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bisphosphoglycerate).

PLEASE NOTE: - Due to the limitations of the word-processing system used to 

produce this thesis, it has not been possible to print the character y .  Because of 

this, the abbreviations umole; ul; ug and uJ have been used throughout the thesis to 

represent micromoles, microlitres, micrograms and microjoules respectively.
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ABSTRACT.

The object throughout this study has been to investigate the importance of 

anaerobic metabolism in the decapod crustacean, Carcinus maenas (L.), as a result of 

exposure to environmental anoxia. An integrated approach was therefore adopted, 

spanning the subjects of biochemistry, physiology and field ecology.

The study was initiated by an investigation into diei and seasonal environmental 

extremes that occur within intertidal rock pools. It was found that the diel ranges 

shown by the various physico-chemical factors become larger during the summer 

months. The fluctuations in the partial pressure of dissolved gases within the rock 

pools were the result of algal photosynthesis elevating the oxygen levels during the 

day and respiration of the pools’ fauna and flora, in the absence of photosynthesis, 

causing a depletion at night. This depletion was most pronounced during the 

summer, when the P0 2  of the rock pool, used in the field experiments, decreased to 

approximately 5 Torr.

Studies investigating the distribution of Carcinus maenas throughout the year, 

revealed that far greater numbers of crabs (mainly male), were present in exposed 

intertidal rock pools during the summer than during the winter. This peak in the 

number of crabs present on the littoral zone coincided with the time of year that the 

pools became most hypoxic. Severe hypoxia (P0 2  < 10 Torr) lasted up to 4 h and 

required the crabs to either employ a behavioural response to avoid these extreme 

conditions or to resort to anaerobic metabolism.

Field observations showed that, in common with several other intertidal species of 

decapod crustaceans, Carcinus maenas exhibited partial and full emersion responses, 

when exposed to hypoxic or anoxic conditions in rock pools. Laboratory experiments 

demonstrated that under conditions of severe hypoxia, the concentration of L-lactate 

increased in fully immersed crabs, but no accumulation was observed in those crabs
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that had become partially or fully emersed. The possible advantages of these three 

different behavioural responses to environmental anoxia were briefly considered.

There are situations, however, in which either the crab is not able to become 

emersed (e.g. deep rock pool with steep walls) or in which it would be dangerous to 

do so (e.g. high predation risks). The physiological responses which enable 

Carcinus maenas to survive exposure to hypoxia were investigated. An increase in 

the frequency of beating of the scaphognathites (hyperventilation) during mild 

hypoxia, resulting in an increase of the ventilatory flow, was implied from 

measurements of the pH and PCO2  of postbranchial haemolymph. Once the

environmental P0 2  decreased to below the critical oxygen tension (Pc point), the 

heart rate declined and the crabs were unable to maintain a rate of oxygen uptake 

that was sufficient to sustain the normal rate of oxygen consumption.

As the degree of hypoxia became more severe, the biochemical responses associated 

with hypoxia and anoxia assumed a greater importance. The concentration of L- 

lactate started to increase, indicating the utilisation of anaerobic metabolism. 

During the early stages of severe hypoxia the transphosphorylation of ADP by 

phospho-l-arginine was observed to supplement the glycolytically derived energy.

Anaerobic metabolism is energetically very wasteful, owing to the incomplete 

oxidation of the carbohydrate precursor, resulting in a very much lower efficiency 

of ATP production than under aerobic conditions. If an animals’ anoxic energy 

demand remains at the pre-anoxic rate, then the rate of glycolysis must be enhanced 

(i.e. ’Pasteur effect’), which would rapidly deplete the carbohydrate pool. The need 

for this Pasteur effect could be overcome by reducing the energy demand of the 

animal. In the present study, after 2 hours of anoxia, the metabolic rate in 

Carcinus maenas had decreased to 16 % of the rate under aerobic conditions. It 

appears that this reduction in metabolic rate is probably the most important response 

of Carcinus maenas to explain the crabs’ high anoxia-tolerance. Although the
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mechanism by which this depression occurs was not investigated in the present 

study, a brief review in Chapter 7 summarises some of the more recent work on this 

subject.

Although L-lactate undoubtedly accumulates during anaerobic metabolism, there had 

been no previous comprehensive study to investigate the occurrence of other 

anaerobic pathways in decapod crustaceans. A major aim of the present study was 

therefore to establish their relative importance. A stoichiometric comparison 

revealed that approximately 90 % of the catabolism of the carbohydrate pool (mainly 

glycogen and oligosaccharides), associated with exposure to anoxia, could be 

explained by the accumulation of L-lactate. High Performance Liquid 

Chromatography indicated that, despite a small increase in the concentration of 

fumarate in response to exposure to anoxia, organic acids were unimportant 

anaerobic end products in decapod crustaceans. Amino acids were also found to be 

of minor importance. Further evidence confirming the dominance of L-lactate as 

the only major anaerobic end product in decapod crustaceans, was obtained from 

radiolabelling experiments, in which D-[U-^C]-glucose was observed to become 

rapidly incorporated into a ’weak acid’ fraction, consisting mainly of L-lactate. A 

comparative review of the anaerobic pathways present in other invertebrate groups 

was also presented.

One of the initial aims of this project was to determine the fate of L-lactate 

following a period of exposure to anoxia. The existence of a gluconeogenic 

pathway was indicated, since a stoichiometric comparison revealed that about 89 % 

of the carbohydrate (mainly glycogen and oligosaccharides) accumulating during 

recovery could be explained by the depletion of L-lactate. This precursor/product 

relationship was later confirmed when it was demonstrated that L-[U-^C]-lactate 

was incorporated into glycogen and later into amino acids during recovery. In 

addition, radioactivity from L-[U-^C]-lactate, was observed to become
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incorporated into carbon dioxide and bicarbonate, indicating the complete oxidation 

of L-lactate as a possible means of the elimination of this anaerobic end product. 

No excretion of labelled L-lactate by Carcinus maenas during recovery was 

detected. It appears, therefore, that end product elimination in decapod crustaceans 

relies mainly on the re-metabolism of the initial precursors, and to a limited extent, 

the complete oxidation of L-lactate to carbon dioxide. These results were found to 

be consistent with those reported in the literature.

Of particular interest in the present study, was that, in addition to the typical 

physiological and behavioural responses, the concentration of L-lactate in Carcinus 

maenas was observed to double during the first hour of recovery. Indirect 

calorimetric measurements indicated that the energy produced from this rapid 

accumulation of L-lactate, accounted for approximately 22 % of the total energy 

produced over this period. The possible reason for this anaerobic component of 

energy metabolism during this period was discussed.
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CHAPTER 1 - GENERAL INTRODUCTION.

A prerequisite for life is a continual supply of energy, in the form of ATP 

molecules. Until the mid 1940’s it was believed that, in multicellular tissues, 

energy was in general only produced by aerobic metabolic pathways. It has become 

apparent, however, that at certain times, some animals are unable to meet their 

energy requirements purely by the complete oxidation of carbohydrates, fats and 

proteins to CO2  and H 2 O. At such times, animals have to rely partly  or 

exclusively on anaerobic metabolism.

Amongst air-breathing animals, anaerobic metabolism is usually confined to 

particular tissues that have been unable to meet, by aerobic metabolism, a transient 

increase in energy demand. This often occurs in actively contracting muscle fibres, 

in which the rate of oxygen metabolism is greater than the rate of oxygen delivery 

(’Functional anaerobiosis’). Aquatic animals experience anoxia more often than air 

breathers, since water contains far less oxygen per unit volume than air. Aquatic 

animals are, therefore, periodically exposed to hypoxic conditions that are 

potentially very serious (’Environmental anaerobiosis’). Although problems 

associated with exposure to hypoxia are experienced by all the major groups of 

invertebrates and vertebrates, the present study has been restric ted  to an 

investigation of the decapod crustaceans.

Decapod crustaceans encounter environmental hypoxia in a variety of habitats, e.g. 

organically enriched freshwater rivers; intertidal rock pools exposed at low tide 

(Truchot & Duhamel-Jouve, 1980; Taylor & Spicer, 1987) and the permanent 

burrows of the Thalassinidea (Atkinson & Taylor, 1988). Comparative studies have 

shown that those species that regularly live in these habitats, tend to demonstrate 

clear adaptive responses that enable them to survive exposure to hypoxic conditions 

(Teal & Carey, 1967; Pritchard & Eddy, 1979; Taylor & Spicer, 1987; Anderson,
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1989). These adaptive responses can be divided into three separate functional levels 

- i) behavioural, ii) respiratory and iii) metabolic.

Behavioural responses may simply involve the movement of an animal away from an 

environment that is becoming progressively more hypoxic. Since many decapod 

crustaceans are capable of rapid locomotor activity, one might expect that this 

avoidance behaviour would be of great importance. In the intertidal rock pool 

species Palaemon elegans and Carcinus maenas, for example, partial and full 

emersion into the air has been observed, during periods of severe hypoxia, enabling 

the animals to respire aerially (Bohn, 1897; Taylor et al.y 1973; Taylor & Spicer, 

1987). Willis & Berrigan (1977) observed a similar response in the freshwater 

Macrobrachium rosenbergii. There are occasions, however, when such an avoidance 

strategy is inappropriate (e.g. high predator risk) or impossible (e.g. deep steep sided 

rock pools preventing any type of emergence).

Despite early studies, which showed that many species had a poor oxyregulatory 

ability (reviewed by Wolvekamp & Waterman, 1960), more recent studies have 

shown that decapod crustaceans generally have considerable abilities to maintain 

respiratory independence, over a range of ambient oxygen tensions (Taylor & Butler, 

1978; McMahon & Wilkens, 1983). The mechanisms by which this is achieved have 

been the subject of much research, involving the measurem ents of oxygen 

consumption and frequency of scaphognathite and heart beat (Taylor, 1976; Burnett, 

1979: Bradford & Taylor, 1982; Anderson, 1989). The effectiveness of these 

respiratory responses have been assessed by measuring the P0 2  of post- and pre- 

branchial haemolymph, together with studies of the oxygen transport properties of 

the haemolymph (McMahon & Wilkens, 1975; Butler et al.y 1978). Respiratory 

independence, however, can only be maintained down to a critical oxygen tension 

(Pc), since below this environm ental P0 2 , m aintaining the postbranchial 

haemolymph (Pa0 2 ) becomes energetically impractical. The Pc of decapod 

crustaceans varies considerably, with lower values occurring amongst the more
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anoxia-tolerant thalassinids, than in other decapod species (Thompson & Pritchard, 

1969; Felder, 1979; Hagerman & Uglow, 1985; Bradford & Taylor, 1982; 

Anderson, 1989). Under conditions of mild hypoxia, the frequency of heart and 

scaphognathite beat typically increases (Arudpragasam & Naylor, 1964; Morris & 

Taylor, 1985; Johnson & Uglow, 1987). If the environmental P0 2  decreases below 

the Pc point, however, the scaphognathite and heart rate decline, resulting in a 

reduction of the Pao2 (Taylor et al.y 1973, 1977; Taylor, 1976; Wheatly & Taylor, 

1981). At this point the rate of oxygen consumption can no longer be maintained 

and animals begin to respire anaerobically.

More recently, attention has turned to the role of the haemolymph in oxygen 

transport. In particular, there has been considerable interest in the role of organic 

modulators of oxygen affinity. It has been shown, for example, that the hypoxia- 

induced increase in the concentration of L-lactate, increases the oxygen affinity of 

the haemocyanin, which, at least in functional anaerobiosis improves the ability of 

the haemolymph to take up oxygen (Truchot, 1980). Currently, research has centred 

on other modulators of oxygen affinity, including organic acids, urate (a product of 

purine catabolism) and more recently neurohormones (Booth et al.y 1982; Graham et 

al., 1983; Bouchet & Truchot, 1985; Morris et al.y 1985; Morris & McMahon, 

1989). As a result, our understanding of the modulation of the oxygen transport 

properties of the respiratory pigment is increasing rapidly.

Studies of the metabolic responses of decapod crustaceans to environmental hypoxia, 

have suggested that L-lactate is a major end product of anaerobic metabolism. An 

accumulation of this metabolite in haemolymph and tissue samples during hypoxic 

conditions has been reported by many authors (Teal & Carey, 1967; Pritchard & 

Eddy, 1979; Bridges & Brand, 1980; Zebe, 1982; Gade, 1984; Albert & Ellington, 

1985; Lowery & Tate, 1986; van A ardt, 1988). As hypoxia becomes 

progressively more severe, so anaerobic metabolism becomes increasingly important,
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with greater rates of L-lactate accumulation. A secondary source of energy 

involves the transphosphorylation of ADP by phospho-l-arginine during the initial 

stages of exposure to hypoxia (Onnen & Zebe, 1983; Gade, 1983).

There is a considerable literature on the responses of decapod crustaceans to hypoxic 

conditions. In contrast, however, there have been few studies of the respiratory and 

metabolic responses to very severe hypoxia and anoxia. The reason for the paucity 

of such studies is unclear, but is probably due to the fact that exposure to anoxia in 

the field has previously been regarded as very rare. There is growing evidence to 

suggest, however, that this may not be the case. Deep fjordic water in certain of 

the sea lochs of the west coast of Scotland is known to become anoxic during the 

summer months (Edwards & Edelsten, 1977; C.J. Chapman, pers. comm, to A.C. 

Taylor). Pollution-generated events in the Kattegat and Skagerrak, resulting in the 

water becoming anoxic have already led to a crash of a demersal fishery (Hagerman 

& Baden, 1988; S.P. Baden, pers. comm, to A.C. Taylor). Additionally, Truchot & 

Duhamel-Jouve (1980) and Taylor & Spicer (1987) have reported that exposed 

intertidal rock pools can become anoxic at night during the summer.

The broad aims of this study were therefore to investigate the anaerobic metabolism 

of decapods, exposed to environmental anoxia. The rock pool environment was 

chosen, because of easy access and also that it has been previously shown to 

become anoxic at night during the summer. The common shore crab, Carcinus 

m aenaS y  was used since it is abundant in intertidal pools, easy to maintain in 

aquariums and there is already a great deal of information on many aspects of its 

respiratory physiology (Taylor, 1976; Cumberlidge & Uglow, 1977; Taylor & 

Wheatly, 1979; Truchot & Jouve-Duhamel, 1980).

The prim ary aim of the study was to determine the extent of the exposure of 

Carcinus maenas to severe hypoxia and anoxia and the importance of anaerobic 

metabolism in the field. In addition, the possible effect of seasonal variations in
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energy metabolites was investigated.

Although L-lactate undoubtedly accumulates during anaerobic metabolism, there has 

been no previous comprehensive study to investigate the occurrence of other 

anaerobic pathways in decapod crustaceans. A major aim of the present study was 

therefore to establish their relative importance. Currently, the most comprehensive 

review of the anaerobic pathways is that by Livingstone (1983). In this review he 

proposes four main groups of pathways, and by referring to Figure 1.1 it is possible 

to see how the various pathways fit into the overall glycolytic system. The first 

three groups all use glucosyl units (the constituent un it of glycogen and 

oligosaccharides) exclusively as their initial substrate, whilst the last pathway utilises 

amino acids as well. The best known of the pathways is that ending in L-lactate. 

Lactate dehydrogenase (EC 1.1.1.28) catalyses the reaction that oxidises NADH to 

NAD+, whilst it reduces pyruvate to L-lactate. The second group of pathways 

result in the formation of opines. These are the condensation products of pyruvate 

with specific amino acids. Opines are weaker acids than L-lactate and therefore 

cause less disturbance to the acid-base balance of the organism concerned. The 

third group of pathways involve a reversal of part of the Tricarboxylic acid cycle 

(TCA cycle). Phosphoenolpyruvate (PEP) is converted to oxaloacetate by 

phosphoenolpyruvate carboxykinase (EC 4.1.1.49), whilst pyruvate can be converted 

to the same compound by pyruvate carboxylase (EC 6.4.1.1). The oxaloacetate is 

then reduced to malate, with the concurrent oxidation of NADH to NAD+ which 

maintains the redox balance of the cell. The end products of these pathways are the 

organic acids: malate, succinate, fumarate and propionate.

The final pathway involves the amino acid aspartate which is transaminated by 

glutamate-oxaloacetate transaminase (EC 2.6.1.1) to oxaloacetate, in the presence of 

pyruvate and NADH. The pathways involving the production of the organic acids 

yield larger amounts of ATP molecules per mole of substrate, as compared with the
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FIG. 1.1 Major anaerobic pathways present in the 

Animal Kingdom (from Hochachka & Somero, 1984). 

Numbers refer to the four main groups of end products 

(see text for further details).
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pathways that culminate in L-lactate and opines, but the rate at which they do so is 

somewhat lower. Therefore the organic acid pathways are found in those organisms 

that experience long term oxygen stress, whilst the lactate forming pathway tends to 

be favoured in organisms that require rapid bursts of energy over short periods of 

time.

The comparative study of the various anaerobic pathways present in the Animal 

Kingdom, was really initiated in the 1940’s, when von Brand (1946), who working 

on endoparasitic worms, found that volatile fatty acids were the end products of 

glycogen metabolism. Further studies revealed that propionate and acetate were 

produced in gastropods (von Brand et al., 1950) and in the liver fluke, Fasciola 

hepatica (Lahoud et al., 1971). In the mid 1960’s alanine and succinate were 

discovered to be the principle end products of the clam, Rangia cuneata (Simpson & 

Awapara, 1966). In more recent years the proliferation in the study of potential 

anaerobic end products, has led to the discovery of a wide range of metabolites in 

several groups of invertebrates. In the cestode and trematode Platyhelminthes, 

anaerobic metabolism culminates in the production of mainly L-lactate and 

succinate. In addition, sessile bivalves accumulate succinate, propionate and alanine 

(de Zwaan & Zandee, 1972a; Kluytmans et al., 1975; Zebe, 1975), whilst, 

swimming bivalves and cephalopods produce predominately octopine as their 

anaerobic end product (Gade, 1980; Livingstone et al., 1981). Much of the present 

study is directed to determining whether or not any of these other anaerobic end 

products are present in decapod crustaceans.

Of fundamental importance to an investigation of the consequences of anaerobic 

metabolism in decapods, is an understanding of the fate of L-lactate, during the 

post-anoxic/hypoxic recovery period. In contrast to the extensive literature 

concerning the accumulation of L-lactate in crustaceans, there is little information 

on the elimination of this end product (Phillips et al., 1977; Gade et al., 1986). 

Therefore the fate of L-lactate during recovery in Carcinus maenas was investigated
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in the present study, using ion exchange chromatography and radiolabelling 

techniques.

A more complete understanding of the post-anoxic recovery period could only be 

obtained by comparing the metabolic data with certain respiratory measurements. 

Consequently, oxygen consumption (M0 2 ), heart rates and certain acid-base 

parameters were determined, not only during the recovery period, but also 

th ro ughou t the p receding  exposure to anoxia. In add ition , calo rim etric  

measurements of heat dissipation values were made, to investigate the possibility of 

a metabolic depression during anoxia and also to help provide further information 

on post-anoxic recovery.
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CHAPTER 2 - FIELD BASED INVESTIGATIONS INTO THE ANAEROBIC 

METABOLISM OF CARCINUS MAENAS.

2.1 INTRODUCTION.

The primary aim of this project was to carry out a detailed investigation into the 

anaerobic metabolism of the shore crab, Carcinus maenas. Although the present 

study was confined to an investigation of this species, it was felt that the results 

would apply to other decapod crustaceans. Before any detailed biochemical and 

physiological investigation of the anaerobic metabolism of C. maenas was carried 

out, it was important to study certain aspects of the behaviour and ecology of the 

crab in its natural environment. In addition, it was important to establish when, 

and to what extent, the rock pools, in which C. maenas were known to be present, 

become hypoxic. Finally, under hypoxic conditions, did the crabs respire 

anaerobically or did they employ other adaptations to survive periods of hypoxia ? 

The results in this chapter are divided into 6 sections.

I) Measurement of seasonal and diel physico-chemical variations in the rock 

pool environment. Since Morris & Taylor (1983) had already carried out 

an ex trem ely  deta iled  investigation  into th is su b jec t for the Isle of 

Cumbrae in 1982, this present study was essentially confirmatory.

II) A population study monitoring the distribution of Carcinus maenas in rock 

pools, over a 12 month period.

III) An investigation into the accumulation of L-lactate in response to various 

behavioural adaptations in Carcinus maenas during environmental hypoxia.

IV) A study determining the reliance on anaerobic metabolism of those crabs that 

remain totally immersed during hypoxia.

V) A seasonal study of variations in some energy metabolites of Carcinus maenas 

in an attempt to assess their role in determining the susceptibility of crabs to
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hypoxic stress.

VI) Measurement of the effects of handling disturbance on the concentration of 

haemolymph sugars, in an effort to design a more stringent haemolymph 

sampling programme for later experiments.

The huge diel and seasonal variations in environmental conditions that rock pool 

animals experience, are areas of study that have attracted much attention. Powers 

(1920) and Humphrey & Macy (1930) first showed that the partial pressure of 

oxygen (P0 2 ) varied according to time of day. Gail (1919) reported that the pH in 

pools containing vegetation was 7.43 just before sunrise, but increased to 8.8 in late 

afternoon. Over the next 50 years there were regular studies, investigating 

variations in temperature, salinity, pH and P0 2  (Klugh, 1924; Johnson & Skutch, 

1928; Stephenson et al., 1934; Pyefinch, 1943; Naylor & Slinn, 1958; Daniel & 

Boyden, 1975; Taylor, 1988 for review). The more recent work of Truchot & 

Duhamel-Jouve, (1980) and Morris & Taylor, (1983), in addition to measuring the 

above parameters, have concentrated on measuring the partial pressure of CO2  and 

other components of the carbonate system. Many authors have reported naturally 

occurring severe hypoxia, in middle to high shore rock pools (Truchot & Jouve- 

Duhamel, 1980; Morris & Taylor, 1983; Agnew & Taylor, 1986; Taylor & Spicer, 

1987). Severe hypoxia occurs at night during the summer, when the pools are 

uncovered and there is a greater biomass of actively respiring plants and animals, as 

compared with the pools in winter and spring. Since the water is not being 

reoxygenated at night by photosynthesis, the pools can often become severely 

hypoxic.

Various authors have described seasonal and diel differences in the distribution of 

Carcinus maenas in the intertidal zone (Edwards, 1958; Naylor, 1962; Crothers, 

1968; Atkinson & Parsons, 1973). It is clear from the work of these authors that 

there are considerable differences between different populations of these crabs. A



knowledge, specific to the Karnes Bay population, of all these variations is therefore 

essential if one is to be able to predict the extent to which these crabs are likely to 

be exposed to severely hypoxic conditions.

Given that Carcinus maenas does occur in hypoxic rock pools, it has been shown to 

exhibit a variety of behavioural responses. These were first reported in 1897 by 

Bohn, who observed that the crab moved into the shallow regions of the pools and 

adopted a raised posture resulting in the anterior part of the body being held clear 

of the surface of the water (Fig. 2.1). This has become known as the partial 

emersion response and has previously been reported in the freshwater prawn 

Macrobrachium rosenbergii (Willis & Berrigan, 1977) and in the prawn Palaemon 

elegans (Taylor & Spicer, 1987). C. maenas has also been observed to leave the 

hypoxic water completely and to start respiring aerially (Taylor et al.t 1973). In this 

study, the crabs were observed to exhibit these responses in the field. An 

experiment was carried out to determine the extent of L-lactate accumulation, 

associated with each of these responses.

Before the above experiment could be carried out, the effects of handling 

disturbance needed to be assessed. This was best done by monitoring haemolymph 

sugar concentrations, since it has been widely reported that the action of handling 

can cause a hyperglycaemic response (Florkin & Duchateau, 1939; Abramowitz et 

al., 1944; Riegel, 1960; Lynch & Webb, 1973; Telford, 1973). Since circulating 

haemolymph sugars are more generally available to all tissues for glycolysis than 

their storage compounds, which may be unevenly distributed (e.g. glycogen), 

hyperglycaemia is regarded as an adaptation to rapidly produce energy, in excess of 

the basal rate. If seasonal and oxygen stress-induced variations were going to be 

separated from those caused by handling, it was essential to determine the extent of 

this hyperglycaemic response in Carcinus maenas. The results from this experiment 

could then be used to design a controlled haemolymph sampling programme.
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FIG. 2.1 Partial em ersion of Carcinus maenas in 

response to severe hypoxia. The crab moves into the 

shallow regions of the pool and adopts a raised posture 

resulting in the anterior part of the body being held 

clear of the w ater. The scaphognathite beat is 

reversed and the air enters the branchial chamber via 

the anterior openings on either side of the mouth.





Under certain circumstances, rock pool decapods will be forced to remain fully 

immersed in an hypoxic pool. An in situ study by Taylor & Spicer (1987), showed 

that under such conditions L -lactate accumulated in the prawn, Palaemon 

elegans (Rathke). The aim of this study was to investigate whether Carcinus maenas 

similarly accumulated L-lactate when exposed to severe hypoxia. The study was 

carried out using the facilities of the University Marine Biological Station Millport 

(UMBSM) on the Isle of Cumbrae, Scotland.

Since glycogen is the major endogenous substrate for glycolysis in crustaceans 

(Livingstone, 1983) any tissue variations in its concentration, may have an important 

effect on the animal’s ability to tolerate environmental stress. Although diel changes 

in various energy metabolites of crustaceans have been extensively studied, there has 

been relatively little work on seasonal changes (Barnes et al., 1963; Heath & Barnes, 

1970). Heath & Barnes studied Carcinus maenas collected from Millport, but 

fairly large crabs (carapace width = 60 + 3.0 mm) were used and only the 

hepatopancreas and the ovary were monitored. A monitoring programme was 

therefore carried out to examine both pooled tissue samples and haemolymph 

samples from specimens collected from intertidal rock pools.
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2.2 MATERIALS AND METHODS.

12A. Seasonal changes in the distribution of Carcinus maenas and in the physico­

chemical parameters qL ih£ rock pool environment.

A study of the Carcinus maenas population of the rock pools at Karnes Bay was 

carried out every month for a period of 12 months. Once a month, 1 h was spent 

collecting C. maenas (L.) by hand from 2 adjacent intertidal rock pools, on a rocky 

promontory, to the West of Karnes Bay on the Isle of Cumbrae, Firth of Clyde, 

Scotland. As it was impossible to remove and count all the crabs within a pool each 

month, this method was used, since it gave a good indication of the relative 

numbers of crabs present in the pools. This procedure assumed that the collecting 

ability of the sampler was constant throughout the year and that a similar proportion 

of the total number of crabs in the pools was being collected each month. Since this 

is unlikely, the results of the study can only be used to give an indication of the 

changes in the crab population during the year. This survey was always carried out

immediately after the pools had become uncovered, by the falling tide. The rock

pool water temperature was measured using a mercury thermometer. Salinity was 

determined using a hand held, portable refractometer (Atago, Japan). The crabs 

were then transferred to the UMBSM, where the following observations and 

measurements were made:

a) Fresh Weight: The fresh weight of individual crabs was measured, by blotting

off as much sea water as possible using tissue paper, and then

weighing on a top-pan balance, accurate to 0.01 g (Sartorius).

b) Carapace Width: The maximum width across the carapace was measured to

the nearest mm using a pair of vernier callipers,

c) Sex Ratio: Crabs whose maximum carapace width was over 15 mm were

sexed by examining the shape of their abdomen. Individuals
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smaller than 15 mm were recorded as being ’juven ile ’ 

(Crothers, 1967).

Before any field investigation using Carcinus maenas could be carried out, it was 

important to determine whether the rock pools actually became naturally severely 

hypoxic. Truchot & Jouve-Duhamel (1980) and Taylor & Spicer (1987) reported that 

the P0 2  of rock pools became severely hypoxic during the night in summer. 

Therefore the P0 2  of a rock pool near the UMBSM was measured, using an oxygen 

electrode (E5046 Radiometer, Denmark) connected to a portable battery-powered 

oxygen meter (Strathkelvin Instruments, Glasgow). Nights were chosen when the 

pool had been exposed for long periods during the hours of darkness.

2JLZ Effects of handling disturbance on the concentration of haemolvmph sugars 

ami L-lactate.

Carcinus maenas (L.), were collected by hand from intertidal rock pools as 

described in section 2.2.1. These animals were transported to the Department of 

Zoology, University of Glasgow, in plastic tanks containing sea water. The animals 

were then transferred to large tanks, in a recirculating sea water aquarium, 

maintained at 10 + 1°C. They were fed on mussels, Mytilus edulis during the first 

week, and starved for the second week. Some half-tiles were introduced into the 

tanks, to provide shelter and to reduce the incidence of the aggressive interactions 

which are sometimes observed between individuals. Only intermoult male animals 

(fresh wt. range = 2 - 25 g) were used in the experiments.

The experiment was carried out in a constant temperature room (10 + 1°C), in 

which the crabs were exposed to a 12:12 lightrdark cycle. A rtificial sea water 

(salinity = 30 %o), made up from sea salt (Tropic Marin) and distilled water was 

used throughout, and always allowed to equilibrate to 10°C before use. Crabs were 

placed in plastic tanks (volume = 1 0  1) containing fully aerated sea water and left
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undisturbed for 48 h prior to the start of the experiment.

30 crabs maintained in the aquarium were transferred to 6  plastic tanks, containing 

aerated sea w ater and left undisturbed for 48 h. At the end of this time 

haemolymph samples (lOOul) were taken from batches of 5 animals, after they had 

been handled for 15, 30, 45, 60, and 120 seconds. Haemolymph samples were taken 

using a 1 ml syringe, the needle (26 g) of which was inserted into the arthrodial 

membrane of the 4th walking leg. Since removing the haemolymph took 

approximately 10 seconds, sampling started after 5, 20, 35, 50 and 110 seconds of 

handling respectively. Any haemolymph sample taking more than 10 seconds to 

obtain was discarded. Control samples were taken from previously undisturbed 

crabs, within 10 seconds of handling. The haemolymph was then prepared and 

analysed for D-glucose, total hexose/pentose sugars and L-lactate (Appendices 1,2,4 

and 5).

2-2-3 L-lactate accumulation in response to behavioural adaptations during hypoxia 

in rock pools.

Observations made during the night indicated that when rock pools became severely 

hypoxic, some crabs remained fully immersed; others came up to the shallows 

(partial emersion), or if conditions become even more extreme, they became fully 

emersed and respired aerially. It was decided, therefore, to determine whether 

crabs accumulated L-lactate, when exhibiting any of these behavioural responses to 

hypoxia. It was hoped that the experiment could be carried out in the field, but 

after an initial attempt, this proved to be impractical owing to disturbance amongst 

the partially and fully emersed crabs, caused when haemolymph samples were being 

taken. Consequently, all subsequent experiments were carried out under laboratory 

conditions at Glasgow University.
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Animals were collected from the Isle of Cumbrae and kept at Glasgow University as 

described in section 2.2.2. The experim ent was carried out in a constant 

temperature room (10 + 1°C), in which the crabs were exposed to a 12:12 

lightrdark cycle. Artificial sea water (salinity = 30 %o) was used throughout as 

previously described. Only intermoult males (fresh wt. range = 1 0 - 2 5  g) were 

used.

40 crabs were distributed equally between 4 plastic tanks (volume = 20 1). Each 

tank had previously been filled with sea water (7 litres) and left for 24 h to ensure 

temperature equilibration. Rocks were put into 2 of the tanks, in such a manner 

that they protruded above the surface of the water. This gave the crabs the option 

of becoming partially emersed. Polystyrene sheets were cut to fit the two other tanks 

exactly and floated on the surface of the water, in order to limit the absorption of 

atmospheric oxygen. An oxygen electrode (E5046 Radiometer, Denmark) coupled 

to an oxygen meter (Strathkelvin Instruments, Glasgow) was used to monitor the 

oxygen tension (P0 2 ) throughout the experiment. The P0 2  of the water was 

regulated using a gas mixture, produced by a precision gas mixing system, which 

was pumped through air-stones into each of the tanks. The crabs were left 

undisturbed for 24 h, during which time the water was constantly aerated. At the 

end of the 24 h period, the P0 2  of the water was reduced to < 1 Torr by bubbling 

a mixture of nitrogen and carbon dioxide into it. Carbon dioxide was added to 

maintain the pH of the water at 7.8 throughout the experiment.

A further 20 animals were distributed equally between 2 tanks containing no water 

but which were lined with filter paper soaked in sea water and covered with 

moistened paper towelling, to ensure the maintenance of a high relative humidity 

within the tanks. This procedure was used to simulate conditions in the field, when 

crabs become fully emersed. Finally, 8  control animals were placed in a single 10 1 

tank which contained fully aerated sea water.
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Haemolymph samples were taken from 4 crabs in each of the 3 groups at 0, 1, 2, 3 

and 4 h after the start of the experiment. Haemolymph samples from control crabs 

were taken at 0 and 4 h. The haemolymph was sampled as described in section 

2.2.2. An equal volume of perchloric acid (0.6 M) was immediately added to each 

haemolymph sample to ensure that all metabolic reactions had ceased. The samples 

were firstly neutralised using a l / 1Qth volume of K 2 CO3 (2 M), centrifuged at

14,000 g to precipitate the KCIO4  anc* t îen supernatant stored at -20°C. 

Analyses for L -lactate  were carried out according to methods described in 

Appendices 1 and 5.

2ulA  A  I k ld  investigation into the change in concentrations of L-lactate and 

glYCPRgn during hypoxia.

Since it was not possible to carry out the previous experiment in the field, it was 

felt im portant to perform  an in situ  study to determ ine w hether L -lactate  

accumulated in those crabs that remained fully immersed in the rock pool under 

hypoxic conditions. The problems experienced in disturbance of crabs whilst taking 

haemolymph samples, were not a problem here, since all the crabs were contained 

within a submerged metal cage and less prone to disturbance than those crabs that 

had become partially emersed and fully emersed (section 2.2.3).

A high shore rock pool (3.2 m above chart datum) was chosen, since it was regularly 

inhabited by Carcinus maenas and, being exposed for long periods, was likely to 

experience environmental extremes. Since there were not enough crabs occurring 

naturally in the experimental rock pool, others were collected from the pools in 

Karnes Bay as described above (section 2.2.1.). Instead of being transported to 

Glasgow, they were transferred to outdoor holding tanks, at the UMBSM where they 

were maintained in a recirculating system for 48 h prior to the start of the
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experiment.

24 crabs, (fresh wt. range = 2 - 25 g) were placed in a metal cage (40 cm in 

diameter). A number of small rocks and pieces of seaweed were also introduced 

into the cage, in order to provide shelter and to reduce the contact between the 

crabs and hence minimise any aggressive interactions. The cage was then 

transferred to the rock pool 12 h prior to the start of the experiment. A further 4 

animals were kept in the holding tanks to act as controls. The experiment was 

carried out 3 times, in April and August 1987 and finally in April 1988. The 

results are taken from the last 2 experiments, since April 1987 was largely a pilot 

experiment. The timing of the sampling was dictated by the tidal cycle. In August, 

the sampling times were: 02.00, 06.00, 09.00, 14.30 and 20.30 h, whilst the following 

April they were: 01.45, 05.30, 07.15, 15.00 and 19.40 h . This sampling regime was 

used to ensure that samples were taken just after the pool was uncovered and also 

just prior to it being inundated by the rising tide. At each sampling interval 4 

animals were taken for pooled tissue analysis. The control animals were taken at

14.00 h in August and 14.30 h in April. These crabs were immediately frozen in 

liquid nitrogen and stored at -20 °C. Tissue preparation and biochemical analysis 

for pooled tissue L-lactate and glycogen was carried out, according to the method 

described in Appendices 1,3 and 5.

The P0 2  in the rock pool was monitored throughout the 24 h period, using an 

oxygen electrode (E5046 Radiometer, Denmark) connected to a portable battery- 

powered oxygen meter (Strathkelvin Instruments, Glasgow). The water temperature 

was measured using a mercury thermometer. The salinity of the water in the pool 

was determined using a portable refractometer (Atago, Japan). Values for the CCO2 

and pH of the rock pool water, were obtained with the assistance of Dr. J.I. Spicer. 

