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Dicit ei Iesus: Ego sum via, et veritas, et vita. Nemo venit 
ad Patrem, nisi per me. 
 
Ioannes 14:6, VULG 
 
 
 
 
Ego enim scio cogitationes quas ego cogito super vos, ait 
Dominus, cogitationes pacis et non afflicationis, ut dem 
vobis finem et patientiam. 
 
Ieremiah 29:11, VULG 
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Jesus answered, “I am the way and the truth and the life. No 
one comes to the Father except through me. 
 
John 14:6, NIV 
 
 
 
 
For I know the plans I have for you,” declares the LORD, 
“plans to prosper you and not to harm you, plans to give 
you hope and a future. 
 
Jeremiah 29:11, NIV 
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Abstract	
AMP-activated	protein	kinase	(AMPK)	is	a	key	regulator	of	cell	energy	

homeostasis.	More	recently,	it	has	become	apparent	that	AMPK	regulates	cell	

proliferation,	migration	and	inflammation.	Previous	evidence	has	suggested	that	

AMPK	may	influence	proliferation	and	invasion	by	regulating	the	pro-

proliferative	mitogen-activated	protein	kinases	(MAPKs).	However,	the	

mechanisms	underlying	this	crosstalk	between	AMPK	and	MAPK	signalling	are	

not	fully	understood.	As	AMPK	activation	has	been	reported	to	have	anti-

proliferative	effects,	there	has	been	increasing	interest	in	AMPK	activation	as	a	

therapeutic	target	for	tumourigenesis.	

	

The	aim	of	this	study	was	to	investigate	whether	AMPK	activation	influenced	

prostate	cancer	(PC)	cell	line	proliferation,	migration	and	signalling.	Therefore,	

different	PC	cell	lines	were	incubated	with	two	structurally-unrelated	molecules	

that	activate	AMPK	by	different	mechanisms,	AICAR	and	A769662.	Both	

chemicals	activated	AMPK	in	a	concentration-	and	time-dependent	manner	in	

PC3,	DU145	and	LNCaP	cell	lines.	AMPK	activity	as	assessed	by	AMPK	activating	

phosphorylation	as	well	as	phosphorylation	of	the	AMPK	substrate	ACC	increased	

along	with	tumour	severity	in	PC	biopsies.	Furthermore,	both	activators	of	AMPK	

decreased	cell	proliferation	and	migration	in	the	androgen-independent	PC	cell	

lines	PC3	and	DU145.	Inhibition	of	proliferation	by	A769662	was	attenuated	in	

AMPK	α1-/-	AMPK	α2-/-	knockout	(KO)	mouse	embryonic	fibroblasts	(MEFs)	

compared	to	wild	type	(WT)	MEFs,	and	the	inhibitory	effect	on	migration	of	

AICAR	lost	significance	in	PC3	cells	infected	with	adenoviruses	expressing	a	

dominant	negative	AMPK	α	mutant,	indicating	these	effects	are	partially	

mediated	by	AMPK.	Furthermore,	long-term	activation	of	AMPK	was	associated	

with	inhibition	of	both	the	phosphatidylinositol	3’-kinase/protein	kinase	B	

(PI3K/Akt)	signalling	pathway	in	addition	to	the	extracellular	signal-regulated	

kinase	1/2	(ERK1/2)	signalling	pathway.	Indeed,	the	actions	of	AMPK	activators	

on	PC	cell	line	viability	were	mimicked	by	selective	inhibitors	of	Akt	and	ERK1/2	

pathways.	
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In	contrast	to	the	effects	of	prolonged	incubation	with	AMPK	activators,	short-

term	incubation	with	AMPK	activators	had	no	effect	on	epidermal	growth	factor	

(EGF)-stimulated	ERK1/2	phosphorylation	in	PC	cell	lines.	In	addition,	AMPK	

activation	did	not	influence	phosphorylation	of	the	other	MAPK	family	members	

p38	and	JNK.	Interestingly,	both	AICAR	and	A769662	decreased	EGF-stimulated	

ERK5	phosphorylation	in	PC3,	DU145	and	LNCaP	cells	as	assessed	with	an	anti-

phospho-ERK5	antibody.	Further	characterisation	of	this	effect	indicated	that	

prior	stimulation	with	the	AMPK	activators	had	no	effect	on	ERK5	

phosphorylation	stimulated	by	transient	transfection	with	a	constitutively	active	

ERK5	kinase	(MEK5DD),	which	represents	the	only	known	canonical	kinase	for	

ERK5.	Intriguingly,	the	pattern	of	EGF-stimulated	ERK5	phosphorylation	was	

distinct	from	that	mediated	by	MEK5DD	activation	of	ERK5.	This	finding	indicates	

that	AMPK	activation	inhibits	EGF-stimulated	ERK5	phosphorylation	at	a	point	at	

or	above	the	level	of	MEK5,	although	why	EGF	and	constitutively	active	MEK5	

stimulate	markedly	different	immunoreactive	species	recognised	by	the	anti-

phospho-ERK5	antibody	requires	further	study.	A769662	had	a	tendency	to	

reduce	EGF-stimulated	ERK5	phosphorylation	in	WT	MEFs,	yet	was	without	

effect	in	MEFs	lacking	AMPK.	These	data	indicate	that	AMPK	may	underlie	the	

effect	of	A769662	to	reduce	EGF-stimulated	ERK5	phosphorylation.	

	

Prolonged	stimulation	of	PC	cell	lines	with	AICAR	or	A769662	inhibited	EGF-

stimulated	Akt	Ser473	phosphorylation,	whereas	only	incubation	with	A769662	

rapidly	inhibited	Akt	phosphorylation.	This	difference	in	the	actions	of	the	

different	AMPK	activators	may	suggest	an	AMPK-independent	effect	of	A769662.	

Furthermore,	AICAR	increased	phosphorylation	of	Akt	in	WT	MEFs,	an	effect	that	

was	absent	in	MEFs	lacking	AMPK,	indicating	that	this	effect	of	AICAR	may	be	

AMPK-dependent.	

	

Taken	together,	the	data	presented	in	this	study	suggest	that	AMPK	activators	

markedly	inhibit	proliferation	and	migration	of	PC	cell	lines,	reduce	EGF-

stimulated	ERK1/2	and	Akt	phosphorylation	after	prolonged	incubation	and	

rapidly	inhibit	ERK5	phosphorylation.	Both	AMPK	activators	exhibit	a	number	of	

effects	that	are	likely	to	be	independent	of	AMPK	in	PC	cell	lines,	although	
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inhibition	of	ERK1/2,	ERK5	and	Akt	may	underlie	the	effects	of	AMPK	activators	

on	proliferation,	viability	and	migration.	Further	studies	are	required	to	

understand	the	crosstalk	between	those	signalling	pathways	and	their	underlying	

significance	in	PC	progression.	 	
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1.1 Prostate	cancer	
	

1.1.1	Epidemiology	
Prostate	cancer	(PC)	is	the	most	common	non-skin	cancer	in	men	worldwide,	

with	an	approximate	incidence	of	200,	000	per	year	(Parkin	et	al.,	2001,	Hsing	

and	Chokkalingam,	2006,	Chamie	et	al.,	2015).	In	the	UK,	the	prevalence	is	around	

50	cases	per	100,000	population	(Stewart	and	Finney,	2012),	with	rising	

incidence,	making	PC	the	most	common	malignancy	in	males	(Cancer	Research	

UK,	2013).	In	the	US,	the	age-adjusted	incidence	is	even	higher,	with	more	than	

150	per	100,	000	men	per	year	(Siegel	et	al.,	2015).	PC	is	also	the	second	most	

common	cause	of	cancer	death	in	men	(Stewart	and	Finney,	2012).	It	is	usually	

common	in	males	aged	over	50	years	(Epstein	and	Lotan,	2015),	and	the	

incidence	varies	widely	among	ethnic	groups	and	countries	(Gronberg,	2003),	

which	is	thought	to	result	from	a	complex	interaction	between	genetic	and	

environmental	factors.	However,	only	a	handful	of	PC	risk	factors	are	known,	

which	include	age,	African	ethnicity,	family	history,	inflammation	and	infection	

(De	Marzo	et	al.,	1999,	Gronberg,	2003,	Zeegers	et	al.,	2003,	Hsing	and	

Chokkalingam,	2006,	Jani	et	al.,	2008,	Klein	and	Silverman,	2008,	Stephenson	and	

Klein,	2016).	Using	molecular	epidemiological	approaches,	many	biomarkers	

have	been	identified	as	being	linked	to	increased	PC	risk,	including	androgen	

receptor	(AR),	oestrogen,	insulin-like	growth	factor	(IGF),	leptin	and	Vitamin	D	

(Chung	and	Leibel,	2006,	Ribeiro	et	al.,	2006,	Nelles	et	al.,	2011,	Uzoh	et	al.,	2011,	

Schwartz,	2013,	Sun	and	Lee,	2013,	Stephenson	and	Klein,	2016).	

	

1.1.2	Pathology	
The	prostate	is	a	globular	fibromuscular	gland	constituted	of	multilayered	

connective	tissue	(Myers,	2001,	Ginzburg	et	al.,	2016).	Adenocarcinoma	is	the	

most	common	malignancy	in	the	prostate,	which	accounts	for	about	95%	(Hamdy	

and	Robson,	2010).	The	most	common	genetic	deficits	are	either	mutation	or	

deletion	leading	to	activation	of	the	phosphatidylinositide	3-kinase	(PI3K)/Akt	

signalling	pathway	and	the	fusion	of	transmembrane	protease	serine	2	(TPRSS2)	
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and	E26	transforming	sequence	(ETS)	gene	(Clark	and	Cooper,	2009,	Tomlins	et	

al.,	2009,	Epstein	and	Lotan,	2015).	AR	is	a	key	regulator	of	PC	in	terms	of	cancer	

development	and	progression	in	both	hormone-sensitive	and	castration-resistant	

PC	(CRPC)	(Heinlein	and	Chang,	2004).	PCs	are	all	androgen-dependent	for	

tumour	growth	and	survival	initially,	although	some	of	them	become	androgen-

independent	eventually	(Feldman	and	Feldman,	2001).	Recent	studies	suggest	AR	

promotes	PC	by	up-regulation	of	metabolism,	biosynthesis	and	cell	cycle	

regulators	(Massie	et	al.,	2011).	

	

Prostatic	intraepithelial	neoplasia	(PIN)	consists	of	normally	structured	prostate	

acini	ducts	lined	by	cytologically	atypical	cells	(Ross	and	Rodriguez,	2016).	PIN	

can	be	classified	into	high-grade	PIN	and	low-grade	PIN,	and	is	considered	as	a	

pre-adenocarcinoma	lesion	of	the	prostate	(McNeal	and	Bostwick,	1986,	McNeal,	

1989,	Ross	and	Rodriguez,	2016).	

	

The	most	commonly	used	clinical	staging	classification	of	PC	is	the	TNM	(tumour,	

node,	metastasis)	system	which	assesses	three	components,	including	the	extent	

of	primary	tumour,	status	of	regional	lymph	nodes	and	distant	metastases	

(Epstein	and	Lotan,	2015,	Scher	and	Eastham,	2015,	Loeb	and	Eastham,	2016)	

(Table	1.1).	The	Gleason	score	system	is	based	on	the	pattern	of	the	glandular	

structure	within	the	prostate	as	identified	at	low	magnification	(Mellinger	et	al.,	

1967,	Gleason	and	Mellinger,	1974).	The	modified	Gleason	scoring	system	

identifies	the	architectural	patterns	from	grade	1	to	5,	with	5	being	the	most	

undifferentiated	tumour	(Epstein	et	al.,	2005).	The	most	common	and	highest-

grade	patterns	were	then	added	to	give	a	total	Gleason	score	(Epstein	et	al.,	

2005).	Grouping	of	Gleason	scores	based	on	prognoses	has	been	used	in	recent	

practice,	with	Grade	Group	I	being	the	most	favourable	and	Grade	Group	V	being	

the	least	favourable	(Pierorazio	et	al.,	2013).	The	TNM	classification	system	is	

supplemented	by	the	prostate	specific	antigen	(PSA)	level	and	Gleason	score	to	

classify	newly	diagnosed	cases	into	prognostic	groups	(Loeb	and	Eastham,	2016).	 	
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TNM	designation	 Anatomic	findings	

Primary	tumour	(T)	 	

Tx	

T0	

T1	

T1a	

T1b	

T1c	

T2	

T2a	

T2b	

T2c	

T3	

T3a	

T3b	

T4	

Cannot	be	assessed	

No	evidence	

Clinically	inapparent	

Involvement	≤	5%	of	resected	tissue	

Involvement	>	5%	of	resected	tissue	

Identified	by	needle	biopsy	

Confined	within	prostate	

Half	lobe	or	less	involvement	

More	than	half	lobe	involvement	but	unilateral	

Both	lobes	involvement	

Extraprostatic	extension	

Extracapsular	extension	

Seminal	vesicle	invasion	

Adjacent	structure	invasion	

Regional	lymph	nodes	(N)	 	

Nx	

N0	

N1	

Not	assessed	

Not	involved	

Metastases	

Distant	metastases	(M)	 	

M0	

M1	

M1a	

M1b	

M1c	

Not	present	

Present	

Non	regional	lymph	nodes	

Bone	

Other	site	

Table	1.1	The	clinical	TNM	(Tumour,	Node,	Metastasis)	staging	system	for	

prostate	cancer	

The	clinical	stage	of	prostate	cancer	is	assessed	using	the	TNM	system.	Adapted	
from	(Edge	et	al.,	2010).	 	
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1.1.3	Current	therapeutic	approaches	
There	is	no	approved	preventive	measure	for	PC	to	date	(Scher	and	Eastham,	

2015).	PSA	is	a	glycoprotein	widely	used	as	a	serum	tumour	marker	in	PC	(Neal	

and	Shaw,	2013,	Dark	and	Abdul	Razak,	2014).	However,	its	reliability	to	detect	

early	stage	PC	is	limited	and	there	remains	controversy	over	the	usefulness	of	

PSA	alone	as	a	screening	tool	(Neal	and	Shaw,	2013).	PSA	screening	in	

combination	with	digital	rectal	examination	is	a	widely	used	clinical	approach	for	

diagnosis	and	risk	assessment	(Schmid	et	al.,	2004,	Smith	et	al.,	2007,	

Heidenreich	et	al.,	2008).	Other	blood-based	biomarkers	that	have	been	proposed	

for	PC	include	free	PSA	and	its	isoforms,	prostate	specific	membrane	antigen,	

human	kallikrein	2,	endoglin	and	circulating	tumour	cells	(Morgan	et	al.,	2016).	

In	addition,	urine-based	biomarkers	such	as	PC	antigen	3	and	annexin	A3,	as	well	

as	tissue-based	biomarkers	such	as	α-methylacyl	coenzyme	A	racemase	are	also	

being	developed	and	investigated	(Morgan	et	al.,	2016).	Different	treatments	for	

PC	are	offered	to	patients	depending	on	their	clinical	situation	such	as	age,	

Gleason	score,	tumour	stage,	PSA	level	and	pathological	status	(Heidenreich	et	al.,	

2008).	Management	strategies	for	localised	PC	include	active	surveillance	or	

watchful	waiting,	radical	prostatectomy,	radiation	therapy	and	focal	therapy	such	

as	brachytherapy	and	ablation	(Ahmed	and	Emberton,	2016,	Carter	and	Dall'Era,	

2016,	Catalona	and	Han,	2016,	D'Amico	et	al.,	2016).	Adjuvant	therapies	including	

hormonal	therapy	are	used	for	locally	advanced	PC	and/or	biochemically	

recurrent	PC	(Lee	and	Thrasher,	2016,	Meng	and	Carroll,	2016).	Androgen	

deprivation	therapy	is	the	hormonal	therapy	available	currently	functioning	by	

reducing	AR	activity	(Nelson,	2016).	Although	androgen	ablation	is	beneficial	in	

PC,	the	therapy	itself	also	generated	a	new	disease	status,	CRPC	(Nelson,	2016).	

CRPC	makes	the	management	of	the	patient	in	this	group	more	complicated;	

many	therapeutic	approaches	are	still	under	evaluation,	these	include	cytotoxic	

chemotherapy,	immunotherapy	and	targeted	therapy	(Antonarakis	et	al.,	2016).	 	
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1.1.4	Oncogenesis	
PC	is	believed	to	originally	initiate	from	prostate	epithelial	cells	(Goldstein	et	al.,	

2010),	of	which	luminal	cells	are	widely	accepted	as	sites	of	origin	(Parsons	et	al.,	

2001).	Studies	also	suggest	that	basal	cells	also	have	the	potential	to	contribute	to	

carcinogenesis	(Goldstein	et	al.,	2010).	The	progression	of	oncogenesis	can	be	

characterised	by	gene	mutation	in	the	form	of	activating	mutation	of	oncogenes	

or	inactivation	of	tumour	suppressing	genes	(Ahmad	et	al.,	2012).	Many	genes	

have	been	found	to	be	mutated	in	PC	including	p53,	phosphatase	and	tensin	

homologue	(PTEN),	retinoblastoma	(RB),	ras,	p16	(CDKN2A),	CTNNB1	and	AR	

(Isaacs	and	Kainu,	2001).	Nevertheless,	a	single	mutation	alone	is	not	sufficient	

for	transformation	and	carcinogenesis	(Ahmad	et	al.,	2012).	

	

AR	is	a	key	regulator	of	PC	in	terms	of	cancer	development	and	progression	in	

both	hormone-sensitive	and	CRPC	(Heinlein	and	Chang,	2004).	Although	recent	

technology	has	advanced	analysis	of	not	only	overall	protein	levels,	but	also	post-

translational	modifications,	it	is	still	difficult	to	identify	the	mechanisms	of	

oncogenesis	progression	(Endoh	et	al.,	2012).	Prostate	carcinogenesis	is	complex	

and	involves	multiple	genes/pathways,	yet	the	exact	molecular	basis	of	this	

complex	interaction	remains	to	be	fully	determined.	

	

1.1.5	Aberrant	signalling	pathways	involved	in	prostate	cancer	
A	number	of	abnormalities	involving	distinct	signalling	pathways	have	been	

identified	in	PC	in	vitro	and	preclinical	animal	models,	some	of	which	are	

potential	therapeutic	targets	(Ramsay	and	Leung,	2009).	Examples	of	aberrant	

signalling	cascades	include	AR,	PI3K/Akt,	mitogen-activated	protein	kinase	

(MAPK)	pathways,	Wnt	pathway,	endothelin	(ET)	axis,	Src	family	kinase,	heat-

shock	proteins	(HSP)	and	anti-apoptotic	proteins,	often	as	consequences	of	

inappropriate	ErbB	receptor,	fibroblast	growth	factor	receptor	and	IGF-1	

signalling	(Mehta	et	al.,	2001,	Kinkade	et	al.,	2008,	Ramsay	and	Leung,	2009,	

Ahmad	et	al.,	2011,	Ramsay	et	al.,	2011,	Takahashi	et	al.,	2011).	 	
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1.1.5.1	Role	of	androgens	

Androgen,	one	of	the	sex	hormones,	is	responsible	for	the	normal	function	of	

prostate	tissue,	such	as	growth,	development	and	homeostasis	(Ross	and	

Rodriguez,	2016).	The	predominant	androgen	found	in	the	prostate	gland	is	

dihydrotestosterone	(DHT)	(Ross	and	Rodriguez,	2016).	AR	is	a	nuclear	receptor,	

which	can	be	activated	by	binding	androgen	hormones,	such	as	testosterone	and	

DHT	(Lu	et	al.,	2006).	Androgen	binds	to	the	AR	in	the	cytoplasm	after	passive	

diffusion	through	the	cell	membrane.	Ligand-bound	AR	is	subjected	to	post-

translational	modifications,	such	as	phosphorylation,	dimerisation	and	

subsequent	active	transport	to	the	nucleus	(Lonergan	and	Tindall,	2011,	Ross	and	

Rodriguez,	2016).	AR	in	the	nucleus	then	acts	as	a	transcription	factor,	directly	

and/or	indirectly	binding	to	DNA,	leading	to	changes	in	gene	expression	(Mills,	

2014).	The	AR	signalling	pathway	has	been	recognised	as	one	of	the	most	

important	pathways	in	prostate	carcinogenesis	(Newmark	et	al.,	1992,	

Gnanapragasam	et	al.,	2000,	Heinlein	and	Chang,	2004,	Lonergan	and	Tindall,	

2011,	Massie	et	al.,	2011).	

	

1.1.5.2	Role	of	PI3K/Akt	

The	PI3K	family	is	a	large	group	of	lipid	kinases	(Fruman	et	al.,	1998,	Hennessy	et	

al.,	2005),	consisting	of	three	classes,	namely	Class	IA,	IB,	II	and	III	(Hennessy	et	

al.,	2005).	The	PI3Ks	are	heterodimers	with	a	catalytic	subunit	and	an	

adapter/regulatory	subunit	and	can	be	activated	by	pathways	stimulated	by	

growth	factors	binding	at	receptor	tyrosine	kinases	(RTKs)	or	by	G-proteins	

(Vanhaesebroeck	and	Waterfield,	1999,	Katso	et	al.,	2001).	Class	I	PI3K	family	

members	catalyse	the	production	of	phosphatidylinositol-3,4,5-trisphosphate	

(PIP3)	production	from	phosphatidylinositol-4,5-bisphosphate.	PIP3	then	

activates	the	serine-threonine	protein	kinase	Akt	(Manning	et	al.,	2002,	Osaki	et	

al.,	2004,	Hemmings	and	Restuccia,	2012).	There	are	three	distinct	isoforms	of	

Akt	(Akt1,	Akt2	and	Akt3)	(Staal	et	al.,	1988,	Cheng	et	al.,	1992,	Nakayama	et	al.,	

2006).	Each	of	the	isoforms	consists	of	a	plekstrin	homology	(PH)	domain	at	the	

N-terminus,	a	kinase	domain	and	a	regulatory	domain	at	its	C-terminus	(Osaki	et	

al.,	2004).	PIP3	activates	Akt	by	initiating	conformational	changes	in	Akt,	leading	
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to	the	exposure	of	phosphorylation	sites	in	both	the	kinase	domain	(Thr308	in	

Akt1)	and	the	regulatory	domain	(Ser473	in	Akt1)	(Alessi	et	al.,	1996).	The	

constitutively	active	phosphoinositide-dependent	kinase	(PDK)	1	phosphorylates	

Thr308	in	the	kinase	domain	to	stabilise	the	activation	loop	whereas	PDK2s	

phosphorylate	the	hydrophobic	regulatory	domain	(Alessi	et	al.,	1996,	Blume-

Jensen	and	Hunter,	2001).	This	dual	phosphorylation	on	both	domains	is	

essential	for	the	full	activation	of	Akt	(Hennessy	et	al.,	2005).	Several	kinases	

have	been	proposed	as	PDK2s,	including	mammalian	target	of	rapamycin	

complex	(mTORC)	2,	integrin-linked	kinase	(ILK)	and	protein	kinase	C	(Lynch	et	

al.,	1999,	Kawakami	et	al.,	2004,	Sarbassov	et	al.,	2005).	Of	these,	mTORC2	has	

been	demonstrated	to	be	an	in	vivo	phospho-Akt	Ser473	kinase	(Sarbassov	et	al.,	

2005).	Akt	activation	directly	inhibits	the	tuberous	sclerosis	protein	(TSC)	

complex,	leading	to	Ras	homolog	enriched	in	brain	(Rheb)	activation,	which	can	

then	stimulate	mTORC1	activity	(Ouwens	et	al.,	1999,	Sekulić	et	al.,	2000,	

McManus	and	Alessi,	2002,	Dibble	and	Cantley,	2015)	(Figure	1.1).	The	PI3K/Akt	

signalling	pathway	regulates	several	cellular	events	including	cell	growth,	cell	

cycle	regulation,	apoptosis,	metabolism,	translation	and	proliferation	(Vivanco	

and	Sawyers,	2002,	Luo	et	al.,	2003,	Hennessy	et	al.,	2005).	Over-activation	of	the	

PI3K/Akt	pathway	has	been	proposed	to	play	a	vital	role	in	PC	(Murillo	et	al.,	

2001,	Gao	et	al.,	2003,	Shukla	et	al.,	2007,	Sarker	et	al.,	2009,	Carver	et	al.,	2011).	 	
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Figure	1.1	Simplified	outline	of	the	PI3K/Akt	signalling	pathways	

After	activation	by	growth	factor	or	cytokine	(grey	triangle),	PI3K	synthesises	

PIP3.	PIP3	then	recruits	PDK1	and	Akt	to	the	plasma	membrane	and	stimulates	

their	subsequent	phosphorylation,	leading	to	mTORC1	activation	through	both	

inhibition	of	TSC1/2	(grey)	and	the	subsequent	inhibition	of	Rheb	(light	blue)	

and	direct	phosphorylation	and	activation	mTORC1.	There	is	also	a	positive	

feedback	loop	where	mTORC2	phosphorylates	and	activates	Akt.	The	PI3K/Akt	

signalling	cascade	is	shown	in	red.	PTEN,	a	negative	regulator	of	PI3K,	is	shown	in	

green.	Arrow-headed	lines	denote	activation	and	bar-headed	lines	denote	

inhibition.	 	
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1.1.5.3	Role	of	mitogen-activated	protein	kinases	

MAPKs	belong	to	a	family	of	serine/threonine	protein	kinases,	responding	to	

extracellular	stimuli	for	the	regulation	of	cellular	functions	such	as	proliferation,	

differentiation,	migration	and	apoptosis	(Pearson	et	al.,	2001,	Turjanski	et	al.,	

2007).	MAPKs	are	involved	in	many	diseases	including	chronic	inflammation	and	

multiple	cancer	types	(Kyriakis	and	Avruch,	2001,	Zarubin	and	Han,	2005).	

Consisting	of	a	three-tier	kinase	module	system,	the	separate	signalling	cascade	

for	each	group	of	MAPK	involves	the	consecutive	activation	of	a	specialised	MAPK	

kinase	kinase	(MAPKKK	or	MAP3K),	and	MAPK	kinase	(MAPKK,	MAP2K	or	MEK),	

after	stimulation	by	an	extracellular	stimulus	(Pearson	et	al.,	2001,	Dhillon	et	al.,	

2007).	MAPKK	phosphorylates	and	activates	the	appropriate	MAPK	on	a	Thr-X-

Tyr	tripeptide	motif,	and	activated	MAPKs	phosphorylate	and	regulate	many	

cellular	substrate	proteins	including	nuclear	transcription	factors	(Turjanski	et	

al.,	2007)	(Figure	1.2).	In	the	studies	described	in	this	thesis,	the	focus	is	on	four	

MAPKs:	extracellular	signal-regulated	protein	kinase	(ERK)	1/2;	c-Jun	N-terminal	

kinase	(JNK,	or	stress-activated	protein	kinases);	p38	and	ERK5	(or	BMK1,	big	

mitogen-activated	protein	kinase	1),	since	these	four	classes	of	MAPK	regulate	

crucial	cellular	functions	such	as	survival,	proliferation,	differentiation	and	

apoptosis	(Nithianandarajah-Jones	et	al.,	2012).	As	a	consequence,	dysfunction	of	

the	MAPK	pathways	can	contribute	to	tumourigenesis.	There	are	a	few	studies	

that	suggest	alteration	of	the	MAPK	signalling	is	a	contributing	factor	in	PC,	yet	

the	details	of	the	mechanisms	by	which	MAPKs	are	regulated	in	PC	are	still	not	

fully	understood	(Tanaka	et	al.,	2003,	Uzgare	et	al.,	2003,	Kinkade	et	al.,	2008).	 	
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Figure	1.2	Overview	of	the	mitogen-activated	protein	kinase	(MAPK)	

signalling	pathways	

Upon	stimulation	by	mitogens	such	as	cytokines,	growth	factors	or	stress,	the	

MAPK	signalling	cascades	are	initiated	by	phosphorylation	of	a	mitogen-activated	

protein	kinase	kinase	kinase	(MAPKKK),	which	phosphorylates	a	downstream	

mitogen-activated	protein	kinase	kinase	(MAPKK)	which	subsequently	

phosphorylates	and	activates	a	MAPK.	The	phosphorylation	of	the	respective	

downstream	substrates	of	each	MAPK	leads	to	physiological	responses	at	the	

cellular	level	such	as	apoptosis,	angiogenesis,	differentiation,	proliferation	and	

survival.	Arrow-headed	lines	denote	activation.	Different	pathways	are	illustrated	

by	different	colours	with	examples	of	MAPKKK,	MAPKK,	MAPK	and	substrates	for	

each	pathway.	
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1.1.5.4	Role	of	other	pathways	

The	Wnt	proteins	are	a	group	of	glycoproteins	which	regulate	many	aspects	of	

cell	behaviour	including	proliferation,	migration,	differentiation,	survival	and	

polarity	by	signalling	in	both	β-catenin	dependent	and	β-catenin	independent	

mechanisms	(Anastas	and	Moon,	2013).	It	has	been	recognised	that	abnormal	

Wnt	signalling	is	involved	in	many	human	cancers	including	PC	(Karim	et	al.,	

2004,	Verras	and	Sun,	2006,	Whitaker	et	al.,	2008,	Anastas	and	Moon,	2013).	

	

The	ETs	are	a	family	of	three	small	peptides,	which	exert	their	biological	effects	

such	as	apoptosis,	mitogenesis	and	angiogenesis	by	binding	to	ET	receptors	on	

the	cell	surface	(Battistini	et	al.,	1993,	Nelson	et	al.,	2003).	The	ET	axis	is	known	

to	have	a	role	in	cancer	(including	PC)	development	and	progression,	partly	

through	its	interaction	with	other	signalling	pathways	including	PI3K/Akt	and	

MAPKs	(Pirtskhalaishvili	and	Nelson,	2000,	Bagnato	et	al.,	2011).	

	

HSPs	are	proteins	produced	by	cells	in	response	to	stress	to	provide	a	protective	

measure	against	cell	damage	(Feder	and	Hofmann,	1999,	Kregel,	2002).	The	role	

of	HSPs	in	cancer	is	becoming	more	and	more	important	in	determining	clinical	

outcomes	(Cornford	et	al.,	2000,	Ciocca	and	Calderwood,	2005).	

	

Crosstalk	among	these	key	pathways	is	thought	to	be	critical	in	driving	

carcinogenesis	and	the	development	of	treatment-resistant	disease	(Carracedo	

and	Pandolfi,	2008,	Bagnato	et	al.,	2011,	Carver	et	al.,	2011).	In	PC,	it	has	been	

shown	that	there	is	a	complex	crosstalk	between	AR	and	other	signalling	

pathways	(Lonergan	and	Tindall,	2011).	For	example	AR	can	be	activated	through	

MAPK	or	PI3K/Akt	signalling	pathways	(Culig	et	al.,	1994,	Abreu-Martin	et	al.,	

1999,	Peterziel	et	al.,	1999,	Sarker	et	al.,	2009).	In	addition,	crosstalk	between	

PI3K/Akt	and	MAPK	signalling	pathways	also	plays	a	vital	role.	For	example,	Akt	

has	been	proposed	to	activate	JNK	and	p38	and	inhibit	Raf	(Unni	et	al.,	2005,	

Shahabuddin	et	al.,	2006,	Belfiore	and	Malaguarnera,	2011).	ERK	has	also	been	

proposed	to	inhibit	TSC	(White	and	Sharrocks,	2010,	Beauchamp	and	Platanias,	

2013)	(Figure	1.3).	 	
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Figure	1.3	Crosstalk	network	between	androgen	receptor	(AR),	PI3K/Akt	

and	MAPK	signalling	pathways	

After	passively	diffusing	into	the	cytoplasm,	testosterone	(T)	is	metabolised	to	

DHT	(D).	DHT	then	binds	to	the	AR	leading	to	the	physiological	activation	of	the	

AR	signalling	pathway.	Upon	activation,	both	MAPK	and	PI3K/Akt	pathways	can	

activate	AR	in	the	absence	of	DHT	as	reviewed	by	Lonergan	et	al	(Lonergan	and	

Tindall,	2011).	Complicated	crosstalk	exists	between	PI3K/Akt	and	ERK	(Unni	et	

al.,	2005,	Grant,	2008,	White	and	Sharrocks,	2010,	Chappell	et	al.,	2011),	JNK	

(Chen	et	al.,	2002a,	Carracedo	and	Pandolfi,	2008,	Belfiore	and	Malaguarnera,	

2011)	and	p38	signalling	pathways	(Shahabuddin	et	al.,	2006).	Different	

signalling	pathways	are	colour	coded,	arrow-headed	lines	denote	activation	and	

bar-headed	lines	denote	inhibition.	 	
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1.1.6	Cell	lines	as	tools	to	examine	prostate	cancer	
Commonly	used	cultured	PC	cell	lines	are	derived	from	metastatic	lesions.	The	

most	frequently	used	cell	lines	are	LNCaP,	PC3,	DU145	and	their	derivations	

(Sobel	and	Sadar,	2005).	All	of	these	are	derived	from	metastatic	lesions	of	white	

males	(Sobel	and	Sadar,	2005).	The	PC3	and	DU145	cell	lines	are	androgen-

independent	(Sobel	and	Sadar,	2005).	In	contrast,	the	LNCaP	cell	line	is	

androgen-sensitive	(Sobel	and	Sadar,	2005).	Each	of	the	cell	lines	have	shown	

their	ability	to	grow	and	proliferate	in	vivo	in	terms	of	xenograft	tumour	

formation	and	metastasis	(Sobel	and	Sadar,	2005).	

	

Since	differences	exist	between	each	cell	line	with	respect	to	the	original	

progression,	metastasis	and	AR	sensitivity	of	the	individual	tumours	from	which	

they	were	derived,	research	using	a	selection	of	such	different	PC	cell	lines	is	

useful	to	provide	a	more	comprehensive	understanding	of	PC	biology.	

	

It	has	recently	become	apparent	that	AMP-activated	protein	kinase	(AMPK),	a	key	

serine/threonine	kinase	regulating	cellular	energy	homeostasis	(Hardie	et	al.,	

2012),	has	anti-proliferative	actions,	such	that	it	has	been	considered	as	a	

therapeutic	target	in	cancer	(Flavin	et	al.,	2011,	Zadra	et	al.,	2015).	The	role	of	

AMPK	in	cancer	progression	is	poorly	characterised,	however	(Zadra	et	al.,	2015)	

and	in	PC	in	particular,	there	are	still	controversies	as	to	whether	AMPK	

activation	is	beneficial	or	detrimental	(Park	et	al.,	2009,	Chhipa	et	al.,	2011,	Zadra	

et	al.,	2014).	 	
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1.2	AMP-activated	protein	kinase	(AMPK)	
	

1.2.1	Structure	and	protein	levels	of	AMPK	
In	mammals,	AMPK	is	a	heterotrimeric	complex	of	three	subunits:	α,	β,	γ,	encoded	

by	seven	genes,	giving	rise	to	α1,	α2,	β1,	β2,	γ1,	γ2	and	γ3	subunit	isoforms	

(Stapleton	et	al.,	1996).	The	α	subunit	contains	the	catalytic	serine/threonine	

protein	kinase	domain	and	β	and	γ	are	regulatory	subunits	(Stapleton	et	al.,	1996,	

Woods	et	al.,	1996a).	Different	tissues	exhibit	differential	protein	levels	of	the	

subunit	isoforms	(Woods	et	al.,	1996a,	Thornton	et	al.,	1998,	Cheung	et	al.,	2000)	

(Figure	1.4).	

	

1.2.2	Regulation	of	AMPK	
	

1.2.2.1	Allosteric	regulation	

As	is	suggested	by	its	name,	AMPK	is	allosterically	activated	by	AMP	binding	to	

the	γ	subunit	(Carling	et	al.,	1989,	Xiao	et	al.,	2011).	Furthermore,	ADP	or	AMP	

binding	to	the	γ	subunit	prevents	dephosphorylation	and	inactivation	of	AMPK,	

whereas	ATP	inhibits	the	effects	of	AMP	and	ADP	(Carling	et	al.,	2012).	The	

γ subunit	contains	four	Cystathionine	β	synthase	(CBS)	repeats,	which	bind	to	

adenosine-containing	ligands	(Bateman,	1997,	Kemp,	2004,	Scott	et	al.,	2004,	

Ignoul	and	Eggermont,	2005).	

