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Abstract

In this thesis a study of polarimetric observations of the Crab nebula is 

presented. We also describe the development of a computer model which predicts 

the polarization pattern for a dipole magnetic field structure. The Crab nebula is a 

plasma and it's plasma behaviour is relevant to the development of a computer model 

o f the nebular magnetic field. Therefore, we also examine in this thesis the basic 

plasma physics required for study of the Crab nebula.

Chapter 1 is an introduction to this thesis outlining the raison d'etre of this 

project and presenting the relevant background information about the Crab nebula. 

Brief descriptions of the physical properties and history' of the nebula are given, 

followed by a more detailed review of past theoretical works which have a beanng 

on this thesis.

In chapter 2 we outline the theory of polarization of electromagnetic waves. The 

polarization parameters used in this thesis, the Stokes intensities and Stokes 

parameters, are introduced. The expressions for degree and angle of polarization 

derived from the Stokes intensities or parameters are formulated and we discuss 

these quantities and the effects of depolarization with relevance to this work.

From the review in chapter 1 we find that it has long been known that the 

mechanism by which the observed radiation from the Crab nebula is produced is the 

synchrotron mechanism. Chapter 3 presents the theory' of synchrotron radiation. In 

the latter sections of chapter 3 we examine the theory of polarization of synchrotron 

radiation and arrive at the equations required to calculate the Stokes intensities of 

synchrotron radiation for any given electron density distribution and magnetic field 

structure.

In chapter 4 we consider the plasma aspects of the Crab nebula. A consideration 

of the macroscopic magnetohydrodvnamic equations, which are a generalised form 

of Ohm's law, the Maxwell curl equations for the electric and magnetic fields, the



equation o f continuity, the equation o f motion and the adiabatic equation for 

conservation of energy for the plasma, lead us to the concept of "frozen-in" magnetic 

fields. This has great relevance to the behaviour of the Crab nebula and we discuss 

recent papers in which attempts to solve the frozen-in field equation have been 

presented. We also include a discussion and a brief treatment of the frozen-in field 

equation which was made as a result o f the study o f recent work in this field.

Chapters 5 and 6 make up the body of original work in this thesis. Chapter 5 

presents the methods and results of analysis of the polarimetric data of Woltjer and 

McLean, Aspin and Reitsema. These observations are separated by a period of 26 

years and so we examined the data for changes in polarization angle, and thus 

magnetic field direction, which might have occurred during this time. We also 

searched the data for centres of polarization or intensity patterns by a method of 

symmetry testing.

Chapter 6 describes the development and presents the results o f the computer 

generated model of a dipole magnetic field. We begin by considering special cases of 

the orientation of the dipole axis to the observer's line of sight and then move on to a 

model which allows any angle of inclination of the observer to the dipole axis. The 

final version o f the model incorporates a component of magnetic field in the 

(^-direction o f the dipole coordinate system. This model produced some interesting 

results.

The results of the data analysis and computer modelling are discussed in the 

relevant chapters, but chapter 7 contains some concluding remarks and an overview 

of the thesis. A ll computer programs written during the course of this project were 

written in Fortran and are included in the appendices at the back of the thesis.



Figure 1.1 (facing): A photograph of the Crab nebula taken by Baade in 1954 [9] at a 

wavelength of approximately 6000 angstroms. This photograph shows clearly the 

filamentary structure of the Crab nebula. The north direction is vertically upwards and east 

is to the left in this picture; thus, this photograph has the same orientation as the 

polarization maps of the Crab nebula which are presented in chapter 5 of this thesis. The 

extent of the nebula shown by this photograph is the same as that covered by the 

photometric polarization data taken by Baade, analysed and presented by Woltjer [1], 

which is used in this thesis. The CCD polarization data of McLean, Aspin and Reitsema [2], 

also used in this thesis, covers an area which is slightly smaller than the whole extent of the 

Crab nebula in this photograph.





Chapter 1

Introduction

L l  About this Thesis

The contents o f this thesis not only describe the work undertaken at Glasgow 

University between October 1987 and October 1989, but also describe the theoretical 

background which is necessary for an understanding o f this work.

In this chapter, chapter 1, a brief review o f the history and properties o f the 

Crab nebula is given. We see what makes the Crab nebula a unique astrophysical 

object, why it has attracted so much attention from both theoretical and observational 

astronomers in the past and that there still remains much to be done before we can 

claim to understand the Crab nebula fu lly . Section 1.4 is a review o f theoretical 

works on aspects o f the nebula which are relevant to this thesis. The problems 

discussed here are by no means the only ones with which the Crab nebula presents 

us but the whole body o f theoretical and observational work on the nebula is far 

greater than can be covered in this review and much o f it has no bearing on this 

project.

Chapter 2 covers the basic theory o f polarization and discusses the use o f Stokes 

intensities and Stokes parameters with relevance to this thesis. The theory o f 

polarization as related to the Crab nebula is taken further in chapter 3. Once we have 

outlined the theory o f the processes o f synchrotron radiation, which is the radiation 

mechanism o f the Crab nebula, we go on to consider the polarization o f such 

radiation. It is the polarization of synchrotron radiation which is recorded by the data 

o f W oltjer [1] and McLean, Aspin and Reitsema [2] which are analysed in chapter 5.

In this thesis we also discuss the study o f the Crab nebula as a plasma (chapter 

4), the analysis o f observational polarization data from the nebula (chapter 5) and the
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development o f a computer generated model o f magnetic field structures similar to 

that o f the nebula (chapter 6). Chapter 4 is mainly a review of plasma theory as it 

relates to the Crab nebula and chapters 5 and 6 comprise the body o f original work 

in this thesis. Chapter 7 presents the conclusions drawn from this work.

The main motivation o f this project was to study Woltjer [1] and McLean, Aspin 

and Reitsema's [2] data sets with the aim of finding out more about the structure of 

the magnetic field of the Crab nebula. The tests and manipulations performed on the 

data are discussed in chapter 5. The computer model was developed with the intent 

to compare the model with the observational data once the model was a sufficiently 

realistic representation of the nebula to make this exercise worthwhile.

As a result of considering the addition of toroidal components of magnetic field 

to the computer model, the analysis o f the frozen-in field equation in chapter 4, 

section 4.5 was made. Solution o f this equation is in itse lf a major task and, 

although not within the scope of this project, it is a prerequisite for further progress 

in the development of a realistic computer generated model o f the Crab nebula 

magnetic field structure.

1.2 The Crab Nebula

The Crab nebula is the remnant o f a supernova explosion which was observed 

and recorded by Chinese astronomers in 1054 AD. The nebula itself is a turbulent, 

expanding mass o f diffuse cool gas and re lativ istic plasma. The gaseous 

composition o f the nebula is mainly hydrogen and helium with some carbon, 

oxygen, nitrogen and small amounts o f heavier elements [3J. The plasma, which 

consists o f electrons and positrons [4], is the source o f the nebula’s radiation output 

from X-ray to radio wavelengths and it is the interaction o f this plasma with the 

nebular magnetic field which is o f most interest in this thesis. Within the nebula lies 

the Crab pulsar NP0532 +21. This highly magnetised, rotating neutron star provides
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both the magnetic field and plasma particles which make up the nebula. Thus the 

pulsar is also o f much interest in this work.

The Crab nebula lies approximately 2kpc from Earth in the direction o f the 

constellation Taurus. The nebula itself is roughly elliptical in shape with a major 

axis, when observed at visual wavelengths, o f 4pc and a minor axis o f 3pc. The 

major axis lies in the north-west to south-east direction which is approximately 

parallel to the galactic equator. The three dimensional shape of the nebula is thought 

to be that o f a prolate spheroid [5,6] so the axis along our line o f sight is 

approximately 3pc. The size o f the nebula at X-ray wavelengths is only a quarter that 

at optical wavelengths but the radio nebula is slightly larger than the optical nebula 

[7].

The measured expansion speed o f the filaments o f the nebula is approximately 

2000 km s'1 [5J. The filaments within the nebula move with speeds close to the 

expansion speed but some features may move much faster than this. Particles ejected 

from the pulsar, which emit the synchrotron radiation that is observed in the nebula, 

move at relativistic speeds. The pulsar itself is moving towards the north-west with a 

large proper motion, which corresponds to a motion o f 110 kms'1 in the plane o f the 

sky, which was first measured by van Maanen in 1928 [8]. This motion is thought 

to explain certain asymmetries in brightness and structure in the north-west region of 

the nebula (see section 1.4). An extrapolation o f the pulsar's position backwards in 

time to the supernova event does not coincide with the calculated expansion centre of 

the nebula [5]. No plausible explanation for this discrepancy has been proposed. 

Also, the geometrical expansion centre o f the nebula does not coincide with the 

centre o f mass estimated from the distribution o f matter in the filaments o f the 

nebula; obviously, the expansion o f the Crab nebula is not symmetrical in terms o f 

mass. This is not a surprising result considering the uneven distribution o f mass 

within the nebula which can be seen in photographs o f the nebula which show its
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filamentary structure, e.g. figure 1.1 [9]; studies o f optical emission lines [3] show 

that the filaments are made up mainly o f hydrogen and helium in higher 

concentrations than the rest o f the nebula.

The magnetic field at the surface o f the pulsar is 3 x l0 12 G [10]. The average 

nebular magnetic field is approximately 10'3 - 10-4 G [11]. The exact structure of the 

nebular field is not known; neither is the mechanism by which it is produced. The 

aim o f this thesis is to improve our understanding o f these problems. The density of 

the electrons within the nebula is not very well known but has been measured as 

between 400 - 4000 cm '3 from [O il]  and [SII] line ratios [3]. Osterbrock [12] 

calculated the electron density to be 1000cm'3. The chemical composition o f the 

nebula is reasonably well known. Helium is overabundant with respect to hydrogen 

compared to solar abundances and accounts for 75% by mass o f the composition of 

the filaments [3]. Other elements are present in the ratios found in the Sun but 

progenitor models for the pre-supernova star predict that more nitrogen should be 

present than is actually observed [3].

The Crab nebula is a strong X-ray and radio source and has a well measured 

spectrum at most wavelengths. The discovery that the Crab nebula emission was due 

to the synchrotron process (see section 1.3) was a major step forward in 

understanding the processes which govern the Crab nebula. However, the spectral 

index o f the synchrotron radiation spectrum, which is discussed in chapter 3, varies 

with wavelength. The spectrum can be represented as a power law in either the 

visual, X-ray or radio region but has a different spectral index in each region. This 

variation o f the spectral index with wavelength has been a major problem in the 

construction of models o f the nebula but was most successfully overcome by Kennel 

and Coroniti [13].
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L I  The History of the Crab Nebula

From its birth in 1054 AD until the late 1960s the Crab nebula was a unique 

astrophysical object. In 1970 the Crab nebula was the sole topic o f an I.A.U. 

Symposium [14] and it is indicative o f the continuing importance o f the Crab nebula 

that an entire workshop was devoted to it  in 1984 [15]. Until February 1987 the 

Crab pulsar was the only pulsar whose birth date was known to the year but even 

SN1987A cannot displace the Crab nebula from its special place in astrophysics. 

The Crab nebula is the youngest supernova remnant in our Galaxy and is one o f the 

most extensively studied astrophysical objects and certainly the most extensively 

studied supernova remnant. The Crab nebula provides an opportunity to study an 

evolved supernova remnant in all regions o f the electromagnetic spectrum as it is a 

strong emitter o f radiation in the X-ray, optical and radio regions. The Crab is also 

one o f the few members o f the subclass o f supernova remnants known as plerions, 

or centre filled  remnants, of which it  was also the first known member. The Crab 

pulsar had the fastest observed spin rate (33 milliseconds) until the discovery o f the 

first millisecond pulsar in the early 1980s.

Although the supernova explosion which created the nebula was observed by 

the Chinese in 1054, the Crab nebula was only "discovered" in the West in 1731 by 

John Bevis. It was catalogued in 1758 as number one in Messier's catalogue of 

objects which were a nuisance to observers o f comets. Despite this, the Crab nebula 

became an object o f much interest to astronomers at the time. Lord Rosse described 

the nebula as having the shape o f a crab's claw and, although it may stretch the 

imagination to see this resemblance in figure 1.1, the name "Crab nebula" fe ll into 

common usage. By the end of the nineteenth century it was known that the nebula 

was an area o f diffuse emission and not a group o f unresolved stars, but how was 

the emitted radiation produced?

In the 1920s the nebula was conclusively identified as the remnant o f the 1054
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event [16]. The structural changes in the nebula due to its rapid expansion were 

observed and its expansion speed measured for the first time [17,18]. Spectra o f the 

nebula were obtained by Slipher [19] allowing the study o f the chemical composition 

and velocities within the nebula. The proper motion o f the South Preceding Star was 

measured by van Maanen but this star had not yet been identified as the remnant of 

the supernova explosion. This identification was made by Baade[20] and 

Minkowski [ 21] in the early 1940s.

From 1949-1970 it was the nonthermal aspects o f the Crab nebula which made 

it famous. In 1952 Shklovskii [22] proposed that the radiation emitted by the nebula 

was synchrotron radiation and thus should be linearly polarized (for details o f the 

polarization o f synchrotron radiation see chapter 3). This proposal can be considered 

to be the birth o f high energy astrophysics. Dombrowsky [23] and Vashakidze [24] 

observed linear polarization o f the nebula's optical wavelength radiation only two 

years after Shklovskii's prediction. Following this several studies o f polarization o f 

the nebula were made by Oort and Walraven [9], Walraven [23] and Baade [24]. 

These studies were performed partly to confirm Dombrowsky and Vashakidze's 

results and partly to make more detailed observations and thus improve our 

knowledge o f the Crab nebula. The main conclusions o f these studies were that the 

average direction o f the polarization vector was north-west to south-east i.e. along 

the major axis o f the nebula. The polarization data taken by Baade in 1954 and 

surface brightness distribution measurements by Walraven were published 

simultaneously in 1957 [25,1] and are used in this study. Details o f this data set and 

o f the other data set used (taken by McLean, Aspin and Reitsema in 1981 [2]) can be 

found in chapter 5.

During the 1950s and 60s popular and basic level texts on astronomy mainly 

discussed the X-ray and radio observations o f the Crab nebula. However, the Crab 

is an excellent example o f the role that visual wavelength observations play in
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astrophysics. The distance to the nebula and the expansion speed of the nebula were 

determined from photographic plates [7,26,27]. The chemical composition, mass 

and kinetic energy o f the expanding gas were calculated using optical wavelength 

spectra [3]; the only exception to this was the use o f infrared observations to 

calculate the density o f dust in the nebula [3]. The peak o f the nebula's energy 

output is in the ultra-violet region o f the spectrum and is very d ifficu lt to observe. 

We can estimate the position and intensity o f this peak however from the study o f 

the spectrum in the visual region. Another indication o f the importance o f optical 

wavelength observations is that the pulsar was originally timed optically although it 

can now be timed accurately from its radio pulses [10]. The visual and ultra-violet 

continua o f the nebula are highly polarized [2,28]. There have been many studies of 

polarization o f nebular emission at radio frequencies which was first observed in 

1957 by Mayer, McCullough and Sloanaker [29]. Some of the most interesting radio 

surveys were made by Matveenko and Kostenko [30], W ilson [31,32,33], 

Swinbank [34], Swinbank and Pooley [35] and Velusamy [36]. It is interesting to 

note that features which appear in the optical polarization maps o f the nebula are not 

always present in radio polarization maps. This may be due to the fact that Faraday 

rotation [37] affects the radio emission but does not have any measurable effect on 

the optical wavelength emission o f the Crab nebula but it may eventually tell us 

something about the energy distribution o f particles within the nebula. In this thesis 

we w ill concentrate on the polarization o f the optical wavelength emissions.

In the 1960s several other plerions were discovered. Studies o f these objects, 

e.g. 3C58, M ilne 56, CTB 87 and G 148+1, have been made but the Crab is still the 

most studied object o f this class [3]. Apart from the Crab nebula, G 148+1 is the 

only centre filled supernova remnant in which a pulsar has been observed.

The Crab nebula pulsar was discovered in 1968 [38], just one year after Bell 

and Hewish discovered the first pulsar. The following year the South Preceding Star
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was identified as the pulsar [39]. As pulsar theory developed it became clear that the 

pulsar must in some way provide the magnetic field and energetic particles in the 

nebula. It is now accepted that the pulsar is the powerhouse o f the nebula as the 

amount o f energy transferred from the pulsar to the nebula as the pulsar's spin rate 

decreases is commensurate with the energy output of the nebula [4]. The mechanism 

o f production o f relativistic particles in pairs near the pulsar's magnetic polar caps 

was first proposed by Sturrock [40] and the subsequent outflow o f these panicles 

along open magnetic field lines was a feature of models even before the production 

mechanism was fu lly understood. Exactly where in the pulsar magnetosphere these 

pairs are produced and how many pairs are created depend on the magnetosphere 

model used. Nevertheless, electron-positron pairs created on open magnetic field 

lines form a plasma which streams out along these fields lines and is dense enough 

to be treated using the ideal magnetohydrodynamic equations (see chapter 4, section 

4.2). I f  the electron density o f the nebula is 103 cm 3 [12] then the electron-positron 

pairs have a lifetime o f at least 2 years before they are annihilated by collisions. 

Therefore, electron-positron pairs must be created in other regions o f the nebula as 

well as in the pulsar magnetosphere. We already know particles must be supplied 

throughout the nebula as the synchrotron lifetimes o f relativistic particles are less 

than the expansion lifetime o f the nebula. As we shall see in the next section, the 

production o f magnetic field has been much studied since 1955 but is still a matter 

for further study. We w ill now examine the development o f theoretical models o f the 

structure and dynamics o f the Crab nebula over the last three decades.

1.4 The Search for a Theoretical Model which Correctly 

Describes the Features of the Crab Nebula

Although the Crab nebula has been extensively studied there still remain many 

puzzles about its structure and dynamics which are unresolved. We are sure that the



nebular luminosity is due to synchrotron radiation but there is no consensus about 

how the magnetic fie ld which causes this radiation is produced. Synchrotron 

lifetimes are small compared to the lifetime o f the nebula and, as mentioned above, 

the electron-positron pairs produced in the pulsar magnetosphere eventually 

annihilate each other, so the energetic particles producing this radiation must be 

continuously supplied and accelerated throughout the nebula due to the action o f the 

pulsar. Apart from this we do not really know how the pulsar interacts with the 

surrounding nebula. Many observational and theoretical studies have been 

undertaken in the last twenty years with a view to constructing a model which 

explains all the observed features o f the Crab nebula; some progress has been made.

Once observations o f polarization o f visual wavelength radiation from the Crab 

nebula had been made [23,24], confirming that the nebular luminosity was produced 

by synchrotron radiation, the question which arose was "What is the origin o f the 

magnetic field within the nebula?". Observations showed that the nebular magnetic 

fie ld was too strong to be a "frozen-in" field left over from the pre-supernova star 

[41]. Adiabatic losses would have transformed almost all o f the pre-supernova 

magnetic fie ld energy into expansion energy during the lifetime o f the nebula. 

Obviously, there is a mechanism within the nebula which produces the observed 

magnetic field. Piddington [42] was the first to suggest, in 1957, that the nebular 

magnetic field might be generated by a central magnetic star which was rotating. The 

theory o f rotating stars with magnetic fields was not new [43], but it had not 

previously been considered in relation to the Crab nebula. Piddington also proposed 

that the energy required by the nebula to achieve the observed radiation output would 

be supplied by fast particles ejected from the star and that after the supernova event 

lines o f magnetic force would link the central star and the remnant; differential 

rotation would cause toroidal magnetic fields to be formed in the nebula. The theory 

o f neutron stars was quite well developed at this time but it was 10 years before the
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first pulsar was observed. It was therefore a bold step for Piddington to make an 

estimate o f 5 minutes for the rotation period o f the central star required to create the 

observed field. In the light o f current knowledge we find that several assumptions 

made in the calculation o f this estimate are not valid but at the time a rotation period 

o f 5 minutes was considered extreme and nobody would have considered a rotation 

period o f 33 milliseconds as anything other than pure fiction.

By the 1960s the emphasis had switched from optical wavelength observations 

to theoretical studies and radio and X-ray observations o f the Crab nebula. 

Korchakov and Syrovatskii [44] proposed that as the net polarization o f the Crab 

was in the north-west to south-east direction the net magnetic fie ld should be 

perpendicular to this. The difficulty with this simple model is that the particles would 

flow  preferentially along the net magnetic field direction and the nebula should 

therefore be larger in this direction; the net magnetic field in this model is parallel to 

the minor axis o f the nebula. According to Korchakov and Syrovatskii the shape of 

the magnetic field present in the nebula depends on the direction o f rotation o f the 

nebula. These authors claim that i f  the nebula is an elongated ellipsoid o f rotation the 

magnetic field would be toroidal with its axis along the direction o f elongation and 

that i f  the nebula is a flattened ellipsoid o f rotation the magnetic field would be a 

dipole field with its axis o f symmetry along the minor axis o f the nebula. Although 

Korchakov and Syrovatskii do not explain clearly why this should be the case, it 

was later discovered that the pulsar spin axis is aligned in the north-west to 

south-east direction [45]. It seems reasonable to assume that the nebular rotation has 

the same axis as the pulsar rotation since they are closely linked; hence the nebula is 

an elongated ellipsoid o f rotation and from Korchakov and Syrovatskii's theory we 

expect to find a toroidal field with its axis along the major axis o f the nebula. 

However, since the pulsar is an oblique rotator (the magnetic axis o f the pulsar is 

almost perpendicular to the rotational axis), the axis o f the pulsar's dipole magnetic
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fie ld w ill be roughly aligned with to the minor axis o f the nebula so that we have a 

combination o f features from both o f Korchakov and Syrovatskii's models. Other 

theories at the time predicted a twisting effect in the magnetic field, although a 

defin itive mechanism for the formation o f a toroidal fie ld had not been found. 

Kardashev [46] suggested that the twisting could be due to the outflow o f matter in 

the pulsar's rotational equatorial region during the stellar collapse.

By 1971 the rotating neutron star model for pulsars was generally accepted. If  

the magnetic and rotational axes of the pulsar are not aligned, energy is lost from the 

pulsar. Gunn and Ostriker [47] proposed that the Crab pulsar should produce a 

wave within the nebula which would have a frequency o f approximately 30Hz (the 

same as the pulsar's rotation frequency). Such a wave could accelerate particles and 

provide a magnetic field in which these particles would emit synchrotron radiation. 

This theory was developed further in direct relation to the Crab nebula by Rees and 

Gunn [41]. They, however, suggested that the power emitted by the pulsar emerged 

partly as a 30Hz wave and partly as a relativistic wind which contained a toroidal 

magnetic field. Rees and Gunn argue that the part o f the pulsar’s magnetic field 

which is perpendicular to the rotation axis would produce a 30Hz wave and 

oscillatory magnetic field. The component o f the magnetic fie ld aligned to the 

rotation axis would provide open field lines along which the relativistic panicles 

would escape and a toroidal magnetic field due to 'winding up' o f field lines as 

suggested by Piddington [42]. Rees and Gunn also associated the wisps seen near 

the pulsar w ith the shock front which would be produced by the 30Hz wave. The 

test o f this model was that i f  the 30Hz wave propagated into the nebula we would 

expect to see circular polarization at optical and radio wavelengths. Circular 

polarization has not even been detected in the Crab nebula at the 0.1% level [48,49] 

so the 30Hz wave definitely does not propagate into the nebula. Although Rees and 

Gunn were aware of the non-detection o f circular polarization they still included the
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wave in their model but only allowed it to exist as far as the shock front where the 

30Hz wave would be completely absorbed. A t the shock front the relativistic 

outflow pressure is balanced by the internal nebular pressure and the wave energy 

would be transferred into kinetic energy o f relativistic electrons. This model 

remained the best explanation of the observed features o f the Crab nebula until 1984 

when Kennel and Coroniti [4,13] found that the plasma density o f the pulsar 

magnetosphere was too low to support a wave of this type as the wave frequency is 

below the plasma frequency.

Another model o f the Crab nebula considered the field structure to be a torus 

centred on the pulsar which is viewed almost side on and has its axis in the 

north-west to south-east direction. This theory, developed by Aschenbach and 

Brinkmann [45], agreed with the theory o f Korchakov and Syrovatskii [44]. 

Aschenbach and Brinkmann's model assumed that the Crab pulsar was an oblique 

rotator. Accelerated particles in this model move out along open field lines as a 

relativistic wind which is mainly confined to the rotational equatorial plane o f the 

pulsar. A similar structure was postulated by Benford, Bodo and Ferrari [50] who 

found that in their model the relativistic wind moving away from the pulsar was 

almost spherically symmetric but had a tendency to form a disc in the rotational 

equatorial plane. Benford, Bodo and Ferrari proposed that the relativistic wind was 

produced by electrons and ions which were accelerated by a large amplitude wave at 

the edge o f the pulsar light cylinder. The edge of the light cylinder defines the 

distance from the pulsar where the co-rotating magnetosphere's angular velocity is 

equal to the speed o f light. The radius o f the light cylinder is given simply by the 

ratio o f the speed of light to the pulsar's rotational frequency. Benford, Bodo and 

Ferrari thought that the wisps were caused by plasma instabilities occurring in rings 

about the pulsar. This effect was also a feature o f Aschenbach and Brinkmann's 

model [45]. Both these sets o f authors found that new work in allied fields would
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have important effects on their models. Benford, Bodo and Ferrari realised that 

adjustments would need to be made to their model to take account of a recently 

introduced theory at that time which put forward a mechanism for the generation o f a 

relativistic wind by the production o f electron-positron pairs at the magnetic poles of 

the pulsar [40,51]. Aschenbach and Brinkmann found from observational studies 

that the optical continuum of the nebula did not show geometrical symmetry about 

the pulsar but in fact had a region o f enhanced brightness to the north-west o f the 

pulsar. The centroid o f X-ray emission also lies in this region. Aschenbach and 

Brinkmann concluded that this asymmetry could be due to the motion o f the pulsar 

which is in this direction.

In 1984 Kennel and Coroniti produced two papers dealing with the Crab nebula 

and the relativistic wind in terms of magnetohydrodynamics [4,13]. Since the 30Hz 

wave [4] could not exist at plasma densities which were consistent with the pair 

production model the relativistic particles produced at the poles must be transported 

through the nebula in some other way; magnetohydrodynamic processes were the 

obvious choice. The first paper [4] dealt w ith the confinement o f the pulsar's 

relativistic wind by the supernova remnant. In this model the relativistic wind from 

the pulsar is spherically symmetric. The wind terminates at a magnetohydrodynamic 

shock approximately 0.1 pc from the pulsar. The wind is also magnetised and 

Kennel and Coroniti found that a toroidal magnetic field is a characteristic feature of 

such a wind emanating from a rotating central object. In the second paper [13] 

Kennel and Coroniti calculated the properties o f the synchrotron spectrum expected 

from the model developed in the first paper. They found from comparison with 

observations o f the spectrum o f the Crab nebula that the spectral index o f the 

synchrotron power law spectrum which best f it  the observations at visual 

wavelengths was p=0.6. This corresponds to an energy spectral index o f a=2.2 

which tallies well with observational measurements o f this parameter e.g. Greve and
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van Genderen [52] found the energy spectral index to be a=2.32 (for a more 

detailed discussion o f the power law spectrum and energy spectrum see chapter 3). 

In the region outside the magnetohydrodynamic shock the transport o f particles is 

non-relativistic and the particles move at speeds close to the expansion speed of the 

nebula. Kennel and Coroniti calculated that approximately 10-20% of the spin down 

luminosity o f the pulsar is converted into nebular radiation. This model accounts for 

the underluminous region which surrounds the pulsar and could coincide with the 

region inside the magnetohydrodynamic shock. The model also accounts for many 

other features o f the nebula but its main failing is that it does not provide radio 

emission.

However, Kennel and Coroniti’s model did not explain exactly how the 

magnetic field structure o f the nebula is generated. A model for the structure o f the 

magnetic field inside the light cylinder was developed by Barnard [53]. Barnard 

used a long neglected solution for the magnetic field surrounding a rotating 

conducting sphere in vacuo which was found by Deutsch in 1955 [43]. When 

considering a pulsar the plasma surrounding the pulsar may cause problems with 

this solution as the plasma leads to reconnection in parallel magnetic force lines. 

Even so, Deutsch's model is a good approximation and gives expressions for the 

magnetic field components in spherical polar coordinates. The orientation o f the 

pulsar given by Kristian et al [54] is an angle between the line o f sight and the 

rotational axis o f 83° and an inclination o f the dipole to rotational axis o f 90°. Using 

these angles with Barnard's theory indicates that a wind regime must dominate the 

nebula outside the light cylinder and that inside the light cylinder the magnetic field 

can be approximated by a dipole field. Barnard did not extend his work to consider 

the polarization pattern o f the nebula as a whole but concentrated on polarization 

position angle swings o f the pulse component, which are directly related to the 

pulsar rotation.
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Deutsch's solution actually permits the possibility o f two o f more independent 

magnetic fields around a rotating star; each of these fields must be symmetrical about 

its own axis but they need not have the same axis o f symmetry. This implies that a 

pulsar can not only have its own dipole field but also a toroidal field, as is suggested 

in many o f the theoretical models mentioned in this chapter. Deutsch's starting point 

for his model is the frozen-in field equation

3B ^
= V A  (X  A  £ .  )

The same equation is utilised by the most recently published theoretical model for the 

Crab nebula magnetic field structure by Tsikarishvili et al [55]. Here the authors 

consider the pulsar magnetic field inside the light cylinder to be a dipole field. Since 

the pulsar is an oblique rotator, open fields lines near the magnetic poles o f the 

pulsar cross the light cylinder. Such field lines become distorted as the pulsar 

magnetosphere co-rotates with the pulsar but the plasma outside the light cylinder 

does not and the fie ld is "frozen" into this plasma. As the angle between the 

rotational axis and magnetic axis is not exactly 90° two discs o f toroidal magnetic 

fie ld are formed around the rotational equator. The generation o f this field takes 

place only near the light cylinder and further out in the nebula this field is transported 

by the expanding electron-positron plasma. This paper also explains the observed 

enhancement o f radiation around the nebular filaments as being due to a build up of 

field around the filaments a the field is carried out through the nebula. This idea was 

orig inally suggested by Wilson [33]. Tsikarishvili et al also attempted to find a 

mathematical expression for the toroidal field component by solving the frozen-in 

fie ld  equation. Unfortunately, Tsikarishvili et al's solution does not agree with 

Deutsch's solution and their method of solution is not adequate. Further discussion 

o f this paper is undertaken in chapter 4.
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The basic state of current theory about the magnetic field structure o f the Crab 

nebula is as follows. The pulsar has a dipole field and in some way the rotation of 

the pulsar produces the observed nebular magnetic field. The fast particles which 

emit synchrotron radiation within this field are produced at the poles o f the pulsar 

and flow  out along open field lines into the nebula. The exact structure o f the 

magnetic field outside the light cylinder is unknown and no adequate theory for the 

field production mechanism has yet been developed.

16



Chapter 2

Polarization and the Stokes Parameters

ZA. Introduction

In this chapter we w ill in itia lly deal with a special case o f polarization found 

when dealing with monochromatic waves o f the same phase. Having derived the 

Stokes intensity parameters for this special case in section 2.2, we w ill see in section

2.3 how the parameters can be adjusted to deal with waves of random phases but the 

same wavelength. Section 2.4 deals with the relationship between Stokes intensity 

parameters and Stokes parameters and their relation to this thesis. Sections 2.2 and

2.3 follow closely the derivation of Stokes intensity parameters given in Rybicki and 

Lightman [56]. Section 2.4 follows simply from the defin ition o f the Stokes 

parameters for linear polarization, equation (2.16).

