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SUMMARY

This thesis presents a systematic study of integrated ladder filter design. A
theoretical model of ladder structures is first established in terms of a family of
symmetric matrix polynomial systems (SMPS's). It is shown that SMPS's are a
natural mathematical abstraction of ladder circuits. The properties of stability,
canonical (or minimal) realisation, low— sensitivity and low— noise, are proved for

SMPS's under certain very simple conditions.
y p

A design methodology is then presented for active—RC, SC and digital
ladders. The basic principle is that a SMPS can be decomposed by means of
matrix factorisation into several linear systems, which can then be easily realised
by active or digital circuits. It is shown that many existing methods, such as
leapfrog or coupled biquads, result from some special decompositions. It is further
shown that LU and UL factorisations drawn from numerical methods can be used
to develop several novel structures (so— called LUD and ULD structures) which
demonstrate significant improvments over existing ones regarding sensitivity,
component area and dynamic range. This is confirmed by examples and statistical

investigations.

Besides the matrix methods applicable to standard lowpass and bandpass
cases, further research is undertaken for bandstop, highpass and allpass filter
designs. It is demonstrated that frequency transformations can be used to reduce
the hardware cost in many classical filtering cases. A novel building block, the so
called TWINTOR, is introduced in bandstop design to reduce the switching rate.
Active— RC and SC allpass ladders are constructed and proved to have significant

advantages over the existing biquad circuits.

Matrix methods also provide an efficient vechicle for the development of a

filter design software package called PANDDA. Its many outstanding features are
described.

Finally measured results from two fabricated LUD SC filters are presented.

They confirm the high quality of the novel circuit structures developed by this

research.
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1.1 BACKGROUND

Filter circuits are of great importance in communication svstems, signal
processing and control devices. They direct, channel, separate and transtorm

electrical signals.

The majority of voice band filters were realised as RLC passive circuits,
Fig.1.1a, [1—11] until the 1960s when it was recognised that size and eventual
cost reduction could be achieved by replacing the large, costly inductors with
active— RC networks, Fig.1.1b, [12—21]. The progress of integrated circuit (IC)
technology, such as the monolithic operational amplifier and the thick and
thin— film circuits, later enabled one to realize high— quality, miniature, hybrid
active— RC circuits with very low cost. With the emergence of VLSI (Very Large
Scale Integration) technology in the 1970's, it became possible to realise high

order analogue filters on microminiature silicon chips [13,22— 25].

In VLSI, it is easier to fabricate capacitors and switches than resistors with
the required accuracy. This gave rise to a new analogue sampled— data system,
the switched capacitor (SC) circuits, Fig.1.1c, [25— 72]. Recent interest has grown
in Gallium— Arsenide (GaAs) implementations of SC circuits for high frequency

applications [31,41].

In the last two decades, digital filters (Fig.1.1d) have been increasingly
employed in communications, signal processing and control functions [73— 94]. This
is due to the accuracy, flexibility, programmability and modularity of digital

systems, in addition to the high level of integration achievable in VLSI.

1.2 NETWORK ANALYSIS AND MATRIX PRINCIPLES

Circuit theory is now divided into two major branches; analysis and design,
each with its own distinct methodology. In circuit analysis, methods have been
developed to handle systematically large, sparsely connected networks, a task
which has been expedited by modern matrix and graph theory [95,96]. This
rationalisation has not been reflected in the field of circuit design. Design
methods, more or less, still focus on local building blocks rather than take an

overall view of target systems.
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The strategy of the research presented in this thesis is to incorporate
network analysis techniques in circuit design. For this reason a brief review of

circuit analysis is necessary.
1.2.1) Formulation of passive network descriptions

Nodal approaches are most popular in formulating network equations.
Suppose a network has n ungrounded nodes and m passive admittance elements.
Let J; be the current flowing into the ith node from n external independent
current sources. The network behaviour is described by an admittance matrix

equation of the form [95,96]:

Y11 Y12 co- ¥nn [ |V1 I
Y21 Y22 coo Yon | |V2 Ia
. = |. (1.1)
Ynl ¥Yn2 Ynn ||VYn In
or
YV =1 (1.2)
Topological matrix decomposition:
Y can be decomposed on a topological basis as [96]
Y = A Yy AT (1.3)
where Yy = diag { y1, ¥2, ... ¥m } is @ mxm diagonal matrix and A is a nxm

incidence matrix defined by

-1 if branch j is incident to and directed towards node i
ajj= 0 if branch j is not incident to node i
1 if branch j is incident to and directed outwards from node i

(1.4)

Polynomial expression of the admittance matrix:

For an RLC network, the contributions of capacitor Ck, inductor Ly and
conductors Gy to the admittance matrix are, respectively, sCy, s'lLk_1 and Gy.

Consequently Y is a matrix polynomial in s with
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Notice here I’ consists of the inverse inductance values.

topologically decomposed by

= s C+ s+ +G

—
U
—

C, T and G can also be

considering onlv the capacitance, inductance or
resistance subnetworks respectively.
C, c,
v, iF vV, —H v,
L, ! Ly !
S, o) pue—
- «
(R i2 [
J T T c =
n G, c I j L, LS.
1 3
Fig. 1.2

A 6th order passive doubly— terminated ladder filter

Example 1.1: For a 6th order ladder, Fig.1.2, the nodal formulation leads to the

following matrix equations,

C1+C2 _C2
s| -Cp Co+Ca,Cy
-C,
Cin
+ 0

-Cy
C4+C5

GL

+s-1

L,-1 _Lo-1
_52—1 Lz'%+La’1 —La-l +
L, -1 Ly, 1+L5'1
4
V1 Jin
vyl = 0
\%) 0
(1.6a)

and the topological decompositions of C and I' are



B e . (1.6b)
Cy 1 -1
Cs 1
1 Lyl 1 -1
r = [ 11 ][ L, ! ][ 1 -1 ] (1.6¢)
-1 1 Lg~! 1

1.2.2) Ladder system matrices: sparse and symmetric

If a ladder circuit is labelled so that every node i is joined only to either
nodes i—1 or i+1 or both, Fig.1.2, then matrices C, T, G and so Y are all
tridiagonal, as can be seen from (1.6a). Therefore ladders are typical sparse

systems [97].

From (1.3) it is seen that C, I', G and Y are all symmetric matrices.
Furthermore it is easy to verify that C, I and G are non— negative definite [98]
provided that only positive RLC elements are considered. Notice that the reverse

is not always true. For example, let matrices C and I' be

2 1
¢ - [ 1 2 ] r-

They are both positive definite but Y = sC + sTIr  can not be realised by an

(1.7)

RLC circuit with positive elements.
1.2.3) LU and UL matrix decompositions
The solution of the algebraic equations,
YV =1 (1.8)
can be performed by the triangular or LU decomposition technique [95,99]. The
main advantage of LU decomposition over Gaussian elimination is that it enables
efficient solution of system with different excitation vectors J. By LU

decomposition a matrix Y is factorised as follows

Y=LU (1.9)



where L stands for the lower triangular and U for the wupper triangular

The system (1.8) is now written as

LUV=1J (1l

Define an auxiliary vector W as

UvVa=w (1

Substitute W into (1.10)

LwW=1J (1

matrix.

L10)

D

.12)

Due to the special form of L and U, the vectors W and the solution V can be

calculated very efficiently. Consider the most simple case when Y is tridiagonal so

that L and U will have the form,

11
121 192 0

= 13 133 (1.

0
1n(n—l) lhn

and (notice the unity valued entries on the main diagonal of U)
1 ups

1 u23 0
Uu = 1 ugy (1

- L"(n—l)n
0 . 1

The solution of (1.12) can then be written as

wp = Jy/11q

wi =Ji/lyi - []i(i-l)/]ii]wi—l i=2,3,...n (1.

This is called the forward substitution process, Fig.1.3a. To solve

unknown vector V in (1.11), start with the last equation and work upward,

Vi = Wi - ui(i+1)wi+1 i=n—1,n—2,...l (1.

13a»

.13b)

l4a)

for the

14b)
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Fig. 1.3  Signal— flow— graph for solving a linear
system by LU decomposition method
(a) Forward substitution
(b) Backward substitution

(c) Overall process



This process is called backward substitution, Fig.1.3b. The whole forward and
backward procedures can be visualised in a signal—flow— graph (SFG) form,

Fig.1.3c. Notice a special relationship for (1.14) and Fig.1.3; if Y is symmetric
then [99]

Lici-1)/lii=ui(i+1) (1.15)

A similar procedure can be developed if Y is factorised by UL

decomposition,
Y=-UL ' (1.16)

A SFG is given in Fig.1.4 for solving (1.8) via (1.16). Again if Y is symmetric
then (1.15) holds.

1 2 Y, w
y _——
.U|‘z .ui Usge
- - ——
[T, " 2 l22 1 e las Inn-1 Im J
I 22 33 e y
R [ W—.
"—/ :_/ ‘L/_
V’,’ J yr v “
1 2 Jz 3 J: —_—— Va Jn

Fig. 1.4  Signal— flow— graph for solving linear
system by UL decomposition method



1.3 FILTER DESIGN METHODS

Generally speaking there are two approaches to filter structure design; direct
methods and simulation methods. The former starts directly from a transfer
function, either as a single polynomial or ratio of polynomials, and the networks
are derived by some algebraic expansions of the transfer function. The latter
transforms some prototype circuit into different implementations while preserving
the transfer function. This is done in order to inherit certain beneficial properties

from the prototype. Examples of direct design methods are:

1) direct realisation without any expansion, e.g., follow—the— leader type circuits
[12,73]

2) expansion into the product or sum of second order sections, e.g., cascade,
parallel biquads and allpass LC lattice [1,12,73]

3) expansion into partial fraction form, e.g., ladder and Gray—Markel's digital
lattice [2,3,82]

A simulation is based on some sort of one— to— one correspondance between
the prototype and the simulated circuit [3,12,73]. This correspondance could be
between the port characteristics of the components in the two circuits, called
component simulation, or between the signal— flow— graphs (SFGs) representing the

two circuits, called functional simulation.

Component simulation methods, such as those using gyrators [17,60] and
GICs [18] to simulate inductors, generally require floating opamps or floating
capacitors which are prone to errors during manufacture. Functional simulation
methods have been more successfully developed and have found wide industrial
application, especially for SC circuits [19—21, 51— 59]. They form the main topic

investigated in this thesis.
1.3.1) Passive ladder and lattice network synthesis

For amplitude filtering the doubly terminated ladders, Fig.2, are the most
widely used passive structures with well established theory [1—11]. Ladder circuits

are well known for their distinguished property of being very insensitive to

component deviations.

For delay equalisation, passive all— pass circuits are mostly realised as lattice

derived bridged— T networks [1]. They are basically cascade second order filters,

10



with a unique fixed port resistance for both ports of each section. Since they are
impedance matched they can be cascaded without introducing any distortion. Each

second order section usually has 5 reactance elements, as shown in Fig. 1.5.

c, C, /2
i} 1t
* [ - ——
L g
L, L, L,
C, L,
it MM — (L2-L1 )2
c L, —
i N
2 ¢,
C,
!
Ly
L1
(a) (b)

Fig. 1.5 A second order allpass lattice section

and its equivalent bridged— T form

1.3.2) First and second order circuit building blocks

Most active and digital networks can be regarded as the repeated connection

of a few regular structured subnetworks, so— called building blocks [3,12,16,73].

A list of first order active—RC, SC and digital building blocks is given in
Fig.1.6. It can be verified that the transfer functions of the circuits in Fig.1.6

are, respectively,

(a) H(s) = -(A+sB)/(C+sD) (1.17a)
(b) H(z) = [-A(1-z-l)+Bz-1-C]/(D+E-Dz"1) (1.17b)
(¢) H(z) = (bg+byz=1l)/(1+a;z"1) (1.17¢)

11



Fig. 1.6
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First order building blocks
(a) Active— RC circuit

(b) Switched— capacitor circuit

(c) Digital circuit
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Fig. 1.7  Second order building blocks
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Second order building blocks, more often referred to as biquad sections, are
particular useful as they can be assembled to form cascade or parallel biquad
structures, based on the fact that any real rational function H(p) (p may be
either s or z for the continuous domain or the discrete domain respectively) can
be factorised as,

boj + b1jp~t + bojp~?
H(p) =1 (1.18a)
2

agj + a1ip~l + agip-
or alternatively can be partial fractioned as

doj + dyip~l + dpjp?
H(p) = 5 (1.18b)
coj + c1iP7t + cgip?

The design of cascade and parallel biquads can be easily carried out using the

active— RC, SC and digital biquads shown in Fig.1.7, with the transfer functions,

DLJ+(HKA+DLI)s~1+CKAs-2

(a) H(s) = - (1.19a)
DLB+ (DLE+FKA) s~ 1+ (CKA)s -2
DI+(AG-DI-DJ)z-1+(DJ-AH)z~2
(b) H(z) = - (1.19b)
D(F+B)+(AC+AE-DF-2DB) z~1+(DB-AE)z~2
bOi + b]_z_1 + b22‘2
(c) H(z) = (1.19¢)

1+ alz‘1 + a22‘2

It is also convenient to separate the active— RC and SC realisations using only
E— capacitor damping (F=0) or only F— capacitor damping (E=0). These two
cases are referred to as the E—type and F—type circuits, respectively [12]. In
particular, set H=1=0 in Fig.1.7a, to realise a pair of zeroes on the imaginary
axis for active— RC circuits, or set I=J and H=0, to realise a pair of zeroes on
the unit circle for SC circuits. In these cases the transfer functions can be

simplified to,

14



(e)

Fig. 1.8
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E—type and F—type second order building blocks

(a) E—type active— RC circuit

(b) F—type active— RC circuit

(c) E— type switched— capacitor circuit
(d) F— type switched— capacitor circuit

(e) Switched capacitor circuit equivalence
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DJ+GAs~2

(a) H(s) = - with L=K=1 (1.20a)
DB+DEs~l+CAs-2
DJ+GCAs~2
(b) H(s) = - with L=K=1 (1.20b)
DB+FAs —1+CAs—2
DJ+(AG-2DJ)z~1+DJz-2
(c) H(z) = - (1.20¢)
DB+ (AC+AE-2DB)z~1+(DB-AE)z-2
DJ+(AG-2DJ)z-14+DJz-2
(d) H(z) = - (1.204)

D(F+B)+(AC-DF-2DB)z~1+DBz-2

In Fig.1.8 circuit realisations are given for these special cases. Notice that
when I=J, the parallel combination of two switched capacitors is equivalent to a
single unswitched capacitor, Fig.1.18e and this property has been used in
Fig.1.8¢c,d. It should also be noticed that the biquads in Fig.1.8 are special

examples of the ladder structures developed in this thesis when order=2 .

Cascade biquads structures are very regular and their design procedure can
be easily automated. However they are also notorious for their poor sensitivity

and noise behaviour.

The first and second order SC sections listed in Fig.1.6 and 1.7 are all
insensitive to grounded stray capacitance [12,32]. This stray— insensitive property is
vital for high precision circuit performance in the presence of significant bottom
and top plate stray capacitance effects in current MOS technology. For practical
considerations, only these stray— insensitive SC building blocks will be used in this

thesis.

1.3.3) Ladder simulations for active— RC and SC network design

In 1966 Orchard presented his well— known observation that a properly
designed terminated LC ladder would demonstrate very low sensitivity in the
passband, with respect to the drift of component values [15]. Since then, various
approaches have been proposed to simulate LC ladders by active and digital

circuits {17—21,51—67,76— 81] to benefit from this important property.
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In an operational simulation approach, a set of equations is established which
is sufficient to describe the LC ladder prototype. Each equation is then simulated
by a simple active or digital network. In a leapfrog design these equations simply
represent the voltage— current relationship of individual elements in the prototype
[19,20,51], so they are linear with respect to frequency s= jw. Only first order
sections are required to form the network. In a coupled biquad design the
equations are set up for the voltage— voltage relationship between nodes and are
generally quadratic with respect to s [21,53]. Biquad sections are required in

simulation and hence the name.
Example 1.2:
Take a 6th order active— RC ladder design as a example. Use the circuit

shown in Fig.1.2 as prototype. In a leapfrog design the following network

equations are obtained,

c11v1 = (-1/s)(i1-dintgipvy) - Covo c11 = C + O
Liip = (1/s)(v1-v2)

-coovy = (-1/8)(i1+ig) - Covy - Cuvj cgp = Co + C3 + Cy
Lyio = (1/s8)(-vp+v3)

c33v3y = (-1/s)(i248LVv3) - C4v2 c33 = G4 + Cs
Lgiz = (1/s)v3

(1.21)
These equations are represented by the SFG shown in Fig.1.9a. To convert
the SFG into active— RC circuit, one can use Fig.1.6 and replace the branches in

the SFG by the corresponding active-RC branches. The resulting circuit is shown
in Fig.1.9b.

In a coupled biquad method the prototype, Fig.1.2, is described by a set of
second order equtions,

-(s2c19thyvy - (-sljp)  ©12=Cp A1=M12=1/Lj

V1=

sZcyy + sg11 + M1 c11=C1+C2 811=8in

-(s2cp1+n91)vi-(s2ep3+Np3) vy €21=Co Ap1=1/Ly c23=C4 Ap3=1/L,

_v2 =

52°22 + N2 €99=Co+C3+Cy4 Aop=1/Ly+1/L,

17



~(s2c32+232) V) c32=C4 A32=1/Ly,

V3=
s2c33 + Sgon + N33 c33=(C4+Cs) gnn=8L M33=1/L4+1/Ls

(1.22)

These equations are again represented by the SFG shown in Fig.1.10a (note
ajj=aji and \jj= \jj) and can be replaced by connection of second order

active— RC E-— type biquads in Fig.1.7, resulting in the circuit in Fig. 1.10b.

In the leapfrog method there is a clear link between individual elements in
the prototype and the building blocks in the simulated circuit. If the prototypes
have an excessive number of components, such as in the bandpass case, an
excessive number of integrators will be required. There are various ways to
eliminate the redundant opamps [3] but they become tedious even for moderate
design orders. In SC design very high capacitance spreads are often observed for
bandpass leapfrog design. So normally leapfrog is only considered for the lowpass

design case.

Coupled biquad filters always require an even number of opamps (not
including inverters), which doubles the number of nodes. It is only efficient for
even order filters whose node number is just half of the order e.g. a bandpass

filter frequency— transformed from an odd order lowpass one.

SC simulations of passive ladders follow the same principle although some

manipulation is required in adopting LDI type integrators [51,53].

In general leapfrog and coupled biquad active— RC and SC circuits will
possess capacitor coupled opamp loops, as shown by the loop cy—cy—cig—cg in
Fig.1.9b and c4—c7—cyp—cg in Fig.1.10b. These loops are detrimental to the
performance of active— RC and SC circuits, since high frequency noise can
oscillate around such loops, when non—ideal factors, such as on—switch
resistances and finite GB product of the opamps, are included [35]. Examining
the SFGs and the circuits carefully, it can be seen that such loops will exist if
there are loops in the SFG with constant transmission (without frequency
dependent factor s or z). In the z—domain, such loops are called
delay— free—loops, and they cannot be realised by digital circuits. This explains
why leapfrog and coupled— biquad methods are difficult to apply to digital filter
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design. Wave digital filters have been proposed to solve the unrealisability

problem in ladder simulations [77].
1.3.4) Wave digital filter

The effects of coefficient quantisation in digital filters are analogous to the
sensitivity problem of analogue filters. The wave digital filter method was
originally proposed by Fettweis as the low sensitivity alternative to direct

approaches, later it attracted much attention due to its good noise properties [77].

A wave digital filter is also a ladder simulation. However, it simulates the
relationships between so— called wave variables, instead of voltages and currents.
A passive ladder is regarded as a combination of a number of 2— port circuit
elements and 3— port series and parallel wire interconnection called adaptors
[73,77]. An example of the simulation of the 7th order circuit in Fig.11a is
shown in Fig.1.11b.

1.4 COMPUTER AIDED FILTER DESIGN

The large number of circuit options exaggerates the problem of design time
and effort. Although design tables are available for some standard filters [2], they
cannot cover all possible requirements. The performance of different structures
under non— ideal conditions largely depends on the desired specifications, and is
therefore a complex function of a large number of parameters such as Q factor,
response class, order, filter structure and so on. Consequently, an exact prediction
of the performance amongst different realisations is difficult, if not impossible. A
full comparision of different approaches is preferable before deciding on a
particular one. It seems that this can only be approached with the help of
modern CAD (computer aided design) techniques. A great amount of effort has
been expended [102— 113] but, essentially, all the design software published so far
remains at the development stage. The reason may lie in the mathematical and
programming difficulties involved, as well as the fact that the fabrication

technology has changed so rapidly since the 1970s.

1.5 GENERAL AIM AND OUTLINE OF THE THESIS

1.5.1) Motivation
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Despite their obvious advantages regarding size, weight, cost and flexibility,

active and digital circuits still suffer from some drawbacks, such as

1) Active components, such as transistors and opamps, have a finite
gain— bandwidth (GB) product which imposes a limitation on their useful range of

operation [33— 35].

2) Active filters are likely to be affected by inaccuracies during manufacture or
component drift due to environmental changes. For the digital case, an equivalent

effect is caused by truncation of multiplier coefficients in finite wordlength storage
[3,12,73].

3) In active filters a significant noise level issues from the active devices. Digital

filters introduce noise due to signal quantisations [3,12,73].

The influence of the above problems depends, to a large extent, on the
network topology adopted. A carefully designed structure will greatly improve the

performance of the resulting filters.
1.5.2) Purpose of the research

It has long been known that highly stable, low sensitivity and low noise
properties may be obtained by employing multi—feedback circuits. However, as
the degree of circuit coupling increases, the current design methods, rooted in

their view of local circuit connections, become intractable.

Effort has been devoted to regularise the design process by viewing a filter
in terms of system theory. Marshall first introduced UL matrix decomposition into
wave digital ladder simulations based on state space variables [81]. Snelgrove,
Roberts and Sedra have also investigated state—space models in active ladder
design [114]{118]. They indicated that a proper choice of intermediate state
variables can improve system performance. However, it is difficult to use the
standard state space model to provide a clear insight into the relationship between

the structure and performance of the filter system.

The research presented in this thesis will deal with the above— mentioned
difficulty. Departing from the state space concept, a system description adopting
high order matrix polynomials 1is studied as a fundamental mathematical

framework. Ladder based structures are the most natural representation of such
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systems. Very simple, attainable criteria have thus been formalised for deriving

stable filter structures with low sensitivity and low noise.

Some very regular procedures are established to linearise the system
description into a set of matrix equations which are realisable by basic circuit
building blocks. By arranging the filter system in a form amenable to some well
studied methods of linear algebra, present clumsy equation— by— equation
procedures for ladder simulation can be replaced by single matrix processing steps.
A unification of the existing methods is revealed, together with a family of novel
structures. Various techniques will also be proposed for individual applications
where standard methods meet difficulties, such as for bandstop, highpass or allpass

functions or result in inefficient realisations, such as for all— pole filters.
1.5.3) Organisation of the thesis

A review of the circuit analysis and design is included in the present
chapter, together with some comments on the limitations of state— of— the— art

filter design.

In Chapter 2 a theoretical investigation is presented for a family of matrix
polynomial systems. Definitions and criteria are formulated for canonical ladder
prototypes. It is shown that important properties like boundedness and
pseudopassivity, which are essential to achieve low sensitivity and low noise
systems, are closely related to the matrix symmetry. Sensitivity formulae are

derived for both symmetric or asymmetric deviations of matrix entries.

