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Abstract

Understanding how virus strains offer protection against closely related emerg-

ing strains is vital for creating effective vaccines. For many viruses, including

Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where mul-

tiple serotypes often co-circulate, in vitro testing of large numbers of vaccines

can be infeasible. Therefore the development of an in silico predictor of cross-

protection between strains is important to help optimise vaccine choice. Vac-

cines will offer cross-protection against closely related strains, but not against

those that are antigenically distinct. To be able to predict cross-protection

we must understand the antigenic variability within a virus serotype, dis-

tinct lineages of a virus, and identify the antigenic residues and evolutionary

changes that cause the variability. In this thesis we present a family of sparse

hierarchical Bayesian models for detecting relevant antigenic sites in virus

evolution (SABRE), as well as an extended version of the method, the ex-

tended SABRE (eSABRE) method, which better takes into account the data

collection process.

The SABRE methods are a family of sparse Bayesian hierarchical models that

use spike and slab priors to identify sites in the viral protein which are im-

portant for the neutralisation of the virus. In this thesis we demonstrate how

the SABRE methods can be used to identify antigenic residues within dif-

ferent serotypes and show how the SABRE method outperforms established

methods, mixed-effects models based on forward variable selection or `1 reg-

ularisation, on both synthetic and viral datasets. In addition we also test a

number of different versions of the SABRE method, compare conjugate and

semi-conjugate prior specifications and an alternative to the spike and slab

prior; the binary mask model. We also propose novel proposal mechanisms for

the Markov chain Monte Carlo (MCMC) simulations, which improve mixing

and convergence over that of the established component-wise Gibbs sampler.

The SABRE method is then applied to datasets from FMDV and the In-

fluenza virus in order to identify a number of known antigenic residue and to

provide hypotheses of other potentially antigenic residues. We also demon-

strate how the SABRE methods can be used to create accurate predictions of



the important evolutionary changes of the FMDV serotypes.

In this thesis we provide an extended version of the SABRE method, the

eSABRE method, based on a latent variable model. The eSABRE method

takes further into account the structure of the datasets for FMDV and the

Influenza virus through the latent variable model and gives an improvement

in the modelling of the error. We show how the eSABRE method outperforms

the SABRE methods in simulation studies and propose a new information cri-

terion for selecting the random effects factors that should be included in the

eSABRE method; block integrated Widely Applicable Information Criterion

(biWAIC). We demonstrate how biWAIC performs equally to two other meth-

ods for selecting the random effects factors and combine it with the eSABRE

method to apply it to two large Influenza datasets. Inference in these large

datasets is computationally infeasible with the SABRE methods, but as a re-

sult of the improved structure of the likelihood, we are able to show how the

eSABRE method offers a computational improvement, leading it to be used

on these datasets. The results of the eSABRE method show that we can use

the method in a fully automatic manner to identify a large number of anti-

genic residues on a variety of the antigenic sites of two Influenza serotypes,

as well as making predictions of a number of nearby sites that may also be

antigenic and are worthy of further experiment investigation.
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Chapter 1

Introduction

Influenza, more commonly known as flu, and Foot-and-Mouth Disease Virus (FMDV)

both come with considerable danger for those that are infected. Influenza comes in yearly

outbreaks which are estimated to result in 3-5 million cases of severe illness and about

250,00-500,000 deaths (WHO, 2009), while FMDV is endemic in sub-Saharan Africa

causing regular outbreaks in the cattle there (Reeve et al., 2010). Both viruses also cause

severe outbreaks of the disease. Influenza has caused three pandemics in the 20th century,

Spanish Influenza (1918), Asian Influenza (1958) and Hong Kong Influenza (1968), all of

which have resulted in more than a million deaths, with Spanish Influenza estimated to

have killed 40-50 million people alone (WHO, 2005). FMDV, as well as being endemic

in sub-Saharan Africa, has also caused major outbreaks throughout the world, with the

2001 United Kingdom (UK) outbreak estimated to have resulted in the deaths of 10

million sheep and cattle (through culling) and an economic cost of around £8 billion

(BBC, 2016).

To counter the effects of the virus and prevent the spread of the disease, vaccines

are usually used to protect people and animals against Influenza and FMDV. However

in both cases multiple strains often co-circulate and therefore vaccines must protect the

person or animal against a variety of virus strains. With the continuous evolution of virus

strains, vaccines only work for a short period of time. For instance the Influenza vaccine

must be updated yearly to protect against the virus strains that make up that year’s ‘Flu

Season’. When the virus strains that make up the vaccines do not match closely enough

to the currently circulating strains, the effectiveness of the vaccine is reduced and the

risk for the person or animal much increased.

The reason for the ever changing vaccines is to offer protection against the ever evolv-

ing strains of a particular virus. In both Influenza and FMDV there is high genetic

variability and this results in changes to the virus proteins giving new virus strains;
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Chapter 2. Changes in the virus proteins, known as antigenic proteins, result in differ-

ences between the virus strains, antigenic differences, and these reduce how antigenically

similar the strains are, affecting the ability of the host immune system to recognise the

virus; see Section 2.1. As a consequence of this antigenic variability, vaccines are only

effective against strains that are genetically related and antigenically similar to the vac-

cine (Mattion et al., 2004). This, along with the ever evolving virus strains, motivates

the need to continuously update the vaccine, however choosing the correct virus strains

to make into a vaccine can be time consuming and expensive. Understanding how cross-

protection, the protection against one strain conferred by previous exposure to another

strain either by infection or vaccination (Paton et al., 2005), is therefore vital for under-

standing the severity of an outbreak and how a particular vaccine will reduce the spread

of the disease.

Vaccines will not work across different serotypes, genetically and antigenically distinct

virus lineages between which there is no degree of cross-protection, and often vaccines

must be made up of virus strains from multiple serotypes. However within serotypes,

vaccines can offer protection against groups of antigenically similar virus strains, but

not against those that are antigenically distinct. Given the importance of Influenza

and FMDV it is important to understand which vaccines offer protection against which

currently circulating strains. To do this we must understand how genetic changes affect

antigenicity and within-serotype cross-protection. Biological experiments to identify both

the antigenic proteins which cause antigenic differences and the effective vaccines is time

consuming and expensive. Therefore the development of in silico models which can

predict both antigenic residues and the likely cross-protection offered by virus strains is

vital for directing these experiments in an efficient manner and reducing the number of

experiments that must be carried out.

The motivation behind this work is to develop models that can predict antigenically

significant residues within the different serotypes of Influenza and FMDV. Doing so can

lead to the identification of these antigenic residues and help guide the selection of vac-

cines, mitigating the effect of the circulating virus strains. In order to do this we can use

genetic data and in vitro measures of the antigenic variability between virus strains to un-

derstand how these genetic changes affect the ability of virus strains to cross react. The

measures of antigenic variability, Virus Neutralisation (VN) titre and Haemagglutina-

tion inhibition (HI) assay, approximate the extent to which one strain confers protection

against another by recording the maximum dilution at which the virus-specific antibody

in a sample of antiserum from a cow (VN titre) or ferret (HI assay) exposed to one

strain of the virus remains able to neutralise a sample of a second virus strain. To model

antigenic variability effectively we must account for the experimental effects inherent in
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these processes and then link the differences in the residues and evolutionary history

to the differences in the measured antigenic variability. To do this effectively we must

simultaneously account for the experimental variability and select which of residues have

an effect on the measured antigenic variability and are therefore likely to be antigenic

residues. Previous work, e.g. Reeve et al. (2010), has used basic statistical techniques

such as mixed-effects models to model antigenic variability but these methods are not

statistical optimal; see Chapter 3.

To achieve improved performance we propose a family of models, Sparse hierArchi-

cal Bayesian models for detecting Relevant antigenic sites in virus Evolution (SABRE),

which can simultaneously account for the experimental affects and select the residues and

evolutionary changes that affect the measured antigenic variability; Chapters 4 and 5.

The SABRE methods are Bayesian hierarchical models that can account for the experi-

mental affect of the data collection process through random effects, while simultaneously

selecting the significant residues and evolutionary changes through the integration of spike

and slab priors (Mitchell and Beauchamp, 1988). Spike and slab priors have been shown

to improve variable selection and avoid the excessive shrinkage incurred by alternative

methods from Chapter 3 (Mohamed et al., 2012), while hierarchical models allow consis-

tent inference of all parameters and hyperparameters, and inference borrows strength by

the systematic sharing and combination of information (Gelman et al., 2013a).

The advantages of the SABRE methods are fully discussed and demonstrated in

Chapters 4 and 5, where we show that in terms of correctly selecting variables the

SABRE methods outperform the alternative methods introduced in Chapter 3; classical

mixed-effects models, the mixed-effects Least Absolute Shrinkage and Selection Operator

(LASSO) and the mixed-effects elastic net. We additionally explore different versions of

the SABRE methods, in order to find the one that best works with our data. We provide

a first comparison between the binary mask model and models based on the slab and spike

prior, as well as looking at how different levels of conjugacy in the hierarchical models

can affect the models performance. Chapters 4 and 5 also look at various different ways

of improving the mixing and performance of the model, before finally applying a version

of the SABRE method to real life FMDV and Influenza datasets. Our results, compared

against those already available, show the significant improvement of the SABRE methods

and the improvement they offer in modelling antigenic variability and identifying anti-

genic residues. Our results identify a number of previously known antigenic residues, as

well as providing novel predictions of other residues that are potentially antigenic (Davies

et al., 2014, 2016a,b).

One problem with the SABRE methods is that they are computationally infeasible for

larger datasets meaning that data simplification must be carried out or more inaccurate
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methods used. To counter this drawback of the SABRE methods we have proposed the

extended SABRE (eSABRE) method; see Chapter 6. The eSABRE method is based on

the SABRE methods but better takes into account the structure of the data from the

FMDV and Influenza serotypes that we have available. In Chapter 7 we show how this

method outperforms the SABRE methods from Chapter 4 in terms of variable selection on

realistic simulated datasets and therefore also the alternative methods from Chapter 3.

We also show how the eSABRE methods allow us to gain a massive improvement in

terms computational efficiency, meaning that using the eSABRE becomes viable on the

larger datasets where the SABRE method was not. We demonstrate this on the large

datasets for the Influenza serotypes, identifying known antigenic residues and providing

novel predictions of potential antigenic residues.

The work of this thesis has taken on the challenges provided by antigenic variability

and the biological threat that it poses. We have proposed the SABRE methods which

provide a technique for understanding antigenic variability and cross-protection. We

have also further explored how differences between the different SABRE methods can

affect inference and shown how these methods outperform the standard methods that are

used. We have then proposed the eSABRE method which takes into account the data

generation process better and shown how it outperforms the SABRE methods in terms

of both variable selection and computational efficiency. Finally we have applied all of the

proposed models to real life FMDV and Influenza datasets and the predictions we have

made will help to identify more of the antigenic residues that cause antigenic variability

and in long term hopefully improve the selection of effective vaccines.

1.1 Thesis Overview

This thesis has demonstrated the effectiveness of multiple models for tackling the prob-

lems caused by antigenic variability. The structure of the thesis is in the following form:

Chapter 2 provides information about the biological problem, antigenic variability, and

gives details of the type of data we have available and the individual datasets used in

our studies. Chapter 3 introduces and discusses established methods that are used to

model antigenic variability, as well as introducing the Bayesian methods that are used to

construct the models proposed in this thesis. Chapter 4 introduces the SABRE methods

and Chapter 5 explores different specifications that can be used with the hierarchical

models proposed. Comparisons with the methods from Chapter 3 are also given and the

methods are applied to real life datasets to prove predictions of residues that are po-

tentially antigenic. Chapter 6 provides details of the eSABRE method, while Chapter 7

shows the improvements it offers over the SABRE methods, before applying it the real
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life Influenza and FMDV datasets. Finally Chapter 8 provides a summary of the work

that has been undertaken as part of this thesis and gives details of areas for potential

further work.
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Chapter 2

Data

In this chapter we will provide information about the biological problem, antigenic vari-

ability, that has inspired the work in this thesis and motivates the need for statistical

models to help tackle the problem and make useful biological conclusions. In Section 2.1

we introduce the biological problem, explain what type of data is available to tackle it

and discuss how the data can be used to create statistical models to help understand

antigenic variability. We discuss where the data comes from and the experimental varia-

tion inherent in its collection (Section 2.1.1). We then look at how the surface structure

of the viruses (Section 2.1.2) and their evolutionary histories (Section 2.1.3) can be used

to understand antigenic variability.

In Sections 2.2 and 2.3, we discuss Foot-and-Mouth Disease Virus (FMDV) and the

Influenza (Flu) virus, and give details of the different datasets we have available for these

viruses. For each of the viruses we have datasets for different serotypes, genetically and

antigenically distinct virus lineages, and we introduce these and explain what dangers

the different viruses cause to human and animal populations.

The final part of the chapter, Section 2.4, discusses what information we have about

the antigenic sites of FMDV and Influenza serotypes introduced in Sections 2.2 and 2.3.

Section 2.4 summarises the experimental information we have about each of the viruses

and explains how we can use that, as well as information from other serotypes, to make

informed decisions about the plausibility of some of the biological results found by our

models in Chapters 5 and 7.

2.1 Antigenic Variability

Ribonucleic acid (RNA) viruses such as FMDV and Influenza have been shown to have

high genetic variability (Holland et al., 1982). This variability results in changes to the
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virus proteins that effect recognition by the host immune system, also known as anti-

genic differences. Differences in these proteins, also known as antigenic proteins, affect

how antigenically similar different viruses are. As a consequence of the antigenic vari-

ability in the viruses, vaccines are only effective against field strains that are genetically

related and antigenically similar to the vaccine strain (Mattion et al., 2004). This fea-

ture of FMDV and Influenza makes it important to estimate antigenic similarity among

strains and therefore cross-protection, the protection against one strain conferred by pre-

vious exposure to another strain by either infection or vaccination (Paton et al., 2005).

Understanding cross-protection is vital for predicting the severity of an outbreak and un-

derstanding how different vaccine strains will mitigate the spread of the disease. As the

testing of new candidate vaccines is expensive, the development of an in silico predictor

that can identify which strains are likely to give the broadest cross-protection is essential.

RNA viruses are classified into serotypes, genetically and antigenically distinct virus

lineages between which there is no effective degree of cross-protection. Individual vaccines

may protect against large groups of genetically diverse viruses within a serotype, however

there are antigenically distinct subtypes against which the vaccines do not work. Within

these serotypes are significant levels of antigenic variability, which allows us to examine

the relationship between genetic and antigenic variation and to determine which protein

changes affect recognition by the immune system. Given the importance of FMDV and

Influenza, as well as the difficulties with vaccination caused by antigenic variation, it is

vital to understand how genetic changes affect antigenicity and within-serotype cross-

protection. Biological experiments to confirm the effects of genetic changes are both time

consuming and expensive, therefore making accurate in silico predictions as to which

of the changes caused the antigenic variations is important to reduce the number of

experiments that must be carried out.

In order to infer the antigenic importance of specific genetic changes that have oc-

curred during the evolution of the virus, we require a measure of the antigenic similarity

of any two virus strains. Virus Neutralisation (VN) titre and Haemagglutination in-

hibition (HI) assay give in vitro measures of antigenic similarity between a protective,

i.e. a potential vaccine, and a challenge strain, i.e. a potential circulating virus (Hirst,

1942; WHO, 2011). They approximate the extent to which one strain confers protection

against another by recording the maximum dilution at which the virus-specific antibody

in a sample of antiserum from a cow (VN titre) or ferret (HI assay) exposed to one strain

of the virus (the protective strain) remains able to neutralise a sample of a second virus

strain (the challenge strain). Higher titres or assay measures indicate that the antiserum

still neutralises the challenge strains at greater dilution and therefore that the protective

and challenge strains are more antigenically similar. The highest VN titre or HI assay
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measurements will be when two identical strains are used as the challenge and protective

strains, with any difference between the strains causing antigenic difference and lower VN

titre or HI assay measurements. Gaining an effective understanding of why certain pairs

of virus strains produce higher measured antigenic variability means that we can use the

genetic data of newly emerging virus strains to understand the likely cross protection

offered by different vaccines.

The antigenic differences between different virus strains is caused primarily by changes

in the residues on the proteins on the surface of the capsid or virus shell; see Section 2.1.2.

Here changes in these residues mean that virus strains are less antigenically similar, re-

ducing the effectiveness of vaccines. However the antigenic similarity can also be affected

by how the viruses within the serotypes have evolved and this must also be considered;

Section 2.1.3. Finally the measured antigenic variability can be influenced by a number

of experimental factors and these can affect the accuracy of the VN titre and HI assay

and so must be accounted for; see Section 2.1.1. In terms of standard mixed-effects mod-

els, to be discussed in more detail in Section 3.1.1, the variables related to the residues

and evolutionary history would be considered fixed-effects variables and the experimental

factors would be random-effects factors.

2.1.1 Experimental Effects

The experiments to measure the antigenic variability between any two virus strains con-

tain experimental errors in the measured VN titre or HI assay that they produce. When

modelling the VN titre or HI assay it is important to take these experimental effects into

account, otherwise the way we interpret the antigenic similarity of the strains will be

inaccurate. The measured VN titre or HI assay can be affected by a number of things,

including which challenge strain, protective strain and antiserum were used when the data

was collected, as well as the date the experiment itself was completed. In the datasets we

have for FMDV and Influenza, information about the factors has been recorded and we

can use this in our models in Chapters 4 and 6. However not all datasets contain all the

desired information, so we are limited about which factors we can account for in some

datasets. The available factors are specified for each dataset in the individual sections of

Section 2.2 and 2.3.

The experimental affects need to be considered in our models for a number of reasons.

Individual challenge and protective strains can have different effects on the measured VN

titre or HI assay. For instance some challenge strains can be more reactive against

all strains causing higher measurements, while some protective strains can have higher

or lower measurements against all challenge strains regardless of antigenic similarity.

The animals from which the antisera come from can similarly produce different strength
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antisera and this can also affect the measured VN titre or HI assay. Finally it is possible

that the person doing the experiment can have an affect on the measurements and while

none of the datasets contain this information, we can account for it via a proxy; the date

of the experiment. Initial results from Reeve et al. (2010) suggested that the protective

strain did not affect the measured VN titre or HI assay, suggesting it should not be

included as a random effect factor. We have initially based our choice of random effect

factors on these results, but later tested which factors should be included as random effect

factors through the use of information criteria.

2.1.2 Antigenic Residues

In the outer capsid or virus shell, proteins influence antigenicity. Many areas of these pro-

teins are exposed on the surface of the capsid and among these are antigenic regions that

are recognised by the host immune system. Single amino acid substitutions (mutations)

within these antigenic regions can dramatically affect recognition by the immune system.

Identifying the specific amino acid residues that comprise these antigenic regions and

the substitutions that cause antigenic differences is critical to understanding antigenic

similarity among viruses and cross-protection within serotypes. Producing models which

can rank how likely residues are to have an antigenic affect is important as it can direct

the biological experiments to those residues which are most likely to affect antigenicity

and are therefore the most important to understand.

The data about the residues we have for the FMDV and Influenza virus looks at

whether a particular residue is different for the two virus strains for which the antigenic

variability is being measured, i.e. an amino acid substitution (mutation) has occurred

in the evolutionary path between the two virus strains. The data is recorded as 1 if a

mutation has occurred and 0 otherwise. The inclusion of a residue’s data in a model

from the methods in Chapters 3, 4 and 6 indicates that the particular variable has an

effect on antigenic variability and the corresponding residue is therefore predicted to be

antigenic. Given the virus strains tested throughout the dataset do not change during the

data collection period (all viral evolution happened before this point for the virus strains

in the datasets), the measurements of the residues will remain the same for a given pair

of virus strains for each VN titre or HI assay measurement that they are used to produce.

This however is not the case with the evolutionary data described in Section 2.1.3. The

evolutionary data only remains the same for a given challenge and protective strain, and

the data will not remain the same if the challenge strain is used as the protective strain

and vica versa (unlike the residue data where it will). It is this structure in the genetic

and evolutionary data that provided the motivation for the model described in Chapter 6.

Various pieces of information are known about the residues of the FMDV and Influenza
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serotypes in Sections 2.2 and 2.3 and more information about the residues of the individual

serotypes is given in Section 2.4 where we classify their plausibility of being antigenic.

As a general rule, residues can be classified based on there locations, with some regions

known to be antigenic or provide certain functions to the virus. Information can also

be taken from other serotypes of the same virus, as in many viruses certain regions can

be antigenic in all tested serotypes. For this reason residues are given by their common

alignment taken from Reeve et al. (2010) and Harvey et al. (2016).

2.1.3 Evolutionary History of Viruses

Changes in the antigenic proteins described in Section 2.1.2 occur as the strains within

each serotype evolved. The accumulation of these changes in geographically isolated virus

lineages allows for the division of serotypes into topotypes, groups of genetically similar

viruses associated with a particular geographic area (Knowles and Samuel, 2003). Strains

within topotypes share a common evolutionary history that is distinct from strains within

other topotypes. Accounting for the genetic differences between topotypes that have

arisen due to their significantly different evolutionary paths is necessary for understanding

antigenic variability (Reeve et al., 2010). Interpreting the antigenic consequences of

genetic differences between topotypes can improve our understanding of the evolutionary

history of serotypes, as well as the likely extent of vaccine coverage across topotypes.

When we observe antigenic differences between virus lineages that we are unable to

attribute to amino acid changes at any specific residue. In these cases we wish to relate the

changes to the evolutionary history of the virus. This evolutionary history is ordinarily

described by a phylogenetic tree, e.g. Figure 2.1, which maps the evolution of the sampled

viruses (the leaves) back to their most recent common ancestor (the root). The internal

vertices of the tree (the nodes) then represent inferred ancestors of the sampled viruses

(the leaves). The edges joining these nodes (the branches) connect ancestors and their

immediate evolutionary descendants, and are each associated with a set of amino acid

substitutions estimated to have occurred between the nodes they connect. Groups of

leaves separated from the root by a particular branch, are said to be a clade defined by

that branch, i.e. virus A and virus B in Figure 2.1 are a clade defined by branch x.

The reconstruction of phylogenetic trees is not the subject of this thesis, and therefore

for the datasets in Sections 2.2 and 2.3 we have used the trees generated from the paper

where the data on that serotype was originally presented. Within these trees, each branch

has the potential to explain antigenic differences and these are included as fixed-effects by

noting whether each branch lies between the challenge and protective strains (1) or not

(0) in an indicator variable, as in Reeve et al. (2010). For each pair of strains tested, it

does not make a difference which virus from the pair is the challenge or protective strain,
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Figure 2.1: Example Phylogentic Tree. The phylogentic tree was created in FigTree
v1.4.2. Marked on the tree are protective strains (*).

only that the branch lies between the two strains chosen. For example, in Figure 2.1,

the indicator variable for branch x would be 1 for a comparison between any virus in the

clade defined by branch x (virus A or B) and a virus outside of the clade (viruses C,

D or E ) regardless of which virus is the challenge or protective strain, and 0 otherwise.

Then if there is a significant antigenic difference between viruses A and B and viruses C,

D and E, the antigenic effect of branch x would be selected.

However, other non-antigenic properties of the virus can also affect the VN titre or HI

assay measurements, and these were introduced by Davies et al. (2016a). One of those

properties is that certain amino acid substitutions may increase (decrease) reactivity of

the challenge strains resulting in a lower (higher) VN titre or HI assay measurements

against all antisera. We call this a reactivity effect and include a second type of indicator

variable for this type of effect. This indicator variable for branch x in Figure 2.1 would

be 1 if the challenge strain is virus A or B and 0 if it is virus C, D or E. If challenge

strains in the clade defined by branch x show consistently higher or lower VN titre or HI

assay measurements regardless of their antigenic similarity to the protective strain, then

this second type of indicator variable will be selected.

Finally, amino acid substitutions can also alter the virus so that protective strains

carrying these amino acid substitutions produce antisera that have higher or lower VN

titres or HI assay measurements against all challenge viruses irrespective of antigenic

similarity. We call this third property an immunogenic effect, and include a third indicator

variable for this effect. This indicator variable for branch x in Figure 2.1 would be 1 if

the protective strain is virus A or B and 0 if it is virus C, D or E. If protective strains

in the clade defined by branch x show consistently higher or lower VN titre or HI assay

measurements regardless of their antigenic similarity to the challenge strain, then this

third type of indicator variable will be selected.

While we can distinguish these three properties in theory, it is not always possible to
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discriminate between them in practise. For a given branch, it is only possible to define all

of the properties when the clade defined by that branch includes at least one virus used

as a protective strain and one as a challenge strain. Note that not all protective strains

are used as challenge strains in our studies. For example, in Figure 2.1, it is possible

to distinguish the three properties for branch x whose clade includes both a protective

strain (virus B) and challenge strains (viruses A and B). However, the clade defined by

branch y only contains a challenge strain (virus A) and therefore an immunogenic effect,

an effect associated with protective strains, cannot be observed. Similarly as virus A is

not used as a protective strain it is not possible to determine whether any variation in

VN titre or HI assay measurements associated with its use as a challenge strain is the

result of the antigenic distinctiveness of the virus (i.e. an antigenic change in branch y)

or simply that the virus differs in its reactivity (i.e. a reactivity change in branch y).

Finally that it is worth noting the consistency of the evolutionary data for a given

pair of challenge and protective strains, re-enforcing the statements made at the end

of the second paragraph in Section 2.1.2. For a given pair of challenge and protective

strains the variables relating to the evolutionary history of the virus will remain the same.

However, unlike the residues data in Section 2.1.2, it does not remain the same when the

virus strains used as the challenge and protective strains are swapped. This is a result of

branches between pairs of virus strains having either reactivity or immunogenic affects

depending on which virus strain is used as the challenge strain and which the protective.

2.2 Foot-and-Mouth Disease Virus

There are seven serotypes of FMDV; A, C, O, Asia 1 and South African Territories types

1, 2 and 3 (SAT1, SAT2 and SAT3). The virus is endemic in sub-Saharan Africa where

six of the seven serotypes occur. Of these serotypes, SAT1 and SAT2 are responsible

for the majority of FMDV outbreaks in cattle in the region and also show high levels of

antigenic variability between virus strains. The significant levels of antigenic variability

in these serotypes makes it important to understand cross protection between strains so

that effective vaccines can be created. The high variability also allows us to examine the

relationship between genetic and antigenic variation using the data provided in Reeve

et al. (2010) and Maree et al. (2015).

2.2.1 SAT1 Serotype

There are two SAT1 datasets that have been available during the period in which the work

for this thesis was undertaken. The original SAT1 dataset is a smaller dataset originally
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Figure 2.2: Labelled phylogenetic tree for original SAT1 dataset described.
The labelled phylogenetic tree was created using BEAST v1.7.2 and FigTree v1.4.2
from aligned nucleotide sequence data with date of isolation. The leaves of the phy-
logenetic tree, see Section 2.1.3, give the SAT1 viruses strains contained in the data,
i.e. KNP/196/91. All strains are used as challenge strains and those used as protective
strains are marked with a *. Branches are labelled based on their evolutionary distance
from the leaves (observed virus strains). Leaf branches are denoted by numbers, while
internal branches are labelled by numbers and letters, where the numbers depend on the
maximum number of nodes (inferred ancestors) between this branch and any leaf which
is part of the clade defined by the branch.

collected and analysed in Reeve et al. (2010) and has been available throughout all the

work completed. This dataset has been used in Davies et al. (2014) and Davies et al.

(2016a). Further data was collected and analysed in Maree et al. (2015), and this data

became available at a later point in time and so was only analysed in Davies et al. (2016a)

and Davies et al. (2016b).

The original SAT1 dataset analysed in Reeve et al. (2010) is made up of 246 VN titre

measurements of comparisons between 3 protective and 20 challenge strains, where the

virus strains are the leaves of the phylogenetic tree, see Section 2.1.3, in Figure 2.2. For

each of these measurements, there are 754 residues in the amino acid sequence of the

structural proteins. Of these, 306 are exposed on the surface of the capsid, and 137 are

variable between the 20 test viruses, producing usable indicator variables to assess the

antigenic effect of amino acid substitutions. The phylogenetic tree given in Figure 2.2

contains 38 branches, and it is possible to include additional variables to account for

the different types of branch effect (see Section 2.1.3), resulting in 64 different indicator
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Figure 2.3: Labelled phylogenetic tree for extended SAT1 dataset. The labelled
phylogenetic tree was created using BEAST v1.7.2 and FigTree v1.4.2 from aligned nu-
cleotide sequence data with date of isolation. The leaves of the phylogenetic tree, see
Section 2.1.3, give the SAT1 viruses strains contained in the data, i.e. KNP/196/91. All
strains are used as challenge strains and those used as protective strains are marked with
a *. Branches are labelled based on their evolutionary distance from the leaves (observed
virus strains). Leaf branches are denoted by numbers, while internal branches are labelled
by numbers and letters, where the numbers depend on the maximum number of nodes
(inferred ancestors) between this branch and any leaf which is part of the clade defined
by the branch.

variables to help determine the effect of each branch and the evolution they represent.

Recorded experimental effects for the original SAT1 dataset include the challenge strain,

protective strain and antiserum, see Section 2.1.1, and these can be accounted for as

random effects in our models in Chapter 4.

After the analysis of the original SAT1 dataset in Reeve et al. (2010), more data

was collected, including additional strains and repeated experiments (Maree et al., 2015).

This dataset, to be known here as the extended SAT1 dataset, includes the original

SAT1 data and consists of a total of 2125 VN titre measurements with 5 protective and

42 challenge strains, where the virus strains are the leaves of the phylogenetic tree, see

Section 2.1.3, in Figure 2.3. Of the 306 surface exposed sites, the amino acid sequence
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Figure 2.4: Labelled phylogenetic tree for SAT2 dataset. The labelled phylogenetic
tree was created using BEAST v1.7.2 and FigTree v1.4.2 from aligned nucleotide sequence
data with date of isolation. The leaves of the phylogenetic tree, see Section 2.1.3, give
the SAT2 viruses strains contained in the data, i.e. KNP/2/89. All strains are used as
challenge strains and those used as protective strains are marked with a *. Branches are
labelled based on their evolutionary distance from the leaves (observed virus strains). Leaf
branches are denoted by numbers, while internal branches are labelled by numbers and
letters, where the numbers depend on the maximum number of nodes (inferred ancestors)
between this branch and any leaf which is part of the clade defined by the branch.

is variable between the viruses at 146. 132 variables associated with the phylogenetic

tree in Figure 2.3 are also used, with the variables representing a variety of evolutionary

effects (see Section 2.1.3). Recorded experimental effects for the extended SAT1 dataset

include the challenge strain, protective strain, antiserum and the date of the experiment,

see Section 2.1.1, and these can be accounted for as random effects in our models in

Chapter 4.

2.2.2 SAT2 Serotype

The SAT2 data was originally analysed in Reeve et al. (2010) and contains 320 VN titre

measurements of 4 protective and 22 challenge strains, where the virus strains are the

leaves of the phylogenetic tree, see Section 2.1.3, in Figure 2.4. It contains data on 128

variable surface exposed residues and 80 variables associated with the phylogenetic tree

in Figure 2.4, where the different type of evolutionary effects are taken into account (see

Section 2.1.3). Recorded experimental effects for the SAT2 dataset include the challenge
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strain, protective strain and antiserum, see Section 2.1.1, and these can be accounted for

as random effects in our models in Chapter 4.

2.3 Influenza Virus

Influenza, more commonly known as flu, is estimated to cause the death of between

250,000 and 500,000 people each year (WHO, 2009). Due to its particular danger to the

old and sick, countries like the United Kingdom (UK) provide regular vaccinations for

vulnerable people it an attempt to reduce the expected number of mortalities. For this

reason it is vital to choose the right virus strains to be made into vaccines in order to

reduce the risk of death from that year’s Influenza strains. In the UK these have usually

contained strains taken from three different serotypes; Influenza A (H1N1), Influenza A

(H3N2) and Influenza B. We have datasets for two of these serotypes which we can use

in an attempt to understand antigenic variability and the ability of different virus strains

to offer cross protection.

2.3.1 Influenza A (H1N1) Serotype

H1N1 viruses entered the human population in 1977 and co-circulated with a viruses of a

second influenza A subtype, H3N2, and influenza B viruses until their replacement by a

novel distantly related lineage of H1N1 viruses in the 2009 swine-origin pandemic (Barr

et al., 2014). During this period the influenza vaccine included a H1N1 strain which had

to be updated on nine occasions in order to remain antigenically matched to, and there-

fore capable of protecting the human population from, circulating strains. The dataset

analysed here comprises 43 H1N1 viruses collected from 1978 to 2009 that were each used

as both challenge and protective strains. There are 15,693 HI assay measurements, with

279 explanatory variables, 53 surface exposed residues and 226 variables related to the

phylogenetic data; the tree for an extended version of this H1N1 dataset can be found

in Harvey et al. (2016). Recorded experimental effects for the H1N1 dataset include the

challenge strain, protective strain and the date of the experiment, see Section 2.1.1, and

these can be accounted for as random effects in our models in Chapters 4 and 6.

2.3.2 Influenza A (H3N2) Serotype

H3N2 viruses emerged in the human population in 1968 and continue to circulate to the

present day. During this period H3N2 viruses have been responsible for the majority of

severe illness attributed to seasonal influenza, which is in part due to the increased rate

of antigenic change in these viruses relative to other influenza viruses (Barr et al., 2014).

16



2. Data

The H3N2 dataset includes 229 viruses collected from 1968 to 2013, of which 169 were

used as protective strains. There are 7,315 HI measurements with 1,777 pairs of challenge

and protective strains. There are are 1,264 explanatory variables which consists of 145

surface exposed antigenic residues and 1,119 variables relating to the evolutionary history

of the serotype. Finally there are recorded experimental effects for the challenge strain,

the protective strain and the date of the experiment, see Section 2.1.1, and these can be

accounted for as random effects in our models in Chapter 6.

2.4 Classifying Variables

Once we have used the methods in Chapters 4 and 6 to select the most statistically rele-

vant residues, it is important to validate our results and understand how likely our results

are to be biologically correct. Although knowledge of which residues are antigenically im-

portant is at least partially incomplete in all serotypes of FMDV and the Influenza virus,

for validation purposes we can use previous experimental results to assign residues for

each serotype (except the SAT2 FMDV serotype) to three different levels of plausibility,

proven, plausible and implausible, based on how likely they are to be antigenic.

