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SUMMARY

This thesis reviews blood rheology and its known associations with 

diabetes mellitus and vascular complications in diabetic patients. The 

relationship between blood viscosity and two conditions which are common 

in diabetes, namely hypertension and peripheral neuropathy, was 

examined for the first time. Type 2 (non-insulin dependent) diabetics with 

hypertension were found to have increased blood viscosity compared with 

normotensive type 2 diabetics. Blood viscosity and red cell deformability 

were measured in diabetic patients with peripheral neuropathy. When 

compared with diabetics who have no evidence of neuropathy but were 

matched for other microvascular complications , no differences were found.

Using the recently-introduced Carri-Med filtrometer, red cell deformabiltiy 

was assessed by filtration through Nuclepore membranes in a large group 

of type 1 (insulin-dependent) and type 2 diabetic patients. Compared with 

healthy control subjects, deformability was impaired in all diabetic patients, 

but to a greater extent in type 1 patients. In the control population, red cell 

filterability was related to mean cell volume; while in diabetic patients, it 

was related to mean cell haemoglobin concentration. Within the diabetics, 

red cell filtration was not significantly different in patients with microvascular 

or macrovascular complications.

Red cell aggregation was measured in the new Myrenne photometric 

aggregometer and found to be increased in both type 1 and type 2 diabetic 

patients, particularly hypertensive type 2 diabetics. Aggregation was found 

to be related to plasma triglyceride and very low density lipoprotein levels.
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Deformability of white cell subpopulations was measured by a filtration 

method in type 2 diabetics, and although non significant differences were 

found when compared with non-diabetic control subjects, a correlation of 

both mononuclear and polymorphonuclear cell filtration pressure was 

demonstrated with glycaemic control.

The implications of the findings in these studies are discussed, and 

suggestions for further rheology studies in diabetic patients are proposed.

18



CHAPTER 1 

BLOOD RHEOLOGY
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1.1 Introduction

Rheology is the study of deformation and flow of matter, and 

haemorheology is the study of deformation and flow of blood (1). Blood 

flow depends on the pumping action of the heart, the resistance to flow 

imposed by the blood vessels and the resistance to flow of the blood itself. 

Blood flow, therefore can be altered not only by diseases of the heart or 

blood vessels but also by abnormalities of the constituents of the blood.

Blood is basically a suspension of red and white cells and platelets in 

plasma, and plasma is a suspension of proteins and smaller molecules in 

water. Macrorheology describes the flow of blood as a bulk fluid, and 

microrheology the flow of individual cells.

Shearing within a liquid is the telescopic sliding of theoretical "layers" over 

each other (streamlines) and shear stress is the force required per unit area 

to cause shearing, while shear rate is the velocity gradient between 

adjacent layers. The shear rate is determined by a dynamic interaction of 

flow rate and vessel radius, and mean shear rate can be determined by the 

equation :

Mean shear rate (s"1) = 4 x Velocity (m/$^

Radius (m)

The viscosity of a liquid (r|) is the measure of its resistance to flow and is 

defined as the ratio of shear stress (x) to shear rate (y):

20



Viscosity (mPa.s) = Shear stress (mPa)

Shear rate (s_1)

Thus as the viscosity of a liquid increases, a greater force is required to 

achieve the same shear rate and flow rate.

Sir Isaac Newton's hypothesis (1686) stated that fluids had a constant 

viscosity at constant temperature i.e. the shear rate was directly 

proportional to the shear stress. This certainly holds true for fluids such as 

water and plasma and these are therefore known as Newtonian fluids. 

However whole blood viscosity is dependent on the shear conditions and 

blood is therefore Non-Newtonian (2). The relationships between shear 

rare and viscosity for plasma and blood are shown in Figure 1.1.

1.2 Interaction of flow conditions and blood rheology

The flow rate of a liquid is inversely related to its viscosity and is directly 

related to driving pressure. In a straight tube, the length and radius of the 

tube determine resistance to flow. The Hagen-Poiseuille equation shows 

the relationship between these variables:-

Flow rate a pressure gradient x tube radius 4 

tube length x fluid viscosity

In the circulation, blood flows along an energy gradient from high energy, 

high flow rate arteries to the low energy, low flow rate venous system, and 

its rheological behaviour depends not only on flow conditions but also on 

its viscosity, which is determined by frictional interactions between its

21
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Dependence of blood viscosity on shear rate. Normal blood 
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Newtonian fluids, i.e. they show no shear dependence.



component parts, i.e. the cells and plasma. Blood flow to an organ 

therefore depends on the driving blood pressure gradient, the vascular 

resistance of the vessel and the viscosity of the blood.

Abnormalities of vascular resistance can be encountered in both the arterial 

and the venous circulation: stenosis due to atherosclerosis, 

thromboembolism, spasm or arteritis will increase arterial resistance, while 

venous thrombosis and increased tissue pressure which collapses veins 

will increase venous resistance. Because low flow rates increase blood 

viscosities, rheological factors will probably be of greater importance in the 

presence of any of these vessel abnormalities, or in the presence of a 

generalised fall in driving pressure e.g. in circulatory shock.

1.3 Rheological factors

The determinants of blood viscosity include the plasma viscosity, the 

volume ratio of cells to plasma (determined by red cell count and red cell 

volume), and by other properties of the cellular constituents.

1.3.1 Plasma Viscosity

The viscosity of plasma is about 1.6 times that of water, because the flow 

streamlines of plasma water are being interrupted by large plasma proteins 

such as fibrinogen and globulins (3,4). Fibrinogen is one of the largest and 

the most asymmetrical of the plasma proteins, and thus has an important 

effect on viscosity despite a lower concentration than either serum globulins 

or albumin. Serum globulins in turn have a greater effect than albumin, 

although again lower in concentration, (Table 1.1). The general 

composition of plasma is shown in Table 1.2. The viscosity of plasma is

22



Table 1.1

Contribution of plasma proteins to the increase of the mean 
normal plasma viscosity over the viscosity of water.

'(/)
oow
> Characteristics of protein molecules
o ~
t) Molecular Molecular dimensions (A)
&  weight ; ~  —
lu  Length Diameter L/D ratio
*  (L) (D)

Protein 78 99

Albumin 45 58 36 69000 150 38 3.95
Globulin 30 38 41 160000 235 44 5.34
Fibrinogen 3 3.8 22 341000 700 38 18.4

Non-proteins

(From Harkness J. Measurement of plasma viscosity.
In Lowe G D 0 , Barbenel J C, Forbes C D. Eds.
Clinical aspects of blood viscosity and cell deformability. 
Berlin: Springer-Verlag 1981 ;79)



Table 1.2

The protein and lipid constituents of plasma

molecular molecular 
concentration weight dimensions 

Material (g/dl) x103 (nm)

proteins:

Albumin 3.3-5.0 69 15x4

a-j - globulins 0.31 -0.32 44 -200

a 2 - globulins 0.48-0.52 150 -300

p - globulins 0.78-0.81 90 -1300

Y - globulins 0.66-0.74 160 -320 23 x4

Fibrinogen 0.20-0.43 400 50-60x3-8

Cholesterol 0.14-0.27 0.39

Triglyceride 0.002-0.015 0.9

VLDL 50

LDL 21

HDL 12

(Modified from Caro C G, Pedley T J, Schroter R C, Seed W A. 
The mechanics of the circulation. Oxford: University Press 1978.)



independent of shear rate i.e. it is Newtonian (3) and can be measured in 

capillary viscometers by using the Hagen-Poiseuille equation. In 

pathological states, where there is an increase in large asymmetrical 

plasma proteins (e.g. paraproteinaemia) the plasma viscosity will be 

increased, as will the whole blood viscosity because the viscosity of the 

suspending medium (plasma) contributes to the viscosity of the suspension 

(blood). Plasma viscosity exhibits a degree of shear rate dependence in a 

few cases of paraproteinaemia, due to complexing of paraproteins (5).

1.3.2 Whole Blood Viscosity

When erythrocytes, which constitute the largest percentage of blood cells, 

are added to plasma, the whole blood viscosity increases logarithmically 

with a linear increase in packed cell volume (6). To determine if differences 

in blood viscosity are due to factors other than haematocrit (Hct), viscosity 

at a standard haematocrit (0.45) can be calculated from the following 

equation (7):

0.45 
native Hct

Blood viscosity (Hct 0.45) _ r Blood viscosity (native Hct) ,

Plasma viscosity L Plasma viscosity J

Whole blood viscosity is haematocrit dependent at any shear rate. At high 

shear rates, deformation of erythrocytes into ellipsoids allows them to 

become orientated in parallel with flow streamlines, thereby reducing the 

bulk viscosity (8). At shear rates of greater than 50/s the cell membrane 

may exhibit a "tank-treading " motion around the cytoplasm and it has been 

suggested that this could also reduce the suspension viscosity (9). At low 

shear rates, shear deformation of erythrocytes is reduced and erythrocytes

23



are joined by plasma protein bridges, (which overcome their natural 

electrostatic mutual repulsion) to form linear aggregates causing disruption 

of the flow streamlines and increasing bulk viscosity (10).

The determinants of blood viscosity are therefore plasma viscosity, 

haematocrit, red cell deformability and red cell aggregation. The 

contribution of cell deformation and aggregation to the rheological 

behaviour of blood may be estimated by calculation of relative blood 

viscosity, which is the ratio of blood viscosity at a standard haematocrit to 

plasma viscosity:

relative viscosity = whole blood viscosity (45% hctl 
plasma viscosity

At high shear rates, relative viscosity is a measure of the degree by which 

red cells elevate plasma viscosity due to lack of deformation. At low shear 

rates, relative viscosity is a measure of the degree by which red cells 

elevate plasma viscosity due to aggregation.

The relationships between blood viscosity, shear rate, red cell deformation 

and red cell aggregation and viscosity are shown in Figure 1.2. Fibrinogen 

depletion reduces red cell aggregation and hence low shear viscosity. 

Hardening of cells with aldehydes reduces their deformability and 

aggregation and abolishes shear dependence.

The viscosity of all fluids is temperature dependent, an increase in 

temperature resulting in decreased molecular interactions and hence in 

decreased viscosity. This temperature dependence is seen in both plasma 

and whole blood viscosity (11)
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1.4 Red cell deformability

In the resting state erythrocytes are biconcave discs with a diameter of c. 

7.5pm. Deformation is important in the macrocirculation because it 

contributes to the low bulk viscosity of blood at high shear rates, and also in 

the microcirculation where this property allows the cells to traverse nutritive 

capillaries (mean diameter 3-5pm). The excess surface area to volume 

ratio of biconcave erythrocytes facilitates deformation, and conditions in 

which this ratio is reduced (e.g. spherocytosis) result in a reduction of red 

cell deformability (12). Transformation of cells to alternative shapes (such 

as stomatocytes) by chemical stresses will also cause a loss of 

deformability (13). The other main determinants of deformability are cell 

age, (older cells are less deformable than younger cells (14)), cell 

membrane fluidity (15), internal viscosity - determined largely by the mean 

cell haemoglobin concentration, MCHC (16); and cell size i.e. mean cell 

volume (MCV), the deformability being reduced by increased MCV (16, 17).

The intracellular fluid viscosity increases non-linearly with increasing cell 

haemoglobin concentration and thus the deformability falls (13). Abnormal 

haemoglobins (eg in sickle cell disease) are also associated with increased 

intracellular viscosity for a given haemoglobin concentration (18, 19).

The red cell membrane consists of a phospholipid bilayer matrix. Lecithins 

and sphingomyelins are on the outside and phosphatidyl 6-ethanolamines 

and phosphatidylserine lipids on the inside. The proteins spectrin, actin 

and band 4.1 on the surface provide mechanical strength in the membrane. 

Within the lipid bilayer the ratio of cholesterol to phospholipid has an 

important control on fluidity (20, 21). Changes in this lipid bilayer or in 

protein structures will affect membrane microviscosity, which will increase

25



the resistance to deformation and impair shape recovery after deformation 

(22).

1.5 Red cell aggregation

At low shear rates normal erythrocytes aggregate to form rouleaux which 

disturb flow streamlines and cause an increase in whole blood viscosity. 

Aggregation of cells is reversibly dependent on the cell to cell protein 

bridges (23) which are created by large plasma proteins such as fibrinogen 

and a 2-macroglobulin (24). These proteins are absorbed to the cell 

surface and are capable of overcoming the natural repulsive forces of the 

negatively charged red cells (25,26). The exact binding forces are 

unknown but may be due to hydrogen bonding (van der Waal's attraction) 

(27). The paraproteinaemias are associated with an increase in both 

plasma viscosity and red cell aggregation, due to production of abnormal 

globulins.

An increase in haematocrit up to 40 to 50% will also increase aggregation, 

but at very high haematocrits the close proximity of the cells reduces 

aggregation (24). At normal haematocrit and plasma protein levels, 

aggregates are easily dispersed by an increase in shear stress (23), the 

cells become orientated and deformed in the direction of the flow 

streamlines. Other factors which exert an influence on red cell aggregation 

are cell size and age: the older and smaller the cell the greater the degree 

of aggregation (28), and the rigidity of the cell - increased rigidity being 

associated with reduced rate of aggregate formation (29).
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1.6 White cell deformability

White blood cells are less in number than red blood cells by a factor of 

about 700, they have similar diameters to red blood cells (6.2-7.5 pm) but 

due to their spherical shape have twice the volume. Their spherical shape, 

increased internal viscosity (about three orders of magnitude higher than 

red cells), and reduced elasticity render them less deformable than red 

cells (30). White cell subpopulations differ in their rheological properties, 

with monocytes being the least deformable followed by polymorphonuclear 

cells and lymphocytes (31,32).

White blood cells contribute little to the bulk resistance of blood to flow in 

the macrocirculation, but it is in microcirculatory blood flow that their poor 

ability to deform is most important, since they have greater difficulty entering 

and traversing nutritive capillaries. At low shear rates in small diameter 

vessels, white cells can cause a transient arrest in blood flow and red cells 

will tend to build up behind these impacted cells thus increasing viscosity 

by increasing red cell aggregation (33). The flow of other white cells 

becomes marginal in venules, which will facilitate their adherence to the 

endothelial surface, reducing venular diameter and causing a further 

increase in flow resistance (34).

1.7 Platelet aggregation

The small diameter of platelets (2-4 pm) means that they have negligible 

effects on bulk viscosity. However aggregation of platelets and adhesion of 

such aggregates to vascular subendothelium (e.g. at arterial stenosis) 

alters blood flow. High haematocrit levels and high shear rates cause
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diffusion of platelets towards the vessel wall (35), thus facilitating adhesion 

(36). Increased red cell volume (37) and decreased red cell deformability 

(38) increase platelet adhesion. Shear induced release of adenosine 

diphosphate (ADP) from red cells causes platelet activation which in turn 

results in increased platelet aggregation, and such release of ADP may be 

increased by reduced red cell deformability (39).

1.8 Flow conditions and blood rheology in disease

1.8.1 Macro vascular disease

Flow separation areas (e.g. bifurcations) are associated with low shear 

rates (40), as are the axial regions of large vessels (41). These areas allow 

accumulation of red cell aggregates. Flow separation areas are also the 

sites at which lipids may accumulate and predispose to atherosclerosis, 

leading to stenosis. Stenosis formation will also increase shear stresses 

upon the blood as it passes through and thus activate platelets and 

enhance the formation of thrombi. Red cell aggregation will significantly 

increase blood viscosity at low perfusion pressures causing low shear 

conditions, thus reducing blood flow.

1.8.2 Micro vascular disease

Vessel radius, determined by vascular morphology, is the most important 

factor controlling blood flow to an organ according to the Hagen-Poiseuille 

equation. Abnormalities of microvessels may not only have a direct 

adverse effect on microrheology, but also when combined with a primary
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rheological abnormality there will be further compromise to an organ's vital 

blood flow.

Red cell aggregation is least likely to occur in the capillaries due to their 

narrow geometry, high shear rates and low haematocrit (F&hraeus effect), 

(42), thus maintaining a low viscosity. It is in the low shear environment of 

the post-capillary venule that red cell aggregation influences flow in the 

microcirculation; an increase in viscosity in the post-capillary venule due to 

red cell aggregation will increase capillary back pressure, promote fluid 

transudation and haemoconcentration, and reduce flow (43). This effect on 

blood viscosity will be enhanced by elevated levels of haematocrit or 

plasma proteins which favour red cell aggregation.

The high shear forces existing in normal capillaries (Figure 1.3) aid the 

deformation of the red cell, thus facilitating its passage through the narrow 

organ capillaries for oxygen delivery. Narrowing or occlusion of these 

capillaries will impede red cell flow and may lead to ischaemic organ 

damage.

In high flow states in the arterioles, the red blood cells tend to flow axially, 

displacing white cells peripherally and when white cells reach the nutritive 

capillary first, they will raise the local resistance and cause preferential 

entry of red cells into other capillary branches. Hence white cells exert a 

significant influence on microcirculatory flow of red cells (44). Alterations in 

deformability of red or white cells leading to impaired entry to the capillary 

will have important effects on tissue oxygen delivery.

In low flow states in post-capillary venules, red cell aggregation results in 

white cells being pushed towards the vessel wall which facilitates leucocyte 

adhesion and further narrowing of the vessel lumen with reduction in 

vessel conductivity (33).

29



10

10 °

4v/r 
(sec-1)

102

10

Arteries Art Cap Ven Veins

Figure 1.3

Art - arterioles 
Cap - capillaries 
Ven - venules

Variation in the parameter 4v/r in various parts 
of the circulation.



Diabetes mellitus is classically associated with altered microvessel 

geometry, and thus studies of blood rheology are of particular significance 

in this condition.

