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Abstract

The theory of Lee and Yang, which relates the distribution of the zeros of the
partition function to the phase structure of a system, is applied to lattice field
theory with dynamical fermions.

A method is described in which the partition function is evaluated as a finite
polynomial in either the bare fermion mass or the ‘fugacity’. The roots of this
polynomial which are relevant to the physics, i.e.those close to the real axis, are
then studied.

The partition function zeros are first studied in the fermion mass plane for
SU(3), SU(2) and U(1) gauge theories with four flavours of staggered fermions in
the infinite coupling limit. Differences are observed in the distributions of zeros
on finite lattices, but all are consistent with the expected critical point at ma = 0
on an infinite lattice. The SU(3) and U(1) calculations are then extended to
weaker couplings and, in the SU(3) case, to larger systems.

In Chapter 7 we perform the expansion in the fugacity plane. The Grand
Canonical Partition Function is expanded in terms of Canonical Partition Func-
tions for fixed fermion number. The distributions of zeros give strong evidence

for the existence,or otherwise, of a phase transition at finite chemical potential.

vil



Chapter 1

Introduction

1.1

Quantum Chromodynamics is the field theory of the strong interactions between

quarks and gluons. It is described by the Lagrange density

1 —
Locp =—ﬁTrFWF“"+Z¢(z g+ A—m)y (1.1)
f
Fm/ = 6/.LAV - 5vAu 'H[Aua Au] (12)
A, = gAST, (1.3)

and T, is a representation of the Lie algebra of the SU(3) gauge group.

Calculations based on a weak coupling, perturbative expansion around g = 0
have been very successful in predicting the high-energy, short distance, behaviour
of the theory as probed in collider type experiments. These Feynman diagram
techniques are valid in this regime since QCD is an asymptotically free theory.
The coupling tends to zero at short distances. Low order perturbative calcula-
tions, however, are not valid in the low energy regime where the coupling diverges
and we know that quarks are confined in colour singlets.

Renormalisation group calculations predict that hadron masses and <E¢> will
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Figure 1.1: Two contributions to the quantum mechanical path integral.

be related to a mass scale introduced by the regularisation scheme.
— __a
mg, <"1b"/)> ~ A = const. e Cd*(a) (1.4)

g(a) is the coupling at length scale a. Equation(1.4) has an essential singularity at
g(a) = 0. This means that it has no perturbative expansion. Hadron masses, chi-
ral symmetry breaking and confinement are therefore inherently non-perturbative
and in order to study them we require a non-perturbative regularisation scheme
which can be applied directly to the fields, rather than to Feynman diagrams.

The lattice gives us such a scheme.

1.2 Introduction to Lattice Gauge Theory

1.2.1 Path Integrals and Statistical Mechanics

The Feynman path integral formulation of quantum mechanics[1] gives us the
probability amplitude for a particle at a point (to,z,) to propagate to a point

(tlv-x—l)'

;M .
G(zo,to, 21, t1)= D € INEZECEONT (15)
all paths

The sum extends over all possible paths between the initial and final points This
infinite sum may be replaced by a functional integral over all paths. (Iigure 1.1)

L(z, ) is the classical Lagrangian for the system.



We may generalise this to quantum field theory. Let us consider a single scalar
field, #. Since the field is simply a function of the space-time coordinates, we may

write the partition function — the generating functional for vacuum diagrams —
as

7 — [d¢] ot [ 47 [ d*z L(6,6,0) (1.6)
field configs

where £(¢, 6,4) is the Lagrangian Density function.
Expectation values of time ordered products are calculated with the complex

measure

%eifdrfdsxﬁ (1.7)
(QUTlgr, 62 10) = 27 [[dg] rae’ /47 #= 8509 (18)

where |Q2) is the vacuum.
If we now perform the analytic continuation ¢ — iz4 (z4 € R) we obtain a

real measure similar to the Boltzmann factor in statistical mechanics.

%e—fd‘“b‘ (1.9)

where Lg is the Lagrangian density function in four Euclidean dimensions.

This is now formally equivalent to a 4-D statistical system of fields in that
the time-ordered products of field variables are simply the statistical expectation
values of these products with respect to the ‘Boltzmann distribution’ given above.

It is this equivalence which allows us to calculate these expectation values
numerically, as we shall discuss later. It also allows us to make use of many
techniques developed for the study of statistical systems.

It must be noted that a naive calculation of expectation values using the above
measure will still encounter divergences due to the high frequency components
of the fields. We must remove these divergences by imposing a cut off on the
momenta associated with the fields.

The analogy with statistical mechanics, and in particular critical phenomena
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Figure 1.2: Two dimensional slice through a hypercubic lattice

(e.g.phase transitions in spin systems), is made closer by the choice of regulari-

sation scheme which we make.

1.2.2 Lattice Regularisation

This regularisation scheme imposes a discrete symmetry on a finite volume of

space-time. This usually involves the approximation of continuous space-time by

a hypercubic lattice , with lattice spacing a (Figure 1.2).

The imposition of this discrete structure breaks the rotational symmetry of

the continuum theory but we hope that this will be restored as we approach the

continuum limit (@ — 0).

Consider a single scalar field, ¢, on a L* lattice. If we now Fourier transform

this into momentum space we obtain

¢(p) = g e?¢(z).

n=1,...,L

¢(p) is periodic in p with period p, = 2.

The momenta may be restricted to lie in the first Brillouin zone

™ T
__<puS"
a a

which gives us the desired ultraviolet cut-off.

4

(1.10)

(1.11)



We may now restore, in some sense, translational invariance, at scales above

a, by imposing periodic boundary conditions in all directions.

1.2.3 the Lattice Action

The Lagrangian density for QCD without fermions is

1
Equen = —ﬁ TI'FW,F‘W. (112)

Our choice of action , Sy, for the lattice theory must satisfy three requirements.

a—0
o SL — ['quen

e we require a local action

e 51, must be invariant under local gauge transformations.
The gauge fields may be naturally associated with the lattice links.

A@) = Upy = 77 0mmtato)

130 iadu(z)

~ 1+iaA,(z) (1.13)

The link variables, U, ,, are elements of the gauge group, rather than the Lie

algebra.

To preserve local gauge invariance, our lattice action must be built up from
products of link variables around closed paths on the lattice. The simplest, and

most local, choice is the elementary plaquette.[2]

X +v HL+V
Re B = Re Tr(Uz:,uUr+u,uUz+u+u,-—uUz+u.—u)

= ReTr(U,,Usn Uy, UL) (1.14)

1l

ReTr U,

5



On the lattice, where derivatives are replaced by finite differences,

1
0,A,(z) — ;(AU(:I; +p)— Ay(z)) (1.15)
and
a—s 1
TrU, =5 Tr(1 — 1FuwF™) + 0(a®). (1.16)

If thg lattice action is taken to be

SWy=2 (- SRe(Tr ;) (1.17)

9° zmp

then the correct action is recovered in the continuum limit. The lattice action
may be modified by the addition of terms which vanish in the continuum limit
but Eqn(1.17) gives the simplest, and most frequently used form.

The lattice partition function becomes
Z = /DUe-S(U> (1.18)

where DU is the invariant Haar measure of the gauge group. Z, for a finite

system, is now well defined, with no divergences.

1.2.4 The Continuum Limit

In order to approach the continuum quantum field theory we must remove the
cut-off by letting the lattice spacing shrink to zero. Hadronic physics has a char-
acteristic length scale of around 1fm. Since this is a physical length scale which
must remain constant as the lattice spacing becomes smaller, it must become very
large when compared to the lattice spacing as a — 0. Since the interactions in the
lattice theory are given by finite differences, and thus extend over infinitessimal
distances, it requires careful tuning of the parameters in the action so that non-
trivial behaviour, with correlations extending over finite distances and hopefully
describing physical processes, is obtained.

This tuning is exactly analogous to the tuning required in the approach to

the critical temperature in statistical mechanical models. 6]

6



Ising model Q.F.T.

T—>Tc qg—g-
£ 5o §—>oo

a

§ — 00, a fixed | £ fixed, a — 0

a~1A ¢ ~ 1fm

Table 1.1: Comparison of the critical behaviour of the Ising model and the ap-
proach to the continuum limit of lattice gauge theory. ¢ is the correlation length

in physical units.

Consider an Ising model at a temperature above T,. correlations between spins
will extend over only a few lattice spacings. As the temperature is tuned towards
T., the correlation length increases towards infinity and the system ungergoes a
second order phase transition.

The critical behaviour, as described by the critical exponents, depends only on
the spatial dimension and the symmetries of the Hamiltonian. This is in contrast
with the correlations above T, which depend on the lattice structure and the
exact form of the interactions.

In quantum field theory, the coupling constant g must be tuned to a critical
value, g*, so that the correlation length diverges when measured in units of the
lattice spacing. In this case, however, physical distances must remain finite.

Therefore the lattice spacing must be simultaneously tuned to zero.

Perturbative calculations tell us that QCD is asymptotically free[3]. For small
coupling, g(a) — 0 as a — 0. The continuum limit is approached by simultane-
ously tuning ¢ and a to zero while holding physical quantities fixed.

Since the only dimensionful quantity in lattice QCD is the lattice spacing, a,



any mass prediction should take the form

M=) (1.19)

In a renormalisable theory, as the lattice spacing becomes small compared to
characteristic length scales, and so the cut off becomes large, the spacing is no
longer expected to affect the physics. This requirement that physical quantities

be cut-off independent,

a% =0 (1.20)
leads to the relation
@)+ 8T =0 (1.21)
where
8lg) = ~a 0% (1.22)

is the Callan-Symanzik beta function.[4]
Equation (1.22) relates the lattice spacing at different values of the coupling

by

alg) _ -
eS| : (1.23)

In our simulations we typically calculate dimensionless quantities, e.g. Ma. If
our answer is relevant to the continuum theory then we should find that it scales
with the lattice spacing as we perform the measurement at various values of the
coupling.

M;a = constant. e w B (1.24)
irrespective of the form of 8(g). This leads to the conclusion that we must reduce

the coupling until the ratio of two masses , e.g.pion and nucleon, becomes constant

as g changes.

M8 _ ™ _ constant (1.25)
m;a m;

As we systematically reduce the lattice spacing we are forced to increase the

number of lattice sites so that the physical size of the lattice does not become too

8



small. It is the extra computation required for these large lattices which makes
simulation in this ‘scaling regime’ very expensive.

The 2-loop perturbative form for 3(g) is well known([3).

Blg) = =Pog® — Brg® + O(g") (1.26)

where o = 11/167% and 8, = 3(3/1672)2.
This gives

a(g) = AT (Bog®) ¥ (14 0(g?)) (1.27)

where Ay is a cut off independent mass parameter which sets the scale of QCD.
It is an external parameter which must be measured by experiment.

If we are working at sufficiently small coupling, then we expect 5(g) to ap-
proach the 2-loop B-function, B(g) = —Bog® — F1g°. Our measured value of ma

should have the dependence

B

-1 T 3eT
ma = const. e 289 (fyg®) o (1.28)
ma
m = COIlSt.AL =m (129)

where a(2-loop) is the value calculated from the perturbative formula. This be-
haviour is known as asymptotic scaling.

If we observe asymptotic scaling behaviour then we can say that we are
approaching the perturbative regime which describes so well much of the phe-
nomonology of QCD. The non-perturbative information is the value of the con-

stant in equation (1.29).

1.3 Calculational Methods

1.3.1 Strong Coupling Expansion

The strong coupling expansion of lattice QCD is equivalent to the high tempera-

ture expansion of thermodynamic systems. The ‘Boltzmann factor’ is expanded

9



in powers of § = 6/¢%.[7]
e=SW) — 1 By (1- NL Re(Tr U,)) + - -- (1.30)

Each factor of 3 brings with it a product of group variables around a plaquette.
The problem reduces to the computation of chains of group integrals. For

SU(3) gauge theory we may use the identities|[8]

[ou=1 (1.31)
/DUU:/DUU*:O (1.32)
/DU UU = /DU utut=o (1.33)
/ DU U,UY, = %5,-15,~k (1.34)

/ DUV UnUimn = fl—je,.kme,-,,, (1.35)

As an example, let us calculate the expectation value of a Wilson loop, W (r,t).
The closed loop on the lattice is the simplest object with any physical significance.
It can be shown quantum-mechanically that the potential,V(r), between a static

quark and antiquark can be defined via
< W(r,t) >"=° e Vit (1.36)

where r and t are the spatial and temporal dimensions of the loop.

Substituting equation (1.30) for the exponential of the gauge action and using
equations (1.31)-(1.35), the expectation value picks up its first non-zero contri-
bution from the diagram in which the Wilson loop is ‘tiled’ using the minimum
number of plaquettes. (Figure 1.3)

All link variables now appear in the form Tr(UU'). This leads to the result
( ﬁ ) N:N;

18
1\
- (&)

n 392
= (1.37)

< W(rt)>

10
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T

a8

a0

-
Figure 1.3: The minimally tiled Wilson loop. The lowest order strong coupling

contribution to (W (r,t))

Comparison with Equation (1.36) leads to the linear confining potential

with string tension.
In(34%)
o=—0 (1.39)

However, this result may not be of direct relevance to continuum QCD. A
similar result may be obtained for QED, which is not a confining theory in the
continuum. The linear potential may only be lost through a phase transition
which should be evident at higher § and higher order in the expansion. Un-
fortunately, the results of the strong coupling expansion become unclear as we
approach the scaling region. We need a more powerful technique if we are to

probe continuum physics.

1.3.2 Monte Carlo Method

The path integrals to be evaluated in the calculation of an expectation value are

ordinary multiple integrals over the group manifold.
<¢> = —;-/DU $(U)e=50) (1.40)

11



- L ST g(U)e3) (1.41)

Z eonsig
A naive summation in equation (1.41) is impractical. Even for the simplest
possible gauge group, the Z, group of the Ising model, on a 10* lattice, we have
1.58 x 1012°*! configurations. The summation could not be performed in the age
of the universe.
All is not lost, however. Due to the Boltzmann factor in equation (1.41), only
a small subset of configurations make any significant contribution to the sum.

One must generate configurations according to their importance.[8]
P([UN[DU] = [DU]e~5@) (1.42)

The expectation values then become averages over a large number of configura-
tions taken from the distribution (1.42).
< ¢>= L > ¢U)+ O(L) (1.43)
N N configs \/—N—

These configurations may be produced by a Markov process in which each con-
figuration is generated from its immediate predecessor with probability P([U, ] —
02,

The conditions placed on this probability function will be discussed in the next

chapter along with the algorithms used to generate configurations in practice.

1.4 Fermions on the Lattice

If we hope that the lattice theory will reproduce the phenomenological results of
QCD, e.g.the low lying hadron spectrum, and explain the mechanism by which
chiral symmetry is broken, then we must include the effect of quark loops in our

calculations.