The total Cco2  content of the rock pool water was determined on duplicate 10 ul 

samples using the method of Cameron (1971) (Chapter 5 for further details). The 

pH of the rock pool was determined to the nearest 0.01 units, using a Yellow
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Springs portable pH meter.

2.2.5 Seasonal changes in ih£ energy metabolites.

Seasonal variations in the concentrations of glycogen and L-lactate were estimated 

in pooled tissue samples, collected over a 12 month period. In addition, the 

concentrations of D-glucose, total hexose/pentose sugars and L-lactate in the 

haemolymph were also measured.

In addition to the crabs collected in Section 2.2.1., 5 male and 5 female crabs were 

collected by hand and immediately dropped into a Dewar vacuum flask of liquid 

nitrogen. Care was taken to catch the animal as quickly as possible, to reduce 

stress-induced changes in metabolite concentration, which have been reported 

previously (Telford, 1973; Burke, 1979). Finally, haemolymph samples were taken 

from a further 5 male and 5 female crabs, using the method described in 2.2.2. An 

equal volume of perchloric acid (0.6 M) was im m ediately added to each 

haemolymph sample to ensure that all metabolic reactions had stopped and that the 

protein had precipitated out. In the laboratory, the tissue and haemolymph samples 

were stored at -20 °C. Tissue preparation and biochemical analyses were carried 

out according to the methods described in Appendices 1, 2, 3, 4 and 5.
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2.3 RESULTS.

2,3.1 Seasonal changes in Ih£ distribution Carcinus maenas and in lh£ phvsico- 

ehemieal parameters ih£ rock pool environment.

The mean monthly temperatures of the 2 rock pools, ranged from 17.5 °C in 

July, to 4.6 °C in January (Fig. 2.2). The salinity reached a mean low of 28 %o in 

January and a mean high of 33 %o in May.

Carcinus maenas were found to be most common in intertidal pools during the 

summer, with maximum numbers being recorded during July (Fig. 2.3). During 

August, unseasonably high winds meant that collection was more difficult and the 

numbers probably under estimate the actual population size. Numbers of crabs in 

the pools decreased in the winter, with a minimum occurring during December.

During the winter months the lowest monthly mean crab weight was 1.64 g, whilst 

in the summer the mean increased to a maximum of 14.1 g (Fig. 2.4). This offshore 

migration of the larger (and hence older individuals) has been widely reported by 

others and is presumably a strategy to avoid the environmental extremes associated 

with winter. It was interesting to observe that males were more common in the 

pools throughout the year (Fig 2.3). Observations by divers indicated, however, 

that there were large numbers of female crabs in the subtidal zone of Karnes Bay, 

throughout the year. Females were most abundant in the pools in late summer and 

early autumn, when it has been reported that reproductive pairings are most 

common (Atkinson & Parsons, 1973).

The P0 2  of the rock pool water decreased to below 10 Torr at nights during June, 

July and August, when the pool was exposed for over 3 h. The pool P0 2  decreased 

to only 109 and 8 8  Torr respectively, at nights during December and March.
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FIG. 2.2 Seasonal variation in the mean monthly 

tem p era tu res  of the rock pools ( □ )  and of the 

surrounding air (■).
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FIG. 2.3 Seasonal variation in the number of male 

(H) and female (□  ) crabs present in the 2  rock pools 

sampled over a 1 2  month period.
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FIG. 2.4 Seasonal variation in the a) width and b) 

weight of Carcinus maenas present in the 2 rock pools 

sampled over a 12 month period. Values are means +
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2.3.2 Effects of handling disturbance on the concentration of haemolymph

sugars ami L-lactate.

The concentration of total hexose/pentose sugars in the haemolymph of crabs 

exposed to the minimum of handling (i.e. control animals) was 0.98 + 0.21 mM (Fig. 

2.5). Handling for 30 seconds had no significant effect on the concentration of 

these sugars. After 45 seconds, however, there was a significant increase in the 

concentration of hexose/pentose sugars from 1.19 + 0.12 to 1.52 + 0.18 mM (P < 

0.05). There was no further change in the concentration of the sugar over the 

next 75 seconds. As might be expected, a similar trend was observed for D-glucose; 

the concentration of which increased significantly from 0.125 + 0.03 to 0.179 + 0.04 

mM, following 45 seconds of handling (P < 0.05). No significant (P > 0.05) change 

in the concentration of haemolymph L-lactate was detected, even after 2 minutes of 

handling (Fig. 2.6).

2,3,3 L-lactate accumulation in response to behavioural adaptations during hypoxia 

la  rock pools.

The mean concentration of haemolymph L-lactate increased significantly (P < 0.05) 

in the constantly immersed group of animals, from an initial concentration of 0.57 + 

0.02 to 7.9 + 0.75 mM after 4 h of hypoxia (Fig 2.7). The mean concentration of 

L-lactate in the partially and fully emersed animals, remained constant at 0.38 + 

0.10 and 0.31 +0.11 mM respectively. The concentration of L-lactate in the 

controls did not change significantly (P > 0.05).

20



FIG. 2.5 Changes in the concentration of a) total 

Hexose/Pentose (H/P) sugars and b) D-glucose in the 

haemolymph of Carcinus maenas during 2 minutes of 

handling disturbance. Values are means + S.D.
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FIG. 2.6 Changes in the concentration of L-lactate in 

the haemolymph of Carcinus maenas during 2 minutes 

of handling disturbance. Values are means + S.D.
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FIG. 2.7 Changes in the concentration of L-lactate in 

the haemolymph of Carcinus maenas, in response to 

immersion (■), partial emersion (□) and full emersion 

(+). Values are means + S.D.
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2 .3 . 4  A field investigation into lh£ change in  concentrations &£ L~laCtatS and. 

glvcogen during hYPPXia-

Details of the physico-chemical conditions in the experimental rock pool during 

August (1987) and April (1988) are tabulated below in Table 2.1.

Table 2.1 Physico-chemical parameters of rock pool during field investigation.

Time o f  Sam pling pH CCO2  (mM) Temp. (°C ) S a l i n i t y  (%• )

A p r i l  1988

0 1 .4 5 7 . 8 8 5 . 9 5 . 9 34
0 5 . 3 0 7 . 6 9 4 . 9 6 . 1 34
0 7 . 1 5 8 . 0 2 4 . 8 8 . 7 32
1 5 . 0 0 8 . 2 0 1 . 3 8 . 3 33
1 9 . 4 0 7 . 9 1 4 . 2 7 . 3 33

A ugust 1987

0 2 .0 0 7 . 7 0 1 . 6 13 . 3 32
0 6 . 0 0 7 . 6 9 3 . 7 1 2 . 4 33
0 9 . 0 0 7 . 7 6 1 . 0 14 . 1 32
1 4 . 3 0 7 . 9 1 1 . 2 1 1 . 6 32
2 0 . 3 0 7 . 8 1 2 . 3 1 3 . 9 33

Maximum pH’s of 8.2 and 7.91 were recorded during the afternoon in April and 

August respectively (Table 2.1). Maximum concentrations of Cco2  were measured 

during the night in both April and August and the pool’s salinity was found to be 

fairly constant in both months. As expected, the P0 2  in the rock pools was highest 

during the day and lowest during low tides at night (Fig. 2.8). When conditions 

were sunny during the day the pools became hyperoxic in August.

In April 1988 the P0 2  of the rock pool decreased at night only to 78 Torr, whereas 

in the previous August, it reached the much lower level of 4.6 Torr (Fig. 2.8). The
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FIG. 2.8 Changes in the concentration of L-lactate in 

the pooled tissue of Carcinus maenas (upper graphs) in 

response to the diel fluctuations in the P0 2  of rock 

pool water (lower graphs), in April 1988 and August 

1987. The L-lactate values are means + S.D. The 

bars above the graphs indicate the times when the pool 

was uncovered.
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mean concentration of L-lactate, in the tissues of C. maenas collected, in August 

1987, increased significantly (P < 0.05) from 2.4 + 0.53 umol.g- * during the day, to 

9.46 + 1 . 9  umol. g * at 06.00, in the early morning when it was still dark and 

the P0 2  was at its lowest. In April, the concentration of L-lactate in the tissues 

stayed fairly constant throughout the 24 h , with a mean concentration of 2.09 +

0.62 umol.g * (Fig. 2.8). The concentration of total tissue glycogen was highly 

variable and no significant changes were discernible (Fig. 2.9) (P > 0.05).

2-3-5 Seasonal changes in the energy metabolites.

The monthly mean concentrations of total tissue L-lactate ranged from 3.62 + 0.93 

umol.g- * in August to 1.31 + 0.39 umol.g- * in March (Fig 2.10). This decrease 

during the autumn and winter months was significant (P < 0.05). The mean 

monthly concentrations of total tissue glycogen were highly variable with maxima 

occurring during late summer and minima during the winter (Fig 2.11). These 

differences, however, were not significant, owing to the large standard deviations (P 

> 0.05). It had initially been intended that variations between the sexes could be 

investigated, but this was impossible owing to the paucity of females on the shore. 

Concentrations quoted here are therefore for pooled data (i.e. males and females).

The mean monthly concentrations of haemolymph L-lactate ranged from a 

maximum in September of 0.68 + 0.35 mM to a minimum of 0.19 + 0.05 mM in 

January (Fig. 2.12). This decrease was not significant (P > 0.05). The mean 

monthly haemolymph concentrations of total hexose\pentose sugars and D-glucose 

ranged from a maximum in June of 2.14 + 0.83 and 0.41 + 0.97 mM respectively, to 

a minimum in November of 1.06 + 0.84 and 0.13 + 0.04 mM respectively (Fig 2.13) 

(P < 0.05 in both cases). The haemolymph concentrations of L-lactate and total 

carbohydrates directly reflect the seasonal variations present in the respective pooled 

tissue samples, as described above.
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FIG. 2.9 Changes in the concentration of glycogen in 

the pooled tissue of Carcinus maenas in response to the 

diel fluctuations in the P0 2  of rock pool water, in 

August 1987 and April 1988. The glycogen values are 

means + S.D. Refer to Fig. 2.10 for the simultaneous 

water P0 2  measurements, (n = 4 for each point).
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FIG. 2.10 Seasonal variation in the concentration of 

L -lactate in the pooled tissue of Carcinus maenas 

collected from the 2  rock pools sampled over a 1 2  

month period. Values are monthly means + S.D.



- o

o
CO 

.<

I. ~3

- <

_ L _

I— 1— I— I— I— 1— I 1 I 1 I ^
CD in  CO CM T— o

( ^6-iouir l)  Q\e\OB\-~\  
jo uoijejjueouoo

M
on

th



FIG. 2.11 Seasonal variation in the concentration of 

glycogen in the pooled tissue of Carcinus maenas 

collected from the 2  rock pools sampled over a 1 2  

month period. Values are monthly means + S.D.
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FIG. 2.12 Seasonal variation in the concentration of 

L -lactate  in the haemolymph of Carcinus maenas 

collected from the 2  rock pools sampled over a 1 2  

month period. Values are monthly means + S.D.
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FIG. 2.13 Seasonal variation in the concentration of a) 

Hexose/Pentose (H/P) sugars and b) D-glucose in the 

haemolymph of Carcinus maenas collected from the 2 

rock pools sampled over a 12 month period. Values are 

monthly means + S.D.
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2.4 DISCUSSION.

2.4.1 The Rock Pool Environment.

2.4.1.1 Seasonal Variations.

Until the beginning of this decade environmental variations in rock pools had been 

studied only over short periods of time (Powers, 1920; Ambler & Chapman, 1950). 

Morris & Taylor (1983) were the first to investigate the seasonal variations of the 

physico-chemical conditions within intertidal rock pools, on the Isle of Cumbrae, 

Firth of Clyde. Although this study was carried out on different pools, the 

magnitude of diel variations in physico-chemical conditions were similar to those 

recorded by Morris & Taylor (1983).

The biota of the pools was observed to vary considerably throughout the year, 

depending on rates of algal growth, the settlement of animal larvae and the 

migration of species into and out of the pools. Factors including the length of day 

and water temperatures were of obvious importance in affecting metabolic rates of 

the pool inhabitants and also in providing natural stimulae for on-shore migrations. 

The temperatures of the mid-shore rock pools, not surprisingly, were highest 

during the summer months, with a mean maximum of 17.7 °C in July. Since the 

rock pools were fairly shallow (maximum depth of 25 cm) and without many 

fissures and crevices, the temperature profile of the pool was comparatively 

constant. Where spatial variations were found the mean temperature was taken. 

Temperature can also alter the solubilities of oxygen and carbon dioxide (both gases 

being more soluble at low temperatures). The maximal P0 2  ranges, occur in the 

summer and will be discussed in more detail in section 2.4.1.2.

The salinity of the pools varied seasonally, with the annual low of 28 °/oo occurring 

in January, the period of maximal rainfall. This trend was also reported by Morris
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& Taylor (1983), who recorded an annual minimum of 23 %o in an upper shore pool 

during late winter. A sudden salinity change occurred in August, 1987, when, after 

a heavy summer thunderstorm, the salinity of the top 1 .5  cm of the pool was 

reduced to 24 %o, whereas the salinity of the water beneath this layer was 32 %o 

Unfortunately, it was impossible to follow the gradual mixing of the 2 layers owing 

to the incoming tide. Such salinity stratifications have been recorded in other 

studies (Ganning, 1971; Morris & Taylor, 1983).

2.4.1.2 D id Variations.

During the course of the field hypoxia experiment (section 2.2.4), measurements of 

rock pool sea water temperature, salinity, P0 2 , pH and CCO2 were made during 

both studies carried out in August, 1987 and April, 1988 (Table 2.1 and Fig. 2.8). 

The trends observed agreed with those recorded by Ambler & Chapman (1950), 

Naylor & Slinn (1958) and more recently by Daniel & Boyden (1975) and Morris & 

Taylor (1983). Diel fluctuations in P0 2 , CCO2  and in pH are directly related to the 

photosynthetic activity of the pool flora and to the respiration of both flora and 

fauna. During the day oxygen production from algal photosynthesis exceeds the 

respiratory demands of the pool inhabitants and the water becomes increasingly 

hyperoxic and hypocapnic. At night, however, photosynthesis ceases and the 

respiration of the pools’ flora and fauna gradually depletes the available oxygen 

whilst the Cco2 increases. The maximum diel range of oxygen tension occurs 

during the summer, as a result of elevated temperatures and increased biomass. 

For example, in August the rock pool in this study became hyperoxic (P0 2  = 280 

Torr) during the day and severely hypoxic (5 Torr) and hypercapnic during the 

night. In fact Truchot & Duhamel-Jouve (1980) reported that in their study of rock 

pools on the north-west coast of France, the P0 2  in one of the pools fell to almost 

zero on one occasion. In April, the P0 2  of the rock pools decreased only to 78 

Torr, which is above the critical oxygen partial pressure at which C. maenas is 

unable to maintain its rate of oxygen consumption independent of the external P0 2
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(Pc point) (Taylor, 1976).

During the summer, therefore, the rock pools can become severely hypoxic for up 

to 4 h at night and any animals remaining in them are likely to have to resort to 

some form of anaerobic metabolism.

2-4,2 Dislributian oL Carcinus maenas sm &£ intertidal shore.

Carcinus maenas is common intertidally throughout the summer. Edwards (1958) 

suggested that there were seasonal migrations of C. maenas off-shore to deep 

water, in the autumn. Similar offshore migrations have previously been reported 

for the edible crab, Cancer pagurus (Williamson, 1900; Meek, 1913). Edwards 

found that in the summer at low tide there was a rapid migration of C. maenas up 

and down the shore following the tide, which involved the majority of individuals. 

Small crabs, with a carapace width of less than 35 mm tended, however, to remain 

on the shore permanently. Crabs having a mean width of 36 mm and 20-30 mm for 

males and females respectively have been reported to be about one year old 

(Broekhuysen, 1936). It therefore appears that the non-migratory part of the 

population are those that are less than one year old. This tidal rhythmicity did not 

occur, however, during the winter months. Naylor (1962), however, suggested that 

the situation was more complicated, and that there was no complete off-shore 

migration. His results showed that during the less cold months of December and 

March large crabs continued to migrate in-shore with each tide but very few were 

stranded between the tidemarks at low tide. In the particularly cold months of 

January and February there was no evidence of any in-shore migration, but neither 

was there any evidence for an off-shore migration to deeper water (Naylor, 1962). 

The findings of Atkinson & Parsons (1973) agreed with those of Naylor, but they 

did find that ovigerous females rarely displayed tidal rhymicity. They also 

suggested that there was a temperature threshold of 8 °C below which this
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rhymicity was less common.

The results of the present study largely agree with the above. Number and sizes of 

crabs in the pools were greatest during the summer months. During the winter, 

juveniles ( < 15 mm) were present in the pools at all times. On one occasion in 

January, 1987 the pools became frozen over, yet some small individuals were 

observed underneath the ice.

Observations by divers revealed that there were moderate numbers of crabs present 

in the intertidal pools at high tide during the winter, indicating the presence of tidal 

rhymicity in winter , as reported by Naylor (1962) (I.P. Smith pers. comm.). The 

predominance of males on the shore throughout the year, as shown here, has been 

reported by numerous authors including Edwards (1958) and Crothers (1968). 

Again, diving observations made during the summer revealed a predominance of 

females off-shore at this time (J. Sturtivant pers. comm.). There does seem to be 

local variations, however, since a sex ratio of 1:1 among crabs on the shore was 

observed in the Isle of Man population in the summer of 1970 (Atkinson & Parsons, 

1973). In the present study, females were most common on the shore in mid to late 

summer, presumably just prior to mating.

To conclude, large numbers of crabs were present in the pools in summer when 

conditions at night become very hypoxic. These conditions can last for up to 4 h 

and require the crabs to either respire anaerobically or to respond with certain 

behavioural adaptations.

2.4.3 Effects of handling disturbance on the concentration of haemolymph 

sugars and L-lactate.

If seasonal and oxygen stress-induced variations were going to be realistically
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examined, it was essential to take into account the effects of handling disturbance 

on the concentrations of haemolymph sugars and of L-lactate. The size of the 

hyperglycaemic response found to occur as a result of handling in this study, is of 

the same order of magnitude as reported for other decapod crustaceans:

Table 2.2 Size of the hyperglycaemic response in certain decapod crustaceans.

Hyperg lyca emic r e s p o n s e  
S p e c i e s  (% i n c r e a s e  i n  D - g l u c o s e  Author

a f t e r  2 m in utes  o f  
h a n d l i n g )

Homarus americanus  135
( a f t e r

(107*)
5 m i n u t e s )

T e l f o r d ,  1968

O rconectes propinquus 353 T e l f o r d ,  1973

Cambarus robustus 513 T e l f o r d ,  1973

Chasmagnathus granulata 132 Sa nt o s  & C o l a r e s ,  1986

Carcinus maenas 177 (155 ) P r e s e n t  s t u d y

* - % increase in haemolymph reducing sugars.
** - % increase in haemolymph total hexose/pentose sugars.

In previous studies, indicators of the presence or absence of hyperglycaemia have 

normally been restricted to increases in the concentration of haemolymph D-glucose. 

In addition, Telford (1968) measured reducing sugars but it is evident that the 

hyperglycaemic response observed could be explained simply by the increase in the 

concentration of D-glucose. In the present study, however, only 16.3 % of the 

hyperglycaemic response observed for the hexose/pentose sugars can be attributed to 

the increase in the concentration of D-glucose. The hyperglycaemic response, 

associated with handling disturbance, must therefore also involve haemolymph 

sugars other than D-glucose. The determination of the exact identity of these other 

sugars would be an interesting subject for future investigation.
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Dendinger & Schatzlein (1973) reported a fourteenfold increase in the concentration 

of L-lactate in Pachygrapsus crassipes in response to handling disturbance. The 

experimental procedures that they used, however, involved 5 minutes of forced 

exercise. This is a far more extreme form of disturbance than merely handling, 

resulting in intense activity and causing the crabs to produce L-lactate. No similar 

increase in the concentration of haemolymph L-lactate, was observed in Carcinus 

maenas (present study) or in the thalassinid Calocaris macandreae (S.J. Anderson 

pers. comm.) as a result of simple handling disturbance.

Since the hyperglycaemic response in Carcinus maenas became evident after 30 

seconds, it was decided that haemolymph samples should be taken from the crabs 

within 15 seconds of first handling.

2.4.4 L-lactate accumulation in response to behavioural adaptations during 

hypoxia in rock pools.

Observations made during the night, revealed that Carcinus maenas employ a 

variety of behavioural responses to hypoxic conditions within the pool. Many of the 

crabs moved to the surface of the water as the hypoxic conditions became more 

severe, with most occurring around the edge of the pools. As already mentioned in 

the introduction, this partial emersion response was first observed by Bohn in 1897, 

but has since been reported by many authors (Taylor et al., 1973; Willis & 

Berrigan, 1977; Taylor & Spicer, 1987, 1988). In the laboratory, it can be shown 

that when C. maenas exhibits this partial emersion response, the scaphognathite beat 

is reversed and air enters the branchial chambers via the anterior openings on 

either side of the mouth.

When the pool conditions become most severe, crabs were seen to leave the water
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completely and to remain on the surrounding rocks. Some of the other pools on 

the shore had steep walls which prevented the crabs becoming partially or fully 

emersed. Under such conditions they were observed to remain fully immersed 

during hypoxia.

In the laboratory study, L-lactate was shown to accumulate in the immersed hypoxic 

crabs but not in those that were partially or fully emersed. This is in contrast to 

Palaemon elegans in which L-lactate is seen to accumulate under all 3 conditions 

(Taylor & Spicer, 1988). The fact that Carcinus maenas is well adapted for aerial 

resp ira tio n  is well established and has been the sub jec t o f much work 

(Arudpragasam & Naylor, 1964; Taylor et al, 1977). Johnson & Uglow (1985) 

found that there was a significant increase in the concentration of L-lactate after 24 

h of full emersion. The maximum length of time that C. maenas is likely to 

experience conditions of aerial exposure in the mid-shore is about 4 h., during 

which time the crab is unlikely to have recourse to anaerobic metabolism. When 

fully emersed, however, C. maenas experiences problems of carbon dioxide 

excretion and a respiratory acidosis has been observed to occur (Truchot, 1986). 

This acidosis is less marked in partially emersed crabs, presumably because the 

branchial chambers are kept partly full of sea water and CC>2 excretion is 

facilitated.

Since the degree of haemolymph acid-base disturbance is less during the partial 

emersion response, it would appear that it would be advantageous for Carcinus 

maenas to employ this behavioural response to hypoxia. In some pools this is 

not possible, for reasons already given. Employing some form of emersion response 

increases the risk to the crab of predation. In areas with large numbers of 

predatory birds (e.g. gulls and cormorants) or on moonlit nights, it might be 

advantageous for a crab to remain fully immersed and to respire anaerobically.
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2.-A-.1. A  field investigation into the change in concentrations of L -lactate  

and. glycogen during hypoxia.

When crabs have no alternative but to remain fully immersed in a rock pool, they 

are forced to respire anaerobically. The previous laboratory based experiment 

revealed that L-lactate accumulated under such conditions. This has also been 

shown to occur by many other authors (Hawkins, 1970; Taylor et al, 1977; 

Pritchard & Eddy, 1979; Bridges & Brand, 1980; Spotts, 1983). The problem with 

these studies is that all of them were carried out in the laboratory. Admittedly it is 

far more difficult to maintain constant experimental conditions in the field, but 

such studies are necessary to ensure the validity of laboratory investigations. Jouve- 

Duhamel & Truchot (1983) investigated the role of ambient oxygen and carbon 

dioxide in controlling ventilation in Carcinus maenas, under both laboratory and 

field conditions. They found that their field study corroborated the results obtained 

in the laboratory. Taylor & Spicer (1987) investigated the metabolic responses of 

Palaemon elegans in rock pools, to naturally occurring hypoxia. This was done in 

conjunction with further laboratory studies on the subject and revealed that P. 

elegans produced L-lactate under hypoxic conditions.

In the present investigation, Carcinus maenas were subjected to the same 

environmental conditions as Palaemon elegans in Taylor & Spicer’s investigation. In 

the August experiment, the Po2  of the rock pool water decreased to about 5 Torr by 

05.00 h . The crabs became very lethargic and the concentration of L-lactate in 

pooled tissue tripled, indicating that the crabs were respiring anaerobically. The 

lack of any discernible change in the concentration of pooled tissue glycogen, 

reflects the huge natural variations of this metabolite in C. maenas (Verne, 1924). 

Unfortunately, this natural variation necessitated the use of laboratory conditions to 

investigate the stoichiometric relationship between the accumulation of L-lactate and
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depletion of glycogen during environmental hypoxia and anoxia (Chapter 3).

It is clear from these results that Carcinus maenas does normally experience hypoxic 

conditions within the rock pools in which it is present. At these times it may be 

forced to remain immersed within the pools and to respire anaerobically, with the 

resultant accumulation of L-lactate.

2-4.6 Seasonal changes in the energy metabolites.

The biochemical changes associated with the moulting cycle in crustaceans have 

received considerable attention, but relatively little work has been carried out to 

examine seasonal variations in body composition. As glycogen is the primary 

substrate for energy production, the extent to which a crab can withstand hypoxic 

stress must partly  depend on the concentration of this substrate. Since the 

concentration of glycogen is governed by so many factors, ranging from the stage in 

the reproductive cycle to seasonal availability of food, one can expect huge 

fluctuations throughout the year. Large variations have been observed in decapod 

crustaceans for a long time (Morgulis, 1922: Hemmingsen, 1924; Kleinholz & Little, 

1949). Some of this variation must surely be attributed to the fact that, in these 

early studies, little or no regard was given to seasonal changes. More recently, it 

has been shown that the concentration of tissue glycogen increases during the early 

summer when food availability is at its greatest, and decreases again in the autumn 

and winter (Ansell & Trevallion, 1967; Heath & Barnes, 1970; de Zwaan & Zandee, 

1972; Ahmad & Chaplin, 1979). In this study there was a small, but not significant 

(P > 0.05), increase in the concentration of pooled tissue glycogen during the 

summer and then a decrease during the early autumn and winter. Heath & Barnes 

state that: ’.... Carcinus were so beset by individual variations’ (in glycogen) ’ as to 

make it difficult to draw definite conclusions.’ The concentration of haemolymph 

sugars (especially D-glucose) were shown to be highest during the early summer and
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to decrease in late summer and early autumn. This agrees with the results obtained 

by Lynch & Webb, (1973) who found the concentration of haemolymph D-glucose 

reached a maximum in July, in the blue crab, Callinectes sapidus. In this species, 

there was then a rapid decrease in the concentration of D-glucose associated with 

the increased reproductive activity occurring in August and September.

Very little work has previously been carried out on seasonal influences on the 

concentration of either pooled tissue or haemolymph L-lactate. Morris et al. (1985) 

found that the concentration of L-lactate in the haemolymph increased from 0.13 + 

0.06 mM in the winter to 2.30 + 0.44 mM in the summer in the prawn Palaemon 

elegans. It was found in the present study that the concentration of pooled tissue 

L-lactate was highest during the summer months and lowest during winter. The 

difference in concentration of L-lactate between winter and summer animals was 

far smaller than that reported by Morris et al. (1985). This summer peak might be 

associated either with the period of maximum locomotor activity and highest 

metabolic rates or with the environmental stresses that have been discussed 

previously.

The concentration of energy metabolites in animals is dependent on so many inter­

relating factors, that to attribute trends to a single cause is entirely unrealistic. It is 

perfectly feasible that some of the trends reported above could be as easily 

attributed to moulting cycles as to the effects of the varying seasons. Whatever the 

cause of this variation in the biochemical composition, it is likely to have profound 

effects on an animal’s ability to react to environmental stresses and requires further 

investigation.

2J.7, Conclusions:

I) The seasonal and diel physico-chemical variations, are similar to those 

recorded by Morris & Taylor (1983). In the present study it was found that
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during the summer, the rock pools at night became severely hypoxic.

II) Large numbers of crabs were present in the rock pools in summer, when 

conditions at night become very hypoxic.

III) It was found that during rock pool hypoxia, some crabs became fully or 

partially emersed, whilst some continued to remain fully immersed.

IV) In a laboratory study, L-lactate was shown to accumulate in the immersed crabs 

and not in those that were partially or fully emersed.

V) The investigation into the seasonal variations in the concentration of energy 

metabolites revealed clear trends, but it was found to be very difficult to 

ascribe too much functional significance to them, since so many other factors 

were inevitably involved.

VI) There was a pronounced hyperglycaemic response with concentrations of both 

D-glucose and total hexose/pentose sugars, increasing markedly after 30 

seconds of handling disturbance.
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CHAPTER 3 - THE METABOLIC RESPONSE OF CARCINUS MAENAS TO 

PERIODS OF ANOXIA AND SUBSEQUENT RECOVERY.

3.1 INTRODUCTION.

In the last chapter it was concluded that Carcinus maenas naturally experiences 

conditions of severe hypoxia in intertidal rock pools and that under such conditions 

it resorts to anaerobic metabolism and accumulates L-lactate as an end product. In 

this chapter this metabolic response of C. maenas to anoxia was investigated in 

detail, by means of a series of laboratory experiments.

The two functions of anaerobic respiration are: firstly, to produce energy, and 

secondly to maintain the redox balance within a cell. In the normal glycolytic 

pathway, glyceraldehyde 3-phosphate (GAP) is oxidised with the reduction of the 

cofactor NAD+ and then phosphorylated to 1,3-diphosphoglycerate (1,3-DPG). If 

glycolysis is to be maintained, the resulting NADH must be constantly reoxidised. 

Under aerobic conditions the reoxidation of the NADH by the mitochondrial 

electron transport chain is not a problem, but where oxygen is limited, alternative 

mechanisms are needed. Therefore a central feature of all anaerobic pathways is 

their capacity to reoxidise the NADH, thereby maintaining a redox balance.

In decapod crustaceans, it has long been known that L-lactate accumulates during 

anaerobiosis, and some authors have implied that it is likely to be the only major 

end product of anaerobic metabolism in this group (Teal & Carey, 1967; Bridges & 

Brand, 1980; Gade, 1984; Albert & Ellington, 1985). Until now, however, there 

has been no comprehensive study to determine the importance of other anaerobic 

end products. Therefore, a large part of the work in this chapter concentrated on 

investigating the possible occurrence of these other anaerobic pathways. This 

investigation involved examining the responses of Carcinus maenas to environmental 

anoxia, followed by normoxic recovery. Pooled tissue samples were then analysed
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using three separate techniques. Firstly, enzymic estimation of the concentrations 

of L-lactate and glycogen allowed a stoichiometric comparison to be made. 

Secondly, the tissue samples were analysed for organic acids, using High 

Performance Liquid Chromatography (HPLC) and finally the concentrations of 

amino acids were determined using an ion exchange automated amino acid analyser.

As already mentioned, the primary function of anaerobic respiration is to produce 

energy in the form of ATP. In addition, in invertebrates ATP can also be 

produced from the breakdown of phospho-l-arginine (Livingstone et al., 1981; 

Gade, 1984; Bestwick, 1988). This is a highly labile organic phosphoryl compound 

which is able to phosphorylate ADP under the control of arginine kinase (EC 

2.7.3.3). Although of secondary importance compared with anaerobic glycolysis, 

the breakdown of phospho-l-arginine does help to supplement the animal’s overall 

energy production under conditions of oxygen stress. The samples obtained for the 

stoichiometric comparison (as described above) were therefore also analysed for 

their concentrations of phospho-l-arginine and adenylate nucleotides.

In order to provide information on the tolerance of Carcinus maenas to anoxia, an 

experim ent was carried out to investigate the rate of m ortality under such 

conditions. Amongst the thalassinids, Callianassa species have been shown to 

survive periods of up to 60 h of anoxia at 10 °C (Felder, 1979; Zebe, 1982). The 

LT5 0  of C. maenas, however, is likely to be considerably lower than that of 

thalassinids, since under natural conditions it is exposed to far shorter periods of 

hypoxic conditions. For instance Munida rugosa (a species of squat lobster that 

would not naturally be exposed to field hypoxia) has been shown to have an LT^q 

of only 4 h (K. Zainal, pers. comm.).

In the last chapter it was observed that there were large variations in the 

concentrations of sugars in the tissues of Carcinus maenas collected from the field. 

This great variability in the concentrations of tissue glycogen in crustaceans has also
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been reported by other authors (Verne, 1924; Heath & Barnes, 1970). Since the 

above experiments required the use of pooled groups of animals, it was important to 

try to reduce this variation. As nutrition is likely to have a great influence on the 

concentration of glycogen and other sugars, 2  preliminary experiments were carried 

out. These investigated the effects of a single meal on the concentration of 

haemolymph sugars and the influence of a period of starvation on the concentration 

and variation of whole body glycogen.
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3.2 MATERIALS AND METHODS.

3.2.1 Collection and maintenance q£ animals.

Carcinus maenas, were collected by hand from intertidal rock pools, on a rocky 

promontory, to the West of Karnes Bay, on the Isle of Cumbrae, Firth of Clyde, 

Scotland. These animals were transported to the Departm ent of Zoology, 

University of Glasgow, in plastic tanks containing sea water. The animals were 

then transferred to large tanks, in a recirculating seawater aquarium, maintained at 

10 + 1 °C. They were fed on mussels, (Mytilus edulis) during the first week, and 

starved in the second week, in order to reduce the natural individual variation in 

the concentration of glycogen in the tissue of C. maenas, that was observed to be 

present in freshly collected crabs (Chapter 2).

General experimental conditions.

All experiments described in this chapter were carried out in a constant temperature 

room ( 1 0 + 1  °C), with a photoperiod of 12 h light and 12h dark. Artificial sea 

water made up from sea salt (Tropic Marin) with distilled water (salinity = 30 %o) 

was used throughout and was always allowed to equilibrate to 10 °C before use.

I l l  Preliminary experiments.

3.2.2.1 The effects feeding qr M  concentration qL tomolYmgll SURaTS-

The effects of feeding on the concentrations of D-glucose and total hexose/pentose 

sugars in the haemolymph were investigated as follows: 15 crabs were placed in 

individual beakers (each containing 1 litre of sea water at a salinity of 30 °/oo) and 

left undisturbed for 24 hours before the start of the experiment. On the following
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day, 10 animals were fed on the adductor muscles (200 mg) of Mytilus edulis. The 

other 5 remained unfed and were used as controls. Haemolymph samples (100 ul) 

were taken on day 1 , before introducing the food, and at the same time on each of 

the following 5 days. These were taken using a 1ml syringe, the needle (26 g) of 

which was inserted into the arthrodial membrane of the 4th walking leg. The 

samples were then prepared and analysed for D-glucose and total hexose/pentose 

sugars (Appendices 1, 2 and 4).

3,2,2-2 Thg effects of starvation on the concentration of tissue glycogen.

Immediately after capture, Carcinus maenas was starved for the following 14 days. 

5 crabs were sacrificed every day for the duration of the experiment, by plunging 

them into liquid nitrogen and storing them at -20 °C. Pooled tissue samples were 

then prepared and the concentration of glycogen determined (Appendix 3).

12,3 Survival under anoxic conditions.

A total of 64 animals were placed in individual beakers (volume = 250 ml), in 8  

clear perspex tanks (volume = 10 1). This procedure was used to reduce 

interactions between animals, which might have complicated the interpretation of 

the results. Each beaker was submerged to a minimum depth of 6  cm, in order to 

ensure thorough aeration. A heavy plastic mesh was placed over all the beakers and 

secured using weights. The tanks were covered with polystyrene sheets (5 mm 

thick), which were cut to fit the insides of the tanks and which, by floating on the 

water surface, substantially reduced the water/air interface and helped to prevent 

the diffusion of oxygen back into the water. An oxygen electrode (E5046 

Radiometer, Denmark) was fitted through the polystyrene, to monitor the oxygen 

tension (P0 2 ) of the water throughout the experiment. The oxygen electrode was 

coupled to an oxygen meter (Strathkelvin Instruments, Glasgow). The P0 2  of the



water was regulated using a gas mixture, produced by a precision gas mixing 

system, which was pumped through air-stones into each of the tanks.

