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SUMMARY

The aim of this thesis was to study agonist-induced contractions in smooth 

muscle. The majority of the work was undertaken on rat anococcygeus, 

although some has been performed on guinea pig portal vein longitudinal 

muscle. The agonists which were examined (noradrenaline, phenylephrine and 

acetylcholine) all cause contraction in rat anococcygeus. They are thought to 

have their effect mediated by a G-protein which in turn stimulates the 

phosphatidylinositol cycle and promotes contraction. Work was carried out 

therefore, to analyse the effect of receptor activation at two levels: (a) the

G-protein; and (b) the phosphatidylinositol cycle. To examine the intracellular 

effects of receptor activation the muscle was permeabilized. Part of this thesis 

comprises an investigation into the effectiveness of the three putative 

permeabilizing techniques.

ANALYSIS OF THREE DIFFERENT PERMEABILIZATION TECHNIQUES 

The three permeabilization techniques examined were:

(a) saponin-treatment; (b) EGTA- treatment; and (c) alpha-toxin-treatment. To

analyse the effectiveness of each treatment several tests were carried out and

the behaviour of the permeabilized smooth muscle after the three different

treatments was compared with that of an intact muscle. The muscles were

examined to see: (i) if they contracted readily to calcium; (ii) if they produced

rigor crossbridges when ATP and CrP were removed from the bathing medium;



(iii) how they responded when two factors known to have a direct effect on the 

contractile proteins, cyclic AMP and inorganic phosphate, were added to the 

bathing medium; and (iv) how they responded to the application of 

noradrenaline at a low calcium concentration.

It was found that calcium-activated force decayed with time in saponin- 

and alpha-toxin-treated muscle. Possible mechanisms for the decay were 

examined. These included: (a) loss of calmodulin; (b) reduced or increased 

ionic strength; and (c) reduced or increased pH. These were all examined in 

saponin-treated muscle. The effect of lowering ionic strength was examined in 

toxin-treated muscle.

RECEPTOR ACTIVATION AND CONTRACTION

Once a suitable permeabilization technique had been established, further 

experimentation was undertaken to examine the effect of receptor activation on 

contraction in intact and permeabilized muscle. The permeabilization technique 

adopted was alpha-toxin treatment. Originally it had been hoped that this 

method would allow the analysis of receptor activation by noradrenaline and 

acetylcholine. However, it was found that alpha-toxin-treated rat anococcygeus 

muscle was unable to contract in response to acetylcholine. Possible reasons for
r

this/is examined in Chapter 4.

(a) G-protein

Kitazawa et al (1989) had already reported that GTP had to be included 

in the bathing medium before phenylephrine could produce a contraction in

xiv



alpha-toxin permeabilized guinea pig portal vein. This led these workers to 

conclude that a G-protein was involved in receptor activation. The rest of 

Chapter 4 aims to assess the involvement of G-proteins in receptor activation 

in alpha-toxin-treated rat anococcygeus and guinea pig portal vein. Receptor 

activation was examined by looking at its effect on calcium release and 

calcium-activated force. The involvement of G-proteins was examined by using 

GTP, GTP-7 -S (a non-hydrolysable analogue of GTP) and GDP7 8 -S (a 

non-hydrolysable analogue of GDP).

A striking feature of the noradrenaline-activated contractions in both 

tissues was that their amplitude decayed upon repeated exposure. Several 

factors were examined to ascertain the cause of this decay. These included 

examining the effect of GTP on the decay, the accessibility of the calcium store 

and the sensitivity of the calcium store to Ins(l,4,5)P3  before and after the decay 

in noradrenaline-activated force.

(b) phosphatidylinositol cycle

The fifth chapter attempts to assess the role of the phosphatidylinositol 

cycle in receptor activation. This was examined by chronically treating rats with 

lithium chloride which is known to block the phosphatases which normally are 

responsible for the breakdown of Ins(l,4,5)Pj. This blockade eventually causes 

the rundown of inositol within the cell and, therefore, eventually of 

PtdIns(4,5)P2, the precursor of Ins(l,4,5)P3  and of diacylglycerol (DG).

The effects of chronic lithium treatment of rats on (i) the concentration 

response curves to different agonists; and (ii) the intracellular component

XV



produced by different agonists were examined in intact anococcygeus muscle. 

In the second set of experiments, chronic lithium treatment was undertaken at 

the same time as the animals were being given myo-inositol in their drinking 

water. The concentration response curves and the intracellular component in 

these tissues were compared with those form chronic lithium treated animals to 

see whether the inclusion of myo-inositol in the treatment was able to prevent 

the effect of lithium. Lithium was found to depress the response to 

noradrenaline and to the other agonists. To discover if this was a direct effect 

on the contractile proteins or the calcium store, the acute effects of lithium 

exposure were examined, in alpha-toxin permeabilized anococcygeus muscle 

strips, on caffeine-, calcium- and noradrenaline-activated force. The effect of 

acute myo-inositol and lithium exposure was also examined in each of these 

situations.

It was discovered that all three permeabilizing treatments were effective, 

but because of the profound decay in calcium-activated force in saponin-treated 

preparations and the small amount of force produced by EGTA-treated 

preparations these were not used again in the following studies. Instead 

alpha-toxin-treated smooth muscle was used. This type of muscle had the added 

advantage that it retained functional membrane bound receptors. Both rat 

anococcygeus and guinea pig portal vein displayed characteristics which indicated 

that adrenoreceptor activation is mediated through a G-protein. However, in 

rat anococcygeus there appeared to be some other process functioning which 

to some extent masked the involvement of GTP. No concrete conclusions can



be drawn from the LiCl experiments, although the results tentatively suggest 

that, if LiCl does indeed block the Ptdlns cycle, NA at least is linked to this 

cycle to promote contraction.



CHAPTER 1

GENERAL INTRODUCTION



Smooth muscle is widespread throughout the body of vertebrates and its 

contractile activity is vital for normal functioning of the body. The contractile 

parts of the walls of hollow vessels and cavities, such as blood vessels, the 

alimentary canal and the urinogenital tract, are formed from layers of smooth 

muscle cells which propel, mix and retain the contents. Elsewhere smooth 

muscle is less intimately associated with other tissues and their contraction tends 

to move one structure relative to another. These include ciliary muscles and 

nictating membranes of the eye, pilo-erector muscles of the skin and muscle 

which is attached at one end to bone, for example anococcygeus.

Smooth muscle varies widely in its pattern of activity and this is associated 

with the muscle’s position and function. For example, at one extreme, a 

continuous maintained activity may be required of the muscle, as in the iris, 

blood vessels or ureter; whereas at the other extreme, occasional bursts of 

activity occurs in muscle involved in defaecation or pregnancy. Again, tissue 

such as the urinary bladder or iris contract as a unit, whereas, in the ureter or 

intestine, waves of contraction pass from one end to the other. Localised 

contraction of sphincters and arterioles also occur. The activity of any muscle 

depends on a number of factors, including the properties of the individual 

smooth muscle cells, the interactions between cells and the influence of external 

agents such as nerves, hormones and the physical environment.

1



Hormones and neurotransmitters exert their action on smooth muscle cells 

by reacting with specific targets on the cell membrane, the receptors. The 

question of how these membrane events are coupled to the contractile response 

has been one of the most intriguing problems in smooth muscle research in 

recent years. As in skeletal and cardiac muscle, excitation-contraction coupling 

involves the release and entry of calcium ions into the cytoplasm. However, the 

rise in [Ca2+] promotes an increase in force in a very different manner from 

that in skeletal and cardiac muscle. Calmodulin is generally accepted to be the 

calcium receptor and with Myosin Light Chain Kinase (MLCK) activates tension. 

The details of this mechanism will be discussed later. This chapter will deal 

with:

( 1 ) the basic types of smooth muscle;

(2 ) the diversity of receptors;

(3) the mechanisms of calcium release and entry;

(4) the site of the stores of intracellular calcium; and

(5) mechanism of force production in smooth muscle.

SMOOTH MUSCLE DIVERSITY

Smooth muscle can be broadly divided into three categories on the basis 

of its inherent plasma membrane electrical activity and its electrical response to 

stimulation. The categories are:

(a) Spontaneously active, highly excitable muscle;

(b) Quiescent, but highly excitable muscle;

2



(c) Quiescent, poorly excitable muscle (reviewed by Creed, 1979; Bulbring & 

Tomita, 1987).

Smooth muscle can also be divided on the basis of the type of contraction 

produced by the muscle, that is, whether it is either phasic or tonic. Phasic 

contractions are short lived and usually produced in spontaneously active and 

highly excitable muscles in response to an action potential. These phasic 

contractions can be fused together to produce a maintained contraction or waves 

of contraction and relaxation. Examples of muscles which produce this type of 

contraction are taenia coli (Shimo & Holland, 1966), intestinal smooth muscle 

(Kuriyama & Suzuki, 1975), stomach (Shino, 1976), myometrium (Gabella, 1978), 

portal vein (Gabella, 1978), ureter (Sunano, 1976) and bladder (Sunano & 

Miyazaki, 1975). Tonic contractions are slower to form than phasic contractions 

and are not always preceded by an action potential. These contractions are 

maintained. They are, therefore, more usually found in quiescent, poorly 

excitable muscles e.g. trachea (Kirkpatrick, 1975) aorta (Bohr, 1963), rabbit ear 

artery (Bevan & Waterson, 1971) and rat anococcygeus (Gillespie, 1980).

(a) Spontaneously active, highly excitable muscles: Examples of muscles 

included in this group are the taenia coli, the small and large intestine, the 

myometrium, bladder and the portal vein. These muscles have all been shown 

to have spontaneous action potentials (Bulbring, 1954; Nagai & Prosser, 1963; 

Kuriyama 1967; Kuriyama & Mekata; 1971). These are mostly spike-like, but 

can have a plateau. They may occur in bursts or at regular intervals and 

propogate along the tissue at conduction velocities of 10-80mm/s. This activity

3



originates within the muscle and can spread along the muscle length. 

Spontaneous activity arises from simultaneous depolarisation of many cells. The 

pattern of these depolarisations, called slow waves or pacemaker potentials, 

varies in different smooth muscles. However, the basic mechanism appears to 

involve an unstable membrane potential. Transmitters released by nerves act 

on a large number of cells and modify the basic activity, increasing or decreasing 

spike frequency.

In summary, these muscles have an unstable membrane potential and give 

rise to all-or-none action potential which produce phasic contraction. The action 

potential is able to propagate throughout the muscle via ot low-resistance 

pathways between cells and the spontaneous activity can be modified by nerves.

(b) Quiescent, but highly excitable muscle: Examples of muscles included 

in this group are vas deferens and ureter. These muscles are normally 

quiescent, but do occasionally show spontaneous activity and produce phasic 

contractions. The vas deferens is not spontaneously active and normally 

contracts in response to nerve stimulation. This gives rise to excitatory junction 

potentials which sum with each other so that, at a critical value, a spike is 

initiated. In guinea pig vas deferens the spikes are all-or-none with overshoots 

of 20mV (Burnstock & Holman, 1961). In the mouse, however, the spikes are 

graded in amplitude, varying from ’humps’ to overshoots of 5mV (Furness & 

Burnstock, 1969). In these tissues with graded spikes, propagation tends to be 

decremental. This could be due to insufficient current spread between cells or 

to poor electrical excitability of the membrane.

4



(c) Quiescent, poorly excitable muscle: Examples of muscle included in this 

group are stomach, trachea, anococcygeus, arteries and veins. This muscle has 

no spontaneous, rhythmic activity. Rat anococcygeus for example has a resting 

membrane potential of -51mV to -75mV and no slow waves or spontaneous 

depolarisation (Creed, Gillespie & Muir, 1975). Furthermore the membrane 

cannot be excited electrically by either intracellular current injection or by 

external polarization. Field stimulation of the excitatory nerves, however, 

produces depolarisation of graded amplitude.

The anococcygeus is densely innervated by adrenergic nerve fibres, but 

close neuromuscular contacts are absent, the minimum separation being 55nm 

(Gillespie & Lullmann-Rauch, 1974). Co-ordinated activity of the whole muscle 

depends on synchronous or sequential nerve discharge. In rat anococcygeus 

spikes are small and rarely seen and contraction apparently occurs in their 

absence. Even with nerve stimulation at less that 1Hz, contraction occurs and 

this is associated with depolarisations of less than 20mV. An action potential 

is, therefore, not essential for activation of the muscle.

Records of the membrane potential suggest that, in arterial and tracheal 

smooth muscle, contraction need not be preceded by a spike. The carotid, main 

pulmonary and ear arteries of the rabbit resemble the rat anococcygeus in being 

quiescent (Mekata & Niu,1972; Casteels et al, 1977). Low concentrations of 

noradrenaline and adrenaline (10/jM) can evoke contractions without 

depolarising the membrane, though at higher concentrations some depolarisation 

occurs. The membrane potentials of tracheal smooth muscle of cattle and dog

5



is also stable and there is no spontaneous electrical or mechanical activity 

(Kirkpartrick, 1975; Suzuki, Morita, & Kuriyama, 1976). The mechanical 

response is triggered by a depolarisation of about 5mV. Histamine, 

acetylcholine and nerve stimulation induce contraction and depolarise the 

membrane, sometimes with superimposed slow potential oscillations, but no 

spikes.

Therefore, the rat anococcygeus muscle, certain arteries and tracheal 

smooth muscles cannot be excited directly electrically and have a steady 

membrane potential with no evidence of spontaneous electrical activity. These 

muscles produce tonic contractions.

RECEPTOR DIVERSITY

A ’receptor’ is a protein in the surface membrane which acts as a switch 

turning a biochemical response either on or off within the cell when the 

receptor becomes bound to a ’substrate’. These 'substrates’ are normally 

hormones and/or neurotransmitters and are termed as agonists. Receptors are 

usually named after the agonist or family of agonists which activate them. For 

example the receptors which respond to adrenaline and noradrenaline are 

termed adrenoreceptors; activation of these receptors and the consequences are 

the main concern of this thesis. Adrenoreceptors can be further subdivided into 

two categories a and p. The original subdivision was made by Ahlquist (1948) 

on the basis of the potency of both synthetic and natural compounds to activate 

the receptor. Ahlquist (1948) laid the ground rules for further classification by

6



recognising that receptors should be classified by their pharmacological 

properties rather than their location. This was particularly important because 

these two adrenoreceptor subtypes have inhibitory or excitatory properties 

depending on their location, but the same agonist potency regardless of their 

location.

In the 1960’s it became clear that ^-adrenoreceptors in different tissues 

showed different pharmacological properties. Lands and colleagues (1967) 

proposed that these receptors be further subdivided into and

£2 -adrenoreceptors. ^-Adrenoreceptors were found predominantly in the heart, 

while £2-adrenoreceptors were found predominantly on smooth muscle. 

However, both ^-receptor types can coexist on the same tissue (Minneman, 

Pittman & Molinoff, 1981). ^-Adrenoreceptor subtypes show many similarities 

and only a few differences: both pr  and ^-adrenoreceptors stimulate formation 

of cyclic AMP as their primary mechanism for signal transduction in cells. Very 

few drugs show more than a 20- to 50-fold difference in potency in binding to 

the two different subtypes.

In a similar way during the 1970’s it became clear that a-adrenoreceptors 

in different tissues did not have identical pharmacological properties. Based on 

differences in the potency of phenoxybenzamine in blocking presynaptic 

increases in noradrenaline release and postsynaptic increases in contractility in 

cat spleen, Langer, (1974) proposed that postsynaptic a-adrenoreceptors be 

referred to as a2, and presynaptic receptors be referred to as a2. However, it 

soon became obvious that a2- and a2-adrenoreceptors existed postjunctionally on
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smooth muscle (Docherty, MacDonald & McGrath, 1979 ; Drew & Whiting, 

1979; Timmermans, Kwa & van Zweiten, 1979; Docherty & McGrath, 1980; 

Langer et al, 1980; Starke, 1981; Timmermans & van Zweiten, 1981) and 

activate contraction. It subsequently also became clear that a7-adrenoreceptors 

could exist on presynaptic nerve terminals (Kobinger & Pichler, 1982; Docherty, 

1983; Story, Standford-Starr & Rand, 1985; McDonough, Wetzel & Brown, 

1986). Unlike the ;S-adrenoreceptor subtypes, the a-adrenoreceptor subtypes 

are much less alike. Antagonist selectivities of two or three orders of magnitude 

are often seen between the two a-adrenoreceptor subtypes, whereas a difference 

in potency of one order of magnitude is more likely between the 

/9 -adrenoreceptor subtypes. The a-adrenoreceptors appear also not to use the 

same second messenger system. There is a large body of evidence to suggest 

that a-adrenoreceptors produce their intracellular effects via the phosphatidyl 

inositol cycle (Berridge & Irvine, 1984, 1989) whereas a2-adrenoreceptors are 

thought to work by suppressing cyclic AMP production (Fain & Garcia-Sainz, 

1980; Exton, 1985).

MECHANISMS OF CALCIUM RELEASE AND ENTRY

Once the receptor has been activated it promotes a rise in intracellular 

[Ca2+]. This increase in intracellular [Ca2+] can be brought about by calcium 

entry from the extracellular space, calcium release from the intracellular store 

or by a combination of both. Calcium entry can be brought about by (a) 

membrane depolarisation which opens voltage operated calcium channels
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(VOCs); (b) receptor activation which can directly open calcium channels 

through receptor operated calcium channels (ROCs); and (c) production of 

second messengers, which in turn might open calcium channels (SOCs). Calcium 

release can be brought about by (a) release of intracellular calcium from the 

stores by second messengers and (b) release of calcium from the stores by a 

small increase in the calcium concentration of the cytosol - termed calcium 

induced calcium release (CICR).

Calcium Entry

(a) Voltage Operated Channels: Two types of voltage-operated calcium 

channel have been identified in smooth muscle. These are:

(i) T ’-type channels; these need only a weak deplorisation to open and cause 

short lived inward transient current;

(ii) ’L’-type channels which are characterised by the requirement for a strong 

depolarisation to open and an inward current which decays very slowly 

(Nowychy, Fox & Tsien, 1985).

(b) Receptor Operated Channels: Up until recently, only indirect evidence 

existed to suggest that agonists might cause calcium entry without depolarising 

the membrane. To do so the agonist was thought to act directly on the calcium 

channel causing it to open (Droogmans, Raeymayers & Casteels, 1977; Bolton, 

1979; Meisheri, Hwang & van Breemen, 1981). Recently Benham (Benham & 

Tsien, 1987; Benham, 1989) presented direct evidence that, in voltage clamped 

single cells from the smooth muscle of the rabbit ear arteiy, ATP opens a
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calcium channel in the membrane. There is also a report in the literature that 

acetylcholine opens a non-selective cation channel in isolated cells from guinea 

pig ileum (Inoue & Isenber, 1990)

(c) Second Messenger Operated Channels: There is considerable uncertainty 

concerning the mechanism and control of these channels and there is no direct 

evidence for them in smooth muscle. However, there is evidence in mast cells 

and lymphocytes that cAMP and Ins(l,4,5)P5  can increase channel opening 

(Kuno & Gardener, 1987; Penner, Mathew & Neher, 1988).

There is some evidence to suggest that Ins(l,4,5)Pj might not have a 

direct effect on calcium entry by activating a channel on the plasma membrane, 

but instead release the calcium from the endoplasmic reticulum which then 

causes calcium to enter the cell. This hypothesis is based on work with 

endothelial cells, where calcium entry is preceded by Ins(l,4,5)P5-induced calcium 

release from the endoplasmic reticulum (Hallam, Jacob & Merritt, 1988). There 

is evidence from mouse lacrimal cells that Ins(l,3,4,5)P^ might also be involved 

in promoting calcium entry. This work showed that a sustained calcium current 

could be only activated when both Ins(l,3,4,5)P^ and Ins(l,4,5)Pj were present 

(Morris et al, 1987). Diacylglycerol (DG) has also been implicated as a second 

messenger which promotes calcium entry, but not in smooth muscle. It has been 

shown to facilitate calcium entry in Aplysia neurones (Deriemer et al, 1985), 

Herissenda photoreceptors (Farley & Auerbach, 1986) and rat adrenal medulla 

(Wakade, Malhotra & Wakade, 1986).

10



Calcium Release

(a) Release o f Intracellular Calcium by Second Messengers: The two known 

second messengers in smooth muscle which are produced on receptor activation 

are Ins(l,4,5)P5  and cAMP. Alpha-adrenoreceptor activation has been shown 

to produce Ins(l,4,5)Pj. Its best understood function is to release calcium from 

the sarcoplasmic and endoplasmic reticulum. This was first reported by Streb 

and colleagues (1983) in rat pancreatic acinar cells and subsequently in smooth 

muscle (Suematsu et al, 1984; Somlyo et al, 1985; Hashimoto et al, 1986). None 

of the other compounds produced in the phosphatidylinositol (Ptdlns)

cycle have been shown to release calcium to the same extent as Ins(l,4,5)P3. 

The Ptdlns cycle is discussed in more detail in the introduction to Chapter 5 and 

reviewed by Berridge and Irvine (1984, 1989). There are no reports that cAMP 

influences mobilisation of calcium from the intracellular store. Instead it is 

thought to have its effect by influencing myosin light chain kinase (MLCK) 

(Ruegg & Paul, 1982) decreasing its ability to phosphorylate the myosin light 

chain and hence to interact with actin, thus causing relaxation.

(b) Calcium Induced Calcium Release: It has already been shown in 

skeletal and cardiac muscle that a rise in [Ca2+] in the vicinity of the 

sarcoplasmic reticulum (SR) induces a further regenerative release of calcium 

from the SR (Endo, Tanaka & Ogawa, 1970; Fabiato & Fabiato, 1975; Barsotti 

et al, 1988). However, no direct evidence of a similar nature has been shown 

in smooth muscle. Itoh, Kuriyama and Suzuki (1981) and Obaro, Ito and Yabu
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(1987) have both shown that the calcium content of the SR was reduced when 

the bathing [Ca2+] was increased. Thus calcium induced calcium release might 

have a role in the modulation of the calcium content of the smooth muscle 

sarcoplasmic reticulum. It has yet to be shown, however, that calcium induced 

calcium release is involved in the calcium release mechanism in smooth muscle.

Calcium induced calcium release has been postulated as the mechanism 

by which Ins(l,4,5)P3  causes a uniform calcium release within non-excitable cells 

(Gilkey et al, 1987; Busa et al, 1985; Miyazaki et al, 1986; Lakatta et al, 1989). 

However, it has been dismissed as the mechanism by which Ins(l,4,5)P3  releases 

calcium in smooth muscle by Somlyo et al (1990) because procaine (a known 

blocker of calcium induced calcium release) does not block Ins(l,4,5)P3  induced 

calcium release.

STORES OF INTRACELLULAR CALCIUM

A rise in cytoplasmic [Ca2+] is usually triggered by a surface membrane 

event. For the majority of the work contained in this thesis this has meant 

activation of a membrane bound receptor by its agonist. How this activation is 

propagated from the receptor to the intracellular source of calcium is discussed 

in detail in the introductions of Chapters 4 and 5. Briefly the agonist binds to 

its receptor which activates a G-protein in membrane. The G-protein in turn 

activates the enzyme phospholipase C which splits phosphatidylinositol 

(4,5)bisphosphate to produce inositol(l,4,5)triphosphate and diacylglycerol. 

Both of these compounds then have effects on calcium release from the SR,
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entry across the sarcolemma and calcium sensitivity of the contractile proteins. 

The intracellular sites for calcium storage previously thought to be involved 

include: (a) sarcoplasmic reticulum; (b) mitochondria; and (c) surface

membrane.

(a) Sarcoplasmic reticulum'. It has now been universally accepted that the 

source of intracellular calcium is the sarcoplasmic reticulum (SR). This has not 

always been the case even although there is an obvious parallel with skeletal and 

cardiac muscle (Endo, 1977). This was mainly due to an early work by Peachy 

and Porter (1959) who reported that smooth muscle had a scarcity of SR. This 

finding was backed by Somlyo and Somlyo (1968) and prompted the search for 

an alternate source of calcium. Peachy and Porter’s findings were later 

discovered to be in error. The primary fixative that they had used partially 

destroyed the smooth muscle and in addition they had been unfortunate in 

choosing types of smooth muscle that had a small amount of SR (Devine, 

Somlyo & Somlyo, 1972; Gabella, 1981). In fact, an SR that occupies no more 

that 2 % of the cell volume can store enough calcium to activate maximal 

contraction (Bond et al, 1984a; Kowarski et al, 1985).