	

1.2.2.2	Phosphorylation	and	dephosphorylation	

Phosphorylation	of	AMPK	at	Thr172	in	the	α	subunit	is	the	principal	mechanism	

that	activates	AMPK	activity	(Hawley	et	al.,	1996,	Stein	et	al.,	2000).	Three	AMPK	

Thr172	kinases	have	been	described,	including	liver	kinase	B1	(LKB1)	(or	

serine/threonine	kinase	11),	calcium/calmodulin-dependent	protein	kinase	

kinase	2	(CaMKK2)	and	transforming	growth	factor	beta	activated	kinase	1	

(TAK1)	(or	mitogen	activated	protein	kinase	kinase	kinase	7,	MAP3K7	or	MEKK7)	

(Hardie,	2011b).	LKB1	has	been	reported	to	be	a	constitutive	AMPK	kinase	
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(Sakamoto	et	al.,	2004),	that	supports	AMPK	activation	upon	increases	in	the	

ratio	of	AMP:ATP	or	ADP:ATP.	Alternatively,	AMPK	can	be	activated	by	increases	

in	cellular	Ca2+	in	cells	that	express	CaMKK2	independent	of	changes	in	adenine	

nucleotide	ratios	(Hawley	et	al.,	2005,	Hurley	et	al.,	2005,	Woods	et	al.,	2005).	The	

physiological	relevance	of	the	putative	AMPK	kinase	TAK1,	a	downstream	kinase	

activated	by	cytokines	remains	uncertain	(Herrero-Martin	et	al.,	2009).	Although	

not	yet	fully	characterised,	studies	have	indicated	that	the	metal-dependent	

protein	phosphatase	family	predominantly	catalyse	AMPK	Thr172	

dephosphorylation	(Carling	et	al.,	2012).	It	has	been	suggested	that	the	specific	

phosphatases	that	dephosphorylate	Thr172	and	inactivate	AMPK	may,	however,	

be	dependent	on	the	cell	type	and	stimulus	involved	(Carling	et	al.,	2012).	

Furthermore,	AMPK	Thr172	phosphorylation	and	activity	have	been	reported	to	

be	inhibited	by	phosphorylation	at	Ser485/Ser491	in	the	α1/α2	subunit	

respectively	(Hurley	et	al.,	2006).	Increased	α1-Ser485/α2-Ser491	

phosphorylation	has	been	reported	to	be	stimulated	by	either	

autophosphorylation	or	direct	phosphorylation	by	Akt	or	protein	kinase	A	(PKA),	

which	may	prevent	over-activation	of	AMPK	(Hurley	et	al.,	2006)	(Figure	1.5).	 	
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Figure	1.4	Subunit	isoforms	of	AMPK	

Schematic	representation	of	AMPK	subunit	isoform	domain	structure.	N:	N-

terminus,	C:	C-terminus.	AIS:	auto	inhibitory	sequence;	α, γ-SBS:	α	and	γ	subunit	

interacting	sequence;	β-SID:	β	subunit	interacting	domain;	CBS:	cystathionine	β	

synthase	domain;	GBD:	glycogen	binding	domain.	The	site	of	activating	

phosphorylation	by	upstream	kinases	(Thr172)	is	shown	and	the	length	of	each	

subunit	(in	amino	acids)	is	shown	to	the	right	of	the	C-terminus	in	each	case.	 	
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Figure	1.5	Regulation	of	AMPK	activity	

The	phosphorylation	and	dephosphorylation	of	AMPK	can	be	altered	by	cellular	

levels	of	AMP,	ADP	and	ATP,	whereby	increased	AMP	or	ADP	binding	to	AMPK	γ	

allosterically	activates	AMPK	and	promotes	liver	kinase	B1	(LKB1)-mediated	

phosphorylation,	inhibiting	dephosphorylation	by	protein	phosphatases.	Three	

Thr172	kinases	LKB1,	transforming	growth	factor	(TGF)-β 	activated	protein	

kinase	1	(TAK1)	and	calcium/calmodulin	dependent	protein	kinase	kinase	2	

(CaMKK2)	have	been	identified,	with	LKB1	activity	shown	to	be	constitutive	and	

CaMKK2	activated	by	increasing	Ca2+.	TAK1	has	yet	to	be	shown	to	be	a	Thr172	

kinase	in	vivo.	The	α1-Ser485/α2-Ser491	site	acts	as	an	inhibitory	site,	which	can	

either	be	autophosphorylated	by	AMPK	itself	or	phosphorylated	by	Akt	or	protein	

kinase	A	(PKA).	An	as	yet	unidentified	protein	phosphatase	catalyses	the	

dephosphorylation	of	AMPK.	Arrow-headed	lines	denote	activation	and	bar-

headed	lines	denote	inhibition.	 	
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1.2.3	Activators	of	AMPK	
Physiologically,	AMPK	is	activated	by	metabolic	stresses	that	increase	the	

AMP:ATP	ratio	such	as	hypoxia,	ischaemia,	exercise	(in	muscle)	and	glucose	

deprivation	(Hardie,	2007).	In	addition,	the	adipocytokine	adiponectin	has	been	

demonstrated	to	activate	AMPK	in	a	number	of	tissues	(Yamauchi	et	al.,	2002,	

Yamauchi	et	al.,	2003,	Ouchi	et	al.,	2004,	Shibata	et	al.,	2004).	5-aminoimidazole-

4-carboxamide-1-β-D-	ribofuranoside	(AICAR)	is	a	widely	used	pharmacological	

activator	that	works	as	an	adenosine	analogue	(Hardie,	2011b).	It	is	

phosphorylated	into	the	AMP-mimetic	ribotide	5-aminoimidazole-4-carboxamide	

ribonucleotide	(ZMP)	by	adenosine	kinase	after	being	taken	into	cells	by	

adenosine	transporters	(Hardie,	2011b).	AICAR	therefore	stimulates	allosteric	

activation	of	AMPK	independent	of	changes	in	the	adenine	nucleotide	ratio	and	

promotes	Thr172	phosphorylation	by	upstream	kinases.	WS070117	is	also	an	

activator	of	AMPK	that	acts	as	an	adenosine	analogue	(Lian	et	al.,	2011).	In	

addition	to	these	AMP	mimetics,	A769662	has	been	used	in	a	number	of	cell	types	

to	directly	activate	AMPK.	A769662	does	not	influence	adenine	nucleotide	levels	

but	is	a	specific	activator,	which	not	only	directly	activates	AMPK	but	also	inhibits	

dephosphorylation	at	Thr172	without	directly	stimulating	the	upstream	kinases	

of	AMPK	(Goransson	et	al.,	2007).	A769662	activates	AMPK	complexes	containing	

the	β1	subunit,	without	affecting	AMPK	complexes	containing	β2	subunits	(Scott	

et	al.,	2008).	Due	to	its	high	specificity	and	significantly	lower	EC50,	it	is	able	to	

initiate	AMPK	activation	at	a	relatively	lower	concentration	than	ribofuranoside	

or	metformin,	discussed	below	(Cool	et	al.,	2006).	The	subunit	isoform	specificity	

of	A769662	suggests	that	compounds	similar	to	A769662	may	provide	powerful	

molecular	tools	for	targeted	therapeutic	approaches	in	the	future.	

	

In	addition	to	these	experimental	tools	to	manipulate	AMPK	activity,	a	number	of	

existing	therapeutics	has	been	demonstrated	to	activate	AMPK.	Although	the	

mechanism	of	action	is	not	yet	fully	understood,	it	is	believed	that	part	of	the	

pharmacological	effects	of	the	hypoglycaemic	drug	metformin	is	through	

activation	of	AMPK	(Zhou	et	al.,	2001,	Zhang	et	al.,	2012,	Hardie,	2013).	Several	

lines	of	evidence	also	suggest	that	metformin	has	an	anti-cancer	effect	in	several	

different	types	of	cancer	in	both	in	vitro	and	in	vivo	studies	(Ben	Sahra	et	al.,	
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2010a,	Foretz	et	al.,	2010,	Ferla	et	al.,	2012,	Luo	et	al.,	2012,	Menendez	et	al.,	

2012,	Cerezo	et	al.,	2013,	Duo	et	al.,	2013,	Habibollahi	et	al.,	2013,	Storozhuk	et	

al.,	2013,	Hadad	et	al.,	2014,	Malaguarnera	et	al.,	2014).	Several	mechanisms	may	

contribute	to	this	effect	of	metformin,	including	altering	cellular	metabolism	and	

energy	homeostasis	as	well	as	regulating	the	cell	cycle	(Martin	and	Marais,	2012,	

Choi	and	Park,	2013,	Pierotti	et	al.,	2013,	Leone	et	al.,	2014).	Clinical	evidence	

also	suggests	that	treatment	of	metformin	in	people	with	and	without	diabetes	

reduces	the	risk	of	developing	cancer	and	also	leads	to	a	better	outcome	in	many	

malignant	conditions	including	PC	(Evans	et	al.,	2005,	Libby	et	al.,	2009,	Wright	

and	Stanford,	2009,	Ben	Sahra	et	al.,	2010b,	Decensi	et	al.,	2010,	Azoulay	et	al.,	

2011,	Hadad	et	al.,	2011,	Nobes	et	al.,	2012,	Ruiter	et	al.,	2012,	Zhang	et	al.,	2013,	

Anwar	et	al.,	2014).	Using	AMP-insensitive	mutants	of	AMPK,	evidence	has	shown	

that	metformin	activates	AMPK	by	inhibiting	the	mitochondrial	electron	

transport	chain,	thereby	increasing	AMP	(Hawley	et	al.,	2010).	

	

In	addition	to	the	biguanide	(metformin)	class	of	anti-diabetic	drugs,	the	

thiazolidinedione	(rosiglitazone	and	pioglitazone)	class	of	anti-diabetic	drugs	

have	also	been	demonstrated	to	activate	AMPK,	although	again,	their	actions	are	

not	mediated	exclusively	through	AMPK	(Zhou	et	al.,	2001,	Fryer	et	al.,	2002).	

Recently,	salicylate	has	been	reported	to	activate	AMPK	directly	in	a	similar	

manner	to	A769662,	specifically	stimulating	complexes	containing	β1	subunit	

isoforms	(Hawley	et	al.,	2012).	It	has	also	been	reported	that	statins,	drugs	used	

to	lower	endogenous	cholesterol	synthesis	in	those	at	risk	of	cardiovascular	

diseases,	activate	AMPK	(Sun	et	al.,	2006).	Interestingly,	a	number	of	xenobiotics	

found	in	traditional	herbal	medicines	also	activate	AMPK	including	galegine,	

berberine	and	hispidulin	(Lee	et	al.,	2006,	Mooney	et	al.,	2008,	Lin	et	al.,	2010).	

	

1.2.4	Physiological	function	of	AMPK	
AMPK	is	a	key	regulator	of	metabolism	by	maintaining	energy	homeostasis.	It	

senses	the	energy	status	by	measuring	the	AMP:ATP	ratio	in	the	cytoplasm	and	

transfers	the	signal	to	modulate	ATP	production	and	consumption	(Hardie,	

2011b).	In	order	to	maintain	energy	homeostasis,	AMPK	responds	to	increased	
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AMP:ATP	or	ADP:ATP	by	stimulating	catabolic	pathways	and	inhibiting	anabolic	

pathways,	thereby	normalising	cellular	ATP	(Hardie,	2011b).	AMPK	

phosphorylates	and	inhibits	many	metabolic	enzymes	such	as	acetyl-CoA	

carboxylase	(ACC)	1,	hydroxymethylglutaryl-CoA	reductase	(HMGR),	glycerol	

phosphate	acyl	transferase	and	glycogen	synthase	(Hardie,	2007b,	Hardie,	

2011b).	It	can	also	down-regulate	RNA	synthesis	by	phosphorylating	RNA	

polymerase	I	associated	transcription	factor	(Hoppe	et	al.,	2009).	Consequently,	

fatty	acid	synthesis,	isoprenoid	synthesis,	triglyceride,	phospholipid	synthesis,	

glycogen	synthesis	and	ribosomal	RNA	synthesis	are	inhibited,	which	are	critical	

for	rapid	cell	growth	and	proliferation	(Hardie,	2007b,	Hoppe	et	al.,	2009,	Hardie,	

2011b).	In	contrast,	AMPK	activation	enhances	mitochondrial	biogenesis,	

autophagy	and	mitophagy	(Hardie,	2011a).	AMPK	also	stimulates	fatty	acid	

oxidation	due	to	the	inhibition	of	ACC	leading	to	reduce	formation	of	malonyl-

CoA	(Kudo	et	al.,	1995).	Malonyl-CoA	inhibits	carnitine	palmitoyl	transferase	in	

the	mitochondrial	membrane,	which	is	the	committed	step	of	fatty	acid	oxidation	

(McGarry	et	al.,	1978).	Therefore	AMPK	activation	inhibits	fatty	acid	synthesis	

and	stimulates	fatty	acid	oxidation	at	the	same	time.	In	addition,	AMPK	is	

involved	in	cell	polarity	maintenance	(Hardie,	2011a).	

	

1.2.4.1	Regulation	of	acetyl-CoA	carboxylase	by	AMPK	

Acetyl-CoA	carboxylase	(ACC)	is	an	important	regulatory	enzyme	in	fatty	acid	

synthesis,	catalysing	the	carboxylation	of	acetyl-CoA	to	malonyl-CoA	(McGarry	

and	Foster,	1980,	Cook	et	al.,	1984,	Zierz	and	Engel,	1987).	There	are	two	

isoforms	of	ACC,	whereby	ACC1	is	involved	in	fatty	acid	synthesis	and	ACC2	is	

associated	with	mitochondria	and	thought	to	regulate	fatty	acid	oxidation	(Abu-

Elheiga	et	al.,	2000,	Abu-Elheiga	et	al.,	2001).	Both	ACC	isoforms	can	be	

phosphorylated	and	inhibited	by	AMPK	in	vitro	and	in	vivo	(Davies	et	al.,	1992,	

Winder	and	Hardie,	1996).	

	

1.2.4.2	Regulation	of	hydroxymethylglutaryl-CoA	reductase	by	AMPK	

Hydroxymethylglutaryl-CoA	reductase	(HMGR)	is	an	important	regulatory	

enzyme,	which	synthesises	mevalonate	from	hydroxymethylglutaryl-CoA.	
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Mevalonate	synthesis	is	required	for	isoprenoid	and	cholesterol	biosynthesis	

(Holstein	and	Hohl,	2004).	AMPK	inhibits	HMGR	by	phosphorylating	Ser872	at	

the	active	site,	thereby	decreasing	enzyme	catalytic	efficiency	(Clarke	and	Hardie,	

1990,	Istvan	and	Deisenhofer,	2000,	Burg	and	Espenshade,	2011).	

	

1.2.4.3	Regulation	of	hormone-sensitive	lipase	by	AMPK	

Hormone-sensitive	lipase	(HSL)	plays	a	vital	role	in	fatty	acid	mobilisation	by	

hydrolysing	triglycerides	to	fatty	acids	and	glycerol	(Holm,	2003).	Studies	have	

suggested	that	AMPK	can	phosphorylate	HSL,	so	that	lipolysis	is	inhibited	

(Carling	and	Hardie,	1989,	Corton	et	al.,	1995,	Garton	et	al.,	1989,	Sullivan	et	al.,	

1994).	

	

1.2.4.4	Regulation	of	mammalian	target	of	rapamycin	(mTOR)	by	AMPK	

AMPK	activation	also	inhibits	the	mTOR	pathway	by	phosphorylating	TSC2	and	

mTORC1	subunit	Raptor	(Inoki	et	al.,	2003,	Gwinn	et	al.,	2008).	The	mTOR	

pathway	itself	is	responsible	for	mRNA	translation	and	ribosomal	biogenesis	

(Hay	and	Sonenberg,	2004).	Thus,	protein	synthesis	is	inhibited	upon	AMPK	

activation	(Hardie,	2011b).	

	

1.2.4.5	Regulation	of	other	metabolic	targets	by	AMPK	

Glycogen	is	the	major	form	of	stored	carbohydrate	in	mammals.	AMPK	activation	

has	been	reported	to	inhibit	glycogen	synthesis	by	phosphorylation	of	glycogen	

synthase	(Carling	and	Hardie,	1989,	Jorgensen	et	al.,	2004).	Mitochondria	plays	a	

key	role	in	energy	homeostasis,	signalling,	apoptosis	and	metabolism	(Hock	and	

Kralli,	2009).	Multiple	reports	have	shown	that	AMPK	activation	stimulates	

mitochondrial	biogenesis,	thereby	improving	oxidative	metabolism	and	ATP	

synthesis	(Zong	et	al.,	2002,	Hardie	et	al.,	2012).	

	

1.2.5	Crosstalk	between	AMPK	and	PI3K/Akt	signalling	pathways	
It	is	becoming	more	interesting	that	AMPK	could	influence	the	PI3K/Akt/mTOR	

pathway	via	crosstalk	(Shackelford	and	Shaw,	2009,	Song	et	al.,	2012,	Beauchamp	
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and	Platanias,	2013,	Kim	and	He,	2013,	Martin	and	Marais,	2013).	Studies	have	

shown	that	AMPK	is	an	upstream	kinase,	which	could	inhibit	mTORC1	activity	

through	a	dual	mechanism	either	by	phosphorylating	the	TSC2	or	the	raptor	

subunits	in	vitro	(Inoki	et	al.,	2003,	Cheng	et	al.,	2004,	Gwinn	et	al.,	2008).	Details	

of	the	interaction	between	AMPK	and	PI3K/Akt/mTOR	pathways	have	been	

thoroughly	reviewed	(Shackelford	and	Shaw,	2009,	Inoki	et	al.,	2012,	Beauchamp	

and	Platanias,	2013,	Kim	and	He,	2013).	Unc-51	like	autophagy-activating	kinase	

1	has	been	reported	as	an	important	kinase	participated	in	AMPK/mTOR	

feedback	loop	in	maintaining	energy	homeostasis	(Egan	et	al.,	2011,	Kim	et	al.,	

2011,	Dunlop	and	Tee,	2013)	(Figure	1.6).	 	
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Figure	1.6	Crosstalk	between	AMPK,	MAPK	and	Akt	signalling	pathways	

The	signalling	crosstalk	network	between	AMPK	and	MAPK	(Young	et	al.,	2009,	

Yun	et	al.,	2009,	Kim	and	He,	2013,	Martin	and	Marais,	2013,	Chaube	et	al.,	2015),	

Akt	(Kim	et	al.,	2011)	is	not	fully	understood.	Dotted	lines	denote	proposed	

effects.	Arrow-headed	lines	denote	activation	and	bar-headed	lines	denote	

inhibition.	 	
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1.2.6	Crosstalk	between	AMPK	and	mitogen-activated	protein	

kinase	(MAPK)	signalling	pathways	
AMPK	activation	has	been	reported	to	regulate	MAPK	signalling	pathways,	

however	the	mechanisms	are	not	fully	understood	(Chen	et	al.,	2002b,	Li	et	al.,	

2005,	Schulz	et	al.,	2008,	Young	et	al.,	2009).		Berberine-stimulated	AMPK	

activation	was	shown	to	reduce	phosphorylation	(and	activation)	of	ERK1/2,	JNK	

and	p38	in	macrophages	(Jeong	et	al.,	2009).	Similarly,	AMPK	activation	was	

associated	with	inhibition	of	ERK1/2	phosphorylation	in	fibroblasts	(Du	et	al.,	

2008).	Activation	of	AMPK	by	AICAR	has	also	been	demonstrated	to	down-

regulate	phosphorylation	of	ERK1/2	in	vitro	and	in	vivo	(Motobayashi	et	al.,	2009,	

Meng	et	al.,	2011)	(Figure	1.6).	Therefore,	it	has	been	proposed	that	AMPK	is	an	

upstream	regulator	of	ERK1/2	(Turcotte	et	al.,	2005).	In	contrast,	other	studies	

have	suggested	that	AMPK	activates	ERK1/2	in	vitro	(Chen	et	al.,	2002b,	

Sweadner,	2008)	(Figure	1.6).	

	

Schulz	and	colleagues	found	that	AMPK	activation	was	associated	with	inhibition	

of	JNK	phosphorylation	in	vitro	(Schulz	et	al.,	2008).	It	has	also	been	proposed	

that	there	is	a	feedback	loop	between	JNK	and	AMPK.	In	DU145	cells	(which	lack	

LKB1),	JNK	activation	increased	AMPK	activity	whereas	in	DU145	cells	

transfected	with	LKB1	however,	AMPK	inhibits	JNK	activation	(Yun	et	al.,	2009).	

In	contrast,	other	studies	suggest	AMPK	activation	increases	JNK	activation	in	

vitro	using	hepatoma	(FTO2B)	cells	(Meisse	et	al.,	2002).	Lee	and	co-workers	

have	also	reported	that	AMPK	activation	by	AICAR	led	to	activation	of	JNK	in	

HepG2	cells	(Lee	et	al.,	2008).	

	

Data	concerning	the	regulation	of	p38	and	ERK5	by	AMPK	are	more	sparse,	

although	studies	have	suggested	that	AMPK	up-regulates	p38	phosphorylation	

both	in	vitro	and	in	vivo	(Li	et	al.,	2005,	Han	et	al.,	2009,	Meng	et	al.,	2011).	

Moreover,	AMPK	has	been	reported	to	be	a	vital	upstream	regulator	for	ERK5	

signalling	in	endothelial	cells	(Young	et	al.,	2009).	

	



Zichu	Yang,	PhD	(2016)	

	 47	

1.2.7	Role	of	AMPK	in	cancer	
AMPK	is	now	considered	to	be	a	potential	therapeutic	target	for	metabolic	

disorders	as	well	as	diseases	based	on	cellular	proliferation,	including	type	2	

diabetes	mellitus,	metabolic	syndrome,	atherosclerosis	and	cancer	(Motoshima	et	

al.,	2006,	Hardie,	2007a,	Rutter	and	Leclerc,	2009,	Viollet	et	al.,	2009,	Hardie,	

2011a,	Hardie	and	Alessi,	2013,	Pierotti	et	al.,	2013).	It	has	also	been	suggested	

that	the	anti-inflammatory	properties	of	AMPK	activation	may	also	beneficial	for	

chronic	inflammatory	diseases	and	cancer	(Salt	and	Palmer,	2012,	Dandapani	and	

Hardie,	2013).	The	association	between	activation	of	AMPK	and	reduced	

proliferation	has	been	demonstrated	in	many	different	types	of	cancer	cell	lines.	

Recent	studies	in	this	field	have	included	not	only	cell	lines	derived	from	many	

solid	tumours	such	as	lung	cancer,	breast	cancer,	bladder	cancer,	ovarian	cancer,	

renal	cancer,	malignant	melanoma,	pancreatic	cancer,	thyroid	cancer,	

glioblastoma,	colon	cancer	and	PC,	but	also	cell	lines	derived	from	haemotological	

malignancies	such	as	acute	lyphoblastic	leukaemia,	mantle	cell	lymphoma	and	

acute	myeloid	leukaemia	(Lee	et	al.,	2012,	Vakana	et	al.,	2012,	Zheng	et	al.,	2012).	

	

It	is	known	that	AMPK	signalling	is	linked	to	at	least	two	tumour	suppressors,	

LKB1	and	TSC2	(Hawley	et	al.,	2003,	Woods	et	al.,	2003,	Xiang	et	al.,	2004).	

Research	suggests	that	AMPK	is	responsible	for	the	tumour	suppressing	effects	of	

LKB1	(Hardie,	2011b).	Evidence	that	AMPK	has	protective	effects	against	tumour	

development	are	based	on	several	possible	mechanisms:	a)	treatment	with	

different	AMPK	activators	in	animal	models	can	delay	tumour	development	

(Huang	et	al.,	2008);	b)	down-regulation	of	AMPK	activation	in	certain	cancers	

has	been	observed,	possibly	due	to	loss	of	LKB1	(Hawley	et	al.,	2003,	Zheng	et	al.,	

2009);	c)	phosphorylation	at	Ser485/Ser491	of	AMPK	α	subunits	by	Akt	(or	

protein	kinase	B)	down-regulates	AMPK	activity	in	tumours	which	contain	hyper-

activated	Akt,	which	in	turn,	inhibits	the	phosphorylation	at	Thr172	by	LKB1	

(Horman	et	al.,	2006);	d)	TSC2	phosphorylation	by	AMPK	inhibits	the	

PI3K/AKT/mTOR	pathway	(Li	et	al.,	2004,	Xiang	et	al.,	2004,	Hardie,	2011a);	e)	

AMPK	activation	reduces	the	synthesis	of	phospholipid	for	membrane	synthesis	

(Hardie,	2011b).	
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Although	AICAR	is	limited	in	clinical	use	due	to	its	toxicity	(Dixon	et	al.,	1991),	it	

significantly	reduces	cell	proliferation	in	HeLa,	DU145	and	HepG2	cells	but	not	in	

non-cancer	cells	dependent	on	energy	status	and	bioenergetic	profile	(Jose	et	al.,	

2011).	Metformin	also	causes	a	significant	repression	of	proliferation	in	breast	

cancer	cell	lines	(Phoenix	et	al.,	2009).	It	has	also	been	reported	that	people	with	

diabetes	treated	with	metformin	have	a	lower	incidence	of	cancer	(including	PC)	

than	their	counterparts	treated	with	other	hypoglycaemic	drugs	(Evans	et	al.,	

2005).	Salicylate	and	metformin	have	both	been	reported	to	suppress	PC	survival	

in	ex	vivo	studies	(O’Brien	et	al.,	2015).	Activation	of	AMPK	by	ionizing	radiation	

(IR)	has	also	been	reported	to	enhance	the	cytotoxic	effects	of	IR	in	cancer	cells	

(Sanli	et	al.,	2010).	However,	whether	AMPK	activation	is	important	as	a	target	

for	cancer	therapy	remains	to	be	tested	(Hardie,	2011a).	In	contrast	to	the	notion	

that	activation	of	AMPK	is	beneficial	with	cancer-suppressive	effects,	it	has	been	

proposed	that	AMPK	may	function	through	NADPH	regulation	to	promote	tumour	

cell	survival	under	conditions	of	energy	deprivation	(Jeon	et	al.,	2012).	Therefore,	

further	investigation	of	the	role	of	AMPK	in	cancer	is	warranted.	

	

1.2.8	Potential	AMPK	regulation	of	prostate	cancer	signalling	
At	the	beginning	of	these	studies,	it	had	been	reported	that	AMPK	activation	in	PC	

cell	lines	by	either	AICAR	or	thiazolidinedione	inhibits	cell	growth	in	vitro	(Xiang	

et	al.,	2004)	indicating	that	inhibition	of	AMPK	could	lead	to	an	increase	of	PC	

proliferation,	thus	promoting	malignancy	in	terms	of	migration	and	growth	(Zhou	

et	al.,	2009).	DU145	cells	lack	the	AMPK	kinase	LKB1,	yet	AMPK	can	surprisingly	

be	activated	by	AICAR	in	such	cells	(Yun	et	al.,	2005),	despite	LKB1	being	

considered	essential	for	AICAR-mediated	AMPK	phosphorylation	(Hutber	et	al.,	

1997).	These	interesting	results	imply	that	AICAR	can	activate	AMPK	in	PC	cells	

by	LKB1-independent	mechanisms.	It	has	been	argued	that	this	effect	might	be	a	

consequence	of	reactive	oxygen	species	production	(Yun	et	al.,	2005,	Jose	et	al.,	

2011).	Moreover,	JNK	has	also	been	reported	to	be	involved	as	upstream	of	AMPK	

in	this	pathway	(Yun	et	al.,	2005).	
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Despite	these	findings,	it	has	also	been	reported	that	in	vitro	inhibition	of	AMPK	

inhibits	PC	cell	growth,	suggesting	a	proliferative	action	of	AMPK	(Park	et	al.,	

2009).	This	argument	is	particularly	interesting	when	considering	an	energy-

starved	microenvironment,	which	most	solid	tumours	are	subjected	to.	Under	

such	a	condition,	AMPK	is	activated	and	may	promote	PC	cell	survival	in	

androgen-independent	PC	cells	in	vitro	(Chhipa	et	al.,	2010).	Indeed,	

immunohistochemistry	revealed	elevated	phosphorylated	ACC	staining	in	human	

PC	specimens	(Park	et	al.,	2009).	In	additional,	high	levels	of	phosphorylated	ACC	

and	phosphorylated	AMPK	were	found	in	both	androgen-sensitive	and	androgen-

independent	PC	cell	lines	(including	PC3,	DU145	and	LNCaP)	analysed	by	

immunoblotting	(Park	et	al.,	2009).	As	AMPK	is	activated	in	an	energy-stress	

environment,	whether	higher	AMPK	activation	in	cancer	tissue	is	contributing	to	

malignancy	itself	or	is	indeed	a	protective	reaction	against	the	abnormality	has	

not	yet	been	characterised.	

	

In	addition,	AMPK	activation	is	implicated	in	angiogenesis,	required	for	tumour	

expansion	and	metastasis.	AMPK	activation	is	required	for	angiogenesis	in	

endothelial	cells	and	down-regulation	of	AMPK	inhibits	migration	and	

proliferation	of	endothelial	cells	(Nagata	et	al.,	2003,	Reihill	et	al.,	2011).	Studies	

have	reported	that	the	expression	of	the	activating	AMPK	Thr172	kinase	CaMKK2	

is	elevated	in	PC	cell	lines,	especially	in	response	to	AR	stimulation.	As	a	result,	

inhibition	of	the	CaMKK2/AMPK	pathway	could	block	androgen-stimulated	cell	

migration	and	growth	(Frigo	et	al.,	2011,	Massie	et	al.,	2011).	Unlike	normal	cells,	

cancer	cells	are	more	likely	to	depress	the	AMPK	signalling	pathway	which	would	

normally	lead	to	reduced	cell	growth	(Carling	et	al.,	2012).	It	is	therefore	

necessary	to	further	unravel	the	potential	effects	of	pathways	upstream	and	

downstream	of	AMPK	in	different	types	of	malignancy	and	different	stages	of	

cancer	progression.	 	
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1.3	Hypothesis	and	aims	
The	primary	hypothesis	of	these	studies	is	that	AMPK	activation	has	anti-cancer	

effects	in	PC	cells.	The	mechanism	underlying	these	effects	may	be	mediated	by	

reduced	MAPK	and	(or)	PI3K/Akt	pathway	signalling.	Specifically,	these	studies	

sought	to	answer	the	following	research	questions	comparing	effects	in	

androgen-independent	and	androgen-dependent	PC	cell	lines:	

	

1.	What	AMPK	subunit	isoforms	and	AMPK	kinases	are	expressed	in	PC	cells?	

	

2.	How	do	AMPK	activators	influence	PC	cell	line	proliferation,	viability	and	

migration?	

	

3.	Does	AMPK	activation	influence	basal	or	stimulated	MAPK	and/or	Akt	activity	

in	PC	cell	lines?	 	
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Chapter	2.	Materials	and	methods	
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2.1	Materials	
	

2.1.1	Suppliers	of	materials	
Abcam,	Cambridge,	UK	

A769662	(6,7-Dihydro-4-hydroxy-3-(2'-hydroxy(1,1'-biphenyl)-4-yl)-6-oxo-

thieno(2,3-b)pyridine-5-carbonitrile)	

	

BDH	Laboratory	Supplies,	Poole,	UK	

Coomassie	brilliant	blue	G-250	

	

Corning	Life	Sciences,	Tewksbury,	MA,	USA	

12-well	tissue	culture	plates	

24-well	cell	culture	insert	companion	plates	

6	cm	and	10	cm	diameter	tissue	culture	dishes	

6-well	tissue	culture	plates	

96-well	culture	plates	

Migration	chambers	

Tissue	culture	T75	flasks	

	

Cell	Signaling	Technology,	Danvers,	MA,	USA	

Cell	Lysis	Buffer	#7018	

PathScan	Stress	and	Apoptosis	Signaling	Antibody	Array	Kit	(Fluorescent	

Readout)	#12923	

	

Fisher	Scientific	UK	Ltd,	Loughborough,	Leicestershire,	UK	

Ammonium	persulphate	(APS)	

Tris	base	(tris	(hydroxymethyl)	aminoethane)	

	

Formendium,	Hunstanton,	Norfolk,	UK	

Bacterial	Agar	

Tryptone	

Yeast	extract	powder	
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GE	Healthcare,	Little	Chalfont,	Buckinghamshire,	UK	

Protein	A	sepharose	beads	

Protein	G	sepharose	beads	

	

Life	Technologies	Ltd,	Paisley,	UK	

Alexa	Fluor	Dyes	

Dulbecco’s	modified	Eagles	meda	(DMEM)	

Foetal	calf	serum	(FCS)	(EU	origin)	

Human	EGF	

L-glutamine	

Lipofectamine	

Opti-MEM	Reduced	serum	media	

Penicillin/streptomycin	

Trypsin	

	

Li-Cor	Biosciences,	Lincoln,	NE,	USA	

Odyssey	blocking	buffer	

	

Lonza	Group	Ltd,	Cologne,	Germany	

Nucleofector	Kit	L,	Kit	V	

pmaxGFP	Vector	

	

Melford	Laboratories	Ltd,	Chelsworth,	Ipswich,	Suffolk,	UK	

Dithiothreitol	(DTT)	

	

Merck	Chemicals	Ltd,	Nottingham,	UK	

Compound	C	

	

Millipore	Limited,	Hertfordshire,	UK	

Akt	Inhibitor	VIII	

BrdU	kit	
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New	England	Biolabs,	Ipswich,	MA,	USA	

Gel	loading	dye	(6	×)	

Prestained	protein	marker	(broad	range	6-175	kDa)	

	

PALL	Life	Sciences,	Pensacola,	FL,	USA	

Nitrocellulose	transfer	membrane,	0.45	µM	pore	size	

	

Premier	International	Foods,	Cheshire,	UK	

Dried	skimmed	milk	

	

Qiagen	Ltd,	Crawley,	West	Sussex,	UK	

AllStars non-silencing siRNA 

FlexiTube	PRKAA1	siRNA	

Plasmid	Maxi	Kit	

	

Roche	Diagnostic	Ltd,	Burgess	Hill,	UK	

Proteinase	inhibitor	cocktail	tablets,	EDTA-free	

WST-1	reagent	

	

Severn	Biotech	Ltd,	Kidderminster,	Hereford,	UK	

Acrylamide:	Bisacrylamide	(37.5:1;	30%	(w/v)	Acrylamide)	

	

Sigma-Aldrich	Ltd,	Gillingham,	Dorset,	UK	

Benzamidine	

Bovine	serum	albumin	(BSA)	

D-mannitol	

Donkey	serum	

DPX	mountant	

Ethylenediamine	tetraacetic	acid	(EDTA)	

Ethylene	glycol-bis	(β-amino-ethyleter)-N,N.N’,N’-tetraacetic	acid	(EGTA)	

Fish	skin	gelatin	

G418	

Haematoxylin	
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N,N,N’,N’-Tetramethylethylenediamine	(TEMED)	

Paraformaldehyde	

Phenylmethylsulphonyl	fluoride	(PMSF)	

Ponceau	S	stain	

Soyabean	trypsin	inhibitor	(SBTI)	

Triton	X-100	

Tween-20	

	

Thermo	Scientific,	Waltham,	MA,	USA	

Immunomount	

ON-TARGETplus	PRKAA1	siRNA	

Texas	Red-X	Phalloidin	

 

Tocris	Bioscience,	Bristol,	UK	

PD184352	

 

Toronto	Research	Chemicals	Inc,	Ontario,	Canada	

AICAR	(5-aminoimidazole-4-carboxamide-1-β-D-	ribofuranoside)	

	

VWR	International	Ltd,	Lutterworth,	Leicestershire,	UK	

Falcon	tissue	culture	6	cm	diameter	dishes	and	plates	

HEPES	(4-(2-hydroxyethyl)-1-piperazineethanesulphonic	acid)	

	

2.1.2	Suppliers	of	equipment	
Beckman	Coulter,	High	Wycombe,	UK	

Allegra	X-12	centrifuge	

Multi-purpose	scintillation	counter	LS	6500	

Optima	XL-80K	ultracentrifuge	

SW40	rotor	

	

Bibby	Scientific	Limited,	Staffordshire,	UK	

Genova	Life	Science	spectrophotometer	
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Bio-Rad	Laboratories,	Hemel	Hempstead,	UK	

Protein	gel	casting	and	Western	blotting	equipment	

	

BMG	Labtech	GmbH,	Ortenberg,	Germany	

SPECTROstar	Nano	microplate	reader	

	

Carl	Zeiss	Ltd,	Cambridge,	UK	

Axiovert	200M	confocal	microscope	

Axiovert	25	inverted	fluorescence	microscope	

Axiovision	light	microscope	

LSM	5	PASCAL	Exciter	instrument	

	

DJB	Labcare	Ltd,	Lincoln,	Buckinghamshire,	UK	

Hettich	Mikro	22R	centrifuge	

	

Li-Cor	Biosciences,	Lincoln,	NE,	USA	

Odyssey	Sa	Image	System	

	

Lonza	Group	Ltd,	Cologne,	Germany	

Nucleofector	II	

	

Nikon	UK	Limited,	Surrey,	UK	

TE2000	time-lapse	microscope	

	

Olympus,	Essex,	UK	

BM50	microscope	

	

Optika	Microscopes,	Ponteranica,	Italy	

XDS-1B	light	microscope	

	

Qimaging,	Surrey,	BC,	Canada	

Retiga	EXi	Fast	1394	digital	camera	
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Thermo	Scientific,	Waltham,	MA,	USA	

Nanodrop	spectrophotometer	

	

2.1.3	Suppliers	of	cells	
American	Type	Culture	Collection,	Manassas,	VI,	USA	

DU145,	LNCaP,	PC3,	PC3M	cells	

	

PC3	cell	lines	overexpressing	ERK5	(PC3-ERK5-17P-Flag,	PC3-ERK5-18R-Flag)	

and	the	control	cell	line	(PC3-EmptyVector)	were	generated	by	Janis	Fleming	as	

previously	described	in	the	Leung	laboratory	(Ramsay	et	al.,	2011).	