At the start of the experiment the crabs were left undisturbed for 24 h, during 

which time the water was constantly aerated. At the end of 24 h period the P0 2  of 

the water in 6  of the tanks was reduced to < 2 Torr by bubbling a mixture of 

nitrogen and carbon dioxide into the water. The carbon dioxide in the gas mixture 

was to maintain the pH constant throughout the experiment. The animals in the 

remaining 2  tanks were used as controls and were maintained under normoxic 

conditions. The number of mortalities occurring in each tank over a 20 hour period 

was recorded. During anoxia the crabs became very quiescent and at times it was 

difficult to assess whether or not an animal was dead or alive, but animals were 

confirm ed  dead, when they fa iled  to respond to touching  the eyestalk. 

Observations were made every hour, and any dead animals were immediately 

removed and transferred to a tank of normoxic water. This was to ensure that there 

was no contamination of the experimental water with metabolites of decomposition.

3-2.4 A naerobic metabolism during environm ental anoxia and subsequent 

recovery.

The general experim ental design was as described in section 3.2.3. In this 

experiment 132 animals were placed in individual beakers which were in turn 

apportioned equally between 5 large tanks (volume = 40 1). They were left 

undisturbed for 24 hours, while the water was constantly aerated.

At the end of this period, the P0 2  of the water of 4 of the tanks was reduced to < 

2 Torr by bubbling nitrogen through the water. Animals in the fifth tank were 

maintained under normoxic conditions and were used as controls. The P0 2  of the 

water in the experimental tanks reached anoxic levels ( < 2 Torr) in approximately
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4 hours (Fig. 3.1). This time, (0 - 4 h) was called the ’pre-anoxic’ period. After 

0 and 2 h, 2 batches of 5 experimental and 2 control animals were removed and 

immediately plunged into liquid nitrogen, using long-nosed tongs. The frozen 

animals were then stored in a deep freeze (-70 °C) until required for 

biochem ical analysis. During the ’anoxic period’ (4 - 16 h), batches of 5 

experimental and 2 control animals were taken at 4, 7, 10, 13 and 16 hours. After 

1 2  hours of anoxia, the P0 2  of the water was returned to near saturation 

(approximately 160 Torr) within 20 minutes, by bubbling air through the tanks (Fig. 

3.1.). During the ’recovery period’ (16 - 28 h) a further 5 experimental and 2 

control crabs were taken at 17, 19, 22, 25 and 28 hours. In addition, haemolymph 

samples ( 1 0 0  ul) were extracted from 2  experimental and 2  control animals at each 

of the 12 time intervals. The haemolymph was extracted as outlined above and then 

stored and processed as described in Appendix 1.

3-2.4.1 Biochemical analyses.

H Enzymatic analysis.

Pooled tissue sam ples were p repared  using the standard  perch lo ric  acid 

ex trac tio n  techn ique, as used by Gade et al. (1978) for frozen tissue 

(Appendix 1). Haemolymph samples were treated in a similar manner. The 

metabolites were assayed enzymically by the following methods: D- glucose and 

Glucose 6 -phosphate (Kunst et al., 1981); ATP (Trautschold et al., 1981); Pyruvate, 

ADP and AMP (Jaworek & Welsch, 1981); Phospho-l-arginine (Heinz & Weiber, 

1981); PEP and Succinate (Lamprecht & Heinz, 1981; Beutler, 1981). The 

concentration of L- lactate, in both haemolymph and pooled tissue samples was 

estimated using the method of Gutmann & Wahlefeld (1974) with modifications 

suggested by Engel & Jones (1978). Glycogen and oligosaccharides were 

measured enzymically using 1,4 - 1,6 -amyloglucosidase (EC 3.2.1.33) after boiling 

the tissue in potassium hydroxide (30% w/v) and subsequent alcohol precipitation
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FIG. 3.1 Changes in the P0 2  of the experimental water 

during 4 hours of ’pre-anoxia’ (see text for further 

explanation), 1 2  hours of anoxia and finally 1 2  hours 

of normoxic recovery. A P0 2  of less than 2 Torr, was 

taken to represent anoxia, since the oxygen electrode 

was unable to accurately measure a P0 2  of less than 

this value.
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as described by Keppler & Decker (1974). Glycogen was also estimated using the 

anthrone method as reported by Carroll et al., (1956). The results from both of 

these methods were compared. Full details of all these methods can be found in 

the Appendices. Concentrations of metabolites in pooled tissue samples were 

expressed as umol.g  ̂ fresh weight. An index that compares the relative 

concentrations of the 3 adenylate nucleotides (ATP, ADP and AMP) is the adenylate 

energy charge (AEC), as proposed by Atkinson & Walton (1967) and was 

calculated using the following equation:

[ATP] + l / 7 [ADP]
A E C ------------------------------------

[AMP] + [ADP] + [ATP]

iil High Performance Liquid Chromatography (HPLC).

Samples were prepared as described in Appendix 1, with the additional step of 

centrifuging the final mixture for 15 minutes (at 14000 g). This ensured that the 

samples were free of any particulate matter that might block the HPLC column.

a) Nucleotides

The estimation of adenylate nucleotides was also carried out by an HPLC system 

(Gilson, France) coupled to a Partisil 10 SAX Column - 250 by 4.6 mm (HPLC 

Macclesfield). Adenylate mononucleotides were better resolved by using a 

mobile phase with a low pH. However, ADP and ATP resolve better when the 

pH of the mobile phase is higher. Therefore their analyses were carried out 

separately.

Phosphoric acid (pH 3.5), acting as a b u ffe r , was used to separate 

AMP, w ith a mobile phase gradient (flow rate 1.4 ml. min ^). The 

concentration of buffers A and B were 5 mM and 300 mM respectively. Since 

the pH of the buffer was so low, it was essential that the column was flushed 

thoroughly after a batch of samples had been passed through.
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ADP and ATP were estimated using the buffer ammonium sulphate, at a pH of 

7.0, with a mobile phase gradient (flow rate 1.4 ml. m in-1 ). The 

concentration of buffers A and B were 20 mM and 300 mM respectively.

All sam ples (20 ul) were in troduced  into the column using a 25 ul 

H am ilton m ic ro -sy rin g e . For both procedures all nucleotides were 

eluted within a 30 minute period and were detected by a spectrophotometer at a 

wavelength of 254 nm. The results were recorded on a chart recorder 

(Tekman TE200/1, Tekman Ltd, England). Standards of all three nucleotides 

were run to establish their respective retention times.

b) Organic acids

The concentrations of the organic acids were estimated using a similar HPLC 

system to the one described above, but, in this case, a Bio Rad Aminex HPX- 

87H organic acid analysis column (300 by 7.8 mm) was used. Samples (25 ul) 

were introduced into the column using a 25 ul Hamilton micro-syringe. The 

column was eluted with H2 SO4  (25 mM) at a rate of 1 ml. min 1 . All the 

organic acids of interest were eluted within a 16 minute period and detected 

spectrophotometrically at a wavelength of 210 nm. The following standards (1 

mM) were run in order to establish the identity of the endogenous organic acids: 

oxaloacetate, malate, pyruvate, succinate, lactate, acetate, fumarate and 

propionate.

iiil Amino Acid Analysis.

The estimation of the amino acids was carried out courtesy of Mr. J. Jardine 

of the Department of Biochemistry, using an automated amino acid analyser. The 

analyser consisted of an ion exchange column, from which the various amino acids 

were eluted by a pH gradient, using a sodium citrate buffer. The samples were



prepared in the same way as described for the HPLC.
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3.3 RESULTS.

3.3.1 Preliminary experiments.

3.3.1.1 Ilm  effects qL feeding qj\ Hie. concentrations haemolvmnh sugars.

The concentrations of total hexose/pentose sugars and D-glucose in the haemolymph 

of animals prior to feeding were 0.95 + 0.22 mM and 0.106 + 0.06 mM respectively 

(Fig. 3.2). On the following day after feeding there had been a significant increase 

in the concentrations of these compounds, to 2.48 + 0.66 mM and 0.781 + 0.27 mM 

respectively (P < 0.05). Two days later, in the absence of food, the concentration of 

haemolymph sugars had decreased significantly (P < 0.05) to 1.95 + 0.14 mM and 

0.151 + 0.05 mM for total hexose/pentose sugars and D-glucose respectively.

3-3.1.2 Iim  effects q£ starvation on concentration ol tissue KlYCQRen-

A large variation was observed in the concentration of pooled tissue glycogen, from 

individual animals killed immediately after collection in the field (mean = 17.1 + 

6.15 umol.g- )̂ (Fig. 3.3). At the end of the 14th day there had been no significant 

(P > 0.05) decrease in the concentration of glycogen. When expressed as a 

percentage o f the concentration of glycogen, however, the standard deviation  

decreased from + 35 % im m ediately after capture, to + 9 % after 2 weeks of 

captivity. A Spearman Rank correlation, between the number of days of captivity 

and the coefficient of variation of the concentration of the glycogen, resulted in a 

coefficient of -0.693, indicating a significant negative relationship.

Survival under anoxic conditions.

In order to devise an appropriate protocol, it was necessary to know the length of
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FIG  3.2 C hanges in the c o n c e n tr a tio n  o f  

Hexose/Pentose (H/P) sugars ( ■ ) and D-glucose ( □ ) 

in the haemolymph o f Carcinus maenas, following a 

single meal (on Day ’O’). Values are means + S.D. (n = 

5).
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FIG. 3.3 Changes in the concentration of glycogen in 

the pooled tissue o f Carcinus maenas over a starvation 

period of 14 days, following initial collection from the 

field. Values are means + S.D. (n = 5 for each point).
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time that the animals could survive under conditions of total anoxia. The results of 

this preliminary experiment indicated that survival rate was high for the first 14 h 

of anoxia (Fig. 3.4). A fter this, however, there was a rapid increase in mortality 

and all the crabs were dead by 18 h . In contrast, only 1 out of 16 of the control 

crabs died during the course of the experiment. None of the crabs removed from 

the experimental tanks, having ’deemed’ to have died, recovered after being placed 

in normoxic water.

3.3.3 A naerobic m etabolism  during environm ental anoxia and subsequent 

recovery.

3.3.3.1 L-lactate and. carbohydrate stores.

The mean concentration o f L -lactate in the pooled tissue samples o f animals 

sampled 4 h prior to the onset o f anoxia was 4.49 + 3.28 um ol.g-  ̂ fresh wt. but 

increased significantly (P < 0.05) to 20.3 + 4.5 um ol.g-  ̂ by the end of the 12 h 

period o f anoxia (F ig . 3.5). O f particular interest was the fact that the 

concentration of L-lactate continued to increase during the first hour of recovery to 

a concentration of 41.3 + 6.6 umol.g-  ̂ . The rate of L-lactate accumulation over 

the first 17 h o f the experiment thus averaged 2.16 umol.h"^.g” * . During the 

remainder o f recovery, the concentration o f L -lactate decreased to 8.1 ± 1.33 

umol.g"^ . The concentration of L-lactate in the control animals did not change 

sign ificantly  (m ean = 3.2 + 1.95 um ol.g"^) throughout the 28 hour period. 

The concentration of L-lactate in the haemolymph increased significantly (P < 0.05) 

from 3.19 + 0.71 to 16.7 + 3.2 mM by the 4th and 10th hour of the experiment 

respectively (Fig. 3.6). This appeared to be the maximum concentration, since no 

further increase was observed  un til 6 h into the recovery period when the 

concentration of L-lactate decreased significantly (P < 0.05) from 16.1 + 1.3 to 5.1 + 

0.6 mM after 22 and 28 h respectively. The concept of haemolymph L-lactate 

reaching a m axim um  concentration , even though tissue L -lacta te  was still

45



FIG. 3.4 Cumulative mortality (%) recorded during 

exp osu re  o f  Carcinus maenas to an ox ia . The  

experiment was carried out at 10 °C. (n = 64).



00

o
LO

ooo oo o

o
CM

CD

CM

r co

CO CO CM

Ex
po

su
re

 
to 

An
ox

ia 
(h

)



FIG. 3.5 Changes in the concentration of L-lactate in 

the pooled tissue o f Carcinus maenas during 12 hours 

o f anoxia and during a 12 hour period o f  recovery  

under normoxic conditions. Values are means + S.D. 

(n = 5 for each point).
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FIG. 3.6 Changes in the concentration of L-lactate in 

the haemolymph of Carcinus maenas during 12 hours 

o f  anoxia and during a 12 hour period o f  recovery  

under normoxic conditions. Values are means + S.D.
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accumulating during anoxia, has previously been observed by other authors (Bridges 

& Brand, 1980; Taylor & Spicer, 1987).

During the ’pre-anoxic’ and ’anoxic’ periods, the concentrations of glycogen and of 

total circulating soluble carbohydrates (including D-glucose) decreased from 17.8 + 

3.9 to 2.22 + 1.02 umol.g-1 and from 6.98 + 1.3 to 2.57 + 0.76 umol.g-1 respectively 

(Fig. 3.7). The concentration of glycogen of pooled tissue samples was estimated 

both enzym ically and chem ically. No sign ificant d ifferences (P > 0.05) were 

observed between the results o f the two methods. It was interesting to note that 

there appeared to be lag of about 2 hours between the depletion of glycogen and 

free circulating soluble carbohydrates and the main increase in the concentration of 

pooled tissue L-lactate. By adding the mean concentrations of glycogen and free 

circulating sugars together, it was possible to estimate the size of the total glucosyl 

unit store that was available to the animal. This glucosyl unit store was depleted at 

a mean rate of 1.17 umol.g- ^h-1 during the anoxic period. Given that 2 molecules 

of L-lactate may be produced from 1 molecule of glucosyl units, it would appear 

from these results that approximately 92% of the glucosyl units catabolised have 

gone into the p ro d u ctio n  o f  L -la c ta te  (F ig . 3 .8 ). D uring recovery , the 

concentrations of pooled tissue glycogen and soluble carbohydrates, increased from 

2.22 + 1.02 to 12.3 + 2.7 um ol.g-1 and from 2.57 + 0.76 to 7.32 + 2.2 umol.g 1 

respectively. The same stoichiometric comparison as used previously during anoxia, 

can be applied to the recovery period, between L-lactate depletion and glucosyl unit 

accumulation. This result suggests that most of the L-lactate is being converted to 

glucosyl units via gluconeogenic pathways, and is therefore not being lost to the 

surrounding medium or fully oxidised to CC^-
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FIG. 3.7 Changes in the concentration of pooled tissue 

a) glycogen and b) water soluble carbohydrates in 

Carcinus maenas during 12 hours of anoxia and during 

a 12 hour period  of recovery  u n d er norm oxic 

conditions. Values are means + S.D. (Water soluble 

carbohydrates  consist of o ligosaccharides and 

monosaccharides).
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FIG. 3.8 Changes in the concentration of L-lactate 

(■ ) and glucosyl units (□ ) in the pooled tissue of 

Carcinus maenas during 12 hours of anoxia and during 

a 12 hour period  of recovery un d er norm oxic 

conditions. A stoichiometric comparison revealed that 

during anoxia, 92 % of the glucosyl units catabolised 

could be explained by the production of L-lactate. A 

similar comparison made during normoxic recovery, 

indicated that approximately 88 % of the depletion of 

L-lactate could be explained by the increase in the 

concentration of the carbohydrate pool. (See text for 

further details).
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fl.3.3.2 Adenvlate nuclePtidss and. Dhosoho-l-arginine.

The mean concentration of pooled tissue phospho-l-arginine was 7.5 + 0.74 umol.g- 

1 in quiescent animals under normoxic conditions, but this decreased significantly (P 

< 0.05) to 2.53 + 0.53 umol.g-1 after 12 hours of anoxia. After 9 hours of recovery 

the concentration of the phospho-l-arginine had increased again to 6.4 + 0.3 umol.g- 

1 (Fig. 3.9).

The concentrations of adenylate nucleotides were estimated using both HPLC and 

enzymic assays. There was no significant difference between the two methods for 

any of the 3 nucleotides (P > 0.05 in all three cases).

The utilisation of phospho-l-arginine during the first 6 hours of anoxia, helped to 

ensure that there was no significant (P > 0.05) decrease in the concentration of ATP 

(Fig. 3.10a). There was, however, a significant decrease in the concentration of 

ATP to 1.07 + 0.16 umol.g-1 , during the first hour of recovery. During the later 

stages of recovery, the concentration of ATP increased again to 4.14 + 0.48 umol.g- 

1 before returning to original levels of 2.17 + 0.156 umol.g-1 at the end of the 

experimental period.

The concentration of ADP did not change significantly throughout the experiment 

(P > 0.05) (Fig. 3.10b). When exposed to anoxia, the concentration of AMP 

remained constant at 0.23 ± 0.02 umol.g-1, but during the first 3 hours of recovery 

there was a significant transient increase from 0.25 + 0.03 to 0.37 + 0.09 umol.g 1 

(Fig. 3.10c).

The adenylate energy charge (AEC) was estim ated from  the nucleotide 

concentrations as obtained above (Fig. 3.11). The only significant change occurred 

during the first hour of recovery, when the energy charge decreased temporarily 

from 0.71 + 0.005 to 0.65 + 0.02 (P < 0.05). It soon recovered, however, increasing
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FIG. 3.9 Changes in the concentration of phospho-l- 

arginine in the pooled tissue of Carcinus maenas during 

12 hours of anoxia and during a 12 hour period of 

recovery under normoxic conditions. Values are means
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FIG. 3.10 Changes in the concentration of a) ATP; b) 

ADP and c) AMP in the pooled tissue of Carcinus 

maenas during 12 hours of anoxia and during a 12 

hour period of recovery under normoxic conditions. 

Values are means + S.D.
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FIG. 3.11 Changes in the adenylate energy charge 

(AEC) of the pooled tissue of Carcinus maenas during 

12 hours of anoxia and during a 12 hour period of 

recovery under normoxic conditions. Values are means 

+ S.D. (See text for further details).
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to 0.77 + 0.04 after the 19th hour of the experiment.

3.3.11 Organic Acids.

The retention times for the organic acid standards used, can be seen in the 

following table:

Table 3.1 - HPLC retention times (RT) for the organic acid standards.

O rg an ic  a c i d  s ta n d a r d RT (min)

O x a l o a c e t a t e 5.74
M alate 6.90
P y r u v a te 7.06
S u c c i n a t e 8.68
L - l a c t a t e 8.85
A c e t a t e 10.8
Fumarate 12.6
P r o p i o n a t e 13.0

All the acids could be resolved, with the exception of succinate and L-lactate, 

which had almost identical retention times of 8.68 and 8.85 minutes respectively 

(Fig. 3.12). Succinate was therefore estimated enzymically, following the method 

of Beutler (1981) (Appendix 6). The concentrations of succinate are tabulated 

overleaf:
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FIG. 3.12 HPLC traces of resolved organic acids from 

Carcinus maenas exposed to A) normoxic conditions; 

B) 4 hours of declining P0 2 ', C) 12 hours of anoxia 

and D) 1 hour of recovery.

SF - Solvent front.
Peak ’a’ - pyruvate.
Peak ’b’ - L-lactate/succinate. 
Peak ’c’ - acetate.
Peak ’d’ - fumarate.
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Table 3.2 - Changes in the concentration of succinate during exposure to 

prolonged anoxia and subsequent recovery.

Time a f t e r  s t a r t  o f  
ex p er im en t  (h)

C o n d i t i o n S u c c i n a t e  
(u m o l .g  f r e s h  w t . )

C o n tro l Normoxic 1 . 2  + 0 . 0 3
4 Anoxic 0 . 9 0  + 0 . 0 2
10 Anox ic 0 . 8 1  + 0 . 1 5
16 Anox ic 0 . 7 6  + 0 . 2 1
17 R eco v ery 0 . 8 9  + 0 . 0 9
22 R ecover y 0 . 7 9
28 R ecover y 0 . 9 4  + 0 . 1 7

The concentration of succinate in the tissues of Carcinus maenas was very low and 

remained constant throughout the experiment. Therefore most of the peaks labelled 

’b’ in Figure 3.12 can be attributed to L-lactate. This was confirmed using 

standards, since it was calculated that the concentrations of L-lactate that these 

peaks (b) represented, were not significantly (P > 0.05) different from the results 

obtained for L-lactate via enzymic methods.

The concentration of acetate (peak c) did not increase significantly, throughout the 

course of the experiment. The concentrations of pyruvate (peak a) and fumarate 

(peak d) increased significantly during anoxia, from 1.65 +0.11 to 2.95 +0.15 

umol.g- * and from 0.64 + 0.06 to 0.91 + 0.04 umol.g-1 respectively (P < 0.05 in 

both cases). The magnitude of change in the concentration of fumarate was 

insignificant, however, when compared w ith the enormous increase in the 

concentration of L-lactate during exposure to anoxia. The other organic acids 

(malate, oxaloacetate, and propionate) were present only in very low concentrations, 

which could not be accurately determined by the HPLC system.
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3-3.3i4 Amino Acids.

Figure 3.13 shows 2 automated amino acid analysis traces (representing extracts 

from crabs taken at O h (A) and 12 h (B) in the time course). Of all the amino 

acids estimated, 3 were of particular interest, owing to the fact that they are known 

to be important in anaerobic glycolysis. The concentration of aspartate (ASP) 

decreased from 1.25 + 0.34 to 0.50 + 0.13 umol.g"* during the anoxic period and 

then increased again to 0.93 + 0.14 umol.g"* during recovery (P < 0.05 in both 

cases). The concentration of alanine (ALA) increased from 5.77 + 0.7 to 8.90 + 

1.13 umol.g"* during anoxia, but decreased to 7.72 + 0.6 umol.g"*, after 12 hours of 

recovery (P < 0.05 in both cases). Finally, the mean concentration of arginine 

decreased significantly (P < 0.05) from 9.67 + 0.41 to 7.49 + 1.4 umol.g"* after 0 

and 12 h of anoxia. For the remainder of the experiment the mean concentration 

of arginine did not change significantly (P > 0.05) from 7.08 + 0.52 umol.g"*. The 

concentration of the remaining amino acids can be found in Appendix 9.
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FIG. 3.13 Automated amino acid analysis traces of

resolved amino acids from Carcinus maenas exposed to

A) normoxic conditions; B) 12 hours of anoxia.

ASP - aspartate.
ALA - alanine.
ARG - arginine.
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3.4 DISCUSSION.

3.4.1 Preliminary experiments.

Although there have been a considerable number of studies on the influence of 

starvation on the metabolic reserves of crustaceans, interpretation of the results of 

these studies is difficult since some authors have analysed the pooled tissue samples 

while others have considered only specific tissues and organs. Whyte et al. (1986) 

state that there is a conflict in the literature on the relative abundance and order of 

utilisation of major energy reserves in decapod crustaceans during starvation. Heath 

& Barnes (1970) described a large decrease in the concentration of lipid reserves 

during starvation in Carcinus maenas. Lipids have also been shown to be the main 

energy source in the crayfish Orconectes nair (Armitage et al., 1972). This contrasts 

with the preferential use of protein reserves in Hemigrapsus nudus (Neiland & 

Scheer, 1953), O. virilis (Hazlett et al., 1975), Panulirus longipes and Nephrops 

norvegicus (Dali, 1974, 1981). Even within the same species there seems to be a 

certain amount of confusion. Thus Cuzon & Ceccaldi (1972) found that in the 

shrimp Crangon crangon, carbohydrates were primarily used during a starvation 

period of 4 weeks. Regnault (1981) stated that, based on the oxygen to nitrogen 

ratios, lipids and proteins were the principal sources of energy in this species.

There is also considerable confusion concerning the utilisation of energy reserves in 

Carcinus maenas. Schonborn (1911) found that, after 25 days of starvation, the 

glycogen store in Carcinus maenas had been largely consumed, whereas Neiland & 

Scheer (1953) failed to find any diminution in either the concentration of glycogen 

or lipids after a period of starvation. Munn (1963) found a steady decrease in the 

concentration of hepatopancreas glycogen, over a starvation period of 20 days. 

Heath & Barnes (1970) recorded a decrease in glycogen after 40 days of starvation, 

but 5 times as much lipid was consumed over the same period. Finally, Marsden
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et al. (1973) stated that there was no significant decrease in the concentration of 

carbohydrates, triglycerides or phospholipids in either the hepatopancreas or gill 

tissue of Carcinus maenas following starvation for 2 weeks. Differences in 

the experimental procedures used by different authors make it more difficult to 

draw firm conclusions but it would appear that over a period of 14 days, the effects 

of starvation on the concentrations of carbohydrates, lipids and proteins are likely to 

be very small. In order to reduce these effects still further, it was decided that, in 

all experiments carried out during the present study, the crabs would be fed once 

during the 2 weeks that they were kept in the aquariums prior to use in 

experiments. Since feeding immediately prior to an experiment would interfere 

with the concentration of certain metabolites, a preliminary experiment was carried 

out to determine the length of time taken for the concentration of haemolymph 

sugars to return to normal after a single meal. The results from this experiment 

indicated that it took as little as 2 days for this to happen. It was therefore decided 

that the crabs would be fed on day 5 of the 14 day period and then starved for the 

remaining 9 days. This 9 day starvation did not decrease the concentration of 

pooled tissue glycogen, but the overall variation between individuals did decline. 

This was advantageous, since in la ter experim ents, it would facilita te  the 

interpretation of the significance of any differences, observed between experimental 

groups.

I i 2  Survival under anoxic conditions.

Carcinus maenas was shown to have a mean tolerance of anoxia of 15.8 h (LT^q) at 

10 °C, with no individuals surviving beyond 18 h . By way of comparison, it has 

been demonstrated that thalassinid crustaceans have much higher LT^q values. 

Thompson & Pritchard (1969) and Zebe (1982) reported maximum survival times in 

Callianassa califomiensis, under conditions of anoxia, of 138 and 60 h respectively. 

In Calocaris macandreae the maximum survival time in anoxia was about 50 h, with
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an LT^q of 43 h (Anderson, 1989). Another thalassinid Upogebia pugettensis was 

found to be less tolerant, but still managed to survive up to 30 h of anoxia (Zebe, 

1982). There are very few comparative studies from other decapod groups. In 

1941, however, Vallin (cited in Lindroth, 1950) stated that crayfish can survive for 

20 h under experimental conditions when the oxygen concentrations of the 

surrounding medium was only 0.2 m g .I'1. G'dde (1984) found that the crayfish 

Orconectes virilis could survive at least 16 h of anoxia at 14 °C. Interspecific 

comparisons of survival rates during exposure to anoxia were made more difficult, 

however, since there is growing evidence that tolerance of anoxic conditions is 

reduced at higher temperatures, owing to higher metabolic rates. The great 

tolerance that the thalassinids have for anoxic exposure, is possibly an adaptation to 

their life in burrows, in which they regularly experience severely hypoxic or even 

anoxic conditions (Atkinson & Taylor, 1988). Based on the results of this 

experiment, an anoxic period of 12 h was chosen for future experiments, since this 

was felt to be sufficient time to investigate the maximum capacity of C. maenas for 

anaerobic metabolism.

14,3 The accumulation of end products of anaerobic energy metabolism in 

crustaceans.

Since one molecule of glucosyl units may theoretically be converted into 2 molecules 

of L-lactate, it should be possible to establish whether glucosyl units and L-lactate 

are the major substrate and end product respectively of anaerobic metabolism in 

Carcinus maenas. Teal & Carey (1967) compared the depletion rate of glucosyl 

units with the accumulation rate of L-lactate in the pooled tissue samples of the 

marsh crab Uca pugnax and found that there was an approximate ratio of 1:2 

(glucosyl units : L-lactate respectively). They found, however, that there were huge 

variations in the concentration of glucosyl units and that they could not attach too 

much statistical significance to their estimation of the rate of glucosyl unit depletion
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during anoxia. Zebe (1982) reported ratios of 1:2 and 1:1.93 for Upogebia 

pugettensis and Callianassa califomiensis respectively after 24 h of exposure to 

anoxia. Taylor & Spicer (1987) found a ratio of approximately 1:2 in the prawns 

Palaemon elegans and P. serratus and concluded that alternative metabolic pathways 

are unlikely to be of significance during anaerobic metabolism. Results from this 

present study confirm the findings of the above authors. The ratio of glucosyl 

depletion and L-lactate accumulation for Carcinus maenas was 1:1.92, indicating the 

almost total reliance on the pathway culminating in the production of L-lactate.

Only a few studies have previously measured the concentrations of organic acids in 

decapod crustaceans that have been exposed to anoxia. Van Aardt & Wolmarans 

(1987) used gas chromatography to measure changes in the concentration of certain 

organic acids in the freshwater crab Potamon warreni during exposure to anoxia. 

They showed that the concentration of L-lactate increased eighteen fold during a 6 h 

exposure to anoxia, and that there was a small increase in the concentration of 

succinate. Similar increases in the concentration of succinate in decapods have also 

been reported by Zebe, 1982; GSde, 1984; Albert & Ellington, 1985. Zebe (1982) 

suggested that the succinate might have originated from the activity of micro­

organisms in the alimentary tract. Whether this is true or not is doubtful, but all 

the authors agree that succinate is at the very most of trivial importance in 

providing energy for decapod crustaceans during anoxia. Van Aardt & Wolmarans 

(1987) found that other organic acids and the more volatile of the fatty acids could 

not be determined using gas chromatography. A recent study by Anderson (1989) 

using HPLC, confirmed that L-lactate was the only organic acid to increase 

significantly during anoxia in the mud burrowing shrimp Calocaris macandreae.

Results from the present investigation agree with previous studies, except for the 

concentration of the succinate which remained constant throughout the exposure to 

anoxia. Amongst the other organic acids measured, a small increase in both the
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concentrations of pyruvate and fumarate was observed. The concentration of 

malate, oxaloacetate and propionate could not be accurately determined on the 

HPLC system. Oxaloacetate is readily decarboxylated to pyruvate, and it is possible 

that the small increase in the concentration of pyruvate could be due in part to the 

decarboxylation of oxaloacetate. Compared to the much greater increase in the 

concentration of the L-lactate, however, these changes are insignificant.

It has been known for many years that amino acids can be intimately involved in 

anaerobic metabolism, e.g. as a substrate (aspartate); an intermediary in opine 

formation (taurine, lysine); and also as an anaerobic end product (alanine). In 

previous work on decapod crustaceans, alanine and aspartate are the 2 amino acids 

most often measured. Aspartate was first established as a substrate for anaerobic 

metabolism by Collicutt & Hochachka (1977) working on oyster heart muscle. 

Livingstone (1983) describes an anaerobic pathway in molluscs, in which aspartate is 

converted to oxaloacetate via a series of transamination reactions in the presence of 

pyruvate and glutamate-oxaloacetate transaminase (EC 2.6.1.1) (Fig. 3.14). Zebe 

(1982) reports that the concentration of aspartate decreases from 0.87 + 0.19 to 0.38 

±0.16 umol.g” * fresh wt. after 12 h of anoxia in the thalassinid Callianassa 

califomiensis. At the same time, there is a concomitant increase in succinate from

0.21 + 0.03 to 0.52 + 0.14 umol.g-  ̂ fresh wt. Van Aardt & Wolmarans (1987) 

reported a similar situation in the freshwater crab Potamon warreni. In the present 

study, the concentration of aspartate was shown to decrease during anoxia, but 

fumarate rather than succinate was the end product that accumulated. The 

concentrations of aspartate and succinate/fumarate in all these studies are extremely 

low and are insign ifican t in com parison to the quantities of L -lacta te  that 

accumulated. This pathway, utilising aspartate as a substrate, becomes more 

important in other groups of invertebrates in which the stores of free aspartate are 

far greater (Gade, 1983).

Both D- and L-alanine have been found to increase in the tissues of many decapod
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FIG. 3.14 Pathway involving the transamination of

aspartate to oxaloacetate.

(1) - glutamate-oxaloacetate transaminase (EC 2.6.1.1).
(2) - alanine transaminase (EC 2.6.1.2).
(3) - malate dehydrogenase (EC 1.1.1.37).
(4) - fumarase (EC 4.2.1.2).
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crustaceans during exposure to anoxia (Zebe, 1982; Gade, 1984; Albert & Ellington, 

1985; Van Aardt & Wolmarans, 1987). The alanine is produced as a by-product of 

the transamination of aspartate to oxaloacetate, as described above. In the present 

study, this series of reactions, could only account for about 25 % of the total 

amount of alanine produced. The mean of 3.13 umol.g- * of alanine produced 

during anoxia, accounts for only 7.2 % of the total end product accumulated, and is 

therefore of relatively minor importance in comparison to L-lactate, to the 

anaerobic energy metabolism of Carcinus maenas.

The results from this present study indicate that L-lactate is the major end product 

of anaerobic metabolism in decapod crustaceans, with a small amount of alanine also 

being produced. In addition, there was evidence to suggest that the amino acid 

aspartate is utilised as a substrate, with fumarate the accumulating end product. In 

comparison with the accumulation of L-lactate, however, both alanine and fumarate 

are of only very minor importance in crustacean anaerobic metabolism.

IAA Com parative aspects energy production  during environm ental 

anaerobiosis.

MAA Anaerobic glycolysis in decapod crustaceans.

The primary method of energy production in decapod crustaceans involves the 

utilisation of the carbohydrate pool and the eventual production of L-lactate 

(section 3.4.3). In this study, glycogen was found to constitute about 75 % of the 

total carbohydrate pool and the remaining 25 % being soluble carbohydrate (mainly 

monosaccharides and oligosaccharides). This compares favourably with the situation 

in Calocaris macandreae in which glycogen accounts for about 73 % of the 

carbohydrate pool (Anderson, 1989). In many studies, the concentration of glycogen 

has been estimated but that of the oligosaccharides ignored. Therefore the
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calculated rates are likely to underestimate the total carbohydrate pool utilisation. 

The following table presents the carbohydrate pool utilisation rates in decapod 

crustaceans, during periods of exposure to environmental anoxia.

Table 3.3 The ra tes o f carbohydrate  (glucosyl u n it) u tilisa tio n  in the 

tissues of decapod crustaceans during exposure to anoxia.

Spec ies  Rate  o f
u t i l  

( umo1. h

g l u c o s y l  u n i t  
L i s a t i o n  

. g f r e s h  w t .

R e f e r e n c e

,)

Uca pugnax 0 . 3 0 T ea l  & Carey,  1967
Upogebia p u g e t te n s is 0 . 7 9 Zebe,  1982
Callianassa c a l i f o r n i e n s i s 0 . 3 5 Zebe,  1982
Orconectes limosus 2 . 3 8 Gade, 1984
Palaemon elegans 1 . 0 6 T a y l o r  & S p i c e r ,  1987
Palaemon ser ra tu s 1 . 5 5 T a y l o r  & S p i c e ^  1987
Calocaris macandreae 0 . 4 2 A nderson ,  1 9 8 ^
Carcinus maenas 1 . 0 8 P r e s e n t  s t u d y

*
M glucosyl unit utilisation rate of tail muscle only.

rate includes oligosaccharide consumption as well as glycogen.

The lowest rates of glucosyl unit utilisation have been observed in those species 

which experience severe hypoxia most frequently (i.e. the mud burrowing shrimps 

of the family Thalassinidea). The prawn, Palaemon serratus is primarily a subtidal 

species and is not normally exposed to severely hypoxic conditions in the field 

(Taylor & Spicer, 1987). This is reflected in the relatively high rate of glucosyl unit 

utilisation observed in this species. The rate of 1.08 umol.g- *.h-  ̂ observed in 

Carcinus maenas reflects the fact that its anoxia tolerance is intermediate between 

that of the thalassinids and P. serratus.

