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Summary

The room temperature reaction between sulphur tetrafluoride and 

chlorine monofluoride in the presence of mercury(II) fluoride has been 

described in this work. Using [ 3  5S ] -  sulphur labelled sulphur tetrafluoride 

and [ 3  6 C1 ]— chlorine labelled chlorine monofluoride, the catalytic activity 

of mercury(II) fluoride for the above reaction has been studied.

The interaction between the probe molecules sulphur tetrafluoride or 

chlorine monofluoride with mercury(II) fluoride under heterogenous 

conditions has been examined using radiochemically labelled species 

[ 3  5S ]— sulphur labelled sulphur tetrafluoride and [ 3  6 C1 J- chlorine labelled 

chlorine monofluoride. Possible poisoning reactions resulting from the 

interaction of these probe molecules with mercury(II) fluoride have also 

been examined by studying the chemisorption and retention of these 

molecules at mercury(II) fluoride surface.

It has been shown that preteatment of mercury(II) fluoride before use 

as a catalyst affects both its catalytical activity and B.E.T area. However, 

its pretreatment with hexafluoroacetone in the presence of acetonitrile 

followed by thermal decomposition of its adduct formed, has been found to 

be the most effective way to increase the B.E.T area and enhance its 

catalytic actvity. The pretreatment of mercury(II) fluoride with sulphur 

tetrafluoride has also been used. However the latter method is less 

effective.

The B.E.T area of mercury(II) fluoride untreated and pretreated has 

been determined in this work. The radioisotope 8  5Kr has been used as 

adsorbate for small B.E.T area determination. However for the large B.E.T 

area, N 2  has been used as adsorbate.
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CHAPTER ONE

Introduction :

Heterogeneous catalysis has been synonymous with industrial catalysis

and the chemical industry for many years. Substances which play an

important role in decreasing the activation energy during the reaction 

process, that is accelerating the chemical reaction, without undergoing any 

changes, are known as catalysts^1).

Adsorption processes are fundamental to heterogeneous catalysis. 

However, parameters such as surface area and pore size are often of great 

importance in determining the behaviour of a catalyst. It is essential to 

provide a large contact between the reactants and the surface of the solid.

Solid acids and bases are extensively used in catalysis , and Lewis 

acid / Lewis base definitions are convenient for a clear description of solid 

acid and base catalysis. Thus a metal fluoride , which is ionic, behaves as 

a base and a fluoride ion donor, while a covalent metal fluoride acid is a 

fluoride ion acceptor.

1. 1 Acid Base Concepts

The concept of what constitutes an acid or base has developed as

chemical theory has evolved. In one of the earliest studies, Lavoisier

suggested that all acids contain oxygen(2), which is responsible for the
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acidity characteristic. In 1810, Davy suggested that the essential constituent 

was not oxygen but hydrogenC3  *A) . Later on Leibig stated that acids were 

substances which contained hydrogen replaceable by metal(5). Based on the 

hydrogen concept, and the ionic chemical theory, Arrhenius introduced 

another definition(6), in which an acid is regarded as a compound 

containing hydrogen which when dissociated in water yielded hydrogen ions.

HXB > xH+ + Bx " Eq. 1 .1

A  base is regarded as a compound which furnished hydroxyl ions in aqueous 

solution

M(OH)y ( K+y + yOH~ Eq. 1 . 2

According to this definition , neutralisation is the reaction of hydrogen ion 

H-1- generated by the acid, with the hydroxyl, O H - , generated by the base 

to give water.

H+ + OH" ( > H20 Eq. 1 .3

The Arrhenius interpretation of an acid and base was a subject of 

many objections, such as, the concept is restricted to aqueous solution, 

therefore it cannot be applied to solution in other solvents. The concept is 

incompatible with thermodynamic studies which suggested that the existence
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of free protons in aqueous solution is improbable^7). The hydration energy 

of the hydrogen ion has been calculated as 256 k cal mol-  L Thus it is 

to be expected that , this ion can exist only in the hydrated form, usually 

presented in its simplest form by H 3 0 + . As results of these objections 

other definitions were introduced.

Bronsted—Lowrv Definion

This concept of acids and bases was developed independently by J. 

N. Bronsted and T. M. Lowry in 1923(®»9). The Brpmsted— Lowry definition 

involve a proton transfer process. According to this definition an acid is 

defined as a species that acts as a proton donor, and a base is a species 

that acts as proton acceptor. In term of this approach, acids and bases are 

characterised and intercalibrated by the equation 1.4.

A * B + H+ Eq. 1 .4<--------------
Acid Base Proton

On losing a proton acid A  becomes a base B. The base will then tend to 

regain the proton and revert to the acid A. Acid and base are said to be 

conjugate with one another and related by the proton transfer represented 

by the equation 1.5.

HB + H20 

Acid,  Base,

H3 0+ + B" 

A c id 2  Base 2

Eq. 1 .5
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where base 1 and base 2  are the conjugated bases of acid, and acid 2  

respectively. The equilibrium is towards the weaker acid and base. The 

Brjfnsted-Lowry definition suffered from the limitation to hydrogen 

containing compounds.

Solvent System Definition:

In terms of the self ionisation of water, the Arrhenius definition may 

be restated as follows:

An acid is a solute that increases the concentration of the characteristic 

solvent cation H 3 0 +  for water by giving this cation as one of the products 

of its ionic dissociation in solution. A  base is a solute that increases the 

characteristic solvent anion concentration OH-  for water by giving this 

anion as one of the products of its ionic dissociation in solution. These 

definitions can be extended to other solvents for which a self ionisation 

process is feasible. The first such extension appears to have been made by 

Franklin for the liquid ammonia system^10).

2 NH3  ( * NH4+ + NH2" Eq. 1 .6

The solvent system definition is unsatisfactory because acid base phenomena 

are not restricted to self ionising solvents.
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1.1.1 Lewis Acid Base Definition

In an attempt to overcome some of the limitations of the previous 

definitions, an electronic theory was proposed by G. N. Lewis in 1923(1 1) 

and further emphasized in 1938(1 2) .

In 1920, Langmuir, came to the conclusion that, within the context of 

the proton definitions, bases must act as electron pair donors^ 1 3). The 

formation of a chemical bond required the presence of a shared electron

pair, and the transfered proton had no valence electrons. Therefore, the

base must logically be the electron pair source.

Subsequently, Lewis generalized this statement to all species which are 

capable of assuming the role of electron pair acceptor or donor. He defined 

a basic substance as one which has a lone pair of electrons which may be 

used to complete the stable group of another atom, and an acid substance

is one which can employ a lone pair from another molecule in completing

the stable group of one of its own atoms. In terms of the molecular orbital 

theory the Lewis definition can be expressed as follows:

A base is a species that employs a doubly occupied orbital in initiating a

reaction, and an acid is a species that employs an empty orbital in

initiating a reaction. It is clear that this definition can be applied to a 

heterogenous gas— solid system. However, a Lewis acid site on a solid 

surface can be considered as a site which has an unoccupied orbital, with a 

high affinity for an electron pair, so that a major decrease in free energy

is obtained when such a site shares an electron pair donated by an
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adsorbed base molecule. Lewis base sites on the surface are those which 

have electron pairs available at a high energy level, and a major decrease 

in free energy is obtained if they share this electron pair with an adsorbed 

electron pair acceptor. The acid— base reaction is shown as an equilibrium 

process in equation 1.7.

A + B  A : B Eq. 1 .7<------------------

It is clear that the Lewis definition is more general than the others 

described. For example within the protonic concept, the molecule or ion 

does not accept a proton unless an unshared electron pair is available on 

the substance that acts as base.

H
H+ + : N 

H
Eq. 1 .8

Although the Lewis definition is widely used in acid base chemistry and it 

has overcome the limitations of the previous definitions, it has been the 

subject of some objections. Most importantly there is no uniform scale of 

acid and base strength, instead, acid— base strength are variable and 

dependent upon the reaction chosen.

The ability of a strong acid or base to displace a weaker one from 

its compound as proposed by Lewis, gives rise to the question of an 

acid— base strength order. Accordingly the study of a large number of 

displacement reactions of the type shown in equation 1.9 should allow an
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ordering of the strength of acids towards a particular base.

A + B : A ------------------ > B : A + £ Eq. 1 .9
Ac i d Ac i d

A  further complication occurs in the assumption that the order of the

acid strength is independent of the reference base. Within recent years, it

has been shown that the order of acid strength is determined by the

reference base chosenC1 4 > 1 5). For example, fluoride ion affinities are 

commonly used when comparing the acidities of inorganic fluorides in the 

gas phased1 8~  1 8) .

Despite its limitations, it would seem that the Lewis acid base 

definition is the most suitable for describing heterogenous gas solid reaction.

1. 2 The Chemistry of Sulphur Tetrafluoride

Sulphur tetrafluoride is a colourless gas at room temperature. It 

condenses to a colourless liquid (b. p — 38 *C  ) and solidifies at -121 eC . 

Sulphur tetrafluoride is a highly hygroscopic material. It hydrolyses rapidly 

and exothermically in aqueous media leading to the formation of HF

according to the following equation^ 1 9) .

SF 4  + H20 ---------------------------------► SCF 2  + 2HF Eq

The subsequent hydrolysis of the thionyl fluoride occurs somewhat less 

rapidly. It is therefore difficult to handle small quantities of sulphur
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tetrafluoride. It must be manipulated in rigorously dry glass apparatus. 

Stainless steel and Monel metal are all quite inert to sulphur tetrafluoride at 

ambient temperature^19) . Therefore the use of apparatus constructed from 

these metals greatly simplifies the handling of sulphur tetrafluoride. Sulphur 

tetrafluoride has been found to be of the same order of toxicity as 

phosgene COCl2( 20), and the ease with which it hydrolyses makes extreme 

care necessary when working with this fluoride.

The structure of sulphur tetrafluoride has been established by study of 

its vibrational spectrumC2  0 ,  N .M .R  spectrum( 2  2), and microwave 

spectrumC2  3). The vibrational spectra suggested that the structure had 

symmetry C 2V. This led to the proposal that the stucture was that of a 

trigonal bi— pyramid, in which one of the three equatorial atoms was 

replaced by a lone pair of electrons. This has been confirmed by nuclear 

magnetic resonance studies which showed that sulphur tetrafluoride has two 

inequivalent sets of fluorine atoms. The microwave spectrum, however, 

showed that marked deviation occured from trigonal bi— pyramid. As a 

result of these studies, the structure of sulphur tetrafluoride was suggested to 

be a distorted trigonal bi— pyramidal structure, in which two fluorine atoms 

and an unshared electron pair are in the equatorial position, and the other 

fluorine atoms are in the axial position as shown in figure 1.1. Bond 

distances and angles are as follows:

dSF, -  dSF2  -  1 .6 4  ± 0.003 k

dSF3  -  dSF4  -  1 .455 ± 0.003 X

F^SF, -  186 .56°
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A
F 4 SF3  -  101 .33°

Sulphur tetrafluoride is widely used in both inorganic and organic 

chemistry. It reacts with Lewis acid fluorides forming adducts containing the 

SF3 +  cation according to the following equation^24’ 25).

+ AFn > SF3+AF n + 1  Eq. 1.11

A  typical example of this type of reaction is the reaction of sulphur 

tetrafluoride with boron trifluoride according to the following equation.

SF4  + BF3  ---------------- > SF 3 +BF4-  Ec1- 1 1 2

The SFg-1- exhibits C 3V symmetry as shown in figure 1.2. The crystal 

structure of trifluorosulphur tetrafluoroborate, SF 3+ BF 4“  , has been 

determined from three dimensional X—ray data(25). The atomic 

arrangement is illustrated in figure 1.3.

Sulphur tetrafluoride can also act as a weak Lewis acid, that is an

electron pair acceptor, forming an adduct containing the SFs“  anion( 2  6* 2  7) 

according to the equation 1.13.

SF4  + MF ---------------- > W+SFg- Eq. 1 .13

An example is the reaction of sulphur tetrafluoride with caesium fluoride 

according to the equation 1.14.



Figure 1.1

The structure of SF

F

F.

F i g u r e  1 . 2  

T h e  S t r  u c t u r e  o f

F



Figure 1.3

The strucure of SF^BF^

2*624 SX 2-624
/  f V  __

T *
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CsF + SF4 ------------------------ > Cs+SFs“ Eq. 1 .14

The structure of the anion has been characterised spectrospically as being 

square pyramidaK 2a>29), as shown in figure 1.4.

In organic chemistry sulphur tetrafluoride is widely used as a

fluorinating agent. It has been found to be a remarkably effective reagent 

for the selective replacement of carbonyl compounds( 3  °) .equation 1.15.

^C -0  + SF4   ► ^CF2  + SOF2  Eq. 1 .15

Typical examples for the above type of reaction are given in the following

equations:

50°C
CH3CHO + SF4  -------------------------- > CH3 CHF2  + SOF2  Eq. 1 .16

110 °C
CH3 COCH3  + SF4   > CH3 CF 2 CH3  + SOF2  Eq. 1 .17

Organoiminosulphur(IV) difluoride compounds, R - N = S F 2, have also been 

obtained by the reaction of sulphur tetrafluoride with organic compounds 

having carbon — nitrogen multiple bond(31) as illustrated in the following 

examples.

R -N -C -0  + SF, 350*C ->RN-SF2  + COF2

350 *CR-CsN + SF4    » RCF2 N-SF 2

Eq. 1 .18  

Eq. 1 .19



Figure 1.4

The s t ruc tu re  of  SF^

F 

F
F
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Replacement of halogen atom by fluorine in organic compounds can be also 

achieved by means of sulphur tetrafluoride^ 3  2), equation 1 .2 0 .

O O ^  O V
CC14  + SF4—  CC13F + CC12 F 2  +CCIF 3  + SCI 2  Eq. 1 .20

It is clear from these examples that sulphur tetrafluoride undergoes a 

wide range of chemical reactions, and exhibits both Lewis acid and base 

behaviour. In addition, the availability of 18F and 35S radiotracers, makes 

it a very useful probe substance for the study of Lewis acid-base reactions.

1.3 Chlorine Monofluoride

Chlorine monofluoride is a colourless gas and solid (m.p —155 C°).

The liquid (b.p —101.5 C °) has a yellow cast. Unlike the monofluorides of 

iodine and bromine, chlorine monofluoride is thermally stable at room 

temperature^ 3  3). It is a vigorous oxidizer, immediately and explosively 

hydrolysed by water.

Assuming that chlorine monofluoride is strictly covalent, the bond 

distance deduced from the parent halogens is 1.712 A  ( 34). The 

experimental bond distance determined by electron diffraction measurement 

is 1.63 A ( 3S). This agrees well with the value of 1.6281 A determined by 

microwave spectroscopy^ 3  6), that is 5% shorter than the calculated bond 

distance. On this basis it has been suggested that chlorine monofluoride 

possesses some ionic character. It would be expected that the fluorine atom 

on account of its high electronegativity would be the more negative partner
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in the molecule, therfore the direction of the polarisation in the molecule is 

d 5 + _  F 5 -  .

Chlorine monofluoride is a powerful fluorinating agent and will react 

with many metals either at elevated temperatures or at room temperature, 

converting them to the appropriate fluoride^ 3  7) . Chlorine monofluoride 

reacts also with alkali metal fluorides to form relatively stable salts of the 

type NT4’ C1F ~  ( 3  8) . Since only one infrared active band is observed for 

C1F2“  , the difluorochlorate anion, C1F2~  , appears to have a linear 

structure^ 3  9). Similar Lewis acid behaviour of chlorine monofluoride has 

been found when it reacts with nitrosyl fluoride at low temperature^ 3  9), 

equation 1.21.

NOF + C1F > N0+C1F2-  Eq. 1 .21

However the solid formed is only stable at low temperature.

The addition of the molecule to multiple bonds such as C= C, 

C— O, C=S,  S= N and C= N represents the most common use of chlorine 

monofluoride(4°). Some of these reactions, require a catalyst. However, the 

perhaloalkyl hypochlorites are easly prepared by the metal fluoride catalysed 

reaction of perhaloalkyl carbonyl compounds^41).

Rf ' Rf '
n CsF s

CO + C1F -------------------- ► F—C—O—Cl Eq. 1 .22
-20 °C

Rf  Rf
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Rf  -  Rf  ’ "  F 

Rf  -  R f ’ -  c f 3

Rf  -  F, Rf ’ -  CF3

These may be regarded as a base catalysed oxidative addition to the 

carbonyl group, where the first step is attack by the base (fluoride ion) on 

the electrophilic carbon of the carbonyl group to form fluoroalkoxide 

intermediate, the latter is in turn oxidised by chlorine monofluoride to form 

the hypochlorite and generate fluoride. This is illustrated in the following 

sequence:

^ I
C -  0 + CsF  > F-CO-Cs+ Eq. 1 .23

I

I I
F-C -  0" + C1F ------------------------ > F -C-O-C: + F" Eq. 1 .24

I I

It was found that the formation of perhaloalkyl hypochlorites by the 

addition of chlorine monofluoride to substrate carbonyl groups is also 

catalysed by strong Lewis acids such as HF, B F 3, AsFg( 42).

HF
F 2CO + C1F -------------- > CF3  C0C1 Eq. 1 .25

-2 0  *C

The role of the Lewis acid in catalysis of hypochlorite formation involves 

a polarising interaction of the Lewis acid with chlorine monofluoride in a 

manner that enhances the positive character of the chlorine. This is 

illustrated for hydrogen fluoride by the equation.
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Cl «+ —  F 5" + HF  » C l 55+ . . F 5" . . H . . F 5" Eq. 1 .26

Chlorofluorination has also been used to prepare the difunctional 

decafluoropentane dihypochlorite, equation 1.27 as well as pentafluorosulphur 

hypochlorite, equation 1.28 ( 41).

0  0

II II CsF
F-C—(CF2) 3 -CF + 2 ClF ---------------------- » C l—0 - ( C F 2) g—O—Cl Eq. 1 .27

-20 °C

CsF
F 4 S0 + C1F -------------- » SF 5 0C1 Eq. 1 .28

-20  °C

The addition of chlorine monofluoride to the other bonds does not require 

a catalyst in most cases(4 °).

A typical example of chlorofluorination with chlorine monofluoride will 

be discussed in a later section.

1.4 Sulphur Chloride Pentafluoride

Sulphur chloride pentafluoride is colourless gas at room temperature. It 

condenses to a colourless liquid at — 19 °C and freezes to a colourless solid

C
at — 64 C . Thermally, sulphur chloride pentafluoride is stable up to 

400C°(19). The ability of SFgCl to give SFs radical is an important feature 

of its chemistry^ 4  3_ 45). 

h?
SFsCl -------------------------------- > SF5 - + Cl-  Eq. 1 .29

uv
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It is stable towards dilute acids but it is rapidly hydrolyzed by dilute 

alkalK4  6) according to the following equation.

SF5 C1 + 8 KOH ------------ > 5KF + KC1 + K 2 S04  + 4H20 Eq. 1 .30

Sulphur chloride pentafluoride can be added by free radical mechanism to 

the carbon— carbon double bond in certain olefins, such as ethene, as well 

as chloroolefins and fluoroolefins(45), such as vinyl chloride and 

fluoroethylene

Addition of SF 5 C1 to the C — O function is much less effective^ 4  7) than 

for £  -  C ."
s' N

1.5 MercurvflD Fluoride

Mercury(II) fluoride is a colourless solid when pure which is extremely 

sensitive to moisture. The presence of a limited amount of moisture causes 

a rapid yellowish discolouration of the surface possibly due to the formation 

of H gF 2 .2H 2 O (40). This colour changes to orange pink with further 

exposure, due to the formation of a layer of mercury(II) oxide. mercury(II) 

fluoride must therefore be handled carefully, due to its high sensitivity to 

moisture. It must be stored and manipulated in a rigorously dry atmosphere. 

It decomposes at its melting point at about 645 °C .

In mercury halides, mercury(II) flucride is the only simple ionic 

compound^49), it crystallises in the cubic fluorite structure^5°) as shown in
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figure 1.5. The cation Hg+ 4 ' is surounded by 8  fluorine anions F“  in a 

cubic arrangement, and the anion F— is surrounded by 4 mercury cations 

Hg+ +  situated at the corners of a tetrahedron. The bond distance between 

the cation and the anion in this structure is 2.40 A ( 50).

