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Abstract

W e have studied the Wilson fermion matrix in the lattice QCD in the quenched 

approximation. Having implemented the Lanczos algorithm to study Wilson 

fermion spectrum on finite volumes we have presented results to confirm the 

existence of a phase transition accompanied by a massless mode from a phase 

where parity is restored to a phase where this discrete symmetry is violated in 

accordance with Aoki's lattice QCD phase diagram.

In an effort to set up the most suitable algorithm to investigate hadron 

spectrum for Wilson fermions, we have also studied different versions of the 

Lanczos and conjugate gradient algorithms and have found that the block Lanczos 

algorithm is really superior for inverting large sparse matrices. In particular we have 

shown that the rate of convergence of the block Lanczos algorithm becomes 

effectively independent of the details of the fermion matrix such as gauge coupling 

constant and hopping parameter.

The application of the block Lanczos algorithm to investigate scalar and 

pseudoscalar meson propagators shows that the massless mode associated with the 

transition from parity-restoring to parity-violating phase in the above phase 

structure is indeed where the pion becomes massless.
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Chapter 1

Lattice Gauge Theory

1.1 Introduction

Gauge theories are inevitable for our understanding of particle systems. Most of the 

present models developed to describe such systems at a fundamental level make use 

of the notion of a gauge field. To have a well defined mathematical meaning the 

corresponding quantum systems must be regularized so that all divergent integrals 

are made finite. However, almost all techniques currently employed for this 

purpose are based on the weak coupling parameters in which the theory can be 

expanded perturbatively. Needless to say they are impotent for the analysis of 

phenomena governed by large coupling constants. They become even more useless 

where the behaviour of the theory at the origin, in coupling parameter space, is not 

analytic. To overcome these difficulties one requires a non-perturbative 

regularization scheme i.e. one which can be directly applied to fields, not to 

Feynman diagrams. Based on this notion an alternative method of regularization has 

been suggested by Wilson [1]. His method consists of putting the theory onto a 

discrete hypercubic lattice of space-time points, and to attempt to define the 

continuum limit theory as the limit of this lattice field theory as the lattice spacing 

goes to zero. The cost of doing this is to break the manifest Poincare' invariance of 

the original theory, in the hope that it will return in the continuum limit. This 

method provides a natural cut-off scheme as wavelengths shorter than twice the 

lattice spacing, a , have no meaning and this restricts the domain of momenta to a 

region bounded by . As a result the ultraviolet divergences are thus removed.
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For technical convenience we formulate the lattice theory in a four 

dimensional Euclidean space-time defined by the Wick rotation (t —» -it) of the 

Minkowski space theory. This completes the analogy of the field theory as 

formulated above with a statistical mechanics system. So we can call upon all our 

experience of statistical mechanics to solve problems in quantum field theory. In 

fact with a cut-off on high momenta the action is bounded and therefore we can treat 

it as a perturbation in the strong coupling limit to open a new domain of analytical 

investigations inaccessible to perturbation theory in terms of Feynman diagrams. 

This corresponds to the method of high-temperature expansion in statistical 

mechanics.

On the other hand if the space-time volume of the whole system is made 

finite there are only a finite number of variables and it is then possible to study 

various physically interesting quantities such as energy spectrum, correlation 

functions etc. in the path-integral formulation by the technique of numerical 

importance sampling i.e. by simulation based on the Monte Carlo method. Now all 

quantum averages are given by mathematically well-defined expressions 

irrespective of the value of the coupling constant. This numerical analysis thus 

bridges the gap between the strong coupling domain and the region of weak 

coupling which can be studied by perturbation theory.

Though lattice gauge theory seems promising in dealing with pure gluonic 

theories it creates its own problems for fermionic systems. An obstacle to handling 

the gauge theories with quarks is the uncertainty about the formulation of lattice 

fermions. The most straightforward fermion formulation, the so called naive 

theory, produces too many fermions. The two most popular ways of avoiding this 

multiplicity of fermions have no explicit continuous chiral invariance on the lattice. 

Chiral symmetry, realized in the Nambu-Goldstone mode, is supposed to be an 

important approximate (exact for massless fermions) symmetry of the strong 

interactions, one of the consequences of which is the smallness of the pion mass.
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Lack of chiral invariance in the continuum limit of lattice quantum chromodynamics 

(QCD) will reflect directly on the value of the pion mass.

In practice the finite-size effects might alter the results. For instance, strong 

coupling calculations with one of the above methods, known as staggered 

fermions, give much too high an ^  [2 ] despite the presence of a remnant of chiral 

symmetry. Finite-size effects seem less severe in calculations with the second 

method which is referred to as Wilson fermions. In this method, despite its explicit 

break down of the chiral symmetry, low pion mass is indicated to be no problem 

[3].

In the following sections we review the generalities of lattice field theories 

for pure gauge theories as well as theories with fermions. Special attention is paid 

to the Wilson fermions which form the central subject of the subsequent chapters.

1.2 Quantum Chromodynamics On The Lattice

Quantum chromodynamics which is the candidate field theory for the strong 

interactions is described by the Lagrangian density L  which is written in terms of 

quark fields y^and gluon fields A a in brief notations as:
r4

L = - - i  FlivFtlV+ \j/(ij3  - m)y (1.1)

where F  is the field-strength tensor built out of Lie algebra valued gauge fields as:

fVv = 3 HAv ' 3 v An - ig[An>Av] ( 1-2 )

D  , being multiplied by Dirac matrices y in 0  is the covariant derivative defined
r r

by,

Dp = 3 p " i&Aji (1*3)

In the above g is the coupling constant and A = is the vector potential. Ta 

are the generators of G the corresponding group transformations satisfying the Lie 

algebra:

[T a Tb] = i f abc Tc (1.4)
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where are the totally antisymmetric structure constants.

In QCD where the gauge group is S U (3 ) ,T a are related to Gell-Mann

The Lagrangian density (1.1) or the corresponding action does not 

completely specify the theory. We also require to specify the functional integral 

measure or equivalently the partition function,

to obtain the vacuum expectation values of time ordered product of fields (Green's 

functions).

Eq. (1.5) does not have too much meaning until its strange mathematical 

content i.e. the infinite-dimensional functional integration, is defined in a sensible 

way. To do this we put the theory onto an Euclidean space-time lattice with a 

spacing a. The lattice sites will be labelled by a four-vector n i.e.

Naturally the scalar fields (f*(fi) are defined on the sites n and the vector fields 

A(n,jJ,) (characterized by a position and a direction) on the links joining the 

neighbouring sites of the lattice. As a result each field has a finite number of 

degrees o f freedom and consequently the infinite-dim ensional functional 

integrations over the field configurations will be represented by ordinary multiple 

integrals i.e.

matrices1 ta by Ta = y  ta where a = 1, 2, 3,..., 8.

J  DA D\|/Dvj/ (1.5)

X = (x1,x2,x3,x4) -> n = (n1,n2 ,n3 ,n4)a ( 1.6 )

and the four-dimensional integrations will be replaced by a sum,

(1.7)

( 1.8)

(1.9)

General properties of Dirac and Gell-Mann matrices are given in Appendix.
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And finally the natural modification of derivatives on the lattice is to replace them

with finite differences,

a a / x <t> (n -h ajl) - <> (n - ajl)
0 0  - > ------------- 2 a------------- (u °)

where p  is the unit vector in p  direction.

The lattice field theory introduced by the above procedure not only makes 

the path integrals well defined but regularizes the theory as well. This comes about 

through the transformation of the field <P(n) to momentum space,

$ (p) = a4£ e ipn(|>(n) (1 . 1 1 )

The result is that (p(p) is periodic in p  with period P^ . The momenta may

therefore be restricted to lie in the first Brillouin zone i.e. < p ^ < ^ .  Then on 

an infinite lattice the inverse transform reads,
TC_

1 J V -  - x,<t>(n) = — I d p e <j>(p) (1 -1 2 )
(2k )

a

So the latticization provides a cut-off in momentum space as the largest component 

of momentum in any direction is .

What happens to the symmetries of the theory under such a latticization 

process? Obviously as the global internal symmetries are not affected by 

discretizing the space-time the lattice action would preserve such symmetries. We 

are most concerned about the local gauge symmetries. The Lagrangian (1.1) is 

invariant under the local gauge transformation described by the G-valued function 

V as follows:

V —> W  (1.13)

\j? x j/V '1 (1.14)

—> VA^V 1 - - t  0 1IV)V"1 (1.15)

Unfortunately this gauge symmetry is lost if we latticize the lagrangian density by 

the above method. It is straightforward to see that the gauge invariant terms in the
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action, e.g. \j/D\{/, will remain invariant under the corresponding lattice gauge 

transformation only as a —> 0. We are interested to preserve gauge invariance for 

any finite value of lattice spacing a. However the freedom in lattice formulation 

provides a solution to this problem as one is free to add to the Lagrangian terms 

which will not contribute in the continuum limit. Using this freedom, the so called 

universality, Wilson has presented a particularly elegant lattice formulation for 

gauge theories. In his prescription which keeps local gauge invariance as an exact 

symmetry we require to redefine the gauge fields on the lattice. To see how it comes 

about let us consider the non-local operator U(x,y),

where the integral is taken along some path r  connecting the points x  and y and 

p  denotes the path ordering required to define U by expanding the exponential i.e. 

A ^ (z j )  is to the left of A ^ ( 2 2 ) if, along the path, is closer to x  than z2. The 

fact that A ^  are traceless shows that det U(x,y) = 1 . M oreover U(x,y) are 

manifestly unitary. Therefore U(x,y) are elements of the gauge group rather than 

the Lie algebra. Let us check the properties of U(x,y) under a gauge transformation 

V(x). For an infinitesimal path where y  = x+dx, U(x,y) is easily shown to 

transform like:

By performing similar transformation successively along the path elements one 

establishes the same result for finite separations i.e.

y

U(x,y) =p e (1.16)

U(x,x+dx) —» V(x) U(x,x+dx) V '^x+dx) (1.17)

4.

U(x,y) -> V(x) U(x,y) V '(y) (1.18)

and similarly

U^(x,y) -> V(y) U ^ x j )  V ^x) (1.19)

where V  ̂= V ' 1. These gauge transformation properties of U ensure the gauge 

invariance of \jf(x) U(x,y) 1\f(y) and its hermitian conjugate \jr(y) JJ f(x,y) y/(x) . On

6



the other hand if we let y = x+e we see that,

lim 1 V (x)U(x,x+e^)\|/(x+e(l)-y(x)'|/(x) _»\|/(x)D.,y(x) (1.20)
<*i->oen

i.e. we can recover the continuum version of fermionic part of the Lagrangian (1.1) 

by using this interesting property of gauge invariant expression in the l.h.s. of Eq. 

( 1.20).

These considerations suggest that the fundamental variable on the lattice is 

U(n,n+afi ) rather than A (n , f i ). U (n,n+ajl) which we denote by U ^(n)  is the 

lattice version of the gauge field and sits on the link joining sites n and n+afJ-.

U * (n) is then associated with the link in opposite direction i.e. from site n+afl to 

site n therefore:

U tll(n) = U.(1(n+afl) (1.21)

To make the theory (discrete) translational invariant one imposes periodic boundary 

conditions on the gauge fields U^fn).

1.3 Lattice Action

Beginning with the Lagrangian (1.1) the continuum action in Euclidean space2 is 

given by

S = J  d4x | ?  (x)Y(l(9,1-igA (i)\|/(x)+m\j/(x)\|f(x)]

+ | V F |  d - 22)

we want to construct the lattice version of both fermionic and gluonic parts of the 

action S in terms of lattice variables U^(n).

1.3.1 Ferm ionic Action

The hermicity of the action (1.22)3 anc[ the property (1.20), which holds in

2 See Appendix for the relations between Minkowski and Euclidean spaces.

7



Euclidean space as well, guide us to write the gauge invariant hermitian fermion 

action for any value of a by taking the hermitian part of (1 .2 0 ) after \j/(x) is 

replaced with \jf(x)y . In lattice notation this leads to:r4

Needless to say that Sf  reduces to fermion part of continuum action as a —>0 . In 

Eq. (1.23) the Einstein summation convention as well as the summation over colour 

and spin indices which are suppressed are understood. Usually \f/ is replaced by

It is interesting that contrary to the case of the continuum theory, the gauge coupling 

does not appear in Sf, because it has been in a sense reabsorbed in the definition of 

the lattice gauge variables UAn).H’
As mentioned earlier U (n) are the elements of gauge group. For SU(NC) 

which is a compact group the coefficients of the group generators Ta in the 

exponent i.e. gaAa (x) range between n  and -n  . This restricts the values of A a/I H-
to the range ( - - § r » -^7 ). In the continuum limit when a -* 0  this restriction isgu gu

lifted and A a ,̂ will regain its infinite domain (-0 0  00 ). However the U variables, 

contrary to , have finite domain of variation for any value of a . This is 

important because in the continuum theory one must remove the redundant degrees 

of freedom, resulting from gauge invariance, of the theory by some gauge-fixing

3 The hermicity of / d4x ydy/ is established by integration by parts and anticommutativity of y-

lT  i 2 a

+ m \|/(n)\j/(n) (1.23)

where

U /n )  = e
- igaA^n)

(1.24)

4( J l a  j  V  and afl by A to obtain the standard form of Sf as:

+ 2 ma \j/(n)\|/(n) (1.25)

matrices.
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conditions. In the language of path integral quantization formalism, one must 

restrict the functional integration to reflect these gauge-fixing conditions. So the 

lattice regularization automatically provides such a restriction via the finite range of 

U. So no gauge fixing is necessary on the lattice.

1.3.2 G luonic Action

In constructing the lattice action we wish to keep most of the properties of 

continuum formalism at least to the extent the lattice structure allows to keep them. 

In case of gluonic action this means that we require it to be gauge invariant, local 

and have the global symmetries of the continuum Yang-Mills action and must 

reduce to it i.e. to - / x  as a —>0 . However these requirements do not

uniquely specify the lattice action as there are a whole class of actions which give 

the same physics in the continuum limit (universality). Clearly the gluonic action 

which is expressed in terms of gauge fields A â  in the continuum theory must be 

composed of link variables UAn) on the lattice. The gauge transformation property 

of U i.e. Eq. (1.18) implies that the trace of the product of U matrices along a 

closed loop, called a Wilson loop is gauge invariant. The simplest gauge invariant 

local interaction can be defined as,

s g = p ?  p
1 - ^ ( U p + U pt ) (1.26)

where p  refers to the simplest closed loop i.e. lx l  loop called the plaquette and 

Up is defined as:

Up = Up(n,£,v) = U^(n)Uv(n+ji) U ^(n+v)U v+(n), (1.27)

the sum X  = is over all plaquettes of the lattice and trace (Tr) is taken in colourp n,ptv x A

space. As a —>0 the terms like A v(n+p ) and A p (n+ vA) which appear in Up and 

Up through Eq. (1.24) can be expanded in powers of a. Using such expansions 

along with the Baker-Hausdorff identity for any two arbitrary operators /  and g

9



i.e.

(1.28)

and the properties of SU(3) group generators4  one can show that the Euclidean 

naive continuum limit can be recovered as,

Together with the fermion action (1.25), the gauge action (1.26), which is 

known as the Wilson action, forms an explicit gauge invariant lattice regularized 

version of classical QCD. In the following section we will see how to quantize this 

lattice system.

1.4 Field Q uantization

To quantize lattice QCD we adopt the Feynman path-integral approach [4, 5]. Here 

the transition amplitudes are expressed as some functional integrals over all possible 

paths between the initial and final states, weighted by the factor e~s (in Euclidean 

space) where S is the action for the particular path. In the lattice QCD where we 

choose to work with the link variables as the basic dynamic degrees of freedom for 

the action,

(1.29)

if p is  set equal to for SU(NC) gauge theories.5

S = Sf + Sg = S(\|/,\|MJ) (1.30)

the vacuum to vacuum amplitude (partition function) reads,

Z = J t t y  t t y  DU e' S(v,v,u) (1.31)

where

t t y  = n d y ( n )  

t t y = n d y ( n )
n

(1.33)

(1.32)

4 See Appendix.

5 p  turns out to be -j-for U(1) gauge theories.
8
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DU = n d U u(n)
n,|x ^

(1.34)

Since the fermion fields are anticommuting C-number functions i.e.

{V(n), V (n ')} = { v  (n), V (n')} = { v  (n), ¥ (n ')}  = 0 (1.35)

they are the elements of Grassmann algebra [6 ] and the fermionic integration in Eq. 

(1.31) must be taken over such elements. Integration over Grassmann variables are 

defined so that they are invariant under a translation of the integration variable by a 

fixed element (f) in the Grassmann algebra which is independent of y/ and 

anticommutes with it,

The properties (1.37) and (1.38) make the integral over the Grassmann variables in 

Eq. (1.31) vanish except when the integrand is a product of all the Grassmann 

variables, each variable occurring once and only once. These properties of 

Grassmann variables for yf{n) and \j/(n) are then summarized as follows:

Since the fermion fields always enter the action quadratically as ¥MW, where M -

l /+ m  is the fermion matrix, the fermionic part of the functional integral (1.31) will 

be a generalized Gaussian integral. One can then show that:

J d y  f(y) = j d y  f(y+<|>) (1.36)

and similar expression for \j/. Eq. (1.36) implies that

(1.37)

and the anticommutativity (1.35) results in

(1.38)

J  d\|/ \|/ = J  d y  d\|/ \\f = J  d\j/ d\j/ \|/ = 0 (1.39)

J  d\\f d\j/ \\f \f/ = - J  d\\f d\|/ \|/ y  (1.40)6

(1.41)

6 The normalization is arbitrary.
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We now consider the gauge integration part of (1.31). Here one should note 

that no gauge-fixing term has been added to the action because, as we mentioned in 

previous section, the link variables (i.e. lattice gauge fields) are group elements and 

have only finite range. dUAn) is the Haar measure with arbitrary normalization:

l c|dU = 1 (1.42)

As a consequence of the invariance of Haar measure [7] under a fixed shift U' in 

integration variable we have:

J  dU f(U) = |  dU f(UU’) (1 .43)

If the gauge group manifold is SU(NC) we also have the orthogonality properties:

J d U U , , - /

J
= |d U U ti j = 0  (1.44)

dU U  (1-45)

J d U U ijU kl = j d U U tijU tk. = 0 (1.46)

These relations make the group integration practically feasible especially in the
c

strong coupling region where the exponent e s can be expanded in powers of 

small parameter f$J

1.5 Continuum Limit

In the previous section we formulated the quantized lattice QCD. However one 

should remember that such a theory or any other regularized theory is only an 

intermediate step in solving a highly involved system of an infinite number of 

degrees of freedom. We are eventually interested to remove the cut-off i.e. the 

lattice spacing a introduced by the regularization scheme to recover the continuum 

limit where a —>0 . This renormalization procedure must be carried out in such a 

way that the physical predictions become independent of the lattice spacing and 

remain finite and fixed when a is small. As a is the only dimensionful parameter 

on the lattice the result of any calculation of a physical quantity q takes the form:

7 See §1.6.
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q = ( j ) df(g) (1.47)

where J- has dimension of mass (in natural units) and the content of the theory is

expressed by the fu n c tio n /o f dimensionless coupling g. Clearly the continuum 

limit can not be obtained for the observable q by merely letting a 0 unless g 

changes simultaneously so that q approaches a well defined finite limit in Eq. 

(1.47). So as a 0 , there must be a critical value g* of g such that f(g)  tends 

either to infinity (if d < 0 ) or to zero (if d > 0 ) as g —> g*. g* is the bare 

coupling constant of the resulting continuum QCD. On the other hand, this theory is 

asymptotically free8, therefore the bare coupling, which describes the interactions 

at the scale of the cut-off, must be zero when the cut-off ( ~ J - ) goes to infinity

The above argument indicates that the transition to continuum limit requires 

a definite relationship between a and g. This could be achieved by demanding that 

the physical quantity q remains unchanged throughout the process of 

renormalization. This cut-off independence of q implies:

da q = 0  f 1'48)

A sq = q(a,g) therenormalizability requirement (1.48) implies:

p,  the so called fi-function specifies the lattice spacings at different coupling

8 Theories having the property that the slope of the renormalization group /-fu n c tio n  

(discussed in this section) at the origin is negative are referred to as being asymptotically free  [8]. 

Moreover only non-Abelian gauge theories are asymptotically free [9], For such theories in 4 

dimensions the origin is called an ultraviolet stable fixed point and the coupling constant region 

where physical predictions are cut-off independent is known as the scaling region.

i.e. g* = 0 .

(1.49)

where

(1.50)
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constants (or vice versa). If Eq. (1.47) is used in Eq. (1.49) then one ends up with: 

q = C [ A j  (1 5 1 )

where C is an integration constant and should be found by non-perturbative 

methods for different physical quantities, and

AL = 4 e P(8) (1.52)

A l  has the dimension of mass and sets the scale for QCD. As well as q , A L is

cut-off independent and as a free parameter must be measured by experiment. For 

small values of g where perturbative arguments determine the p  -function [1 0 ] as,

P(g) = -P0S3 -PiS5 + -" (1-53)

where

Po = -T-7T’ P. = f  <“V  d'54)u 3 167E2 1 3 16k

Al  reads as:

h
,2

a e 2ft°g (P0 g2) P“ [l+0(g2)]  (1.55)

One must take g —> 0 to get to continuum limit in lattice QCD. Eq. (1.55) shows 

that, in this limit the only way AL and accordingly the renormalized quantity q 

remains finite is by a —>0 9 and vice versa. This implies asymptotic freedom and 

also justifies our previous calculation that g* = 0. It is also interesting to note that
i

the singularity of at g = 0 means that A L and similarly q do not have 

perturbative expansions. That is to say the evaluation of a physical quantity like q 

requires a non-perturbative regularization scheme such as lattice regularization.

1.6 W ilson Loop And Confinement

Confinement of quarks is an outstanding problem in QCD. The possibility of 

performing strong coupling expansions provided by lattice regularization paves the

9 Since ex p (--^ -:)-^ 0 .
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way to study this problem [1]. In the following we obtain the quark confinement

for the special case of heavy quarks. In such a case quarks enter only as external

static sources in a pure gauge theory. Consider a system composed of a pair of 

quark y/(Q.,t) and antiquark Y  (R ,t) separated by a distance R. We can represent 

this system at time t by the gauge invariant operator Oft) as:

Q(t)=V(R,t)u[(R,t),(Q,t)]y(Q.t) (1.56)

where U[(Bjt),(Q,t)] is the product of gauge links joining the points (R,t) and 

(Q,t). We can evaluate the correlation between O(T) and 0.(0) 10 as:

lim <nt(T)Q(0)>-eE°T (1.57)
T-»oo

where Eq is the ground state energy of the qq system. In case of heavy quarks 

where there is no dynamics Eq is just the inter quark potential V(R) i.e.

t a o<nt(T)n(o)>~eV(R,T (158)
mq—>00

In terms of fermion fields the l.h.s. of Eq. (1.58) may be written as:

<Q t (T) Q(0)> = <vj/(0,T) U[(0,T),(R,T)]V(R,T) 

V(R,0)U[(R,0),(0,0)]V(0,0)>

= - |  J  D \ j / D V D U V(Q,T)U[(0,T),(R,T)]V(R,T) 

V(R,0) U[(R,0),(Q,0)]V(Q, 0) eSf+Sg (J 59)

where Sy, Sg, and Z are given by Eqs. (1.25), (1.26) and (1.31) respectively. In

case of heavy quarks we can integrate out the fermion fields by expanding e f  in

powers Using the properties of Grassmann variables i.e. Eqs. (1.37),

(1.39) and (1.40), the leading non-vanishing term in (1.59) is obtained to be 

/ T
proportional to ) anc* resu t̂s in:

10 See §4.1.
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< n f(T)Q(0)>~ j  DUW c (R ,T )eS8 = < W C(R,T)>G (1 .60 )

where G means averaging over gauge field configurations and

W C(R,T) = U[(0,T),(R,T)] U[(R,T),(R,0)] U[(R,0),(0,0)]

xU[(0,0),(0,T)] (1.61)

that is to say WC(R,T) is just trace of the product of gauge links around the closed 

T x R  rectangular loop C i.e. the Wilson loop operator. Combining Eqs. (1.58) 

and (1.60) we obtain:

We next want to calculate the expectation value of Wilson loop. In the strong

Due to the orthogonality properties of link variables, Eqs. (1.44), (1.45) and

(1.46), each link on the Wilson loop must be matched with its hermitian conjugate

in order to not yield vanishing result in Eq.(1.63). This requires the appropriate

plaquette from the action which in turn introduces more links. The new links must

be matched too. This procedure will eventually cover the surface of Wilson loop by

the plaquettes so that no loose links are left unmatched. As a result the lowest-order
B Nnon-vanishing contribution to <WC(R,T) >q is (-^-) P term where Np is the 

minimal number of plaquettes required to cover area of Wilson loop,

< WC(R,T) >Q ~ e‘v(R)T (1.62)

C
coupling limit e s can be expanded in powers of p. Therefore:

(1.64)

2N,
-y- we compare (1.62) with (1.64) to obtain:Noticing that Np = —y  and p  =

V(R) = O R (1.65)
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In e2where cr= —j -  is called the string tension. The linearly arising potential (1.65)
a

implies the confinement of quarks. As this result is the consequence of area law

(1.64) for Wilson loop, the vacuum expectation value of the large Wilson loops can 

be used as an order parameter for confinement.

We derived the above strong coupling result without resorting to the non- 

Abelian nature of SU(3) gauge group. In other words electric charge confinement 

result also holds in quantum electrodynamics (QED). However it has been proven 

[11] that in four dimensions Abelian gauge theories undergo a discontinuous phase 

transition from the confining phase (characterized by an area law) at strong coupling 

region to the real world of deconfining phase (characterized by a perimeter law) at 

weak coupling region, but similar analytic proof that QCD does possess such a 

phase structure is not obtained. Whether the quarks are really confined at finite 

requires numerical investigations based on Monte Carlo simulations with which we 

deal in the next section.