12



1.4.1 The fermion doubling problem

The fermion part of the action for continuum QCD is

5 =3 [diaa)f+id+mpv(a] (1.44)

where the sum is over all fermion flavours.

A naive transcription onto the lattice gives, for a single flavour of fermion,

Sp= %[;(E(m)*yuUu(x)@b(:c + ) = %(z + p)1U(2)$(z)) + 2ma Z P(z)9(z)]

(1.45)

For free fermions, when U,(z) = 1, we may transform into momentum space
using

b(p) = Y€ () (1.46)

where the vector n has integer components labeling the lattice sites. p, =

m,7/N, where N, is the length of the lattice in the p direction and m,
0,1,...,2N,, — L.

The action then becomes

Sr =" 9(p) Y(2i7, sin p ) (—p) + 2mb(p)d(~p) (1.47)

with lattice fermion propagator
2. . -1
S(p) = (2 ~#usinpm + 2m) (1.48)
m

For p,, < 7 we recover the continuum form

Sp) =03 %inpu +2m)! ~ ?i—m (1.49)

However, for p, close to = we also recover the continuum form with a new set
of v matrices.

In 4-D, the propagator has 16 poles at the corners of the first Brillouin zone.
This means that a single naive Dirac field describes not one but sixteen fermions.

This is the doubling problem of lattice field theory.

13



This doubling arises from the periodicity of the sine function in the fermion
propagator obtained from the fourier transform of the nearest neighbour form of
the lattice derivative. In a continuum theory, a derivative just gives a factor of
the momentum. However, if we replace the sinp, by p, in the lattice propagator
and then return to position space,we obtain highly non-local fermion interactions.

The doubling problem is also very closely related to chiral symmetry. Suppose
that we want to describe a theory with only left-handed particles %(1 —vs)y and
E%(l + vs5). When we put this naively on the lattice, we find that we now have
16 particles, 8 right-handed and 8 left-handed. This is because, at some of the
poles of the propagator, we have to modify the v matrices in such a way that ~s
changes sign. With the original s, (1 — v5)% will now describe a right handed
particle at that pole.

This is a general feature of lattice theories which is expressed in a theorem of
Nielsen and Ninomiya[9] : A hermitian, local and translationally invariant lattice
field theory has an equal number of left and right-handed fermions in every charge
sector of the Hilbert space.

We can avoid the doubling only by explicitly breaking the chiral symmetry of

the ma = 0 action. There are two widely used formulations.
e Wilson fermions, in which the chiral symmetry is completely broken.

¢ Kogut-Susskind (staggered) fermions which retain a remnant of chiral sym-

metry at the expense of not completely solving the doubling problem.

1.4.2 Wilson Fermions

Wilson added to the naive action an irrelevant operator, ar5#.;/)‘6,,¢, which van-

ishes in the continuum limit[10]. For the free fermion action on the lattice we

14



now have

S = —%n S @) %)z + 1) + Bz + p)(r + 7)6(2) + = 3 F)()

2a
(1.50)
where
K= L (1.51)
" %2ma + 8r '
is the Wilson hopping parameter.
The free fermion propagator now becomes
-1 8r 2 r
S(p) :2m+—+2—7us1npu——22cosp,, (1.52)
a ' a a’;

At p = (0,0,0,0) we recover the continuum form of the propagator. At other

corners of the Brillouin zone we have fermions with mass
nr
2m + —
a

where n is some integer. Since r is fixed, this represents a divergent mass as
a — 0. this lifts the degeneracy.

r is conventionally taken to be equal to 1, which gives us projection operators
(1 —~,) and (1 +v,). In order that ma = 0 we must tune « to a critical value,

K.

2ma = i— —8r
= K, = ! (1.53)
8
In the interacting theory,
§ = Yl()(z)— £ _{P(2)(1 — 1) Uu(z)d(z + )
+P(z + p)(1 + %) Ul(2)$(2)}] (1.54)

k. will be a function of the coupling, varying between the free field value, 15 and

the strong coupling value of 3.

15



1.4.3 Staggered Fermions

Kawamoto and Smit (11] reduce the number of degenerate flavours by performing a spin

diagonalisation of the action. Define a new field, y, by

() =172 155 x(2), za=t (1.55)

The fermion action then becomes

S@w.U) = S xU)
= FEER@@U)x(@+ k)~ X(@ - wnu(z — )UL(=)x()
+ 2max(z)x(z)] (1.56)

The fermion signs, 7,(z), arise from the commutation of 4 matrices.

mu(z) = lifp=1

= (=1)"tT*%u-1 otherwise (1.57)

The action is now diagonal in the spin degrees of freedom and so describes four
single component complex fields.If we retain only one of these fields, we reduce
the number of flavours to four.

The action (for m = 0) now has a U(1) x U(1) symmetry

Xo — €% x? (1.58)
X — Xoe i (1.59)

where ‘e’ and ‘o’ refer to the fields on even and odd lattice sites. x fields on
neighbouring sites have opposite chirality. A mass term couples fields even to
even and odd to odd. This forces a. = a,. This corresponds to the fact that a
mass in the continuum Lagrangian couples left handed fields to left handed fields
and right to right, forbidding independent rotations of left and right handed

components.
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It is possible to reconstruct a 4-component, flavoured, Dirac field from the
x field. This field is defined on a lattice of spacing 2a with its spin and flavour
distributed over an elementary hypercube of the original lattice. The action is
that for a naive fermion with an additional term of relative order a which lifts
the degeneracy. The 4-momentum is now restricted to the first Brillouin zone

associated with the new lattice.
T
— <pu< — (1.60)

The propagator now has,for m = 0, only one pole at p, = (0,0,0,0) , in each
flavour channel, giving four massless flavours.

This action at m = 0 has a Uy (1) x U4(1) symmetry. The U4(1) is a remnant
of the SU4(4) symmetry of the naive action, not the U4(1) chiral symmetry.
However, when the U 4(1) is broken spontaneously, we will get a massless ‘pion’.

We do, therefore, have some remnant of the correct chiral symmetry.
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Chapter 2

Algorithms for simulations of

QCD

2.1 Introduction

The majority of algorithms for the simulation of QCD with dynamical quarks

follow one of two philosophies

o fairly large changes made to one link at a time with an exact calculation of
fermion determinant ratios at every link update.This is a very expensive
calculation. The most common algorithm of this type is that of Metropolis

et al.[12].

e approximate methods which update the whole lattice by a small amount
using an equation of motion. This requires the calculation of inverse
matrix elements only once per lattice update but expectation values must

be extrapolated to zero time-step, making multiple runs necessary.

Examples are the Langevin[13], Microcanonical[14] and Hybrid[16] algo-

rithms.
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One algorithm which appears to have the advantages of both tliese methods
is the Hybrid Monte Carlo Algorithm (HMC)[17].

In this method the lattice is updated using one hybrid trajectory. The new
configuration is then accepted with probability p = min[l,e*"]. where §H is
the change in the Hamiltonian during the hybrid trajectory. The Metropolis
accept/reject step ensures that this is an ezact algorithm with no step-size
dependence in expectation values.

In this chapter the Metropolis, Langevin, Microcanonical and HMC methods
will be briefly discussed. A more detailed description of one formulation for the
Hybrid algorithm and the extensions needed to implement the HMC algorithm
will then be given.

The last section will give an outline of the algorithms used to calculate the

required inverse matrix elements.

2.2 The Metropolis Algorithm

The properties required of a Markov process used to generate field configurations

in a Monte Carlo algorithm are

1. ergodicity : for any two configurations (U, ,] and [U] ]

P([Upu] = [U, ) >0 (2.1)
2. normalisation :
Z P([Uz,#] - [U:;,‘p]) =1 (2-2)
U,

3. to ensure that we obtain configurations distributed according to the cor-

rect probability density

p([U]) = [dU]e= 5D (2.3)
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we require that p([{U]) be a fixed point of our algorithm. i.e.

Zp( DP(U] = [U) =p(lUN (2.4)

A sufficient condition is that the process satisfies detailed balance.

P(IUDP(IU] = [U]) = p([U)P(U] — [U]) (2.5)

A simple way to implement this is the Metropolis algorithm.

P(U] = [U) = min[t,e] (2.6)

55 = S(UY) - ()

If dynamical fermions are included we must calculate

_ detM([U'] _
65 _ 85, 2.7
detM([U])° (2:7)
for every link update. It is not actually necessary to calculate the full determi-

nant each time. The ratio may be rewritten as

det M([U']) _
————— =det(1 + MM 2.8
detda(o) ~ et ) (2:8)
where M = M([U']) — M([U)]) has non zero elements in only a small block.

however, we still have the costly calculation of the necessary inverse matrix

elements. This limits exact Metropolis updating to very small lattices.

2.3 Small step-size algorithms

2.3.1 Kramers equation

The Kramers equation[18] for a classical particle of mass m moving in a one

dimensional potential V(z) takes the form

1

d*z ov da:
it 2.6
m(lT Oz dT + ( > (7). (2:9)
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This is the Newton equation with the addition of a drag term with coefficient

o and a Gaussian noise 7(7) with normalisation
(n(r)n(r")) = 6(r — 1) (2.10)

where, in this case, (z) denotes the statistical average of z.

‘The noise need not actually be Gaussian but must satisfy the above nor-
malisation. The Kramers equation describes the Brownian motion of a particle
with the drag term included in the calculation.

The Kramers equation can be rewritten in canonical form by introducing
the momentum variable p.

dp 9V P 20\ ? dz 5
dr = 9z “m + ( g ) T’(T)’ dr (2.11)

Simulations of this system are performed by discretising 7 and introducing a
time step, e. If the resulting finite difference equations are solved to first order

in €, the equilibrium probability density is found to be
2
P(z,p) = e PER*VE) L O(e) (2.12)

The Kramers equation thus generates a particle distribution in thermal equi-

librium at temperature T = ﬁ , independent of the drag coefficient «.

2.3.2 Langevin Algorithm

The m — 0 limit of the Kramers equation, after rescaling to remove «, becomes

dz 8V [2\? |
E = _a + <E> 17(7'), (213)

This is the Langevin equation.

For a scalar field theory, the Langevin equation takes the form

o¢(z,7)  9S[4]
o = 0a(z.7) +n(z,7) (2.14)
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where 7 is the fictitious time, S[¢] is the lattice action and n(z,7) is Gaussian

noise normalised by
(n(z,7)n(z', 7)) = 26,08(T — 7). (2.15)

For sufficiently large 7, the configurations ¢(z,7) are generated according

to the probability distribution
P(¢) = e~59, (2.16)

This is exactly the required distribution.
For actual numerical simulations, Langevin time must be discretised, giving

the following recurrence relations for the fields.

as
Bz, Tny1) = Oz, 70) — ‘o) T Ven(z, 1) (2.17)

The delta function in the normalisation equation for n(z,7) (Equation(2.15))
now becomes a Kroneckerdelta, . 7 in discrete Langevin time. This leads to an

equilibrium probability distribution
P($)d¢ = e—S¥dg (2.18)
where S is the modified action
Slg] = S[¢] + eSi[g] + -+ (2.19)

The O(e) correction must be eliminated by extrapolation to € = 0.
It can be shown that, for some actions, the O(e) term can be absorbed into

a renormalisation of the bare parameters of S[¢] giving an effective action S'[4)].

[13]
S'(¢] = S(¢] (2.20)
36— 31237% (2.21)

Discretisation errors can only be absorbed into a renormalisation of the bare

couplings and masses in this way if the new action is in the same universality

[SV)
3%



class as the old one. This is only satisfied for small € and local actions. e.g.The

pure gauge Wilson action.

This algorithm may be generalised to non-abelian gauge fields in a straight-

forward manner.

The iterative Langevin scheme

Uu(®y Tag1) = e_if“TaUu(x’Tn) (2.22)
with driving force
fa = €02 So[U] + Vena (2.23)

is the simplest group invariant discretisation of the differential Langevin equa-
tion for a gauge invariant action Sp[U] built up from U,(z) link variables.

The inclusion of fermion loops results in a modification of the driving force.
1 ¢ 1

where £ is a gaussian random vector.
This involves one full matrix inversion per lattice update.This is still quite

expensive in computer time.

2.3.3 Microcanonical and Hybrid Methods

The o — 0 limit of the Kramers equation gives the purely deterministic Newton
equation.
md?z v

_— = —— 2.25
dr? Oz ( )

This, when written in terms of the canonical variables z and p, is precisely the

microcanonical method.[14,15]

d_ 10V (
dr 20z

(V)
[}
D
~
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{
p= m<Z (2.27)
dr

As for the Langevin algorithm one can write down a version of the equations
for field theories and then proceed to the discretised recurrence relations.

The Kramers equation interpolates between the Langevin and microcanon-
ical (Molecular Dynamics) limits. The Hybrid Molecular Dynamics algorithm
used in QCD simulations is not actually the Kramers equation but the philos-
ophy of using a method between the limiting cases is similar.

In the Hybrid algorithm the microcanonical equations of motion are in-
tegrated for a few steps. The momenta are then refreshed from a heatbath.
i.e.several molecular dynamics steps followed by one Langevin step.

This method will converge to the correct equilibrium distribution faster than
the Langevin limit. The optimum rate can be obtained by adjusting the length
of the microcanonical trajectories — equivalent to tuning o in the Kramers

equation.

2.3.4 The Hybrid Monte Carlo Algorithm

The HMC algorithm combines the good points of the exact algorithms with
those of the small step-size algorithms. The parallel updating across the lattice
which is the advantage of the approximate algorithms is retained but all finite
step-size errors are eliminated.

This is achieved by using a hybrid algorithm, rather than local changes, to
generate successive configurations in a Markov chain. Each new configuration
is then accepted/rejected in a global Metropolis type decision which checks the
change in the Hamiltonian of the system.

It is easy to prove [17] that this process of deterministic evolution followed by
accept /reject satisfies detailed balance. Ergodicity is ensured by chooéing the

momenta randomly from a Gaussian distribution at the start of every trajectory.



The distribution of configurations is completely determined by the Hamil-
tonian in the accept/reject step. In principle one could use any action in the
hybrid evolution. In practice it is most efficient to use the same, or a very simi-
lar, Hamiltonian for both parts of the algorithm. This point is discussed in more

detail for the particular implementation described in the following sections.

2.4 The Hybrid & Algorithm

The partition function for QCD in Euclidean space is

Z = / DYDYDU e~ Se-9Mv (2.28)
which can be written in terms of pseudofermion fields on even sites only.
/ DYDPe"M¥ = detM (2.29)
/ D Dle? M M7 = get(mtm)] (2.30)
= detM
Z = / DUDG, D e=Se=oLM! M)~ (2.31)
where M is the fermion matrix for staggered fermions.
1
My =mé8i; + 5 3 Miu(Uiubijou — Ul ubii-u) (2.32)
o

m is the staggered quark mass, U;, are the link variables and 7;, are the
staggered fermion phases.

