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SUMMARY

Q uantitative ligand binding autoradiography was used to map key 

components of second messenger systems in the CNS. [3H]-Forskolin binding to 

Gs-adenylate cyclase and [3H]-phorbol 12,13 dibutyrate (PDBu) binding to protein 

kinase C was investigated in human postmortem brain of control patients and 

patients with Alzheimer’s Disease (AD). Disruption of glutamatergic and 

cholinergic systems may contribute to the pathology of AD. In view of this, 

alterations in ligand binding sites following selective lesions of glutamatergic and 

cholinergic pathways in ra t brain were used as a framework on which to elucidate 

possible plastic modifications of second messenger systems in AD. Since the 

primary lesion in AD occurs within the cortex, ligand binding to second messenger 

systems was investigated following excitotoxic lesion of the ra t cerebral cortex.

Second Messenger Ligand Binding in Alzheimer’s Disease

In two separate series, [3H]-forskolin binding was investigated in a total of 

15 controls and 16 age-matched patients dying with AD in middle frontal and 

temporal cortices and in the hippocampal formation. AD brains contained 

numerous neuritic plaques in both cortical areas and the hippocampal region, 

whilst controls had minimal neuritic plaques. Choline acetyltransferase (ChAT) 

activity was significantly reduced (>50%) in AD compared to control subjects in 

both cortex and the hippocampus. [3H]-Forskolin binding was significantly 

reduced by approximately 50% in all layers of the middle frontal cortex in AD 

brain compared to controls. There was a positive correlation between [3H]- 

forskolin binding and ChAT activity in each layer of frontal cortex 

(correlation coefficient, r = 0.662 - 0.712) when data from control and AD brain

17



were combined. [3H]-Forskolin binding was minimally altered in 1 of the 11 

discrete regions examined in the hippocampus in AD brain compared to control. 

ChAT activity and [3H]-forskolin binding were unrelated in any region of the 

hippocampus (r = 0.42 - 0.6). In the temporal cortex and the molecular layer of 

the dentate gyrus, there was evidence that [ H]-forskolin binding was lower in 

AD patients compared to control subjects. Whether these changes achieved the 

probability level of 5% was a reflection of group size, variability of 

measurements, and the errors of sampling heterogeneous populations. There was 

no association between the number of neuritic plaques and [3H]-forskolin binding 

in any brain region examined.

The effect of 5*guanylimidodiphosphate (Gpp(NH)p) on [3H]-forskolin 

binding was examined in adjacent sections from the same group of control and AD 

patients. In control brain, basal levels of [3H]-forskolin binding were 

significantly increased in layers I-III of middle frontal cortex (28%) and middle 

temporal cortex (30%) in the presence of Gpp(NH)p. In AD brain, the ability of 

Gpp(NH)p to enhance [3H]-forskolin binding from basal levels in cortical layers (I- 

III) was conserved. Gpp(NH)p had no effect on the level of [3H]-forskolin binding 

within each region of the hippocampus in the control or AD group.

In a separate study, both quantitative autoradiography and homogenate 

binding to particulate and cytosolic fractions were employed to investigate 

[3H]-PDBu binding in middle frontal and temporal cortices, and the hippocampal 

region of nine control and nine AD subjects. All AD brains exhibited extensive 

signs of the pathology classically associated with the disease, namely numerous

18



neuritic plaques and a profound reduction in ChAT activity (<60%) in both cortical 

areas and the hippocampus. Quantitative autoradiographic analysis of [3H]-PDBu 

binding showed there was no significant difference between control and AD 

sections in all areas examined within the middle frontal and temporal cortices and 

hippocampal formation. In adjacent sections to those used for [3H]-PDBu 

autoradiography, [3H]-forskolin binding was markedly reduced in all layers of 

middle frontal and temporal cortex (at least 30%) and in the molecular layer of 

the dentate gyrus (38%) in AD when compared with control subjects. In a 

parallel study, [3H]-PDBu binding to homogenate preparations of control and AD 

brain confirmed that there was no significant difference in [3H]-PDBu binding in 

either the particulate or cytosolic fraction.

Second Messenger Ligand Binding with Selective Neuronal Lesions in the Rat 

Brain

Selective neuronal lesions in ra t brain were used to examine possible plastic 

alterations of ligand binding to second messenger systems after disruption of a 

glutamatergic pathway (retinofugal fibres), an excitotoxic lesion of the cerebral 

cortex, and a lesion of a cholinergic pathway (septo-hippocampal pathway).

Quantitative autoradiography of [3H]-forskolin and [3H]-PDBu binding was 

examined in the ra t visual system at 1, 5, 10 and 20 days afte r unilateral orbital 

enucleation. Local cerebral glucose utilisation was determined in the same 

animals using [u C]-2-deoxyglucose autoradiography as an index of local functional 

activity. There were no significant alterations in ligand binding to second 

messenger systems at 1 day post-enucleation. At 5 days post-lesion,

19



[3H]-forskolin binding was significantly reduced in the visually-deprived 

superior colliculus (-14%) and dorsal lateral geniculate body (-8%), and these 

reductions persisted until 20 days post-lesion. There were no significant 

alterations in the amount of [3H]-PDBu binding in any region in the visually- 

deprived hemisphere following enucleation. Function-related glucose use was 

significantly reduced throughout the visual pathway a t all tim e points after 

enucleation.

The effect of Gpp(NH)p on [3H]-forskolin binding was examined in adjacent 

sections 10 days after unilateral orbital enucleation. In the presence of 

Gpp(NH)p, differential effects on the levels of [3H]-forskolin binding in each area 

studied were displayed. In the presence of Gpp(NH)p, the number of 

[ H]-forskolin binding sites was significantly increased by 10% in layer IV of visual 

cortex in both hemispheres. No asymmetry in [3H]-forskolin binding was 

uncovered in visual cortex. Similarly Gpp(NH)p significantly increased 

[3H]-forskolin binding (37%) in both hemispheres of the superior colliculus. 

Thus the asymmetry of [3H]-forskolin binding in this region was maintained. 

In the visually-deprived dorsal lateral geniculate body, Gpp(NH)p had no effect 

on [3H]-forskolin binding in the visually-intact dorsal lateral geniculate body. 

However, in the visually-deprived dorsal lateral geniculate body, symmetrical 

[3Hl-forskolin binding was restored despite the enucleation.

[3H]-Forskolin and [3Hl-PDBu binding were examined using quantitative 

autoradiography, 21 days after unilateral lesioning of the ra t visual cortex using 

ibotenic acid. In the same animals, functional deficit was assessed using
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[14C]-2-deoxyglucose autoradiography. Post-lesion [3H]-forskolin binding was 

significantly reduced in each layer of the lesioned hemisphere of visual cortex by 

a t least 40% of the control hemisphere. Significant reductions in [3H]-forskolin 

binding were observed in the superior colliculus (15%) and dorsal lateral 

geniculate body (12%) ipsilateral to the lesioned cortex. [3H]-PDBu binding was 

significantly reduced in the lesioned visual cortex (layers V-VI) by 34%, compared 

with the control hemisphere. There were no significant alterations in [3H]-PDBu 

binding in any other brain regions. In sham -treated animals, a significant 

reduction in glucose use was observed in the lesioned visual cortex (layer IV) by 

9%. Following ibotenate-induced lesioning of the visual cortex, glucose use was 

significantly reduced throughout the lesioned cortex by at least 25%. There was 

a small, but significant, reduction in glucose use in the dorsal lateral geniculate 

body ipsilateral to the lesioned cortex.

Quantitative autoradiography of [3H]-forskolin and [3H]-PDBu binding were 

examined 21 days following ibotenate lesion of the ra t medial septum. A 

significant reduction in [3H]-forskolin binding was observed a t the lesion 

site (-19%) compared to the sham -treated group. A significant increase 

in [3H]-forskolin binding was demonstrated in the polymorph layer of the dentate 

gyrus (19%) whilst in all other brain regions, [3H]-forskolin binding remained 

unaltered post-lesion. [3H]-PDBu binding was significantly increased in the 

superficial layers (I-III) of entorhinal cortex (27%) following lesion of the medial 

septum, and remained unaltered in all other brain regions post-lesion.
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The stability of [3H]-PDBu binding and the consistent reduction of 

[3H]-forskolin binding, indicates the relative vulnerability of these two binding 

sites in AD. For [3H]-forskolin binding, there appears to be a regional hierarchy 

of loss in AD ranging from the frontal cortex (in which it is consistently reduced 

in AD) to most of the hippocampal formation (in which it is minimally reduced), 

with temporal cortex and molecular layer of the dentate gyrus intermediate. 

Such data suggest that the loss of Gs-adenylate cyclase in discrete brain areas 

may contribute to the pathology of AD, and may complicate the use of 

treatm ents directed at cyclase linked receptors. In contrast, the levels of 

protein kinase C appear to be exceedingly robust in AD. The reductions in 

second messenger ligand binding sites after orbital enucleation and excitotoxic 

cortical lesions provide, with the most conservative interpretation, evidence of 

their anatomical localisation in these model neuronal systems. With septo- 

hippocampal lesions, the nature of the alterations in both ligand binding sites 

(namely elevations) are supportive of plastic modifications of second messenger 

systems following cholinergic denervation.
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PREFACE AND DECLARATION

This thesis primarily represents results from ligand binding studies in human 

postmortem brain and ra t brain. Quantitative ligand binding autoradiography in 

vitro was the principal technique used in the investigation of ligand binding to 

second mesenger systems. Local cerebral glucose utilisation was measured in vivo 

to assess functional deficits within the ra t visual system using the [u C]-2- 

deoxyglucose technique.

Investigations were conducted in three broadly defined areas:

(1) to examine possible alterations of ligand binding to second messenger 

systems in postmortem tissue from patients dying with Alzheimer’s 

Disease,

(2) to assess ligand binding sites and cerebral function in the ra t visual 

system following lesion of retinofugal and corticofugal fibres,

(3) to assess ligand binding sites following lesion of the septo-hippocampal 

pathway.

Results from these studies are presented and discussed separately. In the final 

overview, I have attem pted to highlight the advantages and limitations of assessing 

neurochemical alterations in human postmortem brain using quantitative 

autoradiography. Additionally, the relevance of animal models as a basis for
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elucidating the mechanisms underlying alterations in ligand binding sites in 

Alzheimer’s Disease is discussed.

This thesis comprises my own original work and has not been presented 

previously as a thesis in any form.
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CHAPTER I 

INTRODUCTION



1. HISTORICAL OVERVIEW OF SECOND MESSENGER SYSTEMS

The molecular mechanisms by which cells communicate with each other 

are of intrinsic importance to the normal physiological functioning of 

m ulticellular organisms. Receptor recognition of a neurotransmitter is only 

the first step in a cascade of events by which transm itter recognition is 

translated into altered cellular function via systems of regulatory and 

cataly tic  proteins known collectively as "second messenger systems". There 

are two major receptor-regulated second messenger systems currently thought 

to be active in the brain, namely the adenylate cyclase-cyclic adenosine 

monophosphate (cAMT) system and the phosphoinositide (PI) cycle.

1.1 Adenylate Cvclase and G-Proteins

cAMP was first discovered by Sutherland and colleagues (1957) as a co­

factor enabling adrenaline and glucagon to initiate glycogen breakdown in the 

liver. In this system, and in subsequently elucidated systems, a hormone or 

neurotransm itter binds to a specific receptor, on the cell surface, which 

stim ulates the enzyme to form cAMP. Acting as an intracellular second 

messenger, cAMP activates a protein kinase which alters cellular activity. 

In 1971, Martin Rodbell and colleagues discovered that guanosine 

trisphosphate (GTP) was essential for hormones to activate adenylate cyclase. 

The GTP dependency of hormonal action was found to be due to a specific 

GTP-binding protein, guanine-nucleotide regulatory protein (G-protein) which 

is quite distinct from either the receptor or adenylate cyclase. The 

essential mechanism for regulation of adenylate cyclase activity was to 

promote the GTP-dependent association of this regulatory protein (now
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termed Gs) with adenylate cyclase itself (Ross e t al. 1978; Northup e t al. 

1980; Sternweis e t al. 1981).

G-Proteins tha t function in transmembrane signalling are now known to 

be heterotrim er proteins, subunits being designated a , p and y,  respectively. 

Prior to receptor activation, Gs is complexed with guanosine diphosphate 

(GDP) on the a-subunit and is unable to stim ulate adenylate cyclase activity. 

Neurotransm itter receptor activation of Gs enhances its affinity for GTP 

relative to GDP (Cassel e t al. 1978). GTP causes dissociation of the 

G-protein a-subunit from Py, and it is the G-protein a-subunit that 

interacts with, and regulates, adenylate cyclase. The a-subunit contains a 

high affinity (nM) binding site for guanine-nucleotides, and can hydrolyse GTP 

to GDP by an intrinsic GTPase activity. Deactivation of adenylate cyclase 

follows nucleotide hydrolysis, resulting in a regenerated GDP-GS complex 

(see Figure 1). The rates of these processes are crucial elements in the 

function of this guanine-nucleotide-controlled mechanism. Four forms of Gsa 

are known to exist (Bray e t al. 1986), the products of alternative splicing of 

precursor RNA. Although betweem them there is a high degree of 

homology (Kozasa e t al. 1988), the functional significance of these distinct 

G-proteins is unclear. Receptors that stim ulate Gs-adenylate cyclase 

include p-adrenergic, dopamine (Dl), and adenosine (A2) (Levitzki, 1987).

An analogous system pertains for receptor-m ediated inhibition of 

adenylate cyclase except that a distinct G-protein, Gi (inhibitory protein) for 

adenylate cyclase, is involved (see Figure 1). Three highly homologous forms
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FIGURE 1 
DUAL REGULATION OF ADENYLATE CYCLASE
Schematic diagram of neurotransmitter activation and inhibition of 
adenylate cyclase. Neurotransmitter (N) association with a receptor (R) 
induces a conformational change in either a stimulatory G-protein (Gs) or 
an inhibitory G-protein (G^ and enhances the affinity of the G-protein for 
GDP relative to GTP. GTP causes dissociation of the G-protein a-subunit 
from the (3y-subunit. The a-subunit interacts with and regulates adenylate 
cyclase (AC) activity to either activate or inhibit the production of cyclic 
adenosine monophosphate (cAMP). GTP is hydrolysed to GDP resulting in 
a regenerated GDP-G-protein complex.
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of this protein are now recognised as products of distinct genes, and although 

their mode of interaction with effector molecules is quite similar, there is 

a subtle difference in their interactions with receptors (Itoh e t al. 1988). 

Activated Gi can inhibit adenylate cyclase activity directly or may act 

indirectly by reducing the activity of Gs. Inhibition of adenylate cyclase is 

attributed, in part, to the capacity of Py, released on activation of G^ to 

in teract with, and deactivate, GSQ. An increasing number of G-proteins 

have now been identified, each of which may have a distinct function in 

transmembrane signalling. Thus, the possibility exists that activation of one 

pathway can cause inhibition of effectors that are controlled by other 

G-protein a-subunits if the concentration of py in the membrane is raised 

sufficiently (Gilman, 1984). It has also been proposed that Py can inhibit 

adenylate cyclase directly (Katada e t al. 1987). Receptors th a t inhibit 

adenylate cyclase activity include adrenergic (a2), adenosine (A-|), 

y-aminobutyric acid (GABAb), muscarinic (M2) and dopaminergic (D2) 

receptors.

The discovery of forskolin, a diterpene isolated from the roots of the 

Indian herb Coleus forskohlii, markedly potentiated the mechanistic insight 

of the adenylate cyclase system. Forskolin was originally isolated based on 

its ability to produce cardiotonic effects, possessing both a positive 

ionotropic action and potent vasodilatory action (Bhat e t al. 1977). These 

unique actions were later found to be due to its ability to directly interact 

with the catalytic subunit of adenylate cyclase (Seamon e t al. 1981) and 

hence increase cAMP levels. The presence of G-proteins, although not
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necessary for this action of forskolin, has been implicated as important for 

the expression of full enzymatic activity of adenylate cyclase (Daly e t al.

1982). This direct stimulation of adenylate cyclase normally occurs at 

forskolin concentrations in the micromolar range (Seamon et al. 1981). 

However, a t much lower concentrations, in the nanomolar range, forskolin 

can also act synergistically with hormones that activate adenylate cyclase to 

greatly increase the generation of cAMP (Barovsky e t al. 1983; Seamon e t al. 

1984). These two actions of forskolin have been explained as a consequence 

of two distinct binding sites: a low affinity binding site in which forskolin 

directly activates the catalytic subunit, and a high affinity binding site, the 

location of which is unknown. Occupancy of this high-affinity binding site 

by forskolin is associated with the coupling of the stimulatory G-protein (Gs) 

to the catalytic subunit (C). Other conditions that promote Gs-C coupling 

include Mg2+ and guanyl nucleotides. The use of affinity chromatographic 

techniques with immobilised forskolin, pioneered by Pfeuffer and Metzger 

(1982), allowed adenylate cyclase to be purified from brain tissue (Smigel, 

1986; Yeager e t al. 1985). Adenylate cyclase is a polypeptide glycoprotein 

with a molecular weight of approximately 150KDa. A cDNA clone has been 

isolated specific for one form of adenylate cyclase (Graziano and Gilman,

1987). Adenylate cyclase is comprised of two alternating sets of hydrophobic 

and hydrophilic regions. Each of the two hydrophobic regions contains six 

transmembrane spans, whilst each of the hydrophilic domains includes a 

s tretch  of amino acid residues that is homologous with the putatitive 

cataly tic domain of guanylate cyclase. The overall topology of adenylate 

cyclase resembles those of various membrane channels and transporters
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suggesting tha t adenylate cyclase may be multifunctional, serving as both the 

catalyst of cAMP synthesis and the transporter th a t exports cAMP from cells 

(Gilman, 1989).

At least two forms of adenylate cyclase are known to exist (Mollner 

and Pfeuffer, 1988) differing on their relative sensitivity to calmodulin.

In brain, the expression of a calmodulin-sensitive adenylate cyclase (Brostom 

e t al. 1975; Cheung e t al. 1975) appears to be unique. Calmodulin appears 

to m ediate the calcium-dependent stimulation of adenylate cyclase by 

binding directly to the catalytic subunit of the enzyme (Smigel, 1936). 

Although this interaction does not require the presence of GTP or GTP- 

binding proteins, there appears to be a potentiative interaction between 

calmodulin and either hormones, neurotransmitters or guanyl nucelotides in 

the stimulation of adenylate cyclase. In brain, there is evidence that Gs can 

enhance the stimulation of adenylate cyclase by Ca2+/calmodulin (Harrison 

e t al. 1989).

In most brain regions, such as the cerebellum, adenylate cyclase activity 

displays sensitivity to Ca2+/calmodulin, although this does not appear to be 

true for areas such as the caudate putamen, where adenylate cyclase is less 

sensitive to stimulation by Ca2+/calmodulin. Recent evidence suggests that 

there may be a selective association of calmodulin-independent and 

calmodulin-dependent adenylate cyclase with different forms of Gs proteins 

(Cooper e t al. 1990).
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1.2 Phosphoinositide Cycle and Protein Kinase C

A role for phospholipids in mediating the effects of acetylcholine has 

been investigated since the demonstration by Hokin and Hokin (1953) that 

acetylcholine stimulates phospholipid turnover in the pancreas. Subsequently 

it was observed tha t all receptors which elicit Ca2+-dependent responses 

shared the common ability to enhance the breakdown of phosphoinositide (PI), 

an anionic phospholipid. This observation led Michell (1975) to postulate that 

the degradation of PI was associated, in some causative manner, with the 

mobilisation of intracellular calcium.

Detailed clarification of the PI cycle, and appreciation of its widespread 

role in mediating effects of hormones and neurotransm itters, has only been 

quite recent (Berridge,1984; Berridge and Irvine, 1984; Hokin, 1985; 

Nishizuka, 1984). Neurotransmitter receptors which regulate cellular 

activity via the phosphoinositide system include muscarinic, 5HT2, 

a-adrenergic and glutamatergic. According to currently accepted concepts, 

neurotransmitter interaction with a receptor hydrolyses the membrane 

phospholipid, phosphatidylinositol 4,5 bisphosphate. This compound is cleaved 

by phospholipase C to release diacylglycerol (DAG) and inositol 1,4,5 

trisphosphate (IP3). Both products seem to function as second messengers; 

DAG remains within the plasma membrane where it activates protein kinase 

C (Nishizuka, 1984) leading to phosphorylation of proteins, whilst IP3 diffuses 

into the cytosol to release calcium from the endoplasmic reticulum (Berridge,

1984). IP3 is thought to act on a specific receptor associated with a non- 

mi tochondrial Ca2+ store within the cell to open a Ca2+ channel (see Figure
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2). This system is very much analogous to receptor stimulation of adenylate 

cyclase. In both cases, a highly phosphorylated precursor is cleaved by an 

enzyme (which functions as a signal amplifier) to release second messengers. 

An additional feature, common to both the phosphoinositide and adenylate 

cyclase systems, is the presence of a G-protein (Cockcroft and Gomperts, 

1985; Smith e t al. 1986). At present, it is unknown which G-protein acts 

to stimulate the PI system in the brain.

In keeping with the proposed role of DAG and IP3 as second messengers, 

they are rapidly inactivated once the external signal is withdrawn. The 

neutral DAG which operates within the plane of the membrane can either be 

rapidly phosphorylated by DAG kinase to phosphatidic acid (PA), which in turn 

is converted to CDP-DAG by cytidyl transferase and then via de novo 

synthesis to PI, or it can be converted to arachadonic acid by DAG lipase. 

There are also two pathways for degrading IP3. First, IP3 can be 

dephosphorylated to free inositol through a stepwise series of phosphatases. 

Alternatively, IP3 can be phosphorylated to form inositol 1,3,4,5 

tetrakisphosphate. This la tter inositolphosphate was first identified in brain 

cortical slices and appears to be the precursor of inositol 1,3,4 trisphosphate. 

IP3 can thus flow along two separate routes, a degradative pathway to form 

free inositol or via a novel pathway to generate other inositol polyphosphates. 

Some of these inositol phosphates have been suggested to have second 

messenger functions.
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FIGURE 2
PHOSPHOINOSITIDE SYSTEM
Schematic diagram of agonist-dependent phosphoinositide system. The key 
event is the hydrolysis of phosphatidylinositol 4,5 bisphosphate (PIP2) to 
yield diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (IP3). Both DAG 
and IP3 have second messenger functions; DAG activates protein kinase C 
(PKC), whilst IP3 mobilises intracellular Ca2+ stores. DAG and IP3 may be 
converted to other metabolites or inositol phosphates (IP) which have been 
reported to have additional second messenger functions denoted by *. See 
tex t for further details and abbreviations.

3 4



Protein kinase C (PKC) was identified in 1977 as a proteolytically- 

activated protein kinase (Inoue e t al. 1977), and is now known to be ubiquitous 

in tissues in organs. In particular, PKC is especially abundant in the brain. 

The purified enzyme consists of a single polypeptide chain with a molecular 

weight of approximately 80KDa (Kikkawa e t al. 1982). The transient 

production of diacylglycerol in response to PI hydrolysis is the major 

physiological pathway for the activation of PKC. In the presence of 

phosphatidylserine, diacylglycerol and calcium, PKC is fully activated. 

Diacylglycerol increases the apparent affinity of the enzyme for phospholipid 

and decreases the concentration of calcium required for full activation of 

PKC to a concentration range of calcium which is within the basal levels of 

most cells (Kikkawa e t al. 1982). In brain, PKC is associated mainly with 

synaptic membranes and, to a lesser extent, is found in the cytosol (Kuo et 

al. 1980). Activation of PKC by diacylglycerol is associated with a 

translocation of the enzyme from the cell cytosol to the plasma membrane 

(Kraft and Anderson, 1983). Similarly, an increase in intracellular calcium 

may promote translocation of PKC. Phorbol esters, one of the most potent 

classes of tumor promoters, have been invaluable tools in the study of PKC. 

Phorbol esters mimic the action of diacylglycerol to stimulate PKC; the 

phorbol ester binding site has been suggested to be identical to PKC (Kikkawa 

e t al. 1983; Niedel et al. 1983; Blumberg e t al. 1984). Similar to 

diacylglycerol, phorbol esters dramatically increase the affinity of PKC for 

Ca2+. However, unlike diacylglycerol which is transiently produced in 

response to receptor activation, phorbol esters are minimally degraded.
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Molecular cloning of several cDNAs of PKC (Nishizuka, 1988; Coussens 

e t al. 1986) and isolation of multiple PKC isozymes (Huang, 1986) have 

established the molecular diversity of this enzyme family. There are at 

least seven subspecies of PKC designated as a , pi, pH, y, e, and £, all of 

which are composed of a single polypeptide chain but with differing 

sensitivies to Ca2+, phospholipid and diacylglycerol. Within the central 

nervous system, differential distributions of some of these isoforms of PKC 

have been identified (Girard e t al. 1985; Stichel and Singer, 1988; Tsujino et 

al. 1990, Wood e t al. 1986).
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2. ROLE OF SECOND MESSENGER SYSTEMS IN MODULATING SYNAPTIC 

PLASTICITY

Many of the definitive studies which determined the mechanisms of 

signal transduction signalling were examined in the peripheral nervous 

system. In the past decade both the adenylate cyclase system and protein 

kinase C (PKC), as a key enzyme in the phosphoinositide system, have been 

demonstrated to play a major role in the CNS, in particular in modulating 

many aspects of synaptic plasticity such as the regulation of 

neurotransmission, cellular growth and differentiation, neurodegeneration and 

learning and memory.

Increased levels of intracellular cAMP enhances neurite extension in 

embryonic ra t cortical cells (Shapiro, 1973) and hippocampal pyramidal 

neurons (Mattson, 1988). Similarly in neuroblastoma cell lines and hybrids, 

elevated levels of cAMP potentiates both neurite outgrowth and synapse 

formation (Mattson e t al. 1988). In the case of PKC, phorbol esters were 

found to promote neurite outgrowth in sensory ganglia neurons and 

neuroblastoma cells (Ishii, 1978; Spinelli and Ishii, 1983). Following axotomy, 

stimulation of neurite sprouting has been observed in response to phorbol 

ester exposure in Helisoma neurones (Barnes, 1986). Moreover, in the same 

study, glutamate, known to activate PKC, stimulated sprouting in these 

neurones. An increasing awareness of an integral role for PKC in mediating 

glutamate-induced responses such as neuronal growth and degeneration is 

becoming apparent (Sladeczek e t al. 1988; Favaron e t al. 1990). PKC can 

also suppress neuronal growth after prolonged exposure of neuronal cultures
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to phorbol esters. In cultured hippocampal pyramidal neurones, phorbol 

esters, in nanomolar concentrations, inhibit axonal and dendritic outgrowth 

(Mattson, 1988).

cAMP and PKC are now believed to be involved in learning and memory 

processes as shown in several model systems. The simple nervous system of 

the mollusc Aplysia, where changes in membrane properties of single 

neurones can be directly related to altered behaviour, is often used as a 

model of learning. A learning paradigm, referred to as sensitisation, is 

associated with adenylate cyclase activity induced by serotonin activation 

(Kandel and Schwartz, 1982). Sensitisation can also be mimicked by 

intracellular injection of the cataly tic fragment of adenylate cyclase. In the 

hippocampus, long term potentiation (LTP), used as a model of memory, can 

be blocked by removing noradrenergic inputs and can be restored either by 

exogenous noradrenaline (acting at p-receptors coupled to adenylate cyclase) 

or by direct activation of adenylate cyclase (Stanton and Sarvey, 1985). 

Hypoxia induced in animals immediately after learning has been widely 

employed as an agent for the depletion of short-term memory (Sara and 

Lefevre, 1972). Delayed memory dysfunction by transient hypoxia was 

reported to be prevented by forskolin, a potent activator of adenylate cyclase 

(Ando e t al. 1987). Further, increased tissue cAMP levels in ischaemic 

myocardium prevents ventricular arrhythmias in ra t hearts (Thandroyen e t al.

1988). This may support a role for increased cAMP to restore neuronal 

transmission which is supressed by hypoxia (Okada et al. 1989).
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An apparent involvement of PKC in LTP induced by glutamate 

(Routtenberg, 1986) has been suggested. Induction of hippocampal LTP 

associated with an increase in glutamate and intracellular Ca2+ enhances the 

translocation of PKC from the cytosol to the membrane where it can enhance 

subsequent stimuli. Thus PKC appears to sustain LTP and may represent a 

form of "memory".

Sustained PKC translocation has been implicated in mediating glutam ate- 

induced neurotoxicity in cell cultures (Favaron e t al. 1988; Manev e t al. 1989; 

Ogura e t al. 1988; Favaron e t al. 1990). More recently, in ischaemic brain, 

enhanced translocation of PKC has been suggested to play a pivotal role in 

post-ischaemic modulation of synaptic efficacy in the hippocampus and 

neuronal death in the CA1 field which is putatively associated with excessive 

glutam ate release (Onodera e t al. 1986, 1989; Hara e t al. 1990). 

Interestingly, exposure of hippocampal slices to anoxia in vitro induced an 

increased sensitivity of the PI system to glutamate receptor stimulation 

(Ninomiya e t al. 1990).

Although the existence of second messenger systems has been recognsed 

for several years, the availability of selective and potent agents which act 

on individual elements of these systems are exceedingly limited. Two of 

these compounds which have been extensively used to facilitate examination 

of signal transduction mechanisms are forskolin and phorbol esters, known to 

be potent activators of adenylate cyclase and protein kinase C respectively 

(see Figures 3 and 4). Furthermore, the recent availability of these
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FIGURE 3 
FORSKOLIN ACTIVATION OF ADENYLATE CYCLASE
Schematic view of the stimulatory receptor regulated adenylate cyclase 
signalling system. Activation of a specific receptor, on the cell membrane, 
by an agonist enhances the coupling of the stimulatory guanine triphosphate 
(GTP)-binding regulatory protein (Gs) with adenylate cyclase. Adenylate 
cyclase activation yields the formation of the second messenger, cyclic 
adenosine monophosphate (cAMP).

Forskolin directly activates adenylate cyclase a t high concentrations (jiM). 
At nanomolar concentrations, forskolin enhances the stimulatory interaction 
of Gs with adenylate cyclase.
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FIGURE 4 
PHORBOL ESTER ACTIVATION OF PROTEIN KINASE C
Schematic illustration of receptor-mediated phosphoinositide turnover. 
Binding of a neurotransm itter or agonist to a specific receptor on the cell 
membrane activates a G-protein (G). In turn this stimulates phospholipase 
C leading to the hydrolysis of phosphatidylinositol 4,5 bisphosphate (PIP2) 
and the generation of two second messengers, inositol 1,4,5 trisphosphate 
(IP3) and diacylglycerol (DAG). IP3 causes the release of calcium from 
intracellular stores, whilst DAG activates protein kinase C which 
phosphorylates a broad range of substrates. Protein kinase C can also be 
found in the cell cytosol.

Phorbol esters mimic the action of DAG by stimulating protein kinase C.
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compounds in a tritiated  form has allowed a novel approach to examination 

of second messenger systems in the CNS (Young and Kuhar, 1979; Unnerstall 

e t al. 1982). Receptor autoradiography has demonstrated the anatomical 

mapping of a multitude of neurotransm itter receptors in the CNS such as 

a-adrenergic, (3-adrenergic, 5HT, GABA and glutamate subtypes.

Quantitative autoradiography has an advantage over other ligand binding 

techniques in that it allows non-prejudicial examination of recognition sites 

in discrete brain areas with a high degree of spatial resolution. Ligand 

binding techniques, essentially similar to those used for receptor 

autoradiography, now permit the distribution of second messenger systems 

to be mapped in the CNS. Quantitative autoradiography of [3H]-forskolin 

binding to Gs-adenylate cyclase, [3H]-phorbol dibutyrate (PDBu) binding to 

PKC and [3H]-IP3 binding to IP3 receptor (Worley e t al. 1986 a,b and 1987) 

has demonstrated the heterogeneity in binding densities of second messenger 

ligands in well-defined neuroanatomical components of the ra t CNS. The 

pattern of [3H]-forskolin and [3H]-PDBu binding is striking within the 

cerebellum, hippocampus and caudate-putamen of ra t brain (Figure 5). Lesion 

studies have shown both [3H]-forskolin and [3H]-PDBu binding to be localised 

in the molecular layer of the cerebellum but whilst Gs-adenylate cyclase is 

associated with granule cell terminals, PKC is associated with Purkinje cell 

dendrites (Worley e t al. 1986a). Within the hippocampus [3H]-forskolin 

binding is highly localised in granule cells in the polymorph layer of dentate 

gyrus and CA3 field whereas [3H]-PDBu binding is concentrated in the 

intrinsic neurons of CA1-CA4 fields. [3H]-Forskolin binding is particularly
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FIGURE 5
AUTORADIOGRAPHIC IMAGES OF 3H 1-FORSKOLIN AND 
pHl-PDBu BINDING IN RAT BRAIN
R ep resen ta tiv e  autoradiogram s of [ H ]-forskolin binding (A-C) and 
[3H]-PDBu binding (E-G) in r a t  brain sections a t  th e  level of the  cerebellum  
(A,E), dorsal hippocampus (B,F) and cauda te  pu tam en  (C,G). Abbreviations 
are: m olecular (mol) and granular (gran) layer of th e  cerebellum ; CA1, CA3, 
CA4 fields in hippocampus; polymorph (poly) layer of d en ta te  gyrus (DG), 
substan tia  nigra (sn) and caudate  putam en (cp). N ote the  heterogeneous 
p a tte rn  of ligand binding to  second m essenger system s.

