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SUMMARY

In this thesis the hierarchical stability and chaotic motion of the classical few-body
system are studied, and then extended into the framework of the relativistic theory of
gravitation. Because of the importance of integrability to both hierarchical stability and
Hamiltonian chaos, a general discussion is also given on integrals and symmetrics using
the modern language of differential geometry. The study of this thesis is closely related
to the stability problem of our Solar System and the mass transfer process of compact
binary star systems. The approach carried out is both computational and theoretical.

The computational part is a systematical investigation of the hierarchical stability
(no drastic change in orbital elements or of the hierarchy) of the general 3-body problem,
in comparison with the Hill-type stability. The importance of eccentricity in relation
to stability is manifest, and the complexity of the phase space structure and fractal nature
of the boundary between regular and chaotic regions are reflected in this study.

The theoretical work is a continuation of the investigations of the effects of integrals
on possible motions. Using a canonical transformation method, a stronger inequality 1s
found for the spatial 3-body problem, giving better estimation of the Hill-type stability
regions. It is proved that a Hill-type stability guarantees one of the three hierarchical
stability conditions. This classical study is then developed into an inequality method
establishing restrictions of symmetries (integrals) on possible motions. The method 1s
first applied to gravitational systems in general relativity and their post-Newtonian
approximations.

The thesis is split into part I, a general introduction and discussion of the relevant
methods, and part 11, the original research and main body of the thesis.

In chapter 1 a general introduction to the problem of the Solar System's stability 1s
given, with an emphasis on Roy's hierarchical stability and the divergence problem of
classical perturbation theory due to chaos.

Chapter 2 is a review of the theory of Hamiltonian chaos, presented at a level of
comprehending chaos mathematically. The importance of number theory, infinite series
and integrability to chaos is emphasised. The geometrical method of studying nonlinear
dynamical systems is introduced; classical perturbation theory is used to comprehend the

KAM theorem. Particular attention is paid to coordinate-free interpretation of the



integrability and separability conditions. In this chapter, a collection of integrable and
chaotic systems is given because of their conceptual value to later chapters. Based on the
Toda and Henon-Heiles Hamiltonian systems, a discussion is given on the general
relationship of a system to its truncated system. This suggests a similar situation for the
geodesic motion in Kerr georretry.

Chapter 3 is the last chapter of part I on chaos. In this chapter we study the history
of chaotic dynamics and its impact on science in general. Although it is standard to study
quantization of regular and chaotic motions, the present author pays particular attention
to a philosophical comnpatibility between the theory of chaotic attractors and quanium
mechanics. Noting that the two revolutionary theories were born at almost the sume
time, and that Poincare was a contributor to both theories, the present author carries out
a historical search for a possible mutual influence in the development of the theories.

However, it is found that such a connection is surprisingly tenuous.

The original work is included in part I1. The classical 3-body problem is studied in
chapters 4 and 5; and the relativistic few-body problem is studied in chapters 6 and 7.

In chapter 4, we first review the previous approaches on the Hill-type stability of the
general 3-body problem. It is found that all results of previous studies are equivalent and
do not go beyond a direct use of Sundman's inequality. Zare's (1976) canonical
transformation study on the coplanar 3-body problem is modified and applied to the
spatial problem, thus obtaining inequalities stronger than Sundman's. These inequalities
determine the best possible Hill-type stability regions for the general 3-body problem,
although the critical configurations and the value of (C2H), cannot be improved. In this

approach, it is found that the moment of inertia ellipse of the system may be used to
simplify the calculation. Because of this, it is hoped that the same stronger inequalitics
may also apply to systems with more than three bodies.

On the other hand, Sundman's inequality is generalised in appendix B to facilitate a
similar study of relativistic systems in chapters 6 and 7. It is also hoped that the stronger
inequalities obtained in chapter 4 may be developed into an inequality approach so they
can be applied to improve the results of chapters 6 and 7.

In chapter 5, we prove that a Hill-type stability guarantees hierarchical stability
condition HS-(C). The general case of a result concerning the primary, secondary and
tertiary bifurcation values of C2H, which was proved in a limited case by Walker & Roy

(1981), follows immediately from our proof of hierarchical stability. Based on analysis



of the function C2H, we were able to establish several upper bounds for the value of o

thus proving that no cross-over of orbit could occur if a system is inside the Hill-type
region. The property of CZH is also used to obtain a correlated variation in the
semi-major axes and eccentricities of the two binary systems for coplanar hierarchical
3-body systems.

In the same chapter, a systematic numerical experiment is carried out to investigate
the hierarchical stability of the coplanar 3-body systems with initially elliptic orbits. It is
tound that the eccentricity is the most important orbital parameter indicating the stability
of the system, and the introduction of eccentricities into the initial orbits drastically
complicates the behaviour of the 3-body problem. Stable systems tin the sense of all
three conditions of hierarchical stability) have been found to cxist outwith the Hill-type

region, and unstable systems exist inside it. New complicated valley and plateau

structures are observed in the lifetime vs. initial a plot. This is believed to be a reflection
of the complicated island structures of a general nonlinear system. A failure of the
elliptical C2H stability criterion is concluded.

In chapter 6, we introduce the coordinate-free language of differential geometry and
make a general discussion on symmetries and conserved quantities in general relativity.
Because of the key role played by integrals in the study of both hierarchical stability and
chaos, we go into some detail in this general investigation. New forms of integral
conservation laws were found for general systems; and a relationship is found for
geodesic motion between the Poisson bracket of a class of integrals and the Lie bracket
of Killing vectors. The classical Sundman inequality is applied to geodesic motion in the
Schwarzschild geometry to obtain the standard bounded motion results, thus providing
the first successful example of generalising the inequality method to general relativity.

In chapter 7, we apply the generalised inequality method to investigate restrictions on
possible motions by symmetries. Although the study in the gencral case is not complete,
we were able to obtain some new relations and analyse the difficulties. An application to
the post-Newtonian N-body problem yields useful results. In the 2-body case the result
is satisfactory. In the 3-body case, the relations are good enough to show the existence
of bounded motion, however, they are to be improved by future work.

The contents of chapters 6 and 7 have been accepted for publication by the journal
General Relativity and Gravitation under the titles Symmetries of space-time,

Conservation Laws and Forbidden Motion, Part . General Discussion; Part II. Bounded



Motion of the Post-Newtonian N-Body Problem.

The computational results of chapter 5 have been accepted for publication in
Predictability, Stability and Chaos in the N-Body Dynamical System. in the NATO ASI
Series.

The results of chapter 4 have been submitted to the journal Celestial Mechanics with
the title An Alternative Deduction of the Hill-Type Surtaces of the Spatial 3-Body
Problem.

The results of sections 5.1 and 5.2 are currently being rewritten for publication.
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We ought to regard the present state of the Universe as the effect of its preceding
state and as the cause of its succeedinyg state. --- Laplace
It is the nature of mathematics to pose and to solve problems; there was no

possibility of never knowing. In mathematics there can be no ignorabimus. --- Hilbert

CHAPTER 1

Introduction to Solar System Dynamics

Will the present configuration of the solar system be preserved for some long interval of
time? Will the planets eventually fall into the Sun or will some of the planets recede
gradually from the Sun so that they no longer belong to the Solar System? Will any
planet approach another planet and form a binary system revolving around the Sun like
the Earth-Moon system or become more eccentric or more inclined to the ecliptic, and
break the present configuration of the solar system? How were the satellite systems in
the Solar System formed in the past? Have the satellites been captured during the
passage of the Sun through some aggregates of cosmic rocks? Are the metcoric swarms
really the remnants of comets? Are the gaps in the distribution of the semi-major axes of
the asteroids and the gaps in Saturn's rings actually caused by gravitational actions, so
that it is impossible for any small mass of particles to stay for a relatively long interval of
time with the corresponding value of the semi-major axes? (Hagihara, 1957).

These are the questions likely to be raised by anybody when considering the marvels
of celestial phenomena. Put more technically, is our Solar System stable? Seemingly an
easy question, this has long been one of the most acute problems in celestial mechanics.
To many people this is a simple question, for it is but a system of 1+9 bodies interacting
under the well-known laws of motion and gravitation, and it was Laplace (1749 - 1827)
who said that given the present state of the Universe one can predict its past and future.
Others, however, may regard the difficulty of the question as that no system found in
reality is completely isolated from the uncontrolled influence of the environmental world.

Who knows the stability or future of a real system?



It is now realised that the former group of people are wrong, because even the
dynamics of a system with only three bodies is not soluble analytically (Poincare, 1892)
and the existence of chaotic motions in principle implies unpredictability when
employing numerical experiments. On the surface the second opinion goes to an
opposite extreme (in fact Landau held the idea more or less like the former, while the
young Fermi the latter), however, both are based on a single agreed intuition:
theoretically speaking, a simple question such as the stability of the motion of a few
bodies, if the bodies were well isolated or if the influence of the outside world was
given, should have a simple answer. A simple system or a simple mathcmatical model
should give simple phenomena and the comprehension of the complicated reality must be
achieved by understanding enough simple specific cases (as was believed at the
beginning of the century by eg. Klein and Sommerfeld). It turned out in the course of
history that such intuitive beliefs were false either due to oversimplified understanding of
the problem or to the limit imposed on men by their time, for at a certain epoch only part
of a particular problem could be grasped and was often taken as the whole.

Such intuitions of a simple and comprehensible nature have appeared in various
forms in history and have been held by many famous scientists as the back-bone of their
life-long beliefs. For example, Fourier believed that every mathematical function, no
matter how complex, could be expressed as the sum of the basic simple sinusoidal
functions. The investigation of this idea lasted throughout most of the nineteenth century
and involved many of the greatest mathematicians of that time, including Dirichlet,
Riemann, Weierstrass and Cantor. These successors of Fourier discovered what make
his methods work and what might cause them to fail. It turns out that, through the
celebrated works of Poincare, these contributions are essential to an understanding of the
stability of the Solar System and they lie at the heart of the theory of deterministic chaos
(see later sections of this chapter and next chapter).

On the other hand, some beliefs of the simplicity and comprehensibility of Nature
might still be justified by reality. A good example is Einstein's belief that Nature (in the
sense of its laws) is simple, beautiful and symmetric. Simple natural laws could be
compatible with a complicated reality if they have rich complicated solutions (see chapter
3).

The main purpose of the present thesis is to study the stability of systems with a few
gravitationally interacting bodies like the Solar System, whose formulation is very easy.
The thesis is divided into two parts. In Part I, we review the recent progress made in
understanding the stability of N-body systems and chaotic dynamics in general.
Although most of the material in this part may be looked upon as standard, much

original work and many ideas are included. For example, the present author attempts to



clarify some points such as the relation between separability and integrability which are
often confused. Also discussed in this part (chapter 3) are the possibility of interpreting
quantum phenomena using the notion of strange attractors and the history of quantum
mechanics in connection to that of chaos. Since this discussion deviates from the
existing material, speculation does enter this p.rt.

More original and conclusive work is inc'uded in Part II, in which a specific kind of
stability, hierarchical stability, is investigated both theoretically and numerically. In
chapter 5, we prove a relation between hierarchical stability and Hill-type stability of
3-body systems and investigate such relations in more detail by numerical experiments.
In our experiments, phenomena not noticed before have been found. In chapter 4,
stronger inequalities were established for the spatial 3-body problen: and best possible
Hill-type zero velocity surfaces are obtained. In chapters 6 and 7, the gencral relation
between symmetry, conservation laws and forbidden motion is discussed, based on
which a first effort is made to generalise the Hill-type surfaces found in nonrelativistic
celestial mechanics to the framework of general relativity and the post-Newtonian
approximation.

In this chapter we first describe in section 1.1 the reality and phenomena, namely,
some of the relevant observations of the Solar System from ancient times up to the
present epoch. In section 1.2 the three fundamental working theories (Newtonian
mechanics, Einstein's relativity and quantum mechanics) on the origin, stability and
future of the solar system are discussed. Finally in section 1.3, we summarise the
successful explanations, open questions and make an overview of the relevant
revolutionary concepts of the twentieth century mathematics such as fractal geometry and
deterministic chaos.

1.1 The Phenomena - Observed Structures of the Solar System

The field of Solar System dynamics, namely celestial mechanics, studies the structures
which exist in the Solar System, its possible dynamical origin, stability and future. In
order to discuss the problem appropriately, it is useful to review some of the typical
motions and basic structures observed in the Solar System. In addition to the fact that the
motions of the planets are constrained to almost circular orbits on or close to a plane, the
ecliptic, and that the motions are in the same direction, ie. prograde (direct,
co-rotational), the characteristic phenomena also include the well-known Titius-Bode's
law of the planetary orbits, commensurabilities in mean motion, the condensation and

gap feature in the distribution of the asteroids, the ordered motion of the satellites and the
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Figure 1.1 Orbits of the nine planets. (a). The orbits of the four inner planets.
(b). The orbits of the outer five. (c). The orbits of the asteroids.
(Taken from Baugher, 1988)



ring systems.