The results presented in Table 3.3 suggest that there is a direct relationship between 

rate of glucosyl unit utilisation and duration of the period of exposure to anoxia. In
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Carcinus maenas there was a rapid decrease in the concentration of the carbohydrate 

pool after 5 or 6 h of anoxia. No immediate increase in the concentration of L- 

lactate was observed (Fig. 3.5). This implies that there may be some glycolytic 

intermediates present perhaps in the form of dihydroxy-acetone phosphate. Similar 

accumulations of glycolytic intermediates are well documented in insects, in which 

glycerol 1-phosphate is produced (Hochachka & Somero, 1973; Jabbar & Strang, 

1987). In decapod crustaceans, glycolytic intermediates have been suggested to 

occur as a result of post-mortem degradative changes (Hiltz & Bishop, 1975). 

Further discussion of this subject is given in Chapter 4 (section 4.4.2), in which 

radio-isotopes were used to try to establish the presence of pathways resulting in the 

accumulation of any glycolytic intermediates.

The accumulation of L-lactate in both the tissue and haemolymph of decapod 

crustaceans has been reported by a number of authors in a variety of species. The 

following table summarises the accumulation rates (umol.h~*.g“ * fresh wt. and 

mmol.r^.h- * for tissue and haemolymph respectively) and the mean maximum 

concentration of L-lactate measured (umol.g- * fresh wt. and mmol. I- * for tissue 

and haemolymph respectively). Metabolites were estimated in pooled tissue sample 

and deproteinised haemolymph.
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Table 3.4 Accumulation rates and maximum concentrations of L-lactate in the

tissue and haemolymph of decapod crustaceans, following exposure to 

environmental anoxia (10 cfc).

Species Accumulation
rate

Maximum L-lactate Reference 
concentration

Tissue
Uca pugnax (20°C) 2.20 40.0 Teal & Carey, 1967
C a l l ia n a s s a  c a l i f o r n i e n s i s i 12 C) 0.70 16.8 Zebe, 1982
Upogebia p u g e t t e n s i s  (12 C) 1.52 6.40 Zebe, 1982
O rc o n e c te s  l i m o s u s (13°C) 1.50 19.3 Gade, 1984
Menippe m e r c e n a r ia (25°C) 1.50 16-20 Albert & Ellington, 1985**
Palaemon e l e g a n s 3.97 16.7 Taylor & Spicer, 1987
Palaemon s e r r a t u s 5.60 9.60 Taylor & Spicer, 1987
C a lo c a r i s  m a ca n d rea e 0.90 30.2 Anderson, PhD Thesis, 1989
C arcinus m aenas 1.10 20.3 Present study

Haemolvmoh 4*
Upogebia p u g e t t e n s i s 1.96 39.2 Pritchard & Eddy, 197^
A t e l e c y c l u s  r o t u n d a t u s 1.26 6.30 Bridges & Brand, 1980
Carcinus m aenas 0.91 4.54 Bridges & Brand, 1980*
C o r y s t e s  c a s s i v e l a u n u s 1.73 8.63 Bridges & Brand, 1980^
G alathea s t r i g o s a 1.46 7.13 Bridges & Brand, 1980^
Homarus gammarus 0.95 7.63 Bridges & Brand, 1980^
Nephrops n o r v e g i c u s 1.75 8.74 Bridges & Brand, 1980
Macrobrachium r o s e n b e r g i i (22°C) 
O rc o n e c te s  l i m o s u s (13 C)

5.85 12.0 Mauro & Malecha, 1984
3.75 60.0 Gade, 1984

Menippe m e r c e n a r ia (25°C) 3.33 46.7 Albert & Ellington, 1985
C a l l i n e c t e s  s a p i d u s (25°C) 9.70 41.7 Lowery & Tate, 1986
C a l l i n e c t e s  s a p i d u s (32°C) 22.2 44.4 Lowery & Tate, 1986
Palaemon e l e g a n s 2.98 13.0 Taylor & Spicer, 1987
Palaemon s e r r a t u s 6.35 6.93 Taylor & Spicer, 1987
Potamon w a r r e n i (25°C) 6.40 40.3 van Aardt, 1988
C a lo c a r i s  m a can drea e 0.85 40.2 Anderson, PhD Thesis, 1989
Carcinus maenas 1.16 17.1 Present study

1 - The accumulation rate of L-lactate during anoxia (umol.h- .g fresh wt.
and mmol.r .h for tissue and haemolymph samples respectively).

2 - Maximum mean concentration of L-lactate measured (umol.g fresh wt. and
mmol.r1 ).

* - Original data re-calculated using the above units.
** - Mean concentration taken of heart, leg socket and cheliped muscles.

An inverse relationship can be observed between the accumulation rate of L-lactate 

and the anoxia tolerance of each of the species cited in Table 3.4. The thalassinids, 

with the greatest tolerance to anoxia, have the lowest rate of L-lactate accumulation 

(Zebe, 1982). Palaemon serratus which has previously been shown to have a high 

glucosyl unit utilisation rate, also has a very high rate of L-lactate accumulation 

(Taylor & Spicer, 1987). It is interesting to note that increasing the ambient
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temperature, increases the rate of haemolymph L-lactate accumulation. The 

accumulation rate of L-lactate measured for Carcinus maenas in this study, is 

consistent with an animal which is moderately well adapted to survive exposure to 

anoxic conditions.

3.4.4,2 The role of phospho-l-arginine and adenvlate nucleotides.

The majority of studies investigating the adenylate nucleotide metabolism in marine 

invertebrates have concentrated on functional (exercise) anaerobiosis (Onnen & 

Zebe, 1983; Thebault et al., 1987). Wijsman (1976) investigated the effects of 

aerial exposure on the adenylate nucleotides of Mytilus edulis, but no mention was 

made of the phosphagen, phospho-l-arginine. Phospho-l-arginine was first detected 

and isolated in crustaceans by Meyerhof and Lohmann in 1928 (cited in Onnen & 

Zebe, 1983). It is an extremely labile organic phosphoryl compound which is able 

to phosphorylate ADP under the control of arginine kinase to produce arginine and, 

more importantly, ATP. During conditions of stress, the breakdown of phospho-l- 

arginine helps to maintain the concentration of ATP (and hence the adenylate 

energy charge) at or near its normoxic level (Ebberink et al., 1979, Onnen & Zebe, 

1983; Gade, 1983). Results from this study agree with the above, with the 

concentration of ATP remaining constant throughout the first 6 h of anoxia as a 

result of the transphosphorylation of ADP by phospho-l-arginine. In recent years, 

phosphagens have also been shown to be potential regulators of glycolysis by direct 

inhibition of such key enzymes as phosphofructokinase (EC 2.7.1.11) and pyruvate 

kinase (EC 2.7.1.40) (Guderley et al., 1976; Storey, 1981; Gade, 1983, 1984). This 

subject will be discussed in greater detail in Chapter 7.

The adenylate energy charge (AEC) remained constant throughout the anoxic period 

and only decreased significantly after 12 h of anoxia. This ratio was devised by 

Atkinson & Walton (1967) as a measure of the relative proportions of the high
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energy phosphate groups. It has since been used as a means of assessing the 

physiological condition of an organism under a variety of stressful situations 

(Bestwick, 1988). In this study, the AEC was shown to be a rather insensitive index 

of metabolic condition, since a significant decrease was only observed after the 

crabs had been exposed to 12 h of anoxia. Wegener (1988) reported, however, that 

in the frog, a decrease in the AEC during 2 h of anoxia was measurable only in 

certain tissues (e.g. brain, liver and kidney tissue). Since pooled tissue samples were 

taken in the present study, it is possible that subtle changes in the AEC of specific 

tissues were missed.

3.4.4.3 Energy production under aerobic and anaerobic conditions.

One of the main problems with anaerobic respiration is the incomplete oxidation of 

the initial substrate. Under aerobic conditions a theoretical total of 39 molecules of 

ATP are produced from 1 glucosyl unit molecule (from glycogen). When the 

anaerobic pathway, culminating in the production of L-lactate, is utilised only 3 

molecules of ATP are produced for 1 glucosyl unit molecule consumed. Therefore 

under anaerobic conditions, if  aerobic rates of ATP production are to be 

maintained, the substrate store (carbohydrate pool) is soon going to be consumed. 

From measurements made in this study and the rates of oxygen consumption of 

quiescent crabs (Chapter 5), it is possible to calculate the aerobic and anaerobic rates 

of ATP production. In addition to the carbohydrate catabolism, the contribution of 

the transphosphorylation of ADP by phospho-l-arginine, to ATP production has also 

been calculated.

Under aerobic conditions the oxygen consumption rate of quiescent crabs was
i 1 1  (SCC Hen S3.2),
1.27 umol O2 .h~ .g~ fresh wt.^ Assuming that for every 1 molecule of glucosyl 

units, 6 molecules of O2  are consumed and 39 molecules of ATP are produced, 

the rate of ATP production can be calculated to be 8.26 umol.h ^.g  ̂ fresh wt.
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Under anaerobic conditions, the rate of L-lactate production in Carcinus maenas 

was 1.22 umol.h ^.g * fresh wt. (Table 3.4). The glycolytic flux was therefore 0.61 

umol.h'^g” 1 fresh wt., which resulted in a rate of ATP production of 1.83 umol.h"

l.g 'l fresh wt. The contribution of phospho-l-arginine to the production of ATP 

was directly proportional to its breakdown and amounted to 0.37 umol.h"^.g"^ fresh 

wt. Therefore the overall rate of ATP production during anaerobiosis was 2.2 

umol.h'*.g~* fresh wt., as compared with 8.26 umol.h" ̂ .g'* fresh wt. under aerobic 

conditions. There had obviously been a large reduction in energy demand during 

anoxia, in an effort to conserve the carbohydrate pool and reduce the accumulation 

of L-lactate. During anoxia, C. maenas was observed to cease all locomotor 

activity, which fits in with this reduction in energy demand. The concepts of 

metabolic regulation will be discussed further in Chapter 7.

If glycolysis continued at the aerobic rate during anoxia, one would have expected 

an ATP production rate of only 0.64 umol.h"*.g"* fresh wt. If the concentration of 

ATP does not decrease, it follows that there has been an increase in the rate of 

glycolysis during anoxia. This phenomenon is known as the ’Pasteur effect’ and was 

defined by Storey (1985a) as ’the effect of oxygen deprivation in increasing the rate 

of carbohydrate uptake and catabolism’. In this study the glycolytic flux under 

aerobic conditions was 0.21 umol.h"*.g~^ fresh wt., whilst during anoxia it increased 

to 0.61 umol.h"^.g"^ fresh wt. This represents an increase in the rate of glycolysis 

by a factor of 2.89. The Pasteur effect can only really be utilised by organisms that 

experience anoxia for short periods of time since, by definition, it increases the rate 

at which carbohydrates are consumed. Since Carcinus maenas is exposed to anoxia 

for relatively short periods of time (Chapter 2, section 2.4.1.2), the Pasteur effect is 

extremely useful in increasing the rate of glycolysis to meet the crabs’ energy 

requirements. In many organisms, that are exposed to longer periods of anoxia, the 

Pasteur effect has not been demonstrated (de Zwaan & Wijsman, 1976; Gade, 1983).
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3.4A  C om p arative a sp ects  o l  Ui& recovery of decapod crustaceans from

anaerobiosis.

Ellington (1983) stated that 2 basic processes occur during recovery from a period of 

exposure to anoxia. Firstly, there is the recharging of the phosphagen and ATP 

stores, and secondly, the disposal of the end products of anaerobic metabolism.

3.4.5,1 The recharging of the phosphaeen and ATP stores.

Numerous authors have reported that the concentrations of the phosphagens and 

ATP recover extremely rapidly (Ellington, 1981; Gade & Meinardus, 1981; Onnen & 

Zebe, 1983; Ellington, 1983). The results from this study indicated that the crabs 

are still partially respiring anaerobically during the first hour of recovery. This 

meant that the recovery of ATP and phospho-l-arginine was delayed for about 1 

h . A full recovery to pre-anoxic concentrations, required a further 2 and 8 h for 

ATP and phospho-l-arginine respectively. These recovery times are longer than have 

been reported in the literature for most molluscs (Ellington, 1983), but are 

consistent with the situation in Orconectes limosus (Gade, 1984), in which the 

concentration of phospho-l-arginine took 6 h to recover to normal levels.

11 1 2  The disposal of the anaerobic end products.

The reduction in the concentration of L-lactate in the haemolymph and tissue of 

decapod crustaceans has been widely reported. The following table summarises the 

available literature:
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Tabic 3.5 L-lactate elimination rates in the tissue and haemolymph of decapod

crustaceans.

Species Elimination
rate1

Duration of anoxia/ Reference 
and elimination

T i s s u e

Orconectes lim osus  (13°C) 1.09 12/12+ Gade, 1984
Menippe mercenaria  (25°C) 0.68 12/24 Albert & Ellington, 1985**
Palaemon elegans 1.55 6/6 Taylor & Spicer, 1987
Carcinus maenas 2.68 12/12 Present study

Haemolymph
A telecyclus rotundatus 1.05 5/6 Bridges & Brand, 1980*
Carcinus ataenas 0.87 5/5 Bridges & Brand, 1980^
Corystes cassivelaunus 1.99 5/4 Bridges & Brand, 1980^
Galatbea s tr ig o s a 0.25 5/20 Bridges & Brand, 1980^
Hooarus gamma rus 0.26 8/24 Bridges & Brand, 1980^
Nephrops norvegicus 1.20 5/6 Bridges & Brand, 1980
Macrobrachium rosen berg ii 
Menippe mercenaria  (25 C)

(22°C) 2.95 6/3 Mauro & Malecha, 1984
1.71 12/24 Albert & Ellington, 1985

C allinectes sapidus  (25°C) 5.20 5/7 Lowery & Tate, 1986
C allinectes sapidus  (32°C) 5.00 2/11 Lowery & Tate, 1986
Carcinus maenas 1.00 12/12 Present study

1 - The elimination rate of L-lactate during recovery (umol.h" .g fresh wt.
and mmoU' .h for tissue and haemolymph samples respectively).

2 - D uration o f in itia l exposure to anoxia (h) /  duration of L -lactate
elimination (h).

* - Original data re-calculated using the above units.
** - Mean concentration taken of heart, leg socket and cheliped muscles.

It can be seen from the above that the rate of L-lactate elimination is relatively 

slow compared with the initial rate of accumulation. It is also clear that the more 

anoxia-tolerant species have the fastest L -lac ta te  elim ination rates. The 

concentration of L-lactate in Carcinus maenas decreases quite rapidly, again 

reflecting the fact that this species is relatively well adapted to tolerate exposure to 

anoxia.

An interesting feature of the recovery from exposure to anoxia in Carcinus maenas 

was the extremely large increase in the concentration of L-lactate, observed during 

the first hour after the return to normoxia (Fig. 3.5). This feature has previously 

been reported in respect of functional anaerobiosis in Cherax destructor in which 

anaerobic glycolysis makes a significant contribution to the metabolic recovery 

Process’ (Head & Baldwin, 1986). Observations made during this study indicated
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that during the later stages of anoxia, C. maenas became extremely inactive, but 

resumed activity again as soon as the oxygen was reintroduced. In addition to this 

locomotor activity, the crab had to reinstate the ventilatory system and generally 

restore the tissue oxygen concentration. The energy requirements of this period 

would have been extremely large and it is highly likely that C. maenas was 

suffering from functional fatigue in certain tissues at this time and was having to 

utilise anaerobic metabolism to supplement energy requirements.

The exact mechanism of end product disposal is the subject of much debate but one 

of the proposed alternatives is that the L-lactate could be converted to its original 

substrate, via a gluconeogenic pathway. The stoichiometric comparison that was 

applied to L-lactate and the carbohydrate pool during anoxia (section 3.4.3) can be 

equally well applied to the recovery period and results in the ratio of glucosyl unit 

: L-lactate of 1:2.25. Expressed as a percentage, 88.5 % of the L-lactate 

reduction could be explained by the increase in concentration of the carbohydrate 

pool. This seems to indicate that most of the L-lactate is in fact being converted 

back to its initial substrate. Since a more direct means of investigating this subject 

would be to use radio-isotopes to trace the fate of L-lactate, further discussion of 

this subject will continue in Chapter 4.
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CHAPTER 4 - THE FATE OF L-LACTATE DURING RECOVERY FROM 

ENVIRONMENTAL ANOXIA.

4.1 INTRODUCTION.

The metabolic responses of organisms to environmental anoxia have been fairly well 

studied in decapod Crustacea (Teal & Carey, 1967; Bridges & Brand, 1980; Gade, 

1983; Albert & Ellington, 1985; Taylor & Spicer, 1987; van Aardt & Wolmarans, 

1987) (Chapter 3). U ntil recently, however, investigations into the metabolic 

responses of an organism during recovery from environmental anoxia have been 

mainly limited to determining the rate at which L-lactate disappears from the 

animal in question (Chapter 3, section 3.4.5.2). Over the last decade, a few studies 

have looked at this subject in more detail. As described in the last chapter, 

Ellington (1983) stated that recovery firstly  involved the restoration of the 

phosphagen and ATP store, and secondly the elimination of the anaerobic end 

products. The mechanism(s) by which crustaceans eliminate L-lactate during 

recovery is the subject of this chapter.

There are potentially three methods of clearance of anaerobic end products available 

to marine invertebrates (Ellington, 1983). Firstly, the organism can excrete the end 

product into the surrounding water. This has been observed to be common amongst 

the annelids (Ruby & Fox, 1976; Pionetti & Toulmond, 1980). Secondly, the end 

product could be metabolised back to its precursor, via a biochemical pathway (e.g. 

gluconeogenesis). Gluconeogenesis has been demonstrated in crustaceans by Phillips 

et al. (1977), Gade et al. (1986) and van Aardt (1988). Resynthesis of the anaerobic 

substrate, aspartate, has also been shown to occur in the polychaete Arenicola manna 

(Portner et al., 1979) and in the sea anemone Bunodosoma cavernata (Ellington, 

1982). Finally, the end product can be fully oxidised to carbon dioxide. This 

particular mechanism of end product clearance has been observed in bivalves 

(Zurburg et al., 1982), cephalopods (Monneuse-Doublet et al., 1980) and crustaceans
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(Gade et al., 1986)

In this chapter the results of a series of experiments carried out to establish which 

of the methods of L-lactate clearance were employed in Carcinus maenas are 

presented. All the experiments involved using radio-isotopes, in the forms of 

D-[U-^4C]-glucose and L-[U -^C]-lactate (Amersham International, England). Ion 

exchange chromatography was used in order to fractionate particular categories of 

labelled metabolites. The radioactivity in the resultant categories was then counted 

using a liquid scintillation counter. Similar techniques have been used previously 

to investigate recovery from exposure to anoxia in decapod crustaceans (Phillips et 

al., 1977; Gade et al., 1986; van Aardt, 1988).

Prior to directly addressing the question of L-lactate clearance, it was necessary to 

investigate the fate of D -[U -*4C]-glucose under aerobic conditions, when 

disturbance of the crabs had been kept to a minimum. Since some of the D-[U- 

^C]-glucose would inevitably be metabolised and released as ^C C ^, a second 

preliminary experiment was required to investigate the loss of radioactivity as a 

result of the excretion of carbon dioxide. The results of these experiments were to 

be used as controls and com pared directly  with the data from subsequent 

experiments, in which periods of normoxic recovery (12 h) had been preceded by 

anoxia (12 h).
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4.2 MATERIALS AND METHODS.

4.2.1 Techniques.

4.2.1.1 Ism. Exchange Chromatography.

All ion exchange columns consist of an insoluble porous matrix, usually in the form 

of polystyrene beads, with attached ionisable functional groups. In addition to the 

matrix and functional group, resins also carry an exchangeable counterion opposite 

in charge to the functional group (e.g. SO^- : Na+).

In ion exchange chromatography, the counterions are replaced by sample ions of the 

same charge. Neutral molecules and those having the same charge as the functional 

group, pass through the column, and are separated from the adsorbed ions. Another 

ion may then be used to displace and elute the adsorbed ions, or they may be 

fractionated by various elution methods which release them preferentially, starting 

with the most weakly bound. Using these techniques, various groups of 

radiolabelled metabolites were separated and the amount of radioactivity in each 

measured by scintillation counting.

Both cation (Dowex AG 50W-X8 (200-400 mesh)) and anion (Dowex 1-X8 (200- 

400 mesh)) columns were employed (both Sigma, England). In order to set up a 

column, a disc (13 mm in diameter) of glass fibre filter paper was placed in the 

base of a 2ml plastic syringe (Fig.4.1). 1.5 ml of the suspension of exchanger in 

water was poured into the syringe and allowed to settle. A larger plastic syringe (10 

ml) was attached above the column, and acted as a reservoir for subsequent elutants. 

A 2-way tap was fitted to the base of the reservoir syringe, to control the elutant 

flow rate through the column.

Since the exchanger was used more than once, after each experiment it was
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FIG. 4.1 Diagram of an ion exchange column used to 

separate particular categories of labelled metabolites. 

See text for explanation.
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necessary to regenerate it by restoring it to a low affinity ionic form. This required 

that the cation and anion columns be reconverted to the chloride and acetate forms 

respectively. The cation exchanger was regenerated by washing with 20 bed 

volumes of 1 M HC1. The anion exchanger was regenerated by washing with 20 

bed volumes of 1 M NaOH, followed by an equal volume of 1 M acetic acid. The 

column was then washed with distilled water, until the washings were shown to be 

neutral using pH indicator paper.

The metabolic groupings of glycogen (FI), amino acids (F2), neutral metabolites 

(F3), weak and strong acids (F4 and F5 respectively) were separated as shown in 

Figure 4.2. In order to check the efficiency of separation and recovery, selected 

pure commercial standard metabolites were passed through the columns. As shown 

in Appendix 14 recovery of the pure standards was in excess of 90 % .

4.2.1.2 Liquid scintillation counting.

Radioactivity causes excitation of certain compounds (fluors) which then fluoresce 

(scintillate). A photocathode detects the light emitted and converts the photons into 

an electric pulse. This is then amplified by using a photomultiplier. In liquid 

scintillation the. sample is mixed with a solvent, which contains the appropriate 

scintillator and then placed in the counter. This allows B-emitters to be detected 

with great sensitivity.

The light emitted from scintillation is normally of a very short wavelength and is

not efficiently detected by most photocathodes. In addition, various factors cause

interference with this energy transfer, known as ’quenching’. It is important,

therefore, that the degree of this quenching is determined. In the present study, 
14C-toluene was used as a standard to determine the efficiency of counting, based 

on the channel ratio method. Standards of known disintegrations per minute (dpm) 

were set up in a fluor, under exactly the same conditions as the subsequent samples
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FIG. 4.2 The elution scheme used to fractionate  

particular categories of labelled metabolites. Sample 

preparation was carried out as described in Appendix
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were set up in a fluor, under exactly the same conditions as the subsequent samples 

and the resultant counts per minute (cpm) recorded. The counting efficiency could 

then be expressed as a percentage by dividing the cpm by dpm and then multiplying 

by 100.

4.2.2 General experimental conditions.

4.2.2.1 Injection of radioactivity.

Teflon gas-chromatography septa (3 mm in diameter) were attached to the carapace 

of the crabs (fresh wt. = 3 - 7 g), immediately above the heart, using cyanocrylate 

adhesive (Permabond, England). This was to ensure that there was no leakage of 

haemolymph or radio-labelled compound from the heart, once the injection had 

been made. There was no need to drill a hole through the carapace of the crabs, 

because with crabs of this size the carapaces are relatively thin. It was quite simple 

to insert a hypodermic needle through the septum and the carapace immediately 

prior to the radiolabelled injection. Following the attachment of the septa , the 

animals were left undisturbed in fully aerated sea water for 48 hours, to allow 

them to recover from any handling stress. The stock solutions of radio-isotopes 

were diluted with Carcinus Ringer (Appendix 12) to obtain a final radioactivity 

concentration of 0.1 uCi. ul-  ̂ and 0.05 uCi. ul-  ̂ for D-[U-^4C]-glucose and L- 

[U-*4C]-lactate respectively. The solutions containing the radioactivity were then 

injected (50 ul) directly into the hearts of the crabs, through the septa and carapace, 

using a Hamilton syringe (50 ul).

H 1 2 . Tissue preparation and metabolite separation.

The frozen crabs were weighed and then the tissue was prepared according to the 

method described in Appendix 10. The elution scheme shown in Figure 4.2 was 

followed, using 1 ml of the 75 % ethanol supernatant. Each fraction was collected
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in a separate plastic scin tilla tion  vial. The strong acids (F5) were fu rther 

fractionated by precipitation of acid-soluble phosphates in the presence of barium 

salts (Kaplan and G reenberg, 1944; Sacks, 1949). The procedure for this 

precipitation can be found in Appendix 13. The strong acid fraction was thus 

divided into glycolytic phosphates (F5g) and tricarboxylic acid cycle acids (F5t).

4.2.2.3 Scintillation counting.

Scintillation counting involved mixing 0.5 ml of each fraction, with 5 ml of Ecoscint 

(Nuclear Medical Electronic Systems & Services Ltd, U.K.) in plastic scintillation 

vials . After vigorous mixing, to ensure homogeneity, these vials were transferred 

to the scintillation  counter. Background radioactivity  was determ ined by 

substituting distilled water for the sample fraction. The results were expressed in 

cpm and were then  converted  to dpm using the follow ing equation:

100
dpm = --------------------------------------- x cpm

Counting Efficiency

After subtracting the background counts from the dpm values, the percentages of 

the total amount of radioactivity recovered were then calculated. Since the results 

were all presented as percentages, it was necessary to transform the data to ensure 

that they were normally distributed before statistical analysis could be carried out. 

Therefore all statistical analysis was performed on arcsine transformed data (Sokal 

and Rohlf, 1981). Unless otherwise stated, all figures are expressed as a percentage 

of radioactivity injected.
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4-2.3 Preliminary experiments.

4.2.3J- Metabolism qL P -rU -14C1-RluCP§g during normoxia.

Septa were attached to the carapaces of 8 crabs (fresh wt. = 3 - 7 g) which were left 

undisturbed for 48 h as described in section 4.2.2.1 . Crabs were equally distributed 

between 2 plastic tanks (volume = 10 1) containing fully aerated artificial sea water 

(Chapter 2, section 2.2.2) and left undisturbed for a further 24 h .

At the end of the 24 h period, each crab was carefully removed from the tank and 

was injected with 50 ul of the solution containing D-[U-^C]-glucose (5 uCi). 

Special care was taken to minimise the disturbance to the crabs. The crabs were 

immediately returned to the tanks, and were maintained under aerobic conditions 

for the duration of the experiment (12 h).

Groups of 4 crabs were individually sampled at 6 h and 12 h post-injection and 

killed by plunging them into liquid nitrogen. A sample of the water (10 ml) was 

also taken at each time interval and stored in a glass vial. Both the tissue and 

water samples were then stored at -20 °C until needed. The samples were prepared 

and fractionated according to the methods described in Appendix 10 and in section

4.2.2.2 . The radioactivity in each of the fractions could then be measured using 

the scintillation counter (section 4.2.2.3). To determine the approximate amount of 

radioactivity incorporated into acid labile and volatile metabolites within the water, 

0.5 ml of hydrochloric acid (0.1 M) was added to 0.5 ml of the water sample. The 

acidified samples were then shaken thoroughly and left for 2 h , since previous 

experiments had indicated that acidified samples that had been left for this time, 

contained very low counts of radioactivity. 0.5 ml of the samples were then mixed 

with 5 ml of the Ecoscint and counted as described previously.
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±2.32 Incorporation o l  radioactivity from P - r u - 14q-giucose into carbon 

dioxide during periods oi normoxia.

Septa were attached to the carapaces of 4 crabs and the animals were left for 48 h 

as described in section 4.2.2.1 . Each individual crab was injected with 5 uCi of 

D-[U-14C]-glucose (50 ul) and placed in a perspex chamber, containing 300 ml of 

artificial sea water (Fig. 4.3).

The experiment was carried out in a constant temperature room, maintained at 10 + 

1°C. The water was left for 24 hours prior to each set of measurements, to allow 

it to equilibrate to the ambient temperature. The boiling tube contained 25 ml of 

’Hyamine hydroxide’( 10 % solution of methylbenzethonium hydroxide in methanol). 

Air was bubbled through the chamber containing the crab, in order to drive off any 

4̂CC>2 , which was then trapped in the ’Hyamine hydroxide’ within the boiling 

tube. Any radiolabelled bicarbonate would remain in solution in the chamber. 2 

duplicate samples (0.5 ml) were taken from the chamber (SI & S2) and a 

duplicate sample from the boiling tube (S3) at 10 minute intervals during the first h, 

then at 20 minute intervals during the next 3 h and at 1 h intervals during the final 

2 h of the experiment. After sampling, appropriate amounts of sea water and 

’Hyamine hydroxide’ were added to the chamber and the boiling tube in order to 

maintain constant volumes.

0.5 ml of hydrochloric acid (0.1 M) was added to the duplicate water samples (S2). 

The acidified samples were thoroughly shaken and left for 2 h . 0.5 ml of each of 

the samples were then mixed with 5 ml of Ecoscint, in plastic scintillation vials 

and counted as described in section 4.2.2.3 . The interpretation of the radioactivity 

m each of the samples, was as follows:

SI: Total radioactivity in chamber water.

S2: Radioactivity in chamber water, incorporated into non acid labile and
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FIG. 4.3 Diagram of the apparatus used for measuring 

the incorporation of D -[U -^C ]-glucose and L-[U - 

^ C ]- lactate into carbon dioxide by Carcinus maenas. 

See text for explanation.
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S2: Radioactivity in chamber water, incorporated into non acid labile and 

volatile compounds.

S3: Total radioactivity in boiling tube.The differences between SI and S2 were the 

amounts of radioactivity incorporated into bicarbonate/carbonate (acid labile 

and volatile fractions).

i l l  Investigation la determine lh£ Ial£ OL L-lactate during recovery from 

anoxia.

The aim of the following experiments was to determine which of the 3 methods of 

L-lactate clearance described by Ellington (1983), are utilised in Carcinus maenas.

4.2.4.1 Investigation inla 1hs. conversion q£ L-lactate back la iis. initial 

precursor, using i l  P - r u - 14q -glucose anil ill L -r u -14q -lactate.

i) D-[U-*4 C]-glucose.

Septa were attached to the carapaces of 48 crabs which were left for 48 h . 36 

crabs were then equally distributed between 4 plastic tanks (tanks 1 - 4 )  and a 

further 12 were placed in tank 5 and left undisturbed for 24 h . The experimental 

design and procedure for attaining 12  h of anoxia, followed by 12  h of recovery 

was exactly as described in Chapter 3, section 3.2.3.

The P0 2  of tanks 1 - 4  was reduced to < 1 Torr, by bubbling nitrogen through the 

water. The water in tank 5 was maintained fully aerated for the duration of the 

experiment and the animals it contained used as controls. Once the water in tanks 1 

- 4 had become anoxic, all 48 crabs were injected with 5 uCi of D-[U-*4 C]-glucose 

(50 ul), after which they were immediately returned to their respective tanks.

During the ’anoxic period’ (0 - 1 2  h), batches of 4 experimental crabs were removed
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from the tanks at 1, 4, 8 , and 12 h after the start of the experiment. The crabs 

were then rapidly killed by plunging them into liquid nitrogen. The tissue samples 

were then stored in a deep freeze (-20 °C) until required for extraction and the 

subsequent counting of radioactivity (Appendix 10 and section 4.2.2). After 12 h 

of anoxia, the Po2  of the water was returned to near saturation (Po2  approx. 160 

Torr), by bubbling air through the tanks. During the ’recovery period’ (1 2 -2 4  h) 

further batches of 4 crabs were taken at 12.5, 13, 16, 20, and 24 h . Controls 

consisted of sampling batches of 4 crabs from the aerated tank at 0, 1 and 24 h 

after the start of the experiment.

The crabs were prepared as described in Appendix 10. The resultant extracts were 

then passed through the ion exchange columns (section 4.2.1.1) and finally the 

radioactivity in each fraction measured on the scintillation counter (section 4.2.2.3). 

After the counting efficiency had been taken into account, the recoveries of 

radioactivity were calculated, as a percentage of the total radioactivity recovered.

ii) L-[U -1 4 q-lactate:

Septa were attached to the carapace of 16 crabs which were left for 48 h as 

described in section 4.2.2.1 . 10 and 6  of the crabs were then transferred to tanks 1 

and 2 respectively. All crabs were left undisturbed for a further 24 h . Apart 

from the above modifications, the experimental procedures for attaining 1 2  h of 

anoxia, followed by 12 h of recovery were exactly as described in Chapter 3, section

3.2.3.

The Po2  of both tanks was reduced to < 2 Torr and maintained at this partial 

pressure for 12 h , by bubbling nitrogen through the sea water. In this experiment, 

unlike that in section 4 .2 .4 .1 , the radioactivity was injected only after 12  h of 

anoxia. The injection (50 ul) was administered in exactly the same way as 

previously described, and consisted of 2.5 uCi of radioactivity injected in the form
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of L-[U -1 4 C]-lactate. After 12 h of anoxia, the Po2  of the water in tank 1 was 

returned to near saturation (Po2  approx. 160 Torr). During the ’recovery period’ (12 

to 24 h) 2 sample batches, each of 5 crabs were taken at 16 and 20 h. The crabs 

were rapidly killed by plunging them into liquid nitrogen and then stored at 

-20°C. A control for this experiment necessitated the continued exposure of crabs to 

anoxia. Controls therefore consisted of 3 sample batches of 2 crabs taken at 12, 16 

and 2 0  h after the start of the experiment.

All the crabs were prepared as described in Appendix 10. The resultant extracts 

were then passed through the ion exchange columns (section 4.2.1.1) and finally the 

radioactivity in each fraction was measured on the scintillation counter (section 

4.2.2.3). After the correcting for the counting efficiency, the percentage of 

recovered radioactivity in metabolic fractions (F1-F5) was calculated.

4-2.4.2 Investigation to determine whether L-lactate is oxidised to C 02.

The procedure for this experiment was exactly the same as that described in section 

4.2.3.2. apart from the following modifications. Prior to being injected, a crab with 

a septum attached to its carapace, was placed in a beaker containing 500 ml of 

artificial sea water (see above), maintained at 10 + 1°C. Anoxic conditions were 

obtained by bubbling nitrogen through the water, as described above. The beaker 

was covered with a polystyrene sheet (5  mm thick), which was cut to fit the inside 

of the beaker and which, by floating on the water surface, substantially reduced the 

water/air interface and helped to prevent the diffusion of oxygen back into the 

water. The water was sampled frequently, and the Po2  determined using an oxygen 

electrode (E5046, Radiometer, Denmark), coupled to an oxygen meter (Strathkelvin 

Instruments, Glasgow). At the end of the 1 2  h of anoxia, the crab was removed 

and injected (50 ul) with 2.5 uCi of radioactivity in the form of L-[U-*4 C]-lactate. 

The crab was then immediately transferred to the chamber (Fig. 4.3) and the 

experiment was continued exactly as described in section 4.2.3.2. Four control crabs
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which had not been exposed to the 12  h anoxic period, were injected with the 

L-[U-^C]-lactate as above and their ^ C 0 2  production measured over the 

following 6  h .

4.2,4,2 Investigation 1 0  determine whether L-lactate is. excreted.

Septa were attached to the carapaces of 5 crabs which were left for 48 h as 

described in section 4.2.2.1 . These were then placed in 5 plastic beakers (volume = 

500 ml), containing 300 ml of fully aerated artificial sea water. The crabs were 

left undisturbed for a further 24 h. Polystyrene discs were cut to fit inside the 

beakers and float on the water surface, in order to reduce the possibility of any 

oxygen from the air dissolving in the water. The mechanism for regulating the P0 2  

of the water was as described in Chapter 3, section 3.2.3.

The P0 2  of the water in all 5 beakers was reduced to < 2 Torr. Crabs were then 

injected with 5 uCi of D-[U-^C]-glucose (50 ul), in the manner described 

previously. After 12 h of anoxia the P0 2  of the water was returned to saturation, 

and the crabs left to recover for a period of 12  h under normoxic conditions, after 

which all 5 crabs were removed from the tanks and rapidly killed using liquid 

nitrogen. At the same time, the sea water in each beaker was collected and 

immediately passed through the ion exchange columns. The radioactivity in each of 

the resultant fractions was then measured on the scintillation counter. The tissue 

samples were prepared according to the methods given in Appendix 10, but the 

resulting extracts were not fractionated using ion exchange chromatography, since it 

was sufficient to know only the total amount of radioactivity retained within the 

tissue of the whole crab.
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4.3 RESULTS.