Definition of the ¢ fields on even sites only avoids the doubling of quark
flavours which would result from the use of MM in the action. This is possible
since the staggered quark fermion matrix has no elements connecting odd and
even sites.

The partition function can be rewritten as [19]

Z = / D DUDPe " (2.33)
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= 5 TrZ Pzz,, + Re Tr Z( Up) + 95,1(-'1"11‘.7\/[)_1(.")8 (2-34)

The traceless, hermitian P, , are interpreted as the momenta conjugate to U; ,.
Since the ¢, fields are given no dynamics, they have no conjugate momenta.
. . . .
The P’s are gaussian variables and can therefore be integrated out analyt-

ically. The correlation functions of U and ¢ are therefore identical to those

obtained using Equation 2.31.

The P variables are initially set by

N2-1

Piu= > A (2.35)
n=1

where A, are the generators of SU(N,) and the r?, are independent. real, gaus-

sian random variables with variance 7. This gives the distribution of the P

variables as
p(P)=e 2P (2.36)

In order that U remains an element of SU(N,), the evolution of U must be

of the form

Ut +¢) = FU(2) (2.37)

= U(t) =iP U(t) (2.38)
The ¢ fields are set by defining
¢=M'r (2.39)

where r is a vector of complex, gaussian variables defined on both odd and even
sites.

P(r)=e" = P(g)=e #'MM (2.40)

It is sufficient to evolve U and P, keeping ¢ fixed. The evolution equations

must conserve Hg and the differential volume element in configuration phase

space.




The equation of motion,Eqn 2.37, for U satisfies this requirement. The

equation for P is obtained by imposing the conservation of He in the motion.

L7 B ~ .
1Py p = [—VU,;,,VW +2Ui,u(z Uit Tt e — Z Dt+u cowTipumni))Ta (2.41)
¢ v v#p

on even sites and

ZR’M - [ U V"‘ + ZU’“ ZTZ+/A, —VUI -y z Ti+u‘i+uﬁif,u)]TA (242)

vEp
on odd sites. Where
T; = XiX; (2.43)
X = (M'M)4, (2.44)
[71',;1 = ni.pUi,u (245)

[A]74 stands for the traceless antihermitian part of A and V;,, is the sum of the
staples around the link U; ,.

The integration of the equations of motion is performed using a leapfrog

scheme [20].

P(%e) = P(0)+ P(0)=e = P(0) — 2—5(0)%6
U() = U0)+ U(?lz-e)e = U(0) + P(e)e (2.46)
P(ge) = P(le) + P(e)e = P(%e) ~ g—;(e)e

This integration scheme is one which is reversible and conserves phase space
volumes.

The finite step-size errors for a single leapfrog step are O(e®) [21]. These
errors have been calculated and are seen to have opposite signs for the two
possible first order leapfrog schemes: Method 1, where the initial half step is

performed on the U fields and Method 2, where the momenta are updated by

€

5 as the first step.

o
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The error in a trajectory of N = €' steps is O(€*). These errors can, to a
certain extent, be absorbed into a finite renormalisation of the couplings used
in the guidance Hamiltonian used in the Molecular Dynamics equations. This

point is discussed in section 2.5 where the various parameters in our final HMC

program are tuned.

2.5 The Global Metropolis Step

In the Hybrid Monte Carlo Algorithm, one proposes as a candidate configuration
that produced, from the initial configuration, by a single Hybrid trajectory.
Hg is calculated for the initial and final configurations and the complete

lattice update is accepted with probability
-6H €
Pacc =€ * = (248)

at the end of the leapfrog sequence.

The entire procedure is thus
1. Refresh momenta and pseudofermion fields from Gaussian distributions.

2. Calculate Hg(U, P)

3. Perform leapfrog sequence.

(Method 2 is more efficient when performing calculations which include
the effects of dynamical fermions.Since the gauge fields are not updated
between the calculation of He and the first momentum update, it is not
necessary to recalculate (MM )~ ¢. between these steps. The same saving

of a matrix inversion can be made at the end of the trajectory.)
4. Calculate Ho(U', P')

5. Perform the Metropolis accept/reject.
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The equilibrium distribution of fields is completely determined by the Hamil-
tonian used in the global Metropolis step. This step is completely independent
of the parameters used in the guidance Hamiltonian of the Hybrid evolution.
We may, therefore, tune the couplings in the Hybrid Hamiltonian to compensate
for the ‘renormalisation’ caused by the finite step-size errors.

The value of 8,4, the coupling in the molecular dynamics equations, can be
tuned so that the acceptance probability in the Metropolis step is maximised.
As one would expect from the signs of the step-size errors, the sign of (3 — Bma)
for the optimal value of 3,4 is opposite for the two leapfrog schemes. This is
clearly seen in simulations of pure SU(3) gauge theory[21,22](Fig.1).

The peak in the acceptance rate is much less pronounced in dynamical sim-
ulations. There is a peak in the acceptance probability as the quark mass
in the guidance hamiltonian is adjusted. However, this peak is very close to

(Mmq —m) = 0 and it is, therefore, very close to optimal for the masses to be

equal(Fig.2).

2.6 Calculations in Free Field Theory

Analytical calculations on systems of N uncoupled harmonic oscillators have
given the HMC acceptance probability as a function of 67 and 79 , the step-size
and the trajectory length respectively[20].

The Hamiltonian for this system is

Z(pt +wig}) (2.49)

2 =1
For a trajectory consisting of a single leapfrog step — we are in effect consid-
ering the Langevin Monte Carlo algorithm — the leapfrog equations are given

by

pi(67) = pi(0) —wia(0)éT (2.50)
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%(26T) = ¢:(0) + pi(67)d7 (2.51)
pi(267) = py(87) — wiq(267)6T (2.52)
for a trajectory of length 267.

The change in energy for this step is

OH

H(267) — H(0) (2.53)

2_ {20! pib7® + 2} (p? — wig?)sr!
—4wlg;pid7° + 2wBq2675) (2.54)
The acceptance probability is
1
Pae = 7 [ ¥ d"p e M@ min(1, 6=5%) (2.55)

After several pages of algebra, this reduces to

Py = erfe (573,/N2”6 . (2.56)

1
N

0e 1s the spectral average.

> Nuw! (2.57)

=1

0g =

The result for free field theory has the same form with

_ in dp 2 e 2 p 3 9 E
o = /o ﬁ[ +4sin 5] (2.58)
= 20+ 18m? + 6m* + m® (2.59)

If we increase the number of leapfrog steps to n = 3%, the leapfrog algorithm

is a linear map on phase space.

; — 2wir? 2 (0
¢:(267) _ 1—2wjoT §t ¢:(0) (2.60)
pi(267) —2027(1 —w?ér?) 1—2wisT? p:(0)
The final expression for the acceptance probability after n steps is
N7
P..=erfc (5T2 204 (2.61)
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_ 1 | |
Ta = 537 2. will = cos(dwm)] (2.62)

For free field theory

w;j =m? + 4sin? % (2.63)
In the N — oo and m = 0 limits
2 7
Ty = ;/0 dz sin* z[1 — cos(87 sin z)] (2.64)
3 3 1
= 5~ 170(870) + Jy(8ro) - £ 74(80) (2.65)

This shows that there are oscillations in the acceptance probability as 7
increases for fixed 67 (Fig. 3). This phenomenon has been observed in Hybrid
Monte Carlo computations for interacting, four dimensional field theories(Fig.
4).

The optimal trajectory length for a free field system, i.e.that trajectory
length which will minimise the correlation lengths of observables, has also been

calculated and was found to be

1
To = 2wmin (2.66)
This gives a correlation length of T' = A Lo

This is only true for trajectories with lengths distributed randomly about
a mean value of 75. For a Hybrid Algorithm with fixed trajectory length the

correlation length is found to be infinite.

This is consistent with the numerical results of Mackenzie[23], who found
that the relaxation time for a free scalar field was greatly reduced by the use of
random trajectory lengths.

A fixed trajectory length was chosen to exactly match the timescale of one
momentum mode of the system.This is not so artificial as is sounds since the
density of momentum modes above wy;, means that it is probable that an

arbitrary choice of trajectory length will be close to the period of at least one
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mode.The periodicity of the system was evident in the evolution of the action.
which relaxed to close to its equilibrium value but then returned to close to its
starting value each trajectory.The system did not approach equilibrium even
after several hundred trajectories.

The trajectory length was then chosen randomly around the same value.

The system approached equilibrium after only a few trajectories.

Our simulations of nearly free U(1) gauge theory did not show the same
behaviour of the action. This is probably due to the action being sensitive to
only the high momentum modes through the plaquette.

Studies of the Fourier transformed force term in the Hybrid evolution do
show the phenomenon well.

On a 2* lattice with periodic boundary conditions, we have five momentum

modes ; p* = 0,4,8,12,16. At each P update , the force term, F¥

#. is calcu-

lated.The fourier transform of this quantity is calculated. We then calculate

the gauge invariant observable,
2P ()l o p? (2.67)
n
If we set the number of molecular dynamics steps per trajectory to 1, we can
recover the Langevin result.

S P = ?’g# (2.68)

u

This agreement is reasonable even from very short runs.

If we repeat the measurements with longer trajectories the agreement is
worse, even for longer runs. The autocorrelation function of this quantity was
calculated, for lag ,, of up to 40 steps, for each non zero value of .

The trajectory length was arranged to match the period of the p? = 8 mode.

For fixed trajectory length, the p* = 4, 12 and 16 modes were scen to

decorrelate but the value of the p? = 8 autocorrelation function was found to
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oscillate with period equal to the trajectory length. The value at the end of each
trajectory was approximately constant, giving a long, if not infinite correlation
length (Fig. 5a).

When the trajectory lengths were chosen randomly from a distribution cen-
tred on the length used above, the oscillations were seen to be damped out
and the observable did decorrelate (Fig. 5b), albeit more slowly than the other
modes. The decorrelation time may be reduced further by increasing the ‘ran-
domness’ of the trajectory lengths.

A similar effect can be obtained by assigning a ‘mass’ to each momentum
variable in the Hybrid algorithm. These masses are chosen randomly from a

" distribution centred on unity and are refreshed before each trajectory.

2.7 Matrix Inversion Algorithms

As we have seen, the most computationally intensive part of any simulation of
QCD with dynamical quarks is the calculation of matrix elements of the inverse
lattice Dirac operator, M ~1.It is the time required for this calculation which
limits the speed at which new field configurations can be generated.

Due to the large size and sparcity of M, this calculation is best done using
an iterative method.

To calculate the 7" column of M ™! we require the solution, ¥ of the equation

My =n (2.69)

where ; = §;; . Since the fermion matrix is non-hermitian, we may reformulate
the problem as

MMy = My (2.70)

For the pseudofermion approach used in the Hybrid Monte Carlo we require
the solution of

MMy =¢ (2.71)
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where ¢ are the pseudofermion fields.

With these specific examples in mind, we may state the general problem as
Hyp =7 (2.72)

with H a hermitian matrix.

Mimimum Residue Algorithm

The minimum residue algorithm[24] is defined by

o= T‘iHT,'
'HT,‘P
i
o =wa
Viy1 =¥ +a'r;
riy1 =7 — o’ Hry - (2.73)
ri=n—Hy,

%, is arbitrary, usually chosen to be the null vector. A choice of 1 < w < 2 may
improve convergence. If w = 1, each step minimises |r;|* along the direction of
r;. Unfortunately, subsequent minimisations may spoil this minimisation and
we may have to repeat the minimisation in the r; direction at a later stage.
Vectors , p;, pj, satisfying p; Hp; = 0 are said to be H-conjugate. minimisa-
tions along H-conjugate directions are independent and so a minimum residue
algorithm using a sequence of H-conjugate directions, rather than the sequence
of residue vectors, would converge exactly in NV iterations, for H an N x N

matrix, in exact arithmetic.

Conjugate Gradient Algorithm

The Conjugate Gradient algorithm{24] explicitly minimises along a sequence of

H-conjugate directions, defined by the vectors p;.
|mif?

" p:Hp;

o
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Yipr = U; + ap;

Tig1 =715 — aHF,-
_ |7'i+1|2
p= |ri]?
Pit1 = ri + Pp; (2.74)

B is chosen such that P;Han = 0. This ensures that the current step does
not spoil the previous one. The remarkable thing about conjugate gradient is
that the new direction is actually H-conjugate to all the previous p’s. In exact
arithmetic, we would solve the problem in NV steps.

In reality, where we do not have exact arithmetic, the p vectors drift out of
H-conjugacy with the early vectors. This does not prevent convergence to a
solution, since the only requirement is local H-conjugacy, but it will affect the
speed of convergence.

The number of iterations required to converge to a given residue depends

upon the eigenvalue spectrum of H. although numerical analysis suggests that
the convergence time should depend simply upon the condition number,
8 = Amaz/ Amin, of Hin practice it is found that the density of small eigenvalues
is also important.[24] In fact, it is found in tests using diagonal matrices with
known condition number and eigenvalue distribution that the /s behaviour
only holds when the eigenvalues are distributed logarithmically.

The fermion matrix becomes more ill-conditioned (s increases), and the
number of iterations required to obtain a solution grows, for lattice QCD, in

the interesting range of couplings and masses.

Lanczos Algorithm

Another algorithm, and the one used in our programs, is the Lanczos Algorithm.

The Lanczos algorithm[25] performs a unitary transformation on a Hermitian




matrix, H, producing a tridiagonal form 7. The columns of the unitary trans-
formation matrix are the mutually orthonormal Lanczos vectors z;. These are

calculated using the recurrence relations
o; =zl Ha;
T mi Ty

U= H.’L‘,‘ —- :L‘,‘_lﬂ;r_l — T

pig; = UtU

[\
-1
[$24
~—

Tig1 = UB! (2.
The a; and f; are the diagonal and off-diagonal elements of T

Qq 51

T = B oy B (2.76)

Ba

The «;, §; and z; may be used to build up an iterative solution [26] to

Hyp=n.

A1 = —okp1 (B ") Ak + B
Biy = —ﬂk+1(ﬁk_l)fAk

Ye41 = Yk T Al—c-}-ltk

[
~1
~1

N’

tesn = —Bemdinte (2.
Ugy1 = Uk + 21 (B ") Ax

Vit = Vi — Uk+1Al:-pl-1tk

Y = —Vk(yk+§;—i)—1 — Y asty =0
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where A =4, =1, B, =y, =0

and zy=n,Vi=—2.87' ,U; =0

The parameter ¢ is related to the residue vector by the relation

|

Uk + oy

and we can use this to calculate the norm of the residue without storing the

el =

(2.78)

residue vector itself.