2.4.1 SAT1 Serotype

For the SAT1 FMDV serotype, residues are included in the experimentally proven group

for three different reasons. Firstly we include any residues which have been experimentally

validated as important within the SAT1 serotype by monoclonal antibody escape mutant

studies (MAbs) (Grazioli et al., 2006). Secondly, we include those residues which are part

of cords of connected experimentally validated antigenic residues for four or more different

serotypes; VP1 140-169 (part of the VP1 G-H loop), VP1 200-224 (VP1 C terminus), VP2

70-82 (VP2 B-C loop) and VP3 56-61 (VP3 B-B knob) (Aktas and Samuel (2000); Barnett

et al. (1989); Crowther et al. (1993a); Baxt et al. (1989); Bolwell et al. (1989); Grazioli

et al. (2006); Grazioli et al. (2013); Lea et al. (1994); Kitson et al. (1990); Mateu (1995);

Saiz et al. (1991); Thomas et al. (1988a); Thomas et al. (1988b)). As antigenic sites

have been found in a large number of different individual locations, we include additional

information from other serotypes when classifying whole loops due the similar structure of

the different serotypes. Finally, we also include a number of topotype-defining branches

that are known to represent significant changes in the evolutionary history (Reeve et al.,

2010).

We define the plausible group to consist of residues from any protein loop where

residues have been identified in at least one FMDV serotype, excluding those residues
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that are already classified as proven. Additionally, any non-topotype-defining branches

of the phylogenetic trees are included in the plausible group, as it is unknown which of

the remaining branches may also be significant in evolutionary history of the serotype.

Finally we classify any residues not included in these groups as implausible.

2.4.2 SAT2 Serotype

Although knowledge of the SAT2 FMDV serotype is minimal and we do not classify

residues into different levels of plausibility, for minimal validation purposes we can ex-

ploit knowledge gained from other serotypes of FMDV and previous work on the SAT2

serotype. Grazioli et al. (2006) and Crowther et al. (1993b) has found evidence for anti-

genicity of the following three areas of the SAT2 capsid: VP1 140-169 (part of the VP1

G-H loop), VP1 200-224 (VP1 C terminus) and VP2 70-82 (VP2 B-C loop). Many re-

gions have also been found to be antigenic on multiple other FMDV serotypes and it is

also likely that they are in SAT2.

2.4.3 Influenza A (H1N1) Serotype

For influenza viruses, the haemagglutinin (HA) surface protein is responsible for binding

to host cells and is also the major target for neutralising antibodies (Skehel and Wiley,

2000). The structure of HA can be broadly be divided into the stalk domain which

connects to the virus capsid and a head domain which contains the residues involved in

binding to the host cell. Experimental studies have identified that the major antigenic

regions of HA are exposed areas in the head of the HA protein surrounding the receptor

binding site (Skehel and Wiley, 2000). For H1, these experiments have identified four

antigenic sites (Caton et al., 1982), however other sites are also known to be important

(McDonald et al., 2007). We classify residues as proven if they belong to any of the

four antigenic sites or have other experimental support for their role in antigenicity.

Other regions of the head domain are considered to be plausible residues, while residues

belonging to the stalk domain are considered unlikely to play a role in antigenic change.

2.4.4 Influenza A (H3N2) Serotype

The antigenicity of human H3N2 has been explored in greater depth than H1N1 due to

the greater burden of disease and faster rate of antigenic evolution in H3 viruses. Ex-

perimental studies have revealed the structure of the H3 HA and studies of antigenically

drifted mutant viruses generated in the laboratory have identified five distinct antigenic

sites (A-E) on the surface (Wiley and Skehel, 1987). These antigenic sites have been
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Table 2.1: Table of classification for correlated variables. The table gives the
classification of groups of completely correlated variables based on the different types
included. Ticks indicate which types of variables are in the group of correlated variables.
The same rules apply to proven and plausible variables, so these have been combined into
one group.

Proven/Plausible Implausible Branch Classification

Proven/Plausible

Implausible

Plausible

Implausible

subsequently been extended and the set of residues reported by Shih et al. (2007) are

classified as proven for model validation purposes. Structural and phylogenetic analysis

of the H3 HA has produced an extended set of potentially antigenic residues which are

classified as proven (Bush et al., 1999), with the remaining variables classified as implau-

sible. Additionally, we do not consider some residues where the reliability of the genetic

code is questionable. While initially included in the datasets, these have been excluded

when considering the selected residues.

2.4.5 Classification of Completely Correlated Variables

It is common that variables have correlation coefficients exactly equal to one. In this

case we only include one of the variables in the model and use Table 2.1 to guide the

classification into the proven, plausible and implausible groups.

When an amino acid substitution at a single residue only occurs once in the evolu-

tionary history of the virus, both the residue and branch variable explain that particular

mutation. In this case both variables are the same and only one variable is included

in the model. That variable then retains the classification given to that residue, either

proven/plausible (line 2 in Table 2.1) or implausible (line 3 in Table 2.1).

Alternatively it is also possible that several residues have an amino acid substitution

at only one point in the phylogenetic tree. In this case multiple residue variables are the

same as a single branch variable and it is impossible to tell which of these residues are

having the antigenic effect, so again only one variable is included in the model. If all

the residues have the same classification, either proven/plausible or implausible, then the

variable included in the model is given that classification (lines 2 and 3 in Table 2.1),

where we take proven over plausible. If there are both proven/plausible and implausible

variables, we have classified them as plausible to reflect our lack of knowledge of which
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residue is having the antigenic effect (line 4 in Table 2.1). The only exception to this rule

is when branches that are known to be significant changes in the evolutionary history

are selected by the model, in which case the variable is classified as proven regardless of

which residues are also selected, as we know one of these changes must be significant.

Conversely when residue variables are not the same as a branch variable, we should

be able to understand better their importance in explaining antigenic variability, as the

antigenic effect of the substitution at this residue has been seen at multiple points in

the evolutionary history of the virus. In this case if we have selected proven/plausible

and implausible variables that are identical, then we classify this selection as implausible

(line 5 in Table 2.1). This is because any genuinely significant change is unlikely to occur

in direct correlation with an implausible variable at multiple points in the evolutionary

history of the virus. It is possible that some of these variables are proven or plausible,

but it is not possible to determine this from the current data.

2.5 Discussion

In this chapter we have introduced the biological problem, antigenic variability, and

explained why it is important to understand it; Section 2.1. We have also motivated the

need for an in silico model which can predict antigenic variability and reduce the number

of in vitro experiments required to select an effective vaccine. We have then introduced a

number of FMDV and Influenza serotypes, explaining their relevance and why they cause

real biological problems, before giving details of the datasets we have available to analyse

these datasets; Sections 2.2 and 2.3. Finally we have provided the biological evidence

which we can use to validate the predictions we make and classify the plausibility of the

residues that the models in Chapters 4 and 6 select.
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Chapter 3

Methods

In this chapter we introduce a number of standard methods which can be used to model

antigenicity. In Section 3.1 we introduce some classical methods that can account for

the experimental variation and have previously been used to model antigenicity, e.g.

the mixed-effects models of Reeve et al. (2010). We also discuss alternative Frequentist

methods, the Least Absolute Shrinkage and Selection Operator (LASSO) and elastic net,

as well as providing extensions to these methods in the form of the mixed-effects LASSO

and mixed-effects elastic net (Davies et al., 2016a; Schelldorfer et al., 2011) and detail

their implementation. These methods are used as a comparison for the more complex

methods introduced in Chapters 4 and 6. Section 3.2 provides details of some of the

Bayesian inference techniques used in Chapters 4 and 6, in particular Markov chain Monte

Carlo (MCMC). These methods are combined with the Bayesian sparsity methods from

Section 3.3 to create the Bayesian models introduced in Chapters 4 and 6. Finally we

look at evaluation (Section 3.4) and model selection (Section 3.5) methods, discussing

methods that measure the ability of a model in terms of prediction and variable selection,

as well as how to choose between different models.

3.1 Classical Methods

A variety of classical statistical methods have previously been applied in predicting anti-

genic variability in order to identify antigenic sites. In this section we review some of

these methods and propose variations which are applicable in the context of understand-

ing antigenic variability.
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3.1.1 Mixed-Effects Models

Classical mixed-effects models are a simple method which can be used to model antigenic

variability and account for the experimental variability inherent in the data, e.g. Reeve

et al. (2010). In classical mixed-effects models we define the response y = (y1, . . . , yN)>

and denote the explanatory variables, X, as a matrix of J+1 columns and N rows, where

the first column is an intercept. Each column of explanatory variables, Xj, is then given

an associated regression (or fixed effects) coefficient, wj, to control its influence on the

response.

We further set the random-effects design matrix, Z, as the matrix of indicators with

N rows and ||b|| columns, where ||.|| indicates the dimension of the vector. The random-

effect coefficients are given as b = (b>1 , . . . ,b
>
G)> and represent a vector of parame-

ters related to each of the groups g ∈ {1, . . . , G}. Each bg has length ||bg||, where

||b|| =
∑G

g=1 ||bg||, and follows a zero mean Gaussian distribution with a group depen-

dent variance, bg ∼ N(bg|0,σ2
b,gI), where I is the identity matrix. This leads to the

random-effect coefficients having the following joint distribution b ∼ N(b|0,Σb), where

we define Σb = diag(σ2
b) with σ2

b = (σ2
b,1, . . . , σ

2
b,G) where each element has length ||bg||.

See Pinheiro and Bates (2000) for more details on mixed-effects models.

We therefore define the mixed-effects model as:

y = Xw + Zb + ε where ε ∼ N(ε|0, σ2
εI) (3.1)

where we assign the model independent and identically distributed Gaussian errors. Using

a simple application of Gaussian integrals (Bishop, 2006), we integrate over b to give the

likelihood:

L(w, σ2
ε ,Σb|y,X,Z) = N(y|Xw,ZΣbZ> + σ2

εI). (3.2)

In classical mixed-effects models, model comparison techniques are often used to choose

which variables are included within the model. To get a sparse model, Reeve et al. (2010)

used a form of forward inclusion, making an adjustment for multiple testing using the

Holm-Bonferroni correction (Holm, 1979). They firstly included terms to account for

the evolutionary history of the viruses based on their phylogenetic trees, before adding

variables corresponding to the surface exposed residues. The residue variables were added

one at a time, before checking for significance and removing so to test other variables.

Variables with a p-value of less than 0.05 were said to be significant and the corresponding

residue proposed to be antigenically important. This technique was used by Reeve et al.

(2010) on the SAT1 and SAT2 FMDV datasets (Sections 2.2.1 and 2.2.2) by Maree et al.
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Figure 3.1: Plot demonstrating the Sparsity caused by the LASSO Penalty. The
plot shows the contours of the unregularised error function along with the constrained
region for the LASSO (λ1, left) and ridge penalties (λ2, right) where the optimum value
of the regression parameters is given by w∗. The LASSO gives a sparse solution in which
w∗1 = 0. This figure is adapted from Bishop (2006).

(2015) on the extended SAT1 FMDV dataset (Section 2.2.1). Similar methods, but with

further manual intervention, has been used by Harvey et al. (2016) on the H1N1 Influenza

dataset (Section 2.3.1) and Harvey (2016) on the H3N2 dataset.

3.1.2 LASSO

A problem with the classical mixed-effects models of Reeve et al. (2010) is the reliance

on stepwise regression techniques, which do not explore all variable configurations and

can result in a non-optimal solution. A classical alternative to forward variable selection

which does allow for simultaneous variable selection is the LASSO of Tibshirani (1996,

2011). The LASSO achieves its variable selection through an `1 penalty (equivalent to a

Bayesian Laplace prior). In the simplest case of linear regression, this gives the following

parameter estimates:

ŵ = argmin
w

{
(y−Xw)2 + λ

J∑

j=1

|wj|
}
. (3.3)

In the linear case this is a convex optimisation problem where a variety of fast and effective

algorithms exist (e.g. Efron et al. (2004); Hastie et al. (2009)). The effect of (3.3) is

to simultaneously shrink and prune parameters w, thereby promoting a sparse model;

see Bishop (2006) for examples. The degree of sparsity depends on the regularization

parameter λ, which can be optimised via cross-validation or information criteria, e.g.

Bayesian Information Criterion (BIC).
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To see why the `1 penalty leads to a sparse model we first note that (3.3) is equivalent

to minimising the unregularised sum of squares error subject to the constraint:

J∑

j=1

|wj| ≤ η (3.4)

for an appropriate value of the parameter η (Bishop, 2006). The reason for the sparsity

can be seen by looking at Figure 3.1 which show the minimisation of the error function

subject to the constraint in (3.4), the LASSO penalty in the left panel of Figure 3.1 forces

one of the variables to equal zero, w∗1 = 0.

3.1.3 Elastic Net

A potential improvement over the LASSO is the elastic net of Zou and Hastie (2005).

It has several advantages over the LASSO including the ability to select more than N

variables in a J > N situation, whereas the LASSO saturates to at most N variables

(Zou and Hastie, 2005). More importantly for our application is that it also deals better

with groups of correlated variables. While the LASSO will arbitrarily select one of the

correlated variables, the penalty of the elastic net allows it to keep all of the variables

in the model. See Section 2.3 of Zou and Hastie (2005) for more information on the

grouping effect.

The elastic net combines `1 and `2 penalties and in the case of linear regression gives

the following parameter estimates:

ŵ = argmin
w

{
(y−Xw)2 + αλ

J∑

j=1

|wj|+ (1− α)λ
J∑

j=1

|wj|2
}

(3.5)

where λ is the penalty parameter and α controls the ratio of the `1 and `2 penalties.

When α = 1 the Elastic Net is equivalent to the LASSO and likewise ridge regression

when α = 0. We can fix α < 1 and the problem becomes strictly convex, so we have a

unique global minimum regardless of whether X is full rank. In practise Ruyssinck et al.

(2014) have found that the choice of α is not important provided it is 0 < α < 1 and we

have further explored this in the context of the mixed-effects elastic net (Section 3.1.5)

in Chapter 5.

3.1.4 Mixed-Effects LASSO

An extension of the standard LASSO is the mixed-effects LASSO proposed by Schelldorfer

et al. (2011), who estimate the regression coefficients w, random-effect variances σ2
b and
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the variance of the noise σ2
ε as:

(ŵ, σ̂2
b, σ̂

2
ε) = argmin

w,σ2
b>0,σ2

ε>0

{
1
2

log |V|+ 1
2
(y−Xw)>V−1(y−Xw) + λ

J∑

j=1

|wj|
}

(3.6)

where V = ZΣbZ> + σεI. The mixed-effects LASSO can be combined with different

information criteria to select the penalty parameter, λ. In Chapter 4 we have used BIC

and the corrected Akaike Information Criterion (AICc) (Hurvich and Tsai, 1989).

A problem with the mixed-effects LASSO of Schelldorfer et al. (2011) is that the

method has only been developed for one random-effect factor. In order to deal with this

problem the Cartesian product of several random-effects factors can be mapped onto a

single random-effect factor. However this can lead to over-estimating the complexity of

the model, so we have developed our own mixed-effects LASSO which allows multiple

random effect factors in order to deal with this (Davies et al., 2016a). Our method uses a

conjugate gradient optimisation strategy available in R (R Core Team, 2013), but requires

a tolerance that must be determined by the user. In practise we have found this easy to

do, as for a sufficiently large λ and reasonably standardised data there will be a group

of regressors clearly grouped around zero. The tolerance can then be set such as to force

these values to zero, i.e. exclusion from the model, and other values of λ used. While this

may not be as effective as the purpose-built block coordinate descent scheme proposed in

Schelldorfer et al. (2011), we have found in practise that they achieve the same results.

3.1.5 Mixed-Effects Elastic Net

Like the LASSO, we can expand the elastic net into the context of a mixed-effects model

(Davies et al., 2016a):

(ŵ, σ̂2
b, σ̂

2
ε) = argmin

w,σ2
b>0,σ2

ε>0

{
1
2

log |V|+1
2
(y−Xw)>V−1(y−Xw)

+ αλ
J∑

j=1

|wj|+ (1− α)λ
J∑

j=1

|wj|2
}

(3.7)

where V = ZΣbZ> + σεI. Again we use the simple optimisation strategy we proposed

for the mixed-effects LASSO in Section 3.1.4.
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3.2 Bayesian Inference with Markov chain Monte

Carlo

In Bayesian inference the posterior distribution, the distribution which contains all the

current information about the parameters θ, is defined by Bayes theorem (Bayes, 1763).

For a given model specification, we define the likelihood to be the probability of the data,

D, given the model distribution, p(.), and model parameters, θ. To get the posterior

distribution the likelihood is multiplied by the prior distribution, p(θ), and normalised:

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

∼ p(D|θ)p(θ). (3.8)

Usually integrating over θ is not possible in complex or high dimensional problems, but

the posterior distribution can be sampled from p(D|θ)p(θ) using MCMC methods.

MCMC methods are a family of estimation methods used to approximate a target dis-

tribution. They are used where integration over all model parameters is not analytically

tractable and can be used in Bayesian inference to sample from the posterior distribution

of a given model. The idea of the method is to sample values of the parameter, θ, from

approximate distributions and then correct those draws to better approximate the target

posterior distribution, p(θ|y). Samples are drawn such that they only depend on the last

value drawn and hence form a Markov chain. Doing this produces a sequence of samples

(chain) which converges to a stationary distribution at time t where:

θt+1|(θt ∼ p(.)) ∼ p(.). (3.9)

In Bayesian inference the stationary (or equilibrium) distribution is the posterior distri-

bution and is independent of the starting state. Samples from this distribution will come

from the target distribution (posterior).

As convergence to the stationary distribution (posterior) is not instant, we must

remove the period of samples before convergence has been achieved. This section of

samples is usually known as burn-in and convergence is often assessed by running multiple

chains and diagnosing convergence using Potential Scale Reduction Factors (PSRFs);

see Section 3.2.3. Additionally, samples from the posterior distribution can be highly

autocorrelated and samples are therefore often thinned, e.g. take every ith sample, in

order to get independent samples of the posterior and accurate estimates of θ.
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3.2.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm was introduced by Metropolis et al. (1953)

and Hastings (1970), and can be used as a method to sample parameters in the posterior

distribution through an acceptance and rejection step. Normally parameters are proposed

individually and put through the acceptance and rejection step which is based on the

ratio of the posterior and proposal distributions. In this sense parameters are gradually

updated throughout the MCMC chain.

To get the ith sample of θ, θi, via the M-H algorithm we firstly need to propose

a potential new value, θ∗. This is done through the proposal distribution q(θ∗|.). For

continuous variables the proposal distribution is usually centred around the previous value

of the sequence, θi−1, i.e. q(θ∗|θi−1) where q(.) is a Gaussian distribution, but this is not

always possible. The distribution of q(θ∗|.) can be freely chosen, but its choice affects the

speed of convergence and mixing. In the second step of the M-H algorithm the proposal

parameter value, θ∗, is accepted or rejected via the acceptance probability. This is given

as the ratio of posterior distributions of the proposed and previous parameter values, as

well as the forwards, q(θ∗|.), and backwards, q(θi−1|.), proposal densities:

α(θ∗, θi−1|D) = min

(
1,
p(θ∗|D)q(θi−1|.)
p(θi−1|D)q(θ∗|.)

)
. (3.10)

The proposed parameter value, θ∗, is then accepted if α(θ∗, θi−1|D) is greater than a

uniform random variable u, where u ∼ U[0, 1]. If the proposed parameter is accepted

then we set θi to be equal to θ∗ and if not set it such that θi = θi−1.

3.2.2 Gibbs Sampling

Gibbs sampling is a special case of the M-H algorithm proposed by Ripley (1979) and

Geman and Geman (1984). Unlike in the M-H algorithm, θj is not sampled from the

full posterior distribution, p(θ|D). Instead each parameter, θj ∈ θ, is sampled from

its conditional distribution, subject to θ−j ∈ θ. Gibbs sampling requires the conditional

distribution to follow a standard distribution and if not the sampling of θj should be done

through the M-H algorithm. Due to the conditional distribution of θj following a standard

form we can propose the value of θ∗ from the conditional distribution. This results in

q(θj|θ−j,D) = p(θj|θ−j,D) in (3.10), resulting in the acceptance rate equalling one,

α(θ∗, θi−1|D) = 1. In practise this means we can simply sample θ∗j from the conditional

distribution and immediately set θ∗j = θij.

To use Gibbs sampling and the M-H algorithm to sample the full posterior distri-

bution, we sample a new value for each parameter θj ∈ θ based on the current val-
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ues of θ−j ∈ θ. Each parameter is sampled from its conditional distribution θij ∼
p(θij|θi1, . . . , θij−1, θ

i−1
j+1, . . . , θ

i−1
J ,D), where the parameters conditioned on take the value

of their most recent sample. Where the conditional distribution is of a known form it

is standard to use Gibbs sampling, although alternative proposals can be used with the

M-H algorithm instead. If this is not the case then the M-H algorithm should be used.

The initial values of the parameters, θ1, are set to some arbitrary values in the correct pa-

rameter space. Under reasonable general conditions and a sufficient number of iterations,

i, the algorithm will converge to the target distribution.

3.2.3 Potential Scale Reduction Factors

PSRFs are a measure which quantifies the convergence of multiple MCMC chains as

introduced by Gelman and Rubin (1992). PSRFs are based on the assumption that

multiple chains using the same data should have the same variation within each chain as

they do between them, if this has not occurred then the chains have clearly not converged

(Gelman et al., 2013a).

The calculation of the PSRF for each parameter, θ, requires m parallel sequences,

each of length n. To calculate the PSRF of each of the model parameters we compute

the between-sequence, B, and within-sequence, W , variances:

B =
n

m− 1

m∑

j=1

(
θ̄j − θ̄

)2
, where θ̄j =

1

n

n∑

i=1

θij, θ̄ =
1

m

m∑

j=1

θ̄j (3.11)

W =
1

m

m∑

j=1

s2
j , where s2

j =
1

n− 1

n∑

i=1

(
θij − θ̄j

)2
. (3.12)

We can then estimate Var(θ|y), the marginal posterior variance of the parameter, by a

weighted average of W and B:

V̂ar
+

(θ|y) =
n− 1

n
W +

1

n
B. (3.13)

This quantity overestimates the marginal posterior variance of the parameter, Var(θ|y),

while W underestimates it for finite n. From this the PSRF can be calculated as follows:

R̂ =

√
V̂ar

+
(θ|y)

W
(3.14)

where the value declines to 1 as n → ∞. Large values of R̂ indicate a lack of conver-

gence and values of less than 1.05 or 1.1 are generally said to indicate convergence, e.g.

Grzegorczyk and Husmeier (2013).
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3.2.4 Joint Distribution Tests

When using different sampling schemes it is often important to check whether the MCMC

sampler approximates the correct posterior distribution. Joint distribution tests as pro-

posed by Geweke (2004) can be used to do this. The idea behind the joint distribution

test is to draw D sets of model parameters, θ1, . . . ,θD from the model’s prior distributions

pθ(.) and then use these parameters to generate D datasets, D1, . . . ,DD. Using the same

model and prior specifications we can then use the MCMC sampler that is being tested

to sample from each of the posterior distributions, p(θd|Dd), of the D datasets. From

each of the MCMC chains of each posterior distribution we can then take N indepen-

dent samples of the model parameters, θd,1, . . . ,θd,N . To work out whether the MCMC

samplers are sampling from the correct posterior distribution we then check whether the

samples θi,d for i ∈ {1, . . . , N} and d ∈ {1, . . . , D} follow the prior distribution used to

generate the data, p(.).

1

D

D∑

d=1

p(θ|Dd) ≈
∫
p(θ|D)p(D)dD =

∫
p(D,θ)dD = p(θ) (3.15)

If the sampled parameters follow p(.) then for a large enough D and N we can conclude

that the MCMC sampler is correctly sampling the posterior.

3.3 Bayesian Sparsity Methods

A variety of methods exist in Bayesian inference for achieving a sparse model. Like with

the Frequentist methods in Section 3.1 we can use `1 regularisation and similar methods

exist in the Bayesian paradigm, e.g. Bayesian LASSO (Park and Casella, 2008). However

`1 methods have their drawbacks as discussed below and so alternative methods have been

proposed which get round some of these issues, e.g. the spike and slab prior (George and

McCulloch, 1993, 1997; Mitchell and Beauchamp, 1988) and the binary mask model, e.g.

Murphy (2012).

Many of these Bayesian methods have been shown to give an improvement over `1

regularisation methods in terms of variable selection and prediction (Davies et al., 2014,

2016a; Mohamed et al., 2012). One of the reasons for this is the `1 regularisation term

itself, equivalent to a Laplace prior in a Bayesian context (Park and Casella, 2008). This

is computationally efficient and leads to a convex optimisation problem for penalised

maximum likelihood or Bayesian maximum a posteriori (MAP) inference. However, `1

regularisation gives an increased bias from shrinkage while not giving sufficient sparsity,

as discussed in Chapter 13 of Murphy (2012). The Bayesian methods, such as spike
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and slab priors, can improve variable selection and avoid excessive shrinkage, but lead to

a non-convex optimisation problem. These priors can also be integrated into Bayesian

hierarchical models, as can be seen in Chapters 4 and 6, and this also gives a number of

other advantages. In particular Bayesian hierarchical models allow consistent inference of

all parameters and hyper-parameters, and inference borrows strength by the systematic

sharing and combination of information; see Gelman et al. (2013a).

3.3.1 Spike and Slab Prior

Spike and slab priors have been used in a number of different contexts and have been

shown to outperform `1 methods both in terms of variable selection and out-of-sample pre-

dictive performance (Mohamed et al., 2012). They were originally proposed by Mitchell

and Beauchamp (1988) as a mixture of a Gaussian distribution and a Dirac spike, but

have also been used as a mixture of two Gaussian distributions (George and McCulloch,

1993, 1997; Ishwaran and Rao, 2005). Spike and slab priors are based on the idea that

the prior reflects whether the feature is relevant based on the values of a inferred vector

of binary indicator parameters, γ, where γ = (γ1, . . . , γJ)> ∈ {0, 1}J . The relevance of

the jth column of X is determined by γj ∈ {0, 1}, where feature j is said to be relevant

if γj = 1. In this way we expect that wj = 0 if γj = 0, i.e. the feature is irrelevant, and

conversely it should be non-zero if the variable is relevant, wj 6= 0 if γi = 1.

The spike and slab prior of Mitchell and Beauchamp (1988) approaches this concept

by assigning a conjugate Gaussian prior where the feature, wj, is relevant, i.e. γj = 1,

and a Dirac spike at zero where it is not:

p(wj|γj, µw, σ2
w) =

{
δ0(wj) if γj = 0

N(wj|µw, σ2
w) if γj = 1.

(3.16)

Here we have a spike at 0 and as σ2
w → ∞ the distribution, p(wj|γj = 1), approaches a

uniform distribution, a slab of constant height. In this sense where γj = 0 the variable wj

and corresponding variable Xj are effectively removed from the model as demonstrated

by the following example:

X =



x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3


 ; Xγ =



x1,1 x1,3

x2,1 x2,3

x3,1 x3,3


 ;

w =



w1

w2

w3


 ; wγ =

[
w1

w3

]
; γ =



γ1 = 1

γ2 = 0

γ3 = 1


 .

(3.17)

30



3. Methods

wj

γj y

Xj

j = 1, . . . , J

(a) Binary Mask Model

wj

γj y

Xγj ,j

j = 1, . . . , J

(b) Spike and Slab Model

Figure 3.2: Probabilistic Graphical Models (PGMs) for the (a) binary mask
and (b) spike and slab models. The grey squares refer to the data, while the white
circles refer to parameters and hyperparameters that are inferred.

The alternative spike and slab prior of George and McCulloch (1993, 1997) approxi-

mates the spike and slab prior of Mitchell and Beauchamp (1988) by replacing the Dirac

spike with a highly peaked Gaussian distribution centred around zero:

p(wj|γj, µw, σ2
w1
, σ2

w2
) =

{
N(wj|0, σ2

w1
) if γj = 0

N(wj|µw, σ2
w2

) if γj = 1.
(3.18)

In this case the values of the spike variance parameter is usually fixed to be very small

such that σ2
w1
<< σ2

w2
. The idea of fixing σ2

w1
to be small is to force any wj where γj = 0

to be approximately 0, i.e. wj ≈ 0. In this thesis we have not explored this specification,

as mathematically it is inferior to the spike and slab prior of Mitchell and Beauchamp

(1988) due to the irrelevant variables only being approximately fixed to zero and the

necessity to a-priori fix the value of σ2
w1

.

3.3.2 Binary Mask Model

An alternative to the spike and slab prior is the binary mask model, e.g. Jow et al.

(2014). Instead of the prior on the regression coefficients reflecting the relevance of the

variable, in the binary mask model the indicator variables, γ, ‘mask’ or hide the impact

of the non-zero coefficients, w, and explanatory variables, X, when the variable is not
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selected:

p(y|w,γ, σ2
ε ,X) = N(y|XΓw, σ2

εI) (3.19)

where Γ = diag(γ). This is different to the spike and slab based methods where the

variables, and their corresponding coefficients, are effectively removed from the model

via a ‘spike’ or delta prior, rather than simply masked. The difference can be seen by

comparing the directed edges associated with the γ vertex in the Probabilistic Graphical

Model (PGM) of the spike and slab model, Figure 3.2b, with the PGM of the binary

mask model given in Figure 3.2a.

3.4 Evaluation Methods

To compare the different methods and model specifications that will be used in this the-

sis, we need to introduce a variety of different methods to evaluate them. We are firstly

interested in evaluating explanatory performance, e.g the reliability of the selection of

relevant explanatory variables. In this case the distinction between in-sample and out-of-

sample prediction becomes obsolete, as the status of the variables does not change. The

explanatory methods here are sensitivity, specificity, precision, F1-score (Section 3.4.1),

Receiver Operating Characteristic (ROC) curves and Area Under the ROC curve (AU-

ROC) values (Section 3.4.2). We also wish to monitor predictive performance, where the

values change from case to case. To reduce over-optimism we therefore assess predictive

performance out-of-sample, in our case looking at out-of-sample likelihoods and Mean

Squared Errors (MSEs) of out-of-sample observations (Section 3.4.1).

3.4.1 Summary Statistics

Sensitivity, specificity, precision and F1-scores are all measures of the performance of a

binary classification, e.g. the successful inclusion or exclusion of relevant or irrelevant

explanatory variables. These are given in terms of True Positives (TP), False Positives

(FP), True Negatives (TN) and False Negatives (FN);

Sensitivity =
TP

TP + FN
(3.20)

Specificity =
TN

TN + FP
(3.21)

Precision =
TP

TP + FP
(3.22)

F1-Score =
2TP

2TP + FP + FN
(3.23)
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Figure 3.3: Example ROC Curve. A plot showing an example ROC curve, where
the perfect predictor, the actual predictor and random expectation are indicated and the
AUROC value is given by the shaded area.

where higher values imply improved performance. These summary statistics measure

explanatory performance and are used to compare different methods in their abilities to

correctly select fixed or random effects. Sensitivity and specificity are also used to create

ROC curves and the resulting AUROC values in Section 3.4.2.

Predictive performance is usually calculated out-of-sample. Here we use MSEs and

likelihoods of out-of-sample observations, yout, based on predicted observations, ypred,

taken from the inferred parameter values, θinf , from training data, yobs. In this case the

out-of-sample MSEs and mean log likelihoods are defined as follows:

MSE(yout|yobs(θinf )) =
1

||yout||
∑((

yout − ypred(θinf )
)2
)

(3.24)

p̂out(yout|θinf (yobs)) =
1

||yout||
log (p(yout|θinf (yobs)) (3.25)

where ||yout|| denotes the number of out-of-sample observations.

3.4.2 ROC Curves

ROC curves are an important tool for measuring the performance of a method in variable

selection (e.g. Hanley and McNeil (1982); Section 5.7. of Murphy (2012)). ROC curves

can be constructed when an underlying gold standard is known, e.g. in a simulation

study where the relevant variables are known, and a method of ranking the importance
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of the variables is given, e.g. posterior probability of inclusion of a variable. To create

the ROC curves we use the rankings to define inclusion thresholds between each ordered

variable and plot the sensitivity, (3.20), against one minus the specificity, (3.21) for each

possible threshold. Linear interpolation is then used to complete the ROC curve. An

example ROC curve is given in Figure 3.3 and is marked as the ‘actual predictor’.

From the ROC curves AUROC values can then be calculated using numerical integra-

tion, where the area that makes up the AUROC value is shaded in Figure 3.3. AUROC

values give a measure of global performance that is not dependant on an arbitrary thresh-

old and like ROC curves can be used to compare the performance of different methods in

terms of variable selection. Random expectation gives an AUROC value of 0.5 (‘Random

expectation’ in Figure 3.3), while a value of 1 means a method offers perfect selection

(‘perfect predictor’ in Figure 3.3). The higher the AUROC value, the better the method

is said to have performed in terms of variable selection.

3.5 Model Selection Methods

We are also interested in choosing between different models and model specifications.

To choose between competing models or model specifications we can use the Widely

Applicable Information Criterion (WAIC), Watanabe (2010), or Bayesian 10-fold Cross

Validation (CV), e.g. Chapter 7 of Gelman et al. (2013a).

3.5.1 Bayesian Cross Validation

Bayesian CV methods are reliable, if computationally expensive, techniques for measuring

the out-of-sample performance of different models. CV methods work by partitioning the

data into K groups and then analysing the predictive performance of a given model on

each of the K different groups using the remainder of the data for training. In this sense

CV methods estimate out-of-sample predictive performance while still making use of all

of the available data.

Various CV methods can be used to analyse the performance of different models.

Leave-One-Out CV (LOO-CV) uses each observation as an individual group, i.e. K = N ,

with the advantage of making maximum use of the available data at every step. However

LOO-CV is computationally infeasible for many models, as it requires fitting the model

N times. As a compromise 10-fold CV is often used, where K = 10, as it only involves

fitting 10 models and this method has been used here.

To calculate the 10-fold Bayesian CV performance of a model, we apply the method

to partial data, y−k, and D−k, and use thinned samples of the model parameters, θι, for
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ι ∈ {1, . . . , I}, from p(θ|y−k,D−k), to estimate the performance on the remaining data,

yk and Dk, using the likelihood. Doing this for each of the K groups gives the 10-fold

Bayesian CV performance:

pCV =
1

K

K∑

k=1

log

∫
p(yk|θ)p(θ|D−k)dθ ∝

1

K

K∑

k=1

log
1

I

I∑

ι=1

p(yk|θι). (3.26)

where θι is a sample from p(θ|D−k).

3.5.2 Widely Applicable Information Criterion

WAIC (Watanabe, 2010) and Deviance Information Criterion (DIC) (Spiegelhalter et al.,

2002) are both useful criteria for selecting the correct models in a Bayesian context. DIC

is effectively a Bayesian version of the Akaike Information Criterion (AIC), where the

posterior mean is used instead of the maximum likelihood estimate and k is replaced

with a data-based bias correction (Gelman et al., 2013b):

pDIC = 2

(
p(y|θ̄)− 1

I

I∑

ι=1

p(y|θι)
)
. (3.27)

Here the first part measures predictive performance and the second is the effective number

of parameters. DIC has been shown to work well in a number of situations, however its

performance becomes poor when the model used is singular, e.g. when spike and slab

priors are used. In this situation the posterior mean becomes a poor representation of

the posterior samples of a given parameter and the method suffers accordingly.