4.11 The efficiency of scintillation counting.

14C-Toluene was used as an internal standard, to determine the degree of quenching 

in each sample. The mean cpm expressed as a percentage of dpm was 74.5 + 1.3 7 . 

Since the channel ratios were constant throughout the experiments, counts per 

minute (cpm) were multiplied by 1.34 to convert to disintegrations per minute 

(dpm).

1 1 2  Preliminary experiments.

4.3.2.1 Metabolism of P -rU -1 4Cl-glucose during normoxia.

After 6  h post-injection, only 1.6 ± 0.51 % of the radioactivity initially injected, 

remained in the neutral fraction (mainly D-glucose and oligosaccharides) (Fig. 4.4). 

By this time, 69.5 + 5.6 % of the radioactivity had been incorporated into the 

amino acid fraction. The other main metabolite to incorporate radioactivity was 

glycogen, which averaged 11.9 + 2.4 %, 6  h post-injection. Radioactivity in both

the weak and strong acid fractions was less than 1 % of the total amount recovered, 

and was therefore very low.

It was found that 12 h post-injection there was evidence of turnover in both amino 

acids and glycogen, because the amount of radioactivity in these fractions had 

decreased significantly (P < 0.05) to 42.4 + 4.1 % and 4.3 + 1.8 % respectively. There 

were no significant (P > 0.05) changes in the amount of radioactivity in any of the 3 

other fractions (Fig. 4.4).
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FIG. 4.4 The percentage of D -[U -^ 4 C]-glucose

in itia lly  in jected  into Carcinus maenas, tha t was

incorporated into specific metabolic fractions (FI - F5)

under normoxic conditions. Measurements were taken

after 6 ( H )  and 12 ( □ ) hours. Values are means +

S.D.
FI - glycogen.
F2 - amino acids.
F3 - neutral compounds (including D-glucose).
F4 - ’weak acids’ (mainly L-lactate).
F5 - ’strong acids’ (glycolytic phosphates and 

TCA acids).
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The following table summarises the actual recoveries, expressed as a percentage of 

the total radioactivity initially injected.

Table 4.1 Actual recoveries, expressed as a percentage of the total 

radioactivity initially injected.

L o c a t i o n  o f  r a d i o a c t i v i t y  R a d i o a c t i v i t y  r e c o v e r e d
(%)

6 h  12 h

T i s s u e  84.1 48.9
W a t e r

- A c i d  l a b i l e  a n d  v o l a t i l e  c o m p o u n d s  14.7 36.8
- Acid s ta b le  compounds 0 .9  1.3

T o t a l  r a d i o a c t i v i t y  r e c o v e r e d  99.7 87.0

The addition of the hydrochloric acid to a water sample resulted in 94 and 97 % of 

the radioactivity contained within the water being lost to the surrounding air, after 

6 and 12 h respectively. This acid labile and volatile fraction was likely to have 

consisted almost exclusively of labelled carbon dioxide and bicarbonate/carbonate.

4.3.2.2 Incorporation q£ radioactivity Imm P -[U -1 4C1-r1uC0SS inla 

carbon dioxide during periods o£ normQxia-

The first indication of any radioactivity in the water of the chamber occurred at 2 0  

minutes post-injection, when a trace amount of radioactivity was measured (Fig. 

4.5). The presence of radioactivity in the water was less than 1 % of the 

radioactivity initially injected, but was still well above the background count and 

well within the limits of sensitivity of this experiment. There was then a gradual 

but significant (P < 0.05) increase during the next 6  h until a maximum of 5.74 + 

0.94 % of the total radioactivity injected was reached. By comparing the counts SI 

and S2, it was found that at least 98 % of the radioactivity within the chamber
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FIG. 4.5 The percentage of D -[U -^ C ]-g lu c o se  

in itia lly  in jected  into Carcinus maenas, that was 

released from the crab into the surrounding water ( ■ ) 

u n d er norm oxic conditions. The rad io ac tiv ity  

incorporated into acid stable compounds, is represented 

by the open squares (□ ). Values are means + S.D.
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water was acid labile and volatile in nature, and that it was most likely to have been 

incorporated into either bicarbonate or carbonate.

The presence of radioactivity trapped in the ’Hyamine hydroxide’ (S3) was detected 

approximately 30 minutes post-injection, when trace amounts of the total 

radioactivity injected were detected. This percentage increased significantly (P < 

0.05) during the course of the experiment to reach a maximum of 2.49 + 0.20 % 6

h post-injection.

H I  Investigation to determine &£ Ial£ of L-lactate during recovery from 

anoxia.

4.3.3.1 InvsstiRatiQn into ihs. conversion Qi L-lactate back to ito initial 

substrate, using 11 P -rU -1 4 C1-glucose mid 111 L -rU -1 4CI-lactate.

i) D-[U-1 4q-glucose.

At 1 h post-injection 73.4 + 0.52 % of the total radioactivity recovered in the tissue 

samples had been incorporated into the amino acid fraction. This figure did not 

change significantly over the remainder of the 24 h experimental period. The fact 

that the amino acids had incorporated such a high percentage of the radioactivity, 

meant that many of the trends amongst the other metabolic fractions were masked. 

Therefore, in Figure 4 .6 , the amino acid fraction has been omitted and the 

percentages for the other metabolic groups (FI, F3, F4, F5) recalculated in relation 

to radioactivity in non-amino acid fractions.

There was a significant (P < 0.05) incorporation of radioactivity into the weak acid 

fraction (mainly L-lactate - Appendix 14) during anoxia, increasing from 1.9 + 0.9 

% to 10.7 + 3.3 % after 1 and 12 h of anoxia respectively. During the same period
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FIG. 4.6 The incorporation of D-[U-*4 C]-glucose into 

specific metabolic fractions during 12  hours of anoxia 

and during a 1 2  hour period of recovery under 

normoxic conditions. The radioactivity is expressed as 

the percentage recovered in the tissues of Carcinus 

maenas. For reasons outlined in the text, the amino 

acid fraction has been omitted from these calculations. 

Values are means + S.D.

a) glycogen.
b) neutral compounds.
c) ’weak acids’.
d) glycolytic phosphates.
e) TCA acids.
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there was a corresponding decrease in the radioactivity in the neutral fraction from

35.9 ± 4.3 % to 15.6 ± 2.3 % after 1 and 12 h of anoxia respectively. Although 

there was an increase in the radioactivity in glycogen during this period, this change 

was found to be not significant (P > 0.05). The radioactivity in the glycolytic 

phosphate fraction increased from 3.6 + 0.9 % to 11.4 + 3.0 % during the anoxic 

period, indicating the possibility of an accumulation of glycolytic intermediates. 

There was no significant (P > 0.05) change in the radioactivity in the tricarboxylic 

acid fraction.

During the first hour of recovery, the percentage of radioactivity in the weak acid 

fraction increased significantly (P < 0.05) from 10.7 + 3.3 % to 23.4 + 3.1 %, 

reflecting the heavy reliance on anaerobic metabolism that was observed in Chapter 

3, section 3.3.3.1 . Thereafter the percentage decreased significantly (P < 0.05) to

3.9 + 1.7 %, whilst the radioactivity within the glycogen fraction increased 

significantly (P < 0.05) from 59.5 + 13.9 to 84.5 + 7.4 % . During the recovery 

period the radioactivity in the neutral compounds and the tricarboxylic acid 

fractions remained constant (mean values = 6 . 6  + 1.3 % and 1.83 + 0.51 % 

respectively). There was, however, a significant (P < 0.05) decrease in the 

radioactivity within the glycolytic phosphate fraction, particularly during the first 

30 minutes of recovery.

In those crabs exposed to anoxia there was significantly (P < 0.05) less radioactivity 

incorporated into the glycogen fraction during the first hour of the experiment, than 

was incorporated by control crabs maintained under normoxic conditions.

ii) L-[U-^C]-lactate.

At 4 h post-injection (16 h after the start of the experiment) 6 8 . 8  + 6.7 % of the 

radioactivity, recovered in the tissue, was still located in the weak acid fraction,

13.9 + 4.9 %, 11.2 + 2 .7  % and 5.63 + 2.2 % was now found in the glycogen, amino
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acid, and undifferentiated strong acid fractions respectively.

At 8  h post-injection (20 h after the start of the experiment) there had been no 

significant (P > 0.05) change in the incorporation of radioactivity into the glycogen 

fraction. But the radioactivity in the weak acid fraction had decreased to 19.9 + 3.8 

%, whilst the proportion incorporated into the amino acid fraction had increased 

significantly (P < 0.05) to 66.7 + 5.5 % (Table 4.2)

Table 4.2 - Incorporation of L-[U- ^ t]-lactate during recovery period

following environmental anoxia.

Time p o s t  - i n j e c t i o n  

(h)

n

inFI*

R a d i o a c t i v i t y  r e c o v e r e d  
s p e c i f i c  f r a c t i o n s  (%)* 

F2 F3 F4 F5*

4 ( C o n t r o l ) * * 1 3 . 3 7 < 1 < 1 9 5 . 0 -

4 4 1 3 .9 1 1 .2 < 1 6 8 . 8 5 . 6 3
( 4 . 9 ) ( 2 . 7 ) ( 6 . 7 ) ( 2 . 2 )

8 4 1 0 .4 6 6 . 7 < 1 1 9 . 9 2 . 0 9
( 3 . 1 ) ( 5 . 4 ) ( 3 . 8 ) ( 0 . 8 )

1 Expressed as a percentage of the radioactivity initially injected.

* FI = Glycogen; F2 = Amino Acids; F3 = Neutral Compounds; F4 = Weak 

Acids and F5 = Strong Acids (See text for further information).

** Animals maintained under continued anoxia.

- Values given in parentheses are standard deviations of the means.

The LT^q for Carcinus maenas under anoxia was found to be 15.8 h (Chapter 3, 

section 3.3.2), so it was not surprising that 3 out of the 4 control crabs kept under 

continued anoxia died in this experiment. In the single crab that survived, 95 % of 

the radioactivity remained in the weak acid fraction as lactate, 4 h after the initial 

injection. This compares with the situation in the experimental crabs in which only
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68 .8  ± 6.7 % of the radioactivity remained in the weak acid fraction, after the same 

length of time. Since only a single control crab survived, no statistical significance 

could be attached to this difference.

4.3.3,2 Investigation to determine whether L-lactate is oxidised to C 02■

Radioactivity was first detected in the chamber water 20 minutes post-injection, 

when trace amounts were measured (Fig 4.7). The rate of incorporation of 

radioactivity into ^CC^/HCO^- was initially very rapid, but slowed down after 

3 h . Incorporation of radioactivity into ^C C ^/H C C ^- levelled-off at about 8  % 

of the total radioactivity injected. In the control crabs the temporal trends were the 

same as in the experimental animals, but the maximum percentage incorporation of 

radioactivity into the ^CC^/H CC^- was greater with a mean of 11.3 + 1.26 % .

Acidifying the chamber water samples revealed, as in section 4.3.2.2., that at least 

98 % of the radioactivity observed in the water was acid labile, and likely to be 

attributable to bicarbonate, carbonate and carbon dioxide.

13,3-3 Investigation & determine whether L-lflCtatS i& excreted-

At the end of the experiment 74.5 + 2.06 % of the radioactivity recovered, remained 

within the crab tissue and 25.5 + 1.87 % was detected in the incubation water 

(Table 4.3). To answer the question relating to the possible excretion of 

metabolites, it was unnecessary to fractionate the tissue extracts into the various 

metabolite groups. The sea water in each beaker contained on average 25.5 % 

of the total amount of radioactivity recovered, of which 24 + 2.4 % was located in 

the carbon dioxide/bicarbonate fraction. The amino acid, neutral, weak and strong
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FIG. 4.7 The percentage of L - [U -^ C ]- la c ta te  

in itia lly  in jected  into Carcinus maenas, that was 

released from the crab into the surrounding water 

during recovery under normoxia. Data for control 

crabs previously maintained under normoxia for 1 2  

hours are represented by open squares (□), whilst those 

previously maintained under anoxia for 1 2  hours are 

represented by the closed squares ( ■ ). Values are 

means + S.D.
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acid fractions all contained very low counts of radioactivity (< 1 %). There was 

therefore no evidence to suggest that L-lactate or any other of the metabolites, apart 

from carbon dioxide and bicarbonate, were excreted during either anoxia or the 

normoxic recovery period.

Table 4.3 - Distribution of radioactivity within the incubation water,

following recovery from environmental anoxia.

M e t a b o l i t e  f r a c t i o n  R a d i o a c t i v i t y  r e c o v e r e d
i n  i n c u b a t i o n  w a te r  (%)*

Carbon d i o x i d e  / b i c a r b o n a t e  2 4 . 0  + 2 . 4 0

Amino A c i d s  0 . 3 2  + 0 . 0 8

N e u t r a l  Compounds 0 . 3 8  + 0 . 2 3

'Weak' A c id s  0 . 2 7  +, 0 . 1 9

' S t r o n g '  A c id s  0 . 0 5  +. 0 . 0 3

* - Expressed as a percentage of the total radioactivity recovered, 
n.b. - The remaining 76 % of the radioactivity was recovered in the tissue 

of the experimental animals.
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4.4 DISCUSSION.

4 £ 1  Incorporation fi£ D -fU -14Cl-glucose fa Carcinus maenas during 

normoxia.

D-[U-1 4C]-glucose has been used to investigate carbohydrate metabolism in 

crustaceans for over 30 years. When Scheer & Scheer (1951) failed to find any 

labelled carbon dioxide being produced in Panulirus penicillatus or P. japonicus, 

after an injection of D -[U -1 4 C]-glucose, it was thought that glucose metabolism in 

crustaceans was radically different to that in other invertebrate groups. Hu 

(1958) showed conclusively, however, that an injection of uniformly labelled D-[U- 

4̂C]-glucose into intermoult crabs, did result in the production of labelled 

respiratory carbon dioxide. Hu ascribed the inability of Scheer & Scheer to 

demonstrate the production of ^4 C0 2 > to differences in the moulting cycles of the 2 

types of crustaceans, but others have felt that the problems have more to do with 

the techniques used. Similar findings to those of Hu (1958) have been reported by 

Bergreen et al. (1961) confirming the existence of the glycolytic pathway in decapod 

crustaceans.

The results of the present study are in agreement with those reported above, with 

labelled carbon dioxide being detected after an injection of labelled D-[U-^4 C]- 

glucose. The exact percentage of incorporation of total radioactivity into carbon 

dioxide, varies considerably, ranging from 41 % in the xiphosuran Limulus 

Polyphemus after 3 h (Stetten, 1982) to 9 % in Hemigrapsus nudus after 13 h (Hu, 

1958). Bergreen et al. (1961) tried to relate the influences of sex and stage of moult 

cycle to the extent of glucose oxidation (carbon dioxide excretion), but concluded 

that these factors could not explain the variations in CO2 production observed 

between individuals. In this present, study 8.23 + 0.94 % (Fig. 4.5) of the total 

radioactivity injected was incorporated into ^4 C0 2  and/or HCO3 under normoxic
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conditions. It is difficult to distinguish between 1 4HC03" and 1 4 C 02, because a 

great deal of the former readily dissociates into the latter in sea water.

Incorporation of D-[U-^4 C]-glucose into other metabolites, have been measured 

previously in Hemigrapsus nudus (Hu, 1958) in which radioactivity was detected in 

glycogen and oligosaccharides and glycolytic sugar phosphates. Huggins (1966) 

found that D -[U -1 4 C]-glucose was incorporated into L-lactate, sugar phosphates 

and alanine, in the gill, hepatopancreas and muscle tissue of Carcinus maenas in 

vitro. Since little activity was detected in tricarboxylic acid cycle intermediates, 

Huggins was of the opinion that pyruvate was probably being transaminated or 

reduced rather than oxidised via the TCA cycle. More recently, Zaba & Davies 

(1980) found that in mantle tissue preparations of the bivalve Mytilus edulis, D-[U- 

4̂C]-glucose was metabolised in vitro into glycogen (46 %), amino acids (35 %), 

organic acids (13 %), C 0 2  (5 %) and lipids (1 %).

In the present study, a far greater incorporation of D-[U-*4 C]-glucose into amino 

acids was found, at the expense of glycogen and the organic acids (Fig. 4.4). This 

incorporation of D-[U-^4 C]-glucose into the other metabolic fractions is extremely 

rapid, since only 1.6 % of the injected radioactivity remained in the form of D- 

glucose after 6  h . There was also evidence for glycogen and amino acid turnover, 

since percentage incorporation in crabs taken after 12  h post-injection was 

significantly (P < 0.05) lower than those taken after 6  h .

4,4.2 Investigation into the conversion a f  L-lactate back la  its initial 

substrate during recovery.

Although the primary aim of this chapter was to investigate the energy metabolism 

involved in the recovery from anaerobic metabolism of decapod crustaceans, studies 

involving D-[U-*4 C]-glucose have also revealed a great deal about the metabolic
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responses of Carcinus maenas to the anaerobic conditions themselves. The following 

observations serve largely to reinforce what has already been described in Chapter 3 .

The trends observed in the incorporation of radioactivity into the weak acid 

fraction, (mainly L-lactate), are very similar to those reported previously for the 

changes in concentration of L-lactate (Chapter 3) (Fig. 4.8).

The lack of significant change in the incorporation of radioactivity into the TCA 

fraction, lends support to the statement made in section 3.3.3.3, that anaerobic 

pathways culminating in the production of organic acids are of minor importance in 

decapod crustaceans.

Finally, the existence of an accumulation of glycolytic intermediates was postulated, 

since a lag was observed between the catabolism of glycogen and the production of 

L-lactate (section 3.4.4.1.). Since this accumulation would take the form of 

glycolytic phosphates, one would expect an increase in the incorporation of 

radioactivity into this fraction (F5g). A significant (P < 0.05) increase was 

observed during this study, but the exact identity of the metabolites labelled in this 

fraction were not determined and so the existence of this intermediary accumulation 

remains in question.

After the first hour of the recovery period, the percentage incorporation of 

radioactivity in the weak acid fraction (F4) decreased dramatically, whilst there was 

an increase in the radioactivity found in glycogen. This indicated the occurrence of 

gluconeogenesis, but there was no direct evidence to suggest that the radioactivity 

involved in the increased incorporation into the glycogen was in fact from the weak 

acid fraction.

To answer this question unambiguously, L-[U-^C]-lactate was used as it was 

considered to be a better labelled precursor with which to investigate the presence
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FIG. 4.8 A comparison of 2 methods of assessing the 

trends in pooled tissue L-lactate in Carcinus maenas 

during 1 2  hours of exposure to anoxia, followed by 12  

hours of recovery under normoxia. The percentage of 

radioactivity recovered from the pooled tissues of 

Carcinus maenas, that was incorporated into L-lactate 

( ■ )(values from  Fig. 4.6). The change in the 

concentration of L-lactate determined by enzymic 

methods ( □ ) (values from Fig. 3.5). See text for 

further details.
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or absence of gluconeogenesis. Phillips et al. (1977) suggested that decapod 

crustaceans had a poor capacity for lactate metabolism, but still showed a slow 

incorporation of L -[U -1 4 C]-lactate into glucose in the haemolymph of Cherax 

destructor. Stetten (1982) failed to show gluconeogenesis in the xiphosuran Limulus 

polyphemus, following an injection of L-[U-14 C]-lactate. This was not surprising, 

however, since L. polyphemus contains a lactate dehydrogenase which is specific for 

the D-lactate stereoisomer only (Long & Kaplan, 1973). Gade et al. (1986) repeated 

the experiment by injecting L. polyphemus with D-[U-1 4 C]-lactate and Menippe 

mercenaria with L -[U -^4 C]-lactate and clearly demonstrated gluconeogenesis, as 

well as a large incorporation of radioactivity into amino acids (mainly alanine). 

Recently, van Aardt (1988) showed that gluconeogenesis occurred in the river crab 

Potamonautes warreni. In all these studies the authors stressed that the rates of 

gluconeogenesis were extrem ely slow when compared with the process in 

vertebrates. Coulson (1987) reports for example that a 2 g shrew after 3 minutes of 

forced exercise, will restore their glycogen levels in just 1 .6  minutes.

Results from the present study show conclusively that L -[U -* 4 C]-lactate is 

incorporated into glycogen and then into amino acids, in the shore crab Carcinus 

maenas. Percentage recoveries in the particular fractions are very similar to those 

reported by Gade et al. (1986) in Menippe mercenaria.

The sites of lactate metabolism and gluconeogenesis in decapod crustaceans remain a 

matter of controversy. Many studies on this subject have used Carcinus maenas as 

the experimental animal. Thabrew et al., (1971) demonstrated that the gill tissue of 

this crab was capable of gluconeogenesis. It was also reported in that investigation, 

that there were seasonal variations in the glucose production rate and also that fatty 

acids stimulated gluconeogenesis by inhibiting pyruvate oxidation. At about the 

same time there were a series of studies demonstrating that the haemocytes in 

Libinia emarginata and Carcinus maenas contained glycogen and glucose-6 - 

phosphatase (Johnston & Fisher, 1968; Johnston et al., 1971; Johnston & Davies,
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1972; Johnston et al., 1973). These studies demonstrated the presence of small 

amounts of phosphoenolpyruvate-carboxykinase and pyruvate carboxylase in the 

haemocytes, indicating a possible site of gluconeogenesis. Finally, Munday & Poat 

(1971) have suggested that the hepatopancreas is the major site for gluconeogenesis 

in crustaceans. Phillips et al. (1977) found, however, that the conversion of lactate 

to glucose could not be demonstrated with in vitro preparations of the 

hepatopancreas, gill or haemolymph of Cherax destructor.

4,L l  Investigation & determine whether L-lactate Is oxidised & C 02-

In addition to the present study, the production of l 4 C 02  during recovery, 

following an injection of L -[U -1 4 C]-lactate has been determined in 2  other 

investigations, involving 2 separate species. A similar experiment was performed 

using the xiphosuran Limulus polyphemus and is included in the following table by 

way of comparison:

Table 4.4 Percentage of injected L-[U- *fc]-lactate incorporated into carbon 

dioxide during recovery from environmental anoxia.

S p e c i e s  I n c o r p o r a t i o n  o f  Time a f t e r  R e f e r e n c e
L-[U-  C ] - l a c t a t e  i n j e c t i o n
as  carbon  d i o x i d e  (h)

(%)

Crustacea

Menippe mercenaria 9-21 4 Gade e t  a l . , (1 986)
Potamonautes warreni 10 5 van A a r d t , (1988)
Carcinus maenas 7 - 9 6 P r e s e n t  s t u d y .

Xifihosuran

Limulus polyphemus 1 4-4 5 4 Gdde e t  a l . , (1986)

* Incorporation expressed as a percentage of radioactivity recovered.
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Gade et al. (1986) found that the incorporation of radioactivity into carbon dioxide 

varied considerably, depending on the activity level and previous physiological 

history of the animal. It is inadvisable to attach too much significance to the 

differences in Table 4.4, since each investigation had different methods and was 

carried out using different species of animals. The oxidation of L-lactate in the 

decapod crustaceans appear to represent a very minor method of anaerobic end 

product clearance. This is in contrast to Limulus polyphemus, which is far more 

heavily reliant on complete oxidation for the clearance of D-lactate.

4.4.4. Invs&iRaUQn & sL&tsnnins whether L-lactate excreted.

As reported in the introduction, excretion of anaerobic end products is common in 

annelids and has been shown to occur in bivalves. In these groups it is more 

advantageous to lose the energy-rich carbon skeleton of the end product, than to 

expend further energy in re-metabolising it into a more useful and less toxic 

compound. Amongst the decapod crustaceans, excretion of L-lactate has been 

reported only rarely, de Zwaan & Skjoldl (1979) found that between 27 and 52 

% of the total L-lactate produced by the isopod Cirolana borealis was excreted into 

the surrounding water.

In an investigation by van Aardt (1988) of the anaerobic metabolism in the crab, 

Potamonautes warreni, a significant d ifference was observed in acid-stable 

radioactivity within the incubation water, between experimental and control crabs. 

An explanation was put forward by W.R. Ellington (quoted in van Aardt, 1988), 

tentatively postulating the existence of a possible lactate:H symport system in the 

gills. In the present study and that of Gade et al. (1986), very little or no acid- 

stable radioactivity was observed, indicating that lactate was not in fact excreted. 

This is consistent with the findings of Bridges & Brand (1980) who failed to
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demonstrate any L-lactate excretion in a range of marine crustaceans.

Results from the present study, give the clearest evidence so far that L-lactate is not 

excreted during the recovery period. 24 + 2.4 out of 25.5 + 1.87 % of the 

rad ioactiv ity  found in the incubation  w ater can be a ttr ib u ted  to carbon 

dioxide/bicarbonate. Only trace amounts of radioactivity were found in the other 

metabolic fractions. These results are in close agreement with those of Gade et al. 

(1986).

This chapter has shown quite clearly that, in Carcinus maenas, end product 

clearance primarily involves the conversion of L-lactate back to its initial substrate. 

There is also evidence of complete oxidation of end products to carbon dioxide, but 

it is impossible to state whether this is direct oxidation of pyruvate from L-lactate 

or oxidation of pyruvate from gluconeogenically produced radiolabelled D-glucose.
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CHAPTER 5 - THE RESPIRATORY RESPONSES OF CARCINUS MAENAS TO 

CONDITIONS OF ANOXIA AND SUBSEQUENT RECOVERY.

5.1 INTRODUCTION.

Previous chapters have concentrated on the metabolic responses of Carcinus maenas 

to conditions of anoxia and recovery, with little attention being given to the 

respiratory consequences of such conditions. Although the respiratory aspects of 

decapod crustaceans to declining oxygen tension have been previously studied 

(McMahon & Wilkens, 1983 - for review), it was felt that an investigation into these 

respiratory responses in the present study was necessary for two reasons. Firstly, to 

complement the extensive metabolic data already collected, it would be useful to 

have the comparable respiratory data measured under identical conditions on the 

same population of animals. Secondly, it was hoped that some insight into the 

respiratory responses of C. maenas to anoxia, might help to explain the heavy 

reliance on anaerobic metabolism observed during the initial stages of recovery from 

the period of anoxic conditions.

The experiments and measurements described in this chapter were confirmatory in 

nature and were not intended to be a comprehensive study of the respiratory 

physiology of Carcinus maenas. The experiments were divided into 2 main subject 

areas:

i) An investigation of oxygen regulation during exposure to conditions of 

declining P0 2  and subsequent recovery.

ii) An investigation of some of the param eters effecting the acid-base 

balance during anoxia and subsequent recovery.

Throughout all the previous experiments involving anoxia, it has been determined 

that the P0 2  of the sea water decreased to < 2 Torr, when a gaseous mixture of 

nitrogen /carbon dioxide was bubbled through it, and it has been assumed that at
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the same time the crab’s haemolymph became oxygen depleted. Similarly, when air 

was reintroduced and the sea water became re-aerated at the end of the anoxic 

period, it was assumed that the haemolymph of the crabs would also rapidly again 

become saturated with oxygen. In order to substantiate these assumptions, an 

experiment was carried out to measure the P0 2  of the postbranchial haemolymph, 

both under conditions of declining P0 2  and when the air was reintroduced again at 

the beginning of the recovery period.

The rate of weight specific oxygen consumption (M0 2 ) was measured throughout the 

experiment, to obtain a further measure of metabolic rate. In addition, the heart 

rate was determined, since, amongst decapod crustaceans, it has previously been 

shown to be sensitive to environmental variations (McMahon et al., 1974; Taylor, 

1981; Wheatly & Taylor, 1981; Bradford & Taylor, 1982; Taylor, 1984).

The acid-base balance of Carcinus maenas under conditions of anoxia and 

subsequent recovery  was s tud ied  by m easuring the to ta l carbon dioxide 

concentration (CCO2 ) and the pH of the haemolymph. The concentration of 

bicarbonate (HCO3 - ) and the partial pressure of carbon dioxide (PCO2 ) were then 

calculated. To assess the possible role of exoskeletal carbonate buffers (mainly 

calcium carbonate), the concentration of calcium was also determined.
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5.2 MATERIALS AND METHODS.

L2A Ea2 a l  postbranchial haemolymph.

A small hole was drilled through the carapace above the pericardial cavity of 42 

crabs (fresh wt. range = 5 - 1 5  g). The holes were drilled using a dental drill 

(Baxter Dental Supplies), with care being taken to avoid penetrating the hypodermis. 

The holes were drilled to facilitate the insertion of the hypodermic needle, during 

haemolymph sampling. The crabs were then left to recover for 24 h in fully 

aerated artificial sea water (Tropic Marin - Chapter 2, section 2.2.2) maintained at 

10 + 1°C.

The crabs were then distributed equally between 10 plastic tanks (volume = 10 1) 

and left undisturbed for a further 24 h . The P0 2  of water in the tanks was 

reduced to < 2 Torr, by bubbling a nitrogen/carbon dioxide mixture (Chapter 2, 

section 2.2.3) through the sea water. Before the haemolymph samples were taken, 

the syringes and needles were filled with nitrogen, to try to prevent oxygen in the 

air contained within the dead space of the needle from augmenting the oxygen in 

the haemolymph. Postbranchial haemolymph samples (500 ul) were taken from 3 

crabs at the following times: 0, 0.5, 1, 2, 3 and 4 h after the start of the experiment. 

This was done by removing the crabs from the water and inserting the hypodermic 

needle (26 g) directly into the heart through the hole in the carapace. Care was 

taken to take the sample within 15 seconds and to avoid the entry of air bubbles 

into the syringe. Attempts were made to obtain haemolymph samples from crabs 

still under the water, but this technique was not successful since it appeared to 

cause more disturbance to the crab and also to the surrounding crabs, than simply 

removing the animal from the tank.

After the crabs had been exposed to anoxia for a period of 1 2  h, the P0 2  of the 

water was returned to normoxic levels by bubbling air through it. Further 

haemolymph samples from 3 crabs were taken at the following times after they had
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been returned to normoxic conditions: 0, 5, 10, 20, 30, 40, 50, 60 minutes. The Po2 

of the haemolymph sample was determined using an oxygen electrode (E5046, 

Radiometer, Denmark) contained within a thermostatted water jacket, which was 

maintained at 10 + 1°C . The oxygen electrode was coupled to an oxygen meter 

(Strathkelvin Instruments, Glasgow) and a pen recorder (Tekman). The Po2 

electrode was calibrated using a solution of sodium tetraborate (0.01M) containing a 

few milligrams of sodium sulphite to produce a Po2 of zero. Saturated sea water 

was also used to calibrate the oxygen electrode. Haemolymph samples were 

injected into the chamber surrounding the electrode and the Po2  measured. After 

each measurement the system was flushed with distilled water.

Sea water samples (500 ul) were also taken at the same time as the haemolymph 

samples, and their Po2  measured as above. These were then compared directly with 

the Po2  measurements of the postbranchial haemolymph (Pao2).

1 1 2  Oxveen Consumption.

A closed respirometer was used to determine the rate of oxygen consumption of 

crabs during the recovery period. The respirometer consisted of a perspex container 

(volume 175 ml) with an enclosed magnetic stirring bar, which ensured that the sea 

water was constantly mixed (Fig. 5.1). Changes in the Po2  of the water in the 

respirometer were monitored using an oxygen electrode (E5046, Radiometer, 

Denmark), connected to an oxygen meter (Strathkelvin Instruments, Glasgow) and a 

pen recorder (Tekman). The electrode was inserted into the lid of the chamber, so 

that the Po2  could be continuously monitored. The electrode was calibrated as 

described previously (section 5.2.1). A storage column was placed above the 

respirometer and connected to it via a 2-way tap. This allowed the rate of flow of 

water through the respirometer to be carefully controlled when the water was 

changed. A header tank was placed above the storage column, to reduce bubbles
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FIG. 5.1 Diagram of the closed respirometer used for 

measuring oxygen consumption in Carcinus maenas. 

See text for explanation.
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caused through aeration of the water from entering the respirometer. The 

experiment was carried out in a constant temperature room, at 10 + 1°C.

Preliminary experiments using sea water from the aquarium system showed that 

background respiration rates were high due to microflora living within the system. 

A rtificial sea w ater was therefore used and made up freshly before each 

experimental run. In addition, the respirometer, reservoir column and the header 

tank were all sterilised using a 1 0  % solution of sodium hypochlorite solution 

between each experiment.

A nitrogen/carbon dioxide mixture (Chapter 2, section 2.2.3.), was bubbled through 

the sea water in the header tank to reduce the P0 2  to < 2 Torr. The header tank 

was covered with a polystyrene sheet (5 mm thick), which was cut to fit the inside 

of the tank and which, by floating on the water surface, substantially reduced the 

water/air interface and helped to prevent the diffusion of oxygen back into the 

water. The water from the header tank then drained into the storage column, 

which in turn  flowed into the respirometer. When normoxic conditions were 

required, air was substituted for the nitrogen/carbon dioxide mixture.

5 crabs (fresh wt. range = 1 - 5 g) were placed in a plastic tank (volume = 10 1) of 

continually aerated artificial sea water and were left undisturbed for 24 h . One 

crab was transferred to the respirometer, which was then filled with aerated sea 

water from the reservoir and the inflow and outflow taps were then closed. It was 

left for 1 2  h under normoxic conditions, to allow the crab sufficient time to 

recover from handling stress. The rate of oxygen consumption was measured 

throughout this period. It was necessary to flush the chamber with fresh water 

after every 4  h to ensure that the water did not become too hypoxic and to prevent 

the accumulation of metabolic waste products. This was done by opening both the 

inflow and outflow taps and allowing fully aerated sea water to flow through the
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respirometer and then closing both taps again.

After this 12 h period, the P0 2  of the water in the header tank was reduced, as 

described earlier. The inflow and outflow taps were again opened and the anoxic 

water was flushed through. When the respirometer water was fully anoxic the taps 

were closed. Anoxia was maintained for 12 h during which time the water was 

changed after 4 and 8  h to ensure that metabolic waste products did not accumulate.

After the crabs had been exposed to anoxia for 12 h, the P0 2  of the water was 

returned to normoxic levels by bubbling air through the header tank and then 

passing this aerated water through the storage column and into the respirometer. 

The oxygen consumption was then measured during the subsequent recovery period 

(12 h). Fresh, aerated sea water was flushed through the respirometer every 4 h , to 

prevent the water becoming hypoxic and the accumulation of metabolic waste 

products. A fter the recovery period, the crab was removed and the background 

oxygen consumption of the chamber microflora was then measured.

The rates of weight specific oxygen consumption (M0 2 ) were then calculated using 

the following equation:

i " ^°2 f) x a ®2) x  X 2

W

M0 2  = Oxygen consumption (umol 0 2 -h- *.g- * fresh wt.).

Po2 j = Initial partial pressure of oxygen in respirometer.

P°2 f = Final partial pressure of oxygen in respirometer (i.e. after 30 minutes). 

a02 = Solubility coefficient of oxygen at 10 °C.

V = Volume of the respirometer (litres).

W = Wet weight of crab (g).

<«Po2
Mq2  = -------------
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The background rate of oxygen consumption was then subtracted from the rates 

measured for individual crabs.

5.2,1 Heart rate.

The heart rate was recorded using the impedance technique as originally described 

by Hoggarth and Trueman (1967), with modifications suggested by Spaargaren 

(1973) and by Dyer and Uglow (1977). The electrodes consisted of shellac-coated 

copper wire (0.28 mm in diameter), from which the last 1 millimetre of shellac had 

been removed. This wire electrode was inserted through the carapace immediately 

above the heart and held in place by cyanoacrylate adhesive (Permabond, England). 