0.5cm
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concentrated in the caudate putamen.

One of the major disadvantages of ligand binding autoradiography is that 

not all binding sites are necessarily functional. Thus, alterations in ligand 

binding to second messenger systems in neurodegenerative brain may not 

represent changes in functional circuitry. However, this does not apply in all 

brain regions. [3H]-Forskolin binding is intense in the striatum  and caudate 

nucleus paralleling the density of dopamine-sensitive adenylate cyclase in the 

striato-nigral pathway. Thus, the level of functional activity in this system 

Is reflected by the concentration of [3H]-forskolin binding to Gs-adenylate 

cyclase. Most studies to date have employed biochemical assays to examine 

second messenger system activity or function in response to agonist 

stimulation in homogenate preparations of brain tissue. However, in such 

studies, the lack of anatomical resolution limits the mechanistic insight of 

second messenger alterations in diseased brain. Further, in human 

postmortem tissue, the use of neurochemical assays to measure functional 

activity of second messenger systems is limited by the instability of second 

messenger systems following long postmortem delay intervals and freezing of 

brain tissue (Candy e t al. 1984; Saitoh and Dobkins, 1986; Danielsson e t al. 

1988; Dodd e t al. 1988).

In addition to constructing maps of intraneuronal messenger systems in 

the CNS, quantitative autoradiography of ligand binding to second messenger 

systems may provide a novel approach to examine the relationship between 

second messenger systems and neurodegenerative conditions.
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3. NEUROPATHOLOGICAL AND NEUROCHEMICAL FEATURES OF 

ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is a dementing disorder of insidious onset and 

characterised by a progressive deterioration of memory and cognitive 

function. AD is now recognised as the most common cause of adult-onset 

dementia, affecting at least 10-15% of individuals over the age of 65 

(Henderson, 1986). Diagnostic ambiguities and uncertainties limit pre-mortem 

diagnosis of AD at present. Symptomatic overlap between AD and other 

dementing disorders such as m ulti-infarct dementia and mixed dementia is 

problematic. Macroscopically, the traditional feature associated with AD is 

brain atrophy in particular affecting frontal and temporal lobes associated 

with widening of gyri and narrowing of sulci with concomitant ventricular 

enlargement (Perry and Perry, 1982). At present, however, diagnosis of AD 

status requires neuropathological confirmation. The classical hallmarks of 

AD are characterised neuropathologically, as first described by Alzheimer 

(1907), by the presence of numerous neuritic plaques and neurofibrillary 

tangles in specific areas of the neocortex and hippocampus.

Quantification of neuritic plaques provides the definitive means of 

distinguishing AD from ageing changes in non-demented aged subjects 

according to criteria set by Khachaturian (1985). Plaques are described 

histologically as being composed of an amyloid core surrounded by 

degenerating neurites (presynaptic nerve terminals) and glial processes (Brun,

1983). Wisniewski and Terry (1973) proposed the evolution of plaques to be 

in three distinct stages: (1) the ’'immature" plaque composed of dystrophic
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neurites and glial processes with minimal amyloid in the core, (2) the 

"mature” plaque composed of a central core of amyloid surrounded by 

numerous degenerating neurites, (3) the "burned-out" plaque which describes 

the final stage of a plaque in which the central amyloid core remains devoid 

of encompassing neurites.

Neuritic plaques accumulate in abundance in AD brain, predominantly 

in frontal and temporal cortex, hippocampus and amygdala, and to a much 

lesser extent in the remaining neocortex (Mann, 1988). In the neocortex, 

plaques appear to be associated with intracortical fibres and, in general, do 

not appear to be limited to one particular neurotransm itter system.

Unlike plaques which occur in the neuropil, neurofibrillary tangles are 

found mainly within the perikarya of affected neurons. Similar to plaques, 

tangles are present in high numbers in neocortex and hippocampus but they 

can also be found in archicortical areas such as raphe nuclei, nucleus basalis 

of Meynert and locus coeruleus (Mann, 1985; Perry, 1986). In neocortex, the 

presence of tangles appears to be closely associated with pyramidal neurons 

especially in layer III. At the ultrastructural level, neurofibrillary tangles 

in AD often contain fibres that appear to be a tightly adherent pair of 

helically wound filaments, referred to as paired helical filaments (Kidd, 

1963). It remains unclear whether paired helical filament protein represents 

a modification of normal cytoskeleton elements or the synthesis of some new 

abnormal protein. However, the microtubular system is linked immuno- 

chemically to neurofibrillary tangles; considerable cross-reactivity has been
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shown between tangles and microtubule-associated proteins, MAP2 and tau.

The functional significance of neuritic plaques and tangles in AD brain 

is largely unknown. The detection of relatively abundant aluminium and 

silicon concentrations in plaque cores by x-ray and electron probe analysis, 

and evidence of aluminium concentration in tangles initiated a putative link 

between aluminium toxicity and the pathogenesis of Alzheimer’s disease. 

More recently, intensive investigation has focused on the amyloid (3 protein, 

the major component of amyloid deposits in AD brain. Discovery that the 

gene encoding the amyloid precursor protein is located on chromosome 21, 

associated with trisomy 21 disorders (Down’s Syndrome), has potentiated this 

flurry of investigation. More recently, part of the amyloid precursor protein 

has been shown to be potentially neurotoxic (Yankner e t al. 1989).

Perhaps the most invariant and pervasive disruption in AD brain involves 

the cholinergic system. Selective degeneration of cholinergic neurons 

originating in the nucleus basalis of Meynert, vertical diagonal band and 

septal nucleus and projecting to the cerebral cortex and hippocampus, is a 

consistent feature in AD brain. Reduced acetylcholine concentrations 

(Richter e t al. 1980) and synthesis (Sims et al. 1980) in AD cortex have been 

shown. In the hippocampus and neocortex of AD brain, the high affinity 

uptake mechanism for choline is markedly deficient (Rylett e t al. 1983). 

Undoubtedly the most consistent feature of AD is a profound reduction in 

ChAT activity with losses up to 95% from control values in cortical and sub- 

cortical regions (Perry e t al. 1978; Mount joy e t al. 1984). Most severely
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affected are areas such as hippocampus, temporal, parietal and frontal cortex 

although ChAT deficits may extend to areas not directly innervated by 

cortical projecting neurons such as cerebellum, hypothalamus and pons 

(Davies, 1979). In the neocortex, the reduction in ChAT is laminar specific, 

being most extensive in the granular layers II and IV (Perry e t al. 1984).

Increasing severity of ChAT deficiency in AD neocortex and hippocampus 

is quantitatively correlated to the numbers of neuritic plaques and tangles in 

these regions (Perry e t al. 1978). Moreover, the reduction in ChAT appears 

to be intimately related to impaired cognitive function and in particular 

memory (Perry, 1986).

Pharmacological intervention to try to restore cholinergic transmission 

either presynaptically by stimulating production of acetylcholine in surviving 

neurons or inhibiting the destruction of acetylcholine a t the synapse, has been 

relatively ineffective to date (Etienne, 1983). Another approach, namely 

direct action on the post-synaptic receptors using muscarinic agonists, is 

dependent on the presence of cholinergic receptors in the brain of AD 

patients. However, despite a consistent neurochemical abnormality of the 

cholinergic system in AD, the status of muscarinic receptors remains 

controversial. Normal densities of muscarinic receptors with unaltered 

pharmacological properties have been found in AD brain (Bartus et al. 1982; 

Davies and Verth, 1978; White e t al. 1977), whilst other groups have reported 

a reduction in muscarinic receptors in the neocortex (Reisine et al. 1978; 

Shimohama, 1986; Wood et al. 1983). Differentiation between subtypes of
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muscarinic receptors has demonstrated a selective decrease in M2 receptors 

(presumably presynaptic autoreceptors) whilst M-, receptors are unaltered in 

cortex of AD brain (Mash e t al. 1985). Another group has shown the ratio 

of muscarinic receptors per pyramidal cell to be significantly increased in the 

hippocampus of AD brain (Probst et al. 1988).

A multitude of neurochemical deficits, now reported in AD brain, dispute 

the cholinergic disruption as being exclusive in AD. Biochemical indices have 

demonstrated reductions in the noradrenergic, dopaminergic, serotonergic, 

GABAergic and glutamatergic systems (Lowe e t al. 1988; Hardy e t al. 1985; 

Quirion e t al. 1986; Rossor & Iversen, 1986) in cerebral cortex and 

hippocampus of AD brain. Additionally, a profound reduction in somatostatin 

has been demonstrated in AD neocortex (Rossor e t al. 1980), as well as 

alterations in other peptides such as cholecystokinin and corticotropin 

releasing factor (Beal e t al. 1986; De Souza e t al. 1986). An increasing role 

for excessive glutamatergic activity has been implicated in the aetiology of 

AD. Glutamate is putatively the major excitatory transm itter of cortical 

pyramidal neurons which mediate intracortical and corticofugal 

neurotransmission (Jones, 1981). A prominent feature of AD pathology is a 

loss of cortical pyramidal cells (Mountjoy et al. 1983; Pearson e t al. 1985).

It is now understood that the primary lesion in AD occurs within association 

cortex rather than subcortical projections to cortex (Pearson e t al. 1985; 

Mann e t al. 1986). Thus, cortical glutamatergic dysfunction may be a 

contributory factor in the pathophysiological progression of the disease. In 

support of this hypothesis, application of N-methyl-D-aspartate (a glutamate
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receptor agonist) to the cerebral cortex induced retrograde degeneration of 

cholinergic neurons in the nucleus basalis of rodents (Sofroniew & Pearson,

1985). Glutamate, when applied to human spinal cord neurons in culture, has 

been shown to induce the formation of structures almost identical to paired 

helical filaments, components of neurofibrillary tangles which are a hallmark 

of AD (De Boni & Crapper-McLachlan, 1985).

Dysfunction in a variety of neuronal systems is also associated with 

receptor alterations in AD. Ligand binding techniques have been used 

extensively to study neurotransm itter receptors in AD brain. Demonstration 

of neurotransmitter receptor abnormalities in AD brain include a lf a 2, p1? (32 

(Shimohama et al. 1986, 1987); nicotinic (Nordberg e t al. 1988); 5HT-, and 

5HT2 (Bowen e t al. 1983; Perry e t al. 1984; Cross e t al. 1986 and 1988), 

GABAa and GABAb (Chu e t al. 1987); benzodiazepine (Shimohama e t al. 1988) 

and glutamate (Greenamyre e t al. 1987). Statistical correlations have been 

found between many of these neurotransmitter receptor abnormalities and 

neuropathological changes in AD (see Mount joy, 1986). Thus no one system 

can be regarded as responsible for the disorder. Furthermore, the functional 

significance of such diverse neurochemical abnormalities in AD remains 

unclear.

Although there has been intensive investigation of neurotransmitter 

receptor densities in AD brain, to date there have been few attem pts to 

assess the functional status of these receptors. It is the integrity of 

neurotransmitter receptors with their associated signal transduction
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mechanism which determines normal cellular responses. In view of the 

ineffectiveness, to date, of receptor targeted drug therapy in Alzheimer 

patients, the assessment of signal transduction systems of receptors, as well 

as their distribution in Alzheimer’s disease, is vitally important if the 

possibilities of drug treatm ent for this condition are ever to be realised.
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4. SECOND MESSENGER SYSTEMS IN DISORDERS OF THE CENTRAL 

NERVOUS SYSTEM

There has been minimal attention placed on second messenger systems 

in Alzheimer’s disease. However, it has been proposed that functional 

disturbances in intraneuronal signal transmission distal to neurotransmitters 

play a vital role in the aetiology of several disorders.

Probably the definitive example of a disease in which interruption of 

second messenger systems is well characterised is pseudohypoparathyroidism 

(type 1A). This illness is caused by a dominantly inherited deficiency of the 

GTP-binding protein (Gs) which couples the parathyroid hormone receptor to 

stimulation of adenylate cyclase (Spiegel e t al. 1982 & 1985). Recent 

evidence suggests a functional dysbalance of second messenger systems in 

affective disorders. In depression, hypofunction of the adenylate cyclase 

pathway with a relative dominance of the phosphoinositide (PI) system is 

proposed to occur with the converse resulting in mania (Wachtel, 1988, 1989). 

Therapeutically, lithium has been used effectively in treating depressive 

illnesses. Evidence indicates that lithium, at concentrations used clinically, 

inhibits inositol-1-phosphatase (Hallcher & Sherman, 1980) thereby increasing 

levels of inositol phosphate in the brain and preventing resynthesis of 

phosphatidylinositol 4,5 bisphosphate (see Figure 2). Alternatively, lithium 

within the therapeutic range, inhibits adenylate cyclase (Newman et al. 1983) 

by competing with sites for Mg2+ on the Gs-adenylate cyclase complex 

(Newman & Belmaker, 1987). Lithium has also been indicated to interfere 

with neurotransm itter receptor coupling with G-proteins (Avissar e t al. 1988).
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Thus, therapeutically, lithium may act, in the case of depression, by inhibiting 

the PI system and, in mania, by blocking the overactive adenylate cyclase 

system.

Second messenger system abnormalities are proposed in epilepsy. 

Epilepsy is characterised by spontaneous recurrent epileptic seizures in the 

absence of a known precipitatory cause or illness. Electroconvulsive shock 

and a number of convulsants markedly elevate concentrations of cAMP in the 

brain which can be reduced by anticonvulsants (Wasterlain & Dwyer, 1983). 

Interestingly, [3Hj-forskolin binding has been shown to be increased in the 

substantia nigra, pars reticulata following electroconvulsive shock in the ra t 

(Fochtmann e t al. 1988). This increase in [ H]-forskolin binding parallels the 

upregulation of D1 receptor binding in the substantia nigra, which may be 

associated with some of the anti-parkinsonian effects of electroconvulsive 

therapy. Furthermore, during seizures the PI system is activated which 

possibly involves activation of protein kinase C (PKC). Enhanced PKC 

activity may be putatively linked to neuronal death which is often seen 

around epileptic foci in human brain (Wasterlain, 1989). An increased 

involvement of PKC activation in neuronal death has also been implicated in 

ischaemic brain (Onodera e t al. 1989). In gerbils, ischaemic damage in the 

CA1 subfield of the hippocampus can be prevented by pretreatm ent with a 

PKC antagonist (Hara e t al. 1990).

Dysfunction of second messenger systems may be implicated in the 

pathophysiology of a number of disorders. The ability of pharmacological
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intervention directed towards intraneuronal signalling is evident. Thus, it 

is essential that second messenger systems should be characterised in AD 

brain, an area to which, hitherto, minimal attention has been directed.
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5. ANIMAL MODELS OF ALZHEIMER’S DISEASE ?

There are, to date, no animal models of Alzheimer’s Disease (AD). As 

yet, it has been impossible to model in animals a disease which is 

heterogeneous not only in terms of symptomatology, but also in terms of the 

diversity of neurpathological and neurochemical abnormalities. In order to 

interpret possible alterations of second messenger systems in such an 

exceedingly complex neurodegenerative disease as AD, it is fundamental that 

the understanding of second messenger systems be explored in simple 

neuronal pathways in animal brain.

In AD, it is indisputable tha t the disruption of presynaptic cholinergic 

innervation of cerebral cortex and hippocampus is the most invariant 

neurochemical feature of the disease (Perry e t al. 1978; Mount joy e t al. 

1984; Perry, 1986; personal observations). Additionally, there is increasing 

evidence which implicates a glutamatergic dysfunction in the

pathophysiological progression of AD (Greenamyre, 1986; Maragos e t al.

1987). Furthermore, it is now believed that the primary degeneration in AD 

occurs within association cortex rather than subcortical regions (Pearson et 

al. 1985; Mann et al. 1986). On the basis that cholinergic and glutamatergic 

systems may have an integral role in AD, selective lesions of these specific 

neuronal pathways in rodent brain were used to investigate possible

alterations of ligand binding to second messenger systems. As such, the 

retinofugal, corticofugal and intracortical fibres of the ra t visual system are 

wholly glutamatergic, whilst the medial septal pathway to the ra t

hippocampus is principally cholinergic. Since the cortex is the site of
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primary degeneration in AD, the investigation of ligand binding sites in 

cortical projection areas following lesioning of the ra t visual cortex may 

provide a basis for the elucidation of second messenger systems in AD.

In addition to providing a framework for interpreting second messenger 

system alterations in AD, selective lesions of retinofugal and corticofugal 

efferents and the septo-hippocampal pathway would extend the limited 

awareness of the localisation of second messenger systems in neuronal 

pathways. Since the early studies of Worley and colleagues (1986a) 

employing lesioning techniques to examine specific neuronal localisations of 

ligand binding to second messenger systems in the ra t striatum, hippocampus 

and cerebellum, there has been minimal expansion of research in this field.

5.1 Lesion of Retinofugal Fibres

The ra t visual system provides an ideal polysynaptic pathway, being 

anatomically well-defined and, easily, completely, and reproducibly lesioned. 

In hooded rats, 97-98% of efferent retinal fibres are directed towards the 

contralateral hemisphere (Jeffrey, 1984). Thus, unilateral orbital enucleation 

of the ra t visual system allows the ipsilateral (visually-intact) hemisphere to 

ac t as the reference against which changes in the visually-deprived (left) 

hemisphere can be compared.

The main anatomical components and connections of the primary visual 

system of the ra t are illustrated in Figure 5. The axons of the retinal 

ganglion cells provide the only output from the retina, and hence determine
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the nature of the information supplied to each of the retinorecipient brain 

regions. The ganglion cells of the retina project via the optic nerve and in 

hooded rats it has been estim ated that the optic nerve contains 120,000 axons 

(Hughes, 1977). The majority of these axons, approximately 65% (Toga & 

Collins, 1981), are targeted to the superior colliculus. The superior 

colliculus is horizontally laminated, being composed of layers designated 

zonal, superficial gray, optic, intermediate gray and white, deep gray and 

white (Huber & Crosby, 1943). However, only the superficial layers of the 

superior colliculus are directly innervated by retinal axons. Cells in these 

layers project to the deeper layers where other sensory systems are 

represented (Stein, 1981). Cells from the superficial layers of the superior 

colliculus project to subcortical visual structures such as the dorsal lateral 

geniculate body (Pasquier & Villar, 1982), pretectal nuclei and the lateral 

posterior nucleus (Takahashi, 1985). Although there are no direct projections 

from the superior colliculus to the visual cortex, the superior colliculus 

receives cortical efferents.

A smaller portion of retinofugal fibres (15%) project to the dorsal lateral 

geniculate body (Toga & Collins, 1981), which lies in the dorsolateral part of 

the thalamus. The dorsal lateral geniculate body, in contrast to the superior 

colliculus, relays information directly to the primary visual cortex (area 17). 

The major termination layer for geniculo-cortical projection fibres is layer 

IV (Sefton & Dreher, 1984). Unlike the superior colliculus, there are no 

projections from this structure to subcortical regions except for a minor 

projection to the reticular thalamic nucleus (Hale e t al. 1982). However,
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there are projections to the dorsal lateral geniculate from retinorecipient 

areas such as pretectal (Pasquier & Villar, 1982) and the superior colliculus 

(Takahashi, 1985). There is also a non-visual projection to the dorsal lateral 

geniculate arising from the locus coeruleus (Kromer & Moore, 1980).

The pretectal nuclei lie a t the most rostral pole of the midbrain, 

bordering the thalamus. The pretectal nuclei consist of a number of distinct 

nuclear groups; nucleus of the optic tract; olivary pretectal nucleus; anterior 

pretectal nucleus and posterior pretectal nucleus (Scalia, 1972). In hooded 

rats, only 13% of the retinofugal axons terminate in the contralateral 

pretectal nuclei (Toga & Collins, 1981). There are projections from the 

pretectal nuclei to the superior colliculus, dorsal lateral geniculate body and 

lateral posterior nucleus (Sefton & Dreher, 1985; Mackay-Sim e t al. 1983).

The lateral posterior nucleus, in the lateral thalamus, lies medially and 

caudally to the dorsal lateral geniculate body. This structure receives a 

relatively minor input from retinal ganglion cells (4%) in comparison to other 

retinorecipient regions. However, these nuclei receive a significant 

projection from the superior colliculus and visual cortex (area 17). In turn, 

the lateral posterior nucleus projects to primary visual cortex (area 17).

5.2 Lesion of Corticofugal Fibres

Detailed information on the cortical inputs and synaptic connectivity of 

the primary visual cortex (area 17) was demonstrated by use of 

autoradiography, and light and electron microscopy (Feldman & Peters, 1978;
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Peters & Feldman, 1976, 1977; Peters e t al. 1982). The primary visual cortex 

(area 17) is a typical granular cortex and approximately 85% of neurons in 

this area are pyramidal cells. Although non-pyramidal neurones are present 

in all layers, they are concentrated in layer IV (Parnavelas e t al. 1977). The 

great majority of thalamic efferents, principally arising in the dorsal lateral 

geniculate body, terminate in layer IV of the visual cortex. Most of the 

thalamic terminals synapse with dendritic spines of apical and basal dendrites 

of pyramidal neurons, sparsely spined stellate cells and spiny non-pyramidal 

cells in layers III-IV. To a lesser extent, thalamic terminals synapse on the 

shafts of apical dendrites or on smooth stellate cells (Sefton & Dreher, 1985). 

Pyramidal cells in cortical layers II/III are responsible for cortico-cortical 

projections (Cusick & Lund, 1981), whilst those in layers V-VI are responsible 

for projections to subcortical visual structures (Olavarria & Van Slutyers, 

1982; Sefton e t al. 1981). The primary visual cortex sends afferents to all 

subcortical structures as outlined in this chapter (section 5.1).

Biochemical and electrophysiological studies have implicated a major 

role for glutamate in visual pathways. Visual cortex ablation in rats 

demonstrated a marked reduction in high affinity glutamate uptake and 

endogenous glutamate in the dorsal lateral geniculate body, superior colliculus 

and lateral posterior nucleus (Lund-Karlsen & Fonnum, 1978; Fosse e t al. 

1986; Fosse & Fonnum, 1987). Glutamate was also found to be the major 

neurotransm itter in the projections from the cortex to the lateral geniculate 

body, arising from layer IV of visual cortex, and in the projection within the 

visual cortex from layer VI to layer IV (Baugham & Gilbert, 1981).
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Additionally, excitatory postsynaptic potentials evoked by electrical 

stimulation of the optic trac t have been demonstrated to be reversibly 

inhibited by a glutamate receptor antagonist (Crunelli e t al. 1987), 

Alteration of visual input by monocular deprivation affects glutamate binding 

in the lateral geniculate body (Schliebs e t al. 1984). Investigation of 

glutam ate receptor subtypes has suggested NMDA receptors play an 

important modulatory role in cortical neurotransmission in the ra t visual 

cortex (Artola & Singer, 1987). This evidence supports a major role for 

glutamate as a transm itter in both retinofugal and corticofugal fibres to the 

superior colliculus and dorsal lateral geniculate body, and as a transm itter 

within visual cortex.

In addition to glutamate, a number of other neurotransmitters 

have been implicated in the visual circuitry. Of these, within the visual 

cortex, y amino-butyric acid (GABA) has been shown to be an inhibitory 

transm itter of a number of intrinsic interneurons including aspinous and spiny 

stellate cells and chandelier cells (Houser e t al. 1984). In subcortical visual 

structures, several types of GABAergic neurons are present in the superficial 

layer of the superior colliculus (Mize e t al. 1982). The dorsal lateral 

geniculate body has also been shown to use GABA as a neurotransmitter 

(Fitzpatrick e t al. 1984) in addition to the projections of the reticular 

thalamic nucleus to the geniculate body which provide local inhibitory control 

of relay neurone activity (Kayama, 1985). Monoaminergic involvement has 

also been demonstrated in the primary visual system. In the dorsal lateral 

geniculate body, the noradrenergic input from the locus coeruleus has a
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powerful facilitatory action on activity, whereas serotonergic projections 

from the dorsal raphe nucleus have an equally potent depressant effect 

(Rogawski & Aghajanian, 1980). In contrast, both noradrenaline and 

serotonin have been shown to exert an inhibitory control over superior 

colliculus neurons (Sato & Kayama, 1983; Lai e t al. 1978). Within the 

primary visual cortex, noradrenaline has an important modulatory role in 

controlling cortical plasticity which has also been shown for acetylcholine 

(Kasamatsu & Pettigrew, 1979; Bear & Singer, 1986). The dorsal lateral 

geniculate body and superior colliculus contain high quantities of 

acetylcholine, acetylcholinesterase and cholineacetyltransferase (Hebb & 

Silver, 1956; Phillis e t al. 1967). Acetylcholine is reported not to be 

involved in relaying retinal input to the dorsal lateral geniculate (Curtis & 

Davis, 1962; Kemp & Sillito, 1981), but is instead associated with an 

excitatory input from the nucleus cuneformis (Hoover & Jacobowitz, 1979).

Ligand binding techniques have been used successfully to investigate the 

plasticity of neurotransmitter receptors in the visual pathways. Monocular 

deprivation was demonstrated to reduce [ H]-glutamate binding selectively in 

the ipsilateral dorsal lateral geniculate body associated with a down- 

regulation of glutamate binding sites in response to enhanced functional 

activity in the non-deprived eye of rats (Schliebs e t al. 1984 & 1986). [3H]-

DHA binding to 0-adrenergic receptors was shown to increase in both the 

deprived and non-deprived dorsal lateral geniculate body following monocular 

deprivation (Schliebs e t al. 1982). Quantitative autoradiography has been 

used to localise neurotransmitter receptors in the visual system of the cat
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(Fox et al. 1989), ra t (Chalmers & McCulloch, 1990) and monkey (Rakic et 

al. 1988). During the critical period, abnormal visual experience can alter 

neuronal properties of the visual cortex (Hubei & Wiesel, 1970). Quantitative 

autoradiographic studies of neurotransmitter binding sites have demonstrated 

marked increases in GABA and muscarinic receptors in visual cortex of cats 

indicative of the plasticity of visual cortex during this period. Additionally, 

quantitative autoradiography has demonstrated the heterogeneity of neuro­

transm itter receptor alterations in the ra t visual system following unilateral 

denervation of the ra t visual pathway (Chalmers & McCulloch, 1990).
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5.3 LESION OF SEPTO-HIPPOCAMPAL PATHWAY

Since the cholinergic deficit has been most consistently implicated in 

AD, manipulation of this system has been widely investigated in animal 

models. In view of the major cholinergic projection to the ra t hippocampal 

formation which arises primarily from the medial septum and diagonal band 

of Broca, lesion of the medial septum affords an ideal system in which to 

examine the functional consequences following denervation of this cholinergic 

pathway to the hippocampus.

The anatomical organisation of the hippocampal formation, although well- 

defined, is functionally complicated by the extensive intrinsic and extrinsic 

circuitry. This section will deal solely with the principal connections of the 

septo-hippocampal pathway (for further details see Swanson e t al. 1987; 

W itter e t al. 1989) and functionally-related structures (see Figure 7). The 

medial division of the septal region consists of the medial septal nucleus and 

the diagonal band of Broca which form a more or less a continuous mass. 

Degeneration, autoradiographic and retrograde studies (Swanson & Cowan, 

1979; Mellgren & Srebo, 1973; Alonso & Kohler, 1984) have demonstrated 

tha t neurons in the medial septum innervate all fields of the hippocampal 

formation. The hippocampal formation is comprised of four cortical regions; 

the dentate gyrus, Ammon’s Horn (CA1, CA2, CA3 and CA4 subfields), the 

subicular complex (subiculum, presubiculum and parasubiculum) and the 

entorhinal cortex. Inputs to the dentate gyrus from the medial septum are 

particularly dense and are concentrated in the polymorph (hilar) region (Rose 

e t  al. 1976) forming asymmetric synapses upon dendrites. In Ammon’s Horn,
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FIGURE 7
SEPTO-HIPPOCAMPAL PATHWAY
Simple diagrammatic representation of the septo-hippocampal pathway in 
the ra t.
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septal fibres appear to end predominantly in the stratum  radiatum and oriens 

of CA3 subfield and, to a lesser degree, in the stratum  oriens of CA1 

subfield. All layers of the subiculum receive inputs from the medial septum. 

Additionally, there is a major input from the medial septum to entorhinal 

cortex, in particular to layers II, IV and VI.

The medial septum receives a modulatory input from the lateral septum, 

(Swanson & Cowan, 1979) which itself receives input from Ammon’s Horn and 

the subiculum. Thus, the lateral septum acts as a link in a feedback system 

from the hippocampus to the medial septum. Other inputs to the medial 

septum arise from the hypothalamus and brainstem.

There is now substantial evidence which determines the projection from 

the medial septum to the hippocampus as being mainly cholinergic. Massive 

depletions of choline acetyltransferase (ChAT) activity, up to 80-90%, and 

acetylcholine levels in the hippocampus following medial septum lesions have 

been demonstrated (Storm-Mathisen, 1970; Lewis e t al. 1967; Mellgren & 

Srebro, 1973). Furthermore, combined retrograde tracing with immuno- 

histochemistry of ChAT has confirmed this pathway to be mainly cholinergic 

(Rye e t al. 1984; Woolf et al. 1984). A smaller number of neurons, distinct 

from cholinergic neurons, have now been identified as being GABAergic 

(Brashear e t al. 1986), whilst a subpopulation of cholinergic neurons are 

immunoreactive with galanin (Melander e t al. 1985). ChAT has been localised 

in all layers of the dentate gyrus, subiculum and Ammon’s Horn and is 

particularly concentrated in the stratum lacunosum moleculare (Houser et al.
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1983). The distribution of acetylcholinesterase coincides with the 

degeneration pattern following a septal lesion (Lynch e t al. 1972). 

Cholinergic interneurons are present to a much lesser extent in the 

hippocampal formation and, as yet, their function is unclear.

There has been intensive investigation of the excitatory pathway, the 

perforant pathway, which projects from the entorhinal cortex to the 

molecular layer of the dentate gyrus and, to a lesser extent, the stratum 

lacunosum moleculare of the hippocampus (Steward, 1976; Swanson et al. 

1987). The projection to the dentate gyrus arises mainly from layer II of 

entorhinal cortex, whilst fibres to the lacunosum moleculare are mainly from 

layer III. These fibres form asymmetric synapses on the spines of granule 

cell dendrites. The perforant pathway continues with the mossy fibre 

pathway from the dentate gyrus to CA3 field, and ends with the Schaffer 

collateral (commisural) projection from CA3 to CA1 field. The CA1 field 

projects back to all layers of the entorhinal cortex.

The perforant pathway has been demonstrated to be wholly glutamatergic 

(Storm-Mathisen, 1977; White et al. 1977). The terminal fields of the 

perforant pathway contain high densities of receptors for glutamate, 

particularly those of the N-methyl-D-aspartate-preferring receptor subtype 

which plays an important role in the induction of long-term potentiation in 

the hippocampus (Collingbridge & Bliss, 1987). Ligand binding 

autoradiography in the ra t hippocampus has demonstrated an abundance of 

other glutamate receptor subtypes such as kainate and AMPA (Greenamyre
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e t al. 1985; Monaghan e t al. 1985), which additionally may have specific roles 

to  play in hippocampal LTP (Izumi e t al. 1987; Collingbridge & Singer, 1990).
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6. AIMS OF THESIS

6.1 Human Postmortem Studies

The use of quantitative autoradiography to map neurotransmitter 

receptors in postmortem brain is well-established. Currently available are 

novel radioligands which are specific for second messenger systems. Thus, 

quantitative autoradiography can be used to localise the distribution and 

density of second messenger systems in discrete areas of human brain with 

a high degree of spatial resolution. The primary aim of these studies was 

to apply two of these ligands, [3H]-forskolin and [3H]-phorbol 12,13 

dibutyrate, to investigate the distribution of adenylate cyclase and protein 

kinase C respectively in postmortem human tissue sections using quantitative 

autoradiography.

