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Abstract

This thesis describes the development of a model to analyse the genetic 
changes associated with tumour progression in mouse skin. Tumours were induced in 
FI hybrid mice, thereby permitting the use of heterozygous DNA markers (restriction 
fragment length polymorphisms) to determine the role of allele loss in papilloma and 
carcinoma development. Frequently, initiation of mouse skin carcinogenesis involves 
H -ras activation. This gene is located on mouse chromosome 7. The FI hybrid 
tumour model was used to demonstrate that tumours with this mutation also show 
loss of heterozygosity (LOH) or imbalance of alleles on chromosome 7 at a very high 
frequency. Thus LOH may indicate the presence of an oncogene, although it is often 
equated with tumour suppressor gene loss. Most frequently the alterations involved 
non-disjunction, but in some cases mitotic recombination or deletion was detected. 
These gross chromosome changes were not observed in mouse skin tumours lacking 
activated H -ras. Thus, it is clear that the initiation event can influence the type of 
alterations which occur at later stages of tumour progression.

In the majority of cases, gross chromosome 7 changes result in an increased 
copy number of mutant H -ras and under-representation or loss of the normal allele, 
indicating that mutant H-ras is involved in both the initiation and progression of 
mouse skin tumours. It may be that elevation of the mutant signal is required to 
overcome a suppressive effect of the normal allele. In addition, because elevation of 
mutant H-ras gene copy number occurs by gross chromosomal mechanisms, it is 
possible that another chromosome 7 gene is also involved in tumour progression. In 
support o f this, mitotic recombination or deletion was detected distal to H-ras in 4/26 
of the chemically induced tumours with activated H-ras. In addition, a chromosome 
7 alteration was detected in a v-H-ras initiated tumour, further evidence that a gene 
other than H-ras on this chromosome is involved in tumour progression. Human 
tumours frequently demonstrate LOH at the chromosomal region l i p  15.5, which is 
syntenic with the part of mouse chromosome 7 that encompasses the H -ras locus. 
Thus, the homologue o f  a tumour suppressor gene in this region o f  human 
chromosome 11 may be involved in mouse skin tumour development. The W ilms’ 
tumour locus, also on human l ip ,  is on mouse chromosome 2. RFLP analyses 
provided no evidence that this gene has a role in mouse skin tumorigenesis.

The non-random nature of chromosome 7 changes was supported by the low 
frequency of alterations on chromosomes 2 and 11. Two carcinomas did show LOH 
of a m arker on the latter. Interestingly, this chrom osom e contains a region 
homologous to human chromosome 17p, which is involved in colorectal cancer. 
Minisatellite analysis also supported the non-random nature of chromosome 7 
changes . Loss or rea r rangem en t o f  m in isa te ll i te  bands tended  to involve 
hypervariable loci, suggesting that these were random rearrangements at unstable 
loci.

In some human cancers genomic imprinting influences the direction of allele 
loss on l ip .  However, this did not appear to be the case with LOH on chromosome 7 
in mouse skin carcinomas. The parental strain also did not influence which alleles 
were under-represented in these tumours.

Some important differences were detected between the genetic changes 
associated with carcinomas induced by initiation/promotion and those seen in 
carcinomas obtained by repeated carcinogen treatment. A similar proportion of 
MNNG/TPA and M NNG/M NNG carcinomas were positive for mutant H-ras. 
However, whereas non-disjunction of chromosome 7 had also occurred in the former, 
no chromosome 7 changes were detected in carcinomas induced by repeated MNNG 
treatment. This carcinogen may remove the need for additional chromosome 7 
changes by mutating the gene(s) affected by these events in TPA-promoted tumours,



or by altering entirely separate loci. In contrast, tumours induced with repeated 
DMBA treatment which were positive for activated H-ras also had chromosome 7 
changes. However, the frequency of events such as mitotic recombination or deletion 
was m uch  h ig h e r  in these  tu m o u rs  than  in c a rc in o m a s  induced  by an 
in it ia t ion /p rom otion  regim e. The m ajor d ifference  between D M B A /D M BA  
carcinomas and DMBA/TPA carcinomas was that the latter contained a much higher 
proportion of tumours which lacked activated H-ras. Thus it appears that repeated 
DMBA treatment stimulates the growth of initiated cells which are insensitive to 
TPA.

Analysis of papillomas showed that gross chromosome 7 changes occur at a 
premalignant stage of tumorigenesis. This may suggest a tumour promoter-related 
genetic effect. However, such events are not limited to a single stage of tumour 
growth since selection for extra copies of mutant H-ras was observed in some 
carcinomas.

The large number of polymorphisms in M. spretus/M. musculus hybrids makes 
them especially useful in the analysis of tumour-related LOH. RFLPs at H-ras allow 
direct identification of the parental origin of the mutant allele and this has been used 
in conjunction with work by P.Burns to demonstrate the monoclonal nature of mouse 
skin tumours.

The FI hybrid model is a novel method of assessing the relevance of allele loss 
to tumour progression in animal systems. Its application to other models may lead to 
the identification of new genes involved in tumorigenesis.
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1.1 Cancer as a multistep genetic process

The familial nature of certain cancers (Hansen and Cavenee, 1987). the 

mutagenic capability of many carcinogens (section 1.5.2), and the association of 

clonal karyotypic changes with most cancers (Heim et a i ,  1988), support the 

proposal that a major component of neoplasia is genetic. In the last two decades 

several genes have been isolated which, on the basis of multiple criteria, have 

provided conclusive evidence for this hypothesis. These genes fall into two major 

categories: oncogenes (section 1.2) and tumour suppressor genes (section 1.4). Both 

classes are implicated in growth control, but contribute to malignancy in separate 

ways. Oncogenes do so positively, following activation by qualitative or quantitative 

means (section 1.2.2). Their identification frequently involves assays that detect 

morphological transformation (section 1.2.1.3). In contrast, tumour suppressor genes 

are thought to block tumorigenesis and must be functionally inactivated to permit 

tumour progression (section 1.4). In theory these genes could be identified by their 

ability to revert the transformed phenotype. However, this has not been a common 

approach to their isolation because of the difficulties associated with detecting 

normal cells in a transformed population. Instead, most effort has gone into the 

mapping of non-random tumour associated deletions, thought to signify the presence 

of such a gene (section 1.4.2).

It has also been a long-standing notion that cancer is a multistep process 

(Foulds, 1954 and 1958; Klein and Klein, 1985). The discrete morphological and 

histological stages of many cancers suggests a stepwise progression towards 

malignancy, as does the successive emergence of more aneuploid subclones during 

tumour development (Heim et a i ,  1988). Mathematical models applied to age- 

incidence curves have suggested that leukemias require 3-4 mutations, whereas 

carcinomas develop after 6-7 alterations (Farber and Cameron, 1980; Knudson

- 2 -



1973). These should be regarded as a minimum, since events which are not rate- 

limiting will not be detected by these methods.

For a growing number of human tumours the type and stage of involvement of 

non-random gene mutations has been elucidated (Vogelstein et a l., 1989; Bouck and 

Benton, 1989). This has been complemented by in vitro and in vivo analyses in which 

the ability of different combinations of oncogenes to effect malignancy have been 

analysed (section 1.2.3). It is now realistic to speculate that elucidation of all the 

rate-limiting genetic mutations which are cooperatively responsible for individual 

malignancies may be possible.

1.2 Oncogenes

Elucidation of oncogene sequences, and cellular location and biochemical 

action of the proteins they encode have confirmed their role in the control of 

differentiation and proliferation (Bishop, 1987). Such studies have facilitated the 

grouping o f  these genes into distinct categories (Figure 1). These classes represent 

many of the known stages of the signal transduction process, from growth factors 

through to nuclear DNA binding proteins.

1.2.1 The discovery of oncogenes

1.2.1.1 Oncogenes of acutely transforming retroviruses

The very first oncogenes to be discovered were identified as the component of 

acutely transforming retroviruses responsible for neoplasia (Bishop, 1981; Bishop 

and Varmus, 1982). Retroviruses have an RNA genome and replicate through a DNA 

proviral in term ediate  which integrates into cellular DNA. Over 20 acutely 

transforming retroviruses have been isolated from a range of species including 

chickens, turkeys, mice, rats, cats and monkeys. Most of these highly oncogenic

- 3 -



Figure 1 Oncogenes and cellular signalling
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strains are replication-defective as a result of loss or alteration of viral genes, and are 

found with a helper virus. However, the retrovirus from which the first oncogene, 

v-src, was isolated -  Rous Sarcoma virus (RSV) -  is an exception; it is replication- 

competent. Identification of the src gene was closely followed by discovery of the 

mos and K-ras oncogenes in Moloney and Kirsten murine sarcoma viruses 

respectively (Bishop and Varmus, 1982).

One of the most significant advances in cancer research to date was the 

discovery that retroviral oncogenes have normal cellular counterparts; proto

oncogenes (Stehelin et al., 1976; Bishop, 1981). The retroviral versions of these 

genes lack introns, suggesting that they were transduced from the cellular genome 

rather than the other way round. However, as discussed below, it is other differences 

between the cellular and viral forms of these genes which are generally considered to 

be responsible for their oncogenic properties.

1.2.1.2 Detection by insertional mutagenesis

The majority of replication competent transforming retroviruses do not possess 

oncogenes. However, these viruses induce malignancy after a long latency period by 

integrating near or within a cellular proto-oncogene (Nusse, 1986). This brings the 

gene under the contol of the powerful transcriptional enhancer sequences found in 

the viral long terminal repeat (LTR) and may also truncate the gene depending on the 

site of integration. The myc oncogene was originally identified in an acutely 

transforming retrovirus, but is also activated by proviral insertion in the large 

majority of avian leukemia virus (ALV)-induced bursal lymphomas (Hayward et al., 

1981), and proviral activation of c-myc is also common in murine B and T-cell 

lymphomas (Bems et al., 1989). Other genes which were first identified as retroviral 

oncogenes and then also detected by insertional mutagenesis include c-erbB, c-mos, 

c-myb and c-H-ras (Bishop, 1987). Latent transforming viruses have been used to 

isolate several novel oncogenes which, to date, have not been detected in acutely
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transforming retroviruses. These include five loci frequently activated by MMTV 

integration: Int-l, 2, 3, 4 and hst (Dickson et al., 1984; Nusse et al., 1984; Delli Bovi 

et al., 1987; Peters et al., 1989). int-2 and hst (also termed KS-3, ZzsrFl and k-FGF) 

are members of the fibroblast growth factor gene family (Figure 1) and are within 

20kb of each other on mouse chromosome 7 (Peters et al., 1989). Int-l is also 

thought to be a growth factor and is implicated in the control of development 

(reviewed by Bender and Pelfer, 1987). Activation of more than one of these five 

genes in a single MMTV-induced tumour has been observed (Peters et al., 1986 and 

1989).

Three so called Jim sites have been identified in FuMLV -induced myeloid 

leukemias (Sola et al., 1988); fim-2 is equivalent to the fms/CSF-1 receptor gene, 

while Jim-3 is equivalent to the evi-l locus, which encodes a zinc finger protein 

(Bartholomew et al., 1989). In addition, the IL2 and EL3 genes, which encode 

haematopoetic growth factors, have been activated by insertional mutagenesis in 

leukemia cells (Chen et al., 1985; Ymer et al., 1985). Also, retroviral integration at 

the pim -1 and N-myc loci is frequently associated with murine T-cell lymphomas 

(Bems et al., 1989), although unlike c-myc these genes have never been detected in 

acutely transforming retroviruses.

1.2.1.3 Detection of cellular transforming genes by transfection

There is no evidence that the acutely transforming retroviruses isolated from 

animal tumours are involved in human neoplasia. However, the discovery that 

retroviral genes were derived from cellular homologues suggested that alteration of 

proto-oncogenes by non-viral means might induce malignancy (Bishop, 1981 and

1987). After Hill and Hillova (1972) demonstrated the transformation of chicken 

embryo fibroblasts with DNA from RSV-transformed rat cells, attempts were made 

to induce transformation of normal cells by transfection of human tumour DNA. 

Development of the calcium precipitation approach for DNA transfection (Graham
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and van der Eb, 1973; Wigler et al., 1977) paved the way for successful transmission 

of the malignant phenotype from tumour to normal cells (Shih et al., 1979 and 1981; 

Cooper et al., 1980; Krontiris and Cooper, 1981; Perucho et al., 1981). The human 

origin of the transforming activity was confirmed by hybridisation of middle- 

repetitive Alu sequence to DNA from transfectants (Shih et al., 1981, Perucho et al.,

1981). Subsequently, viral oncogene probes were used to identify the presence of 

human H-ras in NIH3T3 cells transformed by T24/EJ bladder cell line DNA (Der et 

al., 1982; Parada et al., 1982; Santos et al., 1982), and the human K-ras gene in foci 

generated by transfection of DNA from the lung carcinoma cell lines A2182 and 

LX-1, and the colon carcinoma cell line SW480 (Der et al., 1982; Pulciani et al., 

1982b; McCoy et al., 1983). That ras activation was not only a feature of tumour cell 

lines was demonstrated by the detection of ras oncogenes in foci transformed with 

DNA from primary tumour samples (Pulciani et al., 1982a).

Of the 10-20% of human malignancies that possess transforming activity in the 

NIH3T3 assay, the transforming gene in 90% of these is a member of the ras family 

(Balmain, 1985; Barbacid, 1986). In addition, more sensitive detection methods have 

revealed that the NIH3T3 transfection assay can underestimate the level of ras 

activation in particular tumour types (section 1.3.2; Bos, 1989). Thus in certain 

cancers, the proportion of tumours with ras mutations is as high as 90% (Bos, 1989).

Other transforming genes, which like K- and H-ras, have retroviral 

counterparts include ros , raf-\, mos, src ,fes, and fos (Barbacid, 1986). However, 

several other transforming genes including dbl, hst, mas, met, neu, ret and trk do not 

have viral homologues (Der, 1987). Of all these genes only ras, ret, hst and neu have 

been repeatedly detected in the NIH3T3 transformation assay. The neu gene is 

frequently activated in chemically induced rodent schwannomas (Schechter et al.,

1984). The hst gene can be activated by MMTV integration (section 1.2.1.2) but was 

originally identified as a transforming gene in a human stomach carcinoma 

(Sakamoto et al., 1986). Its role in tumorigenesis is uncertain though since, apart 

from MMTV related tumours (Peters et al., 1989), there has been no evidence that it
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is expressed in the tumours it has been isolated from (Delli Bovi and Basilico, 1987; 

Adelaide et al., 1988; Tsuda et al., 1989). Furthermore, it was also isolated following 

transformation of NIH3T3 cells by normal gastric mucosa DNA (Sakamoto et al.,

1986). The role of the ret oncogene in human cancer has also been uncertain since its 

activation frequently occurs during transfection. However, recently it has been 

demonstrated that what was thought to be a novel oncogene in thyroid papillary 

carcinomas (PTC), actually consists of the N-terminal region of an unknown protein 

fused to the tyrosine kinase domain of the ret proto-oncogene (Grieco et al., 1990). 

The significance o f many o f the other transforming genes listed above to 

tumorigenesis remains uncertain because of their limited association with neoplasia.

1.2.1.4 Other methods for detecting cellular oncogenes

Genomic amplification is one mechanism of oncogene activation (section 

1.2.2.2; Alitalo and Schwab, 1986). Attempts have therefore been made to isolate 

new oncogenes from amplified sequences by repeated denaturation and renaturation 

of tumour DNA. This approach, which results in preferential reassociation of tumour 

DNA, has been used to isolate the gli gene, which was amplified and expressed in a 

malignant glioma (Kinzler et al., 1987).

Oncogene activation can also be associated with chromosome translocations 

(sections 1.2.2.1 and 1.2.2.2b). The cellular homologues of the retroviral oncogenes 

abl, ets and myc are commonly involved in these events, but new oncogenes have 

also been detected in this way. The bcl- 1 gene was identified by cloning of the 

breakpoint on chromosome 11 in a B-cell chronic lymphocytic leukemia (CLL) in 

which a t(ll;14) (ql3;q32) translocation was observed (Tsujimoto et al., 1984b). 

Similarly, bcl-2 was identified at the breakpoint on chromosome 18 in a follicular 

lymphoma which contained a t(14:18) (q32;q21) translocation (Tsujimoto et al., 

1984a; Tsujimoto and Croce, 1986).
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1.2.2 Oncogene activation

Proto-oncogene activation requires structural alteration (a qualitative change) 

and/or elevated expression (a quantitative change). Frequently, qualitative changes 

involve point mutations, but larger scale events such as truncation and gene fusion 

have also been observed. Transcriptional effects can occur by a number of 

mechanisms including gene amplification, chromosome translocation, insertional 

mutagenesis, mutation of existing regulatory sequences and/or epigenetic events. 

These alterations are presumed to result in the provision of an amplified or 

inappropriate signal from the oncogene product, thus deregulating normal cell 

growth and differentiation.

Weinberg (1985) has discussed an intriguing link between the function of 

oncogenes and the mechanisms by which they are activated. In most cases activation 

of cytoplasmic oncogenes occurs by a structural change, whereas nuclear oncogenes 

tend to be activated by increased expression. Accumulated data also places the 

secreted (growth factor) oncogenes in the latter category. Weinberg (1985) has 

suggested that this may relate to the level at which the functions of these oncogenes 

are regulated. Cytoplasmic oncogenes (eg ras) are constitutively expressed and 

appear to be regulated by continual cycles of activation and inactivation at the 

protein level. Constitutive activation therefore requires some structural change in 

order to bypass inhibitory conformations or signals. However, the expression of 

nuclear oncogenes (eg fos and myc) is tightly regulated and these proteins may be 

constitutively active once synthesised. Thus, a continuous signal from these gene 

products requires deregulation of their transcription.

The mechanisms of oncogene-activation are discussed below. Although there 

is much to support the above theory, several exceptions have also been documented, 

implying that the mechanisms of oncogene-induced neoplasia are highly complex.
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1.2.2.1 Oncogene activation by structural alteration

a) The ras family

The alterations responsible for the activation of ras genes are now well 

documented (Barbacid, 1987; Bos 1989). The activating mutation of the c-H-ras 

gene of the T24/EJ bladder carcinoma cell line was first to be determined. It was 

found to be a single nucleotide substitution (G->T) giving rise to a p21 protein with a 

val rather than a gly at codon 12 and a reduced electrophoretic mobility (Tabin et al., 

1982; Reddy et al., 1982; Taparowsky et al., 1982). Since then, activated ras genes 

have been detected in several naturally occurring and chemically induced tumours 

which have mutations in codons 12, 13 and 61 (Guerrero and Pellicer, 1987; 

Barbacid, 1987; Balmain and Brown; 1988; Bos, 1989). In addition, an activating 

codon 59 mutation has been detected in v-ras (Dhar et al., 1982; Tsuchida et al.,

1982) but never in a cellular ras gene.

In vitro mutagenesis studies have extended the list of activating mutations to 

include codons 63 (Fasano et al., 1984), 116 (Walter et al., 1986), 117 (Der et al.,

1988) and 119 (Sigal et al., 1986b). These mutations have never been detected in 

human tumours, but codon 117 mutations have been observed in H-ras genes 

isolated from furan and furfural-induced liver tumours of B6C3F1 mice (Reynolds et 

al., 1987).

In vitro mutagenesis studies have shown that substitution of Gly 12 by any 

other amino acid (except for proline) (Seeberg et al., 1984) and Gin 61 by any other 

amino acid (except Pro, Glu and Gly) (Der et al., 1986) confers transforming 

properties on ras genes. Mutations at codon 13 have not been comprehensively 

studied, but all substitutions analysed activate the gene, although to a lesser extent 

than mutations at codons 12 and 61 (Fasano et al., 1984; Bos et al., 1985).

b) The Protein Kinase family

The first oncogene to be characterised was the v-src gene of Rous sarcoma 

virus (RSV). It was shown to be a kinase almost a decade ago (Collett and Erikson,
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1978, Levinson et al., 1978) and two years later it was found that the kinase activity 

was specific for tyrosine residues. Since then many other v-oncs and their cellular 

counterparts have been shown to be protein tyrosine kinases (PTKs) (Hunter and 

Cooper, 1985) and others are known to be serine/threonine kinases (see Figure 1). 

The activation of these oncogenes is, in the simplest model, considered to increase 

the phosphorylation of their substrates through increased catalytic activity. Other 

models include increased protein stability, recognition of new subtrates and 

stimulation by new signals (Cooper, 1985).

The PTKs are activated by diverse structural alterations. These include point 

mutation, C- and N-terminal truncation and gene fusion.

Several PTK oncogenes lack C-terminal sequences. These deletions remove 

tyrosine residues whose phosphorylation appears to regulate kinase activity. For 

example, the regulatory tyr 527 residue present in pp60c ‘yrc is absent in pp60v'^c. 

Dephosphorylation of this residue (Cooper and King 1986), or substitution for 

phenylalanine (Kmiecik and Shalloway, 1987) activates the tyrosine kinase activity 

of c-src to levels similar to that of v-src. Similar deletions in the plasma membrane 

bound v-fgr and v-yes PTKs (Hunter, 1987) and in the growth factor receptor (GFR) 

PTKs v-erb-B (Ullrich et al., 1984), v-fins (Coussens et al., 1986), v-kit (Yarden et 

al., 1987) and v-ros (Podell and Sefton, 1987) have removed a conserved tyrosine 

present in the cellular versions of these oncogenes.

In addition to C-terminal deletions, point mutations are also known to play a 

role in the generation and enhancement of the src gene transforming potential (Levy 

et al., 1986). An analogous situation has been suggested for the fins (Roussel et al.,

1987), and kit genes (Yarden et al., 1987). Point mutations that activate c-src (and are 

present in one or more forms of v-src) fall within the kinase domain, thereby 

increasing catalytic activity directly, or in the N-terminal half thereby debilitating an 

inhibitory region of the protein (Hunter, 1987). The rat neu gene is an example of a 

GFR PTK which is activated by a single point mutation (Bargmann et al., 1986).

- 1 0 -



This results in the substitution of a glutamate residue for valine in the transmembrane 

domain of neu (Bargmann et al., 1986).

Deletion of part of the cellular sequences during transduction of viral PTKs is 

not confined to the C-terminal domains of these proteins. The GFR PTKs v-erb-B 

(Ullrich et al., 1984) v-kit (Yarden et al., 1987) and v-ros (and an activated c-ros 

isolated from a human mammary carcinoma cell line) (Birchmeier et al., 1986) have 

N-terminal deletions which eliminate most or all of the ligand binding domains and 

may lead to deregulation and possibly constitutive activation of the tyrosine kinase 

activity. In v-fins the extracellular domain is intact and cell transformation may 

depend on autocrine stimulation (Roussel eta l., 1984).

The activation of a PTK gene by gene fusion is best characterised by the 

involvement of c-abl in chronic myelogenous leukemia (CML). Over 90% of CML 

patients possess the Philadelphia chromosome. This arises from a translocation 

between chromosomes 9 and 22, which places the c-abl gene (normally at 9q34) 

within a 5.8kb region at chromosome 22 q ll, known as the breakpoint cluster region 

(bcr) (Groffen et al., 1984). The breakpoint on chromosome 9 is more variable and 

can occur almost anywhere within the first intron of c-abl, which is at least 200kb 

long (Bernards et al., 1987). The translocation results in the synthesis of a fusion 

product consisting of 5 ’ bcr sequence and 3’ abl sequence (Shtivelman et al., 1985). 

This resembles the v-abl oncogene in which the N-terminal end of the protein is 

replaced by viral sequences (Bishop and Varmus, 1982).

Two other PTKs, met and trk, are also activated by gene fusion. The met gene 

was isolated from a chemically transformed human cell line, MNNG-HOS (Cooper 

et al., 1984). It was subsequently shown to be related to the PTK family (Dean et al.,

1985). Park et al. (1986) then demonstrated that its activation involved fusion of a 3’ 

portion of met on chromosome 7 with the 5 ’ region of a chromosome 1 locus termed 

tpr (translocated promoter region). The MNNG-HOS cell line was obtained by 

prolonged treatment of a human osteosarcoma cell line with MNNG, suggesting that
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 ̂ the clastogenic, rather than mutational effect of MNNG (Perry and Evans, 1975) was 

responsible for met activation.

The trk gene (originally named oncD) was isolated by transformation of 

NIH3T3 cells with colon carcinoma DNA (Pulciani et al., 1982a). It was derived by 

replacement of the extracellular domain of a receptor TK by the first 221 amino acids 

of a non-muscle tropomyosin molecule (Martin-Zanca et al., 1986).

1.2.2.2 Oncogene activation by elevated expression

Oncogenic activation of nuclear genes and growth factor genes frequently 

involves deregulated expression. For example, activation of the nuclear genes c-myc 

and N-myc, and the growth factor genes IL2, IL3 and the int series by proviral 

insertion has already been mentioned (section 1.2.1.2). However, deregulated 

expression need not involve highly active exogenous promoters. This is exemplified 

by a specific chromosomal translocation in Burkitt’s lymphoma (BL) and mouse 

plasmacytomas, which place the c-myc gene next to a powerful immunoglobulin 

promoter. Three specific translocations are found in BL. All involve 8q24 with either 

14q32 (in most cases), 2p l2  or 2 2 q ll (Rabbitts, 1985). These translocations 

juxtapose myc with the Ig heavy chain locus on chromosome 14, the X light chain 

locus on chromosome 2, or the k  light chain locus on chromosome 22. The effects of 

these events can be contrasted with the translocation of the c-abl locus in CML 

(section 1.2.2.1b). In the latter the N-terminal portion of abl is replaced by a coding 

region derived from the bcr locus (Shtivelman et al., 1985). However, translocations 

detected in BL do not alter the coding region of c-myc. Instead it is thought that the 

loss of the non-coding first exon, and/or the juxtaposition of Ig regulatory sequences 

are the critical events (Rabbitts, 1985).

One mechanism which can increase the amount of an oncogene product 

without necessarily altering its own regulatory sequences is gene amplification. 

Amplification of oncogenes is an occasional feature of some tumours and a
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consistent event in others (Alitalo and Schwab, 1986). Amplification of the nuclear 

oncogenes c-myc, c-myb and c-ets-\ has been observed in a small proportion of 

various tumours (Alitalo and Schwab, 1986). However, c -myc is commonly 

amplified in small cell lung carcinomas, as are N-myc and L-myc (Nau et al., 1985). 

Amplification of N-myc has also been observed in 50% of neuroblastomas, an event 

which has been correlated with advanced stages of the disease (Brodeur et al., 1984).

1.2.2.3 Activation by mechanisms atypical of a class of oncogenes

As mentioned above there are examples which demonstrate that activation of 

cytoplasmic and nuclear oncogenes is not restricted to qualitative and quantitative 

events respectively. In particular there are many examples implicating elevated 

expression in the activation of cytoplasmic oncogenes. The potential relevance of 

overexpression of cytoplasmic oncogenes is implied from the large number of these 

genes which have been transduced by retroviruses, in which they are under the 

control of highly active LTR sequences. Overexpression of mutated ras genes is 

known to potentiate their transforming powers (section 1.3.4.2), and placing a normal 

ras gene under the control of powerful enhancer elements can give it transforming 

properties (Chang et al., 1982; McKay et al., 1986). The mos PTK oncogene also 

aquires strong oncogenic powers when linked to a constitutive promoter (Blair et al.,

1986). The amplification of oncogenes such as ras, neu and erbB in some tumours is 

further evidence that enhanced stimulation of the pathways these proteins normally 

activate and/or other pathways might aid tumour progression. Amplification of neu 

and erbB genes is particularly significant because of the high frequency of these 

events in breast carcinoma (Slamon et al., 1987) and squamous cell carcinomas and 

brain tumours (Alitalo and Schwab, 1986; Libermann et al., 1985) respectively. It 

has also been shown that overexpression of normal c-neu results in the malignant 

transformation of NIH3T3 cells (Paolo di fiore et al., 1987).
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There is less evidence for the role of qualitative changes in nuclear oncogene 

activation. Although viral oncogene products are frequently fused to viral proteins 

(Bishop and Varmus, 1982) the relevance of this to malignancy is not clear. For 

example, the gag moiety of p75gaĝ os does not appear to influence transforming 

potential (Miller et al., 1984). The function of the point mutations in v-myc is also 

not clear (Bishop and Varmus, 1982). One nuclear oncogene which is definitely 

activated by point mutations is the p53 gene. However, this gene may be unique in 

that it can be classified as both an oncogene and a tumour suppressor gene (section 

1.4.5b).

1.2.3 Cooperation of oncogenes

The discovery that certain tumour-derived oncogenes could transform NIH 

3T3 cells gave rise to speculation that cancer might be caused by activation of a 

single oncogene (Parada et al., 1982). This contradicts the evidence suggesting that 

cancer is a multistep process and has been repeatedly rejected on the grounds that 

NIH3T3 cells, although non tumo rigenic, are immortal (therefore partially 

transformed) aneuploid cells and may require only one more genetic change for 

conversion to malignancy. Additionally, genes introduced into cells may integrate in 

multiple copies so that even in a partially transformed cell an oncogene may induce 

transformation only if it is present in elevated amounts (Sager, 1986). Furthermore, 

fusion of normal fibroblasts and tumo rigenic fibroblasts, transformed by the 

introduction of an H-ras gene, resulted in suppression of the tumourigenic phenotype 

implying that oncogene transformation is dependent on the loss of certain cellular 

functions (Craig and Sager, 1985).

A more realistic model involves the cooperative action of at least two 

oncogenes in the malignant transformation of a cell (Land et al., 1983a and b). This 

hypothesis was based on studies with early passage rat embryo fibroblasts in which it 

was shown that although transfection with ras induces anchorage independence
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(ability to grow in soft agar), malignant transformation requires transfection with a 

second oncogene (Land et al., 1983b). This, and other studies, led to the proposal 

that malignant transformation by cytoplamic oncogenes, of which ras is the 

paridigm, is dependent on the complementing action of a nuclear oncogene, such as 

myc, myb, p53, ski, fos, SV-40 large T, polyoma large T or adenovirus E l A 

(Weinberg, 1985). One of the main effects of oncogene cooperation is that it allows a 

cell to overcome the inhibitory influence of surrounding normal cells (Land et al.,

1986). In vivo this event is crucial, since benign expansion of an “initiated” cell 

dramatically increases the probability that further events, necessary for malignant 

growth, will occur.

That oncogene cooperation is not merely an in vitro phenomenon has been 

endorsed by the detection of multiple activated oncogenes in single tumours (Murray 

et al., 1983; Taya et al., 1984; Suarez et al., 1987). However, the list of examples is 

not long, and has prompted re-evaluation of the oncogene cooperation model 

(Weinberg, 1989). In this, the events which cooperate with ras activation are 

mutations in the tumour suppressor genes (section 1.4) that negatively regulate the 

synthesis and/or function of myc-like genes.

Analyses involving transgenic mice have provided direct evidence that 

oncogene cooperation is possible in vivo. For example, transgenic mice expressing 

both a ras and a myc oncogene under the control of the MMTV LTR show a higher 

incidence of mammary carcinomas than mice bearing the ras oncogene alone (Sinn 

et al., 1987). Similar observations were made for the expression of myc and ras in 

other cellular compartments such as B cells and the pancreas (Quaife et al., 1987).

Other studies have attempted to identify cooperating oncogenes by infecting 

transgenic mice with a retrovirus, on the basis that a second oncogene might be 

activated by insertional mutagenesis. Bern’s group have used this approach to show 

that in T-cell lymphomas induced by MuLV in pim -1 transgenics the c-myc and 

N-myc genes are consistently activated by proviral insertion (van Lohuizen et al.,

1989). Similarly, pim -1 activation by MuLV integration was detected in pre-B cell
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lymphomas obtained by infecting c-myc transgenics with MuLV (Bems et al., 1989). 

These experiments not only demonstrate the relevance of oncogene cooperation to 

malignancy, but also that changing the order of oncogene activation alters the 

affected target cell population.

In some experiments involving transgenic mice, expression o f certain 

oncogenes appears to induce polyclonal tumours in a single step manner (Quaife et 

al., 1987; Bautch et al., 1987; Williams et al., 1988; Muller et al., 1988). However, 

the powerful promoter sequences used in these analyses, and expression of the 

oncogene in every cell of the affected tissue (thereby overcoming the inhibitory 

effect of normal cells) probably potentiates tumour progression. Nevertheless, the 

sensitivity of some tissues to transformation by a single, highly expressed oncogene 

is intriguing.

In most cases, transgenes induce tumours after a long latency period which are 

monoclonal in nature (Stewart et al., 1984; Adams et al., 1985; Lacey et al., 1986; 

Sinn et al., 1987; Schonenberger et al., 1988; van Lohuizen et al., 1989). This 

suggests that additional changes are required for malignant growth. This almost 

certainly also applies to the malignant transformation of early passage fibroblasts by 

two oncogenes. For instance, the malignant conversion of primary Syrian hamster 

cells transfected with ras and myc oncogenes is consistently associated with the loss 

of a single copy of chromosome 15 (Oshimura et al., 1985). A substantial body of 

evidence has accumulated suggesting that these additional changes involve the 

inactivation of tumour suppressor loci (section 1.4).

13 The ras gene family

In view of the important role oncogenic activation of H-ras plays in mouse 

skin tumorigenesis (section 1.5) it is appropriate that the biochemical and cellular 

functions of this gene and its close relatives should be reviewed in more depth.
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1.3.1 Structural features

Three functional mammalian ras genes have been identified: H, K and N-ras. 

Several groups have cloned these genes from a variety of species, and determined 

their nucleotide sequence and chromosomal location (Barbacid, 1987). The coding 

sequences are derived from 4 exons and express closely related proteins of MR 21000 

known as p21. The K-ras gene has two alternative fourth coding exons (IVA and 

IVB) that allow synthesis of proteins 188 and 189 amino acids long that differ in 

their C-terminal residues (McGrath e ta l ., 1983; Capon et al., 1983).

The promoter region of cellular ras genes resemble so-called housekeeping 

genes, in that they lack a TATA box but possess multiple copies of the sequence 

GGGCGG or its complement; the SP1 binding site originally identified in the SV40 

promoter region (Dynan, 1986).

The amino acid sequences of ras proteins are very similar. In fact, the first 85 

amino acids are identical and there is only a slight divergence (85% identity) in the 

next 80 residues. This is followed by a short heterologous region, but the homology 

returns in the last 4 residues where the sequence Cys-A-A-X-COOH (where A is an 

aliphatic amino acid) is present in all mammalian ras genes (Barbacid 1987). This 

pattern of domains is mirrored in ras genes of low eukaryotes, although the sequence 

identity is naturally less. Conservation of ras genes across a wide range of species 

suggests they have an important cellular function. They have been identified in 

species as distant from mammals as molluscs (Aplysia: Apl-ray) (Swanson et al.,

1986); slime moulds (Dictyostelium discoideum: Ddras) (Reymond et al., 1984) and 

yeasts (Saccharomyces cerevisiae: RAS 1 and RAS2; Schizosaccharomyces pombe: 

SPRAS) (Defeo-Jones et al., 1983; Powers et al., 1984; Fukui and Kaziro, 1985). In 

addition several ray-related genes have been identified which are around 30-50% 

homologous to ras proteins (Barbacid, 1987).
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1.3.2 Incidence of activated ras genes

Of the range of point mutations known to confer transforming activity on ras 

genes only codon 12, 13 and 61 mutations have been observed in human tumours 

(section 1.2.2.1; Bos, 1988 and 1989). Although ras mutations have been detected in 

a wide variety of malignancies, the frequency among different tumour types is 

extremely variable (Bos, 1989). For example, almost all pancreatic adenocarcinomas 

(malignant tumours of the exocrine pancreas) harbour a mutated K-ras gene 

(Almoguera et al., 1988; Smit et al., 1988; Grunewald et al., 1989) and the incidence 

of mutations in this gene is also high in colon adenocarcinomas (40-50%) (Bos et al., 

1987; Forrester et al., 1987; Vogelstein et al., 1988) and lung adenocarcinomas 

(20-30%) (Rodenhuis et al., 1987 and 1988). In addition, several studies have 

detected a high incidence of ras gene mutations in certain thyroid carcinomas (50%), 

myeloid neoplasias (50%) and seminomas (40%) (Bos, 1989; Mulder et al., 1989). 

However, in several other tumour types, such as breast and ovary cancer, the 

incidence is very low or even zero (Bos, 1989). The reason for the high incidence of 

ras mutations in certain tumours and their absence in others may relate to the tissue 

distribution of carcinogens and/or the sensitivity of individual tissues to ray-induced 

transformation. For example, transgenic mouse studies have revealed that the 

pancreas is particularly sensitive to ray-induced neoplasia, whereas tumours arising 

in mammary (Sinn et al., 1987) or lung tissue (Suda et al., 1987) occur after a long 

latency period.

The causal nature of ras activation, and the activation of other oncogenes in 

neoplasia has been questioned on several occasions (Rubin, 1984; Barbacid 1986; 

Paul, 1987). The detection of ras mutations in animal tumours, which are coincident 

with the known activity of the carcinogens used to induce these tumours, suggests 

that this oncogene does participate in neoplasia (section 1.5.2.1). Direct evidence for 

the causal role of ras (and other) oncogenes in tumorigenesis has been provided by 

studies using transgenic mice (c.f section 1.2.3). For instance, transgenic mice
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carrying a mutated H-ras gene regulated by the pancreas-specific elastase I promoter 

develop neoplasia of the fetal pancreas directly after onset of elastase expression 

(Quiafe et al., 1987). In addition, an H-ras transgene regulated by either the SV40 

early gene promoter or the Ig enhancer was expressed predominantly in the lung and 

resulted in the development of adenomatous tumours in this tissue (Suda et al.,

1987). These results suggest that ras mutations detected in human pancreas and lung 

(see above; Bos, 1989) are causal. Equivalents of all the human tumours in which ras 

mutations are frequently detected have not been observed in transgenic mice. This 

may require the use of appropriate transcriptional promoters. Alternatively, cross

species comparisons may be inappropriate in some cases. For example, N-ras and 

K-ras activation is common in both human and rodent haematopoetic neoplasia, but 

although H-ras mutations are frequently detected in chemically induced rat (Zarbl et 

al., 1985) and mouse (Dandekar et al., 1986) breast carcinomas, ras activation is rare 

in the analogous human condition (Bos, 1989). As with tissue specificity, the reasons 

for species specificity are unknown. Differences in carcinogen metabolism, gene 

sequence, function and expression are some possibilities.

A third type of specificity concerns the activation of a particular member of the 

ras family in certain tumours. The association between K-ras mutations and colon, 

lung and pancreatic tumours was mentioned above. In addition, activated N-ras 

genes predominate in myeloid neoplasias (Bos, 1989) and melanomas (Van’t Veer et 

al., 1989; Albino et al., 1989). In animal model systems only H-ras mutations have 

been observed in rodent skin and breast tumours, and in mouse liver tumours it is 

also H-ras mutations which predominate (Balmain and Brown, 1988; Balmain et al.,

1990). One explanation for this is that the three ras genes have separate functions. 

However, the putative effector domain is identical in all three proteins (Sigal et al., 

1986a), suggesting that activation of any one of these genes would have the same 

effect in all cells. The ability of the H-ras oncogene to induce tumours in transgenic 

mice resembling neoplasias associated with K-ras mutations in humans (see above) 

further supports this conclusion. An alternative explanation is that members of the
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ras family are differentially expressed, although expression of all three ras genes is 

detectable in most tissues (Muller et al., 1983; Leon et al., 1987). A systematic 

comparison of ras gene expression has not been carried out in humans. However, a 

study of adult mouse tissues (Leon et al., 1987) showed that in most tissues the levels 

of H-, K- and N-ras expression are dissimilar. In the case of the thymus and skin 

high expression of N- and H-ros respectively is consistent with the preferential 

activation of these genes in tumours derived from these tissues (Guerrero and 

Pellicer, 1987; Balmain and Brown, 1988). However, in other cases (e.g lung and 

liver) there was no correlation between expression and mutation patterns. Thus, other 

explanations for preferential ras activation, such as the effects of DNA sequence on 

mutational spectra (Topal et al., 1986; Bums et al., 1987), may be applicable in some 

cases.