Kepler's Laws

Johannes Kepler (1571 1630), from a study of the mass of observational data on the
planets' positions collected by Tycho Brahe (1546-1601), formulated the thice laws of
planetary motion forever associated with his name. They are:

1. The orbit of each planet is an ellipse with the Sun at one focus.

2. For any planet the rate of description of area by the radius vector joining
planet to Sun is constant.

3. The cubes of the semimajor axes of the planetary orbits are proportional

to the squares of the planets' periods of revolution.

Table 1.1 Planetary distance from the Sun (in AU)

Distance from Sun (AU) o o
Planet n Eccentricity | Inclination

Bode's law Actual
Mercury oo 0.4 0.387 099 0.205 627 7.003 99
Venus 0 0.7 0.723 332 0.006 793 3.394 23
Earth 1 1.0 1.000 000 | 0.016 726 0.0
Mars 2 1.6 1.523 691 0.093 368 1.849 91
asteroids ? 3 2.8 2.80
Jupiter 4 5.2 5.202 8031 0.048 435 1.305 36
Saturn 5 10.0 9.538 843 0.055 682 2.489 91
Uranus 6 19.6 19.181 951 | 0.047 209 0.773 06
Neptune 7 38.8 30.057 7791 0.008 575 1.773 75
Pluto 8 77.2 39.438 71 0.250 236 | 17.169 9

Titius-Bode's Law

One of the most striking manifestations of order in the Solar System is found in the
planetary distances from the Sun, the characteristics of which are shown in Table 1.1
and Figure 1.1. Itis seen that the mean orbital radii, rj;, agree with Titius-Bode's law
(found in 1766, Johann Titius 1729-1796, Johann Elert Bode 1747-1826) up to the orbit

of Uranus, viz.



r,=03x2"+0.4 & r_ ~r =03x2"
n=-e,0,12 3 ...

Although this law has not the same status as Kepler's laws, it was historically
relevant particularly with the discovery of a number of minor planets (asteroids), and it
1s related to commensurable mean motions by Roy & Ovenden (1954). In addition

similar laws can be found for the major satellite systems (Blagg, 1913; Roy, 1982, P5).

Commensurabilities in Mean Motion
There exists in the Solar System a remarkable number of approximate

commensurabilities (resonances) in mean motion between two or more bodies in
the planetary and satellite systems. If the mean angular velocities are denoted by =

(@], e , @y} and a set of non-vanishing integers denoted by k ={kj, ...... , knl,

then the commensurability condition may be written as

<k,w0>=Z(kjw)=0.

For example, if 0}, 0, @y and wp are the mean motions in degrees per day of

Jupiter, Saturn, Neptune and Pluto respectively, then

©; =0.083 091, g =0.033460, wy=0.005981, ®,=0.003979,

p
<(2, -5}, {wpog)> = - 0.00L 118, <(3, -2),(wn,0,)> = - 0.000.025

One of the triple commensurabilities is among the mean motions of three satellites of
Jupiter; lo, Europa and Ganymede. In the same units the mean motions and triple

commensurability are

oy = 203.488 992435, g = 101.374761 672, g = 50.317 646 290,
<(1, -2}, {opog)> = 0.739 469 091, <(1,-2},{wg,0g)> = 0.739 469 092,

<{1, -3, 2},{0}0g,0q5)> = 0.000 000 001.

Corresponding to this remarkable commensurability in the mean motions of the

satellites, there is an equally exact one in their mean longitudes, viz.

<(1,-3, 2},{81. &s. B> = 1800,

This is called a critical argument.



An example of resonances involving more elements is the well-known Saros found
in the motion of the Moon, on which more information is given in Roy (1973, 1982).

In fact, for any set of given numbers (here, mean motions) there always exists a set
of non-vanishing intergers which can satisfy the commensurability condition arbitrarily
closely. However, it was shown by Roy and Ovenden (1954) that, if the integers are
limited to small ones, the occurrence of approximated commensurable mean motions is

higher than naturally possible (cf. KAM theory, small divisor).

Note. For any two numbers {a], ap}, there always exist two rationally independent

non-zero integers {kp, kp} such that (aj/as - ko/k1) and <k , a > both arbitrarily tend
to zero. However, care must be paid to the fact that the two expressions are not
equivalent, since the value of the k's are allowed to go to infinity. In fact, the former is a
necessary, but not sufficient, condition for the latter; thus there are more k's satisfying

the former relation than the latter one. This is evident from a simple example: for the

rational number 1/3 = 0.333..., the first relation can always be made arbitrarily small

(below 0.0 ... 04) by the sequence of rationally independent integers {3 ... 3, 10 ... 0},

whereas for the same numbers the second relation equals to a constant, 1/3.

Distribution of Asteroids between Mars and Jupiter

The minor and major planets are divided by the asteroid belt centred on 2.8 AU from the
Sun, and the majority of the small bodies are distributed in the range 2.2 - 3.2 AU.
Shown in Table 1.2 are a few important ones out of the thousands of these small bodies.
It is seen that the eccentricities and inclinations of the asteroids tend to be much higher
than those of the planets but they are all in direct orbits.

However, let us pay more attention to a more interesting phenomenon in the
distribution of orbital radii shown in Fig. 1.2. The structures existing in the distribution
of the asteroids in relation to commensurabilities has caused much curiosity for a long
time and is still attracting active research.

On the one hand there are the obvious breaks avoided by the asteroids, known as
Kirkwood gaps after their discoverer. These distances correspond to mean motions that
are commensurable with that of Jupiter, the main disturber of the asteroid orbits,
namely, 1:2, 1:3, 2:5, 3:7 and so on. On the other hand, there is an accumulation of
asteroid orbits near the commensurabilities of 2:3, 3:4 etc. Finally the Trojans, first
discovered by Lagrange (1736 - 1813), may be said to be a special case of condensation
close to commensurability 1:1.
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Table 1.2 Some important asteroids

7
Asteroid Year of | Diameter | Semi-major | Eccentricity | Inclination
_ discovery (km) axis (Al
1 Ceres 1801 946 2.77 0.08 10.6
2 Pallas 1802 583 2.77 0.23 34.8
3 Juno 1804 249 2.67 0.26 13.0
4 Vesta 1807 555 2.36 0.09 7.1
10 Hygiea 1849 443 3.14 0.12 38 |
433 Eros 1898 20 1.46 072 10.8
1566 Icarus 1949 2 1.08 0.83 229 |
1862 Apollo 1932 ? 1.47 0.56 6.4
2102 1975YA 1975 1.29 0.30 64.0
2363 5.13 0.04 32.8
2146 522 0.10 38.1
1869 Philoctetes| 1960 5.31 0.06 3.4

Motion of Other Smaller Bodies

In addition to the generalised Bode's law for the satellite systems and
commensurabilities mentioned above, the mean motions of the satellites are found to be
related to the spin periods of the planets. The rings of Saturn are easily observed, with
the gaps showing a correspondence with distances at which the orbital periods around
Saturn are some simple fraction of the periods of some of its inner satellites. While most
objects found in the Solar System follow dircct orbits, retrograde orbits are found in the
satellite systems of Jupiter and Saturn.

The motion of comets and meteors is also of some interest; in particular, of
dynamical interest are close approaches (encounters) of such smaller bodies with
planets. For example, the orbit of Brook's comet was markedly changed by the action of
Jupiter (see Roy, 1982). Before its encounter with the planet on July 20th 1886, its
period of revolution about the Sun was 29.2 years, its orbit lying outside Jupiter's. After
encounter, its period changed to 7.10 years, while its orbit shrank in size to lie
completely inside Jupiter's orbit.

The study of such close encounters is important to the capture theory of the origin of
the solar system, satellite systems and Pluto. For more detailed descriptions see Moore
(1988), Baugher (1988) and Dormand & Woolfson (1989). For a discussion of
dynamical capture theory see eg. Leimanis & Minorsky (1958) and Tanikawa (1983).



Binary and Multiple Hierarchical Systems

In contrast to motions found in the solar system, stellar motions may appear more
random and uncorrelated. However, this is not the case. In addition to the large scale
super-structures, more than half of the stars are found to be moving in binary systems,
in which the members may be separated so far from each other that their orbital periods
may be hundreds of years; in other cases the two stars are almost in contact, distorting
each other's shape by tidal pull, sharing a common atmosphere or transferring material
from one component to the other.

The proportion of triple and higher systems is also reasonably large, lying between
one-quarter and one-third of all stars (see Roy, 1982). In studyving the motion of such
systems and the ordered motion in the solar system, Evans's (1968) hierarchical
approach is found useful. In fact, the stability of such hierarchical systems has been
studied by Walker (1980) and M®Donald (1986), and is also the main subject of the
present thesis.

In this connection the work of Heggie (1975) is worth mentioning. He found that
binary and multiple systems can be formed dynamically in classical many-body systems.
However, this mechanism does not produce such systems in sufficient numbers to

match the observed proportion.

Summary

In this section some of the characteristic motions and most important features of the solar
system have been summarised. The theories that may be used to supply satisfactory
explanation of such features shall be mentioned in the following sections. However, it is
important to note that no theory is an absolute reflection of truth, and its origin and
development rely heavily on the observed phenomena.

In fact the origin and development of Newton's laws of motion and gravitation
depended heavily upon the careful observations by Brahe and Kepler. The test of the
theory needs more accurate observation over longer time periods and it is worth noting
that an accurate test of the theory is not possible at present since many of the bodies have
only been discovered and traced relatively recently; in fact Pluto has only covered half of

its orbit since its discovery in 1930 (see eg. Walker et al, 1980).

1.2 The Theories - Newton's Laws of Motion and Gravitation

The problem of the motion of celestial bodies and objects on the Earth has stimulated



much curiosity and speculation. As mankind is necessarily limited by personal activity
and movements, the sensation of space came to man (either individual or society) earlicr
than time, and an Earth-centred universe was an almost obvious 'truth’ held for a long
time. While a normal man is born with sight, hearing and other sensation to feel the
length, width and height of the 'universe’, the realisation of time needs a conscioux
observation of recurrent (periodic, almost periodic) phenomena. In ancient times the
observation of such recurrent phenomena was inevitably mixed with art, religion and
superstition; for example, the rise and set of the Sun, periodic motion of the Moon, and
more importantly, the relation of the motion of the Sun to the periodicity of seasons,
flood and field work. Therefore, the character of the civilisation of ancient times was that
everything was correlated and of a unified 'God'. This was continued until the time of
Galileo (1564-1642), who was the main contributor to the modern scientific method of
reasoning and experiment characterised by the strategy 'divide and rule'.

On the other hand the origin and development of a scientific theory or method is
almost always characteristic of successfully formulation and abstraction, which usually
requires men to be creative, to bring some apparently irrelevant experiences together and
pursue the principle of beauty, simplicity and economics. The historical development of
Newton's law of gravitation is a very good example of a successful formulation based
on careful observations and creative intuition of seeing the common feature out of

apparently irrelevant events.

Newton's Laws of Motion
At the time of Newton (1642-1727), the 'shoulders of the giants' were ready to be stood
upon. In his celebrated work The Principia, Sir Isaac Newton proposed the three laws of

motion by bringing together statics and kinetics:

(1). Every body continues in its state of rest or of uniform motion in a
straight line except insofar as it is compelled to change that state by

an external impressed force.

(2). The rate of change of momentum of the body is proportional to the
impressed force and takes place in the direction in which the force acts.

(3). To every action there is an equal and opposite reaction.

While the third is independent, the first two can be formulated into a unified

mathematical equation, namely,

F = dP/dt = ma,

where the notation is standard. Based on this equation of motion, the theory of classical



Newtonian mechanics (both statics and dynamics) was established, and the origin and
progress of the theory of calculus gradually followed.

Now let us note that the power of this formulation of motion cannot be justified only
at this level or remain at a level of philosophy; its power lies in its capability to be tested.
Most original theories share this property. However, the marvellous achicvements of
Newtonian mechanics did also lead to false generalisations and enthusiasm (eg. ideas of
Laplace and Hook). It is quite common in the history of science and in fact inevitable in
any personal activity to lay aside situations where a theory does not work and remain
enthusiastic about where it works well. This is useful, but frequently, after many
successes society and individuals tend to completely forget and remain blind to situations
where the theory is not valid (see the quotations of Laplace at the beginning of this
chapter).

In fact most of the problems of 'given force - find motion' are not completely
solvable in closed form. Thus Newtonian mechanics is faced with the difticulty that it is
purified out of a very small subset of simple facts (phenomena) and is solved by mental
labour for a slightly larger subset, in which the theory is found to agree with some new
facts, and thus the power is shown. However, the remaining large amount of
phenomena are believed to be encompassed by the theory without any means of testing
since the theory cannot be solved nor compared with the facts. Therefore the belief is
faced with a serious drawback, but it is exactly due to this incompleteness that the theory
is open to modification.

On a more technical level let us consider the difference between the configuration
(physical, positional) space and state (phase) space. A configuration of a body is the
position of it in space at a specific time, r(ty); while a state of motion of a body 1s the
position of it for some time interval, r(t), which is equivalent to knowing, for analytic
motions, all derivatives of the position vector with respect to time at a specific time
(according to Taylor expansion).

