics without overly affecting the plasma. Heating at 
several fundamental plasma resonance frequencies has been attempted including the 
ion and electron cyclotron frequencies (or multiples thereof), the lower hybrid fre
quency and fast Alfven wave heating at twice the deuteron ion-cyclotron frequency. 
Ion cyclotron frequency heating was the first rf heating method attempted and has 
proved effective in a number of small plasmas. In this process, the waves propagate
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into a region of decreasing magnetic field, a magnetic beach, from below the ion 
cyclotron frequency where the wave energy is absorbed by the ions through ion 
cyclotron acceleration.

Experimental evidence indicates that the coupling of external waves into the plasma 
improves with increasing frequency so that the further development of sources to 
produce high power, high frequency waves may well be necessary in order to pro
gress in this area. Questions also remain about the efficiency of rf heating to heat 
the core of the plasma and signs of impurities being heated in preference to the 
majority species.

4. Summary

In this chapter, we have given an outline of some of the basic attributes of 
plasmas in general and certain plasmas in particular which were chosen to provide 
relevant background information for the coming chapters. Having stressed the wide 
occurrence of plasmas in the universe, we proceeded to define a plasma to be a 
highly ionised gas satisfying the three main criteria:

1) XD « L  ,

2) Nd »  1 ,

3) COT > 1 .

The derivations of the plasma and cyclotron frequencies, which will occur fre
quently in Chapters 5 and 6, were shown to arise naturally from the equations of 
motion for a plasma in two very simple sets of physical circumstances.

There followed sections on specific plasmas, highlighting the variety of plasma 
parameters which are observed, with the theme of inhomogeneity and variation con
stantly present. In particular, the magnetic field configurations described were 
selected to illustrate the wealth of structures possible and advantageous for either 
nature or man. The branches of plasma physics considered - astrophysics, solid state 
physics and fusion studies - are all being actively researched from different perspec
tives and are fruitful fields in their own right.

The investigation of wave propagation in inhomogeneous media, which is the theme 
of this thesis, was introduced in the context of supplementary heating for tokamaks 
but it could equally well have been introduced in relation to any one of several 
astrophysical problems e.g. solar coronal heating or the propagation of "starlight" 
through interstellar dust clouds. In the following chapter, we will examine the 
theoretical approach to mode conversion with particular emphasis on the shortcom
ings of many of the existing methods.
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Figure (1.1) Ranges of temperature and electron number density for several labora
tory and cosmic plasmas. Also indicated are the Debye length, XD, plasma fre
quency, (dpe, and the number of electrons, ND, in a Debye sphere.
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Figure (1.2) Schematic representation of the magnetosphere showing the Van Allen 
radiation belts and the turbulent region between the bow shock and the magneto
pause - the magnetos heath. Distances are measured in units of Earth radii.
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Parameter Unit Gaseous Plasma Solid-state plasma

Plasma density -3m 106 to 1024 1018 to 1029

Negative carrier mass electron mass 1 (except nega

tive ions)

10“3 to 1

Positive carrier mass electron mass 103 to 105 i c r 3 to i

Plasma temperature °K 102 to 109 0 to 103

Plasma frequency Hz 103 to 1013 108 to 1015

Debye screening length m 103 to 1(T9 10-5 to below lattice 

spacing

Negative carrier cyclo

tron frequency (for 

"usual" magnetic field)

Hz 0 to 1010 1010 to 1013

Positive carrier cyclo

tron frequency

Hz 0 to 107 same as for negative 

carrier

Dielectric constant at 

low frequencies

1 1 to 103

Average time interval 

between collisions

s 107 to 1(T10 HT10 to 10"14

Table (1.1) Comparison of parameters of gaseous and solid state plasmas.
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© B

Figure (1.3) In a simple toms, in which the lines of force are closed circles, the 
magnetic field varies as 1/r. The resulting Vfl drift causes a vertical charge separa
tion, which in turn causes the plasma to drift outward.

MAJOR AXIS

POLOIDAL
DIRECTION

MINOR AXIS

TOROIDAL
DIRECTION

Figure (1.4) The geometry of a toroidal system with rotational transform. The field 
line from A-A' changes its azimuthal angle 0 around the minor axis as it winds 
round the major axis.
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Figure (1.5) The toroidal field component, B^, is produced by current-carrying coils 

while the poloidal component, fl9 is produced by a large plasma current induced by 

a transformer. Additional stabilising forces are provided by a weak vertical field, 

Bv, and by eddy currents in a highly conducting copper shell.
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Figure (1.6a) Variation of the toroidal and poloidal magnetic field components 
across a tokamak. .
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Figure (1.6b) Magnetic field variation across a reverse field pinch showing the field 
reversal in the outer region of the plasma.
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Maximum Parameters *

Tokamaks
Reverse Field 

Pinches

JET(1989) DITE(1982) ZETA(1969) HBTX1(1980)

Major radius (m) 2.96 1.17 1.5 1.0

Minor radius (m) 1.25, 2.10f 0.25 0.48 0.06

Current (MA) 6 0.28 0.5 0.3

Magnetic field (T) 3.4 2.7 0.08 0.3

Electron temperature (eV) 2.1xl04 1.6xl03 15 100

Electron density (rrf3) 1.8xl020 1020 5xl019 1021

average |3 0.11 0.02 0.1 0.3

energy confinement 

time (ms)
1200 40 10 0.4

* The maximum parameters quoted were not necessarily obtained all at the same 

time.

f For a non-circular cross-section, the two values given are for the horizontal and 

vertical minor radius respectively.

Table (1.2) Comparison of parameters of two tokamaks and two RFP’s.
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Chapter 2 - Mode Conversion

1. Motivation

When waves propagate in a homogeneous medium, the normal modes pro
pagate independently of each other. However, the existence of an inhomogeneity in 
any of the plasma properties leads to a spatial variation of the coefficients describ
ing the system. This, in turn, causes the modes of propagation to become position- 
dependent eigenstates, introducing the possibility of oscillations changing their char
acter until modes which were originally totally dissimilar come to closely resemble 
one another. It is in this situation of a close matching of distinct wavemodes that 
we may expect mode conversion, i.e. the transfer of energy from one wave to the 
other.

Because most vibrating physical systems are to some extent inhomogeneous, 
mode conversion is of interest in many branches of physics. In particular, the 
majority of recent mode conversion studies have been motivated by the quest for 
additional heating methods in fusion research (Swanson, 1985). In a similar vein, 
solar physicists have attempted to explain the anomalous heating of the solar corona 
(Melrose, 1977) in terms of energy transfer between different types of wave while, 
nearer home, atmospheric physicists have found evidence for certain modes well 
above their theoretically predicted height and have used mode conversion to 
account for this phenomenon (Jones, 1970). These separate discussions share a 
common root in the intuitive notion that a redistribution of energy between the 
available oscillatory modes is most likely to occur wherever the properties of the 
modes involved are most similar and each theory has a graphical method (often a 
plot of frequency against wavenumber) for demonstrating the approach and diver
gence of modes in the particular region of interest.

It must be emphasised here that the term mode conversion refers to an interac
tion between linear waves - small perturbation expansions will be employed 
throughout this thesis and we shall not be concerned with non-linear phenomena, 
although much work has been concerned with such waves in recent years. As a 
consequence of the great interest in non-linear effects, the subject of linear wave 
coupling was comparatively neglected until the demands of the nuclear fusion com
munity compelled theorists to consider the subject. Since then, several techniques 
have been suggested for heating the plasma to the critical ignition temperature
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above which fusion of the nuclei occurs. Originally, it was hoped that Ohmic dissi
pation of the plasma current would provide sufficient energy for heating large 
fusion devices like JET but it was soon recognised that additional sources of energy 
and alternative methods of depositing the energy in the plasma had to be sought. 
These questions have initiated many research topics in theoretical plasma physics 
and fusion- related technologies for almost three decades but the debate over the 
merits of the various techniques remains. A popular method for additional heating 
of Tokamaks is radio frequency heating, in which a radio signal directed into the 
Tokamak is converted to a mode which only propagates inside the plasma and 
which is ultimately damped, thereby releasing energy to heat the plasma ions. 
(Currently, the candidate wave for radio frequency heating is usually the compres- 
sional Alfven wave.) The primary theoretical problems of radio frequency heating 
are concerned with the conditions under which the energy exchange occurs, where 
it occurs in the plasma and the partition of energy between the two waves involved 
- the fraction of energy transmitted, reflected and mode-converted.

Before examining any specific problems, we must discuss wave propagation in 
inhomogeneous media in general. One familiar way of studying oscillations 
within homogeneous media is via a dispersion relation. Because the properties of 
such a medium are constant, the wave’s properties will also be constant and a linear 
wave of wavelength X will always propagate with this wavelength. The relation 
between the wave frequency and wavelength, the dispersion relation, is an algebraic 
equation, obtained via Fourier transformation of the equations describing the sys
tem, and which may be used to identify uniquely the normal modes of the system. 
For a wave propagating in an inhomogeneous medium, such a relation cannot hold 
throughout the entire volume since the properties which give rise to the wavelength 
are not constant. Mathematically, this corresponds to the fact that the coefficients of 
the model equations are no longer constant and so the Fourier transform technique 
is no longer useful. Because the dispersion relation is not available in the inhomo
geneous case, an alternative means of distinguishing the modes must be found and 
this new method of labelling modes must satisfy two basic conditions. First, it 
must incorporate the spatial variation present in an inhomogeneous plasma in a 
self-consistent and unambiguous manner and second, it must reduce to the disper
sion relation in the homogeneous limit.

2. WKBJ theory

In this section, we consider briefly a powerful method for approximate solu
tion of second order ode’s with variable coefficients which was first suggested by 
Jeffreys (1923) and later modified by Wentzel (1926), Kramers (1926) and Bril- 

louin (1926).
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We note initially that the general first order linear differential equation,

y '+ a (z )y  = 0

(where ' denotes differentiation with respect to z) possesses an immediate solution
z

in the form y = exp(-J<2 (s )ds) . On the other hand, a second order equation with 
variable coefficients such as:

a (z )y ”+b{z)y '+ c(z)y  = 0 (2.1)

has no such simple general solution. In general, the modes can no longer be identi
fied in a similar manner - the parameter gradients play an important role and cannot 
be incorporated into such a straightforward approach. If, however, the coefficients 
of equation (2 .1) vary "sufficiently slowly" a good approximation to the solution is 
given by an expression similar to the solution of the first order equation and this is 
the basic assumption of WKBJ theory. It is useful to have equation (2.1) expressed 
in normal form for what follows, and it may be rewritten:

y " + f ( z ) y  = 0 , (2 .2)

where /  (z) is often referred to as the wave potential, by analogy with quantum
±iy[7~zmechanics. For a constant potential, / 0, the solutions are <|) = e 1 JoZ so that the 

motion is oscillatory for a positive potential but evanescent for a negative one. The 
roots of the potential (the transition points) indicate where fundamental changes in 
the nature of the solutions take place and hence denote points where the oscillation 
will be radically altered - either reflected or absorbed. In this homogeneous case, 
the wavenumber of the oscillation is related to the potential, as shown above, by 
k 2 = f  o and points where the potential vanishes are points where the wave is
reflected whereas infinities in the potential indicate resonances where wave energy
is absorbed.

2
If we attempt a solution to equation (2.2) of the form y = exp (±/ j&(.s )ds), 

which is a simple extension of the solution for constant coefficients, there is an
z

error term, ± i lc'exp(±i jk(s)ds), left over. If the gradient may be taken to be 
small so that the potential is slowly varying, this is a reasonable approximation to 
the true solution and is, in essence, the WKBJ theory. The procedure may be 
further sophisticated by making the amplitude a function of position so that our new

z

estimate of the solution is y = A(z)exp(±i jk(s)ds). Substituting in equation (2.2), 
we find that on neglecting the second derivative, the wave amplitude must satisfy:
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2kA '  + k 'A = 0 or A ^  — 7 7 -.
|*|*

The second derivative may be neglected if it is legitimate to assume that / ,  and 
hence Ic, is a slowly varying function of position. It is obvious that near the transi
tion points, the amplitude does not satisfy this criterion and these approximate solu
tions no longer apply. The WKBJ theory therefore provides formulae for the 
asymptotic solutions but says nothing about the behaviour of the function near the 
transition points. The solution is sure to fail at the zeroes of the potential where the 
approximation of a slowly varying medium no longer applies. In order to calculate 
the amount of each independent solution in one asymptotic region, when their ratio 
is known at the other extreme, the solutions must be connected through the reflec
tion region. In order to do this, the solution is analytically continued into the com
plex plane and a connection formula calculated using the pertinent boundary condi
tions.

WKBJ theory states the results which we have just deduced in more 
mathematical language. It is designed to solve ode’s of the type:

y " + h 2f  (z,h)y = 0

where the parameter h is taken to be large and positive and for which the following 
conditions are satisfied (Heading, 1962):

1) /  (z) must be continuous for all z .

2) /  (z ,h )-*const. as h —><*> for fixed complex z .

3) 1f  'If  P <  1 and |f "If  |<  1 for all |z|> zc for some zc .

The approximate independent solutions are then:

z 1
3-12 = L/"'/,'exp(+ ih jf *ds )][1 + 0  (-*r)]

h L

where O ( - ^  )~5f a  /1 6 / 2 - /  " / 4 / .
/ r

3. "Local dispersion" theories

Over small regions of inhomogeneous plasma, if the plasma parameters vary 
sufficiently slowly, the coefficients of the system equations have approximately 
constant values, the terms involving derivatives of the parameters are small and a 
local dispersion relation is appropriate. A major advance in studying mode conver
sion came with Stix’s (1965) work on radio frequency heating of tokamaks near the 
lower hybrid frequency where he used the local dispersion relation to reconstruct a
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differential equation with variable coefficients. The asymptotic solutions of the 
resulting equation could then be found using suitable integral-transform or phase- 
integral methods. In order to return to an ordinary differential equation from the 
dispersion relation, the inverse Fourier transform,

must be taken (where z is the direction of inhomogeneity). Because it is based on 
extending a simple algebraic equation, this approach avoids the often formidable 
algebra involved in deriving a complete vector equation from the basic evolution 
equations for the system variables when the magnetic field, density etc. are func
tions of position. (The latter procedure will be applied, in Chapters 4 and 6 , to two 
different physical models, illustrating the quantity of algebra required to construct 
the problem in this way. Although considerably slower to formulate, this method 
results in the only self-consistent statement of the problem.) Using the inverse 
transform of the local dispersion relation has therefore proved a very popular 
method, with all the predominant mode conversion theories being based on this 
principle, although it has been considerably developed.

The use of such inverse Fourier transform techniques has, however, several 
inherent weaknesses. First, the local dispersion relation is only applicable over 
regions where the coefficients are slowly varying and this does not hold near mode 
conversion points which are dependent for their existence on gradient effects and 
which are absent from uniform media. By re-introducing variable coefficients in the 
latter stages of analysis instead of including them self- consistently from the start, 
all information about gradients in the zero-order quantities is lost. The fact that the 
derivative terms cannot be incorporated naturally into such a scheme was recog
nised by Stix (1962). His more recent work (Stix and Swanson, 1983) has instead 
concentrated on developing analytic solutions for ordinary differential equations 
which can then serve as comparison equations for those arising in mode conversion 
studies. The technique aims to solve specific fourth order ode’s by forcing the 
given ode into a general standard, soluble form.

A second difficulty with the inverse Fourier transform technique is highlighted 
by a major difference between the strategy of the two remaining theoretical camps. 
When the ode is reconstructed in the manner described above, how is the dependent 
variable to be assigned? Cairns and Lashmore-Davies (1983) consider the ode in the 
wave amplitude whereas Fuchs, Ko and Bers (1985) employ an equation describing 
the power flow. In the theory of Fuchs, Ko and Bers, the system may possess 
several allowed modes of oscillation (leading to a fourth or higher order dispersion 
relation) and these are again identified with the roots of the local dispersion relation
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and mode conversion is defined to be the redistribution of energy between these 
roots. From this basic premise, a complicated formalism is developed and an 
embedded dispersion relation describing the propagation of only two modes is 
extracted, in order to generate coefficients of transmission, reflection and mode 
conversion when this pair of waves interacts. The points where such interaction 
takes place are given by a set of conditions which must be satisfied simultaneously. 
Using D (k ,z)  to represent formally the embedded dispersion relation, the authors 
identify mode conversion points to be those critical points which are saddle points 
of the mapping w =D (k ,z), satisfying

n J d2D(kc ,zs )
D (kc ,zs ) = 0 , -----   = 0 and ----- — -----* 0

ok dk2

which restricts the branch points of interest to pair-wise coupling events. The 
resulting ode to be solved is, in normal form:

+ Q(z)<|> = 0
dz

with the potential, Q , given by Q = -2(3D (kc ,zs )/3k ) / (32D (kc ,zs )/3k 2 ).

Although this theory appears to be mathematically sophisticated, dealing 
largely with branch cuts and saddle points in phase space, its physical basis is again 
unsound. The authors take the local dispersion relation as their starting point and so 
their arguments contain a flaw at the most fundamental level. It was only possible 
to construct the dispersion relation initially because the parameters contained no 
spatial variation and adding, at a later date, gradient terms which have been 
neglected in the first instance is not justified.

A further inconsistency which is apparent is that, although the local dispersion 
relation must be regarded at best as a local phenomenon, the authors employ 
asymptotic expansions to calculate the power flow. This gives the dispersion rela
tion a global significance which it cannot merit and may result in a departure from 
the domain of the problem.

Cairns and Lashmore-Davies tackle the problem from a different viewpoint - 
that of a pair of coupled equations describing the characteristics of two modes of 
the plasma - but still rely on the inverse Fourier transform of a local dispersion 
relation as the basis of their treatment. They illustrate graphically the possibility of 
mode conversion in regions of (kz z ) space where the roots of the dispersion rela
tion come close together and then diverge. In these regions, they suppose that the 
dispersion relation may be approximated by:

(CD-COiXCO — co2 )  =  ti
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where co12 are the frequencies of the uncoupled modes and r\ is the coupling func
tion which is only significant in the neighbourhood of the coupling point. T| consists 
of the remaining terms of the local dispersion relation when it has been factorised 
as shown. Taylor expanding this approximate dispersion equation about the 
assumed mode conversion point, yields a local dispersion relation:

( a k - a k 0+ b f y ( f k - f k 0 + g Q  = r[0

where a,  b,  f , g are partial derivatives arising from the expansion about the point 
(fc0,zo), ^ = z - zq and ri0 is the value of r[ at the critical point. In their early work 
(Cairns and Lashmore-Davies, 1982), the authors performed the inverse Fourier 
transform at this stage but a straightforward replacement of k by the operator 
—id ld \  is ambiguous, as mentioned earlier, and the differential equation which 
results does not satisfy energy conservation. If however two wave amplitudes, (jq 2, 
are introduced, the mode conversion process may be viewed as a result of the cou
pling between these two waves and the local dispersion relation may be divided 
equally between the appropriate pair of ode’s:

—j - ~ i ( k 0- — £)<h = iX(t>2, aq  a

J

where X2 = T]0l a f . Note that the coupling function has been divided equally 
between the two modes and that the extent of the coupling is not dictated by varia
tion of the plasma parameters but by the magnitude of the remainder terms from the 
local dispersion relation. The conservation of energy flux is resolved by noting that 
the sum of the squares of the wave amplitudes remains constant for all z . In order 
to complete the solution of the problem, one of the wave amplitudes must be elim
inated and the final equation may be manipulated into the form of the Weber equa
tion for which the asymptotic solutions are known functions.

The fundamental basis is the same as for the other theories outlined above, 
since Cairns and Lashmore-Davies rely on being able to make the dispersion rela
tion a function of position to generate their differential formulation of the problem. 
Although the concept of a pair of coupled modes is appealing, the coupling term 
itself exhibits certain undesirable characteristics. It does not result from physical 
effects but rather from the remaining terms of the dispersion relation when the 
desired approximate form has been factored out. Instead of being heavily dependent 
on position around the coupling point, it is constant here.
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Recently, there has been growing criticism of the inverse Fourier transform 
method, and the resultant omission of parameter gradient terms, in the light of evi
dence from alternative solutions (Friedland, 1986) that the missing terms signifi
cantly alter the final mode conversion ratios. All in all, a more consistent descrip
tion of wave propagation in inhomogeneous media is required. An alternative 
approach is to construct the vector differential equation describing the system 
directly from the fundamental model equations without attempting to generalise the 
dispersion relation which is only truly appropriate to a uniform system. In this way, 
all the information about parameter gradients in the background quantities is 
included in the equilibrium statement of the problem, which is an integral part of 
the linearisation process. In order to construct a scalar ode from this full equation, it 
may be necessary to apply certain approximations but, because these are approxi
mations applied to an exact specification of the problem and not to an approximate 
one, this is still greatly preferable to using the inverse transform method. If the only 
necessary approximation occurs at the final stage of solving the equation, an esti
mate of the accuracy of the technique may be made, whereas the error involved in 
the many approximations made in the works discussed above cannot be evaluated.

4. Alternative approach

For mode conversion to be possible, there must be at least two distinct types 
of wave motion allowed in the medium. The only mode conversion possible in the 
simplest case of a single wave which is free to propagate in one of two antiparallel 
directions is simply reflection, whereas for more complicated systems which can 
support more types of wave, conversion between different categories of wave may 
also be possible. Because of the interest in mode conversion as a method of depo
siting the energy required for fusion, plasmas have provided the usual medium for 
mode conversion studies, as evidenced by the wealth of plasma physics literature 
devoted to this field over the last few years. Plasmas are ideal candidates for such 
studies but are by no means the only kind of medium in which waves may alter 
their character in this way. Indeed, any physical system which is free to oscillate 
under the influence of a number of applied forces will exhibit a larger number of 
eigenstates and might therefore sustain mode conversion. Waves in a compressible 
atmosphere under the influence of gravity are acted on by both the gravitational 
force and a restoring force due to the buoyancy force. They therefore fulfil this 
basic requirement for mode conversion and, because no magnetic forces are 
involved, the geometry of the system (and hence the algebra involved in its 
analysis) is greatly simplified from the plasma case. (These waves are discussed in 

detail in Chapter 4.)
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Having introduced the problem from a physical standpoint, we must now find 
a unique and unambiguous mathematical way to label the modes which propagate 
in the inhomogeneous plasma. The properties of the modes must vary with position 
throughout the plasma in a manner dictated by the variation of the physical vari
ables such as magnetic field strength and density. We follow the argument of Clem- 
mow and Heading (1954), parts of which have been employed by authors in the 
past, some of whom do not seem to have appreciated it fully. In Heading’s method, 
equation (2 .1) is viewed as a pair of coupled equations and this aspect of its nature 
is fully exploited in order to arrive at a description of the modes and the degree of 
coupling between them. Equation (2.1) may be written as a system of first order 
equations by considering the column vector containing y  and its first derivative:

y' = My (2.3)

where

y 0 1
y = y \

and M = - d a -b  la

The eigenvalues of this matrix may be considered to be the eigenvalues of equation
(2 .1) and are given by:

» = b + ( b c i
1,2 2 a 4  a 2 a

V4
(2.4)

We shall use these eigenvalues to distinguish the natural modes of equation
(2 .1) in the same way that wavenumbers would represent the waves in homogene
ous media. To demonstrate this equivalence, we can construct the pair of coupled 
first order ode’s which correspond to equation (2.1) and will show that the coupling 
and propagation of the new dependent variables is inextricably linked to the eigen
values defined above. In the limit of constant coefficients, we will show that the 
eigenvalue equation reduces to the form of the dispersion relation describing the 
homogeneous wavenumber.

We now perform the transformation of variable y = Au, where

1 1 Ml
A =

h  ^2
and u =

U2_

A is the matrix of eigenvectors corresponding to the eigenvalues defined by equa
tion (2.4) and so may be used to diagonalise M. On substitution in equation (2.2), 

we obtain

iT = A ^ A u - A  ^ 'u
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which may be expressed solely in terms of the eigenvalues as

u { 0 ' Ui { 1 ■-V -V' Ui
u2\ 0 2̂_ U2_ (̂ 1- ̂ 2) v  v . “2 .

In the case of constant coefficients, the diagonal matrix of eigenvalues would 
remain but the second matrix containing the derivatives of the eigenvalues would 
disappear. The latter may thus be viewed as a coupling matrix describing the inter
relation between the eigenstates caused by the variation of the physical parameters. 
From the elements of the coupling matrix we can see that the two most important 
factors affecting the coupling are the magnitude of the derivative of the eigenvalues 
and the separation of the eigenvalues. This agrees with our physical intuition that 
coupling is strongest where the variation is greatest and where the modes are most 
similar. Thus we have a mathematical formalism with which to express the physical 
behaviour already described. Separating the vector equation into its constituent parts 
yields a pair of coupled equations:

u 2' - (

(^1 -  a.2) 

V
(^1 ~ ̂ 2)

+ X2)U2 -

u2 (2.5)

(^1 ~ ̂ 2)

It is interesting to observe that the coupled equations employed by Cairns and 
Lashmore-Davies are of the same form as equations (2.5) except that the coupling 
function in their case arises from remainder terms in the local dispersion relation 
and not from parameter gradients which are an integral part of the statement of the 
problem. The coupling coefficients of equation (2.5) possess a certain symmetry, 
but are not equal as Cairns and Lashmore-Davies’ coupling factors are assigned to 
be. In the appendix, it is demonstrated that the above analysis may be extended to 
equations of third and fourth order and that in these cases the coupling between the 
modes is again in direct proportion to the gradient and inversely proportional to the 
separation of the eigenvalues which are interacting.

For negligible gradients in the eigenvalues, the right hand sides of equation (2.5) go 
to zero, the above pair of equations decouple and each has the trivial solution:

(z) = exp(JA,; (s ) d s ).

Thus X is equivalent to a wavenumber (differing by a phase factor, i ) in the limit 
of constant coefficients and we have shown that the eigenvalue description repro
duces the dispersion relation in the uniform case. We will henceforth use this
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method to identify the eigenmodes of the inhomogeneous medium.

The eigenvalue description does not in itself provide a solution to the problem 
but is useful as a method of labelling the eigenvalues even in regions where the 
potential vanishes and the amplitude of the WKBJ approximation becomes singular. 
Because it reduces to the familiar dispersion relation in the homogeneous limit, it 
provides a mathematical description of the modes to accompany the purely intuitive 
one. One of its great strengths lies in the fact that it includes the coupling between 
different modes directly from the physical variables of the system and not as an 
external factor which is included ad hoc at a later stage of the analysis.

The full solution of the problem can only be obtained, however, by solving the ori
ginal ode, equation (2.1), using the technique described in §2. The ode is reduced to 
a standard form, say Whittaker’s equation or Weber’s equation for which the 
asymptotic solutions are tabulated, but failing this, numerical solution may be 
necessary since analytic solutions are only known for a limited set of standard 
second order differential equations. This is one of the fundamental difficulties in 
mode conversion studies and much effort has been spent in trying to circumvent it. 
One of the strongest arguments in favour of using the methods discussed in §3 is 
that the differential equations obtained are in, or can be easily manipulated into, the 
form of a standard equation such as the Weber equation. When the system’s evolu
tion equations are combined to produce the final equation, there is no such guaran
tee that it will fit neatly into a class of analytically soluble equations. We will be 
confronted with precisely this problem in Chapter 4.

It must also be noted that equation (2.1) is in general derived from a set of partial 
differential equations and, in order to be able to reduce the problem to a single ode 
at all, we must assume that the parameters vary with one independent variable only. 
Finally, there is the problem of higher order ode’s. Equations of the type of (2.1) 
may be solved analytically only if they fall into particular classes with coefficients 
obeying strictly prescribed rules. If a medium can support more than two wave 
modes, it will often be described by a fourth or higher order ode; many problems 
involving inhomogeneous plasmas fall into this category. Physically, this means that 
there are potentially more channels available for mode conversion. Mathematically, 
such equations are even more difficult to solve, with fewer standard methods 
known. Stix and Swanson have examined fourth order equations exclusively while 
Fuchs et al. have attempted to address the problem of reducing the order of the dif
ferential equations, but their final recipe for finding the mode conversion points and 
relevant coefficients is only applicable to the case of pair-wise coupling of modes.
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5. Eigenvalues and potential

The eigenvalues defined in the previous section have a close link with the 
wave potential. The transformation which reduces equation (2.1) to normal form,

z
requires the definition of a new dependent variable, <j) = yexp^Jfr/fl d s ), to obtain

¥ ' H ± _ ( .ab' -a ' b )  _ ± 1  
a 2 a 2 4 a 2

The general form for the potential is then given by 

b 2 c h
f  = - ( - 7 T - £ ) - ( t - ) -  (2.6)4 a a 2 a

As was discussed in §2, a constant potential, / 0, gives rise to either oscillatory 
or evanescent modes depending on the sign of /  0. When /  0 goes from positive to 
negative to positive, the wave must be oscillatory on either side of an evanescent 
layer. In quantum mechanics, the potential function is given by the difference 
between the kinetic energy of the wave packet and the background potential and 
such behaviour is therefore traditionally called a potential barrier. If however, the 
behaviour of / 0 is negative-positive-negative, this is analogous to a quantum 
mechanical potential well in which oscillatory solutions are only possible in the 
central region. (Often, the application of suitable boundary conditions to this case 
results in only a discrete set of possible eigenvalues and not an infinite spectrum of 
normal modes.) Quantum mechanical studies of wave scattering by potential wells 
and barriers are thus simply a subset of possible mode conversion events.

In the inhomogeneous case, the potential may be rewritten in terms of the 
eigenvalues, using the definition of the eigenvalues from equation (2.4) and the 
definition of /  (equation (2 .6)), as:

/  = -i/4(Xx -  X1f +  V2(Xl + X2)'. (2.7)

It is interesting to note that the important quantities are again the separation of the 
modes and the magnitude of the derivatives which were also the quantities govern
ing the coupling terms, as defined by equation (2.5).

It has been shown (Diver, Ph.D. thesis, 1986) that mode conversion is most 
likely when the modes do not actually cross but simply approach each other (thus 
the discriminant, b 2 -4 a c ,  in equation (2.4) has a minimum but does not pass 
through zero). In order to do this, the eigenvalues were rewritten formally as:

^ 1,2 = a ± P-
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For the case in which a  and (3 both vary linearly with z, the ratio of the 
asymptotic solutions of equation (2.2) yields a negligible mode conversion coeffi
cient - most of the energy being transmitted. In this case, the eigenvalues cross at 
the critical point and the extrema of the coupling terms occur at infinity. The 
corresponding potential must be of the form /  = i 2 — i 2 which is positive for 
z e ( —zc zc) and negative elsewhere. This is therefore the potential well or under- 
dense potential barrier problem for which appreciable mode conversion is not 
expected. If, however, a  varies linearly with z but (3 = (b0 + b xz + b2z 2)l/l, there is 
significant reflection and the coupling reaches its maximum value at points sym
metrically placed about the transition point. The degree of coupling is found to 
depend on the distance between the eigenvalues at their point of closest approach. 
There therefore appears to be a strong correlation between whether or not the eigen
values cross and the degree of mode conversion. This agrees with the behaviour 
anticipated by most authors on physical arguments alone and there is no reason to 
suppose that such arguments are not true for more general cases of eigenvalue vari
ation.

6. Applications to magnetoionic theory

The general theory of Clemmow and Heading, and in particular the convenient 
matrix notation, has been adopted by other authors, especially in application to 
magnetoionic theory. This theory pertains to a cold plasma, one in which the ran
dom kinetic energy of the particles is taken to be zero, and which contains a mag
netic field. (This model will be the focus of our attention in Chapters 5 and 6.) For 
simplicity, the frequency of wave propagation in magnetoionic theory is often 
assumed to be high enough that the plasma ions may safely be taken to be fixed. 
This situation may then be described using Maxwell’s equations into which a suit
able electric displacement vector D = e0E + P (where P is the electric polarisation) 
has been substituted. The matrix relating P to E, the susceptibility matrix, is con
structed by substituting the definition P = Ne r into the equation of motion for an 
electron moving in a magnetic field and it is composed of elements involving the 
electron plasma and cyclotron frequencies. The result is a set of four first order 
coupled linear ordinary differential equations in the components of the electric and 
magnetic fields; see, for example, chapter 18 of Budden’s book on "Waves in the 
Ionosphere" (1961). If the coefficients of these equations were constant, the deter
minant could be taken in the usual way in order to derive an equation for the four 
roots - the Booker quartic. Alternatively, the matrix notation of §4 may be used 
which will also yield the Booker quartic for the homogeneous case.

When the medium is not uniform, the crux of the theory is again the identifi
cation of the coefficients of the equations with the appropriate refractive indexes, n ,
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for waves travelling in: "a fictitious homogeneous medium with the properties of 
the actual ionosphere at each level". Budden recognises that such an approach is 
limited by the regions of validity of WKBJ theory and limits his analysis accord
ingly, maintaining close links with the results of WKBJ throughout the relevant 
parts of his book and emphasising the fact that such approximations must break 
down at reflection points. In fact he states: " At every place where n is varying, the 
reflection process is going on, and it is this which prevents the occurrence of a true 
progressive wave. Except in certain places, however, the process is very weak, so 
that the WKBJ solutions are very good approximations."