The hardening of the adhesive was accelerated using methyl methacrylate. Care was 

taken not to add too much methyl methacrylate since it was highly toxic to the 

crabs. 5 crabs (fresh wt. range = 5 - 15 g) had electrodes inserted in this manner 

and were then left to recover from handling stress for a least 48 h in fully aerated 

sea water, in a constant temperature room at 10 + 1°C. The electrodes were 

attached to a Washington impedance pneumograph and pen recorder (Tekman). A 

small oscillating current (2 uA, 25kHz) was induced between a fine wire electrode 

inserted into the crab and a larger reference electrode consisting of an aluminium 

plate placed in the tank. Normal beating of the heart, caused a change in the 

impedance, between the electrodes and this was converted to a voltage which was 

amplified and recorded on a chart recorder.

A crab with an electrode attached to it was transferred to a beaker (volume = 1 1 )  

containing 800 ml of aerated artificial sea water. Following a 24 h period, during 

which time the crab was left undisturbed, the P0 2  of the water was reduced to < 2 

Torr (over a 4  h period), using a gas mixture of nitrogen and carbon dioxide, 

regulated by a precision gas mixing system, which was pumped through an air-stone 

into the container. The P0 2  of the water was monitored continuously using an 

oxygen electrode coupled to an oxygen meter as described previously. The beaker
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was covered with a polystyrene sheet for reasons previously described. Following a 

12 h anoxic period, the sea water in the beaker was re-aerated. The heart rate was 

monitored throughout the experimental period, along with the corresponding Po2 of 

the water.

5.2.4 Acid-base balance during anoxia and recovery

5.2.4.1 General experimental procedure.

A small hole was drilled through the carapace above the pericardial cavity of 26 

crabs (fresh wt. range = 5 - 15 g), as described previously (5.2.1). The crabs were 

then left undisturbed for 24 h, in fully aerated artificial sea water maintained at 10 

± 1°C.

26 of the crabs were then distributed amongst 6  plastic tanks (volume = 10 1) (4 

crabs in tank 6 ) containing aerated sea water and left for a further 24 h. In all 6  

tanks the sea water was continuously aerated and maintained at 10 + 1°C.

The Po2  of the sea water in the first 5 tanks was reduced to < 2 Torr by bubbling a 

nitrogen/carbon dioxide mixture through the water (Chapter2, section 2.2.3 for 

more details). The water in the 6 th tank was maintained fully aerated throughout 

the experiment. After the crabs had been exposed to anoxia for a period of 12 h, 

the Po2  of the water in the 5 tanks was returned to normoxic levels by bubbling air 

through it. Haemolymph samples (1 ml) were taken from a further 2 crabs at each 

of the following times 0, 3, 6 , 9, 12, 12.5, 13, 15, 18, 21 and 24 h after the start of 

the experiment (5.2.1). Haemolymph samples from control crabs, maintained under 

normoxic conditions were obtained at 0 and 24 h .
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5.2.4,2 Measurement o f ih£ £ c a 2 and the pH of the haemolvmnh

The total carbon dioxide content of the haemolymph (Cco2) (i.e. C 0 2  + HCO3 " + 

C 032 -) was determined on duplicate samples (10 ul) following the method of 

Cameron (1971). This method utilises the fact that the carbon dioxide/bicarbonate 

system is pH dependent. Therefore in the presence of HC1 (0.01 M), any 

bicarbonate and carbonate in a haemolymph sample immediately forms carbon 

dioxide. In the present study, a Pco2  electrode (Radiometer E5037) was connected 

to a Radiometer PHM73 meter. The electrode was inserted into a thermostatted, 

stirred cell (volume 345 ul), filled with HQ (0.01 M) and thermostatted to 30 °C to 

speed the reaction. The haemolymph sample (10 ul) was injected into this cell and 

the bicarbonate or carbonate displaced as carbon dioxide. The increase in the Pco2 

of the solution was detected by the electrode and recorded on a chart recorder. By 

using potassium bicarbonate (10 mM) as a standard, it was possible to calculate the 

concentration of total carbon dioxide in the original haemolymph sample.

The pH of the haemolymph was determined by drawing haemolymph samples into 

the microcapillary pH electrode (thermostatted to 10 °C) of a Radiometer BMS II 

which was connected to a PHM 73 pH m eter (Radiom eter, Copenhagen). 

Calibration involved using precision buffers (Radiometer S1500 and S1510).

L2A 1  Calculation q£ E£ £ 2  and IICC>3 ~-

The Pco2  of the haemolymph was calculated from the values of pH and Cco2, using

the modified Henderson-Hasselbalch equation (McMahon et al., 1978).

Cco2  -ar.Pco2
pH = pK’i + log---------------------

ar.Pco2

Values for the constants pK’j and<*C0 2  (solubility coefficient of carbon dioxide) at 

the appropriate temperature (10 °C) and salinity (32 %o), were taken from Truchot 

(1976).

100



The concentration of haemolymph bicarbonate was calculated from the following 

equation:

[HCO3 "] = Cco2  - (<xPco2 )

This assumes that, at physiological pH values, the concentrations of carbonates and 

carbamates are negligible.

The remaining haemolymph samples were then centrifuged (10,000 g) for 10 

minutes to remove any cellular debris and then stored at -20 °C until required for 

ionic analysis. Calcium was determined, following dilution with deionized water, 

using an atomic absorption spectrophotometer (Philips PU 9200). In order to release 

any bound Ca^+, lanthanum chloride was added to each diluted haemolymph sample 

(final concentration of L aC lj.V ^O  = 1 %). Calibration curves were constructed 

using standard solutions of calcium nitrate containing LaCl^.
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5.3 RESULTS.

5-3 .1  E&2 Postbranchial haemolymph.

Anoxic conditions were obtained (< 2 Torr) after bubbling the nitrogen/carbon 

dioxide mixture through the water for 4 h . This was to simulate as nearly as 

possible the conditions that an animal would experience in the field (Chapter 2). 

The observed decrease in P0 2  of the postbranchial haemolymph ( P ^ )  initially 

lagged approximately 15 minutes behind the Po2  decrease in the sea water (Fig. 5 .2 ). 

A fter 4 h, however, both the Po2  of the sea water and the postbranchial 

haemolymph had decreased to below 2 Torr.

When air was reintroduced into the anoxic tanks, the P0 2  of the water increased to 

normoxic levels (approximately 160 Torr) within 5 minutes. This rapid return to 

normoxic conditions simulates the situation in the field when the incoming tide 

floods a previously exposed rock pool (Chapter 2). After the reintroduction of air, 

the postbranchial haemolymph remained oxygen depleted for 5 minutes. The P0 2  

then increased quite rapidly to become approximately 80 Torr again after about 30 

minutes (Fig. 5.2).

1 1 2  Oxygen Consumption.

Since the weight of the crabs used in these experiments was very similar, size 

related differences in oxygen consumption (M0 2 ) could be ignored and the rates of 

oxygen consumption from all 5 crabs could be pooled (Fig. 5.3). The background 

M0 2  amounted to a mean of 0.37 + 0.11 umol C^.h- ,̂ representing between 6.75 

and 22.5 % of the total KI0 2 .

The mean M0 2  of undisturbed crabs under normoxic conditions was 1.27 + 

0.17 umol C ^ h ’ ^.g”  ̂ fresh wt. Since the closed respirometric method used in this
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FIG. 5.2 Changes in the P0 2  of the experimental water 

(♦) and postbranchial haemolymph (Pac>2 ) (■) during 

4 hours of ’p re -a n o x ia ’ (see tex t fo r fu r th e r  

explanation), 1 2  hours of anoxia and finally during a 

12  hour period of recovery under normoxic conditions. 

Values are means + S.D.
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FIG. 5.3 Changes in the rate of weight specific oxygen 

consumption (M0 2 ) in Carcinus maenas, recorded 

during a 1 2  hour recovery period, following exposure 

to 12 hours of anoxia. Values are means + S.D. (n = 

5).
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experiment involved the direct replacement of normoxic with anoxic sea water, it 

was not possible to determine the P0 2  at which respiratory independence was lost. 

No discernible Mo2  was measured during the anoxic period, but during the first 30 

minutes of recovery, however, there was a rapid and significant (P < 0.05) increase 

in Mo2  to 5.11 ± 0.71 umol 0 2.h *. g * fresh wt. The Mo2 then gradually 

decreased during the remainder of the recovery period, returning to the control 

rate of 1.40 + 0.37 umol 0 2 .h”*.g”* fresh wt. after 12 h .

5.3.3 Heart rate.

Very high heart rates were measured in 11 crabs (mean = 119 + 12 beats, min”*) 

immediately following transfer to the experimental beakers, which appeared to be 

due to handling stress since during the next 3 h a gradual reduction in heart rate 

was recorded. The mean heart rate of quiescent crabs of this size was 92 + 5 beats, 

min”*.

Whilst the Po2  of the sea water was being reduced by the nitrogen/carbon dioxide 

mixture, the heart rate remained approximately constant until the Po2  of the water 

reached approximately 60 Torr. Below this Po2  the heart rate decreased rapidly, 

until at the onset of anoxia the heart rate had declined to only 14 + 2 beats, min * 

(Fig. 5.4). During the period of exposure to anoxia the heart continued to beat but 

at a very low rate (mean = 15 + 1.7 beats, min”*).

When the water in the beaker was aerated and the Po2  returned to normoxic levels 

again, the heart rate increased significantly (P < 0.05) to 143 + 11.2 beats, min 

within 10 minutes. The mean heart rate during the first 30 minutes of the recovery 

period was 133 + 9 .1  beats, min”*, but returned to control rates after about another 

9 h .
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FIG. 5.4 Changes in the heart rate of Carcinus maenas 

during 12  hours of anoxia and during a 12  hour period 

of recovery under normoxic conditions. Values are 

means + S.D. (n = 5).
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1 1 4  Haewplymph acid-hasg balance during anoxia and recovery.

The mean in vivo pH of the postbranchial haemolymph of control crabs maintained 

under normoxic conditions was 7.86 + 0.05. A reduction in the Po2 of the sea 

water within the experimental tanks resulted in a significant increase (P < 0.05) in 

the pH to 8.06 +. 0.04 (Fig. 5.5), but the mean in vivo  pH then decreased 

significantly (P < 0.05) to 7.60 + 0.03 after 12 h of anoxia. During the recovery 

period, the in vivo pH increased to return to control values after 12 h .

The total concentration of carbon dioxide decreased significantly (P < 0.05) from 

an initial value of 7.68 + 0.17 to 3.24 + 0.17 mM after 12 h of exposure to anoxia 

(Fig. 5.6). Cco2  increased significantly (P < 0.05) again from 3.75 + 0.34 to 8.02 + 

0.51 mM after 0.5 and 12 h of recovery.

There was no significant change (P > 0.05) in the calculated values for Pco2 

throughout the anoxic period (Fig. 5.7). During recovery, however, there was a 

significant (P < 0.05) increase from 1.57 + 0.22 to 2.42 + 0.19 Torr at the end of the 

first hour, before returning to 1.89 + 0.05 Torr after 6  h of recovery.

The calculated values for the concentration of HCO3 " ions decreased significantly (P 

< 0.05) during the 12 h period of anoxia, from an initial value of 6.52 + 0.22 to 3.17 

+ 0.17 mM after 12 h (Fig. 5.8). The concentration of H C03" ions returned to 

control levels after 9  h of recovery and then did not change significantly during the 

remaining 3 h of the experiment.

There appeared to be no mobilisation of calcium from the carapace, in response to 

the acidosis, since the mean concentration of Ca^+ in the haemolymph remained 

constant throughout the anoxic period, (24.7 + 1.88 umol.g *) (Fig. 5.9). During
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FIG. 5.5 Changes in the pH of the postbranchial 

haemolymph of Carcinus maenas during 12 hours of 

anoxia and during a 1 2  hour period of recovery under 

normoxic conditions. Values are means + S.D.
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FIG. 5.6 Changes in the concentration of total carbon 

dioxide (Cco2 ) in the postbranchial haemolymph of 

Carcinus maenas during 12 hours of anoxia and during 

a 1 2  hour period  of recovery  u n d er norm oxic 

conditions. Values are means + S.D.
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FIG. 5.7 Changes in the partial pressure of carbon 

dioxide (PCO2 ) in the postbranchial haemolymph of 

Carcinus maenas during 12 hours of anoxia and during 

a 1 2  hour period  of recovery  u n d er norm oxic 

conditions. Values are means + S.D.
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FIG. 5.8 Changes in the concentration of bicarbonate 

(HCO^- ) in the postbranchial haemolymph of Carcinus 

maenas during 1 2  hours of anoxia and during a 1 2  

hour period of recovery under normoxic conditions. 

Values are means + S.D.
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FIG. 5.9 Changes in the concentration of calcium 

(Ca^+) in the postbranchial haemolymph of Carcinus 

maenas during 1 2  hours of anoxia and during a 1 2  

hour period of recovery under normoxic conditions. 

Values are means + S.D.
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the recovery period, there was a transient but significant increase (P < 0.05) in the 

Ca^+ concentration to 33.3 ± 2.3 umol.g-  ̂ after 3 h, before decreasing again to a 

constant 25.8 ± 1.76 umol.g- * for the remainder of the experiment.
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5.4 DISCUSSION.

Ill Q&Yfign rgRUlatifln In Carcinus maenas.

5.'4.1.1 Oxygen uptake.

McMahon & Wilkens (1983) described oxygen uptake as ’... the most frequently used 

(and perhaps misused) parameter in crustacean respiratory physiology’. Although the 

oxygen consumption of a large number of crustacean species has been determined 

(Wolvekamp & Waterman, 1960; McMahon & Wilkens, 1983 for reviews), direct 

comparisons are difficult owing to large inter- and intra-specific variations, as well 

as differences in experimental procedures.

In the present study, the M0 2  of Carcinus maenas was determined using a form of 

closed respirometry. This form of M0 2  measurement has been criticised by many 

authors, including Tang (1933), Kamler (1969) and more recently by von Oertzen 

(1984), who summarised the 4 main groups of criticisms:

1) Disturbance of the animals whilst transferring them to the respirometer at the 

beginning of the experiment.

2) Fluctuation of the pH of the water within the respirometer, as a result of CO2 

evolution.

3) V aria tions in the accum ulation  of m etabolic waste p roducts in the 

respirometer water, owing to variations in the biomass-to-volume ratio, duration 

of the experiment and also the type of metabolism of the animal concerned.

4) Absence of current and turbulence and the consequent sub-optimal supply and 

removal of the gases associated with metabolism.

Care was taken in the present study to minimise the effects of the above criticisms.
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Following the transference to the respirometer, the crabs were left undisturbed for 

12 h . During this time the M0 2  was measured and although it was found to be 

initially high, it decreased to a lower, more constant rate after 6 h . This constant 

rate was taken to represent the crabs quiescent rate under conditions of normoxia. 

The water in the respirometer was changed every 4 h, but no increase in the Mo2 

was observed when this was carried out. The pH of the water was measured and 

found to rem ain constant throughout the experim ent, indicating no m ajor 

accumulation of C 0 2. Since the respirometer water was changed at regular 

intervals and continuously stirred, the problems associated with criticisms 3 and 4 

were almost completely eliminated.

5-4.1 . 2  Tfrg mechanism qL oxygen regulation during hypoxia, anoxia and 

subsequent recovery.

It is now well established that many decapod crustaceans are capable of exhibiting a 

high degree of respiratory independence during hypoxia, i.e. they are able to 

maintain their oxygen consumption independent of the ambient oxygen tension over 

a wide range of Po2  (McMahon & Wilkens, 1975; Taylor, 1976; Bradford & Taylor, 

1982). This is in contrast to early investigations, in which it was reported that the 

rate of oxygen consumption in some species was dependent on the ambient Po2. It 

appears that the animals used in these early studies were either active or disturbed.

Under conditions of hypoxia, increasing ventilatory volume helps to maintain the 

supply of oxygen to the respiratory surfaces despite the reduced oxygen content of 

the medium. However, an increase in ventilatory activity will itself increase the 

oxygen demand of the animal until eventually the oxygen supplied is sufficient only 

to meet the energy requirements of the ventilatory pump. It is at this point, which 

corresponds to the critical oxygen tension (Pc), that respiratory independence can no 

longer be maintained. Taylor (1976) reported that the Pc in Carcinus maenas was
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about 60 80 Torr and this was confirmed by the present study, in which it was

observed that the heart rate of C. maenas started to decrease after the Po2  of the 

surrounding water had decreased to about 60 Torr. This reduction of the heart rate, 

(bradycardia) associated with the Po2 of the surrounding water decreasing to below 

the Pc point, has been observed in a variety of decapod crustacean species (Taylor et 

al., 1973; McMahon & Wilkens, 1975; Taylor, 1976; Wheatly & Taylor, 1981; 

Bradford & Taylor, 1982). A reduction in the heart rate does not necessarily 

indicate reduced haemolymph flow, however, since, in some fish, gill perfusion is 

maintained, despite the bradycardia, by an increase in stroke volume. Little 

information on changes in stroke volume, however, is available for decapod 

crustaceans.

An increase in the frequency of beating of the scaphognathites (hyperventilation) is 

a very common response to environmental hypoxia amongst decapod crustaceans, 

since it is one of the mechanisms which help to maintain the rate of oxygen 

consumption independent of the ambient oxygen tension over a wide range of Po2. 

An increase in ventilatory rate has been reported by many authors (Arudpragasam & 

Naylor, 1964; Taylor, 1976; McMahon & Wilkens, 1977; Butler et al., 1978; 

Burnett, 1979; Bradford & Taylor, 1982; Morris & Taylor, 1985; Johnson & 

Uglow, 1987). Indirect evidence from postbranchial haemolymph pH and a 

decrease in Pco2  values, suggested that hyperventilation occurred during the pre- 

anoxic period, implying an increase in the frequency of scaphognathite pumping. 

The role of hyperventilation in haemolymph acid-base balance will be discussed in 

greater detail in relation to the acid-base balance of Carcinus maenas in section 

5.4.2.

In order to determine the combined effects of these hypoxia-induced regulatory 

responses, the Po2  o f the postbranchial haemolymph (Pao2) was measure(  ̂

throughout this period. The Pa02 Carcinus maenas, maintained under normoxic 

conditions was 83 + 6.4 Torr, which is similar to the values of 97 and 74.9 + 7.3
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Torr obtained by Taylor (1976) and by Taylor & Butler (1978) respectively. It was 

found that when the Po2  of the sea water was reduced below the Pc of 60 Torr (for 

heart rate), a lag of about 15 minutes was observed before the P0 o0 started toa Z
decrease. After 4 h, however the Pao2  had declined to < 2 Torr.

The vast m ajority of studies reported in the literature, have concentrated on 

measuring the respiratory responses, associated with exposure to hypoxia, so there 

are very few comparative studies for animals under anoxic conditions. In the 

present investigation, there was no discernible measurement of lClo2  during anoxia, 

since both the Po2  and the Pao2  were < 2 Torr. The heart, however, continued to 

beat at a very low rate throughout the anoxic period, despite the fact that the 

postbranchial haemolymph was shown to be almost devoid of oxygen (section 5 .3 .1). 

Anderson (1989) also observed a continued heart beat during prolonged anoxia, in a 

study on the thalassinid Calocaris macandreae and suggested 2 possible explanations 

for this phenomenon. Firstly, it was argued that, in the absence of haemolymph 

circulation, localised L-lactate accumulation in the tissues and haemolymph might 

limit the anaerobic capability of the animal. Therefore, a circulating, haemolymph 

might represent a larger ’sink’ for anaerobic end-products, which would minimise 

localised acid-base disturbances. Secondly, since the neural Po2  detector in 

decapods appears to be located in the vascular system, a maintained circulation 

might allow a rapid response to improved environmental conditions during recovery 

from hypoxia (A.C. Taylor, pers. comm.).

During the early stages of recovery, both heart rate and the Klo2  were extremely 

high, presumably representing the ’repayment’ of an oxygen debt. This ’overshoot’ 

in oxygen consumption has also been demonstrated by Bridges & Brand in both 

Corystes cassivelaunus and Galathea strigosa (1980). During the first 15 minutes of 

recovery, the tilo2  was 9 . 2  umol 0 2 .h- l .g- 1  fresh wt., which represents an increase 

by a factor of 7  over the Mo2  of quiescent crabs under normoxic conditions.
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Similar calculations, where the maximal Mo2  has been divided by the quiescent 

Mo2, have been perform ed by a variety of authors and termed the ’aerobic 

metabolic scope’ by Bennet (1978). McMahon & Wilkens (1983) demonstrated that 

the aerobic scope is typically 4 - 5 in decapod crustaceans, a ' ,u ough these 

calculations were based on only a few studies. The ’aerobic metabolic scope’ 

measured in Carcinus maenas in the present study is therefore very high, but this 

probably reflects the extreme conditions to which the crabs had been exposed.

The increase in the Po2  of the haemolymph observed during the first 30 minutes of 

recovery of this study has been also reported by Butler et al. (1978) in the lobster 

Homarus vulgaris, which had been exposed to a period of hypoxia. The 5 minute lag 

between the reoxygenation of the sea water and the increase in the Po2  of the 

postbranchial haemolymph has not been reported before and is likely to be a 

response to the extreme conditions present during anoxia. This does mean, 

however, that during the first few minutes of recovery, the crabs were forced to 

respire almost totally anaerobically. This observation is somewhat confusing since 

Figure 5.4 shows that the frequency of heart beat was very high even after only 10 

minutes, but presumably the initial demand for oxygen was far in excess of the 

amount that could delivered. Since the crabs were observed to be extremely active 

during this time, the energy demand was high, resulting in a rapid accumulation of 

L-lactate. This might provide an explanation for the observation described in 

Chapter 3, section 3.3.3.1, in which it was reported that the concentration of L- 

lactate doubled during the first hour of recovery.

1 1 2  Acid-base balance disturbance during anoxia and during reCQvgJX

Studies of the effects of anoxia on the acid-base balance of invertebrates have 

tended to concentrate on bivalve and gastropod molluscs (see reviews by Campbell 

and Boyan, 1974; Zandee et al., 1980; Grieshaber, 1982). In decapod crustaceans,
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acid-base studies have concentrated on the effects of environmental hypoxia 

(Dejours & Armand, 1980; Wheatly & Taylor, 1981; Truchot, 1986; Johnson & 

Uglow, 1987), aerial respiration (Truchot, 1975); Innes et al., 1986) and strenuous 

exercise ( McDonald et al., 1979; Smatresk et al., 1979; Wood & Randall, 1981; 

Booth et al., 1984).

As mentioned in section 5.2.4.3, Pco2 and [HCOj-] were calculated using data 

measured directly and also taken from in vitro work by Truchot (1976). Direct 

measurements of in vivo Pco 2  of decapods are rare because of low Pco 2  values 

which are d ifficu lt to measure directly and also the difficulties of obtaining 

sufficient haemolymph samples. The use of the Henderson-Hasselbalch equation to 

calculate Pco2  and HCO^- , assumes that the bicarbonate system in the haemolymph 

is in equilibrium. Carbonic anhydrase (EC 4.2.1.1), however, is absent from the 

haemolymph of decapods (Randall and Wood, 1981; Henry & Cameron, 1982; 

McMahon et al., 1984) and the non-catalysed hydration/dehydration rate constants 

for C0 2 /HC0 3 - /CC>3 ^“ are low (Edsall, 1969). Together with the work of deFur et 

al. (1980), this indicates that the bicarbonate system may not be in equilibrium for 

much of the time. It is therefore important to view the calculated values of Pco2 

and HCO3 - , with a certain amount of caution.

As mentioned in section 5.4.1.2., there was evidence to suggest that the crabs were 

hyperventilating during the initial stages of the ’pre-anoxic’ period. In the context 

of the haemolymph acid-base balance, hyperventilation, causes carbon dioxide to be 

excreted across the gills, resulting in a respiratory alkalosis. This alkalosis can be 

clearly seen in the present study, with the pH of postbranchial haemolymph 

increasing during the ’pre-anoxic’ period and a concurrent decrease in Pco2  (Figs. 

5.5 & 5.7). B urnett & Johansen (1981) stated that, in Carcinus maenas, 

hyperventilation could not totally explain the observed alkalosis and that a small 

metabolic component was present, in the form of bicarbonate and/or carbonate.
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There was some evidence to support this in the present study, since an increase in 

the concentration of haemolymph bicarbonate was observed during the ’pre-anoxic’ 

period. The functional explanation of this increase, however, is unclear.

In the present study, a pronounced acidosis developed during the anoxic period, that 

had both respiratory and metabolic components; the respiratory component arising 

from the depletion of bicarbonate, and the m etabolic component from the 

accumulation of L-lactate. It has been previously reported that the respiratory 

acidosis associated with anoxia, was normally the result of the accumulation of 

carbon dioxide in the absence of gas exchange (Cameron, 1986). In the present 

study, however, the Pco2  remained relatively constant throughout the anoxic period, 

which probably reflects the lack of carbon dioxide production. It is well established 

that HCO3 - accounts for about 95 % of the total carbon dioxide pool (Cco2) in the 

haemolymph of decapods. The marked depletion of Cco2  can therefore be largely 

a ttr ib u ted  to a decline in the concen tra tion  of HCO 3 ". The reason for 

this depletion is unclear, but it would certainly account for a large proportion of the 

observed acidosis. It is likely that the H+ ions produced in association with L- 

lactate result in the breakdown of the HCC^- ions (R. Burton pers. comm.)

During the early stages of recovery, the Pco2  rapidly increased to a value in excess 

of the ’pre-anoxic’ values, reflecting the increased rate of energy metabolism 

associated with repaying the ’oxygen debt’ or a change in the excretion rate. The 

alkalosis observed during recovery, resulted from both the replenishment of the 

haemolymph bicarbonate and also the elimination of L-lactate.

Stewart (1978) stated that the regulation of haemolymph pH is largely brought about 

by the total weak acid activity, Pco2  and the strong ion difference (SID). In 

decapod crustaceans, the weak acid buffering is mainly due to haemolymph proteins 

(Truchot, 1983) and usually remains fairly constant over short term fluctuations in 

the acid-base balance. Bicarbonate buffering (respiratory compensation) depends on
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the haemolymph PCO2  and pK^ values, since it involves the relative concentrations 

of CC>2 , HCO 3 and C O ^  . The buffering ability of the SID (metabolic 

compensation) relies on the difference in activity between anions and cations, 

which do not change their dissociation in the physiological pH range. Factors which 

contribute to changes in SID include the major haemolymph ions (Na+, K +, Ca^+, 

Mg+, Cl" and S04  ) and metabolic acids such as L-lactic acid.

Currently, it is generally accepted that, in water breathing animals, ion exchange 

between haemolymph and water (Cl- for HCO3 - and/or Na+ for H+), usually across 

the gills, are responsible for the maintenance of pH in aquatic animals (Truchot, 

1975, 1979; Cameron, 1978; Henry et al., 1981). In te rrestria l decapods, 

pH compensation is achieved partly by the mobilisation of a source of CaCO^, 

possibly from the exoskeleton (Henry et al., 1981) or from CaCO^ granules from the 

digestive gland (Becker et al., 1974) The concentration of calcium was measured in 

this present study, but no evidence of mobilisation was observed. This is consistent 

with the findings of Cameron (1985) who states that in the aquatic crab Callinectes 

sapidus the contribution of the carapace carbonates was calculated to be only 7.5 % 

of the total compensatory H+ associated with a hypercapnic acidosis.
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CHAPTER 6  - A CALORIMETRIC INVESTIGATION OF ANAEROBIC 

METABOLISM.

6.1 INTRODUCTION.

When exposed to anoxic conditions Carcinus maenas exhibited a large reduction in 

the m etabolic rate (C hapter 3, section 3.4.4.3.). This helped to reduce the 

accumulation of L-lactate and also to conserve the carbohydrate pool. During 

anoxia C. maenas was also observed to cease all locomotor activity, which was at 

least partially responsible for the metabolic depression. It was felt that, to 

demonstrate this energy reduction more clearly, calorimetry should be used, since 

this technique measures the enthalpy changes of all the metabolic reactions within 

an organism, even if  the nature of these reactions is not fully understood. 

Interpretation of heat dissipation results (direct calorimetry), is best carried out 

when considered together with basic biochemical data or with oxygen consumption 

rates (indirect calorimetry). Under certain circumstances the use of direct 

calorim etry, in conjunction with indirect calorim etry, enables the relative 

contribution of aerobic and anaerobic metabolism to be determined.

The work was carried out at the Plymouth Marine Laboratory, with the assistance of 

Dr. J. Widdows. The study was limited to measurements of only 5 individual crabs, 

since direct calorimetry is very time consuming and only one week was available for 

these experiments. This study was not intended to be comprehensive, but was 

carried out to provide an indication of the extent of the observed reduction in 

energy demand during anoxia and also to determine potential areas of future 

investigation.

The use of calorimetry to explore heat changes was integral to the origins of 

bioenergetics, 200 years ago: ’ Respiration is therefore a combustion, a very slow 

one to be precise’ (Lavoisier and LaPlace, 1783 - cited in Gnaiger, 1983). Direct 

calorimetry and gas exchange respirometry have been compared in man (Atwater &
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Benedict, 1905), geese (Benedict & Lee, 1937), ruminants and other domestic 

animals (Kleiber, 1962; Blaxter, 1969) and Tenebrio m olitor L. (Peakin, 1973). 

These studies involved the measurement of heat dissipation in animals only under 

normoxic conditions and it was not until the mid 1970’s that the potential 

contribution of calorimetry, as a means of direct comparison of anaerobic and 

aerobic metabolism, was first fully appreciated (Hammen, 1976; Gnaiger, 1977). 

The majority of work on the comparison of anaerobic and aerobic metabolism in 

invertebrates, has been carried out on molluscs (Hammen, 1979, 1980; Pamatmat, 

1979, Famme et al., 1981; Widdows & Shick, 1985; Shick et al., 1986, 1988). In 

crustaceans, such studies have been confined to those of Gnaiger (1981) and 

Hammen (1983).

The experiment described in this chapter, involved the use of microcalorimetry in 

conjunction with respirometry, to investigate the energy metabolism of Carcinus 

maenas under conditions of anoxia and subsequent recovery. The concentrations 

of L -lac ta te , as determ ined in C hapter 3, were used to help in te rp re t heat 

dissipation during anoxia. A heat-flow calorimeter with perfusion (open-flow) 

animal chambers was used, since it enabled the environmental conditions in the 

chamber to be manipulated.
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6.2 MATERIALS AND METHODS.

6.2.1 Calorimeter Design and Maintenance.

The microcalorimeter used was a LKB 2277 BioActivity Monitor. The animal was 

placed in a sample perfusion chamber, which was enclosed in a measuring vessel. 

This was in turn  surrounded by metal heat sinks and immersed in a large 

temperature-controlled water bath (25 1). The large capacity heat sink arrangement 

allows heat to be exchanged with the measuring vessel. In between the measuring 

vessel and the heat sink is a pair of Peltier elements which respond to a temperature 

gradient between the measuring vessel and the heat sink of less than 1 x 1 0 "^ of 1 

degree Celsius. The voltage produced by the Peltier elements is proportional to the 

temperature difference and can be recorded on a chart recorder.

The perfusion chamber used was developed within the Plymouth Marine Laboratory 

by J. Widdows and P. Salkeld. Previously, microcalorimetry had been limited to 

using animals of biomass less than about 20 mg dry mass (Widdows, 1987). The 

new system consisted of a perfusion chamber (volume = 25 ml), which could 

accommodate animals of up to about 800 mg dry mass (Fig. 6.1). This also had the 

advantage that much higher rates of water flow could be used, without incurring 

unacceptable baseline noise.

Since a control was required, a blank was included which consisted of a chamber 

without an animal, under identical conditions to those of the experimental chamber. 

The sea water used had been obtained offshore, from around the Eddystone 

Lighthouse and transported to the Plymouth Marine Laboratory, where it was 

filtered, continuously circulated and aerated at a temperature of 10 + 1°C. After 

flowing through the perfusion chambers, the P0 2  of this sea water was measured 

with 2 therm ostatted w ater-jacketed oxygen electrodes (E5046, Radiometer,
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FIG. 6.1 Diagram of the stainless steel ampoule used 

in the calorimetric measurements (from Widdows, 

1987). (Diameter of the ampoule is approximately 25 

mm). See text for explanation.
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Denmark) coupled to an oxygen meter (Strathkelvin Instruments, Glasgow).

The system was calibrated by means of an internal calibration capsule, which 

switched on and off a known power output at selected time intervals. The recorder 

deflection due to this thermal power gives a calibration level which may then be 

used to determine quantitative experimental results.

After each experimental run, the system was cleaned by flushing it through with a 

1 0  % sodium hypochlorite solution, to remove organic matter and microbial 

growth from the walls. This procedure was essential to avoid discrepancies between 

heat dissipation and oxygen uptake.

6.2.2 Maintenance of Animals.

Carcinus maenas (L.) (fresh wt. range = 0.5 - 1.5 g), was collected by hand from 

intertidal rock pools on a rocky promontory, to the West of Karnes Bay, on the Isle 

of Cumbrae, Firth of Clyde, Scotland. The crabs were then transported to the 

Plymouth Marine Laboratory in moist sea weed, contained within a plastic tank. On 

arrival, the animals were transferred to large tanks, in a recirculating sea water 

aquarium, maintained at 15 + 1°C. They were fed on Mytilus edulis until 72 h 

prior to the start of the experiments.

6.2.3 Experimental Procedure.

After cleaning, the perfusion chamber was filled with sea water and the system left 

for 2 h , during which time a steady baseline of the heat dissipation was obtained. 

A crab was then transferred from the aquarium to the perfusion chamber. It was 

essential to ensure that the lid of the perfusion chamber was screwed on tightly and 

that the outside of the chamber was both clean and dry, before lowering it into the
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calorimeter.

Fully aerated sea water was then pumped through the chamber at a rate of 1 ml. 

min-  ̂ for about 4 h, during which time a steady baseline of the heat dissipation 

was obtained. The oxygen consumption rate of the crab during the last hour of this 

period was taken to be the quiescent rate. Traces were obtained on the chart 

recorder, for the heat dissipation and the P0 2  of both the experimental and blank 

perfusion chambers.

Once a reasonably constant value of heat dissipation had been obtained (there was a 

some variation in the heat dissipation of the experimental chamber which reflected 

the varying activity patterns of the crab) the aerated sea water was completely 

replaced with sea water, made anoxic by bubbling nitrogen gas through a 25 1 

reservoir for about 3 hours. Anoxic conditions were maintained for 9 h , during 

which time the heat dissipation and the P0 2  of both chambers were continually 

monitored. At the end of this period, fully aerated sea water was pumped through 

the system and the crab allowed to recover. Since both the heat dissipation and 

oxygen consumption rates changed extremely rapidly during recovery, it was 

necessary to increase the speed of the chart recorder, to obtain a more detailed 

record of these changes.

6.2.4 Interpretation of Results.

A computer programme (J. Widdows) was used to calculate the heat dissipation rate 

(tQ) (J.h- )̂ and the oxygen consumption rate (umol.h- *) from the chart recorder 

traces. The weight specific oxygen consumption rates (M0 2 ) (umol O2 . h- 

.̂g~* fresh wt.) were calculated, so that they could be compared directly with M0 2  

values obtained from closed respirometry in Chapter 5, section 5.3.2). The values 

for tQ and M0 2  w-ere then used to calculate oxycaloric equivalents ( ^HC^), which 

are defined as the energy dissipated per mole of oxygen consumed. In aquatic
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animals, this ranges from -440 to -480 kJ.mor^C^ (Gnaiger 1983). If oxycaloric 

equivalents exceed this range, then partial anaerobiosis is indicated. Conversely, 

should the total heat equivalents fall below this empirical range, then endothermic 

anabolic processes are suggested (Widdows, 1987). This has been reported as being 

the case during the early stages of recovery from anoxia when there is an elevated 

rate of oxygen uptake, termed the ’oxygen debt payment’ (Shick & Widdows, 1981).