The realisation of the matrix polynomial system by active— RC circuits is
considered in Chapter 3. It is shown that the existing ladder simulation methods
can be unified into a general family of circuits derived by adopting different
matrix decompositions. Novel circuit structures are obtained by employing the LU
decomposition drawn from numerical methods. Some of these structures, so— called
left— LUD, UL—LU and LU— UL structures have a notable advantage of being
free from capacitance— coupled— opamp loops. Due to the flexibility introduced by
matrix methods, there is a wide choice of structures available to realise a given
prototype. While a number of special techniques are discussed for individual
design cases, a unified approach is also proposed to realise general transfer

function by very regular circuit structures.

The matrix decomposition methods are extended to SC and digital filter
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design in Chapter 4. The bilinear transformation is used to convert the prototype
from the s—domain to the z—domain. For efficient simulation, a rearrangement is
introduced to modify the system into a form realisable by LDI integrators [79].
These so— called bilinear— LDI structures were first discovered by Lee and Chang
[51] for SC design by adopting negative elements in the prototype. In this thesis
this principle is formalised in terms of matrix principles. The novel LUD
approach to SC and digital filter design is discussed in detail. It is shown that
negative elements can be placed in the prototypes to cancel the unecessary
components in their simulations and to improve the parallelism for digital
realisation, which is further enhanced by a new scaling technique. Some detailed
comparisons of the new circuit structures with existing ones are given,
demonstrating that some significant advantages such as low sensitivity and low

capacitance spread, can be gained by employing the new design methods.

Chapter 5 concerns the design of non— lowpass filters by using frequency
transformations. It is shown that circuits with different filtering types can be
derived from a lowpass network by simply replacing the LDI integrators with
some special operators. Towards the same objective, a novel second order building
block is presented for strays— insensitive bandstop switched— capacitor (SC) ladder
design. A two channel scheme obviates the need for term cancellation in realising
bandstop type operators and is less demanding on opamp settling time. It is
shown highpass SC filters can be obtained simply by adding a modulation stage to

a corresponding lowpass filter.

Chapter 6 deals with all— pass filter design for active RLC, active RC, SC
and digital realisations. The matrix decomposition approach is readily applied to
the ladder simulation part, in this case, a singly— terminated ladder is shown to
have advantages. The resulting circuits have the attractive properties of parallel
sturctures and very low amplitude sensitivity to component changes. Analogue
implementations are canonical in opamp number and digital ones are canonical in
multiplier number. Detailed examples are given for SC designs and these are

critically assessed for capacitance spread and sensitivities.

Matrix methods are highly suitable for computer software development. They
offer a concise form of circuit description which eases data storage and can then
be manipulated systematically by well developed algorithms for filter derivation. A
computer software package for advanced filter design, PANDDA is developed by
the author in co— operation with R. K. Henderson. Its many distinguished features

are outlined in Chapter 7 where some practical design examples are also given.
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Measured response of SC fabrications by LUD and mixed LUD-— biquad methods

are illustrated.

Finally the main results obtained in this thesis will be summarised in Chapter
8. Some suggestions for further research in integrated filter design will also be

given.
1.6 STATMENT OF ORIGINALITY

The following most significant results of the research work presented in this
thesis are, to the best of author's knowledge, original and, as indicated below,

some of the results have been or will be published.

Chapter 2 —— The theoretical investigation of symmetric matrix systems, proof

of boundedness and pseudopassivity, are the subjects of the papers,

Li Ping and J.I. Sewell,” On low sensitivity/ noise digital filter design', Proc.
IEEE 1989 International Conference on Accoustics, Speech and Signal

Processing, pp.1063—1066, Glasgow, UK, May 1989.

Li Ping and J.I. Sewell, "High performance circuit structures and symmetric

matrix systems', Proc. IEE, vol.136, Part—G, no.6, pp.327—336, Dec. 1989.

Chapter 3, 4 — The LUD structure was first proposed for switched capacitor
filter design in,

Li Ping and J.I. Sewell, "The LUD approach to switched capacitor network
design”, IEEE Trans Circuits Syst., vol.CAS—34, no.12, pp.1611—1614, December
1987.

which is followed by further studies revealing a whole family of circuit derived

from matrix principles, as discussed in

Li Ping, R.K. Henderson and J.I. Sewell, '"Matrix methods for
switched—capacitor filter design'", Proc. IEEE ISCAS, pp.1021-1024, Espoo
Finland, June 1988.

R.K. Henderson, Li Ping and J.I. Sewell, ""A unified approach to the design of
canonical integrated ladder filters", to be published in Proc. IEEE ISCAS, New
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Orleans USA, May 1990.
The matrix methods have been extended into active— RC and digital circuits in

Li Ping and J.I.Sewell, "Filter realisation by passive circuit simulations,” Proc.
IEE, vol.135, Part—G, no.4, pp.167—176, August 1988.

Chapter S —— The frequency transformation techniques for discrete domain filter

design is covered in

Li Ping and J.I. Sewell, "Digital Filter Realisation by Passive Circuit
Simulation”, IEE Saraga Collogium on Electronic Filters, Colloquium Digest,
pp.8/1-8/8, May 1988.

A continuation of this research discovered the TWINTOR circuits for bandstop SC

design, as described in

Li Ping, J.I. Sewell, "The TWINTOR in bandstop switched—capacitor ladder
filter realisation”, IEEE Trans. Circuits Syst., vol.CAS—36, no.7, pp.1041—1044,
July 1987.

Chapter 6 — All— pass ladder structures are the subject of a recently completed

paper,

Li Ping and J.I. Sewell, '"Switched capacitor and active—RC allpass ladder
filters", to be published in Proc. IEEE ISCAS, New Orleans USA, May 1990.

Chapter 7 —— The author's contribution to PANDDA software package is mainly
in the circuit realisation and analysis parts. The development of PANDDA has

been progressively reported in the following papers,

R. K. Henderson, Li Ping and J.I.Sewell, "PANDDA : A program for advanced
network design : digital and analogue”, Digest of IEE Saraga Colloquium on

Electronic Filters, pp.4/1—4/8, London 1988.
R. K. Henderson, Li Ping and J.I.Sewell, "A program for digital and analogue

filter design: PANDDA", Proc. European Conference on Circuit Theory and
Design, pp.289— 293, Brighton, U.K., September 1989.
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2.1 INTRODUCTION

Background

There are a number of attractive features about filter structures derived from
passive RLC network simulations: they show very low sensitivity in the passband
which is an important factor for active— RC and switched— capacitor (SC) filter
fabrications [19—21,51—64]; they can be made limit cycle free for digital filter
implementation, as shown for wave structures [76— 83]; and they wusually have
better dynamic range compared with cascade biquads or other direct—form
structures, which can be observed from many practical designs. Limit cycle
supression and better dynamic range can improve the noise behaviour of the

circuits.

Theories have been proposed to analyse and generalise the properties of
passive ladders and their simulations [3,12,15]. A unified investigation has been
proposed in [86,87] for digital circuits. It was shown that general low sensitivity
filters can be constructed by properly connecting LBR (lossless— bounded— real)
sections, which include adaptors for wave digital circuits as specific examples. In

general, this approach is mainly concerned with the topological point of view.

The work of this chapter investigates the theoretical aspects of high quality
network design based on matrix principles. A difference between the topological
[19—21,51—-64,76—87] and matrix approaches is that the former analyses the
behaviour of local building— blocks while the latter examines the overall system.
The two approaches complement each other to provide insight into the filter

design problem.

Conventions

Attention is given to the properties of the system descriptions of circuits of

the following form,

YV =1 (2.1a)
Y=sC+s1Tr+c¢ (2.1b)

where all the matrices symmetric. This will be called a symmetric matrix

polynomial system (SMPS). Output functions may be added in the form
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y=DV+ E]J (2.1c)

but only system (2.1a,b) will be considered since sensitivity and noise problems

arise mainly from the feedback loops in (2.1a.b).

The most natural interpretation of system (2.1) is in the formulation of the
network equations (nodal, loop, or hybrid) of passive RLC ladders [95,96]. In this
case C, I' and G represent the contributions of capacitors, inductors (inversed
values) and conductors respectively and it can easily be shown that they are all
non— negative definite, provided that nodal or loop formulations are used for the
network with only positive— valued elements. The reverse procedure, from an
equation with symmetric non— negative matrices to a network, is not always
possible unless negative element values are allowed. Negative elements offer some
advantages, such as to provide more regular structures which can be fabricated
with greater ease [67]. Questions arise about the stability, sensitivity and noise
problems associated with the introduction of negative elements. These will be

answered by the theorems developed in this chapter.

In particular, the nodal description of a passive ladder is a tridiagonal SMPS
and henceforth we will simply call a tridiagonal SMPS a ladder, as ladders are
more familiar to most circuit designers and also as most SMPSs used in this

thesis are derived from passive ladder prototypes.

Relationship between SMPSs and other systems concepts

System (2.1) is also a generalised form of the standard state— space equation.

Indeed, (2.1) reduces to a standard state— space system when I'=0.
(sC+G)V=1J (2.2)

Alternatively (2.1) can always be rearranged into the form of (2.2) by introducing
some intermediate variables. However, the advantage of wusing the system
description of (2.1) is that optimal performance can be achieved by imposing
some simple conditions (notably symmetry) on the matrices. Conversely, if the
matrices in (2.2) are constrained to be symmetric then the system can only have

real poles, which is too restrictive for most applications.

System (2.1) can be further used to produce prototypes for various

simulations discussed in detail in succeeding chapters.
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Aspects covered in this chapter

In the first part of this chapter, some elementary criteria for checking the
stability of SMPSs will first be established.

Then the efficiency with which the SMPSs can be realised will be
considered. A canonical system is defined to be one which realises a given order
of transfer function with the smallest possible matrices. It is shown that the parity
of the numerator of the transfer function will decide whether it has a canonical
realisation. This knowledge is useful in succeeding chapters for obtaining integrated

ladders with minimum implementation cost.

The more sophisticated concepts considered by many authors, boundedness
and pseudopassivity, are crucial in predicting the sensitivity and limit cycle
behaviour of filter systems. They are now proved to be closely related to the

matrix symmetry and to be basic properties of SMPSs.

In active— RC or SC implementations of SMPSs, the component deviations
may destroy the symmetry of the system description. From practical observations
the sensitivities of active—RC and SC ladder simulations are nevertheless very
good, this is attributed to their multi— feedback nature. Sensitivity formulae are
presented for asymmetric deviations, clearly indicating that better performance can

be assured by more complete symmetry.

2.2 STABILITY CRITERIA

Besides synthesis methods, an optimisation procedure could also be used to
adjust the entries of the matrices of (2.1) to make the transfer function fit the
prescribed specifications. In this case conditions are required for testing the
stability of the resulting system.

2.2.1) Critical Stability

Remark 2.1: System (2.1) is critically stable if C, T' and G are all symmetric
non—negative.

Proof: let { sy = oy + juy } be the set of roots of detY(s) of (2.1),
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det ( sp2 C+ s,G+T ) =0 (2.3)
So there is a non— zero vector X which satisfies [101] the equation

X* (2 C+ s G+T ) X=0 (2.4)
(X* denotes the transposed conjugate of X )

or

asp? + bsg + ¢ = 0 (2.5)
with a = X*cX b = X*GX c = X*IX (2.6)

As C, G, and T are all definite non— negative, a, b, and c are all non— negative

numbers [101]. But in this case (2.5) has no roots with

Re(sk) =0k >0 (2.7)

That is, system (2.1) has no poles in the right half plane if C, T and G are all

symmetric non— negative.
2.2.2) Absolute Stability

The absolute stability condition for system (2.1) is that op<0 for all k.
Therefore some extra constraints should be added to ensure that no roots lie on
the imaginary axis. This can be checked by evaluating det|Y(jw)|. In most cases
system (2.1) is designed to realise a transfer function H(s) which has no poles on
the imaginary axis. If the system is properly designed without redundancy, so that
the order of the system is equal to the order of H(s), or in other words if it is
observable from the output, then it will have no poles on the imaginary axis, as

in this case H(s) and the system have the same set of poles.

The non— negative property of the symmetric matrices C, I' and G can be

easily tested. For instance, decompose C into symmetric LU form [97—100],
C = L D.L.T (2.8)

where D, is a diagonal matrix. C is non— negative if and only if all the entries
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of D, are non— negative. The computational requirement for this test is nearly

equal to performing Gaussian elimination.

2.3 CANONICAL SYSTEMS

The system order of (2.1) is defined as the number of the roots of
det|Y(s)|. This should be clearly distinguished from the order of the matrices
making up the system, although these two parameters are closely related to each
other, since higher order systems obviously entail higher order matrix descriptions.
As will be seen, the order, or more simply, the size of the matrices decides the
size of the realisations by physical networks. For the sake of efficiency, it is
usually desirable to design a given order system by matrices with order as small
as possible and those systems with minimum size will be said to be canonical.
The constraints for a transfer function to have a canonical realisation is explored

in this section.
2.3.1) System order

The system polynomial of (2.1) is defined by

A(s) = I1Y(s)] = | sC + s~I + G | (2.9)
Using the Laplace expansion [100,101] repeatedly it can be shown

Remark 2.2: The determinant of A(s) can be expanded as (let n be the size of

the coef ficient matrices)

A(s) = ICIs™ + ap_yst 1+ ...+ a_(n_l)s'(”'l) + ITIs-n (2.10)

The system order is defined by the difference between the highest and lowest
index of the power of s in A(s). Again by using the Laplace expansion
repeatedly, it can be shown that the highest coefficient of s will be accompanied
by the highest non—zero cofactor of C, which is determined by the rank of C.
Therefore the upper bound of the power of s is the rank of C. Similarly, it can
be proved that the upper bound of the power of s~1 is the rank of I The

upper bound of the number of roots of det|Y| is then given by
rank(C)+ rank(I).
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Remark 2.3: An upper bound of the order of the system, m, is given by
mg rc+ rp < 2n (2.11)

where rc and rp are the ranks of C and T respectively.
2.3.2) Condition for canonical ladder systems

From (2.11) the upper bound for a SMPS is 2n. However, if a SMPS is
specially designed to realise an odd order function, then the upper bound will

become 2n—1. Thus we have,

Definition 2.1: A SMPS with size n is said to be canonical if it realises an

2nth or 2n—1th order transfer function.

Definition 2.2: A doubly—terminated tri— diagonal SMPS, or simply a ladder,
meets the following conditions

1) C, T and G are all tri—diagonal matrices. So Y is also tri—diagonal.

2) J has only one non—zero element, i.e. J = (J1, 0,...0).

3) G has only two non—zero elements g;; = ginp and 8nun = 8L, SO that in
general

Y(i+1,i) = SC(ivl, 1) S 1V (i+1, 1) (2.12)
4) The output is the nodal voltage Vp.

There are some constraints for a transfer function to be realisable by a

canonical doubly— terminated SMPS.

Theorem 2.1

i) The numerator of the transfer function v,/ J{ of a canonical even order
doubly—terminated ladder is an odd polynomial.

ii) The numerator of the transfer function v,/Jy of an odd order
doubly—terminated ladder is an odd polynomial if |C| is non—singular or an

even polynomial if |I'| is non— singular.

Proof:

From Definition 2.2 a doubly— terminated ladder has the following expanded

form
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yi1 vi2 : V1 5
v e .E. o v .
Y32 ¥33 Y34 é v3 0

Y43 Yas Y45 i vo | =1 O

éyn-ln Vn-1 0

Ynn—lg Ynn Vn 0

(2.13)

From these properties and Cramer's rule it can be found for the output v, [101]

- (2.14)
Jq A(s)

where A(s) is the determinant of Y and Aj, stands for the determinant of the
submatrix of Y by deleting its first row and nth column, which can be seen as

the lower— left n—1—th block of Y in (2.13). It can be shown that

n-1

molscis1,i - ST vi+1, i)

(2.15a)
Jq A(s)

where ' = {7'1,j} and C = {cj j}. Let vp/Jy be expressed in the form of a
rational function

Vn N(s)

= (2.15b)
J1 D(s)

D(s) and N(s) are denominator and numerators respectively and they are pure
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polynomials which means they contain only non— negative powers of s. Consider
first the case of an even canonical realisation. From Remark 2.2, ' must be

nonsingular to be canonical and so

D(s) = sT A(s) (2.16a)
n-1

N(s) = s™ 1 [scip1 i - s™lvis1, il (2.16b)
i=1

Here cj+ 1, and %j+1, (for all i) cannot both be zero otherwise the transfer
function is zero. Suppose cj+ 1 i are nonzero for all i then it is seen that N(s) is
a 2n—1th polynomial with only odd terms. If any cj+q ; is zero then N(s) will
reduce to a 2n—3th polynomial (since in this case Yi+1,1 must be non— zero)
and N(s) will stay odd. It is easy to deduce that N(s) will remain odd for cases
of more zero {c¢j+ 1 j}. The same reasoning can be applied to the cases that some

{7,i+ 1} are zero.

Now consider the case of odd order design, where either C or I' must be
singular to make A(s), (2.9), odd. If T is nonsingular exactly the same reasoning
as for even case can used to show that N(s) must be odd. If C is nonsingular
then

D(s) = sN' A(s) (2.17a)
n-1

N(s) = ™' 1 [sciy1,i - s™1vie1, il (2.17b)
i=1

and it is easily shown that N(s) must be even polynomial.

Theorem 2.1 establishes some necessary conditions for a transfer function to
have a canonical realisation. In the authors’ experience the conditions are also

sufficient for realisability provided that the transfer function is stable.
It is seen from Theorem 2.1 that the constraint on the parity of the

numerator is related to the singularity of the matrices C and I'. The singularities,

however, cannot be arbitrarily chosen according to the following theorem.
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Theorem 2.2: A doubly terminated ladder has a non—zero response at w=c« only

if C is singular and has a non—zero response at w=0 only if U is singular.

Proof: Let s= jw. From (2.10) it can be seen that when w - «
A(s) » (Clst + an_]_s”'l (2.18)
and from (2.15) the numerator is at most to the power of st~ 1 Therefore if

IC| is not zero then (2.15) must be zero. Similar reasoning can be used at w-0.

It is mandatory that lowpass transfer functions have non— zero values at w=0
and for highpass and bandstop at w= . This indicates that the singularity of the
matrices is pre— determined by the filtering types and therefore the parity of the

numerators of odd order cases is also constrained.

Since the singularities of C and I' mean that their rank can at most be
n—1, according to (2.11) a list of the upper bounds for various filtering types by

a ladder with size n is obtained in Table 2.1

CLASSES CONSTRAINT UPPER BOUND OF SYSTEM ORDER
lowpass H(0)#0 T singular 2n-1

bandpass 2n

highpass H(«)®#0 C singular 2n-1

bandstop bot:(g):gd rHSZ::glar 2n-2

Table 2.1 Upper bounds for various filtering types

by a doubly-terminated ladder with size n
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It is easily seen that canonical designs can be achieved only by bandpass,
odd order lowpass and odd order highpass. For other cases, constraints given in
Theorem 2.2 make it impossible for a canonical realisation. In the succeeding
chapters it will be seen that a non— canonical ladder prototype will lead to an
unnecessarily large size integrated circuit simulation, wunless some complicated
procedure is adopted. It will also be shown that the wrong parity of numerator
can be easily corrected and a simple technique is introduced to eliminate the
error caused by this modification. This results in a unified procedure, with very

regular structures, to realise a wide family of transfer functions.

2.4 BOUNDEDNESS
2.4.1) The concept

The concept of boundedness can be traced back to an observation by

Orchard about the low sensitivity properties of doubly— terminated ladders [15].

Definition 2.3: Boundedness The transfer function, H(P), of a system is said
to be bounded with respect to the change of a set of parameters, P = { p; },

if there is a positive number M and
I[H(P)| < M (2.19)
is always satisfied when P varies within the allowed range.

When a bounded system is properly designed to make |H(P)| attain M at a
frequency point in the passband, jwy, then the deviation of P can only cause
|[H(P)| to decrease. This means that |H(P)| must have zero derivative with
respect to any parameter p; at juwy,, and consequently the sensitivity is also zero,

ie.,

Pi OIH(P)|
slHl - -0 at s=jay (2.20)
Pi IH(P) | Ipi

and it may be reasonably expected that over the whole passband the sensitivity
will remain small, a reassuring argument used by many other authors for ladders

as well as various simulation methods [3,12,73].
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Fig.2.1 Illustration of boundedness and low— sensitivity
(a) Transfer function of a bounded system

(b) Sensitivity

2.4.2) Boundedness in the continuous domain

From network topology it is known that the output power of a doubly
terminated ladder is bounded by maximum input power, a reasonable fact since a
passive ladder cannot create power within itself. This result can also applied to
the system (2.1) in a more abstract sense. Let (2.1) be evaluated on the

imaginary axis, s= jw, and denote
Q= - wlr (2.21)

The system can be written as,
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YV=(jQ+G)V=1 (2.22)

Suppose matrix G in (2.22) can be separated according to input and output parts

respectively

G = Gin + Gout - (2.23)

Then (2.22) can be written as
JQV + GoyueV + GV =13 (2.24)

We first prove a general relation.

Theorem 2.3: Assume that in (2.1),
(i) Gip X = J has at least one solution.
(ii) all matrices are symmetric non—negative definite.

Then the following inequality holds,

1
V¥GoutV ¢ — J*RjpJ (2.25)

4
where R;, is the Moore—Penrose inverse of Gjj.
Proof: According to Moore— Penrose's theories [115,116], R;, is defined by

GinRinGin = Gin RinGinRin = Rin

(GinRin)T = GinRin (RinGin)T = RinGin

(2.26)
and Xy = Rj,J is a solution of GjX = J, if it has a solution at all, which
means

Gin Rin J = J (2.27)
Now multiply (2.24) by V*,
i V¥ QV + V¥Gy, V + VGV = V¥ (2.28)
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Take the real part of (2.28)
V¥*GoucV = Re(V*J}- V¥G; v (2.29)
Notice from (2.26) and (2.27)
[ I*Rind - (3% - 2V* G )R{n(J - 2Gi,V) /4
= [ 2 J*R{yGinV - 2V* Gi Rind - 4V* GiRinGinV 1/4
= Re{V*])- V¥G;V
(2.30)
From (2.29) and (2.30)
V¥*GoueV = [ I*Ripd - (3% - 2V¥ G )Rin(J - 2G;,V)1/4 (2.31)
If Gj, is non— negative then from (2,26) R;, is also non— negative which means
that (J*— 2Y*G;,)R;(J— 2G;, V) is a non— negative number. Theorem 2.3 follows
from (2.31) immediately.
2.4.3) Boundedness for Terminated Reactance Network
Equation (2.25) is a general expression which can be applied to
multi— input/output systems. To provide some insight of its physical interpretation,
consider the special case of a single input/output system. Suppose (2.1) has only
one input J = [ Jy, 0,... 0 ] and one output v,. Gj, and Gg,¢ have only one
non— zero diagonal entry, respectively, corresponding to the input and output, i.e.,
Gin = diag( g11,0.0,...0) (2.32a)
Gout = diag( 0,0,...0,gn4 ) (2.32b)
Then R;, can be generated by

Rijn - diag( g11°1,0,0,...0, ) (2.33)

Therefore in this case (2.31) reduces to
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Therefore in this case (2.31) reduces to

1
gnnlvnl? = [ 1 - 11 - 2g13vy/d112 1 —— 13112 (2.34)
4g11
SO
gnnlvnl? < - 19712 (2.35)
811
or
1
Ivpl ¢ ————— 1371 (2.36)

A typical example of the system constrained by the conditions of (2.32) is a
doubly— terminated ladder, in which case (2.1) are its nodal equations with input
and output nodes labelled 1 and n respectively. The physical interpretation of (32)

can be seen by rewriting it as

gnnlvnl?2 = 11 - 1012 1 g117 113112 /4 (2.37)

with p defined by

p=1-2g11v1/d1 (2.38)
Consider a passive ladder with the source resistor being rj; = g“_l and input
impedance of the 2— port ladder including the load is z;, = yin_l.