2.2 Polarization of Monochromatic Waves

Electromagnetic radiation can be described in terms o f waves propagating 

through space. Such a description follows directly from solutions o f Maxwell's 

equations. I f  we consider the case for radiation o f a single wavelength we find that 

the electric and magnetic fields can be expressed as

i? A c   ̂(Ji-L ■ ̂ 0  / '■ ) 1 \E  = a 1 E0 e (2.1a)

t »  A  * ( K - I  ■ G H )  / ' • )  i u \
B = a 2 Bo e (2- lb )

where and ZL2 ^  un^  vectors’ Bo and B0 are complex constant amplitudes, and 

k=kn and co are the wave vector and frequency o f the wave respectively. Equations 

(2.1) represent waves travelling along n where ^  and a2 are perpendicular to n and
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to each other. The wave described by equation (2.1a) is 100% linearly  polarized, 

which simply means that the electric vector oscillates in a unique direction This 

direction, together w ith the direction o f propagation, defines the plane o f 

polarization.

Figure 2.1: Coordinate system for the electric vector E.

To consider the simplest state o f polarization for a wave of given wave vector 

and frequency we superpose two such waves which oscillate in directions 

perpendicular to each other. We w ill consider only the electric vector because the 

magnetic vector is always perpendicular to and has the same magnitude as the 

electric vector. I f  we now take an electric vector at an arbitrary point and choose axes 

as shown in figure 2.1, with the wave propagating out of the page, then the electric 

vector is

y
E

-— ► x

e~i(0t = Eq e"iox (2.2)

where Ej and E2 are complex amplitudes;

E, = e.e
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In order to obtain equations which describe the position of the tip o f the electric field 

vector in the (x,y) plane, i.e. the physical components o f the electric field in the x 

and y unit vector directions, we take the real part o f E ;

Ex = e1 cos(cot -<j> ) 

Ey = e2 cos(cot - (j>2)

(2.3a)

(2.3b)

Figure 2.2 : The ellipse described by the tip of the electric vector £.

We now consider figure 2.2. The equations for a general ellipse relative to its 

principal axes x' and y' are;

Ex. = eQ cosp coscot

Ey. = -e0 sinp sincot

(2.4a)

(2.4b)

where -n/2  < p < tc/2. The magnitudes of the major and minor axes are eJ cospl 

and eJ sinpl as

EQ cosp £q sinP
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For 0 < p < 7t/2 the ellipse is traced out in a clockwise direction as viewed by the 

observer towards whom the wave is propagating. This is generally known as 

right-handed  elliptical polarization. For -rc/2 < (3 < 0 the same observer would see 

the ellipse being traced out in an anti-clockwise direction. This is le ft-handed  

elliptical polarization. Special cases o f polarization exist when (3 = ± tc/4, the ellipse 

becomes a circle, and when (3 = 0 or ± tt/2, the ellipse becomes a straight line. In the 

former case we have circular polarization and in the latter case, linear polarization. 

A linearly polarized wave is neither left nor right-handed.

x

Figure 2.3 : System of axes for the rotation of the components of £  in x and y 

through the angle x so that they coincide with the principal axes of the polarization 

ellipse, x' and y'.

We want to establish relationships between the quantities in equations (2.3) and 

those in equations (2.4). To do so we must look at figure 2.3 and transform the field 

components o f equations (2.4) to an (x,y) axis system by rotating through the angle 

%. By this procedure we obtain;

Ex = eQ ( cosp cosx coscot + sinp sin% sincot) (2.5a)

Ey = eQ ( cosp sin% coscot - sinp cos% sincot)
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To make equations (2.5) and (2.3) equivalent we must take;

Ej COStJjj = £q COSp COS% (2.6a)

Ej sin(j>1 = £q sinp sin% (2.6b)

e2 cos({)2 = eq cosp sin% (2.6c)

e2 sin(j>2 = -eq sinp cos% (2.6d)

Equations (2.6) can be solved for eQ, p and % if  £p e2, (Jjj and <j)2 are known. The 

usual method o f solving these equations is by defining the Stokes intensity  

parameters for monochromatic waves as follows;

I = 8  ̂+ £ 2  = Eq (2.7a)

Iq = - z22 = £2q cos2p cos2% (2.7b)

I y = 26^2 cos((j)1 - <J>2) = Eq cos2p sin2% (2.7c)

Iy = 2e1e2 sin((j)1 - (j)2) = £q sin2p (2.7d)

Notice that we could also write

s in 2 P = -p  (2.8)

tan2x = - p  (2.9)
Q

Since elliptical polarization is defined purely by £0,p and % we expect a relationship
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to exist between the four Stokes intensity parameters. The relationship we find is

(2.10)

The Stokes parameters have the following meanings. I is always positive and 

proportional to the total energy flux, i.e. the intensity, o f the wave. It is common 

practice to introduce a proportionality constant into the definition o f the Stokes 

parameters (equations (2.7)) so that I is exactly equal to the intensity. Iy is a 

circularity parameter. It is a measure o f the ratio o f the principal axes o f the ellipse. 

I f  I v is positive the wave is a right-handed polarized wave, if  Iv is negative the wave 

is a left-handed polarized wave and i f  Iv equals zero the wave is 100% linearly 

polarized. Iq and Iy are mutually dependent parameters (see equation (2.9)) and 

measure the orientation of the ellipse relative to the x-axis (see figure 2.3). The angle 

o f this orientation % is known as the angle o f polarization. I f  Iq ^ I^ O  the wave is 

100% circularly polarized.

2.3 Degree of Polarization and Depolarization

In practice we never see a single monochromatic wave but always a wave which 

we can consider as a superposition of several monochromatic components each with 

its own polarization and of random phase. In order to calculate the net polarization of 

this "quasi-monochromatic" wave we utilise the fact that the Stokes intensity 

parameters are linearly additive. The total Stokes intensities are simply given by;

IQ m
(2.11a)

all waves

(2.11b)
all waves
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^Vtot Vm (2.11c)
all waves

where Igm, IUm, IVm are the parameters of each monochromatic component wave. 

We can define a quantity, known as the degree o f polarization , which is the ratio 

between the intensity o f the polarized part of a wave to the total intensity o f the 

wave,

2 2 2 2

n  = - £ -  = - ^ — j  (2.12)

A monochromatic wave is completely polarized, 1^=1 or 11=100%.

If  we now consider two linearly polarized waves, a and b, which are polarized 

in opposing directions, we find that Iv=0 for both waves and that since the electric 

vectors are antiparallel

*Qa _IQ b  anCl *Ua _IUb

Therefore the total Stokes intensities for the superposed waves are

I „  = I „  + I0, — 0Qtot Q a  Q b

ITI = I -. + I,,, — 0Utot Ua Ub

Thus, the net polarization is zero. This effect is known as depolarization. For a 

quasi-monochromatic wave the effect of depolarization is to reduce the degree o f 

polarization from the 100% which each component wave possesses. The total 

intensity is a simple linear sum of the intensity o f each component but the polarized 

intensity is given by equation (2.10). So, 1 ^  < Itot and n  < 100%.
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It is useful in this work to consider the special case where I v=0 and the light is 

partially linearly polarized. Analysis of the light using a linear polarizing filter can be 

made. The maximum intensity passed by the filter, I w ill be detected when the 

filte r is aligned with the plane o f polarization (x'-axis in figure 2.3). The minimum 

intensity, Imin, w ill be detected when the filte r is aligned perpendicular to the plane 

o f polarization (y'-axis in figure 2.3). The total unpolarized intensity is distributed 

equally between these two directions so

1
2  "unpol ' "pol+ (2.13)

I = f  I , (2.14)min 9 unpol v '

The polarized intensity is 

j_
T /T2 i V
^ol “   ̂Q  +  V

and the unpolarized intensity is 

W o l = 1 - {IQ + 'u>2

I f  we substitute for the maximum and minimum intensities in equation (2.12) we 

find that the degree of polarization can be expressed, in this case, as

n  = Imax ~ W  (2.15)
Imax ■*"  ̂ ■ max min
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1A. Stokes Parameters. Stokes Intensities and Their Use in 

this Thesis

Equations (2.7) define the Stokes intensities for polarized light and we have the 

defin ition o f degree o f polarization, equation (2.12). Using these equations and 

equation (2.9) we can define the normalised Stokes intensities or Stokes parameters 

for a linearly polarized wave as

Q = y  , U=-^ (2.16)

then

n  = (Q2 + U2)2 (2.17)

tan2x = ^- (2-18)

From equations (2.7) and (2.12) we see that

1  \_ 

^ (I2 + Iy )2 [(ejj cos2p cos2-/)2 + (e), cos2p sin2yj2]2
n = j = j

n = (2.19)

So we can write the Stokes intensity parameters as;

1̂  = If! cos2% (2.20a)

I ^ i r i s h ^ x  (2.20b)
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Alternatively, the Stokes parameters are;

Q = I I  cos2% (2.21a)

U = n  sin2% (2.21b)

The above equations are the most useful definitions o f the Stokes parameters for 

use in this thesis. The data published in Woltjer's paper [1] are given as intensity I, 

degree o f polarization n  and the position angle o f the maximum of the electric vector 

measured anti-clockwise from the north direction, in other words the polarization 

angle %. Therefore, we can calculate the Stokes parameters directly from this data 

using equations (2.21) above. McLean et al's data [2], which is also used in this 

thesis, is presented directly in the form of Stokes parameters and total intensity.

26



Chapter 3

The Theory of Synchrotron Radiation

i l  Introduction

Particles which are accelerated by a magnetic field w ill emit electromagnetic 

radiation. I f  such particles are moving at relativistic speeds the radiation emitted is 

known as synchrotron radiation  and has a complex frequency spectrum. Such 

radiation is the source o f the luminosity o f the Crab nebula. The theory o f 

synchrotron radiation was developed in the 1950s and it was Snklovskii [20] who 

suggested that the Crab nebula's emission may be caused by the synchrotron 

mechanism. The analysis in sections 3.2, 3.3 and 3.4 follows that given in Rybicki 

and Lightman [56]. Section 3.5 develops the theory o f polarization o f synchrotron 

radiation with respect to the Crab nebula. The basic outline o f the theory in the latter 

section can be found in Brown, Craig and Melrose [57].

3.2 The Power of the Emitted Radiation

The motion of any relativistic particle o f rest mass m and charge q moving with 

velocity x  in a magnetic field B is described by two equations, the equation for the 

acceleration o f the particle

4  (ym i) = q (x A B) (3.1)
dt

and the equation for conservation of energy

4  (ymc2) = q (v . E J  = 0 (3.2)
dt

where is the macroscopic electric field in the plasma and is equal to zero and y is
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the Lorentz factor (1- v2/c2) '1/2. The terms (ymx) and (ymc2) represent the total 

relativistic momentum and the total relativistic energy o f the particle. Equation (3.2) 

implies that y, and thus I x  I , is constant and so

mY = q Cl  a  £  ) ( 3. 3)

I f  we separate the velocity field into components parallel and perpendicular to the 

magnetic field we obtain the following:

dx,
■dT = 0 (34 )

(3.5)

Equation (3.4) follows directly from the fact that the vector cross product o f parallel 

vectors is identically zero. Obviously, the parallel component o f the velocity is 

constant and, as I x  I is constant, the perpendicular component o f the velocity is 

constant. For motion in a plane perpendicular to the magnetic field we can write

dx
.  (3-6)

where

CPB = ^  (3-7)

So this vector points along B for negatively charged particles and in the opposite 

direction to B for positively charged particles.

A ll the factors on the right hand side o f equation (3.6) are constant so the
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acceleration is constant in magnitude and is perpendicular to the velocity and the 

magnetic field. We also have

(3.8)

where ^  is the particle position with respect to the centre o f gyration. Again, since 

the other factors in the equation are constants is a constant and thus the solution of 

the equation o f motion is uniform circular motion in a plane perpendicular to the 

magnetic field. When combined with the uniform motion along the magnetic field the 

circular motion gives rise to helical motion with a frequency o f gyration coR. For an 

electron the frequency of gyration is

= H  (3.9)

The total power of emitted radiation for a non-relativistic particle is

P = - ^ .  (3.10)
dt

where dW is the total amount of energy emitted in the time interval dt. This is 

neglected in the energy conservation equation above, equation (3.2), since ymc2/P is 

much greater than the orbital period. For a relativistic particle the total energy emitted 

in a frame K moving relative to the particle with velocity -y is

dW = ydW ' (3.11)

where dW ' represents the total energy emitted in a frame of reference K ' which is 

instananeously at rest relative to the particle. This relation follows directly from the 

transformation properties o f the four-momentum (for details see Rybicki and
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Lightman [56], pg 136). The time interval in K is clearly related to dt", the time 

interval in K", by

dt = yd t' (3.12)

Therefore the total emitted power in K" is

= (3.13)

The total emitted power is clearly a Lorentz invariant parameter. 

We now use the Larmor formula for the total emitted power

where a" is the particle acceleration in the instantaneous rest frame K". In terms of 

the frame K the acceleration components are:

a,; = y5 a.. (3.15)

a' =Y2 a1 (3.16)

Rewriting equation (3.14) we obtain an expression for the power in terms o f the 

acceleration in K,

P = ^ p - ( a ?  + r ^ )  (3-17>

For the case which we are considering here, that o f helical motion, there is no 

acceleration parallel to the magnetic field and the perpendicular component o f the
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acceleration is given by equation (3.6). Simplifying equation (3.6) and using this 

result in equation (3.17) gives

3 ^ m 2
(3.18)

3.3 The Spectral Index of Synchrotron Radiation

The spectrum of synchrotron radiation is related to the variation o f the electric 

fie ld which is seen by the observer. Beaming effects cause the radiation to appear 

concentrated in a narrow set of directions about the particle's trajectory. The 

observer sees a radiation pulse which is confined to an interval less than the gyration 

period o f the particle. The spectrum is therefore spread over a broader region than 

one o f the order o f cOg/271. This is a primary feature o f synchrotron radiation.

I f  the angular width o f the cone of emission 1/y at a point along the particle 

trajectory includes the observer's direction then the observer w ill see the pulse o f 

radiation emitted from that point (see figure 3.1). The distance along the trajectory 

As is then simply

where a is the radius o f curvature of the trajectory. Geometric relations show that

As = aA0 (3.19)

A<t> = 2 ( 1 )  = | (3.20)

Therefore

(3.21)
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particle trajectory

observer

F ig u re . 3:1 : Emission cones at points along a particle trajectory 1 and 2 where the

observer's line of sight lies within the angular width of the emission cone.

We can find an expression for the radius of curvature from the equation o f motion

Av
ym—^  = q(y A  E) (3.22)

Ax I = vA(J) and As = vAt so we rewrite equation (3.22) as

A(j) _ qBsin0 
As~“  ymv

(3.23)

where 0 is the angle between the magnetic field JB and the velocity v. Thus, 

substituting for Wg from equation (3.9)

(3-24)

So As is defined by the expression

As = 21 -  (3.25)
ycp^in0
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However, it  is clear that the distance travelled along the trajectory can be expressed 

as the product o f the particle velocity and the time interval taken for the particle to 

travel between points 1 and 2

As = v (t2-tj)  (3.26)

where t 1 and to are the times when the particle passes points 1 and 2 respectively. 

Combining equations (3.25) and (3.26) we obtain

(t2-l l> =  S <3-27>YCPb sm0

I f  t jA, t2 A are the times o f arrival o f radiation at the observer's position then 

(t^A - t jA) is less than (t2-tj) by an amount which is equal to the time for radiation to 

travel along the distance As, As/c. The time interval between pulses as seen by the 

observer is then

( t A- t A) = A tA = ------ i — x ( l - f )  (3-28)
1 1 ycpp sin0 c

We are considering particles with relativistic velocities so y » 1  and we can use the 

approximation

= (3.29)C 2y2

Using this approximation equation (3.28) becomes

A tA =  l-  (3-30)
y 3̂  sin0
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This shows clearly that the width of the observed pulses is smaller than the gyration 

period by a factor of y 3. We can define a critical frequency

coc = - | ^  coB sinQ ( 3 .3 1 )

or

vc = ^ Y 3“ B sine (3-32)

We expect the spectrum of the radiation pulse to be of the order o f Gl>c in width.

The electric field is a function o f only the polar angle about the direction o f 

motion (j) due to the beaming effect. Therefore we can write the electric field as

E(t) -  F M )  (3.33)

where t is time measured in the observer's frame o f reference. When the pulse is 

centred on the observer we set t=0 and the path length to s and we find that

<J> = s/a (3.34)

and

The relationship between <{) and t is

ytj) = 2y(y2coR sin0)t (3.36)
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Y<t> ~  coct (3.37)

So we rewrite equation (3.33) with the electric field as a function o f the critical 

frequency and time

E(t) -  g(coct) (3.38)

Taking the Fourier transform of the electric field and changing the variable o f 

integration to ^=coct we have

E(co) ~  |  g ©  e x p ( ^ )  d^ (3-39)
-oo

The power emitted per unit frequency per unit solid angle is proportional to the 

square o f the electric field. We can integrate over the solid angle and divide by the 

orbital period ( both o f which are independent o f frequency) to find an expression 

for the time averaged power per unit frequency

X T "  = 4  = P(co) = Ci O  (3'40)dtdco T dco 1 wc

f  is a dimensionless function and C: a constant o f proportionality. Compare the total 

power evaluated by the integral over angular frequency with equation (3.18):

oo OO OO

P = f  P(co) dco = Cj |  f(-^-) dco = C0 c Cj J  f(x) dx (3.41)
o 0 0

where x=co/co . We can evaluate C, and find that the power for a given frequency is

P(C0)^ 3B sin^ f( ff- )  (3.42)
2rtm wc

35



Here we have set C1=V3/27C as this is the value it takes for the most commonly used 

normalization o f f. This is a very useful result as we can approximate the 

synchrotron spectrum as a power law over a certain frequency range and define a 

spectral index p which is a constant in the expression

P(co) -  co P (3.43)

We must also consider the particle distribution o f relativistic electrons in a 

similar fashion. The number density of particles with energy between y and yfdy can 

be approximated by a power law

n(y) dy = Cy ~a dy y1< y < y 2 (3.44)

The total power radiated per unit volume per unit frequency by this type o f particle

distribution is given by the integral o f n(y)dy multiplied by the single particle

radiation formula over all energies:

\  \

P m a l (C0) =  C  |  P(C0) f  “ d Y  “ J 4 ^) y a dT ( 3 '45)
Yi Y,

Changing the variable to x=co/coc again and remembering that coc~  y2 we have

- ( o t - l )  x2 ( a -3 )

p ioial(co) co 2 J  f(x) x 2 dx (3.46)

xi

I f  y and y2 are sufficiently widely separated Xj and x2 can be approximated to zero 

and infin ity respectively. The expression for the power then becomes
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- ( g - i )

Ptotal(m) “  “  2 (3.47)

Thus the spectral index p is related to the particle distribution index a  by the equality

oc -1P=iV -  (3.48)

3.4 The Spectrum and Polarization of Synchrotron Radiation

Consider figure 3.2 below. The coordinates have been chosen such that the 

particle has velocity i  along the x-axis at a time t'=0. The unit vectors in the orbital 

plane are shown and

T, = H A E i  (3.49)

X

Figure 3.2: Coordinate system for the polarization of synchrotron radiation. The particle 

trajectory is in the x-y plane and at t'=0 the velocity is along the x-axis. The origin of the 

coordinates coincides with the location of the particle at t'=0. a is the radius of curvature of 

the particle trajectory.
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We see from figure 3.2 that

n  A  (H  A  £ ) = - £ x sin ( ^ - )  + £ , cos (yf) sin 0  (3.50)

where £  -  'v/c, \/ is the particle velocity, and I £  I =1. The energy per unit frquency 

per unit solid angle of a radiation field for a single particle is

= ( iL £ L )  I f  n  a (n a ) exp(ico[ty- n . i0(tO l) d t' 
dco dQ v 4;t 7 I J ^ (3.51)

For details o f the derivation o f this equation see Rybicki and Lightman pg 82 [56].

Equation (3.50) gives us the first factor in equation (3.51). The second factor 

can be expressed as follows:

t '-  I l* In (t')  = t'-a cos(j> s in (^ j-)'J a

v2 '3
= ( 2 r 1) [ ( l+ T 2(|)2) t ' + ^ V ]  (3.52)

3a2

The sine and cosine functions have been expanded and the approximation stated in 

equation (3.29) used again. Elsewhere in the expression we have set v=c.

We are now in a position to consider the polarization of the radiation emitted by 

a relativistic particle. Expand the sine and cosine functions in equation (3.50). We 

know that

dW dW dW±

dco d£2 dco dQ dco d£2 

From the equations (3.51) and (3.52) above we find that
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dW ; ^  q2co2cj)2

dco dQ 4k j ex p ] d t '■2/
r'Y1 +" o
r 3a2

(3.54)

d W ,  _ q 2co2

dco d£2 4k (3.55)

where t})̂ 2 = l+ y 2<})2. Performing the following change o f variables equations (3.54) 

and (3.55) can be rewritten.

c =
yet'

a07
; 11 = (3.56)

dW _ q2 co2 <J) 2  f  a 0

dco d£ 2  4 7 t 2
( - y 1)  I J exp [ f  il l (C+|<3) ] (3.57)

(3.58)

The integrals are functions only of r\ and since most o f the radiation occurs at angles 

o f 6^0 we rewrite

T| =n((t)=0) = (3.59)
2coc

using equations (3.24) and (3.31).

The integrals in equations (3.57) and (3.58) can be expressed in terms of 

modified Bessel functions of orders 1/3 and 2/3:

dW, n2co2= q_co ( ^ k 2 (ti) (3 60)

dco dQ 3  k 2 y 2
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where definitons o f K 1/3 and K 2/3 are given in Abramowitz and Stegun, formulas 

10.4.26,10.4.31,10.4.32 [58]. Integration of equations (3.60) and (3.61) over unit 

solid angle gives the energy per frequency range radiated by the particle per complete 

orb it in the projected normal plane. The element solid angle is taken as 

dn=27tsin0d({) so

We can integrate over all space because the integrand is concentrated to small values 

o f A0 about 0; of the order of 1/y. The integrals in equations (3.62) and (3.63) can 

be reduced further [Westfold] so that the components of emitted power become

(3.62)

(3.63)

^  = ^ ^ [ F (X) + G (X )]  
dco 2 L J

(3.64)

(3.65)

where x=co/coc and F(x), G(x) are



G(x) = x K 2(x)
T

(3.67)

Division by the orbital period T=27t/coB w ill convert the above equations to emitted 

power per unit frequency

Pi l(u> =  ' i  J'  4 ^ , , ' " ^  [  F ( . )  .  G (s | ]  (3 .6 8 )

,3 69,

Thus the total emitted power per frequency is simply the sum of the parallel and 

perpendicular components

n , x / 3  q3Bsin0
 47tm  W  ( 0)

which we can compare with equation (3.42). The power in terms of frequency v is 

simply

P (v ) = 27iP(co) =  <̂ q3Bsln9 F (x) (3 .7 1 )
2m

For any distribution of particles which varies smoothly with the pitch angle 0, 

emission cones from both sides of the line of sight w ill contribute equally to the total 

radiation seen. In such a case the elliptically polarized components which arise from 

each particle w ill cancel out leaving the radiation linearly polarized. This polarization 

can be described simply by using the powers per unit frquency parallel and 

perpendicular to the projection of the magnetic field on the plane o f the sky. Since 

the polarization is linear we can use the expression for the degree o f linear 

polarization for particles of a single energy given by equation (2.15),
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]~I = ^max ^min 
Jmax +  Imin

(2.15)

We know that the parallel component o f the emitted power is equivalent to the 

minimum intensity passed by a polarizing filter and that the perpendicular component 

is equivalent to the maximum intensity so we can write

n  =
PJco) - PM(C0)

P.Co^ + P^co) (3.72)

Using equations (3.68) and (3.69) we find that equation (3.72) reduces to

n  G(x)
n = F W  (3-73)

For particles which have a power law distribution the degree o f polarization can be 

shown to be

n  = £ L 4 -  (3.74)

a + I

3.5 The Theory of Polarization of Synchrotron Radiation

Polarization of radiation emitted by the Crab nebula is solely due to the fact that 

the radiation is caused by electrons spiralling around the magnetic field lines o f the 

nebula. This is electron synchrotron radiation which is always highly polarized i f  the 

magnetic fie ld is non-random and the medium is optically thin. The spectral 

distribution is commonly represented by a power law spectrum in photon flu e n cy . 

In this case the electron spectrum is also a power law,

n ( Y , £ )  = n0 ( £  ) Y * “ ( £ )  (3.75)
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where n(y,£) is the distribution o f electron energy, y  is the Lorentz factor, 

( l- v 2/ ^ ) ' 1̂2, a (r) is the spectral index and n0(r) is the electron density function.

The power o f synchrotron emission per steradian per unit frequency range is 

then given by equation (3.45). We can convert equation (3.45) to frequency v quite 

simply (see equation (3.71)) and insert the relevant constant to obtain

e2v  ̂^  ̂ °°
P(V) = e ^  £ [ n ( Y , ]. ) F/ ' _ y   \  dy (3 76)

/ 3  J V- Y 2 v „ ( r )  /0

where

_ 3eBsin8 n
0 4;tme { H )

and 0 is the angle between £  and the line of sight. me is the electron mass and e the 

electronic charge. B= |B 1 The function F is related to the modified Bessel function 

K 5/3 as shown in equation (3.66). From equation (3.75) a substitution can be made 

for n(y, l )  in equation (3.76) giving

e2 v„( £ )  nJ £ )
P(v) = --------------- ^------- f y ' “ ( 121 FZ— —  )  dy (3.78)

J V v J v „ ( r ) /

Replace v /  y  2 v0 ( £ )  with x:

l-  a (r)
2 ,  x , ,  v 2 ~ a(i)- 3

ez v ( I ) n  ( I )  /  v \  f 2  w  
P(v) = --------------     V v /  x F (x)dx (3.79)

2 /3  0 g

Hence, we can write an expression for the power of synchrotron emission per unit 

frequency for the whole volume,
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i- <*(£)

p (v) =  ~  J  v0( I ) ( ^ - )  2 n0( t ) F (a(!)) dV (3.80)

where

00 a(l)- 1 00
F (a ( i) )  = J  x 2 f K 5 ( x ' )  dx ' dx (3.81)

0 X 3

F(oc(n)) is a constant i f  a (r) , the spectral index, is a constant with wavelength, 

which is assumption 5 in chapter 6, section 6.1, so we w ill consider only the case 

where this holds. I f  we know the value o f the spectral index it is relatively simple to 

calculate F(a) numerically in terms o f gamma functions. We shall discuss the 

evalution o f the functions F and G in terms of gamma functions further in chapter 6. 

Once evaluated F(a) or G(a) can be removed from the integrand and becomes 

simply a scale factor in equations (3.85), (3.86) and (3.87).

The powers per unit volume per unit frequency which are related to the Stokes 

intensities are represented by equations which are similar to equation (3.80):

1- cc( e )

cos 2X(r) G (a(r)) dV (3.82)

1- a(r)

py (v) = J  n0( I ) v0( r ) 2 sin 2X(r) G (a(r)) dV
2v 3 y ^

(3.83)

where %(i) is the angle of polarization and

a ( i ) - 1

G «x(i)) (3.84)
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G (a(x)) is a constant i f  oc(x) is a constant and can be evaluated numerically in a 

similar way to F(a(r)).

Since vQ is related to the component of the magnetic field which is perpendicular 

to the line o f sight, B±, we can use equation (3.77) to replace v0 in equations (3.80),

(3.82) and (3.83). Also, we can change the integral over volume to an integral per 

unit area over the line o f sight. This gives us a set o f equations which tell us what

we would see in terms of Stokes intensities i f  we observed the magnetic field B±

along a line o f sight s. These operations yield the following three equations:

oo 1 +- Ot

I(v )  =  k  F (a ) j  n0( I ) (B ±) 2 ds (3.85)
-OO

oo 1+ a

IQ(v) = k G(a) J  nQ( r  ) (B J  2 cos 2% ds (3.86)
-oo

oo 1 + a

y v )  = K G(a) J  n0( E ) (B J  2 sin 2X ds (3.87)
-OO

where F(a), G(a) and x  are treated as constant with respect to i  and k is a constant 

for a given frequency,

1- a  
2 2

2 /3

Equations (3.85), (3.86) and (3.87) are used in the models described in chapter 6 to 

generate values o f the Stokes intensities for given magnetic field structures.
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Chapter 4

Plasma Theory

4J, Introduction

In this chapter we deal with the basic plasma physics needed to study the Crab 

nebula. The theory presented in section 4.2 follows that given in Bittencourt [59] 

and leads us to the concept of "frozen-in" magnetic fields. In section 4.3 we discuss 

briefly the plasma aspects of the Crab nebula. Section 4.4 elaborates on the previous 

discussion with reference to recent work in this field. In particular, section 4.4 

includes a discussion of the paper by Tsikarishvili et al [55] which prompted the 

work on the frozen-in field equation which is presented in section 4.5.

4.2 Macroscopic Magnetohvdrodvnamic Equations

A plasma can be treated as a conducting fluid and there is no need to specify the 

species o f particles present in the plasma. Transport equations can be derived which 

describe the behaviour of the plasma as a whole. As well as these hydrodynamic 

transport equations we require a set of electrodynamic equations to fu lly describe the 

properties o f the plasma. Dealing with a plasma in this way we can make several 

sim plifying assumptions which result in a set o f equations that completely describe 

the plasma behaviour. These equations, generally known as s im plified  

magnetohydrodynamic (MHD) equations, are as follows:

1) the equation of continuity for the plasma

% L + ^ -  (pmi )  = o <4-»
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2) the equation o f motion

Pm ( ^ )  -  (J A B) - V p (4.2)

3) the adiabatic equation for conservation of energy

V p  = v ? V p m (43)

4) the Maxwell curl equation for the electric field

3E
at

V a E  = - -== (4.4)

5) the Maxwell curl equation for the magnetic field

V a B = (4.5)

Note that we neglect the displacement current term in this Maxwell curl equation 

when dealing with a plasma;

6) a generalised form of Ohm's law in which the Hall effect term is neglected 

leaving

I ^ 0 ( E  + i a B )  (4.6)

In equations (4.1) to (4.6) viscosity and thermal conductivity are neglected. pm 

is the total mass density, v the average fluid velocity, J  the electric current density, 

B magnetic flux density, o0 is the electrical conductivity o f the fluid, E the electric 

field, | i0 the magnetic permeability of free space, p the total scalar pressure and vs 

the adiabatic speed of sound
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We also assume here that charge neutrality is maintained to a high degree on a 

macroscopic scale and that the time derivatives and pressure gradients are negligible 

in equation (4.6).

The generalised form of Ohm's law can be used to obtain a simple expression 

for the magnetic flux density B. Taking the curl of equation (4.6) we obtain

Y a  J  = g q [ (V a  E ) + V a  (x a  B)] (4.8)

Using equations (4.4) and (4.5) to replace the current density and the curl o f the 

electric field modifies equation (4.8) to

V A  (V A  B) = p0a0 + V A  (v A  B) ]  (4.9)

A well known vector identity shows that

V A  (V A  E) = V (V  .E) -  v 2f i  (4.10)

Here we make use o f Maxwell's equation for the divergence o f the magnetic flux 

density,

V .a  = 0 (4.11)

in conjunction with equation (4.10) so that equation (4.9) reduces to

^ = Y A ( i i A B )  + nmV 2B (4.12)

nm is called the magnetic viscosity and is given by the expression



The first term o f the right hand side o f equation (4.12) is thq f lo w  term  and the 

second is the diffusion term. It is often useful to consider the relative importance of 

these terms. To do this a ratio between the flow and diffusion terms is taken and 

called the magnetic Reynolds number,

where L  denotes the characteristic length o f variation o f the parameters. I f  Rm is 

much less than unity diffusion dominates the plasma behaviour. In this case equation 

(4.12) can be simplified to

f ^  = nmV2E  (R m « D  (4.14)

As a result o f diffusion the magnetic field w ill decay and L  is related to the decay 

time. The time o f decay depends strongly on the size of the conductor; the larger the 

conductor, the longer the decay time.