While DIC struggles with singular models, WAIC still remains effective for selecting

the correct model and this is why we have used WAIC in this thesis rather than DIC

(Gelman et al., 2013b). WAIC averages over the posterior distribution which is both

desirable and allows the criterion to work with singular models. Watanabe (2010) also

showed how WAIC is asymptotically equivalent to Bayesian LOO-CV. WAIC can be

computed using the thinned parameter samples, θι, from the posterior distribution of the

full dataset, p(θ|y,D), meaning the sampling process must only be carried out once for

the whole dataset:

pWAIC = −2
N∑

i=1

(
log

(
1

I

I∑

ι=1

p(yi|θι,Di)

)
− Var (log(p(yi|θι,Di)))

)
(3.28)

where Var is the sample variance.
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3.6 Discussion

In this chapter we have introduced a number of standard methods which are relevant

to the methods proposed in this thesis. We have described some classical methods,

Section 3.1, which will be used as a comparison to the methods proposed in Chapter 4.

These include standard mixed-effects, the LASSO, elastic net and mixed-effect model

versions of the LASSO and elastic net. We have also demonstrated, in Section 3.2, basic

Bayesian methods and how to infer the posterior distributions of the model parameters.

These techniques will be used in the methods proposed in Chapters 4 and 6. We have

also introduced the Bayesian sparsity methods that will be used in Chapters 4 and 6 and

discussed how they can offer an improvement over the classical methods of Section 3.1.

Section 3.4 has then specified some different evaluation methods which will be used

throughout Chapters 5 and 7. Finally in Section 3.5 we have looked at methods for

choosing between different model specifications.
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Chapter 4

Sparse Hierarchical Bayesian Models

for Understanding Antigenic

Variability - The Methods

In this chapter we introduce the family of Sparse hierArchical Bayesian models for de-

tecting Relevant antigenic sites in virus Evolution (SABRE); the SABRE methods. The

methods can account for the experimental variability in the data and predict antigenic

variability. The SABRE methods integrate spike and slab priors into a Bayesian hier-

archical model in order to select the significant variables and identify the corresponding

sites in the viral protein which are important for the neutralisation of the virus.

The original SABRE method (Section 4.1), as published in Davies et al. (2014), is a

Bayesian hierarchical mixed effects model, based on the Frequentist mixed effects models

of Reeve et al. (2010) described in Section 3.1.1. The method aims to predict either log VN

titre or log HI assay measurements (Section 2.1) based on the fixed effects, the antigenic

residues and phylogenetic tree branches (Sections 2.1.2 and 2.1.3), and the random effects

(Section 2.1.1). To do this effectively the original SABRE method uses spike and slab

priors (Section 3.3.1) to select the relevant fixed effects and identify potential antigenic

residues. The spike and slab prior is known to outperform the Least Absolute Shrinkage

and Selection Operator (LASSO) in terms of variable selection (Mohamed et al., 2012)

and its incorporation into a Bayesian hierarchical model allows the consistent inference of

all parameters and hyper-parameters, and inference borrows strength by the systematic

sharing and combination of information; see Gelman et al. (2013a).

Section 4.2 discusses a variety of potential improvements to the original SABRE

method proposed in Davies et al. (2014), as discussed in Davies et al. (2016a). Firstly a

separate intercept parameter is introduced (Section 4.2.1) and the addition of this cre-
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ates what is known as the Semi-Conjugate SABRE method. Specifying the prior on the

intercept correctly is important as it is a biologically significant parameter which gives

the VN titre or HI assay when any two identical viruses are used as the challenge and

protective strains, i.e. when all covariates are equal to zero. Section 4.2.2 details the

Conjugate SABRE method, this gives the model increased conjugacy which introduces

additional relationships into the model and provides the opportunity to improve the

sampling scheme. Section 4.2.3 introduces the binary mask model (Section 3.3.2) in the

context of the SABRE method, allowing us to test the difference in performance between

models based on the spike and slab prior and those based on the binary mask model.

Finally Section 4.2.4 looks at different specifications of random effect priors, namely it

looks at the possibility of using the half-t prior proposed in Gelman (2006), something

that has previously been suggested in the literature.

Section 4.3 discusses posterior inference for all of the SABRE methods based on the

methods discussed in Section 3.2, providing the conditional distributions needed to sample

from the model. Section 4.3.5 discusses in detail the sampling of the latent inclusion

variables, γ, that are used in the spike and slab priors (Section 3.3.1). In particular

it looks at sampling multiple parameters via block M-H sampling, as well as exploring

the more standard method of component wise Gibbs sampling, in order to find the most

effective way of sampling γ. Finally in Section 4.3.6 we discuss the conjugate sampling

scheme (CSS) that can be used with the conjugate SABRE in order to potentially improve

the computational efficiency.

4.1 The Original SABRE Method

The original SABRE method was proposed in Davies et al. (2014) and incorporates the

spike and slab prior into a hierarchical Bayesian model. The model is shown in the

PGM in Figure 4.1 and the parameters are sampled from the posterior distribution using

MCMC based on the methods in Section 3.2, where the conditional distributions are

given in Section 4.3.1.

4.1.1 Likelihood

The likelihood for the original SABRE method is similar to the classical mixed-effects

model described in Section 3.1.1, however we include only the relevant residue and phylo-

genetic tree variables, X, and regressors, w. However instead of including all the variables,

X, and their corresponding regression coefficient, we now only include relevant variables,
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Figure 4.1: Compact representation of the original SABRE method as a PGM.
The grey circles and squares refer to the fixed hyperparameters and data respectively,
while the white circles refer to parameters and hyperparameters that are inferred.

Xγ , and regressors, wγ :

p(y|wγ ,b, σ
2
ε ,Xγ ,Z) = N(y|Xγwγ + Zb, σ2

εI). (4.1)

The relevance of variable j is determined by γj ∈ {0, 1}, where feature j is said to be

relevant if j = 1. This gives γ = (γ1, . . . , γJ) ∈ {0, 1}J where γ0 = 1 is fixed meaning that

there is always an intercept in the model. We then define Xγ to be the matrix of relevant

explanatory variables with
∑J

j=1 γj columns and N rows. Similarly wγ is given as the

column vector of regressors, where the inclusion of each parameter is again dependent on

γ.
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4.1.2 Noise Prior

As with the classical methods described in Section 3.1, we assume additive iid Gaussian

noise with variance σ2
ε . In a Bayesian context we wish to infer σ2

ε , so we specify the

conjugate prior:

σ2
ε ∼ IG(σ2

ε |αε, βε) (4.2)

where the hyper-parameters αε and βε are fixed, as indicated by the grey nodes in Fig-

ure 4.1.

4.1.3 Spike and Slab Prior

Spike and slab priors have been used in a number of different contexts and have been

shown to outperform `1 methods both in terms of variable selection and out-of-sample pre-

dictive performance (Mohamed et al., 2012). They were originally proposed by Mitchell

and Beauchamp (1988) as a mixture of a Gaussian distribution and Dirac spike, but have

also been used as a mixture of two Gaussians distributions; see Section 3.3.1.

The prior for wγ is set in the manner proposed in Mitchell and Beauchamp (1988)

such that it reflects whether a feature is relevant. In this way we expect that wj,h = 0

if γj = 0, i.e. the feature is irrelevant, and conversely it should be non-zero if the

variable is relevant, wj,h 6= 0 if γj = 1. The variables are then divided into related groups

h ∈ {1, . . . , H}, in this case two: the intercept and the covariates. A conjugate prior is

chosen when the feature is relevant:

p(wj,h|γj,h,µw,h, σ2
w,h) =

{
δ0(wj,h) if γj = 0

N(wj,h|µw,h, σ2
w,h) if γj = 1.

(4.3)

where δ0 is the delta function. Here we have a spike at the mean, µw,h, and as σ2
w,h →∞

the distribution, p(wj,h|γj = 1), approaches a uniform distribution, a slab of constant

height. For this reason, these models are often known as spike and slab models.

For mathematical convenience we then define the prior distribution of wγ = (w1, . . . ,

wJ)> as:

wγ ∼ N(wγ |mwγ ,γ ,Σwγ ) (4.4)

where mwγ ,γ = (µw,1, . . . , µw,1, µw,2, . . . , µw,H)> and Σwγ = diag(σ2
w) with σ2

w = (σ2
w,1, . . . ,

σ2
w,1, σ

2
w,2, . . . , σ

2
w,H)>. Each µw,h and σ2

w,h is repeated with length ||wγ,h|| dependent on

γ.
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Through giving each group h a separate hyper-parameter σ2
w,h in (4.3), we leave the

model open to penalising the groups of variables to different degrees through the priors:

σ2
w,h ∼ IG(σ2

w,h|αw,h, βw,h). (4.5)

By choosing the same fixed hyper-parameters, αw,h and βw,h for each h, we lose infor-

mation coupling between the different groups, although this could be regained with an

addition layer in the hierarchical model.

In addition to σ2
w,h, we use the hyper-parameters µw,h to reflect the likely non-zero

means of each group h:

µw,h ∼ N(µw,h|µ0,h, σ
2
0,h) (4.6)

where the hyper-parameters µ0,h and σ2
0,h are fixed. This specification comes from the

expected biological values of each regression coefficients wj,h. In the FMDV and Influenza

data we are likely to observe a comparatively large intercept with negative regression co-

efficients for the variables. This is a result of amino acid changes decreasing the similarity

between virus strains and therefore reducing the measured VN titre or HI assay. Simi-

larly, traversing a significant branch of the phylogenetic tree is likely to cause differences

between the strains.

A prior must also be given for γj ∈ {2, . . . , J}, the parameters which determine the

relevance of the covariates. No prior is included for the latent indicator variable associated

with the intercept, as this is a-priori fixed to 1, γ1 = 1.

p(γ2:J |π) =
J∏

j=2

Bern(γj|π) (4.7)

where π is the probability of the individual variable being relevant.

The value of π can either be set as a fixed hyper-parameter as in Sabatti and James

(2005), where they argue that it should be determined by underlying knowledge of the

problem. Alternatively it can be given a conjugate Beta prior:

π ∼ B(π|απ, βπ) (4.8)

as in this case, where the likely number of relevant variables cannot be easily specified

a priori. This is a more general model, which subsumes a fixed π as a limiting case for

απβπ/((απ + βπ)2(απ + βπ + 1))→ 0.
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4.1.4 Random-Effects Prior

In mixed-effects models the random effects, bk,g, are usually given group dependant Gaus-

sian priors where the group g is defined by k, i.e. bk,g is shorthand for bk,gk :

bk,g ∼ N(bk,g|µb,g, σ2
b,g). (4.9)

We define this to have a fixed mean, µb,g = 0, and a common variance parameter, σ2
b,g,

with a conjugate Inverse-Gamma prior for each random-effects group g, as shown in

Figure 4.5a:

σ2
b,g ∼ IG(σ2

b,g|αb,g, βb,g) (4.10)

where αb,g and βb,g are fixed hyper-parameters for each g and we define b ∼ N(b|0,Σb)

where Σb = diag(σ2
b) with σ2

b = (σ2
b,1, . . . , σ

2
b,1, σ

2
b,2, . . . , σ

2
b,G)> such that each σ2

b,g is

repeated with length ||bg||.

4.2 The Alternative SABRE Methods

Various different adjustments have been applied to the original SABRE method of Davies

et al. (2014), as detailed in Davies et al. (2016a). These changes have resulted in several

different versions of the method, the semi-conjugate (SC), conjugate (C) and binary mask

conjugate (BM) SABRE methods, and these are detailed in this section.

4.2.1 The Semi-Conjugate SABRE Method

The semi-conjugate SABRE method, as proposed in Davies et al. (2016a), changes the

likelihood of the original SABRE method, (4.1) in Section 4.1.1, to accommodate a sep-

arate parameter for the biologically significant intercept parameter, w0:

p(y|w0,wγ ,b, σ
2
ε ,Xγ ,Z) = N(y|1w0 + Xγwγ + Zb, σ2

εI). (4.11)

The intercept, w0 is especially important when it comes to modelling antigenic variability

as it is likely that the measures of antigenicity, VN titre and HI assay, will have a high

value when just the intercept has an affect. This occurs when two identical virus strains

are tested against each other and the associated variables are therefore all zero.

The change of the likelihood to (4.11) means that we also require a prior on the
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Figure 4.2: Compact representation of the semi-conjugate SABRE method as a
PGM. The grey circles and squares refer to the fixed hyperparameters and data respec-
tively, while the white circles refer to parameters and hyperparameters that are inferred.
The PGM shows the addition of nodes and edges connecting w0, µw0 and σ2

w0
into the

model, something not seen in the original SABRE method in Figure 4.1.

intercept, w0:

w0 ∼ N(w0|µw0 , σ
2
w0

). (4.12)

We treat the intercept differently from the remaining regressors, wishing to use vague prior

settings so as not to penalise this term and effectively make the model scale invariant

(Hastie et al., 2009). The difference between the semi-conjugate SABRE method and the

original SABRE method can be seen graphically by comparing the PGMs in Figures 4.2

and 4.1, where Figure 4.2 shows the addition of nodes and edges connecting w0, µw0 and

σ2
w0

into the model.
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For mathematical convenience we then define the prior distribution of w∗γ = (w0,w
>
γ )>

as:

w∗γ ∼ N(w∗γ |mγ ,Σw∗
γ
) (4.13)

where mγ = (µw0 , µw,1, . . . , µw,1, µw,2, . . . , µw,H)> and Σw∗
γ

= diag(σ2
w∗) with σ2

w∗ =

(σ2
w0
, σ2

w,1, . . . , σ
2
w,1, σ

2
w,2, . . . , σ

2
w,H)>. Each µw,h and σ2

w,h is repeated with length ||wγ,h||
dependent on γ.

4.2.2 The Conjugate SABRE Method

The conjugate SABRE method of Davies et al. (2016a) makes the SABRE method con-

jugate rather than semi conjugate, as it is in the semi-conjugate and original SABRE

methods (Sections 4.2.1 and 4.1). The idea of conjugate Bayesian models is discussed in

detail in Chapter 3 of Gelman et al. (2013a), but in general the idea is to introduce extra

links between the parameters in the model to increase information sharing. For the con-

jugate SABRE method we add relationships between w0, wγ and µw = (µw,1, . . . , µw,H)>

with the error variance σ2
ε . Adding these additional relationship increases information

sharing and means that the error variance in terms of model fit is reflected in the distri-

bution of the regression coefficients and associated mean. In addition to this increased

information sharing, conjugate models also have a computational advantage as the sam-

pling can be improved through using collapsed Gibbs sampling, as will be described in

Section 4.3.6. The additional conjugacy of the conjugate SABRE method can be seen

by looking at its PGM in Figure 4.3 and comparing it with that of the semi-conjugate

SABRE method in Figure 4.2.

Adding the increased conjugacy requires the replacement of three of the equations

from the semi-conjugate SABRE method. We must firstly replace the distribution of the

intercept parameter, w0, from (4.12):

w0 ∼ N(w0|µw0 , σ
2
w0
σ2
ε). (4.14)

We must also adjust the spike and slab prior in the model, (4.3), so that the distribution

has increased conjugacy for the relevant variables, i.e. when γj = 1:

p(wj,h|γj, µw,h, σ2
w,h, σ

2
ε) =

{
δ0(wj,h) if γj = 0

N(wj,h|µw,h, σ2
w,hσ

2
ε) if γj = 1

(4.15)

which means we must also replace (4.13) with the following notationally convenient dis-
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Figure 4.3: Compact representation of the conjugate SABRE method as a
PGM. The grey circles and squares refer to the fixed hyperparameters and data respec-
tively, while the white circles refer to parameters and hyperparameters that are inferred.
The difference between this PGM and that of the semi-conjugate SABRE method in
Figure 4.2 can be seen by noting the extra, highlighted, edges between w0, wj,h and µw,h
and the error variance σ2

ε .

tribution:

w∗γ ∼ N(w∗γ |mγ , σ
2
εΣw∗

γ
) (4.16)

Finally we must change the distribution of mean parameter of the regression coefficients

from (4.6) to the following prior distribution:

µw,h ∼ N(µw,h|µ0,h, σ
2
0,hσ

2
ε). (4.17)

45



4. The SABRE Methods - The Methods

µ0,h σ2
0,h

αw,h βw,h

µw,h σ2
w,h

wj,h

βπ γj y Zk

π Xj

σ2
ε

bk,g µb,g

απ

αε

βε

σ2
b,g

αb,g

βb,g

w0

µw0 σ2
w0

h = 1, . . . ,H

j = 1, . . . , J
k =

1, . . . , ||b||

g = 1, . . . , G

For: j = 1, . . . , J

γj ∼ Bern(γj |π)
π ∼ B(π|απ, βπ)

y ∼ N (y|1w0 +XΓw+ Zb, σ2
εI) σ2

ε ∼ IG(σ2
ε |αε, βε) w0 ∼ N (w0|µw0 , σ

2
w0
σ2
ε)

For: k = 1, . . . , ||b||
bk,g ∼ N (bk,g|µb,g, σ

2
b,g)

For: j = 1, . . . , J

wj,h ∼ N (wj,h|µw,h, σ
2
w,hσ

2
ε).

For: h = 1, . . . ,H

µw,h ∼ N (µw,h|µ0,h, σ
2
0,hσ

2
ε)

σ2
w,h ∼ IG(σ2

w,h|αw,h, βw,h)

For: g = 1, . . . , G

σ2
b,g ∼ IG(σ2

b,g|αb,g, βb,g)

Figure 4.4: Compact representation of the binary mask conjugate SABRE
method as a PGM. The grey circles and squares refer to the fixed hyperparameters
and data respectively, while the white circles refer to parameters and hyperparameters
that are inferred. Compared to the PGM of the conjugate SABRE method, Figure 4.3,
the nodes here have a different structure as depicted in Figure 3.2.

4.2.3 The Binary Mask Conjugate SABRE Method

The binary mask conjugate SABRE provides an alternative to the conjugate SABRE

method by using the binary mask model (Section 3.3.2), rather than the spike and slab

prior (Section 3.3.1) (Davies et al., 2016a). In the binary mask model the indicator

variables, γ, ‘mask’ the impact of the regression coefficients rather than removing them

from the model as in a spike and slab prior based model. To get the likelihood of

the binary mask conjugate model we replace the likelihood of the conjugate and semi-

conjugate SABRE methods, (4.11), with a binary mask version:

p(y|w0,w,γ,b, σ
2
ε ,X,Z) = N(y|1w0 + XΓw + Zb, σ2

εI) (4.18)
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where Γ = diag(γ). The differences can be seen by comparing the PGM of the binary

mask conjugate SABRE method in Figure 4.4 with that of the conjugate SABRE method

in Figure 4.3. Alternatively the difference can be seen by looking at Figure 3.2. The binary

mask conjugate SABRE method will be compared with the conjugate and semi-conjugate

SABRE methods in Section 5.3.

Despite the different model specification given in (4.18), most of the prior distributions

given in the main paper remain the same. The only prior that changes is that of wj,h,

which is now given by:

wj,h ∼ N(wj,h|µw,h, σ2
w,hσ

2
ε) (4.19)

replacing (4.15) and resulting in the following multivariate prior for w∗ = (w0, w>)>:

w∗ ∼ N(w∗|m, σ2
εΣw∗) (4.20)

where m = (µw0 , µw,1, . . . , µw,1, µw,2, . . . , µw,H)> and Σw∗ = diag(σ2
w∗) with σ2

w∗ =

(σ2
w0
, σ2

w,1, . . . , σ
2
w,1, σ

2
w,2, . . . , σ

2
w,H)>. Each of the components µw,h and σ2

w,h is repeated

with length ||wh|| and unlike with the slab and spike prior their lengths do not depend

on γ.

4.2.4 Alternative Random Effect Priors

The final possible improvement to the SABRE methods is to try an alternative random

effects prior to that described in Section 4.1.4. One such alternative is the folded-non-

central-t prior distribution described in Gelman (2006), which gives a redundant multi-

plicative reparameterisation to the model in Figure 4.5a. This prior has several potential

advantages over the Inverse-Gamma prior. Firstly it is considered to be a prior that better

represents non-informativeness. While the posterior distribution can be sensitive to the

fixed hyper-parameter settings of an Inverse-Gamma prior, the impact is reduced when

the folded-non-central-t prior is used. In that case the posterior distribution does not

have a sharp peak at zero unlike with an vague Inverse-Gamma prior, reducing problems

with underestimating the variance. Secondly, Gelman (2006) found that the folded-non-

central-t prior results in a more realistic posterior distribution of σ2
b,g when there are only

a few random effects (usually less than 8) in each group g. The author showed that the

posterior distribution reflected the marginal distribution well at its low end, but removed

its unrealistically heavy tail; see Figure 2 in Gelman (2006). Doing this ensures that σ2
b,g

is not overestimated and does not lead to non-optimal shrinkage of bg. Finally the over-

parameterisation can improve sampling by reducing the dependence between parameters
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Figure 4.5: PGMs for the two different specifications of the hierarchical
random-effects model. (a) Classical random-effects model using Gaussian and Inverse-
Gamma priors. (b) Half-t prior specified in a hierarchical manner, as suggested by Gel-
man (2006). The grey circles and squares refer to the fixed hyperparameters and data
respectively, while the white circles refer to parameters and hyperparameters that are
inferred.

in the hierarchical model leading to improved MCMC convergence (Gelman, 2004).

The redundant multiplicative reparameterisation used for this prior specification sets

b = ηξ and is given by the following conjugate priors and shown in Figure 4.5b:

ηk,g ∼ N(ηk,g|µη,g, σ2
η,g) (4.21)

ξ ∼ N(ξ|µξ, σ2
ξ ) (4.22)

where µξ and σ2
ξ are fixed for identifiability, µη,g = 0, ηk,g is shorthand for ηk,gk and each

bk,g = ξηk,g. Following Gelman (2006), we fix µξ = 0 which leads to the half-t distribution.

We then set a prior on σ2
η,g:

σ2
η,g ∼ IG(σ2

η,g|αη,g, βη,g) (4.23)

where αη,g and βη,g are fixed hyper-parameters. In terms of standard mixed-effects mod-

els, the variance is given by σ2
b,g = ξ2σ2

η,g. For convenience we define η ∼ N(η|0,Ση)

when µη,g = 0 for all g and where Ση = diag(σ2
η) with σ2

η = (σ2
η,1, . . . , σ

2
η,1, σ

2
η,2, . . . , σ

2
η,G)>

where each σ2
η,g is repeated with length ||ηg||. In this thesis we implement the folded-non-

central-t prior into an alternative version of the conjugate SABRE method and compare

them in Section 5.3 (Davies et al., 2016a).
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4.3 Posterior Inference

In order to explore the posterior distributions of the different SABRE methods described

in Sections 4.1 and 4.2 we use an MCMC algorithm as introduced in Section 3.2. Hav-

ing generally chosen conjugate priors means that we can mainly use Gibbs sampling

(Section 3.2.2) to sample to majority of parameters in all of the SABRE methods.

The only exception is γ, although it is possible to use component-wise Gibbs sam-

pling with a small adaptation; see Section 4.3.5. Additionally we sample the inter-

cept and regression parameters together and define w∗γ = (w0,w
>
γ )>, X∗γ = (1,Xγ),

mγ = (µw0 , µw,1, . . . , µw,1, µw,2, . . . , µw,H)> and Σw∗
γ

= diag(σ2
w∗) with σ2

w∗ = (σ2
w0
, σ2

w,1,

. . . , σ2
w,1, σ

2
w,2, . . . , σ

2
w,H)>. Each µw,h and σ2

w,h is repeated with length ||wγ,h|| dependent

on γ, as indicated below (4.13).

In this section we give the conditional distributions of all those parameters that are

amenable to Gibbs sampling as well as conditional distributions for γ. For readability

we do not mathematically derive these distributions in this section and instead they are

given in Appendix A.1. For convenience, we denote θ to be a vector of all parameters

and hyperparameters. The distributions required to sample the original SABRE methods

are given in Section 4.3.1, with the required changes for the alternative SABRE methods

given in Sections 4.3.2, 4.3.3 and 4.3.4. After the distributions are given, Section 4.3.5

then looks in detail at how to effectively sample γ as this is the only model parameter

that is not sampled effectively with any form of Gibbs sampling. Finally, Section 4.3.6

details the conjugate sampling strategy that can be used with the conjugate and binary

mask conjugate SABRE methods.

4.3.1 Original SABRE Method

The posterior distributions for the model parameters of the original SABRE method

which can be sampled via Gibbs sampling are given as follows, where the analytical

derivations are given in Appendix A.1.1:

wγ |θ−wγ ,D ∼ N(wγ |VwγX>γ (y− Zb)/σ2
ε + VwγΣ−1

wγ
µw,Vwγ ) (4.24)

b|θ−b,D ∼ N(b|VbZ>(y−Xγwγ)/σ2
ε ,Vb) (4.25)

σ2
b,g|θ−σ2

b,g
,D ∼ IG(σ2

b,g| ||bg||/2 + αb,g, βb,g + 1
2
b>g bg) (4.26)

µw,h|θ−µw,h ,D ∼ N(µw,h|V −1
µγ ,h

(∑(wγ,h)/σ
2
w,h + µ0,h/σ

2
0,h), Vµγ ,h) (4.27)

σ2
w,h|θ−σ2

w,h
,D ∼ IG(σ2

w,h| ||wγ,h||/2 + αw,h, βw,h + 1
2

∑(wγ,h − 1µw,h)
2) (4.28)

σ2
ε |θ−σ2

ε
,D ∼ IG(σ2

ε |N/2 + αε, βε + 1
2

∑(y−Xγwγ − Zb)2) (4.29)
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π|θ−π,D ∼ B(π|απ + ∑
γ, βπ + J −∑

γ) (4.30)

where we sample σ2
b,g, µw,h and σ2

w,h for each g and h respectively. We also define Vwγ =

(X>γ Xγ/σ
2
ε+Σ−1

w )−1, Vb = (Z>Z/σ2
ε+Σ−1

b )−1 and Vµγ ,h = ((||wγ,h||/σ2
w,h)

−1+(σ2
0,h)
−1)−1

for notational simplicity. These distributions can be sampled in any order, with each

update using the most recent sample of the conditioned parameters; see Section 3.2.2.

Sampling γ is more difficult, as it does not naturally form a standard distribution.

Methods for achieving this are discussed in more detail in Section 4.3.5, however in order

to do this we need a conditional distribution:

p(γ|θ−γ ,D) ∝ Bern(γ|π)

∫
N(y|Xγwγ + Zb, σ2

εI)N(wγ |µw,Σw)dwγ (4.31)

∝ π
∑

γ(1− π)J−
∑

γN(y|Xγµw + Zb, σ2
εI + XγΣwX>γ ) (4.32)

where there are J variables. Here we have used a collapsing step as in Sabatti and

James (2005), integrating out wγ through the application of standard Gaussian integrals

(Bishop, 2006) to reduce the computational requirements. The normalisation constant

is not required in (4.31) and (4.32) as it cancels out in all of the methods discussed in

Section 4.3.5.

4.3.2 Semi-Conjugate SABRE Method

To get the conditional distributions of the model parameters for the semi-conjugate

SABRE methods we begin with the conditional distributions for the original SABRE

method and replace (4.24), (4.25) and (4.29) with the following equation which have

been derived in Appendix A.1.2:

w∗γ |θ−w∗
γ
,D ∼ N(w∗γ |VwγX>γ (y− Zb)/σ2

ε + VwγΣ−1
wγ
µw,Vw∗

γ
) (4.33)

b|θ−b,D ∼ N(b|VbZ>(y−X∗γw∗γ)/σ2
ε ,Vb) (4.34)

σ2
ε |θ−σ2

ε
,D ∼ IG(σ2

ε |N/2 + αε, βε + 1
2

∑(y−X∗γw∗γ − Zb)2) (4.35)

where we define Vw∗
γ

= (X∗,>γ X∗γ/σ
2
ε + Σ−1

w∗)−1 for notational simplicity.

To sample γ for the semi-conjugate SABRE method we again use collapsing steps

(Sabatti and James, 2005), however in this instance we integrate out both wγ and π.

While it was also possible to integrate out π in the original SABRE method, we did not

do this in Davies et al. (2014) and therefore we have not integrated π out in Section 4.3.1

either. Integrating over wγ and π then leaves the following conditional distribution for

γ:
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p(γ|θ−γ ,D) ∝
∫
β(π|απ, βπ) Bern(γ|π)

N(y|X∗γw∗γ + Zb, σ2
εI)N(w∗γ |mγ ,Σw∗

γ
)dπdwγ (4.36)

∝ Γ(||γ||+απ)Γ(J−||γ||+βπ)
Γ(J+απ+βπ)

N(y|X∗γmγ + Zb, σ2
εI + X∗γΣw∗

γ
X∗>γ ) (4.37)

which replace (4.31) and (4.32) and can be sampled using the methods from Section 4.3.5.

4.3.3 Conjugate SABRE Method

The conditional distributions of the conjugate SABRE method are similar to those of the

semi-conjugate SABRE method and their derivations can be found in Appendix A.1.3.

To sample the model parameters of the conjugate SABRE method, we use the method

for the semi-conjugate SABRE method but replace (4.33), (4.27), (4.28) and (4.35) with

the following distributions:

w∗γ |θ−w∗
γ
,D ∼ N(w∗γ |Vw∗

γ
X∗>γ (y− Zb) + Vw∗

γ
Σ−1

w∗
γ
mγ , σ

2
εVw∗

γ ,2) (4.38)

µw,h|θ−µw,h ,D ∼ N(µw,h|V −1
µγ ,h

(∑(wγ,h)/σ
2
w,h + µ0,h/σ

2
0,h), σ

2
εVµγ ,h,2) (4.39)

σ2
w,h|θ−σ2

w,h
,D ∼ IG(σ2

w,h| ||wγ,h||/2 + αw,h, βw,h + 1
2σ2
ε

∑(wγ,h − 1µw,h)
2) (4.40)

σ2
ε |θ−σ2

ε
,D ∼ IG(σ2

ε |(N + ||w∗γ ||+H)/2 + αε, βε + 1
2
Rσ2

ε
) (4.41)

where we define Vw∗
γ ,2 = (X∗>γ X∗γ + Σ−1

w∗
γ
)−1 and Rσ2

ε
= (y−X∗γw∗γ −Zb)>(y−X∗γw∗γ −

Zb) + (w∗γ −mγ)>Σ−1
w∗

γ
(w∗γ −mγ) +

∑H
h=1(µw,h − µ0,h)

2/σ2
0,h for notational simplicity.

To sample γ in the conjugate SABRE method we use the same method as the semi-

conjugate SABRE method but changing the distribution of w∗γ , replacing (4.13) with

(4.16):

p(γ|θ−γ ,D) ∝
∫
β(π|απ, βπ) Bern(γ|π)

N(y|X∗γw∗γ + Zb, σ2
εI)N(w∗γ |mγ , σ

2
εΣw∗

γ
)dπdwγ (4.42)

∝ Γ(||γ||+απ)Γ(J−||γ||+βπ)
Γ(J+απ+βπ)

N(y|X∗γmγ + Zb, σ2
ε [I + X∗γΣw∗

γ
X∗>γ ]). (4.43)

which replaces (4.36) and (4.37) in the sampling strategy. We can also use the CSS when

sampling the conjugate SABRE method and this is discussed in Section 4.3.6.

Finally we discuss the conditional distributions of the conjugate SABRE method when

the half-t prior is used instead of the standard Inverse-Gamma prior. In order to do this

we set b = ηξ and σ2
b,g = ξ2σ2

η,g in (4.38), (4.41) and (4.43) of the sampling strategy for
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the conjugate SABRE method. We can then sample η, ξ and σ2
η,g from their conditional

distributions, replacing (4.34) and (4.26):

η|θ−η,D ∼ N(η| ξ
σ2
ε
VηZ>(y−X∗γw∗γ),Vη) (4.44)

ξ|θ−ξ,D ∼ N(ξ|Vξ[µξσ2
ξ

+ 1
σ2
ε
η>Z>(y−X∗γw∗γ)], Vξ) (4.45)

σ2
η,g|θ−σ2

η,g
,D ∼ IG(σ2

η,g|||ηg||/2 + αη,g, βη,g + 1
2
η>g ηg) (4.46)

where Vη = ( ξ
2

σ2
ε
Z>Z + Σ−1

η )−1 and Vξ = ( 1
σ2
ξ

+ 1
σ2
ε
η>Z>Zη)−1.

4.3.4 Binary Mask Conjugate SABRE Method

Changing from models that use spike and slab priors, Section 3.3.1, to a binary mask

model, Section 3.3.2, causes a number of changes to the conditional distributions. This

is a result of a change in the likelihood, (4.18), and the prior on wj,h, (4.19), and means

that only the conditional distributions of σ2
b,g and π remain the same as the conjugate

SABRE method. We give the other conditional distributions as follows:

w∗|θ−w∗ ,X∗,Z,y ∼ N(w∗|Vw∗Γ∗>X∗>(y− Zb) + Vw∗Σ−1
w∗m, σ2

εVw∗) (4.47)

b|θ−b,X∗,Z,y ∼ N(b|VbZ>(y−X∗Γ∗w∗)/σ2
ε ,Vb) (4.48)

µw,h|θ−µw,h ,X∗,Z,y ∼ N(µw,h|V −1
µ,h (∑(wh)/σ

2
w,h + µ0,h/σ

2
0,h), σ

2
εVµ,h) (4.49)

σ2
w,h|θ−σ2

w,h
,X∗,Z,y ∼ IG(σ2

w,h| ||wh||/2 + αw,h, βw,h + 1
2σ2
ε

∑(wh − 1µw,h)) (4.50)

σ2
ε |θ−σ2

ε
,X∗,Z,y ∼ IG(σ2

ε |(N + ||w∗||+H)/2 + αε, βε + 1
2
Rσ2

ε ,2
) (4.51)

where we sample σ2
b,g, µw,h and σ2

w,h for each g and h respectively. We also define Vw∗ =

(Γ∗>X∗>X∗Γ + Σ−1
w∗)−1 and Rσ2

ε ,2
= (y−X∗Γ∗w∗ − Zb)>(y−X∗Γ∗w∗ − Zb) + (w∗ −

m)>Σ−1
w∗(w∗ −m) + (µw − µ0)>Σ−1

0 (µw − µ0) for notational simplicity.

Finally, to sample γ we collapse over w and π to give the following conditional dis-

tribution, replacing (4.42) and (4.43):

p(γ|θ−γ ,D) ∝
∫
β(π|απ, βπ) Bern(γ|π)

N(y|X∗Γ∗w∗ + Zb, σ2
εI)N(w∗|m, σ2

εΣw∗)dπdwγ (4.52)

∝ Γ(||γ||+απ)Γ(J−||γ||+βπ)
Γ(J+απ+βπ)

N(y|X∗Γ∗m + Zb, σ2
ε [I + X∗Γ∗Σw∗

γ
Γ∗>X∗>]). (4.53)

4.3.5 Sampling the Latent Inclusion Variables, γ

Sampling γ is more difficult, as it does not naturally take a distribution of standard form.