1.7 Monte Carlo Simulation

Our lattice gauge theory based on path integral formulation enables us to extract 

physical quantities from appropriate gauge invariant expectation values. Using the 

partition function (1.31) this reads as:

< 0  > = i  J D y D y D u O  (y .y .U ) e‘s<',',¥'l,) (1.66)

On a finite lattice Eq. (1.66) is a well defined multidimensional integral. If the 

integrals are approximated by sums over a sufficiently dense set of points Eq.

(1.66) reduces to sums over a finite number of terms. Each term is represented by a 

set of gauge variables on the links {Urf called a gauge field configuration C. For 

continuous gauge groups the number of gauge configurations is infinite. Let us first 

ignore the quark fields. 11 In this case for a SU(3) gauge theory on an L3T  lattice

11 Fermionic systems are discussed in §1.10.
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one has to evaluate a 32 i J T  dimensional integral! Even for a relatively small lattice 

this multidimensional integral is beyond the possibilities of the most powerful 

computers. 12 Although this direct summation is quite hopeless, however we might 

think of an alternative approach by using the fact that most of the configurations 

have very small Boltzmann factor e~s therefore their contribution to the total sum is 

negligible. In other words only a relatively small subset of configurations which 

have a small action (and large frequency of occurrence) effectively contribute the 

most to the quantum averages. If by means of a suitable random process a large 

sample of configurations is selected among the important ones (importance  

sampling), such that the frequency of occurrence of a given configuration is 

proportional to the measure factor e~s , then < O > may be approximated by 

averages taken over this large sample of configurations [1 2 ] i.e.

The above described procedure is known as Monte Carlo simulation. This 

procedure comes about by starting from an initial configuration C1 . Then according 

to an algorithm which involves the extraction of random numbers we generate a 

new configuration C2 . In the next step we start from C2 and following the same 

procedure we generate a new configuration C3 and so on so that eventually a large 

number of configurations are generated. The transition between one configuration 

C and the next C 'is  defined by a transition probability W (C —> C ). The 

procedure is designed in such a way that the probability of encountering any 

definite configuration C at the n th step is proportional to e 'S^C  ̂ (for large n). 

The transition probability W  is required to satisfy the following general properties:

I The algorithm must be capable of generating all configurations i.e.

(1.67)

W( C - > C ) > 0 ( 1.68)

12 E.g. if we approximate the integrals by sums over 10 points per variable it amounts to 

10320000 p0ints at which to evaluate for a 104 lattice!
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II Normalization condition requires:

S w ( C  —» C )  =  1 
r (1.69)

III  Let Pn(C) be the probability distribution for configurations generated 

at step n by the algorithm. Then we have:

which is called the principal o f detailed balance.

The properties I, II and III do not fix the algorithm completely. The 

algorithm which is often used when fermions are ignored is the one due to 

Metropolis et al.

1.8 Metropolis Algorithm

The Metropolis algorithm [13] is set up by transition probability W (C —> C' ) 

defined as:

where AS = S[C']-S[C]• It is straightforward to verify that W (C  —> C ') defined 

by Eq. (1.74) satisfies the condition of detailed balance, Eq. (1.73). Transition 

probability (1.74) implies that if the passage from C to C  lowers the action the 

change is always accepted. On the other hand if the proposed change of 

configuration increases the action, the new action is accepted only with conditional

Pn+1(C) = Z P n(C ')W (C ‘ -4 C ) (1.70)

At equilibrium we must have:

Using Eqs. (1.69) and (1.70) the equilibrium condition reads as:

(1.71)

£pn(c)w(c -> c') = lp n(c')w(c' -> c)
C ’ C'

(1.72)

A sufficient (though not necessary) condition to satisfy Eq. (1.72) is:

W ( C - » C ‘) Pn(C') e S(C )
(1.73)W ( C ' - > C )  Pn(C) e -s ( C )

1 if AS < 0

if AS > 0 (1.74)
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zi 5probability e . It is this occasional acceptance of the changes which increase the

action that simulates the effects of quantum fluctuations. In practice this conditional
zl Sprobability is implemented by comparing e with a selected random number r 

with uniform probability distribution between 0 and 1. If e A S > r the change is 

accepted and the new configuration in the sequence is C 'and otherwise the change 

is rejected and the new configuration is again C.

In lattice gauge theory applications the configuration is changed locally that 

is to say the configuration C' is the same as C except on a given link / where £//

—> U' i = VU[. V  is chosen randomly from the set of the elements of gauge 

group close to l . 13 Accordingly the change AS  is local to the link that we 

change. Then:

a S - - J U . T r
’c ( ,tapler 7 )  (LJ'‘ U ) (1.75)

where st^ J  7 is the sum of the staples attached to that link. Eq. (1.75) suggests 

that it is actually more efficient to update a given link several times before moving to 

the next link. The reason is that in updating (hitting) the same link subsequently 

several times the calculation of st^ J  1 which is quite time consuming need not be 

repeated. This multiple updating of the same link which may achieve a faster rate of 

convergence to statistical equilibrium is particularly convenient when the rate of 

rejection is high. This improved multihit Metropolis algorithm is referred to as a 

heat bath algorithm because it is like attaching a local heat bath to the link which is 

updated.

To be able to use Eq. (1.67) to approximate quantum averages < 0  >, the 

configurations over which O is evaluated must have come into equilibrium and 

should be statistically independent. Since the update changes one link only at a 

time, it requires updating the whole lattice (sweep) many times before statistical

13 In practice we first construct the matrix 1+eA  where e is an arbitrary small number and A 

is a 3x3 matrix with random elements. V is then obtained by renormalizing 1+eA  to a SU( 3)  

matrix.
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equilibrium is achieved. The number of sweeps required for the probability 

distribution to reach equilibrium is called equilibration time. The measurements 

during this time must be discarded. Then many more sweeps are required before 

each statistically independent configuration is generated. The number of sweeps 

over which the data are correlated is called correlation time. Any error analysis 

should also take these correlations into account.

Based on these considerations we set up some criteria to see how suitable 

the generated configurations are.

1.9 Configuration Criteria

1.9.1 Average Trace Link

Average Trace Link (Av.TrLink) is defined on a single configuration as:

A v T r X i n k ^ j ^ — - E T r U , ( n )  (1.76)
c site direction

As Av.TrLink  is not gauge invariant it must be zero (unless the gauge links are

fixed). The equilibration time is then the number of sweeps (iterations) required
4 obefore Av.TrLink  falls to around zero as shown in Fig. 1.1 for a 4 lattice at p =

5.0 starting from a hot start [i.e. random U^(n)'s] while each link is updated by 

10 hits in every sweep. To estimate the correlation time we form block 

A v .T r .L in k 's  which represent average of 2 adjacent m easurem ents of 

Av.Tr.Link's. This step averages over the short range fluctuations below 2 

iterations while the long-range correlations between the block Av.Tr .Link's are 

expected to be the same as those between the original Av.Tr.Link.'s. Therefore, 

when measured in terms of the block lengths b[, the correlation length reduces by 

. By repeating this elementary step n times the dimensionless correlation length 

is reduced by ( y ) n and if n is large enough the final block Av.Tr.L ink's  are 

coupled over a few blocks only. In each step the correlation is estimated by

calculating the corresponding mean square deviation S^ = ob /4b-I , where <7b is
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Fig. 1.1 Average Trace Link vs. time (sweep) for a 44 lattice at (5 = 5.0.

the standard deviation and b is the number of blocks, the larger S^ implies the less 

correlated blocks. If after N  steps Sj, approaches its maximum value then the 

corresponding blocks are well decorrelated and in terms of original Av.Tr.Link's 

the correlation time is about 2 N sweeps as shown in Table 1.1 for the same 

measurements of Fig. 1.1. These measurements are obtained from 2048 sweeps 

after the first 952 sweeps are discarded.

1.9.2 Average Plaquette

Average Plaquette (Av.Plaq) is defined on a single configuration as:

Av.Plaq. = —  ■ —  - i) p"Tr Up O-77)
c site direction v direction /  r

As Up is gauge invariant Av.Plaq. does not necessarily vanish, however the 

reality of the action (1.26) results in a real value for Av.Plaq. once averaged over 

all gauge fields. One might use Av.Plaq. results to estimate equilibration and 

correlation times exactly in the same way as was discussed for Av.Tr.Link. Table

1.2 and Fig. 1.2 show the corresponding results.
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Table 1.1

Adjusted root mean square deviation Sj, for blocks of b[ Average Trace Links for a 

44 lattice at fi = 5.0. The correlation time is about 27 sweeps where Sf, maximizes. 

The mean of average Trace link over 2048 sweeps is evaluated to be -0.00081.

n bi b

0 1 2048 0.00016
1 2 1 1024 0 .0 0 0 2 1

2 2 2 512 0.00028
3 23 256 0.00035
4 2 4 128 0.00041
5 25 64 0.00046
6 2 6 32 0.00055
7 2 7 16 0.00069
8 2 » 8 0.00066
9 29 4 0.00055

1 0 2 1 0 2 0.00023

Table 1.2

Adjusted root mean square deviation for blocks of bi Average Plaquettes for a 44 

lattice at p  = 5.0. The correlation time is about 28 sweeps where maximizes. 

The mean of Average Plaquette over 2048 sweeps is evaluated to be 0.39869

n bi b sb

0 1 2048 0.00019
1 2 1 1024 0.00026
2 2 2 512 0.00034
3 23 256 0.00043
4 2 4 128 0.00052
5 25 64 0.00060
6 2 6 32 0.00063
7 27 16 0.00070
8 2 8 8 0.00085
9 29 4 0.00057

1 0 2 1 0 2 0.00072
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Using strong coupling expansion technique, the A v.P laq. in strong 

coupling region is calculated to leading order as:

Av.Plaq. = — (1. 78) 
2NC

The Monte Carlo results for Av.Plaq. can be checked against this analytic value at 

small p  to test the configuration generator programme.

1.9.3 Average Wilson Line

Since QCD is a confining theory we are interested to generate configurations in the 

confining phase. We then require an order parameter to distinguish if the gauge 

field configuration is not generated in the confining phase.

Consider an isolated heavy quark W ( Q_,0). Following the same procedure 

that we derived Wilson loop in §1.6 we obtain:

<Vt (0,T) V(0,0)> -  e‘F<iT ~ < W >G (1.79)

where Fq is the free energy of an isolated heavy quark in a background gauge field
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and

W = U[(0,0),(0,T)] (1.80)

If periodic boundary condition is imposed on the gauge fields along the time 

direction then W is just the trace of the product of gauge fields along a line that 

wraps around the lattice in time direction. Usually W is averaged over all the sites 

in the original spatial plane and is called Average Wilson Line or Polyakov Loop,

Av. Wilson Line = ^  1 X T rF [U n(x,t) (1.81)
^ z  -  t= 0

In the confined phase Fq —> oo as a result of which the vacuum expectation value 

(VEV) of Av. Wilson Line vanishes according to Eq. (1.79). In the deconfining 

phase Fq is finite and expectation value of the Av. Wilson Line picks up a non­

vanishing VEV. Therefore the vacuum expectation value of Av. Wilson Line 

provides us with the order parameter for the above phase transition. This phase 

transition could also be explained by a spontaneous symmetry breaking mechanism. 

Clearly the SU(3) Wilson action is invariant if all the links, or just links on 

temporal directions, are multiplied by an element of its center Z3  while Av. 

Wilson Line is not invariant under the same transformation (unless L j  is a 

multiple of 3). As a result while this symmetry is not broken < Av. Wilson Line > 

= 0 and therefore we are in the confined phase. If this Z 3 symmetry is 

spontaneously broken < Av. Wilson Line > picks up a Z3 VEV and indicates that 

the phase is deconfining. Fig. 1.3 shows scatter plots of Av. Wilson Line in the 

complex plane obtained from 100 configurations for a 44 lattice at /3 = 5.2, 5.5 and 

5.8. Beginning from a hot start, every configuration is generated from the previous 

one by 10 sweeps. Av. Wilson Line is symmetric at p  = 5.2 while the Z 3 

symmetry is totally broken at (3 = 5.8. The transition from symmetric to 

asymmetric phase is just about to take place at /3 = 5.5. Note however, that on a 

finite lattice due to the tunnelling between equivalent vacua the symmetry can not be 

broken spontaneously, and if one waits long enough the true distribution becomes
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Fig. 1.3 Average Wilson Line distribution in the complex plane for a 44 lattice. Z j 

symmetry is nearly maintained at P = 5.2 (top) and just about to break as p  comes 

across the phase transition point at p  = 5.5 (middle). At p  = 5.8  (above) Z j 

symmetry is clearly broken and that is why the Average Wilson Line becomes nonzero.
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symmetric independently of p  as in Fig. 1.4 where Av. Wilson Line is shown for 

500 configurations i.e. over 5000 sweeps.

1.10 Numerical Methods For Fermionic Systems

Contrary to the pure gauge action, the fermion action is not positive definite. As a

would cause a large cancellation and accordingly a large variance. Moreover as the 

fermion fields are represented by anti-commuting Grassmann variables they can not 

be dealt with on the computers. However one can escape from these difficulties by 

integrating out the fermionic fields explicitly. Using the properties of Grassmann 

variables discussed in §1.4 in particular Eqs. (1.36) and (1.41), the expectation 

value of operator O (U, y/,y/) i.e.

result the large fluctuations in ASj. during the updating process of the fermion fields

( W ,U ) ( 1.82)

where

(1.83)

can be given only in terms of bosonic gauge variables as:

Im (Av. Wilson Line) 
0.4“

r
—0. 4 —0. 3 —0. 2-0. I 0.4

Re (Av. Wilson Line)

X - 0 . 3

-0. 4

Fig. 1.4 Average Wilson Line distribution in the complex plane for a 44 

lattice at P = 5.8. The asymmetric distribution obtained by 1000 sweeps (Fig. 

1.3) becomes symmetric again over 5000 sweeps.
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where

<0 >  = J l lU O ' (U) det M(U)e Ss(u) (1.84)

Z' = JD U det M(U)e S8<u) (1.85)

and

0 ' ( U ) = 0 ( ^ ! r » — O J ) ^  ^  
orj &r\ * 5 o <L86>n = r i = o

and 7] and 77 are sources for the quarks. Eq. (1.84) indicates that Monte Carlo

techniques can be applied to calculate <0 > provided that the probability
-S sdistribution e 8 is represented by e eff  where

e 'Seff = det M e Ss = e' (Sg ' Tr Ln ^  (1.87)

The term e represents the effect of virtual quark loops and contrary to Sg

it is extremely non-local. Monte Carlo method requires the calculation of e A s ‘ff
A  C

in each step of the algorithm. If M  changes by 5M then e eff  reduces to

e 'AS=ff = e‘AS8 d e t( l+ M '1 5M) (1.88)

The computation of the above determinant which must be done an enormous 

number of times is considerably time consuming. However, as the fermionic 

determinant enters both the numerator and the denominator in Eq. (1.84) one might 

replace it by its expectation value. This approximation which neglects the effect of 

dynamical quarks by suppressing the fluctuations of det M, drops out the det M 

from the expression (1.84). As a result it does not really allow the feedback of the 

quarks into gluon sector. In this approximation which is called quenched  

approximation one measures the fermionic variables in a background field 

generated with gauge action only. All our calculations in the present work are 

performed in the quenched approximation

The difficulties one encounters in dealing with fermionic systems are not
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restricted to the numerical ones which were just discussed. There are more 

theoretical problems arising from the effect of space-time structure of the lattice on 

the chiral properties of the theory. We will explain the chiral properties in §3.1 

where the strong interaction symmetries are discussed. Here we just recall that 

chiral invariance is the symmetry of the action under global axial phase 

transformations in flavour space. The presence of both axial and vector symmetries 

implies the symmetry of the action under independent rotations in flavour space of 

the left-handed and right-handed fermions.

The above effects which eventually cause the notorious species doubling 

problem are discussed in the following section.

1.11 Species Doubling

In §1.3.1 we derived the fermionic action Sy-as Eq. (1.25). Unfortunately the said 

Sf, the so called naive action is not appropriate to describe QCD. The latticization 

process which led to Eq. (1.25) introduces unwanted fermionic degrees of 

freedom. To illustrate this problem consider the simple case of the free fermion 

action. In this case Eq. (1.25) gives the free fermion matrix M  as:

M . = £ y , , ( 8  , - 8  .) + 2ma 8 ,, . (1.89)nn ^ M- n+|i,n n-M-.n' n*n

Transforming M  in Fourier space we get:

M . = £ e ip,na M , eiP 'n a 
PP n,n' nn

= 2  8 (pa - p'a) iXYn sin pua+ m a (1.90)

which gives for the fermion propagator S(p),

■l
S(p) = ilY ^ s in  p^a+m a (1.91)

For massless theory Eq. (1.91) reproduces the correct continuum propagator y  for 

small /y z  and has a pole at p^a = (0,0,0,0), However S(p) has 15 more poles at
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the comers of the first Brillouin zone i.e. at the points,

Pp. = ( f  ’ 0’ 0.0). (0. f . o. 0). •••> ( f  > f  > f  ■ f ) (1.92)

This means that the original naive lattice action (1.25) describes one fermion plus 

15 replicas.

As this so called sp e c ie s  doubling  problem originated from the 

discretization of the space-time, one might think of different ways to discretize the 

continuum action (1.1). This idea is of course justified because due to the 

universality the fermionic lattice action (1.25) is not unique. However it turns out 

that in any lattice formulation with no species doubling one has to give up either 

chiral invariance or the locality of the action. Otherwise we should compromise 

between these formal properties of the continuum action and the number of replica 

fermions!

Suppose, for example, we insist on maintaining the chiral invariance which 

is manifest in the continuum action (1.1) when m -  0. Having adopted any scheme 

to discretize the action (1 .1 ) the general form of propagator for lattice fermions 

compatible with chiral invariance turns out to be,

S(P) = lYji. sin F^(P)
-l

(1.93)

In §1.2 we noticed that the latticization of configuration space with lattice spacing a
2  •JT

resulted in a periodicity in momentum space with the period . The discrete 

translational invariance of the action in momentum space will ensure the 

translational invariance of the fermion matrix or fermion propagator S(p). This 

means that S(p) and as a result F ^p)  must be periodic with period To 

describe one fermion in the continuum limit (i.e. a - > 0  ), F ^p)  as a function of p^  

should vanish (i.e. cross p^  axis) once, e.g. at p^ = 0  [and behave like F ^p )  « 

Pp around P^ = 0]. Periodicity of F ^p)  implies that F ^  crosses p^  axis once 

again at p  = —  with the same derivative. Somewhere between 0 and —  there
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must be another crossing across the axis for continuous F (p) as shown in

Fig.1.5. The naive propagator (1.91) for which F..(p) = L sin  p u a is an example
^  a

with such an extra crossing. Such behaviour means there are extra excitations in the

theory as we discussed for the naive propagator. So it is impossible to solve

doubling problem for a chiral symmetric lattice action. If F ^(p)  does not cross 

I kaxis between 0  and —  then there must be a jump across this axis in this period as 

shown in Fig. 1.5. Such discontinuous propagators might solve the doubling 

problem but imply non-local lattice action [14].

F(p)

Fig. 1.5 The function F(p) vs. p^  : either an extra axis 

crossing (full curve) or a gap (dashed curve).

We can consider this problem from another point of view. If, around a 

comer of Brillouin zone, we write those components of momentum which are close 

to — as pu = — + P p. where P'^  is very small, then the corresponding replica
Cl CL

particle is described by the propagator S(p') which is read from (1.91) as:

S(p') = ilY '^ s in  p’̂ a+m a
-l

(1.94)
M-

Eq. (1.94) is the same as Eq. (1.91) except Y p  = ±Y^ depending whether „  0 

or Pp„ — . As Y5 = 70 Yj Y2 we have similar modification of y5 as y '5 = ±yy  It 

is then clear that at half of the corners of Brillouin zone Y  changes sign. On the 

other hand we know that due to the presence of anomalous term in the continuum
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QCD the chiral charge,

Q5 = J d 3x \|fy 0 y5 y (1.95)

corresponding to U (l)  axial current j ^  = is not conserved even in

massless theory [15]. On the lattice each replica fermion contributes to the chiral 

charge. However due to the sign change of y5 these contributions cancel out,

an example of the general theorem by Nielsen and Ninomiya [16] that the chiral 

symmetry and chiral anomaly are not compatible on the lattice. Preserving the 

locality of the action, two major approaches have been proposed to remove this 16- 

fold degeneracy of the naive action and have a theory which describes one single 

fermion or at least a smaller set of fermionic modes.

1.12 Kogut-Susskind Fermions

We can spin-diagonalize the naive fermion action (1.25) by the following 

transformation of fermionic fields [17]:

(the summation over repeated index jj. is understood). Here phase factors

resulting in vanishing chiral charge and accordingly the anomaly ^

\|/(n) —»T(n) %(n) (1.96)

V(n) X (") Tr(n) (1.97)

where

i n  ‘3 '4 (1.98)

and
n = (n^,^ ^ 3 ,114) (1.99)

The fermion action in terms of ̂ -fields is then expressed as:

Sf = S  |  r^(n) % (n) (n) X(n+^i) - x  (n+P) (n) %(n)

+ 2maX(n)X(n) ( 1. 100)
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arising from commuting 7 -matrices through one another and are evaluated for each 

flavour as:

V n) = l ( 1 .1 0 1 )

ni
ri2 (n) = (-l) ( 1 .1 0 2 )

nl+n2
Tl3(n) = (-1 ) (1.103)

rii+TU+Hj
ri4 (n) = (-l) (1.104)

In the action (1.100) the 4 spin components of the so called staggered or Kogut- 

Susskind ferm ions %(n) are manifestly decoupled, making the fermion matrix 

diagonal in spin space. One then may consider only one component and drop the

other three. This reduces the number of fermions by a quarter, leaving only four

fermions. Since the doubling problem is not solved completely in this formulation, 

the chiral symmetry is not violated totally either. The massless theory is invariant 

under the following transformations:

X(n) -> eia%(n)

X (n )  e ‘P x(n)

X(n) -> el|3x(n)

_  -ia  _
%(n) —> c %(n)

at even sites 14 (1.105)

at odd sites (1.106)

where a  and p  are two independent phases. If m #  0 the theory is invariant 

under the above transformations only if a  = p  .The broken symmetry turns out to 

be a remnant of SU^(4) chiral symmetry. The hidden chiral property of the above 

transformations can be attributed to the possibility of giving opposite phases to the 

Z-fields at different sites of the lattice [18].

14 A site is called even (odd) if X  nn even (odd).
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1.13 Wilson Fermions

We might remove the degeneracy of the naive action (1.25) by adding an irrelevant 

term to the action. To see how this comes about consider the term --^raxj/cfy, the 

so called Wilson term [19]. Once discretized, the contribution of the the Wilson 

term to the action i.e.

-a4X V(n)[y (n+ji) - 2\|/(n)+\j/(n-jl)j (1.107)

clearly vanishes as a —> 0. Adding this term to the naive action in free case, the 

corresponding fermion matrix (1.89) will be modified as:

M , = -k £  (r-Y.) 8  ,+ (r+Y.) 8  , + 8  n  lOR'inn ^ L n+ji,n v l\iJ n-p.,nj n,n' v i . l U o ;

where

K = 2 M  <1109>

K is called hopping parameter. Transforming M nn> into momentum space, the 

corresponding massless fermion propagator S(p) is obtained as:

S(p)
,-i

£  j  (%  sin p^a - r cos p^a)+ 4 |- (1. 110)

For small momenta when p a ->0 the propagator (1.110) recovers the correctH1

continuum propagator and has a pole at the origin of the Brillouin zone p = 

(0,0,0,0). At the other comers where some of the components of p are S(p)r*" Cl

reduces to (Qj- ) ' 2 where n = 2 ,4 , 6 , 8 . This means that S(p) has only one pole at 

the origin and the replica fermions have disappeared in the continuum limit by 

acquiring masses --p. The doubling problem is completely solved, however with 

the expense of loss of chiral symmetry of the massless theory which is explicitly 

broken by the Wilson term.

For the interacting theory the gauge invariant Wilson term can be 

constructed by the same approach discussed in §1.3.1. This results in the 

interacting action,
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S =X  -KX 
n ^ V (n)(r-y^) U^(n)y(n+|i)

+V (n+jiXr+y^) u j fn )  y(n) + ¥(n) V(n) f (1.111)

and consequently the Wilson fermion matrix is obtained,

M ™ ' =  - K £ [ ( r - V i y n )  Sn 4 n .+ ( r ^ ) u j ( n - f i )  6 n ^ . ]

+ 5„,n' d - 1 1 2 )

Since chiral symmetry is explicitly broken in this formulation the fermion

mass is not protected from renormalization. The k at which the renormalized mass

vanishes is called critical hopping parameter kc . In free case Eq. (1.109) gives -J-
8 r

fo r Kc . In the interacting theory however it depends on p  in a complicated

manner. In the next chapter we develop the algorithms suitable to study such

dependences in the subsequent chapters.
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Chapter 2

Lanczos And Conjugate Gradient 
Algorithms

Having regularized QCD by the lattices, one must be able to find the spectrum as 

well as the inverse of quantum operators such as fermion matrix in order to study 

strong interactions. Amongst the existing algorithms which could be applied to 

lattice field theories, we have studied Lanczos [20, 21] and conjugate gradient [22] 

algorithms. In this chapter we present these two algorithms and their results once 

applied to Wilson version of fermion matrix [23].

2.1 The Lanczos A lgorithm

The eigenvalues of the matrices can be calculated by their diagonalization in the, 

usually large, basis of their eigenstates. In most practical cases, however, we are 

interested in only the small eigenvalues close to zero. Therefore, since the 

dimensions of the configuration space may be very large, it would be quite 

economic not to have to diagonalize the complete and large matrix if only the small 

eigenvalues are desired. Most procedures that are in use1 do require such a 

complete diagonalization of the full matrix. An exception is the Lanczos iterative 

method of tridiagonalization, which permits one to obtain some eigenvalues quite 

accurately from only part of the full matrix. Although the method can be applied to 

any matrices, we only consider hermitian matrices.

