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ABSTRACT

The calculation of the nucleon-nucleon interaction from quantum 
chromodynamics is a problem which has been received a great 
deal of attention in recent years. Many studies have been made on 
the assumption that nucleons are composed of exactly three 
quarks bound in colourless triplets and that the N-N interaction 
arises from the exchange of gluons between quarks in different 
nucleons. It is now clear that this model can not account for the 
long range attractive part of the interaction which is responsible 
for nuclear binding and these long range forces arise from the 
exchange of colourless mesons, namely quark-antiquark pairs.

As a first step we have extended the simple 3q-model of the 
nucleon to include the presence of quark-antiquark pairs. 
Antiquarks are viewed in our model, as excitations from a filled 
sea of quarks. The numerous interactions between particles are 
handled by a version of the Glasgow nuclear shell model with 
colour and intrinsic parity added.

We first obtain values of the model parameters which 
reproduce the observed mass of the nucleon and give a quite 
reasonable value of the N-A mass-difference in the present 
extended quark model. We then calculate the magnetic moment, 
root mean squared mass and charge radii and charge density of the 
proton and neutron.

The present model predicts that the components of the 
internal wavefunction of the nucleon with configuration (q4q) 
contribute 13-14 % and 4.1-5.3 % to the total values of the 
magnetic moment and root mean squared radii of the nucleon 
respectively. The charge density of the neutron calculated in the 
present model predicts the charge mean square radius of the 
neutron to be negative.



CHAPTER 1

INTRODUCTION

The study of nuclear structure has been the subject of many 

experimental and theoretical investigations since the discovery of 

the atomic nucleus by Rutherford [1] in 1911. With the discovery 

of neutron [2] in 1932, nuclei were known to consist of protons 

and neutrons. Protons and neutrons are collectively called 

nucleons. The nucleus is, therefore, treated as a system of many 

nucleons which are bound together by the strong interaction.

To study the observed properties of the nucleus many nuclear 

models hav’e been suggested. Two types of nuclear models [3] 

namely microscopic models and collective models have been 

widely used in theoretical investigations. In microscopic models 

the nucleons are assumed to be inert, rigid and structureless 

particles moving in specified orbits. But the collective models 

ignore the nucleons entirely and describe the overall shape of the 

nucleus. Since the microscopic models could explain some aspects 

of nuclear structure successfully, for a long time it was thought 

that the nucleons are inert and structureless particles. But some 

experimental data of nuclear structure can not be explained on the 

assumption that the nucleons are elementary structureless 

particles.

The field of nuclear structure is strongly connected with the 

nuclear forces because the structure-characteristics of a nucleus 

should be understood in terms of basic interactions between pairs 

of nucleons.
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In a nucleus, since the neutron is uncharged and the protons having 

alike charge repel each other, there must be some special 

interactions between nucleons, so-called "nuclear forces" which 

keep the nucleons together within the nucleus. Scattering 

experiments show that these interactions are strong interactions 

which are repulsive at short range (r<0.6 fm) and attractive at 

medium and long ranges (r < 2 fm).

In 1935 Yukawa proposed a theory [4], the so-called meson 

theory, according to which he assumed a meson field as the 

mediating field for nuclear forces and postulated a new particle " 

the pion (7t-meson)" as a carrier of the nuclear force. The pion was 

discovered experimentally by Powell and co-workers [5]. Since 

Yukawa's meson theory in 1935, meson exchange has been accepted 

as one of the mechanisms giving rise to the nucleon-nucleon 

in teraction.

In some ways, the nuclear force resembles the chemical force 

between atoms and like the chemical force, it is not the 

fundamental force but it is a resultant and relatively complicated 

manifestation of more fundamental forces acting within the 

nucleon and connected with its internal structure.

The discovery of the short-lived excited states of the nucleon 

e.g. A-states, and the scattering of electrons by nucleons provided 

evidence for the sub-structure of the nucleon.

In 1964 Gell-Mann [6] and Zweig independently proposed that 

hadrons are composite particles with quarks as their constituents. 

Quarks are spin-1/2 fermions and their wavefunction is specified 

by the usual degrees of freedom such as spin, flavour (analogous to 

isospin) with an additional degree of freedom "the colour charge"
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which has been assigned to the quark to allow the Pauli exclusion 

principle to be satisfied. Quarks are assumed to be coloured 

particles with red, green or blue colour charge. Quarks can never 

exist in an isolated state although baryons and mesons can. All 

observed hadrons exist in colour singlet state i.e. in colourless 

state. The hadrons, strongly interacting particles, split into 

particles of different spin types, half integral spin particles 

called baryons and integral spin mesons. The baryon and meson are 

composed of three quarks and quark-antiquark pair respectively 

[7]. This model of hadron's structure is referred as the quark 

model. Soon the quark model assumption was supported by the 

analysis of data obtained from high energy inelastic electron 

-proton scattering experiment [8] which revealed that protons are 

composite particles.

In the simple quark model the nucleon is constructed from 

three quarks, i.e proton and neutron have uud and ddu 

quark-structure respectively [7]. Since quarks are fermions, the 

overall wavefunction of the nucleon must be antisymmetric. 

Therefore the nucleon if it is to exist in a colour singlet state 

should have antisymmetric colour wavefunction and symmetric 

spatia l-sp in-isospin  w avefunction to obtain an overall 

antisymmetric wavefunction.

Deep inelastic scattering of leptons by nuclei or nucleons [7-9] 

and the EMC effect [10] confirm that the nucleons are composite 

particles and they can no more be considered structureless rigid 

elementary particles.Their structure and the forces between them 

can be studied in terms of interactions between their constituent 

quarks on the basis of a theory, the so-called Quantum
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chromodynamics (QCD) [7,11]. QCD, a non-abelian gauge theory 

built on SU(3) colour symmetry is a theory of colour forces 

between quarks. The force between quarks is thought to be 

transmitted by the family of eight massless vector bosons, called 

gluons described by the eight X a of SU(3) [7]. Their role is 

analogous to the role of photons in Quantum-electrodynamics 

(QED) [12]. Since quarks are constituents of hadrons, the QCD 

which binds quarks in hadrons is believed at present to be a theory 

of strong interactions. Many attempts have been made to 

understand the single baryon's properties [13-20] and baryon 

-baryon interaction [21-40] mainly in terms of QCD motivated 

phenomenology.

It may be expected that the internal structure of the nucleon 

plays an important role in connection with the nuclear force and 

specially in its short range part when the two nucleons overlap 

with each other. Therefore a good model of the internal structure 

of a nucleon is the prerequisite for achieving a proper 

understanding of the nucleon-nucleon interaction.

A number of models have been proposed to describe the internal 

structure of a nucleon, among them we have potential models [13], 

the bag models (such as MIT bag model [14], soliton bag model [15] 

and hybrid chiral bag models [16] i.e. cloudy bag model [16a] ) and 

Skyrme's model [17] and its versions with vector mesons [18].

The 3q-potential model studies of the single nucleon's structure 

has been fairly successful. The (3q)-(3q)- potential models of the 

NN-scattering can describe only the extreme short range part of 

the nuclear force [20-36] and fail to explain the other parts 

because of the lack of mesonic character responsible for the
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medium and long range attractive parts of the NN-interaction.

The most successful type of the bag models is the MIT bag 

model. In its simple version, the MIT bag model [14] treats the 

baryon as three non-interacting relativistic quarks confined in a 

static spherical cavity. It gives generally good results (but not 

close to the observed values) for energies, charge radii and 

magnetic moments. A serious drawback of the MIT bag model is 

that it does not allow the pion's emission and absorption by a 

nucleon and hence can not provide any one pion exchange potential 

between two nucleons which is important as has been pointed out 

by the extensive analysis of NN-interaction. Pionic effects must 

be considered for the explanation of the long range potential 

between the nucleons.

In the cloudy bag model [16a] the quarks in the MIT bag model 

are surrounded by a cloud of pions. The values of charge radii and 

magnetic moments predicted by this model are better than the 

values predicted by the MIT bag model. Its predicted values are in 

good agreement with the experimental values.

Similarly all the models, in which the internal quarks of the 

nucleon are coupled with external meson fields, provide good 

description of the single nucleon' structure but the description of 

NN-interaction is not complete.

A detailed review of the studies of the single nucleon's 

structure and NN-interaction in terms of the above models has 

been given in references [19,20].

Since the nuclear force i.e the nucleon-nucleon interaction is 

one of the most fundamental subjects of nuclear physics, it has 

been studied exhaustively. Many investigations have been carried
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out to study the nucleon-nucleon interaction in terms of the 

nucleon's internal structure models mentioned above among which 

the potential models [22-30] and the bag models [20] are very 

common.These models are successful in producing quite reasonable 

values of the nucleon's properties such as masses, charge radii and 

magnetic moments but could not explain the nucleon-nucleon 

interaction precisely. In most of these studies the short range 

part of the NN-interaction has been studied [21-33]. The short 

range repulsion of the nuclear force can be described as a 

quark-exchange force with appropriate qq-interactions. In fact the 

range of quark-exchange interaction is determined by the size of 

the nucleon because the exchange-process demands that the quark 

wavefunctions of the two nucleons overlap with each other. The 

size of the nucleon is of the same order as the range of the 

two-pion exchange that is most important for the nuclear binding 

and is larger than the short range of the nuclear force.

The confinement property of QCD suggests that the colour is 

strongly confined in a small region typically within <1 fm. The 

gluon, being a coloured quantum, is also confined in colourless 

system and therefore gluon exchange among valence quarks would 

not be able to explain a long range nuclear force. It means that the 

meson exchange potential should necessarily be introduced to 

explain the medium and long range of the nucleon-nucleon 

in teraction.

In previous quark model studies either the mesonic degree of 

freedom is entirely neglected [13-14] or the quarks and the 

mesonic fields are treated as separate entities [16]. These models 

are rather unsatisfactory as the mesons and nucleons are treated
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in different ways. It is very desirable to develop a unified model 

in which the quark-structure of the meson is treated on the same 

basis as the structure of the nucleon.

Soon after the present work was begun, an attempt for 

proposing more convincing quark model of the hadron's structure, 

was made by Fujiwara and Hecht [37-40] with a philosophy that a 

model in which baryons and mesons are described in terms of their 

common constituents (i.e. quarks and antiquarks) should be 

preferred. They extended a simple 3q-model of the single nucleon 

by incorporating the quark-antiquark excitations generated by 

quark-gluon interaction directly into the model space and obtained 

an improved single nucleon wavefunction including (3q)(qq) 

-components in addition to the dominant (3q)-components given

Their extended quark model uses quark-quark interaction which is 

a combination of quark confinement potential (quadratic type) and 

one gluon exchange potential through the colour analog of the 

Fermi-Breit interaction. The full Breit quark-gluon interaction 

[37] includes the five types of terms shown below.

[38] by

¥  = a v 0 (3q) + X  ((3q)(qq)) (1.1)
a  *  0

0) (2) (3a) (3b) (4a) (4b) (5)

^ i n t “  H q q  +  H q q  +  ( H q q * r H q ^ n i )  + ^ H q ^ q q q W H q ^ q A + ^ H ^ ( q q , 2

'  + c.c. '  ♦ c.c. '  +c.c. 

Fig. 1.1 The full Breit interaction hamiltonian.
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The qq-interaction includes tensor and spin-orbit terms [27,28] 

but these terms have been omitted in ref. [37] mainly for 

simplicity and also because their investigation is restricted to 

S-wave scattering.

The qq-interaction used by Fujiwara and Hecht [37] is given by

Here, and in all following work, the k(a) are the eight generators of 

SU(3) colour, a denotes the Pauli spin matrices and ry= r\ - rj when 

the position of particles i and j are r-{ and rj respectively. a s is the 

coupling constant of the gluon-exchange interaction, m is the 

mass of a quark, is planck's constant and c is the speed of the 

light. The last term is a phenomenological confining potential.

The (3q)(qq)-components of the single nucleon wavefunction (1.1) 

is generated by the (qq)-pair creation interaction (type (4a) of 

quark-gluon interaction shown in fig. 1.1) namely, the transition 

potential which has been discussed in connection with baryon 

-meson coupling constants by Yu and Zhang [41]. In non-relativistic 

approximation, having ignored the terms involving 1/c2, the 

transition potential is

Hnn = /  V.. where the two body interaction V.. is qq w  ij 7 ij
i<j

^ V 8( r i i) l 1i ( a i - V l j -  ( X r t y O c

q->qqq

Here " 1 " denotes a sea quark, "2" denotes a valence quark. The 

unit vector (i.e. the direction vector) is given by



The extended quark model of Fujiwara and Hecht [37-40] uses the 

same set of parameters as usually used in quark models, the 

oscillator length parameter b, the quark-gluon coupling constant 

(QCD analog of the fine structure) a s and the strength constant of 

phenomenological confinement potential ac. The choice of the 

parameters has been made consistent with the single nucleon’s 

physical properties.

Fujiwara and Hecht studied the effects of (q4q)-configurations  

on the nucleon-nucleon interaction and the ground state of a 

nucleon within the framework of the resonating group method [37]. 

In this study, as a first step they included only qq-excitations into 

the model and ignored q2q 2 and other higher excitations for 

simplicity. The results of their calculations are quite encouraging. 

The model predicts that the repulsive core heights predicted by 

(3q)-(3q) models of NN-scattering are largely reduced and the 

qq-excitations produce effective potentials with w eaker 

attractive part in 0.8-1.5 fm range. The nucleon's charge radii and 

magnetic moments predicted by the extended quark model [37] are 

quite reasonable . Their values include relativistic corrections.

Fujiwara also applied the extended quark model to the octet 

baryon (B8) and B8-B 8 interaction [38]. The parameters were 

reevaluated and for ms= m u=m d the common value 928 Mev was 

obtained for the B8 energies. In spite of smaller amplitude of 

(3q)(qq)-components in the nucleon's internal wavefunction, their 

contributions to the single nucleon's properties and also to the 

NN-interaction are significant. They contribute 40-45 % of the 

total magnetic moments of the octet baryons [38].
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In a second step towards their goal, Hecht and Fujiwara further 

improved the single nucleon's wavefunction in which the dominant 

(3q)-components are augmented by (3q)(qq)-components generated 

by interactions of type (4a) as well as (3q)(q2q ^ -co m p o n en ts  

generated by the interactions of type (5) of the quark-gluon 

interaction shown in fig 1.1. With this improved wavefunction of 

the single nucleon, they studied the NN-interaction within the 

framework of resonating group method [39]. These studies provide 

improved information about the nuclear force. The main 

characteristics and the features of the nucleon-nucleon  

interaction in terms of the extended quark model are summarized 

in table 2 of reference [39b].

Having given a brief review of the quark-structure models of 

the single nucleon in general and of the extended quark model 

[37-40] of a nucleon's structure and the NN-interaction in 

particular, we shall now talk about the important features of the 

present investigations.

Our present study is motivated mostly by the encouraging 

results of the extended quark model of a nucleon [37-40] proposed 

by Fujiwara and Hecht. The description of our model used in the 

present work is as follows.

We extended a simple (3q)-model of the single nucleon with 3 

valence quarks in OS shell by assuming three filled shells 0S1/2, 

0 P 1/2 and 0P3/2 occupied by 48 ghost quarks below the lowest 

positive energy state ( with E=0 i.e. Fermi level ) forming a sea of 

ghost quarks analogous to the Fermi-Dirac vacuum of negative 

energy states all filled with fictitious electrons. It should be 

noted that ghost quarks are assigned negative intrinsic parity. The
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real space also expands to include all 36 single-quark states of OP 

shells in addition to 12 states of OS shell. But all states are 

empty except 3 occupied in OS shell. Overall 96 single-particle 

basis states compose our model space. Here the single-particle 

state is specified by the set of usual quantum numbers n, I, j, m, f, 

c [36] with one extra quantum number of intrinsic parity 

(designated by "h" for real quark and "g" for ghost quark) for 

distinguishing real quarks from ghost quarks.

To study the wavefunction of a nucleon we consider three 

quarks (i.e. two u-quarks and one d-quark in case of proton and two 

d-quarks one u-quark in case of a neutron) in the 0S 1/2 real shell 

and the sea shells all to be filled at the beginning. In an assumed 

sea, there are equal number of u-quarks and d-quarks with equal 

numbers of each colour.

To include the mesonic character into the internal wavefunction of 

a nucleon we generate quark-antiquark excitations into the 

wavefunction. These excitations are generated by exciting quarks 

from filled-shell sea of ghost quarks into the real space. This can 

be done by applying qq-pair creation interaction (type (4a) of fig 

1.1) namely the transition potential Vq_,qq  ̂ (given in equation1.3) 

between pairs of quarks, derived from O .G .E theory [42]. 

Q uark-antiquark excitations inherent in the quark-gluon  

interaction can be understood as a result of sea quark effects [41] 

in which a quark-antiquark pair is produced by one gluon exchange 

as shown in fig. 1.2(a). The mechanism (a.1,2) of fig 1.2 has been 

used in the model to create qq-terms in the quark-structure of a 

nucleon.
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■'WV

a)

b)

A
' V W

A A A
/w y >

( 1 ) (2 ) 

X^->qqq q-»qqq

(qtj)-pa ir creation interaction.

IA 1{ A
A/W~ j

A ' v A
AAAri

A
qq

qq-interactions.

- Vqq

7\ n
(3 )

Vb-»^qt|

I I
A A
W \A r!
A A
I I

Vqq

Fig. 1.2) Interactions between quarks. In these diagram, a continuous line

represents a real quark and a broken line represents a ghost quark.

As a result of the transition potential acting between a real quark 

and a ghost quark when a ghost quark gets excited to occupy a 

positive energy state available in a real shell, a hole is created 

due to an absence of quark in that particular sea shell. This is 

obvious from interactions of type a(1) of fig. 1.2. The transition 

potential changes the nature of ghost quark and converts it into 

real quark and so increasing the number of real quarks in the 

valence shell. Conversely it may also happens that the transition 

potential acting between two real quarks de-excite one real quark 

to occupy a negative energy state if available empty in the sea as
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clear from interaction of type a(2) of fig.1.2. This decreases the 

total number of quarks in the valence shells. In order to conserve 

parity, it must be remembered that in our model, valence and sea 

quarks have opposite intrinsic parities and so the excitations of 

quark from OS sea shell can take place to OP real shell and the 

quark from OP sea shell to OS real shell. These excitations give 

rise to (0S)3 (0P )(0S ) and (0 S )4 (0P) types of shell model 

(q4q)-configurations which introduce (3q+qq)-components into the 

internal wavefunction of the single nucleon in addition to the

(3q)-components.

A number of excitations of types qq, q2q2, q3q3, . . . qnq n can 

take place. These excitations also include the excitations due to 

self polarisation of the filled-shell sea of ghost quarks analogous 

to the Dirac's vacuum self-polarisation. If we allow all the

excitations then it will be impossible to manage such a large 

number of states and the calculation will be too big to handle.

To avoid such problems, we have switched off the interactions 

of type a(3) of fig 1.2 between ghost quarks in the sea and 

allowed the interactions of type a (1) between a real quark and a 

ghost quark and interaction of type a(2) between two real quarks. 

Quark-quark interactions of types (b) of fig 1.2 are used to act 

between every pair of quarks whether both are real, one real and 

the other ghost or both of them are ghost quarks. We have used the 

same qq-interaction as used in ref. [37] and shown in equation 

(1 .2 ).

For simplification we also managed to generate only qq-

excitations and did not incorporate q2q 2 and other higher

excitations into the quark model of the single nucleon.
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In our model of the present investigations, we considered a 

nucleon as a purely many-quark system of 51 quarks with at least 

3 quarks in OS valence shell and at least 47 ghost quarks in 

assumed sea representing a filled-shell core with one quark 

missing. The single nucleon's wavefunction , therefore, contains 

(3q)-components obtained from shell-occupancies with 3 valence 

quarks in OS shell plus filled core and (3q+qq)-components 

obtained from the shell-occupancies with 4 quarks in real shells, 

at least 3 in OS shell plus core with one quark missing. We 

obtained the improved wavefunction of the single nucleon of the 

form as given (1.1). We have not included the intrinsic quantum 

numbers of the antiquark directly into the nucleon's internal 

wavefunction but have used the hole representing the absence of 

one quark in an assumed filled-shell core which represents an 

antiquark in 51-quark system. Our model represents a nucleon as a 

many-quark system with mesonic character as clear from the 

above discussion of our model.

In the present study we have incorporated the quark-antiquark 

excitations into the simple (3q)-model of the single nucleon to 

study the effects of such excitations on nucleon's structure and 

static properties using Glasgow shell model techniques.

The plan of the thesis is as follows:

In the current chapter 1 we give a brief review of the previous 

studies of the nucleon's structure and the nuclear force and 

describe the model used in the present study of nucleon's 

structure. Since we have performed our calculations in terms of 

the extended quark model of the single nucleon (described above) 

in conjunction with the Glasgow shell model programme, we
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discussed the shell model computational techniques [45 ] in 

chapter 2. A short review of the shell model is given at the 

beginning of the chapter. We describe the basis states of the 

model. To store and locate the single particle occupied states in 

the computer memory we have introduced a colour code technique 

instead of using bit mapping because bits in the computer word 

are insufficient to accommodate large number of single quark 

states in the present calculations. The locations of the single 

quarks in a many-quark state are constrained by the colour codes 

condition R<G<B. This constraint almost removes nearly all the 

coloured states. The hamiitonian used in the present many-quark 

system is given in table 4.3. To obtain eigenvectors and 

eigenvalues of the energy matrix element, we used the Lanczos 

iterative method of tri-diagonalisation. The Lanczos algorithm is 

described in section (2.6). Dealing with many-quark system, the 

shell model calculations come across the problems of spurious 

centre-of-mass states and coloured states. We talk about these 

problems in sections 2.5.2 and 2.5.3. The last section of chapter 2 

includes the procedures of computation of the electromagnetic 

properties such as magnetic moments, charge radii and charge 

density of the single nucleon.

Since the shell model requires all the information about the 

hamiitonian in terms of pre-calculated two body matrix elements, 

we evaluated the required matrix elements by the procedures 

described in chapter 3 and appendices A and B. In chapter 3 we 

discuss the procedure of evaluating matrix elements of the 

transition potential (1.3) in accordance with the scheme given in 

fig 3.1 and in appendix A we calculate the orbital matrix elements
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and reduced matrix elements using generating function, properties 

of the binomial theorem, gamma function and associated Laguerre 

polynomials and theory of angular momentum. Reduced matrix 

elements of the pauli spin operators appearing in evaluation of 

matrix elements of the potential (chapter 3) are evaluated in 

appendix B.

In chapter 4 we first discuss the procedure used to work out 

the single-particle energies for different shells and energy of the 

core and then describe the choice and selection of model 

parameters. The results of the present calculations and their 

discussions are the main contents of chapter 4.

The present work has been concluded with recommendations for 

future work in chapter 5.

Some of the present work has already been reported in Nuclear 

Physics Conference at Manchester [43].
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CHAPTER 2

GLASGOW SHELL MODEL TECHNIQUES

2.1 INTRODUCTION.

There have been significant conceptual and technical 

developments in the nuclear shell theory. A number of theoretical 

approaches to the shell model calculations have been developed by 

the nuclear theoretical physicists.The shell model calculations are 

conceptually very simple, just construct the hamiitonian matrix 

and diagonalise it to obtain the eigenvalues and eigenvectors. The 

complexity, of course, arises when there are many active particles 

or active orbits and the number of states becomes so large that 

the calculation gets too big to be handled. To avoid this problem 

one has to keep the restriction of the configuration space to a 

manageable size by making approximations in the form of basis 

truncations. But if we make the truncations then it is difficult 

for us to know whether the inevitable discrepancies between 

calculation and observation are due to the interaction being used 

or due to the truncations. Therefore, it is always desired to do 

calculations which are as free of approximations as possible to 

try to separate the effects of the force from those of the basis. A 

new numerical approach different from the conventional shell 

model approaches was advocated by Whitehead [44] which, in many
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cases, permits one to do very large calculations and removes some 

of these difficulties. Our Glasgow shell model programme is based 

on this approach. The unconventional shell model techniques 

embodied in the Glasgow shell model programme [45] do away with 

the traditional shell model formalism of group theory [46], angular 

momentum algebra and method of fractional parentage [47] and 

replace all these with the elementary operations of second 

quantisation. The basis states are taken as Slater determinants 

and are sometimes represented in the computer by assigning a 

single particle state to each position in the computer word, a 

1-bit representing an occupied state and 0-bit an unoccupied one. 

Bit manipulation is then easily encoded.

The programme requires the information about the hamiitonian 

in the form of pre-calculated two body matrix elements and

diagonalises the hamiitonian by the Lanczos method to obtain the 

energy eigenvalues and eigenvectors.

In nuclear physics and even in the nuclear shell model 

calculations we are interested in a few lowest energy eigenstates 

and in the present case, in particular, we are mostly interested in 

the ground state energy of the nucleon. Since the dimension of the 

configuration space considered may be large, it would be preferred 

not to have to diagonalise the complete and large energy matrix if 

only a few lowest eigenvalues are desired. Most procedures that 

are in use, e.g, Householder method [48] need a complete

diagonalisation of the full matrix. But the Lanczos iterative 

method of tri-diagonalisation is the only procedure which allows

one to obtain some eigenvalues and eigenvectors quite accurately
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from only part of the full matrix.

The principles of the method are given in ref. [49] whereas the 

essential features of the algorithm relevant to our approach have 

been discussed at length in ref. [45]. we will give a brief 

description of the method in section (2*6).

The Glasgow code is the most powerful computing technique by 

which many of the large full basis calculations for sd-shell nuclei 

have been fruitfully performed [50,51]. A few years ago, it was 

modified [36] to a new version and was used to do calculations for 

six quarks system. We have further modified the programme and 

have studied the effects of quark-antiquark excitations on the 

structure of the nucleon. Our results will be presented in chapter 

4 . In the last section of this chapter, we would talk about the 

ways to setup the wavefunction of the system of 51 quarks 

comprising the structure of the nucleon. We shall also describe the 

procedures for evaluating the root mean square radii of mass (and 

of the charge), magnetic moment and the charge density of the 

system. These properties can be measured very accurately and 

provide a good test of the wavefunction of the nucleon resulting 

from numerical calculations.

2 .2  OCCUPATION NUMBER REPRESENTATION

The formalism that is based on the elementary operations of 

creation and annihilation operators is called second quantisation 

[52]. Second quantisation is extensively used in a theory of the 

nuclear spectroscopy and specially in cases where one deals with
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many particles distributed over many active single particle 

orbitals for proper antisymmetrisation and the evaluation of

matrix elements.

For identical fermions in a single particle model, the 

indistinguishability of the particles makes it meaningless to

determine which particle is in which single particle state and 

therefore the particle indices seem to be inapplicable . Here we 

need to use the states labels because one wants to know only 

which states are occupied. Since it emphasises the fact that for a 

completely antisymmetric wavefunction of many identical 

fermions only the knowledge of occupation numbers of the various 

single particle states is the relevant information, the formalism 

of fermion creation and annihilation operators is also referred to 

as the occupation number representation. In this formalism we are 

introduced to the very basic definitions like,

I 0 > = | a > ; aa|  | a > = 0 (2 .2 .1)

and aa | a > = | 0 > ; aa | 0 > = 0 (2.2 .2)

where |0> is called the vacuum state (ie the state with no 

particles) and the operators aat  (and aa) creates and annihilates a 

particle in a quantum state a which is characterised by a set of 

certain quantum numbers as discussed in section 2.4.1.