1.3.3 Biochemical properties and the effect of activating mutations

The homology between ras and G proteins (Hanley and Jackson, 1987), and 

their association with the plasma membrane (Willingham et al., 1980; Willumsen et 

al., 1984) suggests that they are involved in the transduction of signals across the cell 

membrane. The analogy with G proteins is extended by the observation that ras 

proteins bind guanine nucleotides (Scolnick et al., 1979; Shih et al., 1980) and have 

GTPase activity (McGrath et al., 1984; Sweet et al., 1984). The latter studies also 

demonstrated that activated forms of ras proteins have decreased GTPase activity, 

and gave rise to the current model of ras activation (Barbacid, 1987). In this, normal 

ras proteins cycle between inactive GDP-bound and active GTP-bound states, but 

because activated ras proteins do not hydrolyse GTP efficiently they remain in an 

active state. One difficulty with this was that although the majority of ras oncogenes 

were shown to have decreased GTPase activity, exceptions were noted (Colby et al., 

1986; Der et al., 1986; Lacal et al., 1986). An explanation for these discrepancies has 

been suggested by Trahey and McCormick (1987). They found that the in vitro
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GTPase activity of normal p21 was similar to that of two transforming proteins, 

derived from genes with codon 12 mutations. However, when comparisons were 

made using an in vivo assay (hydrolysis of labelled GTP in xenopus oocytes) the 

GTPase activity of normal p21 was over two orders higher than that of the mutant 

forms. They ascribed this increase to the presence of an in vivo factor which was 

absent from the in vitro assay. The factor has been termed GAP: GTPase activating 

protein.

Recently it has been suggested that GAP may be an effector molecule 

downstream of ras, since mutations in the ras effector domain (Cales et al., 1988) 

and antibodies which bind to this domain (Rey et al., 1989) inhibit p21 and GAP 

interaction. That GAP is a candidate effector does not exclude the possibility that 

other molecules interact with ras. Recently de Gunzburg et al. (1989) have used 

cross-linking to identify a protein of MR 60000 whose association with ras is 

potentiated by serum stimulation.

Regulation of ras activity may not be a function of GTPase activity alone. 

Although membrane binding was originally considered to be a straightforward event, 

it is now known to be a more complex process. It is thought that removal of three 

residues from the C y sl8 6 -A -A -X  C-terminal sequence is fo llow ed  by 

polyisoprenylisation and carboxymethylation of the Cysl86 residue (Hancock et al., 

1989). This allows weak association of p21 with cell membranes, an affinity which is 

markedly increased following palmitoylation (Hancock et al., 1989). Palmitoylation 

occurs on cys residues close to cysl84, but only after polyisoprenylation of cysl86, 

thus explaining why mutation of this residue blocks palmitoylation (Willumsen et al.,

1984). Reversible palmitoylation (Magee et al., 1987) may serve to regulate ras 

activity. Recently it has been shown that irreversible myristylation of normal p21 ras 

activates the transforming properties of this protein (Buss et al., 1989).
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1.3.4 Characteristics of transformation by ras

1.3.4.1 Timing of ras activation

As discussed in section 1.5.2.1, there is convincing evidence that ras activation 

occurs at initiation in certain chemically induced animal tumours. However, in some 

animal tumours ras activation appears to be a late event (Vousden and Marshall, 

1984; Diamond et al., 1988). A role for ras oncogenes in both the early and late 

stages of malignancy also seems to apply to human tumours. The detection of ras 

mutations in benign lesions such as keratoacanthomas of the skin (Leon et al., 1988), 

adenomatous polyps of the colon (Bos et al., 1987; Forrester et al., 1987) and in 

myelodysplastic syndrome (preleukemia) (Janssen et al., 1987b; Lui et al., 1987; 

Hiria et al., 1987; Browett and Norton, 1989) is evidence that ras activation can be 

an early, possibly initiating event in human tumorigenesis. However, the 

simultaneous presence of two different ras mutations in two colon tumours (Forrester 

et al., 1987) and in five cases of acute myeloid leukemia (Janssen et al., 1987a; Farr 

et al., 1988) suggests that it can also occur after initiation. In addition although a high 

percentage of seminomas possess activated ras, in some only a fraction of the tumour 

cells contain the oncogene, suggesting that ras mutation occurs after initiation in 

these cases (Mulder et al., 1989). Similarly, although ras mutations are detectable in 

a subset of melanomas, this oncogene does not appear to be involved in the 

premalignant stage of this tumour (Albino et al., 1989). Finally, the claim that mutant 

ras can confer metastatic properties on various cell lines (Bernstein and Weinberg, 

1985; Waghome et al., 1987; Collard et al., 1987) further supports the idea that this 

oncogene affects many stages of malignancy.
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1.3.4.2 Levels of ras expression during tumour progression

Several experiments involving the transfection of cultured cells with ras 

oncogenes have provided evidence that elevated expression levels affect its 

transforming potency. For example, the tumorigenicity of Rat 4 cells transfected with 

a K-ras oncogene is greater in clones which have more copies of the oncogene 

(Winter and Perucho, 1986), and the levels of p21 ras correlate with the extent of 

morphological transformation and the degree of DNA synthesis in other fibroblast 

cell lines (McKay et al., 1986; Reynolds et al., 1987). In addition, the ras-induced 

growth factor independence of MCF-7, an estrogen dependent cell line (Kasid et al.,

1987), and PB-3c, an immortalised IL3-independent mouse mast cell line 

(Andrejauskas and Moroni, 1989) is dependent on high expression of the oncogene. 

Furthermore, transformation of early passage rodent fibroblasts by mutant ras is only 

possible if it is regulated by a powerful transcriptional enhancer (Spandidos and 

Wilkie, 1984). Thus, elevated expression of a single oncogene appears to substitute 

for the activation of a second cooperating oncogene (section 1.2.3; Land et al., 

1983a). A potential role for elevated ras oncogene expression is also supported by 

the observation that when ras is used to induce metastasis of some cell lines the 

metastatic potential is greatest in cells expressing high levels of the oncogene (Egan 

et al., 1987 and 1989). However, this was not true of an adenocarcinoma cell line 

(Waghome et al., 1987).

Very little data is available on mutant ras expression in human and animal 

tumours. Forrester et al. (1987) used RNase mismatch analysis to locate ras 

mutations in colorectal cancer and to determine the levels of mutantrnormal gene 

expression; they found no difference in the expression of these alleles. However, 

analysis of some tumour cell lines suggests that the levels of mutant ras transcripts 

may be important. For instance, Cohen and Levinson (1988) have identified a point 

mutation in the final intron of the H-ras oncogene of the T24/EJ bladder carcinoma 

cell line which enhances both expression and transforming activity of the gene. This
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mutation abolishes the synthesis of an alternative transcript, and releases the mutant 

allele from this putative negative control (Cohen et al., 1989). Preferential expression 

of the mutated ras allele has also been observed in the lung carcinoma cell line, 

Calu-1 (Capon et al., 1983). This, taken together with studies which have detected 

amplification of mutant ras genes during tumour progression (McCoy et al., 1983; 

Taya et al., 1984; Winter et al., 1985; Alitalo and Schwab, 1986; Quintanilla et al.,

1986) suggests that the effects of elevated mutant ras gene expression observed in 

vitro (see above) may have relevance to the development of some tumours in vivo. A 

comprehensive analysis of primary tumour material, using the RNase mismatch 

assay (Forrester et al., 1987), is important in the proper assessment of this claim.

Most of the reports on levels of ras expression in various tumours have not 

used approaches w hich d istin gu ish  betw een mutant and normal ras  

transcripts/proteins. Consequently, interpretation of increased expression is limited. 

Some authors have found that elevated ras expression is a common feature of 

malignancy (Slamon et al., 1984; Gallick et al., 1985; De Biasi et al., 1989), others 

that it is not (Chesa et al., 1987). Detection of high levels of ras expression in 

tumours which do not commonly contain ras mutations may reflect non-specific 

deregulation. However, since normal ras  genes controlled by powerful 

transcriptional enhancers can transform established cell lines (Chang et al., 1982; 

Pulciani et al., 1985; McKay et al., 1986) a potential role for the wild type allele in 

tumorigenesis should not be discounted. Significantly, Westaway et al. (1986) have 

identified a provirally activated c-H-ras gene in a chicken nephroblastoma, 

suggesting that overexpression of normal ras can contribute to tumorigenesis in vivo.

1.3.4.3 Biological aspects of ras transformation

The link between ras activation and neoplastic transformation suggests that 

this family of proteins may positively regulate cell growth. Indeed, microinjection of 

mutant p21 proteins into NIH3T3 fibroblasts induces transient morphological
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transformation and proliferation (Stacey and Kung, 1984; Feramisco et al., 1984) and 

microinjection of antibodies against p21 ras proteins can temporarily revert the 

neoplastic phenotype of ras transformed rodent cells (Feramisco et al., 1985). More 

specifically, it has been demonstrated that antibody binding prevents quiescent 

NIH3T3 fibroblasts entering S phase (Mulcahy et al., 1985).

There is also evidence that in some cell types ras may promote transformation 

by inhibiting differentiation. For example, the normal differentiation programme of 

skeletal myoblasts (Olsen et al., 1987) and mouse keratinocytes (Yuspa et al., 1983 

and 1985) is blocked by the introduction of ras oncogenes into these cell types.

ras function is not exclusively associated with stimulating proliferation and/or 

blocking differentiation. For example, nerve growth factor (NGF)-induced 

differentiation of PCI2 pheochromocytoma cells can be mimicked by microinjection 

of p21ras protein (Noda et al., 1985; Bar-Sagi and Feramisco, 1985). The high 

amounts of p21ray expressed in brain tissue (Furth et al., 1987; Chesa et al., 1987) 

further supports a role for this protein in neural differentiation, and offers an 

explanation for the lack of association between ras activation and tumours of 

neuroectodermal origin (Bos, 1989). Expression studies have in fact shown that ras 

is expressed in both proliferating and differentiated cell types (Furth et al., 1987; 

Chesa et al., 1987) suggesting that this proto-oncogene can interact with a diverse 

range of intracellular signalling pathways.

1.3.4.4 Interactions between ras and cellular signalling pathways

Some of the biochemical properties of the ras gene family suggest that they 

encode G protein which transduce growth factor signals across the cellular 

membrane (section 1.3.3). Several growth factor receptors may interact with, or 

indirectly require ras function. For example, micro-injection of the ray-neutralising 

antibody Y 13-259 blocks the induction of DNA synthesis by PDGF and EGF 

(Mulcahy et al., 1985; Yu et al., 1988). Insulin-induced Xenopus oocyte maturation
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is also dependent on p21 ras function (Kom et al., 1987) and overexpression of H-ras 

in rat-1 cells increases their sensitivity to insulin, insulin like growth factor 1 (IGF-1) 

and bombesin (Burgering et al., 1989). Similarly, the sensitivity of NLH3T3 cells to 

bombesin is enhanced by over expression of N-ras (Wakelam et al., 1986). The 

interaction of p21 with the insulin and epidermal growth factor receptors may be 

direct since there is evidence to suggest that both these proteins phosphorylate ras 

(Kom eta l., 1987; Fujita-Yamaguchi et al., 1989; Kamata and Feramisco, 1984).

The biological events which are downstream of ras are discussed in section 

1.3.4.3. Several biochemical changes can accompany these events. These include 

increased synthesis of glucose transporter protein (Flier et al., 1987), protease 

secretion (Joseph eta l., 1987), altered gene expression (Jaggi eta l., 1986; Sistonen et 

al., 1989) and the secretion of growth factors such as TGF-a (De Larco and Todaro, 

1978; Anzano et al., 1985), PDGF (Bowen-Pope et al., 1984), and IL3 (Andrejauskas 

and Moroni, 1989). The molecular links between ras activation and these complex 

effects are poorly understood. Hopes that analysis of simple eukaryotes like yeast 

might help identify mammalian effectors have not been fulfilled. The yeast S. 

cerevisiae has two RAS genes, RAS 1 and RAS2. Mutants lacking either one of these 

genes are viable, but ras\~ras2~ mutants are not (Tatchell et al., 1984). The functional 

relationship between yeast and mammalian ras proteins has been established by 

experiments in which the yeast proteins have been shown to complement mammalian 

ras function and vice-versa (DeFeo-Jones et al., 1985; Papageorge et al., 1985). 

However, while yeast RAS proteins are mainly involved in the activation of adenylate 

cyclase (Toda et al., 1985) this is not their function in mammalian cells (Beckner et 

al., 1985). Despite this disappointment, yeast studies may yet uncover mammalian 

ras effectors, since there is evidence that RAS proteins have functions other than 

activation of adenylate cyclase (Michaeli et al., 1989). Another yeast, S. pombe, may 

provide additional clues since the single RAS gene found in this species (SPRAS) 

does not interact with adenylate cyclase (Russell and Nurse, 1986).
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One of the candidate intracellular pathways which mammalian ras proteins 

may influence is the phosphoinositide system. This pathway regulates several 

processes including metabolism, secretion, neural activity and cell proliferation 

(Berridge and Irvine, 1989). It involves transduction of a variety of signals from the 

cell surface, via a G protein, to the enzyme phospholipase C (PLC). This enzyme 

hydrolyses phosphatidyl inositol 4,5-bisphosphate (PIP2), thereby releasing the 

second messengers inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG). IP3 

induces an increase in the level of intracellular Ca2+ (Berridge and Irvine, 1989), 

while DAG, in conjunction with Ca2+, activates PKC (Nishizuka, 1986 and 1988). 

Evidence that ras may be the G protein linking cellular receptors to PLC was inferred 

from the observation that ras-transformed cells contain elevated levels of IP3 

(Fleischman et al., 1986; Hancock et al., 1988). Other experiments suggested that 

different ras proteins couple different receptors to PLC; N-ras to the bombesin 

receptor (Wakelam et al., 1986) and H-ras to the PDGF receptor (Marshall, 1987). 

However, elevated IP3 hydrolysis in these experiments may have been an overspill 

effect caused by abnormally high amounts of p21 ras and/or an indirect effect on 

PLC activity. In this respect, several groups have noted that mutant p21 ras induces 

an increase in DAG in the absence of, or well above, any increase in inositol 

phosphates (Lacal et al., 1987a and b; Wolfmann and Macara, 1987; Seuwen et al., 

1988; Morris et al., 1989). It has therefore been suggested that ras may mediate the 

breakdown of other phospholipids, such as phosphatidylcholine (PC), phosphatidyl 

ethanolamine (Lacal et al., 1987a), or the substrates of phospholipase A2 (Bar-Sagi 

and Feramisco, 1986). However, ray-induced PC hydrolysis and elevation in DAG 

levels is blocked if PKC is down regulated by prior treatment with phorbol esters 

(Price et al., 1989). This suggests that the DAG increase is downstream of PKC and 

that ras activates this enzyme by a novel mechanism.

There is also evidence that ras stimulates a PKC-independent pathway. Lloyd 

et al. (1989) have shown that scrape loading mutant H-ras into Swiss 3T3 cells 

induces DNA synthesis in a PKC-dependent manner. However, other events,
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including induction of c-myc expression and phenotypic transformation, were 

induced even in the absence of PKC.

1.3.4.5 Interaction of ras with other oncogenes

One approach employed to determine the pathways with which ras interacts 

has been to identify oncogenes in the same functional complementation group. 

Noda’s group have studied this by fusing cells transformed by a range of oncogenes 

with a flat revertant of a KiMSV transformed line (Noda et al., 1983). They found 

that the revertant line could suppress transformation by v-src and v-fes, but not 

v-mos, v-fins or v-sis. Another approach involved micro-injection of ras antibodies 

into cells transformed by different oncogenes to determine those that require 

functional ras for transformation (Smith et al., 1986). It was found that 

transformation by v-src, v-fes and v-fins, but not v-mos and v-raf (both cytoplasmic 

ser/thr kinases) was ras-dependent. These two studies present a strong case that ras, 

src and fes  are involved in the same or interconnected pathways. The fms/CSV-1 

receptor may also be in this category. The fact that the ras revertant line did not 

suppress transformation by this oncogene implies that the aspect of ras function 

required by v-fins is not suppressed by these cells.

1.4 Tumour suppressor genes

Given that most genetic mutations are probably deleterious, it is possible that 

the loss of genetic information may be more important to the development of 

malignancy than oncogene activation. Although few tumour suppressor genes have 

been isolated (Friend et al., 1986; Finlay et al., 1989; Kitayama et al., 1989), many 

more probably exist (Hansen and Cavenee, 1987; Bouck and Benton, 1989).

Evidence for the existence of tumour suppressor genes (also termed anti

oncogenes, emerogenes and onco-suppressors) derives from various observations
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(Klein, 1987), of which the analysis of normal x tumour (NxT) somatic cell hybrids 

was the first (Harris et al., 1969) and actually predates the discovery of cellular 

oncogenes (Stehelin et al., 1976). The main conclusions reached in studies of this 

type are summarised below

a) Re-expression of the tumorigenic phenotype (assessed by subcutaneous 

injection of NxT hybrids into nude mice) is frequently associated with the loss of a 

specific chromosome from the hybrid. Some examples are listed in Table 1. These 

studies have used both intra- and interspecies hybrids. Intraspecies hybrids have the 

advantage of stability; chromosome loss is rapid in interspecies hybrids. However, 

identification of the N and T chromosomes is straightforward in the latter, whereas 

polymorphic markers are required for this purpose in intraspecies crosses.

b) Suppression may be dosage dependent. In several cell fusion studies (Evans et 

al., 1982; Benedict eta l., 1984; Srivatsan et al., 1986) elimination of only one of the 

pair of suppressor chromosomes contributed by the normal fibroblasts was sufficient 

to permit reexpression of tumorigenicity. Harris (1988) has reported that there is 

further selection in vivo in favour of cells that have lost both normal chromosomes. 

This further supports the idea that tumorigenicity increases with falling levels of the 

suppressor gene.

It is not possible to establish the exact nature o f the tumour suppressor 

responsible for reversion in TxN crosses. However, one argument holds that it may 

be the wild-type allele of an activated oncogene. In the study by Evans et al. (1982) 

they not only detected loss of a normal mouse chromosome 4 in retumorigenic 

hybrids, but sometimes observed an increase in the copy number of the tumour cell 

chromosome 4. This may reflect competition between an activated oncogene and its 

normal counterpart. However, it may simply be due to the requirements of the NxT 

hybrids for a certain copy number of chromosome 4; if tumorigenicity is regained by 

loss of the normal copy, duplication of the mutant may be needed for genetic 

stability.
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Table 1 Suppressor chromosomes identified by somatic 
cell hybridisation.

Intra

species

hybrids

Inter

species

hybrids

Suppressor 
Normal x Tumour chromosome Reference

Melanoma
Mouse Lymphoma Mouse 4 Evans e ta l" 

fibroblasts Sarcoma 1982
Carcinoma

Human Fibrosarcoma Human 1 4 Benedict et al.,
fibroblasts (HT1080) ’ 1984

Human Cervical Srivatsanet al.,
fibroblasts carcinoma Human 11 1986

(HeLa)

Human Human 1 Stoler & Bouck,

fibrob lasts ce“ K)

Rat
fibroblasts

Mouse
hepatoma

Rat 5 Islam et al., 
1989

Rat
hepatocytes Rat 8

Szpireret al., 
1988



The association between tumorigenicity and loss of chromosome 1 in HT1080 

cells (Benedict et al., 1984) is particularly interesting in this respect. N-ras is also 

located on this chromosome and is activated in this cell line. Recently, Paterson et al. 

(1987) have shown that reversion of HT1080 is associated with a drop in the level of 

mutant N-ras, and that tumorigenicity can be restored by transfection with activated 

ras genes. However, introduction of normal p21ras could not suppress the effect of 

the mutant allele. Thus it appears that the level of mutant ras is the sole determinant 

of tumorigenicity. What then is the significance of the correlation between loss of a 

copy of chromosome 1 and reexpression of tumorigenicity in HT1080 x normal 

hybrids? One possibility is that there is a linked suppressor gene on chromosome 1 

which suppresses the transforming properties of N-ras in a dose-dependent manner. 

Thus loss of this suppressor and elevated levels of mutant N-ras may be essential for 

tumorigenicity. An alternative explanation is that there is selection in the HT1080 x 

normal hybrids for three copies of chromosome 4, purely for stability purposes. 

However, the correlation between loss of the normal human chromosome 1 and 

reexpression of the transformed phenotype in interspecies crosses (Stoler and Bouck, 

1985), and the fact that allele loss on this chromosome is associated with the 

development of various human tumours (Table 2, section 1.4.3) both suggest that 

there may be a tumour suppressor gene on this chromosome.

The issue of whether the normal copy of an oncogene may suppress the effect 

of its activated counterpart is discussed further in section 1.4.5e.

c) A single tumour suppressor gene may be involved in diverse tumour types. 

For example, mouse chromosome 4 suppresses several different malignancies (Evans 

et al., 1982) as do human chromosomes 1 and 11 (Tables 1 ,2  and see below). This is 

supported by RFLP analysis (section 1.4.3a) in which diverse tumour types lack 

alleles from the same chromosome.

In addition, suppression of the transformed phenotype in interspecies crosses 

suggests that related genes may function as tumour suppressors in different species. 

Mapping studies o f human chromosome 1, mouse chromosome 4 and rat
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chromosome 5 have identified conserved linkage groups (Lalley et al., 1978; Harris,

1988) and each of these chromosomes is implicated in tumour suppression (Table 1).

d) Non-tumorigenic NxT hybrids retain the transformed phenotype in vitro 

(Stanbridge et al., 1982). Thus, tumorigenicity and morphological transformation 

may be separate events, an observation that supports the concept of multistage 

tumorigenesis.

e) Non-tumorigenic NxT hybrids adopt the differentiation characteristics of the 

normal cell (Stanbridge and Ceredig, 1981; Peehl and Stanbridge, 1982; Harris,

1985). This is consistent with the suggestion that malignancy stems from a block in 

normal cellular differentiation (Klein, 1987; Harris, 1988).

1.4.1 Suppression by single chromosomes

The association between particular chromosomes and suppression of 

tumorigenicity has been further strengthened by introducing single normal 

chromosomes into tumour cells. This technique, involving microcell fusion, has been 

used to demonstrate the suppressing powers of a normal human chromosome 11 in 

HeLa cells (Saxon et al., 1986) and a Wilms’ tumour cell line (Weissman et al.,

1987). The link between chromosome 11 and the latter tumour was originally 

established by cytogenetic and RFLP analyses (section 1.4.3a).

These results are apparently paradoxical in that whole cell hybrids do not have 

to lose both copies of the normal chromosome to reexpress tumorigenicity; hybrids 

that retain one copy are tumorigenic (see above). However, Stanbridge (1989) has 

recently reported that HeLa cells suppressed by microcell fusion do form tumours in 

nude mice, but after a long latency period compared with the parental line (cf point b 

in section 1.4).
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1.4.2 Loss of heterozygosity and tumorigenesis

The ability of normal cells to suppress the tumorigenic phenotype suggests that 

tumour cells have lost an essential regulatory function. In support of this, a large 

body of evidence has accumulated demonstrating that non-random loss of genetic 

information is a feature of most (if not all) human tumours (Hansen and Cavenee, 

1987; Green, 1988; Bouck and Benton, 1989).

This particular branch of tumour suppressor research can be traced back to the 

statistical analysis of the childhood oc ular cancer retinoblastoma. In this, Knudson 

(1971) proposed that two “hits” were responsible for the development of both 

sporadic and familial cases of this tumour. He predicted that the second event was 

random in both sporadic and familial forms, and that the first event was also random 

in sporadic cases but inherited in familial cases. Inheritance endows every cell with 

the first hit thereby predisposing the patient to retinoblastoma. This explains the 

appearance of tumours at an earlier age in familial cases, and their growth at multiple 

rather than single sites.

Knudson’s analysis could not determine whether the initial hit was an 

activating or inactivating mutation. Subsequently, the discovery of constitutional 

deletions in several retinoblastoma patients, all of which included the chromosomal 

region 13ql4, suggested that the first mutation might involve inactivation at this 

locus (Knudson et al., 1976; Yunis and Ramsay, 1978). Circumstantial evidence that 

the second hit might be loss of the remaining functional allele at this locus was 

provided by a series of reports in 1983. First, Sparkes et al. (1983) showed that the 

enzyme esterase D (ESD) was closely linked to the putative retinoblastoma (RB) 

locus. In an adjacent publication the same group reported a familial case of 

retinoblastoma in which they detected 50% ESD activity in normal cells, but no 

activity in a retinoblastoma from this patient (Benedict et al., 1983). This supported 

the concept that the two hits predicted by Knudson involved homozygous 

inactivation o f a single locus. In addition Godbout et al. (1983) analysed
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polymorphic forms of ESD in other familial cases and detected loss of one enzyme 

form in 4/6 retinoblastomas, consistent with the loss of a single remaining normal RB 

allele linked to the absent ESD allele. Following this, Cavenee et al. (1983) 

pioneered the use of restriction fragment length polymorphisms (RFLPs) to identify 

the mechanisms by which loss of the putative normal RB allele occurred. Using a 

bank of polymorphic chromosome 13 probes they found that markers heterozygous 

in lymphocytes were often either homo- or hemizygous in tumour cells. In some 

cases loss of heterozygosity (LOH) was detected at every locus tested, consistent 

with chromosome loss with or without duplication of the remaining homologue. In 

others LOH was observed at only some loci, with a doubling in intensity of the 

remaining allele at these loci, suggestive of mitotic recombination. In those cases in 

which LOH was not detected it was considered that a subchromosomal mechanism, 

such as deletion, gene conversion and/or point mutation may have caused 

homozygous loss of the RB gene. In those cases involving complete chromosome 

loss, retention of the homologue from the affected parent further suggested that the 

second hit involved loss of the inherited normal allele (Cavenee et al., 1985).

Final proof that retinoblastoma involved loss of function at both RB alleles 

required isolation of the gene itself. This followed the fortuitous discovery that a 

DNA probe (H3-8) located at 13ql4 (Lalande et al., 1984) was deleted in 2 

retinoblastomas in which other linked markers were present (Dryja et al., 1986). A 

short chromosome walk away from this was a probe which recognised a cDNA clone 

(4.7R) now known to encode the product of the RB locus (Friend et al., 1986). 

Homozygous and heterozygous deletions (some internal) have been identified in 

retinoblastomas and osteosarcomas; a tumour often contracted by familial RB 

patients who survive the primary tumour (Friend et al., 1986; Lee et al., 1987a; Fung 

et al., 1987). In one study a large number of retinoblastomas were analysed and 

found to express the RB gene normally (Goddard et al., 1988). This implied that 

subtle mutations may have been present in these cases. Subsequently the same group
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confirmed this by RNase mismatch analysis and DNA sequencing (Dunn et al., 1988 

and 1989).

Loss of the RB gene is also considered to have a role in several tumour types 

not associated with the retinoblastoma trait including breast (T’Ang et al., 1988) and 

lung cancer (Harbour et al., 1988). It is not known why RB patients are not 

predisposed to these tumours, nor why retinoblastoma does not occur in animals, 

even though it is expressed in most murine tissues (Bernards et al., 1989). The 

induction of retinoblastoma in transgenic mice carrying the SV40 large T antigen 

(Windle et al., 1990) may provide more insight into the latter problem.

The RB gene encodes a nuclear phosphoprotein of 110-114K (depending on 

the phosphorylation state) which binds DNA (Lee et al., 1987a and b). It has been 

suggested that the unphosphorylated form may suppress proliferation since SV40 

large T antigen binds this form of RB and maintains cells in a proliferative state 

(DeCaprio et al., 1988). This was supported by the finding that the RB protein is 

unphosphorylated during the G1 phase of the cell cycle and phosphorylated during 

the remaining S, G2 and M stages which involve cell duplication (Buchkovich et al., 

1989; DeCaprio eta l., 1989; Chen et al., 1989).

1.4.3 Loss of heterozygosity is a common feature of tumorigenesis

Karyotyping and RFLP analysis have shown that non-random LOH is a 

common feature of most tumours (Table 2). The main points arising from these 

studies are summarised below.

a) A single locus may be involved in the development of diverse tumours (c.f. 

point c in section 1.4). Losses involving lp, 3p, lip , 13q, 17p and 22q are each 

implicated in multiple tumours (Table 2a). Analysis of the RB gene has presented a 

strong case that this locus on 13q is involved in tumours other than retinoblastoma 

(see above). However, proof that there is only one tumour suppressor locus on the 

other chromosome arms mentioned above requires finer mapping and, ultimately,
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Table 2 Examples of non-random allele loss in human tumours

A)
Chromosome

reaion Tumour Reference

1P Multiple endocrine neoplasia 
(Type 2)

Mathew et al., 1987b

3p Uterine cervix carcinoma Yokotaet al., 1989

Renal cell carcinoma Zbar et a l.,1987  
Kovacset al., 1988

Small cell lung carcinoma

All lung cancers 
Mesothelioma

N ayloret a l.,1987  
Dobrovicet al.,1988  
Mori et al.,1989  
Koket al.,1987  
Popescuet al., 1988

5q Colorectal adenocarcinoma Solomon et al., 1987 
Law et al., 1988

9p Lymphoid neoplasia Diaz et al., 1988

10 Glioma James et al., 1988

11p Wilms' tumour

Rhabdomyosarcoma 
Hepatoblastoma 
Adrenal carcinoma 
Breast carcinoma 
Bladder carcinoma 
Ovarian carcinoma

Koufoset al., 1984 
Orkin et al., 1984 
Reeve et al., 1984 
Fearon et al., 1984 
Scrableet al., 1987 
Koufoset al., 1985 
Henry et a l.,1989  
A lie t a l.,1 9 8 7  
Fearon et al., 1985 
Lee et al., 1989

11q Multiple endocrine neoplasia 
(Type 1)

Larson n et al., 1988 
Yoshimotoet al., 1989

13q Retinoblastoma
Osteosarcoma
Soft tissue sarcomas

Small cell lung carcinomas

Breast carcinoma

Cavenee et al., 1983 
Hansen e ta l. ,  1985 
Weichselbaumet al., 1988 
Stratton et a l.,1989  
Harbour et al., 1988 
Mori et al., 1989 
T'Ang et al., 1988 
Lee et al., 1988



14q Neuroblastoma Suzuki et al., 1989

17p Colorectal adenocarcinoma

Osteosarcoma
Glioma
Small cell lung carcinoma 

18q Colorectal adenocarcinoma

22q Colorectal adenocarcinoma
Acoustic neuroma 
Meningioma

Fearon et a l.,1987  
Lawet al., 1988 
Toguchidaet a l.,1988  
James et a l.,1988  
Mori et al., 1989

Lawet al., 1988 
Vogelsteinet al., 1989

Okamato et al., 1988 
Seizingeret al., 1986 
Seizingeret a l.,1987

B)
Tumour Main sites of allele loss

Neuroblastoma 1 p, 14q
Small cell lung carcinoma 3p, 13q, 17p

Colorectal adenocarcinoma 5q, 17p, 18q, 22q

Glioma 1 0 ,17p

Breast cancer 11 p, 13q

Osteosarcoma 13q, 17p



isolation of the critical gene(s). Mapping studies of this type have suggested that 

there are at least two such genes on the short arm of chromosome 11.

Wilms’ tumour is a childhood cancer which affects the kidney. Familial cases 

are associated with the WAGR syndrome (Wilms’ tumour, Aniridia, Genitourinary 

defects, mental Retardation), but the majority of tumours are sporadic. In the familial 

version tumours develop bilaterally and at an earlier age than sporadic cases, 

consistent with Knudson’s two-hit hypothesis for retinoblastoma. As with 

retinoblastoma, the link between Wilms’ tumour and a specific chromosomal region 

( l lp l3 )  was originally made by cytogenetic studies (Riccardi et al., 1978; Kaneko et 

al., 1981). RFLP analysis demonstrated LOH for l ip  markers in approximately 50% 

of W ilms’ tumours (refs in Table 2a). The probes in these studies map to l ip  15 and 

so it could only be assumed that allele loss extended to l lp l3 .  Several subsequent 

studies used a variety of l ip  13 probes to confirm the involvement of this region in 

Wilms’ tumour and to more tightly map the relevant locus (Glaser et al., 1986; 

Porteous et al., 1987; Compton et al., 1988; Davis et al., 1988). However, in a 

separate study Mannens et al. (1988) found that 3/5 Wilms’ tumours, removed from 

children with no other symptoms of the WAGR syndrome, were heterozygous for 

l lp l3  markers but no longer heterozygous at llp l5 .5 . Thus, while LOH at l lp l3  is 

clearly involved in many Wilms’ tumours, l lp l5 .5  appears to contain an alternative 

Wilms’ locus.

Additional evidence that there are at least two tumour suppressors on 1 lp  has 

been provided by analysis o f other tumour types. When Koufos et al. (1985) 

d iscovered  LOH at l i p  15 in W ilm s’ tumour, rhabdom yosarcom a and 

hepatoblastoma the 1 lp l3  Wilms’ locus was naturally implicated in the genesis of all 

three childhood malignancies. Subsequently however, Scrable et al. (1987) analysed 

one rhabdomyosarcoma in which LOH was restricted to the most distal region of 

l ip . These tumours are sometimes observed in patients with Beckwith-Wiedemann 

syndrome (BWS), which is a growth malformation syndrome. BWS patients may 

also contract Wilms’ tumour, adrenocortical carcinoma and hepatoblastoma. These
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observations are consistent with the idea that l ip  harbours two tumour suppressor 

genes, one at l ip  13 which is kidney specific (tumours other than Wilms’ tumour 

have never been observed in WAGR patients), and the other(s) at llp l5 .5  which 

contains a non-tissue specific gene, or several closely linked cancer genes. In support 

of this, LOH limited to l lp l5 .5  has been reported in an analysis of adrenocortical 

adenocarcinomas (Henry et al., 1989) and breast cancer (Ali et al. 1987).

b) Multiple losses are implicated in the development of some tumours. The most 

comprehensive assessment of this phenomenon has been carried out by Vogelstein et 

al. (1989). By using a large bank of probes they were able to determine the frequency 

of loss of every human chromosome arm in several colon carcinomas (excluding the 

acrocentric arms which are thought to contain only ribosomal genes). Considering 

the high frequency of K-ras mutations in these tumours (section 1.3.2) their results 

suggest that the development of this common malignancy involves the interaction of 

a complex series of genetic mutations. The variety of potential tumour suppressor 

loci involved in this and other cancers is summarised in Table 2b.

The loss of alleles from multiple loci is predominantly seen in adult rather than 

childhood malignancies (Hansen and Cavenee, 1987). This is in accordance with the 

prediction that the number of steps required to reach malignancy is different for 

separate tumour types (section 1.1). Furthermore, combined histo pathological and 

molecular genetic analyses suggest that these steps may occur in a particular order. 

For example, the early stages of colon carcinoma (benign adenoma) appear to 

involve ras activation and 5q loss, wheras allele loss on 17p and 18q occurs as 

tumours progress to malignancy (Vogelstein eta l., 1988).

c) In familial cancers the disease locus may or may not map to the chromosomal 

region associated with LOH in the tumours. By using polymorphic enzyme 

markers and RFLPs to analyse large families with inherited cancer syndromes, 

several groups have been able to determine which markers segregate with the disease 

locus, and thereby locate its position in the genome. For example, familial 

adenomatous polyposis (colorectal cancer) has been mapped to 5q (Bodmer et al.,
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1987), Von-Hippel-Lindau syndrome (associated with renal carcinoma) to 3p 

(Seizinger et al., 1988), multiple endocrine neoplasia type 1 (associated with 

pituitary and pancreatic tumours) to l lq , retinoblastoma to 13ql4 (Benedict et al., 

1983) and neurofibromatosis (associated with acoustic neuroma and meningioma) to 

22q (Rouleau et al., 1987). These findings are consistent with the notion that 

predisposition to cancer stems from inheritance of one of the defects commonly 

observed in the tumours. However, this is not alway the case. For example, although 

LOH at l ip  13 is commonly observed in Wilms’ tumour, the disease locus did not 

map to l ip  in linkage studies involving three families predisposed to this cancer 

(Huff et al., 1988; Grundy et al., 1988). In addition, multiple endocrine neoplasia 

type 2 (MEN2) (associated with medullary thyroid carcinoma, phaeochromocytoma 

and parathyroid adenomas) maps to chromosome 10 (Mathew et al., 1987a; Simpson 

et al., 1987), even though tumours from MEN2 patients show allele loss on lp 

(Mathew et al., 1987b). Thus, the inherited mutations may a) complement the 

deletions frequently observed in these tumours; b) represent an alternative route to 

malignancy; or c) regulate the function of the loci commonly deleted in these 

tumours. One mechanism by which the latter may occur is discussed in the next 

section.

1.4.4 Genomic imprinting and tumour suppressor genes

Genomic imprinting is an epigenetic phenomenon which results in the

differential expression of genes on paternally and maternally inherited chromosomes.

Evidence for this process comes from the observation that embryos in which some, 
df

or all, the chromosomes are from one parent are nonviable, and that the expression of 

transgenes and penetrance of some mutations is dependent on whether transmission 

is maternal or paternal (reviewed by Reik, 1989). One of the mechanisms which may 

control the differential expression of parental alleles is DNA methylation. This 

derives from the fact that the expression of transfected genes in vitro , and of
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transgenes in vivo, correlates with the levels of DNA methylation, and that exposure 

of cell lines to 5-azacytidine (which prevents cytosine methylation) can reactivate 

many silent genes (reviewed by Holliday, 1987).

The first m utation at a tumour suppressor locus is frequently a 

subchromosomal event (point mutation etc), whereas the second event in the majority 

of Wilms’ tumours and retinoblastomas tends to be a gross chromosomal event 

(mitotic recombination, non-disjunction or large deletion). It was originally thought 

that the initial mutation could occur with equal frequency at either allele, thus 

predicting that the number of tumours containing only maternal or paternal alleles 

would also be equal. However, in certain tumours, including Wilms’ tumour (Reeve 

et a l., 1984; Schroeder et al., 1987; Mannens et al., 1988), osteosarcoma (Toguchida 

et al., 1989) and rhabdomyosarcoma (Scrable et al., 1989), preferential loss of 

maternal alleles has been detected, implying that the retained paternal homologue 

sustained the initial defect. The most straightforward explanation for these results is 

that the first allele is silenced by an ab erant imprinting gene which acts 

preferentially on the paternal allele, thereby explaining preferential loss of the 

maternal chromosome in these tumours (Scrable et al., 1989). This model can 

explain a fam ilial case o f W ilm s’ tumour (Grundy e t a l., 1988) and a 

phaeochromocytoma from a MEN2 family (Mathew et al., 1987b) in which the 

paternal alleles of chromosomes 11 and 1 respectively were retained, even though the 

trait had been inherited from the mother. In these types of cases the imprinting gene, 

located on a different chromosome from the disease locus, is thought to be inherited 

from the mother. Significantly, this explanation resolves the problems raised by 

family studies which have failed to identify genetic linkage between Wilms’ tumour 

or MEN2 with loci commonly deleted in these tumours (see Table 2a).

The model suggested by Scrable et al. (1989) predicts that there is no 

requirement for mutation of the paternal suppressor allele. This can be determined in 

the case of osteosarcomas (Toguchida et al., 1989) since the critical locus , the RB 

gene, has been isolated. Significantly, in 4/9 osteosarcomas the retained paternal
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chromosome carried a deletion at the RB locus. Models which can explain this 

finding are described below.

a) Reik and Surani (1989) have discussed a model in which the maternal RB allele is 

imprinted, but only partially down- regulated. Deletion of the paternal allele might 

permit benign tumour growth, with malignant progression resulting from loss of the 

maternal chromosome. This model has three steps compared to only two in the 

simpler model described above.

b) In a model based on studies of Wilms’ tumour, Wilkins (1988) has suggested that 

the maternal allele o f a linked transforming gene becomes imprinted. Deletion of the 

paternal Wilms’ locus, followed by loss of the maternal chromosome causes up- 

regulation of the remaining transforming allele, which is regulated by the Wilms’ 

locus. Again, this model involves three steps.

c) It is also possible that imprinting of the paternal allele o f a linked tumour 

suppressor locus is followed by deletion of the Wilms’ paternal suppressor allele and 

subsequent simultaneous loss of the maternal suppressor alleles at the Wilms’ locus 

and the linked locus. The presence of at least two suppressor loci on 1 lp (section 

1.4.3a) supports this particular three-step model.

