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SUMMARY

This thesis presents a systematic study of integrated ladder filter design. A 

theoretical model of ladder structures is first established in terms of a family of 

symmetric matrix polynomial systems (SMPS's). It is shown that SMPS's are a 

natural mathematical abstraction of ladder circuits. The properties of stability, 

canonical (or minimal) realisation, low—sensitivity and low—noise, are proved for 

SMPS's under certain very simple conditions.

A design methodology is then presented for active— RC, SC and digital 

ladders. The basic principle is that a SMPS can be decomposed by means of 

matrix factorisation into several linear systems, which can then be easily realised 

by active or digital circuits. It is shown that many existing methods, such as 

leapfrog or coupled biquads, result from some special decompositions. It is further 

shown that LU and UL factorisations drawn from numerical methods can be used 

to develop several novel structures (so— called LUD and ULD structures) which 

demonstrate significant improvments over existing ones regarding sensitivity, 

com ponent area and dynamic range. This is confirmed by examples and statistical 

investigations.

Besides the matrix methods applicable to standard lowpass and bandpass 

cases, further research is undertaken for bandstop, highpass and allpass filter 

designs. It is demonstrated that frequency transformations can be used to reduce 

the hardware cost in many classical filtering cases. A novel building block, the so 

called TW IN TO R , is introduced in bandstop design to reduce the switching rate. 

Active— RC and SC allpass ladders are constructed and proved to have significant 

advantages over the existing biquad circuits.

Matrix methods also provide an efficient vechicle for the development of a 

filter design software package called PANDDA. Its many outstanding features are 

described.

Finally measured results from two fabricated LUD SC filters are presented. 

They confirm the high quality of the novel circuit structures developed by this 

research.
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1.1 BA CK G RO U N D

Filter circuits are of great importance in communication systems, signal 

processing and control devices. They direct, channel, separate and transform 

electrical signals.

The majority of voice band filters were realised as RLC passive circuits. 

Fig.1.1a, [1—11] until the 1960s when it was recognised that size and eventual 

cost reduction could be achieved by replacing the large, costly inductors with 

active—RC networks, Fig.1.1b, [12—21], The progress of integrated circuit (IC) 

technology, such as the monolithic operational amplifier and the thick and 

thin—film circuits, later enabled one to realize h igh -q u a l i ty ,  miniature, hybrid 

active— RC circuits with very low cost. With the emergence of VLSI (Very Large 

Scale Integration) technology in the 1970's, it became possible to realise high 

order analogue filters on microminiature silicon chips [13,22— 25].

In VLSI, it is easier to fabricate capacitors and switches than resistors with 

the required accuracy. This gave rise to a new analogue sampled—data system, 

the switched capacitor (SC) circuits, Fig.1.1c, [25— 72], Recent interest has grown 

in Gallium— Arsenide (GaAs) implementations of SC circuits for high frequency 

applications [31,41],

In the last two decades, digital filters (F ig .1.Id) have been increasingly 

employed in communications, signal processing and control functions [73— 94], This 

is due to the accuracy, flexibility, programmability and modularity of digital 

systems, in addition to the high level of integration achievable in VLSI.

1.2 N ETW O RK  ANALYSIS AND M ATRIX PRINCIPLES

Circuit theory is now divided into two major branches; analysis and design, 

each with its own distinct methodology. In circuit analysis, methods have been 

developed to handle systematically large, sparsely connected networks, a task 

which has been expedited by modern matrix and graph theory [95,96], This 

rationalisation has not been reflected in the field of circuit design. Design 

methods, more or less, still focus on local building blocks rather than take an 

overall view of target systems.

2



c a p a c i t o r

i n d u c t o r

c a p a c i t o r

o p - a m p

c a p a c i t o r

s w i t c h

o p - a m p
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Various circuit implem entations of electronic filters

(a) Passive RLC filter

(b) Active— RC filter

(c) Switched— capacitor filter

(d) Digital filter



The strategy of the research presented in this thesis is to incorporate 

network analysis techniques in circuit design. For this reason a brief review of 

circuit analysis is necessary.

1.2.1) Form ulation  of passive netw ork descriptions

Nodal approaches are most popular in tormulating network equations. 

Suppose a network has n ungrounded nodes and m passive admittance elements.

Let Jj be the current flowing into the 

current sources. The network behaviour 

equation of the form [95,96]:

y n y i 2 )■ nn
Y21 Y22 >'2n

y n i y n 2 >nn

Y V = J

Fh node from n external independent 

is described by an admittance matrix

V1 J l
v 2 J 0

v n J n

( 1 - 2 )

Topological m atrix  decom position :

Y can be decomposed on a topological basis as [96]

Y = A Yb At ( 1 . 3 )

where Yb =  diag { y^, y2 , ... ym } is a mxm diagonal matrix and A is a nxm 

incidence matrix defined by

-1 i f  b r a n c h  j i s  i n c i d e n t  t o  a nd  d i r e c t e d  t o w a r d s  node i

a i j  = ] 0 i f  b r a n c h  j i s  no t  i n c i d e n t  t o  node  i

1 i f  b r a n c h  j i s  i n c i d e n t  t o  a nd  d i r e c t e d  o u t w a r d s  f r om node i

( 1 . 4 )

Polynom ial expression of the adm ittance m atrix :

For an RLC network, the contributions of capacitor C^, inductor L^ and 

conductors to the admittance matrix are, respectively, sC^, s— 1 and G^. 

Consequently Y is a matrix polynomial in s with

4



Y 1 .5 ^

Notice here T consists of the inverse inductance values. C, T and G can also be 

topologically decomposed by considering only the capacitance, inductance or 

resistance subnetworks respectively.

^2

T “■ c T Cin

Fig. 1 .2  A 6 th  o rd er passive doubly— term inated  ladder filter

Example  1.1: For a 6th order ladder, F ig .1.2, the nodal formulation leads to the 

following matrix equations,

C]_+C2 -C2 l 2 l . ~l 2 1
s -C2 c 2+c 3+c 4 _c4 +s 1 -L2 L2 l+L^ 1 4

-L4 - 1 U - U L s - 1
+

-C4 c 4+c5

Cin V1 ** i n
+ 0 Cn> = 0

v 3 0

( 1 . 6 a )

and the topological decompositions of C and f  are

5



c =
1 1 

- 1  1 1 
- 1  1

Cl 1
C2 I 1—*

n CO 1
C4 1 -1

L c 5 J 1 .

( 1 . 6 b )

1 L9 - 1 1 -1
r  = - 1  1 l 4 _1 . 1 -1

- 1  1 L 5 - l J 1
( 1 . 6 c )

1.2 .2) L adder system m atrices: sparse and sym m etric

If a ladder circuit is labelled so that every node i is joined only to either 

nodes i—1 or i + 1 or both, Fig.1.2, then matrices C, T, G and so Y are all 

tridiagonal, as can be seen from (1.6a). Therefore  ladders are typical sparse 

systems [97].

From (1.3) it is seen that C, T, G and Y are all symmetric matrices. 

Furtherm ore it is easy to verify that C, T and G are non— negative definite [98] 

provided that only positive RLC elements are considered. Notice that the reverse 

is not always true. For example, let matrices C and f  be

C = 2 1 r»  _ 2 - 1
1

CM

n

- 1

CM ( 1 . 7 )

They are both positive definite but Y =  sC -+- s can not be realised by an

RLC circuit with positive elements.

1.2.3) LU and U L  matrix  decompositions

The solution of the algebraic equations,

Y V -  J ( 1 . 8 )

can be performed by the triangular  or LU decomposit ion  technique [95,99]. The 

main advantage of LU decomposition over Gaussian elimination is that it enables 

efficient solution of system with different excitation vectors J .  By LU

decomposition a matrix Y is factorised as follows

Y -  L U ( 1 . 9 )

6



where L stands for the lower triangular  and U for the upper triangular matrix 

T he system (1.8) is now written as

L U V -  J ( 1 • 1 0 1

Define an auxiliary vector W as

U V -  W

Substitute W  into (1.10)

L W -  J ( 1 . 1 2 )

Due to the special form of L and U, the vectors W and the solution V can be 

calculated very efficiently. Consider the most simple case when Y is tridiagonal so 

that L and U will have the form,

121 122
132 | 33

0
^ n ( n - l )  *nn

(1 . 13a' )

and (notice the unity valued entries on the main diagonal of U)

U =

1 u 12
1 u23 0

1 U34
0 u ( n - l ) n

1

( 1 . 1 3 b )

The solution of (1.12) can then be written as

wi  = J i / h i

Wj = J j / l j j  -  [ 1 i ( i —1 ) / ^  i i l wi —1 i = 2 , 3 ,  . . . n ( 1 . 1 4 a )

This is called the fo rw a rd  substitution  process, Fig.1.3a. To solve for the 

unknown vector V in (1.11), start with the last equation and work upward,

i = Wj -  U j ( i + 1 )Wi+1 i = n - l , n - 2 , . . . 1  ( 1 . 1 4 b )

7



1,1

J J2 3

(a)

(b)

J V.33
(c)

Fig. 1.3 Signal— flow— graph for solving a linear 
system by LU decomposition method

(a) Forward substitution

(b) Backward substitution

(c) Overall process
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This process is called backward substitution,  F ig.1.3b. The whole forward and 

backward procedures can be visualised in a signal— flow— graph (SFG) form , 

Fig.1.3c. Notice a special relationship for (1.14) and F ig .1.3; i f  Y is symmetric  

then  [99]

L i ( i - 1 ) / I i  i u i ( i +1)  ( 1 -1 5 )

A sim ilar procedure can be developed if Y is factorised by UL

decom position,

Y -  U L ( 1 .1 6 )

A SFG is given in F ig .1.4 for solving (1.8) via (1.16). Again if Y is symmetric 

then  (1.15) holds.

Fig. 1.4 Signal— flow— graph for solving linear 

system by UL decomposition method

9



1.3 FILTER DESIGN METHODS

G enerally speaking there  are two approaches to filter structure design; direct 

m ethods and sim ulation m ethods. T he form er starts directly from  a transfer

function, e ither as a single polynom ial or ratio of polynom ials, and the networks 

are derived by som e algebraic expansions of the transfer function. The latter 

transform s some prototype circuit into d ifferent im plem entations while preserving 

the transfer function. This is done in order to inherit certain  beneficial properties 

from  the prototype. Exam ples of direct design m ethods are:

1) direct realisation w ithout any expansion, e .g .,  fo l lo w —the— leader type circuits 

[12,73]

2 ) expansion into the product or sum of second order sections, e .g .,  cascade,

parallel biquads and allpass L C  lattice  [1,12,73]

3) expansion into partial fraction form , e .g .,  ladder and G ra y—MarkeVs digital

lattice  [2,3,82]

A sim ulation is based on some sort of one— to— one correspondance between

the prototype and the sim ulated circuit [3,12,73]. This correspondance could be

betw een the port characteristics of the com ponents in the two circuits, called

com ponent sim ulation, o r between the signal— flow— graphs (SFGs) representing the 

two circuits, called functional sim ulation.

C om ponent sim ulation m ethods, such as those using gyrators [17,60] and 

GICs [18] to sim ulate inductors, generally require floating opam ps or floating 

capacitors which are prone to errors during m anufacture. Functional simulation 

m ethods have been m ore successfully developed and have found wide industrial 

application, especially for SC circuits [19—21, 51—59]. T hey form  the main topic 

investigated in this thesis.

1.3.1) Passive ladder and lattice network synthesis

F or am plitude filtering the doubly terminated ladders , F ig .2, are the most

widely used passive structures with well established theory  [1—11]. Ladder circuits 

are well known for their distinguished property  of being very insensitive to

com ponent deviations.

For delay equalisation, passive all— pass circuits are mostly realised as lattice 

derived bridged—T networks [1]. T hey are basically cascade second order filters,
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with a unique fixed port resistance for both ports of each section. Since they are 

im pedance m atched they can be cascaded without introducing any distortion. Each 

second order section usually has 5 reactance elem ents, as shown in Fig. 1.5.

Ci < V 2

(L -L )/2

L

(a) (b)

Fig. 1.5 A second order allpass lattice section 

and its equivalent bridged— T form

1.3.2) First and second order circuit building blocks

Most active and digital networks can be regarded as the repeated  connection 

of a few regular structured subnetw orks, s o -c a l le d  building blocks [3,12,16,73].

A list of first o rder active— RC, SC and digital building blocks is given in 

F ig .1.6. It can be verified th a t the transfer functions of the circuits in F ig.1.6

are , respectively,

( a )  H (s )  -  - (A + s B ) /(C + s D )  ( 1 .1 7 a )

(b )  H (z ) -  [ - A ( l - z - l ) + B z - 1 -C ] /(D + E -D z - 1 ) ( 1 .1 7 b )

( c )  H (z ) -  ( b 0+ b 1z - 1 ) / ( l + a 1z - 1 ) ( 1 .1 7 c )

11



(a)

v.
in

A evrl
(b)

o B e

' ~ r r  

• I  i"e C e

' " T T0 \  /o
1 I

V.

Fig. 1.6 First order building blocks

(a) Active— RC circuit

(b) Switched— capacitor circuit

(c) Digital circuit
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c

(a)

G

H
[ >

(b)

(c)

Fig. 1.7 Second order building blocks

(a) Active— RC circuit

(b) Switched— capacitor circuit

(c) Digital circuit
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Second order building blocks, m ore often referred  to as biquad sections, are 

particular useful as they can be assembled to form  cascade or parallel biquad 

structures, based on the fact that any real rational function H(p) (p may be 

either s o r z for the continuous dom ain or the discrete dom ain respectively) can 

be factorised as,

b0i + bl i P -1 + b2 iP“2 
H (p ) = n  --------------------------------------------- ( 1 .1 8 a )

a 0 i + a l i P _1  + a 2 iP " 2 

or alternatively can be partial fractioned as

d0i + dl i P -1 + d2 iP -2 
H (p) = ^  --------------------------------------------- ( 1 .1 8 b )

c 0 i + c l i P - 1  + c 2 iP “ 2

T he design of cascade and parallel biquads can be easily carried out using the 

active—RC, SC and digital biquads shown in F ig .1 .7 , with the transfer functions,

DLJ + ( HKA+DLI) s “ 1+CKAs" 2

( a )  H ( s ) --------------------------------------------------------------------------------------------( 1 .1 9 a )

DLB+( DLE+FKA) s ~1+ ( CKA) s " 2

D I+ (A C -D I-D J) z - 1 + (D J-A H )z -2

(b )  H ( z ) --------------------------------------------------------------------------------------------(1 .1 9 b )

D (F+B)+(A C+A E-D F-2D B )z- 1 + (D B -A E )z-2

b 0 i + b]_z“ l  + b 2z -2

( c )  H (z ) =   ( 1 .1 9 c )

1 + a ^ z - !  + a 2z -2

It is also convenient to separate the active— RC and SC realisations using only

E —capacitor dam ping (F =  0) or only F —capacitor dam ping (E = 0 ) .  These two

cases are referred  to as the E —type and F—type circuits, respectively [12]. In

particu lar, set H = I = 0  in F ig .1 .7a, to realise a pair of zeroes on the imaginary

axis for active—RC circuits, o r set 1= J  and H = 0 , to realise a pair of zeroes on 

the unit circle for SC circuits. In these cases the  transfer functions can be 

simplified to,

14



(a)
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(b)
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smplad in a-phasa 
and l-J

i
Fig. 1.8 E— type and F— type second order building blocks

(a) E— type active— RC circuit

(b) F— type active— RC circuit

(c) E— type switched— capacitor circuit

(d) F— type switched— capacitor circuit

(e) Switched capacitor circuit equivalence
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( a )
DJ+CAs-2

H ( s )  = -  -----------------------------  w i t h  L=K=1
DB+DEs- 1 +CAs“ 2

( 1 . 2 0 a )

DJ+GAs-2
(b )  H ( s ) = - w i t h  L=K=1 ( 1 . 2 0 b )

DB+FAs “ -L+CAs -2

D J+(A G -2D J) z - 1 + D Jz-2
( c )  H( z )  -  - ( 1 . 2 0 c )

DB+(AC+AE-2DB)z- 1 + (D B -A E )z-2

D J+(A G -2D J) z - 1 + D J z -2
(d )  H( z )  = - ( 1 . 20d)

D (F+B )+(A C -D F-2D B )z- 1 +DBz-2

In F ig .l .8 circuit realisations are given for these special cases. Notice that 

when 1= J ,  the parallel com bination of two switched capacitors is equivalent to a 

single unswitched capacitor, F ig .l .18e and this p roperty  has been used in

F ig . l .8 c,d . It should also be noticed that the biquads in F ig . l .8 are special 

exam ples of the ladder structures developed in this thesis when o rd er=  2  .

Cascade biquads structures are very regular and their design procedure can 

be easily autom ated. However they are also notorious for the ir poor sensitivity 

and noise behaviour.

T he first and second order SC sections listed in F ig .1.6 and 1.7 are all 

insensitive to grounded stray capacitance [12,32]. This stray—insensitive property is 

vital for high precision circuit perform ance in the presence of significant bottom  

and top plate stray capacitance effects in curren t MOS technology. For practical 

considerations, only these stray— insensitive SC building blocks will be used in this 

thesis.

1.3.3) Ladder simulations for active—RC and SC network design

In 1966 O rchard  presented his well— known observation tha t a properly 

designed term inated  LC ladder would dem onstrate very low sensitivity in the

passband, with respect to the drift of com ponent values [15]. Since then , various 

approaches have been proposed to sim ulate LC ladders by active and digital

circuits [17—21,51—67,76—81] to benefit from  this im portant property.
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In an operational sim ulation approach, a set of equations is established which 

is sufficient to describe the LC ladder prototype. Each equation is then  simulated 

by a simple active or digital network. In a leapfrog design these equations simply 

represen t the voltage— curren t relationship of individual elem ents in the prototype 

[19,20,51], so they are linear with respect to frequency s=  joo. O nly first order 

sections are required to form  the network. In a coupled biquad design the 

equations are set up for the voltage— voltage relationship betw een nodes and are 

generally quadratic with respect to s [21,53]. Biquad sections are required in 

sim ulation and hence the nam e.

E xam ple  1.2:

T ake a 6 th  o rder active— RC ladder design as a exam ple. Use the circuit 

shown in F ig .1.2 as prototype. In a leapfrog design the following network 

equations are obtained,

c l l v l  = ( - l / s ) ( i i - J i n + g i n v 1 ) -  C2 v 2 c n  -  + C2

L1 i 1 -  ( l / s ) ( v 1 - v 2 )

- c 2 2 v 2 = ( - 1 / s ) ( i i + i 2 ) -  C2v i  -  C4 V3 c 22  = C2 + C3 + C4

L4 i 2 = ( l / s ) ( - v 2 + v 3 )

c 33v 3 "  ( - 1 / s ) ( i 2 + 8 L v 3> ~ C4V2 c 33 "  c 4 + c 5

L5 i 3 = ( l / s ) v 3

( 1 . 2 1 )

These equations are  represen ted  by the SFG shown in Fig. 1.9a. To convert 

the SFG into active— RC circuit, one can use F ig .l .6 and replace the branches in 

the SFG by the corresponding active—RC branches. T he resulting circuit is shown 

in Fig.1.9b.

In a coupled biquad m ethod the prototype, Fig. 1.2, is described by a set of 

second order equtions,

- ( s 2 c 1 2 + \ 1 2 ) V 2  -  ( - s J i n ) c 1 2 =C2 X1 1 - X 1 2 - l / L 2

V1 --------------------------------------------------------

s 2 c n  + s g n  + \ n  Cl l “ c l + c 2 S l l - S i n

- ( s 2 c 2 1 + X 2 1 ) v 1 - ( s 2 c 2 3 + X 2 3 ) v 3  c 2 1 - C 2 X2 1 - l / L 2 c 2 3 - C 4  X2 3 - l / L 4

- v 2 ---------------------------------------------------------

s 2 c 22  + ^22 C22” c 2+ c 3+ c 4 ^ 2 2 - l / ^ 2 + l / L4
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- ( s 2 c 3 2 + ^ 3 2 ) v 2

v 3 = -------------------------------------------

s 2 c 3 3 + s Snn + x 33

C32= c 4 x32=1/ l 4

C3 3 = (c 4+ c 5) Snn=SL X33=1/ L4+1/ L5

( 1 . 2 2 )

These equations are again represented by the SFG shown in Fig. 1.10a (note 

a jj=  aji and Xjj= Xjj) and can be replaced by connection of second order 

active—RC E —type biquads in F ig .1.7, resulting in the circuit in Fig. 1.10b.

In the leapfrog m ethod there  is a clear link between individual elem ents in 

the prototype and the building blocks in the simulated circuit. If the prototypes 

have an excessive num ber of com ponents, such as in the bandpass case, an 

excessive num ber of integrators will be required. T here  are various ways to 

elim inate the redundant opam ps [3] but they become tedious even for m oderate 

design orders. In SC design very high capacitance spreads are often observed for 

bandpass leapfrog design. So norm ally leapfrog is only considered for the lowpass 

design case.

C oupled biquad filters always require an even num ber of opam ps (not 

including inverters), which doubles the num ber of nodes. It is only efficient for

even order filters whose node num ber is just half of the order e.g. a bandpass

filter frequency— transform ed from  an odd order lowpass one.

SC sim ulations of passive ladders follow the same principle although some

m anipulation is required in adopting LDI type integrators [51,53].

In general leapfrog and coupled biquad active— RC and SC circuits will 

possess capacitor coupled opam p loops, as shown by the loop C2— 07— c^q— eg in 

Fig .1 .9b and C4— C 7— C | 2 — c 8 Fig.1.10b. These loops are detrim ental to the

perform ance of active— RC and SC circuits, since high frequency noise can 

oscillate around such loops, when non— ideal factors, such as on— switch

resistances and finite GB product of the opam ps, are included [35]. Exam ining 

the SFGs and the circuits carefully, it can be seen that such loops will exist if 

there  are loops in the SFG with constant transm ission (w ithout frequency 

dependent factor s o r z). In the z— dom ain, such loops are called 

delay—f r e e —loops, and they cannot be realised by digital circuits. This explains 

why leapfrog and coupled— biquad m ethods are difficult to apply to digital filter
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(a)

Gt = 1  C2 =cn  G 3 =1  C4 = L 2 G 5 = 1  G 6 = 1  Ct= C 2 Cg=c2
Gg =  1 C io = C 2 2  G i i=  1 C j 2 = l - 4  G j 3 = 1  G |4 = l  C l5=  C4  C j 5 = C 4

G17=  1 C1 8 = C 3 3  G19= l  C2 o= L5  G 21= g in G22=  gL G 23= l

(b)

Fig. 1.9 Leapfrog type ladder simulation

(a) Signal— flow— graph

(b) Active—RC circuit realisation
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(a)

■CD-

G ]=  Xj  i  Cj  = 1 G 3  =  1 C 4  =  C u  G 5  =  X1 2  c 6  =  x12 C 7  = C 21 c  8  = C 12 

G9= X2 2  C iq= 1  G n =  1 C j 2 = C 2 2  G l3=  x23 g i4=  x23 G iJ = c 32 

g 17=  x33 g 18= 1 Gi 9 = l  c 20= c 33 G21 = 8 1 1  G22= 8nn G23=  1

(b)

Fig. 1.10 Coupled—Biquads type ladder simulation

(a) Signal—flow—graph

(b) Active— RC circuit realisation
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Cl = 3.4 50 F 

C3 = 5.601 F 

Cc = 5.328 F

C2 = 0.1717 F l_2 = 4.137 H

c4 = 0.8016 F L,= 3.828 H

C5 = 0.5772 F Ls = 3.659 H

(a)

C7

9,

3.082 F

1S

IS

o / p

m, =-0.7748 m5 = - 0.7532 mg = 0.1203
m2 =- 0 4140 m6 = 0.1511 m10 = - 0.6899

m3 = 0.08522 m7 = - 0.8550 m„ = - 0.5851
m4 = -0.9366 m8 = - 0.6774

(b)

Fig. 1.11 Wave digital filter

(a) A 7th order ladder prototype

(b) A wave digital circuit simulation
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design. W ave digital filters have been proposed to solve the unrealisability 

problem  in ladder sim ulations [77].

1.3.4) Wave digital filter

T he effects of coefficient quantisation in digital filters are analogous to the 

sensitivity problem  of analogue filters. The wave digital f i l t e r  m ethod was 

originally proposed by Fettweis as the low sensitivity alternative to direct 

approaches, later it attracted  m uch attention due to its good noise properties [77].

A wave digital filter is also a ladder sim ulation. H ow ever, it simulates the 

relationships between so— called wave variables , instead of voltages and currents. 

A  passive ladder is regarded as a com bination of a num ber of 2— port circuit 

elem ents and 3— port series and parallel wire in terconnection called adaptors 

[73,77]. An exam ple of the simulation of the 7th order circuit in F ig .l la  is 

shown in F ig .1.1 lb .

1.4 COMPUTER AIDED FILTER DESIGN

T he large num ber of circuit options exaggerates the problem  of design time 

and effort. A lthough design tables are available for som e standard filters [2], they 

cannot cover all possible requirem ents. T he perform ance of d ifferent structures 

under non— ideal conditions largely depends on the desired specifications, and is 

therefore a com plex function of a large num ber of param eters such as Q factor, 

response class, o rder, filter structure and so on. C onsequently, an exact prediction 

of the perform ance am ongst d ifferent realisations is difficult, if not impossible. A 

full com parision of d ifferent approaches is preferable before deciding on a 

particular one. It seem s tha t this can only be approached  with the help of 

m odern CAD (com puter aided design) techniques. A great am ount of effort has 

been expended [102—113] but, essentially, all the design software published so far 

rem ains at the developm ent stage. The reason may lie in the m athem atical and 

program m ing difficulties involved, as well as the fact tha t the fabrication 

technology has changed so rapidly since the 1970s.

1.5 GENERAL AIM AND OUTLINE OF THE THESIS

1.5.1) Motivation

22



D espite their obvious advantages regarding size, weight, cost and flexibility,

active and digital circuits still suffer from  some drawbacks, such as

1) Active com ponents, such as transistors and opam ps, have a finite

gain— bandw idth (GB) product which imposes a lim itation on their useful range of 

operation  [33—35].

2) Active filters are likely to be affected by inaccuracies during m anufacture or 

com ponent drift due to environm ental changes. For the digital case, an equivalent 

effect is caused by truncation  of m ultiplier coefficients in finite wordlength storage 

[3,12,73].

3) In active filters a significant noise level issues from  the active devices. Digital 

filters introduce noise due to signal quantisations [3,12,73].

T he influence of the above problem s depends, to a large extent, on the 

netw ork topology adopted. A  carefully designed structure will greatly improve the 

perform ance of the resulting filters.

1.5.2) Purpose of the research

It has long been known that highly stable, low sensitivity and low noise

properties may be obtained by em ploying m ulti— feedback circuits. However, as 

the degree of circuit coupling increases, the curren t design m ethods, rooted in

their view of local circuit connections, becom e intractable.

E ffort has been devoted to regularise the design process by viewing a filter 

in term s of system theory. M arshall first introduced UL m atrix decom position into 

wave digital ladder sim ulations based on state space variables [81]. Snelgrove, 

R oberts  and Sedra have also investigated state— space m odels in active ladder 

design [114][118]. T hey indicated tha t a p roper choice of interm ediate state 

variables can im prove system perform ance. However, it is difficult to use the 

standard state space m odel to provide a clear insight into the relationship between 

the structure and perform ance of the filter system.

T he research presented  in this thesis will deal with the above— m entioned 

difficulty. D eparting  from  the state space concept, a system description adopting 

high o rder m atrix polynomials is studied as a fundam ental m athem atical 

fram ew ork. Ladder based structures are the most natural representation of such
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systems. Very sim ple, attainable criteria have thus been form alised for deriving 

stable filter structures with low sensitivity and low noise.

Some very regular procedures are established to linearise the system 

description into a set of m atrix equations which are realisable by basic circuit 

building blocks. By arranging the filter system in a form  am enable to some well 

studied m ethods of linear algebra, present clumsy equation— by— equation 

procedures for ladder simulation can be replaced by single m atrix processing steps. 

A unification of the existing m ethods is revealed, together with a family of novel 

structures. Various techniques will also be proposed for individual applications 

where standard  m ethods m eet difficulties, such as for bandstop, highpass or allpass 

functions or result in inefficient realisations, such as for all— pole filters.

1.5.3) Organisation of the thesis

A review of the circuit analysis and design is included in the present 

chap ter, together with some com m ents on the lim itations of state— of— the— art 

filter design.

In C hap ter 2 a theoretical investigation is presented for a family of m atrix 

polynom ial systems. D efinitions and criteria are form ulated for canonical ladder 

prototypes. It is shown that im portant properties like boundedness and 

pseudopassivity, which are essential to achieve low sensitivity and low noise 

systems, are closely related to the m atrix sym m etry. Sensitivity form ulae are 

derived for both symmetric or asym m etric deviations of m atrix entries.

T he realisation of the m atrix polynom ial system by active— RC circuits is 

considered in C hapter 3. It is shown that the existing ladder sim ulation m ethods 

can be unified into a general family of circuits derived by adopting different 

m atrix decom positions. Novel circuit structures are obtained by em ploying the LU 

decom position draw n from  num erical m ethods. Some of these structures, so— called 

left— LU D , UL— LU and LU— UL structures have a notable advantage of being 

free from  capacitance— coupled— opam p loops. Due to the flexibility introduced by 

m atrix m ethods, there  is a wide choice of structures available to realise a given 

prototype. W hile a num ber of special techniques are discussed for individual 

design cases, a unified approach is also proposed to realise general transfer 

function by very regular circuit structures.

T he m atrix decom position m ethods are extended to SC and digital filter
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design in C hapter 4. T he bilinear transform ation is used to convert the prototype 

from  the s —dom ain to the z —dom ain. For efficient sim ulation, a rearrangem ent is 

introduced to modify the system into a form  realisable by LDI integrators [79]. 