The SR is an intracellular membrane system of tubules (Somlyo et al, 

1971). These tubules exclude extracellular markers such as ferritin, horseradish 

peroxidase or collodial lanthanum. The Na and Cl concentration in the SR, 

measured with electron probe analysis (Kowarski et al, 1985) is similar to the 

cytoplasmic but not the extracellular concentrations, indicating that the SR is not 

in direct ionic communication with the extracellular space. The SR can occupy
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about 1.5 to 7.5% of the total cell volume depending on the smooth muscle 

type, being most extensive in the large elastic arteries (e.g. rabbit aorta and 

main pulmonary artery) and in pregnant uterus (Somlyo & Somlyo, 1975; 

Garfield & Somlyo, 1985). The longer persistence of contractions in nominally 

calcium-free solutions in large elastic arteries, compared to taenia coli and portal 

vein, was originally related to the smaller volume of SR in the latter types of 

(phasic) smooth muscle. However, it has since been demonstrated that guinea 

pig portal vein smooth muscle, which contains only 2% SR can contract 

maximally in nominally calcium-free solutions (Bond et al, 1984a).

The SR’s ability to accumulate calcium has been demonstrated using 

strontium. Calcium and strontium are taken up by the SR using the same 

transport mechanism. Strontium is more electron-dense than calcium which 

allows it to be visualised using an electron microscope. Strontium was 

accumulated in both quiescent and activated cells (Somlyo & Somlyo, 1971). 

Electron probe analysis was used to demonstrate that calcium was accumulated 

by smooth muscle SR (Somlyo et al, 1979; Popescu & Diculescu, 1975; 

Heumann, 1976; Somlyo et al, 1982). Physiological experiments demonstrating 

the ATP-dependence of such calcium uptake also identified the SR as the 

calcium store (Endo et al, 1982). The calcium content was measured with 

electron probe micro analysis in relaxed vascular smooth muscle (Bond et al, 

1984a; Kowarski et al, 1985). It was estimated to be 28mmol/kg dry weight in 

the junctional SR of the guinea pig portal vein and 15-18mmol/kg dry weight in 

the central SR of the rabbit main pulmonary artery. These concentration are
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considerably higher than those found in the cytoplasm and provide further 

evidence for the accumulation of calcium by the SR.

It has been known for a considerable time that smooth muscle can contract 

in the virtual absence of extracellular calcium and this was taken as evidence for 

the release of calcium from intracellular stores (Devine et al, 1972). The fact 

that this calcium was stored in the SR was harder to prove. Changes in the 

calcium content of the SR could be examined using electron probe micro 

analysis (Bond et al, 1984a; Kowarski et al, 1985). These latter two groups 

examined two different vascular smooth muscle preparation. One was 

spontaneously active and highly excitable muscle, guinea pig portal vein, and the 

other a quiescent and poorly excitable muscle, main pulmonary artery. It was 

discovered that these two muscle preparations had different amounts of SR, 2 

and 7.5% of total cell volume respectively, but that each could release enough 

calcium to cause a maximal contraction. However, they both released their 

calcium from different SR sites within the muscle. Guinea pig portal vein 

released it from the junctional SR and main pulmonary artery released it from 

the central SR.

(b) Mitochondria: Mitochondria have a relatively low affinity, but very 

large capacity for accumulating calcium. The apparent Km of mitochondria 

isolated from smooth muscle for calcium is only 10-17/xM (Vallieres, Scarpa & 

Somlyo, 1975; Wikstrom, Ahonen & Luukkaine, 1975). In smooth muscles that 

are not damaged or experimentally exposed to unphysiological high free 

cytoplasmic [Ca2+], the mitochondrial [Ca2+] ranges from 0 to 3 mmol/Kg dry
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weight (Somlyo, Somlyo & Shuman, 1979; Bond et al, 1985) This [Ca2+] is 

comparable with the estimate made for cardiac mitochondria (Denton & 

McCormack, 1980; Hansford & Castro, 1982). These latter workers also 

suggested that this range of free intra-mitochondrial [Ca2+] would regulate 

certain important mitochondrial enzymes (e.g. dehydrogenase). The Somlyo’s 

claim that mitochondria do not have any role in calcium accumulation has been 

disputed (Miller, 1985). This author suggests that relaxation can be induced in 

smooth muscle if the mitochondiria sequesters ImM [Ca2+] which is a 

concentration taht is below the detection level of X-ray probe microanalysis and 

that mitochondria might only be transiently accumulating calcium before 

transferring it to the SR.

(c) Surface Membrane: The bidirectional transport of calcium across the 

plasma membrane and the role of membrane-bound calcium itself are the two 

major functional aspects of the participation of the surface membrane in cellular 

calcium metabolism. There is much evidence based on measurement of 

radioactive calcium isotope flux (Jones, 1980; Fleckenstein, 1983), 

electrophysiological (Somlyo & Somlyo, 1971) and electron probe microanalytical 

(Bond et al, 1984a) studies showing that excitation by potassium depolarisation 

or noradrenaline can increase calcium influx across the surface membrane. If 

this is a maintained influx, calcium accumulates in the SR (Somlyo & Somlyo, 

1971, 1975; Bond et al, 1984b; Somlyo et al, 1985) and binds to calcium- 

cytoplasmic binding proteins (Bond et al, 1984b). The amount of calcium bound 

to the surface membrane is lower than that contained in the lumen of the SR
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(Bond et al, 1984b) and it is unknown whether calcium from this site can be 

released into the cytoplasm.

MECHANISM OF FORCE PRODUCTION IN SMOOTH MUSCLE

Smooth muscle cells are spindle-shaped, about 5-50/un wide and up to 

0.5mm long. They contain double the concentration of actin and tropomyosin 

as skeletal muscle, but a four to five times lower concentration of myosin 

(Murphy, Heruhy & Megerman, 1974). This difference has a structural 

correlate. Within smooth muscle cells, actin and myosin filaments are organised 

in bundles in such a way that each myosin filament is surrounded by up to 1 0  

or 15 actin filaments. The latter may be several long and 8 nm thick (Small, 

1974). Myofilament bundles are obliquely orientated within the spindle-shaped 

smooth muscle cells as they run diagonally from an attachment point on the cell 

membrane through the cell and insert at an attachment point on the opposite 

side of the cell. Quite often, the position of the attachment patches of 

neighbouring cells match. Since the narrow gap between these patches is 

bridged by electron dense material, the cells are evidently mechanically coupled. 

In this way, smooth muscle cells form a contractile network to which collagen 

fibres may be attached (Gabella, 1984).

At the molecular level, the mechanism of contraction in all muscles is 

believed to be the same (Marston & Taylor, 1980). Crossbridges arising from 

the myosin filaments bind actin and MgATP, the MgATP is hydrolysed on the 

enzymic site and the energy released is used to produce a conformational
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change in the actin-myosin complex which results in a relative movement of the 

two filaments (Tregear & Marston, 1979).

For smooth muscle, as for skeletal muscle, it is generally accepted that it 

is calcium ions which link excitation with contraction. The first demonstration 

of calcium regulation in smooth muscle was given by Filo, Bohr and Ruegg 

(1965). They found that glycerol extracted muscle from pig carotid artery 

required Mg2-1", ATP and Ca2+ for contraction. Tension production was 

absolutely dependent on Ca2+.

A calcium-dependent MgATPase was subsequently demonstrated in smooth 

muscle homogenates from various sources (Murphy et al, 1969; reviewed by 

Marston, 1982) but attempts at isolating the contractile proteins usually 

produced preparations with low MgATPase activity and no calcium sensitivity 

(Needham & Williams, 1963; Barany et al, 1966; Murphy et al, 1969). The first 

successful smooth muscle actomyosin preparation was developed by Sparrow et 

al (1970) using pig carotid artery. Once a satisfactory method for isolating 

actomyosin had been developed Bremel (1974) was able to show that, unlike 

striated muscle, the myosin activity of chicken gizzard smooth muscle was 

regulated by calcium. These experiments failed to show any calcium regulation 

by the actin filaments and isolated actin filaments exhibited no calcium-binding 

(Sobieszek & Small, 1976; Sobieszek, 197^). Consequently attention became 

focused on myosin linked calcium regulation. At first it was thought that 

calcium activated smooth muscle myosin by binding to it directly (Sobieszek & 

Small, 1976). However, because it was already known that purified smooth
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muscle myosin had a reduced actin activated MgATPase activity (Barany et al,

1966; Yamaguchi, Miyazawa & Sekine, 1970, Driska & Hartshorne, 1975) it

became apparent that components in addition to actin were required for

activation of the myosin-MgATPase activity in smooth muscle. It seemed

unlikely, therefore, that calcium would be having its effect on myosin directly.

In 1977 Sobieszek observed that there was a calcium-dependent

phosphorylation of the 20,000 Mol.wt. light chain component of myosin in

chicken gizzard actomyosin preparations. The calcium dependence of

phosphorylation was close to that of the activation of myosin-MgATPase activity

and both high ATPase activity and phosphorylation persisted after the removal

of calcium. These observations were quickly confirmed in most smooth muscle
a.

types; gizzard (Sobieszek, 1977; Aksoy et al, 1976), blood vessels (di Salvo,

Gruenstein & Silver, 1978), uterus (Lebowitz & Cooke, 1979), vas deferens

(Chacko, Contim & Adeldstein, 1977) and stomach (Small & Sobieszek, 1977a).

Further studies in several laboratories led to the phosphorylation model of
a

smooth muscle regulation (Sobieszek, 1977; Small & Sobieszek, 1977; Adelstein 

et al 1977; Adelstein, 1978; Hartshorne et al, 1977). This model states that 

actin cannot activate myosin MgATPase activity unless the 20,000 Mol.wt. myosin 

light chain is phosphorylated. Phosphorylation is catalyzed by a specific myosin 

light chain kinase (MLCK) which is activated by calcium at concentrations 

similar to those required to activate striated muscle actomyosin MgATPase. 

Dephosphorylation of myosin and hence inhibition of actomyosin MgATPase 

activity, is catalyzed by a specific phosphatase which is active irrespective of the
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[Ca2+]. Subsequent purification of phosphorylated and unphosphorylated 

myosin, the myosin light chain kinase and the phosphatase has supported this 

model, although it has not excluded the possibility of direct calcium regulation 

of myosin also occurring under some conditions (Chacko et al, 1977).

When the MLCK was further purified, in an effort to discover how it was 

controlled by calcium, it lost its activity. Dabrowska and colleagues (1977) 

showed that the kinase could be reactivated by the calcium-dependent regulator 

of cyclic nucleotide diesterase, discovered by Cheung (1970) and later termed 

’calmodulin’. Calmodulin is a highly coiled globular molecule with a Mol.wt. 

of 17,000, containing 148 amino acid residues organized in four calcium binding 

domains (Babu et al, 1985). Under physiological conditions, calmodulin is 

capable of binding Ca2+ in the physiologically important concentration range of 

0.1/xM to 10/xM. When occupied with four calcium ion, calmodulin changes its 

shape such that the hydrophobic sites from the interior of the molecule become 

exposed to the outside. This increases the affinity of calmodulin for target 

proteins including MLCK (Adelstein et al, 1981).

Since calmodulin’s affinity for myosin light-chain kinase is 

calcium-dependent, it can act both as a calcium sensor and a calcium switch for 

the regulation of the enzymic phosphorylation of smooth muscle myosin; it is 

the ternary complex of calcium-calmodulin-MLCK that represents the active 

enzymic moiety. The concentration of this complex, therefore, depends on both 

the concentration of free calcium and free calmodulin. It has been estimated 

that smooth muscle contains 30-50/xM calmodulin although most of this is bound
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to calmodulin binding proteins (Grand & Perry, 1979) so that only a very small 

fraction of calmodulin is available and responsible for smooth muscle activation 

(Ruegg et <2 /, 1984).

The phosphorylation hypothesis for smooth muscle contraction and 

relaxation is shown diagramatically in Figure 1.1 (taken from Ruegg, 1988). 

When the [Ca2+] rises sufficiently calmodulin binds four calcium ions and can 

then react with myosin light chain kinase to a form an active ternary enzyme 

complex. This complex catalyzes the phosphorylation of myosin. Actin can then 

interact with the phosphorylated myosin which increases its ATPase activity and 

the muscle ’contracts’.

Lowering the [Ca2+] to an appropriate level depresses the myosin light 

chain kinase activity. The myosin then tends to be dephosphorylated by a 

myosin phosphatase (Di Salvo et al, 1983) resulting in an inhibition of 

actomyosin ATPase. This causes muscle to relax. The activity of the 

phosphatase is independent of the [Ca2+]. Thus during contraction it is a 

balance of kinase and phosphatase activity which controls the level of 

phosphorylation and hence the extent of activation of the muscle.

Dephosphorylated myosin has a low ATPase activity and is less able to 

interact with actin. Under these conditions, the rate limiting step of the 

ATP-splitting mechanism, presumably the dissociation of the actomyosin-ADP 

state, appears to be inhibited (Marston, 1982; Sellers, 1985). It is possible, 

therefore, that the dephosphorylated light chain is an inhibitor of actin-myosin
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Figure 1.1 Myosin phosphorylation regulates smooth muscle contraction. 

Activation is initiated by Ca2+, myosin light chain kinase and calmodulin forming 

the active ternary comlex which catalyzes the phosphorylation of the myosin light 

chain kinase. When Ca2+ is lowered the calmodulin-myosin light chain kinase

complex decomposes and myosin is dephophoiylated by myosin light chain
!

phosphatases. Only phophorylated myosin interacts with actin to form ’cycling’, 

ATP-hydrolysing contractile crosslinkages.
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interaction in smooth muscle. Indeed, myosin subfragment S-l is fully 

en2ymically active in the presence of actin when the regulatory light chain has 

been removed (Mrwa & Ruegg, 1977).

Although the phosphorylation hypothesis is the most widely accepted 

explanation of how smooth muscle contracts, there are other theories. There 

are at least three other different mechanisms which have been proposed to 

account for smooth muscle activation in the absence of additional 

phosphorylation of myosin: ( 1 ) calcium binding to myosin; (2 ) activation by

leiotonin; and (3) regulation by the thin-filament proteins caldesmon and 

tropomyosin.

(1) Calcium Binding to Myosin: Chacko and Rosenfeld (1982) showed that 

actin binding to myosin could be increased once it had been phosphorylated by 

increasing the [Ca2+] in the bathing medium. These workers suggested that 

calcium was having this effect by binding to the myosin light chains.

(2) Activation by Leiotonin: Ebashi (1980) described the properties of 

leiotonin, a calcium-dependent activator of smooth muscle contraction; it binds 

calcium, requires tropomyosin as a cofactor and increases actomyosin-ATPase 

activity without any increase in myosin phosphorylation.

(3) Regulation by the Thin-filament proteins Caldesmon and Tropomyosin: 

Marston and Smith (1984) isolated, from vascular smooth muscle, a preparation 

of actin filaments that activated myosin ATPase in a calcium-dependent manner. 

These results suggested that the thin filament muscle proteins include regulatory
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proteins conferring calcium sensitivity on the contractile system. It was 

suggested that these proteins were (i) caldesmon and (ii) tropomyosin.

(i) Caldesmon can bind both actin and calmodulin and it has been 

postulated to be the calcium regulatory component of the thin filament (Marston 

& Lehman, 1985). In the absence of calcium ions, caldesmon binds actin rather 

than calmodulin and possibly prevents the protein from interacting with myosin. 

In the presence of calcium, it tends to bind to calmodulin rather than actin 

relieving its possible inhibitory action (Sobue et al, 1982). There are reports 

that caldesmon has to be phosphorylated by a calcium/calmodulin-dependent 

protein kinase before it is able to bind calmodulin (Nagai & Walsh, 1984, 1985).

(ii) Tropomyosin has been reported (Merkel, Meisheri & Pfitzer, 1984) 

to increase the calcium sensitivity of a hybrid actomyosin made up of skeletal 

muscle actin and supplemented with myosin light chain kinase and calmodulin. 

At an intermediate [Ca2+], total muscle myosin is partly phosphorylated and its 

ATPase partly activated, whereas at the same calcium concentration addition of 

tropomyosin increases myosin-ATPase activity without increasing the extent of 

phosphorylation. It appears, therefore, that tropomyosin improves 

phosphorylation-contraction coupling and this allows the contractile system to 

operate at a lesser degree of myosin phosphorylation.
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AIMS

The introduction has discussed the factors involved in smooth muscle 

contraction. The aim of this thesis was to obtain a better understanding of the 

inolvement of G-proteins and the phosphatidylinositol cycle in receptor activation 

in rat anococcygeus. Their involvement was examined in both intact and 

permeabilized muscle. Special interest was paid to their role in modulating 

calcium release from the sarcoplasmic reticulum and caclium-activated force.
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CHAPTER 2 

MATERIALS AND METHODS



A. INTACT MUSCLE

PREPARATION

Male rats (250 - 300g) were killed by a blow to the back of the head 

followed by exsanguination. The two ’legs’ of the anococcygeus muscle were 

rapidly removed and placed in a petri dish filled with warm Krebs solution 

(composition shown in Table 2.1, column 1).

POSITION

The two ’legs’ of the anococcygeus muscle arise from the coccygeal 

vertebrae close to one another in the midline of the pelvic cavity. The muscles 

pass caudally, lying first behind and then to one side of the colon, finally joining 

together to from a ventral bar in front of the colon a few millimetres from the 

anus

HARVESTING

The abdomen was opened at the midline. The testes, bladder and seminal 

vesicles were removed. Two incisions were then made from the abdomen into 

the scrotum, the penis was cut at its base and the skin pulled back. The pelvis 

was split and the colon cut and carefully pulled back to reveal the anococcygeus 

muscle. Any connective tissue around the muscle was carefully removed, the 

tissue was tied with cotton thread just above where the muscle inserts into the 

coccygeal vertebrae and at the point where it meets with the colon. Hence the
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TABLE 2.1.
Krebs Low Calcium Krebs Tvrode 

Compound (mM) (mM) (mM)
NaCl 118.4 118.4 150
KC1 4.7 4.7 5
MgS04  1 . 2  1.2
MgCl2  - - 2

CaCl2  1.25 0.25 1.25
NaHC03  15 15
Hepes 25
KH2 P 0 4  1 1 1

EDTA 0.0023 - 0.0023
EGTA - 0.5
Cocaine 0.003 0.003 0.003
Glucose 1 1 . 1  1 1 . 1  10
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of muscle used in these experiments did not include the ’bar’ of tissue around 

the colon, but only the ’legs’ of the muscle, as shown in Figure 2.1.

EQUIPMENT

Once the muscle had been removed from the animal, it was suspended in 

a 10ml organ bath as shown in Figure 2.2. The muscle was attached at one end 

to a fixed point in the bath by cotton thread. The other end was also attached, 

by cotton thread, to an isometric force transducer (Harvard, Grass FT03). The 

solution in the organ bath was aerated with 95% 0 2  and 5% C 0 2  and was kept 

at 37°C by circulating water from a heated water bath. The pH buffer used in 

these experiments was usually bicarbonate and the pH was approximately 7.4. 

The signal from the transducers was amplified and displayed on a Grass 

Polygraph.

SETTING UP

Once the muscle had been attached to the transducer and the fixed point 

as described previously a resting tension of IN was applied. The muscle was 

allowed to relax and resting tension was restored twice over a 15 minute period. 

The bathing medium was replaced before each new application of tension. The 

muscle was then allowed to relax for a further 30 minutes. At the end of this 

period, the bathing medium was replaced and a ’priming dose’ of noradrenaline 

(30/iM) was added to the bath. The muscle was allowed to contract for 5 

minutes and then the bathing medium was replaced every 5 minutes for 15
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| . |  1 Anococcygeus Muscle ’Legs
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Cut End of the colon

1cm

Anus

Figure 2.1 Position of the anococcygeus muscle in the male rat. The muscle 

lies deep to the colon in the pelvic cavity, originating from a tendinous contact 

with the coccygeal vertebrae and running around either side of the colon to join 

together on its ventral surface just short of the anal margin. This diagram has 

been taken from Prof. J.C. McGrath’s PhD thesis.
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Perspex Tissue Holder

Transducer

Cotton Thread

Heated Glass Organ Bath

Heated Water Entry

Muscle

Heated Water Exit

Gassing Scinter

Gas (5% CQ/95% 0 2)

Figure 2.2 The experimental set-up used in the intact muscle experiments. The 

diagram is a representation of an organ bath and shows how the muscle is 

attached to the transducer and positioned in the organ bath.
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minutes. The muscle was then allowed to relax for a further 30 minutes or until 

the resting tension had returned to control levels. The muscle was now ready 

for experimentation. This same protocol was used to prepare muscles which 

were subsequently bathed in low calcium Krebs (0.1/zM) to examine intracellular 

release of calcium. The composition of this bathing medium is shown in Table 

2 .1 , column 2 .

SOLUTIONS

The solutions used are detailed in Table 2.1. These solutions were made 

up fresh each day.

DRUGS

The drugs used are listed in Table 2.2.
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TABLE 2.2.

COMPOUND SUPPLIER

ATP (disodium salt) Sigma Chemicals, Poole, Dorset, England
CrP (disodium salt) "
EDTA
EGTA
cAMP
GTP
GTP-y-S
GDP-6 -S
Hepes "
Saponin "
Caffeine "
Myoinositol "
Methansulphonic acid "
Propionic acid "
KH2 P04.2H20
Noradrenaline "
Acetylcholine "
5-Hydroxytryptamine "
Phenylephrine "
KC1 BDH Chemicals, Poole, England
NaCl " V  "
LiCl
KOH (1M titration standard) "
NaOH (1M titration standard) "
CaCl2  (1M titration standard)
MgCl2  (1M titration standard) "
Atropine sulphate 
Glucose 
Sucrose 
IP3

UK14304 
Prazosin 
Nifedipine 
Crude alpha-toxin
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B. PERMEABILIZED MUSCLE

PREPARATIONS

Adult male Wistar rats (250 - 270g) and adult female Dunkin Hartley 

guinea pigs (300 - 350g) were killed by a blow to the back of the head followed 

by exsanguination. Rat anococcygeus was removed as described previously. 

Guinea pig portal vein was found by opening the abdomen along the midline 

and displacing the intestines to one side revealing the vein. A piece of tissue 

of about 1 cm in length was removed below the bifurcation where the vein enters 

the liver. This was placed in a beaker of Tyrode solution (composition shown 

in Table 2.1, column 3) and then transferred to the dissecting dish. Any 

connective tissue and fat were carefully removed under the microscope using 

fine scissors and the adventitia was removed. Once it was clean the vein was 

opened along its length and pinned out. The anococcygeus muscle was cleaned 

up in a similar manner after its removal. Small strips (100/mi wide by 2-3mm 

long) of anococcygeus and of the longitudinal muscle of the portal vein were cut 

using fine scissors.

SETTING UP

The muscle was then mounted between a fixed point and a transducer. 

The fixed point, as shown in Figure 2.3, comprises a brass rod which has three 

pieces of hollow stainless steel tubing with an outside diameter of 2 0 0 /xm and 

an inside diameter of 100/mi (Goodfellows) glued to it (Super glue, Loctite).
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Transducer Pin Monofilament

Fixed Point

Stainless Steel Hollow Tubing

Snared Muscle

Figure 2.3 diagram (components not to scale) of the experimental arrangement 

used to measure tension in permeabilized muscle. The muscle is snared 

between the transducer and a fixed point.
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The piece of tubing extending farthest has been threaded (nylon monofilament) 

such that a loop of thread extends from the bottom to form a snare. A similar 

arrangement exists on the transducer. The transducer and fixed point are 

mounted on a magnetic block and Narashige MM3 micromanipulator. This 

allows them to be moved relative to each other as well as together in 3 planes. 

The muscle is mounted under a dissecting microscope by passing it through 

both snares which are tightened when the muscle is in place to hold it securely. 

The mounted preparation is then transferred to the bath system. Once in the 

bath system the muscle has a resting tension of 0.5mN (rat anococcygeus) or 

O.lmN (guinea pig portal vein) applied. The muscle is allowed to relax for 30 

minutes before the experiment begins.

EQUIPMENT

The bath system comprises of a series of wells which have been cut out 

of a perspex block. Each well holds either 0.95 or 4.65mls of solution. The 

bath system fits into a perspex holder which can be moved in two planes by a 

horizontal and vertical stepper motors. These motors are controlled by an 

Apple II microcomputer. To change solutions the bath system is lowered moved 

along and then raised again under the preparation. This system and 

accompanying software allow large numbers of accurately timed solution changes 

to be preprogrammed. Solutions were continuously stirred by a stainless steel 

paddle

35



TENSION MEASUREMENT

The output of the tension transducer was amplified, filtered at 25Hz and 

displayed on a chart recorder (Linseis 1800). It was also simultaneously 

digitised. The signal was recorded on videotape via an A/D VCR adaptor 

(PCM 4/8, Medical systems corp. Greenvale, N.Y.) and video recorder. The 

data were then transferred from the videotape to an IBM computer (via a data 

translation board) for further analysis.

SOLUTIONS

The solutions used daily were made from stock solutions. The stocks were 

made at regular intervals and stored in the ’fridge’. These were 1M KC1 and 

MgCl2, lOOmM CaEGTA, EGTA and KH2 PO„ and 500mM Hepes. The 

amount of EGTA added to the stock solution was calculated with reference to 

recent reports regarding the purity of EGTA obtained from Sigma (Bers, 1982, 

Miller & Smith, 1984) The appropriate concentrations (Table 2.3) of these 

stock solutions were mixed together and the appropriate amounts (Table 2.3) 

of Na2ATP, Na2CrP and glucose were added. When KCHjSOj was used it was 

either made up fresh from methansulphonic acid and potassium hydroxide or 

prepared then stored in the freezer and defrosted on the day of use.