However we can still get a valid conditional distribution and use a variety of techniques to
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sample from it. Multiple methods have been proposed for sampling the latent variables, γ.

Here we look at two of these in particular; the component-wise Gibbs sampling approach

and a block M-H step. In the latter we can propose changes to multiple parameters

simultaneously for a computational improvement.

A component-wise Gibbs sampler can be used to consecutively sample each γj from

γ in a random order dependent on the current state, c, of all the other γs, γc−j =

(γc1, . . . , γ
c
j−1, γ

c
j+1, . . . , γ

c
J). We can define the conditional distribution of the ith iteration

of γj to be a Bernoulli distribution with probability:

p(γj = 1|θ−γ ,γc−j,D,y) =
a

a+ b
, (4.54)

where we define a ∝ p(γj = 1,γc−j|θ−γ ,D,y) and b ∝ p(γj = 0,γc−j|θ−γ ,D,y) using the

appropriate conditional distribution of γ.

The alternative, block M-H sampling can improve mixing and convergence through

proposing sets, S, of latent indicator variables, γS, simultaneously, where γS denotes a

column vector of all the γjs where j ∈ S and γ−S its compliment. The proposals are then

accepted with the following acceptance rate:

α(γ∗S,γ
c
S|θ−γ ,Dy,γc−S) := min

{
q(γcS|πprop)p(γS = γ∗S,γ

c
−S|θ−γ ,D,y)

q(γ∗S|πprop)p(γS = γcS,γ
c
−S|θ−γ ,D,y)

, 1

}
(4.55)

where q(.) is a proposal density and is set to be: q(γ∗S|πprop) =
∏

j∈S Bern(γ∗j |πprop),
where πprop is a fixed tuning parameter. Proposed moves for independent sets of randomly

ordered inclusion parameters, γ∗S, are then accepted if α(γ∗S,γ
c
S| θ−γ ,D,y,γc−S) is greater

than a uniform random variable u ∼ U[0, 1], until updates have been proposed for all the

latent indicator variables.

4.3.6 Conjugate Sampling Strategy

Collapsing can lead to improved mixing and convergence, e.g. Andrieu and Doucet (1999).

We take advantage of the induced conjugacy to sample the parameters γ, w∗γ , µw =

(µw,1, . . . , µw,H)>, σ2
ε and π as a series of collapsed distributions rather than through

Gibbs sampling:

p(γ,w∗γ ,µw, σ
2
ε , π) (4.56)

= p(γ)p(π|γ)p(σ2
ε |π,γ)p(µw|σ2

ε , π,γ)p(w∗γ |µw, σ
2
ε , π,γ) (4.57)

= p(γ)p(π|γ)p(σ2
ε |γ)p(µw|σ2

ε ,γ)p(w∗γ |µw, σ
2
ε ,γ) (4.58)
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where the conditionality on θ′, X, Z and y has been dropped and the simplification from

(4.57) to (4.58) follows from the conditional independence relations shown in Figure 4.3,

exploiting the fact that π is d-separated from the remaining parameters in the argument

via γ. These distributions are achieved by collapsing over parameters as derived in

Appendix A.

4.4 Discussion

In this chapter we have proposed a family of sparse hierarchical Bayesian models for de-

tecting relevant antigenic sites in virus evolution (SABRE) should offer an improvement

over the classical mixed-effects model, the mixed-effects LASSO and the mixed-effects

elastic net. There are four reason that we should see an improvement when the meth-

ods are compared in Chapter 5. The proposed hierarchical modelling framework with

slab-and-spike prior (1) avoids the bias inherent in LASSO-type methods, (2) genuinely

and consistently achieve sparsity, (3) properly accounts for uncertainty at all levels of

inference, and (4) borrows strength from information coupling, whereby all parameters

are systematically and iteratively inferred in the context of all other parameters. In some

more detail: (1) The shrinkage effect inherent in the `1 penalty term introduces a bias by

which the regression parameters are systematically underestimated. This bias is avoided

with the slab and spike prior that we use. (2) The LASSO is known to only give sparse

solutions at the MAP (maximum a posteriori) configuration, but not when sampling

parameters from the posterior distribution. From a Bayesian perspective, the MAP is

methodologically inconsistent, as it is not guaranteed to represent the region in parameter

space with the highest probability mass. The spike-and-slab prior, which we use, avoids

this methodological inconsistency and achieves sparsity in a sound Bayesian inference

context. (3) In our hierarchical Bayesian models, all sources of uncertainty are properly

accounted for. The higher-level hyperparameters have their own distributions, which

are systematically inferred from the data. In contrast, the regularisation parameters of

the established methods are typically fixed, set e.g. by cross-validation, but without

taking their uncertainty into account (see also Chapter 5 in Gelman et al. (2013a) for

a more detailed discussion). (4) In our approach, we explicitly model all dependencies

among the variables, and inference is carried out within the context of the whole system.

This systematically borrows strength from information coupling and avoids the piecemeal

approach of established methods.

There are two fundamentally different approaches to variable selection in Bayesian

hierarchical models: the slab-and-spike prior, whereby the influence of an input variable

is controlled via the prior distribution of its associated regression parameters, and the
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binary mask model, where variables are put through a binary multiplicative filter. The

difference is depicted in Figures 4.3 and 4.4, or alternatively in Figure 3.2. Which method

is better? Standard textbooks, like Murphy (2012), describe both methods (see Chapter

13), but do not offer a comparative evaluation, and in the literature, authors rather

arbitrarily tend to opt for one method or another (see e.g. Heydari et al. (2016)). We have

proposed two version of the SABRE method in order to allow us to carry out a systematic

comparison to properly quantify the difference in terms of accuracy and computational

efficiency between the two approaches in Chapter 5. We have also provided a way of

systematically evaluated the influence of the prior, comparing a conjugate with a non-

conjugate prior, as depicted by Figures 4.3 and 4.2, and we have assessed its influence

systematically in terms of accuracy, computational efficiency, and formal model selection

preference in Chapter 5. The conjugate and binary mask conjugate also allow the use the

conjugate sampling scheme proposed in Section 4.3.6, which potentially offers improved

computational efficiency through the use of collapsed Gibbs sampling, something we test

in Chapter 5
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Chapter 5

Sparse Hierarchical Bayesian Models

for Understanding Antigenic

Variability - The Analysis

In this chapter we show how the SABRE methods introduced in Chapter 4 outperform

the alternative methods discussed in Chapter 3. We introduce the simulated and real

datasets that will be used to show this (Section 5.1) and detail the computational proce-

dures needed to produce the results (Section 5.2). The results for the simulated datasets

compare the SABRE methods, as well as the methods from Chapter 3, against each

other in terms of variable selection and out-of-sample performance. The results show

that the SABRE methods offer a clear improvement in terms of model selection over

the methods described in Chapter 3, with the SABRE methods all performing roughly

equally. Additionally Section 5.3.3 looks at using Bayesian 10-fold CV and Widely Ap-

plicable Information Criterion (WAIC) (Watanabe, 2010) to select the correct random

effect specification, quantifying the difference in performance (Davies et al., 2016b).

Finally Sections 5.4, 5.5 and 5.6 give the results for a number of real FMDV and

Influenza datasets looking at how well the various methods do in classifying variables

(based on Section 2.4) as well as discussing the biological results in terms of antigenic

residues and significant evolutionary changes in the phylogenetic trees. The results given

in these sections, as well as Appendix B, show that the SABRE methods identify a number

of known antigenic residues, as well as making novel predictions about other potentially

antigenic residues.
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5.1 Data

Detailed descriptions of the different FMDV and Influenza datasets used in this thesis

are given in Sections 2.2 and 2.3 of Chapter 2. In this section we detail the simulated

datasets that are used to test the methods described in Sections 4.1 and 4.2 against each

other and those described in Chapter 3. We also add a few extra details on the real life

datasets that are specific to this chapter of the thesis.

5.1.1 Initial Simulation Study

Davies et al. (2014) used 20 datasets in their simulation study, simulated with both fixed

and random effects. All of the datasets were given 30 variable, with 10 of the datasets

given one group of random effects and the remaining sets given two groups. Each of

the variables was then given a regression parameter. Half of each group were given small

negative regressors drawn from w1 ∼ N(−0.2, 0.01) and the other half w2 ∼ N(0, 0.0025).

Each response yi was then generated from the model with each of the perturbed regressors

w̃h,i ∼ N(wh,i, 0.007), where h ∈ {1, 2}. This was done 200 times with additive Gaussian

noise from N(0, 0.04) given to each response. Half of the data was used for training and

the remaining for testing.

5.1.2 Extended Simulation Study

In Davies et al. (2016a) we simulated 9 sets of simulated data each with 100 datasets with

100 measurements for training and 900 for testing. We varied the number of variables,

||w|| ∈ {40, 60, 80}, and the size of the error, σ2
ε ∈ {0.01, 0.1, 0.3}, to test the methods

under different circumstances. Additionally we added two groups of random effects to

each dataset to represent experimental variation, both with 8 levels.

To reflect the fact that we expect many of the variables to have no influence on the

response we drew a probability π from U(0.2, 0.4) for each dataset. With this proba-

bility, each of the variables in the dataset was then given a regressor simulated from

U(−0.4,−0.2) and zero otherwise, remembering that we expect the variables to have a

negative effect as any mutational changes will reduce the response, VN titre. Each re-

sponse yi was then generated with an intercept of 10 and with N(0, 0.02) iid additive

Gaussian noise given to each response.
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5.1.3 Final Simulation Study

The simulation study of Davies et al. (2016b) compared WAIC and 10-fold Bayesian CV

by generating 20 datasets each with 500 observations and 50 possible variables. The data

was generated with 10 viruses, with every virus used as both the challenge and protective

strains and for any given pair of challenge and protective strains the variables remain

identical as in the real FMDV and Influenza datasets. Possible random effects were the

protective and challenge strains and 2 generic random effects with 8 levels. The random

effects were given a variance of zero, i.e. set to be irrelevant, with probability 0.5.

5.1.4 Original SAT1 Data

The original SAT1 dataset was analysed by Reeve et al. (2010) and information about the

dataset can be found in Section 2.2.1. To analyse the dataset we log transformed the VN

titre measurements following Reeve et al. (2010). For the results given in Section 5.4.1

we used the challenge strain and antiserum as random effects. Variables related to the

phylogenetic tree were added but only to reflect where the branch lay between the chosen

challenge and protective strain, e.g. branch effects by the definitions in Section 2.1.3,

rather than any of the more complex phylogenetic effects described in Section 2.1.3.

Instead of classifying variables with correlation 1 in groups as discussed in Section 2.4,

Davies et al. (2014) instead used a strategy based on prior knowledge to exclude the less

biologically relevant variables with correlation 1.1 This resulted in the original SAT1

dataset analysed in Section 5.4.1 only containing 107 variables in total; we call this the

reduced SAT1 dataset.

Section 5.4.2 used 138 variables in total with only one of the variables that were

completely correlated included, but with the classification being based on all of the com-

pletely correlated variables as specified in Section 2.4. Multiple types of branches were

included to account for the phylogenetic tree as discussed in Section 2.1.3, rather than

just the branch effects as in Section 5.4.1. The original SAT1 results of Section 5.3.2 use

just challenge strain and antiserum as random effect groups based on the results of Reeve

et al. (2010).

5.1.5 Extended SAT1 Data

The extended SAT1 dataset is an extended version of the original SAT1 dataset (Sec-

tion 5.1.4) of Reeve et al. (2010) collected and analysed by Maree et al. (2015). We

1Davies et al. (2014) included all proven variables based on the classification in Section 2.4, then
added the branches of the phylogentic tree and finally excluded any plausible or implausible variables
which made the matrix singular; see Davies et al. (2014) for details.
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have again log transformed the data following Maree et al. (2015) and have included

multiple types of phylogentic effects; see Section 2.1.3. Random effects were included in

Section 5.4.3 to account for the challenge strain, antiserum and date of the experiment

based on the results of Maree et al. (2015); see Section 2.2.1.

5.1.6 SAT2 Data

The SAT2 dataset was originally analysed by Reeve et al. (2010) and is described in

Section 5.1.6. The VN titre measurements were again log transformed and we have

included multiple types of phylogentic effects; see Section 2.1.3. Random effects were

included in Section 5.5 to account for the challenge strain and antiserum based on the

results of Reeve et al. (2010); see Section 2.2.2.

5.1.7 H1N1 Data

Harvey et al. (2016) used a H1N1 dataset that contained 506 challenge strains and 43

protective strains. Here we have used a slightly smaller dataset in order to fully account

for the effect of the phylogentic structure. The dataset used here contains 15,693 HI

assay measurements with 43 challenge and 43 protective strains. As this full dataset is

too large to analyse using the conjugate SABRE method we have summarised the data to

just be 570 mean HI assay measurement for each combination of challenge and protective

strains. For each pair of challenge and protective strains the 279 explanatory variables,

53 surface exposed residues and 226 variables related to the phylogenetic data, remain

the same. Doing this however means we cannot use the date of the experiment as a

random effect and additionally the dataset does not contain antiserum data, meaning we

have only used the challenge strain as random effects in Section 5.6.

5.2 Computational Inference

Our code has been implemented in R (R Core Team, 2013), using the packages lme4

(Bates et al., 2013) and lmmlasso (Schelldorfer et al., 2011) for the comparison with

standard and LASSO mixed-effects models. For the mixed-effects models, as in Reeve

et al. (2010), forward inclusion was used adjusting for multiple testing using the Holm-

Bonferroni correction.

For the MCMC chains we sampled 10,000 iterations for the simulated datasets, with

varying numbers of iterations for the real data as required to get convergence. This

was determined by running 4 chains for each model and computing the PSRF (Gelman

and Rubin, 1992) from the within-chain and between-chain variances (Plummer et al.,
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2006). We take a PSRF ≤ 1.05 as a threshold for convergence and terminate the burn-in

when this is consistently satisfied for 95% of the variables. In general, the fixed hyper-

parameters, shown as grey nodes in Figures 4.1, 4.2, 4.3 and 4.4, were set to give a

vague distribution for the flexible (hyper-)parameters, shown as white nodes. The only

exception was the prior on π, defined in (4.8), which was set to be weakly informative

such that απ = 1 and βπ = 4, except in Section 5.3.1 where the parameters were set to

be απ = 1 and βπ = 1. Setting the parameters to be weakly informative, απ = 1 and

βπ = 4, corresponds to prior knowledge that only a small number of residues or branches

have a significant antigenic effect.

The following hyper-parameters are fixed to give vague distributions: αb,g = βb,g =

αη,g = βη,g = 0.001 and µb,g = µη,g = 0 for all g, αw,h = βw,h = 0.001, µ0,h = 0 and

σ2
0,h = 100 for all h, µξ = 0, σ2

ξ = 100, µw0 = max(y), σ2
w0

= 100 and αε = βε = 0.001.

The only unusual choice is µw0 = max(y) which follows from us expecting a high intercept

with the regression coefficients then having a negative effect on the response. This is a

result of strains having high reactivity with themselves, and any changes making the

strains less similar, reducing their reactivity. The only exception to this is in the original

SABRE method where intercept is treated as the only member of the first group of

fixed-effects. Here we set αw,1 = 1.501 to give a finite mean and variance for the prior

distribution of σ2
w,1. Although this is not a vague prior, we have tested a number of other

values and found that this specification has little effect on the results.

To analyse the best proposal method we tested the component-wise Gibbs sampler

and several specifications of the Metropolis-Hastings sampler on the several datasets

(Section 5.4.5). For the reduced SAT1 dataset used by Davies et al. (2014) (Section 5.1.4)

we tested the component-wise Gibbs sampler and proposed the inclusion or exclusion of

variables in groups of 4, 8, 16, 32 and 64 with the block Metropolis-Hastings sampler. We

analysed convergence by monitoring the percentage of variables with a PSRF ≤ 1.1 as

in Grzegorczyk and Husmeier (2013) (Davies et al., 2014). For the full SAT1, extended

SAT1 and H1N1 dataset we again used the component-wise Gibbs sampler but proposed

the inclusion or exclusion of variables in groups of 5, 10, 15, 20 and 30 with the block

Metropolis-Hastings sampler. We analysed convergence by monitoring the percentage of

variables with a PSRF ≤ 1.05, similar to Grzegorczyk and Husmeier (2013) (Davies et al.,

2016a).

For selecting variables in the mixed-effects LASSO and elastic net we used BIC as in

Schelldorfer et al. (2011). For the SABRE methods there are a variety of techniques that

have been used in the literature to choose a cut-off. Often a cut-off of 0.5 is used and

this has been shown to be the best predictive model under strict conditions (Barbieri and

Berger, 2004). Alternatively the top Jπ̂ ranked variables have been taken, where J is the

60



5. The SABRE Methods - The Analysis

number of variables and π̂ is the posterior mean of π, defined in (4.7) and (4.8), i.e. the

global probability of variables being included in the model.

5.3 Results for the Simulation Studies

To summarise, we have introduced a hierarchical Bayesian modelling framework (called

SABRE) for selecting relevant antigenic sites in viral evolution. There are two funda-

mentally different approaches to variable selection: the slab and spike prior, whereby

the influence of an input variable is controlled via the prior distribution of its associated

regression parameters, and the binary mask model, where variables are put through a

binary multiplicative filter. There are also different prior distributions one can choose: a

conjugate prior, and a semi-conjugate prior. This gives us four variants of the proposed

modelling framework, including the original SABRE method which does not include an

intercept parameter:

• The original SABRE method, with slab and spike prior

• The conjugate SABRE method, with slab and spike prior

• The semi-conjugate SABRE method, with slab and spike prior

• The binary mask SABRE method.

These four variants are depicted as probabilistic graphical models in Figures 4.1, 4.3,

4.2 and 4.4. We have compared their performance with that of two established methods

from the literature: the mixed-effects model with stepwise variable selection, and the

mixed-effects LASSO. Since there are indications from the literature that the elastic net

offers an improvement over the LASSO, we have also modified the mixed-effects LASSO

model from the literature (Schelldorfer et al., 2011) by a novel mixed-effects elastic net

model. This gives us three classical methods for comparison:

• Mixed-effects model with stepwise variable selection

• Mixed-effects LASSO model

• Mixed-effects elastic net model.

We have applied and assessed the proposed methods with a three-pronged approach.

Firstly, we have tested them on a large set of synthetic benchmark data, where the

true structure of the model is known, and it is therefore straightforward to quantify the

accuracy of inference. This is discussed here in Section 5.3 and contains results Davies
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Figure 5.1: Gaussian Kernel density estimation plots of random effects vari-
ances and a comparison of posterior inclusion probabilities. Gaussian kernel
density estimation plots are shown for the sampled posterior densities of the log random
effect variance. This is given for the two groups of random effects, (a) challenge strain
and (b) antiserum, under a vague Inverse-Gamma prior (solid) and the half-t prior (dot-
ted) proposed in Gelman (2006). (c) Plot showing the comparative posterior inclusion
probability for each variable for the two models.

et al. (2014), Davies et al. (2016a) and Davies et al. (2016b) in Sections 5.3.1, 5.3.2

and 5.3.3 respectively. Secondly, we have applied the methods to real data for which

partial biological prior knowledge is known, which can be used to partially assess the

model predictions. These findings are presented in Section 5.4. Finally, in Sections 5.5

and 5.6, we present novel applications to new data, from the less well known FMDV

serotype, SAT2, and as well as from seriously reduced version of the H1N1 Influenza

dataset where it is not relevant to compare our results against those obtained from a

larger dataset. Here the purpose of our study is new hypothesis generation.

As part of the extended simulation study of Davies et al. (2016a) given in Section 5.3.2

we also tested the choice of random effects prior, comparing the Inverse-Gamma prior

(Section 4.1.4) with the half-t prior prior proposed in Gelman (2006) (Section 4.2.4). Fig-

ures 5.1a and 5.1b show posterior samples of the log variance of the two random-effects

groups from the conjugate SABRE method applied to the SAT2 dataset (Section 5.1.6)

comparing the half-t and Inverse-Gamma priors, and shows no notable differences. Simi-

larly Figure 5.1c shows that the inclusion probabilities for the two competing models are

approximately the same. Based on these findings, we only report the results obtained

with the conjugate Inverse-Gamma prior throughout this section.

5.3.1 Initial Simulation Study

Figure 5.2 shows ROC curves (Section 3.4.2) for the classical mixed-effects models, the

mixed-effects LASSO and the original SABRE method. For two random effects groups
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(a) One Random-Effect Group (b) Two Random-Effect Groups

Figure 5.2: ROC Curves for the Initial Simulation Study data described in
Section 5.1.1. ROC curves are given for the original SABRE method (black), the
mixed-effects LASSO (black dotted) and classical mixed-effects (grey) (Davies et al.,
2014). The original SABRE method is given in the figure as the ‘Novel Bayesian’ method.
The simulated data was generated with (a) one and (b) two random effect groups; see
section 5.1.1.

(Figure 5.2b), the original SABRE method, AUROC = 0.93, consistently outperforms

the mixed-effects LASSO, AUROC = 0.79, and standard mixed-effects model, AUROC

= 0.79. This is presumably a consequence of the fact that the mixed-effects LASSO

of Schelldorfer et al. (2011), is defined for a single random effect. To deal with two

random effects, we need to map the matrix of random effect combinations into a vector

of substitute single random effects, which may render the model over-complex and hence

susceptible to over-fitting. When the analysis of the simulated data in Davies et al. (2014)

was carried out, a mixed-effects LASSO with the ability to handle multiple random effects

did not exist. For data with a single random effect (Figure 5.2a), the original SABRE

method still achieves a greater AUROC value, 0.89, than the LASSO, 0.83, and standard

mixed effects model, 0.81.

In addition to the comparison of AUROC values, we also looked at the predictive

performance. For the data with 2 groups of random effects the original SABRE method

got a mean out-of-sample log-likelihood of−113.8, outperforming the mixed-effect LASSO

of Schelldorfer et al. (2011) with BIC,−160.8, and AICc, −163.3, and the standard mixed-

effect model, −127.7. Similar results were also achieved for the data with 1 random effect

group, with the models achieving a mean out-of-sample log-likelihoods of −99.9, −104.2,

−105.9 and −112.4, respectively.
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5.3.2 Extended Simulation Study

Table 5.1 compares the different methods in terms of variable selection, WAIC score

(Watanabe, 2010), predictive performance and fixed effects coefficients inference using

the simulated datasets described in Section 5.1.2. To measure variable selection we have

ranked the covariates in terms of their significance or influence. For the Bayesian meth-

ods, the ranking is defined by the marginal posterior probabilities of inclusion. For the

alternative methods, we explain the way the ranking is obtained below. Since for the sim-

ulated data the true covariates are known, this ranking can be used to produce a ROC

curve (e.g. Hanley and McNeil (1982); Section 5.7. of Murphy (2012)), where for all

possible values of the inclusion threshold, the sensitivity or recall (the relative proportion

of true positive covariates: TP/(TP+FN)) is plotted against the complementary speci-

ficity (the relative proportion of false positive covariates: FP/(FP+TN))2. By numerical

integration we obtain the AUROC value as a global measure of accuracy, where larger

values indicate a better performance, starting from AUROC = 0.5 to indicate random

expectation, to AUROC = 1 for perfect variable identification; see Section 3.4.2.

In addition to ranking the covariates to get ROC curves for the SABRE methods, we

also need to rank the alternative established methods for a comparison. For the classical

mixed-effects models this is done by removing the significance threshold and ranking the

edges by order of inclusion. For the mixed-effects LASSO and elastic net we predicted

models for a variety of different penalty parameters, λ, to create the so called LASSO path

and create a ranking based on when variables become 0. For the mixed-effects elastic

net we only show the results for α = 0.3 following Ruyssinck et al. (2014), however

the remaining results are available in Section B.1. Alternative AUROC values based on

using model selection and then ranking the variables based on the absolute values of the

regression coefficients (Aderhold et al., 2014), as well as other results, are also available

in Section B.1.

Table 5.1 also measures the accuracy of predicting out of sample observations, yout,

and the fixed effects coefficients, w in terms of MSEs. For the Bayesian methods, the

predictions are made by sampling from the model and then choosing which variables are

included based on taking the top J × π̂ variables with the highest inclusion probabilities.

The model is then sampled with just those variables set to be included and the estimates

calculated. For the mixed-effects LASSO, mixed-effects elastic net and classical mixed

effects models the regression coefficients can be taken from the chosen model. The random

effects coefficients can then be calculated using the best linear unbiased estimator and

predictions of the out of sample observations, yout, made.

2TP: true positive count, FP: false positive count, TN: true negative count, FN: false negative count
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Figure 5.3: Bar plot of AUROC values from the Simulation Study Results in
Table 5.1. The bar plots gives AUROC values for the Conjugate (C), Semi-Conjugate
(SC) and Binary Mask Conjugate (BM C) SABRE methods (black bars), the mixed-
effects (M-E) LASSO, the mixed-effects elastic net (M-E EN) with α = 0.3 (both grey
bars) and standard mixed-effects (M-E) models (white bars) applied to the simulated
data described in Section 5.1.2.
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Figure 5.4: Box plots of the difference in AUROC values for each method in
comparison to the conjugate SABRE method. The box plots give the difference in
AUROC values for each of the methods after the AUROC value of the conjugate SABRE
method has been subtracted for the appropriate dataset. Negative values indicate that the
conjugate method has outperformed the alternative method. Each box plot contains 100
datasets as described in Section 5.1.2. The alternative methods are the Semi-Conjugate
(SC) and Binary Mask Conjugate (BM C) SABRE methods, the mixed-effects (M-E)
LASSO, the mixed-effects elastic net (M-E EN) with α = 0.3 and the classical mixed-
effects models (M-E).
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In terms of variable selection, the AUROC values shown in Figure 5.3 and Table 5.1

show that all the SABRE methods outperform the alternative methods; the mixed-effects

LASSO, the mixed effects elastic net and the classical mixed effects models. This is

achieved across all datasets and is highlighted in Figure 5.4, which compares the dif-

ference in AUROC values obtained by the different methods and that of the conjugate

SABRE method.A negative score signifies a reduction in performance compared to the

conjugate SABRE method. Figure 5.4 shows that the conjugate SABRE method per-

forms significantly better than the mixed-effects LASSO, the mixed-effects elastic net and

the classical mixed-effects models in all sets of data.

The performance in terms of predicting out of sample observations and inferring fixed

effects coefficients shown in Table 5.1 again shows the SABRE methods outperforming the

alternative methods in most cases. Table 5.1 shows a huge improvement for the SABRE

methods in all cases except where both the error variance and number of variables is small.

This is especially the case with the mixed-effects LASSO and the mixed-effects elastic

net where the reliance on `1 regularisation causes a bias which affects both the inference

of the fixed effects coefficients and the variable selection, as well as subsequently the out

of sample predictions. The alternative methods do outperform the SABRE methods in

some sets of data where the number of variables is small and the error variance is low,

but this is only in 2 out of 9 sets of data. The reason for these counter intuitive results

is the model selection technique used with the SABRE methods, as in both of the sets of

data where the improvement is shown the SABRE methods achieve mean AUROC values

of 1, better than the alternative methods.3

We have also explored multiple different versions of the SABRE method, namely the

semi-conjugate (Figure 4.2), conjugate (Figure 4.3) and binary mask conjugate (Fig-

ure 4.4) SABRE methods4. As far as we are aware the quantitative comparison between

a spike and slab based method and a binary mask based one is the first of its kind. Our

results given in Table 5.1, as well as Figures 5.3 and 5.4, show a strong similarity in per-

formance between the methods. The comparison of AUROC values given in Figure 5.4

clearly shows a large overlap in both method’s variable selection performance and this is

backed up by the paired t-tests given in Tables B.4-B.6. Identifying that these methods

give similar results is important, as in practise both methods are discussed and used

throughout the literature, e.g Jow et al. (2014); Murphy (2012).

We have also compared the conjugate and semi-conjugate SABRE models, as depicted

3By choosing the J × π̂ variables with the highest marginal probability of inclusion, we have chosen
the wrong number of variables resulting in a mismatch between the inferred fixed-effects coefficients and
their true values.

4We do not have a comparison with the original SABRE method, as it does correctly specify the
biologically significant intercept parameter.
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Figure 5.5: Convergence diagnostics comparing the sampling performance of
different versions of the SABRE method. Convergence diagnostics for the conju-
gate SABRE method with the collapsed sampling scheme (CSS) (solid line), the semi-
conjugate SABRE method without CSS (crosses) and the BM conjugate SABRE method
with CSS (circles). The lines show the proportion of parameters converged (PSRF< 1.05)
versus the number of iteration of the 4 MCMC chains. The proportion is based on all of
the simulated datasets from Section 5.1.2.

in Figure 4.3 and 4.2. Overall, our results, shown in Table 5.1and Tables B.1-B.6, suggest

that the two methods perform similarly across the wide range of simulated data sets. A

paired t-test, summarised in Tables B.4-B.6, identifies two data sets (||w|| = 40, σ2
ε = 0.3;

||w|| = 60, σ2
ε = 0.3) where the conjugate SABRE model outperforms the semi-conjugate

SABRE model. Formal model selection based on WAIC also shows a slight, but significant

preference for the conjugate model (see Table B.6).

The final contribution of our simulation study is to test whether the use of the col-

lapsed sampling scheme in conjunction with increased conjugacy achieves an improvement

in terms of MCMC mixing and convergence. Figure 5.5 indicates that a slight improve-

ment is achieved with the conjugate SABRE model over the semi-conjugate one. However,

this difference is not statistically significant, as becomes clear when considering the con-

fidence intervals (not shown in Figure 5.5 to avoid clutter). This finding suggests that

the major bottleneck in the MCMC sampling scheme is caused by the latent variables γ

rather than the regression parameters.
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Table 5.2: Results comparing the model selection performance of WAIC com-
pared to 10-fold Bayesian CV on the simulated datasets described in Sec-
tion 5.1.3. The mean and 95% confidence intervals are given in terms of correctly
including or excluding random effect components in the simulated datasets described in
Section 5.1.3.

10-fold Bayesian CV WAIC

Sensitivity 0.91 (0.85,0.97) 0.78 (0.69,0.87)
Specificity 0.63 (0.52,0.73) 0.77 (0.68,0.86)

Predictive Accuracy 0.79 (0.70,0.88) 0.78 (0.68,0.87)
F1-Score 0.83 (0.75,0.91) 0.80 (0.71,0.88)

5.3.3 Final Simulation Study

To analyse the performance of WAIC in comparison to 10-fold Bayesian CV, Davies et al.

(2016b) looked at how accurate each method was at correctly selecting the random effect

components used to generate the datasets simulated in Section 5.1.3. Both methods were

applied to each of the 16 possible models for each dataset and selected the best model

in each case. The ability of the best models to correctly include or exclude the random

effect components that were used or not used to generate each of the datasets was then

analysed, where Table 5.2 gives the results in terms of sensitivity, specificity, predictive

accuracies and F-scores; see Section 3.4.1.

The results of Table 5.2 show that WAIC performs similarly to 10-fold Bayesian CV

in terms of correctly selecting random effect components. While 10-fold Bayesian CV

gets an increased sensitivity, WAIC has a better specificity and both perform similarly

in their predictive accuracy and F1-score. However WAIC is much more computationally

effective and to run the MCMC simulations for the WAIC took on average 87 minutes,

as opposed to 761 minutes for 10-fold Bayesian CV.

Using a spike and slab prior to include or exclude all random effect coefficients, bg,

from a particular random effect component, g, is an alternative to both WAIC and 10-

fold Bayesian CV. While WAIC and 10-fold Bayesian CV would be applied to each

combination of random effect components separately, spike and slab priors would only

require one model to be fitted. However, using spike and slab priors for selecting the

random effects will come at a large computational cost. Some of the random effect

components from the FMDV datasets contain between 30 to 50 different levels and this

would mean including or excluding 30 to 50 parameters simultaneously at each proposal

step of the MCMC sampling scheme. This is likely to lead to poor mixing as the difference

in log-likelihood for the inclusion and exclusion of a random effect component is likely to

be large. Poor mixing leads to the possibility of not sampling the optimal combination
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Figure 5.6: Bar plot showing the results for the reduced SAT1 dataset in Davies
et al. (2014). The bar plot shows proven residues (white) and implausible residues
(black) for the mixed-effects model results of Reeve et al. (2010), the mixed-effects LASSO
using AICc and BIC (Schelldorfer et al., 2011) and the original SABRE method (given
here ‘novel Bayesian’).

of fixed and random effects, as the proposals will struggle to move between different

combinations of random effect components. Therefore in order to ensure the optimal

selection of fixed and random effects is found it would be necessary to sample the model

for a large number of iterations. Due to the computational inefficiency of this inter-

model approach, we have used an intra-model approach and run MCMC simulations for

a relatively small number of models in parallel to compute WAIC and 10-fold Bayesian

CV scores for each plausible candidate model separately.

5.4 Results for the SAT1 Datasets

Both SAT1 datasets have been analysed using classical mixed-effects models. Originally

Reeve et al. (2010) analysed the original SAT1 dataset (Section 5.1.4) and Maree et al.

(2015) investigated an extended version of this dataset (Section 5.1.5). We have used

our method on each of these datasets in order to identify a number of candidate residues

which could be considered important for understanding antigenic variability. Knowledge

of which residues are antigenically important is partially incomplete. Therefore, for val-

idation purposes, residues were assigned to three different groups, proven, plausible and

implausible, based on how likely they are to be antigenic based on experimental results;

see Section 2.4.
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Figure 5.7: Proportion of categorised SAT1 variables included based on differ-
ent cut-off values for posterior inclusion probability. The graph shows the propor-
tion of the experimentally proven (thick solid line), plausible (solid line) and implausible
(dashed line) variables based on a cut-off value for the posterior inclusion probability.
The variables were classified into groups based on the method outlined in Section 2.4.
Cut-offs are marked at 0.5 posterior inclusion probability (vertical dashed line) and the
posterior inclusion probability equivalent to the top Jπ̂ variables with the highest poste-
rior inclusion probabilities (vertical dotted line).

5.4.1 Reduced SAT1 Dataset

The reduced SAT1 dataset described in Section 5.1.4 was analysed in Davies et al. (2014)

with the original SABRE method. With respect to the evaluation of the prediction, we

need to point out that the original SABRE method is the only one that could be applied

in a fully automatic manner. The forward-variable selection technique used in Reeve

et al. (2010) drew on biological prior knowledge to design an effective variable selection

schedule, and the optimisation algorithm for the mixed-effects LASSO, as implemented in

the software of Schelldorfer et al. (2011), failed due to ill-conditioned (i.e. quasi-singular)

matrices.

To cope with the latter problem, we applied the mixed-effects LASSO as follows: in

the first instance, we included all proven residues (as informed by Section 2.4.1). We

then included any branches of the phylogenetic tree that did not prevent the matrix

inversion as explanatory variables. The plausible and implausible residues were then

added, before being iteratively excluded until the matrix inversion no longer ran into

numerical problems. We need to point out that this strategy uses prior knowledge that

would usually not be available and is not required for the proposed Bayesian method.