Geometrical considerations indicated that the adoption of the fluorite

structure of A X 2  type compounds occurs when the radius ratio r+  :r_ is

greater than 0 .7 3 ^51). The influence of the radius ratio is illustrated in
o

group(II). For magnesium and zinc the ionic radii are 0.65 and 0.74 A

respectively. These compounds form fluoride with the rutile structure,
o o

figure 1.6. Calcium (ionic radius 0.99 A), strontium (1.13 A), barium
o O 0

(1.35 A ), cadmium (0.97 A) and mercuric (1.10 A) fluorides have the

fluorite structure^ 5  2) .

Alkali metal fluorides crystallise with the rock salt structure^ 5  3), in 

which each ion is surrounded octahedrally by six ions, figure 1.7. The bond 

distances of this series of fluorides are( 5  4)

L i— F, Na— F, K— F, Rb— F, Cs— F

2.07  2 .13  2 .69  2 .8 4  3 .0 4  A

The io n ic  r a d i i  o f  the ca tio n s  are

L i+  Na+ K+ Rb+ Cs+

0 .7 4  1 .04  1 .33  1 .48  1 .69  A

Mercury(ll) fluoride is quite widely used as a fluorinating agent for organic



# *
o  A

Figure 1.5

The f lu o r i t e  s truc ture  fo r  AX^type compounds



Figure 1.6

The r u t i l e  s t ruc tu re  f o r  AX^ type compounds

•  A

Ox



Figure 1.7

The u n i t  c e l l  of  CsF

•  F

O M = Cs
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compounds, and when heated with metals such as copper, lead, tin, 

magnesium, and chromium converts them to the corresponding fluoride^51). 

It is a very potent fluorinating reagent for the replacement of halogen by 

fluorine and reacts with aliphatic bromides very violently^ 5  5), equation 1.31.

HgF2

C 2 H5Br -------------------------- » C 2 H 5 F Ec1- 1 * 3 1

0 *C

In polybromoderivatives, two and even three bromine atoms attached to the 

same carbon atom can be replaced by fluorine using mercury(II)

fluoride^ 5  6) . Typical examples are given in the following equations:

HgF2

CHBr2 -CHBr2  ------------------ > CHF2 CHBr2  Eq. 1 .32
150 °C

HgF2

CHBr3  -------------------- ► CHF3  Eq. 1 .33
RT

Iododerivatives react with HgF 2  so vigorously that their dilution with 

chloroform or methylene chloride is advisable( 5  5) , equation 1.34.

HgF2

CHI 3   > CHF3  Eq. 1 .3 4
RT

Polychloroderivatives are less reactive^ 5  5* 5  6). Usually only two halogen 

atoms are replaced, equation 1.35.

HgF2

CHC1 3  -------------------- > CHC1F2  Eq. 1 .35

The reaction between H gF 2  and fluoroolefins has been also reported to be 

a route to polyfluoro—alkyl derivatives of mercury^57), equation 1.36.
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HgF2
CF2  -  CFC1 -------------- ► CF3 .CFCl.HgF Eq. 1 .36

100 'C

The addition of fluorine across carbon— nitrogen bond in unsaturated systems 

has been achieved with H gF2( 58). For example mercury(II) fluoride is quite 

effective in adding fluorine across the carbon— nitrogen double bond of 

perfluoro—2—azopropene C F 3N -  C F 2. The activity of the reagent, in 

comparison with other metal fluorides, follows the order, AgF2> AgF> 

H gF2> CoF3> PbF4> M n F 3. Both cyanogen and cyanogen chloride react 

with HgF 2  to give, at 240 C° a mixture of C F 3 —N -C F 2  and mercurial 

bistrifluoromethyl amide H g [N (C F 3 ) 2  ] 2. The latter is known to be formed 

from HgF 2  and C F3—N -  C F 2.

Mercury(II) fluoride has been found to be a substitute for the addition 

of polar fluorides such as C1F to sulphur— nitrogen triple bond of NSF 3  to 

form pentafluorosulphanyl amine F gS—NC12  v59). Although, C1F does not 

attack SN triple bonds, in the presence of H gF2, the addition of C1F can 

be achieved in a quantitative yield.

HgF2

N s SF3  + 2 C1F -------------------------- ► F 5 S-NC12  Eq. 1 .37

Alkali metal fluorides are also used as reagents for introducing 

fluorine. However, potassium fluoride is the most frequently used for 

halogen exchange. The other alkali metal fluorides are either less efficient 

or less available. The efficiency of alkali metal fluorides with respect to the
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replacement reactions falls in the sequence^60*61).

CsF >RbF >KF >NaF >L1F

The ease of replacement by fluorine increases in the sequence Cl < Br < I, 

and from primary to tertiary halogen.

In unsaturated fluorocarbon systems, fluoride ion as a nucleophile 

occupies a unique position, analogous to that of the proton as an 

electrophile in unsaturated hydrocarbons^ 6  2 , 6  3 ). Fluoro— olefins with CF 2— 

groups are especially reactive towards fluoride ions and this high reactivity 

apparently extends to some hetero—atom organic compounds^ 6  4) such as 

CF 2 =dO. Unsaturated fluorocarbon systems containing nitrogen of the type 

C F 2^N exhibit a high degree of reactivity towards fluoride ions( 6  5“  6  7) . 

For example fluoride ion catalyzed reactions with fluorocarbons nitriles, 

which may involve an intermediate perfluoro alkanamine ion. The ionic 

fluorides, CSF,KF and HgF 2  readly attack C F 2  -  NF to form an 

intermediate perfluoromethanamine ion CF 3 NF“  according to the equation 

1.38(®8).

MF + CF2  -  NF -------------------- > M+FNCFg" Eq. 1 .38

The CF 3 NF“  anion formed in the initial step functions as a reactive 

nucleophile in competition with the excess fluoride. The subsequent reaction 

of the anion CF 3 NF”  with CF 2  — NF yields perfluro— N— methyl

formamidine, equation 1.39.



20

MF

The formamidine is also obtained with HgF 2  but in lower yield( 6  7). In the

case of HgF 2  and in contrast to KF, a considerable amount of C F 2  -  NF 

is absorbed by HgF2.

1.6 The Chlorofluororination of Sulphur Tetrafluoride

Sulphur chloride pentafluoride was first isolated and characterised as a 

minor constituent in the product of the reaction of fluorine with sulphur 

dichloride( 6  9). Many preparative methods have been developed subsequently, 

amongst them are the chlorofluorination of sulphur tetrafluoride with 

chlorine monofluoride. A high temperature is required for this reaction^70). 

However, in the presence of caesium fluoride this reaction occurs rapidly at 

ambient temperature with a high yield and minimum by— product 

formationC71), equation 1.40.

It has been found that SF 5 C1 can be obtained by the chlorofluorination of 

SF 4  according to the equation 1.41 ( 27) .

CsF
SF4 + C1F SFs Cl Eq. 1 . 4 0

RT

SF4 + C l 2 + CsF * SFs Cl + CsCl Eq. 1 . 4 1

The above reaction was reported to proceed via the formation of CsSFg, 

which resulted from the reaction of SF 4  and CsF. The chlorine subsequently
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converts this salt to SFsCl and CsCl. The role of the metal fluoride in the 

equation 1.40 is not clearly understood. There have been a number of 

attempts to describe the mechanism by which the reaction proceeds. Shack 

and coworkers(71) suggested that the catalytic effect of caesium fluoride in 

this reaction is probably due to the polarisation of sulphur tetrafluoride, 

which makes it readily susceptible to oxidation by chlorine monofluoride. 

The formation of the salt Cs-1- SF 5“  , which has been also reported to be 

an intermediate in the sulphur chloride pentafluoride synthesis^ 2  7), can also 

occur according to Shack. The anion is then oxidized by chlorine 

monofluoride to give sulphur chloride pentafluoride. The overall reaction 

scheme is therefore:

C s F ( s )  +  S F 4 ( g )  -* C s + S F s“ ( s )  £ q -  1 - 4 2

Cs + SF5 + C1F(g)  > CsF ( s )  + S F g C l ( g )  E q . 1 . 4 3

This mechanism, involving formation and reaction of the species Cs^SFg- , 

has been shown to be incorrect by Kolta and coworkersC 72). The 

mechanism does not take into account the reaction between chlorine 

monofluoride and caesium fluoride. Experiments involving radiochemically 

labelled [ 3  5S ]— sulphur tetrafluoride and [ 3  eCl ] chlorine monofluoride 

carried out in this Department, led to the conclusion that the formation of 

sulphurchloride pentafluoride is a true surface reaction involving adsorbed 

chlorine monofluoride and adsorbed sulphur tetrafluoride. The results 

obtained have shown that there is an interaction between chlorine 

monofluoride and caesium fluoride. Furthermore a considerable quantity of 

the chlorine monofluoride adsorbed is retained by the caesium fluoride 

surface and does not participate to any appreciable extent in the subsequent 

reaction with sulphur tetrafluoride. Kolta and coworkers suggested that the
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formation of the Cs+  C1F 2  species is responsible for the retention

observed.

A  similar retention of [ 3  5S ] sulphur tetrafluoride was observed, 

although the quantity retained was less than that observed for chlorine 

monofluoride. Furthermore, unlike chlorine monofluoride retention, which led 

to catalyst poisoning, there was no evidence to suggest that the retained 

[ 3 5 S ] sulphur tetrafluoride acts as a catalyst poison^72). As a result of 

their study, they proposed that the mechanism could be best described by 

the following equations:

^ 4 ( g )  + CsF(s ) <___________ CsF. SF4 (ads) ^£1- 1 * ^

CsF. SF4 ( a(js ) > Cs+SF5  Eq. 1 .45

C lF (g ) + CsF(s )  ( * CsF. C1F(ads) Eq. 1 .46

CsF. C1F(ads) ------------------------ > Cs+C1F2- (s ) Eq. 1 .47

C s F .C lF (acis ) + CsF.SF 4 ^acjs ) ) ^F s^^(g) +  ̂ ^sF(s )  Eq. 1 .48

Thus adsorbed chlorine monofluoride and adsorbed sulphur tetrafluoride are 

the active species in the formation of sulphurchloride pentafluoride rather 

than Cs+ SF5— and ClF(g)-
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1.7 The Aim of the Present Work

The chlorofluorination of sulphur tetrafluoride in the presence of 

caesium fluoride indicates that chlorine monofluoride behaves as a catalyst 

poison(72). According to Mews and coworkers, chlorine trifluoride reacts 

with mercury(II) chloride to give mercury(II) fluoride and chlorine

monofluoride( 7  3) , equation 1.42.

25 C°
HgCl 2 + 2C1F3  -------------------------------- ► HgF2  + 4C1F Eq. 1 .4

9

This reaction was reported to be straight forward and a yield of 91% was 

obtained. Thus, no interaction between C1F and HgF 2  was observed, that is 

no Hg+ C1F2~  species. Therefore, would mercury(II) fluoride be a better 

catalyst than caesium fluoride for the above reaction ?

The chlorofluorination of sulphur tetrafluoride with chlorine

monofluoride at room temperature to give sulphurchloride pentafluoride was 

chosen as a model reaction to clarify further the catalytic activity of 

mercury(II) fluoride. The room temperature reaction involving 

[ 3  5S ]— sulphur labelled sulphur tetrafluoride and [ 3  6 C1 ]— chlorine labelled 

chlorine monofluoride with mercury(II) fluoride pretreated either by 

hexafluoroacetone or by sulphur tetrafluoride were examined.
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CHAPTER TWO

Experimental

2.1 Equipment

Due to the highly hygroscopic properties of most of the materials 

used in this work, all experiments were performed in vacuo (10”  4  Torr). 

Solids sensitive to moisture were stored in an inert atmosphere box

( H 20  < 10 ppm).

2.1.1 The Vacuum Systems

Depending on the properties of the reactants, two different systems 

were used, a Pyrex glass line for experiments involving radiochemical 

counting techniques, and a Monel metal line which was used for handling 

substances reacting with glass.

a) The Pvrex Glass Vacuum Line

The vacuum line was basically an enclosed Pyrex glass structure. The

line was evacuated by means of a mercury diffusion pump, together with

an oil sealed rotary pump. A series of waste traps cooled in liquid nitrogen 

was used to protect the pumps from any volatile materials in the line. 

The pumps and waste traps could be isolated from the rest of the line

using either a glass tap or a high vacuum stopcock (Rotaflo). The 

different
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parts of the line were isolated when required by the same means.

The vacuum line was equipped with a mercury manometer or a 

Bourdon tube pressure gauge (Heise), to measure precisely the pressures. A  

vacustat was used to estimate the pressure achieved by the pumps. The

main manifold, consisted of several outlets to which a reaction vessel and a 

secondary manifold which had B14 ground glass sockets attached. Both 

reaction vessel and the other manifold could be isolated using high vacuum 

stop cocks (Rotaflo). Evacuable flasks and ampoules, equipped with high

vacuum stopcocks and B14 cones, were attached to the sockets of the 

manifold using Kel—F grease. All glassware was flamed out before use with 

a gas oxygen flame while the line was pumped to remove as much as 

possible moisture adsorbed on the surface of the glass.

b) The Monel Metal Line

A Monel metal line was used in this work for the preparation of 

chlorine monofluoride. It was constructed using 2/5 inch o.d Monel tubing 

and Monel valves (Autoclave engineer) to enable the different parts of the 

line to be separated, figure 2.1. The line was equipped with Budenberg

Bourdon tube gauge for pressure measurement. A  Monel metal reaction 

vessel and three additional Monel metal vessels, one large (B) and the 

other smaller ones (A  and A ') were used as storing vessels and attached to 

the system by the same means. A Monel metal pressure vessel containing 

elemental silicon and connected to the line was used as a waste trap. The 

disposal of chlorine trifluoride was carried out by condensing it in this

vessel and allowing the reactants to stay overnight at room temperature.
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The products subsequently were pumped out in a fume cupboard. Cylinders 

of chlorine trifluoride and chlorine were also connected. The Monel metal 

section was connected to the Pyrex waste traps and the pump via a 2/5 

inch glass metal joint.

2.1.2 Gas Uptake Apparatus

The determination of gas uptake by a solid was performed 

manometrically using the apparatus shown in figure 2.2. The apparatus 

consisted of a constant volume manometer and a small manifold which had 

a B14 ground glass socket to which a small bulb of a known volume, 

fitted with B14 cone and a Rotaflo stopcock was attatched. The system was 

calibrated accurately before use by means of the constant volume 

manometer. The latter is shown in more detail in figure 2.3.

The mercury level was altered by admitting air or vacuum to the 

reservoir via two way stopcocks so that the mercury level in the right hand 

limb could be brought to a reference mark as required. Changes in 

pressure were measured using a cathetometer.

2.1.3 The Inert Atmosphere Box

A nitrogen atmosphere Lintott box ( H aO < 10 ppm) was used when 

handling and storing all moisture sensitive solid samples. Glass vessels were 

pumped and flamed out before being transferred to the box. The box 

contained a balance which enabled solid samples to be weighed in a dry 

atmosphere.
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2.1.4 Infrared Spectroscopy

Infrared spectroscopic analyses were carried out using a Perkin Elmer 

983 grating infrared spectrometer with data station. Spectra of solid samples 

were obtained as Nujol mulls between AgCl plates. All mulls were prepared 

in the inert atmosphere box. A Pyrex gas cell of 8  cm path length was 

used for the gas samples. The cell was fitted with AgCl windows and a 

B14 cone to enable the cell to be attached to the line. It was also 

equipped with a J.Young stopcock so that a desired pressure of gas could 

be isolated in the cell.

2.2 Preparation and Purification of Reagents

2.2.1 Purification of acetonitrile

Acetonitrile is widely used as a solvent in inorganic chemistry. Some 

Lewis acid fluorides react with impure acetonitrile^74), therefore acetonitrile 

must be purified before use. The purification method developed in this 

Department^ 7A) is an extension of that used by Walter and Ramelay(75). 

It consisted of multiple reflux of HPLC grade acetonitrile in a Pyrex still 

equipped with a 0.75 m vacuum jacketed separating column, which was 

protected from atmospheric moisture. The following steps were used, in 

each step the solvent was topped and tailed by approximately 3%, 

quantities being given in parentheses.

I— Refluxed over anhydrous A1C13  ( 15 g/\ of MeCN ) for one hour
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followed by rapid distillation.

D -  Refluxed over K M n 0 4  +  L iC 0 3  (both 10 g/1 of MeCN) for 15

minutes. At this stage anti—bumping stones were added.

HI— Refluxed over K H S 0 4  (15 g/1 of MeCN) for one hour followed by

rapid distillation.

IV — Refluxed over CaH 2  (20 g/1 of MeCN) for one hour followed by

rapid distillation.

V— Refluxed two times over separate portions of C aH 2  (1 g/1 of MeCN) 

for one hour in each case followed by rapid distillation.

The acetonitrile was then transferred without exposure to atmospheric 

moisture into a vessel containing 3A activated molecular sieves, which had 

been previously heated under vacuum at 190 C° for 24 h. Before being 

used the acetonitrile was degassed and allowed to stand over the molecular 

sieves for 24 h and distilled under vacuum onto fresh molecular sieves. 

The purified acetonitrile has an absorbance at 200 nm (74) of < 0.5 ( H zO 

reference) and an apparent U .V  cut off point Ca. 175 nm. If the 

acetonitrile was not pure enough, traces of impurities remaining were 

removed by treatment with activated alumina (neutral, 60 mesh) in vacuo 

prior to the final molecular sieves treatment.

2.2.2 Purification of D i— ethvl Ether

In order to purify di— ethyl ether, freshly cut sodium metal was 

added in small pieces to Analar solvent and allowed to stand for 24 hours 

under atmospheric pressure. To ensure that the di—ethyl ether was dry 

enough fresh pieces of sodium were added until no further evolution of
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dihydrogen was observed. The di— ethyl ether was then degassed and 

vacuum distilled on to 3A  molecular sieves. Finally the di— ethyl ether was 

allowed to stand over 3A molecular sieves for 48 hours before use.

2.2.3 Preparation and Purification of Chlorine Monofluoride

Chlorine monofluoride can be prepared by several

methods  ̂7  3,76— 7 7 ) The one used in this work involved the reaction

between chlorine and chlorine trifluoride according to the equation 2 . l ( 77).

155 °C
C IF 3  + C l 2  --------------------------> 3 C1F Eq. 2 .1

The Monel metal line used for the preparation was described previously. 

The system was passivated with chlorine trifluoride at 200 Torr before use. 

The procedure for the preparation was as follows.

A measured amount of chlorine trifluoride (10.0 mmol) was admitted into 

the line and condensed into the vessel A. The same amount of chlorine 

(10.0 mmol) was condensed in the same vessel. The mixture was allowed 

to warm to room temperature and then expanded into the line. The exact 

pressure of the mixture was measured and the valve of the reaction vessel 

was then closed. The mixture remaining in the line was then condensed 

into the waste trap. The temperature of the reaction vessel was raised 

gradually up to 155 °C and left at this temperature for 18 hours. The 

contents of the reaction vessel were transferred into vessel A.

The separation of chlorine monofluoride from unreacted material and
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impurities was performed by low tra p -to -tra p  distillation. Impurities were 

trapped in the —130 °C bath (liquid N 2 /isopentane), the chlorine

monofluoride which is volatile at this temperature was condensed into vessel

B cooled to —196 *C (liquid N 2). The purity of chlorine monofluoride was

determined by means of vapour pressure measurements^ 7  8) . Typical data 

obtained are shown in table 2 .1 .

2.2.4 Preparation and Purification of Carbonyl Fluoride

Carbonyl fluoride was prepared by the reaction of carbonyl chloride 

with sodium fluoride in acetonitrile^79). Purified acetonitrile (15.0 ml) was 

vacuum distilled into a stainless steel pressure vessel (90 ml) containing 

sodium fluoride (8.4 g, 20.0 mmol). Subsequently CO Cl2  (18.0 mmol) was 

then condensed into the same vessel. The mixture was allowed to react at 

room temperature for 48 hours.

The carbonyl fluoride so prepared was purified by trap— to— trap

distillation at — 80 °C (dichloromethane/solid CO 2) and identified by its 

infrared spectrum .table 2 .2 .