Finally, it is important to note that for some o f the tumours in which 

preferential loss of maternal alleles has been observed, an entirely different 

explanation is possible. Because spermatogenesis involves many more cell divisions 

than oogenesis, it is likely that the number of mutations is also much higher. Thus, 

tumours that are sporadic and bilateral (i.e the result of a new germ line mutation) 

may show a high frequency of maternal chromosome loss simply because the first 

mutation occured in spermatogenesis. This possibility can be tested by comparing 

chromosome loss in sporadic bilateral tumours with sporadic unilateral cases. For 

example, retinoblastomas of the latter type show no preferential loss of maternal or 

paternal chromosome 13 alleles, whereas new germ line mutations are most almost 

exclusively confined to the paternal allele (Dryja et al., 1988; Zhu et al., 1988). In 

contrast, 9/10 sporadic, solitary osteosarcomas (Toguchida et al., 1989) and 5/5
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sporadic unilateral Wilms’ tumours (Reeves et al., 1984; Schroeder et al., 1987) were 

found to have retained paternal alleles. It is therefore likely that an imprinting 

mechanism is involved in these tumours, and that this applies to bilateral cases too.

Although imprinting is clearly an important phenomenon, the exact 

mechanisms by which it operates and the range of tumour types it affects remain to 

be determined.

1.4.5 The function of tumour suppressor genes

A diverse range of functions have been postulated for tumour suppressor genes 

(Sager, 1986; Bouck and Benton, 1989). These are summarised below,

a) Differentiation stimuli

It has been argued that cancer stems from a defect in the normal differentiation 

programme of a cell (Klein, 1987; Harris, 1988). Klein (1987) has highlighted a 

number of studies which have employed temperature sensitive retroviruses to show 

that transformation is reversible, effective only within a particular differentiation 

window and can be overcome by potent differentiation stimuli. If oncogenes act to 

block the action of differentiation genes then transformation could also occur by the 

loss of the latter. This is supported by the finding that non-tumorigenic somatic cell 

hybrids between normal and tumour cells frequently take on the differentiation 

characteristics of the normal cell (section 1.4e).

The molecules which regulate differentiation include many classes, from 

growth factors to DNA binding proteins. The receptor for TGF-p , which is 

implicated in keratinocyte differentiation, is absent in some carcinomas, and in others 

the receptors are present but resistant to TGF-P (section 1.5.3.1a). In these cases 

there appears to be a defect downstream of the receptor.

It seems unlikely that deletion of a negative autocrine growth factor gene 

would have a significant effect on cell growth since neighbouring cells should be 

able to secrete enough to compensate for the loss. However, a small clone of such
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cells might escape the signal. In addition, there is evidence suggesting that several 

growth factors function even when secretion is blocked (Browder et al., 1989). If 

some of the effects of an autocrine regulator are elicited prior to secretion, its loss 

could potentiate growth. Although these suggestions are highly speculative it is 

interesting to note that Diaz et al. (1989) have detected homozygous deletion of the 

interferon locus in leukemia cells. This factor is known to exert a strong inhibitory 

effect on several carcinoma and leukemia/lymphoma cell lines (Chen et al., 1988).

b) Proliferation blocks

Obviously, the genes discussed in the above section could also fit this 

description. However, there may be a discrete set of tumour suppressor genes that 

block proliferation but do not stimulate differentiation. This category may include 

proteins that specifically regulate the function of oncogenes. For example, a large 

number of oncogene products are protein kinases (eg src, erbB, raj) and so it is 

possible that some phosphatases may turn out to be tumour suppressors (Hunter, 

1989). The deactivation of p21 ras proteins by GAP is probably not in the same 

category since GAP is a potential effector molecule for ras (section 1.3.3).

Inhibition of oncogene action need not be restricted to post-translational 

mechanisms. For example, the transcriptional regulation of RSV in rat-1 cells 

determines whether these cells are transformed or not (Wyke et al., 1989). The role 

of elevated expression in transformation by several oncogenes (section 1.2.2.2) 

emphasises the importance of transcriptional down regulation to normal cell growth.

The viral oncogene products E l A, E7 and large T bind, and probably 

inactivate, the protein encoded by the RB gene (DeCaprio et al., 1988; Whyte et al., 

1988; Dyson et al., 1989). It is therefore possible that the normal function of this 

tumour suppressor gene is to block the action of growth promoting proto-oncogenes 

(and/or to stimulate differentiation), and that this activity is swamped by 

overexpressed oncogenes or lost by gene deletion.

The p53 gene appears to encode a unique type of tumour suppressor that, like 

RB, binds to a range of oncogene products. In its wild-type form it suppresses
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transformation of rat cells when transfected together with various oncogenes (Finlay 

et al., 1989). Deletion, mutation and rearrangement of the gene has been detected in 

several human and animal tumours (Ben-David et al., 1988; Ahuja et al., 1989; 

Baker et al., 1989; Nigro et al., 1989). Remarkably, the wild-type form of the gene 

was mistaken for an oncogene until recently, when it was shown that DNA clones 

used in early studies contained mutations (Hinds et al., 1989). Prior to demonstration 

of its suppressing properties (Finlay et al., 1989), mutant p53 was known to bind 

both normal p53 and a heat shock protein, hsc70 (Finlay et al., 1988; Rovinski and 

Benchimol, 1988). Thus, it has been suggested that the transforming version of p53 

acts in a “dominant negative” fashion by binding and inactivating its normal 

counterpart, and possibly hsc70 (Finlay et al., 1989). This resembles the binding and 

(presumed) inactivation of the RB gene product by various viral oncogenes (see 

above). Even more intriguing is the fact that one of these, the SV40 large T antigen, 

binds both RB (DeCaprio et al., 1988) and p53 proteins (Lane and Crawford 1979). 

Furthermore, the adenovirus oncogene products E l A and E1B behave like two 

halves of SV40 large T in that E1A binds the RB protein (Whyte et al., 1988) and 

E1B binds the p53 protein (Samow et al., 1982). These findings are evidence for the 

cooperative effect of disabling two tumour suppressors in the same cell. That p53 and 

RB may be involved together in non-viral tumours is supported from studies of lung 

cancer (reviewed by Minna et al., 1989).

Although the direct link between oncogenes and tumour suppressors discussed 

above lends credibility to the term “anti-oncogene”, it remains to be determined 

whether this is the sole regulatory function of these proteins,

c) Senescence factors

The limited capacity of mammalian cells to divide is a defense against tumour 
of

development. However, loss or insensitivity to the factors that control senescence 

may facilitate tumorigenesis.
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d) DNA repair enzymes

A number o f hereditary diseases with predisposition to malignancy are 

associated with DNA repair defects (Hanawalt and Sarasin, 1986). The genes for 

DNA repair enzymes can therefore be regarded as tumour suppressor genes in the 

sense that their loss leads to tumour growth. However, this category also 

demonstrates the inadequacy of the term “tumour suppressor” since their replacement 

in transformed cells would not suppress tumorigenicity.

e) Proto-oncogenes

Some studies have found that in tumours with activated ras the mutant allele is 

over-represented (Quintanilla et al., 1986; Taya et al., 1984), over-expressed relative 

to the normal allele (Capon et a l., 1983), or that the normal allele is absent 

(Taparowsky et al., 1982; Guerrero et al., 1985). Amplification of the mutant signal 

may be selected (a) because it overcomes a blocking competetive effect of the 

normal allele, or (b) for some reason totally unrelated to the normal allele. This latter 

possibility is the view of Paterson et al. (1987) who found that a reduction in the 

level o f mutant N -ras caused reversion o f HT1080 fibrosarcoma cells but 

microinjection of normal p21ras had no effect on the phenotype. That overexpression 

of normal ras is a transforming event (section 1.3.4.2) also suggests that this gene is 

not a tumour suppressor. However, Spandidos and Wilkie (1988) have reported that 

normal ras can suppress tumorigenicity in NIH3T3 cells and so this field remains 

controversial. In support of the latter claim, one of the few tumour suppressor genes 

isolated to date, K-rev, encodes a protein of MR 2 IK, and shares around 50% 

homology with ras proteins (Kitayama et al., 1989). It is therefore possible that 

K-rev competes for ras effectors.

In the cases involving deletion of the wild type allele it is possible that a linked 

tumour suppressor gene was involved. In this respect it is intriguing to note that 

tumour suppressor genes have been mapped to human chromosome arms lp and lip  

(Table 2); the location of N-ras and H-ras genes respectively.
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f) Inhibitors of angiogenesis

Angiogenesis, the formation of new blood vessels by endothelial cells, is 

essential for the growth of tumours beyond a diameter ot l-2mm (Folkman et al.,

1985). Genes encoding the cellular machinery that enables cells to respond to 

inhibitors o f this process could therefore suppress tumour growth. Recently, a 

glycoprotein of Mr 140000 has been identified in the medium of BHK cells that 

suppresses neovascularisation (Rastinejad et al., 1989). In the same study it was 

shown that chemically transformed BHK cells are resistant to the action of this 

molecule. Reversion of these cells to the normal phenotype and sensitivity to the 

angiogenesis inhibitor is paralleled by recovery of the ability to suppress transformed 

cells in somatic hybridisation experiments. Thus transformation and resistance to the 

inhibitor are linked to loss of a tumour suppressor in these cells.

g) Cell surface interactions

Several categories of molecule located on or outside the cellular membrane are 

potential tumour suppressors. Sager (1986) and Bernards (1987) have discussed the 

potential significance o f the major histocompatability complex (MHC) class I 

antigens to the removal of cancer cells by cytotoxic T lymphocytes. Tumour cells 

may escape a different type of growth restraint by losing the cell surface molecules 

responsible for attachment to the extracellular matrix (cell adhesion molecules). 

Reduced levels of cell adhesion molecules have been detected in some transformed 

cells (Plantefaber and Hynes, 1989) and the Drosophila recessive tumour gene, lethal 

(2) giant larvae, is probably involved in cell-cell interactions (Lutzelschwab et al.,

1987). Furthermore, the recently isolated chromosome 18q tumour suppressor gene 

that is involved in colorectal cancer, is homologous to neural cell adhesion molecules 

(Fearon et al., 1990). Disturbance of cell-cell interactions could also occur by 

degradation of the extracellular matrix. For example, Chen and Chen (1987) have 

detected increased proteolytic degradation o f fibronectin. Thus, molecules that 

regulate the expression or function of these enzymes may suppress tumour growth 

and/or metastasis.
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1.4.6 Tumour suppressor genes: different classes

It is clear from analysis of tumours in which the RB gene is involved that 

homozygous inactivation of this locus is required for tumorigenesis. This has been 

broadly accepted as the mechanism by which all tumour suppressor genes contribute 

to malignancy. However, the role of chromosome dosage in suppression (section 

1.4b) suggests that it need not be an all-or-nothing phenomenon. Furthermore, from 

analysis of the p53 gene it is now obvious that another class of “dominant negative” 

tumour suppressor genes exists. A third class may include those oncogenes whose 

wildtype alleles suppress the effects of the activated allele. These alternatives mean 

that detection of LOH in tumours should not automatically be equated with the 

retinoblastoma paradigm. In other words, the possibility that LOH has unmasked an 

activating mutation cannot be discounted until the gene of interest has been isolated.

1.5 The mouse skin carcinogenesis model

Animal model systems have been invaluable in the development o f a 

multistage concept of tumorigenesis (Hecker et al., 1982). Unlike human studies 

tumours can be reproducibly induced using known carcinogens, and molecular 

alterations investigated at defined stages following initiation. The activation of 

oncogenes in various animal models of carcinogenesis has been summarised recently 

(Guerrero and Fellicer, 1987; Balmain and Brown, 1988). Since the majority of 

human tumours are epithelial in origin, probably because o f  exposure to 

environmental pollutants and UV light, the mouse skin carcinogenesis model is of 

particular importance in the elucidation o f genetic and/or epigenetic events 

associated with tumour growth.

The two-stage, or initiation-promotion model of carcinogenesis involves the 

single application of a subthreshold dose (i.e one which will not induce tumour 

formation by itself) o f a complete carcinogen or initiator (an agent which if applied
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in a large single dose, or in repeatedly subthreshhold doses will induce tumours). 

This is followed by repetive applications, to the same area of skin, of a tumour 

promoter (an agent which induces tumours only if used after application of an 

initiator) (Slaga, 1983). This protocol results in the appearance of benign papillomas 

within 10-20 weeks, approximately 10% of which progress to malignant carcinomas.

Papillomas have a cauliflower-like structure consisting of several folds joined 

by one or a few stalks which are linked to the underlying skin. Each fold consists of 

epithelial projections covering vascular connective stalks. The basic stratified 

structure of the epidermal component is retained although it tends to be thicker than 

normal, including the superficial “horny” layer, which is made up of flat anuclear 

cells packed with keratin.

Macroscopically, carcinomas are firm indurated expanding nodules which 

often ulcerate. They are characterised by a disorderly proliferation of epithelial cells 

and can be classified as grade 1-3, with grade 3 showing least differentiation 

(Kruszewski et al., 1987). The proportion of abnormal cell shapes and bizarre mitotic 

figures increases with the grade. In the most differentiated tumours so called “homy 

pearls” are easily identifiable, which appear as pink haematoxylin and eosin stained 

islands made up of groups of terminally differentiated cells. Another type of poorly 

differentiated carcinoma is the spindle cell carcinoma. Histologically these can be 

mistaken for fibrosarcomas, but macroscopically they resemble carcinomas. 

Evidence of epithelial differentiation can be detected in these tumours, including the 

presence of desmosomes (structures unique to keratinocytes), and their reaction to 

keratin antibodies confirms their epidermal origin (Morison et al., 1986).

1.5.1 Factors affecting papilloma and carcinoma production

The requirements for chemically induced tumour formation on mouse skin are 

summarised in Figure 2. Initiation requires only one application of a carcinogen, and 

is an irreversible step (protocols 1 and 2). By itself, initiation does not result in the
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Figure 2 Requirements for chemical carcinogenesis in mouse skin
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formation of tumours. Similarly, promotion alone, or prior to initiation, produces no 

or very few tumours (protocols 4 and 5). If the frequency of promotion is too low no 

tumours result (protocol 6). This observation suggests that the action of individual 

exposures is reversible (and therefore epigenetic), or that irreversible changes 

induced by promotion are only effective if other reversible events are continually 

induced. The genetic changes resulting from TPA treatment (see below) make this 

suggestion feasible. Protocol 7 shows that a short period of promotion produces no, 

or very few, tumours.

Protocols 8 and 9 demonstrate the ability of hyperplastic agents to induce 

tumours. TPA, and all other tumour promoters induce hyperplasia, but not all 

hyperplastic agents are tumour promoters (protocol 8). However, these chemicals 

may complete promotion if initiated skin is first exposed to several applications of 

promoter (protocol 9). This observation led to the concept of first and second stage 

promotion. TPA and wounding are first stage (or full) promoters, while retinoyl 

phorbol acetate (RPA) and mezerein are second stage promoters. RPA is a more 

powerful second stage promoter, even though mezerein is actually a weak full 

promoter (Marks et a l., 1982).

The induction of tumours by application of a large single dose of carcinogen is 

known as complete carcinogenesis (Figure 2, protocol 10). Repeated small doses of 

an initiator will also induce tumour formation (protocol 11).

The total number of tumours induced by initiation/promotion rises with 

increasing doses of initiator or promoter, and with duration of promoter treatment 

(Bums et al., 1978; Verma and Boutwell, 1980; Slaga et al., 1982). However, the 

overall increase in tumour numbers is not proportionate amongst papillomas and 

carcinomas. For example, in one study using SENCAR mice, a 16-fold increase in 

TPA raised the induction of papillomas almost 80-fold, but the number of carcinomas 

less than 40-fold (Ewing et al., 1988). Increasing the amount of DMBA at initiation, 

or the duration of promoter treatment gave related findings. In an earlier study, using 

HA/ICR mice it was also found that using more initiator (DMBA), or lengthening
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promoter treatment decreased the percentage o f papillomas which converted to 

carcinomas (Bums et al., 1978). Hennings et al. (1983) have also observed a drop in 

malignant conversion with increased promoter treatment. More recently it was 

observed that although DM BA-initiation follow ed by bromomethylbenz(a) 

anthracene (BrMBA)-promotion induces many more papillomas than repeated 

BrMBA treatment, the carcinoma yield is not similarly affected (Scribner et al., 

1983).

One interpretation of these findings is that a subset of papillomas exist which 

are unlikely to progress to carcinomas, and that a high proportion of DMB A-initiated 

cells form papillomas in this category. Alternatively, malignant progression may be 

retarded by the toxicity of a large tumour burden. Thus, increased competition for 

blood supply and degeneration of animal health could limit tumour progression. 

Nevertheless, this is probably only partly responsible for the results described above 

since other evidence has been documented in favour o f the existence of subsets of 

papillomas. For example, it has been known for many years that most papillomas 

(80-90%) regress if promoter treatment is terminated, and that the remainder persist 

(Bums et al., 1976). Those that disappear are termed promoter-dependent or 

conditional, those that remain are promoter-independent or autonomous. Reddy et al. 

(1987) have used an X-linked enzyme polymorphism to analyse biopsies of 

papillomas taken during promotion and from identical site tumours long after 

treatment has stopped. They found that many of the biopsies from autonomous 

papillomas (taken at the end of the experiment) had a different enzyme phenotype 

from those taken during promoter treatment. Thus promoter-dependent and 

independent papillomas are not necessarily related.

Molecular evidence for the existence of a subset of papillomas with a greater 

likelihood of progression has been provided by Brown et al. (1990). They have found 

that the distribution o f ras gene mutations differs between papillomas and 

carcinomas initiated with the same carcinogen. Thus it appears that the initiation 

event influences the probability of progression.
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For many years it has been accepted that around 90% of carcinomas arise 

directly from papillomas (Bums et al., 1978). This assumption has recently been 

questioned. Reddy et al. (1987) used a combination of photography, coordinate 

measurements and analysis of an X-linked polymorphic enzyme (phosphoglycerate 

kinase; PGK) to address this problem. Five out of 18 carcinomas exhibited PGK 

phenotypes discordant with those detected at an earlier biopsy of a papilloma at the 

same site. The actual number could be twice this since there is a 50% chance that a 

new tumour will have the same phenotype as a preexisting lesion. In contrast, 

papillomas induced by repeated initiation morphologically evolve into carcinomas 

which almost invariably have identical phenotypes (Taguchi et al., 1984; Reddy and 

Fialkow, 1989). Interestingly, the majority of carcinomas induced in this way do not 

appear to arise from visible papillomas (Reddy and Fialkow, 1989). The simplest 

explanation for this is that while initiators efficiently induce mutations which can aid 

progression, these events are induced rarely, or must occur spontaneously in initiated 

cells expanded by promoter treatment. Potter (1981) has suggested that the role of 

promotion is to increase the size of the target cell population available for a second 

mutation. Hennings et al. (1983) have shown that the frequency o f this event can be 

increased by applying mutagens to papillomas induced by an initiation-promotion 

regime. Although the mutations involved in this process have not been identified 

(section 1.5.4) they probably differ from those involved in initiation, since chemicals 

which are good initiators are not necessarily effective progression agents, and vice 

versa.

1.5.2 Molecular events at initiation

The mutagenic nature o f known carcinogens (reviewed by Singer and 

Kusmierek, 1982) and the irrevenble nature of initiation (Van Duuren et al., 1975) 

suggests that it is a genetic event. Two mutagens which are commonly used as 

initiators, and were used in the study reported here, are 7, 12 dimethyl
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benz(a)anthracene (DMBA) and N-methyl-N’-nitro-N-nitroso guanidine (MNNG). 

These belong to two distinct chemical classes: DMBA is a polycyclic aromatic 

hydrocarbon (PAH) and MNNG is an N-nitroso compound.

The chemical action of PAHs has been elucidated mainly from studies on 

benz(a)pyrene [B(a)P] and its metabolites (reviewed by Conney, 1982). These 

studies identified the “bay-region” dihydrodiol (or simply diol) epoxide of B(a)P as 

the ultimate carcinogen. The bay region of DMBA, and its metabolism by P-450s (or 

monoamine oxidases) and an epoxide hydrolase to the dihydrodiol epoxide, is 

indicated in Figure 3b. The authenticity of the latter as the ultimate carcinogen has 

been endorsed by the finding that its putative direct precursor, the 3,4-dihydrodiol 

(Figure 3b), is more carcinogenic than DMBA itself (Slaga et al., 1979). Both the syn 

and anti forms of the ultimate carcinogen bind DNA (Sawicki et al., 1983), but the 

carcinogenic properties of the chemical are largely due to the syn form, which binds 

almost exclusively to dA residues in DNA (Cheng et al., 1988). This is unusual to 

DMBA since other PAHs, including B(a)P and methylcholanthrene (MCA), form 

major adducts with dG residues (Jeffrey, 1985). The affinity which DMBA has for 

dA residues makes it a better initiator than other PAHs; B(a)P is about 30-fold 

weaker as an initiator than DMBA (Dipple et al., 1983b).

The N-nitroso compounds, including MNNG, are alkylating agents (for 

reviews see Singer and Kusmierek, 1982; Margison and O ’Connor, 1978). The 

breakdown of these compounds to ultimate carcinogens occurs in the presence of a 

nucleophilic reagent (e.g alkali or thiols in cells; Figure 3a), and does not, as in the 

case of PAHs, require enzymic catalysis. Although alkylation has been observed at 

all O and N positions in the bases (except the nitrogen attached to the sugar), the 

primary mutagenic lesion produced by simple methylating agents is the 06-methyl 

guanine adduct (06-MeG) (Loveless, 1969 Nature). This species pairs preferentially 

with thymidine during DNA replication (Toorchen and Topel, 1983), resulting in 

G:C->A:T transitions. Consistent with this, only G->A lesions have been detected in 

the H-ras gene in mouse skin tumours initiated using MNNG (Brown et a l ,  1990,
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Figure 3 Mechanism of activation of MNNG and DMBA
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Bremner and Balmain 1990). G->A mutations have also been detected in mouse 

carcinomas (Brown et al., 1990) and other animal tumours (reviewed by Balmain and 

Brown, 1988) which were induced with another simple methylating agent, 

methylnitrosurea (MNU), although A->T transversions have also been detected in 

MNU- induced rat tumours (see Balmain and Brown, 1988).

1.5.2.1 Activation of ras genes: an early or late event?

The discovery that H-ras was activated in papillomas (Balmain et al., 1984) as 

well as carcinomas (Balmain and Pragnell, 1983) implied that mutation of this gene 

is an early event. Evidence that it can be the initiation event, and is induced by direct 

interaction of the carcinogen, was provided by Quintanilla et al.{ 1986). They found 

that over 90% of DMBA-initiated papillomas and carcinomas had an A:T->T:A 

tranversion in codon 61 of the H-ras gene, a mutation consistent with that predicted 

from the known metabolism and binding of this chemical from studies both in vitro 

(Cheng et al., 1988) and in mouse skin (Dipple et al., 1983a). A correlation between 

the type of ras mutation and the carcinogen was also noted in MNU-induced rat 

mammary tumours (Sukumar et al., 1983; Zarbl et al., 1985) and in B6C 3F1 mouse 

hepatomas induced by treatment with the metabolic products of two aromatic amines 

(Wiseman et al., 1986).

Although these examples support the proposition that activation of ras occurs 

at initiation in the development of several animal tumours, other examples are known 

in which it is more difficult to correlate the mutagenic activity of the initiating 

chemical with the mutation detected in the resulting tumours (Bizub et al., 1986, 

Guerrero et al., 1985; Guerrero and Pellicer, 1987; Balmain and Brown, 1988). 

Direct evidence that activated ras is an initiating event was provided by Brown et al., 

in 1986. They found that treatment with DMBA could be replaced by application of a 

retrovirus containing activated H-ras to mouse skin. As with chemical initiation, 

tumours only formed if the skin was treated with TPA. Subsequently, Roop et al.
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(1986) demonstrated that keratinocytes containing v-H-ras could form papillomas 

when grafted onto the skin of nude mice. These experiments firmly established the 

correlation between initiation and H-ras activation in mouse skin carcinogenesis. The 

fact that ras mutations have been identified in several premalignant human tumours 

(section 1.3.4.1) illustrates the interpretive value of the mouse model.

1.5.3 Tumour promotion

Initiated cells, whether chemically or virally induced, do not develop into 

tumours in the absence of promoter treatment (Van Duuren et al., 1975; Brown et al.,

1986). Of the large variety of chemicals which are tumour promoters (Slaga, 1983), 

the strongest are the phorbol esters (e.g TPA). Tobacco smoke condensate and 

benzoyl peroxide have moderate promoting activity, while some long chain 

hydrocarbons are weak promoters. From epidemiological and animal model studies 

several agents have been identified as potential promoters in human carcinogenesis. 

These include dietary fat, cigarette smoke, asbestos, alcohol and steroid hormones 

(Pitot, 1983; Kodama and Kodama, 1987).

The outcome of tumour promotion is the proliferation of initiated cells in a 

target tissue. This may involve partial or complete resistance of initiated cells to 

promoter-induced differentiation. Thus, accelerated differentiation of normal basal 

cells might indirectly increase the rate of proliferation of initiated cells. This is 

supported by studies in vivo (Reiners and Slaga, 1983) and in vitro (Yuspa et al., 

1982) which have shown that tumour promoters induce terminal differentiation in 

some epidermal basal cells, while others remain in the proliferative pool. 

Furthermore, Yuspa’s group have analysed putative initiated cells in vitro and have 

found resistance to a terminal differentiation stimulus among these (Yuspa and 

Morgan, 1981, Yuspa eta l., 1983 and 1985).
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An alternative model is that the tumour promoter acts directly by selectively 

stimulating proliferation of initiated cells. Finally, enhanced proliferation and 

abberant differentiation could operate synergisdcally.

The target cells for initiation are not known. Obvious candidates are the 

epidermal stem cells. These may be equivalent to so-called “dark staining cells”, 

which are present in large numbers in embryonic epidermis, and decrease throughout 

adulthood (Klein-Szanto et al., 1980). These are visible in TPA-treated skin and are 

abundant in papillomas and carcinomas. Initiation of these cells might introduce a 

differentiation block thus complementing their inherent proliferative capacity. 

Initiation of suprabasal cells, commited to differentiation, would have to involve 

reinstatement of their proliferative ability. If cells from different levels of the 

epidermis can be initiated, this may help to explain the existence of subsets of 

papillomas with varying abilities to persist in the absence of promoter treatment and 

to progress to carcinomas (section 1.5.1).

1.5.3.1 Molecular events associated with tumour promotion

The range of cellular and biochemical changes which TPA can induce is so 

large (Hecker et al., 1982; Slaga, 1983) that it is difficult to identify those which are 

responsible for this chemical’s ability to promote tumour formation. Epidermal 

hyperplasia (biochemically detectable as increased DNA, RNA and protein 

synthesis) and ornithine decarboxylase (ODC) activity correlate well with promoter 

strength, but non-promoters can also induce these effects (Slaga, 1983). Following 

epidermal cell proliferation and ODC synthesis there is an induction o f  

prostaglandins and polyamines, which also appears to correlate with promotion. 

Putrescine and prostaglandin E2 and F2 cannot substitute for TPA, but they enhance 

TPA promotion (Slaga et al., 1982). Furthermore, inhibitors of polyamine and 

prostaglandin synthesis inhibit tumour promotion. Anti-inflammatory agents can also 

block promotion, which complements the finding that promoters decrease cellular
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levels of superoxide dismutase and catalase; enzymes involved in the control of 

active oxygen. The relevance of free-radical generation to tumour promotion is 

further illustrated by tumour promoters such as benzoyl peroxide which, unlike TPA, 

do not act through protein kinase C. Induction of proteases and reduction of cAMP 

also appear to be important in promotion by TPA since agents which counteract this 

inhibit promotion.

The above biochemical findings have been known for several years and have 

often been reviewed. Some of the more recent discoveries, which can be related to 

the potential involvement of oncogenes and tumour suppressor genes in tumour 

promotion, are summarised below,

a) The role of positive and negative growth factors

Enhanced reaction to mitogenic factors (eg through oncogene activation)or 

refractoriness to differentiation signals (eg through tumour suppressor loss) may both 

contribute to the expansion of initiated cells. The action of TGF-p may represent one 

such negative control which initiated keratinocytes elude (Parkinson, 1985; 

Parkinson and Balmain, 1990). This polypeptide inhibits DNA synthesis in some 

human (Shipley et al., 1986) and mouse keratinocytes (Coffey et al., 1988). In 

addition it causes growth arrest and terminal differentiation of bronchial (Masui et 

al., 1986) and tracheal epithelial cells (Terzaghi, 1989), and is located in 

differentiating cells of the small intestine epithelium (Barnard et al., 1989). There 

have also been reports that it stimulates expression o f certain keratinocyte 

differentiation markers (Reiss and Sartorelli, 1987; Mansbridge eta l., 1988).

Recently, it was shown that TPA induces high levels of TGF-p mRNA in 

suprabasal epidermal cells (Akhurst et al., 1988). The block in basal cell DNA 

synthesis seen 3-9 hours after TPA treatment (Krieg et al., 1974) could therefore be 

mediated by this growth factor. Complete or partial resistance to this effect could 

confer a growth advantage on initiated cells. Significantly, loss of responsiveness to 

the inhibitory effects o f TGF-p has been observed in several tumour cell lines 

(Shipley et al., 1986; Kimchi et al., 1988; Wakefield et al., 1988). Furthermore
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resistance to the effects of TGF-p can be conferred on epithelial cells by introduction 

of activated ras (Reddel et al., 1988; Houck et al., 1989). This has important 

implications for mouse skin carcinogenesis where ras activation is frequently the 

initiating event (section 1.5.2.1; Balmain and Brown, 1988).

Initial inhibition of DNA synthesis by TPA (see above) is followed by a 

hyperproliferative phase. It is not clear what mediates this response, but it may in 

part involve TGF-a. This polypeptide is related to EGF, is frequently expressed by 

tumour cells (Derynck et al., 1987; Derynck, 1988), and induces proliferation and 

neovascularisation (Schreiber et al., 1986; Barrandon and Green, 1987). TGF-a is 

synthesised in normal skin and a role in stimulating keratinocyte proliferation after 

wounding has been suggested (Coffey et al., 1987). That the actions of TGF-a and 

TGF-p cooperatively stimulate growth of initiated cells is supported by the finding 

that these two factors can mimic the convertogenic, or first, stage of promotion 

(Furstenberger et al., 1989). The hyperplastic second stage promoter, RPA, can be 

used in place of TGF-a in this assay. Furthermore, a papilloma cell line transfected 

with TGF-a cDNA was found to produce larger papillomas when grafted onto mouse 

skin than its untransfected parent line (Finzi et al., 1988).

Other growth factors which might play a part in skin tumour formation include 

the recently identified keratinocyte growth factor (KGF) and the so-called epidermal 

pentapeptide (EPP). The latter, like TGF-P inhibits epidermal cell growth and 

stimulates differentiation (Elgjo et al., 1986). This molecule has been shown to 

enhance skin tumorigenesis in nude mice (Iversen et al., 1989). KGF is related to the 

fibroblast growth factor (FGF) family (Finch et al., 1989) and is a particularly 

interesting mitogen; it appears to be specific for epithelial cells (Rubin et al., 1989) 

and is synthesised by stromal cells derived from epithelial tissues, suggesting a 

paracrine action (Finch eta l., 1989).

b) Genetic events during promotion

A significant amount of evidence now exists in support of the involvement of 

aneuploidy in the development o f papillomas on mouse skin. Overcoming the
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difficulties associated with karyotyping solid tumours, Slaga’s group have 

established a correlation between increasing aneuploidy, papilloma age and degree of 

dysplasia (Conti et al., 1986; Aldaz et al., 1987). A small proportion of early 

papillomas are as aneuploid as some carcinomas, but whether these are equivalent to 

promoter-independent tumours (section 1.5.1) is not known. Recently, non-random, 

sequential trisomy of chromosomes 6 and 7 has been observed during papilloma 

development (Aldaz et al., 1989). The possible connection between imbalances at the 

H-ras locus (Quintanilla et al., 1986) and chromosome 7 changes is the subject of 

this thesis.

It is not known whether the progressive aneuploidy observed during mouse 

skin tumour progression is induced by TPA and/or if it occurs as a consequence of 

the transformed state. However, TPA has been shown to induce aneuploidy in yeast 

(Parry et a l., 1981), mouse epidermal cells (Dzarlieva and Fusenig, 1982; 

Petrusevska et al., 1988) and human lymphocytes (Emerit and Cerruti, 1982).

Marczynska et al. (1988) have observed pulverisation and other chromosomal 

aberrations in TPA treated skin fibroblasts from patients with familial polyposis coli 

(FPC), suggesting that cells which are potentially preneoplastic may be particularly 

sensitive to TPA-inducible chromosome alterations. Thus, ras activation could 

conceivably be responsible for genetic destabilisation in mouse papilloma cells. 

However, ras activation alone does not appear to induce visible karyotypic 

abnormalities either in rat embryo fibroblasts (Muschel et al., 1986), or in papillomas 

formed by grafting HaMSV infected keratinocytes onto athymic mice (Aldaz et al.,

1988). In contrast, aneuploidy was observed soon after introduction of v-H-ras into 

human bronchial epithelial cells (Yoakum et al., 1987). Resolution of these 

discrepencies is only possible through the detection of non-random alterations and 

eventual identification of the critical genes involved,

c) Gene expression and tumour promotion

The transcription of numerous genes is altered by TPA, several of which have 

obvious connections with the regulation of growth and differentiation. Induction of
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TGF-p has already been mentioned (section 1.5.3.1a; Akhurst et al., 1988). Rapid 

elevation of c-fos, c-myc and c-jun expression following administration of TPA or 

growth factors has been observed in various cell types (Greenberg and Ziff, 1984; 

Skouv et al., 1986; Lamph et al., 1988). Appleby et al. (1989) have found that 

expression o f v-fos in keratinocytes extends their survival in vitro  (possibly 

indefinitely) and, when grafted onto syngeneic recipients, these cells produce an 

abnormal epithelium (but not tumours).

TPA also stimulates expression of the proteases transin (Matrisian et al., 

1986b) and collagenase (Whitman et al., 1986). Induction of plasminogen activator 

has also been documented (Wigler et al., 1978). Alteration of protease activity could 

affect tumour invasiveness (Mignatti et al., 1986) and angiogenesis (Montesano et 

al., 1985). A large number of other genes are also stimualted by TPA (see Angel et 

al., 1987; Johnson eta l., 1987), but their role in promotion is unclear.

Most of these studies have been carried out in vitro and so their relevance to 

tumour promotion in vivo, and the mouse skin system in particular, has not been 

clarified. Relatively few studies have addressed this problem. Stimulation of ODC 

mRNA synthesis by TPA in mouse skin is well documented (Gilmour et al., 1987), 

and a transient TPA-induced increase of transin mRNA has been reported (Matrisian 

et al., 1986b). Expression of the latter metalloproteinase is confined to the basal cells 

of TPA-treated epidermis (Krieg et al., 1988). Its overexpression has also been 

observed in carcinomas but not papillomas (Matrisian et al., 1986a; Ostrowski et al.,

1989).

TPA-induction of c-fos and c-myc in vivo has also been documented (Rose- 

John et al., 1988). In this case, sequential transient expression of c-fos, c-myc and 

ODC was observed. Two non-promoting hyperplastic agents could not mimic this 

effect.

Some attempts have been made to isolate new genes that are TPA sensitive. 

Johnson et al. (1987) used differential screening of fibroblast cDNA libraries to 

isolate two clones. One of these (TPA-S1) is stimulated by TPA, expression of the
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other (TPA-R1) is repressed. Melber et al. (1986) used the same technique to isolate 

six clones (pmall-6) which hybridised stongly to carcinoma RNA, but weakly to 

RNA from normal epidermis. One of these (pmal-4) was later identified as (3-actin 

(Ostrowski et al., 1989).

The TPA-responsiveness of many genes is mediated by a common promoter 

element; the AP-1 binding site (Angel et al., 1987), although different TPA- 

responsive elements (TREs) have been identified (Chiu et al., 1987). The AP-1 

trancription factor was was later shown to be identical to the product of the c-jun (or 

jun-A) oncogene (Angel et al., 1988). Subsequently, several related studies showed 

that the c-fos protein binds to c-jun/AP-1 to stimulate transcription of AP-1 

responsive genes (Rauscher et al., 1988; Chui et al., 1988; Sassone-Corsi et al., 

1988).

d) Inhibition by normal cells

One of the main barriers preventing the clonal expansion of initiated cells is 

the inhibitory effect of surrounding normal cells. For example, Harvey sarcoma virus 

infected keratinocytes do not form tumours if transplanted onto mouse skin with a 4- 

fold excess of dermal fibroblasts, but form carcinomas if these normal cells are left 

out (Dotto et al., 1988). The ability of TPA to overcome this effect has been 

demonstrated in vitro with ras-transfected C3H 10T1/2 mouse fibroblasts (Hsiao et 

al., 1984) and rat embryo fibroblasts (Dotto et al., 1985).

1.5.3.2 Mediation of the effects of TPA by PKC

The discovery that the major phorbol ester receptor and protein kinase C
p

(PKC) were the same entity (Neidel et al., 1983) implied that the pleitropic response 

effected by TPA may be mediated by this ser/thr kinase. It is activated by 

diacylglycerol (DAG), one of the second messengers released by phosphoinositide 

metabolism (section 1.3.4.4, Nishizuka, 1988). DAG interacts with PKC at the same
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site as phorbol esters, and may therefore activate this enzyme by a similar 

mechanism (Sharkey e ta l., 1984).

It is now known that there are at least seven PKC subspecies (Nishizuka,

1988). The pattern of tissue expression and kinetics of activation are unique for each 

subspecies, except for the activity of pi and pH, which are indistinguishable. This 

may explain the diverse effects which TPA has on different cell types, although it is 

likely that some of the consequences of exposure to TPA are mediated by separate 

signalling pathways (see below).

The relevance of PKC to growth control is emphasised from studies on its 

over-expression in fibroblasts (Housey et a l ., 1988; Persons et al., 1988). 

Furthermore, a mutant form of PKC has recently been isolated from a murine UV- 

induced fibrosarcoma cell line which can transform Balb 3T3 fibroblasts (Megidish 

and Mazurek, 1989).

In addition to its role in stimulating many cellular activities, PKC also effects 

negative feedback on the biochemical pathway it is part of, and down-regulates 

several receptor proteins which can activate pathways that do not involve PKC. For 

example, PKC appears to down-regulate the IP3 signal by phosphorylating, and thus 

activating, IP3 phosphatase (Connoly et al., 1986). PKC activation is also associated 

with phosphorylation and inhibition of the EGF, insulin and T-cell growth factor 

receptors (Davis and Czech, 1985; Takayama et al., 1984; Cantrell et al., 1985). In 

addition, PKC phosphorylates ras proteins (Ballaster et al., 1986), although the 

function of this event is not known. It does not appear to alter GTPase or GTP 

binding activities (Ballaster et al., 1986), and so it may interfere with some other 

property, such as membrane/effector binding (Saikumar, 1988). If this event down- 

regulates ras, it is conceivable that the oncogenic form of p21 is unaffected by it. 

However, there may be other ways of evading this potential inhibitory influence, 

including down regulation of PKC itself (see below).

Negative feedback by PKC suggests that the promotional effects of TPA might 

occur by a series of small intermittent pulses of activity, rather than a continuous
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amplification of signal transduction pathways. However sustained stimulation may be 

possible since, in the long term, TPA induces complete removal of PKC from the 

cell, possibly through the action of the protease calpain I (Nishizuka, 1988). 

Significantly, rapid loss of PKC, and maintenance of this state for 3-4 days, has been 

observed after a single treatment of mouse skin with TPA (Fournier and Murray,

1987). This could maintain the growth factor receptors mentioned above (and 

possibly ras) in a sensitive state. The possible role of TGF-a in skin tumorigenesis 

(section 1.5.3.1a) is particularly interesting in this respect since it stimulates the EGF 

receptor which in turn stimulates DNA synthesis via a pathway which is both 

phosphoinositide and PKC-independent (Wakelam et al., 1986; Lloyd et al., 1989; 

Morris et al., 1989).

1.5.4 Molecular events during malignant progression of mouse skin 

tumours

Malignant conversion is associated with invasion, metastasis and progressive 

loss of tissue organisation. In papillomas expression of keratins specific to basal cells 

(K5 and K14), the suprabasal layer (K1 and K10), and hyperproliferative skin (K6 

and K16) can be detected (Knapp et al., 1987). However, there is a dramatic 

reduction in expression of K1 and K10, but not the other keratins, in squamous 

carcinomas (Toftgard et al., 1985) (Roop et al., 1988). These results are consistent 

with the hyperplastic and altered differentiation state of malignant tumours. Possible 

molecular events responsible for this process are discussed below.