These so— called bilinear— LDI structures were first discovered by Lee and Chang 

[51] for SC design by adopting negative elem ents in the prototype. In this thesis 

this principle is form alised in term s of m atrix principles. T he novel LUD 

approach to SC and digital filter design is discussed in detail. It is shown that 

negative elem ents can be placed in the prototypes to cancel the unecessary 

com ponents in their simulations and to im prove the parallelism  for digital 

realisation, which is further enhanced by a new scaling technique. Some detailed 

com parisons of the new circuit structures with existing ones are given, 

dem onstrating th a t some significant advantages such as low sensitivity and low 

capacitance spread, can be gained by em ploying the new design m ethods.

C hapter 5 concerns the design of non— lowpass filters by using frequency 

transform ations. It is shown that circuits with d ifferent filtering types can be 

derived from  a lowpass netw ork by simply replacing the LDI integrators with 

some special operators. Towards the same objective, a novel second order building 

block is presented for strays— insensitive bandstop switched— capacitor (SC) ladder 

design. A two channel schem e obviates the need for term  cancellation in realising 

bandstop type operators and is less dem anding on opam p settling tim e. It is 

shown highpass SC filters can be obtained simply by adding a m odulation stage to 

a corresponding lowpass filter.

C hapter 6  deals with all— pass filter design for active RLC, active RC, SC 

and digital realisations. T he m atrix decom position approach  is readily applied to 

the ladder sim ulation p art, in this case, a singly— term inated ladder is shown to 

have advantages. T he resulting circuits have the attractive properties of parallel 

sturctures and very low am plitude sensitivity to com ponent changes. Analogue 

im plem entations are canonical in opam p num ber and digital ones are canonical in 

m ultiplier num ber. D etailed exam ples are given for SC designs and these are 

critically assessed for capacitance spread and sensitivities.

M atrix m ethods are  highly suitable for com puter softw are developm ent. They 

offer a concise form  of circuit description which eases data storage and can then 

be m anipulated systematically by well developed algorithm s for filter derivation. A 

com puter software package for advanced filter design, PA N D D A  is developed by 

the au thor in co— operation  with R. K. H enderson. Its m any distinguished features 

are outlined in C hap ter 7 where some practical design exam ples are also given.
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M easured response of SC fabrications by LUD and mixed LU D — biquad methods 

are illustrated.

Finally the main results obtained in this thesis will be sum m arised in C hapter 

8 . Some suggestions for fu rther research in integrated filter design will also be 

given.

1 .6  STA TM EN T O F  ORIG IN A LITY

T he following most significant results of the research work presented in this 

thesis are , to the best of au tho r's  knowledge, original and, as indicated below, 

some of the results have been or will be published.

C hap ter 2 -----  T he theoretical investigation of symmetric m atrix systems, proof

of boundedness and pseudopassivity, are the subjects of the papers,

L i  P ing and J . I .  Sewell," O n low sensitiv ity! noise digital f i l t e r  design", Proc. 

IE E E  1989 International C onference on Accoustics, Speech and Signal 

Processing, p p .1063—1066, Glasgow, U K , M ay 1989.

L i  P ing and J . I .  Sewell, "H igh  per form ance circuit structures and symmetric  

m atr ix  systems", Proc. IE E ,  vol.136, P ar t—G, no.6, pp .327—336, Dec. 1989.

C h ap ter 3, 4 -----  T he LUD structure was first proposed for switched capacitor

filter design in,

L i  Ping and J . I .  Sewell, "The LU D  approach to switched capacitor network  

design”, IE E E  Trans Circuits Sys t . ,  vo l .C A S—34, no .12, p p .1611—1614, December  

1987.

which is followed by further studies revealing a whole family of circuit derived 

from  m atrix principles, as discussed in

L i P ing, R .K .  Henderson and J . I .  Sewell, "M atrix  methods f o r  

sw itched—capacitor f i l t e r  design", Proc. IE E E  IS C A S ,  p p .1021—1024, Espoo  

Finland, June  1988.

R .K .  Henderson, L i  P ing and J . I .  Sewell, "A  u n i f i e d  approach to the design o f  

canonical integrated ladder f i l te r s" ,  to be published in Proc. IE E E  IS C A S ,  New
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Orleans U S A , M ay 1990.

The m atrix m ethods have been extended into active— RC and digital circuits in

L i Ping and J .I .Sew ell ,  ”Filter realisation by passive circuit s imulations,” Proc. 

IE E ,  vol.135, P ar t—G, no.4, p p .167—176, August 1988.

C hapter 5   T he frequency transform ation techniques for discrete dom ain filter

design is covered in

L i Ping and J . I .  Sewell, ”Digital Filter Realisation by Passive Circuit 

Sim ula tion”, IE E  Saraga Colloqium on Electronic' Filters, Colloquium Digest,

p p .8 / 1—8 /  8, M ay 1988.

A  continuation of this research discovered the TW IN TO R  circuits for bandstop SC 

design, as described in

L i Ping, J . I .  Sewell, ”The T W IN T O R  in bandstop sw itched—capacitor ladder 

f i l t e r  realisation”, IE E E  Trans. Circuits Sys t . ,  vo l .C A S —36, no.7, p p .1041 —1044, 

July  1987.

C hap ter 6  -----  All— pass ladder structures are the subject of a recently com pleted

paper,

L i Ping and J . I .  Sewell, ”Switched capacitor and active—RC allpass ladder 

f i l t e r s ”, to be published in  Proc. IE E E  IS C A S ,  New Orleans U S A , M ay 1990.

C hapter 7   The au tho r's  contribution to PANDDA software package is mainly

in the circuit realisation and analysis parts. T he developm ent of PANDDA has 

been progressively reported  in the following papers,

R . K .  Henderson, L i  P ing  and J .1 .Sewell, ”P A N D D A  : A  program f o r  advanced 

network design : digital and analogue”, Digest o f  IE E  Saraga Colloquium on 

Electronic Filters, p p . 4 / 1—4/ 8, London 1988.

R . K . Henderson, L i  P ing and J .I .Sew ell ,  ”A  program f o r  digital and analogue 

f i l t e r  design: P A N D D A ”, Proc. European C onference  on Circuit Theory and  

Design , p p .289—293, Brighton, U .K . ,  September 1989.
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2.1 IN TR O D U C TIO N

B ackground

T here  are a num ber of attractive features about filter structures derived from  

passive RLC network simulations: they show very low sensitivity in the passband 

which is an im portant factor for active— RC and switched— capacitor (SC) filter 

fabrications [19—21,51—64]; they can be m ade limit cycle free for digital filter 

im plem entation , as shown for wave structures [76—83]; and they usually have 

b etter dynam ic range com pared with cascade biquads or o ther d irect— form  

structures, which can be observed from  m any practical designs. Limit cycle 

supression and better dynamic range can im prove the noise behaviour of the 

circuits.

Theories have been proposed to analyse and generalise the properties of 

passive ladders and their simulations [3,12,15]. A unified investigation has been 

proposed in [86,87] for digital circuits. It was shown that general low sensitivity 

filters can be constructed by properly connecting LBR (lossless— bounded— real) 

sections, which include adaptors for wave digital circuits as specific exam ples. In 

general, this approach is mainly concerned with the topological point of view.

T he work of this chapter investigates the theoretical aspects of high quality 

netw ork design based on m atrix principles. A difference betw een the topological 

[19—21,51—64,76—87] and m atrix approaches is tha t the form er analyses the 

behaviour of local building—blocks while the la tter exam ines the overall system. 

T he two approaches com plem ent each o ther to provide insight into the filter 

design problem .

Conventions

A ttention is given to the properties of the system descriptions of circuits of 

the following form ,

where all the m atrices sym m etric. This will be called a sym m etric  matrix  

polynomial system  (S M P S ). O utput functions may be added in the form

Y V -  J

Y - s C + s - i f + G

( 2 . 1 a)

( 2 . 1 b)
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y = D V + E J ( 2 . 1c )

but only system (2.1 a,b) will be considered since sensitivity and noise problems 

arise mainly from  the feedback loops in (2.1 a.b).

T he m ost natural in terpretation  of system (2.1) is in the form ulation of the

network equations (nodal, loop, or hybrid) of passive RLC ladders [95,96], In this

case C, T and G  represen t the contributions of capacitors, inductors (inversed 

values) and conductors respectively and it can easily be shown that they are all

non— negative definite, provided that nodal o r loop form ulations are used for the

network with only positive— valued elem ents. T he reverse procedure, from  an 

equation with sym m etric non— negative m atrices to a netw ork, is not always 

possible unless negative elem ent values are allowed. Negative elem ents offer some 

advantages, such as to provide m ore regular structures which can be fabricated 

with g reater ease [67]. Questions arise about the stability, sensitivity and noise 

problem s associated with the introduction of negative elem ents. These will be 

answered by the theorem s developed in this chapter.

In particular, the nodal description of a passive ladder is a tridiagonal SMPS 

and henceforth  we will simply call a tridiagonal SMPS a ladder, as ladders are 

m ore fam iliar to m ost circuit designers and also as m ost SMPSs used in this 

thesis are derived from  passive ladder prototypes.

Relationship between SMPS& and other systems concepts

System (2.1) is also a generalised form  of the standard state—space equation. 

Indeed, (2.1) reduces to  a standard state—space system when P = 0 .

( sC + G ) V = J  ( 2 . 2 )

Alternatively (2.1) can always be rearranged into the form  of (2.2) by introducing 

some interm ediate variables. However, the advantage of using the system 

description of (2 .1 ) is tha t optim al perform ance can be achieved by imposing 

some simple conditions (notably symmetry) on the m atrices. Conversely, if the 

m atrices in (2 .2 ) are constrained to be sym m etric then  the system can only have 

real poles, which is too restrictive for m ost applications.

System (2.1) can be fu rther used to produce prototypes for various 

sim ulations discussed in detail in succeeding chapters.
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A spects covered in  th is chap ter

In the first part of this chapter, some elem entary criteria  for checking the 

stability of SMPSs will first be established.

T hen  the efficiency with which the SMPSs can be realised will be 

considered. A canonical system is defined to be one which realises a given order 

of transfer function with the smallest possible m atrices. It is shown that the parity 

of the num erator of the transfer function will decide w hether it has a canonical 

realisation. This knowledge is useful in succeeding chapters for obtaining integrated 

ladders with m inim um  im plem entation cost.

T he m ore sophisticated concepts considered by m any authors, boundedness 

and pseudopassivity, are crucial in predicting the sensitivity and limit cycle 

behaviour of filter systems. They are now proved to be closely related to the 

m atrix sym m etry and to be basic properties of SMPSs.

In active— RC or SC im plem entations of SMPSs, the com ponent deviations 

may destroy the sym m etry of the system description. F rom  practical observations 

the sensitivities of active— RC and SC ladder sim ulations are nevertheless very 

good, this is a ttributed  to their m ulti— feedback natu re . Sensitivity form ulae are 

presented  for asym m etric deviations, clearly indicating th a t be tter perform ance can 

be assured by m ore com plete symmetry.

2.2 STABILITY CRITERIA

Besides synthesis m ethods, an  optim isation procedure could also be used to 

adjust the entries of the m atrices of (2 .1 ) to make the transfer function fit the 

prescribed specifications. In this case conditions are required for testing the 

stability of the resulting system.

2.2.1) Critical Stability

R e m a rk  2 .1: S ys tem  (2 .1) is cr i t ica l ly  stab le  i f  C ,  T an d  G  are all sym m etr ic  

non—negative.

P r o o f :  Let { s^ =  +  jo ^  } be the set of roots of detY(s) of (2 .1),
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d e t  ( c  + s^G + T ) = 0 ( 2 . 3 )

So there is a non—zero vector X which satisfies [101] the equation

X* ( s k 2 C + s k G + T ) X -  0 ( 2 . 4 )

(X* denotes the transposed conjugate of X )

or

a s k^ + k s k + c — 0 ( 2 . 5 )

w i t h a  = X*CX b = X*GX c = X*fX ( 2 . 6 )

As C, G , and T are all definite non— negative, a, b, and c are  all non— negative 

num bers [101]. But in this case (2.5) has no roots with

T hat is, system (2.1) has no poles in the right half plane if C, T and G are all 

symmetric non— negative.

2.2.2) Absolute Stability

T he absolute stability condition for system (2.1) is th a t ^ < 0  for all k. 

Therefore some extra constraints should be added to ensure tha t no roots lie on 

the im aginary axis. This can be checked by evaluating d e t|Y (jco ) |. In most cases 

system (2.1) is designed to realise a transfer function H(s) which has no poles on 

the imaginary axis. If the system is properly designed w ithout redundancy, so that 

the order of the system is equal to the order of H (s), or in o ther words if it is 

observable from  the ou tput, then  it will have no poles on the im aginary axis, as 

in this case H(s) and the system have the same set of poles.

The non— negative property  of the sym m etric m atrices C , T and G can be 

easily tested. F or instance, decom pose C into sym m etric LU form  [97—100],

where D c is a diagonal m atrix. C is non— negative if and only if all the entries

Re(sk) = o'k > 0 ( 2 . 7 )

C -  L0 D0L Tc ^ c ^ c ( 2 . 8 )
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of D c are non— negative. T he com putational requirem ent for this test is nearly 

equal to perform ing Gaussian elim ination.

2.3 CA N O N ICA L SYSTEMS

The system order of (2.1) is defined as the num ber of the roots of 

d e t |Y ( s ) |.  This should be clearly distinguished from  the order of the m atrices 

making up the system, although these two param eters are closely related to each 

o ther, since higher o rder systems obviously entail higher o rder m atrix descriptions. 

As will be seen, the order, or m ore simply, the size of the m atrices decides the 

size of the realisations by physical networks. For the sake of efficiency, it is 

usually desirable to design a given order system by m atrices with o rder as small 

as possible and those systems with minim um  size will be said to be canonical. 

The constraints for a transfer function to have a canonical realisation is explored 

in this section.

2 .3 .1) System  order

T he system polynom ial of (2.1) is defined by

A ( s )  =* | Y ( s )  | -  | sC + s ~ 1r  + C | ( 2 . 9 )

Using the Laplace expansion [100,101] repeatedly it can be shown

R em a rk  2.2: The determinant o f  A(s) can be expanded as (let n be the s ize  o f

the c o e f f ic ie n t  matrices)

A ( s )  = \ C \ s n + a n . 1 s n ~1+ a - ( n - 1 ) S ~ ( n - 1 ) + i n s ' "  ( 2 . 1 0 )

The system order is defined by the difference between the highest and lowest

index of the power of s in A(s). Again by using the Laplace expansion

repeatedly, it can be shown that the highest coefficient of s will be accom panied 

by the highest non— zero cofactor of C , which is determ ined by the rank of C. 

T herefore  the upper bound of the power of s is the rank of C. Similarly, it can 

be proved tha t the upper bound of the power of s— * is the rank of T. The 

upper bound of the num ber of roots of det | Y | is then  given by

rank(C )+  ran k (f) .
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R em a rk  2.3: An  upper bound o f  the order o f  the sys tem , m , is given by

m $ r c  + r p  ^ 2 n ( 2 . 1 1 )

where rq  and  rp  are the ranks o f  C and V respectively.

2 .3 .2 )  Condition for canonical ladder systems

From  (2.11) the upper bound for a SMPS is 2n. However, if a SMPS is 

specially designed to realise an odd order function, then  the upper bound will 

becom e 2n—1. Thus we have,

D e f in i t io n  2.1: A  S M P S  with s ize  n is said to be canonical i f  it realises an

2n lh or 2 n —l t 1̂ order trans fer  fun c t io n .

D e f in i t io n  2 .2:  A  doubly—terminated  tri— diagonal S M P S ,  or s im ply  a ladder,

meets the fo llow ing  conditions

1) C, T and G are all t r i—diagonal matrices. So Y  is also t r i—diagonal.

2) J  has only one non—zero element, i.e. J  = ( J \ ,  0 ,. . .0 ) .

3) G  has only two non—zero elements g u  = g in and g nn = g ^ ,  so that in  

general

y ( i + i , i )  -  s c ( i + i , i ) - s ~1 y ( i + i , i )  ( 2 . 1 2 )
4) The output is the nodal voltage vn .

T here  are some constraints for a transfer function to be realisable by a 

canonical doubly— term inated  SMPS.

Theorem  2.1

i) The numerator o f  the trans fer  fu n c t io n  vn / / j  o f  a canonical even order 

doubly—terminated ladder is an odd polynomial.

it) The numerator o f  the trans fer  fu n c t io n  vn / J \  o f  an odd order  

doubly—terminated ladder is an odd polynomial i f  \C \  is non—singular or an 

even polynomial i f  |T |  is non— singular.

Proof:

From  Definition 2.2 a doubly— term inated  ladder has the following expanded

form
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y2i  y22 y23

y32 y33 y34

y43 y44 y45

v i

v 2

v 3

v 4

v n - l

v n

J l

0

0

0

( 2 . 1 3 )

From  these properties and C ram er's rule it can be found for the output vn [101] 

v n 1 Al n
( 2 . 1 4 )

A( s )

where A(s) is the determ inant of Y and A^n stands for the determ inant of the 

subm atrix of Y by deleting its first row and nth colum n, which can be seen as 

the lower—left n—1—th block of Y in (2.13). It can be shown that

n - 1

n [ s c i + 1 ) i  -  s ~ l y i+1<i 

i = l

( 2 . 1 5 a )

A( s )

where T =  (Yi,j} and C =  {c i,j}- vn ^ l  ^  expressed in the form  of a

rational function

N( s )

D( s )

( 2 . 1 5 b )

D(s) and N(s) are denom inator and num erators respectively and they are pure
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polynomials which means they contain only non— negative powers of s. Consider 

first the case of an even canonical realisation. From  R em ark 2.2, T must be 

nonsingular to be canonical and so

D ( s )  = s n A ( s )  ( 2 . 1 6 a )

n - 1

N (s). = s n n [ s c i + 1 ;  j 

i = l

H ere cj+  j  j and y1+ \  j (for all i) cannot both be zero otherwise the transfer 

function is zero. Suppose \  ^ are nonzero for all i then  it is seen that N(s) is 

a 2n—1 ^  polynom ial with only odd term s. If any cj+  j  j is zero then N(s) will 

reduce to a 2 n— 3 ^  polynomial (since in this case 7 j+  \ i must be non— zero) 

and N(s) will stay odd. It is easy to deduce that N(s) will rem ain odd for cases 

of m ore zero {cj-+- j j} . T he same reasoning can be applied to the cases that some

{Yi,H-1) are zero -

Now consider the case of odd order design, where either C o r T must be 

singular to make A(s), (2 .9), odd. If T is nonsingular exactly the same reasoning 

as for even case can used to show that N(s) must be odd. If C is nonsingular 

then

D ( s )  = s n_1  A ( s )  ( 2 . 1 7 a )

n - 1

N ( s )  = s n _ 1 n  [ s c i + 1 ) i  -  s - l 7 i + 1 > i ] ( 2 . 1 7 b )

i = l

and it is easily shown that N(s) must be even polynomial.

T heorem  2.1 establishes some necessary conditions for a transfer function to 

have a canonical realisation. In the au tho rs ' experience the conditions are also 

sufficient for realisability provided tha t the transfer function is stable.

It is seen from  T heorem  2.1 tha t the constraint on the parity of the 

num erator is related to the singularity of the m atrices C and T. The singularities, 

how ever, cannot be arbitrarily  chosen according to the following theorem .

-  s  1 7 i + l , i ( 2 . 1 6 b )
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Theorem  2 .2 : A  doubly terminated ladder has a non—zero response at to=oo only 

i f  C is singular and has a non—zero response at os= 0 only i f  T is singular.

P r o o f : Let s=  joj. From  (2.10) it can be seen that when go -» °°

A ( s )  -» | C | s n + a a - l s n ~^ ( 2 . 1 8 )

and from  (2.15) the num erator is at most to the power of sn— *. Therefore if 

|C |  is not zero then (2.15) must be zero. Similar reasoning can be used at co-»0.

It is m andatory that lowpass transfer functions have non— zero values at c^= 0 

and for highpass and bandstop at op= «. This indicates that the singularity of the 

m atrices is p re— determ ined by the filtering types and therefore the parity of the 

num erators of odd order cases is also constrained.

Since the singularities of C and T m ean that their rank can at most be 

n— 1 , according to (2 .11 ) a list of the upper bounds for various filtering types by 

a ladder with size n is obtained in Table 2.1

CLASSES CONSTRAINT UPPER BOUND OF SYSTEM ORDER

lo w p a ss H ( 0 ) * 0  T s i n g u l a r 2 n - l

b a n d p a s s 2 n

h i  g h p a s s H(oo)*0 C s i n g u l a r 2 n - l

b a n d s t o p H ( 0 ) * 0  H(co)*0 
b o t h  C a n d  T s i n g u l a r 2 n - 2

T a b l e  2 . 1  U pper b o u n d s  f o r  v a r i o u s  f i l t e r i n g  t y p e s  

b y  a d o u b l y - t e r m i n a t e d  l a d d e r  w i t h  s i z e  n
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It is easily seen that canonical designs can be achieved only by bandpass, 

odd order lowpass and odd order highpass. For o ther cases, constraints given in 

Theorem  2.2 make it impossible for a canonical realisation. In the succeeding 

chapters it will be seen that a non— canonical ladder prototype will lead to an 

unnecessarily large size integrated circuit sim ulation, unless some complicated 

procedure is adopted. It will also be shown that the wrong parity of num erator 

can be easily corrected and a simple technique is introduced to elim inate the 

error caused by this m odification. This results in a unified procedure, with very 

regular structures, to realise a wide family of transfer functions.

2 .4  BOU N D ED N ESS

2.4 .1) T h e  concept

T he concept of boundedness can be traced back to an observation by 

O rchard  about the low sensitivity properties of doubly—term inated  ladders [15].

D e fin i t io n  2 .3 : Boundedness The trans fer  fu n c t io n ,  H (P ) ,  o f  a system is said  

to be bounded w ith  respect to the change o f  a set o f  parameters, P  — { p { }, 

i f  there is a positive number M  and

\H (P ) \  < M ( 2 . 1 9 )

is always sa t is f ied  when P varies w ith in  the allowed range.

W hen a bounded system is properly designed to m ake | H( P ) |  attain  M at a 

frequency point in the passband, j c ^ ,  then the deviation of P can only cause

| H( P) |  to decrease. This m eans that | H( P ) |  must have zero derivative with 

respect to any param eter p j at j u ^ ,  and consequently the sensitivity is also zero, 

i.e .,

P i a | H ( P )  |

S IHI --------------------------------------0 a t  s - j i ^  ( 2 . 2 0 )

Pi  i h ( P ) i a P i

and it may be reasonably expected that over the whole passband the sensitivity 

will rem ain small, a reassuring argum ent used by m any o ther authors for ladders 

as well as various sim ulation m ethods [3,12,73].
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M

(a)

(b)

F ig .2.1 Illustration  of boundedness and  lo v r-sen sitiv ity

(a) T ran sfer function  of a bounded system

(b) Sensitivity

2 .4 .2) B oundedness in  the  continuous dom ain

From  network topology it is known that the ou tput power of a doubly 

term inated  ladder is bounded by m axim um  input power, a reasonable fact since a 

passive ladder cannot create power within itself. This result can also applied to 

the system (2.1) in a m ore abstract sense. Let (2.1) be evaluated on the 

im aginary axis, s=  jo), and denote

Q -  coC -  o r 1 r ( 2 . 2 1 )

The system can be w ritten as,
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Y V = ( jQ + G ) V = J ( 2 . 2 2 )

Suppose m atrix G  in (2.22) can be separated according to input and output parts 

respectively

G = Gj n + Go u t ■ ( 2 - 2 3 )

T hen  (2.22) can be written as

j  Q V + Go u t V + Gi n V -  J ( 2 . 2 4 )

W e first prove a general relation.

Theorem  2 .3 : Assume that in  (2.1),

(i) G in X  = J  has at least one solution.

(i i ) all matrices are sym m etric  non—negative de f in i te .

Then the fo llow ing  inequality  holds,

1
V*Co u t V < -----  J * R i n J  ( 2 . 2 5 )

4

where R (n is the Moore—Penrose inverse o f  G in .

Proof: According to M oore—P enrose 's theories [115,116], Rjn is defined by

^ i n ^ i n ^ i n  “  ^ i n  ^ i n ^ i n ^ i n  ”  R i n

( G i n R i n ) ^  “  ^ i n ^ i n  ( R i n G i n ) ^  ”  ^ i n ^ i n
( 2 . 2 6 )

and Xg =  RjnJ  is a solution of G jnX =  J ,  if it has a solution at all, which 

m eans

G in  R in  J  “  J  ( 2 - 2 7 )

Now multiply (2.24) by V*,

j  V* Q V + V*Go u t V + V*Ci n V -  V*J ( 2 . 2 8 )
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Take the real part of (2.28)

v * Go u t v  = Re { V* J } -  V*Gin V ( 2 . 2 9 )

Notice from  (2.26) and (2.27)

[ J * R i n J -  ( J *  -  2V* Gi n ) R i n (J  -  2Gl n V ) ] / 4

-  I 2 J R in G in V  -  2V* Gi n R i n J -  4V* Gl n Ri n Gi n V ] / 4  

= R e {V * J } -  V*Gi n V

( 2 . 3 0 )

From ( 2 . 2 9 )  a n d  ( 2 . 3 0 )

V*Co u t V -  [ J * R i n J -  ( J *  -  2V* C j n ) R j n (J  -  2Gi n V ) ] / 4  ( 2 . 3 1 )

If Gjn is non— negative then  from  (2,26) Rjn is also non— negative which means 

tha t ( J*— 2Y*Gin )Rin (J— 2Gjn V) is a non—negative num ber. T heorem  2.3 follows 

from  (2.31)  im m ediately.

2 .4 .3 ) Boundedness for Terminated Reactance Network

Equation (2.25) is a general expression which can be applied to 

m ulti— input/ou tpu t systems. To provide some insight of its physical in terpretation , 

consider the special case of a single input/ou tput system. Suppose (2.1) has only

one input J  =  [ J j ,  0 ,. . .  0 ] and one output v n. G jn and G out have only one

non—zero diagonal entry , respectively, corresponding to the input and output, i.e .,

Gin  = d i a g (  g n  ( 0 , 0  , . . . 0 ) ( 2 . 3 2 a )

Co u t -  d i a g (  0 , 0 , . . . 0 , g nn ) ( 2 . 3 2 b )

T hen  Rjn can be generated by

R i n  ”  d i a g (  g l l - 1 , 0 , 0 , . . . 0 , ) ( 2 . 3 3 )

T herefo re  in this case (2.31) reduces to
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T herefore  in this case (2.31) reduces to

g n n | v n |2  _  [ 1 -  | 1  -  2 g 1 1 v 1/ J 1 |2  ] _ L _  | | 2  ( 2 . 3 4 )

4 S11
so

8 n n l v n l 2 ^ ( 2 . 3 5 )
4 * n

or
1

I v n | <---------------------------  \ J 1 \ ( 2 . 3 6 )
^ S l l S n n ) 1 / 2

A typical exam ple of the system constrained by the conditions of (2.32) is a 

doubly—term inated ladder, in which case (2 .1 ) are its nodal equations with input 

and output nodes labelled 1 and n respectively. T he physical in terpretation  of (32) 

can be seen by rewriting it as

S n n l v n l 2 = [ 1 " IPI 2 ] S i 1 _1 1J 1 1 2 / k  ( 2 . 3 7 )

with p defined by

p -  1 -  2g]_]_v]_/J]_ ( 2 . 3 8 )

C onsider a passive ladder with the source resistor being r j  j  =  g\ \  ~   ̂ and input 

im pedance of the 2— port ladder including the load is zm  =  yin— *.

2 8 l l
p = 1 -  2 g 1 1 v 1 / J 1 = 1  -----------------

y i n +S l l

y in - 8 1 1  r l l - z i n

y i n + S l l  r l l + z i n  ( 2 . 3 9 )

So p is just the reflection function and the upper bound of | v n | is attained at 

p=  0. This result is well known in network theory.

In the proof of boundeness, no conditions have been im posed on C and T 

except tha t they m ust be symmetric and non— negative. Accordingly, 

zero— sensitivity with respect to symmetric deviation can be achieved at the 

frequency points where the transfer function attains its upper bound.
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2.5 SENSITIVITY FO RM U LA E

The above result provides only an estim ate of sensitivity for symmetric

deviations. M ore general sensitivity form ulae are now derived. To simplify the 

problem , only single input/output system will be considered.

A  useful equation

An equation is now derived as the prelim inary to the m ain discussion.

