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Summary

The attachment mechanisms of the main groups of marine microorganisms 

are similar. These similarities are particularly shown by the nature of 

the adhesive mucilages they produce. Marine bacteria, cyanobacteria and 

diatoms produce acidic polysaccharide mucilages. Macroalgal spores attach 

by the production of glycoprotein adhesives. The spores of several marine 

Ascomycete fungi attach by means of mucilaginous, fibrillar appendages, 

although little is known about their composition. Certain marine bacteria 

possess cell-surface structures such as stalks with holdfasts, flagella and 

spinae which may play an attachment role. Cyanobacteria possess pili and 

spinae which may serve the same purpose. The formation of proteinaceous 

conditioning films on substrata promotes bacterial adhesion. Polymeric 

polysaccharide materials and bacterial films also precondition surfaces for 

algal attachment. Substratum properties such as wettability and surface 

free energy can affect, and in some cases decrease, levels of bacterial and 

algal attachment.

Marine microbial adhesion is of importance in disease pathogenesis, 

biotic interactions, physical interactions and certain economic aspects. 

In disease pathogenesis, the attachment of Aeromonas salmonicida to fish 

cells by the 'A'-protein layer is important in the initiation of 

furunculosis. Some invertebrate diseases are also caused by attached 

microorganisms. The bacterium Leucothrix mucor, along with diatoms, 

cyanobacteria and protozoa can accumulate on the gills of shrimps, crabs 

and lobsters. This heavy infestation causes death by suffocation. 

Vibrio cholerae attaches to the oral region of planktonic copepods and the 

hindgut of the blue crab Callinectes sapidus. These observations may be 

important for the epidemiology of cholera in aqueous environments.



Microbial attachment may also be important in the establishment of

symbiotic relationships with certain marine invertebrates.

Biotic interactions include the formation of primary microbial films 

on any new surface immersed in seawater. Extensive microbial epiphytic 

layers form on seaweeds and estuarine salt marsh grasses. Bacteria which 

attach to the heterocysts of the cyanobacterium Anabaena spp. in the 

freshwater environment could be involved in nitrogen fixation. The 

parasitic marine bacterium Bdellovibrio bacteriovorus attaches to host 

cell membranes by cell-surface fibres, which ultimately leads to cell 

lysis. Attached bacteria are responsible for the aggregation of

particulate detritus, which eventually disaggregates due to protozoal 

activity. Bacteria utilize dissolved organic carbon for the formation of 

adhesive materials which cause detrital aggregation. The attachment of 

bacteria to certain phytoplankton, including diatoms, ultimately results in 

the formation of amorphous detrital aggregates.

Physical interactions include microbial attachment to sediments.

Microbial attachment and adhesive production is important in the formation 

of microbial mats. Marine bacteria, cyanobacteria and diatoms are 

abundant in these mats. Microbial extracellular polymer material is 

responsible for lamination of mat layers and the structural integrity of 

the mats. Gelatinous mats are often formed in sediments from microalgal 

adhesive secretions. These mats are of importance in sediment 

stabilization. The adhesive mucilages of certain diatoms also reduce the 

resuspension of sediment particles. Microbial extracellular materials may 

also be utilized as a food source by benthic invertebrates.

One economic aspect of marine microfouling is metal corrosion. 

Corrosion can result from the formation of differential aeration cells



under a non-uniform film of attached microorganisms. Sulphate-reducing 

bacteria, which are often present in biofilms under anaerobic conditions 

corrode metals by cathodic depolarization. This process allows the 

formation of corrosive hydrogen sulphide and iron sulphide from sulphates. 

Some diatoms, such as Amphora spp., may inhibit corrosion by forming a 

uniform layer of adhesive mucilage over a metal surface.

A further economic aspect is the affect of microbial attachment on the 

development of antifouling techniques. Bacterial and diatom slime films 

are easily formed on cuprous oxide and organometallic antifouling paints. 

This makes them less effective. The effects of surface free energy and 

wettability of substrata on bacterial and algal adhesion could provide a 

further antifouling technique. Conditioning film formation can alter 

these substratum properties towards a biocompatible range where lower rates 

of microfouling occur. The incorporation of silicone elastomers in 

substrata also decreases bacterial and diatom attachment. The use of 

metabolic inhibitors or calcium chelating agents to remove bacterial and 

diatom films could be a further antifouling development.
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Introduction

Microbial attachment is a widespread phenomenon which is of importance in 

several aspects of microbiology. These include the pathogenesis of 

microbial disease, industrial microbiology and various aspects of microbial 

ecology. This thesis examines the mechanisms and importance of microbial 

adhesion in the marine environment.

Bacterial attachment has long been recognized as an important initial 

step in the pathogenesis of human disease. For example, the attachment of 

Vibrio cholerae to the brush border of the intestinal epithelium is 

important in the initiation of the diarrhoeal disease cholera. Attachment 

of Bordetella pertussis to the respiratory tract is of importance in the 

infection whooping cough. Correlations have been made between the 

propensity of bacteria to cause infections in vivo with their ability to 

attach to the affected tissues in vitro. These studies have demonstrated 

a high degree of correlation between adherence and infection (Beachey, 

1980).

There is much evidence to suggest that bacteria possess cell surface 

molecules which can bind in a specific fashion with complementary molecules 

on the surface of host tissue cells. The binding molecules on the 

bacteria are often called ligands, and those on host cells, receptors. 

