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ABSTRACT

The test input applied to a helicopter, or any other system, for the purpose 

of system identification can have a substantial effect on the param eter estimates 

obtained. It is therefore im portant that an appropriate input is chosen. Inputs 

must take account of the requirements, and restrictions, of the application. For 

example, in the rotorcraft case studied a linearised model is being identified, and 

it is therefore essential that the input produces a linear response.

A straightforward method has been developed for the design of multi— step 

inputs. This method is based in the frequency— domain, and involves tailoring 

the auto— spectra of the inputs to give long, linear test records, and param eter 

estimates with reasonably low variances. In flight trials using the Lynx

helicopter at RAE (Bedford), the double—doublet input, designed with this 

m ethod, has been found to be a significant im provem ent over more traditional 

inputs.

Using the data from the flight trials of the double— doublet, both 

equation— error and output— error identification have been carried out. Several 

discrepancies were found between the theoretical and identified models. More 

work is required to clarify this. Numerical difficulties were encountered during 

the output— error identification, and these were attributed to ill— conditioning 

resulting from the use of an unstable system.

The design of optimal inputs has also been investigated. In particular, 

constraints have been developed which are suitable for ensuring that the optimal 

inputs produce linear responses, and are robust. Conventional energy constraints 

were found to be of little use for these purposes. Algorithms have been 

developed for the design of optimal inputs with a variety of constraints, and 

simulation studies have been made to gain an understanding of the effect of these 

constraints on the form of the inputs.

With the constraints obtained from this work, an optimal input has been 

designed for use with the Lynx helicopter. This input is robust, and yet is 

predicted to give significantly improved param eter estimates. Unfortunately, at 

the time of writing, flight trials of this input could not be performed.
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1.1 INTRODUCTION

One of the m ajor shortcomings of m odern helicopters is the high pilot 

workload involved in performing even simple flight manoeuvers. As a result, 

even although a helicopter may be capable of rapid manoeuvering, the pilot may 

be unable to use such agility to the full. In the nap— of— the— earth

environm ent, for example, where a helicopter flies extrem ely low and fast, and 

has to avoid ground obstacles such as trees, this loss of manoeuverability can 

cause serious problems.

At present, production helicopters provide the pilot with direct mechanical 

controls, together with a simple, limited authority stability augm entation system. 

Research has therefore concentrated on designing improved control systems which 

will modify the dynamics of the helicopter in order to reduce the pilot workload.

In order to design high perform ance flight control systems which can meet 

current and future handling qualities requirem ents, it is essential to have available 

good theoretical flight mechanics models of the helicopter. Such models, which 

are in general non— linear and multi— variable, can then provide the linearised 

state—space descriptions needed for control system design. In n o n - lin e a r  form, 

the models can also be used, through simulation studies, to predict the effect of 

the proposed control systems on the helicopter's perform ance throughout the flight 

envelope.

Typically, helicopter models can be divided into three levels of complexity

[1]. The simplest, or level one models, are generally suitable for the prediction 

of handling qualities and low bandwidth control. The most complex, or level 

three, models are used for detailed analysis of the rotor. Level two models lie 

between these extremes, and are simpler than the full level three models, yet are 

of sufficient detail that they can be used for the development and evaluation of 

high bandwidth controllers.
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Currently the most widely used models are level one, with level two models 

still under research. Since level one models are not of sufficient accuracy for 

the design of high bandwidth controllers, it is im portant that suitable level two 

models are developed. As part of the efforts to obtain improved models, system 

identification techniques are used to obtain empirical models based on flight 

measurem ents. Theoretical models can be com pared with such empirical ones, 

and any differences between the two can be used to gain insight into the 

shortcomings of the theoretical models. M oreover, the empirical models can also 

be used directly in control system design, and for handling qualities evaluation.

In the literature, much research has been focussed on developing system 

identification methods for both rotorcraft and a wide variety of other applications. 

Two steps are involved in system identification. Firstly, a known test input is 

applied to the system of interest, and the response is measured. These measured 

responses are then processed to obtain a suitable mathematical model for the 

system. In the helicopter case, the structure of this identified model is assumed 

to be the same as that of the theoretical model. The system identification 

problem  then simplifies to finding the param eters of this model.

However, when attem pting system identification of rotorcraft without stability 

augm entation, serious difficulties are encountered. These are largely due to three 

factors : the complexity of the system, inherent instabilities, and measurement 

problems (see section 1.4 below). As a result, rotorcraft identification has been 

of mixed success to date.

The aim of the current research has been to tackle these difficulties by 

designing suitable identification test inputs, and so lead to more successful 

identification. The test input applied to a helicopter for the purposes of system 

identification can have a substantial effect on the param eter estimates obtained. 

It is therefore im portant that an appropriate input is chosen. In the past, 

considerable work has been directed towards input design for fixed— wing aircraft, 

with good results. However, relatively little work has been carried out on the 

design of rotorcraft inputs.
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1.2 THE HELICOPTER MODEL

Before the issues involved in system identification and input design can be 

discussed, it is necessary to consider the theoretical model that is being 

validated.

A helicopter can be divided into several m ajor sub— systems, each of which 

must be considered when developing a m athem atical model of the helicopter. 

These are :

1) Main—Rotor

2) Tail— Rotor or other anti— torque device

3) Fuselage

4) Power plant

While providing lift, the magnitude and direction of the force produced by 

the main— rotor can be modified by the pilot to perm it manoeuvering. The 

thrust generated by the tail—rotor can also be altered to give yaw motion. 

Conventionally, four controls are available to the pilot for the handling of the 

main and tail rotors. These controls are as follows:

a) Main—Rotor Collective, 17 oe

Controls the magnitude of the thrust produced by the

main— rotor.

b) Longitudinal Cyclic, 171S

Controls the longitudinal thrust produced by the main— rotor.

c) Lateral Cyclic, rj 1C

Controls the lateral thrust produced by the main— rotor.

d) Tail—Rotor Collective, i70tre

Controls the magnitude of the the tail— rotor thrust.
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These controls are incorporated in the main and tail rotor sub— systems.

The theoretical flight mechanics model, HELISTAB [2], developed at the Royal

Aerospace Establishment (Bedford) was used. This is a level one model [1], and

the various sub— systems are represented as follows :

1) Main—Rotor

T he HELISTAB model incorporates several main—rotor descriptions. 

For the present work, only the very simplest of these was used. This 

consisted of a quasi— static representation, i.e. with the rotor dynamics

neglected.

Such a simplified representation is justified on the basis that the rotor 

dynamics are typically significantly faster than those of the rigid— body 

fuselage. On the time scales of the rigid— body fuselage motions, the 

rotor therefore appears to act instantaneously. Several authors e.g.

[11] have found, however, that the rotor dynamics cannot be neglected 

in this way. Nevertheless, the quasi— static representation is sufficiently 

accurate for many situations.

2) Tail—Rotor

A quasi— static model is also used for the tail— rotor. Main— rotor 

down wash effects are ignored.

3) Fuselage

The fuselage is modelled as a point mass with six degrees of freedom. 

The six degrees of freedom used are the longitudinal, lateral, 

and vertical translational velocities (u, v, w) and the roll, pitch, and 

yaw rotational rates (p, q, r). It is possible to obtain the Euler roll, 

pitch, and yaw angles (<p, 6, \f) from the rotational rates.
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4) Power plant

The power plant is considered to be ideal i.e. able to maintain a 

constant rotor rpm.

The resulting helicopter model is non— linear. T here is therefore provision 

in the HELISTAB software package [3] for linearisation of this model about a 

given flight condition. The resulting linear model can be described in the 

following state— space form  :

dx(t)/dt =  A x(t) +  B u(t) (1-1)

where,

x =  ( u w q 0 v p < £  r)T 

u =  (i7is ^ i c  ^oe ^otre)^

A,B are the system and control m atrices, respectively.

In the present validation work, the matrices A and B are estimated from 

flight m easurem ents of x(t) and u(t) using system identification techniques. These 

are then com pared with the theoretical A and B m atrices. Any significant 

differences between the theoretical and estimated matrices can then be used to 

gain insight into the shortcomings of the theoretical model.

However, it should be noted that this linear model is only valid for small 

perturbations about the flight condition used in the linearisation. It is im portant 

that this restriction be taken into consideration when use is made of the model.
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1.3 SYSTEM IDENTIFICATION TECHNIQUES

1.3.1 Introduction

A wide variety of system identification techniques are available which enable 

a model to be estim ated from measured data. Each has particular strengths and 

weaknesses, and each is often m ore suited to certain applications than to others. 

The particular identification techniques in most widespread use with rotorcraft can 

be separated into two distinct types: equation—error methods, and output—error 

methods (see, for example, [4,5,6]).

Under certain conditions, these methods act as maximum likelihood 

estimators. The conditions required are different for each m ethod, and relate to 

the characteristics of the system being identified (see sections 1.3.3 and 1.3.4 

below for details). However, the equation—error and output—error methods are 

also widely used in applications where these requirem ents are not met. In such 

cases, the behaviour of the methods will depend on the specific situation 

prevailing in that application, and will not be maximum likelihood.

1.3.2 Maximum Likelihood Estimators

Firstly, take the general maximum likelihood case [7]. An input vector, u 

taken from the set U of possible input vectors, is applied to the system 

concerned. The system response is a random  variable :

where,

1  e 0  is the true value of the param eter vector, 

r} is the random  component in the system.

An estim ator is then any function of z and u with range in 9. The value 

of the function is called the estimate, 0 '. Thus,

z z (0 ,  u, rf) (1 .2)

0 0'(z, u) (1.3)
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The maximum likelihood estimate is defined as the value of 0 which

maximises the likelihood function, p ( z |0) i.e.

0 ' = a r g  max p ( z |0 )  (1 -4 )
0

where,

p(z | 0) is the probability distribution function of the input, u 

producing the response, z when 0 is the set of param eters used.

Note that this function is also dependant on 77, the random  component 

in the system, although this is not explicity shown in the notation 

used.

This can be interpreted as choosing that value of 0 which makes the

observed measurements most plausible.

An alternative to maximising the likelihood function is to maximise the

log—likelihood function, log p ( z |0). This produces the same estimates, since the 

log function is monotonic, but often has the advantage of leading to a simpler

optimisation procedure.

Maximum likelihood estimates exhibit several im portant properties [8]. These 

include :

1) Estimates are asymptotically unbiased

The bias of an estimate is defined as,

b =  E{ 0* | 0 } — 0 (1.5)

i.e. bias measures the consistent error between the param eter estimates and

the true param eter value.

For maximum likelihood estimates, the bias is always zero when an infinite 

num ber of measurements are made. However, for a finite number of

measurements, the estimates may still be biased.

7



2) Estim ates are asymptotically efficient i.e . have m inim um  covariance

The covariance of an unbiased estim ator is defined as :

cov (0 ')  =  E{ ( 0 ' - 0 )  ( 0 ' - i ) T } (1.6)

i.e. the covariance measures the spread of the param eter estimates about the 

true param eter value. This spread is fundam ental, and is caused by 77, the 

random  com ponent in the system.

An 'efficient' estim ator gives estimates which have the minimum possible 

covariance i.e. which extract the maximum inform ation from the 

m easurem ents of z and u. The minimum covariance is given by the

C ram er— Rao bound [9], which states that :

cov ( 0 ') ^ D (1.7)

where,

D =  M ~ 1 (1.8)

M =  E { (log p ( z |0))T (log p(z | 0)) } (1.9)

D is known as the dispersion m atrix, and M as the inform ation matrix. 

3. Estim ates a re  invariant

Invariance is the property that, given 0 ' is the maximum likelihood estimate 

of .0 , then f( 0 ') is the maximum likelihood estimate of f ( 0) , when f is a 

linear function.

8



1.3.3 The Equation—Error Estimator

It is now possible to consider the particular maximum likelihood cases of 

equation— error and output— error.

In equation—error [7], the response function z( 0, u, rj) is assumed to be 

linear in 0 , and to have the following form,

z =  f(u) 6 + rj (1 .10)

where,

■t] is a zero m ean Gaussian process with covariance, R.

f is some function of u, which may be non— linear.

For this case, it can be shown [7] that the log— likelihood function is given

by,

log p(z | 0) =  - £  (z - f (u )0 )T R-  1 (z f(u) 0) -  J log |2irR |

( 1 .1 1 )

This is maximised by finding the minimum of the term ,

( z -  f(u) 0)T R“  1 ( z -  f(u) 0) (1.12)

Notice that this term  represents the square error between the measured 

response, z and the predicted response, f(u)0. Hence, the equation—error 

estimator is also widely known as a 'least squares' estimator. This estimator is 

often used with systems which do not meet the assumptions made above 

concerning the form of z (0, u, rj). However, in these cases it no longer behaves 

as a maximum likelihood estimator.

As described in section 1.2, the theoretical helicopter model used in this 

work is of the form :

dx(t)/dt =  A x(t) +  B u(t) (1-13)

9



The matrices A and B contain the param eters to be identified. To use the

equation—error method with this model, measurements of dx(t)/dt, x(t), and u(t)

must be available. Typically, x(t), and u(t) are obtained by direct m easurem ent,

and dx(t)/dt either by m easurem ent or by differentiation of x(t).

The theoretical model can be written as :

dx . x 
dF <‘ >

[ a  0 ] f  x ( t ) 1 
0 B J L u ( t ) J (1 . 14 )

i . e . z * ( t ) = F u * ( t ) ( 1 . 15 )

w h e r e ,

z * ( t )  = d x ( t ) / d t ,

u*(t) -  \ x(t)  1
u ( t )  J ’

The equation—error m ethod can then be used to estim ate the elements of F, 

i.e. of A and B. However, in helicopter applications the m easurem ents of x(t)

and dx(t)/dt contain significant noise components. Hence, both the input, u* and

the output, z* contain noise. In the ideal equation— error model (equation

(1 .10)), it is assumed that the outputs contain noise, but that the input does not. 

W hen used in the helicopter case, the equation— error m ethod is therefore not

acting as a maximum likelihood estimator. In particular, it can be shown that 

the resulting param eter estimates will be biased [10].

Returning to equation (1.12), this can be minimised analytically [7], and the 

result may be expressed as follows :

6' =  ( f(u)T R— 1 f(u) )“  1 f(u) R— 1 z (1.16)

Given the measurements u, and z, and the values for R and f(u), this

expression can be evaluated to obtain the param eter estimates. Hence, • the

equation— error case leads to relatively straightforward, fast estimation algorithms.

Difficulties can occur, however, if there is ill—conditioning in the matrix [8],

f(u)T R“  1 f(u)

10



since this needs to be inverted to obtain 0 '. The most common cause of such 

ill— conditioning is correlations between the elem ents of the input vector, u. 

Various techniques [8] can be used to reduce the effects of ill— conditioning, but 

in severe cases the identification may fail. The only true solution to this

problem  lies in designing suitable inputs, u which have low correlations.

1.3.4 The Output—Error Estimator

Now, in the output— error case, the response function, z is assumed to have 

the following form  [7] :

( t )  “  A x ( t )  + B u ( t )  ( 1 .1 7 )

z ( 0 , u, rj, t) =  C x(t) +  rj(t)

The matrices A, B, and C are functions of 0, and t) is a zero mean

Gaussian process with covariance, R. Tim e, t is now included in the

formulation. In the equation— error case this was not necessary. However, it is

required for output— error, since the model now involves the derivative dx(t)/dt.

It can be shown [7] that the log— likelihood function for this case is as

follows :

lo g  p ( z | 0) = 1  ( z ( t ) - C x ( t ) ) T R 1 ( z ( t ) - C x ( t ) )

-  -  l o g  |R|  -  1  l og  2 7r ( 1 . 1 8 )
2 2

Despite the apparent similarity between the log— likelihood functions of the

equation— erro r and output— error cases, the output— error method is significantly 

more complicated. This is because the model response, Cx(t) is no longer linear 

in the param eters, 0. It is therefore necessary to use a numerical optimisation 

algorithm to maximise the output—error log—likelihood function [7].
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The model assumed in the output— erro r method is a more accurate 

description of the conditions prevailing in helicopter identification than is the 

equation— error model. To use the output— error m ethod, m easurem ents must be 

made of the outputs, z, and the inputs, u. The m ethod assumes, correctly, that 

there is noise in the m easurem ent of z. It is also takes u to be noise free, 

which is untrue. However, the input m easurem ents typically contain little noise, 

and so this assumption is not unreasonable.

For helicopter applications, the output— error method can therefore be 

expected to produce more accurate param eter estimates than the equation— error 

method. As a result, the equation— error m ethod is often used to obtain initial 

param eter estimates. These are then used as the starting point for the more 

powerful output—error algorithm [11].

Finally, combining equations (1.8), (1.9) and (1.18) gives the following

expression for the output— error dispersion matrix :

D

M R " ' (C d x ( t ) / d 0 )  d t  
( 1 . 1 9 )o

where,

T is the length of the test record used.
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1.4 DIFFICULTIES O F H ELICO PTER  SYSTEM IDENTIFICATION

While identification of fixed— wing aircraft has in the past been relatively 

successful [12], particular problems have been encountered in rotorcraft 

applications which have complicated the identification task. These problems are 

mainly due to three factors : the complexity of the system, inherent instabilities, 

and data m easurem ent difficulties [5,11].

Rotorcraft are complex, highly— coupled systems. Due to the coupling, 

m otion in one axis will excite motion on several other axes. This results in the 

system responses being highly correlated, which causes severe problems when 

identification is attem pted. M oreover, high order models are needed to describe 

such responses. There are therefore a large num ber of param eters to be 

identified.

Secondly, as m entioned in section 1.2, the theoretical model of interest is 

obtained by linearising a more general non— linear model about an operating 

point. However, the system is usually poorly dam ped, and often exhibits 

instabilities. H ence, only very short flight test records are obtained before the 

system departs too far from the operating point and the linear model becomes 

invalid.

Finally, the signal— to— noise ratio of flight test data is poor due to the high 

vibration levels in rotorcraft. O ther instrum entation problems can also occur e.g. 

the well known difficulties involved in accurately measuring airspeed at hover and 

in low speed flight [5].

As a result of these difficulties, system identification of rotorcraft has been 

of only mixed success to date.
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1.5 REVIEW  O F INPUT DESIGN APPROACHES

1.5.1 Non—O ptim al Inputs

In the past, various semi— intuitive approaches have been proposed by a 

num ber of authors for the design of system identification test inputs.

Perhaps the most straight— forward of these uses the inputs applied to the 

system during normal operation as the identification test inputs. However, 

problems can arise if these inputs are not persistently exciting i.e. if they are 

zero (or constant) for lengthy periods of time, or if their frequency components 

do not adequately span the pass—band of the system [13]. Also, more subtle 

problems can occur if there are high correlations between the input and output of 

the system. These are often present when the input is being used as a control 

to maintain some specified output i.e. in a closed—loop m anner [13].

For example, consider the simple closed—loop system given in figure 1.1. 

This closed— loop system responds to the command input, u(s) and the noise, 

n(s). In practice, the noise, n(s), typically results from external disturbances to 

the system, e.g. air turbulence acting on an aircraft. To identify the open—loop 

transfer function, H(s) the output, y(s) and the error signal, x(s) must be 

available. The transfer function can be expressed as y(s)/x(s).

Now,

y(s)/x(s) =  y(s)/(u(s) -  G(s)y(s)) (1.20)

W hen G(s)y(s) > >  u(s),

y(s)/x(s) -» — 1/G(s) (1-21)

In this case, the inverse of the feedback transfer function will be obtained as

the open— loop transfer function. This is clearly incorrect.
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This limiting condition is only reachable in practice when the command 

input, u(s) is held at zero, and the system is excited by the noise. However, 

biases will occur in the open— loop transfer function estimate even if u(s) is 

non—zero, as a result of the correlation between x(s) and the noise n(s). There 

are therefore serious difficulties involved in the identification of open— loop 

inform ation from closed— loop data.

Sine Wave Inputs

A more successful alternative to using normal operating inputs is to use pure 

sine waves as inputs. By applying several different frequencies, and allowing the 

system to reach a steady state after each change of frequency, it is possible to 

obtain inform ation about the gain and phase of the system transfer function at 

those frequencies. However, this can be a very tim e— consuming, and expensive

procedure if many frequencies are required [14].

This problem  may be overcome by using swept sine waves as inputs. In a 

swept sine wave, the frequency starts at the begining of the range that is of 

interest, and is then continuously increased until the desired final frequency has 

been reached. This type of input can therefore be used to excite a range of 

frequencies at once, greatly reducing the time required when com pared with using 

individual pure sine waves. Such swept sine waves have in the past been found 

to be good gen era l-p u rp o se  inputs for many applications [14].

In the aerospace field, pure sine wave inputs have been widely used in the 

past with fixed—wing aircraft e.g. [15]. More recently, swept sine waves have

been successfully used of the identification of the XV—15 tilt—rotor aircraft [16],

and the Aerospeciale Puma and Westlands Lynx helicopters [17,18].

15



However, these particular rotorcraft applications involved identifying the 

closed— loop transfer functions of the system i.e. with stability augmentation in 

use. W hen these rotorcraft are used without augm entation, in order to permit

identification of their open— loop characteristics, they are only marginally stable at 

best. The swept sine wave inputs produce too large an excitation at the 

frequencies where the unstable modes are located, resulting in only short test 

records before the response becomes non— linear.

In principle, this can be overcome by modifying the swept sine waves so 

that they are selective and avoid exciting those frequencies corresponding to the 

unstable modes. However, to the author's knowledge this has not been attem pted 

in practice in either the aerospace field or any other area of application, since

the resulting input is very complex. This complexity means, in particular, that

the input cannot be applied manually by the pilot. M oreover, as shown in 

Chapter 2 below, such selective excitation may be easily achieved with simple

multi— step inputs, avoiding the need for the more complex swept— sine based

approach.

Swept— sine inputs may nevertheless still be useful for some open— loop 

rotorcraft applications. One case is where the frequencies of interest are not

located near the unstable modes. Typically this is true for the rotor dynamics,

since these are concentrated at higher frequencies while the unstable fuselage

modes are at lower frequencies.