1.9 Review of methodology for measuring blood rheology

1.9.1 Blood viscosity

a) Capillary viscometers: These instruments are relatively simple and 

consist of tubes through which a column of liquid is passed, which is 

sheared by flow past the wall of the tube. A constant pressure is usually 

applied e.g. the standard height column of the liquid in the Ostwald (U- 

shaped ) viscometer (3), the flow rate is calculated, and viscosity estimated 

from the equation:

b) Semi-automatic capillary viscometers: These are more sophisticated 

instruments and have standardised capillary dimensions, constant driving 

pressures and accurate temperature control e.g. the Coulter-Harkness 

viscometer (45). These viscometers are commonly used for plasma or 

serum viscosity measurements, but can also be used for measuring whole 

blood viscosity at high shear rates

viscosity = APx r4 
Q x L x 8

AP=pressure gradient 

r=tube radius 

Q=flow rate 

L=tube length
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c) Rotational viscometers: Here the test liquid is sheared between two 

closely adjacent, concentric surfaces (one fixed, the other moving 

rotationally). This creates a uniform shear rate, across the test fluid which 

can not be achieved in a capillary tube and, rotational viscometers are 

therefore useful for non-Newtonian fluids such as whole blood. In these 

viscometers the rotational shear is usually calculated from the torque 

measurement and the shear rate is pre-set by choosing the rotational

speed, hence the viscosity can be determined (rj = x/y). There are a 

number of different rotational viscometers available. The cone-plate variety 

e.g.Wells-Brookfield, consists of a cone which is rotated on the surface of a 

flat plate with the fluid lying in between (46). The cone applies the shear 

and also measures the torque. In the cone-in-cone variety the fluid is 

placed between the two cones, and the torque exerted on the inner cone is 

measured optically (47). Coaxial or couette viscometers consist of a 

cylindrical cup in which a bob is suspended (the fluid lies between bob and 

cup), and the torque measured electromagnetically. These viscometers are 

useful for measuring viscosity accurately at both high and low shear rates 

e.g. the Contraves LS 30 viscometer (48). Finally the controlled stress 

rheometer utilies the principle of varying the shear stress and measuring 

the shear rate, which may be a more physiological approach e.g. the Carri- 

Med CS viscometer (49).
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1.9.2 Red cell deformability

a) High shear viscometry: After correcting for the effects of haematocrit and 

plasma viscosity (e.g. calculating relative high shear viscosity), high shear 

viscometry can be used as an indirect measure of bulk red cell 

deformability. Red cell suspensions can also be studied. This method 

however can not be used to estimate red cell deformability in the 

microcirculation, where red cells deform individually. Filtration methods are 

preferred for this purpose.

b) Bulk filtration: This involves the filtration of large numbers of red cells 

through micropores, usually 3-5 pm in diameter, and is a more direct 

method of measuring the ability of the cell to adapt and pass through 

channels of a similar size to those encountered in the capillary 

microcirculation in vivo. In general the flow rate of the cells is estimated 

and expressed relative to the flow rate of buffer. Cells can be filtered 

through the membrane by positive pressure e.g. in the Erythrometre (50), 

by gravity e.g. in the Hemorheometre (51) or by negative pressure e.g. the 

Carri-Med filtrometer (52). Using these instruments, the white cells and 

platelets usually have to be reduced in number to prevent clogging of the 

filters. However in the Carri-Med filtrometer extrapolation of the clogging 

rate to calculate the initial flow rate is insensitive to residual leucocytes (52).

c) Red cell subpopulations: It can be argued that it is preferable to measure 

the ability of individual red cells to deform. This normally involves the 

examination of single cells e.g. in micropipettes. These usually have a tube 

diameter of 3-5 pm and the pressure changes required to oscillate the cell 

can be measured (53). If smaller diameter tubes are used, then the 

deformability of the membrane alone can be measured. The single
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erythrocyte rigidometer is a varient on the filtrometers described above, and 

estimates the time taken for individual cells to pass through a single pore in 

a plastic membrane of 5-6pm diameter (54). Another apparatus, the Cell 

Transit Time Analyser, has recently been developed, which uses a 20-pore 

membrane.

The main disadvantages of these filtration techniques are lack of 

standardisation, large variability and sensitivity to mean cell volume 

especially with 3 pm pores. They may be used to study cell fractions, e.g. 

by density gradient separation old and young cells can be examined 

separately.

d) The ektacytometer is a unique instrument which measures red cell 

elongation at a standard shear stress but changing osmolality, so that not 

only can membrane rigidity be estimated, but the effects of mean cell 

haemoglobin concentration and cell surface area / volume ratio can be 

taken into account (55).

1.9.3 Red cell aggregation

a) Low shear viscometry: An indirect estimation of red cell aggregation can 

be made from measuring relative blood viscosity at low shear rates.

b) Ervthrocvte sedimentation rate: This is a very simple way of estimating 

aggregation, by measuring the descent of the red cell column in whole 

blood with time. Its main disadvantages being that it is sensitive to both age 

of the sample and haematocrit.

c) Direct microsnnpic observation: This is the most direct way of measuring

33



red cell aggregation, but is tedious and poorly standardised. An indexing 

system can be used to measure the average size of rouleaux (56).

d) RhQQ$Qppy: This consists of a cone-plate viscometer with attached 

microscope, which shears the sample at high shear rates. After stopping 

rotation, the rate of rouleaux formation can be observed, as can the size of 

the aggregates and resistance to shear stress (57).

e) Photometry: This employs the principle that there is increased light 

transmission through areas of cell free plasma when the red cells 

aggregate. The erythrocyte aggregometer (Myrenne) is a new apparatus 

which is a highly automated cone-plate viscometer, which again shears the 

blood at high shear rates and measures the degree of aggregation over 

time after stopping rotation (58).

1.10 Summary

In recent years more attention has been focussed on the individual 

determinants of blood viscosity, and their influence on blood flow. 

Abnormal rheology may not only contribute to vascular complications in 

certain disease states (e.g. paraproteinaemias) but also in combination with 

blood vessel abnormalities may present additional flow impairment leading 

to ischaemic organ damage. Although much is known about bulk blood 

rheology, and macrorheology can be adequately determined using current 

viscometers, the measurement of microrheology is influenced by 

individual cellular properties and a wide variety of techniques is currently 

used. The newer instruments require further evaluation, in particular the 

Carri-Med filtrometer for measuring red cell deformability, and the
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Erythrocyte aggregometer for measuring red cell aggregation. There is 

also a need to develop systems for measuring white cell deformability 

because despite their relatively small number compared to red cells, further 

impairment of their normally poor deformability could have a greater 

potential for disturbing flow in the microcirculation.
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CHAPTER 2 

BLOOD VISCOSITY IN DIABETES MELLITUS
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2.1 Introduction

Diabetes mellitus is a common disorder which affects about 1% of the 

population. It is generally divided into two basic types, although it may be 

the consequence of other acquired or genetic diseases. Both types of 

diabetes have similar symptoms and signs at presentation and are 

associated with similar long-term complications but have quite distinct 

aetiologies. Type 1 diabetes, also known as insulin-dependent, ketosis- 

prone or juvenile onset diabetes, is associated with HLA- DR3 and -DR4 

haplotypes (59) and is thought be be the result of islet cell destruction by 

autoantibodies (60). Affected individuals tend to develop diabetes in 

childhood or young adulthood. These diabetics therefore have insulopenia 

and eventually have no endogenous insulin secretion. Type 2 diabetics , 

also known as non-insulin-dependent, non-ketosis-prone, or maturity onset 

diabetes, on the other hand are older, usually overweight and often have 

high insulin levels, especially at the onset of diabetes (61). The 

hyperinsulinaemia is associated with a degree of insulin resistance and 

insulin-receptor down-regulation (62), although eventually insulin secretion 

may fall and in some cases treatment with exogenous insulin is required. 

This type of diabetes is familial and is the commoner of the two basic types 

by a factor of 4 :1.

Diabetes is associated with several specific complications due mainly to 

disturbance of the microcirculation, namely retinopathy and nephropathy, 

and neuropathy which is generally assumed to have a metabolic origin. 

However all microvascular complications have been related to both 

duration of disease (63) and to glycaemic control (64), and as a 

consequence of the former, type 1 diabetics are obviously more prone to 

these complications.
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Macrovascular disease i.e. ischaemic heart disease, cerebrovascular 

disease and peripheral vascular disease are all commoner in diabetic 

patients (65), both type 1 and type 2, but due to the greater age of the type 

2 patients large vessel disease tends to be more prevalent in this group.

2.2 Complications in diabetes mellitus

2.2.1 Microvascular

2.2.1 (i) Retinopathy

Diabetic retinopathy rarely develops before 10 years duration of diabetes, 

but in type 2 diabetics may present apparently before this time due to the 

condition being undiagnosed for several years. Generally speaking, after 

about 5-20 years duration of diabetes the prevalence of diabetic 

retinopathy is about 67-100% (66,67).

In health a blood-retinal barrier exists, formed by the tight junctions 

between endothelial cells (68). In diabetic patients this barrier is imperfect 

due to various mechanisms (69); one of the capillary abnormalies is 

endothelial cell proliferation which may contribute to breakdown of the 

blood-retinal barrier (70). Basement membrane thickening in capillaries is 

a widespread feature of diabetes (71), thought to be due to augmentation of 

the membrane by entrapped plasma proteins after leakage through the 

endothelial cell junctions (70). Other suggested mechanisms contributing 

to endothelial damage include reduced prostacyclin activity (72) and 

reduced fibrinolytic activity (73).
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The cause of retinopathy is unknown but the clinical manifestations are due 

to vascular occlusion i.e. non-perfusion leading to ischaemic 

haemorrhages and neovascularisation and ultimately in some cases a 

degree of visual loss. The initial lesions consist of microaneurysms, "dot 

and blot" haemorrhages and hard exudates - this is known as background 

retinopathy. In many patients there is little progression beyond this stage 

but others develop ischaemic or pre-proliferative retinopathy. This is 

characterised by large blotch haemorrhages, soft exudates (cotton-wool 

spots) and venous abnormalities such as beading and the formation of 

loops. Fluorescein angiography shows capillary non-perfusion. New 

fragile capillaries develop in the areas of occlusion in response to release 

of retinal vasoproliferative factors and are liable to rupture and cause 

vitreous haemorrhage.

2.2.1 (ii) Nephropathy

Diabetic renal disease is the other main manifestation of microvascular 

disease in diabetes. It affects about 25% of all diabetics after 15-25 years 

duration of disease (74), thereafter the risk appears to be reduced 

presumably due to protective genetic factors (75).

The underlying pathological lesion in diabetic nephropathy is 

glomerulosclerosis (76). As in retinopathy basement membrane thickening 

of the glomerulus occurs in diabetes (77). This is thought to be due to 

defective removal of basement membrane in addition to entrapment of 

plasma proteins and leads to their accumulation in the mesangium (78). 

The changes in the glomerulus lead to increased permeability and protein 

loss. Other contributing factors may be fibrin deposition (79), and leakage 

of plasma collagenase inhibitors (80,81).
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The first clinical sign is an intermittant increase in microprotein excretion 

detected in the urine. This becomes more persistent and the degree of 

protein excretion increases until the stage of macroproteinuria. This stage 

may last for years and since renal function is preserved patients are usually 

asymptomatic. Progression to renal failure is variable thereafter and can 

again be very slow; the serum creatinine rises, oedema and hypertension 

develop, and the serum albumin level falls. Although end-stage renal 

failure may be treated with dialysis or transplantation the main cause of 

death in these patients is from arterial disease (82).

2.2.1 (iii) Neuropathy

Both the somatic and automatic nervous systems may be involved in 

diabetes mellitus. The commonest form of somatic neuropathy is a 

peripheral sensorimotor neuropathy affecting the limbs in a "glove and 

stocking" distribution with the legs being predominantly affected. The true 

prevalence of this condition is difficult to establish because several studies 

have shown that patients may have neurophysiological or clinical evidence 

of neuropathy but are asymptomatic (83) and conversely some studies 

have shown that many patients with symptoms have no evidence of 

neuropathy on conventional testing (84). Prevalence certainly increases 

with age and duration of disease being about 50% after 25 years (63).

Diabetic neuropathy is often worse during periods of poor control and this 

has led to the assumption that the aetiology is mainly metabolic; possibly 

due to intraneural accumulation of sorbitol and fructose from increased 

polyol pathway activity (85) or reduced levels of myoinositol (86). Isolated 

nerve lesions occur in diabetes and are thought to have a focal ischaemic 

cause (87), and because the prevalence of neuropathy tends to follow that 

of other microvascular complications it has been suggested that micro
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vascular lesions may contribute to diabetic peripheral neuropathy (88).

Patients with peripheral neuropathy present with a variety of symptoms 

including pain, paraesthesiae, numbness and signs of loss of vibration and 

position sense, absent ankle reflexes and impaired cutaneous sensation. 

Most patients experience problems for months or years and in some cases 

progress to loss of pain appreciation, which in conjunction with local joint 

subluxation can result in neuropathic ulceration of the feet. In a few cases 

widespread joint disruption of the foot results in neuropathic arthropathy 

(Charcot's arthropathy). Autonomic neuropathy is less common and may 

present with diarrhoea, gastroparesis, postural hypotension, erectile 

impotence and cardiac denervation. The latter may result in fatal 

cardiorespiratory arrest.

2.2.2 Macrovascular

Morbidity and mortality due to abnormalites of the coronary, cerebral and 

peripheral arteries are increased in diabetic patients (89,90,91). Atheroma 

is generally more extensive in diabetics compared to non-diabetics (65) 

which may account for some of the increased risk. Disease of the 

microcirculation may also contribute to vascular occlusive disease (92,93) 

as may hypertension (89).
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2.3 Abnormal rheology in diabetes mellitus

2.3.1 Plasma and serum viscosity

Serum viscosity (i.e. plasma viscosity less the effect of fibrinogen) was first 

measured in diabetic patients by Cogan et al, using a capillary viscometer, 

and was found to be elevated compared to healthy controls due to 

elevations of several serum proteins (94). Elevation of plasma viscosity in 

diabetes has also been confirmed by many investigators (95-99). In most of 

these studies diabetics had raised fibrinogen levels as well as serum 

globulin levels, particularly a 2 -macroglobulin, haptoglobin and 

caeruloplasmin (100), i.e. a disturbance in the average molecular size or 

shape of plasma proteins may be causing an increase in plasma viscosity 

(101). However in other studies no difference was detected between 

diabetic and control subjects (102-104).

2.3.2 Whole blood viscosity

Because the concentration and mechanical properties of the red cells also 

contribute to whole blood viscosity, several viscometers have been 

developed to measure whole blood viscosity at different shear rates to 

reflect the range found in the vascular system. Skovborg first studied whole 

blood viscosity in diabetic patients, and throughout a variety of shear rates, 

he found that viscosity was about 20% higher in diabetic patients compared 

to controls (105). Increased whole blood viscosity has since been 

documented at both high and low shear rates in diabetes, in some cases 

related to a higher haematocrit (106) and in others the increase was 

maintained after correction to a standard haematocrit (96,97). In some
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studies, a higher viscosity was related to increased fibrinogen levels 

(99,107,108). The difference in blood viscosity between diabetic and non­

diabetic subjects is more marked at low shear rates (104,108-111) 

implying that increased red cell aggregation is an important determinant of 

viscosity increase in diabetes. There have been a few studies showing no 

difference in whole blood viscosity at any shear rate between diabetic and 

control subjects (98), however this may have been due to the use of older, 

less sensitive viscometers.

The measurement of plasma and whole blood viscosity in diabetes has 

therefore given some conflicting results. Several factors may account for 

this, eg difference in apparatus (some older viscometers being less 

sensitive), patient selection, and confounding factors affecting blood 

viscosity which is for example increased in males compared to females, 

and in smokers compared to non-smokers (112).

2.2.3 Red cell deformability

Impaired red cell deformability in diabetic patients compared to non­

diabetic control subjects has been found by several workers using filtration 

techniques (96,98,104,113-116) and also by others using micropipettes 

(117) However several other studies have found no difference in red cell 

deformability between diabetics and non-diabetics (103,109,118). It has 

been suggested that decreased whole blood filtration may reflect 

leucocytosis in diabetics (103,119). Increased microviscosity of the 

membrane has been reported in diabetes using techniques such as 

fluorescent probes (120,121). It has been suggested that increased 

glycosylation of the membrane may cause stiffening but although this has 

been demonstrated in old cells (122,123) there appears to be no difference
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in deformability between old diabetic and old non-diabetic cells (124).

The cell membrane contains a fluid phophorylated protein, spectrin, in 

which the enzymes Na+/K+ ATPase and C a 2+/M g 2+ ATPase are located. 

Increased spectrin glycosylation has been reported in diabetic red cells, but 

this was not associated with membrane stiffening (125). It may alternatively 

be reduced spectrin phosphorylation that is responsible for the increased 

membrane viscosity in diabetic patients (126).

Reduced ATP levels have also been associated with impaired red cell 

deformability: this may be due to either calcium accumulation within the red 

cell or spectrin cross-linkage (127).

O ther work has suggested that an im balance of the 

cholesterol/phospholipid ratio in the membrane may increase its 

microviscosity (128,129).

Further evidence for a red cell membrane defect in diabetes comes from the 

study of Wautier et al, who found increased adhesion of diabetic 

erythrocytes to endothelial cells, an abnormality also present in sickle cells 

(130).

2.3.4 White cell deformability

Leucocytosis has been reported in diabetic patients (131) and Stuart et al 

have reported reduced whole blood filterability in diabetic patients to be 

related to a raised white cell count (103). Newer filtration instruments such 

as the Carri-Med filtrometer allow the initial red cell filtration rate to be 

measured independently of the residual white cell count (52). Because this 

apparatus can also measure the clogging rate of the filter, it is also possible 

to determine white cell deformability. Reduced white cell filterability has 

been found in diabetic patients using this system (116,132)
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2.3.5 Red cell aggregation

By direct observation, Ditzel first described increased red cell aggregation 

in the microcirculation of diabetic patients (133) but since then there have 

been few studies measuring red cell aggregation directly in diabetic 

patients. One study found no increase in aggregation in microchambers 

implanted in skin flaps of diabetic patients, though the numbers involved 

were small and the contribution of the endothelium was excluded (134). 

Schmid-Schonbein found an increased resistance to dispersion of 

aggregates at high shear rates in vitro in diabetic patients, which was 

associated with their abnormal plasma proteins (96). Other workers have 

confirmed increased aggregation in diabetic compared to non-diabetic 

subjects (135,136).

Diabetes therefore appears to be associated with increased red cell 

aggregation compared to non-diabetics. This is associated with increased 

plasma proteins, particularly fibrinogen, but may also be associated with 

reduced red cell size (28).

2.4 Glycaemic control and rheology

Very high levels of blood viscosity are found in diabetic ketoacidosis (137) 

due both to dehydration (causing haemoconcentration) and increase in 

acute phase proteins. It might therefore be expected that viscosity is related 

to glycaemic control. This, however, has only been found in a few studies 

(95,100) although changes in viscosity have been observed with 

improvement in glycaemic control (106,138).

Impaired red cell deformability in diabetes has been related to poor
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glycaemic control (96,98,106,120), but incubating red cells, both diabetic 

and non-diabetic, with glucose to increased intracellular sorbitol levels 

produced only a minor reduction in deformability (115). Other studies have 

found no relationship with glycated haemoglobin (HbA1) or blood glucose 

levels (113,116,117,119). Juhan et al found that deformability of normal 

red cells was reduced after incubation in plasma from uncontrolled diabetic 

patients, despite a lack of correlation of deformability with glycaemic control 

(139). They subsequently showed that reduced membrane fluidity in 

diabetic cells could be corrected by insulin in vitro (140). Filterability of red 

cells was improved in one longitudinal study after insulin infusion for three 

months (141).

Many large serum proteins as well as fibrinogen may be elevated in 

diabetic patients, often as part of an acute phase reaction to infection or 

during periods of poor glycaemic control (131). Bauersachs et al found 

increased red cell aggregation associated with increased fibrinogen in 

uncontrolled type 2 diabetic patients, which was not improved by short term 

insulin treatment (142).

2.5 Rheology and microvascular complications in diabetes

2.5.1 Blood viscosity

Non-diabetic conditions such as myeloma and Waldenstrom's 

macroglobulinaemia which are associated with increased blood viscosity, 

are also associated with retinopathy. It is possible therefore that the 

increased viscosity of diabetes could contribute to the progression of 

diabetic retinopathy. Dintenfass measured viscosity in a group of diabetic
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patients with retinopathy and compared them with a group of patients with 

non-diabetic retinopathy, but found the viscosity to be highest in the non­

diabetic male patients (143). Lowe et al found no difference in viscosity in a 

group of male diabetics with background diabetic retinopathy compared 

with a similar group having no retinopathy (97), but in a subsequent study 

blood viscosity was increased, especially at low shear rates in patients with 

proliferative retinopathy compared with those having minimal change or no 

retinopathy (99). Other investigators have confirmed an increase in low 

shear rate viscosity in patients with retinopathy although the grade of 

retinopathy was not always stated (107,109,111). In a prospective study, 

Barnes et al have found that abnormal blood rheology was predictive of 

deterioration in retinopathy over a three year follow-up period (144).