2811
p=1-2g11v1/31 =1 - ———
Yin*811
Yin~811 11-Zin
Yint811 r11+Zin (2.39)

So p is just the reflection function and the upper bound of |v,| is attained at

p=0. This result is well known in network theory.

In the proof of boundeness, no conditions have been imposed on C and T’
except that they must be symmetric and non— negative. Accordingly,
zero— sensitivity with respect to symmetric deviation can be achieved at the

frequency points where the transfer function attains its upper bound.
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2.5 SENSITIVITY FORMULAE

The above result provides only an estimate of sensitivity for symmetric
deviations. More general sensitivity formulae are now derived. To simplify the

problem, only single input/output system will be considered.

A useful equation

An equation is now derived as the preliminary to the main discussion.
Suppose a single input/output system meets the conditions of Theorem 2.3 and
(2.32). Let system (2.1a) be excited by another arbitrary input J' instead of J

and let the response be U. The system can be written as

YV =J' (2.40)
Left multiplying by V* gives

V¥ Y vio= Vv (2.41)

Note that when J is a real vector, ( ~ indicates conjugate)

VT =YV = ( jQ+G)V

-(-jQ + G)V + 2GV

- 26V -3
= ( 2g11v1-J1, O ... 0, 2g vy )T
=(pJy, 0 ...0, 2gupve) T (2.42)

Substitute (2.42) into (2.41) and make some rearrangement to get

28nnVn Vn' - P J1 vi' + V¥ =0 (2.43)

Again left multiplying (2.40) by VT and noticing that vy = JT = [J1.0,...0]

we have

VI g0 = vl Yy vi= JT v = gg vy (2.44)
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Finally substituting (2.44) into (2.43) leads to the following equation linking the

output of the new system with the old system and the input,
vy = (Zgnn;n)'l(;VT - VoI (2.45)
Sensitivity Formulae
Differentiate (2.11) w.r.t. some network element { to get
Y dVv/dé+dY/d§ V=0 (2.46)
Here the second term can be viewed as the new input vector for (2.45) and we

have

Theorem 2.4:
dvp/dt = (28ppvn) "1( -pVt + V¥ ) dYydt vV (2.47a)
and

dlvpl/dé = Re[ vpdvp/dE ]/Ivy = (28anlval) " 1Re[ (-pVt + V*)dY/dEV]
(2.47b)

In particular, if the deviation of { only perturbs the imaginary part of Y, jX say,
and dY/d¢{= jdX/d¢ is symmetric then

divpl/dt = (2ganlvnl) ™! Re[-jp VIdX/dtV + jIV¥dX/dE V]
= (2gnn|vnl) ! Re[ -jp VT dX/d§ V |
= -(28nniva) 7! Im[ p VT ax/dt v |
(2.48)
So dlvyl/d¢ = 0 when p = 0. This again confirms the conclusion for single

input/output system, that |v,| attains its upper bound and has zero— sensitivity at

p=0, if the deviation is symmetric.
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Application to Passive Networks

When system (2.1) is implemented by a real passive RLC network, § e {
R; L;,C; } and dY/d{ is always symmetric. Then a very simple alternative to the
topological derivation of sensitivity follows. Let the contribution to Y of a

branch admittance jqi between nodes a,b be jqyM,p where

o i i 0
Map = |----. 1 -1....... a (2.49)
-1 1., b
o i i 0
a b
So
dY/dqg = j Map | (2.50)

It is easily seen that
VI Mgy Vo= vi2  and V¥ Mgy Vo = [vgl2 (2.51)

where vy is the voltage across jqx. Then (2.47) reduces to

dvp/day = (2gnnlval) 1C -jov? + 1vgl2 ) (2.52a)
and
dlvpl/dag = (2gnnlval) ™1 Im [ pvi?2 ] (2.52b)

(2.52b) is zero at the frequency points where p=0 or equivalently |v,| attains
maximum bound. This is just the well known zero— sensitivity property for

doubly— terminated ladders.

Application to Digital and Active Networks

In the following chapters it will be shown that system (2.1) can be simulated
by digital or active networks. For digital simulations, even in non—ideal cases, it
is still possible to keep deviations in Y symmetric by carefully selecting the
coefficient quantisations, so the zero— sensitivity property can be preserved. For
active— RC and SC simulations, it is difficult to keep deviations of Y symmetric,
since the element value drift is a random phenomenon. The component drift

may cause the equivalent system description (2.1) to become non— symmetric so
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that the output may exceed the bound given by (2.25) or (2.36). However in
practical active— RC or SC implementations, low sensitivity is still observed, a
property due to the multi— feedback nature of the structures. (2.47) are valid for

these general cases.

2.6 DISCRETE SYMMETRIC MATRIX POLYNOMIAL SYSTEMS

The resuits in last section can be readily extended to the discrete domain if

a bilinear transformation is applied to system (2.1)

YV =1 (2.53a)
with
Y=vCc+Vv¥vlr+c (2.53b)
where
21 -2z1
V= - — (2.53¢)
T1+ z-1

(2.53) can be rearranged as

(P+z1Q+z2R V=1 -22) (2.54a)
with
2 T 2 T 2 T
P = (FC+5T+06 Q=-2(C-5D R=(3C+5T-0)
(2.54b)

which can be seen as a generalised form of the standard state—space equation,

by introducing a second order term.

Because bilinear transformation will keep the stability property and map the
imaginary axis in the s domain to the unit circle in the z domain, it is easily

shown that,

Remark 2.4: System (2.53) has no poles outside the unit circle z=el“T if C, T

and G are all symmetric non—negative definite and has the same boundeness and
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sensitivity properties as indicated by Theorems 2.3 and 2.4, except that (3.53) is

evaluated on the unit circle z=el“T

2.7 PSEUDOPASSIVITY AND LIMIT CYCLE SUPRESSION
2.7.1) The concept

The generalised concept of pseudopassivity has been employed in discussion
of wave digital filters [77], which is, in fact, based on the principle of the
Lyapunov function. Consider a standard state—space system in the continuous

domain:

sX = AX + BJ (2.55)
or in the discrete domain:

X = z-1 AX + BJ (2.56)

Definition 2.5: Pseudopassivity A state space system (2.53) or (2.56, is said

to be pseudopassive if
e(t) = xT(t)x(t) (2.57)

is a monotonically decreasing function for any initial value x(0)=xp with J =

0. (For a discrete system x(t) is examined at a discrete instance, i.e., t=nT).

e(t) can be seen as an energy function and it is always decreasing for a
pseudopassive system without excitation. The pseudopassive property in a discrete
system is important for the supression of parasitic oscillations. If the input J=0,
the state space variables x(nT), and so all the variables, in a stable digital system
(2.56) will approach zero regardless of the initial state in the ideal linear case.
However when the necessary quantisations are adopted in a digital filter, x(nT)
may oscillate and take non— zero values due to non-— linear effects which may
even cover the entire numerical range in the filter when overflow occurs. These
parasitic oscillations, or so called limit cycles, can be avoided if the discrete
system is pseudopassive and magnitude rounding for quantisation of x(nT) is
adopted. In magnitude rounding, a number a, is truncated to a finite number of

bits, Q[a] with |Q[a]l < la|. Let Q[x] denote the vector of x after magnitude
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rounding and suppose in a pseudopassive system (2.56) these are the only

quantisation operations, then according to (2.57)

QT [x(nT)]Q[x(nT)] < xT(nT)x(nT)
< QTIx((n-1)T)1Q[x((n-1)T)] < xT((n-DT)x((n-1)T) ...
(2.58)
Therefore if x(nT) - 0 in the ideal case, then in the non—ideal case it will still

approach zero. This will completely supress limit cycles [77].
The second norm of a matrix A is given by [101]
xT ATA x
| 1A}l = max ————— (2.59)
x # 0 xT x
The time domain equation of (2.56) gives (when J=0 )

x(n) = A x(n-1) (2.60)

Hence from (2.58) and (2.59) a necessary and sufficient condition for

pseudopassivity is
[1Allg1 (2.61)
in this case

xT(n+k)x(n+k) ... xF(n)x(n) = xT(n-1)ATAx(n-1) < xT(n-1)x(n-1)
(2.62)

It has been proved on a topological basis that condition (2.61) is met by wave,
normalised lattice and LBR structures [87], and the same concept has been used
in the design of second order "minimum norm" building blocks [88]. In this
section it will be shown that higher order networks, based on a symmetric matrix

decomposition approach, can also be designed to meet this condition.
2.7.2) Psudopassivity for symmetric matrix polynomial systems

Consider the problem of constructing a peudopassive state— space system from

(2.53), this can be written in an equivalent form
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2 T 2 -2z-1 T 2z-1
(—=C+-T+GC)V+ (= C + -
T 2 T 14z-1 2 1-z-1

ryv=1J (2.63)

Let C and T" be decomposed into symmetric forms.

2 T
—c=c; T —r=r;nrT (2.64)
T 2
Define
-1
Xc 2z cy
1+z-1
X — - 1 v (2.65)
Xr -2z Iy
1-z-1
From (2.64) and (2.65)
v (2c+IricHt { [ C; Ty ] < +J } (2.66)
T 2 N :

Substitute (2.66) into (2.65) we get a state space description

X=z1AX +z1BuU (2.67)
with
o2 T -1
A=2 Ll Gc+r+cHy-l ¢+ (2.68a)
I T 2
-l‘, 1
S R
B =2 L (5c + -T + ¢ )1 (2.68b)
T 2
-r?

Theorem 2.5: If C, I' and G are non—negative definite and the state variable
vector is chosen as that in (2.65) then the system is pseudopassive, i.e., ||A]|

< 1.

Proof: First, only if C and I' are both non— negative can the decompositions of

(2.64) be carried out. Substantial manipulation of (2.65) and (2.68a) gives

I ci| 21 2 T
ATA - -4 (—c+T+6)"T ¢ (—c+T+6)-1 [ ¢, Iy ]
o] T 2 T 2
I Iy

(2.69)
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From (2.66) and (2.69) it can be seen that the following relationships hold when
J = [0]

xT(n) AT A x(n) = xT(n) x(n) - vI(n) G v(n) - 4 (2.70a)
If G is non— negative then vT(n) G v(n) is a non— negative number and therefore
xT(n) AT A x(n) < xT(n) x(n) (2.70b)

no matter what the value of x(n). The theorem follows from (2.59) and (2.61).

Incidentally, from (2.70a) it can be seen that matrix A is orthogonal if G = [0].

2.7.3) Wave variables

Wave digital filters have long been known for their distinguished property of
being free from limit cycles. It will be shown here that, apart from some scaling

factors, the wave variables are a special case of the state—space variables defined
in (2.65).

When (2.1) is derived from a passive ladder by nodal formulation, the

matrices can be generated by topological means [96].

(@]
I

ACDCACT (2.713)

-
I

ArDrApT (2.71b)
where Dc and Dp are diagonal branch— admittance matrices with entries
consisting of the corresponding capacitance or inverse inductance values. Ac and
Ar are the corresponding incidence matrices Let V¢, I, Vp and I be vectors
of the wvoltages and currents of the capacitance and inductance branches
respectively, then the voltage vectors are related to the nodal voltage vector V
by

Ve = AcT V (2.72a)

Vr = ApT v (2.72b)

The current vectors are related to the nodal voltage vector by
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2 1-z-1

Ic = - DcAcT v (2.73a)
T 1+z-1
T 14z-1

Ip = - Dr ApT v (2.73b)
2 1-z-1

According to the definition of wave variables [77]

Incident wave vectors

2 2
Wep = Ve + (— D) ~Llie = AcT v (2.74a)
T 1+z-1
T 2
Wrp = Vp + (— Dp)~lip = ApT v (2.74b)
2 1-z-1
Reflected wave vectors
T 22-1
WCR = VC - (— Dc)-llc = ACT V = z_leI (2.75a)
2 1+z-1
2 -2z-1
Wrr = Vr - (— Dp)~lIp = ApT v = —z-lwp, (2.75b)
T 1-2z-1

By comparing (2.71) and (2.65) it can be seen ACT and ArT differ from C[T
and FIT only by factors DC1/2 and Dpl/z respectively. It can be found that

2 T
xT(n)x(n) = werT(n) = D¢ wer(n) + wprr! (n) - Dpwpgp (n)
T 2
(2.76)
When the branch admittance matrices Dc and Drp are diagonal with positive
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element values, the magnitude rounding of wer and wrp will have the same

effect as magnitude rounding on x(n) to cause a reduction of xT(n)x(n).

2.7.4) Continuous time domain pseudopassive systems

Conditions for the continuous time domain systems have no direct practical

applications, however for completeness a derivation is given as the follows.
We first show that in the continuous time domain a state space system
X'= AX + BJ (2.77)

is pseudopassive iff —(A+ AT) is non— negative. Set J=0 in (2.77). Then the

time domain solution is given by
x(t) = exp (At) xq (2.78)
where xq is the initial value vector. Take the derivative of e(t)= xT(t)x(t)
de/dt = xgT exp(At)T (A+AT)t exp (ATt) xg (2.79)

e(x(t)) is monotonically decreasing iff de/dt ¢ O or equivalently, system (2.77) is
pseudopassive iff — (A+ AT) is non— negative. Now let a state space system be

constructed from (2.1) by

Xc LcT
X = - v (2.80)
XL LrT
with
C=Lc LT T=1rLpLpl (2.81a)
and
_L-lcL-T _L-1
Lolor T -Lzln,
A= | T-T 0 (2.81b)

rc

It is easily seen that
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L-lcL-T o
“(A+AD -9 © € (2.82)
0 0

is non— negative. The pseudopassivity of (2.77) follows.

2.8 SUMMARY

We started this chapter by introducing the concept of SMPSs. They are
extended forms of the well known state space systems and are also generalised

mathematical abstractions of passive networks such as ladders.

The basic stability properties have been covered. Then a necessary condition
for canonical realisation has been derived. A relationship is revealed between the
filtering types, order of the system and orders and ranks of the matrices. Two
theoretical properties of SMPSs, boundedness and psudopassivity, have been
studied with the emphasis on filtering applications. It has been shown that SMPSs
can be designed with optimal performance if some simple requirements are
fulfilled. Sensitivity can be minimised if the deviation of component values is kept
symmetric. Limit cycle oscillations can be efficiently eliminated by properly

choosing the intermediate variables.

The above results form a mathematical foundation for matrix methods for

advanced filter design developed in the succeeding chapters.
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3.1 INTRODUCTION

In the last chapter, a theoretical study of symmetric matrix polynomial
systems was undertaken. The realisation of these system by physical networks
involves further design steps. In this chapter a detailed investigation of realisations

by active— RC circuits is presented.

A SMPS or simply a ladder is nonlinear with respect to s™1 and it is
difficult to realise directly by active— RC circuits based on Miller type integrators
with transfer function s~ 1. Therefore, some constraints and rules will first be
stated to define a family of matrix equations which are directly realisable. These
equations are linear in s~ 1 so that op—amp circuits can be used to perform

additions, multiplications and integrations.

Techniques are then introduced to render matrix description of a ladder
prototype realiseable, by decomposing it into several linear sub— equations. The
matrix representation is a convenient and flexible vehicle for the design
procedures. Numerical methods drawn from linear algebra can be applied to
derive existing as well as novel active—RC structures. Leapfrog and
coupled— biquad structures are shown to belong to the same family, simply
resulting from different matrix transformations. Some new structures, notably those

derived by LU matrix factorisation, demonstrate attractive properties.

The design of cascade biquads will be also be mentioned briefly. It is shown
that, although cascade biquads are strictly asymmetric systems, they can be
expressed in exactly the same concise form as ladder circuits. Thus a unified
description of various circuit structures is possible and this assists the development

of efficient computer algorithms considered in Chapter 7.

Biquadratic cascade filters have a very regular structure which grows by a
uniform progression with increasing filter order, regardless of the type of transfer
function, such as lowpass, bandpass, highpass and bandstop. On the other hand,
design techniques for ladder based structures are strongly dependent on the type
of the transfer functions. In this chapter, a unified method will be introduced to
synthesise canonical prototypes and active ladders realising a wide family of
transfer functions. It will be shown that ladder simulations can be designed with

the same regular progression as for biquadratic cascades.
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3.2 DIRECTLY REALISABLE MATRIX SYSTEMS

Matrix methods are known to be an efficient means of representing large
interconnected networks. The inverse procedure is how to construct an active— RC
circuit from a set of pre— determined matrix equations. If the equations are linear
with respect to the transfer functions of the basic building blocks, then the

problem becomes most simple. For example, consider the following single
algebraic equation

Vn ¥ ¢nn-1 Vn-1 ~ S~]'Wn (3.1)
This equation can be directly represented by the SFG in Fig.3.1a. Let the
variables {vi} and {w;} be the voltages of opamp outputs, then the SFG can be
replaced by an active RC network shown in Fig.3.1b.

Cons o C nn-t /C | :7

=Vn-1

Fig.3.1. Representaion of a linear equation

by (a) an SFG and (b) an active— RC circuit
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This simple example can be generalised to the case of constructing a SFG
and an active— RC circuit from a set of algebraic equations in matrix form. A

matrix equation is considered to be directly realisable if it meets the following

conditions,

Assumptions:

i) The matrix equation is linear with respect to the transfer function of the

basic building blocks.

ii) In each matrix equation only one variable vector and associated coefficient

matrix will be written on the left—hand side.

iii) The coefficient matrix on the left hand side is square and non— singular

with all the diagonal elements of a;; non—zero.

With the above assumptions a directly realisable matrix equation will have

the following form,

Aji Xi = ¥ fik Ajg X + i.k Jk (3.2)
k

where { X, } are vectors of variables
{ Jx } are input vectors
{ A¢ } are matrices

{ §ik } and { i } are the transfer functions of the building blocks

The following rules are used to derive SFGs and circuits directly from matrix

equations throughout this thesis:

1) Every entry in the variable vectors is represented by a nodal variable in the
SFG and by an output of an opamp in the circuit. The input variables are

represented by independent voltage sources.
2) The i—th row equation represents the linear relationship at the node

corresponding to xiy, or, for the circuit, the input—output voltage relationship of

the op—amp corresponding to Xim
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3) Each diagonal entry of Aj; is realised by an integraiing element. Every other

non—zero entry in a matrix represents the connection of a circuit element

between op—amps.

Notice assumptions (i)— (iii) are only sufficient conditions for realisability. If
a matrix system meets these assumptions then its realisation is straightforward and
unique using the above rules. The major task of this research is to develop
systematic procedures to synthesise the prototype and realise matrix systems which

initially fail to meet these assumptions.

Example 3.1: To illustrate the principle, construct a SFG and a active—RC

circuit from a set of matrix equations,

IW=-(sITr+c)yvas+1l (3.3a)

where W and V are two vectors of variables. I is the identity matrix and I' and
G have been given in (1.6). Then (3.3a) can be realised by the SFG and the

circuit in Fig.3.2a (where ¢=s"1) respectively.

Example 3.2: A multi—equation system can be realised in the same way. For

example combine (3.3a) and the following equation,
cvV=slw (3.3b)

(3.3b) can be realised by the SFG shown in Fig.3.2b (where ¥=s™ 1y, Notice the
coupling relationship of (3.3a) and (3.3b). Fig.3.2a and b can be united to form
a complete multi— feedback circuit using the same sets of nodal variables to
realise variables of V and W, Fig.3.2c, which can be replaced by the active— RC
circuit, Fig.3.2d. Interestingly, this circuit can be identical to the circuit in
Fig.1.10.

The capacitor coupled opamp loops may be seen from (3.3b) to be
dependent on the presence of non— zero, off— diagonal entries in matrix C. When
these entries occupy positions above and below the main diagonal, such as cyy
and cjq, they cause cross— coupling of op—amp inputs and outputs by capacitors.
If C is tridiagonal no such loops are formed, a property exploited by the LUD

method shown later.
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Fig.3.2 An example of realisation of a pair of matrix systems
(a) The SFG representation of eqn. (3.3a)
(b) The SFG representation of eqn. (3.3b)
(c) The overall SFG

(d) The active— RC realisation
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3.3 MATRIX METHODS FOR ACTIVE-RC CIRCUIT DESIGN

3.3.1) Alternating sign for nodal voltages

Rewrite here (2.1) for a passive ladder

(sC+slr+cyva=1 (3.4)

From Example 1.1, it can be seen that the entries of C and I' may be either
positive or negative values. This may cause difficulty in realisation as negative
entries require inverters. To avoid confusion, we introduce alternating signs in V,
ie., let V=[v{,—vy,v3,— v4,...], which ensures that all the entries in (3.4) are

positive. This can be seen in an example,

Example 3.3: For a 6th order ladder, Fig.1.2, nodal formulation leads to the

following matrix equations,

C1+Co Co L2'1 L2'1
s| € Cp+CyuCy  Cy | +s71f Lol Lp-ler,tl o Lyl |4
Cy, C4+Cs L4'1 L4'1+L5'1
Gin Vi Jin
+ 0 -vol = 0
GL V3 0
(3.5a)
11 [C1 [ 1 ]
C = 111 Cy 1 1 (3.5b)
1 1 C3 1
Cy 1 1
Cs 1
1 Ly-L 1 1
r=|1 1 L,"! 1 1 (3.5¢)
1 1 Lg-1 1
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Notice that all the entries of C, T and their relevant incidence matrices are
positive. Hereafter unless otherwise stated, it will be assumed that all matrix

entries are positive so that they can be directly realised by positive elements.

3.3.2) System linearisation by matrix decompositions

Equation (3.4) contains nonlinear combinations of the basic function s~ 1! so
it does not meet Assumption i). It is more convenient to linearise the system
into the form of (3.2). This can be done by creating a set of intermediate

variables and decomposing the system of (3.4) into two inter— related systems.

This decomposition can be performed in various ways.
Left Matrix Decomposition
Factorise the left hand matrix C into
C = C/C, (3.6a)

The following pair of equations is equivalent to (3.4)

CW=-(sITr+c)v-(Jd (3.6b)

c.V=slw (3.6c)

where W is the vector of intermediau;, variables.
Right Matrix Decomposition
I' can also be factorised as
r=rr. (3.7a)

The following pair of equations is equivalent to (3.4)

CV =-s7l [ T|W+ GV + (-J) ] (3.7b)

W =s-1 v (3.7¢)
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Both (3.6) and (3.7) have a similar appearance to the system realised in

Example 3.1 and 3.2. In fact it can be seen that (3.3) is a special case of
(3.7b,c) when C=C, C=1.