Multi-Step Inputs

While swept sine waves are often useful inputs, in some practical situations 

they can be difficult to use due to their complex shape. As a result, there has 

been interest in designing simpler forms of input. In particular, a large effort 

has been directed towards designing binary multi— step inputs, which have only 

two amplitude levels 'o n ' and 'o ff', and which consist of a sequence of step 

transitions between these levels.
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Figure 1.3
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Wide use is made of the simplest multi— step inputs, i.e. steps, pulses, and 

doublets (see figure 1.2) [14]. Despite their simplicity, these inputs frequently 

give good results, especially where low order systems with relatively slow dynamics 

are used. For example, it is standard practice to use step inputs for the 

identification of chemical plants and other large, slow installations [19]. However, 

where more complex, higher bandwidth systems are involved, these inputs can 

produce much poorer results.

More sophisticated types of multi— step input can be used to greatly improve 

the success of identification for both simple and complex systems. In particular, 

many authors have concentrated on using pseudo— random  binary sequences 

(PRBS) as inputs. These are periodic inputs which have an auto— spectrum which 

approximates that of band— limited white noise, and therefore can be used to 

excite a specified range of frequencies [20,21]. Good results have been obtained 

with PRBS inputs in many applications outside the aerospace field, e.g. 

[13,21,22,23].

In fixed— wing and rotorcraft applications, a wide variety of multi— step 

inputs have been used, including steps, pulses, doublets, and PRBS inputs. These 

appear to have been found to be relatively successful for fixed—wing aircraft [12], 

For example, a PRBS—based input called the 3211 (see figure 1.3) has been 

reported to give particularly good results [24].

However, these types of multi— step input aim to uniformly excite a range of 

frequencies. Hence, they suffer from similar problems to swept sine wave inputs 

when they are used with rotorcraft, i.e. they can produce too large an excitation 

of the rotorcraft unstable modes. This leads to only very short test runs being 

obtained before the system response becomes n o n - lin e a r  (see section 1.4). In 

Chapter 2 below, a method is described for the design of multi— step inputs 

which avoid exciting the unstable modes and so lead to longer test runs. 

Previously, other authors have tried various different techniques in an attem pt to 

overcome the problem of short test runs.
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Firstly, several different test runs can be combined together to give greater 

inform ation about the system than is contained in any single run. It is possible 

to simply concatenate these runs, and this approach is advocated by some authors 

[e.g. 5]. Unfortunately, discontinuities will be present if Xj(T) ^ Xj+ ^ 0 ), where

Xj(T) is the response at the end of time history i, and xj+  ^ 0 ) is the response

at the start of the subsequent time history, i + 1 . Such discontinuities can result 

in difficulties. In the equation— error approach, the identification problem is 

treated as a regression problem. Hence, time— domain equation— error 

identification is unaffected by any discontinuities, although it has been found that 

some errors can be introduced if frequency— domain equation— error identification 

is used [11]. However, with output—error methods, the dynamics of the system 

under investigation are explicity taken into account. As a result, discontinuities 

cause severe difficulties for output— error identification.

An alternative approach called the method of 'successive residuals' has also 

been suggested for combining the data from several runs [26]. In this approach, 

the model to be identified is partitioned into suitable sub— sets. The full model 

is then built up by identifying each of these subsets from appropriate test runs, 

and combining these in a mathematically consistent m anner to obtain the full 

model. In this way, the identification problem is broken down into several

smaller problems which can be tackled individually. Several authors have found

that this method gives better results than simple concatenation of the test runs 

[6,26].

Finally, the duration of test runs can also be increased by using stability 

augmentation of the rotorcraft to improve the damping of the system. 

Unfortunately, as explained above, identifying open— loop inform ation from 

closed— loop data is fraught with difficulties, and can lead to severely biased 

estimates. Nevertheless, some authors appear to have successfully used 

closed—loop testing [27], and this area requires further work.

18



1.5.2 Optimal Inputs

Introduction

In some applications, the inputs discussed in the previous section are not 

able to produce identification results of sufficiently high quality. In other cases,

the collection of test data for identification purposes is expensive, e.g. with 

aircraft, and it is therefore desirable to use efficient inputs which reduce the 

amount of test data required. Much attention has therefore been directed at 

developing more rigorous m ethods for identification test input design.

In all of these more rigorous approaches, the task of input design is cast as 

an optimisation problem. Their aim is to design the best, or optim al, input for 

a given problem.

Input Design Criteria

The first step in designing an 'optim al' input is to obtain some quantitative 

cost function that provides a measure of the 'goodness' of any particular input. 

It is then possible to choose that input which maximises this 'goodness' function 

or, equivalently, minimises its inverse.

In order to decide on such a criterion for designing inputs, the uses for 

which the identification is intended must be considered. One of the principal 

aims of the present work on identification is to help in the validation of 

theoretical flight mechanics models. The identification must therefore produce 

accurate values for the model param eters.

When param eter accuracy is the criterion used, much of the work on input 

design reported in the literature has been concerned with designing inputs to 

minimise some function of the dispersion matrix. This is because for an efficient 

estimator [8], the Cram er—Rao bound [9] states that :

cov (&') =  D (1.22)
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where,

O' are the param eter estimates obtained from the identification.

D is the dispersion matrix (see equation (1.8), (1.9)).

Now in many situations an efficient estimator does not exist, and the

dispersion matrix then merely gives a lower bound on the covariance of the

param eter estimates. In such cases, these input designs can no longer be relied 

upon.

However, inputs designed using the dispersion matrix are useful in situations 

where sufficiently long test records are available, since at least one class of 

estimators — maximum likelihood estimators — are asymtotically efficient [8].

Several special functions of the dispersion matrix have been used in the past 

as perform ance measures [28]. These include :

1) A—O ptim ality : minimise tr(D) i.e minimise the average covariance

of the param eter estimates.

2) E —Optim ality : minimise Xm ax(D), where Xmax is the maximum

eigenvalue of D.

3) D — Optim ality : minimise | D |

The choice of which of these criteria to use is, unfortunately, relatively 

arbitary. However, D— Optimality possesses several im portant advantages over A— 

and E — Optimality.

Firstly, D— Optimality is invariant under scale changes in the param eters, and 

linear transformations of the system being used [28], This is not true for A— 

and E — Optimality.

Another advantage of D—Optim ality is that it implies G —Optimality [28]. 

The A— , E — , and D— Optimality criteria are based on the accuracy of the

param eter estimates. However, in other applications the emphasis may lie on 

obtaining a model which accurately predicts the response of the system to an 

input. G— Optimality caters for such situations.
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G - O p t i m a l i t y  : m in imise  max c o v ( z ( t , 0 ' ) )  

w h e r e ,

z i s  the  r e s p o n s e  o f  t h e  model t o  an inpu t  u,

0 ' a r e  t h e  p a r a m e t e r  e s t i m a t e s .

Hence, D— Optimality produces both accurate param eter estimates and 

accurate responses.

Finally, in addition to the more widely used optimality criteria mentioned 

above, particular authors have in the past approached the input design problem 

using other criteria. For example, Ram achandran [29] attem pted to minimise the 

param eter correlations i.e. minimise the off— diagonal elements of the dispersion 

matrix. Whereas Chen [30] worked on generating inputs which would give a 

specified dispersion matrix.

Noise Characteristics

It is widely assumed that the noise in the system under consideration is

Gaussian. However, in practice this is rarely true. As a result, growing 

attention has been given to alternative types of noise statistic. For example, in 

the bounded noise approach [31], the only assumption is that the noise lies

between known upper and lower bounds. No knowledge of the distribution

between these bounds is required.

However, in aerospace applications, all input design and identification work 

to date has concentrated on Gaussian noise. For rotorcraft in particular, the 

noise distribution is extremely complex. M oreover, the distribution varies with the 

loads placed on the rotor, and so will alter during a manoeuver. Given this

complex behaviour, any simple distribution is inadequate. However, the Gaussian 

form often leads to significant savings in computing time, and has been found to 

be a useful approximation until a more accurate distribution is developed.
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Constraints

In practical systems, where the noise is finite, an input of infinitely large 

m agnitude will produce a response with an infinite signal— to— noise ratio. The 

noise can then be neglected, and perfectly accurate param eter estimates will be 

obtained. It can therefore be seen that the input which optimally minimises 

some function of the dispersion matrix will be of infinite magnitude. This is 

clearly impractical.

It is therefore essential that constraints are included in such optimisation, in 

order to restrict attention to practical inputs. The simplest, and least restrictive, 

constraint is merely to insist that inputs have finite energy. This has been the 

most widely used constraint reported in the literature, and is usually expressed as 

follows [28] :

fT TJ  u ( t )  u ( t )  d t  -  1 ( 1 . 2 3 )
o

where,

u(t) is the input,

T is the duration of the input.

Equation (1.23) restricts the input to have an energy equal to unity. Now 

the dispersion matrix varies linearly with input energy. The input which is 

optimal at one energy can therefore simply be scaled to give the input which is

optimal at a different energy. The particular energy used in (1.23) is therefore

arbitary, and so is chosen for convenience to be unity [28].

A m ore restrictive constraint is to insist that the input amplitude lies below 

a certain level, that is :

I u(t) | < k, k some constant (1.24)

The resulting optimal input will be of a bang— bang nature i.e. a multi— step

[28].
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Finally, the following constraint has been proposed for situations where it is

undesirable for the input to produce a large system response [28] :

fT
(uT ( t )  P u ( t )  + yT ( t ) Q y ( t ) ) d t  = 1 ( 1 . 2 5 )

o

where,

u(t) is the input,

y(t) is the corresponding noise— free system response.

P, Q are weighting matrices,

T is the duration of the input.

This constraint restricts the combined energy of the input and output. 

However, this constraint appears to have only been considered from a theoretical 

viewpoint, and no reports have been found of it being used in practice.

The question of constraints has been largely neglected by many authors in 

favour of other areas of optimal input design. However, the importance of such 

constraints in determining the characteristics of the optimal inputs, and the 

practicality and usefulness of these inputs must be stressed. Constraints will 

therefore be considered later in greater depth later.

Optimal Inputs for Aircraft and Rotorcraft Applications

Optim al identification test inputs have been studied for several fixed— wing 

applications. A m ajor advantage of using optimal inputs in aircraft applications is 

that due to the greater efficiency of such inputs, a reduction is obtained in the 

am ount of flight testing required to obtain sufficiently accurate param eter 

estimates. Since flight testing is extremely expensive, any reduction can produce 

significant cost savings.

A study by Gupta et al [32] investigated the use of A— and D — optimal 

inputs. The simple energy constraint given in (1.23) was used. It was concluded 

from simulation results that these inputs produced m ore accurate param eter 

estimates than traditional multi— steps. However, no flight trials were performed 

to verify these results.
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Chen [30] examined the use of optimal inputs which gave the same accuracy 

of param eter estimates as multi— steps, but which required flight tests of shorter 

duration. Once again, a theoretical study showed that significant flight test 

reductions could be achieved.

However, less encouraging results were obtained by Plaetschke [24]. In this 

case, optimal inputs were generated and com pared with the conventional 3211 

PRBS input in flight trials using a De Havilland DHC— 2 Beaver. From these 

trials, it appeared that the 3211 and the optimal inputs produced comparable 

results.

Work has also been carried out with rotorcraft on the design of optimal

inputs. The main aim of this work has been to improve the success of rotorcraft 

identification and obtain more accurate param eter estimates.

In a study of optimal inputs for rotorcraft, Hall et al [25] encountered

similar difficulties to those found with fixed—wing aircraft. A UH— 1H helicopter

was used for the flight trials, and A— and D— optimal inputs were compared 

against standard doublet inputs. The doublet inputs appeared to be more 

successful than the optimal inputs. However, these results were felt to be

inconclusive by Hall et al.

From  this work, it appears that optimal inputs have given excellent results in 

simulations, but have been less successful in flight trials. There therefore may be 

practical difficulties involved in the use of optimal inputs that need to be resolved 

before the full potential of these inputs can be realised. Several proposals are 

made on this subject later by the present author.
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1.6 STATEM ENT O F ORIGINALITY

The following results of the research work presented in this thesis are, as far 

as is known, original and, as noted below, some of these results have been 

published.

CHAPTER 2

Section 2.2 — The design approach for m u lti-s te p  inputs.

Section 2.3 — The design and flight testing of m u lti-s te p  inputs for the

Lynx helicopter at RAE (Bedford).

Section 2.4 — The identification results for the double— doublet input.

The ill— conditioning encountered during the output— error 

identification of an unstable system.

Leith, D .J .;  M urray—smith, D .J . 'Experience with m u lti-s te p  test inputs for 

helicopter param eter identification' Paper no. 68 , presented at the 1 4 ^  European 

Rotorcraft Forum , Milan, 1988

CHAPTER 3

Section 3.1 — The application of the following constraints to input 

design :

i) Linearity constraint obtained by repeatedly linearising 

a non— linear model

ii) O utput amplitude constraint

iii) Response robustness constraint

iv) Param eter robustness constraint

Section 3.2 — The time—domain design algorithm, and the simulation

results for energy constrained optimal inputs.

Section 3.3 — The time—domain design algorithm, and the simulation

results for output and input energy constrained optimal 

inputs.

Section 3.4 — The time—domain design algorithm, and the simulation

results for output amplitude constrained optimal inputs. 

Section 3.5 — The time—domain design algorithm, and the simulation
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results for response robust optimal inputs.

Section 3.6 — The simulation results for param eter robust optimal inputs.

Section 3.7 — Combined response robustness and param eter robustness.

CHAPTER 4

Section 4.2 — The optimal Lynx input.

APPENDIX B

Section B.2 — The recursive method for calculating h^1 and g^1 for

Chebyshev polynomials.

Section B.3 — The stabilised basis functions for use with unstable systems.

Section B.4 — The implementation of amplitude constraints using a

smooth, continuous scalar function.
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2.1 INTRODUCTION

Much of the work on input design reported in the literature has been

concerned with developing algorithms to minimise some function of the dispersion 

matrix. This is because, for an efficient estim ator, the C ram er— Rao bound states 

that,

cov ( 6) =  D (2.1)

where, 6 is a vector containing the param eter estimates,

and D is the dispersion matrix.

Now, in many situations an efficient estim ator does not exist, and the

dispersion matrix then merely gives a lower bound on the covariance of the 

param eter estimates. In such cases, these input design algorithms can no longer 

be relied upon.

However, inputs designed using the dispersion matrix are useful in situations

where sufficiently long test records are available, since at least one class of 

estimators — maximum likelihood estimators — are asymptotically efficient.

Using conventional inputs, typically only short rotorcraft test records are 

obtained before the response departs too far from the operating point of the 

linearised model being used, and so becomes non— linear (e.g. see section 2.3

below).

Hence, as a first step, it was decided to concentrate on trying to design 

sub— optimal inputs which would give longer test records while at the same time 

giving a reasonably 'small' dispersion matrix. The next step would then be to

design optimal inputs to strictly minimise some function of the dispersion matrix, 

while still giving sufficiently long test records. The results of the first step — 

sub— optimal inputs — are covered in this chapter.

31



Consideration of the robustness of the inputs was also included in the input

designs. Robustness is an im portant, though often neglected, aspect of input

design. Only an approxim ate model of the system involved is available

beforehand, and so the inputs used must be insensitive to errors in the model. 

In addition, on the particular helicopter used in this work inputs are currently

applied by the pilot via the normal controls, and so they must also be insensitive 

to being applied inaccurately. Since they are applied manually, they must also

be kept relatively simple e.g. multi— steps. However, work is currently underway 

at RAE (Bedford) to develop an input device which will in the future allow 

inputs to be applied directly to the helicopter without pilot intervention [1].

2.2 INPUT DESIGN METHOD

2.2.1 Input Auto—Spectrum Design

The aim is to design an input which is robust, gives long linear test records, 

and which gives a reasonably 'sm all' dispersion matrix. Several general guidelines 

can be developed concerning the features that should be present in the 

auto— spectum of such an input.

Firstly, consider obtaining longer time histories. Typically, the transfer 

function between a given rotorcraft model state and a given control input contains 

large peaks. These peaks correspond to resonances in the system. If an input 

excites these resonances, then the response will be large, and will rapidly become 

non— linear, so leading to a short test record. Hence, by designing inputs which 

avoid exciting these resonances, longer test records can be obtained.

In addition, inputs should not contain a dc component. If a large dc 

com ponent is present, then the aircraft response to the input will also contain a 

dc com ponent. This is undesirable when using a model linearised about a 

particular operating point, since a dc com ponent essentially means that the 

response is about a different operating point. If this operating point is 

significantly different from that used when linearising the model, then the model 

will be invalid.
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Now, the next step is to consider how to obtain a reasonably 'small' 

dispersion m atrix. Take the model,

^ j  £  ̂ = A x ( t )  + B u ( t )  where ,  z ( t )  = m easured  r e s p o n s e s

Tj(t) = G a u s s i a n  p r o c e s s

w i t h  z e r o  mean and

z ( t ) = C x ( t ) + 17 ( t  ) c o v a r i a n c e ,  R 

u ( t )  = s i n g l e  c o n t r o l  

inpu t

x ( t )  = model s t a t e s  

A,B,C = model m a t r i c e s

( 2 . 2 )

Let 0 be a  v e c t o r  c o n t a i n i n g  t h e  model p a r a m e t e r s  t h a t  a r e  to  

be i d e n t i f i e d ,  and l e t  the  t r u e  v a l u e s  o f  t h e s e  p a r a m e t e r s  be g iv e n  

by B_. T h i s  sy s tem  c o r r e s p o n d s  to  t h e  model u s e d  in  o u t p u t - e r r o r  

i d e n t i f i c a t i o n ,  and i t  was shown i n  s e c t i o n  1 . 3 . 4  t h a t  t h e  

d i s p e r s i o n  m a t r i x  f o r  t h i s  i s  g i v e n  by,

D M"1

T
M

0 ( 2 . 4 )

w h e r e ,

y ( t )  = C x ( t )

T i s  t h e  l e n g t h  o f  t h e  t e s t  r e c o r d  used .

Th i s  e x p r e s s i o n  can  be s i m p l i f i e d  by l e t t i n g  T -» « [2 ] ,  

P a r s e v a l ' s  theorem  t h e n  g i v e s ,

0 —00 ( 2 .5 )

w h e r e ,

dY(o))/d0 i s  the  F o u r i e r  t r a n s f o r m  o f  d y ( t ) / d 0 ,

a) i s  t h e  complex f r e q u e n c y .
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N o w ,

Y ( o )  =  G ( o )  U ( o )  ( 2 . 6 )

#  d Y ( o ) / d 0  =  d G ( o ) / d 0  U ( o )  ( 2 . 7 )

=  F ( o )  U ( o )  ( 2 . 8 )

w h e r e ,

Y(o) , U(o) a r e  t h e  F o u r i e r  t r a n s f o r m s  o f  y ( t ) ,  u ( t )

G(o) = C ( j o - A ) ~ 1B, t r a n s f e r  f u n c t i o n  m a t r i x  

F (o )  = dG(co)/d0 | 0==1

H ence ,

r. 00

"  J '
-0 0

( F ( o ) U ( o )  ) *  R " 1 ( F ( o ) U ( o ) )  d o  ( 2 . 9 )

f °°=  J  F*(o)  R" 1 F (o )  Su u (o)  do ( 2 . 1 0 )
—00

w h e r e ,

Su u (w) = a u t o - s p e c t r u m  o f  in p u t  u ( t )

= E(U*(o) U ( o ) )

= U*(o) U ( o ) , s i n c e  t h e  i n p u t ,  u i s  c o m p l e t e l y  

d e t e r m i n i s t i c  in  t h e  c u r r e n t  

a p p l i c a t  ion .

In p r a c t i c a l  s y s te m s ,  F(o)  becomes n e g l i g i b l e  above some 

f r e q u e n c y ,  oc . Now c o n s i d e r  t h e  s c a l a r  c a s e  o f  a  s i n g l e - i n p u t  

s i n g l e - o u t p u t  sy s tem  w i t h  o n ly  one p a r a m e t e r  t o  be i d e n t i f i e d .  This  

g i v e s ,

o c

M -  R - '  J  |F(w ) | 2 Su u (a>) du ( 2 . 1 1 )
-  oc

D =  1 / M  ( 2 . 1 2 )
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Notice that the expression for M does not involve the phase of the input or 

the phase of F(oo). Hence, attention can be restricted to the magnitudes of the 

input and F(oj). It can then be seen that to obtain a small dispersion, D, a 

large M is needed i.e. the area under the curve j F(ou) | 2 Suu(w) should be large.

Now, in order to obtain long test records, the input auto—spectrum , Suu(co) 

should avoid exciting the transfer function resonances. However, by exciting the 

frequencies away from the resonances, |F(oo) | 2 Suu(oo) can still be made to have 

a fairly large area.

Returning to the more general case of a vector model, exciting the 

frequencies away from the resonances will result in the elements of M being

reasonably large, and intuitively, this should lead to a 'sm all' dispersion matrix,

D. It should be noted that while it is well known that maximising M in this 

way can in fact produce a singular dispersion matrix [3], for the present 

application this can be neglected since the inputs used are significantly

sub— optimal, and therefore do not maximise M sufficiently to cause difficulties.

The arguments concerning the dispersion matrix in particular, and those 

concerning the other guidelines in general, are very crude. However, the system

transfer functions are typically only known approximately, and F(co) is usually 

even less well known. Hence, when designing inputs only the general

characteristics of F(o>) can be relied upon to any extent, and therefore 

sophisticated algorithms using detailed knowledge of F(oo) are redundant. Of 

course, if F(co) is better known, then more sophisticated algorithms become

worthwhile.

Finally, the robustness of the inputs has to be considered. Since the model 

is not known exactly, the frequencies of the resonances are not known exactly.

To allow for errors in these, inputs should avoid exciting a range of frequencies 

around the predicted position of each resonance. This will also make the inputs 

less sensitive to errors introduced during the application of the inputs by the

pilot, since errors in the input's auto— spectrum can then be tolerated to a

greater extent.
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So, by intuitive arguments, the features that should be present in the 

auto— spectrum of a reasonable input have been determ ined,

a) Auto— spectrum should avoid exciting transfer— function resonances, to give 

longer test records.

b) Auto— spectrum  should also avoid exciting frequencies around the resonances, 

to give robustness.

c) Auto— spectrum should excite the remaining frequencies, however, to give a 

fairly 'sm all' dispersion matrix.

It is of interest to note that if there is no constraint on the magnitude of 

the system 's response to an input, then features (a) and (b) can be discarded. 

The resulting input is then the standard wide— bandwidth type, such as an impulse 

or a pseudo— random  binary input, which is in widespread use for identification.

