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SUMMARY

In this thesis, an investigation on the use of oscillating foil propulsion for
marine vehicle as an alternate effective propulsion system is presented. Three different
oscillating foil propellers, namely: two-dimensional oscillating foil propeller; flexible

fin propeller; and rotary foil propeller, have been studied.

The thesis is made up of four parts : one related to each type of propeller and

one on the application of oscillating foil propellers along with general conclusions.

Two-Dimensional Oscillating Foil Propeller

A review on the hydrodynamic forces and moments acting on a two-
dimensional oscillating foil is presented. The equations for estimating the force system
have been extended to cover different phase lags between heave and pitch and to
calculate the force system at a particular instant of time within an oscillating cycle. The
sensitivity of the propulsive thrust coefficient and the hydromechanical efficiency has
been investigated for a range of different parameters. The operating condition for

optimum performance is identified.

Flexible Fin Propeller

The theoretical model of the flexible fin propeller, which has been set up by
combining linearised unsteady foil theory and large deflection beam theory, is
described. Non-dimensional parameters are established to study the performance of this
type of propeller. A flexible fin propeller model and its test rig was designed and built.
The model was tested in the Hydrodynamics Laboratory at the Department of Naval
Architecture and Ocean Engineering, the University of Glasgow. The performance of
the propeller was examined at both forward and zero speeds. Results have been
compared with theoretical predictions. Conclusions on the performance of the flexible
fin propeller are drawn based on the theoretical predictions and experimental results.
The stress acting on the flexible bar has been computed and discussed. The selection of

material has been discussed and promising materials identified.



The feasibility of using flexible fin propellers for wave propulsion to absorb
wave energy and convert it into propulsive thrust has been studied. A one-fifth scale
model of a three quarter ton racing yacht with a flexible fin propeller model mounted at
the stern was tested. At a low Froude number, there is a significant reduction in the
motion response and in the required thrust around the resonance zone, where the

encounter wave length is equal to the ship length.
Rotary Foil Propeller

A three bladed propeller model with high-aspect ratio blades was tested in
forward and reverse directions and zero speed conditions. The experimental results on
the performance of the model at forward speed have been compared to that predicted by
Bose [1987] using multiple stream tube theory and discussed.

Application of Oscillating Foil Propeller and General Conclusions

The practical application of three oscillating foil propellers and economic studies
of their operation have been studied and discussed. Three ship examples with the same
Froude number but different in sizes and a high speed craft have been used in these
studies. Three types of oscillating foil propeller are designed for each ship example.
The required stern hull form and the driving mechanism have been discussed. The
application of the flexible fin propeller in wave propulsion has been demonstrated. The
natural frequency of a full scale flexible fin propeller was calculated and found to be

much higher than the optimum driving frequencies in the operating condition.
The net present value method has been applied in the economic studies where
breakeven conditions, different interest rates, fluctuation of oil price, and different

additional maintenance costs have been considered.

The main conclusions of this research have been drawn up and are presented.

Recommendation on the design of these propeller are also made.
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CHAPTER 1

INTRODUCTION

1.0 SHIP PROPULSION

On this beautiful planet, Earth, about two-thirds of the surface is covered by
water. The blue oceans, rivers and streams separate lands into continents and islands.
In the earliest days, man learnt to travel across streams on floating pieces of wood and
propelled with oars by manpower. Then, vessels were propelled by combining wind
propulsion and rowing. According to Comstock [1977], Toogood & Hayes, in 1661,
held a patent of the first propulsive device for ships driven by mechanical power, which
was a pump; and water was accelerated by the pumping action and this was used for
propulsion. This formed the foundation of the later development of jet propulsion for
high speed craft (e.g. hydrofoils). Later, the first steam ship equipped with paddle
wheels, Charlotte Dundas, was built and operated in Scotland in 1801. This paddle

wheel system was far from effective for ship propulsion.

A more effective and reliable device, the screw propeller, was proposed in 1680
by Hook and its first application came in 1836. The paddle wheel was in due course
superseded by the screw propeller. The screw propeller quickly developed to dominate
the ship propulsion systems for years and is still the main propulsion system in modemn
marine vehicles. However, the practical propulsive efficiency of screw propellers is
normally about 0.6 to 0.7. For small ships, the efficiency may be even lower. A
number of devices have been used to improve the propulsive effectiveness of the screw
propeller such as the controllable pitch propeller, ducted propeller (shroud or nozzle),
Mitsui integrated duct system, tip vortex free propeller (propeller with end plates),
Grim vane wheel, contra-rotating propellers, tandem propellers, swirl and Schneekluth
wake distributor duct. These devices are discussed in detail by Dumpleton [1986].

Recently, propeller boss cap fins [Gearhart and McBride 1989] have been developed



for improving efficiency. However, there is no unique solution for the improvement of

the propulsive efficiency of the screw propeller.
2.0 THE PROPULSION SYSTEM OF AQUATIC ANIMALS

People have always been amazed by the high swimming speed of fishes and
cetacean mammals. For example, a 2m tunny fish can swim at a top speed of 40 knots
[Lighthill 1977]. A dolphin can support its body out of the water by oscillating its tail.
The thrust generated by the oscillating tail is high. These animals live in a world with a
strong predator-prey relationship and "survival of the fittest” makes propulsive
effectiveness essential to them. As their lives depend on capturing other marine
organisms or being captured, swimming speed and efficiency is closely linked to the
matter of live and death. For a minority group, different protective systems are used to
escape from being captured. Biologists deeply believe the "convergent evolution" and

fishes evolve to a form with higher survival capability and better swimming efficiency.

The drag and power output of the muscles of a dolphin were calculated and
compared by Gray [1936]; a large discrepancy was found between the available power
from the muscles and that required to achieve the swimming speed. This became
known as "Gray's Paradox". He concluded that, unless the muscle generates an
amazingly high power, it is impossible for a dolphin to achieve its swimming speed.
This finding stimulated research on the swimming efficiency of fishes and cetacean
mammals. Gray himself made a large contribution to the study of fish locomotion
[Gray 1968]. The development of research on the thrust, drag and power of swimming
fishes and a literature review are described by Peachey [1981]. In the sixties and early
seventies, Lighthill {1960, 1969, 1970 and 1971] and Wu [1971 a, b and c¢] made

significant contributions to the theoretical model of fish propulsion from the

hydrodynamic point of view.

Investigations on the hydrodynamic performance of an oscillating lunate fin

have been carried out. Chopra & Kambe [1977] applied the Davies [1965] method of



finding the loading distribution on an oscillating wing to investigate the propulsive
thrust and efficiency of different foil shapes which included lunate shape and efficiency
above 0.9 was found. Lan [1979] applied his unsteady quasi-vortex-lattice method to
study the performance of an oscillating arrow shaped foil. Cheng & Murillo [1983]
used a curved lifting line to model the lunate tail and applied the asymptotic unsteady
lifting line theory to calculate the lift distribution of an oscillating lunate tail. Bose and
Lien [1989] used a quasi-non-linear theoretical approach with measurements from an

immature fin whale to illustrate the performance of the flukes in propulsion.

Humans deeply believe the propulsion system used by fast fishes and cetacean
mammals is an effective system. However, neither fishes nor cetacean mammals have a

propulsion method similar to a screw propeller.
2.1 Mode of Swimming

There are different modes of fish swimming. Examples of different modes of
motion are shown in fig. 1.1 [Hoar & Randall 1978]. The vertical axis shows the part
of body and fins (shaped) which generates propulsive thrust. The horizontal axis
describes the motions from undulation (wave form motion) to oscillation (rigid fan-like
motion). The shaded area is the part which generates propulsive thrust. Breder [1926]
divided the swimming motion, where propulsive thrust cbme from the body and caudal

fin, into three classes : anguilliform, carangiform and ostraciiform.

The anguilliform is a pure undulatory swimming motion that involves the
majority of the body in generating the propulsive thrust. The oscillating wave length to
the body length is short; the best example is the swimming motion of an eel. The
ostraciiform is a rigid oscillation where the caudal fin flaps like a fan with pendulum
motion. The anguilliform and ostraciiform are two extreme modes of motion. The
motion between anguilliform and ostraciiform is the carangiform. Since the term,
carangiform, covers a wide range of motion, it has been further divided into three

different classes : subcarangiform, carangiform and thunniform as shown in fig. 1.1.



These swimming modes are compared and listed in detail by Hoar & Randall [1978,
tabie II p.13]. In fig. 1.2, the swimming modes of anguilliform, subcarangiform,

carangiform and thunniform are illustrated.

After millions of years of convergent evolution, fast fishes and cetacean
mammals possess a similar mode of swimming motion (thunniform) and similar caudal
fin shape (a high-aspect-ratio lunate tail). The best examples are the tunny fish,
dolphins, swordfish and whales. These aquatic animals followed different evolutionary
routes, indeed dolphins and whales are mammals, but they have ended up with similar
propulsion systems. They are either fast swimmers or required large propulsive thrust

making effective propulsion essential.