	

AMPK	α1-/-	AMPK	α2-/-	knockout	(KO)	and	wild	type	(WT)	mouse	embryonic	

fibroblasts	(MEFs)	were	a	kind	gift	from	Dr	Benoit	Viollet	(Paris,	France).	

	

2.1.4	Suppliers	of	antibodies	and	conditions	of	use	
	

2.1.4.1	Antibodies	for	immunoblotting	

Details	of	primary	antibodies	(Table	2.1)	and	secondary	antibodies	(Table	2.2)	

used	for	immunoblotting	are	supplied	below.	

	

2.1.4.2	Antibodies	for	immunofluorescence	microscopy	

Details	of	primary	antibodies	used	for	immunofluorescence	microscopy	are	

provided	below	(Table	2.3).	 	
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Epitope	 Host	

species	

Clonality	 Dilution	 Supplier	 Note	

ACC	 Rabbit	 Monoclonal	 1:1,	000	 CST	 #3676	

ACC1	 Sheep	 Polyclonal	 1:1,	000	 Dundee	 (CQRDFTVASPA

EFVT)	

Akt	 Mouse	 Monoclonal	 1:2,	000	 CST	 #2920	

AMPK	

alpha	

Rabbit	 Polyclonal	 1:1,	000	 CST	 #2532	

AMPK	

alpha1	

	

Sheep	 Polyclonal	 1:1,	500	 Dundee	 (TSPPDSFLDDH

HLTR)	(Woods	

et	al.,	1996b)	

AMPK	

alpha2	

	

Sheep	 Polyclonal	 1:1,	000	 Dundee	 (MDDSAMHIPPG

LKPH)	(Woods	

et	al.,	1996b)	

AMPK	

beta1N	

Sheep	 Polyclonal	 1:180	 Dundee	 (KTPRRDSSGGT)	

AMPK	

beta2	

Sheep	 Polyclonal	 1:1,	000	 Dundee	 (CSVFSLPDSKLP

GDK)	

AMPK	

gamma1	

Sheep	 Polyclonal	 1:1,	000	 Dundee	 (PENEHSQETPE

SNS)	(Cheung	et	

al.,	2000)	

AMPK	

gamma2C	

Sheep	 Polyclonal	 1:1,	000	 Dundee	 (CLTPAGAKQKE

TETE)	

AMPK	

gamma3C	

Sheep	 Polyclonal	 1:1,	000	 Dundee	 (CLSPAGIDPSGP

EKI)	

CaMKK2	 Mouse	 Monoclonal	 1:100	 Dundee	 4H8	

c-Myc	 Mouse	 Monoclonal	 1:1,	000	 Santa	

Cruz	

sc-40	

ERK1/2	 Mouse	 Polyclonal	 1:1,	000	 CST	 #9102	

ERK5	 Mouse	 Polyclonal	 1:1,	000	 CST	 #3372	

GAPDH	 Mouse	 Monoclonal	 1:80,	000	 Ambion	 AM4300	
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GFP	 Rabbit	 Polyclonal	 1:3,	000	 Abcam	 ab290	

HA-probe	

(F7)	

Mouse	 Monoclonal	 1:1,	000	 Santa	

Cruz	

sc-7392	

HA.11	

(16B12)	

Mouse	 Monoclonal	 1:1,	000	 Covance	 MMS-101P	

JNK	 Rabbit	 Polyclonal	 1:1,	000	 CST	 #9252	

LKB1	 Rabbit	 Monoclonal	 1:1,	000	 CST	 #3050	

MEK5	 Mouse	 Monoclonal	 1:4,	000	 BD	 610957	

p-ACC	

(Ser79)	

Rabbit	 Polyclonal	 1:1,	000	 CST	 #3661	

p-Akt	

(Ser473)	

Rabbit	 Monoclonal	 1:1,	000	 CST	 #4058	

p-Akt	

(Thr308)	

Rabbit	 Monoclonal	 1:1,	000	 CST	 #13038	

p-AMPK	

alpha	

(Thr172)	

Rabbit	 Monoclonal	 1:1,	000	 CST	 #2535	

p-AMPK	

alpha1	

(Ser485)	

Rabbit	 Monoclonal	 1:1,	000	 CST	 #2537	

p-AMPK	

alpha1/2	

Rabbit	 Polyclonal	 1:1,	000	 CST	 #4185	

p-ERK1/2	 Mouse	 Monoclonal	 1:1,	000	 CST	 #9106	

p-ERK5	 Rabbit	 Polyclonal	 1:500	 CST	 #3371	

p-ERK5	 Rabbit	 Polyclonal	 1:1,	000	 Millipore	 07-507	

p-ERK5	 Goat	 Polyclonal	 1:200	 Santa	

Cruz	

sc-16564	

p-JNK	 Rabbit	 Polyclonal	 1:1,	000	 CST	 #9251	

p-JNK	 Mouse	 Monoclonal	 1:2,	000	 CST	 #9255	

p-MEK5	 Rabbit	 Polyclonal	 1:1,	000	 Millipore	 PK-1000	

p-MEK5	 Rabbit	 Polyclonal	 1:2,	000	 Santa	

Cruz	

sc-135702	
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p-p38	 Rabbit	 Monoclonal	 1:1,	000	 CST	 #4511	

p-p38	 Mouse	 Monoclonal	 1:2,	000	 CST	 #9216	

Table	2.1	Primary	antibodies	for	immunoblotting	

CST:	Cell	Signaling	Technology,	Dundee:	Antibodies	provided	by	Prof	D	Grahame	

Hardie,	University	of	Dundee,	Dundee,	UK.	 	
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Linked	

molecule	

Epitope	 Host	

species	

Dilution	 Manufacture	 Note	

Alexa	Fluor	

680	(Red)	

Sheep	IgG	 Donkey	 1:2,	000	 Life	

Technologies	

#A21102	

IRDye	

680LT	

(Red)	

Mouse	IgG	 Donkey	 1:10,	000	 Li-Cor	 926-

68022	

IRDye	

680LT	

(Red)	

Rabbit	IgG	 Donkey	 1:10,	000	 Li-Cor	 926-

68023	

IRDye	

680LT	

(Red)	

Goat	IgG	 Donkey	 1:10,	000	 Li-Cor	 926-

68024	

IRDye	

800CW	

(Green)	

Mouse	IgG	 Donkey	 1:10,	000	 Li-Cor	 926-

32212	

IRDye	

800CW	

(Green)	

Rabbit	IgG	 Donkey	 1:10,	000	 Li-Cor	 926-

32213	

Table	2.2	Secondary	antibodies	for	immunoblotting	
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Epitope	 Host	

species	

Clonality	 Dilution	 Manufacture	 Note	

AMPK	

alpha1	

Sheep	 Polyclonal	 1:100	 Dundee	 α1	(2nd)	

Sheep	

IgG	

Donkey	 Polyclonal	

–	

conjugated	

to	Alexa	

Fluor	488	

(Green)	

1:400	 Life	

Techonologies	

#A-11015 

Table	2.3	Primary	antibodies	for	immunofluorescence	microscopy	

Dundee:	Antibodies	provided	by	Prof	D	Grahame	Hardie,	University	of	Dundee,	
Dundee,	UK.	 	
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2.1.5	Solutions	
2YT	medium	(pH	7.0)	

0.5%	(w/v)	NaCl	

1%	(w/v)	yeast	extract	

1.5%	(w/v)	tryptone	

100	μg/mL	ampicillin	

2%	(w/v)	agar	

	

Bradford’s	reagent	

35	mg/L	coomassie	brilliant	blue	

5%	(v/v)	ethanol	

5.1%	(v/v)	orthophosphoric	acid	

Bradford’s	reagent	was	filtered	and	stored	in	the	dark	

	

Buria-Ertani	medium	

0.5%	(w/v)	yeast	extract	

1%	(w/v)	NaCl	

1%	(w/v)	tryptone	

	

Immunofluorescence	(IF)	buffer	

0.1%	(v/v)	donkey	serum	

0.2%	(w/v)	fish	skin	gelatin	

0.9	mM	KH2PO4	

1.7	mM	KCl	

5	mM	Na2HPO4	

85	mM	NaCl	

	

Lysogeny	Broth	(LB)	medium	(pH	7.5)	

0.5%	(w/v)	yeast	extract	

1%	(w/v)	tryptone	

100	μg/mL	ampicillin	

171.2	mM	NaCl	
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Lysis	Buffer	

0.1	mM	benzamidine	

0.1	mM	PMSF	

1%	(v/v)	Triton-X-100	

1	mM	DTT	

1	mM	EDTA	

1	mM	EGTA	

1	mM	Na3VO4	

1	mM	Na4P2O7	

250	mM	mannitol	

50	mM	NaF	

50	mM	Tris-HCl,	pH	7.4	at	4℃ 

5	µg/mL	SBTI	

	

Phosphate-buffered	saline	(PBS)	pH7.2	

0.9	mM	KH2PO4	
1.7	mM	KCl	

5	mM	Na2HPO4	

85	mM	NaCl	

	

Phosphate-buffered	saline	+	Tween	20	(PBST)	

0.1%	(v/v)	Tween	20	

0.9	mM	KH2PO4	

1.7	mM	KCl	

5	mM	Na2HPO4	

85	mM	NaCl	

	

Ponceau	S	stain	

0.2%	(w/v)	ponceau-S	

1%	(v/v)	acetic	acid	
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SDS-polyacrylamide	gel	electrophoresis	(SDS-PAGE)	running	buffer	

0.1%	(w/v)	SDS	

190	mM	glycine	

62	mM	Tris	base	

	

4	×	SDS-PAGE	sample	buffer	

0.4%	(w/v)	bromophenol	blue	

200	mM	DTT	

200	mM	Tris-HCl,	pH	6.8	

40%	(v/v)	glycerol	

8%	(w/v)	SDS	

	

SOC	medium	(pH	7.0)	

0.05%	(w/v)	NaCl	

0.5%	(w/v)	yeast	extract	

10	mM	MgSO4	

2%	(w/v)	tryptone	

2.5	mM	KCl	

20	mM	glucose	

	

Stripping	buffer	(pH	2.5)	

50	mM	glycine	

	

Transfer	buffer	

192	mM	glycine	

20%	(v/v)	ethanol	

25	mM	Tris	base	

	

Tris-buffered	saline	(TBS)	

137	mM	NaCl	

20	mM	Tris-HCl,	pH	7.6	
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Tris-buffered	saline	+	Tween	20	(TBST)	

0.1%	(v/v)	Tween	20	

137	mM	NaCl	

20	mM	Tris-HCl,	pH	7.5	

	

2.1.6	Software	
AnalystSoft	Inc.,	VA,	USA	

StatPlus:mac.	Version	v6.	

	

Carl	Zeiss	Ltd,	Cambridge,	UK	

LSM	5	PASCAL	software	

	

Li-Cor	Biosciences,	Lincoln,	NE,	USA	

Image	Studio	5.0.21	

	

Molecular	Devices,	Sunnyvale,	CA,	USA	

MetaMorph	7.5.2	

	

National	Institutes	of	Health,	MD,	USA	

ImageJ	1.46r	 	
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2.2	Methods	
	

2.2.1	Cell	culture	
	

2.2.1.1	Cell	culture	growth	media	for	prostate	cancer	cells	

DU145	cells	were	maintained	in	Dulbecco’s	modified	Eagle’s	medium	(DMEM)	

supplemented	with	10%	(v/v)	FCS,	2	mM	L-glutamine,	100	units/mL	penicillin	

and	100	mg/mL	streptomycin.	LNCaP	and	PC3	cells	were	maintained	in	RPMI-

1640	medium	supplemented	with	10%	(v/v)	FCS,	2	mM	L-glutamine,	100	

units/mL	penicillin	and	100	mg/mL	streptomycin.	PC3-EmptyVector,	PC3-ERK5-

17P-Flag	and	PC3-ERK5-18R-Flag	cells	were	maintained	in	RPMI-1640	medium	

supplemented	with	10%	(v/v)	FCS,	2	mM	L-glutamine,	100	units/mL	penicillin,	

100	mg/mL	streptomycin	and	300	µg/mL G418.	Cells	were	maintained	in	37	°C	

humidified	cell	culture	incubator	in	5%	(v/v)	CO2	with	medium	replaced	every	48	

h.	

	

2.2.1.2	Cell	culture	growth	media	for	mouse	embryonic	fibroblasts	(MEFs)	

WT	and	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs	were	maintained	in	DMEM	

supplemented	with	10%	(v/v)	FCS,	2	mM	L-glutamine,	100	units/mL	penicillin	

and	100	mg/mL	streptomycin.	Cells	were	maintain	in	37	°C	humidified	cell	

culture	incubator	in	5%	(v/v)	CO2	with	medium	replaced	every	48	h.	

	

2.2.1.3	Passaging	of	cells	

Passaging	of	cells	was	carried	out	when	cells	reached	80%	confluence.	Cells	in	

T75	flasks	were	washed	with	PBS	before	being	incubated	with	2	mL	0.05%	(w/v)	

trypsin	in	a	37	°C	humidified	cell	culture	incubator	in	5%	(v/v)	CO2.	Culture	

medium	was	then	added	to	the	T75	flask	for	seeding	cells	at	an	appropriate	

density.	
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2.2.1.4	Cryopreservation	of	cell	stocks	

Cells	were	washed	with	PBS	before	incubation	with	2	mL	0.05%	(w/v)	trypsin	in	

37	°C	humidified	cell	culture	incubator	in	5%	(v/v)	CO2.	Culture	medium	(4	mL)	

was	added	to	the	flask,	and	the	cell	suspension	was	transferred	to	a	15	mL	vial.	

The	cell	suspension	was	then	centrifuged	at	350	×	g	for	5	min	and	the	

supernatant	was	aspirated.	The	cell	pellet	was	then	resuspended	in	1	mL	freezing	

medium	(medium	with	50%	(v/v)	FCS	and	10%	(v/v)	DMSO).	The	resuspended	

cells	were	then	transferred	to	a	polycarbonate	container	and	stored	overnight	at	-

80	°C	before	storage	in	liquid	nitrogen.	

	

2.2.1.5	Resurrection	of	frozen	cell	stocks	from	liquid	nitrogen	

Cryopreserved	cell	stocks	were	removed	from	liquid	nitrogen	and	rapidly	thawed	

in	a	37	°C	water	bath.	Cells	were	then	transferred	to	a	T75	flask	containing	11	mL	

appropriate	culture	medium	as	described	above.	Cells	were	maintained	in	a	37	°C	

humidified	cell	culture	incubator	in	5%	(v/v)	CO2,	medium	was	aspirated	and	

replaced	after	cell	attachment.	

	

2.2.2	Preparation	of	cell	lysates	
Cells	grown	on	cell	culture	plates	were	preincubated	in	serum-free	medium	for	2	

h	at	37	°C	in	5%	(v/v)	CO2	before	incubation	with	various	reagents.	Depending	on	

the	experimental	setup,	dimethyl	sulphoxide	(DMSO)	was	added	as	solvent	

vehicle	control	where	applicable.	The	medium	was	removed,	the	cells	were	

washed	once	with	cold	PBS	and	lysis	buffer	was	added.	The	cell	extract	was	

scraped	off	using	a	cell	lifter	and	transferred	into	pre-chilled	microcentrifuge	

tubes.	The	extracts	were	centrifuged	using	a	bench	top	centrifuge	at	11,	600	×	g	

for	5	min	at	4	°C.	The	supernatants	were	stored	at	-80	°C.	

	

2.2.3	Protein	assay	
Protein	concentrations	were	determined	using	the	method	of	Bradford	(Bradford,	

1976).	Reference	standards	were	prepared	using	bovine	serum	albumin	(BSA)	

duplicates	of	1	μg,	2	μg	and	4	μg	in	100	μL	H2O.	Diluted	lysates	(100	µL)	or	
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reference	standards	were	added	to	1mL	of	Bradford	reagent	and	the	absorbance	

at	595	nm	assessed.	The	mean	absorbance	was	calculated	and	protein	

concentration	determined	by	comparison	to	the	calculated	mean	A595/μg	BSA	

derived	from	the	linear	portion	of	the	BSA	reference	standard	curve.	

	

2.2.4	siRNA	transfection	
	

2.2.4.1	Nucleofection	

Transfection	with	small	interfering	RNA	(siRNA)	targeted	to	AMPK	α1	(Qiagen	

Hs_PRKAA1_5	or	Dharmacon	ON-TARGETplus	#06,	#07)	was	performed	

according	to	the	manufacturer’s	protocol.	Briefly,	1	×	106	cells	were	harvested	by	

trypsinisation	and	centrifuged	(256	×	g,	6	min	at	room	temperature)	before	being	

resuspended	using	the	appropriate	solution	provided	(Kit	V	for	PC3,	Kit	L	for	

DU145,	Lonza).	Non-silencing	siRNA	or	targeting	siRNA	(500	nM)	were	then	

combined	with	100	µL	of	appropriate	solution.	Pmax	GFP	plasmid	(2	mg)	(Lonza)	

was	used	as	a	control	to	measure	the	transfection	efficiency.	The	combination	of	

cells	was	subject	to	appropriate	transfection	program	using	a	Nucleofector	II	

(Lonza)	machine	in	the	cuvette	provided.	After	transfection,	400	µL	of	

appropriate	medium	was	added	to	the	cuvette	and	transferred	to	a	6cm	diameter	

cell	culture	plate	and	incubated	at	37	°C	in	5%	(v/v)	CO2.	Transfection	efficiency	

was	assessed	using	fluorescent	microscopy	(Carl-Zeiss)	every	24	h	for	3	

consecutive	days.	

	

2.2.4.2	Lipofectamine	

Transfection	with	siRNA	targeted	to	AMPK	α1	(Qiagen	Hs_PRKAA1_5	or	

Dharmacon	ON-TARGETplus	#06,	#07)	was	performed	using	Lipofectamine	

RNAiMAX	according	to	the	manufacturer’s	protocol.	Briefly,	1.2	×	105	cells	were	

seeded	in	a	6	cm	diameter	Corning	cell	culture	plate	for	24	h	prior	to	siRNA	

transfection.	Mixture	of	250	μL	Opti-MEM	and	32	pmol	siRNA	was	diluted	with	

Lipofectamine	reagent	(5	μL	Lipofectamine	in	250	μL	Opti-MEM)	and	incubated	

at	room	temperature	for	25	min.	Full	medium	was	then	added	into	the	siRNA-
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reagent	complex	to	make	up	a	total	volume	of	3	mL	and	transferred	to	each	6	cm	

plate,	which	gives	a	final	siRNA	concentration	of	10	nM.	

	

2.2.5	Recombinant	adenoviruses	
	

2.2.5.1	AMPK	adenovirus	

Adenoviruses	expressing	a	dominant	negative	(DN)	AMPK	α	mutant	(Ad.AMPK-

DN,	full-length	AMPK	α1	containing	a	D157A	mutation,	Myc-tagged)	or	GFP	

control	(Ad.GFP)	have	been	described	previously	(Woods	et	al.,	2000)	and	were	

gifts	from	Dr	Fabienne	Foufelle,	Centre	Biomédical	des	Cordeliers,	Paris.	The	

propagation,	purification,	titration	and	verification	of	the	AMPK	adenovirus	were	

carried	out	by	Dr	Silvia	Bijland	and	Dr	Sarah	Mancini	(University	of	Glasgow).	

	

2.2.5.2	Infection	of	PC3	and	DU145	cells	with	adenoviruses		

Cells	(4	×	105)	were	seeded	in	one	well	on	a	6-well	plate	with	2	mL	appropriate	

growth	medium,	and	the	plate	was	incubated	at	37	°C	in	5%	(v/v)	CO2	overnight.	

The	plate	was	washed	with	serum-free	medium,	and	500	μL	serum-free	medium	

was	added	to	each	well	before	infection	(200	IFU/cell	for	PC3,	100	IFU/cell	for	

DU145)	with	Ad.AMPK-DN	or	Ad.GFP.	The	plate	was	then	incubated	for	3	h	at	37	

°C,	5%	(v/v)	CO2.	Appropriate	culture	medium	(500	μL)	containing	20%	(v/v)	

FBS	was	then	added	to	each	well	for	48	h	and	incubated	at	37	°C	in	5%	(v/v)	CO2	

before	experiments	were	performed.	

	

2.2.6	Plasmid	DNA	transformation	and	transfection	
	

2.2.6.1	Plasmid	DNA	transformation	

Empty	control	plasmid	pCMV2-EmptyVector-Flag	was	made	in	house	at	the	

Cancer	Research	UK	Beatson	Institute,	Glasgow,	UK.	Constitutively	active	MEK5	

(Ser313	and	Thr317	substituted	with	Asp)	plasmid	MSCU-MEK5D	(mouse)	as	

previously	described,	was	a	generous	gift	from	Dr	Jiing-Dwan	Lee,	The	Scripps	
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Research	Institute,	CA,	USA	(Mehta	et	al.,	2003,	McCracken	et	al.,	2008).	The	

constitutively	active	MEK5	(Ser313	and	Thr317	substituted	with	Asp)	pCMV-

MEK5DD-HA	(rat)	(C	terminal	triple	human	influenza	haemagglutinin	(HA)	tag)	

was	a	kind	gift	from	Dr	Ruth	Cosgrove,	Babraham	Institute,	Cambridge,	UK.	

Briefly,	100	μL	of	XL-1	Blue	competent	E.	Coli	cells	were	thawed	on	ice	before	1	

μL	plasmid	DNA	was	added	for	each	transformation.	The	cells	were	incubated	on	

ice	for	15	min	before	heat	shock	for	45	sec	at	42	°C.	400	μL	super	optimal	broth	

with	SOC	medium	was	added	for	each	transformation,	the	mixture	was	then	

incubated	at	37	°C	for	1	h.	Cells	(100	μL)	of	cells	were	then	spread	on	a	10	cm	

diameter	2YT	Agar	plate	with	100	µg/mL	Ampicillin	and	incubated	overnight	at	

37	°C.	

	

2.2.6.2	DNA	preparations	from	E.	coli	(Maxiprep)	

A	single	colony	was	picked	and	incubated	in	5	mL	LB	medium	overnight	at	37	°C.	

Glycerol	stocks	were	prepared	by	mixing	625	μL	of	the	resultant	E.	Coli	with	375	

μL	80%	(v/v)	glycerol	(final	concentration	30%)	and	stored	at	-80	°C.	DNA	

extraction	was	undertaken	using	a	Plasmid	Maxi	Kit	(Qiagen)	according	to	the	

manufacturer’s	protocol.	DNA	concentration	was	determined	using	a	NanoDrop	

3300	Fluorosepectrometer	(Thermo	Scientific).	

	

2.2.6.3	Transfection	of	PC	cells	with	MEK5	plasmid	

Transfection	of	PC	cells	was	performed	using	Nucleofection	(Lonza)	according	to	

the	manufacturer’s	protocol.	Briefly,	1	×	106	cells	were	harvested	by	

trypsinisation	and	centrifuged	(256	×	g,	5	min,	room	temperature)	before	being	

resuspended	using	the	Nucleofection	Kit	V	solution.	Plasmid	(3	μg)	was	then	

combined	with	100	μL	of	Kit	V	solution	at	room	temperature.	Cells	were	

subjected	to	transfection	program	(T-013)	using	a	Nucleofector	II	machine	in	the	

cuvette	provided.	After	transfection,	400	μL	of	full	medium	was	added	to	the	

cuvette	and	transferred	to	a	6	cm	diameter	Corning	cell	culture	plate	and	

incubated	under	normal	conditions	(37	°C,	5%	(v/v)	CO2)	for	72	h.	Transfection	

efficiency	using	Nucleofection	was	analysed	using	pmaxGFP	Vector	by	

fluorescence	microscopy.	 	
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2.2.7	Immunoblotting	
	

2.2.7.1	SDS-Polyacrylamide	Gel	Electrophoresis	

Samples	were	prepared	as	described	in	Chapter	2.2.2.	Sodium	dodecyl	sulphate-

polyacrylamide	gel	electrophoresis	(SDS-PAGE)	was	performed	using	1.5	mm	

thick	vertical	slab	gels	containing	10%	acrylamide.	The	gels	were	prepared	using	

Bio-Rad	mini-Protean	III	gel	units.	The	stacking	gel	consisted	of	5%	(v/v)	

acrylamide/0.136%	(v/v)	bisacrylamide	in	125	mM	Tris-HCl,	pH	6.8,	0.1%	SDS,	

0.1%	(w/v)	ammonium	peroxidisulphate	(APS)	and	0.05%	(v/v)	

tetramethylethylenediamine	(TEMED).	Cell	lysates	were	prepared	as	described	in	

Chapter	2.2.2.	Equal	amount	of	protein	were	added	to	4	×	sample	buffer	and	the	

mixture	was	heated	to	95	°C	for	5	min	before	loading.	Prestained	broad	range	

protein	markers	were	used	as	a	standard.	Gels	were	electrophoresed	using	the	

Bio-Rad	Protean	III	system	at	a	constant	voltage	of	80	V	for	stacking	and	150	V	

through	the	resolving	gel.	Gels	were	electrophoresed	until	the	dye	front	had	

migrated	to	the	bottom	of	the	gel	and	good	separation	of	the	molecular	weight	

markers	had	been	achieved.	

	

2.2.7.2	Electrophoretic	transfer	of	protein	

The	gel	was	removed	after	electrophoresis	and	placed	on	a	filter	paper	pre-

wetted	with	transfer	buffer.	A	pre-wetted	sheet	of	nitrocellulose	was	placed	on	

top	of	the	gel	with	a	pre-wetted	filter	paper	on	top	of	that.	Two	sponges	were	

added	to	either	side	of	“sandwich”	which	was	inserted	into	the	gel	holder	cassette	

and	transfer	was	performed	using	a	Bio-Rad	mini	Protean	III	trans-blot	

electrophoretic	transfer	cell	at	a	constant	current	of	60	V	for	2	h	15	min.	The	

nitrocellulose	membrane	was	then	removed	from	the	cassette	and	stained	with	

Ponceau	S	to	determine	the	transfer	efficiency	and	protein	loading.	

	

2.2.7.3	Probing	with	primary	antibodies	

Nitrocellulose	membranes	were	blocked	with	5%	(w/v)	milk	in	TBS	for	30	min	at	

room	temperature	with	gentle	shaking.	The	membrane	was	washed	with	TBST	(2	
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×	5	min).	Appropriate	primary	antibody	was	applied	to	the	membrane	in	

TBST/50%	(v/v)	Odyssey	blocking	buffer	and	incubated	overnight	at	4	°C	with	

gentle	shaking.	

	

2.2.7.4	Probing	with	secondary	antibodies	

After	overnight	incubation	with	primary	antibody,	the	membrane	was	then	

washed	with	TBST	(2	×	5	min)	and	incubated	for	1	h	with	appropriate	

fluorescence-labelled	secondary	antibody	in	TBST/50%	(v/v)	Odyssey	blocking	

buffer	at	room	temperature.	The	membrane	was	washed	with	TBST	(2	×	5	min)	

and	then	TBS	(1	×	5	min).	

	

2.2.7.5	Stripping	of	antibodies	from	nitrocellulose	membranes	

Membranes	were	incubated	in	stripping	buffer	for	10	min	at	room	temperature	

with	gentle	shaking.	The	membrane	was	then	washed	with	TBST	(2	×	10	min,	1	×	

5	min)	Prior	to	blocking	and	probing	as	described	in	sections	2.2.7.3	and	2.2.7.4.	

	

2.2.7.6	Densitometric	analysis	of	molecular	weight	species	

Visualisation	of	protein	was	performed	wet	using	the	Li-Cor	Sa	image	system	

according	to	the	manufacturer’s	protocols.	Quantification	of	immunoblots	was	

performed	using	Image	Studio	software	(Li-Cor)	and/or	Image	J	software	

(National	Institutes	of	Health).	

	

2.2.8	WST-1	viability	assay	
Cell	viability	assay	was	performed	using	the	WST-1	(Roche)	reagent	(tetrazolium	

salt)	in	PC3	and	DU145	cells	according	to	the	manufacturer’s	protocol	based	on	

the	principle	previously	described,	which	provides	estimation	of	cell	viability	by	

measuring	metabolic	activity	(Ishiyama	et	al.,	1993).	Briefly,	1	×	104	cells/well	

were	seeded	in	a	96-well	plate	using	100	µL/well	of	growth	medium	for	24	h	

allowing	for	attachment.	The	cells	were	washed	once	with	serum-free	medium	

and	were	subjected	to	incubation	for	2	h	in	serum-free	medium	(100	µL/well).	

Experiments	were	carried	out	by	adding	100	µL/well	serum-free	medium	
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containing	appropriate	treatment.	WST-1	(20	µL/well)	was	added	to	each	well	

after	72	h	incubation	at	37	°C	in	5%	(v/v)	CO2	and	absorption	at	492	nm	

measured	with	a	reference	wavelength	at	595	nm	using	a	spectrophotometer	at	

30	min,	60	min,	120	min,	180	min	and	240	min.	A	blank	reading	was	taken	using	

serum-free	medium	in	the	absence	of	cells	for	normalisation	purposes.	

	

2.2.9	BrdU	proliferation	assay	
Cell	proliferation	assays	for	PC3,	DU145,	WT	and	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs	

were	performed	using	the	BrdU	(bromodeoxyuridine)	cell	proliferation	assay	kit	

(Millipore)	according	to	the	manufacturer’s	protocol	based	on	the	principle	

previously	described,	which	directly	measures	DNA	synthesis	(Magaud	et	al.,	

1988).	Briefly,	1	×	104	cells/well	were	seeded	in	a	96-well	plate.	For	PC3	and	

DU145,	cells	were	seeded	using	100	µL/well	of	growth	medium	for	24	h	allowing	

for	attachment.	The	cells	were	washed	once	with	serum-free	medium	and	were	

subjected	to	incubation	for	2	h	in	serum-free	medium	(100	µL/well).	

Experiments	were	carried	out	by	adding	100	µL/well	serum-free	medium	

containing	appropriate	treatment.	BrdU	reagent	(20	µL/well)	was	added	to	each	

well	after	72	h	and	incubated	for	a	further	2	h.	For	WT	and	AMPK	α1-/-	AMPK	α2-/-	

KO	MEFs,	cells	were	seeded	using	100	µL/well	of	medium	containing	1%	(v/v)	

FBS.	Experiments	were	carried	out	by	adding	100	µL/well	1%	(v/v)	FBS	medium	

containing	appropriate	treatment.	BrdU	reagent	(20	µL/well)	was	added	to	each	

well	after	24	h	and	incubated	for	a	further	8	h.	All	cells	were	incubated	at	37	°C	in	

5%	(v/v)	CO2.	The	plate	was	then	fixed	and	developed	for	colourimetric	analysis	

according	to	the	protocol.	Absorption	at	492	nm	was	measured	with	a	reference	

wavelength	at	595	nm	using	SPECTROstar	Nano	microplate	reader	(BMG	

Labtech).	A	blank	reading	was	taken	using	medium	only	in	the	absence	of	cells	for	

normalisation	purposes.	

	

2.2.10	Apoptosis	signalling	array	
The	apoptosis	signalling	array	was	performed	using	the	PathScan	Stress	and	

Apoptosis	Signaling	Antibody	Array	Kit	(Cell	Signaling	Technology)	in	PC3	cells.	
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Briefly,	PC3	cells	were	seeded	in	10	cm	diameter	cell	culture	dishes	until	90%	

confluent	at	37	°C	in	5%	(v/v)	CO2.	The	cells	were	then	washed	using	serum-free	

culture	medium,	and	incubated	under	serum-free	conditions	for	2	h	in	37	°C	in	5%	

(v/v)	CO2.	Reagents	were	then	added	and	incubated	for	different	periods	of	time	

up	to	72	h	according	to	the	experimental	design.	The	dishes	were	then	washed	

with	ice-cold	PBS	before	lysis	with	300	µL/dish	ice-cold	lysis	buffer	(Cell	

Signalling	Technology)	supplemented	with	protease	inhibitor	cocktail	(Roche).	

Protein	lysates	were	transferred	to	microcentrifuge	tubes	and	incubated	on	ice	

for	10	min	prior	to	centrifugation	(11,	600	×	g,	4	°C,	5	min).	Supernatants	were	

stored	at	-20	°C	before	use	and	protein	assays	were	performed	as	described	

before.	Equal	amount	of	protein	(50	µg)	was	loaded	to	each	well	after	dilution	

with	array	diluent	buffer.	The	assay	kit	was	incubated	overnight	at	4	°C	with	

gentle	shaking.	The	array	was	detected	as	per	the	protocol	and	image	was	

captured	dry	using	the	Li-Cor	Sa	image	system.	Quantification	of	the	array	was	

performed	using	Image	Studio	software	(Li-Cor).	

	

2.2.11	Monolayer	wound	healing	assay	
The	monolayer	wound	healing	assay	for	PC3	and	DU145	cells	was	performed	as	

described	previously	(Wang	et	al.,	2009).	Briefly,	3	×	105	cells/well	were	seeded	

in	a	6-well	plate	using	3.5	mL	of	appropriate	growth	medium	and	incubated	at	37	

°C in	5%	(v/v)	CO2	for	72	h	until	fully	confluent.	Cells	were	then	subjected	to	

incubation	for	2	h	in	serum-free	medium	before	being	scratched	using	a	sterile	

20-200	µL	pipette	tip.	Cells	were	then	treated	with	appropriate	reagents	

depending	on	the	experimental	design.	Still	photographs	were	taken	

continuously	every	15	min	over	a	22	h	period	using	TE2000	time-lapse	

microscope	(Nikon)	at	10	×	magnification.	Image	J	software	was	used	to	measure	

wound	size,	and	three	different	fields	were	analysed	in	each	experiment	setup,	

and	four	cells	were	tracked	on	each	edge.	
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2.2.12	Transwell	migration	assay	
Migration	assay	for	PC3	and	DU145	cells	was	performed	in	24-well	plates	across	

8µm	pore	cell	culture	inserts	as	previously	described	(Choudhury	et	al.,	2014).	

Briefly,	5	×	104	cells	were	suspended	in	serum-free	medium	in	the	insert.	Serum-

free	medium	or	medium	containing	10%	(v/v)	FBS	was	added	in	the	well.	

Different	compounds	were	added	to	both	the	inserts	and	the	wells	as	per	the	

experimental	setup,	the	cells	were	incubated	over	a	period	of	21	h	allowing	for	

migration.	The	migrated	cells	in	the	insert	were	then	fixed	using	methanol	for	30	

min	at	-20	°C	and	then	stained	with	haematoxylin	for	30	min	at	room	

temperature.	The	insert	was	washed	with	dH2O.	The	membrane	with	the	

migrated	cells	was	mounted	onto	slides	using	DPX	mountant.	The	slides	were	

analysed	under	BM50	microscope	(Olympus)	at	10	×	magnification,	four	different	

fields	were	analysed	in	each	experiment	setup.	

	

2.2.13	Immunofluorescent	labelling	of	cells	
PC3	and	DU145	cells	were	seeded	in	12-well	plates	(1.7	×	105	cells/well)	

containing	sterile	glass	coverslips	and	incubated	overnight	allowing	for	

attachment	at	37	°C	in	5%	(v/v)	CO2.	The	plate	was	then	infected	with	

adenoviruses	as	described	above	in	2.2.5.	After	48	h,	the	medium	was	aspirated,	

and	the	plate	was	washed	once	with	warm	PBS.	Coverslips	were	fixed	with	3%	

(w/v)	paraformaldehyde	at	room	temperature	for	20	min,	washed	twice	with	20	

mM	glycine/PBS	for	quenching,	and	then	twice	with	PBS.	The	coverslips	were	

then	incubated	in	permeabilisation	buffer	(0.1%	(v/v)	Triton	X-100	in	PBS)	for	4	

min	and	washed	with	PBS	three	times.	The	coverslips	were	then	blocked	in	

immunofluorescence	(IF)	buffer.	Coverslips	were	subsequently	incubated	in	

primary	antibody	and	1:20	Texas	Red-X	Phalloidin	(Thermo	Fisher	Scientific)	in	

IF	buffer	for	1	h	at	room	temperature,	and	washed	three	times	with	IF	buffer	

afterwards.	Coverlips	were	then	incubated	in	secondary	antibodies	for	1	h	at	

room	temperature	in	the	dark,	and	washed	three	times	with	IF	buffer	afterwards.	