2.2.2 O ptim al Spectrum  Program

Now that the criteria for designing the auto— spectrum  of an reasonable input 

have been obtained, the next stage is to produce an input with the desired 

auto— spectrum characteristics. Since inputs must be applied by the pilot, they 

must be kept relatively simple e.g. a sequence of steps. A program has 

therefore been written that will generate the binary multi— step input whose 

auto— spectrum best meets a given specification.

Consider the general aperiodic binary multi— step input,

1

0
t ime ( sec )

1
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The Fourier Transform  of this input is,

n - l

F(o>) = io3 [ l  + 2 i I 1 ( - l ) 1e x p ( - j w t i ) + ( - l ) ne x p ( - j c o t n ) ]

(2.13)

where,

F(oo) is the Fourier Transform

u> is the frequency in radians/second.

j =  4 - 1 )

n-t- 1 is the num ber of steps in the input.

tj is the time in seconds of the i^ 1 step in the input; t 0 =  0 sec. 

Now define the cost function,

m

I -  ^  a k IFCw,,)!2 ( 2 - 14 )

where,

a^ are constants, k = l ,  2 , ... m

are frequencies in rads/sec, k = l ,  2 , ... m

The optimal spectrum program takes as input,

1) The num ber of steps, n, in the input.

2) The num ber, m , of constants in the cost function, I

3) The values of the weightings, a^, and the frequencies, c%, in the cost

function, I.

The program will then calculate the times, tj, of the steps in the input that

will result in the cost function, I being maximised. Specifying a large, positive

a^ results in an input with a large auto— spectrum com ponent at frequency cô .

Conversely, specifying a large negative a^ results in an input with a small

auto— spectrum com ponent at the corresponding frequency, cô .
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This permits the straightforward synthesis of inputs with auto— spectra 

meeting the guidelines developed in section 2.2.1. The optimal spectrum 

program, in conjunction with the auto— spectra guidelines, therefore forms a 

simple input design approach.

2.3 LYNX FLIGHT TRIALS

2.3.1 Design of Lynx Test Inputs

In order to assess the input design m ethod presented above, inputs were 

designed for the Lynx helicopter at RAE (Bedford), and subsequently underwent 

flight trials.

Figure 2.1 shows the magnitude and phase of the theoretical HELISTAB 

pseudo transfer functions associated with the Lynx longitudinal cyclic control for 

80 knots level flight [3]. At this flight condition, the Lynx helicopter is unstable. 

Hence, the impulse response of the helicopter diverges to infinity as time goes to

infinity. The transfer functions are therefore given by the Laplace transform of

the impulse response rather than the Fourier transform  ( since the Fourier 

transform cannot be used with a divergent function. However, the results shown

in figure 2.1 were obtained by taking the Fourier transform  of the first 60

seconds of the theoretical impulse response of the Lynx. Hence, they are not 

the true magnitude and phase of the transfer functions. Nevertheless, they reflect 

the characteristics of the system, and are sufficient for the present purpose.

It can be seen that there is a large peak in the magnitude transfer functions 

around 0.3 rads/sec, and that there is also a rapid change in phase. This 

corresponds to the unstable phugoid— like mode of the Lynx, which has a 

theoretical natural frequency of 0.36 rads/sec.

The optimal spectrum program was therefore used with the weightings shown 

in table 2 .1 .

38



Ph
as

e 
(r

ad
s')

F igure 2.1

M a g n itu d e  an d  phase t r a n s f e r  fu n c t io n s  between  the lon g itu d in a l  cyclic  

in p u t and  the ou tp u ts  o f  the theoretical H E L IS T A B  m odel. L in e a r  8 ttl order 

m odel used , w ith  L y n x  at 80 kn o ts  level f l ig h t .

CM — ® — CM CM CO

IHd

—

V13H1

-

<UT33
'3bl
s

ro

CMtr>

IHd

s>
V13H1



F requency  ( r a d s / s e c ) We i ght  i ng

0 .0 0 - 5 . 0

0 .3 0 - 5 . 0
0 .36 - 5 . 0
0 .5 0 - 5 . 0
0 .6 0 - 5 . 0
1 .0 0 - 2 . 0

2 .0 0 5 .0
2 .5 0 5 .0
3 .00 0 .5

3 .50 - 2 . 0
6 .0 0 - 2 . 0

Table  2 .1  -  The w e i g h t i n g s  u s e d  w i t h  t h e  o p t i m a l  s p e c t r u m  program  

t o  g e n e r a t e  l o n g i t u d i n a l  c y c l i c  i n p u t s  f o r  a Lynx  

h e l i c o p t e r  a t  80 k n o t s  l e v e l  f l i g h t .

The first weighting was selected to ensure that the input did not contain a 

dc com ponent. The following five weightings were chosen to ensure that the 

input avoided exciting the resonance at around 0.3 rads/sec. The next three 

weightings were then used to produce a rise in the input auto— spectrum between 

2 and 3 rads/sec. Finally, the second last weighting was used to prevent this rise 

in the auto— spectrum from spreading out to higher frequencies, and the last 

weighting was similarly used to reduce the power at high frequencies. This was 

because previous experience with the Puma at RAE (Bedford) suggested that the 

theoretical model was only valid up to around 3 rads/sec. Above this frequency, 

rotor dynamics appear to dominate the response, and these are not included in 

the simplified model that is being used [4].
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Figure 2.2

T im e  h isto ry  and  a u to -s p e c tr u m  o f  the in p u t genera ted  by  the op tim a l 

sp ec tru m  program  in  accordance w ith  the w eigh tings g iven  in  T ab le  2 .1
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Using these weightings, an input consisting of 5 steps was generated by the 

optimal spectrum  program (see figure 2.2). It can be seen that the

auto— spectrum  of this input has little power below 1 rad/sec, and that most of 

the power is concentrated between 1 and 3 rads/sec, as desired.

The timings of the steps in this input are as follows,

t , = 0 . 0 0  s e c

*2 = 1 . 0 8  s e c  ( t 2- t i = 1 . 0 8  s e c )
t 3 = 2 . 5 9  s e c  ( t 3- t 2 = 1 . 5 1  s e c )

t 4 = 4 . 1 0  s e c  ( t 4- t 3= 1 . 5 1  s e c )

t 5 = 5 . 1 8  s e c  ( t 5- t a = 1 . 0 8  s e c )

It is unrealistic to expect a pilot to apply an input with such awkward 

timings, so this input was modified to give two versions with much simpler 

timings. This should be straightforward, since the original input was designed to 

be robust, and in particular to withstand being applied inaccurately by the pilot. 

Hence, m oderate changes in the timings of the input should have only a small 

effect.

The modified inputs were called the double—doublet and the 1221, and have 

timings as follows,

1) D o u b l e - D o u b l e t  2) 1221

1 = 0 . 0 s e c t l  = 0 . 0 s e c

2 = 1 . 0 s e c ( t  2- t , = 1 . 0 s e c ) t 2 = 1 . 0 s e c ( t  2- t 1= 1 - 0 s e c )

3 = 2 . 0 s e c ( t  3- t  2=1 . 0 s e c ) t 3  = 3 . 0 s e c ( t 3- t 2=2 . 0 s e c )

4 = 3 . 0 s e c ( t 4- t  3=1.0 s e c ) t 4  = 5 . 0 s e c ( t 4- t 3=2 . 0 s e c )

5 = 4 . 0 s e c ( t 5- t 4=1 . 0 s e c ) 15 = 6 . 0 s e c ( t 5- t 4=1-0 s e c )

Note that the timings of these inputs have been arranged so that the inputs 

have no dc component.

It can be seen (figure 2.3) that the auto— spectra of these inputs are very 

similar to that of the original input. However, certain differences are apparent.

40



In the case of the double— doublet, it can be seen that the input contains 

little power below 2 rad/sec. Hence, it can accomodate a larger error in the 

predicted frequency of the unstable resonance of the Lynx than the original input. 

However, the double— doublet contains slightly more power below 1 rad/sec than 

the original input, and so may excite the unstable mode more and so give shorter 

test records.

In contrast, the 1221 has less power below 0.75 rad/sec than the original 

input, and so should give longer test records. However, since the region around 

the unstable resonance where the input power is low is smaller than in the 

original input, the 1221 is more sensitive to errors in the frequency of the 

resonance.

Hence, the double—doublet and the 1221 com plement each other, and the 

original input is a compromise between the two. It was therefore decided to 

study both of these inputs in more detail.

2.3.2 Flight Trials of Lynx Test Inputs

The inputs developed were used in flight trials with the Lynx helicopter at 

RAE (Bedford).

In past rotorcraft identification work at the University of Glasgow (e.g. [4]), 

and in much of the identification work reported in the literature, the inputs used 

have consisted of doublets and 321 l 's  (see figure 2.4). These inputs were 

therefore used as references against which to compare the double— doublet and 

1221 inputs.

The HELISTAB 8^  order helicopter model used in this work has potentially 

96 param eters to be identified. In order to make the problem more manageable, 

attention was initially restricted to the pitching moment equation of this model. 

This equation describes the behaviour of the pitch rate of the helicopter, and 

contains 7 param eters, as follows.
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^  ( t )  =  Muu ( t )  +  Mww ( t )  +  Mq q ( t ) +  Mv v ( t )  +  Mpp ( t )

‘771 s 7? 1 s

where,

u(t) =  longitudinal velocity 

q(t) =  pitch rate

w(t) =  vertical velocity 

v(t) =  lateral velocity

p(t) =  roll rate

r/lS(t) =  longitudinal cyclic control input 

rjic(t) =  lateral cyclic control input

Mu> Mw> Mq, Mv, Mp, M ^ 1S, M ^ 1C are the param eters to be 

estimated in the system identification.

A frequency— domain equation— error program developed by Black [5] was 

used to perform the initial identification.

Four inputs were used in the flight trials,

An input amplitude of 0.02 radians was used in all cases. This corresponds 

to the smallest practical pilot input.

The results obtained for these inputs are now given.

3211 Input

The 3211 input gave very short test records — typically only 3 seconds long 

— before the pilot was forced to recover control of the aircraft. Since the 3211 

input itself is 7 seconds long, it was not possible to fully apply the input in the 

available time.

1. 3211

2. Double— Doublet

3. Doublet

4. 1221
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Figure 2.7
C oherency fu n c tio n s  o f  the 8 helicopter sta tes to the long itud ina l cyclic  in p u t fo r  

the f u l l  40 second test record and  f o r  the f i r s t  30 seconds o f  the record ( f l ig h t  
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Figure 2.4 shows the auto—spectrum of an ideal 3211, and it can be seen 

that it has a large peak below 1 rad/sec. Hence, this input will greatly excite 

the unstable resonance of the Lynx, so leading to short test records.

In conclusion, the 3211 is an unsuitable input for use with the Lynx.

Double— Doublet Input

In contrast to the 3211, the double— doublet gave long test records — 

typically 40 seconds of data were obtained before the pilot was forced to recover 

control of the aircraft.

Three flight trials were obtained using double— doublets, and these gave 

results which were in extremely close agreem ent. Figure 2.5 shows the 

double—doublet input applied by the pilot in flight 190/12. It can be seen that 

the amplitude of the steps in the input vary, and that the timing is not precise. 

However, due to the robustness of this input, it can be seen that the

auto— spectrum is still very similar to that of an ideal double— doublet.

Figure 2.6 shows the variation of the squared—correlation coefficient, R 2 and 

the Ftotai coefficient with the length of the test record used. The coherency 

functions [6] between the eight measured states and the longitudinal cyclic input 

are given in figure 2.7.

From these results it was decided that the first 32 seconds of the test

records could be taken as linear. Various factors were taken into account.

Firstly, it can be seen that there is a large drop in R 2 after 32 seconds,

and this corresponds to a noticeable peak in F totaj. This could be due to 

non— linearities becoming significant for records longer than 32 seconds. The

coherency function helps to confirm this possibility. For the full 40 seconds of 

the test record, the coherence is high (around 0.9) for all of the states except 

for yaw rate, r and lateral velocity, v. These two states have coherences of 

around 0.6, indicating significant non— linearities.
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Moving to the coherence of the first 30 seconds of the record, it can be 

seen that the coherence of r and v rises to around 0.8, which can be taken as 

linear for most purposes. The coherences therefore indicate that significant 

non— linearities are excluded when going from 40 seconds to 30 seconds of the

test record, in agreement with R 2 and F totap Hence the decision was made to

use the first 32 seconds of the test record.

It should be noted that several interesting numerical effects [7] can be seen

in the coherences shown in figure 2.7. Each one of the coherence functions has 

troughs at around 0.3, 1, 4, and 7 rads/sec.

Firstly, recall that the unstable resonance of the Lynx occurs at around 0.3 

rads/sec, and that there is a rapid phase change in the transfer— functions at this 

point. This rapid phase change introduces a large bias into the coherence at this 

frequency, and so produces the trough at around 0.3 rads/sec.

The remaining troughs in the coherence can be understood by considering 

the auto—spectrum of the double—doublet input used (see figure 2.5). It can be 

seen that the auto—spectrum is very low at around 1, 4, and 7 rads/sec. Hence, 

the response of the states will be low at these frequencies, and so the

signal— to— noise ratio will also be low. The coherence will therefore be strongly 

biased at these frequencies. Notice that there is also a slight shift in the 

frequencies of these troughs for shorter test records, due to insufficient frequency 

resolution.

Lastly, notice that some of the coherency functions take values below zero at 

certain frequencies. This is purely a numerical artifact, and should be taken as a 

coherence of zero — the coherence function should lie strictly between 0 and 1.

It is therefore the author's opinion that due to these effects the coherency 

function should be used with some care, and coherence results interpreted with 

caution.
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Finally, figure 2.8 shows the variation of the param eter estimates with the 

length of record used. It can be seen that the estimates of Mq, Mp, M ^ 1S, and 

M ^ 1C appear to have converged after about 28 seconds. The estimates of Mu , 

Mv, and Mw also appear to reach a plateau after 28 seconds. However, they 

then start to vary rapidly again after about 32 seconds, corresponding to 

non— linearities becoming significant. In the theoretical model, 28 seconds is the 

length of approximately four cycles of the slowest mode of the Lynx. Intuitively, 

it is perhaps reasonable to expect that a few cycles of this mode will be needed 

before its param eters can be properly identified.

From  these results, it can be seen that unless an input provides fairly long

linear test records (greater than about 28 seconds) then the param eter estimates

will not converge, and poor estimates will result. Long records are also necessary 

to give efficient estimation i.e. with the minimum param eter variance (given by

the dispersion matrix). Figure 2.9 shows the variation of the standard—deviations 

of the param eter estimates with the length of test record. It can be seen that

these appear to have converged for Mq, Mp, M ^ 1S, and M ^ 1C, but not for M u, 

Mv, and Mw. Hence, still longer records would be desirable.

In conclusion, the double— doublet has given good identification results, and 

appears to be a useful identification input.

Doublet Input

Three flight trials were obtained using doublets. The longest doublet test 

run gave 38 seconds of data before the pilot recovered control of the aircraft. 

However, the other doublet test records were typically 10 to 20 seconds long.

It was decided to look at the long 38 second run first of all — flight 

183/24. The input applied by the pilot in this run is shown in figure 2.10. It 

can be seen that the auto— spectrum of this input is similar to that of the ideal 

doublet input.
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Figure 2.11

V a ria tio n  o f  the P itch in g  M om ent E quation  squared—correla tion  c o e f f ic ie n t ,  

R 2 and  F to ta i w ith  the leng th  o f  test record used f o r  f l ig h t  1831 24.
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Figure 2.12

C oherency fu n c tio n s  o f  the 8 helicopter sta tes to  the  lo n g itud ina l cyclic  

in p u t f o r  the  f u l l  38 second test record an d  f o r  the f i r s t  25 seconds o f  the 

record  (f l ig h t  1 8 3 /2 4 ) .
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Figure 2.13

V a ria tio n  o f  the estim ates o f  the param eters o f  the P itch in g  M om ent 

E q u a tio n  w ith  the leng th  o f  test record used fo r  f l ig h t  1 8 3 /2 4 .
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Figure 2.11 shows the variation of the squared—correlation coefficient, R 2 

and the F^ota| coefficient with the length of test record used. The coherency 

functions are given in figure 2.12 for 38 seconds and 25 seconds of the test 

record. It can be seen that there are no significant peaks or troughs in R 2 or 

Ftotal which would indicate the onset of non— linearities. However, it can be 

seen that the coherence for the full 38 second test record is very low for most 

of the states, suggesting that serious non— linearities are present.

The coherence for the first 25 seconds of the record is, however, 

considerably better. The coherence is generally around 0.9 for all of the states 

except for yaw rate, r and lateral velocity, v, which have coherences of around

0.2. Hence, r and v are still very non— linear. Several large troughs are also 

present in all of the coherences, in particular at around 0.3, 1.25, and 5 

rads/sec. These troughs are shifted to around 1, 2.25, 6 rads/sec for the 25 

second records, due to insufficient frequency resolution with this shorter time 

history.

The trough at around 0.3 rads/sec is produced by the rapid phase change in 

the transfer functions at this frequency due to the unstable resonance of the

Lynx. While the trough at 5 rads/sec results from poor excitation by the input 

at this frequency (see figure 2.10). These effects are similar to those observed 

for the double— doublet.

The remaining trough, at 1.25 rads/sec, corresponds to a peak in the 

doublet's auto— spectrum, and appears to represent at genuine non— linearity.

The peak in the doublet's spectrum is lower than for the double— doublet, but is

much wider and extends into the frequencies below 1 rads/sec. The doublet

therefore excites the Lynx's unstable resonance more than the double— doublet.

Hence, for 25 seconds of the available test record the responses still contain 

significant non— linearities. It has been found that these non— linearities remain 

present even when only 15 seconds of the test record are used.

46



Fi
gu

re
 

2.
14

Ti
m

e 
hi

st
or

ie
s 

an
d 

au
to

-s
pe

ct
ra

 
of 

co
nt

ro
l 

in
pu

ts
 

ap
pl

ie
d 

by 
pi

lo
t 

du
ri

ng
 

fl
ig

h
t 

19
0/

 
10

.

3ai0Hi

3ft,
C

o coQ) to
— *a 
oo ft.

co CO in co CM

30H1

<-1,

SIH1

o  c>

( S a v a )  SIHI 9V1SI13H

coin

(SOVa) 31H1 9V1SI13H



F-
TO

TA
L 

R-
SQ

UA
RE

D
Figure 2.15

V a ria tio n  o f  the P itch in g  M om ent E quation  sq uared—correla tion  c o e f f ic ie n t ,  

R 2 and  F totai w ith  the leng th  o f  test record used f o r  f l ig h t  1 9 0 /1 0 .
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C oherency fu n c tio n s  o f  the 8 helicopter sta tes to the long itud ina l cyclic

input fo r  the fu ll 38 second test record and fo r the f ir s t  20 seconds o f  the
record  ( f l ig h t  1 9 0 /1 0 ).
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Figure 2.17

V a ria tio n  o f  the estim ates o f  the param eters o f  the P itch in g  M om ent 

E q u a tio n  w ith  the length  o f  test record used f o r  f l ig h t  1 9 0 /1 0 .
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Figure 2.13 shows the variation of the param eter estimates with the length 

of test record used. It can be seen that there are several plateaus, but that the

estimates have not converged satisfactorily. In particular, below 15 seconds the

estimates are varying rapidly. This doublet test record therefore appears to be 

unsuitable for identification, and gives only poor estimates.

O ther test runs using doublets also typically produced test records with only 

10 to 20 seconds of data before the pilot recovered control of the aircraft.

In conclusion, doublets do not appear to give linear test records which are

long enough to produce good param eter estimates. M oreover, the doublet flight 

trials resulted in test records varying in length from 38 seconds to around 10 

seconds. It therefore appears to be difficult to obtain consistent results using 

doublet inputs, which suggests that this input is not sufficiently robust.

1221 Input

Finally, several test runs were performed using the 1221 input. These runs 

typically gave 32 seconds of data before the pilot recovered control of the 

aircraft, with the longest run being 38 seconds. Figure 2.14 shows the input

applied by the pilot in this 38 second run (flight 190/10).

The variation of the squared correlation coefficient, R 2 and the F tota| 

coefficient with the length of the test record used are shown in figure 2.15. The 

coherency functions are given in figure 2.16 for 38 seconds and 20 seconds of 

the test record.

It can be seen that there are several sharp increases in R 2 as the length of 

the test record used is reduced, with corresponding peaks in F totap The results 

discussed above for other test inputs suggest that these changes in R 2 and F total 

may be due to n o n -  linearities being excluded from the identification as the 

record length falls.
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For the full 38 second record, the coherency functions are generally high 

(around 0.9). However, several troughs can be observed.

The troughs at around 4 and 7 rads/sec can be attributed to the low power

of the input at these frequencies producing a poor signal— to— noise ratio, and

hence biased coherence.

The trough at approximately 0.75 rads/sec may be the result of either, or 

both, of two effects. The input auto— spectrum is low at this frequency, and so 

the trough may be caused by a poor signal— to— noise ratio as for the other 

troughs. However, recall that a rapid phase change occurs in the system transfer 

functions at around 0.3 rad/sec due to the unstable resonance of the Lynx. 

H ence, the coherence has a trough at 0.3 rads/sec, and this trough may be 

shifted to around 0.75 rads/sec on the coherence plots due to insufficient

frequency resolution. In either case the effect is not due to non— linearities.

The trough at around 1.5 rads/sec, however, corresponds to a large peak in 

the input auto—spectrum, and appears to indicate a genuine n o n -lin ea rity .

This peak in the auto—spectrum of the 1221 input is of similar magnitude 

to the peak in the double—doublet's auto—spectrum. However, the 1221 peak

occurs at a significantly lower frequency, and hence will excite the system to a 

greater extent.

W hen only the first 20 seconds of the test record are used, it can be seen 

that the coherence is little different from that of the full 38 second record, 

except that the frequency resolution is somewhat poorer.

Hence, the coherence functions display no evidence of n on-linearities  being 

excluded at the record lengths corresponding to the sharp increases in R 2. 

R ather, the coherence suggests that non— linearities are still present in the shorter 

test records.

Perhaps the sharp increases in R 2 do correspond to a drop in the magnitude 

of the n o n -lin ea rities . However, the n o n -lin ea rities  appear to remain 

significant, and so are still registered by the coherency functions, which may have 

insufficient precision to detect the reduction in the non-linearities.
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Finally, figure 2.17 gives the variation of the param eter estimates with the 

length of the test record used. It can be seen that the estimates do not

converge, and that their rate of change corresponds to the rate of change in R 2.

