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Summary

Microwave thermography obtains information about the subcutaneous body 

temperature by a spectral measurement of the intensity of the natural thermally 

generated radiation emitted by the body tissues. At lower microwave frequencies 

the thermal radiation can penetrate through biological tissue for significant 

distances. The microwave thermal radiation from inside the body can be detected 

and measured non-invasively at the skin surface by the microwave thermography 

technique, which uses a radiometer to measure the radiation which is received from 

an antenna on the skin. In the microwave region the radiative power received from a 

volume of material has a dependence on viewed tissue temperature T(r) of the form,

where k is the Boltzmann's constant, B the measurement bandwidth, c(r) is the 

relative contribution from a volume element dv (the antenna weighting function). 

The weighting function, c(r), depends on the structure and the dielectric properties 

of the tissue being viewed, the measurement frequency and the characteristics of the 

antenna. In any practical radiometer system the body microwave thermal signal has 

to be measured along with a similar noise signal generated in the radiometer 

circuits.

The work described in this thesis is intended to lead to improvement in the 

performance of microwave thermography equipment through investigations of 

antenna weighting functions and radiometer circuit noise sources. All work has 

been carried out at 3.2 GHz, the central operating frequency of the existing 

Glasgow developed microwave thermography system.

P = kB c (r) T(r) dv
vo l



The effects of input circuit losses on the operation of the form of Dicke 

radiometer used for the Glasgow equipment have been investigated using a 

computational model and compared with measurements made on test circuits. Very 

good agreement has been obtained for modelled and measured behaviour. The 

losses contributed by the microstrip circuit structure, that must be used in the 

radiometer at 3.2 GHz, have been investigated in detail.

Microwave correlation radiometry, by "add and square" method, has been 

applied to the received signals from a crossed-pair antenna arrangement, the 

antennas being arranged to view a common region at a certain depth. The antenna 

response has been investigated using a noise source and by the nonresonant 

perturbation technique. The received pattern formed by the product of the individual 

antenna patterns gives a maximum depth in phantom dielectric material. The depth 

can be adjusted by changing the spacing of the antennas and the phase in an antenna 

path. However, the pattern is modulated by a set of positive and negative 

interference fringes so that the complete receive pattern has a complicated form. On 

uniform temperature distributions the total radiometric signal is zero with the 

positive and negative contributions cancelling each other out. The fringe modulation 

can be removed by placing the antennas close enough together, The pattern is then 

simple and gives a modest maximum response at a known depth in a known 

material. The radiometer system remains sensitive to the temperature gradients only 

and the wide range of dielectric properties and tissue structures in the region being 

investigated usually makes the system response difficult to interpret.

For crossed-pair antennas in phase the effective penetration depth in high- 

and medium-water content tissues is about 2.5 cm at a frequency of 3.2 GHz. The 

field pattern observed was of the form expected from the measurements of the 

individual antenna behaviour with the appropriate interference pattern 

superimposed.



The nonresonant perturbation technique has been developed and applied to 

assist the development of the medical application of both microwave thermographic 

temperature measurement and microwave hyperthermia induction. These techniques 

require the electromagnetic field patterns of the special antennas used to be known. 

These antennas are often formed by short lengths of rectangular or cylindrical 

waveguide loaded with a low-loss dielectric material to achieve good coupling to 

body tissues. The high microwave attenuation in biological materials requires the 

field configurations to be measured close to the antenna aperture in the near-field 

wave. The nonresonant perturbation is a simple technique which can be used to 

measure electromagnetic fields in lossy material close to the antenna. It has been 

applied here to measure accurately the antenna weighting function and the effective 

penetration depth in tissue simulating dielectric phantom materials.

The antenna patterns have been measured at 3.25 GHz in different dielectric 

phantom materials representing from low- to high-water content tissues, using 

dielectric spheres and sheets. The relative response LnfE2) has been found to fall 

approximately linearly with distance from the antenna aperture along its central axis.
2 aThe distance over which Ln(E ) is reduced by a factor of e' z, the effective 

penetration depth, has been measured and compared to the calculated TEM wave 

penetration distance in the phantom material. For a T£; ; -mode circular antenna in 

high- and medium-water content material the effective penetration depth is farmed to 

be close to the plane-wave penetration depth, the ratio of them being approximately 

90%. In fat simulating phantom material the effective penetration depth is rather 

smaller than the plane-wave penetration depth, the ratio being approximately 

70%.The results show that the TEn -mode circular antenna gives a better 

microwave thermographic performance than the more commonly used TE01-mode 

rectangular antennas.



Chapter I

Microwave thermography

1.1- Introduction:

Microwave thermography or thermometry is a particular use of radiometry 

in the measurement of the thermal noise emitted by the body tissues. This technique 

has been widely used and extensively investigated in medical applications for the 

detection, the diagnosis and the monitoring of diseases which produce changes in 

the body's normal temperature distributions.

Variations in the temperature in the subcutaneous tissue and over the body 

surface reflect variations in the physiological properties of blood flow and metabolic 

heat production. Changes in metabolism produce thermal changes in the body 

which can be investigated by the microwave thermography technique. The 

improved sensitivity of this technique makes it preferable when compared with 

infra-red technique.

At infra-red wavelengths tissue penetration distances are extremely small, of 

the order of 0.1 mm, and observable thermal radiation can come from only the skin 

surface. The infra-red skin temperature pattern which is observed is the result of a 

complex combination of thermal conduction of heat from internal body sources 

through the subcutaneous tissues, the state of perfusion of the cutaneous tissues, 

and a delicate thermal balance at the skin surface dependent on radiative, conv/ective 

and evaporative heat losses (Draper and Boag, 1971; Lipkin and Hardy, 1954). The 

need for very stable heat loss from the skin during infra-red measurements thus 

normally requires stabilisation of the temperature of the surface. Microwave 

thermography attempts to observe directly the thermal radiation due to internal body 

sources, by minimizing the contribution from the skin tissue.

1



Research studies in medical applications have been carried out in order to 

investigate microwave temperature measurements in the human body. Several kinds 

of diseases have been studied, including detection of cancers of the breast, thyroid, 

brain and bone ( Mamouni et al., 1981; Shaeffer et al.,1981; Carr et al., 1983; 

Barrett et al., 1980; Gautherie et al., 1979a; 1979b; Leroy, 1982; Land, 1987a; 

Brown, 1989) osteo-articular and inflammatory diseases (Fraser et al., 1987; 

Brown, 1989) as well as of the temperature during a heating process, for example, 

in hyperthermia for the treatment of cancer (Plancot et al., 1987). The significant 

advantage of microwave thermography for monitoring these diseases is its ability 

to take advantage of the relative transparency of body tissues at microwave 

frequencies. This transparency of tissues to microwave thermal radiation allows 

information to be obtained about internal body temperature patterns from 

measurements made at the skin surface. The average temperature within a volume, 

extending to depths 1 - 5 cm depends on frequency and tissue type (Fig. 1.1). 

This figure illustrates the variations of tissue properties with frequency (data 

collected from Cook, 1951a; 1951b, 1952; Herrick, 1950; England, 1950) in terms 

of the e '1 (or 37 %) penetration depth for the power of the incident plane-wave 

radiation. At 3 GHz the plane-wave penetration depth is about 5 cm in tissue with a 

low water content, such as fat, and is about 0.8 cm in high water content tissue 

such as muscle and skin. It can be seen that the penetration depth in both low- and 

high- water content decreases significantly with increasing frequency. At 

frequencies above 10 GHz the penetration depths are only a few millimetres. At the 

higher microwave frequencies microwave thermography will then give results very 

similar to those obtained with infra-red thermography.

This microwave measurement of internal temperature is related 

predominantly to physiological conditions in the deeper tissues rather than the 

effects of heat transfer to the environment. Experience has shown that diseases or 

physiological states in which a thermal phenomenon occurs at a depth of up to 

several centimeters can be examined and have frequently been detected by

2
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microwave thermography. Therefore, microwave thermography has been chosen to 

detect the thermal radiation from body tissues by a radiometer system which 

consists of two essential elements; a microwave radiometer which measures the 

power of the thermal signal; and an antenna which receives the power from the 

tissue, providing a transition between the radiation emitted by the tissue and the 

system. This system will be described in the following chapters.

I. 2- The object of the study.

The object of this work is to improve existing microwave radiometry 

techniques for medical applications. This may be achieved by reducing the effects 

of losses in the special input circuits required for the microwave radiometer and also 

the spatial response patterns of various radiometer antenna arrangements.

For the investigation of antenna spatial response patterns a new technique, 

nonresonant perturbation, has been used. The nonresonant perturbation technique 

was applied to measure accurately the penetration distances of the electromagnetic 

fields which are proportional to the temperature within the tissue. The 

measurements of antenna electromagnetic field configurations for various materials 

simulating body tissues have been analysed experimentally as well as numerically.

The use of microwave correlation radiometry was first suggested for 

medical application by Mamouni et al., (1981). Two identical antennas are used to 

look at a region at some depth in the body and the signal from this volume is cross- 

correlated. Mamouni et al., (1983); Leroy, (1982); Bellari et al., (1984a; 1984b); 

Hill et al, (1985); and Newton (1986) have published work on the practical 

implementation of the idea. In the present study the correlation microwave antennas 

are combined with the nonresonant perturbation technique to develop a technique 

for the measurement of the electromagnetic fields in biomedical applications.

In section 1.3, below, microwave thermography is briefly described. The 

basic principles of clinical thermography and thermometry are discussed in section

3



1.4. Hyperthermia and the techniques for hyperthermia induction are described 

briefly in section 1.5, with a discussion of the use of microwave radiometry for the 

non-invasive monitoring of hyperthermia temperature. Section 1.6 reviews recent 

and current work in the field of microwave thermometry.

Chapter II discusses in detail the microwave radiometry technique and 

describes the microwave radiometer used in this study. The design and testing of 

the microstrip circuits for the microwave radiometer input switching device are 

described in Chapter III. Chapter IV describes the performance of the microwave 

thermography antennas related to tissue properties and modelling of the microwave 

temperature. Chapters V and VI respectively discuss the theory and the practical 

work of microwave correlation radiometry. The nonresonant perturbation 

technique is presented in Chapter VII. Chapter VIII describes the application of the 

nonresonant perturbation technique to a single TEn -mode cylindrical waveguide 

antenna and to the correlation microwave thermography. The author's conclusions 

are presented in Chapter IX.

I. 3- Principles of microwave thermography.

The apparent microwave thermal radiation temperatures measured at the 

surface of the human body can be derived from consideration of the thermal 

radiation emission of an ideal black-body source and the propagation of 

electromagnetic radiation through dielectric materials. The radiation at any 

wavelength from a black-body depends only on its temperature and is independent 

of the nature of the material of this body. Planck's Law describes the intensity of 

the radiation from the black-body at a temperature T in the wavelength region X 

and X + d X, This is given by:

. 2hc2
Bx dX = ------- T T ------ dX (1.1)

X5 ( e ” 0" - 1 )

where B, dX is the emitted power passing through a unit surface area, into a unit



solid angle about a particular direction, in a unit wavelength interval about dX, h, c, 

and K are respectively Planck's constant (Js), the velocity of the radiation (ms'1), 

and Boltzmann's constant (JK 1), T is the temperature of the source material (K).

Figure 1.2 shows the intensity spectrum of black-body emission at a 

temperature of T= 300 K, approximately that of the human body. At wavelengths 

between 0.2 and 20 |im both white and black skin behave as a black-body 

(Mitchell et al., 1967). Maximum intensity occurs at a wavelength X = 10 Jim. 

Infra-red thermography operates near the radiation maximum in the wavelength 

range 3-15 pm (Jones, 1987). Although the wavelength dependence of the thermal 

radiation results in the intensity in the microwave or centimetric wavelength part of
g

the spectrum being reduced by a factor of 10 compared with the infra-red 

maximum nevertheless microwave radiometers, of a form originally developed for 

radio astronomy, can readily detect radiation at this intensity.

Radiation is usually defined in terms of intensity, either spectral intensity 

which refers to radiation emitted in a small frequency interval about a central 

frequency or total intensity which refers to the combined radiation over all 

frequencies. In microwave thermography it is the spectral intensity in a small band 

of microwave frequencies which is the relevant quantity.

Intensity, Iy, is related to the amount of radiative power, dP, in a specific 

frequency band, dv, which is transported across an element of area, da, and in 

directions confined to an element of solid angle dco,

dP = Iy cos 0 dco da  dv (1.2)

where 0 is the angle between the direction considered and the outward normal to the 

surface da.

From Eq. 1.1 the intensity of radiation emitted by a black body, Bv, is often 

referred to as the "Planck function" and is given by:

5
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BV(T) = 2h v '
h v 

. KT
-  1

(1.3)

At microwave frequencies below 10 GHz for source temperatures about 

300 K, w h e r e «  7, Planck's Law is given by the Rayleigh-Jeans's Law
AC I

approximation:

B (T )  = 2K--p -- (1.4)
v 2

The intensity, Bv (T), given in Eq. 1.3 and 1.4, is in terms of a frequency 

bandwidth dv, whereas Eq. 1.1 the intensity was given in terms of a wavelength 

interval, dX.

For non black-bodies the intensity is dependent on both the temperature and 

the nature of the material and will be less than that emitted by a black-body at the 

same temperature.

For a small element dm of an isotropic non black-body in an isotropic field 

of radiation the power emitted in a bandwidth dv, in directions confined to an 

element of solid angle dco, can be expressed as:

jv dm dco dv (1.5)

where j is the emission coefficient for frequency v.

A pencil of radiation passing through a thickness dz of this material will be 

reduced from its original intensity In to I + dlv where

dlu =  -  k P I dz (1.6)

6



where kv is the mass absorption coefficient and p is the density of the material.

An important relation between these two quantities of emission and 

absorption is given by Kirchhoffs Law (Chandrasekhar, 1939) which states that 

the ratio of the emission to absorption coefficients of any body in thermodynamical 

equilibrium is equal to the intensity of the radiation emitted by a black-body at the 

same temperature T:

A small cylinder of material at a temperature above absolute zero, with 

cross-sectional area dc and length dz, which has radiation of intensity I incident in 

the z direction on one face and intensity I + dlv emerging from the second face in 

the same normal direction will both absorb part of the incident radiation and emit 

radiation. The power per unit bandwidth through the cross-section of the cylinder in 

a direction confined to a solid angle dco about the z direction is given by Ivdadco of 

which an amount kv p lydz dco da is absorbed by the cylinder. The power per unit 

bandwidth emitted by the cylinder is equal to jv pdzdcoda and in a steady condition,

This equation is known as the equation of transfer (Chandrasekhar, 1939). 

An approximation of the intensity of the radiation , By (T )which was given in 

equation 1.4, for the bandwidth A v  gives the corresponding power, KTAv , 

which is the Nyquist Law.

The radiometric signal power received by a suitably impedance matched 

antenna in contact with the body is the power:

(1.7)

dl da dco = p j da dcodz - pkv Iv dadcodz (1.8 )

or

(1.9)

7



P = KTAv. (1. 10)

Thus at microwave frequencies the emitted power is proportional to the temperature 

of the emitting material.

The radiation transfer techniques (Brown, 1989) rely to a great degree on 

the differing absorption properties exhibited by high- and low- water content tissues 

(fat, skin, and muscle), Fig. I. 1. The interference effects between the tissue layers 

permits consideration of the radiative transfer in terms of power, and therefore at 

microwave frequencies in terms of temperature. Chandrasekhar, (1950) examined 

and discussed a case of a tumour in breast fat using the plane parallel solution to the 

equation of radiative transfer to calculate the excess temperature ( ATfa) of incident 

radiation at the skin/antenna interface. This temperature, depends on the 

characteristics of the properties of the tissue and the measurement conditions, which 

is given by relationship 1.11.

AT = ATb
i -

i \ r

e

l fs
(kf Azj- + kj )

V e
(1. 11)

where AT is the mean excess temperature of the tumour ambient; k , kf , and k are 

the power absorption coefficients (inverse of the penetration depth) of the tumour, 

fat, and skin respectively; A z, Azf and Azg are the sizes of the tumour, overlying 

fat layer, and skin layer, tfs is the power transmission coefficient from fat to skin. 

At 3 GHz the temperature, AT.; was evaluated by Myers and Barrett, (1977) using 

the tissue properties data collected from England, (1950); Johnson and Guy, 

(1972).

ATb = 0.28 AT (1.12)

8



I. 4- Thermography and Thermometry.

Temperature is an important parameter in the physiology of the human 

body. In this study investigations of the effects of subcutaneous temperature 

changes are carried out. It has been used in clinical measurements ever since 

Hippocrates used his hand to assess a patient's temperature in about 400 BC. 

Sanctorius of Padua, (1612 AD) first used the thermometer to measure body 

temperature following the development of the air-thermometer invented by Galileo 

in 1595 AD. By the 1870's temperature measurement was generally adopted as a 

medical procedure (Solsona, 1978).

Measuring the general temperature of the body remains to this day an 

important technique for monitoring disease. Normal body "core" temperature is 

approximately 37 °C but might vary about this throughout the day by as much 

as 1 °C. It is dangerous to life when the core temperature rises above 41 °C or falls 

below 35 °C.

Particular diseases may cause specific patterns of temperature change during 

the period of illness. Study can assist diagnosis of the disease. Therefore, 

measuring general body temperature provides useful information. Several diseases 

and disorders cause recognizable changes in temperature. Tumours cause 

temperature increases in the region of 1 or 2 °C, due to the increased vascular 

activity and metabolism associated with the tumour. Inflammatory diseases such as 

arthritis are known to cause localized temperature increases. Blood flow plays a 

major role in the heat regulating mechanism of the body, so disorders and diseases 

of the vascular system often effect local or regional temperature changes. There are 

two methods of measuring the internal temperature (invasive and non-invasive). 

These techniques are employed to give information about the thermal condition of 

the deeper tissue and so provide information about their vascular and metabolic 

states. The above techniques are at present mainly used in research. Skin 

temperatures can be measured successfully by infra-red or liquid crystal 

thermography. All methods have some disadvantages in terms of performance, cost

9



and complexity for routine use but microwave thermography techniques are simple 

to use with sufficient sensitivity to detect thermal anomalies and suitable for 

operation in clinical environments at very reasonable cost. It is now necessary to 

evaluate different applications for improving these techniques.

I. 4. 1- Internal temperature measuring techniques, 

a- Invasive techniques:

The measurement of the internal temperature may be achieved by inserting 

narrow probes containing thermistor or thermocouple sensors into the tissue. Non- 

metallic temperature probes have been developed for use in electromagnetic fields as 

applied in hyperthermia treatment of cancers (Vaguine et al., 1984; Wickersheim et 

al., 1985). Haimovici, (1982) has used thermocouples inserted into shoulder, hip, 

knee and ankle joints to investigate normal joint temperatures and the temperatures 

in patients suffering from various osteo-articular disease. It is only possible to 

investigate the temperature in a limited volume of tissue with such techniques. 

However, invasive techniques are undesirable due to the danger of physical 

damage, infection of the tissue, and discomfort to the patient.

b- Non-invasive techniques:

There are various methods of non-invasive thermometry which can be used 

to determine the internal temperatures other than microwave thermography. Non- 

invasive methods are particularly required for monitoring hyperthermia treatment 

of cancers. This treatment involves heating tumour tissue to a temperature of 42 - 

45 °C. These techniques rely on the temperature dependent properties of the tissue 

being known.

The feasibility of temperature control by microwave radiometry has also 

been studied extensively. It has been shown also that non-invasive microwave 

radiometry is a preferable substitute for the undoubtedly traumatic invasive

10



techniques. Most of these non-invasive methods are still at the stage of research and 

development.

(i)- Microwave Radiom etry:

Microwave radiometry* is an alternative technique to measure the 

subcutaneous temperature up to several centimetres. Microwave radiometry is based 

on using small matched antenna brought into contact with the skin and designed for 

local measurements (Land, 1987a; Brown, 1989; Mamouni et al., 1983; Bardati et 

al., 1985; Myers et al., 1980).

(ii)- Microwave Tom ography:

The technique of active imaging involving illumination of the body tissues 

with microwave radiation is termed microwave tomography. Appropriate 

tomographical techniques might be used to reconstruct an image of the observed 

part of the body which depends on the permittivity and conductivity of the tissue 

(Bolomey et al., 1982; Peronnet et al., 1983). This technique is at an early stage of 

development.

(iii)- Ultrasonic Tomography:

The technique of ultrasonic tomography relies on the temperature 

dependence of the speed of sound in tissue, but cannot be used in regions 

containing bone or gas. Ultrasonic techniques have been developed for the 

examination of the breast (Johnson et al., 1977).

(iv)- NMR Imaging:

The tissue temperature depends on the nuclear magnetic relaxation 

mechanism for moments in a static magnetic field, involving thermal interactions 

with the surrounding environment. Parker, (1984) discusses the potential 

* -  D iscu ssed  in Chapter II in more detail
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application of NMR imaging as a non-invasive technique utilizing localized 

temperature monitoring to achieve high spatial localization with a resulting 

resolution of 2°C .

(v)- X-Rav Computed Tom ography:

The images generated by computed tomography are based on differences in 

the linear attenuation of X-rays which is related to the density and the atomic 

number of tissues. The change in tissue density, and hence absorption of X-rays 

with temperature can provide a technique with an estimated resolution of 1 °C 

(Fallone et al., 1982). The ultrasonic and X-Ray techniques are costly and there is 

an element of risk for the patient.

I. 4. 2- Skin temperature measuring techniques:

Skin temperature is often required to assess the change induced by an 

internal or external stimulus within a given area. Temperature measurement within 

the tissue is vital. Temperatures between 37 °C and 40 °C  will actually stimulate 

tumour growth. Above 45 °C all cells are killed so there is danger of doing serious 

damage to normal tissue in the vicinity of the tumour.

a- Thermistor and thermocouple probes:

There is a variety of thermistor and thermocouple probes available for point 

measurement of skin temperature (Cetas, 1985; Ring, 1986). They must, however, 

be placed in contact with the skin and so may affect the delicate balance of heat 

transfer at the skin surface, altering the quantity which is to be determined. They do 

not provide an overall picture of the temperature distribution on the skin surface 

unless a large and time consuming number of measurements is made.
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b- Liquid crystal plate thermography:

This technique uses liquid crystal compounds which exhibit iridescent 

colours which change with crystal temperature in the cholesteric phase and thus 

shows the skin temperature pattern as coloured images. A thin blackened plastic 

sheet containing liquid crystals dispersed in a translucent polymer is placed firmly 

and uniformly against the surface to be examined and the resulting image is usually 

photographed to obtain a permanent record of the thermal image. This technique 

requires thermal contact with the skin, so the examination of body regions of 

complex morphology is very difficult. For this reason, clinical applications are at 

present mainly confirmed to breast examination. The absolute temperature range of 

response is typically about 3 °C (Jones, 1987).

c- Infra-red thermography:

Infra-red thermography is achieved by a scanner fitted with an infra-red 

detector. Remote sensing of the thermal radiation emitted from the skin surface is 

thus effected in the infra-red spectrum at wavelengths near to the maximum of 

emission about 10 |im. Real time display of the temperature distribution over the 

body area of interest can be displayed on an oscilloscope screen or in either colour 

or both black and white on a television image tube . Scanning speeds range from 

one to fifty frames per second depending on the imaging system being used. A 

thermal resolution of 0.2 °C is provided by most systems designed for routine 

clinical use, although more complex systems with resolutions of 0.1 °C are 

available (Jones, 1987; Gautherie and Ring, 1980). The optimum depth of tissue 

detectable by infra-red radiation is in the range of 0.1 to 0.5 mm.

Lawson, (1957) first showed that in most patients with breast carcinoma the 

skin over the tumour was warmer than that in the surrounding areas. In subsequent 

studies Lloyd Williams et al., (1961) describe the application of infra-red 

thermometry to the diagnosis of swellings in the breast, and Gershon-Cohen and 

Haberman in 1964 confirmed these observations.
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The advantage of measuring skin temperature by infra-red thermography 

rather than, applying thermometric devices, such as thermocouples, to the surface is 

that infra-red measurement is almost instantaneous, and that contact with the skin is 

unnecessary.

I. 5- Hyperthermia.

Hyperthermia is the treatment of disease, particularly certain cancers, by the 

process of heating regions of the body containing the carcinoma tissue.

Generally, malignant cells are intrinsically more heat sensitive than normal 

cells in the temperature range 42 - 43.5 °C. This difference allows for a measure of 

specificity in the treatment of cancer, malignant cells being killed whilst normal cells 

survive. There are two types of hyperthermia therapy, whole body or regional, and 

local. For the whole body or a region of the body, such as a limb, hyperthermia is 

limited to temperature in the 41.8 to 42.0 °C range. This can be achieved using hot 

bath or radiofrequency heating. Local hyperthermia or the delivery of heat to a 

specific portion of the body is more suitable for clinical situations involving 

tumours that are not widespread or where only a portion of the body needs to be 

treated. If particularly heat sensitive organs, such as liver or brain, are outside the 

heated field, higher temperature can be used for local hyperthermia than can be used 

for whole body therapy. The use of higher temperatures should allow local 

hyperthermia to be more successful in tumour treatment than whole body 

hyperthermia. Several techniques have been used to produce local heating in the 

human body.

a- Radio-frequency heating:

Two basic forms for the coupling of radiofrequency power to body tissues 

are used - capacitive coupled and inductively coupled.

In capacitive radiofrequency, the tissue is placed between two applicators or

14



electrodes. Heating depends on tissue resistance and current flow. Radiofrequency 

energy couples more readily to fatty tissue than to muscle (Selawry et al., 1958). It 

appears at present that radiofrequency heating techniques, using implanted 

electrodes for the production of local hyperthermia, are ideally suited to the 

treatment of small, well defined tissue volumes (Sutton, 1971).

Inductive radiofrequency heating depends mainly on tissue dielectric 

properties with the dissipated power density c E 2. Both kinds of local 

hyperthermia and regional hyperthermia use frequencies in the range of 20 to 

30 MHz.

b- Ultrasound:

The significant advantage of ultrasound heating is that it may be focussed to 

concentrate the energy for dissipation into very small volumes of tissue. It appears 

to be well suited for producing and sustaining controlled levels of uniform 

hyperthermia in deep tissue up to 5 cm beneath the skin surface sites (Goldman et 

al., 1965). Cabanac et al., (1971) and Gerner et al., (1975) presented studies 

investigating the improvement of the applicators used for such cases. It has been 

concluded that direct contact applicators are required.

c- Microwave heating:

Numerous investigators have used microwaves to generate local heat. 

Heating depends on electrode power output, applicator radiation pattern, and tissue 

absorption of microwave energy. Microwave heating complements radiofrequency 

heating to a certain extent in that muscle tissues are more closely coupled than fatty 

tissue (Cloudsley -Thompson, 1963). Microwave heating appears to be a technique 

ideally suited to the heating of larger regional tissue volumes and may be 

appropriate to whole body hyperthermia.

The ability to induce hyperthermia can be very variable and unpredictable 

because of temperature distribution and tissue inhomogeneity, and because of the
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natural effect of blood flow in regulating tissue temperature.

Generally, non-invasive thermometry in clinical hyperthermia has attracted a 

great deal of attention. Various ultrasound techniques have been investigated 

(Nasoni et al., 1982; Robert et al., 1982; Christensen, 1983) but progress has been 

limited by major problems which lead to non-unique temperature reconstruction. 

Fallone et al., (1982) used X-ray tomography in phantom studies and have shown 

that adequate spatial and temperature resolutions can be achieved.

The potential of microwave radiometers for non-invasive temperature 

sensing in tissues located within 3 cm from the skin is more promising. Several 

improvements to these devices have been reported (Mamouni et al., 1977; Carr et 

al., 1982; Liideke and Kohler, 1983) and the development of multi-receiver 

systems (Semet et al., 1984), correlation techniques (Mamouni et al., 1983; Haslam 

et al., 1984; Newton, 1986) and multifrequency radiometers together with 

multispectral analysis (Miyakawa, 1981; Schaller, 1984a; Plancot et al., 1984; 

Newton, 1986; Bardati et al., 1987) should lead to systems in which spatial 

resolution, temperature resolution and response time satisfy the requirements for 

hyperthermia monitoring.

Plancot et al., (1987) presented numerical analyses of hyperthermia and 

radiometry temperature measurements for TEM propagation. Microwave systems 

combining microwave radiometers operating at 1-2 GHz or 2-4 GHz frequency 

range have been developed, tested and used in hyperthermia therapy.

The hyperthermic treatment of cancers has been further investigated and 

improved by Christensen and Dumey, (1981). They have examined the basic 

mechanisms of several heating modalities including electromagnetic methods at both 

high and low frequencies with a variety of applicators.

Microwave hyperthermia induction requires the electromagnetic field 

configurations of the applicators used to be known. The nonresonant perturbation 

technique has been used to improve the measurement of the electromagnetic field 

(discussed in Chapter VII).
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I. 6- Literature review of microwave thermography.

Microwave thermography for medical use was first proposed by Enander 

and Larson in 1974. Since then several groups have investigated this technique and 

research has been earned out to develop convenient radiometric equipment. Liideke 

et al., (1979) developed an improved radiometer at 3.1 GHz, to simultaneously and 

independently measure temperature and emissivity to minimize temperature 

measurement error. The radiometer was designed for a temperature range of 28 - 

42 °C and an emissivity change up to 20 % .

Edrich and Hardee, (1974; 1976) have presented radiometer measurements 

of 45 GHz which showed that the human body emits thermal radiation at millimeter 

wavelengths which can be used to produce thermography imaging. They also 

studied complex permittivity and the penetration depth of muscle and fat tissues 

between 40 and 90 GHz. Edrich and Smith, (1978) describe a non-invasive 

technique to measure the temperature of human joints using a 68 GHz radiometer 

system. These millimetre wavelength measurements used a mechanically scanned 

parabolic reflector antenna in air approximately 1 m from the body. Gautherie et al., 

(1979a) studied several patients with breast carcinoma using two millimeter wave 

scanners at 30 and 68 GHz respectively. A highly sensitive Dicke radiometer has 

been used for the analyses. Robert et al., (1980) compared microwave 

thermography imaging at centimeter and millimeter wavelengths with infra-red 

thermography analyses. The results indicate that the microwave thermography 

method can non-invasively detect and thermally image deep tissue.