Suppose a single input/ou tput system m eets the conditions of T heorem  2.3 and 

(2.32). Let system (2.1a) be excited by another arb itrary  input J '  instead of J  

and let the response be U . The system can be written as

Y V' = J '  ( 2 . 4 0 )

Left m ultiplying by V* gives

V* Y V ' = V* J ' ( 2 . 4 1 )

Note tha t when J  is a real vector, ( ~  indicates conjugate)

(V*Y)t  = Y V -  ( jQ  + G )V

-  - ( - j Q  + G)V + 2GV 

= 2GV -  J

“  ( 2 g 1 1 v 1 - J 1 , 0 . . .  0 ,  2gn n v n ) T

= ( p j l f  0 . . .  0 ,  2 g nnv n )T  ( 2 . 4 2 )

Substitute (2.42) into (2.41) and make some rearrangem ent to get

2gnnvn V  -  P J l  v i '  + V * J ’ = 0 ( 2 . 4 3 )

Again left multiplying (2.40) by and noticing tha t V ^Y  =  =  [J j ,0 ,. . .0 ]

we have

VT J '  =  VT Y V ' -  J T V' -  J X V l ' ( 2 . 4 4 )
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Finally substituting (2.44) into (2.43) leads to the following equation linking the 

output of the new system with the old system and the input,

v n -  (2 g n n v n ) - 1 (pVT -  V * ) J -  ( 2 . 4 5 )

Sensitivity F orm ulae

D ifferentiate (2.11) w .r.t. some network elem ent £ to get

Y dV /d£ + dY /d£ V = 0 ( 2 . 4 6 )

H ere the second term  can be viewed as the new input vector for (2.45) and we 

have

Theorem 2.4:

d Vn/d £  = ( 2 g nny n ) ' 1 ( -p V t + V* ) dY/ d£ V ( 2 . 4 7 a )

and

d | v n | / d £  -  R e[  v n d v „ /d £  ; / | v „ r  ( 2 g n n \ v n \ ) ~ l R e [ ( - p V l  + V * ) d Y / d l V ]

( 2 . 4 7 b )

In particular, if the deviation of £ only perturbs the im aginary part of Y, jX  say, 

and dY /d£= jdX /d£  is symmetric then

d | v n | / d £  = ( 2 g n n | v n | ) - l  R e [ - j p  VTdX/d£V + j |V * d X /d £  V | ]

=  ( 2 S n n | v n l ) " 1 Re [ vT ^X /d£ V ]

= - ( 2 g n n | v n | ) - l  Im[ p VT dX /d£ V ]

( 2 . 4 8 )

So d | v n | /d£ =  0 when p =  0. This again confirm s the conclusion for single 

input/ou tput system, tha t | vn | attains its upper bound and has zero—sensitivity at 

p = 0 , if the deviation is sym m etric.
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A pplication to Passive Networks

W hen system (2.1) is im plem ented by a real passive RLC netw ork, $ e { 

Rj Lj,Ci } and dY/d£ is always sym m etric. T hen a very simple alternative to the 

topological derivation of sensitivity follows. Let the contribution to Y of a 

branch adm ittance jqk between nodes a ,b  be jq kMab where

^ a b

So

0 ; ;

. . . 1  -1

. . - 1  1

0
a b

( 2 . 4 9 )

d Y /d q k = j  Mab ( 2 . 5 0 )

It is easily seen that

VT Mab  V -  v k 2 a n d  V* Ma b  V — 1v k | 2 ( 2 . 5 1 )

where vk is the voltage across jq k . T hen  (2.47) reduces to

d v n / dclk  = ( 2 S n n l v nl  ) _ 1 ( " J P v k 2 + IVRI 2 ) ( 2 . 5 2 a )

and

d | v n | / d q k = ( 2 g n n | v n | ) - 1  Im [ p v k 2 ] ( 2 . 5 2 b )

(2.52b) is zero at the frequency points where p=  0  o r equivalently | v n | attains 

maximum bound. This is just the well known zero— sensitivity property for 

doubly— term inated ladders.

A pplication to D igital and Active Networks

In the following chapters it will be shown that system (2.1) can be simulated 

by digital o r active networks. F or digital sim ulations, even in non— ideal cases, it 

is still possible to keep deviations in Y sym m etric by carefully selecting the 

coefficient quantisations, so the zero— sensitivity property  can be preserved. For 

active— RC and SC sim ulations, it is difficult to keep deviations of Y symmetric, 

since the elem ent value drift is a random  phenom enon. T he com ponent drift 

may cause the equivalent system description (2 .1 ) to becom e non—symmetric so
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that the output may exceed the bound given by (2.25) or (2.36). However in 

practical active— RC or SC im plem entations, low sensitivity is still observed, a 

property  due to the m ulti— feedback nature of the structures. (2.47) are valid for 

these general cases.

2.6 DISCRETE SYMMETRIC MATRIX POLYNOMIAL SYSTEMS

The results in last section can be readily extended to the discrete dom ain if 

a bilinear transform ation is applied to system (2 .1 )

Y V = J ( 2 . 5 3 a )

w i t h

Y = ^ C + ^ - 1 r + C  ( 2 . 5 3 b )

where

2 1 -  z - 1
¥   -----------------  ( 2 . 5 3 c )

T 1 + z ” 1

(2.53) can be rearranged as

(P  + z " 1 Q + z " 2 R) V -  (1 -  z " 2 ) J  ( 2 . 5 4 a )

with

p - ( ^ C  + I r  + C) q -  - 2  (1 c - |  r> R - ( 2 C + I r - C )
( 2 . 5 4 b )

which can be seen as a generalised form  of the standard state— space equation, 

by introducing a second o rder term .

Because bilinear transform ation will keep the stability property  and map the 

im aginary axis in the s dom ain to the unit circle in the z dom ain, it is easily 

shown that,

R em ark  2 .4:  System  (2 .53) has no poles outside the u n it circle  z = e / ° ^  i f  C ,  T

and G  are all sym m etric  non—negative d e f in i te  and has the same boundeness and
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sensitiv ity  properties as ind ica ted  by Theorems 2.3 and 2 .4 , except that (3.53) is 

evaluated on the un it circle z= e j° )T

2.7 PSEUDOPASSIVITY AND LIM IT CYCLE SUPRESSION

2.7 .1) T he  concept

T he generalised concept of pseudopassivity has been em ployed in discussion 

of wave digital filters [77], which is, in fact, based on the principle of the 

Lyapunov function. Consider a standard state— space system in the continuous

dom ain :

sX = AX + BJ ( 2 . 5 5 )

or in the discrete dom ain:

X = z " 1 AX + BJ ( 2 . 5 6 )

D e fin itio n  2.5: Pseudo passivity  A  state space system  (2.53) or (2.56) is said

to be pseudopassive i f

e ( t )  -  x T ( t ) x ( t )  ( 2 . 5 7 )

is a m onotonically decreasing fu n c tio n  fo r  any in itia l value x ( 0) = x q  w ith  J  =

0. (For a discrete system  x(t) is exam ined at a discrete instance, i .e ., t= n T ).

e(t) can be seen as an energy function and it is always decreasing for a 

pseudopassive system without excitation. The pseudopassive property  in a discrete 

system is im portant for the supression of parasitic oscillations. If the input J =  0, 

the state space variables x(nT ), and so all the variables, in a stable digital system 

(2.56) will approach zero regardless of the initial state in the ideal linear case. 

However when the necessary quantisations are adopted in a digital filter, x(nT) 

may oscillate and take non— zero values due to non— linear effects which may 

even cover the entire num erical range in the filter when overflow occurs. These 

parasitic oscillations, o r so called limit cycles, can be avoided if the discrete 

system is pseudopassive and m agnitude rounding for quantisation of x(nT) is 

adopted. In m agnitude rounding, a num ber a, is truncated  to a finite num ber of 

bits, Q[a] with |Q [a ] | < | a | .  Let Q[x] denote the vector of x after magnitude
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rounding and suppose in a pseudopassive system (2.56) these are the only

quantisation operations, then  according to (2.57)

QT [ x ( n T ) ] Q [ x ( n T ) ]  « x T ( n T ) x ( n T )

« QT [ x ( ( n - l ) T ) ] Q [ x ( ( n - l ) T ) ]  < xT ( ( n - l ) T ) x ( ( n - l ) T )  « . . .

( 2 . 5 8 )

Therefore if x(nT) 0 in the ideal case, then in the non— ideal case it will still

approach zero. This will com pletely supress limit cycles [77].

T he second norm  of a m atrix A  is given by [101]

x T A^A x

| 1A 1 | = max -----------------------------------------------  ( 2 . 5 9 )

x ^  0  xT x

The tim e dom ain equation of (2.56) gives (when J =  0 )

x ( n )  = A x ( n - l )  ( 2 . 6 0 )

Hence from  (2.58) and (2.59) a necessary and sufficient condition for

pseudopassivity is

I IA | | « 1  ( 2 . 6 1 )

in this case

x T ( n + k ) x ( n + k )  « . . . «  x ^ ( n ) x ( n )  -  x ^ ( n - l  ) ATA x ( n - l ) « xT ( n - l ) x ( n - l )

( 2 . 6 2 )

It has been proved on a topological basis tha t condition (2.61) is m et by wave, 

norm alised lattice and LBR structures [87], and the sam e concept has been used 

in the design of second order "m inim um  norm " building blocks [8 8 ]. In this

section it will be shown that higher o rder networks, based on a sym m etric matrix 

decom position app ioach , can also be designed to m eet this condition.

2 .7 .2) Psudopassivity fo r sym m etric m atrix  polynom ial systems

Consider the problem  of constructing a peudopassive state— space system from

(2 .5 3 ), this can be w ritten in an equivalent form
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2 T 2 - 2 Z " 1  T 2 z - 1

C _ c  + -r + G ) v + (  c +  r ) v = j
T 2 T 1 + z " 1 2 1 - z " 1

Let C and T be decom posed into symmetric forms.

D efine

X =

( 2 . 6 3 )

C/ C / T —  r =
2

r / r z t ( 2 . 6 4 )

* c 2 z _ 1  r  1
i 1 1 + Z  1

*r
— - 2 z “ l

-j r /
1 - z  1

V ( 2 . 6 5 )

From  (2.64) and (2.65)

v = ( I c  + I r  + c r 1 c/ r z ]
* c

xr + j ( 2 . 6 6 )

Substitute (2.66) into (2.65) we get a state space description 

X = z - 1  A X + z " 1 B U

with

A = 2
r T 1 c l ( ĉ + - r  + c )-! C Z r i +

- i

T T 2

- r / i

( 2 . 6 7 )

( 2 . 6 8 a)

B -  2
r Tc l

T
- n

( ĉ + -r + c ) - 1 ( 2 . 6 8 b)

Theorem  2.5: I f  C , T and G are non—negative d e f in i te  and the state variable

vector is chosen as that in  (2.65) then the system  is pseudopassive, i.e .,  | | A | |

< I-

Proof: F irst, only if C and T are both non—negative can the decom positions of

(2.64) be carried out. Substantial m anipulation of (2.65) and (2.68a) gives

At A =

T
i C l

-  4

i
T

. r / .

2 T 2 T
(-c+-r+c)-T c (_c+—r+c) - 1 [ c t r t 
1 2  t  2

( 2 . 6 9 )
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From  (2.66) and (2.69) it can be seen that the following relationships hold when 

J  =  [0]

x T ( n )  A x ( n )  = x ^ ( n )  x ( n )  -  v ^ ( n )  G v ( n )  • 4 ( 2 . 70a)

If G is non— negative then v ^ ( n )  G v(n) is a non— negative num ber and therefore

x T ( n )  AT a x ( n )  ^ xT ( n)  x ( n ) ( 2 . 7 0 b )

no m atter what the value of x(n). The theorem  follows from  (2.59) and (2.61).

Incidentally, from  (2.70a) it can be seen tha t m atrix A is orthogonal if G =  [0].

2 .7 .3) W ave variables

W ave digital filters have long been known for their distinguished property of

being free from  limit cycles. It will be shown here tha t, apart from  some scaling

factors, the wave variables are a special case of the state— space variables defined 

in (2.65).

W hen (2.1) is derived from  a passive ladder by nodal form ulation, the 

m atrices can be generated by topological m eans [96].

where and D p are diagonal branch— adm ittance m atrices with entries

consisting of the corresponding capacitance or inverse inductance values. A q  and 

A p are the corresponding incidence m atrices Let V q , 1^, V p and Ip  be vectors 

of the voltages and currents of the capacitance and inductance branches 

respectively, then the voltage vectors are related to the nodal voltage vector V

c  = a cdca ct
( 2 . 7 1 a )

I" = ApDpApT ( 2 . 7 1 b )

by

vc - a c t V ( 2 . 7 2 a )

v p = ApT V ( 2 .7 2 b )

T he curren t vectors are related to the nodal voltage vector by
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2 1 - z " 1

I c   ------------- DcAct  V ( 2 . 7 3 a )

T 1 + z " 1

T 1 + z " 1

I p   -------------Dp ApT V ( 2 . 7 3 b )

2 1 - z " 1

According to the definition of wave variables [77]

Incident wave vectors

2 2

WCI = VC + ( -----  Dc ) _ l l C --------------- aCT v ( 2 . 7 4 a )
T 1 + z " 1

T 2

Wpi = Vp + ( -----  Dp) “ 1 I p  = -----------  Ap T V ( 2 . 7 4 b )

2 1 - z " 1

Reflected wave vectors

T 2 z - 1

WCR -  VC -  ( ------  Dc ) - l l c  .  --------- ACT V -  z - lw CI ( 2 . 7 5 a )

2 1+ z " 1

2 - 2 Z " 1

WpR = Vp -  ( ------  D p ) " 1 I p  = --------- ApT V -  -z - iW p !  ( 2 . 7 5 b )

T 1 - z " 1

By com paring (2.71) and (2.65) it can be seen A ^T  and ApT differ from C/T

and r / T only by factors D ^ ^  and D p ^ ^  respectively. It can be found that

2 T

xT ( n ) x ( n )  = wCRT ( n)  -  Dc  wCR( n)  + wpj*1  ( n )  -  Dpwpj* (n )

T 2

( 2 . 7 6 )

W hen the branch adm ittance m atrices D(^ and D p  are diagonal with positive
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elem ent values, the m agnitude rounding of and w p ^  will have the same

effect as m agnitude rounding on x(n) to cause a reduction of x^(n )x(n ).

2 .7 .4) C ontinuous tim e dom ain pseudopassive systems

Conditions for the continuous time dom ain systems have no direct practical 

applications, however for com pleteness a derivation is given as the follows.

We first show that in the continuous tim e dom ain a state space system

X ' =  A X +  B J (2.77)

is pseudopassive iff — (A-*-A^) is non—negative. Set J =  0 in (2.77). T hen the 

tim e dom ain solution is given by

x ( t )  = exp ( At )  xq ( 2 . 7 8 )

where xq  is the initial value vector. Take the derivative of e (t)=  x ^(t)x (t)

d e / d t  = xq^ e x p ( A t ) T  (A+A^) t  e x p  ( A ^ t )  xq ( 2 . 7 9 )

e(x(t)) is m onotonically decreasing iff de/d t < 0 or equivalently, system (2.77) is 

pseudopassive iff — (A +  A ^) is non— negative. Now let a state space system be 

constructed from  (2 .1 ) by

X =
*c lct

XL . LrT
( 2 . 8 0 )

w i t h

C -  LC l ct  r -  Lr Lr1 ( 2 . 8 1 a )

a n d

-L-1gL-t -L-lLr 

LTL-T 0 ( 2 . 8 1 b )

It is easily seen that
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-(A + At ) = 2 ( 2 . 8 2 )
0 0

.

is non— negative. The pseudopassivity of (2.77) follows.

2.8 SUM M ARY

We started  this chapter by introducing the concept of SMPSs. They are 

extended form s of the well known state space systems and are also generalised 

m athem atical abstractions of passive networks such as ladders.

T he basic stability properties have been covered. T hen a necessary condition 

for canonical realisation has been derived. A relationship is revealed between the 

filtering types, order of the system and orders and ranks of the m atrices. Two 

theoretical p roperties of SMPSs, boundedness and psudopassivity, have been 

studied with the em phasis on filtering applications. It has been shown that SMPSs 

can be designed with optim al perform ance if some simple requirem ents are 

fulfilled. Sensitivity can be minimised if the deviation of com ponent values is kept 

sym m etric. Lim it cycle oscillations can be efficiently elim inated by properly 

choosing the in term ediate variables.

The above results form  a m athem atical foundation for m atrix methods for 

advanced filter design developed in the succeeding chapters.
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3.1 IN TR O D U C TIO N

In the last chapter, a theoretical study of symmetric m atrix polynomial 

systems was undertaken. The realisation of these system by physical networks 

involves further design steps. In this chapter a detailed investigation of realisations 

by active— RC circuits is presented.

A SMPS or simply a ladder is nonlinear with respect to s“  * and it is 

difficult to realise directly by active— RC circuits based on M iller type integrators 

with transfer function s— 1 . T herefore, some constraints and rules will first be 

stated to define a family of m atrix equations which are directly realisable. These 

equations are linear in s— * so that op— am p circuits can be used to perform  

additions, m ultiplications and integrations.

Techniques are then introduced to render m atrix description of a ladder 

prototype realiseable, by decom posing it into several linear sub—equations. The 

m atrix representation  is a convenient and flexible vehicle for the design 

procedures. Numerical m ethods drawn from  linear algebra can be applied to 

derive existing as well as novel active— RC structures. Leapfrog and 

coupled— biquad structures are shown to belong to the same family, simply 

resulting from  different m atrix transform ations. Some new structures, notably those 

derived by LU m atrix factorisation, dem onstrate attractive properties.

T he design of cascade biquads will be also be m entioned briefly. It is shown 

that, although cascade biquads are strictly asym m etric systems, they can be 

expressed in exactly the same concise form  as ladder circuits. Thus a unified 

description of various circuit structures is possible and this assists the developm ent 

of efficient com puter algorithm s considered in C hapter 7.

Biquadratic cascade filters have a very regular structure which grows by a 

uniform  progression with increasing filter o rder, regardless of the type of transfer 

function, such as lowpass, bandpass, highpass and bandstop. O n the o ther hand, 

design techniques for ladder based structures are strongly dependent on the type 

of the transfer functions. In this chapter, a unified m ethod will be introduced to 

synthesise canonical prototypes and active ladders realising a wide family of 

transfer functions. It will be shown that ladder sim ulations can be designed with 

the same regular progression as for biquadratic cascades.
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3.2 DIRECTLY REALISABLE MATRIX SYSTEMS

M atrix m ethods are known to be an efficient m eans of representing  large 

interconnected networks. T he inverse procedure is how to construct an active— RC 

circuit from  a set of p re— determ ined m atrix equations. If the equations are linear 

with respect to the transfer functions of the basic building blocks, then the 

problem  becomes m ost simple. For exam ple, consider the following single 

algebraic equation

v n  + c n n - l  v n - l  “  s ' l w n ( 3 . 1 )

This equation can be directly represented by the SFG in F ig .3.1 a. Let the 

variables {vj} and {wj} be the voltages of opam p outputs, then  the SFG can be 

replaced by an active RC network shown in F ig.3 .lb .

(a)
nn-1.

-  V

c— 1

(b)
C nn-1

nn

-  V

V

Fig.3.1. Representaion of a linear equation

by (a) an SFG and (b) an active—RC circuit
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This simple exam ple can be generalised to the case of constructing a SFG 

and an  active— RC circuit from  a set of algebraic equations in m atrix form . A 

m atrix equation is considered to be directly  realisable if it m eets the following

conditions,

A ssum ptions:

i) T he m a trix  equation is linear w ith  respect to the tra n s fe r  fu n c tio n  o f  the 

basic bu ild ing  blocks.

ii)  In  each m atrix  equation only one variable vector and associated c o e ffic ie n t  

m a trix  will be w ritten  on the le f t - h a n d  side.

Hi) The c o e ffic ie n t m atrix  on the l e f t  hand side is square and non— singular

w ith  all the diagonal elements o f  a tI- non—zero.

W ith the above assumptions a directly  realisable m atrix equation will have

the following form,

Af i Xj = X ^ik. ^ ik  *k + **k (3 .2)
k

where { } are vectors of variables

{ Jfc } are input vectors

{ } are m atrices

{ Tjk } and { } are the transfer functions of the building blocks

T he following rules are used to derive SFGs and circuits directly from  matrix 

equations throughout this thesis:

1) Every en try  in  the variable vectors is represented by a nodal variable in  the 

SFG  and by an output o f  an opam p in  the c ircu it. The inpu t variables are 

represented by independent voltage sources.

2) The i —th row equation represents the linear rela tionship at the node

corresponding to x jm  or, fo r  the c ircu it, the in p u t—output voltage rela tionship  o f  

the o p —am p corresponding to
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3) Each diagonal en try  o f  ^  is realised by an in tegra ting  elem ent. Every other 

non—zero en try  in  a m atrix represents the connection o f  a circuit element 

between o p —am ps.

Notice assumptions (i)— (iii) are only sufficient conditions for realisability. If 

a m atrix system m eets these assumptions then its realisation is straightforward and 

unique using the above rules. The m ajor task of this research is to develop

systematic procedures to synthesise the prototype and realise m atrix systems which

initially fail to m eet these assumptions.

E xam ple  3.1: To illustrate the principle, construct a SFG and a active— RC

circuit from  a set of m atrix equations,

I W ----- ( s " 1 T + G ) V + J ( 3 . 3 a )

where W  and V are two vectors of variables. I is the identity m atrix and T and 

G have been given in (1.6). T hen (3.3a) can be realised by the SFG and the 

circuit in F ig .3 .2a (w here 4 = s — *) respectively.

E xam ple  3.2: A multi— equation system can be realised in the same way. For

exam ple com bine (3.3a) and the following equation,

C V = s - 1  W ( 3 . 3 b )

(3.3b) can be realised by the SFG shown in F ig.3 .2b (w here ^  s— *). Notice the

coupling relationship of (3.3a) and (3.3b). F ig.3 .2a and b can be united to form 

a com plete m ulti— feedback circuit using the same sets of nodal variables to 

realise variables of V and W , F ig.3 .2c, which can be replaced by the active— RC 

circuit, F ig .3.2d. Interestingly, this circuit can be identical to the circuit in

F ig .l .10.

T he capacitor coupled opam p loops may be seen from  (3.3b) to be

dependent on the presence of non—zero, o ff-d ia g o n a l entries in m atrix C. W hen 

these entries occupy positions above and below the main diagonal, such as C| 2  

and C2 1 , they cause cross—coupling of op—amp inputs and outputs by capacitors. 

If C is tridiagonal no such loops are form ed, a p roperty  exploited by the LUD 

m ethod shown later.
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(a)

(b)
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(C)

Fig.3.2 An example of realisation of a pair of matrix systems

(a) T he SFG  represen tation  of eqn. (3 .3a)

(b) T he SFG representation  of eqn. (3.3b)

(c) T h e  overall SFG

(d) T he  a c tiv e -R C  realisation
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3.3 M ATRIX M ETH O D S FO R  A C T IV E -R C  CIRCUIT DESIG N

3.3 .1 ) A lternating  sign for nodal voltages 

Rewrite here (2.1) for a passive ladder

( s C + s " 1 r + G ) V - J ( 3 . 4 )

F rom  Exam ple 1.1, it can be seen that the entries of C and T may be either 

positive or negative values. This may cause difficulty in realisation as negative 

entries require inverters. To avoid confusion, we introduce alternating signs in V,

i.e ., let V = [ v j ,— V2 .V3 , — V4 , . . . ] ,  which ensures that all the entries in (3.4) are 

positive. This can be seen in an  exam ple,

E xam ple  3.3: For a 6 th  order ladder, F ig .1.2, nodal form ulation leads to the 

following m atrix equations,

C =

1 1 

1 1 1  

1 1

C l

C2

C3

c l + c 2 c 2 L2 - 1 L2 ' 1

s c 2 c 2+ c 3+c 4 c 4 + s 1

T—1 1CM l 2 " 1+ l 4 '-1 L, -14
C4  C4 +C5 l 4 - 1 L ^ + L s " 1

Gin V1 J i n
f 0 - v 2 - 0

CL . v 3. 0

C4

C5

1

1

1 1 

1

( 3 . 5 a )

( 3 . 5 b )

r =
1

1 1

1

l 2
-1

L4
-1

l 5 - 1

1 1 

1 ( 3 . 5 c )
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Notice that all the entries of C, T and their relevant incidence m atrices are 

positive. H ereafter unless otherwise stated, it will be assumed that all matrix 

entries are positive so that they can be directly realised by positive elem ents.

3.3.2) System linearisation by matrix decompositions

Equation (3.4) contains nonlinear com binations of the basic function s~  * so 

it does not m eet Assumption i). It is m ore convenient to linearise the system 

into the form  of (3 .2). This can be done by creating a set of interm ediate 

variables and decom posing the system of (3.4) into two in ter— related systems. 

This decom position can be perform ed in various ways.

Left M atrix  D ecom position

Factorise the left hand m atrix C into 

C = C/ Cr

T he following pair of equations is equivalent to (3.4)

( 3 . 6 a )

C ZW ----- ( s " 1 T + G ) V -  ( - J ) ( 3 . 6 b )

Cr V = s " 1 W ( 3 . 6 c )

where W  is the vector of interm ediate variables.

R ieh t M atrix  D ecom oosition

T can also be factorised as

r -  rzrr ( 3 . 7 a )

T he following pair of equations is equivalent to (3.4)

cv = - s " 1 [ r jW + g v  + ( - J )  ] ( 3 . 7 b )

iw -  s - 1 rrv ( 3 . 7 c )
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Both (3.6) and (3.7) have a similar appearance to the system realised in 

Exam ple 3.1 and 3.2. In fact it can be seen that (3.3) is a special case of 

(3 .7b,c) when C /=  C , C^= I.

From  the rules given in Section 3.2, (3.6) and (3.7) can be realised by 

active— RC circuits, provided that the relevant m atrices are obtained by certain

decom positions. T he one— to— one correspondence between the circuit elem ents 

and the m atrix entries indicates that the efficiency of the active— RC

im plem entation  in term s of num bers of capacitors is related to the sparsity of the 

system m atrices. Consequently a good simulation of a prototype by m atrix

m ethods will a ttem pt to m aintain the sparsity property  of (3 .4), in the design

procedure.

3 .3 .3 ) V arious ways to  perfo rm  th e  m atrix  decom positions

T he following m ethods are com m only known to preserve the sparsity of the 

m atrices to be decom posed: the LU or UL m ethods (Section 1.2.3), the

topological m ethod (Section 1 .2.2) and, simplest of all, the direct methods which 

decom pose m atrix A  into AI or IA.

CATEGORY NAME MATRIX DECOMPOSOTIONS

Left Left-LUD C-LcLc t c r Lc C -L T'-r

Decomposit ions Left-direct(IC) C-IC cr i Cr-C

Right 

Decompos i t ions

Right-LUD r—LpLpT r r Lr rr-LpT

Right-di rect(TI) r-n r z-r rr-i

Leapfrog r—ApDpApT r z-A r r r- DrArT

T able  3.1 Various ways to  perfo rm  the m atrix  decom positions
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Notice tha t a symmetric m atrix A  can be decom posed into symmetric LU 

form  a = l l t . This property is used in the derivation of Table 3.1 as all the 

m atrices in (3.4) are symmetric.

T here  are some duals to the systems listed in Table 2.1. which can be 

obtained by replacing LU decom position by UL decom positions, or by replacing 

C =  IC and D= n  by C =  C l and F= IT, respectively. The dual m ethods are useful 

in realising one family of canonical structures presented later.

F rom  network topology it is known that D p A p ^V =  Ip  is the current vector 

of the inductance branches. This confirm s that by topological decom position of T\ 

as shown at the bottom  of Table 3 .1 , the same structures will be derived as 

those by a conventional leapfrog m ethod (Exam ple 1.2). In general, if topological 

decom position is applied to the left— hand m atrix C , it cannot be assured that the 

resulting C/ and Cr will be square. Consequently, the resulting system (3.6) may 

violate the assum ption (iii) in Section 3.2. If C/ and C r , obtained from a

topological decom position, are square then in most cases they are identical to 

those derived by LU decom position. T herefore  the topological decom position will 

no t be considered for left— hand m atrices.

3 .3 .4 ) Exam ples of various circuit structures

As exam ples, left— LU D , left— direct, right— LUD and right— direct SFGs and 

circuits are shown in F ig.3 .3—3.6, using the m atrix description (3.5) of the 

passive ladder in F ig .l .2 as the prototype. Notice for the s— dom ain design 

$ =  s— * but exactly the same SFGs can be used for the z— dom ain design

discussed in C hapter 4 by redefining 4 =  1 /(1 — z—*) and z— V ( l — z~  1).

Interestingly, it is found that the circuit in F ig.3.4 and 3.6 resulting from

direct decom positions can be identified as a coupled type— E and type— F biquad 

circuit respectively. By com paring the interm ediate variables introduced in the 

two approaches it can be shown that they differ only by voltage scaling factors.

F or the prototype circuit of F ig .l .2, the leapfrog m ethod results in exactly 

the sam e structure as tha t in Fig.3.5 by a right—LUD, which can clearly be seen 

by com paring it with F ig .l .9. In the low—pass case T/ and Tr obtained from

leapfrog m ethods are also identical to those obtained from  a right— LUD m ethods. 

An exam ple is shown in F ig.3.7. However, in general the leapfrog m ethod will 

lead to m ore simple simulations than the right— LUD m ethod.
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Fig.3.3 (a) Left— LUD type SFG

(b) Left—LUD type active—RC circuit
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Fig.3.4 (a) Left— Direct(IC) type SFG

(b) Left—Direct(IC) type active—RC circuit
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Fig.3.5 (a) Right— LUD type SFG

(b) Right—LUD type active—RC circuit
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v out

(b)

Fig.3.6 (a) Right—Direct(n) type SFG

(b) Right- Direct(IT) type active-RC circuit
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Fig.3.7. Lowpass circuit design by the right—LUD method

(a) A 5th order passive ladder

(b) Right— LUD type SFG

(c) Right-LUD type active-RC circuit
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3 .3 .5) A  com parison of left— and right— LU D  m ethods

Two notable novel categories of ladder simulations presented in Table 3.1 

are left—LUD and right—LUD (and their duals by UL decom positions). They 

both have some characteristic features.

In the left— LUD m ethod the below— diagonal and above— diagonal elem ents 

of C are separated  to m atrices Lc and LqT , respectively, effectively removing all 

capacito r—coupled—opam p loops, Fig.3.3. They also dem onstrate excellent 

properties regarding com ponent spread and dynamic range for bandpass design 

(see Section 4.7). However since Lc and are restricted to be square, from

(3.6) the dim ension of the interm ediate variable vector is n (n is the num ber of 

nodes, i .e ., the dim ension of V) and so altogether W  and V contain 2n variables. 