Similar identification results were obtained for the other 1221 test runs.

2.3.3 Conclusions from Flight Trials of Lynx Test Inputs

In conclusion, it appears that the 3211, the 1221 and the doublet suffer 

from a similar type of problem: the inputs' auto—spectra contain too much power 

at low frequencies in the vicinity of the Lynx's unstable resonance, resulting in 

n o n - lin e a r  test records. This is particulary pronounced in the case of the 3211 

input.

The double— doublet therefore appears to be the best input, giving fairly long 

linear test records, and being reasonably robust.

Hence, these flight trials have demonstrated the effectiveness of the input 

design m ethod presented, despite its simplicity. The im portance of obtaining 

sufficiently long test records has been shown, both in terms of the convergence of 

the param eter estimates and in terms of convergence of the param eter variances 

to give efficient estimation.

It is interesting to take note of the results concerning the 1221 and 

double— doublet inputs. These inputs complement each other, as discussed in 

section 2.3.1 above — the 1221 theoretically produces less excitation of the 

unstable resonance, while the double—doublet is more robust to errors in the

irV\e.o<-e-tua\ model, and to pilot errors in applying the input. Since the

double— doublet has been found to give the best results, it appears that robustness

has been the deciding factor. When designing inputs, the degree of robustness

required should therefore be taken carefully into account.
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2.4 Identification Results for Double— Doublet Input

2.4.1 Introduction

As discussed in section 2.3.2 above, the most satisfactory flight trials were 

obtained using double— doublet inputs. More detailed double— doublet 

identification results are therefore presented below.

The param eters of the pitching m om ent equation described in section 2.3.2 

were estim ated. Results from both equation— error and output— error identification 

are presented.

Before estimates of the parameters of the pitching moment equation could be 

obtained, however, for each test record it was necessary to resolve certain issues.

a )  How much o f  th e  a v a i l a b l e  t e s t  r e c o r d  c a n  be u s e d  ?

The r e s p o n s e  w i l l  become s i g n i f i c a n t l y  n o n - l i n e a r  a t  some 

p o i n t ,  an d  t h i s  p o in t  n e e d s  to  be d e te r m in e d .

b ) What ra n g e  o f  f r e q u e n c ie s  s h o u ld  be u s e d  in  th e  

i d e n t i f i c a t i o n  ?

The m odel b e in g  i d e n t i f i e d  ig n o re s  th e  dy n am ics o f  th e  

h e l i c o p t e r ' s  r o t o r .  T hese  d y n am ics te n d  to  have  s h o r t  tim e  

c o n s t a n t s  com pared  w ith  th e  d y n am ics o f  th e  f u s e la g e .  H ence, 

in  th e  f re q u e n c y -d o m a in  th e  r o t o r  d y n am ics te n d  to  d o m in a te  

th e  r e s p o n s e  a t  h ig h e r  f r e q u e n c ie s ,  w h i le  th e  f u s e la g e  

d y n am ics  te n d  to  d o m in a te  th e  low f r e q u e n c y  r e s p o n s e .  The 

m odel u s e d  i s  t h e r e f o r e  o n ly  v a l i d  a t  low f r e q u e n c ie s .  H ence,

i t  i s  n e c e s s a r y  to  d e te rm in e  th e  ra n g e  o f  v a l i d

f r e q u e n c ie s  t h a t  c a n  be u s e d .
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Figure 2.18

V a ria tio n  o f  the P itch in g  M om ent E qua tio n  sq u a red —correlation c o e f f ic ie n t ,  

R 2 and  F to ta i w ith  the upper fre q u e n c y  used in  the id e n tif ic a tio n . T he lower 

fr e q u e n c y  was chosen to exclude dc, and  depends on the fr e q u e n c y  resolution  

available i .e  on the leng th  o f  test record — a 32 second record was used, g iv ing  

a low er fr e q u e n c y  o f  0.196 rads! sec. ( f l ig h t  1 9 0 /1 2 ) .
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2.4.2 Equation— Error Identification Results

For flight 190/12 it was decided to use the first 32 seconds of the test 

records, for the reasons explained in section 2.3.2.

The next step was therefore to determ ine the frequency range to be used. 

At lower frequencies, dc is excluded from the identification in order to deal with 

any biases in the measurements. It then remains to decide what range of higher 

frequencies should be used. Figure 2.18 shows the variation of the 

squared—correlation coefficient, R 2 and Ftota  ̂ with the frequency range.

Several interesting features can be seen. Firstly, as the frequency range is 

reduced there is a sharp increase in R 2, and a peak in F totaj at about 40 

rads/sec. This is probably due to a rotor mode being excluded from the 

identification, resulting in a better model fit. The theoretical model used, 

HELISTAB, is in good agreement with this, and predicts a rotor coning mode at 

35 rads/sec.

As the frequency range is reduced further, there is a second sharp increase 

in R 2 and a peak in F totai at about 7 rads/sec. Again this is probably due to a 

rotor mode being excluded, and in particular HELISTAB predicts a longitudinal 

flapping mode at 10.41 rads/sec.

HELISTAB predicts no rotor modes below this frequency, and it can be seen 

that there are no sharp increases in R 2 at lower frequencies, and that F totaj is 

fairly level, except for a fall in R 2 and Ftota  ̂ below about 2.5 rads/sec.

This fall can be attributed to the poor signal— to— noise ratio around 1 

rad/sec. At this frequency the input auto—spectrum is very low, and hence the 

system's response is also low. Now an equation—error estim ator was used, and 

this assumes that there is no noise on the driving terms of the Pitching Moment 

Equation. If the signal— to— noise ratio is low, this assumption will be invalid, 

and will result in poor param eter estimates.

Since the low signal— to— noise ratio is localised around 1 rad/sec, its effect 

will be small if a fairly large frequency range is used. However, when smaller 

frequency ranges are used its effect will become more significant, and so result in 

the fall observed in R 2 and Ftotap
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The input auto— spectrum is also low at other frequencies, in particular, at 4 

and 7 rads/sec. As discussed in section 2.3.2, this has affected the coherence 

functions : the poor signal—to—noise ratios at 1, 4, and 7 rads/sec resulting in 

biased coherences at these frequencies. Now, the effect on identification at 1 

rad/sec has been described above. At 4 and 7 rads/sec, however, R 2 and F total 

do not appear to show any low auto— spectrum effects. It can also be seen that 

the bias in the coherence does not appear to be as large at 4 and 7 rads/sec as 

at 1 rad/sec. This suggests that the signal— to— noise ratio is not as poor at 

these frequencies, and hence the effect on identification will be less.

From  these results, it was decided that a frequency range of 7 rads/sec 

should be used in the identification.

Notice that this is more than double the 3 rads/sec range of the Puma 

helicopter. This is reasonable, given the greater agility of the Lynx, and the 

differing roles that these helicopters are intended for. However, since no 

previous results were available for the Lynx, the 3 rads/sec range of the Puma 

was used when designing the Lynx inputs (see section 2.3.1). The inputs could 

therefore be improved upon in future flight trials by using the greater frequency 

range now known to be available for the Lynx.

The param eter estimates obtained are shown in table 2.2, together with the 

param eter values predicted by the theoretical model, HELISTAB.

P ara m e t e r E st im ate HELISTAB

Mu 0 .0 0 1 5 5 0 .0 0 7 7 4
Mw -0 .0 0 0 3 4 0 .0 0 9 8
Mq -0 .6 7 7 -2 .3 8 2

Mv 0 . 0 0 2 0 0 .0 0 2 7
Mp -0 .7 0 8 0 .3 6 3

^171 s 4 1 3 .1 3 2 8 .1 5

T a b le  2 .2  -  E q u a t i o n - e r r o r  e s t i m a t e s  a n d  HELISTAB v a l u e s  f o r  

t h e  p a r a m e te r s  o f  t h e  p i t c h i n g  m oment e q u a t  io n .  

(L ynx ., 80 k n o t s  l e v e l  f l i g h t )
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It can be seen that several of the param eter estimates differ significantly 

from the HELISTAB values. In particular, M w and Mp are of different signs 

from HELISTAB, while Mq and M ^ 1S are underestim ated. These results are 

discussed in more detail below.

2.4 .3  O utpu t—E rro r Identification Results

As in the equation—error case, the first 32 seconds of flight 190/12 were 

used for the output— error identification, with a frequency range of 7 rads/sec. A 

frequency— domain output— error algorithm developed by Black [4] was used, and 

the m athem atical model given below in equation (2.15) formed the basis for the 

identification. This model is 5 ^  order, and contains the main param eters 

affecting the longitudinal dynamics. In particular, the pitching m om ent equation 

param eters are included in this model.

u ( t ) xu xw 0 x e 0 u ( t )

w ( t ) Zu Zw Zq 0 0 w( t )

q ( t ) = Mu Mw Mq 0 Mp q ( t )

0 ( t ) 0 0 1 0  0 0 ( 0

P ( t ) Lu Lq 0 Lp P ( t )

^771 s 0

Z771 s 0

M771 s 0

0 0

■*-771 s L171 c

(2 .15 )
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Table 2.3 shows the param eter estimates obtained, together with the 

theoretical values predicted by HELISTAB.

P a ra m e te r Est  imate HELISTAB

Xu 0.0348 - 0 .0 3 3
xw 0.110 0.043
*0 -3 3 .53 -32 .179
Xtji s -24 .62 -2 4 .4 3

z u -0 .0027 -0 .0068
z w -0 .0 61 - 0 .8 3 8
Zq 90 .0 134.8
7 1 s -114 .8 -104 .19

Mu 0 .00M 0.00774
Mw 0 . 00065" 0.0098
Mq - I .  OT£ -2 .3 8 2
MP - o . ? r 0.363
M771 s 13 . <11 28 .15

Lu -0 .0065 - 0 .1 2
Lw 0.00288 0.068
^q 4 .239 - 1 .731T.
Lp -4 .9 2 - 1 0 .9r
L711 s 10.232 -2 6 .5 4
L 2.01 -150 .5 1

Table  2 . 3 -  O u t p u t - e r r o r  e s t i m a t e s  and HELISTAB v a l u e s  f o r  

t h e  p a r a m e t e r s  o f  t h e  5 o r d e r  m ode l .

(Lynx,  80 k n o t s  l e v e l  f l i g h t )

Concentrating firstly on the pitching moment equation param eters, it can be 

seen that com pared with the equation— error results, the output— error estimates 

are generally in closer agreement with HELISTAB. Mp is an exception to this, 

and is estimated with a different sign to the HELISTAB value. This param eter 

has an im portant effect on the degree of coupling between the pitch and roll 

rates, and so was investigated in more detail.
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C om parison  o f  response p red ic ted  using  the 5 ^  order id e n t i f ie d  m odel w ith  

m easured response ( f l i gh t  190 / 10 ,  1221 in p u t).
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Figure 2.19 shows a time—domain comparison between the measured 

responses and those predicted using the identified 5 ^  order model. There is 

generally a reasonable agreement between these responses. However, this 

com parison highlights a significant oscillatory component in the measured responses 

for pitch rate , q and roll rate, p which is not present in the responses predicted 

by the identified model. To study this further, the 5 ^  order model was 

modified to use roll rate, p as a pseudo— input rather than using it as one of the 

model states. This gave the following 4 ^  order model.

U( t ) x u xw 0 x e u ( t )

W ( t ) Zu Zw Zq 0 w( t )

q ( t ) = Mu Mw Mq 0 q( t )
0( t ) 0 0 1 0 0 ( t )

•771 s 0 0

771 s 0 0

'771 s 0 Mp

0 0 0

iJisCO

P ( t )
(2 .16 )

M easurements of 771S, 77 1C, and p were used to drive this model. Figure

2.20  shows a comparison between the measured responses and those predicted by 

this 4 ^  order model. It can be seen that the pitch rate, q predicted by the 4 ^

order model contains an oscillatory com ponent similar to that present in the

measured pitch rate. The oscillation therefore appears to originate in the

roll— rate, p, and is present in the pitch rate due to the coupling between roll 

and pitch. The 5th order model does not include this lateral oscillatory roll

mode, since it concentrates on the longitudinal dynamics. Hence the poor 

estimate obtained for Mp.
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Moving to those param eters not included in the pitching m om ent equation, 

several estimates agree closely with HELISTAB, while others are in much poorer 

agreement. In particular, the param eter estimates for the rolling— moment 

equation are significantly different from the HELISTAB values. This can be at 

least partially attributed to the difficulties described previously concerning 

unmodelled lateral dyamics.

O f the other param eters, the estimates of X q, X ^ ^ s , and are in good

agreem ent with the theoretical values. While the estimates of Xu , Xw, and Z w

are a much poorer match. Xu> Xw, and Z w are im portant param eters affecting 

the Lynx phugoid—like unstable mode. HELISTAB predicts that this mode has a 

frequency of 0.368 rads/sec, and time constant of 7.69 seconds, while in the 

identified model the frequency is 0.233 rads/sec and the time constant 22.37 

seconds. HELISTAB therefore appears to underestimate the stability of this

mode. However, further work is required to investigate this more fully.

Finally, in order to verify the identified model it was used to predict the 

responses to a pilot input other than a double— doublet. Figure 2.21 shows a 

comparison between the measured and predicted responses to a 1221 input. it 

can be seen that these are in fair agreement, and suggest that the identified 

model is a reasonable representation of the system.

2.4.4 Difficulties of Output— Error Identification of Unstable Systems

When performing the output— error identification for the Lynx, serious

numerical difficulties were encountered as a result of the unstable mode present

in the system. An insight into these difficulties can be gained by considering a

simple first order output— error system, as follows :

dx(t)/dt =  a x(t) +  u(t)

Z(t) =  x(t) +  K](t)

(2.17)
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where,

a is the param eter to be estimated

u(t) is the input,

x(t) is the model state,

z(t) is the output

i?(t) is a Gaussian noise process with zero m ean and unity variance

If the input, u is a step, then the system response can be expressed in the 

following form  :

z(t) =  - 1 / a  (1 -  eat) +  rj(t) (2.18)

W ith this system, in time—domain output—error the likelihood function is

maximised by minimising the following cost function :

N

1  ( z ( t . )  -  x ( t . ) )  ( 2 . 1 9 )
i = i

N

I  ( z ( t  ) + 1  C . - e a t i  ) ) 2 ( 2 . 2 0 )
• 1 3 .1=1 

N

I 2 e ( a , i ) s ( a , i ) . ( 2 . 2 1 )
i = i

*(ti)

J (a)  =

dJ , , 
*  d i  (a )

where,

e(a,i) =  z(tj)

For an unstable system, the param eter, a is positive, and the scaling factor 

s(a,i) is therefore divergent with time. This produces ill— conditioning in the 

derivative, dJ(a)/da, which in turn leads to difficulties when attempting to 

minimise the cost function, J(a) using numerical techniques. The use of 

output—error identification with unstable systems therefore involves a significantly 

more demanding numerical problem than is the case for stable systems.
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For the present work, these difficulties were overcome by the simple 

expedient of reducing the size of the integration step used in the routines for 

calculating J(a) and dJ(a)/da in order to improve the accuracy. However, while 

this perm itted param eter estimates to be obtained, it also greatly increased the 

computing time required, and was found to be less than satisfactory. There is 

therefore a need for more work on the problems involved in identifying unstable 

systems.

2.4.5 Dispersion M atrices of M u lti-s te p  Inputs

Using the 5 ^  order model obtained by output—error identification, |D |  was 

calculated for an ideal doublet, 1221, and double—doublet. The results are 

shown in table 2.4.

Input |D|

Doublet 136 . 2

1221 159 .7

Doub1e-Doub1e t 3. 95

Table 2.4 — |D | fo r  various m u l t i - s te p  inputs, calculated

using 5 order output—error iden ti f ied  L ynx  model

It can be seen that the doublet and 1221 both give determ inants around 150, 

while the doub le-doub le t gives the significantly lower value of 3.95. These 

results appear to support those presented earlier in this chapter, suggesting that 

the d o ub le-doub le t is superior to both the doublet and 1221 inputs.
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3.1 INTRODUCTION

W ith the encouraging results obtained using sub—optimal inputs (C hapter 2), 

a closer study was consequently made of optimal inputs. The D — optimality

criterion has been used, for the reasons outlined in C hapter 1, with an 

o u tp u t-e r ro r  model of the system. This model is as follows :

dx(t)/dt =  A x(t) +  B u(t) (3.1)

y(t) =  c  x(t)

z(t) =  y(t) +  rj(t)

where,

A,B,C are suitable matrices containing the model param eters, 6

r\{t) is a zero mean Gaussian process with covariance, R

y(t) is noise— free system response, z(t) is noisy system response

For this model, the dispersion matrix is given by equation (1.19) as :

D = M"1 ( 3 . 2 )

M =
T

( d y ( t ) / d 0 )  R " ’ d y ( t ) / d 0  dt

where T is the length of the test record used.

In the rotorcraft case, the matrices A, B, and C are obtained by linearising 

the non— linear HELISTAB model about a particular flight condition. If the 

system response departs too far from this flight condition then it becomes 

non— linear, and the linearised model is invalid. It is therefore necessary to 

constrain the inputs to give linear test records, while minimising | D | .
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Figure 3.1

A n outline o f  the arrangement f o r  a linearity constraint based on obtaining 

several linearised models along the trajectory o f  a response.

calculate a linearised model
for each of the points marked. 
If these models are sufficiently 
close, then the response can be 
taken as linear.

f(t)

o
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Unfortunately, determining the linearity of a response is not straightforward. 

As described in Chapter 2, it is possible to use the coherence function to assess 

linearity. However, this function is affected by a large num ber of factors, and 

can be subject to severe biases. These make the coherence function difficult to 

use quantitatively, and it was therefore thought to be unsuitable for use in a 

numerical optimisation scheme.

An alternative method of measuring linearity is to obtain the system response

using the n o n - lin e a r  HELISTAB model. This n o n - lin e a r  model can then be

linearised at flight conditions corresponding to several points in the calculated

system response. If the parameters of these linearised models agree to within the

expected variance of the estimates of these param eters obtained by identification,

then the response may be taken a linear for practical purposes. This

arrangem ent is outlined in figure 3.1.

However, this is a complex constraint, and requires a large amount of 

computing time. For example, obtaining a linearised model typically requires 2 

seconds of computing time with HELISTAB (on a DEC VAX 11/750). Typically 

a test record contains approximately 1000 sample points, and a linearised model 

needs to be generated at every tenth point. Hence, around 100 such models are 

required to check the linearity of a response. It has been the author's

experience that the constraint is evaluated around 1000 times in an input design 

run. This gives 200,000 seconds, or 55 hours of computing time, which is 

clearly unrealistic.

In order to reduce the computing time required, a simpler constraint is

required, which will still ensure linear responses i.e. responses which do not 

depart too far from the flight condition of the linearised model used.

Various constraints were investigated to assess their suitability. Firstly, an 

input energy constraint was used. This restricts the input to have a particular 

energy, but takes no account of the system response to the input. It has been 

the most widely studied constraint in the past [1] due to its simplicity, and can 

be expressed as follows (see equation (1.23)) :

1 ( 3 . 3 )

o
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An extension of this constraint takes account of the energy of the system 

response, to give a combined input and output energy constraint [1], as follows 

(see equation (1.25)) :

•T
( u ( t )  u ( t )  + yT ( t ) Q y ( t )  ) d t  = 1 ( 3 . 4 )

o

where Q is a weighting matrix.

U nfortunately, despite their relative simplicity, neither of the energy 

constraints described directly address the problem of ensuring low amplitude 

responses. It is proposed that this can be achieved by imposing an explicit

am plitude constraint on the system response, as follows :

ly(t) I < Ly, 0 < t < T (3.5)

where Ly is the amplitude limit.

This constraint guarantees that the reponses are of the required maximum 

am plitude. However, the constraint is essentially discontinuous in nature, and so 

leads to a more difficult optimisation problem than the energy constraints 

considered previously.

Once a constraint has been chosen, the number of inputs that it is necessary 

to design before a satisfactory result is obtained can be greatly reduced by making 

use of the property that D— optimality is invariant under scaling of the system 

input. It is then possible to simply scale an input to give a desired energy or

response amplitude, avoiding the need to design a completely new input each 

time.

Finally, the question of robustness must be considered. From  the results 

obtained using su b - optimal inputs in Chapter 2, it was found that robustness was

an im portant factor in the success of an input, in addition to the linearity

constraints discussed so far. Extra constraints may therefore be needed to ensure 

robustness.
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Several types of robustness are required. Firstly, when inputs are applied 

manually, they must be insensitive to errors in amplitude and timing introduced at 

this stage. For the present work, it is intended that the control input device 

developed at RAE (Bedford) will be used to apply the optimal inputs 

automatically, without pilot intervention. Robustness to errors in applying the 

inputs is therefore less important.

Secondly, the model used to design the inputs will be inaccurate, otherwise 

the system identification would be unneccessary. Inputs must therefore be able to 

tolerate such errors, and still give linear responses and high quality param eter 

estimates.

Considering this second type of robustness, in order to ensure that the 

responses are robust and remain linear under changes in the model param eters, it 

is proposed that the following constraint be included in the input design process :

This limits the sensitivity of the responses to changes in the model 

param eters. However, care must be taken when using this constraint, since in 

some situations dy(t)/d0 can be coupled to y(t), which in turn couples this 

robustness constraint with the output energy and output amplitude 'linearity' 

constraints described above. This can be shown by the following simple example.

Consider the scalar system,

= 1 , 2 ,  . . .  q ( 3 . 6 )

where,

q is the number of parameters to be identified

0j is the i*k param eter

Ryj is the robustness limit required.

x ( t )  = a x ( t )  + b u ( t )  ( a , b  a r e  t h e  s y s t e m  p a r a m e t e r s )

y (t) =  x (t)

If b =  1, then dy(t)/db =  y(t)



In addition to ensuring that the response is robust and remains linear, it is 

also im portant that high quality param eter estimates are obtained. A second 

robustness constraint may therefore be needed. The following constraint is 

suggested as being suitable for this purpose :

i d | D |I D ] "  “ d l T  < D i  =  1 ,  2 ,  . . .  q  ( 3 . 7 )
i  i

where, Rq j is the robustness limit required.

This constraint limits the sensitivity of |D | to changes in the parameters i.e. 

limits the change in the variances of the param eter estimates.