For the thuniform mode of swimming, the wave length of the undulating
motion is large and is about one to two body lengths. The undulations are confined to
the peduncle and tail. The body shape is streamlined with extreme narrow-necking of
the peduncle. The aspect ratio of the caudal fin is high and lunate. The centre part of
the fin always lead the tips of the fin. When the tail is at the upper or lower most
positions, the lagging of the tips prevents the total loss of propulsive thrust at these

parts of the cycle as mentioned by Lunde [1982].

The body motion is reduced to a minimum in thunniform swimming and is
concentrated on the posterior portion, as shown in fig. 1.2. The swimming path of
thunniform is straighter [Fierstine & Walters 1968]. The caudal fin heaves and pitches
with a 90° phase difference. The fin is parallel to the forward motion at the top of the
upward stroke. As the fin moves down, it pitches downward and maximum pitching
angle occurs when the fin passes the body axis. The fin comes to zero pitch position

again at the bottom of the downward stroke. The whole process is reversed when the

fin moves upward.



3.0 OSCILLATING FOIL PROPULSION

A number of inventions on novel ship propulsion systems had been proposed.
Recent work [Tsutahara & Kimura 1987] on applying the mechanism of hovering flight
of small insects, termed "Weis-Fogh Mechanism" [Weis-Fogh 1973 and Lighthill
1973] has also been carried out. A similar device with driving mechanism has been
proposed by Brown [1986]. The system is made up of two vertical surface piercing

wings which oscillates 180° out of phase to each other.

A large number of inventions have been stimulated from the swimming of
fishes. Most of these inventions are closer to the ostraciiform where propulsive thrust is
generate by either rigid or flexible flaps. Bjelvucic [1907] invented a system which was
made up of one or more pairs of elastic horizontal wings and connected on a vertical
shaft which was rapidly reciprocated up and down. Therefore the wings flapped and
generated propulsive thrust. Hotchkiss [1947] proposed a flapper with a rubber
diapham which can be used to utilise wave energy or direct driven by manpower or
engine. The diapham of the flapper formed a concavity when the flapper moved
through the water. Warner's invention [1963] was very similar to that of Bjelvucic
[1907]. Tipaldi [1980] proposed a rigid paddle shaped plate which was connected
directly on a pivot and oscillated up and down by manpower. Ramsay-Whale [1980]
proposed vertical flexible flaps which were hand operated and oscillated sideways.

Although the ostraciiform possesses the following advantages,

i)  The main body motion is rigid and stable, and

ii) a straighter course is achieved,

low efficiency is expected. Thunniform swimming is expected to have high efficiency
and also possesses the above advantages. From the view point of ship propulsion,

thunniform swimming is the most suitable.

In 1895, Linden obtained a patent [Linden 1895] for converting wave energy



into propulsive energy with a flap activated by the ship response in waves. In Norway
[Jakobsen 1981 and 1982] and Japan [Isshiki et al. 1982, 1984 and 1986], research
has been carried out using foil systems to convert wave energy into propulsion energy.

Owing to the ship motion in waves, the foil heaves and pitches.

Active fin propulsion systems for ships has been developed in parallel to that of
wave propulsion. Scherer [1968] established a semi-linear large amplitude oscillating
foil theory and the result was compared with experiment on an oscillating foil with
aspect ratio 3 and applied to the design of a shallow-draft boat. Chopra [1976]
developed a more sophisticated theory on the large amplitude oscillation of a two-
dimensional foil. Potze [1986] looked at optimum sculling propulsion and interaction

between two oscillating foils.

An active foil propulsion system with springs has been developed by Jakobsen
[1983 and 1988] and the Marine Technolgy Centre, Norway [Lai 1988]. The fin was
oscillated vertically and the pitching motion was provided by a spring system. A similar
system was tested in Sweden [Bergman & Gothberg 1985] and a high efficiency of

0.75 was measured in this test.

Research on propulsion systems with a flexible foil has also been carried out.

Katz and Weihs [1978] had developed a mathematical model for a two-dimensional
oscillating foil with chordwise flexibility. Kudo et al. [1984] looked at the performance
of rigid and partially elastic oscillating foils by using linearized theory. Kubota et al.
[1984] proposed a non-linear theory for the performance of an oscillating foil and
studied its application to ship propulsion and found that higher efficiency but lower
thrust can be obtained in a partially elastic foil. A partially elastic oscillating foil was
fitted on a ship model and tested and an efficiency of 0.65 was found. In Russia,
.St:rekalov [1986] proposed a propulsion system with elastic oscillating wings driven by
a crank system. Both forward and reverse thrusts can be generated by this system.
Experiments [Isshiki et al. 1987] were performed on a boat with a low-aspect-ratio fin;

the oscillation was provided by a crank shaft system similar to that of Strekalov's



machine. An outboard system was also tested.

A swimming aid using oscillating foil propulsion and driven by human power
has been developed as shown in fig. 1.3 [Unitex Marine Limited, 1989]. The
manufacturer claimed that with the system it is possible to generate a mean thrust in

excess of 40 kg and can be used to tow three persons.

4.0 THE BACKGROUND AND OBJECTIVE OF THE STUDY

The characteristics and performance of an oscillating foil system are different
for each of the individual systems. From the inspiration of thunniform swimming, three
different oscillating foil propulsion systems were proposed at the beginning of the
study. These propellers are termed the two-dimensional oscillating foil propeller,
flexible fin propeller and rotary foil propeller as shown in fig. 1.4. Their particulars are

listed as follows.

1)  Two-Dimensional Oscillating Foil Propeller

The active foil is held between two enclosing end struts which house the driving
mechanism as shown in fig. 1.4a. These enclosing struts provide an end shielding
effect which reduces the pressure loss at the tips of the foil. Theoretically, if there is no
pressure leakage through the tips, the flow across the foil is two-dimensional and

propulsive efficiency is increased.

2) Flexible Fin Propeller

This propeller is an imitation of the fish tail thunniform motion. A hydrofoil is
connected to a pivot through a flexible bar as shown in fig. 1.4b. The foil heaves and
pitches as a result of applying an angular oscillation at the pivot. Owing to the flexibility
of the connecting bar, a phase lag is obtained between heaving and pitching. This

method is first mentioned by Gray [1968, p 25]. Bose et al.[1986] proposed a research



project using this as a ship propulsion device and received a Science and Engineering

Research Council research grant to study the device in detail.

3) Rotary Foil Propeller

This is a multi-bladed propeller where blades with high-aspect-ratio are
mounted on a rotating drum. These blades also oscillate about their rotating axes, as
shown in fig. 1.4b. This is a type of trochoidal propeller with high aspect ratio blades.
The foil heaves and pitches as a result of the rotation of the drum and the angular
oscillation about its rotating axis. The surface of the rotating drum provides a mirror

image which increases the effective aspect ratio of the blades.

4.1 Aims of Research

The aim of this research is to investigate the use of these propellers for

propulsion of marine vehicles. The main objectives of this work are to :

1)  study the hydromechanical performance of these propellers by theoretical and
experimental investigation;

2) investigate the application of these propellers to ship propulsion based on the
hydromechanical performance; and,

3) set down recommendations for design.

5.0 CONTENT OF THESIS

The content is made up of four parts namely,

i)  the two-dimensional oscillating foil propeller,
ii)  the flexible fin propeller,
iii) the rotary foil propeller, and

iv) the application and economic studies and main conclusions.



5.1 Two-Dimensional Oscillating Foil Propeller

In Chapter 2, the hydrodynamic forces and moments acting on a two-
dimensional oscillating foil are reviewed. As an introduction to the subject, a quasi-
steady approach is discussed. Two-dimensional linearized unsteady foil theory based
on approaches using the acceleration potential [Biot 1940, Lai 1988a] and velocity
potential [Theodorsen 1935] are presented and compared. The leading edge suction
force is also discussed. The force system acting on an oscillating foil is made up of a

lift force, leading edge suction force and pitching moment at the rotation centre.

The equations for estimating the force system [Lai 1988b] are extended to cover
different phase lags between heave and pitch and to calculate the forces and moment at
a particular instant of time within an oscillating cycle. This is described in Chapter 3.
The sensitivity of the propulsive thrust coefficient and efficiency is investigated for
different parameters. The variation of the propulsive thrust throughout an oscillating
cycle is studied when the pitching motion lags the heaving motion by 90°. Optimum
performance is expected to occur at low reduced frequency with phase lags around 90°,
high values of the feathering parameter and a location of rotation centre between the

mid-chord and the three quarter chord point.

5.2 Flexible fin Propeller

A theoretical model of flexible fin propeller with rectangular foil {Lai 1989] has
been set up by combining linearized unsteady foil theory and large deflection beam
theory. This is presented in Chapter 4. The force system acting on a rectangular foil
with finite aspect ratio is described. The three-dimensional effect is included by using
the unsteady-lifting functions for rectangular and elliptical wings [Jones 1940,
Drischler 1956]. Good agreement is found between the results of the present method
and that from Chopra & Kambe [1977] and Lan [1979]. As the connecting bar is
flexible, a large deflection beam theory has been applied. A second order differential



equation has been formulated with a force system acting at the free end of a flexible
cantilever and this is solved by a numerical method. The model has also been set up to
investigate a flexible fin propeller in which the connecting bar is constant in width but

has a linear variation in thickness.