When Budden’s method has been taken up by other workers, it often appears 
that they have missed the crucial importance of the gradient terms since they do not 
stress the limited domain of validity imposed on the solutions by the relative mag
nitude of these terms. Fidone and Granata (1971) consider the propagation of waves 
in a cold plasma confined in a toroidal vessel under the influence of a slightly 
sheared magnetic field. An initial note of caution should be sounded at this point 
about the physical implications of having an ambient magnetic field with VxB * 0. 
In Chapter 6 the full ramifications of this will be investigated, but it is sufficient to 
mention here that this non-zero term leads to several new terms in the linearised 
equations of motion and would result in the elements of the susceptibility matrix 
having different forms. The eigenmodes are significantly altered by the change in 
the background quantities and it will be shown that the spatially rotating magnetic 
field of Chapter 6 results in the electric field components having a periodic varia
tion in space dependent on the scalelength of the variation of the magnetic field as 
well as depending on the homogeneous refractive indices. Because the new terms 
depend on the magnitude of the gradients, the discrepancy between the complete 
and approximate solutions should remain small wherever the WKBJ solutions are 
valid. It is therefore vital to make it clear where these solutions apply. Fidone and 
Granata calculate the degree of mode coupling from the ratio of the electric field 
components on either side of the conversion region but these solutions for the com
ponents are derived from an iterative method which is only valid far from the cou
pling region and it is not clear that conversion coefficients may be calculated 
entirely from these functions without reference to the known behaviour of the coef
ficients in the interaction area. It is, after all, the specific dependence of these quan
tities and their gradients which causes the mode conversion.

An early paper employing Budden’s approach to magnetoionic theory was that 
by Frisch (1964) which examined the coupling of MHD waves in stratified media 
with particular reference to the heating of the solar corona. The original idea came 
from, amongst others, Osterbrock (1961) who suggested that sound waves excited 
in the convection zone could propagate through the photosphere and undergo mode
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conversion to Alfven waves in the high chromosphere or corona, leading to energy 
deposition at these levels. Such a change in wave types was necessary since Alfven 
waves originating in the convection zone would be absorbed completely before 
attaining chromospheric or coronal heights and such a direct mechanism could not 
therefore explain the anomalously high coronal temperature.

In Frisch’s paper, the magnetic field is allowed to vary in both magnitude and 
direction but, again, the equilibrium current required to balance the effect of the 
changing magnetic field is omitted. Because the background to the WKBJ solutions 
and the inherent approximations are not stated explicitly, the implication seems to 
be that the solutions inferred by the matrices are applicable everywhere. Frisch’s 
main aim is to calculate the elements of the coupling matrix which is taken to indi
cate the strength of the interaction between "near neighbours" - modes labelled by 
their homogeneous wavenumber, and these are used as a measure of the degree of 
mode coupling. He notes that the elements of the coupling matrix will be largest for 
large parameter gradients and modes which are close together - this result was also 
deduced in §4. The elements of this coupling matrix, which is equivalent to A-1 A', 
are used as an absolute measure of the coupling present. This is not the same as 
calculating how much of a second mode will be excited at a coupling point by a 
known input. The latter process generally involves solving the full ode and analyti
cally continuing the asymptotic solutions through the transition region in order to 
calculate coefficients of transmission etc. It was shown in §4 that the size of these 
elements alone is not enough to determine the degree of mode conversion which 
depends strongly on the exact behaviour of the modes in the interaction region.

A series of papers (Melrose (1974a&b), Melrose (1977a&b), Melrose and 
Simpson (1977), Melrose (1980)) on the subject of mode coupling in the solar 
corona, follows closely the work of Frisch. Although Melrose describes the parame
ters as "slowly varying", this is not quantified in terms of the ratio of the magnitude 
of the parameter gradients to the parameters themselves and it remains unclear that 
the work is being carried out under the limitations of WKBJ theory. Melrose identi
fies the modes of the system throughout by the roots of the homogeneous disper
sion relation which again vary because of the spatial dependence of the physical 
parameters (predominantly the magnetic field). The results presented regarding the 
extent of mode coupling are again derived from the magnitude of the elements of 
the coupling matrix, and in addition, the author identifies possible mode conversion 
points as occurring wherever roots of the dispersion relation are equal. It is pre
cisely in the neighbourhood of the coupling points that the approximation of 
employing solutions from homogeneous magnetoionic theory breaks down and more 
accurate solutions of the differential equation are required. It was also indicated in 
§4 that mode conversion is probably more likely to be non-negligible for
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eigenvalues which approach each other without crossing than for ones which are 
equal at some point and that the degree of mode conversion is then tied to the 
minimum separation of the modes. Melrose calculates the wave properties around 
the coupling point from the known properties for a homogeneous medium using a 
perturbation approach. This "coupling approximation" assumes on one hand that the 
homogeneous wavenumbers provide adequate solutions in this region while also 
supposing that coupling is large, and therefore that in this neighbourhood the gra
dient terms, which are absent in the calculation of the k ’s, are much larger here 
than they are elsewhere.

7. Summary

In this chapter, we have discussed the propagation of waves in an inhomo- 
geneous medium with particular attention being paid to the possibility of the modes 
exchanging their character. In order to do this, it was necessary to find a method of 
identifying the possible modes of propagation since the progressive, sinusoidal 
waves which occur in homogeneous media are no longer appropriate in the non- 
uniform case because of the presence of parameter gradients. For slowly-varying 
media (which we defined precisely), the WKBJ solutions provide a good approxi
mation to the correct solution but these become invalid near points where the wave 
potential becomes small or the gradients become too large - these are points where 
mode conversion may take place. In the case of two normal modes, mode conver
sion manifests itself as reflection and is thus a long-recognised phenomenon. The 
flaws in using local dispersion relation approaches were discussed along with the 
major difficulties involved in calculating mode conversion coefficients. Finally, 
applications of the eigenvalue method to magnetoionic theory, MHD and solar phy
sics were reviewed and discussed.

Having dismissed much of the existing mode conversion literature, we must 
attempt to replace it with a more acceptable alternative. WTe will first compare and 
contrast the dispersion relation and eigenvalue approaches to atmospheric wave pro
pagation (Chapter 4) as a straightforward example of waves in an inhomogeneous 
medium. This will be followed, in Chapter 6, by a complete, analytic solution of 
the problem of waves propagating in a cold plasma with a spatially rotating mag

netic field.
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Chapter 3 - Derivation of Model Equations

1. Introduction

The fluid model of a plasma has its roots in Kinetic Theory and differs from 
standard fluid mechanics only in that it considers the effects of electromagnetic 
forces. By deriving from kinetic theory the familiar equations of fluid mechanics 
(Landau and Lifshitz, 1959) as they apply to a conducting fluid, we aim to demon
strate why the "cold plasma" to be discussed in Chapters 5 and 6 may be ade
quately described by virtually the same equations as used to describe the neutral 
atmosphere of Chapter 4. In the process, we will also be able to highlight the 
approximations which are necessary in order to make the cold plasma equations 
applicable. Because these equations form the backbone of our description of wave 
propagation, understanding their origins is vital and so we follow their derivation in 
detail.

Kinetic Theory is a statistical method of describing a plasma. It is by far the 
most rigorous theoretical description of the plasma state and, because it is more 
comprehensive than its derivative orbit and fluid theories, kinetic theory is in gen
eral more complicated, frequently requiring numerical methods of solution. Once 
the distribution of probabilities for finding a specific type of particle (electron or 
ion) in 6-dimensional coordinate-velocity space has been obtained, all relevant pro
perties of the plasma may be determined. In order to make the problem more tract
able, the equations describing the plasma’s microscopic properties are often com
bined in such a way that they describe measurable, fluid-like, macroscopic quanti
ties such as density and pressure.

2. The general transport equation

The hydrodynamic equations describing the evolution of such macroscopic 
fluid quantities as density (p), velocity (u) and pressure (p) may be derived in one 
of two ways. Either one may use plausibility arguments to extend the fluid equa
tions by analogy to a conducting fluid to produce conservation equations or one 
may take the "moments" of the Boltzmann equation, yielding the same set of evolu
tion equations. The Boltzmann equation itself may be derived from either the Liou- 
ville equation for the evolution of an N-particle distribution function (Boyd and 
Sanderson, 1969) or using a more heuristic argument (ter Haar, 1954; Chapman and
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Cowling, 1960).

We derive the fluid equations from the Boltzmann equation using the method 
of moments, which simply involves multiplying by velocity to some power and 
averaging over velocity space. In theory, this method would generate an infinite 
system of coupled equations because each moment introduces an additional variable 
so that the number of the variables is always greater than the number of equations. 
The zero-order moment leads to the continuity equation, containing both the scalar 
density and vector velocity, the first- order equation of motion contains the velocity 
and the pressure dyad and so on. To obtain an equation for the evolution of each 
new quantity would require taking the next moment and so the process would con
tinue ad infinitum unless we truncate the hierarchy at some stage using physical 
arguments - either by neglecting the moments above a certain velocity power, or by 
assuming an equation of state relating p to p. The method of closure determines a 
model for the plasma which, in turn, determines which plasma properties can be 
studied, since the approximations used eliminate certain features of plasma 
behaviour. Thus the area of validity of our set of equations is necessarily limited to 
the regions in which these approximations are valid.

The Boltzmann equation, which describes the evolution of a one-body distribu
tion function, f s , for particle species s is:

3 / ,  . 3/.dt + v V / J + a-Vv/ J = (  —  )cou (3.1)

where

1) f s (r,v,r) is the distribution function which gives the probability of finding par
ticles of type s within the 6-dimensional volume element dr dv centred at the
point (r,v) in coordinate and velocity space.

2) Vv is the gradient acting in velocity space .

3) a is the acceleration term arising from any forces acting. The external forces
which might be considered are gravity ( F = ms g, Chapter 4), and those due to
an applied electric field ( F = <^E ) and a magnetic field ( F = vxB, Chapters 
5 & 6). The last of these differs from the other two by being velocity- 
dependent and must therefore be treated carefully when taking moments. This 
acceleration term also depends on the self-consistent fields which are gen
erated by charged particles moving and because these fields depend on the dis
tribution function, equation (3.1) is non- linear. The remaining interactions 
which the particles suffer are rapid fluctuations on the microscopic scale and 
these are collected together in the "collision" term on the right hand side of 
equation (3.1) and treated separately. When this term is neglected, equation
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(3.1) is known as the collisionless Boltzmann, or Vlasov, equation.

Consider a quantity, , representing any physical property of the particles 
(which may, in general, be a function of velocity). The average value of c|)(v) with 
respect to velocity space of the particles of type s (denoted by < >  ̂ ) is defined to 
be

« l»*  ~ — “ r J < l> (W )/J(r,v,r)dv 

where ns (r,t) = J / 5(r,v,f)dv is the number density of particles of type s in spatial
V

volume element dr. Thus, generating the corresponding evolution equation for the 
macroscopic quantity <§>s requires a similar averaging over velocity space to be 
performed on the whole of equation (3.1). In the general case, multiplying each 
term in turn by <j) gives:

First term

J « v ) ^ d v  = | - J $ / sdv = | - n s< ^ ,

since v and t are independent variables and <|) is not time-dependent.

Second term (similarly, because r  and v are independent variables)

J<Kv)v'V /iydv = V-jtJjv/jdv = V-(«5« J>v>, ),
V V

Third term (for forces which are velocity-independent)

J<j)(v)a-Vv/  s dv = a-J( Vy($fs ) ~ f s Vv<J> )dv (3.2)
V V

= -«*<a-Vv<!»5,

where the first term of equation (3.2) vanishes since we assume that f s —>0 suffi
ciently rapidly as I v I so that lim ((J)/y) = 0 for all functions <J)(v). The only

IV I —^°°

velocity- dependent field which will be of interest to us will be magnetic in origin 
and, since the ith component of vxB does not contain vt-, the above procedure may 

be repeated.

Adding these terms gives the general transport equation which describes the tran
sport of such macroscopic quantities as mass, momentum, energy etc., depending on 

the choice of (j):

7) d
—  (ns < $ > s ) +  V-(ns <§Y>s ) - n s <a-V yQ»s =  ( — ( r c ^ ^ )  ) ^  (3 .3)
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3. Specific moments of the Boltzmann equation

The functions to be substituted for (|)(v) are chosen to ensure that the equations 
generated relate to physical observables. Henceforth, we will be concerned with a 
fully ionised plasma consisting of ions and electrons.

3.1. Continuity equation

We take the zero-order moment, setting <>(v) = 1, so that the terms of equation
(3.3) become (in order)

d ( . d
dt (ns<<i» s ) "

V-(ns« j>v>s ) = V-(nsus )

- ^ a 'V v(j) = 0

where we have defined u5 to be the average velocity of a particle of species s. 
Substituting these in equation (3.3) gives the density conservation equation, or con
tinuity equation,

dns
—  + Vinsus) = Ss (3.4)

dns
where Ss = ( —— ) , represents the rate per unit volume at which particles of

ot coll
type s are produced as a result of collisions. Physically, this term is composed of 
processes of particle creation or destruction such as ionisation and recombination 
which we will henceforth assume to be negligible.

3.2. Momentum conservation equation

In this section, we will require several new definitions. The first is the concept 
of mass density which is defined in terms of the number density to be p5 = nsms . 
(The equation of mass conservation may easily be obtained by multiplying equation
(3.4) by the mass of a particle of type s .)

We split the particle velocity into two separate contributions - one due to the flow 
of the fluid, us , and the other denoting the random particle motions with respect to 
this flow due to their thermal energy, wJ5 so that v = us +v?s . We note for later use 
that <ws> = 0 because of the random nature of the thermal motions.

We define the pressure on an imaginary surface element moving with the average 
fluid velocity to be the rate of transport of molecular momentum per unit area due 
to random particle motions, so that the pressure dyad, p5 -P J<wJwJ>. The diagonal
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components of p5 are analogous to hydrostatic pressure acting normal to some con
ceptual surface in the plasma while the off-diagonal terms are pressures due to 
viscosity and shear stresses acting tangential to these surfaces. Another important 
macroscopic variable is the mean hydrostatic or scalar pressure which is defined to 
be one third of the trace of the pressure tensor and is therefore given by 
Ps = l/3p,s<w52>. Finally, the absolute temperature of the particles of type s is a 
measure of the mean kinetic energy of the random particle motion and is related to 
the scalar pressure by the equation of state for an ideal gas, ps = nskBTs , where kB 
is Boltzmann’s constant.

For the first-order moment, we take (>(v) = ms\  so that the terms of equation (3.3) 
then become:

d ( . d ( .
- ^ { n !s<m s v > s ) =  —  (pjUj)

_ “s 3t +Pl dt ’

V-(ns<ms vv>J = V-(ps (us us +2us<wJ>+<w JwI >))

= ps (u, • V)u, + u, V-(pjUj) + V-ps ,

- « S<F-Vvv>i = - n s <(FX + Fy + F z )v>s

= ~ns <(Fx x + F y y + F 2 i.)>s 

=  - n s <F>s .

We combine the constituent terms of equation (3.3) and substitute from the con
tinuity equation, where we again assume that no particles are being created or des
troyed, forming the momentum conservation equation:

3lle
p ^ ( - ^ -  + (ivV )u5 ) + V-p  ̂- n s<F>s = As (3.5)

d ( u )
where A = ( ---- ?-L- ) takes account of transfer of energy between different

s dt coll
particle species because a collision between particles of the same type conserves 
momentum amongst those particles. Since the collision term represents force per 
unit volume exerted on particles of type 5 due to collisions with particles of type a, 
it seems plausible* to make it dependent on the difference in velocities between the 
two particles: A, = -p * 5 X a (us - u a) where the constants of proportionality, v50t

s*
For a varying temperature profile a VT term would also contribute to the frictional 

force.
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and va  ̂ are the collision frequencies for collisions between particles of the speci
fied species. The total momentum in the system must be conserved and so the rela
tion p/V,g = pgVg{- holds where the subscripts i and e refer to ions and electrons 
respectively.

It is convenient to introduce the concept of the advective derivative in relation to 
equation (3.5)

— + u„-V.
Dr dt

This derivative describes the rate of change of a quantity in the reference frame of 
a fluid element travelling with the fluid at the average fluid velocity. The first con
tribution represents temporal variation in the quantity viewed from a fixed point and 
the second allows for the motion of the fluid element in this time - it has moved 
(because of the flow) to a region where the quantity is different. This second factor 
will obviously be zero when either the physical quantity under consideration does 
not vary in space or when the fluid is at rest. Using this notation and assuming that 
the only forces acting are electromagnetic, we may rewrite equation (3.5) as:

DiTy
P = nsqs (E+usx B )-V " p s +As .

This equation expresses the fact that the time rate of change of the mean 
momentum in each fluid element is due to the external forces applied to the fluid, 
to the shear and pressure forces of the fluid itself and to the internal forces associ
ated with the collisional interactions.

3.3. Energy equation

The new definition which we must introduce here before proceeding is that for 
the heat flow triad, q5 =l/2p5<wiS2w5>, the random thermal energy flux due to the 

particles’ random thermal motions.

Taking <f)(v) = 1/2ms \ 2 in our second-order moment, the first two terms of the 

general transport equation (3.3) become:

r) 7) 3
Y t ( n s <U2ms v 2>s ) =  — ( l/2p,M,2+ l /2p ,< w /> ) = - ^ (  l / 2ps u 2+3/2ps ),

V•(ns <V2m s v 2\ > s ) = V-(l/2p5<(vv)v>y)

= V-( 1/2p,(m/u5+<wj2>u^+2u5-<w5w,>+<w/w5>)

= V-(l/2 p5 u 2us ) + 3l2ps V u s + 3/2 (u, •'V)ps +V-(p5 -U, ) + V-q,,
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where we have used the definition of the scalar pressure from the previous section 
and a vector identity to separate out the constituent parts of the term V-(3/2ps us ). 

Employing the advective derivative enables us to write :

D 3 3 3 1 1
) +  ~2-Ps V 'U* +  Ps “ j2) +  V ’(7 Ps ) +  V '(P s  'u s )

+ V-qs - « J<F-v>s = M „  (3.6)

where = ( —  (1/2 p̂ , <v2>s )coll) is the rate of energy density change due to colli

sions and, like A^, contains nonzero contributions from energy transfer between 
species.

The third and fourth terms of equation (3.6) may be combined in the form:

0 5pc Du„
1 ( I F  (Ps Us) ^+Pj “s ’” d T  ’

the first member of which is clearly zero ( by comparison with the continuity equa
tion) since we have chosen to ignore particle creation and destruction processes (i.e. 
Ss = 0 ) and the second of which may be substituted for using equation (3.5). The 
two force terms now sum to

ns us <¥>s -  ns <F v>j = - n s <F ws >,

which is automatically zero for velocity-independent forces and also for the Lorentz 
force since it acts orthogonally to the velocity. Using the identity 
V-(p5'Uy)-Uy-(V-/^) = (pj-V)-Uy, we may state the equation of energy conservation 
in the final form:

+  \ P s V 'Us + (,V V )'U* + V '(k  =  M s ~ u s 'A s ■ (3 -7 )

In physical terms, the first member of equation (3.7) is the total rate of change 
of the particle thermal energy density moving with a fluid element. The second is 
the change in thermal energy density due to particles entering the fluid element 
with the average fluid velocity, us . The third is related to the work done by the 
kinetic pressure inside the fluid while the fourth allows for heat flux. The terms on 
the right hand side of equation (3.7) represent changes in the thermal energy den
sity caused by external forces and collisions respectively.
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4. Electromagnetic variables

There still remain the electromagnetic variables E and B for which evolution 
equations must also be provided. We use the last two Maxwell’s equations: 

Faraday’s Equation

VxE = - 4 ? - ,  (3.8)

and the generalisation of Ampere’s equation

VxB = 110(1 + 80— ), (3.9)

where J  is the current which is caused by the motion of charged particles.

(Note that the equation V B = 0 may be viewed as an initial condition on equation 
(3.8) and need not be stated explicitly itself although the fact that it always holds is 
understood.)

5. Closure

As predicted, the set of equations which has now been generated contains 
more unknowns than equations, i.e. the system is not yet closed. At this stage, the 
closure assumptions which are made define the model under consideration. The 
more restrictive these assumptions, the more limited will be the physics which the 
model can describe. Already the assumption that the plasma behaves as a conduct
ing fluid has ruled out the possibility of describing microscopic particle motions.

5.1. The cold plasma model

This represents the simplest method of closing the set of fluid equations. In 
hydrodynamics, the persistence of fluid elements is ensured by collisions with 
neighbouring particles which tend to keep particles in a particular fluid element and 
so the size of the element must be much larger than the mean free path, dr^>A,c. 
Also, by definition, a fluid element must be much smaller then the characteristic 
length over which the hydrodynamic variables change, dr c  X . Combining these 
results gives a condition for a meaningful description of a fluid element :

X^>XC.

In a plasma, however, this condition often proves far too restrictive. Also, we wish 
to use the fluid equations to describe a plasma in which the effect of collisions is 
negligible and the coherence of the fluid elements must be enforced by another 
means. In fact, the electromagnetic forces acting between the plasma particles are
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sufficient to maintain the fluid behaviour even in the absence of collisions as long 
as

luI »  Iw l .

Small random velocities correspond to pressure and temperature also being negligi
ble, by their definitions. We therefore set q5 = 0 and p5 = 0 so that only equations
(3.4) and (3.5) are required to describe the evolution of the hydrodynamic variables 
in the cold plasma model. The set of cold plasma equations is completed by 
including equations (3.8) and (3.9) for the electric and magnetic fields plus an equa
tion for the current, J = ^ n s qs us . These equations constitute the description of the

s

cold plasma model and provide us with the set of 15 equations in 15 unknowns 
(including both species) which we will use extensively in Chapters 5 and 6 and 
which are listed together, for convenience, at the beginning of Chapter 6.

A description such as this in which the ions and electrons are regarded separately is 
known as a two-fluid model and contrasts with the usual MHD equations in which 
the ions and electrons are regarded as constituting a single fluid.

5.2. The single fluid (MHD) model

This model is opposite to the cold plasma model in that collisions are assumed 
to be the dominant process. Under the effect of multiple collisions, the particle dis
tribution function relaxes to a Maxwellian in the order of a few collision times. As 
a result, the elements of the heat flux tensor become small, the pressure tensor takes 
on a particularly simple form and the pressure and temperature of the ions and elec
trons become approximately equal since the thermal conductivity and viscosity are 
related. These basic assumptions provide our new method of closing the system:

1)

Qijk ~ 0 for all i, j , k

2)

Ps 0 0

P . = 0 Ps 0

0 0 Ps

where ps is the scalar pressure and the term V p 5 becomes Vps throughout.

To make our set of equations smaller, we average the equations over all 
species and consider velocities to be relative to a weighted mean flow (using the 
subscripts e and i for electrons and ions respectively):
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u =
m e n e u e + m i n i U {

me ne + mi nt

Constructing a single fluid description of the plasma from the two-fluid equations 
involves a number of definitions for similarly averaged quantities. Assuming that 
there is only one type of ion for simplicity, we define :

p = m ene +mini , q = e ( n i - n e) , J  = e(ntut - neue),

where e is the electronic charge. Overall, the plasma must be neutral and so 
ne = rii = n . The electron and ion velocities must be approximately equal (since 
me <^mi) so that ue ~ u t ~u  and therefore, by definition, pe ~pi ~P /2 where P is 
the total scalar pressure .

The averaging procedure removes any difficulty with assigning values to the colli
sion terms in the momentum and energy conservation equations for the single fluid 
because momentum lost by electrons will be gained by the ions and so, for the sys
tem as a whole, both momentum and energy are conserved. Having averaged over 
the species, an equation for the evolution of charge density can easily be derived 
from the continuity equation (3.4) by multiplying each equation by the charge on 
the appropriate species then adding the results to get :

-^• + V-J = 0.
dt

An equation for the evolution of the current is now required to complete the set - it
may be constructed in a similar way to the charge density equation by multiplying
the momentum conservation equations by qs !ms and adding. Here, however, the 
collision terms are no longer equal and opposite but add to give:

e  A e  A A  (  1  - L _ \ A ; Ae = e A  i(------------ )
mi me mt me

— me ne vei (ut- ue) Vgj J ,
me

where we have used the approximations stated above. The complete equation then 
becomes, on neglecting terms of order / 2 and w2, the generalised Ohm’s Law:

where a  = —̂——  represents the electrical conductivity.

ne

2

2 dt ne 2ne c

™eVei



Using dimensional arguments, we can demonstrate that several terms of the 
MHD equations make negligible contributions and so may be dropped. From the 
first of Maxwell’s curl equations, equation (3.8), we find that the ratio E/B-&L  
where CO * and L  are characteristic time and length scales over which the the fields 
change appreciably. To give the field and flow effects equal status, we must have 
w~cgL and so, since the plasma is non-relativistic, coL/c c l .  As a result, we find
that the displacement current term in equation (3.9) may be neglected since

E  T— COL 0
HoEo- ^  / VxB = S —  -  ( - ^ )  «  1.

d t  c C

We now extend this simple dimensional analysis to evaluate the relative importance 
of each term of equation (3.10). Normalising with respect to the electric field, we 
find the terms of (3.10) are in the ratios:

CO2 C 2 . } . - ^  ®  C2 ' CO c s2 CO V ei C2

®pe ®pe ®pe M2 W2 ®lpe ®pe  W2

where we have expressed these ratios in terms of the ion and electron cyclotron fre
quencies, Qi = eB /mi, Qe = eB /me and the electron plasma frequency, 
C0pe = «e2/ e e l e c t r o n - i o n  collision frequency and the sound speed, 
cs ~ (P/p)ly4. It is thus clear that, depending on the frequency regime under con
sideration, a different subset of the terms of equation (3.10) is required for an accu
rate description. When the frequencies of interest are sufficiently low, the OJ/dt, 
JxB and VP terms may be neglected and the appropriate form of Ohm’s Law is 
then simply:

J  = a(E + uxB). (3.11)

It is often assumed that the conductivity is perfect so that, by equation (3.11) , 
E + uxB = 0. To combine the ion and electron versions of the energy equation into 
the MHD approximation, it is best to return to equation (3.6), bearing in mind that 
the velocities are now relative to u and not us . A little algebra yields:

—/>Vu = ( J - ? u ) ( E  + uxB). (3.12)
2 Dt 2

In the limit of perfect conductivity, the right hand side of equation (3.12) vanishes 
and, substituting for V-u from the continuity equation, (3.4), we find:
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- ^ p - 5'3) = o,

P p-5/3 = constant,

which is the adiabatic equation of state for a gas which has the ratio of its specific 
heat capacities, at constant pressure and constant volume respectively , equal to 5/3. 
(This only holds when viscosity, thermal conductivity and the elements of the heat 
flux tensor are all negligible.) Also when G — we may construct an alternative 
equation to (3.8) which will prove useful in the succeeding chapter. From 
Faraday’s Law:

22 . = -  VxE = Vx(uxB) = (B-V)u-(V-u)B (3.13)
ot

where we have used a vector identity and assumed that the magnetic field is homo
geneous in space.

When the kind of dimensional analysis shown above is applied to the 
remainder of the MHD equations, it is found that the charge density may be omit
ted altogether since,

in the momentum equation (3.5): qEIJB ~ E 2IB2c2 ~ u 2/c2 ,

in the energy equation (3.12) (for the case of nonperfect conductivity): 
quU ~Eu/Bc2 - u 2/c2 

where we have used Poisson’s equation (V-E = q/Eo) to relate the total charge den

sity and the electric field.

Thus the full set of single fluid MHD approximations for a perfectly conduct
ing plasma (the ideal hydromagnetic equations) may be written:

= -pV-u,
Dt K

P-^H- = - V P  + JxB,
K Dr

^ P ‘ 5,3) = 0’

E + uxB = 0,

VxE =
dt

VxB = p-oJ.
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6 . Summary

We have demonstrated how a plasma may be considered as a conducting fluid 
under diverse circumstances - when collisions are negligible and when they are 
dominant. The exact form of the equations differs in the two cases but the philoso
phy remains the same - the motion of individual plasma particles need not be calcu
lated in order to find certain of the macroscopic plasma parameters and a full 
kinetic theoretical approach is not required. The cold plasma model is the more res
trictive of the but has been used extensively to great effect in the study of plasma 
waves - magnetoionic theory. Because the random particle motions are ignored, this 
model cannot detect any finite temperature effects (e.g. acoustic waves) and when 
these features become important (for very small wave phase velocity, i.e. cs~vph), 
the cold plasma model must be discarded in favour of an MHD treatment. The two 
treatments merge at low frequencies where the cold plasma reproduces the results 
of "pressureless MHD".
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Chapter 4 - Atmospheric Acoustic - Gravity Waves

1. Introduction

In this chapter, we present a critique of the work which has been done over 
the last twenty years or so on atmospheric waves and apply the eigenvalue analysis 
of Chapter 2 to a neutral atmosphere with vertical temperature stratification. 
Although an analytic solution of the problem is seldom possible, the eigenvalues 
may always be calculated and used as a comparison for testing numerical and 
approximate dispersion relation approaches alike.

A compressible atmosphere in the presence of a gravitational field can support 
a type of wave motion which at high frequencies becomes the familiar acoustic 
wave but at very low frequencies tends to a gravity wave (the characteristics of 
which will be described later). These atmospheric waves are therefore collectively 
known as acoustic-gravity waves. Much early work in this field was prompted by 
attempts to understand the atmospheric response to great natural disasters like the 
eruption of Krakatoa in 1883 (Pekeris, 1939), the Siberian meteorite of 1908 (Pek- 
eris, 1948; Scorer, 1950) and powerful earthquakes such as the one in Alaska in 
1964 (Mikumo, 1968). Barometric recordings of the Krakatoan eruption also stimu
lated Lamb to include a section on atmospheric waves in his famous text on hydro
dynamics (1945). A renewed interest in such waves arose with the advent of 
nuclear explosions and the possibility of determining properties of the source from 
wave characteristics observed at some distance away. With the discovery of large 
scale oscillations on the Sun, the interest in the propagation of gravity waves spread 
to astronomy. Many authors have concentrated on the analysis of isothermal model 
atmospheres or on extensions of the results of this model to cases of non-zero tem
perature gradient. The latter technique is fundamentally the local dispersion relation 
approach described in Chapter 2 where its shortcomings were highlighted. The 
emphasis has been on ducted modes where some particular atmospheric variable 
(often temperature) varies with height, providing a waveguide in which the gravity 
wave can travel. Such trapping schemes have been used to explain the solar 5- 
minute oscillation and terrestrial observations of gravity waves at large horizontal 
distances away from their point of origin.

Some efforts have been made on the question of mode conversion but these 
have been severely limited by the small number of functions, T (z), for which a full
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analytical solution may be obtained. The slant towards ducting models has also 
hampered this area of study and we hope that it may be revived by the application 
of the techniques being developed in other disciplines where the problem of wave 
propagation in inhomogeneous media is of paramount and urgent importance - espe
cially plasma physics.

2. Atmospheric structure

2.1. The Earth’s atmosphere

The Earth’s atmosphere is naturally inhomogeneous over many different 
scalelengths. Vertically, it is loosely divided into regions with similar characteristics 
extending over several kilometres (CIRA, 1965, 1972) with the neutral atmosphere 
being subdivided according to large scale temperature structures into four layers 
(Figure (4.1)). In the troposphere, the lowest region, the temperature decreases with 
altitude at a rate of about -5°Kkm-1. The troposphere terminates at the tropopause 
around 7-17 km depending on the latitude and the season and above this lies the 
upper atmosphere. The first upper atmospheric layer, the stratosphere, possesses a 
positive temperature gradient and extends up to the stratopause at about 45-55km. 
This is followed by the mesosphere where the temperature declines up to a height 
of 80-85km. Beyond this lies the thermosphere where the general temperature trend 
is an increase, depending heavily on solar activity for its precise variation. A fluid 
description is viable up to around 600km, by which point the atmosphere is becom
ing very diffuse and particles can achieve escape velocity.

Although we will pay most attention to the temperature inhomogeneity, none 
of the other physical parameters are constant throughout the entire atmosphere 
either. Incoming radiation from the Sun not only determines the temperature of the 
Earth’s atmosphere but also contributes to the ionisation of the neutral particles, 
providing a second classification scheme. Since we will not be concerned with 
charged particle effects, we simply note that the lowest ionospheric region, the D- 
region extends upwards from around 60km. The mean molecular weight is constant 
up to about 80km but declines steadily above this height. The turbopause (~ 105km) 
signifies the boundary between the turbulent regions of the atmosphere and those 
where laminar flow always exists.

Superimposed on this temporally constant background are the oscillations in 
which we are interested - atmospheric waves. Visual evidence for these waves is 
afforded by mountain wave clouds (clouds formed when gravity waves force oscil
lations in the saturated air near mountain tops) whilst pressure and density varia
tions allow the observations to be quantified. Tropospheric gravity waves are 
observed to have periods in the range 5-10 minutes. Fluctuations in the atmosphere



-6 0 -

above the troposphere were often ascribed to turbulent effects until the suggestion 
by Hines (1960) that these were, in fact, internal gravity waves. He was led to his 
conclusions by photographic and radar studies of the deformation, by rapidly vary
ing winds, of long-enduring meteor trails. The predominant characteristics of these 
irregular winds and their explanation in terms of gravity waves are listed below.

1) The irregular wind components exhibit strong variations in vertical distances 
of a few kilometres, leading to estimates for the vertical wavelength of the 
wave to be around 12km.

2) The dominant winds persist over long intervals with little change over tens of 
minutes of time, corresponding to wave periods of the order of 200 minutes. 
This is consistent with gravity waves which exist for frequencies below a cer
tain limiting frequency (the Brunt-Vaisala frequency discussed in the next sec
tion). They therefore have a lower limiting period, a typical value for which is

2%c _ .x„ = ---------— =5mins,
* g (y - i )A

which is safely below the 200 minutes threshold for the period of the observed 
waves, (c is the sound speed, g is the gravitational acceleration and y is the ratio of 
the specific heats at constant volume and pressure respectively.)

The first two points are sufficient to define the parameters of the internal grav
ity wave and we must now verify that gravity waves with these characteristics 
could also be responsible for the remaining observations.

3) The horizontal scale size of these winds exceeds the dominant vertical scale 
size by a factor of 20 or more. Asymptotically, the dispersion relation may be 
expressed as XxlXz ~ xKg . Inserting the values for vertical wavelength and 
period inferred from points 1) and 2) above, we find that Xx ~ 490km which is 

adequate to meet property 3).

4) The dominant motions are nearly horizontal. The relevant asymptotic relation 
in this case, between velocities and wavenumbers is, ux /uz~Xx lXz and from 
the preceding paragraph this ratio is found to be about 40. Theory therefore 
predicts that vertical motions would be negligible when compared with those 
horizontally and this is again in accord with the observational evidence.