There has been little work on blood viscosity in diabetic nephropathy. 

Nevertheless, Simpson has suggested that increased viscosity in diabetes 

may cause an increased perfusion pressure in the glomerulus, thus leading 

to proteinuria (145). Hill et al, however showed that in diabetic children 

viscosity was not related to microalbuminuria (108) . Similarly it has been 

suggested that altered blood rheology could contribute to decreased flow in 

nerve capillaries (146) but there is little evidence to support this hypothesis.

2.5.2 Red cell deformability

Abnormal red cell deformability could in theory have a detrimental effect on 

diabetic retinopathy by reducing blood flow and contributing to hypoxia in 

the microcirculation. There have been conflicting reports of red cell 

deformability in association with microvascular complications , several 

studies have found reduced deformability (103,109,113,114) and others no 

difference (96,108). Sewchand found no difference in red cell membrane
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properties between healthy non-diabetics and diabetic patients with 

retinopathy (147). Lowe et al found no statistically significant difference in 

red cell filterability between diabetics with proliferative retinopathy and 

those with background or no retinopathy (99), although a trend to impaired 

filterability in the former group was apparent

2.5.3 White cell deformability

Leucocytosis and decreased white cell deformability in diabetic patients 

could contribute to impaired blood flow in the microcirculation, possibly 

promoting the increased microvascular complications seen in diabetes. 

Using the Carri-Med filtrometer and white cell suspensions, Vermes et al. 

found increased clogging of filters, presumably due to reduced white cell 

deformability, in diabetic patients with retinopathy compared to those with 

no retinopathy (132).

There have been few studies of white cell filtration in diabetic patients as a 

whole compared with non-diabetics.

2.5.4 Red cell aggregation

An increase in red cell aggregation would increase blood viscosity at low 

shear rates, which may promote blood stasis. This could induce local 

hypoxaemia and endothelial damage and in diabetic patients this could be 

yet another mechanism contributing to microvascular complications.

In Ditzel's study he found increased red cell aggregation in the 

microcirculation of diabetic patients known to have microvascular 

complications, though there was no difference between patients who had 

proliferative retinopathy alone and those who also had nephropathy (133) 

Increased red cell aggregation has been reported in diabetic patients with
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retinopathy (136) but other studies have found no difference in aggregation 

between patients with retinopathy and those without, although the degree 

of retinopathy was not always specified (96,135)

As in studies of viscosity and red cell deformability in diabetic nephropathy, 

there is little published work on red cell aggregation in this subgroup of 

patients. Non-diabetic patients with nephrotic syndrome appear to have 

increased red cell aggregation which was not related to renal function, but 

which was related to increased fibrinogen levels (148). It is therefore likely 

that diabetic patients who have increased fibrinogen levels (101) will have 

a further increase in aggregation if they develop nephropathy.

2.6 Rheology and macrovascular complications in diabetes

In large vessel disease the narrowing of the lumen due to atherosclerosis 

will eventually impede flow, and since blood viscosity is inversely related to 

blood flow a rise in whole blood viscosity would therefore further reduce the 

blood supply to vital organs. In the capillaries, impaired red and white cell 

deformability may cause further ischaemia as may increased red cell 

aggregation in venules. Diabetic patients with abnormal rheology have 

therefore an additional risk factor for vascular complications. The increased 

plasma viscosity and impaired cellular deformability may be partly a 

secondary phenomenon due to acute and/or chronic phase responses 

induced by damage to vessels or tissues. Such responses are 

characterised by increased fibrinogen and serum protein levels and a 

leucocytosis, which will increase plasma and whole blood viscosity and 

reduce blood filterability thus exacerbating the degree of ischaemia.
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2 .6.1 Cerebrovascular disease

Increased haernatocrit and blood viscosity have been associated with 

reduced cerebral blood flow, while venesection causes a fall in viscosity 

and increase in cerebral blood flow (149). Reduced red cell deformability 

has been described in stroke patients and may be an cause of ischaemic 

damage (150). In diabetic patients reduced vasodilatory reserve in the 

cerebral circulation (151) coupled with raised viscosity may partly expain 

why patients with diabetes mellitus have an increased risk of stroke. 

Rheological studies of diabetic patients with cerebrovascular disease are 

awaited.

2.6.2 Ischaemic heart disease

Studies of patients with ischaemic heart disease have found increased 

blood viscosity associated with a raised haernatocrit (152) and raised 

fibrinogen levels (153), whereas others have shown no difference in the 

individual determinants of viscosity between patients with stable angina 

and those with no heart disease (154,155). In patients who have suffered a 

myocardial infarction, reduced blood filterability was found within the first 12 

hours after infarction, along with increased plasma and whole blood 

viscosity (156). In patients with abnormal rheology this may contribute to 

extension of infarct size. Conversely, reduction of infarct size by 

thrombolytic therapy may reflect reductions in plasma fibrinogen, plasma 

viscosity and blood viscosity as well as lysis of coronary thrombi.

Diabetic patients with abnormal rheology again would be more susceptible 

to ischaemic damage with resultant poor ventricular function, and this may 

be relevant to the increased incidence of cardiac failure found in these
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patients (157). There have been few studies looking at viscosity and 

deformability in diabetic patients with ischaemic heart disease. Activation 

of white cells causes a reduction in their deformability (158) and recently 

reduction in filterability of white cells due to activation has been 

demonstrated in post-myocardial infarct patients (159)

Hypertension is a major cause of both cerebrovascular and cardiovascular 

disease and the incidence of hypertension is increased in diabetic patients 

(89,160). Hypertension has also been associated with raised viscosity in 

non-diabetic patients (161) and could be one mechanism leading to 

increased vascular complications in these patients. Hypertension may 

reflect increased cardiac output against a raised viscosity which has 

increased the peripheral resistance.

2.6.3 Peripheral vascular disease

Peripheral vascular disease is a major problem in the elderly, especially 

smokers and diabetic patients. In the latter the problem is compounded by 

microvascular disease and by peripheral neuropathy. Any increase in 

viscosity, reduction in red or white cell deformability or increase in red cell 

aggregation could reduce the blood supply to tissues which are already 

ischaemic. Reduced filterability of whole blood has been shown in patients 

with peripheral vascular disease in association with a raised white cell 

count which is probably due to a chronic phase response (162). In diabetic 

patients better healing of amputations is found in the patients with the 

lowest pre-operative haemoglobin levels, suggesting a deleterious effect of 

haernatocrit on blood flow (163). Whether therapeutic reduction of 

haernatocrit increases healing of amputations in diabetics is not 

established.
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2.7 Summary

Both plasma and whole blood viscosity are elevated in diabetic patients 

due mainly to increased plasma proteins causing increased plasma 

viscosity and increased red cell aggregation at low shear rates. 

Abnormalities of red and white cell deformability are more controversial and 

depend on the methodology used (164), but it does seem that there are cell 

membrane abnormalities associated with the diabetic state which could 

well increase cell rigidity.

The contribution of rheological abnormalities to specific diabetic 

complications requires to be established.

2.8 Scope of the present thesis

1. Using established techniques for measuring whole blood viscosity, it was 

aimed to assess whether or not abnormal viscosity in diabetes was related 

to complications not previously studied, i.e. hypertension and diabetic 

neuropathy.

2. It was aimed to evaluate the new Carri-Med filtrometer for the 

measurement of red cell deformability, and the Myrenne erythrocyte 

aggregometer for red cell aggregation, in diabetic patients compared with 

non-diabetic control subjects and to determine if any abnormalities 

detected were related to vascular complications.

3. With a recently developed method for separating white blood cell 

subpopulations and a modified filtration technique, it was aimed to measure 

white cell deformability in diabetic patients compared with non-diabetic 

control subjects.
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CHAPTER 3 

METHODOLOGY
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3.1 Preparation of blood samples

The experimental work in this thesis as far as possible followed the 

guidelines of the International Committee for Standardisation in 

Haematology (ICSH) for blood sampling and handling (165,166).

Venous blood was used in all studies, this was collected in the morning 

after minimal venostasis from rested subjects using a large bore (to avoid 

high shear damage to cells), sterile needle. For all rheological procedures, 

routine haematology and glycated haemoglobin samples, 5 ml aliquots of 

blood were anticoagulated with dry potassium edetate (EDTA, 1.5mg/ml). 

This particular anticoagulant was used to minimise platelet aggregation, 

and because it has least effect on red cell morphology and plasma viscosity 

and avoids dilution of samples which is an additional variable with liquid 

anticoagulants (3). EDTA is recommended for anticoagulation in 

measurements of blood viscosity, red cell deformability and red cell 

aggregation (167,168)

Samples were analysed within 2 hours of venesection, and 2ml of plasma 

supernatant was used on the same day for analysis of plasma viscosity 

(3.3). An aliquot of citrated plasma was stored at -20°C for later analysis of 

plasma fibrinogen, and aliquots of serum were stored for serum protein 

measurements (3.9).

3.2 Haernatocrit

Blood was drawn from the EDTA tube into duplicate 1mm diameter glass 

capillaries, and after the end was heat-sealed, they were centrifuged at 

13000 xg for 5 minutes in a Hawksley Microcentrifuge (Gallenkamp, 

Glasgow). Microhaematocrit was read as the percentage red cell pack to
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that of the whole sample, the reading used being the mean of two samples.

3.3 Plasma viscosity

Plasma viscosities were measured in the Coulter-Harkness semi-automatic 

capillary viscometer (Coulter Electronics Ltd., Harpenden, Hertfordshire). 

This instrument was chosen for ease of handling, accuracy, speed of 

measurement and small sample volume requirement (45).

After calibration using distilled water as the standard fluid, 0.5ml of plasma 

was pipetted into the sample cup at one end of the horizontal capillary. It is 

drawn through the capillary (0.38 mm in diameter) using a constant head of 

pressure applied by a mercury column. The time taken for the sample to 

travel is recorded by the mercury meniscus moving in a capillary parallel to 

the sample activating an electronic timer. The reading on the timer is made 

equivalent to the value of the sample's viscosity and is displayed on a 

register in mPa.s. The capillary system is immersed in a thermostatically 

controlled water bath at 37°C.

The mean of duplicate readings was taken. The coefficient of variation 

within samples was less than 1%.

3.4 Whole blood viscosity

3.4.1 Contraves LS 30 rotational viscometer

Low and high shear viscometry was performed in the Contraves LS 30 

rotational viscometer (Contraves Industrial Products Ltd., Ruislip, 

Middlesex), which is a coaxial cylinder (couette) viscometer (48).
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Measurements were made with the 2T bob and cup system on 2.5ml of 

whole blood. The shear rate is a function of the cup's geometry and 

rotational speed. Rotating the cup produces a torque by the sample on the 

bob. The bob is attached to a torsion wire which is linked to a mirror and 

tilting system and the torque transmitted from the sample on the bob is 

sensed in the reflected light source and monitored by a photo-electrical 

system. An equal and opposite torque is produced from a regulating 

current passing from a differential amplifier through electromagnetic coils

concentric with a ferrite core attached to the torsion wire. The strength of

the current is proportional to the torque from the sample and the sample's 

viscosity can be calculated from the following equation:

Viscosity = shear stress = torque x K

shear rate rotational speed

(K = conversion factor determined by the system geometry and evaluated 

using standard Newtonian silicone oils).

A Rheoscan 20 programming unit was used allowing measurements over 

an accelerating shear rate ramp. This was used for the studies of diabetic 

patients with hypertension (chapter 4), while a constant shear rate 

measurement was used for the studies of diabetic patients with peripheral 

neuropathy (chapter 6).

3.4.2 Experimental procedure

The machine was calibrated with standard silicone oils (viscosities 7.6, 

13.6, and 20.3mPa.s at 37°C). The sample was manually mixed using the 

bob for 5 seconds and the measurement procedure started. The constant
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shear measurements were performed during the next 15 seconds with the 

sample at 37°C. Low shear viscosity was measured at 0.945 s-1 and high 

shear at 94.5 s-1. High shear viscosity measurements were made first, 

since high shear mixing of the sample for 10 seconds is the most 

convenient way of breaking up red cell aggregates (169). The accelerating 

shear programme also measured high shear rate (94.5s-1) viscosity first, 

then low shear rate (0.945s-i) viscosity. Viscometry results were recorded 

as chart traces of torque reading as a function of time using a Bryans 27000 

chart recorder and taking the peak value for constant shear measurements 

as recommended by the ICSH (166). Blood viscosity was measured at 

native haernatocrit and a mathematical method of correction to a standard 

haernatocrit of 45% (0.45) was used (7):

0.45 
native Hct

Blood viscosity (Hct 0.45) _ r Blood viscosity (native Hct) *

Plasma viscosity L Plasma viscosity J

This equation is based on the linear relationship between the logarithm of 

relative blood viscosity and haernatocrit (170). The coefficient of variation at 

a shear rate of 94.5s-1 was 2.5% and at 0.945s-1 was 2.2%. The 

contributions of red cell factors (deformation and aggregation) and plasma 

viscosity at the standard haernatocrit were assessed by calculating the ratio 

of blood viscosity to the measured plasma viscosity, i.e. relative viscosity.
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3.5 Red cell Deformability

3.5.1 Carri-Med filtrometer

Red cell deformability was measured using the St. George’s filtrometer 

(Carri-Med Ltd., Dorking, UK), (Figure 3.1). This system utilises a vertically 

positioned filter, to minimise red cell sedimentation causing filter blocking. 

The red cells are drawn through the filter by a constant but adjustable 

negative pressure of water. The rate of filtration is measured by the times 

taken for the sample meniscus to flow past 4 light detectors and this 

information is stored on an interfacing BBC computer. Three subsequent 

steps of 20 pi sample volume flow are used, and the initial filtration rate is 

determined by extrapolating back to time zero. The clogging rate of the 

filter can also be determined. The initial filtration rate of red cells is 

independent of white cell clogging (52).

3.5.2 Preparation of samples

5 mis of EDTA-anticoagulated venous blood was centrifuged at 1500 xg for 

10 minutes in a Mistral 4L centrifuge at ambient temperature. The plasma, 

buffy coat and upper 10% of red cells were discarded. Two ml from the 

middle of the red cell column were suspended in pre-filtered phosphate 

buffer saline (pH 7.4, 290 mOsm/kg) at a haernatocrit of 10%. (Sensitivity to 

individual cell properties is optimal at haematocrits less than 15%).

3.5.3 Filtration procedure

Phosphate-buffer saline was filtered through a Nuclepore polycarbonate 

filter (pore diameter 5pm, Nuclepore Corporation, Pleasanton, CA, USA;
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Figure 3.1 Carri-Med filtrom eter



constant batch number 54B4D10) and the initial filtration rate recorded on 

the computer. The red cell suspension was then introduced to the capillary 

and the filtration rate measured through the same filter. A 3 cm negative 

filtration pressure was used throughout and studies were performed at 

25°C. The initial filtration rate of the suspension was expressed in relation 

to the buffer filtration rate as a ratio (red cell filtration ratio). Within sample 

coefficient of variation was 4.5%

3.6 Red cell aggregation

3.6.1 Myrenne aggregometer

Red cell aggregation was assessed photometrically using the highly 

automated Myrenne cone-plate aggregometer (Myrenne GmbH, Roetgen, 

FRG). Measurement is based on the light transmitting properties of 

aggregating suspensions. The amount of light transmitted is dependent on 

the shear rate applied. At high shear rates increased light transmission 

occurs due to the deformation of cells with flow streamlines, and at low 

shear rates the increased light transmission with time is due to the cell-free 

gaps associated with rouleaux formation. (Figure 3.2)

The Myrenne aggregometer was developed from the work of Schmid- 

Schonbein et al (58) and consists of a transparent perspex cone and plastic 

plate, the latter being fixed in position and shearing of the sample achieved 

by rotation of the cone. Infrared light transmitted through the sample is 

measured by a photometer which produces photovoltages (mV) that are 

processed in a microprocessor unit incorporated within the machine.
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3.6.2 Experimental procedure

The intensity of the light source transmitted through the cleaned cone and 

plate of the Myrenne aggregometer was logged with the chamber closed 

and stored by pressing 'A' (adjust) key. At 25°C, 20 pi from an EDTA- 

anticoagulated blood sample was then pipetted onto the centre of the cone 

and the plate lowered into position by closing the cover. The sample was 

sheared at 600/s for 10 seconds to give a baseline reading and the 

increase in light transmission was then measured over a 5 second period of 

stasis (M mode) and integrated via the microprocessor unit and displayed 

digitally as the aggregation index. Aggregation was measured twice for 

each sample and the average of the duplicate readings taken as the mean 

aggregation index. The measuring system was cleaned between each new 

sample. Measurements were made first at native haernatocrit, and after 

samples had been reconstituted to a standard haernatocrit of 40% 

aggregation was measured twice again. The coefficient of variation was 

5.2%. Aggregation was measured at standard haernatocrit as well because 

aggregation is haernatocrit dependent, increasing between haematocrits of 

20-45% and decreasing at haematocrits above 40-45%.

3.7 White cell deformability

The methods used were those of Lennie et al (31).

3.7.1 Preparation of buffer

Phosphate buffer saline (PBS) was prepared from 42.5 g sodium chloride, 

1 g potassium chloride, 1 g potassium dihydrogen orthophosphate and
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5.75 g disodium hydrogen orthophosphate in distilled water at 4°C. pH 

was adjusted to 7.4 and osmolality to 290 mOsm/kg.

Before use the PBS was mixed with 0.5% w/v bovine serum albumin (BSA, 

Sigma, UK) and the solution filtered through a 0.45|im bacterial filter 

(Millipore, UK).

3.7.2 Separation of white cells

4 ml of mono-poly resolving medium was prepared from 15.454g sodium 

metrizoate and 8.182g Ficoll 400 mixed to 100mls with distilled water, 

giving a solution with a specific gravity 1.114 g/ml and an osmolality of 300 

mOsm/kg.

1 ml of lymphoprep, a solution with a specific gravity of 1.114 g/ml and 

osmolality of 300 mOsm/kg, (Nyegaard, UK) was layered on top of the 

mono-poly resolving medium. Although mono-poly resolving medium 

separates mononuclear and polymorphonuclear cells in a one step 

procedure the resolution of cells was improved by modifying the separation 

technique with the addition of lymphoprep.

These solutions were placed at the bottom of a plastic tube and 5 ml of 

anticoagulated blood was layered on top of both. The mixture was 

centrifuged at 200 xg in a Mistral 4L centifuge for 40 minutes at ambient 

temperature.

After centrifugation the leucocyte subpopulations appear as two separate 

bands, the upper layer being the mononuclear cells (monocytes and 

lymphocytes) and the lower the polymorphonuclear cells (Figure 3.3) Each 

fraction was aspirated and added to 10 ml PBS/BSA and centrifuged at 200 

xg for a further 10 minutes.