Let H  be an N xN  hermitian matrix. Starting from any unit vector X j ,  one

1 E.g. the Householder method [24].
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can generate a set of for i = 1 ,2 ,3  N  by the following algorithm:

<Xj = XjtHxj (2.1)

Pi = II Hxj -XjCtj - Xj.^j.i II (2.2)

xi+!= ( Hxj -XiCtj - xj.ip^.i )Pi"‘ (2.3)

where

Po = ° (2.4)

Properly sequenced, these formulae define the Lanczos iteration and X[ are called 

Lanczos vectors.

If Xj happens to be orthogonal to an eigenstate of H, say y/, though very 

unlikely to happen in practice, it is shown from procedure (2.3) that ys is then 

orthogonal to all jc7 , *2 , *3 , xn and fin = 0 for some n < N. In that case the 

algorithm terminates and if required it could be continued by constructing a new 

starting unit vector orthogonal to all the vectors already obtained.

The interesting feature of Lanczos algorithm is that H  appears only in a 

matrix-vector product and is not altered during the entire process. In particular if H 

is a large sparse matrix, sparsity is preserved and one needs to store only the non­

zero elements of H.

By induction it is easily checked that x-t form an orthonormal set and matrix

elements of H  in the basis /*; / i = } satisfy:

Xjt Hxj = 5j j .1ptj.i + SjjCCj + 8 i j+1pj. (2.5)

As the hermiticity of H  ensures the reality of a., Eq. (2.5) indicates that H  is a 

symmetric tridiagonal matrix in that basis. In other words, defining

X =  [x1’x2,x3’"*’Xn] (2*6)

an N xN  matrix, then X  is unitary and symmetrizes and tridiagonalizes H  via the 

unitary transformation,

X fHX=T (2-7)

where
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f  a l P lf

P, a
P2 a 3 p3

T = (2 .8)

Pn- 2 a N -l Pn-1

Pn-1  a N

The eigenvalues of T  are those of H  because of unitary nature of X. In the next 

section the application of bisection method to Sturm sequences evaluates these 

eigenvalues in any desired interval.

2.2 S tu rm  Sequence

Let Tr be the leading r x  r principal submatrix of an N xN  hermitian matrix and 

define the polynomials P q (X ), Pm  U ), by:

for r = 1,2,  3, ..., N. Then for any real value of X the number of sign changes in 

the sequence Sj,

equals the number of eigenvalues of T  less than X [25]. Conventionally any zero 

terms in the sequence are considered as positive. For a tridiagonal matrix T  a 

determinantal expansion can be used to derive the recurrence relation for Pr (X ),

P0 W  = 1

Pr (A,) = d e t(T r -M) (2. 10)

(2.9)

(2 . 11)

Pr (X) = (Or- X) PM (X) -PViPr-i Pr -2 (X) (2 . 12)

Alternatively one may form the ratios of successive determinants i.e.

(2.13)

where
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do = 1. (2.14)

The number of sign changes in sequence Sj  is, then, the same as the number of 

negative terms in sequence S2 ,

Once the number of eigenvalues in a specific interval is obtained one could home in 

on each one within any desired precision by bisecting the interval successively.

2.3 Rounding Errors

Theoretically, Lanczos iterations (2.1), (2.2) and (2.3) result in the exact tridiagonal 

form which is, in turn, diagonalized by Sturm sequences. However, the presence 

of rounding errors, destroys the orthogonality among the Lanczos vectors as the 

iterations proceed. This, as a result, complicates the relationship between the 

eigenvalues of T  and H. To cope with this difficulty one might reorthogonalise the 

Lanczos vector to the previous vectors which are already obtained after each 

iteration. The reorthogonalisation procedure is obviously very time consuming and 

costly in storage space even if it is performed only once in each several iterations, 

or only to a small space of some selected vectors^ which is usually much smaller 

than the set of previous Lanczos vectors.

The alternative approach which does not involve any kind of orthogonality 

enforcement focuses on the problem of ghost and spurious eigenvalues of 

tridiagonal matrices. To outline this method let X be an N xN  matrix formed by the

first N  Lanczos vectors and an N xN  tridiagonal matrix formed by the first N
N

a's  and N -l p's. Then we define R, the remainder N xN  matrix as:

Writing the matrices explicitly in terms of column vectors,

2 The interested reader may refer to [26] for further discussion on this so called Selective  

Reorthogonalisation.

(2.15)

R = HX-XT. (2.16)
N
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X -  f X1»X2’X3’■•*,xn]

TN = [ tr t2 ’ -y
(2.17)

(2.18)

where

and

t, =

Pi
0

t. =

W

r \
0

Pi-1
a.i
Pi

W
p

, ^ _1 i

v v

R =  D

then Eq. (2.16) is written,

(2.19)

(2 .20)

r. = Hx. - Xt. =1 X 1

Hxj - XjCCj - x2pj if i = 1

Hxi '  xi-iP+i-i - - xi+iPi if 1 < i < N

'-Hx  ̂- x̂  B , - x a N N-lp N-i N N

Using Eq. (2.3), Eq. (2.21) reads,

0 if 1 < i < N-l

^N +lPf? i f i  = Kf

i f i  = N
(2 .21)

(2 .22)

i.e.

R = 0.0 XR+1PN (2.23)

Now let T  have an eigenvalue X with eigenstate <2>. Applying both sides of Eq.

(2.16) to d>one obtains,

RO = HXO - XT <X>
N

and since

RO = 0 ,°,...,xN+iPNj

(2.24)

(2.25)

where d>_ is the N  111 component of d>, Eq. (2.24) reads,
N
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HXO = ^XO + x B <D (2.26)
N+l N N

Eq. (2.26) indicates that X, the eigenvalue of T- is also an eigenvalue of H  with 

the eigenstate X  0  provided that 0~ = 0.

In practice rounding errors alter the remainder terms slightly and Eq. (2.23) 

holds only approximately i.e.

R  =  [ 0 ’0 ’ " ’x f j A ]  ( 2 -27 )
This, in turn, affects Eq. (2.26), however it still holds within the machine precision 

i.e.

HXO = XXO  + xr+ iPr On (2.28)

Accordingly, it would be enough for 0~ to be very small so that the 

correspondence between the eigenvalues of 7L  and H  remains valid. Actually we

do not need to calculate 0~ to decide if X is an eigenvalue of H. Instead, we
N

consider the reduced tridiagonal matrix T  Let 0  be an eigenstate of T  with
N-i N

corresponding X, then

= X 0  (2.29)

or in terms of components,

I  (Tn) <frj = ^ i  i = 1, 2, 3, N  (2-30)j=i v 'y j

which may be equivalently written as:

I I (Tn) O. + (Tn) <0* = M>; i = 1. 2. 3 . 5 1  (2.31)
j = l K ij J V iN ^

If 0 .  ~ 0 then Eq. (2.31) yields:
N

N -l
i = 1, 2, 3, ..., N (2.32)

The first N  -1 equations in system (2.32) could be combined to give:

T 0  = X 0  (2-33)
N-l
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A

where <2> is the reduced vector formed by removing the last component of &. The 

presence of term Eq. (2.31) indicates that the eigenvalues of 7T

undergo large shifts by removing oc and P~ unless 0~ ~ 0  in which case Eq
N N- l  N

(2.33) shows that true eigenvalues of H are then the common eigenvalues of 

and T .  .
N - l

Once an eigenvalue of T_ is known to be in the interval (X-S,X+8 ), one 

can easily check if the corresponding eigenvalue of is in the same interval by
N - l  J

checking the sign of d _ at the end points of that interval. If either d ( X-8 ) is 

negative or d~ (X+8 ) is positive, sequence S2 confirms that X is also an 

eigenvalue of the reduced matrix T_  ̂ within the same precision 8 . The smallest S 

for which this condition holds fixes a measure of shift between the corresponding 

eigenvalues of T  and T ^ . For a given X large shift signals that the 

corresponding eigenvalue is a spurious3 eigenvalue while a small shift singles 

out the true eigenvalue of H.

Due to the presence of rounding errors the complete spectrum of H can not

be obtained from the eigenvalues of its tridiagonal form T_. However the computed
N

value of Pn  which, in an exact arithmetic, vanishes, is no longer vanishing as a 

result of rounding errors. Consequently there is nothing to stop one from 

continuing the Lanczos iterations beyond N. We have observed that for large 

enough N  all the eigenvalues of H converge as the eigenvalues of T  The extreme 

eigenvalues in the spectrum of H converge faster and appear many times. These so 

called ghosts are recognized as H  is assumed to be non-degenerate4. In practice 

one is only interested in particular eigenvalues, usually small ones. These could be 

obtained when N  is still much less than N. The rate of convergence of any 

eigenvalue depends on the absolute value of the eigenvalue, the density of the

3 In our calculations we have recognized the spurious eigenvalues as those which shift by more 

than 10'10.
4 In practice we have recognized the ghosts as those eigenvalues which differ from each other by

less than 10'13.

42



eigenvalues in that region, and finally its location in the spectrum of H  [27].

It is important to determine when to terminate the iterating process so that 

the desired eigenvalues are converged [28]. We discuss this problem later when we 

deal with matrix inversion. In fact the inverse of the matrix and its rate of 

convergence are mainly dominated by the smallest eigenvalues. We will see that the 

convergence of matrix inverse implies the convergence of small eigenvalues [29] 

and these are the ones which are of great interest in QCD studies.

2.4 Inversion

The problem of calculating columns of the inverse of a matrix, say H, is equivalent 

to solving the equation:

H\j/ = r] (2.34)

for some vector rj. The column of H ' 1 is the solution yr= H 7 77 if one chooses 

Vi = 8 im. Letting 7] be the first Lanczos vector x j, the Lanczos equations (2.1), 

(2.2) and (2.3) can be applied iteratively to calculate H ^ x j .  After K iterations

H JXj is calculated as:

H  X1 ”  V K +  H  XKa K +  H  XK + lb K
(2.35)

where

V K = | CiXi (2.36)

for some coefficients a b % ,  c j , C2 , C3 , ..., c%. The series V 1 , V2 , Vj ,  ..., 

VK converges to H ^Xj as both q r  and bg  tend to zero. Using Eq. (2.3) for i — 

k+1 and eliminating H~̂ Xfc between that and Eq. (2.35), H xj is obtained as.

H = + XK+l(pK )aK+ h  'XK+1 bK " (XK+i IPk '  aK
-1

(2.37)
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Changing K  to K+l Eq. (2.35) can be written as:

H ' l x i =  VK+1 +  H  1)cK + la K +l +  H ' l x K+2b K+ i (2.38)

Having compared Eq. (2.37) with Eq. (2.38) the following recurrence relations are 

obtained for a's, b's and V’s:

V K+1 V K +  XK+1 ( p  K 1) \

a K+i b K " cxK + i ( p K 1) a K

( J
b K + l = ' P k+ i I P k  J \

It is more convenient to rewrite these relations in matrix form as:

V = V + 
K+l K x ^ i  ( P k ‘ )  ’ 0 VbK7

f  a  >
K+l

V b K+l J

-1
’ “ K+l (P  K‘J 1

"Pk+ i ( p  k )  0

K

W J

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

To obtain a^  and bg  from Eq. (2.43) iteratively it is essential to know the initial 

values, ai and b( for some /. If i iterations are already performed one might 

construct H lx i  from a proper but arbitrary linear combination of Lanczos 

equations (2.3). Comparing the result with Eq. (2.35) at K  = i could provide one 

with the most general initial conditions on the a and b parameters. The most 

convenient initial conditions to apply to the Wilson fermion matrix are set up from 

the first two Lanczos equations:

H xl = x 1a 1 + x2 P1 (2.44)

T
Hx2 = x,Pj + x 2a 2 + x3 p2 (2.45)5

5 Usually the equation Hx} = Hx} is used instead of Eq. (2.45). However, as we will see later, 

it results in the failure of the algorithm in hadron spectroscopy with Wilson fermions.
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Multiplying both sides of Eq. (2.44) by H ' 1 on the left and ( i f 'R  on the right and 

both sides of Eq. (2.45) by H’1 on the left and P2  ^  on the right, where R and 

5 are arbitrary, tT  x I is obtained as:

A
h ' xj = Xjpi ' r  + x2 P2 ’s )  a  2pj ‘R + p / p i ' s  

R + a ^ s l f a j P / R  + p / p j ' s•h ' x

- H x3S a ^ R  + p ^ S
A

(2.46)

Comparing Eq. (2.46) with Eq. (2.35) for k = 2, ^2 » anc* v2 are obtained to

be:

- -1 „ t„  -1 .
V2 = lXA  R + X2p2 SJ[a iP l R + Pi P2 S

\ (  A  
a2 = -(R  + a 2p21s j  a i p ; 1R + p i p2 ' S

-1

b2 = -S [ t t jP ^ R  + P1t P2 's

The last two relations are more conveniently written as:

(2.47)

(2.48)

(2.49)

u  ^ (2 R + a2P2 S -1 + -1 ^
= - a ,Pt r + Pi P2 s

Ay> I  s J
 ̂ x x ✓ (2.50)

Also one might define o2, an N xN  matrix as:

-x1p1'1, x1p1'1a 2P21- x2P21 (2.51)

to rewrite Eq. (2.47) more conveniently as:

fa. A

V 2 =  ° 2
Vb 2 J

(2.52)

Now that the starting conditions are known (2.43) can be used iteratively to yield:
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-“ k IP k - '/ )  1

^ ( p k .;1/  o_

■a 3 P
-1

- - p 3 (p 2‘)+

and for obvious definition for kk ,

where

and

vV

K2 =

= K
K

f a \
2

vbv

i o

o v

KK~

-1
M p k,

L ' P k  P k-i1) ° J
71K-l

V b V
(2.53)

(2.54)

(2.55)

(2.56)

Using Eq. (2.54), Eq. (2.42) can be written in terms of initial conditions as:

2V = V +K+l K
(

> t ( P K )  -° * K (2.57)

It is more useful if we write Eq. (2.57) in a more closed form. Using Eq. (2.52) for 

V2  and defining 0 5  as:

o3 = o2 + x3 ( p ; 1) , 0 7t, (2.58)

we get for V3 ,

V3 = c3
2

b9
V 2J

(2.59)

One might obtain similar relations for V4 , V5 , and in general VK could be 

obtained as:
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V K ~ °K
Vb 27

(2.60)

where

a K+i ~  a K +

f t
XK+1 i p K' ) , 0 KK (2.61)

Returning to the question of convergence of H ' 1 xh  we required [£*) to vanish for 

some K . Eq. (2.54) translates this problem to whether %% has a zero eigenvalue in 

which case or equivalently sj can be considered as the corresponding 

eigenstate. However, Eq. (2.56) shows that:

k-l
d e t7CK = n p i+1 [p. (2.62)

We have already seen that due to rounding errors Pi do not vanish and accordingly 

det nK fluctuate about a finite value. As a result, if one of the eigenvalues of nK 

converges to zero the other one diverges. This in turn reflects the divergence of 

elements of nK due to rounding errors as the algorithm proceeds. We are interested 

to find a condition among the elements of nK which reflects the convergence of 

one of its eigenvalues to zero. It is difficult to search for such a condition while the 

nK elements are too large. However, this difficulty could be avoided if we write 

kk , without loss of generality, in the following representation:

(2.63)
-Bk BKyK+ tK_

Written in this form, %  has a zero eigenvalue if and only if AKtK converges to 

zero, even if B% andy^- diverge.

Let after Kn iterations, A v t? become arbitrarily small. Then as we have ’ u * o o
seen and Eqs. (2.50) and (2.54) fix the parameters R and S as:

 ̂ In single Lanczos algorithm where, according to Eq. (2.2), the ji s are real numbers (contrary 

to the block algorithm discussed in §2.10) Eq. (2.62) is simplified to ■
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V
= C

f  R-1 A
a 2 P2 + y Ko

V -1 J
(2.64)

where C is a constant which can be set to unity without loss of generality. 

Moreover they yield:

^ 1  " I f  0-1 0-1 0-1 ot o- l Y1
(2.65)

f o  V  -l^  f «-i -l -l + -n
b = , -r _ai^ i yKn'  a iPi a 2 ^ 2  + Pi P

V Kq/ \ \ J
As the elements of %  grow large the elements of oK will grow as well according 

to Eq. (2.61). As for one can separate the error built divergent part of <% if it 

is written in a similar fashion,

a K = U K ’ U KyK+W K (2.66)

w h ere  U% and W K are N -component vectors. W ritten in this form and 

incorporating Eqs. (2.50) and (2.64) in Eq. (2.60) the convergent solution, H ^x j  

is achieved after K q iterations even if and WK diverge, as:

V =-W  
Ko *o ■“ i P'iVk - +P,t P21' (2.67)

and Eqs. (2.35) and (2.65) evaluate the residue term after K q iterations, i.e. 

IIXj-HV^/l, as:

t„Res =
. - i

a iPl o ’ t t lPl a 2 p2 + Pl P2

s-1
(2 .68)

In Eqs. (2.65) and (2.67) the remainder term and the solution are given in terms of 

tK , y%o and WK . So it is necessary to translate the recursive relations for nK 

and oK into the relations for t Kq, y K() and W Kq. Eqs. (2.56) and (2.63) result

in:

AK+l“ “a K+l(PKt ) V BK

B K+1 = "PK+i(P k *) A K

(2.69)

(2.70)
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yK+i =

CK+1 K+l

( A K + l)  <K

W K

(2.71)

(2.72)

Similarly Eqs. (2.61), (2.63) and (2.66) will result in:
-l

U K+1 U K+X K + i[ P k  )

W K +l =  W K - U K + l(A K + , )

fl
K

(2.73)

(2.74)

Being evaluated after K q iterations, when AKQtK()- ^ 0 ,  the above equations 

provide us with the converged solution and the residue term. In practice one might 

monitor the residue and the solution after each step by the following algorithm:

Aw  = - a w ( p . t J IA.+B. (2.75)

(2.76)

(2.77)

B w - P w f o / )  Ai

y,+i = yi+ (Ai+i) \  

l i+l =  'B i+ l(A i+ l)  *i 

Ui+1 = ui+Xl+i(pi t) \

aiPi yj+r aiPi **2̂2 + Pi P2V = -Wi+l i+l
,-1 n-l n t n -1

-1

Res =
1+1

- t .i+l a i^l yi+l ’ a i^l a 2^2 + Pi ^2

-1

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

where the initial values A 2 tB 2 ,y 2 ^2 obtained from Eqs. (2.55) and 

(2.63) and U2 and W2 from Eqs. (2.51) and (2.66) as:
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A2 = 1

B2 = 0

Y2  = 0  

t2 = 1

(2.83)

(2.84)

(2.85)

(2 .86)

U 2 =  ' W

W 2 = -x2P2‘+x1Pi'1a2P21 (2 .88)

(2.87)

V 2 =  (x 2-Xl P l 1<X2 )( -a iP l'1« 2 + Plt )

-1

(2.89)

In hadron propagator calculations, as discussed in Chapter 4 , the first 

Lanczos vector must be a 5-function located at a certain site to calculate the 

appropriate column of the inverse of 75M  where M  is the fermion matrix. For 

W ilson fermions where M  is given by Eq. (1.112) it is easily shown that the 

Lanczos equations (2.1) to (2.3) result in a 2 = 0 for such an initial Lanczos vector. 

If the algorithm had initially fixed A h Bh  etc. rather than A2, # 2, etc- t*ien A2 

would have vanished which in turn would have resulted in divergent y2, r2, etc. 

and consequently the failure of the algorithm to converge. This is the case for the 

algorithm given in [30] and that is the reason why we modified the standard 

algorithm.

2.5 Convergence Of Eigenvalues And Inversion

The convergence of eigenvalues of H in a given neighborhood around X can be 

related to the convergence of (H-X l)J xj  in the Lanczos algorithm. To see this 

consider PrfX), the det (TK- X l ) where TK is the tridiagonal form of H  after K 

iterations, given by Eq. (2.12) as:

P k M  =  (a K- ^) PK-1 ( W - P V i Pk -I P K-2 (W (2.90)

Defining:
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cKa )=l ^ V >
K
n  P.

(2.91)

1=1

where

then we get:

c0GO = -i (2.92)

}Kftr ’ IW" '  P, ^ K-2'
(2.93)

K

or

r
0

V1

PK +l 

a K+f^
(2.94)

PK +l

We had previously defined % +7 in Eq. (2.56) for H. Changing a K+1  to 

% + 7 -A in nK+l would define % +7 for H-Xl  as:

jcK+1a ) =

r .
- ( < W ) ( P k) 1

\

\Pk+ i(Pk) 0 )

7Tk(X, ) (2.95)

Eqs. (2.94) and (2.95) result in:

'ckm  , cK> ) > K+1 a)=[cK_1a ), c^ ))* ^ )=...

= (c,(W, c2 W] = co(X) (2.96)

where co(X) is independent of K. Eq. (2.96) yields:

c^x )=coa)7tki a )
ro^

v u
(2.97)

Therefore Eq. (2.91) gives for determinant Pk(X),
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PK(x) = (-1)
K+l

f i P j  co(A,)t u ( ^ - )
1=1 IVyi= l j

0 ^

l b
(2.98)

Let X j  and X// be some eigenvalues of and H, respectively, in the interesting 

neighborhood around X. We are interested to study the behaviour of PrfX)  at these 

values of X. Let us first consider PK(XH). We expand xK+1, the K + l st Lanczos 

vector in terms of the eigenstates of H :
N

x K +i = h5 1C Kh'l,h K = 0, 1 ,2 ,...  (2.99)

The Lanczos equations (2.3), could then imply:

= ^0ha i+^lhPl (2.100)

C K h \  C K-1 h P  K+ C Kha K + l+ C K+l h P k +1 

where X/, are eigenvalues of H. Eq. (2.101) results in:

a K ' \  ^

(2 . 101)

C =
Kh

P K-l
a  K-l h p  K -2h (2 .102)

K

where

a . 4  
C, = - 4 ^ c  

lh Pi 0h (2.103)

Eq. (2.102) has exactly the same form as Eq. (2.93) for C^X).  By the same 

approach we deduce an equation similar to Eq. (2.97) for as:

v u
(2.104)

Comparing Eq. (2.104) with Eq. (2.98) we get:

C,
V J 'Kh

(2.105)

As the Lanczos vectors are unit vectors Eq. (2.99) imposes the constraint.

N 2
I C Kh = 1  h = l  ^

(2.106)
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on the C^/j s. Accordingly none of C ^ 's  diverge. On the other hand if Xj is not 

normal to %  then are non-vanishing. Even if Xj is perpendicular to in 

which case C0h = 0 , then as we had discovered before one of the p's, say Pj,

would remain finite. These considerations imply that PK(Xh) is different from zero 

and 0(1).  On the other hand the det (TK~X1) must vanish for all eigenvalues of 

Tk - We summarize these results as:

Eqs. (2.107) and (2.108) show that as converges i.e. as XT —> XH, P k(X) 

changes rapidly from zero to a non-zero value. This sudden jump is an indication of 

the same behaviour in nK-J(X) once viewed through Eq. (2.98). The large value of

kk ~1(X) is in turn the sign of convergence of one of the eigenvalues of n^(X) to 

zero which is necessary and sufficient condition for the convergence of

( H - X l )  Lx l% Conversely convergence of (H -X l )J xj  implies the divergence of 

7tK-J(X) which in turn implies that Pk(X) picks up a non-zero value in Eq. (2.98). 

In particular Pk(X) remains non-zero even if X is an eigenvalue of Tk- So X must 

be close to one of eigenvalues of H. For example H ^xj  converges whenever the 

small eigenvalues of H are converged and conversely small eigenvalues of H  are 

converged as AK tKQ (i,e- as H ljc converges)- In our calculations we 

terminate the algorithm when AK tK (or practically tK()) falls below 10’12. This 

proved to guarantee the convergence of the closest eigenvalues to zero. The same 

stopping condition is sufficient to converge the closest eigenvalues to X provided 

we change a 's to a  .X .

would converge to zero and it is easy to show that and consermenrlv R m CX )

(2.107)

(2.108)
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2.6 Lanczos Algorithm Results

We will present our results on the application of Lanczos algorithm for eigenvalue 

calculations in the next chapter where we directly deal with fermion matrix 

spectrum. In the present chapter we concentrate on the inversion applications. To 

investigate the practical aspects of the hermitian Lanczos algorithm and the 

subsequent algorithms discussed in this chapter we have always worked solely with 

75M  where M  is the Wilson fermion matrix given by Eq. (1.112). Though M  is 

not hermitian, Y5M  is7 and this is what we intend to invert to calculate meson 

propagators later on in Chapter 4.

We work with 44 and 8 4 lattices. As the results are similar we outline the 

findings on the latter. For this lattice we generated a gauge field configuration in the 

confining phase at j5 = 5.8 (see Fig. 3.9) obtained by 13300 sweeps from a hot 

start. As we shall describe in Chapter 3 there are values of k  at which 75M  has a 

zero eigenvalue. The corresponding eigenstate is called a zero mode. For the above 

gauge configuration the Y$M matrix spectrum indicates that the first two values of 

hopping parameter corresponding to the first two zero modes i.e. k2's, are 0.1619 

and 0.1649 with the minimum modulus eigenvalues Xz of 0.1820E-3 and 

0.8898E-5 respectively8 when antiperiodic boundary conditions are imposed on 

fermion fields. We have also studied the effects of boundary conditions on the 

algorithms. Since their general qualitative features do not alter, we work with 

antiperiodic boundary conditions on the fermion fields throughout; otherwise

indicated explicitly.

As we tune k, the convergence rate of the inversion is observed to be 

governed by /X/min and its density and slows down as we approach k z from either 

side as seen in Table 2.1 where the minimum number of iterations, A^, so that the 

norm of residue falls below 10  ̂ is given as k  changes. The corresponding

7 See §3.7.
8 A number followed by a letter E (or D)  and an integer exponent represents a power of 10 

held with a precision of about 7 (or 14) decimal digits.
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Table 2.1

Convergence rate of the Lanczos algorithm for an 84 lattice 

a* & ~ 5-8' The number of eigenvalues with moduli less 

than 0.05 is found to be 7 for all the k's listed.