Parametric studies [Lai 1989] have been carried out using this theoretical model.
A number of non-dimensional parameters have been set up to study their effect on
hydromechanical performance in Chapter 5. These parameters represent the flexibility
of the connecting bar, amplitude of angular oscillation at the pivot, the relationship
between the oscillating frequency and forward speed and aspect ratio of the foil.
Propulsive thrust increases as the stiffness of the bar increases, but the efficiency
decreases. Higher thrust is obtained when the angular oscillating amplitude increases.

Efficiency increases as the aspect ratio increases.

A flexible fin propeller model and its test rig was designed and built. The design
of the rig is described in Chapter 6 and the construction drawings [Lai 1988c] are
shown in Appendix I. The objective of the rig is to convert the rotation into a sinusoidal
angular oscillation and transfer this to drive the model at the pivot. The dynamometer is
also integrated into the rig. The objective functions were checked and confirmed to meet

the design criteria.

The experimental investigation [Lai 1989a] on the performance of the flexible
fin propeller has also been carried out as shown in Chapter 7. A flexible fin propeller
model with a wooden rectangular foil, with aspect ratio was four and the cross section
was NACA 16-012, was tested in the Hydrodynamics Laboratory at the Department of
Naval Architecture and Ocean Engineering, University of Glasgow. Incoming flow
velocity at the foil and frictional loss in the driving mechanism were investigated. The
performance of the model was tested at both forward and zero speed conditions.
Experimental results in the forward speed condition have been compared to the
theoretical predictions. At low angular oscillating amplitude, good agreement is found

between experiment and theory for both propulsive thrust and efficiency. High
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efficiency is also obtained at low angular oscillating amplitudes. A high efficiency of

0.7 was found in the experiments.

The stress acting on the bar is computed by using a theoretical model and this is
discussed in Chapter 8. In this chapter, the maximum working stress of a flexible fin
propeller for a 66 m ship is used to discuss the selection of material and study fatigue
life. High strength carbon fibre reinforced plastic possesses the required fatigue
strength and suitable mechanical properties. Hybrid carbon-glass fibre reinforced
plastic is a more cost-effective material which still possesses a promising fatigue

strength and mechanical properties.

The feasibility of using a flexible fin propeller for wave propulsion to absorb
wave energy and convert this into ship propulsive thrust has been studied and presented
in Chapter 9. A simplified flexible fin propeller with no power supply was mounted on
a 0.33 m yacht model and tested in the small demonstration tank [Lai & McGregor
1989]. The model advanced forward in waves with the propeller and drifted backward
without the propeller and the idea was confirmed. A larger scale of model test was
carried out in the main tank of the Hydrodynamics Laboratory. A one-fifth scale model
of a three-quarter ton racing yacht and a flexible fin propeller with rectangular foil at an
aspect ratio 4.0 was used in this investigation. The resistance and motion response for
the model with and without the propeller were measured and compared for different
wave conditions and forward speeds. There is a significant reduction in motion
response and resistance around the resonance zone, where the encounter wave length is
equal to the ship length, with a passive flexible fin propeller fitted on the stern at a low

Froude number.
5.3 Rotary Foil Propeller

A trochoidal propeller model with high-aspect ratio blades, which is designated
as a rotary foil propeller [Bose 1987], was tested in the testing tank of the laboratory.

The model is a three-bladed model with an effective aspect ratio of 10. The performance
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of the propeller was tested in forward and reverse direction and zero speed conditions.
The results are presented in Chapter 10. The flow velocity around the blades and
frictional loss in the driving mechanism were also investigated. The experimental
results on the performance of the model at forward speed are compared to that predicted
by Bose [1987] using multiple stream tube theory. A high propulsive efficiency of 0.8

was found in the calm water test with forward speed.

5.4 Application and Conclusion

The practical application and economic studies of the operation of these
propellers in actual marine service have been analysed using data and programs based
the previous studies and are presented in Chapter 11. Three ships with a similar Froude
number around (.25 but different in size together with a high speed craft have been
used in this study. Three types of oscillating foil propeller were designed for each ship
example and these are discussed. Suitable hull forms for different propellers are also
proposed in this chapter. The corresponding driving mechanism and arrangements are
discussed. The natural frequency of a full scale flexible fin propeller was calculated and
compared to the operating condition. The application of wave propulsion with a flexible
fin propeller is also demonstrated. The net present value method is applied in the
economic studies where break even conditions, fluctuation of oil price, different interest
rates and different additional maintenance costs are considered. Recommendations on
the application of these oscillating foil propellers, from the economic point of view,

have been made.

Conclusions are given at the end of each chapter. In Chapter 12, the

conclusions and findings of this thesis are summarised and future development on this

subject is suggested.
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PART 1

A two-dimensional oscillating foil propeller is investigated in this part. This propeller is
made up of an oscillating foil and two side struts which enclose the tips of the foil. In
the ideal condition, no flow occurs across the gap between the foil and struts. The flow
across the foil is a two-dimensional one. The hydrodyhamic force system acting on a 2-
dimensional oscillating foil is discussed in chapter two. The performance of this type of
propeller is investigated in chapter three. An optimum motion is recommended as a

result of this investigation.
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CHAPTER 2

HYDRODYNAMIC FORCE AND MOMENTS ACTING ON :

IM 1
1.0 INTRODUCTION

When a foil oscillates in a fluid domain with a speed of advance, hydrodynamic
forces and moments are generated and these act on the foil. In this chapter, the force
system acting on an oscillating two dimensional foil is discussed. The force system can
be calculated using a quasi-steady approach or an unsteady foil theory. In this chapter,
both the quasi-steady approach and the unsteady lifting foil theory are presented and

compared.

The quasi-steady approach is only suitable for a low frequency oscillation
where the unsteadiness is not important. For higher oscillating frequencies, an unsteady
lifting foil theory should be used. As an introduction to the quasi-steady approach, an
aerofoil in a steady flow is briefly discussed here. Bose [1987] applied a similar quasi-
steady approach in the multiple stream-tube theory to study the performance of a

trochoidal propeller.

In unsteady lifting foil theory, linearised assumptions are used. Two-
dimensional linearised theory was first developed in the 1930's for studying the flutter
problems of aeroplane wings. Recently, Kyozuka et al. [1988] developed a linearised

theory to include the effect of foil thickness. His results showed that thickness effects

are not important.

Two dimensional linearised unsteady foil theory has been developed by a
number of authors [Glauert 1929, Wagner 1925, Theodorsen 1935, von Karman and
Sears 1938, Biot 1940]. In particular, Theodorsen [1935] developed the theory using
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velocity potentials and applied it to study the flutter problem of an oscillating foil. Von
Karman and Sears [1938] calculated the lift and moment forces based on the rate of
change of momentum of vortex pairs in the system. Biot [1940] applied the acceleration

potential in calculating the force system.

In this chapter, Biot's method based on the acceleration potential is shown.:
Application of the acceleration potential was first introduced by Prantl [1936]. Biot
extended it and applied it to an unsteady oscillating foil with a vertical oscillation. Then
Fung [1969] further extended the theory to include pitching oscillations. Based on the
acceleration potential, Lighthill [1970] developed a theory to estimate the propulsive
thrust and efficiency of a two-dimensional oscillating foil. In addition, Theodorsen's
theory [1935] is presented. Comparisons are made between these two approaches. The
quasi-steady approach is compared to linearised unsteady foil theory. The leading edge

suction force is discussed.

Although the approaches to the unsteady oscillating foil theory are different, the
final equations to calculate the force system are the same. The oscillating motion
introduces a modified angle of attack with a downwash angle at the three-quarter chord
point. In unsteady foil theory, the equivalent angle of attack is further modified by a
complex function known as the Theodorsen Function and this introduces a time delay

factor.

2.0 BOUNDARY CONDITIONS

The boundary conditions in aerofoil problems are set out below.

1) Kinematic Boundary Condition :-The fluid must not penetrate the aerofoil surface.

Therefore the flow must be tangential to the solid surface of the foil at all times.

2) The Kutta flow off condition :- This condition at the trailing edge must be satisfied.
The Kutta condition states that for an inviscid fluid there must be no flow around

the sharp trailing edge and the fluid must flow off the trailing edge smoothly. The
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flow velocity is finite.

3) Radiation Condition (Far Field Condition) :- At infinity, the velocity disturbance
decreases to zero. This means that the velocity potential tends to a constant. The

acceleration of the fluid particles decreases to zero.