2.2.1 WAVEFUNCTION OF MANY-FERMION SYSTEM

We know that a normalised antisymmetric wavefunction for 

A independent fermions is defined by the Slater determinant [53],
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In second quantised notation, we write the wavefunction for A 

fermions in different states as the product of A creation 

operators applied to the vacuum state |0>, i.e.

a£ • ■ a£. atc. • ■ at  I 0 > = | a 1 . . a. a . . .  a >
1 i j A

Since we can write

a tx  • • , a a .  a a .  • • • a £  I 0  >  =  r——
1 1 i A VA!

1

det

' j

{ a .

7A!
d e t{ a

a. a . .
' J

a. a. 
J i

al.

(2 . 2 .1. 2)

• « a }

• “ a }

0 >  (2.2.1.3)

it implies that

atx. 4 . = - 4 . 4' I I l

or a J  a l  +  a t a j =  4 .  4  =o
' ) I '

(2-2..1.4)

i.e the interchange of labels of the states i and j introduces a 

minus sign. The expressions (2.2.1.3) and (2 .2.1.4) show that the 

antisymmetry of the many-fermion wavefunction (2 .2 .1 .2 ) is 

guaranteed by the requirement that the creation operators 

anticommute. The following anticommutation relations are also 

satisfied by the creation and annihilation operators.
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and

I a“i ’ ^ }

{ 4 , . a a , }  .  J

= 0

it introduces 5{. = 1 if a. = a

2 .2 .2  WAVEFUNCTION OF CLOSED-SHELL CORE

A closed shell is one in which all possible substates

allowed by the Pauli exclusion principle are occupied, we,

therefore, write a core-state comprising more than one closed

shell in occupation number formalism as

lc >  = n .a t - |0 > (2 .2 .2.1)

The above definition (2.2.2.1) can be extended to the case of more 

than one closed shells by writing the wavefunction of the core (in 

angular momentum formalism) as

In our present model, the wavefunction of the core comprising 

0 S 1/2f 0 P 1/2 and 0 P3/2 shells with a total of 48 occupied single 

-quark states (allowed by the Pauli exclusion principle) will be 

represented explicitly by an expression,

where a represents the set of necessary quantum numbers defining 

a single particle state of the core.

2 .2 .3  OPERATORS

In the occupation number representation, we define a one 

-body operator by

m, = -j. , -j. +1, • • ,+j

48
(2.2.2.2J

i = 1

(2.2.3.1)
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where the summation runs over all possible single particle states 

under consideration.

The two body operator such as the interaction

i<j

which is symmetric with respect to interchange of particle 

indices i and j may be written in second quantised form as

Here the summation runs over the complete set with state labels 

i*j and k*l. V p  is a two body antisymmetrised matrix element. 

The order of the creation and annihilation operators should be 

noted.

The occupation number representation has been used as a basic 

language and a fundamental tool in the Glasgow shell model 

computational techniques [45] because it is well suited to the bit 

structure of the computer word. The many-particle basis states 

(i.e the Slater determinants) are represented in the computer by 

assigning an a value (representing a s.p. state) to each position in 

the computer word and then 1 or 0 at each position depending on 

whether the single particle state is occupied or not.

2 .3  PARTICLES AND HOLES

A closed shell with one particle missing is expected to behave 

like a particle with some opposite properties. The vacancy created 

due to the absence of a particle in a closed shell core is referred

(2) 1 V
O  = 4" /  j  ( I ^ I a | )

ijkl

(2.2.3.2)
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as a hole which behaves like an antiparticie. If a particle is 

missing from a state |j,-m> in the core then the hole created will 

correspond to a state with angular momentum j equal to that of a 

missing particle but with projection +m equal and opposite to that 

of a missing particle. It suggests that a hole-state |h>jm is 

equivalent to the state of closed-shell core with one particle 

missing. Mathematically we may express this statement, in 

angular momentum formalism as

|h^m --y===- det{(j.-i)G.-i+1) • ■ (j.-m-1)G,-m+1) . . (j,+j)}

= a. {a t . a f . . . . . .  aT .a t .. . . at } 10> (2.3.1)J . - m  I  j , + j  j , j - 1 j , - m +1 J . - J J  1

In general it can be written in terms of a hole creation operator 

b fj m (applied to the core state |c >),

■ T r i ^  (2-3.2)
~  j i+ m i

where |j.m > is a time reversed state equals (-1) Ijj.-nn.">
m r

Therefore we have

M i

it implies that

j+ m .

i V ^ . | G > - (-1) ' ai..-«n.|C> (2-3-3)

).+mibt =(-1)’ a

i.e the hole creation operator equals a specific particle 

annihilation operator multiplied by the relevant phase-factor.

In the present model, by analogy with the Fermi electron sea we 

have assumed a sea of quarks (i.e closed-shell core defined in

(2.2.2.2) below the Fermi surface comprised of OS, OP shells 

accommodating 48 quarks (called ghost quarks), in accordance
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with the Pauli exclusion principle, in singly occupied single 

particle states. If a quark is excited and removed from an occupied 

sta te
| ot>= |n, I, j, -m, t3, c ,g>  

in the sea to the real shell above the Fermi level and is placed in

an unoccupied state | a >, it will give rise to a hole in the core and

adds one quark to the real quarks. The hole created will correspond

to a state represented by

I <*h> = |n, I, j, m, F, c, g >

In occupation number representation, we may express this in 

terms of a hole creation operator.

I a h> = b<x IQ> where |C> is a closed-shell core defined in (2 .2 .2 .2).
" h

This expression can be written in terms of a particle annihilation 

operator analogous to one shown in (2.3.3).

l a h > = F x a 5,-m  lC >

where F is a phase-factor as defined in ref. [37] and for the 

present case we have F = ( - i ) j+ m .+ i /2 +  mt+<j>(v) .All these quantum 

numbers come for the hole state. The colour phase-factor has been 

defined in reference [37].
The Elliott SU(3) notation is used for the colour degree of freedom. 

The colour triplet has (fyi)=(10): and the colour phase factor <])(v) is 

defined by the 3x3->1 SU(3) Wigner coefficient

/3  < ( 10)u; (01 )v |(00) >  = (-1)

The process, in which a quark is lifted out of the occupied 

negative energy state (in Fermi filled sea of ghost quarks) and 

placed in an unoccupied positive energy state of a real shell 

causing a hole (that represents an antiquark) in the core and
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increasing the number of real quarks by one, in this nomenclature 

is referred as a quark-antiquark excitations. Other excitations 

such as q2q*2, q3q*3 and qnq 'n can be constructed by exciting 2 

quarks, 3 quarks and n quarks respectively from the core to the 

real shells above the Fermi surface in a similar way. These states 

are expected to lie at energies substantially higher than 1p1h 

states (i.e qq states) and consequently will not mix with them. 

They are therefore left out of the basis space (Tamm Dancoff 

Approximation [54]). If we consider all such excitations then the 

expected wavefunction of the nucleon will be of the following 

form

= 3q+(3q+qq)+(3q+q2q 2)+(3q+q3q V  • • ■ •

and we would not be able to manage to do such a big calculation. 
We, therefore, confine our calculation only to (qq)-excitations.

This can be done by fixing the occupancies of the sea shells to

keep atleast 47 ghost quarks in the sea. We choose to define our

zero of energy with respect to the filled sea. We calculate the

total energy of the core (i.e of filled sea ),

E =  y  e ‘“ core /  v ck
k

where the summation runs over all the occupied single particle 

states within the filled core.

Analogous to the Fermi electron sea, we have assumed the core 

filled with ghost quarks as vacuum. To define the core as a new 

vacuum state |O0> which is a filled Fermi sea of quarks, we make 

its energy equal to zero by subtracting the calculated core- energy 

from all other energies worked out. According to Fermi Dirac's 

theory a vacuum is considered as a sea of electrons in which
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virtual pairs of electron-positron are created and then annihilated. 

This phenomenon of virtual creation and then annihilation of 

electron-positron pairs is called vacuum polarisation effect [55]. 

Analogously we may also expect a similar effect giving rise to 

quark-antiquark excitations.Therefore quark-antiquark excitations 

caused due to interactions between the sea quarks also include the 

excitations due to self polarisation of vacuum (the sea of ghost 

quarks). It means that if we include the excitations due to vacuum 

polarisation

|<D^>= O+qq + q2q + q3q + .  . . .

also in the model space to construct the wave function of the 

nucleon then the problem becomes more complicated and can not 

be tackled at present. If vacuum polarisation is included, the state 

q 4q could arise in the nucleon wavefunction from vacuum 

polarisation. To include all qq-pairs arising from the presence of 

quarks in the nucleon, we would therefore have to include q5q' 2 

terms, but they could arise from q2q*2 terms in the vacuum and so 

on. There are only two consistent approaches. One is to include all 

terms q3+nq*n but that is too difficult. The other is to allow no 

vacuum polarisation at all, and this is the truncation which we 

adopt in this work. These constraints mentioned above allow us to 

do calculation for constructing the wavefunction of the nucleon 

with the components 3q and 3q+qq.
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2.4 MODEL BASIS STATES

To specify the model space we have to define the model basis 

states. In this section we describe the specification of single

particle and many- particle basis states.

2.4.1 SINGLE-PARTICLE BASIS STATES

In nuclear shell model, a single-particle state is defined by 

a set of quantum numbers n, I, j, m and t3 i.e the principal quantum 

number (number of nodes of the radial wavefunction), orbital 

angular momentum, total angular momentum, the projection of j 

along the Z-axis and isospin projection respectively [56]. To do 

shell model calculations with quarks, then a colour quantum 

number "c" must be included in the set of quantum numbers 

describing a single-particle state [36]. In the present case since 

we are dealing with real quarks and ghost quarks, the set of 

quantum numbers is further extended to include another quantum 

number called intrinsic parity quantum number distinguishing real 

quarks from ghost quarks. The intrinsic parity quantum number is 

either designated by "h" which comes for even intrinsic parity to 

represent a real quark or by "g" which stands for odd intrinsic 

parity to represent a ghost quark.

In the present model we are dealing with two kinds of particles 

i.e. real quarks, ghost quarks and also with a hole, therefore, we 

have to define three types of single-particle basis states. Usually 

a state is given by displaying all quantum numbers necessary for 

its complete specification.
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The specification of the spherical basis states is given as follows:

Nature of particle State notation Set of quantum numbers

Real quark | a >  (n, I, j, m, f, c, h)

Ghost quark | a >  (n, I, j, m, f, c, g)

Antiquark (hole) | a h>  (n, I, j, m, F, c, g)

2.4.2 MANY-PARTICLE BASIS STATES

We have chosen to use the Slater determinants as many- 

particle basis states in our shell model programme because of 

their suitability to represent the antisymmetric wave function of 

a many-particle system. The Slater determinants are constructed 

from a selection of single-particle spherical basis states. There 

are a number of ways for selecting single-particle states to 

construct Slater determinants. We write a Slater determinant in 

the occupation number representation as the product of creation 

operators applied to the vacuum as shown in (2 .2 .1.2).

For the present system, Slater determinants are constructed 

by putting 51 quarks into single-particle orbits out of the 96 

available orbits of OS, OP real and ghost shells such that there 

are at least 47 quarks in the core, at least 3 quarks in the OS 

shell. In general we can represent a many-particle state for a 

system of 51 quarks by a Slater determinant (as defined in 2 .2 .1.1) 

defining an antisymmetric wave function of the system as
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7(51)!
del {I a !> ■ • I a4>l a  5>l a  6 (2.4.2.1)

These many-particle states are of course antisymmetric and have 

definite values of M = Ejirij and T3 = Zj t3i but not necessarily 

having definite total angular momentum and isospin.

A complete set of many-particle states (Slater determinants)

with the desired number of u-quarks and d-quarks, parity, M and 

occupancies of real and ghost shells is set up at the start of the 

calculation. A single bit of the computer word may be used to 

represent a single-particle orbital and the values 0 or 1 are used 

to indicate whether the orbital is empty or filled. It means that an 

A-particle state i.e a Slater determinant for A particles in

n-dimensional model space is represented by a string of bits

containing A 1-bits. A typical determinant such as mentioned

above is shown below.

xPa (2,3,5, . . n-1)

Orbit No 

1 2 3 4 5 k n-2 n -1n
=  0  1i 1 2 0  . 1 j 0 1A 0 (2 .4.2 .2)
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One can obtain a new determinant by applying the creation and 

annihilation operators , for example a |a |a 5a2 to the determinant

(2.4.2.2) as

^ . n- 1) = atata^a1 4 5 (^ (2 ,3 ,5 , . n-1)

Orbit No
1 2 3 4 5 * * k n 2 n - 1 n

11 0 12 "*3 0 1i 0 1A 0 (2 .4.2 .3)

According to the Pauli exclusion principle, no two positions in the 

representation can have the same set of quantum numbers and each 

box has assigned the m-value such that the same particles may be 

put in boxes with different m-values.That is why the given scheme 

of basis representation is called m-scheme [3].

The computer representation of the Slater determinants and a 

number of other practical and computational aspects of shell 

model manipulations with Slater determinants have been 

described in quite detail in reference [45].

In the present calculation the bit-mapped representation of 

the occupied single-particle states and many-particle states is 

inadequate because 96 single quark orbits do not fit in a 32-bit 

computer word as n quarks in N orbits require N bits.

An alternate representation, namely codes-representation has 

been introduced to locate and store the occupied states in a 

computer memory. A single-particle orbit m occupied by ith quark 

is represented by a code calculated from a binomial coefficient as 

given below,
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The arrays of codes for different orbits occupied by various

particles are shown in fig. 2.1. It is convenient to have a

rectangular array of coefficients and we define PCq=0 if p<q.

The sum of codes of the occupied orbits in a certain many-particle

state gives the code of that state. For example, the codes of

many-particle states shown in expressions (2 .4.2 .2 ) and (2 .4.2 .3)

will be given by

^ ^ 1  = 2^1+3^ 2+ 5^3+ • ■ ■ + k^i+ • • +n"' ar|d
Ctotai = iC i+ 3C2+4C3+- . + £ , +  . . + n-iCA respectively.

The bit mapping is an inefficient method of storage and it is 

inadequate for large number of single-particle orbits requiring the 

number of bits equal to total number of orbits. For example, in this 

case n particles in N orbits require N bits whereas the 

representation of codes calculated from binomial coefficients is



much more compact as it needs only log2(NC n) bits.

2.5 SHELL MODEL APPROACH TO THE MANY-BODY PROBLEM

According to our model, a nucleon has been considered as a 

system of many quarks. The treatment of the motion of the quarks 

in a nucleon can be considered as an example of the many-body 

problem. Since the shell model takes into account the individual 

particles and provides the microscopic description of the system, 

it may be only an approximation of the exact many-body problem. 

In its most elementary form of the shell model, it is assumed that 

the motion of a particle under the influence of all the others is 

approximated by its motion in a self-consistent field of force. 

There is enough empirical information on nuclear structure to 

justify the use of this assumption in many cases. We may use it as 

a basis for more elaborate theories of the many-body problem. A 

full description of a microscopic theory of the many-body system 

is given by the solution of a many-body Schrodinger equation

where Y (A) (in case of fermions)is an antisymmetric wavefunction 

of A-particle system defined in (2.2.1.1) and 'i' is the particle 

index.

With the assumption of a self-consistent field, the above equation

(2 .5 .1) reduces to the much simpler equation

H>P<A)= j X ^ + I X r <A)(1'2 '3 ’ • • A)= E'F(A)(1,2,3, . . A)
A p 2 A

H0¥ (2.5.2)
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In occupation number representation, the shell model Hamiltonian 

H0 is given by

H0 = X  ei afa i (2-5-3)
I
A

and E = ^  e. (2.5.4)
i = 1

The solutions ¥ ( A) o f  equation (2.5.2) are antisymmetrised 

products of single particle wave functions O j, which are 

eigenfunctions of the single particle hamiltonian h,- .

i.e hj = sjOj (2 .5.5)

where e\ represents single particle energy eigenvalue.

The eigenfunctions Oj form a complete set of orthonormal basis 

states, i.e

< V V  = 8“ “1 J  I  J

where a \  and aj represent the sets of quantum numbers defining 

the single particle states i and j respectively. Similarly the 

m any-particle wavefunction ¥ ( A> also form an orthonormal 

complete set of basis.

U/(A> I U/<A> Ri.e < XP, x .  > = o
k 1 I kl

2.5.1 MANY BODY HAMILTONIAN

For a system of A particles, the Hamiltonian is written as a 

sum of single particle kinetic energies and two body interactions 

[54] ,
A A

i e  H  =  X  T i +  Z  ( 2 - 5 - 1 - 1 )
i=1 i<j

where the two-body potential (interaction) Vy represents the 

realistic force between two particles.
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Since we use the Slater determinants as many particle basis 

states represented in occupation number representation, it will be 

pretty fair to use an appropriate form for the model Hamiltonian. 

The many body Hamiltonian (2.5.1.1) is a sum of one-body and 

two-body parts that can be written in a second quantised version 

by expressing it in terms of one-body and two-body operators 

defined in (2 .2 .3.1) and (2 .2 .3.2) respectively, i.e

H - X  < ' I T IJ > a t  a; + j  Z  ( 'j I V | kl ) a+ a| a a (2.5.1.2)
i j  J i j k l  J

where T is the kinetic energy and V is the interaction between two 

particles.

In the problem at hand, the interaction V includes; 

i) the interaction Vqq between two quarks whether in real shells or 

in ghost shells, ii) the interaction VqQ between a real quark and a 

ghost quark. The interaction (i) and (ii) can be related by an 

expression VqQ =-Vqq in the same sense as there exists a relation 

[57] between qq-interaction and quark-antiquark interaction, 

iii) The interaction Vq_qqq, between a real quark and a ghost quark 

or between two real quarks, that gives rise to the particle-hole 

excitations. In occupation number representation we can express 

the transition potential as

Hq̂ -q =1 < ^ 0 ) ^ ( 2 )  |V(1,2)|'Po(1)'!' (2 )>a |a |b jaa
apy8

where bpf is a hole creation operator.

In general, we can write the hamiltonian H as

H = S ^ >afaj + T X ^ k i aM aiak <2-5-1-3>
i j  i jk l

where HyO) and Hyk|(2) are the matrix elements of one-body and 

two-body hamiltonian respectively.
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i.e HyO) = < i | HO) | j > and Hijk| (2) = ( ij | H(2) | kl).

HO) is usually,but not necessarily diagonal. But if it is diagonal 

then HyO) = HjO) 6y .

In the shell model programme, the Hamiltonian (as a whole) could 

be treated as a two-body operator as described in reference [45]. 

For computational shell model manipulations we have selected the 

occupation number representation as a basic language of the 

programme, therefore it will be more convenient to use the matrix 

elements of two-body hamiltonian between uncoupled two 

-particle states. The two-body matrix elements in an uncoupled 

angular momentum (and isospin) representation can be written 

using the standard vector coupling result as

^ ijkl < h m i 2  *3i ’ h 2  *3j ’ I I m k 2  *3k’ 1̂ m i 2  *31 > 

- X  (jimi.jimi|JM)(jkmk,j|m||JM)(lt3 |TMT) ( l t3k, jy T M T)
JM
TMt

(2)
x < j.,j ; JMTMt | H' | jk>j| ; JMTMt >

= X  (-DJi+Jk‘V Ji

JM
TM,

j. j. JJi Jj
m. m. -M

' JV

r .

y

j. j, j

m, m, -M
v k 1 /

V
— -  T 2 2

V MT31 3 J T  y v

1 1

*3k *31 ‘ ^T j

,(2)
x (2J+1)(2T+1) < j., j. ; JMTMt | H' | jR, j( ; JMTMt > (2.5.1.4)

The programme requires all the information about the hamiltonian 

in terms of pre-calculated one-body and two-body matrix 

elements. The procedures of evaluating the matrix elements have 

been described in chapter 3 and appendix A.
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2.5.2 THE CENTRE-OF-MASS PROBLEM

In the shell model approach , the inter-particle potential is 

expressed as the sum of the single particle potentials X ll(r j)  fixed 

in space and the residual interaction [3].

To represent the single particle potential one chooses to use 

either the Harmonic oscillator potential or Saxon-Wood potential. 

The resulting hamiltonian is no longer translationally invariant 

and consequently the model wavefunction may contain unphysical 

components. In the model, since the centre of potential is fixed 

(at the origin) not the centre-of-mass of the system, it may gives 

rise to the unphysical states associated with the centre-of-mass 

oscillations about the origin. In conventional terms, the states in 

which the centre-of-mass oscillation is in OS ground state are 

called nonspurious states and those with excited centre-of-mass 

motion are known as spurious or redundant states. In the shell 

model, the wavefunctions for A-particle system are described by 

3A particle co-ordinates. Out of which, 3 describe the motion of 

centre-of-mass of the system and the remaining 3(A-1) describe 

the relative positions of the particles i.e the internal structure of 

the system.

If we choose to use the Harmonic oscillator wave functions and 

the active orbits include all the levels in a single major oscillator 

shell, the shell model states will have the same centre-of-mass 

motion but differ only in internal structure as normally desired. 

Otherwise the states with different centre-of-mass motion will 

contribute unphysical effects to the energy calculation and distort 

the calculated spectrum. It has been found [58] that all the shell
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model wavefunctions with the lowest energies allowed by the 

Pauli's exclusion principle in the harmonic oscillator potential 

would correspond to the nonspurious states and all of the states 

with excited centre-of-mass of the system generated in the model 

space consisting of two or more major oscillator shells are 

spurious.

The operators (usually used in shell model calculations) that do 

not depend purely on the relative co-ordinates of the particles 

will mix spurious and nonspurious states.Therefore it is important 

to be sure that there is no mixing of physical and unphysical 

states. A number of ways have been advocated e.g [59-61] to 

achieve this aim. The problem can be solved only in case when one 

could separate out centre-of-mass motion from the internal 

motion. There is no solution to the problem of spuriousity due to 

centre-of-mass motion in non-separable case.

The single-particle hamiltonian for the harmonic oscillator 

potential can be written as a sum of the hamiltonian for 

translationally invariant relative motion (H rej) and centre-of 

-mass hamiltonian (Hc M ) .

Here M (=mA) and m denote the mass of the system and mass of

A A

(2.5.2.1)

= Hre| + Hc M

where

2
(2 .5.2 .2)

(2.5.2.3)
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the particle respectively. The vectors R and p are defined as
A A

R = x X ri and P = X P i  <2 -5-2 -4>A ^  i
i= i i = 1

In computational shell model manipulations the hamiltonian is 

treated as a purely two-body operator. Therefore we write the 

hamiltonian for the centre-of-mass oscillator

H = P + ] r  mw2AR2 
osc 2mA 2

A
- A .  - L Y
2m A - 1 ^

I  '<J

(Pi + pp A -2

1 9+ mw A' 1 y  ( r i +  r i }
k-1 "  2

KJ

2 y  - Pj) 
A ( A - 1 ) ^  2

A - 2  V ( r i - r /— X
A( A ' 1 ) u j

H osc H c .m  ®  ’ A(A-1)  ^  H r e l®  (2.5.2.5)
i<j v i<j

The best approach in dealing with the centre-of-mass spuriosity 

problem appears to be to calculate the expectation value <H0SC> for 

the final eigenstates and check to verify that the states are 

nonspurious with respect to centre-of-mass excitations.
o

For a nonspurious state we have < Hosc>= —- fiw and for spurious 

states < Hosc> takes on the values ^-hw, ^-tiw, . . . [36].

To make the system more physical, the kinetic energy associated

with the centre-of-mass oscillation
\2

1
A

X p,
i = 12M 2mA

would be subtracted off the kinetic energy term and we get the 

kinetic operator T in (2.5.1.1) as
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i<j

The expression (2.5.2.6) shows that the kinetic energy operator 

can be treated as two-body operator.

2.5.3 COLOURED STATES PROBLEM

In the quark model [7], the baryons and the mesons are 

defined as the bound states of three quarks and a quark-antiquark 

pairs respectively. According to the colour confining property of 

QCD, hadrons must exist as colourless states because no coloured 

states are ever seen.

In the present case as we are dealing with many-quark system 

we should be sure that the state,to be a physical one, is 

colourless. Therefore to obtain the colourless states and to avoid 

the coloured states possibly formed by the combination of 

coloured quarks, we make sure that the Slater determinants which 

appear in the basis for the many-quark system have equal number 

of quarks of the three different colours red, blue and green. In 

addition we constrained the colour codes such that R<G<B in our 

shell model code, where R,G and B denote the codes for the red, 

green and blue quarks respectively. These codes are used to locate 

the positions of the quarks in the computer memory as discussed 

in section (2.4.2). This constraint helps to truncate the model 

space by removing unphysical coloured states. It does not remove 

all coloured states and it does not remove any colourless states.
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Since the constraint is not enough to ensure colourless 

eigenstates, we evaluate the expectation value of the Casmir's 

operator for colour <c2>,

to decide if a state is colourless and physical or coloured and 

unphysical. The expectation value <c2> is zero for colourless state

The centre-of-mass operator Hosc and colour casmir's operator c2 

are used at the end of the calculation for evaluating their 

expectation values to distinguish spurious states from 

nonspurious and coloured states from colourless states.

2.6 THE LANCZOS ALGORITHM

The central feature of the Glasgow shell model programme 

[45] is the use of Lanczos Algorithm for the construction and 

tri-diagonalisation of the energy matrix. A full treatment of the 

method as a numerical tool [48] is not required for the shell model 

application. The important features of the method relevant to our 

work have been discussed at length in references [44,45]. some 

description of the method is given below.

We start with any normalised vector v-| arbitrarily chosen in a 

N-dimensional space and operate on it with the hermitian operator 

H, the hamiltonian to obtain a new vector v2 (orthogonal to Vt).

Similarly a third vector v3 (orthogonal to v-| and v2) is generated 

by operating with H on v2. i.e

[7(a)].

Hv-i = oc^i + (3! v2

41



Hvi = PiV!+ OC2V2 + p2v3 

In a similar way a complete set of orthonormal vectors Vj is 

generated by the repeated operations with H. For a configuration 

space of dimension N, one finds 

Hv-i = (XiV-i + pj v2 

Hv2 = Pi v 1 + a 2v2 + p2V3 

Hv3 = p2v2 + (X3V3 + P3V4

Hvn.-| = Pn-2vn-2 + a n-1vn-1 + Pn-1vn 

Hvn = Pn-1 V n.-| +  anvn + pnvn+1

The process of iterations terminates automatically with vector vN 

since the space is spanned. For the Nth step we have

H v n  =  P n - 1 v N-1 + a N v N . . . .  (2.6.1)

because there can not be any more vector orthogonal to v-|,v2 , v3)

. . . vN that is the new vector vN+1 must be zero.

The co-efficients ocj and pj defined by 

« j =  <  V j | H |  V j >  

and Pi = <Vj |H|vj+i> = <vi+1|H| Vj>

are the matrix elements of the hamiltonian H in the basis v1?v2 v3,

. . vN whereas all other matrix elements of H vanish.

i.e < V j | H | V j >  =  < V j | H | V j >  =0 for | i-j|^. 2.