5) The speed of the dominant irregular wind tends to increase with height as does 
the dominant scale size. The scale size of internal gravity waves is also found 
to be amplified with height and this feature agrees with the final observation.
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2.2. The solar atmosphere

At the same time as the great upsurge of meteorological interest in acoustic- 
gravity waves, there arose a similar interest in the solar physics community, ini
tiated by the discovery of the solar 5-minute oscillation by Leighton (1960) (cf. 
Leighton et al., 1962). Several mechanisms were suggested to generate these oscil
lations - all with the common theme of atmospheric waves. It has also been postu
lated that atmospheric waves supply the non-radiative energy needed to heat the 
chromosphere and corona.

As well as the influence of temperature in determining the allowed wave 
modes, the Sun’s magnetic field plays a far greater role than the Earth’s since it can 
be many times stronger. The Sun’s magnetic field is concentrated in certain active 
regions, where the field strength may be up to 10_1T providing energy for a range 
of dynamical processes, and which are surrounded by areas of quiet Sun which are 
almost devoid of magnetic field (~10_4T). A division of the Sun’s atmosphere into 
layers with similar temperature characteristics (where the temperature signature of 
each layer is simply a manifestation of the different physical processes occurring 
within it) must therefore be combined with an examination of its magnetic field 
structure (Durrant, 1988).

Underlying the atmosphere is the solar interior where many of the atmospheric 
effects originate. The outermost layer of the solar interior, the convection zone 
which ranges from 0.7 to 1 solar radius, is so-called because it is convectively 
unstable. It is the convective motions in this region which lead to the observed 
granulation of the neighbouring photosphere. The granules form an irregular cellu
lar pattern of polygonal bright elements with horizontal scales of about 1400km, 
surrounded by a network of dark lanes. These intergranular lanes contain the mag
netic elements which are swept to the edge of the granules by local motions. The 
solar surface is taken to occur at the height where the gas changes sharply from 
being opaque to transparent as radiative transport gains overwhelmingly in effi
ciency and the lowest of the atmospheric layers, the photosphere, is the first we can 
actually see. In the photosphere, the temperature is relatively low (averaging 
6000°K) which causes the scaleheight to be small and results in a rapid exponential 
decrease of density with height. The relative importance of the magnetic field must 
thus increase with height since the balance of thermodynamic to magnetic pressure, 
p = p /(B q /2[Iq), has decreased. The equivalence of these two pressures is achieved 
at a point in the chromosphere and above this height wave motions are studied 
under the MHD approximations and not those applicable to the Earth’s neutral 
atmosphere. Near the photosphere-chromosphere boundary, around 500km above 
the solar surface, the temperature achieves its absolute minimum value (~ 4300°K). 
In the chromosphere, the temperature increases, slowly at first and then in an
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irregular fashion to around 2.5xlO^°K. In the transition region there is an extremely 
rapid change of properties over a very short distance - a temperature rise to 10^K in 
a few hundreds of kilometres. The temperature variation in the photosphere and 
chromosphere is illustrated in Figure (4.2).

Together, these three regions form a relatively thin layer, less than 3x106m 
thick, while the corona, and its extension the solar wind, continue out to the planets 
and beyond. The one-component fluid equations may be used below the transition 
region since the oscillation frequencies are much lower than the collisional fre
quency and so plasma effects are negligible. Viscosity can be neglected because the 
ratio of inertial to viscous acceleration (the Reynolds number) is =109. Thermal 
conductive flux is of the order of 10-9 times the mechanical flux in the chromo
sphere and below so that thermal conduction only becomes appreciable in the 
corona. As in the terrestrial case, we are usually interested in waves with suffi
ciently long periods to enable us to ignore rotational effects. When the effect of the 
magnetic field is included (magneto-acoustic-gravity waves), the electrical conduc
tivity is high enough to be assumed perfect and hence the magnetic field lines are 
frozen in. Although radiative dissipation may modify the waves, it does not intro
duce any new wave types and is usually ignored. The equations of magnetoionic 
theory accurately model conditions almost everywhere in the solar corona and so 
are used to describe this region in preference to the fluid equations.

2.3. Implications for the model

From this brief summary of the properties of the terrestrial and solar atmo
spheres, it is obvious that no simple model can be constructed which is globally 
correct. Either we must resort to numerical simulations including a realistic profile 
for all the parameters or we must restrict ourselves to a more limited analytic 
approach. The best we can hope for is to construct a reasonable model of a particu
lar area. For instance, by taking a fixed linear temperature gradient, we could 
satisfy conditions in the stratosphere or the mesosphere but not both. Similarly, 
results obtained for a neutral atmosphere may be applicable to conditions in the 
quiet photosphere but not in the upper chromosphere where magnetic effects are no 
longer negligible. Studies of the quiescent Sun can provide quite satisfactory 
models despite ignoring the magnetic field entirely. We will show in later sections 
that even the smallest deviation from homogeneity produces sufficient complication 
to render analytic solutions impossible in the majority of cases.

We will begin with a description of the wavemodes which can exist in an isother
mal atmosphere, starting with the natural resonant frequency - the Brunt-Vaisala 

frequency mentioned above.
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3. The Brunt-Vaisala frequency

An unmagnetised plasma, displaced slightly from its equilibrium position, will 
oscillate at its natural frequency, co2e = nGe2lE{/n et as shown in Chapter 1. When 
the electrons move relative to the stationary ions, a potential difference is created 
which causes the electrons to accelerate back towards their initial positions. They 
tend to overshoot and are pulled back in the opposite direction, thus sustaining the 
oscillation. The fields in this case are self-induced and not externally imposed. An 
atmosphere under the force of gravity exhibits a similar resonant frequency called 
the Brunt-Vaisala frequency (Vaisala, 1925; Brunt, 1927). In the plasma, the energy 
of the system alternates between the kinetic energy of the moving electrons and the 
electric field potential while in the gravitationally stratified atmosphere, the atmos
pheric fluid elements transfer their energy to the gravitational potential. A signifi
cant difference between these two natural frequencies is that the plasma oscillations 
are longitudinal (parallel to the electric field) but the waves supported by gravity 
are transverse (with respect to the velocity field). A second difference is that elec
tron plasma waves are a high frequency phenomenon (this is why the heavy ions 
with their large inertia may be omitted from the calculation) whereas gravity waves 
occur at relatively low frequencies (at higher frequencies, the gravitational restoring 
forces are negligible compared to those due to compressibility). In our analysis, we 
will treat both plasmas and atmospheres as compressible fluids subject to different 
restoring forces and employ the fluid equations of Chapter 3.

In order to derive the Brunt-Vaisala frequency explicitly, we examine the 
behaviour of a parcel of air in the atmosphere, displaced slightly from its equili
brium (which is assumed to be stable). Let the parcel be displaced at an angle 0 to 
the vertical and the density difference between the parcel and its new surroundings 
be 8p. Equating the forces acting on the air parcel after it has moved, the inertial 
force is balanced by a buoyancy force due to the pressure (density) difference 
between the parcel and its surroundings:

p-TT = ~5pg cosG. 
dtz

By the equation of state for a perfect gas, p = pRT/M, where 
R = 8.31xl03J&m<9/~1K“1 is the universal gas constant (related to Boltzmann’s con
stant and Avogadro’s number by R = kBNa) and M is the mean molecular weight 
expressed in kg/kmol. Thus the temperature and density are related by 
8p/p = 87 /7  if hydrostatic equilibrium is maintained. If there is no energy 
exchange between the parcel and its surroundings, the displacement is adiabatic and 
87  is given by the product of the difference between the adiabatic and atmospheric 
pressure gradients multiplied by the vertical component of the displacement.



Substituting this in the complete expression, we find:

o _ I ,dT\ dT\ N 
0 2̂ z T dz dz latmoŝ  z ’

which represents waves satisfying the highly anisotropic dispersion relation, 
co2 = cojcos20. This defines the Brunt-Vaisala frequency to be

=  ■ ^ ( d T  / & | a t m o s - < f l ’ / ^ l a d i a b ) -

We temporarily adopt the notation a  = dT /dz for the temperature gradient. 
The adiabatic temperature gradient, a * ,  may be used to gauge the stability of the 
atmosphere. Suppose we consider first an atmosphere whose temperature gradient 
exceeds the adiabatic temperature gradient. Then a parcel of air displaced adiabati- 
cally upwards from the position in the atmosphere where a  = a* will follow the 
adiabatic temperature gradient. Hence, it will be at a lower temperature than its sur
roundings and will sink back to its starting point. An air packet displaced down
wards will similarly rise and the situation is stable. If a  < a * , any displaced air 
will keep moving away from its original position and the situation is unstable. Now

<°b = f ( a - a ) ,

so that for an atmosphere with a < a * , the Brunt-Vaisala frequency becomes ima
ginary and the motions are no longer oscillatory but increase exponentially in time 
and the atmosphere is convectively unstable. Thus internal gravity waves and con
vection can be regarded as the stable and unstable responses to the same restoring
force.

The Brunt-Vaisala frequency in an isothermal atmosphere is co2 = - g a * /T  
since the temperature gradient vanishes. From the equation of state for a perfect 
gas, we have

dT _ T  ̂dp P  dp ^
dz p dz p dz

For an adiabatic expansion, p p~  ̂= constant, so that dp Id p = yp/p and the above 

expression gives

«* = 1 (1- 1 ) ^ 1 1 1 ^ , ,
p y dz p y

where we have used the fact that the displacement does not disturb the hydrostatic 

equilibrium. Thus
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which is the form of the isothermal Brunt-Vaisala frequency we will use most 
often. In an atmosphere with a non-zero temperature gradient, the Brunt-Vaisala fre

quency is given by co| = (S)2 + .
* c2 dz

4. The model equations

Although this model at first sight appears to be greatly different from the cold 
plasma model of Chapters 5 and 6, there is a significant area of common ground 
between them. First, as we showed in Chapter 3, they share a common derivation - 
either from kinetic theory or from physical arguments involving the conservation of 
flux of quantities such as density. Thus the model equations are basically the same, 
with different approximations applied to each.

Secondly, the wave motion in each case is governed by external forces - here 
by gravity and in the following chapters by a magnetic field - which define pre
ferred directions in their environment and so cause the plasma, in one case, and the 
atmosphere in the other to be highly anisotropic. The complications inherent in cal
culations involving magnetic fields are avoided in this chapter, thus considerably 
simplifying the geometry. It is therefore an ideal starting point for studies of waves 
in inhomogeneous media.

Our primary aim is to study the propagation of waves through a medium with 
non- constant parameters and, if possible, to construct a framework within which 
energy transfer between the eigenmodes of the system may be studied. Our first 
objective is therefore to identify the wave modes which describe the system.

As discussed qualitatively above, sound waves and gravity waves (the two 
extremes of frequency for acoustic-gravity waves) may exist in the atmosphere of a 
planet or star, but there is also the possibility of additional wavemodes. Because the 
Earth is not fixed in space but rotates about an axis with angular velocity QE, it 
must also be subject to two additional forces due to its angular velocity. The centri
fugal force, given by QEx(QExr) has a maximum value of QERE = 3.38x10~2ms~2 
which is much smaller than the acceleration due to gravity and may therefore be 
ignored. The Coriolis force, FCor = - 2mEQExr (where ' denotes d/dt), acts at right 
angles to the motion. Its importance lies not in its strength, because it is compara
tively weak, but in the fact that it may produce a large deflection in motions with 
large time scales. Henceforth, we will use the equations of motion outlined in the 
following section and will neglect the Coriolis term. This is equivalent to avoiding 
long period waves (very low frequency) waves where the rotational effects are most 
significant and restricting our domain of interest to oscillations at higher frequen

cies.



We use the fluid equations to describe our model, taking the atmosphere to be 
a non-viscous, compressible fluid containing a gravitational field and not subject to 
thermal losses. These are the equations of mass, momentum and energy conserva
tion which together form a system of 5 equations in 5 unknowns:

= -pV-u. Dt K (4.1)

D u  „
Dt = “V p+  P8> (4.2)

Dp _ . 2 0 p 
Dt Dt ’

(4.3)

where p, the mass density, u, the fluid velocity and p ,  the fluid pressure are the 
unknowns. We denote the sound speed squared (a specified function of height, z 
through its dependence on the temperature) by c2 and g represents the constant 
acceleration due to gravity.

To complete the description of the system, we must also specify our assump
tions about the equilibrium. First, we take the equilibrium to be constant in time. 
The assumption of a static equilibrium means that we may set 
5p0 /3r = dp0/dt = 0. Second, we assume that there is no wind in equilibrium, i.e. 
u0 = 0. A non-zero u0 produces a Doppler shift of the frequency and inhomo
geneities in this shifted frequency have been used by some authors (Chimonas and 
Hines, 1986) to explain ducting of atmospheric waves.

From the equilibrium form of the momentum equation, we demonstrate how 
the natural stratification of the atmospheric pressure and density arises. Inserting 
the assumptions of a static equilibrium with Uq = 0 in the momentum equation,

(4.2) yields the equation of hydrostatic equilibrium,

Vp0 = p0g,

or, in one dimension:

fyo

where the minus sign arises because the force of gravity increases downwards 
whilst altitude is measured upwards. This equation expresses the fact that the pres
sure gradient must be equal and opposite to the gravitational force in order to main
tain a balanced state. We use the equation of state for a perfect gas to eliminate the 
density and integrate to obtain the pressure as a function of height:
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where pg is the pressure at z — 0. It is useful to define a quantity,
H = RT/Mg = c2/yg which is the scaleheight of the neutral atmosphere, the height
in which the pressure will fall to \/e of its original value. For an isothermal atmo
sphere, H  is constant and both pressure and density fall off exponentially with 
height:

P Q Po ■ ( z . ypz .—  = —  = ex p (-— ) = exp(- ),
Pg p g H c i

but in practice, none of M, g and T are constant, so that the scaleheight varies.
Even the ratio of specific heats, y, is not strictly constant. Since the acceleration due 
to gravity only varies by 5% over all latitudes and heights of up to two hundred 
kilometres and the mean molecular weight is identically constant for the first 80km 
with only a slow decrease thereafter, these two effects are neglected and any inho
mogeneity in H  will be attributed purely to a gradient in temperature.

We proceed in the usual way by linearising equations (4.1) to (4.3) and inserting 
the equilibrium conditions where appropriate to get :

dpi
dt

+ Ui-Vpo = -p 0V-u1, (4.4)

Oil!
P o - j f  = - vP i + Pig> (4*5)

dp l * dPi «— + u 1-V/?0 = c2( — + u r Vpo). (4.6)

At this stage, further simplification of the system may be performed by Fourier 
transforming these equations in time and space but, as discussed in Chapter 2, this 
is only useful when the coefficients of equations (4.4) to (4.6) are constant. Alterna
tively, we combine the three linearised equations into a single ode in one of the 
physical parameters (we will later choose uz).

We first set the temperature gradient to be zero and perform the Fourier 
analysis in order to construct an algebraic dispersion relation relating the
wavenumber and frequency of the allowed modes of the homogeneous system. This
provides us with a comparison for the inhomogeneous case.

5. The dispersion relation

The dispersion relation for acoustic and gravity waves in an isothermal atmo
sphere has been derived by a number of authors (Eckart, 1960; Gossard and Hooke, 
1975). Because of the stratification of the equilibrium pressure and density, even 
the most elementary treatment must tackle the problem of position-dependent
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coefficients. By appropriate manipulation, all height dependence may be incor
porated in the variables, permitting full Fourier transformation. We follow the 
approach of Beer (1974) and rearrange equations (4.4) to (4.6) so that our set of 
dependent variables becomes ijq, Pi/po and P\Ipq. Henceforth we will drop the sub
script on the perturbed velocity since there is no equilibrium velocity with which to 
confuse it.

To eliminate the gradient of the equilibrium density from equation (4.4), we use the 
definition of the sound speed:

Y 7 Y7 /  P O C  . C  2  x - j  P o  n  1
V/?o = v ( ) = — Vp0+ — Vc2.

y  Y Y

In the case of the homogeneous atmosphere which we are considering, the tempera
ture is a constant and therefore the gradient of the sound speed is zero. Then the 
above expression becomes Vp0 = yVp§!c2 and all the terms involving the deriva
tives of the equilibrium pressure can be expressed as functions of the acceleration 
due to gravity using the equation for hydrostatic equilibrium. We also wish to elim
inate any gradients in the perturbed pressure in favour of a derivative of the ratio of 
first to zero order pressures, by using:

Pi , 1 „  Pi
—  ) = — V pj -
P o P o P o

Thus, on rearranging equations (4.4) to (4.6) and using the substitutions outlined 
above, we obtain:

a(P^ P «l + V .u + -X u .g = o, (4.7)

- | p - — g + — V( — ) + — g = 0, (4.8)
dt p0 Y P o P o

d(Pi/Po) atPi/Po) Y(Y-D 0 (49)
dt r dt c2

We now Fourier transform in space and time, so that all perturbed quantities 
have e /(k'r-(°0 dependence, and we rotate the horizontal axes in order to define a 
coordinate system in which, for convenience, there is no y -dependence (i.e. 
d/dy = 0). The second component of the momentum equation, (4.8), then yields 
i(dUy = 0  and we see that the velocity does not have a y — component. Since the 
coefficients of equations (4.7) to (4.9) are constant, the variation of the remaining 
non-zero variables is taken to be sinusoidal and their amplitudes and phases are 

related by:
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—  = —  -  _  A i(Kxx+K,z-<ot)
X Z R p

where co is real, Kx and Kz are complex wavenumbers and X , Z, R and P are 
complex amplitudes. By selecting only real co, we are limiting ourselves to only 
stable oscillations whilst permitting the wavenumbers to have imaginary parts 
allows both evanescent and oscillatory motion to be studied. Using these defini
tions, equations (4.7) to (4.9) may now be written in matrix notation as:

- i  co 0 0 iK x c2ly

0 —i co g i Kzc 2/ y -g

i Kx i Kz - y g /c 2 - i  co 0 

_ 0  7( y - l )glc2 i yco - i  co

which describes a set of 4 homogeneous simultaneous equations in 4 unknowns. 
There therefore exists a unique non-trivial solution if and only if the determinant of 
the 4x4 matrix is zero, i.e. when:

co4 -  co2c 2(K 2+ K 2) + (y-1)g 2K 2 -  i (S)2ygKz = 0. (4.11)

This is the general dispersion relation for wave propagation in an isothermal atmo
sphere under the approximations and assumptions stated above. From equation
(4.10), we may also derive relations between the amplitudes of each variable - often 
called the polarisation relations. From the first row of (4.10), we find that 
PIX = ycoIKx c 2 which may be substituted into the second row to eliminate P . We 
now solve the remaining pair of simultaneous equations as if Z were known to 
obtain the relative ratios of R and Z. In his classic paper, Hines (1960) chose the 
denominator of the resulting expression to define Z = co3-coKx c2. This choice 

fixes the remaining amplitudes to be:

P =yco 2Kz +i-@-j-, 
c l

R = ca2Kz + -  i (y-1 )gKx ,
c

X  = coKXKZ c2+i co gKx .

There are several conclusions which we may draw immediately from equation
(4.11). First of all we show that the general wavenumbers Kx and Kz may not both 

be real and non-zero.

X
Z
R
\P J

=  0 (4.10)
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Proof

Suppose that Kx = oc+ip and Kz = \|/+ /8  (where a, p, \{/, 8 g IR ). We divide 
equation (4.11) into its real and imaginary parts:

Real part

co4 -  co2c \ a 2 -  P2+ \j/2 -  82) + (y- 1 )g 2(a2 -  p2) + apyg 8 = 0 .

Imaginary part

- 2c o 2 c  2(a p + \j/8) + 2(y- 1 )g 2ap -  aPyg \j/ =  0 .

Suppose that both Kx and Kz are real, i.e. P = 8 = 0, then the imaginary part of 
equation (4.11) becomes

co2yg\|/ = 0,

forcing \j/ = 0 and thus the vertical wavenumber, Kz , must also be zero. As 
was asserted above, imposing a real horizontal wavenumber forces any propagation 
in the vertical direction to have a growing or decaying envelope.

We may also use the division of equation (4.11) into real and imaginary parts 
to remove the undesirable i term from the dispersion relation. For a real horizontal 
wavenumber (Kx = kx ), we know that the vertical wavenumber must be of the form 
Kz = kz +i k  where kz and k  are also real. Now the real part of equation (4.11) 
becomes:

co4- co2c 2(k 2+ k 2 - k 2 ) + (y- 1 )g2k 2+co2yg k  = 0 ,

and its imaginary part becomes:

-  2co 2c 2kz k  -  (i)2ygkz = 0 .

We see from the second of these relations that either the real part of the vertical 
wavenumber is zero or we obtain an equation for the vertical growth factor:

Generally, exponential growth of a wave over more than a finite distance would 
contravene energy conservation but in the case of the atmosphere, this constant 
growth is permitted by the ambient density stratification. If we consider the total 
wave energy density (neglecting potential energy), we have

£ = V6p0M2,
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and we have already shown that p — p^exp(— ygz/c2) so that energy conservation 
demands the form of the imaginary part of the vertical wavenumber to be the same 
as that derived from the dispersion relation above.

We substitute the above form of k  into the real part of the dispersion relation 
to construct a final version which contains no imaginary terms and which will yield 
the real part of the vertical wavenumber in terms of the frequency and horizontal 
wavenumber:

Now we examine the regions in which we may find real solutions for the dispersion 
relation. Considering (4.12) to be quadratic in co2, we write:

To examine the zero-wavelength limit, we take an asymptotic expansion of the 
solutions of equation (4.12) and so rewrite equation (4.13) in a suitable form:

For simplicity, we consider kz = 0, and see that as kx —» the larger root takes
the form of a sound wave, co2 = c 2k 2. Henceforth we will therefore identify this 
branch as the acoustic mode. The other root approaches a wave with constant fre
quency co2 = ( y - l )g2/c2 which is the isothermal Brunt-Vaisala frequency, the 
resonant frequency of the atmosphere which was derived from first principles in an 
earlier section and we thus designate this root a gravity wave.

The points where the wavelength becomes infinite, i.e. kx —> 0, may be studied in a 
similar fashion but we use a more appropriate form for the solutions, by writing 

equation (4.13) as:

to4 -  co2c 2(^2+ £z2 + (-3%- )2) + ( y - l ) g 2k^ =  0.
2 cL

(4.12)

2c 2c

2a>2 = c \ k x2 +kz2) + ( ^ - ) 2 
2 c

,4 4(T- l ) g 2 1/4

2o)2 = c 2(k?+k!2) + ( ^ )  ± (-^-)

64Cy-l)*x2c 4 *

A 2

We set kz = 0 and examine the behaviour of equation (4.12) as kx —>0:

co2 -» ± (~ ^ ) ( l  + 0 (^2)).
2c 2c
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As indicated in Chapter 1, a cutoff occurs in a medium supporting wave 
motion when the wavelength becomes infinite (the wavenumber goes to zero) and, 
conversely, a resonance occurs when the wavelength becomes zero, so that the cut
offs of the lower and upper branches of the solution occur at co = 0 and 
coa = 7g He (the acoustic cutoff frequency) respectively.

For kz 9* 0, the general behaviour of the modes is unaltered but the values of 
the acoustic cutoff frequency and the zero-wavelength limit of the gravity mode are 
increased and decreased respectively with the result that the region where propagat
ing solutions are forbidden increases in size. Any of the properties of equation 
(4.12) can best be examined graphically. In Figure (4.3), we plot frequency against 
horizontal wavenumber for four different values of kz, including kz -  0. The upper 
curve represents acoustic waves and demonstrates the acoustic cutoff frequency for 
kx —>0 and asymptotically approaches a straight line, co = ckx. The lower curve van
ishes at the origin and in the short wavelength limit tends to the Brunt-Vaisala fre
quency. Between these two curves lies the evanescent region where no waves are 
possible. This gap between coa and cô  for which no frequency may propagate with 
a purely real horizontal wavenumber is clearly visible. As kz increases, the two 
curves are seen to move apart, so that the evanescent region becomes larger. Fig
ure (4.4) depicts co versus kz for a set of values of kx. (Note that for kx -  0 the 
gravity wave branch would disappear and only acoustic waves could propagate.)

Only one evanescent wave will prove to be of interest to us later - the Lamb 
wave which satisfies the dispersion relation co2 = c2kx and, of course, kz = 0. Sub
stituting these values in the real part of equation (4.11), we find that the imaginary 
part of the vertical wavenumber must satisfy:

k  =  - f r ( - Y ± ( Y - 2 ) ) .
2c 2

Lamb waves are always evanescent, lying in the non-propagating region of Figure
(4.3). Unlike other evanescent waves, they are linearly, not elliptically, polarised. 
We demonstrate this by substituting their dispersion relation in the polarisation rela
tions to find that Z = c ^ -c o c 2**2 = 0. Thus these waves do not have any vertical 
velocity variation and are linearly polarised. The remaining polarisation relations of 
both Lamb waves are therefore found from:

- i  co 0 i coc ly X
i co!c - i  co 0 R = 0 ,

0 iyco - i  co P.

so that the density, pressure and x  -component of the velocity have amplitudes 

related by
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R = 1 P = y  X  ~ c.

6. Non-uniform atmosphere

We have so far only been concerned with the analysis of a uniform atmo
sphere. Although the above analysis is not applicable to the case of an atmosphere 
with a temperature gradient (or any such inhomogeneity), it serves as a comparison 
for what follows and is useful for providing physical insight into the non- 
uniform case. As soon as inhomogeneities are introduced, a host of new effects 
arise - cf. Francis (1975) for a review of atmospheric waves in uniform and non- 
uniform media. The effect which has received most attention in the past has been 
the possibility of trapping waves. Non-uniform properties may introduce new cutoff 
frequencies and hence additional reflection points in the medium. If waves are con
tinuously reflected between two such reflection layers, a standing wave pattern will 
be set up where the waves in opposite directions interfere constructively. Thus a 
waveguide can be created which only supports a certain discrete set of eigenmodes. 
Models of ducting by temperature structure have been studied extensively by both 
the atmospheric and solar physics communities although there has been little 
interaction between the two. A second new phenomenon caused by spatial variation 
of the atmospheric parameters is that of mode conversion (introduced in Chapter 2), 
a subject which has received only cursory attention in the literature. We will there
fore look for a situation where a propagating wave is incident on a region where it 
becomes evanescent, beyond which the wave can propagate once more. Under such 
conditions, some of the wave may not be transmitted but will instead be reflected.

On purely physical grounds, it is tempting simply to extend the results of the 
isothermal model by making the acoustic cutoff (cofl) and gravity-wave resonance 
(cop frequencies position-dependent (see the review of solar oscillations in Jordan 
(1981)). It could then be argued that gravity waves, with all but the smallest hor
izontal wavenumbers, would propagate only for frequencies below the non- 
isothermal Brunt-Vaisala frequency (the generalisation of co2):

9 2 g dc2
“ s = ^ + ^ ^ r -

We will demonstrate in a later section a more rigorous method of deriving the 
reflection levels for an atmosphere with a temperature gradient from a WKBJ 
approach. At that point, we will show that the above expression gives a reasonable 
estimate of the height at which reflection is likely to occur for gravity waves with 

large horizontal wavenumber.
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There is no single correct ode describing any physical system and the choice 
of which one to use may depend on tractability or on the ultimate aim of the 
analysis. Two common choices in the study of waves in stratified atmospheres are 
to take either i) V u  or ii) po^V-u as the dependent variable. These have the follow
ing advantages over other choices :-

1) The coefficients of the resulting differential equation do not contain height 
derivatives of the scaleheight (or the background wind), so that the wave vari
ables are continuous across boundaries where the temperature or wind velocity 
change suddenly. (This point is particularly useful in numerical calculations.)

2) An extra singularity (at co2 = c2K 2) is removed which simplifies solution.

3) The choice of variable ii) contains a factor to compensate for the growth in 
amplitude of the wave, which results from the exponential decrease in density 
with increasing height (cf. §5).

After examining some results obtained using variable choices i) and ii), we will 
proceed to investigate the "sonic line" singularity by deriving local solutions 
appropriate to the neighbourhood of this point.

Pitteway and Hines (1965) considered the possibility of inhomogeneities due 
to changes in height of either the temperature or the velocity of the (horizontal) 
background wind, u0, and showed that the linearised system of equations (4.4) to 
(4 .6) could be expressed as a pair of coupled first order ode’s in the variables 
^ = V-u/w and £ = Kx uz/w:

where ' = d/ds, s = Kxz, a  = yHKx , |3 = w2/gKx , H  = c2/yg and w = co- K x u0x 
is the Doppler-shifted frequency due to the horizontal background wind. In the case 
of constant (or absent) u0, p is constant and £ can be eliminated from equations

(4.14), leaving a second order ode:

(4.14)

variable <|> = w ^exp(-\ ~ ^ d s )  givesTransforming to the new

<|> + -̂ <j) + <72<l) = 0,ti
(4.15)

where = d Idz, we specify a real horizontal wavenumber, kx, and
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Equation (4.15) was first derived by Martyn (1950). It is exact - terms involving H 2

and H  vanish identically. An analytic solution exists only when the temperature
(and hence c ) has a very simple height dependence. Pitteway and Hines studied
cases where temperature was an exponential (ct = ocq exp(/4s )) or linear function of
height (oc = A s ). They observed that the second order equation in ^ which is
equivalent to equation (4.15) contains a singularity where a  = (3 i.e. where 

2 2 2® = c Kx and so the equation in £ is not as "convenient" to use. For the tempera
ture profiles assumed, equation (4.15) becomes a form of Whittaker’s confluent 
hypergeometric equation with solutions possible in terms of Laguerre functions. The 
authors then demonstrate that modes trapped by the entire atmosphere are possible 
if they satisfy the constraint that the wave amplitude tends to zero at the upper and 
lower bounds. From a series expansion, convergence arguments lead to the conclu
sion that only a discrete set of modes - indexed by n - can exist. Defining n as the 
order of the mode, an algebraic formula may be generated which replaces the sim
ple dispersion as a description of the propagation characteristics.

A similar analysis was applied by Daniels (1967) to the thermosphere, using 
the field variable V u in conjunction with an exponential temperature variation, 
defined by c 2 = A +Besz. The second order equation which he derived using the 
dimensionless independent variable y = c 2/A was the Papperitz equation with solu
tions y^(y - 1  )^F (a ,b ,c ;y) where X and p. depend on the choice of frequency, hor
izontal wavenumber and temperature profile while F (a ,b ,c;y ) defines a hyper
geometric function. Using energy considerations to fix the boundary conditions 
(again at z -  0,°°), the complete set of eigenvalues was extracted. As well as per
fectly guided modes, Daniels also noted the possibility of leaky modes with com
plex wavenumbers which resemble the freely propagating evanescent waves in an 
isothermal atmosphere.

The generation and propagation of waves in the Sun’s atmosphere was con
sidered by Moore and Spiegel (1964) who derived the isothermal dispersion rela
tion, equation (4 .12), and examined the limiting cases of vertical and nearly hor
izontal propagation in an atmosphere with varying temperature, under the WKBJ 
approximation. They found that the concept of acoustic cutoff frequency was gen
eralised, via its dependence on sound speed in the case of purely vertical propaga
tion. For nearly horizontal propagation, they discovered that the high frequency 
limit of gravity waves occurred at the non-isothermal Brunt-V aisala frequency, co .̂ 
These results were extended to arbitrary directions of propagation, employing the 
generalised expressions to define the limits of wave propagation when the sound 
speed squared has a parabolic dependence on height (simulating conditions near the 
temperature minimum). As we will demonstrate later, this method does in fact 
result in a reasonable estimate of the height at which reflection of atmospheric
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waves can be expected in an inhomogeneous atmosphere.

In Chapter 2, we used the concept of quantum mechanical scattering from a 
potential in the context of wave propagation in an inhomogeneous medium. The 
approach hinged on expressing the appropriate second order ode in normal form, 
y + /  (z )y = 0, where /  (z) is the potential. The eigenvalues of the system, which 
define the relevant modes, were derived by considering the basic equations as a 
system of coupled first order ode’s. A slightly different approach was adopted by 
Yu et al. (1980) and Tuan and Tadic (1982) who expressed their second order 
equations as a Sturm-Liouville equation:

(■£q (z) - £ - V ( z) + X2)V = 0.

where Q (z),V (z ) are functions of co, kx and c2, \\f = co/Vpo and the eigenvalues 
are identified by X = kxlco. Again, the zeros of the potential represent the positions 
where reflection takes place. This procedure is handicapped by the labelling of 
eigenvalues by X which is a constant and therefore includes a whole range of 
modes with different vertical dependence. The method outlined in Chapter 2 seems 
preferable since the potential is defined in what seems a more natural way and the 
eigenvalues, which vary with height, isolate the individual modes. Yu et al. gen
erated solutions under both isothermal and slowly-varying (WKBJ) conditions, but 
the emphasis of their paper is on heuristic fitting of the eigenvalues to the scale of 
the potential well.

The consensus from all these investigations is that simple models may be used 
to demonstrate the likelihood of modes being ducted by atmospheric structure but 
that the simple models treated do not represent physically realistic systems. These 
models allow for two reflection points (at ground level and infinity) whereas in 
reality there may be several such levels throughout the atmosphere. The frustrating 
fact is that any model which is simple enough to have solutions in terms of stan
dard functions does not admit the phenomena of interest. This conclusion has been 
deduced from studies examining ducting of modes but is equally true of the sparse 
mode coupling literature. Most discussions of linear wave coupling originate from 

numerical simulations.

Jones (1970) was the first to suggest that mode coupling occurs in the Earth’s 
atmosphere during his examination of ionospheric oscillations. In this work, the 
author uses the terminology of electronics theory to examine a pair of coupled 
equations which are similar to the equations in ^ and C, used by Pitteway and Hines 
(1965). The author invokes an atmospheric response function - the ratio of output 
(say uz at some height in the atmosphere) to an input (some method of forcing at 
some other height) - which is dependent on frequency and horizontal wavenumber.