Som etim es this is m ore than necessary. Taking the odd order lowpass design of 

F ig .3.7 as an exam ple, Left—LUD sim ulation of the 5th order prototype results 

in exactly the same network topology as tha t of F ig.3.3, although we know that 

it can be used to sim ulate the 6 th  o rder prototype of F ig.1.2. O n the o ther 

hand, right— LUD m ethods would use only 2n— 1 variables, a canonical num ber, 

for the particular prototype in F ig.3.7.

F or right m atrix decom positions, T/ and r r can be made rectangular and the 

dim ensions of V  and W  are not necessarily equal. Consequently the dimension of 

W  can be sm aller than that of V. In the case of a low— pass filter simulated by 

LUD m ethods, from  Table 2.1 it is m andatory that T be singular so that a zero 

colum n in Lr will appear after LU decom position. It can be then deleted, making 

L p a nx(n—1) m atrix. Thus a variable is saved in form ing W.

Beside the inefficiency m entioned above, there  is also a sensitivity problem  

in lowpass design for all the m ethods m entioned above except right— LUD. 

D eviation in the entries of T, caused by the inaccuracy of the elem ent values 

associated with these entries, may cause T to becom e non— singular, introducing a 

zero at c^= 0 (see Section 2.3). Extra zeros introduced at the origin, can be 

viewed e ither as an advantage or disadvantage, for instance low frequency noise 

suppression can be facilitated by these zeros. T he right— LUD m ethod does not 

have this problem  as it involve m ultiplications of m atrices with only (n—1) rows 

or colum ns. T he resulting m atrices can never have a full rank n.

T he right— LUD m ethod, however, also has the drawback of posessing 

capacitor— coupled— opam p loops. Undesirable large com ponent spread and poor
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dynamic range are also observed for certain bandpass designs.

These argum ents indicate that le f t-  LUD is a good candidate for bandpass 

design and right— LUD is better for lowpass design, which will be further 

confirm ed by the statistical data provided in Section 4.7.

3.4 U L -L U  AND L U -U L  M ETH O D S

It is possible to develop structures by applying LU and UL decom positions to 

both left and right side m atrices. Restricted by the requirem ents of preserving 

m atrix sparsity and m aintaining a canonical num ber of variables, derivations for 

such structures are not straightforw ard and are explored in this section.

3 .4 .1) System  linearisation  by U L—LU m ethods

UL and LU factorisations can be applied to both the left and right hand 

m atrices of (3 .4 ) ,  respectively,

C -  Uc Lc ( 3 . 8 a )

T = Lr  Ur  ( 3 . 8 b )

D efine

Wc  -  s  Lc V ( 3 . 9 a )

Wp — Up V (3.9b)

Suppose a upper triangular m atrix U cs and a lower triangular m atrix L ps can 

be found so that

Ucs Lc = Lrs ur (3 . i o )

D enote

G} = d i a g [  g n ,  0 ,  . . . , 0  ] ( 3 . 1 1 a )

Gn = d i a g [  0 ........... 0 ,  g nn  ] ( 3 . 1 1 b )
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so

G = "t- ( 3 . 1 1 c )

Also denote

Gl s  = G1 L< - 1

Gn s ”  Gn u f - 1

( 3 . 1 2 a )

( 3 . 1 2 b )

Due to the lower triangular property of Lc— 1, it can be verified that G j s has

exactly one non— zero elem ent at the upper left corner. It is also true that G ns

has only one non— zero elem ent at the lower right corner due to the upper

triangular property  of U p-  It is in order to preserve the sparsity of G i s and 

G ns that both UL and LU decom position must be em ployed.

W ith (3 .9—3.12), (3.4) can be decom posed into the following pair of

equations,

Uc Wc = - [ ( s - l L r  + Gn s ) Wp + s - l G l s Wc ] -  ( - J )

Lrs wr = s  ̂ ucs wc

( 3 . 1 3 a )

( 3 . 1 3 b )

Realisations of a 6 th  order UL— LU active— RC circuit realisations is shown in 

F ig .3 .8  using the passive ladders in Fig.1.2 as the prototypes. Notice now that the 

output is wpjj. From  (3 .9b), as U p  is upper trangular, w pn differs from  original 

output vn by only a constant.

3 .4 .2) P rocedure to  solve (3.10)

A im portant step which has not yet been explained is how to find matrices 

Ucs and Lps to m eet identity (3.10).

W hen C and T are tridiagonal Lc and U p  are also tridiagonal as well as 

triangular. Separate the diagonal and off— diagonal parts of the m atrices

“ Uc d i ag + Uc o f f (j

u r  “  u r d i a g  + u r o f f d

( 3 . 1 4 a )

( 3 . 1 4 b )
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Fig.3.8. A UL—LU ladder circuit

where L ^ ia g  and L fd iag  are diagonal m atrices, L ^ f fy  has non— zero entries only 

on the first lower off diagonal and UpQfjy has non— zero entries only on the first 

upper off diagonal, i .e ., 1-coffd anc* ^ fo f fd  ^ave t îe following form

^ c o f f d

0 0 *
* 0 0 *

uroffd  -

*
* 0 . 0 .

( 3 . 1 5 )

where * stands for the non— zero entries. Assume that U cs and L ps are also 

tridiagonal and  triangular m atrices. Similar to the notation of (3.14) separate U cs 

and L ps as
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^cs  ^ c s d i a g  + ^ c s o f f d  (3 .1 6 a )

Lr s  = ^ f s d i a g  + Lr s o f f d  ( 3 .1 6 b )

Equate the d ifferent parts of (3.10) according to the position of the non—zero 

entries,

^ c s d i a g ^ c o f f d  = L f s o f  fd % \i ia g  ( 3 . 1 7 a )

^ c s o f f d ^ c d i a g  = ^ r s d i a g ^ r o f f d  (3 .1 7 b)

^ c s d i a g ^ c d ia g  ^ c s o f f d ^ c o f f d

= ^Tsdiag^Tdiag + ^ T s o f f d ^ r o f f d  ( 3 . 1 7 c )

Since in (3 .17a—c) the num ber of constraints is less than the num ber of 

variables, we can assign

^ T s d ia g  — * ( 3 .1 8 )

which guarantees the read ab ility  of system (3.13). From  (3.17) and (3.18) we 

have

^ c s d i a g  ( ^ c d i a g  " ^ c o f f d ^ r d i a g  ^ T o f f d )  ^

x  ( ^ r d i a g  “ ^ T o f f d ^ c d ia g  ^ ^ c o f f d ) )  ( 3 .1 9 )

and rem aining variables can be solved from  (3.17)

Lr s o f f d  = ^ c s d i a g ^ c o f f d ^ r d i a g  ^ ( 3 .2 0 a )

^ c s o f f d  = ^ r o f f d ^ c d i a g   ̂ ( 3 .2 0 b )

T he m atrices in (3.19) and (3.20) may be singular and the norm al inverses do 

not exist. In these circum stances M oore—Penrose 's generalised inverse can be used 

[115,116]. As the m atrices in (3.19) and (3.20) are all diagonal, the procedure to 

obtain the ir M oore— Penrose inverse is very simple. T he M oore— Penrose inverse 

of a diagonal m atrix D =  diag[dj i ,.. .  ,dnn] is also a diagonal m atrix given by
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M =  diag[m1 j , . . . ,mnn ] with

mi i  =
l / d H  i f  d H *0 ( 3 . 2 1 a )

0 i f  d u =0 ( 3 . 2 1 b )

F or an odd order deisgn with T singular , F ig.3 .7a, m atrix U cs derived from 

the above procedure has a zero row. The corresponding variable of W p can be 

deleted, resulting in a canonical realisation.

3.4.3) Formulae for LU—UL design

T he dual of the above described UL— LU m ethod is an LU— UL one. Its 

design form ulae are given as the follows without derivation. D efine

C = Lc Uc ( 3 .2 2 a )

T = Up Lr  ( 3 .2 2 b )

Wc = Uc V ( 3 .2 2 c )

Wp -  s " 1 Lp V ( 3 . 22d)

Ci  = d i a g [  g n ,  0 , . . . , 0  ] (3  . 2 2 e )

Gn = d i a g [  0 .......0 , g nn  ] ( 3 .2 2 f )

G^s = G^ L p“ l  (3 .2 2 g )

Gns -  Gn Uc' 1 <3 ' 2 2 h >

T he lower triangular m atrix Lcs and upper triangular m atrix Upg are defined to 

satisfy the identity

L cs Uc -  u r s  Lr ( 3 .2 2 1 )

We have finally
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Lc  Wc = - [ ( s ~ l u r  + Gl s )Wr  + s - l G n s Wc ] -  s - l ( - J )  ( 3 .2 3 a )

u r s  wr = S_1  LCs Wc (3 .2 3 b )

T he ou tpu t is wc n . A LU—UL simulation of the prototype ladder, F ig.2.1, is 

shown in F ig .3 .8 .

■CZh

2t A y\

V,

Fig.3.9. A LU—UL ladder circuit

Although UL— LU and L U -  UL circuits were originally expected to comprise 

the advantages of both le f t-L U D  and r ig h t-L U D  ones, it turns out that they do 

not have notable features, as can be seen from the statistical study in Section 

4.7. It is observed that F—type term inations (conductor G 21 in F ig .3.7 and G 22  

in F ig .3 .8 ) are not suitable for bandpass design as they produce large com ponent 

spreads. If som e technique can be found to incorporate two E — type (or two 

F -  type ) term inations the circuit perform ance may be im proved, which should 

not be done a t the cost of extra com ponents.
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3.5 CANONICAL LADDER FILTER DESIGN

3 .5 .1) R estrictions of the standard  m ethods

The advantages of adopting low sensitivity ladder sim ulation in integrated

circuit realisation have always been com prom ised by their com plicated design 

procedures and associated im plem entation cost. Various design techniques must be 

used in ladder design to m eet different specifications.

T he difficulty is due to two problem s; first the prototype ladder itself cannot 

be synthesised from  certain  types of transfer functions and second the standard

sim ulation m ethods cannot be applied efficiently to certain types of the

prototypes.

A com m on exam ple of the first problem  occurs in the realisation of even 

o rder elliptic functions. Passive ladder networks must have open or short circuit 

characteristics (implying full or zero transmission) at zero or infinite frequency 

respectively [3]. T herefo re, lowpass or bandpass functions with finite (non—zero) 

stopband transm ission at these extrem e frequencies cannot be synthesised as

passive ladders. 'P u re ' even order elliptic functions and their 

frequency— transform ed versions belong to this category. T o obtain a realiseable 

function, a finite transm ission zero must be shifted to infinite frequency [3]. This 

has the dual penalty of degraded filter perform ance and non— uniform  passive

ladder structure between odd and even order design, reflected also in the 

sim ulation by integrated circuits. F or this reason, such transfer functions are

practically undesirable for ladder sim ulation, since they are so close in cost to

their related higher odd order function.

As an exam ple a 8 th  order bandpass pure elliptic function and its modified

form  are shown in F ig .3.10. It can be seen tha t the cost of modifying the

function is a loss of about 4dB attenuation  in the stopband.

An exam ple of the second problem  may be seen from  the discussion of

Section 3.3. The design m ethods there generally use 2n or 2n— 1 opam ps

(excluding inverters). T he canonical prototypes defined in Section 2.3 are required 

to produce canonical simulations but from  T heorem  2.1 and Theorem  2.2 w hether 

a given transfer function can be synthesised as a canonical prototype depends on 

the parity of its num erator.
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Fig.3.10. Pure and modified 8—th elliptic functions

In the following, a general m ethod is introduced to design canonical active 

ladder circuits applied to both left and right decom positions. T he basic principle 

is tha t any transfer function with only imaginary zeros can be modified so that 

they can be realised by a canonical prototype ( a doubly— term inated SMPS or 

simply a ladder). T hen  a canonical simulation can be obtained with minimum 

num bers of in term ediate variables (thus also the num ber of opam ps). T here is a 

uniform  progression in the form  of the circuit structures regardless of the type of 

specification or order.
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3.5 .2) M odified canonical proto type

Let H(s) be a transfer function with all its zeros on the imaginary axis or at 

infinity. If the order of H(s) is m, then it can be realised by a canonical ladder 

proto type, with m / 2  nodes (for m even) or (m -i-l) / 2  nodes (for m odd), provided 

that the constraints on the parity of the num erator given in T heorem  2.1 are 

m et. However, even if the constraints are not m et or m ore precisely if N(s) has 

the wrong parity, some simple m anipulation of the transfer function can be made 

to cope with the problem . Consider three possibilities,

i )  The n u m e r a to r  o f  H i s  a  c o n s t a n t

i i )  The n u m e r a to r  o f  H h a s  a s i n g l e  r o o t  a t  Wf=0

i i i )  The n u m e ra to r  o f  H h a s  a p a i r  o f  im a g in a ry  r o o t s  a t  ±o)j (u)j c a n

be  z e r o )

T o change the parity

for i) let H '(s) =  H(s)s

for ii) let H '(s) =  H(s)s or H ’(s) =  H(s)/s

for iii) let H ’(s) =  H(s)s/(s^+ oo^)

T hen the parity of H ' is opposite to that of H  and H '(s) can now be realised by

a canonical prototype ladder described by the nodal equation

(sC  + s~l r  + G) V = J ( 3 . 2 4 )

3.5.3) Canonical ladder simulation by active circuits

A system realising the original transfer function H(s) can be obtained by

multiplying the input vector J  by inverse of the m odification function. For case

iii), we have

(sC  + s _ 1 r  + G) V = ( s  + coj 2 s - 1 ) J ( 3 . 2 5 )

This system can now be expressed in realiseable form  by the m atrix methods 

o f Section 3.3 and 3.4.
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Left M atrix  D ecom position form

Let C =  C/Cr then the system can be witten as

C ZW = - s - 1 [ rv + GV + Wi 2 ( - J ) ] ( 3 .2 6 a )

Cr v  = s " 1 W -  C / " 1 ^ J ) ( 3 .2 6 b )

R ight M atrix  D ecom position form

Let n= rzrr then the system can be written as,

CV ----- s ’ 1 ( T/W + GV ) -  ( - J ) ( 3 .2 7 a )

w = s - 1 [ rrv + wi2r /-1( - j ) ] ( 3 .2 7 b )

Active— RC networks can be directly obtained according to these two equations. It 

is found tha t the m ost efficient m ethod in either case is to use UL factorisation 

which minimises the required num ber of input branches (only two).

Two canonical 6 th  order left— LUD and right— LUD circuits are shown in 

F ig .3.11. T heir prototype is again the passive ladder shown in Fig. 1.2, which is 

synthesised from  the partitioned transfer function instead of the original transfer 

function. These canonical designs differ from  standard ones in the position of the 

input stage branches.

T he sensitivity behaviour of the new structures must be exam ined as they are 

no longer strictly ladder simulation and seem to depart from  O rchard 's 

low—sensitivity criterion [15]. From  the many exam ples studied by com puter 

sim ulation, the sensitivity for the new structures has been confirm ed to be much 

b etter than  their biquad counterparts, and very close to traditional ladder 

sim ulations.
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Fig.3.11. Canonical ladder circuits

(a) Left—ULD type circuit

(b) Right-ULD type circuit
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3.6 SPEC IA L D ESIG N  TECHNIQUES

3.6 .1 ) H ybrid  m atrix  approaches

So far, only nodal equations have been em ployed to establish the SMPSs 

from  the prototype. However, for certain prototypes, m ore general hybrid matrix 

descriptions can be adopted to minimise the size of the m atrix systems and their 

resulting sim ulated circuits. The drawback of the hybrid m ethod is that there is 

no unified rule. T he exact design m ethod depends on the individual prototype 

structures and the selection of the internal variables, which can be seen from the 

following exam ples,

Exam ple  3.4:

An even o rder low—pass circuit shown in F ig.3.12 has n + 1 nodes but the 

filter o rder is 2n. T he rank of T is n as there are n inductors in the circuit, 

m aking the total num ber of op— amps required 2 n + 1 , so even a leapfrog design 

cannot directly provide a canonical circuit. However If the nodal voltages, V| ... 

vn and a single mesh current in are selected as variables to replace vn+  j . The 

last two row equations have the following form

^ n - 1
s • • • c m-2 c m - l+cm-2 ® + s _1 • • • Lm-1 Lm-1 0 + . . .  0 1 v n -J

• • • Ln_2 0 0 • • • - 1  l / g L. in

( 3 .2 8 )

L m-2

f - o
H trfri-

F ig .3 .12 . A n even  o rd er lowpass ladder
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T he resulting equation will have the same form  as (3.4) and will be canonical.

T he output is now in which differs from  vn + 1 by only a constant gL. The rank

of m atrix  T will be n— 1 since the contribution of the n— 1 th  inductor is now

m oved to the first m atrix. This means that the num ber of interm ediate variables

to be introduced is n, providing a canonical solution.

Exa mpl e  3.5:

T he sam e technique, can be applied to the Left—decom position designs for a 

2n order bandpass prototype, F ig.3.13, derived from  a n 1*1 order lowpass

reference with n even. T here are n + 1 nodes in the ladder, so a nodal

description is not efficient. If the nodal voltages, v^ ... vn_  2 and a single mesh 

cu rren t in are selected as variables to replace vn and vn4_ 1. The last two row

equations have the following form

CM1c>1

s • • - c m- 2  c m - l+ c m- 2  ®

1—
11V)+

■■■Lm-l  Lm- 1  0 + . . .  0 1 1—1 1c>

- 1
. . .  Lm . . .  C m • • - -1  1 /g L 1 n

( 3 .2 9 )

which provides a canonical solution.

F ig .3 .13 . A  bandpass ladder derived from  an  even o rd er lowpass one
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3.6 .2 ) Inverse m atrix  approaches

T he following system is apparently equivalent to (3.4).

W = - (  s ' i r  + G ) V + J  ( 3 .3 0 a )

V = s - ip w  (3 .3 0 b )

where P =  C— *. T here are two notable properties of the system realised

according to (3.30). F irst, it minimises the use of capacitors as the num ber of

non— zero entries in m atrices on the left hand side of (3.30) are minimised. This

may be useful for certain  fabrication technologies where the use of resistors is 

preferred  to the use of capacitors. Second, the length of the capacitor— opam p 

chains is shortest, an im portant feature for fast op— am p settling time in SC 

circuits (C hapter 4).

T he disadvantage of this m ethod is that even when C is a tridiagonal matrix 

C— * is usually a full m atrix, representing a fully interconnected system. For 

larger C realisation will cost extra capacitors increasing with the square of the

m atrix order. F or orders higher than 3, m ore com ponents are generally required. 

However for a third order m atrix fewer capacitors can be assured by using the 

following equivalence of (3.30b)

C11  c 1 2  0 V1 1 1 0  0 W1
0  1 0 - v 2 = S “ 1 P21  P 2 2  P23 w2

0  c 32 c 33 v 3 0  0  1 W3

( 3 .3 1 )

O nly the m iddle row of (3.30b) is replaced by the inverse of C. The chain is

still broken in the middle without the penalty of extra capacitors.

For high order filters with multiple zeros at infinity, C can be made a block 

diagonal m atrix with second or third order diagonal blocks. Each of the blocks 

can be realised in the form of (3.30) or (3.31).

3 .7  CA SCA D E BIQUADS DESIGN.
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Finally we exam ine the design of cascade biquads filters which are in fact 

asym m etric m atrix polynomial systems. Apart from  the m atrix sym m etry, they can 

be described in exactly the same form as SMPSs,

AX = s'l-BX + s_1CY + DY + EJ (3.32a)

FY = s-1GY + s-l-HX + LX + MJ (3.32b)

where J  is a vector of inputs

A, B, C , D , E , F , G , H , L  and M are m atrices

Rules from  Section 3.2 can be applied to (3.32) in order to im plem ent 

active—RC filters. Although the notation of (3.32) does not bring any advantages 

for biquad design, it provides a unified approach for internal processing of 

active— RC filters by com puter, since both ladder and biquad simulations can be 

represen ted  by tridiagonal m atrix systems. M uch advantage can be gained from 

this p roperty  in developing a unified strategy for the description of filter systems 

in com puter arrays, as will be seen in C hapter 7.

3 .8  SUM M ARY

In the first part of this chapter, we defined certain  forms of matrix 

equations as being directly realisable. It has been shown that o ther more

com plicated m atrix systems can be transform ed into directly realisable form by 

expansion, linearisation and the proper introduction of some interm ediate

variables.

A m ethodology was then developed to realise the SMPSs. A wide range of 

circuits were derived by adopting different m atrix factorisations, notably LU and 

U L decom positions, including both existing and novel structures. A family of

canonical ladder circuits were introduced to realise general transfer functions with 

regular, m inim um  sized circuits. It is also illustrated tha t a hybrid approach can 

be used to achieve canonical design for certain  prototype where the nodal

approach would be inefficient. A detailed com parison of these various circuit 

structures will be given in C hapter 7, regarding com ponent spread, dynamic range 

and sensitivity.

It was shown that a m atrix form  description can also be used for cascade
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biquad design, which incorporates various filter designs in a unified form.

N um erical designs and comparisons have not been given for active— RC

circuits, but will be provided in Section 4.7 for SC circuits. This is partly because

the industrial collaborators in this research have a m ajor interest in SC filters. It 

can also be shown that the behaviour of active— RC, SC and digital ladders 

derived by the same prototype and the same technique would be very much the 

same if the ratio of sampling frequency to upper passband frequency is large 

enough. In fact under such a condition, a SC or digital circuit can be directly

obtained from  an active— RC circuit by replacem ent of continuous— time

integrators by LDI—type integrators [25,51,79] and the frequency response will be 

approxim ately preserved as well as the sensitivity, com ponent spread and dynamic 

range properties. Since the results are similar, a single com parison for SC circuits 

will be sufficient.

Both approxim ate and exact design procedures for SC and digital filters will 

be discussed in C hapter 4 by extending the m atrix m ethods covered above.
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C H A PTER  4
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4.2 LD I TRA N SFO RM ED  DISCRETE LADDERS
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4.3 B IL IN E A R -L D I D ISCRETE LADDERS

4.3 .1) B ilinear—LDI systems

4.3 .2) SC bilinear— LDI ladders

4 .3 .3) U L— LU  and  LU — U L discrete ladders

4.3 .4) C anonical d iscrete ladders

4.4  M O D IFIC A TIO N  O F BILINEAR D ISCRETE LADDERS

4.5 H IG H  O R D E R  D ISCRETE LA D D ER  DESIGN
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4.6 .1) D igital LU —LU ladders
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4.7 STATISTICAL STUDIES

4.8 SUM M ART
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4.1 IN TR O D U C TIO N

In the last chapter a detailed investigation of m atrix m ethods for active— RC 

ladder design has been presented. Now the extension of these techniques to the 

discrete dom ain systems of SC and digital circuits will be considered .

T he design procedure of a discrete domain (or z— domain) ladder starts from 

a prototype in the s— dom ain. Some frequency m appings, nam ely LDI or bilinear 

transform ations, are applied to transform  the prototype system from  the s— domain 

to the z— dom ain. M atrix m ethods will then be developed to represent the system 

by SFGs realisable by SC or digital circuits.

For LDI transform ed systems [79], it is shown that the design procedure is 

nearly the same as that in the continuous dom ain since, apart from some 

frequency p re— warping, a pair of continuous— time integrators can be directly 

replaced by a pair of LDI type SC or digital integrators. However the LDI design 

requires a com plicated procedure to elim inate the distortion caused by improperly 

realised term inations [63,64]. The bilinear transform ation, on the o ther hand, has 

the advantage of both stability and exactness [12]. U nfortunately, SC bilinear 

integrators are sensitive to the stray capacitance [35] and are not practically 

useful. D igital circuits using bilinear integrators are unrealisable due to delay— free 

loops [18]. A  com prom ise approach is to realise the bilinearly transform ed system 

by em ploying LDI integrators. This so— called bilinear— LDI type design has 

attracted  m uch attention  from  researchers [51][53][80].

In this chapter LDI type ladders are first introduced to illustrate the 

principles of the m atrix m ethods in the discrete dom ain. T hen bilinear— LDI type 

ladder systems are derived from  a m atrix approach, which is shown to be much 

m ore concise than present topological derivations. A discussion of the relative 

netw ork com plexities of LDI and bilinearly transform ed systems will follow. In 

m any cases, the structures are identical except for d ifferent input stages. However, 

for prototypes with purely inductive branches (w ithout a parallel capacitor) the 

LDI structure is sim pler than  the corresponding bilinear— LDI one. A simple 

technique is introduced to cancel excess com ponents in the bilinear— LDI 

structures, com bining the advantages of simple structure of LDI and exact 

frequency response of bilinear transform ations.

An im portan t feature of the LUD decom position m ethod applied to discrete 

filter design is that it can produce ladder simulations without delay free loops,



which is vital for digital im plem entaions. Although the principle of LUD type 

digital filter design is very similar to that of LUD SC one, there are some 

special considerations for reducing the cost of com ponents with the help of the 

flexibility of digital circuits. In a digital circuit, m ultiplication is most costly in 

term s of both tim e and storage. It is shown in this chapter that a com bination of 

left and right decom position methods can greatly reduce the num ber of 

m ultiplication operations.

A nother im portan t concept in digital signal processing is parallelism  [75]. In 

some low sensitivity digital structures, such as wave digital circuits [73 ], the 

operations m ust follow a certain sequence which limits the extent to which their 

operation  speed can be optimised by adopting parallel processing techniques. An 

interesting property  is that structures with a low degree of parallelism  in digital 

im plem entation  will also possess the problem  of unswitched opam p— capacitor 

chains in SC im plem entation. Indeed, the procedure of capacitor charging along 

such loops is com parable to a series of sequential operations in a digital circuit. 

Two techniques are introduced in this chapter to increase the parallelism of a 

digital ladder. T he first is to place zeros on the real frequency axis to break the 

series feedthrough chains. F urther im provem ents are possible by the inverse matrix 

discussed Section 3 .6 .2 . T he second is a scaling m ethod for digital circuits, 

w hereby m ultiplication coefficients are scaled to powers of two, which can be 

easily im plem ented by some series shifts of bit patterns followed by some parallel 

m ultiplications.

D etailed exam ples will be given to illustrate the new design procedure and 

com parisons of the  novel structures with existing ones will be presented.

4.2  LD I T R A N SFO R M ED  DISCRETE LADDERS

4.2 .1 ) LD I transfo rm ed  systems

D efine LDI transform ation (T is the sampling period) 

2 1 -  z " 1
s

T z - 1 / 2  

and a pair of LDI integration operators
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c M / U - z - 1 ) ( 4 .1 b )

( 4 .1 c )

Applying the LDI transform ation to (3.4) and introducing an extra half period 

delay at the term inations for stability [79 ], (3 .1 ) becomes

Y (z )  V = J ( 4 .2 a )

Y (z )  =
2 1 -  z - 1  T  z - 1 / 2

----------------c + -----------------r + z±1/2 g
T z - V 2  2 1 -  z "1

( 4 .2 b )

M ultiply equation (4.2a) through by z^ 2 to get

( ^ A  + ®  + G ) V = J 1 ( 4 .3 a )

A = ( 2 /T ) C ,  B = (T /2 )r ,  J '  = z 1 / 2 j ( 4 .3 b )

M ultiply equation (4.2) through by z to get

1
U A  + M  + G V = J 'cf) ( 4 .3 c )

A = (2 / T)C,  B = ( T / 2 ) r ,  J '  = z " 1/ 2J ( 4 .3 d )

As the transfer functions from  J  and J '  to the output differ only by a delay of 

a half period, we will not distinguish between them  in the following discussion.

Both systems in (4.3) have a similar appearance to the continuous system

(3.4) and m atrix  decom position techniques can be applied again to create a set of 

in term ediate variables relating two linear subsystems. Due to the difficulty of 

realising the term inating stages, it is found convenient to use (4.3a) as the basis 

for left decom position design and (4.3c) for right decom position.

Left M atrix  D ecom position

Factorisation  of the left hand m atrix A in (4.3a) into A  =  AjAr results in 

the following pair of equations
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A / W = - ( c f c B + G ) V + J ( 4 . 4 a )

Ar V = ^ W ( 4 . 4 b )

R ight M atrix  D ecom position

B can also be factorised as B =  BzBr in (4 .3c), leading to the right 

decom position system

AV ----- $  ( Bj W + GV ) + $J ( 4 . 5 a )

W = Br V ( 4 . 5 b )

4 .2 .2) SC LD I ladders

T he sam e procedure can be applied to convert the system description of

(4.4) and (4.5) to a SC circuit realisation as described in the last chapter for 

active— RC im plem entation, with the replacem ent of the continuous time operator 

s— 1 , by a pair of LDI SC operators, $  and 4>, Fig.4.1. The matrix 

decom positions can again be carried out by LU or by d irect m ethods, resulting in 

the various SC circuits in F ig .4.2.

Jo C! Je 

c , £ v

V ,  c- L  -  _ L  ---- -------- *  y
C . 1 - z 1

£j_ -1
C , 1 -z

t A

r r
SWITCHING

PHASE
i k

o e o e o e o e o e o

2 T  3 T 4 T 5 T

F ig .4.1 A  pa ir of SC LD I integrators

91



(a)

Jo c3 Ja Jo c"  Je Jo C,9 Je
jH i— } jH i— ) h-Hi— )\® \  ° \« \  ° \®

q>i A

c 
C 21

/  e  C

c ^ A

T
i t

c16 Ci 5 x
C22

e  ^5  1.9 ^9  1.9 13 / e  C17 /

1

(b)

92



t A  A
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(C)

^ t A  6c

(d)

F ig .4 .2  V arious SC circuit structures

(a) Left— LU D  type SC circuit

(b) Left— D irect(IA ) type SC circuit

(c) R ight— LU D  type SC circuit

(d) R ight— D irect(BI) type SC circuit



T he left— LUD SFG is distinguished by the absence of delay— free— loops, 

which may be seen from  Fig.4.2 to be dependent on the presence of non— zero, 

off-  diagonal entries in m atrix A. If A  is LU decom posed no delay— free— loop 

are form ed, since the upper and lower off— diagonal elem ents are separated. 