1:200	Red	Dot	(Biotium)	was	used	for	nuclear	staining.	The	coverslips	were	then	

mounted	onto	slides	using	a	drop	of	Immunomount	(Thermo	Scientific)	and	

stored	in	dark.	 	
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2.2.14	Confocal	microscopy	
Mounted	coverslips	were	analysed	using	an	oil	immersion	objective	(63	×	

magnification)	on	a	Zeiss	Axiovert	200M	confocal	microscope	(Carl	Zeiss)	

equipped	with	LSM5	PASCAL	Exciter	instrument	(50%	output).	An	argon	laser	

was	used	to	excite	488	nm	Fluor	Dyes	and	GFP	fusion	proteins.	The	helium	neon	

laser	was	used	to	excite	633	nm	Red	Dot.	The	helium	neon	laser	was	used	to	

excite	543	nm	Texas	Red-phalloidin.	Zeiss	Pascal	software	was	used	to	collect	

images	(10	fields	per	slide).	

	

2.2.15	Immunohistochemical	analysis	using	tissue	microarray	
Formalin-fixed	and	paraffin-embedded	tissue	microarray	(TMA)	samples	were	

analysed	using	immunohistochemistry	by	Dr	Yashmin	Choudhury	and	Dr	Imran	

Ahmad	(University	of	Glasgow)	as	described	(Choudhury	et	al.,	2014).	Briefly,	

TMA	sections	were	incubated	with	relevant	primary	antibodies	at	4	°C	overnight,	

and	were	further	incubated	with	HRP-labelled	secondary	antibody	at	room	

temperature	for	1	h.	The	cores	were	scored	blindly	by	two	independent	

researchers	and	a	Histoscore	(H-score),	the	quantification	of	staining,	was	

generated	(Viollet	et	al.,	2010).	

	

2.2.16	Statistics	
Data	analysis	was	performed	using	a	Student’s	t-test	(two-tailed)	unless	stated	

otherwise.	A	p	value	<0.05	is	deemed	statistically	significant	in	comparison.	

Results	are	reported	as	mean	+/-	standard	error	and	are	from	three	independent	

experiments	unless	otherwise	stated.	 	
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Chapter	3.	Characterisation	of	AMPK	expression	

and	activation	in	human	prostate	cancer	cell	lines	 	
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3.1	Introduction	
	

3.1.1	Current	understanding	of	AMPK	upstream	kinases	in	

prostate	cancer	cells	
LKB1	and	CaMKK2	are	the	two	primary	upstream	kinases	that	activate	AMPK	via	

phosphorylation	at	Thr172	(Hardie,	2007b,	Hardie,	2015).	LKB1	is	recognised	as	

a	tumour	suppressor	(Hemminki	et	al.,	1998,	Bardeesy	et	al.,	2002),	and	in	vitro	

studies	have	shown	that	the	prostate	cancer	(PC)	cell	line	DU145	does	not	

express	LKB1,	yet	AMPK	can	surprisingly	be	phosphorylated	and	activated	by	

AICAR	in	such	cells	(Yun	et	al.,	2005),	despite	LKB1	being	essential	for	AICAR	

mediated	AMPK	phosphorylation	(Hutber	et	al.,	1997).	In	addition,	transgenic	

animal	models	have	shown	that	loss	of	LKB1	can	lead	to	neoplasia	in	mice	

(Pearson	et	al.,	2008).	CaMKK2,	responsible	for	the	Ca2+/calmodulin	kinase	

cascade	(Colomer	and	Means,	2007),	is	reported	to	be	elevated	in	PC	cell	lines	

especially	in	response	to	AR	stimulation	(Frigo	et	al.,	2011,	Massie	et	al.,	2011).	It	

is	also	suggested	that	there	may	be	a	signalling	feedback	loop	between	CaMKK2	

and	AR	(Karacosta	et	al.,	2012).	However,	the	expression/function	of	and	

crosstalk	between	LKB1	and	CaMKK2	in	the	context	of	the	AMPK	signalling	

pathway	in	PC	cell	lines	is	poorly	understood.	

	

3.1.2	Expression	of	AMPK	subunits	in	prostate	cancer	cells	
AMPK	has	been	considered	as	a	therapeutic	target	in	cancer	(Sanli	et	al.,	2012a).	

In	PC,	however,	it	is	unknown	whether	any	of	the	AMPK	subunits	have	a	

significant	role	in	carcinogenesis.	The	expression	of	AMPK	subunits	was	not	

researched	in	detail	before	the	start	of	this	project.	Sanli	and	colleagues	also	

demonstrated	that	all	tested	AMPK	subunit	isoforms	are	expressed	in	human	

lung,	prostate	and	breast	cancer	cell	lines,	and	different	levels	of	expression	can	

be	seen	in	human	prostate	PNT1A,	PC3	and	22Rv1	cells	(Sanli	et	al.,	2012b).	
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3.1.3	AMPK	activators	used	in	prostate	cancer	cells	in	vitro	
Metformin,	the	most	common	anti-diabetic	medication	activates	AMPK	by	

altering	the	AMP/ATP	or	ADP/ATP	ratio	(Zhou	et	al.,	2001,	Hawley	et	al.,	2010,	

Bijland	et	al.,	2013).	Furthermore,	metformin	has	been	reported	to	have	an	anti-

cancer	effect	in	in	vitro	studies	using	PC	cells	(Ben	Sahra	et	al.,	2008,	Ben	Sahra	et	

al.,	2010a,	Malaguarnera	et	al.,	2014).	AICAR	is	phosphorylated	to	ZMP	that	

mimics	AMP	to	activate	AMPK	in	vitro	(Lopez	et	al.,	2003,	Guigas	et	al.,	2006,	

Bijland	et	al.,	2013).	There	are	many	studies	which	have	used	AICAR,	A769662	

and	metformin	as	AMPK	activators	both	in	vitro	and	in	vivo	(Xiang	et	al.,	2004,	

Goransson	et	al.,	2007,	Sanders	et	al.,	2007,	Huang	et	al.,	2008,	Park	et	al.,	2009,	

Zhou	et	al.,	2009,	Ben	Sahra	et	al.,	2010a),	yet	at	the	beginning	of	this	study,	only	

AICAR	had	been	used	as	an	AMPK	activator	in	PC3,	DU145	and	LNCaP	cell	lines	

(Xiang	et	al.,	2004,	Sauer	et	al.,	2012).	

	

3.1.4	Manipulation	of	AMPK	expression	and	activity	
To	date,	several	tools	have	been	used	to	manipulate	AMPK	expression	in	vitro.	

AMPK	siRNA	targeting	the	PRKAA1	gene	has	been	used	to	knockdown	AMPK	α1	

levels	in	LNCaP	cells	(Chhipa	et	al.,	2011).	In	addition,	adenoviruses	expressing	

either	DN	or	constitutively	activated	AMPK	α1	mutants	have	been	used	to	study	

the	role	of	AMPK	in	multiple	cell	lines	including	PC	cells	(Woods	et	al.,	2000,	

Sakoda	et	al.,	2002,	Xing	et	al.,	2003,	Hwang	et	al.,	2008,	Canto	et	al.,	2009,	Zhou	

et	al.,	2009).	

	

3.1.5	Aims		
Previous	evidence	has	shown	that	different	AMPK	subunits	may	have	different	

roles	in	both	physiological	and	pathological	conditions	(Feng	et	al.,	2007,	O'Neill	

et	al.,	2011).	In	addition,	at	least	six	mechanisms	have	been	identified	for	AMPK	

activation	using	different	activators	(Hawley	et	al.,	2010).	In	fact,	different	AMPK	

subunits	confer	different	sensitivity	to	some	activators.	For	example,	in	cells	that	

lack	LKB1,	basal	AMPK	α2	isoform	activity	is	reduced,	and	AICAR’s	ability	to	

stimulate	AMPK	phosphorylation	is	reduced	(Sakamoto	et	al.,	2005).	The	
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activation	of	AMPK	by	A769662,	a	more	potent	and	specific	AMPK	activator	than	

AICAR,	is	selective	for	AMPK	complexes	containing	the	β1	isoform	(Sanders	et	al.,	

2007,	Scott	et	al.,	2008),	yet	the	effects	of	A769662	on	PC	cell	lines	had	not	been	

reported	prior	to	the	current	study.	

	

PC3,	DU145	and	LNCaP	are	the	most	well-characterised	PC	cell	lines	(Sobel	and	

Sadar,	2005).	PC3	and	DU145	cell	lines	are	androgen	independent,	whereas	

LNCaP	is	androgen	sensitive	(Sobel	and	Sadar,	2005).	DU145	cells	do	not	express	

the	AMPK	kinase	LKB1	(Yun	et	al.,	2005,	Yun	et	al.,	2009).	The	PC3M	cell	line	is	

derived	from	the	PC3	cell	line,	and	exhibits	a	more	aggressive	biological	

behaviour	(Kozlowski	et	al.,	1984).	The	LNCaP-AI	cell	line	is	androgen-

independent	and	derived	from	androgen-dependent	LNCaP	cells	(Lu	et	al.,	1999).	

Unlike	the	androgen-independent	PC3	cells,	AR	is	still	expressed	in	LNCaP-AI	

cells	(Lu	et	al.,	1999).	CWR22	cells	are	derived	from	mice	xenograft,	which	is	

known	for	its	high	expression	of	PSA	and	the	epidermal	growth	factor	receptor	

(EGFR)	(Wainstein	et	al.,	1994).	Cell	lines	bearing	these	different	molecular	

properties	were	therefore	used	to	examine	the	expression	of	AMPK	subunit	

isoforms	and	responses	to	activators	(A769662	and	AICAR)	that	stimulate	AMPK	

by	different	mechanisms.	(Table	3.1)	 	
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Cell	Lines	 Origin	 Androgen	

receptor	

LKB1	 CaMKK2	

CWR22	 Mice	

xenograft	

+	 +	 +	

DU145	 Brain	

metastasis	

-	 -	 +	

PC3	 Bone	

metastasis	

-	 +	 +	

PC3M	 From	

PC3	

-	 +	 +	

LNCaP	 Lymph	node	

metastasis	

+	 +	 +	

LNCaP-AI	 From	

LNCaP	

-	 +	 ?	

Table	3.1	The	origin	and	molecular	profiles	of	prostate	cancer	cells	

CWR22	cells	were	derived	from	a	mice	xenograft	established	from	osseous	

metastasis.	DU145	cells	were	derived	from	brain	metastatic	cells.	PC3	cells	were	

derived	from	bone	metastatic	cells	PC3M	cell	line	was	established	from	a	PC3	

xenograft	and	exhibits	more	aggressive	invasiveness	than	PC3	cells.	LNCaP	cells	

were	from	derived	from	lymph	node	metastatic	cells.	The	LNCaP-AI	cell	line	was	

selected	from	a	fast	growing	clone	of	LNCaP	cells,	which	were	androgen	

independent.	Each	cell	line	has	differential	morphology	and	molecular	properties.	 	
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3.2	Results	
	

3.2.1	Expression	of	AMPK	upstream	kinases	in	prostate	cancer	cell	

lines	
Using	a	panel	of	human	PC	cell	lines	maintained	in	full	serum	supplement	culture	

conditions,	the	baseline	levels	of	AMPK	α,	phospho-AMPK	Thr172,	ACC	and	

phospho-ACC	Ser79	as	well	as	the	two	recognised	AMPK	upstream	kinases,	LKB1	

and	CaMKK2	were	assessed.	In	addition,	baseline	phospho-Akt	Ser473	and	Akt	

levels	were	also	assessed.	Baseline	phosphorylation	of	the	AMPK	substrate,	

phospho-ACC	Ser79	and	phospho-AMPK	Thr172	varied	among	the	cell	lines,	with	

higher	phospho-ACC	Ser79	observed	in	CWR22	and	PC3M	cells.	DU145	cells	were	

the	only	cells	to	lack	LKB1,	and	CaMKK2	was	detected	in	all	cell	lines,	although	

multiple	species	were	observed	at	around	the	predicted	molecular	mass.	The	

level	of	phospho-Akt	Ser473	varied	among	the	cell	lines,	and	being	highest	in	

LNCaP	and	LNCaP-AI	cells.	(Figure	3.1)	PC3,	DU145	and	LNCaP	cells	were	used	to	

carry	out	further	experiments	as	this	combination	includes	cells	deficient	in	

different	signalling	pathway	intermediates	including	PTEN	and	LKB1.	Based	on	

previous	experience,	all	experiments	were	conducted	in	serum-free	conditions	to	

minimise	the	interference	of	growth/hormone	presented	in	serum	as	well	as	

reducing	the	level	of	the	albumin	signal	which	was	apparent	in	preliminary	

experiments	under	conditions	where	serum	was	present	(data	not	shown).	 	
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Figure	3.1	Baseline	AMPK	and	AMPK	upstream	kinase	protein	levels	and	

phosphorylation	in	prostate	cancer	cell	lines	

Prostate	cancer	cell	lines	(CWR22,	DU145,	PC3,	PC3M,	LNCaP	and	LNCaP-AI)	

were	incubated	for	2	h	in	serum-free	medium	and	lysates	prepared.	Protein	

lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	with	the	

antibodies	indicated.	Representative	immunoblots	are	shown,	repeated	on	at	

least	three	occasions.	DU145	cells	lacked	LKB1.	Highest	phospho-ACC	Ser79	

levels	were	observed	in	CWR22	and	PC3M	cells.	Phospho-Akt	Ser473	levels	were	

highest	in	LNCaP	and	LNCaP-AI	cells.	Multiple	species	were	detected	due	to	the	

quality	of	CaMKK2	antibody,	with	the	predicted	molecular	mass	of	CaMKK2	

indicated	by	the	arrow.	GAPDH	was	used	as	loading	control.	

The	top	nine	immunoblots	were	performed	by	Dr	Yashmin	Choudhury	(University	of	

Glasgow)	and	are	reproduced	under	the	Creative	Commons	Attribution	License	

using	Figure	1A	from	article	“AMP-activated	protein	kinase	(AMPK)	as	a	potential	

therapeutic	target	independent	of	PI3K/Akt	signaling	in	prostate	cancer”	by	

Choudhury	et	al,	Oncoscience	(2014);	1(6)	446-456.	 	
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3.2.2	AMPK	subunits	expression	in	prostate	cancer	cell	lines	
In	order	to	examine	the	expression	of	AMPK	subunit	isoforms	in	each	PC	cell	line,	

lysates	from	three	PC	cell	lines	(PC3,	DU145,	LNCaP)	were	assessed	by	

immunoblotting	with	isoform-specific	antibodies.	Both	alpha	isoforms	are	

present	in	PC3,	DU145	and	LNCaP	cells.	Although	there	is	species	corresponding	

to	β1,	there	is	no	β2	species	observed	in	DU145	cells.	It	is	difficult	to	interpret	the	

levels	of	gamma	isoforms	since	the	antibodies	are	not	highly	specific,	although	

levels	of	γ1	and	γ3	are	lower	in	DU145	cells.	These	observations	indicate	that	

AMPK	subunit	isoform	protein	levels	differed	in	PC	cells	lines.	(Figure	3.2)	 	
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Figure	3.2	AMPK	subunit	isoform	protein	levels	in	prostate	cancer	cell	lines	

PC3,	DU145	and	LNCaP	cells	were	incubated	for	2	h	in	serum-free	medium	and	

lysates	prepared.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	In	DU145	cells,	there	was	no	β2	

species	and	levels	of	γ1	and	γ3	are	lower.	GAPDH	was	used	as	loading	control.	

Experiments	were	repeated	at	least	three	times	with	representative	blots	shown.	 	
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3.2.3	Activation	of	AMPK	in	prostate	cancer	cells	
To	determine	the	optimal	conditions	for	AMPK	activation	in	PC	cell	lines,	two	

AMPK	activators	were	utilised,	namely	AICAR	and	A769662.	Firstly,	seperate	

time-dependent	assays	carried	out	using	1	mM	AICAR	and	100	µM	A769662.	A	

concentration-dependent	assay	was	then	followed	with	AICAR	and	A769662	at	

different	concentrations.	AICAR	stimulated	phospho-ACC	Ser79	in	a	time-	and	

concentration-dependent	manner	in	all	three	PC	cell	lines,	with	significant	

stimulation	observed	at	60	min	(LNCaP),	120	min	(PC3	and	DU145),	at	1	mM.	

A769662	also	stimulated	phospho-ACC	Ser79	in	a	time-	and	concentration-

dependent	manner	in	all	three	PC	cell	lines,	with	significant	stimulation	observed	

at	30	min	(DU145),	60	min	(PC3	and	LNCaP),	at	100	µM.	AMPK	Thr172	

phosphorylation	was	also	analysed	at	the	same	time.	However,	changes	in	the	

level	of	the	phospho-AMPK	Thr172	species	observed	was	not	as	robust	or	

consistent	as	with	phospho-ACC	Ser79	(data	not	shown).	Therefore	phospho-ACC	

Ser79	was	used	as	surrogate	to	analyse	AMPK	activation	(Figures	3.3	to	3.7).	 	
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Figure	3.3	AMPK	activation	by	AICAR	and	A769662	in	PC3	cells	

In	PC3	cells,	both	AICAR	and	A769662	activate	AMPK	(as	assessed	by	phospho-

ACC	Ser79)	in	a	concentration-	and	time-dependent	manner.	Cells	were	

incubated	for	2	h	in	serum-free	medium	before	incubation	with	the	indicated	

concentrations	of	AICAR	or	A769662	for	various	times	and	lysates	prepared.	

Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	

with	the	antibodies	indicated.	GAPDH	was	used	as	loading	control.	(A)	

Representative	blots	for	each	time-course	(N=3).	(B)	Representative	blots	for	

concentration-dependence	(N=3).	 	
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Figure	3.4	AMPK	activation	by	AICAR	and	A769662	in	DU145	cells	

In	DU145	cells,	both	AICAR	and	A769662	activate	AMPK	(as	assessed	by	

phospho-ACC	Ser79)	in	a	concentration-	and	time-dependent	manner.	Cells	were	

incubated	for	2	h	in	serum-free	medium	before	incubation	with	AICAR	or	

A769662	for	various	times	and	at	various	concentrations	and	lysates	prepared.	

Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	

with	the	antibodies	indicated.	GAPDH	was	used	as	loading	control.	(A)	

Representative	blots	for	each	time-course	(N=3).	(B)	Representative	blots	for	

concentration-dependence	(N=3).	 	
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Figure	3.5	AMPK	activation	by	AICAR	and	A769662	in	LNCaP	cells	

In	LNCaP	cells,	both	AICAR	and	A769662	activate	AMPK	(as	assessed	by	

phospho-ACC	Ser79)	in	a	concentration-	and	time-dependent	manner.	Cells	were	

incubated	for	2	h	in	serum-free	medium	before	incubation	with	AICAR	or	

A769662	for	various	times	and	at	various	concentrations	and	lysates	prepared.	

Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	

with	the	antibodies	indicated.	GAPDH	was	used	as	loading	control.	(A)	

Representative	blots	for	each	time-course	(N=3).	(B)	Representative	blots	for	

concentration-dependence	(N=3).	 	
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Figure	3.6	AMPK	activation	by	AICAR	in	prostate	cancer	cell	lines	

Quantification	of	phospho-ACC	Ser79	relative	to	GAPDH	in	Figures	3.5,	3.6	and	

3.7.	(A)	Time-course	response	after	AICAR	incubation	(1	mM),	PC3	and	DU145	

were	normalised	to	120	min,	LNCaP	were	normalised	to	60	min	(p<0.01,	†:	PC3,	

N=5,	#:	DU145,	N=5,	‡:	LNCaP,	N=6).	(B)	Concentration-dependent	curve	of	

AICAR	incubation	at	120	min,	normalised	to	1	mM	(p<0.01,	†:	PC3,	N=5,	#:	

DU145,	N=5,	‡:	LNCaP,	N=6).	 	
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Figure	3.7	AMPK	activation	by	A769662	in	prostate	cancer	cell	lines	

Quantification	of	phospho-ACC	Ser79	relative	to	GAPDH	in	Figures	3.5,	3.6	and	

3.7.	(A)	Time-course	response	after	A769662	incubation	(100	µM)	PC3	and	

LNCaP	were	normalised	to	60	min,	DU145	were	normalised	to	30	min	(p<0.01,	†:	

PC3,	N=5,	#:	DU145,	N=5,	‡:	LNCaP,	N=6).	(B)	Concentration-dependent	curve	of	

A769662	incubation	at	60	min	(PC3	and	LNCaP)	and	30	min	(DU145)	(p<0.01,	†:	

PC3,	N=5,	#:	DU145,	N=5,	‡:	LNCaP,	N=6).	 	
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3.2.4	AMPK	siRNA	knockdown	in	androgen-independent	prostate	

cancer	cells	
To	determine	whether	any	of	the	observed	effects	of	A769662	or	AICAR	are	

AMPK-dependent,	a	method	to	specifically	down-regulate	AMPK	activity	was	

required.	Different	technical	approaches	were	used	in	combination	with	various	

targeting	sequences	in	order	to	establish	a	better	knockdown.	Initially,	

nucleofection	of	siRNA	was	assessed,	yielding	a	transfection	efficiency	of	

approximately	50%	after	72	h	as	measured	by	the	pmaxGFP	plasmid	in	both	PC3	

and	DU145	cell	lines	(data	not	shown).	Furthermore,	nucleofection	with	ON-

TARGETplus	siRNA	targeted	against	AMPK	α1	was	similarly	of	a	low	efficiency	

(data	not	shown)	and	despite	efforts	to	optimise	the	nucleofection	protocol,	

satisfactory	knockdown	of	AMPK	α1	was	not	achieved.	

	

Lipofectamine-mediated	transfection	of	PC3	and	DU145	cells	with	siRNA	

targeting	the	PRKAA1	gene	resulted	in	a	reduction	in	AMPK	α	expression	after	72	

h	by	80%	and	40%	in	each	cell	line	respectively	(Figures	3.8	and	3.9).	Despite	the	

marked	down-regulation	of	AMPK	α	levels	in	PC3	cells,	basal	phospho-ACC	Ser79	

was	only	reduced	by	40%	-	50%	in	both	cell	lines	(Figures	3.8	and	3.9).	

Furthermore,	AICAR-	and	A769662-stimulated	AMPK	activity,	as	assessed	by	

phospho-ACC	Ser79,	was	not	markedly	affected	by	lipofectamine-mediated	

down-regulation	of	AMPK	with	targeted	siRNA.	Therefore,	an	alternative	

approach	other	than	siRNA	for	down-regulation	of	AMPK	activity	is	warranted.	

The	AICAR	and	A769662-stimulated	experiments	were	carried	out	in	the	

presence	or	absence	of	epidermal	growth	factor	(EGF),	as	EGF	was	used	as	the	

stimulus	of	the	mitogen-activated	protein	kinase	(MAPK)	and	PI3K/Akt	signalling	

pathways	in	later	chapters.	It	is	clear	that	EGF	had	no	effect	on	siRNA	

transfection.	(Figures	3.10	and	3.11)	 	
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Figure	3.8	siRNA-mediated	down	regulation	of	AMPK	in	PC3	cells	

PC3	cells	were	seeded	24	h	before	siRNA	transfection.	PRKAA1	and	non-coding	

(NT)	control	siRNA	were	transfected	using	Lipofectamine	RNAiMAX	for	72	h	at	a	

concentration	of	10	nM.	Cells	were	incubated	for	2	h	in	serum-free	medium	and	

lysates	prepared.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	antibodies	indicated.	GAPDH	was	used	as	loading	control.	

(A)	Representative	blots.	(B)	Densitometric	analysis	of	AMPK	levels	and	ACC	

phosphorylation	level	(**:	p<0.01,	N=3).	 	
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Figure	3.9	siRNA-mediated	down	regulation	of	AMPK	in	DU145	cells	

DU145	cells	were	seeded	24	h	before	siRNA	transfection.	PRKAA1	and	non-coding	

(NT)	control	siRNA	were	transfected	using	Lipofectamine	RNAiMAX	for	72	h	at	a	

concentration	of	10	nM.	Cells	were	incubated	for	2	h	in	serum-free	medium	and	

lysates	prepared.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	antibodies	indicated.	GAPDH	was	used	as	loading	control.	

(A)	Representative	blots.	(B)	Densitometric	analysis	of	AMPK	levels	and	ACC	

phosphorylation	level	(N=3).	 	
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Figure	3.10	Effect	of	siRNA-mediated	down-regulation	of	AMPK	on	AICAR	

and	A769662-stimulated	ACC	phosphorylation	in	PC3	cells	

PC3	cells	were	seeded	24	h	before	siRNA	transfection.	PRKAA1	and	non-coding	

(NT)	control	siRNA	were	transfected	using	Lipofectamine	RNAiMAX	for	72	h	at	a	

concentration	of	10	nM.	Cells	were	then	incubated	for	2	h	in	serum-free	medium	

before	incubation	in	the	presence	or	absence	of	(A)	AICAR	or	(B)	A769662.	EGF	

(20	ng/mL)	was	added	15	min	prior	to	lysates	preparation.	Protein	lysates	were	

resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	with	antibodies	

indicated.	GAPDH	was	used	as	loading	control.	Representative	blots	are	shown	

(N=3).	 	
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Figure	3.11	Effect	of	siRNA-mediated	down-regulation	of	AMPK	on	AICAR	

and	A769662-stimulated	ACC	phosphorylation	in	DU145	cells	

PC3	cells	were	seeded	24	h	before	siRNA	transfection.	PRKAA1	and	non-coding	

(NT)	control	siRNA	were	transfected	using	Lipofectamine	RNAiMAX	for	72	h	at	a	

concentration	of	10	nM.	Cells	were	then	incubated	for	2	h	in	serum-free	medium	

before	incubation	in	the	presence	or	absence	of	(A)	AICAR	or	(B)	A769662.	EGF	

(20	ng/mL)	was	added	15min	prior	to	lysates	preparation.	Protein	lysates	were	

resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	with	antibodies	

indicated.	GAPDH	was	used	as	loading	control.	Representative	blots	are	shown	

(N=3).	 	
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3.2.5	Down-regulation	of	AMPK	using	adenoviruses	expressing	a	

dominant	negative	AMPK	mutant	in	prostate	cancer	cell	lines	
Since	siRNA-mediated	down-regulation	of	AMPK	was	not	sufficient	to	eliminate	

AMPK	activity,	infection	with	adenoviruses	expressing	a	myc-tagged	DN	AMPK	

α1	mutant	(Ad.AMPK-DN)	(Woods	et	al.,	2000)	was	optimised	in	PC3	and	DU145	

cell	lines	in	the	view	to	establish	a	better	system	to	down-regulate	stimulated	

AMPK	activity.	Adenoviruses	expressing	GFP	(Ad.GFP)	were	used	as	a	control.	

Virus	infection	was	firstly	assessed	using	Confocal	microscopy	with	acceptable	

infection	efficiency	in	both	PC3	(>60%)	and	DU145	(>80%)	cells.	However,	

infection	of	PC3	cells	with	200	IFU/cell	Ad.AMPK-DN	did	not	abolish	AICAR-

stimulated	AMPK	activation	compared	to	Ad.GFP-infected	cells	as	assessed	by	

immunoblotting,	although	reduced	phospho-ACC	Ser79	was	noticed	in	Ad.AMPK-

DN	infected	cells.	Similarly,	infection	of	DU145	cells	with	100	IFU/cell	Ad.AMPK-

DN	did	not	abolish	AICAR-stimulated	AMPK	activation	compared	to	Ad.GFP-

infected	cells	as	assessed	by	immunoblotting,	although	reduced	phospho-ACC	

Ser79	was	noticed	in	Ad.AMPK-DN	infected	cells	(Figures	3.12	and	3.13).	

	

It	is	apparent	that	down-regulation	of	stimulated	AMPK	activity	in	vitro	was	very	

difficult	to	achieve	after	a	modest	effect	using	both	siRNA	or	adenoviruses.	

Therefore	the	AMPK	activity	in	clinical	PC	samples	was	assessed	to	better	

understand	the	potential	role	of	AMPK	in	vivo.	 	
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Figure	3.12	Effect	of	infection	with	Ad.AMPK-DN	on	AICAR-stimulated	AMPK	

activation	in	PC3	cells	

(A)	Confocal	microscopy	analyses	of	virus	infection	efficiency:	PC3	cells	were	

seeded	in	a	12-well	plate	with	sterile	cover	slips	overnight	allowing	for	

attachment.	The	cells	were	infected	with	Ad.AMPK-DN	or	Ad.GFP	adenoviruses	

(200	IFU/cell)	and	incubated	for	3	h	in	serum-free	medium	before	incubated	with	

full	medium	for	48	h.	The	cover	slips	were	then	washed	and	fixed	using	3%	

paraformaldehyde.	The	cover	slips	were	immunofluorescence	labelled	as	

described	in	Chapter	2.2.13	and	images	were	taken	using	Confocal	microscopy	as	

described	in	Chapter	2.2.14,	10	fields/slide	were	analysed.	For	Ad.GFP,	4	slides	

were	analysed.	For	Ad.AMPK-DN,	3	slides	were	analysed.	(B)	Virus	infection	

efficiency	was	assessed	by	Confocal	microscopy	(N=1).	(C)	PC3	cells	were	

infected	with	Ad.AMPK-DN	or	Ad.GFP	adenoviruses	at	different	IFU	as	indicated	

for	48	h	before	incubation	with	1	mM	AICAR	for	2	h	and	lysates	prepared.	Protein	

lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	with	the	

antibodies	indicated	(N=1).	Reduced	AICAR-stimulated	phospho-ACC	Ser79	is	

observed	in	Ad.AMPK-DN	compared	to	Ad.GFP	at	200	IFU/cell.	c-Myc	and	GFP	

were	used	as	quality	control	for	Ad.AMPK-DN	and	Ad.GFP,	respectively.	GAPDH	

was	used	as	loading	control.	 	
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Figure	3.13	Effect	of	infection	with	Ad.AMPK-DN	on	AICAR-stimulated	AMPK	

activation	in	DU145	cells	

(A)	Confocal	microscopy	analyses	of	virus	infection	efficiency:	DU145	cells	were	

seeded	in	a	12-well	plate	with	sterile	cover	slips	overnight	allowing	for	

attachment.	The	cells	were	infected	with	Ad.AMPK-DN	or	Ad.GFP	adenoviruses	

(100	IFU/cell)	and	incubated	for	3	h	in	serum-free	medium	before	incubated	with	

full	medium	for	48	h.	The	cover	slips	were	then	washed	and	fixed	using	3%	

paraformaldehyde.	The	cover	slips	were	immunofluorescence	labelled	as	

described	in	Chapter	2.2.13	and	images	were	taken	using	Confocal	microscopy	as	

described	in	Chapter	2.2.14,	10	fields/slide	were	analysed.	For	Ad.GFP,	4	slides	

were	analysed.	For	Ad.AMPK-DN,	3	slides	were	analysed.	(B)	Virus	infection	

efficiency	was	assessed	by	Confocal	microscopy	(N=1).	(C)	DU145	cells	were	

infected	with	Ad.AMPK-DN	or	Ad.GFP	adenoviruses	at	different	IFU	as	indicated	

for	48	h	before	incubation	with	1	mM	AICAR	for	2	h	and	lysates	prepared.	Protein	

lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	with	the	

antibodies	indicated	(N=1).	Reduced	AICAR-stimulated	phospho-ACC	Ser79	is	

observed	in	Ad.AMPK-DN	compared	to	Ad.GFP	at	100	IFU/cell.	c-Myc	and	GFP	

were	used	as	quality	control	for	Ad.AMPK-DN	and	Ad.GFP,	respectively.	GAPDH	

was	used	as	loading	control.	 	
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3.2.6	The	status	of	AMPK	activity	in	clinical	prostate	cancer	

samples	
A	tissue	micro	array	(TMA)	consisting	of	both	benign	prostate	hyperplasia	(BPH)	

and	PC	were	analysed	by	Dr	Yashmin	Choudhury	and	Dr	Imran	Ahmad	

(University	of	Glasgow)	using	immunohistochemistry	as	described	in	2.2.15	

(Choudhury	et	al.,	2014).	PC	samples	exhibited	increased	levels	of	both	phospho-

AMPK	Thr172	and	phospho-ACC	Ser79	when	compared	to	BPH	samples.	Results	

also	suggested	a	trend	of	increased	phospho-AMPK	in	tumours	with	higher	

Gleason	score.	In	some	samples,	significant	phospho-ACC	is	observed	despite	a	

low	phospho-AMPK	level	(Figure	3.14).	 	
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Figure	3.14	Analysis	of	AMPK	phosphorylation	in	clinical	prostate	cancer	

samples	

Immunohistochemical	analysis	using	TMA	in	clinical	prostate	cancer	samples,	(A)	

(i)	high	H-Score	observed	for	both	phospho-AMPK	Thr172	and	phospho-ACC	

Ser79	and	(ii)	low	H-score	for	phospho-AMPK	Thr172	but	high	H-score	for	

phospho-ACC	Ser79,	scale	bar	represents	100	µm,	(B)	The	trend	of	increasing	

phospho-AMPK	Thr172	with	higher	Gleason	score	(*:	p<0.05,	Mann-Whitney	

test).	This	analysis	was	performed	by	Dr	Yashmin	Choudhury	and	Dr	Imran	

Ahmad	(University	of	Glasgow).	

This	figure	is	reproduced	under	the	Creative	Commons	Attribution	License	using	

Figure	1F	and	1G	from	article	“AMP-activated	protein	kinase	(AMPK)	as	a	potential	

therapeutic	target	independent	of	PI3K/Akt	signaling	in	prostate	cancer”	by	

Choudhury	et	al,	Oncoscience	(2014);	1(6)	446-456.	 	
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3.3	Discussion	
Initially,	six	PC	cell	lines	were	used	in	a	pilot	experiment	to	assess	basal	AMPK	

expression	and	activity	along	with	the	expression	of	the	two	AMPK	kinases	LKB1	

and	CaMKK2.	These	cell	lines	included	two	AR-dependent	cell	lines;	CWR22	and	

LNCaP	and	four	AR-independent	cell	lines;	PC3,	PC3M,	DU145	and	LNCaP-AI.	

These	cell	lines	have	different	properties	in	terms	of	expression	of	AR	(Tilley	et	

al.,	1990,	Newmark	et	al.,	1992),	LKB1	and	CaMKK2	(Table	3.1).	The	data	suggest	

that	there	are	differences	between	basal	AMPK	activity	across	the	six	PC	cell	lines	

used.	Although	this	cannot	predict	the	AMPK	activity	in	vivo,	it	is	still	interesting	

that	the	activity	of	AMPK	is	markedly	different	in	PC3	and	PC3M	cells	despite	the	

similar	level	of	AMPK	expression	with	PC3M	having	higher	phospho-AMPK	levels	

compared	to	PC3.	The	status	of	the	two	upstream	kinases	might	explain	this	

finding	given	the	similar	expression	of	LKB1	in	both	cell	lines,	but	higher	

CaMKK2	expression	in	PC3M	cells.	It	is	also	possible	that	AR	plays	a	significant	

role,	given	that	AR	is	not	only	important	in	PC	carcinogenesis,	but	also	has	been	

reported	to	regulate	CaMKK2	signalling	(Karacosta	et	al.,	2012,	Shima	et	al.,	

2012).	The	analysis	of	AMPK	subunit	isoform	expression	in	PC3,	DU145	and	

LNCaP	provides	evidence	that	different	PC	cells	may	have	different	AMPK	

subunit	isoforms,	with	PC3	and	LNCaP	cells	expressing	higher	levels	of	AMPK	α2	

than	DU145	cells,	and	LNCaP	cells	expressing	higher	levels	of	AMPK	β2	

compared	to	PC3	and	DU145	cells.	This	is	very	helpful	in	understanding	PC	cell	

biology	as	different	AMPK	complexes	containing	α	subunit	isoforms	have	been	

reported	to	have	different	substrate	specificity	and	subcellular	localisation	

(Woods	et	al.,	1996b,	Salt	et	al.,	1998)	and	some	AMPK	activators	(A769662,	

salicylate)	have	been	reported	to	only	activate	complexes	containing	β1	isoforms	

(Scott	et	al.,	2008).	However,	care	should	be	taken	when	interpreting	these	data	

as	the	antibodies	used	in	those	experiments	exhibited	substantial	non-specific	

species.	In	addition,	the	results	shown	here	also	confirmed	a	lack	of	LKB1	in	

DU145	cells	as	described	preciously	by	others	(Yun	et	al.,	2005).	