2.2.5 Preparation and Purification of Boron Trifluoride( 8°)

A mixture of concentrated aqueous hydrogen chloride (35.4 w/w% , 16 

ml) and 4—chloroaniline (16.0 g, 40.0 mmol) was diazotized at 0 #C with 

a solution of sodium nitrite (2.9 g, 42.0 mmol) in water (4.3 ml). The 

4— chloroaniline was well ground before use. The mixture was stirred 

magnetically for 30 minutes at the same temperature. A solution of sodium



Table  2 .1

Vapour p r e s s u r e  d a t a  f o r  C1F

T em pr tu re  Vapour p r e s s u r e

°C Torr

T h i s  work L i t e r a t u r e ( 78)

- 1 3 9 . 0  9 10

- 1 2 8 . 8  41 40

- 1 2 0 .8  102  100

- 1 0 7 . 0  405  40 0

- 1 0 0 . 0  762 760

T a b l e  2 . 2

I n f r a r e d  s p e c t r u m  o f  COF2 cm-1

T h i s  work L i t e r a t u r e ( 8 1 ) A s s ig n m e n t

585 (w) 584 ( A , )

625 (w) 626 ? ( B 2)

77 4  (m) 774 v ( B , )

964  (m) 965 v ( A , )

124 5  ( s )  1249 v ( B 2)

1 9 3 0  ( s )  1928  v ( A, )
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tetrafluoroborate (7.7 g, 20.0 mmol) in water (9 ml) was added slowly to

the mixture and stiring was continued at 0 °C for a further 30 minutes.

The precipitate formed of 4— chlorophenyldiazonium tetrafluoroborate 

was separated using a Buchner funnel and water pump. The precipitate 

collected was washed with ethanol and di— ethyl ether and transferred to a 

vessel, equipped with a B14 cone to enable the vessel to be attached to 

the vacuum line and a Rotaflo stopcock so that the material inside the 

vessel could be isolated. The precipate was dried by evacuation at room 

temperature for 18 hours to ensure that no volatile material was left.

The vessel containing the precipitate was then connected to the Pyrex 

glass system shown in figure 2.4 in which the thermal decomposition of 

4—chlorophenyldiazonium tetrafluoroborate was carried out. Trap A was 

cooled to — 80 °C (dichloromethane/solid C 0 2). Trap B was cooled to a 

—196 °C (liquid N 2). The system was connected to the vacuum line via 

trap B. The vessel containing 4—chlorophenyldiazonium tetrafluoroborate 

was heated gently with a gas torch until the pressure of the gas released 

reached 200 Torr. The torch was removed and the system was reevacuated. 

This sequence was repeated until no further release of gas was observed. 

Once the decomposition has finished, the stopcock 1  was closed and the

boron trifluoride trapped in vessel B was expanded to the line to measure

its pressure. It was then condensed over sodium fluoride in stainless steel 

pressure vessel (90 ml) until required. The infrared spectrum of the boron 

trifluoride was obtained and typical data are shown in table 2.3.
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2.2.6 Purification of Iodine Pentafluoride

The iodine pentafluoride was purified by trap— to— trap distillation 

over preheated sodium fluoride in order to remove hydrogen fluoride. The 

iodine pentafluoride was then transferred by vacuum distillation to a vessel 

containing a dry mercury metal. The mixture was shaken mechanically for 

5 minutes at room temperature to remove iodine. Once the mercury metal 

treatement was finished, iodine pentafluoride was stored over sodium 

fluoride in a sealed Pyrex glass vessel cooled to —196 °C . The purified 

iodine pentafluoride was colourless.

2.2.7 Preparation and Purification of Sulphur Tetrafluoride

Although, sulphur tetrafluoride can be prepared by several 

methods^ 8  2a— c) , the most convenient laboratory preparation involves a 

reaction between sulphur dichloride and sodium fluoride in the presence of 

acetonitrile(02a).

MeCN
3SC1 2 + 4 NaF --------------------------> S 2C12 + SF4 + 4 NaCl ' Eq. 2 . 2

Since the above reaction is not very suitable for the preparation of 

[ 3  5S sulphur labelled sulphur tetrafluoride, the alternative method used in 

this work for this preparation is based on the fluorination of the elemental 

sulphur by iodine pentafluoride according to the following equation^ 8  2C) .
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’• 200 °C

5 S + 4 I F 5 -----------------------------> 5 SF4 + 2 I 2 Eq. 2 .3

The procedure was carried out by loading a stainless steel pressure vessel 

(60 ml) with a stoichieometric amount of sulphur (0.72 g, 6.6 mmol) 

according to the equation 2.3. A preweighed quantity (4.0 g, 18.0 mmol) 

of purified iodine pentafluoride was condensed under vacuum into the

vessel. The vessel was then heated for 5 hours at 100 °C followed by 200

C for 48 hours.

After allowing the vessel to cool to room temperature the volatile

O 0
material was distilled from — 80 C to — 190 C . The infrared spectrum of

the volatile material at this stage showed the presence of sulphur

tetrafluoride, thionyl fluoride and silicon tetrafluoride.

The sulphur tetrafluoride was purified by making the adduct 

SFg^BF,,-  from the reaction between sulphur tetrafluoride and boron 

trifluoride at — 80 °C (dichloromethane/solid C 0 2) ( 25). Unreacted material 

was pumped away at this temperature. The decomposition of the adduct 

was carried out by adding the calculated quantity of dry di— ethyl ether.

The sulphur tetrafluoride collected from the decompsition of the adduct was

stored in a stainless steel pressure vessel and the infrared spectrum of the 

gas showed no sign of the presence of any impurities, table 2.4.



Tabl e  2 . 3

I n f r a r e d  spectrum o f  BF3 cm-1

This work L i t e r a t u r e ^ 83) Assi

485 m 480

693 s 691

885 m 888

1449 s 1445

gnment

Table 2 .4

I n f r a r e d  spectum o f  SF4 cm"1

This work L i t e r a t u r e ^ 84) Assignment

891 s 889 v, A,

869 s 867 v 6 B.,

730 vs 728 v 8 B2

550 w 558 v 2 A,

530 w 532 v 7 B,
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2.2.8 Preparation and Purification of Sulphur Chloride 

Pentafluoride

The method used in this work for the preparation of sulphur chloride 

pentafluoride is based on the chlorofluorination of sulphur tetrafluoride by 

chlorine monofluoride in the presence of caesium fluoride according to the 

following equation( 71).

CsF
SF4 + C1F --------------------------------> SFsCl Eq 2 .4

In the absence of caesium fluoride, a high temperature is required^69) but 

in the presence of caesium fluoride this reaction occurs at room

temperature^71).

Caesium fluoride (2.0g, 13.0 mmol) was ground in the inert

atmosphere box and placed in a Monel metal pressure vessel (90 ml) 

equipped with a valve. The vessel was sealed and transferred to the 

vaccum glass line where it was pumped out and purified, sulphur 

tetrafluoride (4.0 mmol) was added by vacuum distillation. Following this an 

equimolar amount of chlorine monofluoride (4.0 mmol) was condensed into 

the same vessel after it had been connected to the metal line. The mixture

was allowed to warm to room temperature and left for 2 hours.

The sulphur chloride pentafluoride was purified by low trap— to— trap 

distillation at -  80 C° and identified by its infrared spectrum, table 2.5.



Tabl e  2 . 5

I n f r a r e d  spectrum o f  SF-C1 cm'

This work L i t e r a t u r e ^ 86) Assi gnment

575 w 578 „ g C

600 s 601 v 3 A,

710 m 707 v 2 A,

854 s 854 v y A1

909 s 909 v e C
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2.3 Preparation of Radiochemicallv Labelled Species

2.3.1 Preparation of [ 3 6C1 ] -  Chlorine Labelled Dichlorine

[ 3 6C1 ] chlorine labelled Dichlorine was prepared by the reaction of 

[ 3 6C1 ] chlorine labelled hydrochloric acid with potassium permanganate 

solution according to the following equation(8 5).

3
4 HC1 + KMn04 -------------------- > KC1 + Mn02 + 2 H20 +   Cl 2 Eq. 2 .5

2

The apparatus used for this preparation is shown in figure 2.5 and 

was assembled in a fumecupboard, it consisted of a round bottom reaction 

vessel connected to series of cooled traps. Traps B and C were charged 

with solid potassium permanganate to remove traces of hydrogen chloride. 

Both were cooled at — 80 °C (dichloromethane/solid C 0 2). Traps D and 

E were cooled at the same temperature and contained phosphorus 

pentoxide to remove any trace of moisture The liberated dichlorine was 

collected in vessel F which was equipped with high vacuum stopcocks (J. 

Young)to enable the vessel to be isolated from the rest of the apparatus. 

This vessel was cooled to —130 °C (liquid N 2/isopentane). Trap G to 

which a vacuum water pump was connected, contained phosphorus 

pentoxide cooled at — 80 #C (dichloromethane/solid C 0 2). The system was 

evacuated before use and the operations were carried out in a dry air at 

reduced pressure.

An aqueous solution of [ 36C1] sodium chloride (3 ml, 75 pCi
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Amarsham International) was added to concentrated hydrochloric acid (35.4 

w/w%,  20 ml) in a beaker. The mixture was then placed in vessel A  

which was kept at 60 C° by means of a water bath. A  solution of 

potassium permanganate (16g/300ml of water) which had been previously 

stirred overnight was added to the mixture drop wise with constant stirring. 

The dichlorine liberated was distilled through traps 1 to 4 and collected in 

vessel 5 which was then isolated and transferred to the vacuum line where 

it was degassed at —196 C°,  the dichlorine was stored in a Monel metal 

pressure vessel over phosphorus pentoxide until required.

2.3.2 Preparation of [ 3 6C1 ]— Chlorine Labelled Chlorine Monofluoride

Labelled chlorine monofluoride was prepared by the same method as 

that used for the preparation of non labelled chlorine monoflorine. The 

Monel metal pressure vessel containing [ 3 6C1 ] di— chlorine was connected 

to the metal line previously described. Equimolar (8.0 mmol) of [ 36C1] 

di— chlorine and chlorine trifluoride were loaded into the reaction vessel 

and heated to 155 C °. The process of purification of [ 36C1] labelled 

chlorine monofluoride was identical of that prescribed previously.

2.3.3 Preparation and Purification of [ 36C1]

Chlorine Labelled Hydrogen Chloride^ 8 7)

Gaseous [ 3 GC1 ] chlorine labelled hydrogen chloride was prepared by 

the reaction of concentrated hydrochloric acid (35.4 w/w%) with sulphuric 

acid according to the following equation.
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H36C1 (aq) + H2S04 (aq)  --------------» H3(3C1 (g)  + H2S04 (aq) Eq. 2 .6

The apparatus used for this preparation is shown in figure 2.6. A  

mixture of [ 36C1] chlorine labelled sodium chloride (2.5 ml, 62.5 f i d  

Amarsham International) and concentrated hydrochloric acid (35.4 w/w%, 

10 ml) was added drop wise to concentrated sulphuric acid. An iron bar 

sealed in glass was used to stir the reactants in the reaction vessel. The 

[ 3 6C1} -  chlorine labelled hydrogen chloride generated was passed through a 

series of cooled traps containing phosphorus pentoxide and connected to the 

reaction vessel via a pressure equilibrating arm. Traps 1 and 2 were cooled 

to — 80 °C . Gaseous [ 3 6C1 ] chlorine labelled hydrogen chloride was 

collected in a vessel 3 cooled to —130 °C (liquid N 2/isopentane). The 

vessel was equipped with high vacuum stopcocks (J. Young) so that it can 

be isolated from the rest of the apparatus.

Once the reaction was finished, the collection vessel was isolated 

from the rest of the apparatus and transferred to the glass vacuum line 

where it was degassed at —196 #C . The [ 36C1] chlorine labelled hydrogen 

cloride was stored over phosphorus pentoxide in a stainless steel pressure 

vessel.

2.3.4 Preparation and Purification of [ 3 5S ] Labelled

Sulphur Tetrafluoride(8 2C)

The method described before for the preparation of non labelled 

sulphur tetrafluoride was used as a basis for the radio— chemical 

preparation. The dilution of rhombic [ 35S]  sulphur was carried out by
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mixing it with a solution of S8 according to the following procedure. Dry 

carbon disulphide, CS2, was added to a Monel metal pressure vessel 

containing inactive rhombic sulphur. The carbon disulphide was also added 

to the 35S container using a long needle. Subsequently, this solution was 

transferred to the Monel metal pressure vessel using the same needle. The 

container was washed several times with carbon disulphide and the washing 

was also transferred to the same vessel. The carbon disulphide was 

removed under vacuum and the preweighed quantity of purified iodine 

pentafluoride was added by vacuum distillation. The reaction time and the 

purification procedure were identical to those described above.

2.4 Radiochemical Techniques

Radiotracer techniques are widely used in heterogeneous catalysis. 

Their main advantage is the high sensitivity for the detection of even a 

small quantity of species present on the surface of the solid. Both strongly 

and weakly adsorbed species can be detected and differentiated 

quantitatively.

2.4.1 Choice of Isotope

The choice of the isotope is generally based on the following

factors

—  The availability of the isotope.

—  The length of its half life.

—  The ease of detection and the ease of handling.

The radio isotopes used in this work were 36C1 and 35S. The radio
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isotope 3 6C1 decays by (T~ emission with a maximum energy equal to
i

0.714 MeV and half life equal to 3 x 105 years(80).

The radio isotope 3 5S decays by 0 emission with a maximum 

energy equal to 0.167 MeV and half life equal to 87.2 days(89).

The (T~ particles are electrons ejected from the nuclei of the isotope 

according to the equation 2.9.

In this process, the mass number remains unchanged while the atomic 

number increases by one unit. Both isotopes were counted using a Geiger 

Muller counter.

2.4.2 Geiger Muller Counter

The Geiger Muller counter used for counting 36C1 and 35S labelled 

compounds consists of an earthed cylindrical metal tube, filled with a 

mixture of argon and an organic substance, such as methane which is used 

as a quench gas. The inside wall of the cylinder acts as the cathode and 

the anode is a coaxial wire suspended along the tube. The tube is fitted at

38C1 * 36Ar + °|31 a _  « ~ Eq. 2 .71 7 18 -1

3 5 S 35C1 + °0 Eq. 2 .8
1 6 1 7 - 1

n Eq. 2 .9o i - i
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one end with a thin mica window and connected to a scaler.

When particles such as alpha or beta pass through the mica window, 

the gas inside the tube interacts with these particles leading to a partial 

ionisation of the gas which produces a large number of ion pairs. The

electrons formed move rapidly towards the wire and the positive ions

formed drift relatively slowly towards the wall. The pulse resulting from the 

ionisation event is recorded by the electronic scaler as an output, 

proportional to the strength of the initial ionising radiation.

2.4.3 Plateau Curve

In a Geiger Muller counter, the free electrons formed move towards 

the anode with a velocity depending on the voltage applied. However, 

counts are not recorded until the applied voltage reaches a threshold point 

at which the voltage is sufficient to attract the free electrons to the anode. 

Once this point is reached, the count rate rises rapidly as the voltage 

increases until the plateau curve is reached where the count rate arising 

from a given radiation source is independent of the applied voltage.

The first positive ions reaching the cathode cause secondary electron 

emission from the surface which is then led to the generation of spurious 

discharge inside the counter. For this reason, the plateau region is never

completely flat. This secondary emission is supressed by a quench gas.

As the potential increases, a break down of the self quenching 

mechanism occurs since the quench gas cannot cope with the large number



41

of spurious discharges. Thus self discharge of the counter occurs and the 

count rate begins to rise at the end of the plateau region.

The plateau curves of all Geiger Muller counters used in this work 

were determined using 13 7Cs as a source of radiation. A plot of count 

rate versus voltage was obtained and a typical curve is shown in figure 2.7. 

The working voltage was set in the middle of the plateau region. A  

plateau curve was determined for every Geiger Muller counter used 

throughout this work.

2.4.4 Dead Time

In a Geiger Muller counter, the motion of the positive charges is 

very slow compared with the negative charges (free electrons). Immediately 

after a collection of electrons, the central wire is surrounded by sheath of 

positive ions which has the effect of reducing the electrical field near the 

anode. Whilst the anode is surrounded by the positive ions, the counter 

can not record another pulse. During the period in which the positive ions 

migrate to the cathode, the counter can not detect any particles passing 

through it.

This insensitive period is known as the dead time of the Geiger 

Muller counter. In accurate counting experiments, a correction is necessary 

for counts lost in such periods especially when the count rate is high. The 

true count rate N(t) is related to the observed count rate N(0) by the 

following relation.
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N(0)
N ( t ) - Eq. 2 .10

(1 -  N) r

Where t  is the dead time

A sample of [ 18F ] fluorine labelled caesium fluoride was used for 

the determination of the dead time for the Geiger Muller tubes used in 

this work. The process was carried out by counting the sample over three 

half lives.

The decay of a radioisotope follows equation 2.11

A ( t ) -  A0 e "Xt Eq. 2 .11

where X -  decay constant

A ( t )  -  a c t i v i t y  o f  sample at time t 

A0 -  a c t i v i t y  o f  sample at  time t -  0

Consequently, the plot of In A(t) versus time should be a straight line with 

a gradient — X and intercept In A 0. The plot of In A(t) versus time 

obtained, figure 2.8, showed a linear relationship at t >  250 minutes, that 

is at low activity and was nonlinear at t <  250 minutes, that is at high

activity where the effect of the dead time is significant.

The extrapolation of the linear portion to time t =  0, using the half 

life of 1 8F (109.72 ± 0.06 minutes) gave the true cont rate N(t), which is 

related to the observed count rate N(0) by the equation 2.10. The dead 

time was calculated for the first twenty points on the graph, and the mean
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value was taken to be the dead time of the system.

2.4.5 Background Correction

In the absence of any radioactive source a Geiger Muller counter will 

register some counts. These are due to, the existance of random radiation 

in the atmosphere, cosmic radiation emitted to the earth atmosphere and 

material used in the construction of laboratory. These undesirable radiations 

affect the radio— chemical analysis particularly at low activity of a 

radioactive source where the background count rate is appreciable. This 

effect can be reduced by counting the sample in a shielded container.

The experiments which involved counting of 3 6C1 and 3 5S were 

performed in a reaction glass vessel, which could not be shielded. 

Therefore, it was necessary to correct any reading given by the counter for 

the background according to the relation,

Ct -  C„ -  Cb Eq. 2 .12

where Ct -  t rue  count 

CD-  observed count 

Cb -  back ground count

2.4.6 Statistical Errors

The number of disintegrations observed from a constant radioactive 

source in a given period of time is not constant, due to the random nature 

of the decay process. The probability W(m) of obtaining m disintegrations
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in time t from N 0 atoms is given by the expression^9 ° ).

N0 !
W ( m ) ---------------------------------Pm( l - p ) No"m Eq. 2 .13

(N0 -  m ) ! m!

where P is the probability of a disintegration occuring within the time of 

observation.

The expected standard deviation a for the number of radioactive 

disintegration is given by the expression

cr — 7 me c

In normal counting practice, the observation time t is small in comparison 

with the half life. Thus the standard deviation <r can be given by

<j -  7 m Eq. 2 .14

where m is the number of counts obtained.

2.4.7 36C1 and 35S Counting Apparatus

Radiochemical measurement techniques used in this work were 

monitored using the apparatus shown in figure 2.9. This apparatus consisted 

of a reaction vessel constructed from Pyrex glass and designed to facilitate 

the access of radiochemical gases and the handling of solids sensitive to



Fi
gu

re
 

2.9
 

Co
un

tin
g 

ce
ll



45

moisture.

The reaction vessel was attached to the vacuum line system and can 

be isolated from the rest of the apparatus by using a high vacuum 

stopcock (Rotaflo). The main components of this apparatus are the two 

Geiger Mtlller tubes. These were mounted on the reaction vessel to enable 

the surface radioactivity to be determined directly. These tubes were kept 

at the same height to ensure an identical counting geometry for each of 

the Geiger Mtlller tubes. Inside the reaction vessel was a Pyrex glass boat, 

in which the solid sample was loaded through a B14 socket to which an 

ampoule containing the solid sample was connected. The boat ended with a 

magnet bar sealed in glass. The boat can be moved along the length of 

the reaction vessel by using a magnet.

The characteristics of the Geiger Mtlller tubes counting vary slightly 

from a tube to another. Therefore, count rate given by two Geiger Mtlller 

tubes held in the same conditions are slightly different. However, any set 

of Geiger Mtlller tubes used in this work was intercalibrated regularly. 