The possible involvement of ligand-receptor interactions in adhesion is 

often referred to in this thesis. The specificity of the interaction can 

be demonstrated in three ways (Beachey, 1980). Inhibition of the 

interaction could occur by the addition of large excesses of "haptens" 

either identical to or resembling the native ligand or receptor. The 

bacteria or tissue cells could be enzymatically treated to abolish or alter



the specific surface structures involved in adhesion. Thirdly, the ligand 

or receptor could be blocked with specific antibodies directed against 

antigens composing these structures.

Microbial attachment and fouling in the marine environment has been 

recognized for most of this century. Lloyd (1930) made a bacteriological 

survey of the Clyde Sea Area over a one year period. Measurements were 

made of vertical and seasonal variations in bacterial populations. 

Vertical variation showed high bacterial numbers in the surface waters and 

a slight increase at the bottom deposits. Lloyd (1930) acknowledged that 

saphrophytic bacteria would tend to be attached to suspended organic 

particles of various origins. In seawater where there are no currents or 

vertical mixing, it is reasonable to assume that an accumulation of

organic matter would occur at the surface. This would result in an

increase in the accumulation of bacterial saphrophytes. Sediment deposits 

at the bottom also gave an increase in bacterial numbers.

Much of the pioneering work on marine fouling was carried out by 

Claude E. Zobell at the Scripps' Institution of Oceanography in S.

California. Zobell and Allen (1933, 1935) made observations of the

formation of microbial films on glass slides submerged in seawater for one 

to seven days. The slides were examined by light microscopy after 

staining. It took from 2-4 hrs. for microbial films to become fixed to 

the glass slides. All stages of bacterial development were observed, 

including individual and dividing cells, chains and microcolonies. 

Coccobacilli and slender rods were most numerous, whilst larger rods 

occurred less frequently. The majority of the attached bacteria were 

capsulated, although some developed a holdfast structure. These included 

Actinomycetes, consisting of small patches of slender mycelial threads and
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possibly Leptothrix spp. producing larger, straighter, branched filaments. 

Certain bacterial forms produced a film of faintly staining material which 

extended beyond the cells. This could have been adhesive material. The 

other microscopic organisms that were mainly observed were diatoms. The 

common genera included Grammatophora spp., Navicula spp., Licmophora spp. 

and Nitzschia spp.. The diatoms help to make up the primary fouling film, 

although they are less abundant than bacteria. The formation of these 

films precedes the attachment of macroscopic fouling organisms, such as 

barnacles, hydroids, seaweeds and bryozoa. This was shown by submerging 

film-coated glass slides in seawater with sterile slides as controls. 

After one to five days' submergence, the film-covered slides had a greater 

number of attached macroorganisms than the sterile control slides

suggesting that the film facilitates attachment by larger fouling organisms
& Allen 

(Zobell/ 1933, 1935).

More recent studies have shown that any type of structural material 

becomes fouled when submerged in the biotic zone. Such materials include 

wood, metal, concrete, glass or plastic (Zobell, 1946).

Heukelekian and Heller (1940) showed that nutrient concentrations and 

solid surfaces affected the growth and attachment of bacteria. Cultures 

of Escherichia coli were inoculated into flasks containing glucose and 

peptone medium with concentrations ranging from 0.5 to 100 ppm.. 50g. of 

4mm. glass beads were added to one series of flasks, whilst the other 

flasks were incubated without beads. E. coli failed to grow at a 0.5 ppm. 

concentration of glucose and peptone after 72 hrs. incubation without glass 

beads. Growth under these conditions was only slight at a nutrient 

concentration of 2.5 ppm.. However, there was considerable growth when 

glass beads were present. The effect of glass beads was noticeable up to



7

a 25 ppm. concentration of glucose and peptone. Beyond this 

concentration, the extent of bacterial growth was the same whether or not 

glass beads were present. The results showed that the limiting nutrient 

concentration is not a fixed value but depends on the amount of surface in 

contact with the growth medium. Food concentration was the limiting 

factor up to a glucose-peptone concentration of 25 ppm.. Increasing the 

surface-volume ratio by the addition of glass beads increased the 

concentration of limiting nutrient at the solid surface. This in turn 

increased the growth of E. coli. These results show that surfaces enable 

bacteria to develop in media which are otherwise too dilute for growth 

(Heukelekian and Heller, 1940).

Zobell (1943) also observed the beneficial effect of solid surfaces on 

marine bacterial attachment and growth, particularly in dilute nutrient 

solutions. Organic matter was adsorbed from seawater by glass surfaces. 

This was shown by the appearance of an irregularly stained film of material 

on glass slides immersed in seawater for several days. Biological 

evidence was also given for the adsorption of organic matter. Several 

pieces of thin-walled glass tubing were placed into 145 ml. glass-stoppered 

bottles containing seawater with bacteria. The glass tubing increased the 

area of solid surface in contact with the seawater. The control bottles 

did not contain any tubing. Both sets of bottles were incubated at either 

0°C or 22°C, and oxygen levels in the seawater were measured. The 

bacteria multiplied more rapidly and consumed more oxygen in seawater 

incubated at 22°C. At both temperatures, however, more oxygen was 

consumed in the seawater which was exposed to the glass tubing. Plate 

counts of bacterial populations were taken in both sets of bottles at both 

temperatures. Increases in bacterial populations were observed, although



8

the plate counts at 22°C decreased sharply after ten days' incubation.

The plate counts from the seawater containing the glass tubing were lower.