The results of Fourier transforming in space (x ) and time may be multiplied by the 
response function to obtain the transformed output and an inverse Fourier transform 
taken to find the final spatial and temporal behaviour. Perturbations with frequency 
and wave number close to the normal mode produce an almost infinite response. As 
this is a numerical study, a full vertical thermal structure can be included and the 
author considers four different cases, each with a different background wind profile, 
w0x(z )- The modal plots which result show modes coming together and then parting 
again, although the vertical wavenumber or its equivalent which defines individual 
modes is not stated explicitly. Jones terms any points where the approach is sudden 
kissing modes and those where it is more gradual embracing modes. These points 
are identified as places where modes transfer from one duct to another and there
fore extend through large vertical distances.

In the context of ducted modes in the solar atmosphere, Christensen-Dalsgaard 
(1980) generated numerically similar mode diagrams demonstrating avoided cross
ings where the characters of two modes approach each other closely and then 
separate again. He interprets such events as a simple swapping of the properties of 
one type of wave to another at a point where the energy stored in the two wave 
types is comparable. He also suggests that an incoming wave of one species may be 
able to excite the second mode at such a point. As an expression of the concept of 
mode-conversion, this intuitive statement echoes the work of Cairns and Lashmore- 
Davies discussed in Chapter 2 where proximity of curves on a kz-z  diagram indi
cated mode-conversion regions. It therefore has concomitant weaknesses but may be 
an indication that mode coupling is present.

7. The vector differential equation

Before we can resolve the problem of the extra singularity raised in the previ
ous section, we must first construct a second order ode which contains this singu
larity from the model equations of §4. Although we will be interested in the effects 
of a temperature gradient, we include for completeness a short section on work 
which includes inhomogeneities caused by the presence of a magnetic field (and 
which consequently is aimed more at astrophysical applications). This section also 
provides an excellent illustration of the weaknesses inherent in employing local 
dispersion relations to describe non-uniform systems.

In order to generate a second order ode of the desired form, with the vertical 
velocity as dependent variable, we differentiate equation (4.5) to get:



-78 -

and substituting for the perturbed pressure from equation (4.6) and for the perturbed 
density from equation (4.4):

= ”  + c 2V-U!)) + -^-(-U j-Vpo -  poV-u^
ko Po

= V(u1-g) + c 2VV-u1 + V-u1Vc2+ — (ur g + c 2V-u1) - g V - u , - u r g-^2.,
Po Po

where we have expanded out the V terms and have used the identity 
(a-b)c = b(a-c) + (bxc)xa together with the fact that the gravity vector is parallel 
to the density gradient. The definition of the sound speed in terms of the pressure 
and density plus the equation of hydrostatic equilibrium allow us to write

Vc2 = 7g - c 2------. Thus the complete vector equation becomes (using the abbrevi-
Po

ation ’ = d/dt):

ii = V(u-g) + (y-l)gV -u  + c2 V( V-u). (4.16)

If the effects of gravity were negligible, equation (4.16) would reduce to the 
familiar equation describing the propagation of sound waves with velocity c, 
ii = c 2V( V-u).

8. Addition of a magnetic field

At this stage we digress to consider the effect on equation (4.16) of the intro
duction of a magnetic field. This addition permits the propagation of new modes for 
which the magnetic field provides the restoring force. The combined action of all 
three forces results in magneto-acoustic-gravity (MAG) waves which have received 
a great deal of attention from the solar physics community (Stein and Leibacher, 
1974). Because of the greatly increased complexity of the system, analysis has con
centrated on particular orientations of a magnetic field of constant magnitude and 
on specific angles of propagation. With a varying magnetic field, there is the addi
tional requirement that V-B0 must be identically zero everywhere. In order to avoid 
partial differential equations, the field must therefore vary in a direction perpendicu
lar to the plane in which it lies. Combining this with the restrictions already 
imposed by the conservation equations introduces further complication. An example 
of this inter-connection of equilibrium equations and the consequent limitations 
placed on a physical model will be found in Chapter 6. There, we will examine the 
effect of a spatially rotating magnetic field on wave propagation in the cold plasma 

model.
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Before looking at the combined influence of magnetic and gravitational fields
on a compressible magneto-fluid, we consider a plasma under the sole influence of
a magnetic field. The frequency domain of interest makes the MHD regime most
appropriate for use here. In a magnetic field the stresses are equivalent to a mag- 

• • 0
netic tension, B /|io, along the field lines and across, a hydrostatic pressure, 
B 2/2\Iq. Since the latter can always be superimposed on the fluid pressure, the mag
netic field lines behave effectively as elastic cords under a tension B 2/\Iq. In a per
fectly conducting plasma, the particles behave as if they were tied to the magnetic 
field lines so that the lines of force act like mass-loaded strings under tension. By 
analogy with the transverse vibrations of elastic strings, we would therefore expect 
that, when the plasma is displaced slightly from equilibrium, the magnetic field 
lines would perform transverse vibrations at the velocity:

tension
y2

B 2
density

termed the Alfven velocity, after Alfven (1942). This is indeed the velocity of pro
pagation of a transverse wave which propagates parallel to the magnetic field. This 
mode is known variously as the shear Alfven wave or the slow Alfven wave. For 
perpendicular propagation, the combined pressures cause a longitudinal wave, 
co2 = k 2( c 2+ c 2), the compressional ox fast Alfven wave, where we have used the 
notation cs for the sound speed to avoid confusion.

With the introduction of a magnetic field into the acoustic-gravity wave prob
lem, we require an additional evolution equation. This is the equation of conserva
tion of magnetic flux, which may be written in linearised form as:

= (B V )u-B V u, (3.13)
ot

and is derived from Ohm’s Law applied to a perfect conductor and the result then 
substituted into Faraday’s Law. This statement also contains the assumption that 
there is no equilibrium velocity and that the ambient magnetic field is constant. The 
right hand side of the momentum equation, (4.2), also gains a term of the form

—  (VxB)xB in the presence of a magnetic field. Combining the resulting set of
flo

equations produces:

ii = V(u-g) + (y-l)gV-u + (c 2+c2) V( V-u)

+  - ^ — ( ( B 0 - V ) 2u - B o( B o - V ) V - u - ( B o - V ) V ( B 0 -u ) ) .  (4.17)
PoPo



- 80 -

Even for an isothermal atmosphere and the constant magnetic field which we have 
assumed, equation (4.17) does not have constant coefficients. The density is strati
fied and this appears explicitly multiplying the final term and is implicit in the 
Alfven velocity. In order to proceed, some authors derive the local dispersion rela
tion (treating the Alfven speed as constant) and observe that this divides into two 
factors. One represents an Alfven wave whilst the other is a complicated fourth- 
order equation for kz depending on co, kx, the magnetic field strength and orienta
tion (McLellan and Winterberg, 1968). Special cases of magnetic field orientation 
and direction of propagation have been analyzed by different authors, including the 
case of vertical propagation (Bel and Mein, 1971).

The general case of an oblique magnetic field (lying in the x ,z -plane) is 
treated in a series of papers by Zhugzhda and Dzhalilov (1984). These authors find 
that the complete system for arbitrary propagation in an oblique field, derived from 
equation (4.17) comprises a linear sixth-order ode with variable coefficients. Solu
tion of the most general case with ky * 0 is found to be impossible in terms of 
known functions. However, when ky = 0, the Alfven wave equation decouples from 
the system and the solution of the remainder is expressible in terms of Meijer and 
hypergeometric functions (Bateman Manuscript Project Staff, 1953). Because the 
magnetic field introduces a second preferred direction, there is no longer the degree 
of freedom available which previously allowed this simplification (rotation of the 
;c,y-axes) without loss of generality. In the limit of a very weak or very strong 
field, the waves decompose into non-interacting modes whereas there is interaction 
and transformation of the waves in the region where c 2 ~ c 2. In the weak field 
region, the solutions tend to those for acoustic-gravity waves in an isothermal atmo
sphere with no field plus the slow magneto-acoustic mode in a weak field. For a 
strong field, the waves are those for slow magneto-acoustic modes in a strong field 
and depend on the relative signs of kx and B 0x.

In the second paper of the series, the solutions derived in the first are used to 
examine the propagation and transformation of the waves (mode-conversion, in the 
language of Chapter 2) as they pass from a weak field region (cfl2z « c / )  to a strong 
field  region (c 2 » c / ) .  This problem is crucial to the development of the theory of 
solar atmospheric heating. By matching the coefficients of the asymptotic solutions 
at the boundary between the weak and strong field regions, and applying suitable 
energy constraints at infinity, it is possible to obtain reflection and transmission 
coefficients for every possible incident wave mode. The results indicate that the 
transformation of MAG waves depends strongly on the field inclination. It is also 
found that there are neither resonance levels nor valve effects. This contrasts with 
the work of Adam (1977) who applied local dispersion relation techniques to MAG 
waves in an oblique field and showed that two resonance levels arose, pertaining to
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waves running along or against the field inclination. Because each of the two levels 
only transmits in one direction, this has been described as a valve effect. This is 
one of the few examples where a direct comparison may be made between the 
results of a local dispersion relation applied to an inhomogeneous system and those 
of the complete analysis. The conclusion is the same as that of other authors who 
have performed similar comparisons (Diver, 1986). The disagreement between the 
two results can only be explained in terms of an inadequacy on the part of the 
approximate treatment. The dispersion relation does not reproduce the correct 
results and, in this case has added spurious effects, namely additional reflection lev
els, which are not observed by the more rigorous analysis.

9. The differential equation in uz

Henceforth we will consider exclusively the case of inhomogeneity in the 
sound speed terms due entirely to temperature changing with height and will 
assume that the remaining parameters are constant while ignoring the effect of the 
magnetic field. We will therefore primarily be interested in the Earth’s atmosphere, 
but the analysis is equally applicable to the Sun’s atmosphere whenever the mag
netic field is relatively unimportant ((3 is large). Since the coefficients have no time 
or horizontal space dependence, we may continue to assume sinusoidal variation 
with respect to these variables and may Fourier transform equation (4.16) in t and 
x . We assume that the horizontal wavenumber, kx, is purely real throughout. As in 
the isothermal case, we take dldy = 0 without loss of generality. Taking com
ponents of the vector equation (4.16) then yields:

du
-co\  = - ik xguz - k 2c2ux +ic2kx- ^ ~ ,

-d )2Uy = 0,

0WZ ~ dux 2 ^
—  - ik x (y -  Dgux +ic kx - ^ + c - ^

Notice that the choice of orientation of the horizontal wavenumber has resulted in 
the wind velocity having no y -component. We eliminate

ikx (c 2duz/dz -g u z )

“* (-co 2+ c \ 2)

between the two remaining equations to obtain an equation in uz only.

c2 (y-l)g 2k 2S kx c2 'g
u,"S+«,\kxV ' - 3 L s ) + u , ^ +  2 2 -  - V ^ 0 (4'18)z Z x  £.2 c i  CO c  CO
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where denotes 3/9z and we have defined S = co2 — c 2k 2. We see immediately that 
there is a singularity in this equation for any values of z where co2 = c2k 2. In gen
eral, equation (4.18) has no solution in terms of standard functions, except in the 
cases where the temperature has a particularly simple height dependence (Pitteway 
and Hines, 1965).

Uchida (1965) also constructed the differential equation (4.18) while investi
gating the solar 5-minute oscillation. He attributed the observed oscillations to 
standing, compressional gravity waves trapped in a potential well caused by the 
temperature minimum in the low chromosphere. His numerical calculations showed 
that modes trapped by the assumed temperature structure would exhibit values of 
frequency and horizontal wavenumber close to those observed but current investiga
tions favour a model where the cavity lies below the photosphere, since such a 
model succeeds in explaining more recent observations.

To express equation (4.18) in normal form, we use the transformation demon
strated for the general second order ode in Chapter 2. Here we set

This is the potential function calculated by Uchida which he plots for a selection of 
possible temperature profiles. In quantum mechanics, the equivalent function is 
given by the difference between the energy of the wavefunction and the height of 
the potential barrier, the latter being a known function of position. Here, the depen
dence of /  on z is far more complicated since the behaviour of /  does not depend 
linearly on c 2(z) and consequently the behaviour of the potential is harder to 

predict.

The eigenvalues corresponding to equation (4.18) are (from Chapter 2):

This gives — + /  (co ,kx ;z) <|> = 0 where the potential is of the form: 
dz2

/  (co ,kx ;z) =
c 2 co2c 2 4c4 co2S 2c 2S * c 2 dz
s (r-VgX2 y V  t o , . ,  s dc2

co2S 2 c 2S

(4.19)
4S2 *  2S * 2  '
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Written in terms of the acoustic cutoff and gravity-wave resonance frequencies this 
becomes:

(oa k 2c2' k S c 2')2 2 k 2 v
= (4-2°)

03a S Xh
+4— - 4" f ^  " 44 ) *cz o r  c l

In the isothermal limit, the gradient terms vanish, the eigenvalues become ikz as 
demonstrated in Chapter 2 and satisfy

o o ©p ay2~ k 2c - 2 ikzcofl + k 2c ( - $ - - l )  + —  = 0, (4.21)
CO2 c

which can be rearranged into the form of the dispersion relation given by equation 
(4.11).

9.1.

Hines (1960) noted a difficulty with the formulation of the acoustic-gravity 
problem. Had we chosen a different dependent variable - the perturbed pressure, say 
- we would have obtained a different function for the potential leading to different 
reflection coefficients and implying that the physical variables of the wave are all 
reflected at different heights, assuming that reflection occurs at points where the 
potential vanishes (cf. Chapter 2). This ambiguity was addressed by Einaudi and 
Hines (1968) who examined the potential functions resulting from each choice of 
variable in turn. These authors determined that the WKBJ approximation broke 
down for all values of the wave parameters before any of the zeros of the potentials 
were encountered. They concluded that reflection was most likely to be indicated 
by the breakdown of the conditions for the WKBJ approximation and that, for 
[ /■ '/ /p e l  and | r / / l « l ,  potentials were indistinguishable from one another. 
The only exception to this was found to be the isothermal potential, f 0, which dif
fered markedly from the others whenever co2<^k2c 2. (Notice t h a t / 0 is the expres
sion which is obtained by the local dispersion relation technique of making the 
coefficients of the dispersion relation functions of position. Figures (4.5a) and 
(4.5b) contrast the behaviour of the potential functions f 0 and / ,  given by equation 
(4.19), in the vicinity of co = ckx while Figure (4.5c) shows that f 0 and /  vary 
similarly away from this neighbourhood.) Einaudi and Hines therefore concluded 
that the most appropriate potential to use in estimating the height at which reflec
tion takes place is, (Einaudi and Hines equation [59]):



where cô  and cô  are the isothermal and non-isothermal Brunt-Vaisala frequencies 
respectively and f  ̂  does not include higher order derivative terms which would 
arise from alternative variables and which are not significant if the WKBJ approxi
mation applies, f  m is a logical extension of the reflection condition for waves in an 
isothermal atmosphere while incorporating some of the derivative terms. The intui
tive prediction that reflection of atmospheric waves will occur near the non- 
isothermal Brunt-Vaisala frequency is supported, although this level can only be 
viewed as the height at which reflection must be at least suspected if not expected. 
It would appear that the different predicted reflection levels is a manifestation of 
the fact that reflection does not take place at a specific level but rather over a range 
of heights, being strongest near zeros of the potential where the parameter gradients 
are largest.

The theory of the solar 5-minute oscillation currently most favoured is that of 
acoustic modes trapped in the sub-photospheric convection zone. The upper reflect
ing surface is taken to be at the top of the convection zone while the lower level 
occurs where acoustic waves are reflected by the changing temperature as it 
increases towards the centre of the Sun. Essentially, reflection is^be anticipated 
whenever f M passes through zero. By plotting the variation of coa and <%, through 
the assumed temperature variation with height in the solar atmosphere, Ando and 
Osaki (1977) predicted cavities where standing waves might exist for atmospheric 
waves. Observations of the oscillations with periods around 5 minutes agree well 
with the predictions of this model. Similarly, there is qualified agreement with the 
observations of 3-minute oscillations as acoustic waves trapped in a chromospheric 
cavity near the temperature minimum, although observational difficulties make this 
comparison more difficult. Even more controversial is the explanation of longer 
period waves as standing gravity waves trapped deep in the solar interior.
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9 . 2 .

Having discussed the height at which reflection takes place, we will now con
sider the degree of reflection. The variety of potentials is apparently more serious in 
this context since the reflection coefficient derived using phase integral methods 
(Heading, 1962), is dictated by the specific potential function, irrespective of the 
validity of the WKBJ solutions in the reflection region. We would anticipate that in 
the calculation of the coefficient of reflection, the differences between the various 
potentials would be compensated for by changes in the limits of integration between 
the choices of dependent variable.

As we stated earlier, we are seeking a system where the asymptotic solutions 
are plane waves (the derivative terms are small and the potential is positive) pro
pagating through a central reflection region (large gradient terms and a negative 
potential) between two transition points. Unfortunately, none of the temperature 
profiles which are realistic descriptions, even of limited regions, of the solar or ter
restrial atmospheric temperature structure lead to such a variation in the potential. 
Even in the special case of a vertically propagating wave (kx = 0), the potential is 
not of this form for linear, parabolic or exponential temperature variation. In Figure
(4.6), the potential given by equation (4.19) with kx = 0 is plotted for the region of 
the solar temperature minimum where the temperature profile is approximately a 
quadratic function of height. It can be seen that this potential possesses most of the 
desired features but vanishes at infinity so that no waves can propagate there. We 
are thus unable to calculate analytically reflection coefficients and must look to 
numerical solutions of this problem.

10. Solution of the full differential equation

Before attempting to solve equation (4.18), we will combine the parameters in 
such a way as to produce a smaller, dimensionless set in order to write the differen
tial equation in a more efficient form. First we transform the independent variable 
to 5 = k xz and define a the dimensionless quantity, x = c 2k 2/a)2. The remaining 
dimensional parameters may then be incorporated into d i = g k x/0)2 and 

d 2 = ( y - l ) d f ,  giving:

x ( l - x ) u z + ( £ x - y d l( l - x ) ) u z + ( ( l - x )2 + d 2( l - x ) - d lXx )uz = 0  (4.23) 

where ' = d/ds.
We must now decide on the specific dependence of temperature, and hence 

sound speed, on height in order to complete the description of the problem. By 
choosing a linear variation such that x — cls (c 2 = co2a z/kx ), we are giving our
selves the best possible chance of deriving an analytic solution. This particular
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choice for T'(z) can only be an accurate description of the Earth’s atmosphere over 
a limited range of heights (cf.§2.3) - the greatest flaw being the resultant zero 
sound speed at ground level, which is completely unphysical. Despite this highly 
simplistic model, we will find that the problem remains intractable in this form. 
Henceforth, we will therefore be considering the problem of acoustic-gravity wave 
propagation in an atmosphere with no wind shear and linear temperature variation 
with height.

Substituting the linear behaviour of x into equation (4.23) results in:

x ( l - x ) u z +(c0x - c { ) u z +(c2x 2 - c 3x +c 4)uz = 0  (4.24)

where differentiation is now with respect to x and

1 , y d i i c i ,C0 = l + C i  C!  =  —  c 2 = —  C3 =  — + C 2 + C 4 C4 = C H ) —  + C 2
a  or Y t

Since a  and y  are known constants, equation (4.24) possesses two singularities 
corresponding to c 2 = 0 and co2 = k 2c2. As was already noted, the singularity aris
ing from the zero sound speed at the origin is completely unphysical and henceforth 
we will concentrate on the remaining "sonic line" singularity. To this end, we 
transform to a new coordinate system with the origin at the second singularity, 
t = x  - 1, giving (with respect to t)

t ( t+ \)iiz - ( l  + c 0 t)uz +(f  i + f 2 t - c 2 t2)uz = 0 (4.25)

where /  2 = c xty and f 2 = / 1 + (y - l) f  2.

Before we attempt to find a general analytic solution of equation (4.25), we 
will use the position and nature of its singular points to classify it (Murphy, 1960). 
For the general second order ode,

y"+p(x)y '+q(x )y  = 0

the singularities are regular if and only if p(x)  is a pole of order 1 or less and q(x)  
a pole of order 2 or less (Morse and Feshbach, 1953). For equation (4.25), which 

has singularities at t = 0 and t = -1 ,

1 + c0t / x / i + / V - c 2 t2

p(<) = - 7 (T + o  F i + t )

so that both poles are simple. The final critical point is the point at infinity. In 
order to examine the behaviour of equation (4.25) at this point, we transform to 
w = 1 It and examine the behaviour of the resulting equation at w — 0. The general 

ode in terms of w is:
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- j ^ + P { w ) - ^ -  + Q{ w) y  = 0, 
dwz aw

where P{w)  = 2/w -  l /w2p( l /w)  and Q(w) = l /w4q(l/w).  For w = 0, the former 
is also a simple pole but, as the latter is a pole of order greater than 2, the point at 
infinity must be an irregular singular point.

The solutions of equations with regular singular points at x  = 0,1 and an irregular 
point at infinity are complicated functions. In some cases the equation may be 
transformed into the equation of the prolate or oblate spheroidal wavefunction. 
Alternatively, the equation may have the appropriate symmetries to permit transfor
mation into the Mathieu equation:

+ (b -  h 2cos2x  )y = 0
dxL

where b and h are arbitrary constants. Mathieu’s equation has two irregular singu
lar points (at 0 and and it can be shown that two independent solutions can be 

generated which possess a periodic dependence on position. This result, Floquet’s 
theorem is discussed in more detail in Chapter 6 where the periodicity of the solu
tions is the keypoint.

Since there is no obvious transformation from equation (4.25) l eading to a 
well-known equation with a standard solution technique it seems unlikely that t h i s  

direction of investigation will be able to yield any useful results. However, by set 

ting this same problem in terms of the dependent variable Vuexp(—VfcJ(c2/Yg)dz), 
Pitteway and Hines (1967) were able to derive an equation with only one singular
ity and possessing analytic solutions. The resulting equation was a form of 
Whittaker’s confluent hypergeometric equation for which solutions are possible in 
terms of Laguerre functions or, in special cases, Bessel functions (Sneddon, 1956). 
These authors also derived solutions in terms of similar functions for an exponential 
temperature variation with height.

It seems that the limit of analytic treatment of this problem has been reached and 
for any more complicated temperature profile computer simulations would be 
required. In order to pursue an analytic approach, we will alter the direction of our 
investigation and so we will henceforth limit our region of interest to the neigh

bourhood of the co2 = k 2c2 singularity.



11. Local solution

For an isothermal atmosphere, we noted in §5 that co2 = k 2c 2 represents Lamb 
waves which are evanescent and propagate horizontally. (This may be confirmed by 
substituting co = /^c^into^ the definition of / 0 given by equation (4.22), showing 
that the isothermal^is always negative for this combination of parameters). Since 
uz = 0 for these waves, they can propagate in single modes along a solid, horizon
tal interface such as the surface of the Earth whereas other atmospheric waves 
would have to be coupled at such an interface as in a reflection process. It seems
likely that the infinity introduced into equation (4.18) by the equality of co2 and 

0 0 •

kx c might lead to a non-zero uz for such waves in a non-isothermal atmosphere so 
that single modes cannot satisfy the boundary conditions at the rigid Earth’s sur
face. Einaudi and Hines (1968) considered the region of parameter space surround
ing this singularity to merit full wave analysis since the WKBJ approach becomes 
invalid in this neighbourhood. They suggested that in this region complex coupling 
of acoustic and gravity waves would occur and that the potential f M given by equa
tion (4.22) would therefore be inadequate to provide any information about the 
wave characteristics here.

In this section we will therefore focus our attention on the neighbourhood of the 
singularity where the sound speed resonates with the product of the frequency and 
the horizontal wavenumber (t = 0 in the notation of equation (4.25)). Near t = 0, 
terms of the order of t 2 will be negligible and a good approximation to equation 
(4.25) is given by:

t uz - ( l  + c0 t )uz + ( f i + f 2 t ) uz = 0 . (4.26)

A sequence of transformations is required to reduce equation (4.26) into a 
standard form for solution. First, let uz = v exp (kt) where k satisfies 

k 2 - c 0 k + f  2 = 0, reducing (4.26) to

t v + (A1+ B 1f )v + A 2v = 0,

where A 1 = -1 , B i = 2k - c 0 and A 2 -  f  \~k.

Now let v(t) = y(z)  where z = giving

z y " + ( A 1- z ) y ' - ——y = 0. (4.27)
B \

In general, equation (4.27) is the confluent hypergeometric equation (Bateman 
Manuscript Project Staff, 1953). On evaluating A\,  A 2 and B\,  we find that we 
have a special case of this equation and need not resort to solution via confluent 
hypergeometric series. First, we solve for k in terms of our original coefficients.
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The equation is a quadratic with solutions given by 

2k = c0±Vc02 - 4 / 2

c c XA
~ 1 + c 1±((1+c1)2- 4 — (l + (y-l)— ))

y  y

= 2(1 + Cl( l - - ) )  or 2— .
Y Y

Hence

a 2 c ^ y - ^ + c  i~c i/y) ,42 / j - *

Bj  2 (l+ c1- e 1/y )- ( l+ c 1) “  °r B 1 ~ 2k - c 0 ~ 2c1/y - ( l+ c 1) = °' 

Thus, we must solve either

z y " - ( l + z ) y ' + y  = 0  or z y " - ( l  + z ) y ' = 0.

We solve the former (but the solutions of the latter reproduce these) to find:

y = Aexp(z)+5( l+z) ,

where A , B are arbitrary constants. Transforming back to the original variables 
yields:

c i c i c iuz = Aexp(— t ) + B ( l  + (2------C i ~ l ) t  )exp((l+Ci ) t ).
y  y  y

These solutions of equation (4.26) are well-behaved in the neighbourhood of 
t =0 and do not become singular. Setting the problem in terms of one of the alter
native variable combinations mentioned earlier (pg/2V-u, say) is therefore highly 
recommended since the complication of this additional singularity may thus be 
avoided.

12. Summary

We have seen that acoustic-gravity waves propagating in inhomogeneous 
atmospheres pose many intriguing problems. Unfortunately, all attempts at analytic 
solution are thwarted at every turn by the unyielding nature of the equations. The 
only analytic solutions possible for the case of an atmosphere with a non-zero tem
perature gradient occur for either linear or exponential temperature profiles, neither 
of which gives a realistic description of either the solar or terrestrial atmospheres 
over more than a short range of heights. (It was also shown that the possibility of 
deriving these solutions is sensitive to the original choice of field variable.) We 
were also unable to calculate the degree of reflection analytically for similar
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reasons.

Without an analytic formula for the reflection coefficient, we must appeal to a 
diagrammatic method in order to determine if significant reflection is to be antici
pated. In Chapter 2, a point where the eigenvalues undergo a close approach 
without crossing was interpreted as being likely to indicate mode conversion (Diver, 
Ph.D. thesis, 1986). We can see from Figure (4.7) that the eigenvalues do not 
behave in this way and so we postulate that mode conversion will be small.

To increase the physical realism of the model, we should also include the 
effects of wind shear - mathematically, a nonzero u.qx - in the equations of motion 
but such an attempt simply renders the differential equation describing the system 
even more unwieldy. Pitteway and Hines (1967) are amongst several authors who 
have attempted this step but, in order to make any headway, they found that it was 
necessary to ignore the effect of the background wind and it was only under the 
assumption of vanishing u0 that they were able to derive solutions for the special 
cases of temperature variation described above.

We will now progress to a problem in plasma physics where there are two 
truly distinct modes of oscillation. This scenario, involving two different types of 
wave, offers far greater scope for future investigations of linear mode conversion 
than atmospheric waves. As an introduction, we will consider the propagation of 
waves in a homogeneous cold plasma in the following chapter, much as we con
sidered waves in an isothermal atmosphere initially in this chapter.
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Figure (4.1) Typical temperature variation with height in the Earth’s atmosphere.
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Figure (4.2) Temperature variation with height in the Sun’s photosphere and chro
mosphere showing the temperature minimum (dashed line).
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Figure (4.3) Dispersion relation curves, co (s) versus ^ (m -1) for a range of values 
of kz (m-1). Clockwise from top left:- kz = 0 , kz = 10"4, kz = 2.5x10-4, 

kz = 4xl0-4. (c -  300ms-1.)
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Figure (4.4a) A set of dispersion relation curves, co versus kz for different kx. Note 
that for vertical propagation (kx = 0) only acoustic waves may propagate and the 
gravity wave curve will vanish. Top:- kx =5x10 5. Bottom:- kx = 10 4. 

(c = 300ms_1.)
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Figure (4.4b) Plot of co versus kz for kx Top, kx — 2X10-4. Bottom, kx — 4X10-4.
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Figure (4.5a) Plot of the isothermal potential function (cf. equation (4.22)) for a 
linear temperature profile, T -  A +Bz where A = 270 °K and B =0.01 °K m-1 in 
the neighbourhood of co = ckx for co = 2xl0-2s-1 and kx = 5xl0_5m_1.
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Figure (4.5b) Plot of the potential function given by equation (4.19) centred round 
the singularity where co -  ckx . (The temperature profile, frequency and horizontal 
wavenumber are the same as above.) The singularity occurs at the height z = 7495 

m.
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Figure(4.5c) Comparison of the height variation of the isothermal potential and the 
potential given by equation (4.19) for the temperature profile and parameters of 
Figures (4.5a and b) It can be seen that at heights away from co = ckx the two 
potentials are very similar.

zxlO1

Figure (4.6) Variation of the potential function given by equation (4.19) with height 
for a parabolic temperature profile representing the neighbourhood of the Sun s 
temperature minimum. T =A+Bz+Cz2 where A =4.3x10 3 °K, B = —1.4x10 3 °K 
m_1, C = 1.8xl0-9 °K m-2. co= 1.5x10-2s-1, kx = 0. (Note that for the Sun,

g = 274ms-2 and M - 1.3 kg/kmol.)
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Figure (4.7) Eigenvalues, Xia  versus z for the same parameters as Figure (4.5). 
Top:- Near the singularity co = ckx one eigenvalue becomes singular while the other 
remains finite. Bottom:- Beyond the singularity, when the imaginary parts of the 
eigenvalues become non-zero ( Im(X.1) = -Im(?i2) ), the real parts become equal.
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Chapter 5 - Review of wave propagation in a cold plasma with a 
uniform magnetic field

1. Introduction

The culmination of our discussions of waves in inhomogeneous media will 
come in the following chapter when we derive the complete, analytic solution for 
waves in a cold plasma where the magnetic field is no longer uniform but rotates in 
space about an axis. In order to gain insight into the wave motions under such con
ditions, we must first consider the much more straightforward case of waves pro
pagating in a cold plasma where the magnetic field is invariant.

The cold plasma model was initially discussed in Chapter 3 where its govern
ing equations were derived from Kinetic Theory. To recap, the basic assumption of 
this model is that the random motions of the plasma particles are negligible so that 
the elements of the pressure and heat tensors, which result from these random ther
mal motions, may be disregarded. The zero temperature assumption means that the 
velocity distribution function for a cold plasma species is therefore a Dirac delta 
function centred on the macroscopic flow velocity: f s (r,\,t) = 5 [ v - U y (r,r)]. 

Although this is a highly idealised model, it has proved popular in the study of 
plasma waves for several reasons. First, all possible wave modes for this model are 
derivable. Because a magnetised plasma possesses a bewildering number of oscilla
tory modes, it is a great advantage to consider, as a first approximation, a simpli
fied system in which all the modes may be calculated and the basic physics under
stood. The cold plasma model also provides a surprisingly comprehensive view of 
plasma waves and even an accurate description of the common small-amplitude per
turbations of hot plasmas. In addition, this model is aesthetically pleasing since it is 
self-consistent, an attribute which will prove crucial to the arguments of Chapter 6. 
Many plasma waves which have been observed experimentally can be explained in 
terms of either of the two basic cold plasma modes, which is a strong testimony on 
its behalf. Recent developments in the field of solid state plasmas, which are of 
fundamental importance in the production of computer chips, and which are prob
ably the plasmas which most closely resemble the conditions of a cold plasma, 
make the study of such a model particularly relevant to this branch of technological 

physics.

Further simplifying assumptions which we will employ to make the problem
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of wave propagation in a cold plasma more tractable are that there is no dissipation, 
that terms quadratic in the perturbed quantities are negligible and that the plasma is 
infinite in extent. We are therefore excluded from investigating collisional effects, 
non-linear phenomena such as shocks, and boundary effects. In general, collisions 
result in the wave motions being damped and so neglecting collisional processes 
(i.e. dropping the term As from the momentum equation, (3.5)) may be regarded as 
omitting damping from our description of the plasma. The plane wave solutions 
used in Chapter 4 will again be used but this is not restrictive since all physically 
reasonable wave motions may be reconstructed from a superposition of such plane 
waves. A final assumption which is often made is to neglect the ion motion com
pared to that of the electrons because their greater mass means they form a fixed 
background at higher frequencies. This is not an essential constraint and retaining 
the complete, two-species description simply involves summation signs. Whenever 
this last assumption is invoked, it will be stated explicitly.

There are two principle methods of solving the cold plasma equations. The 
first is a straightforward simultaneous solution of Maxwell’s equations and the 
equations for the particle motions, while the second, which we favour, involves the 
construction of intermediate relations between the field variables, especially 
between the current and electric field. In the latter approach, the plasma is con
sidered to be analogous to a dielectric material possessing internal currents. The 
current is related to the electric field by J  = gE, where a  is the conductivity tensor, 
and hence the electric displacement is similarly related to the electric field via the 
dielectric tensor. The common aim of both methods is the construction of a disper
sion relation which is the key to any homogeneous plasma mode since it contains 
all of the information about the propagation of the mode except its phase.