In the case where the magnetic Reynolds number is much greater than unity the 

flow  term dominates equation (4.12) which becomes

f  =  V A ( ! A l )  (R m » D  (4.15)
dt

In this case the above equation implies that, instead o f the magnetic field diffusing 

away, the magnetic field lines move along with the fluid (or vice versa). This type of

behaviour is usually referred to as a "frozen-in" field. The flu id  is free to move

independently along the magnetic field lines but independent motion perpendicular 

to the magnetic field lines is severely restricted. Any motion o f the flu id  in such a



direction causes an equivalent motion in the magnetic field and vice versa. An 

alternative illustration of this effect, with particular reference to pulsars, was given 

by Barnard [53]; "A frozen-in field implies that a field line that is anchored at a point 

on a surface that is co-rotating with the neutron star at a radius equal to the radius of 

the light cylinder w ill pass through the locus o f all points at which there is plasma 

which has passed through that particular point.".

4J. The Crab Nebula as a Plasma

The Crab nebula is an electron-positron plasma with an average electron density 

o f approximately ne=103cm~3 [12]. The plasma particles are produced by pair 

production around the pulsar's magnetic polar caps [40,51] and ejected along the 

open field lines, in the form of a relativistic MHD wind [4,13] into the main part of 

the nebula. The pulsar magnetosphere has two components [4,13,53,55], a closed 

region where the plasma and the pulsar co-rotate and an open region where the 

relativistic electron-positron wind dominates. The closed region exists within the 

pulsar’s light cylinder, while outside the light cylinder particles spiral around the 

magnetic field lines causing the observed electron synchrotron radiation which gives 

the Crab nebula many of its unique characteristics (see figure 4.1).

Theory o f the magnetic field structure in the closed region o f the pulsar 

magnetosphere is quite well understood and states that the field should have a dipole 

structure [43,53]. For this reason, and because the closed region is far too small to 

be observed at the resolution of the data used in this work (see chapter 5), we have 

concentrated on the region outside the light cylinder. Here the magnetic field is 

"frozen-in" to the plasma and we can use the set o f macroscopic M HD equations 

defined in section 4.1 to describe the plasma behaviour o f the open region o f the 

Crab nebula.
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Q  rotation axis of the pulsar
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extent of the light cylinder

Figure 4.1 : The Crab nebula pulsar is an oblique rotator, i.e. the magnetic axis is at an 

angle to the rotational axis. The angle between the magnetic axis and the rotational axis of 

the Crab pulsar is almost 90". rc is the radius of the light cylinder and 5 is the angle of 

divergence of the plasma as it leaves the light cylinder. (After Tsikarishvili et al [55].)

4 A  Recent Work on Plasma Aspects of the Crah Nebula

Treatment o f the Crab nebula as a plasma is not a new idea [42]. Deutsch [43] 

solved the frozen-in field equation (equation 4.15) to find the magnetic field 

structure surrounding a rotating magnetic star in a vacuum. Although Deutsch's 

solution did not allow for the effects of a plasma surrounding the star his model 

holds quite well in the closed region of the pulsar magnetosphere and the frozen-in 

field equation is still valid within a plasma that can be treated using the ideal MHD 

equations. A  more recent attempt to find a solution o f the frozen-in field equation in 

the open region o f the Crab nebula was made by Tsikarishvili et al [55]. These 

authors used the frozen-in field equation to describe the structure o f the magnetic 

field outside the light cylinder. The main difference between the treatment given by 

Tsikarishvili et al to that of earlier papers is that previously [41,42] the build up of a 

toroidal fie ld was thought to take place during the whole lifetime o f the nebula 

whereas Tsikarishvili et al postulate that the toroidal field component is generated 

continuously, and almost instantaneously, in the neighbourhood o f the light cylinder
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and then transferred to the rest of the nebula by the outflow of relativistic particles. 

The time for this transfer to occur is o f the order of months compared to transfer 

times o f hundreds o f years suggested by previous models. Thus the field structure is 

only changed by nebula expansion and movement o f the pulsar and the authors 

present a "quasi-stationary" picture o f the nebula where the necessary outlet for 

magnetic energy is provided by reconnection around the filaments and consequent 

annihilation o f directionally opposed fields.

The qualitative picture of magnetic field development presented in this paper is 

similar to previous models of the magnetic field structure but differs mainly in that a 

double layer disc o f toroidal magnetic field is expected to form around the pulsar's 

rotational equator rather than a single disc of toroidal field [44,45,50]. The disc is 

expected to be approximately 20 arcseconds in radius; this size corresponds to 4 

pixels at the resolution used by Woltjer [1] and 13 pixels at the resolution of 

McLean, Aspin and Reitsema's data [2] and so should be detectable (for further 

details see chapter 5).

Consider figure 4.1. The angle between the pulsar rotation axis and its magnetic 

axis is not exactly 90°. The electron-positron plasma flows out along the open field 

lines across the light cylinder boundary with a small divergence 5. The plasma 

leaves the light cylinder almost tangentially as the rotational energy o f the 

magnetosphere is transferred to kinetic energy o f the relativistic particles and carries 

the magnetic field with it. The magnetic field is frozen-in to the plasma outside the 

light cylinder and rotates more slowly than the pulsar; the rotation velocity o f the 

Crab nebula can be considered to be zero in the observer's frame. Thus the open 

field lines are dragged out into a spiral or torus. I f  the pulsar's magnetic axis were at 

exactly 90° to its rotational axis the open field lines for each o f the two magnetic 

poles would form two interlocked spirals which would move outwards. As these 

spirals moved outwards they would meet and reconnect."Chis would destroy the 

toroidal field components as the magnetic fields in the spirals are oppositely directed. 

Since the angle between the axes is not 90° the two spirals of frozen-in magnetic
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fie ld form separately, one above and one below the rotational equator (see figure 

4.2).

lines of magnetic 
field

pulsar
magnetic axis

Figure 4.2: The two discs of magnetic field produced as the pulsar rotates. The field 

direction in the top disc is opposite in sense to that in the lower disc. The inner boundary 

of the discs coincides with the outer boundary of the light cylinder. (After Tsikarishvili et al 

[55].)

Tsikarishvili et al predict that the toroidal magnetic field generated in this way 

w ill be transported radially outwards by the plasma. This field would decrease as the 

inverse o f the distance from the pulsar. Thus the synchrotron radiation intensity 

would decrease towards the edges o f the nebula as observed. The toroidal character 

o f the magnetic field is lost as it moves out through the nebula because the field 

cannot pass through the filaments as easily as the plasma can. Tsikarishvili et al use 

a theory, proposed in 1972 by Wilson [33], which allows the field to pass by the 

filaments by reconnection but also accounts for the enhanced radiation seen from the 

filaments by a build up o f magnetic field around them. The magnetic field wraps 

around the filament and eventually reconnects on the downstream side, leaving a 

ring o f magnetic field around the filament (see figure 4.3). Such rings o f magnetic 

fie ld would cause currents to run through the filaments as originally proposed by
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W oltje r [60]. Such enhancement could also account for the high degrees of 

polarization seen in the eastern and western bays o f the nebula ( chapter 5, figures 

5.1 and 5.3) where the polarization pattern indicates a ring o f field around a region 

o f conducting gas.

Figure 4 .3: As the plasma flows outwards past the filaments (shaded regions) the 

magnetic field is distorted around them. Areas of reconnection (X) occur on the 

downstream side of the filaments and rings of magnetic field form about the filaments 

which may explain the enhanced emission seen here and the presence of currents which 

are thought to run through the filaments. Filaments do not obstruct the outflow of 

magnetic field but contribute to the degradation of its toroidal character. (After Wilson [33].)

Qualitatively, this model describes the features o f the Crab nebula well but the 

quantitative analysis undertaken by Tsikarishvili et al [55] is not adequate. Choosing 

the rotation axis o f the pulsar to be the z-axis the authors expanded equation (4.15) 

in cylindrical polar coordinates and attempted to find a solution which would give an 

expression for the magnetic field component in the ({) direction; this would 

correspond to the toroidal component o f the field. Deutsch's solution o f the 

frozen-in fie ld equation [43] gives the field components in the open region o f the 

nebula in spherical polar coordinates as wave functions but Tsikarishvili et al have
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tried to solve the equation for a non-wave field by setting all time derivatives o f the 

magnetic fie ld equal to zero. The main problem with their analysis is that they 

neglected terms from the expansion of equation (4.15) which are in fact not 

negligible and were inconsistent in their treatment o f the radial component o f the 

magnetic field. In equation (8) o f Tsikarishvili et al's paper the radial component is 

considered to be independent of the distance from the pulsar but in equation (10) is 

given as a function of the distance

Br = Brc ( ^ ) k

where Brc is the radial component of the magnetic field at the perimeter of the light 

cylinder, rc is the radius of the light cylinder, r is the distance from the pulsar and k 

is a constant which the authors set equal to 2 outside the light cylinder. This 

expression is similar to expressions used in Barnard [53]. The method o f solution of 

the partial differential equation for B^ used in Tsikarishvili et al's paper is incorrect 

due to the neglect o f terms which do not have a negligible effect on the solution and 

the fact that the solution is obtained by setting each term equal to zero in turn, 

solving the equation thus obtained and superposing the solutions o f each o f these 

equations. The solution obtained in this way is not comparable to a static case o f 

Deutsch's wave solution although it satisfies the criteria outlined by Tsikarishvili et 

al in their qualitative discussion.

4.5 Treatment of the Frozen-in Field Equation

We w ill now consider equation (4.15)

4 £  = V a & a B)dt

in relation to the static solution (3B/5t=0) for the Crab nebula in more detail. The
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curl o f a vector u in cylindrical polar coordinates is

The cross product o f the vectors v, the velocity o f the plasma, and B, the magnetic 

flux intensity, in cylindrical polar coordinates is

combining equations (4.16) and (4.17) we find that we have three equations 

involving the components of the magnetic field:

For a static solution the time derivatives in equations (4.18), (4.19) and (4.20) 

should equal zero. These three partial differential equations cannot be solved unless 

we know the form of the velocity components with relation to the magnetic field, or 

vice versa.

In the solution attempted by Tsikarishvili et al all dependencies on <}) were 

neglected so that all derivatives with respect to (}) were equal to zero. I f  the field 

generated is a spiral field as suggested and is generated simply by winding up the 

open magnetic field lines then it is reasonable to assume that the magnetic flux 

density does not vary with (j) i.e. the field is rotationally symmetric and w ill look the 

same no matter from which value o f <}) it is viewed. Making this assumption

1 A B = I  (v, Bz - vzB , ) + £  (vzBr - vrBz) + i  (vrB, - v, Br) (4.17)

9Br _ 1 3
(vr V v, Br ) - J ^ ( vzBr - vrBZ) (4.18)at racj)

(4.19)

(4.20)
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simplifies equations (4.18), (4.19) and (4.20) as follows:

3Br _ ^
~ W ~  0 -  '  (VA  ■ VrB^ (4.21)

Ob. -v

n r = 0 = d z (v* Bz ' VzB») '  aF(VrBa" v»Br) (4.22)

OB.
~dt = °  = f ( J (r(VzBr - VrBz) (4.23)

From equation (4.11), Maxwell's equation for the divergence o f the magnetic flux 

density, we see that

Neglecting the (j) derivative term we have

1 0 o b7
7 i < rBr>+ T ^ = °  <4-25)Or v r/ Oz

We must assume that Bz is a function of z, especially i f  the toroidal component is 

confined to two discs in the rotational equatorial region o f the pulsar. Therefore, rBr 

must be a function o f r and z and not a constant as is assumed in equation (8) of 

Tsikarishvili et al's paper.

We now have a set o f four partial differential equations, (4.21), (4.22), (4.23) 

and (4.25). In order to solve these equations for the magnetic field structure we still 

need to know the form of the velocity field. No further analysis o f these equations 

w ill be made in this thesis. The original intention behind the study o f the paper by 

Tsikarishvili et al [55] was to obtain an expression for B^ which could be employed 

in the theoretical model which had been developed (see chapter 6), not to derive an
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exact analytical solution of this set of equations. Solution of equations (4.21), 

(4.22), (4.23) and (4.25) would be extremely time consuming and is not within the 

scope o f this thesis, but it would be interesting i f  a solution were found as it could 

then be incorporated into the theoretical model.
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Chanter 5

Analysis of the Data Sets of Woltier and 
McLean. Aspin and Reitsema

5.1 Introduction

In this chapter we present the data analysis performed as part o f this project. We 

discuss the tests and manipulations which were performed on the two data sets and 

the results o f these tests. The observations which produced the two data sets used in 

this work are separated by a period of 26 years.

Photoelectric observations of the surface brightness and linear polarization o f the 

Crab nebula were made by Baade[l] and Walraven[25] in 1954-55. This data was
—  M

published in a paper by W oltje r[l]. The resolution of the data is 5.25 over an area 

o f 5x4 arcminutes; this covers all o f the optically visible nebula. In all, Woltjer's 

data set contains values o f the angle of polarization %, the degree o f polarization n  

and the intensity o f emitted radiation from the nebula I for 1044 pixels. 57 other 

pixels w ithin the area observed had no measured data values and so values were 

interpolated from surrounding data points (see section 5.2) making a total number of 

1101 pixels. This data set is quite small, was typed into the Acorn Cambridge 

Workstation directly from the paper and is easily handled by the computer programs 

used whereas the second data set used in this work is much larger. This second data 

set come from CCD observations o f the polarization parameters o f the Crab nebula 

made by McLean, Aspin and Reitsema in 1981 [2]. These observations cover a 

slightly smaller area o f the nebula than W oltjer’s data but the observations were
tf ”

made using a resolution o f 1.5 instead of 5.25 . McLean, Aspin and Reitsema's 

data set covers the observed area with a 357x264 pixel scan. For each pixel there is a 

measurement o f the intensity I, the Stokes parameter Q and the Stokes parameter U. 

This data was obtained by Cawthorne and Brown on the Royal Observatory

59



Edinburgh s STARLINK Vax. Stars were removed from the field and the data then 

stored on a magnetic tape in Vax Fortran format. In order for it  to be used in this 

project the data was read from the tape onto the Glasgow University Local Area 

V A X  Cluster (LAVc), which is a system comprising one V A X  8250 and two 

M ic roV A X  3600 processors. In itia lly  all the work on Woltjer's data set was 

performed using an Acom Cambridge Workstation but was repeated using the LAVc 

mainframe computers.

Listings o f all the computer programs mentioned in this chapter can be found in 

appendix A. These programs are written in Fortran.

5.2 Initial Analysis of Woltier's Data

Interpolations o f data values for the 57 pixels with no recorded data were 

obtained by simply summing the surrounding data values for the required parameter 

and dividing this sum by the number of data values used. Most interpolations used 8 

data values, but some had as few as 3 existing measurements for the calculation. 

This method yielded interpolated data values which did not vary greatly from 

neighbouring measurements and, in fact, gave a smooth variation on the small scale 

which was comparable with areas of the nebula where no interpolations were made.

In its original format the data comprised two files, one containing values o f 

polarization angle, degree o f polarization and intensity and another defining the 

length o f each row of data relative to the greatest extent o f either side o f the nebula 

(i.e. how wide the nebula is at that height o f the ordinate axis). This measurement of 

the width o f the nebula was necessary because the measurements were made by 

scanning from one edge of the nebula to the other at a given height and not by 

scanning a rectangular area covering the nebula and some o f the surrounding sky. 

Simply plotting each row of data from these files, starting at the far left hand side of 

the plotting area would not give the plot shown in figure 5.1 but would give a picture 

o f the nebula with a straight vertical edge on the left and an uneven outline on
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POLARIZATION MAP OF WOLTJER DATA
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Figure 5.1: A polarization vector plot produced from Woltjer’s data set. North is vertically 

upwards and east is to the right. Notice the areas of strong polarization with a sweeping 

pattern, the eastern and western bays, which are in the centre of either edge of the 

nebula. The angle of polarization is represented as an angle rotated anti-clockwise from the 

vertical and the degree of polarization is represented as the length of the line. As with 

other polarization plots in this thesis the maximum degree of polarization here is 

approximately 70%.
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the right. Using the values for the ends of each line o f data relative to the ordinate 

axis a polarization map could be plotted (see figure 5.1). F illing  the region not 

covered by the observations with null data values produced a set o f data which 

occupied a 51x37 pixel box and facilitated further manipulation o f the data. This 

process was performed by program FILLCRAB.FOR. In the filled  data set the 

pulsar is positioned at the coordinates (30,15).

The next step in analysis o f Woltjer's data was the conversion o f the original 

data from  angle, degree o f polarization and intensity to intensity and Stokes 

parameters (Q and U). This was achieved by use of the relations given in chapter 2, 

equations (2.21):

Q = FIcos(2X) (5.1)

U = FI sin (2X) ^  2 )

The program IQUPROG.FOR performs the calculations necessary fo r the 

conversion which was necessary to enable direct comparisons to be made between 

Woltjer's data and McLean, Aspin and Reitsema's data [2].

A polarization vector plot as shown in figure 5.1 can be produced from 

W oltjer's original data set or the filled  data set quite straightforwardly. The 

polarization angle can be plotted as a rotation anti-clockwise from the vertical 

direction (this corresponds to the north direction on the sky) and the degree o f 

polarization can be represented as the length o f the line drawn. Program 

CRABPLOT.FOR produces such a vector plot. To produce the same diagram from 

the Stokes parameters we must first recalculate the angle and degree o f polarization 

using the relations given by equations (2.17) and (2.18) in chapter 2:

n  = (U2 + Q2)2 (5-3)
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tan2% = (5.4)

The vectors can then be drawn. Program FULLPLOT.FOR draws such a 

polarization vector plot, which is identical to figure 5.1, using the converted data set.

5̂ 3 Initial Analysis of McLean. Aspin and Reitsema's Data

Since McLean, Aspin and Reitsema's (hereafter referred to as MAR) data set 

contains values o f three parameters for almost 105 pixels it is not useful to plot the 

polarization vectors for the whole area covered by this data in one map; in order for 

each polarization vector to be discernibly separate and indicative o f the degree o f 

polarization such a map would have to be at least 1.5m2. Because of the sheer 

volume o f data in this set the main data file was separated into a number o f smaller 

data files. This was a relatively simple process but is repetitive and consumes large 

amounts o f CPU time.

The program HIGHRES.FOR sorts the data into 56 files each covering an area 

o f 51x33 pixels. Any o f these files can then be selected and a polarization plot made 

using program HRPLOT.FOR, which employs the same plotting method as 

FULLPLOT.FOR. Program HIGHRES2.FOR sorts the main data file  into 204 

files, each covering a 21x22 pixel area. Any o f these areas can be plotted by 

HR2PLOT.FOR. The final program in this series is HIGHRES3.FOR. This 

program sorts the main data set first into 21x24 pixel areas and then into 1683 7x8 

pixel areas. This two stage process was employed simply because it is more efficient 

in terms o f program length and running time and because it is not sensible to open 

1683 Fortran logical units simultaneously as this is wasteful o f filespace and running 

time.

The point o f this process was twofold. First, we can use HR3PLOT.FOR to 

plot the polarization vector map for any 7x8 pixel area of the nebula we wish and can 

investigate this area at high resolution. By plotting the vector maps for several areas
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it was possible to determine that the pulsar was situated at a position in the nebula 

which was covered by the 427th output file created by HIGHRES3.FOR. The angle 

o f polarization changed quite rapidly in this area several times whereas the variation 

in the surrounding areas was smooth and in only one direction (see figure 5.2). The 

second and main reason for producing the 7x8 pixel files was to reduce the 

resolution o f MAR's data to a resolution similar to that o f Woltjer's data. The main 

data set had to be divided into 7x8 pixel blocks because these numbers (like 51 and 

33, 21 and 22 and 21 and 24) are factors o f 357 and 264 and this meant that the 

computer program for sorting the data could be relatively simple. Fortunately, this 

division o f the data leads to a decrease in resolution which is such that MAR's data 

is comparable to Woltjer's. For each 7x8 block o f pixels and average was taken for 

each o f the three parameters measured. The average was obtained by adding all the 

non-zero values for each parameter within the block and dividing by the number of 

such values (see program LOWRES.FOR). This allows us to find the average value 

o f a parameter at the edge of the nebula without including null data points which 

indicate the region covered by the observations which are not part o f the nebula. 

Inclusion o f these points would result in a lower average value of the parameter than 

we would expect. As a result o f this reduction in resolution we obtained a data set 

which represented a 51x33 pixel box covering a region o f the nebula slightly smaller 

than that covered by Woltjer's data. This data set was filled with zeros so that not 

only did it represent 51x37 pixels (the same as Woltjer's filled data set), but so that 

the pulsar appears in the same pixel in both data sets; x=30, y=15. It is obviously 

much easier to compare the two data sets when they have been processed in this 

fashion. A  polarization vector plot o f this data set, produced by 

LOWRESPLOT.FOR, is shown in figure 5.3.
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Figure 5 .3: A polarization vector plot produced from MAR’s reduced resolution data set. 

North is vertically upwards and east is to the right. Notice again the areas of strong 

polarization with a sweeping pattern, the eastern and western bays, which are in the centre 

of either edge of the nebula. The angle of polarization is represented as an angle rotated 

anti-clockwise from the vertical and the degree of polarization is represented as the length 

of the line.
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L i  Test for an Averape nr Preferred Angle of Polarization

Two methods were used to investigate the behaviour of the angle of polarization 

%. Each method was applied to Woltjer's data and to the reduced resolution set o f 

MAR's data.

The first method of investigation was a binning method. The polarization angle 

data was sorted into 5° bins by BINS.FOR and BINS 1.FOR and the resulting plots 

o f number in each bin versus angle for each data set are shown in figure 5.4. The 

graph shows that the most common angle of polarization lies between 150° and 

170°. The spread in the peaks o f the histogram is quite large (fu ll width at half 

maximum -25°). Therefore an exact value of the most common angle of polarization 

can not be given but we can say that the most common angle lies w ithin the 

150°-170° range. This result was used later to check that the second testing method 

gave results in the correct range. The large peak at 0° in the plot for MAR's binned 

data is due to the large number of null data points in this data set.

The second method of investigation of polarization angle utilises a type of 

chi-squared test to find the preferred angle of polarization. The preferred angle test 

assumes that the nebula has a uniform angle of polarization %0 and then tests how 

well this hypothesis compares with the observational data. The difference between 

the assumed %q and measured angle is found for each data point. In ANGLE 1.FOR 

and ANGLE2.FOR the sum is taken of all the differences for each data point and 

this is repeated for values o f Xq from 0° to 180° at 5° intervals. ANGLE 1.FOR deals 

w ith  W o ltje r's  data and ANGLE2.FOR w ith  MAR's  data. Programs 

ANGLE1S.FOR and ANGLE2S.FOR deal with W oltjer's and MAR's data 

respectively. These programs take a sum of the squares o f the differences over the 

same range o f values o f %g as ANGLE 1.FOR and ANGLE2.FOR. The results of 

these four tests are shown in figures 5.5 and 5.6. The linear sum test was performed 

to check that the shape o f the squared sum curve was not an artifact o f the test 

method. Clearly, the minimum value of the sum of the squared differences should be
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related to the most common angle of polarization.

Woltjer data 
o MAR data

0 20  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  1 80

bin angle

Figure 5.4: A histogram of the number of occurances of a polarization angle in the Crab 

nebula. The size of the bins is 5°. The large peak at 0° for MAR's data is caused by the 

number of null data points in this data set. There are less null data points in Woltjer's data. 

The figure shows that the most commonly occuring angle in Woltjer's data is 155° and in 

MAR's data it is 165°.

This test indicates that the preferred angle of polarization for Woltjer’s data set is 

-150°, which compares favourably with the result obtained by binning the data. For 

MAR's data the preferred test indicates a preferred angle of polarization o f -165°, 

which is again within the range of the binned data results. As can be seen in figures 

5.5 and 5.6 the minimum of the curve is quite shallow and can therefore only give 

an approximate value o f the preferred angle but as this is a test over the whole nebula 

we would not expect the curve to have a very sharp minimum.
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Figure 5 ,5 : Results of the linear sum and squared sum preferred angle tests for Woltjer’s 

data. The linear sum was taken to test whether the shape of the squared sum curve was a 

product of the squaring or a feature of the data. As we can see above the shape of the 

curve is a feature of the data. The preferred angle of polarization indicated by these curves 

is ~155°.
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Figure 5.6: Results of the linear sum and squared sum preferred angle tests for MAR’s 

data. The preferred angle of polarization indicated by these curves is ~165 .
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The most common direction o f polarization in the Crab nebula is then in the 

north-west to south east direction. This result agrees with those o f Rees and Gunn 

[41], Scargle [61] and others who have made studies of the overall polarization o f 

the Crab nebula.

Having established that this test o f preferred angle o f polarization was adequate 

an examination was made of the preferred angle o f polarization in various areas o f 

the nebula. In order to separate the nebula into various areas of interest both sets of 

data (Woltjer's filled set and MAR's reduced resolution set) were converted from 

Cartesian coordinates to polar coordinates. Since the position o f the pulsar relative to 

both data sets was known (see sections 5.2 and 5.3) the pulsar position was used as 

the orig in o f the polar coordinate system. The coordinate conversions were 

performed by programs COTRAN.FOR and COTRAN1.FOR. Here we assume that 

the pulsar is in some way located at the centre of the nebula. This may not be true, as 

a backward extrapolation o f the pulsar's proper motion does not bring it to a position 

which coincides with the extrapolated centre of the expansion o f the filaments in 

1054 AD [5]. However, the proper motion o f the pulsar is small enough that it is 

below the resolution o f either o f the data sets used in this project. Therefore, we can 

use the pulsar position as a reference point for comparison of the two data sets.

Two programs, SECTOR.FOR and SECTOR1.FOR, were developed in order 

to investigate the distribution of polarization angles in the Crab nebula in more detail. 

These programs use the same statistical test as ANGLE1S.FOR and 

ANGLE2S.FOR but test at 1° intervals o f x0 rather than 5° intervals and deal with 

W oltjer’s and MAR's data in their polar coordinate forms respectively. Examples o f 

the results from these programs are shown in figure 5.7. These graphs show the 

results plotted at 5° intervals (this gives the same curve as plotting all the data, but 

the data points are not so crowded) for the preferred angle test for a sector o f each 

data set which has a radius o f 10 pixels from the pulsar and covers an angle o f 90°. 

The minima of the curves shown in figure 5.7 are narrower than those in figures 5.5
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a) Results from the preferred angle test on 
a sector of radius 10 pixels, 0° to 90°.
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b) Results from the preferred angle test on 
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c) Results from the preferred angle test on 
a sector of radius 10 pixels, 180° to 270°.
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d) Results from the preferred angle test on 
a sector of radius 10 pixels, 270° to 360°.
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Figure 5 .7 : Results of the preferred angle tests for various sectors of the nebula.
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and 5.6 which indicates that there is less variation o f polarization angle in these 

regions than in the nebula as a whole. Also the preferred angle o f polarization 

indicated by the minimum of the graphs varies from one sector to another.

Radius of annulus (pixels) Preferred angle of pol'n D ifference 

(MAR - W)Inne r Outer W o lt je r MAR

0 5 1 4 8 ° ± 1 2° 1 5 9 ° ±  2° 1 1 °

5 1 0 1 5 7 ° ±  6° 1 6 8 ° ±  7° 1 1 °

1 0 1 5 1 7 0 ° ±  6° 3 ° ±  7° 1 3°

1 5 2 0 1 3 8 ° ± 6° 1 4 7 °  ± 8° 9°

2 0 2 5 9 5 ° ±  7° 1 8 0 ° ± 12°

oLOCO

2 5 3 0 1 3 7°±  7° no data -

Table 5.1 : Results from SECTOR.FOR and SECTOR1.FOR for annuli centred on the 

pulsar. The preferred angle of polarization and the range of plausible values, derived from 

the standard deviation of the data, are given for both data sets. The results for the outer 

annuli are not reliable due to the lack of data values in these regions. 1 pixel ~5 

arcseconds.

Tables 5.1 and 5.2 show the results from the programs SECTOR.FOR and 

SECTOR 1.FOR. Table 5.1 presents the preferred angle fo r W oltjer's data, 

McLean's data and the difference between these values for concentric annuli o f 5 

pixels width. The two outer annuli lack enough non-zero data values to give 

meaningful results as they mainly cover the region outside the edges o f the nebula. 

The 20-25 pixel and 25-30 pixel annuli for Woltjer's data do not contain enough data 

points to provide reliable results. Hence the difference o f 85° shown for the 20-25 

pixel annulus is discarded. Table 5.2 shows the preferred angle for each data set in 

the same annuli as table 5.1 but the annuli have been divided into four sectors, 

0°-90°, 90°-180°, 180°-270° and 270°-360°. In both table 5.1 and 5.2, the figure 

given after each preferred angle of polarization is the plausible range o f values o f the 

angle derived from the standard deviation o f the squared sum data by
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range = ± 2

In the above expression n is the number of data values in the area which is under test 

and o the standard deviation o f the data. Although this figure is not actually an error 

on the preferred angle, which is in fact related to the mode o f the data, the range of 

plausible values gives us an indication o f how widely the observed polarization 

angles in a region o f the nebula vary from our model o f a uniform polarization angle 

throughout the nebula. We would not expect this model to be a good f it  to the Crab 

nebula but we need to know how good the model is before we can interpret the 

meaning ( if  any) o f the difference between the preferred angles o f polarization for 

the two data sets. The test used thoughout this section has a related confidence level 

o f 95%. The range o f plausible values for most annuli o f sectors is large compared 

to the differences given in the fifth  columns o f tables 5.1 and 5.2. This does not, 

however, mean that the difference is purely a product o f the non-uniform nature o f 

the data. A  visual inspection o f figures 5.1 and 5.3 shows that, at least in the central 

region o f the nebula, there is a small difference in polarization angles between the 

two data sets.

We can also perform a simple test o f the difference between the data sets over 

the whole nebula by calculating the difference between the average polarization 

angles o f the two sets o f data

where o w and a M are the standard deviations and nw and nM the number o f 

measured polarization angles for W oltjer and MAR's data respectively. This test 

gives us a result o f 11 °± 5°, at a confidence level o f 95%, which shows that there 

has been some significant and measurable change in the polarization pattern o f the
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nebula in the time between observations. This is the difference between average 

angles o f polarization rather than between the preferred angles o f polarization but 

confirms the result, from table 5.1, that the net change in preferred angle over the 

whole nebula is 11°.