Double minute chromosomes, indicative of gene amplification, have been 

detected in approximately 10% of carcinomas, but not in papillomas (Aldaz et al., 

1986; Aldaz and Conti, 1989). However the genes involved have not been identified. 

A 2-10 fold amplification of the mutant H-ras gene has been observed in some 

carcinomas (Quintanilla et al., 1986; Bremner and Balmain 1990; Brown et al.,

1990) suggesting that this gene may be involved at both the early and late stages of
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tumour progression. There is also evidence implicating the involvement of mutant 

ras genes in the metastasis of mouse fibroblasts (POzzati et al., 1986; Egan et al.,

1987) and hamster glial cells (Fetherston et al., 1989).

Amplification of N-myc and c-neu is associated with the advanced stages of 

lung and breast cancer respectively (Brodeur et al., 1984; Slamon et al., 1987). 

Analysis of the N-myc gene in mouse skin carcinomas has not been reported. The 

neu gene does not appear to be amplified (K. Brown, personal communication). 

However, c-erbB  amplification has been detected in a cell line derived from a 

carcinoma of the Syrian hamster cheek pouch induced by repeated DMB A treatment, 

and its overexpression is associated with development of tumour invasiveness in vivo 

(Wong and Biswas, 1987).

The involvement of other oncogenes in the malignant conversion of mouse 

skin tumours, all of which cooperate with ras in the neoplastic transformation of 

fibroblasts (section 1.2.3) has been investigated by Yuspa’s group. Introduction of 

v-fos into murine papilloma cell lines which contain an activated H-ras gene 

(Strickland et al., 1988) resulted in malignant conversion of these lines, whereas 

cooperation with E l A or myc oncogenes was not observed (Greenhalgh and Yuspa,

1988). However, the resultant carcinomas lacked gamma-glutamyl tranpeptidase 

activity, which is present in 90% of all chemically induced mouse skin carcinomas 

(Chiba et al., 1986), and so fos  activation may not be commonly involved in 

malignant progression of mouse skin tumours.

Progressive aneuploidy is associated with the development of carcinomas 

(Aldaz and Conti, 1989). Frequently, they contain near-tetraploid cell populations in 

both chemically (Conti et al., 1986; Aldaz et al., 1987) and virally initiated tumours 

(Aldaz et al., 1988). Studies o f mouse carcinoma cell lines and malignant 

keratinocytes (transformed in vitro) have also identified near-tetraploidy as a 

common feature (Pera and Gorman, 1984; Fusenig et al., 1985). In the latter study, 

under-representation of chromosomes 7 and 14 was detected in 6/9 of the cell lines 

analysed. Chromosomes 5 and 6 were frequently over-represented (Fusenig et al.,
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1985). In comparison with karyotypic analysis of papillomas (section 1.5.3.1b; Aldaz 

et al., 1989) these results suggest maintenance of the chromosome 6 status (over

representation), but reversal of the chromosome 7 status (over-representation ->  

under-representation) during the conversion to malignancy. However, events in vivo 

and in vitro may not be directly comparable.

The potential role of chromosome 7 changes in tumour progression and their 

effect on the ras locus is raised by the findings of Quintanilla et al. (1986). It was 

observed that while DMBA-initiated papillomas contained both mutant and normal 

H-ras, some carcinomas were homozygous for the mutant allele. Thus amplification 

of mutant ras, or loss of the normal allele or a linked suppressor gene were proposed 

as possible reasons for this event. The latter possibility is particularly intriguing in 

view of the homology between mouse chromosome 7 and the short arm of human 

chromosome 11 (Figure 5, section 3.2), which harbours at least two tumour 

suppressor genes (section 1.4.3a).

It is possible that malignant progression of mouse skin tumours involves the 

cumulative inactivation of several tumour suppressor genes, as has been suggested 

from analysis of various human cancers (Table 2, section 1.4.3). Very few candidate 

genes o f this type have been investigated. The association o f elevated transin 

expression with malignant conversion has already been mentioned (section 1.5.3.1c), 

as has the potential significance of loss of responsiveness to the negative growth 

regulator TGF-p (section 1.5.3.1a). Matrisian et al. (1986a) speculated that loss of a 

negative growth regulator for transin could mediate deregulation of its transcription.

Presumably, several of the classes of tumour suppressor genes described in 

section 1.4.5 could be involved in mouse skin tumorigenesis. In the near future 

animal models should provide a valuable resource for identifying and characterising 

these genes.
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1.5.5 A new application of animal models: the study of tumour- 

related LOH

Animal model systems have been extensively utilised in the study of oncogene 

activation and function. However, the benefits of such models, including the ability 

to analyse specific stages of tumorigenesis and to control tumour-inducing agents, 

have not been exploited to investigate allele loss in animal tumours. The thesis 

presented here describes the development of the mouse skin carcinogenesis model 

for this purpose. Since the (mostly inbred) mice used in skin tumour studies are 

uniformly homozygous, the application of RFLP analysis to the study of allele loss 

has not been possible to date. In the work described here, this problem has been 

overcome by interbreeding different strains of mice to produce FI hybrids that carry 

specific RFLP markers. Analysis of these markers in papillomas and carcinomas, 

induced by a variety of protocols, permits assessment of the contribution of non- 

random gene loss to tumour development.
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Chapter 2 

Materials and methods
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2.1 Materials

All restriction enzymes were obtained either from Boehringer 

Manheim, Lewes, East Sussex, or from Pharmacia Ltd., Milton Keynes, 

Buckinghamshire. Proteinase K, RNase A and the Klenow fragment of 

Escherichia coli (E . coli) DNA polymerase were obtained from 

Boerhinger. Polynucleotide kinase was obtained from Pharmacia. Taq 

polym erase was from Anglian B iotech Ltd., C olchester. The 

Sequenase™ kit was provided by Cambridge Biosciences, Cambridge.

D eoxynucleotides were supplied by Boerhinger, and mixed 

hexanucleotides, for random-primed labelling, by Pharmacia.

Radio-isotopes were obtained from Amersham International PLC, 

Amersham, Buckinghamshire.

DNA size markers (X/Hindlll and lkb ladder), agarose and urea 

were obtained from Gibco/Bethesda Research Laboratories, Paisley. 

Sea-Plaque agarose was obtained from ICN Biochemicals Ltd., High 

Wycombe.

Biogel A-1.5m agarose beads, for separation o f labeled DNA  

probes from unincorporated nucleotides, was supplied by Biorad Ltd., 

Watford Hertfordshire.

Serum, media and supplements for cell culture were obtained from 

Gibco/Bethesda Research Laboratories, Paisley.

Bacto-tryptone, Bacto-agar and yeast extract were from DIFCO 

Laboratories, Detroit, Michigan, USA.

Guanidine thiocyanate was supplied by Fluorochem Ltd., Glossop, 

Derbyshire.

Phenol was obtained as a water-saturated liquid from Rathbum 

Chemicals Ltd, Walkerbum, Peebleshire.
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Absolute ethanol was supplied by James Burroughs (F.A.D) Ltd., 

Witham, Essex.

All other chemicals were obtained from BDH Ltd., Thomliebank, 

Glasgow, or from Sigma Chemical Co Ltd., Poole,

Dorset.

Plastic-ware for cell culture was supplied by Nunc In termed, 

Roskilde, Denmark and by Sterilin Ltd., Feltham, Middlesex.

Nude mice were supplied by Marian Olac Ltd., Bicester, Oxon.

Biotrace™ and nitrocellulose membranes for nucleic acid blotting 

was obtained from Gelman Sciences Ltd., Broadmills, Northampton and 

Sartorius Instruments Ltd, Belmont, Surrey.

2.2 Preparation of DNA and RNA

2.2.1 Preparation of DNA and RNA from mouse tissue 

and tumours

This was carried out essentially as described by Balmain and 

Pragnell (1983). Tumour or mouse tissues were frozen in liquid nitrogen, 

ground into a fine powder and lysed in 5M guanidine thiocyanate, 

50m M  T ris-H C l (pH 7 .0 ) , 50m M  EDTA and 5% (v /v )  (3- 

mercaptoethanol. This was made to 2% (v/v) sarcosine using 20% (w/v) 

sarcosine. It was found empirically that an appropriate final volume after 

lysis was approximately 8mls per O.lg of tissue. Once lysed, samples 

were centrifuged (106400g, 36hours, 18°C) through a CsCl/50mM 

EDTA (pH 7.0) step gradient (CsCl upper layer, r\ = 3.925; lower layer, 

T| = 4.025). Unused lysate was stored frozen at -20°C. Using this
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approach DNA settles between the layers o f CsCl while RNA is 

pelleted.

DNA was removed from the gradient, precipitated with 2 volumes 

of 70% ethanol, spooled out, washed in 70% ethanol, lyophilised briefly 

and resuspended in TE; 0.5% (w/v) SDS (1ml per O.lg of tissue). This 

was made to 150mM NaCl; 50mM EDTA; 100|!g/ml proteinase K and 

incubated at 37°C for 2 hours. TE buffer was added as necessary to 

reduce viscosity before further purification. The suspension was 

extracted twice with an equal volume of phenol/chloroform, and once 

with an equal volume of 25:1 (v/v) chloroform: isoamyl alcohol. Phase 

separation was achieved by centrifugation (1600g, 5min, room  

temperature), the upper aqueous phase being kept, the lower organic 

phase being discarded. DNA was precipitated by adjusting the solution 

to 0.3M sodium acetate (using a 3M stock solution) followed by addition 

of cold (-20°C) absolute ethanol. The DNA was then spooled out, 

washed in 70% ethanol, lyophilised briefly, resuspended in lOOp.1 TE 

buffer per O.lg of tissue, and stored at 4°C.

The RNA was dissolved in 0.6ml of water, precipitated in 3 

volumes of 70% ethanol overnight at -20°C. It was then pelleted by 

centrifugation (16000g, 15min, 4°C) and resuspended in lOOpl water per

O.lg of tissue. Precipitation was repeated with 2 volumes of ethanol at 

-20°C  overnight, followed by centrifugation and resuspension as just 

described. RNA was stored frozen at -20°C.

Nucleic acid concentrations were measured by determining the 

absorbance at 260nm using the convention that an absorbance of 1 unit 

is equivalent to a double stranded DNA concentration of 50pg/ml and an 

RNA concentration of 40pg/ml (Maniatis e ta lt 1982).
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2.2.2 Preparation of DNA and RNA from cultured cell 

lines

Adherent cultured cells grown on 175cm2 flasks were lysed in 5ml 

of 5M guanidine thiocyanate, 50mM Tris-HCl (pH 7.0), 50mM EDTA 

and 5% (v/v) p-mercaptoethanol. This was collected and the flask rinsed 

with a further 2ml of the same lysis buffer. DNA and RNA were then 

extracted by treating the lysate exactly as described for tumour and 

tissue samples.

2.3 Transformation of bacterial cells with DNA

The following bacterial strains were used in transformations:

1. Two E. coli K12-derived strains (Yanisch-Perron et al,

1985).

JM83: ara, A(lac-proAB), rpsL (=straA),

080, lacZAM15

JM101: thi, SupE, A(lac-proAB), [F’

traD36, proAB,

lacIqZAM15]

2. One E. coli K-12 xE . coli B hybrid (Bolivar & Backman,

1979).

HB101: F-, hsdS20 (rB‘, mB ), recA13, ara-14, proA2, 

lacY l, galK2, rpsL20 (Smr), xyl-5, mtl-1, supE44, X'

Preparation of transformation-competent cells was carried out 

essentially as described by Mandel and Higa (1970).

Fresh overnight cultures were diluted 1:100 in 50ml medium: L- 

broth (1% w/v bacto-tryptone; 0.5% w/v yeast extract; 1% w/v NaCl) for 

JM83 and HB101 cells; 2x TY (1.6% w/v Bacto-tryptone; 1% w/v yeast
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extract; 0.5% w/v NaCl) for JM101 cells. The culture was grown to an 

O D ^  of 0.3-0.4. Cells were pelleted by centrifugation (lOOOg, 5min, 

4°C), resuspended in 1/2 volume of pre-cooled 50mM CaCl2; lOmM 

Tris-HCl (pH8.0), incubated at 0°C for 30min, then pelleted (lOOOg, 

5min, 4°C) and resuspended in l/20th of the original volume of ice cold 

50mM CaCl2; lOmM Tris-HCl (pH8.0). Cells were used immediately or 

stored at 4°C for no longer than 24 hours.

100(il o f ligation mixture, containing up to lOOng of DNA in TE 

buffer, was added to lOOpl of competent cells, incubated on ice for 

30min then heat shocked at 42°C for 2min.

For plasmid transformation, heat-shocked JM83 or HB101 cells 

were added to 1ml of L-broth; 0.2% glucose and incubated at 37°C (a) 

for 30min if the culture was to be spread on 9cm Petri dishes containing 

L-broth; 1.5% w/v agar; 100pg/ml ampicillin, or (b) for 60min if on 

dishes containing L-broth; 1.5% w/v agar and 15|ig/ml tetracyclin. This 

incubation period allows for the expression o f antibiotic resistance 

genes.

For M l3 transfection, heat-shocked JM101 cells were added to a 

mixture containing 0.2ml of exponentially growing cells; 40pl 2% X-gal 

(5-bromo-4-chloro-3-indoyl-p-galactoside) in dimethlylformamide; 40pl 

lOOmM IPTG (isopropyl-p-D-thiogalactopyranoside). The mixture was 

immediately added to 3ml molten H top agar (1% w/v Bacto-tryptone; 

0.8% w/v NaCl; 0.8% w/v agar), mixed quickly and poured into a 9cm 

Petri dish containing solidified H agar (1% w/v Bacto-tryptone; 0.8% 

w/v NaCl; 1.2% w/v agar).

Plates were incubated inverted, at 37 °C overnight.
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2.4 Preparation of plasmid DNA

2.4.1 Preparation of plasmid DNA in small amounts

Minipreparation o f plasmids was carried out essentially as 

described by Maniatis et al, (1982); the alkaline lysis method.

A single transformed bacterial colony containing the plasmid of 

interest was inoculated into 5ml L-broth containing either ampicillin at 

lOOpg/ml or tetracyclin at 15|ig/ml. The culture was incubated at 37 °C 

overnight with vigorous shaking. Bacterial cells were pelleted from 

1.5ml of the overnight culture by microcentrifugation (12000g, 3min, 

room temperature) and the pellet resuspended in lOOpl o f solution 1 

(50mM glucose; 12.5mM Tris-HCl pH8.0; lOmM EDTA; 2mg/ml 

lysozome) by vortexing and incubated at room temperature for 5min to 

allow bacterial lysis. (0.5ml aliquots of the remaining 3.5ml of bacterial 

culture were mixed with 0.5ml glycerol and stored at -20°C.)

0.2ml freshly-prepared solution 2 (0.2M NaOH; 1% SDS) was 

added and mixed gently without vortexing followed by incubation on ice 

for 5min. The solution was neutralised by addition of 0.15ml of ice-cold 

5M potassium acetate pH4.8 followed by thorough mixing and 

incubation on ice for 5min. Precipitated genomic DNA and proteins 

were removed by microcentrifugation for 5min. The supernatant was 

extracted once with an equal volume of phenol/ chloroform, plasmid 

DNA precipitated from the upper aqueous phase with 2 volumes of 

e th a n o l at room  tem p eratu re  for  2m in  and p e lle te d  by 

microcentrifugation for 5min at room temperature. After rinsing with 

70% ethanol the pellet was lyophilised for 5min and resuspended in 50(il 

TE buffer. The solution was made to 20|ig/ml RNase A and incubated at
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70°C for 1 hour (in addition to degrading RNA this also inactivates 

DNases). Plasmid DNA was stored at 4°C.

2.4.2 Preparation of plasmid DNA in large amounts

Bulk preparation of plasmid DNA was carried out using a scaled 

up version of the minipreparation method described in section 2.4.1.

Bacteria containing the plasmid o f interest were taken from 

storage (section 2.4.1) and 0.1ml inoculated into 10ml o f L-broth 

supplemented with 100p.g/ml of ampicillin or 15|ig/ml of tetracyclin. 

Alternatively, a culture was set up by innoculating the growth medium 

with a single colony of bacteria grown up from the transformation 

procedure (section 2.3). After overnight growth at 37°C with vigorous 

shaking, 5ml of the culture was transferred to an additional 500ml of 

identical medium and incubated overnight again under the same 

conditions. Bacteria were then pelleted by centrifugation (4000g, lOmin 

4°C), resuspended in 1/20 volume (25ml) of solution 1 (section 2.4.1), 

mixed vigorously by pipetting and left at room temperature for 10-15min 

to allow for bacterial lysis. 1/10 volume (50ml) of freshly prepared 

solution 2 (section 2.4.1) was then added, mixed gently (so as not to 

dislodge chromosomal DNA from cell fragments) and left on ice for 

lOmin (or until the solution was clear indicating complete lysis). The 

solution was then neutralised by additon of 1/13 volume (38ml) of 5M 

potassium acetate pH4.8, mixed thoroughly and incubated on ice for 

lOmin or longer. Precipitated genomic DNA was then removed by 

centrifugation (16000g, lOmin, 4°C). The supernatant was carefully 

filtered through gauze and plasmid DNA precipitated by addition of 0.6 

volumes o f cold (-20°C) isopropanol followed by centrifugation 

(16000g, lOmin, 4°C). The pellet was resuspended in lOmls of TE
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buffer plus 1/2 volume o f 7.5M ammonium acetate followed by 

centrifugation (16000g, 5min, 4°C) to remove precipitated protein. 

Plasmid DNA was precipitated by addition of 2 volumes of absolute 

ethanol and pelleted by centrifugation (16000g, lOmin, 4°C). The pellet 

was dissolved in 6.8ml of TE buffer. After the additon of 7.2g CsCl and 

0.6ml lOmg/ml EtBr the solution was centrifuged (140000g, 40 hours, 

20°C). The plasmid band was removed by pipetting and extracted five 

times with an equal volume o f propan-2-ol. Plasmid DNA was 

precipitated by addition of two volumes of 70% ethanol at -20°C  for a 

maximum of 2 hours (any longer and the CsCl also precipitates), 

centrifuged (16000g, 20min, 4°C), and the pellet dried and resuspended 

in 0.25ml TE. Plasmid DNA was stored at 4°C and its concentration 

measured as described for eukaryotic DNA in section 2.2.1.

2.5 Preparation of bacteriophage X DNA

Bacteriophage X DNA was prepared essentially as described by 

Maniatis et al, (1982).

100ml of LAM [L-broth (section 2.3); 20% w/v maltose; 1M 

M gS04] was inoculated with a single colony of the bacterial host for the 

virus, DB102, and incubated at 37°C overnight. Cell concentration was 

then estimated on the basis that 1 O D ^  = 8 x 108 cells/ml. 1010 cells 

were withdrawn, centrifuged (4000g, lOmin, room temperature) and 

resuspended in 3ml lOmM M gS04. These cells were then infected with 

4 x 107 phage (multiplicity of infection = 1:500) at 37°C for 15min. 

Infected cells were added to 500ml LAM and grown overnight at 37°C. 

Cells were lysed by addition of 10ml chloroform with shaking for 20min 

at 37°C. Cell debris was pelleted by centrifugation (7500g, 5min, 4°C)
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and the supernatant treated with DNase and RNase (both l|ig/m l) for 1 

hour at 37°C. The solution was adjusted to 1M NaCl; 10% (w/v) PEG 

6000), left for a minimum of 3.5 hours at 4°C, centrifuged (1 lOOOg, 

lOmin, 4°C) and the pellet resuspended in 15ml SM buffer (0.05M Tris- 

HCl pH7.5; 0.1M  NaCl; 8mM M gS 04; 0.01% v/v gelatin). The 

bacteriophage were then extracted with an equal volume of chloroform, 

centrifuged (1600g, 15min, 4°C), and the upper phase (containing 

phage) layered onto a CsCl step gradient previously overlayed with 

0.75ml 20% (w/v) sucrose in SM. The CsCl gradient consisted of a top 

layer of 0.75ml (q = 1.362), a middle layer of 0.75ml (q = 1.381), and a 

bottom layer o f 1ml (q = 1.392); in each case CsCl was dissolved in SM 

buffer. After centrifugation (80000g, 90min, 4°C) the bacteriophage 

(which form a bluish band at the interface between the top and middle 

CsCl layers) were removed using a micropipette and dialysed against 

500ml lOmM NaCl; 50mM Tris-HCl pH 8.0; lOmM MgCl2 for 2x 2 

hours to remove CsCl.

Dialysed phage solution was made to 20mM EDTA; 50|ig/ml 

proteinase K; 0.5% SDS, mixed thoroughly and incubated for 1 hour at 

65°C. The solution was extracted twice with an equal volume of phenol: 

chloroform (50: 50) and once with chloroform, the aqueous phase being 

recovered each tim e after centrifugation (1600g, 5min, room  

temperature). Phage DNA was precipitated by adjusting the solution to 

0.3M ammonium acetate, followed by addition of 2 volumes of absolute 

ethanol and incubation at -20°C  overnight. After microcentrifugation 

(12000g, 25min, room temperature) DNA was washed in 70% ethanol, 

microcentrifuged again for 5min, lyophilised and redissolved in TE. The 

concentration was determined as described in section 2.2.1.
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2.6 Restriction enzyme digestion of DNA

2.6.1 Complete digestion

Plasmid DNA was digested with 5-10 units enzyme/|ig DNA for 

1-3 hours under conditions specified by the supplier. Eukaryotic DNA 

was digested with 10 units enzyme/|ig DNA overnight under conditions 

specified by the supplier. Digested DNA was precipitated by adjusting 

the solution to 0.3M sodium acetate followed by addition o f two 

volumes of cold absolute ethanol, incubation at -20°C  for 2-16 hours 

and microcentrifugation (12000g, 25min, room temperature). The pellet 

was washed in 70% ethanol, microcentrifuged for 5min, after which it 

was lyophilised briefly and dissolved in TE buffer.

2.6.2 Partial digestion

Partial digestion for restriction mapping of XN1 DNA (section 

2.20) was carried out using 0.5p.g of XNl DNA and other constituents as 

prescribed by the enzyme manufacturers. Five reactions were set up, 

each with a different concentration of enzyme: 1 unit/pl, 0.2 units/|il, 

0.04 units/|il, 0.008 units/|il and 0.0016 units/p.1. Digestion was allowed 

to proceed for 1 hour at 37°C, terminated by heating for lOmin at 70°C 

and the contents of all five reactions combined.

2.7 Agarose gel electrophoresis

Agarose gel electrophoresis o f DNA for either analytical or 

preparative purposes was performed using a flat bed apparatus. Gels 

were made from 0.8-2.0% w/v agarose dissolved and cast in buffer: lx
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TAE (40mM Tris-HCl pH7.8; 20mM sodium acetate; ImM EDTA when 

gels were required for Southern blotting (section 2.10); lx  TBE (90mM 

Tris-HCl; 90mM boric acid; 2,5mM EDTA, pH8.3) in all other 

instances. Gels were submerged in the appropriate buffer and wells 

loaded with DNA samples in TE buffer (3}il/pg of eukaryotic DNA, 

variable volumes for plasmid DNA) mixed with 1/6 volume of gel- 

loading dye (0.25% bromophenol blue; 0.25% xylene cyanol; 15% 

Ficoll type 400 in H 20). TAE gels were run at 2V/cm for 16-20 hours 

w hile  TBE gels were run at 8-15V /cm  for 30-60m in . After 

electrophoresis gels were soaked in ethidium bromide solution (l|ig/m l 

for lOmin), washed briefly in water to remove excess ethidium bromide 

and the DNA visualised by illumination with short wave (312nm) ultra

violet light and photographed through a red filter using Polaroid type 57 

high-speed film.

2.8 Isolation of plasmid insert DNA for use as 

radioactively labelled DNA probes

Electrophoresis of plasmid restriction digests (section 2.6) was 

carried out through lxTBE (section 2.7); 0.6-1.5% Sea-Plaque agarose 

gels. The fragment o f interest was excised  after staining and 

photographing the gel (section 2.7). After adjusting the concentration to 

approximately 3ng/|il DNA inserts were ready for labelling using the 

random priming method (section 2.9).
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2.9 Random priming using Klenow polymerase

Double stranded fragments for probing DNA blots (section 2.11) 

were labelled using mixed hexadeoxyribonucleotide primers of random 

sequence essentially as described by Feinberg and Vogelstein (1983 and 

1984).

A Sea-Plaque agarose suspension containing lOOng of DNA was 

boiled at 100°C for 7min then labelled in 50p.l of a solution containing 

50mM Tris-HCl pH8.0; 5mM MgCl2; lOmM P-mercaptoethanol; 4mM 

each of dATP, dGTP and dTTP; 0.2M HEPES (N-2-hydroxyethyl- 

piperazine-N’-2 ’ethane sulphonic acid) pH6.6; 110|ig/m l mixed 

hexadeoxynucleotides; 0.4mg/ml bovine serum albumin. Labelling was 

with 1.85xl06Bq (l.lxl014B q/m m ol) of [a-32P]dCTP using 5 units 

Klenow enzyme (labelling grade). Incubation was for 2.5 hours at room 

temperature.

Labelled probes were generally diluted to 0.3ml with water, 

denatured by b o ilin g  and used im m ediately. The percentage 

incorporation of labelled nucleotides was occasionally determined by 

Cerenkov counting. l |i l  o f the reaction was spotted onto a 2.5cm disc of 

DE-81 filter paper, dried and cpm determined using a scintillation 

counter set to measure 3H. Unincorporated nucleotides were then 

removed by 3-4 4min washes in 5ml 0.5M Na2H P04. The filter was then 

washed twice with distilled water, twice in ethanol and once in ether 

then dried and cpm determined again. Percentage incorporation varied 

from 45-90% , although in most cases it was around 80%. If 

incorporation was below 50% unincorporated nucleotides were 

separated from labelled probe by applying the diluted reaction mixture to 

a column consisting o f a Pasteur pipette filled with Biogel-A 1.5m
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equilibrated with O.lxSSC (20xSSC is 3M NaCl; 0.3M sodium citrate 

pH7.0); 0.1% SDS. Probe was eluted using this buffer, 0.2ml fractions 

collected and 2|il aliquots assayed by scintillation counting. Fractions 

containing labelled probe were pooled and used in hybridisation 

reactions (section 2.11).

2.10 Southern blot transfer of DNA

DNA fragments were separated by agarose gel electrophoresis 

(section 2.7) and transferred to Biotrace™ or nitrocellulose membranes 

by the method of Rigaud et al, (1987). Following ethidium bromide 

staining and photography, DNA was denatured by rinsing the gel twice 

in 0.5M NaOH; 1.5M NaCl for 20min each, followed by two 30min 

washes in transfer solution (1M ammonium acetate; 0.02M NaOH). The 

gel was then transferred to a raised platform covered with a sheet of 

Whatman 3MM paper soaked in transfer solution, such that the ends of 

the filter paper extended below the platform into a reservoir of this 

solution. To ensure that all movement of transfer solution occurred 

through the gel, it was surrounded with plastic sheets. A sheet of 

Biotrace™ membrane (pre-soaked in distilled water) was then placed on 

the gel. The membrane was then covered in 2 sheets of Whatman 3MM 

paper (pre-soaked in the transfer solution). Finally the contents of a box 

of tissues was placed on top of the filter paper and compressed with a 

lkg weight. Tranfer was allowed to continue overnight after which the 

membrane was washed briefly in 2xSSC, baked at 80°C for 2.5-3 hours 

and stored in a sealed plastic bag at 4°C until required.
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2.11 Hybridisation of radioactively labelled 

probes to Southern blots

2.11.1 Single copy probes

Filters were prehybridised at 42°C in a shaking water bath for a 

minimum of 4 hours in sealed plastic bags containing 20ml of pre-heated 

50% formamide; 4x SSPE (20x SSPE is 3.6M NaCl; 200mM NaH2P 0 4 

pH7.4; 20mM EDTA pH7.4); 0.5% (w/v) dried milk (Marvel); 1% SDS; 

10% (w/v) dextran sulphate; 0.5mg/ml denatured salmon sperm DNA. 

Radio-labelled probe, made as described in section 2.9, was added after 

prehybridisation and hybridised overnight at 42°C. Filters were then 

washed in lxSSC; 0.1% SDS, then 0.5xSSC; 0.1% SDS, both at room 

temperature for 15min, and finally, in 0.1XSSC; 0.1% SDS at 55-65°C 

for 30min, the actual temperature depending on the probe (fes, 50°C; 

H-ras and Cas-1, 55°C; Int-2, Hbb and IL3, 65°C). Excess moisture was 

blotted off the filter with Whattman 3MM paper after which it was 

wrapped in thin plastic then autoradiographed using Kodak X-OMAT 

AR and/or X-OMAT S film at -70°C  with intensifying screens.

2.11.2 Satellite probes

Prehybridisation of filters that were to be hybridised with a 

satellite DNA probe was carried out in three stages. All prehybridisation 

buffers were pre-heated to 65°C before use. First the filter was 

incubated in a sealed plastic bag in 20ml lx  Denhardt’s solution (lOOx 

Denhardt’s is 2% bovine serum albumin; 2% polyvinylpyrollidone; 2% 

Ficoll pH8.0) at 65°C for 30min. Second , this solution was poured off 

and the filter incubated with 20ml filter mix ( lx  Denhardt’s; lxSSC;
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0.1% SDS; 20ng/ml denatured salmon sperm DNA) at 65°C for 30min. 

Finally, after pouring off this solution, the filter was incubated with 20ml 

filter mix; 6% PEG 6000 at 65°C for 15min. (The PEG was always 

added to the filter mix immediately prior to use). Denatured radio

labelled satellite DNA probe was added to the plastic bag and hybridised 

overnight at 65°C. Filters were washed in lxSSC; 0.1% SDS at room 

temperature for 15min, then in lxSSC; 0.1% SDS at 65°C for 1 hour. 

Filters were autoradiographed as described above.

2.12 Densitometry/ preflashing film

Quantitative densitometric analysis of autoradiograph film images 

requires the relationship between the absorbance of the film image and 

the amount of radioactivity to be proportional (Laskey, 1980). This was 

achieved by preflashing Kodak X-OMAT S film (through exposure to a 

flash o f light from a photographic flash unit lasting approximately 

lmsec) so that the absorbance of the film was increased by 0.15 (A540) 

above the absorbance of unexposed film (Laskey, 1980). The flash unit 

was covered with yellow/orange paper to reduce light output and the 

distance from the film required to increase the absorbance by the 

appropriate amount determined empirically. Densitometry was carried 

out using a Molecular dynamics 300A laser densitometer.

2.13 Oligonucleotide synthesis

Oligonucleotides were synthesised on an Applied Biosystems 

381A Synthesiser using the manufacturers protocols and reagents, and 

after deprotection, were used without further purification.
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2.14 DNA amplificatin by the polymerase chain 

reaction (PCR)

DNA was amplified as described by Saiki et al, (1988). A 0.1ml 

reaction, containing lp g  of genomic DNA in 67mM Tris-HCl (pH8.8); 

16.7mM NH4S 0 4; 6.7mM MgCl2; lOmM p-mercaptoethanol; 6.7p.M 

EDTA; 17jxg of BSA; each amplimer at l(iM; each dNTP at 1.5|iM; and 

overlayed by 100}il of paraffin oil, was incubated at 91°C for 7min. 

After allowing 3min at 45°C to allow amplimer annealing, 2 units of 

therm ostable D NA polym erase from Thermus aquaticus  (Tag 

polymerase) was added and the extension reaction caried out at 72°C for 

2min. Reactions were subsequently subjected to 35 cycles, employing 

the following conditions: 91°C for lmin 30sec; 45°C for lmin 30sec; 

72°C for 2min. Thermal cycling was controlled by a programmable 

heating block (Perkin Elmer-Cetus).

2.15 5’ end-labelling of oligonucleotides

Oligomers, for use as hybridisation probes (section 2.16) and 

sequencing primers (section 2 .18), were 5 ’ end-labelled using 

(y-32P)ATP and T4-polynucleotide kinase.

For hybridisation probes, 30ng oligomer was added to 1.5pl lOx 

kinase buffer (0.5M  Tris-H Cl pH 7.6; 0 .1M  M gC l2; 50mM  

d i t h i o t h r e i t o l ;  I m M  s p e r m i d i n e ;  I m M  E D T A ) ,  5p,l o f  

1.85xl014Bq/mmol [y-32P]ATP, 20units of T4 polynucleotide kinase, 

made to 15|il with water and incubated at 37°C for 40min.

Sequencing primers were labelled by adding 40ng oligomer to 2p.l 

lOx kinase buffer, 2|il 1.85x1014Bq/mmol [y-32P]ATP, 10 units of
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kinase, made to 20|il with water and incubated at 37°C for 40min. The 

reaction was terminated by addition of 3pl 0.1M EDTA and enzyme 

inactivated by heating at 70°C for lOmin.

2.16 Oligonucleotide dot-blot hybridisations

Amplified DNA (2-5pl) was spotted onto Biotrace™ RP nylon 

membrane, and the filters dried at 80°C for 3 hours. Filters were 

prehybridised in 5xSSPE (20x SSPE is 3.6M NaCl; 200mM NaH2P 0 4 

pH7.4; 20mM EDTA pH7.4)) containing denatured sonicated salmon 

sperm DNA (500p,g/ml) at 56°C overnight. Radio-labelled oligomer 

probe (section 2.15) was then added (2ng/ml, specific activity 109 

dpm/(ig) and the filter hybridised overnight at 56°C. The filters were 

washed in 2xSSPE; 0.1% SDS for 2x 30min at 20°C, then in 5xSSPE; 

0.1% SDS for 2x 30min at selective discriminating temperatures (see 

Table 3). Filters were autoradiographed by exposure to Kodak X-Omat 

AR and or X-omat S film at -70°C  using intensifying screens.

2.17 Purification of amplified DNA for 
sequencing

Amplified DNA was sepqrated from unincorporated nucleotides 

with BRL NACS PREPAC™ mini-columns, using the manufacturers 

instructions for recovery of doublestranded DNA of less than lOOObp.

Columns were hydrated in 2M NaCl; TE buffer, and equilibrated 

in low salt buffer (0.2M NaCl; TE buffer). 80-90% of the 100|xl sample 

obtained from amplification (section 2.14) was made to 0.2M NaCl; TE 

and loaded onto the column. The column was washed through with
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A)
Amplimer Reoion Sequence

Ex1A Codon CTTGGCTAAGTGTGCTTCTCATT
12B 12/13  CACCT CTATAGTGGGAT CAT ACT CGTC

Ex2A Codon CTAAGCCTGTTGTTTTGCAGGAC
Ex2B 61 GCTAGCCAT AGGT GGCT CACCT G

B) Discriminating 
Sequence temperature nDl

Discriminatim

Codon: 9 10 11 12 13 14 15

Normal TG GGC GCT GGA GGC GTG GG 67

GAA 65
GTA 65
GCA 67

Mutant CGA 67
AGA 65

GNC 63
NGC 63

c )
Discriminating 

^ 9 temperature CCi
Discriminatim

Codon: 58 59 60 61 62 63 64

Normal ACA GCA GGT CAA GAA GAG TA 61
AAA 59
GAA 61
CGA 62

Mutant CCA 62
CTA 61
CAC 62
CAT 61



Table 3 Sequence of o ligom ers used as prim ers for PCR  
amplification and to detect point mutations in the H -ras gene

a) The oligonucleotides were based on the sequence of the mouse c-H-ras gene 
(Brown et al, 1988). Ex l A corresponds to the intron sequence immediately 5 ’ to the 
second exon, while 12B hybridises to the last 27bp of the second exon. Ex2A and 
Ex2B correspond to intron sequences immediately outwith exon 2. The letter A 
signifies the 5 ’-amplimer and B the 3 ’-amplimer.

b) Sequence of oligomers used to detect point mutations at codons 12 and 13.

c) Sequence o f oligomers used to detect point mutations at codon 61.

Oligomers containing thymidine at the first base of either codon 12 or codon 
61 were omitted since these would detect nonsense codons. Also omitted were 
probes for mutations in the third base of codons 12 or 13, as no change in amino-acid 
would occur. Probes 13A and 13B were each mixtures o f oligomers, with N 
representing either A, C or T.



3-5ml low salt buffer, and DNA eluted using 0.2ml high salt buffer (1M 

NaCl; TE). The amount of DNA present was quantified approximately 

by spotting 2jxl of each sample onto a piece of plastic wrap, along with a 

series of DNA spots o f equal volume (2pl) but various amounts (1, 2, 

10, 20 and 40ng). To each spot an equal volume o f TE containing 

2pg/ml of ethidium bromide was added and mixed. The spots were 

photographed as described for agarose gels in section 2.7 and the 

amount of DNA in the samples estimated by comparison with the 

standards. Using this approach it was estimated that approximately 

0.5jig of DNA was recovered from the columns. DNA was precipitated 

by adjusting the samples to 0 .01M MgCl2 followed by addition of 2 

volumes of cold ethanol and incubation at -20°C  overnight. DNA pellets 

were microcentrifuged (12000g, 25min, room temperature), washed in 

70% ethanol, microcentrifuged again for 5min, lyophilised  and 

redissolved in 10p.l TE.

2.18 Sequencing of amplified DNA

5pl of end-labelled primer (2ng/pl; section 2.15) was annealed 

with 5p,l purified amplified 150bp DNA fragment (50ng/fil; section 2.17) 

in a total volume o f 12|i.l of a lOmM Tris-HCl pH8.5; lOmM MgCl2 

solution by heating at 100°C for 3min and cooling immediately on ice. 

2|il of Sequenase™ (0.5units/|il) was then added to the annealed DNA. 

Sequencing reactions were then initiated by adding 3.5p.l o f this solution 

to each of four tubes containing 2pl o f the following mixtures of  

deoxyribonucleotides (dNTPs) and dideoxyribonucleotide (ddNTP):

Tube A 80|iM dATP; 80^M dTTP; 80|iM dGTP; 80^iM dCTP; 8|iM  

ddATP; 50mM NaCl
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Tube T 80pM dATP; 80|iM dTTP; 80^iM dGTP; 80^M dCTP; 8|iM  

ddTTP; 50mM NaCl

Tube G 80}lM dATP; 80^iM dTTP; 80iiM dGTP; 80^iM dCTP; 8^iM 

ddGTP; 50mM NaCl

Tube C 80p.M dATP; 80^M dTTP; 80^M dGTP; 80^M dCTP; 8^iM 

ddCTP; 50mM NaCl

After incubation at 37°C for 5min the reactions were terminated 

by addition of 4pl of stop solution (95% formamide; 20mM EDTA; 

0.05% w/v Bromophenol Blue; 0.05% w/v Xylene cyanol). Samples 

were denatured by heating at 80-90°C for 5min and run on an 8% 

denaturing polyacrylamide gel (section 2.19).

2.19 Denaturing polyacrylamide gel 
electrophoresis

Polyacrylamide gels for running sequenced DNA samples (section 

2.18) were made by mixing 50ml of 8% w/v acrylamide; 0.4% w/v 

bisacrylamide; 8M urea; lx  TBE pH8.3 with 200|il o f 10% ammonium 

p e r s u l p h a t e  a n d  2 5 (X1 o f  T E M E D  ( N , N , N ’ , N ’ - t e t r a -  

methylethylenediamine). Immediately after mixing these reagents, gels 

were cast by pouring between two glass plates separated by 0.4mm  

plastic spacers, and a well-former inserted. Once solidified the gel was 

placed on a vertical apparatus with each end submerged in a reservoir of 

lx  TBE buffer. Gels were run at 40W for 2 hours after which they were 

transferred to Whatman 3MM paper for drying. Autoradiography was 

carried out as described in section 2.11.1.
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2.20 Restriction mapping of X.N1 by 

hybridisation with cos ends

The AN1 clone was mapped by hybridisation of radio-labelled 

oligonucleotides (complementary to the cos ends of bacteriophage X) to 

partial digests of XN1 essentially as described by Rackwitz et al, (1984). 

Following hybridisation, gel electrophoresis, and autoradiography the 

restriction map was read from the ladder of partial digestion products.