However for a fair comparison, we used this reduced set of 107 variable for all methods.

For performance evaluation, we have concentrated on the prediction of the relevant

residues, which indicate areas of the virus protein that are targeted by the immune system,
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Figure 5.8: Phylogenetic tree indicating significant branches in the evolution-
ary history of the SAT1 serotype based on the original SAT1 dataset in Sec-
tion 5.1.4. Phylogenetic trees were created using BEAST v1.7.2 and FigTree v1.4.2 from
aligned nucleotide sequence data with date of isolation. Marked on the tree are protective
strains (*) and topotype defining branches (dashed vertical line). Branches inferred by
the conjugate SABRE method are highlighted (black). Symbols indicate whether this
was inferred to be a change in virus antigenicity (†), virus reactivity (‡) or virus im-
munogenicity (§). Where a highlighted branch has no symbol, an associated change in
antigenicity or reactivity could not be discriminated between. The cut-off for significance
was taken to be the Jπ̂ variables with the highest marginal inclusion probability, where
the branches chosen are given in Table B.8.

where mutations potentially allow the virus to escape the host immune response. For

evaluation we used the classification scheme described in Section 2.4.1. The predictions

are shown in Figure 5.6. It can be seen that the original SABRE method finds no

implausible variables, while also showing an increased number of proven variables.

5.4.2 Original SAT1 Dataset

The analysis of the original SAT1 dataset with the conjugate SABRE method in Davies

et al. (2016a) has resulted in the identification of 29 residues or branches of importance

based on taking the top Jπ̂ variables with the highest marginal posterior inclusion prob-

abilities. 9 of the selected residues and 2 of the branches are classified as proven, at the

expense of only 1 implausible variable. A full list of selected variables can be found in

Table B.7. The proportion of the differently classified variables at different cut-off points

is shown in Figure 5.7a. The proven residues include several that have been validated

using MAbs in the SAT1 serotype (Grazioli et al., 2006), as well as others from the VP2
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B-C loop, VP1 G-H loop and VP1 C-terminus (the end of the VP1 protein) and we have

focused on these proven residues in our analysis. The classifications of the variables are

taken from Section 2.4.

The residues that have been experimentally validated in the SAT1 serotype are VP3

71 and VP3 77 in the VP3 B-C loop and VP1 144 and VP1 149 in the VP1 G-H loop

(Grazioli et al., 2006). Additionally in the VP1 G-H loop, an antigenic loop in every

FMDV serotype (Bolwell et al., 1989; Crowther et al., 1993b; Grazioli et al., 2013, 2006;

Kitson et al., 1990; Lea et al., 1994) known to distract the host immune systems, the

conjugate SABRE method has also identified VP1 143 and VP1 150. These residues are

next to the experimentally validated residues in the protein alignment and confirm that

the VP1 G-H loop is a highly antigenic part of the SAT1 serotype.

In addition to the residues in the VP3 B-C and VP1 G-H loops, the conjugate SABRE

method has additionally selected VP2 74 in the VP2 B-C loop, as well as VP1 216 and

VP1 219 in the VP1 C-terminus. The VP2 B-C loop is antigenic in all serotypes and

contains the highly antigenic VP2 72 residue, which has been experimentally validated in

all of the FMDV serotypes except SAT2 (Aktas and Samuel, 2000; Crowther et al., 1993a;

Grazioli et al., 2013, 2006; Kitson et al., 1990; Lea et al., 1994; Saiz et al., 1991). The

VP1 C-terminus has been proven to be antigenic in all but the Asia1 serotype, although

it is almost certainly antigenic there also (Aktas and Samuel, 2000; Baxt et al., 1989;

Grazioli et al., 2006; Mateu, 1995).

Figure 5.8 shows the model predictions for the antigenically significant branches based

on using just the branch variables from the original SAT1 dataset. Here we have identified

all of the branches known to divide topotypes (Reeve et al., 2010), as well as a number of

other branches. Several of the branches, including two topotype defining branches, have

been specifically identified as reactivity, immunogenic or antigenic changes, an improve-

ment over previously used models.

5.4.3 Extended SAT1 Dataset

The analysis of the extended SAT1 dataset (Section 5.1.5) with the conjugate SABRE

method in Davies et al. (2016a) resulted in selecting 76 variables, which included 24

proven residues, 4 important branches in the evolutionary history and only 2 implausible

residues. A full list of the selected variables can again be found in Table B.9 and the

proportion of proven, plausible and implausible residues selected at different cut-offs is

shown in Figure 5.7b here. The improved results over Section 5.4.2 show the advantage

of getting a larger dataset through testing an increased number of strains under a variety

of different experimental conditions.

The conjugate SABRE method has identified 11 residues in the highly variable VP1
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Figure 5.9: Phylogenetic trees indicating significant branches in the evolution-
ary history of the SAT1 serotype. Phylogenetic trees were created using BEAST
v1.7.2 and FigTree v1.4.2 from aligned nucleotide sequence data with date of isolation.
Marked on the tree are protective strains (*) and topotype defining branches (dashed ver-
tical line). Branches inferred by the conjugate SABRE method are highlighted (black).
Symbols indicate whether this was inferred to be a change in virus antigenicity (†), virus
reactivity (‡) or virus immunogenicity (§). Where a highlighted branch has no symbol,
an associated change in antigenicity or reactivity could not be discriminated between.
The cut-off for significance was taken to be 0.5 highest marginal inclusion probability,
where the branches chosen are given in Table B.10.

G-H loop (VP1 142, VP1 143, VP1 144, VP1 147, VP1 148, VP1 149, VP1 150, VP1

155, VP1 156, VP1 163 and VP1 164). Finding this many significant residues in this

highly antigenic region while keeping the number of implausible residues low shows that

the model is working effectively.

Additionally, like with the original SAT1 dataset in Section 5.4.2, the conjugate

SABRE method has selected VP2 74 from the VP2 B-C loop. However in addition

it has also selected VP2 72 which is antigenic in all FMDV serotypes and VP2 79 which

has been experimentally validated in the A, O, Asia1 and SAT2 serotypes (Grazioli et al.,

2013, 2006; Mateu, 1995). The conjugate SABRE model also again selects several residues

from the VP1 C-terminus; VP1 209, VP1 211 and VP1 218.

The final proven residues are from the VP3 B-B knob or have been experimentally
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validated specifically in the SAT1 serotype (Grazioli et al., 2006). In the VP3 B-B knob

the conjugate SABRE method has identified VP3 58 (serotypes A, O, C and Asia1) and

VP3 61 (serotype A) (Grazioli et al., 2006; Lea et al., 1994; Mateu, 1995). From those

residues which have specifically been validated in the SAT1 serotype, again VP3 71 and

VP3 77 from the VP3 B-C loop have been selected. However for the extended SAT1

dataset, the conjugate SABRE method has also selected VP3 138, which was also found

in Reeve et al. (2010), from VP3 E-F loop.

As well as finding some branches in our overall model (including 4 topotype defining

branches identified as representing significant evolutionary changes a priori), we have

also compiled a model based only on branches to help us understand the evolutionary

history of the serotype. The results of this model are given in Figure 5.9, where the

seven branches known to define topotypes are indicated by the vertical line. In order to

produce more interpretable results, where larger groups of strains are not separated by a

significant evolutionary change (selected branch), we have used a cut-off of 0.5. The full

results using a Jπ̂ cut-off are given in Figure B.1. The results given in Figure 5.9 show

that we have been able to identify all but one of the topotype defining branches, while

the other is found when the Jπ̂ cut-off is used. We have also been able to specify whether

the evolutionary changes have affected virus antigenicity, immunogenicity or reactivity,

helping us to further understand the underlying biological processes.

5.4.4 Comparison with Previous Work

To compare the results of the SABRE method against the mixed-effects models used

in Reeve et al. (2010) and Maree et al. (2015), we examine which categories (proven,

plausible or implausible) the various residues selected fall into. Note that to do this we

ignore any branch terms that do not directly correspond to a residue term. The full

results for variables selected can be found in Tables B.7 and B.9. For comparison, the

results of Maree et al. (2015) are given in Table B.13, as the results of the equivalent

study are not given in the original paper.

For the original SAT1 dataset, Reeve et al. (2010) selected 0 proven, 0 plausible and

0 implausible residues using the method described in Section 3.1.1 (i.e. when the Holm-

Bonferroni correction was used). These results compare to 1 proven, 1 plausible and

0 implausible residues when the conjugate SABRE method was used and selecting any

residue variables with a marginal posterior inclusion probability of greater than or equal

to 0.5.5 We have also looked at how well the methods do before selecting an implausible

variable or before a p-value of greater than 0.05 (before the Holm-Bonferroni correction

5The power can be further improved (12 proven and 9 plausible residues) by inferring the selection
threshold and selecting the top Jπ̂ variables, at the expense of the selection of 1 implausible residue.
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Figure 5.10: Convergence diagnostics for the reduced SAT1 dataset used in
Davies et al. (2014) and described in Section 5.1.4. The lines show the proportion
of parameters that have converged (PSRF ≤ 1.1) when using component-wise Gibbs sam-
pling (black) and Metropolis-Hastings sampling proposing 4 (grey), 8 (black dashed), 16
(grey dashed), 32 (black thick) and 64 (grey thick) inclusion parameters simultaneously.

was used) was reached (in Reeve et al. (2010) the variable selection process was stopped

as soon as a 0.05 p-value was reached). In this situation again the conjugate SABRE

method offers an improvement, selecting 5 proven, 5 plausible and 0 implausible residues

compared to 1, 1 and 0 respectively for the standard-mixed effects models. The difference

in these results shows an advantage for the conjugate SABRE method over the standard

mixed-effects models.

In the extended SAT1 dataset, Maree et al. (2015) used the method of Reeve et al.

(2010) to select 5 proven, 0 plausible and 0 implausible residues, or 8, 1 and 0, respec-

tively, if the method continued until selecting the first implausible residue. The conjugate

SABRE method selected 11 proven, 3 plausible and 0 implausible residues when taking

any variables with marginal posterior inclusion probabilities of greater than or equal to

0.5, or 15, 4 and 0, respectively, before selecting the first implausible residue.6 It can

again be seen that the power of the proposed conjugate SABRE method has improved

over the method of Reeve et al. (2010).

5.4.5 Sampling of Latent Indicators

Figures 5.10 and 5.11 compare component-wise Gibbs sampling against block Metropolis-

Hastings sampling (both described in Section 4.3.5) in terms of speed of convergence. To

6The power can be further improved (24 proven and 15 plausible residues) by inferring the selection
threshold and selecting the top Jπ̂ variables, at the expense of the selection of 2 implausible residues.
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Figure 5.11: Convergence diagnostics for the original and extended SAT1
datasets described in Section 5.1. The lines show the proportion of parameters
that have converged (PSRF < 1.05) versus the average CPU time (second) when using
component-wise Gibbs sampling (crosses) and Metropolis-Hastings sampling proposing 5
(solid), 10 (dashed), 15 (dotted), 20 (thick solid) and 30 (thick dotted) inclusion param-
eters simultaneously.
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do this we ran 4 chains for the component-wise Gibbs sampler and each of the variations

of the Metropolis-Hastings sampler, monitoring the PSRFs for each parameter in the

different methods. Figures 5.10 and 5.11 show the proportion of parameters with PSRFs

< 1.1 (Figure 5.10) or PSRFs < 1.05 (Figure 5.11) in each case compared with the CPU

time taken to get that number of samples. The higher the proportion of parameters with

PSRFs lower than the required value (1.1 or 1.05), the better the method is said to have

performed (Grzegorczyk and Husmeier, 2013).

Figure 5.10 compares convergence speed of different methods of proposing γ on the

reduced SAT1 dataset used in Davies et al. (2014); see Section 5.1.4. The results, based

on monitoring whether the PSRFs were less than 1.1, show that proposing a larger

proportion of 8 (7.5%) or 16 (15%) binary selection hyperparameters, γ, simultaneously

in a block Metropolis-Hastings scheme achieves faster convergence than component-wise

Gibbs sampling, despite the higher rejection probability (recall that Gibbs sampling has

an acceptance probability of 1). This suggests that component-wise Gibbs sampling

should not always be the default choice.

The results from Figure 5.11 support the advantage of a block Metropolis-Hastings

sampler over a component-wise Gibbs sampler as shown in Figure 5.10, where following

Davies et al. (2016a) convergence was determined by monitoring the percentage of vari-

ables with a PSRF ≤ 1.05. In all of the datasets the block Metropolis-Hastings samplers

have outperformed the component-wise Gibbs sampler, with the exception of when more

than 40 or 50 variables were sampled at a time (not shown in the diagrams for clarity).

This shows that even sampling a reasonably large number of variables simultaneously,

where the acceptance rate is likely to be low, can still yield a notable improvement. The

results7 in Figures 5.10 and 5.11 suggest that as a rule of thumb, sampling about 10 of

the variables at a time will lead to effective sampling with the quickest convergence

5.5 Results for the SAT2 Dataset

For the SAT2 dataset, very little knowledge is available on how mutational changes affect

antigenic variability, and no significant variables have been found in previous in silico

work (Reeve et al., 2010). We have therefore applied our conjugate SABRE method as

a tool for new hypothesis generation; see Table B.11 for the full results. For partial

validation of our results, we exploit the fact that previous work by Grazioli et al. (2006)

and Crowther et al. (1993b) has found evidence for antigenicity of the following three

7The best performing samplers in Figure 5.11 are as follows: Metropolis-Hastings samplers with 10
(7.2%) or 15 (10.9%) variables at a time for the original SAT1 dataset, with 10 (4.5%) or 15 (6.8%)
variables at a time for the extended SAT1 dataset and 5 (1.8%) and 10 (3.6%) variables at a time for
the H1N1 dataset.
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Figure 5.12: Phylogenetic tree indicating significant branches in the evolution-
ary history of the SAT2 serotype based on the SAT2 dataset in Section 5.1.6.
The phylogenetic tree was created using BEAST v1.7.2 and FigTree v1.4.2 from aligned
nucleotide sequence data with date of isolation. Marked on the tree are protective strains
(*). Branches associated with a change in virus phenotype are highlighted (black). Sym-
bols indicate whether this was inferred to be a change in virus antigenicity (†), virus
reactivity (none-identified) or virus immunogenicity (§). Where a highlighted branch has
no symbol, an associated change in antigenicity or reactivity could not be discriminated
between. The cut-off for significance was taken to be the Jπ̂ variables with the highest
marginal inclusion probability, where the branches chosen are given in Table B.12.

areas: VP1 140-169 (part of the VP1 G-H loop), VP1 200-224 (VP1 C terminus) and

VP2 70-82 (VP2 B-C loop).

Firstly in the VP2 B-C loop, the SABRE method has identified 5 residues that are

antigenic; VP2 71, VP2 72, VP2 78, VP2 79 and VP2 80 (Grazioli et al., 2013, 2006;

Kitson et al., 1990; Lea et al., 1994; Saiz et al., 1991). Of these VP2 78 has been

experimentally identified using MAbs (Grazioli et al., 2006). Additionally VP2 72 is

known to be antigenic in all other serotypes and these results suggest it is also antigenic

in the SAT2 serotype (Grazioli et al., 2013, 2006; Mateu, 1995).

The second region in which antigenically significant residues have been found is in

the VP1 G-H loop. The VP1 G-H loop is known to be a highly variable distracter site

designed to confuse the host immune system (Crowther et al., 1993b) and is antigenic in

all of the FMDV serotypes. In this loop, the conjugate SABRE method has specifically

identified VP1 144 and VP1 166, where it is notable that VP1 166 lies directly between

several residues that have been experimentally validated in the SAT2 serotype using

MAbs (Crowther et al., 1993b).
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The final known antigenic region that has been identified by the conjugate SABRE

method is part of the VP1 C-terminus, the end of the VP1 protein. In the VP1 C-

terminus we have identified VP1 207, VP1 208, VP1 209, VP1 210 and VP1 211 which

are part of a region known to be antigenic in all FMDV serotypes except Asia1 (Aktas

and Samuel, 2000; Grazioli et al., 2006; Lea et al., 1994; Saiz et al., 1991). With the

conjugate SABRE method identifying all these neighbouring residues, it suggests that

this section of the protein is a highly antigenic part of the SAT2 serotype.

Figure 5.12 gives the phylogentic tree for the SAT2 serotype with the predicted sig-

nificant evolutionary changes. Unlike the SAT1 serotype, there is no prior knowledge of

which residues and branches are antigenically relevant and we therefore apply our method

to generate genuinely new hypotheses. The results presented give our best prediction for

the significant branches and show a couple of potentially interesting groupings which

could represent functional groups for the SAT2 serotype.

5.6 Results for the H1N1 Dataset

The analysis of the H1N1 dataset described in Section 5.1.7 selected 62 variables including

11 proven residues, 3 plausible residues and 5 implausible residues. A full list of the

selected variables can again be found in Table B.14. Of the proven residues, one was

identified on the RBS, position 187 (on the H1 common alignment) from the Sb antigenic

site, and 4 others nearby; positions 130, 153, 189 and 190. Of those nearby, two occurred

close together on the Sb antigenic site (189 and 190) and another on the Sa antigenic site

(153). The other proven residue close to the RBS (130) is not part of an antigenic site

but is known to be the location of a major antigenic change (Harvey et al., 2016).

The other proven residues selected come from two of the other antigenic sites; Ca and

Cb. Positions 69, 72 and 74 are all found on Cb antigenic site, while positions 139, 141

and 142 are found on the Ca antigenic site. Additionally two of the plausible residues are

also found nearby the Ca antigenic site. The remaining plausible residue (252) is part of

the head domain and therefore considered plausible. The implausible residues selected

cannot easily be explained but those selected may be partially a result of reducing the

dataset (see Section 2.3.1). The one implausible residue that can be explained however is

position 43 which by chance has a strong correlation with a known antigenic site (Harvey

et al., 2016) rationalising its selection.

We have not constructed a separate estimate of the antigenicity of the branches of the

H1N1 like we did for the FMDV datasets. We have not done this due to the phylogenetic

tree of the H1N1 serotype being large and difficult to interpret. Additionally the H1N1

serotype is subject to rapid antigenic drift (Harvey et al., 2016) and therefore any inference
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would have less relevance. Finally we have not done a comparison with the results of

Harvey et al. (2016) as they used a much larger dataset with more challenge strains and

so any comparison would not be relevant.

5.7 Discussion

We have addressed the problem of identifying the residues within the SAT1 and SAT2

serotypes of FMDV and Influenza A (H1N1) that are responsible for changes in antigenic

variability. This allows us to identify which residues must remain the same in order for

two strains to cross react and for one strain to potentially be used as an effective vaccine

against another. Identifying such residues can reduce the number of strains that must be

tested as a vaccine, potentially reducing the time and cost associated with the selection

procedure.

We have tested the family of SABRE methods introduced in Chapter 4 and shown how

they offer improvement over the classical mixed-effects model, the mixed-effects LASSO

and the mixed-effects elastic net as a result of the differences discussed in Section 5.7;

see Section 5.3. We have additionally examined to fundamentally different approaches to

variable selection in Bayesian hierarchical models: the slab-and-spike prior and the binary

mask model; see Section 3.3. Our results given in Table 5.1 and displayed in Figures 5.3

and 5.4 show that the difference between these methods is negligible. We have also

evaluated the difference between using a conjugate and semi-conjugate prior, as depicted

by Figures 4.3 and 4.2. The differences in accuracy are negligible (see e.g. Figure 5.4).

The conjugate model has slightly better computational efficiency (Figure 5.5), but this

difference is not significant; this finding indicates that the bottleneck in the computational

procedure is the sampling of the latent variables rather than the regression parameters.

The conjugate model shows a slight but significant improvement over the non-conjugate

model in the model selection scores based on WAIC, as seen from Tables 5.1 and B.6,

but this has little immediate impact on the variable selection. Overall, our findings

demonstrate a remarkable robustness of the proposed hierarchical modelling framework

with respect to minor model modifications, which boosts our confidence in the predictions

and in the variable ranking.

Further to this we have investigated the sampling of latent inclusion variables. We

have shown that by proposing multiple variables simultaneously through Metropolis-

Hastings sampling it is possible to give a significant computational improvement over the

conventional component-wise Gibbs sampler (Figures 5.10 and 5.11). We have shown this

improvement in a number of different datasets and have offered a general rule of thumb

that proposing 10 variables at a time will lead to good mixing within MCMC chains for
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a variety of different datasets.

Through the use of this new model with the improved sampling techniques we have

been able to identify an increased number of known antigenic sites in the SAT1 serotype

of FMDV (Grazioli et al., 2006) compared to Reeve et al. (2010) and Maree et al. (2015),

while incurring no (for the default selection threshold 0.5) or only a very small number (for

the inferred selection threshold Jπ̂) implausible residues. Very little biological knowledge

exists about the SAT2 serotype, and a previous in silico application has failed to make

any predictions at all (Reeve et al., 2010). To our knowledge, our study is the first time

that specific new hypotheses about genetic-antigenic associations have been made with an

in silico model based on the currently available data. Additionally we have provided an

insight into the evolutionary history of the SAT serotypes (Figures 5.8, 5.9 and 5.12) and

have provided a novel way of interpreting the biological effects of these virus mutations.

Finally we have identified a number of significant antigenic sites in the H1N1 Influenza

virus based on a reduced dataset and provided new hypotheses for this virus.

83



Chapter 6

A Sparse Hierarchical Bayesian

Latent Variable Model for

Understanding Antigenic Variability

- The Methods

While the SABRE method offers consistent parameter inference and improved variable

selection leading novel biological predictions, it does not fully take into account the data

generation process. The structure of the data, discussed in Section 2.1, is a result of

the same pair of challenge and protective strains being used to create multiple VN titre

or HI assay measurements. As a result, the genetic and evolutionary data described

in Sections 2.1.2 and 2.1.3 will be the same for any two measurements where the same

challenge and protective strains are used. Modelling this structure more accurately is

important and doing so should lead to more accurate biological results than those achieved

by both the alternative methods in Chapter 3 and SABRE methods in Chapters 4 and 5.

In the work described in the current chapter, we describe an extended version of the

conjugate SABRE method, the extended SABRE (eSABRE) method, which can properly

account for the structure of the data while still retaining the attractive properties of

the SABRE methods discussed and tested in Chapters 4 and 5. The eSABRE method

introduces a latent variable structure into the mixed-effects model likelihood previously

used in the SABRE methods in order to properly account for the data structure described

in Chapter 2. In Section 6.1.1 we introduce the likelihood for the eSABRE method, with

the remainder of the Section 6.1 defining the prior distributions of the model. In general

the prior distributions for the eSABRE method follow those of the conjugate SABRE

method (Section 4.2.2), but with adjustments and additions to fit in with the new latent
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variable likelihood described in Section 6.1.1.

As a result of using similar prior distributions to the conjugate SABRE method, the

posterior inference of the eSABRE method in Section 6.2 roughly follows that of the

conjugate SABRE method and we have used the conjugate sampling scheme proposed in

Section 4.3.6. The differences in the posterior inference does however indicate one impor-

tant advantage of the eSABRE method; its increased computational efficiency for larger

datasets. As a result of the improved likelihood of the eSABRE method in Section 6.1.1,

the sampling of the latent indicators, γ, become less computationally onerous. This is

massively advantageous as the sampling of γ was identified as the computational bottle-

neck of the SABRE methods in Chapter 4. The reduction in computational complexity

comes from reducing the complexity of calculating the conditional distribution of γ by

making it dependant on the inferred mean VN titre or HI assay for each pair of challenge

and protective strains, rather than all of the individual VN titre and HI assay measure-

ments. There are less pairs of challenge and protective strains then there are VN titre

and HI assay measurements in all of the FMDV and Influenza datasets. This reduction

in computational complexity is possible as a result of the latent variable structure of the

likelihood introduced in Section 6.1.1 and explained further in Section 6.2.

Finally, in addition to proposing the eSABRE method, the current chapter also looks

at methods for selecting random effects factors as we did previously in Chapters 4 and 5.

As the latent variable likelihood for the eSABRE methods is specified as the product

of two distributions, it is possible that alternative model selection techniques may offer

an improvement over those proposed in Section 3.5 and tested in Chapter 5. Here we

introduce a variation of the Widely Applicable Information Criterion (WAIC) (Watanabe,

2010), block integrated WAIC (biWAIC) based on integrated WAIC (iWAIC) as proposed

in Li et al. (2015). biWAIC takes into account the specific structure of the model and

integrates over the latent variables. We have described how this converges to a particular

form of Cross Validation (CV) and in Chapter 7 we use a simulation study to compare it

to Bayesian 10-fold integrated CV (iCV) and non-integrated WAIC (nWAIC), a method

which naively applies WAIC to the part of the latent variable likelihood containing the

response, y.

6.1 The eSABRE Method

The eSABRE method is based on the conjugate SABRE method from Section 4.2.2 in

Chapter 4 (Davies et al., 2016a) but with a likelihood that better takes into account the

data structure described in Chapter 2. The change in the structure is given in Section 6.1.1

and the remaining sections define the prior distributions of the eSABRE method, keeping
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to those used for the conjugate SABRE method as close as possible. Finally, the model

is shown as a PGM in Figure 6.1 and the parameters are sampled from the posterior

distribution using MCMC based on the methods described in Section 3.2.

6.1.1 Latent Variable Based Likelihood

The conjugate SABRE method described in Chapter 4 used the following likelihood, also

given in (4.11), similar to classical mixed-effects models (Davies et al., 2016a):

y ∼ N(y|1w0 + Xγwγ + Zb, σ2
εI). (6.1)

In (6.1), the response, log HI assay or log VN titre, is given by y = (y1, . . . , yN)>. The

random-effects design matrix, Z, is set to be a the matrix of indicators with N rows and

||b|| columns, where ||.|| indicates the length of the vector and b is a column vector of

random-effect coefficients. The explanatory variables, X, are given as a matrix of J + 1

columns and N rows and contain indicators of mutational changes at different residues

or information on the phylogenetic structure where the first column is a column full of

ones for the intercept. Of the explanatory variables, X, only the relevant variables, Xγ ,

are included in (6.1) dependant on γ = (γ1, . . . , γJ)> ∈ {0, 1}J . The relevance of the

jth column of X is determined by γj ∈ {0, 1}, where feature j is said to be relevant if

γj = 1. Similarly wγ is given as the column vector of regressors, where the inclusion of

each parameter is dependent on γ.

While (6.1) gives a general model which can be used in a variety of different contexts,

it does not completely account for the structure of the data used to model antigenic

variability described in Chapter 2. The structure from the experiments means that any

observations from the same challenge and protective strains will have the same explana-

tory variables. However it is worth noting that a given pair of viruses will give different

explanatory variables if the strains used as challenge and protective strains are switched.

As a result of this structure, we can introduce latent variables, µy, into the model, where

each µy,p represents the inferred underlying HI assay measurement of any given pair of

challenge and protective strains, p.

The introduction of the latent variables, µy, into the models results in the following

distribution for y:

y ∼ N(y|Mµy + Zb, σ2
yI) (6.2)

where M is a design matrix which ensures that each y has the underlying inferred VN

titre or HI assay measurement, µy,p, for its given pair of challenge and protective strains,
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Figure 6.1: Compact representation of the eSABRE method as a PGM. The
grey circles and squares refer to the fixed hyperparameters and data respectively, while
the white circles refer to parameters and hyperparameters that are inferred. The main
differences with the conjugate SABRE method given in Figure 4.3 can be seen by noting
the addition of the latent variables, µy,p , between wj and y, the addition of nodes and
edges connecting σ2

y, αy and βy, and the edges connecting σ2
ε and w0 to µy,p rather than

y.

p. The random effects factors are added into this part of the likelihood as some of these

factors, e.g. the date of the experiment, affect measurements at the individual level, i.e.

they are different for each y; see Section 2.1.1 for details on the random effects factors.

We then wish to infer the values of the VN titre or HI assay measurements of the pairs

of challenge and protective strains, µy, based on the differences in the protein structure

and evolutionary history of the virus described in Sections 2.1.2 and 2.1.3:

µy ∼ N(µy|1w0 + Xγwγ , σ
2
εI). (6.3)

As with the SABRE methods in Chapter 4, we only wish to use the relevant explanatory

variables, Xγ , and corresponding regression coefficients, wγ . We also include an intercept
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parameter, w0 as we expect high underlying HI assay measurements when the two virus

strains used are the same, i.e. the explanatory variables are equal to zero. The full model

is given graphically in Figure 6.1.

The eSABRE method’s latent variable likelihood, given in (6.2) and (6.3), has two

major advantages over the likelihood of the conjugate SABRE method, given in (6.1).

Firstly it allows us to better attribute the error to the correct part of the model. In the

VN titre and HI assay measurements some of the error comes from variability within the

experiments, e.g. getting multiple different results for the same pair of challenge and

protective strains once the experimental conditions have been taken into account, and

this is modelled by σ2
y. Other errors will come from the model fit, e.g. our model not

completely replicating the true underlying biological process, and this is given by σ2
ε .

Attributing the error better means our model matches better with the data collection

process and should result in more accurate results.

The second advantage of the eSABRE is massively improved computational perfor-

mance. For example to analyse the H1N1 dataset would take the SABRE method weeks

or months to sample the required number of iterations to achieve convergence and a rea-

sonable sample size after burn-in, the eSABRE method is able to achieve the result in

less than a day. The improvement is a result of reducing the computation required to

calculate the posterior distribution of γ. In essence, through the introduction of latent

variables the eSABRE method reduces the posterior distribution of γ to a multivariate

Gaussian distribution of dimension ||µy||, ||µy|| = 570 in the H1N1 dataset, as opposed

to dimension ||y||, ||y|| = 15, 693 in the H1N1 dataset, in the SABRE method. This is a

result of the d-separation of y and γ via µy in Figure 6.1. Similar results are also likely

for the H3N2 dataset, although the times required would be much larger.

6.1.2 Noise and Intercept Priors

Unlike the SABRE methods in Chapter 4, the eSABRE method contains two types of

error rather than one to better reflect the error coming from the data collection process.

The first part of the error is given by σ2
y in (6.2). This error term represents the variation

seen in the measurements collected from the same pair of challenge and protective strains:

σ2
y ∼ IG(σ2

y|αy, βy) (6.4)

where the hyper-parameters αy and βy are fixed, as indicated by the grey nodes in Fig-

ure 6.1. As with the SABRE methods in Chapter 4 we have used conjugate priors where

possible, so we can use Gibbs sampling to sample as many parameters as possible.

The other error comes from the second part of the likelihood, (6.2), and is given by
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σ2
ε :

σ2
ε ∼ IG(σ2

ε |αε, βε) (6.5)

where the hyper-parameters αε and βε are fixed. This represents the error between the

inferred underlying HI assay or VN titre measurements for each pair of challenge and

protective strains and what can be explained by the fixed effects, w∗γ . σ2
ε is also included

in the distributions for w0, wγ and µw (defined in (6.6) and Section 6.1.3) following the

conjugate SABRE method described in Section 4.2.2. The advantage of this information

sharing is that the error variance in terms of model fit is reflected in the distribution of

the regression coefficients and a potential computational advantage can also be obtained

through collapsed Gibbs sampling; see Davies et al. (2016a).

Additionally we also require a prior on our intercept:

w0 ∼ N(w0|µw0 , σ
2
w0
σ2
ε). (6.6)

As discussed in Section 4.2.1, we treat the intercept differently from the remaining re-

gressors, wishing to use vague prior settings so as not to penalise this term and effectively

make the model scale invariant (Hastie et al., 2009).

6.1.3 Spike and Slab Priors

As with the conjugate SABRE method, we use spike and slab priors as proposed by

Mitchell and Beauchamp (1988) and described in Section 3.3.1. Again the idea of the

spike and slab prior is that the prior reflects whether the feature is relevant based on the

values of γ. In this way we expect that wj = 0 if γj = 0, i.e. the feature is irrelevant,

and conversely it should be non-zero if the variable is relevant, wj 6= 0 if γj = 1. With

the eSABRE method the effects of the spike and slab prior are seen on the estimate of

µy rather than y itself as in the SABRE methods, with µy then affecting the estimate of

y. This can be seen by comparing Figures 4.3 and 6.1. Following the conjugate SABRE

method, we again add σ2
ε into the distribution for further conjugacy:

wj ∼
{
δ0(wj) if γj = 0

N(wj|µw, σ2
wσ

2
ε) if γj = 1

(6.7)

for j ∈ 1, . . . , J and where δ0 is the delta function. The prior for the variance of the

parameter is then given by:

σ2
w ∼ IG(σ2

w|αw, βw). (6.8)
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where αw and βw are fixed; see Figure 6.1.

As with the conjugate SABRE method, we again assign a flexible parameter for the

mean of the regression coefficients, wγ :

µw ∼ N(µw|µ0, σ
2
0σ

2
ε) (6.9)

where the hyper-parameters µ0 and σ2
0 are fixed and σ2

ε is again included in the variance for

further conjugacy. The need for a flexible vale of µw is due to our biological understanding

of the problem, with the model likely to have a high intercept, w0, and only negative

regression coefficients; see Section 2.1.

The final part of the spike and slab prior is to define the prior for the latent binary

indicators, γ. For this we assign Bernoulli prior for each γj with probability π, with the

probability π itself given a prior following a conjugate Beta distribution:

p(γ|π) =
J∏

j=1

Bern(γj|π) (6.10)

π ∼ B(π|απ, βπ) (6.11)

where απ and βπ are fixed, as indicated by the grey nodes in Figure 6.1.

6.1.4 Random-Effects Priors

For the random effects priors we use the same priors as with the conjugate SABRE

method. We do not consider the folded-non-central-t prior distribution described in

Gelman (2006) and tested here in Section 5.3 (Davies et al., 2016a). The results of

Figure 5.1 showed that the prior did not offer any advantage in the context of the SABRE

methods and therefore we have not used it here.

As with mixed-effects models and the SABRE methods we give the random effects

coefficients, bk,g, group dependant Gaussian priors where the group is defined by k, i.e.

bk,g is shorthand for bk,gk :

bk,g ∼ N(bk,g|µb,g, σ2
b,g). (6.12)

where we again fix µb,g = 0 with the group dependant variance parameter, σ2
b,g, given a

conjugate Inverse-Gamma prior:

σ2
b,g ∼ IG(σ2

b,g|αb,g, βb,g) (6.13)

where αb,g and βb,g are fixed hyper-parameters for each g. Again, as in Section 4.1.4,
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we define b ∼ N(b|0,Σb) where Σb = diag(σ2
b) with σ2

b = (σ2
b,1, . . . , σ

2
b,1, σ

2
b,2, . . . , σ

2
b,G)>

such that each σ2
b,g is repeated with length ||bg||.