Rem oval of such loops will reduce the opam p voltages settling time so that filter 

perform ance is less prone to finite switch resistance and o p - a m p  GB effects [35].

4 .3 BILIN EA RLY  TRANSFORM ED DISCRETE LADDERS

4.3 .1 ) B ilinear— LD I systems

In LDI transform ed ladders, a factor is introduced to represent the

im properly realised term inations and to ensure stability, causing a distortion of the 

designed frequency response. The bilinear transform ation, on the o ther hand, has 

the advantage of both stability and exactness. U nfortunately, bilinear integrators 

are sensitive to the stray capacitance and are not practically useful. Instead an 

equivalent SC ladder utilising LDI integrators can be form ed.

A fter bilinear transform ation

2 1 - z " 1
s ( 4 .6 )

T 1 + z - 1

(3.4) becom es

2 1 -  z " 1 T 1 + z " 1
C + --------------------

2 1 -  z " 1
r + g  v = j ( 4 .7 a )

T 1 + z "

and m ultiplying the system through by (1+ z  * )/(!—z *) to get
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2 T-  C + — T 2

1 +  Z  ^ 

1 -  z ' 1

1 +  Z ' 1

r +  c
1 -  Z _ l

1 +  Z  1
V = ----------------- J

1 -  z - 1
( 4 .7 b )

E q.(4 .7) can be rearranged as

1
1 ¥ A + <t>B + D ) V = J ' ( 4 .8 a )

A = 2/TC +T/2T+G  B -  2TT D = 2G J ' ' =  ( l + z ) J ( 4 .8 b )

or

, 1
A + $ B + D  ) V = J ' ( 4 .8 c )

A = 2 /T C + T /2T -G  B = 2 T r D = 2G J ’ ’ = ( l + z ' ^ J ( 4 . 8 d)

4 .3 .2) SC b ilinear—LD I ladders

Although based on two different transform ations, (4.3) and (4.8) have the 

same appearance apart from  the input terms. This equivalence makes it possible 

to design bilinear ladder using LDI integrators, a fact indicated first by Lee and 

Chang [51] from  a topological basis for SC circuits. Application of the methods 

of Section 4.2 .2  to (4.8) results in a similar range of circuit structures.

T he input of (4.8) has a (1 + z ) or (1+ z- 1 ) m ultiplier. T he realisation of 

the noncausality of (1+ z )  can be accomplished by multiplying by z 1 giving 

(1+  z ^), introducing a delay of one period. Its realisation has a range of 

choices.

i) D irect realisations of (1+ z - 1 ) for le ft-decom position  designs and 

(1+  z ~  * ) / ( l -  z ~  *) for right decomposition designs can be achieved by using some 

special circuit arrangem ents, F ig.4.3.
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• c \  ^  I

I— "

c.
(1+z -1)

U 2
V 2

V 2
C. 1 +z1

C2

2 C

F ig .4 .3  SC realisation of bilinear input functions

ii) A lternatively the following systems can be used for left and right 

decom positions

Left M atrix  D ecom position

A/W = - (  4>B + D ) V -  2 ( - J ) (4 9 a)

Ar V = *  W -  A / " 1 ( - J ) (4 9b)

R ieht M atrix D ecom position

AV = -<t> ( B/W + DV ) -  J (4 1 0 a )

W - ^  Br V -  2B / ' 1 J (4 1 0 b)

It can be verified that (4.9) and (4.10) are equivalent to the original system 

(4 .8b,c) respectively. T hey can be directly sim ulated by SC circuits with LDI type 

in tegrators. Notice if J  has only one nonzero input, i .e ., J  =  [ J j ,  0 ,.. .0  ], it is 

preferable to have the first colum n of Aj ~ 1 and B/_ 1 with as few nonzero

entries as possible. This num ber is minimised to one when Aj 1 and Bj 1 are-  1
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upper triangular m atrices or in other words when UL or IA or IB decompositions 

are selected. For digital realisation this m ethod is canonical in sense of the 

num ber of the delays. Examples of sixth order le f t -  and r ig h t-  LUD designs are 

shown in F ig .4.4.

Ci»

i V /
— i i -

C21

(a)

1  I ^

(b)

F ig .4 .4  E xact B ilinear— LDI SC ladders

(a) L e f t-U L D  type circuit

(b) R ig h t-  ULD type circuit
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iii) Both the above m ethods require some extra com ponents which may be a 

significant layout overhead for low order filters. They may be simply dispensed

with by replacing the (1 z ^) factor in the num erator function by 1 or z— 

resulting the same circuit structures as LDI ones. However this incurs a penalty 

warping function of (1+ z ) - 1  or z~  1 /2cos~ ! (wT/2 ) and a zero at half the

sampling frequency is lost. The distortion introduced in the passband by cos(uT/2)

can be corrected  by prewarping the original prototype ladder. This can also be 

conveniently com bined with sin(x)/x correction resulting in a x/tan(x) function, 

which can then  be superim posed on the frequency response specifications [117]. If 

the sam pling frequency is very high com pared with central frequency, which is 

m et by m ost practical design, x/tan(x) 1 and no real com pensation is necessary.

Exampl e  4.1:

T he bandpass ladder of F ig.l .2 is simulated by four switched— capacitor

circuits as shown in F ig.4.2. The design data are given in Table 4.1 and Table 

4.2. All the simulation circuits have been scaled for the maximum opam p output 

of 1. T he input stages have been chosen as single— input as m entioned above in

iii). T he  sam pling frequency is high enough to make the distortion negligible. The 

response of the circuits is shown in Fig.4 .5a,b. It can be seen that a zero at half 

the sam pling frequency is lost for single— input type circuits. T he following indices 

are used as global m easures of system sensitivity and dynamic range respectively

s(o>) = y
c i d|H(o>) | 2 1 / 2

( 4 .1 1 a )
. i ■ |H ( o ) | a Ci

d ( « )  - I "I m M j " )  |
J l/M ( 4 .1 1 b )

where {cj} and {Hm } are the sets of capacitances and opam p output voltage, 

respectively, and M is the num ber of opam ps. Plots of s(o>) and d(oo) of the 

filters can be com pared with a biquad circuit in Fig.4 .6 a ,b , where d(co) has been 

converted into dB, i .e ., 201og(d). It can be observed that the ladder simulations 

have lower sensitivity than the biquad circuit. Notice that circuits obtained from 

the left m atrix decom position exhibit high sensitivity near 0Hz. The biquad 

appears to have the best dynamic range for this particular exam ple. Left 

decom position circuits have considerably smaller capacitance spread than right 

decom position ones and biquads.
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Cl  0 .3 4 6 5  C2 0 .1 5 8 0
C3 0 .6 1 1 9  C4  0 .0 5 9 6
C5 0 .4 8 3 6
G in  1 .0 0 0 0  CL 0 .8 8 0 2

S a m p lin g  f r e q u e n c y  100 KHz 
Low er p a s s b a n d  ed g e  300 Hz 
U pper p a s s b a n d  ed g e  3400 Hz 
P a s s b a n d  r i p p l e  < 0 .2  dB
L ow er s to p b a n d  ed g e  10 Hz 
L ow er s to p b a n d  a t t . >  30 dB 
U p p er s to p b a n d  ed g e  5000 Hz 
U p p er s to p b a n d  a t t .  > 45 dB

Table 4.1 Design data for the prototype ladder

L e f t  - L e f t  - R ig h t - R ig h t -
LUD Di r e c t ( IA) LUD D ir e c t  ( B I )

Cl 1 . 0 0 0 1 . 0 0 0 3 .1 4 7 3 147
C2 9 .1 7 4 9 .1 7 4 9 .3 9 2 9 392
C3 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 0 0 0
c 4 3 .6 2 0 3 .6 2 0 9 .8 2 1 9 821

1 .6 1 5 1 .6 1 5 3 .3 8 7 1 .6 1 5
C6 1 .2 6 6 1 .2 6 6 1 .2 6 6 1 266
c 7 4 .4 4 5 3 .4 3 5 3 .4 3 5 3 435
C8 1 .3 7 5 1 .3 7 5 4 .0 4 4 4 044
c 9 3 .7 3 6 3 .7 3 6 2 .3 9 1 5 433
c 1 0 2 1 .6 9 7 2 5 .4 5 1 2 2 .4 7 4 22 474
C11 4 .6 3 2 5 .4 3 3 1 .6 9 0 3 736
c 12 2 1 .1 6 9 2 2 .4 7 4 1 1 . 2 0 1 25 451
c 13 1 .5 7 3 1 .5 7 3 2 .9 3 5 1 0 0 0

c 14 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 573
c 15 1 .6 1 2 1 . 0 0 0 2 .0 7 4 1 473

c 16 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 0 0 0

c 17 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 2 137

c 18 8 .3 2 6 9 .3 2 5 9 .9 5 3 7 070

c 19 1 . 0 0 0 1 .2 6 5 1 . 0 0 0 1 0 0 0

c 20 4 .8 0 4 5 .4 7 5 5 1 .2 3 2 1 0 6 8 6

C21 3 .9 0 7 3 .9 0 7 1 .2 5 2 1 252

c 22 4 .9 9 9 4 .9 9 9 1 .4 0 7 1 0 0 0

c 23 3 .1 2 0 3 .1 2 0 1 . 0 0 0 1 0 0 0

t o t a l 1 1 1 .1 9 9 1 1 7 .3 7 3 1 5 0 .1 0 9 123 014
s p r e a d 2 1 .6 9 7 2 5 .4 5 1 5 1 .2 3 2 25 .451

Table 4.2 Design data for various SC ladder simulations

L2 0 .2 4 8 4  
L4  0 .3 0 0 6  
L5 4 . 0 3 6 2
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4.3 .3) U L - L U  and  L U - U L  SC ladders

T he U L— LU and LU— UL design can also be applied to SC circuits. The 

principle is the sam e as that for RC circuits, apart from  some consideration for 

the term ination  stages to get correct arrangem ent of switching phases. Eq.(4.7) 

can be rearranged  as

( i  A + 4>B + zDj  + 

A = 2/T C +T /2r-C 1+Gn

Dn ) V

B=2TT

= ( l + z ) J '  

D1=2G1 Dn-2G n

( 4 .1 2 a )

( 4 .1 2 b )

or

( i  A + tfB + z - 1 Di + Dn) V = (1 + z - ! ) J ( 4 .1 2 c )

A=2/TC +T/2r+G 1 -Gn B=2Tr D1=2G1 coCMIIcp ( 4 . 1 2 d)

F orm ulae for U L— LU  ladder design

Let

A = Ua  La ( 4 .1 3 a )

B = Lb Ub ( 4 .1 3 b )

Define

UL -  tf"1 ( La V + Ua" 1 J  ) ( 4 .1 3 c )

Wb = Ub V

C]_ = d i a g [  g n  , 0 , . . . , 0
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Gn = d ia g [  0 , . . . , 0 , g nn ] ( 4 .1 3 f )

Dl s  = 2 G1 L a " 1 ( 4 . 1 3g)

Dn s  = 2 Gn u b - 1  (4. 13h)

T he upper triangular m atrix U as and lower triangular m atrix Lbs are defined to

satisfy the identity

Ga s  La  = Lb s  Ub ( 4 . 1 3 i )

Also let

J'  (l+DlsA"1)J (4.13j)

T hen (4.11a) can be linearised as

ua wa - M  («.b+Dns)Wb+<tDlsWa) * (2+DlsUa-1)J (4.14a)

Lbs Wb - t Ubs Wa - UasUa'lj (4.14b)

T he ou tpu t is wb n .

F orm ulae  for U L— LU  ladder design

Let

A = La Ua (4.15a)

B = Ub Lb (4.15b)

D efine

wa = u a V (4.15c)

Wb = Lb V -  2Ub “ 1J (4.15d)
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C l - d ia g [ S l l , 0 , . . . , 0  ] (4 . 15 e)

Gn = di ag [ 0 , . . . , 0 , Snn 1 (4 . 1 5 f )

Dls = 2 CX L b" 1 (4 ,•15g)

Dn s c0CMII

Ua' 1 (4 . 15h)

T he lower triangular m atrix and upper triangular m atrix U ^s are defined to 

satisfy the identity

^ a s  ^ a  ^ b s  

T hen (4.11c) can be linearised as

La Wa - -[(4Ub+Dls)Wb+<tDnsWal - (l+2DlsUb-l)J (4.16a)

ubs wb -  * Las Wa - 2UbsUb-lj (4.16b)

T he output is wa n . Two exam ples of UL—LU and LU—UL circuits are shown in 

F ig .4.7.
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Ci s

(b)

Fig.4.7 (a) A U L - LU SC ladder and (b) A L U - UL SC ladder

4.3.4) Canonical discrete ladders

C anonical SC ladders can be designed in the same m anner as that for 

active— RC circuits. Suppose that a change of parity of the num erator of the 

transfer function has been applied as Section 3.5.2. Start from the modified 

prototype (3.25) and perform  the bilinear transform ation

2 l - z ~ l  T 1+z 1
------------ c + -------------- r + c
T 1 + z ' 1 2 1 - z - 1

V =
2 1 - z " 1 T 1 + z " 1

------------------J + -------------------
T 1+z

ojj 2J
- 1 2 1 - z " 1

( 4 . 17a)

T he system  can be rearranged as

( i A + <t>B + D ) V = (1+ coj2) ^  + 44>wi2J ( 4 . 17b)



( i  A + *B + D ) V -  (1 +  co|2 ) ^ J  + 4^cot 2 J ( 4 . 1 7 c )

w here A , B and  D  are defined in the  sam e way as in (4 .8 ). T he above 

equations can  be linearised  respectively as

L eft M a trix  D ecom position

A ZW = - (  <t>B + G ) V - <t4o>i 2 ( - J ) ( 4 . 1 8 a )

Ar V = ¥  W -  A / " 1 ^ 2 * 1 ) ( - J ) ( 4 . 1 8 b )

R ieh t M atrix D ecom position

AV = -<t> ( B/W + CV ) -  ( u j 2 + 1 ) ( - J ) (4 1 9 a )

W - *  (B r V + 4c0i2 B z (4 1 9 b )

Som e exam ples of these canonical circuits by U L  decom positions are  shown 

in F ig .4 .8 .

V,In
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F ig .4 .8  C an o n ica l B ilinear— LD I SC ladders

(a) L eft— U L D  type c ircu it

(b) R ight— U L D  type  c ircu it

4 .4  M O D IF IC A T IO N  O F  B IL IN E A R  D ISC R E T E  L A D D ER S

In som e cases m atrix  A  in (4 .8) has m ore n o n — zero  en tries than  its 

co u n te rp a rt m atrix  in (4 .3 ), costing m ore circuit elem ents in realisation. This

happens w hen th ere  are  inductance branches w ithout corresponding  parallel 

capacitance  b ranches in the pro to type and consequently  A  is less sparse than  C

after adding the  non— zero  en tries of (T /2 )T  to the zero en tries of (2 /T )C . T he 

pure inductance  b ranches a re  norm ally used to realise poles a t infinity. Since the 

en tries in (T /2 )T  are  usually m uch sm aller than  those in (2 /T )C , addition of

(T /2 )T  to (2 /T )C  also causes an  uneven distribution of values in A  and  results in 

a large capac itance  sp read  in the  SC im plem entation .

T he  difficulty  can be overcom e by placing a negative capacito r, C j> in

parallel w ith th e  purely  inductive b ranch , Lj, of value

Cj = -
T2 1 

4 Li
( 4 . 2 0 )
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T h en  from  (4 .8) the contributions of Cj and Lj will cancel each o ther. This 

reduces bo th  the num ber of capacitors and spread  of capacitance values. T he

resonan t frequency  of the  pole due to Cj and Lj is given by

-1 4
s2 = -----  =   = (±2fs)2 (4.21)

r  1 ^  C j  T 2

w here fs is the sam pling frequency. If Lj is a series inductance b ranch  in a

ladder, sr will becom e a pole of the transfer function . T he  response e rro r thus 

caused can  be e lim inated  in the  approxim ation p rocedure , by replacing poles at 

infinity  by ones a t — 2fs on the real axis. T he negative capacitance required  can 

then  be in co rpo ra ted  in the synthesis of the passive ladder p ro to type [117]. T he 

low— sensitivity p roperties  are no t influenced by the in troduction  of negative

elem ents (Section  2 .4).

4 .5  H IG H  O R D E R  D IS C R E T E  FIL T E R  D ESIG N

In l e f t —L U D  design, the  m atrix  A  is decom posed in to  LU triangular form ,

A - LaLaT (4.22)

T he separa tion  of th e  non— zero off— diagonal en tries to  L a and  LaT  rem ove the 

delay— free  loops com m on to leapfrog and coupled— biquad sim ulations.

T h e  m ain  circu it features influencing opam p settling tim es fo r SC realisation 

are  now  the  long unsw itched chains opam ps and capacitors along which signals 

will be delayed. T h e  p roblem  is not specific to l e f t —L U D  design and  exists

together w ith delay— free  loops in o ther circuits.

E xactly  the  sam e problem  is reflected  in digital realisations as the  long chain

of series m ultip lication  operations w ithout in terrup tion  by delays. T hese operations 

m ust be p erfo rm ed  in a sequential o rder and so preven t the use of parallel 

processing techniques.

T he  above p roblem s arise when m atrix  A  has successive non— zero
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off—diagonal en tries. T hey  can be avoided for low o rd e r design (w ith m atrix  

o rders less than  or equal to 3) by application of the inverse m atrix  m ethod

in troduced  in Section 3 .6 .2 .

F o r high o rder SC filters, the inductor and negative capacitor pairs

in troduced  in Section 4.6 can be used to cancel the off—diagonal non—zero 

en tries in A  and th erefo re  break the long chains. A  com bination  of negative 

elem ents and  the inverse m atrix  decom position is useful, provided differential

in tegra to rs are  available. Real zeros can be in troduced , to m ake A  a block 

diagonal m atrix  w ith second or th ird  o rder d iagonal blocks. E ach  of the  blocks 

can be realised  by the inverse m atrix  m ethod with the shortest unsw itched chains. 

H igh o rd e r filters which are  particularly  sensitive to non— ideal factors like finite

opam p G B or on—resistance of switches [33,34] will benefit from  this technique.

E x a m p l e  4.2:

A  20th o rd e r bandpass ladder, F ig .4 .9 , is sim ulated by the  left— LU D  circuit, 

F ig .4 .10 . N otice this schem atic is draw n in a d ifferen t way from  those used 

earlie r. T h e  structu re  is very regular and  the long unsw itched capacito r op— am p 

chains have been  broken  by introducing two negative elem ents into the p ro to type. 

T he  response of the  circuit is shown in F ig s .l la ,b .  T he com ponen t values for the 

circuit a re  listed in T able  4.2.

C2 C3 C5 C5 C s  Cn C12 On
- I h  H h  H hHI—| H hH h  H h

J

Fig.4.9 A 20th order ladder prototype
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Fig.4.10 A 20th order left—LUD SC ladder
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Normalised data for the RLC ladder

Gin 1. 0 GL 0.51020
Cl 2.4200 LI 0.39346
C3 7.9789 L3 0.16361
C5 - 0 .0 0 1 2 3 7 L5 2.5595
C7 10.453 L7 0.09341
C9 0.597 87
Cl l - 0 . 0 0 1 6 5 9 9 L l l 1.9075
C13 7.6061 L13 0.14009Cl 5 0 .51578
lower passband edge 0.9075
lower stopband edge 0.877
passband r i p p l e  < 0.03dB
lower stopband a t t e n .  > 95dB

C2 9.1911 L2 0.084942
C4 8.5633 L4 0.11936
C6 1.4699 L6 0.99020
C8 3.2603 L8 0.23531
CIO 10.308 L10 0.095873
C12 3.1240 L12 0.42852
C14 3.04204 L14 0.23821

upper passband edge 1 .1065
upper stopband edge 1 .132

upper stopband a t t e n .  > 85dB

Component va lues  for the SC ladder

NODE1 NODE2 VALUE NODE1 NODE2 VALUE4 3 24 .38 4 5 10.37
8 7 39 .09 10 9 47.51

12 13 4 .401 14 13 5.049
18 17 46 .54 18 19 7.795
22 21 2 .7 1 2 24 23 16.32
28 25 18 .62 28 27 30.77
32 31 22 .63 34 31 9.969
36 35 31 .09 38 37 32.58

2 39 6.541 2 41 30.91
47 48 1.000 49 50 1.000
55 56 1.000 57 58 1.000
63 64 3.764 65 64 4.341
71 68 1.000 65 74 6.80571 80 1.000 77 80 10.02
83 86 5 .139 89 86 2.533
95 96 10 .65 97 96 1.000

103 100 4.128 97 106 1.463
103 112 1.243 109 112 1.000
115 3 1.000

NODE1 NODE2 VALUE NODE1 NODE2 VALUE
6 5 9.095 6 7 40.92

10 11 6.576 12 11 25.31
14 15 4.493 16 15 43.78
20 19 14.39 20 21 4.113
26 23 18.05 26 25 28.15
30 29 28.71 32 29 9.335
34 33 34.52 36 33 3.243
40 37 15.40 40 39 28 .45
43 44 1.000 45 46 1.000
51 52 1.000 53 54 1.000
59 60 1.000 61 62 1.000
63 68 1.670 65 68 3.558
71 74 13.62 77 74 1.000
83 80 2.349 77 86 1.000
83 92 1.000 89 92 1.852
95 100 1.000 97 100 10.70

103 106 4.049 109 106 1.000
24 3 2.993 2 21 1.383

t o t a l  c a p a c i t a n c e  
ca p a c i ta n ce  u n i t  
number o f  c a p a c i t o r s  
number o f  opamps 
lower passband edge 
lower stopband edge

814 u n i t s  
1 pF 

73 
20

10.1 kHz 
9.18 kHz

cap ac i ta n ce  spread  
cl ock  frequency  
number of  sw i tc hes

upper passband edge 
upper stopband edge

47 .5  u n i t s  
800 kHz 

81

12 .45 kHz 
13 .00 kHz

Table 4.3 Design data for a 20th order SC ladder
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4.6 DIGITAL BILINEAR—LDI LADDERS

4 .6 .1 ) D ig ita l L U —LU  ladders

Being w ithout of delay free loops, the LU D  approach  is a strong candidate 

for digital filte r design. T h e  design procedures can be considered  to be identical 

to those fo r left—L U D , UL —LU and L U —U L  type SC circuits by using digital 

c ircu it realisations of and given in F ig .4.12. H ow ever as digital circuit 

im p lem en ta tion  is very flexible, th ere  is som e variation betw een circuit structures.

M ultip lication  is the  m ost costly operation  in digital im plem entation . It is 

desirab le to  m inim ise the  num ber of m ultiplications and  th e  num ber of m ultiplier 

coefficients. T his can  be done by inserting scaling m atrices in the  decom position  

p rocedures w hich a ie  applied  to both  left and right m atrices.

As m atrix  A  in (4 .3) is always sym m etric for passive netw orks, its LU 

decom position  can  be expressed in a sym m etric form

w here D a is a d iagonal m atrix , appropria te ly  chosen to set every diagonal e lem ent 

of L a to  unity . S epera te  1^  into diagonal and off— diagonal term s

z- 1

©■ z- 1
o-

X X

F ig .4 .1 2  A  p a ir  o f dig ital in teg ra to rs

A La  Da La ^ ( 4 . 2 3 )

( 4 . 2 4 )

Also le t B be LU factorised  into

B — Lj^
T ( 4 . 2 5 )
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T h en  the  s o -  called L U -  LU type system follows

W -  - (  « . b Db L*+ G ) V -  La o f f d  W + ( l + z " 1 ) j  ( 4 . 2 6 a )

v  -  -  L a o f f d  v  + *  Da ' 1 w ( 4 . 2 6 b )

E x a m p l e  4.3:

T h e  follow ing exam ple illustrates the  design procedures for a standard  and  a 

scaled L U D  digital circuit. F or the  passive netw ork, F ig .4 .13a, (3 .1) becom es

3 . 6 2  0 . 1 7 1 0 . 2 4 2  0 . 2 4 2
s 0 . 1 7 1  6 . 5 7  0 . 8 0 2 +s  1 0 . 2 4 2  0 . 5 0 3  0 . 2 6 1

0 . 8 0 2  6 . 7 1  0 . 5 7 7 0 . 2 6 1  0 . 5 3 5  0 . 2 7 3
0 . 5 7 7  3 . 6 6  . 0 . 2 7 3  0 . 2 7 3  .

1 J i n
+ 0 V 0

0 0
1 . . 0  .

( 4 . 2 7 )

w here V =  [v^, — v j ,  V3 , — v ^ T .  Let T = 2  for sim plicity. Perform  th e  b ilinear 

tran sfo rm atio n  s=  2(1— z— 1)/T(1 +  z— 1) and follow the procedure from  (4 .8) and 

(4.26) using a LU  decom position. T he relevant m atrices are

1 ' 4 . 8 6 1 0 . 0 8 5
A= 0 . 0 8 5  1 7 . 0 4 1 0 .1 5 1

0 . 1 5 1  1 7 . 0 8 1 0 . 1 2 1
0 . 1 2 1  1 . 4 . 8 3 . 1

( 4 . 2 8 a )

1 0 . 9 6 8 1 1
B -  4T = 1 1 1 . 0 6 1 1

1 1 1 . 0 9 1 1

1 .

( 4 . 2 8 b )

2G = ( 4 . 2 8 c )

T h e  s tan d ard  L U - L U  realisation can now be draw n, F ig .4 .14.
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L 2 L 4  L 6

J

9in =  IS 
c, = 3.450F 
c3 = 5.60 IF 
c, = 5.328F 
c7 = 3.082F

9l =  IS 
c2 = 0.1717F 
c4 = 0.8016F 
f6 = 0.5722F

L 2 = 4.137H 
La = 3.828H 
L6 = 3.659H

Fig.4.13 A 7th order ladder prototype

a ,  = 0 . 2 0 5 6  b, = - 0 .9 6 6 8  c, = -0 .0 8 5 0  d, = - 2

a ,  = 0.1420 bj = - 1 045  c 2 = -0 .1509 d 2 = - 2

q 3 = 0 1412 b3 = - 1 093 c 3 = - 0.1201

a. = 0 2 0 7 0

ii

Fig.4.14 A digital LU—LU ladder
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T h e  digital realisation  in Fig. 4.14 has a canonical num ber of d istinct 

m u ltip lication  coefficients, which equals the num ber of com ponents in the 

p ro to ty p e . T h e  num ber of m ultiplications is no t canonical since the en tries of

m atrix  L ao ff^ is used twice for m ultiplication in (4 .26). T his will reduce the

o p era tio n  speed  in sequential processors. H ow ever for im plem entation  on array  

processors this is no longer a m ajor problem  as now the speed is m ainly

in fluenced  by the degree of parallelism . Indeed the bottleneck for parallel 

processing is now  the  series m ultiplication chain along the horizontal line in 

F ig .4 .14  as they  m ust be processed serially in the d irection of signal flow. T he

series m ultip lication  chain  problem  bears an interesting relationship  to the 

c a p a c ito r -  opam p  chain  problem  m entioned  in Section 4 .6 , as they  are  both

caused by the  non— zero off— diagonal en tries in the left hand  side m atrix .

4 .6 .2 ) Scaling  tech n iq u e  to  increase  paralle lism

T h e  o p era tio n  speed along the series m ultiplication chain  in digital circuits

can be increased  by scaling all non— zero elem ents in La to the ir n earest pow ers 

of 2. T h e  opera tio n  required  to m ultiply a num ber by 2 ~  ^ is sim ply to shift it 

by k bits. It is also possible to scale all non— zero entries in L a to ±1 's , bu t this

results in  a very large coefficient spread. T he  scaling procedure can be perfo rm ed

in term s o f m atrix  transform ations. Let S be a diagonal constan t m atrix , p re—

and p ost— m ultip ly  the m atrices in equation  (4.8) by S. Let

As = S A S Bs = S B S  Ds = S D S

v s  = S " 1 V J s = S J  ( 4 . 2 9 )

A  new  system  is ob tained  with a transfer function differing from  th a t o f system 

(4 .8) only  by a constan t.

4 . 3 0= ( l + z ) J+ <PB

Scaling is carried  ou t so th a t will decom pose into

— ^ a s ^ a s ^ a s  ( 4 . 3 1 )
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w here every  diagonal e lem ent of L as is 1 and also the u p p er— diagonal elem ents 

are  pow ers of 2. It can  be verified tha t this procedure is possible provided A s is 

tr i—diagonal, which is always the case for a ladder structure .

E x a m p le  4.4:

T o produce  a scaled realisation , continue from  E xam ple 4.3 by choosing the 

scaling m atrix  S,

S = d i a g  [ 0 . 6 0 3 ,  0 . 4 4 4 ,  0 . 7 3 5 ,  0 . 7 6 5 ]  ( 4 . 3 2 )

T h en  for (4 .29—4.31)

1 1 . 7 7 1 2 ~ 4
2 - 4 1 . 3 9 1 2 " 21—1

CN1CM 3 . 8 2 1 2 " 3
2 " 3 1 2 . 8 2  . 1 .

0 . 6 0 3 '1 0 . 9 6 8 1 1 0 . 6 0 3
0 . 4 4 4 1 1 1 . 0 6 1 1 0 . 4 4 4

0 . 7 3 5 1 1 1 . 0 9 1 1 0 . 7 3 5
0 . 7 6 5  . 1 . 0 . 7 6 5 .

' 0 . 6 0 3 '2 0 . 6 0 3
0 . 4 4 4 0 0 . 4 4 4

0 . 7 3 5 0 0 . 7 3 5
0 . 7 6 5  . 2 . 0 . 7 6 5 .