Inner and outer 

radii of annulus
Sector

Preferred angle Di f ference 

(MAR - W)W o l t j e r MAR

0 - 5 0 ° - 9 0 ° 1 3 4 ° ±  1 7° 1 5 3 ° ±  5° 1 9°

0 - 5 9 0 ° - 1  80° 1 4 6 ° ±  2 8 ° 1 6 0 ° ±  3° 14°

0 - 5 1 8 0 ° - 2 7 0 ° 1 5 8 ° ±  7° 1 6 9 ° ±  3 ° 1 1 °

0 - 5 2 7 0 ° - 3 6 0 ° 1 5 9 ° ±  1 1 ° 1 5 6 ° ±  2° - 3 °

5 - 1 0 0 ° - 9 0 ° 1 5 3 ° ±  1 2° 1 6 7 ° ± 14° 1 4°

5 - 1 0 9 0 ° - 1  80 ° 1 3 1 °± 1 2° 1 6 5 ° ± 12° 3 4 °

5 - 1  0 1 8 0 ° - 2 7 0 ° 1 7 1 °± 1 0° 1 7 0 ° ±  1 5° - 1 °

5 - 1 0 2 7 0 ° - 3 6 0 ° 1 7 1 °± 1 0° 1 6 9 ° ± 16° - 2 °

1 0 - 1 5 0 ° - 9 0 ° 1 6 4 ° ±  9° 12°± 13° 2 8 °

1 0 - 1 5 9 0° -1  8 0 ° 1 7 0 ° ±  1 1 ° 1 8 0 ° ± 13° 1 0°

1 0 - 1 5 1 8 0 ° - 2 7 0 ° 7°± 12° 5°± 15° - 2 °

1 0 - 1 5 2 7 0 °  - 3 6 0 ° 1 6 1 °± 2 1 0 1 6 8 ° ± 15° 7°

1 5 - 2 0 0 ° - 9 0 ° 1 2 7 ° ±  1 6° 1 3 0 ° ± 1 1 ° 3°

1 5 - 2 0 9 0° -1  8 0° 1 3 4 ° ±  10° 1 8 0 ° ± 15° 4 6 °

1 5 - 2 0 1 8 0 ° - 2 7 0 ° 1 5 6 ° ± 13° 1 5 1 °± 1 0° - 5 °

1 5 - 2 0 2 7 0 ° - 3 6 0 ° 1 4 3 ° ± 12° 1 3 7 ° ±  5 ° - 6 °

Table 5 .2 : Results for the preferred angle test in sections of the nebula defined by an 

inner and outer radius and limiting angles. Radii of the annuli are in pixels. 1 pixel ~5 

arcseconds.

It is interesting that in table 5.2 we see that there seems to have been a large 

change in the polarization angle in the northern half o f the nebula, where an 

anti-clockwise rotation o f -20° has occurred, but in the southern half o f the nebula 

the rotation o f the polarization angle appears to be small (~5°) and in the clockwise 

direction. The pattern which is repeated in the data points to the existance o f a real 

effect, even though the errors on each difference are quite large. These results are 

discussed further in section 5.5.
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L I  Comparison of the Two Data Sets

The Crab nebula lies approximately 2 kpc away from the Earth. The change in 

angular position o f any moving pan o f the nebula over a period o f time can be 

calculated using the expression

angular displacement _ (velocity o f movement)x(time period)x(2xlQ5) 
in arcseconds (distance to the nebula)

where the factor o f 2x10s converts the angle from radians to arcseconds.

It has been postulated that some features within the nebula may move at close to 

or at the speed o f light [4,13]. I f  this were the case the change in angular position of
ft t

such features over a 26 year period would be 780 (13 !). I f  we can detect 

movements on the scale o f Woltjer's resolution then we should be able to detect 

movements which occur with velocities o f more than 2000 kms"1. Since quoted 

expansion velocities for the filaments are o f the order o f 2000 km s'1 [5,26] we 

might expect to see differences between the two data sets, although there may only 

have been movements o f the scale o f one pixel. A pixel for pixel comparison o f the 

data sets was attempted but did not yield any meaningful or useful results. This may 

be because the intensity ranges o f the data sets are different and d ifficu lt to calibrate 

with respect to each other or due to the difference in the quality o f the data (see 

section 5.6), but is probably mainly due to the fact that a given pixel does not 

correspond to exactly the same part o f the nebula in both data sets. The reduction in 

resolution o f M AR's data is such that it is close to but not exactly the same as 

W oltje r’s resolution. We have manipulated the data so that the pulsar appears in 

pixel (30,15) in both data sets but as we move radially outwards from the pulsar the 

mismatch between the area o f the nebula covered by a given pixel o f each data set 

increases. In order for significant pixel to pixel comparisons to be made between 

W oltjer and MAR's data the resolution o f MAR's data must be made commensurate 

with Woltjer's resolution so that we would be studying the same area o f the nebula
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separated by a time span of 26 years. When we are considering annuli or sectors o f 

the nebula this mismatch effect is not significant as the difference in coverage is 

small compared to the size of the whole area covered.

The results o f the statistical tests above show that there has been some change in 

the direction o f the angle of polarization, and thus in the direction o f magnetic field, 

in the Crab nebula in the 26 year period between observations. The results in table 

5.2 im ply that the magnetic field has rotated anti-clockwise in the northern half of the 

nebula and clockwise in the southern half o f the nebula. We can not state the exact 

angular extent o f these rotations but the rotation in the nonhem half of the nebula is 

larger than that in the southern half. It is possible that the -5° clockwise rotation o f 

polarization angle in the southern half o f the nebula is an effect o f the non-uniformity 

o f the data. The anti-clockwise rotation in the nonhem half of the nebula is large and 

like ly to be a real effect. The cause o f this effect is not known. I f  these effects were 

due solely to expansion of the nebular material we might expect to see changes o f the 

same scale in all pans o f the nebula. The cause o f other asymmetries in the nebula is 

thought to be the motion o f the pulsar, 110 kms'1 towards the west-nonh-west [3]. 

How the pulsar motion would affect the magnetic field is not cunently known but 

this motion is in the direction o f the area o f the nebula where we see the greatest 

change in polarization angle with time. Before we can say exactly what causes the 

change in the nebular magnetic field with time we need to know how the magnetic 

field in the nebula is derived from the pulsar and how far into the nebula any toroidal 

fie ld created by the pulsar extends. These questions can not be answered by current 

theories.

5.6 Finding a Centre of the Polarization Pattern of the 

Nebula
An investigation o f the data sets was made to examine whether the nebula had a 

centre o f symmetry in  either polarization or intensity. The programs which
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performed this test are NEWCEN.FOR, NEWCEN1.FOR, NEWICEN.FOR and 

NEW ICEN1 .FOR. The programs NEWCEN.FOR and NEWCEN1.FOR tested for 

a centre in the polarization pattern o f Woltjer's and M A R ’s data respectively. 

NEWICEN.FOR and NEWICEN1.FOR tested for a centre in the intensity data for 

Woltjer's and MAR's data respectively.

The method used to search for a centre is basically the same for each program. 

First the program user enters the Cartesian coordinates o f the centre which is to be 

examined. The appropriate data set is then read from a file. For the polarization 

centre test the Stokes parameters o f each pixel are converted to Stokes intensities. 

M ultiplying the Stokes parameter of a pixel by its intensity gives the Stokes intensity 

(see chapter 2, equations (2.16)). The program then runs through the data selecting 

pixels from an area which measures 32x20 pixels and is centred at the point which is 

being investigated. The search is restricted to this area to confine the test to the body 

o f the nebula and so prevent null values being tested against actual values; this 

would lead to spurious results. The selected pixels are dealt with as pairs. Each pair 

o f pixels comprises a pixel selected in turn along the scan o f one row o f data and the 

pixel which is diametrically opposite to this relative to the chosen centre. For each 

pair o f pixels the difference between the measured parameters is calculated and a 

sum o f the squares o f these differences is computed.

The results obtained from the four centre testing programs were used to create 

the three dimensional plots shown in figures 5.8 and 5.9. The position o f the pulsar 

is marked w ith a P in these diagrams and is at (30,15). Figure 5.8 shows the results 

o f the tests on Woltjer's data. The three dimensional plots do not indicate that there 

is a definite centre either o f the polarization pattern or intensity. The lowest point in 

the polarization test map is at (23,15) but does not coincide with the lowest point o f 

the intensity test map, (22,20), which is not very well defined. It is probable that 

these poor results reflect the quality o f the data rather than the lack o f a centre o f the 

polarization pattern. Figure 5.9 shows the results for MAR's data. Here we see that
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there is an indication that point (32,18) may be a centre o f symmetry o f intensity and 

that (31,17) is a likely centre o f polarization symmetry. The most likely centres for 

each set o f results are in the same part of the nebula. Also these points are placed to 

the north-west o f the pulsar's position. It is very interesting to note that the centroid 

o f the X-ray emission o f the Crab nebula is is the north-west region o f the nebula 

[45] and that the pulsar's proper motion is in the direction o f this region. MAR's 

data therefore seems to indicate that any symmetry in the nebula is like ly to be 

centred to the north-west o f the pulsar by 5-10 arcseconds (1 or 2 pixels at or 

resolution). It is unfortunate that we can not determine whether or not the centre of 

symmetry has moved in the time between the observations o f W oltjer and M AR but 

this would be unlikely i f  the effect were due to the motion o f the pulsar. As stated 

above, the estimated motion o f the pulsar is 110 kms-1 [3] and would in fact be 

undetectable at the resolution o f the data used here. In the v ic in ity  o f the light 

cylinder the estimated Alfven speed is much less than the velocity o f the pulsar so we 

can not explain the observed asymmetry in terms o f plasma waves caused by, but 

propagating ahead of, the pulsar motion (also the plasma is unlikely to support 

plasma waves [4,13]).
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WOLTJER DATA Q AND U SUM

24

19 34

WOLTJER DATA INTENSITY

24

29 34

F igure  5 .8 : A three dimensional plot of the results from the centre testing programs 

NEWCEN.FOR and NEWICEN.FOR, which test Woltjer's data. In the diagram which shows 

the results of the test on the Stokes parameters Q and U the lowest point of the graph is at 

(23,15). For the results of the test of the intensity data the lowest point is at (22,20). In both 

diagrams the pulsar is at position (30,15).
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MCLEAN DATA Q AND U SUM

20 34

MCLEAN DATA INTENSITY

24

20 34

Figure 5 .9 : A three dimensional plot of the results from the centre testing programs 

NEWCEN1 .FOR and NEWICEN1 .FOR, which test MAR's data. In the diagram which shows 

the results of the test on the Stokes parameters Q and U the lowest point of the graph is at 

(31,17). For the results of the test of the intensity data the lowest point is at (32,18). In both 

diagrams the pulsar is at position (30,15).
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Chapter 6

Constructing a Model for the Crab Nebula
Magnetic Field Structure

6J. Introduction

In this chapter we discuss the development o f a computer model which w ill 

calculate the polarization parameters, intensity I, degree o f polarization n  and angle 

o f polarization %, produced by synchrotron emission from electrons in a specified 

magnetic field. A ll the computer programs mentioned in this chapter can be found in 

appendix B. The programs are written in Fortran and were developed on the LAVc 

computers. The polarization maps in this chapter were produced using 

SIMPLEPLOT on the Glasgow University Physics and Astronomy Department IBM  

4361 computer. A ll integrations in the programs were performed by a routine from 

the NAG Fortran library (D01AJF). NAG routine S14AAF was used to evaluate the 

modified Bessel functions found in equations (3.85), (3.86) and (3.87).

In order to construct a computer program which calculates the polarization 

parameters o f a model o f the Crab nebula's magnetic field structure it is best to begin 

by simplifying the problem as much as possible. We can then gradually add features 

which w ill make the model more realistic. The in itia l assumptions made for this 

model were:

1) that the magnetic fie ld does not change with time, i.e. we did not allow for 

rotation o f the pulsar or expansion o f the nebular material. Rotation o f the pulsar 

may cause winding effects in the nebular magnetic fie ld and the generation o f 

toroidal fields (see chapter 4, section 4.3). I f  the field is "frozen-in" (see chapter 

4, section 4.3) to the nebula then expansion o f the nebular material w ill cause 

expansion o f the magnetic field. Obviously, both o f these effects could play a 

key role in the formation o f the actual structure o f the Crab nebula magnetic field
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but are too complicated to be incorporated into the initial model;

2) that only the electrons emit synchrotron radiation. This is not true as the 

positrons w ill also emit synchrotron radiation but the effect o f the positrons w ill 

be to double the intensity of the observed radiation, as there must be an equal 

number o f electrons and positrons in the plasma for charge neutrality to be 

maintained. The positrons spiral around the magnetic field lines in the opposite 

sense to the electrons. However, it is linear polarization which we see and we 

can not distinguish between the two species o f particle as the linearly polarized 

light emitted by an electron is polarized at exactly 180° to that from a positron. 

The effect o f the positrons on angle and degree o f polarization is n il and since 

these are the very quantities we are studying we can neglect the effect o f the 

positrons without adversely affecting our results;

3) that the electron density of the nebula is homogeneous. A  glance at a photograph 

o f the Crab nebula, e.g. figure 1.1, w ill show that this is clearly not the case in 

reality. The intensity o f synchrotron radiation is proportional to the electron 

density (see equation (3.85)). The intensity o f optical synchrotron radiation from 

the Crab nebula is far from uniform which indicates a non-uniform electron 

distribution. The effect o f a decline in the electron density as r 4 would be to 

reduce the depolarization effect of varying magnetic field direction along the line 

o f sight since most o f the intensity w ill originate from areas where the electron 

density is greatest;

4) that the nebula magnetic field is cylindrically symmetric. Morphological studies 

o f the nebula [5,6] show that it is roughly an ellipsoid with a major axis o f 4 pc 

and both the minor axes o f 3 pc so this assumption seems reasonable. Also, the 

magnetic fie ld  close to the pulsar is a dipole fie ld  which is by its nature 

cylindrica lly symmetric; this explains our decision to begin by constructing a 

model o f a dipole magnetic fie ld ;

5) that the electron distribution is isotropic with an energy spectrum o f spectral
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index (as defined in chapter 3, equation (3.48)) at electron energies 

corresponding to visible wavelength emission that is constant over that range of 

wavelength. We can see from figure 6.1 that this is a reasonable assumption for 

the visible region but we could not extend this work to other regions o f the 

electromagnetic spectrum without allowing for some variation o f the spectral 

index w ith wavelength. For the calculations in this thesis a spectral index 

a  = 2.32, as measured by Greve and van Genderen [52], was used. This is 

equivalent to Kennel and Coroniti's value derived from figure 6.1;

6) that the magnetic fie ld  o f the nebula must be derived from the pulsar, as 

explained in chapter 1, section 1.4. The observed average magnetic field strength 

o f the nebula is 10'3-10‘4gauss [11]. This field is far too strong to be a frozen-in 

primordial field [4,13,41] and so must be created in situ. The only reasonable 

source o f such a field is the pulsar so in our model we begin by using a dipole 

fie ld structure as would be found within the pulsar's light cylinder. We would 

like to know by what mechanism the nebular magnetic field is derived from the 

pulsar.

The first model constructed was for a dipole magnetic field viewed either from 

the side or along the magnetic axis. It was easy to visualise exactly how the 

polarization pattern should look in these special cases and so check that the program 

generating the polarization parameters functioned correctly. The dipole model was 

then enhanced so that the polarization pattern for an observer at an arbitrary angle o f 

inclination to the dipole magnetic axis could be calculated. It is important to have this 

facility w ithin the model as we do not know the actual value o f the inclination o f the 

general nebular magnetic field relative to our line o f sight during either period o f 

observation. We do know that the pulsar's rotation axis lies north-west to south-east 

in the plane o f the sky and that its magnetic axis is almost perpendicular to this 

[54,61] , but as the pulsar rotates the angle o f inclination o f the magnetic field to the
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observer s line o f sight changes. The integration times o f the observational data 

used in this thesis are greater than the rotation period o f the pulsar and so we see in 

effect a time averaged polarization vector from the magnetic field which co-rotates 

with the pulsar. The magnetic field in the rest o f the nebula does not corotate with the 

pulsar (see chapter 4, section 4.2) and we do not know the alignment o f this part of 

the field to our line o f sight.

tog 1/ ( H z )

a>
.65

2 0 2 4 6
log h i / ( e V )

-7

log v i  y 

47rds
-8 - 2  - Ie r g s - c m  - s  

d = 2 Kpc

-9

Figure 6.1: This diagram is from Kennel and Coroniti [13). It shows the spectral luminosity 

of the Crab nebula calculated for the best fit flow solution of their model for spectral indices 

between 0.6 and 1. The dotted lines represent the extremes of the calculation where the 

results are uncertain. The solid lines A and B are the X-ray and y-ray spectra observed by 

Pravdo and Serlemitsos [62] and Walraven et al [63]. C is the optical-UV spectrum from 

observations by Grasdalen [64] and Wu [65]. Here the quantity a  is equivalent to p in our 

equation (3.48) and the best fit value of 0.6 is equivalent to a spectral index of 2.2. Notice 

that the best fit spectrum peaks in the UV, where the nebula spectrum is observed to reach 

a peak [3].
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A computer model for the structure o f the Crab nebula magnetic field should 

also include the toroidal fie ld component which is thought to be generated by the 

rotation o f the pulsar (chapter 4, section 4.3). Our in itia l models did not allow for 

this type o f field. A first step towards inclusion o f a toroidal fie ld was made by 

simply adding a magnetic fie ld component in the <j>-direction o f our coordinate 

system which was o f a constant ratio to the other components o f the magnetic field. 

This produced some interesting results but no further progress was made on the 

addition o f a toroidal component as a quantitative expression for the field generated 

by the pulsar rotation could not be found (see chapter 4, sections 4.3 and 4.4). I f  a 

toroidal fie ld component can be successfully modelled it would be interesting to 

compare the model with the observational data which were used in this thesis [1,2]. 

The model developed here is, however, still far too simplified to warrant comparison 

with the observational data.

To predict the values o f the Stokes intensity parameters (see chapter 2, section 

2.4 for definitions) for a given part o f the magnetic field which we wish to study, we 

need to find the component o f the magnetic field which is perpendicular to the 

observer's line o f sight, B±. Normally, we would also need to know the form o f the 

electron density function n0(£) but here we treat this function as a constant (see 

assumption 3). Tests were made to see how sensitive the computer models were to 

the electron density function. Using nQ(r) proportional to r 1 or r '2 did not alter the 

directions o f the polarization vectors generated by the programs to any detectable 

extent but affected the degree o f polarization slightly. Since it is mainly the direction 

o f the polarization that we are concerned with, the electron density function was 

treated as a constant in all the programs developed. I f  we can evaluate B± for any 

magnetic fie ld structure which we wish to consider, we can use equations (3.85), 

(3.86) and (3.87) to calculate the Stokes intensity parameters for that field.

The electron density function can be incorporated into the constant k  which 

greatly simplifies our computations. A ll terms in the equations, except fo r the
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perpendicular component o f the magnetic fie ld and the terms invo lv ing  the 

polarization angle %, are constant and so can be removed from the integrand. As we 

want to calculate the degree o f polarization from the Stokes intensities we find that 

the constant terms w ill cancel in equation (2.12), so we need only perform the 

integration and do not need to evaluate the constant term at all. Similarly, the tangent 

o f twice the angle o f polarization is the ratio o f I y to IQ and so here the constant 

terms also cancel. For the purposes o f our calculations we can say that,

I  =  F (a ) f  (B x) 1,66 ds (6 .1 )
S

IQ h  G (a )  JcB ^)1-66 cos2x ds (6 .2 )
S

I„  s  G (a )  J (B ±) ‘ -66 sin2x ds (6 .3 )

where s represents distance along the line o f sight o f the observer. F (a) and G(a) 

can be evaluated using gamma functions according to equation 11.4.22 o f 

Abramovitz and Stegun [58];

j>  K v(t) d, = 2M  r (H ^ l) r (M il) 9i(n±v) > - i

0

In each program the relevant gamma functions are evaluated by NAG Fortran routine 

S14AAF.

A ll the model generating programs make calculations over a grid which is 25 

units square. The units actually run from 1 to 26 as coordinate values o f zero can not 

be used. Zero values o f the coordinates cause divide by zero errors when used in 

equations such as equation (6.11) as the computer can not perform this calculation at
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x=0. However, this is not a great setback. We w ill later see from polarization vector 

plots that the polarization patterns produced by the programs show smooth variations 

and thus behaviour at the origin and along the axes can be inferred from the rest of 

the map.

For a given line o f sight each program calculates the required parameters at each 

point o f the grid. Integration over the line o f sight is performed by the NAG Fortran 

routine D10AJF. Having calculated the Stokes intensities, the angle and degree of 

polarization can be calculated, the main difference between the programs for different 

models is that the expressions defining B± and tan% differ.

The polarization vector plot fo r any model is produced by program 

MODELPLOT.FOR. In the remainder o f this chapter we w ill consider each o f the 

models developed for this thesis, beginning with the simplest case, a dipole magnetic 

field viewed along the axis of symmetry.

6.2 The Dioole Magnetic Field

To construct a model which w ill calculate the parameters required to produce a 

polarization map for a dipole magnetic fie ld we must begin by converting the 

standard equations for the components o f a dipole magnetic field from spherical 

polar coordinates to Cartesian coordinates. Lorrain and Corson [66] give the 

components o f a dipole field in spherical polar coordinates as:

where m is the dipole magnetic moment and |Iq is the permeability o f free space.

(6.4)

(6.5)

(6.6)
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axis of the magnetic dipole 
z

Transformations:

x = r sin0cos<J> 

y = r sin0sin<j) 

z = r cos0

cos0= z / r

• „  , 2  2x1/2sin0= (x +y ) / r

X

Figure 6.2 : Axes for Cartesian and spherical polar coordinates showing the magnetic 

dipole axis z, the components of the magnetic dipole in spherical polar coordinates and the 

relevant transformation equations.

Using the transformations from figure 6.2 equations (6.4), (6.5) and (6.6) 

become:

3fi0mxz
(6.7)

(6.8)

j!0m (2z2- x2- y2) 

47CI-5
(6.9)
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L I  Pinole Magnetic Field Model for an Observer Tonkin? 

Alone the Dipole Axis r
In the case where the observer's line o f sight is along the z-axis, i.e. along the 

axis o f the dipole, the perpendicular component o f the magnetic field is found from 

simple geometry, as shown in figure 6.3, to be

l a  12 2 2 3 p nm z  _ 0 2
B± = (B , + B y ) = - t - 2 _ ( x 2 + y2) (6.10)

and the angle o f polarization is given by the expression

t a n X = BZ = x (6' H )X

polarization vector

Figure 6 .3 : The geometry for an observer viewing along the z-axis

Notice that in this case the angle o f polarization does not depend on z; this greatly 

reduces the complexity o f the calculation of the polarization parameters. Because the 

angle o f polarization does not depend on z we do not need to make a calculation for 

each value o f z and integrate. Program MODEL1.FOR, which deals with the end-on 

dipole case, calculates the integrated value o f the perpendicular component o f the
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magnetic field along the line o f sight z. Using equation (6.11) and the half angle 

formulae we find that

1 + t a n x  x + y

s i n 2 z = ^ _ = ^ _  
1 + tan % x + y

(6.12)

(6.13)

Neither equation (6.12) nor (6.13) show a dependence on z so equations (6.2) and 

(6.3) become

T G(a)
Q= F^aj" C° Z (6' 14)

Iu=?SISin2X ( 6 '1 5 )

where I is given by equation (6.1).

The program MODEL1.FOR evaluates the integral for I and then, for each value 

o f x and y in our grid, Iq and Iy can be evaluated without integration. This allows us 

to calculate the degree o f polarization as given by equation (2.12). The angle o f 

polarization for each point (x,y) is calculated directly via equation (6.11).

The polarization map for this model is shown in figure 6.4.

6.4 Pinole Magnetic Field for an Observer Viewing the 

Dipole Side-on

Consider figure 6.2. I f  the observer were to look along either the x or y-axis in 

this coordinate system they would see exactly the same magnetic fie ld structure 

because o f the inherent rotational symmetry o f the field about the dipole axis, z. 

Thus the same polarization pattern would be seen. The program MODEL.FOR
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POLARIZATION MAP FOR PROGRAM MODEL1
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Figure 6 .4 : Polarization map produced by MODELPLOT.FOR from the results of 

program MODEL1.FOR. This diagram represents the polarization pattern which would be 

seen by an observer looking at the dipole magnetic field along the dipole axis z. The 

diagram only shows one quadrant of the whole field as the patterns in the other quadrants 

are simply reflections of this pattern about the axes, due to the rotational symmetry of the 

dipole magnetic field about z. The angle of polarization is represented as a rotation 

anti-clockwise from the vertical direction and the degree of polarization as the length of the 

line plotted. o^. va*.
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calculates the angle and degree o f polarization for an observer looking along the 

x-axis. We see from figure 6.5 that

2 2 2 
b ± = (b : + b ? )2 (6.17)

tan X =
y

(6.18)

polarization vector

Figure 6 .5 : The geometry for an observer viewing along the x-axis.

I f  we expand equations (6.17) and (6. IS) using equations (6.9) and (6.^) we obtain 

expressions for the component o f the magnetic field perpendicular to the line o f sight 

and the angle o f polarization in Cartesian coordinates:

Bj_ = — —  ( 5z2y2+2x2y2-4x2z2+4z4+x4+y4)2 
4 k t 5

(6.16)

tan X =
( 2z2- x2- y2) 

3zy
(6.17)

Here the angle o f polarization varies with x and so must be integrated along the line
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of sight x to allow for depolarization (see chapter 2, section 2.3). As we saw in 

chapter 2, the Stokes intensity parameters are linearly additive. Therefore, we can 

deal w ith the effects o f depolarization along the line o f sight in a straightforward 

way; we simply calculate the Stokes intensities integrated along the line o f sight x 

and in doing this have taken the depolarization into account. The angle of 

polarization for any grid point is given by the ratio o f I 0 to IQ as in equation (2.9), 

for that grid point. The degree o f polarization is again calculated by use o f equation 

(2.12).

The main difference between MODEL.FOR and MODEL1.FOR is that we must 

perform three integrations because of the dependence of the polarization angle on x. 

From half angle formulae (see equations (6.11) and (6.12)) and equation (6.17) we 

find that

_ ( 13z2y2 - 4z4 + 4x2z2 - 2xV - x4- y4 ' i
cos2X t . 2 2  a 4 a 2 2 ■■>22 4 4 '  (6 .1 8 )5z y + 4z - 4x z + 2x y + x + y

(  6zy (2z2 - x2 - y2) ^  (C im
sm2% — ( 4 >. 2 2 2 2 4 4 )  (6-19)

5z y + 4z - 4x z + 2x y + x + y

The expressions we integrate are then:

1) the expression for B ± given by equation (6.16) but neglecting the constant term of 

\itfnJ4Ti. This integral is directly proportional to the intensity;

2) the expression which gives us an integral proportional to IQ. We integrate the 

product o f equations (6.16) and (6.18);

3) the expression which gives us an integral proportional to Iy . We integrate the 

product o f equations (6.16) and (6.19).

The polarization pattern seen by the observer in this case is shown in figure 6.6.
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Figure 6 .6 : Polarization map produced by MODELPLOT.FOR from the results of 

program MODEL.FOR. This diagram represents the polarization pattern which would be 

seen by an observer looking at the dipole magnetic field from the side. As in figure 6.4, the 

diagram only shows one quadrant of the whole field. The angle of polarization is 

represented as a rotation anti-clockwise from the vertical direction and the degree of 

polarization as the length of the line plotted.
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6i5. The Case for an Observer at an Arbitrary Angle of 

Inclination to the Pinole Axis

We do not know the angle o f inclination o f the Crab nebula's magnetic field to 

our line o f sight at the times when the observational data used in this thesis were 

gathered. Therefore, we want to construct a program which w ill calculate the 

polarization pattern for an observer at any angle o f inclination to the dipole axis so 

that we would eventually be able to compare the model with the observational data. 

We need only consider inclination o f the observer's line o f sight to the dipole axis z. 

As we saw in the model above the inherent rotational symmetry o f the dipole field 

around z means that the polarization pattern is the same for any line o f sight in the 

(x,y) plane. Figure 6.7 shows the axes o f the dipole system and those o f the 

observer's system. This model scans a grid which is perpendicular to the observer's 

line o f sight in the (x^yj ) plane (this is the same procedure as in the first two 

models). Any line o f sight in the (xi?y) plane would give the same polarization 

pattern as any other because of the rotational symmetry o f the magnetic field about z. 

Calculation o f the perpendicular component o f the magnetic field, B±, and the Stokes 

intensity parameters can either use the inclined coordinate system (x^y^Zj) directly 

or can convert the grid values o f the inclined system to their corresponding values in 

the non-inclined system (x,y,z). Program MODEL3.FOR uses the non-inclined 

system o f coordinates for its calculations whereas, MODEL4.FOR uses the inclined 

system o f coordinates. Both these programs ultimately produce the same polarization 

vector pattern for any given angle o f inclination o f the observer, i. Neither program 

can produce results i f  i = 0° because of problems with dividing by zero within the 

program. The programs can, however, handle any value o f i between 0.001° (which 

gives results almost exactly the same as i = 0°) and 90°.

We already have a set o f equations for Bx, By and B z (equations (6.4), (6.5) 

and (6.6)) and we can see from figure 6.7 that:
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-  Dx (6.20)

By. = By cos i + Bz sin i (6 2 i)

B z. ~ Bz cos i - By sin i (6.22)

z (axis of the magnetic dipole)

*

X,  Xj

Figure 6.7 : Axes for the magnetic dipole field (x,y,z) and for an observer at an angle of 

inclination i to the dipole axis z (Xj.yj.Zj). The observer's line of sight is along zy

So, using the non-inclined system o f coordinates as in MODEL3.FOR, an 

observer looking along zx w ill see a component o f the magnetic field perpendicular to 

his line o f sight

j_

Bx = ( B j + By )2 (6.23)
i

The angle o f polarization in this coordinate system is given by the equation
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tan x =
eT (6.24)

So, we use equations (6.20) and (6.21) to substitute for Bxi and Byi in equations 

(6.23) and (6.24), obtaining

_i_

B!  = ( Bx + (By sin i + Bz cos i)2 ) 2 (6.25)

By cos i + Bz sin i
t a n *  = --------------g ----------------  ( 6 .2 6 )

Then using equations (6.4), (6.5) and (6.6) we have;

i_ 
2 2

B i  =  [  +  ^  cos i +  ^  ( 2 z 2 - X 2 - y 2) sin i ) 2 ]

B i =- t [  9x2z2+(3yzcos i+(2z2-x2-y2) sin i)2 ]  (6.27)
r

and

3Kyz . k ( 2 z 2 -x2 -y2) sin i
— cos i + ------------- - ---------

r rtan% = ------------- 3kxz
r5

3yzcos i+(2z2-x2-y2)sin i , , - 0\
tan% =  y— z-----— ------  (6.28)

As in program MODEL.FOR, in MODEL3.FOR we have three integrations to 

perform. The integration for the intensity uses equation (6.27) as the integrand.
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Equation (6.28) is used to find the expressions for cos2% and sin2% which are

needed in the other two integrands. I f  the angle o f inclination is 0° or 90° equations

(6.27) and (6.28) revert to their special case forms; which are given in equations 

(6.7), (6.8), (6.16) and (6.17).

For MODEL4.FOR we want to find the expressions for B± and tan% in terms of 

(x^y^Zj). The coordinate transformations

x  =  x i

y = y. cos i - z. sin iJ J i i

z = z. cos i + y. sin ii J i

fo llow  directly from figure 6.7. Using these transformations equations (6.4), (6.5) 

and (6.6) become

3 k x . ( z . cos i +  y . sin i)
B x = ----- !— !-----------------  (6.29)

,2 J( x 2 + Y 2 + z 2 )v i J i i

By =
3 K y . (z . cos i +  y. sin i)

(x2 +y2 + Z 2 )v i J i i

(6.30)

B.
K ( 2 ( z .  cos i + y. sin i)2 - x2 - (y. cos i - z. sin i)2 )

(6.31)

(x 2 + y 2 + z 2) 2v i J i i

We now use equations (6.29), (6.30) and(6.31) to express Bxi (equation (6.20)) 

and Byi (equation (6.21)) in terms o f x{, yi and zi
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3kx. ( z . c o s  i  +  y . s in  i )  
B . ; = ------!— l------------ U____ 1

( x 2 + y 2 + Z 2 )i J i i '

vcfy.cos i(z.cos i+y.sin i) +sin i(2(z.cos i+y.sin i)2

( x 2 + y 2 + z 2 ) 2v i J i i '

I f  we let

A = ( l y 2 - x2 - z2) , C = 3x.y. , D = 3x.z.
• ^ l i i  i i ’ i i

we can simplify (6.32) and (6.33) to 

B . = (C sin i + D cos i)
XI r 5

B . = -4- (A sin i + E cos i) 
yi r 5 v '

where r2 =(xj2 +yj2 +Zj2).