The properties of plasma waves are retained over a wide range of parameters 
and a classification scheme which exploits this is the CMA diagram, named after its 
authors P.C. Clemmow, R.F. Mullaly and W.P. Allis. The axes of the CMA 
diagram reflect the plasma parameters - electron density, magnetic field strength, 
percentage composition by ion species and wave frequency. For the two-component 
plasma under discussion, two axes suffice to incorporate all this information and the 
CMA diagram is a two-dimensional graph with the boundaries between regions of 
different wave characteristics being marked by simple curves. As shown in Figure
(5.1), the abscissa represents (o)£ + co$ )/co2 where co is the wave frequency, so that 
the density increases to the right or, for fixed density, the frequency decreases. The 
ordinate represents and the ambient magnetic field, Bq increases upwards
or, for fixed B q , the frequency decreases. Thus, keeping the plasma parameters 
fixed, the frequency decreases radially away from the origin. The characteristic 
shared by all the waves in a particular region of the CMA diagram is the
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topological form of the wave-normal surface, the locus of the tip of the vector hav
ing the direction of wave propagation and the magnitude the wave velocity divided 
by the speed of light - cokIck^. In terms of the refractive index, n = ck/co, the wave 
normal surface is the locus of the tip of its reciprocal vector, Thus the
CMA diagram is a polar plot of the normalised phase velocity, v ^  lc , drawn in 
parameter space. Once we have examined the derivation of the dispersion relation 
from the dielectric description of the cold plasma, we will discover the equations 
for the lines bounding the regions of the CMA diagram and will discuss the assign
ment of particular wave modes to their appropriate sections.

2. Constructing the dielectric tensor

The equations of the cold plasma model are the "two-fluid" equations under 
the approximation of a cold plasma plus Maxwell’s equations (cf. Chapter 3). To 
avoid copious repetition, we restate here only the linearised forms of the equations 
which we will currently require in order to derive a single differential-equation 
description of this model. These are, respectively, the equation of motion, 
Maxwell’s two curl equations and the equation relating current to velocity:

dvs
™s —  = qs {E + v 5 x B 0 ) , (5.1)

VxE = ~ 4 r -  > (5-2)dt

V x B = H o ( J + E o ^ - ) .  (5-3)

J  = vs , (5.4)
S

where the sum is over all particle species, s, and where we have used the conven
tion that vector quantities which are not subscripted zero are first order. The plasma 
is neutral overall and, assuming for simplicity that the ions are singly charged, we 
must have ne = in the equilibrium state, which we have denoted by Uq. Hen
ceforth, we will also assume that the plasma ions are simply hydrogen, so that the 
charges on the two species present are equal and opposite - extending this to dif
ferent ions would only require multiplication of the ion charge by a factor of the 
atomic number. The notation qs will be used throughout to represent the

charge on a species, where e is the electronic charge and e5 =

In the manipulations which follow, we adopt the approach of other authors, for 
example Stix (1962) and Chen (1984). Considering the plasma to be a dielectric 

material, we may restyle equation (5.3) in the form:

1-1  for electrons 
+1 for ions
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VxB = |i0b,

where D is the electric displacement, which includes both the vacuum displacement 
and the plasma current, and we use ‘=9fdt. We aim to write D = e-E, where e is the 
dielectric tensor replacing the dielectric constant of a simple dielectric material. By 
expressing the relationship between the plasma current and the electric field in 
terms of a conductivity tensor, J  = a-E, we are assuming that the current is directly 
proportional to the electric field but not necessarily aligned along it. The anisotropy 
in the dielectric tensor arises from the presence of the externally applied magnetic 
field, B qz. Assuming harmonic plane wave solutions, we Fourier transform in the 
usual manner and, substituting from equation (5.3), we find:

|i0 (J -  i coe0E) = -  i coDq0, 

which defines the electric displacement, in terms of the conductivity tensor, to be:

D = &JE + — E = £n(I + —— )E  = eoe-E.
CO ^ 0 ®

To calculate a  from the relation between the current and the electric field, we 
see from equation (5.4) that we must first derive an expression for the velocity 
components in terms of the electric field. This may be done by rearranging equation
(5.1) to get v(E). The components of the velocity may then be written:

IQs ( "F i I(tiEy )

ms co (1 — Q.2/ co2)

IQs ( Ey i 0 ‘s ) y — £
VjJ _  m , c o ( l - £ 2 2/co2 ) V“

Z  >

where we have used the definitions of the cyclotron and plasma frequencies of a 
species, Qs = \qsB 0 \lms and (£>ps2 = nsqs2/£oms , respectively. These quantities 
will thus be prominent in the definitions of the elements of the dielectric tensor, 
which we are about to derive. In order to eliminate all first-order variables from the 
set of equations (5.1) to (5.4) in favour of the perturbed electric field, we substitute 
the above expressions for the velocity components into the current density equation, 
(5.4). This last relation is best expressed via the conductivity tensor and, from this, 
we can construct the dielectric tensor using the definition above:

e =
S -iD  0 
iD S 0 
O O P



where
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co 2P = i -  £ _ e .
s to

R = i -  y <aps a  l  = i -  y Wps 01
,  to2 co+es a s f  a 2 a>~es Q s '

2 2
S  = ‘/ z ( R + L  ) = 1 - X -  y  .  , £> = >/2( R - L  ) = 2 -  “ ps£s s

co2- a 2 f  c o (c o2- a 2 )

3. The wave equation, the refractive index and the dispersion relation

The desired wave equation describing electromagnetic wave propagation may 
now be found by taking the "curl" of the equation (5.2):

Vx (Vx E) = -  VxB 

= -Poi>

= -MoEoe-E.

We may thus write the wave equation in its final form after Fourier transforming in 
time as:

côVxVxE -  —r  6-E = 0. (5.5)
c l

The coefficients of equation (5.5) are constant throughout space and so we 
Fourier transform in all space dimensions. Letting 0 be the angle which the 
wavevector, k, makes with the magnetic field, and choosing the coordinate axes so 
that k has no component in the y -direction, the wave equation takes the form:

nx(nxE) + e-E = 0, 

which is best expressed in matrix notation as K E = 0 where

K =

S-^cosG 2 -iD «2sin0cos0 
iD S - n 2 0

«2sin0cos0 0 P - n 2 sin20

The condition for obtaining a non-trivial solution of such a set of three simul
taneous, homogeneous equations is that the determinant of the square matrix of 
coefficients, IKI, must vanish. This condition generates the dispersion relation 
relating the frequency and wavenumber which we choose to express in terms of the
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refractive index vector, n. This dispersion relation has been obtained by Astrom 
(1950), Sitenko and Stepanov (1956) and Allis (1959):

An4 -B n2+C = 0, (5.6)

where A = S sin20 + P cos20 ,

B =i?Lsin20 + /:>,S,(l-i-cos20),

C =PRL.

(Note that we have made use of the identity S 2-D 2=RL,  cf. §2.) Since equation
(5.6) is a quadratic in n2, it has two solutions which are in general labelled the. fast 
and slow modes but for particular orientations and in particular frequency ranges, 
they may have specific local names. For a given frequency, there are only two 
types of wave which can propagate with their own distinct properties, correspond
ing to each solution of equation (5.6) and the two values of n which give the same 
n 2 simply represent forward and backward propagation of the same wave.

o
An alternative form of the dispersion relation, derived by Astrom and Allis, may be 
obtained from equation (5.6) and is particularly useful when examining the depen
dence of propagation on the angle 0. We use the basic trigonometric identity, 
sin20 + cos20 = 1, and the definitions of A , B and C to rewrite equation (5.6) as:

n 4(.S sin20 + P cos20) -  n 2(RL sin20 + IPS cos20 + PS sin20)

+ PRL (sin20 + cos20) = 0,

which may be rearranged to give:

sin20 (Sn4-  (PS + RL )n 2+PRL ) = - P  cos20 (n4 -  2Sn 2+ RL) .
o

Finally, we use the definition of S plus a little more manipulation to obtain Astrom 
and Allis’s form of the dispersion relation:

tan2Q= - P i n W - L l  (57)
(Sn -RL)(n -P )

Before progressing to an analysis of equation (5.7) for specific angles, 0, we 
introduce the standard nomenclature used to classify waves in plasmas. The words 
parallel and perpendicular refer to the angle between the direction of propagation 
and the ambient magnetic field whereas transverse and longitudinal describe the 
angle between the wavevector and the oscillating electric field. Also, if the per
turbed part of the magnetic field is zero, the wave is dubbed electrostatic, otherwise 
it is electromagnetic. Thus a wave which is longitudinal satisfies kxE = 0 and so,
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by Faraday s Law, equation (5.2), —z’coBj = 0 so that the wave is also electrostatic. 
Conversely, a transverse wave will always be electromagnetic.

4. Parallel and perpendicular propagation

In this section, we investigate the dispersion relations for the special cases of 
parallel and perpendicular propagation which may be quickly obtained from equa
tion (5.7). Propagation at any other angle involves much more complicated formu
lae because, as we can see from the matrix K, the Ex and Ey components only 
decouple from Ez at the principal angles 0 = 0° and 0 = 90°. At these angles, the 
solutions take particularly simple forms and so a thorough examination of the 
nature of the modes in these special cases, which also provide limiting cases of the 
general propagation properties, is warranted.

4.1. Parallel propagation

By the definitions of parallel and perpendicular given above, the propagation is 
parallel if the angle between the wave vector and the background magnetic field is 
zero. On inserting 0 = 0°, into equation (5.7), we find that solutions are:

p  = 0 n 2 = R n 2 = L.

The first of these solutions, P -  0, represents the longitudinal electron plasma 
oscillations introduced in Chapter 1 plus a small correction factor due to the pres
ence of the ions. This is easily demonstrated by noting that, for me/mi 1, P = 0  
is equivalent to co2 = (£>2e. Thus, P = 0 represents plasma oscillations which are 
unaffected by the magnetic field. In the cold plasma approximation, these oscilla
tions do not propagate and so do not constitute one of the modes of the plasma. If 
the thermal velocity were not neglected, however, the dispersion relation for these 
oscillations would become co2 = cope + k 2V 2 (where Ve is the electron thermal velo
city). This is a travelling wave since its group velocity is not zero and represents 
one of the additional modes of oscillation which is possible for a "warm" plasma. 
Physically, the electron’s thermal velocity causes regions neighbouring the oscilla
tion to be affected by it and so information is earned out of the oscillating layer. 
(In practice, fringing effects of the electric field in any finite plasma would also 
couple the oscillation into other plasma regions and the assumption that Langmuir 
oscillations do not propagate even in a cold plasma is a highly idealised one.)

The other two modes for propagation parallel to the background magnetic field 
in a cold plasma, n 2 = R and n2 — L,  are dependent on the wavenumber and are 
therefore the two true oscillatory modes. The solutions R and L are differentiated 

by their polarisations.
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The polarisation of an electromagnetic wave is obtained from the polarisation 
of the electric field vector, since the magnetic induction vector may always be cal
culated from this using equation (5.2). The polarisation of the electric field vector is 
calculated from E = (Ejei + Zs^e^e1̂ 1"-0^ ,  where E12 are two linearly indepen
dent, linearly polarised waves aligned along the unit vectors ej 2 with complex 
amplitudes E 12. A complex amplitude may be considered to be the product of a 
real amplitude and a phase factor and, since it is the phase difference between the 
two waves which is important, we rewrite the full wave as:

E = (E10e1+ £ 20e i8e2)ei<k' - “'>,

where Ej 0 (/=1,2) represents the real wave amplitude and 8 the phase difference. 
For the particular case of a phase difference of 90°, 8 = ± tc/2, and we have

E = (E10e1 + /E20£2)ei<k'r - “ >, (5.8)

where, for convenience, we assume that the polarisation vectors are aligned along 
the x  and y axes and that the wave is propagating in the z direction which allows 
us to write:

Ex(z , t ) = ExOcos(kz -  cot) , Ey (z,t) = +Ey0sin(/:z -  cot).

These expressions enable us to demonstrate that such a wave is in general ellipti- 
cally polarised:

Two special cases which are of interest are linear polarisation, when either 
Ex0 or Ey o is zero, and circular polarisation which occurs whenever Ex0 = Ey0. If, 
looking along the positive z-axis, the wave is observed to be rotating clockwise, we 
have right polarisation which corresponds to the upper sign in equation (5.8). An 
outgoing wavefront rotating in the opposite sense is left polarised. Thus the com
ponents of circularly polarised waves have the same magnitude but are 7t/2 out of 
phase and will be indicated by complex amplitudes which satisfy iEx!Ey = ±1.

The expression for the polarisation of an oblique wave in a cold plasma may be 

found from the second row of the matrix K:

so that the polarisation of the R mode is given by:



and R is therefore right circularly polarised (RCP). For the L mode,

iEx L - S
Ey D

which makes it left circularly polarised (.LCP).

The plane of polarisation of an electromagnetic wave travelling along the line 
of a magnetic field will be rotated as it progresses, a phenomenon known as Fara
day rotation. This effect is comparatively small and is only useful as a diagnostic 
tool under such extreme circumstances as the relatively large magnetic fields or 
very long path lengths encountered in interstellar space.

4.2. Perpendicular propagation

We will study perpendicular propagation in greater depth than the parallel 
case, since we will ultimately wish to describe perpendicular propagation in an 
inhomogeneous plasma and therefore desire a comprehensive and detailed homo
geneous model with which to compare it. For 0 = 90°, the solutions of equation 
(5.7) are:

Thus both of these modes are in general elliptically polarised.

In addition to considering the polarisation of the perpendicular modes, we will 
also study the variation of the refractive index with frequency which will again be 
relevant to the latter parts of Chapter 6, but first we introduce a new notation to 

facilitate further analysis.

5. The Appleton-Hartree equation

It is suitable to define the required new notation in a short digression on the 
Appleton-Hartree equation. This well-known equation (see for example Stix 
(1962)), which was first derived by Hartree (1931) and Appleton (1932), describes 
oscillations at sufficiently high frequencies that the motion of the ions may be 
neglected and so deals exclusively with electron modes in the plasma. It has been

2 RL a  2 dn  ----  and n -  P.
S

The polarisations of the RL/S and P modes are, respectively:

iEx R L /S - S D_ 
S ’



used with considerable success to study radio wave propagation in the ionosphere 
under the influence of the Earth’s magnetic field (Budden (1961)).

Prior to deriving the Appleton-Hartree equation, we introduce some simplify
ing notation involving the dimensionless variables,

to ^X  = —  and Y =
®pe

where the subscript e indicate that these are the plasma and cyclotron frequencies 
for electrons. These are simply related to the ion frequencies via the ratio of the 
electron to ion masses, r = me/mi. In terms of these new variables, the basic ele
ments of the dielectric tensor are:

CD2 co2- 1 +r
p  = i_ (_ £ L  + _ £ L )= l - L Z L ,

co2 co2 X 2

R  =  1 ( ®Pe 03 ■ ^  03 ^ _  1 ( 1 ■ r  \
0 2 co2 0)+Qf X(X~Y) X(X+rY)

L  = l — ( ^ p e  —---- \-^El---- ®— ) = i _ (-----   1--------------  -)
0)2 co+Qe co2 ©-Q/ kX(X+Y) X { X - r Y ) h

so that, for completeness, we may write S and D as:

co2 co 2- i r
S = Vi (R+ L)  = l - (  ~  0~+ 0-— , ) = ! - ( - o — -  + — ■•--— ),

V - Q 2 co £22 X 2- Y 2 X 2- r  Y

and

COliQ-i r 2Y^pe e p i1 » ' — —
D = V2(R -L )  = -  -  X (X2- r 2Y2) ~ X (X 2- Y 2) '

The Appleton-Hartree equation is simply the dispersion relation, equation 
(5.6), in a different form and it may be constructed in the manner demonstrated 
below. If we add An2 to both sides of equation (5.6), we get:

(An2+(A -B ) )n 2 = An2 - C ,

which may be rearranged to give an expression for the square of the refractive 

index:



Since equation (5.6) is a quadratic in n2 it must have the usual solutions:

2 B ±V# 2-4ACn  ----------------
24

which we now substitute into equation (5.9), yielding (after a little algebra):

-T2 _ 1 2(A-B+C)
2A-B±'Ib 2-AAC '

Finally, we replace A , B and C by the equivalent expressions for S , P , D , R and 
L  in terms of the dimensionless variables X  and Y, and define p. = cos0, v = sin0 
to obtain the Appleton-Hartree formulation of the cold plasma dispersion relation:

n 2 = 1------------------------------- 2(X2-1 )-----------------------------  ̂ ^  ^
2X2(X2 - l ) - v 2X 2Y2± (v 4X 4YA+4X2Y \ X 2 - l ) 2\i2 )V2

where we have used the form of the dielectric tensor components which is appropri
ate for the case of frequencies sufficiently high to assume that the ions are station
ary (r =0).

There are certain similarities between the dispersion relation for the oscilla
tions of the neutral atmosphere described by equation (4.12) and those of a cold 
plasma as described by equation (5.10). For the acoustic gravity waves, we define 
the analogous dimensionless variables X = co/cofl and Y = cog/coa so that we may 
rewrite equation (4.12) in an equivalent form to equation (5.10):

2 _ X 2- l  
n ~ X2- v2Y2

where k represents the magnitude of the total wavevector and v = sin(J) with <|) the 
angle which this vector makes with the vertical. In the special cases of vertical pro
pagation or for co»co^, the above equation describes a purely acoustic mode, 
independent of the gravitational field (when X >1):

Similarly, for perpendicular propagation in a plasma or for co ̂ >Qe, equation (5.10) 
reduces to the equation for the ordinary mode independent of the magnetic field:
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6. The ordinary and extraordinary modes of perpendicular propagation

6.1. The ordinary mode

The mode described by n 2 = P = 1—co^/co2 is unaffected by the magnetic 
field and is therefore known as the ordinary mode. (This terminology has been 
adopted and modified from the field of crystal optics.) The dispersion relation for 
the ordinary mode is identical to that for transverse waves in an isotropic plasma. 
In terms of the new variables X and Y, we have:

For small values of X , P is therefore very large and negative while as X —>°o,
1.

The ordinary mode undergoes a cutoff at X = Vl + r , or co2 = co^ (1 + r), 
which is marginally greater than the electron plasma frequency (since the ratio of 
electron to ion masses is of the order of 5xl0-4). The variation of P as a function 
of frequency is shown schematically in Figure (5.2). Below the cutoff frequency, 
the square of the refractive index for this mode is always negative so that the 
corresponding wavenumber is pure imaginary and the wave is not a propagating 
solution. Regions in which a particular mode is allowed (i.e. where n elR) are 
called pass bands whereas regions where the mode is forbidden are its stop bands. 
The ordinary mode therefore has a stop band until just below the electron cyclotron 
frequency and a pass band beyond.

6.2. The extraordinary mode

The second perpendicular mode with n2 =RL/S  is called the extraordinary 
mode. Although the R and L modes for parallel propagation have resonances at the 
electron cyclotron frequency, X = Y ,  and the ion cyclotron frequency, X - r Y , 
respectively, the extraordinary mode is not resonant at either of these frequencies 
since S , being constmcted from R and L, contains identical terms which cancel 
their effect. The extraordinary mode is then given by:

o _ (X 2+ X Y (r - l ) - r Y 2 - l - r ) ( X 2 - X Y ( r - l ) - r Y 2 - l - r  )
H ~ {X2- Y 2 )(X2- r 2Y2 ) -  (1+r ){X2-r Y 2)

A typical plot of RL/S against frequency is illustrated in Figure (5.3), showing 
the cutoff and resonance frequencies calculated below. As X —>0, the extraordinary 
mode tends to the limit given by l + (G)̂ g+ co^)/£2g£2;, and at very high frequen
cies, R L /S -^ l .  The cutoffs can easily be seen to be at the frequencies which 

satisfy:
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X 2± X Y { r - \ ) - r Y 2- \ - r  = 0.

These frequencies are, in fact, the same as the cutoffs for the right and left circu
larly polarised for waves propagating parallel to the magnetic field - a fact which 
may easily be deduced by rearranging the expressions R , L = 0 , using the defini
tions of the dielectric tensor elements given in §2. Because of their association with 
the RCP and LCP modes, these frequencies are denoted by CO/? for the upper sign 
and (£>L for the lower.

Since the factor r is three to four orders of magnitude smaller than 1, we will 
henceforth ignore all terms of order r, and higher, compared to unity. (Notice that 
this is not the same as assuming that the ions are stationary - we are still including 
ion effects.) Under this approximation, the equation giving the positions of the 
zeros of RL fS reduces to:

X 2 + X Y -rY 2- 1 =0.

This quadratic is equivalent, using the initial dimensional variables, to: 

co2 +coQe -  r Q.2-  co2e = 0  or co2 +co£2e -  Qe £2, -  co2e = 0,

where we have used the fact that the cyclotron and plasma frequencies of each 
species are related simply by the mass ratio i.e. r Qe = £2,.

Similarly, the resonances occur at the zeros of the denominator of equation
(5.11) which, taking r c l ,  are the frequencies satisfying:

X 4 - X 2(l+Y2) + rY2(l + rY2) = 0.

The roots of this quadratic are:

X 2 =  '/2(1 + Y 2)±  '/2(1 +Y2) ( 1 -  4rY(^ y 2 f —  ) '

2 ^
so that the extraordinary mode resonances occur at X  ~ 1 + Y and

rY2( l+ rY 2)
1 + Y 2

The first of these resonant frequencies is called the upper hybrid frequency and is 
usually written co2* = co^+ Q ^. This frequency is slightly greater then the electron

1 Q  O
plasma frequency. For n = 10 m :

Ll2 e 2B 2 eomg _ r 2
2 ~ ~ 2 2 ’co2, mel ne
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so that, unless the magnetic field is exceptionally strong, the upper hybrid reso
nance will be very close to the plasma frequency. The other resonance, the lower 
hybrid frequency, may be expressed in terms of the plasma and gyro-frequencies as:

2 __ QeQt (co2e + ^ Q t.)

co2e +Q 2

but this frequency is so low as to be often neglected.

An alternative form of equation (5.11) which emphasises the fact that the refractive 
index passes through two cutoffs and two resonances, allowing for a greater number 
of pass and stop bands than was present in the case of the ordinary mode, is:

(co2—colKcfl2- ^ 2)
n — 5---5------ 5----- 5“  • (5-12)

(CO — Wjfr )  ( (0  — 0 ) ^  )

If an even number out of the four terms on the right hand side of equation (5.12) is 
positive then n 2 will be positive and the extraordinary mode will propagate. Alter
natively, stop bands will occur when an odd number of the conditions in equation
(5.12) is positive. The relative positions of the cutoffs and resonances for this mode 
alter depending on the applied magnetic field strength.

7. Two special cold plasma waves

The dispersion relation, equation (5.6), is often simplified by the use of 
appropriate approximations in order to examine the propagation characteristics of 
special classes of waves. The result is a classification and nomenclature which is a 
subdivision of the fast and slow modes but which are only valid in certain limited 
regions of the CMA diagram. Many of these wave phenomena were observed 
experimentally before a fully comprehensive theoretical explanation of plasma 
waves was developed. We will only consider two examples for illustration - Alfven 
waves and Whistlers, the former because of the overlap which they provide with the 
predominant wave motions of MHD, and the latter because of the similarity to the 
gravity waves of Chapter 4 which they exhibit.

7.1. Alfven waves

These waves are a low frequency phenomenon, occurring predominantly below 
the ion cyclotron frequency, and are particularly important in MHD where their 
characteristic velocity plays a central role in all three wave modes - the shear 
Alfven and fast and slow magnetosonic waves. We derive the dispersion relation 
for Alfven waves from equation (5.6) under the assumption that co Applying
this assumption to the dielectric tensor elements enables us to approximate their
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form and hence establish the equation for the refractive index which describes the 
wave motion. In terms of the dimensionless variables X  = co/co  ̂ and Y = Qe /cope 
introduced earlier, we have:

R ,L  = l - ( -----!-----+ ------ r------ )
X(X+Y) X( X±rY ) h

which may be expanded for X <zrY to give:

f x

= 1 + ^ ,
y Y

1 Tso that S ~R ~L  and D =0. In this notation, P was written P = 1------—. Taking
X 2

the ratio of the second terms in the expressions for P and R gives:

1 + r rY2 _ rY2 _ _
X 2 1 + r X 1 r2co2 ^

with the result that I P I > I / M, I L I , I S I  and so, except in the neighbourhood of 
perpendicular propagation (in the notation of equation (5.6)):

a ~ 1 + r 2aA = ------—cosz0,
x 2

B = —ii^ ( l+ c o s 20)(l + ̂ i f ) ,  
X 2 rY2

2

X 2 ry 2

By equation (5.6), the refractive indices must therefore be given by:

n . (1 +r)  , 2  ~  1 /1 ■ l  +  r  \
n 2 ~ 1 + - — t t  and n ~ ---- 9 T (1 + “ T T ^rY cos 0 rY2

Noticing that (1 + r)/rY2 = (co2e + co2)/flleQt-, and using the overall charge 
neutrality of the plasma, ne = we may rewrite the equations for the refractive 

indices:

rt2 = l  + —£— and n2 = — W ( 1 + — (5-13) 
EqS2 cos 0 ZqB

where p = +ne?ne is the mass density of the plasma defined in Chapter 3. The 

important feature of these waves is their common phase velocity.
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ceX2B

V HoPVph (1 + p/eoB2)1'4 p1/2(l + £oS2/p)1/2

which is called the Alfven velocity. This may be recognised as the velocity of the 

waves postulated in Chapter 4 by considering the magnetic field lines to be analo

gous to strings under tension. We have thus introduced a degree of mathematical 
rigour into the description of the waves in equation (5.13) - the fast and slow, or 

compressional and shear, Alfven waves respectively. These waves show how the 
results of MHD and cold plasma theory merge in the low pressure limit.

Because of their extremely low frequency, the Alfven waves appear in region 

[12] of the CMA diagram (Figure (5.1)). The shear Alfven wave is drastically 
altered when it passes through the ion cyclotron resonance and emerges as an ion 
cyclotron wave. On the other hand, the compressional Alfven wave suffers no radi
cal change and continues to propagate for frequencies above this resonance, finally 
disappearing at the electron cyclotron resonance.

7.2. W histlers

These ionospheric disturbances excited by lightning flashes are guided along 
the Earth’s magnetic field lines to distant points on the Earth’s surface where they 
may be detected. They were first observed early this century on sonograms which 
show the variation of frequency spectrum with arrival time and thus provide a diag
nostic tool for analysis of ionospheric conditions. Because the pulses which are pro
duced are rich in very low frequency components (10Hz to 100Hz), Whistler fre
quencies are often audible to the human ear as gliding whistles descending in pitch. 
In the Appleton-Hartree dispersion equation, which is appropriate to this frequency 

range, we take £2; «co<£2e together with col£2e I < c o a n d  0 -0 ° ,  since propaga

tion is nearly along the magnetic field lines, so that the ratio of the magnitudes of 

the two terms under the square root in equation (5.10) is:

2XY(X2- l ) \ i  ,X  1 2h ^  j
\ 2X 2Y2 Y XY v2

and thus the lower sign of the dispersion relation, equation (5.10) reduces to:

n 2 = 1 ----- ;----------   . (5.14)
X \ l - Y I X \ l )

Under the additional constraint, (o«£2ecos0, the dispersion relation is further 

reduced to the form:
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In other words, — —j= = = = F ro m  this, we may calculate the group velocity to 

be:

vg = = -^-(coQ ecos0)1/4,* dk wpe

which demonstrates that higher frequencies will be detected by the receiver slightly 
before the lower ones. Whistlers are the manifestation of the RCP mode in the 
range of frequencies prescribed above and occur in region [8] of the CMA diagram.

It is interesting to compare the Whistler wave dispersion relation in the form of 
equation (5.14) with the gravity wave formula:

n2 = X 2- l
X 2 - v 2Y2 '

In particular, these two waves have critical angles of propagation: sin(j) = co/cô  for 
the gravity wave and cos0 = co/£2g for the Whistler. The two main differences 
between these waves are that the energy propagation of Whistlers tends to be 
aligned along the magnetic field direction whereas energy propagation for gravity 
waves is confined to horizontal directions, perpendicular to the axis of symmetry. 
Secondly, although both waves are clearly anisotropic, gravity waves are not gyro- 
tropic - they do not split into differently polarised components with different phase 
speeds.

8. Summary

Viewing the cold plasma as a dielectric medium containing currents, we have 
derived the general dispersion formula for cold plasma waves in several different 
forms, each of which has proved useful under certain circumstances. We have con
sidered the cases of waves propagating parallel and perpendicular to the background 
magnetic field in detail and have introduced a non-dimensional notation which will 
be used extensively in the following chapter. The approximations necessary for the 
consideration of Alfven waves, the Appleton-Hartree magnetoionic formula and 
Whistlers have been discussed in order to emphasise the possible widespread appli
cations of cold plasma theory. Some similarities between certain cold plasma waves 
and those which propagate in the non-conducting medium of Chapter 4 are noted. 
We have now laid the foundation for considering waves in an inhomogeneous cold 

plasma.
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Figure (5.1) The CMA diagram showing the subdivision of parameter space by the 
ion cyclotron resonance (L = °°), plasma resonance (S =0), electron cyclotron 
resonance (.R = «»), plasma cutoff (P = 0) and cyclotron cutoff curves (R , L — 0) 
into thirteen regions in each of which the wave-normal surfaces are topologically 
distinct. Regions whose characteristic numbers differ by 6 have similar properties 
since the electron behaviour at high frequencies is mirrored by the ions at low fre
quencies. (The ratio m(7/Wg shown is unrealistically low for a gaseous plasma but 

not necessarily for a solid state plasma.)



- 116 -

X

Figure (5.2) Schematic diagram of the variation of the ordinary mode of perpendic

ular propagation in a cold plasma, P , with dimensionless frequency, X  = —

RL/S

X

Figure (5.3) Schematic diagram of the variation of the extraordinary mode, R L /S , 

with frequency.
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Chapter 6 - Propagation of cold plasma waves in a spatially-rotating
magnetic field

1. Introduction

Real plasmas seldom closely resemble the highly-idealised cold plasma model 
used in Chapter 5, but there are strong arguments in favour of continuing and 
extending it. This representation yields a good, basic description of the plasma rela
tively quickly and without resort to extremely complicated mathematics. Thus we 
can construct a physical picture upon which to build when finite-temperature effects 
are included. An example of such an extension was given in the previous chapter in 
connection with plasma oscillations along the magnetic field lines. Although solu
tions of the dispersion relation, equation (5.7), these were seen merely to be internal 
oscillations of the cold plasma, only becoming truly wavelike solutions when ther
mal effects were taken into consideration.

Another good reason for studying the cold plasma model is that it enables us 
to determine solutions analytically. These are extremely important as a comparison 
for computational results which are restricted to one set of parameters at a time and 
which therefore provide less of a global view. In addition, physically interesting 
results may be lost or overlooked in performing complicated numerical calculations. 
We feel justified in using the cold plasma model because of the wealth of valuable 
information it has provided in the past, despite its apparently restrictive assumption 
of zero thermal velocity, and because of its appealing simplicity.

In this chapter we will extend the model discussed in Chapter 5 to study a 
cold plasma whose properties are not constant but are allowed to vary with posi
tion. The study of spatially varying plasmas is one way in which we may increase 
the realism of our model since plasmas, whether man-made or natural, will be inho- 
mogeneous to some extent, as was discussed in Chapter 1. There, particular atten
tion was paid to plasmas with varying magnetic fields but the possibility of gra
dients in other plasma properties, e.g. density and temperature, was also noted.

We choose to make our plasma inhomogeneous by the introduction of a non- 
uniform magnetic field which replaces the constant field of Chapter 5 and then 
observe the consequent changes in the behaviour of waves in the plasma. It will be 
shown that, as a result of this primary variation, even the simplest possible equili
brium configuration is vastly more complicated than the one obtained previously,
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containing a non-zero velocity (and hence current) arising naturally from our initial 
conditions. The plasma can no longer remain stationary initially but must flow with 
a velocity which is dependent on the magnitude of the magnetic field and its degree 
of rotation. We will show that this variation introduces completely new phenomena 
into our description of the waves in the cold plasma and that, although superficially 
very similar, the model in this chapter differs markedly from that of Chapter 5.

2. The model equations

The model equations describing our system are those appropriate to a two- 
species cold plasma which were used in the previous chapter but, to allow for new 
effects introduced by the inhomogeneity, we must return to an earlier, more general 
statement of them. It will prove necessary in subsequent sections to retain the con
tinuity equation in addition to those equations already required in our study of the 
homogeneous case and we therefore apply the cold plasma approximation directly 
to equations (3.4) and (3.5), restating the results in full here along with 
Maxwell’s equations (3.8) and (3.9). In this chapter, we again assume that the 
plasma is collisionless - there are no processes of particle creation or destruction, 
Ss = 0 - and that the contributions to the momentum equation due to collisions, 
is also set equal to zero, which is equivalent to taking the collision frequency, 
v = 0. Our complete set of (unlinearised) model equations is then:

Dn?
------= -nsV-ys ,

Dt s 5
(6.1)

D \s
h Df =<?i (E + v j x B )  , (6.2)

VxE = _ i r  ’dr
(6.3)

dE
VxB = (Iq (J + eo“̂ “) » (6.4)

J  = 2 X  ft v* * (6.5)
s

where the variables have been defined previously and we have expressed equations 
(6.1) and (6.2) in terms of the advective derivative which we discussed in Chapter 

3:

From this basic description, we will construct a wave equation following the pattern 
of Chapter 5. First, we will decide upon the equilibrium state of the plasma and



- 119 -

then we will proceed to linearise equations (6.1) to (6.5) in the usual way. Follow
ing this, the perturbed variables will be eliminated in turn until only the com
ponents of the first order electric field remain.

3. The equilibrium configuration

A clear understanding of the geometry of the problem which we are consider
ing is crucial in order to follow the physical processes involved. The precise align
ment and variation of the background magnetic field determine the orientation and 
motion (if any) of the plasma constituents. On the other hand, the equilibrium mag
netic field configuration is to a large extent imposed upon us by our desire to con
struct an equilibrium which satisfies equations (6.1) to (6.5).