Although they have very different philosophies, it can be shown that the
conjugate gradient and Lanczos algorithms are equivalent. If 4, is chosen to be
the null vector in conjugate gradient then they will give the same residue and
solution vector step by step, in exact arithmetic. [26 3]

Rounding errors will result in the Lanczos vectors losing orthogonality but
this is not so serious a problem as the loss of H-conjugacy in conjugate gradient.
The Lanczos algorithm can be continued until the residue is very small
(< 1077). Due to the fact that it explicitly calculates the residue vector, the
conjugate gradient algorithm would fail much earlier than this. Although we
would never need this degree of accuracy in calculation of fermion propagators in
a simulation program, this is important when we want to look at the eigenvalue

spectra of fermion matrices.

Block Algorithms

It is often necessary to calculate several columns of the inverse fermion ma-
trix for the same calculation. e.g.All the columns affected by a link update
when using the Metropolis algorithm. It is possible to reformulate the conju-
gate gradient and Lanczos algorithms so that these columns may be calculated
simultaneously(27].

Taking as our example the Lanczos algorithm, the scalar variables are re-

placed by full B x B matrices and the V dimensional vectors by N x B ‘block
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vectors’.

The calculation of B columns by this method would , in exact arithmetic.
take the same time as the calculation of one column using the conventional algo-
rithm.This factor of B gain is not achieved in practice but the block algorithm

does give a considerable saving over using the single algorithm B times.
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Figure 2.1 : HMC acceptance rate for pure gauge SU(3) as f[mq is varied at
fixed 8. The top figure shows results from our program. This corresponds to

Method 2 in the lower figure, which is taken from reference [21]
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Figure 2.5a : Autocorrelation function of the p? = 8 Fourier mode of the HMC
force term. The timestep, dt, is fixed such that 10dt matches the period of the
momentum mode. The trajectory length is fixed at n,,g = 10. C(10) therefore

gives the correlation between values one full trajectory apart. Bl 0.0
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(5,15) with a&era.ge, Tima = 10




Chapter 3

Partition Function Zeros

It i1s a well known result of statistical mechanics that, if one knows the partition
function of a system, then one can, in principle, calculate all thermodynamic
quantities.

It was shown by Lee and Yang [28] that a knowledge of the distribution of the
zeros of the partition function can yield much information on the phase structure
of the system under investigation. We will follow Lee and Yang by using the
simple example of a monatomic classical gas in the grand canonical ensemble.
This example will illustrate the important features of a method which may then
be generalised to more complex, and realistic, systems.

The ‘atoms’ in our gas have interactions of the form
U= u(ry) (3.1)
where r; is the distance between the ith and jth atoms. We will make three
assumptions about the form of these interactions.
1. The atoms have a finite impenetrable core of diameter a.

u(r)=400 r<a (3.2)

2. The interaction has a finite range, b.

u(r)=0 r2=b (3.3)
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3. u(r) is nowhere —oo

These restrictions may be relaxed and the theory generalised, but we will continue
on this simplest path.
Consider this gas confined in a box of volume V and at constant temperature,

t. The system can exchange particles with a reservoir at chemical potential x per

atom.

The relative probability of having N particles in the box is

Q’}’\%N (3.4)
where
Qn = / .. /v dry ...dryexp(=U/kt), (3.5)
the integration being over the coordinates of the N particles, and
y = (2rmkt/h?)? exp(p/kt) (3.6)

is known as the fugacity.

The grand canonical partition function for the gas in a volume V' is then
X Q
N
Zy =Y YN (3.7)
where M is the maximum possible number of particles in the box.

In thermodynamics we may calculate quantities such as the average pressure

and density from the infinite volume behaviour of Zy.

p= ktLimV_,oo%In 2y (3.8)
0 1

= Li ——=InZ 3.9

p lev_.ooalnyvln v (3.9)

The existence of the above limits must be established before we may continue.

Lee and Yang proved two theorems regarding the infinite volume behaviour
of this theory.
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Theorem 1
For all real, positive values of y, v 1n Zy approaches a limit as
V' — oo which is independent of the shape of V.

This limit is a continuous monotonically increasing function of y.

This obviously solves the problem for Equation(3.8).

The limit in Equation(3.9) may be investigated if we realise that, as a con-
sequence of the hard core of the atoms, we can only squeeze a finite number of
atoms into the box and so Zy is a polynomial of finite degree in y.

M
Zy = E(yi ) (3.10)
where y; are the roots of Zy = 0.

Since all the coefficients, @, are positive, the y; can never be real and positive.
They must either be real and negative or else come in complex conjugate pairs.

Although the only physically meaningful values of y lie along the real axis, we
may learn much by studying the distribution of zeros in the complex plane.T he

distribution of zeros in the infinite volume limit can tell us about the analytic

behaviour of thermodynamic functions in the y plane.

Theorem 2
If, in the complex y plane, a region R containing a segment of the

positive real axis is always free of roots, then in this region as V — oo

all the quantities

8 \"1
9 ) Zmzy n=01,23...
(alny) e "

approach limits which are analytic with respect to y. Furthermore

the operations (8/01ny) and Limy_., commute in R so that, e.g.

a .. 1
Limv._.oo—g—}- ln ZV = ——lev_*oo— ln Zv (3.11)

OlnyV Jdlny Vv
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This gives, together with (3.8) and (3.9),

p= aiy (%) (3.12)

The quantity (9/0Iny)V~='1nZy does not always approach a limit for all
values of y. At these values of y the density does not assume a single value — we
have a phase transition.

The problem of phase transitions is intrinsically related to the distribution of
zeros in the complex y plane.

We will discuss two cases:

1. The zeros of Zy(y) do not close on to the real axis of y as V — co. There
exists a region R, enclosing the whole positive real axis, which is free of

zeros.(Figure(1))

In this case, the two theorems give the result that the pressure and density
are analytic, monotonically increasing functions of y in the region R i.e.

for all real positive values of y.The system exists in a single phase.

2. The zeros of Zy(y) close in on to the positive real axis as V' — oo; say at
the points y; and y,. There exist three regions R;, R; and R3 which are

free of zeros.(Figure(2))

By the same reasoning as in the previous case, in each of the segments of
the real axis which is free of roots, the system exists in a single phase. At
the points y; the pressure is continuous (by theorem 1) but its derivative,
p, has in general a discontinuity. It can be shown that the density always

increases across the discontinuity.

As the temperature varies, the points y, and y, will in general move along
the real axis. If at a certain temperature the zeros cease to close in on to one

of the points then we are at the critical temperature, . for that transition.
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Figure 3.3: Definition of the critical angles ¢ and % for the Ising model

This theory was generalised in a second paper[29] to lattice gas and Ising
models in which the zeros are shown to be constrained to lie on the unit circle in
the complex y plane (complex h plane in the case of the Ising model with external
field ).

The partition function zeros of the Ising model have been studied as a func-
tion of temperature, both in zero magnetic field [30] and with a non-zero external
magnetic field [31]. In the latter case, an analysis of the finite size scaling be-
haviour of the zeros was performed. Two critical angles were defined. ¢ describes
the angle between the line of zeros and the real axis in the complex temperature
plane, near to the critical point with zero magnetic field. ¢ is the angle at which

these zeros move off in a real magnetic field. These angles may be related to the

usual critical exponents of the system.

cos(ma) — A- /Ay

sin(7a)

(3.13)

tan[(2 — a)¢] =

where « is the specific heat critical exponent and A_/A, is the ratio of specific
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heat amplitudes above and below the critical temperature. Similarly, the angle
i is related to the spontaneous magnetisation critical exponent , 3, and §, the

exponent which relates magnetic field and magnetisation at critical temperature
(h ~ m?).

T

v =55

(3.14)

Mean field theory predicts the values ¢ = 45° and v = 60°. The analysis of
Itzykson et al.gives ¢ = 57° and 9 = 58°.

The critical behaviour of gauge theories without fermions has been studied
by looking at the distribution of zeros in the complex u = exp(f3) plane, where f3
is the inverse coupling [32,33]. Plots of these zeros show the type of distribution
predicted in the second case discussed above, with the value of 8 at the criti-
cal point in agreement with simulations performed using an order parameter to
indicate a phase transition.

Given these previous successes, it seems reasonable to expect that the method
should be applicable to lattice QCD with fermions and QCD at finite chemical
potential. the latter is a return towards the original idea of Lee and Yang, with
the Grand Canonical partition function being expanded in terms of the individual

Canonical partition functions.

46



Chapter 4

The partition function of
strongly coupled gauge theories

with staggered fermions

4.1 Introduction

Quantum chromodynamics is expected to have a non-trivial phase structure. A
phase transition is expected between the low temperature, confining phase which
results in the observed spectrum of colour singlet states and a high temperature
phase in which the quarks and gluons are deconfined and behave essentially like an
ideal gas (Figure 4.1). The transition temperature and the order of this transition
are not yet fully determined, even in the pure gauge sector, and calculations on
larger lattices on computers with teraflop or even petaflop capability will probably
be required to give a definitive answer to these questions. On a finite lattice the

physical temperature is determined by the temporal extent of the lattice.

1
~— 4.1
T~ (4.1)

The lattice spacing, a, may be related to the coupling by the S-function ( Equation

1.22) but the important point is that a decreases as we reduce the coupling. i.e.the

47




m confined deconfined

w0  wy)=0

T

Figure 4.1: Schematic phase diagram for QCD in the temperature/quark-mass

plane.

temperature increases as 3 increases.

Previous studies of the phase structure have concentrated on the search for the
critical coupling at fixed bare quark mass. By examining the partition function
as a function of the quark mass, we may approach the problem from the opposite
viewpoint. At a fixed value of the coupling we may look for the critical quark
mass which gives a phase transition.

In the strong coupling regime we have only one critical point, the chiral limit
at ma = 0. At intermediate values of the coupling we expect to have a finite
temperature phase transition at a finite mass which prevents the approach to
the chiral limit (Figure 4.1). As the lattice size is increased and therefore the
temperature reduced, we expect this critical mass to approach zero since the

chiral limit must be attainable in the infinite volume, zero temperature limit

which corresponds to our low energy world.
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In this chapter, a method is introduced for the study of partition function
zeros in gauge theories with four flavours of staggered fermions. The study of
partition function zeros allows the investigation of phase transitions and critical
behaviour without the need for an order parameter. This i1s useful in the case of
QCD since we have no exact order parameter for the phase transition — <$¢>
is only an exact order parameter in the ma = 0 limit and the Polyakov loop is
only related to the free energy for the pure gauge (ma — oo) case.

The partition function can be written as the average value of the determinant
of the fermion matrix, with a suitably weighted averaging procedure. For once we
make a virtue out of the fact that we are working on a finite lattice since, because
the fermion matrix is of finite size, we may expand the determinant exactly as a
polynomial in the bare fermion mass.

Preliminary calculations were performed at strong coupling (3 = 0) and on
small lattices for SU(2), SU(3) and U(1) gauge groups.. The results are consistent

with the expected critical behaviour at ma = 0 in all three cases.

4.2 The Method

4.2.1 The Expansion of the Partition Function

The partition function for SU(N) gauge theory with staggered fermions may be

written as a function of the bare fermion mass.
Z(m) = / DU det(M(m)) e~ (4.2)

Since we have the freeedom to define the partition function up to a constant
multiplicative factor, we may write

_JldU] det(M(m))e=5 (4.3)
= J1d0] det( M (ma))e>

Z(m)
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J14U) i) det(M (mq))eSo
J1dU] det(M(mo))e=5s

det(M(m))
<det(f"1(mo))>m0 (+3)

The average in equation(4.5) is over gauge field configurations, generated using

(4.4)

a dynamical quark mass of my.

Another self-consistent definition of Z(m) would be

Z(m) = (Det(M(m))) (4.6)

quenched

However, many more measurements would be required in order to produce accu-

rate results in this case since the quenched probability distribution,
P([U], B) o e5101) (+.7)

peaks in a region of phase space where there is negligible contribution from the
determinant, and vice-versa. This effect is discussed in reference [49]. Quenched
updating is only useful on small systems whee the reduced updating time allows
us to make many measurements in a short time. |

We may use the parameter mg to deal with this problem. If mq is tuned to
be in the neighbourhood of the bare mass of physical interest, we will maximise
the overlap between our observable and the update probability distribution.

Since the fermion matrix for staggered fermions, M, has the mass only on the

diagonal, we may write

M(m) = iM' +ml (4.8)

where [ is the identity matrix.

Using the block odd/even structure of the fermion matrix

det(M(m)) = det(M' M), (4.9)
= det(M"TM' + Im?), (4.10)
= det(M™? 4 Im?), (4.11)
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where the subscript e denotes the matrix on even sites only.

Since we have a finite lattice, the determinant in Equation(4.11) may be ex-
pressed as a finite polynomial in m?2.

N/2
det(M(m)) = 3 A,m® (4.12)

n=0
where N = n,N; and n, and N, are the number of space-time sites and colours
respectively.

We may also expand the determinant as a Taylor expansion around my, which
can be chosen to have any value. The most useful situation is when m; is equal
to or close to mg. In this case the statistical errors in the first few coefficients of
the expansion will be reduced and we can, therefore, extract the zeros close to
mg most efficiently.

In the strong coupling simulations described later we ran at a small bare quark
mass, ma = 0.025. We expanded the polynomial around several imaginary values
of m; and looked for those zeros which were obtained from several of these Taylor
expansions.

Configurations are generated using the Hybrid Monte Carlo algorithm de-
scribed in Chapter 3. Measurements are made at intervals of > O(1) in molecular
dynamics time, giving configurations which, hopefully, are sufficiently indepen-
dent. The matrix M’? is then tridiagonalised using the Lanczos algorithm, giving

the tridiagonal form, T'.

o B
T B oy B (4.13)
B2 o3

Since tridiagonalisation may be performed using a unitary transformation, we

now have
det(M(m)) = det(UM'MU + U IUm?). (4.14)
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= det(T + Im?), (4.15)

Here U denotes the unitary transformation matrix, not a link variable. The

coeflicients of the polynomial (Equation(4.12)) are now calculated recursively

from the tridiagonal form, 7.

Let T,= (4.16)
- ;Bp-l

\ ﬁp—l dp }

where &; = a; + m;2.

Then

det(Ty + (m? —m) = (dy + (m? — md))det(Ty_y + (m?* — m?))
Tp-2 + (m? — mi)

—  Pp-1det 41T

ﬂp—-Z ﬂp—l

The cofactor of the B,_; term in the second determinant is obviously zero
since we have a complete column of zeros. We may repeat the step above to

obtain

det(T, + (m* —m})) = (dp+(m® —mi))det(Tpq + (m* —my))

2, det(Ty—s + (m? —m?)) (4.13)
We may now insert a polynomial expansion for this determinant.