From the above sequence of iterations (2.6.1), it is clear that the 

matrix representation of H in the orthonormal basis formed by 

vectors v1,v2, v3, . .vN (which are called Lanczos vectors) is a real

42



symmetric tri-diagonal matrix.

0 \
p ,  (Xj p2 . . . . 

0 p2 a 3 P3 . . .

Tri

a,'N

To obtain eigenvalues and eigenvectors, the tri-diagonal matrix 

HATri can be diagonalised by the standard methods of bisection and 

inverse iteration [49].

Unfortunately if one uses inexact arithmetic, the process of 

iteration does not really terminate at the Nth step because round 

off errors prevent vN + 1from being exactly zero.Continuing the 

process with such a small vector, the same eigenvalues will be 

reproduced again and again. This exotic effect also disrupts the 

orthogonalisation of the basis vectors and practically the vector 

vN will be no more orthogonal to the previous vectors Vj. Therefore- 

re-orthogonalisation will be needed. That is why in shell model 

programme [45] the re-orthogonalised version of the method has 

been used.

The important property of the method is that the extreme 

eigenvalues of HATri converge rapidly as N increases. In the shell 

model work we are often interested only in a few lowest energy 

states, so it is sufficient to get convergence of nearly 10 

eigenvalues which can be obtained by the order of 100 iterations
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as it is clear from the some convergence curves given in reference 

[44,45].

For rapid convergence, it is advantageous to start with an 

initial vector v  ̂ that contains relatively large components of the 

lowest eigenvectors. This can be achieved by operating a few 

times with H on an arbitrary vector v0. i.e 

v1 = H n v0

For n=5, the rate of convergence of the low lying eigenstates get 

improved [45] in some cases. The eigenvalue is only accepted as 

converged if it does not change at all in the sixth decimal place. 

The complete convergence of any eigenvalue is ensured by 

calculating the J and T values for each eigenstate in question.

To find J and T values of a certain state we have to compute 

the expectation value of J2 and T2. This can be done by applying 

the Lanczos procedure itself to the eigenvectors, with H in 

sequence (2.6.1) replaced by J2 and T2 or by using the formula 

connecting the lowering and raising operators with J2 or T2. i.e 

J2 = J. J+ + (Jz)2 + Jz 
Or T2 = T. T+ + (Tz)2 + Tz

The sharp values ( i.e integral or half integral values) of J and T 

indicate complete convergence of the eigenvalues.

The eigenvectors 'Fj of the original H are related to those of the 

tri-diagonal matrix HATri by

= I  vk (2.6.3)
K =1

where vk are the Lanczos basis vectors that are represented as the 

linear combination of the Slater determinants
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vk -  X  aki
i

and 'K ') are the eigenvectors of the tri-diagonal matrix HATri.

The Glasgow shell model computational code [45] based on the 

Lanczos method used for the m-scheme uncoupled representation 

has been the most powerful technique in existence for carrying out 

the shell model calculations in a large space. The Lanczos method 

is also useful for coupled representation [62] but that is not 

practically more successful.

45



2.7 DETERMINATION OF STATIC AND ELECTROMAGNETIC 

PROPERTIES OF THE NUCLEON

In accordance with the basic assumption of the present model, 

the nucleon is supposed to be a system of 51 quarks (as discussed 

in chapter 1) described by the wavefunction 2.4.2.1.

In order to achieve a proper understanding about the size and 

structure of the nucleon, we have to study its static and 

electromagnetic properties. We, therefore, determine the root 

mean square radii of mass and charge, the charge density and the 

magnetic moment of the nucleon. The knowledge of the magnetic 

moment of a nucleon provides information on its internal 

structure.

2.7.1 MAGNETIC MOMENT

In the single particle model, the magnetic moment of the 

system is given by the expectation value (in the ground state) of 

the vector sum of the z-components of the magnetic moment 

operators of the individual particles. Therefore in the present case 

we express the magnetic moment of the nucleon as [63]

i

where 'Fq represents the ground state wavefunction of the nucleon. 

The magnetic moment of a single-particle is expressed as the sum 

of magnetic moments contributed by its orbital angular momentum 

and spin angular momentum, i.e
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|i = n , + H S (2.7.1.2)

In non-relativistic limit, the orbital magnetic moment n, is

defined by

H| = 2^ '  (2.7.1.3)

where eq and mq are the charge and mass of the quark respectively.

I is the orbital angular momentum of the quark. The charge

possessed by u-quark and d-quark is
2 1eu = + — ep and ed = - -^ ep respectively, where ep is the

charge possessed by the proton.

In analogy with the electron's spin magnetic moment, the quark

to be considered a point like fermion would be expected to have

the spin magnetic moment |is of the form [64]
®q

= g ^ S  (2.7.1.4)

where s is a quark's spin angular momentum and factor g

(analogous to Land'e g-factor) has value equal to 2 [64].

Therefore we write the expression (2.7.1.2) as

n = 7T b r ~  )l + 2 (w - )sep v2mq ' ep vmq '

= 9,1 + 2gss
or = hn I + 4 hns (2.7.1.5)

where \l h
q M

is a un it cal I ed t he nucl ear magnet on. M i s the masse P 2mq

of a nucleon. We assumed that the mass of a u-quark is equal to 

the mass of a d-quark, i.e mu = md = mq. gi and gs are gyromagnetic
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ratio due to orbital angular momentum and spin angular momentum 

respectively.

In the occupation number representation, we therefore express 

equation (2.7.1.1) as

In this section, i and j represent u-quark single particle orbits and 

i, jcom e for d-quark single particle orbits, where <ji>jj represents 

the matrix element of (i2 i.e.

<M*z> ij = < ' lM-z|j >

and pjj the single particle density matrix element is defined by 

Pij = < ^ 0 I a.-taj | * ¥ 0 >

Using a definition of the reduced matrix element, we can rewrite 

the equation (2.7.1.6) as

Here y  includes c, f and h or g quantum numbers.

The reduced matrix element of the operator I can be written as

or

X  < ' lM-zl i > < vP0|aJaJ'P|£>

•J

r

• j

or

L  n J J  {<ri j  ll|llnj>+ 4<rij'||s||nj>}8m 0 m J 1 ' ■

. . . (2.7.1.7)

<n'j' || I || n j > = < rf (Is') j || I || n (ls)j >
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Since the operator operates on the first part of the combination, 

we obtain [65]

<n'j'll I II nj> = (-1),+S+J+V(2 j+1)(2 j+1) { 'j | Sk}<ril'l|l||nl>

. . . .  (2.7.1.8)

Similarly we may write
<n'j' || s || n j > = < ri ( I s’ )j' || s || n (ls)j > 

and therefore we get

, i ,  • l+s+j + 1 I— j----------------------{ s '  /  I I
<n (Is )j I|s||n (ls)j>=(-1) V ( 2j  +1 )(2j+1 ) | j  s kj

x < l | | s | | l > 5 nrt8||, (2.7.1.9)

The reduced matrix elements of the I and s have the values [52]

<ri f || I || nl > = Vl(l+1 ) ( 2 I+1) (2.7.1.10)

and 4 l | s | | l > = y |  (2.7.1.11)

The expression (2.7.1.7) for the magnetic moment of the nucleon 

can be written concisely as

—  (——  +  4  < s z> 4  P -e r  4 m q ;l 'J 2 'JJ P|J

+  X  [ - ^  ( 2 ^ -  ) {< lz > i r + 4 < # Z > I r }  PT r ]  (2 .7 .1 .1 2 )
■q 1 J

IJ M

The calculated values of the matrix elements < lz> and <sz> 

between the single quark states for the u-quarks and d-quarks are 

given in table 4.10. The quantum numbers for specification of the 

orbits and their evaluated density matrix elements are given in 

table 4.6 and table 4.9 respectively.

Using the data given in table 4.9 and 4.10 with the help of an 

expression (2.7.1.12), we can evaluate the magnetic moment of the 

nucleon.
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2.7.2 ROOT MEAN SQUARE RADIUS OF MASS

Considering the nucleon as a system of many quarks (contain 

-ing u-quarks and d-quarks), its mean square radius would be 

expressed as

?  = i Z  -f = x  £  <? (2-7-2-1)
i = 1 i

because we take mu = md = mq and M= Amq, where A is the total 

number of quarks.

If 'Pq represents the ground state wavefunction of the nucleon 

then the mean square radius of the nucleon will be expressed in 

the occupation number representation as

<r2> = i  < ^  Zrf I *0  >

= i l < r 2> i, p  ( 2 . 7 . 2 . 2 )
'J

where <r2>y represents the matrix element of r2 between single

particle states i and j.

i.e. <r2>ij = < i | r2 | j > 5ij (2.7.2.3)

The operator r2 also has non-zero matrix elements between

oscillator shells differing in energy by 2fiw but this does not

occur in our case and we have [52]

<r2>. = < nl I r2 I nl >i 1 1
= (N . + | ) b 2 (2.7.2.4)

where N (=2n+I) is an oscillator quantum number and b is an 

oscillator length parameter.

Therefore from an equation (2.7.2.4), we get
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(2.7.2.5)

and (2.7.2.6)

The diagonal matrix element of the single particle density matrix 

is given by

defines the probability that the single particle orbit 'i' is occupied 

in the ground state of the nucleon W 0 .

The physical situation of the present system defining a nucleon 

is equivalent to a system comprised of 4 quarks and one hole (in a 

core under consideration), where a hole is treated as an 

anti-particle i.e an anti-quark. Keeping this idea in mind, using 

equation ( 2 1 . 2 . 2 )  we may express the root mean square radius of 

the nucleon as given by

where i stands for real single particle orbit and i comes for sea 

(ghost) single particle orbit. A will be defined as

The density matrix element of filled sea orbit is 3 because of 

three colours and therefore the density matrix element of the 

hole-state will be 3 minus density of that particular orbit.

Pi = < ^ 0 I a i t a j  | > ( 2 1 .2 1 )

2

(2 .7.2.8)

(2 .7.2.9)
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2.7.3 ROOT MEAN SQUARE CHARGE RADIUS

We define the mean square charge radius of the nucleon by 

an expression

<t2 >  =  1ch e X  eq(k) <f2>k Pk (2.7.31)

where k runs over all single particle diagonal matrix elements. 

Here e represents the total charge contained in the nucleon and eq 

is the charge of the quark. The total charge 'e' held by the nucleon 

is defined as

e = X  e q M
k

=  X  (ei0 Pi +  e d ’ Pi> +  X  I ( 3 'P ]  ) e D 1 + ( 3 ‘ PT )e s j  ( 2 J -3 -2 )
j j -

The expression (2.7.3.1) for the mean square charge radius of the 

nucleon will be written elaborately as

<r2> , = 4~<ch X  i  e u Pi < f 2 > i +  e d Pi < r 2 > ij
i

Y  ( ( 3 - p .  ) e i ' 1 < i^ > r +  ( 3 - p .  ) e i ' f < i^ > ,
i u i i d  i (2 .7.3.3)

2.7.4 CHARGE DENSITY AS A FUNCTION OF RADIAL 

DISTANCE

We work out the charge density of the nucleon using the 

expression

Pch<r> =  X  e q<*) Pi I ° i  I 2 <2 -7 A 1 >

where O, is a normalised space-spin wavefunction of a quark
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defined by the expression.  __

®nlJm<r-e-+> = Rn|(r^ ,  *s ms < K  5 (Z-7.4.2)

Here Rn| is a normalised radial wavefunction and V |m(0,(j>) is a 

normalised angular wavefunction called the spherical harmonics.

X s  ms 's the sP'n wavefunction of the quark.

Since the possible values of j are I +  -}r, the corresponding

eigenfunction may be written as [66]

= Rn.M<<D / |+m+-p

2 1 + 1
Y

m 1 1 1m— ----
2 2 2

I -m +—

V 21 + 1 /
Y x

I m - 1 1 1I m-
2 2 2_

. . . . (2.7.4.3)

*  , = Rn|(r)1nlj=l—, m nl
I - m + “
21+1

(

Y x  +I m 1 Al 1I m— ----
2 2 2

l+m +

21 + 1
Y x

I 1 1I rrn— — - —
2 2 2

. . . .  (27.4.4)

We know that the normalised radial wavefunction of a particle in 

OS shell is given by

Roo(r> =
2b

j

(2.7.4.5)

and the normalised radial wavefunction of a particle in a Op shell 

will be given by

Ro,(r) = 2
37jcb

r e 2b (2.7.4.6)

The corresponding normalised angular wavefunction* (i.e the 

spherical harmonics) expressed in Cartesian co-ordinates  

representation [52]
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are as follows;

Yooft " - 4

1+1

K
(2.7.4.7)

l 3 _  —— 
/  4tt r

(2.7.4.8)

/  3 x *  'y (2.7.4.9)
V r

If we denote the spin wavefunction % Sms ^ a t describe a state with 

spin angular mpmentum s = ^  with z-component + and - i -  by
f  \  ( ^ \

eigenvectors and 0
1J respectively,then using equations (2.7.4.5)

and (2.7.4.7) for O 1 x in expression (2.7.4.3), we obtain
00 2 + 2

1 2b

2 2
J

o

(Vtc b)' 

1 2b
°° 4-- 4- 2 2

0
1

( 2 . 7 . 4 . 1 0 )

(2.7.4.11)

:V5tb)'

Therefore we get

<D 1

1 1 oo — - — 2 2

(Vjcb)'

1

(2.7.4.12.a)

(2.7.4.12.b)
(Ttc b)

Using expression (2.7.4.fc> and ( 2 . 7 . 4 . for O in expression (2.7.4.4)
01 12 2

we get 

o
oit 4

01T - T

3t/ tT? b5

3- /r ?  b!

2b‘

2b

v
0

(x-iy)

+ (x+iy)

M fol
l°J

- z
h i

(2.7.4.13)

(2.7.4.14)

The corresponding modulus square of the wavefunction (single
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particle probability density) will be given by 

2 I 2
<D

1 1 
01 2 + 2

3 7 7 b '
r e D (2.7.4.15.a)

01
3 7 7 b *

The normalized wavefunction 0>

(2.7.4.15.b)

Q .  can be calculated by using
oif * l

expression (2.7.4.6) and (2.7.4.8,9) in expression (2.7.4.3) and we 

get

1
3 3

01? + 2

„ , 3  1
2 + 2

V b V 7

2

v  3 7 ^  bs

(x+iy) e 2b V

e

01
3 1

o
01

2 V s T P v

l - f  = 7 ? 7 P r

22b‘

2

o (x-iy)

(x-iy) e 2b

0 + z
o

J ,

(2.7.4.16.a)

(2.7.4.16.b)

(2.7.4.16.C)

(2.7.4.16.d)

From the above expressions (2.7.4.16.a,b,c,d), we obtain
K 2

3 3
0 2" + 2"

1

b57 7
( r 2 - z 2 ) e

<D
3 1 01 2 + 2

O
01 T - T  2 2

— ( r2 + 3 z2 ) e b
377 b5

£

- f ± - :  ( r2 + 3 z2 ) e 1,8
377 b5

(2.7.4.17.a)

(2.7.4.17.b)

(2.7.4.17.C)
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= - r ^ =  ( r 2 - z 2 ) e 1,2 (2.7.4.17.d)
b5 7 ^

The calculated single-particle probability density of the real 

states and ghost (sea) states are given in tables 4.13. Making use 

of expression (2 .7.4.1), the charge density of the proton and of the 

neutron calculated with parameters set 3 are represented 

graphically by the plots shown in the fig. 4.6 and fig. 4.7 

respectively. For comparison, the charge density of the nucleon 

has been calculated using different sets of parameters. The charge 

density of a proton and of a neutron for three given sets of 

parameters are shown in figures 4.8 and 4.9 respectively.
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CHAPTER 3

EVALUATION OF THE MATRIX ELEMENTS OF 

THE TRANSITION POTENTIAL

3.1 INTRODUCTION

The Glasgow shell model programme [45] requires all the 

information about a hamiltonian in the form of pre-calculated two 

body matrix elements. Since the 'interaction' is one of the parts of
I

the nuclear hamitonian, we have to compute the matrix elements 

of the interaction between pairs of the quarks.

To work out the interaction between quarks, we will have to 

calculate the two body matrix elements of the transition 

potential. We add an operator to the potential 1.2 which 

switches intrinsic parity for distinguishing ghost quarks from 

real quarks. We, therefore, rewrite the transition potential 1.2 in 

the following form.

V „ (1,2)= K (1 . X 0 )q - » q q C j  v ’  '  '  1 2 7 < v  >+ j  <°ix ° 2>-- f - + ■ P2> .H
1

. . . .  (3.1.1)

where K is a strength-constant of the potential, its values 

calculated with different parameters are given in table 4.3 and 

r12, the position vector, is given by

r i 2 = (rT  r 2^
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The given transition potential changes the nature of particle 1. 

The particle 2 will remain unchanged. For example, if we start 

with one real quark and one ghost quark then this potential will 

convert a ghost quark into a real quark, i.e an excitation of a

quark from a sea to a real shell will take place. But if we initially

have two real quarks then the transition potential will convert one 

real quark into a ghost quark, i.e a de-excitation of a quark from a 

real shell to the sea will take place provided there is a hole in a 

sea shell. Here we ignore the interactions between the quarks 

within the sea because the excitations due to such interactions 

are also associated with the excitations due to self polarisation 

of the vacuum which makes the situation more complicated as 

discussed in chapter 2 .

It is clear from the above discussion that one state in a two 

body matrix element expression (3.3.2) must be different from the 

other three, i.e if one represents a sea quark, the other three must 

represent real quarks.

3.2 SINGLE PARTICLE WAVEFUNCTION

In the shell model, a single quark state is defined by a vector 

state | a > described in terms of quantum numbers as

| a > = | n, I, j, m, f, c> (3.2.1)

In the present model, the single particle wavefunction (as

described in chapter 2) will be given by

| a> = | n, I, j, m, f  c,h > (3.2.2)

for a ghost quark ' h' is replaced by 'g'.
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3.3 MATRIX ELEMENTS TO BE EVALUATED

The wavefunction of two-particle system with one particle 

in an orbit | a-|> and the other in an orbit | a 2> coupled to a total 

angular momentum J and isospin T is represented by

| a lf a 2; JT> (3.3.1)

Therefore we write the two-body matrix element as given by

< a 1( a 2 ; JT | V | a 3, a 4 ; JT> (3.3.2)

We know that the nuclear hamiltonians may always be specified 

by their two body matrix elements in an angular momentum and 

isospin coupled representation. In this case the two quark states 

could also be coupled to a definite colour but we leave the colour 

uncoupled. Since we are dealing with quarks which are fermions,

their two particles states | a l f  a 2 ; JT> and | a 3 , a 4; JT> must be

antisymmetrised and normalised. Therefore the general form of 

the matrix element M (to be evaluated) will be given by

M = ( O X }  , a 2 , JT|VqJ,qqq(1 ,2)| O t 3 ,  ( X 4 ,  JT) (3.3.3)

where the interaction operator Vq^qq^ is a transition potential 

given in equation (3.1.1).

Here for our convenience i) we have adopted the convention (for 

identifying the particles) that in the two-particle state the set of 

quantum numbers written to the left represents the particle 1 and 

the one written to the right will represent the particle 2 , ii) we 

have replaced bra and ket notations by round brackets on both ends 

of the matrix element to indicate the normalised and 

antisymmetrised two quark wavefunctions. We follow the 

notations of M.K.Pal [63] in which an antisymmetric two body state 

is represented by a ket with a round bracket | ) and an
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unsymmetrised state is represented by a ket with an angle bracket

| >. The symmetric state is supposed to be represented by a ket

with a curly bracket | } .

The transition potential has the following three parts.

1) V1(1,2) - { ( o 1. ^ r ) - H 1L  .x 2) (3.3.4)

2) V2(1,2) = | % ( o1 x o 2) . ^ ) . h L i .X2) (3.3.5)

3) V3(1,2) = { ( a r  p2)) . H ,} ( X1. X2) (3.3.6)

We will evaluate the matrix element of each part separately. 

Therefore the following matrix elements are required to be 

evaluated.

M i= (a lf 02; JT| ^ (1 ,2 )  |a3, a4; JT) (3.3.7)

M2= (a l5 02; JT| V2(1,2) |a3, a4; JT) (33.8)

M3= (a lf a 2; JT| V3(1,2) |a3, a 4; JT) (3.3.9)

These correspond to the relation

M = K ( Mi + M2 + M3 ) (3.3.10)

In these investigations we are considering three real shells 0S1/2, 

0 P i/2, 0P3/2 and three ghost shells (i.e sea shells) 0S1/2> 0P1/2 and 

0 P 3/2. Corresponding to these six shells, we require 1280 matrix 

elements altogether. We have evaluated the matrix elements 

according to the procedure as discussed below and summarised in 

figure (3.1).
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3.3.a EVALUATION OF MATRIX ELEMENT M1

We have the matrix element 

M1= (a!, a2; JT| V1|a3, a4; JT) (3.3.a.1)

where the operator V1 given in equation (3.3.4) is

3.3.a .1 SYMMETRISATION OF THE OPERATOR

The operator V-| is not symmetric with respect to an exchange 

of particle-labels 1<-»2 . We make it symmetric with respect to an 

interchange of labels of the particles by rewriting it as,

V,(1 »2) = {(o, •■^r)-H,}(X1.x2) + { ( ° 2 -^ | i )-H2j(X2a l )

= { ( a i . ^ i ) . H , - ( a 2 . ^ ) . H 2} (X i . y

. i W + H ^ a , -  o 2 ) . ^ + (Hr H2)(o1 + a2 ) . ^ J ( V  y

. . . .  (3.3.a.1.1)

If we write

V, = -g- ( A + B ) (3.3.a.1.2)

then A = j(H ,+ H 2)( a, - a 2) ^-J (x , . X 2 )

or A = 0 1(X1.A.2) (3.3.a.1.3)

and B  =  j ( H 1-H2) ( 0 1+ a 2 ) . ^ J (X i . A,2)

or B = (X ,. X 2 ) (3.3.a.1.4)

where 0 1 and are given by

r i 2
0 1 = j ( H1+H2)( (3.3.a.1.5)
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and O', = | ( H1-H2)(o 1+ o 2 ) . - ^ - |  (3.3.a.1.6)

Again for simplicity, we evaluate the matrix elements of 
operators A and B separately. If and M'̂  be the matrix elements of

the operators A and B respectively, then we have

Mi = 1  + M';> (3.3.a.1.7)

We can evaluate after having evaluated the following matrix 

elements.
1̂ 1 = (a r  a 2; JT| A | a 3, a 4; JT) (3.3.a.1.8)

IVf' = (a 1, a 2; JT| B | a 3, a 4; JT) (3.3.a.1.9)

The various steps of the procedure of their evaluation can be

fairly understood from a schematic diagram shown in fig: 3 .1.

As is clear from the diagram that first of all we separate the 

colour factor of the wavefunction from the other factors and 

evaluate it immediately. The matrix elements of the Intrinsic 

parity operator H are isolated in the same way and are calculated 

separately. At the next step, making use of the property of 

recoupling of four angular momenta we decompose the total 

angular momentum J into the orbital angular momentum L and spin 

angular momentum S. The transition potential does not contain an 

isospin operator and so the isospin can not change.. With the help 

of formulae obtained from the theory of angular momentum we 

express the matrix element in terms of reduced matrix elements 

of orbital and spin operators.
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MATRIX
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REDUCED
REL

REDUCED
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CO LO U R

INTERACTION

RELATIVE & 
CENTRE-OF 

-MASS

F ig . 3 .1) Various steps of the procedure of evaluating matrix elements have been 

followed according to a scheme shown in the above diagram.
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The orbital factor of the matrix element is further factorised by 

transform ing the orbital co-ordinates into relative and

centre-of-m ass co-ordinates by making use of Moshinsky

transformation brackets. The relative and centre-of-mass orbital 

momenta are then expressed in terms of their reduced matrix

elements which are evaluated by using the relevant expressions

derived in appendices A and B.

3.3.a.2 SEPARATION OF COLOUR WAVEFUNCTION

As each quark has spin of 1/2 and isospin of 1/2 , so the

wavefunction of the two quarks may be written with separated

orbital and colour parts as,

let!, 0C2; JT> = IPjCt, p2c2; JT > 

where p includes all necessary quantum numbers describing a

single particle state except colour. The matrix element will

therefore be written as,

= <Pici ’ P2C2; JTI A I P3C3’ I W  JT> (3.3.a.2.1)

We know that the normalised antisymmetric wavefunction of 

the two quarks can be expressed in terms of orbital and colour 

wavefunctons. 

i.e

|PlC1,P2C2: JT)=^r[lPi>p2’ IC1’C2}+ 1̂ 1 ’^2’ IC1’C2 .̂ (3.3.a.2.2)

Making use of (3.3.a.2 .2), we express Mj.the matrix element 

(3 .3 .a.2 .1) as shown below.

(plCl,p2c2;JT| A | p3c3,p4c4;JT)= i [ ( p 1,p2;JT|01|p3>p4;JT){c1>c2|X1A2|c3>c4}

+  (P l»  P2 i J T | O i ! P 3 , P4 ; J T }  {C1f C2 I ^ 1 - ^ 2 l c 3> c 4)
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+ (Pi> P2i JT |01|p3, p4; JT) (Ci, c2| X- \ . X,21c3, c4}

+ {pv  p2; JTIOJPg, P4; JT} (c,, c2|Xr  X2|c3, c4)]

. . . .  (3.3.a.2.3) 

Since the SU(3) colour operator ( ^ A 2) is symmetric, we have 

{Ci, c2| X- \ .  ^2|c3, c4) = (Ci, c2 | ^-|A2|c3, c4} = 0

Hence the expression (3.3.a.2 .3) reduces to,

M r  \  [ ' (P i  ’ ^2* J T i ° i  ip 3 > P 4 ; J T ) > c 2 ^ i  • X21°3’ c 4}
+ {pr  p2; JT |01 |p3, p4; JT} (cr  c ^ .  X2)c3, c4)]

. . . .  (3.3.a.2.4) 
provided P, *  P2 , P3 *  P4 and c, *  c2 , c3 *  c4.

At this stage,for simplicity we consider only the colour 

matrix elements to be normalised and symmetrised. The 

normalised and symmetrised colour wavefunctions of the two 

quarks are given by

|C , C ) = -p r [ lCi> c2> ’ lC2’ C1> ] ' f  °1 * C2
1 2 / 2 l

= 0 if c1 = c2

and |C4, C0} =  ~ z r  IC1’ C2> + IC2 ’ C1> i f  Cl 7 tC 2 
1 2  / 2

= |c ,, c2> if c, = c2

The colours of the two quarks may either be the same or they may 

be different. If we have c ^  c2 or c3= c4, then (c-j ,c2|̂ -| .X.2|c3,c4) 

becomes zero and we are left with only the 1st term of the 

(3.3.a.2.4).

i.e = -i-[(P-| »̂2 ’ ^C1 ,C2^r 2̂lC3,C4̂] (3.3.a.2.5)

Generally we consider the following possibilities of the colour

combinations in the matrix elements,
i) <c., c. I Vr I c., c. > = 0 if i *  j/ r i 1 c j j

and ii) <a, a| Vc| c., c> = <c., c j  Vclc., ck> = <c., ck| Vc|c., ck>
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for {i,j,k} = {1,2,3}, where Vc = ^  (A... X j ) .  The SU(3) colour operators

8

A,“ ( a = 1,2,3 . . .  8) are normalised such that (A... A,.)= X a . Xa . We
a=1

2 i
have made use of Casmir's operator F (F.= y  X.  ) to obtain the 

expectation value <(X,1. X.2)> from the expression,

^2 = 2" { ^ 1+ ^ 2)  ’ 1̂ " ^ 2} (3.3.a.2.6)

The magnitudes of Casmir's operators F2 for some common SU(3) 

representations are given in ref. [7(a)].