The case of plasma wave propagation at a fixed angle to a magnetic field of 
varying strength - the magnetic beach model - has been considered by other authors 
(e.g. Diver, 1986). A logical progression is therefore to consider a magnetic field 
with changing orientation so that the wave continually "sees” the field in a different 
direction. We will therefore be concerned with a wave propagating perpendicularly 
to a magnetic field which changes orientation along the direction of propagation 
(see Figure (6.1)).

Fidone and Granata (1971) consider the observed excitation of a small ordi
nary wave component by an extraordinary wave propagating across the magnetic 
field of a toroidal configuration, as it passes through the upper hybrid resonance. 
By assuming that the magnetic field lies in the plane perpendicular to the direc
tion of propagation, they are in essence supposing that the poloidal component of 
the total magnetic field is sufficiently small as to be neglected, but that it contri
butes an overall twisting to the field lines. Although the geometry of their problem 
is therefore very similar to ours, the results of their method apply, at best, only to a 
slowly varying magnetic field whereas we consider an arbitrarily large magnetic 
field gradient. The main drawbacks with Fidone and Granata’s paper - the use of 
Budden’s equations throughout and the neglect of the equilibrium current - were 
summarised in Chapter 2. The need for an equilibrium current to balance the chang
ing magnetic field will be amply demonstrated later in this section.

More recently, Choudhury (1988) has extended the work of Grossman and 
Weitzner (1984) to examine the possibility of heating tokamaks at frequencies near 
the lower hybrid resonance. Both works attempt to explain why the core region of 
experimental plasmas appears to be accessible to lower hybrid waves, contrary to 
the predictions of cold plasma theory and geometrical optics. Grossman and 
Weitzner found that inclusion of a density gradient increased the accessibility to the 
plasma interior of these waves when the modes propagated perpendicular to the
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ambient magnetic field. Choudhury includes the effects of a varying magnetic field 
(and thus an equilibrium plasma current) and parallel propagation to generalise 
these results. We will deal with individual points of similarity between our work 
and that of Choudhury as they arise during the course of analysis. The main differ
ence between the approaches is that, whereas we select a specific magnetic field 
geometry at the outset, Choudhury attempts to cover a broader class of field confi
gurations which results in a trade-off between choosing a general initial description 
and being forced to make assumptions at later stages. Although we will be res
tricted to definite variation of the equilibrium variables, we will succeed in deriving 
an analytic solution for our model. Choudhury, on the contrary, must continually 
make approximations in order to progress and finally derives a dispersion relation 
which is solved numerically for the case of a homogeneous plasma.

The geometry in which we are interested bears a closer resemblance to that of 
the reverse field pinch discussed in Chapter 1 than to a tokamak. Near the point of 
field reversal, the toroidal field is very small while there remains a significant 
poloidal component which is constantly changing orientation with respect to the 
minor axis of the torus. Although we assume initially that the magnitude of the 
field varies as well as its direction, we will proceed to exclude this possibility from 
our analysis using the periodic form of the field’s direction cosines. Intuitively, the 
work of Chapter 5 would then suggest that the allowed modes of propagation 
should be related to the modes permissible for parallel and perpendicular propaga
tion in a homogeneous plasma - the ordinary and extraordinary modes.

As before, we shall seek the fundamental modes of an unlimited plasma. In 
the context of solving a particular problem under a set of well-defined, 
experimentally-derived, external conditions, the plasma waves would be further con
strained to a discrete subset of the continuous set of allowed oscillations derived in 
the remainder of this chapter. Since we will only be interested in solving our prob
lem in the context of an infinite plasma, our rotating field must obviously repeat its 
configuration at set distances throughout the system. We therefore choose the sim
plest description of a 27t—periodic rotation available and express our ambient mag
netic field in terms of trigonometric functions of position (cos and sin). From the 
initial requirement that the field should vary periodically in space, we will show 
that this variation must conform to certain strict rules.

We are interested in a static (but not necessarily stationary) equilibrium, so 
that none of the zero-order quantities are time-dependent. Thus, the right hand side 
of equation (6.3), together with the displacement current term in equation (6.4), 
vanish in equilibrium. We recognise that the curl operator acting on the equilibrium 
magnetic field is non-zero now that the field is not spatially uniform and, in order 
to balance equation (6.4), we must therefore include a non-vanishing right hand
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side. This non-zero Jq represents an equilibrium current, the need for which in 
inhomogeneous plasmas has been recognised by a number of authors in this field, 
including Choudhury, and Lashmore-Davies and Stenflo (1981) in a paper on the 
MHD stability of a helical magnetic field of arbitrary amplitude. (Here, helical 
denotes B0 = Bz0 z+B±0 [-xsin(co0t -fcoz ) + ycos(co0r -k tf)] ) ,  where Bz0, B±0, o 0 
and k q are constants.

The equilibrium current arises from the flow of charged particles and so we 
must also introduce a corresponding non-zero equilibrium velocity into our system, 
as implied by equation (6.5). We combine equations (6.1), (6.2), (6.4) and (6.5) 
below to show that the current is constrained to flow in one of two opposite direc
tions. (We continue to suppose that the ions are singly charged for simplicity so 
that ne -rii = n 0 in equilibrium.)

In equilibrium, equation (6.1) becomes:

vo-Vflo = -«ov 'vo>

the left hand side of which is zero since we assume that the ambient number den
sity of each species is fixed. Choosing the vertical axis to be the only direction 
along which there is any variation, so that z is our only independent variable, the 
resulting restriction on the velocity may be written dv0sz Idz = 0. (The arguments 
for and against a single independent variable will be presented in the next section.)
This constraint on the z-component of the velocity also means that the total deriva
tive in equation (6.2) is identically zero in equilibrium. Writing equation (6.2) 
explicitly for both species:

Vqj x Bq+E q = 0, (6.2a)

vo« x B0 + E0 = 0, (6.2b)

and subtracting equation (6.2b) from (6.2a), we obtain:

(v0i-Voe)x B 0 = 0.

In terms of the common background number density and the electronic charge, 

equation (6.5) may be written as:

Jo = n0 e ( \ oi- \o e ),

so that the equilibrium current must be parallel to the magnetic field. The current 
and the magnetic field are also related via equation (6.4) and, in order to satisfy 
both these relations simultaneously, the magnetic field must be of the form.

VxB0 = AB0, (6.6)
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which is the equation of a force-free magnetic field. Equation (6.6) implies that, as 
we travel along a field line in the direction of Bq, the neighbouring field lines curl 
in a fixed sense round that line and so a force-free field is essentially a twisted 
field. Such fields are especially important in low-$ plasmas in which the gas pres
sure is small compared with the magnetic pressure. They are appropriate to certain 
types of toroidal fusion experiments, where the equilibrium surfaces formed are 
nested tori, and often occur in astrophysical plasmas. Chandrasekhar and Woltjer 
(1958) explained the extremely regular magnetic field of the Crab Nebula in terms 
of a force-free field. They argued that, because the interstellar medium is almost 
perfectly conducting, any currents present would give rise to a JxB force of such 
magnitude that it could not be balanced by gravitational or pressure forces. The 
only way to construct an equilibrium configuration would therefore be by aligning 
the current along the magnetic field direction, resulting in a force-free situation. 
They also concluded from certain thermodynamic arguments that force-free mag
netic fields are highly likely to occur in interstellar space. Nakagawa and Raadu 
(1972) used the likelihood of naturally occurring force-free fields in their discussion 
of the magnetic field of the Sun’s chromosphere and low corona. By employing 
illustrations of the striking similarity between solar H a observations and the lines of 
force of force-free magnetic fields, they built a plausible case for the magnetic field 
in these regions being force-free. From this assumption, they then demonstrated a 
comparatively simple method of determining the magnetic field uniquely from its 
observed vertical component in the case of X = constant.

In proving a variational principle about force-free fields, namely that force- 
free fields with constant X represent the state of lowest magnetic energy in a closed 
system, Woltjer (1958) paved the way for subsequent investigations. Workers in the 
fusion field were at first surprised by the spontaneous generation of reverse fields in 
ZETA and other pinch machines and the stability of the resulting configurations. 
These anomalies were explained in a classic paper by Taylor (1974) where he 
demonstrated that both phenomena were related to the relaxation, under constraint, 
of a magnetic field to a final force-free state. He showed that a perfectly conducting 
plasma, for which all topological properties of the field lines must remain invariant, 
would relax to one of an infinite number of equivalent minimum energy states - 
force- free states characterised by different values of X. (Note that by taking the 
divergence of equation (6.6), it can easily be shown that X is either zero or constant 
along a field line. It need not, however, be constant for different field lines.) Taylor 
then relaxed the assumption of perfect conductivity and showed that the final 
minimum energy state was in this case unique, with X the same on all field lines. 
Another interesting result about force-free fields was derived in an elegant paper by 
Jette (1970). He proved that, in resistive MHD, the only force-free magnetic fields
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which remain force-free in time are those for which A, is constant in both space and 
time.

3.1. Restrictions imposed by the force-free condition of the ambient magnetic 
field

From our original loosely defined prescription of a varying magnetic field, our 
model has dictated that this field must be force-free. We now use the periodicity of 
the field, alluded to above, to complete its specification. If the magnetic field varies 
periodically along one axis of a plane, it must also vary in a compensatory fashion
along the other. With the single independent variable z , we write
B Ox ~ B o(z ) cos<j>(z) and B 0y = B 0(z) sintj)(z) where B 0(z) is the magnitude of the
magnetic field. Suppose our field has an arbitrary third component, e.g.

B0 = (RoM oV,&), (6.7)

where we have introduced the notation of direction cosines, ji = cos(()(z) and 
v = sin<j)(z) which we will employ henceforth. Clearly, the third component of B0, 
b , must be a constant in order to satisfy V-B0 = 0. We now use equation (6.4) to 
show that b must in fact vanish. For the left hand side of equation (6.4), we have:

VxB0 = det

x y_ z

°  °
oz

*oM- 5 ov b 

= ( - ( 5 0v ) ' , (£ 0p)', 0),

= B o' (-v,p,0) - B  o <J>' (|i,v,0), 

where ' = d/dz.

To ensure that the magnetic field satisfies the force-free condition as required 
by equation (6.6), (that is, to make this vector parallel over all space to the mag
netic field vector given by equation (6.7)), the magnitude of the ambient field must 
be constant and its z -component must be zero i.e. B q = b = 0 . We may now iden
tify X in equation (6.6) with -dtydz  and note that this need not be constant 
throughout the plasma although it is obviously constant along each field line.

These restrictions are placed on b and B q by our use of a single independent 
variable and could be made less stringent by allowing variation in at least one other 
direction. We would then be faced with a set of coupled, partial differential equa
tions to solve. The complications resulting in other parts of the analysis and the 
increased difficulty incurred in visualising the more complex geometry do not
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recommend this step, at least not until the present approach has been fully explored.

In summary, the magnetic field no longer points in a fixed direction as it did 
in Chapter 5. For any position (z), the magnetic field direction is specified by the 
angle it makes with the x — axis ( (J) ) and this angle changes as we go along z. We 
have also shown that, having selected a magnetic field with periodic variation in the 
plane perpendicular to z, the only possible equilibrium permitted by the equations 
of the cold plasma model is one in which the remaining component of the field is 
zero and the magnitude of the field is constant. As a result of the above arguments, 
the magnetic field will henceforth be taken to be:

Bo = 5o(ti(z ),v(z ),0),

where B 0 is constant.

3.2. Equilibrium velocities in terms of B0

The general form of the relation between B0 and v0iS has already been used to 
demonstrate the force-free nature of the magnetic field. Their exact interdependence 
will now be examined and a linear expression for \ 0s in terms of B0 derived. It 
was shown above that

(vo ; - voe) xB o = 0-

There are two possible ways of satisfying this relation, either:-

(i) both v0e and v0i are individually parallel to B0, or

(ii) the difference of the two vector velocities (v0i- -  Voe) parallel to the field 

without either being in that direction.

In the latter case, equation (6.2) requires that an external electric field be applied, 

satisfying

E0 = ~v0t- xB0= -v 0e xB0.

We now show that it is not possible to construct an equilibrium containing such a 
"Lorentz" electric field under the assumptions of our model. With a view to a con
tradiction, we suppose there exists a non-zero electric field satisfying equations 
(6.2a) and (6.2b) simultaneously, then by equation (6.3) it must also satisfy 
VxE0 = -V x(v05xB0) = 0. Applying the well-known identity theorem relating vec

tor and scalar products:

V x(AxB) = (B-V)A -  (A-V)B + (V-B)A -  (V-A)B, 

to the equilibrium form of equation (6.3) yields
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(B0'V)v0iy - (v0iS-V)B0+(V-B0)v0iS -(V-V0,)B 0 = 0.

Now, V Bq — 0 and the magnetic field rotates in a plane perpendicular to the direc
tion of variation so that we also have (B0-V) = 0, leaving

(v0s' V)Bo+ (V-Vo, )B0 = 0.

Since the z-component of the magnetic field is zero, this vector equation contains 
only two non-zero parts:

dz dz
VIA -  vsz _  _

V0az~ +  ~ V  B 0x =

and

dB (w, dv0sz 
V(lsz dz + dz Boy = °'

On inserting the known form of the components of B0, we obtain from these 
respectively

3v0sz
-VGSZB Q§'sm§ + - ^ - B Qcos§ =

and

dv0sz
v0sz B 0<t>'cos<j) + —fo~B  o sin(t> = 0, 

which on rearranging become:

1 sz , 3 6----------—  = tantJj^S
v0lSZ dz dz

and

1 ^v0sz _ 1 3<{)
v0w dz tan(j) dz

Equating the right hand sides of these two equations results in:

tan2<j> = -1 or sin2<j) + cos2<j> = 0,

which is plainly impossible and so the original assumption of a non-trivial electric 
field has been contradicted. Thus we must adhere to the conditions of option (i) 
where Eg = 0 and the flow velocities of both species are parallel to Bq. We write.



v0i — CX( M. (z ),v (z ),0) and v0e = P(p(z),v(z),0), 

where a - p  = - ( — B ^ l^ r iQ e )  on substituting in (6.4) from (6.5). Whenever the

magnetic field is sheared and non-vanishing (i.e 3(|)/dz ^ 0 and B q & 0) this expres
sion shows that a  must differ from p.

There thus remains one parameter which we are free to choose before the 
equilibrium velocities are completely specified in terms of the magnetic field. We 
set a  (or P) by invoking another physical argument, namely that the nett momen
tum of the system as a whole be zero so that v0l- = -(me \ Qe )!mi. The parameters 
introduced above then become

Attention is often restricted to electron motions because the ions are so much more 
massive - the ions’ inertia inhibits their response to all but the lowest frequencies 
(e.g. Budden (1961) and Fidone and Granata (1971)). This is equivalent to taking

derived without it will be applicable to a wider frequency range (including co < Q{, 
the ion cyclotron frequency, below which the approximation of fixed ions is no 
longer appropriate) and our use of computer algebra (REDUCE (1987)) eases much 
of the algebraic burden entailed in retaining both species. To recap, we now have:

which may combined into v0i. = AsBQd§/dz, where the As are species-dependent 

constants defined by inspection of the above.

If we now compare the results from this section with those of Choudhury’s 
paper , we see that although the two systems share many of their properties, our 
more stringent definition of the magnetic field has led to a unique statement of the 
equilibrium configuration while Choudhury has been forced to make further choices 
about the remaining equilibrium variables. (Our problem serves as a reminder that 
the compatibility of equilibrium variables must always be cross-checked in indivi
dual cases.) We have been compelled by our original choice of field variation to 
consider a force-free magnetic field whereas Choudhury includes a force-free field,

a  =
p0«o e(me+mi) \^o^oe (me +mi)

■B0/(p-o«oe )- We do not employ this approximation since solutions

3d)Vn — - '' '
e \iQne(l+me/mi) dz ’

me
v 0 i =  V0e,m;
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since it is a plausible geometry for the low-beta regime of operation in which he is 
interested. Similarly, he assumes that Eg = 0, but we have demonstrated that we 
must have this in order to balance v x B q for both species. Finally, he supposes that 
Voi = 0 so that there is no mass flow in equilibrium and the only contribution to the 
current comes from the electrons. This contrasts with our requirement that the total 
momentum of the system must be conserved - an assumption which seems to be 
more easily justified. The fact that the equilibrium current and electron velocity are 
parallel to the magnetic field is, however, common to both descriptions.

4. The perturbed system

We aim to construct and solve a wave equation in the electric field com
ponents as in the last chapter and we develop a similar framework by considering 
the plasma to be a dielectric material. It was demonstrated in the earlier sections of 
this chapter that there are now fewer equilibrium quantities which are identically 
zero and the perturbation expansions of our model equations will therefore contain 
more non-vanishing terms. As a result, it will not prove possible to write the 
plasma current as a product of a conductivity tensor and the perturbed electric field 
alone - instead, the first-order current will become a sum of three terms involving 
the perturbed electric field plus its first two derivatives.

Having related all the equilibrium quantities, apart from the density, to the 
prescribed magnetic field, we now substitute these expressions in the perturbed 
forms of equations (6.1) to (6.5) and linearise in the usual way. One consequence 
of the non-zero velocities in equilibrium which we must now consider is the possi
ble inclusion of density changes in our description of the plasma. The linearised 
form of equation (6.5) contains a term which was absent in the uniform
(vq = 0) case. Since the homogeneous model involved only the background density 
common to both ions and electrons, this is our first encounter with density variation 
and we must therefore include an extra evolution equation to account for such den
sity fluctuations and consequently must retain equation (6.1) in our description of 
the system. The linearised equations are derived in the succeeding sections.

4.1. Continuity equation

The continuity equation describing the evolution of the number density of each 
species is essential to close the linearised set of equations appropriate to a cold 
plasma containing a rotating magnetic field. Since our aim is again to eliminate all 
variables in favour of E, we express the perturbed number density in terms of the 
velocity, which may in turn be related to the electric field via the momentum equa

tion, (6.2).
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Rewriting the total derivative in the equation of continuity, equation (6.1), as the 
sum of its two constituent parts gives:

dns
“^ -  + V v "s+ ^V -v , =0,

and taking each variable to be composed of equilibrium and perturbed components, 
we have:

ls
—fo~ + (yOs+lvis )'Vno+Vos'Vnls+(n0+ n ls)V-Y0s+ n 0'V-\ls =  0 . (6.8)

This expression may be simplified immediately since several of its terms are 
identically zero. The plasma was prescribed to have a constant equilibrium number 
density which is equal for both species present so that V/i0 = 0. Because the 
streaming velocities are aligned along the magnetic field, which lies in the x - y  
plane perpendicular to its gradient, the terms involving V-v0̂  also vanish and equa
tion (6.8) reduces to

dn \ s- ^ -  + Vo,-V/il5+ /i0V-vl5 = 0.

None of the three remaining terms can be set automatically to zero since we 
have no information about the direction of oscillation of the first-order variables. In 
other words, this form of equation (6.8) is irreducible without further restrictions 
being placed on the model. It is, however desirable for us to achieve the maximum 
simplification from the outset. We wish to show that waves in non-uniform plasmas 
are not necessarily identical to those found under constant conditions. What better 
way to achieve this end than to demonstrate the difference between these two cases 
in a mathematically uncomplicated and "familiar" regime? By studying a specific 
case initially, it should also be possible to reduce the likelihood of error and to con
struct a test case for comparison with more general results.

To this end, we make a fundamental decision about the nature of the waves which 
we intend to study by assuming that there is no component of propagation in the 
x -y  plane ( k x =ky =0). Thus we may write V=(0,0 ,3/9z) acting on the perturbed 
quantities. This restriction allows us to eliminate a final term from equation (6.8), 
since Vq5 is still perpendicular to V, even for first-order variables, and we have the 

final linearised form of equation (6.8):

3/i i ,  „
+ nQS V-vl5. =0.



- 129 -

We are still interested in harmonically varying quantities at real frequencies and so 
perform the standard Fourier transform in time on all our linearised equations. 
Rearranging the above equation, so that the varying number density is expressed as 
a function of the perturbed velocity and known quantities, we obtain:

4.2. Momentum equation

Care must be taken when linearising equations (6.1) to (6.5) because the extra 
non-zero equilibrium quantities occur in several places, giving rise to additional 
first-order terms which were not present in the equivalent equations of Chapter 5. 
Physically, the new equilibrium velocities couple new effects into the system which 
were previously second order and so were negligible under the assumption of linear 
wave propagation.

On linearising, equation (6.2) becomes:

where the advective term, v05-Vvl5, has again been omitted from the total deriva
tive because v0j lies in the plane perpendicular to the direction of propagation.

Comparing equation (6.9) with its equivalent in the homogeneous model, equa
tion (5.1), we note that the equilibrium flow has necessitated the inclusion of two 
additional terms. The first of these contains the derivative of the equilibrium velo
city, which is a known function of the ambient magnetic field. The second, which 
involves the perturbed magnetic field, may be eliminated in favour of the perturbed 
electric field, by using the linearised form of Faraday’s Law as shown below.

4.3. Maxwell’s equations

The linearised Maxwell relations are unchanged from the homogeneous model 
and the linearised version of Faraday’s law, equation (6.3) is:

On assuming variation as e. i<at and expressing the perturbed magnetic field in 
terms of its electric counterpart, this may be rearranged to express Bj (Ej).

+ (v i,’V)v0j) = ^(E^VoyXBj + v^xBo) (6.9)

3Bi
VxE! = — —  . 

1 dt
(6. 10)

Bl = —  (-  E j / . E , / .  0). 
I CO 3

(6 . 11)
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The remaining Maxwell equation, which will be required in a subsequent section to 
derive the wave equation, is also unchanged in linearised form:

5Ei
VxBi -  q0 (

since VxBq = IIoJ q. After Fourier transforming to remove the time dependence, we 
have:

VxBj = |i0 (J1- e 0/coE1).

Note that we retain this form of the equation without simplification so that we can 
still write our wave equation (derived by taking the curl of equation (6.10)) in a 
style similar to the homogeneous wave equation, (5.5).

4.4. Current equation

The perturbed form of the current equation (6.5) has, like the momentum 
equation, gained a term which depends on the equilibrium velocity to become:

Ji = 2 X ( " 0 vl* + « b v0s )• (6-12)
s

The first-order number density term in equation (6.12) is the reason for our 
earlier inclusion of the continuity equation to describe the density variation. We 
may use the result derived from equation (6.8), relating the perturbed number den
sity and velocity, to eliminate the former from equation (6.12).

To simplify the notation considerably, we henceforth use subscripts only to 
distinguish between species and to denote equilibrium quantities. Thus any variable 
not subscripted zero will be assumed to be first order. We will also continue to use 
the conventions, ' = d/3z and = 3/df •

5. The wave equation

We now have the basic elements required to form a complete wave equation 
in the electric field components. Having eliminated B and ns , it only remains to 
express v = v(E,E'), using equation (6.9), and hence J=J(E ,E  ,E ), using equation
(6.12). This is the same procedure as was employed in Chapter 5 and we will again 
utilise the cyclotron and plasma frequencies in our matrix notation for simplicity. 
Substituting for the first-order magnetic field from equation (6.11) into the momen

tum equation, (6.9) written in tensor form:

Mv, = —  E + —  NE',
ms ms
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which may be rearranged to give an expression for v5 in terms of E:

v, = —  M_1E + —  M_1-NE'. (6.13)
m s rns

The tensors M and N introduced above are therefore given by:

—z CO 0 ^ s y  "h 0 0 0
M = 0 —Z CO ~EsClsy and N = 0 0 0

~ ^ s ^ s y ^5 -IC O ^(kx ^ 0 sy 0
ICO ICO

where we have used the shorthand = eseBx y lms . In the tensors, M and N,
the position dependence is contained in both the cyclotron frequencies and equili
brium velocities due to their variation with B0. The magnitudes of the tensor ele
ments vary through the derivatives of (j), the angle which the background magnetic 
field makes with the x -axis, whilst their directions vary depending on the value of 
(j) itself.

We see from equation (6.13) that we will need to determine the contents 
of the arrays M-1 and M-1-N in order to express the velocity in terms of the elec
tric field. The determinant of M is given by i co (co2 -  Q52 + Es Q.xv0sy' - e sQy vQsx').

Jf!o« oe (^+me !mi) for electrons
Writing = 1 , n \ • and using the results of §3.3,

s  * [ -  rrii lm e p.0n  0e ( 1+me lm i ) 10ns

we find that

, _ {-BoyjP+BtoV')
V°“  A s A s

and

v 0sy ~  4 ’

so that

es(Oxv0sy' - n yv0sx') = -^ (B l^ + B to B o yV '+ B ^ -B teB o yV ')

msAs
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and thus one of the effects of the advective derivative is to shift the frequency 
given by the traditional denominator of the tensor elements all of which are derived 
from the determinant of M.

For convenience, we include at this stage two further matrices, derived from those 
above, which will be required shortly:

M"1 =
det

_0)2+^ 2 Es Qsxv 0sy' £-s ̂ sx (£s&xy+ v 0sx') ^ ( ^ s ^ s y + y 0sx')

fs (fs Q x  ~v 0sy ) —CO2̂ -^^ 2-f 6 ,̂ Qy Vq  ̂ — i (0(£s &sx~v0sy )

- i m sQsy i<*£snsx —CO

and

M_1-N = —  
det

^O.sx ^sy  "^Osac ) "^Osac ) ®

~^0sx ^ sx ~^0sy ) ~^0sy ^sx ~^0sy ) ^

i m 0sx iwor,  0Jsy

where det = i co(co2-Q s 2+v0s es Qs <)>').

The final step which we must take before we can write down the wave equa
tion is to express the current in terms of the electric field. We have already esta-

n 0
blished from equation (6.8) that ns ~ ~ ~ y s z '  and from equation (6.13) we know 

that the z component of the perturbed velocity is:

' —  [(M -1) 'E + (M -1+(M -I-N )')E '+ M -1'N E " | ,
m c L J

v„ =

where the subscript z indicates that only the third row of the tensor is being con
sidered. Combining these two results and substituting in the linearised current equa
tion, (6.12), enables us to write the perturbed current as a function of the electric 

field and its derivatives:

J = E ? j( wOvj + 'ijvOIs )

no
= E<7j (n 0\ s +-— vsz' \ Qs) 

s

= Z W - ^ m - ,e + - ^ m - 1-n e ')
m, rns

Qs 1- 1.

+ V — va —  [(IVT1) 'e  + (M- 1 + (M-‘-N)' ) E '+ iv r '-N E " \  .
_ i co s m, 1



Gathering like terms, this may be written more concisely as:

J = G-E + T-E'+p-E". (6.14)

This should be contrasted with the equivalent expression for the case of a 
magnetic field making a fixed angle with the x — axis throughout the plasma, which 
was found to be J  = GE, where G was identified with the conductivity tensor. In 
the present case however, it is impossible for us to relate the current density solely 
to the electric field. A similar result was found by Choudhury (1988), who formu
lated the electric displacement as

D = k-E,

where the dielectric tensor k consisted of a simple multiplicative part plus a dif
ferential operator component acting on the electric field.

We will now make a further decision regarding the variation with position of 
the zero-order magnetic field. We specify the functional form of (j) to be linear with 
increasing z so that (J)' becomes a constant and all higher derivatives vanish. In so 
doing, we introduce the rotational scalelength, /, defined by:

thus ensuring that when / —»°o, the gradient terms become negligible. The choice of 
such a simple magnetic field variation may seem at first a little restrictive but will 
enable us to produce an analytic solution. Even such an apparently minor deviation 
from the anisotropic, homogeneous cold plasma model will produce solutions of 
extremely different forms from those which would be predicted by the homogene
ous dispersion relation. This should serve as a warning against relying on exten
sions .of homogeneous theory to describe inhomogeneous plasmas. It will prove 
with hindsight that this particular variation is the only one which results in a readily 
soluble pair of coupled differential equations describing the electric field com
ponents. With our preliminary investigation completed, consideration may then be 
extended to more complex field structures where (|) has other than linear dependence 
on z. The discussion of this greatly complicated case will be pursued more fully in 

Chapter 7.

We use the definitions of the tensors M and N, M and M N, and extract a 
common factor of riQSqs2/ms =£o°Vy2 r̂om eQuat ôn (6.14) to write G, T and p as.



where ( iOEsQ.sx, i coe5 ,0) and f2 -  (— £^£2̂  — (l/vo^e^O^ + (J/vq^ ,i co) 
and : indicates an outer product.

Having now reduced our description of the model to this form, with all the 
variables related to the oscillating electric field and its derivatives, we may proceed 
to generate the wave equation in an analogous manner to Chapter 5:

Vx (Vx E) = -VxB

= ico |i0 ( J - ic o e o E )

2

= ^ r  ( I + —  ).E + iO>MT-E' + p-E")
c 2  e0co

CD2
= E-E+ianoiVE'+P'E") ,  (6.15)

c L

where E plays the role of the conventional dielectric tensor and T and p which mul
tiply the spatial derivatives of the electric field have been defined above. It should 
be noted that the substantially different nature of the Ohm’s Law, equation (6.14), 
which applies here has led to an equivalent alteration of the wave equation. In addi
tion to the two completely new tensors T and p, even the elements of the dielectric 
tensor, E, are not those of Chapter 5 but are shown below to be considerably modi
fied by the gradients in the equilibrium quantities.

6. Tensor definitions

6.1. The modified dielectric tensor

By inspection of equation (6.15) and from the the conductivity tensor given in 
the previous section, the dielectric tensor may be written, using notation analogous 
to that of ordinary modes, sums and differences from the homogeneous case:

£ =

(P -  <|>/T1/cd)h2 + S v2 ( P -  fTj/co -  S )nv i v(D -  <J)'T2/co) 

cP -  fTj/co -  S )|iv (P -  ({/Ti/ci^v2 + S\i2 - i  [i(D -  <t>'T2/co) 

- iD v  iD\i S



- 135 -

where P 1 ® retains its definition from Chapter 5 but, because of the

alteration in the denominator of the tensor elements, the definitions of 5 and D , 
modified to:

are

5 = 1 - 2 ;
CO'ps

s  (CO - Q f + V 0se s n s $ ' )
— and D = £ ®ps

S CO ( coz  -  Q /  +  V0 j  6 ^  Q s <t>')

The terms containing the equilibrium velocities in their numerators have been 
combined into the new quantity

T i = Z
®ps^s ̂ s^Os

s c o ( ^ ~ Q f + y 0se s Q s ^ )

6.2. The tensors, T and p

Two similar quantities may be used in the expressions for the remaining ten
sors. We define:

t 2 =  X
\ s ®ps. . —  and T3 = Y -----„

(co2- Q 2+ v0,e j a tf )  ,  to(co2- Q 2+ v0je A f )

Although the T terms appear to share several common factors they are not in 
fact multiples of each other because they are all sums over the species present.

T and p thus simplify in terms of these new tensor elements to

- 2 f T 3nv T j + ^ O ^ - v 2) i'hT2 

-T j+ fT jft^ -v 2) 2<t>'T3|iv ivT2 

iHT2 ivT2 0

and

p.2 (iv 0 

(iv v2 0 
0 0 0

We have now extended our examination of waves in a cold plasma with a 
spatially rotating field far beyond the limiting case of the uniform field discussed in 
Chapter 5. This special case may, however, be used to test our analysis thus far. In 
the limit of <j>—> constant, (i.e. removing the position dependence) we should be able 
to reproduce exactly the results of the homogeneous case presented in Chapter 5.
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§ = constant implies (J) = 0 and so \ 0s must vanish by definition. As a direct 
consequence, T l = T2 = T3 = 0 and S and D reduce to their homogeneous counter
parts, S and D . Thus the tensors X and p vanish as do those elements of the dielec
tric tensor which involve gradient terms through T ,̂ leaving the Ohm’s law in its 
original form, J = g-E.

To complete the comparison with the inhomogeneous case contained in the previous 
chapter, the magnetic field must be aligned along one axis. Here, we have chosen 
the variation to be in the z-direction and so the magnetic field lies in the x —y 
plane. It is therefore convenient to select the x  -axis as our single preferred direction 
in the homogeneous limit whereas the magnetic field lines of Chapter 5 were paral
lel to the z-axis. We thus require to perform a simple rotational transformation on 
the dielectric tensor of Chapter 5 to demonstrate that it is identical to that generated 
by substituting B0 = B 0x (so that \i = 1 and v = 0) in 8 above:

8 =

The wave equation, (6.15), reduces to

P O O  
0 S -iD 
0 iD S

côV x V x E --^ -8-E = 0, (5.5)
c

in full agreement with the expected behaviour (Stix, 1962). The general case of 
non-constant magnetic field angle therefore reduces to the predicted result for a spe
cial case and so we may continue with its investigation with confidence.

7. Coupled equations

The standard way to solve a system such as equation (6.15) would be to 
separate it into its individual component equations and then eliminate two of the 
dependent variables. This would leave a single ordinary differential equation in Ex, 
say, which could then be solved, with its solutions giving the natural modes of the 
system. This is unfortunately not as easy as it sounds in this case. On eliminating 
Ez , which is a straightforward procedure performed below, we are left with two 
coupled second order differential equations in Ex and Ey. Both of these equations 
have periodic and variable coefficients due to their dependence on the equilibrium 
quantities and, although combining them into a single fourth order differential equa
tion is feasible, it is of no advantage. The fourth order equation resulting from such 
an elimination procedure would have extremely complicated coefficients since the 
trigonometric factors would not be lost after successive differentiation in the way 
that polynomial coefficients might. Hence we would be left with a fourth order
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differential equation with periodic coefficients for which there is no standard 
method of solution. Since one of our fundamental aims is to produce an analytic 
solution which we may compare with that for the non-rotating model, we do not 
wish to be forced to resort to numerical methods of solution. We therefore seek an 
alternative approach to solving our pair of coupled differential equations in Ex and 
Ey .