The supernatant was discarded and the cells resuspended in a known 

volume of PBS/BSA to a concentration of 105/l.
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Figure 3.3

Separation technique for white blood cell subpopulations



3.7.3 Filtration procedure

The apparatus consisted of a syringe pump (Treonic,Vickers, UK) with a 60 

ml plastic syringe connected via a rigid 3-way plastic connector to a "pop- 

top" filter holder which holds a Nuclepore polycarbonate membrane, pore 

diameter 5 pm, batch number 54B4D10 (Sterilin, UK). The filter holder is 

connected to a pressure transducer (Bell and Howell, UK) which in turn is 

linked to a pressure indicator/amplifier (Gaeltech, UK). The transducer was 

calibrated using a pressure manometer to give a range of 0-20 cm water on 

the chart recorder. Pressure changes were monitored on a Servoscribe RE 

11 potentiometric chart recorder and were recorded as continuous 

pressure-time curves (Figure 3.4).

Filtration of the PBS/BSA used to suspend the white cells 

(polymorphonuclear or mononuclear) through the Nuclepore filter was used 

to produce a constant pressure reading. Subsequent filtration of the cell 

suspension in buffer through the same filter at a constant flow of 1.5 ml/min 

at 25°C gave a time-dependent increase in pressure due to progressive 

occupation of pores by slowly passing white cells. Pressures were 

analysed at 1 minute intervals for 6 minutes. The ratio of the pressure 

produced by the cell suspension to the pressure produced by buffer was 

calculated.

3.8 Plasma proteins

3.8.1 Serum Globulins

Total protein, albumin, and globulins (total protein minus albumin) were 

determined by SMAC on the Technicon Autoanalyser (Basingstoke), total
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Figure 3.4 White cell filtra tion  apparatus



protein was measured by the biuret method and albumin by the 

bromocresyl green method, in the hospital biochemistry department.

3.8.2 Fibrinogen

Fibrinogen was measured in a citrated plasma from a 5 ml citrated blood 

sample (4.5 ml blood = 0.5 ml 3.8% tritodium citrate) at 37° C in a Coag-a- 

mate X2 analyser (General Diagnostics, Morris Plains, NJ, USA) by the 

clotting time method of Clauss with a photo-optical system, during the 

viscosity and red cell deformability studies (chapters 4-6). Organon- 

Teknika reagents and standards were used.

The heat precipitation method (171) was used for estimation of plasma 

fibrinogen during the aggregation studies (chapter 7). Blood is drawn into 

microhaematocrit tubes, spun in the Hawksley centrifuge for 5 minutes, 

immersed in a waterbath at 57° C for 4 minutes and then centrifuged for a 

further 3 minutes in the Hawksley centrifuge. Using a X70 magnification on 

a microscope with a moving stage, the length of the fibrinogen precipitate 

was expressed as a ratio to the original plasma column (ml/100ml).

The mean of duplicate readings was taken.

3.8.3 Aipha2-macroglobulin and Haptoglobin

These large plasma proteins were measured by an immunoturbidimetric 

assay on the Encore centrifugal analyser (Baker Instruments, 

Pennysylvania). Normal ranges were determined from the healthy 

population used in the study as described in chapter 7.
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3.9 Blood cell indices

Haemoglobin concentration, mean red cell volume (MCV normal range 76- 

96 fl) and leucocyte count (WCC, normal range 4.0-11.0 x 109/l) were 

measured by Coulter -S -Counter. Mean cell haemoglobin concentration 

(MCHC) was estimated from haemoglobin concentration divided by the 

microhaematocrit measurement from the Hawksley centrifuge (g/dl).

3.10 Glycated haemoglobin and Blood glucose

Glycated haemoglobin (HbA-j) was measured by agar gel electrophoresis 

(Corning Glytrac, Palo Alto, California), laboratory normal range 5.5-8.5%.

Blood glucose was measured by the hexokinase method (Hitachi 773 

automatic analyser, Boehringer Mannheim, FRG). Normal laboratory 

fasting range 4.0-5.5 mmol/l

3.11 Plasma lipoproteins

Triglyceride, and total cholesterol, and very low density lipoprotein (VLDL), 

low density lipoprotein (LDL) and high density lipoprotein (HDL) were 

measured after overnight density separation ultra-centrifugation of plasma 

at 35000xg (Beckman, Palo Alto, California) on a Hitachi 704 automatic 

analyser (Boehringer Mannheim, FRG).

64



CHAPTER 4 

ASSOCIATION OF WHOLE BLOOD VISCOSITY 

WITH HYPERTENSION IN DIABETES MELLITUS
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4.1 Introduction

Arterial blood pressure is determined by cardiac output and by total 

peripheral resistance, which is determined by both vessel geometry 

(vascular hindrance), and by blood viscosity In recent years the neglected 

contribution of raised viscosity to the pathogenesis of hypertension has 

been realised.

Blood viscosity has been found to be increased in hypertensive individuals

(161.172) and this appears to be related partly to a raised haematocrit

(161.173), which may be due to a contracted plasma volume from 

transcapillary shift of extracellular fluid from plasma caused by the 

increased arterial pressure (174). Loss of extracellular fluid will also cause 

a rise in plasma protein concentration, which would lead to both an 

increase in plasma viscosity and an increase in blood viscosity at low shear 

rates due to increased red cell aggregation. Plasma exchange, which 

reduces the level of high molecular weight plasma proteins, has been 

shown to reduce blood pressure (175). Similarly, reduction of haematocrit 

by venesection reduces blood pressure (176). One of the main plasma 

proteins contributing to blood viscosity is fibrinogen, and this has been 

shown to be independently related to the raised blood viscosity in 

hypertension (161), the increased fibrinogen perhaps being due to a 

"chronic phase response".

The other main determinant of blood viscosity at high shear rates is red cell 

deformability and this has also been shown to be reduced in hypertensive 

subjects (177.178).

Hypertension is common in diabetes mellitus (160,179), has been 

associated with both micro- and macrovascular disease (180-184), and is a
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risk factor for cardiovascular disease (66,91). Because hypertension in 

people without diabetes has been associated with increased whole blood 

and plasma viscosity, and because diabetic patients have raised blood 

viscosity (185), it is possible that there is an additive effect of diabetes and 

hypertension on viscosity, leading to the increased risk of vascular 

complications related to hypertension in diabetic patients.

The aim of this study was to assess whole blood viscosity and its 

determinants in diabetic patients with hypertension, compared to a matched 

group of diabetic patients without hypertension and a healthy control 

population, to determine if blood rheology was altered in diabetic patients 

with hypertension.

4.2 Patients

4.2.1 Diabetic patients

86 diabetic out-patients were studied (38 type 1 and 48 type 2). The mean 

age was 49 years and the range was 18-74 years. There were 41 males 

and 45 females and mean body mass index was 26.1 ± 3.9 kg/m2. The 

other clinical characteristics of the diabetic patients and control subjects are 

shown in Table 4.1.

Hypertension was defined as blood pressure > 160/95 mmHg on a 

conventional mercury sphygmomanometer on two occasions after sitting for 

10 minutes, or accepted as diagnosed in patients receiving anti­

hypertensive treatment. Because only 4 type 1 diabetic patients were 

hypertensive, these were excluded from further analysis and 34 

normotensive type 1 diabetics were compared with 23 normotensive and
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Table 4.1

Clinical characteristics and rheology of diabetic patients 
and normal subjects studied

Control
subjects

Diabetic
Patients

n 52 86
Sex (M/F) 32/20 41/45
Smokers 24 37
Age (yr) 46.0 ±5.0 49.0 ±14.0
Body Mass Index (kg /m 2 ) 26.4±4.0 26.1 ±3.9
H b A i(%) - 10.5±2.3
Haematocrit (%) 44.8 ±3.3 43.2 ±4.5
Fibrinogen (gl / I ) 3.2 ±0.7 3.0 ±0.8
Plasma viscosity (mPa.s) 1.32 ±0.14 1.45 ±0.15 a
Whole blood viscosity (mPa.s) 

95 s '1 5.0 ±0.6 5.1 +0.7
Corrected c 4.9 ±0.6 5.3 ±0.5®
0.95 s ’1 17.5±3.6 19.4 ± 4.8b
Corrected c 17.4±2.6 20.7 +2.7 a

Relative blood viscosity (mPa.s) 
9 5 s '1 3.8±0.4 3.8±0.3 ,
0.95 s-1 13.5 ±1.9 14.8 ±1.8

a p < 0.05, diabetic patients vs control subjects 
b p <  0.01, diabetic patients vs control subjects 
c Corrected to a standard haematocrit of 45%



25 hypertensive type 2 diabetic patients. 18 patients were on anti­

hypertensive medication which included a combination of diuretics, beta- 

blocking and calcium channel blocking drugs. All patients had normal urea 

and electrolyte concentrations and except for anti-hypertensive and 

diabetic medication were receiving no other drug therapy. 13 type 2 

normotensive diabetics were on insulin therapy and 10 were taking oral 

hypoglycaemic agents. In the hypertensive group, 4 were receiving insulin 

therapy while 11 were taking oral hypoglycaemic drugs and 10 were on 

dietary therapy only, Table 4.2.

Duration of diabetes was significantly longer in the type 1 diabetics (18 ± 11 

years) compared with type 2 diabetics (10 ± 6 years-normotensive and 6 ± 

5 years -hypertensive, p<0.02). The groups were well matched for 

glycaemic control (HbA1; 11.1 ± 2.1%-type 1, 10.6 ± 2.6%-type 2 

normotensive, 10.6 ± 2.3%-hypertensive, p>0.05) and the type 2 diabetics 

were well matched for sex distribution (10 male/13 female-normotensive 

and 12 male/13 female-hypertensive), age (58 ± 7 years-normotensive and 

58 ± 7 years-hypertensive) and body mass index (26.4 ± 3.9 kg/m2- 

normotensive and 27.2 ± 3.9 kg/m2-hypertensive), (Table 4.3). The 

vascular complications of all the diabetic patients are shown in Table 4.2.

4.2.2 Control Subjects

52 healthy normotensive control subjects were selected from factory 

employees. They had a mean age of 46 years and range 36-57 years. 

There were 32 males and 20 females and they were well matched with the 

diabetic patients for body mass index (26.4 ± 4.0 vs 26.1 ± 3.9 kg/m2, 

p>0.05), Table 4.1. None were taking any medication and all had normal

fasting blood glucose levels.
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Table 4.2

Mode of treatment of diabetes, and complications present in 
diabetic patients studied

Type 1 diabetes Type 2 diabetes Type 2 diabetes 
normotensive normotensive hypertensive

n 34 b 23 a 25
Duration of diabetes (yr) 18±11 10+6 6±5
Treatment of diabetes

Insulin 34 13 4
Oral hypoglyceamic agents 0 10 11
Diet only 0 0 10

Treatment of hypertension 0 0 18
Diabetic complications

Background retinopathy 12 10 6
Proliferative retinopathy 3 1 2
Nephropathy 1 2 0
Neuropathy 6 4 0
Macro vascular disease 2 5 10

a p < 0.02, Type 1 vs Type 2 diabetic patients.
b p < 0.01, Type 2 normotensive vs Type 2 hypertensive diabetic patients.



Table 4.3

Clinical characteristics of diabetic and control subjects studied

Control Diabetic patients
subjects

Type 1 
normotensive

Type 2 
normotensive

Type 2 
hypertensive

n 52 
Sex (M/F) 32/20 
Smokers 24 
Age (yr) 46.0±5.0 
BMI (kg /m 2 ) 26.4±4.0 
HbA-j (%)
BP (mmHg) 128±19/80+10

34
17/17

18
37.0112.0 a 
25.21 4.0 
11.112.1 

127118/8216

23 25 
10/13 12/13 

11 6 
58.017.0 58.0+7.0 a’b 
26.4±3.9 27.2±3.9 
10.6±2.6 10.612.3 

130113/83+8 177+33 a’d /97l15a'c

a p < 0.01, diabetic patients vs control subjects. 
b p < 0.05, Type 2 vs Type 1 diabetic patients. 
c p < 0.05, hypertensive vs normotensive diabetic patients, 
d p < 0.01, hypertensive vs normotensive diabetic patients.



4.3 Methods

4.3.1 Blood samples

Whole blood viscosity (shear rates 94.5 and 0.945 s_1) and plasma 

viscosity were measured at 37°C in blood anticoagulated with EDTA within 

2 hours of venesection. Whole blood viscosity was measured in a 

Contraves LS rotational viscometer, and plasma viscosity in a Coulter- 

Harkness capillary viscometer. Microhaematocrit was measured on the 

Hawksley microcentrifuge and blood viscosity was corrected to standard 

microhaematocrit of 45%. Relative blood viscosity was calculated as whole 

blood viscosity divided by plasma viscosity.

Fibrinogen was measured from a citrated sample at 37°C on the Coag-a- 

Mate X2 analyser by the clotting time method.

4.3.2 Statistical methods

The difference in means was calculated by the Mann-Whitney U-test and 

correlation by the Spearmann rank test. Values are expressed as mean ± 

SD.

4.4 Results

Whole blood viscosity (corrected for haematocrit) at high and low shear 

rates, low shear relative viscosity and plasma viscosity were significantly 

higher in diabetic patients (5.3 ± 0.5, 20.7 ± 2.7, 14.8 ± 1.8 and 1.45 ± 0.15 

mPa.s) compared to control subjects (4.9 ±0.6,17.4 ± 2.6,13.5 ± 1.9 and 

1.32 ± 0.14 mPa.s, p<0.01). Low shear rate viscosity at native haematocrit
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was also significantly higher in diabetic parients compared with control 

subjects (19.5 ± 4.9 vs 17.6 ± 3.6 mPa.s, p<0.05), Table 4.3. There was no 

significant difference in viscosity or its determinants between type 1 or type 

2 normotensive diabetic patients (Table 4.4). Compared with the control 

group high shear corrected viscosity was 7.1% higher in the normotensive 

type 2 diabetics (5.2 ± 0.3 vs 4.9 ± 0.6 mPa.s, p<0.01) and 12.6% higher in 

the hypertensive diabetics (5.5 ± 0.4 vs 4.9 ± 0.6 mPa.s, p<0.01) and was 

significantly higher in the hypertensive than in the normotensive diabetics 

(5.5 ± 0.4 vs 5.2 ± 0.3 mPa.s, p<0.01), Table 4.5. There was no difference 

in high shear rate blood viscosity between hypertensive diabetic patients 

on treatment (5.5 ± 0.5 mPa.s) and those on no treatment (5.5 ± 0.4 mPa.s).

There was a positive correlation of fibrinogen levels with both corrected 

high and low shear rate viscosity measurements (high shear, r=0.37; low 

shear, r=0.49, p<0.001) and of blood pressure with corrected low shear rate 

viscosity (systolic, r=0.25; diastolic r=0.35, p<0.05). Although no correlation 

of viscosity was found with HbA1 (high shear, r=0.05; low shear, r=0.18, 

p>0.05) there was a weak significant inverse correlation of corrected whole 

blood viscosity with duration of diabetes (high shear, r= -0.35, p<0.01; low 

shear, r=-0.24, p<0.05), (Table 4.5).

Corrected whole blood viscosity at both high and low shear rates was 

significantly higher in type 1 diabetic patients with retinopathy (background 

or proliferative retinopathy), (5.4 ± 0.2 mPa.s-high shear, 21.2 ± 1.9 mPa.s- 

low shear) than in those without (5.0 ± 0.5 mPa.s-high shear, 18.8 ± 3.2 

mPa.s-low shear, p<0.02), but no difference was observed in type 2 

patients (5.4 ± 0.4 vs 5.3 ± 0.4 mPa.s-high shear, 21.8 ± 2.3 vs 21.1 ± 2.1 

mPa.s-low shear, p>0.05), (Table 4.6).
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Table 4.5

Correlation of whole blood viscosity with variables in 
diabetic patients

★
High shear 

WBV
(r)

*
Low shear 

WBV
(r)

Age (yr) -0.12 -0.01

Blood mass index (kg/m 2 ) 0.26 -0.09

Duration of diabetes (yr) -0.35b -0.24°

Blood pressure - systolic (mmHg) -0.07 0.25°

Blood pressure - diastolic (mmHg) -0.07 0.35 b

HbA-| (%) 0.05 0.18

Haematocrit (%) 0.12 0.01

Fibrinogen (g/l) 0.37a 0.49 a

* Corrected to haematocrit 45%
a p <0.001
b p <0.01 
c p<0.05



Table 4.6
Blood and plasma viscosity in diabetic patients with and without 
microvascular disease

Type 1 Type 2
diabetic patients diabetic patients

Microvascular disease Microvascular disease

+ - +

n 15 19 29 19
Plasma viscosity (mPa.s) 1.44±0.13 1.4210.14 1.5210.23 1.4410.15
Whole blood viscosity (mPa. s)

95 S'1 5.3±0.7 4.910.6 5.310.7 4.910.7
Corrected 5.410.23 5.010.5 5.410.4 5.310.4
0.95 s ’1 20.015.3 18.213.5 21.315.1 18.514.5
Corrected 21 .2 i1 .9a 18.813.2 21.812.3 21.112.1

a p < 0.02, Type 1 diabetic patients with microvascular disease vs without. 
b Corrected to a standard haematocrit of 45%
+  present 
-  absent



Fibrinogen levels were similar in diabetic and control groups (3.4 ± 0.8 vs

3.2 ± 0.9 g/l, p>0.05). There was no significant difference in fibrinogen 

between smokers and non-smokers in either the diabetic (3.5 ± 1.0 vs 3.1 ±

0.6 g/l) or the control groups (3.3 ± 0.8 vs 3.2 ± 0.7 g/l).

4.5 Discussion

The present study has not only confirmed the general findings of previous 

studies (see chapter 1) that blood viscosity and plasma viscosity are 

elevated in diabetes, but in addition has demonstrated for the first time that 

the presence of hypertension in diabetes is associated with a further 

increase in whole blood viscosity at a standard haematocrit, which in 

hypertensive diabetic patients is over 12% higher than in non-diabetic 

control subjects. The cause of the increased viscosity is not certain, but it 

appears to be due to the combined effects of an increased plasma viscosity 

(although this study was not powerful enough to show a significant 

difference between hypertensive and normotensive diabetic patients) and a 

decrease in erythrocyte deformability which is the remaining determinant of 

high shear viscosity.

Since this study was performed Ramping et al have confirmed higher blood 

viscosity in hypertensive diabetics (186)

The raised blood viscosity in diabetic patients was associated with a normal 

fibrinogen level, and although a raised fibrinogen has been suggested to 

be one cause of the increased viscosity in diabetics, other studies have 

found normal fibrinogen levels in diabetic patients (187). The higher 

plasma viscosity in the diabetic patients compared with controls probably 

reflects an increase in plasma proteins other than fibrinogen, as reviewed
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in chapter 1.

It may be argued that the raised blood viscosity is the result of hypertension

i.e. the combined effects of raised arterial pressure being an increased 

haematocrit and increased plasma proteins from transcapillary shift of 

extracellular fluid. This rise in blood viscosity could lead to an increase in 

cardiac load and hence promote left ventricular hypertrophy (188). 