K M •min N.it

0.1590 0.1206E-1 918
0.1619 0.1820E-3 *
0.1630 0.3765E-2 1078
0.1649 0.8898E-5 *
0.1650 0.1279E-3 1156
0.1670 0.2223E-2 1048

No inversions were performed at the 
corresponding k z-

behaviour is plotted in Fig. 2.1 for 2 values of k .

Although the solution vectors have converged and their norms have reached
Q

plateaus long before residues fall below 10'° as shown in Fig. 2.2, it is a direct 

check of legitimacy of the converged solution y^, if we check whether rf-HWc i.e. 

the real residue vector vanishes. It is also interesting to see the behaviour of Resn

Resn

12001000600600400200
* = 0.159o

a  k = 0.165
Fig. 2.1 The norm of residue Resn vs. iteration number n of the Lanczos algorithm 

for an 84 lattice at P = 5.8.
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Resn

10*
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IIVnll

600200 400 600 1000 1200

Fig. 2.2 The norms of residue Resn (top) and solution vectors (above) vs. iteration 

number n of the Lanczos algorithm for an 8  ̂lattice at fi = 5.8 and k = 0.163.

compared with the norm of the real residue as the algorithm proceeds. We found, in 

exact arithmetic, that Resn as shown in Eq. (2.82) is exactly the same as real 

residue norm / / x j -H VJ/  in each step. However our results show that as one 

approaches very close to kz the very small Resn's tend to vanish slightly faster
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than the real residue as indicated in Table 2.2 for k = 0.165. This can be 

interpreted as the limitation of the machine precision.

It is interesting to see that both norms of residue and solution vector behave 

as if they are superpositions of two independent residues or solution vectors, 

obtained from the odd and even iteration numbers respectively as in Fig. 2.3.

2.7 Conjugate Gradient Algorithm

2.7.1 Positive Definite Matrices

An alternative approach to solve Eq. (2.34) when H is an N xN  positive definite 

hermitian matrix is the conjugate gradient iterative algorithm. The idea is based on a 

procedure that produces a sequence of residue vectors, r ’s, that are all mutually 

orthogonal and a sequence of p vectors that are all mutually conjugate [31]. 

Defining V̂  to be the approximation to Y  after / iterations and rz = rj -H^i  as the 

corresponding residue vector, the algorithm is outlined as follows:

(2.109)

(2 . 110)

(2 . 111)

(2 . 112)

Pm  =  ri+i +  Pibi
(2.113)

Table 2.2

The difference between Resn and l/xj-HVH.

Res llx, -HVII

1150
1250
1350

0.1201E-07
0.2658E-09
0.5163E-11

0.1201E-07
0.5706E-09
0.5048E-09
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Resn

10"

10“

200 400 600 600 1000 1200

IIYnll

109

600200
odd iteration

400 1000 1200

O even iteration

Fig. 2.3 The norm of residue vector Resn (top) and the norm of solution vector 

(above) vs. iteration number n of the Lanczos algorithm for an 8^ lattice at P = 5.8  and

k = 0.165.

where

p ^ r ^ T l - H V j  (2.114)
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and yfj is an arbitrary vector taken to be the null vector.

The orthogonality of {n H = 1 , 2, 3  N} and the H -conjugacy of

could be proved by straight forward induction [32]. As there are at most only N  

linearly independent orthogonal vectors in an A-dimensional complete set, Eq. 

(2.115) implies that rN + 1  vanishes. This in turn means that we have reached the 

solution of Eq. (2.34) because:

To reflect the geometrical content of the conjugate gradient algorithm we review 

alternative approach to prove its convergence. Define the functional:

in the space spanned by {pj.  It is obvious that the problem of solving Eq. (2.34) 

is identical to minimizing the functional F. In other words the solution ys to Eq. 

(2.34) is the point at which F is minimum (maximum if H  is negative definite). 

We can calculate all the N  components of yf in this space in N  steps if we 

m inim ize F  in the /z-dimensional hyperplane spanned by the subspace 

{ p i / i = l,2,3,...,n} through y/j in the nth step. This is equivalent to starting 

from ty] and minimizing F along conjugate direction p j  to arrive at and then 

starting from an<̂  minimizing F along conjugate direction p 2 to arrive at 

and so forth. The general form of V'm the n*  step, i.e. yrn+1, can be written in 

terms of its components along pz- as:

{ p.  / i = 2,2,3,.. JY} i.e.

if i * j < N (2.115)
and

P i H P j  = 0 if i * j < N (2.116)

i l - H V N+1 = r N+1=0 (2.117)

F [v ]  = Y>|/tH V - ¥ tn (2.118)

n
Vn+1= V  i + I P i ai = V i + P A (2.119)
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where

A - (  ai *a2’a3»**-*an) (2.120)

and

P “ [Pl’P2’P3’"*’Pn] (2 .121)

For this value of y/n+]t F is evaluated to be:

f[%+i] = f[vJ + j  aV h p a +A V r, (2.122)

We are interested in such a vector A which translates y^ to the minimum of F  in 

the subspace { p- /  i — 1,2,3,...,n}. This is obtained by setting the functional 

derivative of F  with respect to A equal to zero i.e.:

On the other hand taking the orthogonality of r's into account Eq. (2.113) can be 

manipulated to yield:

These values of a/ are exactly those used in the course of the algorithm to build up 

Y  through Eqs. (2.109) and (2.110). This means that after at most N  iterations of 

the conjugate gradient algorithm we achieve the minimum of F or equivalently the 

exact solution of Eq. (2.34). Moreover, in the intermediate stages the residue 

vectors are:

P+HPA - p V  = 0 (2.123)

The /th component of Eq. (2.123) reads:

(2.124)

The //-conjugacy of p's reduces Eq. (2.124) to:

i = 1, 2, 3, ...n (2.125)

(2.126)

Then a is rewritten as:

i = 1, 2, 3, ...n (2.127)
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ri+l -  “H "TO+i -  rj - - HPiaj = q - Hpia^

as stated by Eq. (2.111) in the algorithm.

(2.128)

2.7.2 N on-D efinite M atrices

As discussed in the previous section the conjugate gradient algorithm is applicable 

to solve Eq. (2.34) only when H has definite positiveness or negativeness (in 

which case -H is positive definite). In the absence of such definitness or even 

when H  is not hermitian one might multiply both sides of Eq. (2.34) by H f to 

replace H  by H^H which is a positive definite matrix. This multiplication does not 

change the solution to Eq. (2.34). Changing r\ to #^7] and H to H f H and as a 

result rz- to H^r^, the modified algorithm would read as follows:

• . - [ W W ]  (HtrJ(Htri) (2-i29>

Vi+1=Vi + Piai (2.130)

ri+l = ri'H P jai (2.131)

b. = h V.) (Hr. h V i H h V i ! <2 -132>

P i+ i- r f r ^ + P jb i  (2.133)

where p j  = H^r1 and rl = rf-HWj and as before Yj is taken to be the null vector. 

Since in this algorithm, which we call H f H algorithm, a's, b's and p's are 

defined differently, the r's and V̂ s in each step would now differ from the 

corresponding values in original algorithm, which we will call H  algorithm. 

Moreover since there are two matrix-vector multiplications, each step takes twice 

longer than it does for the H algorithm.
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2.8 Rounding Errors And Convergence

In the previous section we saw that the conjugate gradient algorithm converges in at 

most N  iterations in exact arithmetic. However the rounding errors developed in 

calculating r and p  vectors make the algorithm fail in preserving the orthogonality 

among the r  vectors and H -conjugacy among the p  vectors. Also, for large 

enough number of iterations the accumulation of rounding errors in the residual 

vector may become very large when we need the residue to be negligible. This 

might hamper the convergence of the algorithm in applications such as eigenvalue 

calculations at the presence of almost zero modes. In this case any large enough 

residue corresponds to a set of solution vectors differing from each other by the 

zero mode. The right solution can be detected only if extremely small residue norms 

of the order of the corresponding eigenvalue of the zero mode are achievable. This 

in turn requires an extremely large number of iterations before the right solutions 

can converge. However, as stated above, here is a situation where the rounding 

errors become considerably large. The situation, here, is more serious than in the 

case of the Lanczos algorithm. There we did not need to store the residual vectors to 

which the solution is highly sensitive. Moreover the Lanczos vectors would 

essentially remain as unit vectors though not orthogonal. Due to these 

considerations it can be concluded that the Lanczos algorithm is more stable to 

rounding errors than the conjugate gradient algorithm. However, it must be noted 

that the Lanczos algorithm is known to be exactly equivalent to conjugate gradient 

algorithm in exact arithmetic. The most direct connection between the two 

algorithms in terms of vectors generated is that the Lanczos vectors are parallel to 

the residue vectors of the conjugate gradient algorithm [33].

Regardless of cases such as the one discussed above, conjugate gradient 

algorithm can still converge despite the presence of rounding errors. In fact since in 

this algorithm each vector is directly obtained from the previous neighbouring one, 

it is fair enough to assume that //-conjugacy of p s and orthogonality of r s are 

locally nearly preserved. This assumption is enough to demonstrate that all
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conjugate gradient equations are still approximately valid. As rN + 1  does not 

necessarily vanish one might continue the iterations beyond N  so that small enough 

residues are obtained. As was the case for the Lanczos algorithm, the rate of 

convergence is controlled by the nature of the spectrum of H.

2.9 C onjugate G radient Algorithm Results

Under the same conditions that we investigated the Lanczos algorithm, we 

implemented both versions of the conjugate gradient algorithm to invert H  = 7SM. 

The H  conjugate gradient algorithm still converges despite the fact that 75M  is not 

positive definite. Moreover our results strongly confirm the equivalence of the H 

conjugate gradient to the Lanczos algorithm. However, the two-valued behaviour of 

norms of residue and solution vectors disappears once the H^H version of the

conjugate gradient algorithm is applied as shown in Fig. 2.4. Taking into account
y*the fact that each iteration of H'H  conjugate gradient algorithm takes almost twice 

as long as the H  algorithm, Table 2.3 compares the convergence rate e of the H 

relative to H^H conjugate gradient algorithm as the residue norms fall below 1 0 ' 8. 

As shown in Table 2.3, despite the stability of H^H conjugate gradient compared 

with the fluctuating behaviour of H algorithm, it is slower and slower as k z is 

approached. The reason for this slowing down is that the eigenvalues of H^H are 

the square of those of H. In other words the least modulus eigenvalues are much 

smaller for H^H compared with the corresponding least modulus eigenvalues of 

H  specially when kz is approached. On the other hand, as shown in §2.6, the rate 

of convergence is controlled by the least modulus eigenvalue as well as its density. 

Accordingly the slow rate of convergence of H^H is expected.

Since we have already seen that the non-definiteness of 75M  does not 

hamper the convergence of H algorithms, we will be therefore most concerned 

about the improvement factor in rate of convergence rather than the convergence 

alone. Accordingly the above results emphasize that H algorithms are more
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efficient to use than H^H ones.

ReSn

1&

1ST :

200 400 600 1000 1200

llynll

1 0s

1000 1200600400200
Fig. 2.4 The norm of residue vector R esn (top) and the norm of solution vector 

(above) vs. iteration number n of H^H conjugate gradient algorithm for an 8^ lattice at 

P = 5.8  and k = 0.165.
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Table 23
Convergence rate e of the H conjugate gradient algorithm compared

with its H fH  version for an 84 lattice at p = 5 .8 . N j and N2 are the 
corresponding iteration numbers.

K Ni n 2 e

0.159 0918 608 1.32
0.165 1156 872 1.51
0.167 1048 729 1.39

2.10 Block A lgorithm s

Matrix inversion calculations are among the most time consuming calculations we 

encounter in lattice QCD. This problem becomes more serious when we have to 

calculate several columns of the inverse simultaneously. Two examples are, all the 

columns affected by a change to one gauge field link in an updating algorithm, or 

the columns corresponding to different spins on the starting site of a hadron 

propagator. Accordingly improving the convergence rate of the algorithm by some 

factor seems inevitable. One successful step towards this goal is to modify the 

algorithm to its blocked form [23, 34]. To do this we construct blocks of TV rows 

by NB columns to represent NB vectors of dimension TV. Then generalizing all 

our TV-dimensional vectors to such NxNB matrix-like vectors we can end up with 

the blocked versions of the algorithm. Under such blocking procedure the scalar 

quantities turn out to become NBxNB square full matrices. Now if we begin the 

algorithm with an initial r\ block containing NB orthogonal vectors then, in exact

arithmetic, we span the whole space of x  vectors (in the Lanczos algorithm) or r
N

vectors (in the conjugate gradient algorithm) in iterations because in each step 

Nb  orthogonal vectors are generated and there are only TV such vectors in an TV- 

dimensional space. On the other hand since the main computation tasks are matrix- 

vector multiplications, each iteration takes almost NB times longer than for the 

single algorithm. As a result the whole space is generated almost in the same time as
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for the single algorithm but during the same time we have obtained a matrix-like 

solution vector which contains Ng columns of inverse i.e. we have improved the 

algorithm by a factor of Ng. In practice, however, due to rounding errors more 

iterations are required for convergence. In previous sections we saw that the 

convergence is somehow proportional to the extent the orthogonality and/or H- 

conjugacy is preserved among the relevant vectors at the presence of rounding 

errors. One plausible way to improve the rate of convergence is, then, to maintain 

orthogonality and/or //-conjugacy among as many vectors as possible. The above 

described block algorithm works well in this aspect because approximate local 

orthogonality and/or conjugacy is extended to a larger range in the blocks. So we 

expect a good improvement factor over single algorithms once block versions are 

applied. To apply block algorithms one is required to invert the NBxNB matrices 

which appear in each iteration. This is normally carried out by Gaussian  

elimination [35]. Moreover in the block Lanczos algorithm p's are square roots of 

NgxNg  hermitian matrices. The hermicity of such matrices imposes y  Ng(Ng+l) 

constraints on the elements of each p. This lets one construct P's as triangular

matrices whose elements can easily be calculated from the original matrices. In 

practice the overhead computation time required to invert and/or to calculate square

roots of such NBxNB matrices is negligible for practically possible block sizes.9

2.11 Block A lgorithm  Results

In studying the convergence properties of blocked algorithms one faces a serious 

storage problem in large lattices if the blocks are large enough. To see the real effect 

of blocking on the algorithms one might begin with a modest lattice size in favour 

of reasonably larger blocks. In the following we present our results obtained from 

4 4  and 8 4  lattices.

9 See Fig. 2.16.
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2.11.1 44 Lattices

I Strong Coupling Limit

We have found that on finite-size lattices the first zero modes at p  = 0 appear just 

above K — 0 . 2 5 The exact value of k z depends on the configuration as well as 

the lattice size. For the configuration that we have generated by 20 sweeps from a 

hot start, the 75M  spectra at k= 0.23 and k= 0.25 are shown in Fig. 2.5.

Block Conjugate Gradient Algorithm

The largest blocks used to study the block H conjugate gradient algorithm are NB 

= 32 and the norm of residue is monitored as it falls down to 10'12.

At k -  0.23 the algorithm behaves well up to N B = 4. For N B = 8  the 

norm of residue goes down to about 1 0 '11 but then gradually goes up again to 1 0 '7 

and does not change considerably anymore. This deficiency is partially developed 

by the errors in inverting the NBxNB matrices in each iteration. However this

a  K = 0.23
x k  = 0.25

Fig. 2.5 The eigenvalues of Y5M with smallest modulus for a 44 lattice at P = 0.0.

The eigenvalue number n(X) (with arbitrary origin) is plotted against the eigenvalue A.

n (k)

10 See §3.9.1.
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unpleasant behaviour does not harm the convergence of the solution vector as long 

as the attainable minimum residue norm is about Iff4  or less, as is the case for NB 

— 32 for which residue goes down to 1 0   ̂first and then goes up to 1 0 "̂  and stays 

there as shown in Fig. 2.6. The algorithm fails to converge for NB = 16 for which 

Res„

700 600600500400300200100

«Vnu

10*

000“ ^0 100 200 300 400
F ig . 2 .6  The norm of residue vector Resn (top) and the norm of solution v ec to r

(above) vs. iteration number n c   - -

700600500

solutionof vector

of block conjugate gradient algorithm with NB = 32 for

theand norm
norm

a 44 lattice at P = 0.0 and k -  0.23.
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the minimum residue norm is just about 10'1! Fig. 2.7 shows the corresponding 

behaviour.

Knowing that the time per iteration for block algorithm is almost Ng times 

as much as the corresponding time for single algorithm, the improvement factor, e,

R e S n

1 0 4 !

1 0 * 1

1 0 * 1 X

1 0 1 "! r *
1 0 * 1

i er£
1ST2
1ST9
1 0 -^

1 0 -®

ler*
i err
1 0-®

10"®

1 0 " * |

u r n

i  n
300 400 500 600 700 000

Fig. 2.7 The norm of residue vector R esn (top) and the norm of solution vector

(above) vs. iteration number n o f block conjugate gradient algorithm with NB = 16 for

a 4^ lattice at P = 0.0 and k = 0.23.
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of block algorithm relative to single algorithm in calculating one column of the 

inverse when the residue norm falls below 10' 5 is given in Table 2.4. This table 

clearly indicates that larger blocks result in more efficient algorithms.

Approaching kz, not only the algorithm slows down, but rounding errors 

overcome it and the algorithm fails to converge as it is the case for k =  0.25 at 

which the algorithm does not converge except for NB = 1 and 2. This behaviour is 

indicated in Fig. 2.8 for NB = 4.

Contrary to the H algorithm, the H fH algorithm works well for all NB's 

at both K -  0.23 and k = 0.25. However it must be pointed out that residue 

norms at K = 0.25 do not fall below certain minima and these minimum values 

grow larger as NB increases so that for NB = 32 it reaches about 10' as shown in 

Fig. 2.9.

In Table 2.5 the improvement factors of block algorithm over the single 

version of H^H  conjugate gradient algorithm are given for the two k?s used as 

residue norms fall below 10'5. Comparing the iteration numbers Nj  in Table 2.5 

with the corresponding values in Table 2.4 we again see that, as was the case for 

single algorithms, the block H conjugate gradient algorithm is faster (and 

comparable only for N B = 1) than the corresponding block version of H f H 

conjugate gradient algorithm. Also the c s in the two tables show that the blocking

Table 2.4

Improvement factor e of the block compared with 

the single H conjugate gradient algorithm for a 44 

lattice at /? = 0.0 and k = 0.23.

NB Nit e

1 705 1 .0 0

2 587 1 .2 0

4 457 1.54
8 327 2.15

16 * *

32 149 4.75

*  Convergence is not achieved.
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Fig. 2.8 The norm of residue vector Resn (top) and the norm of solution vector 

(above) vs. iteration number n of block conjugate gradient algorithm with Ng = 4 for a 

44 lattice at P = 0.0 and k  = 0.25.

procedure has a better performance once applied to the H conjugate gradient rather 

than to the conjugate gradient algorithm. On the other hand, comparing ej 

with 6 2  shows that the block algorithms are even more promising as one
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approaches the zero modes at hopping parameters kz.

ReSn

100 200 300 400 500 600 700 800
t n

ll\|fnll

1 0*

10s

600700600500400300200100

Fig. 2.9 The norm of residue vector Resn (top) and the norm of solution vector 

(above) vs. iteration number n of block H^H conjugate gradient algorithm with — 

32 for a 44 lattice at P = 0.0 and k = 0.25.
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Table 23

Improvement factors e i and e2 of the block compared with the single H^H 
conjugate gradient algorithm at p = 0.0 for a 44 lattice. N 1 and N 2 are the 

iteration numbers.

N b

K = 0.23 k = 0 .2 5

Ni e l n 2 e 2

1 357 1.00 1790 1.00
2 318 1.06 1129 1.58
4 279 1.21 681 2.63
8 217 1.55 395 4.53

16 155 2.17 331 5.41
32 99 3.40 * *

* Norm of residue does not reach to 10E-5.

Block Lanczos Algorithm

Under the same conditions as before blocked version of Lanczos algorithm was 

worked out. The storage limitation which was imposed as we decided to compare 

l l X j - H V n II with Resn in each step does not now allow to work for NB = 32. 

Accordingly we did not proceed beyond Ng = 16. Though our previous results 

showed that the single version of Lanczos and conjugate gradient algonthms are 

essentially identical, however their blocked forms gradually begin to behave 

differently as we increase the block size. Fig. 2.10 which shows the behaviours of 

the two algorithms at if = 0.23 for NB = 8  shows this discrepancy. The

corresponding solution vectors are plotted in Fig. 2.11.

It is remarkable that the block Lanczos algorithm does not suffer from the 

growth of residue norm after it reaches a minimum as was the case for the block 

conjugate gradient. One might compare Fig. 2.12 which shows the behaviour of the 

block Lanczos algorithm at k = 0.23 for N B = 16 with Fig. 2.7 for the 

corresponding conjugate gradient results as an example of a better behaviour of the 

block Lanczos algorithm over the conjugate gradient algorithm. The reason for this

. . .  . i t anr70c algorithm are orthonormal, and hence the elements
is that the vectors in the Lanczos aigoi

• rvtofrirps constructed from them are always much
o f  the vectors and the expansion matrices co
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Fig. 2.10 The norm of residue vector Resn of the block conjugate gradient (top) and 

the block Lanczos (above) algorithms with NB = 8 for a 44 lattice at P = 0.0 and k  =  

0.23.

larger in magnitude than machine precision. However, in the conjugate gradient 

algorithm our expansion vectors are the residue vectors themselves which are 

orthogonal but not normalized. When the residue becomes very small the expansion
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matrices will have very small elements. For large block sizes, inverting these 

matrices with some exact algorithm to calculate the parameters az and b( in Eqs.

(2.109) and (2.112) introduces large relative errors and prevents reliable

convergence.
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Fig. 2.11 The norm of solution vector of the block conjugate gradient (top) and the 

block Lanczos (above) algorithms with NB = 8 for a 44 lattice at P = 0.0 and k  = 0.23.
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Fig. 2.12 The norm o f residue vector Resn (top) and the norm of solution vector 

(above) vs. iteration number n of the block Lanczos algorithm with Ng = 7(5 for a 4^ 

lattice at P ~ 0.0 and k  = 0.23.

However, it is worth pointing out that the least attainable residue norm 

increases as one approaches kz and/or increases Ng. So, accordingly, it is quite 

probable that the algorithm fails to converge for large enough blocks, though it
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converges for all Ng  s and k! s we used and even its behaviour at k  = 0.25, i.e. 

close to kz, proved much better and faster than the block conjugate gradient 

algorithm as shown in Fig. 2.13 which is the block Lanczos version of Fig. 2.8. 

Our results when residue norms fall below 10' 5 are outlined in Table 2.6. In 

Resn
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10 41
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Fig. 2.13 The norm of residue vector Resn (top) and the norm of solution vector 

(above) vs. iteration number n of block Lanczos algorithm with Ng 4 for a 4 lattice 

at P = 0.0 and k  = 0.25.
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Table 2.6

Improvement factors e j  and e2 of the block compared with the single H 

Lanczos algorithm at j3 = 0.0 for a 4^ lattice. N j and N2 are the iteration 

numbers.

Nb

K = 0.23 K = 0.25
Ni e l N2 e 2

1 707 1 .0 0 2185 1 .0 0
2 579 1 .2 2 1302 1 .6 8
4 451 1.57 765 2 .8 6

8 322 2 .2 0 438 4.99
16 2 0 2 3.50 233 9.38

addition to the confirmation of the general qualitative statements we made about the 

nature of blocking in previous section, once compared with Table 2.4, Table 2.6 

shows stability of the block Lanczos algorithm over the block conjugate gradient 

algorithm which failed at k = 0.23 for Ng = 16 and at k = 0.25 for N q > 2. 

Also, they show the speed of the block Lanczos over block H^H conjugate

gradient algorithm once compared with Table 2.5.

All our results single out the block Lanczos algorithm from different 

algorithms that we studied as the most efficient algorithm at strong coupling limit. 

Moreover it is worth to mention that the presence of approximate zero modes at td s 

very close to k : on one hand and the high density of such modes at strong 

coupling limit on the other, as shown in Table 2.7, make our fermion matrix ( or 

ysM ) a t k  = 0.25 the most difficult one to invert. While the successful 

perform ance of the block Lanczos algorithm in this ordeal gives it special 

superiority, the failure of block conjugate algorithm excludes it from our further

investigations.

II  W eak  C oupling

We have generated two gauge configurations, one in the confining p

5.3 obtained by 35000 sweeps from a hot start and the other above the decon g
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Table 2.7

Smallest modulus eigenvalue and eigenvalue density for a 44 lattice.

p K Wmin

5.7 0.145 0.1079 7
5.7 0.164 0.6557E-1 17
5.3 0.184 0.3489E-1 42
5.3 0.198 0.1683E-2 51
5.3 0.1991* 0.1144E-6 51
0 .0 0.230 0.3340E-1 127
0 .0 0.250 0.1355E-2 157
0 .0 0.266 * 0.991 IE-5 174

* Approximate k-*.

phase transition point at 0  = 5.7 obtained by 55000 sweeps from a hot start. As we 

will see later in §3.9.2, where the spectra of 44 lattices at weak coupling constants 

are discussed in more detail, at 0  = 5.3 the first zero mode is found to be at k z =  

0.1991. In this configuration we have worked at k  = 0.184 and k  = 0.198, both 

below k 2. At 0  = 5.7 where there are, of course, no zero modes we have chosen

K = 0.145 and k = 0.164. The spectra of 7SM at these values of k and 0  are 

shown in Fig. 2.14 and the eigenvalues with smallest modulus as well as the 

number of eigenvalues whose moduli are less than 0.2, Nx, are given in Table 2.7 

for each case. The largest block tried is NB = 25.

Block H f H  Conjugate Gradient Algorithm

H f H  conjugate gradient algorithm works well when /A lmin is not too small. 