Now, from equation (6.23)

r~ 2 2  "i
B± = - y  [  (C sin i + D cos i) + (A sin i + Ecos i) J

and equation (6.24)

( A  sin i + E cos i) 
tan% ( c  sin i + D cos i)

(6.32)

2 -(yjcos i-z.sin i)2)] 

(6.33)

E = 3y.z.J i i

(6.34)

(6.35)

So, we have the necessary expressions for the integrands required in program 

MODEL4.FOR. The program MODEL5.FOR was then developed. This program is
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essentially the same as M 0DEL4.F0R but the program user does not need to set the 

value o f the angle of inclination for the program. MODEL5.FOR performs the 

calculations for models with i from 0° to 90° at 10° intervals and stores the results for 

each value o f i in a separate file. This program takesalong time to run but can run 

unattended and produce the same results as ten separate runs o f MODEL4.FOR. A 

series o f polarization vector plots from the results o f MODEL5.FOR are shown in 

figures 6.8-6.12.
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F igure  6 .8 : Polarization vector plot for a dipole magnetic field viewed at an angle of 

inclination of the observer of i = 10°.
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□gyre 6,9: Polarization vector plot for a dipole magnetic field viewed at an angle of 

inclination of the observer of i =70°.
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Figure  6 .10: Polarization vector plot for a dipole magnetic field viewed at an angle of 

inclination of the observer of i =S0°.
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POLARIZATION MAP FOR PROGRAM M00EL5/3
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F igure  6 .11: Polarization vector plot tor a dipole magnetic field viewed at an angle of 

inclination of the observer of i =30°.
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Figure 6 .12: Polarization vector plot for a dipole magnetic field viewed at an angle of

inclination of the observer of i =$0°.
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6.6 Model for an Inclined Dipole Field with an Added 

Component in the (b-Direction

Again we consider figure 6.2. I f  the dipole rotated about its axis we would 

expect there to be Some form o f differential rotation effects i f  the dipole were situated 

in a plasma [41,46,55]. The main effect o f this differential rotation would be the 

"winding-up" o f the magnetic fie ld lines, causing a component o f the fie ld in the 

(ji-direction to be generated. As we saw in section 6.2 is zero for a simple dipole 

field. As an investigation of the effect o f such a component on the polarization 

pattern a component proportional to C* was added to the dipole model.

For the addition o f a component in the (b-direction we modify equations (6.4), 

(6.5) and (6.6) as below:

where rat is the factor which reduces or enhances the effect o f B^ relative to Bf and 

B0. Conversion to Cartesian coordinates (see figure 6.2) gives us:

47tr3

rat K

(6.36)

B  =  3 k v z  r a t  Ky (6.37)

Bz = X  (2z2 -x2 -y2) 
r5
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We are using an inclined coordinate system as in figure 6.7 so we require 

expressions for Bxi and Byi and B± and tan% as given by equations (6.23) and 

(6.24) in this case. Using equations (6.20) and (6.21) we obtain

Equations (6.39) and (6.40) are then used to find expressions for B^ and tan% 

by substituting for x, y and z in terms of xi5 y} and We can then find the relevant 

expressions for the integrands used to calculate I, Iq and Iy  as in the previous 

analyses. Program MODEL6.FOR generates the Stokes intensities for values o f rat 

o f 10, 100 and 1000 and for i between 0° and 90° at intervals o f 10°. MODEL7.FOR 

generates results for the same range of i but for rat=50.

Two considerations make this model unrealistic in comparison to the postulated 

theoretical model o f the Crab nebula (chapter 4, section 4.3). First, the Crab pulsar 

is an oblique rotator and so the dipole axis is not the axis o f rotation. The axis o f 

rotation lies almost in the (x,y) plane o f the dipole and the field which is generated 

by the rotation is most likely to add to the Br and B0 components o f the magnetic 

fie ld, as it originates from the open field lines which lie close to the z-axis. The 

second drawback with the B^ component is that we have not allowed for a variation 

in the component other than an r 4 fa ll-o ff as compared to the r 3 fall o ff o f the other 

components. We have not allowed for a toroidal nature o f the B^ component by 

restricting its height relative to the z-axis or for a central zone where only the dipole 

fie ld  exists. Nevertheless, this model, generated by M ODEL6.FO R and 

M O DEL7.FO R, yields an interesting result. From consideration o f figures

(6.39)

(6.40)
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6.13-6.20 we find that the extra component only becomes evident in the polarization 

patterns for this model when the extra component is o f the order o f 10 times greater 

than the other components o f the magnetic field. When is more than 100 times 

greater than either the Br or B0 components, it begins to dominate the polarization 

pattern. We therefore know that a component o f between 10 to 100 times the existing 

component must be generated before we can see an effect in a polarization vector plot 

o f this scale. The next step in improving this model would be to add components in 

Br and B0 of a reasonable size to investigate their effects on polarization. This would 

bring the computer generated model much closer to the theoretical model and may 

make comparisons with the observational data worthwhile.
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POLARIZATION MAP FOR PROGRAM MOOEL6/1
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Figure 6.13: Polarization vector plot for a dipole magnetic field with an added

component in the ^-direction which has a ratio of 10 to the other field components. This 

field structure viewed at an angle of inclination of the observer's line of sight to the dipole 

axis of i = 0°.
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Figure 6.14’ Polarization vector plot for a dipole magnetic field with an added 

component in the 0-direction which has a ratio of 50 to the other field components. This 
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Figure 6 .1 5 : Polarization vector plot for a dipole magnetic field with an added

component in the 0-direction which has a ratio of 100 to the other field components. This 

field structure viewed at an angle of inclination of the observer's line of sight to the dipole

axis of i = 0°.
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Figure 6 .1 6 : Polarization vector plot for a dipole magnetic field with an added

component in the ^-direction which has a ratio of 1000 to the other field components. This 

field structure viewed at an angle of inclination of the observer's line of sight to the dipole

axis of i = 0°. 107
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POLARIZATION MAP FOR PROGRAM MODELS/29

Figure 6,19: Polarization vector plot for a dipole magnetic field with an added 

component in the 0-direction which has a ratio of 100 to the other field components. This 

field structure viewed at an angle of inclination of the observer's line of sight to the dipole 

axis of i = 90°.
POLARIZATION MAP FOR PROGRAM MOOELS/90

Figure 6.20: Polarization vector plot for a dipole magnetic field with an added 

component in the 0-direction which has a ratio of 1000 to the other field components. This 

field structure viewed at an angle of inclination of the observer's line of sight to the dipole 

axis of i = 90°. 109



Chapter 7

Conclusions
From the analysis o f the two sets o f polarimetric data [1,2], discussed in 

chapter 5, we have seen that there has been some change in the direction o f the 

magnetic field in the northern part o f the nebula. The average change in polarization 

angle is a rotation in the anti-clockwise direction o f 11° ± 5° (at a confidence level o f 

95%). A  more detailed study o f the nebula, on a pixel to pixel basis, would require 

complicated reduction of the resolution o f McLean, Aspin and Reitsema's data [2] so 

that it matched exactly the resolution achieved by W oltjer [1]. Such an operation 

would involve writing special codes to perform the reduction and would be very time 

intensive. Such data reduction codes require much specialised study and knowledge 

i f  they are to produce the best results. Such work was not w ith in the scope o f this 

project but may be possible using STARLINK software packages which were not 

used in this project. The results from the centre finding programs were good for 

McLean, Aspin and Reitsema's data, but did not give a conclusive result for 

Woltjer's data. Therefore, unfortunately, we could not investigate the possibility o f a 

change in the centre o f polarization or intensity o f the nebula with time.

Although the results from the data analysis have not proved as conclusive as 

one m ight have hoped, the theoretical computer modelling, discussed in chapter 6, 

produced some interesting results. The development o f a computer model which 

would produce the polarization map which would be observed for a given magnetic 

fie ld  structure was a significant part o f this project. The in itia l intention was to 

develop a computer generated model o f the Crab nebula which could be compared 

with the data. Direct comparison o f such a model to the data sets used in this work 

could tell us much about the structure o f the Crab nebula magnetic field. To obtain 

the best results from such a comparison the model presented in this thesis requires 

further modifications. A useful modification would be the addition o f a disk
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component of the magnetic field lying in the same plane as the dipole axis in order to 

simulate the effect o f a toroidal field component as suggested in several theoretical 

studies [e.g. 41,53,55J.

Development o f the computer model led to a consideration o f the plasma theory 

o f the Crab nebula magnetic field (see chapter 4). Treatment o f the Crab nebula as a 

plasma is not a new concept but is necessary i f  any theoretical model is to be a 

realistic representation o f the nebula. As have seen in chapter 4, previous work 

which tried to determine the magnetic field structure o f the Crab nebula from the 

ideal magnetohydrodynamic equations (chapter 4, section 4.1) has not been sound 

and this is an area which requires further investigation. A  solution o f the frozen-in 

fie ld equation would facilitate further computer modelling o f the magnetic field 

structure o f the Crab nebula as it would give us an expression for the magnetic field 

component generated by the pulsar rotation.

The main conclusion o f this thesis is that there remain many unanswered 

questions about the Crab nebula's magnetic field structure, as well as many other 

aspects o f its behaviour which were not mentioned in detail in this work. The key to 

progress in this field is the study o f the plasma behaviour o f the nebula and the 

solution o f the frozen-in field equation. Initially we need a solution for the static case 

but perhaps eventually a solution w ill be found for the non-static case where the 

magnetic field evolves with time.
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Appendix A



c Program FILLCRAB.FOR

openfun i t - 3 . s t a t u s * ’ o l d ’ , name*’ c r a b x y . d a t ’ ) 
open(uni t - 4 , s t a t u s * ’ o l d ’ , name—’ c r a b i q u . d a t ’ ) 
open(un i t —5 , s t a t u s * ’ new*, name*’ f u l l c r a b . d a t ' )  
do 1 I—0,3 6  
r e a d ( 3 , * )  x1 ,x2  
m—x 2 -x 1 
do 2 j * 0 , 5 0  
i f  ( j . l t . x l )  then 
n*1 
1— 1 
0- 0.0 
U - 0 .0
w r i t e  ( 5 , * )  n , I , Q , U  

el se
i f  ( j . e q . x l )  then 
do 3 k*0,m 
r e a d ( 4 , * )  n , I , Q , U  
w r i t e  ( 5 , * )  n , I , Q , U  

3 cont inue  
e I se
i f  ( j . g t . x 2 )  then 
n*1 
1— 1 
0- 0.0  
U- 0 .0
w r i t e  ( 5 , * )  n . I . Q . U  

end i f 
end i f 
end i f 

2 cont inue  
1 cont inue  

stop  
end

c Program 1QUPR0G c a l c u l a t e s  I . Q . U  from X . P . I . . .Wo11 je r ’ s data  

p i » 4 . * a t a n ( 1 . )
open(uni t - 1 . s t a t u s —’ o l d ’ .name—’ c r a b x p i . d a t ’  ̂
open(uni t - 2 , s t a t u s - ’ new’ , name—’ crabi  qu. d a t ’ ) 
do 1 j —1.1101 
r e a d ( 1 , * )  n . X . P , I  
X—X *p i /1 8 0 .  
i f  ( X . l t . 0 . )  then 
0- 0 . 
l>0.
1— 1 

el se 
U - P * s i n ( 2 . * X l  
0 - P * c o s ( 2 . * X ;  

end i f
w r i t e ( 2 , 2 0 )  n . I . Q . U  

20 fo rm a t(I2 ,I4 .2 F 1 0 .5 )
1 cont inue

stop  
end



Program CRABPLOT.FOR

dimension x ( 2 ) , y ( 2 )
o p e n ( u n i t - 2 , s t a t u s - ’ o l d ’ .name—’ c r a b x y . d a t ’ )
o pen (u n i t—3 , s ta tus—' o l d * , name-’ c r a b x p i . d a t ’ )
p i —4 . * a t a n ( 1 • )
caI  I gopks i6 , - 1 )
c a l l  gopwk(2 ,1 ,4014 )
c a l l  gacwk(2)
c a l l  gswn ( 1 , 0 . 0 , 5 0 . 0 , 0 . 0 , 4 0 . 0 )  
c a l I  gse ln t  (1 )  
do 1 j - 1 ,37  
r e a d ( 2 , * )  x1 ,x2  
m—x2—xi  
x1-x1+2  

do 2 k-0,m  
r e a d ( 3 , * )  n . c h i , P , I  

i f ( c h i . e q . - 1 ) goto 2 
c h i - ( p i / 2 . ) + c h i  * p i / 1 8 0 .  
o - P * c o s ( c h i ) 
a » a / 5 0 . 
b- P*s i  n ( c h i ) 
b- b / 5 0 .  
xc—x1+k 
y c - 3 9 - j  
x ( 1 ) - x c - a / 2  
y ( 1 j - y c —b/2  
x( 2 J - x c + a / 2  
y ( 2 ) —yc+b/2  
c a l l  g p l ( 2 , x , y )

2 cont inue
1 cont inue

c a l l  gdawk(2)  
c a l I  gc lwk(2)  
c a l I  gelks  
stop  
end



c program RJLLPLOT p l o t s  e i t h e r  Me l ean o r  W o l t j e r ' s  da ta

dimension y ( 2 ) , x ( 2 )  
ch ar ac te r * 20  t i t l e  
p r i n t * , ’ Input  f i lename?*  
re ad ( 6 , 99 )  t i t l e
p r i n t * , ’ I f  using W o l t j e r  data type 1, Mclean data type 0 . ’ 
r e a d ( 6 . * )  nn
open(uni  t —3 , s t a t us —’ o l d * , name-t i 11e)
p i - 4 . * a t a n ( 1 . )
c a l I  gopksi6 , - 1 )
c a l l  gopwk(2,1,4014 )
c a l l  gacwk(2)
c a l l  gswn(1, 0 . 0 , 5 2 . 0 , 0 . 0 , 4 0 . 0 )  
c a l I  g s e l n t ( 1 )  
do 1 j - 1 ,37  

i f ( n n . e q . l )  then 
yc—3 9 - j  
e I se 
yc—j+1 
end i f 
do 2 k—1,51 
r e a d ( 3 , * )  n , I , Q , U

c Test f o r  the quadrant  of the angle 2X.
i f ( Q . e q . 0 . 0 . a n d . U . e q . 0 . 0 )  then 

t w oc h i - 0 . 0  
e I se
i f ( Q . g t . 0 . 0 . a n d . U . g e . 0 . 0 )  then 

tw och i -a tan (U /Q)  
e I se
i f ( Q . l t . 0 . 0 . a n d . U . g e . 0 . 0 )  then 

twoc h i - p i+ a ta n (U /Q)  
e I se
i f ( Q . g t . 0 . 0 . a n d . U . l e . 0 . 0 )  then 

tw o c h i - ( 2 * p i ) + a t a n ( U / Q )  
e lse
i f ( Q . I t . 0 . 0 . a n d . U . l e . 0 . 0 )  then 

twoch i - p  i +a t an(U/Q)  
e lse
i f ( Q . e q . 0 . 0 . a n d . U . g t . 0 . 0 )  then 
t w o c h i - p i / 2 .  

else
i f ( Q . e q . 0 . O . a n d . U . I t . 0 . 0 )  then  
t w o c h i - ( 3 . / 2 . ) * p i  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f
c h i - ( t w o c h i / 2 . ) + ( p i / 2 . )

P—( Q * * 2 + U * * 2 ) * * 0 . 5  
o - P * c o s ( c h i ) 
b-P*s i n ( c h i ) 
i f ( n n . e q . l )  then 
o—a /5 0 .  
b - b / 50 .  
e I se
a—a / 2 0 0 0 . 
b-b /20 00 .  
end i f 
xc—k
x ( 1 )—xc~a/2  
y ( 1 )»y c - b /2  
x ( 2 ) - x c + a / 2  
y ( 2 ) - y c + b / 2  
c a l l  g p l ( 2 , x , y )

2 cont inue
1 cont inue

c a l l  gdawk(2)  
c a l I  gc lwk(2)  
c a l I  gelks  

99 fo rmat (a20 )
stop  
end



c program h i g h r e s  ( s o r t s  Me l ean e t  a l ’ s d a t a  i n  squ a re s  o f  51x33 p i x e l s

c and produces 56 f i l e s  of data in I , Q , U  form)

c h a r a c t e r * 8 0  t i t l e
opentun i t —3 . s t a t u s - ’ o l d ’ , name—'mccrab. d a t ’ ) 
open(uni  t —4 , s t a t u s - ' o l d ' , name-’ names. d a t ’ ) 
do 1 n—1,8  
do 2 m—1.7  
un i tno-m+6 
re a d ( 4 , 9 9 )  t i t l e
open(un i t —uni t n o , s t a t u s —’ new’ , name—t i 11e)

99 fo r ma t (a80 )
2 cont inue

do 3 j - 1 .33  
do 4 k - 1 .357  
r e a d ( 3 , * )  I . Q . U
i f  ( k . I e . 5 1 j then
w r i t e ( 7 , * )  I , Q , U

e ls e
i f  ( k . c i e . 5 2 . a n d . k . l e . 102) then
wr i t e ( 8 , * )  I . Q . U

el  se
i f  ( k . c le . 103. a n d . k . I e . 1 5 3 ) then
wr i t e ( , 9 . * )  I • Q.U

e I se
i f  ( k .c i e . 154. a n d . k . I e . 2 0 4 ) then
wr i t e ( ; i 0 . o I . Q . U

e I se
i f  (k.c:e .20 5 . a n d . k . I e . 2 5 5 ) then
wr i t el [ n . O I . Q . U

e 1 se
i f  (k.<je . 2 5 6 . a n d . k . I e . 3 0 6 ) then
w r i t e ( 1 2 . 0 I . Q . U

el se
i f  ( k . (□e.307 . a n d . k . I e . 3 5 7 ) then
wr i te ( 1 3 . 0 I . Q . U

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f 

4 cont inue
3 cont inue

c l o s e ( 1 3 )  
c I o s e t 12)  
c lose t  11)  
c lose t  10)  
c l o s e t 9 )  
c I o s e t 8)  
c I o s e ( 7 )

1 cont inue
stop  
end

\



c program h r p l o t  ( p l o t s  Me l ean e t  a l ’ s da ta  i n  a s e l e c t e d  51x33 p i x e l  box)
dimension x ( 2 ) , y ( 2 )  
c h ar ac te r * 8  t i t l e
p r i n t * ,  'Which area do you want to p l o t ? ’
p r i n t * ,  'Areas number HR1.dat  to HR56.dat ,  7 across ,  8 down. ’ 
p r i n t * ,  ’ ’ 
re ad (5 , 99 )  t i t l e  

99 format (aB)
open(uni t —3 . s t a t u s - ' o l d ' , name—t i 11e)
c a l I  g o p k s ( 6 , - 1 )
c a l l  gopwk(2,1 ,4014 )
c a l l  gacwk(2)
p i - 4 . * a t a n ( 1 . )
p r i n t * ,  t i t l e
c a l l  gswn(1. 0 . 0 , 5 4 . 0 . 0 . 0 . 3 6 . 0 )  
c a l I  g s e l n t ( 1 )  
do 1 j - 2 , 3 4  

y c - j
do 2 k - 2 .5 2  
r e a d ( 3 , * )  I . Q . U  
i f ( I . l e . 0 )  goto 2

c Test fo r  the quadrant  of the angle 2X.
i f ( Q . e q . 0 . 0 . a n d . U . e q . 0 . 0 )  then 
c h i - 0 . 0  

e I se
i f ( Q . g t . 0 . 0 . a n d . U . g e . 0 . 0 )  then 
c h i - ( a t a n ( U / Q ) ) / 2 .  

e I se
i f ( Q .  I t . 0 . 0 . a n d . U . g e . 0 . 0 )  then 
c h i - ( p l + a t a n ( U / Q ) ) / 2 .  

e I se
i f ( Q . g t . 0 . 0 . a n d . U . I e . 0 . 0 )  then 
c h i - p i + ( a t a n ( U / Q ) / 2 . ) 

e lse
i f ( Q . I t . 0 . 0 . a n d . U . l e . 0 . 0 )  then 
c h i - ( p i + a t a n ( U / Q ) ) / 2 .  

e I se
i f ( Q . e q . 0 . 0 . a n d . U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

el se
i f ( Q . e q . 0 . 0 . a n d . U . 1 1 . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p i  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f
c h i - c h i + ( p i / 2 . )
P—( Q * * 2 + U * * 2 ) * * 0 . 5  
a - P * c o s ( c h i ) / 5 0 .  
b - P * s i n ( c h i ) / 5 0 .  
xc—k
x f 1) - x c - a / 2  
y ( 1 ) -y c—b/2  
x ( 2 ) - x c + a / 2  
y ( 2 ) - y c + b / 2  
c a l l  g p i ( 2 , x , y )

2 cont inue
1 cont inue

c a l l  gdawk(2)  
c a l I  gclwk(2)  
c a l I  gclks  
stop  
end



c program highres ( so r t s  Mclean at  a l ' s  data in squares o f 21x22 p i x e l s

c and produces 204 f i l e s  of data in I . Q . U form)

c ho ract er * 20  t i t l e
open(uni t —3,  s tatus—’ o I d ’ , name—’ nicerab.dat ’ )
open(uni t —4 , s t a t u s - ’ o I d ’ ,name—’ names.dat ’ )
do 1 n - 1 ,12
do 2 m- 1.17
uni tno-mH-6
re adf 4 , 9 9 )  t i t l e
open(un i t -un i t  n o, sta t us—’ new’ , name—t i 11e)

99 f ormat (a20)
2 cont inue

do 3 j - 1 . 22 
do 4 k—1.357  
r e a d ( 3 , * )  I . Q . U  
i f  ( k . I e . 2 1 ) then 
wr i t e ( 7 , • )  I .Q . U  

e I se
i f  ( k . g e . 2 2 . a n d . k . I e . 4 2 )  then 
wr i t e ( 8 , • )  I . Q. U  

e I se
i f  ( k . a e . 4 3 . a n d . k . I e . 6 3 )  then 
wri  t e ( 9 , • )  I , Q, U  

e I se
i f  ( k . g e . 6 4 . a n d . k . I e . 8 4 )  then 
wr i t e ( 1 0 , • )  I . Q. U  

e I se
i f  ( k . g e . 8 5 . a n d . k . I e .105)  then 
wr i t e ( 1 1 , • )  I .Q . U  

e I se
i f  ( k . g e . 1 0 6 . a n d . k . l e . 126) then 
wr i t e ( 1 2 , • )  I .Q . U  

e I se
i f  ( k . g e . 1 2 7 . a n d . k . l e . 147) then 
wr i t e ( 1 3 , • )  I . Q. U  

e I se
i f  ( k . a e . 1 4 8 . a n d . k . I e .168)  then 
w r i t e ( 1 4 , * )  I .Q. U  

el se
i f  ( k . g e . 1 6 9 . a n d . k . l e . 189) then 
wr i t e ( 1 5 , • )  I ,Q , U  

e lse
i f  ( k . a e . 1 9 0 .a n d . k . l e . 210)  then 
wri  t e ( 1 6 , * )  I . Q. U  

el se
i f  ( k . a e . 2 1 1 . a n d . k . I e .231)  then 
wr i t e ( 1 7 , * )  I .Q . U  

e I se
i f  ( k . g e . 2 3 2 . a n d . k . I e . 2 5 2 )  then 
wr i t e ( 1 8 , • )  I . Q. U  

e I se
i f  ( k . g e . 2 5 3 . a n d . k . I e . 2 7 3 )  then 
w r i t e ( 1 9 . * )  I .Q. U  

e I se
i f  ( k . g e . 2 7 4 . a n d . k . I e . 2 9 4 )  then 
wr i t e ( 2 0 , • )  I . Q. U  

el se
i f  ( k . g e . 2 9 5 . a n d . k . i e . 3 1 5 )  then 
wr i t e ( 2 1 , • )  I . Q. U  

el se
i f  ( k . g e . 3 1 6 . a n d . k . I e . 3 3 6 )  then 
wri  t e ( 2 2 , • )  I . Q. U  

el se
i f  ( k . g e . 337)  then 
wr i t e ( 2 3 , * )  I . Q. U  

end i f 
end i f 
end i f 
end i f 
end i f
end i f  o I o m (1S)
end i f  c lose(141
end i f  c l o s e( 13 )
end i f  c l o s e i 1 2 )
end i f  c l o s e( 11 )
end i f  c l o s e (1 0)
end i f  c l o s e ( 9 )
end i f  c l o s e ( 8 )
end i f  c l o s e ( 7 )
end i f  1 cont inue
end i f  stop
end i f end

4 cont inue
3 cont inue

c l os e( 23 )  
c l o s e ! 22)  
c l o s e ( 2 1 1 
cl oset  20)  
cl oset  19)  
cl oset  18)ten



c program h r 2 p I o t ( p I o t s  Me loan et  a l ' s  data in a selected 21x22 p i xe l  box)

dimension x ( 2 ) , y ( 2 )  
character*10 t i t l e
p r i n t * ,  ’Which area do you want to p l o t ? ’
p r i n t * ,  'Areas number HR1.dat to HR204.dat ,  17 across,  12 down. ’ 
p r i n t * ,  ’ ’ 
read(5, 99)  t i t l e  

99 format(a10)
open(uni t - 3 , s t a t u s - ’ o l d ’ , name-t i 11 e)
c al I  g op k s ( 6 , - 1 )
c al I  gopwk(2,1,4014)
ca l l  gacwk(2)
p i—4 . * a t a n ( 1 . )
p r i n t * ,  t i t l e
c al l  gswn(1, 0 . 0 . 2 4 . 0 , 0 . 0 . 2 5 . 0 )  
c ai I  g s e l n t ( 1 )  
do 1 j - 2 , 2 3  

yc- j
do 2 k -2 . 22  
r e a d ( 3 , * )  I . Q. U  
I f ( I . l e . 0 )  goto 2

c Test for  the quadrant of the angle 2X.
i f ( Q . e q . 0 . 0 . a n d . U. e q . 0 . 0 )  then 
ch i - 0 . 0  

e I se
i f ( Q . g t . 0 . 0 . a n d . U. ge . 0 . 0 )  then 
c h i - ( a t a n ( U / Q ) ) / 2 .  

else
i f ( Q . I t . 0 . 0 . a nd . U. ge . 0 . 0 )  then 
c h i « ( p i 4 a t o n ( U / Q ) ) / 2 .  

el se
I f ( Q . g t . 0 . 0 . a n d . U . l e . 0 . 0)  then 
c h i - p i + ( a t a n ( U / Q ) / 2 . ) 

e I se
i f ( Q . I t . 0 . 0 . a n d . U . l e . 0 . 0 )  then 
c h i » ( p i + a t a n ( U / Q ) ) / 2 .  

else
I f ( Q . e q . 0 . 0 . a n d . U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

el se
i f ( Q . e q . 0 . 0 . a nd . U . 11 . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p i  

end I f 
end I f 
end i f 
end i f 
end i f 
end i f 
end i f
c h i « c h i + ( p i / 2 . )
P - ( Q * * 2 + U * * 2 ) * * 0 . 5  
o-P*cos(ch i ) / 5 0  
b-4 ‘̂ 8 i n(chi  ) / 5 0  
xc—k
x ( 1 ) - x c —a / 2  
y ( 1 ) -yc—b/2  
x ( 2 ) - x c + a / 2  
y ( 2 ) - y c+ b /2  
c a l l  g p l ( 2 , x , y )

2 continue
1 continue

c a l l  gdawkf2) 
caI I gcIwk(2)  
caI I g c I ks 
stop 
end



0 program highres3 ( s o rt s  Mclsan et  a l ' s  data in squares of 7x8 p ixe l s
c and produces 1683 f i l e s  of data in I . Q . U  form)

c To do t h i s  we must f i r s t  d i v i de  the data i nt o subsets of 21x24 pix el s
c which is a s i m i l a r  procedure to h i g h r e s 2 . f o r .

c ha r ac te r * 2 0  t i t l e , o u t p u t
open( u n i t —3 , s t a t u s —’ o l d ’ , name—’m cc ra b. da t ’ ) 
open(uni  t - 4 , s t a t u s - ’ o I d ’ ,name-’ names. d a t ’ ) 
do 1 n - 1 ,11 
do 2 m -1 ,17 
un i tno«wn+6 
r e ad f4 . 99 )  t i t l e
open(un i t —uni t n o , s t a t u s - ' n e w * , name-t i 11e)

2 cont inue
do 3 j - 1 .24  

do 4 k - 1 .357 
r e a d ( 3 , « )  I , Q , U  
i f ( k . I e . 2 1 ) then 
wri  t e ( 7 , * )  I . Q . U

e 1 se
i f  ( k . g e . 2 2 . a n d . k . I e . 4 2 )  then
wri t e ( 8 , • )  I . Q . U

e 1 se
i f  ( k . g e . 4 3 . a n d . k . 1e . 63)  then
wr i t e ( 9 , • )  I . Q. U

e 1 se
i f  ( k . g e . 6 4 . a n d . k . 1e . 84)  then
w r i t e ( l 0 . « )  I .Q. U

e i se
i f  ( k . g e . 8 5 . a n d . k . I e .105)  then
wr i t e ( 1 1 , * )  I . Q. U

e I se
i f  ( k . g e . 1 0 6 . a n d . k . I e . 1 2 6 ) then
wr i t e ( 1 2 . * )  I . Q. U

e 1 se
i f  ( k . g e . 1 2 7 . a n d . k . I e . 147) then
wri  t e ( 1 3 , * )  I . Q. U

e I ss
i f  ( k . g e . 1 4 8 . a n d . k . I e . 168) then
wri  t e ( 1 4 , • )  I . Q. U

el se
i f  ( k . g e . 1 6 9 . a n d . k . l e . 189) then
wri t e ( 1 5 . * )  I . Q . U

el ss
i f  ( k . g e . 1 9 0 . a n d . k . I e .210) then
wri  t e ( 1 6 , « )  I . Q . U

e ls e
i f  ( k . g e . 2 1 1 . a n d . k . l e . 231) then
wr i t e ( 1 7 , • )  I . Q . U

e 1 ss
i f  ( k . g e . 2 3 2 . a n d . k . l e . 252) then
wri  t e ( 1 8 , * )  I . Q . U

e I se
i f  ( k . g e . 2 5 3 . a n d . k . I e .273) then
w r i t e ( 1 9 , * )  I . Q. U

e I se
i f  ( k . g e . 2 7 4 . a n d . k . I e . 294) then
wri  t e ( 2 0 , * )  I . Q. U

e I se
i f  ( k . g e . 2 9 5 . and. k . I e .315) then
w r i t e ( 2 1 , « )  I .Q . U

e I se
i f  ( k . g e . 3 1 6 . a n d . k . I e . 3 3 6 ) then
wri  t e ( 2 2 , * )  I . Q . U

e 1 se
i f  ( k . g e . 337)  then
wr i t e ( 2 3 , • )  I . Q. U

end i f
end i f
end i f
end I f
end i f
end i f
end i f
end i f
end i f
end i f
end i f
end i f
end i f
end i f
end i f
end i f
end i f
cont i nue
cont i nue
cIoss(23)  
closet 22) 
closs(21 i 
closet 20) 
closet 19) 
closet 18) 
c loss t17)