C o s - L  ( 5 ’ - d A G G T C G C C G C C C - 3 ’ ) and C o s - R  ( 5 ’ - 

dGGGCGGCGACCT-3’) oligonucleotides were supplied by K. Brown 

and 5’ end-labelled as described for oligomer hybridisation probes in 

section 2.15 0.12pmol of radio-labelled cos-L or cos-R was mixed with

0.15pg of partially digested A.N1 DNA (section 2.6.2) and NaCl and 

water added to obtain lOjil o f lOOmM NaCl. The mixture was incubated 

for 4min at 68°C and immediately transferred to a 45°C waterbath for 

30min. 5pl of gel-loading buffer (section 2.7) was added and the mixture 

loaded onto a 0.5% agarose gel. Electrophoresis was carried out at 

1.5V/cm for 36 hours in lx  TAE. The gel was dried onto Whatman 

DE-81 cellulose paper and autoradiographed as described in section 

2.11.1.

2.21 Eukaryotic cell culture

2.21.1 Explants from primary tumours

Tumour explants were initially grown in Special Liquid Medium 

(SLM) supplemented with 20% v/v foetal bovine serum (FBS); 4mM 

glutamine; 5jig/ml penicillin; 100|ig/ml streptomycin in 5% C 0 2/95%
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air at 37 °C. The concentration of FBS was reduced to 10% once the 

tumour cell line was established (passage level 2-3). Explants were 

photographed, using a Leitz Wetzler Diavert microscope with polaroid 

land attachment at 60x and 120x magnification in phase. Photographs 

were taken at the initial stage of growth and just before storage in liquid 

nitrogen and/or lysis for preparation of DNA.

All cells were passaged by first washing with PBS (phosphate 

buffered saline: 0.14M NaCl; 27mM KC1; lOmM Na2H P 04; 15mM 

K2HP04), followed by removal of cells with trypsin solution (0.025% 

w/v in citrate buffer, pH 7.8). Trypsin was inactivated by addition of a 

5-10 fold volume of culture medium, the mixture transferred to a new 

flask and medium added to the appropriate volume. If required, an 

aliquot of trypsinised cells was removed for determination o f cell 

number using a Coulter counter.

One explant, XMSC1, was grown using feeder cells (grown and 

irradiated by K. Parkinson) at 1.5 x 104cells/cm2.

2.21.2 Tumour growth in nude mice

As a test for tumo rigenicity and as a purification step, some cell 

lines were grown in nude mice. Cells were trypsinised, counted, 

centrifuged (lOOOg, 5min, room temperature), and redissolved in SLM at 

2 x 107cells /m l. 4-6  w eek old nude m ice were then injected  

subcutaneously with 2 x 106 cells at two points. If required, explants 

were grown from nude mouse tumours as described in section 2.21.1.

2.21.3 Virus preparation

HaMSV was isolated from non-producer NIH 3T3 cells after 

rescue with Friend murine leukemia virus (obtained from I.B. Pragnell).
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Friend helper virus was obtained from SCI cell lines (clones 643/22 F 

and 643/22 N) infected with Friend murine leukemia virus (from I.B. 

Pragnell and W. Ostertag) (Ostertag et a ly 1980). Virus-containing 

supernatants were concentrated as described by Ostertag et a l, (1980).

2.22 Ploidy determination

Ploidy of cell lines was determined by flow cytometry using the 

Becton-Dickinson FACS II. Cells were trypsinised, diluted with SLM; 

10% FBS, centrifuged (250g, 5min, room temperature) and resuspended 

vigorously in 10ml cold PBS. Centrifugation and resuspension were 

repeated, and, after centrifuging for a third time, cells were fixed by 

resuspending vigorously in 5ml cold 70% methanol. 5 x 106 cells were 

pelleted by centrifugation as above and resuspended in staining solution 

(20pg/ml chromomycin A3; 7.4pM MgCl2) to 1 x 106cells/ml. The 

chromophore was excited using a wavelength o f 458nm.

M ouse keratinocytes were used as a standard in p loidy  

determination. Mouse dorsal skin was shaved and treated with a 

depilatory agent. 48 hours later mice were sacrificed, the dorsal 

epidermis scraped off and placed in a beaker o f distilled water 

(lml/mouse skin) at 55°C for 30sec then cooled on ice. The sample was 

then homogenised (4 strokes maximium speed), centrifuged (900g, 

lOmin, room temperature) and resuspended in 0.18M Tris-HCl (pH7.5), 

lmg/ml RNase at 37°C for 1 hour. Cells were then centrifuged, (400g, 

5min, room temperature) and resuspended in staining solution.
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2.23 Animals

2.23.1 Sources

BALB/c and C57BL/6J mice were obtained from Olac. NIH/Swiss 

mice were originally obtained from Olac and have been bred in the 

Beatson for 8 years. SENCAR mice were obtained from A. Kinsella at 

the Paterson laboratories. NMRI mice were a gift from the School of 

Tropical Medicine, Liverpool. 129 and TFH mice were a gift from J. 

Peters at the MRC Radiobiology Unit, Harwell. Mus spretus x CBA/J 

hybrids were a gift from G. Bulfield at the AFRC, Edinburgh.

2.23.2 Tumour induction

8-12 week old mice were used for tumour induction in every case. 

The dorsal skin was shaved and the mice initiated 24 hours later. 

Promotion was started 1 week after this, except in the virus initiated 

group where promotion was started 24 hour after initiation. Protocols 

used were as follows:

1. Initiation: 25fig DMBA in 200|il acetone.

Promotion: lO^M TPA in 200|il acetone twice weekly.

2. Initiation: 25|ig DMBA in 200|ll acetone.

Promotion: 25p.g DMBA in 200|il acetone twice weekly ;

this dose irritated the skin and was therefore reduced 

4-fold 4 weeks after initiation.

3. Initiation: 600|ig MNNG in 200[il acetone.

Promotion: 10r4M TPA in 200|il acetone twice weekly.

4. Initiation: 600|lg MNNG in 200p.l acetone.

Promotion: 600)lg MNNG in 200|ll acetone twice weekly;

this dose irritated the skin and was therefore reduced
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4-fold 3 weeks after initiation.

5. Initiation: Mice were treated with 10'4M TPA in 200jil

acetone, then 24 hours later mice were ether-anesthetised 

and treated with lOOp.1 of HaMSV viral supernatant (0.2-1 

x 106 focus forming units/ml) containing polybrene 

(2jxg/ml) by scarification using a 25 gauge needle 

attached to a 1ml syringe.

Promotion: 10‘4M TPA in 200|il acetone twice weekly.

6. Initiation: 25p.g DMBA in 200|il acetone.

Promotion:25p.g DMBA in 200fil acetone once a week and 

10‘4M TPA in 200(il acetone once a week.

7. Initiation: 25|ig DMBA in 200pl acetone.

Promotion: 25}ig DMBA in 200|il acetone twice weekly.

The

DMBA concentration was raised 4-fold 5 months after 

initiation since no tumours had developed on the CBA x 

Mus spretus mice that received this treatment.

2.24 Histology

Tumours were fixed in 5% formalin before embedding in paraffin, 

sectioning, and staining in hematoxylin and eosin.
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Chapter 3

Results
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3.1 Loss of normal ras genes in skin carcinomas in 

inbred mice

Initiation o f  skin carcin ogen esis by treatm ent w ith 7 ,12 -d im eth y l 

benz[a]anthracene (DMBA) and promotion with TPA leads to formation of tumours 

with H-ras genes activated by an A:T->T:A transversion at codon 61 (Quintanilla et 

al., 1986; Bizub et al 1986). This mutation introduces a new restriction site for the 

enzyme X bal, which therefore constitutes a tumour-specific RFLP. Quintanilla et al. 

(1986) showed that the mutation appears to be heterozygous in most premalignant 

papillomas, but can be homozygous or amplified in some carcinomas. Analysis of 

primary tumours can be complicated by the presence of contaminating stromal cells, 

leading to the presence of faint bands corresponding to normal H-ras alleles on 

Southern blots. Complete loss of the normal allele in carcinomas has been confirmed 

by investigating early passage cell lines derived from carcinomas. Figure 4 shows 

that the cell line carc C, derived from a primary carcinoma induced in an NIH mouse, 

has totally lost the normal ras allele. Similar results were obtained in at least 30-40% 

of carcinomas from NIH mice (P. Bums, personal communication). Loss of normal 

H-ras genes is therefore a relatively frequent event in this mouse strain.

Figure 4 also shows analysis o f a cell line (PDV) transformed in vitro  by 

DMBA treatment (Fusenig et al., 1985) and a derivative line (PDVC57) obtained by 

transplantation in a syngeneic host. PDV cells are known to contain 3 copies of 

mouse chromosome 7 (Fusenig et a l., 1985). It can be seen that 2 o f the chromosome 

7 homologues carry normal H-ras genes whereas 1 exhibits the codon 61 RFLP. The 

approximate 2:1 ratio of normal to mutant alleles was confirmed by densitometric 

scanning o f amplified PDV DNA probed with oligomers which distinguish the 

normal and mutant alleles (A. Buchmann, personal communication). The PDVC57 

line, on the other hand, displays an excess o f mutant H-ras alleles, in accordance 

with its more aggressive tumorigenic properties. Full details of the derivation and
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Figure 4 Loss of heterozygosity at the H-ras locus
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properties of these cell lines will be reported elsewhere (Quintanilla et a l in 

preparation), but they serve as useful controls for the RFLP analysis described 

below.

3.2 The use of hybrid mice to analyse mechanisms of 

allele loss

The above results showed that the normal ras allele is lost in some tumours 

carrying the codon 61 RFLP. At least three possible explanations can be envisaged 

for this event. First, increase in the expression level o f the mutant H-ras gene may 

give tumour cells a growth advantage. Second, the normal allele may exert a “tumour 

suppressive” influence, such that its loss contributes directly to progression of 

neoplasia. Finally, the gene may be lost by virtue of linkage to a true tumour 

suppressor locus on the same chromosome. It is noteworthy that mouse chromosome 

7 is syntenic with a group o f genes on the short arm of human chromosome 11 

(Figure 5). This group includes several loci close to H-ras at human l ip  15, a region 

which frequently shows loss of heterozygosity both in Wilms’ tumours (Mannens et 

a/., 1988) and in a variety o f other neoplasias (Koufos et a l., 1985; Scrable e t a l ., 

1987).

Tumours in FI hybrid mice offered the possibility o f determining whether loss 

of chromosome 7 alleles is always associated with the presence of a mutant H-ras 

gene, or, as might be expected if a tumour suppressor gene is involved, occurs also in 

tumours in which ras activation is undetectable. The strategy used is outlined in 

Figure 6.
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Figure 5 Comparison of human chromosome 11 and
mouse chromosome 7
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Figure 6 The F1 hybrid tumour model
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3.3 Detection of RFLPs and choice of mouse hybrids

Seven Mus musculus strains were screened for chromosome 7 RFLPs using 

probes for serum amyloid A (Saa-l), fes, H-ras, p-haemoglobin (Hbb), calcitonin 

(Calc) and/flf-2 genes. The location of these genes is shown in Figure 5. The strains 

used were: BALB/c, C57BL/6J, NIH/Swiss, NMRI, SENCAR, 129 and TFH. Much 

of the previous work on mouse skin carcinogenesis has been carried out using some 

of these strains (Slaga, 1984). Mus spretus  m ice were also screened for 

polymorphisms since these mice have diverged significantly from Mus musculus, 

thus increasing the chance o f finding RFLPs.

Based on preliminary RFLP data, two Mus musculus hybrids were set up for 

tumour induction: 129 x NIH (SN) and SENCAR x BALB/c (SB). The chromosome 

7 RFLPs which were used to analyse tumours from these hybrids are shown in 

Figure 7. Thcfes/EcoRl and Int-2/Pstl RFLPs have been reported elsewhere (Blatt et 

al., 1984; Silver and Buckler, 1986), but the HbbPCbal RFLP has not. Mus spretus x 

CBA (MSC) hybrids were also used for tumour induction and are discussed in more 

detail in section 3.4.4.

A complete summary o f the chromosome 7 RFLP search is given in Table 4. 

No RFLPs were found in Mus musculus strains at H-ras, Calc or Saa-1, despite a 

previous report of a H indlll RFLP for the latter (Blatt et al., 1984). Probes for the 

H-ras locus included the gene itself and two upstream fragments p6 and p i 1. These 

were previously subcloned from the A,-clone containing mouse H-ras into pUC8 (by 

G. Moffat). These were characterised along with other B am R l and H indlll 

subclones. Their position in the original X-clone containing the H-ras gene was 

mapped by analysis of partial digests o f the clone hybridised to labelled cos L and R 

probes and run on an agarose gel (Figure 8). The absence o f polymorphisms 

upstream of H-ras suggests that this region is highly conserved and may contain 

important regulatory sequences and/or another gene.



Figure 7 Chromosome 7 RFLPs used to analyse tumours
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Table 4 Chromosome 7 RFLPs

* = RFLP *s = spretus  RFLP ND = not determined 
... = pattern as in mouse to left Sizes are in Kb

1. Locus: H - r a s
Probe: 300bp insert of BS9 (Ellis e t  a l . f 1980)

M u s  m u s c u l u s  
BALB C57 NIH NMRI SENCAR TFH

Enzyme
129 M u s

s p r e t u s

Sam  HI 3.4 ........................... ................... ND • • •

B e l  I 9.0 ........................... ................... ND m m m

B g l  I 1.2 ........................... ...................  ND
s B g l  II 11.5 ........................... ................... ND 10
s E c o  Rl 23 ........................... • • •  a .  • • • • 22
s H i n c  II 9.0 ........................... ................... ND 10

H i n d  III 4.7, ...........................
2.8

................... ND . . .

K p n  I 6.5 ........................... ................... ND
M s p  I 0.8 ........................... ................... ND
P s t  I 2.0 ........................... ................... ND ND
P v u  II 1.1 ........................... ................... ND
S a c  I 6 .0 ...................................

0.7
................... ND . . .

s S i n  I 0.6 ........................... ................... ND 1.3
T a q  I 1.6 ............... ................... ND

s X b a  I 12 ........................... • • •  • • .  . . . 13
(CBA X ba  I band also determined: 12Kb)

2. Locus: H -ras
Probe: 1.8KbSa/7?HI insert of p6 (Figure 8)

M u s  m u s c u l u s

Enzyme
BALB C57 NIH NMRI SENCAR TFH 129

B a m  HI 1.8 ............................................................. ND
B e l  1 9.0 ...........................  ................... ND
B g l  1 4.0 ...........................  ................... ND
B g l  II 2.5 ...........................  ................... ND

s E c o  Rl 23 ...........................  ................... ND
H in cW 5.0 ............................................................. ND
H in d  III 2 .8 ....................................................................

0.7
ND

M s p  1 0.9, ...........................  ...................
0.6,
0.4

ND

P s t \ 2.0 ............................................................. ND
S a c l 5.0 ............................................................. ND
T a q \ 2.4 ............................................................. ND

s  X b a  I 12 .............................................................

M u s
s p r e t u s

ND

ND
22
ND
ND

ND

ND
ND
ND
13



3. Locus: H -ras
Probe: 3.5KbSa/7?HI insert of p11 (Figure 8)

Enzyme

B a m  HI 
*s B e l  I 

B g l  II

EcoR I
H in cW

H i n d  III 

M s p  I

P s t \

P v u  II 

S i n  I

T a g  I 

X b a  I

BALB C57

3.5
8.0
1.5, . . .
1.3,
0.7
24
4.5, . . .
3.2,
2.3
14, . . .
1 .6 ,
1.1
2 .2 , . . .  
1 .8 ,
0.5,
0.3
1.9, . . .
0.9,
0.85,
0.65
2.4, . . .  
0.8
0 .8 , . . .  
0.65,
0.55
2.4, . . .
1.4,
1 .1 ,
0.8
7.3, ND 
3.2,
2 .0 ,
1.0

M u s  m u s c u l u s  
NIH NMRI SENCAR TFH 129

(+1.8) (+1.8) ND

ND

(+3)

ND (a)

M u s
s p r e t u s

ND ND 
ND 4.7 
ND

ND ND ND ND
................... ND ND

ND ND

ND

ND

ND No 2.4

(a) ND

(a) 129 mice lack the 3.2kb band. This band was present in 
SENCAR and BALB DNA, but absent in SB hybrid DNA. This 
may have been a methylation effect. The same explanation 
may apply to the extra H ind  III and Sin  I p i 1 bands 
seen in some strains.



4. Locus: Fes
Probe: 400bp Bam HI insert of pBRF04 (Shibuya e t  al., 1982)

Mus musculus 
BALB C57 NIH CBA SENCAR TFH

Enzyme

* E co Rl 13 12 13 12 13 12
*s Xba I 15, ND ND ... ... ND

6.0

The enzymes B g l  I I ,  H ind  III, M sp  I ,  P s t  I and Pvu  II were 
non-polymorphic in the strains used by Blatter a l., (1984), and were 
not checked in this study. (NMRI: ND)

129 Mufspretus

12 13
ND 14,

6.0

5. Locus: Calc
Probe: 600bp P st  I insert of pHT-B3 (Allison e t  al., 1981)

BALB
Enzyme
Bam HI 18
Bel I 6.7
Bgl I 25
Bgl II 10,

3.7
Eco Rl 7.0
Hinc\\ 3.8

*s Hind\\\ 8.0
Msp I 6.0
P st\ 2.9
Pvu II 11
Sac  I 11.

9.5
*s Sin I 2.1

Taq I 9.0
(129: ND)

6. Locus: lnt-2

Mus musculus 
C57 NIH NMRI SENCAR

(+9.5)

TFH Mus
spretus

ND
ND

ND

9.5 
ND 
ND

ND

3.5 
ND

Probe: 2.3Kb Bgl II fragment cut from pU418 (Dickson e t  al., 1984).

Mus musculus Mus
Enzyme

BALB NIH CBA SENCAR TFH 129 spretus
Eco Rl ND 22. ND. ND. ND. . • • ...

* P st  I 4.4 4.4 2.2 2.2 2.2 2.2 2.2
Xba I 22,

6.0
... ND ... ... ... ...

*s Kpn I ND ND 22 ND ND ND 9.0

(NMRI and C57: ND)



7. Locus: H b b
Probe: 1.1Kb H i n d  III insert of pTK1 H1-1 (Gilmour e t  a /., 1984)

M u s  m u s c u l u s
M u sBALB C57 NIH NMRI SENCAR TFH 129

Enzyme s p r e t u s

Sam  HI 5.0 12 12 12 12 5.0 ND ND
B e l  I 7.0 . . . . . . . . . . . . . . . ND ND
B g l  II 5.0 . . . ND ND
E c o  Rl 7.0 9.4 9.4 7.0 7.0 7.0 7.0 9.4
H in c  11 1.2 . . . . . . . . . . . . . . . ND ND
H i n d  III 1.7 • • • . . . . . . . . . . . . ND ND
M s p  I 3.6 . . . . . . . . . . . . . . . ND ND
P s t \ 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, ND ND

0.8 0.7 0.7 0.8 0.7 0.8
S a c  I 4.2 6.7 6.7 4.2 6.7 4.2 ND 6.7
7aq l 4.0,

3.5
7.5 7.5 4.0,

3.5
7.5 4.0,

3.5
ND ND

X b a  I 10 ND 7.5 ND 7.5 10 10 7.5

(CBA X b a  I  band also determined: 10Kb)

8. Locus: S a a  -1
Probe: 500bp P s t  I insert of pRS48 (Taylor and Rowe e t  a /., 1984)

M u s  m u s c u lu s  
BALB C57 NIH NMRI SENCAR TFH 129

Enzyme

K p n  I 25,
20,
9.0

• • • • • • • • • • • ... ND

P s t  I 3.5, ND ND ... ND
P v u  II 6.4 ND ND . . .

X b a  I 12 ND ND ... ND

( Mus spretus : ND)



Figure 8 Restriction map of A,NI
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A. M apping o f ANI by hybridisation o f radiolabelled cosR  and cosL oligom ers 
to Bam H l and H in d lll  partial digests o f ANI. Tw o batches o f sam ples were run in a 
0.5% agarose gel, one for 24hours and the other for 36hours. The autoradiograph 
shown is o f the batch run for 36hours. D istances betw een restriction sites are shown 
in kb at the sides. The size o f undigested ANI (53kb) and the sm allest B am H l and 
H indlll restriction fragm ents for the cosL and cosR probes are also indicated. M arker 
DNAs were X/Narl, X /Ndel and X/Sall. B = Bam H l; H  = H ind lll.

B. Restriction m ap o f ANI. The m ap was derived by com bining data obtained 
in A with know ledge o f the restriction m aps o f p6, p i  1, the 3 ’ region o f ANI and the 
sizes o f B a m H l and  H in d lll  fragm ents ob tained  by d igesting  ANI w ith these 
enzymes. The latter two pieces o f inform ation were obtained by F. Fee and M. 
Ramsden. The scales above and  below  the m ap perm it com parison  w ith the 
autoradiograph in A. The location o f the 1.8kb and 3.5kb p6 and p l l  probes 
respectively is indicated. The H -ras gene is represented by a hatched box; only the 5 ’ 
non-coding exon and the two coding exons are present in this clone. The A Charon 30 
arms are represented as open boxes.



3.4 Carcinomas with activated H-ras also have gross 

chromosome 7 Changes

Carcinomas were induced in SN and SB FI hybrid mice by DMBA initiation 

and twice weekly TPA promotion. All carcinomas obtained were analysed for 

mutation o f H -ras  and/or loss o f alleles on chromosome 7. An A:T->T:A  

transversion at the second nucleotide o f codon 61 indicated by the Xbal RFLP 

described above was detected in all 16 of the carcinomas and in two lymph node 

metastases (Figures 9, 11 and 12, H-ras row). Analysis of chromosome 7 RFLPs 

showed that, in all o f these tumours, non-disjunction, mitotic recombination/deletion, 

or both had occurred.

3.4.1 Over-representation of the mutant H-ros allele occurs most 

commonly by non-disjunction

Figure 9 displays the carcinomas in which non-disjunction was detected. In 

these tumours the normal 12kb H-ras allele was fainter than the mutant 8+4kb allele 

(Figure 9). The intensity of the 8kb and 4kb bands added together gives the intensity 

of the mutant allele. The relative under-representation of the normal allele was 

confirmed by densitometric scanning in comparison with the control cell lines PDV 

and PDVC57, which exhibit ratios o f normal to mutant alleles o f 2:1 and 1:2 

respectively. It was deduced that the unequal ratio of normakmutant H-ras in the 

primary carcinomas (Figure 9) was most probably due to gross chromosomal 

imbalance, since unequal ratios of alleles were detected at all other polymorphic loci 

on mouse chromosome 7. For example, in SN97 (Figure 9), the 129 allele was fainter 

at fes, Hbb and Int-2. Since these loci represent markers both proximal and distal to 

the H-ras gene, it can be assumed that the weak normal H-ras band was also on the 

129 chromosome. In SB 143 (Figure 9) the BALB/c allele was weaker at Hbb and
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Figure 9 Non disjunction in DMBA/TPA carcinomas
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Chrom osom e 7 RFLP analysis o f 4 SN and 7 SB DM BA/TPA carcinom as. 
SN97 and 98 were obtained from  the same m ouse, as were SB 141-145. O ther 
tumours were each derived from  separate mice. The spleen samples were derived 
from SN and SB hybrids as appropriate. The order o f the genes on chrom osom e 7 is 
as shown i.e. fe s , H bb, H -ras, In t-2 (Figure 5). For the background to the cell lines 
PDV and PD V C57 see text. To avoid duplication the control sam ples from  only one 
gel are shown. Variation in the hybridisation pattern from  gel to gel can occur 
because o f differences in probe length; the pattern is reasonably consistent within 
each gel. N = norm al 12kb H -ras allele, M  = m utant 8+4kb H -ras allele. O ther 
details as in Figure 7.



Table 5 Allele ratios in DMBA/TPA tumours in which 
non-disjunction was detected

Tumour Grade: 1-2 1-2 2 2 1 2-3 -

% contamination: 10 20 10 10 50 10 -

Tumour: SN97 SN98 SN132 SN152 SN133 MSC1 XMSC1

Most intense allele: N*HM
NIH
M

129
M

129
M

129
N

spretus
M

spretus
M

“  Fes 3.07 1.74 3.84 1.78 ND 1.61 1.19
Allele
ratios

Hbb 3.13 

H-ras 2.48

1.75

1.16

3.20

2.59

2.18

1.75

1.46

1.77

2.15

1.5

2.36

2.79

ln t-2  3.37 1.52 3.90 4.2 ND 2.79 5.04

Tumour Grade: 3 1-2 2 1-2 1 1-2 1
% contamination: 10 20 <10 20 20 10 10

Tumour: SB1 SB140 SB141 SB142 SB143 SB144 SB145

Most intense a l le le :^ ^ ^M M
BALB

M
SENC

M
SENC

M
SENC

M
BALB

M

Allele
ratios

~~ Hbb 3.04 

H-ras 2.46

1.72

1.31

1.94

1.76

1.70

1.65

2.8

2.85

2.20

2.11

2.12

1.9

ln t-2  2.71 1.91 1.93 1.77 3.25 2.04 1.6

Tumour Grade: - Spindle Spindle - 2 1
% contamination: - - 20 30

Tumour: X1 SBINMa SBINMd X1NMa+d SB136 SB137

Most intense allele: —  As for SB1, i.e SENCAR—  
and M

BALB
N

BALB
N

~  Hbb 3.59 3.55 4.74 3.91 1.63 1.64
Allele
ratios H-ras 4.60 3.39 3.67 4.23 1.74 1.9

lnt-2 2.87 4.4 4.31 4.06 1.94 1.64

Ratios were determined by densitometry. Tumour ratios are adjusted to compensate 
for the ratio seen in normal tissue. To simplify matters, only the larger number in 
the ratio is shown; the most intense allele is indicated at the top o f each column. For 
example, in SN97 the ratio at f e s  is 3.07:1 in favour o f the NIH allele, while atH- ras  
the mutant allele (M) is 2.48x as intense as the normal allele. The allele ratio at H- ras  
was calculated using PDV as a control for the ratio of mutant:normal; these values were 
similar to those calculated using PDVC57 as the control. Tumour grade and normal cell 
contamination were determined by histological analysis. ND = not determined due to 
insufficient DNA.



Int-2. Presumably, the faint normal H -ras allele was also on the BALB/c 

chromosome.

In the tumours in which non-disjunction had taken place, it was important to 

know whether the chromosome carrying the normal H-ras allele was completely lost 

or under-represented. Clarifying this problem is complicated by the presence of 

contaminating normal cells in tumours, and by the fact that mouse skin carcinomas 

are frequently near- or hypertetraploid (section 1.5.4, Pera and Gorman, 1984, 

Fusenig et a l., 1985, Aldaz et al.y 1987). Thus, a ratio o f 3 copies of a chromosome 

to 1 of its homologue might be mistaken for complete loss of an under-represented 

chromosome, with the presence of the fainter allele being wrongly attributed to 

contaminating normal tissue. Densitometric analysis o f the tumours in Figure 9 

showed that the allele ratios were in fact close to 2 or 3:1 (Table 5). Histological 

sections of most o f these tumours suggested contamination levels of 10-20% or less 

(Table 5). At these levels o f contamination, much larger allele ratios would be 

expected if complete loss had occurred. For example, in a tumour which had lost the 

chromosome carrying the normal allele and duplicated the chromosome carrying the 

mutant allele, 20% contamination would reduce the 2:0 ratio at H-ras to 4:1, and 9:1 

at other loci (Table 16D, section 3.13.2). These ratios are clearly much higher than 

those seen in the tumours discussed above. It is therefore likely that the chromosome 

carrying the normal H-ras allele was not lost but under-represented in these tumours.

This matter was investigated further in the tumour SB1 by using early passage 

cell lines and transplanted tumours from this primary carcinoma in an attempt to 

remove contaminating normal cells. The original cell line (XI) obtained from SB1 

was injected into nude mice and the resulting carcinomas (SBlNM a and SB1NMB) 

were further propagated in culture (XNMla+d). Analysis o f these samples showed 

that the normal H-ros allele and the faint BALB/c alleles at Hbb and Int-2 were still 

present after all o f these culturing and transplantation steps (Figure 10). Hence, it 

would appear extremely unlikely that the signal due to the normal allele derives from 

contaminating normal cells which have survived transplantation and explanting,
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Figure 10 Persistence of the weaker BALB/c alleles during 
purification of carcinoma SB1
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from the SB hybrid that had the SB1 carcinom a. O ther details as in Figures 7 and 9.



particularly since explants of tumours which had genuinely lost the normal H-ras 

gene showed complete loss of the 12kb band at early passage levels (Figure 10). 

Further evidence that under-representation, rather than complete loss, o f the 

chromosome carrying the normal H-ras allele occurs commonly in DMBA/TPA 

tumours was provided by analysis of a cell line grown from an MSC hybrid mouse 

carcinoma (section 3.4.4).

3.4.2 Some carcinomas have an apparent over-representation of 

the normal H-ras allele

From the above discussion it is clear that the normal H-ras allele is lost or 

under-represented in the vast majority o f DMBA/TPA carcinomas. However, 

preliminary analysis o f three more tumours induced in this way (SN133, SB 136 and 

SB 137) suggested a different pattern. In these cases, an imbalance was detected at all 

the polymorphic markers flanking the H-ras locus, consistent with non-disjunction 

(Figure 11), At the H-ras locus it appeared that the mutant allele was under- rather 

than over-represented, implying that non-disjunction had resulted in duplication of 

the chromosome carrying the normal allele. As discussed below, a more detailed 

analysis suggested that this interpretation was erroneous.

Normal cell contamination has a differential effect on allele ratios at 

polymorphic loci compared with the norm al: mutant H-ras ratio. This is discussed in 

detail in section 3.13.2 and predicted effects given in Table 16. The phenomenon can 

be summarised as follows. Contaminating stromal cells contribute two normal H-ras 

alleles but no mutant allele, so that contamination above 10% dramatically reduces 

(and can reverse) any imbalance in tumours in favour of the mutant allele. In 

contrast, normal cells contribute only one o f each allele at polymorphic loci (eg fes), 

and so the diluting effect on a tumour-related imbalance is much less pronounced 

(see Table 16, section 3.13). As with other carcinomas in this study, SN133, SB 136 

and SB 137 were subjected to histological analysis in order that the level of normal
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cell contam ination might be assessed. In conjunction with densitom etric  

measurement of allele ratios a more accurate interpretation of the chromosome 7 

status in these tumours was possible and is discussed below.

In SN133 (Figure 11) the apparent excess of normal H-ras over mutant H-ras 

and the slight imbalance of alleles at Hbb in favour of the NIH allele can be 

attributed to the high level (50%) of normal cell contamination in this tumour (Figure 

11 and Table 5). This level of contamination would distort a 2:1 ratio in favour of the 

mutant H-ras allele such that the apparent ratio would be 1.5 : 1 in favour of the 

normal gene (Table 16). A ratio of two NIH alleles to one 129 allele at the Hbb locus 

would not be reversed by such contamination, but would be reduced to 1.5 : 1 (Table 

16). This is the approximate pattern seen in SN133 (Figure 11; insufficient DNA was 

available to assess the allele ratios at Int-2 and fes). Densitometry gave allele ratios 

of 1.77:1 normal to mutant H-ras and 1.46 : 1 at Hbb, close to the predicted values. 

Hence, SN133 is probably also in the category o f tumours like SN97 (Figure 9) 

which have an excess o f the chromosome carrying the mutant H-ras gene.

A similar interpretation may also be applied to tumours SB 136 and 137 (Figure 

11). Again the apparent over-representation o f the normal H-ras allele and the 

reduced imbalance o f alleles at Hbb and Int-2 in favour o f the BALB/c allele can be 

attributed to a high level o f normal cell contamination. These tumours did not appear 

to be as contaminated as SN133 with normal cells (Table 5), but it may be that the 

histology section was not representative o f the whole tumour in these cases. It is very 

unlikely that there really was a ratio of normakmutant H-ras of 2:1 in these tumours 

since contamination levels o f 20-30% would increase this ratio to around 3:1, which 

was clearly not the case (Figure 11).

Although less dramatic, the effect o f contaminating normal cells can be seen in 

some of the carcinomas discussed in section 3.4.1 (Figure 9); in other words, the 

imbalance o f alleles is not as great at H-ras as at other loci. The presence of large 

amounts of normal cells in only a few carcinomas differed from the pattern observed 

in papillomas where contamination appeared to be uniformly high (section 3.8).
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Figure 11 Carcinomas with an apparent over-representation of 
normal H-ras
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3.4.3 Mitotic recombination or deletion in carcinomas and lymph- 

node metastases

While imbalance at all polymorphic loci, indicative o f non-disjunction, was 

detected in most DMBA/TPA carcinomas, loss of heterozygosity at only one or two 

chromosome 7 loci, indicative of mitotic recombination or deletion, was detected in 

two carcinomas induced in this way; SN158 and 184 (Figure 12). In SN184 the 

normal H-ras and 129 lnt-2  alleles were extremely faint. The ratio of the more 

intense to the fainter allele was greater than 20:1 in each case. It is therefore likely 

that the faint bands were due to the low level of contamination (<5%) of SN184 by 

normal cells (Table 6), and that the 129 H-ras and Int-2 alleles have been lost by 

mitotic recombination or deletion. In addition, since the NIH alleles in SN184 were 

approximately twice as intense as the 129 alleles at fes  and Hbb (Figure 12) it 

appears that non-disjunction resulting in an increase in copy number of the NIH 

chromosome may also have occurred. This could have taken place before or after 

mitotic recombination, as is illustrated in Figure 13A (the loss of the H-ras and lnt-2 

129 alleles is assumed to have been caused by mitotic recombination for the purpose 

of this Figure).

Distinguishing between mitotic recombination and deletion should be possible 

using densitometry. In this study, the absolute number o f tumour compared to normal 

alleles at each locus was determined after normalising for DNA loading. This was 

possible after rehybridisation o f blots with a probe containing an IL3 cDNA and an 

unidentified cDNA (see section 3.13.1).

In the case o f SN184, the total number o f Hbby H-ras, and Int-2 alleles was 

similar, making mitotic recombination the most likely interpretation of the results. 

However, the variability o f densitometric assessment o f allele numbers (section 1.13) 

meant that interpretation could not be conclusive. Similar problems have been noted 

previously (Naylor et a i ,  1987).
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Tumour SN158 was heterozygous at fes, Hbb and also for the H-ras mutation, 

but the NIH Int-2 allele was weaker than the 129 allele (Figure 12). Histological 

analysis showed that approxim ately 10-15% of this tumour consisted  of 

contaminating normal cells. Densitometry revealed that the ratio of 129 to NIH 

alleles at Int-2 was approximately 5:1 (Table 6). If the faint band was due to 

contaminating normal tissue, this could represent loss of the NIH Int-2 allele by 

deletion or mitotic recombination. The faint band could, however, represent one 

remaining Int-2 NIH allele after a mitotic recombination in a tetraploid cell, resulting 

in three copies of the 129 Int-2 allele to one of the NIH allele. After normalising for 

DNA loading, the number o f alleles in SN158 ranged from 1.35-2.24 at the Int-2 

locus and 1.2-2.0 at the Hbb locus, depending on which band was used for 

normalisation o f DNA loading differences. The similarity o f these figures suggests 

that there are equal numbers of these alleles and therefore that mitotic recombination 

had occurred. However, for the reasons described in section 3.13 a conclusive 

interpretation is not possible. Nevertheless, irrespective o f which interpretation is 

correct, the loss of heterozygosity distal to H -ras is potentially very significant since 

this supports the idea that a gene on mouse chromosome 7 other than H-ras is 

involved in carcinoma development.

SN158 came from a mouse which also had two lymph node metastases, SN160 

and 161. It is possible that SN160 and 161 were derived from SN158, since all these 

tumours were grade 3 carcinomas (Table 6) and there were no other carcinomas on 

the mouse from which SN158 was obtained. Histological examination showed that 

both metastases were highly contaminated with lymphocytes (Table 6) making 

interpretation o f band intensities in the original tumour difficult. However, a cell line 

grown from SN161 (X161) revealed that this tumour had completely lost the normal 

H-ras and NIH Int-2 alleles (Figure 12). This could have resulted from mitotic 

recombination distal to Hbb (Figure 13B). Total allele numbers were similar at all 

chromosome 7 loci in SN161, consistent with this mechanism. However, the same 

pattern would result from activation o f the remaining normal H-ras by a second point
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Figure 12 Mitotic recombination or deletion in DMBA/TPA 
carcinomas and metastases
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Table 6 Allele ratios in tumours in which mitotic 
recombination or deletion had occurred

Tumour Grade: 2-3 3
% contamination: 10 50

Tumour: SN158 SN160

Fes 1.00 1.22
(129)

Hbb 1.22 1.14
Allele
ratios

(NIH) (NIH)

H-ras 1.11
(N)

7.6
(N)

ln t-2 4.79
(129)

2.80
(129)

3 - 2 ?

50 - <5 ?

SN161 X161 SN184 SN80

1.11 1.17 1.63 1.14
(129) (NIH) (NIH) (NIH)

1.10 1.10 2.35 1.11
(NIH) (NIH) (NIH) (NIH)

1.12 NA 23.4 3.29
(N) (M) (N)

3.73 NA 26.3 2.55
(129) (NIH) (129)

Only the larger value in the ratio is shown; the parental origin o f the more 
dense allele is indicated below the ratio, except for the H- ra s  locus, in 
which case the normal (N) or mutant (M) allele is indicated. ? = no histology 
available. NA = not applicable. Other details as in Table 5.



Figure 13 Possible mechanisms explaining allele ratios 
observed in SN184,158,160 and 161
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or preceded mitotic recombination.

B) Possible chromosome 7 status of SN 158,160 and 161.



mutation or gene conversion. In addition, the interpretation may be oversimplified 

given that analysis o f X161 by flow cytometry (section 3.12) revealed that this cell 

line was highly aneuploid. The higher normalrmutant H-ras ratio in SN160 compared 

with SN161 (Figure 12), even though the tumours were similarly contaminated with 

normal cells (Table 6), suggests that the H-ras mutation is still heterozygous in the 

former (Figure 13B).

3.4.4 The use of Mus spretus x Mus musculus hybrids to analyse 

tumour-related LOH

The relatedness o f Mus musculus strains o f mice limits the number of available 

RFLPs which can be used to analyse LOH in tumour DNA. This problem can be 

overcome by interbreeding M. musculus with a strain which has diverged  

significantly; M. spretus. This point is clearly demonstrated by the results 

summarised in Tables 4 (section 3.3) and 13 (section 3.9). All of the DNA probes 

which were hybridised to spretus DNA detected polymorphisms. In total, around 50 

different probe and enzyme combinations were tested and almost half detected 

variant spretus fragments. This has important implications for the fine mapping of 

limited LOH on chromosome 7 and for the assessment o f changes on other 

chromosomes in mouse tumours. In addition, the presence o f an X bal H-ras 

polymorphism in spretus/musculus hybrids (Table 4) permits direct identification of 

the parental origin o f the mutant allele in tumours which possess the codon 61 

mutation recognised by this enzyme. This ability to distinguish mutant and normal 

H-ras alleles also reduces the complexity o f interpreting allele ratios at this locus in 

tumours highly contaminated with normal cells (c.f. section 3.4.2).

In this study, tumours were analysed from Mus spretus x CBA (MSC) hybrids. 

Carcinomas were induced by treating once a week with DMBA and once a week 

with TPA. These hybrids proved relatively resistant to tumour induction, and only 

small numbers o f tumours were obtained even using this more rigorous protocol. Of
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four carcinomas, and cell lines derived from three of these, the chromosome 7 

analysis on one tumour (MSC1) and its cell line (XMSC1) is reported here.

Figure 14 shows that, as with most DMBA-initiated carcinomas, MSC1 was 

positive for the codon 61 A:T->T:A mutation which introduces a new Xbal 

restriction site. (Note also that spretus mice have a pseudogene which hybridises to 

the H-ras probe almost as strongly as the functional gene. The spretus pseudogene 

Xbal fragment is just under 12kb and should not be confused with the CBA H-ros 

allele in MSC hybrids). In the case o f MSC1, it is clear that the spretus (13kb) H-ras 

allele has been mutated and that the remaining normal (12kb) allele is derived from 

the CBA parent. Analysis o f RFLPs at other chromosome 7 loci in this tumour 

demonstrated that the spretus chromosome was over-represented (Figure 14; Table 

5). This is another example of duplication of the chromosome carrying the mutant 

H-ras allele by non-disjunction.