However, it fails as one approaches k z in large blocks e.g. at 0 

0.798 the residue norm slowly falls below 10' 10 for NB -<4. I, does never fall 

below 10-7 for NB = 6 . For 8  <N B < 16 the minimum attainable residue norm ts

of the order of 10* white it is only of the order or Mr’ for 18 -< NB -< 25. The 

minimum number of iterations required to converge to a solution wtth restdue norm

less than 1<T10 is given in Table 2.8 in terms of 0, k and NB.
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Fig. 2.14 The eigenvalues of YjM with smallest modulus for a 44 lattice at weak 

coupling constants. The eigenvalue number n(X) (with arbitrary origin) is plotted against 
the eigenvalue A.

Table 218

The minimum number of iterations to achieve residues of less than 10-10 with block 

conjugate gradient algorithm for a 44 lattice at weak coupling constants.

_ 3 = 5.7 6 = 5 . 3
Nb k =  0.145 K = 0.164 k =  0.184 K= 0.198
1 160 228 438 675
2 132 182 323 644
4 1 1 2 146 233 752
6 1 0 1 130 192 *
8 92 117 168 *

1 0 8 6 109 151 *
1 2 82 101 138 *
14 77 96 126 *
16 75 91 119 *
18 72 87 1 1 2 *
2 2 6 6 79 101 *
25 63 76 94 *

* Residue norm does not reach to 1.0E-10.
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The Block Lanczos Algorithm

Under the same conditions as for HfH  cnnin™^ ^
conJugate gradient algorithm, we studied

the block Lanczos algorithm. It works very well for all cases. Although, as we have 

already seen, the algorithms slow down to converge as one decreases /? and/or 

approaches (in the confining phase), however they tend to behave more 

independently of details of fermion matrix such as hopping parameter or gauge 

configuration as one increases block size. In other words convergence is achieved 

almost at the same time (or iteration number) for large blocks. This makes it feasible 

to study cases such as hadron propagators in the vicinity of Kz where critical 

slowing-down is a problem for the single algorithm. The actual computation time 

plot of Fig. 2.15, obtained from the block Lanczos results when residues fall below 

10-10, shows this interesting feature of block algorithms. Fig. 2.15 also shows an 

improvement factor of 3.75 near k2.

t
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80
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20

25201510

O p  = 5.7 < = 0.145

a  p = 5 .7  K = 0.164

+  p = 5 .3  < = 0.184

x p  =5 .3  < = 0.198

Fig. 2.15 The actual computation time t per column of the inverse vs. block size 

Ng for block H  Lanczos algorithm for a 44 lattice.
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One might be interested to compare the real time per iteration as block size 

increases. Due to the overheads from inverting NBxNB matrices, this computation 

time grows slightly more than linearly with NB as shown in Fig. 2.16.

Comparing our results on the block Lanczos algorithm in Table 2.9, with 

those of H H  conjugate gradient algorithm in Table 2.8 emphasizes the superiority 

of the block Lanczos over H^H conjugate gradient algorithm in convergence and 

speed.

I l l  Precision Considerations

We have always worked in double precision arithmetic. It is worth to see how the 

employed precision affects the rate of convergence of our algorithms. As an 

example once again we have investigated the single versions of the Lanczos and 

H^H conjugate gradient algorithms for a 44 lattice at p  = 5.3 and k  = 0.198 while 

the arithmetic has been performed in single precision. As shown in Fig. 2.17 

convergence rate o f H^H  conjugate gradient algorithm slows down once single

t
4.0

3.5

2.5

2 0

1.5

1.0

0.5

0. 0 ' i0 5 10 15

Fig. 2.16 The actual computation time t per iteration vs.vs. block size NB for blockiterauon

H  Lanczos algorithm for a 44 lattice.
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Table 2.9

The minimum number of iterations to achieve residues of less than 10"^ with 

block H  Lanczos algorithm for a 44 lattice at weak coupling constants.

NB
(3 = 5.7 (3 = 5.3

K=  0.145 K = 0.164 7\ II © 00 k =0.198
1 265 365 639 875
2 223 290 466 589
4 183 235 329 405
6 165 204 270 322
8 149 177 235 277

1 0 140 166 208 241
1 2 129 153 188 215
14 1 2 2 144 174 197
16 116 133 160 182
18 11 1 129 150 168
2 2 104 117 133 146
25 96 109 123 135

precision arithmetic is used. However the norm of solution remains practically 

stable against the precision used. In Figs. 2.18 and 2.19 we have presented 

computed residue norm R esn, real residue norm H xj-H V n// and the norm of 

solution vector for the Lanczos algorithm in double and single precision 

respectively. Comparing Figs. 2.18 and 2.19, we observe that R esn, and l/x j-  

H V JI  are exactly the same in double precision arithmetic while they gradually 

differ from each other in single precision arithmetic. M oreover the rate of 

convergence of both quantities slows down in single precision arithmetic. In 

particular Hxj-HVfJI does not fall below a certain minimum. Anyway, regardless of 

some minor differences the norm of solution vector in both cases converges almost 

similarly.

2.11.2 84 Lattices

So far we have practically observed that block Lanczos algorithm is a more 

successful algorithm in lattice field theories. Accordingly we do not need any longer 

to compare it with both versions of conjugate gradient algorithm. Therefore we now
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Fig. 2.17 The norm of residue vector R esn in single precision (top) and in double 

precision (middle) and the norm of solution vector (above) vs. iteration number n of 

H*H conjugate gradient algorithm for a 44 lattice a t£  = 5.3 and k  = 0.198.
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Fig. 2.18 The norm of residue vector Resn (top), the real residue /f x j - H V (middle) 

and the norm of solution vector (above) vs. iteration number n for the Lanczos algorithm 

for a 44 lattice at P = 5.3 and k  = 0.198 in double precision.
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Fig. 2.19 The norm of residue vector Resn (top), the real residue //x i-H V nll (middle) 

and the norm of solution vector (above) vs. iteration number n for the Lanczos algorithm 

for a 44 lattice at P = 5.3 and k = 0.198 in single precision.
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only work with block Lanczos algorithm to see how it handles larger lattices. 

Moreover we investigate our algorithm in only more physically interesting cases i.e. 

at weak coupling constants in the confining phase rather than at strong coupling 

limit. For an 8 4  lattice, we generated two gauge configurations, at p  = 5.8 and p  

= 5.5 both in the confining phase. For the first configuration, which is obtained by 

16300 sweeps from a hot start, we worked at k  = 0.1650 and k  = 0.1677 and for 

the second configuration, obtained by 13302 sweeps from a hot start, we worked at

k  = 0.1820 and K  = 0.1827 both below k z and at k  = 0.1940 above k z . The 

corresponding eigenvalues with least moduli and the number of eigenvalues whose 

moduli are less than 0.1 are listed in Table 2.10. The 75M  spectrum at these values 

of p  and k  are plotted in Fig. 2.20. Due to storage limitation we can not work 

beyond N q  = 8.  The results of our block Lanczos algorithm to converge to 

solutions with residues less than lO '1̂ , summarized in Table 2.11, confirm our 

previous statements made about the Lanczos algorithm and the blocking effect on 

that. The actual computation time per column of inverse is plotted in Fig. 2.21 for 

each case. Depending on p  and  k , they indicate speed up factors of 4.38 are 

achievable.

To summarize, our studies show clearly that the block version of algorithms 

are more efficient than the corresponding single algorithms. Moreover the Lanczos 

algorithm is more stable than both versions of the conjugate gradient algorithm and 

in particular faster than H^H conjugate gradient algorithm. As a result, the block 

Lanczos algorithm with a considerable improvement factor is recommended for 

updating dynamical fermions and studying hadron propagators. Moreover as the 

computation time becomes roughly independent of k  and p  for large block sizes, 

the block Lanczos algorithm is less subject to critical slowing down. Therefore, the 

use of the block Lanczos algorithm offers the opportunity of increasing the speed of 

many calculations particularly those which are hampered by critical slowing down.
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Table 2.10

Smallest modulus eigenvalue and eigenvalue density for an 8^ lattice

p K M .min
5.8 0.16500 0.6562E-2 43
5.8 0.16770 0.1069E-3 44
5.8 0.16775 0.2435E-6 *
5.5 0.18200 0.1096E-2 128
5.5 0.18270 0.1238E-3 132
5.5 0.18280 0.4337E-5 *
5.5 0.19400 0.5888E-3 161

* No inversions were performed at the corresponding kz.
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Fig. 2.20 The eigenvalues of Y$M with smallest modulus for an 84 lattice at weak 

coupling constants.
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Table 2.11

The minimum number of iterations to achieve residues of less than 1.0E-10 with block 

H  Lanczos algorithm for an 84 lattice at weak coupling constants.

NB
P =: 5 .8 P =  5.5

K = 0.165 K =0.1677 k =0.182 k = 0.1827 K = 0.194
1 1307 1917 2969 3217 4845
2 964 1070 1981 2099 2858
3 808 896 1563 1647 2 1 1 0
4 720 813 1350 1408 1738
5 649 732 1167 1223 1500
6 624 676 1075 1016 1322
7 584 634 970 1130 1225
8 547 604 898 946 1130

t

10000~

o p = 5.8 * = 0.1650

A p = 5.8 * = 0.1677

+ p = 5-5 * = 0.1820

X p = 5-5 k = 0.1827

♦ p = 5-5 k = 0.1940

Fig. 2.21 The actual computation time t per column of the inverse vs. block size 

Nb  for H  block Lanczos algorithm for an 84 lattice.
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Chapter 3

Fermion Matrix Spectrum

In the last chapter we saw how Lanczos algorithm could be applied to large sparse 

matrices to calculate their eigenvalue spectra. In this chapter, we use that algorithm 

specifically to study the Wilson fermion spectrum. The results will provide us with 

a suitable ground to probe QCD phase structure.

3.1 Symmetries Of Strong Interaction

The QCD Lagrangian Eq. (1.1) has certain symmetries which play an important role 

in the strong interaction. As discussed in §1.2 it is SU(3) colour gauge invariant. 

Moreover it is conserving charge conjugation and parity, and because the gluons are 

flavour independent it conserves strangeness etc. In particular, if different quark 

flavours are degenerate in mass, then y  flavour QCD Lagrangian is also invariant 

under global phase transformations Uy(rij) defined by:

Uv (nf) = SUv (nf)x U v ( l )  (3.1)

where

SUv (nf) : y  exp ( ia V )  y  (3.2)

Uv ( l ) : y  - > exp ( ia l )  y  (3.3)

Here y i s  an /ycom ponent column vector in the flavour space, 1 is an n j x n j  

unit matrix, z a are the generators of SU(nf) gauge group and a = 1 , 2 , -1 .

Both 1 and z a act on the flavour index of fermion field y. In the limit of vanishing 

quark mass, the so called massless theory becomes symmetric under one more
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transformation i.e. the chiral symmetry UA(nf ) defined as:

UA(nf) = SUA(nf) x U A(l) (3.4)

where

s u A (nf ) : Y  exp (iaa xay5) \\t (3.5)

UA(1 ) : V -> exp ( ia ly 5) \jr, (3.6)

and Y5 acts on spin index. As the masses of u and d and to a lesser extent the mass

of s quarks1 are much smaller than a typical hadronic mass scale of IG ev, one

expects to observe Uy(rif) and UA(nf) flavour symmetries in the light hadron 

spectrum for n ^ - 2  and 3. However, only the vector sector of the above 

symmetry is observed in the real world. This leads to the idea that Uy(3) x  UA(3) 

symmetry is spontaneously broken to Uv (3). The lack of UA(3) implies no parity 

doublets of the particles we do see. The spontaneous breakdown of global chiral 

symmetry SU A(3) results in the almost massless pseudoscalar mesons 37r’s, 

4K's and 7] i.e. the Goldstone bosons of this symmetry breaking. On the other 

hand one expects one more massless pseudoscalar meson corresponding to UA(1 ) 

spontaneous symmetry breaking. But 7]' is too heavy to be identified as the 

Goldstone mode of this symmetry breakdown. In fact in perturbative calculation, as 

mentioned in § 1 .1 1 , the presence of anomaly in the singlet axial current 

j5^= xj/y^ y5yr which couples to gluons gives non-zero divergence to this current. 

Thus, this anomaly means that the UA(1) chiral symmetry, present in the theory at 

the classical level, disappears at the quantum level. Following this idea it was 

proposed b y ’t Hooft that the topologically non-trivial gauge configurations in 

massless QCD gives mass to the singlet meson through anomaly [37]. Despite these 

theoretical suggestions, no successful perturbative calculations have been so far 

performed to show explicitly that the singlet meson becomes heavier than the other 

mesons and that chiral symmetry breaks down spontaneously in QCD. Due to the 

nature of these problems, a non-perturbative calculation is required to treat them.

 ̂ mu ~ 4  Mev, ~ 7 Mev, ms ~ 130 Mev [36].
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Lattice gauge theory, as discussed at the end of §1.5, provides an efficient 

regularization scheme to study such non-perturbative aspects of QCD. This could 

be achieved if the lattice theory possesses the formal properties of the 

corresponding continuum theory. As far as the hadronic spectrum is concerned, this 

means that the lattice action must have the above said symmetries. Wilson fermion 

action, Eq. (1.111), has most of these symmetries but unfortunately, as we saw in 

§1.13, due to the presence of the Wilson term, it breaks axial chiral symmetry 

SUj^(nf) x  Ua (1) explicitly even at the limit of vanishing quark bare mass. This 

symmetry must be recovered in the continuum limit and be broken spontaneously to 

provide the observed hadron spectrum with massless pions. However despite the 

lack of chiral symmetry it turns out that we can tune the hopping parameter k, for 

a fixed p, to a critical value kc, such that the pion becomes massless. This 

intuition is supported by strong coupling expansion [38], as well as our Monte 

Carlo simulations. 2 This very existence of massless pion and in general the light 

hadrons on a lattice can not be identified as the Goldstone modes of spontaneous 

chiral symmetry breaking as the Wilson fermion action does not have this 

symmetry. So there must be a mechanism different from spontaneous chiral 

symmetry breaking to explain the presence of massless pion on a lattice. Moreover 

this mechanism should be able to convert its massless mode to a Goldstone boson 

associated with the spontaneous breakdown of chiral symmetry in the continuum 

limit o f lattice QCD. In the following we review such an alternative mechanism 

proposed by Aoki [39].

3.2 Parity-Violation In Single Flavour Lattice QCD

Let (p(n) be a local operator having the same quantum numbers as a massless 

particle. As the inverse of mass gap m 0  associated with <p(n) is identified as the 

correlation length £, the correlation length or equivalently correlation function 

«p(n) (p(0) > diverges in the limit where . The divergence of correlation

2 See §4.5.1.
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function, in turn implies a phase transition i.e. a transition from a phase where a 

certain symmetry (not necessarily continuous) is sustained to a phase where this 

symmetry is violated. Then the massless particle is identified as massless mode 

associated with this phase transition. One should note that the massless mode 

occurs only at a critical value of a free parameter of the theory. In other words m 0  

becomes non-zero as we tune that parameter above its critical value unless there 

exists a dense region of such critical values.

Finally if the vacuum expectation value of (p(n), <(p(n)>, in symmetric 

phase vanishes as a consequence of that symmetry then <(p(n)> is a good order 

parameter to signal the spontaneous break down of the symmetry of the system 

[40]. To apply these general remarks to lattice QCD with one flavour we note that 

the W ilson fermion action (1.111) is invariant under the following parity 

transformations:

V (x)-> ?(-x ,t)Y 0  (3.7)

\j/(x) y0  \|/ (-x,t) (3.8)

\j/(x+|!)-><
Y0¥(-x,t+l) if ji = 4
Y0V(-x-iXt) if|i*4 (3.9)

U^(-x,t) if p. = 4
UuOO-M  f a (3.10)

lU.^(-x,t) = U^(-x-M-,t) if p. *  4

U ^ (x -[ i)-> <
ruJ(-x,t-l) if (I = 4

(-X+M) = Û (-x,t) if jj. * 4  (3-11)

Under the same transformations, the pseudoscalar field k (x )  =  i y (x )Y 5 Y (x )  

changes sign. So as the consequence of the parity invariance of the action:

<7t(x)> = 0 (3.12)

Therefore <%{x)> * 0  signals the spontaneous breaking of (discrete) parity 

symmetry. In this mechanism n (x )  is the massless mode associated with
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spontaneous parity violating phase transition on a lattice provided that this transition 

is second order. It should be emphasized that it is not a Goldstone boson as parity 

is not continuous and it is massless only at the transition point i.e. at the critical 

hopping parameter kc. The above mechanism implies an effective potential V(X) 

for the pion with the properties outlined in Fig. 3.1.

3.3 Parity-FIavour-Violation In 2-Flavour Lattice QCD

In 2-flavour continuum QCD, the members of triplet of pseudoscalar mesons i.e.

7t° = xj/iYjtV = uYjU - dy5d (3.13)

7t± = YiY,x± \|/=>
u Y< d

A (3‘14)|d y 5 u

appear as massless Goldstone bosons. Here

x± = j  ( x'± ix2), (3.15)

and T i ,T2 and are generators of SU(2) Lie algebra acting on flavour indices.

On the other hand the singlet pseudoscalar meson i.e.

ti =\jny5lY  = uY5u + dY5d (3.16)

where 1 is slSU (2) unit matrix, remains massive. Taking account o f these

experimental facts and generalizing the arguments of the last section will suggest to

choose the neutral pion condensation <\ffiy5^ y f >  as the right order parameter.

This requires uy5u and dy5d to be in opposite vacua otherwise it is clear from Eq.

(3.13) that <7iP(x)> vanishes identically. As we saw before, in addition to discrete

parity symmetry, the Wilson fermion action has also continuous flavour symmetry.

Consequently the expectation value of nP(x) vanishes in the symmetric phase. In

this phase m * = m + = m as a result of states degeneracy. At k c , j fi , %+ and 
i r  n  n

7t~ become massless. In particular ifi  is the massless mode associated with the
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V(7t)

V(7t)

V(7T)

Fig. 3.1 Pion effective potential V (n)  vs. n  field as k  increases; (top) at k  < k , the 

phase is symmetric under n  -> -n  and < 7 0  =  0,  (middle) at k  = k  the ?r direction 

becomes flat and mn -> 0, (above) at k  > k c  the symmetry is broken and <10 = ±  c, 

going to one another under n  —> -n  . The resulting massless mode is not a Goldstone 

particle since the broken symmetry is discrete.

95



phase transition from symmetric phase to a phase where both parity and flavour 

symmetries are broken spontaneously. Just above this phase transition point nP 

becomes massive again while n+ and remain as massless Goldstone bosons of 

(continuous) flavour symmetry breaking. On the other hand Eq. (3.16) indicates 

that q  remains massive in the whole region of parameter space as < tj(x )>  is always 

zero because uy5u and dy5d are in opposite vacua as mentioned above.

The existence of spontaneously parity-violating phase in single flavour 

lattice QCD and parity-flavour-violating phase in more than one flavour as well as 

the vanishing of m n at kc, the masslessness of m  + and m . in the symmetryn jt K
broken phase and vanishing of 77 condensation at all k 's must be confirmed by 

analytic calculations and/or by Monte Carlo simulations. In the following sections 

we only review the results of such investigations in single-flavour case with a view 

to apply them to construct the QCD phase structure in K -g 2 space.

Some theoretical arguments regarding lattice QCD with more than one 

flavour and in particular with two flavours can be found in [41] for the special case 

o f strong coupling limit. Monte Carlo simulations of lattice QCD with more than 

one flavour which require the application of dynamical fermions can be the subject 

of further works in this context.

3.4 Free Fermion Theory

Analytic calculations can be performed at weak coupling and strong coupling cases. 

In the first case where g —>0 the (~ ) factor in gauge action (1.26) becomes

very large which suppresses the fluctuations in the plaquette variable i.e. the only 

non-zero contribution to the partition function comes from those configurations 

where j f T r  Up ->1. The fluctuations around this trivial limit can be treated 

perturbatively, resulting in an expansion completely analogous to the perturbation 

theory of the continuum formulation. Having expanded the gauge variable (1.24) 

as:
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-igaAu(n)
U ^(n)=e = l-igaA^(n) (3.17)

and rewriting the measure DU  and the action in terms of vector potential AjJn) an 

ordinary perturbation theory can be set up [38]. In this section we consider special 

case of weak coupling limit i.e. g = 0 (free fermions). Because of the vanishing of 

gauge interaction, this case is equivalent to UAn) = 1 V n,p. In this case the 

fermion matrix (1.112) reduces to Eq. (1.108) and one may Fourier transform it to 

obtain M  in momentum space as:

Mpq 1 +2 kX ( i \  sin p^-r cos p ^ ) 5(p-q) (3.18)

M  is, then, diagonal in momentum space (but not in spin space) with the diagonal 

elements:

M(p) = 1+2 kX ( i sin p^-r cos p ^ ) (3.19)
M'

We are interested in the poles of fermion propagator M(p)~J. As any zero 

eigenvalues of M  are also zero eigenvalues of M^M and vice versa, we work with 

Using the formal properties of y -matrices3 is diagonalized not only 

in momentum space but also in spin space with the diagonal elements (i.e. the 

eigenvalues):
t 2

M M (p) = ( l-2 ic r Ic o s  p„ ) + 4k2I  sin2 p (3  20)
H jj. J-t V '  /

As hopping parameter is real the zero eigenvalues are obtained from Eq. (3.20) if 

and only if

sinp^  = 0 | i = l , . . . ,  4 (3.21)

and
1-2kxE cos p = 0  (3.22)

for real values of momenta. The constraints (3.21) and (3.22) would restrict the 

critical hopping parameters to the following at the corresponding momenta,

3 See Appendix.
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J _ = <
K„

 ̂ 8 at p = (0 ,0 ,0 ,0 )

4 at p = (tu,0 ,0 ,0 ), ..., (0,0,0,7T)

0 at P = (7l,7t,0,0), ..., (0,0,7t,7t)

-4 at p = (7t,7C,7t,0), .., (0,7t,7t,7t)
1 O
O at p = (7t,7t,7C,7t)

(3.23)

where we have let r -  1. Eq. (3.23) locates the kc's at the com ers of the first

Brillouin zone where the fermion doublers, in the naive action, sit.4  From  the

poles of the fermion propagator the quark mass is obtained by letting the particle be

at rest, i.e. p  = (0,0,0,imq). Using Eq. (3.20) this results in:

2( 1 RlC 1
cosĥ =1+i r d o  (3-24)

It is interesting to review the above considerations at the limiting case where 

p ^ —tQ i.e. the actual continuum limit. In this limit the fermion matrix M(p)  given 

by Eq. (3.19) reduces to:

1 ““8  \c
M (p) -»  Mcom (p) = 2 K (i/p  + - ^ r - ) (3.25)

1-8 KFollowing the same approach as before the quark mass mq is calculated to be —z /c
and then M cont (p) becomes identical with the continuum equation o f free fermion 

Dirac operator. This k  dependence of m q  is now, of course, consistent with our 

previous definition of hopping parameter k  in Eq. (1.109). Moreover the fermion 

propagator has a pole at k c = -3- at which the continuum lim it o f free theory
o

becomes massless i.e. the quark mass vanishes.

Introducing the gauge fields in fermion matrix complicates the calculation of

the poles of the fermion propagator. However, in weak coupling region the

perturbative analysis shows a developm ent in the singularity o f the fermion

propagator in the vicinity of free fermion singular point at jcc = -3- [38] as:
o

4 See §1.11.
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Kc = ± (l+ 0 .095N cg2) (3.26)

for large N c limit of SU(NC) gauge group. It is of interest to note that the sign of 

coefficient N cg2 is positive. This indicates that kc is increasing as g increases in 

the weak coupling region.

3.5 Strong Coupling Limit

In the last section it was confirmed that there exists a critical value of k  in free 

fermion theory at which quark mass vanishes. In the strong coupling region where 

g —> oo because of the smallness of f5 in gauge action, Eq. (1.26), the Boltzmann 

factor can be expanded and a systematic expansion in f$ can be constructed. The 

strong coupling expansion is in complete analogy with the high-temperature 

expansion in statistical physics. The large N c strong coupling expansion 

techniques accompanied by the introduction of effective Lagrangian [42] can be 

applied to calculate meson propagators. As before, the pole of the meson 

propagator would give the meson mass in terms o f hopping parameter. Much 

information can be obtained in the limiting case where f5 = 0. In this case [43],

cosh m^ =

( 1-16k2 ) (  1 -4 k 2) at k < -j-

,  8 k2 ( 1-6k2 ) 4

[ t ' ( 16k2 - 1 ) ( 64k2 -1 ) ( 32k2 + 1) a tK > !

6 4 k2 ( M ”  S*2 + 128k4)

at K S - 7  (3.27) 
4

therefore pion mass vanishes at kc = •

Under the same conditions pion vacuum expectation value as an order 

parameter is calculated to be:

< ¥  i Y5 ¥  > _
0  at k  ~ 4 "

1 4k-J 3 (16k2 

1 6 4 k2 - 1
4Nc a t K > I  (3.28)
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This shows that parity-violating phase transition occurs at *c = that parity- 

violating phase exists at x* > ■—. Moreover the pion which becomes massless only at 

^  is the massless mode associated with this spontaneous parity-violating 

phase transition.

Introducing the gauge field terms in the strong coupling region does not 

alter the above qualitative properties of P = 0 case. Now the singularity in pion 

propagator develops [38] as:

(3.29)
32Ncg2,

The important point is that the sign of the coefficient of (Ncg^)'^ in Eq. (3.29) is 

negative which means that kc is reducing as p  increases in the strong coupling 

region. This property alongside with the corresponding result in weak coupling 

region, Eq. (3.26), will, in some extent, justify the phase diagram discussed in the 

following section.

3.6 QCD Phase Structure

To construct the QCD phase diagram in K-g2 plane at least some knowledge of 

intermediate-coupling region is required. Although no such analytic information is 

available for QCD, one still might be inspired from a relatively similar model i.e. 

the Gross-Neveu model [44] to construct such a phase diagram. This model is a 

two-dimensional massless fermion field theory with quartic interactions described 

by the Lagrangian,

L = \j? ( i ^  )\j/ + j  g2 ( w )2 (3.30)

Its importance is that it is the only known soluble model with the distinctive 

properties of asymptotic freedom and chiral symmetry breaking as QCD. Lattice 

Gross-Neveu model with Wilson term behaves similar to QCD in the strong and 

weak coupling limits except there are only three continuum limits as compared to
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five continuum limits of lattice QCD distinguished by five Kc's in Eq. (3.23). 