P
det(T, + (m* —m?)) =) aP(m? — m?)" (4.19)

n=0

P p-l
S aP(m? —md) = (dp+ (m* —mi)) 3 af~(m® —mi)"
=0

n=0

p—2
—f2_, > I (m? - my)" (4.20)

n=0
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This results in a set of recurrence relations for the Q.

aif) = dpal?™ 4 a7 — B2 10l 1<n<p-2 (4.21)
o) = e+ ol (22

o = 7V (4.23)

o) = dpa((,p_l) _ ;2;-1‘1((1?—2) (4.24)

The initial conditions for these recurrence relations are easily obtained.
det(Ty + (m? — m?)) = &; + (m? — m?) (4.25)

det(T + (m? — m?)) = didy — B2 + (dy + da)(m? — m?) 4+ (m? — m?)? (4.26)

giving the initial values

ay’ = o

agl) =1

o) = did, — B2 | (4.27)
agn = a+ad

a? =1 (4.28)

Since the coefficients vary in size by many orders of magnitude, we adopt an

exponential parameterisation.

a, =¢€"" (4.29)
This results in a new set of recurrence relations between the z, values.

) _alrD) (p=2)__(p-1)
2® = ¢~V 4 log(d, + €” S 2 e =) (4.30)

The initial conditions become

ch()l) = log(d1)
xgl) =0
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2 A ~
z6) = log(dd, — §2) (4.31)
Ty = log(di + dy)
7 =0 (4.32)

As required by Eqn.(4.5) the coefficients are then normalised by dividing out
det(M(mo)).

Cp = " (1 £ o) (4.34)

where o, is the fractional error in C,,.

The coefficients, C,,, are averaged over many configurations and the resulting
polynomial is solved for the complex zeros. Since the fermion determinant is real
and positive for all real m, the coefficients are real. In the simulations discussed
below we always find the C,, to be positive for my = 0. It can be easily shown
that the coefficients must be positive for all real values of m;. The determinant

may be written in terms of the eigenvalues, 4\ of M.

N/2 N/2
DetM = [[(m+i\)(m—iX) = [[(m*+)3) (4.35)
k=1 =1
N/2 ‘
= TL(m* =)+ (A4 m)) (4.36)

The coefficients are thus identified with products of real positive numbers (A} + m?).

This argument holds also if m? < 0 but [m;| < A VE.

4.2.2 Extraction of the zeros from the polynomial

The extraction of the zeros of the averaged polynomial given by Eqn.(4.12) is non-
trivial. Fig.(4.2) shows the logarithm of the coefficients C(m1 = 0) obtained from

200 measurements on a 4* lattice at strong coupling and update mass mo = 0.025.

The errors shown are statistical.
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One immediately notes that, for this lattice size, the coefficients vary in mag-
nitude between €° and €?? and that their errors (on the logarithmic scale) are
small. For small n, they are less than 1% but grow monotonically with n to about

30% at n = N/2. This is a consequence of their intrinsic dependence on n and

the constraint that
N/2

> (Crymir =1 (4.37)

n=0

which follows from Eqn(4.33). Since, in this case, we are updating at a small
quark mass, we are minimising the fluctuations in the coefficients which give
sizeable contributions to the fermion determinant.For this reason, it is essential
to pick an update mass close to the region in which the zeros of the partition
function are expected to be. Otherwise many more measurements are required
before the errors in the important coefficients are small and the zeros can be
determined reliably.

One must also make a good choice for m;. If |m? — m?| is small enough,
the last terms of the polynomial will give negligible contributions to the sum.
The extraction of the zeros then follows by noting that the distribution of the
coefficients as a function of n permits the truncation of the polynomial to order
N say, finding its zeros by some standard numerical procedure and monitoring
their stability as N is increased. The zeros obtained by this process are then
substituted into the full polynomial and those with small residue are accepted
as being true zeros of the polynomial. This procedure can be applied to each
of the polynomials arising from different choices of m; in order to evaluate the
zeros in m close to m;. The same zeros should appear for adjacent values of m;
if they are true zeros of the full polynomials. This stability of the zeros should
not be confuéed with their stability with respect to increasing the number of
measurements. Essentially, increasing the number of measurements provides a
more accurate Taylor’s series for the partition function. Hence, as a function of

the number of measurements, it is the zeros close to the update mass which will
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converge to a constant value first. For the above reasons, it is not possible to
determine accurately all the zeros of the partition function. However, the zeros
close to the physical region (m real and > 0) can be found and their volume
dependence measured.

The shape of the plot of coefficients must be independent of the choice of my,

this giving only an overall normalisation by a constant multiplicative factor. This

has been checked on small lattices.

4.3 Strong Coupling Results

4.3.1 SU(2) and SU(3) Results

Simulations were performed for QCD with SU(2) and SU(3) gauge fields with
staggered fermions at § = 0 and mgy = 0.05 on 2* and 4* lattices. In the strong
coupling limit, we expect only one critical point, the chiral limit at m = 0. We
therefore expect the relevant zeros of the partition function to be close to m = 0.

This is precisely the case in our simulations of SU(3). Here, the zeros are

purely imaginary and evenly spaced along the imaginary axis.
zero, = *i(a + nb) (4.38)

If we are to recover the expected phase transition at ma =0 as V — oo then
a and b must scale as V™% with &£ > 0.

The constants a and b appeér to scale as L™ as we move from 24 to 4* lattices.
In Fig.(4.3) the imaginary parts of all the zeros on the 2* lattice are shown along
with the lowest 10 zeros on the 4* lattice. The zeros from the 2* lattice are scaled
by a factor of 2¢/4*. The loss of linearity of the zeros on the 24 lattice for zeros
greater than 0.1 is due to non-negligible errors remaining in the higher coeflicients
after 800 measurements of the C,,.

For SU(2) the zeros were found to lie in the complex m plane with a non-zero
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real part. This is shown in Figs.(4.4 a & b) for 2¢ and 44 lattices. The distributions
of the zeros in these two cases are similar. A low statistics measurement on a
64 lattice at strong coupling confirms that the shape of the distribution does not
change greatly with increasing lattice volume, especially in the region close to the
real axis. As in SU(3), the imaginary parts of the zeros are evenly spaced and
scale with the lattice volume. This is shown in Fig.(4.5) where the imaginary
parts of all the zeros on the 2* lattice (scaled by a factor 2¢/4%) are plotted along
with the lowest 20 zeros on the 4* lattice. It can also be seen from Figs.(4.4 a &
b) that the real part of the zeros close to the real axis scale approximately with
the lattice volume. The low statistics run on the 64 lattice was in agreement with
this scaling behaviour.

We can parameterise the zeros by
zero, = xr, * i(a + nb) (4.39)

r,a and b are constants, n = 0,1,2.... The real parts, r,, were observed to scale
as L™ on these small lattices. This is consistent with a zero critical mass in the
infinite volume limit. The constants a and b are accurately described by a volume
scaling behaviour.

Using the distribution (4.38) it is possible to calculate <$¢> in the infinite

volume limit.

3v/2

InZsyzy = Y In(m®+ (a+nb)?) (4.40)
n=0

_ v/ n(m? + (a + Vbz)?)dz (4.41)

where V = L* is the volume of the lattice. ( In the SU(2) case we have
X 2 112
In Zsy(z) = E(]n((m+rn)2+(a+nb'/V)2)+ln((m—rn) +(a+nb'/V)?)) (4.42)

n=0

and the following calculation goes through similarly.)
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(Pp) = %8% InZ (4.43)

5|
= arctan(

Vbz +a 3/2
- )] (4.44)
0

Using the finite size scaling behaviour observed in the numerical results, a = a'/V/,

b=b/V and taking the limit V — oo,

/

() = ~ arctan % (4.45)

If we now take the limit m — 0,

(P9) - = = 2.01 0,01 (4.46)

using the numerical result ¥ = 1.56 £ 0.01

A similar calculation in the SU(2) case gives
(w) T =1.34+0.03 | (4.47)

The strong coupling expansion[35], taken to first order in the quark mass gives

an expression for the condensate.

N, (15 178 58 m 95 382
(P4) = f(m @'Fg_ﬁﬁg“L'fé(_ZJ"gF 4N4)) (448)
— N, (15 3
= 1.99 — 0.56m (4.50)

If we expand the right hand side of Eqn.(4.45) to O(m) we obtain

<$z/;> = ;arctan(—sfi) (4.51)
2, ™ 2m

= (5= 35) +0m") (4.52)

— 201 —0.55m (4.53)
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The SU(2) results are in similar agreement with the strong coupling expansion.
The distributions of zeros for SU(2) and SU(3) at strong coupling are therefore
consistent with chiral symmetry breaking on an infinite lattice but the distribu-
tions are different on a finite lattice.
This difference arises from the fact that SU(2) is a pseudo-real group. For
SU(2) and SU(3) the partition function is given by an average over the charac-

teristic polynomials, fi(m?), each from a single configuration.
Z(m) = 1 & 2 n
(m) =+ ; fim?) =3 Cym (4.54)
For staggered fermions, the eigenvalues of the fermion matrix M’, on a single
configuration, appear in complex conjugate imaginary pairs £\ and hence the
coeflicients of the characteristic polynomials f;(m?) are real and positive and con-
sequently the C,, > 0. Hence Z(m) can have no roots with m? real and positive.
In addition, since SU(2) is pseudo-real its eigenvalues come in degenerate pairs
and we have ,
film?*) = (Z bjm2j> . (4.55)
- .
Z(m) for SU(2) is therefore the average of characteristic polynomials, each of
which is a perfect square. It can only vanish for m? real if all the f;(m?) =0 at
the same value of m2. However, this cannot be the case since we know that the
eigenvalues differ from configuration to configuration. Thus Z(m)sy(s) can have

no zeros for any real value of m?, i.e.real or imaginary m.

4.3.2 Results for compact U(1)

Simulations were performed of compact U(1) on a 2* lattice at mo = 0.1, 0.8, 1.0
and 1.02 and B = 0.0. On this small lattice, and with this simple gauge group,
the partition function can be calculated analytically as a a polynomial in m? [34].

If the polynomial is defined as
k(0) + k(1)m? + - - - + k(8)m'® (4.56)
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ma=0.1 | ma=0.8 | ma=1.0 | ma=1.02

k(0) || 1.030 | 0.990 | 1.025 0.991
k(1) || 28.523 | 28.166 | 27.844 | 27.700
k(2) || 179.392 | 177.867 | 174.921 | 174.458
k(3) || 438.564 | 435.607 | 428.927 | 427.558
k(4) || 511.113 | 508.347 | 502.076 | 499.822
k(5) || 310.176 | 308.652 | 305.806 | 304.288
k(6) || 99.773 | 99.316 | 98.702 | 98.274
k(7) || 16.002 | 15.949 | 15.897 | 15.856
k(8) || 1.000| 1.000| 1.000 1.000

Table 4.1: Normalised coefficients from 2* U(1) at various values of the update

mass.

then the k(z) are calculated to be as follows.

k(0) =1.0625 k(1)=29  k(2) =182

k(3) = 444 k(4) =516 k(5) = 312 (4.57)

k(6) = 100 E(y=16  k(8)=1
When normalised to k(8), the coefficients obtained from the simulations at each
update mass were in excellent agreement  ith each other and with the analytical
result (Table 4.1). This must be the case since the update mass contributes only
to the overall normalisation of the polynomial.

The zeros were found for each polynomial and were found to be purely imag-

inary and evenly spaced along the imaginary axis. The zeros from all five poly-
nomials were in agreement to better than 1%. Figure (4.6) shows the imaginary

part of zero, plotted against n.
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A strong coupling simulation was then performed on a 4* lattice at an update

mass of ma = 0.05. The zeros were again found to lie evenly spaced along the

imaginary m axis. Figure(4.7)

zero, = i(a + nb) (4.58)

with a = 0.014 and 5 = 0.018

If we repeat the analysis performed on the SU (3) data , assuming, with little
justification other than consistency and the desire to have a well defined answer
in the infinite volume limit, that the spacing scales as V~! we can obtain an
estimate of the chiral condensate.(The 2* and 4* results show this scaling but

this does not constitute a proof.)

() = 0.682

Again, this is in good agreement with the strong coupling expansion|[35].

4.3.3 Analytical Calculations

We may check our simulation by calculating the coefficients of the highest powers
of m analytically from Newtons equations. These are a set of recurrence relations
which allow the calculation of the coefficients of the characteristic polynomial
from the traces of powers of M.

n—1
Te M 4+ 3 (=1)'6TrM*") 4 2n(=1)", =0 (4.59)

i=1

c(n) = b(N —n) (4.60)

The order of coefficients is reversed in Equation(4.60) so that ¢(0) is the term
independent of the mass. Since TrM? is independent of the gauge configuration,
we may always calculate b,. The functional integrals over gauge fields is possible in

strong coupling, allowing us to calculate b, on a 4 lattice. With our normalisation
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Figure 4.8: Lattice diagrams contributing to (Tr M*) in strong coupling.

of the fermion matrix,

TtM? = 2Nstllch
= 2N,N. (4.61)

where N, is the dimension of our lattice. In this case N; = 4. The diagrams
which contribute to Tr M* are shown in Figure (4.8). These diagrams have mul-
tiplicities (2/N4)? and 2N4(2N, — 1) respectively. The Polyakov (Wilson) line and
plaquette diagrams, which will contribute on individual configurations, will av-
erage to zero on integration over the group manifold, leaving only those terms
which are gauge field independent. i.e.diagrams in which all links U are matched
by the corresponding U'.

This leads to

NsN,

/4=_—
Tr M T (

2N4)? + 2Ny(2Ns — 1) (4.62)

One can similarly calculate Tr M® and thus obtain analytic values for the last

four coefficients.

For SU(3) on a 4* lattice we have from equations (4.61 - 4.62)

Tr M? 1536

TrM* = 5760 (4.63)

Tr M® = 26304

This, along with the recurrence relations gives us
bo = 1 (4.64)
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by = lTrM2

2
= 768 (4.65)
b — 1 T 4 1 2\2
2 = 7\~ r M +§(TrM))
— 1259 (4.66)
— 1 6 3 4 2 1
b = g (MO~ STeM T + Lo M)

= 18125 (4.67)

The numerical results, when normalised so that by = 1, give 768 , €125 and 18125,

Here we have made the factorisation
(Tr M? Tr M?) = (Tr M?) (Tr M9) (4.68)

since we have to match every U with the corresponding Ut. This factorisation
breaks down on a lattice of length 2. On a 2* lattice, say, sites 1 and 2 will be

connected by links U, and U;;. Tr M? will have terms such as
Tr(Ura + U (U, + Un) (4.69)

The cross terms will vanish when we calculate (Tr M?) but {(Tr M?)?) will have
a term UypUs US,US, coming from these cross terms. Our factorisation will not
give the correct result in this case. It will obviously also be invalid for ((Tr M*)?)
on all lattice sizes since the plaquette/plaquette! will also contribute at this order
and above. However, since this is at the same order as (Tr M®) it is beyond the
point where we have attempted to enumerate all the contributing diagrams. The
factorisation is therefore valid only for the terms which we calculate on the 4%

lattice.

In principle one could continue this process but since the coefficients which
govern the physics are the lowest ones it is not a practical method for the study of

the partition function. The number of diagrams contributing to the higher traces
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will become very large and the multiplicities will become almost impossible to
calculate. Nevertheless, this is a useful check on our method in strong coupling.