Increasingly evident is the demonstration of multiple neurotransmitter 

receptor abnormalities in AD. Effective drug therapy targeted at 

neurotransm itter receptors is dependent on the integrity of the coupling of 

neurotransm itter receptors with effector systems. Another aim of the human 

postmortem studies was to use quantitative autoradiography to examine 

possible alterations in ligand binding to second messenger systems in a group 

of Alzheimer subjects compared to controls. The studies are focused on 

three brain regions which are differentially affected in Alzheimer’s disease 

(AD) namely middle frontal cortex, middle temporal cortex and the 

hippocampal formation. Additionally, in the same patients in which ligand 

binding autoradiography was applied, the degree of local neuropathological 

and neurochemical abnormalities was measured as an index to the severity
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of AD in these patients.

6.2 Studies in the Rat Brain With Selective Neuronal Lesions

Disruption of glutamatergic and cholinergic systems may have a major 

role in Alzheimer’s disease. Thus, selective lesions of these specific neuronal 

pathways were examined in ra t brain. Glutamatergic pathways of 

retinofugal (following unilateral orbital enucleation), corticofugal and 

intracortical fibres (following stereotaxic lesion) were investigated in the ra t 

visual system. The cholinergic pathway of the ra t septo-hippocampus was 

examined following stereotaxic lesion of the medial septum. Three main 

aims of these studies were to:

(1) localise ligand binding to second messenger systems in specific neuronal 

pathways in ra t brain,

(2) investigate possible plastic modifications of ligand binding sites 

associated with lesioning glutamatergic and cholinergic pathways,

(3) provide a framework for the elucidation of alterations in ligand binding 

sites in Alzheimer’s Disease.

Quantitative autoradiography in vitro was used to examine [3H]-forskolin 

binding to Gs-adenylate cyclase and [3H]-PDBu binding to protein kinase C in 

ra t brain following lesion. Functional deficit within the visual system was 

assessed, in parallel, in the same animals in vivo by measuring the ra t of
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local cerebral glucose utilisation with [14C]-2-deoxyglucose autoradiography 

(Sokoloff e t al. 1977).
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CHAPTER n 

METHODS



1. AUTORADIOGRAPHY

1.1 In Vitro Ligand Binding Autoradiography

1.1.1 Theory

Autoradiography is simply the localisation and quantification of 

radioisotopes in discrete brain areas. The method is based on the principle 

th a t radioactive ligands (which are highly specific for certain recognition 

sites) emit energy to produce a photographic image when placed in contact 

with radiation-sensitive film. The blackness of the image is related to the 

density of binding sites which can be quantified by reference to a set of 

standards containing a known amount of radioactivity. Autoradiography 

permits sensitive quantification of ligand binding sites in well-defined 

neuroanatomical areas of the CNS with a high degree of spatial resolution.

Ligand binding techniques are based on the kinetics of ligand-receptor 

interaction. The simplest type of binding can be expressed as a reversible 

reaction,

L + R g  [LR] (1)
K ,

where: L = Ligand R = Receptor

LR = Ligand Receptor Complex 

K+l = Rate Constant for Association 

K-l = Rate Constant for Dissociation
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At equilibrium, the dissociation constant KD can be 

defined:

Kd = K^. = [L] [R] (2)
K+1 [LR]

Since the total number of binding sites equals the sum of free receptors 

[R] and receptors bound to ligand [LR], tha t is:

= [LR] + [R]

substitution redefines equation (2) as:

Kd = [L] ( B ^ . I L R1) (3) 
[LR]

or B = (4)
F K*

This equation (4) is known as the Scatchard equation (Scatchard, 1949). If 

the concentration of ligand bound and free are known at equilibrium, then 

the maximum number of binding sites, B ^  and the dissociation constant of 

the ligand KD can be determined.

More commonly, in ligand binding studies, this equation is applied by 

plotting the ratio of [B] to free [L] against the concentration of bound ligand. 

This yields a straight line that has a slope equal to the negative reciprocal
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of the dissociation constant (-1/KD) and an intercept on the abscissa equal 

to the total concentration of receptors (BMax). An advantage of using 

Scatchard analysis is that it provides an estim ate of the total concentration 

of receptors without requiring saturating concentrations of radioligand. In 

addition, the Scatchard plot provides insight into whether or not a simple 

bimolecular reaction adequately describes the interation between ligand and 

receptor. Curvature of a Scatchard plot implies that this interaction is 

complex.

1.1.2 Practice

The general outline of the method for quantitative in vitro ligand 

binding autoradiography is outlined in Figure 8. In brief, fresh brain tissue 

is frozen and cut into 20pun thick sections using a cryostat microtome. The 

tissue sections are thaw-mounted onto subbed slides. The sections are then 

incubated in the appropriate buffer medium containing the 3H-ligand 

specific for the recognition site to be mapped. In adjacent sections, non­

specific binding (binding to sites other than the recognition sites such as 

glass, constituents in tissue) is defined in the presence of excess unlabelled 

ligand or displacer. After an optimal incubation time a t which equilibrium 

is achieved, unbound radioactivity is washed off. The radiolabelled sections 

are dried rapidly or they can be wiped off the slides using microfilter discs 

and the radioactivity bound counted by liquid scintillation analysis. The 

dried sections are exposed to radiation-sensitive film and the resultant 

autoradiograms analysed using computer-assisted densitometry.
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POST-MORTEM TISSUE CUT 
INTO 20nm THICK CRYOSTAT SECTIONS

▼

INCUBATION OF SLIDE-MOUNTED 
SECTIONS WITH RADIOLIGAND 
± COMPETITIVE DISPLACER

t
SECTIONS WASHED AND DRIED RAPIDLY

I
APPOSE SECTIONS TO RADIATION-SENSITIVE FILM

FILM DEVELOPED AND RESULTANT 
AUTORADIOGRAPHIC IMAGES ANALYSED 
BY COMPUTER-ASSISTED DENSITOMETRY

FIGURE 8 
IN VITRO LIGAND BINDING METHOD
General outline of the method for quantitative in vitro ligand binding 
autoradiography.
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The protocols for ligand binding to second messenger systems, used in 

this thesis, are slightly modified versions of well-established methods and 

are listed in Table 1.

The concentration of radioligand used in routine binding experiments 

was applied in close range to the equilibrium dissociation constant and was 

never applied at a saturating concentration of ligand. By applying 

radioligands near KD concentrations, this allows sensitive detection of a 

small change in the number of binding sites.

1.1.3 Methodological Considerations

Several extrinsic factors possibly influence the amount of ligand binding 

to sections in different experiments. Increased variability between sections 

may arise from variation in the tem perature of incubation and rinsing, 

differences in the buffer medium, e.g. pH, salt concentration and most 

importantly, alterations in the concentration or specific activity of the 

radiolabelled ligand in the incubation medium.

The additive effect of these factors on ligand binding was minimised by 

undertaking binding studies from the same experimental series on the same 

day. This enabled all tissue sections, in a random order, to be labelled with 

the radioligand from the same batch and concentration and at the same 

temperature. This method ensured the variability of ligand binding within 

the same series was internally consistent although variation between 

different experimental studies is not excluded.
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i-Hô cr w s  
p  c0 °  £ c n1
DC

on

co . .a>
^ - p  

2 2 ~

83
*§*

a>
4J

r—l CO
o p

>i
p •P
o 3  s

jc XJ g
cu1

•h  in
a  •

CN
DCCO ^

CO v *

CN

d)
p

-Pco
o
i1a)

-p

eoo
p

Eh
PS

78



1.2 In Vivo f14Cl-2-Deoxvglucose Autoradiography

1.3.1 Theory

There are two basic principles which provide the conceptual basis for 

the utility of the [14C]-2-deoxyglucose technique. Firstly, the energy 

requirements of cerebral tissue under normal conditions are derived almost 

exclusively from the aerobic catabolism of glucose (Sokoloff, 1982). 

Secondly, the functional activity and energy requirements are intimately and 

directly related within any region of the central nervous system.

2-Deoxyglucose, a structural analogue of glucose, differs only in the 

replacement of the hydroxyl group on the second carbon atom by a hydrogen 

atom. It is this single structural difference which is responsible for the 

chemical properties that make the use of 2-deoxyglucose suitable for this 

method. The systems of brain uptake and phosphorylation are common to 

both deoxyglucose and glucose (Figure 9). However, glucose-6-phosphate 

dehydrogenase which converts glucose-6-phosphate for further metabolism 

in the glycolytic pathway is unable to act upon the anomalous structure of 

2-deoxyglucose. As a result, 2-deoxyglucose-6-phosphate is essentially 

"trapped” within the cerebral tissues. The ra te  at which 2-deoxyglucose- 

6-phosphate accumulates in any cerebral tissue is equal to the rate of 

phosphorylation of 2-deoxyglucose by hexokinase and this may be directly 

related to the ra te  a t which glucose is phosphorylated over the same period 

of time.
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PLASMA

[14C]Deoxy glucose 
(Cp*)

Glucose
(Cp)

_

h

h .

PQ
25

PQ
Q

PQ

BRAIN TISSUE

Precursor Pool Metabolic Products
*1

[14C]Deoxy glucose---- l-^[14C]Deoxyglucose-6-Phosphate
(Cp*)

Glucose
(Ce)

k3!
v n T '

i

(CM*)

Glucose-6-Phosphate

(CM)

±
c o 2 + h 2o

TOTAL TISSUE 14C CONCENTRATION: C f  = C |  + C *
M

FIGURE 9 
DIAGRAMMATIC REPRESENTATION 
OF THE THEORETICAL MODEL.
Cp* and Cp represent the concentrations of [14C]-deoxyglucose and 
glucose in arterial plasma whilst CE* and CE represent their respective 
concentrations in the tissue precursor pool. CM* represents the 
concentration of [14C]-deoxyglucose-6-phosphate in the tissue. The 
constants k-,*, k2* and k3* represent the rate  constants for carrier- 
mediated transport of [14C]-deoxyglucose and phosphorylation of 
[14C]-deoxyglucose by hexokinase. The constants k1? k2 and k3 are the 
equivalent ra te  constants for glucose. The dashed arrow represents the 
possibility of glucose-6-phosphate hydrolysis by glucose-6-phosphatase 
activity (Sokoloff e t al. 1977).
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Using this theoretical model (Figure 9) the ra te  of glucose utilisation 

can be described mathematically by the operational equation (Sokoloff et 

al. 1977). This equation (Figure 10) defines the ra te  of cerebral glucose 

utilisation in terms of the levels of glucose and [u C]-2-deoxyglucose in 

arterial plasma during the experimental period (cp* and cp) and the total 

concentration of radioactivity within cerebral tissue a t the end of the 

experiment (ci*) provided the values of certain predetermined constants are 

known. This method may be used to measure local rates of glucose 

utilisation under a variety of experimental conditions, provided that the 

following requirements are fulfilled.

(1) Tissue is homogenous within which the concentrations of [14C]-2- 

deoxyglucose and glucose are uniform and exchange directly with 

plasma.

(2) [14C]-2-Deoxyglucose and [14C]-2-deoxyglucose-6-phosphate are 

present in tracer amounts.

(3) Plasma glucose concentration and local rates of glucose 

consumption remain constant throughout the 

experimental procedure.

(4) [14C]-2-Deoxyglucose-6-phosphate, or its metabolites remain 

trapped within cerebral tissue for the duration of the sampling 

period.
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Ci*(T)-k1.e'<kj‘tks,)T r  Cp*e<k!>tt»  *
     J 0  ________________

K. [J* (Cp*/Cp)d.-e^+^ T . J* (Cp*/Cp)e(k2*+kf)t dt]

FIGURE 10 
THE OPERATIONAL EQUATION
The ra te  of glucose utilisation Ri in any cerebral tissue is calculated from 
the to tal tissue concentration of 14C in that tissue, Ci* (measured by 
densitometry) at time T, Cp* and Cp are the concentrations of [14C]- 
deoxyglucose and glucose in the plasma and k-,*, k2* and k3* are the ra te  
constants for transport to and from plasma and tissue precursor pools and 
for phosphorylation of deoxyglucose by hexokinase. The lumped constant 
K, is composed of the relative distribution spaces for deoxyglucose and 
glucose, the ratio of the Michaelis-Menten constants, the maximal velocities 
of hexokinase for deoxyglucose and glucose and the fraction of glucose-6- 
phosphate which continues via the glycolytic pathway for further 
metabolism (Sokoloff e t al. 1977).

82



1.2.2 P ractice

Measurement of local cerebral glucose utilisation was performed using 

the [14C]-2-deoxyglucose method in conscious rats in conjunction with 

quantitative autoradiography (Sokoloff e t al. 1977).

I14C]-2-Deoxyglucose (125y.Ci/kg, 50Ci/mmol) was injected intravenously 

a t a constant ra te  over 30s. Fourteen timed arterial blood samples (~75}il) 

were withdrawn from the femoral cannulae and collected into plastic 

centrifuge tubes during the following 45 min. Over the first minute of the 

experiment, five arterial samples were taken to allow an accurate 

measurement of the history of the tracer in plasma to be determined during 

the tim e a t which it is most rapidly changing. The volume of blood 

removed each time was replaced by an equal volume of Ringer’s solution. 

In order to minimise haemolysis, each arterial sample was immediately 

centrifuged after withdrawal and the plasma separated from the cell 

fraction. Aliquots from each plasma sample (20)il) were pipetted from the 

centrifuge tubes into 1ml of distilled H20 and the radioactivity in the 

plasma counted by liquid scintillation. A further aliquot of each plasma 

sample (IOjj.1) was used to measure the glucose concentration (Glucose 

Analyser II, Beckman). The experiment was terminated at the end of the 

45 min period when the ra t was sacrificed by decapitation and the brain 

removed rapidly and processed for quantitative autoradiography (see 

Methods 3.4.1.1).
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Rates of glucose utilisation within anatomically discrete regions of the 

ra t brain were calculated using the operational equation from postmortem 

levels of 14C measured by quantitative autoradiography together with the 

plasma histories of 14C and glucose concentrations determined 

experimentally.

1.2.3 Methodological Considerations

The main limitations of the [14C]-2-deoxyglucose technique are the 

degree of restraint necessary for plasma sampling and the long time 

constant required for the experimental measurement. Potential errors 

arising from uncertainty in the values of the ra te  constants K-,*, K2* and 

K3* which define the distribution of tracer between plasma and tissue 

compartments require the time between the pulse of labelled deoxyglucose 

and sacrifice of the animal to be sufficiently long to minimise the 

associated uncertainty in these measurements. Additionally, the 

experimental sampling procedure must be short enough to limit the 

depleting effects of the small amounts of phosphatases in cerebral tissue on 

2-deoxyglucose-6-phosphate. However, an experimental time course of 45 

minutes has been found to be sufficiently long enough to m eet both these 

requirements.

The lumped constant is particularly stable over a wide range of 

experimental conditions. However, alterations in the lumped constant may 

occur in animals with severe hypoglycaemia (plasma glucose less than 5mM). 

In view of this, animals which had undergone surgical intervention were not
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used unless their pre-operation weight was reached or increased. 

Additionally, prior to the sampling period, plasma glucose values were 

recorded. Animals which had undergone stereotactic surgery were allowed 

to survive for 21 days prior to performing the [14C]-2-deoxyglucose 

technique to allow recovery of the animal to normal.
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2. HUMAN POSTMORTEM STUDIES

2.1 Clinical Information

Autopsied brains of control and Alzheimer (AD) patients were obtained 

from Gartnavel Royal Hospital and Southern General Hospital, Glasgow. 

Alzheimer subjects had a clinical diagnosis of dementia which was 

subsequently confirmed as AD by criteria set by Khachaturian (1985). 

Control patients had no known history of neurological or neuropsychiatric 

impairment. All brains in both control and AD groups were free from gross 

tissue abnormalities such as tumours and infarcts. The characteristics of 

control and AD subjects are listed in Tables 2 and 3.

2.2 Brain Dissection

Brains were removed a t autopsy and cut into multiple coronal slabs, 

approximately 1cm thick. Tissue blocks containing neuroanatomical regions 

of interest were dissected free, frozen by slow immersion in isopentane 

(-42°C) and transferred to storage at -80°C. Experimental studies

described in this thesis focused on three brain regions: middle frontal gyrus 

(Brodmann area 9) at the level of the genu, middle temporal gyrus 

(Brodmann area 21) and the hippocampal formation both at the level of the 

lateral geniculate. Frozen blocks were later equilibrated to -20°C and 

20]jLm thick cryostat sections cut serially and mounted onto gelatin-coated 

subbed slides in preparation for ligand binding autoradiography. In each 

block two sections were processed for histology and stained with cresyl 

violet. The remaining tissue was fixed in 10% formalin for 

neuropathological examination of the presence of plaques.
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TABLE 2

SOURCES OF BRAINS FOR AUTORADIOGRAPHIC STUDY OF \ %  1 -FORSKOLIN BINDING

AGE POSTMORTEM 
SEX (YEARS) DELAY (HOURS)

CONTROLS
C2 M 88 13
C3 F 72 13
C5 M 86 5

C7 M 67 9
C8 F 80 23
C11 M 74 8

Mean Age = 78 ± 3

AD PATIENTS
4AD F 78 4

5AD M 67 6
7AD F 74 14

8 AD M 67 3
10AD F 79 5
11 AD F 62 7
12AD M 83 10

Mean Age = 73 ±

CAUSE OF DEATH

Septicaemia, Peritonitis
Uraemia, Multiple Myeloma
Myocardial Infarction,
Small Pulmonary Emboli
Pulmonary Congestion & Oedema
Bronchopneumonia
Bronchopneumoni a

Mean PM Delay = 12 ± 3

Myocardial Infarction,
Bronchopneumoni a
Bronchopneumonia
Pulmonary Oedema and Atrial Fibrillation
Mesenteric Thrombosis
Bilateral Pulmonary Embolism
Bronchopneumonia
Bronchopneumonia, Myocardial 
Infarction

Mean PM Delay = 7 ± 2
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TABLE 3
SOURCES OF BRAINS FOR AUTORADIOGRAPHIC STUDY OF T^I-PPBu BINDING

AGE POSTMORTEM 
SEX (YEARS) DELAY (HOURS) CAUSE OF DEATH

CONTROLS
C16 M 76 17 Bronchopneumonia
C18 F 86 19 Carcinoma
C19A F 84 7 Myocardial Infarction
C20 F 78 14.5 Myocardial Infarction
C21 F 90 11 Carcinoma
16AD F 92 9 Renal Failure
C22 F 72 8 Bronchopneumonia
C23 M 74 4 Peritonitis
C25 M 67 12 Myocardial Infarction

Mean Age = 80 ± 3 Mean PM Delay = 11 ± 2

AD PATIENTS
14AD M 89 9.5 Obstruction of Colon
2 3 AD F 92 15 Bronchopneumonia
25AD F 97 7 Bronchopneumonia
31 AD F 83 9 Pulmonary Congestion
3 3 AD F 71 8 Bronchopneumonia
4 4 AD F 75 19 Bronchopneumonia
4 3 AD M 77 13 Bronchopneumonia
4 5 AD F 76 14 Bronchopneumonia
3 6 AD F 76 7 Bronchopneumonia

Mean Age = 82 ± 3 Mean PM Delay = 11 ± 1
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Brain dissection was carried out in a category II containment facility 

and only after brain tissue was cleared of HIV and Creutzfeld-Jacob disease. 

All experimental work was continued within a category II containment 

facility.

2.3 Quantification of Plaques

Plaque numbers were counted in sections taken from tissue blocks 

adjacent to those used for ligand binding autoradiography. Nominal 28]im 

thick sections were cut on a freezing microtome and stained using King’s 

amyloid silver stain. Plaque numbers were counted using a Quantimet 520 

(Cambridge Instruments) by outlining individual plaques manually. In cortex, 

mean plaque counts were obtained by making three individual readings on 

both the surface of the gyri and deep in the sulci, both in superficial (I-III) 

and deep (IV-VI) layers. In the hippocampal formation, mean counts were 

obtained from six different readings made in the subiculum.

2.4 Choline Acetvltransferase (ChAT) Activity

Grey m atter was dissected carefully from the tissue blocks remaining 

after cryostat sections were cut for autoradiography. P art of this tissue 

was used for determination of ChAT activity as previously described by 

Fonnum (1975) and protein was estimated according to the method of Lowry 

(1951). Samples were assayed in triplicate.



2.5 In Vitro Ligand Binding

2.5.1 Practice

Protocols for [3H]-forskolin and [3H]-PDBu ligand binding 

autoradiography have been established in ra t brain. However, a t the outset 

of the thesis, ligands had not been applied in human postmortem tissue. 

Preliminary studies were undertaken to investigate the viability of 

using [3H]-forskolin and [3H]-PDBu as markers for second messenger systems 

in postmortem human tissue sections. Saturation analysis of both ligands 

was investigated in the presence of increasing concentrations of radioligand 

and the pharmacological profile of the ability of structurally-related 

compounds to inhibit the binding of these [ H]-ligands determined.

Following investigation of the kinetics of [3H]-forskolin and [3H]- 

PDBu binding, the ligands could then be applied in autoradiographic studies 

according to the protocols outlined in Section 1.1 of this chapter. In 

one study, [3H]-forskolin binding was examined in the presence and absence 

of 5’guanylimidodiphosphate (Gpp(NH)p). Gpp(NH)p is a non-hydrolyzable 

guanine-nucleotide which was purported to enhance the binding of [3H]- 

forskolin. A concentration of IOjjlM Gpp(NH)p is believed to maximally 

stim ulate [3H]-forskolin (Gehlert, 1986).

On the same day, for each ligand, all control and AD sections were 

incubated, washed and dried. Radiolabelled sections from one brain region 

of a control and AD subject were apposed to [3H]-Hyperfilm (Amersham) 

along with a set of precalibrated [3Hl-microscales (Amersham) in a light­
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tight x-ray cassette. Exposure time for [3H]-forskolin and [3H]-PDBu was 

four weeks and one week respectively. Resultant autoradiograms were 

analysed using computer-assisted densitometry (Quantimet 970, Cambridge 

Instruments) as outlined in Section 3.4.2. of this chapter.

Ligand binding to each discrete region of interest on the autoradiogram 

was determined by reference to adjacent cresyl violet stained sections. 

The experimenter was blind to the identity of the sections and mean optical 

density measurements were averaged over a minimum of three to tal or non­

specific sections; in each section a t least 10 separate readings were made. 

Optical density measurements were converted to pmol/g tissue with 

reference to the standard curve generated by the [3H]-microscales and the 

specific activity of the radiolabelled ligands.

2.5.2 Methodological Considerations

In human postmortem tissue, application of the ligand binding technique 

suffers certain problems. Predisposing factors such as age of patient, drug 

treatm ent history and postmortem delay in processing tissue may increase 

interindividual variability. This problem was minimised as far as possible 

in each ligand binding study by closely matching control and AD groups for 

age and postmortem delay.

Quantitative autoradiography employs ligands labelled with tritium. The 

low energy of the tritium p-emission is differentially quenched in brain 

regions exhibiting relative differences in the concentration of grey to white
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m atter. Moreover, in diseased tissue such as AD, the grey to white ratios 

may be affected in comparison to control brain. Efforts to correct for this 

quenching problem include the use of iodinated ligands whose high energy 

Y emissions are not significantly altered by the tissue. However, the 

ligands used in this thesis are relatively new and are as yet, unavailable in 

an iodinated form.

2.6 l3Hl-Phorbol 12.13 Dibutvrate Binding to Particulate 

and Cvtosolic Homogenates

2.6.1 Separation of Particulate and Cytosolic Fractions

Procedures for the separation of the particulate and cytosolic fractions 

were carried out as previously described by Saitoh e t al. 1986. Brain tissue 

retained from the ChAT studies was homogenised in 10 volumes of buffer 

(0.32M sucrose, 5mM HEPES, (pH 8.0), 5mM benzamidine, 2mM 

dithiothreitol, 3mM EGTA, 0.5mM MgS04, 0.5mM ZnS04, O.lmM 

phenylmethyl-sulfonylfluoride, O.lmg/ml leupeptin, 0.05 mg/ml pepstatin, 

O.lmg/ml aprotonin) by two 5s strokes of a Polytron homogeniser. The 

homogenate was centrifuged for eight minutes at 10,000g (4°C) to 

precipitate nuclei and the cytoskeleton. The resultant supernatant was 

centrifuged for one hour at 100,000g (4°C) to separate the particulate from 

the cytosolic fraction. The pellet was reconstituted to its original volume 

with buffer.
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2.6.2 I^HJ-Phorbol 12,13 Dibutyrate Binding Assay

I H]-PDBu binding was measured in a reaction mixture containing 

approximately 20pLg protein in 1ml of the buffer 50mM Tris-HCl (pH 7.5) 

containing lOmM Mg-acetate, 1.4mM CaCl2, 0.4mM EGTA, 50mM KC1, 

4mg/ml bovine serum albumin, lOOpg/ml phosphatidylserine and 2.5nM [3H]- 

PDBu. Non-specific binding was defined in the presence of 2]iM unlabelled 

PDBu. The assay was incubated for two hours a t 4°C and stopped by 

filtration using a Brandell cell harvester to GF/B Whatman filter discs. 

The filter discs were washed five times with 5ml of the filtering solution 

20mM Tris-HCl (pH 7.5) containing lOmM Mg aceta te  and ImM CaCl2, then 

placed in 10ml of scintillant and the radioactivity counted by liquid 

scintillation analysis (see Methods section 3.4.3). [3H]-PDBu binding 

(pmol/mg protein) was calculated from the specific activity of the ligand 

and amount of protein in the sample.

2.6.3 Protein Determination

2.6.3.1 Practice

An aliquot of the tissue used in the homogenate binding of [3H]-PDBu 

was retained for determination of the protein content. On ice, 200>il of 

the homogenate sample was made up to a volume of 950)j l 1 with distilled H20 

to this, 50j j l 1 of trichloroacetic acid (100%) was added, vortexed immediately 

and left for 15 min to allow precipitation of the proteins. The proteins 

were then pelleted by spinning in a Beckmann microfuge for 30s. The 

supernatant was discarded and the protein pellet suspended in 200p.l 0.1M 

NaOH. The protein was determined using the method of Lowry (1951).
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2.6.3.2 Methodological Considerations

Protein determination using the method of Lowry (1951) is unreliable in 

the presence of some compounds. The buffer in which brain tissue was 

homogenised and then separated to particulate and cytosolic fractions (see 

Methods section 2.6.1) contains several of these compounds.

This problem was highlighted in one study in which a standard amount 

of protein (lOpig) was assayed for protein content in the presence of 

increasing concentrations of homogenisation buffer. Optical density 

measurement, (an index of protein concentration) of each sample, was found 

to increase linearly with increasing buffer concentration (Figure 11 A). 

Additionally, the protein samples suspended in either H20 or buffer gave 

completely different optical density values (Figure 11B). Even in the 

absence of protein, the buffer was separated from the protein sample by 

trichloracetic acid precipitation (see Methods section 2.6.3.1). The 

precipitated proteins could then be resuspended in H20 and protein 

determined by the method of Lowry (1951).

2.7 Statistical Analysis

Ligand binding data and ChAT data from control and AD brain were 

compared using an unpaired, two-tailed Student’s t-tes t. Correlations 

between ligand binding with ChAT activity or plaque numbers were carried 

out by linear regression analysis.
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FIGURE 11 
EFFECT OF BUFFER ON PROTEIN MEASUREMENT

A. Samples containing a constant amount of bovine serum 

albumin (10p.g) in the presence of increasing concentrations of 

homogenisation buffer (as detailed in Methods section 2.6.1) 

were assayed for protein content using the method of Lowry 

(1951). Optical density (OD) measurements as shown on the 

graph are directly related to the concentration of protein. 

Samples were assayed in triplicate. Note the linear increase 

in OD values with increasing buffer concentration despite a 

constant concentration of protein.

B. Increasing concentrations, which had been predetermined, of 

bovine serum albumin were suspended in either distilled H20 

or homogenisation buffer (100%) and OD values, as an index 

of protein content, determined. A linear relationship is shown 

between protein content and OD measurement when the assay 

medium was H20. In the absence of bovine serum albumin, the 

homogenisation buffer alone gave a high OD reading. The OD 

measurements for increasing concentrations of bovine serum 

albumin in the presence of homogenisation buffer are 

inconsistent.
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FIGURE 11

A
EFFECT OF INCREASING BUFFER CONCENTRATION 

ON OPTICAL DENSITY MEASUREMENT 
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3.

3.1

3.2

3.3

3.3.1

ANIMAL STUDIES 

General

Animal studies utilised two experimental techniques, namely in vitro 

ligand binding autoradiography and [14C]-2-deoxyglucose autoradiography. 

Animal surgery employed in these studies and experimental procedures are 

described in this section.

Animals

All studies of the ra t visual system employed adult, male black-hooded 

PVG rats (250-400g). In the studies of the septo-hippocampal pathway, 

adult, male Sprague Dawley rats (250-400g) were used. Rats were supplied 

by Harlan Olac and on delivery were allowed to acclimatise for five days 

and nights before any surgical intervention was performed. In holding, rats 

were exposed to a natural day/night cycle at room temperature maintained 

a t approximately 21 °C. Food and water were freely available until the day 

of the experimental procedure.

Surgical Preparation of Animals 

Unilateral Orbital Enucleation

Prior to surgery, animals were placed in a perspex box chamber into 

which 70% nitrous oxide and 30% 02 containing 5% halothane was flowing. 

During surgery, anaesthesia of the ra t was maintained using a 1% halothane 

mixture administered through a face mask. The surgical procedure 

involved retraction of the eyelid muscles to expose the right eyeball. The 

underlying retractor occuli muscle, blood vessels and optic nerve were
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clamped and the eyeball was then removed. Haemorrhage from the severed 

artery  and vein was prevented by sealing the vessels with a bipolar 

coagulator. Antibiotic powder was applied to the wound and anaesthetic 

was withdrawn. The procedure did not last more than five minutes.

3.3.2 Stereotaxic Lesion of the Rat Visual Cortex

Anaesthesia was induced as outlined in Methods section 3.3.1. Long­

term  maintenance of anaesthesia (approximately one hour) was achieved by 

injection of Hypnovel/Hypnorm (3.3mg/kg, i.p.). Following injection, the 

ra t was not handled for a further 15 minutes. The ra t was then fixed on 

a David Kopf stereotaxic frame, a midline incision in the scalp was made 

and the membranes reflected to expose Bregma. A small burrhole in the 

skull was drilled and the right hemisphere at the level of the visual cortex 

injected through a stainless steel needle (30 gauge) attached to a Hamilton 

Syringe. The stereotaxic co-ordinates (-7.8mm anterior from Bregma; - 

3.0mm lateral to the right and -1.0mm below dura) were taken from the 

stereotaxic atlas, Paxinos and Watson (1985). Ibotenic acid (lOmg/ml) was 

dissolved in phosphate-buffered saline (pH 7.4) and lp l injected at a ra te  of 

0.2pil/min. Following completion of the injection, the needle was left in 

place for five minutes to allow diffusion of the toxin and was then slowly 

withdrawn. Sham-operated animals were injected with an equal volume of 

saline. The wound was stitched using silk sutures and antibiotic powder 

applied. Glucose/saline (5ml) was administered subcutaneously to 

compensate for the loss of body fluids while the animal was recovering from 

the effects of anaesthesia. Following surgery, the animals survived for 21
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days, a t which time, autoradiographic measurements were recorded (see 

appropriate Methods sections 3.3.4 and 3.4.1).

3.3.3 Stereotaxic Lesion of the Medial Septum

Induction of anaesthesia was as outlined in Methods section 3.3.1. 

Anaesthesia was maintained by injection i.p. of chloral hydrate 

(400mg/kg) and diazepam (2mgkg). The procedure was similar to that 

described in Section 3.3.2 except the buffered ibotenic acid was delivered 

into the medial septum at stereotaxic co-ordinates 0.8mm anterior to 

Bregma, a t the midline, and lowered 5.8mm below the surface of the dura. 