Moreover it has been shown that the broken chiral symmetry by the Wilson term is 

recovered near the continuum limit in lattice Gross-Neveu model [45]. The phase 

diagram of lattice Gross-Neveu model is given in Fig. 3 .2 .

g2 Nc

+>\_
K2 01 21

Fig. 3.2 Phase diagram of lattice Gross-Neveu model in g2Nc-K~1 plane.

From our review in the previous sections we already know that there are two 

phases in the strong coupling region: one is the phase with <ysiy5 y/> = 0  and the

other is the phase with <\jfiy5 y/> *  0 . Furthermore the phase transition line which

1 2divides k  -g plane into the two domains exists also in the weak coupling region as 

we saw the appearance of massless quark in free case.

Based on the above considerations a lattice QCD phase diagram has been 

proposed by Aoki [46, 47, 48]. This phase diagram which is reproduced in Fig. 

3.3 reflects the following properties for lattice QCD:

I There are five continuum limits corresponding to different regions in 

momentum space at weak coupling limit. These momentum regions and the 

corresponding critical values of K where quark mass vanishes were given in Eq. 

(3.23). The true continuum limit is, of course, at low momentum where kc = ^~.
o
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oo i I

Fig. 3.3 The postulated phase diagram of lattice QCD in the presence of Wilson term. 

A is the normal phase for which <\j/iy5 y/ > = 0 and B is the parity-violating phase 

which has <\j/iy5 y/> # 0 .

II  In the strong coupling limit there are only two critical values of Kr =  —
4

and Kc = ~ ^  where the pion mass vanishes. This is consistent with Eq. (3.27).

III  In the intermediate-coupling regions and below a critical coupling gc 

new critical lines emerge and five regions in momentum space become separated 

from one another.

IV Each critical line separates region A where < ’y7i^y/>  = 0 from region 

B where <y/iy5 i}f> ^  0 . On the critical line pion mass vanishes. Then <\j/riy5 y/> 

is a good order parameter to detect this phase transition i.e. a transition from parity- 

conserving phase to parity-violating phase as k  crosses kc.

3.7 M onte C arlo  Sim ulation

In the previous sections we reviewed general remarks regarding the existence of 

parity-violating phase transition in weak coupling region (§3.4) as well as strong 

coupling region (§3.5) as the massless pion could be observed in these regions. We 

also anticipated such a phase transition in intermediate-coupling region via a lattice 

QCD phase diagram (§3.6). In this section we aim to see if Monte Carlo results 

confirm such a phase transition. We will work in quenched approximation and if
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this phase transition really exists it must also show up even in this approximation 

where the effect of quark loops are suppressed as it was revealed in both free case 

and strong coupling limit where effectively such an effect was ignored. To confirm 

the phase transition we should study the order parameter < n (x )>  and correlation 

function <n(x) n(y)>. In the following expressions the expectation values are 

implicitly summed over x  in <%{x)>  and over origin, y as well as x  in 

<n(x)K(y)>.

< 7 c ( x ) >  =  < \ j / i Y 5v >

= ijD \j7 D v D U (\j7 i7 5 v)/)e ^  S® (3.31)

where the partition function Z is given by Eq. (1.83). Taking into account the 

general properties of Grassmann variables y/and y/ we obtain:

< k  (x) > = 7^ Jl)U  det M (U) Tr ^ M ) ’1 e 8 (3.32)

and

Z = J  DU det M(U) e 8 (3 .3 3 )

In quenched approximation, where det M(JJ) -  1, the pion field vacuum 

expectation value (3.32) is simplified as:

< 7t(x) > = i < Tr ( y5 M ) _1 >q (3.34) 

where G means averaging over gauge field configurations. Similarly we get:

< tc(x) 7C(y) > = < Tr ( ) _1 >q (3.35)

We are interested to study observables <n(x)> and <n(x) n(y)>  by calculating the 

fermion matrix eigenvalue spectrum. In fact one of the clearest ways to study phase 

transitions involving fermions [49] is to calculate the eigenvalues of the fermion 

matrix. Let X. be the eigenvalues of ysM. Then the above vacuum expectation 

values read:
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< 7t(x) > = < i]T-L > 
i X. G (3.36)

<7t(x) Jc (y )> = < £  J - >
1 X 2 G

(3.37)

Working directly in terms of eigenvalues of M  requires non-hermitian Lanczos 

algorithm to calculate eigenvalues of M  as M  is not hermitian. However, the major 

contributions to <n(x)> and <n(x)n(y)> are from the small modulus eigenvalues 

and specially from the zero modes of M. Moreover, as shown in Eq. (3.36), 

<n(x)> is imaginary and can only develop a real part if there are zero modes in the 

infinite-volume limit. Also it is only at the presence of zero modes that the 

correlation function can diverge and signal the phase transition with a massless 

mode. On the other hand if M has a zero mode then so does y5M  and M ^M  and 

vice versa. Accordingly, without loss of generality, we study J5M  spectrum and 

search for its zero modes. It is interesting to mention that exact zero modes do really 

exist even on a finite lattice for Wilson fermions [50, 51]. Our results, presented in 

§3.9, confirm this fact. However, in practice we never find exact zero modes so we 

define Kz where /Az / < 0 . 0 0 1  provided that Xz changes sign at some 

corresponding hopping parameter in the vicinity of kz. In passing one notes that 

hermicity and anticommutativity of 7-matrices make J5M  hermitian so that hermitian 

lanczos algorithm developed in Chapter 2 can be applied for the corresponding 

eigenvalue calculations. Moreover the hermitian nature of 75M  allows 

implementation of large lattices which are not possible to tackle in case of non- 

hermitian M.

To study Eqs. (3.36) and (3.37) more closely we see that as J5M  is 

hermitian the r.h.s. of Eq. (3.36) is always pure imaginary whereas the l.h.s. is 

real as TT-field is hermitian. As a result <n(x)> vanishes even if the symmetry is 

broken spontaneously. To cope with this situation which is a finite-volume effect 

we can add a small explicit symmetry-breaking term, iHyTy^ /, to the action and
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study the limit in which H 0 -5 In this case Eq. (3.34) is modified as:

<7t(x)> = limo J  < Tr ( 7 ^ ) %  (3.38)

where Af^is the modified fermion matrix,

Mh  = M + iHy5 (3.39)

Consequently Eq. (3.36) is converted to:

<7t(x)> = lim lim i < Y — -—  > 
H -»0 vol -»o i A.+iH G (3.40)

By a little algebraic manipulation Eq. (3.40) in infinite-volume limit reads:

<jt(x)> = < TtpCO) + i J  — -U a . >0  (3 .4 1 )
-oo

where p(X) is the density of eigenvalues around X. The imaginary part in the r.h.s. 

of Eq. (3.41) is just r.h.s. of Eq. (3.36) which turned out to vanish. Therefore we 

have:

< jc(x )>  =  7t < p (0 )> G (3 .4 2 )

Both Eq. (3.37) which might be written as:

<x(x) it(0 )> = < f  dA>G ( 3  4 3 )
X

and Eq. (3.42) show that the existence of zero modes alone do not confirm the 

phase transition unless P(0) * 0  .6

3.8 Checks On The Eigenvalues

Some general properties of 75M  can be used to set up checking conditions on its 

eigenvalues A .. The first check could be the calculation of the eigenvalues in the free 

case. In this case as we saw in Eq. (3.20) the eigenvalue squares are explicitly 

calculated as:

5 This is analogous to the calculation of the chiral condensate < w >  at the limit in which 

m ^ 0  [30].
6 An example of a zero mode where p(0) tends to vanish is given in Fig. 3.31.
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2
A, = (l-2K rZ cospu ) + 4 k 2Z  sin2 p (3 .4 4 )

M- n M- v y

With periodic boundary conditions on the fermion fields in all directions i.e.

¥  00 = ¥  (x+N^a) |x = 1 , . . . ,  4 (3.45)

the momenta can only have the values:

n = 0 ,1 ,2 , . . .  (3.46)

where N ^  is the number of sites in fl direction. The corresponding momenta with 

antiperiodic boundary conditions are:

(2 n+ l)7t
Pn = - N" a n = 0 ,1 ,2 , . . .  (3.47)

li

For example, a 44  lattice with periodic boundary conditions turns out to have 15 

distinctive eigenvalues for ysM  whose squares are as follows:

{ (1 ±  8kt)2, (1 ± 4 k t)2, 1,

(1 ±  6 ter)2 + 4k2, (1± 2kt)2 + 4 k2,

(1 ± 4 k t )2 + 8 k 2, 1+ 8k2,

(1 ±  2 kt)2 + 12k2,

1 + 16k2 }. (3.48)

There are only 5 distinct eigenvalues with antiperiodic boundary conditions whose 

squares are:

{(1±4/2kF)2 + 8k2, (1±2/2ict)2 + 8k2, 1 + 8k2}. (3.49)

To check the program one can switch off the gauge fields and converts the theory to 

the free case and calculates the spectrum and compares the results with the analytic 

values of eigenvalue squares.

In the interacting case the sum of the eigenvalues and the sum of their 

squares can be checked against the corresponding analytic expressions. Using Eq. 

(1.112) and writing M as -xM + I, where
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M , = Xnn £ (r-Y,) i y n ) 6 , + (r+ V  U > - f t  8 ^ (3.50)n+|J.,

one notes that fil is manifestly traceless. Then as the diagonal elements of M  are 

just unity and y5 is traceless it turns out that y5M  is traceless. So as the first check 

the eigenvalues must satisfy the condition:

l ^ i  = 0. (3.51)

Another condition on eigenvalues X. is obtained by using the tracelessness 

property of M. We see that:

Tr (y,M)t (y,M) 1 = Tr (MfM) i^T r ( M M) + Tr i
(3.52)

Making use of y-matrices properties and the unitary nature of the gauge fields we 

obtain:

Tr (M M ) = N pinN olorN . te 8  ( 1+r2) (3 .5 3 )

and since

Tr 1 = Nspjn Ncojor Nsjte (3.54)

then the eigenvalue squares satisfy the condition:

f  ^  -  N spin N color N site [1+8k2( 1 +r2)]  (3.55)

The generality of the conditions (3.51) and (3.55) is in their gauge 

invariance and independence from the boundary conditions imposed on the fermion 

fields.

In practice we can compute the whole spectrum of Y5M  in a reasonable 

computational time for 44 lattices, for instance, and establish the correctness of the 

program by checking the sum and sum of the squares of the eigenvalues.

3.9 M onte C arlo Results

To investigate the JSM  spectrum we have studied lattices of up to 8 4. Although the 

main concern is the existence of zero modes in the infinite-volume limit one notes
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that working in bigger lattices becomes extremely time consuming even if only a 

few eigenvalues are to be calculated. In practice we only study the eigenvalues on a 

finite-size lattice and extrapolate the behaviour averaged over several gauge 

configurations to a continuous spectrum by considering the density of the 

eigenvalues. We have obtained the spectra at strong coupling limit as well as some 

weak coupling constants and in some cases the effect of boundary conditions has 

been observed too. We have worked in SU(3) gauge group throughout. In the 

following the Wilson parameter r is set equal to unity. Although different choices 

of r change the results quantitatively however, they do not modify our conclusions 

qualitatively as long as r ^  0 , otherwise the action converts to the naive action and 

doubling problem appears again.

3.9.1 Strong Coupling Limit

As the first attempt the eigenvalue distribution of Y5M  is obtained on a 44  lattice, 

with antiperiodic boundary conditions in all directions on fermion fields, using the 

Metropolis algorithm for a gauge field configuration generated from 20 sweeps 

starting from a hot start. The eigenvalue distribution shows that for small values of 

K  the eigenvalues are far from zero axis. This agrees with the expectation that as 

ysM  —> y5 when k  -» 0  all the eigenvalues of YSM  converge only to +1 or -1. As K 

increases the positive and the negative eigenvalues tend to approach zero axis in an 

almost symmetric manner. As one approaches kz where the first zero mode 

appears this approximate symmetry disappears. For k  > k z the first positive and 

negative eigenvalues remain very close to zero and even vanish for some k!s. For 

this configuration we have found kz = 0.266 with the least modulus eigenvalue Xz 

equal to -0.991 ID-5. The described behaviour is plotted in Fig. 3.4 for the first few 

eigenvalues on either side of zero axis.

As we saw before in §3.7 what governs the observables such as 

<7r  (y5M ) ! >g or <Tr (MtM )1>G is not only the existence of zero modes but also
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Fig. 3.4 7jM  spectrum vs. -j^at P = 0.0 on a 44 lattice.

their density p(O). If we number the eigenvalues with arbitrary origin, the density 

of eigenvalues p(X) i.e. the number of eigenvalues per unit eigenvalue separation is 

defined by:

dN (X)p(X) =
dX (3.56)

where dN(X )  is the number of eigenvalues between X and X+dX. Accordingly 

p(0 ) is just the estimate of the the slope of the curve N(X) vs. X at X = 0 . To study 

the behaviour of p(0 ) as a function of k  we have generated five more configurations 

at every 60 iterations after the initial 261 sweeps starting from a hot start discarded 

for thermalization. There are very clear indications of vanishing p(0) at the values 

of k  below a critical k 2 which changes from configuration to configuration. 

Crossing Kz is accompanied by a sudden change in p(0 ). The zero modes density 

remains actually non-zero for k  > kz, increasing first to a maximum value and then 

decreasing7 and approaching zero as x--^<»as shown in Fig. 3.5. One should

7 Decreasing of P(0) is presumably a finite-size effect. In the infinite-volume limit, however, 

we expect non-vanishing p ( 0 )  at all values of k  above k c  in the strong coupling limit.
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n(X)

X L - t a

Fig. 3.5 Eigenvalue distribution of at P = 0.0 on a 44 lattice for a number of k.

note that kz is not necessarily the same as actual kc where average pion mass 

vanishes. In infinite-volume limit, however, kz calculated over the ensemble of all 

the gauge configurations would approach kq.

The Kz for the above configurations and the corresponding least modulus 

eigenvalues are given in Table 3.1. In practice we notice that due to the discrete 

nature of eigenvalue distribution on a finite lattice, p(0 ) begins to become different 

from zero slightly before the appearance of the first zero modes.

We also changed the boundary conditions to periodic and studied the 

corresponding spectra under the same conditions as for antiperiodic case. Although 

the k z s change slightly, the general behaviour is effectively the same as 

antiperiodic case.

We have extended our studies closer into continuum limit by working on 6 4
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Table 3.1

kz for a number of 44 SU(3) gauge configurations 

at strong coupling limit.

0.266 - 0.991 ID-5
0.270 - 0.2160D-3
0.260 - 0.1230D-3
0.260 - 0.4200D-3

and 8 4  lattices. For a 6 4  lattice and with a hot start we have generated two gauge 

configurations 1 0 0  iterations apart when the first 1 0 0  iterations discarded for 

thermalisation. The general behaviour obtained on a 6 4  lattice is the same as 44 

lattice. The kz's in the two configurations are practically the same and 

approximately equal to 0.26 and the corresponding least modulus eigenvalues are 

0.35D-4 and -0.126D-3 respectively. The approach toward kz is clearly indicated 

in Fig. 3.6 in which N(X)  has been plotted against X for a range of k .

n(A,)
60

70

60

50

30

20
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-0102 0. 02 0. 04- 0 .0 4

k = 0.240
0 .0 6

* = 0245+
X K = 0250  ♦  * = 0.255
♦  * = 0260

Fig. 3.6 Eigenvalue distribution of 75M at P = 0.0 on a 64 lattice as k crosses kz .
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Finally we have studied Y5M  spectrum on an 8 4  lattice by generating a 

configuration from 300 sweeps starting from a hot start. The results once again 

confirm the previous results of smaller lattices. For this 8 4  configuration k z i s 

observed to be 0.252 with the smallest modulus eigenvalue 0.9764D-4.

For the same k, there are apparently more eigenvalues in a given range of 

eigenvalues on larger lattices resulting in denser eigenvalue distribution compared 

with the smaller lattices. To extrapolate the results to infinite-volume limit one might
tx (X)normalize the eigenvalue distribution by the volume and study v s - X as in Fig.

site

3.7. Interesting observation is that the kz seems to decrease as we approach

infinite-volum e lim it on bigger lattices if  w e compare the k z s o f  the above 44, 64 ,

8 4  lattices. This is in agreement with the analytic prediction of k z = 0.25 in

infinite-volume limit as stated in §3.5.

In closing this sub-section we conclude the existence of parity-violating
n ( «

0 .2 5

0120

01 05

-01 005 0 .0 0 5-0 .0 1 5 0.010

44 latticeo

*  64 lattice

+  84 lattice
Fig. 3.7 Normalized eigenvalue distribution of y$M at P = 0.0 and k = 0.25.
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phase transition at strong coupling limit in quenched approximation as a result of 

which a massless pion, in infinite-volume limit, occurs at Kc = 0.25 where pion 

propagator (M^M) ' 1 is singular.

3.9.2 Weak Coupling

We classify our results of 44 and 84  lattices as follows:

44 Lattices

We have worked on a range of non-zero p's from p  = 5.0  up to p  =  5 . 7 .  A s  

presented in Chapter 1, Wilson Line plots of the corresponding gauge 

configurations, show a clear deconfinement phase transition at p  = 5 . 5  by breaking 

the Z3  symmetry.^

At p  = 5.0 two gauge configurations have been generated by 1000 and 

4000 iterations from a hot start. The Y5M spectra in this case show similar 

behaviour as p  = 0 case. The k*z's have apparently shifted toward lower values 

compared with the strong coupling limit k z 's .  They are 0.24 and 0.25 with the 

corresponding least modulus eigenvalues 0.775D-3 and 0.185D-3 for the two 

configurations respectively.

Similar behaviour is also observed at p  = 5 3  for a gauge configuration 

obtained by 35000 sweeps from a hot start. The corresponding kz is still decreased 

further down to kz = 0.1991 with smallest modulus eigenvalue -0.1144D-6.

Decreasing of the kz as p  increases from strong coupling limit to weaker 

coupling constants is in agreement with the phase diagram of Fig. 3.3 and confirms 

the existence of a massless mode in the confining phase at weak coupling constants.

The general behaviour of J5M spectrum changes as one crosses the 

deconfining phase transition temperature. To investigate J5M  in the deconfming 

phase we have generated two configurations. One at p  = 5.5 by 20000 sweeps 

from a hot start and the other at p -  5.7 by 55000 iterations from a hot start.

8 See Fig. 1,3.
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Careful studies of the spectra show that there are no zero modes for any values of K 

as shown in Fig. 3.8 where the plot of first positive and negative eigenvalues 

against ^ a t  p  = 5.5 never crosses zero axis. In other words p(0) = 0 for all k. 

This is an indication that no massless pions exist in the deconfining phase. On the 

other hand, since massless pions are associated with chiral symmetry breaking, this 

observation in turn implicates the restoration of chiral symmetry at weak enough 

coupling constants in infinite-volume limit. Although the chiral symmetry is 

explicitly broken by Wilson term and one hopes to recover it only in the continuum 

limit, there are claims that even on lattices as small as 83 x4 the chiral limit, in the 

presence of dynamical fermions, can be reached from the confined phase [52].

84 L attices

Results more relevant to the continuum limit have been obtained by studying 

an 8 4  lattice on different gauge configurations from ft = 5.0 up to ft = 5.8 where 

we are still in the confining phase as indicated by the corresponding Wilson Line

X

0.15

0.05

0.00

*WOOOoo<*xXXx

- 0.10

-0.15

Fig. 3.8 The first positive and negative eigenvalues o f vs. -£-in the deconfining 

phase at P = 5.5 on a 44 lattice.

114



plot of Fig. 3.9. At p  = 5.0 we have generated a gauge configuration by 6300 

Metropolis sweeps from a hot start and have calculated the Y5M  spectrum over a 

range of k. The behaviour is very similar to the strong coupling limit but with a 

lower Kz equal to 0.22 with the least modulus eigenvalue -0.3621D-4. This means 

that p(0 ) remains non-zero and the first positive and negative eigenvalues distribute 

very close around zero-axis for k>  kt2 as shown in Fig. 3.10. One might notice 

that kz in this case is smaller than kz for a 44  configuration at the same p.

More analysis of Y5M  matrix has been performed at p  = 5 .5. Starting from 

a hot start we have generated two well separated gauge configurations obtained by 

8300 and 13300 sweeps respectively. For each configuration we have calculated the 

almost exact zero mode as well as the first few eigenvalues on either side of the 

zero-eigenvalue-axis. The development of these eigenvalues are carefully observed 

by fine tuning of hopping parameter k. In Figs. 3.11 and 3.12 we have plotted 

these eigenvalues for a range of k  for the first and the second configuration 

respectively. The existence of exact zero modes for Wilson fermions is remarkably 

obvious in these plots. The k z  s are where the curves first cross the zero-

Im (Av. Wilson Line)

Re (Av. Wilson Line)

-01& 0- 

- a  075~

- 0 .1 0 0
Fig. 3.9 Average Wilson Line on an 84 lattice at P = 5.8 measured over 7000 sweeps 

starting from a configuration at at P = 5.0 obtained by 6300 sweeps from a hot start.
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Fig. 3.10 spectrum vs. j^ a tP  = 5.0  on an 84 lattice.

1_
K

eigenvalue-axis from below. k z shifts from 0.197 in the first configuration to 

0.1835 in the second configuration. This relatively large shift in k z on one hand 

indicates that the calculation of kc is subject to relatively large finite-size 

fluctuations and on the other hand for a wide range of K  above Kc the fermion 

matrix has zero modes where averaged over all gauge configurations. This in turn is 

the sign of entering into the parity-violating phase by crossing k c .

It is interesting to see if the k z shifts, such as the observed one in the above 

two decorrelated configurations, follow a systematic pattern. This requires 

generating well correlated configurations i.e. those which differ from each other
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Fig. 3 .12 y^M spectrum vs. k  in the second configuration at P = 5.5 on an 84 lattice 

with antiperiodic boundary conditions on fermion fields.

only by small changes. Accordingly we have generated three more configurations 

and studied the corresponding spectra. The third configuration is obtained from the 

above second configuration by changing e-param eter9 from 0.5 to 0.05 and 

performing 2 more Metropolis iterations. The fourth configuration is obtained from 

the second by only 2 more sweeps. And finally the fifth configuration is obtained 

from the second by performing 10 more sweeps. The corresponding spectra for 

these three correlated configurations are shown in Figs. 3.13 to 3.15.

The similarity of the spectra of the second and the third configurations 

which is demonstrated in Fig. 3.16 is consistent with the fact that the third 

configuration is quite correlated to the second one as it is generated from the second 

configuration by only a very small change.

9e is the parameter introduced in footnote 13 of Chapter 1 to generate gauge fields (See §1.8). 

Except for the third configuration we have always set £ = 0.5 .
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Fig. 3 .13  spectrum vs. k  in the third configuration at P = 5.5  on an 84 lattice 

with antiperiodic boundary conditions on fermion fields.
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Fig. 3 .14 y^M spectrum vs. k  in the fourth configuration at P = 5.5 on an 84 lattice 
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Fig. 3 .15  Y$M spectrum vs. k  in the fifth configuration at P = 5.5  on an 84 lattice 

with antiperiodic boundary conditions on fermion fields.
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Fig. 3.16 Y$M spectrum vs. jc in the 

second and third configurations at P -  

5.5  on an 84 lattice with antiperiodic 

boundary conditions on fermion fields. 

k z  changes from 0.1835 in the second 

configuration to 0.1828 in the third 

configuration.

The comparison of the spectra of the second and the fourth configurations in 

Fig. 3.17 shows that though the eigenvalues away from the zero-axis behave 

similarly in the two configurations, the closest eigenvalues to zero shift 

considerably and result a relatively large shift in k z . Accordingly one should bear 

in mind that the kc calculation is subject to relatively large errors. The above shift 

which is not substantial for the values of k  far below k z indicates that the pion 

mass is almost configuration independent for the lower values of k  and fluctuates 

from configuration to configuration as one approaches k c . This in turn is another 

reason for the large errors in the values of k c calculated from the extrapolation of 

pion mass data to the region of the hopping parameter where the pion mass 

vanishes [53]. Finally the lack of similarity in the above two spectra on one hand 

and the fact that the fourth configuration is different from the second one by only 

two sweeps on the other, confirm that at p  = 5.5 the correlation lengths are short 

and actually less than two sweeps.

K
4 X4

‘ X 4
4X
♦X

♦
4

X 4 4 X 4 X
IX 4 4 X 4 X Fig. 3 .1 7  y^M spectrum vs. k in the

0.199~‘ X 4
x t

t x
4 X

4£ 44 X 4X 
4 4 X 4 second and fourth configurations at P =

0.194~ X4
X4

4 X 
4 X

|X4 
X 4

4 4 X 
4 4X 5.5  on an 84 lattice with antiperiodic

0.192 X4
4

4X
*

X
X

4 4 4< 
4 4 k boundary conditions on fermion fields.

0.190“ ♦ » 
t >4

X
X

4 4 
4 4 kz changes from 0.1835 in the second

0.199“ Xt
X4

>
X

4
4 configuration to 0.1945 in the fourth

01109“ *• X 4 configuration.
01194“

<
1 Xt

4
v x  2nd configuration

01102“ 1 " — r — 11— - 1 --------"r-H ♦  4th configuration— i------- 1--------1 i t t
- 0 .0 0 4 - 0 .0 0 2  0 .0 0 0  0 .0 0 2  0 .0 0 4  A,

119



The spectrum of the fifth configuration which has been compared with that 

of the second in Fig. 3.18 does not show any major qualitative difference from the 

eigenvalue spectrum of the fourth configuration. In fact as the fifth configuration is 

a long way apart from the second configuration, obviously there are no correlations 

in this case.