Since Tr M? is independent of the gauge field, we may use this known value as a

check on our simulations at all couplings.

4.4 Conclusions

Application of our method to the partition function of strongly coupled gauge
theories with staggered fermions gives encouraging results. We obtain the ex-
pected value for the critical mass, mq;, = 0 and can give an estimate of the chiral
condensate in the V — oo, m — 0 limit which is in good agreement with the
strong coupling expansion.

The results obtained using this method in the strong coupling case are suffi-
ciently encouraging for an investigation at intermediate coupling to proceed. We
expect that the zeros will move out into the complex m plane and indicate a

phase transition at a finite value of m for a prescribed value of the coupling, B.
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Figure 4.2 : The logarithms of the coefficients of the partition function for SU(3)

at B = 0.0 on a 4* lattice. The expansion is around m; = 0.0 averaged over 200

configurations.
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Chapter 5

Results at Intermediate

Couplings

5.1 Introduction

In this chapter we generalise the method of Chapter 4 to weaker couplings. We ex-
pect to find a phase diagram qualitatively similar to Figure (4.1), with m.a = 0 at

low 3 and a critical line extending from ma = 0 at some value of # and interpolat-

ing between the chiral phase transition at ma = 0 and the pure gauge deconfine-
ment transition at ma = oco. It is still an open question as to whether the critical line
is continuous across the whole range of quark masses. Some investigations[36,39]
have concluded that the phase transition disappears for masses above a certain
value . This corresponds to a break in the critical line for intermediate masses
(Fig.(5.1)).

Previous investigations of this phase diagram have looked for a critical cou-
pling at fixed ma. Some evidence has been found for a phase transition up to
ma = 1.0 on lattices with temporal extent,n, = 4 [46]. There is strong evidence
that this phase transition is first order for small bare quark masses, but weakens

and eventually becomes a continuous cross-over for larger values of ma.[37] The
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Figure 5.1: Another proposed phase diagram for QCD at finite temperature.

Compare with Fig.(4.1).

behaviour of the maximal mass for which the transition is first order as the lattice
size, particularly in the time direction, is increased should tell us if the transition
persists for finite masses in the continuum.

A modified measurement method, which will allow the extension of the method
to larger lattices, is decribed. This new method, along with our original method,
is used to investigate the phase diagram of QCD on a 4* lattice at four values of
. These simulations give four points on the critical line which are in agreement
with previous published data.

At one of these values of 3, the behaviour of the zeros is studied as the lattice

size is increased to 6°.4.

66



5.2 Avoiding Reorthogonalisation

5.2.1

Our measurement algorithm, as described in (hapter 4, suffers from a huge mem-
ory requirement which will ultimately prevent us from continuing to larger lat-
tices. This results from our need to calculate all the Lanczos a’s and B’s before
we can construct our polynomial. In order that we can do this we must artificially
maintain orthonormality of the Lanczos vectors, lost due to rounding errors. For
this purpose we must store . all the Lanczos vectors at each stage. This means
that we need extra storage for N;N./2 complex vectors, each of length N,N./2.
On a 4* lattice this amounts to almost 2.5Mb and, on a 6* lattice, to over 60Mb.

We can avoid this problem by allowing the Lanczos vectors to drift out of
orthonormality as we iterate the algorithm. In order that the Lanczos vectors still
span the N-dimensional space of the eigenvectors we will now have to perform
M > N iterations of the Lanczos algorithm. We may now use the method of
Sturm sequences (See section 5.2.2) to find the eigenvalues of the M x M matrix
and sort out those which are also eigenvalues of the original N x N matrix. We
know that the sum of the eigenvalues of (M'M), is a constant, 2N,N., since
Tr MM is gauge field independent, so we can easily check that we have found
all the correct eigenvalues.

We may then use the eigenvalues to calculate the coefficients of the charac-

teristic polynomial.

Ay = . (5.1)

/\N+m2

AN = AN_l(/\N+m2) (52)
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Zcflvm% — ch-lmzn(AN +m?) (5.3)

N N-1 - N
Cn = AnCp ' +ep) (5.5)

This method takes approximately the same time as the method with reorthog-

C PR . . .
onalisation on a 4* lattice and gives a considerable memory saving.

5.2.2 Sturm Sequences

Let B, be the r xr matrix formed by taking the first r rows and columns of an N x
N hermitian matrix. Define the polynomials Py())... Py()) as the characteristic

polynomials of By... By.

P(A) =1 (5.6)

P.(\) = Det(B, — Al (5.7)

Then, for any real value of A, the number of sign changes in the sequence
{Po(A), Pi(}N),. .., Pn(A)} equals the number of eigenvalues of By less than A.
For a tridiagonal matrix we may calculate the P,()) using a recurrence rela-

tion.

Po(A) = (ar = N Pooy(N) = BI_1Brc1 Proa(X) (5.8)

It is usually more convenient to calculate the ratios of successive terms in the

sequence.

_ BN BB
’I"r()‘) - Pr—l(/\) =ar — A rr—l(/\) (59)
ro(A) =0 (5.10)

The number of eigenvalues less than A is now given by the number of negative

terms in the sequence {ro(}),...,rn(A)}.
By successive bisections of an interval which is known to originally contain all

the eigenvalues, we may home in on the kth eigenvalue.
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If an eigenvalue of the N x N matrix lies in the interval (A=6, A+ 6) then we
may also check to see if it is also an eigenvalue of the (N — 1) x (N — 1) matrix.
The most convenient way to do this is to look at ry(A—§) and ry(A+6). If these
terms have the same sign then there is also an eigenvalue of the smaller matrix
in the interval (A — 6, A 4 4).

The shift of an eigenvalue is defined as the smallest § for which the eigenvalue
remains in the interval on the removal of the last « and S.

Real eigenvalues of the smaller matrix, MM, will have a small shift since the
eigenvectors will have small entries after the first N,N./2 places. In contrast, the
eigenvectors of spurious eigenvalues will have large entries and so will be sensitive
to the removal of the last a and f, resulting in a large shift.

Another problem which must be dealt with is the duplication of real eigen-
values. If we continue the algorithm long enough for the slowly converging eigen-
values to be obtained, those eigenvalues of MM which converge quickly may
appear several times as eigenvalues of By. We therefore assume nondegeneracy
of the eigenvalues and demand that successive eigenvalues differ by more than

some cut-off.

5.3 Results at Intermediate Couplings on a 4*

lattice

5.3.1 (=30

At a coupling of 8 = 3.0 QCD is still in the strong coupling regime. The lowest
zeros of the partition function,in the complex quark mass plane, are still evenly
spaced along the imaginary axis. The imaginary part of the n** zero is plotted
against n in Fig.(5.2).

The spacing in this case is greater than in the 8 = 0.0 case. Thus, if the
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chiral condensate is calculated by the same method as in Chapter 4, one obtains

a lower value in the infinite volume limit. This is what we expect as we make the

coupling weaker.

<

<

(0 (8 = 0.0) = 2.01 (5.12)

) (8 = 3.0) = 1.60 (5.11)

5.3.2 =504

It is only as one weakens the coupling to the vicinity of the finite temperature
phase transition that one expects the zeros to migrate off the imaginary axis
and move onto the complex m plane. This is illustrated in Fig.(5.3b) Where
we show the zeros of the partition function in the complex mass plane at § =
5.04 on a 4* lattice. Configurations were generated using an update quark mass
of mg = 0.025 and 3060 measurements (using the original method, including
reorthogonalisation.) of the coefficients of the characteristic polynomial were
averaged. The shape of the coefficients, C,,, when plotted as a function of n,(Fig.
(5.3a)), is visually similar to that at strong coupling (Fig.(4.2)) but a strong
signal was found for the complex nature of the zeros (Fig(5.3b)).

The positions of the zeros were monitored every 50 measurements during the
simulation. The imaginary parts of those zeros close to the real axis were seen to
stabilise very quickly, but many more measurements were required before the real
parts stopped increasing and began to converge towards stable values. This is
shown in Fig.(5.4) where we plot the lowest zeros as a function of the number of
measurements averaged over. The lowest three zeros are very close to convergence.
Again, since the characteristic polynomial is in m?, there are corresponding zeros
in the unphysical Real(m) < 0 plane.

The zeros form a distribution which is qualitatively similar to the ideal case

described in Chapter 3 (Fig.(3.2)). The zeros approach the real m axis at on
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one point, indicating that the system on a finite lattice must be attempting to
simulate a ‘phase transition’ at m, close to 0.05 . i.e.for m < 0.05 the system
will simulate the chirally restored phase and for m > 0.05 it will be in the broken
phase. Since the zeros have still not fully converged to constant values, we can
put a good lower bound on the value of m, but the upper bound can only be
obtained from a fit to the data. The bound obtained from this fit is obviously
dependent on the functional form we fit to. We therefore give a fairly conservative

error estimate on m,.

+0.01
me(B = 5.04) = 0.045 (5.13)

—0.003
5.3.3 B=49

In this case, the coefficients of the expansion of the partition function were av-
eraged over 3260 measurements at a coupling of 8 = 4.9 on the 4* lattice. The
simulation again had an update quark mass of 0.025.

The behaviour of the zeros is slightly different in this case, probably because
we find we are simulating in the chirally broken phase whereas at f = 5.04 we
were in the restored phase.

The final distribution has the same basic shape as the previous case, with
the ‘pinch’ onto the real axis occurring at ma ~ 0.01. (Fig.(5.5)) The difference
between the two cases is not in the final distribution: this must be independent
of the update mass and thus independent of which phase we are simulating. The
difference occurs in the way the zeros approach their final values. In this case,
complex zeros appear after around 200 measurements and then decrease towards
a constant value. (Fig.(5.6 a & b)) Again, the imaginary parts stabilise much
more quickly than the real parts.

Simulation at such a low bare quark mass, ma ~ 0.01, is very difficult and

expensive in computer time since the matrix inversion required in the update
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process becomes much more ill conditioned. Our method allows the extraction of

information relevant at this quark mass without encountering the problems of

simulating there.

5.3.4 (=52

The measurement method without reorthogonalisation was used to perform 1200
measurements at = 5.2 with mg =0.18.

The zeros again form a ‘cavity’ around the low m part of the real axis,
(Fig(5.7)) but in this case the approach of the zeros towards the real axis at the
‘critical’ mass is much less pronounced. We find the critical mass to be at around
m = 0.2.

This is consistent with a weakening of the transition at this mass and coupling.
Estimates of the largest bare quark mass at which one would see a discontinuity
in <E¢> as (3 is increased indicate that this is above or at least around that value,
AMypaz. S. Gottlieb, in Lattice 90, estimates ampqe ~ 0.07 [37] for lattices with
n, = 4 . In the same proceedings, A. Vaccarino estimates 0.05 < am, 4, < 0.2

[38].

5.4 Extension to larger lattices

The removal of the requirement that the Lanczos vectors be stored for reorthog-
onalisation allows us to increase the size of the system under consideration. This
extension could follow either of two paths.

The lattice could be enlarged isotropically and the zeros monitored as we move
towards the infinite volume, zero temperature limit. In this case, we would expect
the zeros to approach the real m axis, indicating a sharpening of the transition,
and simultaneously the point of closest approach should move towards Re(m) = 0.

This would indicate a true critical point at m = 0 in the V' — oo limit.
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The second option, and the one chosen here, is to increase the spatial size of
the lattice while keeping the temporal extent constant. Provided the coupling ,
and hence the lattice spacing, is kept constant our system remains at a constant

physical temperature. Here we expect (hope?) that the lowest zeros will approach

the real axis but with approximately constant real part.

5.4.1 Results on the 64 lattice

Simulations were performed at 8 = 5.04 on a lattice of size 634. In the light of
the results from the 4* lattice, the update mass was chosen to be ma = 0.04.
We hope that the zeros closest to the real axis will still lie close to this point
on the larger lattices. A Taylor expansion of the partition function around the
update mass will have small statistical errors in the first few coefficients. If the
zeros of interest do indeed lie close to this point then we should be able to obtain
estimates of their values after many fewer measurements.

It should be stressed again that our choice of update mass does not affect
the positions of the zeros. It merely influences which zeros we can obtain after a
certain number of measurements.

The position of the smallest zero (i.e.the zero closest to the real axis) was
monitored as a function of the number of measurements made on the 634 lattice.
When the simulation was stopped, after 225 measurements, the lowest two zeros
had converged to stable values. The exact positions of other zeros could not
be determined, although the general area covered by them could be estimated
from the positions of less well determined zeros obtained from expansions around
various values of the mass. (Fig.(5.8))

The lowest zero was seen at (Re(m),Im(m)) = (0.0424,0.0093). The real
part of the zero is slightly smaller than in the 4* case. This is consistent with the
corresponding increase of f. in traditional finite temperature simulations as the

spatial size of the lattice is increased.
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As expected, the lowest zero is seen to approach the real axis as we increase
the lattice size.

The method was also applied to a system of size 8.4 at a coupling of 8 = 5.04.
In this case, due to limits on computer time — one update and measurement
requires ~ 13 Cray XMP hours.— it was only possible to perform 100 measure-
ments. The zeros obtained from this simulation do not appear to have converged
to their physical values (Figure(5.9)). No agreement is seen between zeros ob-
tained using different values of m;. No signal is seen, however, that the method
is breaking down on this lattice size. This appears to be yet another lattice prob-
lem which simply requires more cpu time or preferably more Mega(or Giga)Flops.
The problem of non-agreement between different expansions is a sign that we have
pushed our root-finder to its limit. The range of magnitudes covered by the co-
efficients means that, even using suitable changes of variables, we can only use
170 of the 3073 coefficients. Some zeros are found which appear to be relatively
insensitive to the level of truncation on individual expansions. However, if we
are to obtain agreement between different expansions, we will have to solve much
larger polynomials. This will probably require the development of a specialist

algorithm of the type used by Karliner, Sharpe and Chang [32].

5.4.2 Infinite volume and continuum limits

The above results , showing the approach of the partition function zeros to the
real axis as L, increases, would indicate a real phase transition at finite m as the
spatial size of the lattice goes to infinity. This L, — oo limit at fixed § does not
describe continuum QCD but some explicitly lattice theory with fized and finite
lattice spacing.

It would be interesting to see the behaviour of the transition point as the

continuum limit is approached. In particular, is there a phase transition which

extends to m, > 0 in the continuum?
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The approach to the continuum limit would be obtained by increasing 3,
thereby reducing the lattice spacing, and simultaneously increasing the number
of sites in the time-like direction, n,, in such a way as to keep the temperature,
T =1/an., constant. Obviously, this process would require a prohibitive cost in
computer time. It is, however, interesting to speculate as to possible results.

Since we are changing the coupling, we have one more level of complication.
The quantity we can measure is m.a, while the physical object is m.. We can
deal with this in the following way.