From the rules given in Section 3.2, (3.6) and (3.7) can be realised by
active— RC circuits, provided that the relevant matrices are obtained by certain
decompositions. The one—to—one correspondence between the circuit elements
and the matrix entries indicates that the efficiency of the active—RC
implementation in terms of numbers of capacitors is related to the sparsity of the
system matrices. Consequently a good simulation of a prototype by matrix

methods will attempt to maintain the sparsity property of (3.4), in the design

procedure.
3.3.3) Various ways to perform the matrix decompositions

The following methods are commonly known to preserve the sparsity of the
matrices to be decomposed: the LU or UL methods (Section 1.2.3), the

topological method (Section 1.2.2) and, simplest of all, the direct methods which
decompose matrix A into Al or IA.

CATEGORY NAME MATRIX DECOMPOSOTIONS
Left Left-LUD C=L LT Cr=Lc¢ Cp=LcT
Decompositions|Left-direct (IC) C=IC C=1 Cp=C
Right -LUD r-LrLpT ry-Lr Fe=LpT
Right
Right-direct(I'l)| I'=I'I ry=r =1
Decompositions
Leapfrog I=ArDrAT C=Ar rr-DrArT

Table 3.1 Various ways to perform the matrix decompositions
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Notice that a symmetric matrix A can be decomposed into symmetric LU
form A=LLT. This property is used in the derivation of Table 3.1 as all the

matrices in (3.4) are symmetric.

There are some duals to the systems listed in Table 2.1. which can be
obtained by replacing LU decomposition by UL decompositions, or by replacing
C=IC and I'=T1 by C=CI and I'=1II", respectively. The dual methods are useful

in realising one family of canonical structures presented later.

From network topology it is known that DrArTV= I} is the current vector
of the inductance branches. This confirms that by topological decomposition of T,
as shown at the bottom of Table 3.1, the same structures will be derived as
those by a conventional leapfrog method (Example 1.2). In general, if topological
decomposition is applied to the left—hand matrix C, it cannot be assured that the
resulting C; and C, will be square. Consequently, the resulting system (3.6) may
violate the assumption (iii) in Section 3.2. If C; and C;, obtained from a
topological decomposition, are square then in most cases they are identical to
those derived by LU decomposition. Therefore the topological decomposition will

not be considered for left— hand matrices.
3.3.4) Examples of various circuit structures

As examples, left— LUD, left— direct, right— LUD and right— direct SFGs and
circuits are shown in Fig.3.3—3.6, using the matrix description (3.5) of the
passive ladder in Fig.1.2 as the prototype. Notice for the s—domain design
d=¥=s"1 but exactly the same SFGs can be used for the z— domain design
discussed in Chapter 4 by redefining d=1/(1—-z"1) and ¥=12z" - z‘l).

Interestingly, it is found that the circuit in Fig.3.4 and 3.6 resulting from
direct decompositions can be identified as a coupled type— E and type— F biquad
circuit respectively. By comparing the intermediate variables introduced in the

two approaches it can be shown that they differ only by voltage scaling factors.

For the prototype circuit of Fig.1.2, the leapfrog method results in exactly
the same structure as that in Fig.3.5 by a right— LUD, which can clearly be seen
by comparing it with Fig.1.9. In the low—pass case I} and Iy obtained from
leapfrog methods are also identical to those obtained from a right— LUD methods.
An example is shown in Fig.3.7. However, in general the leapfrog method will

lead to more simple simulations than the right— LUD method.
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3.3.5) A comparison of left— and right— LUD methods

Two notable novel categories of ladder simulations presented in Table 3.1

are left—LUD and right—LUD (and their duals by UL decompositions). They

both have some characteristic features.

In the left—LUD method the below— diagonal and above— diagonal elements
of C are separated to matrices L, and LCT, respectively, effectively removing all
capacitor— coupled— opamp loops, Fig.3.3. They also demonstrate excelient
properties regarding component spread and dynamic range for bandpass design
(see Section 4.7). However since L. and l..cT are restricted to be square, from
(3.6) the dimension of the intermediate variable vector is n (n is the number of
nodes, i.e., the dimension of V) and so altogether W and V contain 2n variables.
Sometimes this is more than necessary. Taking the odd order lowpass design of
Fig.3.7 as an example, Left— LUD simulation of the 5th order prototype results
in exactly the same network topology as that of Fig.3.3, although we know that
it can be used to simulate the 6th order prototype of Fig.1.2. On the other
hand, right— LUD methods would use only 2n—1 variables, a canonical number,

for the particular prototype in Fig.3.7.

For right matrix decompositions, I'; and I', can be made rectangular and the
dimensions of V and W are not necessarily equal. Consequently the dimension of
W can be smaller than that of V. In the case of a low— pass filter simulated by
LUD methods, from Table 2.1 it is mandatory that I' be singular so that a zero
column in Lp will appear after LU decomposition. It can be then deleted, making

Lr a nX(n—1) matrix. Thus a variable is saved in forming W.

Beside the inefficiency mentioned above, there is also a sensitivity problem
in lowpass design for all the methods mentioned above except right—LUD.
Deviation in the entries of I, caused by the inaccuracy of the element values
associated with these entries, may cause I' to become non-— singular, introducing a
zero at «=0 (see Section 2.3). Extra zeros introduced at the origin, can be
viewed either as an advantage or disadvantage, for instance low frequency noise
suppression can be facilitated by these zeros. The right— LUD method does not
have this problem as it involve multiplications of matrices with only (n—1) rows

or columns. The resulting matrices can never have a full rank n.

The right—LUD method, however, also has the drawback of posessing

capacitor— coupled— opamp loops. Undesirable large component spread and poor
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dynamic range are also observed for certain bandpass designs.

These arguments indicate that left— LUD is a good candidate for bandpass
design and right—LUD is better for lowpass design, which will be further

confirmed by the statistical data provided in Section 4.7.

3.4 UL-LU AND LU-UL METHODS

It is possible to develop structures by applying LU and UL decompositions to
both left and right side matrices. Restricted by the requirements of preserving
matrix sparsity and maintaining a canonical number of variables, derivations for

such structures are not straightforward and are explored in this section.
3.4.1) System linearisation by UL~ LU methods

UL and LU factorisations can be applied to both the left and right hand

matrices of (3.4), respectively,

C - U, Lg (3.8a)
r=Lp Up (3.8b)
Define
We = s L,V (3.9a)
W= TUryv (3.9b)

Suppose a upper triangular matrix U.g and a lower triangular matrix Lpg can

be found so that

Ues Le = Lrs Ur (3.10)
Denote

Gy = diag[ g11, 0,...,0 ] (3.11a)

G, = diag[ 0,...,0, gnn | (3.11b)
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G =06y + Gy (3.11c)

Also denote

Gls = G Lo71 (3.12a)

Gns = Gp Up~l (3.12b)

Due to the lower triangular property of Lc_l, it can be verified that Gqg has
exactly one non—zero element at the upper left corner. It is also true that Gy
has only one non— zero element at the lower right corner due to the upper
triangular property of Ur_l. It is in order to preserve the sparsity of Gpg and

Gpg that both UL and LU decomposition must be employed.

With (3.9—-3.12), (3.4) can be decomposed into the following pair of

equations,
U Wo = —[(s‘lLr + Gug)Wr + s-lclswc] - (=J) (3.13a)
Lpg Wp = s~1 U g We (3.13b)

Realisations of a 6th order UL— LU active— RC circuit realisations is shown in
Fig.3.8 using the passive ladders in Fig.1.2 as the prototypes. Notice now that the
output is wry,. From (3.9b), as Up is upper trangular, wpy, differs from original
output v, by only a constant.

3.4.2) Procedure to solve (3.10)

A important step which has not yet been explained is how to find matrices

Uy and Lpg to meet identity (3.10).

When C and T are tridiagonal L, and Up are also tridiagonal as well as

triangular. Separate the diagonal and off— diagonal parts of the matrices
Lc = Lediag + Leoffd (3.14a)

Ur = Urdiag * Uroffd (3.14b)

72



I5
T:
;

c I Ce J_ Cie
¢ Lo a0 out

Ca
I
11
G
G, Ge Gg G, ‘7
— o —5 —

Fig.3.8. A UL-LU ladder circuit

where Legiag and Lpgjag are diagonal matrices, L.offq has non— zero entries only
on the first lower off diagonal and Upgyfsq has non—zero entries only on the first

upper off diagonal, i.e., Lcoffd and Upgsrq have the following form

0
* 0 0 *
. Uroffd = .. (3.15)

Leoffd =
0

* 0

where * stands for the non—zero entries. Assume that U, and Lpg are also

tridiagonal and triangular matrices. Similar to the notation of (3.14) separate Ug

and Lrs as

73



Ucs = Ucsdiag + Ucsoffd (3.16a)
Lrs = Lrsdiag * LTsoffd (3.16b)

Equate the different parts of (3.10) according to the position of the non— zero

entries,

chdiachoffd = LrsofdeFdiag (3.17a)
chofdecdiag = LrsdiagUFoffd (3.17b)
Ucsdiaglediag * Ucsoffdlcoffd

= LrsdiagUrdiag * LrsoffdUroffd (3.17¢)

Since in (3.17a—c) the number of constraints is less than the number of

variables, we can assign

Lrsdiag = I (3.18)

which guarantees the realisability of system (3.13). From (3.17) and (3.18) we

have

chdiag = ( Lcdiag - Lcoffdul'diag_lul“offd)-1
X ( Urgjag - Uroffdlcdiag 'Leoffd)) (3.19)

and remaining variables can be solved from (3.17)

Lrsoffd = chdiachofdeFdiag_l (3.20a)

Ucsoffd = Ul"offdl‘cdiag_1 (3.20b)

The matrices in (3.19) and (3.20) may be singular and the normal inverses do
not exist. In these circumstances Moore— Penrose's generalised inverse can be used
[115,116]. As the matrices in (3.19) and (3.20) are all diagonal, the procedure to
obtain their Moore— Penrose inverse is very simple. The Moore— Penrose inverse

of a diagonal matrix D=diag[d{1,...,dpn] is also a diagonal matrix given by
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M=diag[my1,...,mpy,] with

1/d; if djj=0 (3.21a)

0 if dj;=0 (3.21b)

For an odd order deisgn with I' singular , Fig.3.7a, matrix Ugq derived from
the above procedure has a zero row. The corresponding variable of W can be

deleted, resulting in a canonical realisation.
3.4.3) Formulae for LU— UL design

The dual of the above described UL— LU method is an LU— UL one. Its

design formulae are given as the follows without derivation. Define

C =1L Uc (3.22a)
= Up Lp (3.22b)
W, = U, V (3.22¢)
Wp=s-1lLpvV (3.22d)
G, = diag| gi11, 0,...,0 ] (3.22e)
G, = diag[ 0,...,0, gnn | (3.22f)
Gig = G Lp~! (3.22g)
Gns = Gn Uc_1 (3.22h)

The lower triangular matrix L.y and upper triangular matrix Uprg are defined to

satisfy the identity

Leg Ue = Upg Lp (3.221)

We have finally
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Lc We = -[(s710p + Gy Wp + s=16,We] - s71(-1)  (3.23a)

Urs Wr = s71 Leg W (3.23b)

The output is Wgn. A LU—UL simulation of the prototype ladder, Fig.2.1, is
shown in Fig.3.8.

TR | TAR
AR AR by

I

Fig.3.9. A LU—- UL ladder circuit

Although UL—LU and LU— UL circuits were originally expected to comprise
the advantages of both left— LUD and right—LUD ones, it turns out that they do
not have notable features, as can be seen from the statistical study in Section
4.7. It is observed that F—type terminations (conductor Gpi in Fig.3.7 and Gjpjp
in Fig.3.8) are not suitable for bandpass design as they produce large component
spreads. If some technique can be found to incorporate two E—type (or two
F—type ) terminations the circuit performance may be improved, which should

not be done at the cost of extra components.
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3.5 CANONICAL LADDER FILTER DESIGN

3.5.1) Restrictions of the standard methods

The advantages of adopting low sensitivity ladder simulation in integrated
circuit realisation have always been compromised by their complicated design
procedures and associated implementation cost. Various design techniques must be

used in ladder design to meet different specifications.

The difficulty is due to two problems; first the prototype ladder itself cannot
be synthesised from certain types of transfer functions and second the standard
simulation methods cannot be applied efficiently to certain types of the

prototypes.

A common example of the first problem occurs in the realisation of even
order elliptic functions. Passive ladder networks must have open or short circuit
characteristics (implying full or zero transmission) at zero or infinite frequency
respectively [3]. Therefore, lowpass or bandpass functions with finite (non-— zero)
stopband transmission at these extreme frequencies cannot be synthesised as
passive ladders. 'Pure’ even order elliptic functions and their
frequency— transformed versions belong to this category. To obtain a realiseable
function, a finite transmission zero must be shifted to infinite frequency [3]. This
has the dual penalty of degraded filter performance and non— uniform passive
ladder structure between odd and even order design, reflected also in the
simulation by integrated circuits. For this reason, such transfer functions are
practically undesirable for ladder simulation, since they are so close in cost to

their related higher odd order function.

As an example a 8th order bandpass pure elliptic function and its modified
form are shown in Fig.3.10. It can be seen that the cost of modifying the

function is a loss of about 4dB attenuation in the stopband.

An example of the second problem may be seen from the discussion of
Section 3.3. The design methods there generally use 2n or 2n—1 opamps
(excluding inverters). The canonical prototypes defined in Section 2.3 are required
to produce canonical simulations but from Theorem 2.1 and Theorem 2.2 whether
a given transfer function can be synthesised as a canonical prototype depends on

the parity of its numerator.
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In the following, a general method is introduced to design canonical active
ladder circuits applied to both left and right decompositions. The basic principle
is that any transfer function with only imaginary zeros can be modified so that
they can be realised by a canonical prototype ( a doubly— terminated SMPS or
simply a ladder). Then a canonical simulation can be obtained with minimum
numbers of intermediate variables (thus also the number of opamps). There is a
uniform progression in the form of the circuit structures regardless of the type of

specification or order.
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3.5.2) Modified canonical prototype

Let H(s) be a transfer function with all its zeros on the imaginary axis or at
infinity. If the order of H(s) is m, then it can be realised by a canonical ladder
prototype, with m/2 nodes (for m even) or (m+1)/2 nodes (for m odd), provided
that the constraints on the parity of the numerator given in Theorem 2.1 are
met. However, even if the constraints are not met or more precisely if N(s) has
the wrong parity, some simple manipulation of the transfer function can be made

to cope with the problem. Consider three possibilities,

i) The numerator of H is a constant

ii) The numerator of H has a single root at w;=0

iii) The numerator of H has a pair of imaginary roots at *w; (wj can
be zero)

To change the parity

for i) let H'(s) = H(s)s

for ii) let H'(s) = H(s)s or H'(s) = H(s)/s

for iii) let H'(s) = H(s)s/(s2+ «;2)

Then the parity of H' is opposite to that of H and H'(s) can now be realised by

a canonical prototype ladder described by the nodal equation

(sC+slr+6)y v=1 (3.24)
3.5.3) Canonical ladder simulation by active circuits

A system realising the original transfer function H(s) can be obtained by
multiplying the input vector J by inverse of the modification function. For case
iii), we have

(sC + s~ + G)V = (s + wi2s~1)J (3.25)

This system can now be expressed in realiseable form by the matrix methods
of Section 3.3 and 3.4.
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Left Matrix Decomposition form

Let C=C/C; then the system can be witten as

CW=-s"1 [ TV+ GV+ w2(-3)] (3.26a)

¢V =s1lw-c;~1¢p (3.26b)

Right Matrix Decomposition form

Let '=II} then the system can be written as,

eV =-sl (IW+av) - (-0 (3.27a)

W=s"1[TwV+oe2r-1-n) (3.27b)

Active— RC networks can be directly obtained according to these two equations. It
is found that the most efficient method in either case is to use UL factorisation

which minimises the required number of input branches (only two).

Two canonical 6th order left—LUD and right—LUD circuits are shown in
Fig.3.11. Their prototype is again the passive ladder shown in Fig.1.2, which is
synthesised from the partitioned transfer function instead of the original transfer
function. These canonical designs differ from standard ones in the position of the

input stage branches.

The sensitivity behaviour of the new structures must be examined as they are
no longer strictly ladder simulation and seem to depart from Orchard's
low— sensitivity criterion [15]. From the many examples studied by computer
simulation, the sensitivity for the new structures has been confirmed to be much
better than their biquad counterparts, and very close to traditional ladder

simulations.
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Fig.3.11. Canonical ladder circuits
(a) Left— ULD type circuit
(b) Right— ULD type circuit
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3.6 SPECIAL DESIGN TECHNIQUES

3.6.1) Hybrid matrix approaches

So far, only nodal equations have been employed to establish the SMPSs
from the prototype. However, for certain prototypes, more general hybrid matrix
descriptions can be adopted to minimise the size of the matrix systems and their
resulting simulated circuits. The drawback of the hybrid method is that there is
no unified rule. The exact design method depends on the individual prototype
structures and the selection of the internal variables, which can be seen from the

following examples,

Example 3.4;

An even order low— pass circuit shown in Fig.3.12 has n+1 nodes but the
filter order is 2n. The rank of ' is n as there are n inductors in the circuit,
making the total number of op— amps required 2n+1, so even a leapfrog design
cannot directly provide a canonical circuit. However If the nodal voltages, vp ...
vp, and a single mesh current i, are selected as variables to replace v+ 1. The

last two row equations have the following form

ce -vp-1
- -1 -1 -
Si.. .Cm=2 ©m-1*Cm-2 ol+s-1].. .Lpm-1 Lp-1 O|+{... O 1 Vn J
L2 o0 o | o-1n1zgi{l] in
(3.28)
Ly Lm.2 .
M) rm_l V2 v -'A-M\j Vn N Yoot
chz_l I—C:—ZJ n
J"‘T gi'\ "C‘ "C; "cm-a TCm-1 gL

Fig.3.12. An even order lowpass ladder
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The resulting equation will have the same form as (3.4) and will be canonical.
The output is now iy which differs from v, by only a constant gj. The rank
of matrix I' will be n—1 since the contribution of the n—1th inductor is now
moved to the first matrix. This means that the number of intermediate variables

to be introduced is n, providing a canonical solution.

Example 3.5;

The same technique, can be applied to the Left— decomposition designs for a
2n order bandpass prototype, Fig.3.13, derived from a nth  order lowpass
reference with n even. There are n+1 nodes in the ladder, so a nodal
description is not efficient. If the nodal voltages, v{ ... vo—7 and a single mesh
current i, are selected as variables to replace v, and v,4+1. The last two row

equations have the following form

o V-2
Sl...ep-2 ¢p-1+Sp-2 O +s-1 ~~-L&El L&El ol+t... O 1 Vh-1 =J
Lm ... Cp .o.=1 1/gL in
(3.29)
which provides a canonical solution.
Lm-a I‘m 2
Ya-2 n-1 k‘ Vo Cm vm,

Fig.3.13. A bandpass ladder derived from an even order lowpass one
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3.6.2) Inverse matrix approaches

The following system is apparently equivalent to (3.4).

W =-(sIlr+c)v+y (3.30a)
V = s-lpw (3.30b)
where P = C~1. There are two notable properties of the system realised

according to (3.30). First, it minimises the use of capacitors as the number of
non— zero entries in matrices on the left hand side of (3.30) are minimised. This
may be useful for certain fabrication technologies where the use of resistors is
preferred to the use of capacitors. Second, the length of the capacitor— opamp
chains is shortest, an important feature for fast op—amp settling time in SC

circuits (Chapter 4).

The disadvantage of this method is that even when C is a tridiagonal matrix
c-1 s usually a full matrix, representing a fully interconnected system. For
larger C realisation will cost extra capacitors increasing with the square of the
matrix order. For orders higher than 3, more components are generally required.
However for a third order matrix fewer capacitors can be assured by using the

following equivalence of (3.30b)

c11 €12 0 \%1 1 0 0 w]
00 1 0 ||-v2| = s |pa1 P22 P23||%2 (3.31)
0 C32 €33 %) 0 0 1 w3

Only the middle row of (3.30b) is replaced by the inverse of C. The chain is

still broken in the middle without the penalty of extra capacitors.

For high order filters with multiple zeros at infinity, C can be made a block
diagonal matrix with second or third order diagonal blocks. Each of the blocks
can be realised in the form of (3.30) or (3.31).

3.7 CASCADE BIQUADS DESIGN.

84



Finally we examine the design of cascade biquads filters which are in fact
asymmetric matrix polynomial systems. Apart from the matrix symmetry, they can

be described in exactly the same form as SMPSs,

AX s71BX + s-lcy + DY + EJ (3.32a)

FY

s~1GY + s~1HX + LX + MJ (3.32b)

where J is a vector of inputs

A, B, C, D, E, F, G, H L and M are matrices

Rules from Section 3.2 can be applied to (3.32) in order to implement
active— RC filters. Although the notation of (3.32) does not bring any advantages
for biquad design, it provides a unified approach for internal processing of
active— RC filters by computer, since both ladder and biquad simulations can be
represented by tridiagonal matrix systems. Much advantage can be gained from
this property in developing a unified strategy for the description of filter systems

in computer arrays, as will be seen in Chapter 7.

3.8 SUMMARY

In the first part of this chapter, we defined certain forms of matrix
equations as being directly realisable. It has been shown that other more
complicated matrix systems can be transformed into directly realisable form by
expansion, linearisation and the proper introduction of some intermediate

variables.

A methodology was then developed to realise the SMPSs. A wide range of
circuits were derived by adopting different matrix factorisations, notably LU and
UL decompositions, including both existing and novel structures. A family of
canonical ladder circuits were introduced to realise general transfer functions with
regular, minimum sized circuits. It is also illustrated that a hybrid approach can
be used to achieve canonical design for certain prototype where the nodal
approach would be inefficient. A detailed comparison of these various circuit
structures will be given in Chapter 7, regarding component spread, dynamic range

and sensitivity.

It was shown that a matrix form description can also be used for cascade
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biquad design, which incorporates various filter designs in a unified form.

Numerical designs and comparisons have not been given for active— RC
circuits, but will be provided in Section 4.7 for SC circuits. This is partly because
the industrial collaborators in this research have a major interest in SC filters. It
can also be shown that the behaviour of active—RC, SC and digital ladders
derived by the same prototype and the same technique would be very much the
same if the ratio of sampling frequency to upper passband frequency is large
enough. In fact under such a condition, a SC or digital circuit can be directly
obtained from an active—RC circuit by replacement of continuous— time
integrators by LDI— type integrators [25,51,79] and the frequency response will be
approximately preserved as well as the sensitivity, component spread and dynamic

range properties. Since the results are similar, a single comparison for SC circuits

will be sufficient.

Both approximate and exact design procedures for SC and digital filters will

be discussed in Chapter 4 by extending the matrix methods covered above.
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4.1 INTRODUCTION

In the last chapter a detailed investigation of matrix methods for active— RC
ladder design has been presented. Now the extension of these techniques to the

discrete domain systems of SC and digital circuits will be considered .

The design procedure of a discrete domain (or z— domain) ladder starts from
a prototype in the s—domain. Some frequency mappings, namely LDI or bilinear
transformations, are applied to transform the prototype system from the s— domain
to the z—domain. Matrix methods will then be developed to represent the system

by SFGs realisable by SC or digital circuits.

