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ABSTRACT

The test input applied to a helicopter, or any other system, for the purpose
of system identification can have a substantial effect on the parameter estimates
obtained. It is therefore important that an appropriate input is chosen. Inputs
must take account of the requirements, and restrictions, of the application. For
example, in the rotorcraft case studied a linearised model is being identified, and

it is therefore essential that the input produces a linear response.

A straightforward method has been developed for the design of multi— step
inputs. This method is based in the frequency— domain, and involves tailoring
the auto— spectra of the inputs to give long, linear test records, and parameter
estimates with reasonably low variances. In flight trials using the Lynx
helicopter at RAE (Bedford), the double— doublet input, designed with this
method, has been found to be a significant improvement over more traditional

inputs.

Using the data from the flight trials of the double—doublet, both
equation— error and output—error identification have been carried out.  Several
discrepancies were found between the theoretical and identified models. More
work is required to clarify this. Numerical difficulties were encountered during
the output—error identification, and  these were attributed to ill— conditioning

resulting from the use of an unstable system.

The design of optimal inputs has also been investigated. In particular,
constraints have been developed which are suitable for ensuring that the optimal
inputs produce linear responses, and are robust. Conventional energy constraints
were found to be of little use for these purposes. Algorithms have been
developed for the design of optimal inputs with a variety of constraints, and
simulation studies have been made to gain an understanding of the effect of these

constraints on the form of the inputs.

With the constraints obtained from this work, an optimal input has been
designed for use with the Lynx helicopter. This input is robust, and yet is
predicted to give significantly improved parameter estimates.  Unfortunately, at

the time of writing, flight trials of this input could not be performed.



ACKNOWLEDGEMENTS

I sincerely thank my supervisors Professor D.J Murray— Smith (E. & E.E.
Dept) and Dr G.D. Padfield (RAE) for their encouragement, help, and guidance

during the past three years.

My thanks to Professor J. Lamb for allowing me to use the many facilities

of the Electronics and Electrical Engineering Department.

1 would like to thank my friend Dr S. Houston for his help during the

flight trials, and for many useful discussions.

I would like to acknowledge :

The computing staff A. McKinnon, E. McArthur, J. Sutheriand (E. & E.E.
Dept) and L. McCormick (CAE Centre) for their assistance throughout this work.

My thanks to M. Manness, R.Henderson, Li Ping and M. Foad for their
friendship.

Finally, I would like to acknowledge the support of the Science and
Engineering Research Council and the Royal Aerospace Establishment (Bedford)
through the provision of an SERC CASE studentship. The extensive help
provided by the Flight Management Department at RAE (Bedford) is also
gratefully acknowledged.




ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
TABLE OF CONTENTS

CHAPTER ONE —

INTRODUCTION

1.1 INTRODUCTION
1.2 THE HELICOPTER MODEL
1.3 SYSTEM IDENTIFICATION TECHNIQUES

1.3.1
1.3.2
1.3.3
1.3.4

Introduction
Maximum Likelihood Estimators
The Equation— Error Estimator

The Output— Error Estimator

1.4 DIFFICULTIES OF HELICOPTER SYSTEM IDENTIFICATION
1.5 REVIEW OF INPUT DESIGN APPROACHES

1.5.1
1.5.2

Non— Optimal Inputs
Optimal Inputs

1.6 STATEMENT OF ORIGINALITY
REFERENCES FOR CHAPTER ONE

CHAPTER TWO -

A SIMPLE DESIGN APPROACH FOR MULTI-STEP
INPUTS

2.1 INTRODUCTION
2.2 INPUT DESIGN METHOD

2.21
2.2.2

Input Auto— Spectrum Design

Optimal Spectrum Program

2.3 LYNX FLIGHT TRIALS

2.3.1
2.3.2
2.3.3

Design of Lynx Test Inputs

Flight Trials of Lynx Test Inputs
Conclusions from Flight Trials of Lynx Test
Inputs

iii

it

iii

eV« B« M= N N

13
14
14
19
25
27

31
32
32
36
38

38

41

49



2.4

IDENTIFICATION RESULTS FOR DOUBLE-DOUBLET
INPUT

2.4.1 Introduction

242 Equation— Error Identification Results

243 Output— Error Identification Results

24.4 Difficulties of Output— Error Identification of

Unstable Systems
2.4.5 Dispersion Matrices of Multi— Step Inputs

REFERENCES FOR CHAPTER TWO

CHAPTER THREE — CONSTRAINTS FOR USE WITH ROTORCRAFT

31
3.2

3.3

34

3.5

3.6

OPTIMAL INPUTS

INTRODUCTION

INPUT ENERGY CONSTRAINED OPTIMAL INPUTS

3.21 Frequency— Domain Designs

3.2.2 Time— Domain Designs

323 A Simulation Study of Input Energy Constrained
Optimal Inputs

OPTIMAL INPUTS WITH OUTPUT AND INPUT ENERGY

CONSTRAINTS

3.3.1 Frequency— Domain Designs
3.3.2 Time— Domain Designs
333 A Simulation Study of Output and Input Energy

Constrained Optimal Inputs
OUTPUT AMPLITUDE CONSTRAINED OPTIMAL INPUTS
3.4.1 Time— Domain Designs
3.4.2 A Simulation Study of Output Amplitude
Constrained Optimal Inputs
RESPONSE ROBUST OPTIMAL INPUTS

3.51 Time— Domain Designs
3.5.2 A Simulation Study of Response Robust Optimal
Inputs

PARAMETER ROBUST OPTIMAL INPUTS

3.6.1 Time— Domain Designs

3.6.2 A Simulation Study of Parameter Robust Optimal
Inputs

iv

50
50
51
53

56
58
59

60
64
64
68

71

73
73
74

76
78
78

80
82
82

83

87
87

88



3.7 COMBINED PARAMETER ROBUST AND RESPONSE ROBUST

OPTIMAL INPUTS 89
3.8 CONCLUSIONS 90
REFERENCES FOR CHAPTER THREE 91

CHAPTER FOUR - DESIGN OF OPTIMAL LYNX INPUT

4.1 INTRODUCTION 92
4.2 OUTPUT AMPLITUDE CONSTRAINED OPTIMAL INPUT 94
4.3 OUTPUT AMPLITUDE CONSTRAINED AND RESPONSE ROBUST
OPTIMAL INPUT 97
REFERENCES FOR CHAPTER FOUR 98
CHAPTER FIVE - CONCLUSIONS

CONCLUSIONS 99

w



APPENDIX A — THE ORDINARY COHERENCE FUNCTION

A.1 INTRODUCTION

A.2 THEORETICAL BACKGROUND

A3 A SIMULATION STUDY OF THE ORDINARY COHERENCE
FUNCTION

REFERENCES FOR APPENDIX A

APPENDIX B — NUMERICAL METHODS

B.1 INTRODUCTION
B.2 CALCULATION OF (u,)
B.2.1 Introduction
B.2.2 Calculation of the Sensitivity Functions
B.3 CHOICE OF BASIS FUNCTIONS
B.4 IMPLEMENTATION OF AMPLITUDE CONSTRAINTS
REFERENCES FOR APPENDIX B

103
103

108
112

113
115
115
116
126
130
131



CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION
1.2 THE HELICOPTER MODEL
1.3 SYSTEM IDENTIFICATION TECHNIQUES

1.3.1
1.3.2
1.3.3
1.3.4

Introduction
Maximum Likelihood Estimators
The Equation— Error Estimator

The Output— Error Estimator

1.4 DIFFICULTIES OF HELICOPTER SYSTEM IDENTIFICATION
1.5 REVIEW OF INPUT DESIGN APPROACHES

1.51
1.5.2

Non— Optimal Inputs
Optimal Inputs

1.6 STATEMENT OF ORIGINALITY

REFERENCES FOR CHAPTER ONE



1.1 INTRODUCTION

One of the major shortcomings of modern helicopters is the high pilot
workload involved in performing even simple flight manoeuvers. As a result,
even although a helicopter may be capable of rapid manoeuvering, the pilot may
be wunable to wuse such agility to the full. In the nap— of— the— earth
environment, for example, where a helicopter flies extremely low and fast, and
has to avoid ground obstacles such as trees, this loss of manoeuverability can

cause serious problems.

At present, production helicopters provide the pilot with direct mechanical
controls, together with a simple, limited authority stability augmentation system.
Research has therefore concentrated on designing improved control systems which

will modify the dynamics of the helicopter in order to reduce the pilot workload.

In order to design high performance flight control systems which can meet
current and future handling qualities requirements, it is essential to have available
good theoretical flight mechanics models of the helicopter. Such models, which
are in general non— linear and multi— variable, can then provide the linearised
state— space descriptions needed for control system design. In non— linear form,
the models can also be used, through simulation studies, to predict the effect of
the proposed control systems on the helicopter's performance throughout the flight

envelope.

Typically, helicopter models can be divided into three levels of complexity
[1]. The simplest, or level one models, are generally suitable for the prediction
of handling qualities and low bandwidth control. @ The most complex, or level
three, models are used for detailed analysis of the rotor. Level two models lie
between these extremes, and are simpler than the full level three models, yet are
of sufficient detail that they can be used for the development and evaluation of

high bandwidth controllers.



Currently the most widely used models are level one, with level two models
still under research. Since level one models are not of sufficient accuracy for
the design of high bandwidth controllers, it is important that suitable level two
models are developed. As part of the efforts to obtain improved models, system
identification techniques are used to obtain empirical models based on flight
measurements.  Theoretical models can be compared with such empirical ones,
and any differences between the two can be used to gain insight into the
shortcomings of the theoretical models. Moreover, the empirical models can also

be used directly in control system design, and for handling qualities evaluation.

In the literature, much research has been focussed on developing system
identification methods for both rotorcraft and a wide variety of other applications.
Two steps are involved in system identification. Firstly, a known test input is
applied to the system of interest, and the response is measured. These measured
responses are then processed to obtain a suitable mathematical model for the
system. In the helicopter case, the structure of this identified model is assumed
to be the same as that of the theoretical model. The system identification

problem then simplifies to finding the parameters of this model.

However, when attempting system identification of rotorcraft without stability
augmentation, serious difficulties are encountered. These are largely due to three
factors : the complexity of the system, inherent instabilities, and measurement
problems (see section 1.4 below). As a result, rotorcraft identification has been

of mixed success to date.

The aim of the current research has been to tackle these difficulties by
designing suitable identification test inputs, and so lead to more successful
identification. The test input applied to a helicopter for the purposes of system
identification can have a substantial effect on the parameter estimates obtained.
It is therefore important that an appropriate input is chosen. In the past,
considerable work has been directed towards input design for fixed— wing aircraft,
with good results. However, relatively little work has been carried out on the

design of rotorcraft inputs.



1.2 THE HELICOPTER MODEL

Before the issues involved in system identification and input design can be
discussed, it is necessary to consider the theoretical model that is being

validated.

A helicopter can be divided into several major sub— systems, each of which
must be considered when developing a mathematical model of the helicopter.

These are :

1) Main— Rotor
2) Tail—- Rotor or other anti— torque device
3) Fuselage

4) Power plant

While providing lift, the magnitude and direction of the force produced by
the main—rotor can be modified by the pilot to permit manoeuvering. @ The
thrust generated by the tail—rotor can also be altered to give yaw motion.
Conventionally, four controls are available to the pilot for the handling of the

main and tail rotors. These controls are as follows:

a) Main— Rotor Collective, 7,
Controls the magnitude of the thrust produced by the

main— rotor.

b) Longitudinal Cyclic, 7,g

Controls the longitudinal thrust produced by the main— rotor.

c) Lateral Cyclic, 7,¢

Controls the lateral thrust produced by the main— rotor.

d) Tail— Rotor Collective, 7,¢re

Controls the magnitude of the the tail— rotor thrust.



These controls are incorporated in the main and tail rotor sub— systems.

The theoretical flight mechanics model, HELISTAB [2], developed at the Royal

Aerospace Establishment (Bedford) was used. This is a level one model [1], and

the various sub— systems are represented as follows :

1)

2)

3)

Main— Rotor

The HELISTAB model incorporates several main— rotor descriptions.
For the present work, only the very simplest of these was used. This
consisted of a quasi— static representation, i.e. with the rotor dynamics

neglected.

Such a simplified representation is justified on the basis that the rotor
dynamics are typically significantly faster than those of the rigid— body
fuselage. On the time scales of the rigid— body fuselage motions, the
rotor therefore appears to act instantaneously. Several authors e.g.
[11] have found, however, that the rotor dynamics cannot be neglected
in this way. Nevertheless, the quasi— static representation is sufficiently

accurate for many situations.

Tail-Rotor

A quasi— static model is also used for the tail—rotor. Main— rotor

downwash effects are ignored.

Fuselage

The fuselage is modelled as a point mass with six degrees of freedom.
The six degrees of freedom used are the longitudinal, lateral,

and vertical translational velocities (u, v, w) and the roll, pitch, and
yaw rotational rates (p, q, r). It is possible to obtain the Euler r(;ll,

pitch, and yaw angles (o, 6, y) from the rotational rates.



4) Power plant

The power plant is considered to be ideal i.e. able to maintain a

constant rotor rpm.

The resulting helicopter model is non—linear. There is therefore provision
in the HELISTAB software package [3] for linearisation of this model about a
given flight condition. The resulting linear model can be described in the

following state— space form :
dx(t)y/dt = A x(t) + B u(t) (1.1)

where,

x=(qu0vp<pr)T

u = (7,5 Mic Moe notre)T

A,B are the system and control matrices, respectively.

In the present validation work, the matrices A and B are estimated from
flight measurements of x(t) and u(t) using system identification techniques. These
are then compared with the theoretical A and B matrices. Any significant
differences between the theoretical and estimated matrices can then be used to

gain insight into the shortcomings of the theoretical model.

However, it should be noted that this linear model is only valid for small
perturbations about the flight condition used in the linearisation. It is important

that this restriction be taken into consideration when use is made of the model.



1.3 SYSTEM IDENTIFICATION TECHNIQUES

1.3.1 Introduction

A wide variety of system identification techniques are available which enable
a model to be estimated from measured data. Each has particular strengths and
weaknesses, and each is often more suited to certain applications than to others.
The particular identification techniques in most widespread use with rotorcraft can
be separated into two distinct types: equation—error methods, and output— error

methods (see, for example, [4,5,6]).

Under certain conditions, these methods act as maximum likelihood
estimators. The conditions required are different for each method, and relate to
the characteristics of the system being identified (see sections 1.3.3 and 1.3.4
below for details). However, the equation— error and output— error methods are
also widely used in applications where these requirements are not met. In such
cases, the behaviour of the methods will depend on the specific situation

prevailing in that application, and will not be maximum likelihood.

1.3.2 Maximum Likelihood Estimators

Firstly, take the general maximum likelihood case [7]. An input vector, u
taken from the set- U of possible input vectors, is applied to the system

concerned. The system response is a random variable :
z = z(6, u, ) (1.2)
where,
6 € O is the true value of the parameter vector,

7 is the random component in the system.

An estimator is then any function of z and u with range in 6. The value

of the function is called the estimate, 6'. Thus,

g = 8'(z, v (1.3)



The maximum likelihood estimate is defined as the value of 6 which

maximises the likelihood function, p(z]#9) i.e.

' = arg max p(z|¥) (1.4)
0
where,
p(z16) is the probability distribution function of the input, u
producing the response, z when 6 is the set of parameters used.
Note that this function is also dependant on 7, the random component
in the system, although this is not explicity shown in the notation

used.

This can be interpreted as choosing that value of 6 which makes the

observed measurements most plausible.

An alternative to maximising the likelihood function is to maximise the
log— likelihood function, log p(z|#). This produces the same estimates, since the
log function is monotonic, but often has the advantage of leading to a simpler

optimisation procedure.

Maximum likelihood estimates exhibit several important properties [8]. These

include :
1) Estimates are asymptotically unbiased
The bias of an estimate is defined as,
b = E{618}— & (1.5)

i.e. bias measures the consistent error between the parameter estimates and

the true parameter value.

For maximum likelihood estimates, the bias is always zero when an infinite
number of measurements are made. However, for a finite number of

measurements, the estimates may still be biased.



2)

Estimates are asymptotically efficient i.e. have minimum covariance
The covariance of an unbiased estimator is defined as :
cov (6 = E{(6'—9 (6'= T } (1.6)

i.e. the covariance measures the spread of the parameter estimates about the
true parameter value. This spread is fundamental, and is caused by 7, the

random component in the system.

An ‘efficient' estimator gives estimates which have the minimum possible
covariance i.e. which extract the maximum information from the
measurements of z and u. The minimum covariance is given by the

Cramer— Rao bound [9], which states that :

cov ('Y = D (1.7)
where,

D = M ! (1.8)

M = E{ v, (log p(zI )T vy (log p(z16)) } (1.9)

D is known as the dispersion matrix, and M as the information matrix.

Estimates are invariant

Invariance is the property that, given ¢' is the maximum likelihood estimate
of 6§, then f(6') is the maximum likelihood estimate of f(6), when f is a

linear function.



1.3.3 The Equation— Error Estimator

It is now possible to consider the particular maximum likelihood cases of

equation— error and output— error.

In equation—error [7], the response function z(6, u, %) is assumed to be

linear in 6, and to have the following form,
z = f(u) o6 + 19 (1.10)
where, .
n is a zero mean Gaussian process with covariance, R.

f is some function of u, which may be non— linear.

For this case, it can be shown [7] that the log— likelihood function is given

by,
log p(zI8) = —4 (z—f(wOT R™ 1 (z—f(w)6) — 4 log |2vR|
(1.11)
This is maximised by finding the minimum of the term,
(z— f(u))T R™ 1 (z— f(u)6) (1.12)
Notice that this term represents the square error between the measured
response, z and the predicted response, f(u)é. Hence, the equation— error

estimator is also widely known as a ‘'least squares’' estimator. This estimator is
often used with systems which do not meet the assumptions made above
concerning the form of z(6, u, 7). However, in these cases it no longer behaves

as a maximum likelihood estimator.

As described in section 1.2, the theoretical helicopter model used in this

work is of the form :

dx(ty/dt = A x(t) + B u(t) (1.13)



The matrices A and B contain the parameters to be identified. To use the
equation— error method with this model, measurements of dx(t)/dt, x(t), and u(t)
must be available. Typically, x(t), and u(t) are obtained by direct measurement,

and dx(t)/dt either by measurement or by differentiation of x(t).

The theoretical model can be written as :

Fo - [§]S 116
i.e. z¥(t) = F u¥(v) (1.15)
where,
z¥(t) = dx(t)/dt,
v =[50 ]
S P

The equation— error method can then be used to estimate the elements of F,
i.e. of A and B. However, in helicopter applications the measurements of x(t)
and dx(t)/dt contain significant noise components. Hence, both the input, u* and
the output, z" contain noise. In the ideal equation—error model (equation
(1.10)), it is assumed that the outputs contain noise, but that the input does not.
When used in the helicopter case, the equation—error method is therefore not
acting as a maximum likelihood estimator. In particular, it can be shown that

the resulting parameter estimates will be biased [10].

Returning to equation (1.12), this can be minimised analytically [7], and the

result may be expressed as follows :
' = ( f(w)T R™ 1 f(u) )~ ' f(u) R™ ' z (1.16)
Given the measurements u, and z, and the values for R and f(u), this
expression can be evaluated to obtain the parameter estimates. Hence, :the
equation— error case leads to relatively straightforward, fast estimation algorithms.

Difficulties can occur, however, if there is ill— conditioning in the matrix [8],

f(u)T R~ 1 f(u)

10



since this needs to be inverted to obtain 4'. The most common cause of such
ill— conditioning is correlations between the elements of the input vector, u.
Various techniques [8] can be used to reduce the effects of ill—conditioning, but
in severe cases the identification may fail. The only true solution to this

problem lies in designing suitable inputs, u which have low correlations.

1.3.4 The Output— Error Estimator

Now, in the output—error case, the response function, z is assumed to have

the following form [7] :

g_’t‘.(t) - A x(t) + B u(t) (1.17)

z(6, u, 5, t) = Cx(t) + 7t

The matrices A, B, and C are functions of 6, and 7(t) is a zero mean
Gaussian process with covariance, R. Time, t is now included in the
formulation. In the equation— error case this was not necessary. However, it is

required for output— error, since the model now involves the derivative dx(t)/dt.

It can be shown [7] that the log— likelihood function for this case is as

follows :

log p(zl8) = (z(t)-Cx(t)) T R™(z(t)-Cx(t))

1

log [R] - 5 log 2« (1.18)

Nl= N

Despite the apparent similarity between the log— likelihood functions of the
equation— error and output— error cases, the output—error method is significantly
more complicated. This is because the model response, Cx(t) is no longer linear
in the parameters, 4. It is therefore necessary to use a numerical optimisation

algorithm to maximise the output— error log— likelihood function [7].