These co-ordinates have been previously defined (Wenk e t al. 1984). A 

to tal volume of 0.6pd ibotenic acid was injected into the medial septum 

a t a speed of O.lpd min. Sham-operated rats were treated with a 

procedure identical to that outlined above, with the exception that 

phosphate-buffered saline only was injected into the medial septum. 

Following surgery, the animal survived for 21 days, at which time, the 

animal was sacrificed, the brain removed and processed for in vitro ligand 

binding autoradiography (see Methods section 1.1.2).

Following stereotaxic lesion of the visual cortex or medial septum, the 

rats were allowed to survive for 21 days a t which time autoradiographic 

procedures were measured. This time-point was chosen for two main 

reasons; (1) surgical intervention by stereotaxic lesion of rats disrupts 

normal feeding and behavioral activity, the [14C]-2-deoxyglucose technique 

requires th a t the glucose level in animals falls within certain limits, 21 days
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allowed adequate recovery of the animals a fter surgery; (2) ligand binding 

to neurotransm itter receptors (Chalmers and McCulloch, 1990) and second 

messenger systems were found to be altered a t 20 days following unilateral 

orbital enucleation.

3.3.4 Preparation of Animals for [14C]-2-Deaxyglucose Measurement

Anaesthesia was induced and maintained as explained in Section 3.3.1. 

Small incisions were made on each side of the animal’s groin and using blunt 

dissection, the connective tissue and fatty  tissue was cleared to expose the 

femoral artery and vein. Polyethylene catheters (Portex: external diameter

0.96mm, internal diameter 0.58mm, 10cm long) containing heparinised saline 

(10 I.U./ml) were inserted a distance of 2cm into each artery and vein, tied 

off firmly using silk thread and the wound sutured closed. Anaesthetic gel 

was applied to the incision sites, covered in gauze pads and held in place by 

tape. The ra t was enveloped in a surgical stocking and in a plaster of Paris 

bandage (Gypsona: 7.5cm wide) wrapped around the lower abdomen, pelvis 

and hindquarters. The plaster cast and the hindlimbs of the animal were 

taped on to a lead support brick which ensure the animal was completed 

immobilised. Core temperature was measured by a rectal probe and the 

arterial blood pressure was monitored by connecting the femoral artery to 

a pressure transducer (P23 ID Gould Stratham, Model 2202). The animals 

were then allowed to recover from the anaesthesia for a t least two hours 

before the initiation of the experimental procedure by tracer administration.
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3.4 Experimental Analysis

3.4.1 Preparation of Autoradiograms

3.4.1.1 [14C]-2-Deoxyglucose Autoradiograms

At the end of the 45 minute sampling period, the animal was sacrificed 

by decapitation and the brain rapidly removed. A longitudinal midline 

incision was made a t the level of the snout and extended caudally to the 

level of the forelimb. Skin and extracranial muscle were reflected to 

expose the skull. The dorsal cranium was removed and the dura reflected 

to  facilitate excision of the intact brain. All adhering bone fragments and 

hair were removed and the brain frozen by slow immersion in isopentane 

which was precooled to -42°C. The time taken from sacrifice of the 

animal to freezing of the brain did not exceed five minutes. The brain was 

then fixed to a swivel-headed microtome chuck with plastic embedding 

medium (Lipshaw), over a bed of solid C 02 and stored at -20°C for not more 

than two days. From each brain, 20pm thick coronal sections were cut 

from the level of the inferior colliculus to the level of the caudate 

putamen. One section in eight was picked onto a thin glass coverslip and 

dried immediately on a hotplate (70°C). Of the remaning seven sections, 

six of these were thaw-mounted onto gelatin-coated subbed slides and 

allowed to dry at room tem perature for one hour in preparation for ligand 

binding. The last section was picked onto a glass slide for histological 

staining using cresyl violet. The glass coverslips were glued onto cards and 

placed, together with a set of precalibrated 14C-label led epoxy resin 

standards (18-1880pCi/g tissue equivalents) in light-tight cassettes. Auto­

radiograms were obtained by exposing x-ray film (Kodak-GRL-A) to the
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brain sections and standards to 18 days. Films were then processed in a 

Kodak automatic presser.

3.4.1.2 Ligand Binding Autoradiograms

Tissue sections labelled with a specific radioligand were mounted 

securely on card along with a set of precalibrated tritium standards (1060 - 

17720nCi/mg tissue equivalents). The brain sections and standards were 

apposed to tritium-sensitive film (Hyperfilm B,^, Amersham) in a light­

tight cassette for one week and four weeks to generate PDBu and forskolin 

autoradiograms respectively. Films were manually developed in Kodak D- 

19 developer for five minutes a t 17°C and the development stopped with a 

30 second rinse in deionised water a t 20°C. Films were fixed for 10 

minutes a t 20°C (Kodak, Kodafix), washed for 40 minutes in running filter 

water, rinsed in deionised water and suspended in a drying cabinet 

overnight.

3.4.2 Quantitative Densitometric Analysis of Autoradiograms

Analysis of resultant [14C]-2-deoxyglucose or ligand binding 

autoradiograms was performed using a computer-ass is ted image analysis 

system (Quantimet 970, Cambridge Instruments).

Optical density measurements of autoradiograms were made under a 

constant light produced by four lamps (24W), the intensity of the light being 

computer controlled. The autoradiographic image was captured by a video­

camera fitted with a zoom lens (2.5x) and digitised into an array of image
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points (pixels) each with a grey level value in the range 1-255 (grey level 

~ 255 corresponds to optical density =0j grey level = 1 corresponds to 

optical density 2.41). The image analyser was calibrated which allowed 

grey level values of each pixel to be converted into optical density values.

Following calibration, the optical densities of the precalibrated 

standards (3H or UC) were measured, generating a calibration curve of 

optical density against isotope concentration and allowing quantification of 

isotope concentration in discrete brain regions. Optical density 

measurements were made by placing a measuring frame (9-900 pixels/frame) 

over the anatomical region of interest. The size of the frame was kept 

constant for each region between animals or humans. Optical density 

measurements in ra t studies were made separately in the ipsilateral and 

contralateral hemisphere over two to six sections. Structures in ra t brain 

were defined anatomically with reference to a stereotaxic atlas (Paxinos and 

Watson, 1986).

3.4.3 Liquid Scintillation Analysis

Liquid scintillation analysis was a necessary component of [14C]- 

deoxyglucose and [3H] ligand binding autoradiography.

The plasma history of [u C]-2-deoxyglucose was determined by liquid 

scintillation. Aliquots from each plasma sample were pipetted into 1ml of 

distilled water in glass scintillation vials and residual radioactivity expelled 

by repeated flushing of the pipette with water. Prior to ligand binding
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experiments, the concentration of the radioligand in the incubation medium 

was determined. Samples (lOptl) were aliquotted into 1ml of distilled water 

in triplicate. To each vial 10ml of a proprietary scintillant (Ecoscint A, 

National Diagnostics) was added. In experiments where tissue sections 

were wiped from glass slides using filter discs, or the tissue was collected 

on filter discs, these were placed directly into 10ml scintillant. Each vial 

was counted for four minutes in a refrigerated scintillation counter. 

Counts per minute were converted to disintegrations per minute using the 

external channels ratio method (Peng, 1977) and a standard quench 

correction calibration curve.

3.4.4 Statistical Analysis

R at Visual System Studies. The statistical design employed in analysis 

of ligand binding and glucose use following unilateral orbital enucleation and 

unilateral visual cortex lesion was similar. Asymmetries in ligand binding 

and glucose utilisation were determined using a Student’s two-tailed paired 

t-tes t. The stability of ligand binding and glucose utilisation in brain 

regions of the control (intact) hemisphere was assessed using the analysis 

of variance (Scheffe, 1959) and the multiple comparisons method of Dunnett 

(1964). S tatistical significance was taken to be p<0.01 to correct for the 

number of comparisons made in each group.

Septo-Hippocampal Studies. Ligand binding in the sham-operated rats 

and lesioned ra ts  were taken as mean values of the left and right 

hemisphere. Data from the sham group was compared to the lesioned
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group using a Student’s two-tailed unpaired t-test. S tatistical significance 

was taken to be p<0.05.



MATERIALS

[3H]-Forskolin (38-40Ci/mmol) was obtained from Amersham and [3H]-phorbol 

12,13 dibutyrate (18-19. ICi/mmol) from New England Nuclear. Forskolin; 

deacetylforskolin; phorbol 12,13 dibutyrate; phorbol 12, myristate 13, acetate; 4a 

phorbol 12,13 didecanoate; phorbol 12,13 diacetate; bovine serum albumin; 

phosphatidylserine; benzamidine; leupeptin; pepstatin; aprotonin and ibotenic 

acid were all obtained from Sigma Chemical Company. Dithiothreitol was 

obtained from BDH, 6p-[p-(piperidio) propionyl forskolin and 7p-deacetyl-7p- 

[y-(morpholino) butyrylj-forskolin were obtained from Research Biochemicals 

Incorporated. All other reagents were of analytical grade.
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CHAPTER III 
RESULTS



1. QUANTITATIVE AUTORADIOGRAPHY OF [^J-FORSKOLIN BINDING 

IN POSTMORTEM HUMAN BRAIN

1.1 Scatchard Analysis of f3Hl-Forskolin Binding

Saturation experiments performed in frontal cortex sections of three 

controls (outwith subsequent studies) revealed tha t [3H]-forskolin binding was 

of high affinity and saturable over the concentration range 2 - lOOnM 

(Figure 12). Non-specific binding, defined in the presence of 20pM 

unlabelled forskolin, was linear with respect to the concentration of [3H]- 

forskolin and, a t 20nM [ H]-forskolin, the specific binding was approximately 

80%. The average dissociation constant (KD) was approximately 33nM and 

the maximum number of binding sites in frontal cortex was 200fmol/section.

1.2 Displacement of f3Hl-Forskolin Binding

The pharmacological profile for inhibition of [3H]-forskolin 

binding by forskolin analogues was examined in frontal cortex sections of 

two control and two AD patients (the patients were not included in 

subsequent studies). . The ability of forskolin analogues to inhibit [3H]- 

forskolin binding were found to be in the rank order of potency: 6p-[p- 

(p iperid io) propionyl] forskolin > fo rsko lin> 7p-deacety l-7p -[y - 

morpholino)butyryl] forskolin >> deacetylforskolin (Table 4). The ability of 

forskolin analogues to inhibit [3H]-forskolin binding was similar in control 

and AD tissue sections. The order of potency of forskolin analogues to 

inhibit [3H]-forskolin binding in human brain correlates well with the ability 

of these analogues to stimulate adenylate cyclase and increase cAMP levels 

in cell lines, and to inhibit [3H]-forskolin binding in ra t brain membranes
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FIGURE 12 
SCATCHARD ANALYSIS OF [ 3H1-FORSKOLIN BINDING 
IN HUMAN BRAIN

A. [3H]-Forskolin binding in frontal cortex sections of 3 control 

subjects. Sections were incubated with increasing 

concentrations of [3H]-forskolin (2-100nM) at 22°C for 20 

minutes and the radioactivity counted by liquid scintillation. 

Non-specific binding ( A )  was defined in the presence of 2 0 ) jlM  

unlabelled forskolin. Specific binding (# )  was determined 

from the subtraction of non-specific (A ) from to tal (O ) 

binding. Data points represent mean ± SEM.

B. Scatchard analysis of saturation data of [3H]-forskolin 

binding in frontal cortex. Data points represent the mean ± 

SEM (n = 3). B ,^  and KD values were determined using linear 

regression analysis.
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FIGURE 12

SCATCHARD ANALYSIS OF 3H-FORSKOLIN BINDING 
IN HUMAN BRAIN
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(Laurenza e t al. 1987). These data would indicate that [3H]-forskolin binds 

to a pharmacological site involved in the activation of adenylate cyclase.

1.3 Anatomical Localisation of f3Hl-Forskolin Binding in Control Brain

[3H]-Forskolin exhibited a heterogeneous pattern of binding in frontal 

and temporal cortex and in the hippocampal formation (see Figure 13 and 

also Figures 14, 15, and 16). The levels of [3H]-forskolin binding were 

higher in middle frontal gyrus as compared to temporal gyrus. Within 

both cortical regions [3H]-forskolin binding exhibited an obvious laminar 

distribution. Highest levels of binding were observed in layers I-III and 

layers V-VI with markedly less binding in layer IV. Within the hippocampal 

formation, the selective pattern of binding was striking. [ H]-Forskolin 

binding was most prominent in the parahippocampal gyrus, CA4 field and 

molecular layer of the dentate gyrus whilst other hippocampal regions 

showed a lower degree of [ H]-forskolin binding.

1.4 Quantitative Autoradiography of f3Hl-Forskolin Binding in Control and AD 

Brain

Quantitative analysis of [3H]-forskolin binding was determined in six 

control and seven AD subjects (Table 2) in middle frontal and temporal 

cortex and the hippocampal formation.

[3H]-Forskolin binding was markedly and significantly reduced in all 

layers of middle frontal cortex in AD brain compared to controls (Figures 

13 and 14). The magnitude of the deficit was approximately 50% and was



FIGURE 13
AUTORADIOGRAMS OF [3H1 -FORSKOLIN BINDING 
IN CONTROL AND AD BRAIN
A utoradiogram s genera ted  by incubating sections of human brain with 20nM 
[3H ]-forskolin. A and B are middle fron tal co rtex  sections of a control 
sub jec t (A) and an AD subject (B). Within th e  co rtex  [3H]-forskolin 
binding s ite s  a re  localised in th ree  d istinct bands corresponding to layers 
I—III, IV and V-VI which w ere determ ined by re fe ren c e  to ad jacent sections 
s ta ined  w ith cresy l v io let. N ote the m arked loss of [ H j-forskolin binding 
throughout m iddle fron ta l cortex  in the  AD case. C and D and sections of 
th e  hippocam pal region from  a control (C) and an AD case (D). 
A utoradiographic m easurem ents w ere m ade in th e  following regions: 
superfic ia l (super) and deep layers of the  parahippocam pal gyrus (PHG); 
subiculum  (SUB); s tra tu m  lacunosum m oleculare (LACMOL); CA1, CAS and 
CA4 fields of Am m on’s Horn; in the d en ta te  gyrus: hilus (HIL), m olecular 
(MOL) and g ranu lar (GRAN) layers, with re fe ren ce  to  cresyl violet-stained 
sections.
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FIGURE 14 
L hi-forskolin binding in control 
AND AD MIDDLE FRONTAL CORTEX

Quantitative autoradiographic measurements of I3H]-forskolin binding 
in middle frontal cortex. Cortical layers correspond to those in Figure 
13A. Histograms are presented as mean ± SEM for control (n = 6) and 
AD (n = 5) subjects. Note the profound reduction in [3H]-forskolin binding 
throughout the frontal cortex in AD. *p<0.01, Students unpaired 
t-test.
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FIGURE 15 
7JH 1-FORSKOLIN IN CONTROL 
AND AD MIDDLE TEMPORAL CORTEX
Quantitative autoradiographic measurement of [3H]-forskolin binding 
in middle temporal cortex. The distribution of [3H]-forskolin binding 
throughout the cortical layers was similar to that observed in middle frontal 
cortex (Figure 13). Histograms are presented as mean ± SEM for control 
(n = 6) and AD (n = 7) subjects. The apparent reduction in mean 
[3H]-forskolin binding in the AD group was dominated by data from two AD 
cases (4AD and 7AD) while other AD cases had levels of binding similar to 
controls.
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FIGURE 16 
[ JH 1-FORSKOLIN BINDING IN CONTROL 
AND AD HIPPOCAMPAL REGION
Quantitative autoradiographic measurement of [3H]-forskolin binding 
in the hippocampal region. The areas examined are: CA1, CA3, CA4 fields 
of Ammon’s Horn; hilus (HIL), molecular (MOL) and granular layer of the 
dentate gyrus; stratum lacunosum moleculare (LACMOL); subiculum (SUB); 
Superficial (super) and deep layers of the parahippocampal gyrus (PHG) and 
white m atter (see Figure 13). Histograms are presented as mean ± SEM 
for control (n = 6) and AD (n = 6) subjects. There is no significant 
different between the control and AD group in each hippocampal region 
examined (Student’s unpaired t-test).
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consistent throughout the cortex.

A reduction in [3H]-forskolin binding was observed in all layers of 

middle temporal gyrus in the AD group (Figure 15). This reduction did not 

achieve statistical significance. Analysis of individual data in the patient 

group revealed that two of the cases (4 AD and 7 AD) dominated the mean 

values for the AD group. The two cases exhibited extremely low levels of 

binding compared to the other five AD subjects which had levels of binding 

similar to mean control values.

[3H]-Forskolin binding was not significantly different between the 

control and AD group in each of the anatomically-discrete regions of the 

hippocampal formation examined (Figures 16 and 13).

1.5 [3Hl-Forskolin Binding and ChAT Activity

Choline acetyltransferase (ChAT) activity was significantly reduced 

in both neocortex and the hippocampus in AD brain compared to controls 

(Table 5). The magnitude of this deficit was at least 40% of control values 

in all three brain regions examined.

Using least squares linear regression analysis in middle frontal cortex 

where [3H]-forskolin binding was markedly reduced in AD brain, a positive 

correlation between [3H]-forskolin binding and ChAT activity was observed 

when data from control and AD brains were combined (Figure 17). The 

correlation between binding and ChAT was consistent throughout the layers
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TABLE 5

CHOLINE ACETYLTRANSFERASE ACTIVITY AND PLAQUE COUNTS 
(SERIES 1)

Brain Area

CHOLINE ACETYLTRANSFERASE ACTIVITY 
Control AD

PLAQUES IN AD BRAINS 
Layers Layers 
I-III IV-VI

Middle Frontal 
Gyrus 16.8±2.0 9.1±1.8** 34±7 19±4

Middle Temporal 
Gyrus 7.7±1.2 2.5±0.9*** 29±6 15±5

Hippocampus 1 3 . 3 ± 2 . 3 6.1±1.7* Subiculum: 8±3

For Choline acetyltransferase activity, values are mean ± SEM, 
nmol/mg protein/hr in grey matter dissected from brain areas in 
which [3H]-forskolin autoradiography was carried out. **p<0.01,
***p<0.001.

For plaques, values are mean ± SEM, plaques/mm2 in sections no more 
than 0.5cm caudal to sections used for [3H]-forskolin 
autoradiography. Control brains had less than two plaques/mm2 in 
each area.
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of frontal cortex, layer I-III (r = 0.662, p<0.05), layer IV (r = 0.809, 

p<0.05), layer V-VI (r = 0.717, p<0.05).

There was no direct correlation between [3H]-forskolin binding and 

ChAT activity in each cortical layer of middle temporal cortex (r = 0.126 - 

0.274, p>0.05) (Figure 17). Those AD subjects which had reduced [3H]- 

forskolin binding did not have levels of ChAT which were substantially 

different from the rest of the patient group (ChAT activity nmol/mg 

protein/hr : 4AD =« 1.6, 7AD = 2.14, AD group = 25 0.9). In the

hippocampal region, there was no significant correlation between [3H]- 

forskolin binding and ChAT activity in each of the regions examined (r = 

0.42 - 0.6 p>0.05).

1.6 [ Hl-Forskolin Binding and Local Neuropathology

Control brains had minimal numbers of plaques, less than two plaques 

per mm2 in all brain regions examined while AD brains contained numerous 

plaques in cortical regions and the hippocampus (Table 5).

There was no direct correlation between [3H]-forskolin binding and 

the number of plaques in AD brain in superficial and deep layers of 

middle frontal cortex (r = 0.308; r  = 0.095, p>0.05) and middle temporal 

cortex (r = 0.158; r  = 0.56, p>0.05). Similarly in the subiculum of the 

hippocampus there was no significant correlation between plaque numbers 

and [3H]-forskolin binding (r = 0.482, p>0.05).
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FIGORE 17
CORRELATION OF \ 3H1-FORSKOLIN BINDING 
WITH ChAT ACTIVITY

Relationship between cholineacetyltransferase (ChAT) activity and [3H]- 

forskolin binding in frontal (A) and temporal (B) cortex. Open circles 

represent control data and closed circles represent AD data. In middle 

frontal cortex (layer I-III) a significant correlation between ChAT activity 

and [3H]-forskolin binding is shown (r = 0.662, p<0.05), the best fitting 

line generated by linear regression. There was also a significant 

correlation between ChAT activity and [3H]-forskolin binding in layer IV 

(r = 0.809, p<0.05) and layers V-VI (r = 0.712, p<0.05). In middle temporal 

cortex there was no association between ChAT activity and [3H]-

forskolin binding.
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FIGURE 17 CORRELATION OF 3 H-FORSKOLIN BINDING
WITH CHAT ACTIVITY
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1*7 Effect of Gpp(NH)p on f3H]-Forskolin Binding in

Postmortem Human Brain

1.7.1 Effect of Gpp(NH)p on I3!!]-Forskolin Binding in Control Brain

The effect of Gpp(NH)p (10pM) on [3H]-forskolin binding was 

investigated in adjacent sections to those used in the previous study (see 

Results section 1.1.4). In middle frontal cortex and temporal cortex of 

control subjects, [3H]-forskolin binding was selectively increased in layers 

I-III of the gyri whilst the deeper cortical layers were unaffected by the 

inclusion of Gpp(NH)p in the incubation medium (Figures 19, 20, see also 

Figure 18). [ H]-Forskolin binding was significantly increased in layers I-

III of frontal cortex (28%) and temporal cortex (30%) compared to basal 

levels of [3H]-forskolin binding.

In each discrete region analysed within the hippocampal formation of 

the control group, Gpp(NH)p had no effect on the level of [3H]-forskolin 

binding (Figure 21).

1.7.2 Effect of Gpp(NH)p on [^l-Forskolin Binding in AD Brain

The differential effect of Gpp(NH)p to alter [3H]-forskolin 

binding was conserved in AD brain as compared to controls. [3H]-Forskolin 

binding was significantly increased in layers I-III in middle frontal cortex 

(25%) and in layers I-III of middle temporal cortex (33%), whilst Gpp(NH)p 

had no effect on [3H]-forskolin binding in deep layers of both cortical 

regions of AD brain (Figures 19 and 20). It must be noted that although the 

percentage increase in [3H]-forskolin binding, in the presence of Gpp(NH)p,
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- G p p ( N H ) p  + G p p ( N H ) p

FIGURE 18 
AUTORADIOGRAMS OF f 3H1-FORSKOLIN BINDING 
IN THE PRESENCE AND ABSENCE OF Gpp(NH)p

A utoradiogram s g en era ted  by incubating sections of contro l human brain 
w ith 20nM [3H ]-forskolin in th e  presence and absence of Gpp(NH)p (IOjjM). 
A and B are  ad jacen t sections of control middle fron ta l co rtex  incubated 
w ith [3H ]-forskolin alone (A) and [3H]-forskolin in the  presence of 

Gpp(NH)p (B). N ote th e  m arked increase in [3H]-forskolin binding, in the 
presence of Gpp(NH)p, in co rtica l layers I - I I I  from  basal levels of [3H]- 
forskolin binding.

0.5cm
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was retained in AD brain compared to controls, the qualitative increase is 

approximately 50% of the magnitude of increase observed in control cortex. 

In the hippocampal formation, the basal levels of [3H]-forskolin 

binding in each hippocampal region of AD brain was not significantly altered 

in the presence of Gpp(NH)p (Figure 21).
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FIGURE 19
EFFECT OF Gpp(NH)p ON f3H1-FORSKOLIN BINDING
IN FRONTAL CORTEX

Q uantitative autoradiographic measurement of [3H]-forskolin binding 

in the presence and absence of Gpp(NH)p (10]jlM) in adjacent sections of 

middle frontal cortex. Histograms are presented as mean ± SEM of six 

controls (A) and five Alzheimer cases (B). [3Hj-Forskolin binding is 

significantly increased, in the presence of Gpp(NH)p, in cortical layers I-III 

compared to basal levels of l3H]-forskolin in both control and AD frontal 

cortex. *p<0.05 Student’s paired t-tes t.
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FIGURE 19

EFFECT OF Gpp(NH)p ON 3H-FORSKOLIN BINDING
IN FRONTAL CORTEX
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FIGURE 20
EFFECT OF Gpp(NH)p ON \ 3H1-FORSKOLIN BINDING
IN TEMPORAL CORTEX

Quantitative autoradiographic measurement of [3H]-forskolin binding 

in the presence and absence of Gpp(NH)p ( I O j j l M )  in adjacent sections of 

middle temporal cortex. Histograms are presented as mean ± SEM of 

six controls (A) and seven Alzheimer cases (B). [3H]-Forskolin binding 

is significantly increased, in the presence of Gpp(NH)p, in cortical layers

I-III compared to basal levels of [3H]-forskolin in both control and AD 

middle frontal cortex. *p<0.05, Student’s paired t-tes t.
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FIGURE 20

EFFECT OF Gpp(NH)p ON 3H-FORSKOLIN BINDING
IN TEMPORAL CORTEX
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FIGURE 21
EFFECT OF Gpp(NH)p ON f3H 1-FORSKOLIN BINDING
IN HIPPOCAMPAL REGION

Q uantitative autoradiographic measurement of [3H]-forskolin binding 

in the presence and absence of Gpp(NH)p (lOpM) in adjacent sections of 

hippocampal region. Histograms are presented as mean ± SEM of six 

controls (A) and six Alzheimer cases (B). There was no significant 

difference between basal [3H]-forskolin and [3Hl-forskolin in the presence of 

Gpp(NH)p, in any brain region examined in both control and AD groups by 

Student’s paired t-test. Abbreviations are: molecular layer (MOL), granular 

layer (GRAN), hilus (HIL), stratum  lacunosum moleculare (LACMOL),
i  *v.

subiculum (SUB), superficial layer (super) of the parahippocampal gyrus 

(PHG). i
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FIGURE 21

EFFECT OF Gpp(NH)p ON 3H-FORSKOLIN BINDING 
IN HIPPOCAMPAL REGION 
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2. QUANTITATIVE AUTORADIOGRAPHY OF [^l-PDBu 

BINDING IN POSTMORTEM HUMAN BRAIN

2.1 Scatchard Analysis of [3Hl-PDBu Binding

In temporal cortex sections of four control subjects (not included in 

subsequent studies) saturation analysis revealed that [3H]-PDBu specific 

binding was saturable and of high affinity (Figure 22). Non-specific binding, 

as measured in the presence of 2> jlM  PDBu, was linear with respect to the 

concentration of [3H]-PDBu and, at 2.5nM [3H]-PDBu, the non-specific 

binding was only 5% of total binding. The average dissociation constant (KD) 

of [3H]-PDBu was 16nM and the maximum number of binding sites in 

temporal cortex was approximately 4pmol/section.

2.2 Displacement of [3H1-PDBu Binding

Inhibition of [3H]-PDBu binding by phorbol ester analogues was 

examined in temporal cortex sections of two control and two AD patients 

(outwith subsequent studies) (Table 6). Both phorbol 12,13 dibutyrate and 

phorbol 12, m yristate 13-acetate were equipotent in their ability to inhibit 

[3H]-PDBu binding. Phorbol 12,13-diacetate did not inhibit the binding 

of [3H]-PDBu. The order of potency of the phorbol esters to inhibit [3H]- 

PDBu binding was similar in control as compared to AD tissue sections. The 

ability of phorbol ester analogues to inhibit [3H]-PDBu binding correlates 

well with their ability to stimulate protein kinase C and inhibit [3H]-PDBu 

binding in ra t brain (Driedger & Blumberg, 1980; Kikkawa et al. 1983; 

Blumberg e t al. 1984). Thus [3H]-PDBu binding in human brain would 

appear to reflect the distribution of protein kinase C.
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FIGURE 22
SCATCHARD ANALYSIS OF r3Hl-PDBu BINDING 
IN HUMAN BRAIN

A. [3H]-PDBu binding in temporal cortex sections of four control 

subjects. Sections were incubated with increasing 

concentrations of [3H]-PDBu (l-250nM) at 22°C for 90 

minutes and the radioactivity counted by liquid scintillation. 

Non-specific binding ( A ) was defined in the presence of 2^lM 

unlabelled PDBu. Specific binding ( # )  was determined from 

the subtraction of non-specific ( A ) from total ( O ) binding.

B. a Scatchard analysis of saturation data of ["^Hl-PDBu binding

in temporal cortex. Data points represent the mean ± SEM 

(n = 4). and KD values were determined using linear

regression analysis.
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2.3 Anatomical Localisation of [3Hl-PDBu Binding in Control Brain

[ H]-PDBu exhibited a heterogeneous pattern of binding in tissue 

sections of control brain (Figure 23, see also Figures 24, 25 and 26), which 

was quite distinct from that of [3H]-forskolin binding (see Figure 13). In 

neocortex, [3H]-PDBu binding exhibited an obvious laminar distribution. In 

both frontal and temporal cortex, intense binding was observed in layers I- 

II with m oderate levels of binding in layers III-IV and layers V-VI. [3H]- 

PDBu binding was particularly high in the hippocampal formation. Within 

this region, binding was highest in the CA1 field and the superficial layer 

of parahippocampal gyrus. High densities were also noted in the CA3 field, 

hilus, molecular layer of the dentate gyrus and subiculum, with lower 

binding in the remainder of the hippocampal structures. There was minimal 

[3H]-PDBu binding in white m atter.

2.4 Quantitative Autoradiography of f3Hl-PDBu Binding in Control and AD Brain

[3H]-PDBu binding was investigated in middle frontal and temporal 

cortex and the hippocampal formation of nine control and nine AD patients 

(Table 3) using quantitative autoradiography.

S tatistical analysis of [3H]-PDBu binding revealed that there was no 

significant difference in all regions of both frontal (Figure 24, see also 

Figures 23A and B) and temporal cortex (Figure 25) and in all hippocampal 

regions (Figure 26, see also Figures 23C and D) of the control group 

compared to the AD group.
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B

FIGURE 23 
AUTORADIOGRAMS OF r3Hl-PDBu BINDING 
IN CONTROL AND AD BRAIN
A utoradiogram s g enera ted  by labelling human sections with 2.5nM [3H]- 
PDBu. A and B are  m iddle frontal cortex sections of a control subject (A) 
and an AD sub jec t (B). Within the cortex [3H]-PDBu binding sites are 
localised in th re e  d is tin c t bands corresponding to  layers I—II, III-IV and V- 
VI which w ere determ ined  by reference to  ad jacen t sections stained with 
cresyl v io let. C and D are  sections of the  hippocam pal region from a 
contro l (C) and an AD case (D). A utoradiographic m easurem ents were 
m ade in th e  following regions: superficial (super) and deep layers of the 
parahippocam pal gyrus (PHG); subiculum (SUB); s tra tu m  lacunosum 
m oleculare (LACMOL); C A 1, CA3 and CA4 fields of Ammon’s Horn; in the 
d en ta te  gyrus: hilus (HIL), m olecular (MOL) and granular (GRAN) layers, 
w ith re fe ren c e  to  cresy l v io let-stained  sections.

CA3
GRAN 
MOL

D

0.5cm
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600 - I

□  CONTROL

I-n in-IV  V- VI  WHITE MATTER 

CORTICAL LAYERS

FIGURE 24 
[ JH 1-PDBu BINDING IN CONTROL AND AD 
MIDDLE FRONTAL CORTEX

Quantitative autoradiographic measurements of [3H]-PDBu binding in 
middle frontal cortex. Cortical layers correspond to those in Figure 23A. 
Histograms are presented as mean ± SEM for control (n = 8) and AD 
(n= 9) subjects. There is no significant difference between the control and 
AD group in each cortical layer examined (Student’s unpaired t-test).
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FIGURE 25 
I HI-PDBu BINDING IN CONTROL AND AD 
MIDDLE TEMPORAL CORTEX

Quantitative autoradiographic measurement of [3H]-PDBu binding in 
middle temporal cortex. The distribution of [3H]-PDBu binding throughout 
the cortical layers was similar to that observed in middle frontal cortex 
(Figure 23A). Histograms are presented as mean ± SEM for control 
(n = 9) and AD (n = 9) subjects. There is no significant difference between 
the control and AD group in each control layer examined (Student’s 
unpaired t-test).
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FIGURE 26 
pHI-PDBu BINDING IN CONTROL AND AD 
HIPPOCAMPAL REGION
Quantitative autoradiographic measurement of [3H]-PDBu binding in 
the hippocampal region. Abbreviations are: CA1, CA3, CA4 fields of
Ammon’s Horn; hilus (HIL), granular (GRAN) and molecular (MOL) layer of 
the dentate gyrus; stratum lacunosum moleculare (LACMOL); subiculum 
(SUB); superficial (super) and deep layers of the parahippocampal gyrus 
(PHG) (see Figure 23C). Histograms are presented as mean ± SEM for 
control (n = 9) and AD (n = 8) subjects. There is no significant different 
between the control and AD group in each hippocampal region examined 
(Student’s unpaired t-test).
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2-5 -Quantitative Autoradiography of f3Hl-Forskolin Binding in Control and A D  

Brain

In the same control and AD subjects, in adjacent sections used for 

[3H]-PDBu binding, quantitative autoradiographic analysis of [3H]-forskolin 

binding was examined in middle frontal and temporal cortex and the 

hippocampal formation.