Myers and Barrett, (1980) presented results of a clinical study of breast 

cancer detection at 1.3 and 3.3 GHz. They also described the performance of a 

6 GHz radiometer. All three radiometers are of similar design. They comprise a 

conventional Dicke-switched, or comparison superheterodyne radiometer, with 

100 MHz intermediate frequency bandwidth, centered at 60 MHz. The input to the 

first stage tunnel-diode amplifier is switched at 8 Hz between the antenna, and a
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matched load maintained at 22.0 ±0.1 °C by a thermoelectric refrigerator. The 

resulting square-wave signal is detected at the intermediate frequency by a square- 

law crystal detector whose output is synchronously demodulated. Barrett and 

Myers, (1986) presented the basic principles of radiation transfer in the microwave 

range to detect breast cancer at 6 GHz.

Mamouni et al., (1977) worked with different frequencies between, 8 - 

12 GHz range. Since then they have been employed in improving the technique 

of microwave thermography for medical applications especially in the vicinity 

of 3 GHz, where results obtained give more encouraging results.

Carr et al., (1982) describe improvements in microwave system design, 

including: emissitivity, spatial resolution, microwave transmission characteristics, 

and microwave interference which tends to increase in importance with increasing 

frequency. The frequency selected for the microwave radiometer was 4.7 GHz 

which relates to the Dicke radiometer configuration. It has been shown that tumours 

detected by combined local heating and thermography. This method may also be 

applied as a simultaneous hyperthermia treatment and a monitoring of tissue 

temperature.

Iskander and Durney, (1983) proposed two microwave methods for 

measuring changes in lung water content, one method changes the phase of an 

active microwave signal transmitted through the thorax, and the other is based on 

measuring with a radiometer changes in the natural microwave radiation emitted by 

the body. They have constructed a 1 GHz Dicke-radiometer and made 

measurements on phantom materials to test its performance. It is possible to use 

very low frequencies in this case because the average lung water content is the 

object of interest and spatial resolution is not a consideration. The temperature of 

the lung remains constant due to the high rate of blood perfusion and changes in the 

observed microwave radiation are taken to be due to a change in the emission of 

radiation from the lung proportional to the water content.

Liideke and Kohler, (1983) described two types of radiometers. One utilises
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a microwave front-end for the 1.7 to 2.5 GHz band and the other has a microwave 

front-end for the 10.7 to 12.7 GHz band. These microwave thermographic systems 

have been developed to improve the emissivity readings independent of temperature 

measurement. This has provided a temperature resolution of ± 0.1 K and an 

emissivity resolution with an accuracy of about ± 1%.

Recently, Abdul-Razzak et al., (1987) designed a microwave thermography 

system operating in the 9 - 10 GHz frequency band. Probes and scanning antennas 

have been designed to improve the resolution and to reduce the effects of noise. 

Measurements made on 25 patients with occlusive vascular disease and on 30 

normal controls indicate a detection rate comparable with the present invasive and 

more costly technique. The possibility of increasing penetration depth in tissue is 

difficult, in view of the reflection of the radiation from deep regions in the body at 

the skin-air boundary.

Multi-frequency radiometry techniques have been used to measure 

temperature distribution in tissue ( Newton, 1986 ) at two frequency bands. The 

optimum frequencies are 1 GHz and a higher frequency between 3 and 8 GHz. 

Bardati et al., (1986; 1987) "Universita' Tor Vergata, Rome" have investigated the 

problem of inversion of multi-frequency microwave radiometric data to provide a 

reconstruction of the temperature distribution in the tissue. The initial experimental 

tests of a prototype four channel radiometer, with central operating frequencies in 

the range 1.5 to 5.5 GHz, have been carried out and analysed (Bardati et al., 1987).

Correlation microwave radiometry has also been suggested for the 

improvement of single frequency, single antenna microwave thermography 

(Mamouni et al., 1983). This technique uses two identical radiometer channels and 

antennas. The antennas are arranged to view a common volume of tissue inside the 

body. The signal in each channel comprises of a component from the common 

region and a component from the rest of the antenna's field of view, the common 

component may be separated out. The radiometer signal originating at depth inside 

the tissue may therefore be determined by adjusting the relative orientation of the
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two antennas. The depth observed inside the tissue may be altered. Research into 

this technique is being continued in order to further improve the performance of 

microwave thermography.

The microwave thermography group at Glasgow University headed by 

Dr D.V. Land, (1983a; 1983b; 1984; 1986; 1987a; 1987b; 1988) is still in the early 

stages of the development of this technique. It has been demonstrated that it is 

possible to build a microwave thermography system with sufficient sensitivity to 

detect thermal gradients and also suitable for operation in clinical environments at a 

very reasonable cost (Land, 1987a). Researches in microwave thermography are 

being carried out to improve the investigation in medical applications. The computer 

modelling techniques for microwave thermography, developed by Land (1988), 

will be discussed in more detail in the following chapters. This work has been 

further investigated by Brown, (1989) for the detection of breast disease and knee 

joint damage.

Further studies on the microwave dielectric and thermal properties of tissue, 

and on the antenna patterns will improve the sensitivity of the microwave system 

techniques and applications. Microwave thermography correlation techniques are 

being investigated using a 90 0 crossed-pair antenna arrangement which could be of 

practical interest. A novel technique for microwave hyperthermia induction, 

nonresonant perturbation, is proposed by Dr D.V. Land to investigate the 

electromagnetic field configurations.This technique has been used in conjunction 

with the correlation microwave thermography antennas to improve the detection of 

the penetration distance of the electromagnetic fields.
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Chapter II

The microwave radiometer

II. 1- Introduction and literature review:

H.1.1- Microwave radiometry:

The microwave radiometer technique relevant to this work has been 

developed since the late nineteen forties. The classic comparator microwave 

radiometer was first described by Dicke in 1946. The operation of this type of 

radiometer will be considered in detail in section 13.2.

In 1954 Selove, presented in his paper an analysis of the sensitivity of 

radiometers at radio frequencies used to investigate radiation from astronomical 

sources. Two types of radiometer were considered. The first was a modulation type 

comparison radiometer, where square-wave modulation was used to improve the 

final detected signal. The comparator microwave radiometer designed with two 

channels used two separate frequency bands. The basis for improvement is that 

comparison is made by switching the signal on and off, then the signal is present 

only half the time. The second is a d.c. comparison radiometer in which the 

comparison voltage is unmodulated. Goldstein, (1955) also presented a comparison 

of two independent radiometer receivers which showed a greater sensitivity when 

the output was correlated. This was further investigated by Strom, (1957) who 

analysed the sensitivity of the Dicke radiometer using the comments of Goldstein, 

Tucker and Graham. These analyses achieved a more general treatment of the 

radiometer and found that the sensitivity was independent of detector 

characteristics. This relationship showed that the expression for the sensitivity 

agreed with that of Goldstein and Dicke. Strum, (1958) considered high-sensitivity 

microwave radiometry for a system where the temperature was significant by less
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than 1 K. Fluctuations in gain and temperature of antenna, the waveguide system, 

the comparison source, the noise balancer, the receiver and other amplifying 

components were considered for the microwave radiometer system, and the 

influence of these factors on the threshold equation. Knight, (1962) considered a 

radiometer with asymmetrical square-wave modulation and correlation. The 

calculation is of the Goldstein type and was done by representing Gaussian noise 

entering the radiometer as a Fourier series of sinusoidal waves. Kelly et al., (1958) 

analysed a general comparison radiometer for arbitrary modulation and correlation 

and presented proof that a square-law detector is superior to any other detector law 

for Gaussian noise. Wait, (1967) considered the sensitivity of the Dicke radiometer, 

using a switching radiometer to compare microwave noise sources with a sum-and 

difference-correlation radiometer and discussed the literature of the Dicke switching 

radiometer. He proved that the most sensitive radiometer is a square-wave 

modulated radiometer with a wide band square-wave correlator.

Fig.II. 1 show the basic Dicke switching radiometer where T j , T2 are 

noise source effective temperatures, (Tj = T2 ), connected to the transmission 

coefficients a1( t ) , a 2 ( t )  respectively; the noise signal sources are 180° out of 

phase. The internal noise of the amplifier referred to the input of the amplifier has 

effective temperature Tn. The reference signal c ( t ) is referred to as the correlation 

and usually is sinusoidal or square wave; n , s , A , D , F l  , M ,  and F2 are the 

outputs of the amplifier noise , switch signal, amplifier, detector, band pass filter, 

multiplier and low pass filter respectively.

Medical applications have been improved by using microwave radiometry 

instead of infrared radiation because the detection depths are greatly significant. As 

explained in Chapter I microwave radiometry is being assessed for medical 

applications because the radiation penetration distances through body tissues are 

large enough to allow internal rather than surface temperature patterns to be 

examined. The following authors have published work on the design of microwave 

radiometers suitable for tissue temperature measurement. Liideke et al., (1979)

22



Switch

Phase sensitive 
detector

c(t)

Amplifier

Detector

Bandpass
filter

Low pass 
filter

Amplifier noise

Multiplier
(correlator)

Noise source

Recorder

Noise source

Variable voltage 
transmission Variable voltage 

transmission a (t)

Fig. n .l Dicke radiometer



developed an improved radiometer, which simultaneously measures temperature 

and emissivity, independent of a possible mismatch. Land, (1983b) designed and 

constructed a 3 GHz radiometer receiver*.

Myers et al., (1980) presented results of a clinical study of breast cancer 

detection at 1.3 GHz (wavelength 23 cm) and 3.3 GHz (wavelength 9 cm), and 

described the performance of their 6 GHz ( 5 cm ) radiometer. This method has 

been used by Carr et al., (1981) to investigate the detection of cancer utilizing a 

combination of a passive microwave radiometer and an active transmitter with 

frequencies of 4.7 GHz for the radiometer and 1.6 GHz for the transmitter. In 

addition, Shaeffer et al., (1981) used also this non-invasive method to detect 

cancer, especially of the breast; measurements were made on several healthy male 

and female breasts. Since 1981 more interest has been shown in microwave 

radiometry for medical rather than in industrial applications. Carr et al., (1983) 

discussed the cases of a number of females at one frequency for an apparent 

temperature of about 0.4 °C. In 1983 Mamouni et al., improved this technique to 

include multiprobe scanning and the study of the possibilities of correlation 

microwave thermography. Enel et al., (1984) discussed the detection of the 

subcutaneous thermal gradients which exist in living tissues and the determination 

of their thermal and geometrical characteristics. They also investigated a radiometer 

system incorporating six probes scanned electrically with a bandwidth range 

between 2.5 and 3.5 GHz and a sensitivity of 0.1 °C. It has been shown that is 

possible to improve the spatial resolution of microwave radiometry and the need for 

multiprobes or multifrequency. Bardati et al., (1985) measured the subcutaneous 

temperature distribution for different frequencies in the range 1.5 - 6.5 GHz using a 

combination of both singular functions and Kalman filtering. The reconstructions 

obtained by singular functions alone, suffered from strong instability due to the 

relatively high noise level in measurements, whereas the combination with the 

Kalman filter led to more significant results. Microwave radiometric techniques

more detail in section II.5



have been used to investigate the behaviour of living tissues, for instance the 

geometrical characteristics (depth and size) and the temperature of local, thermal 

volume in homogenous tissue and lossy material. The first of these experiments 

were done by Bocquet et al., (1986) using water as lossy material at two 

frequencies, 1.5 and 3 GHz, to obtain information on the temperature gradients at 

depth. Microwave radiometry is able to provide significant information on 

metabolism and thermal conditions of subcutaneous tumor tissue. Brown, (1989) 

studied the development of the computer modelling techniques for microwave 

thermography. It has been found primarily that the microwave thermographic 

measurements on both the breast and knee joint reflect the level of perfusion in the 

breast tissue and the synovium respectively. Mamouni et al., (1989) developed a 

compution method of three dimensional structure for the weighting function, 

(Eq.II.l), the applicator associated with microwave radiometry in order to evaluate 

the influence of the structure of the material on the radiometric signals and to 

improve the imaging technique. N'Guyen et al., (1980a) have presented a method 

to combine microwave heating and microwave radiometry, which has given good 

results and shows that the method is sound.

The weighting function is defined by:

C (f)  = K(r. (f)IEj(f)IAV. (II.l)

where a . is the conductivity, E. is the electric field and K is constant of 

normalisation for the subvolume AV. coupled to the applicator.

The total power of the microwave radiometer is given by a simple form:

P = G Tsys (II.2)

where T is the system temperature, which accounts for the antenna noise signal, 

the input line losses, and the internally generated noise; G is the system gain 

constant.
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D.1.2- Multi-freauencv radiometry:

This technique has been proposed for medical application in order to obtain 

better resolution by the introduction of several radiometers. Newton, (1986) used a 

multi-frequency radiometer with several radiometers operating at different 

frequency bands to show that the penetration of microwave radiation in biological 

tissue depends on the frequency. These three two-frequency bands at 1 and 8 GHz, 

1 and 5 GHz, and 1 and 3 GHz have been used to measure the temperature. The 

resulting data showed that the sensitivity of a multi-frequency radiometer was 

inferior to the sensitivity of single frequency radiometers, on the other hand the 

output of each radiometric channel depends on frequency, hence multi-frequency 

radiometric observations contain substantially more information than single- 

frequency measurements.

The total signal at the output of the radiometric channel with centre-band 

frequency f is given by:

where W ( f , z ) is the weighting function at the depth z and frequency f , T ( z ) is 

the temperature profile at z. It has been established experimentally that the greater 

the number of radiometers used at any one time the more difficult it is to achieve an 

accurate result in both the weighting function and the reading. Although several 

difficulties still remain in retrieving temperature patterns in the human body from 

multispectral radiometric data Bardati et al., (1987a) has been able to produce 

experimental results that confirm that useful accuracy is indeed feasible up to 

moderate depths in the tissues. Experimental phantom material, simulating a highly 

absorbing homogeneous infinite muscle, was intentionally chosen for analysis by 

Bardati et al., (1987b). The multi-frequency microwave radiometer has been further 

investigated by Bardati et al., (1989) in order to determine the temperature variation

(H.3)
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with depth in the human body . They considered a cross-section of the human neck 

of clinical interest for monitoring temperature during hyperthermia treatment. Six 

frequencies, between 1 and 4 GHz, and three positions of the antenna close to the 

axis of symmetry of the neck were considered. This technique can study the effects 

of the number of measurement positions on temperature reconstruction and improve 

the quality of the microwave radiometry system used for medical applications.

n.2-Description of the radiometer:

The microwave radiometer is a receiver specially developed to detect the 

random noise signals generated within animal tissues in the microwave region, 

particularly selecting signals of thermal radiation to facilitate sensitive temperature 

measurement within the Raleigh-Jeans region of the thermal radiation spectrum, In 

this region the frequency /  (approximately 300 K) and the source temperature 7,

are such that « 1  and the radiometric power varies linearly with the
kT

temperature making the region ideal for medical microwave radiometry. The 

measurement of a small amount of microwave noise with a simple receiver is 

impractical because the noise cannot be distinguished from the desired signal. The 

main problem of the total power radiometer (Eq.II.2), which makes it impractical 

for this application, is the degradation of the sensitivity by fluctuations in the gain 

of the system*. The output reading is proportional to the total input noise 

temperature and to the gain of the system.

A = G ( T a+ T )  (II.4)

where G is the receiver gain, TA is the source noise temperature and T. is the 

receiver noise temperature. The changes in A are found by taking the total 

differential of Eq. II.4.

*- RF Radiometer Handbook for details. (J>ee reefer* (j?&)
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5A = 8 [ G ( T a + T ) ] = G 5 ( T a + T )  + (Ta + T ) 5 Q  (II.5) 

which is equivalent to an input temperature change of,

^ = 5 ( T A + T)  + f r A+T ) | l

^ = 6 (T A + T )  = 5 T ys = A T ys („ .6)

*9 \Jcif{c\ h i'o in Ta  T f  f uJ h /

In an ideal system would be zero and only changes in system temperature 
Cj

8T . would contribute to 8A In this system the noise limits the detectable system 

temperature 8T given by AT . The effect of the gain variation can be removedsys sys

by using a Dicke radiometer in which the frequency is high enough to maintain a 

stable gain over the switching period.The radiometer itself generates noises from its 

input port which is reflected back to the radiometer by devices connected to the 

input port.

II.3-The Dicke Switching Radiometer:

In 1946, Dicke suggested modulating a noise signal as a means of detecting 

the signal of interest from noise originating in the amplifying system and also to 

reduce the effects of gain fluctuations in the radiometer output due to receiver gain 

instabilities. He proposed a scheme in 1946 (Fig. II. 1), to reduce the effects of 

gain fluctuations in radiometers.

A = G ( T a + T ) - G ( T ief + T ) = G ( T A - T ref) (11.7)

8 A = 8 G ( T A- T ef) , ^ = 8
A

T -TA ref < 5 ( T.  -Tr )

*- Proved, by experiment ( discussed in section 11.11).
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where the system output is A; the antenna temperature, Ta; the reference 

temperature, T.ef; the receiver temperature, T ; and the system gain factor, G.

Other types of radiometers have subsequently been described by the same 

authors but Dicke-type radiometers have remained very popular and have been 

widely used by radio-astronomers and now are used in medical applications.

The problems of radiometer designs are greatly reduced by the Dicke input 

switching radiometer because of this ability to separate and filter out noise. The 

output of this is increased by a factor of two compared to the ideal total power 

radiometer. This type of radiometer also has the advantage of eliminating a gain 

variation noise, and to detect and measure the thermal radiation at its input. The 

simplest type of radiometer is the "straight" receiver, in which rectification takes 

place directly at radio-frequency. The more usual radiometer is the superheterodyne 

type.

n. 4 - Superheterodyne Radiometer:

The superheterodyne radiometer has been used to improve the measurement 

techniques for temperature and attenuation of radio-astronomy devices since 1959 

and carried out by Meredith et al., (1963). Superheterodyne receiver techniques 

have been successfully extended to a frequency of 140 GHz. The superheterodyne 

receiver is capable, even at short (millimeter) wavelengths, of detecting powers 

several orders of magnitude lower than the minimum power which can be detected 

with an infra-red type receiver. Its great advantage is that it operates at room 

temperature. The sensitivity is, however, limited by the lack of a precise impedance 

match of the modulator and the signal source (Meredith et al., 1964). The minimum 

temperature change, AT, which can be detected in the radiometer is conventionally 

assumed to be that giving a d.c. output equal to rms output noise voltage (Kraus, 

1966) which is given by:

28



TC T
AT = —— ys (II.8)

f t VHF TLF

where K is the sensitivity constant, Tsys is the system noise temperature at the 

applicator terminals, Tsys = Ta + Tr, where Ta and Tr are the antenna and the 

receiver temperatures respectively (K), Av„_ is the pre-detection bandwidth (Hz)Hr

and x is the post-detection equivalent integration time (s).

The constant K depends on the type of receiver and its mode of operation, 

but is of the order of unity. The system noise temperature at the applicator terminals 

depends on the applicator noise temperature, the receiver noise temperature, the 

physical temperature of the transmission line between the applicator and receiver 

and the efficiency of the transmission line.

II. 5- Description of a 3 GHz radiometer:

A 3 GHz radiometer* has been designed and constructed by Land, (1983b), 

University of Glasgow.lt consists of a Dicke-switched radiometer and a single 

side-band superheterodyne with a 14 dB gain, a 2.5 dB noise figure RF pre­

amplifier of bandwidth 2.5 to 3.5 GHz; the signal is converted by a mixer and local 

oscillator at 3 GHz.The IF amplifier has a bandwidth of 0 to 500 MHz, noise 

figure of 2.5 dB and a gain of 46 dB. A square law detector is used followed by 

low-noise AF amplifier with low frequency, (Fig. II. 2); prototype of this 

radiometer is shown in Fig. II. 3. The amplified and detected input signal, 

G (T. - T ), at the 1 kHz switching frequency is further amplified, and
A ref

synchronously detected and than passed through a low-pass filter. The gain 

variation depends on the temperature of the microwave pre-amplifier. The 

microwave difference signal and the reference source temperature signal are added 

and scaled to provide calibrated antenna temperature in degrees Celsius.

*■ Land D.V., (1987), " A Clinical Microwave Thermography System", IEE Proceeding, Vol. 134A, p p .193- 

2 0 0 .
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Land, (1983a) utilized the Dicke input circuit to aid in determining the 

performance of his antenna designed to detect and measure the mismatch in 

interface between the antenna and the body for medical applications. The antenna is 

placed in contact with the skin and connected to a radiometer receiver which will 

convert the input to an output on a thermal signal. The accuracy of the measurement 

depends how close the source temperature is to the reference temperature. The 

reference noise source is a standard microwave 50 Q coaxial load, heated to 

approximately 40 °C. Other, self-balancing, radiometers have been proposed 

(Liideke et al., 1978; 1979; 1983) which maintain the reference temperature equal to 

that of the source to correct the effect of reflection at the boundary. This is a more 

complex method than the one described above, with reduced receiver sensitivity and 

a longer response time for a given temperature resolution.

The optimum temperature resolution achievable with a radiometer receiver is 

given by Gabor, (1951).

T + T
AT = Q —l— 5- (II.9)

VBt

where Q is the radiometer receiver constant in the range of 4.6 to 6.6, T is the 

effective noise temperature of the measuring system at the input, Ts is the source 

temperature, B is the receiver pre-detected noise signal bandwidth, and t is the 

receiver post-detected signal filter response time.

II. 6- Radiometer sensitivity:

Radiometer sensitivity is the smallest change in system noise input that can 

be detected and processed by the system to give a measurable output. Any 

fluctuation in the output is directly proportional to the noise power detected at the 

input (Eq. II.9). The sensitivity of the radiometer may be improved by increasing 

the pre-detection bandwidth but this is limited practically by the frequency over
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which the antenna may be matched to the body tissues. Increasing the post­

detection integration time will also improve the sensitivity but this is limited by the 

required response time of the system. The effect of reducing the noise temperature, 

Tr , while improving the sensitivity, becomes of progressively less value because 

the antenna noise temperature, Ta , due to the source, is always present. AT is a 

basic limitation to radiometer performance.

The Dicke radiometer is a square-wave modulation and its output 

fluctuations increase by a factor of two compared to the ideal total power 

radiometer. The performance of the 3 GHz radiometer used for this work is given 

by:

AT = (Ts + Tr ) K ^  (11.10)

where AT is the temperature equivalent of the root-mean-square (rms) noise

fluctuation of the output signal; T§ is the source noise temperature which is close to

310 K; Tr is the effective noise temperature at the input of the receiver; K is the

radiometer constant ( K = 2 here); and Bl and B2 are the receiver pre-detection and

post-detection noise power bandwidths respectively B 16 scV 'ckj IF Wciur-dR^ 

0 35and B2 = — , where is the equivalent integration time; \ F was
LF

usually set at 2 seconds, critically damped. The rms a.c. noise temperature in the 

radiometer output is 0.04 K. It has been assumed that the peak-to-peak magnitude 

of the noise is eight times greater than the rms value ( Meredith, 1964 ), since 95%

of the signal will be within 3.92 times the rms value for Gaussian distribution. This 

95% is 0.16 K and is a convenient measure of the temperature resolution of the 

system. The observed variation of the peak-to-peak magnitude was between 0.16 K 

- 0.18 K.

The temperature resolution is also affected by the stability of the system, 

and fluctuations in the gain caused mainly by the relatively slow ambient 

temperature changes. Low noise GASFET pre-amplifiers, are a significant
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problem. They have about 1% change in gain for a temperature change of 1 K. 

However, the difference between the antenna temperature and the source 

temperature will always be less than 5 K, a change of 1 K will cause a maximum 

change in output of 0.05 K (Brown, 1989); a variation of more than 1 K in the 

operating temperature is not considered likely in the time to scan one patient, which 

is usually less than 1 0 - 20  minutes. The variation in gain does not therefore in 

practice reduce the temperature resolution, but affects the absolute temperature 

calibration of the system. The temperature resolution of the radiometer can be 

improved by reducing the receiver noise. SocU an

W ' Vo o , o k. . As sensitivity 

is increased the variations in gain will become relatively more important. The 

practical results of the sensitivity of the 3 GHz radiometer are discussed in 

section II. 11.

II. 7- Antennas:

The antenna used in Glasgow microwave thermography system was that 

designed by Land, (1983a). It is a cylindrical waveguide antenna, 2.5 cm internal 

diameter and 5.2 cm in length with a tapered fin-line type waveguide to coaxial line 

transition (Fig.II. 4). The antenna waveguide is loaded with a low-loss dielectric 

(Emerson and Cummings Eccoflo HiK dielectric powder, er* = 12 - i 0.0084 ). 

The waveguide modes which may propagate in the operating bandwidth of 3.0 - 

3.5 GHz are TEn  - and TMQ1 -modes. The guide wavelength is characterized by 

the dielectric filling, which allows the dimensions of the guide to be smaller than 

those required for a hollow guide, and reduces the wavelength by a factor of V e r ' in 

unbounded volume of dielectric. For the cylindrical waveguide antenna used in 

Glasgow microwave thermography system the cut-off frequency for the TEn  - 

mode is 2.03 GHz and for the TMQJ -mode is 2.65 GHz. The waveguide to 

coaxial line transition is so arranged to couple to only the TEU -mode.

Ej.* is the complex relative permittivity ( dielectric constant and loss factor)
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Fig. II. 4 Cylindrical waveguide antenna used in Glasgow microwave thermography



The rectangular waveguide antenna operating in TE10 -mode is used widely 

in clinical microwave thermography . Guy, (1971b) used rectangular waveguide 

antenna operating in the TE1Q -mode for several dimensions, and showed the effect 

of the aperture width on the heating patterns in the muscle layer of a planar tissue 

model consisting of a layer of fat 2 cm thick above a semi-infinite layer of muscle. 

Heating microwave antennas are appropriate to receiving microwave antennas 

through the reciprocity principles (discussed in more detail in Chapter IV). Cheung 

et al., (1981) designed a TE1Q-mode rectangular waveguide antenna, which was 

used to study the experimental and the theoretical results of the attenuation in liquid 

phantom for three different applicators. The Microwave Thermography Group at 

l'Universite de Lille, France also used TE1Q -mode rectangular waveguide antennas 

along with probes in their studies (Robillard et al., 1980, 1982, N'Guyen et al., 

1980a, and Audet et al., 1980). Moreover, Erik, (1987) used TE]0 - and TE2Q - 

mode waveguide antennas to analyse the penetration depth of two different liquid 

phantoms for different aperture widths and frequencies. By the reciprocity theorem 

this antenna will receive a maximum signal from the muscle or the liquid phantom 

and then have the best response within the depth. From the diffraction 

considerations rectangular and cylindrical waveguide antennas of the same 

dimensions should have very similar behaviour. Microwave thermography antennas 

will be discussed in detail in Chapter IV.

n. 8- The performance of the radiometer system input circuits:

II. 8. 1- Introduction:

The improvement of the radiometer system temperature resolution depends 

on the reduction of the input noise by reducing antenna and circuit losses 

(particularly Dicke switching elements) and on improving amplifier performance.
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II. 8. 2- Noise Signals:

In general, the random disturbance caused by the noise, disturbs the desired 

signal and reduces the certainty of an observation or measurement. Microwave 

thermal noise arises from vibrations of conduction electrons and holes due to their 

finite temperature (North, 1942; Miller et al., 1967).

II. 8. 3- Available noise power. N:

The available noise power, is the maximum rate at which energy can be 

absorbed from the body. This power is KTB where K is the Boltzmann's 

constant, T is the absolute temperature, and B is the bandwidth of the 

transmission path. The thermal noise power available, KTB , although dependent 

on bandwidth, is independent of frequency in the Raleigh-Jeans region (see 

section 1.3), and of the value of the source impedance.

II. 8. 4- Noise temperature.T:

The noise temperature of a generator at a specified frequency is defined as 

the temperature of a passive system having the same available noise power per unit 

bandwidth. The thermal equilibrium situation is actually the only condition by 

which the output from a standard is truly known. In order to determine the noise 

temperature of a generator with non-zero reflection coefficient, a "lossless" tuner 

can be used to bring the reflection coefficient to zero, which would allow the 

temperature to be measured by standard techniques.

T = —  (11.10)
KB

n. 8. 5- Effective noise temperature, T„:

The effective noise temperature is the temperature which yields the power 

emerging from the output of the noise source when it is connected to a non-
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reflecting, non-emitting load. The relationship between the noise temperature T and 

effective noise temperature Tg is: T =T(1 - /p /2)

where p  is the reflection coefficient of the noise source.

II. 8. 6- Noise figure (noise factor"). F:

The noise figure is defined as the ratio of the available signal to noise ratio 

(SNR) at the input to the available SNR at the output. This is generally a function 

of frequency but is usually independent of bandwidth, and it is a very important 

criterion in communication systems.

S. N T +T
F = ——-  F = —-------------------------------------------------- - (1112)

S N. T K 'O 1 o

where S., Sq and N., Nq are noise signals and the available noise power of the 

input and output respectively. It is very important that the noise figure F is 

independent of the antenna characteristics, since it is assumed that the source 

temperature is fixed at 300 K. The difference between the noise figure of two 

receivers, therefore, is not a direct measure in the change in performance of the 

operating "real-life" system. The best measure is the change of the operating noise 

temperature, but even this assumes that no change in antenna gain has taken place 

that will change S..

II. 9- Thermal radiation measurement:

The intensity of thermal radiation emitted by a black surface (a perfect 

emitter and absorber) radiating into a medium, is given by Planck's Law which is 

already described in Chapter I.

Fabre and Leroy, (1981) presented a method of analysing the thermal noise 

emission of lossy material, where they considered a coaxial cell filled with a lossy 

material connected to a matched receiver at thermodynamic equilibrium at the
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temperature Tq. The power emitted is (1 - 1 p 12) KT^ AF, and the variation of AT 

the temperature of the cell involves the variation ATm of the noise temperature 

received,

ATm = ( l - l p ) AT (11.13)

A basic Dicke switching circuit radiometer was developed by Land, (1983b) 

at a frequency of 3 GHz to investigate the radiation from the human body. This 

technique was chosen to minimise the effect of antenna mismatch. The practical 

limitations, for temperature measurement arise mainly from losses between antenna 

and receiver, and from non-ideal switch parameters, including non-symmetrical 

switch operation which acts alternatively as a transmission or reflection element. 