There are three basic solutions ’10 activating’ (which contains lOmM CaEGTA), 

’10 relaxing’ (which contains lOmM EGTA) and ’0.2 relaxing’ (which contains 

0.2mM EGTA). The full composition of these solutions are shown in Table 2.3. 

The strongly calcium-buffered solutions -’10 activating’ and ’10 relaxing’ - are
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TABLE 2.3.

SOLUTION 10 ACTIVATING 10 RELAXING 0.2RELAXING

(mM) (mM) (mM)
KC1 or KCH3 SO3  120 120 120
Hepes 25 25 25
Na2 CrP 15 15 15
EGTA - 10 0.2
CaEGTA 10 - -
MgCl2  7.0 7.0 7.0
Na2ATP 5.0 5.0 5.0

(pH 7.0 - adjusted with KOH, Ionic strength 0.2M)
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used to examine calcium-sensitivity. To obtain the appropriate free [Ca2+] in 

the bath, these solutions were mixed together. The free [Ca2+] was calculated 

using a computer programme (REACT) written by G. L. Smith and D. J. Miller. 

The affinities of EGTA and the other ligands for calcium and the other metal 

ions have been incorporated. REACT can provide a complete profile of the 

free metal ion concentrations and ligand-mental concentrations. For details of 

the binding constants and correction for pH, ionic strength and temperature 

which were employed, see Smith and Miller, (1985). The weakly calcium 

buffered solution (’0 . 2  relaxing’) was used to examine calcium release from the 

sarcoplasmic reticulum. The [Ca2+] of the ’0.2 relaxing’ solution was increased 

to allow store loading by addition of CaCl2. As the EGTA in the ’0.2 relaxing’ 

solution is not saturated, addition of calcium results in the net release of 

approximately 2 hydrogen ions per calcium-bound at pH 7.0 (Smith & Miller, 

1985). Consequently, the appropriate amount of KOH was added to maintain 

the solution at pH 7.0. All the chemicals and drugs used are listed in Table 2.2.

pH

This is a very important factor since it is in the nature of the 

experimentation that the solutions directly bathe the contractile proteins and 

intracellular organelles. These organelles naturally work at a constant pH of 7.0 

and are affected by changes in pH. Furthermore, the apparent binding 

constants of EGTA and ATP for Ca2+ and Mg2-1" are highly pH sensitive. The 

pH buffer Hepes (25mM) was used to minimise pH changes during contracture.
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The useful buffering range of Hepes is pH 6.5-7.5.

The pH of the experimental solutions was adjusted using a null point 

method. A standard solution was prepared, which was calculated to have the 

same pH (activity) and ionic strength (0.2M) as the solutions. The electrodes 

were allowed to equilibrate in the pH-standard and then all other solutions were 

adjusted to the pH by the addition of KOH. The pH electrodes used in this 

study consisted of separate reference (Corning 003116029) and pH electrodes 

(Corning 0031101J). For details of the composition of the pH standard solution 

see Harrison et al, (1988).

IONIC STRENGTH

Ionic strength (I) in this study has been calculated using the equation: 

le = 1/2 Cj.Zj. Ionic strength is defined as the total of the ionic equivalents (Ie) 

where C; is the concentration of the jth ionic species and z;- is its valency. Ionic 

strength for the large majority of this study has been set at 0.2M. It was 

adjusted by changing the concentration of KC1 in the solutions.

PERMEABILIZATION TECHNIQUES

These are discussed in detail in the Materials and Methods section of 

Chapter 3.
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CHAPTER 3

A COMPARISON OF THREE DIFFERENT METHODS 

USED TO PERMEABILIZE SMOOTH MUSCLE



INTRODUCTION

The ’skinned’ muscle preparation has been in existence for over 35 years. 

A ’skinned’ muscle is one in which the surface membrane has been removed or 

permeabilized to such an extent that there is free diffusion of small ions and 

other solutes between the extracellular and intracellular media. Hence by 

changing the extracellular medium, the intracellular medium and therefore the 

environment surrounding the contractile proteins and intracellular organelles can 

be controlled. Over the 35 years a number of skinning methods have been 

developed. These have had varying degrees of success in the different muscle 

types. The majority of the techniques were developed for skeletal muscle and 

have subsequently been used on cardiac and most recently, smooth muscle. The 

different methods will be discussed in this chapter.

Szent-Gyorgyi (1949) was the first to describe and use a method of 

preparing glycerinated skeletal muscle fibres. This method, which retains the 

native structure of the myofilaments, has been applied to visceral and vascular 

smooth muscle (Briggs, 1963; Filo, Bohr & Ruegg, 1965; Bozler, 1968). In these 

studies the time course of tension development induced by the removal of ATP 

and by the increase of free [Ca2+] was extremely slow in comparison with that 

of the living state. It was thought that the long exposure to glycerol (up to 3 

months in some instances) was damaging the internal organisation of the muscle 

such that it could no longer respond in the same manner as the intact muscle.
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Natori (1954) introduced a new technique which involved the mechanical 

removal of the surface membrane of skeletal muscle fibres. The technique had 

an advantage over the glycerinated fibres in that the intracellular organelles were 

left intact. This, however, is technically a very difficult method for skinning, 

especially in smaller muscle cells, such as cardiac and smooth muscle cells. It 

has, however, been successfully adapted by Fabiato and Fabiato (1973) for use 

in single cardiac muscle cells, but has not yet been applied to smooth muscle 

cells.

Another method of permeabilizing muscle was introduced in 1971 by 

Winegrad. This method involved exposing the muscle, in this instance frog 

ventricular muscle, to a solution which contained 3mM EDTA for 15 mins. 

The muscle was thereafter:

(1) responsive to raising the [Ca2+];

(2) had a membrane potential between +10 and +15 mV; and

(3) could no longer initiate an action potential.

These effects could be reversed by raising the [Ca2+]. Winegrad postulated 

that the muscle was made permeable by the low [Ca2+] and [Mg2+] present in 

the EDTA solution. This technique was also used by two groups (Mrwa, 

Archtig, & Ruegg, 1974; Baguet & Marchand-Dumont, 1975) to permeabilize 

smooth muscle. Both these groups found that, following this treatment, the 

muscle was as sensitive to calcium as a muscle treated with glycerol. However, 

they both reported that the muscle showed slower rates of contraction and 

relaxation than the intact muscle. Baguet and Marchant-Dumont (1975)
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reported that the anterior byssus retractor muscle (ABRM) took twice as long 

to contract as a glycerol-treated muscle and six times longer to relax. This 

group also reported that the muscle responded in a similar manner whether it 

is EDTA- or Triton-treated. However, the exposure to Triton X-100 (see later) 

lasted only 1 0 -2 0 s and might have been inadequate to ensure that the 

preparation had been permeabilized through its entire radius. In an effort to 

reduce the reversibility of the EDTA technique and to achieve a more profound 

permeabilization, McClellan and Winegrad (1978) used EGTA (3mM) to reduce 

the [Ca2+] and incubated rat cardiac muscle for 12-18 hours at 0-4°C. Rat 

cardiac muscle treated in this manner was still responsive to calcium. However, 

this responsiveness was increased further after the muscle was treated with the 

non-ionic detergent Triton X-100. McClellan and Winegrad (1978) explained 

this discrepancy as a result of the removal of membrane bound enzymes by 

Triton X-100 and indeed when the phosphodiesterase inhibitor theophylline was 

added the calcium sensitivity of the muscle was similar to that of the Triton 

X-100 permeabilized preparation. However, the effect that theophylline would 

be having directly on the contractile proteins was not explored.

There is much evidence for the ineffectiveness of the EGTA-skinning 

technique for cardiac (Miller, 1979; Kentish & Jewell, 1984; Miller, Elder & 

Smith, 1985; Miller & Smith, 1985) and smooth muscle (Cornelius 1980). Using 

ultrastructural and microanalytical techniques, Miller et al (1985) showed in rat 

trabeculae that La and LaEGTA could gain entry to muscles which had been 

permeabilized with Triton X-100 and Saponin but not EGTA permeabilized
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muscle. Kentish and Jewell (1984) and Miller and Smith (1985) reported that 

EGTA-treated and Triton X-100-treated preparations had different response 

times to calcium and responded very differently when ATP and CrP were 

removed. Both sets of authors reported that EGTA-treated preparations had 

a lower apparent diffusion coefficient for calcium than Triton X-100-treated 

preparations. In addition, Miller and Smith (1985) reported that 

EGTA-treatment was not dependent on a low extracellular [Ca2+]. That is, the 

muscle performed in the same manner regardless of whether the disruption 

solution had a low [Ca2+] or not. There is evidence that it is ATP which causes 

the permeabilization (Gomperts, 1983). Tatham and Lindau (1990) have shown 

that it is the ATP'*' form of ATP which causes the formation of the pores in 

mast cells. After exposure to ATP'*' at a concentration as low as 4jiM ethidium 

bromide and l-(4-trimethylammoniumphenyl)-6-phenyl-l,3,5-hexatriene can gain 

access to the intracellular medium.

Another chemical skinning technique which has been developed involves 

the use of agents that insert into the membrane and disrupt the structure. The 

two main methods used are: (1) the non-ionic detergent Triton X-100 and (2) 

Saponins. Triton X-100 dissolves all membranes including the internal 

membranes (mitochondria and sarcoplasmic reticulum). This essentially leaves 

only the contractile proteins and collagen-elastic networks. Triton X-100 was 

first used to skin smooth muscle by Gordon (1978). It has since been used to 

permeabilize many types of smooth muscle quite successfully. An advantage of
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this technique is that the tension produced by the muscle is equal to that by the 

intact muscle which is not the case in glycerol or EDTA-treated muscle.

Saponins are alkaloids some of which are extracted from plants. The 

saponin available commercially (Sigma and BDH) is derived from the sea 

cucumber Actinopyga agassiza, another which is widely used is derived from the 

alpha-pha plant. Ohtsuki et al (1978) reported that saponin was able to form 

pores in red blood cell ghosts. Saponin acts on cholesterol and, at certain 

concentrations, will selectively remove the cholesterol in the sarcolemma and not 

affect the intracellular membranes. This is believed to be due to the fact that 

these internal membranes contain less cholesterol than the sarcolemma 

(Martonosi, 1968; Waku, Uda & Nakazawa, 1971). This method was applied 

to smooth muscle almost simultaneously by Endo et al (1977) and Saida and 

Nonomura (1978). Both these groups of workers showed that the maximum 

calcium-activated force produced was equal to the maximum tension produced 

by a potassium contracture in the intact muscle. Endo et al (1977) also showed 

that caffeine could release calcium from the intracellular store indicating that the 

treatment had left the sarcoplasmic reticulum intact and functional. Although 

the internal stores of calcium are left intact after this method of permeabilizing 

they cannot be stimulated by activating the surface membrane bound receptors 

(Itoh, Kuriyama & Suzuki, 1983).

These two methods of permeabilizing (Triton X-100 and saponin) have 

particular problems when used in smooth muscle which do not apply to skeletal 

and cardiac muscle. Many workers in the field have reported that
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calcium-activated force in permeabilized muscle deteriorates with time (Endo et 

a l , 1977; Saida & Nonomura, 1978; Gordon, 1978; Ruegg & Paul, 1982; Itoh, 

Kanmura & Kuriyama, 1986). Ruegg and Paul (1982) reported results obtained 

with Triton X-100-treated porcine carotid artery. The inclusion of 4/xM 

calmodulin prevented the decline in calcium-activated force. Itoh et al (1986) 

presented similar data from saponin permeabilized mesenteric artery. 

Contractions induced by repetitive application of 10/jM [Ca2+], declined to 

78% of the first contraction by the third. This was accompanied by a depression 

in calcium sensitivity. This decline could be prevented by including 0.1/iM 

calmodulin in the mock intracellular bathing medium. Kossman, Furst and Small 

(1987) after using biochemical and immunohistochemical analysis of both saponin 

and Triton X-100 permeabilized taenia coli found changes in the protein content 

of the muscle and the distribution of the protein within the muscle. Around 

50% of myosin and filamin were lost at the permeabilizing stage for both 

detergents and 30% of actin after Triton X-100 and 15% after saponin skinning. 

Subsequent cycles of contraction and relaxation resulted in accumulated loss, 

notably of myosin and filamin, so that after the third contraction as little as 2 0 % 

and 40% respectively of the original complement of these proteins remained in 

the muscle strips. These changes in protein composition were accompanied by 

a drastic redistribution of the proteins in the muscle cells, most notably of 

myosin.

Another method of permeabilizing, first reported in 1979 by Cassidy, Hoar 

and Kerrick, has recently become more widely used (Nishimura et al; 1988;
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Kitazawa et al; 1989). This involves alpha-toxin, a transmembrane pore-making 

exoprotein produced by Staphylococcus aureus. Alpha-toxin (Mol. wt. 33 000) 

binds to cell surfaces and forms hexamers with other toxin molecules which 

insert into the plasma membrane to form pores of 2-3 nm diameter. The 

limited pore size allows equilibration of the cytoplasm with inorganic ions and 

small molecules such as ATP and EGTA but prevents the passage of proteins 

(including alpha-toxin itself) into and out of the cell. This technique has the 

advantage over the other techniques that the membrane bound receptors remain 

intact. This has allowed these workers to investigate the second messenger and 

G-protein transduction mechanisms.

The aim of the study undertaken in this chapter was to contrast and 

compare treatment with (1) saponin; (2) EGTA and (3) alpha-toxin as methods 

for permeabilizing the sarcolemma of rat anococcygeus muscle strips.
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MATERIALS AND METHODS

PREPARATION

The preparation used throughout was the anococcygeus muscle of the rat. 

This was harvested and mounted on the tension measurement system as 

described in Section B (Permeabilized Muscle) of Chapter 2.

SOLUTIONS

The composition of the solutions used and the method used to prepare 

them are detailed in Section B Chapter 2. The solution composition is given in 

Table 2.3. Ionic strength was altered by varying the amount of KC1 in the 

solution.

CALMODULIN

It has already been stated in the introduction that it is essential to have 

calmodulin present in the bathing medium of saponin-treated preparations to 

obtain reproducible contractions in response to calcium. Calmodulin is, however, 

very expensive from commercial sources. For this reason the calmodulin used 

in the experiments detailed in the results section was made at the National 

Institute of Medical Research, Mill Hill, London under the tutelage of Dr. 

Katalin Torok.

Calmodulin is extracted in two stages, first all proteins are extracted and 

secondly all proteins that bind calcium are extracted. The protein is extracted 

from bovine brain by first homogenizing the brain. The homogenate is then
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centrifuged (1400 r.p.m. for 20mins at 4°C). The supernatant is then mixed with 

cellulose gel. Cellulose binds any proteins which are in the supernatant. 

Calmodulin and like proteins are removed from the cellulose by running a salt 

gradient, with a pH of 5.9, through the cellulose which has now been packed 

into a column. The effluent from the column is collected by a fraction collector. 

The fractions which contained protein (this was detected by a dual wavelength 

spectrophotometer scanning at 265nm and 280nm) were then mixed with 

phenylsepharose which had 0.5mM calcium added to it. This mixture, of 

fractions, phenylsepharose and calcium, is then added to a column. Any 

calmodulin present in the fractions from the cellulose column will bind to the 

calcium within the phenylsepharose. To remove the calmodulin an EGTA 

containing solution is passed down the phenylsepharose column. EGTA is able 

to remove calmodulin from the column because of its ability to bind calcium. 

Again, fractions are collected by a fraction collector and the protein content 

measure by a dual wavelength spectrophotometer set at 265nm and 280nm. The 

fractions containing protein are then freeze dried until they become a fine 

powder.

An assay for calmodulin is used at all the stages of the extraction. Also, 

at the end of the extraction procedure the protein that is suspected to be 

calmodulin is tested against a protein known to be calmodulin using gel 

electrophoresis.
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PERMEABILIZATION TECHNIQUES

(1) Saponin: the mounted strip of muscle was exposed in ’0.2 relaxing’ 

solution to 50/zg/ml saponin for 30 minutes and then washed several times in ’0.2 

relaxing’ solution.

(2) EGTA: the muscle strips were bathed in the following solution for 4 

hours at a temperature of 4°C. The solution contained (mM): K, 130; Na, 40; 

ATP, 5; EGTA, 10 and HEPES, 25. The concentrations of free [Ca2+] and 

[Mg2*1"] resulting from contamination was InM and 1.2^M respectively (Smith, 

1985). The solution had a pH of 7.0. The EGTA-treatment was similar to a 

procedure developed for cardiac muscle by McClellan and Winegrad (1978). 

After treatment the muscle was mounted and further treated as described in 

Chapter 2, Section B.

(3) Toxin: Figure 3.1 A shows an example of the tension response during 

the protocol used to permeabilize the mounted strips of rat anococcygeus 

muscle. The strip of anococcygeus was initially exposed to 30/iM noradrenaline 

while in Tyrode’s solution. This caused a contraction in the muscle which was 

maintained until the noradrenaline was removed. The preparation was then 

placed in a mock intracellular solution (63/xM Ca2+) which caused a transient 

contraction. After 10 minutes in this solution, alpha-toxin from Staphylococcus 

aureus (2mg/ml) was added. This caused a slow rise in tension which eventually 

reached a plateau. Tension presumably rose as a result of the toxin forming
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Figure 3.1 shows the solution protocol used to toxin-permeabilize rat 

anococcygeus muscle. The solution changes are indicated by the hatched bars 

below each tension record. In Panel A the solution changes include the addition 

of crude alpha-toxin (2mg/ml) and in Panel B alpha-toxin was omitted from the 

bathing medium.
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pores in the surface membrane enabling calcium to gain access to the contractile 

proteins. Once tension had reached a plateau the toxin was removed. This 

produced little change in tension. On the other hand, lowering the [Ca2+] 

caused a rapid relaxation. Subsequent exposure of the muscle to caffeine or 

noradrenaline caused a transient contraction. Panel B of Figure 3.1 shows the 

response of another strip of anococcygeus muscle subjected to a similar protocol, 

but without the toxin. Under these circumstances lowering [Ca2+] had little 

effect, and neither caffeine nor noradrenaline caused a significant response 

compared with that illustrated in panel A.
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RESULTS

IS THE MUSCLE PERMEABILIZED?

Reuben and Wood (1979) listed some criteria to help determine whether 

a muscle was permeabilized. These were:

( 1 ) that development of rigor and relaxation from rigor should occur within 

seconds of MgATP removal or addition;

(2) the responses of chemically skinned fibres to variations in low MgATP 

concentrations should be identical to those of mechanically skinned fibres; and

(3) the responses of chemically skinned fibres measured in (1) or (2) should not 

be quantitatively affected either by mechanical removal of the sarcolemma or 

by treatment of the preparation with non-ionic detergents that destroy the 

sarcolemma.

Bearing the first of these three criteria in mind, I examined the effect of 

removing ATP and CrP from maximally calcium-activated muscles. This was 

carried out on up to six muscles which had previously been treated in the 

following way: (A) exposed to ’0.2 relaxing’ solution without any agents to cause 

permeabilization, hence the sarcolemma was intact in these muscle strips; (B) 

saponin-treated; (C) EGTA-treated and (D) alpha-toxin-treated. As shown in 

Figure 3.2, raising the [Ca2+] from 0.08/iM to 63/xM caused a maintained 

contraction in all four types of treated muscle, 63/xM Ca2+ produces a maximal 

contraction to calcium. This is demonstrated for alpha-toxin-treated rat 

anococcygeus in Figure 4.8. Removing ATP and CrP produced a profound
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Figure 3.2 shows the effect of removing ATP and CrP (black bar) on maximum 

calcium-activated force (lOmM-total EGTA) in A. intact depolarised muscle; B. 

saponin-treated muscle; C. EGTA-treated muscle and D. alpha toxin-treated 

muscle. Changes in [Ca2+] are shown by the step lines under the trace.
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relaxation in the depolarised intact muscle (A). However, it caused a further 

contraction in the other three types of treated muscle. This further contraction 

was not maintained in any of the treated muscles. The muscles contracted 

transiently and then relaxed back to the previous tension level. This type of 

response has also been reported in saponin-treated preparations (Somlyo et al, 

1988; Itoh et al, 1986). The authors suggest that the tension produced in the 

absence of ATP and CrP is due to attachment of rigor crossbridges. When the 

[Ca2+] was lowered in the rigor solution the treated muscle did not relax. The 

muscles only relaxed when they were bathed in a solution containing ATP and 

CrP and a low [Ca2+]. The relaxation upon removal of ATP and CrP observed 

in the intact depolarised muscle has been observed by other workers and is 

thought to be the result of removing the purinoreceptor activation of these 

preparations (Gillespie, 1972; Burnstock et al, 1978).

The success of the various ’skinning’ techniques was further examined by 

measuring the responses of muscles to stimuli which are known to have a direct 

effect on the contractile proteins. The stimuli chosen were 100/iM cAMP and 

lOmM Pf. Both these compounds are known to suppress force in muscles 

which have either been skinned using Triton X-100 (Meisheri & Ruegg, 1983; 

Pfitzer et al, 1984; Ruegg & Pfitzer, 1985; Schneider, Sparrow &Ruegg; 1981; 

Gagelman & Guth; 1987) or saponin (Itoh et al, 1981; Itoh, Kanmura & 

Kuriyama, 1986). Four representative traces (one from up to six examples for 

each treatment) are shown in Figure 3.3 from (A) an intact muscle, i.e. a muscle 

which has received no treatment, (B) a saponin-treated muscle,
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Figure 3.3 shows the effect of 100/xM cAMP (unfilled bar) and lOmM phosphate 

(filled bar) on maximum calcium-activated force (lOmM-total EGTA) in A. 

intact depolarised muscle; B. saponin-treated muscle; C. EGTA-treated muscle 

and D. alpha toxin-treated muscle. Changes in [Ca2+] are shown by the step 

lines under the trace.
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(C) EGTA-treated muscle and (D) an alpha-toxin-treated muscle. The muscles 

were first maximally calcium-activated and all four muscles contracted when 

[Ca2+] was raised. The calcium-channel blocker nifedipine (10/xM) inhibited the 

calcium-activated tension developed by the intact preparation, but had no effect 

on either saponin- or EGTA-treated preparations (results not shown). Both 

lOO/iM cAMP and lOmM P, cause a fall in tension in all the treated muscles, 

however, they had no effect in the intact depolarised muscle. The rate of 

relaxation in response to 100/iM cAMP was similar in all the muscles, but the 

rate of relaxation observed with lOmM P, was slower in EGTA-treated muscle 

than in the other two types of treated muscle.

A common method to check if the muscle is completely permeabilized, 

based on an observation made in saponin-skinned smooth muscle, is to examine 

whether the muscle is still responsive to agonist stimulation. Itoh, Kuriyama and 

Suzuki (1983) reported that fully permeabilized rabbit mesenteric artery was no 

longer able to respond to noradrenaline. Figure 3.4 shows how the different 

muscles respond to noradrenaline after they have been treated. Only the 

saponin-treated muscle failed to respond to noradrenaline. The response to 

noradrenaline seen in EGTA- and toxin-treated muscle was similar to that of 

the intact muscle and suggests that these treatments leave receptors functional 

as has been reported by Nishimura et al (1988) and Kitazawa et al (1989) for 

alpha-toxin permeabilized vascular smooth muscle.
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Figure 3.4 shows the response to 30/xM noradrenaline (NA, unfilled bar) in the 

presence of 0.08/xM calcium (0.2mM-total EGTA) in A. intact depolarised 

muscle; B. saponin-treated muscle; C. EGTA-treated muscle and D. 

alpha-toxin-treated muscle.
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AN EXAMINATION OF THE REDUCTION IN MAXIMUM CALCIUM ACTIVATED-FORCE 
IN SAPONIN-, EGTA- AND ALPIIA-TOXIN-TREATED SMOOTH MUSCLE

This part of the study was undertaken to examine and compare the decline 

in the amplitude of maximum calcium-activated force (Tmax) in rat 

anococcygeus. An attempt was also made to prevent this decline in saponin- 

and alpha-toxin-treated muscle. These experiments were all carried out in the 

same manner: after the muscle had been treated, it was maximally activated by 

raising the [Ca2+] (63^M) in the bathing medium. The muscle was induced to 

contract for 1 0  minutes and then it was relaxed for 1 0  minutes by lowering the 

[Ca2+] in the bathing medium. This was repeated either 6  or 10 times. The 

individual experiments were all carried out on up to 6  different muscle strips. 

Figure 3.5A shows a series of maximum calcium-activated contractions in an 

alpha-toxin permeabilized smooth muscle. The [Ca2+] was changed as indicated 

below the tension record. It can be seen that the time course of the 

calcium-activated contractions changes as the contraction amplitude decays. This 

is best exemplified when the contractions are superimposed (Figure 3.5B). This 

effect was also seen in saponin-permeabilized muscle (data not shown). The 

change in time course is unlikely to be due to a reduced calcium sensitivity 

because raising the [Ca2+] above 63/xM, after the amplitude of the contractions 

evoked by calcium had declined, did not produce any more tension.