[3H]-Forskolin binding was significantly reduced in all layers of 

middle frontal cortex, all layers of middle temporal cortex and the 

molecular layer of the dentate gyrus in this AD group compared to controls 

(full quantitative analysis of [3H]-forskolin binding is presented in Appendix 

Va). The reductions in [3H]-forskolin binding in neocortex and hippocampus 

in this AD group are consistent with the findings in a previous study, 

although the magnitude of change in [ H]-forskolin binding between control 

and AD cases is different (see Results section 1.4). [3H]-Forskolin binding 

was positively correlated with ChAT activity in all layers of middle frontal 

and temporal cortex (Appendix Vb).

2.6 [3Hl-PDBu Binding and ChAT Activity

ChAT activity was significantly reduced in the AD brain compared 

to the control group in middle frontal and temporal cortex and the 

hippocampal formation (Table 7). The deficit observed in the AD group was 

at least 60% of control values in all three brain regions examined.
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TABLE 7

CHOLINE ACETYLTRANSFERASE ACTIVITY AND PLAQUE COUNTS (SERIES 2)

Brain Area
Middle Frontal 

Gyrus
Middle Temporal 

Cortex

CHOLINE ACETYLTRANSFERASE PLAQUES IN AD BRAINS 
ACTIVITY Layers LayersControl AD I-III iy-yi

6 .3±0.8 2.5±0.5**

5.0±0.4 1.5±0.3***

39±8 18±3

38±7 22±4

Hippocampus 12.3±2.0 3.1±0.9** Subiculum: 9±2

For Choline acetyltransferase activity, values are mean ± SEM, 
nmol/mg protein/hr in grey matter dissected from brain areas in which 
[3H]-PDBu autoradiography and homogenate studies were carried out. 
**p<0.01, ***p<0.001.

For plaques, values are mean ± SEM, plaques/mm2 in sections no more 
than 0.5cm caudal to sections used for [3H]-PDBu autoradiography. 
Control brains had minimal plaques in each area.



Linear regression analysis of [3H]-PDBu binding and ChAT activity 

demonstrated that there was no significant correlations between binding and 

ChAT in frontal cortex (r = 0.155 - 0.192, p>0.05), middle temporal 

cortex (r = 0.263 - 0.288, p>0.05), and the hippocampal formation

(r = 0 - 0.497, p>0.05).

2.7 [3H]-PDBu Binding and Local Neuropathology

All AD brains used in the autoradiographic study of [3H]-PDBu 

binding contained numerous plaques in both cortical regions and the 

hippocampus, whilst controls had minimal plaques (Table 7). There were no 

significant correlations between [3H]-PDBu binding and the number of 

plaques in superficial (r = 0.148, p>0.05) and deep (r = 0.423, p>0.05) layers 

of the middle frontal cortex; in the superficial (r = 0.158, p>0.05) and deep 

(r = 0.212, p>0.05) layers of temporal cortex and in the subiculum of the 

hippocampus (r = 0.001, p>0.05).

2.8 f3Hl-PDBu Binding to Particulate and Cytosolic Fractions in Control and AD 

Brain

Protein kinase C is differentially distributed within the cytosol and 

membrane of postmortem human brain (Saitoh & Dobkins, 1986). In the 

absence of significant alterations of [3H]-PDBu binding in the 

autoradiographic study from the same control and AD subjects, the 

distribution of [3H]-PDBu binding in particulate (membrane) and cytosolic 

fractions of homogenate preparations was investigated. There was no 

significant difference between control and AD brain in [3H]-PDBu binding
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to the particulate fraction (Figures 27A, B and C) in the middle frontal 

cortex (control = 11.8 ± 4.0, AD = 6.7 ± 1.9, p = 0.5); middle temporal 

cortex (control = 18.0 ± 7.2, AD = 9.4 ± 3.2, p = 0.461) and hippocampal 

region (control = 8.3 ± 1.8, AD = 9.7 ± 3.7, p = 0.5). Similarly, there was 

no significant difference between control and AD groups in the cytosolic 

fraction (Figures 27A, B and C) of middle frontal cortex (control = 7.1

± 1.9, AD = 7.3 ± 2.6, p = 0.474); middle temporal cortex (control = 6.1 ±

1.7, AD = 5.4 ± 2.9, p = 0.474) and hippocampal region (control = 4.3

± 1.4, AD = 4.9 ± 1.3, p =0.467).
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FIGURE 27 
SCATTERGRAM OF r3Hl-PDBu BINDING IN 
PARTICULATE AND CYTOSOLIC FRACTIONS 
OF CONTROL AND AD BRAIN

Scattergram  of [3H]-PDBu binding to particulate and cytosolic fractions of 

homogenate preparations from the middle frontal cortex (A), middle 

temporal cortex (B) and hippocampal formation (C). Individual points 

represent the amount of [3H]-PDBu binding (pmol/mg protein) in each 

control or AD case. There is no significant difference between the control 

and AD group in the particulate or cytosolic fraction of each brain region 

(Student’s unpaired t-test).
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3. LESION OF RETINOFUGAL AND CORTICOFUGAL FIBRES IN THE RAT 

VISUAL SYSTEM

3-1 Anatomical Localisation of f3Hl-Forskolin and f3Hl-PDBu Binding in Rat 

Visual System

Both [3H]-forskolin and [3H]-PDBu exhibited distinct patterns of 

binding within the ra t visual system (Figure 28). Additionally the hierarchy 

of binding levels within discrete anatomical components of the visual system 

was similar for both ligands.[3H]-Forskolin binding was high in the visual 

cortex and superior colliculus. Lesser degrees of binding were observed in 

the remaining visual structures such as dorsal lateral geniculate, pretectal 

nuclei and lateral posterior nucleus. Within the visual cortex, a laminar 

distribution of [3H]-forskolin binding was found. Layer IV of the visual 

cortex displayed slightly greater levels of [3H]-forskolin binding in 

comparison to the superficial layers II-III and deeper layers V-VI.

Similarly, [3H]-PDBu binding was markedly higher in the visual cortex 

and superior colliculus compared to other visual areas. However, the 

pattern of binding within the cortex was not exactly similar for [3H]-PDBu 

compared to [3H]-forskolin binding. [3H]-PDBu binding was most marked in 

the superficial layers II-III of the visual cortex, whilst lower binding was 

associated in layers I V-VI.

NOTE: Preliminary results of Scatchard analysis of [3H]-forskolin and 

[3H]-PDBu binding in ra t brain sections are presented in Appendix VHKa) and 

VHI(b)
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GLUCOSE USE

FORSKOLIN BINDING

PDBu BINDING

FIGURE 28
AUTORADIOGRAMS OF GLUCOSE USE, 
f 1-FORSKOLIN AND pHl-FDBu BINDING 
IN RAT BRAIN POST-ENUCLEATION
Representative autoradiograms of glucose use (A), [3H]-forskolin binding (B) 
and [3H]-PDBu (C) binding in the ra t visual system at 10 days following 
unilateral orbital enucleation. Note the marked reduction in glucose use 
in the visually-deprived hemisphere of the visual cortex (VC) and superficial 
layers of the superior colliculus (SC). [3H]-Forskolin binding is reduced in 
the visually-deprived SC and unaltered in the VC. [3H]-PDBu binding is 
unaltered in both the SC and VC. The right hemisphere of the 
autoradiograms above is the visually-deprived hemisphere.
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3-2 Ligand Binding to Second Messenger Systems and Glucose Use after 

Unilateral Orbital Enucleation

Full quantitative analysis of [3H]-forskolin and [3H]-PDBu binding 

and glucose use are presented in Appendix I.

3.2.1 [^l-Forskolin  Binding A fter Unilateral Orbital Enucleation

There were no significant alterations in [3H]-forskolin binding in any 

structure examined at one day post-enucleation. At 5, 10 and 20 days post­

lesion, significantly lower levels of [3H]-forskolin binding sites were present 

in the contralateral superior colliculus and dorsal lateral geniculate body 

(Figures 29 and 30, see also Figure 28). The magnitude of the deficit at 10 

days post-lesion was -14% in the superior colliculus and -8% in the dorsal 

lateral geniculate. At any time point examined post-enucleation, no 

differences in any secondary visual structures were detected (Figure 31). 

[3H]-Forskolin binding did not alter in the non-lesioned hemisphere post­

enucleation (ANOVA) and there was no significant alteration in non-visual 

areas (Appendix 1(a)).

3.2.2 I^Hl-PDBu Binding A fter Unilateral Orbital Enculeation

There were no significant differences in [3H]-PDBu binding in either 

the primary (Figures 29 and 30, see also Figure 28) or secondary visual 

projections areas up to 20 days post-lesion (Figure 31). Non-visual 

structures remained unaltered and there was no significant difference in the 

non-lesioned hemisphere post-enucleation (ANOVA) (Appendix 1(b)).
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GLUCOSE USE, f3H 1-FORSKOLIN AND
T Hl-PDBu BINDING AT INCREASING
SURVIVAL TIMES POST-ENTICT.EATTON

FIGURE 29 Superior Colliculus (superficial layer).

FIGURE 30 Dorsal Lateral Geniculate Body.

FIGURE 31 Visual Cortex (layer IV).

Interhemispheric differences are presented of glucose use, [3H]-forskolin 

binding and [3H]-PDBu binding at survival times 1, 5, 10 and 20 days after 

unilateral orbital enucleation. Data are expressed as the mean percentage 

change of the visually-deprived hemisphere (L) from the visually-intact 

hemisphere (R) ± SEM. *p<0.01, Student’s paired t-test. (n = 3-6 per group)
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3.2.3 [ C]-2 Deoxyglucose Utilisation After Unilateral Orbital Enucleation

In all visual structures examined there was a significant reduction in 

glucose use in the visually-deprived hemisphere of animals at each time 

point post-enucleation (Figures 29, 30, 31, see also Figure 28). The 

reduction in glucose use was most marked in the primary visual structures 

a t 1 day post-lesion when the greatest deficit in the superior colliculus was 

39% and dorsal lateral geniculate was 32%. Secondary visual structures 

were less affected by unilateral orbital enucleation, with the reduction in 

glucose use in the visually-deprived hemisphere of the visual cortex (layer 

IV) being 23%. Depression of metabolic activity in the deprived hemisphere 

of the superior colliculus at 10 and 20 days was less than the magnitude of 

the deficit in glucose use at one day. Glucose use was unaltered in the 

visually-intact hemisphere at any time point post-enucleation (ANOVA) and 

remained unchanged in the non-visual structures (Appendix 1(c)).

3.3 Modulation of f3Hl-Forskolin Binding bv Gpp(NH)d After Unilateral Orbital 

Enucleation

Full quantitative analysis of [3H]-forskolin binding in the presence and 

absence of Gpp(NH)p is presented in Appendix II.

3.3.1 Effect of Gpp(NH)p on [^l-Forskolin Binding in the Rat Visual System

Adjacent sections from control ra t brain were labelled with [3H]- 

forskolin in the presence and absence of Gpp(NH)p (lOpM). Differential 

effects of the levels of [3H]-forskolin binding in the presence of Gpp(NH)p 

were observed in each of the areas examined. In both hemispheres of the
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visual cortex, (layer IV), Gpp(NH)p significantly increased [3H]-forskolin 

binding by 10% although basal levels of [3H]-forskolin were unaltered in 

cortical layers II/III and layers V/VI. Similarly, in the superficial layer of 

the superior colliculus, [ H]-forskolin binding was significantly increased 

(37%) in both hemispheres in the presence of Gpp(NH)p (see Figure 32). In 

contrast, Gpp(NH)p had no effect on [3H]-forskolin binding in both 

hemispheres of the dorsal lateral geniculate body, pretectal nuclei and 

lateral posterior nucleus.

In non-visual structures, basal levels of [3H]-forskolin binding in both 

hemispheres were markedly increased, in the presence of Gpp(NH)p in the 

caudate putamen by 81% and in the lateral habenula by 54%. [3H]-

Forskolin binding was unaffected by Gpp(NH)p in the medial geniculate, 

thalamus and molecular layer of the hippocampus (Appendix II).

.2 Effect of Gpp(NH)p on [3H]-Forskolin Binding After Unilateral Orbital 

Enucleation

[3H]-Forskolin binding was examined in the presence and absence of 

Gpp(NH)p in adjacent sections at 10 days following unilateral orbital 

enucleation. In a previous study (see Results section 3.2.1), [3H]-forskolin 

binding deficits were demonstrated at 10 days post-enucleation, thus this 

tim e point was employed for the present study.



Gpp(NH)p +Gpp(NH)p

FIG URE 3 2  
AUTORADIOGRAMS OF T 3H 1-FO RSK O LIN BINDING  
I N  THE PRESENCE AND ABSENCE OF G p p (N H )p  
POST-ENUCLEATTON

Illustrative autoradiograms of [ Hj-forskolin binding in the absence (A) and 
presence (B) of Gpp(NH)p (IOjiM) at 10 days post-enucleation. Note the 
asymmetry in [3H]-forskolin binding in the superior colliculus (SC) in A and 
B. [3H]-Forskolin binding is enhanced in the presence of Gpp(NH)p (B) in 
the visual cortex and the superior colliculus compared to basal levels of 
I H]-forskolin binding (A) in these regions.
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FIGURE 33 
EFFECT OF Gpp(NH)p ON f3H1-FORSKOLIN BINDING
Superior Colliculus (superficial layer)

Dorsal Lateral Geniculate Body and 

Visual Cortex (layer IV).

Interhemispheric differences are presented of [3H]-forskolin binding in the 

presence and absence of Gpp(NH)p (IOjjlM) at 10 days post-enucleation. 

Data are expressed as the mean percentage change of the visually-deprived 

hemisphere (L) from the visually-intact hemisphere (R) ± SEM. *p<0.01, 

Student’s paired t-tes t. (n = 5 per group)

Note the reduction in [3H]-forskolin binding in the superior colliculus post­

enucleation in both the presence and absence of Gpp(NH)p. In the dorsal 

lateral geniculate body post-lesion, [3H]-forskolin binding alone was reduced 

and in the presence of Gpp(NH)p, symmetrical [3H]-forskolin binding was 

restored. There was no significant alteration in [3H]-forskolin binding in 

the visual cortex post-enucleation in the presence or absence of Gpp(NH)p.
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FIGURE 33
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Post-enucleation, [3H]-forskolin binding (in the absence of Gpp(NH)p) 

was significantly reduced in the visually-deprived superior colliculus (-20%) 

and the visually-deprived dorsal lateral geniculate body (-20%), compared 

to the visually-intact hemisphere (Figure 33). [3H]-Forskolin binding was 

unaltered in secondary visual structures (e.g. visual cortex) following 

unilateral enucleation Figure 33). This study replicates the results of the 

previous examination of [3H]-forskolin binding post-enucleation (Section 

3.2.1).

In the presence of Gpp(NH)p, the asymmetry in [3H]-forskolin 

binding in the visually-deprived superior colliculus post-enucleation was 

preserved (Figure 33, see also Figure 32). The magnitude of the deficit in 

the visually-deprived superior colliculus was maintained at approximately 

18%. Following enucleation, in the presence of Gpp(NH)p, symmetrical 

[ H]-forskolin binding appeared to be restored in the visually-deprived dorsal 

lateral geniculate despite enucleation (Figure 33). No asymmetry in [ H]- 

forskolin binding was uncovered in the visual cortex post-lesion in the 

presence of Gpp(NH)p (Figure 33) (Appendix II).

3.4 Ligand Binding to Second Messenger Systems and 

Glucose Use A fter Unilateral Lesion of the Rat Visual 

Cortex

Full quantitative analysis of [3H]-forskolin binding, [ H]-PDBu binding 

and glucose use are presented in Appendix III.
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3.4.1 Characterisation of Visual Cortex Lesions

Microscopic examination of cresyl violet-stained brain sections 

revealed that infusion of the right hemisphere of the ra t visual cortex with 

ibotenic acid resulted in selective loss of neuronal cell bodies. Within the 

cortex, the lesion site was well defined in each ra t brain being confined to 

area 17 of the visual cortex and there was no apparent diffusion of toxin to 

surrounding brain regions. There also appeared to be an abundance of glial 

elements surrounding the lesion and to a greater extent in the superficial 

layers of cortex. In most animals (80%), the extent of the lesion was 

apparent in all cortical areas and was the basic criteria for inclusion in 

autoradiographic studies. The remaining animals were excluded from 

subsequent studies. In sham-treated rats, there was minimal evidence of 

cortical disruption at the injection site, although in some animals, damage 

to the superficial cortical layers was observed.

3.4.2 [^J-Forskolin Binding After Unilateral Lesion of the Rat Visual Cortex

In the sham-treated animals, there was no significant alteration in 

[3H]-forskolin binding between the ipsilateral (lesioned) hemisphere 

compared to the contralateral (intact) hemisphere. Following ibotenate 

lesion of the visual cortex, [3H]-forskolin binding was significantly reduced 

in each cortical layer of the lesioned hemisphere of visual cortex (Figure 35, 

see also Figure 34). Significant reductions in [3H]-forskolin binding were 

observed in the ipsilateral superior colliculus (Figure 36) and the ipsilateral 

dorsal lateral geniculate body (Figure 37). There were no significant 

alterations in [3H]-forskolin binding in non-visual structures. [ H]-Forskolin
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binding was unchanged in each brain region in the contralateral hemisphere 

of the lesioned group compared to the sham -treated group (ANOVA) 

(Appendix 111(a)).

3.4.3 [^l-PD B u Binding A fter Unilateral Lesion of the R at Visual Cortex

[ H]-PDBu binding was not significantly different between both 

hemispheres of the sham-treated animals in all structures. Post-lesion, the 

only significant alteration in [3H]-PDBu binding was observed in layers V- 

VI of the lesioned visual cortex which was significantly reduced compared 

to the intact hemisphere. There was no significant difference in [3H]-PDBu 

binding in all other visual structures (Figures 35, 36 and 37, see also Figure 

34) or non-visual structures in the lesioned hemisphere compared to the 

in tact hemisphere. [ H]-PDBu binding was unaltered in the intact 

hemisphere of the lesioned compared to sham group (ANOVA) (Appendix 

111(b)).

3.4.4 [14C]-2-Deoxyglucose Utilisation After Unilateral Lesion of the Rat Visual 

Cortex

In sham -treated animals, injection of buffered saline into the visual 

cortex caused a reduction in glucose utilisation. The deficit in glucose use 

was significant in visual cortex layer IV whilst there was a smaller, although 

not significant reduction in glucose use in layers II—III and layers V-VI in the 

ipsilateral hemisphere of visual cortex. All other structures exhibited no 

significant alterations in glucose-use post-lesion in the sham group.
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Following infusion of ibotenate into the visual cortex, glucose use 

was markedly reduced in each layer of the lesioned cortex compared to the 

intact cortex (Figure 35, see also Figure 34). In the ipsilateral dorsal 

lateral geniculate body, a small yet consistently significant reduction in 

glucose use was demonstrated post-lesion (Figure 37). Although there 

appeared to be a reduction in glucose use in the ipsilateral superior 

colliculus, there was no significant difference between the lesioned and 

in tact hemisphere (Figure 36). In any other structure examined there was 

no significant inter-hemispheric differences in glucose use. There was no 

alteration in glucose use in the intact hemisphere of the lesioned group 

compared to the sham group (ANOVA) (Appendix 111(c)).



HISTOLOGY

FORSKOLIN BINDING

GLUCOSE USE

PDBu BINDING

FIGURE 3 4  
HISTOLOGY AND AUTORADIOGRAMS OF GLUCOSE U SE , 
f JH 1-FO RSK O LIN AND M h I-P D B u  BINDING  
FOLLOWING LESIO N  OF THE VISUAL CORTEX

Illustrative autoradiograms of (B) glucose use, (C) [3H]-forskolin binding and 
(D) [3H]-PDBu binding, in adjacent sections, following unilateral lesion of 
the visual cortex with ibotenic acid. In the same animal, histological 
verification of a loss of neuronal cell bodies in the visual cortex is shown 
(A). Note the reduction in glucose use (B) in the lesioned (left) visual 
cortex (VC). [3H]-Forskolin binding (C) is reduced in the lesioned 
hemisphere of VC and superior colliculus (SC). [3H]-PDBu binding is 
slightly reduced in VC but is unaltered in the SC.
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GLUCOSE USE. T3H1-FORSKOLIN AND pHl-PDRn
BINDING FOLLOWING LESION OF THE VTHUAL CORTEX

FIGURE 35 Visual Cortex (layer IV).

FIGURE 36 Superior Colliculus (superficial layer).

FIGURE 37 Dorsal Lateral Geniculate Body.

Interhemispheric differences are presented of glucose use, [3H]-forskolin 

binding and [3H]-PDBu binding at 21 days following unilateral lesion of the 

visual cortex in a sham (n=6) and ibotenate-lesioned group (n=6). Data are 

expressed as the mean percentage change of the lesioned hemisphere (R) 

from the intact hemisphere (L) ± SEM. *p<0.01, Student’s paired t-test.

Interhemispheric differences are presented of glucose use, [3H]-forskolin 

binding and [3H]-PDBu binding at 21 days following unilateral lesion of the 

visual cortex in a sham (n=6) and ibotenate-lesioned group (n=6). Data are 

expressed as the mean percentage change of the lesioned hemisphere (R) 

from the intact hemisphere (L) ± SEM. *p<0.01, Student’s paired t-test.
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FIGURE 35 GLUCOSE USE ,3H-FORSKOLIN AND
3H-PDBu b in d in g  f o l l o w in g  l e s io n
OF THE VISUAL CORTEX
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FIGURE 36 GLUCOSE USE ,3H-FORSKOLIN AND
3H-PDBu b in d in g  f o l l o w i n g  l e s io n
OF THE VISUAL CORTEX
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FIGURE 37 GLUCOSE USE, 3H-FORSKOLIN AND
3H-PDBu BINDING FOLLOWING LESION 
OF THE VISUAL CORTEX
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4. SEPTO-IIIPPOCAMPAL STUDIES

4.1 Anatomical Localisation of f3Hl-Forskolin and

[ H]-PDBu Binding in Rat Septo-Hippocampal Pathway.

Both [3H]-forskolin and [3H]-PDBu exhibited a distinct pattern of 

binding in ra t brain. Within the hippocampus the pattern of [3H]-forskolin 

binding was striking (Figure 39). Intense binding was observed in the 

polymorph layer of the dentate gyrus with a moderate level of binding in 

the molecular layer. Dense labelling was also demonstrated in the

pyramidal layer of CA3 subfield whilst the strata oriens had a very low

3 3density of [ H]-forskolin binding. There were low levels of [ H]-forskolin

binding in the medial septum, lateral septum, vertical diagonal band and

horizontal diagonal band.

[3H]-PDBu binding was heterogeneous and was particularly dense in 

the hippocampal formation (Figure 39). The CA1 subfield exhibited the 

highests levels of binding, within this field [3H]-PDBu binding was highly 

concentrated in the pyramidal layer. [3H]-PDBu binding was moderate in 

the CA3 and CA4 subfield. Within the dentate gyrus the molecular layer 

had the highest [3H]-PDBu binding densities compared to the granular layer.

Low levels of [3H]-PDBu binding were demonstrated in the medial septum, 

vertical diagonal band and horizontal diagonal band compared to the lateral 

septum which exhibited higher densities of [3H]-PDBu binding. The 

entorhinal cortex demonstrated markedly high densities of [3H]-PDBu binding 

compared to all other structures, [3H]-PDBu binding being most 

concentrated in the superficial layers.
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AUTORADIOGRAMS OF f 3H1 -FORSKOLIN AND 
f JH 1—PDBu BINDING IN THE RAT HIPPOCAMPUS
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4.2 Ligand Binding to Second Messenger Systems A fter 

Lesion of the Rat Septo-Hippocampal Pathway

Full quantitative analysis of [3H]-forskolin and [3H]-PDBu binding are 

presented in Appendix VI.

4.2.1 Characterisation of Medial Septum Lesion

Ibotenate lesion of the ra t medial septum was confirmed 

histologically in cresyl-violet stained brain sections adjacent to those used 

in ligand binding studies. The lesion was confined to the medial septum 

with minimal damage to the lateral septum and vertical diagonal band and 

resulted in a selective loss of neuronal cell bodies. In sham-treated 

animals, neuronal cell bodies remained intact and there was minimal 

evidence of cellular disruption.

4.2.2 [^l-Forskolin  Binding After Lesion of the Rat 

Septo-Hippocampal Pathway

Following ibotenate-lesion of the medial septum, [ H]-forskolin 

binding was significantly decreased at the injection site (-19%) compared to 

the sham treated  group. Further, a significant increase in [ H]-forskolin 

binding was demonstrated in the polymorph layer of the dentate gyrus (19%) 

whilst [3H]-forskolin binding remained unaltered in all other limbic 

structures post-lesion.
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4.2.3 [^l-PD Bu Binding A fter Lesion of the Rat Septo- 

Hippocampal Pathway

A significant increase in [3H]-PDBu binding was demonstrated in the 

superficial layers (I-III) of the entorhinal cortex (27%) following lesion of 

the medial septum. There were no significant alterations in [3H]-PDBu 

binding in any other brain region in the lesion group compared to the sham 

treated groups.
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FIGURE 39 
LIGAND BINDING TO SECOND MESSENGER SYSTEMS 
FOLLOWING MEDIAL SEPTAL LESION
Quantitative autoradiographic measurements are presented of [3H]-forskolin 

binding and [3H]-PDBu binding at 21 days following lesion of the medial septum 

in a sham (n = 7) and ibotenate-lesioned group (n = 7). Histograms are 

presented as mean ± SEM; *p<0.05, Student’s unpaired t-test. Roman numerals 

indicate the cortical layers examined in entorhinal cortex whilst the polymorph 

layer of the dentate gyrus is abbreviated to DG poly.
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FIGURE 39 LIGAND BINDING TO SECOND MESSENGER SYSTEMS
FOLLOWING MEDIAL SEPTAL LESION
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CHAPTER IV 
DISCUSSION



1. SECOND MESSENGER LIGAND BINDING IN ALZHEIMER’S DISEASE

The c lassical hallm arks of A lzheim er’s disease (AD) are  characterised  

neuropathologically  by the  presence of numerous neu ritic  plaques and tangles. 

A lthough several neurochem ical abnorm alities have been dem onstrated  in 

AD, a profound reduction  of presynaptic cholinergic innervation of cerebral 

co rtex  and hippocampus is consistently found in AD brain. In the  past 

decade, n eu ro tran sm itte r receptors have been the  focus of intensive 

investigation  in AD. Ligand binding techniques have dem onstrated 

a lte ra tio n s  in a num ber of neuro transm itter recep to rs  in AD such as 

m uscarin ic (Perry e t  al. 1986; Smith e t al. 1988); 5HT2 (Cross e t  al. 1986; 

P erry  e t  al. 1984); 5HT1 (Bowen e t al. 1983; Cross e t  al. 1988) and nicotinic 

(Nordberg e t  al. 1986). However, it is the in teg rity  of neuro transm itter 

recep to rs  w ith th e ir  associated signal transduction system s which determ ines 

norm al cellu lar responses. There has been m inim al a tten tio n  d irected  

tow ards transduction  m echanisms in AD. In view of th e  ineffectiveness of 

rec e p to r- ta rg e te d  drug therapy in AD patien ts, the  assessm ent of the 

functional capab ilities of receptors (transduction m echanism s), as well as 

th e ir  d istribution  in AD, is vitally im portant if the  possibilities of drug 

tre a tm e n t for th is condition are ever to be realised.

The p resen t study represents a com prehensive exam ination of ligand 

binding to  second m essenger system s in AD. Q uan tita tive  autoradiography 

was used to  m ap th e  distribution and density of [ H]-forskolin binding to Gs- 

adenylate cyclase and [^H]-phorbol 12,13 d ibutyrate binding to  protein  kinase 

C (PKC) in th re e  brain regions; middle frontal and tem poral cortex  and the
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hippocam pal form ation, areas known to be severely  a ffe c te d  by the 

neuropathological and neurochem ical co rre la tes of th e  disease.

1.1 [3H]-Forskolin Binding in Alzheimer’s Disease

In two sep ara te  series, [3H]-forskolin binding was investigated  in a 

to ta l of 15 controls and 16 age-m atched  patien ts w ith AD in m iddle frontal 

and tem poral co rtices and in the  hippocampal form ation. [3H]-Forskolin 

binding was d ifferen tia lly  a lte red  in AD brain despite all regions exhibiting 

sign ifican t AD neuropathology and neurochem ical a lte ra tio n s . There 

appeared to be a regional h ierarchy of [3H]-forskolin binding reductions in 

AD brain ranging from  th e  middle frontal cortex (in which it  is consistently  

reduced in AD) to  m ost of the  hippocampal form ation (in which it  is 

m inim ally reduced) (Table 8). In the  middle tem poral co rtex  and the 

m olecular layer of the  d en ta te  gyrus, the re  was evidence th a t [3H]-forskolin 

binding was lower in AD patien ts  com pared to control subjects. W hether 

th e se  changes achieved th e  probability level of 5% m ust be influenced to a 

c e rta in  ex ten t by the  group sizes, the  variability  of m easurem ents and the 

erro rs of sampling a heterogeneous population.

Extrinsic fac to rs  such as tem peratu re, pH and sa lt concen trations of 

b u ffer medium, d ifferences in batches of radioistopes and m ethodological 

variations, may con tribu te  to  the  amount of [3H]-forskolin bound in brain 

tissue sections. In support of this, substantially e levated  [3H]-forskolin 

binding levels in the  second population of control brain w ere dem onstrated  

to  be alm ost tw ice th e  levels de tec ted  in the  previous control group. Since
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TABLE 8

ALTERATIONS IN f 1-FORSKOLIN BINDING 
IN AD BRAIN IN TWO SEPARATE STUDIES

Middle Frontal Cortex 
Layers I/III 
Layer IV 
Layers V-VI

SERIES 1

3.24 (-50%) 
2.89 (-46%) 
2.83 (-43%)

SERIES 2

3.95 (-34%) Consistently 
2.74 (-28%) Reduced 
2.85 (-26%) Significantly

Middle Temporal Cortex
Layers I-III 0.70 (-18%)
Layer IV 0.88 (-26%)
Layers V-VI 0.85 (-21%)

Hippocampal Region 
Molecular Layer 0.74 (-21%)

3.36 (-36%)
3.38 (-33%) Inconsistently 
3.31 (-30%) Reduced

Significantly

2.54 (-38%)

Granular Layer 0.12 (3%) 1 .27 (-21%)
CA1 0.25 (1%) 0.35 (-5%)
CA3 0.01 (0%) 1 .02 (-17%)
CA4 0.16 (-1%) 1 .05 (-17%)
Hilus 0.23 (1%) 1 .97 (-28%)
Lacunosum moleculare 0.49 (-14%) 1 .79 (-29%)
Subiculum 0.13 (4%) 1 .05 (-19%)
Parahippocampal Gyrus: 
Superficial layer 0.04 (0%) 1 .37 (-19%)
Deep layer 0.20 (-1%) 0.94 (-15%)

p values indicated above are derived from statistical comparison of 
[^H]-forskolin binding in control and AD brain using Student's 
unpaired t-test. [ H]-Forskolin binding was determined in two 
separate studies; Series 1 (see Results section 1.4) and Series 2 
(see Results section 2.5). The magnitude of alterations between 
control and AD are indicated in brackets.



the second study was performed a year following completion of the first 

study, the technical improvement of [3H]-forskolin autoradiography may 

contribute to the overall increase in specific [3H]-forskolin binding and 

decrease the variability within control and AD groups.

The initial study was limited to six control and seven AD cases, and 

it was noted that the coefficient of variation of [3H]-forskolin binding, in 

each brain region examined, was greater in comparison to the second study. 

The variability of neurochemical measures determines the magnitude of 

alterations required, between ligand binding in control and AD groups, at 

which statistical significance is achieved. Statistical power analysis (Cohen, 

1977) indicates the variability of groups to be the prerequisite for detection 

of significant alterations in experimental procedures, with minimal 

importance placed on group size.