If a law of motion is, by assumption, an ordinary differential equation and capable of
determining the state of motion, it could be of any order (zero, one, two, three or
higher). However, a law of motion cannot be an ODE of order zero (ie. algebraic), since
this is just a direct description of the state of motion, thus not a useful theory; it cannot
be of order one either since absolute motion (velocity) is meaningless, which had been
realised well before Newton. Therefore the simplest nontrivial ODE must be of second
order, like Newton's second law of motion. The problem is then why it should be the
second order derivative rather than the third one that is related to 'force'. This is justified

because 'force', a concept important to everyday life, is in fact defined as a second order
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derivative; whereas only in the case of slow motion, F is identified as the 'force’ in
statics. So we see that Newton's laws of motion are purified from a rather limited class
of motions analytic with time, with some implicit assumptions such as a continuous
world and Galilean relativity; the approximate feature of the theory is also evident. Such
methodology is also used in the foundation of Einstein's relativity and wave (quantum)
mechanics.

The state of motion, r(t), during some time interval is determined by a Taylor
expansion and the recurrence relations of the coefficients. It turi out that to find the
state of motion defined by an nth order ODE, it suffices to know the time derivatives of r
at a specific time up to the (n-1)th order. Therefore, the initial value problem of the
Newtonian mechanics is determined by giving initial position and velocity. This is why
the space of generalised coordinates and momenta is called the state (phase) space.

Because there are many a priori assumptions and simplifications in Newtonian
mechanics, the theory was to be revolutionised by special relativity, general relativity
and quantum mechanics, for which new fundamental concepts are needed. Because of
the nonsolvability of the theory, a revolution completely within the framework of

Newtonian mechanics, namely, deterministic chaos, was also of historical necessity.

Newton's Law of Universal Gravitation

Newton's law of universal gravitation is one of the most far-reaching laws ever
formulated, and is the basis of the studies of celestial mechanics and astrodynamics. It is
based on the work of Nicholas Copernicus (1473 - 1543), Tycho Brahe (1546 - 1601)
and in particular Kepler's three laws of planetary motion. Newton was the first to realise
the importance and study systematically the three Kepler's laws. By using his laws of
motion, he was able to show that the inverse square law of gravitation is the only law of
force compatible with the three empirical laws of Kepler regarding motions of planets

around the the Sun. The law is stated as:

Every particle of matter in the universe attracts every other particle of matter with a
force directly proportional to the product of the masses and inversely proportional to the

square of the distance between them. In other words,
F=Gmym,/ 2

where G is the universal constant of gravitation.

We note that the law of universal gravitation is a kind of two-body, linear law, since

the interaction between any two of the many (or infinity) bodies 1s completely
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independent of the existence of other bodies and the forces can be added by the linear
triangle principle to form the resultant forces. This is another example of many a priori
assumptions of Newtonian mechanics which were to be abandoned in the theory of
general relativity.

Summary

In this section we briefly discussed the main working theory in the studics of celestial
mechanics, Newtonian mechanics, which enables the motion of celestial bodies to be
studied mathematically. Although in certain circumstances, the theories of relativity and
quantum mechanics are also relevant, in practice, it is Newton's universal gravitation
that dominates the motion. Moreover the motion may often be modelled by that of some
point-mass particles, with the influences of non-gravitational forces, the size and
distribution of mass in a body considered as perturbations. Thercfore in the following

section we shall discuss the ideal N-body problem.

1.3 Stability of the Solar System as an N-Body Problem

With Newton's laws of motion and gravitation, the motion of planets and asteroids may
be treated as point masses interacting under mutual attractions only, this is a specific
example of the classical N-body problem with one dominating mass. The N-body
problem may be defined by the following set of ordinary differential equations,

d°R, Gm,

R = =—
' at’ jgi =N

R,=|R,|. R =R -R,

R, (ij=1,2 ... ' N)

where R; and m; are the position vector of the ith mass point in an inertial reference
frame and its mass respectively, while t is the time and G the gravitational constant
which in the present thesis is taken as unity.

In this formulation, the problem of celestial mechanics is changed to find the
solutions of this set of nonlinear ordinary differential equations. Although the 2-body
problem is solved, the 3-body problem poses a great difficulty. As a drawback even the
restricted 3-body problem is not solvable in closed form, although the slightly different
2-centre problem is solvable. The solvability of the 2-body problem on the one hand and
the nonsolvability of the 3-body problems on the other is due to the fact that there is only

a limited number of symmetries in the underlying space-time background. Thercfore
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only a limited number of global isolating (uniform) first integrals may be used to
facilitate solving the problem. Related with the solvability of the equations arc also the
singularity problems caused by possible collisions, for which the Cauchy existence and
uniqueness theorem does not apply.

In connection with both aspects, the series expansion method (essentially Taylor and
Fourier expansion) may be invoked and this, in fact, has been the main tool exploited to
produce ephemerides and regularising transformations. However, difticulties have been
encountered regarding the convergence of the series. It was not realised until the works
of Bruns, Poincare, Painleve, Sundman and Siegel that non-integrability and real
singularity are intrinsic problems of the dynamics, for which divergence of infinite serics
1s unavoidable rather than artificial (see eg. Siegel & Moser, 1971). It turns out that the
previous belief of the integrability and existence of convergent series solution was

incorrect.

Singularities and Regularization
One of the most obvious difficulties of the classical N-body problem may be the
existence of singularities in the differential equations caused by collisions between two
or more bodies. When this happens the general existence and uniqueness theorem
(sufficient conditions) does not apply; thus whether a solution exists or not is not certain
from a mathematical point of view. It may happen that a solution does not exist at such
singularities or exists but is not unique, because careful investigation shows that a
singularity of a differential equation does not necessarily imply singular solutions. For
simple examples the classical book by Stiefel & Scheifele (1971) should be consulted.

The standard method of establishing solutions through singularities is by
regularising transformations, whereby a change of variables transforms the original
singular equations to regular ones for which the general existence and uniqueness
theorem applies. It was shown by Sundman (1912) that collision with either primaries of
the restricted 3-body problems can be regularised. Solution can also be continued
through non-simultaneous binary collisions in the N-body problem (eg. Wintner, 1947);
whereas not all collisions involving three (or more) bodies can be regularised (eg. Siegel
and Moser, 1971) - they are real singularities in the sense that solutions at such
collisions are necessarily singular in a topological sense. Furthermore, it may happen
that a solution is singular but without any collision involved (eg. LLeimanis & Minorsky,
1958, P97).

The singularity problems encountered in N-body problem and their regularization are
not only of pure theoretical interest but also of computational value. For the references in
this field Szebehely (1967), Stiefel & Scheifele (1971) and Heggie (1974) must be
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referred to.

General Perturbation theory

Under the limit that the many body problem, or even the two-body problem with at least
one of the bodies of arbitrary shape and mass distribution, cannot in general be solved in
closed form for all time, various perturbation methods have been used to infer the
characteristic behaviour of such systems. For example, for the motions in the Solar
System such as the motion of a planet or asteroid around the Sun which is pecturbed by
another planet, or the motion of natural and artificial satellites (treated as point particles)
in the field of a planet (treated as an extended body), the general perturbation theory can
present satisfactory predictions about the motion of the bodies for a finite time interval.
In this theory, the motion of the body under study may be formulated as the motion in

the potential field, Uy, of an integrable case and a perturbation potential, R, which is at

least an order of magnitude smaller than Uj,. Thus the equation of motion may be written

as,

d?R/dt? = V(Ugy+R),
where Uy is usually the potential function due to the point-mass 2-body problem.

The above equation may be equivalently written as the so called Lagrange planetary
equations, which determine the variation of the osculating elements (eg. Roy, 1982).
The importance of osculating elements and the Lagrange planetary equations are often
explained as a result of the smallness of the changes of the orbital elements of the Kepler
problem due to the small perturbation. However, this often causes the misunderstanding
that the Lagrange equations are already approximate whereas they are rigorous. The
more fundamental aspects lie in that from the study of two bodies the coordinates and
velocity components at any instant permit the determination of a unique sct of six orbital
elements, and that the set of Delaunay elements, which are related to the classical
elements by simple formulae, in fact forms a set of canonical variables. Therefore, the
Lagrange equations are the equivalent laws of motion written in a different coordinate
system (Brouwer & Clemence, 1961). For future reference, we write down the
equations, the proof of them may be found from most standard textbooks (eg. Stiefel &
Scheifele, 1971). These references must also be consulted for more technical treatments

on practical problems.
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Lagrange's planetary equations:

__2Va R Moka-t/2, 2Ya R 1-e® R
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__1-¢€ R 1 [1-e® R oo_1 1€ oR__ ctgl oR
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where K2 equals the sum of the two masses whose motion are under consideration, with

the perturbation function R expressed in terms of the classical Keplerian elements (4, ¢,

I, M, o, ©2), namely, the semi-major axes, eccentricity, inclination to invariable plane,

mean anomaly, argument of pericentre and the longitude of ascending node.

Canonical equations in Delaunay elements:
4

K
(L, G H;l,g,h)=- +R
( g. h) Nk

{dL/dt=—aR/ al  [dI/dt=K'/ L+ 3R/ oL

dG/ dt=-0R/ ag 1dg/dt=aR/aG
dH/ dt=-0R/ oh ldh/dt=0dR/dH

where the Delaunay elements (L, G, H; 1, g, h) are related to the classical elements by

{L:K\/aT , G=Ki/afl-e®) , H=K a(1—e2_)cosl
=M , g=o , h=Q

These two sets of equations describing the variation of arbitrary constants are in
general nonlinear, nonintegrable ODEs, as are the equations in rectangular coordinates.
Perturbation methods may be used to solve them because of the smallness of R in
magnitude. Often such methods use successive approximations, such as the classical and
secular perturbation theory and the averaging method. In fact, in transforming the
equations from rectangular coordinates to the Delaunay canonical elements and
equations, we have just performed the preparatory procedure of putting the equations

into action-angle variables in the classical and secular perturbation theory discussed in
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Figure 1.3 Comparison of surfaces of section of Henon-Heiles Hamiltonian system

computed from perturbation theory with those computed numenrically.

The regular and chaotic regions are not separated by smooth boundaries

(from Lichtenberg & Lieberman, 1983).



next chapter.

In the remaining part of this chapter the problems encountered in the perturbation
methods are briefly discussed. More detailed discussions on the occurence of
resonances, small divisors, quasi-periodic solutions and chaotic solutions are postponed

to the next chapter in the much broader context of Hamiltonian dynami. s.

Fractal Geometry and the KAM Theorem

Now it is well realised that the 'domain of a property' may not be defined by a simple set
with smooth boundary manifold, but rather of fractal feature (Mandelbrot, 1977;
Devaney, 1987; Feder, 1988). For example, let us take the simple mapping

Zns1 =232 -C with Zg=0 (orequivalently Z.,;=C7Z,(1-Z,))

where all the quantities are complex with C as a complex parameter. The question is very
simple: as n --> infinity, for what values of C does the mapping converge (respectively
diverge)? It turns out that the range of the convergence (divergence) property of the
mapping cannot be described by a smooth boundary curve, although there is nothing
wrong with the continuity nor the differentiability in the above mapping. This 1s the
well-known fractal Mandelbrot set (Mandelbrot, 1983). This is a typical example of
simple questions with complicated answers. One can imagine the difficulties should one
try to answer the question following a conventional method; one just lacks the notation
to describe such a complicated boundary without the right notion for the solution to the
problem.

In fact the above example is not artificial at all, it is found that the domain of a
prescribed property is usually complicated in the parameter space. The property can be
stability, equilibrium, convergence (divergence) and so on (see eg. Poston & Stewart,
1978; Lichtenberg & Lieberman, 1983). In the context of celestial mechanics, the
topological methods and KAM theorem (named after Kolmogorov, Arnold and Moser)
show that, in almost all nonintegrable systems, the properties of regular (periodic and
almost periodic) and irregular (chaotic) motions are mixed in a very complicated way
similar (not exactly) to that of the rational and irrational numbers. In phase space, the
boundaries separating the two kinds of solutions are of fractal feature (see Fig. 1.3).
Only for regular solutions can the expansion method be used rigorously; the expansion
method is not compatible with chaotic trajectories (functions, motions). Therefore, the
divergence of the series cannot always be justified by better expansions; this is an
intrinsic difficulty.

The numerical integration method has been of great importance. However, one needs
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to be aware of the fact that the solution obtained on the computer may be quite different
from the real solution if the problem is in the chaotic region. Again only regular single

trajectories are computable with satisfactory precision.

Defining Chaos

Chaos is well recognised by scientific society as a rule for dynamical systems and in
particular Newtonian mechanics. However, there is not an agreed definition for it. As is
well known, modern science does not always follow the old fashioned axiomatic
formulation, but rather 'to define is to understand' (Poincare). Since chaos is onc of
many nonlinear phenomena related to nonsolvability, nonpredictability and other limits,
and is still a growing field not only digging in depth but also expanding in extent, its
current status of not being universally defined should not be surprising. in the fol'owing
we give some of the widely used definitions and point out their problem in order to
comprehend the subject.

(1). Deterministic chaos is seemingly random and apparently irregular behaviour
(solution, motion) of deterministic nonlinear dynamical systems, in contrast
to smooth regular (eg. periodic) motions.

(2). Deterministic chaos is an intrinsic sensitive dependence on the initial conditions,
exponential divergence of neighbouring trajectories (solutions), or occurence of
positive Liapunov characteristic exponents of solutions to ordinary differential and
difference equations.