Usually the entire matrix element is just multiplied by the 

expectation value,
2

< { X ^ .  ^2)>(?m) = " g for colour antisymmetric pairs of (A41) = (01) 

and < { X ^ .  ^2)>M  = + ^  f ° r the symmetric pairs of (A,|i) = (20).

According to our assumption, we are considering the matrix

elements (p1 ,p2;JT|0-||(33,p4;JT) with two-quark wavefunctions

containing either one ghost-quark state and three real-quark

states or three ghost-quark states and one real-quark state.i.e If

p1 represents the state of a ghost quark then p2, p3 and p4 must

represent the states of real quarks and if P-j represents the state

of real quark then p2, p3 and p4 must represent the states of ghost

quarks. But for simplicity, we have ignored the second possibility

and therefore now we are left with the matrix element between 
quark states IP^g, p’2h; JT) and |p'3h, p’4h; JT) only.

3.3.a.3 SEPARATION OF INTRINSIC PARITY WAVEFUNCTION

Using expression similar to expression (3.3.a.2.2) for intri

nsic parity, we obtain
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(p;g> p2h; JTIOJpgh.p'^; J T )= i[(p ; ,p 2; JT|Op|p3,p;; JT) {gh|H1+H2|hh}

+ (p'r p2; JT|Op|p3,p'4; JT}{gh|H1+H2|hh)

+ {pr p2; JT|Op|p3,P4; JT) (gh|H1+H2|hh)

+ {p;,p2; JT|Op|p3,p ;: JT) (gh|H1+H2|hh)]

. . . .  (3.3.a.3.1)
where P' includes the quantum numbers required to define a single particle 
state (as given in expression 3.2.2) except colour and intrinsic parity..

By definition we have ,

H| h >= g and H| g >= -h (3.3.a.3.2.i)

< h | h >  = < g | g >  = 1 (3.3.a.3.2.ii)

< h | g >  = < g | h >  = 0 (3.3.a.3.2.iii)

Using the above properties one finds 
(g h |(H1+ H2)| h h) = 0

{g h |(H 1+ H2) |h h } = /2

(g h |(Hr H2)| h h }= 7 2  

{g h |(Hr  H2)| h h} = 0

Since the antisymmetric wavefunction | h h ) also yields zero 

value, we obtain the matrix element (3.3.a.3.1) with 1st term left 

only, i.e.

(p;g, p2h; JT|0,|p3h, p4h; JT) = ^-[(P',. P2i JT|Op|p3, p ;; JT) xJa

= -^ r(p '1,P 2;JT|0p|p3, P4; JT) 

. . . .  (3.3.a.3.3)
*"12

where Op= (cr, -  a2 ) •
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3 .3 .a.4 NORMALISATION AND ANTISYMMETRISATION OF 

WAVEFUNCTIONS

We know that the shell model needs properly normalised and 

antisymmetrised wavefunction of 2-body coupled states defined 

by [63],

IP,. P2; JT)=

IP',. P 2 ; J T }  =

2(1+5 )
1 2

2(1+8 )
1 2

IP’, . P2 ; J T >  - ( - 1 ) | p 2 , p'r J T >

. . . . ( 3 . 3 . a . 4 . 1 )

|p r  p2 ; J T >  +  ( - 1 ) IP 2 , p ; ; J T >

. . . ( 3 . 3 . a . 4 . 2 )

where the numerical factor 2(1+5r. J
12 is the normal isation constant.

j.,+j2* J +1 'T
The phase factor (-1) comes from the symmetry properties of

the Clebsch Gordan Coefficients;
i i+ i2-J

<j1m 1, j2m2 I JM> = (-1) <j2m2, m 11 JM>

< T l W  T 2^32 I ™ ! -  =  ^  < T 2 *3 2 ’ T 1 *3 i

Therefore the matrix element between the two normalised

antisymmetric states of two quarks is given by,
1  

’ 2
(pr  p2; JT|Op|p3, p4; JT)= ^ [ { ( 1 + 5 ^ ^ ) ( 1 + 5 ^ P2; JTpP|p3, p4; JT>

i ,+ i4-J -t
+  ( - 1 ) < p '1 , p 2 ; J T | O p | p 4 , p 3 ; J T >

i, +i2'J 'T
+ (-1) 

+ (-1)1

< P 2 , P 1' ; J T |  O p | | ' , P4  ; J T >

Ji +j2 3+U
< % ,  p ; ; J T |  O p | p ; , p3 ; J T > }  ]

. . . ( 3 . 3 . a . 4 . 3 )
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It may be noted that, in (3 .3 .a.4.3) the first matrix element

corresponds to a transition of the first quark from p ^ p ^  and that

of the second quark from p4->p2- It may also be observed that, in

the last matrix element of (3.3.a.4.3) the second quark goes from

P3—>p'i and the first quark from p#4—>pg.lt should be remembered

that the set of quantum numbers written in the first location in

the two- particle state comes for particle 1 and the one written

in the second place comes for particle 2 . We can re-label the

quarks by exchanging 1<->2. The operator Op is not affected by the

exchange because it is symmetric with respect to the

particle-labels,whereas the two-particle states get changed.If we 
reverse the order of the coupling in the states |p‘ , p' ; JT> and |p‘ , p‘ ; JT>

O  C. 1

of the last matrix element in (3.3.a.4.3), they change to the new
j 3+ j 4- J + 1 - T

s t a t e s  |p , p 4 ; J T >  a n d  |p , p 2 ; J T >  w i th  p h a s e  f a c t o r s  ( - 1 )
+ l -T

and (-1) respectively. The phase factors cancel out with
ll+̂ 2+̂ 3+U

( - 1) already contained in the last term and the matrix element

between the new states is obviously the same as the matrix

element in the first term. Similarly we can get the matrix

elements in the second and third terms of (3.3.a.4.3) to be equal

with same phase factor. Now if the equal terms are added up, the 

factor 1/2 at the beginning gets cancelled and finally we get,

2

( p ; ,  p 2 ; J T | O p | p 3 , p 4 ; J T ) = {  ( 1 + 5 ^ ) ( 1 + 6 ^ ) }  [ < p r  p 2 ; J T P p | p 3 , p 4 ; J T >

+  ( - I ) 13" 14'  < p '1 , p 2 ; J T | O p ' | P 4' , P 3 ; J T ^

. . . .  (3.3.a.4.4)

The first term of (3.3.a.4.4) is usually called the direct term and 

the second term the exchange term. It shows that the matrix
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element of the two-body potential between antisymmetric states 

is the combination of direct and exchange terms.

To evaluate the matrix element of Op between two 

antisymmetric states (shown in 3 .3 .a.4.4), we shall compute its 

two terms separately. In (3.3.a.4.4) the numerical factor say N is 

given by

The given operator Op = (a^  <j 2) . i s  a scalar and it does not change
3

the total angular momentum J. Therefore we can only have the 

nonvanishing matrix elements between states with the same value 

of J and M.

3.3.a.5 CONFIGURATIONS

specified by quantum numbers (nljm). The quantum number m is 

usually not shown because all states with the same value of nlj 

but different values of m (m =-j,-j+1 ,-j+2 , . ,j-1 ,j) are

degenerate (i.e the set of degenerate (2j+ 1) states |nljm> is 

referred as a level (nlj). Therefore the matrix element given in the

where

Therefore N = 1 if *  p'2 and p̂  *  p'4

= J=r if either p̂  = p'2 and P3 * P 4

or p’ *  p2 and P3 = p4 

= •!• if p; = p 2 and p3 = p;
r

As we know that the shell model single-particle level is
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first term of (3.3.a.4.4), say (ME)*, will be written as 
(ME)'1= <  p'r  p2; JT| Op |p3, p;; JT>

' - j -  n4l4j4t34;JM TM T>

. . . .  (3.3.a.5.1)

If the same level is occupied by k particles, then the shorthand 

notation (nlj)K is used to represent that particular configuration 

instead of writing quantum numbers (nlj) k times repeatedly.

Since the configuration is denoted by its occupied levels, the 

two-particle coupled state, when i) both of them are in the same 

orbit, will be denoted by |(nlj)2; JT> and ii) when each of them has 

occupied a different orbit, will be denoted by |(nlj)(nTj’); JT>.

3 .3 .a.6 TOTAL ANGULAR MOMENTUM AND ISOSPIN (J,T) 

COMBINATIONS

For particles in the same configuration (i.e in the same 

orbit), the Pauli exclusion principle restricts the set of J,T that 

may occur. For example; we have two particles in the same orbit 

say OS,each one characterised by j=1/2 and t=1/2. The values of 

the total angular momentum J and isospin T will be obtained from 

the vector addition J=ji+J2 ancl T=ti+ t2, and we get J=0 or 1 and 

T=0 or 1. Therefore the 4 possible values of (J,T) combinations for 

the two-particle system under consideration will be (0 ,0), 

(0 ,1),(1,0) and (1,1).

In order to get a complete wavefunction of two particles to be 

antisymmetric under the exchange of all co-ordinates of the two 

particles, we have to combine a symmetric space-spin
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wavefunction with an antisymmetric isospin function or vice 

versa. Therefore only the (J,T) combinations (0,1) and (1,0) are 

allowed. From the above discussion we conclude that one can 

obtain the allowed two-particle antisymmetric states I (nlj)2; J T > 

only for J plus T equal to odd. But a two-particle state, with two 

particles in different orbits can always be antisymmetrised for 

any combination of the total J and T values.

As a consequence of the Pauli exclusion principle, the allowed 

values of (J,T) combinations for two particles in the S-shell and 

p-shells have been given in a Table(3.1) given below.

TABLE 3.1 

ALLOWED COMBINATIONS OF J AND T.

Configuration Allowed (J.T)-combinations

(OS1/2)2 (0.1) and (1,0)

(OP1/2)2 (0,1) and (1,0)

(OP3/2)2 (0,1), (2,1), (1,0) and (3 ,0)

(OS1/2, OP1/2) (0,1) and (1,0)

(0P l / 2> OP3/2) (1,1), (2,1), (1,0) and (2,0)

3 .3 .a.7 SEPARATING J AND T

Since the operator is independent of isospin, the isospin 

quantum number of the states may be ignored at this stage and we 

write the matrix element (3.3.a .5.1) as
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( ^ i  -< ^ 1 ,] , .  n2l2j2; JM | (or  a2) . - ^  I n3l3j 3, n4l4j4 ; JM> (3.3.a. 7.1)

3.3 .a .8 TRANSFORMATION OF JJ-COUPLING INTO 

LS-COUPLING

In matrix element (3.3.a.7.1) the four angular momenta have 

been coupled as follows;

This scheme is known as jj- coupling scheme.

To obtain J,the total angular momentum of a two-particle 

system, we can also couple them according to the following 

scheme, called LS-coupling scheme.

There exists a unitary transformation that transforms from the 

set of functions |(n1n2), {(h s-| )j-j, (>2s2)J2)i to the set of

functions Khtn2),{(lil2)A ,(s1s2)S};JM>. The transformation coeffi

cients between jj-coupling scheme and LS-coupling scheme is 

given [67] by,

<(ni n2)> {(M2) (s1s2)S }; J | (n-i n2), {(hs^)j-j ,(l2 s2 )j2}; J>

where curly bracketed factor is called Wigner's 9j symbol.

Therefore we can express jj-coupled state of two quarks in 

terms of LS-coupled state of two quarks by recoupling four 

angular momenta using the Wigner's 9j symbol as follows;

I1+ Si — j-| , l2+ s2 = j2 and then j2 = J (3.3.a.8.1)

I1+ l2 = A , Si + s2 = S and then A+S = J (3.3.a.8.2)

= [(2A+1 )(2S +1)(2j 1 -h 1 )(2j2+1 )]2 J s2 S

Ui h  J
(3.3.a.8.3)
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2

|(n-|n2) l( 'lSi)jl ’ (W  i2}; JM> = X  f [(2A+1)(2Sf 1)(2j, +1)(2 j2+1)]
ASAS

. . . . (3.3.a.8.4)

The given matrix element (ME)^ will be written between the 

LS-coupled states of two quarks as shown below.

Where for the present case we have S’= 0,1 and S= 0 ,1. The values 

of A ’ and A depend upon the configurations (i.e location of the 

quarks in the orbits ). The orbital angular momentum I is 0 and 1 

for s-shell and p-shell respectively. Therefore the values of A ' and  

A, the total orbital angular momenta of two quarks will be 0,1,2. 

The possible values of J has already been given in Table 3.1. The 

formulae and expressions used for evaluating Wigner's 9j-symbol 

have been given in refs. [52,65,67].

( M ^ ; = £  [[{(2A'+ 1)(2S+1)(2i3 +1)(2j4 +1)}{(2A+1)(2S+1)(2 j,+1)(2 j2+1 ) } f
A S 
A S

74



3.3.a.9 TRANSFORMATION OF THE MATRIX ELEMENT INTO L 

AND S REDUCED MATRIX ELEMENTS

We know that the matrix element (3.3.a.8.5) of a scalar
r i 2

product of two tensors ( o , - o 2).—  between LS-coupled states is 

given [65] by

< (0^ 2), {A S}; JM|(a, - a 2). -jp - |(n3n4), {A' S'}; JM >

A' + S +J f j  S A  l 
= (' 1) | l  A' S’)  < S a2^l S >

x <(n,n2)A || || (n3n4)A '> (3.3.a.9.1)

Here the double-bar matrix elements are called reduced matrix

elements which are independent of magnetic quantum number.The 
matrix element < S ||(a 1- c )|| S’> has been evaluated in the appendix

B. Here the curly bracketed factor are called Wigner's 6j-symbols. 

They have been tabulated in reference [52].

Now we evaluate the radial and orbital part of the matrix 

element (3.3.a.9.1), which is given by

(ME)orb -  < (n 1n2)A || || (n3n4)A'>

= <(nih), (n2l2); All ri 2/r3 IK^b). (n4U); A’> (3.3.a.9.2)

3 .3 .a .10 TRANSFORMATION INTO RELATIVE AND 

CENTRE-OF-MASS CO-ORDINATES

In most of the calculations for evaluating matrix elements 

of the interaction potentials in nuclear shell theory e.g. [70], the 

co-ordinates r 1, r 2 of the two-particle wavefunctions in the
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harm onic oscillator potential have been transformed into 

co-ordinates r, R corresponding to the relative and centre of mass 

motions respectively by making use of transformation brackets 

[71,72].

To achieve a sound understanding about such a transformation 

we start with as follows;

If we have a particle in a harmonic oscillator potential, its 

wavefunction is written as,

|nlm> » Rn| (r) Y|m(0,<j>) (3.3.a.10.1)

W here Rn! (r) is its radial function and Y|m(0 ,<|>) is a spherical 

harmonic.

If r is taken in units of > the radial function is [71]

^  .<4-
Rnl(r) = /  2 n !3~  r' e 2 Ln 2(r) (3.3.a.10.2)

nl J  r(n + l+ j)

w here Ln is a laguerre polynomial as defined in ref. [68,69]. 

Therefore the two-particle wavefunction with states coupled to 

total angular momentum A is then given by

In ,!,, n2l2; A p>= £  I(l,m l2m |A|i) R ^ fr )  Y (6.4,) R (r) Y (0,$)
ry*̂  1 2

. . . .  (3.3.a.10.3)

If we now introduce the relative and centre -o f-m ass co

ordinates by defining them,

r = (r,- r2) and R = (r,+ r2)  ̂ (3.3.a.10.4)

we can express the two-particle wavefunction with same angular 

momentum A in terms of relative and centre-of-mass co-ordinates 

|nl, NL; Ap>= Y  t(lm , LmJAp) Rn|(r) Y |m(0,<|>) RNL((̂  YLm (0.$)
I L

. . . .  (3.3.a.10.5)
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where (1, 01, , I m |An) in (3.3.a.10.3) and (Im Lm. |Ap.) in (3.3.a.10.5)
1 2

are Clebsch-Gordan Coefficients. In (3.3.a.10.5) the quantum 

numbers nl,NL correspond to relative motion and centre-of-mass 

motion respectively.

A relation between the wavefunction for two particles in the 

harmonic oscillator potential with the wavefunction associated 

with the relative and centre-of-mass co-ordinates for the same 

two particles is given by;

|n1l1, n2l2; A | i > = ^  |nl, NL; A jix n l.N L ; A ln ^ , n2l2; A >
nINL

. . . .  (3.3.a.10.6)

Here the coefficients <nl,N L;A |n1l1 ,n2l2;A> are called Brody 

-Moshinsky transformation brackets [71,72].

Because of conservation of energy, both the kets in expression 

(3.3.a.10.6) correspond to the same energy and the values of nINL 

are restricted to the positive integers such that

p = 2n1+l1 +2n2+l2 = 2n + I +2N + L (3.3.a .10.7)

the quantity p is called the energy index of the two-particle 

system.

The transformation bracket will only be non-zero if it satisfies 

the energy condition (3.3.a.10.7) and also taking into account that

| 1 + |2 =  a  =  l+L (3.3.a.10.8)

The condition (3.3. a. 10.?) guarantees also the validity of 

conservation of parity in the wavefunction as,

( - I )'1"'2 = (-1)'+L 
Making use of the transformation (3.3.a.10.6), we can express

the matrix element (3.3.a.9.2) in terms of relative and centre

-of-mass co-ordinates as,
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rr f hf L'

There exist many symmetry relations between transformation 

brackets e.g [7£],

<nl,NL; A ln ^ , n2l2; A> = (-1)L-A <nl, N L; A|n2l2, n ^ ;  A>

The values of transformation brackets have been tabulated in ref. 

[72] for all cases required in the calculations of shell model 

wavefunctions and the matrix elements of the nuclear shell 

theory. The transformation bracket will be zero for all 

combinations of its parameters n,l,N,L and n1,l1,n2,l2 which do not 

satisfy the energy condition (3 .3 .a .10.7) and the condition 

(3 .3 .a .10.8) for conservation of total angular momentum of the two 

body system.

depends only on the magnitudes of the relative co-ordinates, 

therefore the operator in (3.3.a.10.9) operates on part 1 in a 

coupled state |nl,NL; A> and we have [65],

= (-1) 1 <N L, nl; A| n ^ ,  n2l2; A >

= (-1) <NL, nl; A| n2l2 , n ^ ;  A >  etc.

. . . .  (3.3.a.10.10)

r i?3.3.a .11 EVALUATION OF <nl, NL; A|| - f - 1| nT, NL' ; A >

As we know that the interaction V(r ) betwen two quarks

<nl, NL; A | | ^ - | |  n l’, N'L ; A’> =  (-1)
l+L+A' +1

[(2A+1)(2A'+1)]2
I A L
a 1 r 1
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x <n l II n f> 5 NN. SLL. (3.3.a.11.1)

r -|2 is a tensor operator of rank 1 and negative parity. Conservation 

of angular momentum requires f= 1+1, I or 1-1 and conservation of 

parity does not allow I’ = I. Here 1=1+1 or 1-1 only.

The following reduced matrix element
r i?

<nl l l - ^ - l l  nT> (3.3.a.11.2)

can be evaluated for 1=1+1 by using equation (A.7.13) and for 1= 1-1 

it may be calculated by making use of expression (A.7.12) in 

appendix A.

In a similar way, we may compute the exchange term (i.e the 

2nd term ) in equation (3.3.a.4.4).

3 .3 .a .12 EVALUATION OF MATRIX ELEMENT M^' (3.3.a.1.9)

After having evaluated the matrix element M-j' (3.3.a.1.8), we

calculate the matrix element Mi"(3.3.a.1.9) in the same way as the

evaluation of has been done. The matrix element M-j" (to be

evaluated ) is given by,
(a r  a 2; JT| B | a 3> a4; JT) = (a r  a g; JT| O ' ^ .  A.2)| a 3, a 4; JT)

. . . .  (3.3.a.12.1)

where = (H1-H2)(o1 + a2). -4 p .

For simplicity, first we separate the colour factor and then the 

intrinsic parity factor of the functions as discussed before. The 

evaluation of the matrix element of a colour operator and intrinsic 

parity operator is carried out according to the procedure as 

mentioned in sections (3 .3 .a .2) and (3 .3 .a .3 ) respectively.
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Eliminating intrinsic parity as in section 3.3.a.3 we get the matrix 

element of O}.

(p;g, p2h; JTIO'Jpgh, p4h; JT) = j = { $ v  P2; JT|Op IP3, P4; JT)

i *̂12
where Op'= ( a l  +  o2 ) *1 “  •

By definitions (3.3.a.4.1) and (3.3.a.4.2), we write

(;p;, p2; JT| cp*|p3. p4; J T )= -i-[{ (1 + 8 ^ 2)(1+8

+ (-1)‘3+,4J <p'1, p 2;J T |O p '|p ;,p 3 ; JT>

- (-1)'1+i2 < p 2 pj ; JT| Op'|p3 , p4 ; JT>

jn +J2 +-l 3^4 1 1
- ( - 1 ) , p ; ; JT| Op'|p4 , P3 ; J T ^  J

. . . (3.3.a.12.3)
rl 2

Since the operator Op'= (a! + a2 ) . “j j -  ls an antisymmetric operator

the signs of term 3 and term 4 get changed by the exchange of 

particle-labels 1<->2 and we obtain
JL
2

( p;, P2 ; JT|Op'|p3, p4; j t ) = {  C +5p;p2) ( i +5p3p4)}  [<Pv P2; j t I°p'IP3, P4 ; JT> 

+ (-1)'3+J4 J <p'r  p2; JT| Op'lp;, p3 ; JT> ]

. . . .  (3.3.a.12.4)

We evaluate the direct term (1st term ) and exchange term (2nd 

term) of (3.3.a.12.4) separately. Following the procedure that has 

been described earlier from section (3.3.a.5) to (3.3.a.9), we can 

obtain expression for a direct term like (3.3.a.9.1) as given below.
r

<(0,112), {A S); J M |(a ,+  o 2 ). |(n3n4), {A'S'); JM >

= (-1 )A + S+ J | j  s j < s IK ° i+ 0 2) l |S '>
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r
X < (n 1n2)A II -LS. II (n3n4)A >  (3.3.a.12.5)

The reduced matr ix element of (o^+ a2) has been evaluated in Appendix B.
r

The procedure of evaluating c ^ n ^ A H - f - 1| (n3n4)A’>  has been

described from section (3.3.a.9) to section (3.3.a.11). Similarly we 

can evaluate the exchange term of (3.3.a.12.4) by the procedure as 

described for its direct term.

3.3.b EVALUATION OF MATRIX ELEMENT M2

To evaluate the matrix element

M2 = ( a lf a 2; JT|V2(1,2)| a3, a4; JT), (3.3.b.1)

we will adopt the same procedure as has been already described in 

section 3.3.a.

3.3.b.1 THE OPERATOR AND ITS SYMMETRISATION

The operator V2 as given in equation 3.3.5 is

V2( 1,2) = (3l1.X 2) | j ( 0 iX0 2 ) - - ^ r J .H 1 (3.3.b.1.1)

The given operator is not symmetric under the exchange of

particle-labels. To make it symmetric with respect to an exchange

of labels of the particles, we write 
V - V 2(1,2) + V2 (2.1)

r 12 l r . ,  ,
i.e V - ( X 1. X2) | j ( ® i x ®2) - r3 J.H1 + (X2. X , ) | j ( 0 2 x 0 , ) - - ^ - } .H 2 

= (Xr  X2) { j ( « i x a 2>■ 7 [ ( H ,+  H2) (3.3.b.1.2)

Therefore, we write the matrix element M2 as,

M2 = (  cti, a2; JT| V |a3, a4; J T / (3.3.b.1.3)

81



For evaluating M2, the same procedure will be followed as that has 

been explained in section (3 .3 .a).

3.3.b.2 PROCEDURE OF EVALUATION

Following the same procedure as mentioned in section (3.3.a),

first we separate the colour using (3.3.a .2.2) and evaluate the

matrix element of the colour operator ( X U X 2 ) .  Similarly we

separate the intrinsic parity quantum number and evaluate the

matrix element of the parity operator (H1 + H 2)- Consequently,

except for a constant factor, we get the matrix element of the

following form.
(p ; ,p 2; JT| Op" | p3, p4; JT) (3.3.b.2.1)

r i 2Here Op" = (c^x a2). - j -  .

We shall write matrix element (3 .3 .b.2 .1) with properly 

normalised and antisymmetrised wave-functions as,
j_

' 2
(p'r  p2; JT|Op"|pj, p4; JT)={ (1 +8̂ ^)(1 +8^ p.)}  [<p;, P2; JT|Q)"|P3, p ;: JT>

+ (-1),3+,4J <p'1,p 2;JT|O p"|p4 ,P3 ; JT>]

. . . .  (3.3.b.2.2)

The direct term (i.e 1st term in (3.3.b.2.2) and the exchange 

term (i.e 2nd term in (3 .3 .b.2 .2) would be evaluated separately as 

they have been evaluated in section (3.3.a).
r ip

Since the operator Op" = ( < s ^ a 2 ). is independent of isospin

quantum number, we have the following matrix element correspond 

-ing to the direct term.

< ni 14 j 1, n2,2j2: JMK^iX cr2).-^ - I n3l3j3, n4l4j4 ; JM> (3.3.b.2.3)
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Using transformation (3.3.a . w e  get the above matrix 

element with LS-coupled states instead of jj-coupled states as,

< ni |iJ1, n2l2j2; JM | (a ,x  a2) . - ^ -  | n l j  n .l.j ; JM >
3 3J3 ’ 4 4J4

= S r [ { ( 2 A ’+ 1 , ( 2 S ’+ 1 ) ( 2 j 3 + 1 ) ( 2 j 4 + 1 ) } { ( 2 A + 1 ) ( 2 S + 1 ) ( 2 j 1 + 1 ) ( 2 j 2+ 1 )}
A  Q  LA S  
A  S

fl L A" 0 . I. a  13 4 1 2
< S3 S4 S’ > < S1 S2 S >
J 3 k J

> l j 1 j2 JjI*
x<(n1n2),{(l1l2)A  (s ^ S ); JM|(a,xa2) . - f - |  (n3n4),{(l3 i4)A', (s^.JS'}; JM>]

. . . .  (3.3.b.2.4)

Analogous to equation (3.3.a.9.1), we get

< ( ^ 0 ,), {A S}; JM|(o, x o 2). - L i  |(n3n4), {A' S'}; JM >

, _%a' + s +J JJ S A l 
= (' 1) \ l  a-S-J < S I!(CT1X ° 2> H S >

x <fn,n2)A l l - ^ - l l  (n3n4)A > (3.3.b.2.5)

where <S|| (c^xc^) ||S‘>has been evaluated in appendixB. The evaluation 

of reduced matrix element of r 12/r3 has been described from 

section (3.3.a.9) to section (3.3.a.11).