This observation was explained by the abundance of periphytic or sessile 

bacteria attached to the glass. The greater oxygen consumption observed

in the seawater with glass tubing may be caused by metabolic processes 

occurring during bacterial adhesion.

These observations show that bacterial attachment to surfaces is 

enhanced by the adsorption of organic matter. Such material predominates 

on surfaces in the early stages of submersion. Part of the organic matter

may be in the form of attached bacterial cells (Zobell, 1943). However,

although adsorbed nutrients may promote the multiplication of bacteria, 

they are not directly responsible for attachment.

Zobell (1943) also observed that some bacteria were attached to glass 

slides by the production of stalks. Other bacteria appeared to be in 

intimate contact with the surface. These physiologically active bacteria 

appeared to secrete a cementing substance which secured their attachment. 

Removal of the attached bacterial cells from the glass slides left a 

faintly staining film which had the shape and arrangement of the cells. 

The production of a film of staining material by other bacteria was also 

observed. Examination of glass slides after submergence in bacterial 

cultures for different periods showed that the film size increased with 

age. Microcolonies of bacteria were often seen on "islands" of this film. 

This suggests that bacterial attachment promotes the attachment of other 

bacteria.

Solid surfaces may reduce the diffusion of exoenzymes or hydrolysates 

from the bacterial cells. This could occur by the interstices at the 

contact point of the bacterial cell and surface acting as concentration
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foci for exoenzymes or hydrolysates. The attachment of other bacteria or 

their development by cell division would form more interstitial or 

capillary spaces. These would further reduce the diffusion of materials 

from the cells, so promoting the assimilation of nutrients which must be 

hydrolyzed before ingestion (Zobell, 1943).

To summarise, then, the work of Zobell and Allen (1933, 1935)

demonstrated the formation of primary films on submersed surfaces and 

possible attachment mechanisms of the main fouling microorganisms. The 

observations of Heukelekian and Heller (1940) and Zobell (1943) showed the 

importance of nutrient accumulation and organic film formation on solid 

surfaces in bacterial adhesion.

With this background, the thesis is divided into four main sections. 

Section 1 discusses in detail and compares the attachment mechanisms of 

marine bacteria, algal spores and rhizoids, diatoms and fungi.

Section 2 considers microbial adhesion to living marine surfaces such as 

fish, marine invertebrates and marine plants. The importance of 

attachment in disease pathogenesis is discussed for fish and invertebrates. 

Examples of possible symbiotic association between microorganisms and 

invertebrates are included. There is also a chapter on attachment 

between marine microorganisms, which includes the interesting interaction 

of parasitic Bdellovibrio bacteriovorus with host bacteria.

Section 3 surveys microbial adhesion to non-living marine surfaces. This 

includes the attachment of microorganisms to sediment particles and their 

role in the formation of microbial mats and in sediment stabilization. 

The importance of attached sediment microorganisms in the nutrition of some 

benthic invertebrates is also discussed. This section also covers 

microbial adhesion to detritus, the role of microorganisms in the formation



of detrital aggregates and the degradation of faecal pellets.

Finally, Section 4 contains two chapters. The problem of metal 

corrosion caused by attached microfilms is firstly examined. This is a 

problem of great applied importance. The thesis ends with a general 

review of traditional and more recent antifouling and microfouling control 

methods.



SECTION 1.

ATTACHMENT MECHANISMS OF 
MARINE MICROORGANISMS.
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Chapter 1: Adhesion mechanisms in marine bacteria.

(1.1) Physicochemical aspects of marine bacterial adhesion

This sub-chapter deals with the main events occurring during the 

initial stages of marine bacterial adhesion, before the deposition of 

organic polymers or production of stalks or holdfasts. Some of the 

literature published in this field describes it by a detailed mathematical 

approach; this is beyond the scope of this thesis.

There has frequently been uncertainty over whether bacterial adhesion 

is a passive, time-dependent process, or an active process requiring 

physiological activity (Fletcher, 1980). Zobell (1943) observed that 

marine bacterial attachment to glass surfaces was time-dependent. 

However, bacterial adhesion to surfaces can be very rapid, and so can be 

compared to a passive process of molecular adsorption. It should be 

possible, therefore, to treat bacteria as chemical species, and elute them 

off a substratum (Fletcher, 1980). Meadows (1964, 1965, 1966) found that 

marine bacteria were desorbed from sand grains by distilled water, glycerol 

and sucrose solutions. A second way in which bacterial attachment

resembles chemical adsorption is by the influence of cations on the 

process, to be discussed in more detail later. Bacterial attachment also 

involves physiological activity, such as motility to make contact with the 

substratum, and synthesis and secretion of adhesive polymers. This makes

it an active adhesion mechanism (Fletcher, 1980). Consequently, both

active and passive bacterial adhesion can occur, although the initial 

stages closely resemble a passive process.

Ellwood et al. (1982) listed three main stages in microbial

adhesion

(1) Deposition or adsorption of the microorganism on to a surface;



(2) Permanent attachment to the surface, often by production of polymeric 

materials;

(3) Colonization of the surface by growth of the organism.

Meadows (1966) observed that some strains of marine bacteria were not 

strongly attached to surfaces, as a moving bubble could dislodge them. 