Confirmation that the chromosome carrying the normal H-ros allele was 

under-represented and not lost in MSC1 was obtained by analysis of XMSC1 (Figure 

14). (This complements the work described in section 3.4.1 on cell lines derived from 

the carcinoma SB1). In XMSC1, although the pattern o f imbalances resembled the 

original tumour at Int-2, H-ras and Hbb, the allele ratio at the fes  locus was similar to 

the ratio observed in spleen. This suggests that in the cell line, one of the two spretus 

fes alleles was lost, possibly by deletion. The spretus pseudogene also appears to 

have been affected by this event since it is fainter in the cell line than in the original 

tumour (Figure 14). This agrees with the mapping o f the pseudogene close to the fes  

locus (T. Glaser, personal communication). The detection o f these losses in a cell 

line, but not the original tumour, implies that they were unrelated to tumour 

development.

The allele ratios at the Int-2 locus in MSC1 and XMSC1 were higher than at 

other chromosome 7 loci (Table 5). This may have been due to poor transfer of the 

large (20kb) CBA Kpnl band (Figure 14) rather than a second genetic event at this 

locus.
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Figure 14 Direct identification of the mutant H-ras allele in a 
spretus!musculus carcinoma
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As described above, one of the major advantages of MSC FI hybrids is that the 

normal spretus and CBA H-ras alleles can be distinguished (Figure 14). Thus, direct 

proof can be obtained concerning which H-ras allele is mutated in tumours. This has 

important implications for the assessment o f tumour clonality. If mouse skin 

carcinomas were polyclonal (derived from two or more initiated cells) then a 

proportion of these should have both mutant spretus and CBA H-ras alleles (the 

exact proportion o f tumours like this would depend on the extent o f polyclonality). 

If, on the other hand, these tumours were monoclonal (derived from a single initiated 

cell) then the presence o f both activated alleles would only be found if  the second 

allele had also been mutated.

In MSC1, for example, a mutant spretus allele was detected (Figure 14). In the 

analysis o f several other MSC carcinomas and papillomas, no tumours were found in 

which both spretus and CBA mutant H-ros alleles were present (P. Bums, 

R.Bremner and A. Balmain, in preparation). This evidence confirms previous 

assumptions based on indirect evidence that skin tumours are monoclonal in origin.

3.4.5 Summary of the analysis of DMBA/TPA carcinomas and 

metastases.

The analysis o f 17 DMBA/TPA carcinomas and two metastases, revealed that 

100% of these were positive for both mutant H-ros and subsequent gross 

chromosome 7 changes. In 15/17 carcinomas non-disjunction was detected, while in 

the other two mitotic recombination appeared the most likely explanation for the 

observed LOH.
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3.5 Carcinomas with no activated H-ras have no 

chromosome 7 changes.

The above results demonstrate that over-representation o f mutant H-ras in 

DMBA/TPA tumours is caused by gross chromosome 7 changes. However, what 

they do not address is whether similar alterations play a part in the growth of skin 

tumours that lack activated H-ros. Evidence that chromosome 7 changes are not 

involved in such tumours is presented below.

3.5.1 Analysis of tumours induced by MNNG-initiation and TPA- 

promotion

To determine whether chromosome 7 changes were limited to carcinomas with 

activated H-ros genes, tumours were induced in SN hybrids by initiation with N- 

methyl-N’-nitro-N-nitrosoguanidine (MNNG) and promotion with TPA. In this 

laboratory it has been found that only about 10-20% of carcinomas induced in this 

way have an H-ros mutation; a G:C->A:T transition at the second nucleotide of 

codon 12 (Brown et a/., 1990).

Figure 15 shows the results obtained from one papilloma (SN112) and four 

carcinomas (SN115, 165, 171 and 176). Only SN165 and SN176 had H-ros 

mutations. SN165 was shown, by use o f the polymerase chain reaction and 

hybridisation to oligonucleotides, to have a G:C->A:T transition at the second 

nucleotide o f codon 12 (Figure 16). None o f the other possible codon 12 or 13 

mutations were detected in SN165 or the other MNNG/TPA tumours (Figure 16 and 

Table 8). However, SN176 did have the Xbal RFLP found in all the DMBA/TPA 

carcinomas (Figure 15). This is unlikely to have been caused by MNNG but may be 

a rare example o f a spontaneous activation event (c.f Felling et a l., 1988).

When analysed for imbalances at the fe s , Hbb and lnt-2 RFLPs, only those 

tumours with activated H-ras (i.e SN165 & SN176) were positive (Figure 15). In
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SN165 all the 129 alleles were weaker than the NIH alleles, while in SN176 the NIH 

alleles were uniformly faint (Figure 15). The approximate allele ratios in SN165 and 

SN176 were 2:1 and 3 or 4:1 respectively (Table 7). The actual ratio in SN165 was 

probably higher, since a large amount o f normal cells were present in this tumour 

(Table 7). It is possible that the chromosome carrying the normal H-ros allele has 

been lost in SN165 and 176, but without the benefit o f cell line analysis (c.f. sections 

3.4.1 and 3.4.4) this cannot be proved.

In order to confirm any codon 12 or 13 mutations detected by hybridisation to 

oligomers, and to detect any additional m utations, am plified D N A s from 

MNNG/TPA tumours were analysed by direct sequencing. No mutations were 

detected using this approach including, surprisingly, the codon 12 mutation detected 

in SN165 by hybridisation to oligomers (Figure 17). One explanation for this is that 

oligomer hybridisation is more sensitive than direct sequencing. The former permits 

detection of a mutation if  it is present in 10% of the cells (Farr et al., 1988). Bar-Eli 

et al. (1989) quote a similar figure for direct sequencing, but from the analysis of 

SN165, which was estimated to contain around 50% normal cells (Table 6), this 

approach appears to be less sensitive than oligomer hybridisation. One approach to 

resolving this would be to clone the amplified SN165 DNA into M l3 and sequence 

several clones. This should give a reliable indication o f the proportion o f 

mutant.normal H-ros sequences assuming that the PCR reaction amplifies mutant and 

normal alleles equally. Equal amplification o f all alleles should occur as predicted 

ratios have been observed for amplification o f H-ros exon 2 in the cell lines PDV and 

PDVC57 (A. Buchmann, pers. communication).

Thus, MNNG/TPA carcinomas that were positive for activated H-ras also had 

chromosome 7 changes, but those that did not have activated H-ros did not exhibit 

any allelic imbalance involving this chromosome. In one o f the ros-positive tumours 

an unambiguous increase in the copy number o f the chromosome carrying the mutant 

H-ros allele was detected, while in the other case it was not clear whether the mutant 

allele was on the over- or under-represented chromosome.
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Figure 15 Only MNNG/TPA tumours with an H -ras mutation have 
chromosome 7 changes
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Table 7 Chromosome 7 allele ratios in MNNG/TPA tumours

Tumour Grade: Pap. 1-2 1 1 2-3
% contamination: ? 50 50 5 10

Tumour: SN112 SN115 SN165 SN171 SN176

Fes 1.24
(NIH)

1.18
(NIH)

1.71
(NIH)

1.11
(NIH)

3.14
(129)

Allele Hbb 1.27 1.06 1.82 1.19 3.94
ratios (129) (NIH) (NIH) (129) (129)

H-ras NA NA NA NA 3.15
(M)

lnt-2 1.26 1.13 1.61 1.16 3.54
(NIH) (NIH) (NIH) (NIH) (129)

The Table is in the same format as Table 6.



Figure 16 Codon 12 H-ras mutations in MNNG initiated tumours
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M N N G -initiated tum our samples were am plified with exon 1 am plim ers and 
probed with oligom ers specific for the norm al codon 12 sequence (GGA) and m utant 
sequences (GAA, A G A  and GTA). G rid letters correspond to the follow ing amplified 
DNA samples:
MNNG/TPA tum oursrA) SN spleen; B) SN112; C) SN115; D) SN165; E) SN171; F) 
SN176;
M NNG/M NNG tum ours: G) SN73; H)X73; I)SN76; J)X76; K)SN 88; L) X88;M ) SN 
spleen; N) SN103; O) X 103; P) SN110; Q)X110.
These tum ours lacked all other possible codon 12 and 13 m utations; in addition, 
M NNG/M NNG tum ours lacked any codon 61 m utations (Table 8). The sequence of 
the am plim ers and hybridisation oligom ers is given in Table 3, section 2.16.



Mutation

Codon 12 Codon 13 Codon 61
(GGA) (GGC) (CAA)

GAA
AGA AAA
CGA CGA

Induction GTA NGC CCA
protocol Tumour GAA GCA GNC CTA CAT CAC

SN112 - - - (-) ND ND
SN115 - - - (-) ND ND

M+T SN165 + - - (-) ND ND
SN171 - - - (-) ND ND
SN176 - - - (+) ND ND

SN73 _ _ _ _ _

X73 - - - (-) ND ND
SN76 - - - - -

X76 - - - (-) ND ND
SN88 + _ _ _ _

M+M X88 - - (-> ND ND
SN103 - - - - -

X103 - - - ND ND
SN110 + - - - - -

X110 - - - (-) ND ND

SN30 ND ND ND +
_ _

SN31 ND ND ND + - -

SN33 ND ND ND + - -

X34 - - - - - -

SN40 - - - - - -

D+D X40a - - - - - -

X40b - - - - - -

SN47 ND ND ND +
- -

X47 ND ND ND +
- -

SN49 - - - - -

X49 - - - - - -

D+T SN136 _ _
+

_

pap's SN144 - - - - +? -

SN182v- r a s
, T SN186 - - - _ - -

+ I SN197 - - - - - -



Table 8 Summary of mutations identified by hybridisation of oligomers 
to amplified tumour DNAs

All tumours are carcinomas except: SN112,136 and 144 = papillomas
SN182=mammary adenocarcinoma

The normal sequence o f each codon is indicated in parentheses. The base 
substitution analysed is in bold. Full sequence o f hybridisation oligomers 
is given in Table 3.

M+T: MNNG-initiation, TPA-promotion 
M+M: " , MNNG-promotion
D+D: DMBA-initiation, DMBA-promotion 
D+T: " , TPA-promotion

v-ra.s+T:v-ra.s-initiation, "

ND: not determined
+: mutation detected
-: no mutation
+?: possible CAT mutation
(-) or (+): analysis by X b a -l  only.



Figure 17 Direct sequencing of amplified MNNG/TPA tumour 
DNAs

A

12A a m p l im e r  12C s e q u e n c in g  p r i m e r
i 1 1 1
GTGGGGCAGGAGCTCCTGGATTGGCAGCCGCTGTAGAAGCT ATG ACA GAA TAC AAG CTT GTG GTG

GTG GTG GGC GCT GGC GTG GGA AAG AGT GCC CTG ACC ATC CAG CTG

ATC CAG AAC CAC TTT GTG GAC GAG TAT GAT CCC ACT ATA GAGI______________________________
I i (12B  a m p l im e r )

(12X s e q u e n c in g  p r im e r )

B

S p l e e n  SN112 SN165 SN176 SN115 SN171
A T G C A T G C A T G C A T G C  A T G C A T G C

Codon
12

Codon
12

P r i m e r :  12X P r i m e r :  12C

A. Position and sequence o f am plim ers and sequencing prim ers. The region o f 
H-ras around codon 12 (highlighted by the black box) was am plified using the 12A 
and 12B am plim ers and sequenced using the 5 ’ end-labelled prim er 12C or 12X. The 
12B and 12X oligom ers are shown in parenthesis to indicate that the actual sequence 
is com plem entary to the one shown. N ucleotides shown in triplets represent the 
coding region o f this fragm ent o f m ouse H -ras. The sequence was derived by B row n 
etal. (1988).

B. D irect sequencing o f am plified M NNG/TPA tum our DN As; SN112 was a 
papilloma, the 4 o ther tum ours were carcinom as, the spleen was from  an SN hybrid. 
SN112, 165 and 176 were sequenced after annealing to 5 ’ end-labelled prim er 12X; 
the prim er used to sequence SN115 and 171 was 12C. The codon 12 sequence is 
indicated.



The absence o f chromosome changes in tumours lacking activated H-ras also 

applies to carcinomas described in section 3.6 which were induced by protocols other 

than the classical initiation/promotion regime.

3.5.2 A DMBA/TPA lymphoma lacks both activated H-ras and 

chromosome 7 changes

Occasionally, non-epithelial tumours are detected in mice whose skin has been 

treated with chemical carcinogens and tumour promoters. One such tumour (SB 122), 

a lymphoma isolated from a SB hybrid treated with DMBA and TPA, was analysed 

for an activated H-ras gene and chromosome changes. The ras mutation detectable 

by Xbal analysis was not observed in this tumour, nor were any chromosome 7 

changes (Figure 18). In addition, no alterations were detected at polymorphic loci on 

chromosome 2 and 11 (Figure 18; see section 3.9 for details of these RFLPs).

Mouse tumours o f haematopoietic origin frequently possess activated N- 

and/or K-ras genes (Guerrero et al., 1985; Diamond et al., 1988). Furthermore loss 

of the corresponding normal ras allele has been reported in some thymic lymphomas 

(Guerrero et al., 1985; Diamond et al., 1988). It would therefore be appropriate to 

check SB 122 for other ras gene mutations, and to analyse polymorphisms on mouse 

chromosomes 3 and 6; the locations o f the N- and K-ras gene respectively.

3.6 Tumours induced by repeated carcinogen treatment 

show a more heterogeneous pattern of genetic changes

Although the initiation/promotion regime is the best studied mouse skin 

carcinogenesis protocol, it is possible to induce mouse skin tumours in other ways. 

One of these involves the repeated application o f chemicals which can act as 

initiators (Figure 2, section 1.5.1). It is likely that, as with initiation/promotion
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Figure 18 A DMBA/TPA derived lymphoma lacks both an H -ras 
mutation and any detectable chromosome 2,7 or 11 changes

BALB
SENCAR

BALB

\ , - SENCAR

BALB

I n t - 2

- SENCAR

c
CV2
c\ 2

11-3
» -SENCAR 

4P - BALB

RFLP analysis o f an SB lym phom a (SB 122) derived from  a m ouse in which 
the skin was in itiated using D M B A  and prom oted using TPA. RFLPs analysed were 
on chrom osom es (A) 7 (B) 2, and (C) 11. The tum our lacks the codon 61 H -ras 
mutation detectable by the X b a l  RFLP. The spleen sam ple was obtained from  the 
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(section 1.5), repeated exposure to initiators is responsible for the induction of some 

human tumours. Although the latter method produces more mouse skin carcinomas 

than initiation/promotion (eg Reddy and Fialkow, 1983), little is known about the 

molecular basis for this difference. FI hybrid mice therefore offered the possibility of 

comparing the type o f gross chromosomal changes associated with each of these 

approaches. The results described below include analysis of carcinomas induced by 

repeated MNNG treatment (section 3.6.1) , and others induced by multiple 

applications o f DMBA (section 3.6.2). In addition, an attempt to determine the 

molecular changes in tumours induced by a combined initiation/promotion/initiation 

protocol is described in section 3.6.3.

3.6.1 Repeated MNNG treatment does not produce carcinomas 

with chromosome 7 changes, even if they have activated H-ras

Hennings et al. (1983) have shown that papillomas progress more frequently if 

they are treated with mutagens such as DMBA and MNNG rather than TPA. This 

suggests that these chemicals induce the same, or an equivalent event that occurs 

spontaneously in TPA promoted tumours. In this study five carcinomas (SN73, 76, 

88, 103 & 110), and cell lines grown from all o f these (prefixed “X ”), were studied 

which had been obtained from SN hybrids treated twice weekly with MNNG. These 

tumours were analysed for codon 12 and 13 H-ras mutations by hybridisation of 

oligomers to amplified DNAs, and for the codon 61 mutation detectable by Xbal 

digestion. Three o f the carcinomas (SN73, 76 and 103) and the cell lines grown from 

them, were negative in this search (Figures 16 and 19; Table 8). In addition they did 

not have any detectable chromosome 7 changes (Figure 19, Table 9). These therefore 

resemble the pattern seen in MNNG/TPA tumours with no activated H-ras.

The two other MNNG/MNNG carcinomas, SN88 and SN110 had a G:C->A:T 

transition at the second nucleotide of codon 12 (Figure 16). Unfortunately, the cell 

lines grown from explants o f these tumours did not have this mutation (Figure 16),
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Figure 19 Carcinomas induced by repeated MNNG treatment lack 
chromosome 7 changes
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The digest for the H bb  probe was E coR l (band sizes in Table 4). O ther details as in 
Figures 7 and 9.



Table 9 Chromosome 7 allele ratios in MNNG/MNNG tumours

Tumour Grade: 
% contamination: 

Tumour: 

— Fes 

Allele Hbb 
ratios 

lnt-2

10 - 50

SN73 X73 SN76

1.2 1.47 1.16
(129) (NIH) (NIH)

1.06 1.13 1.03
(NIH) (NIH) (NIH)
1.32 1.3 1.1
(129) (129) (129)

- 1-2 -
- <10 -

X76 SN88 X88

1.21 1.02 1.13
(129) (129) (NIH)

1.11 1.00 1.24
(129) (129)
1.18 1.17 1.23
(129) (129) (129)

Tumour Grade: Spindle - 1 -

% contamination: <10 - 50 -

Tumour: SN103 X103 SN110 X110

~  Fes 1.23
(129)

1.41
(129)

1.05
(NIH)

1.15
(129)

Allele
ratios

Hbb 1.01 1.35 1.23 1.16
(129) (129) (129) (NIH)

lnt-2 1.2 1.09 1.14 1.06
__ (129) (NIH) (129) (129)

The Table is in the same format as Table 6. Spindle = spindle cell carcinoma.



implying that they were derived from contaminating normal cells or tumour cells of 

another origin. Unlike all o f the DMBA/TPA and MNNG/TPA carcinomas which had 

activated H-ras, these tumours did not exhibit any chromosome 7 changes (Figure

19). Note that although there is a suggestion of imbalance at the Hbb locus in SN103 

and 110 compared with the spleen DNA, the cell lines, which at least in the case of 

SN110 was not derived from the tumour, also have this very slight difference. The 

absence of changes at these loci however does not exclude the possibility that 

changes at the H-ras locus (e.g gene duplication) had occurred in these tumours. 

There are no controls available that allow for quantitation o f the number of codon 12 

H-ras mutant alleles compared to normal alleles, and so the ratio of mutant:normal in 

tumours with this W-ras mutation cannot be assessed.

3.6.2 Increase in mutant H-rus copy number by various 

mechanisms in tumours induced by repeated DMBA treatment

The comparison o f carcinomas produced by repeated initiation with those 

produced by initiation followed by TPA promotion, was extended to the analysis of 

tumours induced by tw ice w eekly treatment with DM BA (DM BA/DM BA  

carcinomas). Eight carcinomas and cell lines grown from four o f these were analysed 

in total. Four o f the DMBA/DMBA carcinomas (SN33, 30, 31 and 47) were positive 

for the Xbal RFLP signifying an A:T->TA transversion at the second nucleotide of 

codon 61 o f H-ras (Figure 20). No other codon 61 mutations were detected (Figure 

21 and Table 8) and in the four tumours negative for the Xbal RFLP no codon 12 or 

13 mutations were detected (Table 8).

As with DMBA/TPA and MNNG/TPA tumours, chromosome 7 changes were 

only found in DMBA/DMBA carcinomas which also had an activated H-ras gene. 

SN31, for example, displayed an excess o f the mutant H-ras and an excess of fes t 

Hbb and lnt-2  NIH alleles (Figure 20). The allele ratios at fes, Hbb and H-ras 

suggested that over-representation of the NIH chromosome carrying the mutant
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H-ras allele had occurred, reminiscent of several DMBA/TPA carcinomas (section 

3.4). These ratios were below 2:1, possibly because of normal cell contamination. At 

the Int-2 locus the imbalance in favour of the NIH allele was around 8:1 (Table 10). 

This large imbalance suggests that after or before non-disjunction, deletion or mitotic 

recombination resulted in total loss of the 129 allele, with contaminating normal cells 

responsible for the remaining hybridisation signal. The number of NIH lnt-2 alleles 

was calculated to be 2.37-3.17 (depending on which IL3 band was used to normalise 

for DNA loading), resembling the total number o f alleles at fes  and Hbb (which 

ranged from 2.92-3.81). This makes mitotic recombination the most likely  

explanation for the allele ratios observed in this tumour (Figure 22A). The fact that 

after normalising for DNA amounts, the NIH lnt-2  allele was approximately 3x as 

intense as the same allele in the neighbouring lane (SN30, Figure 20) also supports 

this conclusion.

The ratio o f mutant:normal H-ras in SN47 was close to 1:1.5 (Table 10). 

However, the normal cell contamination o f this tumour was high (Table 10) and the 

true ratio was probably 2:1 (c.f. Table 16B). This conclusion was supported by 

analysis o f a cell line (X47) grown from SN47. In X47 the excess o f mutant Yl-ras 

was unambiguous (Figure 20), with the ratio o f mutant:normal being approximately 

2:1 (Table 10). An excess o f the 129 alleles at fes  and Hbb was also detected (Figure

20). In the original tumour this imbalance was diluted by the presence of 

contaminating normal cells (Figure 20). In contrast to these imbalances, the ratio of 

alleles at lnt-2  in both the tumour and cell line was similar to that seen in the control 

spleen (Figure 20, Table 10). One explanation for these observations is that, as in 

many o f the DMBA/TPA and both of the MNNG/TPA carcinomas with activated 

H-ras, nondisjunction occurred resulting in duplication of the chromosome carrying 

the mutant H-ras gene, but that subsequently one of the lnt-2  NIH alleles was lost by 

deletion (Figure 22B). Densitometric analysis o f SN47 was consistent with this 

interpretation. The total number o f lnt-2  alleles was 0.66-1.90 (depending on the
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which IL3 band was used to normalise for DNA loading), while at other loci there 

were more alleles, eg 1.98-2.99 at fes.

A third pattern was observed in SN30. As with SN31 and 47 an excess of 

mutant H-ras was detected, but unlike these other tumours, no clear imbalance was 

found at fe s , Hbb or Int-2 (Figure 20, Table 10). Thus, duplication o f the mutant 

H-ras gene may have occurred, leaving the allele ratios at fes, Hbb and Int-2 

unchanged (Figure 22C).

In the other DMBA/DMBA carcinoma which had an H-ras mutation, SN33, 

there appeared to be a slight imbalance in favour o f the NIH alleles (Figure 20, Table 

10). The ratios are close to those predicted for a tumour 50% contaminated with 

normal cells in which the chromosome carrying the mutant H-ras allele has been 

duplicated (Table 16B). Histological analysis suggested only 20% contamination, but 

it is possible that a different section o f the tumour contained more normal cells. 

Over-representation of the NIH chromosome would place this tumour in the same 

category as the large number of DMBA/TPA carcinomas in which non-disjunction 

was detected (section 3.4).

In view o f the problems associated with densitometric analysis of aneuploid 

tumours which are contaminated with normal cells (section 1.13; Naylor et al., 1987) 

other interpretations of the allele ratios detected in the above tumours should not be 

excluded. However, irrespective o f the exact nature o f these changes, it remains clear 

that H-ras activation is frequently associated with subsequent alterations involving 

chromosome 7.

The remaining four DMBA/DMBA carcinomas, which were negative for 

codon 12, 13 and 61 H-ras mutations (SN40, 49, 34 and 60), did not appear to have 

significantly different allele ratios at any o f the polymorphic chromosome 7 loci 

compared to spleen controls (Figure 20; Table 10). These therefore resemble the 

MNNG/TPA and MNNG/MNNG tumours which were also negative for H -ras 

mutations and chromosome 7 changes.
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Figure 20 RFLP analysis of tumours induced by repeated DMBA 
treatment
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Table 10 Chromosome 7 allele ratios in DMBA/DMBA tumours

Tumour Grade: 2 Spindle - - Spindle
% contamination: 20 10 - - 10 -

Tumour: SN33 SN40 X40a X40b SN49 X49

Fes 1.47 1.13 1.16 1.31 1.21 1.26
(NIH) (129) (129) (129) (129) (129)

Allele Hbb 1.23 1.28 1.15 1.12 1.39 1.18
ratios (NIH) (NIH) (NIH) (NIH) (129) (129)

H-ras 1.57 NA NA NA NA NA
(N)

lnt-2 1.29 1.22 1.35 1.85 1.10 1.2

—

(NIH) (NIH) (129) (129) (129) (129)

Tumour Grade: 1-2 3 2-3 1 ?
% contamination: 20-30 20 20 - 50% - ?

Tumour: SN30 SN31 SN34 X34 SN47 X47 SN60
— Fes 1.22 1.64 1.17 1.43 1.60 2.13 ND

(129) (NIH) (129) (129) (129) (129)

Allele Hbb 1.03 1.57 1.18 1.14 1.74 1.81 ND
^̂ 1 Ivlv

ratios (NIH) (NIH) (NIH) (NIH) (129) (129)

H-ras 1.63 1.67 NA NA 1.47 1.82 NA
(M) (M) (N) (M)

lnt-2 1.10 8.25 1.02 1.06 1.17 1.12 1.32
(129) (NIH) (129) (129) (NIH) (129) (129)

The Table is presented in the same format as Table 6.



Figure 21 A bsence of a lternative codon 61 m utations in
DMBA/DMBA carcinomas
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D M B A /D M B A  carcinom a samples were am plified with exon 2 am plim ers and 
probed w ith oligom ers specific for the norm al codon 61 sequence (CAA) and m utant 
sequences (CTA, CGA and CAT). G rid letters correspond to the follow ing amplified 
DNA samples: A) Control for CAT mutation; B-F) Controls for CGA m utation; G) 
SN30; H ) SN31; I) SN33; J) X34; K) SN40; L) X40a; M) SN spleen; N) X40b; O) 
SN47; P) X47; Q) SN49; R) X49. Tumours negative for codon 61 m utations were 
also negative for codon 12 and 13 H -ras m utations (Table 8). No DN A was available 
to analyse SN 34 or SN60. The sequence o f am plim ers and hybridisation oligom ers is 
given in Table 3, section 2.16.



Figure 22 Possible mechanisms explaining allele ratios in 
DMBA/DMBA tumours with activated H-ras
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A) Alternative routes to the chromosome 7 status of SN31. Mutant H-ras  
is represented by "X". Trisomy may have preceded or followed mitotic 
recombination.

B) Non-disjunction followed by deletion in SN47.

C) Duplication of mutant H- ra s  in SN30 (represented by "2X").



3.6.3 Imbalance at lnt-2 in a carcinoma obtained by treatment of 

DMBA/TPA papillomas with MNNG

The frequency o f malignant progression of papillomas is known to increase if 

they are treated with mutagens such as MNNG (Hennings et al., 1983). It was 

therefore o f interest to see if  chromosome 7 changes were involved in the 

progression of these tumours. Four 129xNIH hybrid mice, each with around a dozen 

papillomas that had been initiated with DMBA and promoted with TPA, were 

selected for this experiment. TPA treatment was replaced with application of MNNG 

or benzoyl peroxide 6 months after initiation. Treatment with benzoyl peroxide was 

apparently very toxic as papillomas disappeared and the epidermis became inflamed. 

However, in the two mice that were treated with MNNG one carcinoma was obtained 

9 months after initiation with DMBA, and two more 11 months after initiation. Only 

the former was analysed. As expected, this tumour (SN80) was positive for the 

DMBA inducible Xbal RFLP indicative o f an A:T->T:A transversion at the second 

nucleotide o f codon 61 o f H-ras (Figure 23). The ratio o f mutant:normal H-ras in 

SN80 was close to 1:3 (Table 6). Analysis o f the fes, Hbb and Int- 2 RFLPs suggested 

that while there was no imbalance at loci proximal to H-ras, at the Int-2 locus there 

was a 2.55:1 imbalance in favour o f the 129 allele (Table 6). These ratios are close to 

those expected for a tumour 50% contaminated with normal cells in which mitotic 

recombination distal to H-ras has occurred (Table 16E, section 1.13.2). The number 

of 129 Int-2 alleles in SN80 was calculated to be 1.15-1.71, depending on which IL3 

band was used to normalise for DNA amounts. This is close to the expected value 

(1.5) for a tumour o f the type just described. The total number of alleles at other 

(balanced) loci were, as expected, close to 2.0. Thus, mitotic recombination seems 

the most likely explanation for the allele ratios detected in this tumour, although the 

lack of histological analysis (Table 6) and the problems associated with densitometric 

analysis (section 1.13) mean that this conclusion is only tentative. Nevertheless, this 

represents another tumour in which an imbalance distal to H-ras was detected, and
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Figure 23 Imbalance at Int-2 in a DMBA/TPA/MNNG carcinoma

F es - N I H
- 1 2 9

Hbb
- 1 2 9

- NI H

- NI H

In t—2

- 1 2 9

C hrom osom e 7 R FLP analysis o f an SN carcinom a derived by repeated 
MNNG treatm ent o f DM BA/TPA papillom as. The spleen was from  an SN hybrid. 
Other details as in F igures 7 and 9.



supports the possibility that a gene other than H-ras in this region of chromosome 7 

is involved in mouse skin tumorigenesis.

3.7 Chromosome 7 analysis in tumours initiated with v- 
H-ras

Part of the evidence supporting the conclusion that activation of H-ras is the 

initiating event in DMBA/TPA carcinomas was the discovery that treatment of skin 

with DMBA can be replaced by application o f Harvey murine sarcoma virus 

(HaMSV), which contains an activated version o f H-ras, to scarified skin (Brown et 

al., 1986). Subsequent treatment with TPA produces papillomas some of which 

progress to carcinomas (Brown et al., 1986). The chromosome 7 status of tumours 

induced in this way was investigated using the FI hybrid mouse model. Although the 

integration sites o f the virus were not determined, it is probable that they involved 

loci on chromosomes other than 7. It was considered therefore, that these tumours 

would provide evidence for or against a role for changes involving this chromosome
ihdA

other an increase in the ratio of mutant:normal H-ras alleles.

Four v-ras/TPA tumours were analysed. Three of these (SN59, 186 and 197) 

were carcinomas, while the other tumour (SN182), which was dissected from 

beneath the epidermis, was found to be a mammary adenocarcinoma (Table 11). A 

cell line (X59), grown from an explant o f SN59, was also analysed.

The presence o f HaMSV in SN59 and X59 was confirmed by hybridisation of 

a v-H-ros probe to Xbal and Bgtll digests of these tumours. The fragment sizes 

predicted from the restriction map of HaMSV (Figure 24C) were obtained (Figure 

24A). Pstl and £c<?RI were used to determine the number o f viral integration events 

in SN59. These enzymes cut on one side o f the v-H-ras gene (Figure 24C), so the 

fragment which hybridises to a v-H-ros probe varies depending on the site of viral 

integration. Only one band was detected in SN59 indicating one viral integration
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Figure 24 Analysis  of  v-H-ros initiated tumours  for presence of  
virus
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event (Figure 25). This result also demonstrates the monoclonal nature of this 

tumour. In the original study of v-ros/TPA tumours it was found that carcinomas 

were monoclonal although papillomas were frequently oligo or polyclonal (Brown et 

a l, 1986). The Pstl and EcoRI fragment sizes observed in X59 were identical to 

those detected in SN59 proving that this cell line was derived from SN59 (Figure

25).

Analysis o f SN182, 186 and 197 with Xbal (Figure 24B) and Pstl or £c<?RI 

(Figure 25) failed to positively identify HaMSV in all o f these tumours. Several 

explanations are possible. First, HaMSV may have played no role in the development 

of these tumours. It may be significant that these tumours were obtained much later 

than SN59. The latter tumour was taken only 5 months after initiation whereas 

SN182, 186 and 197 were obtained 11,12 and 14 months respectively after initiation. 

TPA treatment may therefore have selected out a few clones of cells which had 

suffered an initiation event unrelated to viral uptake. Such events have been detected 

(Pelling et al., 1988) and may already be present prior to treatment with TPA or occur 

during TPA induced hyperproliferation. Spontaneous activation events frequently 

involve the cellular H-ras gene (Pelling et al., 1988), but analysis of codons 12, 13 

and 61 failed to detect c-H-ras mutations in the HaMSV negative tumours (Table 8). 

A second possibility is that SN182, 186 and 197 arose from uninfected cells which 

were influenced in some way by neighbouring infected cells. Thirdly, it is possible 

that HaMSV infection was the initiating event in these tumours but that the virus was 

lost during tumour progression. Finally, helper virus integration may have 

contributed to the development o f these tumours.

Analysis o f SN59 at polymorphic chromosome 7 loci showed that while there 

were no imbalances proximal to H-ras, under-representation o f the NIH lnt-2 allele 

had occurred (Figure 26, Table 11). However, no such imbalance was detected in the 

cell line X59 (Figure 26; Table 11). The calculated allele numbers, which varied 

depending on the IL3 band used to normalise for DNA amounts, did not clearly 

distinguish between mitotic recombination and deletion at the ln t-2  locus.
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Figure 25 Virus copy number in v-H-ras initiated tumours
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Nevertheless, SN59 is significant because it provides evidence that chromosome 7 

changes are important for a reason other than elevation of mutant c-H-ras. The 

reason why the cell line derived from SN59 lacks chromosome 7 changes is unclear. 

One possibility is that it was derived from cells in which the Int-2 imbalance had not 

occurred.

No imbalances were detected in the mammary adenocarcinoma SN182 (Figure

26). However, a 2-3 fold excess o f the NIH Int-2 allele was detected in the carcinoma 

SN186 (Figure 26; Table 11). Trisomy of chromosome 7 had not occurred since no 

imbalance was seen at fes  or Hbb (Figure 26). The tumour had very little normal cell 

contamination (Table 11) so it appears that the 129 Int-2 allele was present within the 

tumour cells. Densitometric analysis indicated that there were 1.00-1.73 NIH Int-2 

alleles in SN186 (depending on which IL3 band was used to normalise for DNA 

loading), and 0.42-0.73 129 Int-2 alleles. The total number o f alleles at other 

(balanced) loci were 1.64-2.01 (Hbb) and 2.03-2.35 (fes). The values at the Int-2 

locus are within the range expected for a tetraploid tumour in which mitotic 

recombination has occurred; the resultant 3:1 ratio at Int-2 would give calculated 

allele numbers of 1.5 (NIH allele) and 0.5 (129 allele). The tetraploid nature of many 

carcinomas (Pera and Gorman, 1984; Fusenig et a l., 1985), including v-H-ras 

initiated carcinomas (Aldaz et al., 1988) makes this a feasible suggestion. However, 

given the variety o f factors which can affect this type of assessment (section 1.13) 

other possibilities should not be excluded.

A similar pattern was detected in SN197, only in this case the 129 Hbb allele 

also appeared to be under-represented (Figure 26, Table 11). This carcinoma 

consisted almost entirely of tumour cells (Table 11) so, as in SN186, the weaker 129 

Hbb and Int-2 alleles were probably still present in the tumour cells. Densitometric 

analysis suggested that there were 0.33-0.39 129 Int-2 alleles, 1.3-1.51 NIH Int-2 

alleles, 0.63-0.67 129 Hbb alleles and 1.25-1.34 NIH Hbb alleles. The total number 

of fes alleles ranged from 2.01-2.46. Again, these are close to the expected figures for 

a mitotic recombination (distal to fes) in a tetraploid tumour, although the smaller
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Figure 26 Chromosome 7 RFLP analysis of v-H-ra.s/TPA tumours
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Table 11 Chromosome 7 allele ratios in v-H-ras/TPA tumours

Tumour Grade: ? - Mam.ad. Spindle Spindle
% contamination: ? - 10 <5 <5

Tumour: SN59 X59 SN182 SN186 SN197

Allele
ratios

~  Fes 1.28
(129)

1.01
(NIH)

1.2
(NIH)

1.06
(NIH)

1.00

Hbb 1.17
(129)

1.35
(129)

1.00 1.28
(NIH)

1.98
(NIH)

lnt-2 2.46
(129)

1.34
(129)

1.13
(129)

2.37
(NIH)

3.93
(NIH)

The Table is in the same format as Table 6. Mam. ad. = mammary adenocarcinoma.



value for the 129 Int-2 allele (also evident from the allele ratios; Table 11) may mean 

that it has been deleted in some or all o f the tumour cells.

It is difficult to deduce the precise mechanism behind the changes observed in 

SN186 and 197. M itotic recom bination in a tetraploid tumour w ould be 

indistinguishable from a diploid tumour in which only a proportion of the cells had 

suffered deletion or mitotic recombination involving the distal portion o f  

chromosome 7. The large number of variables which can influence densitometric 

analysis (section 1.13) is another complication. However, the most intriguing aspect 

of these tumours is that they represent the only examples in this study o f carcinomas 

in which an activated H-ras gene was not detected but chromosome 7 changes were.

3.8 Non-disjunction is common in papillomas, and also 

increases the number of mutant H-ras alleles

One o f the main advantages of the mouse skin model is that molecular changes 

can be correlated with well-defined histological stages. The above sections describe 

analysis o f the chromosome 7 status at the malignant stage o f skin tumorigenesis. 

Studies were also carried out to determine if  these events occurred before malignant 

conversion, ie during papilloma growth. Seven papillomas, induced in SN hybrid 

mice by DMBA-initiation and TPA-promotion, were analysed for H-ras mutations 

and chromosome 7 changes. 5/7 were positive for the Xbal 8+4kb mutant band 

(Figure 27) and one o f the other papillomas (SN136) had an A:T->T:A transversion 

at the third nucleotide of codon 61 (Figure 28). The other papilloma (SN144) may 

also have had this mutation since a faint signal was observable after a long exposure 

of the “CAT” oligomer hybridised to amplified SN144 DNA (Table 8). RNase 

mismatch analysis o f SN144 has confirmed that cells in this tumour express a mutant 

transcript, and the size o f the digested RNA fragments suggests that the mutation is 

in codon 61 (S. Young, personal communication). As with the oligonucleotide
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hybridisation signal, the mutant transcript detected by RNase mismatch analysis was 

faint.

A nalysis o f all the DM BA/TPA papillom as at polym orphic loci on 

chromosome 7 revealed an imbalance at every locus in 6/7 cases. For example, the 

ratio o f NIH: 129 alleles in SN146 was indicative o f non-disjunction resulting in 

duplication o f the NIH chromosome (Figure 27; Table 12). The initial impression 

gained from studying the allele ratios in this tumour (Figure 27; Table 12) is that 

non-disjunction has resulted in duplication o f the chromosome carrying the normal 

H-ras allele. However, the ratio of norm al: mutant H-ras alleles in this tumour was 

only 1.3:1 (Table 12). This excess o f the normal allele is not great enough to support 

the proposition that the duplicated NIH chromosome carried the normal allele. 

Instead, this ratio, and the ratios at the other alleles, are close to the predicted ratios 

for a tumour which is 40-50% contaminated with normal cells and has two copies of 

the chromosome carrying the mutant allele and one carrying the normal allele (Table 

16B; section 1.13.2). The same hypothesis fits the pattern seen in SN137, 145 and 

146, only the amount o f normal cell contamination appears to have varied from 15 to 

50% (c.f. Table 12 and Table 16B).

The approximate 2:1 ratio of normal:mutant ras in SN134 suggests that this 

tumour was also highly contaminated with normal cells (Table 12). Unlike the 

papillomas discussed above, SN134 did not have an imbalance at fes  or Hbb (Figure 

27, Table 12). However, under-representation o f the Int-2 129 allele was detected 

(Figure 27). The allele ratio was close to that predicted for a tumour 40% 

contaminated with normal cells, and heterozygous at H-ras with a deletion distal to 

this locus (Table 16F; section 1.13.2). However, calculation o f the number o f NIH 

Int-2 alleles suggested a figure of 1.73-2.65, (depending on the IL3 band used to 

normalise for DNA amounts), and as the total number of alleles at other (balanced) 

loci was also around two, this suggests that mitotic recombination had occurred. This 

discrepancy highlights the problems which can be associated with densitometric
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analysis o f aneuploid tumours, highly contaminated with normal cells (section 1.13; 

Naylor e ta l., 1987).