The procedure for evaluating the second term (i.e the exchange 

term) in (3 .3 .b.2.2) is the same as mentioned in section (3.3.a.12).

3.3.C EVALUATION OF MATRIX ELEMENT M3

Finally, we evaluate the matrix element M3 (the expression 

3.3.9). The matrix element M3 is

M3 = (cx-j, a2; JT|V3(1,2)| oc3, CX4, JT) (3.3.C.1)

Where the operator V3 (as given in 3.3.6) is
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3.3.C.1 SYMMETRISATION OF THE OPERATOR

Since the given operator is not symmetric with respect to 

interchange of particle-labels, therfore we have to symmetrise 

the operator. We write the operator in a symmetric form as,

V = V3(1,2) + V3(2 ,1)

=  72i{(o1. ^ ) .H 1 + (o2 .^L ).H2}(X1.X2)

P, P , , . , ..............  P2 _ P
(H1+H2)(cr1.-jr- + 02- r  ) + (Hr H2^ ° r  r " r ) } ( V  ^  

= J j=  [ (H 1+H2){ (o 1+ o2) ( > + (0 , - 0 2 ) ( ^ - )}

+ (H1-H2){(a1-a2) ( ^ 1) + (°1+ °2>^2r L>} ]<V X2>
. . . (3.3.C.1.1)

We transform the momenta p^nd  p2 into the momenta p and P 

corresponding to the relative and centre-of-m ass motions 

respectively by the following fundamental expressions.

P — ~ j~  (P, + P2) (3.3.C.1.2)

P = - ^ t (P1- P 2) (3.3.C.1.3)

Using definitions (3.3.C.1.2) and (3.3.C.1.3) in expression
3.3.C.1.1 and putting p=-ifiVre| and P=-itiVc M, we have the operator

V given by ,

[ f Vr 1* Vy€L \( H ^ H ^ t o ^ - O g J . - ^ - t O i - O j J . - f - /

+ (Hr H2){(ar  a2).-f^- J (V  X2> =1)
. . . .  (3.3.C.1.4)
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Or V = 1 { ( H 1+ H2)0, + (Hr  H2)0 2}(X r  X2) (3.3.C.1.5)

Here 0 1= (o + a 2) -“ r~  “ (ar a2̂ ~ r~^
Vom Vyet

(3.3.C.1.6)
VC,M Vy*LVya

0 2= (a ,- a 2). ~ T  - (o,+ a2)- ~ 7 (3.3.C.1.7)

3 .3 .c .2 PROCEDURE OF EVALUATION

From expression (3.3.C.1.5), it is clear that it will be more 

convenient to evaluate M3 if we first calculate the matrix 

elements

The various steps of the procedure have been described in detail in 

section 3.3.a. First of all we dissociate the colour factor by using 

expression (3.3.a.2.2) and calculate the matrix element of the 

colour operator ( X ^ . X 2 ) as discussed in section 3.3.a.2. After that 

we separate the intrinsic parity and compute the matrix element 

of the intrinsic parity operators (H-,+ H2) and (Hr  H2) in the same 

way as mentioned in section 3.3.a.3.

After having separated the colour and intrinsic parity factors 

of the matrix elements we are left with the matrix elements of 

the following forms.

(3.3.C.2.1)

(3.3.C.2.2)

separately as we have

M3 4 (M 3 + M3> (3.3.C.2.3)

(P 'r  P2 ; J T I 0 ,1 0 3 .  J T )  
a n d  { P ; , P 2 ; J T | 0 2 |P3 , P 4 ; J T )

(3.3.C.2.4)

(3.3.C.2.5)

where p’ = nljmt3.
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Making use of expressions (3.3.a.4.1) and (3.3.a.4.2), we obtain the 

matrix elements 3.3.C.2.4 and 3.3.C.2.5 in a properly normalised and 

antisymmetrised forms as given below.

(p;, P2; JT |0 ,|P 3, p4 ; JT)={ (1 + 8 ^ )  ( 1 + 8 ^ ) }  [ ^ r  p2; JTIOJPg, p4; JT>

+ (-1) ^ . P ^ J T I O j ^ . p -  j T>]

. . . .  (3.3.C.2.6)
j_

' 2

{p;, P2; JT |02|P3,P4; J T ) - { ( l+ 8 p.pH l+ 8p. ^ )}  [<pi , p2; JT|02 |p3, p4; JT>

+ (-1 / 3 '* <P'1,P 2; J T | 0 2 |p4 ,p3 ; j t > ]

. . . (3.3.C.2.7)

On the right side of each of the above two expressions, the two 

terms namely direct term and exchange term are computed 

separately. The procedure of their evaluation has been described in 

section (3 .3 .a). After having carried out some steps of the 

procedure of evaluation, we obtain the following matrix elements 

<nl, NL; A | | n'l', N'L' ; A '>  (3.3.C.2.8)

<nl, NL; A | — 1 n'l', N'L' ; A '>  (3.3.C.2.9)

alongwith reduced matrix elements of the spin operators (c^+o^and

(c ^  a 2) with some additional factors. The reduced matrix elements of

the spin operators have been already evaluated in sections B.1 and 

B.2 of appendix B. In matrix element 3.3.c.2.8, the operator acts 

only on part 1 of the coupled state, therefore according to 

expression (3.3.a .11.1) we write (3.3.C.2.8) as,
i_

<nl, NL; A| — 4 ^ - 1 n'l’, N'L'; A '>  = (-1 )'+L+A' +1 [(2A+ 1)(2A'+ 1)]2 ^
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x c n l l l - ^ - H  nT> 8 ^ .8 ^  (3.3.C.2.10)

But in (3.3.C.2.9) the operator acts only on part 2 and we have

< n l ,  NL; A | n'l', N'L' ; A ’ > =  ( - 1 ) '+ U A  +1 [ (2 A + 1  ) ( 2 A '+ 1 ) ] 2 A,_,  ̂J

* < N L | | - ^ - | |  N'L'>8nn. 8|( (3.3.C.2.11)

The reduced matrix elements on the right side of the above 

equations are calculated by using expressions A.6.18 and A.6.17 (of 

Appendix A) for L^L+1, and L'=L-1, respectively.

After having computed the matrix elements M1f M2 and M3 w e  

can evaluate the matrix element M of a transition potential (3.1.1) 

by making use of expression (3.3.10).
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CHAPTER 4

RESULTS AND DISCUSSION

Having incorporated the quark-antiquark excitations generated by 

the pair creation interaction into the model space, we have 

performed the calculations to determine the mass and the 

electromagnetic properties of the nucleon using three different 

sets of parameters given in table 4.2.

First we used the parameters set 1 and set 2 of table 4.2 but 

we did not obtain reasonable values of the nucleon's mass and N-A 

mass-splitting as will be discussed in section 4.1 .2 . We, 

therefore, then predicted the new values of the model parameters 

(shown as parameters set 3 in table 4.2) and performed the 

calculations to obtain the energy and electromagnetic properties 

of the nucleon.

The techniques used in the present calculations have been 

described in chapter 2. For more technical details of the 

computational methods, see reference [45]. For comparison, we 

have also performed similar calculations in terms of the 3q-model 

of the single nucleon. All the results of our calculations are given 

and discussed in this chapter.
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4.1 PRECALCULATIONS

To compute the ground state energy of the nucleon we first 

performed the following calculations. Having calculated single 

particle energies of the shells and core energy with parameter set 

1 and set 2, we used their calculated values as input data for 

energy calculations. Using this data we re-evaluated the numerical 

values of the model parameters as discussed in section 4.1.2. 

Using each set of parameters, to calculate the nucleon's energy we 

have to first compute the single particle energies of the shells 

and energy of the core.

4.1.1 SINGLE PARTICLE ENERGIES AND ENERGY 

OF THE CORE

To compute the ground state energy of the nucleon we must 

know the exact values Of the single particle energies of the shells 

and the energy of the core. Since the presence of the core changes 

the single particle energies in the various shells, we would have 

to re-calculate the single-particle energies and energy of the core 

by taking into account the changes arising from the interactions 

between the valence particles and the core particles. In the 

present case we are dealing with a many-particle system  

comprising an assumed filled-shell core and three quarks in OS 

valence shell. For such a system, it would be convenient to write 

the many-body Hamiltonian (2.5.1.1) in the following form

H = H c + H v + H v-c (4.1.1.1)

where H c includes the K.E and the two-body interactions of the
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sea quarks making up the closed-shell core, Hv is an analogous 

quantity for the valence quarks and Hv*c represen ts  the  

interactions between real quarks and ghost (sea) quarks. If we 

denote the determinantal wavefunction of a system by *F then any 

diagonal matrix element of the Hamiltonian H will be given by
occ occ

< ¥  I H I ¥  > = £  < i I T I i > + £  ( ij I V I ij ) (4.1.1.2)
i i < j

where the summations run over the occupied single-particle 

states in many-particle determinantal state 'F and a matrix 

element in the second term of the equation (4 .1 .1 .2 ) is an 

antisymmetrised matrix element of the two body interaction V jj 

D istinguishing between the core particles (i.e the ghost quarks) 

and the valence particles (i.e the real quarks), one can decompose 

the two body interaction Vy in the form [75]

X  V .  X  V  - X  V  X  v ij (4.1.1.3)
i < j  i c j e C  i e C  i c j e V

j €  V

C and v represent the filled-shell core and the valence shell 

respectively.

With the help of expressions (4.1.1.1), (4.1.1.2) and (4.1.1.3), 

we obtain
48  48

< ¥  i h  i y  > = X < i i T i i > + . X  ( i j ’ i v QQ M n
1= i e C 1 = 1 < ]  e C

3 ^
+ X  < ' I T | i > + 2 h  ( ij I Vqq | ij )

1 =i e V 1 = i < j e V
3 48

+ X  X  ( ijl V q Q  I U ) (4.1.1.4)
1= i e V 1= J e C

where 'F is the wavefunction of a many-quark system comprised
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of 3 quarks in valence shell v and 48 ghost quarks in filled-shell 

core c.

Fig. 4.1

Core
2
+
2
+

2
q q

a) A system of 3 real quarks in a valence shell plus an assumed 

core of 48 ghost quarks below the Fermi-surface.

Core

qO

Q Q
C ? v v K )

Q %© V W V jO

b ) A system of three holes in an assumed core of 48 ghost quarks below the 

Fermi surface.

N.B: q, Q and Q represent a real quark, a ghost quark and a hole (i.e. 

anti-quark) respectively in a fig 4.1.

The interaction Vqq is given in table 4.3 while the other two-body 

interactions are obtained as

VqQ Vqq and VQQ = V qq (4.1.1.5)

In an expression (4.1.1.4), the 1st part is an eigenvalue Ec of the 

hamiltonian H c which describes the energy of the filled core, i.e
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and the second part gives the energy of the three quarks in a

valence shell (on their own) without a core, i.e
3 3

E 3q =  X  <  ' I T  I ' >  +  X  < 'J I V qq I 'J ) ( 4 . 1 . 1 . 7 )
i G V i< j e V

The third part of the equation (4.1.1.4) represents the effective 

interaction experienced by the 3 valence quarks due to the 

presence of an assumed filled-shell core occupying 48 ghost 

quarks which alters the single-particle energies of the various 

shells. If we denote the change in the single particle energy of a

real shell by eic then we write
3 48

3eic = X  X < ‘h  VqQ |ijr> (4-1'1-8)
i e V j e C

Keeping the expressions (4.1.1.6), (4.1.1.7) and (4.1.1.8) in view, 

we may re-write the expression ( 4.1.1.4) as

^ 3q + C = E C + E 3 q + 3 £ j c (4.1.1.9)

In the second case we consider the core with three holes 

showing three quarks missing in the core. Similarly, with the 

same reasoning as described above one can finally arrive at the 

following expression

^ C -3Q = ^ C + E 3q " 3 £jc (4.1.1.10)

where eic represents the change in single-particle energy of a sea 

shell.

To work out the changes in the single-particle energies in the 

various shells, we performed calculations to evaluate i) Ec , the



energy of the assumed core with single-particle energy equal to 

the mass energy of the constituent quark 359.73 Mev in each shell,

ii) E3q +c, the energy of the 3 quarks in a real shell plus filled core,

iii) E3q, the energy of the 3 quark in a valence shell (on their own) 

without the assumed core and iv) E C_3Q, the energy of the assumed 

core with 3 holes. Having evaluated the values of Ec , E3q+C, E3q 

and E c_3Q, we worked out eic and ejc, the changes in single-particle 

energies of the various shells by making use of expressions 

(4 .1 .1 .9) and (4.1.1.10) respectively. The exact single-particle 

energy of the shell is obtained by subtracting the change 

calculated for that particular shell from the mass energy of the 

quark mqc 2 =359 .73  Mev. The corrected values of the  

single-particle energies of the shells are shown in the table 4.1.

In the present study, analogous to the Dirac vacuum with 

electrons occupying the negative energy states, we have imagined 

the fermion vacuum with quarks occupying the negative energy 

states below the Fermi energy level. The negative sign of the 

single-particle energy of the sea shell is due to the occupancy of 

the negative energy states. By summing over the single-particle 

energies of the sea shells, we obtain the energy of the core (i.e the 

energy of the vacuum).
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TABLE 4.1
SINGLE-PARTICLE ENERGIES AND ENERGYOFTHE CORE.

Set No:

Single-particle energies.
i ej 

(Mev) (Mev)
Energy of 
the core

Ec
( Mev)

Real shells 

0S1/2 0P1 / 2 0f3 /2

Sea shells 

0 § i/2 0P1/2 0P3/2

i

II

in

226.88 174.59 174.81 

397.64 351.01 352.78 

267.23 209.18 209.22

-1053.51 -1410.45 -1407.61 

-1157.62 -1471.70 -1471.35 

-1125.56 -2527.40 -2527.41

-36503.73

-22981.75

-57902.07

The energy possessed by the single quark in a harmonic oscillator

potential is given [76] by

E . = (2n+l+ -2-) “h w. n,l v 2

where I is the orbital angular momentum quantum number and 

n=0,1,2,3 . . .is the principal quantum number associated with the 

number of nodes in the radial wavefunction. Therefore the kinetic

energy of the quark in a OS shell and in a OP shell will be as

fo llo w s ;

(K.E)0S = f W  and (K.E)op = f -  fW.

The values of 1iw for the sets of model parameters (mentioned in

table 4.2) are given in table 4.3.

Including the kinetic energy term into the energy of the single 

quark, we obtain the OS and OP energy-levels which are shown 

diagrametically in a figure 4.2. From the energy-diagram shown in 

a fig. 4.2 it is clear that the energy difference between the 0P1/2
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level and 0P3/2 level is extremely small and these are nearly 

degenerate levels because of the reason that the potential used in 

our calculations did not include the spin-orbit interaction term. 

Otherwise the order of the levels looks fine.

/N
( Mev )

6 7 1 .6 8 v  
6 7 1 . 6 4 \ _  
5 4 4 .7 1  I

0.0  “

-  8 4 8 .0 8  “

-  2 0 6 4 . 9 4 \ ^

Energy -  2 0 6 4 .9 5  ~~

Fig 4.2 Single particle energy levels.

II

0 P3 /2

0 S 1/2 
Fermi level

O S i /2  

OR1/2

OR3 /2

To define the Fermi level as zero of the energy scale, we 

subtracted off the core's energy from all the computed values of 

the energies.

4.1.2 CHOICE OF MODEL PARAMETERS

In order to specify the quark-quark interaction the following 

four essential parameters have been used in the quark potential 

models [21-30].

1) b,the oscillator length parameter of the quark spatial wave 

function, ii) rriq , the mass of the constituent quark, iii) a s  , the 

quark-gluon coupling constant,the QCD analog of the fine structure 

constant relevant to nuclear energies and iv) ac , the confining
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potential constant that describes the strength of the confinement 

interaction for the quarks.

The same model parameters b, mq, a s and ac are contained in the 

interaction potentials of table 4.3 that have been used in the 

present calculations.

It is very important to select or determine the most suitable 

values of these parameters to develop an exact potential between

the quarks. To obtain a good choice of model parameters, we

proceeded as follows;

First we performed the calculation based on the 3q- model to 

obtain the energy, magnetic moment and root mean square radii of 

the nucleon using parameter set 1 of table 4.2 which have been 

already used in reference [30]. The results of the calculation are

given in tables 4.8, 4.11 and 4.12. The calculated mass of the

nucleon and isobar delta, MN=938.09 Mev/c2,M A=1229.65 Mev/c2 

and their mass splitting, MA-M N=291.56 Mev/c2 are in remarkably 

good agreement with the observed values [77]. Similarly the 

results of the electromagnetic properties of a nucleon are also 

quite satisfactory. We obtained exactly the same energy for the 

anti-nucleon as that of the nucleon i.e Epj=938.12 Mev. This was a 

good check of our shell model computation. We are,therefore, 

confident that the code yields the correct results for the present 

study. But when the same calculations are repeated in terms of the 

present model, the computed energies (as shown in table 4..8) are 

found to be very low as compared with the experimental data. The 

nucleon's energy is lowered by 570.59 Mev/c2 from the previous 

value to 367.50 Mev/c2. The radii and magnetic moment are
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improved by 2% and 6 % respectively. It shows that the model, 

with the given set of parameters, produces an exact energy of the 

nucleon and reasonable values of its electromagnetic properties if 

it is based on the 3q-structure of a nucleon but failed to give an 

exact nucleon's energy when based on the present (3q+q4q) 

-structure of the single nucleon.

Since the (q4q)-components make significant contributions to 

the masses MN, M^and also to the electromagnetic properties of the 

nucleon,it is necessary to readjust the values of the model 

parameters b, mq, as and ac for the present model. Parameter set 2 

shown in table 4.2 was predicted and used by Fujiwara and Hecht 

in the present-model study of the NN-interaction within a 

framework of the resonating group method [37].W e,therefore, 

performed the same calculations based on the present model using 

these parameters b=0.524 fm, mq=471.2 M ev/c2,as=2.973 and 

a c = 3 3 5 .7  M e v /fm 2 within the framework of the Glasgow  

shell-m odel program m e.The results obtained from these  

calculations are shown in tables 4.8,4.11 and 4.12. The N and 

A -m asses MN=660.34  M ev/c2,M A=1022.01 M ev/c2 and their 

m ass-splitting MA- M N =361 .67  M ev/c2 are still not in good 

agreement with the observed values. The magnetic moment and 

radii were found to be round about 80 % of the observed values.

In fact, Fujiwara and Hecht did not aim to choose the 

parameters to obtain the exact energy (ground-state) of the 

nucleon as it was the philosophy of their study not to trust the 

property of the nucleon dependent on the confining potential 

constant ac because of its phenomenological character. Anyhow
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their predicted set of parameters may produce better results in 

the space smaller than ours.

To obtain other more suitable values of the parameters, we 

have checked the sensitivity of the nucleon's energy and N-A

energy-splitting to the parameters, using the data obtained from 

the calculations with parameters set 2. We have examined the

variation of the nucleon's energy by changing the value of the

oscillator length parameter b and the value of the confining 

potential constant ac(as shown in fig 4.3 .a and 4.3.d respectively) 

while keeping the other three parameters constant. From the graph 

shown in fig 4 .3 .a, it is obvious that the stability condition 

8 (M N)/5b = 0 [35] is satisfied at b=0.524 fm and we get the

minimum energy of the nucleon at b=0.524 fm as the nucleon's 

energy changes with respect to the variation of the size parameter 

b. It has been noticed from the results shown in fig 4.3.d that the

energy of the nucleon increases on increasing the value of the

confining potential constant ac at the constant values of other

three parameters mq b, and as.

Sim ilarly we have also checked the variation of N-A

energy-splitting by changing the quark-gluon coupling constant as 

at given values of other three parameters. The results are 

graphically presented in fig 4.3.C. The graph shows that the N-A 

mass-splitting is directly proportional to the coupling constant 

a s.We have found (as it is obvious from the plots shown in fig 4.3) 

that the energy of the nucleon is more or less sensitive to all 

parameters but it depends mostly upon the confining potential
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Fig. 4.3
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constant ac i.e the strength of the confinement interaction for the 

quarks.

With the help of the plots shown in fig 4.3 and other relevant 

information obtained from the previous calculations with 

parameters set 2, we re-evaluated the parameters (3rd entry of 

table 4.2) for the present model to obtain better agreement with 

the measured mass and electromagnetic properties of the nucleon.

4 .1 .2 .1  RE-EVALUATION OF THE MODEL PARAMETERS

We know that the numerical values of the oscillator length 

parameter b and mass of the quark mq are strongly constrained by 

the size of the nucleon and its magnetic moment respectively. We, 

therefore, first chose suitable values of b and mq to fit the mean 

square radius and the magnetic moment of the nucleon by making 

use of the qualitative information borrowed from the numerical 

results of the previous calculations with parameters set 1 and set 

2 through the relations,

<r2> « b2 and n «  f^j- (4.1.2.1)

We have chosen mq=359.73 Mev/c2 and b=0.54 fm. The value of fb' 

has been selected larger than the value given in parameter set 2 

because of the fact that the smaller values of b would require 

larger masses of the quark. Having selected the specific values of 

b and mq initially we estimated a s, the quark-gluon coupling 

constant, from the N-A mass splitting from the expression [24a],
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T A B A E  4.2  

SETS OF MODEL PARAMETERS

Param eters  
set number

Oscillating length  
param eter, b

( f m )

mass of the 
quark, m q

( Mev/c? )

Coupling
constant

as

Conf: Potentia l 
constant, ar  

2
( M e v / f m  )

1 0 . 6 0 313 1.517 2 3 .6 7

2 0 . 5 2 4 4 7 1 . 2 2 . 9 7 3 3 35 .7

3 0 . 5 4 3 5 9 . 7 3 1 . 7 5 1 9 5 .4 4

valid in the 3q-model

M  M  - 2 .  n  “ s (*<?)'
M N 3 V  71 2 | 3

mq b
(4.1.2.2)

to fit the observed mass difference of 293 Mev/c2. The strength 

constant ac of the quadratic confining potential was worked out 

from the expression [24a]

16mqb
F (4.1.2.3)

where the factor F is given by F =1- j  (Am mqb2/c 2) - (Am mqb4/c 4).

Using the value of a s calculated from equation (4.1.2.2) and the

value of ac calculated from equation (4.1.2.3), we could not get

reasonable values of the N-A mass-splitting and energy of the

nucleon. This shows that the above expressions are valid only in 

the 3q-model but no longer valid in the present model. Although 

the proportionalities among the quantities given in the 

expressions (4.1.2.2) and (4.1.2.3) still remain the same (as

102



1300 H

1200 A
>o
2 1100 H

1000 H

900 H

800 i

700
100 200 3 0 0 400

Confining potential constant 
(Mev/fnt)

a) Nucleon's energy versus confining potential 
constant ^  for parameterset 3.

320 H

f 'uVI ^  
m O

300 H

290
100 200 300 400

Confining potential constant 
( Mev/fm*)

b ) T h e  N -a  mass-splitting versus confining potential 
constant for parameter set 3.

103



obvious from the plots shown in fig 4.3) in the present model but 

the effect of the mesonic cloud might change the constant of 

proportionality in each relation. Anyhow the results obtained 

provided us a clue to attack the problem. Making use of the 

proportionalities between the quantities to be determined and the 

relevant parameters (as shown in the plots b and c of fig 4.3) and 

the quantitative information derived from these results,first we 

re-adjusted the value of a s =1.75 to fit the observed value of N -A  

energy-splitting of 293 Mev.

Finally we acheived an exact fit of the nucleon's energy (ground 

state) En=938.231 Mev by a further adjustment of the confining 

potential constant ac equal to 195.44 Mev/fm2 as clear from the 

plot shown in fig 4.4.a. This re-adjustment of ac=195.44 Mev/fm2 

shifted the value of N-A mass-splitting from 293 M ev/c2 to 

317.58 Mev/c2 as it is obvious in a graph shown in fig 4.4.b.

In a way as mentioned above, having made the following 

consistency checks,

i) mass of the nucleon is 938.23 Mev/c2,

ii) N-A mass splitting is 317.58 Mev/c2 and

iii) th e  ra t io  | i n/ | i p =  - 0 . 6 7 5

we have finalised the numerical values of the model parameters 

compatible to the present study of the nucleon's structure to be 

b=0.54 fm, mq=359.73 Mev/c2, as=1.75 and ac= 195.44 Mev/fm2. 

The final parameter sets are summarised in table 4.2.
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TABLE 4.3

I. MODEL HAMILTONIAN.

H = (  2  T )  - K + 2  V(ij)
x "  I 7 C .M  " KJ

with T=(mq).+ o/ J  — (for non-relativistic many-quark hamiltonian)
2(m a)q'i

2. QUARK-QUARK INTERACTION.

V.. = ( X . .  X . )ij * r r..
ij

A  - Bi8(r..)[1+ j ( a  . a .)] (k. . X.)Acr.2
v i j 7 c  ij

3. QUARK-ANTIQUARK PAIR CREATION INTERACTION.

V _ (1,2) = K ( X  . X  )
q->qqq 1 2 -J-) + I (°i* a2>-TT+ <ar  P2>

4. STRENGTH-CONSTANTS OF THE POTENTIALS ANDfiw.

A B Ac K Jr
Set No: 3 2 2 n w

(Mev.fm ) (Mev.fm) (Mev/fm) (Mev.fm) (M ev)

1 295.85 371.91 94.68 47.02 3 4 4 . 4 2

2 585 .68 321.61 1342.28 61.22 2 9 9 . 9 6

3 344 .75 324.81 781.76 47.20 3 6 9 . 9 7
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4.2 WAVEFUNCTION AND ENERGY OF THE SYSTEM

In this section we describe the improved wavefunction of 

the nucleon and its ground state energy obtained from the present 

calculations.

4.2.1 WAVEFUNCTION OF THE SINGLE NUCLEON

In the present model, we have imagined a filled-shell core 

of 48 ghost quarks occupying 0S 1/2, 0P1/2 and 0P3/2 sea shells 

below the fermi level above which there are 0S1/2, 0P1/2 and 0P3/2 

real shells with 3 valence quarks in the 0S1/2 shell. Analogously 

our assumed core of ghost quarks reflects the same physical 

picture as that of Dirac's vacuum assumed to be a sea of electrons.

In view of this model-picture based on the same foundation as 

that of Dirac's vacuum, in the present case one can create a 'hole' 

in the sea by exciting a quark from a negative energy state to one 

of the unoccupied positive energy state. The absence of a quark of 

charge -eq and of energy -E is interpreted as the presence of an 

antiquark of charge +eq and of energy +E. It means that the net 

effect of this excitation is the creation of a quark-antiquark 

pair.In the present model these quark-antiquark excitations are 

generated by applying the transition potential [42] in between a 

real quark and a ghost (sea) quark which excites a quark from a 

sea to the real shell in accordance with the parity conservation.