We have also changed the boundary conditions to periodic and repeated the 

same calculations. Although the general behaviour is seen to be qualitatively the 

same as previous case we note that the closest eigenvalues to zero undergo large 

fluctuations in some configurations. This phenomenon will in turn cause large 

shifts of K^'sin the corresponding configurations. Such an example is given in 

Fig. 3.19 where the spectrum in the second configuration with periodic boundary 

conditions is compared with the corresponding spectrum with antiperiodic 

boundary conditions imposed on the fermion fields. This feature might be improved 

on larger lattices and/or by approaching continuum limit where the boundary effects 

are relatively suppressed. The spectra with periodic boundary conditions on 

fermion fields are shown in Figs. 3.20 to 3.24 for the five configurations.

In Figs. 3.25 to 3.27 we compare the spectra of the third, fourth and fifth 

configurations with that of the second configuration and observe qualitatively the 

same features as were observed in the corresponding antiperiodic cases i.e. still
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Fig. 3.21 y^M spectrum vs. k in the second configuration at P = 5.5  on an 84 lattice 

with periodic boundary conditions on fermion fields.

there are some similarities between the spectra of the second and the third 

configurations while the corresponding spectra in the fourth and the fifth 

configurations behave almost differently from the second configuration spectrum. 

These results along with the corresponding results with the antiperiodic boundary 

conditions on the fermion fields indicate the lack of long distance correlations at p  

= 5.5. One really needs to look at /3-values closer to the deconfining phase 

transition point e.g. ft = 5.8 to observe better correlations. Alternatively one can 

work on larger lattices for better correlations. In this case the lattice spacing 

becomes smaller in terms of which the correlation lengths will become larger.

We have searched for some support for the phase diagram of §3.6 by 

probing more into weak coupling region. Up to ft = 5.65 no noticeable change is 

observed in the behaviour of Y5M  spectrum compared with the stronger coupling 

cases i.e. p(0 ) * 0  for all k >  k z . At this p  we generated a gauge configuration by 

13300 sweeps from a hot start and found kz = 0.19 with smallest modulus
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Fig. 3 .22 y^M spectrum vs. k  in the third configuration at /? = 5.5  on an 84 lattice 

with periodic boundary conditions on fermion fields.

eigenvalue -0.53821D-7.

New observations are made at j5 = 5.8. Working in three well separated 

configurations generated by 11300, 13300 and 16300 iterations respectively from a 

hot start we have searched for the k z s . Except for smaller values of k z , we see
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with periodic boundary conditions on fermion fields.
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F ig . 3 .2 4  spectrum vs. x: in the fifth configuration at P = 5.5  on an 84 lattice 

with periodic boundary conditions on fermion fields.

more or less similar behaviour to the p  = 5.5 cases as long as we are relatively 

close to Kr  The major difference comes when we calculate y5M  spectrum at higher 

values of k. Previously at p  = 5.5 in some configurations we could observe the 

existence of a second k z relatively close to the first k z and interpreted as a sign of 

filling the whole k  region above kc once the contributions from all configurations 

are superposed on each other. At p  = 5.8 on the other hand, we observe the 

second kz appears almost far away from the first kz. This phenomenon which is 

observed in all three configurations implies that at infinite-volume limit we observe 

two separate regions of zero modes once averaged over all gauge fields. Fig. 3.28 

shows how the first smallest modulus eigenvalues for three configurations 

approach zero axis to form the zero modes in two well separated regions. The third 

configuration shows rather different behaviour indicating either that the region of 

zero modes is larger than what is observed once more configurations are worked 

out or the infinite-volume behaviour is hampered by finite-size effects.
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Fig. 3 .25 y$M spectrum vs. k in the 

second and the third configurations at P 

= 5.5 on an 8^ lattice with periodic 

boundary conditions on fermion fields. 

k z  changes from 0.208 in the second 

configuration to 0.234 in the third 

configuration.

We have also changed boundary conditions to periodic and worked out the 

spectra in the second and third configurations. At P = 5.8 the corresponding 

changes in the eigenvalue distributions are much less than similar modifications due 

to changing the boundary conditions at P = 5.5 and in particular the shifts of kz 

are about an order of magnitude less. This observation indicates that the boundary 

effects would gradually disappear as we approach the deconfining phase transition 

and eventually the continuum limit, bearing in mind that the actual continuum limit 

is approached by simultaneous increase in volume and p. In Figs. 3.29 and 3. 30 

we have compared the spectra with different boundary conditions in the second and 

the third configurations at p  = 5.8 respectively.
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Fig. 3.27 y^M spectrum vs. k  in the 

second and the fifth configurations at P 
= 5.5 on an 84 lattice with periodic 

boundary conditions on fermion fields. 

kz changes from 0.1835 in the second 

configuration to 0.206 in the fifth 

configuration.

These observations at ft = 5.8, i.e. the existence of multiple phase 

transitions, are in full agreement with the speculations from the proposed phase 

diagram for single-flavour lattice QCD at weak coupling constants. Our results for 

44 and 8 4  lattices are summarized in Tables 3.2 to 3.4.
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F ig . 3 .29  Y5 M spectrum vs. k  in the second configuration at P = 5.8  on an 84 

lattice. kz shifts from 0.1619 to 0.1627 as boundary conditions are changed from 
antiperiodic to periodic.

It is also interesting to note that under the same conditions the eigenvalue 

distribution tends to become thinner as increases as shown in Fig. 3.31. This 

effect makes the eigenvalues and in particular the zero modes isolated and as a result 

makes the inversion programme easier to perform, as noticed before. This property
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F ig. 3.30 )^Af spectrum vs. Kin the third configuration at P = 5.8  on an 84 lattice. 

kz shifts from 0.16775 to 0.1671 as boundary conditions are changed from antiperiodic 

to periodic.

Table 3.2
Kz for a number of 44 SU(3) gauge configurations at weak coupling 

constants with antiperiodic boundary conditions on fermion fields.

p configuration Kz X z

5.0 1 0.2400 0.7750D-3
5.0 2 0.2500 0.1850D-3
5.3 1 0.1991 -0.1144D-4

5.5 * 1 - -

5.7 * 1 - -

* No kz exists.

which is more transparent in smaller lattices makes the p(X) behave as S(X) in a 

neighborhood around X = 0  at k  > k z in confining phase.

The above conclusions could be more transparent if we could work out the 

whole spectrum of M or Af, defined by Eq. (3.50). In fact the regions of the zero 

modes of YSM  or M in k’-space correspond to the regions of real eigenvalues of 

A/10. Representing the whole eigenvalues in the complex plane and superposing 

the results of different gauge configurations reveal the exact regions of zero modes.

10 See §4.3.
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Table 33

*z for a number of 84 SU(3) gauge configurations at weak coupling 

constants with antiperiodic boundary conditions on fermion fields.

p configuration Kz X z

5.0 1 0 .2 2 0 -0.3621D-4

5.5 1 0.197 -0.2220D-4
5.5 2 0.1835 0.3458D-4
5.5 3 0.1828 0.4337D-5
5.5 4 0.1945 -0.5021D-4
5.5 5 0.199 -0.4725D-4

5.65 1 0.190 -0.5382D-3

5.8 1 0.170 0.2209D-3
5.8 2 0.1619 -0.1820D-3
5.8 3 0.16775 0.2435D-6

Table 3.4

kz for a number of 84 SU(3) gauge configurations at weak coupling 

constants with periodic boundary conditions on fermion fields.

P configuration K z Xz

5.5 1 0 .2 1 0 -0.4935D-6
5.5 2 0.208 0.2064D-4
5.5 3 0.234 -0.2053D-4
5.5 4 0.1937 -0.101 ID-4
5.5 5 0.206 -0.4585D-4

5.8 2 0.1627 -0.4834D-4
5.8 3 0.1671 0.1509D-4

Such information at different values of construct the corresponding phase 

structure. Though, due to storage limitations, such a work on 8 4  lattices is really far 

from one's ability, however a parallel study has been performed on a 44  lattice. The 

corresponding results for each individual SU(3) configurations, presented in [54], 

actually support our conclusions. One should note that despite the small size of this 

lattice it is still very time consuming to work out the whole spectrum for a
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F ig . 3 .31  y$M eigenvalue distributions for three gauge configurations with different 

P's at the corresponding jcz's on an 84 lattice with antiperiodic boundary conditions on 

fermion fields.

considerable number of gauge configurations. Alternatively one might calculate the 

eigenvalues on a SU(2) gauge configuration which presumably take much less 

time in favour of a large number of gauge configurations. The histogram plots 

showing the frequency of the real eigenvalues obtained over a large number of 

SU(2) gauge configurations [55] indicate clear confirmation of our results and 

accordingly support the proposed phase structure.
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Chapter 4

Meson Propagators

In the preceding chapter we showed how Monte Carlo simulations confirmed the 

phase structure of Aoki. This explains why the pion becomes massless at a critical 

hopping parameter k c. Our investigations there were based on the eigenvalue 

spectrum studies. Alternatively, we might observe how pion mass vanishes as K  —»

k c by direct calculation of its mass. This is normally done by studying the large 

distance behaviour of the pion propagator. In this chapter we adopt this approach 

while applying block Lanczos algorithm to calculate the relevant propagators.

4.1 Correlation Functions And Masses

QCD energy levels and in particular particle masses can be obtained from the large 

distance behaviour of connected correlation functions C(&t) of appropriate 

operators <2 i.e. operators with the quantum numbers of the desired particle 

state,

C(2S,t) =  < 0 1  <Dt (x ,t )  0 ( 0 , 0 )  10  > c 

=  < 0 l 0 t ( x , t ) 0 ( 0 , 0 )  I 0 >

- <  0 1 O ^ x . t )  1 0 x 0 1 0 ( 0 , 0 )  10  >  ( 4 . 1 )

The operator &(&t) is evolved from its initial value at t -  0 through,

0 ( x , t )  =  e iHt O ( x ,0 )  e ' iHt ( 4 .2 )

where H  is the Hamiltonian. Using the operator (4.2) and inserting a complete set 

of energy eigenstates In> into correlation function (4.1) we get:
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C(x,t) = £  < 0 l«iHl-g>+(x,0) e‘iHl I n >.< n l,4>(0,0) I 0  >
11 f
- < o fe,0 ) e4Ht i 0  >.< 0  l.<J>(0 ,0 ) I 0  > (4 .3 )

Let En be the energy level corresponding ;o state Jn>. Tl>eny\ye. have,

Cfe.t) = T  e “®n k n ''S’fcO) 10 > |2
(4-4)

We continue to Euclidean spafie-fFom Mii>ko,wski sp a^e .,b ^d ^ tin g  t -it in Eq. 

(4.4). As t —»®°the excited stales contributions die out and Eq. (4.4) behaves 

asymptotically as:

O C f c t ) ‘ ®‘ * H  1 W i O ) 10 > I2 ( 4  5)

Actually the correiation funetion must also include the contribution from 

•propagation Tomad the lattice in the opposite direction. If the lattice extension in the 

temporal direclicm is L j  then the times t  and L j t  have the^same time separation 

zfrom the lime origin :at r-= 0  for the two propagations, in the opposite directions. 

T h e  corEedationTunetion, then, becomes:

€ (x ,t) ->  Lt-̂ po L
■ t'tEj < Eq ) - ( Lj. - 0 ( E[ - Eq )

~e +, e

x \< i kp(x,o) i o >  |2 (4-6)

We usually sum over x to project on zero momentum sfates. 1 This results in:

"C(t) ->  A cosh ̂ ■' [—y oo
L i—|—i

(4.7)

where A is a constant and w ^is the mass gap Er E0. The jeason for using p = 0 

operators is that it makes the. extraction of the mass very direct. The price to pay is 

that on an L j  lattice one will get only L j  independent measurements  of

correlation function £  (t) per generated gauge field configuration.

T his is equivalent to Fourier transforming Eq. (4.6) to momentum space and letting P — 0.
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4.2 P artic le  P ropagators

The correlation functions can be thought of expressions representing a particle 

being created at the origin, travelling to x  and being annihilated at x  i.e. they are 

just the Feynman propagators for the corresponding particles. In the case of 

hadrons which are fermion composite fields, the corresponding propagators can be 

worked out in terms of fermion propagators M ' 1 or . For instance let us

consider pseudoscalar meson (k) and non-singlet scalar meson {oq) propagators. 

The pseudoscalar meson (pion) is written in terms of its components as:

7t(x) = xj;0fa (x)(i7 5)ap\)/|,fa (x) (4g)

where in Eq. (4.8) and the subsequent equations a , ... refer to spin indices, a, 

b , ... to colour indices and /  and f  to flavour indices. The pion propagator (i.e. 

the pion correlation function) is then:

C(x) = < 0 17t (x) k (0) I 0 >

= < VcL (*) (Yo^Vap < 0 0  ?7fb(0) (Y5)y8 <  (0) > (4.9)2

Using the relation:

< BVj > = < ( BM'1 ).. >G (4.10)

which is valid in quenched approximation for any fermion independent matrix B, 

Eq. (4.9) would read:

C(x) = < (y5)ap (M f05b xaa (y5 )^5 (m )xpa ^  >G

= T r spin,coior < Y5 (M '1) ^  y5 ( M ^  >G (4.11)

In Eq. (4.11) we have ignored the contribution from the disconnected piece,

C(x) = < f T r  . Z  n (x) T Tr . Z  7 t ( 0 )
 ̂ 'D C  spin color spin color

2 The unimportant minus sign arising from the term Y0Y5 Y0 = ' Ys is eliminated when we change 

the integrand from yf (x) V <°) to V (0) /  (x). If we choose V Y0 Y5 V for pion rather than VY5 V 

the first minus sign disappears but the second one changes the sign of C(t).
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=  < . Tlspin ^ o r (M'V x 7 5][Trspin ^ O .o T l ]  >0 (4.12)

because, due to the properties of Grassmann variables i.e. Eqs. (1.37) and (1.39), 

it vanishes w hen/V / ' 3 as for 7r +and n .

I f / a n d / '  are degenerate in mass then Kj = Kj, and as a result =

( M 1 = Af * .  Moreover since = y5 M J5 for Wilson fermion matrix Af, Eq.

(4.11) reduces to:

c(x>= £  < ( m - 1); 0 ( m \ 0 >g
spin,color

= I  < | (M'1) 0 I2>g (4.13)
spin,color

As before we sum over spatial coordinates & to project on zero momentum states,

C(t) = < 2  I I  0 0 ,2>g (4.14)
i  spin,color

We will find it more convenient if we write E(t) in terms of (ys M ) ' 1. The 

hermicity of y5 M  can be used to write Eq. (4.11) as:

CW = < 2  I  l[ (75M) \ t o , o ' 2>G (4.15)
X spin,color v 7

In principal the expressions (4.14) and (4.15) should be summed over all origins as 

well. However in practice this is really impossible and one is content only with 

averaging over just a few origins or only one.

Similarly we derive the propagator for the non-singlet scalar meson

identified by the local operator \jfjjx) v j j x ) as:

C(x) = < X Trspin>color [ (M )0,o x,t )_x,t o,o  ̂ > G (4.16)

Eq. (4.16) is expressed in terms of (75 M) ' 1 as:

3 If /  = / '  e.g. in 7] meson the relevant propagator is modified by -nj- C (x)qq  where nj- is the 

number of flavours and C(x)DC is the corresponding disconnected piece.

134



C(t) = < £  £  •II (Y5M )'V 51
* spin,color [  x,t 0 ,0  x,t 0 ,0  '

>.(4.17)

Likewise the other hadron propagators can be obtained only in terms of 

fermion propagator or (y5 M ) ' 1 in quenched approximation.

4.3 Zero M odes And H adron Propagators

We can analyze the hadron propagators, at least qualitatively, as k  approaches k c . 

Following Itoh et al. [56] this is done if we represent fermion matrix elements 

Mjy by its eigenfunctions. To carry out this procedure we need first to prove the 

following relations. In the following we denote by (fo(n) the eigenfunction of M  

corresponding to eigenvalue i.e.

M<j) j = X.(|>. (4.18)

I W riting M  as - k$ + 1  where fcf is x*-independent and denoting the

eigenfunctions of which are, of course, /c-independent by with the K  

independent eigenvalues p f- then:

M Q = ( - kM+1) C; = Ci - Kp£i = (-KPj+l) C; (4.19)

The comparison of Eq. (4.18) with Eq. (4.19) shows that the eigenfunctions of M  

are ^-independent and its eigenvalues are related to those of S i  by,

A.. = - K p .+ l  (4.20)

From Eq. (4.20) we see that any real p t- fixes a k z equal to - j -  since it is at these
^  i

values of x*that M  has a zero eigenvalue. Accordingly we write the real 

eigenvalues of M  as:

* = 1" i |  (4.21)

II Multiplying both sides of Eq. (4.18) by y5 and making use of hermicity 

of Y5M, we therefore have:
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<t>i75M = X*<l)jJ (4.22)

The secular equation for Eq. (4.22) reads:

d e t ( M - ^ * l )  = 0 (4.23)

Eq. (4.23) shows that for any eigenvalue A/ of M , X * is an eigenvalue too. We 

denote the corresponding eigenfunction by

M $ i = V $ i  (4.24)

m  Multiplying both sides of Eq. (4.22) by ty on the right we obtain:

♦ f r s t y j  = (4.25)

from which we conclude:

<t>i7 5f>j = °  for X* * X. (4.26)

The orthogonality relations of Eq. (4.26) can be applied to any pair of 

eigenfunctions, in particular we have:

for K * (4 .27)

<t)1t75$j = $ 1t75<l>j = 0 for 4 A-i Xj (4.28)

IV Without loss of generality we transform the eigenfunctions and ^  

as follows:
(J).

^  pi = ---------—  (4.29)

<>1 pi = ---------—  (4.30)

Then we get:

Pi75pi = 1 (4.31)

Combining Eqs. (4.28)-(4.31) we obtain:

4 Assuming non-degeneracy this is equivalent to i * j .
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P ^ 5 Pj = 8  ■1 J J It (4.32)

Let us define the matrices P, p  and P^ as: 

P = [P i, P2, ...]

P f =
P :

P,

The set of Eqs. (4.31) and (4.32) is equivalent to bi-unitary relation:

P V5P = (y5P)+p = 1

From Eq. (4.29) we see that,

MPj = XjPj

and therefore from Eq. (4.32) we have:

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

P. y,M P. = 8 ..X.i 15 j ij j

If we define the matrix A  as:

A.. = 'u

0  f o r i / j

X. for i = j
. j J

then we write Eq. (4.38) as:

c-t ~ t
P y <.MP = (y,P) MP = A

(4.38)5

(4.39)

(4.40)

So M  is diagonalizable under the bi-unitary transformation defined by matrices 75p  

and P. Using the bi-unitary relation (4.36) one finds M  and M 1 as:

M = PA (y ,p y (4.41)

5 No summations over j  assumed.
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-1
M 1 = (75?^ A V 1 = P A '1(y5P ) t (4.42)

or equivalently the latter reads:

1 4>.(x)4>. (y>y5

1

(4.43)

As shown in Eq. (4.43) the major contributions to M ' 1 and accordingly to

hadron propagators are due to the small eigenvalues. When we are close to a zero 

mode the propagator is mainly dominated by the corresponding state, otherwise a 

lot of eigenfunctions will contribute. This implies that those gauge configurations 

with no zero modes or those with zero modes of opposite chirality do not contribute 

to the hadron propagators6 once the propagators are averaged over all gauge 

configurations. If X = ( I- -£~) is an eigenvalue corresponding to a zero (or almost
z

zero) mode, then the most divergent terms contributing to the meson propagators 

are proportional to X' . In cases where such terms cancel out, the divergent terms 

(X X i)'1, where X * #  X , will contribute most.

4.4 n And a0 Meson Propagators

We represent hadron propagators in terms of eigenfunctions of M  by using Eq.

(4.43) in propagators. In case of pion Eq. (4.11) or its Fourier transformed 

version, Eq. (4.14) would then become:

6 This is because the factor

?*<y)rs = [vs5j(y)]

in Eq. (4.43) changes sign for chirally opposite modes.
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C-(0 = < ? I T  ? t ' t—  >G <4-44)
1J (?i Ys^i> <5>j y 5<t>j)

Similarly for the non-singlet scalar meson correlation function we use Eq. (4.43) in 

Eq. (4.16) to get:

* , s 1 ?jV<t>i(X,t)
u r f  1 V

1 J (?i Y5<t>i) ($J Y5<t>j )
(4.45)

We are interested to see how zero modes contribute to the propagators. Let us 

assume that <p(x) is a zero mode. Then from Eq. (4.21) the corresponding 

vanishing eigenvalue A approaches (1~~}̂ ) '  as k  —> k z . Moreover since X is  

real we have $  = (f). We then approximate fermion propagator (4.43) as k  k  :

, (x) <>t (y)y 5
(M  )xy -  1

1 JL  t
X  (4> y5(>)

(4.46)

and the meson correlation functions (4.44) and (4.45) as:

c n(t) = < —
( 1- j ^ r  s

4>
(4.47)

Similarly for the non-singlet scalar meson correlation function we use Eq. (4.44) in 

Eq. (4.16) to obtain:

< n JC.N2 i '

(t>(°)l <t>t Y«<l>(x,t)

( f ^ ) 2

7 The implicit application of the following abbreviations should be realized:

<()+<j)(0) = I  d>+(0) 0(0)
spin .color

0(0) = I  Tr 0 t(O)Y 0 (0 )
color "

and similar expressions at point x. Also

0 +Y 5 0  = 1 1  Tr 0 f( x ) Y 5 0 ( x )
3 X color s Pm 3

(4.48)7

etc.
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In the hopping parameter region close to k*z, the comparison of Eq. (4.47) with

(4.48) shows that:

I The pseudoscalar correlation function is greater than the non-singlet scalar 

correlation function. This can be seen if we write (j) in terms of £} and f 2 the 

eigenfunctions of y5 with eigenvalues + 1  and -1  respectively,

<J)(x) = c ^ x ) ^  + c2 (x) £ 2  (4.49)

where cj(x) and c2 (X) are spin independent. Then:

(j)t(j)(x) = lc](x)l2+ lc2 (x)l2 (4.50)

and

(|)ty5({>(x) = Ic^x)!2- lc2 (x)l2  (4.51)

so we have,

<J)t<|)(x) > ^ ^ ^ ( x )  (4.52)

As a result each term in Eq. (4.47) is greater than the corresponding term in Eq.

(4.48). This results in:

^ ( t )  > Cs(t) (4.53)

II Both non-singlet scalar and pseudoscalar meson propagators are of the 

same order as we approach continuum limit. This is the consequence of a numerical 

check [5 7 ] that the ratio of f t t f x ) and 0 fy5 0 (x) is of order (plus or minus) unity

for any eigenfunction with real eigenvalue.

III As k  approaches k  both (t) and £ s(t) become large proportional 

to ( l- -£ r )~2  and diverge at k  -  K- In other words both non-singlet scalar and
Kz 2

pseudoscalar mesons become massless at k  -  kz. We emphasize that these

conclusions are valid only in the region k * kz where only one eigenstate i.e. the

zero mode contributes to the propagators. Actually any comparison of non-singlet

scalar and pseudoscalar meson propagators should be in a region where more states
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contribute. This means that we have to work in regions relatively far away from kz 

in which case one must really consider relations (4.44) and (4.45) instead of Eqs. 

(4.47) and (4.48), though complicated mixture of states now makes it extremely 

difficult to predict the propagators behaviours in such regions.

4.5 N um erical Analysis Of The P ropagators

We already know that the lattice formulation appears to be the most promising 

method to compute the hadron mass spectrum within the framework of QCD. The 

prediction of such a spectrum is indeed one of the crucial tests for establishing QCD 

as the correct theory of strong interactions. Unfortunately any realistic calculation of 

hadron masses is faced with a number of difficulties. First of all due to the nature of 

theories with infinite number of degrees of freedom any approximation of fields 

requires the Monte Carlo simulations on large lattices not only to represent 

continuum limit but also to eliminate the finite-size effects. Obviously the presence 

of the dynamical fermions does not let one tackle the full theory on large lattices. If 

we accept quenched approximation then the main limitation in the lattice size comes 

from the inversion of large fermion matrix. Moreover to obtain reasonable results a 

good statistics is needed. This requires the calculations on a considerable number of 

gauge configurations as well as origin points. Bearing these considerations in mind 

we have worked out only pion and non-singlet scalar meson propagators in just a 

few limited cases in quenched approximation on an 8  x 16 lattice in only one gauge 

field configuration. The aim is, on one hand, to demonstrate the efficiency of block 

Lanczos algorithm in such calculations, and at the same time gain some qualitative 

insight into the hadron propagators and specially understand how propagators 

behave when we are close to the zero modes.

Since we always use hermitian Lanczos algorithm we work with hermitian 

Y5M  and accordingly we work with Eqs. (4.15) and (4.17) to calculate pion and 

non-singlet scalar correlation functions.
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We need to invert YSM. If the origin is located at site n, then we actually

located at site n for the initial Lanczos vector as mentioned in §2.4. Taking into 

account the number of spins and colours one has to do N spinNcolor inversions at 

the same site but at different spins and colours. Block Lanczos algorithm with block 

size of NspinNcolor *s the most efficient way to calculate all N spinN coi0r required

content with smaller blocks in favour of larger lattices.