3.0 THE TWO DIMENSIONAL AEROFOIL IN STEADY FLOW

When a steady flow with speed U acts on an aerofoil with an angle of attack a,
there is a lift force generated [Glauert 1942, Schlichting and Truckenbrodt 1979, Abbott
and Von Doenhoff 1959]. The lift force is generated by the pressure difference on the
lower and upper surfaces and the lift production is related to the circulation of the flow

in the near field, as shown in fig. 2.1.

dL =(P,-P)dA = APdA -2.1

The difference in pressure (AP) is related to the changes of flow velocity on the upper
and lowér surface of the foil by the Bernoulli Equation. The vorticity is related to lift by

the Kutta-Joukowsky equation
dL =p UT'(x) dx -22

The flow around a thin profile is obtained by superposition of a steady flow
with a distribution of potential vortices. Since the camber of the aerofoil is assumed to
be small, the vortices are assumed to be distributed along the X - axis. The vertical

component [Glauert 1942] of the induced velocity at a point (x) is

¢ _T(8)dg

vi(x)={) 2n( —x) 223

Therefore the slope of the uniform stream is (o + v;/ U). According to the
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kinematic boundary condition, the slope of the flow stream will be equal to the slope of
the aerofoil surface (dY/dx). Therefore ,

Yi_dYy
R V" _24

The vorticity at point x is expressed as a series [Glauert 1942]

_ R YN
I x)=2U0 Aﬁcot2 + - Ansmne 225

As shown in Glauert [1942], by applying this eqn. into eqn. 2.3 and the boundary
condition in eqn. 2.4, the lift force generated by a 2-dimensional aerofoil with a steady

angle of attack, a, is found as

[+
L=pU [ I(x) dx = £pcUC -2.6
0

where  C, =2n(a+e,) -2.7

Similarly, the pitching moment about the leading edge is

c
M=—{)pUxI‘(x)dx=—%—pczU2CM -28

Whel’e, CM (uo 2 eo) 4 ?

€, is the negative value of the angle of the zero lift, the term in the equation for Cyy,
{1, - 0.57e,} is the moment coefficient at zero lift; and the lift force acts at the quarter
(0.25) chord point. Both g, and ., depend on the section shape of the aerofoil. From
eqn. 2.7, the theoretical lift slope, is
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3o - 2" -2.10

4.0 QUASI-STEADY APPROACH FOR A TWO-DIMENSIONAL
OSCILLATING FOIL

Quasi-steady theory [Fung 1969] can be used as a first approach to the
oscillating foil problem. The results are valid so long as values of the oscillating

frequency are low but they become less reliable as the frequency increases.
The following assumptions are applied in the quasi-steady approach.

(i) The hydrodynamic characteristics of an aerofoil with variable linear and angular
velocities are assumed to be equal to that of an aerofoil with a constant linear and

angular velocity at those instantaneous values.

(ii) As a thin aerofoil with small camber is considered, the surface of the aerofoil
differs only infinitesimally from that of a flat plate. A flat plate is used here for the
analysis. At any instant of time, the inclination of the flow velocity to the profile is

constant and equal to the actual inclination.

(iii) The Kutta-Joukowsky equation, eqn. 2.2, is assumed to be applicable in the

unsteady condition.

(iv) It is assumed that the equation for the vertical component of induced velocity at a

point, eqn. 2.3, is still valid.
In this approach, only the lift force and moment originating from circulation is

included. Let the flat plate be in a steady stream with velocity U along the x-axis and

consider that the plate oscillates in two degrees of freedom with a vertical translation (y)
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and a rotation (o) about the centre of rotation (O).

The vertical velocity component at a point X is
-y +b(a-x)a -2.11

The instantaneous slope of the flat plate is a. According to the boundary
condition (1), the vertical velocity of the fluid particle at x must satisfy the following

equation

\# y bla-x)a
T Tt A 212

The equations in the previous section are applicable by substituting eqn. 2.12
for dY/dx in eqn 2.4. By a similar approach, the lift coefficient (C; ) and the moment

coefficient are defined as,

C, = 27:[(1 + % + %b(% ~ a)] -2.13

Iq

__bm. 1 .
CM——4 Ua m CL 2.14

Since the thin aerofoil is assumed to be a flat plate, the term €, in eqns. 2.7 and

2.9 is equal to zero.

5.0 BASIC ASSUMPTIONS IN TWO-DIMENSIONAL LINEARISED
OSCILLATING FOIL THEORY

The assumptions in this linearised theory are as follows.

1. As with the previous section, a thin aerofoil with small camber is replaced by an
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infinitely thin plate with the same chord length and a rounded leading edge where

the leading edge suction force acts.

2. The heave and pitch motions are assumed to have small amplitudes and the normal
component of velocity of the plate is small compared to the advance velocity U.
Second order terms in the equations of motion are assumed to be small and

negligible. Surging motion of the foil is also neglected.
4. The Kutta condition around the trailing edge holds.

5. The wake behind the aerofoil is assumed to be a thin surface without thickness.

Since small amplitude oscillations are assumed, the wake surface lies on the x-axis.
6. The flow is non-viscous and irrotational.

The lift and moment acting upon a two-dimensional oscillating foil can be
interpreted from physical considerations of the change of momentum [Von Karman and
Sears 1938]. When the aerofoil oscillates, the circulation around the foil changes
continuously. Hence, it leaves a continuous sheet of vortex lines in the wake. These
vortices influence the circulation around the foil. The system is made up of vortex pairs
(i.e. a vortex in the wake and a vortex representing the circulation around the foil) shed
at different times. The sum of the momentum of these vortex pairs is the total
momentum of the system. Therefore the rate of change of momentum at any instant

determines the magnitude of the lift.

6.0 APPLICATION OF THE ACCELERATION POTENTIAL IN THE
UNSTEADY OSCILLATING FOIL PROBLEM

The velocity potential is discontinuous across that wake. However, the

acceleration potential is still continuous [Biot 1940]. The advantage of the continuity of

the acceleration potential provides a simpler approach to the calculation of forces on an
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unsteady oscillating foil.

According to the Euler's equation of motion in an ideal fluid,

Du__
Ppr =~ gradp -2.15

which indicates an acceleration vector,
7 Du _
A= =gad ¢ _2.16

The value () is termed an acceleration potential. The relationship between the

acceleration potential and the pressure is therefore
po=-p -2.17

The pressure distribution on the surface of an oscillating foil can be found by estimating

the acceleration potential in the fluid. In an incompressible fluid, the acceleration

potential also satisfies Laplace's Equation (V2¢ =0),

This potential will be determined by satisfying the kinematic boundary condition
that the acceleration normal to the aerofoil is given by the acceleration of the aerofoil.
The Kutta condition states that the velocity at the trailing edge must be finite and there is
no pressure discontinuity at the trailing edge. Therefore the condition can be satisfied by

choosing an acceleration potential which is continuous at the trailing edge.
6.1 The Kinematic Boundary Conditions

The flow velocity (u,v) at a point (x) on the aerofoil is described as u=U +u'

and v=v'. u' and V' are the perturbation velocities which are assumed to be much
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smaller than U as a result of the small amplitude assumptions.

By the small amplitude assumptions, the oscillation provides a vertical motion

(Y) only at every point and the surging motion (X) is neglected.

Let the velocity of the foil at a point (x) be V 1' = (0, %_Yt_) ,
the flow velocity at the same point be v,'=(U +u}v"), and

the normal vector at the surface be n= (— %—, 1),

According to the kinematic boundary condition,
Vi.0=v' .0 -2.18

By neglecting the second order of small quantities in the equations of motion, the flow

velocity and acceleration are,

o dY dY _ DY
v—dt +de-Dt,and -2.19
2 2 2 2
a'=D2Y=d2Y+2U dy +U2-d—12 220
A ) S dx dt dx

The correspondirig acceleration potential ¢' of the flow must satisfy the following

equation,

gi:a':—d-l'-.*.ug_v—' _2.21
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Let the oscillation be a sinusoidal function, where

0' = 0(x,y) elO | u'= u(x,y) el® and v'= v(x,y) elot -2.22

Then eqn. 2.21 is transformed into

fy—cv(x,y) =iov(xy)+U "—V%;Y-L 223

Equation 2.23 is solved as an ordinary linear differential equation using the boundary
condition (3) [Biot 1940], v =0 when X = - 0, and

/X (&
—ia(E) % deE,y) o=
vixy)= e Q(U)_Iw%)-eu’([’)dg 224

6.2 Force And Moment Due To Vertical Oscillation
Let the vertical oscillation be a sinusoidal motion, given by
Y=y,b elt =225

where y, is a non-dimensional function, b is the half chord. A non-dimensional

parameter is used to represent the unsteadiness, called the reduced frequency, k, where

’

wb

k=g _2.26

In this section, the half chord length is taken as unity and

0]
k=g | 227
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Using eqns 2.19 and 2.20,
._ DY -2.28
Dt

=-U%Kly, eilkt -2.29

The section of a thin aerofoil is transformed into a unit circle in the {-plane, as

shown in fig. 2.2. The relationship between the z-plane and the {-plane is

[g+-é-] and  {=z+Vz -1 -2.30

The relationship of the vertical component of the acceleration (a'y(x,0,)) of the
aerofoil in the z-plane and the normal component of the acceleration (a' (r=1,

6=cos'1§,t)) of the circle in the {-plane is
ay(x,0,t) sind = 2, (1=1,8 = cos "'&,1) -2.31

The normal component of the acceleration on the aerofoil (in the z-plane) and on the

circle (in the {-plane) is
a), (1€l =1) = -U2k2 yossin 0 -2.32
In order to set up the form of the complex acceleration potential of an oscillating
foil, two sink-source doublets are used. A sink-source doublet is placed at the leading

edge (i.e. { = -1) while the other is at the mid-chord point (i.e. { = 0).