Based on this idea, by using the Glasgow shell-model techniques 

we have extended the simple 3q-quark model of the nucleon to 

include the mesonic contributions into the internal wavefunction 

of the single nucleon in addition to 3 quarks in the OS valence
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shell. The input occupancies of the real and sea shells were as 

fo llow s;

TABLE 4.4 

INPUT OCCUPANCIES OF THE SHELLS

Real
shells

Number o fpartic les  
Minimum Maximum

Sea
shells

Number of 
Minimum

particles
Maximum

0 S , / 2 3 4
0S,/2 11 1 2

0Pl,2
0 1

0P„ 2
1 1 1 2

OP
3 / 2

0 1 OP
3 / 2

23 24

Total
quarks

3 4 Total
quarks

4 7 48

The improved wavefunction (ground state) of the nucleon 

calculated on the basis of the present extended model is of the 

form

¥„ = a0 <D0(3 q ) + X  a„<ta ( (3q)(q q ) )  ( 4.2.1)

where a runs over the summation of all the components with 

qq-excitations and a 0, aa describe the contributions of the 

3q-component and the (3q+qq)-components respectively, 

we calculated the probabilities for the possible shell-occupancies 

using parameters set 3, given in table 4.5.
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TABLE 4.5 
Probabilities of the shell-occupancies

Probabilities

Occupancies of the shells

Real shells 

OSv^OR/  ̂ O Pv

Sea shells 

OSvv OR/v OPs/v

0.0134 4 0 0 12 12 23
0.0059 4 0 0 12 11 24
0.5486 3 0 0 12 12 24
0.1348 3 1 0 11 12 24
0.2973 3 0 1 11 12 24

It can be noted from table 4.5 that the probability of the shell 

occupancies corresponding to the configuration (0S)3(0 P )(0 S )  

shown diagrametically in fig 4 .5 .a is larger than the probability of 

the other mode of excitation (shown in fig 4.5.b) corresponding to 

the configuration (0S)4(0P).

OP

OS OS

b)

Fig. 4.5 a) 1st mode of excitation in which 3 valence quarks and a hole are in OS 

shell and an excited quark in OP shell, b) Second mode of excitation in which 

3 valence quarks and an excited quark are in OS and a hole in OP sea shell.
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TABLE 4.6

QUANTUM NUMBER (EXCEPT COLOUR) OF THE SINGLE-PARTICLE STATES©RBITS

S.P.Orbit U («2n+l) I 2 j 2m 2t3 P

1 0 0 1 - 1
* *

0
2 0 0 1 1 - 1 0
3 0 0 1 - 1 1 0
4 0 0 1 1 1 0
5 0 0 1 - 1 - 1 1
6 0 0 1 1 - 1 1
7 0 0 1 - 1 1 1
8 0 0 1 1 1 1
9 1 1 1 - 1 - 1 0
10 1 1 1 1 - 1 0
1 1 1 1 1 - 1 1 0
12 1 1 1 1 1 0
13 1 1 1 - 1 - 1 1
1 4 1 1 1 1 - 1 1
1 5 1 1 1 - 1 1 1
1 6 1 1 1 1 1 1
1 7 1 1 3 * 3 - - 1 0
1 8 1 1 3 - 1 - 1 0
19 1 1 3 1 - 1 0
2 0 1 1 3 3 - 1 0
21 1 1 3 - 3 1 0
2 2 1 1 3 - 1 1 0
23 1 1 3 1 1 0
24 1 1 3 3 1 0
25 1 1 3 - 3 - 1 1
26 1 1 3 - 1 - 1 1
27 1 1 3 1 - 1 1
28 1 1 3 3 - 1 1
29 1 1 3 - 3 1 1
30 1 1 3 - 1 1 1
31 1 1 3 1 1 1
32 1 1 3 3 1 1

isospin ,
*  u-quark and d-quark are represented by a quantum numbers 1 and -1 respectively 

and the parity quantum number 0 and 1 denote even and odd intrinsic parity

respectively.
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It is because of the fact that it is easier to excite a quark from a 

highest negative energy level in OS shell than to excite it from the 

deeper level in a OP sea shell as clear from the diagram shown in 

fig. 4.2. From the diagram shown in fig 4.2, it is clear that the gap 

between OS and OP is larger than the gap between OS and OP. 

Therefore 96% of the excitations takes place from the OS to OP 

whereas only 4% takes place from OP to OS in accordance with the 

parity conservation, because the former requires less energy for 

the excitations to take place than the latter. It can also be noticed 

that the probability of finding an excited quark in 0P3/2 is nearly 

double the probability of finding it in 0P1/2. The reason is that the 

0 P 3/2 shell possesses a number of available single particle orbits 

two times greater than the number of single particle states 

available in 0P1/2 shell. From the predicted probabilities of the 

shell occupancies given in a table 4.5, one can learn how much 

contribution is made by the various components of the 

wavefunction.

The component-contributions of the nucleon's and of the isobar 

delta's wavefunctions with their proportions in percentage are 

given in a table 4.7.

The contribution made by the 3q-component is greater than the 

contribution of the (q4q)-components, even though the contribution 

of (q4q)-components is found to be quite significant. It contributes 

45% in the nucleon's wavefunction and 47% in the wavefunction of 

the isobar delta.
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TABLE 4.7
COMPONENT-CONTRIBUTIONS IN NUCLEON'S WAVEFUNCTION.

3q-component q q-components

Set No: State 3
( OS ) (OS)4 (OP) (OS)3 (OP) (03)

% ( % ) (% )

1
N 76.18 1.4 22.42

A+ 75.28 0.84 23.88

2
N 48.67 17.67 33.66

A+ 46.23 18.17 35.60

3
N 54.86 1.93 43.21

A+ 53.01 1.33 45.66

The contribution of the (q4q)-com ponents in a nucleon's 

wavefunction or in an isobar-delta's wavefunction depends upon 

the strength of the transition potential Vq.qq .̂

If we compare the contributions of the (q4q)-components of the 

nucleon's and the isobar delta's wavefunctions in three cases with 

given different sets of the model parameters, we find different 

contributions (as shown in table 4.7) corresponding to different 

values of K, the strength of the transition potential in the three 

cases as shown in table 4.3. The greater the value of K, the larger 

will be the contribution of the (3q+qq)-com ponents in the 

wavefunction.

We obtained 312 states (in total) of positive parity with 

z-component of the angular momentum, M =1/2. The lowest 

eigenstate is the ground state of the nucleon. All the low energy
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states are non-spurious and colourless. The spuriosity and 

colouredness of the states have been avoided to make the system 

physical by subtracting the kinetic energy due to the motion of 

centre-of-mass of the system from the total kinetic energy of the 

system and using the constraint R<G<B, where R, G, B denote the 

codes for red, green and blue quarks respectively. These problems 

have been already discussed in section 2.5.2 and section 2.5.3.

4 . 2 . 2  MASS OF THE NUCLEON AND N-A MASS-SPLITTING

The wavefunction of the nucleon has been improved by adding 

(3q+qq)-components to its 3q-component in the present extended 

quark model of the nucleon as discussed in section 4.2.1. The 

ground state wavefunction of the nucleon is shown in equation 

(4.2.1). The ground state energy (referred as mass) of the nucleon 

is obtained by computing the energy of the lowest state in the 

energy spectrum of the system defined for a nucleon in the present 

model.

The many-body Hamiltonian used in the present study is of the 

form given in table 4.3. The values of the pre-calculated two body 

matrix elements along with other requisite data like the 

oscillator length parameter b, the strength-constants of the 

potentials used and the value of fiw ( given in table 4.3),the energy 

of the core E c and the single-particle energies of the shells (given 

in table 4.1) were provided as input data to the program. We 

performed the energy calculation with three different sets of 

model parameters given in table 4.2.
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Since we were mainly interested in ground state energy of the 

nucleon, we computed the energies of a few lowest eigenstates of 

the system. The values of J , T, parity and the expectation value of 

the colour operator (Z>.)2 calculated for the states obtained show 

that these are good physical states. The first two lowest 

colourless eigenstates with positive parity having J=1/2,T=1/2  

and J=3/2,T=3/2 represent the nucleon and isobar A+ partic les  

respectively. With model parameters set 3, their energies have 

been calculated and found, E N =938.23 Mev and EA =1255.81 Mev 

which gives the N-A energy-splitting equal to 317.58 Mev. Our 

theoretically predicted mass of the nucleon MN=938.23 Mev/c2 is 

in good agreement with the observed nucleon's mass [77]. The N-A 

mass-splitting is also close to the experimental value. It is only 8 

% greater than the experimental value.

TABLE 4.8 
Results of Nucleon's energy.

Set No: 3q
E

N
(Mev)

- model

E a

(Mev)
V  Ea

(Mev)

4 -
( 3q + qq)- model 
E E E - E aN A N  A

(Mev) (Mev) (Mev)

1 938.09 1229.65 291.56 367.50 649.99 282.49

2 2391.16 2769.36 378.21 660.34 1022.01 361.67

3 2070.53 2419.58 349.05 938.23 1255.81 317.58

If we compare the results of the energy obtained from 

calculations performed in the simple 3q-quark model and the
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present (3q+q4q)-quark model of the single nucleon using three 

different sets of parameters, we obtain the energies of the 

nucleon and isobar delta in the 3q-model greater than their 

energies obtained in the present extended quark model. The 

energy-splitting of the nucleon and isobar delta, i.e their mass 

difference has also been found smaller in the present model. The 

reason is that when we extend the model space the smaller 

eigenvalues get further lowered while the greater energy  

eigenvalues move higher in energy.

A general comments about the N-A mass-splitting is that the 

colour magnetic interaction is largely responsible for the energy 

splitting. Since the two quarks couple their spins either to S=0 or 

S =1, the 51 (u and d ) quarks in the present system will couple 

their spins and orbital angular momenta either to give J=1/2 or 

J=3/2 giving rise to a N-state or a A -state  respectively. The 

colour-magnetic interaction splits the qq-pairs with spin S=1 or 

S=0 in such a way as to move the triplet up and the singlet down. 

The splitting depends upon the strength of the colour-magnetic 

interaction and it is proportional to the ratio as/(m q)2b3 [24a] 

which is constrained by the suitable choice of the numerical 

values of the size parameter b, the constituent quark mass mq and 

the coupling constant as.
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4.3 ELECTROMAGNETIC PROPERTIES OF THE NUCLEON

In the present shell-model study based on the extended quark 

model of the nucleon, we have considered the one-particle 

contributions to evaluate the electromagnetic properties of the 

nucleon (which has been supposed to be a many-quark system).

To evaluate the magnetic moment, in addition to the 

contributions made by the 4 quarks in real shells we have also 

included the contributions made by the 47 occupied single-particle 

states within the core. But while calculating the radii and charge 

densities instead of including the additional contributions made by 

the whole core containing 47 occupied single-particle states we 

included the equivalent contribution made by the 'hole state' in a 

core. The values of the electromagnetic properties of the nucleon 

were obtained using three different sets of parameters. The 

results of the magnetic moments and radii are given in table 4.11 

and table 4.12 respectively whereas the calculated charge 

densities of the proton and a neutron are presented graphically in 

figures 4.8 and 4.9 respectively. The electromagnetic properties of 

the nucleon are affected quite significantly by the inclusion of the 

quark-antiquark excitations in the quark model of the single 

nucleon.
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TABLE 4.9
SINGLE-PARTICLE DENSITY MATRIX ELEMENTS

S.P.STATES FOR PROTON FOR NEUTRON

i j set 1 set 2 set 3 set 1 set 2 set 3

1 1 0.6835 0.7264 0.7046 0.3632 0.4471 0.3844
2 2 0 . 3 6 0 2 0 . 4 1 6 8 0 . 3 8 1 2 1 . 6 0 7 1 1 . 5 8 6 3 1 . 5 4 9 1
3 3 0 . 3 6 3 2 0 . 4 4 7 1 0 . 3 8 4 4 0 . 6 8 3 5 0 . 7 2 6 4 0 . 7 0 4 6
4 4 1 . 6 0 7 1 1 . 5 8 6 3 1 . 5 4 9 1 0 . 3 6 0 2 0 . 4 1 6 8 0 . 3 8 1 2
5 5 2 . 9 5 1 4 2 . 9 2 5 0 2 . 9 0 7 7 2 . 9 3 7 4 2 . 9 0 4 3 2 . 8 8 1 5
6 6 2 . 9 4 2 6 2 . 9 1 7 5 2 . 8 8 6 7 2 . 9 4 3 4 2 . 9 1 5 8 2 . 8 9 1 3
7 7 2 . 9 3 7 4 2 . 9 0 4 3 2 . 8 8 1 5 2 . 9 5 1 4 2 . 9 2 5 0 2 .9078
8 8 2 . 9 4 3 4 2 . 9 1 5 8 2 . 8 9 1 2 2 . 9 4 2 6 2 . 9 1 7 5 2 . 8 8 6 8
9 9 0 . 0 0 6 5 0 . 0 1 6 4 0 . 0 1 6 7 0 . 0 2 7 3 0 . 0 6 3 5 0 . 0 6 0 8
9 1 8 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0 -0 .0172 -0 .0287 - 0 . 0 3 4 4

1 0 1 0 0 . 0 0 7 0 0 . 0 2 1 1 0 . 0 2 0 0 0 . 0 1 5 7 0 . 0 3 8 4 0 . 0 3 7 3
1 0 1 9 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0 -0 .0172 -0 .0287 - 0 . 0 3 4 4
1 1 1 1 0 . 0 2 7 3 0 . 0 6 3 5 0 . 0 6 0 8 0 . 0 0 6 5 0 . 0 1 6 4 0 . 0 1 6 7
1 1 2 2 - 0 . 0 1 7 2 - 0 . 0 2 8 7 - 0 . 0 3 4 4 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0
1 2 1 2 0 . 0 1 5 7 0 . 0 3 8 4 0 . 0 3 7 3 0 . 0 0 7 0 0 . 0 2 1 1 0 . 0 2 0 0
1 2 2 3 - 0 . 0 1 7 2 - 0 . 0 2 8 7 - 0 . 0 3 4 4 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0
1 3 1 3 2 . 9 9 8 6 2 . 9 9 1 0 2 . 9 9 8 8 2 . 9 9 7 6 2 . 9 8 2 4 2 . 9 9 7 9
1 3 2 6 - 0 . 0 0 0 1 - 0 . 0 0 5 0 - 0 . 0 0 0 5 -0.0006 -0 .0079 - 0 . 0 0 0 9
1 4 1 4 2 . 9 9 8 9 2 . 9 9 0 7 2 . 9 9 8 8 2.9981 2 .9820 2 . 9 9 7 9
1 4 2 7 - 0 . 0 0 0 1 - 0 . 0 0 0 5 - 0 . 0 0 0 5 -0 .0006 -0 .0079 - 0 . 0 0 0 9
1 5 1 5 2 . 9 9 7 6 2 . 9 8 2 4 2 . 9 9 7 8 2 . 9 9 8 6 2 . 9 9 1 0 2 . 9 9 8 9
1 5 3 0 - 0 . 0 0 0 6 - 0 . 0 0 7 9 - 0 . 0 0 0 9 -0.0001 -0 .0050 - 0 . 0 0 0 5
1 6 1 6 2 . 9 9 8 1 2 . 9 8 2 0 2 . 9 9 7 8 2 . 9 9 8 9 2 . 9 9 0 7 2 . 9 9 8 9
1 6 3 1 - 0 . 0 0 0 6 - 0 . 0 0 7 9 - 0 . 0 0 0 9 -0.0001 -0 .0 05 0  . - 0 . 0 0 0 5
1 7 1 7 0 . 0 1 9 0 0 . 0 2 0 2 0 . 0 3 1 0 0 . 0 0 9 5 0 . 0 1 0 1 0 . 0 1 5 6
1 8 9 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0 -0 .0172 -0 .0287 - 0 . 0 3 4 4
1 8 1 8 0 . 0 1 5 4 0 . 0 1 6 8 0 . 0 2 5 5 0 . 0 2 2 1 0 . 0 2 6 2 0 . 0 3 9 5
1 9 1 0 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0 -0 .0172 -0 .0287 - 0 . 0 3 4 4
1 9 1 9 0 . 0 1 1 8 0 . 0 1 3 5 0 . 0 2 0 1 0 . 0 3 4 7 0 . 0 4 2 2 0 . 0 6 3 5
2 0 2 0 0 . 0 0 8 2 0 . 0 1 0 1 0 . 0 1 4 6 0 . 0 4 7 3 0 . 0 5 8 3 0 . 0 8 7 5
21 21 0 . 0 0 9 5 0 . 0 1 0 1 0 . 0 1 5 6 0 . 0 1 9 0 0 . 0 2 0 2 0 . 0 3 1 0
2 2 1 1 - 0 . 0 1 7 2 - 0 . 0 2 8 7 - 0 . 0 3 4 4 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0
2 2 2 2 0 . 0 2 2 1 0 . 0 2 6 2 0 . 0 3 9 5 0 . 0 1 5 4 0 . 0 1 6 8 0 . 0 2 5 5
2 3 1 2 - 0 . 0 1 7 2 - 0 . 0 2 8 7 - 0 . 0 3 4 4 0 . 0 0 2 7 0 . 0 0 5 2 0 . 0 0 6 0
2 3 2 3 0 . 0 3 4 7 0 . 0 4 2 2 0 . 0 6 3 5 0 . 0 1 1 8 0 . 0 1 3 5 0 . 0 2 0 1
2 4 2 4 0 . 0 4 7 3 0 . 0 5 8 3 0 . 0 8 7 5 0 . 0 0 8 2 0 . 0 1 0 1 0 . 0 1 4 6
2 5 2 5 2 . 9 9 8 5 2 . 9 7 3 9 2 . 9 9 7 4 2 . 9 9 8 8 2 . 9 8 5 6 2 . 9 9 8 2
2 6 1 3 - 0 . 0 0 0 1 - 0 . 0 0 5 0 - 0 . 0 0 0 5 -0.0006 -0 .0079 - 0 . 0 0 0 9
2 6 2 6 2 . 9 9 8 7 2 . 9 8 0 1 2 . 9 9 7 9 2 . 9 9 8 8 2 . 9 8 5 5 2 . 9 9 8 1
2 7 1 4 - 0 . 0 0 0 1 - 0 . 0 0 5 0 - 0 . 0 0 0 5 -0.0006 -0 .0079 - 0 . 0 0 0 9
2 7 2 7 2 . 9 9 9 0 2 . 9 8 6 3 2 . 9 9 8 4 2 . 9 9 8 7 2 . 9 8 5 3 2 . 9 9 8 1
2 8 2 8 2 . 9 9 9 3 2 . 9 9 2 5 2 . 9 9 8 9 2 . 9 9 8 7 2 . 9 8 5 2 2 . 9 9 8 1
2 9 2 9 2 . 9 9 8 8 2 . 9 8 5 6 2 . 9 9 8 1 2 . 9 9 8 5 2 . 9 7 3 9 2 . 9 9 7 5
3 0 1 5 - 0 . 0 0 0 6 - 0 . 0 0 7 9 - 0 . 0 0 0 9 -0.0001 -0 .0050 - 0 . 0 0 0 5
3 0 3 0 2 . 9 9 8 8 2 . 9 8 5 5 2 . 9 9 8 1 2 . 9 9 8 7 2 . 9 8 0 1 2 . 9 9 8 0
31 1 6 - 0 . 0 0 0 6 - 0 . 0 0 7 9 - 0 . 0 0 0 9 -0.0001 -0 .0050 - 0 . 0 0 0 5
31 3 1 2 . 9 9 8 7 2 . 9 8 5 3 2 . 9 9 8 0 2 . 9 9 9 0 2 . 9 8 6 3 2 . 9 9 8 5
3 2 3 2 2 . 9 9 8 7 2 . 9 8 5 2 2 . 9 9 8 0 2 . 9 9 9 3 2 . 9 9 2 5 2 . 9 9 9 0
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4.3.1 MAGNETIC MOMENT OF THE NUCLEON

Results of the nucleon's magnetic moment obtained from the 

calculations based on the present model and the 3q-model using 

the given sets of parameters (table 4 .2 ) are presented in table 

4.11. The procedure adopted in this calculation has already been 

described in section 2.7.1.

Comparing the results of the nucleon's magnetic moment 

obtained in the present model and the values of the magnetic 

moment of the nucleon obtained in the 3q-model given for each set 

of parameters in a table 4.11, we can see that the predictions of 

the present model are better than the values predicted by the 

3q-model. From the above comparison, the contributions of the 

q4q-components to the magnetic moment of the nucleon can also 

be found.

These results obtained with parameters set 3 show that the 

q4q-components of the nucleon's wavefunction do carry 13-14 % 

contributions of the magnetic moment of the nucleon. This is a 

quite significant part of the total magnetic moment of - the 

nucleon. Similarly the results of the proton's and a neutron's 

magnetic moment for the other two sets of parameters show that 

the part of the m agnetic moment contributed by the 

q4q-components is 7-9 % of the predicted magnetic moment of the 

proton and 5-8 % of the predicted magnetic moment of the neutron.
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TABLE 4.10

MATRIX ELEMENTS OF lz AND sz.

Single-particle Orbits Orb: M.Elements Spin M.Elements

u-quarks d-quarks
nal initial fin<

j T i
initial final initial final < ^z> ij < s z> ij

3 3 1 1 0 . 0 0 0 0 0 0 0 0 0 - 0 . 4 9 9 9 9 9 9 9 9
4 4 2 2 0 . 0 0 0 0 0 0 0 0 0 + 0 . 4 9 9 9 9 9 9 9 9
7 7 5 5 0 . 0 0 0 0 0 0 0 0 0 - 0 . 4 9 9 9 9 9 9 9 9
8 8 6 6 0 . 0 0 0 0 0 0 0 0 0 + 0 . 4 9 9 9 9 9 9 9 9

1 1 1 1 9 9 - 0 . 6 6 6 6 6 6 6 6 7 + 0 . 1 6 6 6 6 6 6 6 6
1 2 1 2 1 0 1 0 + 0 . 6 6 6 6 6 6 6 6 7 - 0 . 1 6 6 6 6 6 6 6 6
1 5 1 5 1 3 1 3 - 0 . 6 6 6 6 6 6 6 6 7 + 0.1 6 6 6 6 6 6 6 7
1 6 1 6 1 4 1 4 + 0 . 6 6 6 6 6 6 6 6 7 - 0 . 1 6 6 6 6 6 6 6 7
21 2 1 1 7 1 7 -1 . 0 0 0 0 0 0 0 0 0 - 0 . 5 0 0 0 0 0 0 1 2
2 2 2 2 1 8 1 8 - 0 . 3 3 3 3 3 3 3 3 3 -0 . 1  6 6 6 6 6 6 6 7
2 3 2 3 1 9 1 9 + 0 . 3 3 3 3 3 3 3 3 3 +0 . 1  6 6 6 6 6 6 6 7
2 4 2 4 2 0 2 0 + 1 . 0 0 0 0 0 0 0 0 0 + 0 . 5 0 0 0 0 0 0 0 0
2 9 2 9 2 5 2 5 -1 . 0 0 0 0 0 0 0 0 0 - 0 . 5 0 0 0 0 0 0 0 0
3 0 3 0 2 6 2 6 - 0 . 3 3 3 3 3 3 3 3 3 - 0 . 1 6 6 6 6 6 6 6 7
31 3 1 2 7 2 7 + 0 . 3 3 3 3 3 3 3 3 3 + 0.1 6 6 6 6 6 6 6 7
3 2 3 2 2 8 2 8 + 1 . 0 0 0 0 0 0 0 0 0 + 0 . 5 0 0 0 0 0 0 0 0
1 1 2 2 9 1 8 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
1 2 2 3 1 0 1 9 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
1 5 3 0 1 3 2 6 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
1 6 3 1 1 4 2 7 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
2 2 1 1 1 8 9 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
2 3 1 2 1 9 1 0 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
3 0 1 5 2 6 1 3 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
31 1 6 2 7 1 4 + 0 . 4 7 1 4 0 4 5 2 1 - 0 . 9 4 2 8 0 9 0 4 2
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TABLE 4.11 
NUCLEON'S MAGNETIC MOMENTS

Set No: Model P P P  
P* n n p

( n . m )  ( n . m )

l

3q-m odel 2 . 9 9 7  - 1.998 - 0 .667

4
(3q + q q) 

-model
3 . 2 1 9  - 2 .1 5 4  - 0 .6 7 6

ll

3q-m odel 1 . 9 9  - 1.33 - 0 . 668

(3q + q"q) 
-m odel

2 . 1 8  - 1 .40 . 0 .6 4 2

I I I

3q-m odel 2 . 61  - 1 .74  - 0 .6 6 7

4 _
(3q + q q) 
-m odel 3 . 0 0 7  - 2 .031 - 0 .6 7 5

n.m denotes nuclear magneton.

If we compare the results of the nucleon's magnetic moment 

obtained from the calculations based on the present model with 

the given three different sets of parameters (table 4.2), we see 

that the values of the magnetic moment of the proton and a 

neutron predicted with parameters set 3 are more reasonable than 

the values obtained for the other two sets of parameters.

The values of the proton's and the neutron's magnetic moments 

obtained for the parameters set 3 are shown in the 3rd main row 

of the table 4.11. The results of the 3q-model and the present 

model are given in the 1st and 2nd entries of the row respectively. 

The values of the magnetic moments of a proton and a neutron 

predicted in the present model are 3.007 n.m and -2.031 n.m
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respectively. These values seem to be quite reasonable because 

these are close to the experimental values . Our calculated 

magnetic moments of the neutron and the proton are 6-8 % greater 

than the observed values. Their ratio fin/jip=-0.675 is in impressive 

agreement with the experimental value of -0.685 [77].

The magnetic moments of a proton and a neutron obtained in 

3q-model for the parameters set 3 are 2.61 n.m and -1.74 n.m 

respectively. We obtained their ratio |ip/|in=-1.5 that is also a good 

prediction of the present calculations.

The 3q-modePs predictions [7,79] of M-p/|in ratio is generally to be 

-1.5 which is considered to be in good agreement with the 

observed value. Our predicted value of the ratio jip/ p.n =-1 .48 in the 

present quark model is,therefore, in quite good agreement with the 

experimental value of -1.46 [77]. Our predicted values of the 

magnetic moment of the proton and a neutron in the present model 

are either better than or consistent with their values obtained 

from the previous calculations like bag-model's calculations 

[14b,82] and the skyrme model's investigation [83].

Previously With the same model approach, quite reasonable 

results for the nucleon's magnetic moment have been obtained by 

using the resonating group method [37,38].

For parameter set 3, we have predicted that the magnetic 

moments contributed by the u-quarks and d-quarks in a proton's 

magnetic moment are 2.657 n.m and 0.351 n.m respectively. The 

parts of the neutron's magnetic moment carried by the u-quarks 

and d-quarks are -0.702 n.m and -1.328 n.m respectively. These 

differences can be explained as follows. In a proton the OS
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valence-shell may contains 3 or 4 total quarks, but at least 2 are 

u-quarks and 1 is a d-quark. In a neutron, at least 2 d-quarks and 1 

u-quark are contained in the OS valence-shell. The u-quark 

possesses positive charge two times greater than the negative 

charge possessed by a d-quark. Therefore the proton, having 

greater positive charge in the single-particle states (of the OS 

valence-shell in the present case) with greater values of the 

density matrix elements, will get magnetic moment contributed by 

the u-quarks more than the part of the magnetic moment 

contributed by the d-quarks. For the neutron the contributions 

made by the u-quarks and d-quarks are the other way round which 

can be understood in a similar way.

We have also noticed that the contribution made by the orbital 

angular momentum in the magnetic moment is negligibly small as 

compared to the contribution made by the spin angular momentum. 