	

Three	PC	cell	lines;	PC3,	DU145	and	LNCaP	were	chosen	to	carry	out	further	

experiments	based	on	their	different	expression	profiles	as	described	above.	
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AMPK	could	be	activated	by	either	AICAR	or	A769662	in	PC3,	DU145	and	LNCaP	

cells	as	assessed	by	phosphorylation	of	ACC.	Although	a	slightly	different	

incubation	time	was	found	to	achieve	maximal	stimulation	for	each	activator	in	a	

given	cell	line,	optimal	concentrations	for	both	AMPK	activators	were	the	same	in	

all	three	cells.	Concentrations	lower	than	1	mM	AICAR	have	been	used	in	

previous	studies	in	PC	cell	lines,	however,	in	those	studies	longer	incubation	

times	were	used	(Xiang	et	al.,	2004,	Yun	et	al.,	2005,	Isebaert	et	al.,	2011).	A	lower	

concentration	of	A769962	was	also	used	for	a	longer	incubation	period	in	

previous	study	in	PC3	cells	(Chen	et	al.,	2011).	Because	the	activation	of	AMPK	by	

AICAR	relies	on	LKB1	(Sakamoto	et	al.,	2005),	the	significant	AICAR-stimulated	

phosphorylation	of	ACC	in	DU145	cells	may	be	due	to	allosteric	activation	of	

AMPK	given	that	the	phospho-AMPK	Thr172	is	not	increased	in	line	with	

phosphorylation	of	ACC.	Moreover,	because	A769662	has	been	reported	to	only	

activate	AMPK	complexes	containing	the	β1	isoform	(Scott	et	al.,	2008),	this	also	

suggests	all	the	three	cell	lines	used	in	these	experiments	contain	the	β1	isoform	

in	agreement	with	the	subunit	isoform	data	presented	in	Figure	3.2.	This	is	the	

first	characterisation	of	the	time-course	and	concentration-dependence	of	AMPK	

activation	by	AICAR	and	A769662	in	these	PC	cell	lines.	

	

Optimisation	of	down-regulation	of	AMPK	activity	using	AMPK	α1	siRNA	

targeting	the	PRKAA1	gene	in	PC3	and	DU145	was	performed.	Initially,	siRNA	

knockdown	was	not	satisfactory	despite	using	different	siRNA	from	different	

suppliers	and	different	approaches	including	HiPerFect	(Qiagen)	and	

Nucleofection	(Lonza).	The	Lipofectamine	RNAiMAX	(Life	Technologies)	

approach	with	ON-TARGETplus	siRNA	(Thermo	Scientific)	finally	achieved	

PRKAA1	gene	knockdown	in	PC3	cells.	However,	the	activity	of	AMPK	is	still	

sufficient	to	demonstrate	substantial	phosphorylation	of	ACC	upon	stimulation	

with	AICAR	or	A769662.	These	results	suggest	that	knockdown	of	one	catalytic	

subunit	isoform	of	AMPK	is	not	sufficient	to	abolish	its	function	in	PC	cells.	An	

alternative	explanation	is	that	even	with	such	a	substantial	knockdown	in	terms	

of	AMPK	α1	expression	(80%),	the	remaining	20%	of	the	protein	is	still	sufficient	

to	phosphorylate	ACC.	
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Adenoviruses	expressing	DN	AMPK	α1	mutant	were	utilised	as	an	alternative	tool	

to	attenuate	AMPK	activity.	Optimisation	was	performed	using	Ad.AMPK-DN,	

which	expresses	a	DN	myc-tagged	AMPK	α1	mutant.	Ad.GFP	was	used	as	a	

negative	control	for	cells	infected	with	Ad.AMPK-DN.	The	optimum	infections	

were	achieved	in	PC3	is	with	200	IFU/cell	and	in	DU145	with	100	IFU/cell,	which	

correlates	well	with	a	recent	study	using	the	same	virus	loading	in	both	cell	lines	

(Pei	et	al.,	2014).	AICAR	stimulated	ACC	phosphorylation	level	was	markedly	

decreased	in	Ad.AMPK-DN	infected	cells	compared	to	Ad.GFP	infected	cells.	

	

Previously,	one	study	had	shown	that	human	PC	tissue	exhibits	higher	AMPK	

activity	(as	measured	by	phospho-ACC	Ser79)	compared	to	normal	prostate	

tissue	(Park	et	al.,	2009).	However,	no	correlation	between	AMPK	activity	and	

Gleason	score	was	established	in	that	study	(Park	et	al.,	2009).	The	current	study	

provided	first	such	evidence	that	AMPK	activity	is	linked	to	Gleason	score,	

although	the	underlying	mechanism	remains	unclear.	It	is	possible	that	when	PC	

progresses,	more	energy	is	utilised,	leading	to	increased	AMPK	activity.	However,	

increased	AMPK	activity	could	also	be	explained	as	a	protective	measure	against	

tumourigenesis.	Therefore,	extra	care	should	be	taken	when	interpreting	any	

such	data	in	this	context.	In	addition,	the	disassociation	between	phospho-ACC	

and	phospho-AMPK	is	unexplained	in	some	of	the	clinical	samples	examined.	

	

Overall,	this	chapter	provided	important	basic	characteristics	of	AMPK-

associated	molecular	biology	in	PC.	Using	two	structurally-unrelated	AMPK	

activators,	AICAR	and	A769662,	an	in	vitro	system	was	established	in	three	PC	

cell	lines	(PC3,	DU145	and	LNCaP)	as	tools	to	explore	AMPK-related	functions	in	

PC.	Optimisation	of	down-regulation	of	AMPK	was	also	attempted	using	different	

experimental	approaches,	which	could	be	further	refined	for	use	in	studies	of	

AMPK	function	in	PC.	Preliminary	data	using	clinical	PC	samples	demonstrated	a	

positive	association	of	AMPK	activity	with	PC	severity.	It	would	be	both	

interesting	and	important	to	know	what	effect	AMPK	has	in	PC	cellular	function	

such	as	proliferation	and	migration.	 	
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Chapter	4.	The	role	of	AMPK	activation	in	human	

prostate	cancer	cell	proliferation	and	migration	 	
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4.1	Introduction	
	

4.1.1	The	role	of	AMPK	activation	in	prostate	cancer	cell	

proliferation	
Proliferation	has	long	been	recognised	as	an	important	process	in	carcinogenesis	

(Bresciani,	1968).	Previously,	several	studies	have	examined	the	effect	of	AMPK	

activators	on	prostate	cancer	(PC)	cell	proliferation.	At	the	start	of	this	study,	

there	were	contrasting	data	regarding	the	role	of	AMPK	in	PC	proliferation.	Cell	

growth	was	reported	to	be	inhibited	after	treatment	with	AICAR	as	assessed	by	

cell	counting,	MTT	(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium	

bromide)	assay	and	BrdU	uptake	assays	in	PC3	cells	(Xiang	et	al.,	2004).	In	DU145	

cells,	AICAR	incubation	reduced	cell	number	(Xiang	et	al.,	2004),	an	effect	later	

reported	to	be	concentration-dependent	(Sauer	et	al.,	2012).	Metformin	was	

similarly	reported	to	reduce	cell	proliferation	in	PC3,	DU145	and	LNCaP	cells	

measured	by	both	cell	counting	and	MTT	assay	(Ben	Sahra	et	al.,	2008,	Ben	Sahra	

et	al.,	2010a).	The	effect	of	metformin	on	PC3	cell	proliferation,	assessed	using	a	

colourimetric	assay,	has	also	been	reported	to	be	concentration-dependent	

manner	(Zakikhani	et	al.,	2008).	In	contrast,	down-regulation	of	AMPK	catalytic	

subunits	by	small	interfering	RNA	or	incubation	with	compound	C	

(dorsomorphin),	a	potent	AMPK	inhibitor,	decreased	cell	proliferation,	as	

measured	by	cell	counting,	in	LNCaP	and	22Rv1	cells	(Park	et	al.,	2009).	In	all	of	

these	studies,	the	AMPK	activators	utilised	(mostly	AICAR	or	metformin)	were	

not	highly	specific.	It	has	been	reported	that	the	more	specific	AMPK	activator,	

A769662,	could	inhibit	cancer	growth	in	vitro	and	in	vivo	(Huang	et	al.,	2008),	yet	

whether	A769662	has	anti-proliferative	actions	in	PC	cell	lines	had	not	been	

explored.	

	

4.1.2	The	role	of	AMPK	activation	in	prostate	cancer	cell	migration	
Migration	is	a	key	factor	contributing	to	metastasis	in	malignancy	including	PC	

(Jacob	et	al.,	1999,	Jones	et	al.,	2006).	Prior	to	the	start	of	these	studies,	there	

were	far	fewer	studies	that	had	investigated	the	actions	of	AMPK	activators	on	PC	
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cell	migration,	although	it	had	been	reported	that	overexpression	of	CaMKK2,	one	

upstream	kinase	of	AMPK,	led	to	increased	AMPK	phosphorylation	and	cell	

migration	in	LNCaP	cells	(Frigo	et	al.,	2011).	In	addition,	adiponectin	was	

demonstrated	to	stimulate	AMPK	phosphorylation	and	increase	migration	of	PC3,	

DU145	and	LNCaP	cells	in	a	manner	sensitive	to	compound	C	or	siRNA	targeted	

to	AMPK	(Tang	and	Lu,	2009).	However,	in	contrast,	inactivation	of	AMPK	using	a	

DN	mutant	in	C4-1	cells	was	also	reported	to	increase	cell	migration	(Zhou	et	al.,	

2009).	As	mentioned	above,	A769662	has	been	reported	to	inhibit	cancer	growth	

in	vitro	and	in	vivo	(Huang	et	al.,	2008),	yet	whether	A769662	has	anti-migratory	

actions	in	PC	cell	lines	had	not	been	explored.	

	

This	study	therefore	examined	the	effects	of	A769662	on	PC	cell	proliferation	and	

migration,	comparing	those	effects	with	AICAR,	which	activates	AMPK	by	an	

indirect	mechanism	(Chapter	1.2.3).	 	
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4.2	Results	
	

4.2.1	The	effect	of	AMPK	activators	on	prostate	cancer	cell	viability	
Initially,	the	effect	of	AMPK	activators	on	viability	was	assessed	in	both	PC3	and	

DU145	cells	using	the	WST-1	viability	assay,	which	measures	cell	metabolism.	

Both	AICAR	and	A769662	significantly	decreased	cell	viability	in	both	PC3	and	

DU145	cells.	AICAR	(1	mM)	inhibited	PC3	and	DU145	cell	viability	by	80%	and	

70%	respectively,	whereas	A769662	(100µM)	inhibited	by	80%	and	40%	

respectively	(Figure	4.1).	To	examine	whether	these	effects	of	AICAR	and	

A769662	were	AMPK	dependent,	the	viability	assay	was	repeated	in	PC	cell	lines	

infected	with	Ad.AMPK-DN	adenoviruses.	Infection	with	Ad.AMPK-DN	has	no	

effect	on	the	inhibition	of	PC3	and	DU145	cell	viability	produced	by	AICAR	or	

A769662	compared	to	cells	infected	with	Ad.GFP	or	uninfected	cells,	although	

infection	with	adenoviruses	reduced	DU145	cell	viability.	(Figure	4.2)	To	further	

examine	the	effect	of	AMPK	activators	on	cell	viability,	isogenic	cell	lines	PC3	and	

PC3M	were	used.	The	inhibitory	effects	of	both	AICAR	and	A769662	on	viability	

are	concentration-dependent	in	PC3	and	PC3M	cells.	Under	same	concentration	

of	AICAR,	viability	was	decreased	more	in	PC3	cells	than	PC3M	cells.	The	

inhibitory	effect	produced	by	A769662,	in	the	other	hand,	was	similar	in	both	

PC3	and	PC3M	cells	(Figure	4.3).	Moreover,	the	inhibitory	effect	of	500μM	AICAR	

was	slightly	reversed	by	compound	C,	a	chemical	inhibitor	of	AMPK.	Compound	C,	

however,	had	no	effect	on	the	inhibitory	effect	produced	by	2	mM	AICAR	in	both	

PC3	and	PC3M	cells.	Down-regulation	of	AMPK	α1	using	siRNAs	targeting	

PRKAA1	also	produced	a	reversal	effect	on	the	inhibition	of	viability	induced	by	2	

mM	AICAR	in	both	PC3	and	PC3M	cells,	although	these	reversal	effects	are	not	

statistical	significant.	(Figure	4.3)	The	observation	in	these	viability	experiments	

raised	a	question	as	whether	the	inhibitory	effects	of	AMPK	activators	truly	

reflect	changes	in	cell	proliferation	or	rather	are	a	result	of	metabolic	changes.	

Another	approach	to	accurately	measure	cell	proliferation	was	therefore	used	

subsequently.	 	
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Figure	4.1	Viability	assay	of	PC3	and	DU145	cells	72	h	after	incubation	with	

AMPK	activators	

(A)	PC3	or	(B)	DU145	cells	were	seeded	in	96-well	plates	and	incubated	for	24	h	

to	allow	attachment.	The	cells	were	incubated	for	2	h	in	serum-free	medium	

before	incubation	in	the	presence	or	absence	of	1	mM	AICAR	or	100	µM	A769662	

for	72	h.	WST-1	(10%	v/v)	was	added	to	each	well	and	normalised	absorbance	at	

595	nm	was	assessed	after	120	min.	Cell	viability	was	normalised	to	DMSO	

control.	**:	p<0.01	compared	to	DMSO	control,	experiments	were	repeated	

independently	for	at	least	three	times.	 	
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Figure	4.2	Effect	of	Ad.AMPK-DN	adenovirus	infection	on	AICAR	and	

A769662-mediated	inhibition	of	prostate	cancer	cell	viability	

Cells	were	seeded	in	96-well	plates	and	incubated	for	24	h	to	allow	attachment.	

The	cells	were	infected	with	Ad.AMPK-DN	or	Ad.GFP	adenoviruses	(200	IFU/cell	

in	PC3,	100	IFU/cell	in	DU145)	and	were	incubated	for	3	h	in	serum-free	medium	

before	incubation	in	the	presence	or	absence	of	1	mM	AICAR	or	100	µM	A769662	

for	72	h.	WST-1	(10%	v/v)	was	added	to	each	well	and	normalised	absorbance	at	

595	nm	was	assessed	after	120	min.	(A)	PC3	cell	viability	normalised	to	DMSO	

control	(**:	p<0.01,	N=3).	(B)	DU145	cell	viability	normalised	to	DMSO	control	(*:	

p<0.05,	**:	p<0.01,	N=3).	 	
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Figure	4.3	Viability	assay	of	PC3	and	PC3M	cells	72	h	after	incubation	with	

AMPK	activators	

PC3	and	PC3M	cells	were	seeded	in	96-well	plates	and	incubated	for	24	h	to	allow	

attachment.	The	cells	were	incubated	for	2	h	in	serum-free	medium	before	

incubation	in	the	presence	or	absence	of	(A)	500	µM	and	2000	µM	AICAR	or	(B)	

50	µM	and	100	µM	A769662	for	72	h.	(C)	Viability	assay	with	2000	µM	AICAR	

and	10	µM	compound	C	alone	or	in	combination	for	72	h.	(D)	Cells	were	

incubated	with	PRKAA1	siRNA	alone	or	with	2000	μM	AICAR	prior	to	the	viability	

assays.	WST-1	(10%	v/v)	was	added	to	each	well	and	normalised	absorbance	at	

595	nm	was	assessed	after	120	min.	Data	presented	as	mean	±	SD,	*:	p≤0.001,	#:	

p≤0.005,	▲:	p≤0.01,	▼:	p≤0.05	from	(A	to	C:	DMSO	control,	D:	NT	siRNA	control).	

These	experiments	were	performed	by	Dr	Yashmin	Choudhury	(University	of	

Glasgow). 

This	figure	is	reproduced	under	the	Creative	Commons	Attribution	License	using	

Figure	2A,	2C,	2E	and	2F	from	article	“AMP-activated	protein	kinase	(AMPK)	as	a	

potential	therapeutic	target	independent	of	PI3K/Akt	signaling	in	prostate	cancer”	

by	Choudhury	et	al,	Oncoscience	(2014);	1(6)	446-456.	 	
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4.2.2	The	effect	of	AMPK	activators	on	prostate	cancer	cell	

proliferation	
The	effect	of	AICAR	and	A769662	on	proliferation	was	assessed	using	the	BrdU	

proliferation	assay	in	both	PC3	and	DU145	cells.	In	PC3	cells,	both	AICAR	and	

A7699662	significantly	decrease	cell	proliferation	by	40%	after	72	h	incubation.	

In	DU145	cells	however,	there	is	no	significant	effect	observed	on	BrdU	

incorporation	after	72	h	incubation	with	either	AICAR	or	A769662,	although	

AICAR	tended	to	reduce	proliferation	(p=0.09)	(Figure	4.4).	To	further	assess	the	

AMPK-dependence	of	the	effect	of	AICAR	and	A769662	observed	in	Chapter	4.2.1,	

mouse	embryonic	fibroblasts	(MEFs)	that	were	wild	type	(WT)	or	deficient	in	

AMPK	α1-/-	and	AMPK	α2-/-	(knock	out,	KO)	were	used.	These	cells	were	verified	to	

confirm	that	their	genotypes	(WT	and	KO)	by	immunoblotting	prior	to	the	start	of	

the	experiments	(data	not	shown)	and	again	in	Chapter	6.2.2	(Figure	6.4).	AICAR	

caused	a	concentration-dependent	decrease	in	proliferation	in	both	WT	and	

AMPK	α1-/-	AMPK	α2-/-	KO	cells,	yet	AMPK	α1-/-	AMPK	α2-/-	KO	cells	were	more	

sensitive	to	AICAR,	demonstrating	marked	inhibition	of	proliferation	at	a	

concentration	of	100	µM,	whereas	1	mM	was	required	for	a	similar	effect	in	WT	

cells	(Figure	4.5).	A769662	caused	a	modest	inhibition	of	proliferation	in	WT	

cells	at	a	concentration	of	30	µM,	an	effect	that	was	not	observed	in	AMPK	α1-/-	

AMPK	α2-/-	KO	cells.	In	contrast,	100	µM	A769662	markedly	inhibited	

proliferation	in	both	genotypes	(Figure	4.6).	 	
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Figure	4.4	Effect	of	AMPK	activators	on	the	proliferation	of	prostate	cancer	

cell	lines		

Cells	were	seeded	in	96-well	plates	and	incubated	for	24	h	to	allow	attachment.	

The	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	in	the	

presence	or	absence	of	1	mM	AICAR	or	100	µM	A769662	for	72	h.	BrdU	(10%	

v/v)	was	added	to	each	well	and	incubated	for	a	further	2	h.	The	plate	was	then	

fixed	and	developed	according	to	the	protocol	and	absorbance	at	595	nm	was	

assessed.	Cell	proliferation	was	normalised	to	DMSO	control.	(A)	PC3	cells	(*:	

p<0.05	compared	to	DMSO	control,	N=3).	(B)	DU145	cells	(N=3).	 	
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Figure	4.5	Effect	of	AICAR	on	cell	proliferation	of	wild	type	(WT)	and	AMPK	

α1-/-	AMPK	α2-/-	knock	out	(KO)	mouse	embryonic	fibroblasts	

Cells	were	seeded	in	96-well	plates	and	incubated	for	2	h	to	allow	attachment.	

The	cells	were	incubated	with	AICAR	at	various	concentrations	overnight.	BrdU	

(10%	v/v)	was	added	to	each	well	and	incubated	for	a	further	8	h.	The	plate	was	

then	fixed	and	developed	according	to	the	protocol	and	BrdU	incorporation	

assessed	by	absorbance	at	595	nm.	Cell	proliferation	was	normalised	to	DMSO	

control	(*:	p<0.05,	**:	p<0.01,	experiments	were	repeated	independently	for	at	

least	three	times).	 	
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Figure	4.6	Effect	of	A769662	on	cell	proliferation	of	wild	type	(WT)	and	

AMPK	α1-/-	AMPK	α2-/-	knock	out	(KO)	mouse	embryonic	fibroblasts	

Cells	were	seeded	in	96-well	plates	and	incubated	for	2	h	to	allow	attachment.	

The	cells	were	incubated	with	A769662	at	various	concentrations	overnight.	

BrdU	(10%	v/v)	was	added	to	each	well	and	incubated	for	a	further	8	h.	The	plate	

was	then	fixed	and	developed	according	to	the	protocol	and	BrdU	incorporation	

assessed	by	absorbance	at	595	nm.	Cell	proliferation	was	normalised	to	DMSO	

control	(*:	p<0.05,	**:	p<0.01,	experiments	were	repeated	independently	for	at	

least	three	times).	 	
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4.2.3	Effect	of	AMPK	activators	on	prostate	cancer	cell	migration	
	

4.2.3.1	Effect	of	AMPK	activators	on	scratch	wound	healing		

PC	cell	migration	was	first	assessed	by	an	in	vitro	wound	healing	assay.	

Incubation	with	AICAR	and	A769662	for	22	h	inhibited	healing	of	the	scratch	

wound	in	PC3	cells	(Figure	4.7	and	Movie	4.1	to	4.4).	Yet	this	effect	by	AICAR	was	

less	marked	in	DU145	cells,	and	there	is	no	obvious	inhibition	by	A769662	

(Figure	4.8	and	Movie	4.5	to	4.8).	

	

4.2.3.2	Cell	tracking	

More	information	in	cell	motility	was	obtained	by	tracking	cells	on	the	edge	of	the	

scratch	wound	and	analysing	them	for	accumulative	distance	travelled	(µm),	

Euclidean	distance	travelled	(µm)	and	mean	velocity	(µm/min).	The	results	

showed	a	trend	of	decreased	motility	after	incubation	with	either	AICAR	or	

A769662	in	PC3	(Figure	4.9	and	4.10)	and	DU145	cells	(Figure	4.11	and	4.12).	 	
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Figure	4.7	Scratch	wound	healing	assay	of	PC3	cells	22	h	after	incubation	

with	AMPK	activators	

Cells	were	seeded	in	a	6-well	plate	with	1%	(v/v)	FBS	for	72	h	until	fully	

confluent.	The	cells	were	then	incubated	with	serum-free	medium	for	2	h	before	

being	scratched	and	incubated	with	1	mM	AICAR	or	100	µM	A769662	for	a	

further	22	h.	Three	fields	were	analysed	for	each	experimental	condition.	Scale	

bar	represents	100	µm.	(A)	Representative	images	for	experiment	in	presence	or	

absence	of	AICAR	with	vehicle	control.	(B)	Numerical	analysis	for	AICAR.	(C)	

Representative	images	for	experiment	in	presence	of	absence	of	A769662	with	

DMSO	control.	(D)	Numerical	analysis	for	experiment	in	presence	or	absence	of	

A769662	(N=2).	 	
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Figure	4.8	Scratch	wound	healing	assay	of	DU145	cells	22	h	after	incubation	

with	AMPK	activators	

Cells	were	seeded	in	a	6-well	plate	with	1%	(v/v)	FBS	for	72	h	until	fully	

confluent.	The	cells	were	then	incubated	with	serum-free	medium	for	2	h	before	

being	scratched	and	incubated	with	1	mM	AICAR	or	100	µM	A769662	for	a	

further	22	h.	Three	fields	were	analysed	for	each	experimental	condition.	Scale	

bar	represents	100	µm.	(A)	Representative	images	for	experiment	in	presence	or	

absence	of	AICAR	with	vehicle	control.	(B)	Numerical	analysis	for	AICAR	(N=2).	

(C)	Representative	images	for	experiment	in	presence	of	absence	of	A769662	

with	DMSO	control.	(D)	Numerical	analysis	for	experiment	in	presence	or	

absence	of	A769662	(N=2).	 	
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Figure	4.9	Effect	of	AICAR	on	PC3	cell	motility	

Cells	were	seeded	in	a	6-well	plate	with	1%	(v/v)	FBS	for	72	h	until	fully	

confluent.	The	cells	were	then	incubated	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	for	a	further	22	h.	Eight	cells	were	tracked	for	each	

experimental	condition.	(A)	Spider	plot.	(B)	Accumulated	distance	analysis	(N=1).	

(C)	Euclidean	distance	analysis	(N=1).	(D)	Velocity	analysis	(N=1).	 	
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Figure	4.10	Effect	of	A769662	on	PC3	cell	motility	

Cells	were	seeded	in	a	6-well	plate	with	1%	(v/v)	FBS	for	72	h	until	fully	

confluent.	The	cells	were	then	incubated	for	2	h	in	serum-free	medium	before	

incubation	with	100	µM	A769662	for	a	further	22	h.	Eight	cells	were	tracked	for	

each	experimental	condition.	(A)	Spider	plot.	(B)	Accumulated	distance	analysis	

(N=1).	(C)	Euclidean	distance	analysis	(N=1).	(D)	Velocity	analysis	(N=1).	 	
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Figure	4.11	Effect	of	AICAR	on	DU145	cell	motility	

Cells	were	seeded	in	a	6-well	plate	with	1%	(v/v)	FBS	for	72	h	until	fully	

confluent.	The	cells	were	then	incubated	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	for	a	further	22	h.	Eight	cells	were	tracked	for	each	

experimental	condition.	(A)	Spider	plot.	(B)	Accumulated	distance	analysis	(N=1).	

(C)	Euclidean	distance	analysis	(N=1).	(D)	Velocity	analysis	(N=1).	 	
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Figure	4.12	Effect	of	A769662	on	DU145	cell	motility	

Cells	were	seeded	in	a	6-well	plate	with	1%	(v/v)	FBS	for	72	h	until	fully	

confluent.	The	cells	were	then	incubated	for	2	h	in	serum-free	medium	before	

incubation	with	100	µM	A769662	for	a	further	22	h.	Eight	cells	were	tracked	for	

each	experimental	condition.	(A)	Spider	plot.	(B)	Accumulated	distance	analysis	

(N=1).	(C)	Euclidean	distance	analysis	(N=1).	(D)	Velocity	analysis	(N=1).	 	



Zichu	Yang,	PhD	(2016)	

	 126	

4.2.3.3	Effect	of	AMPK	activators	on	prostate	cancer	cell	line	transwell	

migration	

Transwell	migration	assays	were	performed	to	further	examine	the	effect	of	

AICAR	or	A769662	on	chemotaxis	in	PC3	cells.	Interestingly,	PC3	cell	migration	

was	reduced	modestly	by	AICAR	whereas	A769662	significantly	reduced	cell	

migration	(Figure	4.13).	In	DU145	cells,	however,	AICAR	significantly	reduced	

cell	migration	whereas	A769662	had	no	effect	(Figure	4.14).	To	examine	the	

AMPK-dependence	of	this	effect,	PC3	cells	were	infected	with	Ad.AMPK-DN	or	

Ad.GFP.	Infection	with	adenoviruses	attenuated	migration,	yet	A769662	still	

markedly	reduced	migration	in	PC3	cells.	Interestingly,	the	anti-migration	effect	

induced	by	AICAR	was	no	longer	statistically	significant	in	Ad.AMPK-DN	infected	

PC3	cells	(Figure	4.15).	Further	experiments	using	isogenic	PC3	and	PC3M	cells	

demonstrated	that	AICAR	decreases	cell	migration	in	a	concentration-dependent	

manner.	Unlike	the	viability	experiments	shown	in	Chapter	4.2.1	(Figure	4.3),	

AICAR	had	less	effect	on	PC3	cell	migration	compared	to	the	more	aggressive	

PC3M	cells.	Interestingly,	PRKAA1	siRNA	could	increase	cell	migration	in	PC3	cells	

(Figure	4.16).	 	
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Figure	4.13	Effect	of	AMPK	activators	on	PC3	cell	chemotaxis	

PC3	cells	were	incubated	for	24	h	in	serum-free	medium	prior	to	being	seeded	in	

8	µm	pore	size	transwell	inserts	in	serum-free	medium.	AICAR	(1	mM)	and	

A769662	(100	µM)	were	added	in	both	the	transwell	inserts	and	24-well	

chambers	and	incubated	for	21	h.	The	inserts	were	then	fixed	with	methanol	and	

stained	with	Haemotaxylin.	Four	fields	were	analysed	for	each	replicate.	Scale	bar	

represents	100	µm.	(A)	Representative	images.	(B)	Quantification	of	migrated	

cells	(**:	p<0.01,	N=6).	 	
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Figure	4.14	Effect	of	AMPK	activators	on	DU145	cell	chemotaxis	

DU145	cells	were	incubated	for	24	h	in	serum-free	medium	prior	to	being	seeded	

in	8	µm	pore	size	transwell	inserts	in	serum-free	medium.	AICAR	(1	mM)	and	

A769662	(100	µM)	were	added	in	both	the	transwell	inserts	and	24-well	

chamber	and	incubated	for	21	h.	The	inserts	were	then	fixed	with	methanol	and	

stained	with	Haemotaxylin.	Four	fields	were	analysed	for	each	replicate.	Scale	bar	

represents	100	µm.	(A)	Representative	images.	(B)	Quantification	of	migrated	

cells	(**:	p<0.01,	N=6).	 	
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Figure	4.15	The	effect	of	infection	with	Ad.AMPK-DN	on	inhibition	of	

migration	by	AICAR	and	A769662	in	PC3	cells	

PC3	cells	were	infected	with	Ad.AMPK-DN	or	Ad.GFP	at	200	IFU/cell	and	

incubated	for	24	h	in	full	medium	prior	to	being	seeded	in	8	µm	pore	size	

transwell	inserts	in	serum-free	medium.	AICAR	(1	mM)	and	A769662	(100	µM)	

were	added	in	both	transwell	inserts	and	the	underlying	chambers	and	incubated	

for	21	h.	The	inserts	were	then	fixed	with	methanol	and	the	underside	stained	

with	Haemotaxylin.	Four	fields	were	analysed	for	each	replicate.	Scale	bar	

represents	100	µm.	(A)	Representative	images,	(B)	Migrated	cells	normalised	to	

vehicle	control	of	uninfected	cells	(*:	p<0.05,	**:	p<0.01,	N=3).	(C)	Migrated	cells	

with	in-group	normalisation	to	DMSO	control	(*:	p<0.05,	**:	p<0.01,	N=3).	 	
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Figure	4.16	The	effect	of	AICAR	on	cell	migration	in	PC3	and	PC3M	cells	

(A)	Transwell	assay	for	migration	in	the	presence	of	AICAR	(500	and	2000	μM).	

(B)	Transwell	assay	after	incubation	of	PRKAA1	siRNA	over	21	h,	scale	bar	

represents	100	µm.	Data	are	presented	as	mean	±	SEM	of	three	independent	

experiments.	#:	p≤0.005,	▲:	p≤0.01,	▼: p≤0.05	from	(A:	DMSO	control,	B:	NT	

siRNA).	These	experiments	were	performed	by	Dr	Yashmin	Choudhury	

(University	of	Glasgow). 

This	figure	is	reproduced	under	the	Creative	Commons	Attribution	License	using	

Figure	4C	and	4E	from	article	“AMP-activated	protein	kinase	(AMPK)	as	a	potential	

therapeutic	target	independent	of	PI3K/Akt	signaling	in	prostate	cancer”	by	

Choudhury	et	al,	Oncoscience	(2014);	1(6)	446-456.	 	
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4.2.4	The	effect	of	AMPK	activators	on	proliferation	and	apoptosis	

signalling	proteins	in	PC3	cells	
To	examine	whether	AICAR	or	A769662	influenced	particular	proliferation	

and/or	apoptosis	signalling	proteins,	PC3	cell	lysates	were	analysed	using	a	cell	

apoptosis	signalling	array,	which	is	a	pre-prepared	immunoblotting	panel	

containing	different	proteins	of	interest.	Bcl-2-associated	death	promoter	(BAD),	

a	pro-apoptotic	factor,	which	can	be	inhibited	by	phosphorylated	at	Ser136	by	

Akt,	is	used	as	normalisation	control,	due	to	its	robust	and	consistent	signal	in	

these	experiments.	Both	AICAR	and	A769662	caused	a	marked	reduction	in	

epidermal	growth	factor	(EGF)-stimulated	phospho-ERK1/2	and	phospho-Akt	

levels	(Ser473).	In	addition,	AICAR,	but	not	A769662	inhibited	basal	and	EGF-

stimulated	TAK-1	(Ser412)	phosphorylation.	(Figure	4.17)	This	phenomenon	is	

particularly	interesting	in	the	context	of	AMPK	activation,	as	TAK-1	has	been	

claimed	to	be	an	AMPK	upstream	kinases.	Note	–	Anti-phospho	ERK1/2	

antibodies	recognise	both	species	with	equal	affinity	as	the	epitope	is	completely	

conserved	between	ERK1	and	ERK2.	 	
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Figure	4.17	Apoptosis	signalling	array	in	PC3	cells	after	72	h	incubation	

with	AICAR	or	A769662	

PC3	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	

AICAR	(1	mM)	or	A769662	(100	µM)	for	72	h.	EGF	(10	ng/mL)	was	subsequently	

added	for	15	min	and	lysates	prepared.	Protein	lysates	were	analysed	using	a	

PathScan	Apoptosis	Assay	according	to	the	manufacturer’s	protocol.	(A)	

Representative	images	of	apoptosis	signalling	array.	(B)	Densitometric	analysis	

for	AICAR-stimulated	cell	lysates	compared	to	vehicle	(N=2).	(C)	Representative	

images	of	apoptosis	signalling	array.	(D)	Densitometric	analysis	for	A769662-

stimulated	cell	lysates	compared	to	DMSO	vehicle	(N=2).	 	
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4.2.5	Effect	of	ERK	and	Akt	inhibition	on	PC3	cell	viability	
Since	the	cell	apoptosis	signalling	assay	revealed	that	both	AICAR	and	A769662	

could	decrease	ERK1/2	and	Akt	phosphorylation	in	PC3	cells,	the	effect	of	

ERK1/2	and	Akt	inhibition	on	PC3	cell	viability	was	compared	with	the	inhibitory	

effects	of	AICAR	and	A769662	using	the	MEK1/2	inhibitor	PD184352	and	Akt	

inhibitor	Akti.	Both	PD184352	and	Akti	inhibited	PC3	cell	viability,	an	effect	that	

was	more	marked	when	PD184352	and	Akti	were	used	in	combination.	

Furthermore,	the	extent	of	inhibition	was	similar	to	that	observed	for	AICAR.	

A769662	markedly	reduced	cell	viability,	which	led	to	death	of	virtually	all	PC3	

cells,	such	that	lysates	prepared	contained	no	protein,	therefore	no	statistical	

analysis	was	performed.	(Figure	4.18)	Akt	phosphorylation	at	Ser473	and	Thr308	

was	inhibited	by	Akti,	but	not	by	PD184352.	ERK1/2	phosphorylation	could	not	

be	detected	in	these	unstimulated	cells.	Neither	PD184352	nor	Akti	had	any	effect	

on	ACC	or	AMPK	phosphorylation	(Figure	4.18).	 	
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Figure	4.18	Viability	assay	of	PC3	cells	72	h	after	incubation	with	AMPK	

activators,	PD184352	and	Akti	

Cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	in	the	

presence	or	absence	of	the	following	compounds	for	72	h:	AICAR	(1	mM),	

A769662	(100	µM),	PD184352	(3	µM),	Akti	(1	µM).	(A)	WST-1	(10%	(v/v))	was	

added	to	each	well	and	normalised	absorbance	was	measured	after	120	min.	Cell	

viability	was	normalised	to	DMSO	control	(**:	p<0.01,	N=3).	(B)	Protein	lysates	

were	prepared,	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	with	the	

antibodies	indicated	(N=1).	GAPDH	was	used	as	loading	control.	 	
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4.3	Discussion	
The	key	findings	of	this	study	were	that	AICAR	and	A769662,	which	activate	

AMPK	by	distinct	mechanisms,	both	inhibited	proliferation	and	migration	in	

human	PC	cell	lines,	an	effect	associated	with	reduced	ERK1/2	and	Akt	

phosphorylation.	Firstly,	effect	of	AMPK	activation	using	AICAR	and	A769662	on	

PC	cell	viability	was	analysed	using	the	WST-1	method.	WST-1	is	a	long	

established	colourimetric	assay	based	on	assessing	the	metabolic	activity	of	the	

cells,	which	can	then	be	used	as	an	indication	of	cell	proliferation	(Slater	et	al.,	

1963,	Carmichael	et	al.,	1987,	Cook	and	Mitchell,	1989).	Incubation	with	either	

AICAR	or	A769662	for	72	h	decreased	cell	viability	in	PC3	and	DU145	cells.	The	

degree	of	reduction	is	similar	in	PC3	cells	for	either	AICAR	or	A769662,	whereas	

AICAR	seems	to	be	more	effective	in	DU145	cells.	To	examine	whether	the	

reduction	in	proliferation	was	due	to	AMPK	activation,	AMPK	DN	adenoviruses	

Ad.AMPK-DN	were	used	to	repeat	the	WST-1	experiments.	Incubation	with	

AICAR	or	A769962	for	72	h	was	still	able	to	reduce	cell	viability	in	both	PC3	and	

DU145	cells,	and	there	was	no	obvious	difference	between	Ad.AMPK-DN	infected	

cells	and	Ad.GFP	infected	cells.	These	results	indicate	that	the	effect	of	reduced	

proliferation	after	incubation	with	AMPK	activators	may	be	AMPK	independent.	