These were performed by admitting different pressures of a radioactive gas 

and recording the count for each of the Geiger Mtlller tubes at every 

pressure.

The intercalibration factor was obtained by constructing a plot of

Geiger Mtlller tube 1 count rate versus Geiger Mtlller 2 count rate. A

typical example obtained with [ 36C1J-HC1, as a radioactive source, is

shown in figure 2.10 and tabulated in table 2.6. The gradient of the

straight line is equal to the intercalibration factor typically 1.16.
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Tabl e  2 . 6

[ 36C1]-HC1 p r e s s u r e  v e r s u s  c o u n t e  r a t e

P r e s s u r e G e i g e r  M u l l e r  Tube 1 

Count r a t e

G e i g e r  M u l l e r  Tube 2 

Count r a t e

T o rr cou nt  s e c -1 c o u n t  s e c -1

21.02  

29 .73  

4 2 .61  

65 .41  

8 1 .24  

96 .51  

117.58  

144.88

20.06 ± 0.18  

28.11 t 0 .21  

35.75 ± 0 .26

43 .05  ± 0 .26

49 .79  ± 0.28  

55 .20 ± 0 .3 0

64 .04 t  0 .32  

73.69 i  0 .35

17 .24  ± 0 .16  

24 .13  ± 0 .20

31 .03 ± 0 .2 2

37 .06  ± 0 .2 4  

43 .1 0  ± 0 .2 6  

47 .41  ± 0 .28  

55.17  ± 0 .3 0

63 .79 ± 0 .32
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More details of the manipulation procedure for the gas solid system 

will be described in a next chapter.



CHAPTER THREE
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C H A P T E R  T H R E E  

Activation of Metal Fluorides and B .E .T  area D eterm inations 

Introduction

The specific surface area of a solid is one of the parameters that 

must be determined if any detailed understanding of its behaviour as

catalyst is required. In this work, surface areas were determined using the 

B .E .T  method. In this method, surface areas are normally measured by 

determining the amount of gas adsorbed on the solid, at a given

temperature as a function of pressure(91).

For solids having large surface areas, nitrogen was used as adsorbate. 

For solids of small surface areas, that is less than 5 m 2g~ \  the

radioisotrope [ 85K r ]  krypton was used as adsorbate, the advantage being 

that a small change in the pressure can be detected relatively precisely^9 2) .

The pretreatment given to a sample was found to have a great effect 

in determing its B.E .T  area, pretreatment generally increases the B.E.T

area and enhances catalytic activity^71 >9 2) .

Caesium fluoride has been treated in different ways. Pretreatment 

with hexafluoroacetone in the presence of acetonitrile was found to be the 

best way of increasing its surface area(92). In the present work this
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method was also applied to mercury(II) fluoride and B .E .T  areas of solids 

after various treatments were determined.

3.1 Activation of Metal Fluorides

3.1.1 Activation of Caesium Fluoride bv Treatment with

Hexafluoroacetone in the Presence of Acetonitrile

Caesium fluoride was activated by treatment with hexafluoroacetone in 

the presence of acetonitrile according to the following reaction scheme^93).

MeCN

CsF(s)  + (CF3) 2CO(g) _̂_____ ^s + ( s o lv )  (CF3) 2FCO ( s o l v )

1 9 5 °C
Cs+(CF3) 2FCO-(s )  ------— — * CsF(s )  + (CF3) 2CO(g)  Eq. 3 .2

48 h

The experimental procedure was carried out as described in the 

literature^9 2) .

Caesium fluoride (4.0 g, 26.0 mmol B .D .H . Optran grade) was

ground in an agate pestle and mortar in an inert atmosphere box. The

sample was placed in a stainless steel pressure vessel containing four

stainless steel ball bearings. After sealing the vessel, it was transferred to 

the vacuum line. The sample was evacuated and, subsequently, dried 

acetonitrile (5 c m 3) and hexafluoroacetone (30.0 mmol) were added. The

mixture was allowed to warm to room temperature and shaken for 12 

hours. Unreacted hexafluoroacetone and acetonitrile were removed by
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vacuum distillation. The infrared spectrum of the solid at this stage is 

shown in table 3.1. The infrared spectrum of hexafluoroacetone is 

presented in table 3.2. The adduct formed was then thermally decomposed 

at 120 °C for 48 hours.

3.1.2 Activation of MercurvfID Fluoride bv Treatment with 

Hexafluoroacetone in the Presence of Acetonitrile

Mercury(II) fluoride, a commercial product, used in this work was

yellow. The activation process involved treatment with hexafluoroacetone in 

the presence of acetonitrile and was the same as that used for caesium 

fluoride.

Mercury(II) fluoride (4.0 g, 16.8 mmol) was well ground in an inert 

atmosphere box, and placed in a stainless steel pressure vessel containing 

four ball bearings. The vessel was evacuated and acetonitrile (7 cm 3) and

hexafluoroacetone (34.0 mmol) were added successively by vacuum 

distillation. The mixture was allowed to warm to room temperature and 

was left shaking overnight. Unreacted hexafluoroacetone and acetonitrile 

were then removed. The infrared spectrum of the solid at this stage is 

summarized in table 3.3.

The vessel containing the sample was connected to the vacuum line 

via a U — shaped glass vessel equipped with two Young's high vacuum stop 

cocks, figure 3.1. The thermal decomposition of the adduct formed was

carried out at 80 °C for 12 hours, and the volatile material liberated from 

the decomposition was collected in the U — tube, which was cooled to



T a bl e  3 . 1

I n f r a r e d  s p e c t r u m  o f  Cs+ (C F3)FCO“

T h i s work Li t e r a t u r e ( 9 4 )

1 4 5 5 m 1 45 0

13 4 5 w 1 3 5 0

1 2 5 0 s 125 0

12 15 s 121 0

11 5 5 s 1 1 5 0

1 1 0 0 s 110 0

960 s 960

785 w 780

735 w 730

635 w 630

(cm- 1 )

A s s  i gnment  

v CO 

v CF 

v CF 

v CF 

v CF 

v CF 

v CC 

v C C  

5  CF 

5 CF



Ta b l e  3 . 2

I n f r a r e d  s p e c t r u m  o f  (CF3) 2CO cm"1

T h i s  work  L i t e r a t u r e ( 9 5 ) A s s i g n m e n t

1 8 0 5  m 180 5  v CO

1 3 4 0  s  1 3 4 0  CF

1 2 7 0  w 1265  y CF

1 2 2 0  s  1 2 5 0  v CF

97 0  s  970  v CC

7 8 0  w 78 0  v CC

72 0  s  720  6 CF

640  5 CF
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0

— 196 C (liquid N 2). The infrared spectrum of the volatile material is 

shown in table 3.4. The bands obtained were the same as the 

hexafluoroacetone before reaction. The infrared spectrum of the solid 

remaining after decomposition showed no evidence for the presence of any 

band attributable to the adduct, therefore the adduct appeared to be 

completely decomposed. Mercury(II) fluoride remaining after decomposition 

was bright yellow.

In order to verify the mass balance, a known quantity of the adduct 

formed was placed in a Monel metal pressure vessel and thermally 

decomposed as described above. This procedure was repeated three times 

on different fresh activated sample. Data for mass balance of the

thermodecomposition were obtained; the results are summarized in 

table 3.5.

3.1.3 Pretreatment of MercurvfTO Fluoride with Sulphur 

Tetrafluoride

Mercury(II) fluoride (3.0 g, 12.0 mmol) was ground and placed in a 

stainless steel pressure vessel in an inert atmosphere box. The vessel was 

evacuated and SF4 (6.0 mmol) was added by vacuum distillation. The

material was allowed to react at room temperature for 16 h. After 

removing the volatile material at room temperature, the solid remaining 

was colourless. The infrared spectrum of the volatile material showed the

presence of thionyl fluoride, silicon tetrafluoride and sulphur tetrafluoride,

table 3.6.



Table 3.3

Infrared spectrum of the solid formed by reaction of H gF2 with (C F 3) 2CO (cm-  1)

1 7 0 0 m V CO

1 3 3 0 W V CF

1 2 2 5 S V CF

1 1 0 0 s V CF

1 0 5 0 w V CF

9 8 0 s V CC

7 8 0 w V CC

7 3 0 w 8 CF

A s s i g n m e n t s  w e r e  o b t a i n e d  by  a n a l o g y  w i t h  Cs+ (CF3) 2FCO“

Table 3.4

Infrared spectrum of the volatile material collected from the decomposition of the solid

formed by reaction of H g F 2 with (C F 3) 2CO

1805 m V CO

1340 S V CF

1270 W V CF

1220 S V CF

970 S V CC

780 W V CC

720 S 8 CF
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Table 3.6

Infrared spectrum of the volatile material after treatment of H g F 2 with SF4 

This work

s f 4

89 0  s  

87 0  s

73 0  v s  

55 0  w

Li  t e r a t u r e

s f <( 9 6 - 97>

88 9 ^ A ,  

86 7  ̂6

728  „ Q

523 v 7 

4 6 3  v 3

s o f 2 

133 5 s

808  s 

748 v s

530  s

SOF2 <9 7> 

13 3 3  v y

808 v 2 

748 , 5

530  , 3 

390 , 6

S i F 4 

1 0 2 0  s

S i F 4 ( 9 7 >

1010 v 3
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3.2 B .E .T  Area Determination

3.2.1 Introduction

When a solid is exposed in a closed space to a gas or vapour, the 

solid may adsorb the gas. This adsorption is a consequence of the field 

force at the surface of the solid, which attracts the molecules of the gas. 

The forces of attraction, emanating from the solid are two main kinds, 

physical and chemical, and they give rise respectively to physical adsorption 

and chemisorption. Chemisorption involves the formation of chemical bonds 

between the adsorbent and the adsorbate. In consequence, chemisorption is 

limited to the formation of a monomolecular layer at the surface of the 

solid. Unlike chemisorption, no chemical bonds are formed in physical 

adsorption, and forces of the Van der Waals type are involved. Therefore, 

this type of adsorption would be occurring between all gases and solids 

provided the temperature is not considerably in excess of the boiling point 

of the adsorbate. Multilayers may be built up on the surface.

The extent of coverage of the surface by the adsorbate will be 

related to the pressure of the adsorbate gas. Thus if a method of 

determining when the adsorbed monolayer is complete can be found, and 

the cross— sectional area of the gas molecule in the adsorbed state is 

known, the total surface area of the adsorbent presented to the gas phase 

can be calculated.

The adsorption isotherm is the function which relates, at constant
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temperature, the amount of substance adsorbed to an adsorbate pressure in 

the gas phase. This adsorbed amount can be expressed as a number of 

moles or as the corresponding volume. If  the gas is below its critical point, 

the adsorbed amount is given by the equation.

P
x -  f  ( ------ ) E q . 3 . 3

Po

where x -  the amount adsorbed.

P
  -  the r e la t iv e  p re s s u re .

Po

The adsorbed amount corresponding to a monolayer of gas on the surface 

can be determined using the B .E .T  equation, shown below.

Brunauer, Emmett and Teller focussed attention on the process of 

interchange of molecules between the gas phase and the adsorbed film, 

thereby following the path laid down by Langmuir(98), who regarded the 

surface of the solid as an array of adsorption sites, each site being capable 

of adsorbing one molecule. A  state of dynamic equilibrium was postulated, 

in which the rate at which molecules arriving from the gas phase and 

condensing on to bare sites is equal to the rate at which molecules 

evaporate from occupied sites.

Brunauer, Emmett and Teller explicitly extended Langmuir's 

treatment to second and higher molecular layers^91) on the basis of many 

assumptions. This led to the following simple equation called the B .E .T  

equation.
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V C P  vm ^ r
V --------------------------------------------------------------------------------------------------------Eq. 3 .4

(p 0-p )  {  1 + ( C - l ) —  }
Po

where

V: The total volume adsorbed

V m : The volume of gas adsorbed when the entire adsorbent surface is

covered with a complete unimolecular layer.

C =  e(E i -  E l )R T

E ^: is the heat of adsorption in the first layer. 

e l - is the heat of liquefaction of the adsorbate.

3.2.2 B .E .T  Area Determination of Caesium Fluoride Activated 

bv Hexafluoroacetone in the Presence of Acetonitrile

Surface areas were determined by the B .E .T  method using the

radioisotope 85Kr as adsorbate. The number of Kr molecules adsorbed x

was calculated from the equation.

P AV N 1
-------------------------------------  Eq.  3 . 5

T R 76 0  X 1 0 3
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w h e r e  P -  p r e s s u r e  ( T o r r )

AV -  c h a n g e  i n  v o lu m e  ( c m 3)

N -  A v o g a d r o  number ( 6 . 0 2 2  X 1 0 2 3 )

T — t e m p e r a t u r e  a t  w h i c h  a d s o r p t i o n  i s o t h e r m  i s  

d e t e r m i n e d  (K)

R -  g a s  c o n s t a n t  ( cm 3 T o r r  K-1 m o l - 1 )

The surface area was determined by making use of the B .E .T  equation in

the form.

P 1 C -  1 P
------------------------------ + -------------------------------------------------- Eq.  3 . 6
x ( P o - P > *m C Xm C p 0

w h e r e  x  -  amount  a d s o r b e d  a t  p r e s s u r e  P

P 0 -  s a t u r a t e d  v a p o u r  p r e s s u r e  o f  t h e  g a s  a t  t h e  

a d s o r p t i o n  t e m p e r a t u r e  

C -  c o n s t a n t  f o r  a n y  p a r t i c u l a r  g a s / s o l i d  s y s t e m  

Xm -  q u a n t i t y  o f  g a s  r e q u i r e d  t o  fo rm  a m o n o l a y e r

P P
fr o m  t h i s  e q u a t i o n  t h e  p l o t  o f  --------------  v e r s u s  —  s h o u l d  g i v e

x ( P 0- P )  p o

C -  1 1
a  s t r a i g h t  l i n e  w i t h  s l o p e  e q u a l  t o  ^— -s— and i n t e r c e p t  o f

Xm L XmC

The surface area was then calculated from the following expression
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Xm A
S u r f a c e  A r e a  -  -------- m2 . g -1 Eq.  3 . 7

W

w h e r e  A = t h e  m o l e c u l a r  a r e a  o f  t h e  g a s  a d s o r b e d ,  t h a t  i s  Kr 

W — w e i g h t  o f  s a m p l e  

Th e quantity was determ ined using equation 3.8

1
Xm — ----------------------------------------------------  E q . 3 . 8

S + i

w h e r e  S — s l o p e

i -  i n t e r c e p t

Both S and i can be deduced from the experimental data.

The apparatus used for this B .E .T  area determination was similar to 

that described by Aylmore and Jepson(9 9) modified to facilitate the 

handling of the hygroscopic material. The apparatus consisted of a 

calibrated Pyrex glass section comprising two sets of bulbs, each attached to 

a mercury reservoir, a 85Kr storage bulb (B), a th in -w alled  counting 

vessel (C) and the adsorbent sample bulb (S), figure 3.2. The system was 

also equipped with reservoirs containing the radioisotope 85Kr and inactive 

Kr.

A  desirable working activity was achieved by diluting the radioisotope 

85Kr with inactive Kr. This dilution was carried out by condensing an 

appropriate amount of 85Kr and inactive Kr into a trap containing charcoal 

activated at 300 °C under vacuum. The diluted sample was left for 12 

hours at 196 °C to equilibrate.



Figure 3.2  

B.E.T apparatus
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A  calibration curve of 8 5Kr count rate versus pressure was 

determined, figure 3.3. Pressures were measured using a Pirani gauge and 

85Kr activities were determined using a Geiger Mtlller counter, mounted 

externally immediately below the counting vessel (C). The time of counting 

was adjusted to give a total count of > 104 to minimise counting errors. 

After each pressure change, twenty minutes were required for equilibrium 

to be attained.

The sample bulb (S) was loaded with an accurately weighed sample 

(0.2—0.3 g, 1.3—1.9 mmol) of caesium fluoride in an inert atmosphere 

box. The sample was sealed and transferred to the vacuum line where it 

was evacuated overnight.

The bulbs were filled with mercury and 85Kr was admitted to the 

manifold from the storage bulb (B). Changes in pressure were obtained by 

varying the mercury volume in the bulbs. The relation between 85Kr count 

rate and volume, and hence between pressure and volume at room 

temperature was determined. For each surface area determination, a plot of 

volume versus (temperature/pressure) was constructed and gave a straight 

line with an intercept on the Y  axis corresponding to the dead space of 

the apparatus. The sample bulb was then cooled to —196 °C in liquid 

nitrogen and the level of the liquid nitrogen kept constant. Since the 

adsorption isotherms were obtained at — 196 eC , a correction was made 

to take account of the effective volume of the apparatus when a part of 

the system was cooled at this temperature. The corrected plot of the 

volume versus (temperature/pressure) was a straight line parallel to that 

obtained at room temperature but having an intercept corresponding to the
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dead space plus the temperature corrected volume. This was verified 

experimentally when no caesium fluoride was present in the sample bulb.

With the bulb (S) immersed in liquid nitrogen, a second volume 

versus (temperature/pressure) relationship was determined. The plot obtained 

was a straight line with the same intercept as the temperature corrected 

line but with a different gradient. The slope of the latter line was less 

than that of the corrected line, the differences in volume between the two 

line corresponded to the amount of 8 5Kr adsorbed. The number of the 

molecules adsorbed is given by the equation 3.5. The calculation procedure 

was as described above and a typical example of this calculation is listed in 

table 3.7, relevant plots are presented in figures 3.4 and 3.5.

The results obtained for the B .E .T  area of caesium fluoride will be 

discussed in section 3.3.

3.2.3 B .E .T  Area Determination of MercurvfID Fluoride

The B .E .T  area of mercury(II) fluoride pretreated with S F4 and non 

treated mercury(II) fluoride were determined using 85Kr as adsorbate. The 

experimental procedure and the methods of calculation were similar to 

those used with caesium fluoride. The results are presented in section 3.3.



Table 3.7

B .E .T  area determination of CsF activated by (C F 3) 2CO

Volume
cm3

C ount r a t e  
c o u n t  s e c -1

T e m p e r a t u r e
K

P r e s s u r e
T o r r

T / P  X 1 0 " 3 
K . T o r r " 1

1 0 3 . 1 2 1 9 . 8 7 2 9 1 . 3 0 . 3 5 9 1 . 1 2 0

6 0 . 7 3 2 9 . 0 7 2 9 1 . 6 0 . 3 8 3 0 . 7 5 9

3 1 . 2 0 3 8 . 1 3 2 9 1 . 8 0 . 5 1 9 0 . 5 6 2

2 0 . 3 0 4 2 . 7 4 2 9 1 . 9 0 . 5 8 4 0 . 4 9 9

1 1 . 5 1 4 8 . 5 6 2 9 1 . 4 0 . 6 6 7 0 . 4 3 6

0 . 0 0 5 4 . 6 3 2 9 0 . 8 0 . 7 5 3 0 . 3 8 5

L i q u i d  n i t r o g e n  t e m p e r a t u r e

Volume
cm3

C ount r a t e  
c o u n t s e c -1

T e m p e r a t u r e
K

P r e s s u r e
T o r r

T / P  X  1 0 " 3 
K . T o r r " ’

1 0 3 . 1 2 1 2 . 2 7 2 9 2 . 4 0 . 1 5 2 1 . 9 2 4

6 0 . 7 3 1 6 . 4 8 2 9 2 . 5 0 . 2 0 5 1 . 4 2 5

3 1 . 2 0 2 0 . 1 6 2 9 2 . 8 0 . 2 6 3 1 . 1 0 9

2 0 . 3 0 2 2 . 5 2 2 9 2 . 5 0 . 2 9 7 0 . 9 8 2

1 1 . 5 1 2 3 . 9 1 2 9 2 . 4 0 . 3 1 7 0 . 9 2 1

0 . 0 0 2 7 . 1 4 2 9 2 . 4 0 . 3 6 3 0 . 8 0 5

T
K

AV
cm3

P
T o r r

x  x  1 0 " 18 P -  Pr  o r
T o r r

P
x  ( P 0- P ) x l 0 18

P

Po

2 9 4 . 5 31 0 . 5 8 9 2 . 2 8 8 1 . 9 0 1 0 . 1 3 5 0 . 2 3 6

2 9 4 . 5 57 0 . 3 2 7 2 . 3 3 7 2 . 1 6 3 0 . 0 6 4 0 . 1 3 1

2 9 4 . 5 70 0 . 2 6 7 2 . 3 4 9 2 . 2 2 3 0 . 0 5 1 0 . 1 0 7

2 9 4 . 5 82 0 . 2 2 6 , 2 . 3 2 8 2 .2 6 .4 ' 0 . 0 4 2 0 . 0 9 0

2 9 4 . 5 95 0 . 1 9 6 2 . 3 3 7 2 . 2 9 4 0 . 0 3 6 0 . 0 7 8
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3.2.4 Determination of the B .E .T  Area of MercurvflD

Fluoride Pretreated with Hexafluoroacetone in the 

Presence of Acetonenitrile

Attempts to use 85Kr were unsuccessful due to the large area of this 

solid, and hence nitrogen was used as adsorbate for this B .E .T  area 

determination.