However there is some evidence that increased blood viscosity is 

implicated in the pathogenesis of hypertension. Chien has shown that mild 

hypertension and increased blood viscosity are associated with a fall in 

vascular hindrance i.e. vasodilatation, while severe hypertension is 

associated with normal vascular hindrance i.e. loss of compensatory 

vasodilatation (189). This would tend to suggest that the increase in 

vascular resistance parallels the increase in blood viscosity.

An increase in viscosity was found in type 1 diabetic patients with 

microvascular complications as in previous studies (95,99,107,101,146). 

Thus the increased viscosity at high shear rates in hypertensive diabetics 

may be one mechanism by which diabetic patients with hypertension 

develop more complications.

4.6 Summary

Whole blood viscosity measured at high shear rate and corrected to a 

standard haematocrit of 45%, was increased in type 2 hypertensive 

diabetics. Whole blood viscosity at both high and low shear rates (at 

standard haematocrit) was increased in type 1 diabetics with microvascular 

complications.

72



Prospective studies of the predictive value of blood viscosity for diabetic 

complications, both microvascular and macro vascular, are required to test 

the hypothesis that hypertensive diabetics develop more complications 

than normotensive diabetics, related to greater abnormalities in blood 

rheology. It would also be of interest to evaluate blood viscosity in 

hypertensive type 1 diabetic patients.
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CHAPTER 5

ASSESSMENT OF RED CELL DEFORMABIUTY IN 

NORMALS AND DIABETICS USING AN IMPROVED 

FILTRATION METHOD
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5.1 Introduction

Impaired red cell deformability (filterability) has been suggested in studies 

of vascular disease (150,156), sickle cell disease (19), other 

haemoglobinopathies (190) and diabetes mellitus (185). Such changes 

may reflect alterations in the red cell membrane, shape or geometry, or an 

increase in the internal viscosity of the cell (191).

Reduced red cell deformability might impede blood flow in the abnormal 

microcirculation of diabetic patients, promoting tissue hypoxia, and hence 

could contribute to the increased incidence of microvascular disease in 

diabetes.

Previous studies assessing red cell deformability in diabetic patients have 

given conflicting results, depending partly on the methodologies employed. 

Filtration techniques in which the red cells are passed through micropore 

filters with pores of diameter 3-5pm, have found impaired deformability 

associated with diabetes in some studies, but not all (185). Reduced whole 

blood filterability has been related to the increased white cell count in 

diabetic patients, and clogging of the filter by less deformable white cells 

gives non-specific results in filtration studies (103). As discussed in 

chapters 1-3, the St. George's filtrometer (Carri-Med) measures the initial 

filtration rate of red blood cells, independently of filter clogging by rigid red 

cells.

It was aimed to measure red cell deformability by an improved filtration 

method (Carri-Med filtrometer) (52), firstly in a group of healthy non-diabetic 

individuals to determine which red cell properties and which biochemical 

constituents of the blood, if any, influence red cell filtration rates.
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In then comparing groups of diabetic patients and non-diabetic healthy 

individuals, I aimed to determine if red cell deformability, as suggested by 

some previous studies, was impaired in diabetic patients. I also wished to 

evaluate the associations of red cell deformability with type and duration of 

diabetes and with glycaemic control, and aimed to determine if 

abnormalities of deformability were related to the extent of vascular disease 

present in diabetic patients.

5.2 Subjects

5.2.1 Healthy volunteers

A fasting blood sample was taken from 66 healthy factory employees (38 

male, 28 female), mean age 47 years-male, 46 years-female, range 24-57 

years. All were normotensive, matched for body mass index (26.1 ± 2.2- 

male, 26.9 ± 5.9-female), (Table 5.1), had normal fasting blood glucose, 

urea and electrolyte concentrations, and were taking no medications.

5.2.2 Diabetic patients

69 patients (28 type 1-insulin dependent, 41 type 2-non-insulin-dependent) 

were recruited from the diabetic outpatient clinic. Mean age was 38 years- 

type 1, 58 years-type2 (p<0.001), range was 18 -70 years. They were 

matched for ratio of males to females (15 M/13 F-type 1 and 22 M/19 F-type 

2), smokers to non-smokers (14/14-type 1 and 17/24-type 2), body mass 

index (25.8 ± 4.2kg/m2-type 1 and 26.6 ± 3.7kg/m2-type 2), and glycaemic 

control (HbA1; 11.3 ± 2.3%-type 1 and 10.6 ± 2.6%-type 2),

Table 5.2.
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Table 5.1

Characteristics of the non - diabetic group, filtration 
ratios, red cell indices and plasma constituents

Males 
(n = 38)

Females 
(n = 28)

Age (yr) 47 ± 5 46 ± 4

Body Mass Index (Kg/m2 ) 26.1 ± 2.2 26.9 ±5 .9

Smokers (n) 13 13

RCF ratio 0.545 ± 0.04 0.543 ±0.02

Mean cell volume (fl) 91.6 ± 5.2 93.7 ±6 .2
Mean cell haemoglobin 

concentration (g/dl)
32.4± 1.4 31.3 ± 1.0

Microhaematocrit (%) 45.8 ± 3.2a 43.1 ±3.1

White cell count (x109/l) 6.4 ± 1.7b 7.6 ± 1.7

Globulins (g/l) 25.4 ± 2.9 25.0 ±3.9

Fibrinogen (g/l) 3.2 ± 0.8 3.2 ±0.6

Osmolality (mmol/l) 288 ± 3 284 ± 4

Triglyceride (mmol/l)
g

2.0 ± 1.1 1.3 ±0.6

Cholesterol (mmol/l) 6.2 ± 1.1 5.9 ± 1.3

p < 0.011 Ma|e volunteers v Female volunteers 
p < 0.05 J

* RCF = Red Cell Filtration



Table 5.2

Characteristics of the diabetic and control groups

Control Diabetic patients
subjects type 1 type 2

n 66 28 41

Age (yr) 44±8 38± 12 58+7 a

Sex (M/F) 38/28 15 /1 3 22 /19

Smokers (Y/N) 26 /40 1 4 /1 4 17 /24

BMI (Kg/m2 ) 26.2±4.0 25.8±4.2 26.6±3.7

Duration of diabetes (yr) - 17 ± 11 8±6 3

HbA-| (%) - 11.3±2.3 10.6±2.6

a p < 0.001, type 2 v type 1 diabetics or control subjects



Patients were divided into three groups according to vascular 

complications: no complications, microvascular complications only, or both 

micro and macrovascular complications.

Microvascular disease was defined as the presence of retinopathy on 

ophthalmology (performed by myself through dilated pupils), background 

retinopathy being the presence of microaneurysms, "dot and blot" 

haemorrhages and hard exudates and/or nephropathy which was defined 

as persistant proteinuria (albustix positive) in a longstanding diabetic 

patient. Macrovascular disease was accepted as present in patients with 

documented evidence of ischaemic heart disease, cerebrovascular disease 

or peripheral vascular disease.

5.3 Methods

5.3.1 Blood samples

The blood was anticoagulated with EDTA and analysed within 2 hours of 

venesection. Red cell deformability was measured from a 5 ml sample by 

bulk red cell filtration on the Carri-Med filtrometer as described (chapter 

3.6). Samples were analysed for mean cell volume (MCV, normal range 

76-96 fl) and white cell count (WCC, normal range 4.0-7.5 x109/l) on the 

Coulter-S-Counter (3.10). Mean cell haemoglobin concentration (MCHC) 

was estimated from the haemoglobin concentration (measured on the 

Coulter-S-Counter) divided by the microhaematocrit (measured on the 

Hawksley microcentrifuge, chapter 3.2).

Serum triglyceride and cholesterol concentrations were measured by 

automated enzymatic colourimetric analysis (Hitachi 704, chapter 3.11), 

and plasma fibrinogen by the clotting time (Clauss) method (chapter 3.8.2).

77



Serum osmolality and globulins were measured by SMAC (Technicon, 

Basingstoke, chapter 3.8.1).

5.3.2 Statistical methods

Parametric analysis was utilised when the control subjects were examined 

independently from the diabetic patients i.e. the Student's independent t- 

test was used to compare difference in the means, and correlation 

coefficients were by the least squares method.

Non-parametric analysis was used when diabetic and control subjects were 

compared and for analysis within the diabetic group alone, since it could 

not be assumed that the variables examined were normally distributed in 

diabetic patients. Statistical analysis was by the Mann-Whitney U-test and 

Spearman rank correlation. Values throughout are expressed as mean ± 

SD.

5.4 Results

5.4.1 Healthy volunteers

In male volunteers compared with female volunteers, triglyceride level and 

microhaematocrit were significantly higher (2.0 ± 1.1 mmol/l vs 1.3 ± 

0.6mmol/l, p<0.01 and 45.8 ± 3.2% vs 43.1 ± 3.1%, p<0.01) whereas white 

cell count was significantly lower (6.4 ± 1.7 x109/l vs 7.6 ± 1.7 x109/l, 

p<0.05, Table 5.1)

There was no difference in red cell filtration ratio between males and 

females (0.545 ± 0.04 vs 0.543 ± 0.02) nor between smokers and non- 

smokers (0.545 ±0.03 vs 0.544 ± 0.03).
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A weak significant inverse correlation of red cell filtration ratio with mean 

cell volume was found (r = -0.28, p<0.05, Figure 5.1), but no correlations 

were found with age, body mass index, serum lipids, osmolality, plasma 

fibrinogen, globulins, microhaematocrit, mean cell haemoglobin 

concentration or white cell count, (Table 5.3).

5.4.2 Diabetic patients and control subjects

The diabetic and control groups were well matched for body mass index, 

and ratio of males to females and ratio of smokers to non-smokers. Type 2 

diabetic patients were significantly older than type 1 diabetic patients and 

control subjects, although the age range of control subjects matched the 

complete range in the diabetic patients (Table 5.3).

5.4.2 (i) Effect of type of diabetes.

Red cell filtration ratio was significantly decreased in both type 1 (0.470 ± 

0.05) and type 2 (0.488 ± 0.06) diabetic patients compared to control 

subjects (0.549 ± 0.03, p<0.001) and in type 1 compared to type 2 diabetics 

(p<0.03), (Figure 5.2).

5.4.2 (ii) Relationship between red cell filtration ratio and red cell and white 

cell indices.

The difference in filtration ratio was partly related to a higher mean cell 

haemoglobin concentration in the diabetic patients, which in turn was 

related to a significantly lower mean cell volume in the diabetic patients 

compared with the control subjects, (Table 5.4). There was no difference in 

mean cell haemoglobin concentration or mean cell volume between type 1 

or type 2 diabetic patients.

Red cell filtration ratio was inversely related to mean cell haemoglobin
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Correlation of red cell filtration ratio with 
mean cell volume in normal individuals



Table 5.3

Red Cell Filtration Ratio in Normal Indivduals: 
Correlation with variables

Age (yr) 0.13

Body Mass Index (kg/m2) -0.16

Triglyceride (mmol/l) -0.17

Cholesterol (mmol/l) 0.06

Haematocrit (%) 0.02

White blood cell count (x109/I) 0.08

Mean cell volume (fl) -0.28 a

Mean cell haemoglobin concentration (g/dl) -0.01

Plasma viscosity -0.17

Fibrinogen (g/l) 0.17

Globulin (g/l) -0.08

ap< 0.05



Type I Type 2
■ Subjects 1-----------------------------Patients--------------------

Figure 5.2

Red cell filtration ratios in diabetic and control subjects



Table 5.4

Haematological and biochemical variables in diabetic 
patients and control subjects

Control Diabetic patients
subjects type 1 type 2

White cell count (x109/l) 6.9±1.8 7.4± 1.5 7.3 ± 1.7

Mean cell volume (fl) 92±6 8 9 ± 4 a 8 8 ± 5 3

Mean cell haemoglobin 31.9±1.4 33.0± 2.6 b 33.6± 1.7 b
concentrations (g/dl) 

Microhaematocrit (%) 44.7±3.4 43.4± 4.8 43.5± 4.7

Fibrinogen (g/l) 3.2±0.7 3.3± 0.9 3.4±0.7

Globulin (g/l) 25.2±3.3 25.5±3.4 26.3±3.6

1 P < 1 diabetic patients v control subjects
b p < 0.0003 J K



concentration (r- - 0.43, p<0.01, Figure 5.3) but no correlations were found 

with white cell count, haematocrit, plasma fibrinogen or globulin level 

(Table 5.5).

No association of red cell filtration ratio with glycaemic control was found as 

measured by glycated haemoglobin (r = 0.07) nor with duration of diabetes 

(r = 0.08).

To assess whether the higher mean cell haemoglobin concentration in the 

diabetic patients could account for their lower deformability, red cell fitration 

ratios in diabetics and controls with similar mean cell haemoglobin 

concentrations were compared: the filtration ratio was still significantly 

lower in the diabetic patients (0.494 ± 0.05) compared with the control 

subjects (0.553 ± 0.38, p<0.001).

5.4.2 (iii) Effect of vascular disease.

Diabetic patients with microvascular disease had significantly longer 

duration of disease than either patients with no complications or patients 

with both micro and macrovascular disease, although the ratio of type 1 and 

type 2 diabetics was similar in this group.

Red cell filtration ratio was similar in all three groups (0.487 ± 0.05-no 

complications, 0.478 ± 0.04-microvascular complications, 0.495 ± 0.04- 

microvascular + macrovascular complications) and no differences in the 

determinants of red cell deformability were found between the three groups, 

(Table 5.6)

5.6 Discussion

Deformability of the red cell was measured by a filtration method in which 

cells traverse filters with 5fim diameter pores, and from which the initial
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Table 5.5

Red cell filtration ratio in diabetics: 
Correlation with variables

Age (yr) 0.20

Body Mass Index (kg/m2) 0.08

Duration of diabetes (yr) 0.08

Cholesterol (mmol/I) 0.07

Haematocrit (%) -0.08

White blood cell count (x109/l) -0.04

Mean cell volume (fl) 0.02

Mean cell haemoglobin concentration (g/dl) -0.30a

Plasma viscosity

Fibrinogen (g/l) -0.22

Globulin (g/l) 0.20

ap<0.01



Table 5.6

Association of red cell filterability and other variables 
with vascular complications in diabetic patients

Microvascular &
No

complications 
(n = 32)

Microvascular 
complications 

(n = 20)

macrovascular 
complications 

(n = 17)

Red cell filterability ratio 0.487± 0.05 0.478± 0.04 0.495± 0.04

Fibrinogen (g/l) 3.1 ±0.8 3.4± 0.9 3.6± 0.6

Microhaematocrit (%) 44.3± 4.6 42.1 ± 5.2 43.2+ 4.0

White cell count (x109/l) 7.3± 1.5 7.0± 1.4 7.7± 2.0

Globulin (g/l) 26±4 26 ± 3 2 6 + 4

HbA! (%) 11.0±2 10.7± 2.3 10.9± 3.0

Duration of diabetes (yr) 8±6 18± 1 ia 10± 9

Type 1 (n) 14 10 4

Type 2 (n) 18 10 13

a p < 0.02, patients with microvascular disease v patients with
micro and macrovascular disease or no complications



filtration rate of the cells can be extrapolated from the clogging rate of the 

filter.

No difference in red cell deformability was found between males and 

females, and no effect of smoking, age or body mass index was observed in 

either the healthy volunteers or the diabetic patients. In the healthy 

subjects deformability was inversely related to mean cell volume, but there 

was no relationship to mean cell haemoglobin concentration (a measure of 

internal cell viscosity which is a determinant of deformability (191)). This 

finding may indicate that larger cells have difficulty passing through 5pm 

pores. These results are similar to those of Bareford et al (17) who 

correlated the mean cell volume with impaired red cell deformability 

through 5 pm pore diameter Nucleopore filters in the Hemorheometre (r = 

0.21, p<0.05).

A higher mean cell haemoglobin concentration in association with lower 

mean cell volume was found in diabetic patients, a finding which has 

previously been described (124,192). The increased mean cell 

haemoglobin concentration partly explained the reduced red cell 

deformability in diabetics but did not account for it completely.

Another determinant of red cell deformability is cell membrane fluidity, 

which may be related to the phospholipid bilayer (120) and membrane 

stiffening could therefore reflect alterations in serum lipids eg cholesterol 

(chapter 1). However the serum cholesterol level of the control group did 

not correlate with red cell filtration ratio. Lipid levels were not measured in 

the diabetic patients in this study, and therefore it is not possible to 

speculate whether the elevated levels of plasma lipids found in diabetes 

mellitus (89) could be related to impaired red cell filtration in the diabetic 

patients.
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At capillary level deformability of individual red cells is important if they are 

to pass through small diameter vessels. Filtration methods devised to 

stimulate this process in vitro have the main disadvantage of progressive 

clogging of the filters by sub-populations of rigid red and white cells. While 

the Carri-Med filtrometer is subject to some white cell contamination (165), 

it allows the clogging rate of the filter to be measured with time, and the 

initial filtration rate of the red cells can thus be extrapolated. Using this 

method there was a significant impairment in red cell deformability in 

diabetic patients compared to control subjects, this abnormality being 

worse in type 1 (insulin-dependent) diabetic patients.

Red cell deformability was unrelated to duration of diabetes or glycaemic 

control. Some previous studies have found impaired deformability to be 

related to glycaemic control (106,140) however incubating either diabetic or 

non-diabetic red cells with glucose to raise intracellular sorbitol levels 

produces only minor changes in deformability (118).

If internal cell changes or hyperglycaemia cannot account for the reduced 

red cell deformability in diabetics it seems likely that a membrane defect 

may be the major cause. Increased microviscosity of diabetic red cell 

membranes related to glycaemic control and insulin levels has been 

reported using fluorescent probes (120,121) and may be related to reduced 

spectrin phosphorylation or cross-linkage (127) or an imbalance of the 

cholesterol/phospholipid ratio (128).

Although it has been suggested that red cell deformability may be related to 

microvascular disease in diabetes (145,146) there have been few studies 

examining red cell deformability in diabetic patients with macrovascular 

disease. In this study red cell deformability was equally impaired in
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diabetic patients with microvascular complications, in patients with a 

combination of micro and macrovascular complications and in patients with 

no complications, which is in agreement with several previous studies of 

deformability in diabetic patients with microvascular disease (96,99,108). 

While reduced deformability may not be directly causative of micro- or 

macrovascular problems in diabetic patients, it could have a detrimental 

effect on ischaemic tissue, due to reduced blood flow in the disturbed 

microcirculation or in collateral vessels. It may also be a factor contributing 

to the early onset of vascular complications in diabetes mellitus. Further 

longitudinal studies are required to determine the relationship between red 

cell deformability, glycaemic control and onset of diabetic complications.

5.6 Summary

Red cell deformability through 5|im pores in normal healthy individuals was 

related only to mean cell volume. It is possible that conditions associated 

with macrocytic cells (such as hypothroidism, alcohol abuse or 

megaloblastic anaemia) may therefore be associated with reduced red cell 

filterability and this has indeed been suggested by other studies (193).