SN136, which had an A:T->T:A transversion at the third nucleotide of H-ras 

codon 61, showed an excess of 129 alleles, although the imbalance at fes  was not as 

convincing compared with other alleles (Figure 27). Given the pattern seen in other 

papillomas it is likely, although not proven, that the mutant H-ras allele was also on 

the over-represented chromosome. SN144, which may have had the same mutation 

as SN136 (see above), was positive for a chromosome 7 imbalance; an excess of the 

NIH chromosome was detected (Figure 27). Oligonucleotide hybridisation and 

RNase mismatch analysis suggested that the mutant allele in this tumour was under

represented. It may therefore have been located on the 129 chromosome. This tumour 

may therefore be a rare example of non-disjunction resulting in over-representation 

of the normal allele. The selective advantage which this might confer is unclear. 

Duplication o f chromosome 7 may give papillomas a selective growth advantage by 

increasing the copy number o f some gene other than mutant H-ros. Another 

possibility is that the imbalance in this tumour may have been a consequence, rather 

than a cause, of tumour progression.

As discussed in section 3.4.4, the difficulties associated with interpreting the 

mutant : normal H-ras ratio in tumours contaminated with large numbers o f normal 

cells are considerably simplified when analysing tumours from spretus x musculus 

crosses. This is because the normal alleles from each parent can be distinguished 

(Table 4 and Figure 14). Analysis of several papillomas from these hybrids has 

confirmed that the contamination level is high in benign tumours; in the majority of 

cases both normal parental alleles were detected, as well as a mutant allele (P.Burns, 

personal communication). By using the normal contaminating allele as a measure for 

the amount o f stromal contamination it was possible to confirm that the mutant allele 

was over-represented in these papillomas (P.Burns, personal communication).

The detection o f gross chromosome 7 changes in papillomas with activated 

H-ros shows that these events occur during the premalignant stage o f tumorigenesis
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Figure 27 Chromosome 7 changes in DMBA/TPA papillomas
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Table 12 Chromosome 7 allele ratios in DMBA/TPA papillomas

Allele
ratios

Tumour: SN134 SN136 SN137 SN143 SN144 SN145 SN146

Fes 1.10 1.37 1.71 2.00 1.77 1.84 1.57
(NIH) (129) (129) (NIH) (NIH) (NIH) (NIH)

Hbb 1.08 1.64 1.55 1.61 1.81 2.21 1.89
(NIH) (129) (129) (NIH) (NIH) (NIH) (NIH)

H-ras 2.01 NA 1.52 1.55 NA 1.46 1.26
(N) (N) (M) (M) (N)

lnt-2 2.27 1.78 1.99 2.18 2.28 1.81 1.64
(NIH) (129) (129) (NIH) (NIH) (NIH) (NIH)

The Table is in the same format as Table 6, except that no histological analysis was 
carried out; all tumour material was used to obtain nucleic acids.



Figure 28 An alternative codon 61 mutation in DMBA/TPA
papillomas
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following am plified D N A  samples: A) Control for CTA m utation (Xbal RFLP) B) 
SN spleen C) Control for CGA m utation D) SN 136 E) SN 144 F) control for CAT 
mutation. These tum ours were negative for all o ther codon 12, 13 and 61 H -ras 
mutations (Table 8). The sequence o f am plim ers and hybridisation oligom ers is given 
in Table 3, section 2.16.



and that other events are required to trigger further progression. It appears that one of 

the main contrasts between benign and malignant skin tumours is that the former 

frequently contain high amounts of normal cells, whereas most carcinomas contain 

mainly tumour cells (c.f section 3.4.2).

3.9 Chromosome 7 changes are non-random

To ensure that any chromosome 7 changes detected were non-random, efforts 

were made to find an RFLP on another chromosome for the hybrids used in tumour 

induction. Previously reported RFLPs for src , myb, K-ras, erbB, fo s , and neu were 

non polymorphic in the hybrids we used (Table 13). In addition no polymorphisms 

were found using a mos probe (Table 13). However, using a probe for the catalase 

(Cos-1) gene, which maps to chromosome 2, two previously unreported RFLPs were 

discovered: a BgB RFLP was not appropriate for analysis o f the hybrids used in 

tumour induction (Table 13), while a Bell RFLP was useful in analysing SB but not 

SN tumours, giving rise to a 7kb band in BALB/c mice and a 4.3kb band in 

SENCAR mice (Figure 29 A and Table 13). Additionally, a previously reported RFLP 

for interleukin 3 (IL3) (Ihle et ah , 1987), which maps to chromosome 11, also proved 

useful in analysing SB but not SN hybrids. SENCAR mice had the 10.8kb fragment, 

BALB/c mice (as shown before) had the 8.5kb fragment (Figure 29B; Table 13).

The Cos-1 and IL3 RFLPs were used to analyse all the SB tumours. Only one 

tumour (SB 137) showed an imbalance at Cos-1 (Figure 30A and Table 14). The ratio 

of BALB/c:SENCAR alleles, and the level of normal cell contamination (Table 14) 

suggested that this tumour had 2 or 3 BALB/c alleles to every SENCAR allele. This 

probably means that the SENCAR chromosome is under-represented and not lost, 

since a much higher ratio would be expected if complete loss had occurred, even in 

this tumour which is more highly contaminated with normal cells than most
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Table 13 RFLPs on chromosomes other than 7
Format as in Table 4.

1. Locus: C a s - 1 (chromosome 2)
Probe: 1.1Kb P s f l  insert of pCAT4-1 (Boyd e t

M u s  m u s c u lu s

Enzyme
B a m  HI

P v u  II 
s S ac l

T a q  I

a ! . ,  1986)

BALB C57 NIH NMRI SENCAR TFH 129

NDND 9-5,
7.0,
6.0

2.5,
1.8 ,
0.9

1.8
8 .0 ,
2.5
5.1,
1.4

ND

ND

Mus
spretus

ND

*  B e l  I 19, 19, 19, 19, 19, 19, ND ND
7.0, 4.3, 4.3, 4.3, 4.3, 4.3,
2.8 2.8 2.8 2.8 2.8 2.8

*  B g l  I 8.0, 7.5, 8.0, 8.0, 8.0, 8.0, ND 8.3,
4.2 4.2 4.2 4.2 6.9 4.2 6.9

B g l  II 1.0 . . . ND ND
E c o  Rl 6.8,

4.6
. . . . . . . . . . . . . . . ND

s H i n c  11 ND 7.5,
6.7

ND ND ND . . . ND 6.7,
2.3

s H i n d  111 ND ND. 8.0,
4.5

ND ND . . . ND 9.7,
4.5

M s p  I 5.4,
1.3

. . . . . . . . . . . . . . . ND ND

P s t  I ND 3.5, ND ND ND ND ND

8 .0 ,

7.8
ND

2. Locus: S r c  (chromosome 2)
Probe: 800bpPw vll insert of pvullE (Blatt e t  a l . ,  1984)

M u s  m u s c u lu s

Enzyme
BALB C57 NIH SENCAR TFH 129

H i n d  111 13 16.5,
14

13 13 13 13

K p n  I 10.5 ND
M s p  I 3.4,

2.1
ND . . . . . .

P v u  II 2.6 ND . . .

T a q  I 2.5 ND . . . . . . . . .

X b a  I 16 ND . . . . . . . . . ND

(NMRI and M us spretus  : ND)



3. Locus: M o s  (chromosome 4)
Probe: 3Kb E c o  Rl fragment of pM S -1 .

M u s  m u s c u l u s  
BALB C57 NIH SENCAR TFH 129

Enzyme

E co R I 15 ND ... 15, .......
(+19)

P s t  I 2.0 ND ...................................  ND

(NMRI and Mus spretus  : ND)
(SB hybrids lacked the 19Kb band detected in SENCAR)

4. Locus: IL3 (chromosome 11)
Probe: 1.1Kb E c o  Rl insert of pM u2a1, from A. Dunn & N. Gough

M u s  m u s c u l u s
129 M U S  

* s p r e t u sEnzyme
BALB NIH CBA SENCAR TFH

*  E c o R I 8.5 10.8 10.8 10.8 8.5 10.8 8.5
(16) (16) (16) (16) (16) (16) (13)

(*s) P s f l 1.0
(7.2,
1.4)

•  •  • • ■ ■ • • • • •  • 1.0
(5.3,
1.4)

(*s) X b a  I 1.8
(9.8,
3.8)

* * * • • • •  •  • 1.8
(6.0,
3.8)

(C57 and NMRI: ND)
Figures in brackets represent fragments which hybridise to the 
unidentified fragment which was cloned with IL3 (see text).

Previously reported RFLPs at the following loci were also checked, 
but found to be uninformative for the crosses used in this study.

Locus Chromosome Original study Enzyme

m y b 10 Mock e t a ! . ,  1987 E coR I
K- r a s 6 Ryan e t a / . ,  1986 E coR I

f o s 12 D'Eustachio, 1984 E coR I
e r b  B 11 Ihle e t a ! . ,  1987 P s f l

n e u 11 Xu e t a ! . ,  1986 H i n d  III



Figure 29 RFLPs on chromosome 2 and 11 in M us musculus  
hybrids

A) C a ta lase :  B) I n t e r l e u k i n  3:
c h r o m o s o m e  2 c h r o m o s o m e  11
Bell EcoRI

A) SB hybrids are polym orphic for catalase using B e ll , SN hybrids are not. 
The 19kb band is com m on to all strains.

B) SB hybrids are polym orphic for interleukin using EcoRI, SN hybrids are 
not. The band at 16kb corresponds to an unidentified D N A  sequence cloned w ith  the 
IL3 gene
(See Table 13 for details o f clones).



carcinomas. The same tumour also showed an imbalance at IL3, with an approximate 

2:1 imbalance in favour of the BALB/c allele Figure 30B; Table 14).

Two other tumours (SB 136 and 142) showed complete loss o f the one IL3 

allele (Figure 30B). The approximate 5:1 (BALB/c:SENCAR) ratio in SB 136 (Table 

14) is consistent with loss o f the SENCAR allele in a tumour 20-30% contaminated 

with normal cells; the possible mechanisms include hemizygosity at IL3 (c.f. Table 

16C), and mitotic recombination or loss o f  the SENCAR chromosome with 

reduplication o f the BALB/c chromosome (Table 16D). The latter two possibilities 

appear more likely, since the uppermost band in SB 136 and SB 137 (which 

corresponds to an unknown gene and acts as an internal control for DNA loading) are 

of similar intensity, whereas the BALB/c band is more intense in SB 136 (Figure 

30B). Loss of the BALB/c allele in SB 142 (Figure 30B) is unambiguous since the 

ratio o f SENCAR:BALB/c alleles is large (Table 14). Once again, comparison of the 

uppermost, internal control bands in SB 141 and SB 142 suggests that the SENCAR 

allele has been reduplicated in the latter (Figure 30B).

The detection o f some changes on chromosomes 2 and 11 in some tumours 

was not unexpected given the highly aneuploid state of many carcinomas (Pera and 

Gorman, 1984; Conti et a l., 1986; Aldaz et a l., 1987). Although these changes may 

have some relevance to tumour progression, their relatively infrequent occurrence 

reinforces the significance o f the chromosome 7 alterations commonly observed in 

carcinomas.

3.10 The Chromosome 7 alleles which are lost or 

under-represented can be derived from either parent

Different strains o f inbred mice show varying degrees o f sensitivity to tumour 

induction by the initiation-promotion protocol. For example, SENCAR is a sensitive 

strain while BALB/c is resistant (Slaga, 1984). If the molecular basis for this
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Figure 30 Changes involving chromosomes other than 7 are rare
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Table 14 Catalase and interleukin 3 allele ratios in SB carcinomas

Allele
ratios

Tumour Grade: 3 - Lym. 2 1 1-2

% contamination: 10 - 10 20 30 20

Tumour: SB1 X1 SB122 SB136 SB137 SB140

Catalase 1.06 1.27 1.23 1.37 2.31 1.06
(chromosome 2) (S) (B) (S) (B) (B) (S)

Interleukin 3 1.04 1.51 1.02 4.77 1.75 1.07
(chromosome 11) (S) (B) (S) (B) (B) (B)

Tumour Grade: 2

% contamination: <10

Tumour: SB141

Catalase 1.01 
(chromosome 2) (B)

Allele
ratios

Interleukin 3 1.05
(chromosome 11) (B)

1-2 1 1-2 1
20 20 10 10

SB142 SB143 SB144 SB145

1.2 1.13 1.16 1.18
(S) (S) (S) (S)

18.3 1.24 1.3 1.06
(S) (B) (S) (S)

The Table is in the same format as Table 6. S = SENCAR, B = BALB/c.



difference can be determined it could have important implications for the prevention 

and treatment of human cancers. One possibility is that susceptibility of certain key 

genes or chromosomes to mutation or loss is higher in some strains of mice than in 

others. This could be due to differences in chromosome and gene structure between 

strains. Alternatively, a more general explanation, such as the effiency o f carcinogen 

metabolism, may apply, although there is no evidence to support this possibility 

(Naito and DiGiovanni, 1989). If the former is correct, and the intrinsic differences 

between chromosomes o f various mouse strains are retained in FI hybrid mice, then 

analysis o f tumours from these mice should reveal preferential mutation/loss of 

alleles derived from the sensitive parent. SB hybrids were of particular interest in this 

respect because of the above mentioned difference in tumour susceptibility between 

these strains.

In 5/9 SB DMBA/TPA carcinomas, BALB/c chromosome 7 alleles were 

under-represented (and the SENCAR H-ras allele mutated), while the remainder 

showed the reverse pattern (Figures 9 and 11; section 3.4). Thus, there appears to be 

no evidence for preferential activation o f the SENCAR H -ras allele or for 

preferential loss of chromosome 7 alleles from this tumour-sensitive strain. A similar 

pattern was observed in tumours from SN hybrids. In 4/7 DMBA/TPA carcinomas, 

129 chromosome 7 alleles were under-represented or lost (and the NIH H-ras allele 

mutated), while the opposite was observed in in 3/7 o f these tumours (Figures 9, 11 

and 12; section 3.4).

The strain from which either chromosome 7 homologue is derived does not 

appear to influence the parental origin o f the mutated H-ras allele, nor the direction 

of subsequent allelic imbalances involving this chromosome. However, in view of 

recent evidence that maternally-derived alleles on certain chromosomes are more 

frequently lost in some human tumours than paternally derived alleles (section 1.4.4), 

it remained possible that the sex of the parental strain did influence tumour-related 

genetic events. Intriguingly, the distal portion of chromosome 7 shows evidence of 

genomic imprinting (Searle et al., 1989), a phenomenon which has been used to
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explain the preferential loss of maternal alleles in human tumours (section 1.4.4). 

Despite this, no evidence was found for such a bias in DMBA/TPA carcinomas: of 5 

such tumours obtained from a single SB hybrid (SB 141-145) there was no indication 

of preferential chromosome loss (Figure 9).

Although negative in this case, these results demonstrate the potential of the FI 

hybrid model for addressing the issue of genomic imprinting. Similar studies could 

be attempted in different tumour types and at different loci.

3.11 Analysis of DNA fingerprints in SB tumours

Human minisatellite regions (Jeffreys et al., 1985a) are made up of tandemly 

repeated units o f DNA. These units are rich in guanine residues, between 10 and 70 

base pairs long, and are repeated 3-30 times in any one satellite (Jeffreys et al., 

1985a). A core region, recognisable in all the repeat units, is 10-15bp long and 

resembles the chi sequence, which functions as a recombination signal in E. coll. 

This core region may therefore orchestrate the generation o f minisatellites, possibly 

through unequal sister chromatid exchange (Jeffreys et al., 1985a). Hybridisation of 

minisatellite probes to DNA cleaved with an enzyme which does not cut within the 

satellite, gives rise to a pattern o f bands (a “DNA fingerprint”) which varies between 

different individuals (Jeffreys et al., 1985b). As expected, more specific probes, 

which recognise a single minisatellite locus, detect a large variety of alleles. (Wong 

etal., 1986).

The m ulti-allelic nature o f  m inisatellite loci, and the resulting high 

heterozygosity, makes them potentially very useful for the analysis of allele loss in 

tumours. Loss of fragments from DNA fingerprints has been observed in a variety of 

human tumours (Thein et al., 1987; de Jong et al., 1988; Thein et al., 1988). 

Minisatellite regions have also been identified in mouse (Jeffreys et al., 1987) and so 

studies o f this type are possible with skin tumours from this species. One advantage
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over the human studies is that DNA fingerprints from mice o f the same strain can be 

compared and an indication gained of the hypervariable loci which may be 

susceptible to random alteration during tumour development.

In this study, a minisatellite probe was used to analyse tumours derived from 

SB hybrids. All the tumours were induced by DMBA-initiation and TPA- promotion. 

The probe used (15.1.11.4) consisted of repeating units of the “core” sequence 

derived from the minisatellite in the A33.15 clone (Jeffreys et al., 1985a). This clone 

hybridises to minisatellites on mouse chromosomes 4, 5, 14 and 17 (Jeffreys et a l., 

1987). The ability to detect multiple loci with a single probe allowed the extent of 

genetic change in carcinomas to be assessed, thereby testing the significance of the 

high frequency o f chromosome 7 changes observed in these tumours.

3.11.1 DNA fingerprints of parental strains

Typical DNA fingerprints for BALB/c, SENCAR and SB hybrid mice are 

shown in Figure 31. Fragments are labelled according to their parental origin to 

facilitate discussion. SENCAR and BALB/c mice have, as expected, different DNA  

fingerprints. The three SB hybrids shown have patterns which are clearly related to 

the parental strains. Heterozygosity in the parental strains may have been responsible 

for the absence o f some bands in the hybrids. This is especially applicable in the case 

of SENCAR mice which, unlike BALB/c, are not inbred. This is reflected by the 

greater level o f complexity o f the SENCAR DNA fingerprint and the absence of 

more SENCAR bands than BALB/c bands in the hybrids (Figure 31). The absence of 

bands in hybrids may also have been caused by recombination. The new minisatellite 

fragments (Figure 31) may also have been generated in this way.

The differences between DNA fingerprints o f separate SB hybrid mice 

demonstrates why tumour DNA must only be compared with constitutional DNA  

from the same mouse. Variations in DNA fingerprints of individual mice from inbred 

strains have also been detected, albeit minor ones (Jeffreys et a l., 1987).
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Figure 31 DNA fingerprints of parental strains and FI hybrids
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3.11.2 Tumour DNA fingerprints

D ifferences between tumour and constitutional DNA fingerprints were 

detected in 8/9 SB carcinomas and 1/1 SB lymphoma (Figures 32 and 33; Table 15). 

In most cases the alterations are clearly visible (e.g SB1, Figure 32). In others, 

changes are less obvious because of poor resolution (eg around B6, S9 and B7, 

Figure 32). In addition, changes in the level of intensity are more difficult to detect 

than complete loss o f a fragment or appearance o f an entirely new band (e.g BIO in 

SB 142, Figure 32).

In SB1, band S6 was lost and two new bands generated (Figure 32). If the new 

bands were derived from S6 the mechanism probably involved more than one event 

because a) while one o f the new bands is smaller the other is larger, and b) the 

intensity o f the new bands suggests that extra copies o f this minisatellite have been 

generated. An unequal cross over event could have generated the smaller and larger 

bands simultaneously. Normally, these should segregate to different cells. However, 

it is conceivable that in a tumour cell both sister chromatids could segregate to the 

same cell.

In SB 140 a new band was detected at the same position as band B6 in BALB/c 

mice (Figure 32). This new fragment may have been derived by reduction in the size 

of a band at position S8, although the resolution was not good enough to permit 

unambigous interpretation (the possible loss o f S8 is not indicated in Figure 32). The 

intensity o f most bands in SB 140 was less than those in control spleen, suggesting 

that less tumour DNA was loaded. However, bands at positions S4, B 10/S 13 and S14 

were slightly more intense than expected (Figure 32). This may represent complete 

or partial duplication o f one or more chromosomes, the latter being dependent on 

whether these fragments are linked or not. S4 and S14 are probably not linked since 

only one o f these, S4, is present in SB 1 spleen; tight linkage would result in these 

bands being inherited together.
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Tumours SB141-145 were taken from the same SB hybrid mouse. In SB 141 

and 142 one new band was detected, along with loss or reduction in intensity of three 

bands (Figure 32). The new fragment may have been derived from a recombination 

event involving one o f the other marked bands. In SB 143 and 144 the loss/reduction 

in intensity o f two bands and one band respectively was not accompanied by the 

appearance of a new fragment (Figure 32). New unresolved bands may be present, 

or, alternatively, the losses may have occurred by deletion rather than recombination.

In SB 145 two new bands, but no losses, were detected (Figure 32). Again, 

poor resolution could explain this result. These new bands were faint, and may have 

been derived from smaller fragments whose loss would be undetectable if  they had 

comigrated with intensely hybridising fragments, o f which there are many below 

about 6kb (Figure 32).

SB 136 and 137 were shown from histological and RFLP analyses to be more 

contaminated with normal cells than the other SB tumours (section 3.4.2). This may 

explain the lower number o f detectable alterations in these carcinomas (Figure 33). 

Band S12 appeared more intense in SB 136, but no obvious changes were observed in 

SB 137. An increase in the size o f the band below S12 may also have occurred 

(Figure 33).

Histological analysis showed that SB 122 was a lymphoma (Table 14). Two 

clear losses, involving S2 and B7, were detected in this tumour (Figure 14). The 

former may be linked to S3 since these two SENCAR-derived bands were either both 

present or both absent in the 5 normal tissue samples analysed in this study (Figures 

31, 32 and 33). A larger number of animals would have to be analysed to test this 

possibility rigorously. If S2 and S3 are linked, the absence o f new bands in SB 122 

could mean that S2 was lost by mitotic recombination or deletion o f part of a 

chromosome.
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Figure 32 DNA fingerprint analyses of SB carcinomas

Southern analyses o f H infl digests using the 15.1.11.4. probe. Each tumour, or 
group o f  tum ours, should be com pared with a norm al tissue sample obtained from  the 
same m ouse: SB 1 spleen was obtained  from  the sam e m ouse as tum our SB1; 
SB140spleen was obtained  from  the same m ouse as SB140; SB 141spleen was 
obtained from  the sam e m ouse as SB 141-145. O ther details as in Figure 31.



Figure 33 DNA fingerprint analyses of an SB lymphoma and SB 
carcinomas which contained large amounts of normal cells

Southern analysis o f H infl digests using the 15.1.11.4. probe. All tum ours were 
derived by D M B A -initiation and TPA-promotion o f the dorsal skin. SB 136 and 137 
are carcinom as, both obtained from  the same m ouse as SB136kidney. SB 122 is a 
m ammary adenocarcinom a obtained from  the same m ouse as SB122spleen. O ther 
details as in F igure 31.



Table 15 Summary of minisatellite hybridisation data

Bands lost or No. of bands at Bands of increased 
Tumour reduced in intensity new positions intensity

SB1 S6 2

SB140 - 1

SB141 B3, B 7 .S 1 4  1

SB142 S9, B 7.B 10 - B6

SB143 B1, B7

SB 144 B7

SB145 - 2

SB136 - - S12

SB137

SB122 S2, B7



3.11.3 Stability of tumour DNA fingerprints during selection for 

tumour cells

A cell line, XSB1 (also termed XI; section 3.4.1) was grown from an explant 

of SB 1 as part o f an experiment to remove the effect of contaminating normal cells 

on the interpretation o f RFLP patterns in this tumour (section 3.4.1). Nude mouse 

tumours, SBlNM a and SBlNM d, were obtained from this cell line, and another cell 

line, XINM a+d, grown from these (section 3.4.1). The stability o f the DNA  

fingerprint originally observed in SB1 (Figure 32) was monitored at each of these 

selection stages.

The differences between SB1 tumour and constitutional DNA (loss o f S6 and 

gain o f two fragments) were preserved in the cell line XSB1. However, o f the two 

extra bands detected in this tumour, the larger one appeared weaker in the cell line 

compared with the original tumour, even after taking into account the fact that less 

XSB1 DNA was loaded (Figure 34). This band was missing in the nude mouse 

tumours. It may have been reduced in size by recombination or deletion, since a 

smaller extra band was detected in SBlNM a and an even smaller band in SBlNM d. 

In the cell line derived from these tumours the larger o f the two extra bands was 

absent (Figure 34). The other two changes originally detected in SB1, loss o f S6 and 

gain o f a band at about 6.2kb, were preserved in the nude mouse tumours and the cell 

line derived from these (Figure 34).

3.11.4 Somatic stability of DNA fingerprints

If som atic recom bination involving m inisatellite regions occurs, the 

significance o f  tumour-associated alterations in DNA fingerprints would be 

questionable. To investigate this possibility the DNA fingerprints o f liver, skin, and 

tail from a single mouse were compared. No differences were detected (Figure 35), 

supporting the conclusion that DNA fingerprints are somatically stable.
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Figure 34 DNA fingerprint analysis of SBl-derived cell lines and 
nude mouse tumours
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Figure 35 DNA fingerprints of various tissues and tumours from a 
single transgenic mouse
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The tissues analysed in this experiment were obtained from a transgenic mouse 

carrying a mutant H-ras gene under the control of a suprabasal keratin promoter 

(Bailleul e t a l ., submitted). These mice were hyperkeratotic and developed  

papillomas without the application of TPA (Bailleul et al., submitted). The DNA  

fingerprints o f two o f these papillomas were analysed. No alterations were detected 

(Figure 35).

3.12 Determination of DNA content in four cell lines

Carcinomas, and cell lines made from these, are frequently aneuploid or 

polyploid (Pera and Gorman, 1984, Fusenig et a l., 1985). Thus, allele ratios of, say 

2:1, for a set o f  loci on one chromosome could represent trisomy o f that 

chromosome, or, if  the tumour was polyploid, a larger number o f both homologues. 

Tumour ploidy is most accurately determined by cytogenetic analysis. Alternatively, 

an approximation o f the DNA content of tumour cells can be obtained by flow 

cytometry. This gives an indication of the degree of genetic abnormality, but the 

effects o f aneuploidy on individual chromosomes cannot be ascertained. However, it 

has the advantage of speed and simplicity, and, in addition, gives an estimate o f the 

proportion o f dividing cells in the tumour population. In this study, four tumour cell 

lines were analysed by flow cytometry.

Cells were fixed in methanol and the DNA stained using chromomycin A3. 

This chemical acts as a fluorochrome for G-C rich regions of DNA, is excited at 

458nm and emits maximally at 555nm (see Shapiro, 1988). The fluorescent intensity 

is proportional to the cellular DNA content.

The cell lines analysed, X I, X I61, X59 and X47, were derived from the' 

DMBA/TPA carcinoma SB1, DMBA/TPA m etastasis SN 161, v-H-ras/TPA  

carcinoma SN59 and DM BA/DM BA carcinoma SN47 respectively. M ouse
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keratinocyte nuclei were used to determine the position of G1 and G2+M peaks in 

normal cells.

In normal diploid cells, the fluorescence (DNA content) of the G2+M peak 

(4c) should be twice that of the G1 peak (2c). The abscissae in Figure 36 are divided 

into 512 channels. Maximum fluorescence of normal keratinocytes in G1 and G2+M  

was detected in channels 31 and 72 respectively. This suggests that the flow 

cytometer measurements were not precisely linear, as has been observed by others 

(Shapiro, 1988). However, non-linearity may be confined to low fluorescence peaks, 

since two extra peaks were detected in normal keratinocytes, to the right o f the 2c 

and 4c peaks, which displayed maximum fluorescence in channels 111 and 150 

(these numbers are not indicated in Figure 36). This suggests an approximate 

seperation of 40 channels for every complete set o f chromosomes. These extra peaks 

were probably caused by doublets which persisted after cellular disaggregation. 

Additional shoulders were observed in the tumour cell line samples (Figure 36). 

These may also have been caused by doublets, but the possibility that they represent 

genuine polyploid populations cannot be excluded. The very low fluoresence peaks 

in these samples were probably caused by cell debris.

As expected, the tumour cell lines contained more DNA than normal 

keratinocytes. Assuming that integral multiples of the diploid complement were 

separated by 40 channels, with the first peak (2c) at channel 30, this means that the 

DNA content o f XI is close to 5c (channel 190), just under 5c in X 161, and close to 

3c (channel 110) in X59 and X47 (Figure 36). These cell lines are therefore hypo- or 

hyper-tetraploid, which is in close agreement with previous findings (Pera and 

Gorman, 1984). In this study, analysis of original tumour material by flow cytometry 

was not carried out. It is therefore possible that some o f the alterations in ploidy 

occurred after establishment of cell lines. However, the fact that early passage cells 

were studied should minimise this. In addition, the results reported here resemble the 

DNA content o f carcinoma tissue determined by flow cytometry (Goerttler et a l ,  

1976). Confirmation o f the similarity between the DNA content o f the cell lines
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Figure 36 Flow c y t o m e t r i c  ana l ys i s  o f  f o u r  t u m o u r  cel l  l ines

Sample

N orm al
k e ra t in o c y te s

31 72

X161

107 -206

C h a n n e l n u m b e r  

(=  F lu o r e s c e n c e  s  ONA co n te n t)

The positions o f the G1 and G2+M peaks in normal keratinocytes and each cell 
line are indicated.



studied here and the tumours they were derived from could be obtained by using 

techniques developed for the analysis of paraffin embedded tumour tissue (Hedley et 

al., 1983).

The tumour cell line peaks in Figure 36 are broad, suggesting that these lines 

may be heteroploid. Such mosaicism reflects a degree o f genetic instability, with 

continual selection amongst new clones.

In the cell lines derived from chemically induced tumours (X I, X161 and X47) 

the proportion o f resting (G l) to cycling (G2+M) cells was similar, with the bulk of 

cells in the former category (Figure 36). However, in the v-H-ras/TPA carcinoma cell 

line, X59, the proliferative fraction was higher (Figure 36). Although measurements 

were not made, the rapid growth of this cell line was noticeable during its 

establishment.

Finally, it is worth noting the absence of a 2c peak in all o f the tumour cell 

lines (Figure 36). This suggests that very few normal cells survived explanting. The 

genetic stability o f keratinocytes grown in supplemented medium has been 

demonstrated (Pera and Gorman, 1984).

3.13 Densitometric analysis: methods and problems

3.13.1 Calculation of T/N values and allele ratios

Calculation of the number of copies of an allele in a tumour (T) relative to the 

single copy present in normal tissue (N) permits accurate interpretation of results. 

Before T/N ratios can be calculated the density of tumour and normal alleles must be 

normalised for variation in DNA amounts loaded on the gel. In this study T and N 

values for each allele were normalised by division with the density o f bands obtained 

after rehybridising blots with a chromosome 11 probe, IL3. After normalisation, T/N 

values were calculated. For fes, Hbb and Int-2 loci “N” was usually the equivalent
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spleen allele. However, in the case of H-ras, N values for the 12 and 8+4kb allele 

were calculated using PDV and/or PDVC57. Before dividing the normalised T 

8+4kb H-ras allele by the normalised PDV 8+4kb allele the latter was multiplied by 

2. This was because PDV cells have 1 mutant H-ras allele in a tetraploid background, 

which is equivalent to only 0.5 copies in a diploid cell. Using the same logic, the 

value for the PDVC57 12kb allele was also multiplied by 2.

In addition to T/N ratios for individual alleles, the ratio o f one allele to another 

at a single locus can also be determined. The allele ratio can be calculated by 

dividing the larger T/N value by the smaller value. These ratios are unaffected by 

normalisation for DNA amounts and this step can be left out if desired.

3.13.2 Factors influencing the reliability and interpretation of 

densitometry results

The reliability o f T/N values and allele ratios depends on: (a) the quality of 

blots, (b) the existence o f a linear relationship between the amount of radioactivity on 

a blot and the density of bands on film, and (c) the accuracy of measurement of band 

densities.

(a) The quality o f blots on hybridisation with the probe o f interest obviously 

affects both T/N and allele ratios, but the quality on rehybridisation with IL3 only 

affects the former.

(b) The linear relationship between amount of radioactivity and density of 

bands breaks down if  bands are too faint or intense. The former problem is partially 

solved by preflashing film. However, much better results can be obtained using a 

phosphorimager which gives a linear response over a much larger scale than X-ray 

film.

(c) The measurement of band intensities can vary considerably if only part o f a 

band is measured (e.g a line through a region of the band). The densitometer used in 

this study (Molecular Dynamics 300A) allowed the density o f whole bands to be
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measured thus minimising this problem. Whatever method is used, measurement of 

band density can be difficult if bands are close to each other (this was a problem in 

the quantitation o ffes  12 and 13kb alleles and the Hbb lOkb allele).

Even if  these three factors do not distort T/N values and allele ratios, 

interpretation of results can still be confused by (a) the ploidy status of the tumour, 

and (b) the level of normal cell contamination of the tumour.

(a) The ploidy status will not alter allele ratios but it may affect T/N values. If, 

for example, chromosome 11 was trisomic in an otherwise near diploid tumour the T 

value would be reduced more than it should be by normalising with IL3. This would 

in turn reduce the T/N ratio. Conversely, underrepresentation o f IL3 would increase 

this ratio. Another problem is that a T/N value of, say, 1 could either represent one 

allele in a diploid tumour or 2 in a tetraploid tumour.

(b) Normal cell contamination will reduce both T/N values and allele ratios in 

which there is an imbalance in favour of one allele. While the effect of contaminating 

cells on the analysis o f tumour material is not considerable at polymorphic loci such 

as fes  or Hbb , the distortion is twice as great when analysing the ratio o f mutant to 

normal H-ras. This is because in SN and SB mice, normal H-ras is not polymorphic. 

Thus, each normal cell contributes two 12kb Xbal alleles compared with, for 

example, one lOkb and one 7.5kb Hbb allele. The effect o f various amounts of 

contamination on the analysis of a range of tumour types is summarised in Table 16. 

One example is shown pictorially in Figure 37. These calculations illustrate the 

dramatic effect that contamination as low as 20% can have on the allele ratios. The 

numbers in Table 16 are calculated assuming that the tumours are near diploid. 

Several reports have shown that carcinomas are frequently aneuploid or near- 

tetraploid (Pera and Gorman, 1984; Conti et al., 1986; Aldaz et al.y 1987). In such 

cases additional tumour DNA would dilute the effect of contaminating normal DNA.

Normal cell contamination is determined by morphological criteria. This has 

two main drawbacks. First, the tumour section taken for histology may not be 

representative o f the whole tumour, and second, tumour cells may confer a neoplastic



Figure 37 An example of the effect of contaminating normal
cells on tumour allele ratios

33% Contamination
C ells:

Normal:

Tumour:

H-ras locus 
Mutant : Normal 

Total alleles: 4 4
Ratio: 1 1

Other loci 
Allele A : Allele B 

5 3
1.7 1

(c.f true tumour ratio: 2 1 2  1 )



Table 16 Effects of normal cell contamination on allele ratios 
in tumours with various chromosome 7 alterations

The H- ra s  locus is represented by M (mutant allele) or N (normal allele). All 
other alleles are termed A (black chromosome alleles) or B (white chromosome 
alleles.

A) Tumour status: 3 chromosomes with mutant, 1 with normal H-ras
A A A B

Allele ratios 
H-ras locus Loci distal to H-ras

Contamination Mutant
0% 3 1 3
10% 2.5 1 2.8
20% 2 1 2.6
33% 1.5 1 2.3
40% 1.3 1 2.2
50% 1 1 2

No mal Allele A Allele B

B) Tumour status: trisomic
B

M — N

Allele ratios 
H-ras locus Other loci

Contamination Mutant Normal Allele A: Allc
0% 2 1 2 1
10% 1.7 1 1.9 1
20% 1.3 1 1.8 1
33% 1 1 1.7 1
40% 1 1.2 1.6 1
50% 1 1.5 1.5 1



C) Tumour status: Hemizygous

Allele ratios 

H-ras locus Other loci
Contamination Mutant Normal Allele A: AlleU

0% 1 0 1 0
10% 4.5 1 10 1
20% 2 1 5 1
33% 1 1 3 1
40% 1 1.3 2.5 1
50% 1 2 2 1

D) Tumour status: Mitotic recombination proximal to ras,
or chromosome loss and reduplication

A A A

Allele ratios
H-ras locus Other loci

(Distal to H-ras 
in the case of 
mitotic recomb.) 

Contamination Mutant : Normal Allele A : Allele B

0% 2 0 2 0
10% 9 1 19 1

20% 4 1 9 1

33% 2 1 5 1

40% 1.5 : 1 4 1

50% 1 : 1 3 1



E) Tumour status: Mitotic recombination distal to H-ras

Allele ratios
H-ras locus

Contamination Mu a n t: Normal
0% 1 1 2
10% 1 1.2 19
20% 1 1.5 9
33% 1 2 5
40% 1 2.3 4
50% 1 3 3

Loci distal to H-ras 

Allele A : Allele B
0

F) Tumour status: Deletion distal to H-ras

Allele ratios

H-ras locus
Contamination Mu ant tJormal

0% 1 1 1

10% 1 1.2 10

20% 1 1.5 5

33% 1 2 3

40% 1 2.3 2.3

50% 1 3 2

Loci distal to H-ras 

Allele A: Allele B

0



G)
Tumour status: Deletion distal to H-ras, both H-ras alleles mutated

Allele ratios
H-ras locus 

Contamination Mutant fo rm a l
0% 2 : 0 1
10% 9 1 10
20% 4 1 5
33% 2 1 3
40% 1.5 : 1 2.3
50% 1 : 1 2

Loci distal to H-ras 

Allele A : Allele B

0



phenotype on neighbouring normal cells. Results obtained from densitometric 

scanning should be viewed with these possibilities in mind.

3.13.3 Assessing the reliability of densitometric analysis

Given the range of problems that can upset densitometric analysis, it is 

important that the validity of data is tested. Reliable T/N values and allele ratios 

should meet the following criteria:

1. T/N ratios from a tumour allele should be the same irrespective o f which 

IL3 band is used to normalise the T and N values for DNA amounts. For example, 

the Int-2 analysis uses Pstl. Rehybridisation with the IL3 probe gives bands o f 7.2kb, 

1.4kb and l.Okb. T/N ratios should be the same irrespective of which of these three 

bands is used to normalise T and N values.

In the analysis of SN132, the T/N values for the Hbb alleles were fairly 

independent o f the IL3 band (9.8, 3.8 or 1.8kb) used to normalise for DNA amounts 

(Table 17). Other examples exist however where the T/N values varied depending on 

the EL3 band used to normalise for DNA amounts. This variation was most 

commonly in the range o f 1-2 fold (e.g, the fes  NIH T/N values in SN97) . One 

possible explanation may lie in the nature of the IL3 probe. Only the smallest EcoKl, 

Xbal and Pstl fragments are IL3 specific, the others hybridise to the unidentified 

cDNA accidentally cloned with the IL3 cDNA. If this extra DNA represents one or 

more gene sequences on a chromosome or chromosomes other than 11, then changes 

at these loci not mirrored on chromosome 11 could produce the type of variation in 

T/N values described above. However, in general, deterioration o f blot quality is a 

more likely explanation since the frequency of irregularities did appear to increase 

with the number of times a blot had been probed prior to hybridisation with IL3.

2. The T/N values and allele ratios should be the same at separate chromosome 

7 loci affected by the same event. Thus, in a trisomy, T/N should be 2 at all loci on 

the duplicated chromosome and 1 at all loci on the single chromosome (or 1 and 0.5
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respectively in a tetraploid tumour). The allele ratios should be 2:1 at every locus 

(this ratio is not different in diploid or tetraploid tumours unless there is 

contamination by normal cells).

Table 17 shows that the T/N values do vary at separate loci (this is 

compounded by the problem, outlined in point 1, of different T/N ratios depending 

on the IL3 band used to normalise for DNA amounts). The allele ratios, on the other 

hand, appear to be more consistent, but are not ideal. For example, in SN97 the allele 

ratios range from 2.3:1 at H-ras to 3.37:1 at Int-2. A lower ras allele ratio is expected 

because o f normal cell contamination (section 3.4.2).

3. The T/N values and allele ratios at H-ras should be the same irrespective of 

which control (PDV or PDVC57) is used to adjust the ratio of mutant :normal alleles. 

Some variation, although not considerable, was observed (Table 17). An estimate of 

the true values can be obtained by combining the data for other alleles with 

information concerning the amount of normal cell contamination.

4. If the amount of normal cell contamination is known and a mechanism for 

loss/under-representation of chromosome 7 alleles has been suggested, then the allele 

ratios should correspond to the calculated values shown in Table 16 for that type of 

tumour. For example, in SN97 there may have been three copies o f the NIH 

chromosome to one 129 chromosome. The tumour was 10% contaminated with 

normal cells. This would reduce the allele ratios to 2.5:1 at H-ras and 2.8:1 at other 

loci (Table 16A). The actual ratios shown in Table 17 only approximately fit the 

proposed chromosome 7 alteration in this tumour.