6.2 Posterior Inference

To explore the posterior distribution of the eSABRE method we have used an MCMC

algorithm; see Section 3.2. As with the SABRE methods in Chapter 4, we have chosen

conjugate priors where possible meaning that we can use Gibbs sampling for most of the

model parameters; see Section 3.2.2. The distributions needed for sampling are given

here and are derived in Section A.2, where we again use a slight abuse of notation and

denote θ′ as all other parameters that are not on the left of the conditioning bar. The

only parameter that we cannot use Gibbs sampling with is γ and this is discussed in

Section 6.2.1.

µy|θ−µy ,X
∗
γ ,Z,y ∼ N(µy|Vy(M>(y− Zb)/σ2

y + X∗γw∗γ/σ
2
ε),Vy) (6.14)

w∗γ |θ−w∗
γ
,X∗γ ,Z,y ∼ N(w∗γ |Vw∗

γ
X∗>γ µy + Vw∗

γ
Σ−1

w∗
γ
mγ , σ

2
εVw∗

γ
) (6.15)

b|θ−b,X∗γ ,Z,y ∼ N(b| 1
σ2
y
VbZ>(y−Mµy),Vb) (6.16)

µw|θ−µw ,X∗γ ,Z,y ∼ N(µw|Vµw(1wγ/σ
2
w + µ0/σ

2
0), σ2

εVµw) (6.17)

σ2
y|θ−σ2

y
,X∗γ ,Z,y ∼ IG(σ2

y| ||y||/2 + αy,
1
2
(y−Mµy − Zb)>(y−Mµy − Zb)) (6.18)

σ2
w|θ−σ2

w
,X∗γ ,Z,y ∼ IG(σ2

w| ||wγ ||/2 + αw,
1

2σ2
ε
(wγ − Iµw)>(wγ − Iµw)) (6.19)

σ2
b,g|θ−σ2

b,g
,X∗γ ,Z,y ∼ IG(σ2

b,g| ||bg||/2 + αb,g, βb,g + 1
2
b>g bg) (6.20)

σ2
ε |θ−σ2

ε
,X∗γ ,Z,y ∼ IG(σ2

ε |(||µy||+ ||w∗γ ||+ 1)/2 + αε, βε + 1
2
Rσ2

ε
) (6.21)

π|θ−π,X∗γ ,Z,y ∼ β(π| απ + ||γ||, βπ + J − ||γ|). (6.22)

where we sample σ2
b,g for each g. We also define Vy = (1/σ2

εI + M>M/σ2
y)
−1, Vw∗

γ
=

(X∗>γ X∗γ + Σ−1
w∗

γ
)−1, Vb = ( 1

σ2
y
Z>Z + Σ−1

b )−1, Vµw = (1/σ2
0 + ||wγ ||/σ2

w)−1 and Rσ2
ε

=

(µy−X∗γw∗γ)>(µy−X∗γw∗γ) + (w∗γ −mγ)>Σ−1
w∗

γ
(w∗γ −mγ) + (µw−µ0)>(µw−µ0)/σ2

0 for

notational simplicity.

Following Davies et al. (2016a) we have again used collapsing in an attempt to improve

mixing and convergence, e.g. Andrieu and Doucet (1999). As in Section 4.3.6 this is

achieved through a series of collapsed distributions for γ, w∗γ , µw, σ2
ε and π:

p(γ,w∗γ , µw, σ
2
ε , π) = p(γ)p(π|γ)p(σ2

ε |π,γ)p(µw|σ2
ε , π,γ)p(w∗γ |µw, σ2

ε , π,γ) (6.23)

= p(γ)p(π|γ)p(σ2
ε |γ)p(µw|σ2

ε ,γ)p(w∗γ |µw, σ2
ε ,γ) (6.24)

where the conditionality on θ′, X, Z and y has been dropped and the simplification from
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(6.23) to (6.24) follows from the conditional independence relations shown in Figure 6.1,

exploiting the fact that π is d-separated from the remaining parameters in the argument

via γ. These distributions are achieved by collapsing over parameters as derived in

Section A.2.

6.2.1 Sampling the Latent Indicators

In the SABRE methods of Chapter 4, sampling γ is both difficult, as a result of it

not naturally taking a distribution of standard form, and computationally expensive.

However a conditional distribution can still be obtained and Davies et al. (2016a) used

collapsing methods following Sabatti and James (2005), as described in Section 4.3.5, to

achieve faster mixing and convergence as follows:

p(γ|θ−γ ,X∗γ ,Z,y) ∝
∫
p(γ|θ−γ ,X∗γ ,Z,y)dµwdw

∗
γdπdσ

2
ε (6.25)

where using the likelihood for the conjugate SABRE method given in (6.1) and the priors

described in Sections 4.1 and 4.2.

However with the likelihood for the conjugate SABRE method given in (6.1), as well

as the likelihoods for the other SABRE methods, the computational cost of computing

(6.25) becomes dependant inverting a ||y|| × ||y|| matrix. For the FMDV datasets this is

not problematic, as ||y|| is relatively small. However with the H1N1 and H3N2 datasets,

where ||y|| = 15, 693 and ||y|| = 7, 315 respectively, calculating any distribution where a

||y|| × ||y|| matrix inversion is repeatedly required becomes infeasible.

It is at this point that the latent variable likelihood given in (6.2) and (6.3) shows

its huge computational advantage over the SABRE methods discussed in Chapter 4;

see Table 7.1 for an example of the computational savings. As in the conjugate SABRE

method, (6.25), we use collapsing methods and integrate over µw, w∗γ , π and σ2
ε . However

while in the SABRE method this gives a computational dependence on ||y||, ||y|| =

15, 693 for the H1N1 dataset, for the eSABRE method we get a computational dependence

on ||µy||:

p(γ|θ−γ ,X∗γ ,µy) ∝
∫
p(γ|θ−γ ,X∗γ ,µy)dµwdw

∗
γdπdσ

2
ε . (6.26)

The dependency on µy rather than y is a result of (6.2) not containing γ and γ therefore

does not need to be included in (6.26). The dependence on ||µy|| rather than ||y|| is where

the main computational cost reduction occurs, as in the H1N1 dataset ||µy|| = 570 is

much smaller ||y||making the computational cost of computing (6.26) far less than (6.25).

Further collapsing is possible within the sampling step for γ in the eSABRE method, i.e.
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collapsing over µy. However despite the potentially improved sampling available per

iteration by doing this, the increased computational cost of calculating (6.26) at each

step would far outweigh any gains that would be made.

Based on the results of Section 5.4.5 taken from Davies et al. (2014) and Davies et al.

(2016a) we have chosen to sample γ via a block Metropolis-Hastings step. In those studies

it was found that block Metropolis-Hastings sampling was the method that offered the

quickest convergence of the parameters based on CPU time. The only difference here is

that we have a posterior distribution of dimension ||µy|| rather than ||y||

6.3 Selection of Random Effect Components

There are various methods that can be used to select the random effects that should be

used within the model, here we look at Bayesian integrated CV (iCV), e.g. Vehtari and

Ojanen (2012), and several variations of WAIC (Watanabe, 2010).

6.3.1 Integrated Cross Validation

Bayesian CV methods are reliable, if computationally expensive, techniques for measuring

the out-of-sample performance of different models. Bayesian iCV is a special version of

CV which works well in latent variable models. Bayesian iCV integrates over the latent

variables, in this case µy, to give the following utility function for k-fold Bayesian iCV:

piCV =
1

K

K∑

k=1

log
1

I

I∑

ι=1

p(yk|θι) (6.27)

where the distribution p(yk|θι) comes from integrating over µy in the distribution given

by the product of (6.2) and (6.3). The parameter samples, θι, are taken from the eSABRE

method applied to y−k, X−k, Z−k and M−k.

6.3.2 Block Integrated WAIC

WAIC, as proposed in Watanabe (2010) and defined here in Section 3.5.2, is a natural

method for selecting the correct model when the underlying model is singular, i.e mod-

els with a non-identifiable parameterisation, such as the SABRE method. WAIC has

been proven to be asymptotically equivalent to Bayesian leave-one-out CV (LOO-CV) in

Watanabe (2010) and is computed as follows from posterior samples θι for ι ∈ {1, . . . , I}:

pWAIC = −2
N∑

i=1

(
log

(
1

I

I∑

ι=1

p(yi|θι,Xγ,i,Zi)

)
− Var (log(p(yi|θι,Xγ,i,Zi)))

)
. (6.28)
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where Var is the sample variance. WAIC can be used for a wide variety of problems,

however it is only justifiable for problems where the observed data are independently

distributed with a population distribution, e.g. the SABRE method where the joint

likelihood is given by (6.1).

To make WAIC more applicable to latent variable models such as the eSABRE

method, Li et al. (2015) introduced two alternative versions of WAIC; non-integrated

WAIC (nWAIC) and integrated WAIC (iWAIC). nWAIC applies WAIC to the predictive

density of the observed variables, y = (y1, . . . , yN), conditional on the model parameters,

θ, and the potentially correlated latent variables, ψ = (ψ1, . . . , ψN):

pnWAIC = −2
N∑

i=1

(
log

(
1

I

I∑

ι=1

p(yi|θι, ψιi ,Zi)

)
− Var (log(p(yi|θι, ψιi ,Zi)))

)
(6.29)

where θι and ψιi are sampled via MCMC and Var is the sample variance. In the proposed

eSABRE method, taking just the likelihood for yi from (6.2) would be the distribution

corresponding to p(yi|θι, ψιi ,Zi) and would seem unlikely to completely satisfy the inde-

pendence assumptions of WAIC based methods.

nWAIC also does not fully account for the mismatch in the model fit of the latent

variables, i.e. how well the latent variables are predicted by the fixed effects. Li et al.

(2015) therefore proposed iWAIC:

piWAIC = −2
N∑

i=1

(
log

(
1

I

I∑

ι=1

p(yi|θι,Xγ,i,Zi,ψ
ι
-i)

)
− Var (log(p(yi|θι,Xγ,i,Zi,ψ

ι
-i)))

)

(6.30)

where Var is the sample variance and the distribution used is given by p(yi|θι,Xγ,i,Z,ψ
ι
-i)

=
∫
p(yi|θι,ψι

-i, ψi,Z)p(ψi|θι,Xγ)dψi, the marginal likelihood based on taking both parts

of the likelihood of the latent variable model and integrating over the latent variable ψi

corresponding to yi.

The proposed version of iWAIC does not however work with the eSABRE method.

This is a result of each observation, yi, not having its own corresponding latent variable,

ψi. Instead any two observations, y1 and y2, from the same pair of challenge and protective

strains, p, will have the same latent variable, i.e. ψ1 = ψ2 = µy,p. Under this model,

i.e. where ρ(ψ1, ψ2) = 1, it is mathematically intractable to integrate over ψ1 = µy,p

without integrating over ψ2 = µy,p, something which is required in order to calculate

p(yi|θι,Xγ,i,Zi,ψ-i) as needed for (6.30). We must therefore either use nWAIC given by

(6.29) or find an alternative.

In this current work we proposed biWAIC for latent variable models with latent
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variables that are either completely correlated or have no correlation. While WAIC,

nWAIC and iWAIC rely on using independent distributions for each yi, biWAIC instead

uses a distribution for independent groups of observations yp, given by yp : yi where

pi = p. Given this notation we can then compute biWAIC as follows:

pbiWAIC = −2
P∑

p=1

(
log

(
1

I

I∑

ι=1

p(yp|θι,Xγ,p,Zp)

)
− Var

(
log(p(yp|θι,Xγ,p,Zp))

))

(6.31)

where Var is the sample variance and the distribution used is given by p(yp|θι,Xγ,p,Z) =∫
p(yp|θι, µy,p,Z) p(µy,p|θι,Xγ,p)dµy,p where the two distributions that are part of the

marginalisation are taken from (6.2) and (6.3).

As well as being applicable to the eSABRE method and particular specifications of

latent variable models, biWAIC also has some useful asymptotic properties. Previously

Watanabe (2010) has shown that WAIC is asymptotically equivalent to Bayesian LOO-

CV. While biWAIC is not asymptotically equivalent to LOO-CV, based on the same

concept it is asymptotically equivalent to Bayesian leave-one-group-out CV (LOGO-CV).

We define LOGO-CV as the cross validation method where observations are divided into

P independent groups based on the latent structure, as opposed to n groups of single

observations for LOO-CV or k groups for k-fold CV.

6.4 Discussion

In this chapter we have introduced the eSABRE method and discussed how it can of-

fer improved performance over the SABRE methods discussed in Chapter 4 and 5. In

Section 6.1 we have described how the model can take into account the data generation

process to improve modelling and variable selection performance, and have specified the

change in likelihood needed to achieve this; Section 6.1.1. In Section 6.2 we have then

described how the change in likelihood given in Section 6.1.1 can potentially lead to

significantly improved computational efficiency and given the conditional distributions.

Finally in Section 6.3 we have discussed methods for selecting the random effect compo-

nents in the eSABRE method and have proposed an alternative criterion, biWAIC, which

may better take into account the latent variable structure of the eSABRE method and

other similar methods.
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Chapter 7

A Sparse Hierarchical Bayesian

Latent Variable Model for

Understanding Antigenic Variability

- The Analysis

In this chapter we test the effectiveness of the eSABRE method proposed in Chapter 6,

as well as a newly proposed information criterion; block integrated WAIC (biWAIC).

We firstly introduce the data in Section 7.1 where we describe the simulated datasets

we have used to demonstrate the improvements offered by the eSABRE method over the

conjugate SABRE method (Section 4.2.2). We additionally describe the real life Influenza

datasets that the eSABRE method has been applied to, before Section 7.2 describes the

computational inference.

Section 7.3 looks at the results of the simulation studies. The results show the im-

provement offered by the eSABRE method over the conjugate SABRE method when the

simulated data is generated from a more biologically realistic model. The results from Ta-

ble 7.1 show that the eSABRE method is robust to increases in the error related to model

fit (see Section 6.1.1) and outperforms the conjugate SABRE method across all datasets.

Table 7.1 additionally demonstrates the computational efficiency of the eSABRE method

compared to the SABRE method when the number of observations increases, something

which is important when it comes to applying the model to the real life Influenza datasets.

Table 7.2 also shows how that the eSABRE method gives improved variable selection over

the conjugate SABRE method when more realistic simulation studies are used. Finally,

Table 7.3, Figure 7.2 and Figure 7.3 compare the performance of non-integrated WAIC

(nWAIC), biWAIC and 10-fold Bayesian integrated CV (iCV) in terms of correctly se-
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lecting random effect factors. The results show that all three of the methods perform

similarly, with the biWAIC offering an alternative threshold for the inclusion of random

effect factors as a result of fully accounting for the latent variable likelihood.

Section 7.4 compares the performance of the eSABRE method against the conjugate

SABRE method in terms of correctly identifying antigenic residues from the H1N1 In-

fluenza serotype. The results firstly demonstrate how it is possible to apply the eSABRE

method to the full H1N1 dataset, whereas for computational feasibility the conjugate

SABRE method had to be applied to a reduced H1N1 dataset in Chapter 5. While the

results show similar amounts of proven antigenic residues based on the classifications in

Section 2.4.3, the eSABRE method reduces the number of implausible residues selected.

In the H3N2 dataset our results identify a large number of antigenic residues from three

of the five known antigenic regions. Additionally we propose other plausible residues that

appear to be antigenic and may require further experimental investigation.

7.1 Data

Detailed descriptions of the H1N1 and H3N2 Influenza datasets are given in Section 2.3

of Chapter 2. In this section we describe the simulated datasets that are used to test

the effectiveness of the eSABRE and conjugate SABRE methods described in Section 6.1

and Chapter 4, and add a few details on the real life datasets that are specific to this

chapter of the thesis.

7.1.1 Non-FMDV Simulated Data

To initially test the eSABRE and conjugate SABRE methods we generated 3 datasets

with a reasonably small number of variables. These 3 datasets (Simulated Dataset 1

(SD1), SD2 and SD3) are based on the same structure as the H1N1 and FMDV datasets

with a varied number of random effect factors based on Section 2.1.1. In each of the

datasets 2000 observations were simulated from 55 pairs of challenge and protective

strains (10 viruses which are designated as both challenge and protective strains) with

50 possible fixed effects and 4 possible random effect components (including the chal-

lenge and protective strains). The random effects coefficients are generated from a zero

mean Gaussian distribution with each component having a fixed variance drawn from

U(0.2, 0.5). Fixed effects, wj, were given non-zero effects generated from a uniform dis-

tribution, U(−0.4,−0.2), with probability π ∼ U(0.2, 0.4). σ2
y and σ2

ε were both set to

be 0.033, 0.1 and 0.3 respectively for the three simulated datasets.
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7.1.2 FMDV Simulated Data

To make the simulation studies more realistic we wanted to make simulated datasets based

on the H1N1 and H3N2 Influenza datasets described in Sections 2.3. However using the

conjugate SABRE method to analyse datasets of this size is computational prohibitive.

Therefore instead we have created 20 simulated datasets based on the extended SAT1

FMDV dataset used in Maree et al. (2015) and Davies et al. (2016a); Section 2.2.1. These

datasets were created to be the same size as the FMDV datasets using the maximum a-

posteriori parameter estimates of the eSABRE method applied to the FMDV dataset,

but with varied error in the underlying model, σ2
ε ∈ {0.02, 0.2, 0.5}, and different mean

regression parameters, µw ∈ {−0.1,−0.3,−0.5}, so as to highlight the differences in per-

formance of the two models under different circumstances. Following Maree et al. (2015)

we used 3 random effect components; the challenge strain, the date of the experiment

and the antiserum.

7.1.3 Simulated Data for Model Selection

Finally, to compare nWAIC, biWAIC and 10-fold Bayesian iCV, we have generated 9 sets

of 20 datasets with up to 4 random effects; the challenge strain, the protective strain

and two generic random effect factors. The datasets were generated with 50 possible

fixed effects and up to 4 random effect factors included with probability 0.5. Of the 9

sets of datasets, 3 contain 10 virus strains, where each virus strain has been used as a

protective and challenge strain, meaning there are 55 pairs of challenge and protective

strains. Following the same set up, 3 of the sets of datasets include 30 virus strains (465

pairs) and the other 3 have 45 virus strains (1035 pairs). Within each of these sets of 3

datasets, the model error, σ2
ε , was varied to be either 0.1, 0.3 or 0.5.

7.1.4 Influenza Data

Both of H1N1 and H3N2 are described in Section 2.3 and we have used the full datasets

described here. In each case we have used biWAIC to choose the random effect factors

that are included in the models analysed in Sections 7.4 and 7.5.

7.2 Computational Inference

To test model convergence for both the simulated and real datasets we ran 4 chains for

each model and then computed the PSRF (Gelman and Rubin, 1992) from the within-

chain and between-chain variances. We took the threshold of convergence to be a PSRF
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Table 7.1: Table of AUROC values and CPU time for the eSABRE and the con-
jugate SABRE methods applied to the non-FMDV based simulated datasets.
The table gives the AUROC values and CPU times per 1,000 iterations (seconds) for the
eSABRE and conjugate SABRE methods, where the results for the conjugate SABRE
method are given in brackets. The result come from when the methods were applied to
the non-FMDV simulated datasets (SD1, SD2 and SD3) described in Section 7.1.1 with
varied numbers of observations.

Obs.
AUROC Values CPU Time Per 1,000 Iterations

SD1 SD2 SD3 SD1 SD2 SD3
500 0.98 (0.90) 0.90 (0.77) 0.82 (0.64) 25 (497) 25 (867) 47 (444)
1000 0.98 (0.83) 0.91 (0.70) 0.82 (0.59) 29 (6,931) 26 (5,623) 36 (5,546)
2000 0.98 (0.75) 0.92 (0.61) 0.83 (0.58) 32 (35,231) 25 (32,243) 43 (20,904)

≤ 1.1 and terminated the burn-in phase when this was satisfied for 95% of the variables.

The fixed hyperparameters were set the same for both the eSABRE and conjugate SABRE

methods such that αb = βb = (0.001, . . . , 0.001), αw = βw = αy = βy = αε = βε = 0.001,

µ0 = 0, σ2
0 = 100, w0 = max(y), απ = 1 and βπ = 4 following Davies et al. (2016a).

7.3 Results for the Simulation Studies

Table 7.1 gives the AUROC values for the eSABRE and conjugate SABRE (Section 4.2.2)

methods applied to the non-FMDV simulated datasets from Section 7.1.1; SD1, SD2,

SD3. For each combination of dataset and number of observations, the eSABRE method

offers an improvement in terms of global variable selection performance over the SABRE

method. This improvement is a result of the latent variable structure of the eSABRE

method which better reflects the data generation process, where the difference in the

methods can be seen by comparing the PGMs in Figures 4.3 and 6.1. Table 7.1 also

shows the effect of deviating from this data collection process. For the SD1 dataset where

both of the error variances in the data generation process are small, σ2
y = σ2

ε = 0.033,

the conjugate SABRE method gives similar results to the eSABRE method. However

as the error variances get larger, e.g. SD2 and SD3, the eSABRE method offers a much

clearer improvement over the SABRE method. This is a result of the conjugate SABRE

and eSABRE methods becoming identical models as σ2
ε → 0. Given the large variance in

HI assay measurement for any given pair of challenge and protective strains in the H1N1

and H3N2 datasets, this improvement is vital.

Another notable result from Table 7.1 is the reduction in performance in terms of

AUROC values of the conjugate SABRE method (Section 4.2.2) as the number of obser-

vations increases. This is an unexpected result as we would expect more data to provide

more information to the model, resulting in a better selection of variables in the models
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Figure 7.1: Box plots showing the effect of non-iid Gaussian noise on a model
assuming iid Gaussian noise. The box plots show the probability of an irrelevant
variable being included in a model for data with iid Gaussian noise (white) against the
probabilities for a model with noise based on FMDV and Influenza Data (grey).

and higher AUROC values. The reason for this strange result is a consequence of the

mismatch between the data generation process where errors come in two forms, σ2
ε and

σ2
y , and the model which only directly accounts for the error in y coming from σ2

y.

To demonstrate that the strange reduction in performance of the conjugate SABRE

method is a result of the mismatch between the data and the model we have completed

a small simulation study with linear models. We have generated groups of datasets

with 500, 1,000 and 2,000 observations generated from a linear model with each group

containing 2000 datasets. For each of these groups, half the datasets have observations

generated with iid noise, e.g. just σ2
y , and the other half with correlated errors based on

the structure of the FMDV and Influenza data, e.g. both σ2
y and σ2

ε . Additionally each

of the datasets contains two variables, one relevant, xr, and one irrelevant, xir. We have

then calculate the marginal likelihood of each of the four possible models, where we have

fixed σ2
w and marginalised out σ2

y and w, to give the probability of the irrelevant variable

being included in the final model, M, as follows:

P(xir ∈M) =
p(y|xir) + p(y|xir,xr)

p(y|.) + p(y|xir,xr) + p(y|xr) + p(y|xir,xr)
. (7.1)

Figure 7.1 gives box plots of the probability of the irrelevant variable, xir, being

included in the final model for each of the datasets from our small simulation study. The
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7. The Extended SABRE Method - The Analysis

Table 7.2: Table of AUROC values for the eSABRE and the conjugate SABRE
methods when applied to the FMDV based simulated datasets. The table gives
AUROC values for the eSABRE and conjugate SABRE methods, where the results for
the conjugate SABRE method are given in brackets, when applied to the FMDV based
simulated datasets described in Section 7.1.2.

σ2
ε

0.02 0.2 0.5

µw

-0.1 0.67 (0.69) 0.67 (0.60) 0.63 (0.57)
-0.3 0.72 (0.71) 0.70 (0.61) 0.67 (0.58)
-0.5 0.75 (0.72) 0.74 (0.64) 0.73 (0.57)

box plots show the affect on the probabilities caused by the different types of noise and

varied amounts of observations. Figure 7.1 shows that as the number of observations

increases the chance of the irrelevant variable being included decreases for the iid noise,

as would be expected. However for the non-iid noise based on the FMDV and Influenza

datasets, the results show an increase in the probability of the irrelevant variable being

included as the number of observations increases, indicating that the noise mismatch is

what causes the strange results in Table 7.1.

Finally, Table 7.1 shows the improvement the eSABRE method offers over the con-

jugate SABRE method in terms of computational efficiency. Table 7.1 shows how the

SABRE method becomes vastly more computationally expensive as the number of ob-

servations increases, while the require CPU hardly changes for the eSABRE method if

the number of pairs of challenge and protective strains remains the same. This improve-

ment in terms of computational efficiency explains why it is viable to use the eSABRE

method on the H1N1 dataset for example, where ||y|| = 15, 693 and P = 570, but not the

conjugate SABRE method or any of the other SABRE methods described in Chapter 4.

Table 7.2 shows the effectiveness of the eSABRE method on larger more realistic

datasets (Section 7.1.2) based on the real life FMDV data from Reeve et al. (2010). Like

Table 7.1, the results of Table 7.2 again show the eSABRE method clearly outperforming

the conjugate SABRE method across all of the simulated datasets from Section 7.1.2.

The results show that as the model error in the simulated data increases, the conjugate

SABRE seriously drops off in performance while the eSABRE method remains reasonably

consistent. Like with the results of Table 7.1, the difference in performance is again caused

by the mismatch between the conjugate SABRE and the underlying generation process

which the eSABRE method matches more closely.

To compare the methods described in Section 6.3, nWAIC, biWAIC and Bayesian

10-fold iCV, we have compared their performance in terms of correctly selecting random

effect factors on the datasets from Section 7.1.3. The results are given in Table 7.3 and
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7. The Extended SABRE Method - The Analysis

Table 7.3: Table of results looking at the random effects factor selection per-
formance of the methods described in Section 6.3. The table gives results in terms
of the successful selection or exclusion of random effects factors when using the methods
described in Section 6.3, nWAIC, biWAIC and Bayesian 10-fold iCV, on parameter sam-
ples from the eSABRE method applied to the simulated data from Section 7.1.3. The
results given are sensitivity, specificity and F-scores and are displayed in an alternative
manner in Figures 7.2 and 7.3.

P σ2
ε nWAIC biWAIC Bayesian 10-fold iCV

Sensitivity

55 0.1 0.90 0.97 0.92
55 0.3 0.92 0.90 0.89
55 0.5 0.78 0.71 0.93
465 0.1 0.97 0.94 0.85
465 0.3 0.86 0.84 0.86
465 0.5 0.95 0.90 0.86
1035 0.1 0.93 0.71 0.98
1035 0.3 0.91 0.79 0.87
1035 0.5 0.90 0.66 0.74

Specificity

55 0.1 0.68 0.56 0.15
55 0.3 0.70 0.60 0.41
55 0.5 0.59 0.54 0.26
465 0.1 0.45 0.60 0.66
465 0.3 0.49 0.63 0.63
465 0.5 0.37 0.56 0.53
1035 0.1 0.32 0.60 0.47
1035 0.3 0.33 0.52 0.33
1035 0.5 0.39 0.55 0.29

F-Score

55 0.1 0.80 0.80 0.65
55 0.3 0.88 0.84 0.79
55 0.5 0.72 0.66 0.70
465 0.1 0.70 0.75 0.73
465 0.3 0.70 0.74 0.75
465 0.5 0.73 0.76 0.72
1035 0.1 0.73 0.69 0.80
1035 0.3 0.77 0.74 0.75
1035 0.5 0.60 0.54 0.60
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Figure 7.2: Bar plot of F1-Scores given in Table 7.3. The bar plot compares the
F1-scores for nWAIC (white), biWAIC (grey) and Bayesian 10-fold iCV (black) in terms
of correctly selecting random effect components for the dataset described in Section 7.1.3.
The figure takes the results from Table 7.3.

are displayed visually in Figures 7.2 and 7.3.

The results in Table 7.3 show that all of the methods, nWAIC, biWAIC and Bayesian

10-fold iCV, perform similarly in terms of overall selection accuracy. The similarly is

best demonstrated by looking at the F1-scores, which offer a more general assessment of

performance than looking at specificity and sensitivity individually. The F1-scores from

Table 7.3 can also be seen in Figure 7.2 where the results are shown as box plots. With

the results from Table 7.3 and Figure 7.2 suggesting that the information criteria, nWAIC

and biWAIC, give similar selection performance to Bayesian 10-fold iCV, it is reasonable

to use one of the criteria on the Influenza dataset in Section 7.4 and 7.5, where Bayesian

10-fold iCV will be computationally onerous.

While suggesting that the methods perform similarly overall, Table 7.3 also indicates

that the methods operate with different thresholds, meaning that on average some meth-

ods include more random effect factors than others. This can be seen by looking at the

sensitivities and specificities of nWAIC, biWAIC and Bayesian 10-fold iCV in Table 7.3

or alternatively by looking at Figure 7.3. Figure 7.3 plots the sensitivities achieved by

the different methods on each set of datasets against the 1 minus specificities and shows

that the biWAIC method operates at a higher threshold for inclusion, meaning that it

selects less random effect factors in the model on average. This can be seen by noting
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Figure 7.3: Plot of sensitivities and 1 minus specificities for the results given in
Table 7.3. The plot compares nWAIC (circles), biWAIC (crosses) and Bayesian 10-fold
iCV (triangles) in terms of correctly selecting random effect components for the dataset
described in Section 7.1.3. The figure takes the results from Table 7.3 and plots the
sensitivities against the 1 minus specificities, i.e. as single point from a ROC curve.

the lower sensitivities and higher specificities in Figure 7.3 or Table 7.3.

The reason for the difference between nWAIC and biWAIC in terms of the average

number of random effect factors included is a result of the distribution from which they

measure the sample means and variances needed to calculate the criterion. nWAIC,

(6.29), takes its sample means and variances based on only the distribution of y, (6.2),

the distribution which contains the random effects specification. biWAIC, (6.31), however

takes its sample means and variances from the marginalised distribution of y where µy

has been integrated out as detailed in Section 6.3.2. As a result, like Bayesian 10-fold

iCV, biWAIC takes into account both the model fit of y and µy.

Taking into account both distributions of the latent variable likelihood, (6.2) and (6.3),

better assesses the fit of the model and prevents the overfitting of the first distribution

of the latent variable likelihood, (6.2). The results for nWAIC show that not accounting

for (6.3) as well as (6.2) leads to unrealistically high sensitivities and low specificities.

It is interesting however that we do not see a similar threshold with Bayesian 10-fold

iCV which also takes into account both parts of the latent variable likelihood. This is a

consequence of the different thresholds given by criteria based on WAIC and those based
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on CV. We observed this in Table 5.2 when we compared WAIC and Bayesian CV.

7.4 Results for the H1N1 Dataset

We have applied the eSABRE method to the H1N1 dataset using the 8 possible combi-

nations of random effect components. The biWAIC score was then calculated for each

of the models, Section 6.3, with the model with the best biWAIC score containing the

challenge strain and the date of the experiment as random effect components. biWAIC

was chosen to select the best model based on feasibility, it is far more computational

efficient than 10-fold Bayesian iCV, and the results from Table 7.3. Full results for the

variables selected by the eSABRE method are given in Table B.15, and in Table B.14 for

those selected by the conjugate SABRE method based on the reduced dataset described

in Section 5.1.7.

Having selected the model with the best selection of random effects, we have then

compared the results in terms of variable selection to those achieved by the SABRE

method on a reduced H1N1 dataset in Section 5.6. We do no compare our results with

those of Harvey et al. (2016) as those results were achieved on a larger dataset, see

Section 2.3.1, using a non-automated version of mixed-effects. Using the eSABRE method

we have selected 5 proven, 1 plausible and 1 implausible based on choosing a marginal

inclusion probability of 0.5, or 10 proven, 5 plausible and 2 implausible based on taking

the π̂J variable with the highest marginal inclusion probabilities. These results compare

to 5 proven, 1 plausible and 2 implausible or 11, 2 and 3 for the conjugate SABRE method

based on the same criteria. The results show the methods performing reasonably similarly,

however the eSABRE offers an improvement in terms of not selecting as many implausible

residues. The classification of these results is based on our biological knowledge of the

H1N1 serotype from Section 2.4.

Of the 10 proven residues, we have identified one residue on the Residual Binding Site

(RBS) as in Section 5.6 when using the conjugate SABRE method, residue 187 on the

H1 common alignment. Residue 187 is part of the the Sb antigenic site and we have also

identified two other nearby residues (189 and 190) on the same antigenic site. The other

proven residues come from the Ca (141, 142 and 170), Cb (69, 72 and 74) and Sa (130)

antigenic sites which also contain 4 of the plausible residues predicted to be antigenic

by the eSABRE method. These should potentially be investigated experimentally to

determine whether they are indeed antigenic residues. The final plausible residue is

related to a mutation resulting in one of the tested viruses and its potential antigenicity

can be attributed to 4 different residues, 3 of which are proven and one of which is
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implausible8, and it is possible that some of these residues may be antigenic.

7.5 Results for the H3N2 Dataset

As with the H1N1 dataset in Section 7.4, we have applied the eSABRE method and

biWAIC to the H3N2 dataset from Section 2.3.2 with 8 different combinations of random

effect components. biWAIC has indicated that the best possible model is the one that

contains all of the possible random effects factors; the challenge strain, the protective

strain and the date of the experiment. The full results for the eSABRE method applied

to the H3N2 dataset described in Section 2.3.2 are given in Table B.16. We do not

compare our results with those of Harvey (2016), as while they have used classical mixed-

effects models, they used a piecemeal approach which required manual intervention to

guide the selection procedure. The eSABRE method can be applied in a fully automatic

manner.

The results of our analysis of the H3N2 dataset from Section 2.3.2 using the eSABRE

method and biWAIC has resulted in the selection of 10 proven, 3 plausible and 2 implau-

sible residues, given here by their common alignments; see (Harvey et al., 2016). We have

ruled out one implausible residue based on the information given in Section 2.4.4. Of the

proven residues, we have identified 8 in the highly variable antigenic site B (155, 158,

159, 164, 189, 183, 193,197), and among these are residues known to part of the residual

binding site (Harvey, 2016). In addition we have also identified 2 other residues in the

C and E antigenic regions, 276 and 262 respectively. Of the plausible sites, one gives an

antigenic effect that could be explained by either a branch, an implausible residue or a

proven residue. While we have no specific evidence, it is highly likely that this antigenic

effect is a result of the the proven residue on the antigenic site E (75). The other two

plausible residues (279 and 212) come from areas close to the C and D antigenic sites,

with 212 next to a proven antigenic residue in the alignment and potentially worthy of

further investigation.

7.6 Discussion

In this chapter we have tested and analysed the eSABRE method proposed in Chapter 6.

We have tested it against the conjugate SABRE method proposed in Chapter 4 and

shown how it offers improved performance on a variety of different simulated datasets;

Tables 7.1 and 7.2. The results in Table 7.1 also demonstrate the computational improve-

ment offered by the eSABRE methods, as discussed in Chapter 6, and give examples as

8We classify this variable as plausible based on line 4 of Table 2.1
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to where the biggest computational improvements can be seen. In addition to testing

the eSABRE method, we have also looked at the best way of selecting random effects

coefficients. Table 7.3 and Figure 7.2 show that biWAIC, as proposed in Chapter 6,

performs equally well in terms of selecting the correct random effect factors as two more

established methods. Figure 7.3 then demonstrates how the biWAIC criterion properly

accounts for the entire latent variable distribution resulting in a more realistic number of

random effects factors being included.