The design of the apparatus used is shown diagrammatically in 

figure 3.6. The adsorbent was placed in a small glass bulb which was 

attached to the apparatus by mean of standard ground glass joint. Two 

storage bulbs containing helium and nitrogen were mounted on the 

manifold, a manometer was also attached to the system. Alteration of the 

mercury levels in both limbs of the manometer was possible by adjusting 

the height of the mercury reservoir.

Helium gas was used to determine the dead space of the apparatus 

and nitrogen was used as adsorbate in the surface area determination. The 

quantity of nitrogen adsorbed was determined by taking the difference 

between the measured volume of gas in the manometer and the volume 

expected on the basis of the gas laws if there had been no adsorbtion. 

Therefore, it was necessary to determine the dead space comprising sections 

A  and B of the apparatus shown in figure 3.6. These sections were 

calibrated using helium gas since it was not adsorbed to any appreciable 

extent at —196 °C . The calibration was carried out by evacuating the 

system and then admitting helium to section A  with section B isolated. A  

set of readings of volume and pressure was obtained. By the gas laws
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K T
(V + A )   Eq.  3 . 9

P

w h e r e  K -  c o n s t a n t  w h o se  v a l u e  d e p e n d s  on t h e  s i z e  o f  

h e l i u m  s a m p l e  t a k e n  

A — d e a d  s p a c e  a b o v e  t h e  z e r o  m ark on  t h e  b u r e t t e  

T — t e m p e r a t u r e  (K)

P — p r e s s u r e  ( T o r r )

A  plot of volume against (temperature/pressure) had slope K and 

intercept (— A ).

Volume B was determined using the same sample of helium but with the 

sample bulb B, containing mercury(II) fluoride, immersed in liquid nitrogen 

and open to the rest of the manifold. In this case

K  T
(V +  A +  B )   Eq. 3 . 1 0

P

where B is the effective volume of section B.

In this case, a plot of volume against (temperature/pressure) was a straight 

line with the same slope as before and intercept equal to — (A  +  B).

The same procedure was repeated with nitrogen as adsorbate, firstly 

at room temperature and then at — 196 °C , to give two further plots of 

volume against (temperature/pressure) with different slopes but with identical 

intercepts to the corresponding helium determinations. On the basis of the 

helium adsorption at -1 9 6 ° C  , the corresponding data for nitrogen resulted 

in a line parallel to the room temperature isotherm for nitrogen with an
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intercept — (A  +  B). At a given pressure the difference between the

volume coordinate on this line and that on the experimental line was the

volume adsorbed measured at the apropriate pressure.

The number of molecules adsorbed was calculated from equation 3.5. 

The procedure for the surface area calculation was identical to that 

described in section 3.2.2. A  typical example of a surface area 

determination for activated mercury(II) fluoride is presented in table 3.8 

and relevant plots of volume against (temperature/pressure) are shown in 

figure 3.7.

3 . 3  R e s u l t s  and  D i s c u s s i o n

Mercury(ll) fluoride was activated in the same way as that used for

the activation of caesium fluoride. The reaction of hexafluoroacetone with

caesium fluoride to form the heptafluoroisopropoxide was initially reported 

by Redwood and Willis^ 9 3). The reaction of hexafluoroacetone with 

mercury(ll) fluoride as described above appears not to have been reported 

in the literature.

A  mass balance of the adduct formed before and after decomposition 

was examined using three different freshly activated samples. The results 

obtained are summarised in table 3.5. These indicate that the loss of mass 

of the solid after decomposition was identical to the mass of 

hexafluoroacetone collected from the decomposition. This mass balance 

agreed well with hexafluoroacetone being retained as H g [(C F 3) 2FCO ] 2.



u

fc.
o
>>£>
T3<V

bbO
X

00

co

JO
x>
CO
H

<o
T3

cd<U
V-
cd

H
ui
CQ

1
u

flu U  
\  o  
H  H

3
.6

6

3
.5

8

3
.1

1

2
.8

9 00
uo

CM

p-» vO VO uo U0

VO vo vo vo vo
H  ^ ON ON ON ON ON

CM CM CM CM CM

U0
oo uo rH U0 oo

u o p . CM •
X  U • CM
<  o *—i p - U0 O rH

H 00 oo ON rH rH

O n U0 <±
p^ CO VO 00 rH

V. . • •
u CN L p~ CO VO CM <±
o X  o r—1 00 UO rH ON
vO H CO CO UO UO
ON
1—1 11

rH ON OO o U0
4-4 p^ UO CO CO
CO u . • • • •

u VO o rH o ON
<D X  o co o VO rH p -

X H CM CO CO *d-

rH VO VO U0 rH
m . • • • •
E r^ vo vO 00 p *

>  o vo uo CO CM

11
u

X  u 00 rH VO . in uo
\  o rH ON VO CM
H  H • • • • •

CM rH rH rH rH

p» VO VO P" P -

VO vO VO VO VO
H  ^ ON ON ON ON ON

CM CM CM CM CM

CM rH O n CO
p - CM O CM

<U l • •
L X  l , m U0 oo < f VO
3 <3 O CO UO r-'- O CO
4-* H rH rH rH CM CM
(0
L
0) CO VO rH vO CM
a CO < r rH rH < t
E L • •
<D tN L 00 P" CO ON
4-* X  O rH ON rH rH

H CO CO < f UO VO
so
0
1 rH U0 CM CO 00

VO CM VO rH rH
4-* J- • • •
(0 -  u CM ON CM On CO

x  o 00 CO ON CO oo
(1) H rH CM CM CO CO

X

i—1 00 ON CM ON
CO •
E vO VO p^ o CM

>  o r"- VO UO UO

1
u

CL U  
\  O  
H  H

U

ON
p -

CM 2
.6
0

2
.3
9

2
.2
5

1
.9
7

P . p -. VO vO VO

VO v o v o v o VO
ON ON O n ON ON
CM CM CM CM CM

CO o o ON P ^ rH
CM VO U0 vO o

u . .
X  u VO CO CO rH o
< 3  o o rH CM CO uo

H rH rH rH rH rH

CM UO P - UO CM
CM ON U0 P .

u . • •
u C4 L . P - P - o CO
o CL O ON UO c o O n ON
v o H CM CO ^d- uo
O n
rH

Ii
ON p». 0 0 00 rH

4-4 ON CM ON o <1-
id U • • • •

-  L o o O n CO
(N flu  o ON rH UO <1-

X H rH CM CO CO

P-» P ' 0 0 ON O
m • . .
E uo VO co

>  o P » vO uo '■d- CO

I1
u

a .  u o CO VO uo CO
\  o v o CM rH o
H  H • •

rH rH rH rH rH

v o P - P^ v o P -

v o VO VO v o VO
H  ^ ON ON ON O n ON

CM CM CM CM CM

vO OO P - rH < f
ON CM P - CO

(1) u •
l CL U < t v o UO P - p^
3 <  o 0 0 O co UO oo
4-> H i—i CM CM CM CM
id

0) 0 0 P ' P ' ON O
a o 'd ' < f rH
E u •
a) Cl L i CM CM P ^ CM rH
4-4 CL O rH O n uo CM

H CO < ± uo VO
E
o
o
l CM ON O oo VO

r*H rH O o P -
4-4 L • •
id L P - VO CM uo CO

CL O U0 O VO ON CO
<N H rH CM CM CM CO

z
CM rH ON uo rH

<n
E O CM CM p - rH

>  o oo P - VO uo U0



Vo
lu

m
e 

cm

ro

OO

O
00

O

O
C\J

O
T / P K T o r r

o
" "  C \J

Figure 3 .7  Volume vs (temperature pressure)
_ o

1 N9 Room temperature isothermea .

2 He Room temperature isotherm

3 Theore t ica l  77 K isotherm

4 He 77 K isotherm

5 N£ 77 K isotherm



61

The infrared study of the adduct formed with caesium fluoride, stated 

that the band at 1510 cm- 1  is assigned to C—O stretching bond by 

analogy with that present in the ions CO 3— 2 ( 1410 — 1450 cm“  1 ), 

H C O O -  and C H 3COO“  (near 1570 cm- 1 ), and C F 3CO O “  (1700 

cm-  1)( 9 3). This band is shifted by approximtely 300 cm 1 wave number, 

consistent with change from a CO double bond to a CO single bond.

With mercury(ll) fluoride, the infrared spectrum of the adduct formed 

table 3.3 showed the presence of eight bands. The CO frequency in the 

hexafluoroacetone is shifted by 100 cm-  1wave number in the adduct 

formed. Although the thermal decomposition of the adduct formed with 

mercury(II) fluoride was carried out for only 12h, at a temperature (80 

°C ) less than that of caesium fluoride (120 °C ) ,unlike caesium fluoride, the 

infrared spectrum of the solid remaining after the thermal decomposition 

indicated no band present attributed to the adduct formed. The gas 

liberated from the decomposition had the same bands as authentic 

hexafluoroacetone suggesting that the bands obtained with the solid before 

the thermal decompsition was due to the retention of hexafluoroacetone.

The pretreatment of mercury(II) fluoride with sulphur tetrafluoride led 

to the formation of thionyl fluoride and silicon tetrafluoride, table 3.6. The 

latter is believed to be formed from the reaction of hydrogen fluoride and 

the Pyrex glassware. This formation of hydrogen fluoride and thionyl 

fluoride is more likely due to the partial hydrolysis of sulphur tetrafluoride 

by water present on the surface of mercury(II) fluoride. However, the 

change in the colour of mercury(II) fluoride from yellow to white when 

treated with sulphur tetrafluoride is due to the removal of this water.
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Surface areas on different samples were determined using the 

appropriate adsorbate 85Kr or N 2. In this B .E .T  area determination, the 

error was calculated by determining an interval within which it is highly

probable that the true value lies. This interval is called the reliability

interval and the probability selected is called the reliability coefficient, the 

reliability interval is given by the equation.

L n f 2 -  X ± KnR Eq. 3 . 11

where L 1 -  the lower  l i m i t  o f  the r e l i a b i l i t y  i n t e r v a l

L 2 -  the upper l i m i t  o f  the r e l i a b i l i t y  i n t e r v a l

X -  the mean v a l u e .

R -  the range o f  the r e s u l t s .

Kn -  the r e l i a b i l i t y  c o e f f i c i e n t ( 1° ° )

In all B .E .T  area determinations, the reliability intervals in which the true

value lies, were calculated with a probability of 95%.

The B .E .T  areas of hexafluoroacetone activated caesium fluoride 

presented in table 3.9 were obtained on three different samples. By 

applying equation 3.11 to these results, the reliability interval in which the 

true value lies with a probability of 95% is 1.83---- 2.45 m 2g“  1.

In the case of mercury(II) fluoride, untreated, pretreated with

sulphur tetrafluoride and mercury(II) fluoride pretreated with
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hexafluoroacetone in the presence of acetonitrile were examined.

Six B .E .T  area determinations were carried out, two on each of 

three different samples of non treated mercury(II) fluoride. The range of 

the results are listed in table 3.10, from which it can be deduced that the 

true value lies, with a probability of 95%, in the range 0.70— 1.32

m 2g“  1.

Table 3.11 shows the results of six surface area determinations of 

sulphur tetrafluoride pretreated mercury(II) fluoride. The true value 

calculated from equation 3.11 is in the range 1.72— 2.40 m 2g"" 1.

Due to the large surface area expected for mercury(II) fluoride 

pretreated with hexafluoroacetone in the presence of acetonitrile, nitrogen 

was used as adsorbate. Six B .E .T  area determinations were obtained on 

three freshly activated samples. The results are shown in table 3.12 and

the true value of these results lies in the interval 16.26— 20.94 m 2g“  1.

It appears from the results shown previously that a remarkable

increase in the B .E .T  area of mercury(II) fluoride was obtained by 

treatment with hexafluoroacetone, followed by thermal decomposition of the 

adduct formed. The increase in the surface area can be obtained by the 

removal of parts of a parent solid in such manner as to leave pores. The 

walls of these pores comprise the surface area of the resultant solid. A  

large surface area can be also obtained by the thermal decomposition of

the type.



T a b l e  3 . 9

B E T  a r e a  o f  CsF a c t i v a t e d  by ( C F , ) 2CO

Run Batch Sample B E T  area  
m2g” 1

1 1 1 1 .79

2 1 1 2 .2 3

3 2 1 2 .3 5

4 2 1 1 .9 5

5 2 1 2 .41

6 2 2 2 .1 5

T ab le  3 . 1 0  

B E T  a r e a  o f  HgF2

Run Batch Samp 1e B E T  area  
m2g_1

1 1 0 .7 1

2 1 1 0 .8 2

3 1 2 1 .1 8

4 1 2 0 .9 6

5 1 3 1 .3 2

6 1 3 1 .11



T a b l e  3 . 1 1

B E T  a re a  o f  HgF2 p r e t r e a t e d  w i t h  SF-s

Run Batch Samp 1e B E T  a re a  
m2g ~ 1

1 1 1 1 . 7 5

2 1 1 2 . 1 4

3 2 1 2 . 4 2

4 2 1 1 1 . 9 6  |

5 3 1 2 .2 1

6 3- 2 1 . 8 9

T a b le  3 . 1 2

B E T  a re a  o f  HgF2 a c t i v a t e d  by (C F3) 2CO

Run Bat ch Samp 1e B E T  a re a  
m2g“ 1

1 1 1 1 6 .4 3

2 1 1 1 8 .7 6

3 2 1 1 8 .4 8

4 2 2 1 7 . 6 4

5 3 1 1 9 . 2 2

6 3 2 2 0 .1 3



64

A( s )  ------------------------- > B (s )  + C(g)

This type of decomposition is known to produce a reduction in the particle 

sizes, and correspondingly, an increase in the surface area(101).

The increase of the B .E .T  area of mercury(II) fluoride activated by 

hexafluoroacetone in the presence of acetonitrile is less likely to be due to 

the decrease in the particle size, than to formation of the porous solid 

structure, which is highly probable. A  microporeous structure is likely to be 

involved, since the pretreatment process greatly enhanced the adsorption

potential.

The pore systems of a solid are of many different kinds. They may 

vary greatly both in size and in shape within a given solid as between one 

solid and another. A  convenient classification of pores according to their

width has been proposed by Dubinin^1 0 2). Pores of width below 20 A  are

9
described as micropores, those with width above 200 A  are macropores and 

those with width between 20 and 200 A  are termed transitional pores.

i

The adsorption potential is significantly higher in the micropores

resulting from the overlap of the field of opposite walls of the pores. The

amount adsorbed at a given relative pressure is correspondingly enhanced. 

In a large pore in which the fields of the opposite side of the pores do 

not overlap, the interaction energy of the solid with the gas molecule is 

relatively small.



CHAPTER FOUR
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CHAPTER FOL|R

Reactions of the Probe Molecules Chlorine Monofluoride and 

Sulphur Tetrafluoride with MercurvdD Fluoride

Introduction

The ability of ionic metal fluorides such as mercury(II) fluoride to 

undergo exchange with sulphur tetrafluoride was reported in previous work 

as the result of a radiotracer study using [ 1 8F ]— fluorine labelled sulphur 

tetrafluoride(1 0 3) . Sulphur tetrafluoride also behaves as a Lewis acid when 

reacted under heterogeneous conditions with alkali metal fluorides^2 7). The 

ability of these metal fluorides to undergo exchange with [ 18F ]— fluorine 

labelled sulphur tetrafluoride was reported to be in the order.

Cs > Rb > K > Na > L i ( 1 0 4 )

which is consistent with the order of their catalytic activities in synthetic 

work(1 0 4) .

Similar Lewis base behaviour of the alkali metal fluorides has been 

reported in their reactions with chlorine monofluoride, forming complexes 

of the type M -1- C1F ~  ( 3 8) . However, according to Mews^73) chlorine 

monofluoride apparently does not react with mercury(II) fluoride at room 

temperature. Since the Lewis acid— base reaction between chlorine 

monofluoride and caesium fluoride results in poisoning of the catalyst^72), 

the lack of reaction between mercury(II) fluoride and chlorine
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monofluoride, if confirmed, would be a distinct advantage in the synthesis 

of sulphur chloride pentafluoride from chlorine monofluoride and sulphur

tetrafluoride. The work described below was undertaken to examine the 

interaction of the probe molecules chlorine monofluoride and sulphur 

tetrafluoride with mercury(II) fluoride. Using the radiochemically labelled 

species [ 3 5S ]— sulphur tetrafluoride and [ 3 6C1 ]— chlorine labelled chlorine 

monofluoride, possible poisoning reactions were examined by studying the 

chemisorption and retention of these molecules at mercury(II) fluoride

surfaces, activated as described in chapter 3 by using hexafluoroacetone and 

sulphur tetrafluoride.

4.1 Experimental

Experiments in which non— radioactive material was used were 

performed in a Monel metal line described in section 2.1.1(b). Experiments 

involving the use of the radiochemically labelled species [ 3 6C1 ]— chlorine 

labelled chlorine monofluoride and [ 3 5S J - sulphur labelled sulphur

tetrafluoride were carried out in a Pyrex glass system described in section 

2.1.1(a). The reaction vessel (234 cm 3) shown in figure 2.4 was equipped

with two Geiger Muller counters intercalibrated as described in section 

2.4.7.

Plots of pressure versus count rate for each of the labelled gases 

used in this work were constructed. Linear relationships were found in each 

case. Typical examples of these calibrations are listed in tables 4.1 and 4.2 

and are shown in figures 4.1 and 4.2. The stoichiometries of the uptakes 

of chlorine monofluoride and sulphur tetrafluoride by mercury(II) fluoride



T a b l e  4 . 1

V a r i a t i o n  o f  count r a t e  versus pressure  o f  [ 36C1]-C1F

G e ig e r  M u l l e r  1 GM1 G eig er  M u l l e r  2 GM2

count c o r r e c t e d  count r a t e  count c o r r e c t e d  count r a t e

f o r  background count min-1 f o r  background count min-1

2511 ± 50 251 + 5 2564 ± 51 256 ± 5

4325 ± 66 432 + 7 4407 ± 66 441 ± 7

7226 ± 85 723 + 9 8035 ± 89 803 ± 9

10214 ± 101 1023 + 10 10226 ± 101 1022 ± 10

12467 ± 111 1247 + 11 12526 ± 112 1253 ± 11

15758 ± 125 1575 + 12 15684 ± 125 1568 ± 12

19023 ± 138 1902 + 14 19115 ± 138 1911 ± 14

22064 ± 148 2206 + 15 21993 ± 148 2199 ± 15

25982 ± 168 2598 + 16 26015 ± 168 2601 ± 16

Presure

T o r r

10 ± 1 

15 ± 1 

25 ± 1 

33 ± 1 

42 ± 1 

50 ± 1 

60 ± 1 

70 ± 1 

80 ± 1

I n t e r  c a l i b r a t i o n  f a c t o r  -  1 .05  

Count in g  t ime -  10 min



Ta bl e  4 . 2

V a r i a t i o n  o f  count r a t e  versus pressure  o f  [ 35S] -SF,

G e ig er  m u l l e r  1 GM1 Geiger  M u l l e r  2 GM2 Pressure

count c o r r e c t e d  count r a t e  count c o r r e c t e d  count r a t e

f o r  background count min-1 f o r  background count min-1 T o r r

5730 + 76 573 + 8 5658 + 75 566 + 7 10 + 0 . 5

12438 + 111 1244 + 11 12675 + 120 1267 + 12 20 + 0 . 5

18601 + 136 1860 + 14 18432 + 136 1843 + 14 30 0 .5

24024 + 155 2402 + 15 23736 + 154 2374 + 15 40 + 0 . 5

30162 + 174 3016 + 17 ,29262 + 171 2926 + 17 50 0 . 5

36246 + 190 3624 + 19 35544 + 188 3554 + 19 60 + 0 . 5

40476 + 201 4047 + 20 38988 + 197 3899 + 20 70 + 0 . 5

44928 + 212 4493 + 21 44076 + 210 4408 + 21 80 + 0 . 5

I n t e r  c a l i b r a t i o n  f a c t o r  -  1 .02  

Count ing t ime -  10 min



O 34

Figure 4 .1

Pressure Vs count ra te  of C1F

o

40 5010 30 60 7020 80
I n i t i a l  pressure (Torr)



Figure 4 .2

Pressure Vs count ra te  of SF

on
id
m

c\j

o

10 30 40 5020 70 80

I n i t i a l  pressure (Torr)



67

were determined using these calibration relationships. The drop in the gas 

phase count rate when the gas reacted with the solid was converted to 

pressure using the expression.