By applying the conformal mapping technique and the kinematic boundary

condition, Biot [1940] set up the corresponding acceleration potential as
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sin 6

0 = - 2iU% ,CO0—; Lyl S0l 2233
where  C(k)= K, =F +iG, and
)= (k) +Ko(k) ~F HiC.an

K (k) = the modified Bessel Function [Watson 1922] of the second kind of

order zero
K,(@k) = the modified Bessel Function {Watson 1922] of the second kind of
order one

The values of F and G are plotted in the fig. 2.3

Since the acceleration potential ¢ is equal but opposite on the upper and lower

surfaces, the lift distribution (1) is equal to -2p (eqn. 2.17). By putting
r=1,and r; =2 cos 0, as shown in fig. 2.2,

the corresponding lift force is
2| ik C@) tan 2 + K sin 0 234
1=2pU"y, ) -23

At the trailing edge, 6 = 7, the value 1 is zero and the equation satisfies the Kutta flow-

off condition. The total lift can be obtained by integration

1 r
L= f1ax= [1sin0do=np Uy kz[l -%C(k)] 235
-1 0
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The moment about the origin (mid-chord) is

1
M, =- [ lxdx=

1/2 1 1cos ©sin 6 dO

O +—3a

therefore M, ,,=-mpU%iy,k C(k) -2.36

6.3 Force And Moment Due To Rotational Oscillation
Let the rotational oscillation be a sinusoidal motion, where
a= o, elUkt, -237

and the rotating centre is at the origin (mid-chord). The vertical motion due to the

rotational motion is

Y =- a, x elUkt 238

Similarly to eqns. 2.19 and 2.20, the vertical velocity and the acceleration are,

vi=DL = o, UeUtikx +1) 2239
DY 2,
a,'= = o, U k eiVUkt (kx — 2i) -2.40
S » T

The kinematic boundary conditions are set up using the velocity and acceleration
stated in eqns.2.39 & 2.40. As in the previous section, the lift force acting on the foil

undergoing rotational oscillation, as shown in [Fung 1969], is
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L=npU2k{i+[i+%:|C(k)}aeiUkt -2.41

The total moment about the mid-chord is,

M, = o] -i+ K+ (i+ B Jogeitn _2.42

6.4 Total Force and Moment due to Combined Motions of Vertical

Translation and Angular Rotation

The total lift force of the combined oscillations is the summation of eqns. 2.35

and 2.41 and is shown as follows,

L=npU2yok2[1-2—;-C(k)]eiUh +npU2k{i+[i+IZ(-:|C(k)} o e "

-243
Similarly, the total moment about the mid-chord position is,
2 . 1 2 | ..k, .2 iUkt
M,, = {-npU Yoik CK)+zmp U k['l‘*z"' (1 +5) Ck) ] ao} e
-2.44

Since vertical translation and angular rotation are sinusoidal oscillations, the

displacement, velocity and acceleration have the following relationships :

the vertical displacement y =y, elkt,

the vertical velocity y =iUk y, eiUkt; -2.45
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the vertical displacement y=- U? k2 y, eiVs;

the angular displacement a=a,ellky;
the angular velocity a=iUk o, eiUk,; -2.46
the angular acceleration a=-U2k? o eiUk,

In order to present the equations for lift and moment in a more general form, the
relationships in eqns. 2.45 & 2.46 are used and the semi-chord length (b) is put back

into the equations. The total lift force is

2 s - .
L=-mpb (y-Ua)-anUbC(k)[y-%a- Ua}

-2.47

Similarly, eqn. 2.44 becomes,
_ sfu- b= 2l - a C(k
M1/2_ pmb [2a+8a]+anb[y+2b+Ua] )
-2.48

7.0 APPLICATION OF VELOCITY POTENTIAL IN THE
UNSTEADY OSCILLATING FOIL PROBLEM

Based on the velocity potential approach, Theodorsen [1935] calculated the
forces and moment on a two-dimensional foil which heaves and pitches about a rotation
centre (O), fig. 2.4. In this approach, the potentials are treated separately in two classes:
non-circulating flow potential; and, circulating flow potential. The first term represents
the added mass of the foil when it oscillates; the second term represents forces induced

by the vorticity in the wake and around the foil.
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7.1  Non-Circulatory Flow

In non-circulatory flow, three velocity potentials are defined to represent the
effect of angle of attack (o), heaving velocity and pitching velocity. These velocity

potentials are,

=yb/1- x2
0q=Uoby/1-x2 @=ybViI=-x

0= b (kx A Wisx

-2.49

The local pressure (p) at a point (x) on the foil surface due to non-circulatory

flow is found by using Bemoulli Equation as

2
AT 99) ,
p““’( 2 ta ) -2.50

d
where the local velocity v, =U * % ( % for upper and lower surfaces )

Therefore the net pressure at a point (x) between the upper and lower surface of the foil

is

d
la=- ZP(UK + '&t—) -2.51

By integrating the pressure over the whole chord, the lift force is found. The integration
is carried out by introducing the individual velocity potentials, eqn. 2.49. Similarly, the
moment acting at the rotating centre is calculated by integrating the pressure times its

moment arm. The corresponding lift force and moment are,

L,=—pb’n(Ud+§j-bad) _2.52
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Maa=—pb21t[— U2a+(—§-+ az)bz&—ba)"'—Uy] -2.53
7.2  Circulatory Flow

The aerofoil is mapped into a circle by conformal mapping. The relationship
between the z-plane and {-plane are the same as stated in egns. 2.30, where z = (x,y)
and { = (X,Y), and

Xo=Xo+ 1/x°2— 1 on the x axis,

X =xand Y=1/1-x? on the circle, -2.54

When the foil oscillates, vortices are generated in the wake. The velocity
potential, which is induced by a vortex element -AI" at (X, 0), around the circle in {-

plane (fig. 2.5), is

AT (Y N_. _if_ X
Pre= 2m| 2" (x-xo) tan { 1]}

X- X -2.55
In the z-plane, eqn. 2.55 becomes
AT ‘Vl—x2 -\/on—l
= 5 tan~! -2.56
z  2m 1-xx,

Since the foil advances at a speed U through the fluid domain, the point x, is

considered to travel at a speed of U in the opposite direction. Therefore

d“’rz — d(pl"z dxo — dq)l"z U -7
& dx, d  dx,

H]
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Eqn. 2.51 becomes,

dor, dop.
lc=-—2p U( dxz +'—_—dx°z ) '2.58
where __d(prz - Al - x°2— 1 1 -
i« 21| f1_x2 (R X |
d N . -2.59
and (pl"z _£ 1- X2 1
dx, ~ 2m \/on—l (Xo —X)

The effect of AT at x,, on the foil is found by integrating these two terms over the chord
length. The corresponding lift force is found by integrating the wake surface from the
trailing edge (x=1) to infinity.

If the strength of the vorticity is ® and AI'= ®dx

g X
Lc=—pUbf—~—;~—-——<Ddxo 260
1 /x, -1

The moment acting at the rotating centre is found in a similar way,

=1 (de do
2 Tz Iz
M, =-2pUb" [ ] ( +—j(x—-a) dx @ dx

ac 1.1 dx dx ° -261

In order to find the strength of the vorticity , @, the Kutta condition is applied.The flow
velocity at the trailing edge is finite and

34



a‘-’—x((pmﬂpy T, *0r) = finite

-2.62
The following relationship, as shown by Theodorsen [1935], is set as

17 Xo+ 1 B . 1

-~ { F—0dx,=Ua+y +b(3-2)a 263
Substituting eqn. 2.63 into 2.60, the lift

2
_ . . _1_ | 1%, 1
Lc——-21tpUb[Ua+y +boz(2 a-lw\/xo+1 2.64
I

1\/—r—_1®dx°

If the strength @ is changing sinusoidally and the distance between the first vortex and
the foil is infinity,

<I>=<D°e ikx,
|, T ‘; e " dx,, |
1./ J-1 1 1 ) K (ik) _cw
}"—\/Xo'i'l -\/ ot +1 Kl(]k)+Ko(lk)
1 Xo-—l Xo— *o
-2.65
Therefore, the lift force due to circulating flow
Lc=-2npUb[Ua+y+ba(-12-—a)]C(k) _2.66



Similarly, the moment is

M, = 2mpUb’ [Uo +7 + be( 5 ~a)[[ 5~ (a+ 2)cm)]

-2.67

7.3 Total Lift and Moment

The lift force and moment acting at the rotating centre of a two-dimensional
oscillating foil is found by summing up the forces and moment induced by the non-

circulatory and circulatory flow. The lift force

L=L,+L,
=~ pb’n(Ud+ § - bag) 21 pUbC(K) { U +3 + b5 —a)a }

- 2.68

M,=M_,+M_

=—-pb n[(—-—a)Uba+b (g ) b’“'] -2.69
+2pUb n(a+ ﬁ(k){Ua+y+b(-——

8.0 COMPARISON BETWEEN METHODS

The final equations from the two previous approaches were compared. The sign
conventions used in these two approaches are different. In order to compare the final

equations, the sign conventions of the acceleration potential approach are changed as

follows,

i) clockwise rotation is positive, and

ii) anti-clockwise moment is positive.
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Equations 2.47 and 2.48 from the acceleration potential approach are the same as eqns
2.68 and 2.69 when the rotating centre is at the mid-chord point (a=0). A similar
comparison was carried out for the theory described by von Karman & Sears [1938].
Although the approaches are different, the final equations for calculating the force and

moment are the same.
The circulating term in eqn. 2.68 is rearranged into a more common form as,

=1, 2
L.=5pU°(2b)C, 270

where Cp . =2mo,

PR 2 e U ]
ae—[a+U+U(2 a)&| C(k) a1

The terms inside the bracket are the same as that in eqn. 2.13 of the quasi-steady
approach. These terms inside the square brackets are regarded as an equivalent angle of
attack, as if the foil was operating in steady flow. The oscillating motion induces a
modification to the steady angle of attack by a downwash angle of the oscillating flow
at the three-quarter chord point. The resultant downward velocity comprises the vertical
translation velocity at the 3/4 chord point and the rotating velocity at the same point

about the rotating centre (O).