However,	it	can	be	argued	that	there	may	have	been	insufficient	AMPK	activity	

inhibition	in	those	experiments.	Therefore,	WT	and	AMPK	α1-/-	AMPK	α2-/-	KO	

MEFs	were	used	to	carry	out	proliferation	experiments	using	AICAR	and	

A769662	by	assessing	BrdU	incorporation,	which	is	an	accurate	analysis	of	

proliferation	by	measuring	DNA	synthesis	(Plickert	and	Kroiher,	1988).	Since	

there	may	be	a	different	metabolic	profile	between	WT	and	AMPK	α1-/-	AMPK	α2-

/-	KO	MEFs,	it	is	also	better	to	measure	proliferation	using	the	BrdU	method	

instead	of	WST-1,	as	differences	in	metabolic	status	would	not	affect	the	results.	

Incubation	with	AICAR	led	to	a	concentration-dependent	reduction	in	cell	

proliferation	in	both	WT	and	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs,	with	more	reduced	

proliferation	in	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs.	These	results	suggest	that	AICAR	

induced	reduction	in	proliferation	is	not	due	to	AMPK	activation.	Incubation	with	

A769662	however,	reduced	proliferation	in	WT	MEFs	at	a	concentration	of	30	µM,	

and	the	inhibition	of	proliferation	was	significantly	less	in	AMPK	α1-/-	AMPK	α2-/-	
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KO	MEFs,	suggesting	that	the	effect	of	A769662	may	be	(at	least	partially)	

through	AMPK	activation.	It	is	worth	noting	that	higher	concentrations	of	

A769662	at	100	µM	lead	to	cell	death,	so	the	great	reduction	in	proliferation	at	

that	concentration	is	difficult	to	interpret.	

	

Secondly,	the	effect	of	AMPK	activation	on	PC	cell	migration	was	carried	out	using	

scratch	wound	assays	(Valster	et	al.,	2005,	Liang	et	al.,	2007),	which	provide	

useful	information	regarding	cell	mobility.	In	PC3	cells,	both	AICAR	and	

A7696662	have	a	tendency	for	reduced	cell	mobility.	In	DU145	cells	however,	

this	tendency	is	less	obvious	when	compared	to	PC3	cells.	This	might	be	due	to	

the	relatively	low	basal	cell	mobility	in	DU145	Cells.	Cell	tracking	analyses	

indicate	that	AICAR	and	A769662	can	reduce	accumulated	distance,	Euclidean	

distance	and	velocity	in	PC3	and	DU145	cells,	although	the	significance	of	the	

results	could	not	be	assessed	due	to	the	small	sample	size.	Using	the	transwell	

method	in	PC3	cells,	both	AICAR	and	A769662	decreased	cell	migration,	however,	

the	huge	reduction	in	A769662	might	be	due	to	cell	death.	In	DU145	cells,	only	

AICAR	can	decrease	cell	migration	as	assessed	using	the	transwell	assay,	but	not	

A769662.	The	AMPK-dependence	of	this	effect	of	the	AMPK	activators	is	unclear	

as	the	inhibitory	effect	of	AICAR	loses	significance	in	PC3	cells	infected	with	

Ad.AMPK-DN,	indicating	that	AMPK	activation	might	partly	contribute	to	cell	

migration.	

	

Either	AICAR	or	A769662	incubation	was	associated	with	decreased	EGF-

stimulated	phospho-Akt	Ser473	and	p-ERK1/2	(Thr202/Tyr204).	AICAR	could	

also	decrease	TAK-1	(Ser412)	phosphorylation,	although	A769662	had	no	effect.	

Incubation	of	PC3	cells	with	the	ERK	inhibitor	PD184352	and	Akt	inhibitor	Akti	

alone	or	in	combination	inhibited	PC3	cell	proliferation	and	combined	incubation	

of	PD184352	and	Akti	produced	a	similar	extent	of	inhibition	to	AICAR	in	cell	

viability.	

	

Since	the	start	of	this	project,	several	studies	have	also	shown	that	AMPK	

activation	could	inhibit	cell	proliferation	in	PC	cell	lines.	Metformin	has	been	

reported	to	decrease	PC3,	DU145	and	LNCaP	cell	viability	as	assessed	by	cell	
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counting	(Tsutsumi	et	al.,	2015).	Furthermore,	a	recent	study	reported	that	

plectranthoic	acid,	an	AMPK	activator,	can	decrease	PC3	and	DU145	cell	

proliferation	as	determined	by	MTT	assay	(Akhtar	et	al.,	2016).	Another	group	

also	demonstrated	that	both	AICAR	and	MT	63-78,	a	molecule	which	directly	

activates	AMPK,	inhibit	cell	proliferation	measured	by	cell	counting	in	PC3,	

LNCaP	and	other	PC	cell	lines	(Zadra	et	al.,	2014).	Before	the	start	of	this	project,	

there	was	no	evidence	showing	the	effect	of	AMPK	activators	on	PC	cell	motility,	

although	others	had	reported	that	overexpression	of	CaMKK2	or	adiponectin,	

which	was	associated	with	increased	AMPK	phosphorylation,	led	to	enhanced	cell	

migration	(Tang	and	Lu,	2009,	Frigo	et	al.,	2011).	In	contrast,	the	data	presented	

in	this	chapter	indicates	that	AMPK	activators	decrease	migration	and	

inactivation	of	AMPK	by	PRKAA1	siRNA	increased	cell	migration.	These	data	

support	a	similar	previous	finding	in	C4-2	cells	(Zhou	et	al.,	2009).	Also,	a	recent	

study	has	reported	that	metformin	can	decrease	cell	viability	but	not	mobility	in	

PC3,	DU145	and	LNCaP	cells	(Tsutsumi	et	al.,	2015).	It	was	demonstrated	in	the	

above	experiments	that	A769662	had	marked	effects	on	cell	viability	and	

migration	comparing	to	AICAR.	Although	these	effects	might	be	explained	by	the	

off-target	A769662	toxicity	(Moreno	et	al.,	2008),	interestingly,	in	DU145	cells,	

theses	effects	were	far	less	sensitive	comparing	with	PC3	cells.	Giving	the	fact	

that	DU145	cells	lack	LKB1,	one	of	AMPK	upstream	kinases,	it	is	even	more	

interesting	as	the	effects	of	A769662	should	not	be	affected	by	LKB1	status.	

	

In	conclusion,	this	chapter	studied	the	functional	effects	of	two	AMPK	activators	

AICAR	and	A769662,	on	PC	cell	including	proliferation	and	migration.	The	results	

suggest	that	both	AICAR	and	A769662	have	potential	anti-tumourigenic	

properties	by	suppressing	cell	proliferation	and	migration.	The	anti-proliferative	

and	anti-migratory	effects	of	AICAR	and	A769662	may	be	AMPK-independent,	

although	compound	C	and	siRNA	targeted	against	AMPK	α1	do	partially	reverse	

the	effects	of	A769662	and	AICAR	on	proliferation	in	PC3	cells	and	A769662	in	

MEFs.	Moreover,	using	an	apoptosis	array,	AMPK	activators	suppressed	ERK1/2	

and	Akt	signalling	and	the	effects	of	ERK1/2	inhibition	and	Akt	inhibition	

mimicked	the	effects	of	AICAR,	suggesting	the	potential	anti-tumourigenic	actions	

of	AMPK	activators	may	be	mediated	by	the	MAPK	and	PI3K/Akt	pathways.	 	
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Chapter	5.	The	effects	of	AMPK	activation	on	

epidermal	growth	factor	(EGF)-stimulated	

mitogen-activated	protein	kinase	(MAPK)	

signalling	pathways	in	human	prostate	cancer	cell	

lines	 	
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5.1	Introduction	
	

5.1.1	Brief	overview	of	MAPK	pathway	
MAPK	pathways	are	serine/threonine	protein	kinases	that	regulate	many	cell	

functions	and	respond	to	multiple	signals	including	growth	factors	and	

extracellular	stress	(Pearson	et	al.,	2001,	Turjanski	et	al.,	2007).	The	signalling	

cascade	is	a	three-level	module	system.	Upon	activation,	the	signalling	pathway	

activates	an	MAPKKK,	which	phosphorylates	and	activates	an	MAPKK,	which	then	

phosphorylates	and	activates	an	MAPK	(Pearson	et	al.,	2001,	Dhillon	et	al.,	2007).	

	

5.1.2	Grouping	and	function	
At	least	11	members	of	the	MAPK	superfamily	have	been	observed	in	humans,	

which	can	be	characterised	into	seven	groups	as	follows	(Schaeffer	and	Weber,	

1999,	Pearson	et	al.,	2001,	Klinger	and	Meloche,	2012,	Morrison,	2012,	Arthur	

and	Ley,	2013,	Yang	et	al.,	2013):	

	

1)	ERK1/2	

2)	JNK	(JNK1,	JNK2,	JNK3)	

3)	p38	(p38α,	p38β,	p38γ,	p38δ)	

4)	ERK3/4	

5)	ERK5	

6)	Nemo	like	kinase	

7)	ERK7	

	

Individual	MAPKs	have	distinct	physiological	functions	(Seger	and	Krebs,	1995).	

For	instance,	ERK1/2,	the	best-characterised	pathway,	regulates	a	wide	range	of	

functions	including	cell	proliferation,	differentiation,	apoptosis,	migration	and	

cell	cycle	control	(Seger	and	Krebs,	1995,	Dhillon	et	al.,	2007).	JNK	and	p38	

pathways,	in	the	other	hand,	are	often	activated	by	cytokines	and	cellular	stresses	

(Weston	and	Davis,	2002,	Dhillon	et	al.,	2007),	but	are	similarly	involved	in	cell	

proliferation,	differentiation	and	apoptosis	(Dhillon	et	al.,	2007).	
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5.1.3	Abnormal	MAPK	signalling	in	prostate	carcinogenesis	
Abnormal	MAPK	signalling	pathways	have	been	found	to	have	a	significant	

contribution	in	tumourigenesis	as	well	as	disease	progression	(Dhillon	et	al.,	

2007).	Evidence	has	shown	that	expression	and	activation	of	the	MAPKs	

including	ERK1/2,	JNK	and	p38	can	be	detected	in	prostate	cancer	(PC)	tissue	

(Uzgare	et	al.,	2003).	Studies	also	suggest	that	p38	activation	in	androgen-

independent	AR	activity	may	contribute	to	an	aggressive	androgen-independent	

phenotype	in	PC	(Khandrika	et	al.,	2009).	The	role	of	JNK	in	PC,	on	the	other	hand,	

is	poorly	understood,	and	JNK	has	been	suggested	to	promote	or	suppress	

oncogenesis	in	different	settings	(Manning	and	Davis,	2003).	ERK5,	one	of	the	

four	identified	ERK	pathways	in	mammals,	is	a	unique	pathway	in	terms	of	the	

distinct	molecular	mass	of	ERK5,	its	activity	and	role	(Dhillon	et	al.,	2007,	

Turjanski	et	al.,	2007,	Yang	et	al.,	2010).	ERK5	contributes	to	carcinogenesis	by	

promoting	proliferation,	migration,	invasion	and	angiogenesis	(Lochhead	et	al.,	

2012).	In	PC,	this	is	due	to	the	promotion	of	cellular	motility	and	invasion,	rather	

than	increased	proliferation	(Ramsay	et	al.,	2011).	In	addition,	ERK5	mediated	

neo-angiogenesis	is	also	required	for	carcinogenesis	in	vivo	(Hayashi	et	al.,	2005).	

	

5.1.4	Therapeutic	potential	of	MAPK	inhibition	
The	first	MEK1/2	inhibitor,	PD98059,	was	discovered	in	1995	(Dudley	et	al.,	

1995),	yet	it	was	not	approved	for	clinical	use	(Fremin	and	Meloche,	2010).	

Fifteen	years	later,	eleven	MEK1/2	inhibitors	targeting	the	ERK1/2	pathways	had	

been	tested	clinically	or	were	being	tested	in	clinical	trials	(Fremin	and	Meloche,	

2010).	Recent	studies	have	also	shown	that	MEK	inhibitors	have	merit	in	the	

treatment	of	aggressive	PC	in	vivo	(Ahmad	et	al.,	2011).	In	addition	to	anti-

MEK1/2	agents,	other	MAPK	inhibitors	targeting	p38,	JNK	or	RAF	have	also	been	

developed	as	therapies	in	malignancy	as	well	as	in	cardiovascular	and	

inflammatory	diseases	(Roberts	and	Der,	2007).	Combination	of	inhibitors	of	

other	MAPK	pathways	together	with	MEK1/2	inhibitors	has	been	reported	to	be	

more	effective	than	each	one	alone	in	different	types	of	cancer	(Meng	et	al.,	2010,	

Naderi	et	al.,	2011,	Tanizaki	et	al.,	2012,	Zhao	et	al.,	2012).	Inhibition	of	ERK1/2	

and	p38	pathways,	for	instance,	either	alone	or	together,	could	provide	inhibition	
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of	human	PC	invasion	and	metastasis	(Chen	et	al.,	2004).	Paradoxically,	Gan	et	al	

suggested	that	pharmacological	inhibition	of	the	ERK	pathway	could	enhance	

EGF-induced	EGFR	activation	(Gan	et	al.,	2010).	Researchers	have	shown	that	

hypoxia-reoxygenation	can	lead	to	enhanced	survival	and	invasiveness	in	LNCaP	

cells,	and	the	hypoxia-reoxygenation	is	associated	with	increased	AR	activity	

independent	of	androgens	(Khandrika	et	al.,	2009).	Inhibition	of	p38	could	

eliminate	this	hypoxia-reoxygenation	induced	AR	activity	and	its	associated	

increased	survival	and	invasiveness	(Khandrika	et	al.,	2009).	In	contrast,	only	a	

few	JNK	inhibitors	are	being	considered	as	a	treatment	of	cancer	(Manning	and	

Davis,	2003,	Roberts	and	Der,	2007).	Down-regulation	of	ERK5	has	also	been	

shown	to	have	beneficial	effects	for	both	hepatocellular	carcinoma	and	PC	in	vitro	

and	in	vivo	(Zen	et	al.,	2009,	Ramsay	et	al.,	2011).	Thus,	ERK5	is	a	potential	

therapeutic	target	for	PC.	Indeed,	inhibition	of	this	pathway	by	XMD8-92	(a	

specific	ERK5	inhibitor)	can	reduce	tumour	cell	proliferation	in	both	A549	and	

HeLa,	which	in	turn	inhibits	tumour	growth	(Yang	et	al.,	2010).	

	

5.1.5	EGF	as	a	stimulus	of	MAPK	pathway	
Growth	factors	are	a	group	of	polypeptides	and	proteins	playing	an	important	

part	in	many	aspects	of	physiology	(Barrett	et	al.,	2016).	Biologically,	EGF	exerts	

its	function	by	binding	to	the	EGF	receptor	(EGFR)	(Herbst,	2004).	It	has	been	

recognised	that	EGFR	abnormality	is	closely	associated	with	cancer	(Lynch	et	al.,	

2004,	Normanno	et	al.,	2006).	This	has	led	to	research	concerning	the	potential	of	

manipulating	EGFR	as	a	therapeutic	target	in	cancer	(Mendelsohn	and	Baselga,	

2000).	It	has	been	established	for	more	than	two	decades	that	EGF	could	trigger	

the	MAPK	signalling	cascades	(Ahn	and	Krebs,	1990,	Anderson	et	al.,	1990,	Ahn	et	

al.,	1991,	Seger	and	Krebs,	1995).	As	shown	in	Chapter	4,	AICAR-	and	A769662-

mediated	inhibition	of	proliferation	and	migration	were	associated	with	reduced	

EGF-stimulated	ERK1/2	phosphorylation.	The	current	study	therefore	further	

examined	the	rapid	and	long-term	effects	of	AMPK	activators	on	MAPK	signalling	

pathways	in	PC	cell	lines.	 	
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5.2	Results	
	

5.2.1	Effects	of	AMPK	activation	on	EGF-stimulated	MAPK	

signalling	in	prostate	cancer	cells	
	

5.2.1.1	Rapid	and	long-term	effects	of	AMPK	activators	on	ERK1/2	

phosphorylation	in	prostate	cancer	cell	lines	

Experiments	in	Chapter	4	suggest	that	AMPK	activators	suppressed	EGF-

stimulated	ERK1/2	phosphorylation	in	PC	cell	lines	as	assessed	using	a	signalling	

immunoblotting	array.	The	effect	of	rapid	and	long-term	incubation	with	AMPK	

activators	on	ERK1/2	phosphorylation	was	therefore	assessed	by	

immunoblotting	in	various	PC	cell	lines.	EGF	stimulated	ERK1/2	phosphorylation	

in	all	three	cell	lines,	and	had	no	effect	on	AMPK	activity	as	assessed	by	phospho-

ACC	Ser79	levels	(Figures	5.1	to	5.4).	

	

In	PC3	cells,	long-term	(72	h)	incubation	(the	same	incubation	time	used	in	the	

proliferation	experiments	described	in	Chapter	4)	with	AICAR	slightly	decreased	

EGF-stimulated	ERK1	but	not	ERK2	phosphorylation,	although	this	did	not	reach	

statistical	significance.	A769662	on	the	other	hand,	significantly	decreased	EGF-

stimulated	ERK1	but	not	ERK2	phosphorylation	(Figure	5.1).	Short-term	

incubation	with	concentrations	and	durations	of	AICAR	(135	min)	or	A769662	

(75	min)	determined	to	achieve	maximal	AMPK	activation	(Chapter	3)	had	no	

effect	on	basal	or	EGF-stimulated	ERK1/2	phosphorylation	in	PC3	cells	(Figure	

5.2).	In	DU145	cells,	short-term	incubation	with	AICAR	(135	min)	or	A769662	

(45	min)	(optimal	time	and	concentration	for	AMPK	activation,	Chapter	3)	had	no	

effect	on	basal	or	EGF-stimulated	ERK1/2	phosphorylation.	However,	A769662	

robustly	stimulated	basal	ERK1/2	phosphorylation	(Figure	5.3),	without	further	

increasing	EGF-stimulated	ERK1/2	phosphorylation.	In	LNCaP	cells,	short-term	

incubation	with	AICAR	(75	min)	or	A769662	(75	min)	(optimal	time	and	

concentration	for	AMPK	activation,	Chapter	3)	had	no	effect	on	basal	or	EGF-

stimulated	ERK1/2	phosphorylation	(Figure	5.4).	To	determine	whether	the	
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effect	of	A769662	on	basal	ERK1/2	phosphorylation	in	DU145	cells	is	AMPK	

dependent,	experiments	were	carried	out	using	compound	C,	an	AMPK	inhibitor.	

Preincubation	of	DU145	cells	with	compound	C	had	no	effect	on	basal	or	

A769662-stimulated	ERK1/2	phosphorylation,	although	it	clearly	reduced	

A769662-stimulated	AMPK	activity,	as	assessed	by	phospho-ACC	Ser79	(Figure	

5.5).	 	
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Figure	5.1	Long-term	effect	of	AMPK	activators	on	EGF-stimulated	ERK1/2	

phosphorylation	in	PC3	cells	

PC3	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	1	

mM	AICAR	or	100	µM	A769662	for	72	h.	EGF	(20	ng/mL)	was	added	15	min	prior	

to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Representative	blots.	(B)	Densitometric	analysis	of	ERK1	

phosphorylation	level.	(C)	Densitometric	analysis	of	ERK2	phosphorylation	level	

(*:	p<0.05,	**:	p<0.01	relative	to	absence	of	EGF,	N=3).	 	
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Figure	5.2	Effect	of	short-term	incubation	with	AMPK	activators	on	ERK1/2	

phosphorylation	in	PC3	cells	

PC3	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	1	

mM	AICAR	(135	min)	or	100	µM	A769662	(75	min).	EGF	(20	ng/mL)	was	added	

15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Representative	blots.	(B)	Densitometric	analysis	of	ERK1	

phosphorylation	level.	(C)	Densitometric	analysis	of	ERK2	phosphorylation	level	

(*:	p<0.05,	**:	p<0.01	relative	to	absence	of	EGF,	N=3).	 	
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Figure	5.3	Effect	of	short-term	incubation	with	AMPK	activators	on	ERK1/2	

phosphorylation	in	DU145	cells	

DU145	cells	were	subjected	to	incubation	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	(135	min)	or	100	µM	A769662	(45	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	

was	used	as	loading	control.	(A)	Representative	blots.	(B)	Densitometric	analysis	

of	ERK1	phosphorylation	level.	(C)	Densitometric	analysis	of	ERK2	

phosphorylation	level	(**:	p<0.01,	N=3).	 	
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Figure	5.4	Effect	of	short-term	incubation	with	AMPK	activators	on	ERK1/2	

phosphorylation	in	LNCaP	cells	

LNCaP	cells	were	subjected	to	incubation	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	(75	min)	or	100	µM	A769662	(75	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	

was	used	as	loading	control.	(A)	Representative	blots.	(B)	Densitometric	analysis	

of	ERK1	phosphorylation	level.	(C)	Densitometric	analysis	of	ERK2	

phosphorylation	level	(**:	p<0.01	relative	to	absence	of	EGF,	N=3).	 	
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Figure	5.5	A769662-stimulated	ERK1/2	phosphorylation	in	DU145	cells	is	

unaffected	by	the	AMPK	inhibitor,	compound	C	

DU145	cells	were	subjected	to	incubation	for	2	h	in	serum-free	medium	before	

incubation	with	10	µM	compound	C	(60	min)	prior	to	100	µM	A769662	(30	min).	

Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	

with	the	antibodies	indicated.	GAPDH	was	used	as	loading	control.	(A)	

Representative	blots.	(B)	Densitometric	analysis	of	ACC	phosphorylation	(*:	

p<0.05,	N=3).	(C)	Densitometric	analysis	of	ERK1	and	ERK2	phosphorylation	(*:	

p<0.05	ANOVA,	N=3).	 	
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5.2.1.2	Effect	of	AMPK	activators	on	JNK	phosphorylation	in	prostate	cancer	

cell	lines	

For	all	three	PC	cell	lines	used,	EGF	did	not	stimulate	significant	phosphorylation	

of	JNK.	In	DU145,	there	is	a	tendency	toward	increased	JNK	phosphorylation	after	

AICAR	incubation	(Figure	5.6).	Apart	from	that,	neither	AICAR	nor	A769662	had	

any	effect	on	JNK	phosphorylation	in	the	presence	or	absence	of	EGF	(Figure	5.6).	 	
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Figure	5.6	Effect	of	short-term	incubation	with	AMPK	activators	on	JNK	

phosphorylation	in	prostate	cancer	cell	lines	

(A)	PC3	cells	(B)	DU145	cells	or	(C)	LNCaP	cells	were	incubated	for	2	h	in	serum-

free	medium	before	incubation	with	1	mM	AICAR	(135	min	for	PC3	and	DU145	

cells,	75	min	for	LNCaP	cells)	or	100	µM	A769662	(75	min	for	PC3	and	LNCaP	

cells,	45	min	for	DU145	cells).	EGF	(20	ng/mL)	was	added	15	min	prior	to	lysis.	

Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	

with	the	antibodies	indicated.	GAPDH	was	used	as	loading	control.	Experiments	

were	repeated	at	least	three	times	with	representative	blots	shown.	 	
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5.2.1.3	Effect	of	AMPK	activators	on	p38	phosphorylation	in	prostate	cancer	

cell	lines	

EGF	stimulated	p38	phosphorylation	in	all	three	cell	lines.	However,	it	only	

reached	significance	in	DU145	and	LNCaP	cells	(Figures	5.7,	5.8	and	5.9).	In	PC3	

and	DU145	cells,	AICAR	causes	a	modest,	but	not	statistically	significant	increase	

in	basal	and	EGF-stimulated	p38	phosphorylation	(Figures	5.7	and	5.8).	In	DU145	

cells,	A769662	also	increased	basal	phosphorylation	of	p38,	yet	this	did	not	reach	

significance.	In	addition,	A769662	modestly,	though	statistically	insignificant,	

inhibited	EGF-stimulated	p38	phosphorylation	in	DU145	(Figure	5.8).	In	PC3	and	

LNCaP	cells,	neither	AICAR	nor	A769662	had	any	effect	on	EGF-stimulated	p38	

phosphorylation	(Figures	5.7	and	5.9).	 	
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Figure	5.7	Effect	of	short-term	incubation	with	AMPK	activators	on	p38	

phosphorylation	in	PC3	cells	

PC3	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	1	

mM	AICAR	(135	min)	or	100	µM	A769662	(75	min).	EGF	(20	ng/mL)	was	added	

15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Representative	blots.	(B)	Densitometric	analysis	of	p38	

phosphorylation	level	(N=3).	 	
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Figure	5.8	Effect	of	short-term	incubation	with	AMPK	activators	on	p38	

phosphorylation	in	DU145	cells	

DU145	cells	were	subjected	to	incubation	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	(135	min)	or	100	µM	A769662	(45	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	

was	used	as	loading	control.	(A)	Representative	blots.	(B)	Densitometric	analysis	

of	p38	phosphorylation	level	(**:	p<0.01,	N=3	for	AICAR,	N=6	for	A769662).	 	
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Figure	5.9	Effect	of	short-term	incubation	with	AMPK	activators	on	p38	

phosphorylation	in	LNCaP	cells	

LNCaP	cells	were	subjected	to	incubation	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	(75	min)	or	100	µM	A769662	(75	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	

was	used	as	loading	control.	(A)	Representative	blots.	(B)	Densitometric	analysis	

of	p38	phosphorylation	level	(**:	p<0.01,	N=3).	 	
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5.2.1.4	Effect	of	AMPK	activators	on	ERK5	and	MEK5	phosphorylation	in	

prostate	cancer	cell	lines	

In	all	three	PC	cell	lines,	EGF	stimulated	phosphorylation	of	ERK5	(Figures	5.10-

5.12).	In	PC3	(Figure	5.10)	and	DU145	cells	(Figure	5.11),	incubation	with	AICAR	

significantly	decreased	EGF-stimulated	ERK5	phosphorylation,	whereas	AICAR	

had	no	effect	on	EGF-stimulated	ERK5	phosphorylation	in	LNCaP	cells	(Figure	

5.12).	In	PC3	cells,	incubation	with	A769662	had	no	effect	on	EGF-stimulated	

ERK5	phosphorylation	(Figure	5.10),	yet	A769662	significantly	reduced	EGF-

stimulated	ERK5	phosphorylation	in	both	DU145	and	LNCaP	cells	(Figures	5.11	

and	5.12).	Moreover,	it	was	observed	that	AICAR	could	cause	a	band-shift	in	

immunoreactive	ERK5	in	PC3	and	DU145	cells	(Figures	5.10	and	5.11).	This	

AICAR-stimulated	band-shift	was	not	inhibited	by	compound	C	under	conditions	

where	AMPK	activity	was	inhibited	in	both	PC3	and	DU145	cells	(Figure	5.13).	

	

In	addition,	the	phosphorylation	of	MEK5,	the	upstream	kinase	of	ERK5	was	also	

assessed	in	PC3	and	DU145	cells,	but	there	was	no	obvious	effect	on	phospho-

MEK5	by	EGF,	AICAR	or	A769662	(Figures	5.10	and	5.11).	The	anti-MEK5	

antibody	also	recognised	multiple	species	in	both	PC3	and	DU145	cells	(Figures	

5.10	and	5.11).	 	



Zichu	Yang,	PhD	(2016)	

	 157	

	

	
Figure	5.10	Effect	of	short-term	incubation	with	AMPK	activators	on	ERK5	

and	MEK5	phosphorylation	in	PC3	cells	

PC3	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	1	

mM	AICAR	(135	min)	or	100	µM	A769662	(75	min).	EGF	(20	ng/mL)	was	added	

15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Representative	blots.	(B)	Densitometric	analysis	of	ERK5	

phosphorylation	level	(*:	p<0.05,	N=3).	 	
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Figure	5.11	Effect	of	short-term	incubation	with	AMPK	activators	on	ERK5	

and	MEK5	phosphorylation	in	DU145	cells	

DU145	cells	were	subjected	to	incubation	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	(135	min)	or	100	µM	A769662	(45	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	

was	used	as	loading	control.	(A)	Representative	blots.	(B)	Densitometric	analysis	

of	ERK5	phosphorylation	level	(*:	p<0.05,	**:	p<0.01,	N=3).	 	
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Figure	5.12	Effect	of	short-term	incubation	with	AMPK	activators	on	ERK5	

phosphorylation	in	LNCaP	cells	

LNCaP	cells	were	subjected	to	incubation	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	(75	min)	or	100	µM	A769662	(75	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	

was	used	as	loading	control.	(A)	Representative	blots.	(B)	Densitometric	analysis	

of	ERK5	phosphorylation	level	(*:	p<0.05,	**:	p<0.01,	N=3).	 	
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Figure	5.13	Effect	of	compound	C	on	AICAR-mediated	ERK5	band-shift	in	

PC3	and	DU145	cells	

(A)	PC3	cells	or	(B)	DU145	cells	were	incubated	for	2	h	in	serum-free	medium	

before	incubation	with	10	µM	compound	C	30	min	prior	to	stimulation	with	1	

mM	AICAR	(120	min).	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	

to	immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	 	
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5.2.2	Effect	of	AMPK	activators	on	ERK5	phosphorylation	in	PC3	

cells	overexpressing	ERK5	and	MEK5	
	

5.2.2.1	Role	of	AMPK	on	EGF-stimulated	ERK5	phosphorylation	in	PC3	cells	

overexpressing	ERK5	

As	the	levels	of	EGF-stimulated	ERK5	phosphorylation	were	relatively	low	in	PC	

cell	lines,	the	effect	of	AICAR	and	A769662	on	EGF-stimulated	ERK5	

phosphorylation	was	assessed	in	PC3	cells	stably	expressing	ERK5	(PC3-ERK5-

18R-Flag).	Stimulation	with	AMPK	activators	had	similar	effects	on	EGF-

stimulated	phospho-ERK5	to	PC3	cells	(Figure	5.14,	compare	with	Figure	5.10),	

yet	the	extent	of	ERK5	phosphorylation	was	still	very	weak	even	in	this	cell	line	

(Figure	5.14).	 	
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Figure	5.14	Effect	of	short-term	incubation	with	AMPK	activators	on	ERK5	

phosphorylation	in	PC3	cells	over-expressing	ERK5	

PC3-ERK5-18R-Flag	cells	were	incubated	for	2	h	in	serum-free	medium	before	

incubation	with	1	mM	AICAR	(135	min)	or	100	µM	A769662	(75	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	Lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	

Experiments	were	repeated	for	at	least	three	times	with	the	representative	blots	

shown.	GAPDH	was	used	as	loading	control.	(A)	Representative	blots.	(B)	

Densitometric	analysis	of	ERK5	phosphorylation	level	(*:	p<0.05,	**:	p<0.01,	N=3).	 	
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5.2.2.2	Assessment	of	transient	transfection	with	constitutively	active	MEK5	

in	PC3	cells	overexpressing	ERK5	

To	increase	the	extent	of	ERK5	phosphorylation,	PC3	cells	overexpressing	ERK5	

(clones	PC3-ERK5-17P-Flag	or	PC3-ERK5-18R-Flag	cells	(McCracken	et	al.,	2008,	

Ramsay	et	al.,	2011))	or	expressing	empty	vector	were	transiently	transfected	

with	plasmids	expressing	HA-tagged	constitutively	active	MEK5,	either	MEK5D	

(MSCU-MEK5D)	or	MEK5DD	(pCMV-MEK5DD-HA)	as	described	in	section	2.2.6.	

PC3-ERK5-18R-Flag	cells,	but	not	the	related	clone	PC3-ERK5-17P-Flag	cells	had	

substantially	increased	ERK5	levels	than	PC3	cells	expressing	empty	vector	

(Figure	5.15).	Transient	transfection	with	MEK5DD,	but	not	MEK5D	increased	the	

levels	of	species	of	a	lower	molecular	mass	than	endogenous	MEK5	as	assessed	

with	both	anti-MEK5	and	anti-HA	antibodies	(Figure	5.15).	Transfection	of	PC3-

ERK5-18R-Flag	cells	with	MEK5DD-HA	stimulated	a	band	shift	in	ERK5	and	

increased	phospho-ERK5	immunoreactivity	(Figure	5.15).	These	results	indicate	

that	use	of	PC3-ERK5-18R	cells	along	with	the	MEK5DD	plasmid	provides	the	

maximal	detectable	ERK5	phosphorylation	with	which	to	assess	the	effect	of	

AMPK	activators	(Figure	5.15).	 	
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Figure	5.15	Transient	transfection	of	PC3	cells	with	mutant	active	MEK5	

PC3-EmptyVector	(PC3-EV),	PC3-ERK5-17P-Flag	(PC3-17P)	and	PC3-ERK5-18R-

Flag	(PC3-18R)	cells	were	harvested	by	trypsinisation	and	resuspended	in	

Nucleofection	Kit	V	solution.	Plasmids	(3	μg)	pCMV2-EmptyVector-Flag	(EF),	

MSCU-MEK5D	(D)	and	pCMV-MEK5DD-HA	(DD)	in	100	μL	of	Kit	V	solution	were	

added	to	cells	and	subjected	to	transfection	program	(T-013)	using	a	

Nucleofector	II	machine.	Transfected	cells	were	cultured	for	72	h	and	lysates	

prepared.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Comparison	of	efficiency	of	plasmids	in	PC3-18R	cells,	experiments	

were	repeated	at	least	three	times	with	representative	blots	shown.	(B)	

Comparison	of	transient	DD	plasmid	transfection	using	different	PC3-ERK5	cells,	

experiments	were	repeated	at	least	two	times	with	representative	blots	shown.	 	



Zichu	Yang,	PhD	(2016)	

	 165	

5.2.2.3	Effect	of	AMPK	activation	on	MEK5DD-induced	ERK5	

phosphorylation	PC3-ERK5	cells	

The	effects	of	AMPK	activators	on	either	EGF	or	MEK5DD-induced	ERK5	

phosphorylation	were	analysed	in	PC3-ERK5-18R	cells.	Transient	transfection	of	

cells	with	MEK5DD	caused	a	band	shift	with	a	higher	molecular	mass	form	of	

ERK5	appearing,	that	was	recognised	by	the	anti-phospho	ERK5	antibody	

(Figures	5.16	and	5.17).	Intriguingly,	EGF-stimulated	phospho-ERK5	

immunoreactivity	was	different	to	MEK5DD-induced	phospho-ERK5	

immunoreactivity	in	three	ways.	Firstly,	the	molecular	mass	of	EGF-stimulated	

phospho-ERK5	was	lower	than	the	mass	of	ERK5,	whereas	MEK5DD-induced	

phospho-ERK5	was	of	a	higher	molecular	mass	than	ERK5.	Secondly,	the	shape	of	

the	phospho-ERK5	species	is	broad	and	diffuse	in	EGF-stimulated	cells	compared	

to	a	thinner,	more	defined	species	in	the	MEK5DD-induced	cells.	Finally,	

preincubation	with	AICAR	decreased	EGF-stimulated	phospho-ERK5	

immunoreactivity,	whereas	neither	AICAR	nor	A769662	had	any	effect	on	

MEK5DD-induced	phospho-ERK5	immunoreactivity	(Figures	5.16	and	5.17).	 	
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Figure	5.16	Effects	of	AICAR	on	transient	MEK5	transfection	in	PC3-ERK5-

18R	cells	

PC3-ERK5-18R-Flag	cells	were	harvested	by	trypsinisation	and	resuspended	in	

Nucleofection	Kit	V	solution.	Plasmids	(3	μg)	pCMV2-EmptyVector-Flag	(EF)	and	

pCMV-MEK5DD-HA	(DD)	in	100	μL	of	Kit	V	were	added	to	cells	and	subjected	to	

transfection	program	(T-013)	using	a	Nucleofector	II	machine.	Transfected	cells	

were	cultured	for	72	h,	incubated	for	2	h	in	serum-free	medium	and	stimulated	

with	1	mM	AICAR	for	135	min.	EGF	(20	ng/mL)	was	added	15	min	prior	to	lysis.	

Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	immunoblotting	

with	the	antibodies	indicated.	GAPDH	was	used	as	loading	control.	Experiments	

were	repeated	for	at	least	three	times	with	the	representative	blots	shown.	 	
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Figure	5.17	Effects	of	A769662	on	transient	MEK5	transfection	in	PC3-

ERK5-18R	cells	

PC3-ERK5-18R-Flag	cells	were	harvested	by	trypsinisation	and	resuspended	in	

Nucleofection	Kit	V	solution.	Plasmids	(3	μg)	pCMV2-EmptyVector-Flag	(EF)	and	

pCMV-MEK5DD-HA	(DD)	in	100	μL	of	Kit	V	were	added	to	cells	and	subjected	to	

transfection	program	(T-013)	using	a	Nucleofector	II	machine.	Transfected	cells	

were	cultured	for	72	h,	incubated	for	2	h	in	serum-free	medium	and	stimulated	

with	100	µM	A769662	for	75	min.	EGF	(20	ng/mL)	was	added	15	min	prior	to	

lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	Experiments	were	repeated	for	at	least	three	times	with	the	

representative	blots	shown.	 	
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5.2.3	Analysis	of	AMPK	activation	on	EGF-stimulated	MAPK	

signalling	using	wild	type	and	AMPK α1-/-	AMPK	α2 -/-	mouse	

embryonic	fibroblasts	mouse	embryonic	fibroblasts	
	

5.2.3.1	EGF-stimulated	MAPK	phosphorylation	in	mouse	embryonic	

fibroblasts	

To	further	examine	the	role	of	AMPK	in	MAPK	signalling,	WT	and	AMPK	α1-/-	

AMPK	α2-/-	KO	mouse	embryonic	fibroblast	(MEFs)	were	utilised.	EGF	rapidly	

stimulated	phosphorylation	of	ERK1/2	and	ERK5	in	both	WT	and	AMPK	α1-/-	

AMPK	α2-/-	KO	MEFs	(Figures	5.18).	However,	phosphorylation	level	of	p38	and	

JNK	was	not	obviously	increased	(data	not	shown).	 	
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Figure	5.18	Stimulation	of	mitogen-activated	protein	kinase	

phosphorylation	using	EGF	in	wild	type	(WT)	and	AMPK	a1-/-	AMPK	a2-/-	

knock	out	(KO)	mouse	embryonic	fibroblasts	(MEFs)	

WT	(A)	and	AMPK-/-	KO	(B)	MEFs	were	incubated	for	2	h	in	serum-free	medium	

before	stimulation	with	20	ng/mL	EGF	for	the	indicated	times	and	lysates	

prepared.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	Blots	are	representative	of	a	single	experiment.	 	
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5.2.3.2	Effect	of	AMPK	activators	on	MAPK	signalling	in	mouse	embryonic	

fibroblasts	

The	effects	of	AICAR	and	A769662	on	EGF-stimulated	MAPK	phosphorylation	

were	assessed	in	both	WT	and	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs.	It	seems	that	

A769662	prevented,	at	least	partially,	EGF-stimulated	ERK5	phosphorylation	in	

the	WT	MEFs,	but	not	in	the	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs.	Neither	AICAR	nor	

A769962	had	any	effect	on	basal	or	EGF-stimulated	ERK1/2	in	either	WT	or	

AMPK	α1-/-	AMPK	α2-/-	KO	MEFs.	(Figures	5.19	and	5.20)	For	JNK	and	p38,	it	is	

difficult	to	draw	any	conclusion	regard	the	effect	of	AICAR	or	A769662	due	to	the	

low	phosphorylation	level	even	after	EGF	stimulation	(data	not	shown).	 	
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Figure	5.19	Effect	of	AMPK	activators	on	EGF-stimulated	mitogen-activated	

protein	kinase	phosphorylation	in	wild	type	(WT)	mouse	embryonic	

fibroblasts	(MEFs)	

WT	MEFs	were	incubated	for	2	h	in	serum-free	medium	before	stimulation	with	1	

mM	AICAR	(135	min)	or	100	µM	A769662	(75	min).	EGF	(20	ng/mL)	was	added	

15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Representative	blots	(N=3).	(B)	Densitometric	analysis	of	ERK5	

phosphorylation	level	(**:	p<0.01,	N=3).	 	
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Figure	5.20	Effect	of	AMPK	activators	on	EGF-stimulated	mitogen-activated	

protein	kinase	phosphorylation	in	AMPK	a1-/-	AMPK	a2-/-	knock	out	(KO)	

mouse	embryonic	fibroblasts	(MEFs)	

AMPK-/-	KO	MEFs	were	incubated	for	2	h	in	serum-free	medium	before	

stimulation	with	1mM	AICAR	(135	min)	or	100	µM	A769662	(75	min).	EGF	(20	

ng/mL)	was	added	15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-

PAGE	and	subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	

was	used	as	loading	control.	(A)	Representative	blots.	(B)	Densitometric	analysis	

of	ERK5	phosphorylation	level	(*:	p<0.05,	**:	p<0.01,	N=3).	 	
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5.3	Discussion	
ERK1/2	plays	an	important	role	in	terms	of	proliferation,	differentiation	and	

migration	in	carcinogenesis	(Dhillon	et	al.,	2007).	The	ERK1/2	pathway	is	usually	

altered	in	cancer	(Dhillon	et	al.,	2007),	including	activation	in	prostate	animal	

model	and	clinical	samples	(Uzgare	et	al.,	2003).	Currently,	little	is	known	about	

the	role	of	JNK	pathway	in	cancer	(Dhillon	et	al.,	2007).	It	was	reported	that	JNK	

was	inactivated	in	animal	models	and	clinical	PC	samples	(Uzgare	et	al.,	2003).	

However,	other	studies	indicate	JNK	can	be	phosphorylated	upon	EGF-

stimulation	in	SiHa	human	cervical	cancer	cells	(Liu	et	al.,	2001).	In	this	study,	

EGF	was	unable	to	stimulate	JNK	in	all	of	the	PC	cell	lines	used.	The	data	in	this	

chapter	demonstrate	that	long-term	incubation	with	A769662	decreased	ERK1	

phosphorylation	in	PC3	cells.	Short-term	incubation	with	AMPK	activators	had	no	

consistent	effect,	however,	on	EGF-stimulated	ERK1/2,	JNK	or	p38	

phosphorylation	in	PC3,	DU145	or	LNCaP	cells.	As	long-	but	not	short-term	

activation	of	AMPK	inhibited	ERK1/2	signalling,	this	may	reflect	that	AMPK	

activators	inhibit	ERK1/2	signalling	indirectly,	rather	than	rapid	phosphorylation	

of	a	component	of	the	MAPKKK-MEK1/2-ERK1/2	pathway.	Furthermore,	

A769662	stimulated	ERK1/2	phosphorylation	in	DU145	cells,	although	this	

seems	unlikely	to	be	AMPK-dependent	as	compound	C	cannot	eliminate	this	

effect.	This	result	indicates	that	A769662	might	have	an	off-target	effect	on	

ERK1/2	signalling	in	these	cells	in	addition	to	its	role	as	an	AMPK	activator.	It	

was	shown	in	one	study	recently	that	ERK1/2	could	inhibit	AMPK	activity	by	

phosphorylate	Ser485	in	vitro	(Lopez-Cotarelo	et	al.,	2015).	Therefore	further	

study	can	be	carried	out	to	determine	the	signalling	loop	between	ERK1/2	and	

AMPK.	

	

The	p38	pathway	is	important	in	cancer	apoptosis,	cell	cycle	control,	growth	and	

differentiation	(Dhillon	et	al.,	2007).	It	is	also	associated	with	proliferation	in	PC	

(Uzgare	et	al.,	2003).	The	current	study	demonstrates	that	EGF	has	variable	

effects	on	p38	phosphorylation	when	comparing	PC3,	DU145	and	LNCaP	cells,	yet	

neither	AICAR	nor	A769662	had	any	consistent	effect	on	p38	phosphorylation	in	

these	cell	lines.	AMPK	activators	have	been	demonstrated	to	inhibit	inflammatory	
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MAPK	activation	(Su	et	al.,	2007,	Jeong	et	al.,	2009,	Green	et	al.,	2011b),	such	that	

it	is	possible	that	AMPK	specifically	suppresses	MAPK	activation	in	response	to	

inflammatory	rather	than	growth	factor	stimuli.	It	is	also	possible	that	the	effect	

produced	here	by	AMPK	activators	on	EGF-stimulated	MAPK	phosphorylation	is	a	

stimulus	specific	observation.	

	

ERK5	has	been	proved	as	an	important	kinase	involved	in	PC,	especially	in	the	

invasive	phenotype	(McCracken	et	al.,	2008,	Ramsay	et	al.,	2011).	The	

MEK5/ERK5	signalling	cascade	is	a	potential	therapeutic	target	in	PC,	yet	the	

mechanism(s)	regulating	ERK5	are	not	fully	understood.	Previously,	it	has	been	

suggested	that	AMPK	might	be	an	upstream	kinase	of	ERK5	(Young	et	al.,	2009).	

The	results	presented	here	suggested	that	AICAR	decreased	EGF-stimulated	

ERK5	phosphorylation	in	PC3	and	DU145	but	not	in	LNCaP	cells.	A769662	on	the	

other	hand	decreased	EGF-stimulated	ERK5	phosphorylation	in	DU145	and	

LNCaP	cells,	but	not	in	PC3	cells.	These	data	suggest	that	AMPK	activation	may	

have	an	effect	on	ERK5	phosphorylation	that	might	be	cell-specific.	Taken	

together,	these	data	suggest	that	AMPK	influence	EGF-stimulated	ERK5	

phosphorylation.	Firstly,	the	AMPK	activators	used	in	the	above	experiments	are	

structurally	unrelated	and	act	through	different	mechanisms,	and	yet	a	generally	

inhibition	of	EGF-stimulated	ERK5	phosphorylation	is	observed	in	PC	cell	lines.	

Secondly,	the	fact	that	A769662	inhibited	EGF-stimulated	ERK5	phosphorylation	

in	the	WT	MEFs	but	not	the	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs	is	another	strong	

evidence	towards	an	AMPK	dependent	mechanism.	Another	interesting	finding	is	

a	band	shift	in	detected	by	the	anti-ERK5	antibody	after	incubation	with	AICAR	

alone	in	both	PC3	and	DU145	cells.	This	effect	is	likely	to	be	independent	of	

AMPK	activation,	since	the	effect	can	still	be	reproduced	after	preincubation	with	

compound	C.	The	upstream	kinase	of	ERK5,	MEK5	was	also	analysed	in	the	

current	study.	There	are	two	MEK5	isoforms	-	the	α	isoform	(50	kDa)	and	β	

isoform	(40	kDa)	(English	et	al.,	1995).	It	is	reported	that	MEK5α	expression	is	

higher	in	cancer	cell	lines	including	DU145,	and	that	MEK5α	is	the	isoform	

responsible	for	ERK5	activation	and	nuclear	translocation	(Cameron	et	al.,	2004).	

Therefore,	the	α	isoform	is	more	important	in	terms	of	MEK5/ERK5	signalling.	In	

the	current	study,	three	species	were	obtained	when	immunoblots	were	probed	
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with	the	anti-MEK5	antibody	in	DU145	cells,	but	only	two	species	were	observed	

in	PC3	cells	with	the	same	antibody.	All	of	the	species	observed	were	all	well	

above	50kDa,	suggesting	that	they	are	unlikely	to	represent	different	MEK5	

isoforms.	Similarly,	it	is	unlikely	that	the	multiple	species	can	be	explained	by	

ERK5	splicing	since	there	is	only	one	form	of	ERK5	in	humans	(Lee	et	al.,	1995),	

despite	alternative	splicing	occurring	in	the	mouse	(Yan	et	al.,	2001).	In	order	to	

explore	the	AICAR-mediated	band	shift	in	ERK5	and	inhibition	of	ERK5	

phosphorylation	by	AMPK	activators,	PC3-18R-ERK5-Flag	cells	were	used.	This	

cell	line	overexpresses	ERK5	and	has	been	utilised	as	a	tool	in	previous	studies	

(Ramsay	et	al.,	2011).	The	data	presented	here	demonstrates	that	the	use	of	

pCMV-MEK5DD-HA	plasmid	in	PC3-18R-ERK5-Flag	cells	led	to	robust	ERK5	

phosphorylation	confirmed	by	both	the	anti-phospho-ERK5	antibody	and	the	

band	shift	detected	by	the	anti-ERK5	antibody.	Interestingly,	however,	the	EGF-

stimulated	phospho-ERK5	immunoreactivity	is	distinct	from	that	elicited	by	

pCMV-MEK5DD-HA	in	terms	of	species	size	and	shape.	EGF-stimulated	phospho-

ERK5	has	a	smaller	mass	(below	115	kDa)	and	is	diffuse	in	shape.	The	MEK5DD-

stimulated	phospho-ERK5,	in	contrast,	is	of	greater	molecular	mass	(above	115	

kDa)	and	more	focused	in	shape.	In	addition,	AICAR	had	no	effect	on	the	ERK5	

phosphorylation	level	induced	by	MEK5DD.	These	data	might	suggest	that	EGF-

stimulated	ERK5	phosphorylation	through	a	non-cardinal	pathway	independent	

from	MEK5,	and	this	mechanism	is	inhibited	upon	AICAR	incubation.	And	this	

AICAR-induced	inhibitory	effect	is	likely	to	be	AMPK-dependent	giving	the	above-

mentioned	evidence.	Nonetheless,	similar	experiments	using	A769662	showed	

no	effect	on	MEK5DD	induced	ERK5	phosphorylation	level.	

	

Indeed,	most	of	the	data	presented	in	this	chapter	suggest	that	AMPK	activation	is	

associated	with	reduced	EGF-stimulated	ERK5	signalling.	But	AMPK	activation	

cannot	reduce	phosphorylation	of	ERK5	by	constitutively	active	MEK5.	This	

indicates	that	AMPK	does	reduce	ERK5	phosphorylation	in	response	to	EGF,	

possibly	by	stimulating	a	phosphatase	that	dephosphorylates	ERK5,	or	it	could	

act	at	MEK5	or	upstream	of	MEK5.	Since	a	constitutive	MEK5	is	used,	AMPK	may	

not	be	able	to	inhibit	at	this	level.	The	findings	on	ERK5	in	this	project	are	novel	

as	it	showed	for	the	first	time	that	AMPK	activators	could	decrease	ERK5	



Zichu	Yang,	PhD	(2016)	

	 176	

phosphorylation	in	PC	cells	possibly	in	an	AMPK-related	mechanism.	It	also	

suggests	that	these	effects	might	be	independent	from	the	classical	MEK5/ERK5	

signalling	cascade.	In	order	to	understand	the	full	mechanism,	further	

investigation	is	required	to	underpin	the	immunoreactivity	of	EGF-stimulated	

phospho-ERK5	first.	 	
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Chapter	6.	Effect	of	AMPK	activators	on	EGF-

stimulated	Akt	signalling	in	human	prostate	

cancer	cell	lines	
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6.1	Introduction	
	

6.1.1	Brief	overview	of	the	PI3K/Akt	signalling	pathway	
The	PI3K/Akt	signalling	cascade	is	responsible	for	many	crucial	cellular	functions	

such	as	growth,	proliferation,	differentiation,	survival	and	motility.	After	

activation	by	growth	factor	binding	to	RTKs	at	the	cell	membrane,	PI3K	catalyses	

PIP3	synthesis	from	phosphatidylinositol-4,5-bisphosphate.	PIP3	then	recruits	

the	serine/threonine	protein	kinase	Akt	to	the	plasma	membrane,	which	is	

subsequently	activated	through	phosphorylation	by	phosphoinositide-dependent	

kinase	1	and	mTORC2.	Active	Akt	can	subsequently	activate	mTOR	(Manning	et	

al.,	2002,	Luo	et	al.,	2003,	Hemmings	and	Restuccia,	2012).	PTEN,	a	tumour	

suppressor,	which	is	found	to	be	mutated	in	several	cancer	types	(Li	and	Sun,	

1997,	Li	et	al.,	1997,	Steck	et	al.,	1997),	has	been	recognised	as	a	negative	

regulator	of	the	PI3K/Akt	pathway	by	dephosphorylating	PIP3,	thereby	

terminating	signalling	(Sun	et	al.,	1999,	Mills	et	al.,	2001,	DeGraffenried	et	al.,	

2004).	

	

6.1.2	The	role	of	the	PI3K/Akt	pathway	in	cancer	
The	PI3K/Akt	signalling	pathway	is	considered	to	be	an	important	pathway	that	

is	hyperactivated	in	carcinogenesis	(Staal,	1987,	Brazil	and	Hemmings,	2001,	Yap	

et	al.,	2008,	Hemmings	and	Restuccia,	2012).	The	PI3K/Akt	pathway	is	also	more	

frequently	activated	than	any	other	pathway	in	tumours	of	cancer	patients	

(Hennessy	et	al.,	2005)	and	has	been	researched	thoroughly	as	a	potential	

therapeutic	target	for	human	cancer	(Vivanco	and	Sawyers,	2002,	Luo	et	al.,	2003,	

Hennessy	et	al.,	2005,	Yap	et	al.,	2008).	It	has	been	reported	that	genetic	

abnormalities	of	the	PI3K/Akt	pathway	could	contribute	to	tumourigenesis	in	

many	human	cancers	including	glioblastoma,	gliosarcoma	and	leukaemia	as	well	

as	prostate,	breast,	colorectal,	gastric,	lung,	hepatocellular,	thyroid,	endometrial,	

oesophageal,	nasopharyngeal,	cervical,	uterine,	ovarian	and	pancreatic	cancers	

(van	Dam	et	al.,	1994,	Bellacosa	et	al.,	1995,	Cheng	et	al.,	1996,	Dahia	et	al.,	1997,	

Li	et	al.,	1997,	Halachmi	et	al.,	1998,	Kohno	et	al.,	1998,	Nakatani	et	al.,	1999,	



Zichu	Yang,	PhD	(2016)	

	 179	

Harima	et	al.,	2001,	Philp	et	al.,	2001,	Actor	et	al.,	2002,	Byun	et	al.,	2003,	Knobbe	

and	Reifenberger,	2003,	Campbell	et	al.,	2004,	Mizoguchi	et	al.,	2004,	Samuels	et	

al.,	2004,	Oda	et	al.,	2005,	Wu	et	al.,	2005,	Bertelsen	et	al.,	2006,	Douglas	et	al.,	

2006,	Gallia	et	al.,	2006,	Livasy	et	al.,	2006,	Nakayama	et	al.,	2006,	Phillips	et	al.,	

2006,	Carpten	et	al.,	2007,	Hollestelle	et	al.,	2007,	Ollikainen	et	al.,	2007,	Willner	

et	al.,	2007).	The	most	common	genes	mutated	in	the	PI3K/Akt	pathway	are	

those	that	encode	subunits	of	PI3K	(PIK3CA,	PIK3R1),	PTEN,	Akt	isoforms	(AKT1,	

AKT2,	AKT3),	PDK1	and	RTKs	that	activate	PI3K	(ERBB2,	EGFR)	(Yap	et	al.,	2008,	

Courtney	et	al.,	2010).	Several	pharmacological	agents	developed	to	target	the	

PI3K/Akt	pathway	have	either	undergone	or	are	currently	evaluated	in	clinical	

trials	either	alone	or	in	combination,	including	PI3K	inhibitors,	Akt	inhibitors,	

mTOR	inhibitors	and	EGFR	inhibitors	(Yap	et	al.,	2008,	Engelman,	2009,	Courtney	

et	al.,	2010).	Furthermore,	different	models	and	therapeutic	strategies	being	

investigated	trying	to	develop	an	efficient	approach	in	targeting	the	PI3K/Akt	

signalling	pathway	(Wong	et	al.,	2010).	Evidence	has	suggested	that	combination	

of	PI3K/Akt	inhibition	with	inhibition	of	other	pathways	may	increase	efficiency	

and	with	acceptable	side	effect	profiles.	For	example	the	inhibition	of	both	PI3K	

and	MEK	is	more	efficient	than	the	inhibition	of	either	pathway	alone	in	cancer	

cell	models	(She	et	al.,	2005).	Importantly,	combining	PI3K	and	MEK	inhibitors	

has	been	reported	to	increase	therapeutic	efficiency,	and	yet	reduce	toxicity	both	

in	vitro	and	in	vivo	(Engelman	et	al.,	2008,	Wong	et	al.,	2010),	which	would	be	

explained	by	crosstalk	between	AMPK	and	the	PI3K/Akt	pathway.	AMPK	may	

interact	with	the	PI3K	pathway	in	a	complex	manner	(Memmott	and	Dennis,	

2009,	Green	et	al.,	2011a).	For	example,	it	is	established	that	AMPK	inhibits	

mTOR	(Sabatini,	2006).	In	one	study,	it	is	demonstrated	that	AMPK	could	

stimulate	PI3K/Akt	in	adipocytes	in	vitro	(Tao	et	al.,	2010).	The	mechanism	of	

mTOR	inhibition	is	phosphorylation	of	TSC2	and	raptor,	which	leads	to	mTORC1	

inhibition	(Inoki	et	al.,	2003,	Gwinn	et	al.,	2008).	On	the	other	hand,	Akt	may	also	

regulate	AMPK	activity	by	altering	cellular	ATP	level,	as	MEFs	lacking	Akt	

exhibited	increased	AMP:ATP	and	AMPK	activation	(Hahn-Windgassen	et	al.,	

2005).	Furthermore,	there	are	ample	evidence	that	suggest	phosphorylation	of	

AMPK	α1	at	the	inhibitory	Ser485	site	by	Akt,	leading	to	reduced	AMPK	activity	in	
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several	different	cell	types	in	vitro	(Kovacic	et	al.,	2003,	Horman	et	al.,	2006,	

Berggreen	et	al.,	2009,	Ning	et	al.,	2011,	Valentine	et	al.,	2014).	

	

6.1.3	Akt	signalling	in	prostate	cancer	
Gene	mutation	or	deletion	leading	to	activation	of	the	PI3K/Akt	pathway	is	the	

most	common	genetic	defect	in	PC	(Epstein	and	Lotan,	2015).	In	prostate	cancer	

(PC),	it	has	been	reported	that	inactivating	mutations	of	the	PTEN	gene	leads	to	

over-activation	of	Akt	(Li	et	al.,	1997,	Nakatani	et	al.,	1999).	The	role	of	AR	

mutation	has	long	been	recognised	as	an	important	driver	(progression	factor)	in	

PC,	especially	in	CRPC	(Scher	and	Sawyers,	2005).	The	PI3K/Akt	pathway	and	the	

AR	are	linked	in	a	reciprocal	way	such	that	when	one	is	inhibited,	the	other	is	

activated	so	that	tumour	viability	can	be	maintained	(Carver	et	al.,	2011).	

Therefore,	inhibition	of	both	pathways	at	the	same	time	might	be	necessary	in	

order	to	enhance	therapeutic	efficiency	(Carver	et	al.,	2011).	Using	animal	

models,	it	has	also	been	demonstrated	that	the	LKB1-AMPK	pathway	is	important	

in	suppressing	tumourigenesis	in	PTEN-deficient	tumours	(Huang	et	al.,	2008).	

	

6.1.4	EGF	as	a	stimulus	of	Akt	
EGF	has	been	recognised	as	one	of	the	key	activators	of	the	PI3K/Akt	pathway	

(Prigent	and	Gullick,	1994),	mediated	by	EGFR,	which	belongs	to	a	family	of	four	

different	ErbB	receptors	(Normanno	et	al.,	2006).	In	PC	cells,	EGFR	is	highly	

expressed	in	both	PC3	and	DU145	cells,	and	EGF	stimulates	phosphorylation	of	

Akt	in	these	cell	lines	(Gan	et	al.,	2010).	More	importantly,	it	was	also	

demonstrated	that	EGF-stimulated	Akt	phosphorylation	has	a	critical	role	in	PC	

migration	in	vitro	(Gan	et	al.,	2010).	As	shown	by	the	apoptosis	signalling	array	in	

Chapter	4,	AMPK	activators	suppressed	EGF-stimulated	phospho-Akt	Ser473	in	

PC3	cells	after	long-term	incubation	(72	h)	(Figure	4.17).	The	work	described	in	

this	study	extends	these	findings	to	further	assess	the	effects	of	AMPK	activators	

on	Akt	phosphorylation	in	PC	cell	lines.	 	
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6.2	Results	
	

6.2.1	Effect	of	AMPK	activation	on	EGF-stimulated	Akt	signalling	in	

PC3	cells	
In	agreement	with	the	apoptosis	signalling	array	data	presented	in	Chapter	4,	

EGF	rapidly	stimulated	phosphorylation	of	Akt	at	both	Thr308	and	Ser473	in	PC3	

cells	(Figure	6.1).	In	addition,	after	72	h	preincubation	with	either	AICAR	or	

A769662,	both	EGF-stimulated	phospho-Akt	Thr308	and	Ser473	phosphorylation	

was	decreased,	although	only	the	decrease	in	phospho-Akt	Ser473	level	achieved	

statistical	significance.	ACC	phosphorylation	in	response	to	both	AICAR	and	

A769662	was	maintained	for	72	h	(Figure	6.1).	

	

To	examine	whether	AMPK	activators	rapidly	inhibited	EGF-stimulated	Akt	

phosphorylation,	similar	experiments	were	conducted	in	which	cells	were	

preincubated	with	AMPK	activators	for	shorter	durations	(135	min).	

Interestingly,	incubation	with	AICAR	had	no	effect	on	EGF-stimulated	

phosphorylation	of	Akt	at	Thr308	or	Ser473,	despite	robustly	stimulating	ACC	

phosphorylation.	Preincubation	with	A769662	did,	however,	significantly	reduce	

EGF-stimulated	phosphorylation	of	Akt	Thr308	and	Ser473	(Figure	6.2).	The	

basal	Ser473	phosphorylation	level	in	response	to	AICAR	is	also	slightly	

increased	in	PC3	cells	(Figure	6.2).	Using	two	isogenic	cell	lines	PC3	and	PC3M	in	

parallel,	experiments	were	carried	out	to	determine	the	effect	of	AMPK	activators	

on	Akt	Ser473	phosphorylation.	Phosphorylation	of	Ser473	can	be	seen	after	

short-term	incubation	with	AICAR	in	both	PC3	and	PC3M	cells	(Figure	6.3).	

A769662,	on	the	other	hand,	decreased	basal	phospho-Akt	Ser473	levels	in	PC3	

cells	but	increased	basal	phospho-Akt	Ser473	level	in	PC3M	cells	at	a	

concentration	of	50	μM	(Figure	6.3).	Down-regulation	of	AMPK	using	PRKAA1	

siRNA	had	no	effect	on	phospho-Akt	Ser473	level	in	PC3	cells,	and	inhibition	of	

Akt	using	the	PI3K	inhibitor	LY294002	did	not	have	any	additive	impact	with	the	

anti-proliferative	effects	of	AICAR	in	PC3M	cells	(Figure	6.3).	Whether	these	

effects	produced	were	AMPK-dependent	remain	to	be	tested.	 	
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Figure	6.1	Effect	of	72h	incubation	with	AMPK	activators	on	EGF-stimulated	

Akt	phosphorylation	in	PC3	cells	

PC3	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	1	

mM	AICAR	or	100	µM	A769662	for	72	h.	EGF	(20	ng/mL)	was	added	15	min	prior	

to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Representative	blots.	(B)	Densitometric	analysis	of	phospho-Akt	

Thr308	level	(**:	p<0.01,	N=3).	(C)	Densitometric	analysis	of	phospho-Akt	Ser473	

level	(*:	p<0.05,	**:	p<0.01,	N=3).	 	
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Figure	6.2	Effects	of	short-term	incubation	with	AMPK	activators	on	EGF-

stimulated	Akt	phosphorylation	in	PC3	cells	

PC3	cells	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	1	

mM	AICAR	(135	min)	or	100	µM	A769662	(75	min).	EGF	(20	ng/mL)	was	added	

15	min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	subjected	to	

immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	loading	

control.	(A)	Representative	blots.	(B)	Densitometric	analysis	of	phospho-Akt	

Thr308	level	(**:	p<0.01,	N=3).	(C)	Densitometric	analysis	of	phospho-Akt	Ser473	

level	(**:	p<0.01,	N=3).	 	
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Figure	6.3	Analysis	of	the	effect	of	AMPK	activators	on	PI3K	pathways	in	

prostate	cancer	cells	

PC3	and	PC3M	cells	were	maintained	in	serum-free	medium	before	incubation	

with	(A)	AICAR	(500	and	2	mM)	for	2	h,	(B)	A769662	(50	and	100	µM)	for	1	h	or	

(C)	siRNA	targeting	the	PRKAA1	gene.	Protein	lysates	were	made	and	blots	were	

developed	with	the	appropriate	antibodies	as	indicated.	Values	under	blots	

represent	level	of	each	protein	level	normalised	to	GAPDH.	(D)	PC3M	cells	were	

treated	with	AICAR	and/or	LY294002	for	the	indicated	time	period	at	different	

concentration.	Viability	assay	was	conducted	using	the	WST-1	reagent,	data	

represented	as	mean	±	SD	relative	to	the	start	time	point.	These	experiments	

were	conducted	by	Dr	Yashmin	Choudhury	(University	of	Glasgow).	

This	figure	is	reproduced	under	the	Creative	Commons	Attribution	License	using	

Figure	1B,	1D,	2G	and	5A	from	article	“AMP-activated	protein	kinase	(AMPK)	as	a	

potential	therapeutic	target	independent	of	PI3K/Akt	signaling	in	prostate	cancer”	

by	Choudhury	et	al,	Oncoscience	(2014);	1(6)	446-456.	 	
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6.2.2	Analysis	of	the	role	of	AMPK	on	EGF-stimulated	Akt	signalling	

using	AMPKα1-/-	AMPKα2-/-	mouse	embryonic	fibroblasts	
To	assess	the	role	of	AMPK	in	AICAR-	and	A769662-	mediated	Akt	

phosphorylation,	adenoviruses	expressing	DN	mutant	AMPK	were	studied	in	PC	

cell	lines.	It	was	however	unable	to	demonstrate	any	significant	down-regulation	

of	AMPK	activity.	The	AMPK-dependence	of	the	inhibitory	actions	of	AICAR	and	

A769662	was	therefore	examined	using	WT	and	AMPK	α1-/-	AMPK	α2-/-	KO	

mouse	embryonic	fibroblasts	(MEFs).	As	expected,	AMPK	activity	is	abolished	in	

the	AMPK	α1-/-	AMPK	α2-/-	KO	MEFs	as	indicated	by	the	lack	of	its	substrate,	

phospho-ACC	Ser79.	In	MEFs,	EGF	stimulated	robust	Akt	phosphorylation	at	both	

Thr308	and	Ser473.	Unlike	in	PC3	cells,	neither	AICAR	nor	A769662	reduced	

EGF-stimulated	Akt	Thr308	or	Ser473	phosphorylation	in	WT	MEFs	or	AMPK	α1-

/-	AMPK	α2-/-	KO	MEFs.	Interestingly,	AICAR	has	shown	a	trend	in	increasing	Akt	

phosphorylation	at	both	Thr308	and	Ser473	in	WT	MEFs.	In	AMPK	α1-/-	AMPK	α2-

/-	KO	MEFs,	however,	AICAR	had	no	effect,	suggesting	this	potential	stimulatory	

effect	of	AICAR	in	MEFs	may	be	AMPK-dependent	(Figure	6.4).	 	
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Figure	6.4	Long-term	effects	of	AMPK	activators	on	EGF-stimulated	Akt	

phosphorylation	in	wild	type	(WT)	and	AMPKα1-/-	AMPKα2-/-	knock	out	

(KO)	mouse	embryonic	fibroblasts	(MEFs)	

MEFs	were	incubated	for	2	h	in	serum-free	medium	before	incubation	with	(A-C)	

1	mM	AICAR	or	(D-F)	100	µM	A769662	for	a	further	24	h.	EGF	(20	ng/mL)	was	

added	15min	prior	to	lysis.	Protein	lysates	were	resolved	by	SDS-PAGE	and	

subjected	to	immunoblotting	with	the	antibodies	indicated.	GAPDH	was	used	as	

loading	control.	(A,	D)	Representative	blots	are	shown.	(B,	E)	Densitometric	

analysis	of	phospho-Akt	Thr308	level	(*:	p<0.05,	**:	p<0.01,	N=3),	(C,	F)	

Densitometric	analysis	of	phospho-Akt	Ser473	level	(**:	p<0.01,	N=3).	 	
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6.3	Discussion	
In	both	early	and	late	stage	PC,	gene	mutations	or	deletions	leading	to	activation	

of	the	PI3K/Akt	pathway	is	the	most	common	genetic	defect	(Barbieri	et	al.,	2013,	

Epstein	and	Lotan,	2015).	The	deregulation	of	the	PI3K/Akt	signalling	pathway	is	

associated	with	more	advanced	disease	and	poor	prognosis	(Frank	and	Miranti,	

2013,	Stephenson	and	Klein,	2016).	

	

As	demonstrated	in	Chapter	4,	Figure	4.16,	long-term	AMPK	activation	decreased	

EGF-stimulated	phospho-Akt	Ser473	in	PC3	cells	when	assessed	on	an	apoptosis	

signalling	array.	When	investigating	these	long-term	effects	of	AMPK	activators	

further	by	standard	immunoblotting	in	this	chapter,	these	findings	were	

reinforced,	with	both	AICAR	and	A769662	reducing	EGF-stimulated	phospho-Akt	

Ser473,	yet	EGF-stimulated	phosphorylation	of	Akt	at	Thr308	was	not	

significantly	reduced.	Furthermore,	short-term	AMPK	activation	experiments	

showed	that	A769662	reduced	both	Akt	Ser473	and	Thr308	phosphorylation,	

whereas	AICAR	has	no	effect.	Activation	of	Akt	requires	phosphorylation	of	

Ser473	in	the	hydrophobic	motif	and	phosphorylation	of	Thr308	in	the	activation	

loop	(Alessi	et	al.,	1997,	Vanhaesebroeck	and	Alessi,	2000,	Sarbassov	et	al.,	2005).	

In	non	small	cell	lung	carcinoma	tissue,	it	has	previously	been	demonstrated	that	

Ser473	phosphorylation	does	not	always	correlate	with	Thr308	phosphorylation	

(Vincent	et	al.,	2011).	The	study	of	Vincent	and	co-workers	also	proposed	that	

phospho-Akt	Thr308	is	a	better	indicator	of	Akt	activity	than	phospho-Akt	

Ser473	(Vincent	et	al.,	2011).	It	is	possible	that	EGF-stimulated	phospho-Akt	

Ser473	can	be	reduced	by	AMPK	activation,	but	the	effect	of	AMPK	activation	on	

EGF-stimulated	phospho-Akt	Thr308	is	minimal.	The	two	phosphorylation	sites	

of	Akt	are	regulated	differently	as	previously	mentioned,	with	Ser473	being	

phosphorylated	by	mTORC2,	whereas	Thr308	is	phosphorylated	by	PDK1	(Toschi	

et	al.,	2009).	It	has	been	reported	that	AMPK	inhibits	mTORC1	by	

phosphorylating	TSC2	and	raptor	(Inoki	et	al.,	2003,	Gwinn	et	al.,	2008).	But	there	

is	no	evidence	so	far	to	suggest	that	AMPK	could	influence	mTORC2	in	any	way.	

Therefore,	it	would	be	interesting	to	see	whether	AMPK	activators	can	regulate	

mTORC2.	Also,	in	order	to	determine	if	Akt	activity	was	actually	altered,	the	
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phosphorylation	level	of	an	Akt	substrate,	such	as	glycogen	synthase	kinase	3	

(GSK3)	(Cross	et	al.,	1995)	could	be	studied.	

	

Previously,	Gan	and	colleagues	showed	that	inhibition	of	Akt	in	PC3	and	DU145	

cells	could	eliminate	EGF	driven	cell	migration	(Gan	et	al.,	2010).	Interestingly,	

using	PC3	and	PC3M	cell	lines	in	parallel,	the	anti-proliferative	effect	of	AMPK	

activation	is	independent	of	PI3K/Akt	pathway,	and	inhibition	of	the	PI3K/Akt	

pathway	using	LY294002	exerted	a	similar	effect	as	incubation	with	AICAR	alone	

in	terms	of	cell	viability	(Choudhury	et	al.,	2014).	This	indicates	that	the	effects	of	

AMPK	activators	on	cell	viability	are	unlikely	to	be	mediated	by	Akt	inhibition,	

although	whether	AMPK	activator-stimulated	Akt	inhibition	underlies	the	anti-

migratory	effect	of	AMPK	activators	was	not	tested	in	this	project.	