This method has recently been further developed for clinical applications and is the 

essential part of the equipment used in clinical microwave thermography. Land, 

(1987a) has discussed the behaviour of the internal body temperature patterns at 

clinically useful depths within the body (Fig. II. 5), where the numerical 

temperature patterns closely agree with patterns calculated using simple thermal 

microwave modelling. In practice, the reflection coefficient of the termination is 

very small, but the equivalent temperature of the noise source must be corrected for 

transmission losses. A particular radiometer can be described in terms of its 

resolution, stability, and the dependence of its output on the noise generator's 

reflection coefficient. Resolution and stability depend primarily on the first-stage 

amplifier noise figure, gain and on the type of radiometer. In the Dicke-type 

radiometer the receiver or reference temperature is fixed and lies near, but is not 

equal to, the source temperature Ts. This receiver is represented by a normal load 

resistance at the temperature Trec. The theoretical investigation shows that this 

system can have a significant measurement error depending on the reflection 

coefficient of the antenna due to:

-Multiple reflections between antenna and switch;
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-Interference on the receiver-side, noise reflection from the switch in the 

"on" state with reflection from the antenna;

-Non-symmetrical thermal emission from the PIN-switch depending on the 

antenna matching. Theoretical study has shown that the radiometer signal is linear 

with the temperature, and with the reflection coefficient. This is proved by 

measurement.

II. 10- Analysis of the Dicke radiometer input circuit:

The input circuit of the Dicke type radiometer used for this work has been 

investigated to assess its effect on the performance of the radiometer system. The 

results of this analysis have been compared with measurement made on the 

radiometer. Numerical analyses of the case shown below have been studied at the 

different temperature signals for the two switch positions.

P

where a  , a , T , T are the power attenuation constants and temperatures through
r r a  r

the attenuating region (coaxial cables and switch),p is the reflection coefficient at 

antenna/body interface, Tb is the body temperature and Tm is the received input 

temperature.

The incident and the reflected temperature is obtained using this process.
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+* Lossy region 
a , T

Power
reflection

The diagram shows how to obtain the total effective temperature through a lossy 

region.

T! ------► [ «  , T] a T j + (1- a ) T ,

x p

(1 - p )  +

X (1 - P )

so the total effective temperature in this case is:

p [ a T 1 + ( l - a ) T ]  + ( l - p ) T 2

If the reflection at the boundary is 100% (p = 1) the above expression becomes:

a  Tj + (1 - a ) T

which is similar to the original instance where the switch is in position 1.

The second case was considered with the switch in position 1, we assume
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that reflection at the interface switch/reference load is 100%. The diagram in this 

case is:

T
m

The temperature Tm is seen at the interface as:

T = a  T f + (1 - a  )T (11.14)m r r e f v r / r

where T f is the effective reference load temperature.

With the switch is in position 2. The mismatch between the signal source and the 

switch will cause a reflection of radiation which will affect the measured signal.

m

a  , a

T
U

■i
At the interface T is seen asm

oTm+(l -o)T„

This is reflected as:

p[«  T + (1 - a ) T ]
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The effective noise temperature of the signal going to the attenuation is then:

P [ a  Tm +  ( 1 " a  ) Ta ] +  ( 1 " P ) T b (I U 5 )

The apparent temperature beyond the attenuating region is Ta where Ta is equal to:

T a =  t P T m + P ( 1 - ) T a+  ( 1 " P ) V K  1 - a  )T a <IL 16 )

The difference between the signals associated with each of these states is measured 

by a Dicke radiometer. Considering T = Ta and a r = a, the expression becomes:

P a 2 Tref + p (1 - a 2 ) Ta + ( l - p ) T  (11.17)

L
<4------------------------------ ►

T.l

d l ,  d 2

P P,

Where p and p are the reflection coefficients of the the first and the second
r  d r  s

boundaries, the power attenuation at the switch is a d, and a  is the attenuation 

constant between the boundaries. The two effective temperatures ( T l ,T2) of the 

incident and reflected waves to the switch are defined by these expressions.The 

temperature T j, resulting from the loss of signal at the switch and the reference
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load at temperatures T, and T  ̂The total temperature T] can be written as:

Tl = a d T» f+ <1- “ d>T, i f  T r =  T  <1 1 1 8 )

Consider two different cases for the temperature T2. First, a matched load 

between the signal source and the switch gives a specific range of temperature 

which can be written as:

T2 = a  T + ( l -  a  ) T (11.19)

Second, because there is a mismatch between the signal source and the switch the 

temperature T. 

are defined by:

temperature T = T . The two reflection coefficients of the boundaries, p and p
2 s s d

psexp(-27sL) = and Pd = | L^ -  ™
out

The mismatch between the signal source and the switch will cause reflections of 

radiation which will change the measured signal. The mismatch at the interfaces 

between the source and switch and between the switch and reference load will cause 

reflections of radiation which will also change the measured signal. These reflection 

coefficients can be combined to give an effective reflection coefficient when there is 

no loss and there is loss between the reflection coefficients ps and pd.

Pdlord2 + Ps exP( - 2 Ys L )
P e f f l o ^ - ^ ^  2-------------------------2---------- d I - 2 1 )

Pdlord2eXP(-2YsL) + l

with ys = a s + j p ; p = -y -
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When one considers the effective reflection coefficient p ^ depends on the values 

°f Pd> Ps and the propagation constant, which is defined above. The measured 

signal now becomes:

“ d t Peff ( ttd T 1 +  ( 1 ‘ “ d ) T  ) +  ( 1 - Peff ) T s ] +  ( 1 - « d  ) T  W -2 2 ) 

For the two states the signal now becomes:

a d ( Pef£2 " Peffl ^ ^ ( ^ - ^ - ( T ^ T ) ]  (1 1 .2 3 )

Computational modelling shows the variation of the effective reflection coefficient 

with respect to source temperature and the reference temperature. Fig. II. 6a shows 

the relationship between the signals of the two boundaries with the effective 

reflection coefficients.

The measured signal is directly proportional to the source and the reference 

temperatures Tj and T2 as well as the effective reflection coefficient.

Fig. II. 6b shows the numerical analyses of the effective reflection 

coefficient with the measured signal for different values of the power attenuation 

(ad) (Eq. 11.23) at the switch for the range of 0.89 to 0.99 at a frequency of 

3.2 GHz and at 300 K source temperature and 313 K reference load temperature.

II. 11 - Measurement of microwave radiometer behaviour:

A microwave thermal noise source consists of a matched resistive 

termination maintained at fixed temperature and a transmission line to transmit the 

thermal noise generated from the termination. The source temperature can be 

established by a conventional thermometer (Fig. II. 5), and the loss distribution of 

the transmission circuit can be calculated under the operating conditions using a 

sliding short-circuit method (described in section ID).
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T
s2

to the receiversi

where oCj, a 2 and Ts , T^, Tq are the power attenuation of cables and temperatures 

of load 1, load 2 and cables respectively.

The difference signal measured by the receiver at the switching frequency for the 

above arrangement is given by:

A = G a 2 Tsl + G ( ttj -  a 2 ) To - G a 2 Ts2 (11.24)

= G « i ( Tsi + T„ ) ‘ G a 2 ( t S2 + T0 ) if a„ = a 2 = a  

= G a ( T s l - T s2) (11.25)

where G is the system gain.

The equation 11.25 illustrates that the lossy components in the two paths are 

(OCj, a 2 ) at the ambient temperature Tq. This is a reasonable approximation of the 

practical case.

A = G(<x1-<x2 ) T s - G ( a r a 2 ) To if Tgl = T 2 = T (11.26)

The same technique has been used to investigate cable losses using a matched 

source. We replaced the antenna/body interface by matched load 1, and the 

reference load by matched load 2 (Fig. II. 7). The temperature at load 1 varies 

between 0 and 50 °C at intervals of 5 °C and the reference temperature varies 

between 0 and 50 °C at intervals of 10 °C at a frequency of 3.2 GHz. The signal
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received (A) from the radiometer is directly proportional to the difference between 

the temperatures. Measurements are taken at room temperature (20 °C) for a range 

of lengths of various types of microwave cables between the switch and load 1 ( 9, 

17, and 33 cm, RG 223/U 8, RG 223/U 56, RG 223/U 110, RG 223IU 145, and 

RG 223HJ 175 cm). This serves to provide a range of input circuit losses ( a  ), 

Tab. II.1. The results in Fig. II. 8, Fig. II. 9 and Fig. II. 10 show that the 

output temperature of the radiometer agrees closely with the theoretical analyses 

(Eq. 11.25). The experiment demonstrated that the attenuation constant of the 

reference load increases in proportion to the microwave cable lengths for RG 

223IU and decreases in proportion to an increase in copper cable length.

Figures II. 11 and II. 12 show, in three dimensional form, numerical and

experimental analyses for various lengths of different types of microwave cables

between the switch and load 1 (9, 17, and 33 cm, RG 223/U 56, RG 223/U 110,

and RG 223/U 145) to provide a range of input circuit losses ( a  ). It was found

that the temperature distribution of the microwave radiometer reading ( A ) was

proportional to the source temperatures ( T , T ) Eq.11.24. It has been proved
S1 s2

that a 3 GHz radiometer system with a spatial resolution of about 1 °C is suitable 

for clinical applications.

Table II. 1- The attenuation constants of different microwave cables.

Attenuation 
of cables

Attenuation of the 
reference load

Receiver gain G ' 
G = 1 + G'

Microwave 
cables (cm)

0.867 0.766 1.441 0.441 RG 223/U 8
0.868 0.932 1.214 0.214 RG 223/U 56
0.847 0.935 1.180 0.180 RG 223/U 110
0.838 0.908 1.182 0.182 RG 223/U 145
0.872 0.832 1.216 0.216 Copper 9*
0.872 0.785 1.453 0.453 Copper 17
0.874 0.767 1.563 0.563 Copper 33

* - matched load 2 fixed cable length (9 cm).
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When the two temperatures ( ,  T ) are approximately equal and close to 

the freezing point of the water, the error is about 0.2 °C. For higher temperatures, 

or when the source and the reference temperatures differ, the error can be about 3 

°C. The radiometer reference temperature should be set close to the source 

temperature to have relevant results. This was successfully applied in a 3 GHz 

microwave radiometry system used for clinical applications (Glasgow hospitals). 

The modelling for the radiometer temperature measurements (above diagram) 

shows the behaviour of the received signal with respect to the temperature; the 

linearity of the temperatures with respect to the received signal; and the attenuation 

power measured from the expression (Eq. 11.25). This analysis shows that when 

the difference between the antenna temperature and the source temperature is 2 °C, 

a change of 1 °C will cause a maximum change in the output of 0.1 °C. A variation 

of 1 °C is not significant and does not affect the measurements of the ambient 

temperature. The temperature value 0.1 °C is a very small variation in the output of 

the radiometer using cables for testing, as the losses inside these cables are 

considered and included in the output. These results are used to compare the losses 

of the cables with the antenna internal losses and have shown that there is very 

good agreement between the theoretically modelled and measured radiometer input 

circuit performance.

It is concluded that the model of the radiometer input circuits analysed in 

section 11.10 properly represents the behaviour of the actual radiometer circuits used 

in the Glasgow microwave thermography equipment. Since the circuit used is a 

form of the general comparator on Dicke radiometer circuit, this model, with an 

appropriate choice of the effective receiver input temperature, can be applied to all 

comparator type radiometer input circuits.
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and the source temperatures, Eq. 11.26, and this has been proven by the 

experiment.

The theory of the apparent temperature beyond the attenuating region and 

the difference signal ( A ) at the receiver in microwave radiometer input switching 

circuit were derived for the practical cases. This theory, which is based on the 

above equations, predicts attenuation considerably lower than other theories now 

being used in industry; and the temperature resolution is about 1 °C as has been 

experimentally demonstrated.



Chapter III

Microstrip circuits for radiometer input 
switching circuits

IE. 1- Introduction:

The purpose of this chapter is to discuss the great importance of low-loss 

microstrip circuits for radiometer input circuits. The performance of the radiometer 

system input circuits has been discussed in section II.8, which required low-loss 

input circuits between, for example, the antenna and the circuit switching element, 

between the switching element and circulator/reference load/amplifier, and for 

combining the signals from two or more antennas (crossed antennas).

Microstrip lines are a convenient form of transmission line for the 

construction of radiometer input circuits. The microstrip is a parallel pair of 

conductors deposited on either side of a thin dielectric substrate which provides the 

necessary mechanical stability. A parallel two conductor line of this type may need 

development because:

(i) A radio-frequency shield may be required to eliminate radiation losses and cross­

coupling problems to other circuits. The shield dimensions or the sheet conductivity 

of the shielding material have to be carefully chosen in order to suppress transverse 

electric excitation, magnetic modes and box resonances.

(ii) The proximity of the air-dielectric interface to strip conductor can lead to 

excitation of plane-trapped surface waves. This problem can be solved by:-

a) using a substrate with two dielectric constants or

b) selecting a product of a sufficiently small operating frequency band for

the microstrip or

c) removing the air-dielectric interface into the far field region.
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(iii) ^  the substrate is a semi-conductor, surface passivation may be necessary to 

protect against atmospheric contamination; this can be achieved by applying a thin 

dielectric film to the substrate.

The dielectric losses are readily calculated by either empirical formulas 

(Schneider, 1969; Welch and Pratt, 1966) or plane-wave approximation (Caulton et 

al., 1966). When using the plane-wave approximation method for low-loss 

substrates, conductor loss is dominant (Krowne, 1988). But in the case of 

monolithic microwave integrated circuits, where substrates such as silicon, 

germanium or teflon are used, dielectric loss becomes the dominant one, and 

therefore has to be treated more rigorously.

III. 2- The microstrip design requirements:

For design purposes, it is necessary to know the characteristic impedance, 

phase velocity and the attenuation constant of the dominant microstrip mode and 

how they are affected by geometrical factors. Also, the electronic properties of the 

substrate and the conductors and the effects of the operating frequency on them. Of 

particular importance for this application is the attenuation constant of the dominant 

mode. The dielectric properties have not received much attention in the papers on 

microstrip lines although Welch and Pratt, (1966) investigated the dielectric 

attenuation for mixed dielectric systems, and so were made the subject of further 

experimentation.

One major advantage of all microstrip configurations with an air gap is that 

the effective dielectric constant is small. This means that the effective dielectric loss 

tangent is substantially reduced, and all circuit dimensions can therefore be 

increased, which in turn, leads to less stringent mechanical tolerances. The open- 

strip transmission line was initially abandoned by microwave designers in favour of 

the balanced strip transmission line because of the radiative nature of the open-strip 

line. The use of thin high dielectric material greatly reduces radiation from the open- 

strip and has recently been actively used for integrated microwave printed circuits.
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The line radiation is reduced by the concentration of the field in the dielectric region. 

The width of a microstrip line on a dielectric substrate can be adjusted to control its 

impedance. When the impedance is controlled by dimensions in a single plane, the 

circuit manufacture can be conveniently earned out by photolithography techniques 

and photoetching of thin film.There are several transmission structures that satisfy 

the requirement of being planar. The most common of these are:

- microstrip.

- slotline.

- coplanar waveguide.

- coplanar strips.

Generally microstrip lines are manufactured from standard teflon, impregnated 

fibreglass or polystyrene printed circuit boards 0.79 to 1.59 mm thick with copper 

lines of 1.59 to 3.18 mm wide. For integrated circuits alumina, sapphire, 

beryllium, or high resistivity semi-conductors 2.54 to 7.62 mm thick are used as 

substrates for the line. The conductors can be, copper, aluminum, gold or silver 

and are of the order of 2.032 to 7.62 mm wide.

HI. 3- The different type of microstrips:

Two known types of microstrip were investigated in this work. Both had a

similar geometry in that they consisted of narrow strip conductors of width W and

thickness r, separated by a dielectric substrate of width much greater that W and

thickness H  (Figs. III. a, III. b). The first type the dielectric was a supportive layer

of teflon, in the second the dielectric was an air gap.

The characteristic impedances of the two microstrips of the respective

dielectric substrates had different values. The relative permittivity £ of the dielectric

substrate materials had to be taken into consideration together with the geometric

cross-section — for each microstrip transmission line.
H

In general according to Kraus, (1984), the characteristic impedance of strip
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Strip conductors

Capacitor

■ .The dielectric 
substrate

Ground plane

The dielectric 
substrate

Ground plane

Strip conductor

S is the distance between two copper strips. 
H is the dielectric thickness.
W is the strip width 
t is the thickness of the foil.

Fig. in.a- Microstrip configuration, a- microstrip line with 
a capacitor lOOOpF, b- a straight microstrip line.



Conductor strip

Capacitors

The dielectric 
substrate

Ground plane

W is the width of the strip.
H is the dielectric thickness.
S are the gaps between the strips 
t is the thickness of the foil.

Fig. III.b- Microstrip configuration with two 
capacitors each is lOOOpF.



lines with W greater than the dielectric thickness H is given by the equation:

Z, 377
(III.1)'o

where 377 is the intrinsic impedance of vacuum or the characteristic impedance of 

free-space, e. is the relative permittivity of the substrate, W is the conductor width 

and H is the dielectric thickness.

In practice the microwave energy propagates both in the dielectric substrate 

and in the air region adjacent to the conductor resulting in the effective relative 

permittivity constant e which should be considered as a function of microstrip 

geometry The effective relative permittivity is much lower than the relative 

permittivity £., which is defined by:

and in the present work this must be taken into consideration as a function of the 

microstrip geometry when deriving conclusions using the relative effective 

permittivity constant defined by the relationship:

F f— 'j = *> where H

(HI-4)
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Schneider, (1968) presented analyses using equation III.4 which yields final results 

with an accuracy of ± 2% for er and an accuracy of ± 1 % for V e
eff reff

III. 4- Microstrip measurement:

III. 4. 1- Description of the board preparation:

For the manufacture of the microstrip lines used in this research project two 

types of base material were selected 1) - double sided copper-clad Glass fibre 

reinforced epoxy board, 2) - double sided copper-clad non-woven glass microfibre 

PTFE laminate ( RT/duroid ® V

The dimensions of the boards are 69.9 mm in length, 28.6 mm in width and 

1.6 mm thick. The microstrip boards were produced by the usual photo-resist 

etching process.

HI. 4. 2- Techniques for standing-wave detector measurements:

The measurement of standing-wave ratios requires typical apparatus which 

is based on the signal source, standing-wave measuring section and the termination. 

This is terminated by a suitable termination, a short-circuited line of known length, 

and a movable short circuit. This technique, suggested by Ginzton, (1957) provides 

a nearly perfect approximately 100% reflection to the main transmission line, and is 

useful for checking the accuracy of the equipment. To adjust and check the 

equipment prior to use the oscillator should be adjusted for the desired power 

output and allowed to stabilize. The modulation of the signal generator permits 

simplification of detecting equipment and increases the sensitivity (Fig.III. c). 

Simple sinusoidal modulation is impractical since the frequency of most microwave 

oscillators depends on the applied potentials. Therefore, to obtain amplitude 

modulation with little incidental frequency modulation, it is generally necessary to 

employ square-waves. The use of square-wave modulation does not require the 

detecting system to reproduce all the frequency components of the detected signal.

t  Rtlduroid ® microwave laminate is a registered trademark o f Rogers Corporation

51



3.2GHz

3KHz modulation 
signal

Adjustable
short-

circuit

Coax-waveguide 
transformer and 
test piece

3.2GHz signal 
generator, 3KHz 
modulation

3KHz amplifier 
and meter

Frequency
meter

Isolating attenuator 
and

slotted waveguide 
section with detector

Fig. HLc-The equipment set-up



The usual practice is to reduce the bandwidth of the detecting amplifier to respond 

only to the fundamental component of the detected frequency. The standing-wave 

detector should be terminated with a matched impedance. Near the ends of the slot 

the response can become significantly different from the ideal and these regions 

should be noted and avoided where possible during any experimental measurements 

using a standing-wave detector. Low standing-wave ratios are critical and particular 

care in most of the adjustments is not essential as high sensitivity is not required. 

On the other hand, high sensitivity is required for the large variation in voltages 

associated with high standing-wave ratios and an accurate knowledge of the 

detector response law, is needed.

III. 4. 3- The method of measurements:

If a high value of voltage standing-wave ratio (VSWR) is to be measured, 

the accuracy of the calibration of the detector indicator and the associated attenuators 

becomes extremely important. Ginzton, (1957) considered a method known as the 

double minimum which can be used to measure the high VSWR by merely 

observing the shape of the standing-wave pattern near the voltage minimum. The 

advantage of this method is the reduction of errors due to probe loading because it 

is always located in the region of the low impedance.To apply this method, accurate 

measurements of small displacements of the probe carriage are recorded as it is 

moved in the vinicity of the voltage minimum. This can best be done by attaching a 

small micrometer dial indicator to the probe carriage. The procedure is as follows: 

first, find the value of the voltage minimum, then the adjacent two positions are 

found at which the output is twice the minimum value. If the detector response is 

square-law, the standing-wave ratio is given by,

v K
(IIL 5 )V . 27tx0mm

where xQ is the probe displacement, and A,t is the transmission line wavelength.
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The measurement of small values of attenuation can be measured by either a 

substitution method or direct measurement of the power ratio with or without 

component. The attenuation of any lossy terminal network may be determined from 

the following quantities: 1) the effect of the insertion of such a network on the 

voltage distribution and the phase shift in a short-circuited section of lossless line 

following the unknown component, 2) the magnitude of the voltage standing-wave 

ratio of unknown component terminated by a short-circuit (Ebert, 1945).If the 

unknown unit is terminated by a short-circuit and the ratio of the incident to 

reflected power is known, Pj and P2, the attenuation of the unknown unit can be 

computed. The power P2, having been totally reflected from the short-circuit, is 

again attenuated while passing through the unknown unit. This power is called P3. 

The attenuation of the unit can be written as (Weber, 1947).

a  = 10 Ln = 10 Ln 5 Ln (III.6)

The quantity — is, however, the ratio of incident to reflected power and is 
3

independent of generator impedance. If r is the VSWR, then

r-  1 
r + 1 (HI.7)

then the final expression for the attenuation constant becomes:

a  = 10 Ln r + 1 
r -  1

(III.8)

HI. 5- Results of measurements on test microstrip lines:

The results are presented of accurate experimental measurements on 

microstrip lines to find the line attenuation at the radiometer frequency of 3.2 GHz, 

using the "double minimum" method, and for line characteristic impedances of 40 - 

60 Q.
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III. 5. 1- Results of initial measurements on test microstrip assemblies:

The measurement of standing-wave ratios with the double minimum method 

gives an accurate value of about 0.5% when the VSWR is above approximately 

10. The position of the minimum can be located more accurately by averaging two 

positions of equal indicator readings set on either side of the minimum. Adjusting 

the input attenuators to set a minimum detector signal level means that the indicated 

residual measurement noise is below the mid-point of the VSWR meter scale. The 

probe is moved to the left and to the right side of the minimum position to find the 

wanted two minimum points which establish the width of the minimum. All 

measurements are taken at 3.2 GHz using a suitable amplitude modulated signal 

source.

III. 5. 2- Checking the accuracy of this method using lengths of coaxial cable of 

known attenuation as standards:

The method described was used above to measure the attenuation constant 

of two cable types GE 83010 and RG 223IU at 3.2 GHz. The measured values 

are compared with the manufacturer's published values. The results of these 

measurements showed good agreement with the expected attenuation values of the 

respective cables (Tab. III. 1).

The losses of PTFE and glass fibre substrate microstrip were measured by 

noting the difference in attenuation between 40 - 60 Q of 69.9 mm in length 

interconnected to the measurement system. The boards were connected and 

measurements of the standing-wave ratios recorded after locating the minimum 

along the travelling-wave. Two different kinds of microstrips were tested: the first 

ones were straight (without a gap) and the second had a gap which formed a series 

capacitor, of capacitance 1000 pF.
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labl<? 111,1- Insertion loss of RG 223/U and GE 83010.

cable type VSWR loss (dB)

RG 223/U 42.35 ± 0.5 0.24
GE 83010 48.84 ± 0.5 0.21

A summary of typical results obtained using the standing-wave detector 

measurement technique is given in Tab. 111.2, III.3, III.4 and III.5. It shows that 

the standing-wave ratio is high and decreases when the attenuation constant and the 

characteristic impedance increases, Tab. III.2 and III.3 illustrate how the measured 

data of the attenuation constant varies with the strip width of the PTFE and glass 

fibre microstrips for the characteristic impedance range 40 - 60 Q. Tab. III.4 and

III.5 present the similar measured data but the microstrip configurations are 

different. The conducting strips are coupled with small capacitors.

Tabic III.2- variation of the PTFE microstrip attenuation with strip width.

Impedance (£2) VVSWR Loss (dB/m)

40 6.030 ± 0.05 0.554
45 5.881 ±0.05 0.579
50 5.674 ± 0.05 0.622
55 5.490 ± 0.05 0.664
60 5.290 ± 0.05 0.715

Table III.3- variation of the glass fibre microstrip attenuation with strip width.

Impedance (£2) VVSWR Loss (dB/m)

40 4.400 ± 0.05 1.964
45 3.198 ±0.05 2.042
50 3.172 ±0.05 2.540
55 3.184 ±0.05 2.496
60 2.972 ± 0.05 2.616
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Table III.4- The attenuation constants of glass fibre  microstrip using a capacitor

Impedance (Q.) VvSWR* VvSWR** Loss* (dB/m) Loss**(dB/m)

40 3.401 2.761 1.957 ±0.1 2.947 ±0.1
45 3.292 2.593 2.776 ±0.1 3.217 ±0.1
50 3.483 3.087 2.186 ±0.1 3.012 ±0.1
55 3.332 3.487 2.876 ±0.1 2.168 ±0.1
60 3.180 2.774 2.971 ±0.1 2.752 ±0.1

Table III.5- The attenuation constants of PTFE  microstrip using a capacitor

Impedance (£2) VvSWR* VvsWR** Loss* (dB/m) Loss**(dB/m)

40 4.451 4.473 1.477 ±0.1 1.669 ±0.1
45 4.858 5.687 1.227 ±0.1 0.622 ±0.1
50 4.902 5.205 1.032 ±0.1 0.980 ±0.1
55 4.628 4.593 0.955 ±0.1 1.040 ±0.1
60 4.750 4.454 0.929 ±0.1 1.083 ±0.1

Figures III.l and III.2 show the variation of the attenuation with the strip 

width of two different materials RT/duroid ® and Glass fibre, where the loss 

decreases gradually when the ratio of the width of the strip with the dielectric 

substrate thickness increases. The RT/duroid ® attenuation range was 0.5 - 

0.8 dB/m and the Glass fibre attenuation range varies between 1.9 - 2.7 dB/m. 

Since the loss of RT/duroid ® is small compared with the Glass fibre material, the 

microwave component designers use RT/duroid as microstrip transmission lines

for microwave circuits.

Figures III.3 and III.4 show the measurements made with the same 

microstrip RT/duroid ® with a capacitor gap at both ends. The capacitor is fixed 

near one end of the strip (1*7 mm from the end of the strip) and when the capacitor

* The capacitor is near the connector (connected to the standing-wove measuring system)

** The capacitor is connected to the termination of the transmission line (near the end).
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Fig. in. I- The variation of the attenuation with the strip width, 
(H = 1.59 mm, e. = 2.2), microstrip constructed by Glass fibre 
without a capacitor
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Fig. III.2- The variation of the attenuation with the strip width,
(H = 1.59 mm, e = 2 .2 ), microstrip constructed by RT/duroid®
without a capacitor.



Th
e 

att
en

ua
tio

n 
oc 

(d
B)

1.5

1. 4

1.2

1.1

1.0

Fig. III.3- The variation of the attenuation with the strip width, 
(H = 1.59 mm, e. = 2.2), microstrip constructed by RT/duroicf® 
with a capacitor close to the connector measurement system.

1. 6

1.4

1.2

1. 0

0 .6

Fig. HI.4- The variation of the attenuation with the strip width
(H = 1.59 mm, e = 2.2), microstrip constructed by RT/duroid®
with a capacitor close to the transmission line (termination).



is near the connector measurement system the loss increases as the characteristic 

impedance increases and the range of the attenuation is 0.9 - 1.5 dB/m. In the 

opposite case the loss decreases rapidly. It is not convenient to have a capacitor in 

the circuit with RT/duroid ® material.

Figures III.5 and III.6 represent the results for the Glass fibre microstrip 

with a capacitor for both ends. The losses decrease when the capacitor is near the 

connector measurement system but the range is higher (2.0 - 3.0 dB/m) than for the 

straight strip, and when the strip is reversed it increases for the same characteristic 

impedance range and its value is between 2-3 .2  dB/m.

Figures III.7 and III.8 show the measurement results with one capacitor 

fixed at each end of the strip. The results are not significant for either materials and 

show that the straight line microstrip using RT/duroid material gives efficient 

attenuation values. The losses are small, suggesting that using this material as a 

PIN-diode switch or other component will minimize the degradation of the 

sensitivity of the radiometer.

Figure. III.9 represents the variation of the square root of the effective 

relative permittivity with the strip width. The effective relative permittivity is 

proportional to the characteristic impedance. These results prove the efficiency of 

using microstrip lines as transmission lines for the radiometer input circuits, so 

PIN-diode switches are convenient for a microwave radiometer design. The 

theoretical estimates which have been compared with the above at 1, 2, 4, and 

6 GHz for different widths and thus different impedances show good agreement 

with the experimental results.

The results of the characteristic impedance measured at 3.2 GHz using the 

Kraus, (1984) method are compared with the manufacturer's data (RT/duroid ®) 

given at 2 GHz for the characteristic impedance range 20-110 Q, (Fig. III. 10). 

Good agreement is found, the characteristic impedance decreasing when the ratio of 

the strip width with the dielectric thickness increases.
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III. 6- Literature review:

In recent years, a number of authors have considered the properties of 

dielectrics in transmission lines. Attention have been devoted improving the 

significant losses of sensitivity due to the characteristic impedance and thickness of 

the strip and the dielectric substrate.

Welch and Pratt, (1966) discussed losses in microstrip transmission 

systems for integrated microwave circuits. Microstrip attenuation due to lossy 

dielectric substrate, a  , which was calculated by Assadourian and Rimai, (1952)a
(Eq.III.9). These equations have been improved and verified by Welch and Pratt 

"the effective filling factor", q, was used giving encouraging results.

where a  is the conductivity, u. is the permeability and 8 is the permittivity of the d
dielectric substrate; a d is independent of the geometry of the microstrip.