In the past, other methods have been proposed for ensuring that |D | is 

robust. These have usually involved modifying the D— optimality criterion itself 

to include an elem ent of robustness. For example, instead of minimising | D | ,  

the average value of |D | over all param eter values can be minimised [1]. 

Alternatively, the maximum value of | D | over all the param eter values can be 

minimised [2]. However, except for very simple systems, these criteria are too 

complex to be implemented in practice with the level of computing power 

currently available.

3.2 INPUT ENERGY CONSTRAINED OPTIMAL INPUTS

3.2.1 Frequency-Domain Designs

The design of input energy constrained inputs can be greatly simplified by 

assuming that sufficiently long test records are available [3,4,5]. This leads to 

the following frequency— domain problem :

mi n i mi s e  1D| 
ueU

where,

D = M“  1
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r  t  -M = J ( d y ( t ) / d 0) R 1 d y ( t ) / d 0 dt  ( f rom e q u a t i o n  ( 2 . 4 ) )

rOO
-  r*.(« ) R F(a)) S (« ) do) ( f r o m  e q u a t i o n  ( 2 . 1 0 ) )  

-0 0  U U

{ f C0 -

u : J uT ( t )  u ( t ) d t  = 1 j  ( 3 . 8 )
o

-  { U : |  Su u (u )  dw -  1 } ( 3 . 9 )
-0 0

Now consider an input, un-|_ , formed from the combination of inputs u 0 eU 

and un eU according to the following expression,

S (w) = a  S (o ) + ( 1 - a )  S (a)) ( 3 . 1 0 )
U U  U U  U Un+1 n+i o o  n n

The information matrix of the input, un+ , is given by,

f°°
M = a  F * (« ) R-1 F(a>) S (w) da) n+i J u u

- 0 0  0  0

/.oo

+ ( 1 - a )  J F*(w) R "1 F(a)) Su u  ( 0)) da)
n n

= a  M0 + ( 1 - a )  Mn ( 3 . 1 1 )

and the dispersion matrix is given by,

D = M ’ n+i n+1

Now it is well known [5] that for any square matrix, A the following 

relation is true,

d l ° g  l Al _  Tr  ( A -1 4— ) ( 3 - 1 2 )
dx dx
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H ence,

d l o g  |Dn + i 1 

da

d l og | M | dM ,
n+ ' _  _ _T r (  „  — 2± i  )

n+ida
-  -T r  (M (M -  M ) )n+i o n '

Finally, consider the limit as a  0. This gives,

da
( 3 . 1 3 )

d l o g  1Dn + i 1

da
= -Tr  ( M M -  I )n o 7

a= o

= -Tr  ( M 1M ) -  qn o

where,

( 3 . 1 4 )

q =  dimension of information matrices 

=  num ber of parameters in system.

O r, for sufficiently small a,

lo g  |Dn + i l ^  l og  |Dn l -  a  ( Tr  (M~ Mq) -  q ) ( 3 . 1 5 )

If a  (Tr  (Mn~ 1M 0) — q ) >  0, then TDn+ i  I <  lD nl> and un+ 1 is a 

better input than un . This can be used as the basis for an optimisation 

algorithm that successively improves upon an input until the optimum is reached.

To simplify the optimisation algorithm, consider input u 0 to be a pure sine 

wave of frequency oo0. Then,

S (w) =u u0 0

0 , o ) ^ o ) c

1 , 0) —  0)

( 3 . 1 6 )

and,

M n =  F*(u0) R "  1 F(o>0) (3.17)
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Now,

f00
Tr Mn 1 F* ( w) R_1 F(w) S (co) dco = Tr M_1M = q 

loo n u -u n n H

H ence, since un eU,
n n (3.18)

max Tr M~ 1 F*(o>) R_1 F(u)  ^ q ( 3 .1 9 )

i.e. we can choose u 0 such that Tr(M n~  1M 0) -  q * 0, and equality holds if 

and only if un is optimal.

M oreover, since oo0 is a scalar quantity, a simple line search can be used to 

maximise Tr(M n— 1M 0). A line search can also then be used to find a  to

minimise | D n + 1 |. Finally, practical systems have finite bandwidth. Hence, the 

infinite limits of integration used in the expressions above can be replaced by a 

suitable finite value.

This leads to the following simple, efficient algorithm which will converge to 

the global D— optimum input.

1. Start with any input, u 1 eU which has a non— singular information

matrix, M v  Let n = l .

2. Find the input u QeU of frequency oo0 which maximises p (u 0), where

*<u0) =  T r (Mn-  'M 0)

3. Update un+ , to ,

s (o>) -  a S («) + (1 -a )  s (w)u u u u u un+1 n+1 o o  n n

where, ct is chosen to minimise |D n+  1 I such that un_f. 1 eU

4. If | Dn | — |'Dn+ , I < € |D n | for some specified e, then stop,

else n = n + l ;  goto step 2.

The convergence of this algorithm can be further improved by minor changes 

to steps 2 and 3 [6,7].
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However, as was mentioned previously, in order to use this frequency domain 

approach long time histories must be available. Moreover, the system concerned 

must be stable. This latter condition results from the use of F(oo), the Fourier 

transform  of f(t). For stable systems, f(t) is convergent, and the Fourier 

transform  exists. However, f(t) is divergent for unstable systems, and in this case 

has no Fourier transform. Hence, the frequency— domain algorithms cannot be 

used with rotorcraft, which are both unstable and give short test records.

Nevertheless, the frequency— domain algorithms form the basis of the more 

powerful time— domain algorithms to be discussed later.

3.2.2 Tim e—Dom ain Designs

The time— domain algorithms for designing energy constrained inputs act as 

the com plement of those based on the frequency— domain. Whereas the 

frequency— domain algorithms are simple and efficient, those in the time— domain 

are significantly more complex, and generally require more computing time. 

However, the time— domain methods do not suffer from the restrictions of those 

in the frequency— domain. The time— domain algorithms can be used with both 

stable and unstable systems, and with any length of test records.

In the tim e-d o m ain , the energy constrained input design problem is cast as 

follows [8]:

m i n i m i s e  |D|  
ueU

where,

( f rom e q u a t i o n  ( 2 . 4 ) )
o

( 3 . 2 0 )
o

T =  length of test record
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As in the frequency- domain, consider an input un+  1 formed from the 

combination of inputs u o eU anci un £U, now according to the expression,

un+  i (0  ~  01 u 0(t) +  (3 un(t) (3.21)

For un+  1 eU, require,

2 2 T
ot + (3 + 2a(3y = 1 , w here y  = J u Q( t )  <̂ t

0 (3.22)

The inform ation matrix, Mn+ 1 of the input un+  1 is given by,

M =  a 2 M +  0 2 M +  2a<3 Mn +1  o n  o n ( 3 . 2 3 )

where,

T
Mon "  J ( dy o ( t > / d s ) T R’ ’ dy n ( l )/<iS d t  ( 3 . 2 4 )

and,

d l o g  |Dn + i
da C ,  (-  - T r  I 2 “ M -  +  2 ^  Mn  +  2 ( ( 3 + “ i > M o n ]d a ' 

(3.25)

Now,

d/3/da =  -  (cr»- /3y)/(0+ ay) (3.26)

Hence, letting a  -> 0,

d l o g  |Dn+i

da
=  -2

a=o

Hence, if T r (Mn“  ’M 0I1) >  *yq, then, for sufficiently small a , can obtain 

I E*n+ 1 I I Dn I •
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It has been shown by [8] that Tr (Mn— ’M ^ )  ^ -yq if u Q is chosen to 

maximise T r (M n 1M Q) such that y  ^ 0. However, the proof of this is not 

straightforward. It is the opinion of the present author that a simpler and more 

elegant approach is to choose u 0 to directly maximise T r (Mn“  -  *yq.

This leads to the following input design algorithm which will converge to the 

global optimum.

1. Start with any input, u , cU which has a non—singular information

matrix, M v  Let n = l .

2. Find the input u 0 eU which maximises y9( u 0), where

^<u0) =  T r (Mn~  i M on) -  yq

3. Update un+  , to,

un+ 1(0 =  «  u Q(t) +  Q un(t)

where,

a 2 +  (32 +  2 a(3y — 1

a , (3 chosen to minimise |D n+ 1 |

4. If | D n | — | Dn + 1  | < e | Dn | for some specified e, then stop,

else n= n+  1; goto step 2.

Most of the computing time required by this algorithm is absorbed in step 2.

Further details concerning the implementation of this step can be found in

Appendix B.
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Figure 3.2

|D | versus the leng th  o f  test record used f o r  in p u t energy constrained  

op tim a l in p u ts  (s im p le  f i r s t  order system , a = - l ,  b = l) .



Figure 3.3

The time history and auto—specl rum o) the input energy constrained 

optimal input fo r  a 20 second test record (simple f i r s t  order system, a= — l ,  

b = l) .
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Figure 3.4

B ode p lo t o f  the gain and  phase o f  the s im p le  f i r s t  order system  s tu d ied  
( a = - l ,  b = l)
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Figure 3.5

ID I versus the length  o f  test record used f o r  in p u t energy constra ined  

o p tim a l in p u ts  (sim ple  f i r s t  order system , a = + l ,  b = l)
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Figure 3.6

T h e  in p u t energy constrained optim al inpu t f o r  a 20 second test record  

(s im p le  f i r s t  order system , a = + l ,  h = l)
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Figure 3.7

T h e  response produced by the in p u t energy constra ined  o p tim a l in p u t f o r  a 

20 second test record (s im p le  f i r s t  order system , a = + l ,  b— 1)
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3.2.3 A Simulation Study of Input Energy Constrained Optimal Inputs

In order to gain an insight into the characteristics of D— optimal inputs when 

subjected to an input energy constraint, such inputs were designed for the 

following simple first order system.

dx(t)/dt =  a x(t) +  b u(t) (3.28)

y(t) =  x(t), z(t) =  y(t) +  7](t)

where,

i?(t) is a Gaussian process with zero mean and unity variance. 

a ,b  are the relevant parameters of the system

For a stable system (a= —1, b = l ) ,  optimal inputs were designed for a 

variety of lengths of test record from 2 seconds to 20 seconds. The 

corresponding values of |D | are shown in figure 3.2, while the optimal input for

a 20 second test record is shown in figure 3.3.

It can be seen that |D | is large for the short test records, but decreases

rapidly as the record length increases and more information is obtained about the

system. However, once sufficiently long test records are used, the rate of

im provem ent in | D | becomes much smaller, and for a 20 second test record 

| D | is within 3% of that for an infinitely long record.

Turning to the optimal input for a 20 second test record, this is essentially 

a sine wave of frequency approximately 0.6 rads/sec, and compares with the sine 

wave of 0.582 rad/sec which is the optimal input for an infinite test record. A 

Bode plot of the gain and phase of the system is shown in figure 3.4. It can

be seen that at 0.582 rads/sec the gain is still high, giving a good

signal-  to-  noise ratio in the system response. In addition, at this frequency the 

phase has started to roll off, giving information about the position  of the pole of 

the system. Hence, the optimal inputs appear to be intuitively reasonable.
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M oreover, it can be shown that the input for an infinite test record contains

between q/2p and q(q+l ) / 2  frequencies, where q is the number of param eters,

and p is the number of system output variables [3]. Hence, for the current

system the input should have between 1 and 3 frequencies ( q=2 ,  p = l ) .  The

input obtained is therefore relatively efficient, since it contains only one

frequency.

Figures 3.5, 3.6, and 3.7 show the results for an unstable system ( a = l ,

b = l ) .  These exhibit significantly different characteristics from those for the

stable case. Firstly, as the length of the test record is increased, |D | decreases

exponentially, and does not appear to converge to a final value as in the stable

system.

It can also be seen that the optimal input is essentially an impulse, and this 

produces a divergent system response. As time goes to infinity, this response will 

become infinite, and so the signal— to— noise ratio will also be infinite. In this 

situation, the system parameters can be identified exactly, giving a |D | of zero. 

H ence, once again the optimal inputs are intuitively reasonable, and the behaviour 

of |D  | shown in figure 3.5 can be understood.

The results obtained for the unstable system serve to highlight several of the 

shortcomings of the input energy constraint that was used. Firstly, while the 

energy of the input is constrained, this energy may be concentrated at a

particular point, giving a large input amplitude at that point. Secondly, and

m ore importantly perhaps, no constraints are placed on the response of the 

system. Hence, the response may also be of large amplitude.

A simple input energy constraint such as that used is therefore unsuitable for 

ro tore raft applications, where the system is unstable and it is essential that the

response is of limited amplitude in order to prevent it becoming non— linear.
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In previous work on fixed— wing and rotorcraft input design, either an input 

energy constraint has been used, or an input amplitude constraint. No constraints 

were placed on the system response. As shown for the unstable first order 

system above, when there are no constraints on the response, optimal inputs tend 

to produce a large excitation of the system in order to obtain more information, 

and to give an improved signal— to— noise ratio. The disappointing results, 

discussed in Chapter one, that have been obtained in previous flight trials of such 

optimal inputs may therefore be due to these inputs producing responses of such 

large am plitude that non— linearities have been present.

3.3 OPTIMAL INPUTS WITH OUTPUT AND INPUT ENERGY CONSTRAINTS

3.3.1 Frequency—Domain Designs

In rotorcraft applications, if an input produces too great an excitation of the 

system, then the response will be of large amplitude, and hence non— linear. It 

is therefore necessary to ensure that any inputs designed are constrained to 

produce system responses of low amplitude. The simplest such constraint is to 

place a restriction on the energy of the system response. This can be achieved 

by a straightforward extension of the input energy constraint discussed in section

3.2 [3].

Taking the frequency-dom ain case first of all, assuming a stable system and 

sufficiently long test records, the input design problem with combined output and 

input energy constraints is the same terms as that in section 3.2.1, but with the 

set U defined as follows.

U = |  u : J  ( uT( t )  u ( t ) + yT( t )  Q y ( t )  ) dt  = 1 }

° ( 3 . 2 9 )

-  { u : J (I. + C*(a>) Q G(w)) Su u (co) dco = 1 }
—00

( 3 . 3 0 )

Q is a suitable weighting matrix
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Now, define a new input, u' such that,

S u ’ u ' ^  ~  ( 1 + G (co) Q G(o) )) Su u (co) ( 3 . 3 1 )

and express M in terms of u ', giving,

f 00
M =  J F' (o>) R 1 F ' ( w )  S Uo) dm ( 3 . 3 2 )

—00

where,

F'(w) =  F(«) (I +  G*(co) Q G («))“  * (3.33)

The optimisation problem can be re -ex p ressed  in terms of u ' and F ' as,

m i n i m i s e  |D |  
u'  eU'

where,

00

U' -  {  u  : J  Su , u , ( « )  do) -  1 I

This can be solved using the frequency— domain algorithm given in section 

3.2.1. The input, u, can then be obtained again by using the relation,

S (w) =  (I  + C*(o0  Q G(co)) 1 S , (oi) ( 3 . 3 4 )
uu u u

3.3 .2  T im e— Dom ain Designs

As in the case of the simple input energy constraint, the tim e - domain 

algorithms for the combined output and input energy constraint permit the use of 

both stable and unstable systems, and any length of test record.
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The only published time-  domain algorithm involving output and input energy 

constraints is that of Mehra [3]. However, this algorithm produces a randomised 

experim ent design which is not suitable for use with practical systems. A new 

algorithm  will therefore be presented, which is an extension of that described in 

section 3.2.2.

T he tim e— domain input design problem subject to output and input energy 

constraints is the same as that in section 3 r2.2, except that the set U is defined 

as follows.

U = { u : J ( uT ( t )  u ( t )  + yT ( t ) Q y ( t )  ) d t  = 1 ]

0 (3.35)

where Q is a suitable weighting matrix.

Consider an input un+ 1 formed from the combination of inputs u 0 eU and 

un eU, according to the expression,

un+  -j(t) —■ a  u 0(t) +  (3 un(t) (3.36)

For un_,_ , eU, require,

a  2+ |32 + 2 ot(3ys = 1 ( 3 . 3 7 )

T
w h e r e ,  7  = [ ( u^ ( t )  u C O  + y n( 0  Q y _ ( t ) )  ( 3 . 3 8 )* s J o n u **

o

The information matrix, Mn+  1 of the input un+  1 is given by equation 

(3.23), and,

d l ° g  |Dn + , 1

da
-  -2 [ T r ( M- ’Mon) -  7 s q ] ( 3 . 3 9 )

a=o

Hence, it is possible to maximise Tr (Mn 1M on) 7sq to give the 

following input design algorithm which will converge to the global optimum.

1. Start with any input, u , eU which has a non singular information

m atrix, M v  Let n = l .
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2. Find the input u QeU which maximises vs(u0), 

where ^<u0) =  T r (Mn~  i M on) -  7sq

3. Update un+  , to,

un+  i(t) =  01 u 0(t) +  (3 un(t)

where,

a 2 +  (32 +  2 a(3ys =  1

a , (3 chosen to minimise |D n+ 1 |

4. If I D n | — |D n+  1 | < e | Dn | for some specified e, then stop,

else n=  n+  1; goto step 2.

Once again, most of the computing time required by this algorithm is used 

in step 2.

3 .3.3 A Simulation Study of Output and Input Energy Constrained O ptim al Inputs

As in the case of the input energy constraint discussed in section 3.2, 

combined output and input energy constrained D— optimal inputs were designed 

for a simple first order system. The system was as follows :

dx(t)/dt =  a x(t) +  b u(t) (3.40)

y(t) =  x(t), z(t) =  y(t) +  i?(t)

where,
r;(t) is a Gaussian process with zero mean and unity variance. 

a ,b  are the relevant parameters of the system
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Figure 3.8

|D | versus the length  o f  test record used fo r  in p u t and output energy  

constra ined  (Q =  1) op tim al inpu ts (sim ple f i r s t  order system , a = - l ,  b = l)
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Figure 3.9

The time history and auto—spectrum of the input and output energy 

constrained ( Q—I) optimal input fo r  a 20 second test record (simple f i r s t  order 

system, a= —1, b = l)
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Figure 3.10

\D \  versus the length o f  test record used fo r  in p u t and output energy  

co n stra in ed  ( Q = l )  op tim al inpu ts (sim ple f i r s t  order system , a = + l ,  b = l )
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Figure 3.11

The input and output energy constrained ( Q—I) optimal input f o r  a 10 

second test record together with the response produced by this input (simple f i r s t  

order system, a = + l ,  b= 1)

l/l

Time (sec)

x10
0T-

-16

-24

-32

-40

Time ( sec )



For a stable system (a— 1, b—1), optimal inputs were designed with

weighting Q =  1 for a variety of lengths of test record from 2 seconds to 20 

seconds. The corresponding values of |D | are shown in figure 3.8, while the 

optimal input for a 20 second test record is shown in figure 3.9.

It can be seen once again that |D | is large for the short test records, but 

decreases rapidly as the record length increases and more information is obtained 

about the system. However, once sufficiently long test records are used, the rate 

of im provem ent in |D | becomes much smaller, and for a 20 second test record

1D | is 28.63, compared with 29.08 for an infinitely long record i.e. they agree

to within 2% .

The optimal input for a 20 second test record is essentially a sine wave of 

frequency around 0.7 rads/sec, and compares with the sine wave of 0.673 rad/sec 

which is the optimal input for an infinite test record. Figure 3.4 shows a Bode 

plot of the gain and phase of the system. At 0.673 rads/sec the gain is reduced, 

giving a system response with lower energy. However, phase information is still 

present to give information about the postition of the system pole. This appears 

to be an intuitively reasonable input design for the given constraints.

As the weighting, Q, is increased, and more account is taken of the output

energy, the frequency of the optimal input also increases. For example, Q = 10  

gives an input of 0.877 rads/sec. While if Q is decreased, the frequency of the 

optimal input also decreases, e.g. Q =0.1  gives 0.592 rads/sec.

Figures 3.10, and 3.11 show the results for an unstable system ( a = l ,  b = l )  

and weighting Q = l .  Firstly, as the length of the test record is increased, |D | 

decreases exponentially, and does not appear to converge to a final value. 

However, since the energy of the response is limited, it is reasonable to expect 

that |D  | will eventually converge for sufficiently long test records.
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The optimal input is a form of doublet, producing a response containing a 

large peak. Such a peak is clearly sensitive to the system dynamics, while also 

giving a good signal— to— noise ratio, and so should lead to accurate parameter 

estimates. However, this demonstrates that while the energy of the inputs and 

outputs is constrained, this energy may be concentrated at a particular point, 

giving a large input or output amplitude at that point. An output and input 

energy constraint such as that used therefore appears to be unsuitable for 

rotorcraft applications, where the system is unstable and it is essential that the 

response is of limited amplitude in order to prevent it becoming non— linear.

3.4 OUTPUT AMPLITUDE CONSTRAINED OPTIMAL INPUTS

3.4.1 Time— Domain Designs

In order to ensure that the response of the system concerned is prevented 

from being too large, constraints can be placed to restrict the maximum 

am plitude of response permitted. Such output amplitude constraints will guarantee 

responses with the desired magnitudes, unlike the energy constraints considered 

previously. The set U of valid inputs is now defined as follows :

Consider an input un+  , formed from inputs u 0eU and un eU, according to

U ( 3 . 4 1 )

where,

y(t) is the n o ise -free  system response 

T is the length of test record used.

the following expression

un+ ,(t) = a  u0(t) + (3 un(t) (3.42)

Then un4- 1 eU is satisfied by,

(3.43)

where K 1 is chosen such that |x n+ / t ) !  < Ly, 0 < t < T
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Hence,

d0/da =  — 1

This gives,

(3.44)

d i ° g i Dn + 1 i
do: -  - 2

a = o
T r (M_1M ) -  qn on ^ (3 .4 5 )

Maximising T r (Mn 1M on) will ensure that for un sub—optimal, and a  

sufficiently small, |D n + , | < | Dn | . This gives the following input design
algorithm.

1. Start with any input, u 1 eU which has a non—singular information

m atrix, Let n = l .

2. Find the input u 0 eU which maximises <^u0),

where p (u 0) =  Tr (Mn“  ’M J

3. Update un+  , to,

un+ i (0  =  ot u 0(t) +  (3 un(t)

where,

a  -+- (3 =  K, K chosen such that un+  , eU 

a , (3 chosen to minimise |D n+  1 |

4. If | Dn | — |D n+  , | < £ | Dn | for some specified e, then stop, 

else n=  n+ 1; goto step 2.