	

A	different	approach	was	used	to	examine	whether	the	observed	effects	of	AICAR	

and	A769662	are	AMPK-dependent.	Initially	experiments	with	adenoviruses	

expressing	a	DN	AMPK	α1	were	unsuccessful,	such	that	WT	and	AMPK	α1-/-	AMPK	

α2-/-	KO	MEFs	were	therefore	used	as	an	alternative	genetic	down-regulation	of	

AMPK.	Interestingly	AICAR	stimulated	rather	than	inhibited	phospho-Akt	Ser473	

and	phospho-Akt	Thr308	phosphorylation	in	WT	MEFs	but	not	in	AMPK	α1-/-	

AMPK	α2-/-	KO	MEFs.	This	may	suggest	that	this	effect	in	MEFs	is	AMPK-

dependent.	In	WT	MEFs,	24	h	incubation	with	AMPK	activators	had	no	effect	on	

EGF-stimulated	Akt	phosphorylation	at	either	Ser473	or	Thr308,	such	that	

whether	the	effects	of	AMPK	activators	on	EGF-stimulated	phospho-Akt	Ser473	

observed	in	PC3	cells	are	AMPK	dependent	or	not	remains	elusive.	This	may	

suggest	that	the	effect	of	AMPK	activators	(or	AMPK	activation)	on	EGF-

stimulated	Akt	phosphorylation	is	a	cell-type	specific	phenomenon.	More	

importantly,	as	MEF	cells	are	not	derived	from	tumours,	they	are	unlikely	to	have	

a	similar	molecular	profile	in	terms	of	the	PI3K/Akt	pathway	abnormalities	

usually	seen	in	malignant	cells.	If	this	is	true,	it	could	be	a	therapeutically	useful	

property	as	AMPK	activators	might	be	utilised	to	target	Akt	inhibition	in	

malignant	cells	only.	 	
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Chapter	7.	Final	discussion	
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7.1	Project	overview	and	summary	of	results	
This	project	as	a	whole	aimed	to	analyse	the	effect	of	AMPK	activators	on	

prostate	cancer	(PC)	cell	function,	and	to	determine	the	underlying	mechanism(s)	

of	their	effects.	The	principal	findings	of	this	study	were	AMPK	activators	could	

decrease	PC	cell	proliferation	and	migration.	And	these	effects	are	likely	to	be,	at	

least	partially,	AMPK-dependent.	The	mechanism	of	action	is	possibly	through	

the	inhibition	of	the	MAPK	and	PI3K/Akt	signalling	pathways.	

	

The	role	of	AMPK	in	terms	of	prostate	carcinogenesis	is	not	fully	understood.	Six	

cell	lines	including	two	AR-dependent	cell	lines	(CWR22,	LNCaP)	and	four	AR-

independent	cell	lines	(PC3,	PC3M,	DU145,	LNCaP-AI)	were	used	in	the	project	to	

provide	an	initial	comparison	of	the	basal	levels	and	phosphorylation	status	of	

AMPK	α	at	Thr172	and	Akt	at	Ser473.	In	addition,	the	protein	level	of	the	

upstream	phospho-AMPK	Thr172	kinases,	LKB1	and	CaMKK2,	were	also	

analysed,	as	were	the	levels	of	AMPK	subunit	isoforms	in	PC3,	DU145	and	LNCaP	

cells.	These	data	showed	that	there	were	differences	in	the	subunit	isoform	

protein	levels	in	the	different	PC	cell	lines.	

	

The	dynamics	of	AMPK	activation	in	vitro	were	established	and	optimised	in	

response	to	two	structurally-unrelated	AMPK	activators	that	stimulate	AMPK	by	

distinct	mechanisms.	As	demonstrated	in	Chapter	3,	both	AICAR	and	A769662	

can	activate	AMPK	in	PC3,	DU145	and	LNCaP	cells.	These	observations	are	in	

agreement	with	previous	research,	which	showed	that	AICAR	could	activate	

AMPK	in	PC3	and	LNCaP	cells	(Xiang	et	al.,	2004).	This	is	likely	through	the	well-

established	mechanism	by	which	AICAR	is	phosphorylated	to	the	AMP	analogue	

ZMP,	which	subsequently	allosterically	activates	AMPK	and	promotes	activating	

Thr172	phosphorylation	(Merrill	et	al.,	1997).	AICAR	also	stimulated	ACC	

phosphorylation,	which	is	used	as	an	assessor	of	AMPK	activity,	in	DU145	cells,	

which	lack	LKB1,	and	is	contrary	to	previous	findings	that	AICAR	is	unable	to	

activate	AMPK	in	cells	lacking	LKB1,	including	HeLa	cells	and	LKB1	KO	MEFs	

(Hawley	et	al.,	2003,	Shaw	et	al.,	2004,	Hurley	et	al.,	2005).	This	finding	however,	

supports	a	previous	report	in	which	AICAR	activated	AMPK	in	DU145	cells	



Zichu	Yang,	PhD	(2016)	

	 192	

independent	of	LKB1	(Yun	et	al.,	2005).	The	mechanism	was	proposed	to	involve	

other	AMPK	kinases	unidentified	at	the	time	(Altarejos	et	al.,	2005,	Yun	et	al.,	

2005),	although	a	recent	study	suggests	that	mixed-lineage	kinase	3	might	be	the	

upstream	kinase	involved	(Luo	et	al.,	2015).	Indeed,	allosteric	effect	can	also	play	

an	important	part	as	suggested	by	Gowans	and	co-workers	(Gowans	et	al.,	2013).	

Before	the	start	of	this	project,	the	effects	of	A769662	had	not	been	examined	in	

PC	cell	lines,	although	a	recent	study	has	reported	that	A769662	activates	AMPK	

in	PC3	and	LNCaP	cells	(Zadra	et	al.,	2014),	which	supports	the	findings	

presented	in	this	project.	

	

Clinical	samples	were	also	analysed	by	my	colleagues	during	this	study	to	

understand	the	association	of	AMPK	activity	with	PC	in	a	clinical	context	

(Choudhury	et	al.,	2014).	Interestingly,	the	Gleason	score	was	positively	

correlated	with	the	extent	of	phospho-AMPK	Thr172,	with	a	significant	increase	

in	AMPK	phosphorylation	in	samples	with	a	Gleason	score	>7	(Grade	IV	and	V)	

compared	to	samples	with	a	Gleason	score	<7	(Grade	I	to	III).	It	is	difficult	to	say	

whether	this	correlation	is	due	to	AMPK	activity	contributing	to	cancer	

progression	or	whether	the	increase	in	phosphorylation	is	a	consequence	of	

cancer	progression.	Others	have	reported	a	higher	prevalence	of	AMPK	activation	

(as	assessed	by	phospho-ACC	Ser79)	in	human	PC	tissue	compared	to	normal	

prostate	tissue,	although	this	was	not	related	to	the	Gleason	score	(Park	et	al.,	

2009).	The	same	group	also	suggested	that	inhibition	of	AMPK	decreased	PC	cell	

line	proliferation	(Park	et	al.,	2009).	However,	in	their	study,	siRNA	targeting	

PRKAA1	was	able	to	reduce	AMPK	levels,	it	was	unable	to	abolish	ACC	

phosphorylation,	which	is	similar	to	the	findings	presented	in	this	project.	

Furthermore,	Park	and	co-workers	used	compound	C	to	inhibit	AMPK	and	

demonstrate	AMPK-dependence,	yet	compound	C	has	many	off-target	effects	

which	inhibits	a	number	of	other	protein	kinases	with	greater	efficacy	than	it	

inhibits	AMPK	(Viollet	et	al.,	2010).	In	contrast,	in	animal	model	studies,	a	lack	of	

LKB1	(and	therefore	AMPK	activity)	was	found	to	increase	tumourigenesis,	

including	PC,	in	mice	lacking	PTEN,	whereas	treatment	of	mice	lacking	PTEN	with	

AMPK	activators	including	A769662	reduced	the	onset	of	tumourigenesis	in	the	

prostate	and	other	tissues	(Huang	et	al.,	2008).	Recent	studies	have	indicated	that	
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it	is	not	just	PC	that	is	associated	with	increased	AMPK	activity	or	

phosphorylation.	In	human	glioma,	AMPK	activation	is	also	associated	with	

higher	grade	lesions	(Liu	et	al.,	2014).	In	contrast,	other	tumours	including	

human	colon	adenocarcinoma	and	breast	cancer	have	been	reported	to	exhibit	an	

inverse	relationship	between	phospho-AMPK	Thr172	and	tumour	grade	and	

clinical	stage	(Baba	et	al.,	2010,	Migita	et	al.,	2013).	Taken	together,	it	is	clear	that	

AMPK	activity	varies	in	different	cancer	types	and	at	different	stages,	such	that	

there	is	no	universal	relationship	between	AMPK	activity	and	tumourigenesis.	

The	data	presented	in	this	project	are	the	first	evidence	showing	that	AMPK	

activity	correlates	with	the	Gleason	score	in	human	PC	and	further	histological	

studies	are	warranted	in	order	to	understand	this	observation.	

	

As	mentioned	before,	Park	and	co-workers	showed	compound	C	and	transfection	

with	siRNA	targeting	AMPK	decreases	proliferation	of	LNCaP	and	22Rv1	cells	as	

measured	by	cell	count	and	BrdU	assay	in	vitro	(Park	et	al.,	2009).	In	the	current	

study,	using	different	experimental	approaches	including	WST-1	and	BrdU	assays,	

it	is	evident	that	both	AICAR	and	A769662	exert	anti-proliferative	effects	in	PC3	

and	DU145	cells	and	these	effects	might	be	at	least	partially	AMPK-dependent.	In	

addition,	there	was	a	difference	in	the	extent	of	the	anti-proliferative	actions	of	

AMPK	activators	when	assessed	by	the	WST-1	and	BrdU	assays,	with	a	more	

marked	inhibition	by	AMPK	activators	observed	in	the	WST-1	assays.	This	

indicates	that	AMPK	activator-mediated	inhibition	of	cell	viability	when	assessed	

by	WST-1	includes	an	effect	in	addition	to	the	anti-proliferative	actions	of	AMPK	

activators.	This	may	reflect	altered	metabolism	by	AMPK	activators	leading	to	

inhibition	of	NAD(P)H	synthesis.	It	is	therefore	possible	that	the	previously	

published	results	using	the	WST-1	assay	or	similar	assays	are	in	fact	an	

observation	of	altered	metabolism	rather	than	dramatic	change	in	proliferation.	

In	other	studies,	AICAR	has	been	reported	to	inhibit	cell	proliferation	by	inducing	

cell	cycle	arrest	and	apoptosis	in	various	cancer	cell	types	including	PC	in	vitro	

and	in	vivo	(Xiang	et	al.,	2004,	Rattan	et	al.,	2005,	Guan	et	al.,	2007,	Sengupta	et	al.,	

2007,	Zhou	et	al.,	2009).	These	studies	reported	that	the	anti-proliferative	effect	

produced	by	AICAR	is	likely	to	be	AMPK-dependent	and	the	mechanism	includes	

inhibition	of	Akt,	MAPK,	p21,	p27	and	p53	signalling	pathways	(Xiang	et	al.,	2004,	
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Rattan	et	al.,	2005,	Guan	et	al.,	2007,	Sengupta	et	al.,	2007,	Zhou	et	al.,	2009).	In	

contrast,	the	anti-proliferative	effect	produced	by	AICAR	has	also	been	reported	

to	be	independent	of	AMPK	such	that	it	may	be	cancer	cell	type	specific	(Jose	et	al.,	

2011).	In	non-cancer	cells,	AICAR	has	also	been	demonstrated	to	decrease	cell	

proliferation	in	an	AMPK-dependent	manner,	which	involves	cell	cycle	arrest	and	

inhibition	of	the	MAPK	signalling	pathway	(Nagata	et	al.,	2004,	Igata	et	al.,	2005).	

Before	the	start	of	this	project,	the	effects	of	A769662	on	the	proliferation	of	PC	

cell	lines	had	not	been	tested,	although	an	in	vivo	study	had	reported	that	

A769662	delayed	tumour	onset	in	PTEN	deficient	mice	(Huang	et	al.,	2008).	In	

contrast,	a	recent	study	reported	that	A769962	has	no	effect	on	cell	proliferation	

in	glioma	cells	(Liu	et	al.,	2014).	In	MEFs,	A769662	led	to	a	significant	decrease	in	

proliferation	at	high	concentrations.	This	may	well	reflect	a	cytotoxic	effect	that	is	

independent	of	AMPK.	This	effect	may	be	cell	type	specific	to	MEFs	through	

inhibition	of	proteasome	as	has	been	previously	observed	(Moreno	et	al.,	2008).	

At	lower	concentrations	(30	µM)	however,	it	is	possible	that	A769662	exerted	its	

anti-proliferative	effect	in	an	AMPK-dependent	manner	as	shown	in	Chapter	4.	To	

conclude,	data	in	this	study	suggest	that	reduced	cell	proliferation	in	PC	by	AICAR	

is	not	AMPK	dependent	whereas	similar	effects	induced	by	A769662	is	likely	to	

be	AMPK-dependent.	

	

Different	approaches	were	used	in	the	current	study	to	assess	cell	migration,	

including	wound	healing,	cell	tracking	and	dual-chamber	transwell	chemotaxis	

assays.	Prior	to	this	work,	Frigo	and	co-workers	reported	that	AICAR	increased	

migration	of	LNCaP	cells	measured	by	the	transwell	assay	(Frigo	et	al.,	2011).	In	

another	study,	it	was	also	reported	that	AICAR	increased	migration	of	PC3	cells	

using	a	similar	technique	(Tang	and	Lu,	2009).	However,	the	mechanism	of	the	

increased	migration	was	not	further	investigated	in	either	of	those	studies.	AICAR	

has	been	reported	to	decrease	both	chemokinesis	and	chemotaxis	in	human	

monoblast-type	(U973)	cells	(Kanellis	et	al.,	2006).	In	melanoma	cells,	AICAR	also	

decreases	cell	migration	in	an	AMPK-dependent	manner	(Kim	et	al.,	2012).	In	the	

current	project,	AICAR	markedly	inhibited	cell	chemokinesis	and	chemotaxis	in	

both	PC3	and	DU145	cells,	in	agreement	with	the	studies	of	Kim	and	co-workers	

in	melanoma	cells	(Kim	et	al.,	2012).	The	current	study	is	the	first	to	investigate	
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the	effect	of	A769662	on	PC	cell	migration.	A769962	had	similar	inhibitory	

effects	to	AICAR	in	PC3	but	not	in	DU145	cells.	It	was	also	found	that	AICAR	is	

more	effective	in	PC3	cells	compared	to	PC3M	cells	in	terms	of	anti-migration.	

These	findings	suggest	that	AMPK	activation	may	not	underlie	the	anti-migratory	

effect	of	AICAR	in	DU145	cells,	as	these	were	not	recapitulated	by	the	alternative	

AMPK	activator,	A769662.	Taken	together,	cell	viability,	proliferation,	migration,	

motility	and	chemotaxis	can	be	suppressed	by	AMPK	activators,	particularly	

AICAR.	The	AMPK-dependence	of	these	effects	remains	elusive,	however.	Of	note,	

an	article	published	shortly	before	the	end	of	this	project	demonstrated	strong	in	

vitro	and	in	vivo	evidence	that	AMPK	activation	by	a	novel	direct	activator	MT	63-

78	inhibits	PC	growth	and	enhanced	the	growth	inhibitory	effect	of	AR	inhibitor	

in	CRPC	(Zadra	et	al.,	2014).	

	

The	mechanism(s)	by	which	AMPK	activators	suppress	proliferation,	viability	and	

migration	in	PC	cell	lines	has	not	been	defined,	yet	several	lines	of	evidence	

indicate	that	AMPK	activators	suppress	MAPK	signalling.	Briefly,	it	has	been	

reported	that	AMPK	can	inhibit	various	MAPK	signalling	pathways	such	as	

ERK1/2,	JNK	and	p38	in	several	different	non-cancerous	cells	(Jeong	et	al.,	2009,	

Qi	et	al.,	2009,	Dong	et	al.,	2010,	Green	et	al.,	2011b).	In	particular,	both	AICAR	

and	A769662	have	been	reported	to	be	able	to	decrease	ERK1/2	activity	in	vitro	

(Green	et	al.,	2011b,	Kim	et	al.,	2012).	Studies	also	suggest	that	JNK	might	be	an	

upstream	regulator	of	AMPK	in	PC	cells	(Jung	et	al.,	2008).	One	study	has	

suggested	that	AMPK	is	the	upstream	regulator	of	ERK5	(Young	et	al.,	2009).	Data	

in	the	current	study	show	that	short-term	incubation	with	AMPK	activators	has	

no	significant	effect	on	EGF-stimulated	ERK1/2,	p38	and	JNK	phosphorylation	in	

PC	cell	lines,	despite	AMPK	being	robustly	activated.	In	contrast,	long-term	

stimulation	of	PC3	cells	with	AMPK	activators	decreased	EGF-stimulated	ERK1/2	

phosphorylation.	

	

Intriguingly,	both	AICAR	and	A769662	decreased	EGF-stimulated	ERK5	

phosphorylation	in	PC3,	DU145	and	LNCaP	cells.	Furthermore,	the	

phosphorylation	of	ERK5	by	EGF	was	qualitatively	different	to	that	stimulated	by	

constitutive	MEK5	activity	and	phosphorylation	of	ERK5	by	constitutive	MEK5	
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was	not	inhibited	by	AMPK	activators.	This	indicates	that	AMPK	activation	is	

acting	at	or	above	the	level	of	MEK5	in	the	signalling	pathway.	Interestingly,	

Nagata	and	co-workers	suggested	that	AMPK	activation	inhibits	ERK1/2	at	a	level	

above	MEK1/2	(Nagata	et	al.,	2004).	As	cross	talk	between	ERK5	and	ERK1/2	

pathways	has	been	suggested	(Mody	et	al.,	2001,	Barros	and	Marshall,	2005,	

McCracken	et	al.,	2008),	it	is	also	possible	that	AMPK	activation	inhibits	EGF-

stimulated	ERK1/2	and	ERK5	phosphorylation	through	a	similar	mechanism.	As	

demonstrated	by	the	Leung	group,	ERK5	is	particularly	important	in	PC	in	terms	

of	promoting	carcinogenesis	(McCracken	et	al.,	2008,	Ramsay	et	al.,	2011).	The	

findings	in	this	project	may	therefore	contribute	to	a	targeted	approach	in	PC	

treatment.	In	addition	to	the	above	findings,	it	is	also	noticed	that	AICAR	and	

A769662	both	have	AMPK-independent	effects	on	MAPK	signalling	in	PC	cell	

lines,	with	AICAR	decreasing	ERK5	mobility	and	A769662	stimulating	ERK1/2.	In	

MEF	cells,	neither	AICAR	nor	A769662	had	any	effect	on	EGF-stimulated	MAPK	

phosphorylation.	This	may	suggest	that	AMPK	inhibits	MAPK	signalling	by	a	cell	

type	specific	mechanism.	

	

Studies	of	the	PI3K/Akt	signalling	pathway	in	PC	have	suggested	that	this	plays	a	

vital	role	in	cancer	progression,	and	suppressing	the	pathway	is	considered	a	

therapeutic	target	(Zhuang	et	al.,	2002,	Gao	et	al.,	2003).	Increased	

phosphorylation	of	Akt	at	Ser473	has	been	linked	to	poor	clinical	outcome	of	PC	

(Kreisberg	et	al.,	2004).	Also,	high	grade	PC	is	associated	with	high	Akt	

phosphorylation	(Malik	et	al.,	2002,	Shukla	et	al.,	2007).	Interestingly,	evidence	

has	suggested	that	PI3K/Akt	and	ERK1/2	signalling	pathways	might	be	able	to	

compensate	for	each	other	in	PC,	it	is	also	suggested	dual	inhibition	of	both	

pathways	can	be	more	effective	in	advanced	PC	(Malik	et	al.,	2002,	Kreisberg	et	al.,	

2004,	Kinkade	et	al.,	2008).	In	addition,	alterations	in	PTEN	activity	have	been	

observed	in	PC	cell	lines	including	PC3	and	LNCaP	(Li	et	al.,	1997,	Steck	et	al.,	

1997).	This	has	been	studied	in	the	context	of	cooperative	pathway	interaction	

between	the	PI3K/Akt	and	ERK1/2	in	the	Leung	lab	(Patel	et	al.,	2013).	Indeed,	

inhibition	of	the	PI3K/Akt/mTOR	pathway	remains	an	established	therapeutic	

approach	and	has	been	investigated	in	both	pre-clinical	and	clinical	settings	since	

late	20th	century	(Majumder	and	Sellers,	2005,	Sarker	et	al.,	2009).	During	the	
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current	study,	the	effect	of	AMPK	activation	on	PI3K/Akt	signalling	was	

investigated,	suggesting	that	the	effect	of	AMPK	on	cell	proliferation	is	

independent	of	the	PI3K/Akt	pathway	(Choudhury	et	al.,	2014).	Long-term	

stimulation	of	PC	cell	lines	with	AMPK	activators	inhibited	phospho-Akt	Ser473,	

whereas	phospho-Akt	Thr308	was	only	inhibited	by	A769662.	This	difference	

between	AMPK	activators	may	suggest	an	AMPK-independent	effect.	An	

interesting	observation	is	that	AICAR	increased	phospho-Akt	level	at	both	Ser473	

and	Thr308	in	MEFs,	which	is	likely	to	be	an	AMPK-dependent	effect	as	it	was	

absent	in	MEFs	lacking	AMPK.	It	is	possible	that	AICAR	is	unable	to	inhibit	the	

PI3K/Akt	signalling	pathway	in	PC	due	to	this	effect.	Previous	studies	also	

showed	that	AICAR	can	activate	Akt	at	Ser473	and	Thr308	in	an	AMPK-

dependent	manner	in	leukaemia	cells	(Leclerc	et	al.,	2010).	

	

Taken	together,	the	data	presented	in	this	study	suggest	that	AMPK	activation	has	

different	effects	on	MAPKs	and	PI3K/Akt	in	a	context	and	activator-dependent	

manner,	although	inhibition	of	ERK1/2,	ERK5	and	Akt	in	the	long-term	may	

underlie	the	effects	of	AMPK	activators	on	proliferation,	viability	and	migration	

(Figure	7.1).	Further	studies	are	required	to	identify	the	mechanisms	underlying	

these	effects.	Indeed,	AMPK	might	“switch”	its	function	in	a	specific	metabolic	

and/or	signalling	condition,	such	that	both	anti-	and	pro-	cancer	effects	can	be	

observed	even	in	the	same	tumour	type.	The	in	vitro	experiments	demonstrated	

an	overall	anti-tumourigenic	effect	upon	AMPK	activation	in	PC,	which	is	possibly,	

at	least	partially	through	the	dual	inhibitory	effects	on	both	MAPK	(mainly	the	

ERK5	pathway)	and	PI3K/Akt	signalling	pathways	(Figure	7.2).
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Figure	7.1	Potential	effects	of	AMPK	activation	on	cellular	function	in	vitro	

Upon	AMPK	activation,	both	MAPK	and	PI3K/Akt	signalling	pathways	may	be	

down-regulated,	which	in	turn	may	lead	to	altered	PC	cell	function	including	

decreased	chemotaxis,	migration,	motility,	proliferation	and	viability	in	vitro.	 	
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Figure	7.2	Potential	mechanisms	of	AMPK	with	the	ERK5	and	PI3K/Akt	

signalling	pathways	

AMPK	down-regulates	EGF-stimulated	ERK5	signalling	pathway	at	or	above	the	

level	of	MEK5.	It	also	down-regulates	the	PI3K/Akt	signalling	pathway	by	

inhibiting	EGF-stimulated	Akt	and	mTOR.	Arrow-headed	lines	denote	activation	

and	bar-headed	lines	denote	inhibition,	dotted	lines	denote	potential	effects.	

Different	colours	indicate	different	signalling	pathways.	 	
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7.2	Future	prospects	
	

7.2.1	How	do	AMPK	activators	influence	prostate	cancer	cell	

invasion	and	metastasis?	
Invasion	is	another	important	cell	function	in	PC	progression,	and	ERK5	plays	a	

vital	part	in	this	(Ramsay	et	al.,	2011).	Whether	AMPK	activation	inhibits	cell	

invasion	remains	to	be	tested.	Similar	experiments	should	be	carried	out	using	

Matrigel	(an	artificial	extracellular	environment),	an	approach	that	has	been	

optimised	in	PC	in	the	Leung	lab	(Ramsay	et	al.,	2011).	Furthermore,	the	IncuCyte	

(a	live	cell	analysis	system)	provides	real-time	high-throughput	analysis	of	

proliferation,	migration,	invasion	and/or	metastasis,	which	has	been	used	in	PC	

before	(Bjorkman	et	al.,	2012,	Gujral	et	al.,	2014,	Harma	et	al.,	2014).	The	

IncuCyte	system	can	also	be	used	in	a	three-dimensional	approach	that	mimics	

the	in	vivo	environment	and	the	effect	of	AMPK	activators	could	be	examined	in	

this	manner.	

	

7.2.2	Do	AMPK	activators	affect	mitosis/cytokinesis?	
Recently,	Vazquez-Martin	and	colleagues	have	reported	that	AMPK	could	be	

considered	as	a	tumour	suppressor	in	the	mitotic/cytokinetic	phase	of	the	cell	

cycle	in	an	energy	independent	manner	(Vazquez-Martin	et	al.,	2009a,	Vazquez-

Martin	et	al.,	2009b,	Vazquez-Martin	et	al.,	2011,	Vazquez-Martin	et	al.,	2012,	

Vazquez-Martin	et	al.,	2013).	Although	the	mechanism	of	this	is	poorly	

characterised,	Pinter	and	co-workers	suggest	that	specific	AMPK	subunits	play	an	

important	part	(Pinter	et	al.,	2012).	Preliminary	research	in	the	Salt	lab	also	

suggests	that	AMPK	activation	inhibit	cytokinesis	in	MEFs.	Therefore	there	is	a	

potential	to	explore	this	area	using	models	established	in	this	study,	examining	

the	numbers	of	binucleate	cells	(a	measure	of	cytokinesis	failure)	and	the	

localisation	of	AMPK	in	PC	cell	lines	during	the	cell	cycle.	

	



Zichu	Yang,	PhD	(2016)	

	 201	

7.2.3	What	genetic	effects	do	AMPK	activators	have	and	would	

AMPK	activators	have	any	additive	effect	with	other	current	anti-

cancer	drugs?	
The	advance	in	research	technology	has	created	a	new	era	in	cancer	research.	

Systematic	high-throughput	genotyping	provides	invaluable	information,	which	

can	guide	cancer	classification	and	therapeutic	intervention	(Thomas	et	al.,	

2007).	Using	a	siRNA	library	approach,	it	is	possible	to	identify	underlying	gene	

interactions	involved	in	cancer	progression	(Bjorkman	et	al.,	2012).	Similarly,	

experiments	can	be	designed	to	look	at	the	metabolic	profile	of	PC	cells	treated	

with	AICAR	or	A769662	by	using	the	high-throughput	siRNA	screening.	Further	

experiments	should	also	be	carried	out	to	study	whether	activation	of	AMPK	by	

AICAR	or	A769962	exert	any	synergetic	or	antagonistic	effect	with	clinically	

approved	anti-cancer	drugs	by	using	established	siRNA	libraries	(Shanks,	2014).	

	

7.2.4	What	is	the	ERK5	activity	in	prostate	cancer	and	how	do	

AMPK	activators	alter	this?	
Giving	the	evidence	that	AMPK	activation	can	decrease	EGF-stimulated	ERK5	

phosphorylation,	it	remains	unclear	what	the	underlying	mechanism	is.	In	order	

to	further	address	this,	it	is	important	first	to	determine	what	precisely	the	EGF-

stimulated	ERK5	activity	in	PC	is.	Analysis	of	ERK5	activity	has	proved	difficult	in	

this	project	as	EGF	and	constitutive	MEK5	stimulate	different	ERK5	species	as	

assessed	with	an	anti-phospho-ERK5	antibody.	Further	characterisation	of	ERK5	

phosphorylation	in	response	to	EGF	(and	the	effects	of	AMPK	activators)	may	be	

performed	using	the	Phos-tag	SDS-PAGE	system,	which	allows	greater	analysis	of	

phosphoproteins	(Kinoshita	et	al.,	2009,	Kinoshita	et	al.,	2012).	

Nithianandarajah-Jones	and	co-workers	have	optimised	this	method	for	the	

separation	of	phospho-ERK5	species	in	HeLa	and	human	endothelial	cells	

(Nithianandarajah-Jones	and	Cross,	2015).	Once	EGF-induced	ERK5	

phosphorylation	is	analysed	using	this	method,	MEK5	inhibitors	can	then	be	used	

to	examine	whether	inhibition	of	this	pathway	alone	or	together	with	AMPK	

activation	could	have	similar	or	synergetic	effects.	There	are	currently	three	
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inhibitors	targeting	the	ERK5	signalling	pathway,	the	MEK5	inhibitors	BIX02188	

and	BIX02189	(Tatake	et	al.,	2008)	and	the	direct	ERK5	inhibitor	XMD8-92	(Yang	

et	al.,	2010).	By	using	these	molecular	tools,	the	cross	talk	between	ERK5	and	

other	signalling	pathways,	including	AMPK	can	be	examined.	Also,	as	ERK5	may	

activate	Akt	through	an	unknown	mechanism	(Datta	et	al.,	1997,	Holmes	et	al.,	

2007,	Lennartsson	et	al.,	2010,	Roberts	et	al.,	2010,	Razumovskaya	et	al.,	2011),	it	

is	worthwhile	to	analyse	these	effects.	Furthermore,	combination	therapy	

targeting	two	or	more	signalling	pathways	is	found	to	be	more	effective	and	less	

toxic	(Shah	et	al.,	2007,	Stommel	et	al.,	2007),	whether	this	remains	the	case	for	

ERK5	and	AMPK	remains	to	be	tested.	

	

7.2.5	What	are	the	activities	of	AMPK,	MAPK	and	PI3K/Akt	in	

clinical	prostate	cancer	and	how	do	these	correlate	to	disease	

progression?	
AMPK	activation	was	associated	with	progression	of	PC	in	clinical	samples	

(Choudhury	et	al.,	2014).	In	addition,	studies	have	shown	that	correlation	exists	

between	MAPK	and	PI3K	activation	in	clinical	PC	(Malik	et	al.,	2002,	Kreisberg	et	

al.,	2004,	Kinkade	et	al.,	2008).	Further	studies	should	be	carried	out	to	analyse	

the	status	of	these	different	signalling	pathways	including	AMPK,	AR,	MAPK	and	

PI3K	at	different	stages	of	the	disease. 	
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7.3	Conclusion	
This	study	addressed	the	role	of	AMPK	in	the	regulation	of	PC	cell	viability,	

proliferation,	migration	and	signalling.	The	key	findings	of	the	study	were	that	

structurally-unrelated	AMPK	activators	that	activate	AMPK	by	different	

mechanisms	robustly	inhibited	viability	and	migration	of	PC	cell	lines.	

Furthermore,	activation	of	AMPK	was	associated	with	reduced	ERK1/2,	ERK5	

and	PI3K/Akt	signalling.	The	AMPK-dependence	of	these	effects,	however,	

remains	uncertain.	 	
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Appendix	1.	Manufacturers	
	

Abcam	

330	Cambridge	Science	Park	

Cambridge	

CB4	0FL	

United	Kingdom	

Tel:	+44	(0)	1223	696	000	

Fax:	+44	(0)	1223	215	215	

Email:	orders@abcam.com	

Website:	http://www.abcam.com	

	

BD	

Edmund	Halley	Road	

Oxford	Science	Park	

Oxford	

OX4	4DQ	

United	Kingdom	

Tel:	+44	(0)	1865	781	666	

Fax:	+44	(0)	1865	781	627	

Email:	bduk_customerservice@europe.bd.com	

Website:	http://www.bd.com	

	

Biotium	

3159	Corporate	Place	

Hayward	

CA	94545	

USA	

Tel:	+1	510	265	1027	

Fax:	+1	510	265	1352	

Email:	order@biotium.com	

Website:	http://biotium.com	
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Cell	Signaling	Technology	Inc.	

3	Trask	Lane	

Danvers	

MA	01923	

USA	

Tel:	+1	978	867	2300	

Fax:	+1	978	867	2400	

Email:	info@cellsignal.com	

Website:	http://www.cellsignal.com	

	

Covance	

The	Clove	Building	

4	Maguire	Street	

London	

SE1	2NQ	

United	Kingdom	

Tel:	+44	(0)	203	810	6000	

Fax:	+44	(0)	207	403	7096	

Website:	http://www.covance.com	

	

GeneTex	

2456	Alton	Parkway	

Irvine	

CA	92606	

USA	

Tel:	+1	949	553	1900	

Fax:	+1	949	309	2888	

Email:	info@genetex.com	

Website:	http://www.genetex.com	

	

	

	

	



Zichu	Yang,	PhD	(2016)	

	 207	

Genova	Life	Science	

Bibby	Scientific	Limited	

Beacon	Road,	Stone	

Staffordshire	

ST15	0SA	

United	Kingdom	

Tel:	+44	(0)	1785	812	121	

Fax:	+44	(0)	1785	810	405	

Email:	info@bibby-scientific.com	

Website:	http://www.jenway.com	

	

Lonza	

8830	Biggs	Ford	Road	

Walkersville	

MD	21793	

USA	

Tel:	+1	800	638	8174	

Fax:	+1	301	845	2924	

Email:	scientific.support@lonza.com	

Website:	http://www.lonza.com	

	

Merck	Millipore	

Boulevard	Industrial	Road	

Padge	Road,	Beeston	

Nottingham	

NG9	2JR	

United	Kingdom	

Tel:	+44	(0)	115	943	0840	

Fax:	+44	(0)	870	900	4644	

Email:	ukcustomerservice@merckgroup.com	

Website:	http://www.merckmillipore.com	
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Nikon	

380	Richmond	Road	

Kingston	Upon	Thames	

Surrey	

KT2	5PR	

United	Kingdom	

Tel:	+44	(0)	208	247	1717	

Fax:	+44	(0)	208	541	4584	

Email:	discover@nikon.co.uk		

Website:	http://www.nikoninstruments.com	

	

Olympus	

KeyMed	(Medical	&	Industrial	Equipment)	Ltd.	

KeyMed	House	

Stock	Road	

Southend-on-Sea	

Essex	

SS2	5QH	

United	Kingdom	

Tel:	+44	(0)	170	261	6333	

Website:	http://www.olympus-lifescience.com	

	

Roche	Diagnostics	Limited	

Charles	Avenue	

Burgess	Hill	

West	Sussex	
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RH15	9RY	

United	Kingdom	

Tel:	+44	(0)	144	425	6000	

Website:	http://www.roche.co.uk	

	

Santa	Cruz	Biotechnology,	Inc.	

10410	Finnell	Street	

Dallas	

Texas	75220	

USA	

Tel:	+1	214	902	3900	

Fax:	+1	214	358	6070	

Email:	scbt@scbt.com	

Website:	http://www.roche.co.uk	

	

Sigma-Aldrich	Company	Ltd.	

The	Old	Brickyard	

New	Road	

Gillingham	

Dorset	

SP8	4XT	

United	Kingdom	

Tel:	+44	(0)	1202	712	300	

Fax:	44	(0)	1202	715	460	

Email:	ukorders@sial.com	

Website:	http://www.sigmaaldrich.com	

	

Thermo	Fisher	Scientific	

Life	Technologies	Ltd	

Inchinnan	Business	Park	

Paisley	
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PA4	9RF	

United	Kingdom	

Tel:	+44	(0)	141	814	6100	

Fax:	+44	(0)	141	814	6260	

Email:	ukorders@lifetech.com	

Website:	http://www.thermofisher.com	

	

Tocris	Bioscience	

Tocris	House	

IO	Centre	

Moorend	Farm	Avenue	

Bristol	

BS11	0QL	

United	Kingdom	

Tel:	+	44	(0)	117	916	3333	

Fax:	+	44	(0)	117	916	3344	

Email:	customerservice@tocris.co.uk	

Website:	http://www.tocris.com	

	 	



Zichu	Yang,	PhD	(2016)	

	 211	

Appendix	2.	Related	publication	
 

Choudhury,	Y.,	Yang,	Z.,	Ahmad,	I.,	Nixon,	C.,	Salt,	I.	P.	&	Leung,	H.	Y.	(2014).	AMP-
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