11



The model assumed in the output—error method is a more accurate
description of the conditions prevailing in helicopter identification than is the
equation— error model. To use the output— error method, measurements must be
made of the outputs, z, and the inputs, u. The method assumes, correctly, that
there is noise in the measurement of z. It is also takes u to be noise free,
which is untrue. However, the input measurements typically contain little noise,

and so this assumption is not unreasonable.

For helicopter applications, the output—error method can therefore be
expected to produce more accurate parameter estimates than the equation— error
method. As a result, the equation— error method is often used to obtain initial
parameter estimates. These are then used as the starting point for the more

powerful output— error algorithm [11].

Finally, combining equations (1.8), (1.9) and (1.18) gives the following

expression for the output— error dispersion matrix :

D = M !

T -\
Moo= J (C dx(t)/deYy  R™' (C dx(t)/de) dt

0 (1.19)

where,

T is the length of the test record used.

12



1.4 DIFFICULTIES OF HELICOPTER SYSTEM IDENTIFICATION

While identification of fixed— wing aircraft has in the past been relatively
successful [12], particular problems have been encountered in rotorcraft
applications which have complicated the identification task. These problems are
mainly due to three factors : the complexity of the system, inherent instabilities,

and data measurement difficulties [5,11].

Rotorcraft are complex, highly— coupled systems. Due to the coupling,
motion in one axis will excite motion on several other axes. This results in the
system responses being highly correlated, which causes severe problems when
identification is attempted. Moreover, high order models are needed to describe
such responses. There are therefore a large number of parameters to be

identified.

Secondly, as mentioned in section 1.2, the theoretical model of interest is
obtained by linearising a more general non— linear model about an operating
point. However, the system is usually poorly damped, and often exhibits
instabilities. = Hence, only very short flight test records are obtained before the
system departs too far from the operating point and the linear model becomes

invalid.

Finally, the signal—to— noise ratio of flight test data is poor due to the high
vibration levels in rotorcraft. Other instrumentation problems can also occur e.g.
the well known difficulties involved in accurately measuring airspeed at hover and

in low speed flight [5].

As a result of these difficulties, system identification of rotorcraft has been

of only mixed success to date.

13



1.5 REVIEW OF INPUT DESIGN APPROACHES
1.5.1 Non— Optimal Inputs

In the past, various semi— intuitive approaches have been proposed by a

number of authors for the design of system identification test inputs.

Perhaps the most straight— forward of these uses the inputs applied to the
system during normal operation as the identification test inputs. However,
problems can arise if these inputs are not persistently exciting i.e. if they are
zero (or constant) for lengthy periods of time, or if their frequency components
do not adequately span the pass—band of the system [13]. Also, more subtle
problems can occur if there are high correlations between the input and output of
the system. These are often present when the input is being used as a control

to maintain some specified output i.e. in a closed— loop manner [13].

For example, consider the simple closed— loop system given in figure 1.1.
This closed— loop system responds to the command input, u(s) and the noise,
n(s). In practice, the noise, n(s), typically results from external disturbances to
the system, e.g. air turbulence acting on an aircraft. To identify the open— loop
transfer function, H(s) the output, y(s) and the error signal, x(s) must be
available. The transfer function can be expressed as y(s)/x(s).

Now,

y(s)/x(s) = y(s)/ (u(s) — G(s)y(s)) (1.20)

When G(s)y(s) >> u(s),

y(s)/x(s) - —1/G(s) (1.21)

In this case, the inverse of the feedback transfer function will be obtained as

the open— loop transfer function. This is clearly incorrect.

14



Figure 1.1

A simple closed—loop system with process noise
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Time histories of the typical multi—step inputs conventionally used in
system identification (step, pulse, and doublet)
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This limiting condition is only reachable in practice when the command
input, u(s) is held at zero, and the system is excited by the noise. However,
biases will occur in the open—loop transfer function estimate even if u(s) is
non— zero, as a result of the correlation between x(s) and the noise n(s). There
are therefore serious difficulties involved in the identification of open— loop

information from closed— loop data.

Sine Wave Inputs

A more successful alternative to using normal operating inputs is to use pure
sine waves as inputs. By applying several different frequencies, and allowing the
system to reach a steady state after each change of frequency, it is possible to
obtain information about the gain and phase of the system transfer function at
those frequencies. However, this can be a very time— consuming, and expensive

procedure if many frequencies are required [14].

This problem may be overcome by using swept sine waves as inputs. In a
swept sine wave, the frequency starts at the begining of the range that is of
interest, and is then continuously increased until the desired final frequency has
been reached. This type of input can therefore be used to excite a range of
frequencies at once, greatly reducing the time required when compared with using
individual pure sine waves. Such swept sine waves have in the past been found

to be good general— purpose inputs for many applications [14].

In the aerospace field, pure sine wave inputs have been widely used in the
past with fixed— wing aircraft e.g. [15]. More recently, swept sine waves have
been successfully used of the identification of the XV—15 tilt— rotor aircraft [16],

and the Aerospeciale Puma and Westlands Lynx helicopters [17,18].
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However, these particular rotorcraft applications involved identifying the
closed— loop transfer functions of the system i.e. with stability augmentation in
use. When these rotorcraft are used without augmentation, in order to permit
identification of their open— loop characteristics, they are only marginally stable at
best. The swept sine wave inputs produce too large an excitation at the
frequencies where the unstable modes are located, resulting in only short test

records before the response becomes non— linear.

In principle, this can be overcome by modifying the swept sine waves so
that they are selective and avoid exciting those frequencies corresponding to the
unstable modes. However, to the author's knowledge this has not been attempted
in practice in either the aerospace field or any other area of application, since
the resulting input is very complex. This complexity means, in particular, that
the input cannot be applied manually by the pilot. Moreover, as shown in
Chapter 2 below, such selective excitation may be easily achieved with simple
multi— step inputs, avoiding the need for the more complex swept—sine based

approach.

Swept—sine inputs may nevertheless still be wuseful for some open— loop
rotorcraft applications. One case is where the frequencies of interest are not
located near the unstable modes. Typically this is true for the rotor dynamics,
since these are concentrated at higher frequencies while the unstable fuselage

modes are at lower frequencies.

Multi— Step Inputs

While swept sine waves are often useful inputs, in some practical situations
they can be difficult to use due to their complex shape. As a result, there has
been interest in designing simpler forms of input. In particular, a large effort
has been directed towards designing binary multi—step inputs, which have only
two amplitude levels 'on' and 'off', and which consist of a sequence of step

transitions between these levels.
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Figure 1.3

Time history and auto—spectrum of the 3211 PRBS—based multi—step input
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Wide use is made of the simplest multi—step inputs, i.e. steps, pulses, and
doublets (see figure 1.2) [14]. Despite their simplicity, these inputs frequently
give good results, especially where low order systems with relatively slow dynamics
are used. For example, it is standard practice to use step inputs for the
identification of chemical plants and other large, slow installations [19]. However,
where more complex, higher bandwidth systems are involved, these inputs can

produce much poorer results.

More sophisticated types of multi—step input can be used to greatly improve
the success of identification for both simple and complex systems. In particular,
many authors have concentrated on using pseudo—random binary sequences
(PRBS) as inputs. These are periodic inputs which have an auto— spectrum which
approximates that of band— limited white noise, and therefore can be used to
excite a specified range of frequencies [20,21]. Good results have been obtained
with PRBS inputs in many applications outside the aerospace field, e.g.
[13,21,22,23].

In fixed— wing and rotorcraft applications, a wide variety of multi— step
inputs have been used, including steps, pulses, doublets, and PRBS inputs. These
appear to have been found to be relatively successful for fixed— wing aircraft [12].
For example, a PRBS—based input called the 3211 (see figure 1.3) has been

reported to give particularly good results [24].

However, these types of multi—step input aim to uniformly excite a range of
frequencies. Hence, they suffer from similar problems to swept sine wave inputs
when they are used with rotorcraft, i.e. they can produce too large an excitation
of the rotorcraft unstable modes. This leads to only very short test runs being
obtained before the system response becomes non-— linear (see section 1.4). In
Chapter 2 below, a method is described for the design of multi—step inputs
which avoid exciting the wunstable modes and so lead to longer test runs.
Previously, other authors have tried various different techniques in an attempt to

overcome the problem of short test runs.
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Firstly, several different test runs can be combined together to give greater
information about the system than is contained in any single run. It is possible
to simply concatenate these runs, and this approach is advocated by some authors
fe.g. 5]. Unfortunately, discontinuities will be present if x;(T) # xj+ ,(0), where
xj(T) is the response at the end of time history i, and xj4 ,(0) is the response
at the start of the subsequent time history, i+ 1. Such discontinuities can result
in difficulties. In the equation—error approach, the identification problem is
treated as a regression problem. Hence, time— domain equation— error
identification is unaffected by any discontinuities, although it has been found that
some errors can be introduced if frequency— domain equation— error identification
is used [11]. However, with output— error methods, the dynamics of the system
under investigation are explicity taken into account. As a result, discontinuities

cause severe difficulties for output— error identification.

An alternative approach called the method of 'successive residuals' has also
been suggested for combining the data from several runs [26]. In this approach,
the model to be identified is partitioned into suitable sub—sets. The full model
is then built up by identifying each of these subsets from appropriate test runs,
and combining these in a mathematically consistent manner to obtain the full
model. In this way, the identification problem is broken down into several
smaller problems which can be tackled individually. Several authors have found
that this method gives better results than simple concatenation of the test runs
[6,26].

Finally, the duration of test runs can also be increased by using stability
augmentation of the rotorcraft to improve the damping of the system.
Unfortunately, as explained above, identifying open—loop information from
closed— loop data is fraught with difficulties, and can lead to severely biased
estimates. Nevertheless, some authors appear to have successfully used

closed— loop testing [27], and this area requires further work.
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1.5.2 Optimal Inputs
Introduction

In some applications, the inputs discussed in the previous section are not
able to produce identification results of sufficiently high quality. In other cases,
the collection of test data for identification purposes is expensive, e.g. with
aircraft, and it is therefore desirable to use efficient inputs which reduce the
amount of test data required. @ Much attention has therefore been directed at

developing more rigorous methods for identification test input design.

In all of these more rigorous approaches, the task of input design is cast as
an optimisation problem. Their aim is to design the best, or optimal, input for

a given problem.

Input Design Criteria

The first step in designing an 'optimal' input is to obtain some quantitative
cost function that provides a measure of the 'goodness' of any particular input.
It is then possible to choose that input which maximises this 'goodness' function

or, equivalently, minimises its inverse.

In order to decide on such a criterion for designing inputs, the uses for
which the identification is intended must be considered. One of the principal
aims of the present work on identification is to help in the validation of
theoretical flight mechanics models. The identification must therefore produce

accurate values for the model parameters.

When parameter accuracy is the criterion used, much of the work on input
design reported in the literature has been concerned with designing inputs to
minimise some function of the dispersion matrix. This is because for an efficient

estimator [8], the Cramer— Rao bound [9] states that :

cov (6") = D (1.22)
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where,
6' are the parameter estimates obtained from the identification.

D is the dispersion matrix (see equation (1.8), (1.9)).

Now in many situations an efficient estimator does not exist, and the
dispersion matrix then merely gives a lower bound on the covariance of the
parameter estimates. In such cases, these input designs can no longer be relied

upon.

However, inputs designed using the dispersion matrix are useful in situations
where sufficiently long test records are available, since at least one class of

estimators — maximum likelihood estimators — are asymtotically efficient [8].

Several special functions of the dispersion matrix have been used in the past

as performance measures [28]. These include

1) A— Optimality : minimise tr(D) i.e minimise the average covariance

of the parameter estimates.

2) E— Optimality : minimise \p,4(D), where A,y is the maximum

eigenvalue of D.
3) D— Optimality : minimise |D|

The choice of which of these criteria to use is, unfortunately, relatively
arbitary. However, D— Optimality possesses several important advantages over A—

and E— Optimality.

Firstly, D— Optimality is invariant under scale changes in the parameters, and
linear transformations of the system being used [28]. This is not true for A-—

and E— Optimality.

Another advantage of D-— Optimality is that it implies G— Optimality .[28].
The A—, E—, and D— Optimality criteria are based on the accuracy of the
parameter estimates. However, in other applications the emphasis may lie on
obtaining a model which accurately predicts the response of the system to an

input. G— Optimality caters for such situations.
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G-Optimality : minimise max cov(z(t,0'))

where,

z is the response of the model to an input u,

6' are the parameter estimates.

Hence, D—Optimality produces both accurate parameter estimates and

accurate responses.

Finally, in addition to the more widely used optimality criteria mentioned
above, particular authors have in the past approached the input design problem
using other criteria. For example, Ramachandran [29] attempted to minimise the
parameter correlations i.e. minimise the off— diagonal elements of the dispersion
matrix. = Whereas Chen [30] worked on generating inputs which would give a

specified dispersion matrix.

Noise Characteristics

It is widely assumed that the noise in the system under consideration is
Gaussian. However, in practice this is rarely true. As a result, growing
attention has been given to alternative types of noise statistic. ~For example, in
the bounded noise approach [31], the only assumption is that the noise lies
between known upper and lower bounds. No knowledge of the distribution

between these bounds is required.

However, in aerospace applications, all input design and identification work
to date has concentrated on Gaussian noise.  For rotorcraft in particular, the
noise distribution is extremely complex. Moreover, the distribution varies with the
loads placed on the rotor, and so will alter during a manoeuver. Given this
complex behaviour, any simple distribution is inadequate. However, the Gaussian
form often leads to significant savings in computing time, and has been found to

be a useful approximation until a more accurate distribution is developed.
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Constraints

In practical systems, where the noise is finite, an input of infinitely large
magnitude will produce a response with an infinite signal—to— noise ratio. The
noise can then be neglected, and perfectly accurate parameter estimates will be
obtained. It can therefore be seen that the input which optimally minimises
some function of the dispersion matrix will be of infinite magnitude. This is

clearly impractical.

It is therefore essential that constraints are included in such optimisation, in
order to restrict attention to practical inputs. The simplest, and least restrictive,
constraint is merely to insist that inputs have finite energy. This has been the
most widely used constraint reported in the literature, and is usually expressed as
follows [28] :

T 1
J ul(e) u(e) de = 1 (1.23)
0

where,
u(t) is the input,

T is the duration of the input.

Equation (1.23) restricts the input to have an energy equal to unity. Now
the dispersion matrix varies linearly with input energy. The input which is
optimal at one energy can therefore simply be scaled to give the input which is
optimal at a different energy. The particular energy used in (1.23) is therefore

arbitary, and so is chosen for convenience to be unity [28].

A more restrictive constraint is to insist that the input amplitude lies below

a certain level, that is :
ju(t)] < k, k some constant (1.24y

The resulting optimal input will be of a bang— bang nature i.e. a multi— step
[28].
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Finally, the following constraint has been proposed for situations where it is

undesirable for the input to produce a large system response [28] :

T T T
J (u (t) Pu(t) +y (t) Qy(t) )dt = 1 (1.25)
0
where,
u(t) is the input,
y(t) is the corresponding noise— free system response.
P, Q are weighting matrices,

T is the duration of the input.

This constraint restricts the combined energy of the input and output.
However, this constraint appears to have only been considered from a theoretical

viewpoint, and no reports have been found of it being used in practice.

The question of constraints has been largely neglected by many authors in
favour of other areas of optimal input design. However, the importance of such
constraints in determining the characteristics of the optimal inputs, and the
practicality and usefulness of these inputs must be stressed.  Constraints will

therefore be considered later in greater depth later.

Optimal Inputs for Aircraft and Rotorcraft Applications

Optimal identification test inputs have been studied for several fixed— wing
applications. A major advantage of using optimal inputs in aircraft applications is
that due to the greater efficiency of such inputs, a reduction is obtained in the
amount of flight testing required to obtain sufficiently accurate parameter
estimates. Since flight testing is extremely expensive, any reduction can produce

significant cost savings.

A study by Gupta et al [32] investigated the use of A— and D— optimal
inputs. The simple energy constraint given in (1.23) was used. It was concluded
from simulation results that these inputs produced more accurate parameter
estimates than traditional multi—steps. However, no flight trials were performed

to verify these results.
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Chen [30] examined the use of optimal inputs which gave the same accuracy
of parameter estimates as multi— steps, but which required flight tests of shorter
duration. Once again. a theoretical study showed that significant flight test

reductions could be achieved.

However, less encouraging results were obtained by Plaetschke [24]. In this
case, optimal inputs were generated and compared with the conventional 3211
PRBS input in flight trials using a De Havilland DHC—2 Beaver. From these
trials, it appeared that the 3211 and the optimal inputs produced comparable

results.

Work has also been carried out with rotorcraft on the design of optimal
inputs. The main aim of this work has been to improve the success of rotorcraft

identification and obtain more accurate parameter estimates.

In a study of optimal inputs for rotorcraft, Hall et al [25] encountered
similar difficulties to those found with fixed— wing aircraft. A UH—1H helicopter
was used for the flight trials, and A— and D— optimal inputs were compared
against standard doublet inputs. The doublet inputs appeared to be more
successful than the optimal inputs. However, these results were felt to be

inconclusive by Hall et al.

From this work, it appears that optimal inputs have given excellent results in
simulations, but have been less successful in flight trials. There therefore may be
practical difficulties involved in the use of optimal inputs that need to be resolved
before the full potential of these inputs can be realised. Several proposals are

made on this subject later by the present author.
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1.6 STATEMENT OF ORIGINALITY

The following results of the research work presented in this thesis are, as far

as is known, original and, as noted below, some of these results have been

published.

CHAPTER 2

Section 2.2 —

Section 2.3 —

Section 2.4 —

The design approach for multi— step inputs.

The design and flight testing of multi—step inputs for the
Lynx helicopter at RAE (Bedford).

The identification results for the double— doublet input.

The ill— conditioning encountered during the output— error

identification of an unstable system.

Leith, D.J.; Murray—smith, D.J. 'Experience with multi—step test inputs for

helicopter parameter identification' Paper no. 68, presented at the 14th European

Rotorcraft Forum, Milan, 1988

CHAPTER 3

Section 3.1 —

Section 3.2 —

Section 3.3 —

Section 3.4 —

Section 3.5 —

The application of the following constraints to input

design :

i) Linearity constraint obtained by repeatedly linearising

a non— linear model
ii) Output amplitude constraint
iii)  Response robustness constraint
iv)  Parameter robustness constraint
The time— domain design algorithm, and the simulation
results for energy constrained optimal inputs.
The time— domain design algorithm, and the simulation'
results for output and input energy constrained optimal
inputs.
The time— domain design algorithm, and the simulation
results for output amplitude constrained optimal inputs.

The time— domain design algorithm, and the simulation
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results for response robust optimal inputs.

Section 3.6 — The simulation results for parameter robust optimal inputs.
Section 3.7 — Combined response robustness and parameter robustness.
CHAPTER 4

Section 4.2 — The optimal Lynx input.

APPENDIX B

Section B.2 — The recursive method for calculating hki and gki for

Chebyshev polynomials.
Section B.3 — The stabilised basis functions for use with unstable systems.
Section B.4 — The implementation of amplitude constraints using a

smooth, continuous scalar function.

e
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2.1 INTRODUCTION

Much of the work on input design reported in the literature has been
concerned with developing algorithms to minimise some function of the dispersion
matrix. This is because, for an efficient estimator, the Cramer— Rao bound states

that,

cov () = D (2.1)

where, 6 is a vector containing the parameter estimates,

and D is the dispersion matrix.

Now, in many situations an efficient estimator does not exist, and the
dispersion matrix then merely gives a lower bound on the covariance of the
parameter estimates. In such cases, these input design algorithms can no longer

be relied upon.

However, inputs designed using the dispersion matrix are useful in situations
where sufficiently long test records are available, since at least one class of

estimators — maximum likelihood estimators — are asymptotically efficient.

Using conventional inputs, typically only short rotorcraft test records are
obtained before the response departs too far from the operating point of the
linearised model being used, and so becomes non— linear (e.g. see section 2.3

below).

Hence, as a first step, it was decided to concentrate on trying to design
sub— optimal inputs which would give longer test records while at the same time
giving a reasonably 'small' dispersion matrix. The next step would then be to
design optimal inputs to strictly minimise some function of the dispersion matrix,
while still giving sufficiently long test records. The results of the first step —

sub— optimal inputs — are covered in this chapter.
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Consideration of the robustness of the inputs was also included in the input
designs. Robustness is an important, though often neglected, aspect of input
design. Only an approximate model of the system involved is available
beforehand, and so the inputs used must be insensitive to errors in the model.
In addition, on the particular helicopter used in this work inputs are currently
applied by the pilot via the normal controls, and so they must also be insensitive
to being applied inaccurately. Since they are applied manually, they must also
be kept relatively simple e.g. multi—steps. However, work is currently underway
at RAE (Bedford) to develop an input device which will in the future allow
inputs to be applied directly to the helicopter without pilot intervention [1].