While this algorithm appears as straightforward as the algorithms described 

previously for the energy constraints, in practice the amplitude constraint is more 

complex to implement in step 2 (see Appendix B). Moreover, since amplitude 

constraints are essentially discontinuous in nature, the resulting optimisation 

problem can be prone to ill— conditioning.
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Figure 3.12

The output amplitude constrained (Ly=0.2)  optimal inputs plus responses 

f o r  test records o f  2, 10 and 20 seconds (simple f i r s t  order system, a= ~ l ,  

b = l)
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Figure 3.13

T h e  sensitiv it ies, d y ( t ) /  da and d y ( t ) /  db, f o r  the ou tput am plitude

constra ined  (L y = 0 .2 )  optim al input f o r  a 2 second test record (s im ple  f i r s t  
order sys tem , a = —l ,  b= 1)
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Figure 3.14

|D |  versus the length o f  test record f o r  ou tput a m p li tude  constrained  

(L y = 0 .2 )  op tim a l  in p u ts  (sim ple  f i r s t  order sys tem , a = - l ,  b = l )
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Figure 3.15

T h e  ou tp u t  am plitude  constrained (L y = 0 .2 )  op tim al inpu ts  plus responses  

f o r  test records o f  2 and 5 seconds (simple f i r s t  order system , a = + l ,  b = l )
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Figure 3.16

A  ban g —bang response o f  length  T , w ith  one transition at t im e  T 1 .
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Figure 3.17

|D | versus T  y, f o r  a bang—bang response o f  length  T ,  w ith  one transition  

at t im e  T : (s im ple  f i r s t  order system, a = —l ,  b = l ) .  {T =  2 sec)
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3.4.2 A  Sim ulation Study of O utput Amplitude Constrained O ptim al Inputs

In order to evaluate the suitability of output amplitude constraints for 

rotorcraft applications, D— optimal inputs were designed for the same simple scalar 

system that was used to study the energy constraints previously (see equation 

(3.28)). For both stable (a= — 1, b= 1) and unstable (a=  1, b = l )  systems, inputs 

were designed with responses constrained to be less than 0.2 units in amplitude. 

Figure 3.12 shows the optimal inputs and corresponding responses for test records 

of 2, 10, and 20 seconds for the stable system, with the sensitivities dx(t)/da and 

dx(t)/db for the 2 second input given in figure 3.13. The variation of the

optimal | D | with the test record length is given in figure 3.14. Results for the

unstable system are shown in figure 3.15.

Firstly, the responses are bang— bang in nature for the system used. Recall

that the system was as follows ( a = ± l ,  b = l ) ,

Consider an input such that the response, y(t), is a step of amplitude, h. 

Then,

Now apply this to the case of an input which gives a bang bang response 

of am plitude h, length T , with one transition at time T 1 (see figure 3.16). .For 

the stable system ( a = - l ,  b = l )  the information matrix, M, is as follows.

x ( t )  = a x ( t ) + bu ( t ) , y ( t )  = x ( t ) ,  z ( t )  = y ( t )  + r / ( t )

(3.46)

Hence,

( 3 . 4 7 )

( 3 . 4 8 )

g  ( t )  -  \  ( e a t - l ) ,  §  ( t )  -  y ( t ) ( 3 . 4 9 )

M M
1 2 ( 3 . 5 0 )M M M

2 1 2 2
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where,

M
g  < • > «

h 2(1 -  e - t  ) 2 dt

rT

[ e h) -  h] d t  ( 3 . 51 )

(1 -  e " Ti )  h

M = M

( 3 . 52)

g < o g < o  ^

h 2( l  -  e - t  ) dt

- h  [ e " ( t  T l ) ( h i + h)  -  h] dt

rT

M 5E ( t )  dt  = h 2 T

( 3 . 53)

( 3 . 54)

and,

|D|  =

d | D |

| M | M M  - M M1 L.22 12 2 1

dT
IM |

Am2" “  ~ ’dM
 1 1 M -  2  — 1 2
dT 22 dT

1 1

( 3 . 55)

( 3 . 56)

= 0 f o r  maxima/minima

For h =  0.2 units, T =  2 seconds, a line search algorithm was used to

solve this for T r  A value of 1.65 seconds was obtained for T 1? which is in

agreement with the results given in figure 3.13. A plot of |D | versus T 1 is

shown in figure 3.17, and clearly shows the minima at 1.65 seconds.
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Using these results, insight may be gained into the factors affecting output 

am plitude constrained D—optimal inputs. It can be seen from equation (3.55) 

that |M | is maximised, and hence |D |  minimised, by having M 1 1 and M 22 

large, and M 12 small. and M 22 measure the energy of dy(t)/da and

dy(t)/db respectively, while M 12 measures the correlation between dy(t)/da and 

dy(t)/db. A good input will therefore attem pt to maximise the energy of the

param eter sensitivities, dy(t)/da and dy(t)/db, while minimising their correlation.

In the example above, x(t) =  dy(t)/db, and so a bang— bang response 

maximises the energy of dy(t)/db. The time of the transition, T v  is then chosen 

to maximise the energy of dy(t)/da while minimising the correlation with dy(t)/db 

(see figure 3.13 for dy(t)/da and dy(t)/db when T ^ l . 6 5  seconds).

Finally, figure 3.14 shows that |D | does not appear to converge to a final

value as the test record length is increased. This may be attributed to the

energy of the responses increasing as the test record is made longer, since only 

the am plitude is constrained.

It is proposed that the output amplitude constraint produces inputs suitable

for ro torcraft applications, since it guarantees responses of limited amplitude. If 

a suitable amplitude is chosen, then the response will be linear, as required.

3.5 RESPONSE ROBUST OPTIMAL INPUTS

3.5.1 T im e Dom ain Designs

For a given model, the output amplitude constraint discussed in section 3.4 

can be used to ensure a linear response. However, since the model of interest is 

known to be inaccurate, it is important that the responses are robust, and remain 

linear when used with the real system. The following constraint is suggested for 

this purpose.

| | 2  ( t ) | < Ry l -  1 . 2 ..............q 0 . 5 7 )
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where,

q is the num ber of parameters to be identified

&i is the i**1 param eter

Ryj is the robustness limit required.

This constraint restricts the sensitivity of the response to changes in the 

m odel param eters. Using this constraint to give robustness, and the output 

am plitude constraint for linearity, leads to an  input design problem as follows,

with i =  1, 2, ...  q; 0 < t < T

Since the robustness constraint can be expressed as an amplitude constraint, 

the input design algorithm given in section 3.4 for the output amplitude constraint 

can also be used for this robust input design problem. The only change in the 

algorithm  is to now use the set U given in equation (3.59). This change is 

relatively straightforward to implement with the author's software (see Appendix 

B). However, the resulting optimisation problem is significantly more difficult to 

solve, due to the large number of non— linear constraints now required.

3 .5 .2  A  Sim ulation Study of Response Robust Optim al Inputs

The simple scalar system (equation (3.28)) used to study previous constraints 

was also used to investigate the response robustness constraint given in (3.57). A 

response am plitude constraint of 0.2 units was used throughout with test records 

of 2 seconds duration. Figures 3.18 and 3.19 show the results obtained.

m in  |D |

u e U

( 3 . 5 8 )

where,

( 3 . 5 9 )
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Figure 3.18

T h e  r e s p o n s e ,  y ( i ) ,  a n d  s e n s i t i v i t i e s ,  < i y t l ) / d a  a n d  d y { l ) / d b ,  f o r  output

ampl i tude  constrained ( L y = 0 . 2 )  r e s p o n s e  r obus t  < R y a = 0 . 2 , 0.1,  0.05; R yb= 0 . 2 )

optimal  inputs  ( s imple  f i r s t  o r d e r  s y s t e m .  a =  — I , b = l )
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Figure 3.19

The response, y( t) ,  and sensit ivi t ies,  d y ( t ) i  da and d y ( t ) i d b ,  f o r  output

amp l i tud e  constrained ( L y- 0 . 2 )  response robust ( R ya= 0 . 2 ;  R yb= 0 . 2 )  opt imal

inputs  (s imp le  f i r s t  order system,  a = + l ,  b =  1)
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Figure 3.20

77ie response,  y ( t ) ,  a n d  s e n s i t i v i t i e s . d y t t n d a  a n d  d v t U l d b ,  f o r  the output

ampl i tude  cons trained ( L y = 0 . 2 j  r e s p o n s e  r o bus t  < R v a= 0 . 0 5 ;  R y b = 0 . 2 ) opt imal

input  ( s imple  f i r s t  o r d e r  s y s t e m ,  a =  — I , b =  I )
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Recall that dy(t)/db =  y(t) in the simple scalar system. dy(t)/db is therefore 

constrained by the output am plitude constraint, and so attention was concentrated 

on dy(t)/da. From  the results, it can be seen that as Rya is reduced, the

sensitivity dy(t)/da changes to rem ain within the constraint. T he response 

robustness constraint also interacts with the output am plitude constraint to restrict 

3 2x(t)/d tda. To see this, consider the output—error model, as follows.

dx
d t ( t )  -  A x ( t ) + B u ( t ) , y ( t )  = C x ( t )  ( 3 . 60 )

F or a param eter, 6 which is in the m atrix A,

2
d x / - \ dA dx , „ .

d F - a ? A( t )  "  + A d ? 4 ( t )A A A
( 3 . 61 )

Since |x( t ) |  and |d x ( t) /d 0 ^ | are constrained, | a 2x ( t ) / a t a 0 ^ l  is also 

constrained. In particular, for the simple scalar system used, this gives,

and,

| x ( t ) |  = I y ( t ) | < L

dx , . 
da  < » £<■>

( 3 . 62 )

( 3 . 63 )

a 2x
dt  di ( t ) ^ 2y

at di ( t )

< | x ( t ) |  +

X ( t )  +  a  ^  ( t )

dx /* \  
a d i  ( t )

( 3 . 64 )

( 3 . 65 )

i.e.

a 2x I( t )  < L + I a |  R ( 3 . 66 )
| a t  a ^ Av I y y a

T he effect of this constraint can be seen in the results obtained using this 

system. In particular, the case a=  — 1, b = l ,  L y= 0 .2 , Rya= 0 .0 5 , Roi*^00 shbwn 

in figure 3.18 can be seen in m ore detail in figure 3.20.
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Now consider a param eter, 6-q , which is in the m atrix B.

2
^ x / 4. \ * d x / N  dB . .

d T d 9 R( t )  -  A d 9 c ( t )  + d « DU ( t )LJ LJ JD
( 3 . 6 7 )

However, unlike the case of a a param eter in A, this equation does not 

place an  am plitude constraint on d 2x(t)/d td0B , since the input, u(t), is not 

am plitude constrained. Nevertheless, dx(t)/d0g  is coupled to x(t), and hence the 

response robustness and output am plitude constraints affect each o ther, as follows.

Rewrite (3.60) and (3.67) in state space form  to give,

dx . . 
dF ( t ) A 0 x ( t ) B

d 2X . .
at  a 0B ^

0 A dx , x + dB

d(,B

u ( t )

T he controllability matrix [9] for this system is,

(3.68)

B AB
dB5 5  a;

dl,B d *B

T he columns of this matrix are clearly linearly dependant i.e . it is not full 

rank. H ence, x(t) and dx(t)/d0g  cannot be controlled independantly. This is 

easily seen in the case of the simple scalar system.

£ < * >
a 0 x ( t ) b

a? ab ( t )  |
0 a

+
1

u ( t )

(3.69)

If b=  1, then x(t) =  dx(t)/db, and m ore generally, x(t) =  ~b dx(t)/db.
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Such coupling may also be present between x(t) and d x (t)/d 0 ^ . Combining

(3.60) and (3.61) gives,

dx . . 
dt  ( t ) A 0 x ( t ) B

3 2x / *. \
at  30 A

—  A dx . . 
( t )A

+
0

u ( t )

T he controllability matrix is,

(3.70)

B AB

If the m atrix A has dimension greater than one, then d A /d 0 ^  contain 

rows and columns of zeroes. In this case, the controllability m atrix will once 

again have less than full rank.

However, for the simple scalar system, this controllability m atrix is,

b ab
0 b

This has determ inant equal to b 2, which is non—zero for b?4). Hence, x(t) 

and dx(t)/da are controllable for b;4).

W hen choosing values for Ly and Ryj it is im portant that the couplings 

between the constraints be taken into account. Otherwise, the constraints will be 

in conflict, giving a very ill— conditioned optimisation problem .

Finally, considering the response robustness conflict itself, it can be seen that 

this produces only 's h o r t- ra n g e ' robustness. For the model used to design-the 

input, dy(t)/d0 may be small. However, there is no guarantee that when 

perturbed from this model dy(t)/d0 will remain small. Hence, this response 

robustness constraint is relatively limited.
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U nfortunately, wider— range constraints, which continue to hold when 

perturbed to a certain extent from the designed model, are difficult to implement. 

For exam ple, constraining the higher derivatives of dy(t)/d0, as well as dy(t)/d0 

itself, will produce a wider— range constraint. However, differentiation is 

num erically unstable, leading to accuracy problem s. M oreover, generating a large 

num ber of derivatives is extrem ely expensive in com puting time. It is felt that 

the simple constraint used provides a practical com prom ise between no robustness 

and these m ore complex robustness constraints.

3 .6  PA RA M ETER ROBUST OPTIM AL INPUTS

3.6.1 T im e D om ain Designs

In addition to obtaining robust responses, it is also im portant that the 

param eter estimates continue to be of high quality when an input is used with 

the real system. To give robust param eter estim ates, it is possible to limit the 

sensitivity of |D |  to changes in the param eters, using the following constraint.

1 d | D |  < i -  1,  2,  . . .  q ( 3 . 7 1 )|D|  d e .  N D.l l

T he set of allowable inputs is then given by,

y ’ |D | d e . D.l
( 3 . 7 2 )

with i =  1, 2, ... q; 0 < t < T

Unfortunately, the param eter robustness constraint in (3.71) is very 

n o n - l in e a r .  W hen combining two inputs un eU and u QeU to give a new input 

un +  , =  cm0 +  0un , no simple relationship between a  and (3 has been found to 

ensure that un+  , fU . It has therefore not been possible to use the special form 

of input design algorithm developed for the previous constraints. Instead, a 

g en e ra l-  purpose optimisation algorithm was used, but at the cost of poorer 

perform ance (see Appendix B).
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Figure 3.21

The response, yi t ) ,  and <ensi ti\n t i e s , dv( t )  da ana J. y( t ) / db,  f o r  output  

ampl i tud e  constrained ( L ^ U . 2 )  parameter robust (R Q a=  0 .5 =  R[ )b  and  

R D a = 0 -2 = R Db> opt imal inputs ( s imple f i r s t  order system,  a=  — I , b = l )
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3.6.2 A Simulation Study of Param eter Robust Optimal Inputs

The results of a study of the parameter robustness constraint in equation 

(3.71) are shown in figure 3.21. The simple scalar system described previously 

was used, with a response amplitude constraint of 0.2 units, and test records of 2 

seconds duration. It can be seen that while y(t) and dy(t)/db are bang— bang in 

nature, dy(t)/da is not.

The parameter robustness constraint may be written as follows,

6 d | D |  -  6 d |M |  ff Tr fM" 1 dM > n  -"O
TdT ~ W  "  TmT ~ S T  ~  ( d e  )  (3 -73 )

For the scalar system used, the information matrix, M, is a 2x2 matrix, i.e.

M = 1 i

1 2

M1 2

2 2

( 3 . 74 )

*  -
6 d | M |

| M | d0

= - 6  Tr
M M  -  M1 1 2  2 12

M M  -  M1 1 2  2 12

M
dM

2 2 d f l

M M11 12
M M

1 2  2 2

1 1 dM

’i 2 dd

dMi i dM1 2 *

dd dd
dM1 2 dM2 2
dd dd

2 + M1 1

dM2 2
dd

and,

(3.75)

M1 1

rT

( 3 . 76 )
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T

M
1 2

( 3 . 7 7 )

o

T

M
2 2 ( 3 . 7 8 )

o

H ence, the param eter robustness constraint is essentially constraining the 

energy of the sensitivities, and the correlation between them .

3.7 COMBINED PARAMETER ROBUST AND RESPONSE ROBUST OPTIMAL 

INPUTS

To gain the advantages of both param eter robustness and response 

robustness, both of these constraints may be applied simultaneously when designing 

an  input. To ensure linearity, the output amplitude constraint is also needed. 

This gives the following set, U , of valid inputs.

with i =  1, 2, ... q; 0 < t < T

U nfortunately, implementing this set of constraints was found to require 

excessive am ounts of computing time (typically around a week of CPU time on a 

D EC VAX 11/750). The simultaneous use of response robustness and param eter 

robustness impractical at present, until significantly m ore efficient software is 

developed, or m ore computing power is available. It is therefore necessary to 

decide which of these two constraints should be used. However, this choice 

depends on the application being considered.

U = { u : | y ( t ) |  < L ;

( 3 . 7 9 )
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3.8 CONCLUSIONS

The results obtained have emphasised the im portance of using appropriate 

constraints during the input design process. If care is not taken, then inputs may 

be produced which are unsuitable for practical use. It is suggested that this may 

account for some of the poor results reported in the literature when optimal 

inputs have been used in practice for aerospace applications (see section 1.5.2).

In order to ensure linear responses, the output am plitude constraint may be 

used. This constraint guarantees response of limited am plitude. If a small 

enough am plitude is chosen, then the responses will be linear.

Robustness is also an im portant factor in obtaining a successful input. While 

both response robustness and param eter robustness constraints were studied, it was 

found that it is im practical at present to use both constraints simultaneously. It 

is therefore necessary to decide which of these constraints should be used. This 

choice depends on the application under consideration. However, in the 

helicopter case, if the response becomes non— linear, then it is not suitable for 

identification purposes. It is therefore essential that linear responses are obtained. 

In the present work, it is thus suggested that response robustness is  the more 

im portant.

To conclude, the following set, U , of perm issible inputs is advocated for 

rotorcraft applications :

( 3 . 8 0 )

with i =  1, 2, ... q; 0 < t < T
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4.1 INTRODUCTION

The results obtained in C hapter 3, concerning suitable constraints for 

identification inputs, were applied to the design of optim al rotorcraft inputs. 

A ttention was restricted to identifying the pitching m om ent equation param eters: 

Mu , Mw, Mq, and M ^ 1S. In addition, the 5 ^  order model derived from 

output—erro r identification in section 2.4.3 was used as the basis for the input 

design process. Finally, the covariance m atrix, R, of the noise on the outputs 

was estim ated from  flight test data to be as follows :

0 . 0 0 2 5

R =

0
0 . 0 0 8 5

0.00001

0 . 0 0 0 2 5

0
0 . 0 0 0 0 3 6

Two inputs were studied one subject only to an output amplitude

constraint, and the other subject to both output am plitude and response robustness 

constraints. The am plitude constraints on the outputs were as follows :

longitudinal velocity, u 

Ve.r'titoA velocity, w 

pitch rate, q 

pitch angle, 61 

roll rate, p

5 m/s (15 ft/sec) 

3.3 m/s (10 ft/sec) 

0.04 rads/sec 

0.1 rads 

0.03 rads/sec

The amplitudes of the outputs, with the exception of roll rate, p, were 

chosen on the basis of previous flight data, known from its coherence functions 

to be linear. Roll rate, however, was kept to a lower amplitude than that 

required simply for linearity. This was to allow for errors in the modelling of 

this state, and was used to reinforce the response robustness constraints since the 

5 ^  order model used contains only a limited representation of the rotorcraft 

lateral dynamics. The accuracy of the modelling of roll rate is discussed further 

in section 2.4.3.
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It was not possible to use the coherence to check the linearity of the 

responses obtained using these contraints, since only a linear identified model was 

available. Nevertheless, experience suggests that the am plitudes used are 

reasonable.

For response robustness, the relative sensitivities, 10/x d x / d 0 | ,  were

constrained to be around 1%. Taking the param eters, 0, from  the model used, 

and the output amplitude constraints as the values for | x | , the absolute 

sensitivities, | dx/d0 |  =  ^ | x | / | 0 | |  | 0/x d x / d 0 | ,  are given in table 4.1.

Sens i  t i v i  t y  

o f  o u t p u t s  

t o  changes 

in  th e  model 

p a ra m e te rs

w

M

w

M

1 s

97 65 0 . 26  0 . 6 5  0 . 194

441 294 1 . 17  2 . 94  0 . 882

0 . 2 2  0 . 1 4  0 . 6 E- 3  0 .1 4 E -2  0 . 44E- 3

0 .1 1 E -1  0 . 73E- 2  0 . 2 E - 4  0 . 7 E - 4  0 . 2E-4

Table 4.1 — Response robustness constraints  on \ d x / d d \ ,  used  

w ith  the robust L y n x  op tim al inpu t .

Finally, a 20 second test record length was used. This corresponded with 

the typical lengths of records in flight trials using m u lti-s te p  inputs, although it 

is shorter than that obtained with the double—doublet input in Chapter. 2. 

M oreover, it produced a more manageable input design problem  than if a longer 

record length had been used.
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Figure 4.1

The time history and auto—spectrum o f  the output amplitude constrained  

optimal input fo r  the L yn x  helicopter at 80 knots level f l ig h t .  Details o f  the 

model and the constraints used are given in the text.
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Figure 4.2

The responses produced by the output amplitude constrained optimal input 

fo r  the Lynx helicopter at 80 knots level fligh t. Details o f  the model and the 

constraints used are given in the text.
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Figure 4.3

The auto—spectra o f  the responses produced by the output amplitude  

constrained optimal input f o r  the L yn x  helicopter at 80 knots level f l ig h t .  