(3). Deterministic chaos is an aperiodic solution to deterministic system, or solutions
with continuous Fourier spectra.

(4). Deterministic chaos always exists in (bounded) nonintegrable, nonlinear ordinary
differential equations and mappings.

(5). Deterministic chaos is due to the existence of hyperbolic fixed points (or unstable
conditionally periodic orbits), whereby the adjacent trajectories, close to each other
but on different sides of the stable and unstable manifolds, may approach the
hyperbolic point (or unstable conditionally periodic orbits), and then depart quickly
on receding from the hyperbolic point (or unstable conditionally periodic orbits).

(6). Deterministic chaos is defined by area-filling trajectories on a 2-dimensional
Poincare surface of section.

(7). Deterministic chaos is homoclinic and heteroclinic motions in conservative systems,
and strange (chaotic) attractors in dissipative systems.

(8). Deterministic chaos fills fractal regions in phase space.

(9). Deterministic chaos is what happens in a system with a large number of particles
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(eg. a box of ideal gas) where the motion of every particle is governed in the strict
sense by the deterministic laws of Newtonian mechanics; however, because the
number of particles involved and the frequency of collisions are so large that a
dynamical description becomes practically impossible, thus a transition to
statistical laws is needed.

(10). Deterministic chaos is defined as sensitive responses to errors, perturbations,

and nonpredictability, incomputability etc thus caused.

A few incomplete comments on the above tentative definitions on deterministic chaos
is in order. The most obvious characteristic of them is that by chaos we mean the
behaviour completely intrinsic to deterministic dynamical systems such as the initial
value problems of ordinary differential and difference equations, to which under very
general conditions a unique solution exists for an arbitrarily long but not infinite time
interval. It is commonly held that the behaviour of such deterministic systems is simpler
than that of a completely random or stochastic system; and the prediction of its future
behaviour based on the present state of motion is straightforward, if not trivial.
However, the comprehension of generic chaotic solutions to such systems implies the
futility of such expectation.

In fact the first four statements are generally true descriptions of various aspects of
such deterministic chaos, with some underlying equivalence. However, none of them
may be an ideal definition of chaos. The first is widely accepted by philosophers as a
good definition because it uses the least exterior material and the most comprehensible
language; the shortcoming of it is that the language is too descriptive, eg. a long periodic
motion may seem irregular if observed in a relatively shorter time interval. The second
needs more delicate specifications, although it does capture one of the most important
points of chaos. For example, it is well-known that solutions to lincar systems may
diverge exponentially with time, but are not chaotic; morcover, the detinition of the
Liapunov characteristic exponent needs much more careful specification (eg. Lichtenberg
& Lieberman, 1983, chapter 5). The third statement is probably a good definition for
chaos in conservative systems, because periodic and aperiodic functions are very simple
and theoretically accurate concepts; and in principle, it is the most directly
comprehensible reason for the difficulties encountered in history related to chaos.
However, in addition to its nonapplicability to linear systems, it may be blamed for the
words being failing to convey all the beautiful aspects of the concepts. Furthermore, care
must be paid not to confuse aperiodic functions with periodic functions of arbitrarily
long but finite period. The fourth statement says where to look for chaos; but it uses the

very delicate notions like linearity and integrability, the determination of which cannot be
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done in general.

The sixth and seventh are true; but as is specified in the statements, they cannot be
general definitions for chaos in other systems. The fifth is correct in emphasising the
significance of unstable periodic solutions. However, the mechanism of quick
divergence of neighbouring orbits is not appropriate; it must be interpreted in the sense
of the seventh statement where chaos is generated by hyperbolic points through
homoclinic and heteroclinic points. The eighth is true only for strange attractors in
dissipative systems, although chaos also causes regular and irregular motions to mix up
in all scales and the boundaries separating the two kinds of motions to be fractaliscd.

The last two statements shall be considered to be erroncous. The tenth makes the
occurrence of chaos a result of exterior influences, although the points stated are
important outcomes of intrinsic chaos and structural instabilities. The error of the ninth
statement needs particular attention, because it has been dominant in the ergodic theory
of physical sciences. In statistical mechanics the H-theorem, which proves the
non-decreasing feature of entropy, relies strongly on the collision process. In fact
collisions are not responsible for the ergodicity because the measure of the collision
manifold is zero in phase space (Siegel & Moser, 1971).

Therefore we will try to comprehend aspects of chaos without sticking to a particular
definition. We would not even attempt to do that because we would like to leave the field
open for new nonlinear behaviours to be included in the future, although not all

nonlinear phenomena can be explained by the notion of chaos.

Planetary Motion by Large-Scale Numerical Integrations
Numerical experiments are essential in science nowadays due to the speed and accuracy
of solution; it offers a very quick way of seeing the otherwise impossible results.
Numerical results may be used to test theory. Moreover, some of the theoretical rescarch
must be guided by numerical results, especially when the behaviour of a system is too
complicated to be achieved analytically. In celestial mechanics, the ODEs in rectangular
coordinates or the Lagrange planetary equations may be integrated directly on the
computer, because on the one hand the perturbation theory is not always applicable in
the sense of rigorous mathematics, and on the other hand the actual calculation involved
is too large, especially when the classical mixed vanable transformation is used. In fact,
analytical research and computational research progress in a parallel way. Moreover,
when the perturbation is too large, as is often required in a theoretical approach, the
perturbation method does not lead to very interesting results.

Thus the stability of the Solar System cannot be answered by perturbation theory

whose convergence is questionable; the sufficient conditions for stability required by the
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KAM theorem are also too restrictive. However, special perturbation theory may give
some hints in such cases. Numerical experiments are now usually used in celestial
mechanics for large scale prediction or systematic investigation. For example, in the
work of Cohen et al (1972), the orbits of the outer planets are calculated up to 1,000,000
years centred at the epoch, January 6 of 1941. In the LONGSTOP consortium, the
motion of the outer planets was computed forward and back in time over a total of 108
years. New results such as commensurable mean motions are still being contirmed and

observed. For a more detailed account see Roy (1988).

m

Fig. 1.4 The Jacobian vectors of the N-body problem

Roy's Hierarchical Stability and Hill-Type Stability
It is well known that whether the motion of a system is stable or not depends on how
stability is defined. The very natural Liapunov stability is not useful for practical
interests, because even the Kepler motion is not stable in this sense. Poincare's orbital
stability is of great value in theory, but from the history of celestial mechanics and
dynamics the condition of such stability is too hard to be established for a practical
problem. Other stability worth mentioning in this connection is Poisson stability,
Laplace stability and Hill stability, which are related with some of the geometrical studies
of Poincare.

An N-body system is stable in the sense of Laplace if neither escape to infinity nor

collision happens; whereas it is stable in the sense of Poisson if the system repasses to
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the initial situation infinitely often. Hill stability is defined for the circular restricted
three-body problem if the zero-velocity curves close to trap the motion of the
infinitesimal body. The Earth-Moon-Sun system is stable in this sense of Hill
(Szebehely, 1967; Roy, 1982).

Very recently much work has been done investigating stability in the sense of Roy's
hierarchical stability. This stability will be studied further in the second part of this thesis
especially in the case of three-body problems. Like the Lagrange and Poisson stabilities,
this stability again seems very simple; however, a complete answer is not so simple. The
theoretical reason of choosing this stability to study is due to the successful
generalisation of the Hill-stability to general three-body problem recently (see chapter 4).

Hierarchical stability (hereafter HS in short) was defined by Walker & Roy (1983) in
connection with the so called Jacobian coordinate system. A dynamical N-body system
is held to be HS if, during an interval of time substantially longer than the periods of
revolution of the bodies in the system, the following conditions hold:

HS-(A). none of the bodies escapes to infinity from the system;
HS-(B). no dramatic changes occur in any orbit's size, shape or orientation to the

invariable plane of the system.

HS-(C). p; < Pj for any i < j, where p; =] P; | (i=2, 3, ..., n), being the Jacobian

vectors which connect the barycentre of the first (i-1) masses and the ith mass
(see Fig. 1.4).

These conditions will be referred to as stability conditions HS-(A), HS-(B) and
HS-(C) respectively. When anyone of them is not satisfied it will be referred to as

instability condition A, B or C. This stability will be investigated in detail in chapter 5.

Summary

Although the motion of the bodies in the Solar System and its stability, as was quoted at
the beginning from Hagihara, has not been answered by dynamical theory; much
understanding and progress have been achieved by the N-body model. To sum up the
success of the N-body model in answering the stability of the Solar System and
questions remaining open, Roy's (Roy, 1982, chapters 1 and 8) formulation of stability
of Solar System as an N-Body problem shall be quoted. Roy presents a list of questions

which reasonably focuses the attempts made in the field of celestial mechanics, viz.
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(1). How old is the solar system ?

(2). Does the distribution of planetary orbits alter appreciably in an astronomically
long time?

(3). If so, do the orbits alter slowly; or can sudden far-reaching changes occur in
one or more of the planetary orbits, even to the extent of planets changing their
order from the Sun or colliding ?

(4). If the Solar System is stable and only slowly evolving, is this due to its
present set-up with almost circular orbits, low inclinations, near-
commensurabilities in mean motion and direct orbits ?

(5). Are the retrograde outermost satellites of Jupiter and Saturn captured asteroids?

(6). Are most of the other satellite orbits stable over astronomically long intervals

of time, even if tidal action is taken into account ?

It appears that the most successful theory which has been used in answering the
above questions is the theory of chaos. The advance made in this field will be reviewed
in chapter 2, where we actually paid attention to chaotic dynamics in general. In chapter
3 we investigate the historical influence on each other in the development of chaotic
dynamics and quantum mechanics.

In Part II of this thesis we will discuss in detail the hierarchical stability and Hill-type
stability of the few-body problem. Compared with the theories reviewed in Part I, the
attempts of Part II only has a limited power towards an answer to the above questions.
However, many interesting results have been obtained in this field. In chapter 4 we have
modified the previous approaches and obtained stronger inequalities governing Hill-type
stability regions of spatial 3-body problem. Chapter 5 is a numerical exploration on the
hierarchical stability of the coplanar 3-body problem. In chapters 6 and 7 we discuss the
relationship between symmetries and conservation laws in general relativity, and make a

first attempt to generalising the classical study into the framework of genceral refativity.
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It may happen that small differences in the initial conditions produce very great ones
in the final phenomena. A small error in the former will produce an enormous error in
the latter. Prediction becomes impossible, and we have the fortuitous phenomenon.

--- Poincare

No significant formal system can ever be strong enough to prove or to refute every

statement it can formulate. --- Godel

CHAPTER 2

Stable and Chaotic Behaviour in Hamiltonian Dynamics

In the last chapter we briefly described the physical and astronomical phenomena of
heavenly bodies and the fundamental theories relevant to their motion; stress is laid on
particular cases in the Solar System. The successful explanations of such phenomena by
Newtonian mechanics and the difficulties encountered in the classical N-body model are
reviewed, with an emphasis on the generic behaviour of chaos and its effects in both
continuous and discrete dynamical systems.

In the present chapter, we will give a deeper view of chaotic (or resonant, nonlinear)
dynamics and in doing this we consider all three revolutionary physical sciences of the
century (namely relativity, quantum theory and chaos). A discussion about the
relationship to statistical mechanics is not included. This is not solely a review of the
existing literature on the subjects which has received much popularity in the past several
decades, but also a collection of the author's own opinions. Most of the material is not
presented completely, nor is intended to be mathematically rigorous, but in a way to help
comprehend the problem mathematically. Nevertheless, compared with the following
chapter, the content of this chapter is closer to standard material; and many confusions
often occurring in textbooks are clarified.

The chapter begins with a selected discussion on the theories of numbers, functions,
differential equations and convergence of infinite series (section 2.1), followed by a

summary of Lagrangian and Hamiltonian mechanics (section 2.2). Integrability and
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separability are discussed in more detail in section 2.3 because of their importance to
chaos; emphasis is laid on the coordinate-free interpretation of such concepts. In section
2.4 perturbation theories are outlined to comprehend the problem of small divisors, the
possibility of chaotic motion and convergent method to establish quasi-periodic motion.
The geometrical method and KAM theorem are included in section 2.5; chaos in
Hamiltonian systems is discussed using Poincare's surface of section. The chapter is
concluded by a personal comment on the implication of the occurrence of
commensurable mean motions in the solar system (section 2.8) suggested by Roy &
Ovenden (1954).

In the discussion, effort is made to stress the importance of the few-body problem
and the modern geometrical notion on manifolds. Although a detailed discussion on
chaotic attractors in dissipative system is out of context, a collection of such mappings
occupying some significance in history and still under active investigation is presented in
section 2.7. Characteristic features of chaos in both area-preserving mappings and

dissipative mappings can easily be observed by putting them onto a computer.