2.2 INPUT DESIGN METHOD
2.2.1 Input Auto— Spectrum Design

The aim is to design an input which is robust, gives long linear test records,
and which gives a reasonably 'small' dispersion matrix. Several general guidelines
can be developed concerning the features that should be present in the

auto— spectum of such an input.

Firstly, consider obtaining longer time histories. Typically, the transfer
function between a given rotorcraft model state and a given control input contains
large peaks. These peaks correspond to resonances in the system. If an input
excites these resonances, then the response will be large, and will rapidly become
non— linear, so leading to a short test record. Hence, by designing inputs which

avoid exciting these resonances, longer test records can be obtained.

In addition, inputs should not contain a dc component. If a large dc
component is present, then the aircraft response to the input will also contain a
dc component. This is undesirable when using a model linearised about a
particular operating point, since a dc component essentially means that the
response is about a different operating point. If this operating point is
significantly different from that used when linearising the model, then the model

will be invalid.
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Now, the " next step is to consider how to obtain a reasonably ‘'small’

dispersion matrix. Take the model,

2%%3) = A x(t) + B u(t) where, z(t) = measured responses
n(t) = Gaussian process
with zero mean and
z(t) = C x(t) + n(t) covariance, R
u(t) = single control
input

Xx(t) = model states

A,B,C = model matrices

(2.2)
Let 6 be a vector containing the model parameters that are to
be identified, and let the true values of these parameters be given
by 6. This system corresponds to the model used in output-error
identification, and it was shown in section 1.3.4 that the

dispersion matrix for this is given by,

D = M!

T
J (dy(t)/do)T R™1 (dy(t)/de) dt

M =
0 (2.4)
where,
y(t) = C x(t)
T is the length of the test record used.
This expression can be simplified by letting T » «» [2].
Parseval's theorem then gives,
© ©
J oy’ kW g - J Oy kY ()
dé de dé dé

0 - (2.5)

where,
dY(w)/d6# is the Fourier transform of dy(t)/dé,

w is the complex frequency.
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Now,

Y(w) = G(w) U(w) (2.6)
s dY(w)/df® = dG(w)/d6 U(w) (2.7)
= F(w) U(w) (2.8)

where,

Y(w), U(w) are the Fourier transforms of y(t), u(t)

G(w) = C(jw-A)~'B, transfer function matrix
F(w) = dG((z))/d0|0=ﬂ
Hence,
M = J (F(0)U(w))* R™' (F(w)U(w)) dw (2.9)
[o0]
- J F¥(w) R™! F(w) Syu(w) do (2.10)
where,
Syu(w) = auto-spectrum of input u(t)

= E(U*(w) U(w))
= U"(w) U(w), since the input, u is completely
deterministic in the current

application.

In practical systems, F(w) becomes negligible above some
frequency, w.. Now consider the scalar case of a single-input
single-output system with only one parameter to be identified. This

gives,

w

C
M = R J IF(w)|2? Syy(w) duw (2.11)

- w
C

D = 1/M (2.12)
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Notice that the expression for M does not involve the phase of the input or
the phase of F(w). Hence, attention can be restricted to the magnitudes of the
input and F(w). It can then be seen that to obtain a small dispersion, D, a

large M is needed i.e. the area under the curve |F(w){? S,,(w) should be large.

Now, in order to obtain long test records, the input auto—spectrum, S (w)
should avoid exciting the transfer function resonances. However, by exciting the
frequencies away from the resonances, |F(w)|? Sy (w) can still be made to have

a fairly large area.

Returning to the more general case of a vector model, exciting the
frequencies away from the resonances will result in the elements of M being
reasonably large, and intuitively, this should lead to a ‘'small' dispersion matrix,
D. It should be noted that while it is well known that maximising M in this
way can in fact produce a singular dispersion matrix [3], for the present
application this can be neglected since the inputs wused are significantly

sub— optimal, and therefore do not maximise M sufficiently to cause difficulties.

The arguments concerning the dispersion matrix in particular, and those
concerning the other guidelines in general, are very crude. However, the system
transfer functions are typically only known approximately, and F(w) is usually
even less well known. Hence, when designing inputs only the general
characteristics of F(w) can be relied upon to any extent, and therefore
sophisticated algorithms using detailed knowledge of F(w) are redundant. Of
course, if F(w) is better known, then more sophisticated algorithms become

worthwhile.

Finally, the robustness of the inputs has to be considered. Since the model
is not known exactly, the frequencies of the resonances are not known exactly.
To allow for errors in these, inputs should avoid exciting a range of frequencies
around the predicted position of each resonance. This will also make the inputs
less sensitive to errors introduced during the application of the inputs by the
pilot, since errors in the input's auto—spectrum can then be tolerated tc; a

greater extent.
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So, by intuitive arguments, the features that should be present in the

auto— spectrum of a reasonable input have been determined,

a)  Auto— spectrum should avoid exciting transfer— function resonances, to give
longer test records.

b) Auto— spectrum should also avoid exciting frequencies around the resonances,
to give robustness.

c) Auto— spectrum should excite the remaining frequencies, however, to give a

fairly 'small' dispersion matrix.

It is of interest to note that if there is no constraint on the magnitude of
the system's response to an input, then features (a) and (b) can be discarded.
The resulting input is then the standard wide— bandwidth type, such as an impulse

or a pseudo— random binary input, which is in widespread use for identification.

2.2.2 Optimal Spectrum Program

Now that the criteria for designing the auto— spectrum of an reasonable input
have been obtained, the next stage is to produce an input with the desired
auto— spectrum characteristics.  Since inputs must be applied by the pilot, they
must be kept relatively simple e.g. a sequence of steps. A program has
therefore been written that will generate the binary multi—step input whose

auto— spectrum best meets a given specification.

Consider the general aperiodic binary multi—step input,

1 — - - - I —
0
t1 t2 tn time (sec)
-1
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The Fourier Transform of this input is,

n-1
F(w) = %, [1 + 2izl(-1)iexp(—jwti) + (—1)nexp(—jwtn)]

(2.13)
where,
F(w) is the Fourier Transform
w is the frequency in radians/second.
i= /=1
n+1 is the number of steps in the input.
tj is the time in seconds of the ith step in the input; t; = 0 sec.
Now define the cost function,
m
I o= ) ag IF(ap) |2 (2.14)
k=1
where,
ap are constants, k=1, 2, ... m
wg are frequencies in rads/sec, k=1, 2, ... m
The optimal spectrum program takes as input,
1) The number of steps, n, in the input.
2) The number, m, of constants in the cost function, I
3) The values of the weightings, ayg, and the frequencies, wy, in the cost
function, I.
The program will then calculate the times, tj, of the steps in the input that

will result in the cost function, I being maximised. Specifying a large, positive

ay results in an input with a large auto— spectrum component at frequency wy.

Conversely, specifying a large negative ap results in an input with a small

auto— spectrum component at the corresponding frequency, oy.
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This permits the straightforward synthesis of inputs with auto— spectra
meeting the guidelines developed in section 2.2.1. The optimal spectrum
program, in conjunction with the auto— spectra guidelines, therefore forms a

simple input design approach.

2.3 LYNX FLIGHT TRIALS

2.3.1 Design of Lynx Test Inputs

In order to assess the input design method presented above, inputs were
designed for the Lynx helicopter at RAE (Bedford), and subsequently underwent
flight trials.

Figure 2.1 shows the magnitude and phase of the theoretical HELISTAB
pseudo transfer functions associated with the Lynx longitudinal cyclic control for
80 knots level flight [3]. At this flight condition, the Lynx helicopter is unstable.
Hence, the impulse response of the helicopter diverges to infinity as time goes to
infinity. The transfer functions are therefore given by the Laplace transform of
the impulse response rather than the Fourier transform, since the Fourier
transform cannot be used with a divergent function. However, the results shown
in figure 2.1 were obtained by taking the Fourier transform of the first 60
seconds of the theoretical impulse response of the Lynx. Hence, they are not
the true magnitude and phase of the transfer functions. Nevertheless, they reflect

the characteristics of the system, and are sufficient for the present purpose.

It can be seen that there is a large peak in the magnitude transfer functions
around 0.3 rads/sec, and that there is also a rapid change in phase. This
corresponds to the wunstable phugoid—like mode of the Lynx, which has a

theoretical natural frequency of 0.36 rads/sec.

The optimal spectrum program was therefore used with the weightings shown
in table 2.1.
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Figure 2.1

cyclic

the longitudinal

input and the outputs of the theoretical HELISTAB model.

transfer functions between
model used, with Lynx at 80 knots level flight.
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Frequency (rads/sec) Weighting
0.00 -5.0
0.30 -5.0
0.36 -5.0
0.50 -5.0
0.60 -5.0
1.00 -2.0
2.00 5.0 .
2.50 5.0
3.00 0.5
3.50 -2.0
6.00 -2.0

Table 2.1 - The weightings used with the optimal spectrum program
to generate longitudinal cyclic inputs for a Lynx

helicopter at 80 knots level flight.

The first weighting was selected to ensure that the input did not contain a
dc component. The following five weightings were chosen to ensure that the
input avoided exciting the resonance at around 0.3 rads/sec. @ The next three
weightings were then used to produce a rise in the input auto— spectrum between
2 and 3 rads/sec. Finally, the second last weighting was used to prevent this rise
in the auto—spectrum from spreading out to higher frequencies, and the last
weighting was similarly used to reduce the power at high frequencies. This was
because previous experience with the Puma at RAE (Bedford) suggested that the
theoretical model was only valid up to around 3 rads/sec. Above this frequency,
rotor dynamics appear to dominate the response, and these are not included in

the simplified model that is being used [4].
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Figure 2.2

Time history and auto—spectrum of the input generated by the optimal

Spectrum program in accordance with the weightings given in Table 2.1

0.8

B.4—

TIME (SEC)

%10

0.8 —

US AUTO SPEC

0.4 /

8.2—

0 i 2 3 4 5 6 ‘

FREQ (RADS/SEC)



doublte-doublet

1221

doublet

3211

Figure 2.3

Time histories and auto—spectra of double—doublet and 1221 inputs.
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Using these weightings, an input consisting of 5 steps was generated by the

optimal spectrum program

(see figure

2.2).

It

can be seen that the

auto— spectrum of this input has little power below 1 rad/sec, and that most of

the power is concentrated between 1 and 3 rads/sec, as desired.

The timings of the steps in this input are as follows,

t, = 0.00
t; =1.08
t, = 2.59
t, = 4.10
ty = 5.18

secC

secC

secC

secC

secC

(t2-t1=1.08
(t4-t2=1.51
(t,~t3=1.51
(tg-ta=1.08

sec)

sec)
sec)

sec)

It is unrealistic to expect a pilot to apply an input with such awkward

timings, so this input was modified to give two versions with much simpler

timings. This should be straightforward, since the original input was designed to

be robust, and in particular to withstand being applied inaccurately by the pilot.

Hence, moderate changes in the timings of the input should have only a small

effect.

The modified inputs were called the double—doublet

timings as follows,

1) Double-Doublet

t, = 0.0 sec
t =1.0
ty =2.0
t, = 3.0
t. = 4.0

sec (t,-t,=1.0 sec)
sec (t,~t2=1.0 sec)
sec (t,-t3=1.0 sec)

sec (tg-t,=1.0 sec)

2) 1221

tl
t2
t3
t4
t5

]

I I
o
o O O O O

A U W

and the 1221, and have

sec

sec (t,-t,=1.0
sec (ty-t,=2.0
sec (t, -t =2.0

sec (t -t ,=1.0

Note that the timings of these inputs have been arranged so that the

have no dc component.

sec)
sec)
sec)

sec)

inputs

It can be seen (figure 2.3) that the auto—spectra of these inputs are very

similar to that of the original input.
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In the case of the double— doublet, it can be seen that the input contains
little power below 2 rad/sec. Hence, it can accomodate a larger error in the
predicted frequency of the unstable resonance of the Lynx than the original input.
However, the double— doublet contains slightly more power below 1 rad/sec than
the original input, and so may excite the unstable mode more and so give shorter

test records.

In contrast, the 1221 has less power below 0.75 rad/sec than the original
input, and so should give longer test records. However, since the region around
the unstable resonance where the input power is low is smaller than in the
original input, the 1221 is more sensitive to errors in the frequency of the

resonance.

Hence, the double— doublet and the 1221 complement each other, and the
original input is a compromise between the two. It was therefore decided to

study both of these inputs in more detail.

2.3.2 Flight Trials of Lynx Test Inputs

The inputs developed were used in flight trials with the Lynx helicopter at
RAE (Bedford).

In past rotorcraft identification work at the University of Glasgow (e.g. [4]),
and in much of the identification work reported in the literature, the inputs used
have consisted of doublets and 3211's (see figure 2.4). These inputs were
therefore used as references against which to compare the double— doublet and

1221 inputs.

The HELISTAB 8th order helicopter model used in this work has potentially
96 parameters to be identified. In order to make the problem more manageaijle,
attention was initially restricted to the pitching moment equation of this model.
This equation describes the’ behaviour of the pitch rate of the helicopter, and

contains 7 parameters, as follows.
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3—‘3 () = Mgu(t) + Mgw(t) + Mgq(t) + Myv(t) + Mp(t)

+ MpisMis + Mpictic

where,
u(t) = longitudinal velocity w(t) = vertical velocity
q(t) = pitch rate v(t) = lateral velocity
p(t) = roll rate
7,s(t) = longitudinal cyclic control input
7,c(t) = lateral cyclic control input

My, My, Mg, My, My, My, My, are the parameters to be
estimated in the system identification.

A frequency— domain equation—error program developed by Black [5] was

used to perform the initial identification.
Four inputs were used in the flight trials,

3211

Double— Doublet
Doublet

1221

N N

An input amplitude of 0.02 radians was used in all cases. This corresponds

to the smallest practical pilot input.

The results obtained for these inputs are now given.

3211 Input

The 3211 input gave very short test records — typically only 3 seconds long
— before the pilot was forced to recover control of the aircraft. Since the 3211

input itself is 7 seconds long, it was not possible to fully apply the input in the
available time.
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Figure 2.6

Variation of the Pitching Moment Equation squared—correlation coefficient,

R2 and Fyu4, with the length of test record used for flight 190/ 12.
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Figure 2.7

Coherency functions of the 8 helicopter states to the longitudinal cyclic input for
the full 40 second test record and for the first 30 seconds of the record (flight

190/ 12).
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Figure 2.4 shows the auto— spectrum of an ideal 3211, and it can be seen
that it has a large peak below 1 rad/sec. Hence, this input will greatly excite

the unstable resonance of the Lynx, so leading to short test records.

In conclusion, the 3211 is an unsuitable input for use with the Lynx.

Double— Doublet Input

In contrast to the 3211, the double— doublet gave long test records —
typically 40 seconds of data were obtained before the pilot was forced to recover

control of the aircraft.

Three flight trials were obtained using double— doublets, and these gave
results which were in extremely close agreement. Figure 2.5 shows the
double— doublet input applied by the pilot in flight 190/12. It can be seen that
the amplitude of the steps in the input vary, and that the timing is not precise.
However, due to the robustness of this input, it can be seen that the

auto— spectrum is still very similar to that of an ideal double— doublet.

Figure 2.6 shows the variation of the squared— correlation coefficient, R2 and
the Figtq) coefficient with the length of the test record used. The coherency
functions [6] between the eight measured states and the longitudinal cyclic input

are given in figure 2.7.

From these results it was decided that the first 32 seconds of the test

records could be taken as linear. Various factors were taken into account.

Firstly, it can be seen that there is a large drop in R? after 32 seconds,
and this corresponds to a noticeable peak in Fyga;.  This could be due to
non— linearities becoming significant for records longer than 32 seconds. 'i“he
coherency function helps to confirm this possibility. For the full 40 seconds of
the test record, the coherence is high (around 0.9) for all of the states except
for yaw rate, r and lateral velocity, v. These two states have coherences of

around 0.6, indicating significant non— linearities.
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Moving to the coherence of the first 30 seconds of the record, it can be
seen that the coherence of r and v rises to around 0.8, which can be taken as
linear for most purposes. The coherences therefore indicate that significant
non— linearities are excluded when going from 40 seconds to 30 seconds of the
test record, in agreement with R2? and Fyy,|. Hence the decision was made to

use the first 32 seconds of the test record.

It should be noted that several interesting numerical effects [7] can be seen
in the coherences shown in figure 2.7. Each one of the coherence functions has

troughs at around 0.3, 1, 4, and 7 rads/sec.

Firstly, recall that the unstable resonance of the Lynx occurs at around 0.3
rads/sec, and that there is a rapid phase change in the transfer— functions at this
point. This rapid phase change introduces a large bias into the coherence at this

frequency, and so produces the trough at around 0.3 rads/sec.

The remaining troughs in the coherence can be understood by considering
the auto— spectrum of the double— doublet input used (see figure 2.5). It can be
seen that the auto— spectrum is very low at around 1, 4, and 7 rads/sec. Hence,
the response of the states will be low at these frequencies, and so the
signal— to— noise ratio will also be low. The coherence will therefore be strongly
biased at these frequencies. Notice that there is also a slight shift in the
frequencies of these troughs for shorter test records, due to insufficient frequency

resolution.

Lastly, notice that some of the coherency functions take values below zero at
certain frequencies. This is purely a numerical artifact, and should be taken as a

coherence of zero — the coherence function should lie strictly between 0 and 1.
It is therefore the author's opinion that due to these effects the coherency

function should be used with some care, and coherence results interpreted with

caution.
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Finally, figure 2.8 shows the variation of the parameter estimates with the
length of record used. It can be seen that the estimates of Mg, Mp, My, and
Mmc appear to have converged after about 28 seconds. The estimates of M,
M,, and My also appear to reach a plateau after 28 seconds. However, they
then start to vary rapidly again after about 32 seconds, corresponding to
non— linearities becoming significant. In the theoretical model, 28 seconds is the
length of approximately four cycles of the slowest mode of the Lynx. Intuitively,
it is perhaps reasonable to expect that a few cycles of this mode will be needed

before its parameters can be properly identified.

From these results, it can be seen that unless an input provides fairly long
linear test records (greater than about 28 seconds) then the parameter estimates
will not converge, and poor estimates will result. Long records are also necessary
to give efficient estimation i.e. with the minimum parameter variance (given by
the dispersion matrix). Figure 2.9 shows the variation of the standard— deviations
of the parameter estimates with the length of test record. It can be seen that
these appear to have converged for Mq, Mp, Mms’ and Mmc, but not for M,

My, and My, Hence, still longer records would be desirable.

In conclusion, the double— doublet has given good identification results, and

appears to be a useful identification input.

Doublet Input

Three flight trials were obtained using doublets. The longest doublet test
run gave 38 seconds of data before the pilot recovered control of the aircraft.

However, the other doublet test records were typically 10 to 20 seconds long.

It was decided to look at the long 38 second run first of all — flight
183/24. The input applied by the pilot in this run is shown in figure 2.10. It
can be seen that the auto— spectrum of this input is similar to that of the ideal

doublet input.
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Figure 2.11

Variation of the Pitching Moment Equation squared—correlation coef ficient,

R? and Fypq) with the length of test record used for flight 183/ 24.
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Figure 2.12

| Coherency functions of the 8 helicopter states to the longitudinal cyclic
input for the full 38 second test record and for the first 25 seconds of the

record (flight 183/ 24).
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Figure 2.13

Variation of the estimates of the parameters of the Pitching Moment

Equation with the length of test record used for flight 183/ 24.
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Figure 2.11 shows the variation of the squared— correlation coefficient, R2
and the Fyoe,) coefficient with the length of test record used. The coherency
functions are given in figure 2.12 for 38 seconds and 25 seconds of the test
record. It can be seen that there are no significant peaks or troughs in R2 or
Fiotal Which would indicate the onset of non— linearities. = However, it can be
seen that the coherence for the full 38 second test record is very low for most

of the states, suggesting that serious non— linearities are present.

The coherence for the first 25 seconds of the record is, however,
considerably better. The coherence is generally around 0.9 for all of the states
except for yaw rate, r and lateral velocity, v, which have coherences of around
0.2. Hence, r and v are still very non—linear. Several large troughs are also
present in all of the coherences, in particular at around 0.3, 1.25, and 5
rads/sec. These troughs are shifted to around 1, 2.25, 6 rads/sec for the 25
second records, due to insufficient frequency resolution with this shorter time

history.

The trough at around 0.3 rads/sec is produced by the rapid phase change in
the transfer functions at this frequency due to the wunstable resonance of the
Lynx. While the trough at 5 rads/sec results from poor excitation by the input
at this frequency (see figure 2.10). These effects are similar to those observed

for the double— doublet.