The reason is that since we have considered the quark as pointlike 

spin 1/2 charged fermion, according to Dirac's theory its magnetic 

moment due to the spin should have gyromagnetic ratio g (that 

comes as relativistic correction due to its charge and magnetic 

field interaction) equal to 2 . We have taken the g-factor (g=2) in a 

magnetic moment due to spin angular momentum becuase of the 

fact that having a light quark, one can not obtain a reasonable 

value for |ip with non-relativistic considerations. The second 

reason is that the magnetic moment due to the orbital angular 

momentum is contributed by only the p-shells (with 1= 1) states as 

the s.p.states with l=0 contribute nothing at all whereas the 

magnetic moment due to spin is contributed by all the given
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s.p.states including s.p.states of the OS shell which have got 

comparatively greater values of their density matrix elements 

than the OP states in the present case.

4.3.2 MASS AND CHARGE R.M.S RADII OF THE NUCLEON

The root mean square mass and charge radii of the proton and 

the neutron have been worked out, using three given sets of 

parameters, by the procedures mentioned in sections 2.7.2 and

2.7.3 respectively. The results of the nucleon's radii obtained from 

the calculations based on the 3q-model and the present quark 

model are given in the table 4.12. Comparing the 1st and 2nd 

entries of the results for each set of parameters, we find that the 

values of the radii predicted in our present model are better than 

the values calculated in the 3q-model. The mesonic contribution to 

the mass and the charge r.m.s radius of the nucleon is 3-5% of the 

total radius which is a good contribution to be considered. This 

may be increased by including the q2q '2 and other possible higher 

excitations.

If we compare the values of the mass and charge r.m.s radii of 

the proton and a neutron obtained from the calculations performed 

within the framework of the present (3q+q4q)-quark model using 

the given three different sets of parameters, we find the values of 

the nucleon's radii obtained with parameters set 3 better than the 

values of the radii obtained for the other two sets of model 

parameters.
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TABLE 4.12
Nucleon's root mean squared mass and charge radii.

Mass radius Charge radius

Set No: Model
2 I< r  > z  

( f m )

1
2 2 

< rch>p 
( f m )

2
<^h>n
( f m )

l<6> i f
( f m )

1

3q-m odel 0 . 7 3 0.73 + 5 .476  x 10 7 0 . 0 0 0 7 4

4 - 
(3q+q q) 
- model

0 . 7 5 2 0 . 7 5 4 -0 .0 0 3 2 3 0 . 0 5 6 8

3q-m odel 0 . 6 4 0 . 6 4 +4.10  x 1 0 7 0 . 0 0 0 6 4

2
4 - 

(3q+d q) 
- model

0.668 0 . 6 6 1 - 0 . 0 1  0 9 6 0 . 1 0 4 7

3q-m odel 0.66 0.66 + 4 .356  x 10*7 0 . 0 0 0 6 6

3 4 - 
(3q+q q)
-m odel

0 . 6 8 7 0 . 6 9 5 - 0 . 0 0 5 4 5 0 . 0 7 3 8

Experimental^8 4 ^
values

0 .836 fm
2

-0 .12 fm 0 .34  fm

The r.m.s mass and charge radii of the proton and the neutron

predicted theoretically by our present model of an isolated

nucleon (with model parameters set 3) are
1 1 1  

cr2^? = 0.687 fm, < r2 >n = 0.687 fm, <r2 >2 = 0.695 fmp n ch P

2
and <r 2 >n = -0.00545 fm2 i.e | <r2 >n | = 0.0738 fm

cn 11 cn m

Apparently, these values are not very close to the observed values 

[84] but are quite reasonable.The agreement with the experimental 

values is found to be within about 84-86% except for the neutron's 

charge mean square radius which is smaller than the observed
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value of -0.12 fm2. Our results of the nucleon's r.m.s radii do agree 

with the results obtained from the calculations based on the same 

model approach [37]. Y.Fujiwara and K.T.Hecht [37] included 

relativistic corrections in the radii whereas our consideration 

was purely non-relativistic. Basically their work presented in 

reference [37] is based on the same principle as that of ours but 

they performed their calculation in a smaller space with 

parameters set 2 by making use of the resonating group method.

In the present model, we predicted the mean square radius of 

the neutron to be non-zero with a negative sign which is favoured 

by the experimental data [85]. The value of the neutron's charge 

root mean square radius is smaller than the experimental value 

but it is in good agreement with the value predicted in a similar 

study [37] . Our predicted proton's charge r.m.s radius seems to be 

smaller than its generally accepted value of 0.81 fm [88] but is 

quite reasonable as it has got a fair consistency with the value 

obtained from the previous investigation [37] based on the same 

extended quark model of the single nucleon. It is also consistent 

with the proton's charge radius obtained in the bag model study of 

the nucleon [14b].

We expected the values of the nucleon's radii to be smaller in the 

present investigation because of the reason that we have not 

included the all possible quark-antiquark excitations except 

qq-excitations. q2q '2 and other higher excitations have been 

ignored because it is then too hard to handle the calculations with 

all possible qq-excitations at present. The gap between our 

theoretically predicted values and the observed values of the
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nucleon's radii may be either removed or minimised by introducing 

the q2q '2 and the other higher possible excitations into the model 

space when it could be managed to do big calculations with the 

availability of more sophisticated computing machines in future.

Introducing the higher quark-antiquark excitations into the 

model space, the numerical values of the model parameters will 

have to be re-adjusted. The new value of the size parameter b will 

change the single quark contributions to the mean square radius 

and hence the root mean square mass and charge radius of the 

single nucleon gets changed.

A simple 3q-model of the single nucleon indicates that the 

charge density should be zero everwhere inside the neutron and 

therefore it suggests the neutron's charge mean square radius to 

be zero as well. Our calculated values (in 3q-model) of the charge 

mean square radius of the neutron for the three different sets of 

parameters shown in the table 4.12 are also zero because the 

given negligibly small values are due to the rounding error in the 

computation. It is not easy to predict the charge mean square of 

the neutron to be non-zero with negative sign in the simple 

versions [90] of the quark model of an isolated nucleon.

The mass and charge radii of the proton in 3q-model are found 

to be equal but there is a small difference between the mass 

radius and the charge radius in the present model. This difference 

may be due to the re-distribution of the charge inside the nucleon 

caused by the inclusion of the mesonic contributions into the 

nucleon's wavefunction.
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Since the hyperfine interactions between the quarks with the 

same flavour are repulsive and the hyperfine interactions between 

the quarks with different flavour are attractive [89], the uu 

quarks or dd quarks get further apart from one another and ud 

quarks get closer to each other. Because of this fact the u-quarks 

and the d-quarks intermix with each other.

In our present model the inclusion of a mesonic contributions, 

of parameter set 3, in an internal wavefunction of the nucleon has 

increased the nucleon's radii by 4.1-5.3%  and made a small 

difference between the charge and mass radii of the proton. Our 

model could not give the experimental value of the neutron's 

charge mean square radius. Its predicted value is too small as 

compared to the observed value but the model predicted the sign of 

the mean square radius of the neutron to be negative as reported 

by the experimental literature [84,85].

The negative sign of the mean square charge radius of the 

neutron is attained due to the inhomogeneous distribution of the

charge caused by the spin-dependent interactions between the

quarks in accordance with the symmetry requirement of the

spin-isospin wavefunction of the neutron as argued in reference 

[86]. The inhomogeneity of the charge distribution seems to appear 

consistently in many quark systems where the resultant overall 

force is of a repulsive nature [89].

In a neutron, therefore,the repulsive forces between the pairs 

of the d-quarks (which are greater in number than the uu-pairs) in 

spin 1 state will consequently move the negative charge (i.e

d-quarks) farther from the centre of mass than the positive charge
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(i.e u-quarks). This indicates that the neutron's charge mean 

square radius should be negative. This is confirmed by examining 

the charge distribution for the neutron shown in figure 4.7, where 

we see that the negative charge (d-quarks) exists farther from the 

centre of mass of the neutron than the positive charge (u-quarks).

4.3.3 CHARGE DENSITY OF THE NUCLEON

Following the procedure mentioned in section (2.7.4), we 

have calculated the charge density of a nucleon using the three 

different sets of parameters (shown in table 4.2.).

We obtained the proton's charge density as a function of radial 

distance r for the three sets of model parameters given by

{p ch(r)} = (0.766 + 0.12 r 2 ) e' ( 278) r2 (4.3.3.1)
P

{Pch(0} = (1.132 + 0.28 r 2 ) e ' (364) f2 (4.3.3.2)
2

{pch( r)} = (  0.963 + 0.41 r 2 ) e ' (343)r2 (4.3.3.3)
3

The neutron's charge density (as a function of r) calculated for 

the given sets of parameters is as follows;

P ch( r)} = (  0.682 - 0.013 r 2 ) e ' (2'78)r 2 (4.3.3.4)
1

{pch(0} = ( 0.492 - 0.12 r 2 ) e ' ( 364) f2 (4.3.3.5)
2

{pch(r)} = ( 0.021 - 0.048 r 2 ) e ' <343) r 2 (4.3.3.6)
3

In the above expressions (4.3.3), p and n used on the top right of
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TABLE 4.13(a)

PROBABILITY DENSITY OF THE S.P.ORBITS

REAL S ING LE PARTICLE ORBITS

S.P.Orbit Square of the modulus of the single-particle wavefunction
number

i !<!> i2

Set 1 Set 2 Set 3

1 1.14050 F1 1.24819 F 1 0 .83142  F 1

2 1.14050 F1 1.24819 F 1 0 .83142  F 1

3 1.14050 F1 1.24819 F1 0 .83142  F 1

4 1.14050 F1 1.24819 F1 0 .83142  F-|

9 2.60744 F2 3.03059 F2 1.53967 F2

10 2.60744 F2 3.03059 F2 1 .53967 F2

11 2.60744 F2 3.03059 F2 1.53967 F2

12 2.60744 F2 3.03059 F2 1 .53967 F2

17 3.91117 F3 4.54589 F3 2.30951 F3

18 1.30972 F4 1.51530 F4 0.76984  F4

19 1.30972 F4 1.51530 F4 0.76984  F4

20 3.91117 F3 4.54589 F3 2.30951 F3

21 3.91117 F3 4.54589 F3 2.30951 F3

22 1.30972 F4 1.51530 F4 0.76984  F4

23 1.30972 F4 1.51530 F4 0.76984  F4

24 3.91117 F3 4.54589 F3 2.30951 F3



TABLE 4.13(b)

PROBABILITY DENSITY OF S.P.ORBITS

SEA SINGLE-PARTICLE ORBITS 

S.P Orbit Square of the modulus of the S.P.wavefunction
number | Oj |2

i Set 1 Set 2 Set 3

5 1.14050 F1 1.24819 F1 0.83142 F1

6 1.14050 F1 1.24819 F1 0.83142 F1
7 1.14050 F1 1.24819 F1 0.83142 F1

8 1.14050 1.24819 F1 0.83142 F1

13 2.60744 F2 3.03059 F2 1.53967 F2
14 2.60744 F2 3.03059 F2 1.53967 F2

15 2.60744 F2 3.03059 F2 1.53967 F2

16 2.60744 F2 3.03059 F2 1.53967 F2

25 3.91117 F3 4.54589 F3 2.30951 F3

26 1.30972 F4 1.51530 F4 0.76984 F4

27 1.30972 F4 1.51530 F4 0.76984 F4

28 3.91117 F3 4.54589 F3 2.30951 F3

29 3.91117 F3 4.54589 F3 2.30951 F3

30 1.30972 F4 1.51530 F4 0.76984 F4

31 1.30972 F4 1.51530 F4 0.76984 F4

32 3.91117 F3 4.54589 F3 2.30951 F3

F-i = 6 b F_ = r 2 e b

F = ( r 2 - z 2 ) e and F = ( r 2 + 3z2 ) e
4
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the curly brackets represent the proton and the neutron 

respectively. The indices 1,2 and 3 have been used for the model 

parameters set 1, set 2 and set 3 respectively.

The above expressions show that the charge density of the 

nucleon is a function of the radial distance r only and therefore 

the charge distribution is spherically symmetric. From table 4.13, 

it is clear that the single-particle states in 0P3/2 shell have got 

z-dependent term in their probability density values. But when we 

add up the charge density contributions carried by the 

single-particle states, the coefficient of the term containing z 

becomes zero and that is why we obtain the total charge density 

of the nucleon free of z-dependent term.

The results of the charge density of the proton and a neutron 

(for parameters set 3) are graphically represented by the plots 

shown in the figures 4.6 and 4.7 respectively. From the plot shown 

in figure 4.6, it is clear that the charge density of the proton is 

roughly uniform very near to the centre and then falls relatively 

slow through some distance with the increase of radial distance 

to a certain point r = 0.66 fm (the r.m.s charge radius of the proton 

obtained with parameters set 3 in a 3q-model) beyond which the 

charge density drops exponentially to the negligibly small values 

at the larger distances. The shape of the distribution of charge in 

the neutron appears to be the same (as that of a proton) upto the 

radial distance r = 0.66 fm. But after that the charge density of 

the neutron changes sign and shows the parabolic variations in its 

magnitude with increasing r. At large values of a radial distance r, 

the neutron's charge density also approaches negligible small
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values. Comparing the values of the protons and a neutron's charge 

density at any radial distance r, It can be noted that the value of 

the neutron's charge density is very small as compared to the 

value of the proton's charge density. The charge density curve of 

the proton shows that as the proton possesses more positive 

charge (carried by the u-quarks) than the negative charge (carried 

by the d-quarks), its charge density has got only positive sign 

though it has negative contributions due to its negative charge 

carriers. It seems that the negative charge extending beyond the 

positive charge (nearer to the centre of the proton) gets 

neutralised due to intermixing of u and d quarks (near the region of 

the negative charge) caused by the hyperfine interactions between 

quarks with unlike flavours mentioned in section 4 .3 .2 . 

Consequently the proton's charge density becomes smaller and 

smaller at large values of r but it never becomes negative.

On the other hand if we re-examine the charge density of the 

neutron we see that it is partly positive and partly negative. The 

negative part starts at the radial distance r roughly greater than

0.66 fm. The negative part of the neutron's charge density curve 

goes on increasing in the negative side for r>0.66 fm and reaches a 

maximum negative value at r=1.0 fm and then beyond that it starts 

decreasing as the radial distance goes on increasing. At the 

distance (roughly speaking) r>1.5 fm the neutron's charge density 

goes on decreasing to negligibly small values. The charge density 

curve of the neutron shows that the positive charge (i.e u-quarks) 

dominates in the vicinity of the neutron's centre of mass and the 

negative charge (i.e d-quarks) extends beyond the positive charge
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to greater distances. The charge segregation in the neutron is 

caused by the net repulsive quark-spin-dependent interactions as 

discussed in section 4.3.2. Due to this inhomogeneity of charge 

observed in a neutron,the mean square radius of the neutron should 

be negative [86] which is in agreement with the experimental 

information [84,85].

According to the simple quark model [7,79-81] the charge 

density of the neutron should be everywhere zero because of the 

fact that a u-quark carry as much positive charge as the total 

negative charge carried by the two d-quarks. Actually the 

neutron's charge density is not exactly zero because if it were 

zero then the neutron's mean square radius should not be non-zero 

in contrast to the experimental evidences [84,85].

Our theoretically predicted value of the neutron's charge mean 

square radius is non-zero with negative sign as also reported in 

references [37,82,87].

The plots shown in figures 4.8 and 4.9 represent the charge 

density of a proton and a neutron respectively obtained from the 

calculations based on the present model using the three given sets 

of parameters.The part of the curves beyond r= 0.66 fm is very 

interesting because it corresponds to the mesonic contributions of 

the nucleon. The differences between the values of the charge 

density of different sets of parameters for any particular radial 

distance r are very small as compared to their total values. The 

neutron's charge density curves (shown in fig 4.9) for the three 

different sets of parameters appear to have unduly large 

differences. This arises from re-scaling, as the negative values of
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the charge density have been taken 10 times greater than their 

actual values. The charge density curves of the proton and neutron 

for the different sets of parameters show differences in their 

maximum or greatest positive values (also the negative values in 

case of neutron). This different quantitative distribution of charge 

for the three sets of model parameters happens due to the 

spin-spin perturbative force which depends upon the numerical 

values of the parameters. Quantitatively however,the shape and 

the general appearance of the charge distribution within the 

nucleon does not look very sensitive to the model parameters.

Our predicted electric charge distribution of the proton and of 

the neutron looks the same as that obtained previously [83,91] 

showing a significant mesonic contribution.

In fact the inclusion of the mesonic contributions into the internal 

wavefunction of the nucleon does affect the charge density of the 

nucleon. No doubt it is not easy to understand the actual 

mechanism of the distribution of the charge inside the nucleon 

described by the present model. In spite of that, the effects of the 

inclusion of the qq-excitations into the nucleon's wavefunction 

are quite important.

Since we have obtained quite significant effects on the 

electromagnetic properties of the nucleon due to the inclusion of 

quark-antiquark excitations, these may provide a basis for a 

proper understanding of the internal features of the nucleon's 

structure and a satisfactory understanding of the nucleon-nucleon 

interaction.
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CHAPTER 5

CONCLUSION

Our aim of the present investigations was to study the effects of 

introducing quark-antiquark excitations into the internal 

wavefunction of the single nucleon. We have considered the ground 

state energy (i.e. mass) of the nucleon and its electromagnetic 

properties within the framework of the shell model.

We introduced a new technique into the framework of the 

Glasgow shell model method, namely, colour code representation 

for storing basis states which is more compact and effective than 

the bit-mapped representation previously used. This technique 

when used in computational manipulations, makes the Glasgow  

shell model programme more useful for many quark calculations. If 

the colour codes are constrained by the condition that R<G<8 , then 

automatically the space is truncated by removing nearly all 

unphysical coloured states.

Using the Glasgow shell model computational techniques [45], 

we incorporated the quark-antiquark excitations into a quark 

model of the nucleon which have been generated by the (qq)-pair 

creation interaction (1.3) as discussed in chapter 1 . We first 

performed calculations to calculate the ground state energy of a 

nucleon with parameters set 1 and set 2 of table 4.2 in terms of 

the simple 3-quark model and then the same calculations were 

repeated with the same set of parameters in the present model.
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The ground state energy of the nucleon computed in the present 

model is much smaller than the energy calculated in the simple 

3q-model. Since we were interested in reproducing the observed 

mass of the nucleon on the basis of the present model, we 

re-evaluated the numerical values of the parameters (given as 

parameters set 3 in table 4.2) as described in section 4 .1.2 .1 . To 

choose suitable values of the parameters, we performed a number 

of calculations with parameters set 2 to check the sensitivity of 

the nucleon energy to the numerical values of the parameters. By 

changing the value of one of the parameters with constant values 

of the others, we calculated the energy of the nucleon. The 

variations in nucleon energy by changing one of the parameters b, 

as and ac while keeping the others constant, has been shown by the 

plots given in fig. 4.3. It is clear from fig. 4.3 that the nucleon 

energy is sensitive more or less to all the four parameters but is 

strongly dependent of the ac, the strength of the phenomenological 

confining potential. The expressions (4.1.2.2) and (4.1.2.3) usually 

used to derive the values of the coupling constant a s and confining 

potential constant ac respectively, could not give the correct 

values of as and ac to produce the nucleon energy closer to the 

observed mass of a nucleon. Having re-adjusted the numerical 

values of the parameters with the help of the data obtained, we 

chose the values of the parameters compatible with the present 

model in reproducing the observed mass of the proton. It has been 

noticed that the expressions (4.1.2.2) and (4.1.2.3) may be valid in 

the extended quark model with different proportionality constants.

As we described earlier, the energy of the nucleon calculated 

in the present extended quark model of the nucleon is less than the
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nucleon energy calculated in the simple 3-quark model with the 

same parameters.

The computed probabilities of the shell occupancies in the present 

model suggests that 45% of total contributions are carried by the 

(3q)(qq)-components (as shown in table 4.7) of the improved 

wavefunction of the single nucleon, which is a quite significant 

part of the wavefunction. The (3q)(qq)-components with the 

configuration (0S )3(0P)(0S) make dominant contribution to the 

wavefunction as compared to the configuration (0S)4(0P).

The model predictions show that the (3q)(qq) -components do not 

contribute in the same ratio to the electromagnetic properties of 

the nucleon, but even then their contributions are quite 

significant. The components of the wavefunction arising from the 

inclusion of qq-excitations in the quark model of the single 

nucleon contribute nearly 5% and 13-14% to the root mean square 

radii and the magnetic moment of the single nucleon respectively. 

The present model predicts that the mean square charge radius of 

the neutron is negative whereas the simple 3q-model fails to 

predict this experimental fact.

Generally, the values of the r.m.s radii of the nucleon obtained 

in the present model are smaller than their observed values. This 

we expected because relativistic effects are not included in the 

model. If it becomes possible (as may be expected in the future) 

to perform calculations with greater number of qq-excitations 

using more efficient computing machines, one may obtain 

improved values of the radii, with re-adjusted numerical values 

of the parameters. It is also hoped that our calculated

magnetic moment of the nucleon which is slightly greater than the
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experimental value may be brought closer to the observed value if 

the numerical value of mq can be re-adjusted a little more than

our suggested value mq = 359.73 Mev/c2.

The present extended quark model of the single nucleon describes 

the charge density of a nucleon quite successfully. Specially, in 

the simple 3-quark model it is quite difficult to produce the 

charge density of the neutron to be non-zero but the present model 

predicts that the charge density of the neutron is non-zero and its 

explicit negative part of the curve (as shown in fig 4.7 and fig 4.9) 

appears due to the inclusion of mesonic contributions into the 

internal wavefunction of the neutron. The r.m.s. mass radius of 

the neutron calculated with parameters set 3 is 0.66 fm in the

simple 3-quark model whereas in the present model it has been

computed equal to 0.687 fm. From fig 4.7, it is clear that the 

negative part of the curve starts just after the 0.66 fm which is 

predicted by the present model. Because of this fact it can be 

concluded that the present model predicts that the positive charge 

(i.e. u-quarks) dominates near the centre of mass of the neutron 

and the negative charge (i.e. d-quarks) extends beyond the positive 

charge to the outer radial distances.lt is also clear that the charge 

distribution beyond 0.66 fm (shown in fig. 4.6) arises from the 

inclusion of mesonic components into the wavefunction of the 

proton. The distribution of the charge beyond 0.66 fm is very 

important for the description of the medium range and long range 

of the nuclear force usually explained by the one pion exchange 

potentials.

As we mentioned earlier the inclusion of (qq)-excitations is low 

energy effect, it may be expected that probably the mesonic
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contributions are mostly displayed by the pionic effects.

Since we did not include all the possible quark-antiquark  

excitations (which could not be managed at present), we did not 

expect our calculated values of the electromagnetic properties to 

be exactly equal to the experimental values.

Apart from this one can think of several ways in which the

calculations could be improved. We suggest and recommend that 

the following things be taken into account as these may help to 

further improve the results obtained in the present extended quark 

model.

1. The model space can be extended to include q2q'2 -excitations 

and as many other higher excitations as one can possibly manage.

2. The part of the transition potential involving the terms of 

order 1/c2 (which has been ignored in the present work because of 

its unimportance) can be introduced as it makes some contribution 

to the results [42].

3. In quark-quark interaction potential, one can also include the 

spin -orbit and tensor terms (which were also ignored because

their contributions are not very important), but we suggest that it 

may improve the results as in the present shell model study the 

p-energy sub levels appeared degenerate.

The disadvantage of this approach is that very large number of 

particles (51 quarks in 96 orbits) makes the calculation simple in 

principle but very time consuming. Another approach is to regard 

antiquark as a new type of particle. The number of particles

(quarks and antiquarks) is then no longer constant, which is 

serious but soluble problem, but they are only 3 or 5 in number. 

This approach is much more complex in principle and leads to more
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involved computer programmes which do however require much 

less time. This means that more complex physical systems may be 

accessible to the investigation by this method. This work is in 

progress at the moment.

Finally we conclude that the extended quark model of the single 

nucleon in conjunction with Glasgow shell model presents a 

unified model which describes the hadron spectroscopy quite 

successfully. Hopefully, the present work extended in the light of 

the above recommendations will make a very important study and 

future work of this nature will be very interesting.
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APPENDIX A

A.1 GAMMA FUNCTION

A.1.1 DEFINITION

The gamma function is defined [69]by
o c

r(x) = J e' tx' 1 dt (x > 0 ) (A.1.1.1)
0

A.1.2 PROPERTIES AND SPECIAL VALUES.
T(x+1) = x! (For x > 0 )  (A.1.2.1)
T(x+1) = xT(x) (fo r x > 0) (A. 1.2.2)

Using definition and the above properties of gamma function, we

get some special values; e.g 
r(i) = r(2) = 1 
r ( j )  = J *

T(x) has a simple pole at x=0 or a negative integer 

A.2 BINOMIAL EXPANSION AND BINOMIAL COEFFICIENT

A.2.1 BINOMIAL THEOREM.

The binomial theorem states that for n > 0 , we have 

(a+b)n = an + c'J an'1b + c" an‘2 b2 +  cT n a bn’1 + cJJ bn

. . . . (A.2.1.1)

where cnr ; r= 0 ,1,2 ,3 . . . .  n are called binomial coefficients. 

A.2.2 BINOMIAL COEFFICIENT.

The binomial coefficient is defined as

(A.2.2.1)
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By definition we can get
c" = cn" = 1 (A.2.2.2)

cn m < r  , n(n-1) . .^ . (n- r+11 { A 2 2 3 )

c"+1 = d? + (A.2.2.4)

The binomial coefficient can also be denoted by (nr).

A.2.3 INFINITE BINOMIAL EXPANSION

According to the binomial theorem, we can have the 

expansion (for a  > 0 ),

(1 +x)a = 1+ ax + M | l l l x 2 + « (“ - 13) (« -2 )  x3 + , . (A.2.3.1)

The above expansion may be described by a generating function as

( 1 + X ) “ -  £ ( ? )  Xr
r=0a

a V  T(a+1) r 
(1+x> = I - rr^ -r liT T T  x (A.2.3.2)

(1 +x

to  (“ - r>! r!
T(a+1)

v r
,r(a-r+1) r! x

(for a >  i0 )
(-a )(-a - 1) v2

' 2! 3! .............

= I  (-1)r T ^ xr (A-2-3-3)
r = 0 v •

A.3 ASSOCIATED LAGUERRE POLYNOMIAL

A.3.1 DEFINITION.

The associated laguerre polynomial is defined by [69]

& >  •  t  (n.,)(M k « )!  r! <r
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A.3.2 PROPERTIES.

a) Generating Function. 

f -x t  
expl(1-t)J

b)

i)

ii)

iii)

iv)

v)

k +1 = X  b„(x)tn (A.3.2.1)
( 1-t) n=0

Recurrence Relations.