Figure 3.6 shows the decline in the amplitude of Tmax after the three 

different permeabilization techniques. The decline is greatest in saponin-treated 

muscle. Tension has fallen to a mean value of less than 20% by the 6 th 

contraction. Tmax also declines in alpha-toxin-treated muscle, but not to the
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Figure 3.5A shows the decline in the amplitude of maximum calcium-activated

force upon repetitive application of calcium in an alpha-toxin permeabilized rat

anococcygeus muscle strip. The changes in [Ca2+] are shown as steps

underneath the tension record. Figure 3.5B shows three sample tension

responses to repetitive exposure to calcium (shown by the step line below the

traces) from the same muscle as used in Panel A. 1st, 4th and 8 th indicate the

number of the contraction in the repeat protocol.
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Figure 3.6 shows the decline in maximum calcium-activated force expressed as 

a percentage of the first maximum calcium-activated contraction for 

saponin-treated (open circle), EGTA-treated (open square) and 

alpha-toxin-treated (open triangles) muscle strips. (mean±S.D. n=3-6).
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same extent as in saponin-treated muscle. Tension falls to approximately 50% 

by the 5th contraction and even by the 10th has not fallen below 40%. 

EGTA-treated muscle shows no reduction in Tmax. However, the mean 

maximum tension produced by calcium in EGTA-treated muscle was only a third 

of that produced by saponin-treated muscle. Figure 3.7 shows the individual 

tensions produced by the first contraction in response to calcium in the three 

different treated muscles. EGTA-treated muscle produce less tension than 

either saponin or alpha toxin-treated muscle and saponin-treated muscle 

produces less than alpha-toxin-treated muscle. In preparing the EGTA-treated 

muscles the success rate was very low - only one in three muscle strips were 

responsive enough to calcium to allow further experimentation.

Further experiments were carried out to study the characteristics of the 

decline in Tmax. The decline might be a function of the number of 

contractions, or simply the time after saponin-treatment. In order to distinguish 

between these two possibilities a saponin-treated muscle was activated, allowed 

to relax, then activated again one hour later. The reduction in the size of the 

contraction was compared with that in the preparations which had been 

repeatedly contracted and relaxed for one hour. The results shown in Figure 

3.8 indicate that the fall in the size of the contracture was independent of 

whether the muscle had been activated during this period. This result is 

consistent with the hypothesis that the fall in force is due to the steady loss of 

a factor from the preparation with time rather than some accumulating damage 

as a result of repeated cycles of activation and relaxation.
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Figure 3.7 shows the peak tension (mN) produced by the initial maximum 

calcium-activated contraction in saponin-treated, EGTA-treated and 

alpha-toxin-treated muscle strips.
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Figure 3.8 compares the decline of maximum calcium-activated force in 

saponin-treated preparations during repetitive contractions in response to 

calcium (open circles) or which have contracted once, allowed to relax and then 

contracted again (filled squares) one hour later. (mean±S.D. n=3-6)
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As mentioned in the introduction to this chapter, the cytosolic protein 

calmodulin had been reported to enhance calcium-activated force and its loss 

from the preparation might be responsible for the decay in calcium-activated 

force. The decline in Tmax in saponin-treated rat anococcygeus was, therefore, 

examined in the presence of 1/jM calmodulin. Figure 3.9A shows that 

calmodulin only had a small effect on the decline. These experiments were 

carried out at an ionic strength of 0.2M. Since calcium’s affinity for calmodulin 

is increased at lower ionic strengths (Wolff et al, 1977) the next set of 

experiments was carried at an ionic strength of 0.07M. The results in figure 

3.9B show that this procedure slows the decline, but does not prevent it. If 

calmodulin (1/iM) (Figure 3.9C) is present in the solutions with a lower ionic 

strength, the decline is still slower. Other interventions were tried which failed 

to have any effect on the decline. These included experiments using solutions 

with ( 1 ) a pH of 6 . 8  or 7.4 to examine the pH used by other workers and (2) 

a higher ionic strength - (0.27M) to examine whether this had the opposite 

effect to low ionic strength.

The decline in the amplitude of Tmax toxin-treated muscle was less than 

that in saponin-treated muscle. The decline in alpha-toxin-treated muscle was 

prevented at an ionic strength of 0.07M. This is shown in figure 3.10.
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Figure 3.9 A, B & C show the decline in maximum calcium-activated force 

expressed as a percentage of the first maximum calcium-activated contraction in 

saponin-treated muscle. Panel A shows the decline in muscles bathed in 

solutions with (closed circles) and without (open circles) calmodulin (1/xM) 

present in the bathing solution (mean±S.D. n= 3-6 ). Panel B shows the decline 

in muscles bathed in solutions with an ionic strength of 0.2M (open circles) and 

0.07M (closed triangles) (mean±S.D. n=3-6. Panel C shows the decline in 

muscles bathed in solutions with (i) an ionic strength of 0.07M which contain 

calmodulin (l/iM)(closed squares) or (ii) an ionic strength of 0.2M which do not 

contain calmodulin (ljuM) (open circles) (means±S.D. n=3-6).
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Figure 3.10 shows the decline in maximum calcium-activated force expressed 

as a percentage of the first maximum calcium-activated contraction in 

alpha-toxin-treated muscle bathed in solutions with an ionic strength of 0.2M 

(open triangles) and an ionic strength of 0.07M (closed triangles). (mean±S.D., 

n=3-6).
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The size of the initial maximum calcium-activated contraction altered as 

the conditions used to examine the repetitive calcium-activated force were 

changed. These are summarised in Figure 3.11. Mean tension produced at low 

ionic strength (0.07M) was higher than that produced at the higher ionic 

strength (0.2M) (0.5mN to 0.8mN). Calmodulin increased this further to l.OmN. 

Toxin-treated muscle had a mean tension of 0.8mN and this was increased to 

l.OmN at an ionic strength of 0.07M.
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Figure 3.11 shows the peak tension (mN) produced by the initial maximum 

calcium-activated contraction after saponin-treatment (1-4) and 

alpha-toxin-treatment (5 & 6 ) with the following alterations to the skinning and 

activating solutions: (2) 1/xM calmodulin; (3) ionic strength of 0.07M; (4) 1 /iM 

calmodulin and an ionic strength of 0.07M; and (6 ) ionic strength of 0.07M.
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DISCUSSION

The aim of the work described in this section was to compare three 

potential permeabilization techniques and to decide which was best for further 

use. The first problem was to test whether the different techniques actually 

permeabilized the muscle. The effectiveness of the three permeabilizing 

techniques was established by comparing the responses from the permeabilized 

muscles with those from the intact muscle. Bathing the intact muscle in a mock 

intracellular solution depolarised the muscle. The muscle now contracted in 

response to extracellularly applied calcium. The ’treated’ muscles also contracted 

in response to externally applied calcium. However, unlike the other muscles 

the intact muscle only contracted in response to a [Ca2+] which maximally 

contracted the treated muscles i.e. 63/iM. This contraction could be blocked by 

application of 1/iM Nifedipine which is known to block voltage operated calcium 

channels (Spedding, 1987). The results imply that the major route for calcium 

entry in intact preparations is via voltage operated calcium channels. This is in 

contrast to the maximum calcium-activated force produced by the other three 

permeabilizing techniques, which was not affected by nifedipine.

All three of the ’treated’ muscles responded to removal of ATP and CrP 

in a manner which satisfies the criteria of Reuben and Woods’ (1979) for a 

’skinned’ muscle. That is, they all contracted when ATP and CrP were 

removed from the bathing medium and remained contracted when the [Ca2+] 

was lowered in the rigor solutions. This indicated that the muscles had formed
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rigor crossbridges. Again this was very different to the way in which the intact 

muscle responded; where removal of ATP and CrP caused relaxation and 

addition of ATP caused a transient contraction. The ’treated’ muscles also 

responded very differently to cAMP and Pz- from the intact depolarised muscle. 

Both agents are known to act on the contractile proteins and cause a reduction 

of maximum calcium-activated force. No relaxation was evoked in intact 

preparations, but did occur in the permeabilized muscles. The EGTA-treated 

muscle did, however, respond differently from the others, as shown in Figure 3.2, 

being slower to respond to Pz and calcium than the others. This might be 

explained if the apparent diffusion coefficient was lower after EGTA-treatment. 

Similar behaviour was reported in EGTA-treated cardiac muscle (Kentish & 

Jewell, 1984; Miller & Smith, 1985). The lower diffusion coefficient in 

EGTA-treated muscle to Pz might also explain why it is slower to respond to 

calcium and produced less tension than saponin- or toxin-treated preparations, 

the muscle may be accumulating Pz- which will depress calcium-activated force.

Another method to determine the extent of permeabilization in 

saponin-treated muscle was to examine the response to noradrenaline. Itoh et 

al (1983) noted that once the muscle was completely permeabilized (i.e. the 

permeabilized muscle was producing the same degree of tension in response to 

Ca2+ as the intact muscle in response to K+) that the response to 

noradrenaline was abolished. They used this as a measure of the degree of 

permeabilization. In the present study the response to noradrenaline was 

abolished only after saponin-treatment, but persisted after both EGTA- and
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alpha-toxin-treatments. Nishimura et al (1988) and Kitazawa et al (1989) had 

both previously reported that alpha-toxin permeabilized vascular smooth muscle 

retains its ability to respond to noradrenaline. The present study is the first 

report that EGTA-treated muscle also retains functional membrane bound 

receptors.

The fact that alpha-toxin-treated anococcygeus smooth muscle retains 

functional membrane bound receptors is not evidence that the muscle is not 

permeabilized. Unlike the intact muscle, alpha-toxin-treated muscle can contract 

repeatedly upon noradrenaline exposure (e.g. Figure 4.5). The intact muscle 

cannot contract more than once, probably because the bathing [Ca2+] is too low 

to allow the intracellular stores to load. This experiment of evoking repeat 

contractions in response to noradrenaline was not attempted in EGTA-treated 

muscle. Hence it is more difficult to claim that the muscle is permeabilized 

even although it can respond to noradrenaline. However, the evidence from the 

ATP, cAMP and P, experiments suggest that the muscle is permeabilized

It is not known why saponin-treated muscle loses its ability to respond 

to noradrenaline and other agonists. There are several possibilities:

( 1 ) as saponin removes the cholesterol from the surface membrane this might 

dislodge the protein receptors or inactivate them;

(2 ) the second messengers produced by the agonists which promote the signal 

internally, for example Ins(l,4,5)P5, diacylglycerol (DG) and cAMP, are produced 

from membrane-bound precursors which might be lost during saponin-treatment.

The different responses of these three types of ’treated’ muscle to
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noradrenaline could be connected with the differences in the rate and extent of 

the decline in Tmax. The larger the ’pores’ produced by the permeability 

treatment, the greater the chance of a loss of receptor function and the more 

extensive the loss of essential cytosolic proteins and thus of calcium-activated 

force. The change in time course of Tmax might also be explained by the 

gradual loss of cytosolic enzymes and other proteins. The amplitude of Tmax 

declines more slowly in toxin-treated muscle and not at all in EGTA-treated 

muscle and toxin-treated muscle at low ionic strength. The decline in 

saponin-treated preparations is reduced by including calmodulin in the bathing 

media, indicating that it is being lost from the muscle during this permeabilizing 

technique. Employing conditions which improve the affinity of calmodulin for 

calcium (i.e. lowering ionic strength) has a similar beneficial effect. Kossman 

et al (1987) have already shown that saponin-treatment allows the loss of 

proteins from the muscle. The slower decline observed in toxin-treated muscle 

can probably be attributed to the fact that it produces smaller ’pores’ in the 

membrane than saponin. This interpretation has been proposed by Thelestam 

and Mollby (1979) who examined 38 cytolytic agents, including saponin and 

alpha-toxin from Staphylococcus aureus. They attempted to classify the different 

agents on the basis of their effect upon the leakage pattern of three different 

labels; nucleotides, alpha-aminoisobutyric acid and R N A  Saponin was found to 

produce ’pores’ in the membranes of human fibroblasts which allowed equal 

leakage of the high molecular weight RNA and the lower molecular weight 

nucleotides and alpha-aminoisobutyric acid. Alpha-toxin-treatment, on the other
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hand, only resulted in the leakage of the lower molecular weight molecules 

(nucleotides and alpha-aminoisobutyric acid) and retained the higher molecular 

weight RNA. This would indicate that saponin produces larger ’pores’ in the 

membrane than alpha-toxin. The ’pores’ produced by alpha-toxin have been 

measured to be 2-3nm in diameter (Fussle et al, 1981; Ikigai & Nakae, 1987) 

which would allow the free diffusion of molecules with a molecular weight of 

less than 4000. Consequently, the toxin itself cannot enter and the contractile 

proteins and calmodulin cannot be lost (Hohman, 1988).

Using a lower ionic strength of 0.07M helped to minimise the decline in 

the amplitude of Tmax. This could indicate that an ionic strength of 0.2M was 

higher than the muscle’s natural ionic strength or it might mean that some other 

factor which normally increases calmodulin’s affinity for calcium has also been 

lost from toxin- and saponin-treated muscle. At low ionic strength (0.07M), 

toxin-treated muscle behaved like EGTA-treated muscle which might indicate 

that any such factor lost which naturally increases calmodulin’s affinity for 

calcium is not lost from EGTA-treated muscle. Other factors obviously need to 

be restored to saponin-treated preparations to prevent completely the decline 

in the size of Tmax. Some possible candidates are myosin, actin, phosphatases 

and protein kinase C.

In conclusion, all three techniques appear to permeabilize muscle. 

However, they have different properties and suitability for further 

experimentation. These different properties arise because each technique 

produces different sized ’pores’ in the surface membrane. Saponin appears to
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produce the largest. This results in the loss of agonist-induced responses and 

a rapid decline in the amplitude of Tmax. The reduction can only be partially 

prevented by including the (expensive) protein calmodulin to the bathing 

solutions and using low ionic strength to favour its affinity for calcium. 

Toxin-treatment produces the next largest ’pores’. Such muscles retain their 

ability to respond to agonist stimulation and low ionic strength is sufficient to 

prevent the decline in the amplitude of Tmax. EGTA-treatment of muscle 

appears to produce the smallest ’pores’ and also to retain its ability to respond 

to agonist stimulation, showing no decline in the amplitude of Tmax. However, 

EGTA-treated muscle only produces a third of the tension produced by 

equivalent saponin- or toxin-treated muscles. Overall, alpha-toxin-treated muscle 

was considered to be the most suitable permeabilization technique and was used 

throughout the rest of the study.
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CHAPTER 4

THE EFFECT OF GTP ON NORADRENALINE- AND 

CALCIUM-ACTIVATED FORCE IN ALPHA-TOXIN 

PERMEABILIZED SMOOTH MUSCLE FROM 

GUINEA PIG PORTAL VEIN AND RAT ANOCOCCYGEUS.



INTRODUCTION

The involvement of guanosine triphosphate (GTP) in transmembrane 

signalling is a fairly recent discovery. It was in 1971 that Rodbell et al reported 

that GTP was required for hormonal activation of adenylyl cyclase. Shortly after 

this Harwood, Low and Rodbell (1973) showed that GTP in the presence of 

several hormones could both stimulate and inhibit adenylyl cyclase and that this 

effect could also be produced by Gpp(NH)p, a non-hydrolysable analogue of 

GTP. It was discovered that a protein was involved when Pfeuffer (Pfeuffer & 

Helmriech, 1975; Pfeuffer, 1977) using GTP-sepharose chromatography was able 

to partially resolve a protein fraction that conferred regulatory properties on 

adenylyl cyclase. At around the same time Ross and Gillman (1977, 1980) 

showed that a protein extracted from plasma membranes would confer guanine 

nucleotide-mediated regulation of adenylyl cyclase to membranes devoid of this 

activity. This protein has since been purified "(Northup et al, 1980; Stenweis et 

al, 1981) and is termed the G-protein. Cassel and Selinger (Cassel & Selinger, 

1977, 1978; Cassel, Levkowitz & Selinger, 1977) demonstrated that hormones 

working through adenylyl cyclase stimulate the exchange of GTP for GDP 

through a cholera toxin-sensitive GTPase. This has led to the confirmation that 

activation of adenylyl cyclase involved the concerted action of three proteins, the 

stimulatory hormone receptor, the catalytic protein and a G-protein. It was 

proposed that the activated agonist receptor complex forms a ternary complex 

with the G-protein (Kent, Delean & Lefkowitz, 1980; Stadel, Delean &
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Lefkowitz, 1982) that results in the exchange of GTP for GDP. The activated 

G-protein then combines with the inactive enzyme to form the active enzyme 

species. The lifetime of this active complex is determined by the GTPase 

activity that is inherent in the G-protein. Conversion of GTP to GDP by the 

GTPase returns the active enzyme and G-protein to an inactive one (Cassel et 

al, 1977). That is, stimulatory hormones promote an ’on’ reaction that involves 

the exchange of GTP for GDP, and GTPase activity catalyses an ’off reaction. 

The marked activation of adenylyl cyclase afforded by stable analogues of GTP 

(Rodbell et al, 1971) can therefore be explained by their resistance to hydrolysis 

by the GTPase which prolongs the steady-state level of the activated enzyme.

G-proteins exist as a-p-y heterotrimer (Northup et al, 1980; Sternweis et 

al, 1981; Bokoch et al, 1983,1984; Codina et al, 1983). The a-subunit contains 

the GTP-binding site and the GTPase activity. The ,8 -subunit and 7 -subunit are 

usually found in tight association even under activating conditions. It is the 

a-subunit which varies in size amongst the different G-proteins. On the whole 

the p- and 7 - subunits are essentially the same in the different G-proteins. In 

the non-activated cell the G-protein consists of GDP bound to an associated 

heterotrimer (Ga-£-7 .GDP). When the hormone binds to the receptor (HR) it 

causes the dissociation of Ga-0 -7 .GDP (Brandt & Ross, 1986) and association 

of GTP to give HR.Ga.GTP + G^-7 . The HR binding also causes an increase 

in the intrinsic GTPase activity. The dissociation of the G-protein subunits 

promotes the dissociation of the HR (Hekman et al, 1984). The Ga.GTP 

complex binds to and activates the enzyme. This activation is switched off by
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the conversion of GTP to GDP and reconstitution of the G-protein subunits is 

promoted (Rojas & Birnbaumer, 1985).

There are at least four different G-proteins which appear to control several 

enzyme systems. More than one agonist cooperates with each G-protein. The 

four main functions regulated by G-proteins are:

( 1 ) activation of adenylyl cyclase;

(2 ) inhibition of adenylyl cyclase;

(3) stimulation of retinal cyclic GMP phosphodiesterase and;

(4) stimulation of phosphoinositide hydrolysis.

These functions are reviewed by Gillman (1987). For the purposes of this 

chapter I will concentrate on the G-protein interaction with the last of these 

functions - stimulation of phosphoinositide hydrolysis.

Many hormones mobilise intracellular stores of calcium by virtue of their 

ability to stimulate the phosphodiesteratic cleavage of phosphatidylinositol(4,5) 

bisphosphate (PtdIns(4,5)P2) to yield inositol(l,4,5)triphosphate (Ins(l,4,5)Pj) 

and diacylglycerol (DG) (reviewed by Berridge & Irvine, 1984; 1989). The 

phosphatidylinositol cycle will be discussed in Chapter 5. By 1985 it was evident 

that a G-protein was involved in controlling the enzyme (phospholipase C) which 

splits PtdIns(4,5)P2  to give Ins(l,4,5)P5  and DG. The first reports of GTP’s 

involvement was made by Gomperts (1983) who demonstrated that, in 

permeabilized mast cells, GTP stimulated a calcium-dependent secretion of 

histamine. He proposed that a guanine nucleotide binding protein was involved 

in calcium-dependent secretory events. Haslam and Davidson (1984a;b) showed
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that guanine nucleotides reduced the calcium requirement for thrombin 

stimulation of secretion in permeabilized platelets and enhanced the response 

to thrombin with respect to both secretion and diacylglycerol formation.

Litosch, Wallis and Fain (1985) demonstrated that, in membranes prepared 

from blowfly salivary glands, 5-hydroxytyptamine (5-HT) stimulated the 

breakdown of endogenous [JH] inositol-labelled phosphoinositides by 

phospholipase C. This stimulatory effect of the hormone was dependent on the 

addition of guanine nucleotides. GTP, Gpp(NH)p and GTP-7 -S potentiated the 

effect of 5-HT. The non-hydrolysable analogues of GTP, GTP-7 -S and 

Gpp(NH)p, activated basal phospholipase C activity. Cockcroft and Gomperts 

(1985) also found that breakdown of endogenous polyphosphoinositides, in 

human neutrophil membranes, was stimulated by GTP-7 -S. Subsequently, 

guanine nucleotide stimulation of membrane phospholipase C activity utilizing 

labelled endogenous substrate has been demonstrated for a number of different 

tissues and cells including GHj pituitary cells (Lucas et al, 1985), hepatocytes 

(Wallace & Fain, 1985a,b), polymorphonuclear leucocytes (Smith et al, 

1985,1986,1987), cerebral cortex (Gonzales & Crew, 1985) and pig coronary 

artery (Sasaguri, Hirato & Kuriyama, 1985).

The reported characteristics for guanine nucleotide activation of membrane 

phospholipase C are strikingly similar in the studies cited. GTP itself was found 

to be a weak activator, even at high concentrations (Cockcroft & Gomperts, 

1985; Litosch et al , 1985; Lucas et al, 1985; Smith, Cox & Snyderman, 1986) 

and GDP, GMP, ATP, ADP and AMP were completely ineffective. In contrast,
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non-hydrolysable guanine nucleotides were potent activators of phosphoinositide 

hydrolysis. GTP-7 -S was found to be the most effective nucleotide tested 

(Cockcroft & Gomperts, 1985; Litosch et al , 1985; Lucas et al, 1985). GTP 

activation of phospholipase C activity was found to be competitively inhibited by 

a stable GDP analogue, GDP-^-S (Cockcroft, 1986; Uhing et al, 1986; Martin 

et al, 1986; Cockcroft & Taylor, 1987), which suggests that activation of 

phospholipase C is associated with the binding of GTP, with the GDP-bound 

state being inactive.

Since the discovery that GTP has a regulatory role in releasing calcium, 

much interest has been shown in its effect on calcium release and 

calcium-activated force. Dawson (1985) reported in liver microsomes, which 

were normally insensitive to Ins(l,4,5)P5, that preincubating the microsomes with 

GTP and polyethylene glycol (PEG) (3%) increased the preparation’s sensitivity 

to Ins(l,4,5)P3. However, GTP alone caused a release of calcium via a 

mechanism that was independent of Ins(l,4,5)Pj. This effect was abolished if 

PEG was omitted from the solution. Gill and Mullaney have further developed 

these results (Gill et al, 1986; Chueh et al, 1987; Mullaney et al, 1988 and 

reviewed in Gill, Mullaney & Ghosh, 1988) in permeabilized neuronal and 

smooth muscle cell lines. These workers showed that the calcium which was 

released by GTP alone appears to have come from the Ins(l,4,5)Pr sensitive 

store. This effect of GTP cannot be mimicked by GTP-7 -S or any of the other 

nonhydrolysable analogues of GTP. In fact GTP-7 -S blocks the response to 

GTP. GTP was also found to increase calcium uptake in the presence of
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oxalate in permeabilized neuronal and smooth muscle cell lines at the same 

concentration as it promotes release. Finally they concluded that GTP has a role 

to play in transmembrane conveyance of calcium and, since this involves the 

Ins( 1,4,5)Pj-releasable pool GTP may control the size of this calcium store. The 

one drawback to this hypothesis is the need for PEG to obtain the effect of 

GTP. Thomas (1987) showed in permeabilized hepatocytes, without PEG, that 

GTP did not release calcium alone but did potentiate the calcium released by 

Ins(l,4,5)P5. However, again this effect was not mimicked by GTP-7 -S.

The work carried out in permeabilized smooth muscle has largely disagreed 

with the work of Dawson and Gill. In saponin-, alpha-toxin- and ^-escin-treated 

muscle, GTP alone does not cause any substantial release of calcium (Kobayashi, 

Somlyo & Somlyo, 1988a; Kitazawa et al, 1989; Nishimura, Kobler & van 

Breemen,1988: Kobayashi et al, 1989). However, GTP-7 -S has been reported 

to release intracellular calcium in both saponin and alpha-toxin permeabilized 

muscle (Nishimura et al, 1988; Kobayashi et a/,1988a;b). This is also in 

contradiction to Gill and colleague’s work where GTP-7 -S inhibited the release 

of calcium. Saida and van Breemen (1987) and Saida et al (1988) have reported 

similar results to Thomas (1987) in which GTP was required before Ins(l,4,5)PJ 

could release calcium from the intracellular store. This calcium was also 

mobilised from the same store as the calcium released by caffeine. However, 

unlike Thomas (1987), Saida and van Breemen (1987) and Saida, Twort and van 

Breemen (1988) reported that GTP-7 -S could mimic the effect of GTP. These 

results by Saida et al (1987,1988) have not been found to be the universal case.
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Other workers using different smooth muscle preparations, both vascular and 

visceral, have shown that Ins(l,4,5)P3  can release calcium in the absence of GTP 

(Suematsu et al, 1984; Yamamoto & van Breemen, 1985; Kobayashi et 

a/,1988a;b; 1989; Kitazawa et al,1989).