Details o f  the model and the constraints used are given in  the text.
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Figure 4.4 (a)

The sensitiv it ies  to the parameters o f  the p itch ing  moment equation o f  the

responses to the output am plitude constrained op tim al input f o r  the Lynx

helicopter at 80 knots level f l ig h t .
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Figure 4.4 (b)

The sensitiv ities  to the param eters o f  the p i tch ing  moment equation o f  the

responses to the output am plitude  constra ined  op tim al input f o r  the Lynx

helicopter at 80 knots level f l ig h t .
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Figure 4.4 (c)

The sen sitiv it ies  to the param eters  o f  the p i tch ing  moment equation o f  the

responses to the output am plitude  constrained optim al input f o r  the L yn x

helicopter at 80 knots level f l ig h t .
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Figure 4.5 (a)

The sensitiv it ies  to the param eters  o f  the p i tch ing  moment equation o f  the

responses to the double—doublet input f o r  the L yn x  helicopter at 80 knots level

f l ig h t .
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Figure 4.5 (b)

The sensitiv it ies  to the param eters o f  the p i tch in g  m om ent equation o f  the

responses to the d o u b le -d o u b le t  input f o r  the L ynx helicopter at 80 knots level

f l ig h t .
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Figure 4.5 (c)

The sensit iv i t ies  to the parameters o f  the p i tch in g  moment equation o f  the

responses to the d o u b le -d o u b le t  input f o r  the L yn x  helicopter at 80 knots level

f l ig h t .
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While this is acceptable for the present work, deciding on a suitable length 

of test record is non— trivial in general. Perhaps the simplest approach is to 

increase the length until param eter estimates are obtained which have an 

acceptable level of variance. As shown in C hapter 3, for unstable system such as 

a helicopter, |D |  does not converge to a final value. H ence, it is always 

possible to obtain a given variance if sufficiently long test records are used.

However, the response of the helicopter to external disturbances, such as 

gusts, can build up to significant level over a long test record. Related to this, 

the longer the test record, the m ore difficult it also is to obtain an input with 

acceptable response robustness. A degree of engineering judgem ent is therefore 

required when selecting what is a suitable length of test record to use.

4.2 OUTPUT AMPLITUDE CONSTRAINED OPTIMAL INPUT

The D — optim al, output am plitude constrained, Lynx input is shown in figure 

4.1. Figures 4.2 and 4.3 give the responses produced by this input, and figure 

4.4 shows the sensitivity of these responses to the model param eters.

It can be seen that the responses are am plitude constrained, as required, and 

exhibit a tendency for bang— bang behaviour. However, due to the need to 

constrain several outputs, and the couplings between these outputs, the responses 

are not truly bang— bang. This is in contrast to the sim pler cases studied in 

C hapter 3.

An example of this coupling can be seen between the pitch angle, 6 \  and 

the pitch rate , q, as follows.

q(t) =  d 0 '(t)/d t

o
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A 20 second test record is used, and q is constrained to be less than 0.04 

rad/sec, while 8' is less than 0.1 rads. If q is at its maxim um  am plitude, then 

it is possible to calculate how long it will take before O' reaches its maximum, if 

it starts at zero. This is done as follows,

But, 0 '( to) =  0.1, since 8' is at its maximum at tim e, t Q.

i.e . t Q =  0.1/0.04 =  2.5 seconds

H ence, the pitch rate , q, cannot remain at its maximum for longer than 2.5 

seconds if 8' starts at zero, or 5 seconds if 8' starts at its minimum am plitude, 

— 0.1 rads. It is therefore not possible for both q and 6' to be bang—bang.

Considering the auto—spectra of the responses (see figure 4 .3), it can be

seen that the pitch and roll rates contain frequency com ponents up to around 5

rads/sec. In contrast, the longitudinal and vertical velocities have little power

above 2 rads/sec. This difference in the bandwidth of the responses is

reasonable, since the rates involve faster dynamics than the velocities, e.g. the 

fast pitch mode has an eigenvalue of —3.25, whereas the phugoid eigenvalues are

0.0447 ± j 0.233.

Now, in C hapter 2 it was concluded that, for the Lynx, the ro tor dynamics 

were mainly present at frequencies above about 7 rads/sec. H ence, since the 

responses to the optimal input contain little power above this frequency, it can 

also be concluded that the optimal input will not excite the ro tor dynamics

significantly. Once again, this is reasonable, since the param eters which the 

optim al input has been designed to identify are not concerned with the rotor

dynamics.

q(t) =  0.04, 8 \ 0) =  0

o
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For this optimal input, the determ inant of the dispersion m atrix, |D | ,  was 

calculated to be 0.170. The corresponding values of |D |  for o ther inputs are 

shown in table 4.2.

The 1221 and the doublet both give determ inants around 150. In contrast, 

the double—doublet gives a significantly lower value, 3.95. This is in agreem ent 

with the results given in C hapter 2, where the double— doublet was found to be 

far superior to the doublet and 1221 inputs.

Input |D|

Optimal  Lynx

o u t p u t  c o n s t r a i n e d 0 .1 7 0

inpu t

Doub1e -D o u b le t 3 .95

1221 159 .7

Doublet 136 .2

Table 4.2 — \D \ f o r  various in p u ts , ca lcu la ted  u s in g  5 1̂  order

id e n t i f ie d  L y n x  m odel

It can be seen that the optimal input value of 0.170 for |D |  is an order of 

magnitude better than that of the double— doublet. The sensitivities of the 

double— doublet responses to changes in the model param eters are shown in figure 

4.5. These are of com parable magnitude to the sensitivities for the output 

am plitude constrained optimal input. H ence, the im provem ent in |D | using the 

optimal input has been achieved without increasing the am plitude of the 

responses, or reducing their robustness. This is an encouraging result, and 

dem onstrates the potential for obtaining improved param eter estimates by using 

m ore carefully designed inputs.
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4.3 OUTPUT AMPLITUDE CONSTRAINED AND RESPONSE ROBUST 

OPTIMAL INPUT

Unfortunately, attem pts to design an optimal Lynx input with both output 

am plitude constraints and response robustness were unsuccessful. T he input design 

algorithm  used is described in C hapter 3 and Appendix B. A central com ponent 

of this algorithm is the NAG general— purpose optimisation routine E04UCF. 

This routine perform s non— linear optimisation by repeatedly linearising the 

required non— linear functions, and solving the resulting linear optimisation 

problem s.

However, it was found that the response robustness constraints for the Lynx 

helicopter case studied are extrem ely non— linear, and have derivatives of large 

m agnitude. Severe ill— conditioning therefore results when it is attem pted to treat 

the non— linear optimisation as a series of linear optimisations. This 

ill— conditioning was found to lead to the constraints being grossly violated, and 

repeatedly gave rise to numeric overflow.

It is therefore the opinion of the author that an optim isation routine is 

required which deals directly with the non— linear nature of the problem , rather 

than  linearising it. For example, in [1], a developm ent of the Simplex m ethod is 

given which will optimise a non— linear function subject to non— linear constraints, 

w ithout the use of linearisation. The developm ent of stable and efficient 

num erical techniques is held to be of great importance for the future, if optimal 

inputs with realistic constraints are to gain widespread use.
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CONCLUSIONS

T he test input applied to a helicopter, or any other system, for the purpose 

of system identification can have a substantial effect on the param eter estimates 

obtained. It is therefore im portant that an appropriate input is chosen, and in 

particular inputs must take account of the requirem ents, and restrictions, of the 

application.

In the rotorcraft case studied, the principal aim of the identification has 

been the developm ent and validation of flight m echanics models. Due to 

practical restrictions, it is currently only feasible to use a linearised model. It is 

therefore essential that the input produces a linear response. M oreover, despite 

the unstable nature of a helicopter, if good estim ates of the system param eters 

are to be obtained this response must be of reasonable duration, and must 

contain enough information about the system. W ith these considerations, several 

approaches to the design of system identification test inputs have been studied and 

evaluated.

Firstly, a straightforward m ethod has been developed for the design of 

m ulti— step inputs. This method is based in the frequency— dom ain, and involves 

tailoring the auto— spectra of the inputs to give long, linear test records, and 

param eter estimates with reasonably low variances. In flight trials using the 

Lynx helicopter at RAE (Bedford), the double—doublet input, designed with this 

m ethod, has been found to be a significant im provem ent over m ore traditional 

inputs.

Using the data from the flight trials of the double— doublet, both 

equation— erro r and output— error identification has been carried out. Several 

discrepancies were found between the theoretical and identified models. In 

particular, the unstable phugoid mode of the Lynx appeared to be poorly 

reproduced by the theoretical model. More work is required to clarify this. 

Num erical difficulties were encountered during the o u tp u t-  error identification. 

These were attributed to ill-cond ition ing  resulting from  the use of an unstable 

system. Little work appears to have been published on the particular difficulties 

involved in applying identification algorithms to unstable systems, and it is an 

area that is in need of further investigation.
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T he experience gained from  these flight trials served to highlight the 

im portance of robustness to the success of an input. Several types of robustness 

have been noted. Firstly, when inputs are applied manually, they must be 

insensitive to errors in amplitude and timing introduced at this stage. Secondly, 

the m odel used to design the inputs is likely to be inaccurate, otherwise the

system identification would be unneccessary. Inputs must be able to tolerate these 

inaccuracies, and still give linear responses and param eter estimates of high 

quality.

In addition to designing multi— step inputs, the design of optimal inputs has 

also been investigated. In particular, constraints have been developed which are 

suitable for ensuring that the optimal inputs produce linear responses, and are

robust. Conventional energy constraints were found to be of little use for these 

purposes. It is suggested that previous unsatisfactory results obtained by other

authors using optimal inputs in aerospace applications may have been a 

consequence of using these inappropriate energy constraints.

Algorithms have been developed for the design of optimal inputs with a 

variety of constraints, and simulation studies have been made to gain an

understanding of the effect of these constraints on the form of the inputs. These 

simulation studies were found to give a valuable insight into the characteristics of 

optim al test inputs.

W ith the constraints obtained from this work, an optimal input has been 

designed for use with the Lynx helicopter. This input is as robust as the 

double— doublet multi— step input designed for the Lynx, and yet is predicted to 

give significantly improved param eter estimates. U nfortunately, due to the Lynx 

at RAE (Bedford) being unavailable at the time of writing, no flight trials have 

been perform ed using this input. A ttempts to design an optimal Lynx input with 

still greater robustness failed due to num erical problems in the software used. 

These problem s are n o n -tr iv ia l, and further work is required if they are to be 

overcom e.
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Com paring the multi— step inputs and the optim al inputs, whereas the 

m ulti— step inputs are restricted to a sequence of steps, the optimal inputs can 

have a com pletely general form. M oreover, while the m ulti— steps only give 

reasonably low param eter variances, the optimal inputs are designed to strictly 

minimise the variances. Finally, the multi— steps are straightforw ard to design. 

In contrast, the design of the optimal inputs involves a m ore complex process, 

which perhaps leads to inputs that are m ore difficult to understand intuitively.

System identification is, in general, an iterative process. Initially, only a 

poor description of the system may be available. H ence, only crude inputs can 

be designed, giving param eter estimates with relatively large variances. These can 

be used, however, to give an improved model of the system, which can then be 

used to design improved inputs. These in tu rn  give m ore accurate param eter 

estim ates, and a further improvement in the model, and so on. The multi— step 

inputs and the optimal inputs developed in this work com plem ent each other, and 

it is proposed that both can be used to advantage within this iterative 

fram ework.

In the initial identification, it is suggested that the m ulti— steps are a more 

appropriate type of input. Multi— step inputs are largely designed manually. 

T here is therefore scope for the inclusion of inform ation about the system from a 

wide variety of sources, in both qualitative and quantitative form. Since only a 

limited num erical model of the system may be available in the early stages of the 

identification, the ability to incorporate any extra inform ation is im portant. 

M oreover, when the model is very inaccurate, then inputs need to have a large 

degree of robustness. However, as noted in C hapter 3, it is difficult in practice 

to produce optimal inputs with wide— range robustness. In such situations, 

m ulti— step inputs are therefore often superior at present to optimal inputs. It 

is proposed that optimal inputs are more suitable later in the identification 

process, when a fuller, and more accurate, model has typically been obtained.

Considering the future, it is im portant that the optimal inputs undergo flight 

trials, in order to confirm the simulation results presented. W ork is also required 

to develop m ore stable and efficient numerical software for the design of optimal 

inputs. T he present author's software is largely a research tool, and so has 

sacrificed efficiency for flexibility.
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In the longer term , it is suggested that the greatest scope for further 

im provem ents in identification test inputs lies in the use of multi— axis inputs. 

For exam ple, a conventional rotorcraft has four pilot controls, yet at present an 

input is applied to only one of these at a time. By using all four 

simultaneously, m ore inform ation can be gained about the system in a shorter 

tim e. This must be balanced against the extra com plexity of designing such 

inputs, and hence the greater time required for the input design stage of the 

identification.
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APPENDIX A -  THE ORDINARY COHERENCE FUNCTION

A.l Introduction

In rotorcraft identification, a linear model is used. However, this is obtained 

by linearising the non— linear HELISTAB model about a particular flight

condition. If the system response departs too far from  this flight condition, then 

it becomes non— linear, and the linearised model is invalid.

By definition, the coherence function is a m easure of the linearity of the

system relating two signals. Hence, the coherence may be used to determ ine

when the response is linear or nonlinear, and therefore whether a linearised

model is valid.

A. 2 Theoretical Background

T he ordinary coherence function relating two transient signals x(t) and y(t) is 

defined in [1] as,

| Sx y (a>) | 2
ITxy( a)) I 2 =   ( A . l )

Sx ( oj) Sy(tO)

where,

17xy( I 2 1S t^e coherence between signals x(t) and y(t).

SXy(co) is the cross—spectrum of x(t) and y(t).

Sx(co) is the auto—spectrum of x(t).

Sy(a>) is the auto—spectrum of y(t).

T he coherence can be interpreted as a measure of the power in the signal 

y(t) which is due to a linear relation with the signal x(t) [1], as follows.

Consider the following general stationary system relating two signals x(t) and

y(t),

y(t) =  F (x(t))
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T he relation between x(t) and y(t) can be split into a linear part and a 

n o n - l in e a r  part. Translated to the frequency—dom ain, this gives,

Y(o>) =  H(w) X(oj) +  Nx(co) (A .3)

where,

X(co) is the Fourier transform  of the system output y(t).

Y(co) is the Fourier transform  of the input signal x(t).

H(o)) is the transfer function of the system i.e. the linear part of

the relation between X(co) and Y(<jo).

Nx(co) is the Fourier transform  of the com ponent of y(t) produced 

non—linearly from x(t).

T hen,

Sy(w) =  | H(<jo) | 2 Sx(oo) Sn(«) (A.4)

1 . e t o t a l  1 i n e a r  . .l i n e a r  power n o n - l i n e a r  powerpower in  -  . + _ . ,, i rom s i g n a l  x From s i g n a l  xs l g n a 1 y °  &

( A .5)

T he ordinary coherence function can be shown to be,

IH( co) | 2 Sx (co)
ITxy(0J) I 2 = -----------------------  (A. 6 )

Sy (co)

l i n e a r  power from s i g n a l  x
= ----------------------------------------------- (A .7)

t o t a l  power in  s i g n a l  y

From  this expression, it can be seen that the coherence must lie between

zero and unity. A coherence of unity means that the system relating x(t) and

y(t) is purely linear. While a coherence of less than unity means that there is a 

non— linear com ponent in this system.

In order to estimate the ordinary coherence, it is first necessary to estimate

the a u to -  and c ro ss-sp ec tra  of signals x ( t )  and y(t). An estimate of the

coherence can then be obtained using equation (A .l)  above.
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By definition [1],

Sx (w) = E[ IX (oj) | 2 ]

Sy (w) = E[ |Y(o>) | 2 ]

Sx y (o>) = E[ X(w) Y(o>)* ]

( A . 8 ) 

(A .9) 

(A .10)

where,

* superscript denotes the complex conjugate.

E[ ] denotes averaging over an infinite num ber of frequency spectra.

Take the signals x(t) and y(t), and sample them  to give the discrete signals 

x(i) and y(i),

where,

At is the sampling interval used.

N is the num ber of samples.

Given x(i) and y(i), the Fast Fourier Transform  can then  be used to obtain

discrete estimates of X(oj) and Y(oo). Let these discrete estim ates be denoted by

X(k) and Y(k). It is im portant that some form of windowing is now used to

reduce side— lobe leakage due to signal truncation. If this is not done, the 

coherence estimates obtained may be severely biased [2]. It is suggested that the 

G EO  window [3] be used for this purpose (see section A .3 below).

Using these windowed X(k) and Y(k), initial estimates for the auto— and 

c ro ss-  spectra can be obtained by omitting the averaging in equations (A .8) -  

(A. 10) above. Averaging is then perform ed in the frequency—dom ain to give 

final estimates of the a u to -  and c ro ss-sp ec tra . Frequency averaging can be 

expressed [3] as,

x(i) =  x (( i— i)At)

y(0 =  y((i— OAt)

1, 2, ... N (A .U )

(A.12)



where,

A
Sx (k)  i s  t h e  d i s c r e t e  i n i t i a l  a u t o - s p e c t r u m  e s t i m a t e .

Sx (k)  i s  t h e  a v e r a g e d  d i s c r e t e  a u t o - s p e c t r u m  e s t i m a t e .

n is the averaging interval i.e . the num ber of samples from  the 

initial spectrum  averaged together at each point of the final spectrum.

An estim ate of the coherence can now be obtained using equation (A .l) .

However, since in practice only a finite averaging interval, n can be used in 

equation (A .l3), the averaging is not perfect, and a bias is introduced into the 

coherence estimate as a result. Theoretically, this bias is given by [4, 5, 6, 7] 

as,

B i a s ,  B( 17 X y ( c o )  | 2 ) 1+2
n

( A . 1 4 )

where,

| -yXy(a)) | 2 is the true coherence.

H ence, an  approxim ate correction for this bias can be obtained using,

Approx .  B i a s  = B ( l 7 X y ( k ) | 2 )

l 7 x y ( k ) l 2 = l 7 x y ( k > l 2 " A p p ro x . B i a s

( A . 15)

( A . 16)

where,

l 7 X y ( k ) | 2 i s  th e  d i s c r e t e  i n i t i a l  e s t i m a t e  o f  t h e  c o h e re n c e  

l 7 x y ( k ) | 2 i s  th e  d i s c r e t e  c o r r e c t e d  c o h e re n c e  e s t i m a t e  

This corrected estimate was taken as the final coherence estim ate.
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However, o ther biases can also affect the coherence estim ate. For example, 

misalignm ent bias and correlation bias. M isalignment bias [2, 8] is due to time 

delays being present in the system relating the two signals x(t) and y(t). Such

delays result in a part of y(t) corresponding to a part of x(t) which is outside

that available time record. Hence, the coherence estimates are too low.

Theoretically, misalignment bias is given by the expression,

1 r  1
B ias  «  l 7 x y ( w) l 2 ( A .17)

where,

r  is the time delay.

T  is the length of the time history.

17xy(w) I 2 1S true coherence.

C orrelation bias occurs when the ordinary coherence function is used with

systems that have m ore than one input. If the coherence is taken with respect

to one input, the other inputs will appear to produce non— linearities and so give

a low coherence. However, if the inputs are correlated, the coherence will be 

higher than if they were uncorrelated. In particular, if the inputs are linearly 

related, then the coherence will behave as if only one input was present.

is
This bias ̂  of particular interest in situations where the initial conditions of

the system are not zero. The initial conditions act as extra inputs to the system.

However, these extra inputs are in the form  of Dirac 5— functions. Hence, they

are linearly related to the true system input, and so can be ignored.
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A.3 A  Sim ulation Study of the O rdinary  C oherence Function

Given the large num ber of biases which may affect the coherence function, 

it was considered im portant that the behaviour of the coherence calculations used 

be properly characterised. In [5] C arter m entions a m ethod for generating 

Gaussian signals with known coherence. These were therefore used for an  initial 

study of the coherence calculations.

Consider two signals x(t) and y(t), as follows,

x(t) =  a(t) +  K b(t) (A.18)

y(t) =  b(t) +  K a(t) (A .l 9)

where,

K is some constant.

a(t) and b(t) are uncorrelated Gaussian signals with identical 

auto— spectra.

T hen ,

Sx ( u )  -  Sa (o>) + K* s b (w)

= (1 + K2) Sa (co) s i n c e  Sa (o)) = S^Cco) ( A . 20)

Sy (o>) -  (1 + K2) Sa ( u)  ( A . 21)

and,

Sx y (co) = K Sa (o>) + K Sb (o>)

= 2K Sa (w) ( A . 22)

This gives,

4K2 Sa ( w ) 2

l T x y ( w)
2 =   _____________________

(1 + K2) 2 Sa ( w ) 2

4K2 

(1 + K2) 2
( A . 23)
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Figure A.l
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Rearranging such that l 7Xy(w) l 2 =  0 when K =  0 gives,

1 -  A 1  -  I Txy (°J) I 2 >
K = --------------------------------  (A .24)

l Y x y < » l

Hence, by controlling the value of K it is possible to control the coherence 

between signals x(t) and y(t).

The coherence calculations were found to produce estim ates of the coherence 

between x(t) and y(t) which were in good agreem ent with equation (A.24) above 

(e.g. see figure A. l ) .

Now, for these Gaussian test signals the true coherence is constant over all 

frequencies. Hence, the coherence calculations estim ate the coherence at N 

discrete frequencies, and so produce N estimates of the true coherence. 

Therefore, by averaging these estimates together, the variance and bias of the 

estimates can be calculated.

Using this method, the bias of the coherence estim ates, without any 

correction using equation (A. 16), was com pared with the predicted theoretical bias 

given by equation (A .l 4). This comparison was perform ed for,

a) No leakage reduction window,

b) A Hanning window, and

c) A GEO window.

See figure A .2 for the results obtained.

It can be seen that when no leakage reduction window is used the bias of 

the estimates agrees extremely well with the theoretical bias. However, when a

Hanning window is used, the bias of the estimates is considerably higher than in 

theory, although the bias still exhibits characteristics similar to those of the 

theoretical bias. The GEO window appears to offer a compromise between these 

two cases : it gives a bias which is only slightly higher than in theory.

109



It is suggested that these results are due to the Hanning and G EO  windows 

effectively reducing the frequency averaging interval used in calculating the

coherence estim ates, and so producing a larger bias than when no window is 

involved. If this is true, then the Hanning window produces a larger reduction 

in the effective averaging interval than does the G EO window, since the Hanning 

window produces a larger bias.

A result by C arter [2] was used in order to study further the issues

associated with leakage reduction windows. C arter investigated the coherence of a 

linear second order digital filter,

yn =  A yn- 1 +  B yn-  2 +  c  xn (A -25)

where,

A =  1.973

B =  -0 .9 8 2 0 2  

C =  0.0087

yn is the n ^  output sample from the filter.

xn is the n ^  input sample to the filter. The input is

Gaussian white noise, with a sampling interval of 4.88281 x 10“  4 sec

and 2048 samples.