The effective dielectric constant (e J  has a value intermediate between the
eff

dielectric constant of the substrate (e) and the dielectric constant of the surrounding 

medium. For this calculation an "effective filling factor",q, (Wheeler, 1965) has 

been introduced.

(IH.9)

(III. 10)

eeff = qe + ( 1 -q)eG (III. 11)

The final expression of the attenuation is given by:

a'd (III. 12)
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Simpson and Tseng, (1976) presented a different technique of calculating 

the dielectric loss in microstrip lines. This technique is based on an extension of the 

moment method which has been used widely to calculate other microstrip 

characteristics such as impedances. The numerical analyses of the attenuation 

constant (Eq. III.8) were compared with theoretical data using different methods of 

calculation (Schneider, 1969) and were also compared with experimental data from 

Hyltin, (1965). Simpson and Tseng presented a theory for analysing the behaviour 

of the microstrip lines. Experimental measurements of the attenuation constant have 

been done to verify the theory. These measurements agreed well using the equation 

below.

Kumar et al., (1976) presented a method for the calculation of the 

characteristic impedance of microstrip by evaluating the associated capacitance. 

They compared the numerical results to the experimental results given by Kaupp, 

(1967). Kumar et al., developed basic equations for the characteristic impedance 

which is just the characteristic impedance of a wire-over-ground transmission line, 

Eq. III.9 and for the effective relative permittivity constant determined through the 

signal propagation delay of the lines, Eq. III. 10.

a  =
2P (III. 13)

1 Vwhere P = y  is the total power.
'o

Ze­ ll » d (III. 14)

where h is the dielectric substrate thickness and d is the strip thickness.

Td = / ^

Td = 1 .0 1 6 ^

(III. 15)

(III. 16)
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where er̂  and are the effective relative permittivity and the relative permittivity 

respectively.

Figure III. 11 shows the variation of the characteristic impedance with the

strip width and the dielectric thickness (data collected from Kumar et al., 1976 and

Kaupp, 1967) at 25 MHz. The relative permittivity of the dielectric substrate is

about 4.7, the foil (strip) thickness is about 0.7112 mm and the dielectric substrate

thickness is in the range of 2.032 to 17.016 mm. It can be seen that the

characteristic impedance decreases gradually as the ratio of the strip width with the

dielectric substrate thickness, 2L increases. For large values range of the strip
H

width the characteristic impedance is very low.

Pucel et al., (1968) proposed approximate expressions for the conductor 

losses extending to a wide range of geometrical parameters and applicable only to 

the microstrip on the dielectric substrate. They considered dielectric losses in the 

substrate, ohmic skin losses in the strip conductor and the ground plane. The 

analyses of the dielectric losses were based on Welch and Pratt expressions used 

with their formulae for skin loss attenuation. It showed that the experimental data is 

in agreement with the results from the technique used for measuring low attenuation 

losses. Wheeler, (1965) discussed the improvement in the numerical calculation 

(Wheeler, 1964) of the relation between the transmission line properties, such as 

wave resistance and the shape ratio (strip width over separation). This relation 

depends on the dielectric constant of the sheet material. Two shape ratios 

characterised by strips "wide" or "narrow" width relative to their separation have 

been considered. It has been found possible to compute the effective dielectric 

constant to a fair accuracy by choosing the shape ratio and the dielectric constant of 

the material.

Horton et al., (1971) discussed the variation of microstrip losses with 

thickness of strip. The losses were calculated for a variety of frequencies and
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0.5, 1.0 and 2.0, the relative permittivity of the dielectric substrate £
r

was taken as 11 They concluded that the selection of thickness can improve the

quality factor of the lines by as much as 10%. Gunston and Weale, (1969)

discussed the variation of the characteristic impedance of single and coupled

microstrip with strip thickness, operating at 1 GHz. They considered the foil (strip)

and the dielectric substrate thickness t and H respectively in combination, the

range of ^ - i s  0.01 to 0.05 for the relative permittivity of the substrate 9.6 and

0.05 to 0.20 for the substrate permittivity 4.3. The variation of the characteristic

impedance with the foil thickness t is so small as to be negligible. It has been

concluded that the finite thickness of the strip must be taken into account when

evaluating circuit performance. John and Arlett, (1974) discussed the behaviour of

the characteristic impedance and the effective relative permittivity using the above

equations where the permittivity is independent of the strip width and the dielectric

substrate thickness.

Caulton et al., (1966) presented a study of the properties of microstrip lines.

The theoretical design data based on the work of Wheeler, (1965), were consistent

with measurements of characteristic impedance, wavelength, and attenuation

constant. Bahl and Garg, (1977) presented an accurate closed form expression for

the variation of characteristic impedance and effective relative permittivity constant

of microstrip with finite strip thickness. It has been found that the results for the

characteristic impedance, Zo, and the square root of the effective relative
t wpermittivity,Ver ^  were correct to within 2% for 0 -  j j~ -  0.2, 0.1 <jjr ^  20, 

and £ <16. Their method is widely applied in the design of thick microstrips used
r

in computers and thick film microwave integrated circuits.

The performance of microstrip and coupled microstrip transmission lines 

has been improved by a rigorous analysis of the phase constant, the characteristic 

impedance and the attenuation constant due to the dielectric losses of the lossy 

substrate (Assadourian and Rimai, 1952; Yamashika and Mittra, 1968; Bryant and
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Weiss, 1968; Schneider, 1969; Williams and Schwarz, 1983; Mirshekar-Syahkal, 

1983). It was also observed that the range of applicability of the above theory was 

based on the geometrical parameters. Finite thickness of the dielectric substrate is 

required in the microstrip transmission lines for microwave integrated circuits. The 

effect of loss and frequency dispersion on the performance of microstrip and 

coupled microstrip lines has been further studied by Rao, (1974) based on earlier 

studies by Johns and Bolljahn.

Gupta et al., (1979) described the numerical analyses of the behaviour of 

the microstrip lines at different frequencies with respect to attenuation constants, 

characteristic impedance, the effective relative permittivity and the standing-wave 

ratio. They compared the properties of microstrip transmission lines with published 

analysis.They considered in their analysis the effective filling factor, earlier 

considered by Welch and Pratt, (1966) to define the effective dielectric constant, e rr
efr

(Eq. III. 11). The attenuation constant, Eq. III. 13, has been used as well in their 

analysis.

Smith and Chang, (1980) extended the basic technique to the finite width 

dielectric microstrip transmission line through numerical analysis and experimental 

investigation. Further investigation for finite width has been modified to include 

modelling with ground plane as well as dielectric substrate (Smith and Chang, 

1985). The computed characteristic impedance as a function of the ratio has 

been analysed for several values of strip width. Their numerical analysis showed 

that the finite width dielectric and ground plane can be used to predict the effect of 

ground plane truncation on the transmission characteristics of microstrip circuits. 

Chang and Klein, (1987) reported a technique for microstrip transmission line loss 

reduction using dielectric layers. Experimental results have shown that the loss can 

be substantially reduced by a proper shield. The variational method was used to 

calculate the effect of shielding on the effective dielectric constant and characteristic 

impedance. The theoretical calculation agreed very well with the experimental 

results. Cano et al., (1988) discussed the computation of the frequency dependence
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of microstrip and unilateral thin lines on a biaxial substrate. They suggested that the 

theory might be useful in the design of microwave integrated circuits.

Leung and Balanis, (1988) considered the distortion of short pulses 

propagating along microstrip transmission lines. The dielectric substrates 

considered were isotropic materials with relatively high loss characteristics. Results 

showed that attenuation and dispersion distortions change with the strip width, 

substrate height, and substrate dielectric constant.

Standley and Cheung, (1988) studied the performance of some microstrip 

structures using superconducting materials. They found that at high temperature 

superconducting materials can be used to fabricate microwave circuits with very 

low insertion loss and high quality factor at frequencies of several giga hertz or 

higher.

The method used at the present work (Eq. III. 1, Eq. III.4) shows good 

agreement with the manufacturer's data and are compared with the measurements of 

the characteristic impedance by Kumar et al., (1976) and Kaupp, (1967).
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Chapter IV

Microwave thermography antennas

IV. 1- Introduction and literature review:

Microwave thermography antennas based on cylindrical and rectangular 

waveguides with various cross sections or on microstrip or similar techniques have 

been developed for use in direct contact with the skin at frequencies above about 

200 MHz. The contact is not perfect as there is often a small air gap between the 

skin and the applicator. This must be kept small because the impedance mismatch to 

air could reduce the signal by an order of magnitude. Since the dimensions of these 

applicators can be made comparable with the wavelength, energy is largely 

transmitted into the tissue in a wave propagating from the aperture of the applicator.

For simplicity, applicators have often been designed as rectangular cross 

section waveguides and operated at a frequency 10% to 30% greater than the lowest 

frequency at which propagation can occur in the applicator or antenna. For a given 

operating frequency, the linear dimensions of an applicator may be reduced from 

those of an air-filled device if it is loaded with a suitable dielectric material. These 

simple applicators have approximately 60% of the aperture yet provide sufficient 

effective microwave energy. Applicators using different excitation and geometry 

which may achieve more uniform heating have been developed (Stuchly and 

Stuchly, 1978; Kantor and Witters, 1983; Vaguine et al., 1982; Lin et al., 1982). In 

particular, waveguide applicators with a ridged cross section offer a number of 

advantages (Paglione and Sterzer, 1981). Recently, Hand and Hind, (1986a) 

reviewed the design and performances of several types of waveguide applicators. 

Guy et al., (1978) presented a TEJ0-mode waveguide applicator which consisted 

of a 12 x 6 cm waveguide with a 64 cm tapered section that increased its cross­
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section to a 12 x 16 cm, loaded with aluminum-oxide sand (dielectric constant 

approximately 4). These applicators have been used for electromagnetic heating at 

low frequencies where greater depth of penetration is obtained and at high 

frequencies where microwave energy can be focused on selected areas of the body. 

A 13 cm square waveguide applicator with stripline feed was designed by Guy, 

(1978) to produce an even temperature distribution with the highest temperatures in 

the muscle. A light weight dielectric matching material was used which was porous 

and allowed for air flow (2.5 cm thick Echo foam, HiK Flex dielectric, 4.0).

Microwave applicators based on microstrip or related techniques can offer a 

number of advantages including small size, light weight, the ability to conform to 

the tissue surface and flexibility of radiation pattern. Mendecki et al., (1979) 

described a 2.45 GHz printed circuit antenna loaded with dielectric powder which 

could conform closely to tissue contours. A microstrip ring applicator was reported 

by Bahl et al., (1980b) and Bahl, (1982) described a microstrip loop antenna. The 

operating frequency, bandwidth and heating characteristics of microstrip applicators 

can depend critically on the load presented to them (Bahl and Stuchly, 1980a; 

Sandhu and Kolozsvary, 1983) although predictable performance can be achieved if 

a suitably thick bolus is used. Johnson et al., (1984) developed a series of low 

profile applicators which are relatively insensitive to tissue load. They consist of 

resonant patches sandwiched between dielectric slabs and operated at frequencies 

between 200 MHz and 915 MHz. By incorporating ferrite material into this type of 

applicator, an operating frequency as low as 27 MHz can be achieved and for 

microwave frequencies this material can be used (Johnson et al., 1985). Sandhu et 

al., (1977) designed two types of applicators operating at frequencies of 915 and 

2450 MHz. The applicator is essentially square cross section waveguide closed at 

one end and open at the application end. The waveguide is excited in the TEj0- 

mode, using a coaxial line probe antenna. The 915 MHz applicator waveguide is 

loaded with low-loss dielectric material (Hik-Eccoflo and Hik-Stycast from 

Emerson and Cummings, including MA 02021) with a dielectric constant e = 6.0.
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It is found that it is capable of producing fairly uniform (± 0.5 °C) heating up to a 

depth of 3 cm. Tanabe et al., (1983) described a microstrip spiral antenna which 

offers good coupling, broad bandwidth and a circularly symmetrical treatment field. 

Henderson et al., (1988) presented a microstrip circular antenna which offers 

limited scanning beam. These authors have developed a 915 MHz array of such 

applicators designed to heat large areas of the chest wall. An array of rectangular 

patch radiators designed for the same purpose was reported by Sandhu and 

Kalozsvary, (1984). The dependence of heating characteristics on the size and 

operating frequency of applicators has been discussed by several authors (Guy, 

1971b; Tuner and Kumar, 1982; Hand and Johnson, 1986b); in general, 

applicators small in relation to the wavelength exhibit relatively poor penetration.

IV.2 Microwave antenna response function:

Consider an antenna in contact with a lossy material of the same impedance 

and connected to a terminating resistor by a lossless transmission line which is also 

impedance matched to the antenna. If the system is in thermodynamic equilibrium 

at uniform temperature T, then the terminating load, being a resistor at temperature 

T, radiates an average power of KT watts per unit bandwidth through the 

transmission line and into the lossy material. The condition of thermodynamic 

equilibrium requires that the antenna must also receive KT watts per unit bandwidth 

from the lossy material. If the antenna, transmission line and load are at a 

temperature different from the lossy medium the antenna must still receive the same 

power per unit bandwidth, the power per unit bandwidth, P, received by the 

antenna may also be expressed as:

where I ( r ) is the intensity of the radiation emitted by the volume element dV at

(IV. 1)
v
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position r, with origin at the position of the antenna. Pn ( r ) is the normalized 

power response pattern of the antenna given by:

max ( P ( r ))  (PV.2)

and is referred to as the antenna pattern. The factor y  in Eq. IV. 1 arises because the 

radiation is of an incoherent, unpolarized nature and, because any antenna is 

responsive to only one polarisation component, only half of the incident power is 

received.

By the reciprocity theorem (Slater, 1942) the transmitting and receiving 

power patterns of an antenna are identical. This means that the power dissipated in a 

volume element when the antenna is radiating into lossy medium is proportional to 

the power received from that volume element when the antenna is receiving. The 

power, P, dissipated in a subvolume dV is given by:

P = i a l E e l dV (IV.3)

where a  is the conductivity (£2 m"1), and E = e 1011 is the electric field.

The receiving power response pattern must be proportional to this and so

Pn( l)= A IE ( i) |2 (IV.4)

where A is a constant of proportionality.

From Eq.'^ the intensity of radiation emitted in the region of the Rayleigh- 

Jeans Law by a small thickness, dz, of homogeo^material is given by:
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i  z a u z  (IV.5)

Using Eq. IV.2 and IV.3 in Eq. IV. 1 we have:

2, p 2
P = ^ A  2 a T ( r ) I E ( r ) l d V  (IV.6)

c J
c V

For a uniform temperature T it has already been stated from thermodynamical 

considerations that the power received per unit bandwidth is proportional to KT and 

so we must have:

v2 A 2 a J l E ( i )  |2dV= 1 or j  Pn ( I ) dV =1 (IV.7)

In general, for a lossy material, it is a difficult problem to determine 

theoretically the distribution E ( r ).The antenna pattern, however, may be described 

approximately by an exponential variation in the direction of the central axis of the 

antenna in a single region of tissue, while the lateral response is considered to be 

uniform over an area of effective aperture size, A , and zero outside this area.

z

Pn ( I ) = e5 if (x,y) e Ag

(IV.8)

= 0 if (x,y) £ A

where 8' is the effective power penetration depth which is related to the effective 

field attenuation constant, a, by the equation:
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8
2a (IV.9)

This is the normalized power pattern having a maximum value of 1 at z = 0 and for 

this form of the power pattern Eq.IV.7 requires that,

where 8 is the plane-wave penetration depth.

The effective power penetration depth must always be less than the plane- 

wave power penetration depth (discussed in more detail in Chapter VII and VIII).

IV.3- Microwave radiometer antenna pattern:

The microwave radiometer antenna pattern gives the contribution of a small 

volume element of the tissue to the total signal. It is a difficult problem to calculate 

theoretically the antenna pattern, which depends on several parameters such as the 

operating frequency, dimensions and geometry of the guide, dielectric loading of 

the guide and dielectric properties of observed tissue as well as on the geometry of 

the tissue.

The antenna pattern may be determined either theoretically by numerical 

methods, in which case the tissue geometry is usually assumed to be in planar 

layers, or experimentally using dielectric phantom materials simulating the dielectric 

properties of the tissue (more detail in Chapter VTII).

Table IV. 1 illustrates a number of direct contact antennas used in clinical 

microwave thermography. The most commonly used contact antenna for clinical 

application is a dielectric filled rectangular waveguide antenna operating in TE1Q- 

mode. It is most important that the dimension of the antenna be less than the 

wavelength corresponding to the cut-off frequency.

(IV. 10)
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Table IV. 1- Direct contact antennas used in clinical microwave thermography.

Frequency
(GHz)

Antanna dimensions
(cm)

£'
r reference

3.3 Rect. waveg. 2.3 x 1.0 11 Barrett, 1977
1.3 Rect. waveg. 2.3 x 1.0 30 Myres et al., 1979
6.0 Rect. waveg. 2.3 x 1.0 2 Myres et al., 1979
4.7 Rect. waveg. 1.83 x 0.92 9.8 Carr et al., 1982
3.0 Rect. waveg. t 2.2 x 1.1 25 Enel et al., 1984
1.5 Rect. waveg. f 3.3 x 1.65 25 Boquet, 1989
1 Rect. waveg. 10 x 4.3 9 Mamouni, 1989
1 Rect. waveg. 6x2. 9 25 Mamouni, 1989
3 Rect. waveg. 3 x 1.5 9 Mamouni, 1989
3 Rect. waveg. 2x9. 5 25 Mamouni, 1989
3 Rect. waveg. 5x2 . 4 4 Mamouni, 1989
9 Rect. waveg. 1.1 x 0.6 4 Mamouni, 1989
0.915 Rect. waveg. 12x6 4 Guy, 1978

1.1,
2.6,
4.0,
5.5

T.R. waveg.* ~ 4.8 x 2.2 
~ 2.3 x 1.0

6 Bardati et al., 1987

0.915 Sq. waveg. 13 x 13 4 Guy, 1978

2.6 - 3.95 Sq. waveg. 7.6 x 7.6 10 Stuchly, 1978

2.45 ± 0.05 Cir. waveg. 15.2 (0) ? Kantoretal., 1978
2.45 Cir. waveg. 8.0 (0) 10 Stuchly et al., 1980
9.6 - 10 Cir. waveg. 2.7 (0) 10 Stuchly et al., 1980
3.2 Cir. waveg. 2.5 (0) 12 Land, 1987

t - 6 antennas arranged in a 2 x 3  grid to form a multi-probe.

* - multi-frequency radiometry system.

T.R. - Truncated rectangular, R ed. waveg. - rectangular waveguide, Sq. waveg. - 

square waveguide, Cir. waveg. - circular (cylindrical waveguide



An increase in the dielectric constant of the waveguide filling requires a 

reduction in the dimensions of the guide in order to restrict propagation to the 

TEjq-mode. This means that the guide dimensions are determined within certain 

limits by the type of dielectric loading if multi-mode propagation is to be avoided. 

The dielectric loading of the guide and the waveguide dimensions also determine the 

transverse- wave impedance of the guide. The impedance mismatch at the 

antenna/tissue interface causes a reflection of the radiation signal from the tissue and 

it is desirable that this reflection should be minimized.

IV.4- Dielectric properties of tissues:

To design and assess the performance of electromagnetic devices for clinical

applications one must first consider the magnetic and electric properties of tissues.

A brief summary of the biological tissues which are non-magnetic and have a
7 1permeability equal to that of free space (4rcl0 Hm ) has been reported in this 

chapter. The interaction with electric fields is determined by the permittivity which 

may be expressed in complex form as:

e* = £0 ( e' - i e " ) (IV. 11)

where £', the dielectric constant, is a measure of the energy which may be stored in 

the tissue, and £", the loss factor, is a measure of the energy dissipated by the 

mediumx , the permittivity of free space, is 8.854 x 10 Fm . The loss factor 

£" is often expressed in terms of the electrical conductivity <7 and the frequency of 

the electromagnetic field f. Thus:

£” = - ? _  (IV. 12)
27tf£0

The high frequency electric field interacts with the tissue by producing a
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drift of free electrons and ions, polarisation of atoms and molecules and rotation of 

dipole molecules. The electric field in the tissue, E, gives rise to a conduction

current! .
c

I c= a H (IV. 13)

the interaction related to the bound charges gives rise to a frequency dependent

displacement current, J ,
d

_ 3 ( e 'E )
i d— r -  av.14)

the relationship between the conduction loss and the dielectric loss is:

— = -----—  = — (IV 15)I ,  2 jtfe0 e' e ' * ;

this is known as the loss tangent ( tand).

The local absorbed power density at a point (x,y,z) in tissue is defined by:

_ 0 5 U  (IV. 16)

where E is the magnitude of the electric field at that point. In hyperthermia the 

specific absorption rate (SAR) is often used, where

„  riyz (IV. 17)

-3
where p is the tissue density (Kgm ).
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Penetration of electromagnetic fields into tissues is often described in terms 

of the plane wave penetration depth S. This is the distance through a uniform 

medium after which the magnitude of the E-field of a plane electromagnetic wave is 

reduced by a factor e 1, and is given by:

5 = 2c

CO V e '2 + e”2 - (IV. 18)

The absorbed power density is reduced to approximately 13.5% within this 

distance.

915

200
2450 434

z (cm)
8 97654321

Fig. IV.3- Frequency dependence of penetration into uniform muscle from applicator with 
10 cm x 10 cm aperture, p is the absorbed power density normalized to the peak value at 
depth z = 0.5 cm.
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The above figure shows the frequency dependence of penetration into a 

semi infinite homogenous medium (muscle) from a r£ ;o-mode applicator with a 

10 x 10 cm aperture. The values of £y (proportional to specific absorption rate), 

normalized at 5 mm from the plane of the aperture, are plotted against distance from 

the aperture along the central axis perpendicular to the plane of the aperture. The 

distances over which Ey is reduced by a factor of e 2 "the effective penetration 

depths" are less than the plane wave penetration depths at each of the frequencies 

considered.

P (%)too

Plane wave

16 x 16

10 x 10

z (cm)

8 965 74321
Fig. IV.4- Penetration into uniform muscle from 434 MHz applicators fro various aperture 
sizes, p is the absorbed power density normalized to the peak value at depth z = 0.5 cm.

The above figure shows the results of similar calculations for T E mode 

applicators with various size apertures operating at 434 MHz. The effective 

penetration depth decreases as the size of the applicators is reduced and, for 

apertures small compared with the wavelength in the medium, becomes quite

sensitive to aperture size.

A common feature of direct contact applicators is that energy is transmitted
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from the waveguiding structure to the tissue in the form of propagating wave. The 

wave propagation within hollow cylindrical waveguides can take place only if 

certain relationships between the dimensions of the waveguide and the operating 

frequency are satisfied. Before discussing the characteristics of particular 

applicators, the existence of different types of guided electromagnetic wave should 

be noted.

IV.5- TEM-mode waveguide:

Transverse electromagnetic waves (TEM) are those in which there is no 

component of electric or magnetic field in the direction of propagation, the electric 

and magnetic fields lie totally in the transverse plane. Although such waves may 

propagate along a system of two or more conductors (along a coaxial line), they 

cannot exist within uniform hollow cylindrical guides. Waves which can propagate 

within such guides have either an electric or magnetic field component in the 

direction of propagation. Those with magnetic field component in this direction and 

with electric fields restricted to the transverse plane are known as Transverse 

Electric waves (TE) whilst those with an electric field component in the direction of 

propagation and only a transverse magnetic field are referred to as Transverse 

Magnetic waves (TM). Boundary conditions make it desirable that electric fields 

should be predominantly parallel to skin surface and tissue interface and so 

applicators are usually designed to support propagation of TE waves.

IV.5.1- Rectangular TE-mode waveguide antennas:

Many direct contact applicators are based on waveguides with rectangular 

cross section. To obtain components of the electric field for TE waves in the co­

ordinate system shown in the Fig. IV. 1, Maxwells equations must be solved 

subject to boundary conditions at the walls of the applicator which are assumed to 

be perfectly conducting. The electric field components (Johnk, 1975) are.
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Ex =
JCQM- nrc 
u2 b cos (•nrnx ) sin ) i 

b (IV. 19)

Ey = n7c
sin ( nrna x ) c o s ( - ^ y ) j (IV.20)

y ( j )

z(

Fig. IV. 1- Coordinate system for applicator with rectangular cross section.

with the propagation constant ) 2 + ( ^ ) 2- 0)2pe

2 2 2 j  ?h = y + o) lie -  ( + (ML)  and A is a constant; m and n are either
'mn *  -  i a  J ’ b

integers or zero (but not both equal to zero). It has been assumed that the applicator

contains dielectric material having permittivity £ and permeability p  and that the

fields within it vary with z and t as exp ( j  cot + J m n i). This transverse wave has

m half sine variations in the x direction and n such variations in the y direction 

and propagation can occur only when the frequency is greater than the cut-off

frequency f Cmn where:
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f. (IV.21)

since for lower frequencies y ^  becomes a real attenuation factor.

For rectangular applicators (a > b) the mode having the lowest cut-off 

frequency "the dominant mode" is TEJ0 for which:

It follows from the equation (IV.4) that wave propagation can take place in a 

rectangular applicator only when its largest dimension is greater than half the 

wavelength in an unbounded region of the medium used to load the applicator. 

Operation in the Tis^-mode can be ensured by choosing the dimensions of the 

applicator and operating frequency /  such that / i s  typically 10% - 30% greater 

than fcTEw- Linear dimensions may be reduced from those of an air filled device 

by loading the applicator with material of suitable dielectric constant. The 

performance of the applicator or antenna is also determined by the reflections which 

may occur at the applicator/tissue interface.

Table IV.2 illustrates some dielectric materials used for the microwave 

thermography antennas in order to achieve the reduction in dimensions required in 

medical applications . However, it should be remembered that as the aperture of an 

applicator is made smaller, the effective penetration depth is reduced significantly 

below that for plane waves at the same frequency (discussed in detail in Chapter

A disadvantage of TEj0-mode applicators is that only approximately 60% 

of the aperture provides effective heating. Microwave applicators should provide: 1) 

the uniform heating of a specified volume; usually of muscle, with minimal heating 

of fat and skin; 2) uniform heating over a selected area in the plane parallel to the

_ 2a (IV.22)

VII).
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applicator's aperture; 3) minimum leakage . Other applicators have been developed 

in attempts to achieve the above requirements. Multimode aperture type applicators 

have been designed and tested by Stuchly and Stuchly, (1978). TE10- and TE30- 

mode square waveguide applicators operated at S band, having the aperture 

dimensions 7.6 cm x 7.6 cm, and filled with low loss dielectric material of 

dielectric constant 10. Other designs incorporating inhomogeneously loaded 

waveguides, ridged waveguides and circular waveguides have been considered, 

(see later).

Table IV.2- Properties of some commercially available dielectric materials.

Material Form Dielectric
constant

tanS Density 
(g cm-3)

Manufa­
cturer

DA-9 Alumina * 9.5 ± 3% i x ltr4 3.9 TT
D-15 Mg-Ti * 15 ± 3% 2 x  10"4 3.5 TT
D-30Ni-Al-Ti * 31 ±5% 2 x 10"4 4 TT
D-100 Titania * 96 ±5% 1 x 10'3 4 TT

Magnesium 14 3.5
Calcium * to 2 x 10'3 to TT
Titanates 140 ±5% 3.8

Silastic 9161 RTV + 4.0 7 x 10'3 1.6 DC
Sylgard 186 + 3.0 1 x 10‘3 1.1 DC

Eccoflo HiK • 2 - 5 - 12.0 4-7 x 10’3 1.6-2.7 EC

StycastHiK 500F f 3 - 12 ± 3% 2 x 10‘3 2.2 EC

Stycast 35 ** 1.9-5 5-9 x 10'4 0.7-2.3 EC

Stycast HiK ** 6- 19 1 x 10'3 2-3 EC
Castable

Eccofoam HiK 0 1.1 ± 10% 1 x 10'3
to to 0.8 EC

6 ±7% 3 x 10'2

TT = Trans-Tech; DC = Dow Coming; EC = Emerson & Cuming.
* - solid-bars; f  - solid sheets, rods or bars; + - castable silicone elastomer, ** - casting 

resin; 0 - open cell foam  sheet; • - powder.
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IV.5.2- Circular TE-mode waveguide antennas-

For applicators of circular cross section with radius a (Fig.IV.2) the electric 

field components for TE waves expressed in cylindrical co-ordinates (Ramo et al., 

1965) were:

Fig.IV.2- Coordinate system for applicator with circular cross section

Er =
JO** n 
, 2 r Jn (hr) sin (n<|>) I (IV.23)

E. =
jcop. Jn' (hr) cos (n<J>) <& (IV. 24)

where h* = y^n + o /p s ;  ymn is the propagation constant; JJhr)  is a Bessel 

function of order n and Jn'(hr) is its derivative with respect to (hr).

For this TE wave, the integers 1 and n describe the number of radial and 

circumferential variations across the aperture.

The cut-off frequency f CTE is given by:
n,l

n ,l

27tayil£
(IV.25)

where p is the nth root of J '(ha) -  0.
n,l n

The dominant mode is TEU for which pn  = 1.84 and so, the cut-off frequency is
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given by:

f -  1-84 _ 0.293
2 i t a / p £  a / T i e  ( I V - 2 6 )

Thus wave propagation can take place in a circular cylindrical applicator

only when the radius is greater than about 0.3 x free space wavelength. The cut-off

frequency for the next higher mode (TMQ1) is 1.305 fcTE .
n

Several circular direct contact applicators have been published. Kantor and 

Witters, (1983) describe two circular polarised applicators for use at 915 MHz 

which give symmetrical heating patterns and are designed to produce low levels of 

stray radiation. The circular applicator can be readily modified to minimise leakage 

fields (Stuchly and Stuchly., 1980; Neelakantaswamy and Rajaratnam, 1982). A 

TEn -mode applicator with a variable aperture for operation at 430 MHz is 

described by Vaguine et al., (1982) whilst Lin et al., (1982) have developed an 

applicator consisting of three concentric circular cylinders. The TE -mode is 

supported between the inner and middle cylinders. However, the TE2] -mode (or a 

TEjj-mode at a different frequency) can propagate between the middle and outer 

cylinders. The inner cylinder can be used to introduce a cooling agent to the skin or 

ionising radiation if simultaneous hyperthermia and radiotherapy are prescribed.