Some strains, however, were completely immobile. Further observations 

(Meadows, 1970) showed three stages of marine bacterial attachment: states 

1, 2 and 3. During state 1, bacteria attach at one cell pole, by a polar

flagellum. In state 2, bacteria attach along their cell length showing 

slight Brownian movement, and in state 3 they attach this way showing no 

Brownian movement (Meadows, 1970). Marshall et al. (1971) found that 

sorption of two marine bacteria to surfaces involved an instantaneous 

reversible phase, and a time-dependent irreversible phase. During the 

reversible phase, bacteria are held weakly near the substratum surface, and 

are readily removed with 2.5% sodium chloride solution. These two phases 

resemble Meadows' (1966) observations of some bacteria not being strongly 

attached, and some being immobile. In addition, Meadows' (1970) state 2 

resembles the reversible phase, while state 3 resembles the irreversible 

phase of adhesion. The reversible phase also resembles a passive 

adsorption mechanism (Fletcher, 1980).

In the process of particle or microbial adhesion there are both long- 

range and short-range attractive forces involved. Long-range forces 

include the London-van der Waals forces and electrostatic forces (Daniels, 

1980; Rutter and Vincent, 1980; Tadros, 1980). Short-range forces are 

particularly important in aquatic systems at short separations between the 

microorganism and surface (Rutter and Vincent, 1984). They include 

chemical bonds such as hydrogen bonds, dipole interactions and hydrophobic
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interactions (Rutter and Vincent, 1980; Tadros, 1980).

The role of London-van der Waals forces in particle adhesion was first

proposed in the DLVO theory of Derjaguin, Landau, Verwey and Overbreek

(Verwey and Overbreek, 1948). They are explained as being second-order 

forces between neutral atoms, attraction being due to polarization of one 

atom, by charge fluctuations in a second atom. These forces are assumed 

to be additive, so that each atom attracts all other atoms (Verwey and 

Overbreek, 1948). These forces operate in a similar way between a 

microorganism and substratum. This is because a microbial cell can be 

thought of as a macroscopic ion with a large number of electrically charged 

sites (Daniels, 1980). Although London-van der Waals forces are involved 

in the reversible stage of microbial adhesion, the total interaction 

resulting in deposition of a microbial cell comprises two opposing forces.

These are the London-van der Waals forces, and a repulsive force resulting

from the overlap of the electrical double layers surrounding cell and 

substratum (Verwey and Overbreek, 1948; Rutter and Vincent, 1980).

One layer of the electrical double layer is composed of the charges on 

the surface of the particles or cells. The second layer is composed of 

ions of opposite charge, found in the surrounding medium, which counter 

balance the particle charge (Verwey and Overbreek, 1948; Marshall, 1976; 

see p. 15 ). Formation of a compact layer of counter-ions at the particle 

or microbial cell surface is impeded by thermal agitation of the ions. 

This results in a loose association known as the Gouy-Chapman diffuse 

double layer (Marshall, 1976). According to this model, the potential 

initially drops rapidly with increasing distance from the particle, then 

more slowly. The distance over which the potential increases 

exponentially from bulk medium to the particle surface is the double-layer
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thickness (1/x) (Marshall, 1976; see p. 15 ). A further model describing 

the electrical double layer is the Stern model. This model assumes that 

there is a layer of counter-ions held at the particle surface by forces 

sufficiently strong to overcome thermal agitation (Marshall, 1976; see p. 

15 ).

In seawater, at a solid/liquid interface, the fixed layer is made up 

of ions adsorbed at the surface of a sand grain or bacterial cell. 

Opposite charged ions in seawater make up the diffuse layer, and together 

they constitute the electrical double layer in seawater (Meadows and 

Anderson, 1979).

Marshall et al. (1971) considered the effects of ionic strength on the 

electrical double layer. At low electrolyte concentrations, the layer was 

fairly thick; it was 200 % at 2 x 10-4 M sodium chloride. At higher ionic

concentrations, it was thinner (Marshall et al., 1971). The thickness of

the double layer at different ionic strengths in seawater, together with 

the London-van der Waals attractive forces, will affect reversible 

bacterial adhesion. This can be described graphically (Meadows and 

Anderson, 1979, see p. 15; Tadros, 1980; Rutter and Vincent, 1984). At 

low electrolyte concentrations, where the electrical double layer is thick, 

a large energy barrier prevents close contact of the bacterium with the 

substratum (Marshall, 1976; Meadows and Anderson, 1979; see p. 15 ; Tadros, 

1980). In this case, there is strong repulsion between the bacterium and 

substratum. At high electrolyte concentrations, however, the repulsion 

energy is reduced, and a secondary attraction minimum exists (Marshall, 

1976; Meadows and Anderson, 1979; see p. 15). The secondary minimum is 

defined as the point of minimum separation where a net attraction energy 

exists (Meadows and Anderson, 1979). Marshall (1976) proposed that marine



d i s t a n c e  f r o m  s u r f a c e

Schematic representations of (A) the charge distribution 
and (B) the potential, in the Gouy-Chapman model of 
the diffuse double layer; (C) the charge distribution and 
(D) the potential in the Stern model
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attraction and double layer repulsion energies (dotted 
lines) and the resultant energy (solid lines).

(Reproduced by permission from Marshall, 1976).



bacteria in Meadows' (1970) 'state 2' will be caught in the secondary 

attraction minimum. However, despite the attraction of bacteria to 

surfaces at high ionic strengths, the repulsion energy barrier ensures that 

bacteria remain a small, but finite distance from the substratum surface. 