For LDI transformed systems [79], it is shown that the design procedure is
nearly the same as that in the continuous domain since, apart from some
frequency pre— warping, a pair of continuous— time integrators can be directly
replaced by a pair of LDI type SC or digital integrators. However the LDI design
requires a complicated procedure to eliminate the distortion caused by improperly
realised terminations [63,64]. The bilinear transformation, on the other hand, has
the advantage of both stability and exactness [12]. Unfortunately, SC bilinear
integrators are sensitive to the stray capacitance [35] and are not practically
useful. Digital circuits using bilinear integrators are unrealisable due to delay— free
loops [18]. A compromise approach is to realise the bilinearly transformed system
by employing LDI integrators. This so— called bilinear—LDI type design has

attracted much attention from researchers [51][53][80].

In this chapter LDI type ladders are first introduced to illustrate the
principles of the matrix methods in the discrete domain. Then bilinear— LDI type
ladder systems are derived from a matrix approach, which is shown to be much
more concise than present topological derivations. A discussion of the relative
network complexities of LDI and bilinearly transformed systems will follow. In
many cases, the structures are identical except for different input stages. However,
for prototypes with purely inductive branches (without a parallel capacitor) the
LDI structure is simpler than the corresponding bilinear—LDI one. A simple
technique is introduced to cancel excess components in the bilinear— LDI
structures, combining the advantages of simple structure of LDI and exact

frequency response of bilinear transformations.

An important feature of the LUD decomposition method applied to discrete

filter design is that it can produce ladder simulations without delay free loops,
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which is vital for digital implementaions. Although the principle of LUD type
digital filter design is very similar to that of LUD SC one, there are some
special considerations for reducing the cost of components with the help of the
flexibility of digital circuits. In a digital circuit, multiplication is most costly in
terms of both time and storage. It is shown in this chapter that a combination of

left and right decomposition methods can greatly reduce the number of

multiplication operations.

Another important concept in digital signal processing is parallelism [75]. In
some low sensitivity digital structures, such as wave digital circuits [73], the
operations must follow a certain sequence which limits the extent to which their
operation speed can be optimised by adopting parallel processing techniques. An
interesting property is that structures with a low degree of parallelism in digital
implementation will also possess the problem of unswitched opamp— capacitor
chains in SC implementation. Indeed, the procedure of capacitor charging along
such loops is comparable to a series of sequential operations in a digital circuit.
Two techniques are introduced in this chapter to increase the parallelism of a
digital ladder. The first is to place zeros on the real frequency axis to break the
series feedthrough chains. Further improvements are possible by the inverse matrix
discussed Section 3.6.2. The second is a scaling method for digital circuits,
whereby multiplication coefficients are scaled to powers of two, which can be
easily implemented by some series shifts of bit patterns followed by some parallel

multiplications.

Detailed examples will be given to illustrate the new design procedure and

comparisons of the novel structures with existing ones will be presented.

4.2 LDI TRANSFORMED DISCRETE LADDERS

4.2.1) LDI transformed systems

Define LDI transformation (T is the sampling period)

2 1 -2z1
§ 5 —m —— (4.1a)
T 2z-1/2

and a pair of LDI integration operators
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¢=1/(1-z71) (4.1b)

V=z"1/(1-z"1) (4.1c)

Applying the LDI transformation to (3.4) and introducing an extra half period
delay at the terminations for stability [79], (3.1) becomes

Y(z) V=17 (4.23a)

2 1 - z-1 T 2z-1/2

Y(2) = | ———c+— — T2t/ (4.2b)
T 2z°1/2 2 1 -2z71

Multiply equation (4.2a) through by 712 o get

(—\}/—A+¢B+G)V=J' (4.3a)

A = (2/T)C, B = (T/2)T, J' = z1/23 (4.3b)

Multiply equation (4.2) through by 7= 172 o get

(%A+\I/B+C)V=J' (4.3¢c)

A = (2/T)C, B = (T/2)T, J' = z-1/23 (4.3d)

As the transfer functions from J and J' to the output differ only by a delay of

a half period, we will not distinguish between them in the following discussion.

Both systems in (4.3) have a similar appearance to the continuous system
(3.4) and matrix decomposition techniques can be applied again to create a set of
intermediate variables relating two linear subsystems. Due to the difficulty of
realising the terminating stages, it is found convenient to use (4.3a) as the basis

for left decomposition design and (4.3c) for right decomposition.

Left Matrix Decomposition

Factorisation of the left hand matrix A in (4.3a) into A = AjA; results in

the following pair of equations
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AW=-( B +G ) V+J (4.4a)
AV = ¥ W (4.4b)

Right Matrix Decomposition

B can also be factorised as B = B;B; in (4.3c), leading to the right

decomposition system

AV = & ( B{W + GV ) + &J (4.5a)
W=V BV (4.5b)

4.2.2) SC LDI ladders

The same procedure can be applied to convert the system description of
(4.4) and (4.5) to a SC circuit realisation as described in the last chapter for
active— RC implementation, with the replacement of the continuous time operator
s—1, by a pair of LDI SC operators, ¥ and ¢, Fig.4.1. The matrix
decompositions can again be carried out by LU or by direct methods, resulting in

the various SC circuits in Fig.4.2.
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(c)
(d)

Fig.4.2 Various SC circuit structures

(a) Left— LUD type SC circuit

(b) Left— Direct(1A) type SC circuit

(c¢) Right— LUD type SC circuit

(d) Right— Direct(BI) type SC circuit
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The left—=LUD SFG is distinguished by the absence of delay— free— loops,
which may be seen from Fig.4.2 to be dependent on the presence of non— zero,
off— diagonal entries in matrix A. If A is LU decomposed no delay— free— loop
are formed, since the upper and lower off— diagonal elements are separated.
Removal of such loops will reduce the opamp voltages settling time so that filter

performance is less prone to finite switch resistance and op—amp GB effects [35].

4.3 BILINEARLY TRANSFORMED DISCRETE LADDERS

4.3.1) Bilinear— LDI systems

In LDI transformed ladders, a z*1/2 factor is introduced to represent the
improperly realised terminations and to ensure stability, causing a distortion of the
designed frequency response. The bilinear transformation, on the other hand, has
the advantage of both stability and exactness. Unfortunately, bilinear integrators
are sensitive to the stray capacitance and are not practically useful. Instead an

equivalent SC ladder utilising LDI integrators can be formed.
After bilinear transformation

2 1-z-1

s > — — (4.6)
T 1+z-1

(3.4) becomes

2 1 -2z T 14+ z7?
_— C+ — ————— T +G6 V=1 (4.7a)
T 1+ z7! 2 1-2z7

and multiplying the system through by (1+z~ 1)/(1-z" 1) to get
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) T 1 + z-1 1+ z-1 1+ z-1
TC+7 r + G| V=- J (4.7b)
-1
1 -2z 1 - z-1 1 = z-1
Eq.(4.7) can be rearranged as
1 1
(FgA+3dB+D)V=y (4.8a)
A = 2/TC+T/2I'+G B = 2T D = 2G J''= (1+2)J (4.8b)
or
1
(gA+®B+D) V=1 (4.8¢c)
A = 2/TC+T/2I-G B = 2T D = 2G J''= (l+z-1)J (4.8d)

4.3.2) SC bilinear— LDI ladders

Although based on two different transformations, (4.3) and (4.8) have the
same appearance apart from the input terms. This equivalence makes it possible
to design bilinear ladder using LDI integrators, a fact indicated first by Lee and
Chang [51] from a topological basis for SC circuits. Application of the methods

of Section 4.2.2 to (4.8) results in a similar range of circuit structures.

The input of (4.8) has a (1+z) or (1+ z_l) multiplier. The realisation of
the noncausality of (1+z) can be accomplished by multiplying by 2z~ 1 giving
1+ Z‘l), introducing a delay of one period. Its realisation has a range of

choices.

i) Direct realisations of (1+ z"l) for left— decomposition designs and
(1+z~1)/1—= 2z~ 1) for right decomposition designs can be achieved by using some

special circuit arrangements, Fig.4.3.
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ii) Alternatively the following systems can be wused for left and right

decompositions

Left Matrix Decomposition

AW =-( @B+ D) V - 2(-J) (4.9a)
AV =¥ W - At (=) (4.9b)

Right Matrix Decomposition

AV = -& ( BW+DV) - J (4.10a)
W= BV - 2817 (4.10b)

It can be verified that (4.9) and (4.10) are equivalent to the original system
(4.8b,c) respectively. They can be directly simulated by SC circuits with LDI type
integrators. Notice if J has only one nonzero input, ie., J = [ J1, 0,...0 ], it is
preferable to have the first column of A{'l and B;~1 with as few nonzero

entries as possible. This number is minimised to one when Al'l and B,"l are
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upper triangular matrices or in other words when UL or IA or IB decompositions
are selected. For digital realisation this method is canonical in sense of the
number of the delays. Examples of sixth order left— and right— LUD designs are

shown in Fig.4.4.

@
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°
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I ]

(b)

Fig.4.4 Exact Bilinear— LDI SC ladders
(a) Left— ULD type circuit
(b) Right— ULD type circuit
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iii) Both the above methods require some extra components which may be a
significant layout overhead for low order filters. They may be simply dispensed
with by replacing the (1+ z—l) factor in the numerator function by 1 or z7 1,
resulting the same circuit structures as LDI ones. However this incurs a penalty
warping function of (1+ z)"1 or z‘l/zcos_l(wT/Z) and a zero at half the
sampling frequency is lost. The distortion introduced in the passband by cos(«T/2)
can be corrected by prewarping the original prototype ladder. This can also be
conveniently combined with sin(x)/x correction resulting in a x/tan(x) function,
which can then be superimposed on the frequency response specifications [117]. If
the sampling frequency is very high compared with central frequency, which is

met by most practical design, x/tan(x) = 1 and no real compensation is necessary.
Example 4.1:

The bandpass ladder of Fig.1.2 is simulated by four switched— capacitor
circuits as shown in Fig.4.2. The design data are given in Table 4.1 and Table
4.2. All the simulation circuits have been scaled for the maximum opamp output
of 1. The input stages have been chosen as single—input as mentioned above in
iify. The sampling frequency is high enough to make the distortion negligible. The
response of the circuits is shown in Fig.4.5a,b. It can be seen that a zero at half
the sampling frequency is lost for single— input type circuits. The following indices

are used as global measures of system sensitivity and dynamic range respectively

c;  dlH() I 12]1/2
s(@ = { % (4.11a)
il M) dcy
a@ = | g [Hntion| ™ (4.11b)

where {c;} and {Hp,} are the sets of capacitances and opamp output voltage,
respectively, and M is the number of opamps. Plots of s(w) and d(w) of the
filters can be compared with a biquad circuit in Fig.4.6a,b, where d(w) has been
converted into dB, i.e., 20log(d). It can be observed that the ladder simulations
have lower sensitivity than the biquad circuit. Notice that circuits obtained from
the left matrix decomposition exhibit high sensitivity near OHz. The biquad
appears to have the best dynamic range for this particular example. Left
decomposition circuits have considerably smaller capacitance spread than right

decomposition ones and biquads.
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C1 0.3465 Cr 0.1580 Lo 0.2484

c3 0.6119 C, 0.059 L, 0.3006
Cs 0.4836 Ls 4.0362
Gin 1.0000 CL 0.8802

Sampling frequency 100 KHz
Lower passband edge 300 Hz
Upper passband edge 3400 Hz
Passband ripple < 0.2 dB
Lower stopband edge 10 Hz
Lower stopband att.> 30 dB
Upper stopband edge 5000 Hz
Upper stopband att. > 45 dB

Table 4.1 Design data for the prototype ladder

Left- Left- Right - Right -
LUD Direct (IA) LUD Direct (BI)
Cq 1.000 1.000 3.147 3.147
Co 9.174 9.174 9.392 9.392
C3 1.000 1.000 1.000 1.000
Cy 3.620 3.620 9.821 9.821
Cs 1.615 1.615 3.387 1.615
Ce 1.266 1.266 1.266 1.266
Cy 4.445 3.435 3.435 3.435
Cg 1.375 1.375 4.044 4.044
Cq 3.736 3.736 2.391 5.433
C10 21.697 25.451 22.474 22.474
C11 4.632 5.433 1.690 3.736
C12 21.169 22.474 11.201 25.451
C13 1.573 1.573 2.935 1.000
Ci4 1.000 1.000 1.000 1.573
Cis 1.612 1.000 2.074 1.473
Ci6 1.000 1.000 1.000 1.000
C17 1.000 1.000 1.000 2.137
Cis 8.326 9.325 9.953 7.070
Ci9 1.000 1.265 1.000 1.000
Cop 4.804 5.475 51.232 10.686
Co1 3.907 3.907 1.252 1.252
Coo 4.999 4.999 1.407 1.000
Co3 3.120 3.120 1.000 1.000
total 111.199 117.373 150.109 123.014
spread  21.697 25.451 51.232 25.451

Table 4.2 Design data for various SC ladder simulations
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4.3.3) UL- LU and LU—- UL SC ladders

The UL—LU and LU- UL design can also be applied to SC circuits. The
principle is the same as that for RC circuits, apart from some consideration for

the termination stages to get correct arrangement of switching phases. Eq.(4.7)

can be rearranged as

( % A+ @B + zD) + D) V = (1+z)J" (4.12a)

A=2/TC+T/2l-G1+G, B=2Tl Dy=2G; D,=2G, (4.12b)
or

( % A+ B + z71Dy + D)) V= (1+z71)J (4.12¢)

A=2/TC+T/2T+G1-G,, B=2T[ D;=2G; D,=2G, (4.12d)

Formulae for UL— LU ladder design

Let
A=1U, L, (4.13a)
B =Ly Uy (4.13b)
Define
W, = vl (L, Vv+U,71T) (4.13c)
Wy, = Uy V (4.13d)
G, = diag[ g11- 0,...,0 ] (4.13e)
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Gp = diag[ 0,...,0, gy, | (4.13F)

I

Dig = 2 Gy L,~1 (4.13g)
Dhg = 2 G, Uy~ (4.13h)

The upper triangular matrix U, and lower triangular matrix Lyg are defined to

satisfy the identity

Uae La = Lpe Up (4.131)
Also let

J' = -(14D1 A 1) (4.13])

Then (4.11a) can be linearised as

u, w -[ (L +Dj o )Wy +dD1 W, ] - (24D U ‘1)J (4.14a)
a "a b™ns/%b 1s%a 1s%a

Lps Wp = ¥ Upg Wy - UygUy-1d (4.14b)

The output is wppy.

Formulae for UL—1U ladder design

Let
A=L, U, (4.15a)
B = Uy Ly (4.15b)
Define
Wy = U,V (4.15¢)
Wy = ¥ Ly V- 20,10 (4.15d)
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G, = diag[ gj1, 0,...,0 ] (4.15e)

G, = diag[ 0,...,0, gnn ] (4.15fF)
Djg = 2 Gy Ly~! (4.15g)
Dhg = 2 G Uy~ (4.15h)

The lower triangular matrix L, and upper triangular matrix Upg are defined to

satisfy the identity

Las Uy = Ups Ly (4.151)

Then (4.11c) can be linearised as

L

a Wy = -[(dUp+Dy¢)W+dDgW,] - (142D Uy~ 1) (4.16a)

Ups Wp = ¥ Lyg Wy - 2UpgUL" 10 (4.16b)

The output is w,,. Two examples of UL—LU and LU-UL circuits are shown in
Fig.4.7.
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Fig.4.7 (a) A UL-LU SC ladder and (b) A LU- UL SC ladder

4.3.4) Canonical discrete ladders

Canonical SC ladders can be designed in the same manner as that for
active— RC circuits. Suppose that a change of parity of the numerator of the
transfer function has been applied as Section 3.5.2. Start from the modified

prototype (3.25) and perform the bilinear transformation

2 1-z-1 T 1+z-1 2 1-z-1 T 1+z-1
—_ C + — r+c¢|v=— I+ — wi2J

T 1+z-1 2 1-z-1 T 1+z71 2 1-z71
(4.17a)

The system can be rearranged as

1
( % A+ 3B+ D) V= (l+ o)+ 4dw; 2] (4.17b)

or |
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(4.17¢c)

1 ,
(FA+VB+D) V= (1r o2)LJ + 4¥u;2]

where A, B and D are defined in the same way as in (4.8). The above

equations can be linearised respectively as

Left Matrix Decomposition

AW =-( B + G ) V - d4wi2(-J) (4.18a)

ARV = ¥ W - A;l(e2 + 1) (- (4.18b)
Right Matrix Decomposition

AV = -d ( BjW + GV ) - (wj2 + 1)(-J) (4.19a)

W =¥ (B.V + 4wi2B;~1)(-J) (4.19b)

Some examples of these canonical circuits by UL decompositions are shown

in Fig.4.8.
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Fig.4.8 Canonical Bilinear— LDI SC ladders
(a) Left— ULD type circuit
(b) Right— ULD type circuit

4.4 MODIFICATION OF BILINEAR DISCRETE LADDERS

In some cases matrix A in (4.8) has more non— zero entries than its
counterpart matrix in (4.3), costing more circuit elements in realisation. This
happens when there are inductance branches without corresponding parallel
capacitance branches in the prototype and consequently A is less sparse than C
after adding the non—zero entries of (T/2)I" to the zero entries of (2/T)C. The
pure inductance branches are normally used to realise poles at infinity. Since the
entries in (T/2)[ are usually much smaller than those in (2/T)C, addition of
(T/2)T to (2/T)C also causes an uneven distribution of values in A and results in

a large capacitance spread in the SC implementation.

The difficulty can be overcome by placing a negative capacitor, Cj in

parallel with the purely inductive branch, L, of value

Cj = - — — (4.20)

107



Then from (4.8) the contributions of Ci and L; will cancel each other. This
reduces both the number of capacitors and spread of capacitance values. The

resonant frequency of the pole due to Cj and L; is given by

§2 = - — - (£2£¢)2 (4.21)

where fg is the sampling frequency. If L; is a series inductance branch in a
ladder, s, will become a pole of the transfer function. The response error thus
caused can be eliminated in the approximation procedure, by replacing poles at
infinity by ones at —2f; on the real axis. The negative capacitance required can
then be incorporated in the synthesis of the passive ladder prototype [117]. The

low— sensitivity properties are not influenced by the introduction of negative

elements (Section 2.4).
4.5 HIGH ORDER DISCRETE FILTER DESIGN
In left—LUD design, the matrix A is decomposed into LU triangular form,

A=L,L,T (4.22)

The separation of the non— zero off—diagonal entries to L, and LaT remove the

delay— free loops common to leapfrog and coupled— biquad simulations.

The main circuit features influencing opamp settling times for SC realisation
are now the long unswitched chains opamps and capacitors along which signals
will be delayed. The problem is not specific to left—LUD design and exists

together with delay— free loops in other circuits.

Exactly the same problem is reflected in digital realisations as the long chain
of series multiplication operations without interruption by delays. These operations
must be performed in a sequential order and so prevent the use of parallel

processing techniques.

The above problems arise when matrix A has successive non— zero
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off— diagonal entries. They can be avoided for low order design (with matrix

orders less than or equal to 3) by application of the inverse matrix method
introduced in Section 3.6.2.

For high order SC filters, the inductor and negative capacitor pairs

introduced in Section 4.6 can be used to cancel the off— diagonal non— zero

entries in A and therefore break the long chains. A combination of negative
elements and the inverse matrix decomposition is useful, provided differential
integrators are available. Real zeros can be introduced, to make A a block
diagonal matrix with second or third order diagonal blocks. Each of the blocks
can be realised by the inverse matrix method with the shortest unswitched chains.
High order filters which are particularly sensitive to non—ideal factors like finite

opamp GB or on—resistance of switches [33,34] will benefit from this technique.

Example 4.2:

A 20th order bandpass ladder, Fig.4.9, is simulated by the left— LUD circuit,
Fig.4.10. Notice this schematic is drawn in a different way from those used
earlier. The structure is very regular and the long unswitched capacitor op—amp
chains have been broken by introducing two negative elements into the prototype.

The response of the circuit is shown in Figs.11a,b. The component values for the

circuit are listed in Table 4.2.

1IH

Fig.4.9 A 20th order ladder prototype
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Fig.4.10 A 20th order left— LUD SC ladder
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Normalised data for the RLC ladder

Gin 1.0 GL 0.51020

CL  2.4200 Ll 0.39346 c2  9.1911 L2 0.084942

c3 7.9789 L3 0.16361 C4 8.5633 L4 0.11936

cS -0.001237 LS 2.5595 (o 1.4699 L6 0.99020

c7 10.453 L7 0.09341 c8 3.2603 L8 0.23531

c9 0.59787 Cl10 10.308 L10 0.095873

Cll -0.0016599 L1l 1.9075 Cl2 3.1240 L12 0.42852

Cc13 7.6061 L13 0.14009 Cl4 3.04204 L14 0.23821

C15 0.51578

lower passband edge 0.9075 upper passband edge 1.1065

lower stopband edge 0.877 upper stopband edge 1.132

passband ripple < 0.03dB

lower stopband atten. > 95dB upper stopband atten. > 85dB

Component values for the SC ladder
NODEl NODE2 VALUE NODEl NODE2 VALUE NODEl NODE2 VALUE NODEl NODE2 VALUE

4 3 24.38 4 5 10.37 6 5 9.095 6 7 40.92

8 7 39.09 10 9 47.51 10 11 6.576 12 11 25.31
12 13 4.401 14 13 5.049 14 15 4.493 16 15 43.78
18 17 46 .54 18 19 7.795 20 19 14.39 20 21 4.113
22 21 2.712 24 23 16.32 26 23 18.05 26 25 28.15
28 25 18.62 28 27 30.77 30 29 28.71 32 29 9.335
32 31 22.63 34 31 9.969 34 33 34.52 36 33 3.243
36 35 31.09 38 37 32.58 40 37 15.40 40 39 28.45

2 39 6.541 2 41 30.91 43 44 1.000 45 46 1.000
47 48 1.000 49 50 1.000 51 52 1.000 S3 54 1.000
55 56 1.000 57 ©58 1.000 59 60 1.000 61 62 1.000
63 64 3.764 65 64 4.341 63 68 1.670 65 68 3.558
71 68 1.000 65 74 6.805 71 74 13.62 77 74 1.000
71 80 1.000 77 80 10.02 83 80 2.349 77 86 1.000
83 86 5.139 89 86 2.533 83 92 1.000 89 92 1.852
95 96 10.65 97 96 1.000 95 100 1.000 97 100 10.70
103 100 4.128 97 106 1.463 103 106 4.049 109 106 1.000
103 112 1.243 109 112 1.000 24 3 2.993 2 21 1.383
115 3 1.000
total capacitance 814 units capacitance spread 47.5 units
capacitance unit 1 pF clock frequency 800 kHz
number of capacitors 73 number of switches 81
number of opamps 20
lower passband edge 10.1 kHz upper passband edge 12,45 kHz
lower stopband edge 9.18 kHz upper stopband edge 13.00 kHz

Table 4.3 Design data for a 20th order SC ladder
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Fig.4.11 A 20th order bandpass function

(a) Overall response

(b) Passband response
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4.6 DIGITAL BILINEAR-LDI LADDERS

4.6.1) Digital LU— LU ladders

Being without of delay free loops, the LUD approach is a strong candidate
for digital filter design. The design procedures can be considered to be identical
to those for left— LUD, UL—LU and LU—-UL type SC circuits by using digital
circuit realisations of ¥ and ¢ given in Fig.4.12. However as digital circuit

implementation is very flexible, there is some variation between circuit structures.

o + z >0 o + 3o
— _— —D o

Fig.4.12 A pair of digital integrators
Multiplication is the most costly operation in digital implementation. It is
desirable to minimise the number of multiplications and the number of multiplier
coefficients. This can be done by inserting scaling matrices in the decomposition

procedures which are applied to both left and right matrices.