P ”  Cc p s . S E q . 4 . 1

w h e r e  P -  p r e s s u r e  ( T o r r ) , Cc p s  -  c o u n t  r a t e  ( c o u n t  s e c " 1) 

a n d  S =- s l o p e  o f  t h e  p l o t  o f  c o u n t  r a t e  v e r s u s  

p r e s s u r e .

Mercury(II) fluoride (untreated and treated with hexafluoroacetone or 

sulphur tetrafluoride) was handled in an inert atmosphere box. A  weighed 

amount (1.5—3.0 g, 6.3— 12.6 mmol) was ground in an agate mortar and 

pestle. The sample was placed in an ampoule and the stopcock was closed. 

The vessel was transferred to the vacuum line where it was evacuated for 

0.5 h. After closing the stopcock, the ampoule was mounted on the 

counting vessel via a B 14 socket. The system was pumped out and 

subsequently isolated from the pump. A  known quantity of the relevant 

radiochemically labelled gas was admitted into the reaction vessel. 

[ 3 eS ]— Sulphur labelled sulphur tetrafluoride was directly expanded into the 

reaction vessel from a storage Monel metal pressure vessel. In the case of 

[ 3 SC1 ]—chlorine labelled chlorine monofluoride, the gas measurements were 

carried out in the Monel metal line, where a known quantity of gas was 

condensed in a Monel metal pressure vessel (87 c m 3). Subsequently this 

vessel was connected to the Pyrex glass system, the labelled gas was then 

admitted to the reaction vessel from the Monel metal pressure vessel taking 

into account the change in volume, and the count rate was determined.
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This corresponded to the count rate of the gas before reaction. The gas 

was then removed from the reaction vessel and stored in the gas handling 

manifold.

The ampoule containing mercury(II) fluoride was opened to allow the 

sample to fall into one of the sections of the movable glass boat. The 

stopcock on the ampoule was closed and the section of the boat containing 

mercury(II) fluoride was positioned directly under one of the Geiger Muller 

tubes. The radiochemically labelled gas was readmitted into the reaction 

vessel. Geiger Mtlller tube (1) monitored the radioactivity in the gas phase 

and Geiger Mtlller (2) monitored the radioactivity on the solid and in the 

gas phase, therefore the surface solid count rate could be obtained by a 

simple subtraction of the intercalibrated count rates. A  typical set of data 

obtained for [ 3 6C1 ]— chlorine labelled chlorine monofluoride reacting with 

mercury(II) fluoride, activated by hexafluoroacetone, is given in table 4.3.

4.2 Results of the Reaction of Chlorine Monofluoride with 

MercurvdD Fluoride

4.2.1 Reaction of Chloride Monofluoride with MercurvfID  

Fluoride Activated bv Hexafluoroacetone

The reaction between chlorine monofluoride and mercury(II) fluoride, 

activated by hexafluoroacetone as described in section 3.1.2, was studied 

using [ 3 6C 1J- chlorine labelled chlorine monofluoride and by conventional 

manometric methods.
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The admission of [ 3 6C1 J- chlorine labelled chlorine monofluoride (50 

Torr) to a sample of mercury(II) fluoride (3.0 g, 12.6 mmol), activated as 

described, resulted in an immediate constant value of the [ 3 6C1 ]— chlorine 

count rate at the solid surface. The [ 3 6C1} - chlorine count rate on the

surface of the solid was followed over 1 h at room temperature. A  plot of

surface count rate versus time is presented in figure 4.3. This showed that 

the surface count rate remained constant. Apparently the reaction was 

complete with the first measurement.

The variation in the gas phase count rate determined by the second

Geiger Mtlller tube was also followed with time. The gas phase count rate

observed due to the gas alone in the reaction vessel decreased sharply 

when the solid was added. The overall drop in gas count rate, that is the 

difference between the count rate of gas before reaction and the last point 

in the reaction, gave a measure of the total uptake of the gas by the 

solid. The uptake of [ 3 6C1 ]— chlorine labelled chlorine monofluoride by the 

solid was calculated from this drop in the gas phase count rate and was 

found to be 0.47 mmol.

After 1 h of reaction, the volatile material was removed at room 

temperature by distillation and the solid subsequently pumped. The variation 

of the [ 3 SC1J- chlorine surface count rate was followed with time during 

the evacuation process. A  decrease in the surface count rate was observed, 

although the process was very slow. The surface count rate decreased over 

a 4 h period of evacuation at room temperature from 11700 to a value of 

ca 7500 count min-  1. This indicated that the [ 3 6C1 ] -  chlorine count rate 

at the solid surface remained very high and that only 35% of the surface
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[ 3 6C1 ] activity was removed. Since at this point the surface count rate

was still decreasing, the solid was evacuated at room temperature overnight. 

After 16 h, 45% of the surface activity had been removed and no further 

decrease was observed. Therefore 55% of the [ 3 6C1 ]— chlorine surface 

activity was permanently retained on the surface.

Further admission of an identical quantity of [ 3 6C1]— chlorine 

labelled chlorine monofluoride to mercury(II) fluoride following the first 

adsorption— desorption experiment, resulted in a saturation surface count 

rate which was less than that obtained in the first experiment. Subsequent 

evacuation of the solid for the same period of time resulted in a count 

rate from the surface equal to that obtained in the first desorption

experiment.

The procedure described above was repeated 3 times using the same

pressure of [ 3 6C1 ]— chlorine labelled chlorine monofluoride. In each

experiment a fresh sample of mercury(II) fluoride (3.0 g, 12.6 mmol) 

activated by hexafluoroacetone was used and similar behaviour was 

observed. A  typical example of the change in the [ 3 6C1 ]— chlorine surface 

count rate versus time during the adsorption— desorption process is 

presented in figure 4.4. Since the desorption process was followed with 

time for only 4 h and subsequently the solid was left pumping overnight, 

only the first portions of the first and second desorption processes in figure 

4.4 are well defined.

The surface count rate and uptake of [ 3 eC l } -  chlorine labelled 

chlorine monofluoride by the solid versus initial pressure of gas used were
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studied over the range 10—250 Torr by monitoring the count rate changes 

of the gas and gas plus surface. In each experiment, a fresh sample of 

mercury(II) fluoride (1.5 g, 6.3 mmol) activated by hexafluoroacetone was 

allowed to react with [ 3 6C1 ]— chlorine labelled chlorine monofluoride at 

room temperature for 1 h. The surface count rate, recorded after this 

time of contact, versus initial pressure is presented in figure 4.5. This 

indicated that the surface count rate over the range 10— 70 Torr increased 

rapidly as the initial pressure increased. Above an initial pressure of 70 

Torr, the increase was less marked and it reached a constant value at an 

initial pressure of 120 Torr. The total uptake of [ 3 ®C1 ]— chlorine labelled 

chlorine monofluoride by the solid showed very similar behaviour. It 

increased markedly over the range of 10—70 Torr, thereafter the increases 

were less marked. The variation of [ 3 ®C1 ]— chlorine labelled chlorine 

monofluoride solid uptake versus initial pressure is shown schematically in 

figure 4.6. The uptake of [ 3 ]— chlorine labelled chlorine monofluoride

by mercury(II) fluoride was independent of pressure at pressures greater 

than 90 Torr.

In each experiment, after 1 h of contact of [ 3 ®C1 ]— chlorine labelled 

chlorine monofluoride with the mercury(II) fluoride at room temperature, 

the solid was evacuated for 16 h and the count rate of the 

[ 3 6C1 ]— chlorine on the surface was determined. The results obtained using 

different pressures of [ 3 6C1 ]— chlorine labelled chlorine monofluoride are 

summarized in table 4.4.

The behaviour of the uptake of chlorine monofluoride by 

hexafluoroacetone activated mercury(II) fluoride at different initial pressures
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T a b l e  4 . 4

Summary o f  r e s u l t s  o f  r e a c t i o n  o f  [ 36C1]-C1F  w i t h  HgF2 a c t i v a t e d  

by (CF3) 2CO

I n i t i a l  pressure T o t a l  uptake S o l i d  count r a t e  Su r face  count r a t e

o f  gas a f t e r  e v a c a t io n

f o r  16 h

T o r r  mmol count min-1 count rnni-1

10 ± 1 0 .1 2 + 0 .0 0 2 2216 ± 61 1226 ± 11

30 ± 1 0 .1 9 + 0 .0 0 2 3675 ± 61 2043 ± 14

50 ± 1 0 .2 8 + 0 .0 03 4344 ± 61 2334 ± 15

70 ± 1 0 . 3 4 + 0 .0 0 4 4899 ± 62 2655 ± 16

90 ± 1 0 .4 2 + 0 . 0 0 4  , 4976 ± 62 2791 ± 16

120 ± 1 0 . 4 0 + 0 .0 0 4 5514 ± 63 3104 ± 17

140 ± 1 0 .4 8 + 0 .0 0 4 5525 ± 63 3087 ± 17

170 ± 1 0 .41 + 0 .0 0 4 5338 ± 63 2878 ± 17

200 ± 1 0 .5 0 + 0 .0 0 4 5290 ± 63 2907 ± 17

250 ± 1 0 .5 1 + 0 .0 0 4 5479 ± 63 2948 ± 17

Sample weight  -  1 .5  g 

R e a c t i o n  t ime -  1 h
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was also studied by a conventional manometric method using the Monel 

metal line described in section 2.1.1 (b). The results obtained are presented 

in table 4.5. The pattern of the uptake was very similar to that obtained 

for the [ 3 6C1 ]— chlorine measurements and the agreement with the uptake 

calculated from radiochemical methods is good, figure 4.7.

When sulphur tetrafluoride (200 Torr) was admitted to mercury(II) 

fluoride, previously reacted with [ 3 eCl ]—Chlorine labelled chlorine 

monofluoride, the surface count rate remained unchanged even after 

allowing sulphur tetrafluoride to react at room temperature for two hours. 

This experiment was repeated with non labelled species. Mercury(II) 

fluoride (2.0 g, 8.4 mmol) was allowed to react with chlorine monofluoride 

(10.0 mmol) in a Monel metal pressure vessel for 2 h at room 

temperature. The volatile material was then removed by distillation at room 

temperature and the solid was pumped at room temperature for 16 h. 

Sulphur tetrafluoride (8.0 mmol) was distilled into the vessel and left to 

react for 2 h at room temperature. The infrared spectrum of the gas 

phase after this time of reaction showed no evidence for the presence of 

sulphur chloride pentafluoride. The small amount of gas trapped at —80 c°  

was identified as sulphur tetrafluoride.

This procedure was repeated four times. In each experiment the 

reaction time of sulphur tetrafluoride with mercury(II) fluoride pretreated 

with chlorine monofluoride was extended up to 16 hours, but no evidence 

for sulphur chloride pentafluoride was obtained.



Tab 1e 4 . 5

The r e s u l t s  o f  the manometric study o f  the uptake o f  C1F by HgF2 

a c t i v a t e d  by (CF3) 2CO

Gas a d m i t te d  F a l l  in pressure T o t a l u p t a k e  o f  gas

T o r r  

mmo 1

T o r r

mmo 1

10
0.12

30 ±1
0 . 3 8  ±0.01

50 ± 1 
0 . 6 5  ±0.01

70 ± 1 
0 . 8 9  ± 0 .01

90 ± 1 
1 .1 5  ± 0 .0 1

120 ± 1 
1 .5 1  ± 0 .01

10  ± 1

16 ± 1

23 ± 1

25 ± 1

31 ± 1

32 ± 1

0 . 1 2  ± 0 . 0 1

0 . 2 0  ± 0 . 0 1

0 .2 9  ± 0 . 0 1

0 .3 2  ± 0 .0 1

0 . 3 9  ± 0 . 0 1

0 .4 1  ± 0 . 0 1

140 ± 1 
1 .8 1  ± 0 .0 1

170 ± 1 
2 .1 7  ± 0 .01

34 ± 1

36 ± 1

0 .4 6  ± 0 . 0 1

0 . 4 4  ± 0 . 0 1

200  ± 1 
2 .5 6  ± 0 .0 1

250 ± 1 
3 .2 0  ± 0 .0 1

35 ± 1

36 ± 1

0 .4 6  ± 0 . 0 1

Sample weight = 1 .5  g 
React ion t ime = 1 h
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4.2.2 Reaction of Chlorine Monofluoride with Mercurvflfl 

Fluoride Pretreated with Sulphur Tetrafluoride

Mercury(II) fluoride (3.0 g, 12.6 mmol) pretreated with sulphur 

tetrafluoride, as described in section 4.2.3, was allowed to react at room 

temperature with [ 36C1 ]— chlorine labelled chlorine monofluoride (50 Torr). 

The growth of the [ 3 6C1 ]— chlorine count rate at the solid surface versus 

time was very slow in comparison with that obtained for mercury(II) 

fluoride activated by hexafluoroacetone. A  plot of surface count rate versus 

time is presented in figure 4.8. This showed a relatively rapid increase in

the [ 3 GC1 ] -  chlorine surface count rate over the first 30 minutes followed,

thereafter, by a relatively slow process.

The removal of [ 3 6C1 ]— chlorine activity at the solid surface by 

evacuation at room temperature resulted in behaviour similar to that 

obtained with mercury(II) fluoride activated via hexafluoroacetone. The 

decrease in the surface count rate was very slow and only 45% of solid 

activity could be removed after evacuation at room temperature for 16 h.

The surface count rate and uptake of [ 3 6C1 ]— chlorine labelled

chlorine monofluoride by the solid were determined using diffent pressures 

of gas (10—200 Torr). A  fresh sample of mercury(II) fluoride (1.5 g, 6.3 

mmol) was used in each experiment. The behaviour of the 

[ 3 6C1 ]— chlorine uptake by solid mercury(II) fluoride pretreated with 

sulphur tetrafluoride was similar to that of hexafluoroacetone activated

mercury(II) fluoride, although the quantities involved with the former were
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much lower in comparison with the latter. The relationship between the 

surface count rate, recorded after 1.5 h of reaction at room temperature, 

and the initial pressure is presented in figure 4.9. A  surface count rate 

independent of the initial pressure was observed at pressures greater than 

90 Torr. The variation of the uptake of gas by the solid versus initial 

pressure presented in figure 4.10 showed that the uptake was independent 

of the initial pressure above 70 Torr. A  summary of the results obtained 

with mercury(II) fluoride pretreated with sulphur tetrafluoride is given in 

table 4.6.

Since a very small uptake of [ 3 6C1 ]— chlorine labelled chlorine 

monofluoride was obtained with mercury(II) fluoride pretreated with sulphur 

tetrafluoride, the study was restricted to radiotracer experiments as 

conventional manometric measurements were not reliable.

4.3 Reaction of Sulphur Tetrafluoride with 

MercurvfID Fluoride

The room temperature reaction between sulphur tetrafluoride and 

mercury(II) fluoride was studied using [ 3 5S ]—sulphur labelled sulphur 

tetrafluoride. All reactions between [ 3 5S } -  sulphur labelled sulphur 

tetrafluoride and mercury(II) fluoride were restricted to mercury(II) fluoride 

activated via hexafluoroacetone since a very small uptake, not easily 

quantified, was observed with mercury(II) fluoride pretreated with sulphur 

tetrafluoride.

The [ 3 5S ]— sulphur surface count rate versus time observed on the
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T a b le  4 . 6

Summary o f  r e s u l t s  o f  r e a c t i o n  between [ 36C1]-C1F  and HgF2 

p r e t r e a t e d  w i t h  SF4

I n i t a l  p rssure  

T o r r

T o t a l  uptake o f  gas 

mmol

Sur face  cont  r a t e  

count min-1

10 ± 1 0 .007 + 0.0005 211 + 18

30 ± 1 0 .0 1 4 + 0.0007 342 + 18

50 ± 1 0 .018 + 0 .0010 456 + 19

70 + 1 0.021 + 0 .001 0 497 + 19

90 ± 1 0 .0 22 + 0 .001 0 523 + 19

120 ± 1 0 .0 20 + 0 .001 0 519 + 19

140 ± 1 0 .023 + 0 .001 0 546 + 19

170 ± 1 0 .023 + 0 .0010 537 + 19

200 ± 1 0 .0 2 4 + 0 .0 010 541 + 19

Sample weight  -  1 .5  g 

R e a c t io n  t ime -  1 . 5  h
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surface of the solid when [ 3 5S ]— sulphur labelled sulphur tetrafluoride was 

admitted to mercury(II) fluoride activated by hexafluoroacetone, was similar 

in form to that of [ 3 6C1 ] -  chlorine labelled chlorine monofluoride, the 

surface count rate achieved after 1.5 h of reaction at room temperature 

was very low in comparison with that obtained in the reaction between 

mercury(II) fluoride and [ 3 6C1 ]— chlorine labelled chlorine monofluoride.

Admission of [ 3 5S J- sulphur labelled sulphur tetrafluoride (50 Torr) to 

mercury(II) fluoride (3.0 g, 12.6 mmol) resulted in very rapid increase in

the [ 3 5S ]— sulphur surface count rate and a constant value was obtained 

from the first measurement.

After 1.5 h of reaction at room temperature the material in the gas 

phase was removed. Unlike the behaviour of the [ 3 6Cl ]— chlorine surface

count rate, the decrease in [ 3 5S ]— sulphur surface count rate during the

evacuation was very rapid over the first 10 minutes, thereafter remaining 

almost constant. After 10 minutes of evacuation, 85% of the surface 

activity was removed and no further decrease occured thereafter.

Further admission of [ 3 5S ]— sulphur labelled sulphur tetrafluoride 

after the first adsorption/desorption cycle led to a saturation surface count 

rate less than that obtained in the first adsorption process. Subsequent 

removal of the gas following the second admission of [ 3 5S ]— sulphur 

labelled sulphur tetrafluoride resulted in a surface count rate similar to that 

obtained from the first desorption. This procedure was repeated three times 

using diferent samples of mercury(II) fluoride activated by 

hexafluoroacetone; a typical example of the behaviour of the 

[ 3 5S ] -  sulphur surface count rate versus time during the
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adsorption/desorption cycle is illustrated in figiire 4.11.

A  series of experiments using different initial pressures of

[ 3 5S y~ sulphur labelled sulphur tetrafluoride in the range 10—250 Torr was 

carried out to determine the surface count rate and uptake of 

[ 3 5S ]— sulphur labelled sulphur tetrafluoride by the solid versus initial

pressure of gas. In each experiment a fresh sample of hexafluoroacetone 

activated mercury(II) fluoride (1.5 g, 6.3 mmol) was used. The uptake of 

[ 3 5S ]— sulphur labelled sulphur tetrafluoride by the solid was calculated

from the overall drop in the gas count rate before and after reaction. The 

variation of the surface count rate versus initial pressure is presented in

figure 4.12 and the variation of [ 3 5S ]— sulphur labelled sulphur 

tetrafluoride uptake versus initial pressure is presented in figure 4.13 which 

showed that the amount of surface coverage was independent of the initial 

pressure at all pressures greater than 30 Torr.

After each reaction, the solid was evacuated for 1 h at room 

temperature and the permanently retained solid count rate was determined. 