Brownian motion of the cells is not enough to overcome the repulsion

barrier (Marshall, 1976). The effects of a secondary attraction minimum 

on adhesion of Achromobacter sp. R8 was observed by Marshall et al. (1971). 

They found that the number of Achromobacter cells reversibly sorbed 

increased with increasing electrolyte concentration, as the thickness of 

the electrical double layer (1/x) decreased (see p. 18 ).

Gordon and Millero (1984) observed that attachment of an estuarine

Vibrio alginolyticus strain to hydroxyapatite increased with increasing 

ionic strength of the medium. This is in accordance with the above 

observations of Marshall et al. (1971) and Meadows and Anderson (1979) of 

the decrease in electrical double layer size at high ionic concentrations.

An interesting theory was proposed by Ellwood et al. (1982) 

principally to explain accumulation of microorganisms at areas of high 

nutrient concentration on a surface (see Chap. 1.6). It could also be an

alternative theory of bacterial adsorption to a surface. The theory is

based on Mitchell's chemiosmotic hypothesis, whereby bacteria obtain energy 

by the translocation of protons outside the cell to generate a membrane 

potential. The resulting build-up of positive charge outside the 

bacterial cell causes protons to be pumped back into the cell by a proton 

motive force. This re-uptake of protons generates ATP synthesis.

The theory of Ellwood et al. (1982) states that localized proton 

concentrations at the bacterial cell surface will tend to increase in the 

restricted zone established when the cell interacts with a surface (see p.18)



As these protons will not diffuse so easily, the probability of their re

uptake into the bacterial cell will be increased. Consequently, a 

polarity across the cell will be established, which, together with ATP 

synthesis, can provide the driving force for adherence of the bacterial 

cell to the surface (see p. 18) .  Increased efficiency of proton re-uptake 

will provide the adsorbed bacterial cell with more energy to encourage 

growth and division. Additionally, proton uptake gradients could be

shared amongst neighbouring bacterial cells. This could ultimately lead 

to the development of a microcolony or film of bacterial cells on a surface 

(Ellwood et al., 1982; see p. 18) .

Rutter and Vincent (1984) mentioned several factors which suggested

that the physicochemistry of bacterial adhesion is difficult to explain. 

Firstly, the issue is complicated by the nature of the particles and

substrata involved. Microorganisms such as bacteria are not "ideal" 

particles. They may be deformable on contact with a surface. 

Additionally, internal chemical reactions could lead to changes in 

molecular composition both in the interior and at the surface of the 

bacteria. Consequently, the theory and principles of particle deposition 

may not apply in practice to bacterial adhesion (Rutter and Vincent, 1984).

A further problem lies in the application of thermodynamic principles 

to bacterial adhesion. This is rooted in the question of whether 

bacterial adhesion to a surface occurs under equilibrium conditions

(Rutter and Vincent, 1984). Additionally, the problem of whether the 

equilibrium state is maintained after adhesion is also important. Further 

chemical reactions may occur inside or at the surface of an attached 

microbial cell. If this occurs, the microorganisms cannot be in complete 

physicochemical equilibrium. Furthermore, equilibrium can only be
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(Reproduced by permission from Marshall, 1976).

Fig. 4 Postulated chemiosmotlc Interactions of a bacterial cell at 
a surface. The diagram describes: (a) a cell In free
suspension generating a.'proton gradient, (b) the 
Interaction of the cell’s domain with a surface, 
establishing a localised higher concentration of extruded 
protons, (c) localised Ap (proton motive force) and ATP 
synthesis leading to Increased metabolic activity and 
polarity of the cell to drive adhering processes and (d) 
the establishment of a microcolony with sharing of proton 
gradients between cells.

(Reproduced by permission from Ellwood et al., 1982)
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achieved in a thermodynamically 'closed' system, where no exchange of 

energy or matter with the surroundings occurs (Rutter and Vincent, 1984). 

Many biological systems, including microbial adhesion, are 'open' systems, 

where equilibrium may never be reached.

Rutter and Vincent (1984) also feel that physical chemists and

microbiologists should collaborate with their physicochemical theories of 

bacterial adhesion. By working with as well-defined and characterized 

systems as possible, they may be able to confirm many of the 

physicochemical theories discussed here.

This sub-chapter has shown the following points about physicochemical 

aspects of bacterial adhesion :-

(1) Bacterial adhesion to surfaces can be either a passive, time-dependent

process or an active process requiring physiological activity.

(Meadows, 1964; Fletcher, 1980).

(2) Sorption of marine bacteria to surfaces involves an instantaneous

reversible phase and a time-dependent irreversible phase. (Marshall et 

al., 1971).

(3) The two main opposing forces acting in the reversible phase of 

bacterial adhesion are the attractive London-van der Waals forces, and 

the electrical double layers' repulsive force. (Marshall, 1976; Rutter 

and Vincent, 1980).

(4) The electrical double layer, made up of oppositely charged ions, is 

affected by ionic concentrations. This in turn affects bacterial 

adhesion. (Marshall et al., 1971).
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(5) The thickness of the electrical double layer at different ionic 

strengths, together with the London-van der Waals forces, influences 

marine bacterial adhesion, as shown by energy curves. (Meadows and 

Anderson, 1979).

(6) The chemiosmotic hypothesis of energy generation may offer an 

alternative explanation of bacterial adsorption, and ultimate build-up 

of a microcolony on a substratum. (Ellwood et al., 1982).