Consider the ratio of the two physical quantities T' and m..

Te o 5.14
T =an,m, (5.14)

We can measure am, and n, and so we know the value of m./T'. If we can keep
the temperature constant, while increasing n,, we can investigate the behaviour
of m..

As we increase 8 we must monitor the reduction in a by calculating correlation
lengths. We must be in the scaling region of course. We then increase n, to keep
the temperature constant. In this way the behaviour of m. could be studied. As
we get deeper into the scaling regime, we would hope that m./T would approach
the continuum value , m.(continuum)/T.

The analysis of Gottlieb [37] predicts the maximum value of ma at which
we can have a first order transition. This value, ammaz, is seen to decrease as
the lattice size increases, n, going from 4 to 6 to 8. Since this transition must
be taking place at the same physical temperature on all three lattice sizes we
may use Equation(5.14) to look for scaling behaviour. The results are shown in
Table(5.1). Substantial violation of scaling occurs between n, = 4 and n, = 6.
As we go from 6 to 8, however, the behaviour is much better. Using estimates of

Mumaz(continuum)/T, and of T. we can obtain a value for Mumaz (continuum).

mmar

— m}”“”TC ~ 0.120 x 100MeV ~ 12MeV (5.15)

[+

75



Nr | AMpay mrn.az/Tc = aMmazNr

4 1 0.073 0.292
6 | 0.021 0.126
8 | 0.015 0.120

Table 5.1: Scaling behaviour of m,,az. Taken from S. Gottlieb in Lattice 90.

Thus, for some values of the coupling, such that T' ~ T., we might expect m, to

approach a non-zero value in the continuum limit.

5.5 Comparison with previous published data

There have been several studies of finite temperature QCD on lattices with N, =
4. The spatial sizes of these lattices varies from 43 to 123. These simulations
used several different update algorithms— Exact updating [40,41], Langevin[46],
Hybrid[44,45] and Hybrid Monte Carlo [43,42]— but all look for 3. at a fixed
value of m.

The results for 3, are in general insensitive to the spatial size of the lattice,
with the exception of the 434 simulations which give results which, while compa-
rable, are consistently slightly lower than the larger lattices at the same value of
the quark mass.

Fig.(5.10) shows a comparison of our results with results from several other
sources. The agreement, considering the radically different method of measure-

_ment, is very good. Our results on 4°4 lattices are , in fact, consistently closer to
the L, > 6 results than are previous 4°4 simulations. This may be due to finite

size effects affecting the two methods in different ways.
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5.6 Conclusions

The method described above can be seen in two ways. It can be considered as
an alternative method for finite temperature lattice field theory. As such it gives
results which are in agreement with previous methods.

A second use, which is equally applicable on isotropic lattices, is in investigat-
ing the smallest dynamical quark mass which should be used on any particular
lattice at given coupling. If one makes the bare quark mass too small then the
thermodynamics of the system will be altered. The system will be in the wrong
phase and e.g.the masses of hadronic excitations could be drastically different.[47]
Ideally one would like to approach the chiral limit, ma = 0, or at least work with
quark masses which are comparable to the masses of the light up and down quarks
which form the lowest hadronic states. The measurement of hadronic masses re-
quires much lower bare masses than are used at present.

Study of the zeros of the partition function may give some information re-
garding the allowable values of ma in future simulations and on the size of lattice

required in order that ‘physical’ quark masses can be simulated.
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Chapter 6

Partition Function Zeros for

Compact Lattice QED.

In this chapter we use the method of previous chapters to study the critical be-
haviour of compact lattice QED. The comparative simplicity of this model— our
U(1) gauge field variables are single complex numbers rather than complex val-
ued matrices — and the resultant saving in computation time means that it is
possible to perform a much more detailed investigation than was possible with
SU(2) or SU(3) gauge fields. A further time saving could have been made by
working with the real phases, 0, , rather than the link variables U, , = e*=». It
 was decided, however, that, considering the time and effort required to rewrite
the Hybrid Monte Carlo code in this form, the original code, modified to elimi-
nate matrix multiplications, would be fast enough for the size of systems under
investigation.

Our study is again in some sense ‘orthogonal’ to previous work on the critical
behaviour of the theory. Previous studies worked at a fixed value of the bare
fermion mass, chosen to make the simulation stable and either looked for a dis-
continuity in <z_,b—1/)> as the coupling is varied, or for evidence of coexisting phases

at a critical coupling [48] or else attempted to evaluate the fermionic determinant
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as a function of the energy of the system [49]. We perform simulations at several
values of 8 and try to estimate the critical value of the mass in each case. The
scaling properties of the partition function zero closest to the real axis should
give some information on the order of the phase transition.

We have been able to perform simulations at 10 values of 4 in the range
0.0 < 8 < 1.5. Systematic errors have been controlled by repeating some of the

simulations using different update masses.

6.1 Results

Results for compact U(1) at 3 = 0.0 on 2* and 4* lattices were presented in
Chapter 4. In this section we present the results obtained for weaker couplings.

In each simulation the system was evolved through 600 thermalisation sweeps
from either a random or ordered start. This should ensure that when measure-
ments are taken the configurations used are generated with the correct weight.
Measurements of the coeflicients were made after every hybrid Monte Carlo sweep.
(A sweep consists of several trajectories and the molecular dynamics time between
measurements, weighted by the HMC acceptance, is of O(1)) The zeros were cal-
culated every 400 measurements up to 3200. This gives us eight sets of zeros from
each run, which will give us some indication of the stability of the zeros obtained.

In every case, the coefficients form a curve very similar to that shown in
Figures (4.2) and (5.3a) for QCD. The similarity between the distributions of the
coefficients for different values of 3, and even for different gauge groups, makes
the study of these graphs uninformative. For this reason the reader is referred to
Figure(4.2) as the generic example rather than showing several indistinguishable
figures.

Despite this apparent similarity, if one looks at the numerical values of the

coefficients, rather than the general shape of the curve, one can see some interest-
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ing behaviour. In Figure(6.1) we show the behaviour of the first few coefficients .
InC, (n=1,...,9) with varying 3. They are all normalised so that Cp = 1. We
note that all the coefficients are characterised by a rapid, almost simultaneous,
transition at # ~ 0.8 - 0.9. This, as we shall see later, is the range of couplings
where we see evidence for critical behaviour.

In Figures(6.2 a-j) we show the corre sponding behaviour of the partition
function zeros as f is increased. We have already seen (Chapter 4 ) that at
infinite coupling, # = 0.0, the zeros are purely imaginary (Figure(6.2 a)). This
behaviour persists up to about 8 ~ 0.8, where some zeros begin to migrate into
the complex plane. (Figures(6.2 b & c)) For these values of § the real axis is
‘pinched’ at the origin, suggesting a critical mass value m.a = 0.0.

As we move towards weaker couplings, the zeros migrate into the complex
plane and pinch the real axis. For 8 ~0.8-0.9 the pinch occurs at m, ~ 0.1-0.4
(Figures(6.2 d—g)). In the weak coupling regime, 8 & 1.0, there is no evidence

for a critical value of the bare fermion mass (Figures(6.2 h-j)).

6.2 Systematic Error

Having obtained the main features of the theory’s behaviour, we now turn to a
systematic analysis of the stability of our results. Results in this section should
also be applicable to the work presented in Chapters 4 and 5 where such a thor-
ough investigation was not possible.

The first question which must be addressed is the independence of the results
on the choices of m; and my.

In these simulations m; has always been chosen to vary in the intervals [0,0.4]
on the real axis and [-0.4,0.4] on the imaginary axis. Since it is not possible
to obtain all the zeros of the polynomial we must ensure that the zeros which

we do obtain are not influenced by our choice of my. The root finding routine
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will preferentially find those roots close to m; but if we have two values of m;
reasonably close to the root in question, the root should be found in both cases,
with no systematic shift due to the different values of m;. The zeros which are
accepted as true zeros of the partition function are those which appear for more
than one value of m;. The fact that we always have m? real means that the
root finder can easily find roots close to the axes, but has difficulty coping when
the zeros are far away in the m-plane. This explains the scarcity of zeros found
at large values of 4. This problem could be made less serious by the use of
complex values for m;. However, this would result in complex valued coefficients
in the polynomial and a more sophisticated root finding routine would have to
be implemented. Since the physically interesting zeros are those close to the real
axis, this is not a serious problem when it comes to understanding the physics.

Our results should be independent of the update mass, my, since this only gives
an overall multiplicative factor in the partition function. Figures (6.3 a & b) show
the zeros obtained after 3200 measurements with two different masses at each of
two 8 values. Those zeros which we would expect to be calculated accurately are
seen to be independent of my.

As a check that the zeros we calculate have converged to stable values, i.e.we
have performed enough measurements, we look at the zeros obtained as the num-
ber of measurements increases. In Figure (6.4) we show the zeros at § = 0.85
after 2400, 2800 and 3200 measurements. The zeros close to our values of my,
those close to the axes, have converged to stable values. The zeros further from

our expansion points are less stable.

6.3 Conclusions

The physics observed for compact U(1) gauge theory with dynamical staggered

fermions is summarised in Figure (6.5). The real part of the zero closest to the
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real axis is plotted for the values of 3 considered. The critical mass, m.. is
compatible with zero in the strong coupling area. For values of 8 in the range
0.8 — 0.9 the critical mass is strongly 8 dependent. In the weak coupling regime,
B > 1.0, there is no sign that the theory displays critical behaviour at any mass.

The fact that U(1) is cheaper to simulate than QCD has allowed us to examine
the systematics of our method very thoroughly. The partition function zeros are,
as expected theoretically, independent of the updating mass in the simulation.
Work is currently in progress to investigate the dependence of the zeros on the
lattice boundary conditions. Runs are being done using identical parameters with

both periodic and antiperiodic boundary conditions in all directions.
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Figure 6.2 : Partition function zeros in the complex fermion mass plane for

U(1) on a 4* lattice.
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‘Chapter 7

QCD at finite chemical potential

7.1 Introduction

The QCD phase transition between confined hadronic matter and the deconfined
chromoplasma phase may be induced by two mechanisms. The temperature may
be increased to a critical value, T, — This is the mechanism driving the transition
in previous chapters — or else the density of the quark matter may be system-
atically increased. As the quarks are forced closer together the short distance,
asymptotically free behaviour may take over from the confining potential which
dominates at long distances. The baryonic matter may then undergo a phase
transition at a temperature below T,. It is through a combination of these ef-
fects that heavy ion collision experiments are hoped to produce deconfined quark
matter.

Lattice simulations of QCD usually have a net baryon number density of
zero since matter is always produced as a quark/antiquark pair. Finite baryon
number density may be produced by introducing a chemical potential, g, for the
production of quarks. As in statistical mechanics, the chemical potential is the

Lagrange mutiplier for the constraint on the particle number, N. The Grand
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Canonical Partition Function is given by
Z(T, p) = Tr(e~H-#N)) (7.1)

where H is the Hamiltonian of the system.

7.2 Lattice QCD at finite chemical potential

Finite chemical potential is introduced in the QCD lattice action by multiply-
ing forward timelike links by a factor e** and backward links by e™** [50]. This
has the effect of encouraging forward propagation of quarks and inhibiting back-
ward propagation of antiquarks, resulting in a non-vanishing net fermion number
density on the lattice.

We now have

Z = / DUDet(M(U, u))e~5) (7.2)
1
M(U,p) = mabyy+ 5 Z (Uu(@)nu(2)by o400 — hoc.)
v=z,y,2

+ U (2)0:(2)e" 8y ppr — UL (Y)0: (y)e ™8y omr (7.3)

The gauge part of the action, Sy, is unaffected by the introduction of the chem-
ical potential since it always involves timelike links in pairs, one forwards and
one backwards. In general the only loops which will pick up a contribution from
the chemical potential are those which wind completely round the lattice in the
timelike direction. It is easy to see that these loops correspond to particles which
propagate infinitely in time and so contribute to a net particle number. In con-
trast, closed loops which do not wind round the lattice pick up no contribution

and correspond to quark/antiquark creation and annihilation.
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The result of adding a chemical potential to our action is that the fermion
determinant becomes complex. The interpretation of Det(M) as a probability
in our Monte Carlo integration therefore becomes difficult. It has been shown
that it is the presence of this complex phase in Det(M) which causes quenched
calculations at finite chemical potential to show incorrect behaviour[51,53]. This
phase also causes great difficulty in methods which use |Det(M)| in the impor-
tance sampling. [52]The phase, ¢, is moved from the update weight into the
observable. This is a well defined process which should produce correct answers.

The expectation value of the observable becomes
0] < ei¢> 74
(0) = o (7.4)

where the averages on the right hand side are over configurations generated using

|Det(M)] in the importance sampling.

The trouble comes from the fact that, in the interesting region, <e‘¢> becomes
very small due to large fluctuations in the phase. This makes the calculation of
(O) almost impossible. Simulations are only feasible at very large or very small
chemical potential, where <ei¢> ~ 1.

The expansion of the Grand Canonical Partition Function has the great ad-
vantage that the behaviour of the system may be examined over a range of chem-
ical potential while we can avoid the difficulties described above by updating the

lattice at u = 0.

7.3 The Expansion of the Grand Canonical

Partition Function.

Using our freedom to normalise the partition function as we please, we may write

the grand canonical partition function for QCD at finite chemical potential as

[ DU Det(M(U, p))e 540
Z = TDUDMM(T, = 0))e-570) (7.5)

85



Det(M(U, _ ,
| DU 2V det( M (U, = 0))e=5o()

fDU Det(M(U, 0= 0))e—sg(U)

(7.6)

Det(M (U, p))
<Det(M(U,u —0)) > (7.1)

This looks very similar to the expression for the partition function as a function
of the quark mass given in Chapter 4. However, since the chemical potential does
not lie on the diagonal of the fermion matrix, we must introduce one more level
of complication before we may proceed.

The matrix M (U, ) may be written as
iM =G+ Vet + Ve  +im (7.8)

where G contains all the spacelike gauge links,V the forward timelike links , and

V1 the backward timelike links.
Det(:M) = Det(G + Ve + Vie™ + im) (7.9)

We may now define the fermion propagator matrix [54].

-GV —imV V
P = (7.10)
-V 0

The determinants of P and M are related.

Det(P —e™) = Det(GVe™ +imVe™ +e™* +V?) (7.11)
= Det((Ge™ +ime™ + VieT* + V)V) (7.12)

= e "N Det(G + Ve* + Vie ™ +im) (7.13)

Since Det V =1 and
Vitv=vvi=1 (7.14)
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This gives us the result
Det(iM) = e*N Det(P — e~*) (7.15)

where N = n3n,n, is the size of the matrix.

Since we now know Det M in terms of the determinant of a matrix which is
diagonal in e**, we may use the method described in Chapter 4 to expand Det M
as a polynomial in e*. i.e.we expand the grand canonical partition function in
terms of the canonical partition functions for fixed particle number on the lattice.