The remaining trough, at 1.25 rads/sec, corresponds to a peak in the
doublet's auto— spectrum, and appears to represent at genuine non— linearity.
The peak in the doublet's spectrum is lower than for the double— doublet, but is
much wider and extends into the frequencies below 1 rads/sec. The doublet

therefore excites the Lynx's unstable resonance more than the double— doublet.
Hence, for 25 seconds of the available test record the responses still contain

significant non— linearities. It has been found that these non— linearities remain

present even when only 15 seconds of the test record are used.
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Figure 2.15

Variation of the Pitching Moment Equation squared—correlation coef ficient,

R? and F;45, with the length of test record used for flight 190/ 10.
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Figure 2.16

Coherency functions of the 8 helicopter states to the longitudinal cyclic
input for the full 38 second test record and for the first 20 seconds of the

record (flight 190/ 10).
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Figure 2.17

Variation of the estimates of the parameters of the Pitching Moment

Equation with the length of test record used for flight 190/ 10.
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Figure 2.13 shows the variation of the parameter estimates with the length
of test record used. It can be seen that there are several plateaus, but that the
estimates have not converged satisfactorily. 1In particular, below 15 seconds the
estimates are varying rapidly. This doublet test record therefore appears to be

unsuitable for identification, and gives only poor estimates.

Other test runs using doublets also typically produced test records with only

10 to 20 seconds of data before the pilot recovered control of the aircraft.

In conclusion, doublets do not appear to give linear test records which are
long enough to produce good parameter estimates. Moreover, the doublet flight
trials resulted in test records varying in length from 38 seconds to around 10
seconds. It therefore appears to be difficult to obtain consistent results using

doublet inputs, which suggests that this input is not sufficiently robust.

1221 Input

Finally, several test runs were performed using the 1221 input. These runs
typically gave 32 seconds of data before the pilot recovered control of the
aircraft, with the longest run being 38 seconds. Figure 2.14 shows the input

applied by the pilot in this 38 second run (flight 190/10).

The variation of the squared correlation coefficient, R2? and the Fiqg,4
coefficient with the length of the test record used are shown in figure 2.15. The
coherency functions are given in figure 2.16 for 38 seconds and 20 seconds of

the test record.

It can be seen that there are several sharp increases in R? as the length of
the test record used is reduced, with corresponding peaks in Fyigtq). The resEﬂts
discussed above for other test inputs suggest that these changes in R2 and Fyg¢)
may be due to non— linearities being excluded from the identification as the

record length falls.
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For the full 38 second record, the coherency functions are generally high

(around 0.9). However, several troughs can be observed.

The troughs at around 4 and 7 rads/sec can be attributed to the low power
of the input at these frequencies producing a poor signal—to— noise ratio, and

hence biased coherence.

The trough at approximately 0.75 rads/sec may be the result of either, or
both, of two effects. The input auto—spectrum is low at this frequency, and so
the trough may be caused by a poor signal—to— noise ratio as for the other
troughs. However, recall that a rapid phase change occurs in the system transfer
functions at around 0.3 rad/sec due to the unstable resonance of the Lynx.
Hence, the coherence has a trough at 0.3 rads/sec, and this trough may be
shifted to around 0.75 rads/sec on the coherence plots due to insufficient

frequency resolution. In either case the effect is not due to non-— linearities.

The trough at around 1.5 rads/sec, however, corresponds to a large peak in

the input auto— spectrum, and appears to indicate a genuine non— linearity.

This peak in the auto—spectrum of the 1221 input is of similar magnitude
to the peak in the double— doublet's auto— spectrum. However, the 1221 peak
occurs at a significantly lower frequency, and hence will excite the system to a

greater extent.

When only the first 20 seconds of the test record are used, it can be seen
that the coherence is little different from that of the full 38 second record,

except that the frequency resolution is somewhat poorer.

Hence, the coherence functions display no evidence of non— linearities being
excluded at the record lengths corresponding to the sharp increases in R?2.
Rather, the coherence suggests that non— linearities are still present in the shorter

test records.

Perhaps the sharp increases in R2 do correspond to a drop in the magnitude
of the non-— linearities. However, the non— linearities appear to remain
significant, and so are still registered by the coherency functions. which may have

insufficient precision to detect the reduction in the non-— linearities.
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Finally, figure 2.17 gives the variation of the parameter estimates with the
length of the test record wused. It can be seen that the estimates do not

converge, and that their rate of change corresponds to the rate of change in R2.

Similar identification results were obtained for the other 1221 test runs.

2.3.3 Conclusions from Flight Trials of Lynx Test Inputs

In conclusion, it appears that the 3211, the 1221 and the doublet suffer
from a similar type of problem: the inputs' auto—spectra contain too much power
at low frequencies in the vicinity of the Lynx's unstable resonance, resulting in
non— linear test records. This is particulary pronounced in the case of the 3211

input.

The double— doublet therefore appears to be the best input, giving fairly long

linear test records, and being reasonably robust.

Hence, these flight trials have demonstrated the effectiveness of the input
design method presented, despite its simplicity. The importance of obtaining
sufficiently long test records has been shown, both in terms of the convergence of
the parameter estimates and in terms of convergence of the parameter variances

to give efficient estimation.

It is interesting to take note of the results concerning the 1221 and
double— doublet inputs. These inputs complement each other, as discussed in
section 2.3.1 above — the 1221 theoretically produces less excitation of the
unstable resonance, while the double— doublet is more robust to errors in the
theocetic\ model, and to pilot errors in applying the input. Since the
double— doublet has been found to give the best results, it appears that robustness
has been the deciding factor. When designing inputs, the degree of robustn'ess

required should therefore be taken carefully into account.
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2.4 Identification Results for Double— Doublet Input

2.4.1 Introduction

As discussed in section 2.3.2 above, the most satisfactory flight trials were
obtained using double— doublet inputs. More detailed double— doublet

identification results are therefore presented below.

The parameters of the pitching moment equation described in section 2.3.2
were estimated. Results from both equation— error and output— error identification

are presented.

Before estimates of the parameters of the pitching moment equation could be

obtained, however, for each test record it was necessary to resolve certain issues.

a) How much of the available test record can be used ?
The response will become significantly non-linear at some

point, and this point needs to be determined.

b) What range of frequencies should be used in the
identification ?
The model being identified ignores the dynamics of the
helicopter's rotor. These dynamics tend to have short time
constants compared with the dynamics of the fuselage. Hence,
in the frequency-domain the rotor dynamics tend to dominate
the response at higher frequencies, while the fuselage
dynamics tend to dominate the low frequency response. The
model used is therefore only valid at low frequencies. Hence,
it is necessary to determine the range of valid

frequencies that can be used.
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Figure 2.18

Variation of the Pitching Moment Equation squared—correlation coef ficient,
R? and Fu,., with the upper frequency used in the identification. The lower
frequency was chosen to exclude dc, and depends on the frequency resolution
available i.e on the length of test record — a 32 second record was used, giving

a lower frequency of 0.196 rads/sec. (flight 190/ 12).
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2.4.2 Equation— Error Identification Results

For flight 190/12 it was decided to use the first 32 seconds of the test

records, for the reasons explained in section 2.3.2.

The next step was therefore to determine the frequency range to be used.
At lower frequencies, dc is excluded from the identification in order to deal with
any biases in the measurements. It then remains to decide what range of higher
frequencies should be used. Figure 2.18 shows the wvariation of the

squared— correlation coefficient, R? and Fyy¢, with the frequency range.

Several interesting features can be seen. Firstly, as the frequency range is
reduced there is a sharp increase in R2, and a peak in Fiotal at about 40
rads/sec. This is probably due to a rotor mode being excluded from the
identification, resulting in a better model fit. The theoretical model used,
HELISTAB, is in good agreement with this, and predicts a rotor coning mode at

35 rads/sec.

As the frequency range is reduced further, there is a second sharp increase
in R2 and a peak in Fig45) at about 7 rads/sec. Again this is probably due to a
rotor mode being excluded, and in particular HELISTAB predicts a longitudinal
flapping mode at 10.41 rads/sec.

HELISTAB predicts no rotor modes below this frequency, and it can be seen
that there are no sharp increases in R? at lower frequencies, and that Fy,, is

fairly level, except for a fall in R? and Fiy¢,1 below about 2.5 rads/sec.

This fall can be attributed to the poor sigﬁal— to— noise ratio around 1
rad/sec. At this frequency the input auto— spectrum is very low, and hence the
system's response is also low. Now an equation—error estimator was used, and
this assumes that there is no noise on the driving terms of the Pitching Moment
Equation. If the signal—to— noise ratio is low, this assumption will be inval.id,

and will result in poor parameter estimates.

Since the low signal— to— noise ratio is localised around 1 rad/sec, its effect
will be small if a fairly large frequency range is used. However, when smaller

frequency ranges are used its effect will become more significant, and so result in

the fall observed in R2? and Figta.
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The input auto— spectrum is also low at other frequencies, in particular, at 4
and 7 rads/sec. As discussed in section 2.3.2, this has affected the coherence
functions : the poor signal—to—noise ratios at 1, 4, and 7 rads/sec resulting in
biased coherences at these frequencies. Now, the effect on identification at 1
rad/sec has been described above. At 4 and 7 rads/sec, however, R2? and Fiotal
do not appear to show any low auto— spectrum effects. It can also be seen that
the bias in the coherence does not appear to be as large at 4 and 7 rads/sec as
at 1 rad/sec. This suggests that the signal—to— noise ratio is not as poor at

these frequencies, and hence the effect on identification will be less.

From these results, it was decided that a frequency range of 7 rads/sec

should be used in the identification.

Notice that this is more than double the 3 rads/sec range of the Puma
helicopter.  This is reasonable, given the greater agility of the Lynx, and the
differing roles that these helicopters are intended for. However, since no
previous results were available for the Lynx, the 3 rads/sec range of the Puma
was used when designing the Lynx inputs (see section 2.3.1). The inputs could
therefore be improved upon in future flight trials by using the greater frequency

range now known to be available for the Lynx.

The parameter estimates obtained are shown in table 2.2, together with the

parameter values predicted by the theoretical model, HELISTAB.

Parameter Estimate HELISTAB
My 0.00155 0.00774
My -0.00034 0.0098
Mq -0.677 -2.382
M, 0.0020 0.0027
Mp -0.708 0.363
Mﬂ‘s‘ 13.13 28.15

‘Table 2.2 - Equation-error estimates and HELISTAB values for
the parameters of the pitching moment equation.

(Lynx, 80 knots level flight)
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It can be seen that several of the parameter estimates differ significantly
from the HELISTAB values. In particular, My, and Mp are of different signs
from HELISTAB, while Mq and M,,’1S are underestimated. These results are

discussed in more detail below.

2.4.3 Output— Error Identification Results

As in the equation—error case, the first 32 seconds of flight 190/12 were
used for the output— error identification, with a frequency range of 7 rads/sec. A
frequency— domain output— error algorithm developed by Black [4] was used, and
the mathematical model given below in equation (2.15) formed the basis for the
identification. This model is 5th order, and contains the main parameters
affecting the longitudinal dynamics. In particular, the pitching moment equation

parameters are included in this model.

r ,
ace) Xg Xy O Xp 0| | u(o)
W(t) Zy Zy Zg O O | | wt)
ace) - Mg My Mg O My | | a(o)
B(t) 0 0o 1 0 o] 6w
LR EREEEINES
:
Xprs O
Zms O Mys(t)
+ Myis O P (2.15)
0o 0
Lyis mej
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obtained,

Table 2.3 shows the parameter estimates
theoretical values predicted by HELISTAB.
Parameter Estimate HELISTAB
Xu 0.0348 -0.033
Xw 0.110 0.043
Xg -33.53 -32.179
Xn1s -24.62 -24.43
Zy -0.0027 -0.0068
Zy -0.061 -0.838
Zq 90.0 134.8
Z,,’1S -114.8 -104.19
My 0.003t 0.00774
My, 0.0006s 0.0098
Mq ~-1.0%6 -2.382
Mp -0.3¢€ 0.363
M,715 13,41 28.15
Ly -0.0065 -0.12
Ly 0.00288 0.068
Lq 4,239 -1.731
Lp -4.92 -10.9
L,,’1S 10.232 -26.54
L,71c 2.01 -150.51

together

Table 2.3- Output-error estimates and HELISTAB values for

the parameters of the 5th order model.

(Lynx, 80 knots level flight)

with

the

Concentrating firstly on the pitching moment equation parameters, it can be

seen that compared with the equation—error results, the output— error estimates

are generally in closer agreement with HELISTAB. M; is an exception to this,

and is estimated with a different sign to the HELISTAB value.

This parameéter

has an important effect on the degree of coupling between the pitch and roll

rates, and so was investigated in more detail.
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Figure 2.21

Comparison of response predicted using the 5'h order identified model with

measured response (flight 190/ 10, 1221 input).
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Figure 2.19 shows a time—domain comparison between the measured
responses and those predicted using the identified 50 order model.  There is
generally a reasonable agreement between these responses. However, this
comparison highlights a significant oscillatory component in the measured responses
for pitch rate, q and roll rate, p which is not present in the responses predicted
by the identified model. To study this further, the 5th order model was
modified to use roll rate, p as a pseudo— input rather than using it as one of the

model states. This gave the following 4th order model.

]
a(t) Xu Xo 0 Xp u(t)
w(t) Zy Zy Zg O w(t)
g(t) = My My Mg O q(t)
B(t) 0 0 1 o0 0(t)
L
Xps O 7,s(t)
z 0 0
+ Mms o M M1c(t) (2.16)
ns P p(t)
0 0 0

Measurements of 7,5, 7,c, and p were used to drive this model. Figure
2.20 shows a comparison between the measured responses and those predicted by
this 4th order model. It can be seen that the pitch rate, q predicted by the 4th
order model contains an oscillatory component similar to that present in the
measured pitch rate. The oscillation therefore appears to originate in the
roll—rate, p, and is present in the pitch rate due to the coupling between roll
and pitch. The 5th order model does not include this lateral oscillatory roll
mode, since it concentrates on the longitudinal dynamics. Hence the poor

estimate obtained for Mp.
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Moving to those parameters not included in the pitching moment equation,
several estimates agree closely with HELISTAB, while others are in much poorer
agreement. In particular, the parameter estimates for the rolling— moment
equation are significantly different from the HELISTAB values. This can be at
least partially attributed to the difficulties described previously concerning

unmodelled lateral dyamics.

Of the other parameters, the estimates of X, ans’ and st are in good
agreement with the theoretical values. While the estimates of X, Xy, and Zg,
are a much poorer match. X, Xy, and Zy are important parameters affecting
the Lynx phugoid— like unstable mode. HELISTAB predicts that this mode has a
frequency of 0.368 rads/sec, and time constant of 7.69 seconds, while in the
identified model the frequency is 0.233 rads/sec and the time constant 22.37
seconds. HELISTAB therefore appears to underestimate the stability of this

mode. However, further work is required to investigate this more fully.

Finally, in order to verify the identified model it was used to predict the
responses to a pilot input other than a double—doublet. Figure 2.21 shows a
comparison between the measured and predicted responses to a 1221 input. it
can be seen that these are in fair agreement, and suggest that the identified

model is a reasonable representation of the system.

2.4.4 Difficulties of Output— Error Identification of Unstable Systems
When performing the output—error identification for the Lynx, serious
numerical difficulties were encountered as a result of the unstable mode present
in the system. An insight into these difficulties can be gained by considering a
simple first order output— error system, as follows :
dx(t)/dt = a x(t) + ut)

Z(t) = x() + (1)

(2.17)
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where,
a is the parameter to be estimated
u(t) is the input,
x(t) is the model state,
z(t) is the output

n(t) is a Gaussian noise process with zero mean and unity variance

If the input, u is a step, then the system response can be expressed in the

following form :

Z(t) = —1a (1 — ety + 75(1) (2.18)

With this' system, in time— domain output— error the likelihood function is

maximised by minimising the following cost function :

N
Ja@ = L o) - xe)? (2.19)
i=1
N
_ l _ ati 2 :
= iZ1 (Z(ti) + 2 (1-e )) (2.20)
N )
s By -1 e@is@n . .21
i=1
where,
e(a,i) = Z(ti) _ X(ti)
s(a,i) = - %2 + eati( éz' %i )

For an unstable system, the parameter, a is positive, and the scaling factor
s(a,i) is therefore divergent with time. This produces ill— conditioning in the
derivative, dJ(a)/da, which in turn leads to difficulties when attempting to
minimise the cost function, J(a) using numerical techniques. The use‘ of
output— error identification with unstable systems therefore involves a significantly

more demanding numerical problem than is the case for stable systems.

57



For the present work, these difficulties were overcome by the simple
expedient of reducing the size of the integration step used in the routines for
calculating J(a) and dJ(a)/da in order to improve the accuracy. However, while
this permitted parameter estimates to be obtained, it also greatly increased the
computing time required, and was found to be less than satisfactory. There is

therefore a need for more work on the problems involved in identifying unstable

systems.

2.4.5 Dispersion Matrices of Multi— step Inputs

Using the 5th order model obtained by output— error identification, |D| was
calculated for an ideal doublet, 1221, and double— doublet. The results are

shown in table 2.4.

Input |D]
Doublet 136.2
1221 159.7
Double-Doublet 3.95
Table 2.4 — |D} for various multi—step inputs, calculated

using 5th order output—error identified Lynx model

1t can be seen that the doublet and 1221 both give determinants around 150,
while the double— doublet gives the significantly lower value of 3.95.  These
results appear to support those presented earlier in this chapter, suggesting that

the double— doublet is superior to both the doublet and 1221 inputs.
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CHAPTER THREE
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3.1 INTRODUCTION

With the encouraging results obtained using sub— optimal inputs (Chapter 2),
a closer study was consequently made of optimal inputs. The D-— optimality
criterion has been wused, for the reasons outlined in Chapter 1, with an

output— error model of the system. This model is as follows :

dx(ty/dt = A x(t) + B u(t) (3.1)
yt) = Cx(1
() = yv + )
where,

A,B,C are suitable matrices containing the model parameters, §
n(t) is a zero mean Gaussian process with covariance, R

y(t) is noise— free system response, z(t) is noisy system response
For this model, the dispersion matrix is given by equation (1.19) as :

D — M-1 (3.2)

T T -1
| aycersan™ &
0

4
i

dy(t)/de dt

where T is the length of the test record used.

In the rotorcraft case, the matrices A, B, and C are obtained by linearising
the non— linear HELISTAB model about a particular flight condition. If the
system response departs too far from this flight condition then it becomes
non— linear, and the linearised model is invalid. It is therefore necessary to

constrain the inputs to give linear test records, while minimising |D].
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Figure 3.1

An outline of the arrangement for a linearity constraint based on obtaining
several linearised models along the trajectory of a response.

calculate a linearised model
for each of the points marked.
£(1) If these models are sufficiently
close, then the response can be
taken as linear.




Unfortunately, determining the linearity of a response is not straightforward.
As described in Chapter 2, it is possible to use the coherence function to assess
linearity. However, this function is affected by a large number of factors, and
can be subject to severe biases. These make the coherence function difficult to

use quantitatively, and it was therefore thought to be unsuitable for use in a

numerical optimisation scheme.

An alternative method of measuring linearity is to obtain the system response
using the non—linear HELISTAB model. This non— linear model can then be
linearised at flight conditions corresponding to several points in the calculated
system response. If the parameters of these linearised models agree to within the
expected variance of the estimates of these parameters obtained by identification,
then the response may be taken a linear for practical purposes. This

arrangement is outlined in figure 3.1.

However, this is a complex constraint, and requires a large amount of
computing time. For example, obtaining a linearised model typically requires 2
seconds of computing time with HELISTAB (on a DEC VAX 11/750). Typically
a test record contains approximately 1000 sample points, and a linearised model
needs to be generated at every tenth point. Hence, around 100 such models are
required to check the linearity of a response. It has been the author's
experience that the constraint is evaluated around 1000 times in an input design
run. This gives 200,000 seconds, or 55 hours of computing time, which is

clearly unrealistic.

In order to reduce the computing time required, a simpler constraint is
required, which will still ensure linear responses i.e. responses which do not

depart too far from the flight condition of the linearised model used.

Various constraints were investigated to assess their suitability.  Firstly, an
input energy constraint was used. This restricts the input to have a particular
energy, but takes no account of the system response to the input. It has been
the most widely studied constraint in the past [1] due to its simplicity, and can

be expressed as follows (see equation (1.23)) :

T
J al(t) u(t) de = 1 (3.3)
0
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An extension of this constraint takes account of the energy of the system
response, to give a combined input and output energy constraint [1], as follows

(see equation (1.25)) :

T T T
J Cu(t) u(t) + y(t) Qy(t) )dt = 1 (3.4)
8]

where Q is a weighting matrix.

Unfortunately, despite their relative simplicity, neither of the energy
constraints described directly address the problem of ensuring low amplitude
responses. It is proposed that this can be achieved by imposing an explicit

amplitude constraint on the system response, as follows :

()1 < Ly, 0gtgT (3.5)
where Ly is the amplitude limit.