Sections 7.4 and 7.5 demonstrate how the eSABRE method, together with biWAIC,

can be effectively applied to large real life Influenza datasets. In Section 7.4 we show

how the improvement in computational efficiency demonstrated in Table 7.1 allows us

to make use of the full H1N1 dataset rather than a reduced version as was required

for the conjugate SABRE method in Chapter 5. The results from using the full H1N1

dataset and properly accounting for the error in the data collection process through the

eSABRE method show an improvement in the selection of antigenic variables in the

H1N1 datasets. Finally Section 7.5 applies the eSABRE method and biWAIC to the

H3N2 dataset, identifying a number of proven and plausible antigenic residues, at the

expense of a small number of implausible residues.
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Chapter 8

Conclusions and Further Work

The aim of this thesis has been to create models that can address the problems caused

by antigenic variability. Based on this objective we have created models, Section 8.1,

which can use biological measure of antigenic variability to link genetic and phyloge-

netic changes to significant antigenic changes. We have proposed a family of models,

the SABRE methods, to this end, Section 8.1.1, and demonstrated the improved perfor-

mance they offer over the standard methods used. We have then extended this method

and proposed a new model, the eSABRE method, which gives an improvement in re-

sults, Section 8.1.2, and can provide accurate biological prediction on large datasets; see

Section 8.2. The following sections summarise the work that has been completed in this

thesis and Section 8.3 gives proposals for further work in the area.

8.1 Methodological Advances

In general, the methodological work from this thesis can be broken down into two parts;

the SABRE methods and the eSABRE method. The work related to the SABRE methods

in Section 8.1.1 is taken from Chapters 4 and 5, but this section also includes methods

proposed in Davies et al. (2016a) which were detailed in Chapter 3. The eSABRE method

was proposed and evaluated in Chapters 6 and 7, and is summarised here in Section 8.1.2.

8.1.1 The SABRE Methods

In Section 4.1 we introduced the original SABRE method, Figure 4.1, as proposed in

Davies et al. (2014). The SABRE method is a Bayesian hierarchical mixed-effects model

which can simultaneously account for the experimental effects of the data collection pro-

cess, and select the residues and evolutionary changes that affect the measured antigenic

variability. To select variables the SABRE method uses spike and slab priors, which have
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been shown to give improved variable selection over methods based on `1 regularisation

(Mohamed et al., 2012). We have demonstrated this improvement here through both

simulated and real life studies, Chapter 5, and have given a detailed explanation of the

reasons for this improvement in Section 4.4. To summarise, the improvement is a result of

(1) avoiding the bias inherent in `1 regularisation based methods, (2) the method giving

genuine and consistent sparsity, (3) properly accounting for uncertainty, and (4) through

borrowing strength from information coupling through the hierarchical structure seen in

Figure 4.1.

In the remainder of Chapter 4, we have investigated potential changes to the original

SABRE method that might lead to improved variable selection and sampling. We have

proposed three additional versions of the SABRE method; the semi-conjugate SABRE

method (Section 4.2.1), the conjugate SABRE method (Section 4.2.2) and the binary

mask conjugate SABRE method (Section 4.2.3). In Chapter 5 we have compared these

methods against each other and a number of alternative methods including the addi-

tional methods proposed in Davies et al. (2016a) and described in Chapter 3. The new

alternative methods extend the previously proposed mixed-effects LASSO (Schelldorfer

et al., 2011) to allow the specification of multiple random effects factors and propose the

alternative mixed-effects elastic net.

The semi-conjugate SABRE method given in Figure 4.2, improves the original SABRE

method by properly modelling the biologically significant intercept parameter. The in-

tercept is important as it gives the VN titre or HI assay measurement when a virus is

used as both the challenge and protective strain. The conjugate SABRE method given in

Figure 4.3 then increases the conjugacy of the semi-conjugate SABRE method by adding

additional edges between the error variance, σ2
ε , and some of the parameters associated

with the regression coefficients, w∗γ and µw,h. The conjugate SABRE method also allows

for the possibility of improving the sampling scheme through collapsing; Section 4.3.6.

We have compared the semi-conjugate and conjugate SABRE methods in terms of accu-

racy, computational efficiency, and formal model selection preference in Table 5.1. The

results show that the differences in accuracy are negligible, Figure 5.4. Similarly there is

no significant difference in terms of computational efficiency, Figure 5.5, indicating that

the sampling of the latent indicator variables, γ, is the computational bottleneck of the

SABRE methods. In terms of model selection, WAIC showed a significant difference in

favour of the conjugate SABRE method, Table 5.1, but this has little impact on the

variable selection accuracy. Overall the similarity of the results supports the robustness

of the SABRE methods and its reliability in making predictions.

Chapter 5 also tested the difference between a model based on the binary mask model

and one using spike and slab priors; see Figure 3.2 in Section 3.3. While both meth-
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ods are discussed and used in the literature (Murphy, 2012), our work represents the

first quantification of the difference in performance between the two methods. We have

proposed the binary mask conjugate SABRE method, Figure 4.4, and tested it against

the conjugate SABRE method, Figure 4.3. Our systematic comparison quantifies the

differences between these methods in terms of accuracy and computational efficiency,

and found the differences to be negligible. Quantifying this result is important, as both

approaches have been used as variable selection methods in the literature, with authors

tending to arbitrarily chose one method or the other, e.g. Davies et al. (2014), Heydari

et al. (2016).

The work in Chapters 4 and 5 also looks at the computational bottleneck of the

SABRE methods, the sampling of γ. We have investigated the possibility of sampling

γ through a block Metropolis-Hastings sampler rather than the more commonly used

component-wise Gibbs sampler; Section 4.3.5. Our results in Section 5.4.5 show the com-

putational improvement offered by the block Metropolis-Hastings sampler. The results,

shown in Figures 5.10 and 5.11, indicate that sampling around 10 latent indicators at

time offers the most computational efficient sampling scheme.

Finally, we have demonstrated the conjugate SABRE method on real life FMDV

and Influenza datasets from Chapter 2. Our results find a number of known antigenic

residues and significant evolutionary changes, discussed in Section 8.1.2, and show that

the SABRE methods are accurate in silico methods that can be used to identify antigenic

residues and provide an effective way of modelling antigenic variability.

8.1.2 The Extended SABRE Method

In Chapter 6 we proposed the eSABRE method given in Figure 6.1. The eSABRE method

replaces the likelihood of the conjugate SABRE, (6.1), with one based on a latent variable

model, (6.2) and (6.3), which better accounts for the data generation process described

in Chapter 2. The eSABRE method takes into account the fact that for any given pair of

challenge and protective strains the fixed effects will remain the same and modelling this

properly leads to an improvement in terms of model accuracy by fulling account for the

error inherent in the data collection process. The method also has the advantage that

γ is d-separated from y via µy in Figure 6.1, offering an improvement in computational

efficiency in the sampling of γ; see Section 6.2.1.

In addition to the eSABRE method, we have also looked at different ways of selecting

the random effect factors in the eSABRE method. We have considered Bayesian 10-fold

integrated CV (iCV), a CV based method that integrates over the latent variables, µy,

to fully account for both parts of the latent variable likelihood, (6.2) and (6.3). We have
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compared this against the previously proposed non-integrated WAIC (nWAIC) (Li et al.,

2015), which naively applies WAIC to the part of the latent variable likelihood containing

the observations, (6.2). In addition we proposed our own criterion, block integrated WAIC

(biWAIC), based on integrated WAIC of Li et al. (2015), which integrates over the latent

variables, µy, to give a criterion which fully accounts for both distributions of the latent

variable likelihood of the eSABRE method.

In Chapter 7 we have tested the eSABRE method against the SABRE method and

biWAIC against nWAIC and Bayesian 10-fold iCV. The results of the simulation stud-

ies in Section 7.3 show that the eSABRE method outperforms the conjugate SABRE

method both in terms of variable efficiency and variable selection accuracy. Table 7.3

and Figure 7.2 additionally showed that biWAIC, nWAIC and Bayesian 10-fold iCV all

performed similarly in terms of correctly selecting random effect factors in the models and

in Figure 7.3 we have demonstrated the effect of accounting for the fit of the full latent

variable model in biWAIC. Finally we have demonstrated how the eSABRE method and

biWAIC can be applied to the Influenza datasets from Section 2.3 to provide relevant bi-

ological results in a situation where, due to the size of the datasets, applying the SABRE

methods of Chapter 4 would be computationally infeasible.

8.2 Biological Advances

In terms of direct biological improvements, in Section 2.1.3 we have proposed new methods

for understanding how evolutionary changes effect antigenicity. Previous methods, e.g.

Reeve et al. (2010) and Davies et al. (2014), included the branches of the phylogenetic

trees to account for any changes in the measured VN titre or HI assay that could not

be explained by the mutational changes. However where a particular branch separates

two virus strains which have been used as both challenge and protective strains, we

can include additional variables in the model and give a biological understanding of the

potential reasons for their inclusion. To summarise, we can include branch variables to

explain the effect amino acid substitutions at a particular phylogenetic branch have on the

challenge and protective strains carrying those amino acid substitutions, see Section 2.1.3

for further details, with branches also included to explain general antigenic effects not

described by the mutational changes. We have demonstrated this approach on the FMDV

datasets and have made predictions of the antigenically significant evolutionary changes

in both the SAT1 and SAT2 serotypes; Figures 5.8, 5.9 and 5.12. In the SAT1 serotype,

where prior knowledge of these changes is available, we have identified a number of

topotype defining branches and the biological effect they are having; Figures 5.8 and 5.9.
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The improved variable selection and modelling accuracy of the methods proposed in

Chapters 4 and 6 has resulted in more biological accurate predictions of the antigenic

residues and in the datasets for the FMDV serotypes we have identified a number of known

and potential antigenic residues. In the SAT1 serotype, using the extended SAT1 dataset,

we have been able to demonstrate the improved ability of the conjugate SABRE to select

antigenic residues over the previous work using mixed-effects models. We were able to

identify significantly more known antigenic residues than Maree et al. (2015), as well

as make a number of predictions of other residues that are potentially antigenic. In the

SAT2 serotype we made the first in silico prediction of potentially antigenic residues, with

Reeve et al. (2010) unable to identify any significant residues. Within these prediction we

were able to identify a number of potentially antigenic regions in need of further biological

experimentation.

In the Influenza datasets we were able to demonstrate the effectiveness of the eSABRE

method at properly accounting for the error inherent in the data collection process and

make use of the full H1N1 and H3N2 datasets from Section 2.3 through the computational

improvement the method offers. Our results on the H1N1 dataset show that we have

identified a number of known antigenic residues from the residual binding site and each

of the four known antigenic regions for that serotype. In the H3N2 dataset we have

again identified a large number of proven variables at the cost of only a small number of

implausible ones. We have identified residues from the residual binding site, as well as

from three of the main antigenic regions. We have also proposed additional residues as

antigenic in nearby areas of the virus shell.

8.3 Further Work

The models created and tested in this thesis give an accurate way of predicting antigenic

variability in order to identify antigenic residues and have been shown to work effectively

in both the FMDV and Influenza datasets. However increased accuracy and biological

understanding can be gained by creating extended models which can better approximate

the complex biological problem that we are modelling. From the biological viewpoint, it

would be valuable to extend the models to better account for four aspects of the biological

process associated with antigenic variability; (1) make better use of the genetic code of

the virus strains, (2) link the effects of the residues to their location on the virus shell,

(3) account better for the uncertainty in the phylogenetic trees, and (4) link the effects

of the evolution and residues together in more realistic manner. Additionally, from the

statistic methodology perspective, (5) it would be useful to improve the sampling of the
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latent binary variables, γ, in order to gain faster parameter convergence in any models

which could extend the eSABRE method.

At present our datasets, described in Chapter 3, consist only of indicators of muta-

tional changes that occur without any regard to the type of mutation; see Section 2.1.2.

This is addressed in Maree et al. (2015), (1), where the variables included indicate the

change in the genetic code. Adding this information into the models will allow us to

differentiate between different antigenic changes and enable us to better understand the

biological processes involved.

Including more information relating to the genetic code will lead to more information,

and therefore more variables, relating to the mutations being included in the models. It

may therefore be necessary to add additional information sharing between the latent

indicator variables, γ, to avoid selecting variables whose correlation with changes in

antigenicity are only through random chance, (2). Latent Gaussian processes can be used

to model this, where inference can be achieved in a variety of ways, e.g. Filippone et al.

(2013). The use of latent Gaussian processes would allow us to introduce correlations

between mutations of the same type or mutations occurring in similar location on the

surface of the virus shell. This can potentially allow us to identify which types of mutation

are important, and give us the ability to identify complete antigenic regions rather than

just individual residues.

We can also improve our model by better accounting for the uncertainty of the phy-

logenetic tree, (3). In this thesis we used single phylogentic trees taken from the original

publication of the FMDV and Influenza datasets (Harvey et al., 2016; Maree et al., 2015;

Reeve et al., 2010). In these papers, multiple trees were tested based on different biolog-

ical models with the best one selected using Bayes factors; see Section 2.3.2 in Harvey

(2016) for details. While choosing the best phylogenetic tree via Bayes factors may give

a good estimate of the true evolution of the serotypes, it does not account for the un-

certainty in this choice. Sampling different trees within our models provides one way of

accounting for this uncertainty, however this is likely to be computationally infeasible

and an approach based on model averaging may be more feasible.

While the eSABRE method (Chapter 6) better models the biological processes of

antigenic variation then the SABRE methods (Chapter 4), the eSABRE does not fully

account for the changes causing antigenic differences. Both the eSABRE and SABRE

methods treat the residues and evolutionary changes as equally likely to cause changes in

antigenicity, however this is an approximation of how the changes in antigenicity occur,

(4). In fact, the mutational changes are what is used to create the phylogenetic trees

in the first places, with the trees designed to best explain the genetic differences in

the residues. Therefore a more realistic model should see the mutational changes at the
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residues explaining the antigenic effects of the phylogenetic branch terms, with the branch

terms in turn explaining the the mean VN titre or HI assay measurement of each pair of

challenge and protective strains, µy. This would in essence require another layer in the

likelihood, with the likelihood being given in the form p(y|µy)p(µy|φ)p(φ|w), where φ

represents the phylogenetic branch terms and w the residue terms.

To implement any of the biological changes suggested above in the eSABRE method

would likely require an improvement in the sampling strategy to make the changes fea-

sible, (5). In this thesis we have identified that the sampling of the latent indicator

variables, γ, is the computational bottleneck of both the SABRE and eSABRE meth-

ods and so we would need to design an improved proposal method beyond the block

Metropolis-Hastings samplers tested in Section 4.3.5. For continuous variables, meth-

ods such as the Delayed Rejection Adaptive Metropolis (DRAM) algorithm of Haario

et al. (2006) have been proposed to take into account the posterior correlations between

the variables in the proposal scheme via a multivariate Gaussian distribution inferred

from the accepted parameter vector. Finding a similar method to this for binary vari-

ables would be useful for achieving faster parameter convergence in the more complex,

computationally onerous models proposed above.
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Appendix A

Posterior Distributions

In this appendix we derive the conditional distributions from Section 4.3 and 6.2 needed

to sample the parameters of the SABRE and eSABRE methods.

A.1 SABRE Methods

The conditional distribution derived here are laid out in a similar way to Section 4.3. In

Section A.1.1 we give the conditional distributions needed to sample the parameters of the

original SABRE method, with only the subsequent changes needed to adjust these distri-

butions given for the semi-conjugate, conjugate and binary mask conjugate methods in

Sections A.1.2, A.1.3 and A.1.4 respectively. Finally the conditional distributions needed

for the collapsing scheme described in Section 4.3.6 are given for both the conjugate and

binary mask conjugate SABRE method in Section A.1.5.

A.1.1 Original SABRE Method

Using standard results for conditional Gaussian distributions, e.g. Bishop (2006), and

Figure 4.1, we can calculate the conditional distributions of wγ , b and µw,h for the

original SABRE method, where we define θ to be a vector of all the parameters and

hyperparameters:

p(wγ |θ−wγ ,Xγ ,Z,y) ∝ N(y|Xγwγ + Zb, σ2
εI)N(wγ |mwγ ,γ ,Σwγ ) (A.1)

∝ N(wγ |VwγX>γ (y− Zb)/σ2
ε + VwγΣ−1

wγ
µw,Vwγ ) (A.2)
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where we define Vwγ = (X>γ Xγ/σ
2
ε + Σ−1

w )−1,

p(b|θ−b,Xγ ,Z,y) ∝ N(y|Xγwγ + Zb, σ2
εI)N(b|0,Σb) (A.3)

∝ N(b|VbZ>(y−Xγwγ)/σ2
ε ,Vb) (A.4)

where we define Vb = (Z>Z/σ2
ε + Σ−1

b )−1, and

p(µw,h|θ−µw,h ,Xγ ,Z,y) ∝ N(wγ,h|1µw,h, σ2
εσ

2
wγ ,hI)N(µw,h|µ0,h, σ

2
εσ

2
0,h) (A.5)

∝ N(µw,h|Vµγ ,h(∑(wγ,h)/σ
2
w,h + µ0,h/σ

2
0,h), σ

2
εVµγ ,h) (A.6)

where Vµγ ,h = ((||wγ,h||/σ2
w,h)

−1 + (σ2
0,h)
−1)−1.

We can then calculate the conditional distributions of the variance parameters:

p(σ2
w,h|θ−σ2

w,h
,Xγ ,Z,y) ∝ N(wγ,h|1µw,h, σ2

εσ
2
w,hI)IG(σ2

w,h|αw,h, βw,h) (A.7)

∝ IG(σ2
w,h| ||wγ,h||/2 + αw,h, βw,h + 1

2σ2
ε

∑(wγ,h − 1µγ,h)
2) (A.8)

where we sample for each h separately,

p(σ2
b,g|θ−σ2

b,g
,Xγ ,Z,y) ∝ N(bg|0, σ2

b,gI)IG(σ2
b,g|αb,g, βb,g) (A.9)

∝ IG(σ2
b,g| ||bg||/2 + αb,g, βb,g + 1

2
b>g bg) (A.10)

where we sample for each g separately, and

p(σ2
ε |θ−σ2

ε
,Xγ ,Z,y) ∼ N(y|Xγwγ + Zb, σ2

εI)IG(σ2
ε |αε, βε) (A.11)

∝ IG(σ2
ε |N/2 + αε, βε + 1

2

∑(y−Xγwγ − Zb)2) (A.12)

.

We can then get the conditional distribution of π as follows:

p(π|θ−π,Xγ ,Z,y) ∝
{

J∏

j=1

Bern(γj|π)

}
B(π|απ, βπ) (A.13)

∝ B(π|απ + ∑
γ, βπ + J −∑

γ) (A.14)

and finally, via the application of standard Gaussian integrals, we have the distribution
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for γ as derived in Section 4.3.1:

p(γ|θ−γ ,Xγ ,Z,y) ∝ Bern(γ|π)

∫
N(y|Xγwγ + Zb, σ2

εI)N(wγ |µw,Σw)dwγ (A.15)

∝ π
∑

γ(1− π)J−
∑

γN(y|Xγµw + Zb, σ2
εI + XγΣwX>γ ). (A.16)

.

A.1.2 Semi-Conjugate SABRE Method

The differences between the original SABRE method and the semi-conjugate SABRE

method can be seen by comparing Figures 4.1 and 4.2 in Chapter 4. To get the conditional

distributions for the semi-conjugate SABRE method we start with those given for the

original SABRE method in Section A.1.1 and replace (A.2), (A.4), (A.12) and (A.16)

with the distributions given below:

p(w∗γ |θ−w∗
γ
,X∗γ ,Z,y) ∝ N(y|X∗γw∗γ + Zb, σ2

εI)N(w∗γ |mγ ,Σw∗
γ
) (A.17)

∝ N(w∗γ |VwγX>γ (y− Zb)/σ2
ε + VwγΣ−1

wγ
µw,Vw∗

γ
) (A.18)

where we define Vw∗
γ

= (X∗,>γ X∗γ/σ
2
ε + Σ−1

w∗)−1,

p(b|θ−b,X∗γ ,Z,y) ∝ N(y|X∗γw∗γ + Zb, σ2
εI)N(b|0,Σb) (A.19)

∝ N(b|VbZ>(y−X∗γw∗γ)/σ2
ε ,Vb) (A.20)

where we again define Vb = (Z>Z/σ2
ε + Σ−1

b )−1,

p(σ2
ε |θ−σ2

ε
,X∗γ ,Z,y) ∝ N(y|X∗γw∗γ + Zb, σ2

εI)IG(σ2
ε |αε, βε) (A.21)

∝ IG(σ2
ε |N/2 + αε, βε + 1

2

∑(y−X∗γw∗γ − Zb)2), (A.22)

and finally the conditional distribution for γ original derived in Section 4.3.2

p(γ|θ−γ ,X∗γ ,Z,y) ∝
∫
β(π|απ, βπ) Bern(γ|π)

N(y|X∗γw∗γ + Zb, σ2
εI)N(w∗γ |mγ ,Σw∗

γ
)dπdwγ (A.23)

∝ Γ(||γ||+απ)Γ(J−||γ||+βπ)
Γ(J+απ+βπ)

N(y|X∗γmγ + Zb, σ2
εI + X∗γΣw∗

γ
X∗>γ ). (A.24)
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A.1.3 Conjugate SABRE Method

The differences between the semi-conjugate SABRE method and the conjugate SABRE

method can be seen by comparing Figures 4.2 and 4.3 in Chapter 4. To get the conditional

distributions for the conjugate SABRE method we start with those used for the semi-

conjugate SABRE method in Sections A.1.1 and A.1.2. We then replace (A.18), (A.6),

(A.8), (A.22) and (A.24) with the following conditional distributions:

p(w∗γ |θ−w∗
γ
,X∗γ ,Z,y) ∝ N(y|X∗γw∗γ + Zb, σ2

εI)N(w∗γ |mγ , σ
2
εΣw∗

γ
) (A.25)

∝ N(w∗γ |Vw∗
γ
X∗>γ (y− Zb) + Vw∗

γ
Σ−1

w∗
γ
mγ , σ

2
εVw∗

γ
) (A.26)

where Vw∗
γ

= (X∗>γ X∗γ + Σ−1
w∗

γ
)−1,

p(µw,h|θ−µw,h ,X∗γ ,Z,y) ∝ N(wγ,h|1µw,h, σ2
εσ

2
wγ ,hI)N(µw,h|µ0,h, σ

2
εσ

2
0,h) (A.27)

∝ N(µw,h|Vµγ ,h(∑(wγ,h)/σ
2
w,h + µ0,h/σ

2
0,h), σ

2
εVµγ ,h) (A.28)

where Vµγ ,h = ((||wγ,h||/σ2
w,h)

−1 + (σ2
0,h)
−1)−1, and

p(σ2
w,h|θ−σ2

w,h
,X∗γ ,Z,y) ∝ N(wγ,h|1µw,h, σ2

εσ
2
w,hI)IG(σ2

w,h|αw,h, βw,h) (A.29)

∝ IG(σ2
w,h| ||wγ,h||/2 + αw,h, βw,h + 1

2σ2
ε

∑(wγ,h − 1µγ,h)
2)

(A.30)

where we sample for each h separately.

We can then find the distribution for σ2
ε , defining µ0 = (µ0,1, . . . , µ0,H)> and Σ0 =

diag(σ2
0,1, . . . , σ

2
0,H):

p(σ2
ε |θ−σ2

ε
,X∗γ ,Z,y) ∝ N(y|X∗γw∗γ + Zb, σ2

εI)N(w∗γ |mγ , σ
2
εΣw∗

γ
)

×N(µw|µ0, σ
2
εΣ0)IG(σ2

ε |αε, βε) (A.31)

∝ IG(σ2
ε |(N + ||w∗γ ||+H)/2 + αε, βε + 1

2
Rσ2

ε
). (A.32)

where H is the number of groups of regressors and

Rσ2
ε

= (y−X∗γw∗γ − Zb)>(y−X∗γw∗γ − Zb)

+ (w∗γ −mγ)>Σ−1
w∗

γ
(w∗γ −mγ) + (µw − µ0)>Σ−1

0 (µw − µ0) (A.33)
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In order to improve mixing and convergence, Davies et al. (2014) used a collapsing step

over w∗γ when sampling γ, via the application of standard Gaussian integrals, e.g. Bishop

(2006), following Sabatti and James (2005). Doing this should result in an improvement

in computational efficiency and we have therefore also integrated over π here via an

application of Beta-Bernoulli models:

p(γ|θ−γ ,X∗γ ,Z,y) ∝
∫
p(γ, π,w∗γ |θ′,X∗γ ,Z,y)dw∗γdπ (A.34)

∝
∫
p(γ|π)p(π)p(y|w∗γ ,X∗γ ,Z,y)p(w∗γ)dw∗γdπ (A.35)

∝
∫

N(y|X∗γw∗γ + Zb, σ2
εI)N(w∗γ |mγ , σ

2
εΣw∗

γ
)

{
J∏

j=1

Bern(γj|π)

}
B(π|απ, βπ)dw∗γdπ (A.36)

∝ Γ(||γ||+ απ)Γ(J − ||γ||+ βπ)

Γ(J + απ + βπ)

∫
N(y|X∗γw∗γ + Zb, σ2

εI)N(w∗γ |mγ , σ
2
εΣw∗

γ
)dwγ

(A.37)

∝ Γ(||γ||+ απ)Γ(J − ||γ||+ βπ)

Γ(J + απ + βπ)
N(y|X∗γmγ + Zb, σ2

ε [I + X∗γΣw∗
γ
X∗>γ ]). (A.38)

In addition to the conditional distributions for the standard conjugate SABRE method,

we also need to calculate the conditional distributions for the half-t random-effect priors

as follows:

p(η|θ−η,X∗γ ,Z,y) ∝ N(y|X∗γw∗γ + Zηξ, σ2
εI)N(η|0,Ση) (A.39)

∝ N(η| ξ
σ2
ε
VηZ>(y−X∗γw∗γ),Vη) (A.40)

where Vη = ( ξ
2

σ2
ε
Z>Z + Σ−1

η )−1.

p(ξ|θ−ξ,X∗γ ,Z,y) ∝ N(y|X∗γw∗γ + Zηξ, σ2
εI)N(ξ|µξ, σ2

ξ ) (A.41)

∝ N(ξ|Vξ[µξσ2
ξ

+ 1
σ2
ε
η>Z>(y−X∗γw∗γ)], Vξ) (A.42)

where Vξ = ( 1
σ2
ξ

+ 1
σ2
ε
η>Z>Zη)−1.

p(σ2
η,g|θ−σ2

η,g
,X∗γ ,Z,y) ∝ N(ηg|0, σ2

η,gI)IG(σ2
η,g|αη,g, βη,g) (A.43)

∝ IG(σ2
η,g|||ηg||/2 + αη,g, βη,g + 1

2
η>g ηg) (A.44)
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where we sample for each g separately. These distributions replace (A.20) and (A.10) in

the sampling scheme of the conjugate SABRE method described above, and we addition-

ally set b = ηξ and σ2
b,g = ξ2σ2

η,g in the other conditional distributions.

A.1.4 Binary Mask Conjugate SABRE Method

The differences between the conjugate SABRE method and the binary mask conjugate

SABRE method can be seen by comparing Figures 4.3 and 4.4 in Chapter 4. While

the models are reasonably similar the conditional distributions are not with only the

distributions for σ2
b,g and π remaining the same; (A.10) and (A.14). Here we give the

remaining distributions required for the binary mask conjugate SABRE method:

p(w∗|θ−w∗ ,X∗,Z,y) ∝ N(y|1w0 + XΓw + Zb, σ2
εI)N(w∗|m, σ2

εΣw∗) (A.45)

∝ N(w∗|Vw∗Γ∗>X∗>(y− Zb) + Vw∗Σ−1
w∗m, σ2

εVw∗) (A.46)

where we define Vw∗ = (Γ∗>X∗>X∗Γ + Σ−1
w∗)−1,

p(b|θ−b,X∗,Z,y) ∝ N(y|1w0 + XΓw + Zb, σ2
εI)N(b|0,Σb) (A.47)

∝ N(b| 1
σ2
ε
VbZ>(y−X∗Γ∗w∗),Vb) (A.48)

where we define Vb = ( 1
σ2
ε
Z>Z + Σ−1

b )−1,

p(µw,h|θ−µw,h ,X∗,Z,y) ∝ N(wh|1µw,h, σ2
εσ

2
wγ ,hI)N(µw,h|µ0,h, σ

2
εσ

2
0,h) (A.49)

∝ N(µw,h|V −1
µ,h (∑(wh)/σ

2
w,h + µ0,h/σ

2
0,h), σ

2
εVµ,h) (A.50)

where we define Vµ,h = ((||wh||/σ2
w,h)

−1 + (σ2
0,h)
−1)−1 and sample separately for each h,

p(σ2
w,h|θ−σ2

w,h
,X∗,Z,y) ∝ N(wh|1µw,h, σ2

εσ
2
wγ ,hI)IG(σ2

w,h|αw,h, βw,h) (A.51)

∝ IG(σ2
w,h| ||wh||/2 + αw,h, βw,h + 1

2σ2
ε
(wh − 1µw,h)

>(wh − 1µw,h)) (A.52)

where we again sample separately for each h, and

p(σ2
ε |θ−σ2

ε
,X∗,Z,y) ∝ N(y|1w0 + XΓw + Zb, σ2

εI)N(w∗|m, σ2
εΣw∗)

N(µw|µ0, σ
2
εΣ0)IG(σ2

ε |αε, βε) (A.53)

∝ IG(σ2
ε |(N + ||w∗||+H)/2 + αε, βε + 1

2
Rσ2

ε
) (A.54)
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where Rσ2
ε

= (y−X∗Γ∗w∗−Zb)>(y−X∗Γ∗w∗−Zb)+(w∗−m)>Σ−1
w∗(w∗ −m)+(µw−

µ0)>Σ−1
0 (µw − µ0).

Finally the distribution of γ is given by

p(γ|θ−γ ,X∗,Z,y) ∝
∫
β(π|απ, βπ) Bern(γ|π)

N(y|X∗Γ∗w∗ + Zb, σ2
εI)N(w∗|m, σ2

εΣw∗)dπdwγ (A.55)

∝ Γ(||γ||+απ)Γ(J−||γ||+βπ)
Γ(J+απ+βπ)

N(y|X∗Γ∗m + Zb, σ2
ε [I + X∗Γ∗Σw∗

γ
Γ∗>X∗>]) (A.56)

as originally defined in Section 4.3.4.

A.1.5 Conjugate Sampling Scheme

In the conjugate and binary mask conjugate model we can make use of the conjugate

sampling strategy proposed in Section 4.3.6. In the conjugate sampling scheme, the

conditional distribution of γ is found by integrating over both σ2
ε and µwas well as those

parameters marginalised Section A.1.3 and A.1.4; w∗γ and π. This collapsing is possible

due to the conjugate prior specification of w∗γ and µw in both methods; see Figures 4.3

and 4.4. This step is not feasible in either the original SABRE method or the semi-

conjugate SABRE method.

The distribution of γ for the conjugate SABRE method is given as follows:

p(γ|θ−γ ,X∗γ ,Z,y) ∝
∫
p(γ, π, σ2

ε ,w
∗
γ ,µw|θ′,X∗γ ,Z,y)dµwdw

∗
γdπdσ

2
ε (A.57)

∝
∫
p(γ|π)p(π)p(y|w∗γ , σ2

ε ,X
∗
γ ,Z,y)p(w∗γ |µw, σ

2
ε)p(µw)p(σ2

ε)dµwdw
∗
γdπdσ

2
ε (A.58)

∝ Cπ

∫
N(y|X∗γw∗γ + Zb, σ2

εI)N(w∗γ |mγ , σ
2
εΣw∗

γ
)N(µw|µ0, σ

2
εΣ0)

IG(σ2
ε |αε, βε)dµwdw

∗
γdσ

2
ε (A.59)

∝ Cπ

∫
N(y|X∗γw∗γ + Zb, σ2

εI)N(w∗γ |mγ,0, σ
2
ε [Σw∗

γ
+ Vγ,0])

IG(σ2
ε |αε, βε)dw∗γdσ2

ε (A.60)

∝ Cπ

∫
N(y|X∗γmγ,0 + Zb, σ2

ε [I + X∗γ [Σw∗
γ

+ Vγ,0]X∗,>γ ])IG(σ2
ε |αε, βε)dσ2

ε (A.61)

∝ Cπ|Σγ |−
1
2 [βε + 1

2
(y−X∗γmγ,0 − Zb)>Σ−1

γ (y−X∗γmγ,0 − Zb)]−(N/2+αε) (A.62)

where Cπ = Γ(||γ||+απ)Γ(J−||γ||+βπ)
Γ(J+απ+βπ)

, Σγ = [I + X∗γ [Σw∗
γ

+ Vγ,0]X∗>γ ], mγ,0 = (µw0 , µ0,1, . . . ,

µ0,1, µ0,2, . . . , µ0,H)> with each µ0,h repeated with length ||wγ,h|| dependent on γ, and
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Vγ,0 is a block diagonal matrix of (0, σ2
0,1, σ

2
0,2, . . . , σ

2
0,H) where the square blocks have

length 1, ||wγ,1||, . . . , ||wγ,H || respectively.

We can use the Woodbury identity and the extended Sylvester’s determinant theorem

to speed up the computations and give the following conditional posterior distribution:

log p(γ|θ−γ ,X∗γ ,Z,y) ∝ log Γ(||γ||+ απ) + log Γ(J − ||γ||+ βπ)

− log Γ(J + απ + βπ)− 1
2

log |Σw∗
γ

+ Vγ,0| − 1
2

log |[Σw∗
γ

+ Vγ,0]−1 + X∗>γ X∗γ |
− (N

2
+ αε) log(βε + 1

2
(y−X∗γmγ,0 − Zb)>

[I−X∗γ([Σw∗
γ

+ Vγ,0]−1 + X∗γX∗>γ )−1X∗>γ )](y−X∗γmγ,0 − Zb)). (A.63)

This was also done with the conditional distribution of γ for the original and semi-

conjugate SABRE methods in Sections A.1.1 and A.1.2.