( 4 . 3 3 )

T h e  scaled realisation  by topological decom position of Bs show n in F ig .4.15 

follows.
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a,  = 0 5651 b, = - 0 . 9 6 6 8  c,  = 0 . 6 0 3 2  d. =

a ,  = 0 . 7 21 9  b,  = -1.CU.5 c ,  = 0. 4,435 b,  =

a 3 = 0. 2616 b3 = - 1 . 0 9 3  c 3 = 0.734.7

a_ = 0.35A1 c , = 0.764,6

-  2 

-  2

fs-= 0. 9225

F ig .4 .15  A  scaled  digital L U — L U  ladder

E x a m p l e  4.5:

T o  illustra te  the  influence of coefficience quan tisation , a wave, a L U—LU

and a b iquad digital filte r are  designed with the  sam e frequency  response shown 

in F ig .4 .16 . L U —LU and  wave design still use th e  sam e RLC circuit in F ig .4.12

as the p ro to ty p e  but sam pling frequency is changed  to 32000H z. It is assumed

that floating  p o in t storage of coefficients is used. All the  coefficients are 

tru n ca ted  to  th e  n ea rest sm aller num ber.

T he  de ta iled  passband response for 8 bits im plem enta tion  given in F ig .4.17

shows a quite serious overall distortion  fo r the biquad, w hereas all o ther responses 

are  alm ost ideal. W hen the w ordlength is reduced  to 4 bits, the  overall filter 

response fo r wave and  LU D  derived typies are  re ta ined  with reasonable accuracy 

while th e  b iquad response variation is d ram atic , F ig .4.18.
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Fig.4.17 Passband responses with 8—bit digital realisation
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Fig.4.18 Overall responses with 4—bit digital realisation
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4.7 STATISTICAL STUDIES

A num ber of d iscrete ladder structures have been covered in this ch ap te r, 

including bo th  existing and novel ones. P roperly  selecting a suitable struc tu re  for 

a particu la r specification  is very im portan t in practical design. It is difficult to set 

up a general rule fo r this purpose. Som e observations have been m ade for SC 

designs from  our experience  as follows.

F o r m ost SC netw orks, such as m odem  or codec filters, specifications are  of 

lowpass o r bandpass types. F or lowpass designs the R ight— LU D  m ethod  (w hich is 

identical to  the  leapfrog  one [51] in the lowpass case) appears the  best candidate  

since it can  provide a canonical solution with low spread  and  low sensitivity. It is 

m ore com plica ted  to reach  a decision about bandpass designs as th e  perfo rm ances 

of all kinds of circuits vary dram atically  according to the relative bandw idth . This 

can  be seen  from  som e statistical studies.

As the  passband behaviour is of m ost in trest to filter designers, define two 

indices fo r system  sensitivity and dynam ic range, which a re  the average m easures 

o f s(to) and  d(co), defined  by (4 .11), in the passband

S = width of passband
passband

s (co)du) (4.34a)

D = 1
width of passband

passband

d(w)du) (4.34b)

N orm ally  the ch ip  area  required  for fabrication  of a SC filter is m easured by

Tc = I Ci (4.34c)

all capacitors

but to  re flec t the  influence of capacitance spread the following index will also be 

used
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c ( 4 . 3 4d)

a l 1 c a p a c  i t o r s

A  overall perfo rm ance  index of an SC filter can be defined by

C S
P ( 4 . 3 4 e )

D

F o r these  indices, it is desirable to  have lower S, T c , C and  P (the  low er 

lim it is 0). T he  m axim um  opam p ou tpu t will always be assum ed to  have been 

scaled to  1, so th a t D  will always be a positive num ber less th an  1. It is 

desirable to have D close to 1, which m eans th a t all the  opam ps have equal 

ou tp u t swing in the  passband.

F o r a bandpass filter the relative bandw idth is defined by (le t of1- and  of~ be 

the  u p p er and  low er edge frequency respectively),

It is know n th a t RBW  has a great influence on the system  perfo rm ance. F o r 6 th  

o rd e r ellip tic  designs, let the passband ripple be fixed as 0.1 dB , stopband 

a tten u a tio n  50 dB an d  fm /f s ratio  25 (2-?rfm=  o ^ ,  fs is th e  sam pling frequency). 

C om p u ter sim ulations of S, T c , D and P are  perfo rm ed  against relative 

bandw idth . T h e  sw eeped results are  shown in F ig .4.19—4.22. A  sim ilar study has 

been  carried  ou t for 10th o rder designs, F ig .4 .23—4.26. F rom  these results it can  

be seen th a t the  left— decom position designs have very good to ta l capacitance 

p ro p erty  in th e  narrow  band range but th a t the biquad m ethod  takes over at 

a round  R B W = 1. F o r the sensitivity index S all the ladder designs are  m uch 

b e tte r th an  the  biquad m ethod  over the whole range. T he dynam ic range index D 

of th e  biquad m ethod  is discountinuous a t som e points. T his m ay be due to the 

fact th a t E — type and  F — type biquads are  selected according to  Q — facto r and  

discontinuity  of in te rna l nodal voltages m ay take place w hen th e  design is 

sw itched from  E — type to F — type o r vice versa. A nother reason  is th a t the 

pairing  o f b iquadratic sections is carried  out to achieve m inim um  total 

capac itance , w hich does no t take into consideration voltage levels.

C om paring  the  overall perform ance indices indicates th a t the  left— LU D

RBW = ( o ^ - o r ) / ^  = (oj+oT ) 1/ 2 ( 4 . 3 5 )
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m ethod  is the best candidate  for narrow  band design and  the  biquad m ethod is 

best for wide band  design. It is found th a t for wide band designs the m ost 

significant fac to r causing the deterio ra tion  of all designs is the  low er band finite 

zeroes, w hich ap p ro ach  zero  w hen RBW increases. R ealisations of these zeroes 

require  large capacitance  spread. T he deterio ra tion  process can be slowed down if 

the low er band finite zeroes are  replaced a t the  origin. A  8 th  o rd er sweep is 

carried  ou t with the form  of transfer function  shown in F ig .4 .27 , w here th ree  

zeroes a re  placed a t origin. T he fixed param eter are  fm /fs= 2 5 ,  passband 

r ip p le = 0 .1 , (passband w idth)/(stopband w id th )= 1 .1 5 . T he  results are  shown in 

F ig .4 .28— 4.31 and  in this case the left— LU D  appears to have best perform ance 

in every  respect.

A no th er two less com m on cases are bandstop and  highpass designs. F or 

bandstop  design th e  cascade biquads m ethod is still the  best cand idate . A lthough it 

is no t c lear why ladders canno t provide a good solution (even by the tw intor 

c ircu it discussed in C h ap te r 5). It seem s th a t it is even no t necessary to search

for a b e tte r solution o th e r than  cascade biquads circuits, they  are  just good 

enough regard ing  sensitivity, spread and dynam ic range. T his is probably  due to

the  fac t th a t th e  tran sfe r function  of a section of biquad is na turally  a no tch  type 

function . F o r highpass design the biquad and  leapfrog (w ith m odulators discussed 

in C h ap te r 5) m ethods a re  recom m ended. It seem s th a t o th e r  ladder m ethods can 

also be em ployed  fo r highpass designs with som e m odifications but this requires 

fu rth e r investigation.

4 .8  SU M M A R Y

In this ch ap te r , m atrix  m ethods have been  ex tended  to  SC and  digital filter

design. T h e  basic p rincip le  is the sam e as for the  continuous dom ain  systems.

T echniques have been  developed to m eet som e special requ irem ents for d iscrete 

system s, such as effic ien t realisation of exact s— to— z m apped  system s and  to 

increase the  parallelism  in the circuit structures.

S ince SC circuits a re  fully in tegrated  and canno t be tuned  a fte r fabrication , 

it is particu larily  im p o rtan t to  design circuits with low sensitivity to  e rro rs  in the 

e lem en t values. F o r this reason , ladder structures have found wide industrial 

app lica tion . D etailed  com parison  have been m ade betw een d ifferen t types of 

designs and  th e  advantages of adopting ladder structures for high quality systems 

have been  d em onstra ted .
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5.1 INTRODUCTION

T h e  standard  b ilinear— LD I m ethods in troduced  in C h ap te r 4 fo r d iscrete 

ladder design can be applied  directly  to lowpass and  band— pass but no t to

high— pass and  band— stop designs. T he  difficulty is th a t fo r these la tte r  cases the 

tran sfe r function  is no t of zero  value a t z=  — 1 (co rrespond ing  to  s =  °o in 

con tinuous dom ain). H ow ever the  inpu t fuctions of (4 .8a) and  (4 .8c) reach  zero 

a t z=  — 1. T h is im plies th a t the tran sfe r function  from  ( l- i- z ) J  o r ( l + z — 1 )J  to 

the  o u tp u t m ust be infin ite a t z=  — 1 to facilitate  cancella tion , w hich inevitably

results in an  unstable system . T his p rob lem  can be avoided by canon ical design in 

Section  4 .3 .4  o r by th e  frequency transfo rm ation  m ethod  discussed in th is ch ap te r.

T h e  basic idea of frequency transfo rm ation  m ethods is to rep lace  the

standard  LD I o p era to r pairs by a set o f o p era to r pairs w hich a re  ad ap ted  to the 

type of th e  filter specifications. T h e  inpu t stage can  th en  be m ade to  realise a 

transm ission zero  in the  stopband , so th a t no stability p rob lem  will arise.

F o r digital realisation  these transfo rm ation  m ethods also have th e  advantage 

of preserv ing  th e  c ircu it s tru c tu re ; a useful p ro p erty  fo r p rogram m able

app lications. In  bandpass and  bandstop  cases the  cost o f add itions in a 

transfo rm ed  realisation  is low er th an  th a t in a d irec t realisation  and  w hen the 

ra tio  betw een sam pling and  cen tre  frequencies is selectab le the  cost of 

m ultip lications can  also be greatly  reduced .

A new  type of second o rd e r building— block called  a tw in to r (T W inned  

IN T egratO R ) is in troduced  fo r realising bandstop SC o p era to rs . T h e  circu it uses 

two signal channels to directly  realise the  basic bandstop o p era to rs  w ithout te rm  

cancellations, and  also reduces th e  requ ired  opam p o p era tio n  speed . E ith e r 

single— inpu t o r d ifferen tia l— input in tegra to rs a re  allow ed, giving flexibility  for 

fabrica tion .

Based o n  th e  transfo rm ation  o f a lowpass function  in to  o th e r types of 

functions, the  following discussion is restric ted  to the  realisations o f system s with 

geom etrically  sym m etric frequency response.
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5 .2  F R E Q U E N C Y  T R A N SFO R M A T IO N  M E T H O D S  F O R  D IG IT A L  L A D D E R  

D E SIG N

A gain starting  from  a norm alised lowpass re fe rence  passive ladder with nodal 

descrip tion

( 5 . 1 )

It is well know n [2] th a t in the continuous tim e dom ain  a low pass function  can

be tran sfo rm ed  in to  a bandpass, bandstop o r a highpass func tion  by frequency

tran sfo rm atio n s, F ig .5 .1 . It will be show n in th is ch ap te r  th a t these

tran sfo rm atio n s can  be used to derive a fam ily of o p era to rs  fo r d ifferen t

app lica tions.

4  H

CjJCjJ

n  H

1

(a) (b) (c) (d)

Fig.5.1 Illustration of frequency transformations

(a) A lowpass reference function

(b) A highpass function

(c) A bandstop function

(d) A bandpass function
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5 .2 .1 ) Low pass to  highpass tran sfo rm atio n

In th e  continuous tim e dom ain lowpass to highpass transfo rm ation  is carried  

ou t by

00
+ 4 -  ( 5 . 2 )

w here oo is the low er passband edge. A fter b ilinear tran sfo rm atio n , it can  be 

seen th a t substitu tion  of the reference  system  (5 .1) accord ing  to  th e  re lationsh ip

1 - z " 1
------------  ( 5 . 3 )

oo T 1+ z 1

will tran sfo rm  the  lowpass reference  into the desired  highpass system . C om pared  

w ith th e  denorm alised  lowpass system  obtained  from  (5 .1) accord ing  to  (oo^is the 

u p p er passband  edge)

oo+T 1+ z 1
+ --------------------------  ( 5 . 4 )

2 l - z “ 1

It can  be seen th a t ap a rt from  a scaling fac to r, th e  highpass system  can  be 

derived  from  a lowpass one by sim ply substituting z—1 +  — z— 1. Equivalently , 

highpass system s can be ob tained  by substituting th e  stan d ard  LD I o p era to rs  in a 

lowpass one  by a pa ir o f highpass opera to rs, T ab le  5 .1 ,

* h p  -  l / d + z ' 1 ) ( 5 . 5 a )

^ h p  “  - z - ' / d + z ' 1 ) ( 5 . 5 b )

an d  substitu ting  the inpu t stage in  the lowpass system , l + z — 1, by 1 — z— ^ . A  

no tch  is sh ifted  to  the  origin and  the instability  p rob lem  is avoided.

A n a lte rna tive  app roach  to realising z ~ * +  — z— * can  be derived  by using 

th e  m odula tion  m ethod  [59]. If a tim e dom ain  series f(n) is m odula ted  to  given 

f*(n) accord ing  to

f * ( n )  -
f ( n )  n  e v e n  ( 5 . 6 a )

- f ( n )  n  o d d  ( 5 . 6 b)

th en  th e ir  z— transform ations are  re la ted  by
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00

Z * ( z )  = Z ( f * ( n )  } = I  ( - 1 ) n f ( n )  z " n = Z { f ( n )  } = Z ( - z )
n z-» -z

( 5 . 7 )

T h e  m odulation  function  of (5 ,6) can  be realised  by the  c ircu it shown in 

F ig .5 .2a w ith two sw itches and an  inverter. If m odulato rs are  inserted  in both 

in p u t and  o u tp u t ends of a lowpass filter, F ig .5 .2b , th e  ou tp u t of the first 

m odu la to r is Vjn (— z) and the ou tp u t of the  second m odu la to r is H ( - z ) V in(z). 

H ence  a highpass function  is ob ta ined .

;a) f(n) f (n)

highpass

(b) i n

l owpass

H
e e

out

Fig.5.2 Modulator and highpass digital filter realisation

(a) A modulator

(b) Highpass digital filter realisation using

a lowpass system and two modulators
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a low pass system  and  tw o m odu la to rs

5 .2 .2 )  Low pass to  b andstop  tran sfo rm atio n

In the  continuous tim e dom ain  a sym m etric bandstop function  can be derived 

from  a norm alised  lowpass one by transfo rm ation  [2 ],

s ----» a -1 ( —  + — -  ) - l  (5 .8a )
^ra s

w i t h  a -  - a + _ a-  “ m -  y ( 5 -8 b >

S ubstitu te (5 .8) into (5.1) and p erfo rm  the  b ilinear transfo rm tion  

s=  2 ( l - z _ 1 ) /T( l - t - z_ 1 ),

2 1-z  oĵ T l + z “l  _i 2 1-z 1 OV.T 1+z ^
a"1(---------- + ---------- ) C + a (---------- + ------------)T + CfV=J

cjjjjT l + z “ l  2 l - z “l  oJmT 1+z- -*- 2 l - z ~ l

(5.9)

M ultiply th rough  (5 .9) by the  coefficient of f  and  rearran g e  to  give

( *bs-l A + *bs B + D ) - (fl+2) J (5.10a)

or

( $bs_1 A + ^bs B + D ) = (-4)"1+2) J (5.10b)

$b s= ( l - | 3 z - l ) / ( l - z - 2 )

*bs= (z"2-|Sz-1) / ( l - z - 2)

(5.11a)

(5.11b)
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A  =  a - * - C  +  a r  ± G ( 5 . 1 1 c )

B = 4  a  T ( 5 . l i d )

D = 2 G ( 5 . l i e )

^  = wmT/ 2 (5.Ilf)

ot = a ( i x ^ -  + n ) (5.11g)

( 3  =  ( n  1  -  / * ) / ( /*  1 +  n ) (5.llh)

w here th e  sign of G  in (5.11c) is positive fo r (5 .10a) and  negative for (5 .10b). 

B oth  the  equations in (5.10) have the sam e ap p earan ce  as those in (4 .8) and  so 

they  can  be realised  in the sam e way, w ith only $  and ^  rep laced  by and 

^ s . T h e  digital realisations o f and a re  given in T ab le  5 .1 . A  bandstop 

L U — LU  design based on  (5.10a) is show n in F ig .5 .3 , w here ©bs=  — ^b s_  

using th e  5 th  o rd e r RLC ladder of F ig .3.7 as the  p ro to type . It can  be verified 

th a t the  zeros of Q^s now  lie exactly  in the  m iddle of stopband  and  the

instability  p rob lem  m entioned  above is thus avoided. T h e  design da ta  is given in 

T a b le .5 .2 . N otice th a t in this exam ple the system  (5 .10a) has been  scaled by 0.5 

to set the  te rm in a tio n  en tries in D  to 1, saving two m ultip liers. T h e  passband

ranges a re  from  0 to 3000 H z and from  4000 to  16000 H z. T he  sam pling

frequency  is 32000 H z. T h e  frequency response is show n in F ig .5.4 .

5 .2 .3 )  L ow pass to  bandpass tran sfo rm atio n

Sim ilarly  a sym m etric bandpass function  can  be derived from  a norm alised

lowpass one  by transfo rm ation  [2 ],

( 5 . 1 2 a )
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\+]1 - z -

s t a n d a r d
a n d
1o w p a s s

1 - z ~

_ Z - 1

l + z “
■K)

- z

h i  g h p a s s

- z

b a n d s t  o p

1 - f l z ~

■»o

b a n d p a s s

- z

Table 5.1 Various types of frequency operators
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Fig.5.3 A LU— LU digital realisation

Reference Ladder (normalised values)

Si -  1 SL “ 1

C, -  1.05298 -  1.24796 c 2 -  0.11789

C3 -  1.69738 -  1.02002 C4 -  0.33388

Cs -  0.88240

Diei ta l  simulation

a, -  0.21618 a 2 -  0.17976 a 3 -  0.94811

b, -  16.2715 -  19.908

c, -  0.88070 C2 -  0.89761

d, -  1 d2 -  1 0 -  0.77675

Table 5.2 Parameters for the bandstop filter
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u-m
With a " 0)+ - M- “m - / u +ir" (5.12b)

Substitu te (5.12) into (5.1) and p erfo rm  the b ilinear transfo rm ation  

S— 2 ( l - z _ 1 ) / T ( l + z ~ 1) )

2 1-z"1 o^T 1+z"1 2 1-z-1 comT 1+z"1
a (--------- +  ) C + a " 1 ( -----------------+ ---------------------)-1T + C

cOjyjT 1 + z-1  2 1-z-1 o)mT 1+z-1 2 1-z-1
V=J

m

(5.13)

(5 .13) can  be again w ritten  as

( *b, - 1 + 4>bp B + D ) = (4'”1+2) J ( 5 . 1 4 a )

o r

( 5 . 1 4 b )

4>bp = (l-<3z-1 )/(l-2|3z-1+z-2) ( 5 . 1 5 a )

*bp = ((3z-1-z-2)/(l-2|3z-1+z-2) ( 5 . 1 5 b )

A = a C + a 1 T ± G ( 5 . 1 5 c )

B = 4 a"1 T ( 5 . 1 5 d )

D = 2 G ( 5 . 15e)
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M = wmT / 2 (5.15F)

o : = a ( ^ l  + ^ ) (5.15g)

( 5 . 1 5 h )

w here the  sign of G  in (5.15c) is positive for (5 .14a) and  negative fo r (5 .14b). 

A gain (5 .14) can  be realised  by the  sam e schem e, F ig .5.3 w ith $  and  ^  rep laced

by 4>bp and  4 ^ ,  T ab le  5 .1 . It can  even be verified th a t in this ap p ro ach  the

num ber of additions is m uch sm aller than  requ ired  in th e  d irec t sim ulation  of a 

bandpass p ro to type .

5 .2 .4 ) D iscussions

It is in teresting  to no te  som e com m on p rop erties  shared  by the  block 

o p era to rs  given in the  T ab le  5 .1 : (a) =  1, (b) the  poles of and

are  on  the  un it circle and  at the  m iddle of passband, (c) th e  zeros of the  input 

stages are  in the  m iddle of the  stopband on  the  un it c irc le ; w here 'V ' applies to 

all four types.

If it is possible to  ad just the  product of and  T , 0  m ay be scaled to a 

special num ber to faciliate easy m ultip lication . F o r exam ple , if (3 is set to  0.75 =  

2 ~  2 ■+■ 2 ~  3, th en  it requires only two shifts and  one add ition  to  m ultiply a

signal by /3. As {3 is repeate ly  used , considerable saving o f hardw are  cost and

o p era tio n  tim e can be gained.

5 .3  F R E Q U E N C Y  T R A N S F O R M A T IO N  M E T H O D S  F O R  SC D E S IG N

T h e  SC realisations of frequency transfo rm ed  c ircu it follow  the  sam e princip le 

as ou tlined  in the  last section for digital ones. T he  rea lisa tion  of d iffe ren t SC 

o p era to rs  requires m ore careful consideration  since SC circu its a re  no t as flexible 

as digital ones, being constrained  to  be stray— capacitance  insensitive.

5 .3 .1 ) Low pass to  h ighpass tran sfo rm atio n
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T h e  highpass o p era to rs  given in (5 .5) can  be realised  by SC d ifferen tia tors . 

H ow ever they  are  stray  sensitive and  produce a high level o f noise. A m ore 

efficien t m ethod  is to  use m odulators as m entioned  above, requiring  two inverters 

a t bo th  inpu t and  o u tp u t stages.

5.3.2) Lowpass to bandstop transformation

T h e  frequency  d ep en d en t o pera to rs ^  and given by (5 .11) can certain ly  be 

realised by SC biquads [39]. H ow ever, no tice  th a t fo r th e  special form  of the 

denom ina to rs of $  and  ty, w here z— * te rm  is m issing, undesirable term  

cancellations m ust be used. A n in teresting  a lte rn a tiv e  is using a new  T W IN T O R  

second o rd e r strays—insensitive biquad schem e, F ig .5 .5a.

-o y,

for y =<J)x, C, =1,C2=(3,C3= 1 

for y = l i l x , C 1=p .C 2=1JC3=1

C l o c k

e  o e  o e  o e

0 T 2T 3T 4T 5T  6T

(b)

Fig.5.5 (a) A twintor circuit realising $  and (b) Clock waveform

In  a tw in to r each  opam p is o p era ted  only in every  o th e r period , T . T he  

charge  re la tions fo r th e  circu it o f F ig .5 .5a are
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C3 [ y e ( n ) - y e ( n - 2) ] = -  C]_xe ( n )  + C2X ° ( n - l )  when  n e v e n  ( 5 . 1 6 a )

c 3 [ y ° ( n ) ~ y ° ( n - 2 ) ] = -  C3 X ° ( n )  + C2 Xe ( n - l )  wh e n  n o d d  ( 5 . 1 6 b )

T h e re fo re  th e  overall transfer function is given by 

1 C2 z - 1 -C 1
Y ( z )  = ------------------------------------ X ( z )  ( 5 . 1 7 )

C3 l - z ” 2

N otice th a t the denom inato r (1—z—2) is exactly  realised  w ithout te rm  

can cella tion . It can be seen from  F ig .5 .5b th a t now  th e  clock period  is 2T

co m p ared  to  T in a conventional LD I in teg ra to r SC circu it. T h is  m eans th a t the

o p e ra tio n  speed  for the  whole circuit, d e te rm ined  by sam pling  frequency , can be

doubled  w ithou t requiring  an  increase in opam p speed .

By selecting  suitable capacitance values — <t> can be d irectly  im plem ented . 

W hen tw in tors a re  connected  together to form  a ladder s tru c tu re , som e 

sim plifications a re  possible by separating  signals in to  tw o ch an n e ls , F ig .5 .6 . T he  

first equ ivalence in F ig .5 .6 is obvious. F o r the  second eq u ivalence, no tice  th a t a 

sam pling signal o f an  even (odd) channel opam p  o u tp u t in  a odd (even) period  is 

actually  th e  signal held  from  the previous period , th e re fo re  a delay  fac to r, z— *» 

is realised . N otice th a t besides d ifferen t selection  of C \  and  C 2 , ^  can  be 

realised  as z— 1(— <t>) and  so the cross coupling will precisely  give A  num ber of 

sw itches a re  also saved by this two channel techn ique.

In)

(n)

(n)

(n)

N n)

y(n ) | *(nl

"—OX(n) y(n>o-

’’"—“OX (n)

cr>
'—OX

(n)

_̂ (ni e v e n  
c h a n n e l

It 1 odd  
c ha nn e l

v e
e_ *(nieven

c h a n n e l

9-  knl odd
c h a n n e l

Fig.5.6 Two channel equivalent connection of twintors
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J tn

F ig .5 .7  A  3 th  o rd e r  low pass RLC lad d er

20

20

o -^ e

Fig.5.8 A 6th order bandstop SC bi—channel filter design
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Specifications for the Bandstop SC Filter

lower p a s s D a n d  edge  4.5 kHz u pper p a s s b a n d  ed ge 5.5 kHz
l owe r s t o p b a n d  ed ge  3.5 kHz u pp er  s t o p b a n d  ed ge  6.5 kHz
p a s s b a n d  ripp le < 0.1 dB s t o p o a n d  a t t e n u a t i o n  > 26 dB
s a m p l i n g  f r e q u e n c y  100 kHz

N o r m a l i z e d  D at a  for the L owp ass SC L a d de r  R e f e r e n c e  Fi lter 

G1 = G L = 1 Cl 0 . 9 1 6 4 6  L2 0 .9 69 95  C2 0 . 1 7 0 4 6  C3 0 .9 1 64 6

C o m p o n e n t  V a l u e s  for the B a n d s t o p  SC F i l te r

Cl 1 4 . 7 9 0 9 7  
C6 1 5 . 6 4 0 7 0  
Cll 1 . 1 5 4 7 8 0  
C16 1 . 0 1 1 3 4 1

C2 1 . 4 1 4 5 2 5  
C7 3 7. 44 4 1 7  
C12 1 0 . 9 3 6 5 6  
C17 1 . 0 0 0 0 0 0

C 3 1.3 90 662
C8 3 7.86882 
C l 3 3 7.86304 
C18 1.97 7572

C 4 1 . 6 1 4 9 0 0 
C9 1 . 0 0 0 0 0 0  
Cl 4 3 8 . 2 9 2 4 5  
C19 2 . 0 0 0 0 0 0

CS 1 .6 33 2 1 5  
CIO 1 . 14 1 8 3 0  
Cl 5 1 0. 5 7 5 0 9 
C20 1 . 00 0 0 0 0

30
439. 51

n u m b e r  of c a p a c i t o r s  40 n u mb er  of s w i t c h e s
n u m b e r  of op am ps  6 total c a p a c i t a n c e
c a p a c i t a n c e  s p r e a d  38.29

T ab le  5 .3  D esign  d a ta  fo r th e  6 th  SC b an d sto p  f ilte r

O x

- 10

-20

CD

-  -30
oo

-50

-60
2.00.8 12 

F re q ue n cy  (HzxIO4)

Fig.5.9 Computed response of the 6th order SC bandstop filter
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A n overall 6 th  o rd e r bi—channel bandstop  SC ladder is show n in F ig .5 .8 

w ith the lowpass RLC ladder of F ig .5.7 as re fe ren ce  p ro to ty p e . T he 

specifications and  the com ponen t values a re  listed in T ab le  5 .3 . T he  sim ulated 

response of the  SC bandstop ladder is show n in F ig .5 .9 .

F inally  it is necessary to  indicate th a t although the  tw in to r SC circuits have 

som e theo re tica l a ttrac tio n , such as the  reduction  in th e  sw itching ra te , som e 

pre lim inary  studies show  th a t th e ir sensitivity behaviour is surprisingly  p oo r. It is 

still no t c lear why this should  h ap p en  desp ite  th e ir  being based  on  ladder 

sim ulations. It should  also be po in ted  ou t th a t th e  b iquad  m ethod  can  provide 

p e rfec t so lu tion  for m ost bandstop  type designs, as th e  tran sfe r function  of a 

section  of biquad is na turally  a no tch  type function . T h e  m ost difficult type of 

filtering  fo r th e  biquad m ethod  is bandpass functions, and  it has been  show n in 

C h ap te r 4 th a t th e  ladder type circuits discussed in this thesis can  be used to 

solve this p rob lem  very efficiently.

5.3.3) Lowpass to bandpass transformation

A lthough the  lowpass to bandpass transfo rm ation  is also app licab le  by using 

SC biquads to  realise the  bandpass op era to rs  no  advantages a re  observed  over 

standard  design m ethods.

5.4 SUMMARY

F requency  transfo rm ation  m ethods have been  in troduced  in this c h a p te r  for 

n o n — lowpass type discrete filte r design. T h e  instability  p rob lem  en co u n te red  in 

b ilinear— LD I type highpass and bandstop  filters can  be avoided and  fo r digital 

im p lem en ta tion  som e notab le  saving of hardw are cost can  also be gained  in m any 

cases.

A  new  strays— free  SC circu it schem e has been  p roposed  fo r bandstop  SC 

ladder design. A  m ajo r fea tu re  of th e  new  circu it is th a t th e  clock period 

requ ired  is XT so th a t th e  c ircu it can  o p era te  a t a h igher speed  w ithout ex tra  

dem ands on  opam p perfo rm ance. H ow ever it has also been  ind ica ted  th a t the  

p o o r sensitivity of such circu it rem ains a unsolved prob lem .
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CHAPTER 6

ACTIVE AND DIGITAL ALLPASS LADDER DESIGN

6.1 INTRODUCTION

6.2 CONTINUOUS DOMAIN ALLPASS LADDERS

6.2.1) Active RLC allpass ladder design

6.2.2) Active RC ladder design

6.3 DISCRETE DOMAIN ALLPASS LADDERS

6.3.1) Left—LUD method for SC and digital ladder design

6.3.2) Right—LUD method for SC and digital ladder design

6.4 SENSITIVITY ESTIMATIONS

6.5 EXAMPLES AND COMPARISONS

6.6 SUMMARY
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6.1 INTRODUCTION

U ntil now  our discussion has been lim ited to the  design of filters with

am plitude characteristics. C om m only in com m unication  system s, group delay 

characteristics  are  im plem ented  by allpass netw orks, which are  prim arily  designed 

to provide phase characteristics w ithout in te rfe rence  with an  existing am plitude 

response. H ow ever, in practical realisations the am plitude response will inevitably 

be in fluenced  by com ponen t variations. It is im p o rtan t th e re fo re  to utilise circuit 

im p lem en ta tions having low am plitude sensitivity characteristics. Because allpass 

functions are  non— m inim um  phase by defin ition , low— sensitivity ladder based 

design rem ains an  open  problem . C ascaded biquad sections are  typical in both  

analogue and  digital realisations instead and  such topologies a re  highly sensitive to 

com p o n en t deviations, especially in high—Q  cases [1,36].