This constraint guarantees that the reponses are of the required maximum
amplitude. However, the constraint is essentially discontinuous in nature, and so
leads to a more difficult optimisation problem than the energy constraints

considered previously.

Once a constraint has been chosen, the number of inputs that it is necessary
to design before a satisfactory result is obtained can be greatly reduced by making
use of the property that D— optimality is invariant under scaling of the system
input. It is then possible to simply scale an input to give a desired energy or
response amplitude, avoiding the need to design a completely new input each

time.

Finally, the question of robustness must be considered. From the results
obtained using sub— optimal inputs in Chapter 2, it was found that robustness was
an important factor in the success of an input, in addition to the linearity

constraints discussed so far. [Extra constraints may therefore be needed to ensure

robustness.
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Several types of robustness are required. Firstly, when inputs are applied
manually, they must be insensitive to errors in amplitude and timing introduced at
this stage. For the present work, it is intended that the control input device
developed at RAE (Bedford) will be wused to apply the optimal inputs
automatically, without pilot intervention. Robustness to errors in applying the

inputs is therefore less important.

Secondly, the model used to design the inputs will be inaccurate, otherwise
the system identification would be unneccessary. Inputs must therefore be able to
tolerate such errors, and still give linear responses and high quality parameter

estimates.

Considering this second type of robustness, in order to ensure that the
responses are robust and remain linear under changes in the model parameters, it

is proposed that the following constraint be included in the input design process :

dy .
v = .6
|dai(t)| < Ry i-1,2, ...qa (3.6

where,
q is the number of parameters to be identified

6; is the ith parameter

Ryi is the robustness limit required.

This limits the sensitivity of the responses to changes in the model
parameters. However, care must be taken when using this constraint, since in
some situations dy(t)/dé can be coupled to y(t), which in turn couples this
robustness constraint with the output energy and output amplitude ‘linearity’

constraints described above. This can be shown by the following simple example.

Consider the scalar system,

% (t) = a x(t) + b u(t) (a,b are the system parameters)
y = x(
: ‘ d ' dx
> - a & (t) + u), T ® = 3 )

If b = 1, then dy(t)/db = y(t)
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In addition to ensuring that the response is robust and remains linear, it is
also important that high quality parameter estimates are obtained. A second
robustness constraint may therefore be needed. The following constraint is

suggested as being suitable for this purpose :

ei d|D .
5T a5 < RD i=1,2, ... ¢q (3.7)
i i

where, Rp; is the robustness limit required.

This constraint limits the sensitivity of |D| to changes in the parameters i.e.

limits the change in the variances of the parameter estimates.

In the past, other methods have been proposed for ensuring that [D]| is
robust. These have usually involved modifying the D— optimality criterion itself
to include an element of robustness. For example, instead of minimising |D]|,
the average value of |D| over all parameter values can be minimised [1].
Alternatively, the maximum value of |D| over all the parameter values can be
minimised [2]. However, except for very simple systems, these criteria are too
complex to be implemented in practice with the level of computing power

currently available.

3.2 INPUT ENERGY CONSTRAINED OPTIMAL INPUTS
3.2.1 Frequency— Domain Designs
The design of input energy constrained inputs can be greatly simplified by
assuming that sufficiently long test records are available [3,4,5]. This leads to
the following frequency— domain problem :
minimise |D]|
uel

where,
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M = J (dy(e)/de)T R™ dy(t)/ds dt (from equation (2.4))
0

= J F*(w) R’ F(w) Suu(w) dw (from equation (2.10))
U - { u JouT(t) u(t) dt = 1 } (3.8)
= { u J Suu(w) dw =1 } (3.9

Now consider an input, u,4+ , formed from the combination of inputs u,eU

and u,eU according to the following expression,

Su u (w) = oS (w) + (1-o) Su u (w) (3.10)
n+1 nt+1 0 0 nn

The information matrix of the input, u,, , is given by,

o J F*(w) R F(w) Suu' (@) dw
-0 0 0

n+1

+ (1-a) J F¥(w) R™' F(w) s, (@ do
~® n n

=aM, + (l-a) Mj (3.11)

and the dispersion matrix is given by,

-1

n+1 n+1

Now it is well known [5] that for any square matrix, A the following

relation is true,

dlog 1Al _ -1 dA 3.12)
T-Tr(A ax ) ( )
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Hence,

dlog an+1| - dlogan+1| _ Tr( M -1 dMn+1 )
do doz_1 i do
= -Tr (Mm_1 (M0 - Mn)) (3.13)

Finally, consider the limit as o » 0. This gives,

dlog |D |

+ -
SR Ui - -Tr (MM - 1)

da n o
o=0
-1
= -Tr ( M Mo)_ q (3.14)
where,

q = dimension of information matrices

= number of parameters in system.

Or, for sufficiently small ¢,

-1
log an+1| = log IDnl - a ( Tr (Mn MO)— q ) (3.15)

If o (Tr My~ "M )= q) > 0, then TDp4 ,| < [Dyl, and upy , is a
better input than u,.  This can be used as the basis for an optimisation

algorithm that successively improves upon an input until the optimum is reached.

To simplify the optimisation algorithm, consider input u, to be a pure sine

wave of frequency w,. Then,

0, w # wo
S (w) = (3.16)
Yol 1, W= W
0
and,
M, = F*(w,) R™ ' Flwg) - o (3.17)
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Now,

Q0
-1 % -
Tr M_' F R’ - ! -
Lo n (w) F(w) Sunun(w) dw Tr Mn Mrl q
(3.18)
Hence, since u, €U,
max Tr Mn F (w) R F(w) > ¢ (3.19)

i.e. we can choose w, such that Tr(M,~ 'M_) — q > 0, and equality holds if

and only if u, is optimal.

Moreover, since w, is a scalar quantity, a simple line search can be used to
maximise Tr(M,™ 'M,). A line search can also then be used to find « to
minimise |D,, ,|. Finally, practical systems have finite bandwidth. Hence, the
infinite limits of integration used in the expressions above can be replaced by a

suitable finite value.

This leads to the following simple, efficient algorithm which will converge to

the global D— optimum input.

1. Start with any input, u, eU which has a non—singular information

matrix, M,. Let n=1.

2, Find the input u eU of frequency w, which maximises ¢(u,), where

Auy) = Tr (Mp~ "My)
3. Update up4 , to,
S u (w) = aSf u u((.o) + (1-a) S u u(co)
n+1 n+1 0 0 nn

where, o is chosen to minimise |Dp+ ,| such that upy ;€U

4, If |IDhl — [Dp+ .1 < € IDpl for some specified e, then stop,

else n=n+1; goto step 2.

The convergence of this algorithm can be further improved by minor changes

to steps 2 and 3 [6,7].
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However, as was mentioned previously, in order to use this frequency domain
approach long time histories must be available. Moreover, the system concerned
must be stable. This latter condition results from the use of F(w), the Fourier
transform of f(t). For stable systems, f(t) is convergent, and the Fourier
transform exists. However, f(t) is divergent for unstable systems, and in this case
has no Fourier transform. Hence, the frequency— domain algorithms cannot be

used with rotorcraft, which are both unstable and give short test records.

Nevertheless, the frequency— domain algorithms form the basis of the more

powerful time— domain algorithms to be discussed later.

3.2.2 Time— Domain Designs

The time— domain algorithms for designing energy constrained inputs act as
the complement of those based on the frequency— domain. Whereas the
frequency— domain algorithms are simple and efficient, those in the time— domain
are significantly more complex, and generally require more computing time.
However, the time— domain methods do not suffer from the restrictions of those
in the frequency— domain. The time— domain algorithms can be used with both

stable and unstable systems, and with any length of test records.

In the time— domain, the energy constrained input design problem is cast as
follows [8]:

minimise |D]
uel

where,
D= M1

T .
M= J (dy(t)/dB)T R™' dy(t)/d6 dt (from equation (2.4))
0

U= { u JTuT(t) u(t) dt =1 } (3.20)
0

T = length of test record
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As in the frequency—domain, consider an input up+ , formed from the

combination of inputs u,eU and u,eU, now according to the expression,

Up+ () = auyt) + B uy(t) (3.21)

For up.4 , €U, require,

T
o’ 62 + 2afy =1, where v = I uz(t) un(t) dt
0

(3.22)
The information matrix, Mp4 , of the input u,, , is given by,
2 2
1 " o M0 + B Mn + 2af Mlm (3.23)
where,
T T -1
MOn = J (dy,(t)/d8) " R = dy,(t)/dé dt (3.24)
0
and,
dlog |D_, |
n+1 -1 dg a6 ]
-_ ——— = -Tr (Mm_1 [ 20¢M0 + 2633 Mn + 2(B+oed&)MUrl
do: (3.25)
Now,
dlda = — (ot BY/(B+ o) (3.26)
Hence, ietting o >0,
dlog |ID_, | - ]
n+1 1 -
= -2 [Tr(Mn M) -7 (3.27)
do '

=0
Hence, if Tr (M,~ 'Mgp) > 149, then, for sufficiently small o, can obtain

IDp+ 41 < IDgl.
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It has been shown by [8] that Tr (M~ "M ,) > 4q if u, is chosen to
maximise Tr (Mp~ "M ) such that 4 » 0. However, the proof of this is not
straightforward. It is the opinion of the present author that a simpler and more
elegant approach is to choose u, to directly maximise Tr Mp~™ M) — W
This leads to the following input design algorithm which will converge to the

global optimum.

1. Start with any input, u, ¢U which has a non— singular information

matrix, M,. Let n=1.

2. Find the input u,eU which maximises (u,), where
fug) = Tr My~ '"Myy) — 1

3. Update up4 , to,
un+ 1(t) = o uo(t) + B un(t)
where,
a2 + B2 + 20y =1

o, B chosen to minimise |Dp4 |

4. If |IDyl — IDp+ 4,1 < € |Dpl for some specified ¢, then stop,

else n=n+1; goto step 2.
Most of the computing time required by this algorithm is absorbed in step 2.

Further details concerning the implementation of this step can be found in

Appendix B.
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Figure 3.2

ID| versus the length of test record used for input energy constrained

optimal inputs (simple first order system, a=—1, b=1).
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Figure 3.3

The time history and wwto—spectrum of the input energy constrained
optimal input for a 20 second test record (simple first order system, a=-—1I,
b=1).
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Figure 3.4

Bode plot of the ]
gain and phase of ] ;
(a=—1, b=1) [ the simple first order system swdied
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Figure 3.5

ID| versus the length of test record used for input
optimal inputs (simple first order System, a=+1, b=])
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Figure 3.6

The input energy constrained optimal input for a 20 second test record
(simple first order system, a=+1, b=1)
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Figure 3.7

The response produced by the input energy constrained optimal input for a
20 second test record (simple first order system, a=+1, b=1)
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3.2.3 A Simulation Study of Input Energy Constrained Optimal Inputs

In order to gain an insight into the characteristics of D— optimal inputs when

subjected to an input energy constraint, such inputs were designed for the

following simple first order system.
dx(t)/dt = a x(t) + b u(t) (3.28)
¥(t) = x(v), 2 =y + )

where,
7(t) is a Gaussian process with zero mean and unity variance.

a,b are the relevant parameters of the system

For a stable system (a=—1, b=1), optimal inputs were designed for a
variety of lengths of test record from 2 seconds to 20 seconds. The
corresponding values of |D| are shown in figure 3.2, while the optimal input for

a 20 second test record is shown in figure 3.3.

It can be seen that |D| is large for the short test records, but decreases
rapidly as the record length increases and more information is obtained about the
system. However, once sufficiently long test records are used, the rate of
improvement in |D| becomes much smaller, and for a 20 second test record

ID| is within 3% of that for an infinitely long record.

Turning to the optimal input for a 20 second test record, this is essentially
a sine wave of frequency approximately 0.6 rads/sec, and compares with the sine
wave of 0.582 rad/sec which is the optimal input for an infinite test record. A
Bode plot of the gain and phase of the system is shown in figure 3.4. It can
be seen that at 0.582 rads/sec the gain is still high, giving a good
signal— to— noise ratio in the system response. In addition, at this frequency the
phase has started to roll off, giving information about the posttion of the pole of

the system. Hence, the optimal inputs appear to be intuitively reasonable.
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Moreover, it can be shown that the input for an infinite test record contains
between @/2p and q(q+1)/2 frequencies, where q is the number of parameters,
and p is the number of system output variables [3]. Hence, for the current
system the input should have between 1 and 3 frequencies (q=2, p=1). The

input obtained is therefore relatively efficient, since it contains only one

frequency.

Figures 3.5, 3.6, and 3.7 show the results for an unstable system (a=1,
b=1). These exhibit significantly different characteristics from those for the
stable case. Firstly, as the length of the test record is increased, |D| decreases
exponentially, and does not appear to converge to a final value as in the stable

system.

It can also be seen that the optimal input is essentially an impulse, and this
produces a divergent system response. As time goes to infinity, this response will
become infinite, and so the signal—to— noise ratio will also be infinite. In this
situation, the system parameters can be identified exactly, giving a [D| of zero.
Hence, once again the optimal inputs are intuitively reasonable, and the behaviour

of |D] shown in figure 3.5 can be understood.

The results obtained for the unstable system serve to highlight several of the
shortcomings of the input energy constraint that was used.  Firstly, while the
energy of the input is constrained, this energy may be concentrated at a
particular point, giving a large input amplitude at that point.  Secondly, and
more importantly perhaps, no constraints are placed on the response of the

system. Hence, the response may also be of large amplitude.
A simple input energy constraint such as that used is therefore unsuitable for

rotorcraft applications, where the system is unstable and it is essential that the

response is of limited amplitude in order to prevent it becoming non-— linear.
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In previous work on fixed— wing and rotorcraft input design, either an input
energy constraint has been used, or an input amplitude constraint. No constraints
were placed on the system response. As shown for the unstable first order
system above, when there are no constraints on the response, optimal inputs tend
to produce a large excitation of the system in order to obtain more information,
and to give an improved signal— to— noise ratio. The disappointing results,
discussed in Chapter one, that have been obtained in previous flight trials of such
optimal inputs may therefore be due to these inputs producing responses of such

large amplitude that non-— linearities have been present.

3.3 OPTIMAL INPUTS WITH OUTPUT AND INPUT ENERGY CONSTRAINTS
3.3.1 Frequency— Domain Designs

In rotorcraft applications, if an input produces too great an excitation of the
system, then the response will be of large amplitude, and hence non—linear. It
is therefore necessary to ensure that any inputs designed are constrained to
produce system responses of low amplitude. The simplest such constraint is to
place a restriction on the energy of the system response. This can be achieved
by a straightforward extension of the input energy constraint discussed in section

3.2 [3].

Taking the frequency— domain case first of all, assuming a stable system and
sufficiently long test records, the input design problem with combined output and
input energy constraints is the same terms as that in section 3.2.1, but with the

set U defined as follows.

v-{u: [[CdT@ uw +y© ayw ) a1
i (3.29)

- { u f (1 + G (@) Q Gw) S (@) do =1 }
B (3.30)

Q is a suitable weighting matrix
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Now, define a new input, u' such that,

Su.u.(w) = (I + G*(co) Q G(w)) suu(w) (3.31)

and express M in terms of u', giving,

M = I F' () R F' (w) 5,0 (®) do (3.32)

where,
F'(w) = F() I + G*w) Q G(w)™ % (3.33)
The optimisation problem can be re—expressed in terms of u' and F' as,

minimise |D]|
u' eU'
where,

g’ ={u : Tsu,u,(w) dw =1 lj

This can be solved using the frequency— domain algorithm given in section

3.2.1. The input, u, can then be obtained again by using the relation,

Sy (@ = (1+G (@ Q6@ 5, . (3.34)

3.3.2 Time— Domain Designs

As in the case of the simple input energy constraint, the time— domain
algorithms for the combined output and input energy constraint permit the use of

both stable and unstable systems, and any length of test record.
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The only published time— domain algorithm involving output and input energy
constraints is that of Mehra [3]. However, this algorithm produces a randomised
experiment design which is not suitable for use with practical systems. A new
algorithm will therefore be presented, which is an extension of that described in

section 3.2.2.

The time— domain input design problem subject to output and input energy
constraints is the same as that in section 3,2.2, except that the set U is defined

as follows.

T
u={u: [ o um s Yo ey ) a1 |
0 (3.35)

where Q is a suitable weighting matrix.

Consider an input ug, , formed from the combination of inputs u,eU and

u, €U, according to the expression,
Un+ 1(t) = o ug(t) + B un(t) (336)

For un4 , €U, require,

o+ g+ 208y, = 1 (3.37)

JT D + yi(t) Qy (t)) dt (3.38)
where, Vg = (uo(t) un(t) Y, Yo .
0

The information matrix, Mp4+ , of the input upy is given by equation

(3.23), and,

dlog an+1 |

-1
- 2 [T ) - v (3.39)

do a=0

Hence, it is possible to maximise Tr (M,” "M ) v to give the

following input design algorithm which will converge to the global optimum.

1. Start with any input, u, eU which has a non— singular information

matrix, M,. Let n=1.
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2. Find the input u,eU which maximises Huy),
where o(u;) = Tr (M~ ™M) - %4
3. Update up, , to,
Upr () = augt) + B ug)
where,
a? + B2 + 206y = 1

o, @ chosen to minimise IDp+ 4 |

4. If |IDyl — IDp+ 11 < & |Dp| for some specified ¢, then stop,

else n=n+1; goto step 2.

Once again, most of the computing time required by this algorithm is used

in step 2.

3.3.3 A Simulation Study of Output and Input Energy Constrained Optimal Inputs
As in the case of the input energy constraint discussed in section 3.2,
combined output and input energy constrained D—optimal inputs were designed
for a simple first order system. The system was as follows :
dx(t)/dt = a x(t) + b u(t) (3.40)
y(t) = x(v), () = yv + nt)

where,
n(t) is a Gaussian process with zero mean and unity variance.

a,b are the relevant parameters of the system
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Figure 3.8

ID| versus the length of test record used for input and output energy

constrained (Q=1) optimal inputs (simple first order system, a=-—1, b=1)
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Figure 3.9
The time history and auto—spectrum <f the input and output energy
constrained (Q=1) optimal input fcr a 20 seccnd lest record (simple first order

system, a=—1, b=1)
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Figure 3.10

ID| versus the length of test record used for input and output energy

constrained (Q=1) optimal inputs (simple first order system, a=+1, b=1)
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Figure 3.11

The input and output energy ccnsirained (Q=1) optimal input for a 10

second test record together with the response produced by this input (simple first

order system, a=+1, b=1)
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For a stable system (a=-—1, b=1), optimal inputs were designed with
weighting Q=1 for a variety of lengths of test record from 2 seconds to 20
seconds. The corresponding values of [D| are shown in figure 3.8, while the

optimal input for a 20 second test record is shown in figure 3.9.

It can be seen once again that |D] is large for the short test records, but
decreases rapidly as the record length increases and more information is obtained
about the system. However, once sufficiently long test records are used, the rate
of improvement in |D| becomes much smaller, and for a 20 second test record
ID| is 28.63, compared with 29.08 for an infinitely long record i.e. they agree
to within 2%.

The optimal input for a 20 second test record is essentially a sine wave of
frequency around 0.7 rads/sec, and compares with the sine wave of 0.673 rad/sec
which is the optimal input for an infinite test record. Figure 3.4 shows a Bode
plot of the gain and phase of the system. At 0.673 rads/sec the gain is reduced,
giving a system response with lower energy. However, phase information is still
present to give information about the postition of the system pole. This appears

to be an intuitively reasonable input design for the given constraints.

As the weighting, Q, is increased, and more account is taken of the output
energy, the frequency of the optimal input also increases. For example, Q=10
gives an input of 0.877 rads/sec. While if Q is decreased, the frequency of the

optimal input also decreases, e.g. Q=0.1 gives 0.592 rads/sec.

Figures 3.10, and 3.11 show the results for an unstable system (a=1, b=1)
and weighting Q=1. Firstly, as the length of the test record is increased, |D|
decreases exponentially, and does not appear to converge to a final wvalue.
However, since the energy of the response is limited, it is reasonable to expect

that |D| will eventually converge for sufficiently long test records.

77



The optimal input is a form of doublet, producing a response containing a
large peak. Such a peak is clearly sensitive to the system dynamics, while also
giving a good signal— to— noise ratio, and so should lead to accurate parameter
estimates. ~ However, this demonstrates that while the energy of the inputs and
outputs is constrained, this energy may be concentrated at a particular point,
giving a large input or output amplitude at that point. An output and input
energy constraint such as that used therefore appears to be unsuitable for
rotorcraft applications, where the system is unstable and it is essential that the

response is of limited amplitude in order to prevent it becoming non-— linear.