In diabetic patients red cell deformability assessed by filtration in this 

relatively new filtrometer was impaired when they were compared with non­

diabetic individuals, and this was partly related to mean cell haemoglobin 

concentration but may also be related to increased membrane rigidity.
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CHAPTER 6 

THE ROLE OF RHEOLOGICAL VARIABLES IN 

DIABETIC PERIPHERAL NEUROPATHY
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6.1 Introduction

Diabetic sensory peripheral neuropathy is generally accepted to have a 

metabolic origin, being related to hyperglycaemia and to duration of 

disease (194). Raised levels of intraneural sorbitol from increased activity 

of the polyol pathway and reduced levels of myoinositol and Na+/K + 

ATPase have been implicated in its pathophysiology (85,86). 

Nevertheless other diabetic complications such as retinopathy and 

nephropathy which are related to glycaemic control and duration of disease 

(63), are the result of microvascular abnormalites, and since there is an 

increased prevalence of microvascular disease in diabetic patients with 

sensorimotor neuropathy (195) it is possible that there may be a 

microvascular component leading to intraneural hypoxia in the 

development of neuropathy.

Simpson has suggested that alterations in haemorheological variables 

could be one mechanism contributing to decreased flow in nerve capillaries 

(146), but so far only abnormalities in platelet aggregation have been 

related to diabetic neuropathy (196). Whole blood viscosity and its 

determinants, including red cell deformability, was therefore measured in 

diabetic patients with symptomatic peripheral neuropathy and compared 

with a closely matched group of patients who had no evidence of 

neuropathy and with non-diabetic subjects selected from the healthy 

control population (chapter 5), to assess if diabetics with neuropathy have 

altered blood rheology.
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6.2 Patients

The three groups of patients studied were :

Group A which consisted of 29 diabetic out-patients (19 Male, 10 Female) 

with clinical evidence of chronic sensorimotor neuropathy of the lower limbs 

for more than six months duration. All patients had symptoms of pain 

and/or paraesthesia with nocturnal exacerbation together with signs of 

absent ankle reflexes, reduced or absent vibration perception to a tuning 

fork (128 Hz) and in some cases reduced cutaneous sensation to touch 

(n=12) or thermoreception (n=15). The patients all had normal peripheral 

arterial pulses and none had a history of excessive alcohol intake. 

Confirm ation of neuropathy was obtained in 18 patients; 

neurophysiological studies were performed on the common peroneal and 

sural nerves of the right lower leg using a Medelec Mystro MS6 machine. 

Compared to the laboratory normal range, conduction velocity was 

significantly reduced in both nerves in the diabetic patients and distal 

latency was significantly prolonged in the common peroneal nerve (Table

6.1).

Group B comprised 30 diabetic outpatients (20 Male, 10 Female) matched 

with group A patients for age (56 years-group A and 55 years-group B), sex 

(M/F; 19/20-group A and 20/10-group B) and glycaemic control (10.8 ± 

2.6%-group A and 10.9 ± 2.7%-group B). There were equal numbers of 

patients with type 1 diabetes (6 in each group), patients receiving insulin 

therapy (17 in each group) and patients with microvascular complications 

(13-group A and 12-group B), (Table 6.2). Diabetic patients in this group 

had no clinical evidence of neuropathy based on the criteria used to define 

neuropathy in group A making it unlikely that significant neuropathy was 

present.
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Table 6.1

Neurophysiology Studies

Value

Common Peroneal nerve:
Conduction velocity (m/s) 40.7± 4.3 a 

* Distal latency (ms) 7.6 ± 3.3 a

Sural nerve:
Conduction velocity (m/s) 31.4± 5.3 a
Distal latency (ms) 3.2±0.5

Normal

50.5±4.6  
3.6+0.5

48.3+5.3  
3.6+0.4

* Absent in 7 patients, 

a p <  0.001



Table 6.2

Characteristics of the groups

Group A Group B Group C

Sex ratio (M/F) 19/10 20/10 26/18

Smokers (n) 11 14 21

Age (yr) 56±10 55± 9 47± 8 3

Type 1 diabetes (n) 6 6 -

Insulin therapy (n) 17 17 -

Microvascular disease (n) 13 12 -

Body Mass Index (kg/m 2) 28.4+ 4.5 26.6± 3.9 26.4+ 4.0

Duration of diabetes (yr) 12±10 11±9 -

HbAi (%) 10.8±2.6 10.9+2.7 -

a p < 0.001



Group C was formed from 44 healthy volunteers (26 Male, 18 Female) free 

of painful or paraesthetic symptoms in their legs and with normal fasting 

blood glucose levels. They were matched with the diabetic patients with 

respect to sex ratio (M/F; 26/18) and body mass index (26.4 ± 4.0kg/m2) but 

were younger than the diabetic patients (47 years, p< 0.001), (Table 6.2).

6.3 Methods

6.3.1 Blood samples

Samples for viscosity, red cell deformability, haematocrit and red cell 

indices were measured in blood anticoagulated with dry potassium edetate 

(1.5mg/ml) within 2 hours of venesection. Whole blood viscosity was 

measured in the Contraves LS rotational viscometer (high shear-94.5s_1, 

low shear-0.945s"1) and plasma viscosity in a Coulter-Harkness capillary 

viscometer. Blood viscosity was corrected to standard microhaematocrit 

(Flawksley centrifuge) of 45% .

Red cell deformability was measured in the Carri-Med filtrometer (52) as 

described in the preceding chapter and chapter 3.5.

Mean cell volume was measured in the Coulter-S-Counter (normal range 

75-95 fl) and mean cell haemoglobin concentration was estimated as 

described (chapter 3.9). Fibrinogen was measured by the Clauss method, 

and glycated haemoglobin (HbA1) was measured by agar gel 

electrophoresis (Corning Glytrac).
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6.3.2 Statistical methods

Statistical methods utilised the Mann-Whitney U-test for difference in means 

and correlations between variables were analysed by the Spearman rank 

test. Results are expressed as mean ± SD.

6.4 Results

6.4.1 Viscosity

Corrected whole blood viscosity at both high and low shear rates was 

significantly higher in diabetic patients (5.29 ± 0.51 and 21.10 ± 3.03 

mPa.s) compared to control subjects (4.83 ± 0.54 and 17.36 ± 2.78 mPa.s, 

p<0.001), (Table 6.3). Low shear viscosity at native haematocrit was also 

elevated in the diabetic patients compared with control subjects (19.74 ± 

4.72 vs 17.36 ± 3.62 mPa.s, p<0.02). The higher whole blood viscosity in 

the diabetic patients was related to a higher plasma viscosity (1.41 ± 0.13) 

compared to the control subjects (1.29 ± 0.09 mPa.s, p<0.001) but there 

was no difference in protein levels (either fibrinogen or globulins) between 

diabetic patients or controls. Relative blood viscosity at low shear rates, 

was significantly higher in diabetic patients (15.12 ± 1.96) compared to 

control subjects (13.38 ± 2.02 mPa.s, p<0.001) and was similar in diabetic 

patients with neuropathy compared to those without neuropathy. No 

differences were found between diabetic patients with neuropathy and 

those without for whole blood viscosity, plasma viscosity or fibrinogen 

levels but globulin levels were significantly higher in the neuropathy group 

compared to the non-neuropathy group (Table 6.3).
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6.4.2 Red cell deformability

Red cell filtration was significantly reduced in both type 1 (0.456 ± 0.04) and 

type 2 diabetic patients (0.497 ± 0.04) compared to control subjects (0.550 

± 0.03 , p<0.01) and was significantly lower in type 1 compared to type 2 

diabetic patients (difference 0.04, 95% Cl; 0.02 to 0.06, p<0.02). There was 

no difference in red cell filtration rates between diabetic patients with 

neuropathy and those without neuropathy (0.490 ± 0.05 vs 0.490 ± 0.04 , 

p>0.05), (Figure 6.1).

There was a significant inverse correlation of red cell filtration ratio with 

mean cell haemoglobin concentration (r=-0.29, p<0.01) but no correlation 

of filtration ratio with other haematological variables, glycaemic control, age 

or duration of diabetes was found.

6.5 D iscussion

It has long been thought that persistent hyperglycaemia was responsible for 

the nerve damage sustained in diabetes and correlations have been shown 

between both fasting blood glucose and glycated haemoglobin levels and 

conduction velocities of motor nerves (195,197) and with vibration sense 

(198). There is also evidence that improving glycaemic control with 

treatment using continuous subcutaneous insulin infusions over a period of 

several months can alleviate the symptoms of neuropathy and improve 

conduction velocity (199).

Mechanisms thought to be involved in the metabolic aetiology of 

neuropathy include increased activity of the polyol pathway leading to 

raised levels of insoluble sorbitol and fructose within nerve cells and a
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GROUP C GROUP A
mean, 2 SD

p < 0.01

GROUP B

Figure 6.1

Red cell filtration ratios in control subjects
and diabetic patients with and without neuropathy



consequent fall in levels of myoinositol and Na+/K+ ATPase (85). While 

increased concentrations of sorbitol have been found in diabetic nerves at 

biopsy, alterations in myoinositol within the nerve remain controversial (86). 

Several studies in diabetic patients using aldose reductase inhibitor drugs 

appear to improve both symptoms of neuropathy and conduction velocities 

of specific nerves (200,201).

Fagerberg in 1959 described intraneural vascular lesions in diabetic 

nerves such as a reduction in capillary size with thickening of the walls, 

hyalinisation and deposition of PAS positive material (202). Endoneurial 

capillary disease could therefore be a manifestation of the generalised 

microangiopathy of diabetes mellitus and due to disruption of blood flow 

could be responsible for hypoxic nerve damage and thus neuropathy. 

Since these observations, further intraneural abnormalities have been 

described in diabetic patients with a history of neuropathy; capillary 

plugging with fibrin and thrombus (203,204) and capillary closure due to 

endothelial hyperplasia and desquamation (205,206). In addition it has 

been suggested that the pattern of nerve fibre loss in diabetic neuropathy 

has an ischaemic origin (207). In support of this theory Newrick et al have 

demonstrated reduced oxygen tension within the sural nerve of diabetic 

patients suffering from neuropathy (208).

Diabetic patients have rheological abnormalities including an increase in 

whole blood viscosity, plasma viscosity, red cell aggregation and a 

reduction in red cell deformability (185). The disturbance in blood flow 

behaviour has been shown to be more abnormal in patients with 

proliferative retinopathy (99) and microalbuminuria (108) and this could be 

one mechanism leading to reduced flow and sludging of blood within 

intraneural capillaries in diabetic patients with neuropathy. I sought to
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determine if patients with diabetic neuropathy could have significant 

alterations in blood viscosity or its determinants or in red cell deformability 

compared to patients without neuropathy, which could explain the finding 

of intraneural ischaemia in diabetic neuropathy.

Although a significant increase in viscosity at high and low shear rates and 

a reduction in red cell deformability in the diabetic patients as a whole was 

found, I was unable to demonstrate differences in these variables between 

patients with neuropathy and those without. It may be argued that 

subclinical neuropathy was not definitely excluded in patients from group B, 

but since there was little doubt that patients in group A had clear evidence 

of neuropathy based on clinical findings (209), with confirmation of large 

fibre damage as shown by impaired conduction velocities, it is extremely 

unlikely that patients in group B had nerve damage comparable to that of 

group A.

It is of interest that patients with neuropathy had higher levels of serum 

proteins (other than fibrinogen) compared to patients without neuropathy, 

because large serum proteins such as oc2-macroglobulin would be 

expected to give rise to greater red cell aggregation (57), a parameter 

which is indirectly measured by low shear whole blood viscosity. I found no 

difference in viscosity at these shear rates between the two groups, but 

more sensitive apparatus such as the Myrenne aggregometer may be able 

to detect more subtle differences (142).

These findings, although negative, do not exclude abnormal rheology from 

contributing to nerve ischaemia by acting as a cofactor with intraneural 

microvascular abnormalities (210) to reduce blood flow in capillaries and
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enhance thrombus formation. Increased erythrocyte adhesion to 

intraneurial capillary endothelial cells in diabetes (130) may be a factor 

reducing capillary luminal diameter, and it also remains possible that the 

presence of wider channel arterio-venous shunts in the vicinity of the nerve 

caused by coincidental autonomic neuropathy (211) could favour the 

diversion of more viscous diabetic blood from the smaller calibre nutritive 

capillaries.

6.6 Summary

Thus the current evidence for microangiopathy in diabetic neuropathy is 

strong, but it seems unlikely that altered rheology in diabetes per se is 

directly responsible for endoneurial hypoxia. Capillary structural 

abnormalities in conjunction with alterations in rheology may however lead 

to nerve ischaemia and along with metabolic factors result in neuropathy.
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CHAPTER 7

ASSESSMENT OF RED CELL AGGREGATION IN 

NON-DIABETIC VOLUNTEERS AND ASSOCIATION 

WITH VASCULAR COMPLICATIONS IN 

DIABETES MELLITUS
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7.1 Introduction

The mechanism leading to aggregation of red cells is not entirely clear, but 

many molecules in the red cell membrane have charged head groups 

which under normal circumstances amounts to an overall negative charge 

due mainly to sialic acid residues (212). Repulsive electrostatic forces 

therefore exist between red cells, which dominate over the weaker 

attraction of the Van der Waal's forces causing a net repulsion (213). The 

force causing aggregation of red cells must be greater than the repulsive 

forces: this is achieved by the formation of protein bridges between cells 

created by long-chain proteins adhering to cells at either end.

The most important plasma protein causing red cell aggregation is 

fibrinogen, this being a large, elongated and flexible molecule (length 40 

nm, molecular weight 340 000). However it is not known what holds 

fibrinogen to the cell membrane although its adsorption is probably 

influenced by electrostatic forces (27). Other proteins with high molecular 

weights will also cause aggregation and it has been suggested that some 

of these proteins may enhance the aggregating effect of fibrinogen (24).

Rouleaux formation is dependent on shear rate (23): as the shear rate falls 

the bulk viscosity of blood will increase due partly to red cell aggregation 

(chapter 1). As shear rate increases viscosity falls until rates of about 100/s, 

when the aggregates will be totally dispersed. Rouleaux formation affects 

blood flow in both large and small vessels; in the centre of large vessels, 

the shear rate is low and thus increased viscosity associated with rouleaux 

formation will occur, while in microvessels aggregation will be enhanced 

due to low shear rates in post capillary venules. An increase in haematocrit 

or serum proteins will increase the extent of aggregation and could

94



potentially reduce flow in these small vessels.

High levels of fibrinogen may reflect the acute or chronic stress responses 

which are the body's response to injury, infection or inflammation. They are 

thought to involve stimulation of monocyte production of Interleukin by fibrin 

degradation products D and E. This causes both hepatic synthesis of acute 

phase proteins and release of platelets and white blood cells from bone 

marrow. Fibrinogen is the most important acute phase protein, and many 

studies have found raised levels in diabetic patients, possibly due to 

increased hepatic synthesis (214). The chronic stress response in 

diabetes (131) could therefore lead to increased red cell aggregation in 

vivo.

There have been few studies measuring red cell aggregation directly in 

diabetic patients, but using instruments such as the rheophotometer (96), 

rheoscope (136) and syllectometry (135) aggregation has been found to be 

raised in diabetes, usually in association with raised levels of plasma 

proteins e.g. fibrinogen, a 2 and (3-globulins. Because increased 

aggregation leads to raised blood viscosity and hence to reduced blood 

flow and possibly vascular stasis, particularly in post-capillary venules, it 

can be postulated that this could contribute to tissue ischaemia and the 

increased incidence of vascular complications in diabetes. The main 

diabetic complication which has been studied in relation to red cell 

aggregation is diabetic retinopathy, and the results of previous studies have 

been conflicting, with some workers finding no difference in red cell 

aggregation between patients with retinopathy and those without (96,135), 

and others who found a correlation between the extent of aggregation and 

severity of retinopathy (136,215).

This study was undertaken to compare red cell aggregation, measured by a

95



new simple technique, in diabetic patients with non-diabetic healthy 

individuals and to assess mainly the effects of glycaemic control, type of 

diabetes, and whether vascular complications or hypertension in diabetes 

are associated with higher levels of aggregation.

Triglyceride's carrier protein, very low density lipoprotein (VLDL) is a large 

plasma protein (having a diameter of 30-80nm), which could in theory also 

have an effect on red cell aggregation by creating protein bridges, but to 

date this has not been studied in any population sample. Diabetic patients 

generally have higher levels of serum lipids and lipoproteins (89) 

compared with non-diabetic subjects and it was aimed to examine the 

relationship between plasma lipids and red cell aggregation in both 

diabetic and non-diabetic control subjects, to determine if this could be a 

factor contributing to the reported increased red cell aggregation in 

diabetes mellitus.

7.2 Patients

7.2.1 Diabetic Patients

110 diabetic patients were selected from the out-patient clinic (54 type 1, 

insulin-dependent and 56 type 2 non-insulin dependent). Sex ratio of the 

type 1 diabetics was 22 male and 32 female, and of the type 2 diabetics 

was 29 male and 27 female. Mean age of the type 1 patients was 38 years 

(range 17-65 years) and 59 years in the type 2 patients (range 43-73 

years), p < 0.001.

Therapy in the type 2 diabetics consisted of insulin in 26 patients, orafl 

hypoglycaemic agents in 2 9 patients and dietary therapy in 7 patients. The
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type 1 diabetics had significantly longer duration of diabetes (19 ± 10 

years) compared with the type 2 diabetics (9 + 6 years, p < 0.001) and 

significantly lower body mass index (23.8 ± 3.2 kg/m2) compared with type 

2 diabetics (28.3 ± 5.2 kg/m2, p < 0.001). Both groups of patients were 

matched for glycaemic control as measured by blood glucose (11.9 ± 

6.2mmol/l-type1 v 12.3 ± 5.1 mmol/l-type 2, p>0.05) and glycated 

haemoglobin (10.8 ± 2.1%-type1 v 10.4 ± 2.1%-type 2, p>0.05), (Table 7.1). 

Macrovascular disease was said to be present if patients had evidence of 

ischaemic heart disease, cerebrovascular disease or peripheral vascular 

disease. Microvascular disease was scored as 0 for no complications, 1 for 

background diabetic retinopathy, 2 for pre-proliferative or proliferative 

retinopathy and 3 for retinopathy plus nephropathy.

Of the type 1 diabetics two had macrovascular disease, while 15 of the type 

2 diabetics had macrovascular complications, five of whom were 

hypertensive. Microvascular complications were present in 33 type 1 

diabetics and 36 type 2 diabetics.

7.2.2 Control subjects

100 healthy non-diabetic control subjects were chosen to match as closely 

as possible with the diabetic patients for age and sex distribution. They 

were divided into two groups of 50 subjects to compare with the type 1 and 

the type 2 diabetics. Mean age of group 1 was 34 years (range 21-48 

years) and of group 2 was 59 years (range 45-87 years), p < 0.001. The 

two groups were matched for body mass index (23.0 ± 3.8kg/m2-group 1 vs

24.6 ± 4.7kg/m2-group2, p>0.05) and consisted of 21 males, 29 females in 

group 1 and 23 males, 27 females in group 2, (Table 7.1).
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Table 7.1

Characteristics of the groups

Diabetics Controls

Type 1 Type 2

n 54 56 100

Age (yr) 38± 13 59 ± 7 a 4 7 ± 1 6 b,c

Body Mass Index (Kg/m 2 ) 23.8± 3.2 28.3 ± 5.2 a 23.9 ±4.3

Sex (M/F) (22/32) (29/27) (44/56)

Duration of diabetes (yr) 19± 10 9+  6 a -

Blood Glucose (mmol/l) 11.9± 6.2 12.3 ±5.1 -

HbAi (%) 10.8± 2.1 10.4 ± 2.1 -

[NR 5.5 - 8.5%]

Values are mean ± SD

a p < 0.001 Type 2 v Type 1 diabetics 
b p < 0.001 Controls v Type 2 diabetics 
c p < 0.02 Controls v Type 1 diabetics



7.3 Methods

7.3.1 Blood samples

Red cell aggregation was assessed in the Myrenne red cell aggregometer 

(chapter 3.7). Briefly, 25 pi of whole blood was dropped onto the centre of 

the cone and the sample spun at 600 s-1 before being stopped abruptly. 