2.1 Introduction to Ordinary Differential Equations and Mappings

It is usually remarked that the nineteenth century was the century of linear dynamics,
whereas the twentieth century that of nonlinear dynamics. As a result of historical
inertia, even nowadays, scientific society living at the closing page of the century is still
satisfied with the simple solutions inherent to linear systems, which are often easily
distinguishable from stochastic phenomena. However, along the track of mathematical
astronomy, it was already shown by the end of the last century by Poincare (1892), and
early this century by Birkhoff (1917, 1920, 1927) followed by the work of Siegel and
KAM, that nonlinear systems can produce in principle not only simple regular (ic.
conditionally periodic, as is used by Wisdom, 1987, Binney et al, 1987) solutions but
also very irregular (ie. aperiodic) solutions which appear to be random. This kind of
chaotic solution, together with fractal geometry, has caused popular attention after being
rediscovered from experiments (Lorenz, 1963) and made visualisable by the advent of
the computer (eg. Henon and Heiles, 1964; Henon, 1965-70; Henon, 1969, 1976;
Greene, 1979; Chirikov, 1979). Since then, chaotic dynamics has found its increasing
application in various fields from engineering to biology and economics (Stewart,
1989).

Yet, chaotic dynamics and fractal mathematics are still growing subjects, and a great

number of articles and literature have appeared to convey these new sciences to both the
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academic and public worlds. In this literature, much attention has been drawn to the fact
that simple dynamical systems such as the logistic mapping can produce
exceptionally complicated phenomena, implying the possibility that phenomena
previously taken to be stochastic may in fact obey certain underlying deterministic laws.
However, the more fundamental root of the 'simplicity producing complexity’ rule is
respected in this chapter. Indeed, what occurs in chaotic dynamics and fractal
mathematics is very similar to the well-known chess-board game story. By simply
placing one grain on the first square, two on the second, four on the third and so on, one
finally finds oneself in an astonishing situation. This is just a result of iterating on the
simple numbers. Chaos and fractals are the outcome of certain similar procedures:
iteration of simple well-behaved functions. Repeating a few simple operations on simple
elements would not cause a qualitative transition and usually results in something that is
conceivable without detailed analysis; while increasing the number of operations can lead
to results so complicated that is ultimately beyond any straightforward intuition.

In an iterative procedure, the nature of the final state depends on how the generating
structures accumulate under iteration and how fast this process grows. Usually an

infinite number of iterations leads to qualitatively different effects. This may be

demonstrated by some very simple examples. If £ = x-1 + X2 + .. +xN then it is

easy to verify that the corresponding infinite series equals 1/(x-1). The singular point of
the finite series is at x=0 no matter how large n is, whereas that of the infinite series is
shifted to x=1. A second example is based on the observation of Fourier expansion:
when the function is periodic, no matter how large the period is, it can always be
expanded in convergent Fourier series; however, if the period is allowed to go to the
limit of infinity, namely aperiodic limit, then the function usually cannot be developed by
Fourier analysis.

Let us observe that a discrete mapping in fact creates an infinite sequence, the
periodic points of the mapping being just the repeating elements in this sequence,
whereas the irregular trajectories can be viewed as the irregularity of the sequence.
Chaotic solutions are just complicated solutions; while fractals are a kind of order
existing in the structure of chaos or in the domain where some specific properties appear
for the solution when viewed in parameter space. Therefore chaos and fractals are just
phenomena which exist in principle, with differential and difference equations being
simply their generators; thus there must be a compatible way of describing them as

functions.
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Functions and Infinite Series
Continuous functions are fundamental in science. One of their most usceful subsets is
the set of smooth functions (continuous derivatives up to some finite or infinite order
exist). In this thesis a finite number of bounded discontinuities are allowed; thus with
slight modification, results on functions without discontinuities are also true for
piecewise (or sectionally) continuous and smooth functions. Functions whose Taylor
expansions converge in the neighbourhood of a point are called analytic at that point.
In physics it has been conventional to assume that functions are either (piecewise)
smooth up to the required order or (piecewise) analytic. These assumpticns are met by
elementary algebraic (integral rational, fractional rational and irrational) and
transcendental (trigonometric, exponential, hyperbolic and their inverses) functions and
often by convergent infinite series built upon them. Non-elementary functions such as
the Dirichlet function (that is, f(t) is 1 if t is rational and O if t is irrational) are usually
taken as the exception since they are not well behaved. However, the recently recognised
application of fractal geometry such as the Koch curve (eg. Feder, 1988) has shown the

importance of continuous but not smooth functions; the continuous but nowhere

differentiable Weierstrass function (infinite series) X (k!)-! sin [(k!)2x] is no longer
regarded merely as a mathematician's abstract construction of minority counter-examples
(Korner, 1988, P38). They are becoming increasingly important in application.

Even if only the class of smooth functions is concerned, its difference from analytic
functions is not critically sharpened. In fact, the associated Taylor series of a smooth
function may converge but to a different function, or it may diverge for all points in the

neighbourhood of the expanding point except at it; well-known examples of these
'exceptional’ cases are the functions, for the former, exp(-l/xz), and for the latter,

Ye*cos(k2x) defined in the domain [-1,1] (see Poston & Stewart, 1978, P44).

This point shows how narrow the class of analytic functions is, which is more
obvious for functions of complex variables. This point should also be a warning
towards solving ordinary differential equations by power series, in which method a
power series is assumed to be the solution of an ODE and substituted into the equation to
determine the coefficients. Since the formal solution always satisfies the equation
(Poincare, 1892), a convergent series is always a smooth solution. However, if the
series diverge, it may be that there is no solution, or the series expansion is inadequate
(though useful solutions can often be achieved by such inadequate methods), or the
solution is smooth but not analytic.

For initial value problems, the existence and uniqueness of smooth solutions are

assured by theorems established in more powerful ways other than by scries expansion
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(eg. Roxin, 1972); therefore the first case is discarded in regular regions. In particular,
in occasions when the boundedness of a solution can be established (eg. Davies &
James, 1966), a failure of the Taylor series method should be concluded from its
divergence. It is also useful to note that the existence and uniqueness theorem is only a
kind of local notion, since it is only established for infinitely small or finitc time intervals
in phase space. In general the interval is allowed to be arbitrarily large but not infinite.
Moreover, the convergent successive procedures for constructing solutions is also
limited to such a finite interval. This is not contradicted by the divergence of the
successive procedures for solving the Lagrange planetary equations, because the method
is applied on an infinite time interval. However, when the system is linear, the theorem
becomes global in the sense that a unique solution exists and may be constructed by a
suitable iterative method in the whole phase space for an infinite time interval.

Taylor and Fourier series are often used in solving initial value problems. However,
neither is compatible with the existence and uniqueness theorem: smooth solutions are
not always analytic; whereas a Fourier series imposes periodic restriction on solutions. It
is usually remarked by celestial mechanists that Fourier analysis has an advantage over
Taylor expansion in the sense that the former is valid over the whole real line, while the

latter only in the vicinity of some points. However, this is not always true. Taylor

expansion can sometimes also be valid over the whole real line (eg. €X, sinx, cosx);
whereas Fourier analysis is also only a local treatment, because periodic functions over
the whole real line are in fact a repetition of a local property. When the period is taken to
an infinitely large limit, the above local property in a period cannot be arbitrary;
otherwise a divergence occurs in a Fourier analysis. Therefore there is no universal
infinite series (nor procedures) valid for all smooth functions defined on (-eo, +eo), not
to mention all continuous functions.

This point is important in order to see why the Fourier series solution of the N-body
problem should in general diverge as was studied in detail by Poincare (1892). To sec
this let us argue that a nonlinear ODE must in general have both quasi-periodic and
aperiodic solutions. The case with all solutions quasi-periodic must be very atypical,
because aperiodic solutions exist even in linear ODEs such as the well known Mathieu
equation (eg. McLachlan, 1947; Jordan & Smith, 1977), although in general this
aperiodicity does not mean chaos. Secondly, from intuitive observation, both (almost)
periodic and aperiodic solutions exist in the real N-body problem; to be compatible with
nature, the classical N-body problem must have both kinds of solutions. However,
aperiodic solutions defined for all time cannot be expressed in Fourier series. Keeping in
mind that the conventionally obtained formal Fourier series always satisfyies the ODE,

one sees that the series should not converge in general. Therefore, the divergence of the
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formal series solution, which was proved by Poincare (1892), is not surprising based on
the above heuristic argument, nor is this divergence literally related to chaos. What is
really important is that he showed the detailed condition of convergence and its relation
to the property of numbers, and that the series is asymptotic. Therefore we say that
aperiodicity and divergence of Fourier series is only a signal of chaos. The more direct
contribution of Poincare's relevant to chaos is his discovery of nonintegrability and the
existence of homoclinic and heteroclinic points in the N-budy problem. After a
discussion of such problems in later sections, we will see that it is the existence of
chaotic solutions that prevents Fourier series solutions from being convergent and the
construction of solutions from being global.

For boundary value problems, usually there is neither existence nor uniqueness
theorem; nevertheless, certain conclusions can usually be achieved by the shooting
method in the light of initial value problem. The problem is simpler if the equation is
linear so that a general solution may be established for the equation, then the constant of
integration may be determined by the boundary conditions. When the boundary
condition is imposed on a finite boundary and no singularity exists in the bounded
domain, then the Fourier series should be applicable in general. Taylor series is also
used, but it is not a complete method in principle.

For example, let us consider the Legendre linear ODE with boundary condition at
x=-1 and 1. Although theorems exist to assure this is a Sturm-Liouville eigenvalue
problem (Courant & Hilbert, 1953), they cannot be used to determine the eigenvalues,
nor to obtain physically interesting smooth eigenfunctions. The introductory way of
finding the eigenvalues and eigenfunctions is by power series, which is not a complete
method - eigenvalues and smooth eigenfunctions may be missed by this method.
Because of the linearity of the Legendre differential equation (using the parameter n(n+1)
as usual), there is no doubt that when n takes non-negative integer valuces, the nth order
terminating polynomials (Legendre polynomials) are the unique solutions, nor on the
method of abandoning the infinite part which diverges at either boundary points and
retaining the terminating polynomials. However, doubt arises on the introductory
argument that, since the power series diverges at either boundary point for any real n,
and for non-integer values of n the series does not terminate, and hence no solution
exists. Consequently, the problem is taken as an eigenvalue problem and all eigenvalues
have been found.

Although the conclusion is correct, the logic is false because smooth but not analytic
eigenfunctions may exist which cannot be found in the above way. When the problem is
defined on a bounded domain containing no singular points, the expansion method

compatible with the physically interesting solutions, namely, smooth solutions, is a
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Fourier series and the so called generalised Fourier series, such as series of Legendre
polynomials, which can be introduced in a different way other than as a solution of the
Legendre equation (see Courant & Hilbert, 1953). These can be shown to form a
complete orthogonal system, namely, piecewise continuous functions satisfying the
boundary conditions can be expanded in a unique generalised Fourier serics which
converges in the mean (Courant & Hilbert, 1953). Absolute and uniform convergence of
the series can be established under stronger smoothness conditions; whereas a C!
function satisfying some intermediate conditions and the boundary conditions can be
expanded in a convergent series in terms of these orthogonal functions. Therefore, if the
solution is assumed to be an infinite series in terms of Legendre polynomials other than a
Taylor series, then it can be shown that no extra eigenvalues nor extra eigenfunctions
exist for the Legendre differential equation with the boundary conditions.

In connection to the convergence of the perturbation theory and KAM theorem, it is
also useful to note the speed of convergence of such series expansions; the smoother the

function is, the more rapidly its Fourier series converges. In fact, if f(t) is C? smooth
and its associated Fourier series is ZC,ek®!, then the coefficients can be estimated by

| C | € c/kM, where ¢ is a constant. This relation may be obtained immediately if the
expression for the coefficients is integrated by parts k times. Similar results also exist for
multiple periodic functions of many variables.

After pointing out the generality of (generalised) Fourier series, however, we shall
mention a limitation of it. The sufficient smoothness condition for the function to be
expandable cannot be relaxed too much; there always exist continuous periodic functions
whose associated Fourier series diverge at a given set of measure zero points
(Kolmogorov considered the problem in depth, see Korner, 1988, P75). Let us also
note that Fourier series is only applicable to multiple periodic and conditionally
periodic (or almost periodic, quasi-periodic; see eg. Szebehely, 1967; Arnold, 1978;
Siegel & Moser, 1971; Berge et al, 1984) functions, which only have a finite number of
extremes in a period; while aperiodic functions cannot be treated in this way except for a
small class that may be developed by Fourier and Laplace transforms. Functions defined
on a finite domain can be developed either by Fourier series or Fourier transform.

Although most aperiodic functions cannot be expanded in convergent series,

divergent asymptotic expansion can often be developed for practical usage (Poincare,

1892; Whittaker & Watson, 1902). A series A, X ¥ is said to be an asymptotic

expansion (either convergent or divergent) of a function f(x) if the sum over the first n

terms LA x ¥ - f(x) as x = oo for fixed n. Such series are often the only possible
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means of obtaining the solution to some problems, although they are usually produced
by nonrigorous expansion. The semi-conveigent feature of the classical perturbation
procedure shown by Poincare (1892) justifies its applicability in practice.

Historical interests in looking for convergent series for the N-body problem is in
general related to asymptotic expansions. From the examples given in either Poincare
(1892) or Whittaker & Watson (1902), we see that by rearranging the order of the terms,
a convergent serics may be made semi-convergent or even divergent. Therefore the
divergence of one expansion procedure does not necessarily imply the divergence of a
solution. In addition, the occurrence of secular or mixed-secular terms in celestial

mechanics does not imply divergent solutions either. An example of the latter case is the

function sin(1+ &)t = sint + €t cost - 0.5 €212 sint - ..., which is convergent for all tin
spite of the mixed-secular terms (Roy, 1988).