As matrix A in (4.3) is always symmetric for passive networks, its LU

decomposition can be expressed in a symmetric form
A=1L1, D, LaT (4.23)

where D, is a diagonal matrix, appropriately chosen to set every diagonal element

of L, to unity. Seperate L, into diagonal and off— diagonal terms
Ly = I + Laoffd (4.24)
Also let B be LU factorised into

B =Ly Dy Ly (4.25)

113



Then the so—called LU—-LU type system follows

T
W= ~( GLpDpL + G ) V - Lygppg W + (1+z71)J (4.26a)
T -1
V= - Laogra V + ¥ D71 W (4.26b)
Example 4.3:

The following example illustrates the design procedures for a standard and a

scaled LUD digital circuit. For the passive network, Fig.4.13a, (3.1) becomes

[ 3.62 0.171 ] 0.242 0.242
s | 0.171 6.57 0.802 +s~1]| 0.242 0.503 0.261 +
0.802 6.71 0.577 0.261 0.535 0.273
i 0.577 3.66 | 0.273 0.273
1 Jin
+ 0 vV = 0 (4.27)
0 0
1 | 0

where V = [v1, —vp, v3, —V4]T. Let T=2 for simplicity. Perform the bilinear
transformation s=2(1—z~ ly/T(1+ z_l) and follow the procedure from (4.8) and

(4.26) using a LU decomposition. The relevant matrices are

1 4.86 1 0.085
A=| 0.085 1 7.04 1 0.151
0.151 1 7.08 1 0.121
0.121 1 4.83 1
(4.28a)
1 0.968 11
B=4r=|1 1 1.06 11
11 1.09 11 (4.28b)
1
2
0 4.28
D = 2GC = 0 (4.28¢c)
2

The standard LU— LU realisation can now be drawn, Fig.4.14.
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Fig.4.13 A 7th order ladder prototype

g, = 02056  b,=-09668 c, =-0.0850 d,=-2
a,201620  b,=-1045  c,=-01509 d,=-2
ay = 0.1412 by, -1093  cy=-0.1201

a, = 02070

Fig.4.14 A digital LU- LU ladder
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The digital realisation in Fig.4.14 has a canonical number of distinct
multiplication coefficients, which equals the number of components in the
prototype. The number of multiplications is not canonical since the entries of
matrix Laoffq is used twice for multiplication in (4.26). This will reduce the
operation speed in sequential processors. However for implementation on array
processors this is no longer a major problem as now the speed is mainly
influenced by the degree of parallelism. Indeed the bottleneck for parallel
processing is now the series multiplication chain along the horizontal line in
Fig.4.14 as they must be processed serially in the direction of signal flow. The
series multiplication chain problem bears an interesting relationship to the
capacitor—opamp chain problem mentioned in Section 4.6, as they are both

caused by the non— zero off— diagonal entries in the left hand side matrix.
4.6.2) Scaling technique to increase parallelism

The operation speed along the series multiplication chain in digital circuits
can be increased by scaling all non—zero elements in L, to their nearest powers
of 2. The operation required to nultiply a number by 27K is simply to shift it
by k bits. It is also possible to scale all non— zero entries in L, to #1', but this
results in a very large coefficient spread. The scaling procedure can be performed
in terms of matrix transformations. Let S be a diagonal constant matrix, pre—

and post— multiply the matrices in equation (4.8) by S. Let

Ag

I
wn
>
wn

B=SBS Dg=5SDS

Vs

I
wn
!
—
<
—
2]
I
7]
—

(4.29)

A new system is obtained with a transfer function differing from that of system

(4.8) only by a constant.

(3 As+ BB+ Dg ) Vg = (142)Jg (4.30)

Scaling is carried out so that Ag will decompose into

T
Ag = LagDaslas (4.31)
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where every diagonal element of L,g is 1 and also the upper— diagonal elements
are powers of 2. It can be verified that this procedure is possible provided Ag is

tri— diagonal, which is always the case for a ladder structure.

Example 4.4:

To produce a scaled realisation, continue from Example 4.3 by choosing the

scaling matrix S,

S = diag [0.603, 0.444, 0.735, 0.765] (4.32)

Then for (4.29— 4.31)

N
!
w
—
—
N
]
[\
=

0.603 1 0.968 11 0.603
0.444 11 1.06 11 0.444
Bs=SBS 0.735 11 1.09 11 0.735
0.765 1 0.765
0.603 9 0.603
0.4bb 0 0.444
Cs= SDS= 0.735 0 0.735
0.765 2 0.765
(4.33)

The scaled realisation by topological decomposition of Bg shown in Fig.4.15

follows.
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a, = 0.5651 b.=-09668 c. = 0.6032 d,=-2
a,=0.7219 b.= -1.045 €. =0.4435 d.=-2
a,= 0.2616 5,=-1.093 c,= 07347
a, = 0.3541 c, = 0.7646

olp

fs- = 0.9225

Fig.4.15 A scaled digital LU—- LU ladder

Example 4.5:

To illustrate the influence of coefficience quantisation, a wave, a LU—LU
and a biquad digital filter are designed with the same frequency response shown
in Fig.4.16. LU—LU and wave design still use the same RLC circuit in Fig.4.12
as the prototype but sampling frequency is changed to 32000Hz. It is assumed
that floating point storage of coefficients is used. All the coefficients are

truncated to the nearest smaller number.

The detailed passband response for 8 bits implementation given in Fig.4.17
shows a quite serious overall distortion for the biquad, whereas all other responses
are almost ideal. When the wordlength is reduced to 4 bits, the overall filter
response for wave and LUD derived typies are retained with reasonable accuracy

while the biquad response variation is dramatic, Fig.4.18.
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Fig.4.16 A 7th order lowpass function
(a) Overall response

(b) Passband response
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4.7 STATISTICAL STUDIES

A number of discrete ladder structures have been covered in this chapter,
including both existing and novel ones. Properly selecting a suitable structure for
a particular specification is very important in practical design. It is difficult to set

up a general rule for this purpose. Some observations have been made for SC

designs from our experience as follows.

For most SC networks, such as modem or codec filters, specifications are of
lowpass or bandpass types. For lowpass designs the Right— LUD method (which is
identical to the leapfrog one [51] in the lowpass case) appears the best candidate
since it can provide a canonical solution with low spread and low sensitivity. It is
more complicated to reach a decision about bandpass designs as the performances
of all kinds of circuits vary dramatically according to the relative bandwidth. This

can be seen from some statistical studies.

As the passband behaviour is of most intrest to filter designers, define two
indices for system sensitivity and dynamic range, which are the average measures

of s(w) and d(w), defined by (4.11), in the passband

1
S = width of passband J s(w)da (4.34a)
passband
- ! d(w)do (4.34b)
width of passband

passband

Normally the chip area required for fabrication of a SC filter is measured by

T, = T ooy (4.34c)

all capacitors

but to reflect the influence of capacitance spread the following index will also be

used
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c - [ T eyl ]1/2 (4.34d)

all capacitors

A overall performance index of an SC filter can be defined by

(4.34e)

For these indices, it is desirable to have lower S, Te, C and P (the lower
limit is 0). The maximum opamp output will always be assumed to have been
scaled to 1, so that D will always be a positive number less than 1. It is
desirable to have D close to 1, which means that all the opamps have equal

output swing in the passband.

For a bandpass filter the relative bandwidth is defined by (let wtand w™ be

the upper and lower edge frequency respectively),
RBW = (wt-w7)/uy ay = (Wtw)1/2 (4.35)

It is known that RBW has a great influence on the system performance. For 6th
order elliptic designs, let the passband ripple be fixed as 0.1dB, stopband
attenuation 50 dB and fp/fg ratio 25 (2#f,= wy, fg is the sampling frequency).
Computer simulations of S, T,, D and P are performed against relative
bandwidth. The sweeped results are shown in Fig.4.19—4.22., A similar study has
been carried out for 10th order designs, Fig.4.23—4.26. From these results it can
be seen that the left— decomposition designs have very good total capacitance
property in the narrow band range but that the biquad method takes over at
around RBW=1. For the sensitivity index S all the ladder designs are much
better than the biquad method over the whole range. The dynamic range index D
of the biquad method is discountinuous at some points. This may be due to the
fact that E—type and F—type biquads are selected according to Q- factor and
discontinuity of internal nodal voltages may take place when the design is
switched from E—type to F—type or vice versa. Another reason is that the
pairing of biquadratic sections is carried out to achieve minimum total

capacitance, which does not take into consideration voltage levels.

Comparing the overall performance indices indicates that the left—LUD
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method is the best candidate for narrow band design and the biquad method is
best for wide band design. It is found that for wide band designs the most
significant factor causing the deterioration of all designs is the lower band finite
zeroes, which approach zero when RBW increases. Realisations of these zeroes
require large capacitance spread. The deterioration process can be slowed down if
the lower band finite zeroes are replaced at the origin. A 8th order sweep is
carried out with the form of transfer function shown in Fig.4.27, where three
zeroes are placed at origin. The fixed parameter are f,,/f;=25, passband
ripple= 0.1, (passband width)/(stopband width)=1.15. The results are shown in
Fig.4.28—4.31 and in this case the left— LUD appears to have best performance

in every respect.

Another two less common cases are bandstop and highpass designs. For
bandstop design the cascade biquads method is still the best candidate. Although it
is not clear why ladders cannot provide a good solution (even by the twintor
circuit discussed in Chapter 5). It seems that it is even not necessary to search
for a better solution other than cascade biquads circuits, they are just good
enough regarding sensitivity, spread and dynamic range. This is probably due to
the fact that the transfer function of a section of biquad is naturally a notch type
function. For highpass design the biquad and leapfrog (with modulators discussed
in Chapter 5) methods are recommended. It seems that other ladder methods can
also be employed for highpass designs with some modifications but this requires

further investigation.

4.8 SUMMARY

In this chapter, matrix methods have been extended to SC and digital filter
design. The basic principle is the same as for the continuous domain systems.
Techniques have been developed to meet some special requirements for discrete
systems, such as efficient realisation of exact s—to—z mapped systems and to

increase the parallelism in the circuit structures.

Since SC circuits are fully integrated and cannot be tuned after fabrication,
it is particularily important to design circuits with low sensitivity to errors in the
element values. For this reason, ladder structures have found wide industrial
application. Detailed comparison have been made between different types of
designs and the advantages of adopting ladder structures for high quality systems

have been demonstrated.
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Dynamic range index D (converted into dB)
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Fig.4.21 Dynamic range index for 6th order elliptic designs
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Overall system performance index P
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Fig.4.27 A 8th order bandpass function with three zeroes at origin
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Dynamic range index D (converted into dB)
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Overall system performance index P

10

10

10

10

TT ITII

!
— 1\ —— BIQUAD i
h ) /
b * |
AN /l
L. RIGHT-LUD ‘
L N i
- \\ LU-UL ,’/ l
N -
= N a
C "N\
- AN
- . \\ .
- LEFT—DIRECT(IA)/\\ ~
S .
NN oL LS .
LEFT-LUD L ~ - /
- 1 1 1 1 lllll L 1 1 141\11'14\ l’/l 1 llllll
-2 107" 10° 10!
Relative bandwidth
Fig.4.31 Overall performance index for 8th order designs

136



CHAPTER 5

FREQUENCY TRANSFORMATION METHODS
FOR DISCRETE LADDER DESIGN

5.1 INTRODUCTION

5.2 FREQUENCY TRANSFORMATION METHODS FOR DIGITAL
LADDER DESIGN

5.2.1) Lowpass to highpass transformation

5.2.2) Lowpass to bandstop transformation

5.2.3) Lowpass to bandpass transformation

5.2.4) Discussions

5.3 FREQUENCY TRANSFORMATION METHODS FOR SC LADDER
DESIGN

5.3.1) Lowpass to highpass transformation
5.3.2) Lowpass to bandstop transformation
5.3.3) Lowpass to bandpass transformation

5.4 SUMMARY
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5.1 INTRODUCTION

The standard bilinear— LDI methods introduced in Chapter 4 for discrete
ladder design can be applied directly to lowpass and band— pass but not to
high— pass and band—stop designs. The difficulty is that for these latter cases the
transfer function is not of zero value at z=—1 (corresponding to s = o in
continuous domain). However the input fuctions of (4.8a) and (4.8c) reach zero
at z=—1. This implies that the transfer function from (1+2z)J or (1+2z— 1)J to
the output must be infinite at z=—1 to facilitate cancellation, which inevitably
results in an unstable system. This problem can be avoided by canonical design in

Section 4.3.4 or by the frequency transformation method discussed in this chapter.

The basic idea of frequency transformation methods is to replace the
standard LDI operator pairs by a set of operator pairs which are adapted to the
type of the filter specifications. The input stage can then be made to realise a

transmission zero in the stopband, so that no stability problem will arise.

For digital realisation these transformation methods also have the advantage
of preserving the «circuit structure; a useful property for programmable
applications. In bandpass and bandstop cases the cost of additions in a
transformed realisation is lower than that in a direct realisation and when the
ratio between sampling and centre frequencies is selectable the cost of

multiplications can also be greatly reduced.

A new type of second order building— block called a twintor (TWinned
INTegratOR) is introduced for realising bandstop SC operators. The circuit uses
two signal channels to directly realise the basic bandstop operators without term
cancellations, and also reduces the required opamp operation speed. Either
single— input or differential— input integrators are allowed, giving flexibility for

fabrication.
Based on the transformation of a lowpass function into other types of

functions, the following discussion is restricted to the realisations of systems with

geometrically symmetric frequency response.
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5.2 FREQUENCY TRANSFORMATION METHODS FOR DIGITAL LADDER
DESIGN

Again starting from a normalised lowpass reference passive ladder with nodal
description

(sC+slr+cecyvs=y (5.1)

It is well known [2] that in the continuous time domain a lowpass function can
be transformed into a bandpass, bandstop or a highpass function by frequehcy
transformations, Fig.5.1. It will be shown in this chapter that these

transformations can be used to derive a family of operators for different
applications.

4 HIp Hpp Hos 4 Hop
— > > >
1 w w wt w Wt

Fig.5.1 Illustration of frequency transformations
(a) A lowpass reference function
(b) A highpass function
(¢) A bandstop function
(d) A bandpass function
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5.2.1) Lowpass to highpass transformation

In the continuous time domain lowpass to highpass transformation is carried

out by

s —y 9T (5.2)

where «~ is the lower passband edge. After bilinear transformation, it can be

seen that substitution of the reference system (5.1) according to the relationship

2 1-z—1
s - (5.3)
w™T 14z

will transform the lowpass reference into the desired highpass system. Compared
with the denormalised lowpass system obtained from (5.1) according to (w'is the

upper passband edge)

otT 14z
s — (5.4)
2 1-z71

It can be seen that apart from a scaling factor, the highpass system can be
derived from a lowpass one by simply substituting z-1 5 —z71, Equivalently,
highpass systems can be obtained by substituting the standard LDI operators in a

lowpass one by a pair of highpass operators, Table 5.1,

bhp = 1/(1+z-1) (5.5a)

¥hp -z=1/(1+z"1) (5.5b)

and substituting the input stage in the lowpass system, 1+ z~ 1 by 1-z—71. A

notch is shifted to the origin and the instability problem is avoided.

An alternative approach to realising z71 5 —z71 can be derived by using
the modulation method [59]. If a time domain series f(n) is modulated to given

f*(n) according to

f(n) n even (5.6a)
f*(n) =
-f(n) n odd (5.6b)

then their z— transformations are related by
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Z¥(z) = Z ( f¥(n) ) = T (-1)N f(n) z N = Z { f(n) ) = Z(-2)
n Zo-Z

(5.7)

The modulation function of (5,6) can be realised by the circuit shown in
Fig.5.2a with two switches and an inverter. If modulators are inserted in both
input and output ends of a lowpass filter, Fig.5.2b, the output of the first

modulator is Vj,(—2z) and the output of the second modulator is H(— z)Viy(z).

Hence a highpass function is obtained.

>+
(a) f(n) —s +—f (n)
°
< highpass >
lowpass
D —
(b) "in e H L« Vout
. .
e e

Fig.5.2 Modulator and highpass digital filter realisation
(a) A modulator

(b) Highpass digital filter realisation using

a lowpass system and two modulators
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a lowpass system and two modulators

5.2.2) Lowpass to bandstop transformation

In the continuous time domain a symmetric bandstop function can be derived

from a normalised lowpass one by transformation [2],

w
-1 _S m | _1
s — a ( o + - ) (5.8a)
3 (-drn
with a = ?__—w_— Wy = -/_(.U+(.L)__ (5.8b)

Substitute  (5.8) into (5.1) and perform the  bilinear transformtion
s=2(1—z~ lyT(+ 2z~ 1y,

2 1-z71 T 14271 4 2 1-z7l T 14271
a1 + Yy C + a( + )I©' + Giv=J
wpT 1+z71 2 1-z-1 wpT 14271 2 1-z71
(5.9)
Multiply through (5.9) by the coefficient of ' and rearrange to give
(¥l A+ &g B+ D) = (¥-142) J (5.10a)
or
( dps~! A + ¥ B+ D) = (-¢714+2) J (5.10b)
bpg= (1-Bz-1)/(1-272) (5.11a)
Vo= (z2-Bz7 1) /(1-272) (5.11b)
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A=aolc+arlzc (5.11¢)

B=4arTl (5.114d)
D=2¢G (5.11e)
po= wgT/2 (5.11f)
a=a (pl+p) (5.11g)
B = (ul - W/l w (5.11h)

where the sign of G in (5.11¢) is positive for (5.10a) and negative for (5.10b).
Both the equations in (5.10) have the same appearance as those in (4.8) and so
they can be realised in the same way, with only ¢ and V¥ replaced by ¢y and
Vs The digital realisations of &g and V¥pg are given in Table 5.1. A bandstop
LU-LU design based on (5.10a) is shown in Fig.5.3, where Op=— dpg™ 1+ 2,
using the Sth order RLC ladder of Fig.3.7 as the prototype. It can be verified
that the zeros of 6pg now lie exactly in the middle of stopband and the
instability problem mentioned above is thus avoided. The design data is given in
Table.5.2. Notice that in this example the system (5.10a) has been scaled by 0.5
to set the termination entries in D to 1, saving two multipliers. The passband
ranges are from 0 to 3000 Hz and from 4000 to 16000 Hz. The sampling

frequency is 32000 Hz. The frequency response is shown in Fig.5.4.
5.2.3) Lowpass to bandpass transformation

Similarly a symmetric bandpass function can be derived from a normalised

lowpass one by transformation [2],

s — a ( — + — ) (5.12a)
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z7! ‘ — _{
-z o— 2 | F— —
z—\
standard
and
o z
— N
-H———
~Z=-1
1+2~! 0 Yhp 0
-E— o
-z
highpass
| 1 -z
l+z~! ° Cbhp
Z'Z—QZ“
1 - 2-2 o ¥Ybs
bandstop
| LGz |
! 1-z—2 ] bs
i
|
I
|
i
gz='-z-2 1
1-28z-'+2z-2 | ° “bp
bandpass
1= -1
—bzm [
1-20z7'+z"2 | L _“bp |

Table 5.1 Various types of frequency operators




1/p

Fig.5.3 A LU- LU digital realisation

Reference Ladder (normalised values)

gi = 1 gL = 1

Cc, = 1.05298 L, = 1.24796 C, 0.11789
c, = 1.69738 L, = 1.02002 C, 0.33388
C, = 0.88240

Digital simulation

a, = 0.21618 a, = 0.17976 a, 0.94811
b, = 16.2715 b, = 19.908

c, = 0.88070 c, = 0.89761

d, = 1 d, = 1 g 0.77675

Table 5.2 Parameters for

the bandstop filter
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Fig.5.4 A 10th order elliptic bandstop response
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Substitute  (5.12) into (5.1) and perform the bilinear transformation
s=2(1—z~ LyT(1+ 27 1y,

2 1-z-1 wpT 1+z7? 2 1-z-1 wpT 1+z77
a( + ) C+ a”1¢( + YT + GV=J
opT 1+z-1 2 1.z~ wpT 1+z71 2 1-z
(5.13)
(5.13) can be again written as
( wbp-l A+ dp, B+ D) = (v-142) J (5.14a)
or
( dppl A+ ¥y B+ D) = (-o142) J (5.14b)
bpp = (1-Bz71)/(1-2Bz7"+272) (5.15a)
Vpp = (Bz7'-272)/(1-23z7"+272) (5.15b)
A=aC+a'T=G (5.15¢)
B=4a ' T (5.15d)
D=2¢G (5.15e)
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PR (5.15f)

a=a (gt + p) (5.15g)

B =l - w/wl+p (5.15h)

where the sign of G in (5.15¢c) is positive for (5.14a) and negative for (5.14b).
Again (5.14) can be realised by the same scheme, Fig.5.3 with & and V¥ replaced
by d’bp and ‘I’bpr Table 5.1. It can even be verified that in this approach the
number of additions is much smaller than required in the direct simulation of a

bandpass prototype.
5.2.4) Discussions

It is interesting to note some common properties shared by the block
operators given in the Table 5.1: (a) &+ — ¥ = 1, (b) the poles of &+ and VU«
are on the unit circle and at the middle of passband, (c) the zeros of the input
stages are in the middle of the stopband on the unit circle; where "«" applies to

all four types.

If it is possible to adjust the product of wy and T, 8 may be scaled to a
special number to faciliate easy multiplication. For example, if 3 is set to 0.75 =
272 + 27 3 then it requires only two shifts and one addition to multiply a
signal by 3. As (3 is repeately used , considerable saving of hardware cost and

operation time can be gained.
5.3 FREQUENCY TRANSFORMATION METHODS FOR SC DESIGN

The SC realisations of frequency transformed circuit follow the same principle
as outlined in the last section for digital ones. The realisation of different SC
operators requires more careful consideration since SC circuits are not as flexible

as digital ones, being constrained to be stray— capacitance insensitive.

5.3.1) Lowpass to highpass transformation
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The highpass operators given in (5.5) can be realised by SC differentiators.
However they are stray sensitive and produce a high level of noise. A more
efficient method is to use modulators as mentioned above, requiring two inverters

at both input and output stages.
5.3.2) Lowpass to bandstop transformation

The frequency dependent operators ¥ and ¢ given by (5.11) can certainly be
realised by SC biquads [39]. However, notice that for the special form of the
denominators of ¢ and V¥, where z=1 term is missing, undesirable term
cancellations must be used. An interesting alternative is using a new TWINTOR

second order strays— insensitive biquad scheme, Fig.5.5a.

= C3
To 0
e xjy [ L [ e ITlL—l Yim e
NUXE,
X{n) O—1 c +—0 Yin)
° . Il /\.2 . ° . '\ . °

X{n) L —(]:', L I—l(—-ly‘%)
L L

3 for y =(Dx, C‘ =1,C2:B‘C3: 1
for y={x,C,=3,C,=1,C,=1

lo

{a)

(bl

Fig.5.5 (a) A twintor circuit realising & and (b) Clock waveform

In a twintor each opamp is operated only in every other period, T. The

charge relations for the circuit of Fig.5.5a are
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C3[y®(n)-y<(n-2)]

= - C1x®(n) + Cyx%(n-1) when n even (5.16a)
C3ly%(n)-y°(n-2)] = - C1x°%(n) + Cyx€(n-1) when n odd (5.16b)
Therefore the overall transfer function is given by
1 coz7l-qg
Y(z) = X(z) (5.17)
C3 1-z~
Notice that the denominator (1—z~2) is exactly realised without term
cancellation. It can be seen from Fig.5.5b that now the clock period is 2T

compared to T in a conventional LDI integrator SC circuit. This means that the
operation speed for the whole circuit, determined by sampling frequency, can be

doubled without requiring an increase in opamp speed.