C arter found that when no leakage reduction window was used, the

coherence was significantly underestim ated at frequencies above 100 Hz. It was

also underestim ated at frequencies around 20 Hz. W hen C arter used a Hanning

window, this resulted in the coherence above 100 Hz being correctly estimated.

T he low coherence around 20 Hz still remained, and this was shown to be due 

to misalignment bias. Hence, it appears that the estimated coherence can be 

grossly underestim ated if no leakage reduction window is used.
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Figure A.3
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In order to examine this, the au thor's  coherence calculation routines were 

used to estim ate the coherence for C arter 's  filter, with,

a) No leakage reduction window,

b) A Hanning window, and,

c) A G EO  window.

See figure A .3 for the results obtained.

It can be seen that these results agree with C arter. For no window, the 

coherence is underestim ated above 100 Hz. Using either a Hanning or a GEO 

window solves this problem.

H ence, a leakage reduction window must be used when calculating the 

coherence function. Since the G EO  window produces a smaller averaging bias 

than  the Hanning window, it is suggested that the G EO  window is suitable for 

this purpose.
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APPENDIX B -  NUMERICAL METHODS

B.l Introduction

The theoretical details of the input design algorithms used are given in 

C hapter 3. In this appendix, the practical im plem entation of these algorithms 

using num erical software is discussed. Firstly, an im portant consideration in

practice is the efficiency of the software used. Since com plete time histories are 

being m anipulated, the computing time required is generally very high. H ence, if 

an  algorithm  is inefficient then it may not be possible to obtain results within a 

realistic tim e. In addition, it is necessary to consider the conditioning of the 

optimisation used. Ill conditioning can prevent the input design algorithms from 

converging, or, in less severe cases, can lead to an increase in the am ount of

com puting time required. The questions of efficiency and conditioning therefore 

dom inate m uch of the discussion in this appendix.

A ttention is directed mainly at the tim e— dom ain algorithms, since these 

present a m ore diffcult problem than the relatively straightforward

frequency— domain algorithms. The time— dom ain algorithms used were, with the

exception of those involving the param eter robustness constraint, of the following 

general form :

1. Choose suitable initial input, u ^ t ) .  Let n =  1.

2. F ind input, u 0(t) to maximise <^u0), subject to any constraints required,

where,

<p(u0) depends on the constraints being used (see Chapter 3)

3. G enerate new input, un+  , (t) using,

un+  ,( t)  =  a  u 0(t) +  0 un(t) 

where,

a, (3 are chosen such that |D n+  , | is minimised, and 

un+  1 (t) meets any required constraints.

4. If un+  j(t) is not optimal, goto step 2 and repeat.
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Step 2 of this algorithm is the most com plex, and absorbs much of the 

com puting tim e required by the algorithm. Particular attention was therefore

given to efficiently im plementing this step. A Rayleigh— Ritz approach was used, 

which involved expanding the input in a series of orthogonal functions, as follows,

N

u ( t )  = I  a .  u . ( t )  ( B . l )
i = o

w h e r e ,

a j  a r e  c o n s t a n t s .

U j ( t ) ,  i = 0,  1,  . . .  N, a r e  a s u i t a b l e  s e t  o f

o r t h o g o n a l  f u n c t i o n s .

The num ber, N, of orthogonal functions was selected by the user. F or this value 

of N, the coefficients, aj, were then chosen by the software to maximise <f(u) subject 

to the constraints being used.

This optimisation was implemented using the general— purpose NAG routine 

E04UCF [1], which will minimise/maximise an arbitary sm ooth function subject to 

linear, and/or smooth non— linear, constraints. T he objective and constraint 

functions, plus their derivatives, are supplied by user subroutines. A more

efficient approach would have been to develop individual optimisation routines, 

each tailored to deal with a particular set of constraints. However, it was felt 

that the flexibility resulting from the use of a general— purpose routine more than 

com pensated for the loss in efficiency. With this flexibility it was possible to 

study a wide variety of constraints quickly and with relative ease.

For the algorithms involving the param eter robustness constraint, the input 

was once again expanded in an orthogonal series as in equation (B .l) . Routine 

E04UCF was then used to directly minimise |D |  subject to the required 

constraints. Unfortunately, this approach was found to be significantly slower and 

less well conditioned than the more specialised algorithms used with the other 

types of constraint studied.
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B.2 Calculation of p  (u0)

B.2.1 Introduction

The optimisation routine used to perform  step 2 of the input design 

algorithm  typically requires several hundred evaluations of the function <^u Q) and 

its derivatives d ^ u ^ / d a j 0, where a^0 are the coefficients of u 0(t) in equation 

(B .l) . It is therefore im portant that these calculations are perform ed efficiently.

Expressions for </<u0) for each of the input design algorithms studied are 

given in C hapter 3. In each case, </<u0) involves the term  T r(M n— ’M ^ ) ,  and 

it is this term  which is the most time— consuming to calculate. From  equation 

(2.4), the inform ation matrix is as follows,

Mn (B.2)

o

While from  equation (3.24),

Mon
(B.3)

o

Now,

N N

(B.4)
1 =  0 1 =  0

and therefore,

N N

(B. 5)

where,

yj(t) is the system response to input uj(t).
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H ence,

M

rT N J  N
y  n y i / S
1  a i 3 7  ( t )

1 = 0  1 = 0

-1 y n d y i ,L a .  —  ( ti dd ( t )  d t

and,

N N 

- I  I a "  a "  M.
1=0 j= 0 1 J 1J

( B . 6 )

N N

M = I  I  a?  a ?  M .. ( B . 7 )on . . l j  i i  'i=o j = o J J

where,

rT

M. .
i j

dyj 
d e ( t )

-1 dy 5

j i
( B .  8 )

M oreover,

dM J! dM J!
— n = 2 1  a ?  M — ° n = I  a ?  M, . ( B . 9 ). n  . i k i  , o  . l k i  'd a ^  i=o d a ^  i=o

By precalculating the M y ,  then M n , M on, and their derivatives can be 

calculated by a simple summation, requiring little computing time.

B .2.2 C alculation of the Sensitivity Functions

Since little time is now needed to calculate M n> M on, and their derivatives, 

m uch of the computing time is spent precalculating the M y .  The time taken to 

calculate the M y  is dominated by the calculation of the sensitivities, dyj(t)/d0. 

An efficient m ethod for obtaining the sensitivities is therefore necessary.
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Originally, the sensitivities were calculated using a transition matrix approach. 

It is well known, e.g. [2], that a standard state—space model may be solved to 

give the states, x(t), using a convolution integral, as follows :

x ( t ) = 4>(t) x ( 0 )  + J  4>( t - r )  B u ( r )  dr ( B . 10)

where,

<J(t) =  e-^1, the state transition m atrix.

This can be straightforwardly rearranged into the discrete recursive form,

x ( i A t )  = $ ( A t )  x ( { i - 1 } A t ) +

iAt

$ ( i A t - r )  B u ( r )  d r  

{ i -1} At
( B .11)

where,

At is the sampling interval.

D ifferentiating with respect to 6 gives,

“  At 4>(At) x ({  i — 1} A t) + j . ( A t ) d x ( ( j ' l i A t )  

iAt

[ ^  { i A t - r }  c ^ ( i A t - r )  B u ( r )

{ i -1} At

+ $ ( i A t - r )  ^  u ( r )  |  d r

( B . 12)

It should be noted that since 0 is simply a vector containing elements of A 

and B, d A /d e  and dB/d0 are constants.

Now recall that,

y ( t ) = c  x ( t ) ( B . 1 3 )
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Hence,

dy(t)/d0 =  C dx(t)/d0

Equations ( B . l l ) ,  (B .l2), and (B.14) provide a m eans of calculating dy(t)/30, 

given c^t). Unfortunately, calculating the transition m atrix, <£(t) is prone to 

ill— conditioning. A variety of m ethods for calculating <£(t) have been published 

[3— 6], but one of the most stable and accurate of these is that described by 

W ard [7]. This uses a diagonal Pade approxim ation to 4(t) [8,9] com bined with 

repeated squaring. A particular attraction of this m ethod is that it produces an 

estim ate of the accuracy of the result obtained, and so it is possible to output a 

warning if the accuracy falls too low, giving improved reliability. A version of 

W ard 's m ethod, modified to take account of the need to calculate <f(t) at several 

values of t, was therefore used for the present work.

However, while the algorithm described above for calculating dy(t)/d0 has 

extrem ely good accuracy, it is relatively slow. In the current application, it is 

essential that the algorithms used are sufficiently fast if results are to be obtained 

in realistic time scales. H ence, this slow initial algorithm was later replaced by a 

significantly m ore efficient, but less accurate [10], m ethod for calculating the 

sensitivities.

It can be shown [11,12] that the states, x(t), and sensitivities, dy(t)/d0 of 

any linear system with zero initial conditions may be expressed as follows.

x ( t ) ( B . 15)
o

where,

x ( t )

x ( t ) x ( 0 ) -  0 (B.16)
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u(t) =  system input vector, r =  num ber of inputs 

6[ — i1*1 param eter, i =  1, 2, ... q 

G =  [ G 1 G 2 . . - G r ]

G.
J

b.
J

d ( b j }
~ d f ~

Ab

d(Ab .) 
 J

dd

d ( b . )  d ( A b . )

~ d e ~  ~ dd
q q

A2n-1 ,A b .
J

d (A 2 n _ 1 b 

d 0 ’

d ( A2n *b 

dd  :

bj =  j**1 column of control m atrix, B

a  ( t )  =

a i ( t )

a 2( t )

a,„(t )2n

= A 1 0 ( t )

( B . 17)

( B .18)
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x T1

-  X T 
dX 1 

1

d 2" 1" 1 -  T

d X 2" 1 " 1 11

X, =

2 n - i

d 2n m_1 -  T

d x 2 n m- i  m 
m

Xjf =  k ^1 eigenvalue of A, k =  1, 2, ... m 

njj =  multiplicity of k**1 eigenvalue 

n =  num ber of state variables

0  ( t )  =

2 n ,  - 1 X , t

e^mt

( B . 19)

( B . 20)
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and,

-  *J a  ( t - r )  u ( r )  d r  =

A 1 0

0 A- 1

f a ( t - r ) ( r ) dr

J  a ( t - r )  u j ( r ) dr

( B . 2 1 )

0 0 0 0 A- 1

f t _  *
J 0 ( t - r ) u ( r ) dr

( B . 22)

In this m ethod, G and A are straightforward to calculate. It then remains 

to obtain,

J  / 3 ( t - r )  u i ( r )  d r

f* -  *J (3 ( t - r ) u ( r )  d r  = ( B . 23)

J  j S ( t - r ) ( r ) dr
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In the present work, interest has been confined to situations where only a 

single input is used i.e. r=  1. M oreover, the eigenvalues are all of multiplicity 

one i.e. n j j = l ,  k = l ,  2, ... n. This gives,

This involves only 2n quadratures, and so is extrem ely efficient when 

com pared to the transition matrix approach described previously. Unfortunately, 

when these quadratures are im plem ented on a com puter, the term s e^k* and 

e— ^k* are prone to numeric overflow and underflow. However, this problem is 

easily overcome by re—arranging the quadratures as follows,

e A , ( t - r )

u ( r )  ds
o 0

( B . 24)

i.e it is necessary to calculate,

and
o o

where k =  1, 2, ...n

These 2n convolutions may be expressed as follows,

( B . 25)
o

and,

f t  rt
t e ^ k *  J e ^ kTu ( r )  d r  -  j  Te ^ kTu ( r )  ds  ( B . 2 6 )

o o

t+At

t
(B .27)
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g k ( t +At ) =  e XkAt ( g k ( t )  +  At  h k ( t )

t+At

( B . 28 )

where,

( B . 29)
o

( B . 30 )
o

hk(0) =  0 =  gk(0) (B.31)

This form  was found to give good results for stable systems, i.e. Xk<0. 

However, in unstable cases accuracy problems were encountered. These were 

overcom e by taking advantage of some of the special features of the present 

application. Recall that it is required to calculate dyj(t)/d0 i.e. the sensitivities 

for inputs uj(t)> i= l> 2, ... N. The inputs, Uj(t), are based on Chebyshev 

polynomials (see section B.3 below), and this can be used to give improved 

accuracy.

Chebyshev polynomials are related by the following recurrence formula [13],

Ti(x) =  2x T j_  -j (x) -  T j_  2(x)

where,

Tj(x) =  Chebyshev polynomial of order i 

T 0(x) =  1, T ^ x )  =  x 

- 1  < x < 1

This gives the following recurrence relations between the quadratures,

o
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s k

-  2J x ( r )  e Xk < ' t  T ^ T . _ ] ( x ( t ) )  d r  -  2 ( t )  ( B . 3 3 )
0

k ( t )  = J ( t - T )  e X k ^  T ^ T . ( x ( t ) )  d r  

0

-t-  t " J T e X k ^ t ” T ^ T . ( x ( r ) )  d r  ( B . 3 4 )

where,

x(s) =  (2 s -T ) /T  (B.35)

T =  duration of input

Now,

|  r  T^ T . ( x ( r ) )  d r  = ^  J  x ( r ) e Xk^  T^ T . ( x ( r ) )  dr

+ 2 h k ( t )

( B . 36)

Using integration by parts,

-t
f ‘ ( t )  -  j  x ( r ) e Xk ( t ' 7 ) T . ( x ( r ) )  d r

0

X k ( t - r )  i t
^ ------ x ( r )  T ( x ( r ) )-Xk 1

- I
t  ^ k ^ )  

- x k
0 K

dT.
^  ( r )  T . ( x ( r ) ) + x ( r )  — ^ x C r ) )  —  ( T) dr  

( B . 3 7 )

x ( t ) T . ( x ( t ) )  1 2 i
_ J L   + S -  x ( 0 ) T .  ( x ( 0 ) ) + ^  T h k ( t )

dT.
'L I+ X T J l e Xk(t T ) x ( T ) s i ( x ( r ) )  d r  ( B . 3 8 )
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Since dTj/dx can be expressed in terms of a Chebyshev series of order i— 1, 

ffc^t) may be evaluated given h ^ t ) ,  h ^ -  1(t), ... h ^ t ) .  While from equations 

(B.33) and (B.34), h j^ t)  may be evaluated given h ^ — 2(t) and f ^ — ^ t ) ,  and 

gk^t) evaluated given h ^ t )  and fk*(t). This allows h ^ t )  and g ^ t )  to be 

obtained recurrently.

However, in practice this approach was found to be prone to inaccuracies 

when polynomials of high order were used. A solution to the problem  of 

accuracy was finally obtained by using the following m ethod.

Chebyshev polynomials may be expressed as power series in x. M oreover, 

since |x |  < 1 ,  these power series are well conditioned, and are not dom inated by 

the higher order term s. Using this power series form , the following integrals 

need to be evaluated.

l £ ( t )  = J  e X k ( t " r ) x 1 ( r )  d r ,  i =0 ,  1,  2,  . . .  N+l ( B . 3 9 )
o

This can be achieved using the following reverse recurrence relation,

' k Ct> -
e xk < t - T) ;

i dx
kk 3 7

( B . 40 )

Note that this reverse relation is numerically stable, whereas the forward 

version of the relation is not. The first value of the reverse recurrence relation, 

ikN + ' .  was obtained using numerical integration, with the integration step chosen 

to give a result to machine accuracy. Subsequent values were then obtained using 

(B .40). This was found to give extrem ely accurate results, even for very high

order (e .g  50tk  order) polynomials, while still giving good efficiency.
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B.3 Choice of Basis Functions

In equation (B. l )  above, the input u(t) is expanded in a series of orthogonal

functions, Uj(t). Various sets of orthogonal functions are commonly used in such

expansions. These include,

1. Walsh series

2. Power series

3. Cosine series

4. Chebyshev series

Each of these was considered, in order to decide which was most suitable 

for the present application.

Taking Walsh functions [14] first of all, these consist of a sequence of steps, 

and this simple form facilitates their use. However, steps cannot be realised in 

real systems, resulting in difficulties when using inputs based on Walsh series.

M oreover, the discontinuity at a step leads to power at high frequencies, which is 

known to be undesirable for helicopter inputs.

In contrast, power series involve smooth functions and do not introduce 

discontinuities. However, power series are very sensitive to the coefficients, aj,

of the higher order terms. Consider the following :

N

u ( t )  -  I  a . t 1 => -  t 1 ( B . 4 1 )
i = o i

H ence, if for example, t = 1 0  sec, then du /da, =  10, while du/da 10 =  

1 0 1 °. This large spread in the values of du/da j results in severe ill conditioning.

Cosine series also do not introduce discontinuities. M oreover, the derivatives, 

du/daj are bounded, as follows,

N

u ( t )  = I  a . c o s (  i + £)^Y #   ̂ = c o s ( i + i ) ^ Y  ( B - ^ 2 )
i = o i
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H ence,

(B .4 3 )

where, T is the duration of the input being used.

Finally, Chebyshev series are closely related to cosine series, and share may 

of their properties. Chebyshev polynomials do not introduce discontinuities, and 

also have bounded derivatives, as follows,

Both cosine and Chebyshev series appear to be reasonable basis functions for 

the curren t application, although it was felt that cosine series were more suitable 

for problem s involving periodicity, whereas the present problem  uses aperiodic 

inputs.

However, difficulties were encountered when using these series with unstable

systems. In the unstable case, the system response to the input components, 

U j ( t ) , may be divergent, even when the response to the full input, u(t), is

convergent. As a result, constraints placed on the system responses (see Chapter

3) tend to produce an ill-co n d itio n ed  optimisation problem. For high order 

Chebyshev and cosine series, this ill conditioning was sufficient to prevent

convergence of the input design algorithms.

N

( B. 44)
i  =  o i

where,

x(t) =  (2t—T )/T , i.e. - 1  < x(t) < 1 

T =  duration of input

Tj (x( t ) )  is the Chebyshev polynomial of o rder i.

H ence,

(B.45)
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In equations (B .l5) — (B.24), it is shown that the system response may be 

considered from  a model standpoint. This allows the unstable sections of the 

system to be isolated. Inputs, U j ( t ) ,  can then be designed which will stabilise 

these sections.

Consider a system with a single unstable m ode, having eigenvalue X1} say. 

T hen  the com ponents of the system response due to this m ode may be expressed 

as follows (see equation (B.24)),

- 1
h 1 ( t ) -  j  e X l ( t " T ) u . ( r )  d r  ( B . 4 6 )

o

and,

g * ( t )  = J  ( t - r )  T^ u . ( r )  d r  ( B . 4 7 )
o

Taking Laplace transforms gives,

u . ( s )
L{h ( t )} -  H ' Cs )  -  *   ( B . 4 8 )

S -  A

u . ( s )
L ( g  ( t ) }  -  G ( s ) ------------ !-----  ( B . 4 9 )

( s  -  X , ) 2

Choosing g!(t) to be a suitable function, cq(t), gives,

U . ( s )  -  ( s  -  X , ) 2I . ( s )  ( B . 50)

-  s 2I . ( s )  -  2 X , s I . ( s )  + X2I . ( s )  ( B . 51)

where ZjCs) =  L{o-j(t)}

If a |(0) =  0, and d q (0 )/d t =  0, then,

d V .  dcr.
u i ( t )  2 l ( t )  '  2Xl dt"1 ( t )  + X’ CTi ( t )

dt
(B .52)
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Moreover,

H ( s )  = ( s  -  X , ) !  ( s ) (B.53)

dcr.

*  h ' ( t )  "  d t 1 ( t >  '  x ><ri ( t ) ( B . 54)

H ence, if o ^ t) , do-i(t)/dt, and d 2o-j(t)/dt2 are not divergent, then neither are 

^ ( t ) ,  gx(t), and uj(t).

In the present work, Chebyshev polynomials were taken as the basis for 

o-j(t), using the following,

Giving orj(0) =  0, do-i(0)/dt =  0, and o ^ t), do-j(t)/dt, d 2o"j(t)/dt2 not

divergent.

This technique was found to give significantly im proved conditioning in the 

input design algorithms. It is easily extended to the m ore general case Of

m ultiple, com plex eigenvalues.

dT.
o’. ( t )  = T . ( x ( t ) )  -  T . ( x ( 0 ) ) -  — l ( x ( 0 ) )  t ( B . 55)
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Figure B .l

The fu n c tio n , f ( y) t used as thQ , 
constraint 6 sm oottl> continuous am plitude

1 . 7  -

1.6



Figure B.2

A n  o u tlin e  o f  the a rrangem en t used in  the sm o o th , con tinuous am p litu d e  

co n stra in t. F or a fu n c t io n ,  x ( t ) ,  co n stra in ed  to  lie  betw een + a and  - a ,  then  

the area m a rk e d  sho u ld  be zero .

x(t)

The shaded area will be 
zero if |x(t)| < a

+a

-a



B .4 Implementation of Amplitude Constraints

Two am plitude constraints are used in the input design algorithms studied : 

the output am plitude constraint, and the response robustness constraint. Since

am plitude constraints are essentially discontinuous in nature, they can lead to

optim isation problem s which are prone to ill— conditioning. In order to improve

the conditioning, and give a simple, efficient constraint, the following technique

was used.

T he function, f(y), shown in figure B. l ,  form ed the basis of the amplitude 

constraints used. A Chebyshev series was used to approxim ate this function. It 

is defined on 0 < y < 1, and is continuous up to, and including, its first 

derivative. Using f(y), an am plitude constraint, |x ( t ) | < a, 0 < t < T , may be 

im plem ented as follows.

x 2 ( t )1.  Let  w ( t )  C-ALL ( B . 56)
9 a 2

2' Let ^  -  KTTT2!  (B-57)

y(t) is the bilinear transform  of w(t), giving 0 < y(t) < 1.

w(t) is such that y(t) =  0.1 when |x ( t ) | =  a. From  figure B. l ,  0.1 

is the break—point of f(y).

T
3 . Then i  J  f ( y ( t ) )  dt  = 1 (B.58)

o

gives I x(t) | < a, 0 < t < T

T he principle behind this amplitude constraint can be seen in figure B.2. 

T he integral in equation (B.58) essentially measures the area of the curve, x(t), 

lying above the am plitude limit, a. This area should be zero if x(t) m eets, the 

constraint. In practice, since f(y) is continuous up to its first derivative in 

o rder to improve the conditioning of the optimisation problem . H ence, it does 

not have sufficient resolution to show small violations of the amplitude constraint. 

However, in the present application this presented no problems, and the improved 

conditioning resulting from this approach was found to be extrem ely valuable.
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