Finally it is important to keep in mind the richness of infinite series, and in particular
their compatibility with chaos and fractals. Obviously, some discontinuous functions can
be defined by different simple functions in different regions; but this is not a convenient
expression for such functions. In order to see a possible alternative, let us recall that
infinite series built up on well behaved functions can in fact produce discontinuous
functions (eg. Whittaker & Watson, 1902, P44). The most apparent example is probably
the infinite trigonometric series. Conventionally, when this happens, attention then is
turned to finding conditions under which the infinite series converges to continuous
functions, and the importance of converging to discontinuous functions is ignored.
However, at the times of chaos and fractals, some emphasis must be paid to such so
called exceptional cases.

Knowing how to generate chaos (chaotic attractors and fractals can all be studied
utilising infinite sequences), it is useful to study whether infinite series (or more
generally infinite sequence) may converge to functions with many or infinite extremes,
or even discontinuities. In fact, Weierstrass constructed a continuous but nowhere

differentiable function.

Ordinary Differential (Difference) Equations

Ordinary differential equations (ODE in this thesis) and discrete mappings (or
transformations) are usually called (continuous and discrete) dynamical systems. Since
most important theorems can be stated in a similar way, we shall concentrate on ODEs in
general. This mathematical notion finds its wide usage in science because of the
implicitly assumed continuity and smoothness of the world: an observable variable is

assumed to be a function of position, time or other independent variables; by knowing
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the value of the observable variable at one point in the independent variable space, one
hopes to grasp the behaviour in the neighbouring regions or future (or past), namely,
making a prediction.

Algebraic equations were a great advance in the history of mathematics, because they
treat unknowns as knowns to form the equalities, and then solve the equations by
systematic routines, and thus offer a unified method to replace the previously scattered
methods of solving these problems. Differential equations, as improved algebraic
equations, take both the unknown functions and their derivatives as known material to
formulate the equalities. The idea of equations is to find what is conserved in the case of
a natural process and construct the equations, because the world is believed to be
casually interrclated with cause and effect. Something, such as a combination of the
variables, must be conserved, but whether it is conceivable or not depends on the
creativity of human being (combination of variables, functions and their derivatives).
The purpose of studying equations is to find their solutions. If they cannot be solved due
to some principle limit, then they must be replaced by more appropriate laws. Therefore
the relevance of differential equations is a result of regarding the world as variables,
elementary functions and infinite series built on them. The discovery of chaos and
fractals suggest a limit on the power of differential equations in general. Physically, this
limit on dynamics is more fundamental than the two limits from relativity (speed of light
limit) and quantum theory (uncertainty principle).

Differential equations are classified by type and order. Ordinary and partial
differential equations are distinguished according to the types of derivatives involved; the
order of a differential equation is the maximal order of the differentiation that appears in
the differential equation. Only ordinary differential equations are of concern in the
present study.

An c:dinary differential equation is a functional relationship of the form F(t, x, x/,
x", ..., x(M) = 0 between an independent variable t, an unknown function x(t), and a
finite number of its derivatives. Moreover, there may be systems of ODEs involving
various unknown functions x(t). In general, it is always possible to reduce such a
system of ODEs to that in which only derivatives of the first order appear. This can be
done by introducing new unknown functions. Thus it suffices to consider first order
systems of the form, x' = F(t, x). This is an advantage for a unified theoretical study;
nevertheless, second order ODEs are also of practical convenience.

In practice, autonomous systems and conservative systems are often encountered. A

system is autonomous if F or F is independent of t; such a system 1s called conservative,

if, furthermore, F(x)=V xU(x). The class of systems with F(t, x)=V xU(t, x) are also

frequently used; but it is not conservative.
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In the case where F (or F) is a linear polynomial in the unknown function and its
derivatives then the differential equation is called linear; otherwise it is called nonlinear.
Linear ODE:s are further classified as homogeneous and nonhomogeneous linear ODEs;
or linear ODEs with constant coefficients and time dependent coefficients.

Although the local existence and uniqueness of C! solution is usually established by
a successive approximation method for the first order systems, it is applicable to higher
order systems. It is also stated as satisfying initial conditions, and the solution is a
continuous function of the initial conditions. The above existence and uniqueness
theorem can be sharpened for linear systems (eg. Roxin, 1972) and, in fact, it becomes a
global theorem. Moreover, the solutions have more simple properties which are not
shared by that of nonlinear systems. Because of these properties, there are no chaotic
solutions in linear systems. However, this does not mean that linear systems can always
be solved easily; their behaviour is not always simple, as can be seen from Floquet
theory on linear systems with periodic coefficients (Jordan & Smith, 1977).

There is no general existence nor uniqueness theorem for boundary value problems.
Eigenvalue and eigenfunctions are a result of boundary conditions, which may happen in
both classical mechanics and quantum mechanics. However, in quantum mechanics the
most important condition leading to quantised states is that due to natural boundary
conditions which are in fact symmetries of background space and periodicity. Thus
quantization is a result of symmetry or periodicity.

In the general solution to a linear system of n first order ODESs, usually n arbitrary
integration constants appear which must be determined by the n initial conditions in
phase space; on the other hand a solution to a general nonlinear system of n first order
ODE:s is determined by n initial conditions. An integration constant is a function of
the form C(t,x), which is constant on a trajectory. This should not be confused with a
first integral (or, conserved quantity, constant of motion, invariant of motion, integral
of motion) which is a function of the phase space variables, I(x), and is constant on a
trajectory (but see Whittaker, 1904). A first integral is called isolating if it is single
valued, or non-isolating if it is non-single valued. Since only isolating integrals are of
importance, the word ‘isolating’ is usually dropped. The classical energy, momentum
and angular momentum integrals are isolating; for examples of non-isolating integrals
see, eg. Binney & Tremaine (1987). The existence and uniqueness theorem says that a
unique solution exists in the neighbourhood of an ordinary point, x(x, ty,t), which is a
continuous single-valued function. Therefore the n initial coordinates, x(, can always be
solved for inversely as functions of t and x. Thus they are integration constants, but in

general not first integrals.
A dynamical system of n first order ODEs (mappings, respectively) is integrable if
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it can be solved by quadrature, which usually requires the existence of n independent
single-valued first integrals. We shall see in later sections that the class of Hamiltonian
systems is a particularly interesting subset of ODEs, having more elegant propertics and
wide applications. For example, for a 2n dimensional Hamiltonian system, n first
integrals suffice for its integrability. It must be noted that the notion of involution
(defined by the Poisson bracked) is not defined in general dynamical systems; nor are
the other conditions and outcomes (cf. section 2.3) of an integrable Hamiltonian
applicable in the more general sense; because they may be a reflection of the particular
property of canonical systems.

2.2 Standard Formulation of Lagrangian and Hamiltonian Systems

Since the variational principle is just a reflection of some invariant properties, we shall
follow Abraham & Marsden (1978) and not include the variational principle in the
following discussion. Complete classical discussions on such systems may be found in
Whittaker (1904), Goldstein (1950) and Arnold (1983).

Lagrangian Systems
Lagrangian systems form a class of very important dynamical systems, which are
defined in configuration space and have the following expression,

g Lo t=t@an, 9=

where L is the Lagrangian of the system and q={q;} the generalised coordinates. For the
motion of particles in a potential field, L=T-U, where T=T(q, dy/dt, t) is the kinetic
energy and U=U(q,t) the potential of the field.

It is well known that when one of the generalised coordinates, ¢, is absent in L., then
there is a corresponding a first integral of the system. But this is usually carelessly
remarked as: if one of the g's is not involved in the potential, U, then a first integral
results. This statement is generally false, although it is always true if Cartesian
coordinates are used. The reason is that the kinetic energy is dependent on q unless
Cartesian coordinates are exploited.

It is instructive to look at this problem using the language of modern differential
geometry, as will be heavily relied on in the later chapters on relativity. To fix the idea,
let us take the motion of a single particle in an exterior potential as an example. In fact,
both T and U are coordinate independent scalar functions. Thus T=mv2/2=mg(v,v)/2,
(with v=d/dt) may be interpreted as a scalar of the contriaction of the metric tensor with
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the tangent vectors of the solution curve g=q(t) in the standard Euclidean space.
Although in the Cartesian coordinates, the components of the metric tensor are
constants, they are usually functions of the coordinates in an arbitrarily chosen
coordinate system. In order that a coordinate q is absent from L, that is, using geometric
language, the Lie derivative of L along the vector field of the q-coordinate is vanishing, a
sufficient condition is that the g-field is a Killing vector of the metric tensor and that U is
independent of q. Therefore, the coordinate basis field along which U is invariant does
not necessarily correspond to any first integral; to do so it must also be a Killing field
(Schutz, 1980).

The above Lagrangian system may bc put into a canonical form, to which the

remaining part of the section is devoted, via the following Legendre transformation,

aL
3q

where the time derivative of H satisfies dH/dt=0H/dt=-0L./0t.

H(a p.t) =2(q,p) -L(q,q,t), where p=

Hamiltonian System and Canonical Transformation

As is known, ODEs can be reduced to an equivalent first order system, dx/dt=F(t, x), in
phase space; whereas Hamiltonian systems form a special class of ODEs with even (eg.
2n) dimensional phase space, viz.

dat) _ oHg.p,t) dplt) __dH@pt) dH@Qpt) JHa pt)

dt ~— o ' dt oq ' dt a9t
which can be written in an equivalent form by a use of Poisson bracket, viz.

q={a,H} , p={p,H} , H=0aH/at ,

where H is the Hamiltonian, q={q;} and p={p;} are the gencralised momenta and
coordinates.

When H is independent of t, the canonical system is called an autonomous
Hamiltonian system. Such a system is conservative, and H becomes the usual energy
integral. Moreover, the conjugate momentum of any ignorable coordinate is a first
integral of the system (not all integrals can be made conjugate to coordinates of the base
space even if a transformation is allowed). The Poisson bracket is useful in finding first

integrals because of the following relation for an arbitrary function F(p,g.t), viz.

dF ~(OF oH _oF aHY, oF _ oF
TRDY ok it o A R LA T8
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In solving the above set of first order differential equations, it is useful to take the
advantage of the ignorable coordinates so as to reduce the dimension of the problem,
with the equations of the remaining variables being still in canonical form. If such
coordinates do exist, they can usually be found by performing canonical transformations

in the phase space. A canonical transformation is a transformation of the canonical
variables (p,q) of the phase space to a set of new canonical variables (P.9)= (.0,

%(p,q,1), whereas the canonical form of the differential equations is preserved. Such a
transformation can usually be produced conveniently by a generating function. The four
possible forms for the generating function, transformations and the new Hamiltonians

are summarised in Table 2.1 (Whittaker, 1904; Szebehely, 1967; Stiefel & Scheifele,
1971).

Table 21

3S, 38, 33,
Si@a.t):  P=+75q PG 0 HeHe T

3S, 3S, 3S,
Sz(qvao!t): p=+ 3q W=+—a? ; HE=H+ 3t

3S, 3S, 3S,
S,p.o,t): aq=- B 0 P T ae H=H+ =

S S 0S

S,p.p.t): q=—?§-, W=+3§-: F=H+

Extended and Reduced Phase Space
Since the solution of a canonical Hamiltonian system usually depends on the dimension
of the phase space, in order for a unified understanding of the structure of the phase
space, it is instructive to work in an extended phase space when the Hamiltonian is time
dependent, or in a reduced phase space when the Hamiltonian is time independent,
whereas the canonical feature of the system is preserved.

If the old Hamiltonian system in the 2n-dimensional phase space is,

dg oH dp _ oH
mqw)’&‘%"m‘aQ'

then by performing the following transformation,
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ov:q ! p:p ' Gvnﬂ:'t ! PnH:—H !

we obtain a new Hamiltonian system in the 2n+2 dimensional phase space, viz.

_ d9 s 9 Sy
H(y,p)=H@,p,t)-H , W T op  du T aq

where the new Hamiltonian, 2, is independent of the new arbitrary 'time’ variable, (L.

Conversely, given an 2n-dimensional Hamiltonian system, viz.

Hgp , 33_o4 dp__oH  dH_ ,
dt p dt oq dt

then by choosing any generalised coordinate as the new 'time' W, and the conjugate

generalised momentum as the new 'time' dependent Hamiltonian, we obtain a new

Hamiltonian system in the 2n-2 dimensional reduced phase space (Whittaker, 1904,

Lichtenberg & Lieberman, 1983).

Therefore, the motion of a system with a time dependent Hamiltonian is equivalent to
that of a time independent Hamiltonian with an additional degree of freedom, and vice
versa. In this way, the theory developed for a time independent Hamiltonian with n
degrees of freedom also applies to a time dependent Hamiltonian with n-1 degrees of
freedom. In particular, a time independent Hamiltonian with two degrees of freedom is

dynamically equivalent to a time dependent Hamiltonian with one degree of freedom.