In addition to the conditional distribution of γ we must also derive distributions for

σ2
ε and µw. We do not need to derive conditional distributions for wγ and π as they are

identical to those given in (A.26) and (A.14).

p(σ2
ε |γ,θ−σ2

ε
,X∗γ ,Z,y) ∝ N(y|X∗γmγ,0 + Zb, σ2

εΣγ)IG(σ2
ε |αε, βε) (A.64)

∝ IG(σ2
ε |||y||/2 + αε, βε + 1

2
(y−X∗γmγ,0 − Zb)>Σ−1

γ (y−X∗γmγ,0 − Zb)) (A.65)

where the first distribution is taken from the derivation of the conditional distribution of

γ.

p(µw|σ2
ε ,γ,θ−µw ,X

∗
γ ,Z,y)

∝ N(y|1µw0 + XγMγ,µµw + Zb, σ2
ε [I + X∗γΣw∗

γ
X∗>γ ])N(µw|µ0, σ

2
εΣ0) (A.66)

∝ N(µw|Vµγ,w [Σ−1
0 µ0 + M>

γ,µX>γ [I + X∗γΣw∗
γ
X∗>γ ]−1(y− 1µw0 − Zb)], σ2

εVµγ,w)

(A.67)

where the first distribution is again taken from the derivation of the conditional distri-

bution of γ and Vµγ,w = [Σ−1
0 + M>

γ,µX>γ [I + X∗γΣw∗
γ
X∗>γ ]−1XγMγ,µ]−1. Mµ, required

for (A.72), is a matrix of indicators where each element mµ,j,h is 1 for any wj,h in group

h and 0 otherwise, where Mγ,µ only includes the relevant elements dependent on γ. For
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example:

Mµ =




1 0

1 0

0 1

0 1

0 1




; Mγ,µ =




1 0

0 1

0 1


 ; w =




w1,1

w2,1

w3,2

w4,2

w5,2




; wγ =



w1,1

w3,2

w5,2


 ; γ =




γ1 = 1

γ2 = 0

γ3 = 1

γ4 = 0

γ5 = 1



. (A.68)

We can calculate the log conditional distribution of γ for the binary mask conjugate

SABRE method the same way we did for the conjugate SABRE method:

log p(γ|θ−γ ,X∗,Z,y) ∝ log

∫
p(γ|π)p(π)p(y|w∗,γ,b, σ2

ε ,X
∗
γ ,Z,y)p(w∗|µw, σ

2
ε)

p(µw|σ2
ε)p(σ

2
ε)dµwdw

∗
γdπdσ

2
ε (A.69)

∝ log Γ(||γ||+ απ) + log Γ(J − ||γ||+ βπ)

− log Γ(J + απ + βπ)− 1
2

log |Σw∗ + V0| − 1
2

log |[Σw∗ + V0]−1 + Γ∗>X∗>XΓ∗|
− (N

2
+ αε) log(βε + 1

2
(y−X∗Γ∗m0 − Zb)>

[I−X∗Γ∗>([Σw∗ + V0]−1 + X∗Γ∗Γ∗>X∗>)−1Γ∗>X∗](y−X∗Γ∗m0 − Zb)). (A.70)

where m0 = (µw0 , µ0,1, . . . , µ0,1, µ0,2, . . . , µ0,H)> with each µ0,h repeated with length ||wh||
not dependant on γ and V0 is a block diagonal matrix of (0, σ2

0,1, σ
2
0,2, . . . , σ

2
0,H) where

the square blocks have length 1, ||w1||, . . . ||wH || respectively.

Finally we can calculate the collapsing steps for the conditional distributions of σ2
ε

and µw:

p(σ2
ε |γ−σ2

ε
,θ−σ2

ε
,X∗,Z,y)

∝ IG(σ2
ε |||y||/2 + αε, βε + 1

2
(y−X∗Γ∗m0 − Zb)>Σ−1

γ (y−X∗Γ∗m0 − Zb)) (A.71)

p(µw|σ2
ε ,γ,θ−µw ,X

∗,Z,y) ∝
N(µw|Vµw [Σ−1

0 µ0 + M>
µΓ>X>[I + X∗Γ∗Σw∗

γ
Γ∗>X∗>]−1(y− 1µw0 − Zb)], σ2

εVµw)

(A.72)

where Vµw = [Σ−1
0 + M>

µXΓ>[I + X∗Γ∗Σw∗
γ
Γ∗>X∗>]−1XγMµ]−1.
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A.2 eSABRE Method

The conditional distributions for the eSABRE method in Chapter 6 can again be found

by using some of the basic results from standard textbooks, e.g. Murphy (2012), where we

define X∗γ = (1,Xγ), mγ = (µw0 , µw,1, . . . , µw,1, µw,2, . . . , µw,H)> and Σw∗
γ

= diag(σ2
w∗)

with σ2
w∗ = (σ2

w0
, σ2

w,1, . . . , σ
2
w,1, σ

2
w,2, . . . , σ

2
w,H)>.

Using standard results for conditional Gaussian distributions and Figure 6.1, we can

calculate the conditional distributions for µy, w∗γ , b and µw , where we define θ to be a

vector of all the parameters and hyperparameters::

p(µy|θ−µy ,X
∗
γ ,M,Z,y) ∝ N(y|Mµy + Zb, σ2

yI)N(µy|1w0 + Xγwγ , σ
2
εI) (A.73)

∝ N(µy|Vy(M>(y− Zb)/σ2
y + X∗γw∗γ/σ

2
ε),Vy) (A.74)

where Vy = (1/σ2
εI + M>M/σ2

y)
−1.

p(w∗γ |θ−w∗
γ
,X∗γ ,M,Z,y) ∝ N(µy|X∗γw∗γ , σ

2
εI)N(w∗γ |mγ , σ

2
εΣw∗

γ
) (A.75)

∝ N(w∗γ |Vw∗
γ
X∗>γ µy + Vw∗

γ
Σ−1

w∗
γ
mγ , σ

2
εVw∗

γ
) (A.76)

where Vw∗
γ

= (X∗>γ X∗γ + Σ−1
w∗

γ
)−1.

p(b|θ−b,X∗γ ,M,Z,y) ∝ N(y|Mµy + Zb, σ2
yI)N(b|0,Σb) (A.77)

∝ N(b| 1
σ2
y
VbZ>(y−Mµy),Vb) (A.78)

where Vb = ( 1
σ2
y
Z>Z + Σ−1

b )−1.

p(µw|θ−µw ,X∗γ ,M,Z,y) ∝ N(wγ |1µw, σ2
εσ

2
wI)N(µw|µ0, σ

2
0σ

2
ε) (A.79)

∝ N(µw|Vµw(1wγ/σ
2
w + µ0/σ

2
0), σ2

εVµw) (A.80)

where Vµw = (1/σ2
0 + ||wγ ||/σ2

w)−1.

We can then calculate the conditional distributions of the variance parameters:

p(σ2
y|θσ2

y
,X∗γ ,M,Z,y) ∝ N(y|Mµy + Zb, σ2

yI)IG(σ2
y|αy, βy) (A.81)

∝ IG(σ2
y| ||y||/2 + αy,

1
2
(y−Mµy − Zb)>(y−Mµy − Zb)) (A.82)
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p(σ2
w|θ−σ2

w
,X∗γ ,M,Z,y) ∝ N(wγ |Iµw, σ2

εσ
2
wI)IG(σ2

w|αw, βw) (A.83)

∝ IG(σ2
w| ||wγ ||/2 + αw,

1
2σ2
ε
(wγ − Iµw)>(wγ − Iµw)) (A.84)

p(σ2
b,g|θ−σ2

b,g
,X∗γ ,M,Z,y) ∝ N(bg|0, σ2

b,gI)IG(σ2
b,g|αb,g, βb,g) (A.85)

∝ IG(σ2
b,g| ||bg||/2 + αb,g, βb,g + 1

2
b>g bg) (A.86)

where we sample for each g separately.

p(σ2
ε |θ−σ2

ε
,X∗γ ,M,Z,y)

∝ N(µy|X∗γw∗γ , σ
2
εI)N(w∗γ |mγ , σ

2
εΣw∗

γ
)N(µw|µ0, σ

2
εσ

2
0)IG(σ2

ε |αε, βε) (A.87)

∝ IG(σ2
ε |(||µy||+ ||w∗γ ||+ 1)/2 + αε, βε + 1

2
Rσ2

ε
). (A.88)

where we give Rσ2
ε

as:

Rσ2
ε

= (µy −X∗γw∗γ)>(µy −X∗γw∗γ)

+ (w∗γ −mγ)>Σ−1
w∗

γ
(w∗γ −mγ) + (µw − µ0)>(µw − µ0)/σ2

0 (A.89)

Finally we calculate the distribution for π:

p(π|θ−π,X∗γ ,M,Z,y) ∝
{

J∏

j=1

Bern(γj|π)

}
B(π|απ, βπ) (A.90)

∝ β(π| απ + ||γ||, βπ + J − ||γ|). (A.91)

A.2.1 Sampling γ

In order to sample γ we use collapsing methods as detailed in Section 6.2. Following the

method proposed in Davies et al. (2016a) we integrate over µw, w∗γ , π, and σ2
ε , however

in the case of the eSABRE method are left with a conditional distribution that includes

µy but not y, leading to the increased computational efficiency discussed and tested in

Chapters 6 and 7:

p(γ|θ−γ ,X∗γ ,M,Z,y) ∝
∫
p(γ, π, σ2

ε ,w
∗
γ , µw|θ′,X∗γ ,Z,y)dµwdw

∗
γdπdσ

2
ε (A.92)

∝
∫
p(γ|π)p(π)p(µy|w∗γ , σ2

ε ,X
∗
γ)p(w∗γ |µw, σ2

ε)p(µw)p(σ2
ε)dµwdw

∗
γdπdσ

2
ε (A.93)
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∝ Cπ

∫
N(µy|X∗γw∗γ , σ

2
εI)N(w∗γ |mγ , σ

2
εΣw∗

γ
)N(µw|µ0, σ

2
εσ

2
0)

IG(σ2
ε |αε, βε)dµwdw∗γdσ2

ε (A.94)

∝ Cπ

∫
N(µy|X∗γw∗γ , σ

2
εI)N(w∗γ |mγ,0, σ

2
ε [Σw∗

γ
+ Vγ,0])

IG(σ2
ε |αε, βε)dw∗γdσ2

ε (A.95)

∝ Cπ

∫
N(µy|Xγmγ,0, σ

2
ε [I + Xγ [Σw∗

γ
+ Vγ,0]X>γ ])IG(σ2

ε |αε, βε)dσ2
ε (A.96)

∝ Cπ|Σγ |−
1
2 [βε + 1

2
(µy −X∗γmγ,0)>Σ−1

γ (µy −X∗γmγ,0)]−(N/2+αε) (A.97)

where Cπ = Γ(||γ||+απ)Γ(J−||γ||+βπ)
Γ(J+απ+βπ)

, Σγ = [I+X∗γ [Σw∗
γ
+Vγ,0]X∗>γ ], mγ,0 = (µw0 , µ0, . . . , µ0)>

with µ0 repeated with length ||wγ || dependent on γ, and Vγ,0 is a block diagonal matrix

of (0, σ2
0) where the square blocks have length 1 and ||wγ || respectively.

We can again use the Woodbury identity and the extended Sylvester’s determinant

theorem to speed up the computations and give the following conditional posterior dis-

tribution:

log p(γ|θ−γ ,X∗γ ,M,Z,y) ∝ log Γ(||γ||+ απ) + log Γ(J − ||γ||+ βπ)

− log Γ(J + απ + βπ)− 1
2

log |Σw∗
γ

+ Vγ,0| − 1
2

log |[Σw∗
γ

+ Vγ,0]−1 + X∗>γ X∗γ |
− (N

2
+ αε) log(βε + 1

2
(µy −X∗γmγ,0)>

[I−X∗γ([Σw∗
γ

+ Vγ,0]−1 + X∗γX∗>γ )−1X∗>γ )](µy −X∗γmγ,0)). (A.98)

A.2.2 Collapsing Within Conditional Distributions

In order to sample the eSABRE method via the collapsing scheme suggested in Section 6.2

we must derive the collapsed conditional distributions for σ2
ε and µw. The conditional

distribution of γ is derived in Section A.2.1, while (A.75) and (A.90) in Section A.2 give

the distributions for π and w∗γ . The conditional distribution for σ2
ε can then be derived

as follows:

p(σ2
ε |γ,θ−σ2

ε
,X∗γ ,M,Z,y) ∝ N(µy|X∗γmγ,0, σ

2
εΣγ)IG(σ2

ε |αε, βε) (A.99)

∝ IG(σ2
ε |||µy||/2 + αε, βε + 1

2
(µy −X∗γmγ,0)>Σ−1

γ (µy −X∗γmγ,0)) (A.100)

where the first distribution is taken from results in Section A.2.1 and the definitions of

mγ,0 and Σγ are given in Section A.2.1. Finally we can give the conditional distribution
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of µw as follows:

p(µw|σ2
ε ,γ,θ−µwX∗γ ,M,Z,y)

∝
∫

N(µy|X∗γw∗γ , σ
2
εI)N(w∗γ |mγ , σ

2
εΣw∗

γ
)N(µw|µ0, σ

2
εσ

2
0)dw∗γ (A.101)

∝ N(µy|1µw0 + Xγ1µw, σ
2
ε [I + X∗γΣw∗

γ
X∗,>γ ])N(µw|µ0, σ

2
0) (A.102)

∝ N(µw|Vµw [µ0/σ
2
0 + 1>X>γ [I + X∗γΣw∗

γ
X∗,>γ ]−1(µy − 1µw0)], σ

2
εVµw) (A.103)

where Vµγ,w = [1/σ2
0 + 1>X>γ [I + X∗γΣw∗

γ
X∗>γ ]−1Xγ1]−1.
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Appendix B

Further Results

In this appendix we give extended results for the simulation studies in Chapter 5. We also

give complete lists of results for the FMDV and Influenza datasets we have analysed in

Chapters 5 and 7, these results include the common alignments of the individual residues

and branches that were selected (Davies et al., 2016a).

B.1 Extended Simulation Study Results

The tables given in this section relate to the work completed in Section 5.3 of Chapter 5.

The tables are adapted from Davies et al. (2016a) and contain result for for different

values of α for the elastic net and alternative measures of performance to those discussed

in Section 5.3. For completeness and comparability, many of the related results from

Section 5.3 are also given here.
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Table B.1: Table of Extended Simulation Study Results - Part 1. The table gives
results for the Conjugate, Semi-Conjugate and BM Conjugates SABRE methods, the
mixed-effects LASSO, the mixed-effects elastic net with α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8} and
the classical mixed-effects models applied to the simulated data described in Section 5.1.2.
The table gives the mean AUROC value based on ordering the variables (OV) and model
selection (MS).
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Table B.2: Table of Extended Simulation Study Results - Part 2. The table gives
results for the Conjugate, Semi-Conjugate and BM Conjugates SABRE methods, the
mixed-effects LASSO, the mixed-effects elastic net with α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8} and
the classical mixed-effects models applied to the simulated data described in Section 5.1.2.
The table gives the MSEs of the out-of-sample observations, yout, and the MSEs of the
fixed effects coefficients, w.
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Table B.3: Table of Extended Simulation Study Results - Part 3. The table gives
results for the Conjugate, Semi-Conjugate and BM Conjugates SABRE methods, the
mixed-effects LASSO, the mixed-effects elastic net with α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8} and
the classical mixed-effects models applied to the simulated data described in Section 5.1.2.
The table gives the MSEs of the random effects coefficients, b, and the mean WAIC scores
for each method.
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Table B.4: Table of P-Values for the Simulation Study Results - Part 1. The
table gives the results for paired t-tests where the Conjugate SABRE is compared against
each of the other methods; the Semi-Conjugate and BM Conjugates SABRE methods,
the mixed-effects LASSO, the mixed-effects elastic net with α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8}
and classical mixed-effects models. The table gives the p-values for comparing the mean
AUROC value based on ordering the variables (OV) and model selection (MS).
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Table B.5: Table of P-Values for the Simulation Study Results - Part 2. The
table gives the results for paired t-tests where the Conjugate SABRE is compared against
each of the other methods; the Semi-Conjugate and BM Conjugates SABRE methods,
the mixed-effects LASSO, the mixed-effects elastic net with α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8}
and classical mixed-effects models. The table gives the p-values for comparing the MSEs
of the out-of-sample observations, yout and the MSEs of the fixed effects coefficients, w
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Table B.6: Table of P-Values for the Simulation Study Results - Part 3. The
table gives the results for paired t-tests where the Conjugate SABRE is compared against
each of the other methods; the Semi-Conjugate and BM Conjugates SABRE methods,
the mixed-effects LASSO, the mixed-effects elastic net with α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8}
and classical mixed-effects models. The table gives the p-values for comparing the MSEs
of the random effects coefficients, b, and the mean WAIC scores with the conjugate
SABRE for each method.
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B.2 Foot-and-Mouth Disease Virus Data

This section gives a complete list of results for all the real datasets discussed in the

main paper. Tables B.7, B.9 and B.11 give full lists of results for the original SAT1,

extended SAT1 and SAT2 datasets based on taking the top Jπ̂ variables from the model.

Tables B.8, B.10 and B.12 give similar results for when only the branch variables are used.

Finally Figure B.1 gives the complete phylogenetic tree for the extended SAT1 dataset

when the Jπ̂ variables with the highest predicted marginal probability of inclusion are

used, as opposed to any variables with greater than 0.5 predicted marginal inclusion

probability as shown in Figure 8b of the main paper.
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Figure B.1: Phylogenetic tree indicating significant branches in the evolution-
ary history of the SAT1 serotype at a low threshold. The phylogenetic tree was
created using BEAST v1.7.2 and FigTree v1.4.2 from aligned nucleotide sequence data
with date of isolation. Marked on the tree are protective strains (*) and topotype defining
branches (dashed vertical line). Branches inferred by the SABRE method are highlighted
(black). Symbols indicate whether this was inferred to be a change in virus antigenicity
(†), virus reactivity (‡) or virus immunogenicity (§). Where a highlighted branch has
no symbol, an associated change in antigenicity or reactivity could not be discriminated
between. The cut-off for significance was taken to be the Jπ̂ variables with the highest
probability of inclusion given in Table B.10.
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Table B.7: Selected variables using the original SAT1 data with challenge strain
and antiserum used as random effects factors. The table gives a list of the variables
selected using the conjugate SABRE method with a cut-off of Jπ̂. Additionally the cut-
off at 0.5 is marked by a horizontal line. Residues are given by their protein sequence
alignment (Reeve et al., 2010), where for instance VP3 138 is position 138 on the VP3
protein. Branches are given as to indicate: a reactivity effect associated with the challenge
strain (react), an immunogenic effect of the protein strain (immun), an antigenic effect
(anti) or an unknown effect which is either a reactivity or antigenic effect (bran). More
details on the types of branches can be found in Section 2.1.3 and the labelled phylogenetic
tree for this dataset is given in Figure 2.2.

Variable Inclusion Prob. Plausibility Complete Correlations
VP2 74 0.87 Proven -
VP3 74 0.51 Plausible -
bran 1A 0.50 Plausible -
VP1 143 0.49 Proven -
VP1 189 0.48 Plausible -
bran 2A 0.46 Proven VP3 177; VP2 82; VP1 201;

VP2 131; VP2 187; VP3 141
VP1 47 0.45 Plausible -

bran 0014 0.45 Plausible -
VP3 193 0.43 Plausible -
VP1 150 0.43 Proven -
VP1 62 0.41 Proven bran 1C
VP3 67 0.38 Plausible -
VP3 9 0.38 Implausible -

VP2 198 0.37 Plausible -
VP3 199 0.35 Plausible bran 0002
VP1 149 0.35 Proven -
react 3A 0.34 Plausible -
anti 0013 0.32 Plausible -
VP1 219 0.31 Proven -
VP3 72 0.31 Proven -
VP3 77 0.31 Proven -
VP2 79 0.30 Proven VP2 81; bran 0007
VP3 176 0.30 Plausible -
bran 2C 0.29 Plausible -
VP3 171 0.29 Plausible -
bran 1F 0.29 Plausible -

bran 0011 0.28 Plausible -
VP1 144 0.28 Proven -
VP1 216 0.28 Proven -
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Table B.8: Selected variables using the original SAT1 branch data with chal-
lenge strain and antiserum used as random effects factors. The table gives a
list of the variables selected using the conjugate SABRE method with a cut-off of Jπ̂.
Branches are given as to indicate: a reactivity effect associated with the challenge strain
(react), an immunogenic effect of the protein strain (immun), an antigenic effect (anti)
or an unknown effect which is either a reactivity or antigenic effect (bran). More details
on the types of branches can be found in Section 2.1.3. The labelled phylogenetic tree
for this dataset is given in Figure 2.2 here and the inferred phylogenetic tree in Figure 8a
of the main paper.

Variable Inclusion Prob. Complete Correlations
anti 0013 1 -
anti 0010 0.99 -
anti 0004 0.92 -
bran 2A 0.82 -

bran 0014 0.80 -
anti 1B 0.75 -
bran 1C 0.72 -
bran 1A 0.70 -
anti 4A 0.68 -

bran 0012 0.64 -
bran 0020 0.59 -
bran 0002 0.57 -
bran 1F 0.50 -

bran 0001 0.48 -
bran 0006 0.44 -
bran 0007 0.43 -
bran 3C 0.43 -

bran 0019 0.39 -
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Table B.9: Selected variables using the extended SAT1 data with challenge
strain, date and antiserum used as random effects factors. The table gives a
list of the variables selected using the conjugate SABRE method with a cut-off of Jπ̂.
Additionally the cut-off at 0.5 is marked by a horizontal line Residues are given by their
protein sequence alignment (Reeve et al., 2010), where for instance VP3 138 is position
138 on the VP3 protein. Branches are given as to indicate: a reactivity effect associated
with the challenge strain (react), an immunogenic effect of the protein strain (immun),
an antigenic effect (anti) or an unknown effect which is either a reactivity or antigenic
effect (bran). More details on the types of branches can be found in Section 2.1.3 and
the labelled phylogenetic tree for this dataset is given in Figure 2.3.

Variable Inclusion Prob. Plausibility Complete Correlations

VP1 149 1 Proven -

VP2 72 0.99 Proven -

VP3 138 0.97 Proven -

VP1 209 0.81 Proven -

anti 0031 0.69 Plausible -

VP3 171 0.68 Plausible -

VP3 72 0.66 Proven -

VP1 144 0.65 Proven -

VP1 147 0.63 Proven -

react 4A 0.58 Proven -

VP2 198 0.57 Plausible -

VP1 116 0.54 Plausible -

VP2 74 0.53 Proven -

VP3 77 0.53 Proven -

bran 1G 0.53 Plausible -

immun 0018 0.52 Proven immun 1H, 2D, 3C, 4B,

5A, 6A, 7A

VP1 148 0.51 Proven -

VP1 163 0.51 Proven -

VP3 223 0.51 Plausible -

VP2 79 0.49 Proven -

VP1 211 0.46 Proven -

bran 0016 0.45 Plausible -

VP1 150 0.45 Proven -

VP1 207 0.45 Proven -

immun 8A 0.45 Proven -

VP1 86 0.44 Implausible -
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Table B.9 Selected variables using the extended SAT1 data

Variable Inclusion Prob. Plausibility Complete Correlations

bran 2A 0.44 Proven VP3 177; VP2 82; VP1 201;

VP2 131; VP2 187; VP3 141

VP2 95 0.43 Plausible -

react 1C 0.43 Plausible -

bran 1A 0.43 Plausible -

VP3 67 0.43 Plausible -

anti 0029 0.43 Plausible -

immun 9A 0.42 Plausible -

VP1 218 0.41 Proven -

react 6A 0.41 Plausible -

bran 2F 0.41 Plausible -

VP1 142 0.41 Proven -

bran 1J 0.41 Plausible -

VP3 58 0.4 Proven -

bran 3B 0.4 Plausible -

react 1K 0.4 Plausible -

anti 2G 0.4 Plausible -

react 0007 0.4 Plausible -

VP3 61 0.4 Proven -

bran 2B 0.39 Plausible -

VP1 156 0.39 Proven bran 0017

anti 1K 0.39 Plausible -

bran 0002 0.38 Plausible -

bran 0030 0.38 Plausible -

VP1 143 0.38 Proven -

bran 0038 0.38 Plausible -

bran 0024 0.38 Plausible -

bran 0027 0.38 Plausible -

VP3 199 0.38 Plausible -

anti 3E 0.38 Plausible -

VP1 45 0.38 Plausible -

VP3 182 0.38 Plausible -

bran 0006 0.38 Plausible -

VP3 76 0.38 Plausible -
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Table B.9 Selected variables using the extended SAT1 data

Variable Inclusion Prob. Plausibility Complete Correlations

bran 3D 0.38 Plausible -

bran 0001 0.37 Plausible -

VP1 42 0.37 Plausible bran 0013

VP3 69 0.37 Plausible -

VP1 155 0.37 Proven -

react 5A 0.37 Plausible -

react 3A 0.36 Plausible -

VP3 134 0.36 Plausible -

VP1 164 0.36 Proven -

VP3 178 0.36 Plausible VP2 194, bran 0009

anti 0007 0.36 Plausible -

VP2 192 0.36 Plausible bran 0026

bran 2C 0.36 Plausible -

bran 1D 0.36 Plausible -

react 7A 0.36 Plausible -

VP3 16 0.35 Implausible bran 0010

bran 0023 0.35 Plausible -

Table B.10: Selected variables using the extended SAT1 branch data using
challenge strain and antiserum as random effects factors. The table gives a
list of the variables selected using the conjugate SABRE method with a cut-off of Jπ̂.
Additionally the cut-off at 0.5 is marked by a horizontal line. Branches are given as to
indicate: a reactivity effect associated with the challenge strain (react), an immunogenic
effect of the protein strain (immun), an antigenic effect (anti) or an unknown effect which
is either a reactivity or antigenic effect (bran). More details on the types of branches
can be found in Section 2.1.3. The labelled phylogenetic tree for this dataset is given in
Figure 2.3 here. The inferred phylogenetic tree for a Jπ̂ cut-off is given in Figure B.1
here and for the 0.5 cut-off in Figure 5.9.

Variable Inclusion Prob. Plausibility

anti 0007 1 -

anti 0029 1 -

anti 0031 1 -

anti 8A 1 -

bran 1G 0.91 -
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Table B.10 Selected variables using the extended SAT1 branch data

Variable Inclusion Prob. Plausibility

anti 0018 0.85 -

anti 0004 0.80 -

bran 0016 0.73 -

anti 1B 0.71 -

react 4A 0.70 -

bran 2A 0.70 -

bran 0030 0.69 -

bran 1A 0.68 -

bran 0024 0.66 -

bran 0038 0.63 -

anti 6B 0.62 -

immun 0018 0.61 immun 1H, 2D, 3C, 4B,

5A, 6A, 7A

bran 0039 0.61 -

anti 2G 0.58 -

bran 1J 0.56 -

anti 3E 0.54 -

bran 0006 0.54 -

bran 0013 0.53 -

bran 0042 0.52 -

bran 0027 0.51 -

react 6A 0.50 -

bran 0002 0.50 -

react 1C 0.49 -

bran 3D 0.49 -

react 1K 0.48 -

bran 0035 0.48 -

bran 0017 0.48 -

bran 1M 0.47 -

bran 0023 0.46 -

bran 0001 0.45 -

anti 10A 0.43 -

bran 0021 0.41 -

bran 0008 0.40 -
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Table B.10 Selected variables using the extended SAT1 branch data

Variable Inclusion Prob. Plausibility

bran 2F 0.40 -

immun 8A 0.39 -

bran 3B 0.39 -

react 3C 0.39 -

bran 0041 0.39 -

bran 0003 0.39 -

bran 2B 0.38 -
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Table B.11: Selected variables using the SAT2 data using challenge strain and
antiserum as random effects factors. The table gives a list of the variables selected
using the conjugate SABRE method with a cut-off of Jπ̂. Residues are given by their
protein sequence alignment (Reeve et al., 2010), where for instance VP3 138 is position
138 on the VP3 protein. Branches are given as to indicate: a reactivity effect associated
with the challenge strain (react), an immunogenic effect of the protein strain (immun),
an antigenic effect (anti) or an unknown effect which is either a reactivity or antigenic
effect (bran). More details on the types of branches can be found in Section 2.1.3 and
the labelled phylogenetic tree for this dataset is given in Figure 2.4.

Variable Inclusion Prob. Complete Correlations
VP1 88 0.91 -
VP1 48 0.77 VP1 66, anti 0013
VP2 71 0.73 VP2 72, VP1 180,

VP1 208, anti 0003
VP1 103 0.65 -
VP1 210 0.60 -
VP1 166 0.41 -
VP2 101 0.39 -
VP1 209 0.38 -

immun 0003 0.36 immun 1A, 2A, 3A, 4A, 5A
VP2 134 0.36 -
VP3 69 0.35 -

immun 6A 0.35 immun 7A
VP1 102 0.34 -
VP3 199 0.33 -
VP2 132 0.33 -
VP2 193 0.32 -
VP1 178 0.29 -
VP1 211 0.29 -
VP1 144 0.28 -
VP1 54 0.28 -
react 8A 0.27 -
VP2 80 0.26 VP1 189
VP1 207 0.26 -
VP1 47 0.26 -
VP1 60 0.26 -
VP3 68 0.26 VP2 78, VP1 101,

VP2 140, bran 0022
VP3 88 0.26 -
VP2 85 0.26 VP2 195, bran 0005
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Table B.12: Selected variables using the SAT2 branch data using challenge
strain and antiserum as random effects factors. The table gives a list of the
variables selected using the conjugate SABRE method with a cut-off of Jπ̂. Branches
are given as to indicate: a reactivity effect associated with the challenge strain (react),
an immunogenic effect of the protein strain (immun), an antigenic effect (anti) or an
unknown effect which is either a reactivity or antigenic effect (bran). More details on the
types of branches can be found in Section 2.1.3. The labelled phylogenetic tree for this
dataset is given in Figure 2.4 here and the inferred phylogenetic tree in Figure 5.12.

Variable Inclusion Prob. Complete Correlations
anti 0003 1 -
anti 0013 1 -
anti 1G 0.98 -

anti 0016 0.91 -
bran 0015 0.46 -
bran 0018 0.46 -

immun 0003 0.45 immun 1A, 2A, 3A, 4A, 5A
bran 1B 0.43 -
bran 1H 0.35 -

immun 6A 0.34 immun 7A
bran 0022 0.34 -
bran 0009 0.34 -
bran 0014 0.32 -
bran 0005 0.31 -

immun 0020 0.3 immun 1G
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Table B.13: Antigenic SAT1 Residues Selected by Maree et al. (2015). The
table gives the results of Maree et al. (2015) that are equivalent to those reported in this
paper. Due to Maree et al. (2015) having a different overall aim to this current paper,
these results were not directly reported in their paper. The horizontal line indicates the
cut-off based on the Holm-Bonferroni correction and the results are reported up until
the first implausible residue is selected. Residues are given by their protein sequence
alignment (Reeve et al., 2010), where for instance VP3 138 is position 138 on the VP3
protein. Selected branches are not stated.

Variable Plausibility
VP2 72 Proven
VP1 149 Proven
VP1 144 Proven
VP3 138 Proven
VP3 72 Proven
VP3 171 Plausible
VP1 164 Proven
VP1 209 Proven
VP3 77 Proven
VP1 102 Implausible

146



B.3 Influenza Data

This section gives a complete list of results for H1N1 dataset discussed in the main paper.

Table B.14 gives the full list of results for the H1N1 dataset described in Section 4.5 of

the main paper based on taking the top Jπ̂ variables from the model.

Table B.14: Selected variables using the conjugate SABRE method on the
reduced H1N1 dataset using challenge strain as a random effects factor. The
table gives a list of the variables selected using the conjugate SABRE method with a
cut-off of Jπ̂. Residues are given by their position of the H1 common alignment (Harvey
et al., 2016). Selected branches are not stated except where they have have a correlation
coefficient of 1 with a selected residue variable. In this case the branch is given simply
as ‘branch’ as a phylogenetic tree is not given.

Variable Inclusion Prob. Plausibility Complete Correlations

187 1 Proven -

190 1 Proven -

43 1 Implausible -

141 1 Proven -

252 0.73 Plausible branch

142 0.68 Proven branch

313 0.65 Implausible branch

189 0.64 Proven -

323 0.51 Implausible -

66 0.50 Plausible branch

310 0.45 Implausible branch

130 0.42 Proven -

146 0.38 Plausible -

139 0.36 Proven branch

153 0.35 Proven -

74 0.34 Proven -

327 0.33 Implausible -

69 0.33 Proven branch

72 0.28 Proven branch
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Table B.15: Selected variables using the eSABRE method on the full H1N1
data using challenge strain and the date of the experiment as random effect
factors. The table gives a list of the variables selected using the eSABRE method with a
cut-off of Jπ̂. Residues are given by their position of the H1 common alignment (Harvey
et al., 2016). Selected branches are not stated except where they have have a correlation
coefficient of 1 with a selected residue variable. In this case the branch is given simply
as ‘branch’ as a phylogenetic tree is not given.

Variable Inclusion Prob. Plausibility Complete Correlations

187 1 Proven -

43 1 Implausible -

141 1 Proven -

190 1 Proven -

153 0.91 Plausible -

142 0.86 Proven branch

313 0.69 Implausible branch

324 0.64 Implausible 325, 326

130 0.54 Proven -

193 0.47 Plausible 54, 125, 127, branch

146 0.44 Plausible -

72 0.43 Proven branch

310 0.43 Implausible branch

74 0.39 Proven -

189 0.37 Proven -

170 0.35 Proven -

66 0.35 Plausible 134, branch

252 0.33 Plausible branch

327 0.33 Implausible -

69 0.31 Proven branch

148



Table B.16: Selected variables using the eSABRE method on the full H3N2
data using challenge strain, protective strain and the date of the experiment
as random effect factors. The table gives a list of the variables selected using the
conjugate SABRE method with a cut-off of Jπ̂. Residues are given by their position of
the H1 common alignment (Harvey et al., 2016). Selected branches are not stated except
where they have have a correlation coefficient of 1 with a selected residue variable. In
this case the branch is given simply as ‘branch’ as a phylogenetic tree is not given. ∗
indicates that the residue was removed from the results due to the recorded genetic code
being inaccurate.

Variable Inclusion Prob. Plausibility Complete Correlations

135 1 Proven -

138 1 Plausible -

144 1 Proven -

145 1 Proven -

156 1 Proven -

158 1 Proven -

164 1 Proven -

189 1 Proven -

193 1 Proven -

197 1 Proven -

262 1 Proven -

276 0.98 Proven -

25 0.97 Plausible 75, branch

155 0.97 Proven -

279 0.89 Plausible -

183 0.87 Proven -

212 0.64 Plausible -

269 0.57 Implausible∗ -

159 0.56 Proven -

14 0.54 Implausible 43, branch

142 0.47 Proven -

2 0.45 Implausible -

190 0.41 Proven -

207 0.40 Proven -

194 0.37 Plausible -

131 0.37 Proven -

196 0.34 Proven -

126 0.34 Proven -
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Table B.16 Selected variables using the H3N2 data

Variable Inclusion Prob. Plausibility Complete Correlations

58 0.32 Implausible -

140 0.30 Plausible -

27 0.28 Implausible -

57 0.26 Proven -

318 0.25 Implausible -

18 0.23 Implausible -

3 0.23 Implausible -

242 0.22 Proven -

147 0.22 Implausible -

216 0.22 Plausible -

34 0.20 Implausible -
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