6 l o i a ( 1 S )  
close(14)  
c l o s e i 13) 
c I o s e i 12) 
closet 111 
closet  10) 
c I os e t9) 
cl ose(8)  
cI ose(7)

1 continue
cIose(3)  
cl ose(4)

c Next we must d iv i de  each set  of 21x24 p ix el s  into sets of 7x8 p i x e l s .

openfun i t - 2 , s ta t us—’ o I d ’ ,name- ’ names. dat ’ ) 
open(uni t—3 , s t a t u s —’ o l d ’ , name-'names2.dat ’ )

c Open each f i l e  of 21x24 p i x e l s  in turn and div i de  into 9 blocks of 7x8 p i x e l s .

do 5 1-1,187  
read(2, 99)  t i t l e
open(uni t - 4 . s t a t u s - ’ o I d ’ , name-t i 11e)
do 6 n n- 1 ,3
do 7 imi-1 ,3
number—64mm
read(3,99)  output
open(un i t -number, s t a t us —' n e w ' , name-output)

7 continue
do 8 j j - 1 ,8 
do 9 kk-1,21  
read(4 , «)  I ,Q, U  
i f  ( k k . I e . 7 )  then 
wr i t e ( 7 , * )  I . Q . U  

else
i f  ( k k . g e . 8 . a n d . k k . l e . 14) then 
wr i t e ( 8 , • )  I . Q . U  

el se
i f  ( k k . g e . 1 5 . a n d . k k . I e . 2 1 )  then 
wr i t e ( 9 , * )  I . Q . U  

end I f 
end i f 
end i f 

9 continue
8 continue

cl ose(7)  
cl ose(8)  
cl ose(9)

6 continue
cI ose(4)

5 continue
99 format(a20)

stop 
end



program h r 3 p I o t ( p I o t * Me loan et a l ’ s data in a se lec ted 7x8 p i xe l  box)

dimension x ( 2 ) , y ( 2 )  
c ha ra ct er * 10  t i t l e
p r i n t * ,  ’ Which area do you want to p l o t ? ’
p r i n t * ,  ’ Areas number 0P1.dat  to OP1683.dat ,  51 across,  33 down.’ 
p r i n t * .  ’ ’ 
r e a d ( 5 ,99)  t i t l e  

99 f ormat (a10)
open(uni t - 3 , s t a t u s —’ o l d ' , name-t i 11e)
caI I g o p k s ( 6 , - 1 )
col l  gopwk(2,1,4014)
c a l I  gacwk(2)
pi —4 . * a t a n ( 1 . )
p r i n t * ,  t i t l e
c a l l  gswn(1, 0 . 0 , 1 0 . 0 , 0 . 0 , 1 0 . 0 )  
caI I g s e l n t ( 1)  
do 1 j - 2 , 9  

y c- j
do 2 k - 2 , 8  
re a d( 3 , « )  I .Q. U  
i f ( I . l e . 0 )  goto 2

c Test for  the quadrant of the angle 2X.
i f ( Q . e q . 0 . 0 . a nd .U . eq. 0 . 0 )  then 
chi —0 . 0  

e I se
i f ( Q . g t . 0 . 0 . and .U. ge .0 . 0 )  then 
c h i - ( a t a n ( U / Q ) ) / 2 .  

e I se
I f ( Q . I t . 0 . 0 . and .U. ge .0 . 0 )  then 
c h i - ( p i + a t a n ( U / Q ) ) / 2 .  

e I se
i f ( Q . g t . 0 . 0 . a n d . U . l e . 0 . 0)  then 
ch i - p  i + ( a t a n ( U / Q ) / 2 . )  

e I se
I f ( Q . I t . 0 . 0 . a n d . U . l e . 0 . 0 )  then 
c h i - ( p i + a t a n ( U / Q ) ) / 2 .  

else
i f ( Q . e q . 0 . 0 . a n d . U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

el se
i f ( Q . e q . 0 . 0 . a n d . U . I t . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p l  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f
c h i - c h i + ( p i / 2 . )
P—( Q * * 2 + U * * 2 ) * * 0 . 5  
o - P * c o s ( c h i ) / 5 0  
b-P*si  n ( c h i ) / 5 0  
xc—k
x ( 1) - x c —a /2  
y ( 1 ) - y c —b/2  
x ( 2 ) - x c + o / 2  
y ( 2 ) - y e + b / 2  
c a l I  g p l ( 2 , x , y )

2 cont inue
1 cont inue

c a l l  gdawk(2)  
c a l I  gclwk(2)  
c a l I  gelks  
stop 
end



9 Wofftffrd** LOWRES.FOR reduces the r es o l u t i o n  of Mclean's data to 

character*20 t i t l e
open( u n i t - 1 . status—' o l d ’ , name—* names3.dat ' )  
open (uni t - 2 , s t a t u s —’ new’ .name—’ lowres.dat  ’ ) 
do 1 m-1,1683 
read(1,99)  t i t l e
open (uni t - 3 ,  s t a t u s - ’ o l d ’ .name—t i t l e )
I sum-0 
Qsum-0.0 
Usum-0.0 
n—0
do 2 k - 1 ,56 
read(3, «)  I .Q.U
i f  ( I . eq . 0 . and. Q. eq. 0 . 0 . a n d . U . e q . 0 . 0 )  goto 2 
lsufl^Isum+1 
QsunwOsum+Q 
Usum-Utum+U 
n—n+1 

2 continue 
cI ose(3)
i f  ( n . e q. 0 )  then 
Ib a r^ i 
Qsum-0.0 
Usum-0.0 
e I se
Ibar- Isum/n

c Do not need to d iv i de  Qsum and Usum by n because we only need 
c between them. Also,  d i v i d i n g  by n is not necessary to a l low fo 

end i f
w r i t e ( 2 , * )  n , I  bar,Qsum,Usum 

1 continue
do J j - 1 . 4  
do k k - 1 ,51 
nn—0 
a—0 . 0
w r i t e ( 2 , » )  n n, nn, a, a  
end do 
end do 

99 format(a20)
stop 
end

t hat  of

a r a t i o
r depoIar  i sat  i on



program l owr es pl ot ( pl o t s  Me I son «t  a l ’ s data at  low re s o l ut i on )  
dimensi on y ( 2 ) , x (2)
open(uni t —3 , status—' o l d ’ .name—' lowres.dat  ’ )
p i—4 . e a t o n f 1 . )
caI I g o p k s ( 6 , - 1 )
c a l l  gopwk(2,1,4014)
c a l l  gacwk(2)
c a l l  gswn(1, 0 . 0 , 5 2 . 0 , 0 . 0 , 4 0 . 0 )  
caI I g s e I n t (1)  
do 1 j-1.33 

yc—j+3  
do 2 k—1,51 
r e a d ( 3 , * )  n . I . Q . U  
i f  ( I . e q . 0 )  goto 2

Test f or  the quadrant of the angle 2X. 
i f ( Q . e q . 0 . 0 . and .U. eq . 0 . 0 )  then 

twochi—0 . 0  
e I se
i f ( Q . g t . 0 . 0 . a nd. U. ge . 0 . 0 )  then 

twochi -atan(U/Q)  
el se
i f ( Q . I t . 0 . 0 . a nd .U. ge . 0 . 0 )  then 

t wochi -pi +otan(U/ Q)  
e I se
i f ( Q . g t . 0 . 0 . a n d . U . l e . 0 . 0) then 

t woc hi - (2« pi )+ at an (U/ Q)  
e I se
l f ( Q . I t . 0 . 0 . a n d . U . l e . 0 . 0 )  then 
twoch i - p i + at an (U /Q )  

e I se
i f ( Q . e q . 0 . 0 . a n d . U . g t . 0 . 0 )  then 
t w o c h i - p i / 2 .  

e I se
i f ( Q . e q . 0 . 0 . a nd .U . 11 . 0 . 0 )  then 

t w o c h i - ( 3 . / 2 . ) * p i  
end i f 
end I f 
end I f 
end i f 
end i f 
end 1 f 
end I f
ch i - ( t w o c h i / 2 . ) + ( p i / 2 . )

P—( Q * * 2 + U * * 2 ) * * 0 . 5  
o - P * c o s ( c h i ) 
b-f**s i n ( c h i ) 
o - a / 2 0 0 0 . 
b—b /2 0 0 0 . 
xc—k
x ( 1 ) - x c —a / 2  
y ( 1 ) -y c —b/2  
x( 2 ) - xc- f a/ 2  
y ( 2) -yc- fb / 2  
c a l I  g p l ( 2 , x , y )  
cont i nue 

cont i nue 
c a l l  gdawk(2)  
caI I gclwk(2)  
c a l I  gelks  
stop



c program BINS.FOR puts W o l t j e r ’ s data i nto 5 degree bins,  
i nteger a , a a , b , bb, c , c c , d , dd, e , e e , f , f f , g , gg, h , hh 
integer p , r , s , t , v , w , p p , r r , s s . t t , v v , w w  
open?un i t —1 , stat us—' o l d * , name—* f u l l c r a b . d a t ’ ) 
o p e n( u n i t - 2 , s t a t u s — ’ new’ , name—’ bi ns . d a t ’ ) 
p i - 4 . « a t a n ( 1 . )  
do 1 j - 1 ,1850 
re a d( 1 , • )  n , I,QQ,UU 
i f  ( I . l e . 0 )  goto 1

c Test for  the quadrant of the angle 2X.
i f ( Q Q . e q . 0 . 0 . a n d . U U . e q . 0 . 0 )  then 
c h i - 0 . 0  

goto 99 
e I se
I f ( Q Q . g t . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
c hi - ( a t a n( U U / QQ ) ) / 2 .  

goto 99 
e I se
i f (QQ. 11 . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
ch i - ( p i + a t a n ( U U / Q Q ) ) / 2 .  

goto 99 
e I se
i f ( Q Q . g t . 0 . 0 . a n d . U U . I e . 0 . 0 )  then 
c h i - p i + ( a t a n ( U U / Q Q ) / 2 . ) 

goto 99 
else
i f ( Q Q . I t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
c hi - (p i + a t a n ( U U / Q Q ) ) / 2 .  

goto 99 
el se
I f ( Q Q . e q . 0 . 0 . a n d . U U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

goto 99 
else
i f ( Q Q . e q . 0 . 0 . a n d . U U . I t . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p l  

goto 99 
end i f 
end i f 
end i f 
end I f 
end i f 
end I f 
end I f

99 c h i - ( c h i  * 1 8 0 . ) / p i

i f  ( c h i . I t . 5 . )  a-o+1 
i f  ( c h i . g e . 5 . 0 . a n d . c h i . I t . 1 0 . )  b—b+1 
i f  ( c h i . g e . 1 0 . 0 . a n d . c h i . I t . 1 5 . )  c—c+1 
i f  ( c h i . g e . 1 5 . 0 . a n d . c h i . I t . 2 0 . )  d-d+1 
i f  ( c h i . g e . 2 0 . 0 . a n d . c h i . I t . 2 5 . )  e—e+1 
i f  ( c h i . g e . 2 5 . 0 . a n d . c h i . I t . 3 0 . J f - f +1  
i f  ( c h i . g e . 3 0 . 0 . a n d . c h i . I t . 3 5 . )  g-g+1 
i f  ( c h i . g e . 3 5 . 0 . a n d . c h i . I t . 4 0 . )  h-h+1 
i f  ( c h i . g e . 4 0 . 0 . a n d . c h i . I t . 45. 1 k-k+1 
i f  ( c h i . g e . 4 5 . 0 . a n d . c h i . I t . 5 0 . )  1-1+1 
i f  ( c h i . g e . 5 0 . 0 . a n d . c h i . I t . 5 5 . )  iwws+1 
i f  ( c h i . g e . 5 5 . 0 . a n d . c h i . I t . 6 0 . )  n-n+1 
i f  ( c h i . g e . 6 0 . 0 . a n d . c h i . I t . 6 5 . J p-p+1 
i f  ( c h i . g e . 6 5 . 0 . a n d . c h i . I t . 7 0 . )  r - r+1  
i f  ( c h i . g e . 7 0 . 0 . a n d . c h i . I t . 7 5 . )  s-s+1 
i f  ( c h i . g e . 7 5 . 0 . a n d . c h i . I t . 8 0 . )  t - t +1  
i f  ( c h i . g e . 8 0 . 0 . a n d . c h i . 11. 85.  ) v—v+1 
i f  ( c h i . g e . 8 5 . 0 . a n d . c h i . I t . 9 0 . )  w—w+1 
i f  ( c h i . g e . 9 0 . 0 . a n d . c h i . I t . 9 5 . )  ao-ao+1 
i f  ( c h i . g e . 9 5 . 0 . a n d . c h i . I t . 10 0. )  bb-bb+1 
i f  ( c h i . ge. 1 0 0 . 0 . and. c h i . I t . 1 0 5 . )  cc—cc+1 
i f  ( c h i . g e . 1 0 5 . 0 . a n d . c h i . I t . 110 . )  dd-dd+1 
i f  ( c h i . g e . 1 1 0 . 0 . a n d . c h i . I t . 1 1 5 . )  ee-ee+1 
i f  ( c h i . g e . 1 1 5 . 0 . a n d . c h i . I t . 12 0. )  f f - f f + 1  
i f  ( c h i . g e . 1 2 0 . 0 . a n d . c h i . I t . 1 2 5 . )  gg-gg+1 
i f  ( c h i . g e . 1 2 5 . 0 . a n d . c h i . I t . 1 3 0 . )  hh-hh+1 
i f  ( c h i . g e . 1 3 0 . 0 . a n d . c h i . I t . 1 3 5 . )  kk-kk+1 
i f  ( c h i . g e . 1 3 5 . 0 . a n d . c h i . I t . 1 4 0 . )  I l - i 1+1 
i f  ( c h i . ge. 1 4 0 . 0 . and.chi  . 11.145.  ) mm-snm+l 
i f  ( c h i . g e . 1 4 5 . 0 . a n d . c h i . I t . 1 5 0 . )  nn—nn+1 
i f  ( c h i . g e . 1 5 0 . 0 . a n d . c h i . I t . 1 5 5 . )  pp-pp+1 
i f  ( c h i . g e . 1 5 5 . 0 . a n d . c h i . I t . 1 6 0 . )  r r - r r + 1  
i f  ( c h i . g e . 1 6 0 . 0 . a n d . c h i . I t . 1 6 5 . )  ss-ss+1 
i f  ( c h i . g e . 1 6 5 . 0 . a n d . c h i . I t . 1 7 0 . )  t t - t t + 1  
i f  ( c h i . g e . 1 7 0 . 0 . a n d . c h i . I t . 1 7 5 . )  vv—vv+1 
i f  ( c h i . g e . 1 7 5 . 0 . a n d . c h i . I t . 1 8 0 . )  ww-ww+1 

1 continue
w r i t e ( 2 , « )  a , b , c , d . e , f , g . h , k . l , r a , n , p , r , s . t , v , w
w r i t e ( 2 , * )  a a . b b , c c . d d . e e , f f , g g . h h , k k . I  I , mm , n n , p p , r r , s s , 1 1 , vv,ww
stop
end



c program BINS1.FOR puts McLean's data into 5 degree bins,  
i nteger a , a a . b , b b , c , c c , d , d d , e , e e , f , f f , g , g g , h , h h  
i nteger  p , r , s , t , v , w , p p , r r , s s , t t , v v , w w  
open?uni t—1 . s t a t u s —'old* .name—’ l o wr es .d at ’ ) 
open(un i t - 2 , s t a t u s - '  new’ , nome-’ bi n s 1 . d o t ’ ) 
pi—4 . * a t a n ( 1 . )  
do 1 j - 1 ,1683  
re a d ( 1 , • )  n, I .QQ.UU  
i f  ( I . l e . 0 )  goto 1

c Test f or  the quadrant of the angle 2X.
i f ( Q Q . e q . 0 . 0 . a n d . U U . e q . 0 . 0 )  then 
ch i - 0 . 0  

goto 99 
e I se
i f ( Q Q . g t . 0 . 0 . and.UU.ge. 0 . 0 )  then 
ch i—( at an( UU/ QQ )) /2 .  

goto 99 
e I se
i f (Q Q. 1 1 . 0 . 0 . and.UU.ge. 0 . 0 )  then 
c h l - ( p i + a t a n ( U U / Q Q ) ) / 2 . 

goto 99 
e I se
i f ( Q Q . g t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
c h i - p i + ( a t a n ( U U / Q Q ) / 2 . ) 

goto 99 
e I se
i f ( Q Q . I t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
chi —( pi +a ta n( UU/ QQ )) /2 .  

goto 99 
e I se
i f ( Q Q . e q . 0 . 0 . a n d . U U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

goto 99 
e I se
i f ( Q Q . e q . 0 . 0 . a n d . U U . I t . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p i  

goto 99 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f

99 c h i - ( c h i * 1 8 0 . ) / p i

i f  ( c h i . I t . 5 . )  o-a+1 
i f  ( c h i . g e . 5 . 0 . a n d . c h i . I t . 1 0 . )  b-b+1 
i f  ( c h i . g e . 1 0 . 0 . a n d . c h i . I t . 1 5 . )  c—c+1 
i f  ( c h i . g e . 1 5 . 0 . a n d . c h i . 11. 2 0 . )  d-d+1 
i f  ( c h i . g e . 2 0 . 0 . a n d . c h i . I t . 2 5 . )  e-e+1 
i f  ( c h i . g e . 2 5 . 0 . a n d . c h i . I t . 3 0 . S f - f+1  
i f  ( c h i . g e . 3 0 . 0 . a n d . c h i . I t . 3 5 . )  g-g+1 
i f  ( c h i . g e . 3 5 . 0 . a n d . c h i . 11. 4 0 . )  h— h+1 
i f  ( c h i . g e . 4 0 . 0 . a n d . c h i . I t . 4 5 . )  k-k+1 
i f  ( c h i . g e . 4 5 . 0 . a n d . c h i . I t . 5 0 . )  1-1+1 
i f  ( c h i . g e . 5 0 . 0 . a n d . c h i . I t . 5 5 . )  nwwn+1 
i f  ( c h i . g e . 5 5 . 0 . a n d . c h i . I t . 6 0 . )  n-n+1 
i f  ( c h i . g e . 6 0 . 0 . a n d . c h i . I t . 6 5 . )  p-p+1 
I f  ( c h i . ge . 6 5 . 0 . and. c h i . I t . 7 0 . )  r- r+1  
i f  ( c h i . g e . 7 0 . 0 . a n d . c h i . I t . 7 5 . )  s-s+1 
i f  ( c h i . g e . 7 5 . 0 . a n d . c h i . I t . 8 0 . )  t - t +1  
i f  ( c h i . g e . 8 0 . 0 . a n d . c h i . I t . 8 5 . )  v—v+1 
i f  ( c h i . g e . 8 5 . 0 . a n d . c h i . I t . 9 0 . )  w—w+1 
i f  ( c h i . ge . 9 0 . 0 . and. c h i . I t . 9 5 . )  ao—ao+1 
i f  ( c h i . g e . 9 5 . 0 . a n d . c h i . I t . 100.)  bb-bb+1 
i f  ( c h i . g e . 1 0 0 . 0 . a n d . c h i . I t . 10 5. )  cc—cc+1 
i f  ( c h i . g e . 1 0 5 . 0 . and. c h i . I t . 1 10 . )  dd—dd+1 
i f  ( c h i . ge . 1 1 0 . 0 . and. c h i . I t . 11 5. )  ee—ee+1 
i f  ( c h i . g e . 1 1 5 . 0 . a n d . c h i . I t . 12 0. )  f f - f f + 1  
i f  ( c h i . g e . 1 2 0 . 0 . a n d . c h i . I t . 125. )  gg-gg+1 
i f  ( c h i . g e . 1 2 5 . 0 . a n d . c h i . I t . 13 0. )  hh—hh+1 
i f  ( c h i . ge . 1 3 0 . 0 . and. c h i . I t . 13 5. )  kk-kk+1 
i f  ( c h i . g e . 1 3 5 . 0 . a n d . c h i . I t . 140. )  I l - l 1+1 
i f  (chi  .ge.  1 4 0 . 0 . and.chi  . 11. 14 5. )  mm-wmv+1 
i f  ( c h i . g e . 1 4 5 . 0 . a n d . c h i . I t . 15 0. )  nn—nn+1 
i f  ( c h i . g e . 1 5 0 . 0 . a n d . c h i . I t . 15 5 . )  pp-pp+1 
i f  ( c h i . g e . 1 5 5 . 0 . a n d . c h i . I t . 16 0. )  r r—rr+1 
i f  ( c h i . g e . 1 6 0 . 0 . a n d . c h i . I t . 16 5. )  ss—ss+1 
i f  ( c h i . g e . 1 6 5 . 0 . a n d . c h i . I t . 170.)  t t - t t + 1  
i f  ( c h i . g e . 1 7 0 . 0 . a n d . c h i . I t . 17 5. )  vv—vv+1 
i f  ( c h i . g e . 1 7 5 . 0 . a n d . c h i . I t . 18 0 . )  ww-ww+1 

1 cont inue
wri t e ( 2 , « )  a , b , c , d , e , f , g , h , k , l , m , n , p , r , s , t , v , w
wri  t e ( 2 , * )  a a , b b . c c . d d . e e , f f , gg.hh, kk, I I , m m , n n , p p , r r , s s , 11 , vv.ww
stop
end



c Progrom ANGLE1 . FOR t es t s  f o r  a p re fe r red  d i r e c t i o n  of p o l a r i z a t i o n

c in the Crab Nebula ( W o l t j e r  d a t a ) .

dimension n( 1101} ,X( 1101 ) . I ( 1 1 0 1 ) , Q( 11 0 1 ) , U ( 1101)  
dimension Y( 0:44)  ,sura(0:4»4) 
p i - 4 . * a t a n ( 1 . )
openf u n i t - 1 , s t a t u s * ' o l d  * , name*’ crabi  q u . d a t ’ ) 
open(un i t * 2 . s t a t u s * '  new’ , name*’ a n g I e 1 . d a t ’ ) 
do 1 j - 1 .1101
read(1 , • )  n ( j ) , I ( J) , Q ( J ) ,U(  j )

1 continue
do 2 m-0,43 
sum(m)*0.0 
Y(m)-m*5.  
do 3 j - 1 .1101
QO«3(j)
UU-U(j )

c Test for the quadrant of the angle 2X.
i f ( Q Q . e q . 0 . 0 . a n d . U U . e q . 0 . 0 )  then 
ch i - 0 . 0  

goto 99 
el se
i f ( Q Q . g t . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
c hi - (a ta n( UU/ QQ )) /2 .  

goto 99 
else
i f ( Q Q . i t . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
c h i - ( p i +a ta n (U U/ Q Q) ) / 2 .  

goto 99 
e I se
i f (QQ. g t . 0 . 0 .and.UU. I e . 0 . 0 )  then 
c h i - p i + ( a t a n ( U U / Q Q ) / 2 . ) 

goto 99 
else
i f ( O Q . I t . 0 . 0 . and.UU. l e . 0 . 0 )  then 
c h i - ( p i + a ta n (U U/ Q Q )) / 2 .  

goto 99 
else
i f ( O Q . e q . 0 . 0 . a n d . U U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

goto 99 
else
I f ( OQ .e q. 0 . 0 . and .UU. 11 . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p l  

goto 99 
end I f 
end i f 
end I f 
end I f 
end I f 
end I f 
end i f

99 X ( j ) —(chi * 1 8 0 . ) / p l
di f f —X( j ) -Y(m)  
i f  ( d i f f . l t . 0 . )  d I f f — d i f f  
i f  l d i f f . g t . 9 0 . )  d i f f * 1 8 0 . - d i f f  
suffl(m)*sum(m)+diff  

3 continue
w r i t e ( 2 . * )  Y(m),sura(m)

2 continue
stop 
end



c Program ANGLE1S.FOR te s t s  f o r  a pre fer red d i r e c t i o n  of  p o l a r i z a t i o n

c in the Crab Nebula ( W o l t j e r  d a t a ) .  Squared sum method.

dimension n ( 1 1 0 1 ) , X ( 1 1 0 1 ) . I ( 1 1 0 1 ) , Q( 11 0 1 ) , U ( 1101)  
dimension Y ( 0 : 1 8 0 ) , sum(0: 180) 
pi —4 . * a t a n ( 1 . )
openfun i t - 1 , sta t us—* o I d ’ ,name—’ crabi  qu. d a t ’ ) 
open(uni t - 2 . s t a t u s —’ new’ , name-’ angI e l . dat ’ ) 
do 1 j - 1 .1101
r e a d ( l . e )  n ( j ) , I ( j ) , Q ( j ) , U ( j )

1 cont inue
do 2 m—0, 180  
sum(m)-0.0 
Y( m) ^»*1 . 
do 3 j - 1 .1101
Q O ^ ( j )
UU-O(j )

c Test f o r  the quadrant of the angle 2X.
i f ( Q Q . e q . 0 . 0 . a n d . U U . e q . 0 . 0 )  then 
c h i - 0 . 0  

goto 99 
else
i f ( O Q . g t . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
ch i - ( a t a n ( U U / Q Q ) ) / 2 . 

goto 99 
e I se
i f ( QQ . I  t . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
ch i - ( p i + a t a n ( U U / Q Q ) ) / 2 .  

goto 99 
e I se
i f ( Q Q . g t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
ch i - p i + ( a t a n ( U U / Q Q ) / 2 . ) 

goto 99 
el se
i f ( Q Q . I t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
c h i - ( p i + o t a n ( U U / Q Q ) ) / 2 .  

goto 99 
else
i f ( Q Q . e q . 0 . 0 . a n d . U U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

goto 99 
el se
i f ( Q Q . e q . 0 . 0 . a n d . U U . I t . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p i  

goto 99 
end i f 
end i f 
end I f 
end i f 
end i f 
end i f 
end i f

99 X ( j ) —( ch i * 1 8 0 . ) / p i
d i f f —X( j ) -Y (m )  
i f  ( d i f f .  l t . 0 . )  d i f f — d i f f  
i f  ( d i f f . g t . 9 0 . )  d i f f —180.—d i f f  
sum(m)-sum(m)+(d i f f • • 2)

3 cont inue
w r i t e ( 2 , « )  Y(m),sum(m)

2 continue
stop 
end



c i n

1

c

99

3

2

Program ANGLE2.F0R t es t s  f or  a p re f e r r e d  d i r e c t i o n  of p o l a r i z a t i o n  

the Crab Nebula (Mclean d a t a ) .

dimension n( 1 6 8 3) ,X( 1 6 8 3 ) . I ( 1 6 8 3 ) . 0 ( 1 6 8 3 ) .U(1683)  
dimension Y ( 0 : 1 8 0 ) , sum(0:180)  
p i - 4 . * a t a n ( 1. )
openfuni t - 1 , s ta t us - ' o l d * . n a m e —' l o w r e s . d a t ’ } 
open(uni t - 2 , s t a t u s —' n ew ' , name—’ a ng I e 2 . d a t ’ ) 
do 1 j - 1 .1683
read(1 . e)  n ( j ) , I ( j ) , Q ( j ) , U ( j )
cont i nue
do 2 m-0,180
sum(m)-0.0
Y(m)^»*1.
do 3 j - 1 ,1683
i f  ( I ( I ) . l e . 0 )  goto 3
QQ-Q j
UU-U(j)

Test for  the quadrant of the angle 2X.
I f (Q Q . eq . 0 . 0 . a nd . U U. e q . 0 . 0 )  then 
ch i—0 . 0  

goto 99 
e I se
i f ( Q Q . g t . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
ch i - ( a t a n ( U U / Q Q ) ) / 2 . 

goto 99 
e I se
i f ( Q Q . I t . 0 . 0 . a n d . U U . g e . 0 . 0 )  then 
ch i - (pi+atan(UU/QQ)  ) / 2 .  

goto 99 
else
i f ( Q Q . g t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
c h i - p i + ( a t a n ( U U / Q Q ) / 2 . ) 

goto 99 
e I se
i f (QQ. I t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
chl «( pi +a ta n(UU/ QQ) ) / 2 .  

goto 99 
el se
i f ( Q Q . e q . 0 . 0 . a n d . U U . g t . 0 . 0 )  then 
c h i - p l / 4 .  

goto 99 
else
i f ( Q Q . e q . 0 . 0 . a n d . U U . I t . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) -p i 

goto 99 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f

X ( j ) - c h I * 1 8 0 . / p  i
d i f f —X( j ) -Y(m)
i f  ( d i f f . I t . 0 . )  d i f f — d i f f
I f  ( d i f f . g t .  9 0 . )  di f f —180. —<J I f f
sum(m)-sum(m)+d i f f
cont i nue
w r i t e ( 2 , « )  Y(m),sura(m)
cont i nue
stop
end



c Program ANGLE2S. FOR tes ta f o r  a p re fe r red  d i r e c t i o n  of p o la r i z a t i o n

c in the Crab Nebula (Mclean d at a ) .  Squared sum method.

dimension n ( 1 6 8 3 ) , X ( 1 6 8 3 ) . 1 ( 1 6 8 3 ) , Q( 16 83 ) , U( 16 83 )  
dimension Y ( 0 : 4 4 ) . sum(0:44)  
p i - 4 . * a t a n ( 1 . )
openfuni t —1 , s tat us—’ o I d ’ ,name—’ Iowres. d a t ’ ) 
open( uni t—2 . stat us—'new* , name—’ a n g I e 2 . d a t ’ ) 
do 1 j - 1 .1683
r e a d ( l . e )  n ( j ) . I ( j ) , Q ( j ) , U ( j )

1 cont inue
do 2 m—0 , 4 3
sum(m)-0.0
Y(m)^«*5.
do 3 j - 1 .1683
I f  ( I ( i ) . l e . 0 )  goto 3
QOQ j
u u -u (j)

c Test f or  the quadrant of the angle 2X.
i f (QQ.e q. 0 . 0 . and.UU.eq. 0 . 0 )  then 
c h i - 0 . 0  

goto 99 
e I se
i f ( Q Q . g t . 0 . 0 . and.UU.ge.0 . 0 )  then 
chi —( at an( UU/ QQ )) /2 .  

goto 99 
e I se
i f ( Q Q . I t . 0 . 0 . and.UU.ge.0 . 0 )  then 
ch i - ( p  i+atan(UU/ QQ) ) / 2.  

goto 99 
el se
i f ( Q Q . g t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
c h i - p i + ( a t a n ( U U / Q Q ) / 2 . ) 

goto 99 
e I se
i f ( Q Q . I t . 0 . 0 . a n d . U U . l e . 0 . 0 )  then 
ch i - ( p i + a t a n ( U U / Q Q ) ) / 2 .  

goto 99 
e I se
i f ( Q Q . e q . 0 . 0 . a n d . U U . g t . 0 . 0 )  then 
c h i - p i / 4 .  

goto 99 
el se
I f ( Q Q . e q . 0 . 0 . a n d . U U . I t . 0 . 0 )  then 
c h i - ( 3 . / 4 . ) * p i  

goto 99 
end i f 
end i f 
end i f 
end I f 
end I f 
end I f 
end I f

99 X ( j ) - c h i  * 1 8 0 . / p i
d i f f —X( j ) - Y ( m )  
i f  ( d i f f .  l t . 0 . )  d i f f — d i f f  
i f  ( d i f f . g t . 9 0 . )  d i f f —180.—d i f f 
sum(m)-sum(m)+(di f f * * 2 )

3 cont inue
w r i t e ( 2 , « )  Y(m),sum(m)