Det(P —e™*) = Z woe” ™ (7.16)
n=0

From this expansion we may derive an expression for the grand canonical
partition function.

N
Z=Y Zye (7.17)
n=-N

By considering the inverse of the propagator matrix one can derive an expres-
sion similar to (7.16) which leads to [56]

Det(P — e™*) = Det(e* — P~1) = -ZNuzw* mo(7.18)

n=0

This leads to
Wn = WiN_, (7.19)

A check on our method is possible since one can formally calculate the coef-
ficients in the expansion in terms of traces of powers of the propagator matrix

using the following recurrence relation.

n—1 .
Tr(P™) + Y w; Te(P"™7) + nw, =0 (7.20)
J=1
wg=1and w; = —-TrP.

Since the propagator matrix causes a step forward in time, only those traces

of P" with n an integer multiple of n, will be non-zero. The recurrence relations
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now give

wo=1wp = 1 | (7.21)
1 n

Wi = Wn, = = Tr P : : (7.22)
We = = — 1 211.1- — L ny\2

2 = Wan, o Tr P ~ (Tr P™) (7.23)
W3 = W3, = — ! Tr P — 3 Tr P2 Tr P™" + ! (Tr P™)? |(7.24)

i 3n, 2n, 2n2 '
etc.

wy, gives the coefficient for a lattice with n fermions missing. The Z, will be

the expectation values of the w,.
Zn = (w2N—n> (725)

Since in SU(N,) we have N, equivalent vacua related by Z(N.) rotations and
since tunneling is always possible between these vacua on a finite lattice, our
canonical partition functions must be invariant under a change of variables which
describes this tunneling. A rotation between Z(N.) vacua corresponds to the

introduction of an imaginary part to the chemical potential. This leads to
Z, = e*in/Ne g, (7.26)

which means that the Z,, must be zero unless n is a multiple of N..

This result can also be seen from the expressions for the w,. Since P involves
only forward timelike links the functional integrations over link variables will
result in a non-zero answer only if the trace corresponds to a loop which winds

around the lattice a multiple of IV, times.
w, =0 n # 0(ModN,) (7.27)
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wy A0  n=0(ModN,) (7.28)

(7.29)

If the Z, are to be interpreted as canonical partition functions then they must

be real and positive. Our final expression for the partition function is thus

N
Z =Y (ZneNerrt 4 ZremnNenrs) (7.30)
n=0
N
Z =" Z,cosh(nN.n,u) (7.31)
n=0

where we have absorbed a factor of 2 into the definition of Z, in the second
equation.

In strong coupling we can perform the functional integrations over gauge fields
analytically. The ratio of the canonical partition functions for a full lattice and for
a lattice with two fermions missing was calculated for SU(2) at strong coupling

on a 4* lattice both analytically and by Monte Carlo simulation.

usz(analytical) = o3 (7.32)
%(Monte Carlo) = > (7.33)

These results are within the statistical errors in the numerical calculation.

7.4 Results

In this section results obtained in previous simulations of QCD at finite chemical
potential are reviewed and the expansion of the partition function is reanalysed
by studying the zeros in the complex fugacity (e*) plane. The results obtained
from the partition function zeros are compared with those obtained directly from

the partition function.
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7.4.1 Strong Coupling Results

Simulations were performed at strong coupling (8 = 0) on a 2% lattice by I.M.
Barbour, C.T.H. Davies and Z.A. Sabeur[55). The coefficients of the expansion
were found by a different method in this case. The fermion determinant may be

expanded as

Nmazx

Re(DetiM(pn)) = co+ D (en + c—,) cosh(3nnypa) (7.34)

n=1

Gauge fields are generated with weight e~5¢ in the importance sampling. The left
hand side of Equation(7.34) is evaluated at several complex values of the chemical
potential, resulting in a set of simultaneous equations which may be solved for the
¢n. These ¢, are then averaged over many configurations to give the expansion
of the grand canonical partition function.

The simulation was repeated using Det(M (g = 0))e~5 in the update weight.
This gave results which agreed to within statistical errors with the results from
pure gauge updating.

The canonical partition functions were found, to a good approximation to
satisfy |

Cp = €7 (7.35)
a, =a-+bn (7.36)

Using this form, and the numerical result for b, the zeros of the partition function
were obtained for ma = 0.1, 0.2, 0.3 and 0.4. These zeros were found to lie on
circles in the e* plane with the radius giving a value for g, the critical chemical
potential for the phase transition. (Figure (7.1))

A value for p. may also be obtained by noting that due to the form of the
coefficients (Equation(7.36)) a value of the chemical potential exists such that
all the terms of the polynomial have the same weight. If we define the critical

chemical potential to be this value we have

et = =P (7.37)
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_=b
He = 3,

(7.38)

These two definitions of y. give results which are in agreement at all four
values of the bare quark mass. The values of y. are seen to vary linearly with
ma and a linear fit gives p. = 0.58 at ma = 0.(Figure(7.2)) This is clear evidence
that the full theory, including the effects of fermions, will give results which are

different from those obtained using the quenched approximation which indicate

that p. — 0 as ma — 0.

7.4.2 Results at intermediate couplings

Simulations were performed by I.M. Barbour and Z.A. Sabeur [56] on a 4* lattice
at two values of 4 and two quark masses. The partition function was expanded in
terms of the canonical partition functions using the propagator matrix formalism.
Simulations at 3 = 4.9 and ma = 0.05 and 0.025 are in the confined phase at
g = 0. These simulations show a clear signal for a phase transition at a non-zero
value of the chemical potential.
Assuming positivity and continuity of the canonical partition functions, the

number density may be evaluated as a function of p.

10

_ lZiV:l Znnng sinh(3nn.p) (7.40)
VN, Z,nn, cosh(3nnpu) '

Plots of number density against chemical potential show an abrupt change of
slope at a value of y around 0.3. The lattice then fills over a range of u up to
about 1.0 .(Figures (7.3 a & b))

We may also define p. as the value of the chemical potential when the lattice

is as likely to have three fermions as it is to be empty :

ZO = Z3 cosh(3nt,uc) (741)
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This gives g, = 0.35 at ma = 0.05 and g, = 0.30 at ma = 0.025. This is in
agreement with the values obtained from the density function.

In this study we extend the investigation to the examination of the zeros of
the partition function. The partition function may be expressed as a polynomial
in e™* which may be solved for the zeros. In Figures (7.4 a & b) a plot is shown
of the zeros in the complex e* plane. The zeros form two rings ( corresponding to
p and —p ) and approach the real axis over a range of values which starts from
around g, as calculated above and extends over the region in which the transition
takes place.

At 8 = 5.05 we are already in the deconfined phase at ¢ = 0. We do not,
therefore, expect to see any signal for a phase transition at finite chemical poten-
tial in this case. The density function varies smoothly from zero at u = 0 till the
lattice fills, with no sharp change in slope. (Figure (7.5))

The zeros of the partition function have a markedly different distribution from
that of the zeros at 8 = 4.9. The zeros still have absolute values which cover the
transition region. This is to be expected since we expect the distribution to vary
smoothly as we increase §. In this case, however, the zeros do not approach the

real axis. (Figure (7.6))

7.5 Conclusions

The examination of partition function zeros is a very effective method in the
stydy of QCD at finite chemical potential. The distribution of zeros gives a clear
indication of the presence or otherwise of a phase transition, the zeros approaching
the real axis only for temperatures below T, the critical temperature at zero
chemical potential. This signal is much clearer than that obtained from the
baryon number plots. The critical chemical potential for the phase transition

may be estimated from the distribution of zeros or calculated from the original
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polynomial.

The method has the disadvantage that the propagator matrix is neither her-
mitian nor antihermitian. This means that the Lanczos vectors must be reorthog-
onalised during the tridiagonalisation. We cannot avoid this as we do in the mass
zeros case since there is no analogue of Sturm Sequences in the case of complex

eigenvalues. The storage space required for all the Lanczos vectors limits the size

of lattice to which this method may be applied.
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Figure 7.1 : Zeros of the partition function in the e* plane at 8 = 0.0 on a 2*
lattice. The five circles of zeros correspond to ma = 0.0,0.1,0.2,0.3,0.4. The

ma = 0.0 result comes from a linear extrapolation of b.
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linear extrapolation to ma = 0.0.
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Figure 7.3a : The baryon number density as a function of x at 8 = 4.9 and ma =
0.025. The kink at p ~ 0.5 is non-physical and is due to the higher coeflicients

in the expansion being less well determined. Figure taken from reference [56].
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Figure 7.3b : The baryon number density as a function of y at 8 = 4.9 and

ma = 0.05. Figure taken from relference [56].
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Figure T.4a:

Partition function zeros in the e plane for B = 4.9 and ma = 0.025.
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Figure 7.4b : Partition function zeros in the e plane for 8 = 4.9 and ma = 0.05.
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Figure 7.5 : The baryon number density as a function of g at § = 5.05 and

ma = 0.025. Figure taken from reference [56].
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Chapter 8

Conclusions

We have shown that the study of partition function zeros is a powerful tool in
the investigation of the phase structure of lattice field theories with staggered
fermions.The method is useful both in the case of QCD at finite baryon number
density and for the study of the effects of a finite bare mass on the chiral phase
transition.

Unfortunately, the computing power available to this study did not permit
the continuation to very large lattices for lattice QCD. It is hoped that the work
on U(1) will be extended to larger lattices, both in the compact and non-compact
formulations. The study of the scaling behaviour of the zeros, especially those

closest to the real axis, will yield important information regarding the order of

any phase transition.

8.1 Other applications

The work of Lee and Yang is applicable to any statistical mechanics system. The
method proposed here may be used in the study of fermionic systems in which
the partition function can be expressed as the expectation value of a determinant.
If one can arrange that a particular variable appears only on the diagonal of the

matrix in question, then the characterisic polynomial, in that variable, can be
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averaged and used to find the partition function zeros. This work is currently
being applied to two such systems. These systems are described below. No results
are quoted since my involvement in the work extended only to the initial setting
up and the provision of some of the computer code. The purpose of the following

sections is to show the wider applicability of the previously described work.

8.1.1 Wilson Fermions

In this thesis we have applied the theory of Lee and Yang to gauge theories with
staggered fermions. The method is equally applicable to the Wilson formulation
of lattice fermions where the expansion is performed in powers of %, K being the
hopping parameter which determines the mass of the fermions.

The action for Wilson fermions is

S = Y v(a)(z)
e XY (F@)(1 =MV + ) + Bz + w)(1 + 1)UL (2)$(=))
= B -k D) (8.1)

If one multiplies through by 1/«, the hopping parameter may be moved onto the
diagonal and we may proceed in the same way as for staggered fermions.

The fermion determinant for Wilson fermions, det M = det(1 — & ), is real
since Ys M1Ys = M, but not positive definite. In order to interpret the determinant
as a probability density we must use det(MTM) as the update weight. Thus,
HMC simulations of dynamical Wilson fermions is restricted to multiples of two
degenerate flavours. Since P is not an antihermitian matrix one might expect
that the expansion of the characteristic polynomial will have both odd and even
powers of k. However, since the eigenvalues come in sets of four, A, —A, A" and
—)*, we may write

N
det M = JJ(1-&X\) (8.2)

i=1
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N/2

= [ - &%A2) (8.3)

=1
Since det M is real, det Mt = det M and the update weight is
N/2
update weight = (J](1 — £%A?))? (8.4)
=1
= (det(1 — & Jp?)? (8.5)

where the determinant is over only even (or odd) sites.
The expansion which we want to make is thus

Hr) = (@et(P?— (1)) (8.6)

N/2
= > ai™™ (8.7)

i=1
This system is currently being studied, at strong coupling and on small lattices,
by a collaboration involving physicists at Glasgow and Edinburgh, using Maxwell,
the UKQCD parallel supercomputer. An investigation is also being carried out
of partition function zeros for both one and two flavours of Wilson fermions using
pure gauge updating. Since the partition function is insensitive to the overall
multiplicative factor which is introduced by the average sign of the determinant,
it is also planned to simulate a single flavour of Wilson fermions using | det M|
in the updating procedure. The usually quoted value for the critical value of &
which gives zero mass quarks, k., = 0.25 at 8 = 0.0, is calculated in the quenched
approximation. It is hoped that the study of partition function zeros will indicate

the value of . in the presence of dynamical quarks.

8.2 The Hubbard Model

The Hubbard model is the simplest model for electrons in a metal. The hamilto-

nian for the model is given by [57]

=—t Z cz o Cio T UZ (niy — _)(nt— -5/ H Z(n,.,. + ni-) (8.8)
(iaho
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where (i, j) denotes nearest neighbour lattice sites, o denotes the spin degree
of freedom and n;, the electron number operator c ti, c;,. The constant ¢ is
the hopping parameter which allows electrons to move from site to site, and U
represents the on-site Coulomb repulsion.

The numerical simulation of the Hubbard model with a finite electron density
has attracted much attention due to the suggested relation between the 2-D
Hubbard model and high T, superconductivity. Since this problem is essentially
non-relativistic, many problems, such as fermion doubling, are avoided. However,
the inherent difficulties of simulating fermions at finite density can not be avoided
completely.

We have already seen that in the case of QCD at finite chemical potential the
fermionic determinant becomes complex and any importance sampling based on
this determinant ceases to be well defined in terms of probability densities.

In the Hubbard model, the partition function is always real. In the case of
the half-filled Hubbard model (one electron per site) the partition function can
be expressed as the product of the determinants of a matrix and its complex

conjugate and is thus positive definite.

Z(p=0) o (det M det M")

= ((det M)(det M)*) (8.9)

However, if a real, finite chemical potential is introduced for the impurities (holes)
then this positivity is lost and we can have configurations with real, negative
determinants. Two solutions to this problem are currently being investigated
[58].

Since the update action contributes only a multiplicative constant to the par-
tition function, we can follow the same route as in the QCD case and update at
1 = 0. The partition function can then be expanded as a polynomial in e*? where

B is the inverse temperature. This temperature is introduced by extending the
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2-D lattice in a third, imaginary time, direction and relating B to the temporal
extent by # = n, §t where n, is the number of time slices and 6t is the time-step.
The resulting polynomial expression for the partition function can then be solved
for the partition function zeros. Alternatively, differentiation with respect to u
will give the hole density as a function of p.

Another approach is to choose the updating chemical potential, po, such that
the first few terms in the polynomial are of similar magnitude: if one updates
at p = 0, then all other terms are small compared to the first and are therefore
more susceptible to fluctuations. The lattice can then be updated using the
absolute value of the weight function in the updating procedure and the first few
coefficients, corresponding to the lowest excitations, can be determined reliably.

Preliminary results using both the above methods are encouraging and in

good agreement both with each other and with previous studies [59].

It is probable that this method will prove useful in future studies of theories
involving lattice fermions, both in lattice field theories and in non-relativistic

Hubbard type models.
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