IV.6- Dielectric properties of tissue at 3 GHz:

Several authors have considered the dielectric behaviour of tissue and 

attempted to relate the water content to the dielectric properties (Schwan and Foster, 

1977; Schepps and Foster, 1980; Foster et al., 1980). Dielectric properties vary 

greatly with the tissue type and with the frequency. Tissues may be divided into 

two main categories, high water content tissue, such as muscle and skin and low 

water content tissue, such as fat and bone. The values of measured dielectric 

properties of tissue have been tabulated by Stuchly and Stuchly, (1980), by Foster 

and Schwan, (1986); and, more recently, by Campbell . The difference in complex

* - PhD thesis in preparation.
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permittivities between the same tissues from various non-aquatic mammals is small 

in the frequency range 0.1 to 10 GHz (Stuchly and Stuchly, 1984) compared to fat 

tissue. The difference between measurements using excised (in vitro) or living (in 

vivo) tissues (Foster and Schwan, 1986) is also small. Any consistent difference 

due to either of these factors is indistinguishable among the variations due to tissue 

heterogeneity.

The values of measured dielectric properties of human tissue at 3 GHz and 

37 °C, in vitro, as compiled from the literature, are given in Table IV.3, together 

with calculated plane wave power penetration depths.

The study of Guy, (1971a) and the theoretical studies of Tuner and Kumar, 

(1982); Nilson, (1984); and Plancot, (1983) show that aperture dimensions should 

be greater than half a wavelength (in the medium) to avoid excessive power 

absorption in the superficial tissues and generally no greater than two wavelengths 

to avoid higher order heating patterns. Although simple plane layered models are 

useful for predicting the performance of applicators when the radius of curvature of 

the tissue is considerably greater than the wavelength, they are unable to account for 

the effects of geometry which may become significant when the radius of curvature 

is comparable with or less than the wavelength. Ho et al., (1971) analysed the 

power absorption due to TF^-mode aperture sources (433 to 2450 MHz) in 

contact with triple layered cylinders which simulated human limbs. The heating 

produced in the fat region relative to that in muscle was minimized when the height 

of the aperture was equal to one wavelength in the fat. Authors mentioned in 

Chapter II used different types of waveguide for different frequency ranges and 

aperture sizes. The frequency range from,10 MHz to 10 GHz, was covered in this 

study.
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Chapter V

Microwave correlation radiometry 
Theory

V. 1- Introduction and the literature review:

Microwave correlation radiometry is a possible alternative technique to 

multi-frequency radiometry, discussed in Chapter II, for obtaining a measurement 

of the subcutaneous temperature gradient in living tissue. In its simplest form this 

technique consists of combining the outputs of two antennas feeding a microwave 

correlation radiometer. Microwave correlation is based on the coherent detection of 

noise, here presented as the correlated signal from the two antennas.

The use of microwave correlation radiometry may improve the sensitivity 

for disease detection by localization of the thermal gradient in the tissues (Leroy, 

1982).

The coherence theory and its application to correlation radiometry has been 

discussed extensively in the literature and has been used in radio-astronomy since 

the 1950's and more recently in medical radiometry applications. Page, et al., 

(1953) presented a method for the measurement of auto- or cross-correlation 

functions. These functions performed by a correlator are delay, multiplication, and 

integration. Fans, (1967) discussed the sensitivity of a correlation radiometer for 

two cases. The first case related to the case of two different sources connected to 

opposite arms of a matched hybrid junction. The signals in each arm were applied 

to amplifiers, when the received signal at the output was the product of the two 

signals. The second case considered two identical amplifiers, with different 

effective temperatures. Faris analysed the effects of a differential time delay or a 

differential phase shift in the two radiometer channels. In both of these cases the
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results are affected by a decrease in sensitivity. Ko, (1967) presented a theory for 

radio-astronomical measurements of partial coherence. It has been found that 

coherence functions were related to the spectrum, the brightness distribution, and 

the polarisation of the electromagnetic fields. Swensn and Mathur, (1968) derived 

the response of a two element radio interferometer to a coherent field, with no 

restriction on the bandwidth or antenna properties. These studies resulted in an 

improvement in spatial resolution in the far-field detection case appropriate to 

astronomy.

There has been considerable interest in the application of correlation 

radiometry to medical microwave thermography for diagnosis and therapy. 

Mamouni et al., (1981) described a method to achieve better control of the 

radiometrically varied tissue volume. This method was based mainly on the 

analyses of an interference pattern signal received from the applicator apertures of a 

volume V, it was the combination of two or more signal probes. These probes 

were placed in parallel (Fig. V. 1). Leroy, (1982) carried out the same technique 

using several probes to improve the volume of the scanned tissues. He found that 

the technique gave a high spatial resolution in the millimeter frequency ranges; but 

the penetration depth was comparatively poor (less than 1 mm). It is found that for 

high permittivity and very lossy materials, such as muscle, skin and brain, the 

penetration depth defined by an attenuation e'1 of the field on the axis of the probe 

is approximately that of the TEM. In other tissues, such as fat and bones, results 

are quite different and the signal measured is vastly different from the TEM case. 

Correlation thermography was further used by Mamouni et al., (1983) to improve 

techniques of microwave thermography for medical applications. They used two 

probes, "P " and "P ", (7 £ ;o-rectangular waveguide, 2.2 cm x 1.1 cm in 

dimensions with loading dielectric constant e' = 25) connected to a correlator and in 

contact with lossy material to achieve better localization of the thermal gradients in 

the varied volume. This system helped to improve the correlator and simplify its 

operation. The outputs of the two probes were connected via a 180 hybrid to a

82



s

lock-in
detector

quadratic
detector

pulse
generator

low-noise
microwave
amplifier

,180

hybrid

180°

phase 
shift A<|)

probeprobe

•V \
lossy

>AV
tempeprfure

Fig. V .l System of correlation radiometer 

[ from Mamouni et al., 1981]



noise source. The receiver consisted of a S-band low noise preamplifier followed 

by a heterodyne receiver and a numeric filter monitored by microprocessor. The 

resulting gain was about 70 dB with a noise factor about 7 dB. The bandwidth 

was 2.2 to 3.8 GHz (Fig. V.2). Mamouni et al., compared these results with 

classical single antenna thermography using the same probes and receiver and 

showed that the correlation volume processes have more selective output signals but 

the resultant signal amplitudes in microwave correlation radiometry are smaller than 

in the classical method.

Bellari et al., (1984b) studied the thermal structure associated with lossy 

materials using the correlation method. This consists of a coherent detection of the 

thermal noise, from two probes with 30° between their axes, which are connected 

to a microwave correlator. The output signal depends on the thermal emission of the 

volume scanned by both probes and on the delay times associated with the 

propagation of the noise signals in the lossy material and in the two branches of the 

correlator. The system used was a similar to Figure V. 1 except that it has been 

modified by the introduction of S band low noise amplifiers in the two branches of 

the correlator. The bandwidth was 2.6 to 3.4 GHz together with a noise factor of 4 

dB led to a sensitivity better than 0.1 °C for a time constant of one second. The 

localisation of the thermal gradient was very noticeable as a function of the position 

of probes and was able to define its signal with an accuracy of nearly 1 mm 

corresponding to the closest possible spacing of the antenna mid-lines. Hill et al.,

(1985) discussed the cross-correlation of thermal radiation from two sources 

received by two antennas, at fixed distances from the sources and from another 

microwave correlation radiometer, in order to combine the spatial and thermal 

resolution in a dense transmission medium for two thermal sources in air. The 

radiation from different points on a surface of constant delay for a dielectric 

constant 49 which is typical of dense tissue was theoretically studied. Numerical 

calculations were carried out using two thermal sources to determine the surface of
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constant delay in air (where the dielectric constant is 1). This technique showed that 

as the receiver bandwidth increased the apparent coherence time of the radiation 

decreased, permitting a compact volume of the tissue to be examined.

The correlation technique was thoroughly investigated by Newton, (1986) 

using two TEn -cylindrical waveguide antennas and two TE^-rectangular 

waveguide antennas with two identical channels. The first was angled at 48° and 

the closest separation of the antennas was possible is 4.4 cm. The second was 

angled at 30° and the closest separation of the antennas was 1.75 cm. In this study 

Newton used two designs of correlation radiometer; an add-and-square correlator 

of a 180 0 hybrid combined with a single pole double throw (SPDT) PIN-diodt 

switch to add the two signals and perform the phase switching (Fig.V.3); and a 

multiplicative correlator with two channels of correlation radiometers designed and 

constructed by Land, (1983a); (Fig. V. 4). This consists of two radiometer 

channels each comprising two isolators and pre-amplifier at the front-end followed 

by a mixer and IF  amplification. Different muscle phantom materials have been 

used to define the optimum penetration depth of the electromagnetic field at different 

distances between the antennas. It has been found that by placing the antennas 

closer together, a simple received pattern with one central fringe in the interference 

pattern can be achieved. The orientation and size of antennas were adjusted to reach 

a maximum penetration distance.

V. 2- Modes of correlation radiometer operation:

V. 2. 1- Introduction:

The classical signal antenna microwave thermography (MWT) used for 

medical radiometry applications is capable of detecting the existence of thermal 

structures of relatively large size but not too deep. The microwave correlation 

radiometry (M W CR), is the complimentary to M W T , and is preferred for 

studying either the limits of thermal zones, when the differences in temperature are 

great, or for localizing small thermal structures and improving the spacial
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resolution.

There are several types of correlation radiometer design with various 

degrees of sensitivity, and consideration has to be given to gain, stability and cost 

of the various types. Two main ways of calculating the cross-correlation signals 

received from two channels have been studied.

1) They can be multiplied together using a double balanced mixer as 

multiplier (Newton 1986). This is the multiplicative correlation radiometer.

2) They can be added together. The resulting signal is then squared by 

means of a square law detector. This is called an add and square correlation 

radiometer, (Newton, 1986).

V. 2. 2- The multiplicative correlation radiometer:

Figure V. 4 shows a schematic diagram of a multiplicative correlation 

radiometer, consisting of two radiometer channels. This radiometer was part of a 

radio-astronomy interferometer described in McClintock, (1981) and by Newton,

(1986), who analysed the sensitivity of the technique for a m nye ©f 

frequency. With the multiplicative correlator, the received signal has correlated and 

uncorrelated components and the output is extracted from the correlated component 

only. The auto-correlation function of the thermal noise signal is given by:

c ( t ) = s ( t ) s ( t - x ) (V-1)

where x is a time delay and is equivalent to a path length difference. This can be 

varied by inserting different lengths of coaxial cable into one of the channels. The 

total signal is proportional to the sync and the cosine functions for the bandwidth 

dco and the path length difference T.

85



V. 2. 3- The "add-and-sauare" correlation rariiomptry

The add-and-square technique for the correlation of thermal radiation

from two antennas was used in the experiments described in this work. This

method which was described by Newton, (1986), uses two signals which are first

added together and the result is then squared. A two-antenna microwave correlation

radiometer integrates radiation over a distance that is of fixed time delay differential

to the two antennas and also is within the volume of tissue common to both

antennas. This distance is defined such that the difference in transit time of the

radiation from any point P within that volume to each of the antennas is a constant
x - xx (Fig. V. 5b), where x~  _L L. The analysis of this method will be described

c

later in the chapter.

V. 3- Microwave correlation radiometrv:

The arrangement investigated in this work uses two identical antennas, with 

a fixed distance between them, and with their axes at 90° (Fig. V.5a). By the 

reciprocity theorem the signal in each one is characterized by its radiation pattern. 

The signal radiated is a function of the geometry of the antennas (Fig. V. 5), the 

operating frequency, and the aperture field illumination. The component parts of the 

two antenna signals, resulting from the common region, are correlated (Fig. V.6,

V.7, and V.8) and the components from the region not common to both antennas 

are uncorrelated. The output signal depends only on the common signal which is 

obtained by cross correlation of the two signals. The most important function in the 

coherence theory is the cross correlation of the signals received from two different 

directions. The coherence function is defined in the following section.

V. 3.1- The received pattern of the correlation radiometer:

The thermal noise signal received from a volume of tissue at any point P 

(Fig. V. 5) in the general field of view of the antennas is the signal received by the
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radiometer from antenna 1 and antenna 2 at point P which are denoted by EJ and 

E . The output signal is obtained by cross correlation of the two signals (Fig. V. 

8). The most important function in coherence theory is the cross correlation of the 

signals received from two different directions at two different times. This is defined 

(Swenson and Mathur, 1968) as:

T

r(t)  = L i m i | E 1 (Xj , t) E2 (x2 , t - x ) dt (V.2)

or by,

r ( t ) = < Ej (xj,t) .  E2* (x2,t - x ) > (V.3)

where t  is the transit time delay of the radiation from any point P in the field of

view to each of the antenna, t = xr x2

The correlated signal received from the radiometer is given by:

R = E  x E 
P “ 1 ~ 2

(V.4)

where:

. 2E = E exp ( - a x  ) sinl o r  1 X  2 (V.5)

. 2
E = E exp (-  a  x ) sin

2  o  r  2 X  i (V.6)

R = E E cos 
P 1 2

k ( x - x ) 
1 2

(V.7)

R =E exp
p o r

- a  ( x + x^) 1 2
. 2 sm

(   ̂
i x

. 2 sin
( ^ 

2j

cos k ( V x2 ) (V.8)
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where E1 and E2 are the electric fields from the antenna 1 and 2 respectively and 

Eq is the field magnitude of the thermal noise emitted by the tissue at the point 

P.The output signal Rp of the correlation radiometer, due to the radiation emitted 

by tissue at the point P , is proportional to the signal power and hence the 

temperature, since T is proportional to E 2. The difference in path length to the 

two antennas is cos [ k (x}-x2) ]. This factor produces an interference pattern 

across the field of view from the point P to the two antennas of nX, where, X is 

the wavelength in tissue and n = 0, 1,2, etc. The intensity will be zero wherever

k (  x , -Xy)  = —, 4-^-, and so on; the minima for the interference pattern is
1 2  2 2 2

TCdefined by k ( x . - x2 ) = — d sin 6, and the maxima will then be determined by d 

sind  = n X. The interference pattern depends on the product of the antenna 

received signals which are related to the relative orientation of the two antennas 

(Fig. V. 9).The path length difference ( x  - x^) to point P is approximately d 

sinQ, so the output received signal at point P is given by:

Rp oc real exp ( i k -y sin 0 ) exp (-  i k ~  sin 0 ) = cos ( k d sin0 ) (V.9)

Thus the pattern is the product of the cosine fringes. This expression is true for just 

the point of intersection of the antenna axes.

For the aperture antennas with width a the output Rp is given by:

Rp oc real

d a Jl  
2 + 2

. d a / 2  ,
+ ( i + — >

f exp ( i k sin9 x) dx j  exp (i k sin6 x ) dx

d_ a Jl ' d a / 2
2 '  2

(V.10)

= real exp ( i k sin_9_) sifi2 k sin0 

( k sin0 )2 2
(V.ll)
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The magnitude of the real part of this expression is given by:

. 22 sin
R (R ) = 2 a cos ( k d sinG ) ___e p

■ 7 2 . :
2 sinG

k A il . sjn0
(V.12)

Hence the pattern is the product of the cosine fringes by a s /nc function modulation 

where the aperture width a is given by:

k $ 12-  sin0 = y (V.13)

N.B. thus cos ( k d  sinO) Sln y = cos ( k d  sinO) [ ]
y  y

If the width aperture a is just a point, y will tend to 0 and,

U m ^ = l
y

y-*o

so the output signal will be expressed by the following equation.

2 a cos [ k d sin0 ] (V. 14)

Equation V.12 can be applied for any type of aperture, but the smaller the better 

because the magnitude of the output signal should preferably be large. The above 

analysis considered the pattern at only one frequency.

The radiometer detects a signal across a wide bandwidth of frequency, but 

only the signals at the same frequency from the same tissue element are coherent. 

Signals from the same tissue element, but at different frequencies, are incoherent so
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it is valid to consider the correlation pattern at one frequency at a time. The total 

signal from position P is given by the integral over the bandwidth.

Rp -  J  RP (©)dco = J  2”Ei C®) E2 C®) cos [ k ( - x2 ) ] dco (V.15)
CO (0

with k = Q-

If the frequency dependence of the electric fields E j(  co) and E2 ( co) is 

neglected and the effect of the bandwidth on the path length is the only term 

considered, then the total signal from a particular point with path length difference 

( Xj - x2) will be proportional to:

Aco

(V.16) 

s i n ( 4 p x )
= Aco cos ( c o r  - - j ) ---------------  = Aco cos ( co t - - j )  s/ncC-^p'O (V.17)

0 4 2

where co is the centre frequency, Aco is the bandwidth and Tis the time delay, 
o

The result of Eq. V.16 is the pattern for broad band signal and is the same as that 

for one single frequency, cos [ k (  x} - x2 ) ], but has an additional s/nc function 

modulation, depending on bandwidth and path length difference. The s rnc function 

modulation reduces the magnitude of the signal with increasing path length 

difference, and with increasing distance from the central axis. Thus the effect of 

using a broadband signal is to reduce the outer fringes (Fig. V.10). In practice the 

effect is small (Newton, 1986).

Aco

J
A to

cos ( c o t  - ) dco = \  sin ( cor - )4 T 4
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V.3.2- The received pattern of "an add and square" correlation radiometer:

The two signals are first added together and the result is then squared.

RP = E1 + E 2 (V.18)

where:

a x ,  2
E = E  e' sin 1 o

(  \  
f *X  2

v y
(V.19)

E = E  e
2  o

- ax,
sm (V.20)

where Ej and E2 are the electric fields from the antenna 1 and 2 respectively and 

Eq is the field magnitude of the thermal noise emitted by the tissue at the point P.

2 2
Rp = Ej + E2 + 2 Ej E2 cos0 (V.21)

The output is the sum of correlated and uncorrelated components, which is 

proportional to the total power received from the channels, with single channel 

radiometer outputs. The received signal depends only on the correlated component. 

This can be solved by introducing Rp ( j - ), where the phase from one antenna to 

another is shifted by 90°. The output becomes:

Rp ( y ) = Ej + + 2 Ej E2 cos ( 0 + y ) (V.22)

The correlator will give a square wave output of a magnitude, which depends only 

on the correlated signal. Phase switching is an essential element of the design for
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the add and square correlator (Fig. V. 3). This signal is then:

Rp - R p ( y ) = 2 7 2  E j E 2 c o s ( 9 - f ) (V.23)

2  - a  ( x j +  x 2 ) 2

= 2 v2 E e sin
o

r
K Xj . 2 sin

v — JC°\kl(Xl ‘ X2 ) ’ 4

xr x 2where 6= cot =2 j t f (  —-— ) = k ( xl - x2 )

2  - a  (  x ,  +  x2 ) ,
2V2E e sinO

71 Xj . 2 sin
^7t X̂ ^

y
cos

\
(OT-y

V y
(V.24)

The correlator gives a square wave output of magnitude, 2 72 E2 cos ( 0 - ^  j ,

which now depends on only the correlated signal. Phase switching is thus an

essential part of the design of an add and square correlator.

For the sensitivity of an add and square correlator it is necessary to take

into consideration the auto-correlation function of the output. The signal in the

square wave detector is —  [ e  ( t ) + E2 ( t ) ]• The factor of appears because,
72 72

in practice, the addition of the two signals results in a halving of the power in each 

signal. Thus the output R( t )  from the square law detector will be given by:

R ( t > 2
Ej d ) + E 2 (t) E ( t ) + E 2 (t) (V.25)

In Appendix A the auto-correlation function of the output is defined as:

(V.26)
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C ( x )
(Ej +Ej )

E 1 ( t ) + E 2 (t) E i ( t - x ) + E2( t - x ) (V.27)

E ( t ) x E  ( t - x )  + E2 ( t ) x E 2 ( t - x )  +

E ( t ) x E 2 ( t - x )  + E2 ( t ) x E ( t - x )

■4 cV t)+K (x)+tW ,) (V.28)

if C ( x )  = C (x )  = C (x)  and Cg (x )  = C (x )
Ej E2 b \ • 2*2

then

= CL ( x ) + CP ( x ) (V.29)

therefore the auto-correlation function becomes:

2 2

c R ( X ) = [ c E ( 0 )  + CEt ( 0 ) ] + 2 LCE(x) + CE (x)]  (V.30)

Cc (x) « C (x)
if fcc z

C r ( t )  =  C e ( 0 ) + 2 C e ( X )
(V.31)
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The sensitivity of an add and square correlator radiometer has been compared to 

that for a single channel ideal total power radiometer. This shows similarities of 

sensitivity for both cases.

The modelling and the experimental analysis of the microwave correlation 

radiometer will be discussed in detail in Chapter VI.
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Chapter VI

Microwave correlation radiometry 
Practical Implementation

VI. 1- Introduction:

In Chapter V the theory of the correlation microwave radiometry and the 

correlation function were discussed. The application of this theory to the microwave 

radiometry will be analysed numerically and experimentally verified.

Several authors have published work on correlation radiometry and 

discussed the effect of the spacing of antennas on the maximum depth attained. 

Mamouni et al., (1983) suggested a useful method to study thermal zones limits 

when the differences in the temperatures are great or for localising small thermal 

structures to improve the spatial resolution. The spatial resolution is improved 

because the width of each individual fringe in the pattern is much narrower than that 

for a single antenna. The interference pattern can be moved by changing the path 

length difference. Bellarbi et al., (1984b) and Hill et al., (1985) used the 

interference pattern to locate sharp thermal gradients and changed the path length 

difference to automatically scan the pattern without moving the antennas. Haslam, 

(1984) suggested doing correlation radiometry with only two antennas for different 

antenna apertures. These microwave correlation radiometer antennas have been 

applied in radio-astronomy to measure the received signal in aperture synthesis. 

Several problems have been found, for considering the microwave correlation 

radiometric techniques, which were spaced antennas, and hence an interference 

pattern, for detecting thermal gradients. A reduction in sensitivity is difficult 

because of the limited overlap of the individual antenna received patterns.

In the last few years several theoretical and practical studies have been made
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in correlation microwave radiometry (see Newton, 1986, discussed in Chapter V). 

Mamouni et al., (1983) suggested a new a microwave correlation technique to 

investigate the thermal gradient in the subcutaneous tissues and to improve the 

performance of the applicator used in medical application. These studies were 

carried out by Mamouni, (1988) to improve the detection of the electromagnetic 

fields in lossy materials. The results of their work in nearly parallel antenna 

correlation radiometry were not encouraging to use their antenna arrangement. The 

Glasgow interest in the diagnoses of breast and limbs joint diseases using a 90° 

crossed-pair antenna arrangement could be of practical interest.

The add and square correlation radiometer, considered in this work, was 

constructed using a 180° hybrid combined with a single pole double throw 

(SPDT) PIN diode switch to add the two signals and perform the phase 

switching. This radiometer has been designed and constructed in the Glasgow 

University. Two 7£^-mode cylindrical waveguide antennas are used at fixed 

distances and 90° angled, (Fig. VI. 1), in order to improve the investigated 

volume under investigation in the treatment of cancer by hyperthermia therapy, and 

in the detection of disease in the female breast and in the major joints.

VI. 2- The add and square correlation radiometer:

VI. 2. 1- General design:

Figure V. 3 shows a schematic diagram of the add and square correlation 

radiometer. The two IF signals are added together by the 180° hybrid. The hybrid, 

combined with the PIN diode SPDT switch, produces the phase switching, which 

is necessary in an add and square design of correlator to separate the correlated 

component of the signal from the background. The output from one of the hybrids 

output ports is the sum of the two input signals ( half the power of each channel). 

The square law detection gives:
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Fig. VI. 1- Schematic diagram of the crossed-pair antenna



(VI. 1)

The output from the other output port is the difference of the two input signals. 

Thus the sum with 180° phase shift between the signals (half the power of each) is 

given by:

The two outputs are alternately selected by the SPDT switch, at a switch frequency 

about 1 KHz. The switch is followed by the square law tunnel diode detector. The 

resulting AF  square wave is processed as in a single channel Dicke-switched 

radiometer i.e. AF amplification, synchronous detection and low pass filtering. 

The output from the synchronous detector is the magnitude of the square wave 

which is defined by:

which is the required correlated signal.

VI. 2. 2- Phase switching:

The phase switching is a necessary part of the add and square correlator 

design. It separates the correlated component of the signal, E E2, from the total

from the detector is that it is easier to amplify than a d.c. signal of the same 

magnitude. The position at the end of the radiometer channel for the hybrid and 

switch after the IF amplifier neglect the loss of the different components of the 

system noise. Since there is no front-end switch the overall system noise of a

(VI.2)

R+ - R. = 2 cos0 (VI.3)

power component ( E ^  + E2 ) 12 . The advantage of the add and square signal
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channel is less than for a Dicke-switched radiometer. However, because phase 

switching is performed at the end of the receiver it will not eliminate the unwanted 

coherent signals. The unwanted coherent signals introduced anywhere in the 

microwave or IF stages will bi-phase modulated along with the actual signal and 

will contribute to the final output. The unwanted coherent signal cannot be 

measured.

VI. 2. 3- Practical problems:

VI. 2. 3. 1- Phase balance:

The path length difference between the channels should be adjusted in order 

to give the maximum signal. The path length difference in the microwave and IF 

parts must be corrected separately, because the system uses the upper and lower IF 

sidebands from the mixer and any correcting phase difference. At the microwave 

frequencies, the lower sideband is inverted which is not the case for the upper 

sideband. The sensitivity of the phase balance in the IF section is better than 3 °. 

The phase balance between the hybrid outputs is also good at less than 0.2° 

difference. This phase balance has been studied by Newton, (1986).

VI. 2. 3. 2- Hybrid amplitude balance:

The signal from channel A into port 1 of the hybrid is divided equally 

between the two output ports with negligible difference in amplitude. The signal 

from channel B into port 2 is unequally divided, with a difference of 4%. 

Newton, (1986) found that the sensitivity for the add and square correlation 

radiometer was about 0.06 K. Recent modification to the microwave correlation 

radiometer has improved the performance of the radiometer channels.
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VI. 3- Receive patterns:

VI. 3.1- Computer modelling:

A theoretical study using computer modelling of the crossed-pair 

antenna system for radiometer temperature measurement shows the variation of the 

field pattern relative to the distance between the antennas, and phase switching. 

Numerical calculations have been carried out to determine the optimum penetration 

depth for a variety of midline distances and phase switching of the crossed 

antennas.

Figures VI.2.1 and VI.2.2 show the prototype of the crossed-pair antenna 

considered in this work and the analytical diagram of them where the separation 

between antenna 1 and 2 is represented by b and the midpoint apertures distance 

is d.

Figures. VI. 3.1, VI. 3.2, VI. 3.3, and VI. 3.4 show the effect of spacing 

and phasing the crossed antennas. The midpoints of apertures are separated by 

different distances, b, and different phases to establish the maximum penetration 

depth that can be achieved. Figures VI. 3.1 and VI. 3.2 show the computational 

analyses of the above arrangement operating at a frequency of 3.2 GHz. Fig. VI.

3.1 represents the case where the two antenna paths are in phase and Fig. VI. 3.2
%represents the case where the phase difference is The distance in both Figures 

between the antennas as shown in Fig. VI. 2.2 is b = 10 cm. These Figures 

illustrate the effect of the phase change in one antenna on the correlated signal. In 

Fig. VI.3.2 the received signal from the microwave correlation radiometer antennas 

is more widely spread in the tissue close to the antenna/tissue interface. This results 

in the signal received from close to the tissue surface being of little significance, 

with a very small penetration depth being achieved.

In Fig. VI.3.1 with the antenna paths in phase the received signal is 

distributed along a line between the center-point of the antenna apertures. The total 

power of the signal is equally spaced into regions along this axis and thus the 

maximum penetration depth in each region is diminished. Where the distance
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Fig. VI.2.1- Prototype of the crossed-pair antenna
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Fig. VI.3.1- The computational correlation signal of crossed-pair antenna
at the operating frequency 3.2 GHz (antennas are in phase and b = 10 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VI.3.2- The computational correlation signal of crossed-pair antenna 
at the operating frequency 3.2 GHz .
(antenna 2 is phased by -jr and b = 10 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Pig. VI.3.3- The computational con-elation signal of crossed-pair antenna
at the operating frequency 3.2 GHz (antennas are in phase and b = 9.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VI.3.4- The computational correlation signal of crossed-pair antenna 
at the operating frequency 3.2 GHz .
(antenna 2 is phased by and b = 9.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.



between the antennas is equal to 10 cm the strength of the received signal is very

poor. Fig. VI.3.3 and VI.3.4 present the same analyses except that the distance

between the antennas is b = 9.5 cm. Fig. VI.3.3 shows that the received signal is

greatest in the middle of the viewed region and that the signal close to the antenna

aperture is very poor. Thus, as the distance between the antennas decreases the

results become more encouraging. For Fig. VI.3.4 where the antennas are Jr- out
o

of phase the signal is still spread near the apertures and the signal from the centre of 

the viewed region is very low. Although this separation distance is also not 

suitable, it merits further investigation.

At various distances between 7.5 cm and 3.5 cm the total signal is centered 

in the middle of the viewed region for case where the antennas are in phase and 

close to one antenna aperture where they are — out of phase. These results are 

represented by Figures VI.3.5, VI.3.6,. VI.3.7, VI.3.8, VI.3.9, VI.3.10, 

VI.3.11, VI.3.12,VI. 3.13 and VI.3.14.

From these Figures we conclude that the separation between the antenna 

apertures and the phase change give some indication of the penetration depth of the 

signal and the surface which can be scanned.

The numerical analysis shows that the contour patterns have a maximum at a 

significant depth where the antennas are in phase and the interference patterns have 

one central fringe in the investigated volume

The interference pattern has two central fringes. This study shows that the 

closer the antennas are to each other and the nearer in phase with each other the 

better the information at maximum depth.