2 cont inue
stop 
end



c Program COTRAN c o n v e r t s  c a r t e s i a n  da ta  se t  t o  r a d i a l  coo rds  c e n t r e d  on

c the p u l s a r . ( W o l t j e r )

open(uni  t - 1 . s t a t u s - ’ o l d ’ .name—' f u l l c r a b . d a t  *)
open(un i t - 2 . s t a t u s —’ new*, name—’ p u l c e n t . d a t ’ )
p i - 4 . * a t a n ( 1 . )
do 1 j - 1 ,37
y—22 . -J
do 2 k—1.51
x—k - 3 0 .
read(1 , • )  n , I , Q , U
i f  ( x . e q . 0 . 0 . a n d . y . e q . 0 . 0 )  then
th e ta—0 . 0
goto 11
e I se
i f  ( x . g t . 0 . 0 . a n d . y . g e . 0 . 0 )  then 
t h e t o - a t a n ( y / x )  
goto 11 
e I se
i f  ( x . I t . 0 . 0 . a n d . v . g e . 0 . 0 )  then 
theto—p i + a t a n ( y / x )  
goto 11 
e I se
i f  ( x . I t . 0 . 0 . a n d . v . l e . 0 . 0 )  then
t h e t a - p i + a t a n ( y / x )
goto 11
e lse
i f  ( x . g t . 0 . 0 . a n d . y . l e . 0 . 0 )  then 
t h e t o - ( 2 . * p i ) + a t a n ( y / x )  
goto 11 
e I se
i f  ( x . e q . 0 . 0 . a n d . y . g t . 0 . 0 )  then 
t h e t a - p i / 2 .  
goto 11 
e I se
i f  ( x . e q . 0 . 0 . a n d . y . I t . 0 . 0 )  then
t h e t o - 3 . * p i / 2 .
goto 11
end i f
end i f
end i f
end i f
end i f
end i f
end i f

11 r - ( ( x * * 2 ) + ( y * * 2 ) ) * * 0 . 5
t h e t a - t h e t a * 1 8 0 . / p i  
w r i t e ( 2 , « )  n , r , t h e t a , I , Q , U  
th e ta—0 . 0

2 cont inue
1 cont inue

stop 
end



c Program C0TRAN1 c o n v e r t s  c a r t e s i a n  da ta  se t  t o  r a d i a l  c oo rd s  c e n t r e d  on

c the pu lsar .  McLean’ s data

openfun i t - 1 . s t a t u s —’ o l d ’ , name-’ f u l l  r e s . d a t ’ )
open(un i t - 2 . s t a t u s —’ new’ , name—’ p u l c e n t 1 . d a t ’ )
p i - 4 . * a t a n ( 1 . )
do 1 j - 1 ,37
y - j - 1 5 .
do 2 k - 1 .51
x—k—30.
re ad (1 , * )  n , I , Q , U
i f  ( x . e q . 0 . 0 . a n d . y . e q . 0 . 0 )  then
theta—0 . 0
goto 11
e I se
i f  ( x . g t . 0 . 0 . a n d . y . g e . 0 . 0 )  then 
t h e t o - a t a n ( y / x )  
goto 11 
el se
i f  ( x . I t . 0 . 0 . a n d . v . g e . 0 . 0 )  then 
the ta—p i + a t a n ( y / x )  
goto 11 
else
i f  ( x . I t . 0 . 0 . and . v . I e . 0 . 0 )  then 
theta—p i + a t a n ( y / x )  
goto 11 
e I se
i f  ( x . a t . 0 . 0 . a n d . y . l e . 0 . 0 )  then 
t h e t o - ( 2 . * p i ) + a t a n ( y / x )  
goto 11 
el se
i f  ( x . e q . 0 . 0 . a n d . y . g t . 0 . 0 )  then 
t h e t a - p i / 2 .  
goto 11 
e I se
i f  ( x . e q . 0 . 0 . a n d . y . I t . 0 . 0 )  then
t h e t o - 3 . * p i / 2 .
goto 11
end i f
end i f
end i f
end I f
end i f
end i f
end i f

11 r - ( ( x * * 2 ) + ( y * * 2 ) ) * * 0 . 5
t h e t o - t h e t a * 1 8 0 . / p i  
w r i t e ( 2 , * )  n , r , t h e t a , I , Q , U  
theta—0 . 0  

2 cont inue
1 cont inue

stop 
end



c program SECTOR.FOR c a l c u l a t e s  p r e f e r r e d  an g le  o f  p o l a r i z a t i o n  i n  a g i v e n

c sector  or annulus,  using W o l t j e r ’ s da ta ,  

real  i rad
dimension n ( 1 8 8 7 ) . r ( 1 8 8 7 ) . t h e t a ( 1 8 8 7 ) . I ( 1 8 8 7 ) , 0 ( 1 8 8 7 ) ,U(1887 )  
dimension a n g ( 0 : 1 8 0 ) ,su m(0 :180)  
p i - 4 . * a t a n ( 1 . )
openfun i t —1 . s t a t u s —' o l d ’ , name—’ p u l c e n t . d a t ’ ) 
open(uni  t - 2 . s t a t u s —’ new’ , name—’ s e c t o r . d a t ’ ) 
p r i n t * ,  ’ Enter  inner r a d i u s ’ 
p r i n t * ,  ’ ’ 
r e a d ( 6 , * )  i rad
p r i n t * ,  ’ Enter  outer  radius (max—3 5 . 0 ) ’ 
p r i n t * ,  ’ ’ 
r e a d ( 6 , * )  orad
p r i n t * , ’ Enter  the l i m i t i n g  angles of the se c tor  r e q u i r e d ’ 
p r i n t * , ’ ’
r e a d ( 6 , * )  a Ip h a l , a I p h a 2  
do 1 k - 1 ,1887
r e a d ( 1 . * )  n ( k ) , r ( k ) , t h e t a ( k ) , I ( k ) , Q ( k ) , U ( k )

1 cont inue
w r i t e ( 2 , * )  i r a d , o r a d , a I p h a l , a l p h a 2
do 2 m—0,1 80
ang(m) -ai *1.
sum(m)-0.0
do 3 k - 1 ,1887
i f  ( r ( k ) . 11.1 rad)  goto 3
i f  ( r ( k ) . a t . orad)  goto 3
i f  ( t h e t a ? k ) . 1 1 . a I p h a l ) goto 3
i f  ( t h e t a ( k ) . a t . a l p h a 2 )  goto 3
i f ( I ( k ) . l e . 0 )  goto 3
x -Q(k )
y - U ( k )
i f  ( x . e q . 0 . 0 . a n d . y . e q . 0 . 0 )  then 
ch i—0 . 0  
goto 99 
e I se
i f  ( x . e q . 0 . 0 . a n d . y . g t . 0 . 0 )  then 
c h i - p i / 4 .  
goto 99 
e I se
i f  ( x . e q . 0 . a n d . y . I t . 0 . 0 )  then 
c h i - 3 . * p i / 4 .  
goto 99 
e I se
i f  ( x . I t . 0 . 0 . a n d . v . g e . 0 . 0 )  then
c h i - ( p i + a t a n ( y / x ) ) / 2 .
goto 99
e ls e
i f  ( x . g t . 0 . 0 . a n d . y . g e . 0 . 0 )  then  
ch i - ( a t a n ( y / x ) ) / 2 .  
goto 99 
e I se
i f ( x . I t . 0 . 0 . a n d . v . I e . 0 . 0 )  then 
ch i - ( p i + a t a n ( y / x ) ) / 2 .  
goto 99 
e I se
i f  ( x . g t . 0 . 0 . a n d . y . l e . 0 . 0 )  then
c h i - ( ( 2 . 0 * p i ) + a t a n ( y / x ) ) / 2 .
goto 99
end i f
end i f
end i f
end i f
end i f
end i f
end i f

99 c h i - ( c h i * 1 8 0 . 0 ) / p i
di f f - ch i - an g( ra )  
i f  ( d i f f .  I t .  0 . 0 )  d i f f — d i f f  
i f  ( d i f f . g t . 9 0 . )  di f f —180 .—d l f f  
sum(m)-sum(m)+(di  f f * * 2 )

3 cont inue
average—average+suffl(m) 
wr i t e ( 2 , * )  ang(m) , sum(m)

2 cont inue
average—a v er ag e / 18 1 . 
w r i t e ( 2 , * )  average  
stop 
end



c program SECTOR1.FOR c a l c u l a t e s  p r e f e r r e d  an g l e  o f  p o l a r i z a t i o n  i n  a g i v e n

c sector  or annuI u s . (McLean da ta )  

real  i rad
dimension n ( 1 8 8 7 ) , r ( 1 8 8 7 ) , t h e t a ( 1 8 8 7 ) , I ( 1 8 8 7 ) , Q( 1 88 7 ) ,U (1 8 87 )  
dimension a n g ( 0 : 1 8 0 ) , sum(0 :180)  
p i - 4 . * a t a n ( 1 . )
openfun i t - 1  . s t a t u s —’ o l d ’ , name-’ p u l c e n t l . d a t ' )  
openfun i t - 2 . s t a t u s —’ new’ , name—’ s e c t o r l . d a t ’ ) 
p r i n t * ,  'En t e r  inner r a d i u s ’ 
p r i n t * ,  ’ ’ 
re a d ( 6 , * )  i rad
p r i n t * ,  ’ Enter  ou te r  radius  ( m a x - 3 0 . 0 ) ’ 
p r i n t * ,  * * 
re ad ( 6 , « )  orad
p r i n t * , ’ Enter  the l i m i t i n g  anglesof  the sector  r e q u i r e d ’ 
p r i n t * , ’ ’
r e a d ( 6 , * )  a I p h a l , a Ipha2 
do 1 k - 1 ,1887
r e od ( 1 , * )  n ( k ) , r ( k ) , t h e t a ( k ) , I ( k ) , Q ( k ) , U ( k )

1 cont inue
w r i t e ( 2 , * )  i ra d , o r a d , a  I p h a l , a l p h a 2
do 2 m - 0 , 180
ang(m)^s*1.
sum(m)-0.0
do 3 k - 1 ,1887
i f  ( r f k ) . I t . i r ad )  goto 3
i f  ( r ( k ) . a t . o r a d )  goto 3
i f  ( t h e t a i k ) . 11. a I p h a l ) goto 3
i f  ( t h e t a ( k ) . a t . a l p h a 2 )  goto 3
i f  ( I ( k ) . I e . 0 )  goto 3
x-Q(k)
y—u ( k )
i f  ( x . e q . 0 . 0 . a n d . y . e q . 0 . 0 )  then 
ch i—0 . 0  
goto 99 
e I se
i f  ( x . e q . 0 . 0 . a n d . y . g t . 0 . 0 )  then 
c h i - p i / 4 .  
goto 99 
e I se
i f  ( x . e q . 0 . a n d . y . I t . 0 . 0 )  then  
c h i - 3 . * p i / 4 ,  
goto 99 
e I se
i f  ( x . I t . 0 . 0 . a n d . v . g e . 0 . 0 )  then  
c h i - ( p i + a t a n ( y / x ) ) / 2 .  
goto 99 
e I se
i f  ( x . g t . 0 . 0 . a n d . y . g e . 0 . 0 )  then 
c h i - ( a t a n ( y / x ) ) / 2 .  
goto 99 
e I se
i f ( x . I t . 0 . 0 . and. v . I e . 0 . 0 )  then  
c h i - ( p i + a t a n ( y / x ; ) / 2 .  
goto 99 
e I se
i f  ( x . g t . 0 . 0 . a n d . y . l e . 0 . 0 )  then
c h i - ( ( 2 . 0 * p i ) + a t a n ( y / x ) ) / 2 .
goto 99
end i f
end i f
end i f
end i f
end i f
end i f
end i f

99 c h i - ( c h i * 1 8 0 . 0 ) / p i
di f f - c h i - a n g ( m )  
i f  ( d i f f .  I t . 0 . )  d i f f — d i f f  
i f  ( d i f f . g t . 9 0 . )  di f f —180 . —di f f  
sum(m)-sum(m)+d i f f 

3 cont inue
average—average+sum(m)  
wri t e ( 2 , * )  ang(m) , sum(m)

2 cont inue
average—av e r a g e / 1 8 1 . 
wr i t e ( 2 , * )  average  
stop 
end



c Program NEWCEN.FOR t e s t s  f o r  t he  s t a t i s t i c a l  l i k e l i h o o d  of  a nominated

c cent re  ( W o l t j e r ) .

dimension n ( 1 8 8 7 ) , I (1887)  , Q ( 1 8 8 7 ) , U ( 1 8 8 7 ) , I U ( 1 8 8 7 ) , IQ(1887)  
in te ge r  aen1 , aen2 ,xc,yc
open(uni  t - 1 . s t a t u s —‘ o l d ’ , name-’ f u l l c r a b . d a t ’ )
p r i n t * , ’ Give the coordinates of the ce n t r e  to be t e s t e d . ’
p r i n t * , ’ 16 < xc < 35 and 10 < yc < 2 7 ’
r e a d ( 5 , * )  xc .yc
num—9 . 60498e+5
do m- 1 ,1887
r e a d ( 1 , * )  n ( m ) , I (m) ,Q(m) ,U(m)  
end do 
sum—0.
do j - 2 7 - y c ,47 -yc  
do k-xc—16,xc+16  
ae n 1 - ( 5 1 * ( j - 1 ) ) + k
a e n 2 - ( 5 1 * ( f 2 * ( 3 7 - y c ) ) - j - 1 ) ) + ( ( 2 * x c ) - k )
IQf a en 1 ) - I ( a e n 1 1 *Q f a e n 1 )
I Q ( a e n 2 ) - I ( aen2) *Q(aen2)
I Q d i f f - ( I Q ( a e n 1 ) - I Q ( a e n 2 ) ) * * 2  
I U f a e n l ) - I i a e n 1 ) * U ( a e n 1 )
I U ( a e n 2 ) - I ( aen2 )*U(aen2)
IUdi f f - ( I U ( a e n 1 ) - I U ( a e n 2 ) ) * * 2  
sum-sunH-IQd i f f+ IUd i f f 
end do 
end do 
sum—sum/num 
w r i t e ( 6 , * )  sum 

99 fo rmat (a20 )  
stop 
end

c Program NEWICEN.FOR tes ts  for  the s t a t i s t i c a l  l i k e l i h o o d  of a

c cent re  ( W o l t j e r ) .

dimension n ( 1 8 8 7 ) , I (1887)  
in te ge r  aen1 ,aen2 ,xc .yc
openfuni  t - 1 , s t a t u s - ’ o I d ’ , name-’ f u l I  c r a b . d a t  ’ )
open(uni  t - 4 , s t a t u s - ’ new’ , name-’ I cenW.dat  ’ )
num-4. 80249e+5
do m- 1 ,1887
re a d ( 1 , * )  n ( m ) , I (m)
end do
do 1-1,11
xc—2 3 + I
do 11-1,11
yc—9+1 I
sum-0.
do j - 2 7 - y c ,47 -yc  
do k-xc—16,xc+16  
ae n 1 - ( 5 1 • ( j - 1 ) ) + k
a e n 2 - ( 5 1 * ( ( 2 * ( 3 7 - y c ) ) - i - 1 ) ) + ( ( 2 * x c ) - k )
Id i f f - ( I ( a e n 1 ) - I ( a e n 2 ) ) * * 2  
sum—sum+Idi f f  
end do 
end do 
sum-sum/num 
w r i t e ( 4 , * )  xc,yc,sum 
end do 
end do 

99 fo rmat (a20 )  
stop  
end

nom i nated



c Program NEWCEN1.FOR t e s t s  t he  s t a t i s t i c a l  l i k e l i h o o d  o f  a choosen c e n t r e

c of the nebuls (McLean) .

dimension n ( 1 8 8 7 ) , I ( 1 8 8 7 ) , Q ( 1 8 8 7 ) , U ( 1 8 8 7 ) , I U ( 1 8 8 7 ) , I Q ( 1887)  
in teger  aen1 , aen2 , x c , yc
open(uni t - 1 , s t a t u s - ’ o l d ’ , name- ’ f u l I  r e s . d a t ’ )
p r i n t * , ’ Give the coo rd i na t es  of the ce nt r e  to be t e s t e d . ’
p r i n t * , ’ 16 < xc < 35 and 10 < yc < 2 7 ’
r e a d ( 5 , * )  xc .yc
do m—1,1887
r e a d ( 1 , * )  n ( m ) , I (m) ,Q (m ) ,U (m )  
end do
num—9 . 60498e5  
sum-0.
do j —yc—10,yc+10
do k-xc—1 6 , xc+16
a e n1 - ( 51 * ( j - 1 ) ) + k
a e n2 - ( 51 * ( ( 2 * y c ) - j - 1 ) ) + ( ( 2 * x c ) - k )
I Q ( a e n 1 V I ( a e n 1 ) * Q ( a e n 1 ) / 1 0 0 .
I Q ( a e n 2 ) - I ( a e n 2 ) * Q ( a e n 2 ) / 1 0 0 .
IQdi f f - ( I Q ( a e n 1 ) —I Q ( a e n 2 ) ) * * 2  
I U ( a e n 1 ) - I ( a e n 1 ) * U ( a e n 1 ) / 1 0 0 .
I U ( a e n 2 ) - I ( a e n 2 ) * U ( a e n 2 ) / 1 0 0 .
IUdi f f - ( I U ( a e n 1 ) - I U ( a e n 2 ) ) * * 2
sum—sunrt-IQd i f f+ IU d i  f f
end do
end do
sum-sum/num
w r i t e ( 6 , * )  sum
stop
end

c Program NEWICEN1.F0R t e s t s  the s t a t i s t i c a l  l i k e l i h o o d  of a choosen ce nt r e

c of the nebula (McLean) .

dimension n ( 1 8 8 7 ) , I ( 1887 )  
in teger  ae n1 , a e n 2 , x c . y c
open?uni t - 1 , s t a t u s - ’ o l d ’ , name-’ fu I  I r e s . d a t ’ ) 
open(uni  t - 4 , s t a t u s - ’ new’ .name-’ I c e n M . d a t ’ ) 
do m-1 ,1887  
r e a d ( 1 , * )  n ( m ) , I ( m )  
end do
num—4.80249e5  
do 1-1,11  
xc-23+l  
do 11-1,11  
y c - 9 + l I 
sum-0.
do j - y c —10,yc+10
do k-xc—1 6 , xc+16
a e n 1 - ( 5 1 * ( j - 1 ) ) + k
a e n 2 - ( 5 1 * ( ( 2 * y c ) —j —1 ) ) + ( ( 2 * x c ) - k )
Id I f f - ( I ( a e n 1 ) —I ( a e n 2 ) ) * * 2
sum-sum+Idi f f
end do
end do
sum-sum/num
w r i t e ( 4 , * )  xc .yc,sum
end do
end do
stop
end



Appendix B



C PROGRAM MODELPLOT.FOR 
dimension x ( 2 ) , y ( 2 )  
cho rac te r *20  t i t l e  
p i - 4 . * a t a n ( 1 . )  
p r i n t * ,  ’ Input  f i l en am e? '  
pr i n t *  , ’ ’ 
r e a d ( 5 , 99)  t i t l e
open(uni t —2 . s t a t u s —’ o l d ’ , name—t i 11e)  
caI I g o p k s ( 6 , - 1 ) 
c a l l  gopwk(2 ,1 ,4 014 )  
c a l l  gacwk(2)
c a l l  gswn(1, 0 . 0 , 3 0 . 0 , 0 . 0 , 3 0 . 0 )  
c a l I  g s e l n t ( 1 )  
do 1 j - 1 ,676  
r e a d ( 2 , * )  x c . y c . P . c h i
c h i - ( p i / 2 . ) + ( c h i * p i / 1 8 0 . )
a - P * c o s f c h i ) 
b - P * s I n ( c h i ) 
x ( 1 ) - x c - a / 2 .  
y ( 1 ) - y c - b / 2 .  
x ( 2 ) - x c + a / 2 .  
y ( 2 ) - y c + b / 2 .  
c a l l  g p l ( 2 , x , y )

1 cont inue
caI I gdawk(2l  
caI I gc Iwk(2)  
caI I gcIks  

99 fo rmat(a20 )
stop 
end



c PROGRAM MOOEL1 . FOR
i m p l i c i t  double p re c i s i o n  ( A - I ) . ( O - Z )  
real  S14AAF,x1, x 2 , x 3 , x 4 , x , y 
in teger  LW.LIW, IW, IFAIL  
dimension W (1 00 0 ) , IW(300)  
externa l  B 
common / x y /  x ,y
open(uni t - 2 , s t a t u s - ’ new’ , name-’ mode 11 . d a t ’ ) 
p i « 4 . * a t a n ( 1 . )

i fa i I —0 
epsabs-0.0e0  
ep sr e1 - 1 .0e—4  
a 1—1 .0d-10  
a2-100 .d0  
LW-1000 
LIW—300

c F i r s t  ev a lua te  the modi f ied  Bessel func t ion s  F and G in terms of gamma fns .  
x 1 - 2 .163  
x 2 - 0 .496  
x3—1.663  
x4—0.9 966
gamma1«S14AAF(x1, i f a i  H  
gamma2«S14AAF(x2,i f a i  I ) 
gamma3—S14AAF(x3, i  f a i I ) 
gamma4—S 1 4 A A F ( x 4 , I f a i I ;
F—f 2 / 3 . 3 2 }  * ( 2 * * 0 . 6 6 } * gamma1*gamma2 
G- (2 /3 .32 ) * (2 * *0 .66 ) *gamma3*gamma4

c n 0 - fu nc t io n  of x and y,  constant  in t h i s  prog so cancels  and does not  
c become part  of the i n t e g r a l  f u nc t io n  B ( y ) .

do 1 k - 0 ,2 5  
do 2 j —0 , 2 5
x—k+1 .0 
y—j + 1 .0

c cannot c a l c u l a t e  va lues f o r  the o r i g i n  because of d i v i d e  by zero!

caI  I D01AJF(B,a1, a2 ,ep sab s , e p s r e I , resu11 , ab se r r ,W,LW , IW,L I W, i  f a i I ) 
I - r e s u I t  
p r i n t * ,  I
Q - r e s u l t * ( ( x * * 2 - v * * 2 ) / ( y * * 2 + x * * 2 ) )
U - r e s u I t * ( ( 2 * x * y ; / ( y * * 2 + x * * 2 ) ) 
d e g p o l - ( G / F ) * ( U * * 2 + Q * * 2 ) * * 0 . 5 / I  

c leave G and F out of I , U , Q  because they only appear in degpol as shown

c h i - a t a n ( y / x )  
c Convert chi in to  degrees  

ch i—chi * 1 8 0 . 0 / p i  
w r i t e ( 2 , * )  x , y , d eg po I , chi

2 cont inue  
1 cont inue  

stop  
end

double p re c is io n  fun c t io n  B(z )  
common / x y /  x ,y
B—f ( ( 3 . d 0 * ( ( ( z * * 2 . d 0 ) * ( ( x * * 2 . d 0 ) + ( v * * 2 . d 0 ) ) ) * * 0 . 5 d 0 ) ) / ( ( ( ( x * * 2 . d 0 )  

$ + ( y * * 2 . d 0 ) + ( z * * 2 . d 0 ) ) * * 0 . 5 ) * * 5 . d 0 ) ) ) * * 1 . 6 6 d 0  
re turn  
end



c PROGRAM MODEL.FOR c a l c u l a t e s  t he  p o l a r i z a t i o n  pa rame te rs  o f  s y n c h r o t r o n

c ra d i a t i o n  for  a side on view of a magnet ic d ip o le  f i e l d .

i m p l i c i t  double p r e c i s i o n  (A—I ) , ( 0 - Z )  
real  S 1 4 A A F , x 1 , x 2 . x 3 , x 4 , y , z , x  
in teger  LW,LIW, IW, IFAIL  
dimension W (1 00 0 ) , IW(300)  

c In order to perform the i n t e g r a t i o n  over the l in e  of s igh t  the va lues  of the 
c perpendicular  magnetic f i e l d  component,  IQ and IU must be c a l c u l a t e d  by 
c subrout ines of the main program f o r  each g r i d  poin t  and re turned  to  the  
c ap rop r ia te  NAG ro u t in e ,  

external  B.BQ.BU 
common / y z /  y , z
open(uni t - 2 , s t a t u s —’ new’ , name—‘mode I . d a t ' )  
p i -4 .d 0 * d a t a n ( 1  .d0 )

c Set up l i m i t s  and accuracy requ irements fo r  the i n t e g r a t i o n  ro u t in e s ,  
i f a i I —0 
epsabs—0.0e 0  
e p s r e l - 1 . 0 e - 0 4  
a1 - 1 . d -1 0  
a2-1000.d0  
LW-1000 
LIW—300

c Evaluate the modif ied  Bessel  f u nc t io n s  F and G in terms of gamma fns .  
x l - 2 . 1 6 3  
x2—0.496  
x3—1.663  
x4—0.9966
gamma1-S14AAF(x1, i f a i I ) 
gamma2-S14AAF(x2, 1 f a 1 I ) 
gamma3-S14AAFix3,i  f a i I  1 
gamma4—S14AAF(x4, i  f a i I )
F - (2 / 3 .32 ) * (2 * *0 .66} *gamma1*gamma2  
G- (2 /3 .32 ) * (2 * *0 .66 ) *gamma3*gamma4

do 1 k—0, 2 5  
do 2 j - 0 , 2 5  
y—k+1.0  
z - j + 1 .0

c cannot c a l c u la t e  va lues  f o r  the o r i g i n  because of d iv id e  by zero l

caI I D01AJF(B,a1 , a 2 , e p s a b s , e p s r e I , I , abser r ,W,LW, IW,L IW, i  f a i I ) 
c a l I  D01AJF(BQ,a1, a2 ,e p s a b s , e p s re I . Q . a b s e r r ,W , L W , IW ,L I W , i  f a i  H  
c a l I  D01AJ F(B U,a 1 ,a 2 ,e psa bs , ep sre I ,U ,a bse r r ,W ,LW , IW ,L I W, i  f a i I ) 
d e g p o l - ( G / F ) * ( ( U * * 2 + Q * * 2 ) * * 0 . 5 / I )  

c leave G and F out of I , U , Q  because they only appear in degpol as shown

c Test fo r  the quadrant  of  the angle 2X.
i f ( Q . e q . 0 . d 0 . a n d . U . e q . 0 . d 0 )  then  
ch i - 0 . 0  

el se
i f ( Q . g t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
c h i - d a t a n ( U / Q ) / 2 . d 0  

el se
i f (Q . 11. 0 . d 0 . and . U . g e . 0 .  d0)  then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

e I se
i f ( Q . g t . 0 . d 0 . a n d . U . I e . 0 . d 0 )  then  
c h i - ( ( d a t a n ( U / Q ) / 2 . d 0 ) ) + p i  

el se
i f (Q. 1 1 . 0 . d 0 . a n d . U . I e . 0 . d 0 )  then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

el se
i f ( Q . e q . 0 . d 0 . a n d . U . g t , 0 . d 0 )  then 
c h i - p i / 4 . d 0  

el se
i f ( Q . e q . 0 . d 0 . a n d . U . 1 1 . 0 . d 0 )  then 
chi—0.7 5d0*p i  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f

c Convert chi in to  degrees  
chi—chi * 1 8 0 .d 0 / p i  
wr i t e ( 2 , * )  y . z , d e g p o l , chi

2 cont inue  
1 cont inue  

stop 
end



fu nc t ion  B(x)  
common / y z /  y , z
P 1 " ( 5 . d 0 * ( y * * 2 ) ) + ( 4 . d 0 * ( z * * 2 ) ) - ( 4 . d 0 * ( x * * 2 ) )
P2“ ( ( x * * 2 ) + ( y * * 2 ) ) * * 2
B - ( ( ( ( ( z * * 2 ) * P 1 ) + P 2 ) * * 0 . 5 ) / ( ( ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 ) * * 5 ) ) * * 1 . 6 6 d 0

re turn
end

fu nct ion  BQ(x)  
common / y z /  y , z
P 1 « ( ( 5 . d 0 * ( y * * 2 ) ) + ( 4 . d 0 * ( z * * 2 ) ) - ( 4 . d 0 * ( x * * 2 ) ) )
P 2 - ( ( x * * 2 ) + ( y * * 2 ) ) * * 2
P 3 - M 3 .  d 0 * ( v * * 2 )  ) + ( 4 . d 0 * ( x * * 2 ) ) - ( 4 . d 0 * ( z * * 2 )  )
B - ( ( ( ( ( z * * 2 ) * P 1 ) + P 2 ) * * 0 . 5 ) / ( ( ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 ) * * 5 ) ) * * 1  . 66d0
BQ-B* ( ( ( P 3 * ( z * * 2 ) ) —P 2 ) / ( ( P 1 * ( z * * 2 ) ) + P 2 ) )
re turn
end

funct io n  BU(x)  
common / y z /  y , z
P1 - f  f 5 . d 0 * ( y * * 2 ) ) + ( 4 . d 0 * ( z * * 2 ) ) - ( 4 . d 0 * ( x * * 2 ) ) )
P 2 - ( ( x * * 2 ) + ( y * * 2 ) ) * * 2  
P 4 - ( 2 . d 0 * ( z * * 2 ) ) - ( x * * 2 ) - ( y * * 2 )
B“ ( ( ( ( ( i * * 2 ) * P 1 ) + P 2 ) * * 0 . 5 ; / ( ( ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 ) * * 5 ) ) * * 1 . 6 6 d 0 )
BU—8 * ( ( 6 . d 0 * z * y * P 4 ) / ( ( P 1 * ( z * * 2 ) ) + P 2 ) )
re turn
end



PROGRAM M00EL3.F0R modal f o r  an i nc l i ned  d i p o le , u s i n g  non—in c l i n ed
coordinate system f o r  the c a l c u la t i o n s  i . e .  convert  x i . y i . z i  to x , y , z .

i m p l i c i t  double p r e c i s i o n  ( A - I ) . ( O - Z )
real S14AAF,x1, x 2 , x 3 , x 4
i nteger LW.LIW. IW, IFAIL
dimension W ( 100 0) , IW(300)
external  B . I Q . I U
common / x z /  x i , z I , i nc
open!uni t —1 . s t a t u s —' o l d ' , n a m e* ' i n c . dat ’ ) 
open!uni t - 2 , s t a t u s —’ new’ , name—'mode13 . d a t *) 
re a d( 1 , * )  angle  
p i - 4 . d 0 * d a t a n ( 1 . d0)  
i n c - ( a n g l e * p i ) / 1 8 0 . d 0

i f a i I - 0  
epsabs—0 . 0e0  
e p s r e l - 1 . 0 e - 0 4  
a 1 - 1 . d-10  
a2 - 1 0 0 0 . d0 
LW-1000 
LIW-300

F i r s t  eva luate  the mod i f ie d Bessel funct ions F and G in terms of gamma fns.  
x l - 2 . 1 6 3  
x2 - 0 . 4 96  
x3 - 1 . 6 63  
x4—0. 9966
gamma1-S14AAF(x1, i f a i I ) 
gamma2-S14AAF(x2,i  f a i I ) 
gamma3-S14AAF(x3,i  f a i I ) 
gamma4—S14AAF(x4, i  f a i I )
F- f2 / 3. 32) *f 2**0 . 66) *gamma1*gamma2  
G - ( 2 / 3 . 3 2 ) • ( 2 *  * 0 . 6 6 ) *gamma3*gamma4

do 1 k—0 , 25  
do 2 j —0 , 2 5
x i - k + 1 . d0 
z i - j + 1 . d0

cannot c a l c u l a t e  val ues f o r  the o r i g i n  because of d i v i d e  by zero!