3.13.4 Summary

After full densitometric analysis of over 70% of the tumours discussed in this 

thesis (including several duplicate blots) it was clear that for several tumours 

deterioration o f blot quality, aneuploidy, and the problem of contaminating normal 

cells meant that accurate quantitation of changes in allele ratios was not always

- 1 3 0 -



Table 17 T/N ratios and allele ratios in three
DMBA/TPA carcinomas

Tumour grade: 2 3-4 3
% contamination: 10 10 50

IL 3 Tumour
normalising SN97 SN132 SN152

Locus Allele band(kb)

NIH 2.58 1.30 1.72
NIM 10.5 2.13 0.50 0.84

FCS 129 16 0.84 5.21 3.07
10.5 0.69 1.98 1.50

(Allele ratio) (3.07) (3.84) (1.78)

9.8 1.19 1.61 0.87
129 3.8 0.71 1.61 0.60

Hbb 1,8 0.71 2.20 0.98

9.8 3.73 0.50 0.40
NIH 3.8 2.22 0.50 0.28

1.8 2.21 0.60 0.46
(Allele ratio) (3.13) (3.20) (2.18)

9.8 1.12 0.36 1.02
12 3.8 0.64 0.24 0.56

(pDv> 1! 0.79 0.20 0.72
9.8 2.78 0.93 0.64

8+4 3.8 1.58 0.62 0.30
1.8 1.90 0.52 0.44

H-ras (Allele ratio) (2.48) (2.59) (1-75)

9.8 0.56 0.72 1.41
12 3.8 0.22 0.68 0.93

1.8 0.20 0.80 1.90(PDVC57) g 8 1.22 1.74 2.26
8+4 3 ^ 0.52 1.65 1.49

1.8 0.46 1.94 3.05
(Allele ratio) (2.30) (2.42) (1.60)

7.2 ND ND ND
NIH 1.4 2.19 0.45 0.68

1.0 3.03 0.64 0.80lnt-2 7.2 ND ND ND
129 1.4 0.65 1.76 2.86

1.0 0.90 2.50 3.36
(Allele ratio) (3.37) (3.9) (4.2)

The T/N ratios are shown opposite the IL3 band used to normalise for DNA  
loading. These were calculated as described in the text. Allele ratios were 
determined by dividing T/N values calculated using the same normalising 
IL3 band. H -ras T/N values were calculated using both PDV and PDVC57 
as controls. ND = not determined.



possible. The most difficult problem is in determining the T/N ratio in tumours. 

Comparison of allele ratios at different loci is less prone to variation. In most cases 

approximate quantification of clearcut changes can be attempted assuming that all the 

variables have been taken into account. These results however can only be taken as 

rough estimates and it is debatable as to whether they represent an improvement on 

visual approximation.

The other tumours were only partially analysed; the allele ratios were 

calculated but the T/N ratios were not (these are the values which require 

normalisation for DNA values using the IL3 probe). The results are referred to in the 

text.
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Chapter 4 

Discussion
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4.1 Gross chromosomal changes in skin tumour 
progression

H-ras activation is frequently the initiating event in chemically induced mouse 

skin tumours (Quintanilla et al., 1986; Brown et a l , 1986). Previously, it has been 

reported that the wild-type H-ras allele is absent or under-represented in some 

carcinomas (Quintanilla et al., 1986). Although ras-activation, together with loss of 

the remaining normal allele, has been detected in other other animal and human 

tumours (Capon et a l., 1983; Feinberg et a/., 1983; Kraus et al., 1984; Santos et 

al., 1984; Guerrero et al., 1985; Bos et al., 1987; Diamond et al., 1988; Riou et 

al., 1988; Smit et al., 1988), the mechanisms responsible, except for one case, have 

remained undetermined. In the colon carcinoma cell line, SW 480, a sequence 

polymorphism in the 5 ’region of the K-ras gene enabled Capon et al. (1983) to 

suggest that the normal allele had been lost by gene conversion. In the study 

described here, RFLP analysis of skin tumours from FI hybrid mice has shown that 

subchromosomal events, such as gene conversion, are not commonly responsible for 

loss or under-representation o f the normal H-ras allele. Instead, partial or complete 

loss of heterozygosity on mouse chromosome 7, suggestive of gross chromosomal 

changes, occurs at a very high frequency.

Gross chromosome 7 changes were detected in 26/28 carcinomas in which 

H-ros activation was also observed (Table 18, columns A and B). The mechanisms 

responsible for these changes are summarised below.

a) Non-disjunction resulting in over-representation of mutant H-ras. This 

alteration was detected in the majority of carcinomas.

b) Non-disjunction plus an an additional chromosome 7 change. In one

DMBA/TPA carcinoma (SN184. section 3.4.3), mitotic recombination had occurred 

proximal to Hbb resulting in complete loss of the normal H-ras allele and one Int-2
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allele. This had occurred in addition to trisomy of chromosome 7. A “double hit” was 

also detected in two DMBA/DMBA carcinomas. The simplest explanations for the 

observed allelic imbalances were trisomy of chromosome 7 followed by deletion of 

one In t-2  a llele (SN 47, section 3.6 .2), and trisomy together with mitotic 

recombination distal to H-ras (SN31, section 3.6.2).

c) Duplication o f mutant H-ras. This was detected in one carcinoma induced by 

repeated DMBA treatment (SN30, section 3.6.2). Amplification o f mutant H-ras has 

also been detected in tumours induced by initiation/promotion (Quintanilla et al., 

1986; Brown et al., 1990).

d) Changes distal to H-ras. Over-representation of the mutant H-ras allele was 

observed in all the tumours described above. However, two carcinomas were 

analysed in which alterations distal to H-ras were the only detectable gross 

chromosome 7 changes. One of these was induced by DMBA-initiation and TPA- 

promotion (SN158, section 3.4.3), while the other was obtained by treatment of 

DMBA/TPA papillomas with MNNG (SN80, section 3.6.3).

Structural and numerical changes to chromosome 7 clearly play an important 

part in the development of tumours initiated by activation of the H-ras gene. 

However, this does not appear to apply when H-ras is not involved in skin tumour 

growth. Nine carcinomas were analysed which lacked both H-ras mutations and 

chromosome 7 alterations (Table 18, column C). In fact, no chemically induced 

tumours were observed in which chromosome 7 changes had occurred in the absence 

of H-ras activation (Table 18, column D). This also applied to a lymphoma and a 

mammary adenocarcinoma which lacked activated H-ras. Further evidence for a 

correlation between the presence of mutant H-ras and chromosome 7 changes was 

provided by detection of an imbalance at Int-2 in a v-H-ras/TPA carcinoma (SN59, 

section 3.7). These results lead to the intriguing conclusion that gross chromosome 7 

changes are ras-dependpnt, and that the initiating event, i.e. a ras mutation, can
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Table 18 Correlation between H- ra s  mutations and 
chromosome 7 changes

A B c D
H- ras mutation: + + - -

Chromosome 7 changes: + - - +

Induction protocol No. carcinomas
Initiation Promotion analysed

DMBA TPA 18* 18 0 0 0
DMBA DM BA/TP A 1 1 0 0 0
MNNG TPA 4 2 0 2 0
MNNG MNNG 5 0 2 3 0
DMBA DMBA 8 4 0 4 0
DMBA TP A -> MNNG3 1 1 0 0 0

*: Two metastases included.
a: MNNG application was started after papilloma formation.



influence the molecular nature of additional genetic changes occurring later in 

carcinogenesis.

Two other v-H-ras initiated carcinomas provided contrasting results to those 

described above. Despite the absence of v-H-ras and mutations in cellular H-ras, 

changes involving the distal portion of chromosome 7 were detected in these 

tumours. This suggests that a chromosome 7 gene other than H-ras may be involved 

in skin carcinogenesis. However, this conflicts with the evidence from chemically 

induced tumours in which chromosome 7 changes were only observed in those 

tumours which contained activated H -ras. Several explanations are possible, 

including a) the presence of mutations in the cellular H-ras gene at sites other than 

those analysed; b) “hit and run” involvement of the virus in tumorigenesis (c.f Smith 

and Campo, 1988), c) the presence of other initiating events (including insertional 

mutagenesis by the helper virus) able to cooperate with chromosome 7 changes in 

tumour induction. Irrespective of which explanation is correct, these tumours are 

obviously the exception rather than the rule, and as such may prove valuable in 

elucidating some of the unanswered questions concerning skin carcinogenesis.

4.2 Loss of heterozygosity: an alternative interpretation

A llele loss in human tumours is frequently equated with homozygous 

inactivation o f a tumour suppressor locus, as described for retinoblastoma (section 

1.4.2). However, the results presented here demonstrate that LOH may also indicate 

the presence of an activated oncogene. These alternatives can only be distinguished 

once the gene involved has been isolated. This is particularly relevant for human 

chromosome 11. Loss of loci at band l ip  15, including one allele of H-ras, is 

frequently observed in a variety of tumour types ( Mannens et a l., 1988; Koufos et 

al., 1984; Riou et a l., 1988; Mackay et al., 1988; Scrable et al., 1987). Recently,
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losses o f this type have been observed in human basal cell and squamous cell 

carcinomas (Ananthaswamy et al., 1989). It is important to note that lack of 

transforming activity in transfection assays does not necessarily mean that the 

remaining H-ras allele is completely normal. The gene could harbour weakly 

transforming mutations or alterations in regulatory regions (Cohen et al., 1989) 

which may not be detected in such assays. A more detailed search for H-ras 

alterations in tumours showing loss of heterozygosity at this locus could therefore 

prove fruitful.

4.3 Role of mutant and normal ras in tumour 
progression

The results presented here clearly indicate that an increase in the copy number 

of mutant H-ras is involved in progression o f mouse skin tumours. This 

complements in vitro studies which suggest that the level of mutant ras expression is 

proportional to the degree of morphological transformation, DNA synthesis, growth 

factor independence and metastatic capability (section 1.3.4.2). Comparison o f four 

cell lines by FACS analysis in this report (section 3.12) revealed that a v-H-ras 

initiated carcinoma cell line contained the greatest proportion of dividing cells, 

consistent with the possibility that high levels o f mutant ras lead to rapid 

proliferation.

What remains unresolved however, is whether over-expression of mutant 

H-ras is related in any way to overcoming a suppressive influence o f the normal 

H-ras allele. Loss or under-representation of normal ras alleles has been seen in a 

wide variety o f tumour types (Capon et al., 1983; Feinberg et al., 1983; Kraus et 

al., 1984; Santos et a l.,1984; Guerrero et al., 1985; Bos et a l ,  1987; Diamond et 

al., 1988; Riou et al., 1988; Smit et a l ,  1988; Burmer and Loeb, 1989). The
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mechanism of suppression by normal ras could be through competition between 

mutant and normal ras alleles, either at the gene level, for a transcription activating 

factor, or at the protein level, for a cytoplasmic effector molecule. In support of this, 

a normal ros-related gene (K-rev) was recently identified which can induce reversion 

of the transformed phenotype of cells expressing mutant K-ras genes (Kitayama et 

a/., 1989). Similarly, studies on yeast have shown that it is possible to interfere with 

the function o f mutant ras alleles by introducing modified ras constructs carrying 

particular additional or alternative mutations (Michaeli et a l ,  1989).

In contrast, Paterson et al (1987) have introduced the normal N -ras protein into 

HT1080 cells, which express a mutant N -ras gene, but failed to detect any 

observable reversion o f the transformed phenotype. Instead they found that the 

transformed phenotype was dependent solely on the level of mutant N -ras. However, 

the parental HT1080 cells already express high levels of normal N-ras P21 (Paterson 

et al., 1987) and it is therefore possible that these cells may have adopted another 

route to escape tumour suppression. Although it has been reported that the normal 

H-ras gene can act as an oncosuppressor (Spandidos and Wilkie, 1988) other groups 

have failed to suppress transformation by overexpression o f normal ras (Ricketts and 

Levinson, 1988). Again, the possibility that some tumour cells have overcome the 

suppressive influence of normal ras should not be discounted. However, the fact that 

over-expression o f normal ras can be transforming (Chang et al., 1982; McKay et 

al., 1986) also argues against a role for this gene in tumour suppression. 

Nevertheless, it is possible that very high levels o f wild type ras might activate 

pathways unaffected by normal amounts of the protein.

Loss o f the normal counterpart of an activated oncogene is not restricted to 

members of the ras family. Other studies have noted loss or under-representation of 

normal myc (Uno et al., 1987), pvt-1 (Uno et al., 1989), neu (Bargmann et al., 1986), 

and p53 (Baker et al., 1989; Takahashi et al., 1989) alleles in tumours or cell hybrids
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carrying activated forms of these genes. The detailed effects of these alterations are 

difficult to assess and require the development of sensitive assays that monitor key 

disturbances.

Although loss or under-representation of the normal H-ras allele may occur 

only as a consequence o f gross chromosome events which increase the copy number 

of mutant ras, it is unlikely that the latter event is the only or main determinant of 

tumorigenicity. Some tumorigenic cell lines express low levels of mutant ras 

together with high levels o f normal p21, whereas others express high levels of mutant 

p21 but remain non-tumorigenic (Paterson et al., 1987; Quintanilla e t al., in 

preparation). A similar situation is seen in hybrids between tumorigenic cells 

expressing mutant H-ras and normal cells. Some hybrids are phenotypically normal 

but continue to express the mutant gene at high levels (Geiser et al., 1986). These 

experiments show that other genetic loci exert a controlling effect on malignancy 

expressed through the ras pathway.

4.4 A tumour suppressor on chromosome 7?

A number o f loci on mouse chromosome 7, including H-ras, are syntenic with 

a group o f genes on the short arm of human chromosome 11 (Searle et al., 1989). 

This particular human chromosome contains at least two putative tumour suppressor 

genes, including the Wilm’s tumour locus and a gene predisposing to Beckwith- 

Wiedemann syndrome (section 1.4.3; Searle et al., 1989). Recent comparative 

mapping data indicate that the mouse homologue of the Wilm’s locus is located on 

chromosome 2 (Searle et a l , 1989). The use of a catalase RFLP on chromosome 2 

showed that SB carcinomas retain heterozygosity on this chromosome, suggesting 

that the W ilms’ locus is an unlikely candidate suppressor gene in this system. This is 

perhaps not surprising given that WAGR patients do not contract cancers other than
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Wilms’ tumour at a higher frequency than the general population. Furthermore, 

recent characterisation of the Wilms’ gene itself, has revealed that it is predominantly 

expressed in the kidney (Call et a l., 1990).

As described before, there is evidence that a tumour suppressor locus is located 

near to H-ras on human chromosome l ip  (section 1.4.3). Loss of heterozygosity at 

chromosome 7 markers distal to Hbb in 2 DMBA/TPA carcinomas and 2 metastases 

is reminiscent o f events involving human chromosome 11 in tumours such as 

rhabdomyosarcoma and hepatoblastoma, which frequently develop in sufferers of 

Beckwith-Wiedemann syndrome (Koufos et a l , 1985). In addition, loss of alleles at 

around l ip  15 is a common genetic feature o f many other human tumour types 

(Mannens et a l ,  1988; Koufos et a l ,  1984; Riou et a l ,  1988; Mackay et a l ,  1988). In 

2/4 o f the mouse DMBA/TPA tumours in this category, the alteration included the 

H-ras locus, implying that the selective growth advantage conferred by these changes 

may have been related solely to the resultant increase in copy number o f mutant 

H-ras. However, in one carcinoma, SN158, and possibly one o f the metastases, loss 

of heterozygosity distal to H-ras was detected, supporting the proposal that a tumour 

suppressor gene could be located on chromosome 7. Further evidence for the 

involvement o f such a gene in the growth o f carcinomas was provided by the 

detection o f alterations distal to H-ras in two DMBA/DMBA carcinomas (SN31 and 

SN47, section 3.6.2), and a DMBA/TPA/MNNG carcinoma (SN80, section 3.6.3). 

The identification of a chromosome 7 change in a v-H-ras initiated, TPA-promoted 

carcinoma (SN59, section 3.7) also supports the proposal that a gene other than 

H-ras on this chromosome is involved in skin tumour development. However, the 

detection o f chromosome 7 changes in v-H-ras initiated tumours with no virus 

emphasises the need for a more comprehensive analysis o f this tumour type.

If there is a tumour suppressor distal to H-ras, the apparent absence of 

chromosome 7 changes in skin tumours lacking H-ras mutations suggests that it
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specifically suppresses the function o f a mutant H-ras gene. This may not be 

unreasonable given that a revertant K-ras transformed cell line could be 

retransformed by fusion with cells transformed with some, but not other oncogenes 

(Noda et al., 1983).

If, as with classical tumour suppressor loci, complete inactivation of the 

putative chromosome 7 suppressor is needed for tumour progression, an explanation 

is required as to how this occurs in the many carcinomas in which trisomy of 

chromosome 7 is detected. One possibility is that these carcinomas are near- 

tetraploid and that chromosome 7 is actually under-represented. Interestingly, several 

in vitro transformed mouse keratinocyte cell lines have been shown to have only 

three copies of chromosome 7 in a near tetraploid background (Fusenig et al., 1985). 

The detection of hypo- or hypertetraploidy in four carcinoma cell lines (section 3.12) 

is consistent with this possibility. Alternatively, inactivation o f the suppressor gene 

may occur by epigenetic as well as genetic mechanisms (Wilkins, 1988). “Genomic 

imprinting” describes the epigenetic control of differential expression o f maternally 

and paternally inherited alleles (section 1.4.4). Chromosome 7 imbalances in mouse 

carcinomas do not appear to result in preferential under-representation o f either 

parental homologue (section 3.10), suggesting that inherited expression patterns do 

not influence this event. However, “random imprinting”, i.e. with no preference for 

maternal or paternal alleles, would not be detected by RFLP analysis and so cannot 

be excluded as a potential mode of suppressor shut-down. Another possibility is that 

mutations at other loci might bypass the need to inactivate the chromosome 7 

suppressor. Chromosome 11 may contain such a locus given that homozygosity for a 

marker on this chromosome was observed in 2/9 SB carcinomas. Several loci on this 

chromosome, including the tumour suppressor gene p53, map to human chromosome 

17, which frequently suffers loss of heterozygosity during development o f human 

carcinomas (Baker et al., 1989; Takahashi et al., 1989). The absence o f minisatellite
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bands in some carcinomas may also indicate loss of tumour suppressor genes on 

other chromosomes. However, it was concluded that these events were probably 

random (see below). Finally, it is of course possible that the chromosome changes 

observed in skin carcinomas signify the involvement o f another oncogene in this 

system (c.f. section 4.2). Interestingly, several authors have reported amplification of 

a regioaon chromosome 11 which includes the int-2, hst and bcl- 1 loci (Adelaide et 

al., 1988; Tsuda et al., 1989; Berenson et al., 1989). However, no expression was 

detected using probes for these loci.

The paradoxical association o f trisomy together with potential tumour 

suppressor inactivation is not peculiar to mouse skin tumours. In some cases of 

Beckwith-Wiedemann syndrome, partial trisomy of the terminal region o f human 

chromosome l ip  has been observed (reviewed by Reik, 1989); the same region 

which is also associated with LOH in tumours obtained from these patients

The possibility that there is a tumour suppressor gene close to H-ras may also 

apply to other members o f the ras gene family, since mutation together with loss of 

heterozyg osity at K- and N-ras has been observed in several tumours (Santos et 

al., 1984; Guerrero et al., 1985; Bos et al., 1987; Diamond et al., 1988; Smit et al., 

1988; Burmer and Loeb, 1989). The FI hybrid model could be applied to determine 

the mechanism of loss of these genes in chemically induced thymic lymphomas 

(Guerrero et al., 1985; Diamond et al., 1988).

4.5 Multiple carcinogen treatment: alternative routes to 
malignancy

One o f the advantages which animal tumour models have over human studies 

is the ability to carefully control the carcinogens used to induce neoplasia. This was 

exploited in the work described above, in which different initiators were used to
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establish the correlation between H-ras activation and subsequent gross chromosome 

7 changes. In order to characterise further the types of molecular events which take 

place at the later stages of tumour progression, the effects of different post-initiation 

treatment protocols were analysed. In combination with the FI hybrid model, which 

facilitates the analysis o f molecular genetic changes during tumour progression, this 

approach has uncovered some intriguing differences between tumours induced by 

initiation/promotion and those obtained by repeated carcinogen treatment.

The m ost striking contrast was observed between MNNG/TPA and 

MNNG/MNNG tumours. 2/4 of the former were positive for activated H-ras, only 

one o f which was likely to have been caused directly by MNNG. In both o f these 

carcinomas non-disjunction of chromosome 7 was also detected (Table 18, column 

A). However, in 2/5 MNNG/MNNG carcinomas which were positive for mutant 

H-ras, no chromosome 7 changes were detected. In fact, o f all the chemically 

induced carcinomas described in this study, these were the only examples in which 

activated H-ras was not accompanied by gross chromosome 7 changes (Table 18, 

column B). One explanation for this is that repeated treatment with MNNG mutates 

the gene which is affected by gross chromosome 7 changes in TPA-promoted 

tumours. This could involve mutation of the remaining wild type H-ras allele, or of a 

linked gene. Alternatively, MNNG treatment may, by altering a locus elsewhere in 

the genome, bypass the need for additional events involving chromosome 7. The 

changes this chemical is capable of inducing include deletions and sister chromatid 

exchange (Perry and Evans, 1975) as well as point mutations, so the affected gene(s) 

could be in the tumour suppressor or oncogene class.

There was no obvious difference in the H-ras mutation frequency when 

MNNG initiation was followed by TPA or MNNG treatment. However, the most 

striking difference between DMBA/TPA and DMBA/DMBA carcinomas was the 

relatively high proportion of the latter (50%) which lacked H-ras mutations. This
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suggests that DMBA stimulates the growth of some initiated cells which TPA 

promotes either weakly or not at all. As with other H-ras mutation-negative tumours 

the molecular changes present in these cases remain to be determined. As expected, 

chromosome 7 alterations play no apparent role when H-ras is not mutated.

The DMBA/DMBA carcinomas in which H-ras mutations were detected 

resembled DMBA/TPA carcinomas, in that chromosome 7 changes were observed in 

every case (Table 18, column A). Furthermore, non-disjunction, resulting in over

representation o f the mutant allele was detected in 3/4 of these; also the most 

common mechanism o f change in DMBA/TPA carcinomas. However, in one o f these 

three, a deletion distal to H-ras may have occurred in addition to trisomy. Finally, 

duplication of the mutant H-ras allele was detected in the other carcinoma. The 

variation in types o f chromosome mechanisms is therefore higher in DMBA/DMBA  

tumours than DMBA/TPA tumours. In the former, three different types o f  

chromosome 7 changes were detected in only four tumours; only two DMBA/TPA 

carcinomas had alternative or additional changes to non-disjunction, which was the 

sole event in 14/16 DMBA/TPA carcinomas.

The above findings are consistent with the proposal that repeated DMBA 

treatment induces the changes that are also found in TPA-promoted tumours, but at a 

much greater frequency. This, taken together with its ability to stimulate the growth 

of tumours initiated with DMBA, but lacking H-ras mutations, may explain the 

higher proportion o f malignant tumours obtained by repeated DMBA treatment. 

However, it is also likely that this phenomenon is due in part to increased mutation of 

loci other than those commonly affected by TPA treatment.
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4.6 Gross chromosome 7 changes occur at a 

premalignant stage of tumorigenesis

The detection of gross chromosome 7 changes in DMBA/TPA papillomas as 

well as carcinomas, suggests that over-representation of mutant H-ras is an early 

event in tumour progression, and probably confers a selective growth advantage on 

papilloma cells. The expansion of these cells presumably increases the frequency of 

other progression-related events. In the majority o f papillomas duplication of the 

mutant H-ras gene was mediated by non-disjunction o f chromosome 7. This 

complements a recent cytogenetic study in which it was found that sequential trisomy 

of chromosomes 6 and 7 occurs early in the development o f papillomas (Aldaz et al., 

1989). One o f the advantages of RFLP analysis is that it detects events which 

karyotyping would miss. For example, in this study, an allelic imbalance distal to 

H-ras was detected in one DMBA/TPA papilloma. If this was due to mitotic 

recombination or a small deletion, karyotyping would not have detected it. The 

question o f whether these chromosomal changes are induced by TPA, or are an 

indirect consequence of rapid cell proliferation has already been discussed (section 

1.5.3.1b).

The detection of similar genetic events in benign and malignant skin tumours 

represents molecular evidence that carcinomas are derived from papillomas. This is 

supported by histological, biochemical and cytogenetic findings (Aldaz and Conti, 

1989). This point has been contested by Reddy et al. (1987) who claim that as many 

as 40% of carcinomas may not be derived from papillomas previously observed at 

the same site (section 1.5.1). Further insight into the problem may come from 

analysis o f tumours from spretus/musculus hybrids. The H-ras polymorphism in this 

cross permits unambiguous identification of the parental identity of the mutant H-ras 

allele in skin tumours. Thus, a comparison of the mutated allele in same-site
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papillomas and carcinomas should provide evidence with which to resolve this long

standing debate.

Although gross chromosome 7 changes can occur during benign skin tumour 

growth, alterations involving the H-ray locus are not limited to a single stage of 

tumour progression. In one tumour, generation of homozygosity for mutant ras 

apparently occurred during metastatic progression. In addition, the ratio of 

mutant:normal ras was above 2:1 in some carcinomas studied here, and in some 

others the mutant allele was amplified (Quintanilla et a /.,1986; Brown et a l , 1990), 

implying that selection for additional mutant H-ras genes can occur after the initial 

conversion to trisomy.

4.7 Tumour clonality

Much o f the evidence gathered to date concerning the clonality o f tumours 

suggests that the majority are unicellular in origin (Heim et a l ,  1988; Nowell, 1989). 

The techniques used to address this question rely on the detection o f markers which 

differentiate cells within the same tissue. One approach exploits the mosaic pattern of 

X-chromosome inactivation. The markers in this case include electrophoretic enzyme 

variants (Reddy and Fialkow, 1983) and RFLPs caused by methylation differences 

(Fearon et a l ,  1987). Another technique involves the analysis o f markers in embryo 

aggregation chimaeras (Winton et a l ,  1989). These approaches have an important 

drawback: the “patch” size of cells in a tissue (the number o f neighbouring cells 

which share the same polymorphism) may result in the growth o f tumours which, 

appear monoclonal, but are in fact derived from more than one cell. An alternative 

approach is  d escrib ed  by G riffiths e t a l. (1 9 8 8 ). T hey an a lysed  141 

dimethylhydrazine (DMH) -induced colon tumours and noted two in which a marker 

phenotype had been altered in every cell; consistent with mutation o f the marker

- 1 4 5 -



gene in a single neoplastic progenitor cell. Five tumours were also described which 

displayed a mixed phenotype. This was attributed to mutation of the marker gene in a 

cell some time after the start of tumour growth, but could also be explained by 

polyclonality. In any case, the low frequency with which mutation o f the marker 

gene is concurrent with neoplastic transformation limits the usefulness o f this 

approach.

All of the above approaches share an additional caveat; in the cases where 

different markers are present in the same tumour, suggesting polyclonality, the 

possibility o f normal cell contamination cannot be ruled out. Histological assessment 

of the degree and sites of normal cell infiltration does not permit an unambiguous 

conclusion, since paracrine effects of the tumour population may give normal cells a 

neoplastic appearance.

The best markers with which to assess tumour clonality are the initiating 

genetic aberrations which give rise to neoplastic growth. This permits unequivocal 

identification o f normal and tumour cells. Analysis o f the events which occur at later 

stages o f tumorigenesis suffers from the problem of genetic convergence (Heim et 

al., 1988), i.e. selection of a single clone from a polyclonal tumour.

The main drawback with using the initiating event to study tumour clonality is 

that in the vast majority of cases it is completely unknown. One exception is the 

mouse skin carcinogenesis model, in which H-ras mutation has been identified as a 

frequent initiating event (Quintanilla et al., 1986; Brown et al., 1986). The second 

advantage o f this system is that a polymorphism in FI spretuslmusculus hybrid mice 

can be used to distinguish the parental H-ras alleles. If tumours induced in these 

hybrids are polyclonal, a proportion are bound to contain both spretus and musculus 

mutant H-ras alleles. In contrast, tumours of unicellular descent will consist of cells 

which contain a mutant H-ras allele of identical parental origin. Analysis o f several 

tumours obtained from these hybrids has demonstrated the monoclonal origin o f both
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papillomas and carcinomas (P. Bums, R. Bremner and A. Balmain, in preparation). 

This contrasts with a recent study in which it was found that immunohistochemical 

markers derived from both parents in embryo aggregation chimaeras were present in 

papillomas (Winton et a l., 1989). However, these results can be explained entirely on 

the basis of normal cell contamination. A similar explanation may therefore apply in 

the case o f human tumours which are apparently polyclonal (Heim et a l., 1988)

Previously, it has been suggested that epithelial tumours may be subject to 

genetic convergence (Heim et al., 1988). In this proposal, reduction to monoclonality 

is seen as a product o f selection pressures experienced late in tumorigenesis, e.g. 

upon invasion into the dermis. This appears to be the case in v-H-ras initiated mouse 

skin tumours. A single viral integration event was detected in carcinomas, indicating 

monoclonality (section 3.7; Brown et al., 1986). However, 2 or more integration 

events were detected in v-H-ras/TPA papillomas, suggesting a multicellular origin 

(Brown et al., 1986). In the case of chemically induced tumours from FI hybrid 

mice, a different pattern is observed. Carcinomas, and papillomas analysed soon after 

their appearance, consistently display mutation of only one o f the parental H-ras 

alleles, but never both. Thus it appears that monoclonality applies from the very 

beginnings o f tumour growth.

4.8 Minisatellite analysis: random rearrangement of 

hypervariable loci

The disadvantage of using single copy DNA probes is that a maximum of 50% 

heterozygosity is possible if, as in most cases, there are only two alleles in the 

population. Several RFLPs were unusable in SN and/or SB hybrids because of this. 

Minisatellite loci, on the other hand, are highly polymorphic because of variation in 

the number o f repeat units which make up a single allele. Although probes which
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hybridise to single minisatellite loci are available (Thein et al., 1988), a probe which 

hybridises to several loci was used in this study. This meant that the status o f several 

chromosomes could be monitored simultaneously. The probe detects loci on 

chromosomes 4, 5, 14 and 17 in C57BL/6J and DBA/2J mice (Jeffreys et al., 1987). 

It was therefore considered a useful tool to a) screen tumours for consistent band 

losses, and b) compare the level of random chromosomal alterations with the level of 

changes involving chromosome 7. Loss of chromosomes 4 alleles would be of 

particular interest, given the tumour suppressing properties assigned to it by cell 

fusion studies (Table 1, section 1.4). Chromosome 14 is also o f potential interest 

since its under-representation was noted in several transformed keratinocyte cell lines 

(Fusenig et a l., 1985). Furthermore, the mouse retinoblastoma locus has been 

mapped to this chromosome. It should be noted however, that differences between 

minisatellite alleles in the strains used in this study and those in which mapping 

studies were carried out (Jeffreys et al., 1987), prevent assignment of band losses in 

SB hybrids to one o f the four chromosome mentioned above. In the mapping study, 

ten fragments totalling 90kb were assigned to the chromosome 4 minisatellite locus, 

while each other locus was represented by one band only. Thus, random losses in SB 

tumours would probably map to chromosome 4.

Of 9 SB carcinomas and 1 SB lymphoma, induced by DMBA- initiation and 

TPA-promotion, all but one carcinoma had detectable alterations in the DNA  

fingerprint detected by the probe described above. Gross chromosome 7 changes 

were also detected in all o f these SB carcinomas. This resulted in over-representation 

of the chromosome carrying activated H-ras, mutated at initiation by DMBA. The 

alterations detected by the minisatellite probe could therefore represent events, such 

as loss of suppressor genes, involved in the post-initiation stages of carcinogenesis. 

The loss o f minisatellite bands in the SB lymphoma represents the only genetic
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alteration detected in this tumour. It lacked a mutant H-ras gene, and no imbalances 

or losses were detected using polymorphic markers on chromosomes 2, 7 and 11.

It is unlikely that the differences between tumour and normal tissue 

fingerprints were the result of somatic mutations prior to tumour induction, since the 

DNA fingerprint o f separate tissues o f a single mouse were identical. This 

complements results from analysis of different human tissues (Thein et al., 1987). 

However, the possibility that micropopulations o f cells within the skin already 

contained the mutations observed in the tumours cannot formally be excluded.

No preference for loss of SENCAR or BALB/c bands was detected, even in 

the five carcinomas (SB 141-145) which were derived from a single mouse. This 

complements the chromosome 7 analyses in which no bias was detected concerning 

the loss or under-representation of parental alleles.

Loss of minisatellite bands may have been caused by events associated with 

the loss o f tumour suppressor loci, such as non-disjunction, mitotic recombination 

and deletion. In theory, mitotic recombination could even be mediated by interaction 

between minisatellite alleles. However, two other mechanisms could explain the 

changes observed. First, Hinfl is methylation sensitive and will not cleave if the 

cytosine o f the CpG dinucleotide in the GANTCG recognition site is methylated 

(McClelland and Nelson, 1985). Thus, the Hinfl DNA fingerprints o f SB tumours 

may have been altered by this mechanism, especially since methylation patterns are 

known to be altered by transformation (Jones, 1986). However, in a study of several 

different human tumour types, cleavage o f DNA with methylation insensitive 

enzymes such as Alul and HaeIII, which give similar DNA fingerprints to Hinfl, 

detected comparable shifts in minisatellite fragment sizes (Thein et al., 1987). This 

suggests that changes in minisatellite bands were probably the result o f genetic rather 

than epigenetic events. Even if the latter did apply, this would not detract from the
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potential interest of such changes given the role of methylation in the control of gene 

expression (Jones, 1986; Holliday, 1987).

The tumour-related changes in DNA fingerprints could also be the result of 

sister chromatid exchange. Depending on the fidelity o f this process, it might only 

affect the size of minisatellite alleles and not other loci. Such alterations would 

probably be a consequence, rather than a cause, o f tumour progression. Four factors 

suggest that this may be the case. First, the majority of bands which were altered in 

tumours were large, and therefore potentially hypervariable (Jeffreys et al., 1985b). 

The variation in these bands between SB hybrids supports this possibility (although 

some o f this variation may have been due to parental heterozygosity rather than germ 

line recombination). Second, in only one case was the loss o f a particular band 

observed in more than one tumour. Similar results were obtained in a study of 

carcinomas from NIH mice (P. Bums, personal communication). Finally, secondary 

alterations involving a new carcinoma-specific band were observed in cell lines and 

nude mouse tumours obtained from this tumour, suggesting hypervariability.

These findings are consistent with the hypothesis that large hypervariable 

minisatellite fragments, which are particularly susceptible to recombination during 

germ line transmission, undergo frequent rearrangement in the genetically  

destabilised environment o f a carcinoma. Such increased recombination could be 

mediated through deregulated expression of one or more minisatellite recombinases, 

which, on the basis of the similarity between minisatellite core sequences and the E. 

coli Chi sequence (Jeffreys et al., 1985a) may resemble the recombinase which 

interacts with the latter.

It cannot be excluded that the apparently random loss o f hypervariable 

minisatellite bands could be related to the loss of different tumour suppressor genes 

in separate tumours. Alternatively, different minisatellite bands which were lost in 

separate tumours may be from a single locus. Loss of different minisatellite bands
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may therefore accompany loss of a single tumour suppressor locus. It is of interest 

that the chromosome 4 locus detected by the probe used in this study was represented 

by 10 fragments totalling 90kb in C57BL/6J mice, although the other loci which 

were mapped were represented by one band only (Jeffreys et al., 1987). However, it 

is not possible to conceive a simple mechanism for the loss of different Hinfl 

fragments in separate tumours, all from the same locus, while simultaneously 

deleting a linked suppressor gene (or activating an oncogene). A simpler explanation 

is that these changes were generated by sister chromatid exchanges at different 

regions of a large minisatellite locus. Unless these loci are important regulatory 

elements, it is unlikely that their rearrangement would have a significant effect on 

tumour progression.

The difficulties in interpreting tumour associated DNA fingerprint alterations 

can only be properly resolved by cloning deleted or new fragments, assigning their 

chromosomal location and using other single copy polymorphic markers to test for 

chromosomal alterations. This procedure could be simplified by using hypervariable 

minisatellite probes which detect single loci on a known chromosome. The inability 

to detect multiple loci simultaneously with this approach can be overcome by 

rehybridising the same blot with different hypervariable probes. LOH has been 

detected in 10/118 cases of myelodysplastic syndrome (MDS) using one probe of 

this type which maps to human chromosome 7 (Thein et al., 1988). In at least five of 

these cases the loss was known, from cytogenetic analyses, to have been caused by 

complete loss o f one chromosome. However, that LOH in the other tumours was 

related to loss o f a linked gene requires confirmation by use o f single-copy 

polymorphic markers.

N o changes were detected in the DNA fingerprints o f two papillomas 

containing an activated H-ras transgene. The latter was under the control o f a 

suprabasal keratin promoter (Bailleul et al., submitted). A similar result was obtained
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from the analysis of several papillomas from NIH mice induced by DMBA-initiation 

and TPA promotion (P. Bums, personal communication). This could be related to the 

relative genetic stability of papillomas compared to carcinomas (Conti et al., 1986; 

Aldaz et al., 1987) and/or the restriction of suppressor gene loss to a small subset of 

papillomas which progress to carcinomas.

Finally, one purpose o f the DNA fingerprint analyses was to assess the 

frequency o f random genetic alterations in carcinomas. Most bands in the tumour 

DNA fingerprint were unaltered and the rearrangements that were detected involved 

putative hypervariable loci. These results consolidate the findings from analysis of 

chromosome 2 and 11 markers suggesting that gross chromosome 7 alterations are 

non-random.

4.9 Mouse skin tumorigenesis: an emerging pattern of 

genetic events

Mutation and RFLP analyses have given rise to a multistep model of  

carcinogenesis in which activation of one or more oncogenes, together with loss of 

several tumour suppressor genes, occurs in a stepwise manner, eventually resulting in 

full expression o f the malignant phenotype (Bouck and Benton, 1989; Vogelstein, 

1989). The results described in this thesis suggest that tumour progression in mouse 

skin follows a similar pattern. Following initiation by H-ras activation, there is 

selection for additional copies of this gene. Subsequently, there may be inactivation 

of tumour suppressor loci on chromosome 7 and/or other chromosomes, of which 

chromosome 11 is one candidate. The FI hybrid model should continue to provide 

valuable insight into the molecular nature of these additional changes.
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4.10 Future prospects

The FI hybrid model described in this study was originally developed to assess 

the role of allele loss on chromosome 7 in mouse skin tumorigenesis. Its wider 

application, to the study of other loci, tumour types, tumour induction protocols and 

animal models, may result in the eventual identification of new tumour suppressor 

and oncogenes. In addition, the model should also provide valuable insight into 

issues such as genomic imprinting, tumour clonality and the relationship between 

benign and malignant tumours of similar lineage. The limiting factor in all o f these is 

the level o f heterozygosity at relevant loci. This can be maximised by using 

spretus/musculus crosses, which are sufficiently divergent to ensure heterozygosity at 

virtually every locus.

There are several matters raised by the study described here which require 

further investigation. First, there is the problem o f whether wild-type H-ras 

suppresses tumour progression. Gene targeting may help to to resolve this issue. If a 

single H-ras allele can be disabled in mice and/or epithelial cells lines, the resultant 

effect on tumorigenicity may indicate the role, if any, of the normal gene in tumour 

growth. Second, over-representation of mutant H-ras needs to be confirmed at the 

expression level. RNase mismatch analysis is one approach which can be used to 

address this issue. This technique may also uncover some novel mutations in 

apparently “normal” ras genes. This may apply to the v-H-ras tumours in which 

gross chromosome 7 changes were detected despite the absence of codon 12 , 13 and 

61 mutations.

Finally, the evidence presented for the role of a locus distal to Yl-ras in mouse 

skin tumorigenesis requires further study. If more tumours which demonstrate such 

alterations can be obtained from spretus/musculus hybrids, it should be possible to 

map this locus more closely.
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