The effect of unsteadiness on the circulation term is the effect of the Theodorsen
function (i.e. C(K)= F+iG). The lift force is proportional to the magnitude of this
complex function, which changes with the reduced frequency, k. It induces a time delay

factor (At) on the equivalent angle of attack (o), where

At =-1—-[ tan” & ]
® F 272
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The heaving velocity and the angular pitching velocity are calculated at a time (t -
At) to obtain the lift force at time (t). In addition, the non-circulatory terms and the
vorticity in the wake are not included when calculating the lift force and its
corresponding moment by the quasi-steady approach. Unsteady effects are small when

the reduced frequency, k, is small: when k approaches zero, C(k) approaches one.

9.0 LEADING EDGE SUCTION FORCE

There is another important contribution to the force system acting on the foil.
This comes from the suction force acting on the rounded leading edge. When an
incoming flow passes an aerofoil, the local flow velocity at the leading edge is fast and
there is a pressure drop. Therefore a suction force (Fg) results which acts parallel to the

plane of the aerofoil.

In inviscid flow, the lift force acts perpendicularly to the incoming flow, as
proved by thin aerofoil theory. The lift force comes from the pressure difference
between the upper and the lower surfaces of the foil, which are normal to the plane of
the aerofoil. Therefore there is a component of lift which acts parallel to the incoming

flow which is equal to L tan c.

In steady conditions, this force component (L tan a) is cancelled by the
component of the suction force [Durand et al. 1943] (i.e. Fg cos o). As the component
of the suction force (i.e. Fg sin a), which acts perpendicularly to the flow, is much
smaller than the lift force at small o, its effect is neglected. The lift force still acts
perpendicular to the incoming flow. In unsteady conditions, this assumption does not
hold. Both forces, the horizontal component of lift force (L tan o) and the suction force

(Fs), should be considered.
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In steady flow, the Blasius's formula [Robinson and Laurmann 1956] gives

. 1 . 2
Fx+1Fy=-2—p1£w(z) dz -2.73

where w(z) is the complex potential. If the integration is concentrated around a small

circle surrounding the leading edge and the radius approaches zero,

Fx+iFy=%pin(z)2dz=—ian2 2.74
S

where C =U~/¢ sin o and the suction force FS = —FY= np c?

Since this phenomenon is the same for steady and unsteady conditions, the
leading edge (L..E.) suction force of an oscillating foil takes the instantaneous steady
flow value. Lighthill [1970] shows the mean L.E. suction force of a two-dimensional

oscillating foil. Here, the corresponding instantaneous value can be expressed as

FS =pT Co2 -2.75

whereCo=£{[Ua+§+&b(;—- a) ]C(k)-%d}

10.0 CONCLUDING REMARKS
From this study, the following concluding remarks may be made.

1) In spite of different approaches, two-dimensional linearised unsteady foil theory

results in the same equations for calculating the lift force and pitching moment.

2) In the quasi-steady approach, the angle of attack is modified by a downwash
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3)

angle at the three quarter chord point. The effect of unsteadiness is included in the
unsteady foil theory. It includes the force and moment generated by the added
mass of the oscillating foil and the equivalent angle of attack is further modified
by the Theodorsen function. This function approaches 1.0 when the reduced

frequency approaches zero.

In the unsteady oscillating foil theory, the force system acting on an oscillating
foil system is made up of a lift force, leading edge suction force and the pitching
moment about the rotating centre. Thus a basis has been established for the

analysis of experimental work on oscillating foils.
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CHAPTER 3

PERFORMANCE OF A TWO-DIMENSIONAL OSCILLATING FOIL
PROPELLER

1.0 INTRODUCTION

A two-dimensional oscillating foil propeller is made up of an oscillating foil and
two struts at both tips of the foil which enclose the oscillating foil, as shown in fig. 1.
The foil oscillation is completely under the control of mechanical devices. Therefore the
foil can heave and pitch at specified phase lags and pitch about any specified centre of

rotation.

In an ideal condition, there is no pressure leakage through the gap between the
enclosing struts and the tips of the foil. The flow across the foil is two-dimensional.
The theory presented in Chapter 2 can be used to study the performance of this
propeller. The equations based on the Theodorsen theory are extended to take the phase
lag between heaving and pitching into account and they were developed to investigate

the variation of the forces within an oscillating cycle.

A parametric study of propulsive thrust and efficiency has been done and this is
presented in this chapter. The object of this study is to investigate the effect of different
parameters on performance. An investigation of the propulsive thrust coefficient and
efficiency was carried out. The impact of different phase lags on the propulsive thrust
coefficient and efficiency are investigated in section 4.1. The propulsive thrust and
efficiency, when the phase lag between pitching and heaving is 90°, is computed and
presented in the section 4.2. The variation of propulsive thrust throughout a cycle is

also studied for the same phase lag at 90°.



Results of propulsive thrust and efficiency at a phase lag of 90° are compared to
Lighthill's results [1970]. The two results are the same. This gives further support to
the first conclusion in Chapter 2. The propulsive efficiency for different phase lags are
compared to results from numerical unsteady-lifting-surface theory [Lan 1979] for a
rectangular foil with aspect ratio 7. The results are similar. Good agreement is found at
high reduced frequency, three dimensional effects are weak in this condition. James
[1975] and Cheng [1975] also found this result in their studies of unsteady-lifting-line
theory using the asymptotic approach. In these two references, this is described as a
consequence of the self-averaging effect of the periodic vorticity in the far wake. As a
result of this study, optimum performance is expected in a condition when the phase
lags between heaving and pitching are 90° and at low reduced frequencies. The
corresponding feathering parameter is around 0.5 to 0.6 and the centre of rotation is

located between the mid-chord and the three-quarter chord point.
2.0 OUTLINE OF THE THEORETICAL MODEL

As the oscillating foil is enclosed by two side struts, the pressure leakage from
the foil tips is minimised. In ideal conditions, there is no leakage between the foil tips
and the struts. The flow across the oscillating foil is two-dimensional. Two-
dimensional linearised unsteady-lifting-foil theory as given in Chapter 2 is applied to
the performance of a two-dimensional oscillating foil propeller. Heaving and pitching
motions of the foil are sinusoidal and a phase lag (B) exists between these motions. The

relationships are listed as follows:

vertical displacement 'y =y eiot
vertical  velocity y =ioy, el
vertical acceleration y=-wly, el a1

angular displacement o =0 gi(@t-B).
angular velocity & =io o, ei(mt-ﬂ);

angular acceleration & = - 02 o, RICIS)

45



The force system acting on the oscillating foil is made up of a lift force, leading

edge suction force and pitching moment acting at the rotating centre (O).
2.1 The Lifting Force and Moment at the Rotating Centre

The lift and moment are found from eqns. 2.68 and 2.69. By using the
relationships in eqn. 3.1, these two equations are rearranged as a complex number with
a time factor i, The magnitude of the lift force at any instant of time (t) is the real part
of this complex number including the time factor. Therefore, the lift force at any instant

of time (t) is

L=EK(LR+iLI)f:i‘Dt
=LRcos mt—LIsin ot -32

where

Le=-p bl n (Uoa,sin B o’y, +baw?o, cos B)
- 21tpUb{F I:Uoc0 cos B+ b(% - a)ma o Sin B]
- G[coyo— Ua, sin ﬁ+b(%——a)maocos [3]}

and -33

Li=-p b’ (Um o, cos B—ba a)zao sin ﬁ)
- anUb{G[Uao cos B+ b(—é—— a)mao sin [3]

+ F[myo—Uoco sin B+b(% - a>wao cos ﬁ]}

Similarly, the moment acting about the rotating centre (O) at any instant of time