The correlation functions behave like hyperbolic cosine functions only at 

large distances where the excited states have died out. To observe such a behaviour 

one really must be able to calculate correlation functions at large values of t. This 

requires working on more extended lattices, at least in temporal direction. Though 

generating gauge configurations on large lattices is extremely time consuming 

however for qualitative research purposes we might pretend to work with a large 

gauge configuration just by multiplication of smaller gauge configurations for a 

number of times. Here we consider the case of duplication of a gauge 

configuration. Triplicating and making four or more copies of the configuration 

follow similarly.
5

Let U be a gauge configuration generated on an L5  L j  lattice with periodic 

boundary conditions on the gauge fields. If we duplicate the lattice along the 

temporal extension to construct an Ls x 2 L T lattice and copy U on the duplicated 

part then we have a gauge configuration on an L s x 2 L T lattice where still 

periodic boundary conditions on the gauge fields are maintained [58]. Due to 

periodicity of gauge fields the corresponding fermion matrix m  can be represented 

as:

We can construct the corresponding periodic eigenfunctions of m  from the

need only the rfi1 column of (y5M )'] . This is obtained by choosing a <5 -function

columns of (y5M ) 1 at once. In practice due to storage limitations we should be

m  = (4.54)
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eigenfunctions of M  once periodic boundary conditions are imposed on the 

fermion fields for larger lattice. Let (f)p and (j)a be eigenfunctions of M  where 

periodic and antiperiodic boundary conditions are imposed on the fermion fields

along temporal direction respectively while spatial boundary conditions remain

periodic. Also let X p and X a be the corresponding eigenvalues. Then we have:

<j>p(x+2LT) = <i>p(x+LT) = <j>p(x) (4.55)

<J>a(x+2Lr) = - <J>a(x+Lr) = <j)a(x) (4.56)

therefore both 0pand (f)a are periodic with the period of 2L j. Moreover if we write 

the eigenfunctions in the range of 0 <x < 2Lj as:

®i =

O = 2

(4.57)

(4.58)

where ^ a n d  <pa are just the eigenfunctions in the range 0 <x < L j then we have:

m O j  =
M 0 /"a A♦ M*.

U  MA<t>p7 v M k  /

= X, V = A. O (4.59)

and,

m4>2 =

= X

'M  0 

, 0  M

f<j> ''

O  'I“ a Mtj); 

l-M  t y j

M
-  A,ad>2 (4.60)

So the spectrum of m  with periodic boundary conditions on fermion fields is just 

composed of the spectra of M with periodic and antiperiodic boundary conditions 

on fermion fields. The same statement holds if M is replaced with y5M .

Starting with the third configuration generated at ft = 5.8 on an 8 4  lattice in 

§3 .9 .2  we have generated an 8 x l 6  gauge configuration by the above procedure
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while periodic boundary conditions are imposed on all directions. Its double valued 

nature of eigenvalue distribution vs. k  shown in Fig. 4.1 clearly indicates that the 

83x16 YsM  matrix spectrum is the superposition of 8 4  Y5M matrix spectra. 

Comparing Fig. 4.1 with eigenvalue spectra of 75Af at ft = 5.8 on an 8 4  lattice 

with periodic boundary conditions on fermion fields (Fig. 3.30) indicates that the 

first Kz = 0.1671 {Xz = 0.1509D-4) is the k z of 8 4  lattice with periodic boundary 

conditions on time direction at p  = 5.8. The branch of eigenvalues corresponding 

to antiperiodic boundary conditions on time direction crosses zero at K  = 0.1676 

(Xz = 0.1867D-4).

The observables must really be calculated in physical region where k  < k ^. 

Due to the sign change of det M  in crossing kz the probability distribution 

becomes meaningless in non-physical region in full theory. However in quenched 

approximation where det M  is suppressed there is nothing to prevent us from 

entering into non-physical region. As we saw before the fermion matrix 

eigenfunctions are ^-independent and as a result the /c-dependence of correlation 

functions in quenched approximation is only through the eigenvalues^ and in 

particular the major contributions to the magnitude of the correlation functions come 

from small modulus eigenvalues regardless of the region of calculation. 

Accordingly we have studied pion and non-singlet scalar meson correlation 

functions for 5  values of Kin different regions in K-space for this 8  x l 6  lattice.
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Fig. 4.1 Spectrum of Y$M for an 83x l6  lattice at (3 = 5.8  with periodic boundary 

conditions on fermion fields on all directions.

8 E.g. see Eq. (4.44).
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The storage limitation does not allow to implement inversions on block sizes greater 

than 4 for an 8 3x l 6  lattice.

4.5.1 n  Meson

We have calculated pion (tt) correlation function at 4 k: values of 0.165, 0.167, 

0.1672, and 0.169. For each of these k 's we have found that there are only 2 

eigenvalues with modulus less than 0 .0 1 , one, Xp, corresponding to the periodic 

and the other, Xa, to the antiperiodic boundary conditions imposed on the fermion 

fields on temporal directions as given in Table 4.1. The order of least modulus 

eigenvalues and similarity of small eigenvalue distributions at k  = 0.165 and k  =

0.169  and also closeness of such distributions at k  = 0.167 and K = 0.1672 

agree with the observed behaviour of correlation functions shown in Fig. 4.2 as 

discussed before.

It is also interesting to see how the choice of origin affects the correlation 

function. As seen in Eq. (4.44) the origin dependence of correlation function comes 

from the terms <^0 j ( 0) .  The variation of such terms as we change the origin from 

one point to another on the lattice can cause major changes in the correlation 

functions. In particular if antiperiodic boundary conditions are imposed on the 

fermion fields then this antiperiodicity along with the continuity o f the 

eigenfunctions make every eigenfunction vanish at the boundaries. Excited states 

vanish also at the nodes different from the boundaries. As a result if the origin is

Table 4.1

Least modulus eigenvalues o f  Ys  M  for an 83x l 6  lattice at p  = 5 .8 .

K A,p X a A.J
y

0.1650 0.437 ID-2 0.6074D-2 1.39
0.1670 0.1823D-3 0.1186D-2 6.50
0.1672 -0.1491D-3 0.7816D-3 5.24
0.1690 -0.2790D-2 -0.2244D-2 0.80
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Fig. 4.2 Pion correlation function for an 83x l6  lattice at J8 = 5.8. The origin is 

located at / = 0 (site n - 1 ) .

located on or near a node then the contribution to (t) from the corresponding 

eigenfunction will be suppressed unless the corresponding least modulus 

eigenvalue is extremely small. To see these qualitative modifications of the 

propagators as the origin shifted we calculated C n (t) at k  = 0.165 and k  =  0.167 

for several origins. Except the first origin which is located at the comer of the lattice 

at site n = l  (t = 0) the rest are located at the time slice centers for t = 1, 2, ..., 7. 

The results are shown in Figs. 4.3 and 4.4 for k  = 0.165 and k  = 0.167 

respectively.

Although the results at k  = 0.165 show a systematic shift as we shift the 

origin, the corresponding results at K = 0.167 are very different. Regardless of 

slight changes in the magnitudes of the propagators it seems that they are 

independent of the choice of the origin at this value of k  which is relatively close to 

K  . We conclude that as k —> k  the choice of origin becomes immaterial because
z 1

only one eigenfunction is involved.

It is interesting to note that one might obtain the square of the zero mode

146



e  u)71

i f

1BT3 12US 1614

1 © ns -  732 a 1244 +  ns = 1756
X ns = 2268 *  ns = 2780 ♦  ns = 3292 x  ns = 3804

Fig. 4.3 Pion correlation function from different origins in an 83x l6  lattice at p  = 5.8  

and k = 0.165.
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Fig. 4.4 Pion correlation function from different origins in an 83x l6  lattice at 0  = 5.8  

and k = 0.167.
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eigenfunction i.e. (x,t) as a function of time from 'Cn (t). In fact as shown in 

Eq. (4.47) Cn (t) becomes proportional to the zero mode square as k  -»  k  . Let us 

consider C„(t) at k  = 0.1677 which is very close to the second kz = 0.1676 with 

Xz = 0.1867D-4. As this eigenvalue belongs to the branch of eigenvalues of Y5M  

with antiperiodic boundary conditions on fermion fields in time direction, the

corresponding zero mode (p(t) would be antiperiodic in each 8 4  lattice. But
f  fanyway, <f> <p(t) remains periodic in the same time interval. As a result (f) (p(t) and

consequently the correlation functions must have a maximum around t -  4 and two

minima (nodes) at the boundaries of first 8 4  lattice i.e. at t = 0 and t = 8 . Similar

pattern is expected in the second 8 4  lattice. Fig. 4.5 shows agreement with these

considerations.^ Due to the mixing of the modes as well as origin dependence of

the propagators such a pattern can not be recognized at values of x'far from kz.

7C 
103] 
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1* ]  
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i tr3} 
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ler4!

□ □ Q □ Q □

------------ 1------------1 I I I I I I t
10 0 2 4 6 8 10 12 14 IS

Fig. 4.5 Pion correlation function where origin is located at site 2000 in an 83x l6

lattice at /J = 5.8 and k = 0.1677.

9 In Fig. 4.5 the origin is in fact on t = 3. However, as mentioned in the previous paragraph, 

due to the closeness of * = 0.1677 to the second *z = 0.1676  we expect no shifts in the 

behaviour of the propagator.
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Finally we have calculated C „ (t)  at k  = 0.165 and k  = 0.167  by 

averaging over the above 8  origin points. We have also symmetrized the correlation 

function by replacing its value at time separation t  with its average value over equi­

distance time slices from the origin. We have considered the signals propagated 

from different origins as statistically independent and calculated the errors. The 

results show that the process of summing over the origins removes the 

unsystematic variations observed on each correlation function.

At K = 0.165 the smooth large distance ( 6  < t < 10) behaviour of C„(t) 

shows non-vanishing slope as a sign of a massive pion while Cn (t) is much 

larger at K  = 0.167 and becomes independent of t  as shown in Fig. 4.6. The flat 

behaviour of the propagator at large distances is a necessary but not sufficient 

condition for the pion to become massless. Actually we must work in a region 

where entering into the parity-violating phase is accompanied by entering into a 

dense region of zero modes. The spectrum of 8 3x l 6  lattice at p  = 5.8 in Fig. 4.1
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Fig. 4.6 Pion correlation functions averaged over 8 different origins in an 83x l6  lattice 

at P = 5.8.
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shows that the eigenvalues are isolated10 and as mentioned at the end of §3 .9 .2  

and indicated in Fig. 3.31 such an eigenvalue distribution is represented by a &- 

function. In other words p(0) vanishes everywhere except at kz. In this situation 

only one mode contributes to the propagators if we are close enough to a zero mode 

and as mentioned in section III of §4.4 both non-singlet scalar and pseudoscalar 

mesons become massless which is of course a wrong result! Our results in the 

following sub-section show that this is actually what happens when we work in 

such a wrong region. To cope with this situation we should either work at lower 

values of p  which of course would take us far from the continuum limit, or increase 

the lattice size.

4.5.2 ao M eson

We have made use of Eq. (4.17) to calculate non-singlet scalar meson (ag) 

correlation functions. We need to multiply (J5M f 1 by 75 once on the left and once 

on the right. Let only one column of [(75M ) ' 1 ]i t  0,0  ^  already calculated for a 

fixed spin and colour at a certain origin site. Though there is no need of other spin 

components of ( 75M ) ' 7 to perform [ 75 (75M f 1 ]L t q q m ultiplication, it is 

impossible to carry out the latter operation if (75M ) ' 1 is not known for the spins at 

the origin since now all the origin spins are involved in the multiplication. This 

requirement makes it impossible to compute non-singlet scalar meson propagators 

by non blocked algorithms without storing propagators. In fact we have to have 4 

columns of the inverse at a time and accordingly work in a block of size 4 to be able 

to do spin multiplications simultaneously. The situation here is different from pion 

correlation function (4.15) where we could calculate the correlation function for 

each spin of the origin separately and add the result together at the end. In other 

words no restrictions could be imposed on the size of blocks to calculate pion 

propagators while in non-singlet scalar meson propagator calculations the block size

10 The next least modulus eigenvalue at k = 0.167 is about 65 tinibs greater than the smallest 

one! This ratio is about 2.7 at * = 0.165.
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must be at least 4 and if there is no storage limitation the bigger possible block sizes 

can then only be 8 , 1 2 , etc.

We have calculated non-singlet scalar meson correlation function under the 

same conditions the pion calculations were done. The results obtained at 4 k  values 

of 0.165, 0.167, 0.1672 and 0.169 are plotted in Fig. 4.7. The correlation function 

at k  = 0.167 and k  -  0.1672 which are close to first kz is flatten and its 

magnitudes at large distances (6  <t < 1 0 ) become considerably larger than these 

magnitudes at K = 0.165 and k  -  0.169 which are far from k  . Compared with 

the corresponding results for pion i.e. Fig. 4.2 the non-singlet scalar correlation 

functions are less smooth and even negative at some time separations so that we can 

not show them on the logarithmic plot in Fig. 4.7. Comparing Eq. (4.14) with Eq. 

(4.16) indicates that all the terms in pion correlation function are positive whereas, 

due to non-hermicity of M, there is no such definiteness in non-singlet scalar 

correlation function terms. This can explain the unpleasant non-smooth feature of

Cs(t)
ib3!

102!

101

i0»]
isr*\

10-3 

ifir3!

ieri

ier?0

a q *
•  •  *o

9 + □
a o o +

□ a

r
e

— r 
10

— r 12 14
1 t

162  4  6
0  k = 0.1650
© k -  0.1670
A K = 0.1672
+  k = 0.1690

Fig. 4.7 Non-singlet scalar meson correlation functions for an 83x l6  lattice at j3 = 5.8.
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non-singlet scalar correlation functions.

It has been argued that large fluctuations and instabilities in hadron 

propagators in quenched approximation should generally be eased by the effects of 

dynamical fermions [59]. However, these fluctuations have been still observed in 

pion mass calculations with two degenerate flavours of staggered dynamical 

fermions, though they have been believed to be caused by the doubling of the lattice 

[60].

We expected in §4.4 that at k 's  very close to Kz both € n (t) and Cs(t) 

behave similarly while Cs(t) still remains smaller than Cn (t). Fig. 4.8 compares

Cs(t) with Cn (t) at k = 0.1672 and confirms this expectation as the non-singlet 

scalar meson propagator is pretty flat.

We have also calculated Cs(t) averaged over the previous 8  origins at k -

0.165 and k = 0.167. As before we have calculated the errors as if the signals 

from different origins were statistically independent. The corresponding results are
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Fig. 4.8 Non-singlet scalar and pseudoscalar meson correlation functions for an 83x l6  

lattice at j3 = 5.8 and k = 0.1672.
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plotted in Fig. 4.9 in which the missing points are indicative of negative signals as 

well as infinitely large errors. Again we see that Cs(t) behaves more smoothly 

once averaged over a number of origin points. As expected as k  kz the 

correlation function grows and diverges at kz. Large errors at large distances (6  < 

t < 10) can more be associated with non-hermitian nature of M  as explained above 

and may partially be attributed to the fact that exponentially decaying functions 

become very small at large distances and as a result these extremely small signals 

get lost in the noise. Such errors become larger for heavier particles as their 

correlation functions e mt [or cosh m ( - y  -*) ] die out more rapidly than for the 

lighter particles with longer correlation lengths.

It is interesting to compare average values of Cs (t)  with Cn ( t) .  

Accordingly we have put plots of £$(t) and C„(t) at k  = 0.165 together in Fig. 

4.10. Corresponding results at k  = 0.167 are shown in Fig. 4.11. Cs(t) decreases 

more rapidly at K -  0.165 than it does at k  -  0.167 and always remains smaller
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Fig. 4.9 Non-singlet scalar meson correlation functions averaged over 8 different 

origins on an 8^x16 lattice at /3 = 5.8.
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than E n (t). At K = 0.167 both C$(t) and Cn (t) have become large compared 

with their values at k  = 0.165. Unfortunately due to the large errors in C$(t) at 

large distances (6  < t < 1 0 ) we can not make a clear and definite statement about 

the large t behaviour of non-singlet scalar meson correlation function and its mass 

while it is relatively easy to analyze pion correlation function over large distances. 

This allows us to also estimate the pion mass rather accurately as k  —» k ^.

In brief, the conclusion we draw from our work on meson propagators once 

again confirms that block Lanczos algorithm is an efficient method to implement 

hadron mass calculations. By this method we could see that Kz defined by a critical 

value of hopping parameter where fermion matrix has a zero mode, is indeed the 

place where pion mass vanishes. However, we also observed that the non-singlet 

scalar meson becomes massless at the same place where the pion mass vanishes! 

This irrational conclusion, which is the result of working in a region where only 

one state i.e. the zero mode contributes to the propagators, shows that this region is 

in fact a wrong one to calculate hadron propagators. To obtain reliable results one 

should really work in a region where more states contribute i.e. relatively away 

from zero modes. Moreover large lattices, in particular for computing the hadron 

masses are needed to reduce finite-size effects. In addition higher statistical 

accuracy is required not only in terms of source points but also in number of gauge 

configurations. One might even think of a realistic calculation of the hadron masses 

by the inclusion of fermion loops into the calculations. Again block Lanczos 

method is well suited for updating dynamical fermions. To summarize if enough 

computer time is given, a quantitative calculation of the hadron spectrum at least in 

quenched approximation is quite feasible.
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Chapter 5

Conclusion

Having investigated the Lanczos and conjugate gradient algorithms on 44  and 8 4  

lattices convergence rate of inversion is observed to be governed by /A/mzn and its 

density and slows down as we approach kz. Our results strongly confirm the 

equivalence of the conjugate gradient to Lanczos algorithm despite the fact that 75M  

is not positive definite. Due to non-definiteness of H  = 75M  both norm of residue 

and norm of solution vector behave as if they are superpositions of two independent 

residues or solution vectors. This behavior improves when we modify the 

algorithms to their H ^H  versions. However, inspite of the stability of H ^H  

conjugate gradient algorithm compared with the fluctuating behaviour of the original 

algorithm, it is slower specially as Kz is approached.

One might achieve a relatively considerable improvement factor in 

convergence rate by blocking the algorithms. The blocking approach does not alter 

the above general characteristics, for instance the block conjugate gradient algorithm 

is still faster than the corresponding block version of H^H  conjugate gradient 

algorithm.

Our results at strong coupling limit, in particular indicate that the blocking 

procedure has a better performance once applied to H  conjugate gradient rather 

than to H^H  conjugate gradient algorithm. Though the single versions of Lanczos 

and conjugate gradient algorithms are essentially identical, however their blocked 

forms behave differently as we increase the block size. The block Lanczos 

algorithm proved much better and faster than the block conjugate gradient algorithm
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specially as k  —> kz.

At weaker coupling constants H^H  conjugate gradient algorithm works 

well when /A /mzn is not too small. Unfortunately it fails as one approaches kz in 

large blocks. Under the same conditions block Lanczos algorithm works very well 

in all cases.

Although the algorithms slow down to converge as one decreases p  and/or 

approaches k z (in the confining phase), however they tend to behave more 

independently of details of fermion matrix such as hopping parameter or gauge 

configuration as one increases the block size.

Based on our results we really conclude that the block Lanczos algorithm is 

more efficient than the original single algorithm and more stable than both versions 

of conjugate gradient algorithm and in particular faster than H ^H  conjugate 

gradient algorithm especially near kz. A s a result, the block Lanczos algorithm is 

recommended for updating dynamical fermions and studying hadron propagators 

and critical phenomena.

The application of the Lanczos algorithm to investigate the Y5M  spectrum 

on 44, 6 4  and 8 4  lattices reveals very clear indications of vanishing of zero modes 

density P(0) at the values of k  below a certain k z which changes from 

configuration to configuration in the confining phase. 9 (0 ) picks up a non­

vanishing value by crossing Kz. At strong coupling limit the zero modes density 

remains actually non-zero for K > k z . This observation implies the existence of 

parity-violating phase transition (at strong coupling limit in the quenched 

approximation) accompanied by a massless pion occurring at critical hopping 

parameter k c where fermion propagator Af 1 is singular.

Decreasing of the k z as p  increases from strong coupling limit to weaker 

coupling constants is in agreement with the ideas of Aoki's phase diagram and 

confirms the existence of massless modes in the confining phase at weak coupling 

constants. Slight changes in gauge configurations can cause relatively large shifts in
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kz. This is an indication that fermion propagator diverges for a wide range of k  

above k c once averaged over all gauge configurations. This is the sign of entering 

into the parity-violating phase by crossing kc.

Although the fermion spectrum at not so weak coupling constants behaves 

similarly to the strong coupling limit, one encounters a different scenario at weak 

enough coupling constants. Now a second k z appears almost far away from the 

first Kz. This phenomenon implies that at infinite-volume limit we observe separate 

regions of zero modes once averaged over all gauge fields, a phenomenon predicted 

by the proposed lattice QCD phase diagram.

The eigenvalue distribution tends to become thinner as (3 increases. This 

effect makes the eigenvalues and in particular the zero modes isolated. This 

property which is more transparent in smaller lattices makes P(0) behave like a 5- 

function in a neighborhood around X -  0 at k  >  k z in the confining phase. 

Accordingly work in such a region where only one mode (zero mode) overcomes 

and contributes leads to unrealistic conclusions!

The general behaviour of 75M  spectrum changes as one crosses the 

deconfining phase transition temperature. No zero modes are found in the 

deconfining phase for any values of k . This in turn shows that no massless pions 

exist in the deconfining phase. On the other hand, since massless pions are 

associated with chiral symmetry breaking, this observation also implicates the 

restoration of chiral symmetry at weak enough coupling constants.

The conclusions obtained from fermion matrix eigenvalue studies are further 

supported by the results of meson propagator calculations. Applying the block 

Lanczos algorithm to work out the pion and non-singlet scalar meson propagators 

in the quenched approximation on 8 3x l 6  lattices, the non-vanishing slope of pion 

correlation function at large distances confirms non-vanishing pion mass at the 

values of k  far from k z while it flattens as k  approaches k z . This result is an 

indication that kc defined by a critical value of hopping parameter where fermion 

matrix has a zero mode at infinite-volume limit, is indeed the place where pion mass
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vanishes. This conclusion which is the result of superposing the contributions from 

a number of source origins would be altered if we consider only individual 

propagators. In this case the periodic nature of propagators are clearly observed at 

the values of X'very close to kz in which case only one isolated zero mode 

contributes to the propagators . 1 The number of modes contributing to the 

correlation functions at fc's far from kz is relatively large which makes the 

behaviour of individual propagators unpredictable in such regions of hopping 

parameter.

Compared with the corresponding results for individual pion propagators 

the non-singlet scalar correlation functions behave very badly. However, the 

average non-singlet scalar correlation functions over a number of origins behave 

slightly better though they are still subject to large errors at large distances. This 

does not let us make a clear and definite statement about the large time behaviour of 

the non-singlet scalar propagator and its mass while it is relatively easy to analyse 

pion correlation function over large distances. Anyway the non-singlet scalar 

propagators grow as k  kz and diverge at kz\ This unexpected behavior which 

really does not distinguish so much between non-singlet scalar and pseudoscalar 

propagators i.e. results in massless non-singlet scalar meson as well, is the result of 

working very close to a zero mode where the contributions from the other states are 

effectively suppressed, and is also partially stemmed from ignoring the dynamical 

fermions.

As far as the Wilson fermion spectrum is concerned there are still open 

problems for future investigations. In the quenched approximation one can still 

work at higher values of P for better correlations as our eigenvalue results at p  =

5.5 on 8 4  lattices showed short range correlation lengths. The inclusion of 

dynamical fermions will naturally alter the results quantitatively. However, does it 

modify those results qualitatively? For instance will the results of Monte Carlo

1 We have calculated the propagators in a relatively large vale of P where the eigenvalues have

been isolated and their distribution has been fairly thin.
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simulations of the full theory still agree with the proposed lattice QCD phase 

structure? In 2-flavour lattice QCD with dynamical fermions we have to see if n r 

and n  behave differently from 71P in parity-violating phase. Do <uy5u> and 

<dy5d> really pick up opposite vacuum expectation values? One really needs a 

reliable result of such an investigation in order to explain the n-r\ mass difference.

The conclusions we obtained from studying the meson propagators point 

out that a realistic hadron spectroscopy requires more extended lattices than we have 

used, not only to extract the masses from the propagators at large distances where 

the excited states have died out but to reduce the finite-size effects as well. Also 

required is higher statistical accuracy in terms of origin points and the number of 

gauge configurations. More appealing hadron calculations would, of course, 

include fermion loops into the calculations in which case block Lanczos algorithm is 

well suited for updating dynamical fermions. In short if enough computer time is 

given the block Lanczos algorithm can efficiently provide one with a quantitative 

calculation of the hadron spectrum (at least in the quenched approximation).
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Appendix

1 D irac M atrices

Dirac matrices combine the spinor and antispinor to four-vectors. They are standard 

and in Minkowski space satisfy the relation [61]:

{VY v> — ( A . l )

and the hermicity conditions:

V  = Yo V o  (A.2)

where g^v is the metric tensor with components

{+ 1  if p. = v = 0

-1 if n  = v #  0 (A. 3)

0  if p. *  v

A fifth anticommuting 7-matrix is defined by:

Y5 = iY0W 3 (A.4)

Y5 has the properties:

{Y^y5l = °  (A.5)

V = Y5 (A.6)

(y5)2 = i  (A.7)

2 G ell-M ann m atrices

Gell-Mann matrices are the generators of SU(3) group. They are denoted by ta for 

the colour and and by %a (or A a ) for the flavour variables. They are traceless and 

hermitian and their most commonly used properties are as follows [62]:
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t°tb= i 8 ab+(dabc+ ifaby  (a .8)

T r tatb = 25ab (A.9)

3 Euclidean Space Relations

Transition to the Euclidean space-time from Minkowski space-time is made by the 

following relations:

t —> -it = -ix4 (A. 10)

Aq —» iAQ = iA4 (A. 11)

Aj —» -Aj i = 1, 2, 3 (A. 12)

The Euclidean definition of gauge fields A ̂  is done so that the covariant derivative

remains in the same form in both spaces. Also we have:

Yi —> i Yi i = 1, 2,-3 (A. 13)

which modify the relations among the 7-matrices as:

{Yp>Yv) = ^ |iv  (A* 14)

V = Y n  (A. 15)

W 2V 4 (A. 16)

Y5 has the same properties as in the Minkowski space. These transitions along with 

the Euclidean versions of fermion fields,

(A. 17) 

(A.18)

will result in the following transition of fermionic action to Euclidean space:

J d t  d3x \j/(i/0 - m)\j/ -» J d \  \j7 ( +  m)\(/ (A. 19)

while the gluonic part of the Lagrangian density has the same form in both spaces

i.e. - — F F ^ V‘ This implies S iS or,
4  \iv

f - d t  d 3x - i - F  f ^V - >  f + d 4 x - i F  F^ VJ  4 J  4  P-v (A.20)
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