The heterogeneity of patient groups must go some way to explaining 

the differential alterations in [3H]-forskolin binding in two separate cohorts 

of AD brain. The degree of neuropathological abnormalities, in terms of 

neuronal loss and the presence of neuritic plaques and neurofibrillary tangles 

between patients must influence inter-individuality and, to a certain extent, 

[3H]-forskolin binding alterations. Direct evidence of this within the groups, 

was the demonstration of two patients, 4AD and 7AD, which exhibited 

markedly lower levels of binding in middle temporal cortex than the mean 

value of the other five AD patients, which was similar to control values.
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Furthermore, both cases, 4AD and 7AD, were found to have high numbers 

of plaques in middle temporal cortex, compared to most of the remaining 

AD cases.

It is interesting that in the first cohort of AD patients, [3H]-forskolin 

binding was profoundly reduced in middle frontal cortex to a greater extent 

than in middle temporal cortex. Yet in the second group of AD cases, 

reductions in [3H]-forskolin binding were of a similar magnitude in both 

middle frontal and temporal cortex and these reductions in binding were not 

as pronounced as those previously demonstrated. These inconsistencies in 

differences between cortical regions are exemplified in in vivo neuroimaging 

studies of AD patients (Haxby et al. 1985 & 1988; Horwitz e t al. 1987) and 

are demonstrative of the heterogeneity of AD. It has also been suggested 

that the earliest and most severe metabolic reductions in temporal and 

parietal cortex of AD patients progress to involve frontal cortex in more 

severely demented patients (Haxby et al. 1988). Thus, these discrepancies 

in [3H]-forskolin binding may be a reflection of the different stages of AD 

within the patient groups. The degree of cholinergic deficit appears to be 

associated with the degree of cognitive impairment in AD (Perry et al. 1978; 

Wilcock e t al. 1982). [3H]-Forskolin binding was positively correlated with 

ChAT activity in cortical regions of AD brain which demonstrated significant 

reductions in binding sites. Thus, an association between the degree of 

cholinergic innervation and [3H]-forskolin binding is evident in cortex which 

may imply a functional relationship between these parameters.

178



The question of whether [3H]-forskolin binding simply reflects the 

degree of neuronal fallout should be addressed. A marked loss of neurons 

has been demonstrated in cortical (Mountjoy et al. 1983; Terry et al. 1981) 

and hippocampal (Probst e t al. 1988) regions in AD brain. It may be 

suggested that the differential alterations in [3H]-forskolin binding 

are simply a reflection of the severity of neuronal fallout in these AD brain 

areas. Loss of pyramidal cells from frontal cortex in AD has been estimated 

as 25 - 45% (Mountjoy et al. 1983; Terry et al. 1981). Such a loss may 

explain the deficit in [3H]-forskolin binding demonstrated to be up to 50% 

in this brain region. However, this explanation would imply that almost all 

cortical pyramidal neurons in frontal cortex have [3H]-forskolin binding sites. 

Whether this is true or not remains to be ascertained. Although this may 

be an explanation for events in frontal cortex, the demonstration of 

inconsistent reductions in [3H]-forskolin binding in middle temporal cortex 

and the relative stability of binding in the hippocampal region (areas which 

exhibit severe neuronal loss) would argue that this association of [3H]- 

forskolin binding losses with neuronal loss is over-simplistic.

In middle temporal cortex, neuronal loss is reported to be of a similar 

magnitude to that observed in frontal cortex (Mountjoy e t al. 1983; Terry 

e t al. 1981). Five of the AD group showed similar levels of [3H]-forskolin 

binding compared with the controls, whilst the remaining two (4AD and 7AD) 

exhibited much lower levels of binding. A negative correlation has been 

demonstrated between neuronal counts and plaque numbers (Mountjoy et al. 

1983). If neuronal loss was associated with [3H]-forskolin binding, then cases
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4AD and 7AD would be expected to have high numbers of plaques compared 

to the rest of the group. This indeed was shown to be the case in middle 

temporal cortex. However, another case had approximately double the 

number of plaques compared to the rest of the AD group but did not have 

excessively low levels of [3H]-forskolin binding.

There was a reduction in [3H]-forskolin binding in the molecular layer 

of the dentate gyrus in AD. This may be indicative of a loss of presynaptic 

input from the entorhinal cortex which often exhibits marked cell loss in 

AD (Hyman et al. 1984; Geddes et al. 1985; Hyman et ai. 1987). In the 

present study, the status of entorhinal cortex as regards pathological 

abnormalities in this AD population was unclear. However, the robustness 

of [3H]-forskolin binding in hippocampal regions exhibiting severe pathology 

implies that cellular loss is not always associated with [3H]-forskolin binding 

reductions in AD. Neuronal loss in the hippocampal formation has been shown 

to be marked in the subiculum and in the CA1 fields of Ammon’s Horn 

(Hyman e t al. 1984), and can represent as much as up to 50% of control 

values (Probst e t al. 1988). Despite this, [3H]-forskolin binding remained 

unaltered in these hippocampal regions.

Under autoradiographic conditions, [3H]-forskolin binding is purported 

to be associated with the coupling of a stimulatory guanine-nucleotide 

regulatory protein (Gs) with adenylate cyclase (Gehlert e t al. 1985; Seamon 

& Daly, 1981; Worley et al. 1986a). A number of receptors, such as 

(3-adrenergic, dopamine D-j, adenosine A2 and vasoactive intestinal
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polypeptide, mediate cellular responses via Gs activation (Levitzki, 1987).

In the hippocampus, p-adrenergic receptors are altered - p., receptors are 

being reduced in AD whilst p2 receptors are increased (Shimohama e t al. 

1987), individual events which could cancel each other out with regard to 

their effects on [3H]-forskolin binding. In frontal cortex neither p., nor 

P2-adrenergic receptors are altered (Shimohama et al. 1987). Similarly, 

to tal dopamine receptors (D-, and D2) as measured by [3H]- spiroperidol 

binding are unchanged in AD frontal cortex (Reisine et al. 1978). Of the 

other receptors which are associated with Gs, such as adenosine A2 or 

vasoactive intestinal polypeptide, it is unclear whether they are altered in 

AD. A loss of elements containing these receptors may contribute to the 

[3H]-forskolin binding deficit. Alternatively, it may be that whilst the 

recognition sites (such as p-adrenergic and dopaminergic receptors) appear 

to be robust in AD frontal cortex, their associated intraneuronal mechanisms 

are disrupted. Interestingly, a recent study in ra t brain has demonstrated 

th a t following transient forebrain ischaemia, dynamic alterations in [3H]- 

forskolin binding occur in the absence of histological evidence of neuronal 

damage and minimal neurotransmitter receptor alterations (Onodera & 

Kogure, 1989).

[3H]-Forskolin binding sites may not be identical in different brain 

regions. In some regions of ra t brain, such as the striatum, 

[3H]-forskolin binding is enhanced in the presence of Mg2+ and guanine 

nucleotides (Gehlert, 1986; Poat e t al. 1988). In the present studies, 

[3H]-forskolin binding was examined in the presence and absence of a non-
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hydrolyzable guanine nucleotide, 5lguanylimidodiphosphate (Gpp(NH)p) which 

at 10}_lM is reported to maximally increase binding in the ra t striatum 

(Gehlert, 1986). Gpp(NH)p showed a selective capacity to alter [3H]-forskolin 

binding in specific regions of postmortem human brain. In both frontal and 

temporal cortex, in the presence of Gpp(NH)p, [3H]-forskolin binding was 

significantly increased in the superficial layers I—III whilst there was no 

change in [3H]-forskolin binding in deeper layers IV-VI. In the hippocampus, 

Gpp(NH)p had no effect on [3H]-forskolin binding. Similarly in ra t brain, 

[3H]-forskolin binding in the hippocampus has been shown to be unaltered 

(Gehlert, 1986) and even reduced (Poat et al. 1988) in the presence of 

guanine nucleotides. This evidence may suggest that interactions between 

Gs and the catalytic subunit of adenylate cyclase are not mediated by 

identical molecular mechanisms in different brain regions. Gpp(NH)p 

stimulates both the stimulatory and inhibitory G-proteins (Gs and G^. 

Perhaps, it is the case that in the presence of Gpp(NH)p, activation of Gi 

may alter the coupling of Gs with adenylate cyclase. Evidence already 

suggests that the Py subunits of Gi may inhibit Gs coupling with adenylate 

cyclase (Gilman, 1984). Depending on the abundance of Gi in different 

brain regions, this may be a predisposing factor to alterations in [3H]- 

forskolin binding by Gpp(NH)p. It is now clear that there may exist different 

subspecies of both Gs (Bray et al. 1986; Kozasa e t al. 1988) and adenylate 

cyclase (Mollner & Pfeuffer, 1988). The heterogeneity of Gs and adenylate 

cyclase may account for the non-uniform action of Gpp(NH)p stimulation on 

[3H]-forskolin binding.
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The ability of Gpp(NH)p to both enhance [3H]-forskolin binding in 

control cortical sections, whilst having no effect on [3H]-forskolin binding 

in the hippocampus, was conserved in AD brain. From this it could be 

inferred that the coupling mechanism of Gs with adenylate cyclase remains 

intact. However, one preliminary study has suggested a partial uncoupling 

of cerebral cortical muscarinic M-, receptors from G-proteins in AD (Smith 

e t al. 1987). Likewise, a similar type of receptor-G-protein uncoupling has 

been demonstrated in a detailed study of dopamine D1 receptors in the 

amygdala of patients with Huntington’s Disease (DeKeyser e t al. 1989). In 

contrast, the integrity of the adenylate cyclase coupling with G-proteins 

has been suggested to be functionally preserved in the hippocampus and 

parietal cortex in AD patients (Danielsson et al. 1988). Signal transduction 

mechanisms may be funtionally impaired at the receptor-G-protein level 

but remain intact at the level of G-protein-adenylate cyclase interaction. 

This remains to be established. From the present studies, it would at least 

appear true that the capacity of Gpp(NH)p to alter [3H]-forskolin binding is 

similar in AD brain compared with controls.

In summary, [3H]-forskolin binding was differentially altered in three 

brain regions which were severely affected by the pathology normally 

associated with AD. It may be that there is a selective loss of elements to 

which forskolin binds in frontal cortex, or that in hippocampus (and in some 

cases in middle temporal cortex), compensatory mechanisms have come in 

to play to upregulate these elements. Finally, it is possible that forskolin 

binding sites are not identical in different regions of the human brain, and
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that these differences may reflect different molecular mechanisms 

underlying Gs-adenylate cyclase interactions.

1.2 [ H]-Phorbol 12,13 Dibutyrate Binding in Alzheimer’s Disease

Quantitative autoradiography was employed to investigate [3H]PDBu 

binding in parallel with homogenate binding to particulate and cytosolic 

fractions in a well-defined cohort of AD brains. Both studies clearly 

demonstrated that [3H]-PDBu binding is preserved in middle frontal and 

temporal cortex and the hippocampal formation of an AD population which 

was markedly affected by the neuropathological and neurochemical 

correlates of the disease.

[3H]-PDBu binds with high affinity to PKC (Kikkawa e t al. 1983) and 

has provided a powerful tool for mapping the distribution and density of this 

enzyme in ra t brain (Worley e t al. 1986a, 1986b, 1987). This is the first 

systematic study which has investigated [3H]-PDBu binding in both normal 

and AD postmortem brain using quantitative autoradiography. Evidence 

has now accumulated which implicates abnormalities in the phosphoinositide 

(PI) system in AD brain. An initial study (Stokes & Hawthorne, 1987) 

demonstrated a profound reduction of PI in temporal cortex preparations 

from AD patients. Ligand binding studies have since shown a marked loss 

of [3H]-inositol 1,4,5 trisphosphate binding in parietal cortex and hippocampus 

AD brain tissue homogenates (Young et al. 1988). Significant reductions 

in PKC, as measured by [3H]-PDBu binding, have now been reported in 

frontal cortex samples of AD brain (Cole et al. 1988). This reduction in
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[ H]-PDBu binding was demonstrated in the particulate fraction of AD 

cortex, but not in the cytosolic fraction. These results are in contrast to 

those reported here, where PKC has clearly been shown to be robust in both 

autoradiographic and homogenate binding studies in three brain regions. 

However, the investigation by Cole e t al. (1988) was limited to one area 

of AD brain, frontal cortex, and the exact neuroanatomical location of the 

PKC deficit, if any, within the cortex was not known with precision.

In this present study, it was clear that all AD brain exhibited extensive 

signs of the pathology classically associated with the disease, namely 

numerous neuritic plaques and cholinergic hypofunction. In the study by 

Cole e t al. (1988) which demonstrated a loss of PKC, there was no index as 

to the severity of the disease in their AD patient population. The 

heterogeneity of patient groups, especially in terms of neuropathological 

abnormalities, could have a major impact on postmortem studies.

Inconsistencies in the literature are exemplified by the studies of 

neurotransmitter receptors in AD brain. In particular, receptors which are 

linked with the PI system, such as muscarinic and 5HT2 receptors have been 

the subject of controversy in AD studies. Muscarinic receptors have been 

reported to be unchanged (Bartus e t al. 1982; Davies & Verth, 1978; White 

e t al. 1977) and reduced (Reisine e t al. 1978; Shimohama, 1986; Wood e t al, 

1983) in AD. Selective alterations in muscarinic receptors have also been 

demonstrated with a reported decrease of M2 receptors and no change in M-| 

receptors in AD brain (Mash et al. 1985). It has also been suggested that
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the number of muscarinic receptors per pyramidal cell may be increased in 

the hippocampus of AD subjects (Probst e t al. 1988). One of the most 

consistent neurotransmitter receptor alterations in AD reported to date has 

been the repeated finding of a reduction in 5HT2 receptors (Cross et al. 

1986, 1988; Perry et al. 1984; Sparks, 1989). Yet, a recent report has 

demonstrated that 5HT2 receptors may remain unchanged in a well-defined 

population of AD brains (Dewar e t al. 1990). Differences in the 

methodology employed to characterise neurotransmitter receptors or indeed 

second messenger systems by using, for instance, homogenate binding as 

compared to quantitative autoradiography must go some way to explaining 

contrasting reports. This is exemplified by the study of [3H]-kainate 

receptors in AD. Using quantitative autoradiography, a selective increase 

in [3H]-kainate binding sites in AD frontal cortex, specifically localised only 

in deep cortical layers, has been demonstrated (Chalmers et al. 1990). This 

contrasts with ligand binding studies using homogenate preparations of AD 

brain tissue which showed no change in [3H]-kainate binding sites (Cowburn 

e t al. 1988). Furthermore, differences in the degree of local neuropathology 

such as neuronal loss, neurofibrillary tangles and neuritic plaques between 

different patient groups may influence alterations in binding sites. 

Associations between the extent of local neuropathology and neurochemical 

alterations are often observed (Mountjoy, 1986). It may be essential, in 

order to understand the functional significance of such a diversity of 

conflicting findings that patient populations be well-defined in terms of 

neuropathological and neurochemical alterations.
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In the same AD patients and controls, selective reductions of [3H]- 

AMPA and [3H]-kainate binding sites were demonstrated in discrete regions 

of the hippocampal formation, using quantitative autoradiography in adjacent 

sections to those used for analysis of [3H]-PDBu binding,(Dewar et al. 1991, 

in press). Moreover, the quisqualate metabotropic receptor associated with 

PI hydrolysis in the hippocampus (Sladeczek e t al. 1988) was selectively 

reduced in the CA1 field and subiculum of the AD group - patients in which 

a preservation of [3H]-PDBu binding to PKC has been clearly demonstrated. 

In AD, speculative hypotheses have implicated glutamatergic mechanisms 

in the aetiology of the disease (Greenamyre, 1986; Maragos e t al. 1987). 

Increasingly evident is the important role PKC plays in mediating glutamate- 

induced neuronal death (Favaran et al. 1988, 1990; Manev e t al. 1989). 

Prolonged glutamate receptor stimulation is associated with a translocation 

of PKC from the cytosol to the membrane. In the present study, 

homogenate binding of [3H]-PDBu to PKC in particulate and cytosolic 

fractions showed there was no significant difference between AD 

hippocampus compared with control. Although this might indicate that there 

was no alteration in the translocation of PKC, this does not dismiss a 

regional-specific alteration of PKC translocation. However, if increased 

PKC translocation within the hippocampus was expected, then using 

quantitative autoradiography of [3H]-PDBu binding to PKC which is suggested 

to map membrane-bound PKC (Onodera et al. 1989; Olds et al. 1989), an 

increase in [3H]-PDBu binding would be expected. In addition, it may be 

significant that CA1 field and the subiculum of the hippocampus exhibit 

receptor losses, extensive neuronal fallout and the presence of numerous
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plaques in AD, (Probst e t al. 1988; Hyman et al. 1984) while PKC, which 

is highly concentrated in these regions, remains unchanged.

Furthermore, in the same population of AD and control patients, 

quantitative autoradiographic analysis of [3H]-forskolin binding to Gs- 

adenylate cyclase demonstrated marked alterations in both cortical and 

hippocampal regions of AD brain (see Appendix V), whilst [3H]-PDBu binding 

to PKC remained unaltered. Functional dysbalance of the adenylate cyclase 

system and phosphatidylinositol (PI) cycle has been proposed to occur in 

affective disorders. Hypofunction of the adenylate cyclase system with an 

absolute or relative dominance of Pi-mediated responses has been 

demonstrated in depression whilst mania has been proposed to result from 

the converse (Wachtel, 1988, 1989). However, it remains to be established 

if the selective vulnerability of the Gs-adenylate cyclase system as opposed 

to the apparent stability of PKC is of any functional relevance in AD.

The densities of [3H]-forskolin binding were compared with [3H]-PDBu 

binding in the same control and AD patients (Figure 40). Comparison of 

ligand binding data indicated two main points. Firstly, there was a degree 

of association between [3H]-forskolin binding and [3H]-PDBu binding 

particularly in cortex, and secondly, the density of [3H]-PDBu binding was 

variable within the control and AD groups in cortical regions. In middle 

temporal cortex there was an obvious association between the level of [ Hj- 

forskolin binding and [3H]-PDBu binding. AD cases which exhibited 

significantly low [3H]-forskolin binding densities in this region were similarly
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FIGURE 40
COMPARISON OF f 3H1 -FORSKOT.TN BTNDTNG
WITH pHl-PDBu BINDING IN CONTROL AND AD BRAIN
Quantitative autoradiographic measurements are presented of [3H]-forskolin 

binding and [3H]-PDBu binding, in adjacent sections, in the same population of 

control and AD brain (series 2). Data is presented for measurements made in 

middle frontal cortex (layers I-II), middle temporal cortex (layers I-II) and the 

molecular layer of the dentate gyrus. Each of these brain regions exhibited 

significant reductions in [3H]-forskolin binding in this AD group, whilst 

[3H]-PDBu binding was unaltered. Note the association between [3H]-forskolin 

and [3H]-PDBu binding in middle temporal cortex.
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FIGURE 40 COMPARISON OF 3H-FORSKOLIN BINDING WITH 
3H-PDBu BINDING IN CONTROL AND AD BRAIN

MIDDLE FRONTAL CORTEX

1000

800-

600-

400-

200 -

0 20 40 60 80 100 120
’H-FORSKOLIN BOUND (pmol/g tissue)

MIDDLE TEMPORAL CORTEX
1000 n

800-

600-

400-

80 100 1206040200

O

3H-FORSKOLIN BOUND (pmol/g tissue) 

MOLECULAR LAYER OF DENTATE GYRUS
600 n

500-

400-

300-

200 -

100-

3H-FORSKOLIN BOUND (pmol/g tissue)

O

CONTROL
ALZHEIMER

CONTROL
ALZHEIMER

CONTROL
ALZHEIMER

190



shown to have low densities of [3H]-PDBu binding. However, in this cortical 

region, the variability of [3H]-PDBu binding in addition to the limited number 

of control (n=8) and AD (n=8) cases would appear to preclude detection of 

significant alterations in this ligand binding site in AD compared with to 

controls. Three AD cases, 45AD, 31AD and 25AD, were found to have 

exceedingly low densities of [3H]-PDBu binding compared to the remaining 

five AD cases. Perhaps if a greater number of AD patients had been 

examined, then an alteration in [3H]-PDBu binding in AD compared to 

controls would have been more readily detectable. The heterogeneity of 

patient groups is undoubtedly a major factor influencing the outcome of 

ligand binding studies and will go some way to explaining the discrepancies 

between different laboratories. The inter-individuality of patient groups is 

likely to be the basis of the conflicting findings in the present study, showing 

PKC to be preserved, in comparison to a previous report demonstrating PKC 

to be profoundly reduced in AD brain (Cole e t al. 1988).

It is interesting that the putative association of [3H]-PDBu binding 

with [3H]-forskolin binding in middle temporal cortex is not as obvious in 

middle frontal cortex. The reduction in [3H]-forskolin binding is less marked 

in frontal cortex as compared to temporal cortex in this AD group, perhaps 

indicating differential extents of neuronal loss and neuropathological 

abnormalities between these cortical regions. It does appear that [ H]- 

PDBu binding to PKC is altered in AD, but only in AD cases which exhibit 

profound losses of [3H]-forskolin binding. This may imply that a threshold 

of neuronal fallout, corresponding to severe degrees of neuronal loss, is
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required in AD brain, beyond which PKC is altered. There exists the 

possibility tha t intact neurons in AD brain may still be able to compensate 

by upregulating PKC, in response to the loss of this enzyme in degenerating 

neurons.

Experimentally-lesioned animal models have indicated that second 

messenger systems may be capable of adaptive change. Under normal 

conditions, it has been demonstrated that a close relationship exists between 

receptor occupancy by a-,-adrenergic, 5HT and muscarinic agonists, and the 

degree of inositol lipid turnover in the ra t CNS (Fisher e t al. 1983; Johnson 

& Minneman, 1985; Kendall & Nahorski, 1985). However, following 

denervation of specific neuronal pathways, this normal tight coupling 

between receptor occupancy and response is capable of adaptive change 

(Kendall e t al. 1985). Further support is lent by the demonstration that the 

integrity of the coupling of excitatory amino acid receptors to PI hydrolysis 

may undergo alterations following denervation of putative glutaminergic 

pathways in the ra t (Nicoletti et al. 1987). Dynamic alterations of 

[3H]-PDBu binding have been demonstrated in ra t brain using quantitative 

autoradiography. At one day after classical conditioning in rabbit (a form 

of associative memory), [3H]-PDBu binding, as mapped autoradiographically 

was increased in CA1 field of the hippocampus (Olds e t al. 1989). 

Additionally, following transient forebrain ischaemia, [3H]-PDBu binding was 

demonstrated, using quantitative autoradiography, to be selectively increased 

in the CA1 subfield of the hippocampus before any histological evidence of 

ischaemic damage and neurotransmitter receptor alterations could be
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detected (Onodera et al. 1989). This evidence provides support for the idea 

th a t PKC is capable of adaptive change in a variety of pathological states, 

including AD.

Phorbol ester binding has demonstrated an uneven distribution of PKC 

within the brain. PKC has also been shown to be distributed 

heterogeneously within different cell types. In ra t brain this enzyme is 

predominantly localised in presynaptic terminals of particular neurons and 

within the neuronal nucleus (Wood et al. 1986). It is also known to be 

concentrated in astrocytes and related glial elements (Mobley et al. 1986; 

Neary e t al. 1986). Increased gliosis in AD neocortex, seen most heavily 

in layers II-III and V (Beach et al. 1989), appears to mirror the preferential 

loss of large neurons in layers III and V (Terry e t al. 1981). Since gliosis 

accompanies neuronal loss in AD tissue, it could be inferred that a loss of 

neuronal PKC is obscured by an increase in this enzyme manifested by 

astrocyte proliferation in AD. However, the majority of PKC resides in the 

cytosol of astrocytes (90%), while the remaining 10% is associated with the 

membrane. Using quantitative autoradiography of [3H]-PDBu, which 

presumably maps the localisation of membrane bound PKC (see Olds e t al.

1989), the increase in astrocytic PKC would have to be far in excess of 

neuronal PKC. Whether the extent of astrocyte proliferation is similar to 

the degreee of neuronal loss in AD remains to be established.
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The overall view of the status of PKC in AD is further complicated 

by the identification of at least seven isoforms of PKC which are proposed 

to have distinct functions within specific neuronal compartments of the CNS 

(Coussens e t al. 1986; Nishizuka, 1988; Parker e t al. 1989; Tsujiino et al.

1990). The possibility then arises of one or more of these isoforms being 

differentially altered in pathologically-diseased tissue such as AD. Indeed, 

a recent study employed antibodies to four of these isoforms (a, pi, pil and 

y) to determine possible alterations in AD brain (Masliah et al. 1990). They 

found a selective vulnerability of the p isoforms in frontal cortex, finding 

decreased levels in the particulate fraction, and significantly increased levels 

in the cytosolic fraction of AD brain. In AD hippocampus, a, pi, and pil 

isoforms were all significantly reduced, with a trend towards an increase in 

levels of these isoforms in the cytosolic fraction. PKC (y) was shown to 

be relatively robust in AD brain. As yet, the stability of the remaining 

isoforms in AD is unclear. From the study by Masliah and colleagues (1990) 

it was interesting that the isoforms a, pi and pil were to some extent 

associated with plaque processes. In particular PKC (pil) was shown to be 

localised with the amyloid-containing portions of plaques. PKC has been 

proposed to be associated with abnormal phosphorylation and processing of

the P amyloid precursor protein (Gandy et al. 1988; Buxbaum, 1990). In
plaques

the present study no association of [3H]-PDBu binding with 2X was found 

in either middle frontal cortex (r<0.423), middle temporal cortex (r<0.212) 

or in the subiculum of the hippocampus (r = 0.001). Nonetheless, there 

is increasing excitement surrounding the speculative hypothesis that PKC 

may play an integral role in abnormal production of amyloid and in addition,
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may induce neuronal death (Saitoh et al. 1990).

This study clearly demonstrated that PKC is extremely robust in a 

well-defined cohort of AD patients. It may be significant that in the same 

brain regions, despite marked deficits in receptors, Gs-adenylate cyclase and 

gross neuropathological and neurochemical alterations, PKC remains 

preserved. The possibility exists that there may be mechanisms which have 

come in to force to upregulate this enzyme in brain areas severely disrupted 

by the disease process.
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2. LESION OF RETINOFUGAL AND CORTICOFUGAL FIBRES IN THE RAT 

VISUAL SYSTEM

Glutamate is the main transm itter in retinofugal, corticofugal and 

intracortical fibres in the ra t visual system. Lesion of these pathways, 

either by unilateral orbital enucleation or stereotaxic lesion of the visual 

cortex, allowed possible plastic modifications of second messenger systems 

following glutamatergic denervation to be examined. Quantitative ligand 

binding autoradiography in vitro and [14C]-2-deoxyglucose autoradiography 

in vivo allowed measurement of second messenger ligand binding and 

function-related glucose use in anatomically discrete components of the 

visual system following unilateral orbital enucleation and lesion of the ra t 

visual cortex.

2.1 Effect of Unilateral Orbital Enucleation on Glucose Use and Ligand Binding 

to Second Messenger Systems

[14C]-2-Deoxyglucose autoradiography allows function-related 

alterations in glucose use to be assessed in vivo (Sokoloff e t al. 1977). As 

the energy requirements and functional activity of cerebral tissue are 

intimately related, measurement of the local rate of [14C]-2-deoxyglucose 

use provides a direct index of the local functional activity in anatomically- 

discrete regions of the CNS. Dynamic alterations in glucose use appear to 

be related predominantly to activity in neuronal terminals (Mata e t al. 1980; 

Sejnowski et al. 1980). At all time points post-enucleation, significant 

reductions in glucose utilisation were selectively localised to 

neuroanatomical components of the visual pathway. Thus the deficits in
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glucose use in the visually-deprived superior colliculus, dorsal lateral 

geniculate body and visual cortex presumably reflect decreased neuronal 

activity in these regions. Moreover, the deficit in glucose utilisation in 

each visual structure appeared to be directly related to the level of retinal 

input. Thus, primary visual structures such as the superior colliculus and 

dorsal lateral geniculate body exhibited a greater reduction in glucose use 

post-enucleation compared with secondary visual structures such as visual 

cortex which receives no direct retinal input. In the superficial layers of 

the superior colliculus metabolic depression appeared to recover with 

increaseu survival time post-enucleation. The magnitude of the deficit in 

glucose use in the superior colliculus at 20 days was different from that 

observed a t one day post-lesion. A previous study has demonstrated similar 

diaschisis (Cooper & Thurlow, 1985) in the superior colliculus following 

enucleation and attributed their findings to either increased gliosis or 

shrinkage of the superior colliculus in response to denervation. However, 

ablation of the visual cortex enhances the metabolic depression observed in 

the superior colliculus post-enucleation (Thurlow & Cooper, 1985) and would 

seem to suggest that there is some cortical control over metabolic activity 

in the colliculus. Clearly, the [u C]-2-deoxyglucose method provides a 

sensitive measurement of functional activity in the visual system post­

enucleation.

Although local glucose utilisation was markedly reduced in all visual 

structures post-enucleation, ligand binding to second messenger systems was 

differentially altered. [^H]-Forskolin binding was selectively reduced in the
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visually-deprived superior colliculus and dorsal lateral geniculate body from 

five days post-lesion, but remained intact in secondary visual structures (e.g. 

visual cortex) up to 20 days post-enucleation. In contrast, [3H]-PDBu 

binding remained unaltered in all brain regions at all time points despite 

enucleation. Meaningful interpretation of the heterogeneous alterations of 

ligand binding to second messenger systems must be based on their cellular 

localisation.

The most conservative explanation for the deficit in [3H]-forskolin 

binding in primary visual structures would be the localisation of these binding 

sites on retinal efferents. However, other retino-recipient areas such as 

the pretectal nuclei and lateral posterior nucleus may be expected to exhibit 

a similar loss of [3H]-forskolin binding post-lesion. The contralateral 

pretectal nuclei and lateral posterior nucleus receive approximately 13% and 

4% of the retinal input respectively, whilst the dorsal lateral geniculate body 

and superficial layer of the superior colliculus receive approximately 15% 

and 65% of retinal efferent fibres respectively (Toga & Collins, 1981). 

It is conceivable that the proportionately lower degree of retinal input to 

the lateral posterior nucleus precludes detection of small binding deficits. 

However, this seems unlikely in the pretectal nuclei which receive a similar 

percentage of input compared to the dorsal lateral geniculate body.

[3H]-Forskolin binding, under autoradiographic conditions, is associated 

with the coupling of a stimulatory guanine nucleotide regulatory protein (Gs) 

with adenylate cyclase (Gehlert et al. 1985; Seamon et al. 1984; Worley
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et al. 1986a). A number of receptors such as (3-adrenergic, dopamine D-j, 

adenosine A2 and vasoactive intestinal polypeptide mediate cellular responses 

via Gs activation (Levitski, 1987). Reductions in 3-adrenergic receptors, as 

mapped by [3H]-DHA autoradiography, were reported in the superior 

colliculus (-23%) and dorsal lateral geniculate body (-30%) in the visually- 

deprived hemisphere of rats post-enucleation (Chalmers & McCulloch, 1990). 

Moreover, the time-course of [3H]-DHA loss parallels the reduction in [3H]- 

forskolin binding. Both are reduced at five days post-enucleation and 

maintained thereafter at reduced levels, 10 and 20 days post-lesion. It must 

be noted that the superior colliculus exhibited a smaller deficit in [3H]-DHA 

binding compared to the dorsal lateral geniculate body which is in contrast 

to that observed for [3H]-forskolin binding. Thus, [3H]-forskolin binding 

losses are not simply the result of p-adrenergic receptor deficits. It is 

interesting that another study demonstrated an increase in p-adrenergic 

receptors in response to monocular deprivation in the dorsal lateral 

geniculate body of both the deprived and non-deprived eye (Schliebs et al. 

1982). Thus, receptor and possibly second messenger system alterations are 

dependent on the type of visual impairment. As yet, the effect of visual 

deprivation on other receptors associated with Gs, such as D-j, A2 and 

vasoactive intestinal polypeptide, remains to be established.

Alterations in receptor populations and second messenger systems are 

clearly delayed compared to the functional deficits post-enucleation. 