3.4 OUTPUT AMPLITUDE CONSTRAINED OPTIMAL INPUTS
3.4.1 Time— Domain Designs

In order to ensure that the response of the system concerned is prevented
from being too large, constraints can be placed to restrict the maximum
amplitude of response permitted. Such output amplitude constraints will guarantee
responses with the desired magnitudes, unlike the energy constraints considered

previously. The set U of valid inputs is now defined as follows :

U={u:|y(t)lgLy,0gth} (3.41)

where,
y(t) is the noise— free system response

T is the length of test record used.

Consider an input uy4 , formed from inputs u,eU and upeU, according to

the following expression
Up+ (1) = auyt) + B ug(t) (3.42)‘

Then up4 , €U is satisfied by,

(3.43)

where K s 1 is chosen such that [Xp+ (D1 < Ly, 0<tgT
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Hence,

df/da = —1 (348
This gives,
dlog|D |
n+1 - -1 ]
do 2 [ Tr MM 5 -q (3.45)

Q=0

Maximising Tr (Mp~ 'M,) will ensure that for u, sub—optimal, and «

sufficiently small, [Dp4 | < IDpl. This gives the following input design
algorithm.
1. Start with any input, u, eU which has a non— singular information

matrix, M,. Let n=1.
2. Find the input u,eU which maximises (u,),
where o(u,) = Tr (M~ "M )
3. Update up4 , to,
Up+ () = auy(t) + B uy(t)

where,
o + B = K, K chosen such that u,y , eU

o, (@ chosen to minimise |Dp4 , |

4. If Dyl — IDp+ (1 < € |Dyl for some specified ¢, then stop,

else n=n+1; goto step 2.

While this algorithm appears as straightforward as the algorithms described

previously for the energy constraints, in practice the amplitude constraint is more

complex to implement in step 2 (see Appendix B). Moreover, since amplitude

constraints are essentially -discontinuous in nature, the resulting optimisation

problem can be prone to ill— conditioning.
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Figure 3.12

The output amplitude constrained (Ly=0.2) optimal inputs plus responses

for test records of 2, 10 and 20 seconds (simple first order system, a=-—I,

b=1)
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dy(t)/da

dy(t)/db

Figure 3.13

The sensitivities, dy(t)/ da and dy(t)/ db, for the
constrained (Ly=0.2) optimal input for a 2 second test
order system, a=-—], b=1)
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Figure 3.14

ID| versus the length of test record for output amplitude constrained

(Ly=0.2) optimal inputs (simple first order system, a=~—1, b=1)
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Figure 3.15

The output amplitude constrained (Ly=0.2) optimal inputs plus responses

for test records of 2 and 5 seconds (simple first order system, a=+1, b=1)
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Figure 3.16
A bang—bang response of length T, with one transition at time T1.
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Figure 3.17
|D| versus T, for a bang—bang response of length T, with one transition

at time T, (simple first order system, a=—1, b=1). (T = 2 sec)
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3.4.2 A Simulation Study of Output Amplitude Constrained Optimal Inputs

In order to evaluate the suitability of output amplitude constraints for
rotorcraft applications, D— optimal inputs were designed for the same simple scalar
system that was used to study the energy constraints previously (see equation
(3.28)). For both stable (a=—1, b=1) and unstable (a=1, b=1) systems, inputs
were designed with responses constrained to be less than 0.2 units in amplitude.
Figure 3.12 shows the optimal inputs and corresponding responses for test records
of 2, 10, and 20 seconds for the stable system, with the sensitivities dx(t)/da and
dx(t)/db for the 2 second input given in figure 3.13. The variation of the
optimal |D| with the test record length is given in figure 3.14. Results for the

unstable system are shown in figure 3.15.

Firstly, the responses are bang— bang in nature for the system used. Recall

that the system was as follows (a= 1, b=1),

x(t) = ax(t) + bu(t), y(t) =x(t), z(t) =y(t) + 7n(t)

(3.46)
Hence,
dx dx dy &
o (v =ag () + x(t), 43 (v) =47 (©) (3.47)
X d d
B -aw+uww, Fo=-go (3.48)

Consider an input such that the response, y(t), is a step of amplitude, h.

Then,
d h at dy _
Doy =2 ™D, g ) =y (3.49)

Now apply this to the case of an input which gives a bang— bang response
of amplitude h, length T, with one transition at time T, (see figure 3.16). .For

the stable system (a=—1, b=1) the information matrix, M, is as follows.

M M
M = 11 12 (350)
B M M

21 22
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where,

dy 2
M., = o (t) dt
0
T
1
= hz(l _ e-t )2 dt
“o
T
-(t-T 2
+ J [ e ¢ ,)(h1+ h) - h] de  (3.51)
T .
1
-T
hy = d-e " Hh (3.52)
T
- dy dy
M12 21 J&Z (®) db (t) dt
.
T

T
+ J “h [ e—(t—T‘)(h1+ h) - h] dt

T
1 (3.53)
T
dy 2 2
Mzz = b (¢) dt = h™ T (3.54)
0
and,
1 1
IDI B I ' B MI M22 - M12M21 (3.55)
N diD| _ _ 1 cliM”M _ 251_1\112 3 56
dT = 2 dT 22 dT (3.56)
1 IMI] 1 1
= 0 for maxima/minima
For h = 0.2 units, T = 2 seconds, a line search algorithm was used to
solve this for T,. A value of 1.65 seconds was obtained for T,, which is in

agreement with the results given in figure 3.13. A plot of |D| versus T, is

shown in figure 3.17, and clearly shows the minima at 1.65 seconds.
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Using these results, insight may be gained into the factors affecting output
amplitude constrained D—optimal inputs. It can be seen from equation (3.55)
that |M| is maximised, and hence |D| minimised, by having M,, and M,
large, and M,, small. M,, and M,, measure the energy of dy(t)/da and
dy(t)/db respectively, while M,, measures the correlation between dy(t)/da and
dy(t)/db. A good input will therefore attempt to maximise the energy of the

parameter sensitivities, dy(t)/da and dy(t)/db, while minimising their correlation.

In the example above, x(t) = dy(t)/db, and so a bang— bang response
maximises the energy of dy(t)/db. The time of the transition, T,, is then chosen
to maximise the energy of dy(t)/da while minimising the correlation with dy(t)/db

(see figure 3.13 for dy(t)/da and dy(t)/db when T,=1.65 seconds).

Finally, figure 3.14 shows that |D| does not appear to converge to a final
value as the test record length is increased. @ This may be attributed to the
energy of the responses increasing as the test record is made longer, since only

the amplitude is constrained.

It is proposed that the output amplitude constraint produces inputs suitable
for rotorcraft applications, since it guarantees responses of limited amplitude. If

a suitable amplitude is chosen, then the response will be linear, as required.

3.5 RESPONSE ROBUST OPTIMAL INPUTS
3.5.1 Time Domain Designs

For a given model, the output amplitude constraint discussed in section 3.4
can be used to ensure a linear response. However, since the model of interest is
known to be inaccurate, it is important that the responses are robust, and remain

linear when used with the real system. The following constraint is suggested for

this purpose.

¢ R i=1,2, ..., ¢q (3.57)
y

EAC
1
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where,
q is the number of parameters to be identified
8; is the ith parameter
Ryi is the robustness limit required.
This constraint restricts the sensitivity of the response to changes in the
model parameters.  Using this constraint to give robustness, and the output

amplitude constraint for linearity, leads to an input design problem as follows,

min |D] (3.58)

where,

<R } (3.59)

. . |4y
U= { u iyl <Ly |d0i(t) i

withi= 1,2, ...q; 0gtgT

Since the robustness constraint can be expressed as an amplitude constraint,
the input design algorithm given in section 3.4 for the output amplitude constraint
can also be used for this robust input design problem. The only change in the
algorithm is to now use the set U given in equation (3.59). This change is
relatively straightforward to implement with the author's software (see Appendix
B). However, the resulting optimisation problem is significantly more difficult to

solve, due to the large number of non— linear constraints now required.

3.5.2 A Simulation Study of Response Robust Optimal Inputs

The simple scalar system (equation (3.28)) used to study previous constraints
was also used to investigate the response robustness constraint given in (3.57). A
response amplitude constraint of 0.2 units was used throughout with test records

of 2 seconds duration. Figures 3.18 and 3.19 show the results obtained.
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Figure 3.18

The response, y(1), and scasiuvities, dvil)s da and  dy(t)/ db, for output

amplitude constrained (Ly=0.2) response rcbust (Ry,=0.2, 0.1, 0.05 Ryp=0.2)
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dy(t)/da

y(t), dy(t)/db

Figure 3.19

The response, y(1), and sensitivities, dy(t)/ da and dy(t)/ db, for output
amplitude constrained (Ly=0.2) response robust (Ryg=0.2; Ry}p=0.2) optimal
inputs (simple first order system, a=+1, b=1)
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dy(t)/da

y(t), dy(t)/db

Figure 3.20

The response, y(t), and sensttivities, dv(l)i da and avit)/ db, for the output
amplitude constrained (Ly=0.2) respense  robust (R,,=0.05; Ryb=0.2) optimal
input (simple first order system, a=—1, b=1)
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Recall that dy(t)/db = y(t) in the simple scalar system. dy(t)/db is therefore
constrained by the output amplitude constraint, and so attention was concentrated
on dy(t)/da. From the results, it can be seen that as Rya is reduced, the
sensitivity dy(t)/da changes to remain within the constraint. The response
robustness constraint also interacts with the output amplitude constraint to restrict

d2x(t)/otda. To see this, consider the output— error model, as follows.

X (t) = A x(t) + B u(t), y(t) = C x(t) (3.60)

For a parameter, 64, which is in the matrix A,

2
22X 6y = By + ad s (t) (3.61)
ot 04 [
A A
Since |x(t)| and |dx(t)/d6éa| are constrained, |82x(t)/3t60A| is also

constrained. In particular, for the simple scalar system used, this gives,

Ix(t)l = ly(t)l < Ly (3.62)
dx _ Q_X
Eo| - £ o < Ry (3.63)
and,
3’x _ 3’ 9y dx
3t o9 (t)| = |5t 59 <t)| IX(t) ra$o
(3.64)
< Ix(e) ] + Ia—— (t)l (3.65)
i.e.
a%x
557, @] < L, + lal Ry (3.66)

The effect of this constraint can be seen in the results obtained using this
system. In particular, the case a=-—1, b=1, Ly=0.2, Rya= 0.05, Rpj»» shown

in figure 3.18 can be seen in more detail in figure 3.20. —
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Now consider a parameter, 6g, which is in the matrix B.

2
% (t) = A 9% (t) + EiEu(t) (3.67)
ot aOB deé dGB

However, unlike the case of a a parameter in A, this equation does not
place an amplitude constraint on d2x(t)/otd6g, since the input, u(t), is not
amplitude constrained. Nevertheless, dx(t)/dég is coupled to x(t), and hence the

response robustness and output amplitude constraints affect each other, as follows.

Rewrite (3.60) and (3.67) in state space form to give,

g% (t) A O x(t) B
izx_ (t) - o A | dx (t) * dB uce)
ot 30B dGB dBB

(3.68)

The controllability matrix [9] for this system is,

B AB
B B

The columns of this matrix are clearly linearly dependant i.e. it is not full

rank. Hence, x(t) and dx(t)/dég cannot be controlled independantly. This is

easily seen in the case of the simple scalar system.

_?;t( (t) a O x(t) b
= + u(t)
3%x dx
st op (O 0 a 1l g ™ !
(3.69) .

If b=1, then x(t) = dx(t)/db, and more generally, x(t) ="b dx(t)/db.

85



Such coupling may also be present between x(t) and dx(t)/d6s. Combining
(3.60) and (3.61) gives,

g—f (t) A 0 x(t) B
3°x - dA dx + 0 u(e)

3t o0 aeA(‘) T A ag. (V)

>
>

(3.70)

The controllability matrix is,

B AB
0 %B
A

If the matrix A has dimension greater than one, then dA/dfp will contain
rows and columns of zeroes. In this case, the controllability matrix will once

again have less than full rank.

However, for the simple scalar system, this controllability matrix is,

R

This has determinant equal to b2, which is non—zero for b=0. Hence, x(t)

and dx(t)/da are controllable for b=0.

When choosing values for Ly and Ryi it is important that the couplings
between the constraints be taken into account. Otherwise, the constraints will be

in conflict, giving a very ill— conditioned optimisation problem.

Finally, considering the response robustness conflict itself, it can be seen that
this produces only ‘'short—range' robustness. For the model used to design. the
input, dy(t)/dé may be small. However, there is no guarantee that when
perturbed from this model dy(t)/d¢ will remain small. Hence, this response

robustness constraint is relatively limited.
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Unfortunately, wider—range constraints, which continue to hold when
perturbed to a certain extent from the designed model, are difficult to implement.
For example, constraining the higher derivatives of dy(t)/dé, as well as dy(t)/dé
itself, will produce a wider—range constraint. However, differentiation is
numerically unstable, leading to accuracy problems. Moreover, generating a large
number of derivatives is extremely expensive in computing time. It is felt that
the simple constraint used provides a practical compromise between no robustness

and these more complex robustness constraints.

3.6 PARAMETER ROBUST OPTIMAL INPUTS
3.6.1 Time Domain Designs

In addition to obtaining robust responses, it is also important that the
parameter estimates continue to be of high quality when an input is used with
the real system. To give robust parameter estimates, it is possible to limit the

sensitivity of |D| to changes in the parameters, using the following constraint.

-
a
=]

< R i=1,2, ... q (3.71)

0 .
i d|D
U={u: ly(e)l < L — DI < Ry } (3.72)
y . .
withi= 1,2, ... q; 0gtgT

Unfortunately, the parameter robustness constraint in (3.71) is very
non— linear. When combining two inputs u,eU and u,eU to give a new input
Up+ , = ou, + Luy, no simple relationship between o and $ has been found to
ensure that up4 ,€eU. It has therefore not been possible to use the special form
of input design algorithm developed for the previous constraints.  Instead, a
general— purpose optimisation algorithm was used, but at the cost of poorer

performance (see Appendix B).
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Figure 3.21
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3.6.2 A Simulation Study of Parameter Robust Optimal Inputs

The results of a study of the parameter robustness constraint in equation
(3.71) are shown in figure 3.21. The simple scalar system described previously
was used, with a response amplitude constraint of 0.2 units, and test records of 2
seconds duration. It can be seen that while y(t) and dy(t)/db are bang— bang in
nature, dy(t)/da is not.

The parameter robustness constraint may be written as follows,

C
a
=}

B 0 diM| -
7T —45 ~ - THT —da7 o Tr (M

1+ dM

7 ) (3.73)

For the scalar system used, the information matrix, M, is a 2x2 matrix, i.e.

M = (3.74)
12 22
_ ¢ diM|
> T~ TMT 48
dM11 dM12
_ 0 Tr 1 M11 MIZ] dé de
M M - M2 12 22 ﬂuv d_Mzz
11 22 12 37 a0
0 dM” dM12 szz
=M _Mz Mzzd() - 2M12d_0 +M11@
11 22 12
(3.75)
and,
T
N : dy 2 S o (3.76)
Mn = E(t) de : T
' 0
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(t) == (t) dt (3.77)

<

i

—
-

|Q-

<

(2
<

22 db
0

T L
M = S ey dt (3.78)

Hence, the parameter robustness constraint is essentially constraining the

energy of the sensitivities, and the correlation between them.

3.7 COMBINED PARAMETER ROBUST AND RESPONSE ROBUST OPTIMAL
INPUTS

To gain the advantages of both parameter robustness and response
robustness, both of these constraints may be applied simultaneously when designing
an input. To ensure linearity, the output amplitude constraint is also needed.

This gives the following set, U, of valid inputs.

6
B . .| dy L }
u={uwon e ; ]—deim <R 5o att < Ry

withi=1,2, ... q; 0 ¢t T

Unfortunately, implementing this set of constraints was found to require
excessive amounts of computing time (typically around a week of CPU time on a
DEC VAX 11/750). The simultaneous use of response robustness and parameter
robustness impractical at present, until significantly more efficient software is
developed, or more computing power is available. It is therefore necessary to
decide which of these two constraints should be used. However, this choice

depends on the application being considered.
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3.8 CONCLUSIONS

The results obtained have emphasised the importance of using appropriate
constraints during the input design process. If care is not taken, then inputs may
be produced which are unsuitable for practical use. It is suggested that this may
account for some of the poor results reported in the literature when optimal

inputs have been used in practice for aerospace applications (see section 1.5.2).

In order to ensure linear responses, the output amplitude constraint may be
used.  This constraint guarantees response of limited amplitude. If a small

enough amplitude is chosen, then the responses will be linear.

Robustness is also an important factor in obtaining a successful input. While
both response robustness and parameter robustness constraints were studied, it was
found that it is impractical at present to use both constraints simultaneously. It
is therefore necessary to decide which of these constraints should be used. This
choice depends on the application under consideration. However, in the
helicopter case, if the response becomes non-— linear, then it is not suitable for
identification purposes. It is therefore essential that linear responses are obtained.
In the present work, it is thus suggested that response robustness is the more

important.

To conclude, the following set, U, of permissible inputs is advocated for

rotorcraft applications :

< Ry } (3.80)

. |4y
o= u e o |d0i<t> i

withi=1,2,..q 0gtgT
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CHAPTER FOUR

DESIGN OF OPTIMAL LYNX INPUT

4.1 INTRODUCTION
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4.1 INTRODUCTION

The results obtained in Chapter 3, concerning suitable constraints for
identification inputs, were applied to the design of optimal rotorcraft inputs.
Attention was restricted to identifying the pitching moment equation parameters:
M,;, My, Mq, and MT)1S‘ In addition, the 5th order model derived from
output—error identification in section 2.4.3 was used as the basis for the input
design process. Finally, the covariance matrix, R, of the noise on the outputs

was estimated from flight test data to be as follows :

0.0025

0

0.0085

R = 0.00001
0.00025

0

0.000036
Two inputs were studied : one subject only to an output amplitude

constraint, and the other subject to both output amplitude and response robustness

constraints. The amplitude constraints on the outputs were as follows :

longitudinal velocity, u 5 m/s (15 ft/sec)
Jetied velocity, w 3.3 m/s (10 ft/sec)
pitch rate, q 0.04 rads/sec
pitch angle, ¢' 0.1 rads

roll rate, p 0.03 rads/sec

The amplitudes of the outputs, with the exception of roll rate, p, were
chosen on the basis of previous flight data, known from its coherence functions
to be linear. Roll rate, however, was kept to a lower amplitude than that
required simply for linearity. This was to allow for errors in the modelling of
this state, and was used to reinforce the response robustness constraints since the
sth order model used contains only a limited representation of the rotorcraft

lateral dynamics. The accuracy of the modelling of roll rate is discussed further

in section 2.4.3.
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It was not possible to use the coherence to check the linearity of the

responses obtained using these contraints, since only a linear identified model was

available. Nevertheless, experience suggests that the amplitudes used are
reasonable.
For response robustness, the relative sensitivities, |6/x dx/dé|, were

constrained to be around 1%. Taking the parameters, 6, from the model used,
and the output amplitude constraints as the values for |x|, the absolute

sensitivities, |dx/d6| = {|x|/|8|} | 6/x dx/d6|, are given in table 4.1.

Sensitivity
of outputs
to changes u w q 6’ p

in the model

parameters
Mu 97 65 0.26 0.65 0.194
Mw 441 294 1.17 2.94 0.882
Mq 0.22 0.14 0.6E-3 0.14E-2 0.44E-3
MU 0.11E-1 0.73E-2 0.2E-4 0.7E-4 O0.2E-4
18
Table 4.1 — Response robustness constraints on |dx/d6], used

with the robust Lynx optimal input.

Finally, a 20 second test record length was used. This corresponded with
the typical lengths of records in flight trials using multi—step inputs, although it
is shorter than that obtained with the double— doublet input in Chapter 2.
Moreover, it produced a more manageable input design problem than if a longer

record length had been used.
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Figure 4.1
The time history and auto—spectrum of the output amplitude constrained

optimal input for the Lynx helicopter at 80 knots level flight. Details of the

model and the constraints used are given in the text.
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Figure 4.2

The responses produced by the output amplitude constrained optimal input

for the Lynx helicopter at 80 knots level flight.

constraints used are given in the text.
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Figure 4.3

The auto—spectra of the responses produced by

the output amplitude
constrained optimal input for

the Lynx helicopter at 80 knots level flight.
Details of the model and the constraints used are given in the text.
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Figure 4.4 (a)

The sensitivities to the parameters of the pitching moment

responses to the output amplitude constrained optimal input for the

equation of the

Lynx
helicopter at 80 knots level flight.
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Figure 4.4 (b)

The sensitivities to the parameters of the pitching moment equation of the

responses to the output amplitude constrained optimal input for the Lynx
helicopter at 80 knots level flight.
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Figure 4.4 (c)

The sensitivities to the parameters of the pitching moment equation of the
responses to the output amplitude constrained optimal input for the Lynx
helicopter at 80 knots level flight.
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Figure 4.5 (a)

The sensitivities to the parameters of the pitching moment equation of the

responses to the double—doublet input for the Lynx helicopter at 80 knots level
flight.
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Figure 4.5 (b)

The sensitivities to the parameters of the pitching moment equation of the

responses to the double—doublet input for the Lynx helicopter at 80 knots level

flight.
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Figure 4.5 (c)

The sensitivities to the parameters of the pitching moment equation of the

responses to the double—doublet input for the Lynx helicopter at 80 knots level

flight.
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While this is acceptable for the present work, deciding on a suitable length
of test record is non— trivial in general. Perhaps the simplest approach is to
increase the length until parameter estimates are obtained which have an
acceptable level of variance. As shown in Chapter 3, for unstable system such as
a helicopter, |D| does not converge to a final wvalue. Hence, it is always

possible to obtain a given variance if sufficiently long test records are used.