As stated above, Ez may be eliminated quite easily from the system. The 
third component of the vector equation (6.15) contains no derivatives of Ez so that 
it may be eliminated in favour of Ex, Ey and their first derivatives:

Ez =  - -  (—- ( X u E /  +  X22Ey ' )  +  E3iEx +E32Ey ),
E33 00

where we have removed the factor zrfi from the elements of the matrices x and p. 
Substituting this expression for Ez along with its derivative into the remaining two 
components of equation (6.15) yields a pair of coupled equations in Ex and Ey . At 
this point, we introduce three new quantities to ease notation. These quantities are 
designed to collect together the occurrences of the T tensor elements, containing the 
bulk of the information about variation with ()>'. Their precise definitions and a dis
cussion of their functional dependence is contained in the following section.

We may now use the expression for Ez to eliminate it from our system, leaving us 
with a pair of coupled differential equations for Ex and Ey:

2 2 ~ ~
(l+\jqi2)£x"-2<j)'\j/|i.v£x/ + (-^?M-2+ i i " ^ iv2- 4)/x|i2+Ev2) Ex

c c S

= -VM-v " -  (%+<I>'V(M-2 -  V2)) ' -  nv ( ( / » -  -̂ - - f x - s )£y (6-16>
C i3

and

(l+VV2)£/'+2< |> 'W v£/+(-4/>v2+ - 4 - ^ H 2-fX V 2+En2)£y
C C u

=  -\\T\lvEx" + ( x - <1>X^2- V2) )Ex' - ^ f ) - ¥ X ~ E) Ex X6.17)c >j

where we have introduced the quantities R = S +D and L — S —D so that the 
notation matches that of Chapter 5 as closely as possible. These quantities do not, 
however, represent the natural modes of the system for oscillations parallel to the 
magnetic field in the way that their counterparts in the homogeneous case described 
the right and left circularly polarised waves. Because P is independent of the mag

netic field, its expression has not been altered.
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It is at this stage that the basic difference between Choudhury’s philosophy 
and ours forces the analyses irreconcilably apart. Choudhury’s aim is to examine 
the response of a specific device (a tokamak) to a specific input frequency (the 
lower hybrid) and he may thus eliminate terms as it becomes apparent from addi
tional experimental information that they are unimportant. He thus sets Ez = 0, 
arguing that the high conductivity in the plasma shorts out the parallel electric field. 
This approximation leads to a considerable simplification in the resulting equations 
so that the final system is second order - equivalent to only the ‘fast’ mode being 
considered. Although his original magnetic field consists of both toroidal and 
poloidal components, only leading order terms in the poloidal field are retained 
because it is known to contribute only a small fraction to the total magnetic field 
strength. Similarly, the fact that the parallel wavenumber is approximately constant 
allows him to solve an eigenvalue problem for the perpendicular wavenumber only. 
This single-minded attack on a known objective is particularly appropriate in appli
cation to a particular experiment but our approach is somewhat different. We wish 
to examine the consequences of introducing position-dependence into a well- 
understood situation. We are not constrained by the specifications of any apparatus 
but must retain a self-consistency in the equations describing the model. We are 
interested in generating an analytic solution to the complete problem and consider 
any effect arising, however insignificant it may at first appear. From this general 
picture, it should be possible to take an overall view of the consequences that inho
mogeneity may have for wave propagation and make more general predictions 
about the changes in behaviour of the modes.

7.1. \|/  and S

7.1.1. % and \j/

The new quantities, % and \jf which were introduced above are defined by.

Both \|/ and % are functions of the frequency and we apply a similar analysis to 
them as was used to investigate the variation with co of the ordinary and extraordi- 
nary modes in Chapter 5. We begin by rewriting them in terms of the non- 
dimensional quantities, X  and Y , which are themselves defined in terms of the elec 
tron cyclotron and plasma frequencies plus Z which incorporates the derivative

terms:

Z =
CO,'pe
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On substituting these dimensionless quantities into the definitions of Tb T2 
and T3 derived earlier, we establish that:

T V(tey(l+>-)(X2( l -r+r2) - r 2y ( y + Z ) )

1 X ( X 2 - Y ( Y  + Z ) ) ( X 2 - r 2Y ( Y + Z ) )  ’

_  v0cX 2( l - r 2)
io —

(X2- Y ( Y  +Z))(X2 - r 2Y(Y +Z))

and

_  v^ ( l+ r  )(X2( l - r+ r2) - r 2y (Y +Z))
COT3 — --------------------------------------------

(X2-Y(Y+Z)) (X2- r 2Y ( Y + Z ))

where r is the electron to ion mass ratio. Similar expressions to those for S and D , 
derived in Chapter 5, may be found for S and D :

I  _  (X2- Y ( Y  +Z))(X2- r 2Y(Y +Z)) - ( l+r) (X2-rY(Y +Z))
(X2-Y(Y+Z))(X2- r 2Y<y + Z ))

and

6 = _________ XY(r2- 1)_________
(X2- Y(Y  +Z))(X2- r 2Y ( Y + Z ) ) '

Before constructing % and \j/ from these, we will compare the relative sizes of 
the terms containing Z with the other terms in the denominators of the above 
expressions.

I Z | = V Q e V  _ = <\)'c 2

X  0£ ̂  ®pe

For a typical thermonuclear plasma n = 1019m-3 so that I — I = 2x10 6<|)'2. Thus,

for a plasma with this density, Z will be less than 10% of Y as long as (J) ^ 220, 
i.e. the scalelength is greater than 0.014 m.

Substituting the dimensionless forms of etc. into the definitions of % and V 

above yields:

m Vot y(l+r )(r2Y (Y + Z ) - X 2 ( l - r + r 2) + r ( l + r ) )  ^

X ~  c 2 X « X 2-Y(Y+Z)) (X2- r 2Y(Y +Z) - ( l+r ) (X2-rY(Y+Z)))  ’

and

j  v l ( l + r ) ( r 2Y ( Y + Z ) - X 2 ( l - r + r 2) +  r ( \ + r ) )

V ~~~c2 ((X2-Y(Y+Z)) (X2- r 2Y(Y + Z )) - (1  +r)(X2-rY(Y+Z)))
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In this form, it is obvious that \|/ and % are far from being independent of each 
other. \|/ is in fact a multiple of %, where the multiplicative factor is frequency- 
independent. This is a great boon to us, since calculating their ratio and defining it 
to be a new quantity enables us to distinguish between a number of independent 
factors influencing the behaviour of equations (6.16) and (6.17). The required ratio 
is given by:

_Vj/_ vQeX VQe _ Vp,-
X COY ~ a e ~ Q i ’

where we have returned from the dimensionless notation to the physically more sig
nificant quantities of velocity and gyroffequency. We define A = v^/Q^. Note that 
there is a change of sign between the two equivalent expressions for A. In addition 
to the scale factor r which transforms the electron cyclotron frequency and equili
brium velocity to their counterparts for the ions, there is an extra sign factor due to 
the electrons and ions having opposite streaming directions in equilibrium.

From our earlier definitions of equilibrium velocity and cyclotron frequency in 
terms of the basic plasma parameters such as ambient magnetic field strength and 
neutral number density, we see that A is independent of B0 (as well as frequency). 
Finally, we express A in its fundamental form:

memi <)>'
A = -----  .

Moe (me +mi) no

Thus, once the background number density of the plasma is known, A is com
pletely determined by how tightly the magnetic field "winds around" the vertical 
axis. Therefore when <{) is directly proportional to distance (<j/ = constant), A is 
simply a constant which multiplies several terms involving % in our coupled equa
tions. Similarly, A = 0 for a magnetised plasma only when the plasma is homo

geneous.

The behaviour of y  or % is rather more complicated than that of A because of 
their variation with frequency and so is more interesting. Having demonstrated the 
linear relationship between \j/ and %, it is sufficient for us to examine the 
frequency-dependence of only one of these and in what follows we choose to con

sider %.

First, we will tackle the asymptotic values of %, then progress to its zeros and 
singularities. For very large values of X (i.e at high frequencies), we see from 
equation (6.18) that %—>0 • At the opposite end of the frequency spectrum, as X —>0 , 

we find that, dropping factors of r with respect to 1:

^0e ®pe
X  —> — z-------------

c 2 ( Y + Z )
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__ ®pe ̂ Oe
c2Y

_ B 0<$>'men 0e2

^QftQechom^B 0

= 4>'.

which is a refreshingly simple result after the complicated nature of the original 
expression. It seems physically plausible, particularly at low frequencies, that the 
quantities introduced by the inhomogeneity in the magnetic field should be related 
so simply to the field’s degree of rotation.

Again using the approximation r <sc 1, the denominator of % maY be written: 

X A- X 2{\ +Y (Y+Z)) + rY (Y+Z)(l+rY (Y+Z)),

so that the resonances of % are given by

2 x 2 = i+Y(y +z )± ( i+ r (Y+z))(i -  4rY(y+zV & L V + z & )h,
(1+7 (Y+Z))2

which may be approximated using the binomial expansion as: 

X 2 =1+Y(Y+Z) , X 2 =2 _ i , v/vj_7 \ rY(Y+Z)(l+rY(Y+Z))
(1+Y(Y+Z))

The frequencies defined by these expressions are very close to the upper and lower 
hybrid frequencies respectively and in the limit Z —> 0, % will share the resonances 
of the extraordinary mode which were shown in Chapter 5 to be:

QeQ i(<»*+aeQ()
“ 4 = Q -i+ tfe  and

COpe +

Figure (6.2) shows schematically the variation of % with co while Figure (6.3) illus
trates that the upper hybrid resonance is indeed a good approximation to one reso

nance of %.

The zero of % occurs when

X 2 = r2 Y2+r,

which may be rewritten in terms of the intrinsic plasma frequencies as.

co2 = co

Notice that this is of an analogous form to the upper hybrid frequency which 
pertained to electron motion. As a numerical example, consider B q — 0.1T and
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.  ^ 1 Q  r™n0 = 1019m 3. The ion cyclotron frequency is 9.58xl065_1 whereas the ion plasma 

frequency, of 4.16xl09s' \  is 3 orders of magnitude greater and so copt- = 0 is 
almost identical to % = 0. For these parameters, coih ~ 4.08x108j -1 and 
muh = l ^ x l O 1̂ -1.

7.1.2. E

The final new variable introduced in equations (6.16) and (6.17) is defined by: 

E =
c2 S 2V 

voeX 3r ( r 2- l ) 2

numS detS

where numS and detS denote the numerator and denominator of S respectively. It 
is clear from this expression that S has no physically significant zeros but has, 
however, four resonances. From our previous analysis, we recognise that these reso
nances will occur near Q{, Qe , <% and 0)^ , i.e. both cyclotron frequencies as well 
as the lower and upper hybrid frequencies respectively. As X  —> 0 and as X  -»
E—>0 from below. The resonances of E(co) are illustrated in Figure (6.4).

It is also of interest to consider under what circumstances E and % are equal, if at 
all. Non-dimensionalising using <J>', gives Xo = %!§' and E0 = E/<J)'2. Now

D To cdT ico D _  . co^ u  2

f c 2 S c2 S t f 2 b 'c2

Using the definition of Tj from section §7.1.1, we see that the function Xo-'-o ^as 
resonances near the ion and electron cyclotron frequencies and a zero where 
X 2( l - r+ r2) = r 2Y(Y  +Z). For r <  1 and Z < 7 ,  the latter expression simplifies to 
X 2 = r 2Y 2 which represents the ion cyclotron frequency. X o'^o therefore has both 
a zero and a resonance situated close together in the vicinity of the ion cyclotron 
frequency. (The resonance is due to Eq having a resonance in this region while Xo 
does not.) Although %o and E0 are closely related and indeed coincide at a specific 
frequency, it is equally possible for %o to vanish when does not, or for to 
tend to infinity when %o does not. We will use this information later when %o and 
Eq are required as input to determine the number of propagating modes in the sys

tem.
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7.1.3. R L / S

One variable which remains to be discussed is the one which is analogous to 
the extraordinary mode. It was remarked in Chapter 5 that although the right and 
left circularly polarised waves (R and L)  had resonances at the ion and electron 
cyclotron frequencies, the extraordinary mode (RL/S) did not because of a cancella
tion with identical terms in S . The situation has now been altered because of the 
introduction, due to the advective derivative, of the term in the denomi
nators of the dielectric tensor components. As a result, the cancellation which 
occurred before no longer holds and two additional zeros, each near a new reso
nance, appear in RL/S(co). None of these four features were present in RL/S (co). It 
should be borne in mind that the quantities R , L and S do not represent the natural 
modes in the inhomogeneous plasma but are simply convenient extensions of our 
previous notation.

S was defined in a previous section but will again prove most useful in our X , Y , 
Z notation:

COp
S = 1 -  2 —  P

s O  - a / + v 0* e A < j) ')

= (X2-Y(Y+Z))(X2- r 2Y(Y+Z))-(l+r)(X2-rY(Y+Z)) 
(.X 2-Y(Y+Z))(X2- r 2Y(Y+Z))

Expressions for R and L may be calculated from S and D to be:

c>2 (co+8 n ;
R , L  = 1 - 2 — p

0)̂ (CO + 8, flf ) 

co( co2 -  fly2+ v0s es Qs (j)')

_ 1 X 2±XY(l-r ) -rY(Y+Z)
(X2-Y(Y+Z))(X2- r 2Y(Y+Z))'

Taking all terms over the common denominator, we see that:

RL _ num(^) num(L)
S num(S)den(S)

which shows that the zeros of the function occur when the numerator of R or L 
goes to zero and that the resonances will be found when either the numerator or 
denominator of S vanishes. We have seen in the preceding sections that 
num(S) ~ 0 close to the upper and lower hybrid resonances. Also den(5) = 0 is 

satisfied when

X 2 = Y(Y+Z) or X 2=r2Y(Y+Z),
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which represent

co2 = Q 2+Qev0e§' and co2 =

Thus the remaining resonances of RL/S occur very slightly above the ion and elec
tron cyclotron frequencies. (Note that these frequencies are higher than the cyclo
tron frequencies since we have taken the direction in which the electrons flow in 
equilibrium to be positive and so both vge and — v0j- are positive). The zeros of R 
are given by

(X2- Y  (Y+Z))(X2~r2Y(Y+Z))-(l+r)(X2+XY(l-r)-rY(Y+Z)) = 0, 

which only factors easily under the approximation IZ l«  IY I, giving 

(X-Y)(X+Y)(X-rY)(X+rY)-(l+r)(X-rY)(X+Y) = 0 .

Since r  <  1, we may reduce this further to:

(X+Y)(X-rY)(X2-X Y-rY 2- l )  = 0,

with real zeros at X  = rY and the solution of X 2-X Y -rY 2- 1 = 0 , i.e. co = fll,- and 
co = CQfl which is what we would have expected from Chapter 5. Similarly, L has 
zeros near €le and co^. The zeros at the ion and electron cyclotron frequencies are 
not coincident with the respective resonances but occur very close by.

The asymptotic behaviour of RL/S is similar to that of RL/S . As X —» °o, 
RL/S  —» 1 and as X  —> 0,

RL rY(Y+Z)+l+r 
s  rY (Y+Z) '

Thus for high frequencies, the behaviour of the extraordinary mode and the new 
variation are identical, the most striking differences occurring in two small regions 
near the cyclotron frequencies. This can best be appreciated by comparing the 
schematic diagrams of Figures (6.5) and (5.3).

8. Solution of the coupled equations

This examination of the variation of % and RL/S with frequency, combined 
with our discussion of the dependences of A, completes the description of the 
behaviour of the coefficients in our pair of coupled equations. A clearly reflects the 
degree of rotation of the magnetic field whilst the remaining quantities contain in 
addition more complicated dependences on the ambient density, magnetic field 
strength and wave frequency and are not directly proportional to a single parameter.
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Since there is no need to write it out explicitly, the factor to2lc2 will henceforth be 
absorbed into the dielectric tensor components P, D, R,  £  and S. We proceed by
expressing all occurrences of y  as the product of x and -  A and rewrite equations 
(6.16) and (6.17) accordingly:

(1 — A%p, )EX +2(()A%fiv£,JC'+ (/>p,2+ -^ -v 2—(J/jcu^+Ev2)#
S x

= Ajoiv Ey "  -  (X -  f Ax(p2-v 2) Ey '-pv (/> -  - f x  -  H) Ey (6.19)
s

and

(1 -  Ax v 2 ) Ey " ~  2pv<)>'AxEy '+(/> v2 + p2 - f x v 2+ Sp2) Ey
s

= AxpvEx " + (X+ <!>'Ax(p2-v 2)) Ex ' -pv(/> -  -4>'x -  H) Ex . (6.20)s

8.1. Bloch’s theorem

Before calculating explicitly the solutions for Ex and Ey from equations (6.19) 
and (6.20), we will predict the general form of these solutions using information 
from other disciplines. Differential equations with periodic coefficients have been 
studied in other contexts for many years, although few have been completely 
solved. A close analogy to the current problem is that of waves propagating in a 
three dimensional lattice, which has long interested solid state physicists (Brillouin, 
1953). The equation for wave propagation in a one-dimensional continuous medium 
may be written:

-^ •+ F C c )y  = 0.
OX

When the function F , which has period tc in x , contains only a single cosine term, 
this equation becomes Mathieu’s equation (Mathieu, 1868; McLachlan, 1947). 
(Mathieu’s equation may be obtained from the elliptic cylinder equation by transfor
mation of the independent quantity z —»cos<j).) Floquet (1883) discovered that the 
general solution of Mathieu’s equation could be written as W = A (x) where 
A(x)  is also a 7t-periodic function and pi is a constant called the characteristic 
exponent (Whittaker and Watson, 1927). In practice, calculating the two values of 11 

which determine the two independent solutions is an extremely arduous task with 
special cases leading to the generation of a range of special functions also called 
after Mathieu. In one method of solution, a trial solution in the form of a Laurent

series, £  Ane i{̂ +2n)x, is substituted into the differential equation to yield a
n = -o o
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recursion relation for the coefficients. The exponent p. and the coefficients in the 
Fourier expansion may be calculated using continued fractions or from the solution 
of an infinite determinant. (Often, solution of this infinite determinant is facilitated 
by using physical arguments to set the majority of its entries to zero.)

In application to solid state physics, Felix Bloch (1928) proved the important 
extension of Floquet s theorem to three dimensions, viz. that the solutions of the 
Schrodinger equation for a periodic potential must be of the form:

Vk(r) = uk(r)eikr,

where « k(r) has the period of the crystal lattice.

Thus by analogy, we anticipate that the solution which we are seeking should 
be a travelling wave, modulated by a function with the periodicity of the medium 
through which it is propagating - arising from the periodic structure of the magnetic 
field.

8.2. Transformation of reference frame

In an earlier section, we argued the case for avoiding the formation of a 
fourth-order equation with periodic coefficients. Our policy must therefore be to 
find a way of solving equations (6.19) and (6.20) together. These coupled equations 
exhibit a marked symmetry and it is this property which we will exploit in produc
ing solutions. As we move between equations (6.19) and (6.20), we see that there is 
an interchanging of the direction cosines, p,2 becomes v2 (with sign changes in the 
coefficients of the first derivatives) and the products p.v still multiply the same 
coefficients except for one change of sign. Also the right hand sides of both equa
tion, which can be considered to be coupling terms, are of very similar forms.

Bearing in mind this symmetry, we introduce the variables

E+ = Ex + iE y and E_ = Ex - i E y (6.21)

which are complex conjugates and therefore contain a significant degree of sym
metry themselves. A similar technique is used in quantum mechanics where the 
angular momentum operators /+ and /_ are analogously defined from the com
ponents of the total angular momentum (Cassels, 1982). E+ and £_ are useful to us 
because they may be thought of as "following" the rotation of the field. In fact, this 
transformation of reference frame is probably the single most crucial factor in 
allowing us to find a simple analytic solution. In turn, this transformation is only 
useful because of the high degree of symmetry in the system and would not prove 

valuable in a much more general case.
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The quantities P and R L / S  will not often occur singly in further analysis but 
as part of their sum and difference and so we introduce the notation 
k = Vi(P + R L / S  ) and 5 = Vi(P - R L / S  ).

We now derive a new pair of equations from (6.19) and (6.20) expressed in 
terms of the new dependent variables E+ and E_. This set is also a pair of coupled, 
second order ordinary differential equations but has several advantages over the ori
ginal pair. No information is lost in this process. The two sets of equations are 
equivalent and solutions for either two dependent variables instantly provide the 
solutions for the alternative ones via algebraic manipulation of the definitions in 
equation (6.21).

In what follows, we use the familiar trigonometric identities:

cos2<{) = 1/2(1+ cos2(j>) sin2(|) = V̂( 1 — cos2({)) sin<j)cos(j) = Visinlfy,

and employ complex exponential notation, e±2t  ̂= cos2<})± i sin2(f).

To construct the equations in E+ and E_, we add equation (6.19) to the product of 
i and equation (6.20) yielding:

E +" — 4^ - (E +" + cos2<])£ )+ <|>'Axsin2<|>£ J + lMP -  ty'x)(E++cos2<|>£ _)

+ V4(4r- + E)(£+ -cos2<|>£_)s
A r L

= i-f-X-s\ril§E +i xE+ + i <|)'Axcos2(|)£_/ -  !A i (P — r--<)>'x-3)sin2<t>£_,
2 *->

which gives finally:

( l —^ ■ ) £ +" - a £ +'+ ( K - ^ - + f ) £ +

= ( A l E _"+ / i ^ l £ . ' - ( 8 - ^ - - | ) £ . ) e2'>. (6.22)
2 2 2 z

To generate our second equation in E+ and E_ , we subtract i times equation (6.20) 

from equation (6.19) to obtain:

( 1 - ^ ) £ _ " + ; x£ _ '+ (k - - ^ + - j )£ -

= ( AL E (6.23)
v 2 + 2 2 2

The variation in the coefficients has thus been divided into two distinct pans. 
Firstly, there is the obvious rotational coefficient expressed as a complex
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exponential of twice the angle which the magnetic field makes with the x — axis, i.e. 
the factor on the extreme right of equations (6.22) and (6.23). Secondly, there is 
also position dependence contained in several quantities (A, %, E, k and 8) because 
of <)/, which is present in its own right but, for (J) = 7tz//, <|>' is constant.

8.3. Homogeneous magnetic field

For very large scalelengths, when / —>«», (j>/ —> 0 and the odd order deriva
tives vanish, leading to the homogeneous dispersion relation as we will now 
demonstrate. When the gradient terms drop out, equations (6.22) and (6.23) reduce 
to:

E+" +kE+ = -  8E_ ( cos2(j) + i sin2<j)) (6.22a)

and

E_"+kE_ = -8 £ ’+(cos2(J)-isin2(j)). (6.23a)

By using the definitions of E+ and E_ given in equation (6.21), it may be readily 
established that Ex and Ey must satisfy:

Ex " + ( k + 8cos2<j> )EX = -  8 sin2<{) Ey , (6.24)

Ey "+ ( k -  8cos2<j) )Ey = -  8 sin2(j) Ex. (6.25)

Equation (6.24) may be rearranged to express Ey in terms of Ex and, since the
coefficients are now all constant, the second derivative of the y coordinate of the
perturbed electric field is simply given by:

V  = s ■-(E i1'+(K+ 5cos2<l))g / /) -y -  8 sin2<p

It now only remains to eliminate the y —components by resubstitution into 
equation (6.25). The results of this look more familiar when written in terms of 
direction cosines and the ordinary and extraordinary mode notation, bearing in mind 
that RL/S  will reduce to RL/S since <j/ = 0, where we have:

k+8cos2(|) = / 5h 2+ — v2 . k - 5 cos2<t> = P v 2 + p r V ?  > 5 sin2<t> = ( P - 1j - ) M-V,s
to yield the fourth-order differential equation describing the uniform system.

• n  \ r "  I ^>̂ - J p  _  f)E ? + ( P + —  )E x  +

This may be Fourier transformed to give the dispersion relation:
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k * - ( p +f )k? +£ f  = o,

which has solutions, k ?  = P  and k ?  =  which are the ordinaty and extraordi- 

nary modes respectively, as we would expect.

9. The dispersion relation

The substitutions E + = m e " > and E _ = n e ~ il> in equations (6.22) and (6.23)
yield

m ” ( 1 - - ) + im ' ( 2<j>'( 1 (k+V^'x+S) -  <|>'2( 1 ))
£ L 2

= n +„ (-^■i|)'2-&f!/2(<|)'x+S)) (6.26)

and

n ~ in '(2(|>'(1-A-^-) -%) + n (k+V2($'%+E) -  (f)'2( l—1̂ -) )

= m  " 4 ^ - + m  (•^■<|),2-&f ̂ (fz+H )). (6.27)

Earlier, we required that our magnetic field rotate round the vertical axis according 
to (j) = n z / l . This judicious choice of phase variation for the "co-moving electric 
field components" has led to cancellation of the phase dependence from the coeffi
cients of equations (6.26) and (6.27) - thereby removing the only remaining position 
dependence. We can now proceed to solve these equations in the usual way by per
forming a Fourier transform, since all the coefficients are constant, and thus our 
coupled differential equations become simultaneous algebraic equations. Taking 
m ~^aeiaz , and n ->beiaz produces two relations between the amplitudes of m
and n (i.e. alb , the actual values of a and b being determined by the auxiliary

conditions of the particular problem):

a ( - a 2( 1 —̂ L ) -  cr(2<(>'( 1 - -^ ) -x )+ k + 1'4(<I)'X+5;) - <I>,2( 1 ))2 2 *

= b (-tf2-̂ " -  ̂ J/2(f%+H)-H>'24 ^)»

and
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b ( - c 2( l—-£-) + a(2<|)'( 1 )~%)+k+i/2(({)/̂ +E)-())'2( 1 _ " ^ ))

= a (-o 2- ^ - - 6+1/2(({)/%-i-E)-k|)'2-^ -).
2 2

By cross-multiplication, we derive a quadratic in o2 which is our dispersion 
relation:

( l-A zJo4+ ( (Ax-l)(=+2<|>^)+Ax(K-S-fx)-2khoc(3<1>'-X) ) <̂ +

(K+5)(K-&H|)'x+H+Ax<|)'2) + f 4(l-Ax)-<|)'2((|),x+H+2K)=0. (6.28)

This was one of the many points where the algebraic manipulation language, 
REDUCE (1987), proved to be an invaluable aid. The four eigenvalues, Gj, which 
are the solutions of equation (6.28) thus provide the complete solution of our prob
lem. Once they have been calculated, the ratio of the amplitudes may also be deter
mined. In this way, we know m and n which are easily transformed into E + and 
E_. These are easily rearranged into the true components of the electric field and 
these, in turn, may be related back to any of the other original variables as they are 
required (i.e. ns , \ s , B, J).

In order to non-dimensionalise the dispersion relation and hence the eigenvalues, 
we now introduce a set of dimensionless variables which we will use in the 
remainder of this chapter. These include %o and H0 which were encountered before:

' - f  • A o _ < , , ' A  ■ E° - < ^  ■ Ko_ ^  • 5° ~  f

Similarly, a non-dimensional form of the eigenvalues may be obtained by defining 
s = c/<j)' and thus equation (6.28) becomes a quadratic in s 2 of the form:

as4+bs2+c = 0, (6.29)

where

a = (1-A qXo).

b = (AoXo“ 1)(^o+2)+^ oXo(ko_^o”Xo)_2ko+Xo(3“Xo)> 

c = ( k 0+ 8 0 ) ( k 0- 8 0+ X o + s o+ a oX o)+ 1 _ a oX o“ X o " - o " 2 k o-

We may therefore express s 2 as:

0 -b  , Vb2-4ac
r= —  x  - ■ ’.

2a 2a
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As explained in §8.2, the solutions for Ex and Ey may be written in closed 
form as soon as the solutions for £ + and E_ are known. Writing the four solutions 
of equation (6.29) as Sj (J = 1..4) and the four free parameters of the problem as

a.j, it is clear that m may be expressed as m = aj e i S j Also, n may be written

n ~ £  cj aj e 1 ’ where the Cj can be seen by inspection from one of the ampli- 
7 = i

tude relations to be expressible as: 

bi
cj  =  —

aJ

( 1— f ^ )  ^ +(2 ( 1- A o ' y ) -  Xo) i  -  Ko -  to (X o+ =o) + 1 -  — y

AoXo , , ,  A0Xo
- y - 1 2 + 8 0 -  lA (X o + = o ) --------—

A general form for Ex can be generated in the following way:

Ex = lA  (£ + + £ _ )

= V4 2 a > e “y* (e i* + c>e"i*) 
i=l

4
= Vi X  aje10;Z ((1+Cj) cos*+i (1 -Cj) sin<J))

7=1

a 4

7=1

where we have reverted to the independent variable z in the exponential part of the 
solution to emphasise that our solution simply represents a travelling wave of the 
usual form (e ̂ ) modulated by a periodic envelope. Thus the amplitude is not con
stant but is position-dependent, being controlled by the spatial rotation of the mag

netic field.

An expression for Ey may be found in a similar manner to be:

1 4 3 4E = —  y ^ tajZ ((l-c,)cos()) + /(1+C;)sin(|)) = ' £ Eyj- 
y 2i ~ x 1 7=1

This component of the electric field again demonstrates modulation by the 
rotating field, B0. The solutions have thus proven to be of the form predicted by

analogy to Bloch’s theorem.
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In Figure (6.6) the real parts of the electric field components are plotted over a 
range of z. We calculate Ez from the expression originally used to eliminate it from 
the components of the wave equation, namely.*

E* = +V&E V  + e31£x +%2Ey).

where the tensor elements were defined earlier. Differentiating the form of the solu- 
tion for Ex gives:

M

1=1

And similarly,

£ / =  ' t i o j Ey j +VEx .
j =1

Hence we may express Ez in terms of known quantities such as Ex and Ey:

The real part of Ez versus z is also plotted in Figure (6.6) and it may be seen that 
it is far from negligible. This situation is therefore very different from the one 
envisaged by Choudhury (1988) who chose to investigate modes with Ez = 0 in 
preference to others. In fact, the above expression for Ez indicates that it is unlikely 
ever to vanish.

10. Number of modes

In this section, we will work out how many real roots of the dispersion rela
tion there are for different parameter values. Although the dispersion relation 
possesses four solutions, we will refer to its two modes since the remaining solu
tions simply describe propagation in the opposite sense. Unlike the acoustic-gravity 
waves of Chapter 4, where the gravitational potential provided an energy source 
which led to all waves having an exponential envelope, we are interested here only 
in purely real solutions to equation (6.29) corresponding to propagating, undamped 
modes. We are thus concerned with a subset of all possible solutions to equation
(6.29) - the set of solutions which can pass through an infinitely long plasma 

without violating energy conservation.
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There may be 0, 1 or 2 real and positive solutions of our problem depending 
on the signs and relative magnitudes of the component parts of equation (6.29). 
The important quantities may be seen from above to be:

C l = - - £ a ,  C2 = b2-4ac , C3 = ( - l ) 2- ! 1?2- 4^ )  = £
2 2a; (2a)2 a '

The cases of most interest to us will be those where the theory for an inhomo- 
geneous plasma produces markedly different results from the homogeneous one - 
cases where there is a discrepancy in the predicted number of propagating modes. 
In particular, we will look for an increase in the number of propagating modes from 
homogeneous to inhomogeneous theory since for such cases we contend that the 
dispersion relation for the homogeneous plasma predicts not only an incorrect 
number of modes but does not permit the existence of a root which is in fact 
allowed. In addition to the possibility of altering the number of roots, it must be 
borne in mind that our full expressions for the electric field components will always 
be modulated by a factor due to the changing orientation of the magnetic field and 
dependent on the scalelength. Thus, even when the expected number of roots is the 
same, the solution has a fundamentally different form.

10.1. Effect of changing the scalelength, /

Keeping n, B 0 and <)>' fixed, we scan through a range of values for co evaluat
ing the wavenumbers of the ordinary and extraordinary modes (P and RL/S) and 
the equivalent inhomogeneous wavenumbers (a? and a^). If we cannot find any 
value of co for which there is a change in the number of roots, we repeat the pro
cedure with a smaller scalelength, i.e. increased rotational effect. Changes in the 
number of roots may be subdivided into two classes - class A being an increase in 
the number of roots from the homogeneous to inhomogeneous case and class B 
being a decrease. The general trends which emerge from this examination are as we 
would expect. As the scalelength is decreased and the magnetic field completes a 
revolution in a shorter length of plasma, deviations from the homogeneous case 
become increasingly apparent. As / decreases, the number of class B contradictions 
increases. Also, as / is decreased further, class A changes can be observed too and 
begin to predominate. As a concrete example, with 5 0 = 0.1T, n - 1 0  m , 
/ = 0.025m and in the neighbourhood of the frequency where RL/S = 0  near coL, 

we find
1) for co = 0.9542xcopg there is a class B contradiction; P <0, RL/S >0 but the 

squares of the solutions to the dispersion relation (6.29) are both negative. 
Where one root was predicted for a uniform plasma, we have no wavelike 

solutions in the inhomogeneous case.
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2) for co = 0.9607xcope there is a class A contradiction; P <0, RL/S >0 and the 
squares of the solutions to the dispersion relation (6.29) are both positive. 
Instead of the single root of homogeneous theory, we expect to find two pro- 
pagating modes when the magnetic field orientation is changing.

Because we must scan at finite frequency intervals, it is not possible to set exact 
limits on the scalelength above which no discrepancies will be observed. By con
tinual adjustment of the frequency selection, we could continue to refine our esti
mate of this limit ad infinitum, but as an approximate guide, we will quote the
results obtained for the same values of n, B 0 and frequency range as above. We
will discuss the reasons for concentrating on this particular frequency range, near a 
zero of RL/S ,  shortly. Testing frequencies at intervals of lO"5̂  (1.8x10V1), the 
limits of the scalelength prove to be:

no changes (class A or B) for / > 0.8m ,

no changes of class A for / > 0.029m .