Lkn 1(x) + Lnk'1(x) = Lk(x) (A.3.2.b.1)

(n+1) Lk+1(x) = (2n+k+1-x) Lk(x) - (n+k) Lk.,(x )

x Lk (x) = n Lk(x) - (n+k) Lk ,(x)

Lk'(x) = - X  Lk(x)
r=0

Lk'(x) = - Lk:; (x)

n-1

(A.3.2.b.2)

(A.3.2.b.3)

(A.3.2.b.4)

(A.3.2.b.5)

A.4 RADIAL WAVEFUNCTION

For a particle in the harmonic oscillator potential the radial

wavefunction is defined [73] by the following expression;
.2

|n,l> = Rn|(r)= 2n!
2(l+^)2 Q

b r(n+l+|)

A.5 EVALUATION OF < n'

I 1  - —l + A 9 o

r1 Ln ( ) e 2b

n I >

(A.4.1)

Using expression (A.4.1), we write 

<n'l' | |n l>= 4 n! n'!

b2(l+l+3)r(n + l 4 ) r (n'+l '4 ) I j.l+l-X+2 b

1 + 7  2 1+7 2

x L n' ( f r ) L n ( M *
b b

(A.5.1)
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If we make use of the generating function (A.3.2.a.1), then the

intergral in (A.5.1) equals the coefficient of unv n in 
r2 r2 f u v+

fri'+,.u2 e b2 e b2 ^  dr (A.5.2)
J I+— l-J—

(1-u ) 2 (1-V) 2

r2 f 1-UV ]
Therefore by putting ^ T [(1 -u )(1 -v )J  = x > we get

1 /i |' * \ \  1 /./ I 2 I7  (l+ l-X + 3 ) |  ^  ^
1 7(1-1-^) 7 (1 -1 -* )  b I 2 J r 7(1+1-x+1)

l= 7  (1-u) (1 -v ) - 5 --------— ;------  x 2 e dx
2 —(l + l -X+3) J

/ j x2 0( 1-uv)

. . . (A.5.3)

We must consider several special cases depending on the values

of I, f and X  since the expression of (1-u)m depends on whether m

is positive or negative.
Le t l>  \ + X  > I

Therefore we have

1 -1 n' h2(t+1)
I - 3 - — 1— ii (1-v)  777 nt+1) (A.5.4)

2 (1-U) (1-uv)  

where t= y  (I+I-A.+1)

j i - 1  (M +X) > 0

n'= 1 - (I'-l-X) > 0

With the help of the generating functions (A.2.3.2) and (A.2.3.&), 

we obtain (A.5.4) in the following form,

b2(lt1)r ( t+ 1 ) ui x r ^ +1L  (.V)j r ( t+ 1+k) ( jk
■- 2 - Z ( | r ( n ) i !  r (u '- j+ i ) j !  '  r ( t+ i)k !  K 1

i jk  L

b2(t* 1)n t + D  r (n '+ i)  y  r(n + i) , 1 j
2 ‘ r (n ) r ( t+ i)  i! r ( n ' - j+ i ) j !   ̂ '

X r(t+k1,+k) (uv)k (A.5.5)
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To obtain the term in unvn; we must have i=n'-kand j=n-kand we get

IH ) nb2(l+1> r(n '+ i) y  r(n+n'-k)r(t+i + k )(- i)k
r(n) V  r(n'-n+k+1)(n'-k)! (n-k)! k! ^un vn

.................. (A.5.6)

From (A.5.6) it is clear that the coefficient of un v n is

(-1 )nb2(l+1> r(n'+1) y  r(n+n'-k)r(t+1+k)(-1)k 
2 r(n) Y  nn'-n+k+1)(n'-k)l (n-k)! k!

Therefore we obtain 

< n f I r'x I nl> =V M n k .  / 4 nl nl (-1 )nb2(u1) I W )

b2<,+,V3)r(n'+ lV f)r(n +l-Hf) 2 r(ti)

X r(^+n'-k)r(t+1+k)(-1)k 
r(|i'-n+k+1) (n'-k)! (n-k)! k!

<n'l' |r'x | nl> = (-1)"b x r ( '̂+1 ] 1
r(n) ^  r(n '+i+f)r(n+i+f)

V  ( - i ) kr (n + n -k )r ( t+ i+ k )
“  rf^-n-hkn-1 Xn'-k) !(n-k)!k!

where jj.= (T-I-h^) > 0,

=  > 0

and t= |- ( l+ r -X + 1 )

If we take l=l+X i.e X = \ ' - \ ,  ji'=0, \ i = \  and k=n we get

<n'l' |r‘x | nl> = b'k ^ nl ~n| - - (A.5.8)
r(X)T(n -n)!n! r (n '+ l'+ f)

But if we have l+ ^ > l7 > I then (A.5.3) will have the following form

1 1 ~ h2(t+1)
,= J  i  i? ■ 7 T - n r  r (t+ i ) (a.s.9)

( 1 -u) ( 1 -v) ( 1-uv)

where n = y  (l-l+^) > 0 

H' = \  (!-!'+ X) > 0
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Or

,_b2(l+1) r ( t+ i)  y  r(n+i) , r(n'+ j) ̂  r ( t+ i+ k l (uv)k (A510)
2 i -  r(n)i! r(n')j! r(t+ i)k ! ( ' (A'5'10)

By putting i=n-k, j=n-k we get

b2(UD 1 y  r(n+n-k)r(|i'+n-k)r(t+1 +k) ,
2 • r(n)r(n') ^  (n'-k)l(n-k)! k!

Therefore we have -x
<n'T |nl> = b ' n'! n!

r(n )r(n '), / r(n+i+§-)r(n'+i'+f)2' v 2
y  H i i+ n ^ r ^ + n - k in t+ l+ k )  (A 5111
^  (n#-k)!(n-k)!k! \  )

If we have k=n, we obtain

< n ' l ' | r ’ X I n l >  = /  3n ' ! n! x  r ( ^ + n ' - n )  ̂ 1 + n )
r(r t \ j  r(n+i+|-) r(n'+i+|-) (n ‘n) ! n!

. . . .  (A.5.12)

A.6 EVALUATION OF <n'l' || 1| nl>
r

With the help of gradient formula [65], one can evaluate the

matrix element of the type

<T0 | V | I 0> where

v o = f  =  c o s 9 f  <A -6 -1 >

The only non-zero matrix element of the above type can be

written [65] as

<n' l+1 0| V„| n I 0>------------^ --------l K , +1<r> < F  ■ 7> Rn,(r> *  dr

[(21+1 )(2 l+ 3 )]2

. . . .  (A.6.2)

and

<n' 1-1 0| VQ| n I 0>------------! r  jR n,M (r) ( | -  + j-+ 1 ) Rnl(r) r2 dr

[(21-1 )(2I+1)]2

. . . . (A.6.3)
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Since we have

2 . 1-2 . 2b2
R n.<r> = ^ nI r Ln ( 7 ) 8b

(A.6.4)

where n nj, the normalization constant is given by

^ 1  =
2 n!

2(1+̂ -)
b 2 r(n+l+f)

We can write

( ^  -  -T  >R n,(r> =  ^ n ,
r'i

i+J 2b2 8) + e »  £ ( Ln 2( ^ )2' rL \  A j  p 2b" 
b* ' 8P ' ' ” 5r

Making use of recurrence relation (A.3.2.b.5), we obtain "(A.6.5)

= n m r
.1+ 1J

1 ,+7  2 q  1 + 1+2 2
- —  L ( —  ) - —  L ( —  )

. 2 n v ,_2 ; . 2 n-1 v .2  •

I b
2b'

. (A.6.6)

Making use of recurrence relation (A.3.2.b.1), we obtain

2b'

2 (n-1)!
1+1 1

2(1+1 +-2-)
b 2 r(n-1 +1+1 +§-)

-,+1 Ln; i 2( 4 ) e  2b<

i n+l+f- 2 n!
2(1+1+̂ )

b r(n+1+!+§•)

1 + 1 +-" 9 
rl+1U  2( ^ ) e 2b'

*n

i.e

-  T -)R nl( r )=  - 5 - { - / H R „ -1.,+ 1(r> -  R n..+ 1<r >.

Similarly we start with

( £ + !^ b „ m - < £ * W i SX ' U ,  . *

(A.6.7)

(A.6 .8)
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and obtain

i+ i

( * -  +  i T L )R n .W -  n nl <2 I+ 1 > fM  L n * ( 4 >  +  2  ^  ^

r2 l+7  +1 2
—  L ( — ), 2  n-1 v . 2  t

. b b
. j L  

2f J | 2/ r2 \ 2b
~ 2  r Ln ( “ ? )  • e
b b

By making use of recurrence relations (A .3.2.b), the above 

expression can be reduced to

( f - + i ±-L)R I ----------- 32 (n+1) ! r1' 1 L 1,+I( 4 ) e
8f r n|W b /  2(i- i -A  n + 1 b2

r2

r (n + 1+ l-1+ |)

2 n!-----------------  r1'1! .1 1+̂ ( — ) e 2l>2
2(1-1+^-) n b2

b 2 r (n + l-1+ f)

. . . .  (A.6.9)

The expression (A.6.9) can be rewritten as

( A  + !±l)Rn|(r) - I p T T  Rn+1,M (r) + Rn,M (r)J (A.6.10)

From expressions (A.6 .2) and (A.6.7), we have

<n' 1+1 0 | 4  In I 0  ---------------------------  [  r -  { -^n <n' 1+1 \ \  |n-1 1+1 >
r [(2 l+1 )(2 l+3 )]2  r

- J n + \ + j  <n' 1+1 |-L  | n l+1> } ]  (A.6.11)

Therefore we obtain 

<n' 1+1 II -T- II n I > = --------
^  1 / ^ l + 1 [(21+1 )(2 l+ 3 )]2 (-1)

1+1 1 l N 

0 0 0

x {  - /n  <n' 1+1 | -L  | n-1 1+1 > - J n + \ + j

x <n' 1+1 | •— | n 1+1 >}
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i.e

< n 1+1 || ~-1| n I > = ^ 5 I {  -Vn <n 1+1 I ^  I n-1 1+1 > - ^ n + l+ |

x  <n 1+1 | 1 n 1+1 > }

. . . .  (A.6 .12)

Similarly with the help of (A.6.3) and (A.6.10), we can obtain

M  0 I — 1 n 0> - ------------ !------------ | / r * 7 < n  ■ 1| -U |n+1, 1 ■!>

b [ (2 l+1)(2 l -1) ] ^  +^ ^ X <n- M | J_ ,„

. . . .  (A.6.13)

which gives

<n' 1-1 II II n l > --------------------   r . - /  ■ n
[(21+1) (21-1 )]z (-1) (o  0 0,

x [ 1  {  /n+T<n' 1-11-1- |n+1,l-1> +^/n+l+i

x < n ' 1-1 | |n l -1 > } ]

or

<n' 1-1 || ^  || n l> = - ^-{Vn+1 <n' 1-11-̂ - |n+1 1-1 > + J n+l+^-

x <n' 1-1 | 4" In 1-1 > }  (A.6.14)
r

The values of matrix elements of (-4-) can be determined either
r

by expression (A .5.7) or expression (A .5.11) subject to the 

conditions satisfied.

We know that
<n‘ f m' | VQ |n I m> = 0 unless we have

I1 -  I 1 1 
m' ■ m ±  1, m

and AE = tiw => 2n* + I’
i.e AE = 2n + 11 1

152



Therefore for non-zero matrix element of above type, the

following conditions must be satisfied.

i) If f = I + 1 n'must be either n-1 or n, . . . .  (A.6.15)

ii) if f = 1-1 n’ must be either n+1 or n. . . . .  (A.6.16)

The expressions (A.6 .12) and (A.6.14) satisfy the conditions

(A.6.15) and (A.6.16) respectively.

Special cases.

i) <n' 1 + 1 1| y -  II n l> = { f ~ n ~  <ri 1+1 l y  |n-1,l+1> + ^ /n + l+ |

*<ril+1 l T | m + 1 > }  (A.6.17)

ii) <n 1-1 II T i l  n l> = ‘ b {  VTT+T <ri j-11 -1- |n+1 M >  + ^ n + l+ ^

x<ril-1 | T  |n 1-1 > }  (A.6.1S?

i i i )  <n' 1+11| V|l n l> = - -± - /n ( i+ 1 )  8n, n., (A.6.19)

Or = -  (|+ 1) ( n+ |+ j )  8n. n (A.6.20)

iv) <n' I -11| V || n l> = 8n, n+1 (A.6.21)

O. = -  f V  ' ( n+l4 )  5n'n (A-6 -22)

The evaluation of matrix element of ( 4 - )  ;X> 0 has been described
r

in section (A.5).

A.7 EVALUATION OF <n' I' || || n l>
r

We have
z|nlO> = r Rnj(r) cose Y [q (Q,<$>) (A.7.1)

By the properties of the Legendre function one can finds [65],

cose Y |o(0 ,<t>)----------- — T • Y l+10 + -------------------- !----------- r  y m 0

[(21+1 )(2 l+ 3 ) ] 2 [(21 + 1) (21-1) ] 2

. . . .  (A.7.2)
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z|nlO> = i i + i i

[(21+1 )(2 l+ 3 )]
7 . rR Y +
1 nl 1+1 0 ------------- !-------------7 rR | Y . 1 n1  nl 1-1 0

[(21 + 1 ) ( 21-1 ) ] 2

Since

i 1  —
+2 / f 2 \ _ 2b2n nl H L„ ( j -  ) e

(A.7.3)

where t i^ is a normalisation constant, 

we have

i+l
r Rn|(r) = rl+1 Ln+2 ( £  ) e 21)2

b

Making use of recurrence relation (A.3.2.b.1), we obtain

rR nl M  = r
.1+1J

nl
1 + 1+1 2 1 + 1+5- 2 I 2
-n <7 ) - L n.1

(A.7.4)

= b7 n+l+ f
2 n!

2(1+1 +f)
rl+1L.

1 + 1
( ^ )  e 2b‘

r(n+l+1 +1-)

- b /n
2 (n-1)! _l+1 | r \  _

r  n -1  ( " T  ) e

1 + 1
2/ r‘

2 ( 1+1

2b'

b ‘ r (n -1+ l+ 1+ f )

Using equation (A.4.1) we can write the above expression as

r R . = bnl V n+I+2 Rn,l+1 '  ^  Rn-1,1+1 (A.7.5)

Employing the recurrence relation (A .3.2.b .1), the expression 

(A.7.4) may also be expressed as

rR n,<r>=n mb2 rM { (2 n + l+ l+ 1 )L l+2( J  M n + D L ^  £ )
n+1 b2

1 ' + 2  r2 \  - -
(n + l4 ) L n-1( 7 ) / e 262

(A.7.6)
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» / ^ r  /  y ^ > !   -m  C , * ! ( 4 ) »
2(1-1+7 ) q b

b r (n + 1+ l-1+|-)

Therefore we have 

r Rn|(r) = b . /n + l+ i  R . . - 7n+1 R . . .V 2 n,l-1 n+1,1-1 (A.7.8)

Putting the values of rRn) (given in (A.7 .6) and (A.7.8) in the 

expression (A.7.3) on proper places, we obtain

Z|nl0> b (l+1) p n ^  q . R „ , |+1 J
[(2 l+ 1 )(2 l+ 3 ) ] 2

+ ---------   4  Rn , - 1 0 - ^ +1 Rn+1 1-1 J
[(2I+1)(2I-1 ) ] 2

. . . (A.7.9)

<n' 1+1 0 | - y  | n I 0 > ---------------------------------------r  n + l+ f <n’ l+1| - y  |n l+1>

[(2 l+ 1 ) (2 l+ 3 ) ]2

-/n  <n' l+1| A r  | n-1 l+1> }  (A.7.10)
r3 1

r

and

<n' 1-1 0 | -y  |n I o> = ---------- —    { A/ n+l+i '  <n' 1-11 "V ln
[ (2 I+1 ) (2 I -1 ) ]?

-■/n+T <n' 1-11 4 -  |n+1 1-1 > } (A.7.11)
r3 3



Hence we obtain

< n - W  | | i . | | n l > ----------- y !±11------ 1 '

[(21+1 ) (2 l+ 3 ) ] 2 I ' D  0 0 0

X < n’ 1+1 | — . | n 1+1 > - 7n < n’ 1+1 | A r  | n-1 1+1 >}  
r r

Therefore we have

< n’ 1+1 || -^- || n I > = b/I+T {  / n+l+|- < n’ 1+1 | \  | n 1+1 >
r r

- /n  < n* 1+1 | \  | n-1 1+1 > } (A.7.12)
r

Similarly we obtain

< n* 1-1 || - ^ - 1| n I > = -b -/T { , / n+l+4- < rr 1-1 | A r  | n 1-1 >
r r3

- /n + T  < n' 1-1 | A r  | n+1 1-1 > } (A.7.13)
r3 J

The values of matrix elements of 1/rx can be determined by either 

(A.5.7) or (A.5.11) subject to the condition satisfied.
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APPENDIX B

B.1 EVALUATION <S  || (cy  c2) || S >

Since the operator (c^- a2) is an antisymmetric operator,

we can have the non-zero matrix elements only for the values

S -1 ,  S=0 and S = 0 , S=1. We define the spin operator a in terms of 

Pauli matrices

f °  1 1 1o

f l  O'!
J  0. 1 Oy [ i  oj and az= 1o

as o *  + ° y i  + ° z k (B.1.2)

where ax, a y and gz are the components of a a and I, j and k are 

the unit vectors along x-axix, y-axix and z-axix respectively. We 

also define the raising and lowering spin operators as,

0+= ~ k  (° x+ io>)
! (B .1.3)

and a = — (a Y- iav)
J 2  y

Therfore we can write,

° x = 7 i (CT++ a_)
i (B.1.4)

and <jv= - -= -(< *.- a.)

From (B.1.2) and (B.1.4) we obtain,

a = ^ = r{(o + + a ) i  - i(a+- a )jj+ ,a zk (B.1.5)

But as we know that the spherical unit vectors are defined [65] as
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Therefore using expression (B.1.5), We get

( ° r  ° 2) = ° 2+) e -1 - <«1 - - ° 2 > +1 + ( ° u  '  ° 2z)e0 (B-1J )

where e^ , e+1 and e0 are spherical unit vectors defined in (B.1.6).
I f the operator (a.,- cr2) operates on a spin wavefunction |S'=0, ms. = 0>

then making use of expression (B.1.7) we have

(<v <52)ls'=0,m.=0> = {((V  a2+)e r (°1 - ■ ° 2-)e+1+(aiz' c2z>eo} ls=0’ms.=0>

. (B.1.8)

By definitions (B.1.1) and (B.1.3), it can be found, since

a+= / 2 0 1
vO 0, (B.1.9a)

and

a+ (a) = 0 , a+ (P) = / 2  a 

a  (a) = P i  P , a. (p) = 0 (B.1.9b)

VHere a and p have been used to denote up-spin 0 and down-spin
\ '  \  -

respectively.

By using the information given in eqns. (B.1.9), we rewrite the 

expression (B.1.8) as

(O ,- a2)|S'=0 ,ms =0 > =  {  (a 1+- a2+) e . , - ( 0 , . -  <^.)e+1+ (o u - a ,z)e0}

x | ^ r { o ( 1 ) p ( 2 )  - p (1 )o (2 ) }>



mj = l W {-0(1 )o(2)-o(1 )a (2 )}e .,-7 2  {p(1 )p(2)+p(1 )p (2)}e+1 

+2{a(1 )p(2)+p(1 )a (2 )}e0?]  (B.1.10)

Or (G l- a2)|S'-0, ms = 0 > =  -2|11>e_1-2 |1 -1 > e +1+2 |10> e(J (B.1.11)

We know that a vector quantity V can be expressed in terms of its 

spherical components Vq(q=0, ±1) [65] as given below.

V - E  (-e)q V q  e q  (B.1.12)
q

Therefore an operator (a - a2) being a vector (i.e a tensor of rank 1) 

can be written as

(c ,-  c2) 1 = - (or  o2) I 1e - r  (° r  ° 2) - i e+i+ (° r  ° 2) 1oe o ( B -1 -13)

With the help of expressions (B.1.12) and (B .1 .13), we obtain

< S =1 ,ms=+1 |(o j-o 2)|S,- 0 ,mg- 0> - < S - 1,ms-+1 |(ct-ct2)^ |S'=0,ms =0>=2

< S = 1,ms=0 |(o,l- a 2)|S'=0 ,ms =0>  = < S = 1,ms=0 |(al-CT2)̂  |S'=0 ,ms.=0 >=2

^S=1 ,ms= - 1 |(0j~ c2) IS =0 ,ms =0>=.<S=1, 1  l(Gj— n2)*  ̂ |S = 0 ,m^=0^ =2

. . . .(B .1 .14)

Using the Wigner Eckart Theorem [67] we get

< S = 1,m =0|(o - a )|S '=0 ,m =0>  
<S=1||(<r1-c t2)||S =0> ------------------------- ^  ,  s

( - 1 ) 0 0 0

M X - #
-̂------2 /3  (B.1.15)
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The values of Wigner's coefficients (called 3j-symbols) have been 

tabulated in ref. [52].

Similarly we can obtain the same result by taking the left-hand 

spin wavefunction with other two possible values of ms= + 1 , - 1 . 

Therefore the value of the reduced matrix element is given by

By following the same procedure as mentioned above, we can

evaluate the other possible non-zero matrix elements of the 
operator (a ^  cr2) and hence calculate their reduced matrix elements.

B.2 EVALUATION OF <  S \ \ ( o ^ +  o2)|| S’ >

The matrix element of an operator (0^+ a 2) can be different 

from zero only for S'=S=1, i.e. We have to calculate only the 

following reduced matrix element;

<S =1||(ar  o2)||S' =0>  = 2 / 3 (B.1.16)

<S=1 11(0 ,+ o2)|| S=1> (B.2.1)

We Know that S and a are related by an expression

therefore replacing ( o ^ + o 2 ) ^  ^S, we obtain

< S =1 \\{a^ +  c2)|| S'= 1>  = 2 <5 =11| S || S'=1 >

i.e. < S -1  ll(ai + c2)ll S '= l> = 2 /6 (B.2.2)
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B.3 EVALUATION OF < S  ||( o ^  a2)|| S >

As we know that the matrix element of an operator (a1x o 2)

shall be different from zero only for S'=0 ,S=1 or S’= 1 ,S  = 0 ,

therefore we have to evaluate the following matrix elements;

<S=1 IKc^x g2)|| S = 0 >  (B.3.1)

< S =0 IK^x ct2) II S = 1 >  (B.3.2)

B.3.1 REPRESENTATION OF (c ^  a2) AS A TENSOR OPERATOR.

The operator (a *  a ) is a cross-product of two vectors o 
1 2  1

and ct2. Since it is a vector , it may be expressed as a tensor of 

rank one. Using definition (B.1.2), we have

( V  <*2 ) =  ( a 1x '  +  a 1yJ +  a 1 z k  ) X ( a 2 x  ' +  a 2 y ^  +  ° 2 z k )

. . . . (B.3.1.1)

We define the spherical components of a vector as,

= + ^ ( a x ± i a y)  ( B . 3 . 1 . 2 )

i.e a x = - j = { ■ ^ ) . O y -  (®, + ) (B.3.1.3)

We re-write expression (B.3.1.1) as

( a l X c 2) =  ( o 1 y <Jz - o1zo 2y) i +  ( o 1 z a2 x - x ° 2 z ) j  +  ( ^  x ° 2 y - ° i y 0 2 x ) k
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Making use of (B .3 .1.3) and (B .1.6), we replace cartesian 

components by spherical components as follows;

O -ij)  (o1+°20- a2+°io) * j = ( i+ i j )  (CTl ,o20- a2 a 1Q)

- (')k (o1+ o2. -  a z + ° u )

( - i ) { -^ r  ( i - i j ) }  ( ) + H ) { 7 f ( i +  ii) }

x â i - ° 2o' ° 2 -a io ) + (-i)k (o1+ a2_- o , . ^ +)

= H ) { e .1} ( - a 1 o20+ < H 0 ° 2 + )+  (- i){e +1} ( o 1.®20- <*10 ff2.)

+ <■'){ e o}<CTi+  ct2 - ’  (B -3 -1+ <-0{ eo}0 (B.3.1.4)

Here signs "±"and "0" with sigmas have been used for spherical 

components (i.e for q= ± 1, 0). This convention differs from that of 

section B.1) and B.2).

We can express the components of a product vector (a tensor of 

rank 1) in terms of components of the vectors [65] as given below.

T (1q) = X Xq , V 1q-1qJ 111q)
(B.3.1.5)

where q, q v  q2 = 0 ,±1.

Equation (B .3.1.5) implies that

h ° 2] . r 7 = (-  ai - a2o+ a i o V ) (B.3.1.6a)

(B.3.1.6b)
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(B.3.1.6c)

The Clebsch-Gordan coefficients have been evaluated by using 

formulae given in ref. [65].

Comparing equation (B.3.1.4 ) and expressions (B.3.1.6), we get

<V°2> =

+ ( - i ) { e + , } [ - 7 2 M 1) ]

+ H ) { e 0} [ ^ 2 h ^ i ] (B.3.1.7)

Or (o1x a 2) = -i/2 I  H > q e -q (B.3.1.8)

where q=0 ,±1.

The expression in bracket corresponds to definition (B.1.12) 
therefore we express the operator (a x a ) as

(aiX a 2) = (B.3.1.9)

B .3.2 EVALUATION OF <3=1 IKa,* a 2)|| S '=0>

We have the reduced matrix element of (c^x a 2) given by 

< S =1 | | (0 l x a2)|| S = 0 > = - i /2 < (± - | - )S = 1  h M ’ i K j ^ S ' - O

. . . .  (B.3.2.1)

we can express the above reduced matrix element of a cross 

product of two vectors a 1 and a 2 in terms of their reduced
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matrix elements [65] involving 9j-symbol as,

< 5  ll(o,x c 2)|| S >  . .= -i/ 2  [(2S+1)(2S '+1)(2K +1)] <

1  L  k '

2 2 1
i l  k 
2 2 2

IS  S' K.

* < r l l  < * * ' II j X g - l l  i 2 II 7 >  (B.3.2.2)

Since we have [52],

(B.3.2.3)

Therefore for spin-1/ 2 operator( S ) we derive

(B.3.2.4)

Putting the values of reduced matrix elements of sigmas from 

eqn. (B.3.2.4) in expression (B.3.2.2), we get

<S=1 ||(0 l x o2)|| S'=0 > =  -i/2  [3(2 X 1 +1 ) (2 X 0 + 1 )]  < U  \ 1

Li 0 1J

x 6

. . . . (B.3.2.5)

Having evaluated 9j-symbol in (B.3.2.5), we obtain

<S=1 IKa-jX a2)|| S = 0 >  = -2/ 3"i (B.3.2.6)

B.3.3 EVALUATION OF < S = 0  ||( o2) || S = 1 >

We write the given reduced matrix element as, 

< S - 0 | | ( o 1x o2)|| S = 1 > = - i /^ < (J r i-)S=0||[^1<y 1||(^-1-)S'=1>

(B.3.3.1)

According to expression (B.3.2.2), we obtain
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l2 2< ( l l)S -0 ||(O iX  a2)||(i-i-)S '=1>=-/2i 13(2x0+1 )(2x1+1)] <

V 1 ..

^ 12 2
±  1  1 2 2

10 1 1J 
(B .3.3.2)■ 2  i i  ' ' ■ j i i  2 ^ ^ 2  “' 2  II 2 ^

Therefore, using (B.3.2.4) and having evaluated 9j-symbol, we 

obtain
<S=0 IKa^ a2)|| S’=1 > =  -2VJi (B.3.3.3)
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