(1.2) Attachment by production of high molecular weight organic 

polymers and inorganic polymers 

Extensive studies have demonstrated the involvement of high molecular 

weight organic polymers in the attachment of marine bacteria to solid 

surfaces. In addition, certain species produce inorganic materials which 

facilitate their adhesion.

Corpe (1970a, b, 1972, 1974) demonstrated, by histochemical staining, 

the production of an extracellular acidic polysaccharide involved in the 

attachment of a marine pseudomonad to glass surfaces immersed in seawater 

(p. 22 ). The polysaccharide was a polyanionic carbohydrate consisting of 

neutral sugars as well as uronic acid. The sugars were glucose, galactose 

and mannose, and pyruvic acid was also present. The marine sedimentary 

bacterium Pseudomonas atlantica produces an extracellular glycocalyx which 

possesses uronic acid substituents (Uhlinger and White, 1983).

A marine periphytic Pseudomonas strain NCMB 2021 was shown to produce 

two extracellular polysaccharides when grown in batch culture (Christensen 

et al., 1985). Polysaccharide A was only produced during exponential

growth and contained glucose, galactose, glucuronic acid and galacturonic 

acid. Polysaccharide B was released at the end of the exponential phase 

and in the stationary phase. It contained equimolar amounts of N- 

acetylglucosamine, 2-keto-3-deoxyoctulosonic acid and an unidentified 6-

deoxyhexose (Christensen et al., 1985). Histochemical staining and
et al

transmission electron micrographs (Jones/ 1969; Fletcher and Floodgate, 

1973, 1976) showed acidic polysaccharide attaching marine bacteria to

surfaces of glass slides. Fletcher and Floodgate (1973) suggested the 

formation of primary acidic polysaccharide which is involved in the initial 

reversible step of attachment (Meadows, 1970; Marshall et al., 1971),



Fig. 5 Pure cu ltu res of Pseudom onas a tlan tlca  growing as an 
attached film  on the surface of a glass slide. The slide 
was suspended  In a cu ltu re  o f a r t if ic ia l seaw ater 
con ta in ing  0.01% (w/v) Bacto-peptone. The scale
shown Is 5p.m.

(Reproduced by perm ission from Corpe, 1970a).



followed by production of secondary acidic polysaccharide which mediates 

the final irreversible stage (see p. 24). Polysaccharide A isolated by 

Christensen et al. (1985) formed gels, so it may function as the secondary 

polysaccharide described by Fletcher and Floodgate (1973). The poly

saccharide would be able to maintain a hydrated and mechanically stable 

matrix between the attached cells (Christensen et al., 1985). However, 

Paul and Jeffrey (1985a) stated that it was unlikely that extracellular 

slimes and glycocalyces were involved in the initial adhesion process. 

Such materials are often loosely attached to cells and may decrease 

adhesiveness (Paul and Jeffrey, 1985a). It is more likely that 

physicochemical forces, such as London-van der Waals forces and 

electrostatic forces play a greater role in the initial stages of bacterial 

adhesion (see Chapter 1.1).

Observations of other marine bacteria have suggested the involvement 

of other types of adhesive. Electron microscopic observations of a

gliding marine bacterium, Flexibacter BH3, revealed extracellular

filamentous and amorphous material at some distance from the organisms

(Humphrey et al., 1979). In addition, vesicular material was present on

the cell surface. This slime material exhibited properties characteristic 

of a linear colloid, so providing suitable conditions for temporary 

adhesion of Flexibacter BH3. The slime material was found to be a 

glycoprotein, consisting of glucose, fucose, galactose and protein, 

together with some uronic acid. The inability of the material to stain 

with ruthenium red indicated that it was not a highly acidic polysaccharide 

(Humphrey et al., 1979). Production of vesicular, filamentous material

from the surface of a marine Flexibacter spp. was previously demonstrated 

by Ridgway and Lewin (1973). Filament production occurred from goblet-



Fig. 6.1 A na tu ra lly  attached bacterium  treated w ith ruthenium  
red. The m u ltilayered  ce ll wall (CW) Is surrounded by 
prim ary ac id ic  polysaccharide  (P) which appears to attach 
the bacte rium  to  the  f i lte r  su rface  (FS). P rim ary 
po lysaccharide can be d iffe ren tia ted  into a th in  dense 
line on the wall surface (L) and an outer ‘fringe* region 
(F).

Fig. 6.2 A group o f n a tu ra lly  a ttached bacte ria  treated w ith  
ru then ium  red . S eco n da ry  a c id ic  p o lysa cch a rid e  
stretches around and between the organisms.

Fig. 6.3 A portion of a m icroco lony treated w ith ruthenium red.
The bacteria are located In a mat of secondary acid ic  
polysaccharide (P).

(Reproduced by perm ission from  Fletcher and Floodgate,
1973).
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shaped structures which were probably associated with the outermost layer 

of the cell wall. A large amount of negatively stained fibrillar material 

was associated with the surfaces of lysed Flexibacter cells. Ridgway and 

Lewin (1973) suggested that the fibres were aggregates of fine filaments 

arranged parallel to one another. Scanning electron microscopy indicated 

that aggregation of these filaments may play a role in attaching 

Flexibacter BH3 to the substratum or to other bacteria. The filaments 

consisted of lipid, protein, glucosamine, 2-keto,3-deoxyoctonic acid (KDO), 

phosphorous and pigment, further suggesting that they were derived from the 

outer membrane of the cell envelope (Ridgway and Lewin, 1973). This 

filamentous material may play a role in initial contact of Flexibacter with 

a surface, by providing a means of polymer bridging between the cell and 

surface (Humphrey et al., 1979).