Two important methodological developments for permeabilizing smooth 

muscle have been: ( 1 ) alpha-toxin from Staphylococcus aureus and (2) ^-escin. 

These methods retain functional membrane bound receptors (Nishimura et 

al, 1988; Kitazawa et al, 1989; Kobayashi et al, 1989), allowing these workers to 

analyse the role of GTP in agonist activation. Again, however, there have been 

conflicting results. Nishimura et al (1988) report that the response to 

noradrenaline can be obtained without the presence of GTP, whereas Kitazawa 

et al (1989) and Kobayashi et al (1989) reported that, to obtain reproducible 

responses to phenylephrine and carbachol, GTP was required. Although 

Nishimura et al (1988) showed that noradrenaline could produce a contraction 

without GTP being present, they did not investigate whether the response could 

be potentiated by GTP. The response initiated by GTP-7 -S could be partially 

blocked by heparin (Kobayashi et al, 1988) which is known to antagonise the 

Ins(l,4,5)P3  receptor (Worley et al, 1987). The response to Ins(l,4,5)P3  

(Kobayashi et al, 1988b), phenylephrine and carbachol (Kobayashi et al, 1989) 

were abolished by heparin. Where GTP has been shown to increase the 

response to the agonists GDP-/3-S has blocked this effect. Despite these 

differences in results, the bulk of the evidence suggests that G-proteins are 

involved in receptor signal transduction, leading to intracellular release of
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calcium and contraction in smooth muscle.

Much interest has also been paid to GTP’s effect on calcium-activated 

force. The first report was made by Kobayashi et al (1988a) who demonstrated 

in freeze-glycerinated rabbit main pulmonary artery that GTP or GTP-7 -S had 

no effect on the pCa tension curve. This, however, has been the only report of 

GTP and GTP-7 -S failing to affect calcium-activated force. All other studies 

have been made in muscle which has either been saponin-, alpha-toxin- or 

£-escin-treated. It has been universally agreed that, in these muscles, GTP or 

GTP-7 -S increases calcium sensitivity (Nishimura et al, 1988; Kobayashi et al, 

1988b; 1989; Kitazawa et al, 1989; Fujiwara et al, 1989). This effect is similar to 

increases in calcium-activated force produced by phenylephrine (Kitazawa et 

al,1989), and the effect of GTP on calcium-activated force is potentiated by 

noradrenaline (Nishimura et al, 1988). However, there is disagreement about 

what happens to maximum calcium-activated force (Tmax). Nishimura et al 

(1988) and Fujiwara et al (1989) report that GTP has no effect on Tmax, 

whereas Kitazawa et al (1989) and Kobayashi et al (1989) found that GTP-7 -S 

increases Tmax. There is much speculation about what causes the increase in 

calcium-activated force. The effect can be blocked by GDP-^-S, indicating that 

a G-protein is involved. However, it cannot be blocked by heparin indicating 

that Ins(l,4,5)P3  release of calcium is not a prerequisite for the effect. This 

suggests that GTP-7 -S activates phospholipase C via a G-protein producing 

Ins(l,4,5)P3  and DG from PtdIns(4,5)P2. It is DG that then activates protein 

kinase C which in turn phosphorylates the contractile proteins, increasing their
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sensitivity to calcium. Fujiwara et al (1989) have shown that GTP-7 -S promotes 

increased phosphorylation of the myosin light chain and increases shortening 

velocity. However, the authors were not convinced that this was due to protein 

kinase C because, although activation of protein kinase C by a phorbol ester 

increases calcium sensitivity it depresses Tmax, this is unlike the effect of 

GTP-7 -S, which either has no effect on Tmax or increases it. Another possible 

explanation of GTP-7 -S increase in Tmax is that it inhibits the inhibitory 

phosphatases which normally dephosphorylate the myosin light chain (Somlyo et 

al,1989).

To summarise, from this work on permeabilized smooth muscle: There 

seems reasonable agreement that a G-protein is involved in the agonist 

transduction mechanism. This appears to be mediated through the Ptdlns cycle. 

There is some evidence that GTP-7 -S causes calcium release via Ins(l,4,5)Pj and 

increases calcium-activated force via DG.

The aim of this study was to compare and contrast the effect of GTP on 

noradrenaline- and calcium-activated force in an alpha-toxin permeabilized 

visceral (rat anococcygeus) and a vascular (guinea pig portal vein) smooth 

muscle.
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MATERIALS AND METHODS

PREPARATIONS

Rat anococcygeus and guinea pig portal vein were isolated and prepared 

as described in Chapter 2. Each was set up in the experimental apparatus as 

described in Chapter 2 - Permeabilized Muscle. The muscle strips were 

permeabilized using alpha-toxin from Staphylococcus aureus as described and 

demonstrated in Chapter 3 and Figure 3.1.

SOLUTIONS

The solutions used were prepared as described in Chapter 2 - 

Permeabilized Muscle. The solution compositions are given in Table 2.3 and the 

drugs used are detailed in Table 2.2. The potassium salt used was potassium 

methansulphonate. The pH was set at 7.1 and the ionic strength at 0.2M.
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RESULTS

PROBLEMS ASSOCIATED WITH ALPHA-TOXIN PERMEABILIZATION IN RAT 
ANOCOCCYGEUS

Permeabilization with alpha-toxin from Staphylococcus aureus retains 

functional membrane bound receptors (Nishimura et al,1988; Kitazawa et al; 

1989). Kitazawa showed that both alpha adrenoreceptors and muscarinic 

receptors were retained. These features were tested for in rat anococcygeus. 

The results are shown in Figure 4.1. The muscle was permeabilized as 

described in Chapter 3 and thereafter proved responsive to calcium, 

noradrenaline and caffeine. The calcium stores were loaded in the experimental 

muscle by raising the [Ca2+]. This caused a contraction, the end portion of 

which can be seen in Figure 4.1. The [Ca2+] was lowered to 0.08/iM and the 

muscle relaxed. The muscle was then exposed to 30/xM noradrenaline and the 

muscle contracted transiently. However, the muscle did not respond when 

exposed to acetylcholine (3mM). The response of the intact muscle to 

acetylcholine was then investigated (Figure 4.2). The muscle was bathed in 

Tyrode solution and was exposed to 30/xM noradrenaline, 3mM acetylcholine 

and 5mM ATP. All three agonists caused a phasic contraction which only 

relaxed when the agonist was withdrawn. This indicates that the adreno-, 

muscarinic and purino- receptors are functional in the intact muscle bathed in 

Tyrode solution. The factor inhibiting the muscarinic response after 

alpha-toxin-treatment, therefore, must be connected with either the 

permeabilization technique or the composition of the mock intracellular solution.
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30/l/M Noradrenaline
3mM Acetylcholine
120mM K, 40mM Na, 5mM ATP, O.OfyM Ca 
120mM K, 40mM Na, 5mM ATP, 63pM Ca
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Figure 4.1 shows the response of alpha-toxin permeabilized rat anococcygeus 

muscle to 30/xM noradrenaline (hatched bar) and 3mM acetylcholine (heavily 

stippled bar). The bathing solution was changed from one containing 63/xM 

calcium to one of 0.8/iM. This is indicated by the change in the stipple pattern 

of the larger of the bars beneath the two traces.
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Figure 4.2 shows contractions produced by intact rat anococcygeus muscle to 

30/iM noradrenaline (hatched bar), 3mM acetylcholine (heavily stippled bar) and 

5mM ATP (lightly stippled bar), each in Tyrode solution.
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To examine this, Tyrode (with added ATP) was replaced by normal mock 

intracellular bathing medium in an intact strip of anococcygeus muscle. This 

caused a transient contraction (Figure 4.3). Application of NA, but not of ACh 

caused a transient contraction. Figure 4.4 shows that, when the bathing medium 

around the muscle was changed from Tyrode to a mock intracellular solution 

with no added ATP or CrP (40mM NaCl has been added to prevent changes 

in ionic strength) that the muscles contracted transiently and were responsive to 

noradrenaline, acetylcholine and ATP. This inhibitory effect of ATP cannot be 

reversed by adding 1/iM alpha-beta methylene ATP. Alpha-beta-methylene ATP 

is a non-hydrolysable analogue of ATP. It works by desensitising P ^  receptors 

(Kasakoz & Burnstock, 1983; Delebro et al, 1985). The effect of ATP does, 

however, prove to be a problem. ATP has to be present in the mock 

intracellular solutions to fuel contraction. The results from Chapter 3 (Figure 

3.2) show that removing ATP from the solutions causes the muscle to go into 

rigor. During any further analysis of findings, made using this preparation this 

inhibitory effect of ATP on the muscarinic response must be kept in mind.
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ESI 30pM Noradrenaline
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Figure 4.3 shows contractions of intact rat anococcygeus muscle induced by 

30/iM noradrenaline (hatched bar) and 3mM acetylcholine (heavily stippled bar) 

in a mock intracellular solution with 5mM ATP. Prior to the solution change 

indicated by the lightly stippled bar underneath the tension record the muscle 

had been bathed in Tyrode solution with added ATP.
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SSS3 30/iM Noradrenaline ! ■  3mM Acetylcholine 5mM ATP
^  I 120mM K, 40mM Na, 0 ATP, 0.08/l/M Ca
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0.0 J

5 mins

Figure 4.4 shows contractions of intact rat anococcygeus muscle induced by 

30/xM noradrenaline (hatched bar), 3mM acetylcholine (heavily stippled bar) and 

5mM ATP (lightly stippled bar) in a mock intracellular solution which does not 

contain ATP. This is indicated by the open bar underneath the tension record. 

Prior to the solution change indicated the muscle had been bathed in Tyrode 

solution.
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THE EFFECT OF GTP ON NORADRENALINE-ACTIVATED CONTRACTIONS

All the muscles used were stabilized by repetitively evoking contractions 

with lOmM caffeine. The SR was allowed to accumulate calcium for 10 minutes 

in a solution with a fixed [Ca2+] below the threshold for contraction. During 

each calcium load and release cycle caffeine (lOmM) was applied for 2 minutes, 

washed out and the muscle allowed to accumulate calcium for 1 0  minutes and 

so on. This was continued until the muscle produced reproducible contractions 

in response to caffeine. Once this had been achieved 30/xM noradrenaline was 

applied which produced a transient contraction in rat anococcygeus (Figure 4.5) 

and guinea pig portal vein (Figure 4.7). Noradrenaline is thought to produce 

its response by stimulating phospholipase C to produce Ins(l,4,5)P3  and DG. 

Ins(l,4,5)Pj then releases calcium from the intracellular store (Streb et al. 1983) 

which causes the muscle to contract. Ins(l,4,5)Pj is rapidly broken down 

(Berridge and Irvine, 1989) which might explain why the contraction observed 

here is transient.

(a) Rat Anococcygeus

Figure 4.5 consists of two panels showing the effects of GTP on 

noradrenaline-activated force when applied at different times in the experimental 

protocol. Figure 4.5A shows the stabilized contractions in response to caffeine 

followed by a series of transient contractions in response to noradrenaline. The 

amplitude of the noradrenaline-activated contraction declines with time. 

Exposing the muscle to 100/iM GTP causes a contraction itself which on average
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Figure 4.5 shows the effect of 100/xM GTP on the response to noradrenaline in 

permeabilized rat anococcygeus muscle. The application of lOmM caffeine 

(open bar), 30/iM noradrenaline (hatched bar) and 100/iM GTP (filled bar) are 

indicated. Panel A shows the effect of exposing the muscle to GTP after three 

previous contractions in response to noradrenaline. Panel B shows the effect 

of exposing the muscle to GTP after only one response induced by 

noradrenaline.
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was 64% (±14%, n=3) of the first contraction in response to noradrenaline. 

The presence of 100/iM GTP transiently potentiates the next response to 

noradrenaline, but it does not reverse the decline in peak tension. Application 

of 100/iM GTP after the first noradrenaline-activated contraction also causes a 

contraction by itself (Figure 4.5B). This on average was marginally larger than 

the first noradrenaline-activated contraction (114% ± 2 2 , n = 6 ) although not in 

the example shown here. The peak of the next contraction in response to 

noradrenaline had not declined as much as it would have had there been no 

GTP present in the solution. However, the presence of GTP did not stop the 

decline in the amplitude of the contractions evoked by noradrenaline. Removal 

of GTP in both protocols had no obvious effect on the response. The 

contractions to noradrenaline in both panels gradually became smaller until 

eventually only a small tonic component was visible. Figure 4.6 shows the 

average noradrenaline-activated contraction expressed as a percentage of the 

first contraction in response to noradrenaline for the two different protocols just 

described for rat anococcygeus. This figure shows that GTP (100/xM) does not 

reversibly halt the decline in the amplitude of noradrenaline-activated 

contractions. The peak of the response to noradrenaline, directly after 

application of GTP, was potentiated but only to 67% and 6 8 % of the first 

noradrenaline-activated contraction. This potentiation by GTP appears to be 

independent of what has occurred in the muscle before its addition.

93



A.

120 -i

80 -

40 -

— O -

NA 1 NA 2 NA 3 NA + GTP

B.

I |
P Q
■SB£ g o o c °
to 13
?s § 
^  •&

120 -i

80 -

40 -

Rat Anococcygeus

Agonist and Contraction number.

i
NA NA +GTP

Rat Anococcygeus

Agonist

Figure 4.6 shows the average data for the decline in the amplitude of the 

response induced by noradrenaline in permeabilized rat anococcygeus and how 

this is affected by GTP. Each point has been expressed as a percentage of the 

amplitude of the first noradrenaline-activated contraction. The points represent 

the mean±S.D. (n=3-8).
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(b) Guinea Pig Portal Vein

Figure 4.7 also has two panels which contrast the effects of exposing the 

muscle to GTP at different times in the experimental protocol. Both the 

muscles have been stabilized using repetitive exposures to caffeine. Once the 

muscle had stabilized a series of exposures to noradrenaline were undertaken. 

The amplitude of successive noradrenaline-activated contractions in portal vein 

also decline with time. However, this decline in peak tension in response to 

noradrenaline was slower than in rat anococcygeus. Exposing the muscle to 

100/zM GTP did not in itself cause a contraction. However, the peak of the 

response to noradrenaline was potentiated and this potentiation lasted as long 

as the muscle was exposed to GTP. On removal of GTP the amplitude of the 

noradrenaline-activated contractions declined once again. Panel B shows that 

applying GTP (100/zM) after the first noradrenaline-activated contraction also 

does not cause a contraction, but does potentiate the amplitude of the 

noradrenaline-activated contractions which followed. Again, the size of the 

response to noradrenaline were maintained for the period that the muscle was 

exposed to GTP. On removing GTP peak tension evoked by noradrenaline 

declined. Figure 4.8 shows the mean peak tension in response to noradrenaline 

expressed as a percentage of the peak tension of the first contraction in 

response to noradrenaline for the two different protocols just described. GTP 

(100/iM) potentiated the amplitude of noradrenaline induced contractions to the 

extent that they were greater (148% and 144%) than the first noradrenaline 

induced contraction. This potentiation appears to be
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Figure 4.7 shows the effect of 100/iM GTP on noradrenaline-activated force in 

permeabilized guinea pig portal vein longitudinal muscle. The application of 

lOmM caffeine (open bar), 30/iM noradrenaline (hatched bar) and 100/iM GTP 

(filled bar) are indicated. Panel A shows the effect of exposing the muscle to 

GTP after three previous contractions in response to noradrenaline. Panel B 

shows the effect of exposing the muscle to GTP after only one response induced 

by noradrenaline.
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Figure 4.8 shows the average data for the decline in the amplitude of the 

response induced by noradrenaline in permeabilized guinea pig portal vein 

longitudinal muscle and how this is affected by GTP. Each point has been 

expressed as a percentage of the amplitude of the first contraction induced by 

noradrenaline. The points represent the mean±S.D. (n=3-8).
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independent of the time in the protocol that the muscle was exposed to GTP.

In summary, the amplitude of successive noradrenaline-activated 

contractures in both rat anococcygeus and guinea pig portal vein declines with 

time. The decline is greater, however in rat anococcygeus. The decline can be 

reversed in guinea pig portal vein by exposing it to GTP (100/iM). This is not 

the case in rat anococcygeus where the decline is only transiently arrested by 

GTP. Finally GTP caused a transient contraction in rat anococcygeus, but not 

in guinea pig portal vein.

THE EFFECT OF GTP ON CAFFEINE- AND Ins(I,4,5)P3-ACTIVATED CONTRACTIONS.

Figure 4.9 examines the effect that GTP (100/xM) has on caffeine induced 

contractures in permeabilized rat anococcygeus. The muscle was stabilized by 

evoking repeated contractions with caffeine. The first contraction in the trace 

is representative of these. Noradrenaline, followed by GTP was applied as 

shown. GTP caused a transient contraction and the amplitude of the

subsequent contraction in response to noradrenaline was potentiated initially, but 

then declined successively. The amplitude of the response to caffeine, however, 

actually increased with time possibly indicating that there was more calcium 

available for release. This suggests that the amplitude of the noradrenaline 

response does not decay because of inadequate loading of the intracellular store

in the presence of 100/iM GTP.

The decay in the amplitude of the response to noradrenaline could be 

explained if the intracellular store became less sensitive to Ins(l,4,5)Pj in the

98



Rat Anococcygeus □  Caffeine 10mM

!SS3 Noradrenaline 30/jM
wmam g tp  ioo^m

0.5 1

z
E

□ ^ 3  ^  ^  □

10 min

Figure 4.9 shows the effects of 100/xM GTP on the response induced by 

noradrenaline and caffeine in permeabilized rat anococcygeus muscle. The 

application of lOmM caffeine (open bar), 30^M noradrenaline (hatched bar) and 

100/xM GTP (filled bar) are indicated.



presence of GTP. Figure 4.10 has three panels. Panel A shows responses to 

a range of Ins(l,4,5)Pj concentrations by rat anococcygeus. It can be seen that 

the response to Ins(l,4,5)Pj approaches a maximum at a concentration of 

200/xM. Panel B investigates the effect of GTP (100/iM) on the size of the 

Ins(l,4,5)P5-activated contraction. The effect was examined at two different 

concentrations, 50 and 100/iM. The muscle was stabilized by repeated

challenges with caffeine the last of which is shown as the first contraction in 

Panel B. The muscle was then exposed to Ins(l,4,5)P3. After applying GTP 

(100/iM) the muscle was exposed for a second time to each of the two different 

Ins(l,4,5)P3  concentrations. It can be seen that GTP has no effect on the size 

of either response to Ins(l,4,5)P3. Panel C illustrates the amplitude of the 

response to 50/iM Ins(l,4,5)P5  before and after the now familiar decay in the 

amplitude of the response to noradrenaline. The amplitude of the response to 

Ins(l,4,5)P3  was similar before and after the decay in the amplitude of the 

response to noradrenaline. These results. indicate that the decay in the 

amplitude of the response to noradrenaline is not due to a reduced sensitivity 

of the intracellular store to Ins(l,4,5)Pj. It would seem more likely that the 

decay is due to reduced production of Ins(l,4,5)P3  by the agonist.

THE EFFECT OF A HIGHER CONCENTRATION OF GTP ON NORADRENALINE- 
ACTIVATED CONTRACTIONS

One possible explanation for the failure of 100/xM GTP to cause a 

contraction in guinea pig portal vein is that this muscle is less sensitive to GTP 

than rat anococcygeus. Figure 4.11 shows that, in both rat anococcygeus and
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Figure 4.10 shows the effects of noradrenaline and GTP on the contraction 

produced by Ins(l,4,5)P3  in permeabilized rat anococcygeus. The application of 

lOmM caffeine (open bar), 30/xM noradrenaline (hatched bar), 100/xM GTP 

(filled bar) and Ins(l,4,5)P3  (stippled bars) are indicated. Panel A  shows the 

effect of increasing concentrations of Ins(l,4,5)P3  on the tension response. Panel 

B shows the effect of GTP on the response induced by Ins(l,4,5)P5. Panel C 

shows the effect of the decline in the amplitude of the response induced by 

noradrenaline on the amplitude of the response to Ins(l,4,5)P5.
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Figure 4.11 shows the effects of ImM GTP on the response induced by 

noradrenaline and caffeine in permeabilized rat anococcygeus (Panel A) and 

permeabilized guinea pig portal vein (Panel B). The application of lOmM 

caffeine (open bar), 30/xM noradrenaline (hatched bar) and 100/xM GTP (filled 

bar) are indicated.
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guinea pig po rta l vein, 100/iM and ImM G TP had  a similar effect on 

noradrenaline-activated  force. This higher concentration of G TP (ImM) still 

failed to  p rom ote  a contraction in guinea pig po rta l vein or inhibit the decay in 

the  am plitude of the response to  noradrenaline in ra t anococcygeus. The 

contraction  produced  by G TP in the  la tte r tissue averaged 116% ( ± 43% ,n = 3) 

o f the  first contraction in response to  noradrenaline, which is essentially the 

sam e as the  contraction produced  by 100/iM G TP (114%±22%, n = 6 ).

THE EFFECT OF GTP-7 -S ON NORADRENALINE-ACTIVATED CONTRACTIONS

G TP-7-S is a non-hydrolysable analogue of G TP. T he effect o f 100/iM 

GTP-7-S on the  response to  noradrenaline was investigated in perm eabilized ra t 

anococcygeus and guinea pig portal vein. F igure 4.12A shows the effect 

observed in ra t anococcygeus. GTP-7-S was applied  afte r the  now familiar 

decline in th e  am plitude of the  response to  noradrenaline. GTP-7-S (100/iM) 

caused a  large transien t contraction and  blocked all subsequent 

noradrenaline-activated  contractions. This effect of GTP-7-S was not reversible. 

F igure 4.12B shows a typical tension record  obtained  from  guinea pig portal vein 

using the  sam e protocol as described for ra t anococcygeus. GTP-7-S caused a 

transien t contraction and thereafte r the response to  noradrenaline was blocked. 

This effect o f 100/zM GTP-7-S was no t reversible. This experim ent was 

rep ea ted  using 10/iM GTP-7-S in bo th  tissues and similar results w ere obtained 

(data  no t shown). In summary, 10 and 100/iM GTP-7-S alone cause contraction 

in bo th  ra t anococcygeus and guinea pig portal vein. In the  presence of
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Figure 4.12 shows the effects of 100/xM GTP-7 -S on the response induced by 

noradrenaline in permeabilized rat anococcygeus (Panel A) and permeabilized 

guinea pig portal vein (Panel B). The application of lOmM caffeine (open 

bar), 30/xM noradrenaline (hatched bar) and 100/iM GTP-7 -S (filled bar) are 

indicated.
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GTP-7 -S both muscles proved unresponsive to noradrenaline and this effect was 

not reversible.

THE EFFECT OF GDP-£-S ON NORADRENALINE-ACTIVATED CONTRACTIONS

GDP-0 -S is a non-hydrolysable analogue of GDP. GDP-^-S binds to the 

G-protein and inactivates the protein (Williamson, 1986). Figure 4.13 illustrates 

the effect of GDP-^-S on noradrenaline-activated force in rat anococcygeus and 

guinea pig portal vein. GDP-^-S (100/iM) did not produce a contraction and, 

in rat anococcygeus it did not immediately abolish the noradrenaline-activated 

contractions. However, it slowed the time course of the contraction in response 

to noradrenaline immediately after its application and abolished all subsequent 

responses to noradrenaline. This effect was not reversible. Figure 4.13B shows 

the effect of GDP-yS-S on guinea pig portal vein. GDP-^-S (100/iM) did not 

produce a contraction, but it did inhibit subsequent contractions in response to 

noradrenaline. This effect was at least partially reversible when GDP-£-S was 

removed. In summary, GDP-^-S does not produce a contraction on its own in 

either type of permeabilized muscle. However, it does inhibit further 

contraction to noradrenaline. This is immediate and reversible in guinea pig 

portal vein and after one contraction to noradrenaline in rat anococcygeus. 