The maximum number of contour patterns of the output correlated signal is 

found at 10 cm distance between antennas and in phase, where the radiation is more 

diffuse in the viewed field. If the distance between the antennas is less than 10 cm 

and the signals are in phase (from for example 7.5 cm ), the number of contours is 

one and it contains the total signal. If the distance is greater than 10 cm the radiation
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Fig. VI.3.5- The computational correlation signal of crossed-pair antenna
at the operating frequency 3.2 GHz (antennas are in phase and b = 7.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VI.3.6- The computational correlation signal of crossed-pair antenna 
at the operating frequency 3.2 GHz .
(antenna 2 is phased by -jr and b = 7.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VI.3.7- The computational correlation signal of crossed-pair antenna
at the operating frequency 3.2 GHz (antennas are in phase and b = 6.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.



Fig. VI.3.8- The computational correlation signal of crossed-pair antenna 
at the operating frequency 3.2 GHz .
(antenna 2 is phased by -jr and b = 6.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Hg. VI.3.9- The computational correlation signal of crossed-pair antenna
at the operating frequency 3.2 GHz (antennas are in phase and b = 5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VL3.10- The computational correlation signal of crossed-pair antenna 
at the operating frequency 3.2 GHz .
(antenna 2 is phased by -r and b = 5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VI.3.11- The computational correlation signal of crossed-pair antenna
at the operating frequency 3.2 GHz (antennas are in phase and b = 4.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VI.3.12- The computational correlation signal of crossed-pair antenna 
at the operating frequency 3.2 GHz .
(antenna 2 is phased by -jr and b = 4.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface o f the spread signal.



Fig. VI.3.13- The computational correlation signal of crossed-pair antenna
at the operating frequency 3.2 GHz (antennas are in phase and b = 3.5

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.
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Fig. VI.3.14- The computational correlation signal of crossed-pair antenna 
at the operating frequency 3.2 GHz .
(antenna 2 is phased by & and b = 3.5 cm).

The top figure shows the penetration depth of the signal and lower
one shows the surface of the spread signal.



field will be very weak and the radiated region very small, so the distance should be 

limited. These numerical analyses show that for different positions as the spacing 

between the antennas increased the volume of overlap of the two antennas and the 

received pattern is reduced. So, the total magnitude of the signal at a given point in 

the field of view is also reduced. This could be become an increase in the di*W 

between the antennas leads to a greater number of interference fringes.

Figures VI. 3 give the modelling of the correlation radiometry at the 

operating frequency of 3.2 GHz for different distances of b between the two 

apertures of the antennas. The antennas are oriented so that the product of the two 

antenna received patterns is at a maximum depth. To achieve this the antennas are 

separated a certain distance and angled in towards each other in order to view a 

common point in the tissue. There is a limit to the distance separating between the 

antennas and the corresponding phase shift.

For the experimental arrangement chosen in this work, the midpoint 

aperture separation is 3.4 cm (2.5 cm between the antennas) and the antennas are in 

phase at a frequency of 3.2 GHz.

The received pattern of the correlation radiometer was measured in the 

muscle phantom material by the technique described in the beginning of the chapter. 

A small probe (constructed from semi-rigid coaxial cable) radiating wideband noise 

from a diode noise source is scanned across the field of view of the correlation 

radiometer antennas as shown in (Fig. VI. 1). The output reading of the radiometer 

is recorded for each position thus building up a grid of the antenna receive pattern. 

The antennas are orientated so that the product of the two antenna patterns is a 

maximum at a predetermined depth.

VI. 3.2- The experimental measurements:

from the theoretical analyses a separation of 3.4 cm was selected (2.4 cm 

separation between the antennas) between the apertures of the antennas with the 

microwave radiometer receiver operated at a frequency of 3.2 GHz to obtain
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experimental measurements to compare with the numerical prediction, Figures

V.3.1, VI.3.2, VI.3.3, VI.3.4, VI.3.5, VI.3.6, V.3.7, VI.3.8, VI.3.9, VI.3.10,

VI.3.11, VI.3.12, VI.3.13, VI.3.14.

Fig. VI. 4 shows the experimental measurements using the microwave 

radiometer receiver with a noise source of the contour pattern of a phantom material 

which is similar to a high water content tissue (e ' = 75.9, a  = 2.6 sm'1) These
rd d

measurements have been done for the grid of 10 cm x 10 cm and 1 cm x 1 cm for

the displacement of the probe. This shows the maximum received signal at the

depth z = 2 cm and x = y = 4 cm of the viewed region; and the spread signal on the

surface. Most of the significant signal is found between 3 and 7 cm in the y

direction and between 3 and 6 cm in the x direction. These measurements give

encouraging results for the crossed-pair antenna correlation radiometry for the

treatment of limbs joint and breast disease because they show the expected form

which is the interference pattern from the addition of the two antenna signals. These

results are similar to that found by Mamouni.

Figure VI. 5 shows a series of x and y direction plots taken at different

depths z and at a frequency of 3.2 GHz in de-ionised water (e ' = 75.9,

a  = 2.6 sm'1) for the same arrangement of crossed-pair antenna such as one given 
d

in Fig. VI. 1 with the antennas 180° out of phase. For z = 0 and 0.5 cm the 

received signal is very weak and reaches a maximum at y = 7 cm and at x = 9 cm. 

For z = 1 and 2 cm the maximum received signal is at y = 4 cm and at x = 5 cm and 

for z = 3 and 4 cm the maximum signal found is close the antenna apertures.

Figure VI.6 also shows a series of x and y direction plots in the de-ionised 

water, at 3.2 GHz and with the same antenna arrangement and with the crossed-pair 

antennas in phase. At z = 0, 0.5, 1 and 2 cm the received signal is very weak. At z 

= 3 cm and 4 cm the maximum received signal occurs close to the antenna on the x

axis and at 5 cm on the y axis.

From these figures it was found that the maximum received signal of

102



cm
-9 -7 -6 -5 -3 -2 -1

-I

-5

-7

-0

-9

Fig. VT.4- The measured correlated signal of crossed-pair antenna at 3.2 GHz
in the de-ionised water. The separation distance between the midpoint 
apertures is 3.4 cm.

The top figures shows the maximum received signal at the depth z = 2 cm, 
x = y = 4 cm and the lower one shows the spread signal in the viewed 
surface.
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crossed-pair antenna 180 out of phase is at the depth 4 cm for two positions 

x = 2 cm and x = 5 cm, close to the antenna apertures. However, the maximum of 

the received signal from the radiometer for y direction is at 4 cm depth for the 

positions 2 cm and 5 cm. For the second case where the antennas are in phase the 

maximum received signal is at the depth z = 4 cm for both directions at 2 cm and 

5 cm positions. That leads to the conclusion that the maximum received signal from 

the microwave radiometer for both directions is similar at the depth of 4 cm. The 

maximum received correlated signal occurs at a depth of 4 cm on the y axis where 

the antennas are in phase.

Figures VI. 7 and VI.8 show series of x and y plots in muscle phantom 

material (sucrose solution e ' = 25, a ,  = 3.18 sm'1) with the same antennard d

arrangement as before. The maximum received signal is at 4 cm at position 1 cm 

and 6 cm for x direction and at the position 5 cm in y direction for both 

arrangements in phase and 180° out of phase. The correlated received signal from 

the crossed-pair antenna has also a maximum at depth of 4 cm for these phantom 

materials on the y axis.

This work agrees with results using a similar pair of antennas separated by

4.4 cm from the mid-point of the apertures and angled at 48 ° to each other in 

muscle phantom materials Newton, (1986). The maximum penetration depth which 

can be achieved is 2.5 cm.

Figure VI. 9 shows the penetration depth in de-ionised water and in a 50% 

sucrose solution for the above antennas arrangement in phase and at 180 out of 

phase. This shows that the received signal decreasing with increasing penetration 

depth z, this fall-off in terms of e '1. The maximum penetration depth for both 

phantom materials is at z = 4.5 cm depth, so at small values of the penetration depth 

significant information can be obtained for the microwave correlation radiometer 

with high-water content lossy dielectric materials.

Figure VI. 10 presents the scanning of crossed antennas with a small probe 

and the same arrangement with a noise source through the x axis (see Fig. VI. 10) in
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de-ionised water at z = 0.5 cm depth and at a frequency of 3.2 GHz. It shows 

clearly the behaviour of the correlated signal for a single frequency for a 

perpendicular arrangement of the antennas. The numerical analysis agrees well with 

the experimental measurements are in good agreement.

In comparing these results with those of Newton, (1986) the present work 

considered several cases of correlation using cylindrical and rectangular waveguide 

antennas. With 7 £ 7 rmode cylindrical waveguide antennas, angled 48° to each 

other and the mid-point of the apertures separated by 4.4 cm, the maximum 

received signal is at a depth of 2.5 cm, When the same antennas are placed side by 

side in parallel, the pattern obtained is very small. With 7£o rmode rectangular 

waveguide antenna with an aperture 0.5 x 2.3 cm and length 4.5 cm (internal 

dimensions) the closest separation that is possible for the aperture midline is 

0.72 cm. The antennas are arranged parallel to each other, the maximum received 

signal is at z = 1 mm and the penetration depth is about 0.5 cm. These TE0I-mode 

rectangular waveguide antennas have also been considered with the antennas 

separated by 1.75 cm from each other and the orientated is at 30°. The signal still 

does not have a maximum received signal at a significant depth and the interference 

pattern has six fringes. The investigated operating frequency range was 2.5 -

3.5 GHz.

Mamouni, (1988) studied two cases where the antennas were angled at 30 0 

and placed in parallel using TEoi rectangular waveguide antennas, with an aperture 

of 2.2 x 4.4 cm and length of 10 cm (internal dimensions), using a frequency range 

of 2.5 - 3.5 GHz. The method is described in Chapter V.

Figure V. 11 shows the experimental analyses (data collected from 

Mamouni, 1988) at a frequency of 3 GHz and at depth z = 2 cm, the 7'EJ0 -mode 

rectangular waveguide antennas were angled 30° and close together and moved

parallel to the surface of the material.

Fig. VI. 12 shows the same pair of the antennas placed in parallel side by 

side for the frequency band 2.5 - 3.5 GHz and at the depth z = 2 cm. The minimum
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separation distance between the antennas is 0.72 cm and the maximum received 

signal in the lossy material which can be achieved was at a distance of 0.5 cm. It 

was found that the experimental and the numerical analyses were in agreement.

In conclusion, it was found that a perpendicular arrangement for these 

antennas, if placed close enough together and the received signals were in phase, 

gave a simple centered received signal. The maximum penetration depth that can be 

achieved was about z = 4 cm (2.5 cm from the bottom of the container as shown in 

Fig. VI. 1) in the de-ionised water and in the 50% sucrose solution at 3.4 cm 

distance from the antenna apertures.

VI. 4- Conclusion:

The purpose of investigating microwave correlation radiometry was to 

improve the existing method for monitoring microwave hyperthermia induction and 

microwave temperature measurement up to several centimeters into the tissue for 

breast and limb joint disease treatment with negligible interaction from surface 

tissues.

A cross-positioned antenna arrangement was considered for this work. This 

system of antennas gives a pattern of investigated volume resulting from the 

product of the individual antenna received patterns. The received signal is 

modulated by a series of interference fringes with the positive and negative 

components cancelling out in the total output reading. The system does not respond 

to uniform temperature distributions and gives a signal only where there are regions 

in the investigated volume at different temperatures. This can be improved by 

placing the antennas closer together. A series of numerical analyses were made to 

find the best position for the antennas which can be obtained to achieve a maximum 

depth in the viewed region with negligible interaction from its surface tissues.

In the numerical analyses the antennas were placed at a range of distances 

between 10 cm and 3.5 cm from each other. These measurements were taken, as
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illustrated in Figures VI.3, with the received signals at the antennas being, first, in 

phase with each other, and, secondly, out of phase byj -̂. The best numerical results 

were achieved when the antennas were placed 3.5 cm from each other and in phase. 

The experimental arrangement selected correspond to 3.4 cm from the midpoints of 

the antenna apertures gives the expected pattern form. It was proved that at certain 

limits of spacing and phase of antennas a maximum depth of received signal can be 

obtained.

Several groups have published work on microwave correlation radiometry 

considering the problem of antenna spacing (as discussed in section V.l), in 

relation to a maximum depth, for detecting thermal gradients. These problems can 

be avoided by reduction in sensitivity due to the limited voW^ of the individual 

antenna received signal patterns. The arrangements as were suggested by The 

Microwave Thermography Group at Lille University, France, and by Newton, 

(1986) did not give significant results.

The technique of the present work is simple to use and to analyse. The 

output from the radiometer is an average over a fairly large volume of phantom 

dielectric material simulated biological tissue and is affected by dielectric properties 

and material or tissue structure as well as the actual temperature, so that it is 

important that the received signal pattern is as simple and predictable as possible.

In practice the crossed-pair antenna arrangements show encouraging results 

for biomedical application especially for the present Glasgow interest in breast and 

limb joint diseases.
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Chapter VII

Electromagnetic field, measurements and 
the nonresonant perturbation technique

VII. 1 - Introduction and literature review:

Microwave radiometry techniques have been used extensively in medical 

applications for monitoring tissue temperature and for electromagnetic field 

detection in biological tissues. Microwave receiving patterns from biological tissue 

have been analysed to investigate subcutaneous body temperature. Since 

temperature increase in the tissue resulting from deposition of microwave energy, is 

proportional to the square of the electric field strength in the tissue, through the 

antenna reciprocity law, the response to thermal radiation must have the same 

pattern (Slater, 1942). There are, two ways to determine the receiving pattern: a) by 

measuring the electric field pattern, or b) by scanning the temperature pattern using 

a microwave thermographic system such as a microwave radiometer. These 

techniques are constantly being improved given encouraging results for microwave 

hyperthermia induction. The Microwave Thermography Group at Glasgow 

University has developed and applied nonresonant perturbation, to assist the 

development of the medical application of microwave hyperthermia induction and 

microwave thermographic temperature measurement. Both these techniques require 

the electromagnetic field patterns of the spatial applicators or the antennas used to be 

known.

The nonresonant perturbation technique is a relatively simple method for 

accurately measuring electromagnetic field impedance in open or closed systems at 

high frequencies, giving amplitude, phase and spatial information about the 

electromagnetic fields associated with a structure (Land, 1984). It has certain

107



similarities to the resonant perturbation technique, but it can be applied to 

measurement situations where, due to radiative or dissipative power loss, a suitable 

resonance cannot exist, or where it is unsuitable or inconvenient to set up or 

measure in the standing wave pattern of the resonant perturbation method. The 

technique is characterized by the fact that the frequency at which measurements are 

made remains fixed. That is, this frequency is independent of measurement of the 

field perturbing object within the device.

Perturbation techniques have been used for the measurement of 

electromagnetic fields in microwave devices. Harries, (1937); Maier and Slater, 

(1952) presented a resonant perturbation method for the measurement of the 

direction and strength of electromagnetic fields in microwave structures. Land, 

(1987b) presented a new method for a resonant perturbation measurement of 

electromagnetic field distribution in high frequency structures and for the 

measurement of material properties in cavities with known fields. This technique 

has been restricted to low-loss systems which can support a resonance of suitable 

high Q-factor. Cullen and Parr, (1955) described a perturbation method using 

mechanical modulation of the perturber for measuring electromagnetic fields of an 

antenna. They found that the reflected electromagnetic wave rapidly becomes 

weaker as the distance from the antenna increases and its detection proved very 

difficult. In spite of these difficulties, a perturbation method of field measurement 

was more attractive than a direct method, because a smaller disturbance of the field 

to be measured would result. This benefit has been partly due to the fact that the 

perturbing element is not electrically connected to the remainder of the apparatus. 

Electric field measurements have been preferred in microwave devices in which 

resonance cannot be employed. The microwave device may prove too lossy to 

support resonance. This has lead to the introduction of the nonresonant 

perturbation technique to measure the electromagnetic field strength.

Nonresonant perturbation techniques have been presented and analysed for 

transmission coefficient measurement (Kino, 1955 and Lagerstrom, 1957), the
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change in the propagation constant of the microwave device being calculated in 

terms of the field strength and the parameters of the perturbing object. Following 

this work interest developed in nonresonant perturbation measurements in which 

the input reflection coefficient of the object is measured. Mallory, (1961) 

considered the nonresonant perturbation technique to measure electric and magnetic 

field strengths within structures where energy is transferred to charged particles. 

Steele, (1966) developed a more rigorous and general justification for this 

measurement technique. He presented a theory for measuring the electric and 

magnetic fields at various points within an electromagnetic system. This theory 

applies the Lorentz reciprocity theorem and is similar to the theory developed by 

Jaynes, (1965) to calculate the change in the input impedance of a cavity when it is 

perturbed. Land, (1984) presented a further developed theory of the nonresonant 

perturbation technique for measuring field impedances in open or closed, low or 

high loss radio-frequency and microwave structures. He compared the results 

obtained with Steele's results for closed boundary surfaces. Comparison of these 

results showed that for the case considered by Steele there is agreement except for a 

factor of two probably due to an error in Steele's paper (Eq. 11 Steele's paper). 

Land confirmed his results by comparison with Cullen and Parr's analysis and 

measurement of perturber reflection coefficients in 77s^-mode rectangular 

waveguide. Recently Land, (1988) has carried out investigations using the 

nonresonant perturbation techniques for measuring the distribution of 

electromagnetic fields in high loss biological phantom materials.

VII. 2- Electromagnetic fields measurements "Literature review":

Microwave radiometry techniques have been applied to determine the 

electromagnetic fields patterns in low- and high-water content tissues using 

different types and sizes of applicators or antennas. Several worker We measured the 

penetration depth of the relative electric field from an applicator or an antenna

109



aperture comparing, it with the plane-wave penetration depth and derived the 

configuration of the electric field.

Electromagnetic fields at microwave frequencies have special biological 

significance since they can readily be transmitted through, absorbed by, and 

reflected by biological tissue boundaries to varying degrees (Mamouni et al., 1983), 

depending on body size (Guy, 1971b; Johnson and Guy, 1972), tissue properties, 

and frequency. The electromagnetic field configurations have been analysed in 

biological tissues for special simplified cases such as plane, cylindrical, or spherical 

layers of tissue exposed to plane wave. The human body is covered by a thin layer 

of skin next to a thicker layer of subcutaneous fat over muscle or other tissue of 

high water content. The absorption and reflective properties of tissues exposed to 

near-zone or radiation fields in the low frequency range of the microwave band is 

strongly related to the geometry and dielectric properties of the different tissue 

layers. Electromagnetic fields receiving patterns, using frequencies in the range of 

0.3 to 3.0 GHz, offer one of the most promising and widely employed methods for 

hyperthermia treatment since it includes the possibility of selective controlled 

receiving pattern of specific tissue volumes.

Larsen et al., (1978) described a technique for electromagnetic fields 

analysis in the high frequency band (3 - 30 MHz). The method consists of using an 

electrode interface characterised by an equivalent polarisation impedance in series 

with the sample impedance. This method has not given encouraging results nor 

discomfort for the patient. Taylor, (1984) demonstrated that in the near field 

configuration of suitably designed applicators, the penetration depth of the 

electromagnetic wave can greatly exceed the usual skin depth. Numerical analyses 

have been carried out to improve the characteristics of the antenna or applicator used 

for medical purposes. An effective penetration depth has been achieved using this 

applicator of about 3.2 cm for muscle or organ tissues (£r = 50, £ r = 30) and 

could be increased up to 7 cm for very high permittivity tissues (Franconi et al., 

1986). The characteristics of the electromagnetic power absorption have been found
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to vary significantly with the polarisation, frequency, size, and dielectric properties 

of the medium (Massoudi et al., 1977; Barber et al., 1979; and Barber, 1977).

King et al., (1983) investigated the behaviour of insulated antennas for 

localized heating as in the hyperthermic treatment of tumours. The antenna was 

constructed from flexible gold plated electrodes. Numerical predictions of the 

electric field were compared with the experimental measurements. They found that 

the electromagnetic power rapidly decreased with radial distance and in addition that 

the technique was very expensive.

Johnson and Guy, (1972) described electromagnetic wave effects from the 

lower radio-frequency up to higher microwave frequencies where the wavelength 

was large compared to cell size. They considered different types of tissue layers 

(plane, spherical and cylindrical) exposed to plane-waves where propagation 

characteristics in biological tissues may be examined to demonstrate how radiation 

has been absorbed when the size of the tissue surface was large compared to the 

wavelength. The near-zone fields were analysed in order to show the dependence 

on source size and distribution. They found that the penetration depth for tissues of 

low-water content was as much as 10 times greater than that for tissues of high- 

water content. The near-field measurements of antennas have been briefly presented 

by Baird et al., (1988).

Guy, (1971a) presented experimental analyses of electromagnetic fields 

induced for several phantom materials simulating human fat, muscle, and bone. 

These materials have complex dielectric properties (e'r = 4.6 to 6.2, e"r = 0.17 to 

0.55 and e’ = 49 to 58, e" = 0.33 to 1.7) which closely resemble the properties of
r r

human tissues reported by Schwan et al., (1954) and Schwan et al., (1956). The 

dielectric properties have been measured by a standard method described by Von 

Hippel where the thickness of dielectric in a coaxial transmission line to the input 

and termination impedance should be known. Rectangular aperture sources were 

used for plane layers and various sources for the other layers. Guy, (1971b) earned 

out the study of electromagnetic fields in biological material. Computer modelling
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has been used to select an aperture size and source distribution to provide the best 

subcutaneous penetration depth in the tissue layers. The electromagnetic field of a 

rectangular aperture source in direct-contact with biological tissue has been 

discussed. The method used has proved that it was valid for both far- and near-zone 

fields and involved the use of a thermographic system for recording temperature 

distributions. It has been found that minimum ̂ receiving ratio is achieved through 

the use of a simple TE]0-mode aperture source distribution one wavelength in 

height and between one and two wavelength in width. The method used by Guy, 

(1971b) has been extensively employed to determine the temperature distribution in 

biological tissues. This method, when used properly, was very fast and convenient. 

However, it required expensive equipment (a high power source, a thermographic 

camera and preferably minicomputer). It may also prove unsuitable at the applicator 

development stage, for it does not provide any information about the direction of 

the electric field.

Gajda et al., (1979) presented a simple system for mapping the electric field 

pattern in a simulated tissue and described its performance Fig. VII. 1 . It consisted 

of a mapping system operating at frequencies between 2 and 4 GHz, a microwave 

generator, a test applicator, a container with liquid phantom tissue material, an 

electric field probe, a detector, an amplifier (swr meter) and an x-y recorder. Muscle 

simulating tissue (a mixture of 30% glycerol and 70% water) has been used at a 

frequency of 2.45 GHz. A liquid phantom tissue material of permittivity (e'r = 48, 

e"r = 14) and bromopentane (e'r = 5.9, e"r = 0.8) as fat tissue simulator were 

considered. One of the major advantages of this technique was that only the electric 

properties of the simulating tissues needed to be matched to the actual tissue 

properties; the thermal properties were unimportant. This allowed for greater choice 

of simulating materials. The probe consisted of a section of a 3.5 mm semi-rigid 

coaxial line with an exposed section of the inner conductor. The other end of the 

coaxial line was connected to the square-law diode detector. The quantity measured
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Fig. VII.2- The experimental arrangement used for measurements of
a) the reflection coefficient and
b) the propagation in lossy medium.

[Audetet al., 1980]



in this arrangement was the rms value of a squared electric field intensity ( E2) in a 

direction parallel to the probe. Gajda et al. analysed the near-field patterns in 

simulated muscle tissue of the squared value of the electric field strength at 2 mm 

from the aperture of an applicator operating at 2.45 GHz and the patterns of the 

electric field across the symmetry line of the applicator at different distances from 

the radiating aperture. The electric field can be detected up to 25 mm from the 

aperture of the applicator.

Cheever et al., (1987) discussed the effective penetration depth from a 

TE]Q-mode rectangular waveguide antenna radiating into a lossy medium with 

dielectric properties resembling those of tissue. The permittivity range of the 

simulating muscle tissue considered were (e'r = 8 to 10.8, e"r = 8.2 to 10.5) and 

for fat tissue (e'r = 74 to 77, s"r = 11 to 17), the measurements have been carried 

out at several frequencies 3.1, 3.9 and 4.7 GHz and different aperture widths. The 

antenna has been mounted on a movable jig and the transmission coefficient 

detected by a network analyser. The effective penetration was measured and the 

calculated depths agreed with the plane-wave penetration depths. From these 

calculations it is shown that the near-field patterns of the antenna depend strongly 

on both the aperture width (which should be limited) and the material properties of 

the medium.

Theoretical and experimental analyses of the electromagnetic interactions 

with tissues have been presented by Cheung et al., (1981). They improved 

techniques for applicator design before approaching the practical aspects of the 

electromagnetic field configuration. Loading the empty space of the waveguide 

applicator with lossless dielectric material can lead to significant reductions in 

aperture size which are required for direct contact applicators. The electric field 

intensity (E2) for four applicators of different sizes all operating at 2.45 GHz have 

been examined using a 3-axis implantable F-field probe immersed in a liquid tank 

filled with tissue equivalent material (80% water and 20% ethanol). Near-field as 

well as far-field cross-section scans have been determined. Cheung et al. found that
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the smaller the applicator the larger was the on-axis attenuation into tissue (wider 

beam). A major problem they encountered in the electromagnetic heating was 

reflection at the tissue interfaces. There were two areas of concern, the first was the 

air-tissue interface immediately adjacent to the applicator which reflected a 

significant amount of energy. The second was the interface between tissues of 

different electrical properties such as muscle, fat and so on.

Audet et al., (1980) discussed the interaction of radiating structures with 

lossy materials and studied theoretically as well as experimentally measured near­

field configurations. Before this, they investigated the performance of the antennas 

for measuring the complex permittivity of materials and studies of electromagnetic 

field patterns close to the antenna aperture in bi-layered biological tissues. They 

used two models to calculate the reflection coefficient and the effective penetration 

depth. The first model consisted of two rectangular waveguide antennas where 

one of them was oversized and the ratio between their cross-section was less than 

25%. The second model consisted of a parallel plate waveguide filled with a 

dielectric and radiating into a medium with a different dielectric constant. Fig. VII.2 

shows the practical arrangement for measuring the reflection coefficient and the 

propagation in the lossy medium. These measurements were carried out in 

the X-band using a standard air-filled waveguide, coaxial line transitions and 

dielectric loaded antennas (e' = 4) in contact with a lossy dielectric material (water 

and chloroform). The experimental results were compared with numerical 

modelling. For very lossy dielectric material with a high-water content (e'r = 64, 

(Jd = 15.25 sm *) differences were very small. However, for a less lossy medium, 

such as chloroform (e* = 4.48, a d = 0.45 sm'1) differences were very significant. 

It was found that the penetration depth depends not only on the properties of the 

tissue but also on the parameters of the applicator. Figures VII.3 and VII.4 show 

the relative electric field dependence on the distance of the probe aperture in muscle 

and in fat respectively at 3 GHz (data collected from Audet et al., 1980). These 

show that the penetration depth decreases exponentially with the distance from the
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aperture of the probe.They found that the method used was valid only for lossy 

materials such as muscle in particular conditions where the dielectric constant of the 

material filling the probe was low.

Robillard et al., (1980) presented experiment analyses of the 

electromagnetic field using a similar technique to Audet et al., (1980). This 

technique consisted of a T£o;-mode rectangular waveguide applicator (probe) in 

contact with a lossy material. They measured the effective penetration depth as well 

as the plane-wave penetration depth and the dielectric properties for different probes 

at frequencies 1, 3, and 9 GHz. Numerical analyses were verified by experiment 

and they concluded that the electromagnetic field configuration strongly depended 

on tissue dielectric properties and also on the characteristics of applicator (probe). 

Fig. Vn.5 illustrates the variation of the electromagnetic field configuration with a 

lateral position of the probe in simulated low-water content tissue and high-water

content tissue at a frequency of 3 GHz (data collected from Robillard et al., 1980).
2

The relative electric field (E ) in low-water content phantom such as chloroform is 

larger than in high-water content phantom material such as water. It can be seen that 

the penetration depth in low-water content tissue is greater than in those of high- 

water content tissue. This shows that the chloroform material is a good low-water 

content phantom. Robillard, (1981) carried out investigations to improve this 

technique, analysing the electromagnetic field configuration and the dielectric 

properties. More probes have been considered at the operating frequencies 1, 3, 3.2 

and 9 GHz. He also considered the measurement conditions (temperature) of the 

water. The dielectric phantom materials used were chloroform and bromopentane as 

the low-water content phantom, water and acetone as the high-water content 

phantom, the effective penetration depth and the plane-wave penetration depth were 

compared.

Robillard et al., (1982) developed the computation of the thermal signals 

obtained by microwave radiometry from a probe or applicator in contact with tissue.
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This method has been already discussed by N'Guyen et al., (1980b). Robillard et 

al., investigated the reflection coefficient at the interface and the behaviour of the 

electromagnetic field on the axis of the system (penetration depth) for muscle 

phantom material such as water (e’r = 77.85, a d = 2.44 sm'1) at depth z = 5 mm 

and a fat phantom material such as chloroform (e'r = 6.08, od = 0.166 sm'1) at the 

penetration depth z = 2 cm. These respectively represented the limit of the detection 

of the electric field at any point in the lossy material. Two different probes were 

used operating at a frequency of 3.2 GHz. These analyses have been verified 

experimentally for the same probes and frequency. Robillard et al. found that the 

thermal structure depended both on the characteristics of the structure and on the 

measurement conditions and showed how it is possible to achieve a determination 

of the temperature distribution in the tissue.

Mizushina et al., (1984) presented data of a three-band microwave 

radiometer using a single antenna in contact with a dielectric medium (water). A 

cylindrical container filled with water at ambient temperature in which a plastic 

container was inserted also filled with water at a different temperature and placed at 

a range of depths. They found that the measured penetration depths for tap water 

were 40.6 mm for the frequency band of 1 - 2 GHz, 18.6 mm for the frequency 

band of 2 - 3 GHz and 10.6 mm for 3 - 4 GHz. It was demonstrated that it was 

possible to measure surface layer temperature, subjacent layer temperature and the 

depth of boundaries between the layers and hence to define the electromagnetic field 

configurations.

Bocquet et al., (1986) first studied the geometrical characteristics (depth and 

size) and the temperature of a local thermal volume in a lossy material. The 

technique was based on the processing of radiometer data at 1.5 GHz and 3 GHz. 