Studies of the effects of certain enzymes on attachment of marine 

bacteria have provided further information on the nature of adhesive 

material. Danielsson et al. (1977) found that pronase and trypsin 

released Pseudomonas spp. attached to glass slides submerged in seawater. 

Pronase released 70%, and trypsin, 50%, of attached cells after thirty 

minutes. After addition to the bacterial suspension, pronase and trypsin 

inhibited attachment of Pseudomonas strain NCMB 2021 to tissue culture 

dishes (Fletcher and Marshall, 1982). These results show that envelope 

proteins are probably involved in attachment of the marine Pseudomonas spp. 

to surfaces. Pronase, trypsin and chymotrypsin inhibited attachment of 

Vibrio proteolytica to polystyrene by over 97% (Paul and Jeffrey, 1985a). 

Removal of cells from polystyrene by pronase left material termed 

"footprints”. The footprints were observed by scanning electron 

microscopy to be composed of adhesive material, and formed a rough outline



of the cell. Rifampin, an RNA-polymerase inhibitor, inhibited attachment 

of V. proteolytica to polystyrene, as did puromycin and chloramphenicol, 

both protein synthesis inhibitors (Paul, 1984). Both sets of results 

indicate that proteins are involved in attachment of V. proteolytica to 

polystyrene. Corpe (1974) found that all crude extracellular products of 

attaching marine bacteria contained protein. Protein could be 

incorporated in the polyanionic carbohydrates produced by these bacteria. 

However, lack of bacterial detachment after enzymic treatment does not 

necessarily indicate that proteins or polysaccharides are not involved in 

attachment. The particular configuration adopted by cell surface proteins

interacting with the substratum and the closeness of the interaction may 

cause differences in the efficacy of degradative enzymes (McEldowney and 

Fletcher, 1986).

An attachment mechanism which is unique to aquatic bacteria, is 

adhesion by deposition of inorganic "cements". Sheathed bacteria of the 

Sphaerotilus - Leptothrix group are known to oxidize manganous compounds to 

give manganese dioxide precipitates (Silverman and Ehrlich, 1964; Corpe, 

1970a; van Veen et al., 1978). However, in some cases manganese ions can 

be adsorbed by cells or by a slimy extracellular sheath. Sphaerotilus 

cells use such structures for attachment to surfaces (van Veen et al., 

1978). When Sphaerotilus discophorus was grown in media containing 

manganese ions, the cultures became dark brown due to the formation and 

deposition of manganese oxide on the sheaths of the filaments (Johnson and 

Stokes, 1966). In addition, stalked, budding bacteria of the 

Hyphomicrobium type form manganese-rich deposits on the inner surfaces of 

pipelines (Tyler and Marshall, 1967). Hyphomicrobium strain ZV-580 has 

been shown, in electron micrographs, to form rosettes. The cells are
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held together by a holdfast material which could be a inanganous deposit 

(Conti and Hirsch, 1965) .

Interesting observations of the deposition of iron and manganese 

oxides on the cell surfaces of budding Pedomicrobium bacteria were made by 

Ghiorse and Hirsch (1979). These authors found that when the 

Pedomicrobium strains were grown in the presence of iron or manganese, the 

corresponding oxides accumulated on their surfaces. Fine fibrils of 

electron dense material, presumably containing iron, were observed on thin 

sections of cells after seven days growth in iron-containing medium. The 

fibrils appeared to form a matrix surrounding the mother cells. Cells 

grown in the presence of an iron paper clip for twelve days accumulated a 

heavy coating of electron dense material on the surfaces of both mother 

cells and hyphae (Ghiorse and Hirsch, 1979). When the bacterial cells 

were grown in medium containing manganese, mother cells rapidly accumulated 

manganese oxide. Deposits around the mother cells appeared as branching, 

electron-dense filaments in thin sections. At higher magnifications, less 

heavily encrusted cells were surrounded by fine ribbons of electron-dense 

material, which was probably manganese oxide (Ghiorse and Hirsch, 1979 ). 

Ruthenium red staining of thin sections of cells revealed electron dense 

material, probably acidic polysaccharide, external to the outer layers of 

both Pedomicrobium strains. Extraction of the accumulated oxides followed 

by ruthenium red staining showed that polyanionic polymers previously 

deposited on the cells were associated with the metal oxides. The 

accumulation of positively charged, autooxidized iron hydroxides on the 

acidic polymers results in the association of iron oxide with the 

polyanionic polymer (Ghiorse and Hirsch, 1979). The mechanism of 

manganese oxide deposition is probably different. Manganese ions may



first adsorb to the polyanionic polymers, to be oxidized by an oxidizing 

factor (s) present at the Pedomicrobium cell surface or in the polymer 

matrix surrounding the cells. Once initiated, the accumulation of 

manganese ions on both polymers and newly formed oxides would continue. 

The manganese oxidizing factor may be an inducible protein, possibly an 

enzyme, present at the cell surface (Ghiorse and Hirsch, 1979).

Oxidation of ferrous ions is characteristic of the sheathed 

Sphaerotilus - Leptothrix group of bacteria (van Veen et al., 1978). 

These bacteria have a tendancy to deposit large amounts of ferric iron in 

their sheaths. The amount of iron deposited in the sheaths of 

Sphaerotilus discophorus increased with increasing ferric ion concentration 

in the growth medium. Iron deposition was highest at the onset of the 

stationary growth phase. During the exponential phase, it was many times 

lower (van Veen et al., 1978).