The effect of 100/xM GDP-£-S was not reversible in rat anococcygeus and only 

partially in guinea pig portal vein, however, the irreversible effect on 

anococcygeus might be a result of the irreversible decay in the amplitude of the 

response to noradrenaline.
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Figure 4.13 shows the effect of 100/iM GDP-/3 -S on the response to 

noradrenaline in permeabilized rat anococcygeus (Panel A) and permeabilized 

guinea pig portal vein (Panel B). The application of lOmM caffeine (open bar), 

30/xM noradrenaline (hatched bar) and 100/iM GDP-/S-S (filled bar) are 

indicated.
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THE EFFECT OF GTP AND NORADRENALINE ON CALCIUM-ACTIVATED FORCE

The experiments reported so far have investigated the effect of GTP on 

the release of calcium from the intracellular store. This next set of experiments 

examines the effect of GTP and noradrenaline on calcium-activated force. This 

line of investigation was stimulated by reports in the literature that GTP and 

agonists which activate the Ptdlns cycle increase calcium sensitivity of the 

contractile proteins (Nishimura et al,1988; Kitazawa et al, 1989; Fujiwara et al, 

1989; Kobayashi et al, 1989). Figure 4.14A shows a cumulative concentration 

response curve to calcium in permeabilized rat anococcygeus. The [Ca2+] was 

raised in the bathing solution as indicated by the steps underneath the tension 

record. Tension was allowed to reach a plateau before the next concentration 

of calcium was added. Figure 4.14B shows the best fit curves for results from 

three different experiments in permeabilized rat anococcygeus and guinea pig 

portal vein. Each curve was expressed as a percentage of its own maximum. 

It can be seen that the two permeabilized muscle types have a similar 

calcium-sensitivity. However, rat anococcygeus is more sensitive to calcium than 

portal vein. The mean maximal calcium-activated force produced by muscle 

strips (approximately 100/iM in diameter) from rat anococcygeus muscle was 

1.16mN (±0.35, n=5), compared with only 0.25mN (±0.14, n = 8 ) in guinea pig 

portal vein.

Figure 4.15A  and B shows the effect of noradrenaline and GTP on rat 

anococcygeus and guinea pig portal vein respectively whilst the muscle was 

calcium-activated. The muscles are assumed to be calcium-activated when they
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Figure 4.14 shows the sensitivity of toxin-penneabilized smooth muscle to 

calcium in the presence of lOmM EGTA. Panel A  shows a tension record from 

rat anococcygeus muscle. The [Ca2+] was raised in steps as indicated below 

the tension record. Panel B shows a graph of lo g ^C a2*] against normalised 

tension for both permeabilized rat anococcygeus muscle and guinea pig portal 

vein longitudinal muscle. The data plotted are the steady state tensions from 

three experiments carried out on each preparation. The solid line represents 

the best fit curve of the following form of the Hill equation:

T/Tmax = (K,„ x [Ca2+])" /  [1 + (K„ x [Ca2 +])T|

Where T/Tmax is a fraction of maximal calcium-activated force (Tmax); is 

the apparent affinity constant of the myofilaments for calcium. For guinea pig 

portal vein data, n=2.0 and =  104*3. For rat anococcygeus data, n=1.5 and

K, = io“.
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contract when [Ca2+] is raised in the bathing medium and relax when it is 

lowered. The effect of noradrenaline and GTP were examined at three different 

[Ca2+] concentrations: (1) 0.08/xM - a concentration just below the threshold for 

tension; (2) 0.3/xM - a concentration which produces about half maximal 

calcium-activated force in rat anococcygeus and (3) 100/iM - a concentration 

which produces maximal calcium-activated force (Tmax). Each panel shows a 

typical tension record from an experiment performed in a different muscle for 

each [Ca2+]. Each muscle was exposed to the [Ca2+] and allowed to equilibrate 

to it before noradrenaline or GTP were applied.

Figure 4.15A shows that, at the two [Ca2+] which produce tension (0.3 and 

100/zM), noradrenaline increases calcium-activated force. Tension was observed 

to fall when the agonist was removed. GTP (100/zM) also caused an increase 

in calcium-activated force at the two concentrations which produced tension. 

Noradrenaline in the presence of 100/iM GTP produces only a further small 

increase in calcium-activated force.

Figure 4.15B shows that in permeabilized guinea pig portal vein exposure 

to noradrenaline also causes an increase in calcium-activated force. Initially this 

is at all three [Ca2+] but, after the first application of noradrenaline increases 

in calcium-activated force were observed only at the [Ca2+] which produced 

significant tension. GTP (100/iM) causes only a small increase in 

calcium-activated force in comparison to the effect of noradrenaline. 

Subsequent noradrenaline produced large effects on calcium-activated force in 

addition to the effect that GTP has on calcium-activated force.
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Figure 4.15 shows the effects of GTP and noradrenaline on calcium-activated 

force in toxin-permeabilized rat anococcygeus muscle (Panel A) and guinea pig 

portal vein longitudinal muscle (Panel B). The application of 30/jM 

noradrenaline (hatched bar) and 100/tM GTP (filled bar). The [Ca2+] that each 

muscle was equilibrated to is indicated at the side of the experimental tension 

record.
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In summary, noradrenaline increases calcium-activated force reproducibly 

at two of the [Ca2+] tested in both types of permeabilized muscle. These were 

the two [Ca2+] which produced calcium-activated force (0.3 and 100/iM). The 

effect of 100/iM GTP on calcium-activated force was greater in rat anococcygeus 

and the contractions produced by noradrenaline in the presence of GTP were 

greater in guinea pig portal vein. Noradrenaline increased Tmax in both muscle 

types. GTP, however, only increased Tmax in rat anococcygeus.

THE EFFECT OF NORADRENALINE AND GTP-7 -S ON CALCIUM-ACTIVATED FORCE 

T h e  effect o f GTP-7-S (a non-hydrolysable analogue of G TP) on 

calcium -activated force was exam ined a t one calcium level (0.3/iM). GTP-7-S 

binds to  and there fo re  activates G -proteins in com petition with G TP. However, 

because GTP-7-S cannot be  b roken down by the inheren t G T Pase activity of the 

G -pro te in  it activates the p ro te in  for as long as it rem ains bound. Figure 4.16A 

shows th a t no radrenaline repetitively increases calcium -activated force in rat 

anococcygeus. T he calcium -activated tension, shown in the  tension traces, 

p roduced  by bo th  muscles was no t in this instance, m aintained throughout the 

experim ent. This phenom enon was tissue dependent. T he  direction of the 

effect o f NA and  GTP-7-S was always in the sam e direction throughout the 

experim ent. GTP-7-S (100/iM) also increases calcium -activated force. 

N oradrenaline  in the  presence o f GTP-7-S can fu rther increases 

calcium -activated force only by a  small am ount. F igure 4.16B shows essentially 

th e  sam e effect in guinea pig portal vein.
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Figure 4.16 shows the effects of GTP-7 -S and noradrenaline on calcium-activated 

force in toxin-permeabilized rat anococcygeus muscle (Panel A) and guinea pig 

portal vein longitudinal muscle (Panel B). The application of 30/iM 

noradrenaline (hatched bar) and 100/iM GTP-7 -S (filled bar) are indicated. 

[Ca2+] was raised at the time indicated by the arrow underneath the tension 

record and was kept at this level throughout the experiment.
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In summary, GTP-7-S appears to increase calcium-activated force to such 

a extent that there is little further scope to increase the effect by noradrenaline. 

This is the case for both types of permeabilized smooth muscle.
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DISCUSSION

GTP has very different effects on both noradrenaline- and 

calcium-activated force in the two different types of smooth muscle examined: 

rat anococcygeus and guinea pig portal vein longitudinal smooth muscle. These 

differences were:

( 1 ) a different time course of decline in the amplitude of the responses to 

noradrenaline; furthermore the decline in the response to noradrenaline was 

reversed in guinea pig portal vein, but not rat anococcygeus;

(2 ) rat anococcygeus, but not guinea pig portal vein contracted when exposed 

to GTP;

(3) the decline in the amplitude of the response to noradrenaline was greater 

in rat anococcygeus than guinea pig portal vein;

(4) GDP-£-S immediately inhibited the response to noradrenaline in guinea pig 

portal vein, whereas rat anococcygeus was able to contract once more in 

response to noradrenaline and guinea pig portal vein recovered, but rat 

anococcygeus did not;

(5) GTP had a greater effect on calcium-activated force in rat anococcygeus 

than noradrenaline, whereas in guinea pig portal vein the opposite was the case. 

Possible reasons for these differences will be discussed below.
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POSSIBLE MECHANISMS FOR THE Decline IN THE AMPLITUDE OF THE RESPONSE 
TO NORADRENALINE

From the experiments that have been undertaken in this study it is known 

that the decline in the amplitude of the repeated contractions in response to 

noradrenaline is not due to a reduced calcium content of the intracellular store 

(Figure 4.9) or a reduced sensitivity of the muscle to Ins(l,4,5)Pj (Figure 4.10). 

It is also not likely to be due to a decreased calcium-sensitivity of the contractile 

proteins, because the responses induced by caffeine and Ins(l,4,5)Pj are not 

reduced upon successive exposures. The reduction in the size of the response 

to noradrenaline could be explained if the amount of Ins(l,4,5)Pj being released 

at each challenge of noradrenaline decreased. The amount of calcium being 

released in response to noradrenaline through Ins(l,4,5)Pj would thereafter also 

be decreased. The amount of Ins(l,4,5)P5  would be reduced if (a) the amount 

of PtdIns(4,5)P2  in the membrane was reduced; (b) the supply of GTP was 

reduced; or (c) if the receptor/G-protein response was reduced.

(a) Reduction in PtdIns(4,5)P2: The amount of PtdIns(4,5)P2  would be 

reduced in the membrane if the permeabilized muscle was unable to 

reincorporate inositol into the membrane once it had been released as 

Ins(l,4,5)P5. A possible protocol to test this hypothesis would be to include 

myo-inositol in the bathing medium. This mechanism does not explain, however, 

why the amplitude of the response to noradrenaline declines more quickly in rat 

anococcygeus than in guinea pig portal vein unless the latter contains higher 

reserves of PtdIns(4,5)P2.

(b) Reduced Availability o f GTP: Another explanation for the decline in
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the size of the response to noradrenaline, which is suggested at least for guinea 

pig portal vein, is the loss of intrinsic GTP. In guinea pig portal vein the 

decline was reversed (Figure 4.7) by the inclusion of lOO^M GTP in the bathing 

medium suggesting that it was the lack of this substance which was causing the 

decline. There is also a similar decline once GTP is removed from the solution.

Even in rat anococcygeus, loss of intrinsic GTP might explain its ability 

transiently to reduce the decline (Figure 4.5). However, as GTP does not 

completely reverse the effect, then in rat anococcygeus, something other than 

loss of intrinsic GTP must be responsible for the decline in the amplitude of the 

response induced by noradrenaline.

(c) Reduction in the receptor/G-protein Activation'. The amplitude of the 

response to repeated agonist challenges would decline if the amplitude of the 

receptor/G-protein response was reduced after each agonist exposure. That is 

to say, at each exposure there would be a reduced activation of phospholipase 

C and hence production of Ins(l,4,5)P3. There are reports in the literature 

which suggest that activation of the receptor/G-protein activates PKC (through 

DG) which phosphorylates the G-protein (Katada et al, 1985) and receptor 

(Berridge, 1987; reviewed by Sagi-Eisenberg, 1989). The phosphorylated 

receptor/G-protein has a lower activity and, therefore, produces less Ins(l,4,5)P5  

when it is activated (Baba et al, 1989). Hence, the amplitude of successive 

responses to noradrenaline will decline.
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A POSSIBLE MECHANISM FOR GTP-INDUCED CONTRACTION

A  major difference in the response of the two muscle types was that rat 

anococcygeus contracted when exposed to GTP, but guinea pig portal vein did 

not. The response of guinea pig portal vein was as expected. Most other 

workers using permeabilized smooth muscle preparations have reported that 

GTP on its own does not cause a contraction (Saida et al, 1987), but that it 

potentiates contractions to agonists (Kitazawa et al, 1989). For fuller review see 

the introduction.

Experiments with rat anococcygeus have already shown that this muscle’s 

response to agonists was affected by the presence of ATP in the bathing 

medium. Figures 4.1 to 4 show that having ATP in the bathing medium blocks 

the muscle’s response to acetylcholine (3mM). ATP is essential to prevent the 

permeabilized muscle from forming rigor crossbridges. Rat anococcygeus 

contracts in response to ATP (Gillespie, 1972; Burnstock, Cock & Crow, 1978). 

P^-purinoreceptors cause contraction in smooth muscle (Burnstock & Warland, 

1987). These can be antagonised by ANAPP5  (Hogaboom et al, 1980) or 

desensitised by alpha-beta-methylene ATP (Kasakov & Burnstock, 1983; Delbro 

et al, 1985).

Alpha-toxin permeabilization preserves functional receptors (Nishimura et 

al, 1988; Kitazawa et al, 1989) so it has to be assumed that the purinoreceptors 

remain operational. In the continuous presence of ATP (5mM) the 

purinoreceptors and the associated G-protein will be chronically activated. 

Hence, when GTP is present it will provide ’substrate’ for the activated
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receptor/G-protein which can then cause a contraction by activating 

phospholipase C and producing Ins(l,4,5)P3  and DG. Exogenous ATP does not 

appear to be a significant problem in guinea pig portal vein. This tissue does 

have purinoreceptors, but they seem to have different characteristics from those 

in rat anococcygeus.

It has proved to be very difficult to test this hypothesis. This is mainly due 

to the fact that there are no good antagonists for purinoreceptor responses and 

alpha-beta-methylene ATP (a desensitising agonist) had no effect on the 

response. It functions by chronically activating the receptor and eventually 

desensitizing it to ATP. As described in the results section, a side effect of the 

presence of ATP appears to be the inhibition of the response to ACh. In a 

number of experiments alpha-beta methylene ATP was added to the muscle for 

thirty minutes before the muscle was permeabilized, during the permeabilization 

procedure and thereafter. Despite this alpha-beta-methylene ATP was not able 

to block the effect that ATP has on the response to acetylcholine. This might 

be a consequence of the permeabilization or ATP might be having its effect via 

another purinoreceptor.

Evidence for the chronic activation of G-proteins in rat anococcygeus 

muscle comes from the results obtained with GTP-7 -S which activates G-proteins 

without an agonist present. The responses of permeabilized rat anococcygeus 

and guinea pig portal vein to this compound are identical and similar to those 

produced by GTP seen in rat anococcygeus.
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POSSIBLE REASONS FOR THE GREATER DECLINE IN THE AMPLITUDE OF THE 
RESPONSE TO NORADRENALINE IN RAT ANOCOCCYGEUS.

The possible causes of the fall in the size of successive 

noradrenaline-activated contractures has already been discussed. The most 

plausible explanation is that the decline is due to desensitisation of the 

receptor/G-protein as a result of phosphorylation of the proteins by PKC. 

There are several explanations for the faster decline in the size of the response 

to noradrenaline in rat anococcygeus compared with guinea pig portal vein: (a) 

a lack of enzymes which cause the phosphorylation in guinea pig portal vein;

(b) a lack of enzymes which cause dephosphorylation in rat anococcygeus; (c) 

the activation of purinoreceptors by ATP might accelerate the decline in rat 

anococcygeus, but not in guinea pig portal vein.

(a) Possible lack o f enzymes which cause phosphorylation: Perhaps guinea 

pig portal vein lacks the enzymes which phosphorylate the receptor/G-protein 

system, but these enzymes are present in rat anococcygeus. Thus the decline 

observed in guinea pig portal vein could then be explained by the loss of 

intrinsic GTP alone. This could be partially tested by using a phorbol ester to 

activate PKC and then examining the effect on the response to noradrenaline. 

The problem with this experiment would be that activating PKC in this manner 

not only phosphorylates the receptor/G-protein, but also the contractile proteins, 

making them more calcium sensitive. Therefore, a more specific agent to 

phosphorylate the receptor/G-protein would be required.

119



(b) Possible lack o f enzymes which cause dephosphorylation: If rat

anococcygeus lacked, or had a reduced amount of, functioning enzymes which 

caused dephosphorylation, this would also explain the faster decline in the size 

of the response to noradrenaline in rat anococcygeus compared with guinea pig 

portal vein. One possible way to examine this would be to study the decline in 

the presence of okadaic acid, a known blocker of phosphatases (Somlyo et al, 

1990). This might make the dephosphorylation abilities of the two muscles more 

comparable.

(c) Possible effect o f ATP on the level o f phosphorylation: It has already 

been demonstrated that ATP blocks the response to acetylcholine in rat 

anococcygeus. ATP might chronically activate a sub-population of G-proteins 

to enable GTP alone to produce a contraction. The activation of this 

sub-population of G-proteins might increase basal levels, and subsequently the 

overall level, of phosphorylation when an agonist is applied. This would imply, 

however, that the size of the first contraction in response to noradrenaline would 

be smaller the longer the time that the muscle had spent in the ATP-containing 

solution. This did not appear to be the case, although it was not systematically 

studied. Another possibility is that this chronic activation with ATP inhibits the 

enzymes which normally dephosphorylate the receptor and G-protein.

A POSSIBLE REASON FOR THE EFFECT OF GDP-^-S

Inhibition of an agonist response by GDP-/J-S is usually taken as evidence

that the agonist mediates its response through a G-protein. Normally this effect

is immediate and reversible, as was the case for guinea pig portal vein. The
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effect of GDP-^-S on rat anococcygeus, however, was delayed until the muscle 

had been activated once more by noradrenaline and was not reversible. There 

is no clear explanation for this effect. However, its basis might lie in the state 

of the G-protein when GDP-6 -S was added.

The effect of GDP-6 -S is not reversible in rat anococcygeus, but it is in 

guinea pig portal vein. A possible explanation for this can also be suggested 

within the frame of the hypothesis. Activation of receptors in both muscle types 

causes phosphorylation of the receptor/G-protein and so causes the amplitude 

of successive contractions induced by noradrenaline to decline. Rat 

anococcygeus appears to have higher rate of phosphorylation which might be 

related to the chronic activation of the purinoreceptors and associated G-protein. 

The chronic activation induced by ATP will continue in rat anococcygeus in the 

presence of GDP-/3-S until all the bound GTP has been replaced by GDP-/9 -S. 

Hence, phosphorylation of the receptor/G-protein system will also continue 

making it less likely that this muscle type will recover its ability to respond to 

noradrenaline when GDP-^-s is removed.

In summary, the basic differences between the two preparations can be 

explained if their enzymes have different phosphoiylation/dephosphorylation 

activities. Rat anococcygeus’s enzymes would appear to have an increased 

phosphorylation activity or a decreased dephosphorylation activity compared with 

guinea pig portal vein. This imbalance might be related to the chronic 

purinoreceptor stimulation. Such chronic stimulation might also explain why the 

muscle contracts in response to GTP.
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A POSSIBLE EXPLANATION FOR GTP’s GREATER EFFECT ON CALCIUM-ACTIVATED 
FORCE IN RAT ANOCOCCYGEUS

The previous section has investigated GTP’s effect on calcium release. 

However, the potentiation of noradrenaline-induced force by GTP could be 

explained by an increase in the sensitivity of the contractile proteins to calcium. 

The results from both rat anococcygeus and guinea pig portal vein show that, 

at the [Ca2+] used in the experiments to examine GTP’s effect on calcium 

release (a [Ca2+] below threshold for tension), noradrenaline and GTP had no 

significant effect on calcium-activated force. However, at the [Ca2+] s which did 

cause contraction, noradrenaline and GTP did increase calcium sensitivity and 

Tmax in both tissues. However, in relative terms the two tissues were affected 

differently. Calcium-activated force was affected more by noradrenaline in 

guinea pig portal vein but more by GTP in rat anococcygeus. The result found 

in guinea pig portal vein was consistent with the published literature (see 

introduction). The increase in Tmax has been reported only by one other group 

(Kitazawa et al, 1989). Phosphorylation of the contractile proteins by PKC has 

been suggested as the cause of the increased calcium-activated force. Fujiwara 

et al (1989) have reported that, in saponin permeabilized mesenteric arteiy, 

there is increased phosphorylation in the presence of GTP-7 -S. However, the 

authors were not certain that all of the effect could be explained by activation 

of PKC because TP A (an activator of PKC) has been reported to decrease 

Tmax (Itoh et al, 198% Itoh et a\; 1988 and Fujiwara et al, 1988) whereas in 

their hands GTP-7 -S had no effect on maximum calcium sensitivity. Kobayashi 

et al (1989) have proposed another method to account for the increase in
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maximum calcium-activated force, suggesting that phosphatases acting on the 

myosin light chain are inhibited by GTP-7 -S.

Guinea pig portal vein can be made to react in a similar manner to rat 

anococcygeus by adding GTP-7-S instead of GTP (Figure 4.16). As has already 

been discussed, GTP-7-S is a non-hydrolysable analogue of GTP, which 

chronically activates the G-protein. This result suggests that, in rat 

anococcygeus, a sub-population of G-proteins are chronically activated so that 

GTP acts in a similar manner to GTP-7 -S.

In conclusion, the two tissues, rat anococcygeus and guinea pig portal vein, 

respond very differently to GTP. This difference includes their response to GTP 

with respect to both calcium release and calcium-activated force. In guinea pig 

portal vein GTP does not in itself release calcium, but does potentiate 

noradrenaline-activated calcium release. In this preparation, GTP has only a 

small effect on calcium-activated force in comparison with the effect of 

noradrenaline on calcium-activated force. The results obtained with guinea pig 

portal vein are consistent with current understanding of the involvement of 

G-proteins in the agonist transduction system in smooth muscle. Rat 

anococcygeus, on the other hand, reacted in a novel manner to GTP with 

respect to both calcium release and calcium-activated force. GTP itself caused 

a contraction and only transiently potentiated noradrenaline-activated force. It 

also had a greater effect on calcium-activated force than noradrenaline. Both 

muscle types could be made to react in the same manner by using GTP-7-S 

instead of GTP; that is, both contracted in response to GTP-7-S itself and
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GTP-7 -S had a greater effect on calcium-activated force than noradrenaline. 

This response is similar to the way GTP affects calcium release and 

calcium-activated force in rat anococcygeus. This would indicate that

permeabilized rat anococcygeus muscle has a population of chronically activated 

G-proteins in the presence of ATP which affects its response to GTP.
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CHAPTER 5

THE EFFECT OF LITHIUM ON AGONIST RESPONSES 

IN INTACT AND ALPHA-TOXIN PERMEABILIZED 

SMOOTH MUSCLE FROM RAT ANOCOCCYGEUS.



INTRODUCTION

A. INOSITOL PHOSPHATES

It is over 35 years since Hokin and Hokin (1953) discovered 

receptor-activated metabolism of inositol lipids. In the following 15-20 years 

they described most of its key characteristics. However, despite their intense 

work on this system they were unable to assign a biological function to this 

widespread biochemical response of cells to stimulation. Michell in 1975 

reported that after surveying a large number of tissues showing the 

phosphatidylinositol (Ptdlns) response, he noted that:

( 1 ) the stimulus response mechanism required extracellular calcium, and rises in 

intracellular [Ca2+] occurred on agonist stimulation;

2) the Ptdlns effect was independent or only partially dependent on extracellular 

[Ca2+] in many tissues; and

(3 ) in some tissues, calcium ionophores stimulated the physiological response, 

but not Ptdlns breakdown.

These observations indicated that Ptdlns is a prerequisite to [Ca2+] elevation in 

some cells and led to the hypothesis that Ptdlns synthesis caused the opening 

of calcium-gates in the membrane. Further support was given to this hypothesis 

by Berridge and Fain (1979) who found that stimulation with 5-HT, in blowfly 

salivary gland, caused Ptdlns loss and increased exchange of calcium. At around 

the same time as this Abdel-Latif, Akhatar and Hawthorne (1977) demonstrated 

a rapid breakdown of phosphatidylinositol bisphosphate (PtdIns(4,5)P2) in iris
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smooth muscle after muscarinic or alpha-adrenergic stimulation. Subsequently 

they (Akhatar & Abdel-Latif, 1980) showed that the breakdown was 

accompanied by the formation of 1-InsP, PtdIns(4,5)P2  and inositol triphosphate 

(Ins(l,4,5)Pj). However, these workers did not think that these breakdown 

products had any significance in calcium mobilization because the response was 

partially dependent on [Ca2+] and could be mimicked by a calcium ionophore.

The role of Ins(l,4,5)Pj was not appreciated until 1983, when Streb et al 

reported that it was able to release calcium from an intracellular, 

non-mitochondrial store in isolated rat pancreatic acinar cells. They also 

reported that Ins(l,4,5)Pj released the calcium from the same store as 

acetylcholine. Similar observations have since been noted in smooth muscle 

(Suematsu et al, 1984; Somlyo et al, 1985; Hashimoto et al, 1986). In this tissue 

Ins(l,4,5)P5  acts on the sarcoplasmic reticulum to release calcium which 

subsequently causes contraction.