2.3 Solution Method I - First Integrals and Integrability

Although the successive approximation method exploited in establishing existence and
uniqueness of solution may be used to construct solutions to an ODE, it is usually far
from being applicable in practice, either because of the amount of calculation involved or
the unsatisfactory speed of convergence. Nevertheless, such dynamical systems have a
deterministic nature. This does not contradict the existence of chaotic trajectories in the
same dynamical systems, nor does it contradict the new concepts like nonpredicatability
and non-computability. The point is that such an iteration method is a local notion only,
which is not useful in distinguishing various topologically different types of solutions.
Even worse, most differential equations admit neither an exact analytic solution nor a
complete qualitative description (Arnold, 1983). Therefore, various exact and
approximation methods have been developed to solve the differential equations or to

infer the qualitative feature of the solutions in phase space. The simplest cases of
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Hamiltonian systems are discussed in this section, namely, systems reducible to

quadrature. More complicated systems shall be considered in later sections.

Symmetries and Integrable/Nonintegrable Hamiltonian Systems

It is well known that isolating first integrals are related to ignorable coordinates; more
geometrically they are related with invariant properties and symmetries through
Noether's theorem (Noether, 1918; Abraham & Marsden, 1978; Olver, 1986). In the
extreme cases, a system may possess so many symmetries that the system is completely
integrable by quadratures. Integrability is a coordinate-free noti. 1, and may be defined
in the following equivalent ways for autonomous Hamiltonian systems with n degrees of
freedom:

Integrability in general sense:
(1). A Hamiltonian is integrable if it possesses n independent global isolating
first integrals in involution (Liouville's integrability).

(2). A Hamiltonian is integrable if it is independent of all generalised coordinates.

(3). A Hamiltonian is integrable if 0H/dp;=f(q;) for all i=1, ..., n, so that the n

equations for the generalised coordinates can be integrated by quadrature,
ie., dt=dq;/(0H/op)).

(4). A Hamiltonian is integrable if it is completely separable, namely, H=XH;(p,,q;)-
For example, dynamical systems of Liouville's type are integrable (Whittaker,
1904, P67).

(5). A Hamiltonian is integrable if canonical transformations (or gencrating functions)

exist such that it can be reduced to one of the first four cases.

Integrability in restrictive sense:
(6). A Hamiltonian is integrable if all solutions are bounded and conditionally periodic.
(7). A Hamiltonian is integrable if it is equivalent (globally diffeomorphic) to a
linear canonical system.
(8). A Hamiltonian is integrable if adjacent trajectories at worst diverge linearly.

It is useful to emphasise that we are restricted to Hamiltonian systems; otherwise the
sixth and seventh statements would lead to contradictions: combining them will lead to
the conclusion that linear systems can only have quasi-periodic solutions, which is

obviously false. It is a classical result that (see Arnold, 1978)
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{Liouville's integrability } C { separability } C {integrability by quadratures}.
However, the three sets may be identical in a practical (but coordinate-free) sense,
because even the Toda Hamiltonian and geodesic motion in the Kerr geometry are easily
verified to be integrable in the sense of Liouville. These two systems are integrable
because of the existence of 'hidden' symmetries and extra integrals which are not
conjugate to any generalised coordinates of the configurational space (cf. section 6.4).

Thus the first five statements but (2) (certainly there are more than listed here) mu
be regarded as alternative definitions for integrability, and there is nothing ambiguous in
them (but see eg. Wintner, 1947, P144 for disagreement). On the other hand,
integrability has always been a highly difficult problem (eg. Whittaker, 1904; Leimanis
& Minorsky, 1958; Broucke, 1979; Lichtenberg & Lieberman, 1983); because it is hard
to decide whether a specific Hamiltonian is integrable or non-integrable. The situation
here is very like that for the prime numbers. The standard definition for a prime number
is that it is number which is not divisible by any number except one and itself; which can
also be equivalently stated as a number which is not divisible by any number not greater
than the square root of the number. The principle for choosing one from many
equivalent statements as the definition is that it involves as little conditions as possible,
or it is conceptually as economical as possible; whereas the remaining ones are regarded
as theorems useful for different purposes (eg. Steen, 1978).

From the sixth statement above, we see that a useful method of determining
integrability is to assume that the solutions are all quasi-periodic, thus all solutions may
be expanded as convergent Fourier series; then substitute such series solutions into the
differential equations and investigate whether any contradiction arises.

The progress in chaotic dynamics shows that the very natural definitions of
Liapunov and Poincare stability, integrability and periodicity are all related to resonance,
and ultimately to number theory (Whittaker, 1964; Moser, 1973). These relations were
embedded in the very foundation of mechanics, but they were not uncovered until the
works characterised by Poincare (1892), Birkhoff (1927), Siegel (1941), and KAM.
Therefore chaotic dynamics did not go by itself beyond the framework of Newtonian
mechanics, it enriched the content and displayed the underlying relations, making them
more apparent. In history, many different definitions for stability have been given for
various theoretical and practical purposes. Of course, great progress has been made in
this way by defining stability to be adapted to the physical problems (eg. Szebehely,
1984), but it was just because of this compromise that the recognition of the most
fundamental chaotic behaviour of dynamical systems was delayed.

To see the possibility of relating periodicity to number-theoretic results, let us give a

very simple example. Can a function of a single real variable have more than one finite

38



principal period? By intuition, the answer is no; but the rigorous proof which was first
given by Jacobi (see eg. Forsyth, 1893) relies heavily on the properties of rational,
irrational numbers and continued fractions.

In order to fix our ideas and use the modern language of Riemannian manifolds to
look at integrability, let us confine ourselves to the motion of a single particle in an
exterior potential field; while the dimension of the configuration space is relaxed to any
finite dimension.

In this way we can give a deeper view of the involution condition in Liouville's
integrability (however, since hidden symmetries and Killing tensors are not well
understood, we have to confine ourselves to integrals conjugate to coordinates, obvious
symmetries, or Killing vectors). It is usually understood that if the n integrals are in
involution (not in involution), then their conjugate coordinates exist (not exist).
However, what might be less well known is the reason for the nonexistence of such
conjugate coordinates if the integrals are not in involution. This becomes obvious by
utilising the concepts of Lie derivatives and Killing vectors (cf. Schutz, 1980). In this
context, first integrals are made correspondent to Killing vector fields (isometries,
symmetries); moreover, the integrals being 'in involution' simply means that the
corresponding Killing vector fields commute, hence form a set of coordinate bases (cf.
section 6.4). When the integrals are not in involution, the Killing fields do not commute,
and therefore they do not form coordinate bases. That such independent Killing fields
are not in involution do not ensure integrability is because they do not offer a one to one
mapping for the Riemannian manifold, hence they are not coordinate basis fields
(Schutz, 1980). The advantage of working with the Tetrad formulation based on
noncommutative independent fields is discussed in Chandrasekhar (1983).

In this way, first integrals are related to more fundamental and more apparent
geometric concepts, namely, symmetries and Killing vector fields. This is a step
forward, however, even the notion of symmetry is not always obvious (cf. section 6.4).
In addition, there are symmetries (eg. reflection, Killing tensor) that cannot be included
in such description. On the other hand, although Noether's theorem establishes stronger
relations, it does not give any way of uncovering all invariant properties.

To see that the Killing vector version only uncovers a subset of all symmetries, let us
note that it gives a sufficient but not necessary condition for the existence of (obvious)
integrals. In the previous section, we required that both T and U were independent of the
generalised coordinates. However, it may happen that an invariant property exists for L,
with the coordinate dependent part in T and U cancelled out. In the Toda Hamiltonian,
there is no ignorable coordinate exist in physical space accounting for the additional

integral; it is due to a more subtle invariant property of L or H in phase space (Henon,
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1974; also Lichtenberg & Lieberman, 1983). In the Kerr space-time, the extra integral is
a result of a Killing tensor of the space-time.

The difficulties and efforts made in deciding integrability and finding integrable
systems can be found in Whittaker (1904), Lynden-Bell (1962) and Lichtenberg &
Lieberman (1983). More recent review on the advance in this subject may be found in
Yoshida (1983), Hietarinta (1987) and Ramani et al (1989).

Finally we mention two important theorems considering 'how many’ systems are
integrable, and what occurs if a system is not integrable. Siegel's theorem considers the
space of Hamiltonians analytic in their variables: non-integrable Hamiltonians are dense
in this space, whereas integrable Hamiltonians are not. Nekhoroshev's theorem leads to
the fact that all non-integrable systems have a phase space that contains chaotic regions
(eg. Campbell, 1989).

Hamilton-Jacobi Equation and Action-Angle Variables
As is seen, integrability of a Hamiltonian is a coordinate-free property. One of the
difficulties in determining whether a system is integrable or not is because a single
Hamiltonian can show various forms in different coordinates. Thus one of the efforts in
finding integrable Hamiltonians is to study their possible forms in some particular
coordinate systems so they can be identified. The Hamilton-Jacobi equation is one such
method which identifies integrable Hamiltonians in a class of coordinate systems; in a
looser but practical sense, this is often said to identify a class of integrable Hamiltonians.
In this method integrability of the set of first order ODEs is made equivalent to
separability of a first order PDE.

A remark may be made here on the widely accepted comment that separability is only
a sufficient condition for integrability. The confusion really depends on whether one is
using coordinate-dependent or coordinate-free language. It is true that an integrable
Hamiltonian may always be put into a coordinate system such that it is not separable;
thus separability does not identify all integrable systems. However, there always exists
at least one coordinate system in which any integrable Hamiltonian is separable.
Therefore, separability is equivalent to integrability. It is in this coordinate-free sense
that the equivalent definitions were given for integrability. From this we see why the
action-angle variables are usually the most convenient coordinates to use in obtaining the
approximate series solutions for near-integrable systems considered in more detail in
the following sections.

Because of the equivalence of time-dependent and time-independent Hamiltonians,
we shall only consider here the autonomous Hamiltonian systems. Moreover, only

Hamilton's characteristic function is included. A more complete discussion on its
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relation to Hamilton's principle function is given in Goldstein (1980).
In attempting to obtain a closed-form solution, a given Hamiltonian may be
transformed to a new Hamiltonian by a generating function, say of S type, so that more

ignorable coordinates are used. The relationship between the new and old systems may

be found from Table 2.1; and in general, any function S(q, $) would generate a new
canonical system.
For a Hamiltonian H(p, q) completely integrable in the sense of Liouville, a

generating function S (say of S; type without loss of generality) exists to transform the
system into a new Hamiltonian 59(39), in which all the generalised coordinates 9 are

absent and generalised momenta p=a are integral constants of motion. The purpose of

the Hamilton-Jacobi equation formulation is to find the generating function so the
transformation can be carried out.

Suppose H=%£ =p =, then the generating function must satisfy the

Hamilton-Jacobi equation, H(dS(q, ») /oq, @)= |, where the p's are to be regarded as

parameters. In this way the effort of solving the original system is changed to finding a

complete solution to the Hamilton-Jacobi equation, S(q, o, ¢), which is called the
Hamilton characteristic function. The constant ¢ is a pure additive constant, which is not

important to the transformation.
In practice the PDE is equally hard to solve as the original ODE unless the H-J

equation can be separated completely in the form, H(p,q)=XH(p;, q;). The
non-separable feature may be a reflection of nonintegrability or that an integrable
Hamiltonian is put in a badly chosen set of coordinates. Thercfore the advantage of the
H-J equation is that integrable systems may be identified in a less restricted class of
coordinates. In order that the system may be solved, the original system must be put into
the appropriate coordinate system; and there is no general method with which to make
the choice.

When the H-J equation is separable, the actual procedure of finding the
transformation may be found from Goldstein (1950) or Lichtenberg & Lieberman
(1983).

For integrable Hamiltonians, any function of the conserved momenta p may also be

taken as the new generalised momenta. A particularly important class of Liouville

integrable systems is one which possesses compact phase space. For such systems the
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action-angle variables are a very useful class of canonical variables which are defined by

-1 : _ o
J = Cﬁpdab'l » 8= t+ B, m‘:a—J,‘
For nontrivial applications of such variables the books by Goldstein (1950) and
Lichtenberg & Lieberman (1983) must be consulted.

Examples of Integrable and Nonintegrable Systems
It is instructive to summarise some of the integrable and nonintegrable systems which
occupy some position in chaotic dynamics and have some significant implication to the

later work of the present thesis.

(1). The Toda Lattice and Henon-Heiles System

The Toda lattice is a one dimensional lattice in which the repulsive force between
neighbouring particles moving on a ring is an exponentially decreasing function of their
angular distances. This is an integrable Hamiltonian system, for which Lichtenberg &
Lieberman (1983) give more details and references. Here we only quote the relevant part
of the problem.

After some transformations and use of the simple integrals, the original 3-particle
Toda lattice problem is reduced to the Toda Hamiltonian 3£ with two degrees of

freedom, which possesses the first integral, 3, nonlinear in the momenta, viz.