The extent of aggregation, determined as the change in light transmission 

over 5 seconds of stasis, was recorded digitally as the aggregation index. 

The mean of two readings was taken then a further assessment was made 

on a further sample adjusted to a haematocrit of 40%.

Microhaematocrit was measured with the Hawksley centrifuge and reader, 

and red and white cell indices on the Coulter-S-Counter. Plasma viscosity 

was measured on 1ml of plasma in the Coulter-Harkness capillary 

viscometer (3.3).

Plasma lipoproteins were measured on the Hitachi 704 analyser 

(Boehringer Mannheim, FRG) after density gradient separation by 

ultracentrifugation on a Beckman centifuge.

Total proteins, albumin and globulin were measured by SMAC (Technicon, 

Basingstoke). Fibrinogen was measured by the heat precipitation method 

(chapter 3.8) and haptoglobin and macroglobulin by immunoturbidimetric 

analysis on the Encore analyser (Baker Instruments, Pennysylvania).

Blood glucose was measured by the hexokinase method on a Hitachi 737 

analyser and glycated haemoglobin by agar gel electrophoresis (Corning 

Glytrac).
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7.3.2 Urinary protein

Microproteinuria excretion was measured by radioimmunoassay as 

albumin excretion rate (AER) and macroproteinuria excretion as total 

protein excretion per volume in 24 hours. Urinary protein values of 

between 20 and 200mg/l were accepted as microproteinuria and values of 

> 200mg/l as macroproteinuria.

7.3.4 Physical variables

Blood pressure was measured by an electronic sphygmomanometer 

(Neissi, Japan) and values greater than 160/95 mmHg were accepted as 

hypertension. Values less than this were accepted as hypertension if the 

patients were taking specific anti hypertensive treatment. Body mass index 

was estimated from weight (kg) divided by height squared (m2).

7.3.5 Statistical methods

The Mann-Whitney U-test was used for comparison of means between 

diabetic patients and controls and within the two groups. Spearman rank 

correlation was used to determine the association between red cell 

aggregation index and variables.

7.4 Results

No difference was found in red cell aggregation measured at native 

haematocrit or at 40% haematocrit in any of the groups of patients studied, 

and all the following results of red cell aggregation index are therefore
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given for haematocrit of 40%.

7.4.1 Control subjects

Red cell aggregation index was similar in male subjects (3.4 ± 1.4) 

compared with female subjects (3.2 ± 1.2, p>0.05) and in smokers (3.2 ±

1.2) compared with non-smokers (3.4 ±1.1, p>0.05).

There was a significant correlation of red cell aggregation index with 

triglyceride level (r=0.21, p<0.02), fibrinogen level (r=0.26, p< 0.02) and 

a 2-macroglobulin level (r=-0.30, p<0.02) and an inverse correlation with 

mean cell volume (r=-0.19, p<0.05), Table 7.2.

7.4.2 Diabetic patients 

(i) Type of diabetes:

Red cell aggregation index was significantly increased in type 2 diabetic 

patients compared with type 1 (at corrected haematocrit; 5.5 ± 1.5 vs 4.3 ± 

1.3, p<0.001), Figure 7.1. Fibrinogen level was higher in type 2 diabetics 

(4.1 ± 1.2g/l) compared with type 1 diabetics (3.5 ± 1.2g/l, p<0.03) while ot2~ 

macroglobulin levels were significantly higher in type 1 diabetics (2.46 ± 

0.70g/l) compared with type 2 diabetics (1.71 ± 0.66g/l, p<0.001), (Table

7.3).

Triglyceride and VLDL levels were significantly higher in type 2 diabetics 

(2.64 ± 1.80 mmol/l and 1.06 ± 0.68 mmol/l) compared with type 1 diabetics 

(1.49 ± 1.16 mmol/l, p<0.002 and 0.59 ± 0.34 mmol/l, p<0.001) and HDL 

levels were significantly lower in the type 2 diabetics (1.24 ± 0.41 mmol/l) 

compared with the type 1 diabetics (1.44 ± 0.39 mmol/l, p< 0.02), Table 7.4. 

In both type 1 and type 2 patients red cell aggregation index correlated with
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Table 7.2

Correlation of red cell aggregation with variables 
in control subjects.

V a riab le  rs

Age (yr) - 0.07

Body mass index (kg/m2 ) 0.16

Plasma viscosity (mPa.s) 0.11

Haematocrit (%) - 0.15

Mean cell volume (fl) - 0.19 b

Globulin (g/l) 0.26a

Fibrinogen (g/l) - 0.04

a 2 macroglobulin (g/l) - 0.30 3

Haptoglobin (g/l) - 0.17

Triglyceride (mmol/l) 0.21 a

Cholesterol (mmol/l) - 0.12

VLDL (mmol/l) 0.11

LDL (mmol/l) - 0.04

HDL (mmol/l) -0.08

a p <0.02 
b p <0.05
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Red cell aggregation index in diabetic patients and 
control subjects
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plasma triglyceride level (r=0.36 and r=0.41, p<0.001), VLDL level (r=0.26 

and r=0.30, p<0.02) and HDL level (r=-0.26 and r=-0.30, p<0.02). However 

there was no significant association wth other plasma proteins i.e. 

fibrinogen, a 2-macroglobulin, haptoglobin or with globulin/albumin ratio, 

Table 7.5. Correlation of red cell aggregation with VLDL is shown in Figure 

7.2.

In the type 2 patients there was a significant inverse correlation with 

duration of diabetes (r=-0.24, p<0.05) and a positive correlation with body 

mass index (r=0.30, p<0.02).

Within the type 2 diabetics there was no difference in red cell aggregation 

between patients receiving insulin therapy and those receiving oral 

hypoglycaemic agents or dietary therapy alone (5.2 ± 1.5 vs 6.1 ± 1.5 vs

5.4 ±1.3, p>0.05).

(ihType 1 diabetics and controls

Red cell aggregation index was significantly higher in the diabetic patients 

(4.3 ± 1.3) compared with the control subjects (at corrected haematocrit, 3.4 

± 1.2, p<0.002), Figure 7.1.

Plasma viscosity was significantly higher in diabetics compared with the 

controls (1.35 ± 0.97 vs 1.27 ± 0.06 mPa.s, p<0.001). The globulin/albumin 

ratio was higher in diabetic patients compared with controls (0.59 ± 0.12 vs 

0.52 ± 0.10, p<0.01) and all three plasma proteins measured were 

significantly higher in the diabetics compared with the controls (fibrinogen,

3.5 ± 1.2 vs 2.8 ± 0.9 g/l, p<0.01; haptoglobin, 1.48 ± 0.57 vs 0.91 ± 0.35 g/l, 

p<0.001; a2-macroglobulin, 2.46 ± 0.70 vs 1.63 ± 0.58 g/l, p<0.001)), (Table

7.3) Of the lipids only triglyceride level was significantly different in diabetic 

patients compared with control subjects (1.49 ± 1.16 vs 1.05 ± 0.42 mmol/l, 

p<0.01), (Table 7.4).
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Table 7.5

Correlation of red cell aggregation with variables in 
diabetic patients (rs values)

Type 1 Type 2

Age (yr)

Body mass index (kg/m2 ) 

Duration of diabetes (yr) 

HbA-j (%)

Blood glucose (mmol/l) 

Plasma viscosity (mPa.s) 

Mean cell volume (fl) 

Globulin (g/l) 

Globulin/Albumin ratio 

Fibrinogen (g/l) 

a 2 macroglobulin (g/l) 

Haptoglobin (g/l) 

Triglyceride (mmol/l) 

Cholesterol (mmol/l) 

VLDL (mmol/l)

LDL (mmol/l)

HDL (mmol/l)

- 0.16 - .0.07

0.15 0.30b

- 0.18 - 0.23°

- 0.19 0.07

0.16 - 0.02

- 0.19 - 0.09

0.19 - 0.05

- 0.06 0.01

- 0.17 0.06

- 0.03 -0.17

- 0.11 - 0.15

0.17 - 0.01

0.36 a 0.41 a

0.07 - 0.08

0.26 b 0.30b

0.04 - 0.13

-0 .26° - 0.30b

a p < 0.001 
b p < 0.02 
c p < 0.05
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(iii) Type 2 diabetics and controls

Red cell aggregation index was significantly higher in the diabetic patients 

compared with the controls (5.5 ± 1.5 vs 3.2 ± 1.3, p<0.001), Figure 7.1. 

Plasma viscosity was significantly higher in the diabetics compared with 

controls (1.38 ± 0.10 vs 1.30 ± 0.11, p<0.001) as was fibrinogen level (4.1 ±

1.2 vs 3.3 ± 0.8 g/l, p<0.01) but a2-macroglobulin levels were significantly 

lower in the diabetics (1.71 ± 0.66 vs 2.33 ± 0.50 g/l, p<0.001). Both 

triglyceride and VLDL levels were higher in the diabetic patients compared 

with the controls (2.64 ± 1.80 vs 1.23 ± 0.59 mmol/l, p<0.001 and 1.06 ± 

0.68 vs 0.59 ± 0.22 mmol/l, p<0.01) and the HDL level was significantly 

lower (1.24 ± 0.41 vs 1.68 ± 0.42 mmol/l, p<0.001), Table 7.4.

(iv) Effect of hypertension

Mean blood pressure in the hypertensive patients was 163 ± 29/89 ± 15 

mmHg which was significantly higher than in the normotensive patients 133 

± 20/76 ± 9mmHg, p<0.001. Since type 1 and type 2 diabetic patients had 

differences in red cell aggregation and several other variables they were 

assessed separately for differences in red cell aggregation between 

hypertensive and normotensive patients.

There was no significant difference in red cell aggregation index between 

patients with hypertension (n=9; 4.3 ± 1.4) and patients without 

hypertension (n=42; 4.3 ± 1.4) in the type 1 diabetics whereas in the type 2 

diabetics red cell aggregation index was significantly higher in patients with 

hypertension (n=15; 6.3 ± 1.8) compared to those without (n=40; 5.2 ± 1.3, 

p<0.02), Figure 7.3.

In the type 2 group the only variable which was significantly different 

between the hypertensive and normotensive patients was body mass index 

(31.0 ± 5.2 vs 27.1 ± 4.8 kg/m2, p<0.02).

Both diastolic and systolic blood pressure correlated with red cell
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aggregation in the diabetic population, (Table 7.5) but in the type 2 diabetic 

patients only diastolic blood pressure correlated with red cell aggregation 

index (r=0.23, p<0.02, Figure 7.4).

(v) Effect of macrovascular and microvascular complications 

The effect of macrovascular disease was not examined in the type 1 

diabetic patients because only two patients had evidence of large vessel 

complications. Within the type 2 diabetic patients 15 had macrovascular 

disease and because red cell aggregation was higher in type 2 patients 

with hypertension these were analysed separately from normotensive type 

2 patients. Red cell aggregation index was significantly higher in the 

hypertensive diabetics with macrovascular disease (7.8 ± 1.2) compared 

with hypertensive diabetics without macrovascular disease (5.6 ± 1.6, 

p<0.02). In the normotensive patients red cell aggregation index was 

similar in patients with macrovascular disease (5.1 ± 1.3) and those without 

(5.2 ±1.3, p>0.05).

The association between microvascular disease and red cell aggregation 

was assessed in the type 1 diabetics as a whole because there was no 

difference in those with hypertension and those without and because there 

were only 9 patients with hypertension. In the type 2 patients differences in 

red cell aggregation between the various microvascular groups were 

assessed both for the type 2 patients as a whole and for the subgroup of 

patients without microvascular disease. The numbers in each 

microvascular category for patients with hypertension were too small to 

allow statistical comparisons. Within the type 1 diabetics there was no 

difference in red cell aggregation index between patients with no 

complications and those with background retinopathy (4.1 ± 1.2 vs 3.7 ±

1.1, p>0.05) but the value was significantly higher in patients with
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Table 7.6

Association of red cell aggregation with 
microvascular complications

Type 1 
diabetics

Type 2 
diabetics

No complications 4.1± 1.2 5.2±1.1

Background
retinopathy

3.7± 1.1 5.2±1.4

Proliferative
retinopathy

5.2±1.3a 5.612.0

Retinopathy and 
nephropathy

4.3+1.5 6.811.1

a p <0.02, type 1 diabetic patients with proliferative
retinopathy v type 1 patients with background 
retinopathy.



proliferative retinopathy (5.2 ± 1.3) compared to those with background 

changes (3.7 ±1 .1 , p<0.02). However there was no difference between 

patients with retinopathy and nephropathy and the other groups (4.3 ± 1.5). 

In type 2 diabetics as a whole although the red cell aggregation index 

increased with increasing severity of complications the difference between 

patients with no complications and those with background or proliferative 

retinopathy was not significant (5.2 ±1.1 vs 5.2 ± 1.4 vs 5.6 ± 2.0 vs 6.8 ±

1.1, p>0.05), (Table 7.6). When the non-hypertensive diabetics were 

assessed the results were similar (no complications - 5.1 ± 1.0, 

background retinopathy - 5.3 ± 1.3 , proliferative retinopathy - 5.1 ± 1.7, 

p>0.05). Only one normotensive type 2 patient had retinopathy and 

nephropathy and this group was therefore insufficient for comparison.

7.5 Discussion

This study found increased levels of fibrinogen in both type 1 and type 2 

diabetic patients compared to their matched controls, and in the type 1 

diabetics raised levels of haptoglobin and a2-macroglobulin compared with 

controls, as would have been expected from previous reports of these 

proteins in diabetics (100) although they did not correlate with red cell 

aggregation as might have been predicted. Interestingly a2-macroglobulin 

level was lower in the type 2 patients compared with their matched controls. 

There is no obvious explanation for this finding, but perhaps it is due to 

alterations in the balance of plasma globulin levels in type 2 diabetics, 

because the globulin/albumin ratio was similar in type 2 diabetics 

compared with controls, in contrast to type 1 diabetics where the ratio was 

higher compared with controls, (Table 7.3).
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There was an increased level of triglyceride in type 1 diabetic patients and 

increased levels of triglyceride and VLDL with lower levels of HDL in type 2 

diabetic patients compared with non-diabetics. Previous studies have 

suggested that type 1 diabetics often have similar levels of plasma lipids to 

non-diabetic controls if well-controlled (216), whereas type 2 diabetics have 

increased lipid levels compared with type 1 diabetics (217) and can have 

levels of 50-100% greater than those of non-diabetics (218). In particular 

diabetics have higher levels of triglyceride and VLDL and lower levels of 

HDL (219). There appears to be increased production and decreased 

removal of triglyceride in type 2 diabetics leading to increased VLDL 

production (220) and in type 1 diabetics there is reduced clearance of 

VLDL, possibly due to decreased lipoprotein lipase activity as a result of 

insulopenia (221). Why VLDL production is high remains unclear but it may 

be secondary to relative cellular insulopenia in the presence of 

hyperinsulinaemia or due to raised non-esterified fatty acid production 

(222). Qualitative changes in VLDL have also been suggested, viz. 

triglyceride enrichment leading to increased size of VLDL molecules (223), 

alterations in apoproteins (224) or glycosylation of apoproteins leading to 

reduced clearance of VLDL (225). HDL is formed from the hydrolysis of 

VLDL and insulin deficiency has been blamed for reduced production of 

HDL in type 1 diabetes (226) and there is thought to be an inverse 

relationship between plasma insulin level and HDL levels in type 2 diabetic 

patients (227).

Red cell aggregation was increased in diabetic patients compared with 

non-diabetic individuals, confirming the findings of previous workers but in 

this study in a much larger group of patients than has been reported before. 

Although aggregation of red cells is most commonly related to plasma 

protein levels, particularly fibrinogen, this was found to be the case only in
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the non-diabetics, despite fibrinogen levels being higher in the diabetics. 

In non-diabetics aggregation was also related to red cell size, as expected 

(28) but in addition was correlated with plasma triglyceride level which has 

not previously been described. In the diabetic patients the extent of red cell 

aggregation not only correlated with triglyceride level but also with VLDL 

and (inversely) with HDL levels. These findings support the theory that 

lipoproteins may be capable of aggregating red cells, and in the case of 

diabetics (especially the older type 2 diabetics where the plasma lipid 

levels are high compared with non-diabetics), this could be a major factor 

determining increased red cell aggregation. The Framingham study 

showed that diabetic patients have an increased morbidity and mortality 

from vascular diseases (90) and further analysis of the data revealed that 

triglyceride was an independent risk factor for ischaemic heart disease in 

diabetics, especially in the presence of a low HDL level (228). In the WHO 

multinational study, triglyceride was also found to correlate with ischaemic 

heart disease in several of the centres studied, especially in obese non­

insulin-dependent diabetics (219). Thus the raised triglyceride and VLDL 

levels in diabetes, as well as being an independent risk factor for 

cardiovascular disease could also contribute to vascular complications by 

increasing red cell aggregation and leading to reduced flow, stasis or even 

thrombosis in low shear conditions in blood vessels.

In type 2 diabetic patients the degree of red cell aggregation was related to 

body mass index and inversely to duration of diabetes, possibly because 

the shorter the duration of disease the less the extent of weight loss and 

thus the less likely that good glycaemic control had been established. 

Triglyceride level tends to be higher in newly diagnosed diabetics (229) 

and in this study triglyceride was inversely related to duration of diabetes 

(r=-0.30, p<0.001).
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When the relationship between hypertension and red cell aggregation was 

studied no effect was observed in type 1 diabetic patients, although the 

number of patients with hypertension in this group was small. However in 

type 2 diabetic patients red cell aggregation was higher in hypertensive 

patients and was positively correlated with blood pressure. Hypertension 

has been associated with rheological disturbance in non-diabetic subjects 

(160,177) and one previous study has found whole blood viscosity at low 

shear rates to be higher in hypertensive type 2 diabetic patients (185) 

which would be in keeping with the findings for red cell aggregation in the 

present study. Hypertension is common in type 2 diabetes (160,179) and 

is a cardiovascular risk factor in diabetes (91). The increased red cell 

aggregation of diabetes and of hypertension may be additive and relevant 

to the increased incidence of macrovascular disease in hypertensive 

diabetics. In a study of non-diabetic patients cardiovascular disease was 

shown to correlate with red cell aggregation level and it was suggested that 

red cell aggregation may be a prognostic indicator for ischaemic heart 

disease (230). In support of this hypothesis this study found that red cell 

aggregation was higher in hypertensive type 2 diabetics with 

macrovascular disease compared with hypertensive type 2 diabetics who 

had no evidence of macrovascular disease, although the numbers in each 

group were small. Triglyceride and VLDL levels were higher and HDL 

levels lower in the hypertensive diabetics, and although the difference was 

not significant when compared with the normotensive patients, possibly due 

again to the relatively small number of patients with hypertension, 

increased lipids in hypertensive diabetics may nevertheless be a 

contributing factor to the enhanced red cell aggregation.