By selecting suitable capacitance values
When

— & can be directly
ladder

simplifications are possible by separating signals into two channels, Fig.5.6.

implemented.

twintors are connected together to form a structure, some

The
first equivalence in Fig.5.6 is obvious. For the second equivalence, notice that a
sampling signal of an even (odd) channel opamp output in a odd (even) period is
actually the signal held from the previous period, therefore a delay factor, z~ L
is realised.  Notice that besides different selection of C; and Cp, ¥ can be
realised as z~ !(— &) and so the cross coupling will precisely give V. A number of

switches are also saved by this two channel technique.

e
e e e Xin) even
e e
Vi O —OXq) Yni© channel
ﬁm & C:::
. 0 Lg) dd
o] o 0 o o] n'o
Yini - 0% Y channel
xe
e © e e e € Thnleven
Yo —OX(n) M channel
0 o X dd
0 ) o o ! 0
Yo — O Yl channel

Fig.5.6 Two channel equivalent connection of twintors
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Fig.5.7 A 3th order lowpass RLC ladder
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Fig.5.8 A 6th order bandstop SC bi— channel filter design
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Specifications fcr the Bandstop SC Filter

lower casspand edge 4.5 kHz upper rassband edge 3.5 kHz
lower stopband edge 3.5 kHz upper stopband edge 5.5 kHz
passband ripple < 0.1 dB stoppand attenuation > 26 dB

sampling frequency 100 kHz

Normalized Data for the Lowpass SC Ladder Reference Filter
Gl = GL =1 Cl 0.91646 L2 0.96995 C2 0.17046 C3 0.91646
Component Values for the Bandstop SC Filter

Cl 14.79097 C2 1.414525 C3 1.398662 C4 1.614900 CS 1.633215
C6 15.64070 C7 37.44417 C8 37.86882 c9 1.000000 Cl0 1.141830

Cll 1.154780
Cl6 1.011341

Cl2 10.93656
Cl17 1.000000

Cl3 37.86304
Cl8 1.977572

Cl4 38.29245
€19 2.000000

C1S 10.57509
€20 1.000000

number of capacitors 40 number of switches 30
number of op amps 6 total capacitance 439.51
capacitance spread 38.29
Table 5.3 Design data for the 6th SC bandstop filter
Ow-

-10F

-20 +
@
2 30}
3
O

-40 F

-50 F

-60 }

P Sy S— 1 L 1 1 {
o 0.4 08 12 16 2.0

Frequency (Hz x10%)

Fig.5.9 Computed response of the 6th order SC bandstop filter
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An overall 6th order bi—channel bandstop SC ladder is shown in Fig.5.8
with the lowpass RLC ladder of Fig.5.7 as reference prototype. The
specifications and the component values are listed in Table 5.3. The simulated

response of the SC bandstop ladder is shown in Fig.5.9.

Finally it is necessary to indicate that although the twintor SC circuits have
some theoretical attraction, such as the reduction in the switching rate, some
preliminary studies show that their sensitivity behaviour is surprisingly poor. It is
still not clear why this should happen despite their being based on ladder
simulations. It should also be pointed out that the biquad method can provide
perfect solution for most bandstop type designs, as the transfer function of a
section of biquad is naturally a notch type function. The most difficult type of
filtering for the biquad method is bandpass functions, and it has been shown in
Chapter 4 that the ladder type circuits discussed in this thesis can be used to

solve this problem very efficiently.
5.3.3) Lowpass to bandpass transformation

Although the lowpass to bandpass transformation is also applicable by using
SC biquads to realise the bandpass operators no advantages are observed over
standard design methods.

5.4 SUMMARY

Frequency transformation methods have been introduced in this chapter for
non— lowpass type discrete filter design. The instability problem encountered in
bilinear— LDI type highpass and bandstop filters can be avoided and for digital
implementation some notable saving of hardware cost can also be gained in many

cases.

A new strays— free SC circuit scheme has been proposed for bandstop SC
ladder design. A major feature of the new circuit is that the clock period
required is 2T so that the circuit can operate at a higher speed without extra
demands on opamp performance. However it has also been indicated that the

poor sensitivity of such circuit remains a unsolved problem.
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CHAPTER 6

ACTIVE AND DIGITAL ALLPASS LADDER DESIGN

6.1 INTRODUCTION
6.2 CONTINUOUS DOMAIN ALLPASS LADDERS
6.2.1) Active RLC allpass ladder design
6.2.2) Active RC ladder design
6.3 DISCRETE DOMAIN ALLPASS LADDERS
6.3.1) Left— LUD method for SC and digital ladder design
6.3.2) Right— LUD method for SC and digital ladder design
6.4 SENSITIVITY ESTIMATIONS

6.5 EXAMPLES AND COMPARISONS

6.6 SUMMARY
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6.1 INTRODUCTION

Until now our discussion has been limited to the design of filters with
amplitude characteristics. Commonly in communication systems, group delay
characteristics are implemented by allpass networks, which are primarily designed
to provide phase characteristics without interference with an existing amplitude
response. However, in practical realisations the amplitude response will inevitably
be influenced by component variations. It is important therefore to utilise circuit
implementations having low amplitude sensitivity characteristics.  Because allpass
functions are non— minimum phase by definition, low— sensitivity ladder based
design remains an open problem. Cascaded biquad sections are typical in both
analogue and digital realisations instead and such topologies are highly sensitive to

component deviations, especially in high— Q cases [1,36].

A novel method for allpass digital filter design has been proposed in [93,94].
The allpass transfer function is decomposed into two terms: a constant and a
function realisable as the driving point impedance of a passive network, which is
in turn simulated by a digital circuit. The resulting system is structurally allpass,
that is, wordlength truncation will not introduce any distortion into the amplitude
response. The above principle is employed in this chapter to develop a family of
active— RLC, active— RC and SC filters.

The matrix methods covered in the previous chapters will still be followed. It
will be shown that allpass ladders can again be derived by left and right
decompositions. The opamps can be made canonical in number for RC and SC
implementations if the allpass equaliser and the amplitude filter are considered
together. Structurally allpass properties are proved for all realisations. The new

configurations are also very suitable for parallel digital circuit implementations.

Major emphasis will be placed on SC circuit realisations. Design examples
are given and comparisons are made between the different ladder based structures
and with cascade biquads. It will be demonstrated that sensitivities of the
amplitude responses of ladder systems are much lower than those of the cascade
biquad structures and sensitivities of the delay responses are similar for all

realisations. Low capacitance spreads are also observed for ladder based methods.
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6.2 CONTINUOUS DOMAIN ALLPASS LADDERS

An allpass function in the s— domain has the following form,

P(-s)
Ha(s) = k

(6.1)
P(s)

where P(s) is a Hurwitz polynomial of order n. For convenience let the constant

k= —1if niseven and k = 1 if n is odd.

6.2.1) Active RLC allpass ladder synthesis

Separate P(s) into even and odd parts, [93]

P(s) = EvP(s) + OdP(s) (6.2)
Define
EvP(s)
if n even (6.3a)
OdP(s)
Y(s) =
OodP(s)
{ if n odd (6.3b)
EvP(s)

Substitute (6.2) and (6.3) into (6.1) and make the rearrangement,

Ha(s) = — — =1 -« ——— (6.4)

A signal flow graph (SFG) is given in Fig.6.1 to realise (6.4) where the transfer
function 1 + Y(s) can be synthesised by a singly terminated LC ladder. It is
well known that if P(s) = EvP(s) + OdP(s) is Hurwitz then Y(s) =
EvP(s)/OdP(s) can be expanded in continued fraction form as (suppose n is even,

i,e., n = 2m)
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in c v, b

9+y g
For s-domaina =c =g =1 b=2
For z-domaina =c = g = 1 b=1+z

Fig.6.1 Realisation of allpass function

summation stage

passive ladder stage

z; = &1L yi =¥v1G
For s—-domain 41 = 1 = s
For z-domain ¢! = 1-2z-1 vl =z -1

Fig.6.2 Active— RLC allpass circuit
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Y(s) = sCy +

sb +

sCy +

SL2 + .

sC +
sL

(6.5)

with all {L;} and {C;} positive. If n is odd (i.e. n = 2m + 1) then the only
difference is that (6.5) will terminate with sC41. Eq. (6.5) provides a basis

for a ladder realisation in Fig.6.2 where the summing amplifier is also

included.

Traditionally, passive allpass filters are realised as cascaded lattice— derived
bridged— T structures. Two major disadvantages are associated with this method;
first the amplitude response is sensitive to all of the components and second the
circuits are not canonical, requiring approximately 2.5n reactance elements in
implementation.  For the scheme shown in Fig.6.2 the amplitude response is
completely insensitive to the deviation in the reactance elements (Section 6.4) and
only n reactance elements are required. The summing amplifier and several

resistors are an extra cost.
6.2.2) Active RC ladder design

The passive ladder network part of Fig.6.2 can be simulated by active RC
circuits. The nodal admittance matrix equation for the passive ladder subnetwork

is:
1
(sC+§F+G)V=J (6.6)

The matrix decomposition method for active RC network design described in
Chapter 3 can be readily applied here. (6.6) can be written in the left— LUD
form, (because all the capacitors in Fig.6.2 are connected to ground, C is simply

diagonal and no real decomposition of C is necessary)

W=-(s"1Tr+c)v+1 (6.7a)

v=slcluw | (6.7b)

158



or, after LU decomposition I'=T\I} the right— LUD form,

[

(C+s~1G)V = s=1(- I W + J) (6.8a)

wW=s1lr,v (6.8b)

I

Both (6.7) and (6.8) are linearised with respect to s~ 1 so that they can be
realised directly by active— RC circuits. For a 6t order circuit, the signal flow
graphs (SFG's) of Figs.6.3a and 6.4a and the simulation circuits Figs.6.3b and
6.4b (incorporating the summation stages) can be obtained. Inversion in the
output stage is incorporated in the simulation part. Other types of decompositions

are also possible but they will not be discussed here.

The summing amplifier employed in the output stage in Fig.6.3b and 6.4b
need not be realised explicitly in delay equalised filter systems. Provided that the
allpass filter is succeeded by an amplitude filter stage, the virtual ground of the
input integrator of the amplitude stage can be directly connected to P, to realise
the summation function. Thus realisations with canonical number of opamps are

possible.
6.3 DISCRETE DOMAIN ALLPASS LADDERS

There are several approaches to the derivation of all—pass ladders in the
z— domain. In particular it has been found most efficient to use the so— called
bilinear— LDI method as it is both exact in frequency response and efficient in
terms of implementation cost. Such a structure could be derived by the technique
of Section 4.4 which places real—zeros in the ladder prototype to introduce the
cancellation of capacitors after bilinear transformation. However a more
straightforward derivation is presented here utilising a continued fraction expansion

for z— domain transfer functions [92].

An allpass function in z—domain has the following form

z“P(z‘l)
Hy(z)= K ——— (6.9)
P(z)
where P(z) has poles inside the unit circle, n is the order of P(z) and k = 1.
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Fig.6.3 (a) A left— LUD type SFG for allpass realisation

<9
o
]
-

out

o]
[}

-
1
T

«Q
W
-
1
1F
[l il
| pamnae WP
—
(ol
i
—
e
—
1
| —ed
!
N
L
| RO pay
=
A
1}
e
=
@+
) —
N
1
Aeeed’
-

T
o it it

C=2

Fig.6.3 (b) A left— LUD type active— RC allpass filter
(elements in pF and yS)

160



summation stage . ' " leaetive two port Tttt ]

<

v, ;
Vv o- < ) . 1 l V2 1 1\ 11 3 N '
out ~ N 7 < 7 < '
Aa :vdk-g A '_(_p \,X A'_¢ Y — 4\~—¢ VY_ :
: 'l G, L, C, L, 3 L, :
C=g'| 1 1| 1 1 1 1 :
Vip o— > X >J : < > <€ > < !
Vin- 1: W1 WZ W3 N
passive ladder stage
For s-domain ¢= v = s-1 b = 2 a = g =1
For z-domain ¢ = 1/(1-z)~! v =zl - z-D
b:bld-bzz'l a = z-1 b1=b2=g =1

Fig.6.4 (a) A right— LUD type SFG for allpass realisation

R b=2
out ST —
1

O
1l
1

Fig.6.4 (b) A right— LUD type active— RC allpass filter
(elements in uF and xS)

161



6.3.1) Left— LUD method for SC and digital ladder design

Suppose n is even, n = 2m and k = —1. Rearrange (6.9) to get
zNP(z-1) l+z 1+z
Hy(z) = = ——— =1 - -1 - (6.10a)
P(z) zP(z)+zPP(z~1) 1+Y(z)
1 +
P(z)-z"P(z"1)
Suppose n is odd, n = 2m + 1 and k = 1
znP(z‘l) 1+z 1+z
Hy(z) = —— =1 - =1 - (6.10b)
P(z) zP(z)-z"P(z"1) 1+Y(2)
1+

P(z)+z"P(z-1)

To avoid the non—causal term z in (6.10) the transfer function is modified to

1+z-1
z-lH (z) =2z - — (6.11)
14Y(2z)

which introduces only a single extra delay. The continued fraction expansion of
(6.10) can be achieved in terms of ¥~ 1 and ¢~ 1 defined in (4.1) alternately,
[92]

1
Y(z) = W‘lcl +
1
@'1L1 +
1
W‘1C2 +
¢—1L2 + .
vl + L
-1,
(6.12)
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For n odd (6.12) will terminate with a \I/_ICm.,.l term. Positive values of {C;}
and {L;} are guaranteed [92]. By analogy with (6.5) it can be seen that a ladder
simulation is appropriate. The passive ladder part in Fig.6.2 can again be used
to realise (6.12) by a ‘'passive network', with admittance y; = V¥~ 1C1 and
impedance z; = dJ-lLi. Although physically unrealisable, it can be used as
prototype for SC and digital simulations. A nodal description can be set up for

the ladder section of Fig.6.2 in terms of ¥ and ¢,

o

(gC+er+6)v=1J (6.13)

Left— LUD SC and digital circuit can be obtained by rewriting (6.13)

=
[

- (@r+G)Hv+1J (6.14a)

<
I

ve-l w (6.14b)

This can be again represented by SFG, Fig.6.3a including the output stage,
suitable for digital implementation. The corresponding SC circuit can be obtained
by replacing the branches in the SFG by SC elements, Fig.6.5. The single z~ !
of equation (6.10c) has been realised by a rearrangement of switching in the
sample— and— hold and other input/output circuitry. The sampled input from an
even phase is transferred to the output summing amplifier in the subsequent odd
phase. The unit delay is realised when the output is sampled in the even phase

of the next clock period.

Left— LUD type SC circuits will always require an even number of opamps,

which is canonical for even order cases but not for odd cases.
6.3.2) Right— LUD method for SC and digital ladder design

Using (6.13) directly to derive the right— LUD type circuit causes difficulty
in realising the termination terms. Instead, it is easy to verify the equivalence

between (6.13) and the following system,

( é C'+ ¥ +GC)V=21J (6.15)
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Fig.6.6 A right— LUD type SC allpass filter
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where

c'=c-c¢ (6.16)

The right matrix decomposition structure can be derived by rewriting (6.15)

as

(C'+ &G )HV=23(-T, W+ 2z"11) (6.17a)

W=vry \ (6.17b)

The SFG in Fig.6.4a can again be used to represent (6.17) and an illustration of
SC replacement is given in Fig.6.6. The z~ 1 factor in (6.17a) cancels the

non— casual factor of 1+ z in (6.10).

Notice the circuit in Fig.6.6 is in principle very similar to the digital LDI

ladder realisation presented in [94].

Right— LUD SC simulation can always realise a circuit with canonical number
of opamps provided the amplitude and allpass stages are considered together.
However for narrow band SC design right— LUD will result in a larger total

capacitance than an Left— LUD design.

From Fig.6.4a it is seen that there is a delay— free—loop at the termination
stage: v » —g > J; » dcy -» vi. For digital realisation this can be eliminated
by the equivalent circuit transformation shown in Fig.6.7. The resulting circuit is
highly parallel and requires only a canonical number of multipliers for digital

implementation. The number of additions required is also relatively small (roughly
2n).

> C
A1 1 _ 1 1
Y9 Ci1-z7 - Czy T C,+g
b > > <€ d b > > <o d

Fig.6.7 A network transformation to eliminate the delay— free— loops
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6.4 SENSITIVITY ESTIMATIONS

In the fabrication process, nonideal factors will inevitably lead to a deviation
in system parameters. In the digital case, the nonideal factor would be the
truncation of multiplier coefficients to finite wordlength which will only have an
affect on {Cj} and {L;}. For analogue cases, inaccuracies in the values of {Cj},

{L;} and all the unity valued elements Figs.6.2— 6.6 would affect the sensitivity.

It will be proved that the amplitude response of the structures introduced in
this section, unlike their biquad counterparts, are completely insensitive with
respect to the deviation of most element values and are bounded for a few

terminating elements. The transfer functions of Figs.6.2— 6.6 have the form

Vout bc vy1/Jq
-H, - ¢ a - (6.18)
Vin 1 +dwvy/9q

for Figs.6.2, 6.3b, 6.4b a=c=d=1, b=2 and for Fig.6.5, 6.6 b=b1+b22—1,
a=byj=by=c=d=1.

Remark: For the circuits in Fig.6.2—6.6 if a, b (or by and by), and c are

fixed then |H,|=1 regardless of all the other parameters, even the unity valued

elements.
Proof: In the s—domain (Fig.6.2, 6.3b and 6.4b) equation (6.18) becomes
1 -wvi/01
| H, ' - —_— (6.19)
1+ wvy/9q

It is easily seen that |H,|=1 if vy/J; is imaginary.

For the circuit in Fig.6.2, vy/J1 is certainly imaginary, being the admittance

of a reactive network.

For the circuit in Fig.6.3b, apply Mason's formula [96] to derive v{/Jq,
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Vi 1

- S (8KkAK) (6.20)
1 A all forward paths
with
A=1-1L Pn1 + T Py - T Ppy + ...... (6.21)
m m m
where gk is the product of edge weights for kth forward path.

Py is the product of loop transmissions for the mth set of vertex— disjoint

feedback loops.

Ay is the value of A for the part of the graph having no vertices in

common with the kth forward path.

Every loop in the subnetwork of the reactive two port in Fig.6.3a involves
exactly one ¥ term and one ¢ term. In the s—domain, ¥¢ = (ju>)"2 = —w 2
and therefore Pp, = I(WCj)(— &/Lj) will be real , so will all A and {Ay}. There
is only one forward path from J; to vy, gy = WC; = jw/Cq, hence from (20)
v1/J1 is imaginary and |H,|=1. Notice that this imaginary property is solely
structural and is not influenced by deviation of any parameter. A similar proof

can be applied to the circuit of Fig.6.4b.

For the z— domain circuit in Fig.6.5, note that all A and {Ay} are again real

as

. 2‘1 T
Vb = — = —sin—2(
(1-z-1)2 2

) for z=eJ¥T  (6.22)

Since only one forward path is gy = WCq, from (20) vi/J; will have the form

of vi/J; = o¥ with « real. Hence the following identities are derived,

1-z J1/v1 2 1-z

-1+—+2 -1+(1+=)—

1+ z 1+z 14z o 14z

Hy | = |1 - = = |— (6.23)

1+J1/V1 l1-z J1/vq 1l 1-z

1+—2 1+(1+-)—

1+z 1+z a 1+z
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As (1—2z)/(1+z) = jtan(wT/2) is imaginary for z = eloT, it is seen that |H,|
= 1. A similar result can be proved for the circuit in Fig.6.6.
The sensitivity fomulae for the remaining elements in the circuits in
Fig.6.3b,4b can be derived as (since Y(jw) = Jy/vq is a pure imaginary number)
a  dlHy| 1 - 1Y(jw) 1?2
-1 =t < 1 (6.24a)
IHy| da 1+ 1Y(jw) 12
b dlHg] c  d|Hyl 2
-2 < = = < 2 (6.24b)
[Hyl  3b [Hyl dc 1+ 1Y(jw)l2
d 9|Hyl £2
-2 X = 2 (6.24¢)
IHyl ad 1+ 1Y(jw) |2

Similar formulas can be

derived for the circuits in Fig.6.5 and 6.6.

6.5 EXAMPLES AND COMPARISONS

As an example, a 6th order allpass SC filter is designed to achieve an
equi— ripple correction of the delay distortion caused by a 6th order SC bandpass
filter. ladder based
Each of these

circuits can be followed by the amplitude stage in Fig.6.8 (drawn in a different

The design data given in Table 6.1 relates to the two

equaliser structures, left— LUD and right— LUD Fig.6.5 and 6.6.

way from Fig.4.2a), designed as a 6th order elliptic left—LUD type SC circuit,
Table 6.2. The

P, point of either circuit in Figs.6.5 and 6.6 can be directly connected to the

All the circuits have been scaled for maximum dynamic range.

input of the circuit in Fig.6.8. The amplitude and delay responses are shown in
Figs.6.9a, b.

The following formula is used to measure the overall system sensitivity

|
i

o |H|

m

acj

Ci

(6.25)

{H|
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The system delay sensitivity can be defined in the same way. For
comparison two cascade biquad SC circuits are designed for the delay equalisation
stage, using biquad Topologies 1 and 2 of [36] respectively. The resulting design
parameters are listed in Table 6.3. As in [36], Topology 1 has quite a small
spread but very high sensitivity, while Topology 2 has an improved sensitivity at
the cost of high spread, Fig.6.10. Other biquad topologies [36] show some
trade— off of sensitivity and spread between these two extremes. However it is
seen that ladder based structures demonstrate the significant advantage of both low

sensitivity and low capacitance spread.

The amplitude sensitivities for ladder circuits, Fig.6.5,6.6, are mainly
determined by five parameters, i.e., a = C,h/Cq, by = Cp/Cg, by = Cpp/Cq, ¢
= C¢/C; and d = C4/Cq. Provided these ratios are carefully controlled, good

allpass properties can be expected.