119



6.3 RESULTS.

Owing to the limited time available, recordings from only 5 crabs could be 

measured in the calorimeter and, of these, 2 died during the anoxic period. The 

results obtained for the 3 remaining crabs showed similar trends throughout the 

experiment, although the absolute values varied between the individuals. This was 

to be expected (J. Widdows pers. comm.), however, and for this reason the results 

presented below are those obtained for only one of the three surviving individuals. 

The standard deviations are derived from the mean of several measurements, taken 

over a given time period, but for the same crab. The mean M0 2  of the crab during 

normoxia was 4.07 + 0.39 umol C ^ h ^ g *  fresh wt. (Fig. 6.2). During the recovery 

period the M0 2  was 16.6 umol C ^h '^ .g - * fresh wt. after 2 0  minutes, decreasing to 

4.84 umol C ^ h ^ .g - * fresh wt. after 4 h .

The values for KI0 2  obtained in these experiments are compared with those 

measured using closed respirometry (Chapter 5) (Fig. 6.2). It is widely accepted 

that smaller animals have a higher rate of weight specific oxygen uptake than do 

animals with a greater mass. Therefore, the slightly higher Mo2 ’s obtained using 

open respirom etry were not unexpected, since the animals used in the open 

respirometry experiments, had a fresh wt. of less than 1 gram, whilst the mean fresh 

wt. of the crabs in Chapter 5 was 4.4 g. The differences, however, between the 

rates determined using the two forms of respirometry were not significant (P > 

0.05).

The mean weight specific rate of heat dissipation during normoxia was -1.89 + 

0.20 J.h“ *.g_* fresh wt., but this decreased significantly (P < 0.05) to a mean of 

-0.295 + 0.035 J.h- *.g~* fresh wt. during anoxia (Fig. 6.3). This represents a 

decrease of 84 % . During recovery an ’overshoot’ was observed, with the rate of 

heat dissipation increasing significantly (P < 0.05) to -2.94 J.h~*.g” * fresh wt. 

after 10 minutes and then decreasing again to become relatively constant at -2.15 ±
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FIG. 6.2 The rate  o f w eight spec ific  oxygen 

consumption (M0 2 ) of Carcinus maenas during 12 

hours of anoxia and during a 1 2  hour period of 

recovery under normoxic conditions. Results from 

open respirom etry (■  ) are com pared w ith those 

measured using closed respirometry (+).
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FIG. 6.3 Changes in the rate of heat dissipation (J.h.- 

*g~* fresh wt.) in Carcinus maenas exposed to 12 hours 

of anoxia and during a 1 2  hour period of recovery 

under normoxic conditions.
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0.184 J.h *.g  ̂ fresh wt. for the remainder of the experiment.

The mean oxycaloric equivalent (j^HC^) during the normoxic period was -459.7 +

15.2 kJ.mor^C^. Theoretically, it should not be possible to calculate an oxycaloric 

equivalent when animals are kept under anoxic conditions, since there should be no 

oxygen present in the water. In this study, therefore, the observed oxycaloric 

equivalent of -987.9 + 123.8 k J.m o l'^C ^  during anoxia, was possibly an 

experimental artefact, reflecting the fact that the oxygen electrodes were unable to 

accurately measure the P0 2  of the water below approximately 2 Torr. During the 

first hour of recovery, the decreased significantly (P < 0.05) to a mean of

-255.8 + 82 kJ.mor^C>2 , thereafter it increased again to a mean of -481 + 54.4 

kJ.mor^C>2 (Fig. 6.4). During the later stages of recovery the calculated values of 

j^H0 2  occasionally increased to over -500 kJ.mor^C^, indicating the possibility of 

an anaerobic component to respiratory metabolism.
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FIG. 6.4 Changes in the oxycaloric equivalent (kJ. 

mol-  ̂ O2 ), recorded during a 4 hour recovery period, 

following exposure of Carcinus maenas to anoxia for 9 

hours.
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6.4 DISCUSSION.

6.4.1 Metabolic depression during anoxia

ATP production by anaerobic metabolism is known to be inefficient, due to the 

incomplete oxidation of the glycolytic substrate. Therefore, if an animal is to 

maintain its normoxic energy demand during anoxia, the rate of glycolysis must be 

enhanced (i.e. ’Pasteur effect’). This is potentially maladaptive for animals that are 

exposed to prolonged anoxic periods, since it results in a very rapid depletion of the 

endogenous carbohydrate pool. Animals adapted to surviving long-term  

anaerobiosis, exhibit responses that conserve energy expenditure, rather than 

resorting to the Pasteur effect. This conservation of energy expenditure is brought 

about by a depression of the metabolic rate, as well as a selective inactivation of 

non-essential physiological and biochemical processes. This reduces the animal’s 

energy demands and means that an increase in the glycolytic flux, on becoming 

exposed to anoxic conditions, may not be necessary. In addition to metabolic 

depression, bivalve molluscs also utilise alternative anaerobic pathways, which are 

more efficient in terms of ATP production than the pathway culminating L-lactate 

(de Zwaan, 1977).

In the present study, the magnitude of the metabolic depression has been calculated 

using the rate of ATP production (Chapter 3, section 3.4.4.3.) and also by direct 

calorimetry. The calculated depression of metabolic rate amounted to 74 and 84 % 

during anoxia (expressed as a percentage of the normoxic metabolic rate), for the 

biochem ical and calorim etric methods respectively. The following table 

summarises the curren t lite ra tu re  concerning m etabolic depression in adult 

invertebrates during anoxia (from Widdows, 1987).
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Table 6.1 The extent of the metabolic depression in invertebrates during anoxia 

(from Widdows, 1987).

S p e c i e s M e t a b o l i c ik
d e p r e s s i o n

(%)

Temp. 
(°C)

R e f e r e n c e

C o e l e n t e r a t e s :
A ct in ia  equina 7 15 S h i c k ,  1981

B i v a l v e s :
Modiolus demissus 7 20 Pamatmat, 1980
Cardium edule 41 20 Pamatmat, 1980.
A rc t ica  i s land ica 23 15 Pamatmat,  1980.
Myti lus  edu l i s 11 20 Famme e t  a l . , 1981.
Mulinia l a t e r a l i s 97 15 Shumway e t  a l . ,  1983.

C r u s t a c e a n s :
Cyclops abyssorum 17 6 G n a i g e r ,  1981
Carcinus maenas 16 15 P r e s e n t  s t u d y .

*
Anoxic metabolic rate as a percentage of normoxic rate.

There is an indication that the more anoxia-tolerant species exhibit the greatest 

metabolic depression. For example, Mytilus edulis often experiences anaerobic 

stress, since during aerial exposure at low tide, it closes the shell valves and creates 

its own hypoxic/anoxic microenvironment (Widdows, 1987). In the study of Famme 

et al. (1981) the anoxic heat dissipation of M. edulis was shown to be only 11 % of 

the normoxic rate. In contrast, the coot clam Mulinia lateralis, which is less 

anoxia-tolerant and a much more active bivalve than M. edulis, exhibits no 

appreciable metabolic depression (Shumway et al., 1983). Presumably the high 

anoxic energy demand of this species was met by the Pasteur effect, which is 

consistent with the fact that M. lateralis is only exposed to anoxic conditions for 

short periods of time. A similar comparison in Crustacea is difficult, owing to the 

lack of relevant studies. Comparisons between widely differing groups is always 

difficult, but one might tentatively say that Carcinus maenas appears to be well 

adapted to survive anoxic exposure, since it exhibits a large metabolic depression, 

which conserves the carbohydrate pool and reduces the rate of L -lac ta te



accumulation.

6.4.2 Therm odynam ic and  biochem ical in terpre ta tion  of anaerobiosis and 

recovery.

Gnaiger (1983) reported that, in experiments employing heat-flow calorimetry and 

simultaneous respirometry, the experimental (total) heat equivalents of oxygen 

consumption approximated to -450 kJ.mol- *C>2 for freshwater and marine animals 

including gastropods, bivalves, crustaceans and fish ( Famme et al.y 1981; Gnaiger, 

1983; Pamatmat, 1978, 1983). The mean oxycaloric equivalent for the normoxic 

period in the present study was -459.7 + 15.2 kJ. mol” *(>2 and therefore agrees very 

closely with the above figure. The fact that the heat output values, derived from 

oxygen consumption measurements agree closely with those from direct calorimetry, 

explains why oxygen uptake has regularly been used as a measurement of an 

animal’s metabolic rate.

There are, however, conditions in which the use of the generalised oxycaloric 

equivalent is totally inappropriate (Widdows, 1987). During exposure to severe 

hypoxia, the oxycaloric equivalents increase to above the value of -450 kJ.mor^C^, 

owing to the inevitable reduction in oxygen consumption. In the present study, the 

oxycaloric equivalent was calculated to have increased to a mean of -988 + 123 

kJ.mol"^02 during anoxia, indicating the occurrence of anaerobic metabolism. For 

reasons already described in section 6.3, this figure is probably an experimental 

artefact. It is preferable, therefore, to compare heat dissipation during anoxia, by 

direct calorimetry and also by indirect biochemical estimation of heat output based 

on the stoichiometric analysis of accumulated anaerobic end products and utilisation 

of the transphosphorylation of ADP by phospho-l-arginine. This was carried out 

using the caloric equivalents described by Shick et al. (1983) and Gnaiger (1983) 

(caloric equivalents for L-lactate and phospho-l-arginine are -60 and -55.2 

mJ.umor^ respectively) and the changes in the concentrations of L-lactate (L-lac)
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and phospho-l-arginine (PA) measured in Chapter 3, (sections 3.3.3.1. and 3.3.3.2. 

respectively).

Indirect calorimetry:

L-lac: 1.025 umol.h_1.g-1 fresh wt. x -60 mJ = -61.5 m J.h '^ g "1 fresh wt.

PA 0.431 umol.h'^.g-  ̂ fresh wt. x -55.2 mJ = -23.8 mJ.h"^.g"^ fresh wt.

Total anoxic heat dissipation = -85.3 mJ.h"^.g~^ fresh wt.

The total anoxic heat dissipation for direct and indirect calorimetry was therefore 

-295 and -85.3 mJ.h_Vg~* respectively. It can be seen that only 29 % of the total 

anoxic heat d issipation can be explained by end product accum ulation and 

transphosphorylation of ADP by phospho-l-arginine. This large discrepancy 

between direct and indirect calorimetric methods has been reported by other 

authors and has become known as the ’exothermic gap’, the size of which is partly 

governed by the duration of anoxia (Shick et al., 1983). The size of the exothermic 

gap in this study is larger than reported for other investigations, but it should be 

remembered that these results are from only one individual.

Widdows (1987) divided the recovery period, following exposure to anoxia, into two 

distinct phases. Early recovery is characterised by a low oxycaloric equivalent (i.e. 

below -450 kJ.mor^C^), because of the high rate of oxygen consumption associated 

with the ’rep ay m en t’ of the oxygen debt. F igure  6.4 c learly  shows th is 

phenomenon, with low oxycaloric equivalents being observed for the first 1.5 h of 

recovery. It can be calculated that, based on the generalised oxycaloric equivalent 

(i.e. -450 kJ.mor*C>2 ) and a mean M0 2  of 9.69 umol 02.h"*.g"* fresh wt., the total 

expected heat dissipation over the first hour of recovery should be -4.36 J.h~^.g-  ̂

fresh wt. The observed rate of total heat dissipation measured only -2.90 J.h“*.g~* 

fresh wt., indicating a predominance of endothermic (anabolic) processes. This has 

been previously reported by de Zwaan (1977) and Widdows et al. (1979). The 

present study is further complicated by the fact that results from Chapters 3 and 4
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demonstrate a pronounced anaerobic component of metabolism, during the first hour 

of recovery. This would call into question the justification of using the generalised 

oxycaloric equivalent, since it was stated by Widdows (1987) that it should only be 

used when environmental conditions were in a steady state. The calculations made 

previously in this section, should therefore be viewed with caution, but the 

discrepancy (’endothermic gap’) was so large, that the conclusions concerning the 

predominance of endothermic processes must surely still apply.

The second phase of recovery (Widdows, 1987) is typified by an oxycaloric 

equivalent close to -450 kJ.m or^C^. Similar values were found in the present 

study, with a mean oxycaloric equivalent of -473 + 61.6 kJ.m or^C ^ for the later 

stages of recovery (1 to 4 h of recovery) (Fig. 6.4). Periodically during the recovery 

phase, the oxycaloric equivalent increased to above -480 kJ.m or^C ^ indicating 

anaerobic metabolism. This has been described previously and attributed to 

transient increases in locomotor activity (de Zwaan et al., 1983).

Even though the scale of the present study was very limited, it has illustrated the 

importance and the potential of combining thermodynamic, biochemical and 

physiological (respirometry) approaches in the interpretation of aspects of anaerobic 

metabolism in Carcinus maenas. In particular, further research is required to 

investigate the regulation of the metabolic depression observed during anoxia and to 

obtain a more comprehensive explanation of the exothermic and endothermic gaps.
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CHAPTER 7 - SUMMARY DISCUSSION AND CONCLUSIONS.

The aims of this study were to investigate the importance of anaerobic metabolism 

in the decapod crustacean, Carcinus maenas. These aims can be divided into 3 

sections:

i) To determine the extent to which Carcinus maenas is exposed to severe 

hypoxia or anoxia in the field and to assess the importance of anaerobic 

metabolism under these conditions.

ii) To investigate the possible biochemical pathways involved in anaerobic 

metabolism.

iii) To establish the fate of anaerobic end products, once the animal has been 

returned to normoxic conditions.

In addition, two further areas of study, arising from the above, were investigated:

iv) To determine the role of anaerobic metabolism, during the early stages of 

recovery from exposure to anoxia.

v) To assess the metabolic adaptations that Carcinus maenas possesses to 

survive prolonged exposure to anoxic conditions.

The study was initiated by an investigation into the diel and seasonal environmental 

extremes that occur within intertidal rock pools. It was found that the diel ranges 

shown by the various physico-chemical factors become larger during the summer 

months. The fluctuations in the partial pressure of dissolved gases within the rock 

pools were the result of algal photosynthesis elevating the oxygen levels during the 

day and respiration of the pools’ fauna and flora, in the absence of photosynthesis, 

causing a depletion at night. During the summer, the observed range of P0 2  was 

larger, owing to the greater pool biomass and also the higher metabolic rates 

associated with the increased summer temperatures (Chapter 2). Consequently, it 

was observed that in August the rock pool used for the field experiments became

127



hyperoxic (P0 2  = 280 Torr) during the day but severely hypoxic (P0 2  = 5 Torr) and 

hypercapnic during the night.

Studies investigating the distribution of Carcinus maenas throughout the year, 

revealed that far greater numbers of crabs (mainly male), were present in exposed 

intertidal rock pools during the summer than during the winter. This peak in the 

number of crabs present on the littoral zone coincided with the time of year that the 

pools became most hypoxic. Severe hypoxia (P0 2  < 10 Torr) lasted up to 4 h and 

required the crabs to either employ a behavioural response to avoid these extreme 

conditions or to resort to anaerobic metabolism.

Field observations showed that, in common with several other intertidal species of 

decapod crustaceans, Carcinus maenas exhibited partial and full emersion responses, 

when exposed to hypoxic conditions in rock pools (Fig. 2.1). As the hypoxic 

conditions became more severe, larger numbers of crabs became fully emersed and 

emerged onto the surrounding rocks. These crabs avoided the rock pool hypoxia 

and were able to take advantage of the a ir’s rich oxygen supply. In addition, 

laboratory experiments demonstrated that under conditions of severe hypoxia, the 

concentration of L-lactate was shown to increase in fully immersed crabs, but no 

accumulation was observed in those crabs that had become partially or fully 

emersed. In terms of respiratory metabolism therefore, it appears that it would be 

advantageous for the hypoxic crabs to become at least partially emersed. Previous 

studies, however, have shown that aquatic animals have problems with excreting 

carbon dioxide. The CO2  can accumulate in the haemolymph, leading to a 

respiratory acidosis (Taylor & Butler, 1978). The effects of this accumulation on 

the acid-base balance of the crab, however, are smaller than those effects resulting 

from the accumulation of L-lactate in the fully immersed crabs. It has been 

reported that in partially emersed animals, much of their carbon dioxide is excreted 

into the hypoxic water, that is maintained in their branchial chambers (Wheatly &
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Taylor, 1979; B urnett & McMahon, 1987). This reduces the Pco2  of the 

haemolymph and helps minimise the respiratory acidosis.

There are situations, however, in which either the crab is not able to become 

emersed (e.g. deep rock, pool with steep walls) or in which it would be dangerous to 

do so (e.g. high predation risks). Fully immersed crabs exhibit certain physiological 

responses which enable them to survive exposure to hypoxia. Initially, the crab 

maintains its respiratory independence by hyperventilating, which involves an 

increase in the frequency of beating of the scaphognathites, resulting in an increase 

of the ventilatory flow. Since hyperventilation causes CO2  to be excreted from the 

gills at a greater rate than under normoxic conditions, a respiratory alkalosis is often 

observed. The alkalosis, causes a Bohr shift resulting in an increase in the oxygen 

affinity of the haemolymph. Obviously, an increase in the frequency of the 

scaphognathites or heart beat, requires a greater expenditure of energy. Once the 

environmental P0 2  decreases to below the critical oxygen tension (Pc point), it 

becomes energetically impractical to maintain this high ventilatory rate. Below the 

Pc, the scaphognathite rate declines and the crabs are no longer able to maintain a 

rate of oxygen uptake that is sufficient to sustain the normal rate of oxygen 

consumption.

As the degree of hypoxia becomes more severe, the biochemical responses associated 

with hypoxia and anoxia assume a greater importance. The concentration of L- 

lactate starts to increase, indicating the utilisation of anaerobic metabolism. During 

the early stages of severe hypoxia the transphosphorylation of ADP by phospho-l- 

arginine helps to supplement the glycolytically derived energy, but this is rapidly 

depleted since initial concentrations of this phosphagen are fairly small. When 

conditions became anoxic ( < 2 Torr), the heart rate was observed to continue to 

beat at a very low rate.

Anaerobic metabolism is energetically very wasteful, owing to the incomplete
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oxidation of the carbohydrate precursor, resulting in a very much lower efficiency 

of ATP production than under aerobic conditions. If an animal’s anoxic energy 

demand remains at the pre-anoxic rate, then the rate of glycolysis must be enhanced 

(i.e. 'Pasteur effect’), which would rapidly deplete the carbohydrate pool. The need 

for this Pasteur effect could be overcome by reducing the energy demand of the 

animal. In the present study, a metabolic depression was shown to occur during 

exposure to anoxia (Chapter 6 , section 6.3.). Although this has been previously 

reported, studies have tended to concentrate on molluscs (Pamatmat, 1980; Gnaiger, 

1981; Famme et al., 1981). In the present study, after 2 hours of anoxia, the 

metabolic rate in Carcinus maenas had decreased to 16 % of the rate under aerobic 

conditions. This low metabolic rate is consistent with the low rates of L-lactate 

accumulation observed in C. maenas (Table 3.4) and helps to explain the high LT^q 

of 15.8 h .

It appears that the metabolic depression during anoxia is probably the most 

important response of Carcinus maenas to explain the crab’s high anoxia-tolerance. 

The mechanism by which this depression occurs has only really been investigated 

over the last decade, with attention focusing mainly on the role of certain key 

glycolytic enzymes under anaerobic conditions. The following enzymes have been 

identified as being rate limiting in the glycolytic pathway: hexokinase (HK) (EC 

2.7.1.1.), glycogen phosphorylase (GP) (EC 2.4.1.1.), phosphofructokinase (PFK) 

(EC 2.7.1.11.) and (possibly) pyruvate kinase (PK) (EC 2.7.1.40.).

Initially, studies concentrated on the allosteric effect of phosphagens and adenylate 

nucleotides on the activity of these rate-limiting enzymes (Atkinson, 1969; Jaffe et 

al., 1971; Grieshaber & G2de, 1976; Storey, 1976; de Zwaan & Ebberink, 1978; 

Storey & Storey, 1978, 1979; Lesicki, 1980). For example, HK and PFK are 

inhibited by high concentrations of phospho-l-arginine and ATP, while being 

activated by high concentrations of ADP, AMP, Pi. Some enzymes have also been
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shown to respond most strongly to the relative proportions to each other of these 

metabolites (e.g. [ATP]/[AMP] and [ATP]/[ADP]) (Atkinson, 1969).

In the present study, the concentrations of phospho-l-arginine and ATP in the tissue 

of Carcinus maenas decreased during anoxia, whilst the concentration of AMP 

increased (Chapter 3, section 3.3.3.2.). This would be expected to cause an 

activation of HK, PFK and PK and thereby result in a Pasteur effect. As described 

earlier, however, results from calorimetric techniques have shown a pronounced 

depression of the metabolic rate of Carcinus maenas during anoxia. Although this 

reduction in the metabolic rate has also been observed by other authors, it has only 

really been investigated in the molluscs. Ebberink & de Zwaan (1980) observed that 

in the adductor muscles of Mytilus edulis, the concentration of fructose-6 -phosphate 

increased whilst the concentration of fructose-1 ,6 -bisphosphate decreased during 

initial exposure to anoxia. This is indicative of PFK inhibition, and occurs despite 

a reduction in the levels of the allosteric inhibitors, together with an increase in the 

activators.

Hue (1982) stated that fructose-2,6 -bisphosphate regulates PFK by controlling the 

use of carbohydrate for biosynthetic purposes under aerobic conditions and that 

during exposure to anoxia these effects are withdrawn. This means that, during 

anoxia, anabolic reactions are largely stopped, leaving only a minimal level of 

metabolism required to maintain basic energy requirements. This would have the 

effect of greatly reducing the glycolytic rate. A decrease in the concentration of 

fructose-2 ,6 -bisphosphate, in soft tissues, during anoxia has been observed in 

mammalian hepatocytes (Hue, 1982) and in the muscle tissue of Ostrea edule and 

Mytilus edulis (Storey, 1985b). Storey (1984) demonstrated that in Busycotypus 

canaliculatum, fructose-2,6 -bisphosphate is a less effective activator of PFK in 

anoxic muscle as compared with aerobic muscle.

The action of fructose- 2 ,6 -bisphosphate does not explain the absence of the Pasteur
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effect in the presence of allosteric activation. Storey (1985a) postulated two 

mechanisms of higher level control of PFK and other glycolytic enzymes, which 

overrides allosteric control. Firstly, covalent modification of enzymes by protein 

phosphorylation and secondly, enzyme association/dissociation with subcellular 

particles.

i) Covalent modification of enzymes.

Cohen (1980) described covalent incorporation of phosphate as being widespread and 

extremely important in metabolic control. It provides a means of bringing about 

transient changes to enzyme activities. Currently, most of the work on covalent 

modification has been carried out on mammalian tissues (Engstrom, 1978; Cohen, 

1980; Sakakibara & Uyeda, 1983).

Work concerning covalent modification in invertebrates has again concentrated on 

m olluscs. S torey (1984) found th a t there  were two form s o f PFK: (i) 

dephosphorylated (aerobic) and (ii) phosphorylated (anaerobic) forms. The 

phosphorylated enzyme was more sensitive to inhibition by ATP and citrate and less 

sensitive to the effects of the activators. This was directly comparable with the 

mammalian system (Foe & Kemp, 1982). During anoxia, therefore, the effects of 

PFK phosphorylation overrides the action of the allosteric activators.

Evidence for the existence of two forms of PK in anoxia-tolerant marine molluscs 

has been increasing for several years (Siebenaller, 1979; Holwerda et al., 1981, 

1983). Plaxton & Storey (1986) isolated both anoxic (phosphorylated) and aerobic 

(dephosphorylated) forms of PK from Busycotypus canaliculatum. They found that 

the anoxic variant exhibited a lower maximal activity, a reduced affin ity  for 

phosphoenolpyruvate (PEP), a reduced activation by fructose-1,6 -bisphosphate and, 

finally, an extremely potent inhibition by alanine. All these kinetic differences are 

comparable to the mammalian L-type PK (Engstrom, 1978).
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ii) Enzyme association/dissociation with subcellular particles.

There is increasing evidence to suggest that there are associations between many of 

the enzymes of glycolysis and membrane fractions, glycogen particles and structural 

proteins (Knull, 1978; Wilson et al., 1982). These associations appear to be 

important in regulating rates of aerobic and anaerobic glycolysis (Walsh et al., 1980; 

Garke et al., 1984; Storey, 1985a). Plaxton & Storey (1986) separated soluble and 

particulate fractions of the muscle of the gastropod Busycotypus canaliculatum. 

They found that exposure to anoxia led to a decrease in the association of glycolytic 

enzymes with subcellular particles, but that this decrease was reversible on the 

return of B. canaliculatum to normoxic conditions. During anoxia, the reduction in 

particle associations, led to a decrease in enzyme and pathway organisation, resulting 

in a reduction in the rate of anaerobic glycolysis.

A great deal of work needs to be carried out before the mechanism of metabolic 

depression in anoxia-tolerant crustaceans can even begin to be fully understood. In 

molluscs, metabolic depression appears to be brought about by (i) reduction of 

physical activity, (ii) cessation of anabolic reactions through a reduction in the 

concentration of fructose-2 ,6 -bisphosphate, (iii) phosphorylation of rate-limiting 

glycolytic enzymes and, (iv) a transient decrease in the association of enzymes with 

subcellular particles. It remains to be seen if these are the regulatory mechanisms 

controlling metabolic depression in crustaceans.

It has been known for many years that decapod crustaceans accumulate L-lactate as 

an end product of anaerobic metabolism. Prior to this investigation, however, there 

had been no comprehensive study to investigate the possible existence in decapods 

of any of the other anaerobic pathways that have been found to be present in other 

invertebrate groups. A stoichiometric comparison revealed that some 92 % of the

133



catabolism of the carbohydrate pool (mainly glycogen and oligosaccharides), 

associated with exposure to anoxia, could be explained by the accumulation of L- 

lactate. It is possible that some of the remaining catabolised carbohydrate ( 8  %) 

was incorporated into the amino acid alanine, whose concentration was observed to 

increase in the tissues of Carcinus maenas during anoxic conditions. The use of 

High Performance Liquid Chromatography indicated that, despite a small increase in 

the concentration of fumarate in response to exposure to anoxia, organic acids were 

unimportant end products in the anaerobic metabolism of decapod crustaceans 

(Chapter 3, section 3.3.3.3.). The role of amino acids in the anaerobic metabolism 

of C. maenas was found to be of minor importance. There was some evidence to 

indicate the existence of the anaerobic pathway involving the transamination of 

aspartate to oxaloacetate, which might explain the observed increase in the 

concentration of fumarate and alanine (Fig. 3.14). The magnitude of these changes, 

however, were very small in comparison to the increase in the concentration of L- 

lactate.

The results from the present study show that the only anaerobic pathway of any 

importance in decapod crustaceans is that culminating in the production of L- 

lactate. This is in contrast to other invertebrate groups, in which anaerobic 

metabolism can be composed of several different pathways within the same species 

(Livingstone, 1983). Further evidence confirming the dominance of L-lactate as 

the anaerobic end product in decapod crustaceans, was obtained from radiolabelling 

experiments (Chapter 4). In these experiments, it was found that during exposure 

to anoxia, the incorporation of radioactivity from D-[U-^C]-glucose into the weak 

acid fraction (mainly L-lactate), followed exactly the same time course as the 

accum ulation  o f L -lac ta te  (Fig. 4.8). In ad d itio n , there  was little  or no 

incorporation of radioactivity into the TCA fraction (containing organic acids).

One of the initial aims of this project was to determine the fate of L-lactate
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following a period of exposure to anoxia. A stoichiometric comparison revealed 

that about 89 % of the carbohydrate (mainly glycogen and oligosaccharides) 

accumulating during recovery could be explained by the depletion of L-lactate. 

This indicated the existence of some form of gluconeogenic pathway (Chapter 3, 

section 3.4.5.2.). This precursor/product relationship was later confirmed using 

radiolabelled L-[U -^C]-lactate, for it was demonstrated that radioactivity from the 

L-lactate was incorporated into glycogen and later into amino acids (Chapter 4, 

Table 4.2). It was also demonstrated that radioactivity from L -[U -^C ]-lacta te , 

became incorporated into carbon dioxide and bicarbonate, indicating the complete 

oxidation of L-lactate as a possible means of the elimination of this anaerobic end 

product (Chapter 4, Fig. 4.7). It is conceivable, however, that this labelled carbon 

dioxide could have originated from glucosyl units, formed via a gluconeogenic 

pathway from radiolabelled L-lactate. No excretion of labelled L-lactate by 

Carcinus maenas during recovery was detected (Chapter 4, Table 4.3). It appears, 

therefore, that end product elimination in decapod crustaceans relies mainly on the 

formation of the initial precursors, and to a limited extent, the complete oxidation 

of L-lactate to carbon dioxide. These findings are consistent with those of Gade et 

al. (1986), who investigated the fate of L-lactate during recovery in the stone crab, 

Menippe mercenaria.

During recovery from exposure to anoxia, ’overshoots’ were measured in the heart 

rate, oxygen consumption and in heat dissipation rate, probably associated with the 

repayment of the ’oxygen debt’ (Chapter 5, Fig. 5.4 and Chapter 6 , Figs. 6.2 and 

6.3). This is consistent with the observation, based on calorimetric studies, that 

most of the energy being produced from respiratory metabolism during this period 

was being utilised in anabolic, endothermic reactions (Chapter 6 , section 6.4.2.). 

During anoxia, individual Carcinus maenas were observed to be very inactive, but 

when the water was re-aerated, locomotor activity increased rapidly. After the first 

hour of recovery, oxygen consumption and heat dissipation rates decreased
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significantly, but required a further 4 h before rates approached pre-anoxic values.

All these physiological and behavioural responses are typical of an aquatic animal 

recovering from exposure to hypoxia and have been previously reported by many 

authors (Thompson & Pritchard, 1969; Taylor et al.> 1977; Bridges & Brand, 1980; 

Shick et al., 1986, 1988). Of particular interest in the present study, however, was 

that, in addition to the physiological and behavioural responses, the concentration of 

L-lactate in Carcinus maenas was observed to double during the first hour of 

recovery (Chapter 3, section 3.3.3.1.). This observation was corroborated by the 

experiment using D -[U -^C ]-glucose, in which the incorporation of radioactivity 

into the weak acid (mainly L-lactate) fraction was shown to double during the first 

hour of recovery (Chapter 4, Fig. 4.6). Head & Baldwin (1986) reported a similar 

phenomenon during recovery in Cherax destructor; although the magnitude of the 

L-lactate accumulation was smaller. The accumulation was thought to be the result 

of functional anaerobiosis in muscle tissue. It is possible, therefore, that the 

observed increase in the concentration of L-lactate could be the result of functional 

anaerobiosis in muscular tissue, associated with the increased locomotor activity that 

was observed during the first hour of recovery. Since L-lactate was determined in 

pooled tissue samples only, it is not possible to confirm this speculation from the 

present data. Indirect calorimetric measurements indicated that, during the first 

hour of recovery, anaerobic metabolism accounted for approximately 2 2  % of the 

total energy produced. These measurements were based on oxygen consumption for 

the aerobic component and the rate of L-lactate accumulation and depletion of 

phospho-l-arginine for the anaerobic component. The caloric equivalents used were 

-450, -60 and -55.2 mJ.umol-  ̂ of oxygen, L-lactate and phospho-l-arginine (Shick 

et al.y 1983 and Gnaiger (1983).

In comparison to other invertebrate groups, the anaerobic metabolism of decapod 

crustaceans is comparatively simple, being based on the pathway culminating in the
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production of L-lactate. It is clear, however, that such a pathway is sufficient to 

provide the majority of the energy required by Carcinus maenas to survive exposure 

to environmental anoxia and has in part contributed to the success of this species in 

being able to withstand the extreme conditions of the intertidal zone.

Although this study has answered its initial aims, it has also raised many questions, 

which could usefully form the basis of future work. The carbohydrate and L- 

lactate metabolism of specific tissues are areas of research that currently require 

attention. Similarly, further work is needed on the glycolytic regulation of 

metabolic depression in crustaceans, to increase our understanding of the metabolism 

of decapods under anoxic conditions.
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APPENDIX 1 - PREPARATION OF HAEMOLYMPH/TISSUE SAMPLES USING 

PERCHLORIC ACID EXTRACTION.

Reagents.

Liquid nitrogen.

Potassium bicarbonate: (2 M).

Perchloric acid (PCA): 0.6 M and 0.3 M (for haemolymph and tissue samples

respectively).

Procedure-

Haemolymph Samples:

i) Haemolymph samples were taken and immediately mixed with an equal 

volum e of ch illed  PCA (0.6 M), to p re c ip ita te  the p ro te in  and 

inactivate enzymes.

ii) After mixing thoroughly, the mixture was centrifuged for 20 minutes at 

10,000 g and the resultant supernatant removed.

iii) Dropwise addition of 1/20 vol. potassium bicarbonate (2 M) was used 

to neutralise the supernatant. The pH was checked using full range 

indicator paper.

iv) The precipitated potassium perchlorate was removed by centrifuging 

again at 10,000 g after cooling on ice for 10 minutes.

v) The clear supernatant was separated and frozen at (-20 °C) until 

used.

Tissue samples:

i) Frozen tissue was placed in a mortar of liquid nitrogen and ground into a 

powder using a pestle.

ii) Once the liquid nitrogen had evaporated away, 50 mg of the powder was 

transferred to an Eppendorf (1.5 ml plastic centrifuge tube) and 500 ul
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of chilled PCA (0.3 M) was added.

iii) A fter mixing thoroughly on a vortex mixer, the mixture was 

cen trifu g ed  for 10 m inutes at 10,000 g and the re su ltan t 

supernatant (1) separated and stored on ice.

iv) A further 500 ul of chilled PCA (0.3 M) was added to the pellet, mixed

again and centrifuged for a further 20 minutes at 10,000 g.

v) The resultant supernatant (2) was then added to the supernatant (1) 

and after mixing, neutralised using potassium bicarbonate (2 M).

vi) Having centrifuged the mixture for a final time to remove the

p recip ita te  of potassium perchlorate, the resulting supernatant was 

separated and stored at -20 °C until needed.

Application.

This haemolymph /tissue preparation method was used to estimate the

following metabolites: D-glucose, glucose-6-phosphate, total hexose/pentose sugars, 

L-lactate, succinate, phosphoenolpyruvate (PEP), phospho-l-arginine, adenosine 

triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate 

(AMP), various organic acids and amino acids.

Storage and stability qL sam ple

Since nucleotides and phospho-l-arginine are so prone to degradation, 

samples were stored at -70 °C and the number of times that a sample was 

defrosted and refrozen was kept to minimum.

Comments.

a) Care was taken to ensure that all liquid nitrogen had evaporated from the 

homogenate before the 50 mg sample was removed, to ensure accurate 

weighing.

b) The total volume of potassium bicarbonate required to neutralise each sample 

was recorded.
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c) When potassium bicarbonate is added to the PCA sample mixture carbon 

dioxide is generated. The lid of the Eppendorf tube was therefore opened 

occasionally, to release any build up of pressure which might have led to a 

loss of material.

Reference.

Gade G., E. Weeda & P.A. Gabbott (1978). Changes in the level of octopine 

during the escape responses of the scallop, Pecten maximus (L.). L. comp. 

Phvsiol. 124B, 121-127.
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A PPEN D IX  2 - METHOD FOR TOTAL HEX O SE/PENTO SE SUGAR

DETERMINATION.

This method is based on that of Carroll et al. (1956), and involves the acid 

hydrolysis of glycosidic bonds to give monosaccharide units, by the concentrated 

acid in the anthrone reagent. These in turn are dehydrated to furfural and its 

derivatives. The furfural reacts with anthrone (10-keto-9,10-dihydro-anthracene) 

to give a blue-green complex, which shows an absorbance maximum at 620 nm.

Reagents.

Anthrone reagent: 72 ml of concentrated sulphuric acid was added to 28

ml distilled water (Care was taken to slowly add the acid 

to the water and to prevent the solution from becoming 

too hot). 50 mg of anthrone was then dissolved into the 

72 % sulphuric acid, allowed to cool and stored at 0-5 °C. 