The experimental analyses were earned out using water as phantom dielectric 

material. A probe was placed on the bottom of a container filled with water at 

ambient temperature. A cylinder of known volume, placed at a predetermined depth 

was filled with water at a slightly different temperature. The output signal was
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expressed as a "brightness" temperature from the microwave radiometer. They 

measured the temperature (the output signal) in relation to the penetration depth for 

various diameters of the cylindrical volume. This method has widely been 

discussed and improved by Mamouni, (1988).

Christensen and Durney, (1981) examined the basic characteristic of 

electromagnetic fields at both high and low frequencies with various applicators. 

They investigated some of the basic aspects which govern heating patterns from 

various devices, such as penetration depth which depend on the characteristics of 

the applicator.

Swicord and Davis, (1981) described the calculation of field distributions 

(near-field) and energy deposition around small open-end coaxial antenna in lossy 

material. The operating frequency was 2.45 GHz. For a dielectric material with a 

permittivity of 30, a loss tangent of 0.3, it was noted that 90% of the power had 

been absorbed within a radius of 2 mm. It was calculated that the square of the 

electric field was a constant and did not depend on an antenna impedance match.

VII. 3- Theory of the nonresonant perturbation technique:

The Lorentz reciprocity theorem has been applied (Steele, 1966; Land, 

1984) to analyse the behaviour of the electromagnetic field in a system which has 

just one waveguide (or transmission line) port through which electromagnetic 

energy is permitted to pass into its interior (Fig.VII.6). The system may be lossy 

(in its walls, its interior, or both) or lossless.

power
in

^  a i measurement 
\  region

' 4
perturber X

Fig. VII.6- Application of Lorentz reciprocity relationship for the nonresonant 
perturbation technique (Land, 1984).



The closed surface S lies entirely within the cavity walls except where it crosses the 

input port. In the above diagram the integration of the sum of the individual 

surfaces Sp S2 and S3 is given by S. Surface Sj represents the input port in a 

plane normal to the waveguide axis through which power is introduced into the 

measurement region and at which reflected power is measured. Surface S2 is a part 

of the surface surrounding the measurement region other than S}. Surface S3 

surrounds a small object introduced into the measurement region to perturb the pre­

existing electromagnetic fields at the point where the fields are to be measured. Two 

different electromagnetic fields are considered in the measurement region. Ep Hl 

are the electric and magnetic fields in the absence of a perturbing object, and Ep  

H2 are the fields in presence of a perturbing object within the measurement region. 

The integral of Eq. VII. 1 is evaluated for each of the three surfaces.

Surface S t

Surface defines the measurement port through which high frequency power W. 

at angular frequency co is introduced into the measurement region, and at which a 

change in field reflection coefficient AT is measured on induction of the perturber. 

For practical measuring systems the input power W is constant and the integration 

is given by Eq. VII.4.

f ( E t x H2 ) .  ds - J ( E2 x H] ) . ds = 0 (VII.l)
s s

e  = ( i  + r )e .1 v 1 li
(VII.2)

(VII.3)

where F and F are the reflection coefficient in absence and in presence of the



perturber.

( Ej x h 2 ) - ( E2 x H1 ) . ds = 4 ( r 2 - ) W . (VII.4)

Surface S2

The surface S2 formed by conducting or power absorbing parts, the fields are 

rapidly attenuated with depth of penetration so that on surface S2 the integral is 

then taken as zero.

Surface S3

The surface integral is transformed to the volume integral over the volume v 

occupied by the perturber with surface Sr  The material in the region of this 

volume is taken to be a lossy dielectric material characterised by its permittivity 

(e* = e' - i e"), conductivity a, and permeability /z . A dielectric perturber of the 

permittivity and the permeability £p and /z have been considered for the 

applications in the present work. Here the magnetic field does not need to be known 

and measurement data analysis can be considerably simplified if a dielectric rather 

than a conducting perturber is used. Since it does not interact with the magnetic 

field Maxwell's equations are applied for harmonic fields of angular frequency co in 

the complex notation:

Curl E = - ico|J.H

CurlH = icoeE

Curl E2 = - iconpH2 

CurlH2 = iO)£pE2

The integral Eq.VII.l becomes:
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By the combination of these equations the surface integral from S3 is given by:

VIfV u

ico(e' - ep ) + (coe" + o )  E ^ E dv (VII. 6)

Equation VII. 1 then gives:

a t =-
VIt\J u

i (o(e'  - ep ) + (o)e" + a )  ^ w 2 dv (VII.7)

where A r is the change in reflection coefficient caused by the introduction of the 

perturber into fields E , H .

VH.4- Application of nonresonant perturbation technique:

In biological materials electromagnetic power loss is due to dielectric losses, 

particularly Debye relaxation loss in water, and conduction loss due to electrolytic 

conduction in aqueous solutions. These losses are characterized by a dielectric loss 

factor e"d and the conductivity ad or by the effective loss factor e"g or the 

effective conductivity a  at the angular frequency co, with the relative permittivity 

e'rd and the dielectric loss tangent tan S. In an electric field of amplitude E the

power dissipation density, is — ae E2. These factors are defined by:



Fig. VII.7- Diagram of antenna in contact to a dielectric material shown 

the direction of the electric field inside the dielectric medium.

If a power W from an antenna is dissipated in a volume of dielectric material 

(Fig. VII.7) then,

dv
- e  i

vol

w. =1
— a  1e2 dv for a uniform material (VII.8)
2 eJ 1

vol

If a thermal source at temperature Tg is applied, then in the Raleigh-Jeans region, 

over a bandwidth B, thermal equilibrium requires that
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KTsB = i a e f ^ d v
vol

(VII.9)

where K is Boltzmann's constant.

In a general case the normalized power dissipation pattern will be the pattern of,

where r is the position vector.

The thermal signal received from a volume of material will be of the form,

where c ( r ) is the relative contribution from a volume element at r.

If the source region is at a uniform temperature T then the thermodynamic 

equilibrium requires equality of power entering and leaving the antenna and both 

reciprocity theorem (Slater, 1942) and Principle of Detailed Balance require that the 

patterns of power dissipation and received signal contribution be the same at all 

frequencies. The received signal contribution pattern is the same as the heating 

pattern, and so

This relationship is now applied for the measurement of radiometer antenna

a e ( l ) E ^ ( r )
2W. (VII. 10)

(VII. 11)
vol

(VII. 12)
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response patterns.

VIL5- Microwave radiometer antenna response:

For effective practical microwave thermographic measurements the 

radiometer antenna must produce a large plane-wave far-field zone with a minimal 

near-field zone to give maximum signal contribution with depth in the viewed 

material. For thermal signal modelling it is then convenient to analyse the viewed 

region using a contribution of the plane-wave, varying as e 2 a 2 where a  is the 

field attenuation constant and z is the depth within the material, and an antenna 

response or weighting function W( z ) .  Source temperature variations are for the 

present assumed to be planar, perpendicular to the z, antenna axis, and to fill 

completely the antenna beam, so that T ( r)  —>T ( z ) and c ( r)  —>W ( z ) e 2az.

Microwave radiometer antenna response is generated by the process shown 

in the diagrams below. These show the antenna/body interface. Fig. VII.8 

represents the configuration of the near-field and far-field zones. The response
Wi* {j«|J

pattern of the near-field zone is very different from the far-field zone whereas 

perpendicular to the antenna axis. Fig. VII.9 shows if an element dz of the body 

tissue is considered the microwave signal will be generated from that element and 

the microwave signal in the region between dz element and the antenna is 

attenuated by the factors ' 2az, where a  is the attenuation constant power of 

region z. The microwave signal received is the integral of the signal from the dz 

element over the z region. The antenna response pattern inside body tissue is 

taken to behave as presented in Fig. VII. 10. The radiometer receiver gives the 

temperature of the viewed region weighted by the complete antenna response 

pattern.
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Near-field zone

Antenna

Fig.VII.8- The configuration of the near- and far-field zones.

Plane-wave 
regionI

z

Body

Microwave signal

Antenna

^
Signal attenuation

-2 a z= e

dz

Signal generated 
from element dz

= 2 a  T ( z )  dz

Fig.VII.9- The behaviour of the microwave signal inside body tissue.

Temperature

Radiometer
receiver

Temperature
Antenna

T(r)

Antenna response pattern 

Fig. VII. 10- The microwave radiometer antenna configuration into body tissue.
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The total power obtained from the microwave radiometer is given by:

2 a  J W ( r ) e ' 2otr T ( r ) d r  (VII.13)
vp

where W ( r ) e ' 2 a r is the wanted function for the region r.

The factor e ‘2 a z is available from measurements of the viewed material dielectric 

properties. The dielectric lossy materials can be characterised electrically by the 

relative permittivity e' and the loss factor e" . Electromagnetic radiation usually 

propagates in tissues as plane-wave which can be fully described by reduced

wavelength (X ), the power attenuation constant 2 a, and the penetration depth
eJJ

8. They are related to €  and e" by:

2

(VII. 14)X
X = — *-

eff
1 +

rd

9 —

r P« \  \̂2 
rd

e ’
V rd y

or by:

2a = 4tc
r 2 \

£’
rd

1
2 1 + 1 fjL 1

s ’
V V id J /

2a = 2co 1+

(VII. 15)

(VII. 16)

For a reasonable approximation the attenuation power constant 2a for biological 

materials is given by:
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2 a  = t a n  6 (VII. 17)Xo

or by:

'O (VII. 18)

(VII. 19)

where Xq is the free space wavelength, A.eff is always smaller than X .

The variation of the dielectric electromagnetic fields in the direction of 

propagation is very interesting because the fields for a very lossy medium and a less 

lossy medium are very different. These variations show the behaviour of the plane- 

wave and the near-field configurations. The penetration depths are determined for 

those mediums, the results show that proper selection of the characteristics of the 

perturber is important. The nonresonant perturbation gives the change in the field 

reflection coefficient at the antenna aperture in a lossy dielectric material where the 

integration is over a perturbing volume Vp of loss-free dielectric material of relative 

permittivity e' .

The cross-sectional variation of the antenna beam can most conveniently be 

investigated with a small dielectric sphere (Fig. VII. 11). The advantages of using a 

dielectric sphere perturber are independence from field direction and no interaction 

with the magnetic field.
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signal in

Reflected
signal Antenna

Body tissue simulating material

t o  :

• it i

Electromagnetic 
field produced

Perturber moved 
through field

Fig. VII. 11- Diagram of antenna in contact to body tissue or simulate 

dielectric material using a sphere perturber.

The magnitude of the reflected signal change due to the perturber thus gives a direct 

measurement of the square of the electric field strength at the measurement point. 

The reflection coefficient is given by:

A T =
(  3 . \  7 ta  e , co )_________rd

l £' + 2 e '  jv rp rd 7

r i  Ei (r)
(VIL20)

The radius of the sphere a is chosen to be always much less than the wavelength in 

the measurement region dielectric. This complex reflection coefficient contains both 

phase and amplitude information. The phase term is not normally required and the 

amplitude /AT] is measured giving directly the form of the spatial response c( i).

A  thin dielectric sheet perturber parallel to the electric field (Fig. VII. 12) can 

be used to investigate the effective penetration depth from the antenna aperture of 

lossy dielectric phantom material. The electric field in the dielectric phantom 

material is the same in the absence and in the presence of the dielectric perturber, 

= £  if the sheet is thin compared to the wavelength so that the reflection 

coefficient becomes:
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A r  = 0)60
4W i ( e ’ - e ' ) +  e "rd rp Jd jE*(r ) dv (VII.21)

Antenna

■ 1 
11 11
\
|S

Dielectric sheet 
perturber

Fig. VII. 12- Diagram of antenna in contact to body tissue or similar dielectric 

material using a sheet perturber.

Ar =_  - t
2 e"rd

\

i ( E,r i - e,rP) + E riv y

COE

. 2Wv  1‘I8?(z) ds (VII.22)

where t is the thickness of the sheet dielectric perturber and expression VII.21 is 

integrated over the whole antenna beam cross-section.

For regions where the restriction on the field direction holds within 

reasonably the variation of the magnitude of /A r/ will give the wanted axial 

response directly. In the near-field zone regions the field will have a component 

perpendicular to the sheet perturber as shown in Fig. VII. 13.

Here,

E . E = E E cos ( 0 - <> )
— 1 —2  1 2

= E
£ 2a . ZAcos 0 + sin 0

£ '
(VII.23)
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£ ■the factor —r~ is of interest as it gives a large reflection coefficient change on

perturbation and the factor cos 2 0 is important since often e' is rather greater than 
e' .p

E-field

Fig. VII.13- Diagram for the electric field existing before and after the 

introduction of the perturber.

If the dielectric sheet perturber is moved to the face of the antenna 

(Fig. VII. 14) the electric field can be expressed in terms of the input power W. 

(Ramo, 1946)

perturber

Antenna
diehra
phanro
materi:

Fig. VII. 14- Diagram of the antenna with the perturber the same size as the 

antenna aperture.
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W . - i f R e ( E  H ) ds with —1- = i 2 J 1 1 ' h
Ho
■je

(VII.24)

thus

W = —1—
1 V * o

jRe[/
CS

] Ej ds (VII.25)

l
_ 1 2

J  e'V rd
2 / 2  z 0

1 +
/  \2 ( £" ^

1 + B'ldI  fcrd

2

J E>
cs

(VII.26)

and the magnitude of the perturber induced reflection coefficient is given by:

AT I = J i n ( £ ' - £ '  ) + e"v rd r p 7 rd

£r i+ £’rd 1 +
(  e" n 

_ r d
£’ .V rd y

(VII.27)

where is the ffee-space measurement wavelength.

Figure VII. 15 shows the general behaviour of the relative electric field 

dependence with the penetration depth into a dielectric medium from a waveguide 

type antenna. The value of Ln (E) falls approximately linearly with distance from 

the aperture along the central axis perpendicular to the plane of the aperture. The 

distance over which Ln (E) 2 is reduced by a factor of e 2az which is defined 

as the effective penetration depth and the antenna response function will be
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IV ( z ) 6 . The effective penetration depth is less than the plane-wave

penetration depth at a given frequency. The difference between the plane-wave 

penetration depth and the effective penetration depth for low permittivity dielectric 

material is very significant (will be discussed in Chapter VIII). The antenna 

response (near-field zone) is always lower than the plane-wave (far-field region) as 

is shown below because of the relatively higher losses in the near field zone.

Ln(E)2

plane-wave, e '2az

W(z) e 2az

z

Fig.VII.15- The square of the electric field dependence of the penetration depth.

VII. 6- Nonresonant perturbation measurement system:

Nonresonant perturbation technique is used to investigate the improvement 

of electromagnetic field measurements in simulated biological tissue using the 

Glasgow TEn -mode cylindrical waveguide antenna.

The nonresonant perturbation system for the square of the electric field 

measurements consists of two branches (Fig.VII.16) with WG10 waveguide and 

waveguide components for microwave section of the equipment. The first branch 

consists of a signal generator with a crystal synchroniser set in the frequency range 

of 3.2 - 3.35 GHz (/*), connected to an isolator and a set-level 10 dB attenuator.
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The reflected signal due to the perturber from the test antenna in contact with 

dielectric lossy materials is carried out by a high-directivity coupler, well matched 

with balanced mixer to avoid the loss of signal inherent in the use of a directional 

coupler of about 10 dB gain. A precision screw tuner is used to zero the signal 

appearing at the balanced mixer reflected-signal port in the absence of the perturber. 

This balanced mixer carried out the input signal from the second branch, also 

which consists of signal generator with a crystal synchroniser in the frequency 

range of 3.2 - 3.35 GHz connected to an isolator and a monitor at the frequency 

of /  + 3 KHz. The output from the balanced mixer at the frequency of 3 KHz is 

amplified by a low noise AF amplifier of 70 dB gain and after that detected by a 

detector. The output is given by two instruments a digital meter and x-y recorder. 

Fig. VII. 17 and VII 18 show an example of the equipment set up for the 

nonresonant perturbation technique.

Three known types of dielectric perturber were used. Two types of 

dielectric sheet perturbers both had similar geometry in that they consisted of a 

circular dielectric sheet perturber 26 mm in diameter, 1.6 mm in thickness and a 

larger dielectric sheet perturber is approximately 72 mm x 70 mm, 1.6 mm in 

thickness. The first type the dielectric sheet perturber was paxolin e' * 2, in the 

second the dielectric sheet perturber was nylon e'r « 3. These perturbers were 

moved through the phantom dielectric material along the direction of the antenna 

axis (z-direction) to find the effective penetration depth which can be achieved from 

the antenna aperture. The third type was a spherical dielectric perturber 6.35 mm in 

diameter, moved in x-z plan plane from the antenna aperture to obtain detailed the 

electric field configuration in the lossy dielectric material.

For the TEn -mode cylindrical waveguide antennas investigated and for 

different dielectric phantom materials and dielectric perturbers used for the 

nonresonant perturbation method, reflection coefficients from about 0.5 to 10 

must be measured. A special stable, sensitive linear reflectometer system has been 

developed for this technique (Land, 1984), in which the measurement frequency
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IB — I

Fig. VII. 17- The signal generators system used for the nonresonant perturbation 
technique to measure the electric field configurations.

1 - Microwave oscillator type 6455 (1.5 - 5 GHz)

2 - Klystron power suply type 6454

3 - Klystron synchroniser model 133 - AK

4 - Klystron power unit MK. IV

5 - Phase lock synchroniser model 133 - AK

6 - Sanders oscillator type CLC 2-4



Fig. VII. 18- The equipment set-up used for the nonresonant perturbation technique.

1 - Test antennas

2 - Phantom dielectric container

3 - Tuner section

4 - WG10 waveguide

5 - x-y recorder

6 - Signal generators system



signal is heterodyned with a stabilised local oscillator signal to allow the reflection 

coefficient signal to be measured at 3 KHz. The critical measurement parts of the 

reflectometer, the isolator, WG10 waveguide components for mechanical and 

electrical stability is required. This linear reflectometer system allows a wide 

measurement range of reflection coefficient from 1 for calibration to value less than 

10' 4 .

The previous measurement of reflection coefficient requires special care 

and is based first on moving the dielectric sheet perturber from the dielectric 

phantom material container to set the reflection coefficient to zero and after that to 

put a dielectric sheet perturber with the same size as the antenna on the top of it to 

measure the total reflected signal. This method is useful for checking the accuracy 

of the technique. This technique provides approximately 50% reflection to the main 

transmission line.
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Chapter VIII

Nonresonant perturbation technique 
Practical Implementation

Vm. 1- Introduction:

In the last Chapter the concepts of the nonresonant perturbation technique 

were developed theoretically and the experimental technique was described. In this 

Chapter the measurements made using this technique are described and the results 

presented. The application of this technique to measure the electromagnetic field 

configuration and the effective penetration depth of a single r £ 77-mode cylindrical 

waveguide antenna is considered and a crossed-pair 7 £ ; ; -mode cylindrical 

waveguide antenna system has been similarly measured to investigate the 

microwave correlation signal. The electromagnetic fields configurations of these 

antennas have been investigated extensively to determine the field strength, 

direction and the penetration depth of the dissipated power (see section VII. 5).

The medical techniques of microwave hyperthermia induction, microwave 

thermographic temperature measurement, and active microwave tissue imaging, all 

require the electromagnetic field configurations of the special applicators or 

antennas used to be known. These applicators or antennas often comprise of short 

lengths of rectangular or cylindrical waveguide (as discussed in Chapter IV) loaded 

with a low-loss dielectric material to achieve good coupling to body tissues. The 

high microwave attenuation in biological materials requires the field configurations 

to be measured close to the antenna aperture in the near-field zone as explained in 

Chapter VII. The nonresonant perturbation technique can be used to measure 

electromagnetic fields in lossy material close to the antenna aperture (Fig. VII. 16). 

In particular this is applied in the present work to measure accurately the effective

134



penetration depths of waveguide type antennas in several different dielectric 

phantom materials with properties simulating body tissues.

Vm. 2- Method of Measurement:

The measurements were made using the system described in section VII.6 

operating at the frequency of 3.35 GHz for different dielectric lossy materials. The 

aperture of the antenna was placed in contact with a lossy dielectric material filling a 

container with dielectric walls. The dimensions of the container and the level of the 

lossy liquid above the antenna aperture have been selected in order to avoid the 

boundary reflections. It is 95 mm in diameter and 105 mm in depth and the level of 

a lossy dielectric material was 70 mm from the antenna aperture (Fig. VIII. 1). Two 

known types of dielectric sheet perturber were used in the present work. Both had 

similar geometry in that they consisted of a circular dielectric sheet perturber 26 mm 

in diameter, 1.6 mm in thickness and a larger dielectric sheet perturber is 

approximately 72 mm x 70 mm, 1.6 mm in thickness. The first type the dielectric 

sheet perturber was paxolin e'r = 2, in the second the dielectric sheet perturber was 

nylon e'r =3. A  thin dielectric sheet perturber with the same diameter as the antenna 

or larger has been placed in dielectric perpendicular to the antenna axis and in the 

centre of the antenna aperture. This perturber was moved through the phantom 

dielectric material along the direction of the antenna axis (z-direction) to find the 

effective penetration depth which can be achieved from the antenna aperture. A 

spherical dielectric perturber 6.35 mm in diameter and a thin sheet dielectric 

perturber 26 mm in diameter were also moved in x-z plan plane from the antenna 

aperture to obtain the detailed electric field configuration in the lossy dielectric 

material. The perturber was moved by steps of 0.508 mm in z-direction and 2 mm 

in x-direction. The reflected signal was recorded on an x-y plotter and on a digital 

meter. The x-y recorder (Fig. VIII.2) plotted the reflected signal, which is

proportional to the magnitude of /A ll of Eq. VII.6.

The dielectric properties were measured by the cavity resonant frequency
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Fig. VIII. 1- The experim ental arrangem ent o f the electric field 
m easurem ents.

1 - Perturber m ovem ent

2 - Perturber axial position gauge

3  - Phantom  dielectric liquid

4 - Sheet perturber

5 - A ntenna

6 - M atching unit



Fig. V IIL2- View  o f x-y recorder used for m easurem ents showing 
the relative electric field configuration recorded across 
an antenna aperture in phantom  dielectric material. 
H orizontal scale is 7 m m  per m ajor chart division.



perturbation technique (Land, 1987b). A resonant cavity has a thin glass tube 

across it in the direction of £-field. The cavity resonance mode is TM . The 

tube has bore of about 1 mm diameter as shown below.

copper walls of cavity 
~ 50 mm diameter and 7mm deep

fZ Z Z Z / /  / / / / / / / / ? / / / / .

V 7 7 7 7 7 7 /.

solid FILL dielectric filling

glass tube

resonance frequency ~ 3.2 GHz

The changes in cavity resonant frequency and cavity Q-factor between the 

tube being empty and filled with the test dielectric are measured. For the relatively 

small perturbations caused these give respectively the relative permittivity e r and 

the effective conductivity cr or loss factor £"  ̂of the tested liquid. The cavity and 

sample tube are calibrated using de-ionised water as the standard. The accuracy of 

the measurements are about £' ±2% and e" ±5%.r t
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VIIL 3- Measurement results:

The model based on the above analytical expressions measures relative 

values of dissipated power on the aperture and in the lossy dielectric material 

medium. The square of the electric field distribution is an important parameter in 

determining the reflection coefficient jATj. For high permittivity phantom materials 

the influence of the perturber is small and needs only be known approximately, as 

seen by equation VII.23. Another important parameter of the applicator or antenna 

radiating into a lossy medium is the penetration depth of the electromagnetic waves 

in that medium. The field decays largely exponentially as explained before (section

VII.5 pp. 130-131), so that property can lead to defining the effective penetration 

depth. The exponential decay has been assumed to be close to a TEM wave 

propagating along the axis of the system. For the TEM wave the power penetration 

depth is:

where a  is the attenuation constant of the plane wave.
TEM

The experimental investigation of the electric field configurations was 

carried out at the operating frequency of 3.35 GHz for a single T£yy-mode 

cylindrical waveguide antenna loaded with low-loss dielectric material (Fig. II.4). 

Several different liquid dielectric phantom materials (Tab. VIII.l) have been chosen 

to simulate high-water content tissue such as muscle and low-water content tissue 

such as fat to measure the electromagnetic field configurations produced by the 

antenna. The values of the dielectric properties of these dielectric phantom material 

are similar to the dielectric properties of human tissue measured at 3 GHz and 

37 °C (Tab. IV.3). From Tab. IV.3 and Tab. VIII.l the similarity of the dielectric 

properties of the dielectric phantom material with the dielectric properties of human 

tissues and organs are very significant. The permittivities of human tissues and 

organs are close to dielectric phantom material used in this work, whereas the loss

5 (VIII.l)
tem 2 a a dTEM
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factors are lower than the dielectric phantom material.

Table VIII.l- The dielectric properties at a frequency of 3.35 GHz and room temperature from 
high-water content tissue to low-water content tissue.

solutions £ ’rd rd o^sm '1)

75% chloroform & 
25% alcohol 6.5 ± 0.02 2.58 ± 0.05 0.48 ± 0.05

50% sucrose 25 ±0.02 18 ±0.05 3.18 ±0.05

2/3 de-ionised water 
& 1/3 glycerol 40 ± 0.02 20 ± 0.05 3.5 ± 0.05

2/3 de-ionised water 
& 1/3 glycerol 52 ± 0.02 26 ± 0.05 4.8 ± 0.05

50% sucrose & 
50% saline 56 ± 0.02 22 ± 0.05 3.9 ± 0.05

2/3 de-ionised water 
& 1/3 glycerol 60.3 ± 0.02 23 ± 0.05 4.2 ± 0.05

saline 74 ± 0.02 22 ± 0.05 4.0 ±0.05

de-ionised water 75.9 ± 0.02 26 ± 0.05 2.6 ± 0.05

The measurements of the relative electric field (E ) along the antenna axis 

with dielectric sheet perturbers, e'rd = 2 and e’rd = 3 , 2 6  mm in diameter have been 

considered for most of the dielectric phantom material except for the chloroform and 

alcohol mixture a large sheet perturber has been considered. Those sheet perturbers 

were moved through the dielectric phantom material to analyse the configuration of 

the electric field. The results of the measurements were given in the below figures

covering from high- to low-water content tissues.

It is very clear from the figures that the relative electric field falls off
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• “2 oc z
essentially as e 0 and that an effective attenuation constant which is the inverse 

of the effective penetration depth. This can be obtained from the measured data.

VIII.3 shows the effective penetration depth and the plane-wave 

penetration depth for a relatively lossy dielectric phantom lossy material such as 

de-ionised water (erd = 75.9, od = 2.6 sm 1). It shows the measured data and it 

illustrates that for high-water content tissue the antenna field and the plane-wave are 

nearly co-incidental. The ratio of the effective attenuation constant to the plane-wave 

attenuation constant is about 1:1. Also, in this case the reflected signal can be 

detected up to 25 mm from the antenna aperture. The effective penetration depth is 

approximately 17.9 ± 0.5 mm.

Fig. VIII.4 shows the effective penetration depth at 3.35 GHz in saline 

(e'rd = 74, od = 4.0 sm'1). The maximum depth which can be achieved is less than 

20 mm from the antenna aperture. At about 15 mm the reflected signal strength 

starts to drop quickly and is slightly divergent from the plane-wave. This may be 

due to residual mismatch in the measuring equipment. The effective penetration 

depth is about 13 ± 0.5 mm compared with the plane-wave penetration depth which 

is about 13.1 ± 0.5 mm. The ratio of the effective attenuation constant to the plane- 

wave attenuation constant is about 1:1.

Fig. VIII.5 shows the effective penetration depth variation with respect to 

the reflected signal for a high-water content phantom simulating whole blood. This 

is a mixture of the de-ionised water and glycerol (e'rd = 60.3, od = 4.2 sm 1). In 

this case there is a larger difference between the measured and plane-wave 

penetration distances, 9.4 ± 0.5 mm and 11.2 ± 0.5 mm respectively. This 

difference may be due to the error in the measurement of the effective conductivity 

of the dielectric, or change in dielectric properties caused by evaporation or change 

in temperature.

Fig. VIII.6 presents the effective penetration depth of phantom dielectric 

material simulating muscle with properties as given in Tab. IV.3 (50% sucrose and
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Fig. VTII.3- The relative electric field in the de-ionised water depending 
on the distance from the antenna aperture at for
the dielectric constant (e'rf = 75.9, Gd = 2.6 sm )
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50% saline solution, E'rd = 56, o d = 3.9 sm’1) where the effective penetration 

depth, 6 ^  — 10.5 i  0.5 mm, is different from the plane-wave penetration depth, 

5 = 11.7 ± 0.5 mm.
TEM

Fig. VIII.7 shows the effective penetration depth variation with respect to 

the reflected signal for a high-water content such as muscle tissue, using de-ionised 

water and glycerol, (e’rd = 52, od = 4.8 sm'1). In this case the plane-wave 

penetration depth differs only slightly from the measured penetration depth. The 

effective penetration depth is 9.4 ± 0.5 mm and the plane-wave penetration depth is 

9.6 ± 0.5 mm. The ratio of the effective attenuation constant to the plane-wave 

attenuation constant is approximately 1:1. The reflected signal can be detected up to 

28 mm from the antenna aperture.

Figs. VIII.8 and VIII.9 present the effective penetration depth of a medium- 

and high-water content dielectric lossy material simulating muscle and breast tissues 

given in Tab. IV.3 (de-ionised water and glycerol, e'rd = 40, a d = 3.5 sm"1 and 

sucrose, e'rd = 25, a d = 3.18 sm"1). The effective penetration depth is lower than 

the plane-wave penetration depth.

Fig. VIII.10 presents the effective penetration depth of a low-water content 

phantom such as a mixture of chloroform and alcohol (e'rd = 6.5, Gd = 0.48 sm'1) 

which is very similar to a fat tissue. The plane-wave penetration depth is 

significantly different to the measured data. The penetration depth in this medium 

can be achieved up to 22 mm, but the reflected signal decreases exponentially and 

after 20 mm the reflected signal is very hard to detect. The dielectric sheet perturber 

used in this case (approximately 72 mm x 70 mm) is larger than the diameter of the 

antenna in order to extend beyond the edge of the antenna field. The relative 

permittivity of the dielectric sheet perturber is about 2.1. The effective penetration 

depth is about 22.44 mm and the plane-wave penetration depth is equal

approximately to 32.40 mm.