Much work has been done in trying to understand the Ptdlns cycle. There 

are many breakdown products and branches. These were recently summarised 

by Berridge and Irvine (1989) and their schematic diagram of the cycle is shown 

in Figure 5.1. Receptor activation stimulates a G-protein (Gomperts, 1983) 

which in turn activates phospholipase C which breaks down phosphatidylinositol 

bisphosphate (PtdIns(4,5)P2) and gives two main breakdown products:

(1) diacylglycerol (DG) which remains within the membrane plane; and

(2) inositol triphosphate (Ins(l,4,5)P3) which is released into the cytosol.
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Figure 5.1 A  Summary of known (solid arrows) and suspected (dashed arrows) 

routes of metabolism of compounds containing inositol and phosphate. Myo­

inositol is represented in its chair configuration and all the inositol phosphates 

are numbered in the D-isomer configuration. The enzymes are (1) Ptdlns 

synthetase (CMP-PA; inositol phosphatidyltransferase); (2) PtdIns-3-kinase; (3) 

PtdIns-4-kinase (type II); (4) PtdIns(4)P phosphomonoesterase; (5) PtdIns(4)P- 

5-kinase; (6 ) PtdIns(4,5)P2  phosphomonoesterase; (7) phospholipase C; (8 ) 

diacylglycerol kinase; (9) CMP-PA synthetase; (10) Ins(l,4,5)P3 /Ins(l,3,4,5)P4- 

5-phosphatase; (11) Ins(l,4,5)P3-5 phosphatase; (12) Ins(l:2cyc)P

phosphodiesterase; (13) InsP phosphatase; (14) inositolpolyphosphate-1- 

phosphatase; (15) Ins(l,4,5)Pj-3-kinase; (16) inositolpolyphosphate-4-phosphatase; 

(17) Ins(l,3)P 2 -3-phosphatase; (18) Ins(l,3,4)Pr 6-kinase; (19) Ins(l,3,4,6)P^-5- 

kinase; (20) Ins(l,3,4,5,6)P5 -2-kinase; (21) Ins(3,4,5,6 )P4 -1-kinase; (22) Ins(3)P- 

synthetase. This diagram has been taken from Berridge and Irvine, 1989.
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Another product formed is cyclic inositol triphosphate (cIP3). Its function, 

however, is unclear. The discovery that cyclic inositols are produced in vitro by 

phospholipase C and the demonstration of its biological activity have been well 

documented (Majerus et al, 1986). Cyclic Ins(l,4,5)P5  is a more stable 

compound than Ins(l,4,5)P5  by the virtue of the fact that it is poorly metabolised 

by Ins(l,4,5)Pj phosphatase. It might, therefore, have a role to play in long 

term control of calcium within cells.

Inositol(l,4,5)triphosphate (Ins(l,4,5)P2) appears to bind to a receptor on 

a non-mitochondrial intracellular membrane with the result that a calcium 

channel opens to release calcium into the cytosol (Streb et al, 1983). This has 

been further verified (Ehrlich & Watras, 1988) and it is now proposed that in 

smooth muscle Ins(l,4,5)P2  opens a calcium channel and releases calcium from 

the sarcoplasmic reticulum. There are two routes for metabolism of this 

compound. It can either be dephosphorylated by Ins(l,4,5)P5 -5-phosphatase to 

Ins(l,4)P 2  (Downes, Hawkins & Michell, 1982) or it can be phosphorylated by 

Ins(l,4,5)P3 -3-kinase to inositol tetrakisphosphate (Ins(l,3,4,5)P^) (Batty, 

Nahorski & Irvine,1985). Ins(l,4)P 2  is thought to be inactive, but Ins(l,3,4,5)P^ 

is thought to have a calcium regulating role. This compound, however, has little 

effect on its own. It is thought to act synergistically with Ins(l,4,5)P5. It was 

found in sea urchin eggs that Ins(l,3,4,5)P4  in combination with Ins(2,4,5)P5  

could raise the fertilization envelope. This effect was dependent on both the 

presence of extracellular calcium and on co-injection with a calcium mobilizing 

compound (Ins(2,4,5)P3) (Irvine & Moor, 1986; 1987). Consequently, it was
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proposed that Ins(l,3,4,5)P4  was causing calcium entry after Ins(l,4,5)P5  had 

released the contents of the intracellular store. Morris et al (1987) also reported 

a similar synergism in mouse lacrimal glands. They showed that in single cells, 

neither Ins(l,4,5)Pj nor Ins(l,3,4,5)P^ alone could activate a sustained calcium 

current, whereas together they could. Bradford and Irvine (1987) have since 

demonstrated a specific binding site for Ins(l,3,4,5)P^ on the membrane of 

HL-60 cells which the authors claim is the intracellular receptor for this 

compound, thus giving it more credence as an intracellular second messenger.

I n s (  1 , 3 , 4 , 5)P^ is m e t a b o l i s e d  to  I n s ( l , 3 , 4 ) P 3  by 

Ins(l,4,5)P3 /Ins(l,3,4,5)P^-5-phosphatase. This is also thought to be an inert 

compound physiologically. It can, however, release calcium from the 

intracellular store but it is 30 times less potent than Ins(l,4,5)P5  (Irvine et al,

1986). Its slow rate of formation and removal after termination of the stimulus 

(Berridge & Irvine, 1984) suggest that any possible function is over a 

comparatively long time scale.

Two other inositol phosphates have been recently identified - InsP5  and 

InsP6. However, it is thought that their metabolism occurs through pathways 

which are largely separate from the agonist-sensitive pathway. A pathway of 

synthesis for InsP5  might exist from the agonist-sensitive inositol phosphates 

through the phosphorylation of Ins(l,3,4)Pj to Ins(l,3,4,6)P^ and thence to 

Ins(l,3,4,5,6)P5  (Stephens et al, 1988). However, the main route of synthesis of 

this inositol phosphate is probably through Ins(3,4,5,6)P^. The origin of this 

compound is unknown. It might be formed by phosphorylation of inositol or
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from Ins(l,4,5)P3  (Berridge & Irvine, 1989). InsP6  is probably formed by 

phosphorylation of inositol. Both these compounds exist within cells at quite 

high concentrations (millimolar) (Martin et al, 1986). However, because their 

concentration changes only very slowly after receptor activation (Tilly, 1987) it 

is thought that these compounds do not have an acute second messenger role. 

There is a possibility that they do have a longer-term role in controlling the 

intracellular environment.

Diacylglycerol is the other breakdown product of PtdIns(4,5)P2. It is 

retained within the membrane and functions as a second messenger by activating 

protein kinase C (PKC), but only in the presence of calcium (Nishizuka, 1984). 

Stimulation of protein kinase C by phorbol esters (which are thought to mimic 

the effect of DAG on protein kinase C) has been shown to trigger contraction 

in smooth muscle from various arteries (Rasmussen et al, 1984; Baraban et al, 

1985; Danthuluri & Deth, 1984). Protein kinase C is responsible for 

phosphorylating proteins, although these have- been difficult to identify. It has 

been shown, however, that protein kinase C does phosphorylate myosin isolated 

from smooth muscle (Endo, Naka, & Hidaka, 1982) and there is some evidence 

that, in conjunction with myosin light chain kinase (MLCK), protein kinase C 

might modulate contraction of smooth muscle (Umekawa et al 1985). There 

have also been reports in skinned smooth muscle that protein kinase C increases 

the calcium sensitivity of the contractile proteins (Itoh et al, 1986; 1988; Fujiwara 

et al, 1988). Protein kinase C has also been identified as the kinase which 

phosphorylates active agonist receptors (Llano & Marty, 1987) and G-proteins
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(Sagi-Eisenberg, 1989) causing them to be inactivated. This would give DG a 

role in switching off the agonist-second messenger response. Protein Kinase C 

also appears to have a function in controlling intracellular [Ca2+]. It might 

interact with voltage dependent calcium channels to facilitate calcium entry. 

This has been shown in Aplysia neurones (Deriemer et a/, 1985), Hermissenda 

photoreceptors (Farley & Auerbach, 1986) and rat adrenal medulla (Wakade, 

Malhotra & Wakade, 1986). Protein kinase C might also activate the pumps 

that remove calcium from the cytosol (Drummond, 1985).

The breakdown products of DG might also have cellular effects. 

Diacylglycerol can be converted to arachidonate which can be converted to 

prostaglandins, leukotrienes and thromboxanes. These are collectively called 

eicosanoids and are potent regulators of various physiological responses. 

Arachidonate and its eicosanoids have been shown to increase in concentration 

after agonist-induced increases of inositides. This topic is reviewed by Rana and 

Hokin, (1990).

The primary soluble by-products of PtdIns(4,5)P2  - Ins(l,4,5)P5, 

Ins(l,3,4,5)P^ and Ins(l,3,4)P3  - are subsequently dephosphorylated through a 

number of reactions back to inositol. Diacylglycerol, the insoluble product of 

PtdIns(4,5)P2, is converted by diacylglycerol kinase, to phosphoatidic acid and 

then to  CMP-phosphatidate. This can be combined with inositol by Ptdlns 

synthetase to form Ptdlns. Further phosphorylation of this compound, which is 

now within the membrane plane, reforms the original substrate - PtdIns(4,5)P2.
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B. LITHIUM

Lithium was first reported as a treatment for manic depressive patients in 

1949 by J.F.J. Cade. However, its method of action was unknown. One 

possible explanation was suggested by Allison and Stewart (1971) who reported 

that a single intraperitoneal injection of LiCl (lOmeq/kg) in rats caused a 30% 

reduction in cerebral cortex inositol. They later reported that this could be 

blocked by co-administering atropine or scopolamine with the lithium (Allison 

& Blisner, 1976). In the same year Allison et al (1976) showed that myo-inositol 

1-phosphate (Ins IP) was also elevated in rats treated with lithium and to a 

greater extent than inositol. It was soon discovered that lithium inhibited 

inositol monophosphatases (Naccarato, Ray & Wells, 1974). This was confirmed 

at a more physiological concentration (ImM  as opposed to 250mM) by Hallcher 

and Sherman (1980). Lithium treatment, therefore, prevents the conversion of 

any of the InsP to inositol. Lithium has also been found to inhibit at least one 

o t h e r  p h o s p h a t a s e  in t he  b r e a k d o w n  pa t hway ,  namely  

inositolpolyphosphate-l-phosphatase (Berridge et al, 1983; Storey et al, 1984; 

Burgess et al, 1985). Inhibition of this enzyme prevents the conversion of 

Ins(l,4)P 2  to Ins(4)P and of Ins(l,3,4)P3  to Ins(3,4)P2. Normally there are three 

main routes for the supply of inositol:

(1) recycling of Ptdlns;

(2 ) de novo synthesis from glucose-6 -phosphate; and

(3) the diet.
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The first two of these possible routes are inhibited by lithium. Thus when the 

Ptdlns cycle is repetitively or continually stimulated in the presence of LiCl the 

level of inositol will decrease within the cell and the response to the agonist will, 

therefore, also decrease. It cannot be regained by de novo synthesis because 

this involves the monophosphatases which are blocked by lithium. The only 

means of maintaining inositol is for it to come from the diet. Berridge et al 

(1983) proposed that, because the brain does not have access to dietary inositol, 

this might explain why lithium treatment is selective for the brain in manic 

depressive patients.

There have been reports of lithium affecting other sites in the agonist 

transduction mechanism. Lithium has been reported to decrease the number 

of new agonist receptors incorporated into skeletal muscle membranes (Pestronk 

& Drachman, 1987). However, this process is also influenced by the 

intracellular [Ca2+] and so might be a secondary effect of the inhibition of the 

Ptdlns cycle. Avissar et al (1988) have also-reported that lithium blocks the 

G-proteins involved in activating both the Ptdlns cycle and adenylyl cyclase.

C. PURPOSE OF STUDY

The aim of this study was to examine the effect of chronic lithium 

treatment on different agonist responses in intact rat anococcygeus to try and 

analyse if these agonists were producing their effect via the Ptdlns cycle. The 

effect of lithium was examined on:
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( 1 ) concentration response curves to noradrenaline, phenylephrine, acetylcholine 

and 5-HT;

(2 ) noradrenaline, phenylephrine and acetylcholine responses in low calcium 

Krebs solution (0.1/iM); and

(3) finally the effect of short term application of LiCl on responses to 

noradrenaline-, caffeine- and calcium-activated force was investigated in 

alpha-toxin permeabilized anococcygeus muscle.

As has already been stated, lithium is thought to have its effect on the 

Ptdlns cycle by blocking the enzymes which breakdown Ins(l,4,5)Pj to inositol. 

This, therefore, runs down the available inositol within the cell. To try and 

prevent this effect of lithium, myo-inositol was fed to the rats at the same time 

as they were being injected with lithium. The response to the different agonists 

in these muscles was also examined. The acute effects of lithium and myo­

inositol were also examined in alpha-toxin permeabilized rat anococcygeus 

muscle.
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MATERIALS AND METHODS

A. INTACT MUSCLE

ANIMAL PRETREATMENT

Lithium chloride (6 .8 mmoles/kg) was injected intraperitoneally on a daily 

basis for four consecutive days. Eighteen hours after the final injection the rats 

were sacrificed and the tissue isolated. During the four day course of injections 

the animals were given 0.45% saline ad libitum. The ’LiCl plus myo-inositol’ 

treated group was injected daily, as before. In addition, myo-inositol lOmM was 

administered in the 0.45% saline. This is essentially the same protocol as that 

used by Eglen et al (1987).

EXPERIMENTAL PROCEDURE

The rat anococcygeus muscles were isolated and set up for experimentation

as described in Chapter 2 (intact muscle section). The solutions used are

detailed in Table 2.1 in Chapter 2.

PROTOCOL FOR EXAMINING INTRACELLULAR RELEASE USING LOW CALCIUM 
(0.1/iM) KREBS

In an attempt to examine the intracellular release of calcium the muscle 

was bathed in a low calcium Krebs solution (buffered with EGTA to 

approximately 0.1/xM calcium). This external [Ca2+] is below the level of 

calcium needed to permit calcium entry, hence any contraction produced by the
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agonist is thought to be due to release of intracellular calcium. The following 

protocol has been devised to examine this release which has been called the 

intracellular component (ITC). Step 1  is proposed to allow the intracellular 

store to load; if this step is missed out then no contraction can be induced. 

Step 2 lowers the extracellular [Ca2+] to 0.1/xM. Step 3 is the agonist challenge 

step and Step 4 lowers the [Ca2+] again and washes out the agonist before the 

store is reloaded.

(1) Wash with 1.25mM calcium Krebs (10 minutes): twice at 0 minutes and 

once at 5 minutes.

(2) Wash with low calcium Krebs (0.1/xM) (10 minutes): twice at 0 minutes, 

once at 3 minutes and once at 9 minutes.

(3) Challenge with agonist in low calcium Krebs (0.1/zM) (5 minutes)

(4) Wash with low calcium Krebs (0.1/xM) (10 minutes): twice at 0 minutes, 

once at 3 minutes, once at 5 minutes and once at 7 minutes.

B. PERMEABILIZED MUSCLE

EXPERIMENTAL PROCEDURE

Strips of rat anococcygeus muscle were isolated and set up for 

experimentation as described in Chapter 2 (Permeabilized Muscle). The muscle 

was permeabilized as described in Chapter 3 (Materials and Methods). The 

solutions used are detailed in Table 2.3. The potassium salt used was potassium 

propionate. Lithium chloride was added from a 1M stock to the solutions to 

obtain a final concentration of lOmM. The effect that this might have on ionic
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strength was examined by looking at the effect of adding lOmM sodium chloride. 

Myo-inositol and sucrose were added as solids to the solutions.
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RESULTS

Figure 5.2A shows a typical example of a concentration response curve 

(CRC) obtained with noradrenaline. All the CRCs reported in this chapter 

were performed in the same manner: the muscle was allowed to equilibrate to 

each new concentration before the next concentration was added in a cumulative 

fashion. The agonist concentration was increased by half logarithmic units. 

Figure 5.2B shows a typical response to a maximal dose of noradrenaline 

(30jxM) in a muscle which has been incubated in low calcium Krebs (0.1/xM). 

The calcium buffer EGTA was used to maintain the [Ca2+] in the solution at 

0.1/xM. This concentration is low enough to prevent entry of extracellular 

calcium playing a significant role in producing a contraction. Thus any 

contraction produced in response to noradrenaline is assumed to be due to 

release of intracellular calcium. This contraction is called the intracellular 

component (ITC). Figure 5.3A shows the mean of six experiments for six repeat 

contractions to noradrenaline in the low calcium Krebs (0.1/xM). It is only after 

the third contraction that the muscle contracts reproducibly. These same six 

muscles were examined to determine whether the left and right ’legs’ of the 

tissues produced comparable sized contractions (Figure 5.3B). Each point is the 

mean of four consecutive contractions. It can be seen that in only one out of 

six cases the paired muscles are significantly different (Student’s t-test). This
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Figure 5.2A. shows a typical cumulative concentration response curve (CRC) in 

response to noradrenaline (NA) in rat anococcygeus. The agonist concentration 

is increased in half logarithmic units. The next concentration of agonist was 

added when the muscle had equilibrated to the previous concentration. Figure 

5.2B. shows a typical effect of 30/iM noradrenaline from rat anococcygeus 

bathed in a low calcium Krebs (0.1/xM) solution (composition is detailed in 

Chapter 2, Table 2.1).
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Figure 5.3A. shows the average size of six consecutive contractions in low 

calcium Krebs (0.1/xM) from six animals and therefore twelve tissues. Figure 

5.3B. shows the average size of the last four contractions shown in Figure 5.3A 

as a comparison of the contraction size in the Left (L) and right (R) ’legs’ of 

the muscle. The results are shown for each of the six animals as the 

mean±S.D. of the four tests. (**p=0.05)
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result is important because, when the lithium experiments were undertaken, one 

’leg’ was examined for LiCl’s effect on the CRC and the other for the effect on 

the ITC.

The magnitude of the ITC was found to be variable. This was especially 

so when the time in low calcium Krebs (0.1/xM) was altered (this is after the 

muscle had been bathed in 1.25mM calcium Krebs for a fixed time to load the 

calcium stores). Figure 5.4 compares within one muscle the effect on the ITC 

of varying the time in low calcium Krebs (0.1/iM) after the stores have been 

allowed to load. Leaving the muscle for 15 minutes dramatically reduces the 

ITC and leaving it for 5 minutes increases its size. However, not only is the size 

increased, but a second component is introduced. The second component can 

be abolished if the muscle is incubated in nifedipine (1/dM). Figure 5.5 shows 

the size of the ITC after 10 minutes in low calcium Krebs (0.1/^M), 5 minutes 

in low calcium Krebs (0.1/jM) and 5 minutes in low calcium Krebs (O.l/^M) in 

the presence of nifedipine (1/jM). In the five, muscles examined, incubation for 

five minutes increased the ITC and introduced an extra component in three of 

the muscles. This extra component was abolished by nifedipine indicating that 

it was due to calcium entry via voltage operated calcium channels (Spedding,

1987). The size of the peak was also reduced making it more like the ITC 

obtained after 10 minutes incubation. It would appear, therefore, that 

incubating in EGTA for 5 minutes is not a long enough time to reduce the 

extracellular [Ca2+] to such a level that the ITC is due only to intracellular
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Figure 5.4 shows typical examples from one animal of responses to 30/xM NA 

in low calcium Krebs (0.1/iM). The contractions are compared after different 

incubation times in low calcium Krebs (0.1/iM) and hence various times since 

the intracellular store was loaded: (A) 10 minutes; (B) 15 minutes; (C) 5

minutes.
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Figure 5.5 shows the contractile response to NA in low calcium Krebs (0.1/iM) 

in five different muscles. The contractions are compared after different 

incubation times in low calcium Krebs (0.1/xM) and hence various times since 

the intracellular store was loaded: (A) 10 minutes; (B) 5 minutes, and (C) 5
AA

minutes with l̂ M nifedipine throughout the loading period.
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release. Hence, for the rest of the experiments examining the ITC the 

incubation time was set at 1 0  minutes.

It has been proposed that lithium blocks the Ptdlns cycle. In an attempt 

to examine this proposal the responses of rat anococcygeus to a variety of 

agonists were examined and compared with those obtained in rats chronically 

treated with LiCl.

EFFECTS OF LITHIUM ON THE CRC

Figure 5.6 shows the effect of chronic treatment with LiCl on: (A)

noradrenaline CRC, (B) phenylephrine CRC, (C) Acetylcholine CRC and (D) 

5-HT CRC. The curves were undertaken in the following order 5-HT, ACh, NA 

and PhE. LiCl treatment appears to significantly suppress the responses to each 

of the agonists. However, the only agonist in which the sensitivity is affected 

is PhE and even in this case there is no significant difference in the PD 2  values 

(Student’s t-test) (Figure 5.7). Sensitivity was examined after the curves had 

been normalised to their own maximum. Only tissues which had reached a 

clearly defined maximum were examined for an effect on sensitivity. Hence 

5-HT CRC’s were not analysed for the effect of LiCl on sensitivity.
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Figure 5.6 shows mean CRCs in response to (A) NA, (B) PhE, (C) ACh and 

(D) 5-HT. The CRCs have been performed in tissues taken from rats which 

have (closed circles) and have not (open circles) been chronically treated with 

LiCl. Details of the LiCl treatment are give in the Materials and Methods of 

this chapter. Results shown are the mean±s.e.m. (n=6-12). Significance was 

tested using an unpaired Student’s t-test. (* p<0.05 **p<0.01).
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Figure 5.7 shows the normalised results from the CRCs to (A) NA, (B) PhE and 

(C) ACh. Only curves from muscles which reached a clearly defined maximum 

were included and each curve was expressed as a percentage of its own 

maximum. Closed circles denote muscles which have been harvested from rats 

which were chronically LiCl treated and the open circles muscles from untreated 

rats. The PD2 values were calculated for the three agonists under each of the 

conditions and were found not to be significantly different. (mean±s.e.m., * 

p<0.05)
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Since LiCl treatment is supposed to cause the run down of inositol in the 

cytosol (Berridge,1983) the effect of administering myo-inositol in the water of 

the rats at the same time as they are being treated with LiCl was examined. 

The rats freely drank the saline with the myo-inositol since the LiCl has a 

natriuretic action. Figure 5.8 shows that co-administering the myo-inositol 

significantly blocks the inhibitory action of LiCl on (A) NA, (B) PhE and (C) 

ACh. The effect was not examined for 5-HT because the contractile response 

proved to be unreliable in all the tissues examined. Co-administering 

myo-inositol at the same time as LiCl did not have any effect on the sensitivity 

of the muscles to the three agonists (Figure 5.9) Myo-inositol appears to 

prevent the effect of LiCl to such an extent that the CRCs are returned towards 

control levels (Figure 5.10). The responses to NA and PhE in the muscles from 

the rats which have been treated with LiCl plus myo-inositol are greater than 

the control, but the increase is not significant. The response induced by ACh 

is comparable to the control. No standard error bars have been shown for the 

ACh CRC because only three muscles were examine.

The manner in which these experiments were carried out imposes 

restrictions on the analysis. That is, these experiments were undertaken as two 

groups: (1) responses to agonists in tissues which have been harvested from 

chronically LiCl-treated animals compared with responses to agonists in control 

tissues and (2) responses to agonists in tissues which have been harvested from 

chronically LiCl-treated animals compared with responses to agonists in tissues 

which have been harvested from chronically LiCl plus myo-inositol treated
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Figure 5.8 shows mean CRC in response to (A) NA, (B) PhE and (C) ACh.

The CRCs have been obtained from anococcygeus muscle taken from rats which

have been chronically treated with LiCl and myo-inositol (open circles) and in

anococcygeus muscle taken from rats which have been chronically treated with

LiCl (closed circles). Details of the LiCl and myo-inositol treatment are give

in the Materials and Methods of this chapter. (mean±s.e.m., n=3-4, * p<0.05)
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Figure 5.9 shows the normalised results from the CRCs obtained with: (A)

NA, (B) PhE and (C) ACh. Only curves from muscles which reached a clearly 

defined maximum were included and each curve was expressed as a percentage 

of its own maximum. Open circles denote muscles harvested form rats which 

were chronically treated with LiCl and myo-inositol and the closed circles 

muscles from LiCl-treated rats. The PD2 values were calculated for the three 

agonists under each of the conditions and were found not to be significantly 

different using a Student’s unpaired t-test. (mean±s.e.m., n=2-4)
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Figure 5.10 shows mean CRC in response to (A) NA, (B) PhE and (C) ACh. 

The CRCs have been undertaken in tissues taken from rats which have (closed 

circles) and have not (open circles) been chronically treated with LiCl and 

myo-inositol. Details of the LiCl and myo-inositol treatment are give in the 

Materials and Methods of this chapter. (mean±s.e.m., n=3-9). Significance was 

tested using an unpaired Student’s t-test. (* p<0.05)
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animals. These two groups of experiments took place separated by several 

months and so strictly speaking should not be cross interpreted. This means, 

therefore, that the response from the control tissues should not be compared 

with the responses from the LiCl plus myo-inositol treated group. It cannot be 

strictly claimed, therefore, that myo-inositol is preventing LiCl from suppressing 

the response to the agonists to such an extent that they are no different from 

the control. It can only be said that myo-inositol is to some extent preventing 

the effect of LiCl. The other problem is that the design of the experiments 

does not allow the analysis of the effect of myo-inositol on its own. Myo-inositol 

is fed to the LiCl treated rats in their drinking water which they take freely 

because they are natriuretic. It is unknown whether control rats would take the 

myo-inositol in their drinking water and it is almost certain that, because they 

would not be natriuretic, probably would not take an equivalent dose of 

myo-inositol.