However, the response of the helicopter to external disturbances, such as
gusts, can build up to significant level over a long test record. Related to this,
the longer the test record, the more difficult it also is to obtain an input with
acceptable response robustness. A degree of engineering judgement is therefore

required when selecting what is a suitable length of test record to use.

4.2 OUTPUT AMPLITUDE CONSTRAINED OPTIMAL INPUT

The D— optimal, output amplitude constrained, Lynx input is shown in figure
41. Figures 4.2 and 4.3 give the responses produced by this input, and figure

4.4 shows the sensitivity of these responses to the model parameters.

It can be seen that the responses are amplitude constrained, as required, and
exhibit a tendency for bang— bang behaviour.  However, due to the need to
constrain several outputs, and the couplings between these outputs, the responses
are not truly bang—bang. This is in contrast to the simpler cases studied in

Chapter 3.

An example of this coupling can be seen between the pitch angle, 6', and

the pitch rate, g, as follows.

q(t) = de'(tydt

t
> 0'(t)=J q(t) dt + 6'(0)
0
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A 20 second test record is used, and q is constrained to be less than 0.04
rad/sec, while ¢' is less than 0.1 rads. If q is at its maximum amplitude, then
it is possible to calculate how long it will take before 6' reaches its maximum, if

it starts at zero. This is done as follows,
q(t) = 0.04, 6'0) = 0

to

s 0'(ty) = J 0.04 dt = 0.04 t,
o]

But, 6'(t,) = 0.1, since 6' is at its maximum at time, ty.
ie. t, = 0.1/0.04 = 2.5 seconds

Hence, the pitch rate, q, cannot remain at its maximum for longer than 2.5
seconds if @' starts at zero, or S seconds if 6' starts at its minimum amplitude,

— 0.1 rads. It is therefore not possible for both q and 6' to be bang— bang.

Considering the auto—spectra of the responses (see figure 4.3), it can be
seen that the pitch and roll rates contain frequency components up to around 5
rads/sec. In contrast, the longitudinal and vertical velocities have little power
above 2 rads/sec. This difference in the bandwidth of the responses Iis
reasonable, since the rates involve faster dynamics than the velocities, e.g. the
fast pitch mode has an eigenvalue of —3.25, whereas the phugoid eigenvalues are

0.0447 + j 0.233.

Now, in Chapter 2 it was concluded that, for the Lynx, the rotor dynamics
were mainly present at frequencies above about 7 rads/sec.  Hence, since the
responses to the optimal input contain little power above this frequency, it can
also be concluded that the optimal input will not excite the rotor dynamics
significantly. Once again, this is reasonable, since the parameters which the
optimal input has been designed to identify are not concerned with the rotor

dynamics.
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For this optimal input, the determinant of the dispersion matrix, [D{, was
calculated to be 0.170. The corresponding values of |D| for other inputs are

shown in table 4.2.

The 1221 and the doublet both give determinants around 150. In contrast,
the double— doublet gives a significantly lower value, 3.95. This is in agreement
with the results given in Chapter 2, where the double— doublet was found to be

far superior to the doublet and 1221 inputs.

Input ID]
Optimal Lynx
output constrained 0.170
input
Double-Doublet 3.95
1221 159.7
Doublet 136.2
Table 4.2 — |D| for various inputs, calculated using 5th order

identified Lynx model

It can be seen that the optimal input value of 0.170 for |D] is an order of
magnitude better than that of the double— doublet. The sensitivities of the
double— doublet responses to changes in the model parameters are shown in figure
4.5. These are of comparable magnitude to the sensitivities for the output
amplitude constrained optimal input. Hence, the improvement in |D| using the
optimal input has been achieved without increasing the amplitude of the
responses, or reducing their robustness. This is an encouraging result, and
demonstrates the potential for obtaining improved parameter estimates by using

more carefully designed inputs.
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4.3 OUTPUT AMPLITUDE CONSTRAINED AND RESPONSE ROBUST
OPTIMAL INPUT

Unfortunately, attempts to design an optimal Lynx input with both output
amplitude constraints and response robustness were unsuccessful. The input design
algorithm used is described in Chapter 3 and Appendix B. A central component
of this algorithm is the NAG general— purpose optimisation routine EO04UCF.
This routine performs non— linear optimisation by repeatedly linearising the
required non— linear functions, and solving the resulting linear optimisation

problems.

However, it was found that the response robustness constraints for the Lynx
helicopter case studied are extremely non— linear, and have derivatives of large
magnitude. Severe ill— conditioning therefore results when it is attempted to treat
the non— linear optimisation as a series of linear optimisations. This
ill— conditioning was found to lead to the constraints being grossly violated, and

repeatedly gave rise to numeric overflow.

It is therefore the opinion of the author that an optimisation routine is
required which deals directly with the non— linear nature of the problem, rather
than linearising it. For example, in [1], a development of the Simplex method is
given which will optimise a non— linear function subject to non— linear constraints,
without the use of linearisation. The development of stable and efficient
numerical techniques is held to be of great importance for the future, if optimal

inputs with realistic constraints are to gain widespread use.
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CONCLUSIONS

The test input applied to a helicopter, or any other system, for the purpose
of system identification can have a substantial effect on the parameter estimates
obtained. It is therefore important that an appropriate input is chosen, and in
particular inputs must take account of the requirements, and restrictions, of the

application.

In the rotorcraft case studied, the principal aim of the identification has
been the development and validation of flight mechanics models. Due to
practical restrictions, it is currently only feasible to use a linearised model. It is
therefore essential that the input produces a linear response. Moreover, despite
the unstable nature of a helicopter, if good estimates of the system parameters
are to be obtained this response must be of reasonable duration, and must
contain enough information about the system. With these considerations, several
approaches to the design of system identification test inputs have been studied and

evaluated.

Firstly, a straightforward method has been developed for the design of
multi— step inputs. This method is based in the frequency— domain, and involves
tailoring the auto— spectra of the inputs to give long, linear test records, and
parameter estimates with reasonably low variances. In flight trials using the
Lynx helicopter at RAE (Bedford), the double— doublet input, designed with this
method, has been found to be a significant improvement over more traditional

inputs.

Using the data from the flight trials of the double— doublet, both
equation— error and output—error identification has been carried out. Several
discrepancies were found between the theoretical and identified models. In
particular, the unstable phugoid mode of the Lynx appeared to be poorly
reproduced by the theoretical model. ~More work is required to clarify this.
Numerical difficulties were encountered during the output— error identification.
These were attributed to ill— conditioning resulting from the use of an unst'able
system. Little work appears to have been published on the particular difficulties
involved in applying identification algorithms fc unstable systems, and it is an

area that is in need of further investigation.
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The experience gained from these flight trials served to highlight the
importance of robustness to the success of an input. Several types of robustness
have been noted. Firstly, when inputs are applied manually, they must be
insensitive to errors in amplitude and timing introduced at this stage. Secondly,
the model used to design the inputs is likely to be inaccurate, otherwise the
system identification would be unneccessary. Inputs must be able to tolerate these
inaccuracies, and still give linear responses and parameter estimates of high

quality.

In addition to designing multi—step inputs, the design of optimal inputs has
also been investigated. In particular, constraints have been developed which are
suitable for ensuring that the optimal inputs produce linear responses, and are
robust. Conventional energy constraints were found to be of little use for these
purposes. It is suggested that previous unsatisfactory results obtained by other
authors wusing optimal inputs in aerospace applications may have been a

consequence of using these inappropriate energy constraints.

Algorithms have been developed for the design of optimal inputs with a
variety of constraints, and simulation studies have been made to gain an
understanding of the effect of these constraints on the form of the inputs. These
simulation studies were found to give a valuable insight into the characteristics of

optimal test inputs.

With the constraints obtained from this work, an optimal input has been
designed for use with the Lynx helicopter. This input is as robust as the
double— doublet multi—step input designed for the Lynx, and yet is predicted to
give significantly improved parameter estimates. Unfortunately, due to the Lynx
at RAE (Bedford) being unavailable at the time of writing, no flight trials have
been performed using this input. Attempts to design an optimal Lynx input with
still greater robustness failed due to numerical problems in the software used.

These problems are non-— trivial, and further work is required if they are to be

overcome.
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Comparing the multi—step inputs and the optimal inputs, whereas the
multi— step inputs are restricted to a sequence of steps, the optimal inputs can
have a completely general form. Moreover, while the multi—steps only give
reasonably low parameter variances, the optimal inputs are designed to strictly
minimise the variances. Finally, the multi—steps are straightforward to design.
In contrast, the design of the optimal inputs involves a more complex process,

which perhaps leads to inputs that are more difficult to understand intuitively.

System identification is, in general, an iterative process. Initially, only a
poor description of the system may be available. Hence, only crude inputs can
be designed, giving parameter estimates with relatively large variances. These can
be used, however, to give an improved model of the system, which can then be
used to design improved inputs. These in turn give more accurate parameter
estimates, and a further improvement in the model, and so on. The multi— step
inputs and the optimal inputs developed in this work complement each other, and
it is proposed that both can be used to advantage within this iterative

framework.

In the initial identification, it is suggested that the multi—steps are a more
appropriate type of input. Multi— step inputs are largely designed manually.
There is therefore scope for the inclusion of information about the system from a
wide variety of sources, in both qualitative and quantitative form. Since only a
limited numerical model of the system may be available in the early stages of the
identification, the ability to incorporate any extra information is important.
Moreover, when the model is very inaccurate, then inputs need to have a large
degree of robustness. However, as noted in Chapter 3, it is difficult in practice
to produce optimal inputs with wide—range robustness. In such situations,
multi— step inputs are therefore often superior at present to optimal inputs. It
is proposed that optimal inputs are more suitable later in the identification

process, when a fuller, and more accurate, model has typically been obtained.

Considering the future, it is important that the optimal inputs undergo flight
trials, in order to confirm the simulation results presented. Wark is also reqﬁired
to develop more stable and efficient numerical software for the design of optimal
inputs. The present author's software is largely a research tool, and so has

sacrificed efficiency for flexibility.

101



In the longer term, it is suggested that the greatest scope for further
improvements in identification test inputs lies in the use of multi—axis inputs.
For example, a conventional rotorcraft has four pilot controls, yet at present an
input is applied to only one of these at a time. By wusing all four
simultaneously, more information can be gained about the system in a shorter
time. This must be balanced against the extra complexity of designing such
inputs, and hence the greater time required for the input design stage of the

identification.
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APPENDIX A — THE ORDINARY COHERENCE FUNCTION

A.1 Introduction

In rotorcraft identification, a linear model is used.

However, this is obtained
by linearising the

non— linear HELISTAB model about a particular flight
condition. If the system response departs too far from this flight condition, then

it becomes non— linear, and the linearised model is invalid.

By definition, the coherence function is a measure of the linearity of the
system relating two signals.

Hence, the coherence may be used to determine

when the response is linear or nonlinear,

and therefore whether a linearised
model is valid.

A.2 Theoretical Background

The ordinary coherence function relating two transient signals x(t) and y(t) is
defined in [1] as,

[y (@) 12 = Sxy (@) 1®
Xy -

T (A.1)
Sx(@) Sy(w)

where,

]'yxy(w) | 2 is the coherence between signals x(t) and y(t).
Sxy(w) is the cross— spectrum of x(t) and y(t).
Sy(w) is the auto—spectrum of x(t).

Sy(w) is the auto— spectrum of y(t).

The coherence can be interpreted as a measure of the power in the signal

y(t) which is due to a linear relation with the signal x(t) [1], as follows.

Consider the following .general stationary system relating two signals x(t) and

y(t),

W = Fx() (A2)
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The relation between x(t) and y(t) can be split into a linear part and a

non— linear part. Translated to the frequency— domain, this gives,
(&) = H() X)) + Ny(o) (A3)

where,
X(w) is the Fourier transform of the system output y(t).
Y(w) is the Fourier transform of the input signal x(t).
H(w) is the transfer function of the system i.e. the linear part of
the relation between X(w) and Y(w).

Ny(w) is the Fourier transform of the component of y(t) produced

non— linearly from x(t).

Then,

Sy(w) = [H(w|? S(w) + Sp(w (A.4)

i.e total linear
power in
signal y

linear power non-1linear power
from signal x from signal x

(A.3)

The ordinary coherence function can be shown to be,

I1H(w) 12 Sy (w)

[}

vay(w)lz (A.6)

Sy(w)

linear power from signal x
= (A.7)
total power in signal y

From this expression, it can be seen that the coherence must lie between
zero and unity. A coherence of unity means that the system relating x(t) and
y(t) is purely linear. While a coherence of less than unity means that there is a

non— linear component in this system.
In order to estimate the ordinary coherence, it is first necessary to estimate

the auto— and cross—spectra of signals x(t} and y(t). An estimate of the

coherence can then be obtained using equation (A.1) above.
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By definition [1],

Sw(w) = E[ IX(w)1? ] (A.8)
Sy(w) = E[ IY(w)1? ] (A.9)
Sxy(w) = E[ X(&) Y(&)* ] (A.10)

where,

* superscript denotes the complex conjugate.

E[ ] denotes averaging over an infinite number of frequency spectra.

Take the signals x(t) and y(t), and sample them to give the discrete signals
x(i) and y(i),

x(i)
y(i)

x((i— 1)At) i=1,2 ..N (A11)
y((i—= 1)4t) (A.12)

where,
At is the sampling interval used.

N is the number of samples.

Given x(i) and y(i), the Fast Fourier Transform can then be used to obtain
discrete estimates of X(w) and Y(w). Let these discrete estimates be denoted by
X(k) and Y(k). It is important that some form of windovﬁng is now used to
reduce side— lobe leakage due to signal truncation. If this is not done, the
coherence estimates obtained may be severely biased [2]. It is suggested that the

GEO window [3] be used for this purpose (see section A.3 below).

Using these windowed X(k) and Y(k), initial estimates for the auto— and
cross— spectra can be obtained by omitting the averaging in equations (A.8) —
(A.10) above. Averaging is then performed in the frequency— domain to give
final estimates of the auto— and cross— spectra. Frequency averaging can be

expressed [3] as,

n/2

1/n° L (ki) k=17,
i=-n/2

§x(X)
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where,

A .
S«(k) is the discrete initial auto-spectrum estimate.

~
Sy(k) is the averaged discrete auto-spectrum estimate.

n is the averaging interval i.e. the number of samples from the

initial spectrum averaged together at each point of the final spectrum.
An estimate of the coherence can now be obtained using equation (A.1).
However, since in practice only a finite averaging interval, n can be used in
equation (A.13), the averaging is not perfect, and a bias is introduced into the

coherence estimate as a result. Theoretically, this bias is given by [4, 5, 6, 7]

as,

1+2

. : Yy (@) 12
Bias, B(l'ny(w)lz) = E’ [1"|7xy(w)l2] e —
n

(A.14)

where,

I‘ny(w)l 2 js the true coherence.
Hence, an approximate correction for this bias can be obtained using,

Approx. Bias = B(19yy(K)12) (A.15)

1Txy(K) 12 = [9xy(K)I? - Approx. Bias (A.16)

where,

|Qxy(k)|2 is the discrete initial estimate of the coherence
|:;/)‘:y(k)|2 is the discrete corrected coherence estimate

This corrected estimate was taken as the final coherence estimate.
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However, other biases can also affect the coherence estimate. For example,
misalignment bias and correlation bias. Misalignment bias [2, 8] is due to time
delays being present in the system relating the two signals x(t) and y(t). Such
delays result in a part of y(t) corresponding to a part of x(t) which is outside

that available time record. Hence, the coherence estimates are too low.

Theoretically, misalignment bias is given by the expression,

I71
Bias =~ - — Iyxy(w)l"’ (A.17)
T

where,

7 is the time delay.
T is the length of the time history.

Ivxy(e) | 2 is the true coherence.

Correlation bias occurs when the ordinary coherence function is used with
systems that have more than one input. If the coherence is taken with respect
to one input, the other inputs will appear to produce non— linearities and so give
a low coherence. However, if the inputs are correlated, the coherence will be
higher than if they were uncorrelated. In particular, if the inputs are linearly
related, then the coherence will behave as if only one input was present.

15

This bias/ of particular interest in situations where the initial conditions of
the system are not zero. The initial conditions act as extra inputs to the system.
However, these extra inputs are in the form of Dirac §— functions. Hence, they

are linearly related to the true system input, and so can be ignored.
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A.3 A Simulation Study of the Ordinary Coherence Function

Given the large number of biases which may affect the coherence function,

it was considered important that the behaviour of the coherence calculations used

be properly characterised. In [5]

Gaussian signals with known coherence.

Carter mentions a method for generating

These were therefore used for an initial

study of the coherence calculations.

Consider two signals x(t) and y(t), as follows,

x(t) = a(t) + K bt) (A.18)
y(t) = bty + K a(t) (A.19)
where,
K is some constant.
a(t) and b(t) are uncorrelated Gaussian signals with identical
auto— spectra.
Then,
Se(@) = Sp(w) + K2 Sp(w)
= (1 +K?) S,(w) since Sz(w) = Sp(w) (A.20)
Sy(w) = (1 +K?) Sy(w (A.21)
and,
Sxy(m) = K Sa(w) + K Sp(w)
= 2K Sj(w) (A.22)
This gives,
4K? Sy(w)?
lyxy(@) 12 =
xy (1 + K2)2 S,(w)?2 —
4K?2
- —_- (A.23)
(1 + K?)2
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Figure A.1
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two Gaussian signals

The estimated coherence between

coherence of 0.8 ( frequency averaging interval of 3 used)
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Figure A.2
Theoretical and actual bias of estimated coherence for no leakage reduction
window, a Hanning window, and a GEO window. Frequency averaging interval

of 5 used, and actual bias obtained by taking the mean of 1000 coherence

estimates)
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Rearranging such that l'yxy(cu)l2 = 0 when K = 0 gives,

1 - /(1 - lygy()12)
K - (A.24)

Yy (@) |

Hence, by controlling the value of K it is possibie to control the coherence

between signals x(t) and y(t).

The coherence calculations were found to produce estimates of the coherence
between x(t) and y(t) which were in good agreement with equation (A.24) above

(e.g. see figure A.1).

Now, for these Gaussian test signals the true coherence is constant over all
frequencies. Hence, the coherence calculations estimate the coherence at N
discrete frequencies, and so produce N estimates of the true coherence.
Therefore, by averaging these estimates together, the variance and bias of the

estimates can be calculated.

Using this method, the bias of the coherence estimates, without any
correction using equation (A.16), was compared with the predicted theoretical bias

given by equation (A.14). This comparison was performed for,

a) No leakage reduction window,
b) A Hanning window, and

¢) A GEO window.
See figure A.2 for the results obtained.

It can be seen that when no leakage reduction window is used the bias of
the estimates agrees extremely well with the theoretical bias. However, when a
Hanning window is used, the bias of the estimates is considerably higher than in
theory, although the bias still exhibits characteristics similar to those of the
theoretical bias. The GEO window appears to offer a compromise between these

two cases : it gives a bias which is only slightly higher than in theory.
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It is suggested that these results are due to the Hanning and GEO windows
effectively reducing the frequency averaging interval used in calculating the
coherence estimates, and so producing a larger bias than when no window is
involved. If this is true, then the Hanning window produces a larger reduction
in the effective averaging interval than does the GEO window, since the Hanning

window produces a larger bias.

A result by Carter [2] was used in order to study further the issues
associated with leakage reduction windows. Carter investigated the coherence of a

linear second order digital filter,

T Byy—, + Cx (A.25)

Yn = A Yn—,
where,

A= 1973

B = —0.98202

C = 0.0087

¥pn is the nth output sample from the filter.

X, is the nth input sample to the filter. The input is
Gaussian white noise, with a sampling interval of 4.88281 x 10™ ¢ sec

and 2048 samples.