Hypertension has also been demonstrated as a risk factor for microvascular 

complications (182,184) but the number of patients with hypertension and
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microvascular disease was too small to allow comparison of red cell 

aggregation between patients with and those without hypertension. 

However it was possible to examine the association of red cell aggregation 

with microvascular disease in both type 1 and type 2 diabetics. Within the 

type 2 patients there was no difference in red cell aggregation whether 

microvascular disease was present or not, the extent of aggregation being 

higher in all groups compared with type 1 diabetics with similar 

complications. Type 1 diabetics on the other hand appeared to have 

increased red cell aggregation in the presence of proliferative retinopathy 

but there was no additive effect of nephropathy. Ditzel's study showed 

similar results (133), and it is only possible to speculate why the increasing 

severity of microvascular damage is not associated with increased red cell 

aggregation - perhaps alterations in plasma proteins due to protein loss in 

nephropathy prevent excessive aggregation.

7.6 Summary

Red cell aggregation is increased in diabetic patients and is influenced by 

the type of diabetes. The greater extent of aggregation in type 2 diabetics 

per se seems to override the increased red cell aggregation of 

microvascular disease seen in type 1 patients. Aggregation in diabetes is 

related to plasma lipids and the higher lipoproteins in type 2 patients may 

account for the increased red cell aggregation in this group. High levels of 

lipoproteins may also contribute to the increased aggregation seen in type 

2 hypertensive diabetics. The increased incidence of macrovascular 

disease in diabetes could be related to increased red cell aggregation 

leading to alterations in blood flow which in combination with structural 

changes in blood vessels (e.g. due to atheromatous plaques) result in

108



tissue hypoxia and subsequent organ damage. The increased triglyceride 

and VLDL levels in diabetes may therefore indirectly contribute to vascular 

complications by an effect on red cell aggregation. Thus overweight type 2 

diabetics with hypertriglyceridaemia (particularly with low HDL levels) are 

at the greatest risk of complications related to increased red cell 

aggregation and patients with concomitant hypertension will be further 

compromised.

To investigate these findings further, longitudinal studies of red cell 

aggregation in diabetic patients with hypertension and vascular disease 

are required and it would be of interest to measure red cell aggregation in 

diabetic patients with different types of hyperlipoproteinaemia.
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CHAPTER 8

FILTERABILITY OF WHITE BLOOD CELL

SUBPOPULATIONS IN DIABETES
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8.1 Introduction

White blood cells have a similar diameter to red blood cells (6-7 pm- 

lymphocytes, 7-7.5 pm- granulocytes, compared to 7.5 pm for red cells) but 

deform less readily than red blood cells due to their greater intracellular 

viscosity (about three times that of red blood cells) and spherical shape 

(158), Table 8.1. They can however pass through capillaries with 

diameters as small as 2.6-2.8 pm as with red cells, but deformation takes 

longer and the force required is about four to five times that necessary to 

deform a red blood cell (30).

Rheological influence of white blood cells on flow resistance is negligible in 

large vessels because of the low white cell concentration in normal blood 

(7 million/ml i.e. 1/700 of red cells) and they account for < 1% of the total 

volume of blood cells and contribute little to the bulk viscosity of blood. It is 

in capillaries with diameters less than 5 pm that the white cell exerts its 

greatest effect on flow resistance (231) and where rheological properties of 

different white cell subpopulations are most important.

White blood cell subpopulations differ in their rheological properties as 

shown by both filtration studies and micropipette studies (31,32,232), 

mononuclear cells being less deformable than polymorphonuclear cells, 

and monocytes being less deformable than lymphocytes.

White blood cells have a large effect on the distribution of red cells at 

capillary level and the interaction of red and white blood cells will thus 

determine oxygen delivery to tissue cells. Entrance of a white cell into a 

capillary branch will increase the resistance and decrease the flow in that 

branch causing preferential entry of the subsequently arriving twenty to
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Table 8.1

Rheological properties of neutrophils and erythrocytes

erythrocytes neutrophils

Time constant for initial deformation (msec) 20 - 120 650

Cellular viscosity (Pa.s) 7 1300

From: Chien S. White blood cell rheology: Clinical Blood Rheology (ED GDO Lowe) 1988:96



thirty red cells into another branch. As red blood cells leave capillaries to 

enter venules they overtake white cells forcing the latter towards the vessel 

wall (233) and because the post-capillary venules have the lowest shear 

stress in the circulation (234) the rouleaux formation from red cell 

aggregation will also tend to displace the white cells towards the vessel 

wall (33). There are therefore two mechanisms which cause margination of 

white cells. At the vessel wall white cells may interact with the endothelium 

to cause adhesion which will be important for extravasation, but which 

could also cause narrowing of the vessel diameter and a further increase in 

flow resistance by large immobile white cells (34), this is particularly the 

case with granulocytes (44). In addition white cell adhesion and activation 

in ischaemia could lead to endothelial damage due to the release of toxic 

oxygen compounds and proteolytic enzymes (33).

An increase in white blood cell count or a decrease in white cell 

deformability could further reduce flow in microvessels and lead to tissue 

hypoxia, and as the flow rate is reduced the leucocyte-related obstruction 

increases in a cycle which may lead to capillary closure.

In diabetic patients interaction between the disturbed microcirculation and 

alterations in white blood cell rheology may be one mechanism leading to 

vascular complications. Previous studies of white cell deformability in 

diabetic patients have involved filtration of total white cell suspensions 

through Nuclepore filters and increased clogging of the filter, an indirect 

measure of deformability, has been reported by some investigators 

(116,132). However no study has attempted to measure the deformability 

of white cell subpopulations in diabetic patients and therefore we sought to 

determine if deformability of Mononuclear (Monocytes + lymphocytes, MNL) 

and Polymorphonuclear (PMNL) subpopulations was altered in type 2 

(non-insulin-dependent) diabetic patients compared to non-diabetic control 

subjects.
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8.2 Patients

8.2.1 Diabetic patients

19 type 2 (non-insulin dependent) diabetic patients (12 male and 7 female) 

were selected from the outpatient clinic. Mean age was 56 yrs with a range 

of 39-73yrs, and all were free of diabetic complications. 12 patients were 

taking oral hypoglycaemic agents in addition to dietary therapy and 2 

patients were receiving dietary therapy alone. Duration of diabetes in these 

14 patients was 5 yrs (range 6 mths - 11 yrs). The remaining 5 patients 

were newly diagnosed and therefore receiving no treatment.

Mean blood glucose level was 14.3 mmol/l (range 4.0-25.0 mmol/l) and 

glycated haemoglobin 12.9% (range 8.5-17.1%).

8.2.2 Control subjects

The diabetic patients were compared with 19 healthy control subjects who 

were matched for age (mean age 58 years, range 43-73 years) and sex 

distribution (11 male and 8 female).

8.4 Methods

8.4.1 Blood samples

Venous blood was anticoagulated with EDTA (1.5 mg/ml) and 5 mis of 

whole blood was layered on top of 1 mis Ficoll-Hypaque solution 2 which 

was layered on top of 4 mis Ficoll-Hypaque solution 1 to achieve 

separation of the white cell subpopulations (chapter 3.7.2). The Ficoll-
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Hypaque solutions were made within the laboratory. The mixture was 

centrifuged at 200g, 20°C for 40 minutes after which the two layers of white 

cells were harvested and made up to a concentration of 105/l in phosphate 

buffer saline/bovine serum albumin and used immediately.

Filterability of each white cell subpopulation was measured by pressure 

generated (cm H2O) during 6 mins of constant flow of cell suspensions 

(1.5ml/min) through 5pm pores in a polycarbonate membrane (Nuclepore), 

relative to the pressure generated by prefiltration with buffer-albumin alone 

(usually about 1 cm H20). Pressures were analysed at 1 min intervals and 

a time dependent increase in pressure was observed due to progressive 

plugging of pores by slowly-passing white cells (Figure 8.1).

Differential white cell counts were measured by Coulter-S-Counter, 

glycated haemoglobin (HbA1) by agar gel electrophoresis (Corning- 

Glytrac), and blood glucose by the hexokinase method (Hitachi 737, 

Boeringer Mannheim, FRG ).

8.4.2 Statistical methods

Differences in mean values between the groups were calculated by Mann- 

Whitney U-test and correlations by Spearman rank test.

Values are expressed as mean ± SD, or range.

8.5 Results

Relative filtration pressures were significantly higher for MNL compared 

with PMNL in both diabetic patients (6.96 ±2.67 vs 4.24 ± 1.75 cmH20,
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p < 0.001) and control subjects ( 7.75 ± 1.62 vs 4.20 ± 0.76 cmH20, p 

<0.001), (Figures 8.1 and 8.2).

There was no significant difference in either MNL or PMNL filtration 

pressures between the diabetic patients or the control subjects at 6 mins 

(6.96 ± 2.67 vs 7.75 ± 1.62 cm H20, p>0.05 and 4.24 ± 1.75 vs 4.20 ± 0.76 

cmH20, p>0.05), (Figure 8.2).

A significant inverse correlation of HbA-| and fasting blood glucose with 

MNL filtration pressure was found (r = -0.74, p<0.001 and r = -0.76, 

p<0.02), and with PMNL filtration pressure (r = -0.71, p<0.001, and r=-0.46, 

p<0.05), (Figure 8.3). No correlations were found between either MNL or 

PMNL filtration pressures and duration of diabetes, but there was a weak 

correlation of age and mononuclear filtration ratio in the population as a 

whole, Table 8.2. The effect of diabetic therapy on white cell deformability 

was not examined due to the imbalance of patients on oral hypoglycaemic 

treatment compared with dietary therapy in the previously diagnosed 

diabetic patients, and there was no association with sex, or smoking in the 

group as a whole, Table 8.3.

The correlation between percentage monocytes for individuals and MNL 

filtration pressures did not reach the conventional level of significance, (r = 

0.40, p>0.05).

8.6 Discussion

Using this improved separation method for white blood cell subpopulations, 

mononuclear cells were found to be significantly less deformable than 

polymorphonuclear cells, a finding that partly reflects the more rigid 

monocytes which form a significant percentage of mononuclear cells,
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Table 8.2

Correlation of mononuclear and polymorphonuclear 
white cell subpopulations with glycaemic control and 
duration of diabetes. (rs values)

mononuclear polymorphonuclear

Fasting blood glucose (mmol/l) -0.76a -0.46b

Glycated haemoglobuin (%) -0.743 -0.71a

Duration of diabetes (yr) -0.06 -0.18

a p <0.001 
b p <0.05



Table 8.3
Effect of gender and smoking on mononuclear and 
polymorphonuclear relative filtration pressures.

mononuclear polymorphonuclear

< Male 7.49±2.42 4.52±1.53

Female 7.17±1.93 3.78±0.08

Yes 8.29±2.84 4.52+1.99

Smoking

No 7.09±1.83 3.9510.86<
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although there was only a poor correlation of filtration pressure with 

percentage monocytes in whole blood (r=0.40). This finding is in 

agreement with the results of previous studies of white cell deformability 

(31,32,233), but in contrast to the two previous filtration studies of white cell 

deformability in diabetic patients (116,132) no differences were found for 

either white cell subpopulation studied between diabetic patients or non­

diabetic control subjects.

When white blood cells become activated they develop protopods: these 

are sheet like projections formed at the cell membrane which are a gelation 

of actin-like and myosin-like proteins. Protopods increase the resistance to 

deformation at the sites where they form (158) and thus a greater filtration 

pressure will be required if white cells become activated.

There was an interesting correlation of filtration pressures with glycaemic 

control in the diabetic patients, particularly with mononuclear cells; well- 

controlled diabetics had less filterable white blood cells than non-diabetics, 

whereas poorly-controlled diabetics had more filterable cells. It is possible 

that the cells become activated during the extraction process, but since 

samples from both groups were analysed simultaneously the same 

degree of activation would be expected in all cells. The more activated the 

cell the greater the pressure required for filtration through micropores, and 

as diabetic patients with the worst glycaemic control had the most easily 

deformed cells it may be that these cells were less able to be activated than 

cells from well-controlled diabetic patients. These findings could have 

implications for other white cell functions such as chemotaxis and 

phagocytosis.

Alterations in microvessel geometry in diabetic patients in vivo (i.e. 

endothelial proliferation and capillary narrowing which are widespread in

116



diabetic microvascular disease) will have further effects on leucocyte flow. 

White blood cells being less deformable than red blood cells would be 

expected to have a major effect in regulating red blood cell flow and 

distribution in microvascular disease. In addition, the alterations in the 

vessel wall per se could exert an adverse effect on the white cells by 

increasing the tendency to adhesion. The combination of these effects may 

contribute to tissue hypoxia and therefore end-organ damage in diabetes.

8.7 Summary

This study did not detect any differences in white cell deformability between 

diabetic patients and non-diabetic control subjects, but the significant 

association of filtration pressure of mononuclear and polymorphonuclear 

subpopulations with glycaemic control suggests that uncontrolled diabetes 

may have an effect on white cell function. Further studies of the association 

between white cell deformability and glycaemic control are indicated, using 

techniques that avoid cell activation, and also to examine the relationship of 

diabetic complications to white cell deformability.

It would be of interest to measure white cell deformability in type 1 diabetic 

patients, to investigate the effects of insulin therapy and glycaemic control.
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CHAPTER 9 

DISCUSSION
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Diabetes mellitus is a metabolic disorder characterised by a high level of 

plasma glucose, and is associated with specific microvascular 

complications such as retinopathy and nephropathy. Affected individuals 

have an earlier onset of macrovascular disease, with increased morbidity 

and mortality from large vessel complications. A combination of blood flow 

abnormalities and alterations in vessel geometry probably result in reduced 

perfusion and tissue oxygenation. Increased blood viscosity has been 

demonstrated in diabetes and recently attention has been focussed on the 

contribution of cellular properties to abnormal rheology in diabetic patients. 

Red blood cell rheology has been examined by a variety of methods and 

attempts have been made to correlate this with glycaemic control, with 

treatment and duration of diabetes and with vascular complications. The 

results of many studies have been conflicting but whole blood viscosity 

appears to be increased in diabetes due to an increase in plasma proteins 

which cause an increase in plasma viscosity and red cell aggregation.

Previous methods of measuring red cell aggregation and red cell 

deformability were non-specific and thus unsuitable for assessing diabetic 

patients to confirm the extent of the increase in red cell aggregation or the 

reduction in red cell deformability suggested by viscosity studies. Using the 

new Myrenne red cell aggregometer, increased red cell aggregation has 

been confirmed and for the first time a relationship between aggregation 

and plasma lipoproteins has been demonstrated. A reduction in red cell 

deformability in diabetic patients has also been confirmed using the new 

Carri-Med filtrometer.

The findings in this thesis show rheological differences between type 1 

(insulin-dependent) and type 2 (non-insulin-dependent) diabetic patients: 

red cell deformability was reduced to a greater extent than in type 2 diabetic
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patients, whereas red cell aggregation was further increased in type 2 

diabetics compared with type 1 diabetics. Abnormalities in the red cell 

membrane related to insulin deficiency probably have an important effect 

on red cell deformability and one would expect these to be more 

pronounced in type 1 diabetics. The association of red cell aggregation 

with VLDL, the lipoprotein which is most consistently raised in type 2 

diabetes, may explain the increased aggregation in type 2 compared with 

type 1 diabetics.

Whole blood viscosity was increased in type 2 hypertensive diabetic 

patients, and because viscosity correlates with left ventricular mass (a 

determinant of cardiovascular complications) in non-diabetic hypertensive 

patients, this may help to explain the increased cardiovascular morbidity in 

diabetes. The results of the studies in red cell aggregation reported in type 

2 hypertensive diabetic patients in the thesis also support the role of 

increased viscosity contributing to cardiovascular problems in this 

subgroup of hypertensive diabetic patients. It would be relevant to 

investigate in future studies the relationship between blood viscosity and 

cardiac hypertrophy in diabetic patients. Altered lipids and lipoproteins in 

type 2 patients may partly explain the abnormal rheology and the cause of 

the earlier onset of large vessel disease in diabetes as a whole.

Microvascular complications tend to be more prevalent in type 1 diabetic 

patients due to their longer duration of diabetes, and increased blood 

viscosity has been demonstrated in type 1 diabetics with microvascular 

disease in the viscosity studies described here. This finding is supported 

by the increased red cell aggregation which was found in type 1 diabetics 

with proliferative retinopathy. Alterations of red cell deformability in either 

microvascular or macrovascular disease have not been demonstrated in
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any of the studies undertaken. However a reduction in red cell 

deformability although not related to specific problems in diabetes could in 

conjunction with microvascular abnormalities reduce blood flow to tissues 

and result in ischaemic damage to the retina, kidney, nerves or heart. The 

association between rheology and macrovascular complications such as 

ischaemic heart disease, peripheral vascular disease and cerebrovascular 

disease needs to be established in diabetic patients.

White cell deformability is an important determinant of blood flow in the 

microcirculation and because red cell deformability is reduced in diabetes, 

one may speculate that deformability of white cells would also be reduced. 

The preliminary study described here found no difference in white cell 

deformability between diabetic patients and healthy age matched controls, 

but only a small group of type 2 diabetics was examined. The technique 

therefore needs to be evaluated in a much larger sample group which 

should include both type 1 and type 2 diabetic patients, and this would 

allow any association of white cell deformability and vascular complications 

to be investigated.

A microvascular aetiology in conjunction with metabolic dysfunction is likely 

in diabetic peripheral neuropathy, but although blood rheology is 

undoubtably abnormal in affected diabetics, it appears not to be further 

increased in diabetic patients with neuropathy compared with those who 

have no evidence of neuropathy but are matched for other microvascular 

complications. Disturbance in microvessel structure may be a more 

important determinant of vascular related damage to peripheral nerves in 

diabetic patients.
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This thesis presents evidence that diabetes mellitus is associated with 

abnormal blood rheology, and that there are differences in the determinants 

of blood viscosity between type 1 and type 2 diabetic patients. There was a 

measurable association between rheology and m icrovascular 

complications in type 1 diabetics and between rheology and hypertension 

in type 2 diabetics. The data was all cross-sectional, and to establish the 

true role of blood rheology in the complications of diabetes mellitus, it 

would be necessary to perform longterm prospective studies. Further 

research in the future is indicated to assess blood viscosity and red cell 

aggregation in particular, in hyperlipidaemic individuals with and without 

diabetes and to assess the effects of lipid-lowering agents on rheology. In 

hypertensive diabetics, early intervention with antihypertensive agents such 

as vasodilators may reduce blood viscosity and could prevent cardiac 

hypertrophy. The effect of antihypertensive agents on rheology therefore 

requires to be established.

Therapeutic agents which improve red cell deformability may have 

beneficial effects in diabetic patients, but they would require evaluation 

over a prolonged period of time to assess their potential benefits in vascular 

complications.
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