The results obtained of the reaction between [ 3 5S ]— sulphur labelled 

sulphur tetrafluoride and mercury(II) fluoride activated by hexafluoroacetone 

are summarised in table 4.7. The overall uptake of [ 3 5S ]— sulphur labelled 

sulphur tetrafluoride by mercury(II) fluoride activated by hexafluoroacetone 

was considerably smaller at a given initial pressure than that of 

[ 3 6C1 ]— chlorine labelled chlorine monofluoride.
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T a b le  4 . 7

Summary o f  r e s u l t s  o f  r e a c t i o n  o f  [ 35S ] - S F 4 w i t h  HgF2 

a c t i v a t e d  by (CF3) 2CO

I n i t a l  p ressure T o t a l uptake o f  gas Surfacecount

T o r r mmo 1 count min-1

10 ± 0 . 5 0 .021 + 0 .001 369 ± 16

20 ± 0 . 5 0 .0 3 2 + 0 .001 467 ± 17

30 ± 0 . 5 0 .039 + 0 .0 01 498 ± 17

50 ± 0 . 5 0 .046 + 0 .0 02 524 ± 17

70 ± 0 . 5 0 .0 45 + 0 .0 02 532 ± 17

90 ± 0 . 5 0 .0 4 4 + 0 .0 02 546 ± 17

120 ± 0 . 5 0 .0 47 + 0 .0 0 2 551 ± 17

150 ± 0 . 5 0 .0 48 + 0 .0 0 2 542 ± 17

200 ± 0 . 5 0 .051 + 0 .002 537 ± 17

250 ± 0 . 5 0 .0 47 + 0 .0 02 553 ± 17

Sample weight  -  1 . 5  g 

R e a c t io n  t ime = 1 . 5  h
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4.4 Reaction of Sulphur Chloride Pentafluoride with

MercurvfID Fluoride

The reaction between sulphur chloride pentafluoride and mercury(II) 

fluoride was studied using [ 3 5S ]— sulphur labelled sulphur chloride 

pentafluoride and [ 3 6Cl ]— chlorine labelled sulphur chloride pentafluoride.

The uptake of the gas by mercury(II) fluoride activated by 

hexafluoroacetone, as measured from the decrease in the gas phase count 

rate, was very small and not reliable. A  very small surface count rate was 

obtained after allowing the [ 3 5S J - sulphur labelled sulphur chloride 

pentafluoride or [ 3 6C1 ]— chlorine labelled sulphur chloride pentafluoride to 

react at room temperature with mercury(II) fluoride (1.5 g, 6.3 mmol) for 

2 h. However, in each case the count rate decreased to background level 

on evacuation at room temperature.

4.5 Discussion

Chlorine monofluoride reacts at room temperature with mercury(II) 

fluoride both activated by hexafluoroacetone and pretreated with sulphur 

tetrafluoride. The overall uptake of chlorine monofluoride by 

hexafluoroacetone activated mercury(II) fluoride is much higher than that 

obtained with mercury(II) fluoride pretreated with sulphur tetrafluoride. The 

ratio of the uptake was 15:1 which is consistent with the ratio of the 

B.E.T  areas of the solids described in chapter 3. Radiotracer experiments

using [ 3 6C1} -  chlorine labelled chlorine monofluoride showed that the
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uptake of chlorine monofluoride by mercury(II) fluoride is reversible to 

some extent at room temperature. The count rate of the surface decreases 

very slowly on evacuation at room temperature, figure 4.4. After evacuation 

of the solid overnight, 45% of the activity is removed, and 55% of the 

[ 3 6Cl ]— chlorine surface activity is due to permanantly adsorbed species.

Lewis acid behaviour of chlorine monofluoride towards some Lewis 

base alkali metal fluorides as well as non metal fluorides, has been 

reported in the literature^30’ 39). Alkali metal difluorochlorates(I), 

NT*" C1F2— are well known, and evidence for the formation of the 

Cs+ C1F2“  ion pair has been reported from infrared and Raman 

spectroscopic studies of the reaction between caesium fluoride and chlorine 

monofluoride in an argon matrix at 15 k ( 10S). Christe and coworkers 

reported that the difluorochlorates(I) have good thermal stability^3 Q). The 

stability order follows the sequence CsC1F2 > R bClF2 > KC1F2. The 

decomposition of these difluorochlorates(I) occurs exothermically at 262, 248 

and 237 °C respectively. The decrease in cation size and the increase in 

polarising power from Cs+  to K"*" probably accounts for this order of 

stability^ 30).

Studies carried out in this department involving [ 3 8C1 ]— chlorine 

labelled chlorine monofluoride indicated that the uptake of chlorine 

monofluoride by caesium fluoride is irreversible at room temperature^72). It 

would seem therefore that chlorine monofluoride acts in a similar manner 

with mercury(II) fluoride forming the difluorochlorates of mercury, the 

formation of which is responsible for the count rate observed on the 

surface of the solid. The difluorochlorates of mercury apparently have not
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been reported in the literature.

Unlike caesium fluoride, a considerable amount of the adsorbed 

species is removed by evacuation of the solid at room temperature. Since 

the desorption process is very slow and only 45% of the activity is 

removed by evacuation overnight, it is not likely that the species removed 

is simply weakly adsorbed chlorine monofluoride. The decrease in the 

surface count rate might be better explained by the slow decomposition of 

the difluorochlorates salt formed. The surface count rate remaining after 

evacuation overnight is due to permanantly retained species, that is species 

stable at room temperature are also involved. Therefore it is possible that 

C1F2“  is present in two different lattice types H gF(C lF2) and H g (C lF 2) 2. 

One is stable at room temperature and the other is relatively unstable.

The instability observed for the difluorochlorates of mercury is in 

agreement with the effect of the cation size found with the alkali metal 

fluorides, in which the more stable salt of metal difluorochlorate is found 

with the largest cation, the less stable salts are those with a small cation 

size. The cation size of Hg+ +  (1.10 A  ) ( 52) is much less than that of 

Cs**- in the fluoride. The 2+ charge of the mercury cation and its small 

size greatly enhance the polarizing power of Hg+ 'h which may account for 

the instability of the difluorochlorates(II) of mercury. Therefore, it seems 

resonable that the difluorochlorates of mercury would be less stable than 

that of caesium.

The admission of sulphur tetrafluoride to mercury(II) fluoride, 

pretreated with [ 3 6C1 ]— chlorine labelled chlorine monofluoride and
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subsequently evacuated overnight, does not alter the surface count rate. The 

significant amount of [ 3 8C1 ]— chlorine labelled chlorine monofluoride that 

is retained is not displaced by sulphur tetrafluoride and sulphur tetrafluoride 

does not react with H g(C lF2) 2.

The reaction of [ 3 5S ] -  sulphur labelled sulphur tetrafluoride with 

activated mercury(II) fluoride results in an uptake considerably less than the 

uptake obtained with chlorine monofluoride. Moreover, the uptake of 

sulphur tetrafluoride by mercury(II) fluoride is reversible at room 

temperature and most of the count rate of the surface is removed by 

evacuation at room temperature. The desorption process is very rapid in 

comparison with the desorption of chlorine monofluoride. This indicates that 

the species removed was weakly bound sulphur tetrafluoride. The count rate 

remaining on the solid surface after evacuation is due to the strongly 

bonded species that is permanantly adsorbed. The two possible structures of 

weakly bonded sulphur tetrafluoride, as derived from the structure of 

pentafluorosulphate, are shown in figure 4.14 and 4.15. The 

pentafluorosulphate anion has been characterised as having C 4V 

symmetry^2 9) . The more likely structure of the weakly bonded species is 

that shown in figure 4.14.

Most of the adsorbed [ 3 SS J - sulphur labelled sulphur tetrafluoride is 

removed readily at room temperature. This sulphur tetrafluoride should 

not behave as a catalyst poison.
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CHAPTER F IV E  

The Chlorofluorination of Sulphur Tetrafluoride

Introduction

Ionic metal fluorides participate in addition or oxidative addition 

reactions involving organic and inorganic fluorine compounds. For example, 

caesium fluoride catalyses the chlorofluorination of sulphur tetrafluoride by 

chlorine monofluoride(7 ° ) . The exchange ability of [ 1 8F ]— fluorine labelled 

sulphur tetrafluoride with mono and difluorides including mercury(II) 

fluoride was reported in previous work(1 0 3). The existence of a correlation 

between the 18F exchange ability and the catalytic activity for the 

chlorofluorination of sulphur tetrafluoride was also reported^1 0 4) . However, 

the correlation is not general for fluoride of other groups, these appears to 

be no correlation between, the exchange ability and any single cation 

property or the structural type(103).

In order to examine the catalytic activity of mercury(II) fluoride, the 

reaction between sulphur tetrafluoride and chlorine monofluoride in the 

presence of mercury (II)  fluoride has been studied using [ 3 5S ]— sulphur 

labelled sulphur tetrafluoride, [ 3 6C1 ]—chlorine labelled chlorine 

monofluoride and by a conventional manometric method.
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5.1 Experimental

All operations in which the radiochemically labelled species sulphur 

tetrafluoride and chlorine monofluoride were involved were carried out in 

the Pyrex vacuum system described in section 2.1.1 a. Reactions involving 

non— radioactive material were carried out in the Monel metal line, 

(passivated with chlorine trifluoride before use), described in section 2.1.1 

b. Sulphur chloride pentafluoride was separated by low temperature trap to 

trap distillation as described in section 2.2.8 and identified by its infrared 

spectrum. Mercury(II) fluoride was added to the reaction vessel in the same 

way as described in section 4.1. [ 3 6C1 ]—Chlorine labelled chlorine

monofluoride and [ 3 5S ]— sulphur labelled sulphur tetrafluoride were mixed 

in an appropriate ratio in a Monel metal pressure vessel before admission 

to the reaction vessel. When non— radioactive gases were used, mercury(II) 

fluoride was placed in the inert atmosphere box in a Monel metal pressure 

vessel. The vessel was then transferred to the Monel metal line and 

subsequently evacuated. An approprate reaction mixture containing chlorine 

monofluoride and sulphur tetrafluoride was condensed onto mercury(II) 

fluoride at low temperature and the mixture was then allowed to warm to 

room temperature.

5.2 Reaction of Chlorine Monofluoride with Sulphur

Tetrafluoride over MercurvflD Fluoride
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5.2.1 Reaction of Chlorine Monofluoride with Sulphur

Tetrafluoride over Untreated MercurvfID Fluoride

A  mixture of sulphur tetrafluoride (4.0 mmol) and chlorine 

monofluoride (4.0 mmol) was admitted to a sample of mercury(II) fluoride 

(2.0 g, 8.4 mmol). After allowing the mixture to react at room 

temperature for 2 h, the volatile material was removed and separated into 

the individual components. The infrared spectrum of the gas separated from 

chlorine monofluoride showed no evidence for the presence of sulphur 

chloride pentafluoride and bands attributed to thionyl fluoride and silicon 

tetrafluoride were present. The attempted reaction of sulphur tetrafluoride 

with chlorine monofluoride over untreated mercury(II) fluoride was 

attempted several times. In each case, a fresh sample of mercury(II)

fluoride was used and no sulphur chloride pentafluoride was obtained. This 

was probably due to the hydrolysis of the reactants by water present on

the surface of mercury(II) fluoride.

5.2.2 Reaction of Sulphur Tetrafluoride with Chlorine 

Monofluoride over MercurvfrO Fluoride Activated bv 

Hexafluoroacetone

The admission of a mixture of sulphur tetrafluoride (4.0 mmol) and 

chlorine monofluoride (4.0 mmol) to a sample of mercury(II) fluoride (2.0 

g, 8.4 mmol) activated by hexafluoroacetone at room temperature, led to 

different results from those obtained in the above reaction. Sulphur chloride 

pentafluoride was obtained in the presence of mercury(II) fluoride activated 

by hexafluoroacetone. Sulphur tetrafluoride and chlorine monofluoride were
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added to mercury(II) fluoride activated by hexafluoroacetone and allowed to 

react at room temperature for 1 h. After this time of reaction the volatile 

material was removed and sulphur chloride pentafluoride was separated 

from unreacted chlorine monofluoride and sulphur tetrafluoride. The yield 

of sulphur chloride pentafluoride as determined from pressure measurements 

was ca 75 %  after 1 h of reaction. The admission of a further sample of 

the mixture (1 :1 mole ratio) to the same sample of mercury(II) fluoride 

under the same conditions yielded to the same results. Several reactions 

using a 1:1 mole ratio of sulphur tetrafluoride and chlorine monofluoride 

were carried out using the same sample of catalyst. No effect on the yield 

was observed, that is the yield remained constant. The results obtained 

using different initial pressures are listed in table 5.1.

The reaction of the mixture of sulphur tetrafluoride and chlorine 

monofluoride was studied using different mole ratios. In each experiment, a 

fresh sample of mercury(II) fluoride, activated by hexafluoroacetone, was 

used and the appropriate mixture was obtained by keeping one of the 

reactants constant and varying the other. The results of the experiments in 

which sulphur tetrafluoride was kept constant at 3.5 mmol and chlorine 

monofluoride was varied from 0.5 to 3.5 mmol are summarised in table

5.2 and are shown schematically in figure 5.1. The yield of sulphur 

chloride pentafluoride was affected by the mole ratio used. A  maximum 

yield from the reaction between sulphur tetrafluoride and chlorine 

monofluoride in the presence of mercury(II) fluoride activated by 

hexafluoroacetone was obtained at a 1 :1 mole ratio with a minimum 

retention of gas. A  remarkable increase of the fraction of gas retained was 

obtained when the quantity of chlorine monofluoride in the mixture was



T a b le  5 . 1

The y i e l d  o f  SFsCl u t i l i s i n g  HgF, a c t i v a t e d  by (C F - )

Run Batch Sample

1 1 1  

2 1 1

3 1 1

4 2 1

5 2 1

6 2 2

7 3 1

8 3 2

9 3 3

Gas a d m i t t e d  y i e

equimolar  
C1F +  SF4

mmol %

8 .0  75

8 .0  74

8 .0  75

8 .0  77

6 .0  76

6 .0  77

8 .0  75

6 .0  76

6 .0  74

Sample weight  — 2 . 0  g 

R e a c t io n  t ime -  1 h

Batch numbers correspond to  th re e  p r e t r e a t m e n t s



T a b le  5 . 2

R e a c t io n  o f  C1F w i t h  gp4 over HgF2 a c t i v a t e d  by (CF3) 2CO 

The c o m p e t i t i o n  r e a c t i o n  r e s u l t s

C1F = 0 . 5 --------3 .5  mmol

SF4 = 3 .5  mmol

C1F a d m i t te d  Gas r e t a i n e d  SF5C1 Gas recovered

C1F + SF4 C1F + SF4

mmo 1 mmo 1 mmo 1 mmo 1

0 . 5

1. 0

1 .5  

2. 0

2 . 5  

3 . 0

3 . 5

0 .6 1

0 .6 0

0 .5 3

0 .4 7

0 .3 7

0.22

0 .00

0 .0 9

0 . 2 4

0 .4 5

0 .7 6

1 .1 5

1 .6 5

2 . 6 6

3 .2 1

3 .4 2

3 .5 7

3 .5 1

3 .3 3

2 .9 8

1 . 6 8

Sample weight  -  2 . 0  g



Figure 5.1

Change in % composition f o r  SF^ + C1F----------------- *SF^C1

over HgF^ act iva te d  by (CF^^CO

SF^_= 3.5  mmol
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ClF (mmol)

(1)  C1F + SF^ re ta in ed

(2)  C1F + SF4 gas

(3)  SFjXl gas
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greater than the quantity of sulphur tetrafluoride. However, the fraction of 

gas, sulphur tetrafluoride and chlorine monofluorde, retained at low mole 

ratio that is with chlorine monofluoride equal to 0.5 mole was relatively 

small.

The effect on the yield of sulphur chloride pentafluoride and the 

fraction of sulphur tetrafluoride plus chlorine monofluride retained by

mercury(II) fluoride, was also tested by keeping the quantity of chlorine

monofluoride constant at 0.5 mmol and varying the quantity of sulphur

tetrafluoride from 0.5 to 3.5 mmol. The fraction of chlorine monofluoride

and sulphur tetrafluoride retained by the solid decreased as the quantity of

sulphur tetrafluoride in the mixture incresed. The results obtained when

sulphur tetrafluoride was varied from 0.5 to 3.5 mmol while chlorine

monofluoride kept constant are summarised in table 5.3 and shown in 

figure 5.2.

The nature of the chlorofluorination of sulphur tetrafluoride, catalysed 

by mercury(II) fluoride, activated by hexafluoroacetone, was examined using 

the radiotracer method. The uses of 35S or 36C1 were explored in the 

reaction using mixtures containing [ 3 5S ]— sulphur labelled sulphur 

tetrafluoride or [ 3 6C1 J - chlorine labelled chlorine monofluoride. A  mixture, 

1:1 ratio, of [ 3 6C1 ]—chlorine labelled chlorine monofluoride and sulphur

tetrafluoride was admitted to a sample of mercury(II) fluoride (1.5 g, 6.3 

mmol) activated by hexafluoroacetone. The [ 3 6C1} -  chlorine surface count 

rate was followed with time and is presented in figure 5.3. This shows that 

a large [ 3 6 Cl ]— chlorine surface count rate was recorded at the first 

reading followed thereafter by a very rapid decrease. A  constant value was



T a b le  5 . 3

R e a c t i o n  o f  C1F w i t h  S F 4 o v e r  HgF2 a c t i v a t e d  b y  (CF3 ) 2CO

The c o m p e t i t i o n  r e a c t i o n  r e s u l t s

C1F — 3 . 5  mmo1

SF 4 — 0 . 5 --------3 . 5  mmol

SF 4 a d m i t t e d  Gas r e t a i n e d  S F s Cl

mmol mmol mmol

Gas r e c o v e r e d

mmol

0 . 5

1. 0

1 . 5  

2. 0

2 . 5  

3 . 0

3 . 5

0 . 8 1

0 . 8 4

0 . 7 7

0 . 6 7

0 . 5 4

0 . 3 8

0.00

0.12

0 . 2 6

0 . 4 3

0 . 7 0

1.02

1 . 7 1

2 . 6 9

3 . 0 6

3 . 4 6

3 . 7 9

4 . 1 3

4 . 4 4

4 . 4 2

2.10

s a m p l e  w e i g h t  -  2 . 0  g
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observed after ca. 40 minutes. Evacuation of the system after the reaction 

resulted in the surface count rate being almost equivalent to the 

background count rate of the Geiger MUller counter. Further admission of 

a mixture of 1:1 mole ratio to the same sample of mercury(II) fluoride 

under the same conditions gave results similar to those described above. 

The removal of the gas phase resulted in the [ 3 6C1 ]— chlorine surface 

count rate falling to the background count rate.

The decrease in [ 3 6C1J- chlorine surface count rate in the above 

reaction was tested for first and second order kinetic behaviour, taking the 

initial reading of the [ 36C1]— chlorine surface count rate as t =  0, table

5.4. The analysis showed that the chlorofluorination of sulphur tetrafluoride 

by chlorine monofluoride did not occur according to a first order reaction. 

However, a plot of the second order relationship was constructed and the 

graph obtained, which is presented in figure 5.4, was linear. Therefore the 

chlorofluorination of sulphur tetrafluoride by chlorine monofluoride follows a 

second order reaction under the conditions used.

A  similar procedure was used with [ 3 5S ]— sulphur labelled sulphur 

tetrafluoride as the labelled gas. The admission of a 1:1 mole ratio mixture 

of chlorine monofluoride and [ 3 5S J - sulphur labelled sulphur tetrafluoride 

to a sample of mercury(II) fluoride, activated by hexafluoroacetone, 

exhibited the same characteristics as those described for the mixture of a 

1 :1 mole ratio of [ 3 6C1 ]— chlorine labelled chlorine monofluoride and 

sulphur tetrafluoride. The highest [ 3 5S ]—sulphur surface count rate was 

recorded at the first reading after admission of the mixture to mercury(II) 

fluoride, followed therafter by a rapid decrease during the first 30 minutes,



T a b le  5 . 4

Summary o f  the  r e s u lts  o f  the r e a c t io n  o f  [ 36C 1]-C 1F  and SF4 over 

HgF2 a c t iv a te d  by (C F3) 2CO

Time S u rface  count ra te  (CRq -  CR)/CRq.CR x  105

min count m in "1

05 6834 ± 63 0 .0 0

10 2984 ± 59 1 8 .8 7

15 2321 ± 57 2 8 .4 5

20 1937 ± 57 3 6 .9 9

25 1634 ± 56 4 6 .5 6

30 1416 ± 56 5 5 .9 8

35 1251 ± 52 6 5 .3 0

40 1116 ± 50 7 4 .9 7

45 1061 ± 49 79 .6 1

50 915 ± 49 9 4 .6 5

55 842 ± 49 104 .1 3

60 784 ± 49 112 .91

CRq *“ 6834

CRq — I n i t i a l  re a d in g  o f  the s u rfa c e  count r a te  

CR -  S u rface  count r a te  a t tim e -  t
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then it remained almost constant. The [ 3 5S ]— sulphur surface count rates 

at different times are listed in table 5.5 and are shown in figure

5.5 .Evacuation of the solid at room temperature led to a drop in the 

surface count rate equal to the background count rate of the Geiger MUller 

counter, that is the activity of the solid was completely removed. Admission 

of a further sample of the mixture of 1 :1 mole ratio to the same sample

of mercury(II) fluoride followed the same pattern as in the first reaction.