Carter found that when no leakage reduction window was used, the
coherence was significantly underestimated at frequencies above 100 Hz. It was
also underestimated at frequencies around 20 Hz. When Carter used a Hanning
window, this resulted in the coherence above 100 Hz being correctly estimated.
The low coherence around 20 Hz still remained, and this was shown to be due
to misalignment bias. Hence, it appears that the estimated coherence can be

grossly underestimated if no leakage reduction window is used.
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Figure A.3

Estimated coherence for Carter's second order digital filter using various

leakage reduction windows, and a frequency averaging interval of 3
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In order to examine this, the author's coherence calculation routines were

used to estimate the coherence for Carter's filter, with,

a) No leakage reduction window,
b) A Hanning window, and,
¢) A GEO window.

See figure A.3 for the results obtained.

It can be seen that these results agree with Carter. For no window, the
coherence is underestimated above 100 Hz. Using either a Hanning or a GEO

window solves this problem.

Hence, a leakage reduction window must be used when calculating the
coherence function. Since the GEO window produces a smaller averaging bias
than the Hanning window, it is suggested that the GEO window is suitable for

this purpose.
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APPENDIX B — NUMERICAL METHODS

B.1 Introduction

The theoretical details of the input design algorithms used are given in
Chapter 3. In this appendix, the practical implementation of these algorithms
using numerical software is discussed. Firstly, an important consideration in
practice is the efficiency of the software used. Since complete time histories are
being manipulated, the computing time required is generally very high. Hence, if
an algorithm is inefficient then it may not be possible to obtain results within a
realistic time. In addition, it is necessary to consider the conditioning of the
optimisation used. Ill conditioning can prevent the input design algorithms from
converging, or, in less severe cases, can lead to an increase in the amount of
computing time required. The questions of efficiency and conditioning therefore

dominate much of the discussion in this appendix.

Attention is directed mainly at the time— domain algorithms, since these
present a more diffcult problem than the relatively straightforward
frequency— domain algorithms. The time— domain algorithms used were, with the
exception of those involving the parameter robustness constraint, of the following

general form:
1. Choose suitable initial input, u,(t). Let n = 1.
2. Find input, u,(t) to maximise ¢{ugy), subject to any constraints required,

where,

@(u,) depends on the constraints being used (see Chapter 3)
3. Generate new input, un4 ,(t) using,
Up+ () = a ug(t) + B up(t)
where,
a, (3 are chosen such that |Dp4 | is minimised, and

U+ ,(t) meets any required constraints.

4, If u,4 ,(t) is not optimal, goto step 2 and repeat.
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Step 2 of this algorithm is the most complex, and absorbs much of the
computing time required by the algorithm. Particular attention was therefore
given to efficiently implementing this step. A Rayleigh— Ritz approach was used,

which involved expanding the input in a series of orthogonal functions, as follows,

u(t) =
i

.':1i ui(t) (B.1)

I~ 2

0

where,
aj are constants.
uj(t), i =0, 1, ... N, are a suitable set of

orthogonal functions.

The number, N, of orthogonal functions was selected by the user. For this value

of N, the coefficients, aj, were then chosen by the software to maximise #(u) subject

to the constraints being used.

This optimisation was implemented using the general— purpose NAG routine
EO4UCF [1], which will minimise/maximise an arbitary smooth function subject to
linear, and/or smooth non— linear, constraints. The objective and constraint
functions, plus their derivatives, are supplied by wuser subroutines. A more
efficient approach would have been to develop individual optimisation routines,
each tailored to deal with a particular set of constraints. However, it was felt
that the flexibility resulting from the use of a general— purpose routine more than
compensated for the loss in efficiency. With this flexibility it was possible to

study a wide variety of constraints quickly and with relative ease.

For the algorithms involving the parameter robustness constraint, the input
was once again expanded in an orthogonal series as in equation (B.1). Routine
EO04UCF was then used to directly minimise |D| subject to the required
constraints. Unfortunately, this approach was found to be significantly slower and
less well conditioned than the more specialised algorithms used with the other

types of constraint studied.
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B.2 Calculation of ¢ (u,)
B.2.1 Introduction

The optimisation routine used to perform step 2 of the input design
algorithm typically requires several hundred evaluations of the function ¢(u,) and
its derivatives dg(u,)/da;®, where a;° are the coefficients of u.(t) in equation

(B.1). It is therefore important that these calculations are performed efficiently.

Expressions for (u,;) for each of the input design algorithms studied are
given in Chapter 3. In each case, ¢(u,) involves the term Tr(M,~ ™), and
it is this term which is the most time— consuming to calculate. From equation

(2.4), the information matrix is as follows,

T
M B J
n
o

While from equation (3.24),

T
ffnm R’ i):"(t) dt (B.2)
de . dé )

T dy T dy
(o] -1 n
M= T (O] R () at (B.3)
Now,
N N
u (€) = izo a? u (£), u (1) =izo a? u, (¢) (B.4)

and therefore,

N N
n 0
¥y () = izo a; y;(v), y (t) =izo a; y;(t) (B.S).

where,
yj(t) is the system response to input uy(t).
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Hence,

T N dy T N dy
_ n i -1 n i
Mn = J z a1 (t)] R Z a; 97 (t) dt
1=0 1=0
0
N N
n n
= z Z a, a, M,, (B.6)
i=0 j=o0 i H
and,
N N
M = ) L a%a" m (B.7)
on jm0 =0 i7j ij
, where,
T dyi T - dyj
Mij= -(w(t) R E'e'(t) dt = Mji (B.8)
0
Moreover,
N N
dM dM
M) a"wm., —°M _ ) My (B.9)
n . ki . i ki
dak i=o dak i=o

By precalculating the Mij’ then M,, M,,, and their derivatives can be

calculated by a simple summation, requiring little computing time.

B.2.2 Calculation of the Sensitivity Functions

Since little time is now needed to calculate My M,,, and their derivatives,
much of the computing time is spent precalculating the Mij- The time taken to
calculate the Mij is dominated by the calculadon of the sensitivities, dy;(t)/dé.

An efficient method for obtaining the sensitivities is therefore necessary.
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Originally, the sensitivities were calculated using a transition matrix approach.
It is well known, e.g. [2], that a standard state—space model may be solved to

give the states, x(t), using a convolution integral, as follows :

t
x(t) = &(t) x(0) + J ®(t-7) B u(r) dr (B.10)
0

where,

d(t) = eAt, the state transition matrix.

This can be straightforwardly rearranged into the discrete recursive form,

iAt
x(iAt) = d(At) x({i-1)At) + ®(iAt-7) B u(r) dr
{i-1}At
(B.11)
where,
At is the sampling interval.
Differentiating with respect to ¢ gives,
dx(iAt) _ dA . dx({i-1)At)
4 -3 At d(At) x({i-1)At) + ¢(At)——d0
iAt
{ 9A (jAt-7) @(iAt-1) B u(r)
dé
{i-1)At
. dB }
+ d(iAt-7) FYl u(r) dr
(B.12)

It should be noted that since 6 is simply a vector containing elements of A

and B, dA/dé and dB/d@ are constants.
Now recall that,

y(t) = C x(t) (B.13)
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Hence,
dy(t)/de = C dx(t)/d¢ (B.14)

Equations (B.11), (B.12), and (B.14) provide a means of calculating dy(t)/d6,
given &(t).  Unfortunately, calculating the transition matrix, &(t) is prone to
ill- conditioning. =~ A variety of methods for calculating &(t) have been published
[3—6], but one of the most stable and accurate of these is that described by
Ward [7]. This uses a diagonal Pade approximation to &t) [8,9] combined with
repeated squaring. A particular attraction of this method is that it produces an
estimate of the accuracy of the result obtained, and so it is possible. to output a
warning if the accuracy falls too low, giving improved reliability. A version of
Ward's method, modified to take account of the need to calculate &(t) at several

values of t, was therefore used for the present work.

However, while the algorithm described above for calculating dy(t)/dé has
extremely good accuracy, it is relatively slow. In the current application, it is
essential that the algorithms used are sufficiently fast if results are to be obtained
in realistic time scales. Hence, this slow initial algorithm was later replaced by a
significantly more efficient, but less accurate [10], method for calculating the

sensitivities.

It can be shown [11,12] that the states, x(t), and sensitivities, dy(t)/dé of

any linear system with zero initial conditions may be expressed as follows.

t
G I 7 (t-r)" u(r) dr (B.15)
0

x (t)

where,

[ x(t)
dx .
30 (t)

x (t) = :~ , X (0)y =0 (B.16)

dx
s (t)
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u(t) = system input vector, r = number of inputs

6; = ith parameter, i = 1, 2, ... q
G=[G,G,...G]

b, Ab.
J J

d(bj) d(Abj)

de ds
1 1
G, =
J
d(b, d(Ab,
( J) ( J)
de deé
q q
by = jth column of control matrix, B
a (t)
a_(t)
3 (t) = : = AT B()
a,n(t)
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=T
dx xl
1
A = E2n,-1 -1 |
d)\2n.‘-1 1
1
2znm—1 < T
d)\an—1 m
m
L 4
N = kth eigenvalue of A, k = 1, 2, ...
np = multiplicity of kth eigenvalue
n = number of state variables
1
oMt
¢ 2t ek1t
B (t) =
oMt
t3nm—1 exmt

120

2Nn=-1
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and,

t
J a(t-7) u1(1) dr

o]

t - *
I a (t-t) u(r) dr = (B.21)

t
J a(t-7) ur(r) dr

o}

A 0 0
0 A 0
t —_ *
= . . . . .o J g (t-7) wu(r) dr
0

(B.22)

In this method, G and A are straightforward to calculate. It then remains

to obtain,

¢ ]
J B(t-7) u1(7) dr

0

t - ’
J B (t-r) u(r) dr = (B.23)
0 .

t
J B(t-1) ur(T) dr
Lo ]
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In the present work, interest has been confined to situations where only a
single input is used i.e. r=1. Moreover, the eigenvalues are all of multiplicity

one i.e. ng=1, k=1, 2, ... n. This gives,

ex1(t-7)
(t-T)ex1(t_T)
t t
- *
J B (t-1) wu(r) dr = J u(r) ds
0 0 )
| (t-ryetn(tTT)
(B.24)
i.e it is necessary to calculate,
Yo (t=7) t A (t-7)
J ek T u(r) dr and J (t-1)e k T u(r) dr
0 0
where k = 1, 2, ...n
These 2n convolutions may be expressed as follows,
At (€ -
ek I e kTu(r) dr (B.25)
0 N .
and,
At [5 - Mt [ AT
te k¢ J e " kTu(r) dr - &'k J re "kTu(r) ds (B.26)
0 o]

This involves only 2n quadratures, and so is extremely efficient when
compared to the transition matrix approach described previously. Unfortunately,
when these quadratures are implemented on a computer, the terms e Mkt ' and
e~ Mt are prone to numeric overflow and underflow. However, this problem is

easily overcome by re— arranging the quadratures as follows,

t+At
A At A (t-7)
hy (t+At) = e k [hk(t) + Jt e u(r) dr
(B.27)
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g, (t+At) = kAt [gk(t) + At h (t)

t+At
+ J (t+ae-r)e k(T Ty 0y g ]
t
(B.28)
where,
b (t-7)
hy (t) = Joe KT u(r) dr (B.29)
t A (t-7)
gk(t) =J (t-7) e kAT u(z) dr (B.30)
0
h(0) = 0 = gi(0) (B.31)

This form was found to give good results for stable systems, i.e. Ay<0.
However, in unstable cases accuracy problems were encountered. These were
overcome by taking advantage of some of the special features of the present
application. Recall that it is required to calculate dyj(t)/dé i.e. the sensitivities
for inputs Ui(t)» i=1, 2, ... N. The inputs, uj(t), are based on Chebyshev
polynomials (see section B.3 below), and this can be used to give improved

accuracy.

Chebyshev polynomials are related by the following recurrence formula [13],

1l

Ti(%) 2x Ti— ,(x) — Tij— ,(x)

where,
Tiy(x) = Chebyshev polynomial of order i
Tyx) =1, T,(x) = x

-1 ¢x g1

This gives the following recurrence relations between the quadratures,

. t .
hy (1) = J exk(t_T)Ti(x(T)) dr
1]
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C :
2j x(7) exk(t-T)Ti_1(x(7)) dr - h "*(t)  (B.33)
o]

. t
gl () = [ tory MR (x(r)) ar
0
i b a(t-T)
=t h(t) - JOT e k\tTT T, (x(1)) dr (B.34)
where,
x(s) = (2s—T)/T (B.35)

T = duration of input

Now,

Nl —

t t ,
J ; exk(t—T)Ti(X(T)) dr = J x(r)exk(t_T)Ti(X(T)) dr
o 0

T i
+ 5 hk(t)
(B.36)

Using integration by parts,

. t
f;(t) - Jox(r)e*k("7>ri<x(7)) dr

e)\k(t—'r) t
= [ =vn x(7) T, (x(7)) ]D
t  Ag(t-7) dT,
e dx i dx
- IU N [ 3 (1) T, (x@)+x(1) g7 (x(1))g7 (7)] dr

(B.37)

X(E)T, (x(t)) Ayt 1 2,1
i e l
= o g SOT O 5 F ()

t dT.
1 2 A (t-7) i
+ xk T Joe X(T)3§ (x(r)) dr _ (B.38)
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Since dTj/dx can be expressed in terms of a Chebyshev series of order i—1,
fki(t) may be evaluated given hki(t), hki_ (1), ... hg®t). While from equations
(B.33) and (B.34), hi(t) may be evaluated given hi i~ 2(t) and f i~ (1), and
gki(t) evaluated given hki(t) and fki(t). This allows hki(t) and gki(t) to be

obtained recurrently.

However, in practice this approach was found to be prone to inaccuracies
when polynomials of high order were used. A solution to the problem of

accuracy was finally obtained by using the following method.
Chebyshev polynomials may be expressed as power series in x. Moreover,
since |x| ¢ 1, these power series are well conditioned, and are not dominated by

the higher order terms. Using this power series form, the following integrals

need to be evaluated.

. t .
Ié(t) - J k(T Ay, i=0, 1, 2, ... N+l (B.39)
0

This can be achieved using the following reverse recurrence relation,

. A (t-7) . t
1 e 1
. I,(t) - —X(f)]
i-1 k -2k 0
Ik (t) = e (B.40)
Kk dr ()

Note that this reverse relation is numerically stable, whereas the forward
version of the relation is not. The first value of the reverse recurrence relation,
IkN"' 1, was obtained using numerical integration, with the integration step chosen
to give a result to machine accuracy. Subsequent values were then obtained using
(B.40). This was found to give extremely accurate results, even for very high

order (e.g 50th order) polynomials, while still giving good efficiency.
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B.3 Choice of Basis Functions

In equation (B.1) above, the input u(t) is expanded in a series of orthogonal
functions, uj(t). Various sets of orthogonal functions are commonly used in such

expansions. These include,

Walsh series
Power series

Cosine series

&~ Wb

Chebyshev series

Each of these was considered, in order to decide which was most suitable

for the present application.

Taking Walsh functions [14] first of all, these consist of a sequence of steps,
and this simple form facilitates their use. However, steps cannot be realised in
real systems, resulting in difficulties when using inputs based on Walsh series.
Moreover, the discontinuity at a step leads to power at high frequencies, which is

known to be undesirable for helicopter inputs.

In contrast, power series involve smooth functions and do not introduce
discontinuities. =~ However, power series are very sensitive to the coefficients, a;,

of the higher order terms. Consider the following :

N
i du(t) i
u(t) = Z ait; I =t (B.41)
i=o i
Hence, if for example, t=10 sec, then du/da, = 10, while du/da,, =

1010, This large spread in the values of du/daj results in severe ill conditioning.

Cosine series also do not introduce discontinuities. Moreover, the derivatives,

du/da; are bounded, as follows,

du(t) =cos(i+%)% (B.42)

da
i

N N
t
u(t) = Z ai<:03(i+%)7r—T
i=o
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Hence,

du(t)
dai

-1 Y

Y
=

(B.43)
where, T is the duration of the input being used.
Finally, Chebyshev series are closely related to cosine series, and share may

of their properties. Chebyshev polynomials do not introduce discontinuities, and

also have bounded derivatives, as follows,

N
_ du(t)
u(e) izo 3 T > TED = 1) (B.44)
where,
x(t) = (2t—T)/T, ie. =1 ¢ x(t) ¢ 1
T = duration of input

T;(x(t)) is the Chebyshev polynomial of order i.
Hence,

du(t)

-1« da
i

~
-

(B.45)

Both cosine and Chebyshev series appear to be reasonable basis functions for
the current application, although it was felt that cosine series were more suitable
for problems involving periodicity, whereas the present problem uses aperiodic

inputs.

However, difficulties were encountered when using these series with unstable
systems. In the unstable case, the system response to the input components,
uj(t), may be divergent, even when the response to the full input, u(t), is
convergent. As a result, constraints placed on the system responses (see Chapter
3) tend to produce an ill-conditioned optimisation problem. For high order
Chebyshev and cosine series, this ill conditioning was sufficient to prevent

convergence of the input design algorithms.
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In equations (B.15) — (B.24), it is shown that the system response may be
considered from a model standpoint. This allows the unstable sections of the
- system to be isolated. Inputs, uj(t), can then be designed which will stabilise

these sections.
Consider a system with a single unstable mode, having eigenvalue X\, say.

Then the components of the system response due to this mode may be expressed

as follows (see equation (B.24)),

. t
hice) = J ek’(tnr)ui(r) dr (B.46)
0

and,

N, (t-7)

R t
gl(t) = J (t-1) e u (r) dr (B.47)
0

Taking Laplace transforms gives,

i i u; (s)
L(h'(£)) = H'(8) = ——— " (B.48)
1
i i u; (s)
Lig' (t)) = G'(s) = ——— (B.49)
(S = >‘1)

Choosing gi(t) to be a suitable function, oj(t), gives,

U, (s) = (s - M) I (s) (B.50)
= s"L.(s) - 2N s, (s) + NI (s) - (B.51)
where Ti(s) = L{oj(t)}

If 0y(0) = 0, and doj(0)/dt = 0, then,

dzai : do, , B
u,(t) = — () - 2%, =— (t) + Xjo.(t) (B.52)
i dtz dt 17
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Moreover,

H'(s) = (s - X)E(s) (B.53)
i do;
N N I R WA (B.54)

Hence, if oj(t), doj(t)/dt, and d?20i(t)/dt? are not divergent, then neither are
hi(t), gi(t), and uj(t).

In the present work, Chebyshev polynomials were taken as the basis for

oi(t), using the following,

dT.
0. (£) = T (x(t)) - T, (x(0)) - T (x(0)) (B.55)

Giving 0j(0) = 0, doi0)/dt = 0, and oit), doj(t)/dt, dZ2oyt)/dt? not
divergent.

This technique was found to give significantly improved conditioning in the
input design algorithms. It is easily extended to the more general case of

multiple, complex eigenvalues.
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Figure B.1

The function, f(y),

used as the bgsis for the smooth
constraint

» continuous amplitude
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Figure B.2

An outline of the arrangement used in the smooth, continuous amplitude

constraint. For a function, x(t), constrained to lie between +a and —a, then

the area marked should be zero.

x(1)

The shaded area will be
zero if Ix(t) < a
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B.4 Implementation of Amplitude Constraints

Two amplitude constraints are used in the input design algorithms studied
the output amplitude constraint, and the response robustness constraint.  Since
amplitude constraints are essentially discontinuous in nature, they can lead to
optimisation problems which are prone to ill— conditioning. In order to improve
the conditioning, and give a simple, efficient constraint, the following technique

was used.

The function, f(y), shown in figure B.1, formed the basis of the amplitude
constraints used. @A Chebyshev series was used to approximate this function. It
is defined on 0 ¢ y < 1, and is continuous up to, and including, its first
derivative. Using f(y), an amplitude constraint, |x(t)| < a, 0 ¢t ¢ T, may be

implemented as follows.

HO)

1. Let w(t) = =%/ (B.56)
9 a2

2. Let y(t) = W(WW(ET)T (B.57)

y(t) is the bilinear transform of w(t), giving 0 g y(t) < 1.

w(t) is such that y(t) = 0.1 when [x(t)|] = a. From figure B.1, 0.1
is the break— point of f(y).

T
I fly(t)) dt =1 (B.58)
0

3. Then

3

gives [x(t)| <a, 0 ¢t T

A

The principle behind this amplitude constraint can be seen in figure B.2.
The integral in equation (B.58) essentially measures the area of the curve, x(t),
lying above the amplitude limit, a. This area should be zero if x(t) meets. the
constraint. In practice, since f(y) is continuous up to its first derivative in
order to improve the conditioning of the optimisation problem. Hence, it does
not have sufficient resolution to show small violations of the amplitude constraint.
However, in the present application this presented no problems, and the improved

conditioning resulting from this approach was found to be extremely valuable.
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