In summary, anococcygeus muscle from-rats chronically treated with LiCl 

for four days produces CRCs in response to NA, PhE, ACh and 5-HT which are 

significantly depressed in comparison to the responses in tissues from control 

rats. Although the force produced in response to all these agonists is depressed, 

sensitivity to these agonists is unaffected. This depression in the force produced 

by these agonists is prevented to some extent by feeding the rats myo-inositol 

at the same time as they are receiving the injections of LiCl. The extent to 

which the effect of LiCl is prevented cannot be analysed because two important
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controls are missing i.e. CRC’s in response to these agonists in tissues from (1) 

untreated rats and (2) myo-inositol only treated rats.

EFFECTS OF LITHIUM ON THE ITC

Figure 5.11 shows representative ITC contractions in (A) control and (B) 

muscles from rats chronically treated with LiCl. The effect of chronic LiCl 

treatment is to suppress the ITC produced by all three agonists. 5-HT does not 

produce an ITC. Mean observations are shown in Figure 5.12A. LiCl 

significantly reduces the size of the ITC produced by all three agonists. 

Surprisingly however, after treatment with myo-inositol plus LiCl the effect on 

the ITC is not prevented (Figure 5.12B). It is, however slightly increased with 

regard the effect of LiCl alone. This slight increase is enough to cause the 

response (ITC in LiCl plus myo-inositol for NA and PhE) to be no longer 

significantly different from the control ITC (Figure 5.12C). This is most 

probably due to the manner in which these experiments were undertaken as has 

been discussed above. The experiments were performed in two sections: (1) 

controls and LiCl and (2) LiCl and LiCl plus myo-inositol, separated by several 

months. It would appear that the effect of LiCl in the second set of animals is 

different from that in the first. This is only a problem when the animals from 

the two sets are compared. To obtain a better picture of the difference 

between the LiCl plus myo-inositol treated muscles and control muscles these 

experiments should ideally have been done at the same time. The other results 

from within the two sets of experiments are still valid. In summary, LiCl
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Figure 5.11 shows typical contractions evoked by NA (30/xM), PhE (30/iM) and 

ACh (3mM) in low calcium Krebs (0.1/xM) in: (A) anococcygeus from control 

rats and (B) anococcygeus from rats which have been chronically LiCl treated.
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Figure 5.12 shows the mean ITC for NA (30/iM), PhE (30/iM) and ACh (3mM). 

In (A) the open bars represent the mean ITC of anococcygeus muscles from 

control rats and the filled bar the mean ITC of anococcygeus muscles from rats 

chronically treated with LiCl. (mean±s.e.m., n=6-12, **p<0.05) (B) compares 

the mean ITC from anococcygeus muscles from rats chronically LiCl treated 

(open bars) and rats chronically LiCl and myo-inositol treated (filled bar). 

(mean±s.e.m., n=4) (C) compares the mean ITC from anococcygeus muscles 

from control rats (open bars) and rats chronically LiCl and myo-inositol treated 

(filled bar). (mean±s.e.m., n=4-6, **<0.5)



A.

c o 
•1—<COa
£

B.

£
J3,
co

•  r*HCOa<U
H

1 0  - i

□  Control 
H LiCl

NA PhE ACh
Agonist

8
□  LiCl
H  LiCl plus Myo-inositol6

4

2

0
NA PhE ACh

Agonist

a
.2
00a
£

10

8

6

4

2

0
NA

X
X

PhE
Agonist

□  Control
11 L iC l p lus M y o -in osito l

ACh

155



treatment reduces the ITC to NA, PhE, and ACh and this effect could not be 

shown to be prevented by myo-inositol. However, LiCl reduces the maintained 

response to these agonists and this effect is prevented to some extent by 

myo-inositol.

THE EFFECTS OF LITHIUM ON ALPIIA-TOXIN PERMEABILIZED MUSCLE

One explanation of the effect of LiCl alone on the ITC and CRC might 

be that the intracellular store has been depleted or is not loading to the same 

extent. To examine this idea responses evoked by caffeine were examined in 

muscle which had been permeabilized with alpha-toxin. Caffeine releases 

calcium from the sarcoplasmic reticulum (Weber & Herz, 1968) as does 

Ins(l,4,5)P5 (Streb et al, 1983). It has been shown in the previous chapter that 

if caffeine is applied at regular intervals its addition causes contractions of equal 

size and this might be used as an indication of the amount of calcium available 

for release in the sarcoplasmic reticulum. To .examine the effect of LiCl on the 

size of the releasable pool of calcium, four repeat contractions 10 minutes apart 

were induced in normal ’0.2 Relaxing solution’ (two are shown in the diagram), 

four were induced in ’0.2 Relaxing’ with lOmM NaCl (to examine the effect of 

increased ionic strength) and four were induced in ’0.2 Relaxing’ solution with 

lOmM added LiCl. NaCl (lOmM) inhibits the contractions evoked by caffeine, 

but not immediately (Figure 5.13). LiCl or NaCl were added at the same time 

as the caffeine to try to discern whether the reduction in the size of the
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Figure 5.13 shows a typical experimental trace of contractions evoked by caffeine 

(lOmM) in alpha-toxin permeabilized rat anococcygeus muscle. The open bars 

below the trace denote exposure time to caffeine. lOmM NaCl was applied to 

the solution at the time indicated by the solid bar. This was exchanged for 

lOmM LiCl at the time indicated by the stippled bar.
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contraction in response to caffeine was due to a depression of calcium sensitivity 

or due to a reduction in the amount of calcium within the store. If, when the 

compound is added at the same time as caffeine, there is a reduction in the size 

of the contraction then this is most likely to be due to a decrease in sensitivity. 

If, however, the effect does not occur until the next contraction then this 

indicates that the loading of the store has been affected. Since NaCl did not 

immediately inhibit the contraction in response to caffeine then it is probable 

that it is having its effect on the ability of the store to load with calcium. LiCl 

produced a further reduction in size of the contraction in response to caffeine. 

This inhibition is immediate and so is most likely to be due to a decrease in 

the calcium sensitivity of the contractile proteins. The size of the contraction 

does increase slightly indicating that the store is able to load more in the 

presence of LiCl. This possible effect on calcium-sensitivity was examined in 

half maximally and maximally calcium-activated muscle. The results in figure 

5.14A show that NaCl depresses the contraction produced at 0.3/iM and 100/iM 

[Ca2+]. LiCl (lOmM) causes a further depression in calcium-activated force. 

The depressive effect is greater at 0.3/iM calcium than 100/iM calcium which 

indicates that lOmM LiCl is depressing calcium sensitivity of the myofilaments. 

This effect of LiCl is concentration dependent (Figure 5.14B) and is fully 

reversible.

As has been discussed in Chapter 3, one of the advantages of the 

alpha-toxin-treated preparation is that it retains functional membrane-bound
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Figure 5.14A shows the effect of lOmM NaCl (open bar) and lOmM LiCl 

(stippled bar) on calcium-activated force in alpha toxin permeabilized rat 

anococcygeus muscle. The muscle was exposed to the [Ca2+] indicated by the 

’stepped’ line. Panel B shows the effect of increasing concentrations of LiCl 

on calcium activated force. The [Ca2+] that the muscle was exposed to is 

indicated by the lines under the trace and the LiCl concentration is indicated by 

the bars. The solutions used in these experiments comprised ratios of ’10 

Activating’ and ’10 Relaxing’ (their composition is detailed in Chapter 2, Table
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receptors. However, some of the disadvantages of this technique for use in this 

preparation have also been discussed in Chapter 4. The size of the response 

to repeated NA challenges declines and this cannot be readily restored. The 

response to ACh is also lost in these muscles. Therefore, only the response to 

NA was examined in alpha-toxin permeabilized muscle. Since the amplitude of 

the response to NA declines with time in alpha-toxin permeabilized muscle the 

effect of lOmM LiCl on the response to NA has had to be compared with the 

response to NA in an untreated preparation. The effect of LiCl on the 

contraction induced by NA is shown in Figure 5.15. It can be seen that the 

response is veiy small and prolonged, very different from the response to NA 

that was described in Chapter 4. Of the five tissues which were examined in 

this manner two of them did not respond to NA at all. These contractions (in 

presence of lOmM LiCl) induced by NA are only 22.5%±27.4% (x±S.D, n=5) 

of the previous contraction to caffeine (also in LiCl), whereas the other 

contractions (no LiCl) to NA are 73.7%±21.0% (x±S.D., n=13) of the previous 

response to caffeine. These results would indicate that the response to NA is 

significantly reduced in the presence of LiCl and that this reduction cannot be 

completely accounted for by a reduction in calcium-activated force. The results, 

therefore, imply that LiCl interferes with the process linking NA to calcium 

release.

The next step was to examine whether myo-inositol could reverse the 

effect of LiCl in the alpha-toxin permeabilized muscle as it does in the intact
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Figure 5.15. shows the effect of lOmM LiCl (stippled bar) in the ’0.2 relaxing’ 

solution on contractions evoked by caffeine (open bar) and noradrenaline 

(hatched bar).
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muscle. Figure 5.16 shows the effect of lOmM NaCl plus lOmM sucrose (used 

to examine the effect of increased ionic strength and osmolarity) and lOmM 

LiCl plus lOmM myo-inositol on a half maximally and maximally 

calcium-activated muscle. NaCl plus sucrose depresses calcium activation at 

both [Ca2+]’s (0.3^M and 100/xM) and these are further depressed by LiCl and 

myo-inositol. These effects were also fully reversible. Thus myo-inositol did not 

reverse the effect of LiCl on calcium activated force. Myo-inositol also did not 

reverse the effect of LiCl on the contractions induced by caffeine or 

noradrenaline on the two occasions that this experiment was tried (results not 

shown).
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Figure 5.16 shows the effect of lOmM NaCl plus lOmM sucrose (open bar) and 

lOmM LiCl plus lOmM myo-inositol (stippled bar) on calcium-activated force. 

The [Ca2+] in the solutions was changed as indicated by the stepped lines below 

the trace.

163



DISCUSSION

This study has shown that LiCl has wide ranging effects on intact and 

alpha-toxin permeabilized rat anococcygeus muscle. A number of explanations 

are possible and some of these are discussed below.

POSSIBLE EFFECT OF LiCl ON RECEPTOR NUMBER

LiCl depressed the size of the contractions to NA, PhE, ACh and 5-HT, 

but it did not appreciably affect the ’sensitivity’ of the muscles to these agonists. 

A  possible factor which could reduce maximum activated force, but not 

sensitivity, would be a non-competitive reduction in the number of receptors in 

the surface membrane. Maximum force would be depressed because there 

would be a reduced number of channels that could be opened by this reduced 

population of receptors. Prestronk and Drachman (1987) have already reported 

that 24-48 hours incubation of cultured cells inT.5mM LiCl reduces the synthesis 

and, therefore, insertion of acetylcholine receptors into the surface membrane. 

This effect can be mimicked by raising the intracellular [Ca2+] and the effect is 

blocked if the cultured cells are bathed in inositol with LiCl. LiCl, therefore, 

might be having its effect directly on the synthesis of the receptors or it might 

be blocking the Ptdlns cycle which might raise intracellular [Ca2+] and this might 

affect receptor synthesis. Intracellular [Ca2+] might be raised if the factors 

postulated to cause calcium release and entry are elevated, for example 

Ins(l,4,5)P5, DG and Ins(l,3,4,5)P,. This possibility could be examined to some
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extent by measuring intracellular [Ca2+] in the presence of LiCl and comparing 

this with the [Ca2+] in LiCl plus myo-inositol treated cells.

POSSIBLE EFFECT OF LiCl ON CALCIUM-ACTIVATED FORCE

Another possible explanation of the reduced maximum response, but not 

reduced sensitivity, in tissues from chronically LiCl treated rats would be if the 

contractile proteins had become less responsive to calcium. There is some 

evidence from this study that, in permeabilized muscle, LiCl did reduce 

calcium-activated force. This has also be reported by Hori et al (1989). In both 

studies LiCl’s effect was reversible. The measurements made in the intact 

muscles were made after the animals had been LiCl treated for 4 days. When 

the measurements were taken the intact muscle was not in contact with LiCl. 

The effect of LiCl on calcium sensitivity in the permeabilized muscle is 

reversible. However, it is not known whether the effects of long term exposure 

to LiCl are reversible. These experiments could not be carried out because the 

integrity of the muscle cannot be retained for the length of time needed. Gow 

and Ellis (1990) have reported that extracellularly applied LiCl takes hours to 

accumulate intracellularly and that the concentration which is achieved is greater 

than the extracellular concentration. LiCl might not be having a direct effect 

on calcium sensitivity, the effect might be supplemented by a reduced 

Ins(l,4,5)P5 and DG production. Indeed the response to NA in the 

permeabilized muscle was reduced by LiCl proportionately more than the effect 

on calcium sensitivity. DG has been reported to raise calcium sensitivity (Itoh
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et al, 1986; 1988; Fujiwara et al, 1989) through its ability to activate PKC. If the 

breakdown pathway for Ins(l,4,5)P5 is blocked by LiCl then the amount of 

inositol within the cell will decrease and so will the amount of PtdIns(4,5)P2 in 

the membrane. This will mean that, when the cycle is stimulated, a reduced 

amount of Ins(l,4,5)P5 and DG will be produced. This could mean that DG will 

have a lesser effect on raising calcium sensitivity which will manifest itself as a 

decrease from control in calcium sensitivity. One way of examining this might 

be to add a phorbol ester or l-oleoyl-2-acetylglycerol (OAG) at the height of the 

contraction to try and further activate PKC. OAG is a synthetic analogue of 

DG and has been shown to work in a similar manner to DG (Nishizuka, 1984). 

Other compounds which might be depressing calcium sensitivity are the 

breakdown products of Ins(l,4,5)P5 which will be accumulating within the cell. 

The effect of these compounds on calcium sensitivity has not been tested most 

probably because they are expensive and have a very short half life. Their 

effect on calcium sensitivity will be easier to examine once stable analogues have 

been produced as has been done for Ins(l,4,5)P5 (Taylor et al, 1989). This 

effect of LiCl on calcium sensitivity assumes that the muscle is apparently 

maximally activated. This could be easily checked by (1) raising the extracellular 

[Ca2+] when the muscle is maximally contracted to examine if the muscle 

contracts more or (2) by measuring the [Ca2+] within the cells. If the [Ca2+] 

rises to the same extent in the LiCl treated cells as the control cells then this 

would indicate, since the LiCl treated muscle is producing less tension, that 

calcium sensitivity is reduced.
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POSSIBLE EFFECT OF LiCl ON CALCIUM ENTRY AND EFFLUX

Calcium influx is less likely to have been affected because maximum 

tension has been reduced and sensitivity of the muscle to the agonists has not 

been affected. If influx had been the limiting factor then it would mean that 

eventually the response would have reached the original maximum. This again 

relies on the assumption that the LiCl treated muscles are maximally activated. 

On the other hand if calcium efflux has been increased this would reduce the 

[Ca2+] which was allowed to accumulate within the muscle cells and so the size 

of the contractions would be reduced. A mechanism linked to Ptdlns to explain 

this is hard to imagine. DG is normally thought to stimulate calcium efflux 

(Drummond, 1985). However, if it is reduced by LiCl then this should decrease 

calcium efflux.

EFFECT OF LiCl AND MYO-INOSITOL ON THE INTRACELLULAR STORE AND FACTORS 
RELEASING THIS STORE

LiCl reduced the ITCs and CRCs induced by the agonists examined. It 

also reduced the contraction induced by NA in the permeabilized muscle and 

the contraction in response to caffeine. Part of this blockade has been shown 

to be an effect on sensitivity in the permeabilized muscle. LiCl per se does not 

seem to affect the size of the intracellular store, although the calcium which can 

be released is affected by increased ionic strength.

The surprising result came when myo-inositol was administered to the rats 

at the same time as they were being LiCl treated. This prevented to some 

extent the effect of LiCl on the CRCs in response to the agonists, but did not
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prevent the effect of LiCl on the ITC in response to the same agonists. 

Myo-inositol also did not prevent the effect of LiCl on calcium sensitivity in the 

permeabilized muscle nor did it reduce the effect of LiCl on the contraction in 

response to caffeine or NA. This might suggest an imbalance between the two 

breakdown products of PtdIns(4,5)P2 breakdown. If it is assumed that the ITC 

is a measure of Ins(l,4,5)P5 activity and the CRC a measure of Ins(l,4,5)P3 and 

DG activity then since the CRC to some extent is restored, but the ITC is not, 

in tissues from rats which have been chronically LiCl and myo-inositol treated, 

it might suggest either that not enough Ins(l,4,5)P3 is being produced to cause 

release of intracellular calcium or that the rate of Ins(l,4,5)Pj production has 

been reduced to a level where the breakdown rate of Ins(l,4,5)Pj is 

approximately the same as the production rate. The latter of these two is the 

more likely considering that: (a) enough DG appears to be produced to cause 

calcium-entry and (b) the two breakdown products are produced at the same 

rate and in the same amounts. The rate of production of DG could be reduced 

without it causing a problem since it has a slower rate of breakdown than 

Ins(l,4,5)P3. On the other hand a slower rate of production of Ins(l,4,5)P5 

could mean that its concentration never reaches a level at which it can have 

an effect because Ins(l,4,5)P3 is broken down so rapidly. Measuring Ins(l,4,5)Pj 

and DG production would be a means for examining this hypothesis.

The effect of myo-inositol might also be a consequence of how these 

experiments were carried out. The missing substrate (inositol) was restored, but 

the breakdown processes of the Ptdlns cycle were still blocked. Perhaps a
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better way to examine whether LiCl’s effect was due to the Ptdlns cycle would 

have been to replace the enzymes which are supposed to have been blocked. 

The intracellular effect of NA could have been to examined more effectively 

in alpha-toxin permeabilized muscle from a rat which had been chronically 

treated with LiCl.

In conclusion, LiCl has a wide range of effects including those of directly 

and indirectly decreasing calcium sensitivity. This affects the responses to NA, 

PhE, ACh and 5-HT. However, only in the case of NA is there evidence that 

LiCl is affecting something more than simply a reduced response of the 

myofilaments to calcium to produce its effect. There is no direct evidence, 

however, that this has anything to do with the Ptdlns cycle as the effect could 

not be prevented using myo-inositol.
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GENERAL CONCLUSIONS

The general aim of this thesis was to obtain a better understanding of the 

transduction mechanism linking membrane bound receptors to tension 

production in smooth muscle. Initial studies were carried out to investigate the 

viability of three different permeabilizing techniques. The experiments 

undertaken provide evidence that all three techniques (saponin, EGTA and a- 

toxin from Staphylococcus aureus) permeabilize the smooth muscle of rat 

anococcygeus. However, each treatment produced preparations with different 

properties and suitability for further experimentation. The basis of the different 

properties may be because each technique forms different sized ’pores’ in the 

surface membrane (Thelestam & Mollby, 1979). Saponin-treatment appears to 

produce the largest pores, and as a result of this the agonist-induced responses 

are absent and there is a rapid decline in the amplitude of maximum calcium- 

activated tension. The reduction in maximal calcium-activated force can only be 

partially prevented by including the protein calmodulin to the bathing solutions 

and using low ionic strength to favour its affinity for calcium. Alpha-toxin- 

treatment produces the next largest ’pores’. Muscles permeabilized by this 

means retain their ability to respond to agonist stimulation and low ionic 

strength is sufficient to prevent the decline in the amplitude of maximum 

calcium-activated force. EGTA-treatment of muscle appears to produce the 

smallest ’pores’ and retains the ability to respond to agonist stimulation, showing 

little decline in the amplitude of maximum calcium-activated force. However, 

EGTA-treated muscle only produces a third of the tension produced by



equivalent saponin- or a-toxin-treated muscles. Overall, a-toxin-treated muscle 

was considered to be the most suitable permeabilization technique and was used 

throughout the rest of the study.

The advantages of a-toxin permeabilization, that is that membrane bound 

receptors were left functional and the muscle internal environment could be 

changed by changing the external bathing solution of the muscle, allowed the 

study of the involvement of G-proteins in the receptor transduction mechanism. 

The effect of GTP and other related compounds on the response induced by 

noradrenaline and calcium activated force were investigated in two different 

smooth muscle types rat anococcygeus, a visceral smooth muscle, and guinea pig 

portal vein, a vascular smooth muscle. These two tissues responded very 

differently to GTP. This difference includes their response to GTP with respect 

to both calcium release and calcium-activated force. In guinea pig portal vein 

GTP does not itself release calcium, but does potentiate noradrenaline-activated 

calcium release. In this preparation, GTP has only a small effect on calcium- 

activated force in comparison with the effect of noradrenaline on calcium 

activated force. The results obtained with guinea pig portal vein are consistent 

with current understanding of the involvement of G-proteins in the agonist 

transduction system in smooth muscle (Kitazawa et al, 1989). Rat anococcygeus, 

on the other hand, reacted in a novel manner to GTP with respect to both 

calcium release and calcium-activated force. GTP itself caused a contraction 

and only transiently potentiated noradrenaline activated force. It also had a 

greater effect on calcium-activated force than noradrenaline. Both muscle types 

could be made to react in the same manner by using GTP-7 -S instead of GTP;



that is, both contracted in response to GTP-7-S itself and GTP-7-S had a greater 

effect on calcium-activated force than noradrenaline. This response is similar 

to the way GTP affects calcium release and calcium-activated force in rat 

anococcygeus. This would indicate that permeabilized rat anococcygeus muscle 

has a population of chronically activated G-proteins which effects its response 

to GTP.

It is now widely accepted that a-adrenoreceptors have their intracellular 

effect via the phosphatidylinositol cycle (Fain & Garcia-Sainz, 1980). A method 

to manipulate this cycle is to block the phosphatases which normally breakdown 

Ins(l,4,5)P5  to inositol using LiCl (Berridge et al, 1983). The effect of LiCl was 

examined in both intact and a-toxin permeabilized rat anococcygeus muscle. 

LiCl has a wide range of effects including directly and indirectly decreasing 

calcium sensitivity. This affects the responses to NA, PhE, ACh and 5-HT. 

However, only in the case of NA is there evidence that LiCl is affecting 

something more than simply a reduced sensitivity of the myofilaments to calcium 

to produce its effect. The evidence, suggests that this effect is via the Ptdlns 

cycle, however, the effect could not be prevented by supplying the muscle with 

myo-inositol.

The majority of this experimental work could be further developed by 

measuring calcium as well as tension. For example it would be interesting to 

see if GTP alone in rat anococcygeus was indeed releasing calcium and if the 

decline in the response to noradrenaline was actually due to decreased release 

of calcium. Another interesting situation in which to measure calcium would be 

in the presence of LiCl when the muscle is stimulated by noradrenaline.



ERRATUM

Page 4, line 10 "via of low resistance" should read "via low resistance".

Page 10, line 3 "Inoue and Isenber, 1990" should read "Inoue and Isenberg, 

1990".

Page 16, line 8 "mitochondiria sequesters" should read "mitochondria sequester". 

Page 16, line 9 "taht" should read "that".

Page 22 "MLCK" and "MLCP" should be inserted after "myosin light chain 

kinase" and "myosin light chain phosphatase" in the figure subscript.

Page 26, line 9 "one" should read "either".

Page 26, line 19 insert "piece" after "Hence the".

Page 39, line 12 insert "(Smith, 1985)" after the equation for ionic strength.

Page 52, line 21 "Figure 4.8" should read "Figure 4.14".

Page 54, line 17 "suppress" should read "depress"

Page 56, line 7 insert after "depolarised muscle." "The transient fall in force in

the intact depolarised muscle is a movement artefact."

Page 58, line 8 "6 or 10 times" should read "6 to 11 times".

Page 65, figure legend "ionic strength 0.1M" should read "ionic strength 0.07M" 

Page 66, figure legend "ionic strength 0.1M" should read "ionic strength 0.07M" 

Page 68, figure legend "ionic strength 0.1M" should read "ionic strength 0.07M" 

Page 77, line 2 "Rojas and Bimbaumer, 1985" should read "Rojas and Bimbauer, 

1985".

Page 86 "0.8^M" should read "0.08/iM".

Page 93, line 1 insert "after the muscle had contracted in response to



noradrenaline three times" after "response to noradrenaline".

Page 117, line 16 insert "Arylazido Aminopropionyl Adenosine Triphosphate" 

after "ANAPP/.

Page 119 Insert "than Guinea Pig Portal Vein" after "Rat Anococcygeus" in the 

title.

Page 122, line 21 insert "12-0-tetraecanoylphorbol- 13-acetate" before 'TPA". 

Page 143 "1M nifedipine" should read "1/iM nifedipine".

Page 164, line 12 "Prestronk and Drachman" should read "Pestronk and 

Drachman".

Page 171, Bers, 1980 reference date should be 1982.

Page 176, Gilkey et al, 1987 reference "oryzias latipes" should read "Oiyzias 

latipes".

Page 181, Miller, 1975 reference should read "Miller D.J. (1985)".
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