Alterations in either neurotransmitter receptors (Chalmers & McCulloch, 

1990) or [3H]-forskolin binding were not apparent until five days post­
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enucleation whilst local cerebral glucose utilisation is maximally reduced at 

one day post-lesion. Receptor and second messenger system reductions 

occur at the time when the metabolic activity in the deafferentated superior 

colliculus appears to recover. It has been suggested that selective receptor 

alterations within the visual circuitry may contribute to the functional re­

organisation post-enucleation (Chalmers & McCulloch, 1990). Thus 

alterations in [3H]-forskolin binding may be indicative of altered receptor 

function in visual structures post-enucleation.

The interaction of Gs with adenylate cyclase might not involve 

identical molecular mechanisms or Gs-proteins in all brain regions (Poat et 

al. 1988). In some brain areas, [3H]-forskolin binding is differentially 

regulated by Mg2+ and guanine nucleotides which normally act to promote 

coupling of Gs with adenylate cyclase. The stable guanine nucleotide, 

5 guanylimidodiphosphate (Gpp(NH)p) has previously been shown to maximally 

enhance [3H]-forskolin binding in the caudate at a concentration of IOjiM 

(Gehlert, 1986; Poat e t al. 1988). Thus, this concentration was used in the 

present study to examine the effect of Gpp(NH)p on [3H]-forskolin binding. 

[3H]-Forskolin binding was markedly enhanced in the presence of Gpp(NH)p 

in areas such as the superior colliculus, caudate putamen and lateral 

habenula, whilst other regions such as the visual cortex, dorsal lateral 

geniculate body, molecular layer of the hippocampus and thalamus were 

unaffected or minimally increased. These results are similar to those 

reported by Gehlert (1986) although some regions such as the thalamus and 

medial geniculate were previously shown to exhibit an increased density of
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[ H]-forskolin binding by Gpp(NH)p. In different brain regions the ability of 

Gpp(NH)p to alter [ H]-forskolin binding is not the same. Furthermore, 

following unilateral orbital enucleation, the characteristics of [3H]-forskolin 

binding are altered in the visually-deprived dorsal lateral geniculate body 

in the presence of Gpp(NH)p. [3H]-Forskolin binding alone was significantly 

reduced in the visually-deprived dorsal lateral geniculate body post-lesion 

(-20%); in the presence of Gpp(NH)p this asymmetry was apparently restored 

(-2%). These results extend original observations (Poat et al. 1988) which 

suggested Gs-adenylate cyclase interactions may not be mediated by 

identical mechanisms in different brain regions. Following denervation, it 

seems likely that the molecular mechanisms underlying [3H]-forskolin binding 

are further altered. Similarly, in ethanol-fed mice, [3H]-forskolin binding 

was differentially altered in the presence of Gpp(NH)p (Valverius e t al. 

1989). In some brain regions such as hypothalamus, cerebellar vermis and 

paraventricular nucelus of the thalamus, [3H]-forskolin binding was unaltered 

in control compared to ethanol-treated mice, while significantly less 

[3H]-forskolin bound to these brain regions in ethanol-fed mice in the 

presence of Gpp(NH)p. Interpretation of results solely as a loss of Gs- 

associated elements cannot be made until further examination of the 

molecular mechanisms underlying changes in [3H]-forskolin binding are made.

Another distinct but key second messenger, protein kinase C (PKC) was 

mapped by the phorbol ester ligand [3H]-PDBu. Despite chronic depression 

of functional activity in visually-deprived areas, [3H]-PDBu binding was 

preserved. This apparent stability of [3H]-PDBu binding may infer that these
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binding sites are absent from degenerating retinofugal fibres and are instead 

localised post-synaptically in the dorsal lateral geniculate body, 

oc-j-mediation of phosphoinositide and as a result, PKC activity, has been 

shown to be wholly post-synaptic (Kemp & Downes, 1986). However, the 

precise cellular localisation of PKC in other visual structures is unclear.

PKC isoforms are proposed to have distinct functions within specific 

neuronal compartments of the CNS (Nishizuka, 1988; Parker et al. 1989; 

Tsujiino e t al. 1990). Conflicting reports as to the exact cellular localisation 

of PKC subspecies is evident. Some studies have demonstrated the 

prevalence of PKC in presynaptic neuronal terminals (Girard et al. 1985; 

Wood e t al. 1986) whilst others have shown some PKC isoforms to be 

predominantly post-synaptic (Tsujiino et al. 1990). In the visual cortex (area 

17) immunocytochemistry of PKC isoenzymes demonstrated a high density 

of PKC in cortical layers II/III which is similar to that observed in the 

present autoradiographic study of [3H]-PDBu binding to PKC. Localisation 

of PKC isoenzymes within the visual cortex (Stichel & Singer, 1988) appeared 

to suggest that PKC was associated with cortical projection and local circuit 

neurons which would explain the relative stability of PKC in the visually- 

deprived cortex. Overall though, it would seem unlikely that all isoforms 

of PKC are either pre- or postsynaptic in location and, as a result, it is 

perhaps simplistic to attribute intact [3H]-PDBu binding to the dominance 

of these sites on post-synaptic terminals. There appears a greater 

possibility that some of the PKC isoforms are differentially altered in 

visually-deprived areas, the additive effect of which cannot be detected
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using [ H]-PDBu autoradiography. Selective vulnerability of some PKC 

isoforms to alter has been demonstrated in neurodegenerative systems such 

as Alzheimer’s disease (Masliah et al. 1990) and following lesion of the 

fimbria-fornix in ra t (Shimohama et al. 1988).

Neurotransmitter receptors which regulate cellular responses via 

activation of PKC include <x,-adrenergic, muscarinic, serotonergic 5HT2 

receptors and glutamate receptors. Glutamate is the main neurotransmitter 

in both retinofugal (Crunelli et al. 1985, 1987) and corticofugal fibres (Fosse 

e t al. 1986) to the superior colliculus and dorsal lateral geniculate body and 

within visual cortex (Baughman & Gilbert, 1981). Post-enucleation,

glutamate remains unaltered in the visually-deprived superior colliculus and
although

dorsal lateral geniculate (Chalmers & McCulloch, 1989) A the uptake of 

glutamate in these structures has been shown to be affected (Lund-Karlsen 

& Fonnum, 1978). However, a profound reduction in [3H]-glutamate binding 

was observed in the visually-deprived visual cortex at one day following 

denervation of the visual pathway (Chalmers & McCulloch, 1989). It is 

unlikely that a "transynaptic" alteration in [3H]-PDBu binding has occurred 

in the present study in view of the time-frame of the glutamate response 

(1 day) and the survival periods at which [3H]-PDBu binding was examined 

(1-20 days). Additionally, a r-adrenergic, muscarinic and serotonergic 

receptors are not altered in visually-deprived areas following enucleation 

(Chalmers & McCulloch, 1990).
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2.2 Effect of Unilateral Lesion of the Rat Visual Cortex on Glucose Use and 

Ligand Binding to Second Messenger Systems

The [u C]-2-deoxyglucose autoradiographic technique can be used 

successfully to map the functional consequences of manipulation of simple 

sensory pathways such as the auditory system (Sokoloff, 1977; Sharp et al. 

1982) following stimulation and deprivation. In the present study, the effect 

of removal of a specific neuronal population in the ra t visual cortex on the 

functional activity within the visual circuitry was examined.

Intracortical injection of saline alone caused a marked disturbance in 

glucose use in the ipsilateral hemisphere of sham animals. This finding 

confirms previous reports (Kurumaji & McCulloch, 1990; Kelly & McCulloch, 

1987) which demonstrate alterations in glucose use following mechanical 

damage either to the tympanic membrane induced by the use of stereotactic 

frames with ear bars or by placement of the guide cannula into the cortex. 

Additionally, the injection of lpd of saline into the cortex will upset the 

normal homeostasis of cellular function by diluting extracellular 

concentrations of neurotransmitters which may precipitate subtle alterations 

in glucose use near the injection site. Asymmetries in glucose use were 

confined to the area of injection.

Ibotenic acid has been widely used as a neurotoxin in morphological and 

functional analyses of the CNS. Intracerebral injection of ibotenic acid 

produces a discrete loss of nerve cell bodies and dendrites in the injection 

area, sparing axons of passage and nerve terminals of extrinsic origin

204



(Schwarcz e t al. 1979). Injection of ibotenic acid into the visual cortex (area 

17) in the present study was associated with a loss of nerve cell bodies which 

was not observed in the sham group treated with saline, as verified 

histologically. The lesion was reproducible and extended from superficial 

layers to the deep cortical layers confined to visual cortex (area 17). Local 

cerebral glucose utilisation was markedly reduced in the ipsilateral visual 

cortex (layers II-VI). Further, glucose use was significantly reduced in the 

ipsilateral dorsal lateral geniculate body and there was a trend towards a 

reduction in glucose use in the ipsilateral superior colliculus. These results 

extend previous observations (Toga & Collins, 1981; Thurlow & Cooper, 1985) 

in non-quantitative assessment of glucose utilisation following visual cortex 

lesions. However, the magnitude of alterations in glucose use in the present 

study appear to be to a lesser extent to those previously demonstrated. 

Most likely, the basis for the discrepancies lies in differences in the 

procedures for lesioning the visual cortex. In the present study, a discrete 

lesion of cortex was produced by focal injection of neurotoxin compared to 

ablation of visual cortex by suction (Thurlow & Cooper, 1985) and electrical 

stimulation (Toga & Collins, 1981). These latter two procedures would 

ensure complete destruction of visual cortex removing nerve terminals and 

fibres en passage in addition to cell bodies and moreover, the extent of 

damage to the visual cortex in these studies appears to be greater.

Perhaps a more crucial difference may be the timing of glucose use 

measurement following visual cortex lesions, 21 days in the present study 

compared to one day or less previously (Toga & Collins, 1981; Thurlow &
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Cooper, 1985). Ablation of the visual cortex is associated with axonal 

sprouting in subcortical visual structures (Goodman & Horel, 1966) and 

reactive gliosis (Mathewson & Berry, 1985). The minimal alterations in 

glucose use in cortical projection areas may be due to a functional 

reorganisation within the visual pathways. Many of the visual structures 

receive a modulatory control from other non-visual structures. For example, 

the dorsal lateral geniculate body receives a projection from the locus 

coeruleus and the parabigeminal nucleus innervates the superficial layers of 

the superior colliculus. It is possible that compensatory mechanisms have 

tried  to restore the disturbance of visual circuitry. As already 

demonstrated, following enucleation, recovery in functional activity in the 

denervated superior colliculus involves an increase in cortical control over 

metabolic activity (Thurlow & Cooper, 1985). In other experimentally- 

lesioned animal models a metabolic recovery with increasing survival time 

is seen in areas which have shown alterations in glucose use previously at 

earlier tim e points (Orzi et al. 1988; London et al. 1984).

Although function-related alterations in glucose use were minimal 

following ibotenate-induced visual cortex lesion, in the same animals [ Hj- 

forskolin binding was profoundly deficient in the lesioned hemisphere of 

visual cortex, dorsal lateral geniculate body and the superficial layers of the 

superior colliculus. Thus, it would appear that a major proportion of [ H]- 

forskolin binding is associated with intrinsic cortical neurons and presynaptic 

terminals of cortical efferents to the superior colliculus and dorsal lateral 

geniculate. These findings are consistent with a presynaptic localisation
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of [ H]-forskolin binding sites. In the previous study which examined [3H]- 

forskolin binding after unilateral orbital enucleation, these sites were 

determined to be principally located on retinal efferent fibres.

The adenylate cyclase system, as mapped by [3H]-forskolin, does appear 

to have some functional role within the visual circuitry. Evidence has 

indicated that the adenylate cyclase system coupled to (3-adrenergic 

receptors may play an important role in the maintenance of cortical 

plasticity during the critical period. Intraventricular injection (Kasamatsu 

& Pettigrew, 1976, 1979) or cortical microperfusion (Kasamatsu et al. 1981) 

of the neurotoxin 6-hydroxydopamine (60HDA) which is known to destroy 

catecholaminergic terminals and hence deplete catecholamines, preserved 

binocular responses of neurons in the visual cortex of monocularly-deprived 

kittens. Microperfusion with noradrenaline (Kasamatsu et al. 1979) or 

dibutyryl cAMP (Kasamatsu, 1980) of the visual cortex restores neuronal 

plasticity in kittens previously treated with 60HDA and to a certain degreee 

in adult cats which were no longer susceptible to monocular deprivation. 

cAMP-dependent phosphorylation of MAP2 in homogenates prepared from 

cat visual cortex was found to increase after a brief exposure of dark-reared 

animals to light (Aoki & Siekevitz, 1985).

It is interesting that functional mapping of the visual circuitry does 

not appear to be indicative of any major alterations within this pathway 

following cortical lesions. Clearly the profound loss of [ H]-forskolin binding 

in visual structures receiving cortical efferents would appear to contradict
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this. Perhaps, as suggested earlier, there is a functional recovery within the 

visual pathway post-lesion as mapped by [^C]-2-deoxyglucose 

autoradiography but an altered receptor function as indicated by [3H]- 

forskolin binding.

In the same study, [3H]-PDBu binding to protein kinase C (PKC) was 

minimally altered after visual cortex lesion. The only difference in [3H]- 

PDBu binding was confined to the lesioned cortex where [3H]-PDBu binding 

was significantly decreased in deep cortical layers although there was a 

trend to a reduction in binding in the remaining layers of visual cortex.

PKC is localised to a certain extent on astrocytes (Mobley e t al. 1986; 

Neary e t al. 1986). Since vigorous gliosis accompanies cortical lesion as 

verified histologically and from previous observations (Mathewson & Berry, 

1985), it would seem likely that the lack of asymmetry in [3H]-PDBu binding 

in the superficial layers of visual cortex was masked by an increase in 

astrocyte proliferation which is seen to a lesser extent in deep cortical 

layers.

A loss of [3H]-PDBu binding in response to ibotenate-induced lesion of 

the visual cortex would be consistent with immunocytochemical localisation 

of PKC on intrinsic neurons (Stichel & Singer, 1988). However, the 

robustness of PKC in the superior colliculus and dorsal lateral geniculate is 

at variance with the association of PKC with cortical projection terminals 

(Stichel & Singer, 1988). Ablation of the visual cortex markedly reduces
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the levels of glutamate, associated with PKC, in the ipsilateral dorsal lateral 

geniculate body and superior colliculus (Lund-Karlsen & Fonnum, 1978) and 

thus alterations in the levels of [3H]-PDBu binding in these visual areas might 

be expected. However, denervation of the glutamatergic pathway from 

frontal cortex to the striatum is associated with a potentiation of excitatory 

amino acid-induced stimulation of PI hydrolysis (Nicoletti et al. 1987). This 

may be indicative of an upregulation of PKC following denervation. Whether 

this applies for [3H]-PDBu binding following denervation of a major 

glutamatergic pathway in the visual system is unclear.

In summary, selective lesioning of two major glutamatergic pathways 

in the ra t visual system, either by orbital enucleation or neurotoxin-induced 

lesion of the visual cortex, has demonstrated the differential alterations of 

ligand binding to second messenger systems in visual structures exhibiting 

functional deficits. [3H]-Forskolin binding was consistently reduced post­

lesion and may be indicative of alterations in receptor function within the 

visual circuitry. Following chronic depression of functional activity within 

the visual pathways, [3H]-PDBu binding to PKC was extremely robust 

suggesting that this transduction system is not susceptible to lesion-induced 

modulation or perhaps the persistence of PKC is indicative of a homeostatic 

role for this pathway in maintaining cellular function with the visual system.
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3. LESION OF THE RAT SEPTO-HIPPOCAMPUS

The ra t septo-hippocampal pathway provided a model system in which 

to examine ligand binding to second messenger systems following denervation 

of a principally cholinergic pathway. The most striking findings in this 

study were an increase in both [3H]-forskolin and [3H]-PDBu binding in 

discrete and anatomically distinct regions of the septo-hippocampal pathway 

following lesion of the medial septum. [3H]-Forskolin binding was 

significantly increased in the polymorph layer of the dentate gyrus (19%) 

whilst [ H]-PDBu binding was increased in the superficial layers (I-III) of 

entorhinal cortex (27%) post-lesion.

3.1 Ligand Binding to Second Messenger Systems in Lesioned Rat Seoto- 

Hippocampal Pathway

Loss of the septal cholinergic innervation to the hippocampal formation, 

as a result of medial septum lesion, is associated with an enormous degree 

of reorganisation within the hippocampal circuitry. Sympathetic axons 

sprout and grow into the dentate-CA3 region of the hippocampal formation 

(Crutcher e t al. 1979). This restricted distribution of sympathetic fibres 

to dentate-CA3 region appears to correlate with the distribution of dentate 

granule cells and their axons, the mossy fibres (Crutcher & Davis, 1982). 

[3H]-Forskolin binding was most dense in the polymorph layer of the dentate 

gyrus and the pyramidal layer of CA3, associated with granule cells and 

mossy fibre terminals (Worley et al. 1986a). Following medial septal lesion, 

a significant increase in [3H]-forskolin binding was evident in the polymorph 

layer of dentate gyrus. Further, there was a marked increase in [ H]-
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forskolin binding in the pyramidal layer of CA3 (21%) indicating the 

association of [ H]-forskolin binding with cell bodies in the medial septum. 

Thus, this trend in [ H]-forskolin binding to be increased in discrete brain 

regions distal to the lesion site infers an upregulatory response to 

deafferentation which may be putatively linked to axonal sprouting. In the 

hippocampus, there is evidence that noradrenaline stimulation of adenylate 

cyclase mediated through (3-adrenergic receptors is important for long-term 

potentiation in the dentate gyrus (Stanton & Sarvey, 1985). Reductions in 

long-term potentiation of the perforant path granule cell synapse caused by 

depeletion of noradrenaline can be reversed by application of forskolin 

(Stanton & Sarvey, 1985). Long-term potentiation is used as a possible model 

of the cellular mechanisms involved in learning and memory. A proposed 

functional role for the adenylate cyclase system in learning and memory is 

also indicated in animal behavioral studies. In rats, delayed memory 

dysfunction is markedly ameliorated by post-treatment with forskolin (Ando 

e t al. 1987). Additionally, blockade of |3-adrenergic linked adenylate 

cyclase inhibits the learning and retention of an active avoidance task in 

mice (Laborit & Zerib, 1987).

In the present study it is unclear whether this increase in [ H]-forskolin 

binding is associated with a parallel increase in associated neurotransmitter 

receptors. Denervation-induced supersensitivity of neurotransmitter 

receptors is often linked to a concomitant increase in receptor-mediated 

adenylate cyclase activity. Well documented is the enhanced stimulation 

by dopamine of striatal adenylate cyclase (Mishra et al. 1980; Parenti et al.
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1982) mediated through Dn receptors (Herve e t al. 1989) after lesion of 

central dopaminergic projections. Following electroconvulsive shock 

therapy in the rat, [3H]-forskolin binding is increased in the substantia 

nigra in parallel with an upregulation of D1 receptors in this region 

(Fochtmann e t al. 1988). Although supersensitivity of muscarinic receptors 

has been demonstrated in the hippocampus (Bird & Aghajanian, 1975; 

Westlind e t al. 1981), this has been contradicted by studies showing 

muscarinic receptors to be unaltered following medial septal lesion 

(Yamamura & Snyder, 1974; Fisher et al. 1980; Overstreet et al. 1980). 

Investigation of muscarinic receptor subtypes has indicated an upregulation 

of muscarinic (M2) receptors in the stratum oriens of CA2-4 fields with 

relatively minor changes in receptors following lesion of the medial 

septum (Dawson & Wamsley, 1989). Although there has been intensive 

investigation of muscarinic receptors in the hippocampus post-lesion, as yet, 

there is minimal evidence of alterations in other neurotransmitter receptors 

especially those linked to adenylate cyclase. This does not exclude the 

possibility, however, of denervation-induced supersensitivity as the basis of 

the increase in [3H]-forskolin binding. In addition, it is important to 

recognise that [3H]-forskolin binding in the hippocampus may behave in a 

qualitatively different manner to binding in other brain regions, e.g. striatum 

(Gehlert, 1986; Poat e t al. 1988) in particular, following denervation.

In contrast, [3H]-PDBu binding was extremely robust within all regions 

of the hippocampus yet was increased in the entorhinal cortex after lesion 

of the medial septum. This result is in contradiction with a previous study
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which demonstrated an upregulation of cholinergic mediated phosphoinositide 

(PI) hydrolysis in the deafferentated hippocampus by electrolytic lesion 

(Connor & Harrell, 1989). This attenuated PI response after lesion of the 

septo-hippocampal pathway was only evident in response to cholinergic and 

not noradrenergic stimulation. Thus, the expansion of sympathetic fibres 

in the hippocampus following medial septum lesion does not appear to be 

associated with changes in the PI system. A similar study has shown a ,-  

adrenergic mediated PI breakdown to be unaltered in the hippocampus after 

selective noradrenergic denervation (Fowler et al. 1986). However, the 

enhanced PI response to cholinergic stimulation (Connor & Harrell, 1989) 

would suggest [3H]-PDBu binding to protein kinase C (PKC) should be 

increased in the hippocampus. An upregulation of the PI response to 

carbachol has been noted in the cerebral cortex five days after cholinergic 

deafferentation via nucleus basalis lesions (Reed & de Belleroche, 1988). 

However, this response was short-lived as it was partially reversed at 14 days 

post-lesion and completely reversed by 50 days. In the present study, [3H]- 

PDBu binding to PKC was examined at only one time-point, 21 days following 

septal lesion. It is possible that any changes in PKC, in the hippocampal 

formation, have occurred previous to this time. Another group have 

demonstrated muscarinic stimulation of PI hydrolysis to be unaltered at 21 

days following nucleus basalis of Meynert lesion (Raulli e t al. 1988). 

Discrepancies with the study by Connor and Harrell (1989) may also be due 

to the extent and type of the lesion. In their study, the vertical diagonal 

band of Broca, which has a cholinergic input to the hippocampus, in addition 

to the medial septum, was destroyed by electrolytic lesion. In the present
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study, a chemical lesion was produced by the neurotoxin ibotenic acid and 

was mainly confined to the medial septum. Thus, the extent of cholinergic 

denervation to the hippocampus would be qualitatively and quantitatively 

different; electrolytic lesion of the medial septum would remove all nerve 

fibre tracts in addition to cell bodies and ensure a more complete disruption 

of the cholinergic pathways to the hippocampus unlike ibotenate lesion which 

is discrete. Many of these reasons for the apparent stability of PKC found 

in the hippocampus may go some way to explaining the controversy 

surrounding the status of muscarinic receptors in the hippocampus post­

lesion.

This apparent stability of PKC may also be due to selective alterations 

of PKC isoforms in the hippocampus. Following denervation of the septo- 

hippocampal pathway, a decrease in PKC-a immunoreactivity was noted in 

CA1 and CA2 fields with a parallel increase in PKC-p and PKC-A. in these 

regions (Shimohama et al. 1988). The additive effect of these selective 

changes in PKC isoforms may have the overall effect of cancelling out any 

alterations which may be expected in [3H]-PDBu binding to PKC.

Although [3H]-PDBu binding was not altered in the hippocampal 

formation, there was a significant increase in binding in the superficial 

layers of entorhinal cortex following cholinergic deafferentation. The 

entorhinal cortex receives a major input from the medial septum terminating 

in cortical layers II, IV and VI. In turn entorhinal cortex projects from layer 

II primarily to the molecular layer of the dentate gyrus via the perforant
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pathway. Intensive investigation has focused on the hippocampal formation 

following medial septal lesion examining receptor dynamics, morphological 

changes, electrophysiological events and the anatomical interconnectivity. 

However, minimal importance has been placed on the entorhinal cortex 

following medial septal lesion. Destruction of the entorhinal cortex and 

hence the input to the hippocampus, via the perforant pathway, causes a 

rapid degeneration of synaptic terminals that end in the outer dentate gyrus 

molecular layer (Mathews et al. 1976). A small number of remaining 

acetylcholinesterase axons proliferate rapidly and reinnervate the 

deafferented area (Lynch et al. 1972) manifested by increased acetyl 

cholinesterase (AChE) staining. Lesion of the medial septum abolishes this 

response (Lynch e t al. 1972). However, combined lesions of the septum and 

entorhinal cortex induce a different set of AChE terminals to sprout into 

the deafferented region, yielding a similar but slightly different distribution 

of AChE staining (Chen et al. 1983). Since the entorhinal area receives a 

substantial input from the medial septum and is functionally important within 

the hippocampal circuitry, it may be suggested that this increase in [3H]- 

PDBu binding is indicative of synaptic alterations in the entorhinal cortex 

or may be akin to axonal sprouting observed in the hippocampus following 

medial septum lesion (and entorhinal cortex lesion). In the entorhinal 

cortex, local cerebral glucose utilisation, as an index of functional activity, 

is unaltered following denervation of the septo-hippocampal pathway (Inglis, 

unpublished observations). Thus, it would appear alterations in the 

functional activity of entorhinal cortex may not underlie the increase in [ H]- 

PDBu binding in this region.
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In the present study, the heterogeneous alterations in ligand binding 

to second messenger systems and the direction of these responses (an 

increase as opposed to a decrease) may be supportive of plastic modifications 

of second messenger systems following denervation. It remains unclear 

whether these changes in ligand binding to second messenger systems 

represent an upregulation in response to neurotransmitter receptor 

alterations or are associated with axonal sprouting in areas distant from the 

primary lesion.



OVERVIEW

In the past, simple biochemical assays have been employed to examine 

second messenger systems in homogenate preparations of CNS tissue, usually the 

turnover of second messengers being measured in response to agonist stimulation. 

However, given the intricate cellular and anatomical complexity of the brain, a 

fuller understanding of second messenger systems in brain warrants techniques 

with higher anatomical resolution. Quantitative ligand binding autoradiography 

offered a novel and sensitive approach to the study of second messenger systems 

allowing key components of transduction mechanisms such as protein kinase C 

(PKC) and adenylate cyclase to be mapped in well-defined neuroanatomical 

components of human and ra t CNS. Further, the possible plasticity of second 

messenger systems, as mapped using quantitative ligand binding, could be 

investigated in discrete brain areas of pathologically-diseased tissue such as 

Alzheimer (AD) brain.

The application of autoradiographic techniques to human postmortem brain 

encounters many of the problems faced in other neurochemical studies. Intrinsic 

variables such as the patient’s age, sex, agonal state, pre-mortem drug history 

and postmortem delay may influence alterations in second messenger systems and 

increase interindividuality. Groups of control and AD patients were closely 

matched for age and postmortem delay to minimise these differences. The 

majority of neurotransmitter receptors appear to be stable over very long 

postmortem delay intervals (Hardy & Dodd, 1983). However, studies have 

demonstrated markedly increased basal levels of second messenger activities with 

relatively short postmortem intervals in human brain (Candy e t al. 1984, Saitoh
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& Dobkins, 1986; Danielsson e t al. 1988) which may be indicative of second 

messenger instability in brain with longer periods of postmortem delay. Ligand 

binding of [ H]-forskolin was determined to be relatively stable over increasing 

periods of postmortem delay in ra t brain (Appendix VIII). Further, in human 

brain there was no correlation between postmortem delay and either 

[3H]-forskolin or [3H]-PDBu binding in all brain regions of control and AD brain 

(Appendix Via and VIb). Thus, the stability of ligand binding to second messenger 

systems over relatively long periods of postmortem delay affords an advantage 

of using quantitative autoradiography over homogenate preparations in the study 

of second messenger systems. There was some association between ligand 

binding densities and the age of patient in brain regions of control and AD brain 

(Appendix Via and VIb). In particular, a positive correlation between [3H]- 

forskolin binding and age in AD middle frontal cortex was noted. [3H]-Forskolin 

binding was demonstrated to be markedly reduced in AD frontal cortex compared 

to controls. Although it is unclear whether the age of the AD patients 

influenced the amount of [3H]-forskolin binding in AD cortex compared to 

controls, it cannot be dismissed that there may be an ageing effect in addition 

to the neurodegenerative effects of AD influencing [3H]-forskolin binding. 

However, since the probability of spurious associations between two measures 

may be increased considerably when correlating several parameters in a number 

of brain regions, caution must be taken before placing importance on correlation 

data.
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Inter-individual variability may, however, preclude detection of small 

changes in ligand binding densities in AD compared to control brain. This 

problem can be dealt with to a certain extent statistically. Power analysis 

(Cohen, 1977) allows determination of either the patient group size necessary to 

detect a certain magnitude of change or vice versa in ligand binding in a group 

of AD cases compared to controls. Autoradiographic analysis of [3H]-PDBu 

binding demonstrated that PKC was preserved in a population of AD brain in 

contrast to a previous study which reported a significant reduction in PKC in AD 

frontal cortex (Cole et al. 1988). While the numbers of subjects in control and 

AD groups were smaller in the present study compared to Cole et al. (1988), the 

magnitude of the reported deficit (50%) strongly suggested that such a loss of 

binding would have been detected, if it was present. The use of statistical power 

analysis indicated that quantitative [ Hl-PDBu binding autoradiography was 

capable of demonstrating changes of approximately 30% in binding levels at a 

probability level of 5% and a power of 80% of AD individuals (assuming a 

consistent variation). The patient group size (n=9) was adequate to detect such 

a change (50%) in [3H]-PDBu binding.

The heterogeneity of patients groups especially in terms of neuropathological 

abnormalities is most likely to have a major impact on postmortem studies. 

Neurochemical markers for cholinergic muscarinic receptors (Lang & Henke, 

1983; Reinikainen e t al. 1987; Probst e t al. 1988), 5HT2 receptors (Cross e t al. 

1988; Perry e t al. 1984; Dewar et al. 1990) and N-methyl-D-aspartate receptors 

(Maragos e t al. 1987; Monaghan et al. 1987) have been the subjects of controversy 

as regards their status in AD. The severity of neuropathological abnormalities
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such as neuronal loss, neurofibrillary tangles and plaques between different groups 

of patients may have some bearing on these conflicting results. This was seen 

to a certain extent in two separate studies of [3H]-forskolin binding which 

demonstrated differential alterations in binding in AD brain. In one study, 

[3H]-forskolin binding was profoundly reduced in all layers of middle frontal 

cortex, was inconsistently reduced in middle temporal cortex and unchanged in 

the hippocampal formation of an AD group. In a different cohort of AD cases, 

[3H]-forskolin binding was significantly decreased in all layers of middle frontal 

cortex, middle temporal cortex and the molecular layer of dentate gyrus. It was 

noted tha t the deficit in choline acetyltransferase (ChAT) activity and the 

presence of neuritic plaques was of a greater magnitude in the second AD group 

(Table 2) (exhibiting reductions in [3H]-forskolin binding in three brain regions) in 

comparison to the other population of AD brain (Table 5) (in which [3H]-forskolin 

binding was significantly reduced only in frontal cortex). Thus, although there 

was a consistent trend for [3H]-forskolin binding to be decreased in neocortex and 

the molecular layer of dentate gyrus in AD brain, the degree of binding deficits 

may be influenced by the extent of local neuropathological and neurochemical 

abnormalities.

The level of complexity introduced in human postmortem investigations of 

neurochemical parameters is not encountered in animal models. Experimental 

lesions of specific neuronal pathways in ra t brain were used as a basis on which 

to compare alterations in ligand binding to second messenger systems following 

denervation of glutamatergic and cholinergic pathways to those alterations found 

in AD brain. Loss of presynaptic input was consistently associated with
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reductions in [3H]-forskolin binding in recipient brain regions. Most notably [3H]- 

forskolin binding deficits were observed in AD brain regions to which the 

cholinergic innervation is disrupted and in ra t visual structures following 

denervation of retinal or cortical input to those regions. Further, the loss of 

[3H]-forskolin binding appeared to be associated with alterations in the functional 

activity of these brain regions. Following unilateral orbital enucleation, [3H]- 

forskolin binding was significantly reduced in visually-deprived retinorecipient 

brain regions (superior colliculus, dorsal lateral geniculate body) in which the 

functional activity, as measured by 2-deoxyglucose (2DG) autoradiography, was 

depressed. After lesion of the visual cortex, marked reductions in [ H]-forskolin 

binding were observed in the superior colliculus and dorsal lateral geniculate 

body, regions which exhibited minimal alterations in the level of functional 

activity. Indeed, in this study, the use of [3H]-forskolin binding autoradiography 

would appear to map "functional" alterations in denervated brain regions to a 

greater ability than the 2DG method. AD brains, in which l3H]-forskolin binding 

was examined, exhibited a profound cholinergic hypofunction. In cortical regions 

which exhibited a profound reduction in [3H]-forskolin binding in AD, there was 

a consistent and positive correlation between the level of binding and the level 

of ChAT activity. The degree of cholinergic deficit appears to be associated with 

the degree of cognitive impairment in elderly people (Perry e t al. 1978; Wilcock 

et al. 1982). Forskolin, by increasing adenylate cyclase stimulation of cAMP, has 

been suggested to facilitate  memory function by enhancing cerebral blood flow 

(Ando e t al. 1987). Increased levels of cAMP have also been shown to restore 

neuronal transmission supressed by hypoxia (Okada e t al. 1989). Since in AD, 

neuroimaging studies have indicated reductions in regional metabolism and blood
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flow in frontal and temporal lobes (Haxby e t al. 1985; Horwitz, 1987) it may be 

of value to examine [3H]-forskolin binding deficits in postmortem AD brain in 

patients in which the premortem status of blood flow and metabolism were known 

by in vivo imaging. It is important to recognise that, as yet, it remains unclear 

whether deficits in regional blood flow and metabolism in AD neocortex are true 

functional alterations or are simply an indication of brain atrophy.