The decrease in [ 3 5S ]— sulphur surface count rate during the reaction of 

the mixture of 1 :1 mole ratio of [ 3 5S ]— sulphur labelled sulphur

tetrafluoride was tested for its kinetic behaviour, table 5.5. The plots of 

the second order relationship, (CRo — CR)/(CRo.CR) versus time,

constructed were straight lines, where C R 0 is the initial reading of the 

surface count rate and CR is the surface count rate at time equal t. A  

typical example of this plot is shown in figure 5.6. This indicated that the 

chlorofluorination of sulphur tetrafluoride by chlorine monofluoride follows a 

second order reaction which confirmed the results obtained from the 

mixture of 1 :1 mole ratio of [ 3 6C1 ]— chlorine labelled chlorine 

monofluoride and sulphur tetrafluoride.

5.2.3 Reaction of Chlorine Monofluoride with MercurvfID Fluoride 

Activated with Hexafluoroacetone and Pretreated with [ 3 5S J - Sulphur 

Labelled Sulphur Tetrafluoride.

Chlorine monofluoride (6.0 mmol) was admitted to a sample of 

activated mercury(II) fluoride (1.5 g, 6.3 mmol) previously reacted with 

[ 3 5S ]— sulphur labelled sulphur tetrafluoride. The chlorine monofluoride 

was allowed to react for 1.5 h at room temperature. When the volatile



T a b le  5 . 5

Summary o f  the r e s u lts  o f  the re a c t io n  o f  [ 35S ]-S F 4 w ith  C1F, 1 :1  mole

r a t io  over HgF2 a c t iv a te d  by (C F3) 2C0

Time S u rface  count r a te  (CRq -  CR)/CR q .CR xlO^-

m in count m in-1

05 718 + 43 0 .0 0

10 451 ± 38 0 8 .2 1

15 288 + 37 2 0 .7 4

20 242 + 36 2 8 .3 5

25 198 ♦ 33 3 6 .4 2

30 173 + 31 4 3 .6 1

35 153 29 5 1 .0 2

40 145 + 29 5 4 .9 2

45 132 + 28 6 1 .3 7

50 120 ± 28 6 8 .7 3

55 108 + 28 7 8 .4 3

60 105 + 28 8 1 .0 2

CRq -  718 count m in-1

CRq -  I n i t i a l  re a d in g  o f  the  s u rfa c e  count r a te  

CR -  S u rface  count r a te  a t tim e -  t
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material was removed, the surface count rate dropped to the background 

count rate. The [ 3 5S ]—sulphur activity of the solid remaining after 

treatment of mercury(II) fluoride with [ 3 5S ]— sulphur labelled sulphur

tetrafluoride and subsequent evacuation was removed by admission of 

chlorine monofluoride. This experiment was repeated using non labelled 

gases where sulphur tetrafluoride (200 Torr, 8.0 mmol) was admitted to a 

sample of mercury(II) fluoride activated by hexafluoroacetone (2.0 

g, 8.4 mmol) and allowed to react at room temperature for 2 h. 

Unreacted sulphur tetrafluoride was removed and subsequently chlorine 

monofluoride (200 Torr, 8.0 mmol) was admitted to the sample of 

mercury(II) fluoride pretreated with sulphur tetrafluoride. After allowing

chlorine monofluoride to react at room temperature for 2 h, volatile

products were removed and chlorine monofluoride was separated by low 

temperature fractional condensation. The infrared spectrum of the gas 

remaining after this separation showed the presence of sulphur chloride

pentafluoride. Since the quantity of sulphur tetrafluoride retained by

mercury(II) fluoride was very small, it was difficult to determine

quantitatively the sulphur chloride pentafluoride recovered in this reaction.

5.2.4 Reaction of Chlorine Monofluoride with Sulphur 

Tetrafluoride Over MercurvfID Fluoride Pretreated with 

Sulphur Tetrafluoride

Due to the hydrolysis expected of the reactants over untreated

mercury(II) fluoride, the commercial mercury(II) fluoride used in this

section was pretreated with sulphur tetrafluoride as described in section 

3.2.1. A  mixture of a 1:1 mole ratio of sulphur tetrafluoride (4.0 mmol)
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and chlorine monofluoride (4.0 mmol) was condensed onto a sample of 

mercury(II) fluoride. The reactants were allowed to react at room 

temperature for 4 h. After separation of the unreacted material, the 

infrared spectrum of the gas trapped at — 80 °C showed the presence of 

sulphur chloride pentafluoride. The procedure was repeated several times 

and each time the yield of sulphur chloride pentafluoride was determined. 

Table 5.6 summarises the yield of sulphur chloride pentafluoride obtained 

using both a fresh sample of the catalyst and a sample which had been 

previously used. The data obtained showed that the yield of sulphur 

chloride pentafluoride was not affected by the repeated addition of the 

mixture of 1 :1 mole ratio. More importantly, the quantities of sulphur 

chloride pentafluoride obtained within the above reaction time were smaller 

than those obtained in the case of mercury ( II)  fluoride activated by 

hexafluoroacetone.

5.3 Discussion

The room temperature reaction between chlorine monofluoride and 

sulphur tetrafluoride in the presence of mercury(II) fluoride, pretreated with 

hexafluoroacetone or sulphur tetrafluoride, leads to the formation of sulphur 

chloride pentafluoride. However no sulphur chloride pentafluoride is 

obtained when this reaction is attempted over untreated mercury(II) 

fluoride. The lack of the formation of sulphur chloride pentafluoride is 

probably due to the hydrolysis of the reactants at the mercury(II) fluoride 

surface. Therfore one function of the pretreatment of mercury(II) fluoride 

is to produce anhydrous mercury(II) fluoride. The pretreatment process also 

affects the B .E .T  area of the solid(92). Thus sulphur chloride is obtained



T a b l e  5 . 6

R e a c tio n  o f  C1F w ith  SF4 over HgF2 p r e t r e a te d  w ith  SF4 

The y ie ld  o f  SFsCl

Run Batch Sample Gas a d m itte d  SF5C1

eq u im o lar  

C1F + SF4

mmol %

8. 0

8.0

8. 0

10.0

10.0

10 . 0

12.0

12.0

12 . 0

44

43

45

45

44

46 

46

45 

45

Sample w eight -  2 .0  g 

R e a c tio n  tim e -  4 h

B atch  numbers correspond to  th re e  p re tre a tm e n ts .



90

when the reaction is attempted over pretreated mercury(II) fluoride. The 

results presented in section 5.2.2 and section 5.2.4 show that the yield of 

sulphur chloride pentafluoride obtained in the case of mercury(II) fluoride 

pretreated with hexafluoroacetone is higher than that obtained using 

mercury(II) fluoride pretreated with sulphur tetrafluoride. This is probably 

due to the larger B .E .T  area of mercury(II) fluoride activated by 

hexafluoroacetone which provides a greater number of contacts between the 

probe molecules, C1F and SF4, and the active sites on the surface of 

mercury(II) fluoride. The yield of sulphur chloride pentafluoride obtained in 

1 h with mercury(II) fluoride activated by hexafluoracetone is ca 75%. The 

yield obtained in 4 h with the pretreated sulphur tetrafluoride is ca 45%.

However, the ratio of the B .E .T  area is 15:1. This latter observation is in

agreement with the work reported in the literature^7 2) . The reactivty of 

caesium fluoride is increased by its pretreatment with hexafluoroacetone and 

appears to enhance its abilty to react as Lewis base(72). The pretreatment 

of caesium fluoride by hexafluoroacetone is the most effective way to 

increase its B .E .T  area and enhance the catalytic activity for the

chlorofluorination of sulphur tetrafluoride^ 9 2 * 7 2)

It appears from the results presented in table 5.4 and shown

schematically in figure 5.3 that the chlorofluorination of sulphur chloride

tetrafluoride over mercury(II) fluoride pretreated with hexafluoroacetone

proceeds rapidly at room temperature. The results of the competitive

reaction presented in table 5.2, 5.3 and shown in figure 5.1, 5.2 indicate

that a high yield with no retention of gas is obtained for the mixture of

1 :1 mole ratio. However at low concentration of sulphur tetrafluoride or

chlorine monofluoride in the mixture, the retention of sulphur tetra fluoride 

and
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chlorine monofluoride becomes significant. From the above results it can 

be suggested that the reaction involving adsorbed sulphur tetrafluoride, 

H g F j .S F ^ ^ ) ,  and adsorbed chlorine monofluoride, H g F 2.C lF(acjs), to 

form sulphur chloride pentafluoride is faster than the reaction of the 

adsorbed state of these molecules with fluoride ions to form strongly 

bonded species according to the following equations.

F"~ -SF 4(ads) >  S F 5

F~  -ClF(acjsy -> C1F 2 (s)



CHAPTER S IX
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CHAPTER SIX

DISCUSSION A N D  C O NC LUSIO N

Sulphur chloride pentafluoride is successfully prepared at room 

temperature in the presence of caesium fluoride catalyst by the reaction of 

chlorine monofluoride with sulphur tetrafluoride(71). The pretreatment given 

to the catalyst is found to be of great effect both on its B .E .T  area and 

on the catalytic activty for the above reaction^ 72»9 2). Similar behaviour has 

been found with mercury(II) fluoride. The pretreatment of mercury(II) 

fluoride with hexafluoroacetone as described in chapter 3 leads to a 

remarkable increase of its B .E .T  area compared with the B .E .T  area of 

mercury(II) fluoride pretreated with sulphur tetrafluoride. The formation of 

a porous structure as stated in chapter 3 and the dislocation of the crystal 

structure by the hexafluoroacetone molecule could account for this increase 

in the B .E .T  area. Evidence from the infrared spectrum, discussed in 

chapter 3, indicates that there is a retention of hexafluoroacetone by 

mercury(II) fluoride, and the heptafluorisopropoxide salt is formed.

During the reaction of mercury(II) fluoride with hexafluoroacetone to 

form the heptafluoroisopropoxide anion, the crystal lattice must undergo 

some form of expansion to accomodate the large heptafluoroisoproxide 

anion. The isopropoxide is thermally unstable and no retention of 

hexafluoroacetone by mercury(II) fluoride is found after the thermal 

decomposition. A  permanent alteration of the crystal structure as a result
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of this process is unlikely. Unlike the situation for mercury(II) fluoride, 

retention of hexfluoroacetone to a small extent by caesium fluoride is 

observed after thermal decompsition of its adduct(9 4) , but even in this case 

the disruption of the crystal structure by the presence of the 

heptafluoroisopropoxide anion, (C F 3) 2FCO— , does not account for the 

overall increase of the B .E .T  area(94). Work carried out in this 

Department by K. Dixon and coworkers indicates that similar increase in 

the B .E .T  area is obtained when caesium fluoride is pretreated whith 

carbonyl fluoride although the adduct formed is completely decomposed. 

The increase in the B .E .T  area will provide a large contact between the 

solid that is the adsorbent and the reactive molecules, that is the adsorbate 

and therefore enhance the physical and chemical adsorption.

Consistent with the above hypothesis are the results obtained in 

chapter 4 from the study of adsorption of [ 3 5S ]— sulphur labelled sulphur 

tetrafluoride and [ 3 6C 1J- chlorine labelled chlorine monofluoride. They 

indicate that very rapid and large uptakes of chlorine monofluoride and 

sulphur tetrafluoride are observed during the reaction of these molecules 

with mercury(II) fluoride pretreated with hexafluoroacetone. However, when 

mercury(II) fluoride pretreated with sulphur tetrafluoride is used, the 

uptakes of chlorine monofluoride and sulphur tetrafluoride are relatively 

slow and significantly less than those obtained with hexafluoroacetone 

pretreated mercury(II) fluoride. This is in a good agreement with the work 

reported by Kolta and co workers, in which the pretreatments of caesium 

fluoride greatly enhance the uptake of chlorine monofluoride or sulphur 

tetrafluoride by the solid. Moreover the largest uptake is obtained with the 

largest B .E .T  area of caesium fluoride(7 2) .
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The results presented in chapter 4 show that there is considerable 

retention of [ 3 6C1 ]— chlorine labelled chlorine monofluoride by mercury(II) 

fluoride surface, and that the retained species do not participate to any 

appreciable extent in the reaction with sulphur tetrafluoride to form sulphur 

chloride pentafluoride. This observation suggests that the weakly adsorbed 

chlorine monofluoride in the first step subsequently reacts with mercury(II) 

fluoride to form a chemical bond according to the following equations.

F ( s ) + ^ F (g ) * F • ^ F (a d s ) £ q 5 .1

F ' - c l F (ad s ) ----------------------- > c 1F 2 **(s) £q 5 - 2

The behaviour of [ 3 5S ]— sulphur labelled sulphur tetrafluoride is

similar to that of chlorine monofluoride, in that the uptake of sulphur

tetrafluoride by mercury(II) fluoride is enhanced by the activation with

hexafluoroacetone. However, the quantities involved with sulphur 

tetrafluoride are considerably less than those with chlorine monofluoride. 

The admission of chlorine monofluoride to mercury(II) fluoride pretreated 

with [ 3 5S y -  sulphur labelled sulphur tetrafluoride results in a total removal 

of the activity from the surface of the solid. The admission of chlorine 

monofluoride to sulphur tetrafluoride pretreated catalyst leads to the

complete conversion of retained sulphur tetrafluoride to sulphur chloride 

pentafluoride, though the quantity of sulphur chloride pentafluoride is very 

small. The behaviour is consistent with equations 5.3 and 5.4.
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F ' - SF4 (a d s )----------------------► SFs " (s )  Eq 5 - 3

^F 5 ( s ) + ^ * F (g ) * ^F 5 ^ ( g )  Ft^

Unlike the results obtained when chlorine monofluoride is admitted to 

sulphur tetrafluoride pretreated catalyst, the results obtained in chapter 4 

show that the admission of sulphur tetrafluoride to mercury(II) fluoride 

pretreated with [ 3 6C1 ]— chlorine labelled chlorine monofluoride has no 

effect on the activity of the solid and no sulphur chloride pentafluoride is 

obtained when this reaction is attempted with non radioactive material. 

Therefore, the formation of sulphur chloride pentafluoride according to

C1F( g ) + F" ( s ) ------------------ > C1F 2 ~ (s )  Eq 5 - 5

c 1F2 ~ (s ) +  SF4 (g ) ------------------- > SF5C1 (g ) £ q 5 - 6

does not occur, that is, the permanently retained chlorine monofluoride 

does not participate to any extent in reaction with sulphur tetrafluoride to 

form sulphur chloride pentafluoride.

In previous work involving caesium fluoride, Kolta and coworkers 

stated that, no displacement of chlorine monofluoride retained by caesium 

fluoride occured, from its complex CsC1F2“" , by admission of sulphur 

tetrafluoride to caesium fluoride pre treated with chlorine monofluoride. 

However, the displacement of retained sulphur tetrafluoride on caesium 

fluoride, from its complex CsSF 5“  , by admission of chlorine monofluoride 

to caesium fluoride pretreated with sulphur tetrafluoride is observed. In the
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context of Lewis acid— base reactions, Lewis stated that, the stronger Lewis 

acid will displace the weaker one from its complex^12). The results 

obtained above for mercury(II) fluoride are in agreement with those 

obtained by Kolta and coworkers in the previous work. Since the reaction 

of chlorine monofluoride or sulphur tetrafluoride with either caesium 

fluoride or mercury(II) fluoride are Lewis acid— base reactions, it seems 

therefore that the displacement of sulphur tetrafluoride retained from its 

complex, pentafluorosulphate of caesium, is due to the Lewis acidity of 

chlorine monofluoride, that is chlorine monofluoride is a stronger Lewis 

acid than sulphur tetrafluoride.

The results presented in chapter 4 together with those in chapter 5 

show that the formation of sulphur chloride pentafluoride by the reaction 

of strongly bonded chlorine monofluoride and sulphur tetrafluoride gas, 

Equation 5.6, or the reaction of strongly bonded sulphur tetrafluoride and 

chlorine monofluoride gas, equation 5.4, is improbable. This behaviour is 

analogous to that previously observed on caesium fluoride. However, the 

results presented in chapter 5 using the surface concentration of chlorine 

monofluoride and sulphur tetrafluoride by monitoring the activity of the 

surface during reaction of [ 3 6C1J- chlorine labelled chlorine monofluoride 

and sulphur tetrafluoride or [ 3 5S ]— sulphur labelled sulphur tetrafluoride 

and chlorine monofluoride, 1 :1 mole ratio indicate that the formation of 

sulphur chloride pentafluoride is a true surface reaction involving adsorbed 

chlorine monofluoride and sulphur tetrafluoride. Therefore, the overall 

reactions involved during the formation of sulphur chloride pentafluoride at 

mercury(II) fluoride can be presented according to the following equations
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( s )  +  SF4 ( g )  F " - SF4 ( a d s )  e 9-  5 - 7
4 -

F -^F 4 ( a d s )  * ^ F 5 (s) Eq.  5 . 8

F ( s )  + c l F ( g )  F" - c l F ( a d s )  Eq.  5 . 9
4---------------------

F ~ . C l F ( a d s )  ----------------------------- > C1F2- ( s )  Eq.  5 . 1 0

F *SF4 ^a(js  ̂ +  F . C l F ( a d s )  ► S F 5C1 +  2F Eq.  5 . 1 1

Since the chlorofluorination of sulphur tetrafluoride by chlorine 

monofluoride is a base catalysed reaction, the active basic sites of 

mercury(II) fluoride are likely to be fluoride ions by which the reactants 

are adsorbed to form F— -SF4(acjs), which represents the surface adsorbed 

state of sulphur tetrafluoride, and F-  -ClF(a£js), which represents the 

adsorbed state of chlorine monofluoride.

The results presented in chapter 4 indicates that there is significant 

retention of chlorine monofluoride by mercury(II) fluoride. Unlike caesium 

fluoride, the retained chlorine monofluoride at mercury(II) fluoride can be 

removed to some extent by evacuation of the solid at room temperature. 

However, the retained chlorine monofluoride at caesium fluoride cannot be 

removed to any extent by evacuation at room temperature. The results 

obtained in chapter 5 show that a high yield of sulphur chloride 

pentafluoride is obtained with mercury(II) fluoride pretreated with
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hexafluoracetone. The repeated addition of the mixture of 1:1 mole ratio 

using the same sample of catalyst does not affect the yield. The results 

presented in chapter 5 indicate that the reaction of chlorine monofluoride
i

with sulphur tetrafluoride over mercury(II) fluoride pretreated with 

hexafluoracetone to form sulphur chloride pentafluoride proceed very 

rapidly. Further more a high yield is obtained within a time shorter than 

that when caesium fluoride is used. Therefore from these observations it 

can be suggested that mercury(II) fluoride pretreated with hexafluoroacetone 

would be a better catalyst than caesium fluoride for the chlorofluorination 

of sulphur tetrafluoride by chlorine monofluoride.

The work reported by Mews and coworkers suggests that there is no 

interaction between mercury(II) fluoride and chlorine monofluoride(73). This 

observation is not consistent with the results obtained in this work. It is 

clear from radiotracer study used in this work that there is a strong 

interaction between mercury(II) fluoride and chlorine monofluoride. The 

data presented in chapter 4 indicate that there is a significant retention of 

chlorine monofluoride by mercury(II) fluoride and that the retained species 

cannot be removed by evacuation at room temperature.
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