Any reagent not used within 7 days was discarded.

D-glucose/glycogen: The following standards were run: 5 mM, 2.5 mM, 1 mM 

and 0.5 mM (90 mg. 100 ml- * = 5 mM and 81 mg. 100 ml"* 

= 5 mM, for D-glucose and glycogen respectively).

Haemolvmph/Tissue Preparation-

See Appendix 1 for details.

Assay-

1 ml of Anthrone reagent and 50 ul of sample/standard, were added to a 5 ml 

test tube and mixed well. A reagent blank was produced by substituting 50 ul of 

distilled water, for the 50 ul of sample/standard.

Procedure-

i) The assay mixtures were placed in a boiling water bath for 10 

m inu tes , and then  cooled on ice for a fu r th e r  10 m inutes.
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ii) After this time the contents of the test-tubes were transferred to 1.5 ml

spectrophotometric semi-micro cuvettes.

iii) The absorbance of each sample was then measured at a wavelength of 620

nm.

Interpretation.

A calibration line was constructed and a linear relationship was observed between 

the concentration of standards and their absorbances. Therefore if a blank was used 

to zero the spectrophotometer, any change in absorbance was regarded as being 

proportional to the concentration of total hexose/pentose sugars present in either 

the sample or the standard.

Comment.

i) The efficiency of the hydrolysis reaction was checked by comparing a

1 mM standard of D-glucose with a similar glycogen standard. It was

found that there were no significant (P < 0.05) differences between the 

results obtained for similar concentrations of the 2 sugars.

ii) Care was taken to ensure that the assay mixtures were well mixed before 

placing them in the water bath.

Reference.

Carroll N.V., R.W. Longley & J.D. Roe (1956). The determination of glycogen in 

liver and muscle by use of anthrone reagent, biol. Chem. 220, 583-593.
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APPENDIX 3 - METHOD FOR GLYCOGEN AND FREE OLIGOSACCHARIDE

/MONOSACCHARIDE DETERMINATION IN TISSUE SAMPLES.

This method is based on that of Keppler and Decker (1974) and involves the 

hydrolysis of the 1-4 & 1-6-glycosidic bonds of glycogen, by the enzyme 1- 

4, 1-6-amyloglucosidase (EC 3.2.1.33). The resultant glucosyl units are then 

assayed, using Hexokinase (EC 2.7.1.1) and Glucose-6-phosphate dehydrogenase 

(EC 1.1.1.49), as described in Appendix 4.

Assay.

1) Glycogen or £t-glucosyl)n + ^ 0 ---- > (a-glucosyl)n_ j + D-glucose

2) D-glucose + A T P  » Glucose-6-phosphate + ADP

3) Glucose-6-phosphate + NADP+  » 6-phosphogluconate + NADPH + H+

Reagents 

Liquid Nitrogen 

Potassium hydroxide: 

Ethanol:

Acetate buffer

,-130 g.100 m l '1 (30 %).

Absolute.

2.4 ml. of 96 % acetic acid and 4.87 g of sodium 

acetate (35 mM) were made up to 1000 ml. using 

d is tilled  w ater. The pH was ad ju sted  to 4.8 

with NaOH (5 M).

Tris buffer. 2.42 g of Tris and 0.240 g of magnesium sulphate

(100 mM and 10 mM respectively) were dissolved in 

200 ml of distilled water. The pH was adjusted to 

7.4, using HQ (5 M).

D-glucose and glycogen: The following standards were run: 1 mM, 0.5 mM,

0.25 mM and 0.1 mM (18 mg. 100 ml- * = 1 mM and

16.2 m g .100 m l'*  = 1 mM for D -g lucose and
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glycogen respectively).

ATP: 121 mg.10 mg (22 mM)

NADP+: 168 mg. 10 ml"1 (22 mM)

Hexokinase: Dilution of 1 in 25 (i.e. 180 U.mg protein). 

Dilution of 1 in 25 (i.e. 300 U.mg"^ protein).G6P-DH:

1-4,1-6-Amyloglucosidase: Used without dilution (i.e. 77 U.mg protein).

Procedure (including preparation q£ tissue)

i) Frozen tissue was placed in a mortar of liquid nitrogen and ground 

into a powder using a pestle.

ii) Once the liquid nitrogen had evaporated away, 50 mg of the powdered 

tissue was transferred to an Eppendorf tube and 400 ul potassium 

hydroxide (30 %) added.

iii) After mixing, the Eppendorf tube was put into a boiling water bath for 

20 minutes, and then removed and allowed to cool.

iv) After adding 1 ml of absolute alcohol to give a final concentration of 70 %, 

the Eppendorf tubes were left on ice for 2 h, to allow the glycogen to 

precipitate out.

v) A fter centrifuging the Eppendorf tubes for 10 minutes at 10,000 g, the 

supernatant was decanted off.

vi) Both the supernatant and the pellet were stored separately at -20°C.

Free oligosaccharide/monosaccharide estimation:

a) 100 ul of the supernatant and 10 ul of the 1-4,1-6-amyloglucosidase 

was added to 500 ul of the acetate buffer, mixed well and then 

incubated in a water bath at 34 °C for 2 h . (The alkalinity of the 

supernatant was found not to alter the pH of the overall mixture).

b) At the end of this time 100 ul of the solution was mixed with 

700 ul of Tris buffer, 100 ul of ATP and 100 ul NADP+.

c) The fluorescence of NADPH was m easured using  a
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spectrofluorophotometer (excitation and emission wavelengths were

340 nm and 457 nm respectively). E l

d) Hexokinase and glucose-6-phosphate dehydrogenase (10 ul of each)

- Glycogen estimation

a) 1000 ul of acetate buffer and 10 ul of 1-4,1-6-amyloglucosidase were

added to the pellet obtained in (vi), mixed thoroughly and

incubated at 37 °C for 2 h .

b) 100 ul of this mixture was added to 700 ul of Tris buffer, 100 ul of

ATP and 100 ul of NADP+.

c) The fluorescence of NADPH was measured using a 

spectrofluorophotometer (excitation and emission wavelengths were 

340 nm and 457 nm respectively). -------E l

d) Hexokinase and glucose-6-phosphate were added (10 ul of each) and 

left for 5 minutes.  E4

Interpretation

E2 - E l - Change proportional to the concentration of oligosaccharides /  

monosaccharides present in the sample/standard.

E4 - E3 - Change proportional to the concentration of glycogen present in 

the sample/standard.

Comments

- When the tissue was being boiled in potassium hydroxide (iii), the lid of the 

Eppendorf tube was pierced with a needle in order to prevent any increase in 

pressure.

- Care was taken  not to d is tu rb  the pe lle t frac tio n  in (v i), when the 

supernatant was being decanted.

- The monosaccharide fraction was estimated separately by directly assaying the

were added and left for 5 minutes. El
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su p ern a tan t ob ta ined  in (vi), p rio r to the hydrolysis by 1 -4 ,1 -6 -  

amyloglucosidase.

Reference

K ep p ler D. and K. D ecker (1974). G lycogen d e term in a tio n  w ith 

amyloglucosidase. Irr. Methods of enzymatic analysis, 2nd ed. pp. 1127-1131. 

Ed. by H.U. Bergmeyer. New York : Academic Press.
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APPENDIX 4 - METHOD FOR GLUCOSE-6-PHOSPHATE AND D-GLUCOSE

DETERMINATION.

This method, based on that of Kunst et al. (1981), involves a 2 step reaction using 

the enzymes hexokinase (EC 2.7.1.1) and glucose-6-phosphate dehydrogenase 

(EC 1.1.1.49). The hexokinase catalyses the phosphorylation of glucose, whilst 

glucose-6-phosphate dehydrogenase catalyses the oxidation of glucose-6- 

phosphate to 6-phosphogluconate.

Assay

1) Glucose-6-phosphate + NADP+ ---- » 6-Phosphogluconate + NADPH + H+

2) D-glucose + A T P  » Glucose-6-phosphate + ADP.

Reagents

Tris Buffer 2.42 g of Tris and 0.240 g of magnesium sulphate (100 mM and 10 

mM respectively) were added to 200 ml of distilled water. The 

pH was adjusted to 7.4, using HQ (5 M).

D-glucose: The following standards were run: 1 mM, 0.5 mM, 0.25 mM

and 0.1 mM (18 mg. 100 ml"* = 1 mM).

Hexokinase: A dilution of 1 in 25 (i.e. 180 U.mg"* protein).

G6P-DH.: A dilution of 1 in 25 (i.e. 300 U.mg"* protein).

ATP: 121 mg. 10 ml"* (22 mM).

NADP+ 168 mg. 10 ml"* (22 mM).

Haemolvmph/Tissue Preparation 

See Appendix 1 for details.
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Procedure

The following reagents were added into a 1.5 ml semi-micro cuvette:

Tris Buffer 700 ul
ATP 100 ul
NADP+ 100 ul
Sample/standard 100 ul 
G6P-DH 10 ul
Hexokinase lOul

1020 ul

The analysis could be carried out using either a Spectrophotometer (Philips PU 

8700) (absorbance wavelength = 340 nm) or a Spectrofluorophotometer (Shimadzu 

RF 5000) (at a wavelength of 340 nm and 457 nm for excitation and emission 

respectively). The latter was more sensitive and was used when the 

concentration of either of the metabolites was very low. Absorbance/fluorescence 

values are represented by El to E3.

i) Tris buffer, ATP, NADP+ and standard/sample were mixed  £1

ii) Glucose-6-phosphate dehydrogenase was added  E2.

iii) Hexokinase was added  E l

Readings were taken 5 minutes after the addition of each enzyme.

Interpretation

E2 - El = Change proportional to the concentration of glucose-6-

phosphate present in the sample/standard.

E3 - E2 = Change proportional to the concentration of D-glucose in the

sample/standard.

Comment

The Tris buffer and both enzymes were refrigerated when not being used

(the buffer was never kept for longer than a week). The ATP and the NADP+

solutions were kept frozen, and discarded after 2 weeks.
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Reference

Kunst A., B. Draeger & J. Ziegenhom (1981). UV-methods with hexokinase and 

glucose-6-phosphate dehydrogenase. In  Methods of enzymatic analysis, 3rd ed. 

pp. 117-123. Ed. by H.U. Bergmeyer. New York : Academic Press.
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APPENDIX 5 - METHOD FOR L-LACTATE DETERMINATION.

This method is based on that of Gutmann and Wahlefeld (1974) and can be 

used on both tissue and haemolymph samples. The L-lactate is oxidised to 

pyruvate in a reaction that is catalysed by lactic dehydrogenase (EC 1.1.1.27).

Assay

L-lactate + NAD+; Pyruvate + NADH

Rearants
Glycine-hydrazine buffer 3.75 g of glycine, 0.5 g of EDTA and 2.0 ml of

hydrazine-hydrate were mixed with 98 ml of distilled 

water. The pH was adjusted to 9.0, using NaOH (1 

M).

Lactic acid: The following standards were run: 2 mM, 1 mM,

0.5 mM and 0.25 mM (38.4 mg.200 ml"* = 2 mM).

NAD+:

LDH:

26.5 mg.ml * (40 mM)

-1Dilution of 1 in 2 (i.e. 600 U.mg- protein).

Haemoivmph/tissue preparation 

See Appendix 1.

Procedure

The analysis can be carried out using either a Spectrophotometer

(absorbance wavelength = 340 nm) and a Spectrofluorophotometer (at wavelengths of

340 nm and 457 nm for excitation and emission respectively). The latter was more

sensitive and was used when the concentration of the L-lactate was low. The

following reagents were mixed in a 1.5 ml semi-micro cuvette:

Glycine-Hydrazine buffer 1000 ul 
NAD+: 50 ul
Sample/standard: 50 ul
LDH: 5 ul
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1) The reaction mixture was mixed thoroughly and then incubated in a water 

bath at 37 °C for 2 hours.

2) Blanks were run by substituting 50 ul of distilled water for the

sample/standard  £1

3) Sample/standard absorbance/fluorescence  E2

Interpretation

E2 - El = Change proportional to the concentration of L-lactate present in 

the sample/standard.

Comment

a) The EDTA was included in the buffer to remove free copper ions, the

presence of which has been shown to interfere with the end point of the

reaction (Engel and Jones, 1978).

b) Since L-lactic acid is present in human skin, gloves were worn to avoid

contamination.

References

Engel P. & J.B. Jones (1978). Causes and elimination of erratic blanks in enzymatic 

metabolite assays involving the use of NAD+ in alkaline hydrazine buffers: 

Improved conditions for the assay of L-glutamate, L-lactate and other 

metabolites. Anal, biochem. 88, 475-484.

Gutmann I. & A.W. Wahlefeld (1974). L-(+)-lactate. Determination with 

lactate dehydrogenase and NAD+. In  Methods of enzymatic analysis, 2nd ed. 

pp. 1464-1468. Ed. H.U. Bergmeyer. New York: Academic Press.
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APPENDIX 6 - METHOD FOR SUCCINATE AND PHOSPHOENOLPYRUVATE 

(PEP) DETERMINATION IN TISSUE SAMPLES.

This method, is based on those of Beutler (1974) and Lamprecht & Heinz (1981) 

and involves the conversion of succinyl-CoA with the coenzyme A (CoA) and 

guanosine 5’- triphosphate (GTP) in the presence of succinate thiokinase (EC 

6.2.1.4-5). The resultant guanosine 5’-diphosphate (GTP), reacts w ith 

phosphoenolpyruvate (PEP) to form pyruvate. The pyruvate is then estimated as 

described in Appendix 8.

Assay

1) Succinate + GTP + CoA— > Succinyl CoA + Pi + GDP

2) GDP + PEP— > GTP + Pyruvate

3) Pyruvate + NADH + H*-—* L-lactate + NAD+

Reagents

Tris buffer 2.42 g of Tris, 0.24 g of magnesium sulphate and 0.25

g of ethyldiaminetetracetic acid (EDTA) were added to

200 ml of distilled water (100 mM, 10 mM and 4.2 mM

respectively). The pH was adjusted to 7.4, using HQ (5 

M).

Acetyl CoA mixture: 1.81 mg. 10 ml * of Acetyl CoA, 12.3 mg. 10 ml * of

GTP and 25.7 mg. 10 ml * of PEP (0.11 mM, 21 mM 

and 1.1 mM respectively).

Succinate The following standards were run 1 mM, 0.5 mM, 

0.25 mM and 0.1 mM (16.2 mg. 100 ml"* = 1 mM).

PEP The following standards were run: 1 mM, 0.5 mM, 

0.25 mM and 0.1 mM (23.4 mg. 100 ml'* = 1 mM).

NADH: 28.4 mg. 10 ml" (4 mM).
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LDH: 2.1 U.ml’ 1

Pyruvate Kinase: 630 mU.mr*

Succinate thiokinase: 90 mU.mr*

TlSSUg sample preparation 

See Appendix 1.

Procedure

The analysis can be carried out using either a Spectrophotometer (absorbance 

wavelength of 340 nm) or a Spectrofluorophotometer (at wavelengths of 340 nm 

and 457 nm for excitation and emission respectively). The following reagents were 

mixed in a 1.5 ml semi-micro cuvette:

i) 850 ul Tris, 50 ul NADH, 50 ul Acetyl CoA

sample/standard

ii) 10 ul of both LDH and PK

iii) 10 ul of succinate thiokinase (left for 30 minutes)

Interpretation 

El - Reagent blank.

E2 - E l - Change proportional to the concentration of PEP in the sample /

standard.

E2 - E3 - Change proportional to the concentration of the succinate present in 

the sample.

Comment

i) Owing to the high cost of the succinate thiokinase, succinate was only

estimated in a few samples.

ii) It is sometimes difficult to obtain satisfactory results using the
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spectrofluorophotometer in the succinate assay, owing to the

interference caused by high levels of GTP.

References

Beutler H.O. (1974). Succinate. lit Methods of enzymatic analysis, 2nd ed. pp. 25- 

33. Ed. by H.U. Bergmeyer. New York; Academic Press.

Lamprecht W. & F. Heinz (1981). D-glycerate 2-phosphate and

phosphoenolpyruvate. lit Methods of enzymatic analysis, 3rd ed. pp. 555-561. 

Ed. by H.U. Bergmeyer. New York: Academic Press.
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APPENDIX 7 - METHOD FOR ADENOSINE TRIPHOSPHATE AND

PHOSPHO -L-ARGININE DETERMINATION.

These methods are based on those of Trautschold et al. (1981) and Heinz & Weiber 

(1981) with a number of modifications. Arginine kinase (EC 2.7.3.3) catalyses the 

de-phosphorylation of phospho-l-arginine. The phosphate group then produces 

ATP from ADP. The ATP is estimated according to the method described in 

Appendix 4, with the exception that ATP, rather than D-glucose, becomes the 

limiting factor.

Assay

i) Phospho-l-arginine + ADP—» Arginine + ATP

ii) ATP + D-glucose ---- > Glucose-6-phosphate + ADP

iii) Glucose-6-phosphate + NADP+ ---- > 6-Phosphogluconate + NADPH + H+

Reagents

Tris Buffer 2.42 g of Tris and 0.24 g of magnesium sulphate

(100 mM and 10 mM respectively) were added to

200 ml of distilled water. The pH was adjusted to 7.8, 

using HQ (5 M)

ATP/Phospho-l-arginine: The following standards were run: 1 mM, 0.5 mM,

0.25 mM, and 0.1 mM (65 mg. 100 ml- * = 1 mM

and 27.6 mg. 10 ml- * = ImM, for ATP and

phospho-l-arginine respectively).

0.99 g.10 ml-1 (0.55 M).

15 mg.3 ml- * (6.5 mM).

12 mg.l ml- * (24.6 mM).

Dilution of 1 in 25 (i.e. 180 U.mg- * protein).

Dilution of 1 in 25 (i.e. 300 U.mg- * protein).

100 ul in 1 ml of 0.7 M mercapto-ethanol (i.e.

75 U.mg- * protein).
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D-Glucose:

NADP+:

ADP:

Hexokinase (HK): 

G6P-DH: 

Arginine kinase:



Haemolvmph/Tissue preparation 

See Appendix 1

Procedure:

The analysis could be carried using either a Spectrophotometer (absorbance 

wavelength = 340 nm) or a Spectrofluorophotometer (at wavelengths of 340 nm 

and 457 nm, for excitation and emission respectively). The latter is more sensitive 

and was used when the concentration of either of the metabolites was very low. 

The following reagents were added to a 1.5 ml semi-micro cuvette:

i) 1 ml Tris buffer, 50 ul NADP+, 10 ul ADP, 50 ul D-glucose ----- £1

ii) Add 10 ul HK and 10 ul G6P-DH (leave 5 minutes) ----- E2

iii) 100 ul of sample/standard were added and left for 5 minutes ----- £2.

iv) 20 ul arginine kinase were added and left for 15 minutes ----- £4

Interpretation 

El - Regarded as the reaction blank.

E2 - E l - Change proportional to the concentration of ATP contamination of the 

ADP.

E3 - E2 - Change proportional to the concentration of ATP present in the 

sample/standard.

E4 - E3 - Change proportional to the concentration of the phospho-l- 

arginine present in the sample/standard.

Comment

a) Phospho-l-arginine is highly labile and was therefore kept frozen at -70°C, 

when not being used.

b) Internal standards were necessary, because unknown tissue factors caused partial 

inhibition of the reaction. It was found that only 80 % of the phospho-l- 

arginine was estimated. (An internal standard represented the addition of a

173



known amount of standard, to a reaction mixture that already contained a tissue 

sample).

c) The arginine kinase was left in the 0.7 M m ercapto-ethanol for at least 5 

minutes to ensure full activation of the enzyme, before being used in the assay.

d) Mercapto-ethanol is both extremely poisonous and possesses an unpleasant 

smell. Therefore the use of protective gloves and glasses, together with an 

efficient fume cupboard, were necessary.

References

Trautschold I., W. Lamprecht & G. Schweitzer (1981). UV-method with hexokinase 

and glucose-6-phosphate dehydrogenase. In  Methods of enzymatic analysis, 3rd 

ed. pp. 346-357. Ed. by H.U. Bergmeyer. New York: Academic Press.

Heinz F. & H. Weiber (1981). Creatine phosphate. In: Methods of enzymatic 

analysis, 3rd ed. pp. 507-514. Ed. by H.U. Bergmeyer. New York: Academic 

Press.
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APPENDIX 8 - METHOD FOR PYRUVATE, ADENOSINE DIPHOSPHATE AND 

ADENOSINE MONOPHOSPHATE DETERMINATION.

This method is based on that of Jaworek & Welsch (1981) and involves a 3- step 

reaction. Firstly, the pyruvate is reduced to L-lactate in the reaction catalysed by 

lactic dehydrogenase (EC 1.1.1.27). ADP is estimated from the reaction, catalysed 

by pyruvate kinase (EC 2.7.1.40), in which ATP is produced from the ADP 

via the de-phosphorylation of phosphoenolpyruvate (PEP) to pyruvate. 

Finally ADP is produced from the phosphorylation of AMP with ATP,

which is catalysed by myokinase (EC 2.7.4.3).

Assay

1) 2 Pyruvate + 2 NADH + 2 H V = ^  2 L-lactate + 2 NAD+

2) 2 ADP + 2 PEP > 2ATP + 2 Pyruvate.

3) AMP + ATP— > 2 ADP

Rsaftsnts

Tris buffer: 2.42 g of Tris, 0.24 g of magnesium sulphate and 0.75 g of 

potassium chloride (100 mM, 10 mM and 50 mM respectively) 

were added to 200 ml of distilled water. The pH was

adjusted to 8.0, using HQ (5 M).

28.4 mg. 10 ml”* (4 mM).

41.2 mg. 10 ml- * (20 mM).

74.4 mg. 10 ml- * (20 mM).

121 mg. 10 ml- * (20 mM).

The following standards were run: 1.0 mM, 0.5 mM, 0.25 mM 

and 0.1 mM (11.9 mg.100 ml- * = 1 mM).

The following standards were run: 1.0 mM, 0.5 mM, 0,25 mM 

and 0.1 mM (47.1 mg.100 ml- * = 1 mM).

The following standards were run: 1 mM, 0.5 mM, 0.25 mM and

NADH:

PEP:

EDTA:

ATP:

Pyruvate:

ADP:

AMP:
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0.1 mM (34.7 mg.100 ml- * = 1 mM).

LDH: Dilution of 1 in 25 (i.e. 600 U.mg protein).

PK: Dilution of 1 in 25 (i.e. 72 U.mg" protein).

MK: Dilution of 1 in 25 (i.e. 1300 U.mg" protein).

Haemolvmph/tissue preparation 

See Appendix 1.

Pjocsduis

The analysis can be carried out using e ither a Spectrophotom eter 

(absorbance wavelength = 340 nm) or a Spectrofluorophotometer (at wavelengths 

of 340 nm and 457 nm for excitation and emission respectively). A cuvette of 

distilled water was used as the reagent blank (El)- The following reagents were 

mixed in 1.5ml semi-micro cuvettes:

i) 750 ul Tris buffer, 50 ul EDTA, 50 ul PEP, 50 ul ATP, 50 ul NADH and 50ul 

sample /standard  E2

ii) 5 ul of LDH (left for 1 minute)  E l

iii) 5 ul of pyruvate kinase (left for 5 minutes)  E l

v) 5 ul of myokinase (left for 10 minutes)  E i

l iitgrBrsiatifln

El - Reagent blank.

E2 - Absorbance/emission of 50 ul 4 mM NADH.

E3 - E2 - Change proportional to the concentration of pyruvate present in the

E4 - E3 - Change proportional to the concentration of ADP present in the

E5 - E4 - Change proportional to the concentration of AMP present in the

sample/standard.

sample/standard.
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sample/standard.

Comment

a) High concentrations of the metabolites can lead to NADH becoming the 

limiting factor. Care was taken to avoid this by ensuring NADH was in 

excess.

b) Since the concentration of AMP was very low, it was necessary to use the 

spectrofluorophotometer.

Reference

Jaworek D. & J. Welsch (1981). Adenosine 5’-diphosphate and adenosine 5’- 

monophosphate: UV-method. Itr. Methods of enzymatic analysis, 3rd ed. pp. 

365-370. Ed. by H.U. Bergmeyer. New York: Academic Press.
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APPENDIX 9 - CONCENTRATIONS OF AMINO ACIDS DURING ANOXIA AND 

SUBSEQUENT RECOVERY.

A m i n o  A+ B+ C+ D+ E +
a c i d

A s p . 1 . 2 5 0 . 3 4 0 . 5 2 + 0 . 0 6

Thr. 3 . 7 8 3 . 0 4 1 . 83 +_ 1 . 05

S e r . 4 . 8 1 + 2 . 3 6 1 . 8 6 + 1 . 6 5

Glu. 4 . 5 9 +_ 2 . 3 2 1 . 84 _+ 0 . 4 9

P r o . 9 . 5 5 +_ 3 . 8 8 6 . 8 7 + 1 . 2 9

G l y . 1 3 . 9 1 . 3 9 1 2 . 8 +_ 3 . 1 6

A l a . 5 . 7 7 +_ 0 . 7 0 8 . 1 6 +_ 0 . 6 1

V a l . 0 . 7 8 _+ 0 . 2 3 0 . 5 3 0 . 2 6

Met. 0 . 4 5 +_ 0 . 2 9 0 . 4 0 +_ 0 . 1 6

H e . 0 . 7 3 +_ 0 . 2 8 0 . 6 0 +_ 0 . 3 7

Leu. 1 . 1 8 + 0 . 3 7 0 . 8 1 + 0 . 6 1

T y r . 1 . 3 4 0 . 3 2 0 . 7 4 +_ 0 . 2 3

Phe. 0 . 7 9 + 0 . 0 6 0 . 4 8 +_ 0 . 2 4

H i s . 0 . 3 7 +_ 0 . 0 7 0 . 3 6 _+ 0 . 1 4

L y s . 3 . 9 1 _+ 0 . 8 5 2 . 6 3 +_ 0 . 4 9

Arg. 9 . 6 7 +_ 0 . 4 1 7 . 4 9 +_ 1 . 4

Tau. 2 4 . 3 +_ 0 . 5 6 2 1 . 7 +_ 4 . 1 5

0 . 5 0 +_ 0 . 1 3 0 . 6 2 * 0 . 9 3 +_ 0 . 1 4

3 . 4 0 +_ 0 . 5 2 3 . 2 5 * 3 . 6 6 +_ 0 . 5 3

1 . 2 3
* .  ,  . * 

0 . 6 4 0 . 8 5 +_ 0 . 1 3

2 . 5 8 _+ 0 . 1 8 2 . 8 2 2 . 2 2 +_ 0 . 6 8

11 . 7 + 0 . 8 4 5 . 9 6 * 7 . 0 6 2 . 7 0

1 3 . 0 +_ 2 . 8 0 1 2 . 7 * 13 . 1 + 3 . 4 0

1 1 . 9 1 . 13 7 . 5 9 * 7 . 7 2 0 . 6 0

0 . 5 2 0 . 2 2 0 . 4 5 0 . 3 8 + 0 . 1 2

0 . 5 2 +_ 0 . 0 7
*

0 . 2 5 + 0 . 0 5

0 . 5 6 +_ 0 . 1 2 0 . 2 9 0 . 3 6 + 0 . 1 2

0 . 8 5 + 0 . 1 8
jAp

0 . 3 5 0 . 6 4 + 0 . 2 4

0 . 9 6 + 0 . 1 8 0 . 7 8 1 . 31
*

0 . 6 8 + 0 . 1 2 0 . 4 0 1 . 1 5 +_ 0 . 6 2

0 . 3 6 +_ 0 . 0 6 0 . 3 3 0 . 4 5 +_ 0 . 2

3 . 7 2 +_ 0 . 8 5 2 . 1 9 * 1 . 67 0 . 1 3

7 . 5 3 +_ 1 . 3 0 6 . 2 2 * 7 . 0 8 + 0 . 6 4

2 1 . 7 +_ 2 . 8 0 1 9 . 6 * 1 9 . 1 + 3 . 1 0

+ - umol.g * fresh wt.
* - n=4 except where marked by an asterisk, which indicates that n=l. 
A - Normoxia.
B - After 12 hours of anoxia.
C - After 1 hours recovery.
D - After 9 hours recovery.
E - After 12 hours recovery.
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APPENDIX 10 - PREPARATION OF RADIOLABELLED TISSUE SAMPLES 

FOR USE IN ION EXCHANGE CHROMATOGRAPHY.

Reagents

Liquid Nitrogen 

Potassium hydroxide 

Ethanol:

Procedure

i) Grind up animals in liquid nitrogen, using pestle and mortar.

ii) Take duplicate 50 mg tissue samples and put in pre-cooled Eppendorf 

tubes.

iii) Add 0.3 ml of potassium hydroxide (30 %) and boil for 20 minutes.

iv) Add 0.7 ml of ethanol (75%), mix thoroughly and put on ice for 2 h.

v) Spin for 10 minutes (12,000 g), remove the supernatant and freeze until 

needed (contains fractions F2, F3, F4 and F5).

vi) Redissolve the pellet fraction in water; spin for 5 minutes (12,000 g), remove 

the supernatant and freeze until needed (fraction containing glycogen - FI).

Comment

i) P rio r to boiling  the sample in potassium  hydroxide  ( iii) , the lid 

of the E ppendorf tube was pierced w ith a needle in order to prevent 

any increase in pressure.

ii) Since the tissue contained radioactivity, all the preparation was carried out in 

a controlled radiation area. In addition, all pieces of apparatus and work 

surfaces were subsequently washed with decon (90 %).

30 g.100 ml"1 (30 %). 

75 %
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APPENDIX 11 - METHOD FOR THE ESTIMATION OF PRIMARY AMINO 

ACIDS USING THE NINHYDRIN REACTION.

The concentration of pooled amino acids were estimated using this method, to assess 

the efficiency of separation and recovery of standards, eluted from the ion exchange 

columns described in Chapter 4.

Reagents 

Citric buffer (1):

Ninhydrin (2):

Ninhydrin reagent:

Standards:

Sample preparation 

See Figure 4.2.

Assay

1 ml of Ninhydrin and 50 ul of sample/standard, were added to a 5 ml test tube 

and mixed well. A reagent blank was produced by substituting 50 ul of distilled 

water, for the 50 ul of sample standard.

Procedure

i) The assay mixtures were placed in a boiling water bath for 20 minutes, 

and then  cooled on ice fo r a fu r th e r  10 m inutes.

Add 21 g of citric acid (1M) and 0.8 g of hydrated stannous 

chloride to 200 ml of sodium hydroxide. Dilute to 500 ml 

with a 1:1 mixture of water and ethanol. The pH was 

adjusted to pH 5.

Add 1 g of ninhydrin to 30 ml of ethylene glycol.

Take 30 ml of (2) and add to 10 ml of (1). Store in brown 

bottle. Any reagent not used within 7 days was discarded. 

1 mM standards of any amino acid in water.
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ii) After this time, the contents of the test-tubes were transferred to a 1.5 ml 

spectrophotometric semi-micro cuvette.

iii) The absorbance of each sample was then measured at a wavelength of 570 nm.

Interpretation

A calibration line was constructed and a linear relationship was observed between 

the concentration of standards and their absorbances. If a blank was used to zero 

the spectrophotom eter, any change in absorbance was regarded as being 

proportional to the concentration of the amino acid(s) present in either the sample 

or standard.
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APPENDIX 12 - COMPOSITION of CARC7NI/S RINGER.

i) Final ionic composition of the Carcinus Ringer.

I on C o n c e n t r a t i o n  (mM)

Na+ 523

Ca2+ 1 2 . 8

K+ 1 1 . 2

Mg2 + 1 9 . 8

so42 ' 1 4 . 6

Cl ' 549

After J.D. Robertson (1960) and A. C. Taylor (pers. comm.)

The above ionic composition of Carcinus Ringer was obtained by adding the 

following to 1 litre of deionised water

S a l t g . r 1

NaCl 2 8 . 9

CaC12 • 2H20 1 . 87

KC1 0 . 8 4

MgCl2 . 6H20 4 . 0 3

Na2 S04 2 . 0 6
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APPENDIX 13 - METHOD TO FRACTIONATE ACID-SOLUBLE TISSUE 

PHOSPHATES BY PRECIPITATION.

This method is based on that of Kaplan & Greenberg (1944) and Sacks (1949) and 

relies principally on differences in the solubilities of the barium salts of the 

phosphates. The present assay was used to separate glycolytic phosphates from TCA 

acids, in the radiolabelling experiments described in Chapter 4.

Reagents

B arium  acetate: Add 25.5 g of barium  acetate  (1 M) to 100 ml of 

distilled water. The pH was adjusted to 8.4.

Ethanol: 75 %

Hydrochloric acid: 1 M.

Sample preparation

See Appendix 10 and Figure 4.2. The strong acid fraction (F5) was then used in 

the following procedure.

Procedure

i) Take 100 ul of F5 and 400 ul of saturated barium acetate and add 500 

ul of ethanol. Mix thoroughly.

ii) Spin for 10 minutes (12,000 g) and remove supernatant (F5t).

iii) Redissolve the pellet sample in 200 ul hydrochloric acid (F5g).

Interpretation

F5t --------  Tricarboxylic acid cycle acids (e.g. fumarate, citrate, malate).

F5g ---------- G lyco ly tic  phosphates (e.g. PEP, g lu co se -6 -p h o sp h a te ).
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Ecoscint (5 ml) was then added to the 2 fractions (F5t and F5g) and the 

radioactivity in each determined by scintillation counting (Chapter 4, section 

4.2.2.3.).

References

Kaplan N.O. & D.M. Greenberg (1944). Studies with radioactive phosphorus of the 

changes in the acid-soluble phosphates in the liver coincident to alterations in 

carbohydrate metabolism. I. Separation and nature of the organic acid-soluble 

phosphates of liver, i .  biol. Chem. 156, 511-524.

Sacks J. (1949). A fractionation procedure for the acid-soluble phosphorus 

compounds of liver. L  biol. Chem. 181. 655-666.
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APPENDIX 14 - EFFICIENCY OF SEPARATION AND RECOVERY OF 

STANDARD METABOLITES FOLLOWING ION EXCHANGE 

CHROMATOGRAPHY.

A mixture of the following pure commercial standard metabolites (all 1 mM) was 

passed through cation and then anion exchange columns as described in Figure 4.2 - 

glycogen, glutamic acid, alanine, arginine, D-glucose, L-lactate, glucose 6- 

phosphate, phosphoenolpyruvate and fumarate. The strong acids were then 

separated into glycolytic and TCA acids using the method described in Appendix 13. 

The efficiency of separation and recovery of each of these standards was then 

determined, using a range of spectrophotometric and spectrofluorophotometric 

techniques. The 3 amino acids were collectively estimated using the ninhydrin 

method (Appendix 11). The recoveries of glycogen, D-glucose, L-lactate and 

glucose 6-phosphate were determined using methods described in Appendices 3, 4, 5 

and 4 respectively. In the last 3 assays the samples were neutralised using potassium 

bicarbonate (2 M). Fumarate was estimated by spectrophotometrically measuring the 

absorbance of its double bond at 250 nm (quartz semi-micro cuvettes were used). 

The following table presents the percentage recoveries of these standards in each of 

the fractions (FI - glycogen; F2 - amino acids; F3 - neutral compounds; F4 - 

weak acids (mainly L-lactate); F5 - strong acids (divided into glycolytic acids and 

TCA acids)).

FI F2 F3 F4 F5X  J L

(%) (%) (%) (%) GP TCA
(%) (%)

Gl y c o g e n  5L5. - 2 . 2 - -
Amino a c i d s M - 1 . 4 -
D - g l u c o s e - - -
L - l a c t a t e - - i i i -
G l u c o s e  6 - p h o s p h a t e - - - 2 i  2 . 5
P h o s p h o e n o l p y r u v a t e - - - 2 2
Fumarate 2 i

* GP - Glycolytic phosphates; TCA - Tricarboxylic acid cycle acids.

185 r
[Glasgow"I r*TTVr'f̂ r7~