Fig. VIII. 10.1 shows the antenna response in the water at 3.25 GHz using

a dielectric sheet perturber. The plane-wave penetration depth compared with the
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effective penetration depth for a T E mode cylindrical waveguide antenna used in 

the present work and by the Microwave Thermography Group at Glasgow 

University and with a TEQ]-mode rectangular waveguide antenna used by the 

Microwave Thermography Group at Lille University, France. A TEQ]-mode 

rectangular waveguide antenna is loaded with a medium-loss dielectric (e1 = 25), 

2.9 cm x 6 cm in dimensions. It was found that the effective penetration depth of 

the TiE’i7-mode cylindrical waveguide antenna is closer to the plane-wave 

penetration depth than a TE^-mode rectangular waveguide antenna. The plane- 

wave penetration depth of the lossy dielectric material (de-ionised water) used is 

about 19.7 ± 0.5 mm and the effective penetration depth of the TEQ]-mode 

rectangular waveguide antenna is about 16.7 ± 0.5 mm and the effective penetration 

depth of the TEn ~mode cylindrical waveguide antenna is about 17.8 ± 0.5 mm. 

The ratio of the effective penetration depth of a TEQ1~mode rectangular waveguide 

antenna to the plane-wave penetration depth is about 0.85 and the ratio of the 

effective penetration depth of a TEn ~mode cylindrical waveguide antenna to the 

plane-wave penetration depth is about 0.9.

Table VIII.2 illustrates the dielectric properties of the dielectric phantom 

material at a frequency of 3.35 GHz and at room temperature. The dielectric 

properties of the dielectric phantom materials simulating to high-, medium- and 

low-water content tissues which are similar to the dielectric properties of the 

biological material have been taken in consideration. These dielectric materials were 

in contact with a TTs^-mode cylindrical waveguide antenna. For high- and 

medium-water content tissues the permittivities (£'rd = 25 to 76 approximately) are 

very high compared with low-water content tissue permittivity (£rd = 6.5).

The plane-wave attenuation constants were approximately similar to the 

effective attenuation constants except for the low-water content tissue where the 

plane-wave attenuation constant was approximately half of the effective attenuation

constant which was the expected value.

The effective penetration depths were always lower than the plane-wave
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penetration depths by a low percentage except for low-water content tissue. So the 

ratio of the effective penetration depths with the plane-wave penetration depths must 

be less than 1 in the medium- and high-water content tissues and approximately half 

in the low-water content tissue. In the case of a medium-water content tissue the 

ratio was approximately 1. This may be due to an error in the measurement of the 

effective conductivity of the dielectric, or mismatch in the measuring equipment.

Fig. VIII. 10.2 illustrates the dependence of the ratio of the effective 

penetration depth and the plane-wave penetration depth with the square root of the 

relative permittivity of the dielectric lossy materials.This approximate relationship is 

the measure of the relative wavelength in the dielectric which is the factor which 

will determine how much the beam spreads out and is given by the equation:

where X is the ffee-space measurement wavelength. The relative wavelength in the

dielectric phantom materials is small compared to the free-space wavelength in the 

measurements. From this equation we found that the relative wavelength in high- 

water content tissue is smaller than that in the low-water content tissue. So, the ratio 

can be written as:

(VIII.2)

The relative wavelength in the dielectric phantom materials is given by:

X K (VIII.3)
rd

o

jeff _ 2.7 x 10'3 +0 71 (VIII.4)

T̂EM
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Fig. Vm.10.2- Variation of the ratio of the effective penetration depth to the plane - 
wave penetration depth with the square root of the relative permittivity 
of the dielectric lossy materials.

□ chloroform (6.5,2.58)
O sucrose (25, 18)
a  de-ionised water & glycerol (40, 20)
+  de-ionised water & glycerol (52, 26)
X sucrose & saline (56, 22)
❖ de-ionised water & glycerol (60.3, 23)
+  saline (74, 22)
X deionised water (75.9, 13.7)

The numbers between brackets are the relative permittivity and the loss factor.



From this equation we can see that the factor 2.7 x 10'2 is the guide wavelength X 

of the T E mode cylindrical waveguide antenna (m) at a frequency of 3.35 GHz. 

Equation Vm.4 becomes:

^eff 1 
10T̂EM

V
X

V rd y

The ratio of the effective penetration depth to the TEM wave penetration distance is 

inversely proportional to the ratio of the relative wavelength in the dielectric material 

to the guide wavelength and reduced by a factor of 10.

Fig. VIII. 10.3 shows the linear relationship between the plane-wave power 

attenuation constant, 2 O ' , ,  the former value is calculated from the dielectric
1 EM

properties of the phantom dielectric lossy materials using Eq. VIII. 1, and the ratio 

of the plane-wave power attenuation constant to the effective power attenuation 

constant, 2 a  ^  This relationship is necessary to account for the effects of the 

antenna in any tissue with a given power attenuation constant and is given by the 

equation:

^ M = 1 . 8 x l O '32ctTEM +0.566 (VIII.6)
2  t t eff

For the high-water content tissue the effective penetration depth is closer to the 

plane-wave penetration depth than will be expected in tissue of the same power 

attenuation constant. The smaller wavelength in these liquids is due to the higher 

dielectric constant than will be found in the tissue (Tabs. IV.3 and VM.2), resulting 

in reduced diffraction effects.
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Fig. Vm.10.3- Variation of the ratio of the effective attenuation constant to the plane - 
wave attenuation constant with the plane-wave attenuation constant.

□  chloroform (6.5,2.58)
© sucrose (25, 18)
a  de-ionised water & glycerol (40, 20)
+  de-ionised water & glycerol (52, 26)
X sucrose & saline (56, 22)
♦  de-ionised water <x glycerol (60.3, 23)
♦  saline (74, 22)
X deionised water (75.9, 13.7)

The numbers in brackets are the relative permittivity and the loss factor.



Table VIII.3- The measured and calculated antenna face reflection coefficients of the dielectric 
phantom materials at a frequency of 3.35 GHz and room temperature.

solutions £'rd iAnmea iAn .cal

75% chloroform & 
25% alcohol 6.5 ± 0.5 0.066 ± 0.01 0.098 ± 0.05

50% sucrose 25 ± 0.5 0.35 ± 0.01 0.30 ± 0.05

2/3 de-ionised water 
& 1/3 glycerol 40 ± 0.5 0.40 ± 0.01 0.36 ± 0.05

2/3 de-ionised water 
& 1/3 glycerol 52 ± 0.5 0.39 ± 0.01 0.42 ± 0.05

50% sucrose & 
50% saline 56 ± 0.5 0.45 ± 0.01 0.42 ± 0.05

2/3 de-ionised water 
& 1/3 glycerol 60.3 ± 0.5 0.39 ± 0.01 0.44 ± 0.05

saline 74 ± 0.5 0.45 ± 0.01 0.49 ± 0.05

de-ionised water 75.9 ± 0.5 0.46 ± 0.01 0.48 ± 0.05

The reflection coefficient given in Tab. VIII.31 AH  is approximately 50% 

for the high-water content dielectric lossy material, approximately 30% for 

medium-water content tissue and 10% for low-water content tissue. The fact that 

the measured reflection coefficients at the face of the antenna are generally close to 

those given by the approximate expression (Eq. VII.23) shows that the field is

indeed mostly transmitted from the antenna outwards.

Near-field patterns in simulated muscle and fat tissues obtained from the 

measurements of the fields in the E and H planes of the antenna using a spherical 

dielectric perturber. A spherical dielectric perturber was moved in x-z plan plane 

from the antenna aperture in the dielectric phantom material. The corresponding 

results at the operating frequency of 3.35 GHz are given in Figs VIII.! 1 to VIII. 17.
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The near-field patterns of high-water content dielectric phantom materials simulating 

muscle and breast tissues were presented in Figs. VIII. 11, VIII. 12, VIII. 13, 

VIII.14 and VIII. 15 at a constant frequency and for distances ranging from 0 to 28 

mm from the antenna aperture. The field patterns are larger than the antenna 

aperture because the electric field E is not all transverse and also the field travels 

"sideways” slightly. This shows the phase change and leads to the reduction in the 

reflection coefficient.

Figs. VIII. 16 and VIII. 17 present configurations of the square of the 

electric field for medium- and low-water content tissues such as 50% sucrose and a 

mixture of 75% chloroform and 25% alcohol at the operating frequency of 3.35 

GHz and for distances ranging from 0 to 20 mm. For a low-water content the near­

field zone is significantly different from the plane-wave region as discussed in 

Chapter I. The reflected signal from the antenna is very difficult to detect because 

the relative permittivity of the dielectric lossy material is almost the same as the 

relative permittivity of the dielectric perturber and also because of the reflection in 

the medium caused by the dielectric wall of the container. So we have minimized 

the reflection in the lossy liquid by covering the container with an isolating material.

Fig. VIII. 18 presents the near-field configuration of a simulated muscle 

tissue such as a mixture of 200 grams of sucrose and 300 grams of de-ionised 

water at the operating frequency of 3.35 GHz for distances of 23 mm and 35 mm 

from the antenna aperture for two similar antennas using a sphere 6.35 mm in 

diameter as dielectric perturber with the relative permittivity is approximately 2. 

These plots have been taken with the x-y recorder. The top plot shows the power 

density ( E ̂ ) variation with the lateral position at a depth of 23 mm obtained by a 

single TEn ~modc cylindrical waveguide antenna. It can be seen that the antenna 

used for the measurement is not symmetric in both sides of the aperture. This is due 

to an asymmetry in the arrangement of the internal coaxial to waveguide transition 

of the antenna. The bottom plot shows the same measurement with similar antenna
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Fig. VIII. 11- The relative electric field configuration in the de-ionised water
at 3.35 GHz for different distances from the antenna apetrure.



Contours Key

100
150
200
250
300
350
400

-30 -20 -10 10 20

Fig. VIII. 12- The relative electric field configuration in a saline solution
at 3.35 GHz for different distances from the antenna aperture.
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Fig. VIII. 13- The relative electric field configurtation in a mixture of glycerol
and de-ionised water aat 3.35 GHz for different distances from
the antenna aperture.
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Fig. Vffl.14- The relative electric field configuration in a mixture of sucrose 
and saline at 3.35 GHz for different distances from the antenna 
aperture.



Contours Key

100
150
200
250
300

-30 -20 -10 20

Fig. VIII. 15- The relative electric field configuration in a mixture of glycerol 
and de-ionised water but the relative permittivity of this solution 
is lower than the one shown in Fig. Vffl.13.

The operating frequency is 3.35 GHz for different distances 
from the antenna aperture.
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Fig. VIII. 16- The relative electric field configuration in a sucrose solution
at 3.35 GHz for different distances from the antenna aperture.
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Fig. VIII. 17- The relative electric field configuration in a mixture of alcohol
and chloroform at 3.35 GHz for different distances from the
antenna aperture.



Fig. Vffl.18- Comparison of the relative electric field configuration in simulating 
muscle tissue of two TE 2 ^  cylindrical waveguide antennas.



at a depth of 35 mm from the antenna aperture. The power density (E 2 ) is

distributed symmetrically across the aperture and shows that the antenna used is

better than the first one in this respect. These measurements further illustrate the

information about the antenna response pattern that can be provided by

nonresonant perturbation.

The experimental measurements of the effective penetration depths are close

to the plane-wave penetration depths for medium- and high- water content tissues

and with significant difference for low-water content tissue.
The electric field in the dielectric phantom material is formed to fall-off

exponentially with distance from the antenna. ________
. For low-water content tissue the power density

decreases very slowly comparing to high- and medium-water content tissues. These 

results are as the expected forms.

These measurements have shown that there are three limiting cases for the 

penetration depth in tissue, the plane-wave penetration depth and the penetration 

depth determined by the waveguide antenna mode, the geometry of the waveguide 

antenna (Fig. VIII. 10.1) and the size of the antenna aperture. For the plane-wave 

penetration depth, the upper limit is approached when the medium is lossy or the 

antenna aperture is large and the lower limit, in which the antenna aperture 

determines the penetration depth, is approached when the antenna aperture is 

electrically small. These limitations have been studied by Cheever et al., (1987). 

Tab. VIII.4 illustrates collected calculated and measured data from Cheever et al., 

(1987) of the effective penetration depths for apertures radiating into water or 

ethanol compared with the plane-wave penetration depth. Two different limiting 

cases have been considered for the effective penetration depth, in the case where 

tan 8 < 0.25 and log( co2 \i0 e0 e' a2 ) > 1, the effective penetration depth 8 is given 

approximately by:

§ _ 5.' (VIII.4)
a

where a is the aperture width and 5' is the effective penetration depth in the case
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where tan 8 = 1. This is defined by:

5’ =
2 %-fl

1 +
(  ^2 ^2 

e l
V e’ y y

-  1

where XQ is the free-space wavelength.

Table VIII.4- The calculated and measured penetration depths for different apertures sizes compared 
with the plane-wave penetration depth (from Cheever et al., 1987).

Aperture Frequency Liquid Permittivity Penetration depth 
Width (GHz) (cm)
(cm)

e'r e'r Seal Smea Stem

7.3 3.1 ethanol 10.8 10.5 .56 .6 .53
7.3 3.9 M 9.1 9.3 .46 .4 .44
4.8 3.9 I t 9.1 9.3 .46 .4 .44
4.8 4.7 If 8.0 8.2 .41 .4 .39
1.5 3.9 ♦ 1 9.1 9.3 .20 .2 .44
1.5 4.7 II 8.0 8.2 .21 .2 .39
7.3 3.1 water 77.0 11.0 1.01 1.02 1.23
7.3 3.9 i t 75.0 16.0 .67 .7 .67
4.8 3.9 i t 75.0 16.0 .64 .6 .67
4.8 4.7 t r 74.0 17.0 .49 .5 .52
1.5 3.9 i t 75.0 16.0 .49 .5 .67
1.5 4.7 i t 74.0 17.0 .47 .4 .52

The Microwave Thermography Group at Lille University, France have also 

studied the penetration depth and patterns of r £ o;-mode rectangular waveguides 

(Mamouni, et al. 1983). The numerical calculations were carried out to determine 

the effective penetration depth from a variety of waveguide aperture sizes operating 

at frequencies of 1, 3 and 9 GHz, and filled with dielectric of relative permittivity 1 

to 25. The effective penetration depth in two types of homogeneous tissues was
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calculated; one representing the dielectric properties of muscle and the second the 

dielectric properties of fat.

VIII. 4- The nonresonant perturbation technique using crossed-nair antennas-

The concept of the microwave correlation radiometry has been discussed

theoretically and the "add-and-square" technique for the correlation of thermal

radiation from two antennas was used in the experiments described in Chapters V

and VI. A two antenna microwave correlation radiometer integrates radiation over a

distance that is of fixed time delay differential to the two antennas and also is within

the volume of tissue common to both antennas. This distance is defined such that

the difference in transit time of the radiation from any point P within that volume to
x - x

each of the antennas is a constant r(Fig. V. 5b), where ^ = —— -c

The same arrangement investigated in Chapters V and VI which uses two 

identical antennas, with a fixed distance between them, and with their axes at 90 0 

(Fig. V.5a) is investigated in this Chapter using the nonresonant perturbation 

technique as shown in Fig. VIII. 1. The process in section VIII.2 has been applied 

using a sphere 6.35 mm in diameter as dielectric perturber which was moved across 

the phantom dielectric material parallel to the line joining the midpoints of the 

antenna apertures (in x-direction). Fig. VIII. 19 shows an example of the 

nonresonant perturbation system coupled with a microwave crossed-pair antenna 

arrangement. Several phantom dielectric materials have been used to investigate the 

correlated power density ( E2) at a certain depth with different lateral positions and 

for phase differences between the antennas from 0 to 180 at a frequency 

of 3.35 GHz.
2

Fig. VIII.20 shows the relationship of the power density (E ) at a depth of 

30 mm in a position close to the plane of symmetry with lateral positions of 

dielectric perturber and for several phase differences between the antennas in 

simulated muscle tissue such as a mixture of 200 grams sucrose and 300 grams de-
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Fig. VIII. 19- The experiment arrangment of a crossed-pair antenna of the electric field 
measurements.

1 -Perturber movement

2 -Perturber axial position gauge

3 -Matching unit

4 -Crossed-pair antenna

5 -Phantom dielectric liquid container

6 -Coaxial phase shifter

7 -Dielectric perturber
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Fig. YIII.21- The variation of the power density with the lateral position and the

phase at a depth of 15 mm.



ionised water (e^  _ 47, ^  _ 34 sm The power density was measured for the 

phase difference range of 0 - 450 between the antennas. The maximum power 

density which could be achieved was located between phase differences of 180 ° 

and 270 . When the phase was lower than 180° or greater than 270° the power 

density was approximately the same. The power density was minimum at 0 ° and 

maximum at 180°.

Figs. VIII.21 and VIII.22 show the comparison of the power density ( E 2) 

for depths of 15 mm and 20 mm with the lateral position. Two cases have been 

considered in phase and 180 out of phase between the antennas in simulated 

muscle tissue such as sucrose. The maximum power density for the case where the 

antennas were in phase was located at both sides of the antennas. At a depth of 15 

mm the power density was greater than the results received at a depth of 20 mm. In 

the midline of the antennas the power density was very weak. For the case where 

the antennas were at 180° out of phase the power density was approximately half of 

the one obtained in phase. We concluded that the power density was maximum for 

the case where the antennas were in phase and at a depth of 15 mm.
2

Fig. VIII.23 shows the comparison of the power density ( E ) for different 

phases 0°, 125° and 180° at a depth of 30 mm with the lateral position. The 

maximum power density was located at both sides of the antennas. At the center the 

power density was very weak. For the cases where the antennas were 180° and 

125° out of phases the power density in the midline of the antennas was 

approximately half of the maximum power in both sides. We concluded that the 

power density was maximum for the three cases close to the antenna aperture and 

minimum in the midline of the antennas. So, the correlated signal is weak.

The crossed antenna pair system shows the combination of the exponential 

fall-off of the fields expected for each antenna combined with the interference 

pattern from the summation of the two antenna fields. This pattern can be varied as 

expected by varying the relative phase of the signals of the two antennas. This has 

been presented in Chapters V and VI using the de-ionised water and a 50% sucrose
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solution as dielectric phantom materials. Two cases have been considered in phase 

and 180 out of phase. It has seen that the interference pattern from the summation 

of the two signals is small comparing to the signal from each antenna and the

pattern varied with the phase change.

Mamouni et al., (1983) studied the relationship between the relative electric 

field and the penetration depth for single microwave thermography antenna and for 

two microwave correlation thermography antennas. The microwave correlated 

signal was more visible when was located at a depth of about one or two

centimeters than when was near the surface and the classical microwave signal was

proportional to the penetration depth and decreased as the depth decreased. They 

found that the microwave correlated signal was weaker than that measured by single 

antenna (Fig. VIII.24).

VIII.5- Conclusion:

In the present work the nonresonant perturbation reflection coefficient in 

lossy dielectric phantom materials has been measured to find the effective 

penetration depth and the near-field configuration of the electromagnetic fields of a 

dielectric loaded TE^-mode cylindrical waveguide antenna of the type used for 

clinical microwave thermography.
It was found

that the effective penetration depth depends not only on the properties of the 

dielectric phantom material and on the dielectric properties of the sheet perturber, 

but also on the parameters of the antenna and that it was usually smaller than that 

calculated for a plane-wave in the same dielectric material. It has been proved that a 

TEU -mode cylindrical waveguide antenna gives more encouraging results than 

using a TE^-mode rectangular waveguide antenna.

The nonresonant perturbation technique has given more encouraging 

results of form expected. The antenna studied produces fields in which the TEM 

wave is the most important component because the penetration distances measured
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and TEM distances are similar, as well as the antenna aperture reflection coefficient 

are similar. The effective penetration depths in simulated muscle tissue or in high- 

water content tissues are very close to the plane-wave for certain phantom materials. 

The plane-wave in a lossy dielectric material is usually greater than that obtained by 

experimental analysis. The effective penetration depth for less lossy medium such 

as chloroform which is approximately identical to a fat tissue is compared with the 

plane-wave. It shows a difference that is very significant. This technique provides a 

large plane-wave far-field zone with minimal near-field zone to give maximum 

signal contribution with depth in the investigated material.

The near-filed configuration of the electromagnetic fields of a single TEn ~ 

mode cylindrical waveguide antenna in contact with a lossy dielectric material has 

been described. It shows that the configuration of the electric field for a high-water 

content tissues are, as expected, close to the microwave antenna configuration (Fig. 

VIII. 1). The measurements can be taken up to from the antenna

aperture.

A crossed-pair of microwave antennas (microwave antenna correlation)

have been used when applying to the nonresonant perturbation technique to
2

investigate the relationship of the power density (E ) with the lateral position of a 

rod dielectric perturber (parallel to the midpoint antenna apertures) and the power 

density ( E2) with the penetration depth for different phase differences between the 

antennas. The results obtained show that the power density was maximum near the 

antenna apertures and in the midline the correlated power density was very weak

and approximately one third of the maximum power. Studies are being earned out
2

in order to improve the investigation of the relative electric field ( E ) with the 

penetration depth.

The nonresonant perturbation technique described for measuring the near- 

field configuration of the electromagnetic fields in simulated biological tissue 

provides a useful, inexpensive, simple and practical way of examining the 

performance of microwave thermographic antennas or applicators, particularly in
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development stages and improving the investigation of the medical techniques 

especially for hyperthermia induction and microwave thermographic temperature 

measurements.

; _ This technique

gives information in order to choose the characteristics of the best suited antennas 

for microwave thermographic temperature measurements and microwave 

hyperthermia induction.



Chapter IX

Conclusions

The microwave thermography technique is a relatively simple method which 

can be used to obtain information about subcutaneous tissue temperature patterns by 

measurement of the thermal radiation emitted by the body tissues at the lower 

microwave frequencies. The microwave temperature measured isiweighted average 

over the tissue temperature of the viewed volume which is influenced by several 

factors which include the operating frequency, the dielectric properties and the 

structure of the body tissues, the characteristics of the radiometer antenna and the 

temperature distribution in the tissue. In clinical applications it is the tissue 

temperature distribution which is the quantity of interest since abnormal distribution 

indicates sites of disease.

Microwave radiometry sensitivity is improving but there are limitations to 

how the system performance can be improved. The sensitivity depends on the sum 

of the system and source noise temperatures. The source noise temperature is fixed 

so that decreasing the system noise temperature becomes progressively less 

beneficial. The sensitivity also depends on the square root of the pre-detection 

bandwidth and the system response time. An improvement in the sensitivity may be 

achieved by increasing the pre-detection bandwidth. This is limited in a practical 

sense by the frequency over which the antenna may be matched to body tissue. As 

sensitivity is improved gain stability may limit the actual temperature resolution of 

the system. A simple T^-m ode cylindrical waveguide microwave thermography 

antenna used for medical radiometry applications is capable of detecting the 

existence of thermal structure of viewed volume.

Microwave correlation radiometry comprises a radiometer operating at a
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frequency of 3.2 GHz and a crossed-pair of antenna arrangement to view a 

common region at depth. The received pattern formed by the product of the 

individual antenna patterns gives a maximum depth in phantom dielectric material. 

The depth can be adjusted by changing the spacing of the antennas and the phase in 

an antenna path. However, the pattern is modulated by a set of positive and 

negative interference fringes so that the complete receive pattern has a complicated 

form. On uniform temperature distributions the total reading is zero with the 

positive and negative contributions cancelling each other out. The fringe modulation 

can be removed by placing the antennas closer enough together. The pattern after 

this modulation is simple and gives a maximum response at a known depth. The 

radiometer system is sensitive to temperature gradients only. Microwave correlation 

radiometry is not widely used in clinical application because of the complicated 

form of the received pattern. Only if the temperature distribution is uniform in the 

tissue and is known to be very simple it will be possible to interpret the output 

reading. In practice the temperature distribution inside the medium or in a biological 

tissue is unknown and in most cases is very difficult to decipher. Another factor 

affects the interpretation of the output reading and makes it impossible, or at the 

best ambiguous. This is a wide range of dielectric properties and tissue structures in 

the region being investigated.

For crossed-pair mdttmeter in phase the effective penetration

depth in high- and medium-water content tissues is about 2.5 cm at a frequency of

3.2 GHz. This result is similar to Newton's work, where he considered similar 

77si ; -mode cylindrical waveguide antennas angled 48° to each other and separated 

by 4.4 cm.

This study was undertaken to improve the use of microwave radiometry as a 

method of non-invasive thermometry for monitoring hyperthermia induction and 

microwave temperature measurement. Using a single radiometer with crossed-pair 

antenna arrangement proved promising to give sufficient penetration depth for 

detecting subcutaneous body temperature. This method is encouraging for further
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investigation towards improving the detection, diagnosis and scanning of breast and 

limb joints disease.

The nonresonant perturbation measurement technique is used to obtain the 

effective penetration depths and the near-field configurations of the electromagnetic 

fields of a simple T E mode cylindrical waveguide antenna in contact with 

phantom dielectric lossy materials and to investigate improvement biomedical 

applications. A TEyy-mode cylindrical waveguide antenna 2.5 cm in diameter and

5.2 cm in length loaded with low-loss dielectric e' = 12 has been used. The guide 

wavelength of the antenna is 2.7 cm at a frequency of 3.35 GHz and the cut-off 

frequency is 2.03 GHz. It was found that the effective penetration depth depends 

on the parameters of the antenna and that it was always smaller than that calculated 

for a plane-wave in the same dielectric material. It has been shown that a TE - 

mode cylindrical waveguide antenna gives effective penetration depth values closer 

to TEM wave penetration distances than does a TEQ]-mode rectangular waveguide 

antenna in simulated tissue dielectrics. For high-water content tissue the ratio of the 

effective penetration depths to the TEM  wave penetration distances is 

approximately 90% and for low-water content tissue is approximately 70%. This 

ratio is inversely proportional to the ratio of the relative wavelength in the dielectric 

material to the guide wavelength. „ This shows that

when the ratio is close to 1 the relative wavelength in the dielectric material is 

approximately one half of the guide wavelength which is the case of the high-water 

content tissue. However, for the low-water content tissue the relative wavelength in 

the dielectric material is approximately 13 of the guide wavelength.

The configuration of the electromagnetic fields of a single 7E -mode 

cylindrical waveguide antenna in contact with a lossy dielectric material has been 

measured. It shows that the configuration of the electric fields for a high and low- 

water content tissues is, as expected, close to the microwave field within the 

antenna (Fig. VII. 10). For low-water content tissue the electromagnetic field 

configuration is usually very difficult to detect because the relative permittivity of
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the dielectric lossy material is almost the relative permittivity of the dielectric 

perturber. Two similar TE - mode cylindrical waveguide antennas were used to 

compare the power density ( E ) and the behaviour of the electromagnetic field in 

the dielectric lossy material and also to investigate how \ the nonresonant 

perturbation technique is. It was found that one of the antennas 

symmetry of the signal an both sides of the antenna aperture. It can be conclude that 

the nonresonant perturbation technique is very good technique to use and it shows 

the significant performance of the applicators or antennas used.

The field of a crossed-pair antenna of the TE - mode cylindrical antennas, 

coupled as for an "add and square" configuration radiometer, was measured using 

the nonresonant perturbation technique. The field pattern observed was of the form 

expected from the measurements of the individual antenna behaviour with the 

appropriate interference pattern superimposed. The interference pattern showed the 

expected variation with the relative phase of the two antennas. The measured field 

showed the modest maximum between the antennas in the viewed common 

dielectric region which was observed in the radiometric test measurements. The 

measurements showed, however, that interpretation of a non-uniform temperature 

region would be difficult because of the interference pattern, though as suggested 

by Leroy it may be possible to measure a temperature gradient. Our results show 

similarities to Leroy's Group work, shows that the field pattern is the combination 

of individual field patterns and the interference pattern.

The nonresonant perturbation technique used for measuring the near-field 

configuration of the electromagnetic fields in simulated biological tissue provides a 

useful, inexpensive, simple and practical way of examining the performance of 

microwave thermographic antennas or hyperthermia applicators, particularly in the 

development stage and improving the investigation of the microwave thermographic 

temperature measurements made in medical applications. This technique gives 

information which can help choose the characteristics of the best suited antennas for
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microwave thermographic temperature measurements and microwave hyperthermia 

induction.
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Appendix A

Radiometer sensitivity

A .1- The total power radiometer:

The purpose of noise radiometer is to deduce changes in the system input 

noise temperature from changes in the system detected dc output. This change is 

limited by ac noise which is also in the output. The sensitivity of the radiometer 

has been discussed in Chapter II where the equivalent temperature of this system 

was given by:

The derivation of AT is based on the analysis of the output signal of a square law 

detector the input signal of which is bandwidth limited noise (Evans, 1977).

A square law detector is the special case of the multiplier or correlator.If the 

signal into the square law detector is x{ t ) then the detector gives an output reading

The signal x( t ) is a noise waveform, it can be characterised by quantities such as 

mean, rms, correlation, and power spectrum. The Fourier transform of the cross 

correlation function is being the spectral power distribution in the signal. The cross 

correlation function is given by:

/

(A.l)

R ( t ) :

R(t )  = x( t )  x x(t ) (A.2)
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Cx ( t )  =  x ( t )  X x ( t - T ) (A.3)

T he cross correlation function of the output reading C ( t ) from the square law
R

detector is given by:

CR ( x )  = R ( t ) x R ( t - x )  (A.4)

=  X (t ) X (t - X )  X X (t ) X (t - X )  +

x ( t ) x ( t )  x x ( t - x ) x ( t - x )  + 

x ( t ) x ( t - x )  x x ( t ) x ( t - x )

In terms of correlations of the input waveforms

Cr (t ) = Cx ( t ) x Cx ( x ) + Cx ( 0 ) x C  ( 0 )  + Cx ( t ) x Cx ( t )

so,

C ( x )  = 2 C x ( x)  + Cx ( 0 )  (A.5)

This is the spectral power distribution of the output reading from the square law 

detector. C 2 (0  ) is constant and measure the dc power in the output 

simultaneously. When a time T is considered in measuring, the cross correlation 

function isC  {%). C ( 0 ) - x ( t ) x x ( t )  which equals the total power in the
X  x

input signal. Therefore, the dc power in the output equals the square of the total 

power in the input signal. So, the the output signal is proportional to the total power 

in the input signal.

R ( t)  x R ( t-  x)

x (t ) x x ( t ) x ( t - x )  x x ( t - x )
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