(1) is,
Ma=9{(MaR+iMaI)emn -34

=MaRcos wt—Malsm ot
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where

M= - pbzn[(%- ~a)Ubwsin B a, - b (5 +2? oo cos B+ (ozyoab]
+2pUb%n(a + —%—){F[Uao cos B+b (—é— - a)mao sin B]
- G[myo ~Ua,sin B+ b(% - a)mao cos B]}

and, -35

M, =~ pbzn[(%— ~a)Ubwcos B o + b’ (§ +22)c0? sin [3]
+2pUb%r(a + %){G[Uao cos B+b(3 - a)(oao sin [5]

+F[(oy0 - Ua,, sin [3+bG,:— a)ﬂ)ao cos ﬂ]}

2.2 Leading Edge Suction Force

The instantaneous value of leading edge suction force is calculated by using
eqn. 2.75 :

2
Fg=pnC, -3.6

C, is rearranged as

Co=R(C z +iC pei®./C

= (C_g cos ot — C ; sin wt)\/c "3
where
C°R= F[Uoz0 cos B+ wo ob(% - a)sin B]
- G[ooyo—Uon0 sin B+ oo b (—%— - a) cos ]
- % ® o, sin B 38
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C°1= GI:Uoz0 cos B+ maob(% - a)sin B]

+F[(oy°—Ua°sin B+(oaob(%—a) cos :,
—%maocos B

The leading edge suction force at a particular instant of time (t) is calculated by using

eqns. 3.6 to 3.8.
2.3 Propulsive Thrust and Propulsive Efficiency

The force system acting on an oscillating foil is presented in fig. 3.2. This is
made up of a lift force, L, with horizontal component L tan ¢, a moment acting at the
rotating centre (O) and leading edge suction force (Fg). The forces are computed by

using the equations developed in the previous section.

The propulsive thrustis Fp=Fg cos o+ L tan @, Since small amplitudes are

assumed, the angle, a., is small and the cosine term is equal to 1.

The propulsive thrustis F . =F¢ + Lo 39
t=T
[ Frdt
The mean propulsive thrust F._ = LioT—_

The power input to the system is that required to drive the foil in heave and
pitch. This is the sum of the total vertical force times the vertical oscillating velocity and
the moment about the rotating centre (O) times the angular rotating velocity. The output
of the system is the propulsive thrust times advance speed (U). Efficiency is calculated

by integrating these two values over an oscillating cycle :
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(Fp-U) dt

)
T -3.10
0( Ly + M, &) dt

3.0 PARAMETRIC STUDIES OF THE PERFORMANCE OF A
TWO-DIMENSIONAL OSCILLATING FOIL PROPELLER

A computer program (UNSTOS) was written to compute the propulsive thrust
and efficiency. NAg routine (DO1GAF) was used to integrate the input power and
propulsive thrust throughout a whole cycle and hence find the mean value of the
propulsive thrust. Gill and Miller's method [Gill and Miller 1972} using third-order

finite-difference formulae with error estimates is applied in this NAg routine.

The performance of this propeller was studied for a range of different

parameters. These parameters are listed as follows.

1) Reduced Frequency (k). This non-dimensional coefficient represents the
ratio of the time to advance a distance equal to the semi-chord to the period

of oscillation. This parameter is

(O]
k=5T -3.11

and it quantifies the degree of unsteadiness.
2) Feathering Parameter (8). This parameter was introduced by Lighthill

[1970] and it represents the ratio of maximum pitching angle (i.e. o) to the

slope of the path of the oscillating foil. The feathering parameter is

-3.12
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It gives an idea of the relationship between pitching motion and heaving

motion.

3) Rotating Centre (O). This is the distance of the rotating centre from the
leading edge.

4) Phase Difference (B). This is the phase lag between pitching and heaving

motions.

5) Propulsive thrust coefficient (Cy). This is a non-dimensional parameter for

mean propulsive thrust

F

- T
CT

B Low?y2s -3.13

Parametric studies were carried out for a range of :

(i) reduced frequencies (k) between 0.005 and 1.0;

(i) feathering parameters (8) between 0.0 and 0.8 with an increment of 0.2;

(iti) positions of rotating centre (O) from leading edge to trailing edge with an
increment of 0.25 chord length; and

(iv) phase lags (B) between heaving and pitching from zero to 180 degrees.

When the reduced frequency is zero, there is no oscillation. A reduced frequency of

0.005 is chosen as the lowest value of reduced frequency in this study.
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4.0 RESULTS AND DISCUSSIONS

4.1 Propulsive Thrust Coefficient and Efficiency for Various Phase
Shift Values (B)

The propulsive thrust coefficient and efficiency for different phase lags (i.e. p =
0° to 180°) between heaving and pitching are shown in figs. 3.3 to 3.6 and in fig. 3.7
to 3.10 respectively for different feathering parameters. Since high efficiency is
obtained at low reduced frequency, the performance is studied at closer intervals for
reduced frequencies below 0.2. The propulsive thrust coefficient and efficiency at k
values of 0.005, 0.1 and 0.2 are presented in fig. a, while the results of a range of
reduced frequency between 0.2 and 1.0 with an increment of 0.2 are shown in fig. b of

figs. 3.3 to 3.10.

Propulsive thrust is more sensitive to change of phase angle (B) for high
feathering parameters : compare figure 3.6 with 3.3. When the feathering parameter is
high, the propulsive thrusts are negative for some values of phase difference (f). This
is true when the rotating centre is close to the leading edge or trailing edge and reduced
frequency > 0.4. When the rotating centre is located between mid-chord and the three-
quarter-chord point, the propulsive thrusts are all positive for various phase lags (B)
thfoughout the whole range of 8. When the rotating centre is at the leading edge and
reduced frequency > 0.2, the propulsive thrust coefficient decreases as the phase angle
(B) increases and vice versa when the rotating centre is at trailing edge. At low reduced
frequency < 0.2, a trough of the propulsive thrust curve is obtained around 90° phase
lag for all locations of rotating centre. The variation of propulsive thrust is much less
sensitive to the location of the rotating centre when the phase difference is near to 90°.

An example of this phenomenon is shown in fig. 3.11.

High efficiency is located at low reduced frequencies. When the reduced

frequency approaches to zero, the efficiency approaches to 1.0. Generally an increase
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of reduced frequency decreases the efficiency (see fig. 3.7). The efficiency is nearly
constant for low pitching motion (i.e. © low). When the magnitude of the pitching
oscillation increases (i.e. © high), the variation for different phase lags is much more
significant. A sample condition is presented in fig. 3.12. The efficiency drops to zero
for some values of phase difference (B) as shown in fig. 3.9 and fig. 3.10. These drops

correspond to the negative values of the propulsive thrust in fig. 3.5 and 3.6.

In Lan [1979, fig. 5], the efficiency of an oscillating rectangular foil with an
aspect ratio 7.0, reduced frequencies of 0.15 and 0.75 and a feathering parameter of 0.8
are presented for various phase differences. The sign convention of phase lags in Lan
[1979] and the present method are different. The theoretical results from [Lan 1979] are
reconstructed according to the present phase definition used here and then they are
compared to the results from the present method in fig. 3.13. The two methods give
similar results. This is because the flow around a rectangular foil with large aspect ratio
is very close to the two-dimensional condition. There is good agreement between the
two sets of results at high reduced frequencies. However, a discrepancy is shown when
the reduced frequency is small. James [1975] (and lalso found independently by Cheng
[1975]) showed that three dimensional effects on an unyawed, straight oscillating wing

are weak when
s
ky==7))1 -3.14

Since the aspect ratio is 7, the kg values are 1.05 and 5.25 for k = 0.15 and 0.75

respectively. The self-averaging phenomenon is also confirmed here.

The peak in the efficiency curves shifts from a phase lag higher than 90°to a
value lower than 90° as the rotating centre moves downstream as shown in fig. 3.9.
This is more significant when the feathering parameter is high. When the rotating centre
is located at the three-quarter-chord point, peak values are achieved at a value of phase
lag equal to 90°. High efficiencies are concentrated in a range where the phase lag is

around 90°.
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The caudal fin motions of fish and mammals are described by Gray [1968],
Lighthill [1977] and Lang & Dcybell [1963]. The motion of a porpoise was recorded by
Lang and is presented in Lang & Dcybell [1963, fig. 17 ]. When the fin moves to the
top of the upward stroke, the fin is horizontal (i.e. o = 0). When the fin moves down
and passes the horizontal axis, the pitching angle of the fin is maximum and pitches
toward the direction of motion (i.e. o is maximum). The fin comes back to horizontal
again when it moves down to the lowest point. A similar motion is observed in the
upstroke. This is an oscillation where the pitching motion lags the heaving motion by
90°. The present studies explain why some fast fishes and cetacean mammals adopt this

carangiform swimming.
4.2 The Propulsive Thrust and Efficiency when B = 90°

The propulsive thrust coefficient (Cy), the coefficient of the thrust component
contributed by the leading edge suction force (Crg) and efficiency (n) were calculated,
when the phase difference is 90°, for variations of feathering parameters (0), reduced
frequency (k) and position of the rotating centre (O). The results are presented in fig.
3.14 to 3.18. The results were compared with the published results in {Lighthill 1970,
in fig.4) and good agreement is obtained. The results from this approach, which is
generated based on Theodorsen theory, match with the results from Lighthill's theory.

This also validates the computational method and the computer program (UNSTOS).