H=Tp,p,) +Ulx y)= 2(pF+p1) 457 (e7 T e e ey L
2y -2J/3x 4y

9=8p,(p2-3p?) + (p,-/3p,)e” B pos V3 p e -2p,e

This Hamiltonian is integrable. However, there is no obvious and simple symmetry

(in physical space) corresponding to the first integral J.
If the above Toda Hamiltonian is expanded in a Taylor series with respect to x and y,
and cubic terms are retained, we obtain the non-integrable Henon & Heiles (1963)

Hamiltonian system,
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H:T(px'py)*'U(X,Y):%(pf+py2)+;—(X2+y2)+x2y-1§y3
2
d’x dy . .
——=-—X—2xy , T ==X +y -~y
dt® dt

In fact, truncated systems of the Toda Hamiltonian to any order is not integrable.
However, the following Hamiltonian system is only slightly different from the Henon &

Heiles system, hut it is integrable,

H:T(px,py)+U(x, y) = ;—(px2+ py2)+ ;—(x2+ yz) +x2y+ 1§y3
2 d2
d_:=_x_2xy , ___‘_g_:__x2_y2_y
dt dt

The integrability of the last system is obvious by a change of variables, namely,
X=x+y and Y=x-y (eg. Cooper, 1989, P244). In fact, this example belongs to a whole
class of integrable systems which satisfy the Painleve property (eg. Lichtenberg &
Lieberman, 1983, P40; Ramani ¢t al, 1989).

At this point, we shall discuss some relationships between the integrability of a
system and its truncated systems, which might be helpful in understanding some of the
difficulties encountered in the later chapters on relativity and post-Newtonian
approximations.

One of the reasons for studying truncated systems is because of the complexity of
the original system and the belief that a truncated system is usually simpler, hence a
nonsolvable system may be solved by such an approximation method. Examples are
numerous; to list only two of immediate interest to the present thesis, stability of
equilibrium points is usually studied to first or second order; Newtonian mechanics and
post-Newtonian approximation are the lowest order truncation of the full relativistic
theory.

However, what we learn from the the Toda lattice example is that the relation
between original and truncated systems is not so simple. Firstly, a relation found from
the original system may be lost in an approximation procedure; because in a complicated
relation, the quantities on the two sides of '=' may ultimately be regarded as infinite
series, which are not necessarily based on the same constructions (lim A = lim B does
not guarantee that A = B).

Secondly, qualitative differences may be produced if a truncation is made with

respect to more than one variable. To fix our ideas, let us again consider the
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n-dimensional motion of a single particle in a fixed exterior potential field. If the
potential is expanded and kept up to quadratic terms in q=(qy, ... , qp). then it is always
possible to find a transformation such that the truncated potential becomes a standard
quadratic form which is separable. However, even for terms one order higher, the
standard cubic forms are not always separable (Poston & Stewart, chapter 2); therefore
there is no guarantee for the integrability of a truncated cubic potential, nor for higher
order terms. This justifies the integrability of the Toda Hamiltonian and the
non-integrability of the Henon-Heiles Hamiltonian.

We conclude from the above examples that although a truncated system may be
simpler than the original system, this is not always true. However, this is not to deny the
applicability of the approximation methods. These may be of some importance in two
respects in the later chapters. Firstly, the difficulty encountered in constructing the best
inequalities for the post-Newtonian many body problem may not be intrinsic to the full
relativistic problem, but rather a feature of the particular truncation. Secondly,
completely integrable systems in the full relativistic case, may become non-integrable
and chaotic if the systems are approximated to some nonlinear orders. This is a method
of studying relativistic chaos (see also Chandrasekhar, 1989; Contopoulos, 1990). This

point shall be discussed further in connection with quantization in the next chapter.

(2). Few-Body Problems

Integrable and non-integrable few-body problems (Whittaker, 1904; Siegel &
Moser, 1971) are discussed briefly here because of their importance in relation to
quantum chaology and chaos in general relativity.

The motion of a single particle in a fixed central field is integrable in both Newtonian
mechanics and general relativity (Schwarzschild geometry). It is not integrable if the
field is not central (not static, spherically symmetric). The Newtonian motion is
Keplerian if and only if the field is an inverse square law; any deviation from such law
results in pericentre precession due to quasi-periodic motion or non-integrable motion
(Goldstein, 1980).

The Newtonian motion of two bodies interacting with radial forces is reducible to the
motion of a particle in a central field, hence integrable. Usually the problem is not
integrable if the force is not radial. The motion of two bodies with at least one extended
body of arbitrary shape is not integrable in Newtonian mechanics, nor in relativity.

The classical two-centre problem is integrable, whereas the nonaligned many-centre
problem is not. None of such problems is integrable in general relativity. As an extreme
case of the two-centre problem, the motion of one mass in the field of a point mass and a

uniform field is integrable.
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The motion of two bodies in an arbitrary exterior field is not integrable in Newtonian
mechanics. Nevertheless, the problem is integrable if the exterior field is uniform; but
care must be taken that this problem can be reduced to the two-body problem, hence it is
simpler than when one of the masses is fixed.

The motion of two opposite charges in a uniform electric field is integrable and can
be reduced to the corresponding gravitational problem with one body fixed (Stark
effect). The motion of two bodies with opposite charges in a uniform magnetic field is
integrable (Zeeman's effect). These two models are of importance in quantum mechanics
(Born, 1927; Berry, 1978). Irregular spectra are observed corresponding to them
(Hasegawa et al, 1989).

The restricted three-body problem is not integrable (Henon, 1965-1970); such a
problem is not formulated in relativity. Hill's limiting problem is not integrable.

Many-body problems are not integrable in Newtonian mechanics, nor in general
relativity.

(3). Others

The harmonic oscillator is often quoted as an example of an integrable system for
which a closed-form solution may be obtained explicitly. The simple pendulum and the
two-body problem are examples of integrable cases, but the solutions can only be
obtained in an implicit infinite series of time (Lichtenberg & Lieberman, 1983; Stiefel &
Scheifele, 1971).

The ideal resonance problem is an example of an integrable system with a small

parameter, which may be written in action-angle variables as H = Hy(I) - € A(I) cos©.
This has been used to investigate perturbation theory, resonance and small divisors (eg.
Garfinkel, 1966; Ferraz-Mello, 1985).

The Sitnikov motion in the elliptic restricted 3-body problem is not integrable (cg.
Moser, 1973). This is the motion of the infinitesimal mass on the line perpendicular to
the plane of motion of the primaries and going through their centre of mass, where the
primary masses are of the same size.

An interesting example of non-integrable systems 1s

H= %(pf +p2) + axy?

for which all solutions escape. Thus no quasi-periodic solution exists (Broucke, 1979).
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2.4 Solution Method II - Perturbation Theory

As is shown in the preceding sections, in particular by Siegel's theorem,
non-integrability is the generic case for Hamiltonian systems, for such systems it is
impossible to obtain closed analytic solutions. This is not simply because ingenuity fails,
but because the notion of closed-form functions is too limited to accommodate the
solutions to the variety of differential solutions encountered in practice. Although, under
such a situation, iterative methods can be invoked, the solutions so found are often too
complicated to display clearly the principal features of the solution. Sometimes this is
also true, even if an analytic solution can be found; this is particularly true of implicit
solutions and of solutions which are in the form of integrals or infinite serics. Therefore,
qualitative study must be pursued, whereby important characteristics of the solutions can
be deduced without actually solving the differential equations. However, one needs to
keep in mind that some differential equations do not even admit a complete qualitative
description.

In this section we discuss the classical and secular perturbation theories for solving
Hamiltonian systems. They are among the most important methods, which do not only

offer solutions valid for finite time scale but also reflect the qualitative features.

Classical Perturbation Theory and Lie Transformation Methods
It is instructive to first look at the effects of resonances and small divisors in simple

linear and nonlinear systems of the form x" = f(x, x')+ g(t), where g(t) is a periodic

function of t with principal frequency 2. When there is no damping and f(x)=w2x, then

the equation may be solved in Fourier series, which has a kind of blow-up oscillation

whenever there is a resonance w=k€2. Thus linear response to a driving frequency
simply results in divergence. However, when the function f(x, x') is nonlinear the
system is saved from an extreme blow-up instability, and a completely new regime of

responses such as jump catastrophe and limit cycles is produced. This can be observed
from the well-known Duffing's equation with f(x, x')=kx'+ax+fBx3, and van der

Pol equation with a small parameter f(x, x)=€(x2 -1)x'+x (see Jordan & Smith, 1990).
From these examples we see that linearity produces relatively uninteresting extreme
responses to driving: either simple stability or simple divergence; while nonlinearity
produces more complicated responses which are more interesting.
Now let us turn to the more relevant almost integrable Hamiltonian systems. Such

Hamiltonians are usually produced in several ways: (1). the Hamiltonian 1s analytic in a
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small parameter involved, with respect to which the Hamiltonian may be expanded in a
Taylor series; (2). the Hamiltonian is analytic in some variables, and may be expanded
with respect to such variables in the neighbourhood of some point or trajectory; (3). the
last two cases may be truncated to certain order; (4). a finite power series of a small
parameter arising naturally or by assumption.

Attention must be paid to the fact that the usually phrased order of a perturbation
method has nothing to do with the order where the truncation is made in the above four

cases; it is the order of the truncation in the final solution. One is usually in a class of

almost integrable Hamiltonians which may be written in the action-angle, (J, 6), form of

the integrable part, Hy ,viz.
H(J, 6, &) = Hy(J) + €H(J, 0),
where the perturbation H;(J, 6) is assumed to be a multiple periodic function in the

angle variables; and the solution to Hy is J = Const, 6 = @ t + Const, ® =dH /dJ.

The classical perturbation theory solves the complete Hamiltonian system by seeking

a transformation to the new variables (p, 9¥) for which the new Hamiltonian is a

function of P alone (certainly also of €). Before we actually turn to details, let us

observe what we may expect. If a well behaved transformation could be found for the

above purpose, this would imply the integrability of the Hamiltonian H(J, 6, ¢€).
Because in general this is not the case, some contradiction must arise at the end. In fact
the classical perturbation theory is based on formal series calculus, so that the

transformation is found by truncating such formal power series in the small parameter

€. If convergence can be established for the infinite series, then the solution has been
found; if, however, the series diverges, we must conclude that the assumption is
probably false.

Conversely, if the Hamiltonian is not integrable, this formal procedure must produce
some kind of divergence. In fact, it has been realised since Poincare that it is not simply
a complete convergence nor complete divergence -- what happens depends much on
initial conditions, and the results of number theory is of great relevance. Poincare's
work was furthered by Birkhoff (1927); since then, great progress has been made in two
apparently opposite directions: the conditions for divergence were sharpened by Siegel
(1945), whereas the existence of quasi-periodic solution and conditions for convergent
series were sharpened by Kolmogorov (1954), Arnold (1963) and Moser (1962). Now

a comprehensive view has been built up for the topological structure of the phase space,
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in spite of its incompleteness.

Although it is now clear that the divergence of the formal transformation series is an
intrinsic problem for aperiodic solutions, the classical perturbation theory is still of
importance in practice, because it has been shown by Poincare that such a series is
asymptotic (semi-convergent). Therefore the series truncated up to certain order can
approximate the real solution. Another support to this theory is from the KAM theorem,
which shows that the measure of quasi-periodic solutions is positive.

Now let us try to infer these points by a closer look at the classical perturbation
theory. In the classical method of this theory the transformation is represented by a

mixed variable generating function independent of time, S(p, 0, €), (S7 type of Table
2.1) expanded in a power series of €,

S=<p,0>+eS(p.6) +e2S)(, 0) + ..
The transformation and new Hamiltonian are to be obtained according to Table 2.1. In
order to express the new Hamiltonian in the new variables, half of the above
transformation relations must be inverted to find the old variables explicitly in terms of

the new ones. After these procedures we come to the following new Hamiltonian (eg.
Lichtenberg & Lieberman, 1983),

K=K,p)+e K ,(p.9)+ g2 Ko, ) + ..
where
Ko@) =HoD), K (. 9) =0 (@) IS|(p, 9) Doy + Hypp. ) , .
In order to obtain a new Hamiltonian of the form 38(39, €), we simply average the

Si-independent terms of K, over 9 and denote the averaged quantity by %i(p). Then

we sort for S; to cancel all the remaining part of K ;. Thus finally we come to the

required new Hamiltonian,
I =F,(p)+e I () +e2 FHy(p) + ...
=Hy (p)+e<H(p,. ) >+ ...
where the explicit expression in terms of the old Hamiltonian is only given up to the first

order. (In this section we denote the average of a function by <...>, which is similar to
the inner product of two vectors but this may be understood from its content.)

The generating function may be obtained in multiple Fourier series, for example, we
have the following for the first order perturbation,
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® () 0S1(P, ) /oy = H (P, ) - <H (. 9) > = I, H () e <ka>

=>51(p, 0) = Ly o {H k() e 1k®/<k,0 (p)>} , if <k,0 ()> *0,
where k = (ky, ..., k) is a set of any integers.

From this formula let us observe the possibility of convergence and divergence of
the series for S;. The formula is only valid for nonresonant (incommensurable)
frequency vectors; when this happens the so called secular perturbation theory is needed.
By secular perturbation, one performs a separate transformation to eliminate one of the
original actions of J, followed by the same procedures given here.

When the frequencies are not resonant, we have the small divisor problem, namely,

the denominator <k,® (p)> can be an arbitrarily small number. Therefore one may

expect a general divergence. This, however, is not the case; it turns out by a use of
number theory that divergence is exceptional. To establish convergence one needs to
estimate the size of the combination of the Fourier coefficients and small divisors. I