c a l I  D0 1AJ Ff B, a 1 , a2 , ep sa b s, ep s re I , I . abserr ,W,LW, IW, L I W , I f a i I ) 
c a l I  D0 1AJ F( I Q, a1 ,a 2, eps abs .e psr e l , Q, ab se rr , W.  LW. I W , L I W . i f a i I )  
c a l I  D 0 1A J F( I U , a 1 , a2 , ep sa b s. ep s re l ,U . ab se rr  ,W, LW, IW. LIW, i f a i I ) 
d e g p o l - ( G / F ) * ( ( U * * 2 + Q * * 2 ) * * 0 . 5 / I )  

leave G and F out of I , U , Q  because they only appear in degpol as shown

Test f o r  the quadrant  of the angle 2X.
I f ( Q . e q . 0 . d 0 . a n d . U . e q . 0 . d 0 )  then 
c h i - 0 . 0  

el se
i f ( Q . g t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
ch i - d a t a n ( U / Q ) / 2 . d 0  

e I se
i f ( Q . I t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
ch i - ( ( p  i + d a t a n ( U / Q ) ) ) / 2 . d0 

e I se
i f ( Q . g t . 0 . d 0 . o n d . U . I e . 0 . d 0 )  then 
c h i - ( ( d a t a n ( U / Q ) / 2 . d 0 ) ) + p i  

el se
i f ( Q. 11. 0.  d 0 . and. U. I e . 0.  d0) then 
c h i - ( ( p l + d a t a n ( U / Q ) ) ) / 2 . d 0  

el se
i f ( Q . e q . 0 . d 0 . a n d . U . g t . 0 . d 0 )  then 
c h i - p i / 4 . d 0  

el se
i f ( Q . e q . 0 . d 0 . a n d . U . I t . 0 . d 0 )  then 
c h i - 0 . 7 5 d 0 * p i  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f

Convert chi i nto  degrees  
c hi - ch i  * 1 8 0 . d 0 / p i  
w r i t e ( 2 , * )  x i , z i . d e g p o l , chi

2 cont inue  
1 continue  

stop 
end

funct  ion B ( y I ) 
i m p l i c i t  double p r e c i s i o n  ( A - I ) . (O -Z )  return
common / x z /  x i . z i . i n c  snd
x - ( z l * d c o s (  i n c ) ) - ( y i * d s l n (  i n c ) )  
z - ( z i * d s i n (  i n c ) ) + ( y i * d c o s (  i n c ) )
V—V I _____________

A ^ 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 )
E - 3 . d 0 * z * y
C - 3 . d 0 * x * z
D- (A*dsi  n ( i  n c ) ) + ( C * d c o s ( i  n c ) )
R - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 5
^ ( ( ( ( E * * 2 ) + ( D * * 2 ) ) * * 0 . 5 ) / R ) * * 1 . 6 6 d 0
return
end

f unct i on  I Q ( y i )
i m p l i c i t  double p re c i s i o n  ( A - I ) . ( O - I  
common / x z /  x i . z i . i n c  
x - ( z i * d c o s ( i n c ) ) - ( y i  * d s i n f  i n c ) )  
z - ( z i  *ds i n ( i  n c ) ) + ( y i  * d c o s ( I n c ) )  
y—x I
A - 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 )
E -3 . d 0 * z * y
C - 3 . d 0 * x * z
D- (A*dsi  n ( i  n c ) ) + ( C * d c o s ( i  nc) )
R - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 5
^ ( ( ( ( E * * 2 ) + ( D * * 2 ) ) * * 0 . 5 ) / R ) * * 1 . 66d
I Q - B * ( ( E * * 2 ) - ( D * * 2 ) ) / ( ( E * * 2 ) + ( D * * 2 ) /
return
end

f unc t i on I U ( y i )
i m p l i c i t  double p re c i s i o n  ( A - I ) . ( O - Z )  
common / x z /  x i . z i . i n c  
x - f z i * d c o s ( i n c ) ) - ( y i * d s i n l i n c ) )  
z—( z i * d s i n ( i n c ) ) + ( y i * d c o s ( i n c ) )  
y—x i
A » - 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 )
E - 3 . d 0 * z * y
C - 3 . d 0 * x * z
D - ( A * d s i n ( i n c ) ) + ( C * d c o s ( i n c ) )
R—( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 5  
B - ( ( ( ( E * * 2 ) + ( D * * 2 ) ) * * 0 . 5 ) / R ) * * 1 . 6 6 d  
I U - 6 * 2 . d 0 * E * D / ( ( E * * 2 ) + ( D * * 2 ) )



PROGRAM M0DEL4.FOR modal fo r  an i n c l i n e d  d i p o l e .

i m p l i c i t  double p re ci e i on  (A—I ) . ( O - Z )
real  S14AAF,x1, x 2 . x3.x4
int eger  LW,LIW, IW, IFAIL
dimension W(1 0 0 0 ) , IW(300)
exter nal  B, I Q, 1U
common / x z /  x i . y i . i n c
open!uni t - 1 , s ta tus—' o l d ’ , name—* i nc.dat  *)  
open(uni t - 2 , s t a t u s —’ new*, name—'mode14 . d a t ’ ) 
r e a d ( l , • )  angle  
p i-4 .d 0 * d a ta n (1 .d 0 )  
i nc—(a n g le « p i ) /1 8 0 .d 0

i f a i I - 0  
epsabs—0 . 0 e0  
e p s r e l - 1 . 0 e —4 
a1—1.d-10 
a2-5000. d0  
LW-1000 
LIW—300

F i r s t  eva lua te  the modi f i ed Bessel f unct i ons F and G in terms of garma fns.  
x1—2.1 63  
x2 -0 .4 9 6  
x3—1.663  
X4-0 .9966
gammal—S14AAF(x1, i f a i I )  
gamma2—S 1 4 A A F I x 2 , i f a i I  ) 
garama3—S 1 4 A A F ( x 3 , i f a i I ) 
gamma4—S 1 4 A A F ( x 4 , i f a i I )
F-(2/3.32) * (2**0.66) *gamraa1*gamma2  
G - ( 2 / 3 . 3 2 ; • ( 2 * * 0 . 6 6 ) •gamraa3«gamma4

do 1 k—0 , 2 5  
do 2 j —0 , 2 5
x i - k + 1 . d0 
y i - j + 1 . d 0

cannot c a l c u l a t e  values f o r  the o r i g i n  because of d i v i d e  by zerol

c a l I  D0 1AJ F( B, a1 ,a2 ,e psa bs ,ep sr e I , I , abserr , W, LW, IW,LI W, i  f a i I ) 
c a l I  D01AJFI IQ, a1 , a 2 . ep sa bs .e ps re I , Q , ab se rr , W, LW, I W, L I W, i  fa i I ) 
caI I D01AJF( IU, a1 , a 2 . ep sa bs .e ps re I , U . a b s e r r , W , L W , I W . L I W , i f a i I ) 
d e g p o l - ( G / F ) * ( ( l l * * 2 + Q * * 2 ) * * 0 . 5 / I )  

leave G and F out of I , U , Q  because they only appear in degpol as shown

Test f o r  the quadrant of the angle 2X.  
i f ( Q . e q . 0 . d 0 . a n d . U . e q . 0 . d 0 )  then 
c h i - 0 . 0  

e lse
i f ( Q . g t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
c hi —d a t a n ( U / Q ) / 2 . d 0  

el se
i f ( Q . I t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

el se
i f ( Q . g t . 0 . d 0 . a n d . U . I e . 0 . d 0 )  then 
c h i - ( ( d a t a n ( U / Q ) / 2 . d 0 ) ) + p i  

el se
i f ( Q . 1 1 . 0 . d 0 . a n d . U . I e . 0 . d0) then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

el se
I f ( Q . e q . 0 . d 0 . a n d . U . g t . 0 . d 0 )  then 
c h i - p i / 4 . d 0  

else
l f ( Q . e q . 0 . d 0 . a n d . U . I t . 0 . d 0 )  then 
c h i - 0 . 7 5 d 0 * p i  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f

c Convert  chi i nt o  degrees 
c h i - c hi  «180. d0 / pi  
w r i t e ( 2 , * )  xi , y i . d e g p o l . c h i

2 cont inue  
1 cont inue  

stop 
end

funct i on  B ( z i )
i m p l i c i t  double p r e c i s i o n  ( A - I ) . ( O - Z )  
common / x z /  x i . y i . i n c  
A ^ ( 2 . d 0 * ( y i * * 2 ) ) - ( x i * * 2 ) - ( z i * * 2 )  
E - 3 . d 0 * z j * y i  __

D - 3 .d 0 * x i  * z  i
A A - ( A * d s l n ( i n c ) ) + f E * d c o s ( * nc ) )
BB—(C*ds i n ( i  n c ) ) + ( 0 * d c o s ( i  n c ) )
R - ( ( x i * * 2 ) + ( y  i * « 2 ) + ( z i * * 2 ) ) * « 4 . 1 5 d 0
^ ( ( ( A A * * 2 ) + ( B B * * 2 ) ) * * 0 . 8 3 d 0 ) / R
ret ur n
end

f unct i on  I U ( z i )
i m p l i c i t  double p re ci s i on  ( A - I ) . ( O - Z
common / x z /  x i . y i . i n c
A - ( 2 . d 0 * ( y i * * 2 ) ) - ( x i * * 2 ) - ( z i * * 2 )
E - 3 . d 0 * z i « y i
C—3 . d0*x i * y  i
CK3.d0*xi  «z i
AA-(A*ds i n ( i  n c) ) + ( E* d c os ( i  n c) )  
B B - ( c « d s i n ( i n c ) ) + ( o « d c o s ( i n c ) )

R - ( ( x i  * * 2 ) + ( y  i * * 2 ) + ( z l * * 2 ) ) * * 4 . 1 5 d 0
B - ( ( ( A A * * 2 ) + ( B B * * 2 ) ) * * 0 . 8 3 d 0 ) / R
I U- B* 2. d0 *AA* BB/ ( ( BB* * 2) +( AA* * 2) )
ret ur n
end

f unc t i on I Q ( z i )
i m p l i c i t  double p r ec is i on  (A—I ) , ( 0 - Z )
common / x z /  x i , y i , i nc
A - ( 2 . d 0 * ( y i • • 2 ) ) - ( x l * * 2 ) - ( z i  * * 2 )
E- 3. d0«z i  *y i
C - 3 .d 0 «x i« y i
D—3 . d0*x i«z i
AA-(A*ds i n ( i  n c) ) + ( E *d co s ( i  n c ) ) 
B ^ ( C « d s i  n( i nc) ) +( o*dcos(  i n c ) )
R—( i x i * * 2 ) + ( y i  * * 2 ) + ( z  i * * 2 ) ) * * 4 . 1 5 d 0
B—( ( ( A A * * 2 ) + ( B B * * 2 ) ) * * 0 . 8 3 d 0 ) / R
I Q - B * ( ( B 8 * * 2 ) - ( A A * * 2 ) ) / ( ( B B * * 2 ) + ( A A *
return
end



c PROGRAM M00EL5.F0R model fo r  on i n c l i n e d  d i p o l e  between 0 and

c 90 degrees in 10 degree i n t e r v a l s .

i m p l i c i t  double p r e c i s i o n  ( A - l ) . ( O - Z )
real S14AAF, x1. x2 . x3 . x4
integer LW.LIW. IW. IFAIL
dimension W ( 10 00 ) , IW(300)
external  B . I Q . I U
common / x z /  x i . y i . i n c

c F i r s t  evaluate  the mod i f ie d Bessel funct ions F and G in terms of gamna fns.  
x l - 2 . 1 6 3  
x2- 0. *96  
x3—1.663  
X4-0.9966
garamo1-S14AAF(x1 , i f a i  I )  
gomna2-S14AAF f x 2 . i f a I I ) 
garana3—S 1 4 A A F ! x 3 , i f a i I ) 
gomma4-S14AAF(x4, i fa i I )
F- f  2 / 3 . 3 2 ) * ! 2**0.66)*gamma1*gamma2 
G-(2/3.32) * (2**0.66) *gamnia3*gamraa4

c Work through angles from 0 to 90 degrees 
p i - 4 . d 0 * d a t a n ( 1 . d 0 )  
do 9 mm—0 .9
open(un i t - 2 , s ta t us —’ new’ , name—‘mode 15 . d a t ' )  
i f  (rem.eq.0) then 
angle—0.001  
e I se
angle^nm*10.d0
end i f
i n c - ( a n g l e « p i ) / 1 8 0 . d 0

i f a i I —0 
epsabs—0. 0e0  
e p s r e i - 1 . 0e—4  
a l - 1 . d - 1 0  
a2 - 5 0 0 0 . d0 
LW-1000 
L1W-300

do 1 k -0 . 2 5  
do 2 j - 0 . 2 5
x i -k + 1 . d0  
y i - j + 1 . d 0

c cannot c a l c u l a t e  va l ues f o r  the o r i g i n  because of d i v i d e  by zero!

c a l I  O0 1AJ F( B, a 1, a 2 . e ps a bs .e p sr e I . I . abserr ,W. LW. IW. LI W, i  f a i I ) 
c a l I  D01AJF! IQ, a1 , a 2 . epsabs. e p s r e I . Q.abserr  ,W. LW. IW. LIW. i fa I I ) 
col I D0 1AJF( IU, a1 . a 2 . epsabs. e ps r e I . U . a b s e r r  ,W, LW, IW.LIW, I f a i  t )  
d e g p o l - ( G / F ) * ( ( U « * 2 + Q * * 2 ) * * 0 . 5 / I ) 

c leave G and F out of  I . U . Q  because they only appear in degpol as shown

c Test f or  the quadrant  of the angle 2X.
I f ( Q . e q . 0 . d 0 . a n d . U . e q . 0 . d 0 )  then 
c h i - 0 . 0  

el se
I f ( Q . g t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
c h i - d a t a n ( U / Q ) / 2 . d 0  

else
i f ( Q . I t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

el se
i f ( Q . g t . 0 . d 0 . a n d . U . I e . 0 . d 0 )  then 
c h i - ( ( d a t a n ( U / Q ) / 2 . d 0 ) ) + p i  

else
i f ( Q . 1 1 . 0 . d 0 . a n d . U . I e . 0 . d 0 )  then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

else
i f ( Q . e q . 0 . d 0 . o n d . U . g t . 0 . d 0 )  then 
c h i - p i / 4 . d 0  

else
i f ( Q . e q . 0 . d 0 . a n d . U . I t . 0 . d0) then 
c hi - 0 . 7 5 d 0 * p i  

end i f 
end i f 
end i f 
end I f 
end i f 
end i f 
end i f

c Convert chi i nt o degrees  
c h i - c h i * 1 8 0 . d 0 / p i  
w r i t e ( 2 , « )  x i , y i . d e g p o l , chi

2 cont inue  
1 continue  

cl os e( 2)
9 cont inue



end

f unct ion B ( z i )
i m p l i c i t  double p rec i si on  ( A - I ) , ( 0 - Z )
common / x z /  x i . v i . i n c
A^(2 . d0* ( y i * * 2 ) ) - ( x i • • 2 ) - ( z i  * * 2 )
E »3 .d 0* z i *y i
O 3 . d 0 * x i « y i
D*>3.d0*xi«zi
AA*(A*dsi n( i n c) ) + ( E*dcos( i nc) )
BEWC*dsin(  i nc) )+( D*dcos(  i n c ) )
R*(  ( xi * * 2 ) + ( y  i • • 2 ) + ( z i * * 2 ) ) * * 4 . 1 5 d 0
& " ( ( ( A A * * 2 ) + ( B B * * 2 ) ) * * 0 . 8 3 d 0 ) / R
return
end

f unct ion I U ( z i )
i m p l i c i t  double p re ci si on  ( A - I ) . ( O - Z )
common / x z /  x i . y i . i n c
A» (2 . d0 * ( y  i * * 2 )  ) - ( x i • • 2 ) - ( z  i * * 2 )
E »3 .d 0* z i *y I
O 3 . d 0 * x i « y i
CX5. d0*x i *z i
AA^ (A* d sl n( in c ) ) + (E *d c os ( in c) )
BB“ ( C * d s i n ( i nc ) )+ ( D* d co s ( i  nc) )
R - ( ( x i * * 2 ) + ( y i * * 2 ) + ( z i * * 2 ) ) * * 4 . 1 5 d 0
B - ( ( ( A A * » 2 ) + ( B B * * 2 ) ) * * 0 . 8 3 d 0 ) / R
I U- e . 2 , d 0 . A A . B B / ( ( B B * * 2 ) + ( A A . . 2 ) )
return
end

funct ion I Q ( z i )
i m p l i c i t  double p re ci si on  (A—I ) . ( O - Z )
common / x z /  x i . y i . i n c
A » (2 . d0 * ( y i  * * 2 ) ) - ( x i  * * 2 ) - ( z  i * * 2 )
E«3.d0»zi *yi
O 3 . d 0 » x i * y  I
D - 3 . d 0 * x i * z i
A A - (A * ds i n ( i n c ) ) + ( E* dc os ( i nc ) )
B&»(C*ds i n( i  n c ) ) + (D*dcoe( i  n c ) )
R» ( l x  i * * 2 ) + ( y  i • * 2 ) + ( z i • • 2 ) ) * * 4 . 1 5 d 0
B » ( ( (A A* »2 ) + ( B B * * 2 ) ) * * 0 . 8 3 d 0 ) / R
I Q - e * ( ( B B * * 2 ) - ( A A * * 2 ) ) / ( ( B B * * 2 ) + ( A A * * 2 ) )
return
end



PROGRAM MOOEL6.FOR model f o r  an i n c l i n e d  d i p o l e  w i t h  a t o r i o d a l  f i e l d

component of vary i ng r a t i o  to the r and theta f i e l d  components.

i m p l i c i t  double p r e c is io n  ( A - I ) . ( O - Z )
reaI  S14AAF. x 1 , x 2 . x 3 , x4
integer  LW.LIW. IW. IFAIL
dimension W(1 0 0 0 ) , IW(300)
e xternal  B. I Q. 1U
common / x z /  xi ,y i , i n c , ra t
p i—4 . d 0* d a t a n ( 1 .d0)

i f a i I - 0  
epsabs—0. 0e0  
e p s r e l - 1 . 0e—4 
a 1 - 1 . d - 1 0  
a2—5 0 0 0 . d0 
LW-1000 
LIW—300

F i r s t  eva luate  the modi f ied  Bessel f unct ions F and G in terms of gamma fns.  
x l - 2 . 1 6 3  
x2 -0 . 49 6  
x3—1.663  
x4—0 .9966
gamma1-S14AAF(x1, i f a  i I ) 
gamma2—S 1 4 A A F ( x 2 . i f a i I ) 
gomma3—S14AAF( x 3 , i f a i I ) 
gommo4—S 1 4 A A F ( x 4 , i f a i I )
F - f 2 / 3 . 3 2 ) * ( 2 * * 0 . 6 6 ) •gamma1*gamma2 
G- (2/ 3. 32) *( 2**0 . 66) *gamma3*gamma4

Work through angles from 0 to 90 degrees
do 9 mm—0 , 9
l f (mm.eq.0)  then
angle—0 . 0 0 1 d0
else
angle^nm*10.d0 
end I f
inc—( a n g l e * p i ) / 1 8 0 . d 0
Work through r a t i o s  from 10 to 1000
do h i - 1 ,3
r a t - 1 0 * * h i
o p e n ( u n i t - 2 , s t a t u s - ’ new*.name-'mode 16 . d a t ’ )

do 1 k—0 , 25  
do 2 j - 0 , 2 5
x i - k + 1 . d0 
y i - j + 1 . d 0

cannot c a l c u l a t e  values f o r  the o r i g i n  because of d i v i d e  by zero!

c a l I  D01AJF(B, o 1 , a 2 , e p s a b s . e p s r e I . I . abserr .W.LW. IW.LIW. i  f a i I ) 
c a l I  D 0 1 A J FI I Q , a 1 , a 2 , e p sa b s. e ps r e I , Q . a bs e rr , W . LW,IW. LIW. i f a i I )  
c a l I  D0 1AJF( IU. a1 . a2 . ep s ab s. e ps re I ,U, abs err ,W, LW, I W. LI W. i  f a i I ) 
degpol—( G / F ) * ( ( U * * 2 + 0 * * 2 ) * * 0 . 5 / 1 )  

leave G and F out of I . U . Q  because they only appear in degpol as shown

Test f or  the quadrant  of the angle 2X.
I f ( Q . e q . 0 . d 0 . a n d . U . e q . 0 . d 0 )  then 
c h i - 0 . 0  

e I se
i f ( Q . g t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
c h i - d a t a n ( U / Q ) / 2 . d 0  

e I se
i f ( Q . l t . 0 . d 0 . a n d . U . g e . 0 . d 0 )  then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

else
i f ( Q . g t . 0 . d 0 . a n d . U . I e . 0 . d 0 )  then 
c h i - ( ( d a t a n ( U / Q ) / 2 . d 0 ) ) + p i  

el se
i f ( Q . 1 1 . 0 . d 0 . a n d . U . I e . 0 . d 0 )  then 
c h i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

el se
i f ( Q . e q . 0 . d 0 . a n d . U . g t . 0 . d 0 )  then 
chi —p i / 4 . d 0  

e I se
i f ( Q . e q . 0 . d 0 . a n d . U . I t . 0 . d 0 )  then 
chi —0 .7 5d0*p i  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f

c Convert chi i nt o  degrees 
chi —chi * 1 8 0 . dO/pi  
w r i t e ( 2 , « )  x i , y i . d e g p o l , chi

9 c o n t i n u e



cont inue 
cloee(2)  
end do 
cont i nue 
stop 
end

funct  ion B ( z i )
i m p l i c i t  double preci si on ( A - I ) . ( O - Z )  
common / x z /  x i , y i , i n c . r o t  
x—x i
y - ( y  i *dcosf  i n c ) ) - ( z  i *dsi  n ( i  n c ) ) 
z—( z i  *dcos( i  n c ) )+ (y  i * d » i n ( i n c ) )  
r r » ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 d 0  
o—3 * x * z / r r
c - ( r o t * y ) / ( ( ( x * * 2 ) + ( y * * 2 ) ) * * 0 . 5 d 0 )
d - 3 * z * y / r r
e“ ( 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 ) ) / r r  

( d + c ) « d c o s ( i n c ) ) + ( e * d s i n ( i n c ) )
R - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 3 . 3 2 d 0
^ ( ( ( ( o - c ) * * 2 ) + ( w * * 2 ) ) * * 0 . 8 3 d 0 ) / R
return
end

funct i on I U ( z i )
i m p l i c i t  double precision ( A - I ) . ( O - Z )  
common / x z /  xi . y i , i n c , r a t  
x—x i
y - ( y  i *dcos(  i n c ) ) - ( z i *dsi  n( i n c ) ) 
z—(z  i *dcos( i  nc) )-t(y i *ds i n ( i  n c ) ) 
r r - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 d 0  
o - 3 * x * z / r r
c - ( r a t * y ) / ( ( ( x * * 2 ) + ( y * * 2 ) ) * * 0 . 5 d 0 )  
d—3 * z * y / r r
e - ( 2 . d 0 * ( z * * 2 ) - ( x * » 2 ) - ( y * * 2 ) ) / r r  

( d+c)*deos( i  nc) ) +( e* ds i  n ( I n c ) ) 
R - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 3 . 3 2 d 0  
M ( ( ( o - e ) * * 2 ) + ( w * * 2 ) ) * * 0 . 8 3 d 0 ) / R  
C C - ( ( o - c ) * * 2 ) + ( w * * 2 )
DD-2*w* (o-c)
IU-8*DD/CC
return
end

f unct i on I Q ( z l )
i m p l i c i t  double preci si on ( A - I ) . ( O - Z )  
common / x z /  x i , y i , i n c , r a t
x—xi
y - ( y i * d c o s f  i n c ) ) - f z i  *dsi nf i nc) )  
z - ( z i * d c o s ( i n c ) ) + ( y i « d s i n ( i n c ) )  
r r - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 d 0  
o - 3 * x * z / r r
c—( r a t * y ) / ( ( ( x * * 2 ) + ( y * * 2 ) ) * * 0 . 5 d 0 )  
d—3 * z * y / r r
e - ( 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 ) ) / r r  
w - i f d + c ) * d c o s ( i n c ) ) + ( e * d s i n ( i n c ) )
R » ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 3 . 3 2 d 0  
^ ( ( ( ( o - c ) * * 2 ) + ( w * * 2 ) ) * * 0 . 8 3 d 0 ) / R  
AA—( ( a—c ) * * 2 ) —(w**2)
C C - ( ( o - c ) * * 2 ) + ( w * * 2 )
I OB*AA/CC
return
end



c PROGRAM M 0 0E L 7 . FOR model f o r  an i n c l i n e d  d i p o l e  w i t h  a t o r i o d a l  f i e l d

c component of r a t i o  50 to the r and theta f i e l d  components.

i m p l i c i t  double p r e c i s i o n  ( A - I ) . ( O - Z )
real S14AAF, x1, x2 , x3 , x4
integer LW.LIW, IW, I FAIL
dimension W(1O00) . IW(3O0)
external  B , I Q , I U
common / x z /  x i , y i , i n c , r a t
pi—4 . d 0 * d a t a n ( 1 . d 0 )
r a t - 5 0 .

i fai I-0 
epsabs-O.OeO 
e p s r e l - 1 . 0e—4  
a 1 - 1 . d-10  
a2-5000. d0 
LW-1000 
LIW-300

c F i rs t  evaluate the mod i f i ed  Bessel funct ions F and G in terms of gamma fns.  
x 1 - 2 .163 
x2 -0 .4 96  
x 3 - 1 .663 
x4—0. 9966
gamraat-S14AAF(x1, 1fa I  I } 
garama2-S14AAF( x 2 , i f a i I ) 
gommo3—S14AAF(x3, I f a  i I ) 
gamma4—S14AAF( x 4 , i f a i I  )
F- ( 2/3.32) * (2**0.66) *gommo1*gamraa2
G-(2/3.32)* (2**0.66)*gamraa3*gamraa4

c Work through angles from 0 to 90 degrees 
do 9 mm-0,9 
i f (mm.eq.0)  then 
angle—0 . 0 0 1 d0 
e I se
angle*4wn*10.d0
end i f
i n c - f a n g l e * p i ) / 1 8 0 . d 0
open(uni t - 2 , s t a t u s —' new’ ,name- ’ mo del 7 . dat ' )

do 1 k—0 , 2 5  
do 2 j - 0 , 2 5
x i - k+ 1 .d 0  
y i - j + 1 . d 0

c cannot c a l c u l a t e  val ues f o r  the o r i g i n  because of d i v i d e  by zerol

c a l I  D0 1AJ Ff B, a 1 , a2 , ep sa b s, ep s re I , I , a b s e r r . W . L W , I W , L I W , i f a i I ) 
c a l I  D01AJF( IQ, a1 , a 2 .e ps a b s . e p s r e I , Q , a b s e r r , W , L W , I W , L I W . i f a i  I )  
caI I D0 1AJF( IU, a1 , a2 ,ep sa bs , e p s r e I , U,abserr , W, LW, IW,LI W, i  f a i  I )
degpo l - (G / F ) * ( ( U* * 2+ Q** 2 ) * *0 .5 / l )

c leave G and F out of I , U , Q  because they only appear in degpol as shown

c Test f or  the quadrant  of the angle 2X.
i f ( Q . e q . 0 . d 0 . a n d . U . e q . 0 . d 0 )  then 
chi —0 . 0  

e I se
i f ( Q . g t . 0 . d 0 . a n d . U . g e . O . d O )  then 
c h i - d a t a n ( U / Q ) / 2 . d 0  

else
i f ( Q . I t . O . d O . a n d . U . g e . O . d O )  then 
c h i - ( ( p l + d a t a n ( U / Q ) ) ) / 2 . d 0  

el se
i f ( Q . g t . O . d O . a n d . U . I e . 0 . d0) then 
c h i - ( ( d a t a n ( U / Q ) / 2 . d 0 ) ) + p i  

el se
i f ( Q . I t . O . d O . a n d . U . l e . O . d O )  then 
ch i - ( ( p i + d a t a n ( U / Q ) ) ) / 2 . d 0  

else
i f ( Q . e q . O . d O . a n d . U . g t . 0 . d 0 )  then 
c h i - p i / 4 . d 0  

e I se
i f ( Q . e q . O . d O . a n d . U . I t . O . d O )  then 
c h i - 0 . 7 5 d 0 * p i  

end i f 
end i f 
end i f 
end i f 
end i f 
end i f 
end i f

c Convert chi i n t o  degrees 
c hi - ch i  * 1 8 0 . d 0 / p i  
w r i t e ( 2 , * )  x i , y i . d e g p o l , chi

2 cont inue  
1 continue



cont i nue
• t op
and

f unct i on B ( z i )
i m p l i c i t  double pre ci s i on  ( A - I ) . ( O - Z )  
common / x z /  x i , y i , i n c , rat  
x—x i
y—(y i *dcos( i  n c ) ) - ( z i * d s i n ( i n c ) )  
z—(z i * d c o s ( i n c ) ) + ( y i » d s i n ( i n c ) )  
r r - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 d 0  
< ^ 3 * x * z / r r
c—( r a t * y ) / ( ( ( x * * 2 ) + ( y * * 2 ) ) * * 0 . 5 d 0 )  
d - 3 * z * y / r r
e - ( 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 ) ) / r r  

( d+c )* dc os ( i  n c ) ) + ( e * d s i  n( i  n c ) )
R - C ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 3 . 3 2 d 0
B - ( ( ( ( a - c ) * * 2 ) + ( w * * 2 ) ) * * 0 . 8 3 d 0 ) / R
return
end

f unct i on I U ( z i )
i m p l i c i t  double pre ci s i on  ( A - I ) . ( O - Z )  
common / x z /  xi , yi  , i n c , rat  
x—x i
y—(y i * d c o s ( i n c ) ) - ( z i * d s i n ( i n c ) )  
z - ( z  i * d c o s ( i n c ) ) + ( y i * d s i n ( i n c ) )  
r r - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 d 0  
o - 3 * x * z / r r
c—( r a t * y ) / ( ( ( x * * 2 ) + ( y * * 2 ) ) * * 0 . 5 d 0 )  
d - 3 * z * y / r r
e - ( 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 ) ) / r r  
w - u d + c ) * d c o s ( i  n c ) ) + ( e * d s i  n( i  n c ) )
R - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 3 . 3 2 d 0  
t ^ ( ( ( ( o - c ) * * 2 ) + ( w * * 2 ) ) * * 0 . 8 3 d 0 ) / R  
CC—( (a—c ) * * 2 ) + ( w * * 2 )
DD-2*w*(o-c)
IU-8*DD/CC
return
end

f unct i on  I Q ( z i )
i m p l i c i t  double p r ec is i on  ( A - I ) , ( 0 - Z )  
common / x z /  x i , y i , i n c , rat  
x—x i
y - ( y i * d c o s ( i n c ) ) - ( z i * d s i n ( i n c ) )  
z - ( z  i *dcos( i  n c ) ) + ( y  i • d s i n ( i n c ) )  
r r - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 0 . 5 d 0  
o - 3 « x * z / r r
c—( r a t * y ) / ( ( ( x * * 2 ) + ( y * » 2 ) ) * * 0 . 5 d 0 )  
d - 3 * z * y / r r
e - ( 2 . d 0 * ( z * * 2 ) - ( x * * 2 ) - ( y * * 2 ) ) / r r  

(d+c)*dcos(  l n c ) ) + ( e * d s i n ( i n c ) )
R - ( ( x * * 2 ) + ( y * * 2 ) + ( z * * 2 ) ) * * 3 . 3 2 d 0  
f r - ( ( ( ( o - c ) * * 2 ) + ( w * * 2 ) ) * * 0 . 8 3 d 0 ) / R  
AA**( ( o—c ) * * 2 ) —( w**2 )  
C O ( ( o - c ) « 2 ) + ( w * * 2 )
IOB-AA/CC
return