A  novel m ethod  for allpass digital filter design has been  p roposed  in [93,94]. 

T h e  allpass transfer function is decom posed into two term s: a co nstan t and  a

function  realisable as the  driving po in t im pedance of a passive netw ork , w hich is 

in tu rn  sim ulated  by a digital circuit. T he  resulting  system  is s truc tu ra lly  allpass, 

th a t is, w ordlength  truncation  will no t in troduce  any  d isto rtion  in to  th e  am plitude 

response . T h e  above princip le  is em ployed in th is ch ap te r  to  develop a fam ily of 

active—R LC , active— RC and  SC filters.

T h e  m atrix  m ethods covered in th e  previous ch ap te rs  will still be follow ed. It

will be show n th a t allpass ladders can again be derived  by left and  right

decom positions. T he opam ps can be m ade canonical in num ber fo r RC and  SC 

im p lem en ta tions if the  allpass equaliser and  th e  am plitude  filte r a re  considered  

to g e th er. S tructu rally  allpass p roperties a re  p roved  fo r all realisations. T he  new  

configurations are  also very suitable for paralle l digital c ircu it im plem enta tions.

M ajo r em phasis will be p laced on SC c ircu it realisations. D esign exam ples 

a re  given and  com parisons are  m ade betw een the  d iffe ren t ladder based structu res 

and  w ith cascade biquads. It will be dem o n stra ted  th a t sensitivities o f the 

am plitude  responses of ladder system s are  m uch low er th an  those o f the  cascade 

biquad structu res and  sensitivities of the  delay  responses are  sim ilar fo r all 

realisations. Low capacitance spreads are  also observed fo r ladder based m ethods.
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6.2 CONTINUOUS DOMAIN ALLPASS LADDERS

An allpass function  in the s— dom ain  has the  following fo rm ,

Ha (s) = k
P(-s)

P(s)
( 6 . 1 )

w here P(s) is a H urw itz polynom ial of o rd er n . F o r conven ience le t the  constan t 

k =  — 1 if n is even and  k =  1 if n is odd.

6.2.1) Active RLC allpass ladder synthesis

S epara te  P(s) in to  even and odd parts , [93]

P(s) = EvP(s) + OdP(s) ( 6 . 2 )

D efine

EvP(s)

OdP(s)
if n even

Y(s) =

(6.3a)

OdP(s)

EvP(s)
if n odd (6.3b)

S ubstitu te  (6 .2) and (6 .3) into (6 .1) and  m ake the  rea rran g em en t,

1 - Y(s) 2
Ha(s) -   = 1 ------------  (6.4)

1 + Y(s) 1 + Y(s)

A signal flow  graph  (SFG ) is given in F ig .6.1 to  realise (6 .4) w here the  tran sfer

function  1 -+• Y(s) can  be synthesised by a singly te rm in a ted  LC ladder. It is

well know n th a t if P(s) =  EvP(s) +  O dP(s) is H urw itz th en  Y(s) =

E vP (s)/O dP (s) can  be expanded  in con tinued  fraction  fo rm  as (suppose n is even,

i .e .,  n =  2 m)
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V
tn

g+y

For s-dom ain  a =  c =  g =  l b =  2

For z -d o m a in  a =  c =  g =  1 b =  l + z

Fig.6.1 Realisation of allpass function

1 s

summation stage
a=1

out

b=2

reactive two port

V
in

passive ladder stage

zj = -t"1 Lj y, =*_1 Q
For s-dom ain  <J>-1 =  +_1 =  s

For z -d om ain  *-1 =  1 -  z - * = z  -  1

Fig.6.2 Active— RLC allpass circuit
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1
Y ( s ) — sC^ +

1
s L i  +

1
sC2 +

SL2 +
1

sC +m sL
m

( 6 . 5 )

w ith all {Lj} and  {Cj} positive. If n  is odd ( i.e . n  =  2m  -+- 1) th en  the  only 

d ifference  is th a t (6 .5) will te rm ina te  w ith sC m + ^. E q . (6 .5) provides a basis

fo r a ladder realisation in F ig .6 .2 w here the  sum m ing am plifier is also 

included.

T rad itionally , passive allpass filters a re  realised  as cascaded la ttice—derived 

bridged—T  structu res. Tw o m ajo r disadvantages a re  associated  w ith this m ethod ; 

first the  am plitude  response is sensitive to all o f the  co m ponen ts and  second the 

circuits a re  no t canonical, requiring approx im ate ly  2 .5n  reac tan ce  elem ents in

im p lem en ta tion . F o r the schem e show n in F ig .6 .2 the  am plitude  response is

com pletely  insensitive to  the  deviation in the  reac tan ce  e lem en ts (S ection  6.4) and 

only  n reac tan ce  e lem ents are  required . T h e  sum m ing am plifier and  several

resistors a re  an  ex tra  cost.

6 .2 .2 )  A ctive RC lad d er design

T h e  passive ladder netw ork p a rt o f F ig .6 .2 can  be sim ulated  by active RC 

circuits. T h e  nodal adm ittance m atrix  equation  for the  passive ladder subnetw ork 

is:

T h e  m atrix  decom position m ethod  for active RC netw ork  design described in 

C h ap te r 3 can  be readily  applied  here . (6 .6 ) can  be w ritten  in the  left— LU D  

fo rm , (because all the  capacitors in F ig .6 .2 a re  connec ted  to g round , C is sim ply 

diagonal and  no real decom position of C is necessary)

( sC + i - T  + G )  V = J s ( 6 . 6 )

w = - ( s -1 r + c )v + j

V = s -1 C"1 W ( 6 . 7 b )

( 6 . 7 a )
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or, a fte r LU decom position D= f r f )  the righ t— LU D  form ,

(C+s-1G)V = s ~ l ( -  rr W + J)

w = s - 1 r i  v

( 6 . 8 a )

(6.8b)

B oth (6 .7) and  (6 .8 ) a re  linearised with respect to  s 1 so th a t they  can  be

realised  d irectly  by active— RC circuits. F o r a 6 ^  o rd e r c ircu it, the  signal flow 

graphs (S F G ’s) of F igs.6 .3a and  6 .4a and  the sim ulation  circuits F igs.6 .3b and 

6 .4 b  (inco rpo ra ting  the  sum m ation stages) can be ob ta ined . Inversion in the 

o u tp u t stage is inco rpo ra ted  in the sim ulation p a rt. O th e r types of decom positions 

are  also possible but they  will no t be discussed here .

T h e  sum m ing am plifier em ployed in the  ou tp u t stage in F ig .6 .3b and  6 .4b  

need  no t be realised explicitly in delay equalised filter system s. P rovided  th a t the 

allpass filte r is succeeded by an  am plitude filter stage, the virtual g round  o f the  

in p u t in teg ra to r of the am plitude stage can  be d irectly  connec ted  to  P v to realise 

the  sum m ation  function . T hus realisations w ith canonical n um ber of opam ps are  

possible.

6.3 DISCRETE DOMAIN ALLPASS LADDERS

T h e re  are  several approaches to  the  derivation  of all— pass ladders in the 

z— dom ain . In  particu la r it has been found m ost effic ien t to  use the  so— called 

b ilinear— LD I m ethod  as it is bo th  exact in frequency  response and  effic ien t in 

te rm s o f im p lem en ta tion  cost. Such a stru c tu re  could be derived  by th e  technique 

of Section  4 .4  w hich places rea l— zeros in the  ladder p ro to type  to in troduce  the 

cancella tion  o f capacitors a fte r b ilinear transfo rm ation . H ow ever a m ore 

stra igh tfo rw ard  derivation  is p resen ted  here  utilising a con tinued  frac tion  expansion  

fo r z— dom ain  tran sfe r functions [92].

A n allpass function  in z— dom ain  has the  following form

w here P(z) has poles inside the un it c irc le , n is the  o rd e r o f P(z) and  k =  ±1.

znP(z“l)
Ha(z)= k (6.9)

P(z)
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s u mm at io n  s t a g e

' /  1 ' b  % °  <—

C=g

V

reactive two port

' 'd =-g

1 -v2 1
 r — < r

1

A
C,

A
L,

Y
Co

W. w.

1 Vo 1 
-«---- r— >-

.- J
L„

y
Co

Wo

passive ladder stage

For s-dom ain  <t>= * =  s - l b =  2 a =  g = 1

For z -dom ain  <t> = 1/(1—z)—l * =  z- V(l -  z_l)

b = bj + t>2z-1 bl = t>2 = g = 1

F ig .6 .3 (a) A  le ft— L U D  type SFG  fo r a llpass rea lisa tio n

-v.
b= 1

V
out

V
in

C=2

Fig.6.3 (b) A left-L U D  type active-R C  allpass filter 

(elements in j/F and f/S)
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s u mm at io n  s t a g e reactive two port

C=g

passive ladder stage

For s-d o m a in  * = *  =  s-1  b =  2 a =  g =  1

For z -dom ain  * = l / ( l - z )_1 * = z_1/(l -  z_1)

b =  b i + b2z ~ l  a =  z - 1  bt =  ^  =  g _  !

Fig.6.4 (a) A  right— LUD type SFG for allpass realisation

p b=2
. r V i  ■ i

out

C-1

Fig.6.4 (b) A right—LUD type active—RC allpass filter 

(elements in //F and /iS)
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6 .3 .1 ) L e ft—L U D  m eth o d  fo r SC an d  d ig ita l lad d er design

Suppose n is even, n  =  2m  and  k =  —1. R earrange (6 .9) to  get

z n P ( z  1 ) 1+ z 1+ z
Ha ( z )   -----------------= 1 ----------------------------------------= 1 ------------------------- ( 6 .1 0 a )

P ( z )  z P ( z ) + z n P ( z - l ) 1 + Y (z )
1 + -------------------------

P(z)-ZnP(z“l)

Suppose n  is odd , n =  2m  +  1 and  k =  1

z n P ( z  1) 1+ z 1+ z
Ha ( z )   ----------------- 1 ----------------------------------------= 1 ------------------------- ( 6 .1 0 b )

P ( z )  z P ( z ) - z n P ( z “ l ) 1 + Y (z )
1 + -------------------------

P ( z ) + z n P ( z " l )

T o  avoid th e  n o n —causal te rm  z in  (6 .10) th e  tran sfe r function  is m odified  to

: 1 Ha ( z )  = z  1 -
1+ z - 1

1 + Y (z )
( 6 . 1 1 )

w hich in troduces only  a single ex tra  delay. T h e  con tinued  frac tion  expansion  of 

(6 .10) can  be achieved in term s of  ̂ and  4>—  ̂ defined  in (4 .1) a lte rnate ly , 

[92]

Y (z )  = +

S-T-Li +

I-L2 +

d ) - l L  ^  Lm

( 6 . 1 2 )
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F o r n odd (6.12) will te rm ina te  with a te rm . Positive values of (Cj)

and  {Lj} are  guaran teed  [92]. By analogy with (6 .5) it can  be seen th a t a ladder 

sim ulation  is a p p ro p ria te . T h e  passive ladder p a rt in F ig .6 .2 can  again be used 

to  realise (6 .1 2 ) by a 'passive n e tw o rk ', w ith adm ittance  yj =  and

im pedance  zj =  ^L j. A lthough physically unrealisab le , it can  be used as

p ro to ty p e  fo r SC and  digital sim ulations. A  nodal descrip tion  can  be set up for 

the  ladder section  of F ig .6 .2 in term s of ^  and $,

( i c  + $ r  + G ) V = J ( 6 . 1 3 )

L eft—L U D  SC and  digital c ircu it can  be ob ta ined  by rew riting  (6.13)

W = - (4>r + G ) V + J  (6.14a)

V = M T 1 W (6.14b)

T his can  be again rep resen ted  by S F G , F ig .6 .3a including th e  o u tp u t stage, 

su itab le  fo r digital im plem enta tion . T h e  correspond ing  SC c ircu it can  be ob tained  

by rep lac ing  the  branches in the  SFG  by SC elem en ts, F ig .6 .5. T h e  single z — 1

of equation  (6 .1 0 c) has been  realised  by a rea rran g em en t o f sw itching in the  

sam ple— an d — hold  and  o th e r in p u t/o u tp u t c ircu itry . T h e  sam pled  in p u t from  an 

even  phase  is tran sfe rred  to  th e  o u tp u t sum m ing am plifier in the  subsequent odd

phase. T h e  u n it delay  is realised  w hen the  o u tp u t is sam pled in th e  even phase

of the  nex t clock period .

L eft— L U D  type SC circuits will always requ ire  an  even n um ber of opam ps, 

w hich is canon ical fo r even o rd e r cases bu t no t fo r odd cases.

6.3.2) Right— LUD method for SC and digital ladder design

U sing (6 .13) d irectly  to derive the  righ t—LU D  type circu it causes difficulty

in realising  th e  te rm ina tion  term s. Instead , it is easy to verify the  equivalence

betw een  (6 .13) and  the  following system ,

( i  C'+ r + G ) V -  z - i j  ( 6 . 1 5 )
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summing s t a g e

o u t

l c =Lc,

'1 0

S/H stage

Fig.6.5 A left— LUD type SC allpass filter

summing stage

C ±

S/H stage

'1 o '16

Fig.6.6 A right— LUD type SC allpass filter
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w here

as

C =  C -  G ( 6 . 1 6 )

T h e  righ t m atrix  decom position  structu re  can be derived  by rew riting  (6.15)

( C '+  $  G )V  = <$(- r r  W + z -T -J) ( 6 .1 7 a )

W = *  r t V ( 6 .1 7 b )

T h e  SFG  in F ig .6 .4a can  again  be used to  rep re sen t (6 .17) and  an  illustration of 

SC rep lacem en t is given in F ig .6 .6 . T h e  z— 1 fac to r in (6 .17a) cancels the 

n o n —casual fac to r o f 1 + z  in (6 .1 0 ).

N otice the  circu it in F ig .6 .6  is in princ ip le  very sim ilar to the  digital LDI 

ladder rea lisa tion  p resen ted  in [94].

R ight— L U D  SC sim ulation  can always realise a c ircu it w ith canonical num ber 

of opam ps p rovided  the  am plitude and allpass stages a re  considered  together. 

H ow ever fo r n arrow  band  SC design righ t— L U D  will resu lt in a larger to tal 

capacitance  th an  an  L eft— LU D  design.

F ro m  F ig .6 .4a it is seen th a t th e re  is a delay— free— loop a t th e  term ination  

stage: v-j — g J j  $/C | -» V |. F o r digital rea lisa tion  th is can  be elim inated  

by the equ ivalen t c ircu it transfo rm ation  show n in F ig .6 .7. T h e  resulting  circuit is 

highly p ara lle l and  requ ires only a canonical n um ber of m ultip liers for digital 

im p lem en ta tio n . T h e  n u m b er of additions requ ired  is also relatively  sm all (roughly 

2 n).

a °— f

b o— >

>—O C

0 , 1 - 2- ’

a o— * ° c

Fig.6.7 A network transformation to eliminate the delay— free— loops



6 .4  SE N SIT IV IT Y  E ST IM A TIO N S

In th e  fab rication  process, nonideal factors will inevitably lead to a deviation 

in system  param eters . In the digital case, the  nonideal fac to r would be the 

tru n ca tio n  of m ultip lier coefficients to finite w ordlength  w hich will only have an 

a ffec t on  {Cj} and {Lj}. F o r analogue cases, inaccuracies in the  values of {Cj}, 

{Lj} and  all the  unity  valued elem ents F igs.6 .2— 6 . 6  w ould a ffec t the  sensitivity.

It will be proved th a t the  am plitude response of the  stru c tu res  in troduced  in 

this sec tion , unlike th e ir biquad co u n terp arts , a re  com plete ly  insensitive with 

respec t to  th e  deviation of m ost e lem ent values and  a re  bounded  fo r a few  

te rm in a tin g  e lem ents. T h e  transfer functions of F igs.6 .2— 6 .6  have th e  form

out

in
=  H a  =  ±

b e  v ^ / J ^
a -

1 + d v i / * i
(6.18)

fo r F igs.6 .2 , 6 .3 b , 6 .4b  a = c = d = l ,  b =  2 and  fo r F ig .6 .5 , 6 .6  b =  bj-+- b 2Z 

a =  b j =  b2 =  c =  d =  1 .

R e m a rk :  F o r th e c ir c u its  in  F ig .6 .2 —6 . 6  i f  a , b  (o r  b j  a n d  b j ) ,  a n d  c  a re  

f i x e d  th en  \H a \ =  l  r e g a rd le s s  o f a ll th e  o th e r  p a r a m e te r s , even  th e  u n ity  va lu e d  

e le m e n ts .

P ro o f: In  the  s—dom ain (F ig .6 .2, 6 .3b  and  6.4b) equation  (6 .18) becom es

1 " Vl / J l  

1 + Vl / J l
(6.19)

It is easily seen th a t |H a | = l  if v ^ /J j is im aginary .

F o r th e  c ircu it in F ig .6 .2, v ^ /J | is certa in ly  im aginary , being th e  ad m ittance  

o f a reactive netw ork.

F o r th e  c ircu it in F ig .6 .3b , apply  M ason 's form ula [96] to  derive v \ U \ t
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V1 1
------------ =   I ( g k Ak ) ( 6 . 2 0 )

^  ^ a l l  forward  p a t h s

with

*  -  1  -  £  P m l  +  E  P m 2  -  Z P m 3  +  .......................  ( 6 ' 2 1 >
m m m

w here gk is the  p roduct of edge w eights for k th  fo rw ard  pa th .

Pm r is the  p roduct o f loop transm issions fo r the  m th  set o f vertex— disjo int 

feedback loops.

Afc is the  value of A for the  p a rt of the  g raph  having no vertices in 

com m on w ith the  k th forw ard  path .

E very  loop in the  subnetw ork of the  reactive two p o rt in F ig .6 .3a involves 

exactly  one ^  te rm  and  one $  te rm . In  the  s— dom ain , =  (joo) ^ =  — co— ^ 

and  th e re fo re  P m r =  n(^/Cj)(— tf’/Lj) will be real , so will all A and  {AjJ. T h e re  

is only  one  forw ard pa th  from  J j  to  V |, g j =  ^i!C\ =  jo^C ^, h ence  from  (2 0 ) 

v j / J i  is im aginary  and  |H a | = l .  N otice th a t this im aginary  p ro p e rty  is solely 

struc tu ra l and  is no t in fluenced  by deviation o f any p a ram e te r. A  sim ilar p roo f 

can  be app lied  to the  c ircu it of F ig .6 .4b.

F o r th e  z—dom ain  circu it in F ig .6 .5 , no te  th a t all A and  {AjJ a re  again  real

as

z  1 wT
= ---------------- — - s i n “ 2 (   ) f o r  z = e J ^  ( 6 . 2 2 )

( 1 —z —1 ) 2 2

Since only one forw ard path  is g \ =  't/C } , from  (20) v^ /J^  will have the  form  

of v j / J i  =  a tf  w ith a  rea l. H ence the  following identities a re  derived ,

1  +  z

H a
= 1  -

1 + J l / V l

1 z  «!]_/v l  
■1 +  1-2------------------

1 + z  1 + z

1 - z  J i / V !  
1+ h2----------

1+z 1+z

2 1 - z  
-1 + ( 1 +—) ------

a. 1 + z

1 1 - z  
l + ( l + _ ) -----

a 1+z

( 6 . 2 3 )
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As (1—z ) / ( l+ z )  =  j ta n ( goT /2) is im aginary for z =  it is seen th a t |H a |

=  1. A  sim ilar resu lt can  be proved for the  circuit in F ig .6 .6 .

T h e  sensitivity fom ulae for the  rem ain ing  e lem ents in the  circuits in

F ig .6 .3b ,4b  can  be derived  as (since Y(jo)) =  J i / v j  is a p u re  im aginary  num ber)

a  a  1Ha | 1 -  | Y ( j o > ) l 2
-1 < ------------= ± ------------------ < 1 (6.24a)

I Ha | 3a 1 + | Y( jcu) | 2

b  a i H a i c a | H a i ±2
-2 < --------------------------------------------< 2 (6.24b)

I Ha  I a b  I Ha  | a c  1 + I Y( jou) 12

d  a  IHa | ±2
-2 < -----------=   < 2 (6.24c)

I Ha  | a d  1 + | Y ( j o j ) | 2

S im ilar form ulas can  be derived for the  circuits in F ig .6 .5 and  6 .6 .

6 .5  EX A M PL E S A N D  CO M PA R ISO N S

As an  exam ple , a 6 th  o rd er allpass SC filter is designed to  achieve an  

equi— ripp le  co rrec tion  of the  delay d istortion  caused by a 6 th  o rd e r SC bandpass 

filte r. T h e  design da ta  given in T ab le  6.1 re la tes to  th e  two ladder based 

equaliser s truc tu res, left— LU D  and  righ t— LU D  F ig .6 .5 and  6 .6 . E ach  of these 

circu its can  be follow ed by the  am plitude stage in F ig .6 . 8  (d raw n in  a d iffe ren t 

way from  F ig .4 .2a), designed as a 6 th  o rd e r elliptic left— LU D  type SC c ircu it, 

T ab le  6 .2 . All the  circuits have been scaled fo r m axim um  dynam ic range. T he 

P v po in t o f e ith e r c ircu it in F igs.6 .5 and  6 .6  can  be d irectly  connec ted  to  the 

in p u t o f the  c ircu it in F ig .6 .8 . T he  am plitude and  delay responses are  show n in 

F igs.6 .9a, b.

T h e  follow ing form ula is used to  m easure th e  overall system  sensitivity

c j a i hi 2 1 / 2
s  = I ( 6 . 2 5 )

. i . Ih i a Ci
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T h e  system  delay sensitivity can be defined  in the sam e way. F or 

com parison  two cascade biquad SC circuits a re  designed fo r the  delay equalisation  

stage, using biquad T opologies 1 and 2 of [36] respectively . T h e  resulting  design 

p a ram ete rs  a re  listed in T able  6 .3 . As in [36], T opology  1 has quite a sm all 

sp read  but very high sensitivity, while Topology 2 has an  im proved  sensitivity at 

th e  cost of high sp read , F ig .6 .10. O th e r biquad topologies [36] show  som e 

tra d e — off of sensitivity and  spread  betw een these two ex trem es. H ow ever it is 

seen  th a t ladder based structu res dem onstra te  the significant advan tage of bo th  low 

sensitivity  and  low capacitance  spread .

T h e  am plitude  sensitivities for ladder circuits, F ig .6 .5 ,6 .6 , are  m ainly 

de te rm in ed  by five p a ram eters , i .e ., a =  C a/C s, b j =  C b i /C s, b 2 =  C ^ C s ,  c 

=  Cc /C j and  d =  C ^ /C j . P rovided these ratios a re  carefu lly  con tro lled , good 

allpass p ro p ertie s  can  be expected .

G, 9
Pv

20

V,out

Fig.6.8 A 6th order left—LUD SC elliptic LUD filter
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S p e c i f i c a t i o n  for d e l a y  e q ualiser

lower e q u a l i s a t i o n  edge 8000Hz 
approximation type e q u i - r i p p l e  
f i l t e r  order 6

upper e q u a l i s a t i o n  edge 10000Hz 
in-band r i p p l e  < 0 .000 14 sec
sample fr equency 150000Hz

Poles  of  normal ised  a l l p a s s  t r a n s f e r  f u n c t i o n  in  s-domain

0.0518242 + j l . 01293 
0.0482866 + j l . 08983 
0.0458278 + j O . 93370

-  0 .0518242 -  j l . 01293
-  0 .0482866 -  j l . 08983
-  0 .0458278 -  j O .93370

Component v a l u e s  for  the Left-LUD SC ladd er

Ca 1.000 Cbl 1 .023 Cb2 1.023 Cc 2 .333 Cd 2.386
Cl 9.903 C2 2 .380 C 3 3 .273 C4 1 .000 C5 1 .000 C6 1.011
C7 24.22 C8 2 .478 C9 8.660 CIO 1.000 C l l  1 .000 C12 1.000
C l3 29.29 Cl4 2 .651 C15 10.99

t o t a l  ca p a c i ta n ce 109 uni t s c a p a c i ta n ce  spread 29 u n i t s
number of s w i tc h e s 27 number of capac i  t o r s 21
number of opamps 6

Component v a l u e s for  the Right-LUD SC ladder

Ca 1.015 Cbl 1'. 000 Cb2 1.000 Cc 1 .015 Cd 1.000
Cl 8.878 C2 9 .546 C3 3 .289 C4 3.982 C5 1 .000 C6 1.000
C7 20.34 C8 22.19 C9 8.305 CIO 7.56 5 C l l  1 .000 C12 1.000
Cl 3 29 . 21 Cl4 2 .660 C15 1.000

t o t a l  ca p a c i ta n ce 138 uni t s c a p a c i ta n ce  spread 29 u n i t s
number of sw i tc h e s 28 number of capaci  t o r s 21
number of opamps 6

T ab le  6.1 D esign  d a ta  fo r SC delay  equalisers
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S p e c i f i c a t i o n  for a m p l i t u d e  filter

lower passband edge 8000Hz
lower stopband edge 7200Hz
passband r ip p le  < 0 . 3dB
approximation type e l l i p t i c
sampling frequency 150000

upper passband edge 10000Hz
upper stopband edge 10800Hz
stopband a t t e n u a t i o n  > 25dB
f i 1 t s r  order S

Component v a lu e s  for  the Left-LUD SC ladder

Cl 1.000 C2 1 .000 C3 10.83
C7 5.041 C8 1 .000 C9 1.335
Cl 3 1 .794 Cl4 3 .733 C15 5.873
C19 7 .265 C20 3 .285 C21 1.000

t o t a l  ca p a c i ta n ce 74 u n i t s
number of swi tched 25
number of opamps 6

C4 2 .769 C5 1 .000 C6 2.182
CIO 1.35 6 C l l  10 .76 C12 4 .055
C16 2 .57 3 C17 1 .263 C18 1.000
C22 2 .430

ca p a c i t a n c e  spread 10 u n i t s
number o f  c a p a c i t o r s 22

T ab le  6 .2  D esign da ta  fo r a 6 th  o rd e r bandpass SC f ilte r

Left-LUD Right-LUD Biquad top .  1 Biquad to p .  2

t o t a l  c a p a c i t a n c e  109 u n i t s  138 u n i t s
c a p a c i t a n c e  spread 29 u n i t s  29 u n i t s
number of  opamps 6 6
number of  s w i t c h e s  27 28
number of  c a p a c i t o r s  21 21

102 u n i t s  
26 u n i t s  

6 
32 
24

311 u n i t s  
62 u n i t s  

6 
32 
24

The S/H and summation s t a g e s  are exc luded

Table 6.3 Comparison of various SC delay equaliser
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6.6 CONCLUSIONS

A system atic app roach  has been p roposed  fo r active and  digital allpass ladder 

design, w hich dem onstra tes very low am plitude sensitivity as well as o ther 

advantages, such as high parallelism  for digital realisation  and  low capacitance 

sp read  for SC realisation . It is shown th a t the  ladder struc tu res can be 

im plem ented  with a canonical num ber of m ultip liers fo r digital circuits o r with a 

canonical num ber of opam ps for analogue circuits.
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CHAPTER 7

S O F T W A R E  PA C K A G E  A N D  F A B R IC A T E D  C IR C U IT S

7.1 IN T R O D U C T IO N

7 .2  P A N D D A ; A  P R O G R A M  F O R  A D V A N C E D  N E T W O R K  D E S IG N :

D IG IT A L  A N D  A N A L O G U E

7 .3  T E S T  R E SU L T S O F  FA B R IC A T E D  SC L A D D E R  C IR C U ITS

7 .4  SU M M A R Y
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7.1 INTRODUCTION

T h e  previous chap ters have proposed  theories and  p rocedures for

h igh— quality  ladder filter design. In this ch ap te r we exam ine som e practical 

im plications of the  research  work.

T h e  first is the  developm ent of a useful C A D  tool fo r in teg ra ted  filter

design. T h e  system atic and regular fea tu res of th e  m atrix  m ethods have been

harnessed  in a com prehensive silicon com piler system , P A N D D A , to g e th er with a 

variety  of o th e r  sophisticated  approx im ation  and  p ro to type  synthesis a lgorithm s.

T h e  second, which is the  u ltim ate  aim  of the  re search , is to  produce 

in teg ra ted  filters with im proved p erfo rm ance. T his is dem o n stra ted  by two

com m ercially  fabricated  telecom m unication  LU D  filters. T h e  specifications of both  

circuits a re  know n to  be difficult for existing design m ethods and  have form ed

p a rt o f the  m otivation  for this research  w ork. T h e  test results o f a biquad filter

designed by the  au th o r is also included as an  additional exam ple.

7.2 PANDDA; A PROGRAM FOR ADVANCED NETWORK DESIGN: DIGITAL 

AND ANALOGUE

T h e  PA N D D A  softw are package has been  developed  by the  a u th o r with 

co o p era tio n  w ith R .K . H enderson  during this research . Its distinguishing fea tu res 

are  sum m arised  as follows. A  full rep o rt covering all the  o th e r  stages can  be 

found  in [117].