It does not appear that in all brain regions loss of presynaptic input will 

precipitate a parallel reduction in [3H]-forskolin binding, in particular the 

hippocampus, following denervation. The hippocampus receives a major cortical 

projection from the perforant pathway arising in entorhinal cortex to terminate 

on the outer granule cell dendrites of the dentate gyrus molecular layer and on 

pyramidal cell dendrites of the hippocampus and subiculum. The trend in 

[3H]-forskolin to be reduced in the molecular layer of the dentate gyrus in AD 

hippocampus may be indicative of a loss of cortical input from the entorhinal 

area which often exhibits extensive cell losses in AD (Hyman e t al. 1984). 

However, [3H]-forskolin binding was preserved in the subiculum and CA1 field of 

AD hippocampus, areas in which marked cell losses and severe neuropathological 

abnormalities are characteristic (Hyman et al. 1984; Probst e t al. 1988) which 

may indicate an upregulation of [3H]-forskolin in these regions. AD hippocampus 

has been demonstrated to undergo plastic modifications. Deafferentation of the 

dentate gyrus by neuropathological changes in entorhinal cortex may induce 

sprouting of septal afferents as demonstrated by enhanced acetylcholinesterase 

(AChE) activity in the dentate gyrus molecular layer (Hyman e t al. 1987). 

Further, an enhanced AChE staining in the entire perforant pathway zone,
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particularly in the molecular layer of the subiculum, has been observed in AD 

cases in which entorhinal and septal cell losses were evident in AD brain (Hyman 

e t al. 1987). Lesion of the cholinergic projection of the ra t medial septum to 

the hippocampus induced an increase in [ H]-forskolin binding indicative of the 

ability of this second messenger system to adapt in deafferentated hippocampus. 

Although the extent of disease-related cellular damage in the entorhinal cortex 

and septum was unknown in the AD cases used in ligand binding studies, the 

preservation of [3H]-forskolin binding in hippocampal areas severely affected by 

the pathological correlates of AD would suggest an upregulation of this system 

in response to neuronal loss.

Whilst [ H]-forskolin binding appeared to be consistently reduced in AD brain, 

autoradiographic imaging of [3H]-PDBu binding to PKC demonstrated this enzyme 

to be extremely robust in all areas of AD neocortex and hippocampus. Further, 

following experimental lesions of cholinergic and glutamatergic pathways in ra t 

brain, there were minimal alterations in [ H]-PDBu binding in recipient brain 

regions, perhaps indicative of a post-synaptic location of PKC. Dynamic 

alterations in [3H]-PDBu binding have previously been mapped following transient 

forebrain ischaemia in rats (Onodera e t al. 1989) and associative memory 

conditioning in rabbits (Olds et al. 1989). Indeed, a number of studies have 

demonstrated lesion-induced denervation of putatitve glutamatergic and 

cholinergic pathways to induce an upregulation of agonist-mediated PI hydrolysis 

(Nicoletti e t al. 1987; Reed & de Belleroche, 1988; Connor & Harrell, 1989). In 

the present studies, there was some indication that [3H]-PDBu can alter in 

response to denervation. After lesion of the ra t medial septum, a marked
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increase in [3H]-PDBu binding was observed in entorhinal cortex. It seems 

remarkable, though, that in AD brain which exhibited gross neuropathological and 

neurochemical abnormalities, loss of glutam ate receptor subtypes and 

[3H]-forskolin binding reductions, PKC was preserved. In particular, quisqualate 

m etabotropic receptors which mediate PI hydrolysis in the hippocampus 

(Sladeczek e t al. 1988) were profoundly reduced in the CA1 field and subiculum 

of AD hippocampus in adjacent sections to those used for [3H]-PDBu binding 

autoradiography. Thus, it seems unlikely that the preservation of [3H]-PDBu 

binding in AD hippocampus is explained by the maintenance of cellular elements 

to which [3H]-PDBu binds in AD brain. It is possible that PKC has been 

upregulated in intact neurons in response to neurotransm itter receptor loss. This 

compensation, however, may not be possible beyond a threshold of neuronal fall­

out, corresponding to severe degrees of neuronal loss. Comparison of [3H]-PDBu 

binding to [3H]-forskolin binding in the same control and AD patients (Figure 40) 

demonstrated the level of [3H]-PDBu and [3H]-forskolin binding to be positively 

associated in middle temporal cortex, that is AD patients in which [3H]-forskolin 

binding was markedly reduced, exhibited low levels of [3H]-PDBu binding 

compared to the control values. This association was less obvious in middle 

frontal cortex. It is interesting to note that the magnitude of [3H]-forskolin 

binding reduction in AD middle frontal cortex was to a lesser extent than that 

seen in AD middle temporal cortex compared to controls, perhaps indicative of 

differing severities of neuronal loss and neuropathology in these cortical regions.
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The complexity of Alzheimer’s disease in term s of symptomatology, 

neuropathological and neurochemical abnormalities makes the functional 

evaluation of the status of neurotransmitter receptors and second messenger 

systems somewhat difficult. Quantitative autoradiography of ligand binding to 

second messenger systems demonstrated the selective vulnerability of 

Gs-adenylate cyclase, being consistently reduced in AD brain, in comparison to 

protein kinase C, which was extremely robust. Such data suggest that the loss 

of Gs-adenylate cyclase in discrete brain areas may contribute to the pathology 

in AD and complicate the use of treatments targeted a t cyclase-linked receptors. 

However, the preservation of PKC would suggest the possibility of directing 

drugs, such as muscarinic agonists, which are coupled to this system. Although 

there was no conclusive evidence of plastic modifications of second messenger 

systems in AD, the magnitude of the reduction in [ H]-forskolin binding in the 

primary area of degeneration in AD, coupled with the preservation of [3H]-PDBu 

binding, warrants future research.
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APPENDIX I

Full Quantitative Analysis of 
[3H]-Forskolin Binding (a), 
[3H]-PDBu Binding (b) and 

Local Cerebral Glucose Utilisation (c) 
following Unilateral Orbital Enucleation.
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vo Ĉ- CO CN in
■ \ X X —

in CO in CO CO
■H -H •H -H ■H H •H
N 1 in CN o T— 00 CN
r- r-> VO CO N* CN in

H
>

Xa)-p
p
oo
cd
0w-H
>

W
0  PrH Q) 
0 > i
o  cd•H i- I

o  id o-h o
P "H O *P 
•H P
p  a) 
a) a. a  0
0 CO CO —

>irH T3 
Cd O 
P PQo
-P CD 
id -P 
PJ cdrH
‘—I 0
cd aw -H 
p 0 
o  d> Q O

•H
cdi—Io
0
z

cd
-po
d)
-p
d)
p04

p
o
•H
pd)
-p
CdO
Pi
rH W
cd 0  
p  d)
d) rH 
-P O 
cd 0  
PI z

co N* VO ro CN in
-H -H •H ■H -H -H
CN cn 00 oo co vo

CN CO in
T“
CN

*3* vo CN in
-H ■H -H H +1 ■H
■N* cn in O 00 in
N1 CN t̂ - CO CO in

T—

VO CN
VO in cn vo T-- T—
+1 ■H -H -H -H +1
O CO cn cn cn cn
«5J* CN vo [X o 3̂*T“
X x —.

in CN
in in cn in T— i—
■H ■H -H -H -H
O o r* 00 X cn

co VO O •sj*

>
d) H
-P cd
cd rH p X 0
iH 0 d) CD CD
0 0 >i -P 6
D CD cd P cd
•H X) Cd PI O -p
0 cd 0 U 0
d) K P iP Oi
O g cd rH w

r—1 Cd rH cd d) 0
iH cd O 0 -P -p 6
cd P o o CD cd cd
•H Q) Qid> ■H T3 *H

-P DjiH P 0 cd
d) cd •H O cd cd PJ
z X, z P4 o E-i

d C d)
d) d> p  
> cd cd

*H 3:xi 
P -P Pj d) d) CO 
rdP3-H £d) d) d) ^ O A  cd c

d) -P
P Ocd
d) cd 
cp -Pa ip c 
•H  *H

'o +j-S 2 c
- H  n  w
g  ^  ® 5 -h p
xtl ̂"H  J j

cd w 
H ^ h

* iH  t d °  n)° n

u o
o _  
d) ^  in 
&-p p °  

°  Q.
tn
P^ 
CD * DiTT
vo ^  

w i .H  ro * .
aj'-' © >S -P O § 2  1 2 g | - P <
C T3 >i
cd +i d) £)
e p ^O rj -H W
^ S  g,rtd) 04 g 

. 6
d) cn -Q 5  
13 10Cn d) rr-J
w - o  P  s  
•H Cl) 2>4J -p-p^ rd
O'SWh cn -H  n  

6 3cd p  d> 2
■g t t - c  S
§ 'O TJ rrt 

Cd > tdtnC•HTd cn p  h  

H  B'O+J
•H CC d o  flidCo -h cd 

iH CO C 
O CN -P CD 
^  O CD 
cn g cd 2p  o  -P -P 
O P C CD 
pLi »P -H £)

227



8
>

•rl

tH PJ
''V

O 4-> 
CN 0(d

t:
H

o CO CO CN
CO CN .— .— .— .— CN
-H ■H +i -H +i +i -Hvo ro .— .— in CO cnVO cn CO cn in O4 CNin N4 ■N1 ro\ CN ro
o VO cn CO in N4 r-ro T— .— T— CN .— CN
-H ■H -H •H ■H +1 ■Ho f - cn O c- ro r-vo r- m cn VO N4 .—
in N 4 N 4 ro CN ro

ro ro CN roN4 cn ro O4 ro CN
-H -H ■H ■H -H -H
O ■r- cn m O 4 oCN CN r- O 4 VO o 4ro in vo

\ ro ro
CN m o CO ro roN4 T— CN N 4 ro CN
■H -H •h •H •H -H
VO CO CO ro r- COro ro N4 T— VO roro t— in vo ro ro

■8
>

•H
p>< a  

<  5J1Q Q
O P  «- U

cd
4->C
H

cn cn cn ro T— N4 in in r- CN o N4CN ro ro ro ro .— ro in .— o4 r- *— in
-H -H -H ■H •H -H ■H •H -H •H +1 +i ■hCO o o N4 vo cn vo CN T— CO CN cn roCN N4 cn CO r— VO r- cn m in VO co roVO in in N4 ro t— ro ro T— e- VO in o4\ \ \ —̂ -— --. \ ■— _ro ro CO CO vo .— VO in o o* CO voro ro CN CN CN T— o 4 in »— N 4 r-- CO in■H •H -H ■H ■H ■H ■H ■H +i ■H +i •H ■Hro in vo CO CO in VO VO CO o cn cnin in VO vo »— r - in VO o in ro CNvo in in N 4 ro ■r- cn ro *— p - vo in N 4

O2H2O
PI
PIo
o2H
Hn
PCQQ
PiI

c3

> 
•rH
p  p̂ x 5/ < Q O'-* 
P  

in  o  
cd 
P  P
H

8
> •H 
Pfn a < 0 

Q  Q
»- P0

cd
PC
H

PO
g

- P
CO

in cn o O' VO vo CNro CN ro CN CN T— VO+i -h +i +i +1 -H +1in T— N 4 r-~ T— in inCN O’ CN ro cn o cnvo in in N 4\ CN CN ro
ro CO o4 VO cn r- *—O' ro ro CN CN T— VO
-H +i ■H +1 +i +1 +1
.— VO o r- VO o oro in ro o o ovo in m N4 ro CN N*

o o CN N* O CNT— CN CN T— T— T— CN
-H +1 -H +1 +1 •H +1ro CN CO r- VO N* T—
CO CN CO r-~ in inN* o* O' CO\ CN ro
ro cn CO t— oCN T— T— T— .— CN T—+i +1 +1 +1 41 +1 +1CN CN CO in VOO CO t- CO in inin -sr N* ro CN »— ro

vo O' vo cn VO in■N* O' N" CN T— T— ro+i +i ■H ■H +1 +1 +iro o VO N4 in o e'­o in CN CN T- CO envo in in N4 ro T“ CO
cn o CO cn T--
ro ro CN T— N4 ro•H +i +i +1 +1 +1 +i.— N* CN in O4 in cn
.— O' o CN T-- voVO in in O4 ro ro

XQ)P
Pou
cd
Pto-H
>

H P P> rH Cl) P
> P >1 ■H O
H > 0 cd > > <D ■H

•H H rH -P rH P
X X rH cd O -u 0)
a) a) rH rH P PQ P P
-p ■p O cd a) 2 w
p p U-H -p cl) o
o o o cd -P rH Pi
u u P -H PI cd cd

O 4H rH ■P rH W
rH rH •H P rH P O cd P
cd cd p a) cd O a> p a>
P p a) 0 * W -H p (1) rH
W w & p P c Q) P  o
-«H •H p cn O 0) p cd P
> > cn Q O A PI 2

ro in .— vo VO cn»— CN vo vo cn vo+i ■H •H -H •H •Hro .— VO CN N4 T—cn r- VO r~ O4 CNro »— r-~ in in N4\ -•—, ŝ. \r- r- VO o r~ .—
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APPENDIX II

Full Quantitative Analysis of [3H]-Forskolin Binding 
in the Presence and Absence of Gpp(NH)p 

in Control Animals and Following Unilateral 
Orbital Enucleation
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APPENDIX m

Full Quantitative Analysis of 
[3H]-Forskolin Binding (a), 
[3H]-PDBu Binding (b) and 

Local Cerebral Glucose Utilisation 
Following Visual Cortex Lesion



APPENDIX I I I ( a )

[^ l-FO R SK O L IN  BINDING FOLLOWING VISUAL CORTEX LESION

SHAM LESION
Ipsilateral/Contralateral Ipsilateral/Contralateral

Visual Structures 
Visual Cortex l l / m 64±4 73±7 **44±6 / 74±4
Visual Cortex IV 69±5 77±7 ***45±6 / 77±3
Visual Cortex V/VI 61 ±4 63±4 **34±5 / 63±3
Superior Colliculus 
(Superficial layer) 74±5 75±6 ***70±4 / 82±4
Dorsal Lateral 
Geniculate Body 49±3 49±4 ***46±2 / 52±2
Pretectal Nuclei 34±3 34±3 37±2 / 38±1
Lateral Posterior 
Nucleus 59±3 61 ±3 61 ±3 / 64±3
Non-Visual Structures 
Medial Geniculate 48±4 51 ±3 46±2 / 49±2
Lateral Habenula 32±2 33±2 41 ±3 / 40±2
Hippocampus 
Molecular Layer 85±9 75±7 77±6 / 79±6
Parietal Cortex IV 80±7 78±7 81 ±4 / 81 ±5
Caudate Putamen 131 ±8 135±10 140±8 /144 ±12
Thalamus 63±3 65±4 64±4 / 64±3

Forskolin binding: pmoles/g tissue. Roman numerals indicate 
the cortical layer examined. Data are derived from six sham 
and six lesion animals and presented as mean ± SEM.
**p<0.005, ***p<0.001 significant difference between
contralateral and ipsilateral hemisphere by paired t-test.
F< 1 .5 (p>0.5) for all structures in contralateral hemisphere
between sham and lesion animals by ANOVA.
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APPENDIX I I I ( b )

T ^ l-P D B u  BINDING FOLLOWING VISUAL CORTEX LESION

SHAM
I p s i l a t e r a l / C o n t r a l a t e r a l

LESION
I p s i l a t e r a l / C o n t r a l a t e r a l

V i s u a l  S t r u c t u r e s

V i s u a l  C o r t e x  I l / l i l

V i s u a l  C o r t e x  IV

V i s u a l  C o r t e x  V /V I

S u p e r i o r  C o l l i c u l u s  
( S u p e r f i c i a l  l a y e r )

D o r s a l  L a t e r a l  
G e n i c u l a t e  B ody

P r e t e c t a l  N u c l e i

L a t e r a l  P o s t e r i o r  
N u c le u s

N o n - V is u a l  S t r u c t u r e s

M e d ia l  G e n i c u l a t e

L a t e r a l  H a b e n u la

H ip p o c a m p u s  
M o l e c u l a r  L a y e r

P a r i e t a l  C o r t e x  IV

C a u d a te  P u ta m e n

T h a la m u s

429±24/476±44 
314±18/315±23 
311±14/315±24

289±17/291±18

187±14/187±14 
124±11/126±9

212±14/208±12

194±13/197±11 
104±17/ 98±17

270±15/281±22 
284±35/257±36 
258±12/263±19 
229±8 /227±9

380±11/405±36 
239±6 /286±26 
*185±14/279±19

262±26/260±25

181±11/180±4 
136±16/133±13

228±10/230±10

182±16/180±14 
124 ±13/110±13

280±16/294±19 
308±28/314±28 
252±26/260±23 
222±12/223±13

PDBu b i n d i n g :  p m o le s /g  t i s s u e .  Roman n u m e r a l s  i n d i c a t e  , t h e  c o r t i c a l  
l a y e r  e x a m in e d .  D a ta  a r e  d e r i v e d  f ro m  f i v e  sham  a n d  s i x  l e s i o n  a n i m a l s  a n d  
p r e s e n t e d  a s  m ean  ± SEM.

*p<0.01 significant difference between contralateral and ipsilateral 
hemisphere by paired t-test.
F<1.94 (p>0.5) for all structures in contralateral hemisphere between sham and 
lesion animals by ANOVA.
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APPENDIX I I I ( c )

GLUCOSE UTILISATION FOLLOWING VISUAL CORTEX LESION

SHAM LESION
Ipsilateral/Contralateral Ipsilateral/Contralateral

Visual Structures 
Visual Cortex Il/lll +79±10/ 00 i+ uo **63±10/ 83±7
Visual Cortex IV *87±8 / 95±9 ***63±10/ 95±8
Visual Cortex V/VI t75±7 / 83±3 **59±9 / 82±8
Superior Colliculus 
(Superficial layer) 91 ±9 / 93±11 84±8 / 91 ±8
Dorsal Lateral 
Geniculate Body 93±6 / 92±6 *91±11/ 94±11
Pretectal Nuclei 83±5 / 83±6 83±8 / 86±9
Lateral Posterior 
Nucleus 86±7 / 87±8 86±10/ 88±10
Non-Visual Structures 
Medial Geniculate 97±10/101±10 92±10/ 97±12
Lateral Habenula 96±6 / 97±7 95±9 / 98±10
Hippocampus 
Molecular Layer 72±5 / 70±5 72±8 / 72 ±8
Parietal Cortex IV 91 ±7 / 92±8 82±9 / 83±6
Caudate Putamen 67±5 / 68±4 66±4 / 67±4
Thalamus 78±4 / 78±5 85±5 / 83±5

Glucose utilisation: pmol 100 min-1. Roman numerals indicate the cortical 
layer examined. Data are derived from six sham and six lesion animals and 
presented as mean ± SEM.
+<0.05, *p<0.01, **p<0.005, ***p<0.001 significant difference between
contralateral and ipsilateral hemisphere by paired t-test.
F<0.261 (p>0.5) for all structures in contralateral hemisphere between sham 
and lesion animals by ANOVA.
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APPENDIX IV

Full Quantitative Analysis of 
[3H]-Forskolin Binding (a), 

[3H]-PDBu Binding (b)
Following Lesion of the Rat Medial Septum



APPENDIX I V ( a )

[^ l-FO R SK O L IN  BINDING FOLLOWING MEDIAL SEPTAL LESION

SHAM LESION

Medial Septum 42 ± 2 34 ± 3*
Lateral Septum 52 ± 6 43 ± 5
Vertical Diagonal Band 32 ± 3 34 ± 3

Horizontal Diagonal Band 28 ± 2 31 ± 3
HIPPOCAMPUS:
CA1 Field: Stratum oriens 40 ± 2 42 ± 2

Pyramidal
Radiatum 33 ± 2 36 ± 1

Lacunosum Moleculare 52 ± 3 57 ± 3
CA3 Field: Stratum oriens 3 0 ± 2  3 3 ± 2

Pyramidal 75 ± 4 91 ±10
CA4 Field:
Dentate Gyrus: Molecular Layer 73 ± 4 83 ± 3

Granular Layer 67 ± 4 7 7 ± 4
Polymorph Layer 136 ± 8 162 ± 6*

Entorhinal Cortex:
Layer I-III 86 ± 5 - 84 ± 5
Layer IV-VI 72 ± 3 73 ± 6

Caudate Putamen 154 ± 6 157 ± 9
Frontal Cortex layer IV 65 ± 3 73 ± 3
Superior Colliculus . 77 ± 2 84 ± 3
Dorsal Lateral Geniculate Body 49 ± 2 55 ± 2
Medial Geniculate 47 ± 2 48 ± 3

Forskolin Binding: pmoles/g tissue. Roman numerals indicate 
the cortical layer examined. Data are presented as mean ± SEM 
where n=7 in each group. *p<0.05 significant difference between 
sham and lesion group by unpaired t-test.
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APPENDIX I V ( b )

[ ^ l - P D B u  BINDING FOLLOWING MEDIAL SEPTAL LESION

SHAM LESION

Medial Septum 203 ± 8
Lateral Septum 344 ± 28
Vertical Diagonal Band 234 ± 10
Horizontal Diagonal Band 166 ± 13

HIPPOCAMPUS:
CA1 Field: Stratum oriens 387 ± 42

Pyramidal 463 ± 43
Radiatum 371 ± 31

Lacunosum Moleculare 255 ± 18
CA3 Field: Stratum oriens 321 ± 16

Pyramidal 340 ± 21
CA4 Field: 297 ± 15
Dentate Gyrus: Molecular Layer 315 ± 14

Granular Layer 280 ±14
Polymorph Layer 233 ± 20

Entorhinal Cortex:
Layer I-III 583 ± 37
Layer IV-VI 355 ± 39

Caudate Putamen 210 ± 11
Frontal Cortex layer IV 275 ± 16
Superior Colliculus . 282 f  16
Dorsal Lateral Geniculate Body 204 ± 21
Medial Geniculate 205 ± 14

223 ± 11 
381 ± 62 
228 ± 15 
151 ± 13

377 ± 39 
473 ± 46 
384 ± 32
255 ± 16 
306 ± 9 
334 ± 21 
319 ± 32 
322 ± 33 
287 ± 18
256 ± 21

737 ± 53* 
421 ± 33

216 ± 9
276 ± 19 
316 ± 12 
211 ± 4
206 ± 7

PDBu Binding: pmoles/g tissue. Roman numerals indicate the 
cortical layer examined. Data are presented as mean ± SEM 
where n=7 in each group. *p<0*05 significant difference between 
sham and lesion group by unpaired t-test.
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APPENDIX V

(a) Full Quantitative Analysis of [3H]-Forskolin Binding in Control 
and AD Brain. [3H]-Forskolin Binding was performed in Adjacent 
Sections to Those Used for [3H]-PDBu Binding as Shown in 
Results Section 2.

(b) Linear Correlation Coefficients of [3H]-Forskolin Binding with 
ChAT Activity.
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APPENDIX V (a )

[ % ] -FORSKOLIN BINDING IN  CONTROL AND AD BRAIN

[ ] -FORSKOLIN BINDING

CONTROL AD

Middle Frontal Cortex 
Layers I/III 
Layer IV 
Layers V-VI 
White Matter 

Middle Temporal Cortex 
Layers I-III 
Layer IV 
Layers V-VI 
White Matter 

Hippocampal Region 
CA1 
CA3 
CA4 
Hilus
Molecular Layer 
Granular Layer 
Lacunosum moleculare 
Subiculum
Parahippocampal Gyrus: 
Superficial layer
Deep layer
White Matter

88 ± 6

71 ± 6  
76 ± 5 
14 ± 1

72 ± 6 
65 ± 5 
67 ± 5 
14 ± 1

24 ± 2 
29 ± 3 
35 ± 3 
45 ± 3 
39 ± 4 
29 ± 3 
41 ± 4 
29 ± 3

54 ± 4 
43 ± 3 
13 ± 2

57 ± 5 * 
52 ± 5 * 
57 ± 5 * 
15 ± 1

46 ± 5 * 
44 ± 4 *
47 ± 4 * 
11 ± 1

22 ± 3 
24 ± 3 
29 ± 4 
33 ± 6 
24 ± 5 *
23 ± 5 
29 ± 6
24 ± 5

43 ± 7 
36 ± 7 
12 ± 2

F o r s k o l i n  B in d i n g :  p m o l /g  t i s s u e ,  
t h e  c o r t i c a l  l a y e r  e x a m in e d .

Roman numerals indicate

Data are derived from nine control and nine Alzheimer (AD) cases 
and presented as mean ± SEM.- *p<0.05 significant difference by 
unpaired t-test.
FOOTNOTE: The levels of [3H]-forskolin binding, presented here,
are markedly different to those in a separate study (see Results 
section 1.4). These disparate levels of [ H]-forskolin binding 
in two different series of experiments reinforces the absolute 
requirement that all ligand binding in control and AD brain be 
performed on the same day.
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APPENDIX V(b)
LINEAR CORRELATION COEFFICIENTS OF T% 1 -FORSKOLIN BINDING WITH ChAT ACTIVITY

r VALUES p VALUES
Middle Frontal Cortex

Layers I/III 0.711 <0.01
Layer IV 0.683 <0.01
Layers V-VI 0.619 <0.05

Middle Temporal Cortex
Layers I-III 0.735 <0.01
Layer IV 0.723 <0.01
Layers V-VI 0.727 <0.01

Hippocampal Region
CA1 0.032 NS
CA3 0.032 NS
CA4 0.077 . NS
Hilus 0.257 NS
Molecular Layer 0.305 NS
Granular Layer 0.290 NS
Lacunosum moleculare 0.336 NS
Subiculum 0.141 NS
Parahippocampal Gyrus:
Superficial layer 0.469 NS
Deep layer 0.363 NS

Correlation analysis, using linear regression analysis, was 
determined between [ H]-forskolin binding and ChAT activity when 
data from control and AD brains were combined. r Values are 
indicated above and the significance level (p value). NS 
indicates no significant correlation.
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APPENDIX VI

Linear Correlation Coefficient of 
[3H]-Forskolin Binding (a) and 

[3H]-PDBu Binding (b) 
with Postmortem Delay and Age



APPENDIX V I ( a )

LINEAR CORRELATION COEFFICIENTS OF -FORSKOLIN BINDING 
WITH POSTMORTEM DELAY AND AGE IN  HUMAN BRAIN

BRAIN REGION

MIDDLE FRONTAL CORTEX
L a y e r  I - I I I  

IV
V-VI

MIDDLE TEMPORAL CORTEX
Layer I-III 0.467 

IV 0.486 
V-VI 0.564 

HIPPOCAMPAL FORMATION
CA1 0.253
CA3 0.285
CA4 0.182

H i l u s 0.000
G r a n u l a r  L a y e r 0.063

M o l e c u l a r  L a y e r 0.122
L a c u n o su m  m o l e c u l a r e 0.286

S u b ic u lu m 0.313

Parahippocampal Gyrus:
Superficial 0.396 

Deep 0.604

AGE
CONTROL AD

0.270 0.055 -0.955*
0.145 0.423 -0.959*
0.152 0.444 -0.972*

0.363 0.000 0.329
0.397 0.109 0.055
0.359 0.221 0.359

0.428 0.554 0.000
0.045 0.483 0.348
0.207 0.457 0.293
0.361 0.589 0.305
0.192 0.550 0.192
0.158 -0.700* 0.045
0.000 -0.710* 0.000
0.210 -0.710* 0.000

0.592 0.503 0.263
0.540 0.265 0.339

POSTMORTEM DELAY 
CONTROL AD

0.0000.155
0.266

r Values are presented as determined using least squares 
fit linear regression analysis. *p<0.05 significant 
correlation, the direction of the correlation is shown.
[ 3H ]-Forskolin binding is taken from series 1 (see Results 
section 1.4).



APPENDIX V I ( b )

LINEAR CORRELATION COEFFICIENTS OF f ^ l - P D B u  BINDING 
WITH POSTMORTEM DELAY AND AGE IN  HUMAN BRAIN

POSTMORTEM DELAY BRAIN REGION CONTROL AD AGE
CONTROL AD

MIDDLE FRONTAL CORTEX

Layer I-II 0.543 0.164 0.644 0.141
III-IV 0.327 0.319 0.367 0.257
V-VI 0.349 0.155 0.285 0.268

MIDDLE TEMPORAL CORTEX
Layer I-II 0.447 0.486 -0.847* 0.283

III-IV 0.286 0.263 -0.754* 0.077
V-VI 0.564 0.359 0.221 0.359

HIPPOCAMPAL FORMATION
CA1 0.621 0.632 0.263 0.356
CA3 0.170 0.286 0.351 0.176
CA4 0.696 0.200 0.355 0.495

Hilus 0.513 0.540 0.539 0.045
Granular Layer 0.138 0.581 0.249 0.110

Molecular Layer 0.239 0.443 0.270 0.063
Lacunosum moleculare 0.478 0.575 0.286 0.148

Subiculum 0.608 0.495 0.228 0.482
Parahippocampal Gyrus:

Superficial 0.286 0.352 0.228 0.482
Deep 0.628 0.509 0.243 0.032

r Values are presented as determined using least squares fit 
linear regression analysis. *p<0.05 significant correlation, 
the direction of the correlation is shown.



APPENDIX \0I

Effect of Postmortem Delay 
[ H]-Forskolin Binding in Rat Brain



APPENDIX V I I

EFFECT OF POSTMORTEM DELAY ON f ̂  1-FORSKOLIN BINDING IN RAT BRAIN

Postmortem
Delay
(hours) Total Non-Specific Specific

0 93 ± 3 6 ± 1 87 ± 3
2 95 ± 1 8 ± 1 87 ± 1
5 98 ± 1 12 ± 1 86 ± 1
15 84 ± 4 12 ± 1 71 ± 4

% Specific 
93 
92 
88 

86

Rats were decapitated and the intact brain inside the skull 
left at room temperature for increasing periods of time after 
which the brain was frozen in isopentane and sectioned. 
Brain sections were labelled with 20nM [3H]-forskolin. Non­
specific binding was defined in the presence of 20}iM 
unlabelled forskolin. Specific binding was determined by 
subtraction of non-specific from total binding. 
Radioactivity was measured using liquid scintillation 
analysis. Data are presented as mean ± SEM (n=2 at each time 
point).
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APPENDIX VIII

Scatchard Analysis of [3H]-Forskolin Binding (Villa) 
and [3H]-PDBu (VUIb) in Rat Brain

Villa

A. [3H]-Forskolin binding was examined in ra t brain sections at 
the level of the caudate putamen in three rats. Sections were 
incubated with increasing concentrations of [ H]-forskolin 
(2 - lOOnM) a t 22°C f6r 20 minutes and the radioactivity 
counted by liquid scintillation. Non-specific binding was 
defined in the presence of 20)jlM unlabelled forskolin.

B. Scatchard analysis of saturation data of [3H]-forskolin binding.

VTIIb

A. [3H]-PDBu binding was examined in ra t brain sections at 
the level of the caudate putamen in three rats. Sections were 
incubated with increasing concentrations of [3H]-PDBu (2.5 - 
150nM) at 22°C for 90 minutes and the radioactivity counted by 
liquid scintillation. Non-specific binding was defined in the 
presence of 2 jjlM  unlabelled forskolin.

B. Scatchard analysis of saturation data of [3H]-PDBu binding.

247



APPENDIX VIII(a)

SCATCHARD ANALYSIS OF 3H-FORSKOLIN BINDING
IN RAT BRAIN
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APPENDIX VIII(b)
SCATCHARD ANALYSIS OF 3H-PDBu BINDING 

IN RAT BRAIN
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