When the foil performs a pure heaving oscillation at forward speed, the leading
edge suction force is the only force contributing to propulsive thrust. This is because

the other component , which is contributed by the lift force, is zero when a. is zero.

In general, the propulsive thrust decreases as the feathering parameter increases,
as shown in fig. 3.14a to 3.18a. When the rotating centre (O) is near the leading edge,
the main component of propulsive thrust comes from the lift force. The suction force

becomes more dominant when the rotating centre moves backward. When the location
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of the rotating centre is aft of the mid-chord and the feathering parameter is high, the
lift-force component (i.e. L tan o) is negative and the propulsive thrust comes mainly
from the suction-force component. In this condition, the added mass term (i.e. the first

term in eqn. 2.68) contributes a negative value and the lift force is negative.

The efficiency drops as the reduced frequency increases, as shown in fig. 14c to
18c. In general, the efficiency decreases as the feathering parameter decreases. When
the rotating centre moves backward, the values become less sensitive to the increment

of the reduced frequency.

4.3 Variation of Propulsive Thrust Throughout an Oscillating Cycle
when B=90°

In fig. 3.19 to 3.22, the variation of the propulsive thrust coefficient throughout
an oscillating cycle for the same condition (i.e. B = 90°) is presented. Similarly to
section 4.1, propulsive thrusts at low reduced frequencies are presented in fig. a and
results for higher reduced frequency ( k = 0.2) are presented in fig. b. The oscillating
frequency of the propulsive thrust is twice the oscillating frequency of the oscillating
motion. When the value of the feathering parameter is small and the rotating centre is
near the leading edge, the propulsive thrust is positive throughout the whole cycle.
However, when the feathering parameter increases and the reduced frequency is high,
the propulsive thrust coefficient is negative for part of the cycle. This also means that
the system produces drag rather than propulsive thrust. The duration of the negative
thrust increases as the rotating centre moves downstream. In order to prevent this drag
occurring, it is preferable that the rotating centre be located further forward and it is

recommended that it should be between the mid-chord point and the three-quarter-chord

point.
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5.0

CONCLUSIONS

The following main conclusions can be drawn based on the numerical results

generated in the course of this study. The conclusions apply to a two-dimensional

oscillating foil with small amplitude oscillations in non-viscous flow.

1)

2)

3)

The variation of the propulsive thrust coefficient is much smaller and much
less sensitive for different positions of rotating centre when the phase lag is
90° than at other phase lags. When the pitching motion is large (i.e. 0 is
high), the propulsive thrust becomes negative for some phase angles (B); in

these conditions the foil may produce a drag instead of a propulsive thrust.

Efficiency approaches 1.0 when the reduced frequency approaches zero.
High efficiency occurs at low reduced frequency. The variation of
propulsive efficiency with changing phase angle is large for high values of
feathering parameter. The peak value of the efficiency is higher at a higher
feathering parameter. The efficiency drops to zero in response to the zero
value of propulsive thrust for some phase angles () when the feathering
parameter is high and the rotating centre is located near to the leading or
trailing edge. High efficiency is concentrated in an area around f=90°. From
this conclusion and the previous one, a phase angle where pitching lags

heaving by 90° shows advantages for both propulsive thrust and efficiency.

For the 90° phase lag, the efficiency increases as the feathering parameter
increases when the rotating centre is located aft of the mid-chord point.
However the propulsive thrust drops as the feathering parameter increases.
The component of propulsive thrust that is contributed by lift is dominant
when the rotating centre is near to the leading edge. When the rotating centre
moves downstream towards the trailing edge, the contribution from leading-

edge suction becomes dominant. However a high suction force may not be
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realised in practice owing to separation of the flow.

4) The propulsive thrust coefficient oscillates at a frequency twice that of the
oscillating frequency. For a phase lag of 90°, the propulsive thrust is
negative for part of an oscillating cycle when the feathering parameter and
reduced frequency are high. The system produces a drag instead of a thrust
in this particular situation. In order to avoid this, the feathering parameter
should be kept smaller than 0.6 and the rotating centre should be in front of

the three quarter chord point.

5) Although drag occurs in part of the oscillating cycle when the pitching axis is
located near the trailing edge, high efficiency is obtained. However, the
propulsive efficiency drops to zero for some other phase angles () in this
condition. In order to avoid the drag produced by the system and zero
efficiency for some phase angles (), the rotating centre should be located

between the mid-chord and the three quarter chord point.

Overall optimum performance is expected to occur for,
i) phase lags around 90°,
ii) low reduced frequency,
iif) high values of the feathering parameter, and
iv) a location of the rotating centre between the mid-chord and the three quarter

chord point.
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Fig. 3.2  The Force System Acting on an Oscillating Foil
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PART 11

AFLEXIBLE FIN PROPELLER

A flexible fin propeller is investigated in this part. This propeller is made up of an
aerofoil which is connected to a pivot through a flexible bar. The foil heaves and pitches
as a result of applying an angular oscillation at the pivot. The theoretical model is
described in the chapter 4. The performance of the propeller is studied by using the
theoretical model and is discussed in chapter S. A flexible fin propeller model and its
test rig were designed and built and are described in chapter 6. In chapter 7, the
experimental investigation of its performance is discussed. In chapter 8, the stress
acting on the flexible bar is investigated and the criteria for the selection of material for
this bar is presented. The study on wave propulsion using the flexible fin propeller is

shown in chapter 9.
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CHAPTER 4
H EXI
1.0 INTRODUCTION

In the evolution of these fish and mammals, high aspect raiio aerofoil shaped
tails and carangiform swimming developed. Carangiform swimming is where the
maximum lateral body movement is at the tail. This natural effective propulsive method
has inspired the development of oscillating foil propulsion. A propulsion system was
developed in this study by simulating fish tail motions. The system is called a flexible

fin propeller.

A flexible fin propeller comprises an aerofoil shaped blade which is linked to a
pivot through a flexible bar (fig. 4.1a). The foil performs a combined heaving and
pitching motion as a result of the introduction of a sinusoidal oscillation at the pivot.
The flexibility of the connecting bar provides a phase lag between the heaving and
pitching. The amplitudes of heave and pitch also depend on the flexibility of this
connecting bar. A force system with a net propulsive thrust is generated by the

oscillating foil when it advances through a fluid.

A theoretical model has been set up by combining linearised unsteady-lifting-
foil theory and large-deflection beam theory. Firstly, the force system acting on an
oscillating foil is described. The unsteady-lifting-surface theory of a wing of infinite
aspect ratio was first investigated in the 1940's when W. P. Jones [1943, 1945a, and
1945b] and R. T. Jones [1940] made a significant contribution to this field. Lawrence
[1951 and 1952] developed an unsteady-lifting-surface theory for low aspect ratio
wings. In the middle 70's, numerical solutions for analysing unsteady-lifting-surface
theory [Chopra 1974a, Chopra 1974b, Chopra and Kambe 1977, Lan 1979} were

employed to investigate the performance of a lunate tail. Chopra & Kambe applied

.
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Davies' [1965] method in finding the loading distribution on a wing to calculate the
propulsive thrust and hydromechanical efficiency of different foil shapes. Lan extended
his steady Quasi-Vortice-Lattice method [Lan 1974] to establish an unsteady-lifting-
surface theory applying Richardson's [1960] velocity potential for doublets in unsteady

flow.

There have been a number of developments [eg. James 1975, Cheng 1975,
Ahmadi and Widnal 1985, Ahmadi and Widnall 1986, Wilmott 1988] on unsteady-
lifting-line theory using the method of matched asymptotic expansions. Wilmott [1988]
presented an unsteady-lifting-line theory using matched asymptotic expansions.
Ahmadi & Widnall [1985, 1986] developed a lifting line theory for a large aspect ratio
wing oscillating at low frequency. Cheng & Murillo [1984] applied lifting line theory
to study lunate tails with a curved centre line. Wilmott [1988] stated that the developed
lifting line theories, with the exception of Ahmadi's work, have been either inadequate,
incorrect or based on invalid assumptions. In addition, lifting-line theory requires a foil
shape with a slow variation of chord length in the spanwise direction. Its application is
not suitable to a blunt wing tip such as a rectangular foil or a tapered wing. In the case
of unsteady-lifting-surface theories, long computer times can be a problem when
solving the boundary-value problem for the velocity potential, which models the ideal

attached flow across an aerofoil.

In the present study, unsteady-lifting-functions for different aspect ratios of a
rectangular oscillating foil are used. These functions were calculated by W. P. Jones
[1943, 1945a and 1945b]and R. T. Jones [1940] using lifting surface theories.
Scherer [1968] applied the unsteady-lifting-function of an elliptical foil to his study.
The propulsive thrust and efficiency are calculated using the unsteady-lifting-functions
and they are then compared to the results of Chorpa & Kambe [1977] and Lan [1979].
Good agreement is found. The computer time is expected to be shorter than that using
unsteady-lifting-surface theory. Since an iterative procedure is required to find the
equilibrium condition, which will be described later in section 5, a short computing

time for calculating the force system is essential.
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The flexible bar between the foil and the pivot point is an essential part of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>