In theory, we may consider as small a scalelength as we wish since our analysis is 
not dependent on small deviations from uniformity i.e. slow variation. The limit 
calculated earlier for IZ I <  IY I only concerns the validity of the approximations 
for the frequencies at which the functions % etc had zeros. The first real limit which 
we will set on / is that we do not wish the equilibrium velocity of the plasma to 
become relativistic. Thus we require v0e <0.1xc, say which imposes the restriction:

which requires, for example that / > 0.005m for B q -  0.1T and n -  1019m 3 .

10.2. Phase space curves

The three quantities Cl, C2 and C3, mentioned above, contain sufficient infor
mation to determine the attributes of a point in solution space - dictating whether 
the point represents both modes propagating, only one or neither. We may therefore 
divide a plot of solution space into regions containing different numbers of roots by 
drawing the limiting curves defined by Cl = 0, C2 = 0 and C3 -  0. The exact 
forms of these curves are expressed below as functions of %o an<̂  V  t0 drawn in 
Ko~5q phase space and attention will be drawn to the parameter values which lead

to singularities in any of the coefficients.
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Special case - AqXo = 1

The most obvious special case occurs when the coefficient of s 4 in equation
(6.29) vanishes. In this case the eigenvalues are the solutions of:

„ 2  _  A qX o~ 1 + X o+ S o+ 2 k 0 - ( k 0+ S 0) ( k 0- S 0+ X o+ 5 0+ A 0x 0)

( A o%o- 1 ) ( S o+ 2 ) + A 0x 0( k 0- 5 0- x 0) - 2 k 0+ X o( 3 - X o)

so that there can be at most one mode of propagation and there will be no 
undamped mode if the above expression is negative, i.e. if c and b of equation
(6.29) have the same sign.

Cl = 0

This is a straight line defined by

2 ((Xo-l)(5Co-2) + S0)
 ! £  ■

This formula applies whenever both A0, Xo * 0- Recalling the definition of 
A = VQe/Qe , we recognise that Aq will be zero if and only if (J)' = 0. In other words, 

A0%o = 0 for a rotating field only if Xo = 0- this case (%o = 0, A0 = anything), 
the line Cl = 0 becomes the vertical line Kq = -1  -Sq/2.

C2 = 0

This is a parabola defined by: 

where

d 2  = (AoXo-2)2’

<*! = 2xo(A 0Xo(AoZo+Xo-Ao(Kb+ s o )-1) +Ao(2Ko+3So )-2) _ 4 2 o. 

do =  a o X o k o + 2 k o ( a o X o (a oXo(4 + 2 o ) - X o ( 1 + a o)+ 2 X o - 2 o - 1 2 )+ 2 ( X o - 2 ) 2) +

= o ( = .0 ('A oXo_  1 ) 2+ 4 ( a oXo_ 1 ) ( a oXo_ 2 ) + 2 (Xo_ 1 )(X o_ 2 ) + 2 A oXo (4 “ a oXo” X o ) 4 ) ^

X^l+AoXXoCl+Ao^XoC^^H^HXofXo-8)-

If the coefficient of 8q in this equation is zero (i.e. AoXo — 2h tben curve 
C2 = 0 retains its parabolic shape but has the vertical axis as an axis of symmetry

since we may now write:

4Kn(Kn+yn+5n)+Ho(H0-2xo(Xo-1))-|'Xo( (Xo+2)(Xo- 2)2+Xo~8 )

5o = -----------------------------
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C3 = 0

Having already considered the special case of AoXo = 1, we may therefore assume 
that the denominator of C3 is always non-zero and so C3 = 0 at the points where 
c = 0. The curve C3 = 0 is then given by :

So-So (Xo(1 + A o) + S o) - k^ + K o(2 -X o(1+A 0)-H 0) + X o(1+A 0) + = 0 - 1  =  0.

This does not represent a parabola as might initially be expected since this qua
dratic factors easily making C3 = 0 true on a pair of straight lines with the equa
tions:

So = Ko+XoCI+AoHEo-  1 and 80 = -Ko+1.

Finally, we note that the points of intersection of the lines are common to all three 
lines because:

Cl = 0=>b = 0 C3 = 0 => c = 0

and

b = 0 , c = 0 => C2 = 0.

10.3. Number of modes

Depending on which of the three quantities Cl, C2, C3 are positive and which 
are negative, we may state the number of positive, real roots of equation (6.29). 
Expressing equation (6.29) as:

, - C l A  (6.30)
2a

we see that if C2 < 0 there cannot be a purely real eigenvalue and we say that there 
are no propagating modes. In order to determine which of the two terms on the 
right hand side of equation (6.30) is larger, we calculate:

For instance, if all three of Cl, C2 and C3 are positive then both modes of propa
gation are possible. If C3 alone were negative, the discriminant would be larger 
than the Cl term, forcing the "minus" root to satisfy s 2 < 0 and so there would be 
a single allowed mode. A complete list of the various possibilities is most easily 
demonstrated by the table below (where a "+" sign indicates a quantity greater than 

zero and indicates a negative one) :-



- 157-

C l c 2 C 3 No. of Modes

+ + + 2

+ + - 1
- + - 1
- + + 0
± - ± 0

Figure (6.7) shows a series of plots in Kq-Sq phase space with the limiting 
curves given by Cl = 0, C2 = 0 and C3 = 0 as shown, separating the regions con
taining 0, 1 or 2 real roots which are indicated by the labels 0, 1 and 2, respec
tively.

This diagram is parametrised by A0, %0 and S0. The four free variables of the prob
lem are n, Bq, co and (j)'. Using two of these to change the axes variables leaves us 
free to set two of A0, %0 and S0 and thus the final one is prescribed. Our choice of 
these variables will be governed by the values which arose naturally from the 
numerical calculations used to study the effect of changing the scalelength.

Figure (6.7a) shows the division of Ko-80 space for (j)' = 0, where the homogeneous 
dispersion relation predicts that there will be two real roots for P > 0 and RL IS > 0, 
one mode when only one is positive and no roots when both P and RL/S are nega
tive. (Note that to translate this graph to the more familiar P , RL/S space simply 

requires a rotation of 45° about the origin.)

In Figure (6.7b), A0 = l.OxlO-4, %o = and s o = 1-OxlCT2 which represents a 
reasonably long scalelength (/ = 0.1m for n = 1019m-3) and therefore a relatively 
small change from homogeneity. It can be seen that changes in the number of 
modes are most likely to occur along the main diagonals, k0 = ±50, corresponding 
to P  = 0 and RL/S =0 . This is why we selected co = coL in the earlier examples 
since, for the parameters chosen, RL/S has a zero very near co .̂ In fact, the zero of 
P lies at ~1.00027xco^, coL =0.95©^ and co* = 1.05©^ so that the neighbour
hood of the electron plasma frequency, containing these three zeros of P and RL /S , 
is likely to contain the bulk of the changes from the homogeneous case. Indeed, for 
these parameters, the regions where contradictions occur for comparatively large 
values of / are all found at the frequencies of the 5 zeros of P and r L I s  (frequen

cies which were identified in § 7.1.3).
In the following two plots, we consider the locations of two specific points in phase 
space and check that the number of modes which they indicate correspond to the 
predicted number of solutions calculated from equation (6.29). (For clarity, we
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force the inner regions of phase space to be of comparable sizes by avoiding very 
small values of the product AqX0, since this term occurs in the denominator of the 
curve C l -  0. This necessitates using extremely small scalelengths but these exam
ples are intended purely to be illustrative of the overall behaviour.)

Figure (6.7c) portrays A0 = 2.79, Xo = 0.26 and E0 = 0.42. Let us consider the 
point Kq — —2.8x10 , 80 = 2.9x10 2. According to the graph, this point corresponds 
to a single propagating mode for the inhomogeneous plasma. However, since this 
point satisfies P >0, RLIS >0, two modes could propagate under these conditions 
in a uniform plasma. That this is indeed a contradiction of type B may be checked 
by substituting these values of Kq and 80 into the definitions of Cl, C2 and C3 
which results in C3<0 and the others positive. Clearly from the table, only one 
mode may propagate. Alternatively, we may calculate the values directly, yielding:

p r
P -7 9  —~- = 3.6xl04 a 2 = -6.9xl03 a 2 = 9.1xl03,

u

which agrees with the other predictions.

Figure (6.7d) shows a similar situation but in this case we have chosen to highlight 
an increase in the number of roots from the homogeneous case. Here, A0 = 2.79, 
Xo = 0-36 and E0 = 0.49 and we are concerned with the point Kq = 3.5xl0-2, 
S0 = 1.05xl0~3 which lies in the section for two modes. Since P >0 ( P = 3.6xl03) 
but RL/S  >0 ( RL/S = -8.6xl05), the equivalent parameters would only permit one 
mode in a homogeneous plasma. Again, we check that both solutions of equation
(6.29) are positive:

a 2 = 801 a 2 = 31.

The remaining parts of Figure (6.7) show how altering the values of A0, Xo 
and Eq affect the topology of these diagrams. Their values have been assigned arbi
trarily in order to make the figures as clear as possible and have not been derived 

from specific choices of the physical parameters.

11. Summary

In this chapter we have made a natural progression from the discussion of 
Chapter 5 by considering the effect of inhomogeneity, through a rotating mag 
netic field, on the natural modes of perpendicular propagation in a cold plasma. The 
first effect on which we remarked was the introduction of a non-zero plasma 
current, which was required to balance the current due to the sheared magnetic 
field. We assigned this current to the motion of both ions and electrons by requiring 
that the nett momentum of the system remain zero - thus the bulk of the current is
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due to electrons moving at -  mi !me times the ion velocity.

This equilibrium current, in turn, coupled to the other system variables necessitating 
the inclusion of density perturbation effects and resulting in a more complicated 
Ohm s Law than for the uniform case. The resultant change in the dielectric (and 
other) tensor elements was accompanied by a frequency shift in the denominator of 
these terms - again an effect proportional to the equilibrium velocity. The equations 
for determining the electric field components were found to form a coupled pair of 
second order ode’s, but the periodic nature of the coefficients made solution by 
standard methods impossible. It was at this stage that a transformation of the elec
tric field components into an analogous pair, mimicing the rotation of the ambient 
magnetic field, was performed and this provided the key to the solution of the prob
lem. These constitute a more natural set of dependent variables for the system and 
solution from this stage was straightforward. The one restriction was the require
ment that (])' be constant.

The solutions of the equations appear to comply with all our expectations - their 
general nature being propagating waves modulated by a periodic envelope. This 
result agrees with the predictions extrapolated from Bloch’s theorem which applies 
to a periodic crystal lattice. As the scalelength of rotation decreases, the likelihood 
of a different number of real solutions arising in the inhomogeneous case than 
would be predicted by the homogeneous dispersion relation grows. This was 

demonstrated graphically and by numerical examples.

The waves which propagate in such a rotating magnetic field are obviously very 
different from the ordinary and extraordinary modes. Our analysis has demonstrated 
the danger of oversimplification in the study of nonuniform plasmas and of relying 
solely on extensions of conclusions derived in the homogeneous environment.
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x

Figure (6.1) Variation of the "spatially rotating1 magnetic field, showing its dif
ferent orientation at three selected positions and its constant magnitude.
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X

Figure (6.2) Schematic diagram of the variation of the quantity, %, with dimension- 

less frequency, X  = —
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Figure (6.3) Plot of the behaviour of X in the vicinity of the upper hybrid reso
nance, illustrating one of the resonances of X- (Parameters are fl„ = 0.1T, 

n = 1019m-3, for which co„/, = 1.7926x10 s .)
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X

Figure (6.4) Schematic diagram of the variation of the quantity, E, with dimension- 
less frequency showing that it has 4 resonances and no zeros.

RL/S

X

Figure (6.5) Schematic diagram of the variation of the quantity, RL/S, with dtmen- 
sionless frequency. (Contrast this with Figure (5.3) showing RL/S versus X)
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Z

- Z 5

Z

Figure (6.6b) Variation of the ,  and y components of the elecmc field with posi
tion in a cold plasma with a spatially rotating magnetic field. The top pair have

, u „,;r have. Z = 0 3m so that the length of the scalelength I = 0.5m and the bottom pair have i u.jm b
envelope changes between the two pairs. The amplitudes chosen. a , = 5, *2 = -  2.
u 3 = 4 and u 4 = 3, lead to more complicated structure than the symmetnc amph-

tudes of Figure (6.6a).



- 165 -

x l Q l

Z 7

xlOl
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Figure (6 6c) Variation of the z component of the electric field with position in a 
cold plasma with a spatially rotating magnetic field. The two graphs on the left 
depict / = 0.5m and those on the right. / = 0.3m. The top pair have the same 
amplitudes as Figure (6.6a) and those below the amplitudes of Ftgure (6.6b).
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OUS mi 1 1 n g r v e s

Figure (6.7a) Division of Kq-Sq space by the lines Cl = 0, C2 = 0 and C3 = 0 
showing the number of modes possible in each region. This diagram represents 
homogeneous phase space where the magnetic field is constant.
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I n h o m o g e n e o u s  L i m i t i n g  Cur v e s -  x= 0 . 0 0 ,  A= 0 . 0 0 0 1 , 2 =  0 . 0 1
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. . . . . . . . . . . . . . . . . . . . C3=0

Figure (6.7b) Division of k0 - 8 0  space by the lines Cl = O, C2 = O and C3 = 0
showing the number of modes possible in each region. This diagram represents a

small deviation from homogeneity.
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I n h o m o g e n e o u s  L i m i t i n g  Cu r v e s -  x= 0 . 2 6 ,  A= 2 . 7 9

KEY
ci=o

Figure (6.7c) Division of Kq-5 o space by the lines Cl = 0, C2 = 0 and C3 = 0

showing the number of modes possible in each region.
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I n h o m o g e n e o u s  L i m i t i n g  Cur v e s -  i= 0 . 3 6 , A =  2 . 7 9 , E =  0 . 4 9

80

m  *

KEY
Cl=0
C2=0

Figure (6.7d) Division of Kq-S q space by the lines Cl -  0, C2 -  0 and C3 -  0

showing the number of modes possible in each region.
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I n h o m o g e n e o u s  L i m i t i n g  Cur v e s -  x= 0 . 6 7 ,  A= 2 . 7 9 , 2 =  1 . 5 0

- .................................. m
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Figure (6.7e) Division of Kq—5q space by the lines C 1 = 0 , C2 = 0 and C3 = 0 

showing the number of modes possible in each region. The parameters for this 
diagram were chosen so that ~ 2, which is a limiting value beyond which the 

parabola C2 will be open to the left
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I n h o m o g e n e o u s  L i m i t i n g  Cu r v e s -  i-  1 . 0 0 ,  A= 2 . 0 0 , S= 0 . 0 0

5o

KEY
.  C1=0

Figure (6.7f) Division of Kq-8 q space by the lines Cl = O, C2 = O and C3 = O

showing the number of modes possible in each region. For A% = 2, the parabola

C2 is symmetric about the 80 axis.
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I n h o m o g e n e o u s  L i m i t i n g  Cu r v e s -  %= - 0 . 50,  A = - l .  5 0,  S = - l .  50

ta

KEY
Cl=0
C2=0
C3=0

Figure (6.7g) Division of space by the lines Cl -  0, C2 — 0 and C3 -  0

showing the number of modes possible in each region.
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Chapter 7 - Future Work

1. Possible future work

Having examined in detail the change in propagation characteristics of waves 
in a cold plasma with a spatially rotating magnetic field, we will now consider 
briefly how this analysis may be utilised and two ways in which it may be 
extended. We will indicate how these extensions may be included within the model 
but will leave the solution of the problems they pose to future investigations.

In Chapter 2 we discussed mode conversion and the need for a method which is 
better than the inverse Fourier transform technique for studying wave propagation 
in media with position-dependent characteristics. In this work we have derived the 
exact solution to the problem of waves travelling in a magnetised plasma where the 
propagation is perpendicular to the plane of the magnetic field but the orientation of 
the ambient magnetic field varies. Given the details of the field - its strength and 
variation with position - plus the plasma density, we can predict the behaviour of a 
wave of a given frequency and the values of the field variables at any point.

2. Application to mode conversion

One problem of great interest still remains - how much mode conversion 
would result from passing a wave through a plasma with the magnetic field 
described in Chapter 6? Because the system is of fourth order and therefore can 
support two entirely different wavemodes, the result of any mode conversion could 
be a wave of completely different form from the input wave instead of simply a 
reflection of the incident wave - the result of mode conversion in a second order 
system. The eigenvalues are known throughout the plasma, whether it be uniform or 
inhomogeneous, since they are defined by the plasma and magnetic field parameters 
at each point. Thus, in theory, any wave propagation problem in this context may 
be solved simply by calculating the steady state solution and from this determining 
how much, if any, of a secondary mode was excited by the passage of the incident 

wave through the inhomogeneity.

Because this is a true mode conversion problem with four solutions, representing 
both forward and backward propagating modes, it is highly complicated and is 
beyond the scope of the present thesis. Currently, work is being carried out in this 
area by Diver and Laing (1989), who are observing the change in a wave of
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initially prescribed wavenumber emerging from uniform plasma into a section of 
inhomogeneity and finally returning to a spatially-constant region. Initial results 
indicate that deriving the coefficients of reflection and transmission will require a 
great deal of effort and, although theoretically straightforward, this process will 
undoubtedly require considerable use of computer algebra in the extensive manipu
lations of the variables which is involved. Matching the derivatives (up to third 
order) of the variables at the boundaries between the homogeneous and inhomo
geneous regions provides sufficient auxiliary conditions to complete the specifica
tion of the problem. In an analogous way to quantum mechanical scattering, the 
reflection and transmission coefficients may then be calculated, although it must be 
emphasised that this is a far from trivial extension of "potential step" problems.

3. Changing rate of rotation - <j>" ^ 0

One natural method of extending the work of Chapter 6 would be to remove 
the restriction limiting the ambient magnetic field variation to a linear relationship 
with z. Thus (j)" would no longer be zero, causing repercussions throughout the 
analysis and introducing additional terms at the earliest stages. We now repeat the 
fundamental steps of the analysis of Chapter 6, assuming - (j)" * 0, to illustrate the 

influence of these new terms.

The continuity and momentum equations are unchanged from Chapter 6 (as 
are Maxwell’s equations) so that we may again eliminate the velocity in favour of 

the electric field and its first derivative:

(6.13)

where M and N are defined as before to be:

- /  co 0 e ^ ^ + v o ^ t '
M = 0 -ito  -e sn iy +v0l/  and N =

0 0 0
0 0 0

v Qgc v 0sy q

/CO /co

Recalling the definition of the equilibrium velocity of species s ,

B0 <J>'

Jnonoed * » , /« ,)  for electronSj it ^ ^ 5  clear that the ele-
where A, -  /me Mo" oe (1 +me /mi ) ions
ments of M which i n c l u d e  derivatives of the equilibrium velocity will now contain
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second derivatives of the field angle. Thus, although symbolically the 
Chapter 6 , certain elements of M may in fact be quite different, depending on the 
rate of change of the orientation of the ambient magnetic field.

In order to eliminate the perturbed density (ns = hq/ iaywszf ), we need to know 
vJZ' and so require an expression for the third rows of M"1 and M_1-N, since

3 l
me [(M 1)'E  + (M-1 + (M-1 -N)') E '+ M“1 -NE" ] z.

We must therefore calculate the determinant of M. Now, although <|>" * 0, the 
second derivatives cancel as before, leaving:

det M = i co (co2 -  O 2+ v0j £2S <|>').

There will, however, be a change in the elements of the matrices (M-1)' and 
(M- 1,N)' through the derivative of the determinant of M . These changes will result 
in alterations to the elements of the tensors relating the current density and electric 
field (cf. equation (6.14)), hence modifying the components of the wave equation, 
(6.15). Instead of repeating the appropriate tensors in full, we will write the wave 
equation as:

Vx(VxE) = -^-(e+e1)-E + ico^0((x-K1)-E'+p-E//), (7.1)

where 8, % and p are defined in §6 of Chapter 6. 8j and ij, which contain the addi

tional terms, are as follows:

(2T4- T 5)|iv -(2T4-T 5)p2 ^ ( T 2- ^ t - 2 T 6)

£i =
. V ¥(2T4- T 5)v2 -(2T4- T 5)hv i - ( T 2^ 7 - 2 T 6) 

0 0 0

where the ¥ '  terms have been grouped together in T4, T5 and T6, defined by:

t 4 =  E co2 ( co2 -  fl 2+ es £2S Vft, (])')2

t 6 =  Z -

, Tj = 2 '
Wp2A £V o j (t>'

CO 2f  ( CO2 -  £2 2+ £2S v0j f )

e>ps^n svl ¥ '

(e?-tl?+e,asv0s$y

It must be reiterated that, although these new quantities appear to be muit'p es 
each other, they are not. The summation over species forces us to separate the indi
vidual combinations of equilibrium velocities, plasma and cyclotron frequencies into



different groupings. Two further definitions are required for r  j:

t 7 = E '
s ox])'(to2- O 2+ esClsv0j<t>0 ’ Ts ?co(co2- n 2 + e j a j v0s(t,')2 ’ 

allowing x̂  to be simplified in terms of these new tensor elements to

Ti = Eq
2(T7- T 8)|i2 2(T7- T 8)(iv 0 

2(T7- T 8)pv 2(T7- T g)v2 0 

0 0 0

We may rearrange the third component of the vector wave equation (7.1) to elim
inate Ez in favour of the other two electric field components, using:

Ez = -  - ^ ( “ ( ( w A A ' + C W i ^ O + C e s A  + e 3 2^ ) ) ,  (7.2)

where we have removed the factor e0/j from the elements of x+Zi. Such a straight
forward elimination is only possible because the 3-3 elements of x+ij and p are 
zero, so that equation (7.2) does not contain any derivatives of the z -component of 
the electric field. Equation (7.2) must now be differentiated and the right hand side 
of this expression substituted for Ez in both remaining components of the wave 
equation. Two more terms enter into the analysis at this stage, arising from the 
derivatives of the elements of the modified dielectric tensor, e :

S ' = 2 £ -
®ps Ej V0,

( co2 -  £22 + Es Qs v0s (J)')'
= 2T0

and

D ' = - 2 2 co(co2- n 2+85^sv05(t)T
= - 2 T 10-

Fortunately, when we construct the coupled equations in Ex and Ey, we find 
that the T terms always occur together in one of two patterns. We may thus define 
two final quantities to encompass all the terms of order (j) , in the same way that 

we defined A, % and S to include all the <{>' terms:
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The two coupled, second order ode’s in Ex and Ey which are equivalent to 
equations (6.19) and (6.20) are then of the form:

(1 -  A%\i2 ) Ex + (2(j)'A%tiv+UiH2)Ex'+ (P |i2+ M lv2-  +Sv2+ ^  ̂  ̂
S

= A %\ivEy —(%—<}) A^(p,2—v^+U jjtv)^  ̂ +(—)nv (P — H)+U2|i2)£^(7.3)
s

and

( l-A x v 2 ) £ / '+ ( -  +
s

= AxHv£ /'+ (X + f  Ax(p2- v 2)-U ,pv)E/+f HV(E - - ^ - f x - 2 ) l - U 2v2)Ex, (7.4)
s

where we have absorbed the factor co2/c2 into P and RLiS. The terms Uj and U2 
occur in (7.3) and (7.4) in such a way that the symmetry of these equations has 
been maintained from Chapter 6. It is therefore possible to define E, = Er +iEvT x y
and E_ = Ex —iEy in the usual manner and to construct a pair of equations in these 
variables corresponding to (6.22) and (6.23). Adding equation (7.3) to the product 
of i and equation (7.4) gives:

(1 -  4 p )  E +"  -  (i x - y - )  E+'+ (K- • &  + f  + 1-Ht) E+

= ( ^ £ _ " - K i  - ^ - • y ) £ - / - ( 5 - - ^ - - | - i - Y - ) £ _ ) c 2i+. (7.5)

Subtracting the product of i times equation (7.4) from equation (7.3) yields:

(1 - - ^ - ) E J ’ +  <1 X + ■- y ) E J +  ( K - - ^ -  + - l - y . ) E_

=  ( - ^ E +" - ( i  + ̂ )  £ /  -  (5 -  ^  -  y  + i - y )  £ + )e~2i*. (7.6)

Clearly, the general form of these equations has not been altered, the sym
metry has been preserved and the exponential factors have been separated out as 
before. The situation does not appear to have changed from the comparable stage of 
Chapter 6. It is, however, at the subsequent stage of the analysis that our method of 
solution fails. In order to cancel the exponent terms e2t<t> and e ^  we define 
E + = m eii? and £_ = ne~^, but differentiating these substitutions twice will now 
lead to additional terms, since <j>" * 0. The coefficients of the resulting equations, 
unlike (6.26) and (6.27), will therefore be position dependent although the external
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phase variation (e±2li>) has been removed. This remaining spatial dependence 
makes this problem fundamentally different from the one which we were able to 
tackle successfully before. Even if <j)" were constant, (j)' would vary and a simple 
solution using a Fourier transformation would be impossible. The transformation of 
variables which proved crucially important in Chapter 6 has not made the pair of 
equations (7.5) and (7.6) any easier to solve than the set (7.3) and (7.4). We con
clude that an alternative solution method must be sought for this problem.

4. N on-perpendicular rotation - kx *  0

The final extension to the model of Chapter 6 which we will consider is the 
possibility of waves propagating at other than 90° to the plane of the magnetic 
field. Suppose we allow a nonzero component of the wavenumber in the x  -direction 
so that the wave is no longer purely perpendicular. The continuity equation will be 
altered because the gradient of the perturbed fields will now contain the factor kx , 

being of the form:

dns
dt

+ v0s-V«5 + rt0V-v5 = 0 ,

where nsi vs represent the perturbed density and velocity respectively while « 0 is 

the equilibrium density common to both species. Fourier transforming in time and 
the spatially-uniform x  -direction yields:

-  i co ns + vQsx ikx ns +n 0(ikx vsx + vsz') = 0, 

which may be rearranged to express the perturbed density in terms of the velocity:

+ o
i(G )-kx v0sx)

(7.7)

Note that this expression contains two new terms which depend on the horizontal 
component of the wavenumber. The momentum equation:

3vy
m (— + v 0s-Vvi + v;!-Vvos ) = ^ (E  + Vq̂ xB j + Vj XBo), 

will be altered similarly and may be expressed more clearly in tensor notation as:

Mvs = — (I+ P )E  + — NE',
m r

where

M =

-iuy+ikxVQsx 0 Bs ^lsy + v q ^
kx

0 v0 sy 0

0 ~i CO-H&JC V q ^  —  Ef Qjy V ()y y , P  = —CO
0 ~ v0a 0

—8S ^sx  co+ikx v q ^ 0 0 — v0sx
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and N is unchanged from §3.

From equation (7.7) we see that, in order to eliminate the number density, we 

will now require, not only the derivative of the z component of the first-order velo

city vector, but also its x  component. The determinant of the matrix M is:

de tM  = i (co - kx vt e )((to- kx v0s:t)2- Q 2+ £ 1 , v0jf )

and so we see that the frequency has undergone an effective Doppler shift: 

co—»co-A^vos*. When the current density equation,

J = E ^ ( « ov5 + ^ v05),
s

is evaluated in the usual way, the denominators of all the tensor elements will be 

changed accordingly. The 3-3 elements of the tensors x and p (which multiply E z 

and Ez "  respectively) will be zero, as in the cases considered previously. The third 

row o f p is composed solely of the third row of the tensor M_1-N multiplied by the 

z-component of the equilibrium velocity, which is zero by definition. Similarly, the 

last row of x contains a product with vQsz which vanishes and the remaining contri

bution to the 3-3 element of x comes from (M“1-N)3f3 which vanishes because the 

final column of N is zero. Clearly, the elimination of Ez will therefore be trivial, 

and the system could be expressed as a pair of coupled, second order ode’s in Ex 

and E y as before.

W e will not proceed beyond this point in the analysis since it is apparent that, 

ultimately, it will not be possible to reduce the differential equations to ones with 

constant coefficients. Even if (j)'' = 0, the coefficients of the differential equations 

will not be constant since they will include, at least, the factors kx vQsx = \xkx vQs 

and its derivative, -  vkx v0j. , which are both position-dependent. A further problem 

remains with the solution technique used before. The asymmetry of the system 

caused by the introduction o f the horizontal wavenumber component is likely to 

abrogate the usefulness of the transformation of the electric field components from 

Ex and E y to E + and £_. All in all, another method of solution will be required 

before the case of non-perpendicular propagation may be solved completely.

5. Conclusions

One popular solution method for coupled differential equations is that used by 
Cairns and Lashmore-Davies (1983). The first of the pair of differential equations is 

solved for one dependent variable, assuming that the coupling is negligible so that 
the "right hand side" of the equation may be set equal to zero. This solution is then 
substituted into the right hand side of the second equation where it acts as a driving
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term when this equation is solved. Finally, the resulting solution for the second 
dependent variable is resubstituted into the original equation. The accuracy of this 
method may be improved by successive iterations of this procedure which is there
fore easily performed by a computer. This method, of course relies on the equations 
being soluble in the first instance. It is also entirely unsuitable for the case in which 
the coefficients are periodic since it would be impossible to make any assumption 
of negligible coupling while retaining identical terms on the other side of the equa
tion. Equally, periodic coefficients can only be small in short sections of the plasma 
and will grow again until they cannot be ignored so that solutions valid for small 
coefficients are invalid over most of the plasma.

There are clearly formidable problems to be faced in solving wave propagation 
problems for inhomogeneous media. The acoustic-gravity waves of Chapter 4 were 
described by a second order equation which, although apparently simple, did not 
possess a standard solution. Many investigations of mode conversion and related 
topics have faltered at this hurdle. Often, the method has been to approximate the 
differential equation to one with an analytic solution, such as the Weber equation, 
but it is optimistic to assume that all problems of wave propagation can be 
described by this one equation. The limited number of differential equations with 
analytic solutions is a major difficulty in studies of wave motion. The alternative 
approach, via position-dependent dispersion relations was demonstrated graphically 
in Chapter 4 to be of limited validity.

In this chapter, we have considered two minor extensions to the model of 
Chapter 6 (which was solved completely and analytically) and have discovered that 
neither can be solved by similar methods. Had we attempted to model the exact 
magnetic field configuration of a tokamak or a region of the solar atmosphere, say, 
we would have been forced to incorporate even greater complexity and conse
quently would have had even less chance of deriving an exact solution. It was 
demonstrated in §3.1 of Chapter 6 that, under our equilibrium assumptions, the 
ambient magnetic field could not have a component in the direction of variation if 
this variation were to be expressible through a single independent variable. Thus, 
partial differential equation descriptions would become necessary for any more 
complicated magnetic field topology. It seems inevitable that progress can only be 
made in the areas described via some kind of approximation technique, but the 
results of any such approximation should be weighed carefully against the evidence 

available from analytic solutions of simpler cases.

This thesis has attempted to convey two principal ideas. First, local dispersion 
relation techniques cannot be relied upon to describe adequately the conditions in 
an inhomogeneous medium - cf. Chapters 2 and 4. Second, physical intuition is not 
sufficient to construct a physical model of an inhomogeneous medium - see, in
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particular, the early sections of Chapter 6. An accurate description of the propaga
tion of waves in inhomogeneous media is only possible through a compromise 
which combines a rigorous mathematical description with a thorough physical 
understanding. Neither can be wholly successful without the other and, because of 
the limitations of both, advances in this subject can only be made if they are used 

wisely.
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Appendix - Extension o f eigenvalue analysis to fourth order ode’s

In order to prove that the theory of Clemmow and Heading (1954) also applies 
to the case of fourth order ode’s, let us consider a general fourth order ode with 
spatially varying coefficients:

a (z )y lv + b ( z )y " '+ c (z )y " + d (z )y '+ e (z )y  = 0. (A .l)

In exactly the same way as equation (2.1) was written in vector notation, we may 
write (A .l) as:

y' = My = M

y
y '

(A.2)

where we now have

0 1 0 0
0 0 1 0
0 0 0 1

-e /a -d /a -c /a -b /a

M =

The eigenvalues of this matrix, which we again consider to be the eigenvalues of 
equation (A .l), X2, X3, X4 are the solutions of the polynomial

X4 + - X i + — X2 + - X + — = 0. 
a a a a

A suitable diagonalising matrix, A, can be constructed from the column eigenvec
tors corresponding to each eigenvalue where the i th column of A is given by :

1

Thus, when the transformation y = Au, is performed, the system of equations 

represented by (A.2) becomes:
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u' = A-1M A u - A-1A'u,

where the first matrix on the right hand side of this equation is, by definition, a 
diagonal matrix composed of the eigenvalues of M. The second matrix which 
represents the coupling has more complicated elements than its counterpart in two 
dimensions but maintains the symmetry about the main diagonal observed in the 
two-dimensional case. A diagonal element is defined by:

(A -1 AOfi = Xi v V  + Y - h r + I T T - >’
A A , , -  -  A.,- — A,[

where i,  j ,  k,  I e ( 1 , . . , 4 )  and an off diagonal cross-coupling term will have the 
form:

— Xk)(Xj ~ X , / )
fA_1A'V- = X-'------ — ----- — ------ --------
1 }'j '  (Xi -'kj)(ki - X k)(ki - X l ) '

We notice immediately that by setting X3^  equal to zero we retrieve the cou

pling matrix for two dimensions, derived in Chapter 2. The off-diagonal terms 
which determine the coupling between different modes share the same dependences 
which were observed for the 2x2 case. The larger the variation of an eigenvalue, 
the more strongly does it interact. Another attribute of the coupling which seems 
physically reasonable is that the coupling of, for instance, to increases as 
these two eigenvalues become closer together and also as X2 gets further away from 

the remaining two eigenvalues.

The form of the coupling matrix in the 3x3 case may be deduced easily from 
the definitions of the A-tj . Similarly, it would seem that this system of identification 

of modes should apply to all higher orders of equation with the interaction between 
modes being regulated in a similar manner and we postulate that the coefficients 

would have the general form:

i  n * .  j{Xj ~Xic')
ab= v z t 4 t  and Aij = j n n  r rk * i  * 7  A ( X i  - X [ )
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