C, C, Cyy Cys G
Re— i i =l —il it
e 0 \e \o e \ )
0 e ) e 0 J
;-/1 )-/T/. —e b-/—;_—" —4 1:_
1 +Cs TCi3 c 1
GL G 4::012 -47: 20 TCa;
Cis o o
o
C1.-.= »}1 »-/o—_;_-/o—o »/—;/—o ::C2 1»/1_
\e \ e \e \e \e \ e
Ce Cio Cya Cyg 2
it it it i -
\"

Fig.6.8 A 6th order left— LUD SC elliptic LUD filter
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Specification for

delay equaliser

lower equalisation edge SOdOHz
approximation type equi-ripple

upper equalisation edge 10000Hz
< 0.00014sec

in-band ripple

filter order 6 sample frequency 150000Hz

Poles of normalised allpass transfer function in s-domain

- 0.0518242 + j1.01293 - 0.0518242 - j1.01293

- 0.0482866 + j1.08983 - 0.0482866 - j1.08983

- 0.0458278 + 3j0.93370 - 0.0458278 - 30.93370

Component values for the Left-LUD SC ladder
Ca 1.000 Cbl 1.023 Cb2 1.023 Cc 2.333 cd 2.386
cl 9.903 c2 2.380 c3 3.273 C4 1.000 c5 1.000 cé
c7 24.22 c8 2.478 C9 8.660 Cc10 1.000 Cl1 1.000 cl2 1.000
Cl13 29.29 Cl4 2.651 Cl5 10.99
total capacitance 109 units capacitance spread 29 units
number of switches 27 number of capacitors 21
number of opamps 6
Component values for the Right-LUD SC ladder

Ca 1.015 Cbl 1.000 Cb2 1.000 Cc 1.015 cd 1.000
Cl 8.878 C2 9.546 Cc3 3.289 c4 3.982 cS 1.000 cé6 1.000
C7 20.34 c8  22.19 Cc9 8.305 Cl0 7.565 Cll 1.000 Cl2 1.000
C13 29.21 Cl4 2.660 C15 1.000
total capacitance 138 units capacitance spread 29 units
number of switches 28 number of capacitors 21
number of opamps 6

Table 6.1

Design data for SC delay equalisers
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Specification for amplitude filter

lower passband edge 8000HzZ upper passband edge 10000Hz
lower stopband edge 7200Hz upper stopband edge 10800Hz
passband ripple < 0.3dB stopband attenuation > 25dB
apprecximaticn type elliptic filter order 6
sampling frequency 150000
Component values for the Left-LUD SC ladder

Cl 1.000 c2 1.000 C3 10.83 c4 2.769 c5 1.000 c6 2.182
C7 5.041 cg 1.000 c9 1.335 Cl0 1.356 Cll 10.76 Cl2 4.055
Cl13 1.794 Cl4 3.733 Cl5 5.873 Cl6 2.573 Cl7 1.263 C18 1.000
Cl9 7.265 C20 3.285 C21 1.000 C22 2.430

total capaci;ance 74 units capacitance spread 10 units
number of switched 25 number of capacitors 22
number of opamps 6

Table 6.2 Design data

for a 6th order bandpass SC filter

Left-LUD Right-LUD Biquad top. 1 Biquad top. 2
total capacitance 109 units 138 units 102 units 311 units
capacitance spread 29 units 29 units 26 units 62 units
number of opamps 6 6 6 6
number of switches 27 28 32 32
number of capacitors 21 21 24 24

The S/H and summation stages are excluded

Table 6.3 Comparison of various SC delay equaliser
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6.6 CONCLUSIONS

A systematic approach has been proposed for active and digital allpass ladder
design, which demonstrates very low amplitude sensitivity as well as other
advantages, such as high parallelism for digital realisation and low capacitance
spread for SC realisation. It is shown that the ladder structures can be
implemented with a canonical number of multipliers for digital circuits or with a

canonical number of opamps for analogue circuits.
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CHAPTER 7

SOFTWARE PACKAGE AND FABRICATED CIRCUITS

7.1 INTRODUCTION

7.2 PANDDA; A PROGRAM FOR ADVANCED NETWORK DESIGN:
DIGITAL AND ANALOGUE

7.3 TEST RESULTS OF FABRICATED SC LADDER CIRCUITS

7.4 SUMMARY
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7.1 INTRODUCTION

The previous chapters have proposed theories and procedures for
high— quality ladder filter design. In this chapter we examine some practical

implications of the research work.

The first is the development of a useful CAD tool for integrated filter
design. The systematic and regular features of the matrix methods have been
harnessed in a comprehensive silicon compiler system, PANDDA, together with a

variety of other sophisticated approximation and prototype synthesis algorithms.

The second, which is the ultimate aim of the research, is to produce
integrated filters with improved performance. This is demonstrated by two
commercially fabricated telecommunication LUD filters. The specifications of both
circuits are known to be difficult for existing design methods and have formed
part of the motivation for this research work. The test results of a biquad filter

designed by the author is also included as an additional example.

7.2 PANDDA; A PROGRAM FOR ADVANCED NETWORK DESIGN: DIGITAL
AND ANALOGUE

The PANDDA software package has been developed by the author with
cooperation with R.K. Henderson during this research. Its distinguishing features
are summarised as follows. A full report covering all the other stages can be
found in [117].

Specification

Either parameters of a classical approximation or a piece— wise linear
tolerance boundary can be selected for the specification of attenuation and group

delay.

Filter options include network structure (biquad, LUD or direct
decompositions, leapfrog etc.), circuit implementation (switched— capacitor,
active— RC, digital), non—ideal circuit parameters (unit capacitance, switch

resistances, op— amp parameters, wordlength) and scaling directives.
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Approximation and Prototype Design

The task of approximation is to set up a transfer function which meets the
amplitude and group delay specifications. To avoid unnecessarily complex circuits
this function should be of minimum order. The ©best known classical

approximations can be obtained; Butterworth, Chebyshev, inverse Chebyshev and

elliptic.

Specialised amplitude responses can also be designed. The transfer functions
can be asymmetric and the order of tangency of certain extreme points (touch
points) of the amplitude response to attenuation boundaries can be specified. In
this way a wide class of transfer functions lying between conventional equiripple
and maximally— flat types may be designed. High order touch points may be used
to smooth the amplitude function near the band—edge to reduce the delay

peaking, and improve sensitivity.

The designer has the freedom to specify the sequence of passbands and
stopbands and the distribution of touch points in each. The attenuation function
in each band is specified by a pair of piece— wise linear boundaries through
which a linear— phase FIR, IIR or continuous time transfer function will be fitted.
Unusual transfer functions can be designed. Approximation of allpass transfer

functions can also be performed to equalise the group delay of the amplitude

function.

Having designed a suitable transfer function, a prototype for succeeding filter
design must be calculated. This takes the form of either a normalised

doubly— terminated LC ladder or a transfer function in factorised form.

Design of passive ladder networks is accomplished by an extension of an
iterative design method due to Orchard [15] in conjunction with a simplified
insertion— loss synthesis [2,105] program. Features of the iterative algorithm are
very good accuracy and the ability to design high order networks (up to 100th).
The conventional synthesis program is used to set up the structure and provide

initial component values for the iterative part.

177



Filter realisation

The filter realisation stage of the program must take a prototype filter and
convert it into a realiseable network description. The general approximation
capability above means that these functions can take a wide variety of different
forms. For easy conceptual use, it is important to guarantee that all these
transfer functions can be realised by a regular, stable, canonic network in a
variety of network topologies. This can be achieved by the matrix methods
developed in previous chapters. An additional advantage is that they are highly
suitable for implementation of computer software. The matrix methods form the

core of the filter realisation section of PANDDA.,
The design stage is divided into three steps.

Step 1) the prototype passed from the previous stage, which may be a
passive ladder or a set of the poles and zeros of the transfer function, is
pre— processed and, if it is a ladder design, symmetric matrix polynomial in terms

of (3.4) is formulated by a stamp method [95].

Step 2) the prototype system is linearised into a set of matrix equations
according to the selection of structure options by manipulations presented from
Chapter 3 to Chapter 6. As the sparsity of the matrix system is known at this
step, a quick computation of internal voltage level for scaling and sensitivity

analysis is achieved.

Step 3) the matrix system is expanded into a internal network description. A
library of basic bullding— blocks, e.g. Miller integrator in active—RC, LDI
integrator SC and delay element in digital, is established. All the matrices are
traversed and the nétlist is produced according the types of building— blocks and

the inter— connections of the non— zero entries.

The above procedures greatly ease the complexity of the software. As it can
be seen that the first step and the third step are independent of the particular
circuit structure to be realised ( apart from reading a pole— zero file or reading a
ladder prototype file ) so that the algorithms for these two steps are very
straightforward. Only at the second step have the design types to be taken into
consideration, but this only involves the setting up of a few matrices which is
carried out either by well known LU decomposition algorithm or by some direct

manipulation.
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7.3 TEST RESULTS OF FABRICATED SC LADDER CIRCUITS

Three SC circuits designed by the author have been fabricated. The practical
results presented in this section are provided by courtesy of Wolfson

Microelectronics Ltd., Edinburgh.

Design 1:

The first circuit is a 6th order bandpass Butterworth type filter, its ideal
transfer function has been plotted in Fig.7.1. Its relative bandwidth (defined in
Section 4.7) RBW=0.0625 indicating that the passband is quite narrow. According
to the stastistical studies provided in Section 4.7, left— LUD is the best candidate
for this specification. The design data is listed in Fig.7.2 (in SCNAP format [71]).

In Fig.7.3 the measured reponses are given. A circuit layout is shown in Fig.7.4.

Design 2:

The second circuit is a 8th order wide bandpass filter with relative bandwidth
RBW=2.85. In this case, realisation of an elliptic function by any of the
structures would result in a very large capacitance spread and an asymmetric type
transfer function similar to one shown in Fig.4.28 has to be wused. For this
particular case the discussion of Section 4.7 indicates that the left— LUD type
circuit behaves much better than any other type of circuit hence it is selected for

the final design.

A difficult probiem for this design is that the numerator of the transfer
function is an even polynomial (unlike that of Fig.4.28). At the stage when this
filter was designed, the canonical design method of Section 4.3.4 had not yet
been discovered so that a canonical solution could not be found for ladder
simulations. Fortunately the numerator contains two zeros located at the origin.
The transfer function is thus partitioned into a biquadratic function with a single
s numerator term and a 6th order rational function with an odd numerator
polynomial. The biquadratic function is formed by selecting a pair of the
lowest— Q poles, which eases the sensitivity problem. The 6th order function is
realised by the left— LUD method, and the cascaded circuit results in a relatively

small spread and small sensitivity.
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The ideal response (solid line) and the measured response of a test chip
(dotted line) are given in Fig.7.5 and 7.6. Notice that in practice a pair of
transmission zeros was moved to 2fs to break up the un— switched

capacitor— opamp chain. The layout of a test chip is shown in Fig.7.7.

Due to the fact that the specification is extremely difficult, with very wide
bandwidth, it can be seen that the template at the passband edges has been
violated by the measured response. This was found to have been caused by the
truncation of capacitance values to finite precision. By carefully selecting the
truncation or the rounding of capacitance values, this problem can be avoided and
this will be done for a revised version of the design. This serves to emphasise

the importance of sensitivity problem in practical integrated filter design.

Design 3:

An additional example of a biquad design is shown in Figs.7.8—7.9 (ideal
response in solid line and measured response in dotted line) and Fig.7.10 (circuit
layout). The specification is of an wunusual downward sloping shape. As the
maximum power transmission is attained only at one point (lower passband edge),
the argument of low sensitivity of ladder circuits is no longer valid. Also ladder
and biquad designs result in nearly the same total capacitance. For this reason
the biquad design was finally selected. This example also demonstrates that the

application of ladder circuits is not completely universal.

7.4. SUMMARY

A new program for filter design has been introduced. Several advanced

facilities which remove traditional design limitations have been illustrated.

Some test results of SC chips are presented. The left— LUD method has
been succesfully applied to the design of practical circuits known to present
difficulties for existing methods. The value of the research developed in this thesis

has thus been illustrated in a real engineering environment.
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Total capacitance = 329.771lunits
Capacitance spread = 96.24657units
Average capacitor = 17.35637units
Number of capacitors = 19

Number of switches = 25

Number of op-amps = 6

analyze
ideal freq 7700.000 8300.000 lin 201
output 2

end

timing
def
T = 0.2427184E-05
end
even T (0 0.0) (1 1.0) (2 1.0)
odd T (0 1.0) (1 0.0) (2 0.0)
end

subckt opamp 1 2 3 4 (gain, BW)
vevs 1 2 3 4 gain

end

circuit

vs 1 0 ac 1.000000 0.0

opamp 0 3 4 0 (0.1000000E+08, 1000000.)
opamp 0 5 6 0 (0.1000000E+08, 1000000.)
opamp 0 7 8 0 (0.1000000E+08, 1000000.)
cpamp 0 9 10 0 (0.1000000E+08, 1000000.)
opamp 0 11 12 0 (0.1000000E+08, 1000000.)
opamp 0 13 2 0 (0.1000000E+08, 1000000.)

c 4 3 93.55485
c 6 5 96.24657

c 6 7 1.145088

c 8 7 16.26420

c 10 9 3.985315
c 12 11 37.33633
c 2 11 1.000000
c 2 13 4.065341
c 15 16 1.000000
c 17 18 9.030050
c 19 20 1.000000
c 21 22 21.96506
c 23 22 1.000000
c 21 26 1.000000
c 23 26 23.57698
c 29 30 3.887713
¢ 10 3 5.640317

c 2 7 1.000000

c 31 3 7.073258

s 4 15 even

s 15 0 odd

s 16 9 odd

s 16 0 even

s 6 17 even

s 17 0 odd

s 18 11 odd

s 18 0 even

s 8 19 even

s 19 0 odd

s 20 13 odd

s 20 0 even

s 10 21 even

s 21 0 odd

s 22 3 even

s 22 0 odd

s 12 23 even

s 23 0 odd

s 26 5 even

s 26 0 odd

s 2 29 even

s 29 0 odd

s 30 7 even

s 30 0 odd

s 1 31 even

end

Fig.7.2 Netlist of a 6th order SC ladder design (in SCNAP format)
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Fig.7.4 Layout of a 6th order LUD SC ladder
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Fig.7.8 Overall ideal response (solid) and measured response
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR POSSIBLE FURTHER WORK

8.1 DISCUSSION OF THE RESULTS

8.2 SUGGESTIONS FOR POSSIBLE FURTHER WORK
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8.1 DISCUSSION OF THE RESULTS

Ladder networks have long been known as the best choice for high
performance filter design, whether they are implemented by passive, active or
digital circuits. However, various factors have detracted from the success of
integrated ladder filters; they have a complicated design procedure, the filter
structures can be irregular and can have certain undesirable properties such as the

delay— free— loops and large capacitance spread for SC circuits.

The objective of this work was to establish a unified theory and methodology
for high performance integrated filter design. A new mathematical framework has
been employed which introduces matrix methods into the field of filter synthesis.
Matrix methods are already central to control system design, and so it is natural
to expect that they can be readily applied to filter networks which are, after all,
only typical examples of linear systems. Indeed the application of matrix
principles from network analysis to network synthesis has yielded a considerably
more profound understanding of the properties of ladder structures. A detailed
theoretical study of such filters has been undertaken with a view to developing
filter structures with impreved performance. The success of this work has been
proven by test results of commercially fabricated SC circuits. The main

accomplishments are summarised below.

After a general introduction in Chapter 1, a theoretical investigation was
presented for symmetric matrix polynomial system (SMPS) in Chapter 2, which is
a mathematical generalisation of passive circuits, in particular passive ladders.
Definitions and criteria were advanced for the simulation of ladders by canonic
integrated circuits. The sensitivity and noise behaviour of the SMPSs was assessed
by examining their boundedness and pseudopassivity properties. Although the
theories are mainly applicable to the case of systems which undergo symmetric
deviations of their element values, formulae are also developed for the asymmetric
case. However, a rigorous assessment of the distortion caused by the latter effect
is still lacking. The low sensitivity and low noise properties of the circuit
structures developed in this work were mainly confirmed by computer simulations.
Nevertherless, this theoretical study has still many practical implications, such as
the assurance that if that stability is maintained, negative elements will not
introduce any special sensitivity or noise problems into the systems. This has been
proved to be an important statement for later work on simplified circuit

structures.
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In Chapter 3 a detailed description of the matrix design procedures for
active— RC circuits was undertaken. It was shown that ladder type active— RC
circuits can be divided into two major families, derived by either left or right
matrix decompositions. Combined left and right decomposition methods were also
explored. Well— known leapfrog circuits belong to the right decomposition derived
structures and coupled— biquads to the left ones. Moreover LU decomposition
drawn from numerical methods can be used for more efficient design. A family
of very regular structures has been developed for canonical design, which can be
applied to nearly all practically used transfer functions. Some special techniques,

such as inverse matrix or hybrid matrix methods have also been briefly discussed.

The matrix methods were extended to the SC and digital circuit designs in
Chapter 4. A procedure to convert a bilinearly transformed system into a
bilinear— LDI type description has been presented, which has the advantages of
exact frequency reponse and simpler circuits in both SC and digital realisations.
The discussion of matrix design methods was then straightforward by replacing the
s~ 1 operators in the active— RC case by a pair of LDI operators. This fact also
clearly illustrates the flexibility and conciseness of matrix methods. The property
of structural parallelism is important for high performance digital and SC circuits.
In the latter it can be interpreted by the presence capacitance— opamp chains
which slows the operation of the circuit. A number of techniques were introduced
to enhance the parallelism, such as by placing real zeros on the real axis or
using matrix scaling. Some statistical results have been presented to provide a full
picture of the behaviour of various SC circuit structures. It is shown that in many
circumstances ladder type circuits have much better performance than biquad ones.
In particular, left— LUD method has demonstrated some very attractive properties

for bandpass filter designs.

In Chapter 5 frequency transformation methods were discussed. It was shown
that the concept of LDI operators could be generalised into a whole family of
operators suitable for different types of filtering. These various operators can be
easily implemented by digital circuits, reducing the number of addition and
multiplication operations. For SC realisation the frequency transformation methods
are found to be efficient in highpass and bandstop type design. A novel second
order building— block, the so—called twintor, has been proposed to realise
bandstop type operators. In a twintor circuit the switches are operated at the
same rate as the sampling frequency ( while in an ordinary SC circuit with LDI

operators switches are operated at twice the rate of the sampling frequency ),
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which eases the requirements on opamps as well as other elements such as

switches.

Allpass filter design for delay equalisation was considered in Chapter 6.
Allpass filters have been traditionally realised as cascade biquads but their high
amplitude sensitivity for the high— Q case is a commonly known problem. Based
on a decomposition technique for allpass functions, some novel allpass ladder
structures have been developed. The main body of an allpass ladder has exactly
the same structure as that of a typical ladder filter, apart from being derived
from a singly— terminated prototype. Some additional components are required at
the input/output stages and it was proved that the amplitude response of the
whole allpass ladder is sensitive only to these components and no others. It was
further proved that even for these input/output components the relative sensitivity
is small and bounded. In SC design the capacitance spreads were shown to be

low for ladder type designs.

As described in Chapter 7, a computer software package, PANDDA, has
been developed in tandem with this research work. PANDDA incorporates many
state— of— the— art filter design techniques and algorithms. In particular, the matrix
methods for filter realisation form the core of the package. It was shown that a
wide variety of circuits can be handled efficiently in matrix form on computers.
Various manipulations of circuit structures, essential to achieve optimal dynamic
range, sensitivity and component spread, become very simple and regular by the
matrix techniques. The software has been successfully used in integrated filter

design, some of which have been fabricated. The measured results have been

shown.

8.2 SUGGESTIONS FOR POSSIBLE FURTHER WORK

With respect to the theoretical investigation of the symmetric matrix

polynomial system (SMPS), it would be of interest to investigate the following

problems,

1. As has been proven in the Chapter 2, amplitude distortion caused by
symmetric deviations will reach zero value at the maximum signal transmission
points and it can be expected it will kept small in the whole passband where p
is small. Although, a concise formula has been developed to assess the effect

asymmetric deviations, no definite conclusion is reached to assert that the resulting
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distortion will be small for a SMPS. Nevertheless many examples in Chapter 4
indicate that the amplitude sensitivity of an SMPS is really low, even in the
asymmetric case. However a more rigorous reasoning is required to confirm when

and why this low sensitivity property can be achieved.

2. In Chapter 2 a wave variable based procedure is given to develop limit cycle
free digital realisations. It is known that wave type digital ladders are more
complicated than LDI ones. Although there is no proof that a LDI based
structure can be made free from limit cycles, some observations suggest that wave
and LDI ladders have nearly the same noise behaviour. The LUD methods
presented in this research greatly simplify and regularise the design procedure of
‘exact' LDI ladders. It would seem interesting to, either by theoretical induction
or by experiments, examine the noise behaviour caused by signal quantisations.
This remains a future work to complete the research on LUD type digital

filters.

With respect to matrix methods for integrated filter design, two possible

directions for further research are suggested,

3. Non— minimum phase systems may lead to efficient design for combined
amplitude— group delay specifications. It has been indicated that some 30% of the
components can be saved if the amplitude and all— pass parts in a whole system
are merged by employing non— minimum phase functions. All the circuit
structures, apart from allpass ladders, derived in this work are based on the
simulation of terminated reactance prototypes and the zeros are restricted to be
on the imaginary axis. However, it has also been shown that, in the derivation of
all— pass ladders, non— minimum phase functions can also be realised by adding a
single feedthrough branch directly from the input to the output. This technique
could be generalised to construct a multi—input system, removing the constraint
of imaginary axis zeros. However, the prototype synthesis procedure must be

generalised to produce prototypes realising arbitrary numerators.

4. The combined left— and right—decomposition methods have already been
shown to be possible for ladder design. It is observed that the right LU and UL
decomposition method has good sensitivity properties at low frequency but that the
left LU and UL decomposition methods behave better at higher frequency. This
suggests that a combination of right and left LUD methods would possibly inherit
the best qualities of the two. However this not the case as shown by the

statistical results in Chapter 4. It seems that this is caused by the large
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capacitance spread of F—type damping (capacitor Cj; in Fig.4.7a and Cyy in
Fig.4.7b) at termination stages. If some technique can be discovered to allow both
E—type damping (or possible both F—type damping) without extra cost of
compononts, it is expected that total capacitance and sensitivity can be further

improved.

With respect to frequency transformation methods some further topics on

twintor type circuits are of interest,

5. Twintor type circuits offer a reduction in the switch speed which may find
application in high—speed signal prcessing. In a twintor section the output signal
is sampled alternately between two opamps. This in fact follows the same
principle as some polyphase digital networks which have found wide application in
reduction of the operation speed in digital circuits. It is expected that the
principle of twintor circuits can be generalised and may find application in
non— bandstop type filter design. Also the high sensitivity problem of twintor

circuits remains to be explained and solved.

With respect to allpass ladder filter design there is a direct application as

outlined below,

6. It is known that some amplitude transfer functions can be expressed as the
summation of two all— pass functions [91]. This has led to an interesting category
of digital filter structures, often referred to as wave— lattice structures because
each subnetwork is normally realised by wave digital building blocks. However
wave type realisation is not efficient in active— RC or SC implementations. The
advent of LDI type allpass ladders provides a very promising means for

active— RC and SC lattice circuit realisation.

With respect to the development of computer aided integrated circuit design

the following possible research work is indicated

7. In its present state, PANDDA is already a useful tool for an analogue filter
designer with a certain level of experience. The digital filter synthesis part of
PANDDA still remain to be developed. It is expected that matrix principles can
be also used to incorporate LDI, wave and lattice type digital ladders and provide
fast algorithm partition and analysis. Recent developments on GaAs SC filters
have also brought many interesting topics into research [31,41]. Improvement of

PANDDA to handle the many special problems met in GaAs circuit design, such
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as low opamp gain and high switch resistance would make it very helpful for the
research in this field. Also with some further improvements to the of
user— interface and  graphical facilities, it could be made much more
user— friendly. The present software is arranged as a set of programs which
handle the major computational steps in filter design. It relies on the skill of the
designer to apply its capabilities most appropriately. However, this knowledge
could be built into a more sophisticated expert system which could make
recommendations about the best design approach, enabling the designer to reach a

quick decision without specialised ability.
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