Specification

E ith e r param eters of a classical app rox im ation  o r a p iece— wise linear

to le ran ce  boundary  can be selected fo r the  specification  of a tten u a tio n  and  group 

delay.

F ilte r options include netw ork stru c tu re  (b iquad , LU D  o r d irec t

decom positions, leapfrog e tc .) , c ircu it im p lem en ta tion  (sw itched—capac ito r, 

active— R C , d igital), non—ideal circuit p aram eters  (un it cap ac itan ce , switch 

resistances, o p — am p param eters , w ordlength) and  scaling d irectives.
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A p p ro x im atio n  and  P ro to ty p e  D esign

T h e  task of approx im ation  is to set up a tran sfe r function  which m eets the 

am plitude and  group delay specifications. T o  avoid unnecessarily  com plex  circuits 

th is function  should be of m inim um  order. T h e  best know n classical

approx im ations can  be ob ta ined ; B u tterw orth , C hebyshev, inverse C hebyshev and 

elliptic.

Specialised am plitude responses can  also be designed. T h e  tran sfe r functions 

can  be asym m etric and  the  o rd e r of tangency  of ce rta in  ex trem e poin ts (touch 

points) o f the  am plitude response to  a tten u a tio n  boundaries can  be specified. In 

this way a wide class of tran sfe r functions lying betw een  conven tional equiripp le

and  m axim ally— flat types m ay be designed. H igh o rd e r touch  poin ts m ay be used 

to  sm ooth  the  am plitude function  n ear the band— edge to  reduce the  delay 

peaking , and  im prove sensitivity.

T he  designer has the freedom  to  specify the  sequence o f passbands and 

stopbands and  the  d istribu tion  of touch  points in each . T h e  a tten u a tio n  function  

in each  band  is specified by a pa ir o f p iece— wise linear boundaries th rough 

w hich a linear— phase F IR , HR o r continuous tim e tran sfe r function  will be fitted .

U nusual transfer functions can be designed. A pprox im ation  of allpass tran sfe r

functions can  also be perfo rm ed  to  equalise the  group  delay o f the  am plitude 

function .

H aving designed a suitable tran sfe r function , a p ro to type  fo r succeeding filter 

design m ust be calcu lated . T his takes the  form  o f e ith e r a norm alised  

doubly— te rm in a ted  LC ladder o r a tran sfe r function  in facto rised  fo rm .

D esign of passive ladder netw orks is accom plished by an  ex tension  of an  

ite ra tive  design m ethod  due to  O rch a rd  [15] in co n ju n c tio n  w ith a sim plified 

in sertion—loss synthesis [2,105] p rogram . F ea tu res of th e  itera tive  algorithm  are 

very good accuracy and  the ability to  design high o rd e r netw orks (up  to  1 0 0 th ). 

T h e  conventional synthesis p rogram  is used to  set up th e  s tru c tu re  and  provide 

in itial com p o n en t values for the  iterative p a rt.
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Filter realisation

T he filte r realisation  stage of the program  m ust take a p ro to type  filter and 

convert it in to  a realiseable netw ork descrip tion . T h e  general approx im ation  

capability  above m eans th a t these functions can  take  a wide variety  o f d ifferen t 

form s. F o r easy concep tual use, it is im p o rtan t to guaran tee  th a t all these 

tran sfe r functions can  be realised by a regular, stab le , canonic  netw ork  in a 

varie ty  of netw ork  topologies. T his can be achieved by the  m atrix  m ethods 

developed  in previous chap ters. A n additional advantage is th a t they  are  highly 

suitable fo r im p lem en ta tion  of com pu ter softw are. T h e  m atrix  m ethods form  the 

co re  of the  filte r realisation  section of PA N D D A .

T h e  design stage is divided in to  th ree  steps.

S tep 1) th e  p ro to type  passed from  the  previous stage, w hich m ay be a 

passive ladder o r a set of the  poles and  zeros of th e  tran sfe r func tion , is 

p re — processed  an d , if it is a ladder design, sym m etric m atrix  polynom ial in term s 

o f (3 .4) is fo rm ula ted  by a stam p m ethod  [95].

S tep 2) th e  p ro to type  system  is linearised  in to  a set o f m atrix  equations 

accord ing  to  th e  selection  of s truc tu re  options by m anipu la tions p resen ted  from  

C h ap te r  3 to  C h ap te r 6 . As the  sparsity  of the  m atrix  system  is know n a t this 

s tep , a quick com pu ta tion  of in ternal voltage level fo r scaling and  sensitivity 

analysis is ach ieved .

S tep  3) the  m atrix  system  is expanded  in to  a in te rn a l ne tw ork  descrip tion . A  

lib rary  of basic building— blocks, e .g . M iller in teg ra to r in active— R C, LDI 

in teg ra to r SC and  delay e lem ent in digital, is estab lished . All th e  m atrices are  

traversed  and  the  netlist is p roduced  accord ing  the  types o f building— blocks and  

th e  in te r— connections of the  no n — zero  en tries.

T h e  above p rocedures greatly  ease the  com plexity  of th e  softw are. As it can 

be seen  th a t the  first step and  the  th ird  step  are  in d ep en d en t of th e  particu la r 

c ircu it s tru c tu re  to  be realised ( a p a rt from  reading  a po le— zero  file o r read ing  a 

ladder p ro to ty p e  file ) so th a t th e  algorithm s fo r these  tw o steps a re  very 

s tra igh tfo rw ard . O nly  a t the  second step  have the  design types to  be taken  in to  

co n sidera tion , but this only involves the setting  up  o f a few  m atrices w hich is 

ca rried  ou t e ith e r by well known LU decom position  algorithm  o r by som e d irec t 

m an ipu la tion .
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7.3 TEST RESULTS OF FABRICATED SC LADDER CIRCUITS

T h ree  SC circuits designed by the au th o r have been  fab rica ted . T h e  practical 

results p resen ted  in this section are  provided by courtesy  of W olfson 

M icroelectron ics L td ., E d inburgh .

D esien  1:

T h e  first circuit is a 6 th  o rd e r bandpass B utterw orth  type filte r, its ideal 

tran sfe r function  has been  p lo tted  in F ig .7 .1 . Its re la tive bandw idth  (defined  in 

Section 4.7) R B W = 0.0625 indicating th a t the  passband is qu ite  narrow . A ccording 

to  the  stastistical studies provided in Section  4 .7 , le ft—L U D  is th e  best candidate  

fo r this specification. T h e  design data  is listed in F ig .7.2 (in  SCN A P fo rm at [71]). 

In F ig .7.3 the  m easured  reponses are  given. A  circu it layout is show n in F ig .7.4.

D esien  2:

T h e  second circu it is a 8 th  o rd e r wide bandpass filte r w ith relative bandw idth 

R B W = 2 .8 5 . In  this case, realisation of an  elliptic function  by any  of the 

struc tu res w ould resu lt in a very large capacitance  sp read  and  an  asym m etric type 

tran sfe r function  sim ilar to one shown in F ig .4.28 has to  be used. F o r this 

particu la r case the  discussion of Section  4.7 ind icates th a t th e  left— LU D  type 

circu it behaves m uch b e tte r th an  any o th e r type of circu it h ence  it is selected  for 

the  final design.

A difficult p rob lem  fo r this design is th a t the  n u m era to r  o f the  transfer 

function  is an  even polynom ial (unlike th a t o f F ig .4 .28). A t th e  stage w hen this 

filte r was designed, the  canonical design m ethod  of Section 4 .3 .4  had  no t yet 

been  discovered so th a t a canonical so lution could no t be found  for ladder 

sim ulations. F o rtuna te ly  the  n u m era to r contains two zeros located  a t the  origin. 

T h e  tran sfe r function  is thus partitioned  in to  a b iquadratic  function  w ith a single 

s n u m era to r te rm  and  a 6 th  o rd er ra tional function  w ith an  odd num era to r 

polynom ial. T h e  biquadratic  function  is fo rm ed  by selecting a pa ir o f the 

low est—Q  poles, w hich eases the  sensitivity prob lem . T h e  6 th  o rd e r function  is 

realised  by the  left— LU D  m ethod , and  the cascaded c ircu it results in a relatively 

sm all sp read  and  sm all sensitivity.
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T h e  ideal response (solid line) and the m easured  response of a test chip 

(d o tted  line) are  given in F ig .7.5 and 7.6 . N otice th a t in prac tice  a pair of 

transm ission zeros was m oved to 2 fs to break  up the  un— switched 

cap ac ito r—opam p chain . T h e  layout of a test chip is show n in F ig .7 .7 .

D ue to the  fact th a t the  specification is ex trem ely  d ifficult, w ith very wide 

bandw idth , it can  be seen th a t the tem plate  a t the  passband edges has been 

vio lated by the  m easured  response. T his was found to have been  caused by the 

tru n ca tio n  of capacitance  values to finite precision. By carefu lly  selecting the 

tru n ca tio n  o r the  rounding  of capacitance values, this p rob lem  can  be avoided and 

this will be done for a revised version of the  design. T h is serves to  em phasise 

the  im portance  of sensitivity prob lem  in practical in tegra ted  filte r design.

D esien  3:

A n additional exam ple of a biquad design is show n in F igs.7 .8 —7.9 (ideal 

response in solid line and  m easured  response in do tted  line) and  F ig .7 .10 (c ircu it 

layout). T h e  specification  is o f an  unusual dow nw ard sloping shape. As the 

m axim um  pow er transm ission is a tta ined  only a t one po in t (low er passband  edge), 

th e  arg u m en t of low sensitivity o f ladder circuits is no longer valid. Also ladder 

and  biquad designs resu lt in nearly  the sam e to ta l capacitance . F o r th is reason 

th e  biquad design was finally selected . T his exam ple also dem o n stra tes  th a t the 

app lica tion  o f ladder circuits is no t com pletely  universal.

7 .4 . SU M M A R Y

A  new  program  fo r filte r design has been  in troduced . Several advanced 

facilities w hich rem ove trad itional design lim itations have been  illustrated .

Som e test results o f SC chips a re  p resen ted . T h e  left— LU D  m ethod  has 

been  succesfully app lied  to the  design of p ractical circuits know n to  p resen t 

difficulties fo r existing m ethods. T h e  value of the  research  developed  in th is thesis 

has thus been  illustra ted  in a real engineering  env ironm ent.
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Total capacitance = 329.7711units 
Capacitance spread = 96 . 24657units 
Average capacitor = 17 . 35637units 
Number of capacitors = 19 
Number of switches = 25 
Number of op-amps = 6

a n a l y z e
i d e a l  f r e q  7 7 0 0 . 0 0 0  8 3 0 0 . 0 0 0  l i n  201  
o u t p u t  2 

e n d

t i m i n g
d e f

T = 0 . 2 4 2 7 1 8 4 E - 0 5  
e n d
e v e n  T ( 0  0 . 0 )  ( 1  1 . 0 )  ( 2  1 . 0 )  
o d d  T ( 0  1 . 0 )  ( 1  0 . 0 )  ( 2  0 . 0 )  

e n d

s u b c k t  opamp 1 2  3 4 ( g a i n ,  BW) 
v c v s  1 2  3 4 g a i n  

e n d

c i  r c u i t
v s  1 0 a c  1 . 0 0 0 0 0 0  0 . 0
opamp 0 3 4 0 ( 0 . 1 0 0 0 0 0 0 E + 0 8 , 1 0 0 0 0 0 0 . )
opamp 0 5 6 0 ( 0 . 1 0 0 0 0 0 0 E + 0 8 , 1 0 0 0 0 0 0 . )
opamp 0 7 8 0 ( 0 . 1 0 0 0 0 0 0 E + 0 8 , 1 0 0 0 0 0 0 . )
opamp 0 9 10 0 ( 0 . 1 0 0 0 0 0 0 E + 0 8 , 1 0 0 0 0 0 0 . )
opamp 0 11 12 0 ( 0 . 1 0 0 0 0 0 0 E + 0 8 , 1 0 0 0 0 0 0 . )  
opamp 0 13 2 0 ( 0 . 1 0 0 0 0 0 0 E + 0 8 , 1 0 0 0 0 0 0 . )  
c 4 3 9 3 . 5 5 4 8 5  
c 6 5 9 6 . 2 4 6 5 7  
c 6 7 1 . 1 4 5 0 8 8  
c 8 7 1 6 . 2 6 4 2 0  
c 10 9 3 . 9 8 5 3 1 5  
c 12 11 3 7 . 3 3 6 3 3  
c 2 11 1 . 0 0 0 0 0 0  
c 2 13 4 . 0 6 5 3 4 1  
c 15  16 1 . 0 0 0 0 0 0  
c 17  18 9 . 0 3 0 0 5 0  
c 19  20  1 . 0 0 0 0 0 0  
c 21 22  2 1 . 9 6 5 0 6  
c 23  22  1 . 0 0 0 0 0 0  
c 21 26 1 . 0 0 0 0 0 0  
c 23 26 2 3 . 5 7 6 9 8  
c 29 30 3 . 8 8 7 7 1 3  
c 10 3 5 . 6 4 0 3 1 7  
c 2 7 1 . 0 0 0 0 0 0  
c 31 3 7 . 0 7 3 2 5 8  
s 4 15 e v e n  
s  15 0 odd  
s  16 9 o d d  
s 16 0 e v e n  
s  6 17  e v e n  
s  17 0 o d d  
s 18 11 o d d  
s  18 0 e v e n  
s 8 19  e v e n  
s  19 0 o d d  
s  20 13 o d d  
s  20  0 e v e n  
s 10  21  e v e n  
s  21  0 o d d  
s  22  3 e v e n  
s  2 2  0 o d d  
s  12  23  e v e n  
s  23  0 o d d  
s  26  5 e v e n  
s  26  0 o d d  
s  2 2 9  e v e n  
s  29  0 o d d  
s  30 7 e v e n  
s  30  0 o d d  
s  1 31  e v e n  
e n d

Fig.7.2 Netlist of a 6th order SC ladder design (in SCNAP format)
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Fig-7.5 Overall ideal response (solid) and measured response 

(dotted) of a 8th order wide band SC filter
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CHAPTER 8

C O N C L U SIO N S A N D  S U G G E ST IO N S F O R  PO SSIB L E  F U R T H E R  W O R K

8.1 D ISC U SSIO N  O F  T H E  R ESU LTS

8 .2  SU G G E S T IO N S  F O R  PO SSIB L E  F U R T H E R  W O R K
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8.1 DISCUSSION OF THE RESULTS

L adder netw orks have long been  know n as the  best choice for high 

p e rfo rm an ce  filte r design, w hether they  are  im plem ented  by passive, active or 

digital circuits. H ow ever, various factors have d e trac ted  from  the  success of 

in teg ra ted  ladder filters; they  have a com plicated  design p ro ced u re , the  filter

struc tu res can  be irregu lar and  can  have certa in  undesirable p rop erties  such as the

delay— free— loops and  large capacitance  sp read  fo r SC circuits.

T h e  ob jective of this w ork was to  establish  a unified th eo ry  and  m ethodology 

fo r high p erfo rm an ce  in teg ra ted  filter design. A  new  m athem atica l fram ew ork  has 

b een  em ployed  w hich in troduces m atrix  m ethods into the  field of filter synthesis. 

M atrix  m ethods a re  a lready  cen tra l to  con tro l system  design, and  so it is na tu ra l 

to expec t th a t they  can  be readily  app lied  to filter netw orks w hich a re , a fte r all, 

only  typical exam ples of linear system s. Indeed  the  app lica tion  of m atrix  

princ ip les from  netw ork  analysis to ne tw ork  synthesis has yielded a considerably

m ore  p ro found  understand ing  of the  p ro p ertie s  of ladder struc tu res. A  detailed  

th eo re tica l study of such filters has been  undertaken  w ith a view to developing

filte r s tru c tu res  w ith im proved  p e rfo rm an ce. T h e  success of th is w ork has been 

p roven  by test results o f com m ercially  fab rica ted  SC circuits. T he  m ain 

accom plishm ents a re  sum m arised  below .

A fter a genera l in troduction  in C h a p te r  1, a theo re tica l investigation was 

p resen ted  fo r sym m etric m atrix  polynom ial system  (SM PS) in C h ap te r 2, which is 

a m ath em atica l generalisation  of passive c ircu its, in particu la r passive ladders. 

D efin itions and  crite ria  w ere advanced  fo r the  sim ulation  of ladders by canonic 

in teg ra ted  circuits. T h e  sensitivity and  noise behaviour of the  SMPSs was assessed 

by exam ining  th e ir  boundedness and  pseudopassivity  p roperties . A lthough the 

theo ries  a re  m ainly applicab le  to  the  case of system s w hich undergo sym m etric 

deviations o f th e ir  e lem en t values, fo rm ulae a re  also developed  fo r the  asym m etric 

case. H ow ever, a rigorous assessm ent o f th e  d istortion  caused by the  la tte r effect 

is still lacking. T h e  low sensitivity and  low  noise p rop erties  of th e  circuit 

s tru c tu res  developed  in this w ork w ere m ain ly  confirm ed  by com p u ter sim ulations. 

N evertherless, this theo re tica l study has still m any p ractical im plications, such as 

th e  assu rance th a t if th a t stability  is m ain ta ined , negative elem ents will no t 

in troduce  any  special sensitivity o r noise p rob lem s into the  system s. T his has been  

proved  to  be an  im p o rtan t s ta tem en t fo r la te r w ork on  sim plified circuit 

s truc tu res.
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In C h ap te r 3 a detailed  descrip tion  of the m atrix  design p rocedures for 

active— RC circuits was u n dertaken . It was shown th a t ladder type active— RC 

circuits can  be divided in to  two m ajo r fam ilies, derived by e ith e r left o r right 

m atrix  decom positions. C om bined  left and righ t decom position  m ethods w ere also 

exp lo red . W ell— know n leapfrog  circuits belong to the righ t decom position  derived 

structu res and  coup led— biquads to the  left ones. M oreover LU decom position 

d raw n from  num erica l m ethods can be used fo r m ore effic ien t design. A  fam ily 

of very regu lar struc tu res has been  developed fo r canonical design, w hich can be 

app lied  to  nearly  all p ractically  used tran sfe r functions. Som e special techniques, 

such as inverse m atrix  o r hybrid  m atrix  m ethods have also been  briefly  discussed.

T h e  m atrix  m ethods w ere ex tended  to  the  SC and  digital c ircu it designs in

C h ap te r 4. A  p ro ced u re  to  convert a bilinearly  transfo rm ed  system  into  a 

b ilinear— LD I type descrip tion  has been  p resen ted , which has the  advantages of 

exact frequency  reponse  and  sim pler circuits in both  SC and  digital realisations. 

T h e  discussion of m atrix  design m ethods was th en  stra igh tfo rw ard  by rep lac ing  the 

s— * o p era to rs  in th e  active— RC case by a pa ir of LD I o p era to rs . T h is fact also 

clearly  illustrates the  flexibility and  conciseness o f m atrix  m ethods. T h e  p ro p erty  

of s truc tu ra l parallelism  is im p o rtan t fo r high perfo rm an ce  digital and  SC circuits. 

In  the  la tte r  it can  be in te rp re ted  by the  p resence cap ac itan ce— opam p  chains

w hich slows th e  o p era tio n  of th e  circu it. A  num ber of techn iques w ere in troduced

to  en h an ce  th e  paralle lism , such as by placing real zeros on  the  rea l axis o r

using m atrix  scaling. Som e statistical results have been  p resen ted  to  p rovide a full 

p ic tu re  of th e  behav iour o f various SC circu it struc tu res. It is show n th a t in m any 

c ircum stances ladder type circuits have m uch b e tte r p erfo rm an ce  th an  biquad ones. 

In p articu la r, left— LU D  m ethod  has d em onstra ted  som e very a ttrac tiv e  p roperties 

fo r bandpass filte r designs.

In C h ap te r  5 frequency  transfo rm ation  m ethods w ere discussed. It was shown 

th a t the  co n cep t o f LD I o p era to rs  could be generalised  in to  a w hole fam ily of 

o p era to rs  su itable fo r d iffe ren t types of filtering . T hese  various o p era to rs  can  be 

easily im p lem en ted  by digital circuits, reducing the  n u m b er of add ition  and 

m ultip lica tion  opera tio n s. F o r SC realisation  the  frequency  tran sfo rm atio n  m ethods 

a re  found  to  be effic ien t in highpass and  bandstop  type design. A  novel second 

o rd e r building— block, the  so— called tw in to r, has been  p roposed  to  realise 

bandstop  type  op era to rs . In a tw in to r c ircu it the  sw itches a re  o p era ted  a t the  

sam e ra te  as th e  sam pling frequency  ( while in an  o rd in ary  SC c ircu it w ith LD I 

o p era to rs  sw itches are  o p era ted  a t twice th e  ra te  o f th e  sam pling frequency  ),
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which eases the requ irem en ts on opam ps as well as o th e r e lem ents such as 

sw itches.

A llpass filte r design for delay equalisation was considered  in C hap ter 6 . 

A llpass filters have been  trad itionally  realised  as cascade biquads bu t th e ir high 

am plitude sensitivity for the  h igh— Q  case is a com m only  know n prob lem . Based 

on  a decom position  techn ique for allpass functions, som e novel allpass ladder 

struc tu res have been  developed . T h e  m ain  body of an  allpass ladder has exactly 

the  sam e stru c tu re  as th a t of a typical ladder filte r, a p a rt from  being derived 

from  a singly— te rm in a ted  p ro to type . Som e additional co m ponen ts a re  required  at 

the  in p u t/o u tp u t stages and  it was p roved  th a t the  am plitude  response of the 

w hole allpass ladder is sensitive only to  these com ponen ts and  no o thers. It was 

fu rth e r proved  th a t even  fo r these in p u t/o u tp u t co m ponen ts the  relative sensitivity 

is sm all and  bounded . In  SC design th e  capac itance  sp reads w ere shown to be 

low fo r ladder type designs.

As described  in C h ap te r 7 , a co m p u te r softw are package, PA N D D A , has 

been  developed  in  tan d em  w ith this research  w ork. PA N D D A  incorpora tes m any 

s ta te— of— th e — a rt filte r design techniques and  a lgorithm s. In  particu la r, the  m atrix  

m ethods fo r filte r rea lisa tion  form  th e  co re of the  package. It was show n th a t a 

w ide variety  o f circuits can  be hand led  effic ien tly  in  m atrix  fo rm  on  com puters. 

V arious m an ipu la tions of circu it s tru c tu res , essential to  achieve optim al dynam ic 

range , sensitivity  and  co m p o n en t sp read , becom e very  sim ple and  regular by the 

m atrix  techn iques. T h e  softw are has been  successfully used in in teg ra ted  filter 

design, som e o f w hich have been  fab rica ted . T h e  m easured  results have been 

show n.

8 .2  S U G G E S T IO N S  F O R  PO SSIB L E  F U R T H E R  W O R K

W ith respect to  th e  theo re tica l investigation of the  sym m etric m atrix

polynom ial system  (SM PS), it would be o f in terest to  investigate the  following

problem s,

1. As has been  p roven  in th e  C h ap te r 2 , am plitude  d isto rtion  caused by 

sym m etric deviations will reach  zero  value a t the  m axim um  signal transm ission

poin ts and  it can  be expec ted  it will kep t sm all in th e  w hole passband w here p

is sm all. A lthough, a concise form ula has been  developed  to  assess the  effect 

asym m etric  deviations, no  defin ite  conclusion is reach ed  to  assert th a t th e  resulting
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disto rtion  will be sm all for a SM PS. N evertheless m any exam ples in C hap ter 4 

ind icate  th a t the am plitude sensitivity of an  SMPS is really  low, even in the

asym m etric case. H ow ever a m ore rigorous reasoning  is requ ired  to confirm  when

and  why th is low sensitivity p ro p erty  can  be achieved.

2. In C h ap te r 2 a wave variable based p ro ced u re  is given to develop lim it cycle

free  digital realisations. It is know n th a t wave type digital ladders are  m ore 

com plica ted  th an  LD I ones. A lthough th e re  is no p roof th a t a LDI based 

stru c tu re  can  be m ade free from  lim it cycles, som e observations suggest th a t wave 

and  LD I ladders have nearly  the  sam e noise behaviour. T h e  LU D  m ethods 

p resen ted  in this research  greatly  sim plify and  regularise the  design p rocedure  of 

'e x a c t ' LD I ladders. It would seem  in teresting  to , e ith e r by theo re tica l induction 

o r by ex p erim en ts , exam ine the  noise behav iour caused by signal quantisations. 

T h is rem ains a fu tu re  w ork to  com plete  th e  research  on  LU D  type digital 

filters.

W ith  respec t to  m atrix  m ethods fo r in teg ra ted  filter design, two possible 

d irec tions fo r fu rth e r  research  a re  suggested,

3. N on—m inim um  phase system s m ay lead to  effic ien t design for com bined 

am plitu d e— group  delay  specifications. It has been  ind icated  th a t som e 30%  of the 

co m p o n en ts  can  be saved if th e  am plitude  and  all— pass parts  in a w hole system  

are  m erged  by em ploying n o n — m in im um  phase functions. All the  circuit 

s truc tu res, a p a r t from  allpass ladders, derived  in th is w ork a re  based on  the 

sim ulation  of te rm in a ted  reac tan ce  p ro to types and  the  zeros a re  restric ted  to  be 

on  th e  im aginary  axis. H ow ever, it has also been  show n th a t, in th e  derivation  of 

all— pass ladders, no n — m inim um  phase functions can  also be realised  by adding a 

single feed th rough  b ranch  d irectly  from  th e  in p u t to  th e  o u tpu t. T his technique 

could be generalised  to  construct a m ulti— inpu t system , rem oving the  constra in t 

o f im aginary  axis zeros. H ow ever, the  p ro to ty p e  synthesis p rocedu re  m ust be 

generalised  to  p roduce  p ro to types realising a rb itra ry  num erato rs.

4. T h e  com bined  left— and  righ t— decom position  m ethods have already  been  

show n to  be possible fo r ladder design. It is observed  th a t th e  righ t LU  and  U L 

d ecom position  m ethod  has good sensitivity p ro p ertie s  a t low frequency  but th a t the 

left LU  and  U L  decom position  m ethods behave b e tte r a t h igher frequency. T his 

suggests th a t a com bination  o f righ t and  left L U D  m ethods would possibly inherit 

th e  best qualities o f the  tw o. H ow ever this no t the  case as show n by the 

statistical resu lts in C h ap te r 4. It seem s th a t this is caused by the  large
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capacitance  sp read  of F —type dam ping  (cap ac ito r C 21 in F ig .4 .7a and  C 22  *n 

F ig .4 .7b) a t te rm ina tion  stages. If som e technique can be discovered to  allow  both 

E — type dam ping  (o r possible bo th  F— type dam ping) w ithout ex tra  cost of 

com pononts, it is expected  th a t to tal capacitance  and  sensitivity  can  be fu rther 

im proved.

W ith respect to frequency  transfo rm ation  m ethods som e fu rth e r  topics on 

tw in to r type circuits a re  of in te rest,

5. T w in to r type circuits offer a reduc tion  in the  sw itch speed  w hich m ay find 

app lica tion  in high— speed signal prcessing. In a tw in to r section  th e  o u tp u t signal 

is sam pled  a lternate ly  betw een  tw o opam ps. T h is in fac t follows the  sam e 

princip le  as som e polyphase digital netw orks w hich have found wide app lication  in 

reduc tion  o f the  o p era tio n  speed  in digital circuits. It is expected  th a t the  

p rinc ip le  of tw in tor circuits can  be generalised  and  m ay find app lication  in 

n o n — bandstop  type filte r design. Also th e  high sensitivity p rob lem  of tw intor 

c ircuits rem ains to be exp lained  and  solved.

W ith respect to  allpass ladder filte r design th e re  is a d irec t app lica tion  as 

outlined below ,

6 . It is know n th a t som e am plitude  tran sfe r functions can  be expressed  as the 

sum m ation  o f two all—pass functions [91]. T h is has led to  an  in teresting  category 

o f digital filte r s truc tu res, o ften  re fe rred  to  as wave— la ttice  struc tu res because 

each  subnetw ork  is norm ally  realised  by wave digital build ing blocks. H ow ever 

wave type realisation  is no t effic ien t in  active— RC o r SC im plem enta tions. T he 

adven t o f LD I type allpass ladders provides a very prom ising m eans for 

active— RC and  SC la ttice  c ircu it rea lisation .

W ith respect to  the  developm ent o f co m p u ter a ided  in teg ra ted  circu it design 

the  follow ing possible research  w ork is ind icated

7. In its p resen t s ta te , P A N D D A  is a lready  a useful too l fo r an  analogue filter 

designer w ith a ce rta in  level o f exp erien ce . T he  digital filte r synthesis p a rt of 

P A N D D A  still rem ain  to be developed . It is expected  th a t m atrix  p rincip les can 

be also used to  in co rp o ra te  L D I, wave and  la ttice  type digital ladders and  provide 

fast a lgorithm  partitio n  and  analysis. R ecen t developm ents on  G aA s SC filters 

have also b rough t m any in teresting  topics in to  research  [31,41]. Im provem en t of 

P A N D D A  to  handle  th e  m any special p rob lem s m et in G aA s c ircu it design, such
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as low o pam p  gain and  high switch resistance would m ake it very helpful for the 

research  in this field. Also with som e fu rth e r im provem ents to the of 

user— in te rface  and  graphical facilities, it could be m ade m uch m ore 

user— friendly . T h e  p resen t softw are is a rran g ed  as a set of p rogram s which 

hand le  the  m a jo r com pu ta tiona l steps in filte r design. It re lies o n  th e  skill of the 

designer to  apply  its capabilities m ost ap p rop ria te ly . H ow ever, this knowledge 

could be built in to  a m ore sophisticated  ex p ert system  w hich could m ake 

recom m endations abou t th e  best design ap p ro ach , enabling  th e  designer to reach  a 

quick decision w ithout specialised ability.
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