Iron and manganese accumulation also occurs in prosthecate marine 

bacteria, Gallionella spp., in the sheaths or stalks which they produce for

attachment (Silverman and Ehrlich, 1964).

Summary

The main points reviewed in this sub-chapter together with the key 

cited papers, are :

(i) Certain marine bacteria, mainly Pseudomonas spp., attach to surfaces 

by production of extracellular acidic polysaccharides (Corpe, 

1970a,b; Fletcher and Floodgate, 1973; Christensen et al., 1985).

(ii) Other marine bacteria, such as gliding Flexibacter spp., attach by 

production of filamentous slime material consisting mainly of

glycoprotein (Humphrey et al., 1979).



29

(iii) Studies with proteolytic enzymes and antibiotics inhibiting RNA and 

protein synthesis suggest that cell envelope proteins may also be 

involved in adhesion of certain marine bacteria (Danielsson et al., 

1977; Paul, 1984; Paul and Jeffrey, 1985a).

(iv) Other bacteria, such as Sphaerotilus - Leptothrix spp. and

Pedomicrobium spp. attach by production of inorganic materials, 

particularly iron and manganese oxides (van Veen et al., 1978;

Ghiorse and Hirsch, 1979).



(1.3) Attachment of marine bacteria by stalks, holdfasts and 

other surface structures

Certain species of marine bacteria produce stalks, holdfasts and other 

cell surface structures which allow attachment to solid surfaces. These 

periphytic bacteria normally colonize submersed surfaces after bacteria 

producing extracellular acidic polysaccharides have attached (Corpe, 1972,

1974) .

Caulobacters, which are widespread in the ocean attach to solid 

surfaces by stalks (Poindexter, 1964, 1981; see p. 31). They also attach 

to one another and to other microbial cells to form rosettes (Poindexter, 

1964, 1981). The rosettes are held together in the centre by holdfast

material (Poindexter, 1964). Long-term attachment of Caulobacter cells 

occurs by this holdfast material at the tip of the stalk (Poindexter, 

1981).

The stalked bacterium, Asticcacaulis biprosthecum, was shown to 

possess ruthenium red staining material over the entire cell surface

(Umbreit and Pate, 1978). An accumulation of this material was present in

the holdfast region. Mutant strains lacking holdfasts were still able to 

attach to wild type cells, forming rosettes. However, loss of the 

material resulted in a lack of ability to initiate attachment. This

suggests a role for the material in attachment of Asticcacaulis

biprosthecum (Umbreit and Pate, 1978).

Attachment of wild type strains to one another is explained by the 

polymer bridging theory (Harris and Mitchell, 1973). The holdfast material 

of one cell could stretch out and sorb to the holdfast region of another 

Asticcacaulis cell, forming a polymeric bridge. This eventually produces 

rosettes of cells. The staining nature of the holdfast material suggests
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Fig. 7 Typ ica l appearance o f stalked bacteria believed to be 
C a u lob a c te r spp. observed on glass slides submerged in 
seawater fo r 4-5 days. Stained with crystal v io le t. The 
bar represents 5p.m.

(Reproduced by permission from Corpe, 1974).
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that it consists of acidic polysaccharide. However, Poindexter (1964) 

found the material was neither periodate or trypsin sensitive. This 

suggests that it is not carbohydrate or protein. Similar densely staining 

material is seen at the distal region of the stalk in certain Caulobacter 

species (Poindexter and Cohen-Bazire, 1964). The greatest accumulation of 

material is in the centre of rosettes. Holdfast material is not secreted 

from the tip of the stalk in Asticcacaulis cells, but from the pole of the 

cell (Poindexter, 1981).

Pili have been observed on species of Caulobacter and Asticcacaulis 

(Umbreit and Pate, 1978; Poindexter, 1981). In Caulobacter spp. pili 

arise from the holdfast site and extend from cell to cell (Poindexter, 

1981). Pili were also observed in large numbers at the centres of 

rosettes of Asticcacaulis biprosthecum (Umbreit and Pate, 1978). These 

pili may assist in the initial stages of Caulobacter or Asticcacaulis 

attachment.

Other marine bacteria are known to form stalk-like structures used in 

attachment. Gallionella spp. form flat, twisted stalks of ferric 

hydroxide which are different in origin and structure from Caulobacter 

stalks (Starr and Skerman, 1965). Hyphomicrobium and Rhodomicrobium spp. 

(see p. 33 ) form filamentous hyphal outgrowths which appear to be 

structurally related to Caulobacter stalks (Starr and Skerman, 1965). 

Manganese deposition from the hyphae allows firm attachment of these 

bacteria (see Chapter 1.2).

Bacterial flagella are normally used in locomotion. However, they 

are also sometimes involved in attachment. Variable flagellar 

organization may be ecologically important for bacteria alternating between 

solid supports or liquid surroundings (Scheffers et al., 1976). Strains
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of Vibrio parahaemolyticus biotype 2 (alginolyticus) formed cells with a 

single sheathed polar flagellum in liquid medium. Cells with numerous 

unsheathed lateral flagella of shorter wavelength developed on agar and 

other solid supports. Adhesion to surfaces via flagella may be enhanced 

in cells with many flagella, especially if the flagella have a short 

wavelength. Momentary points of contact, together with slime excretions, 

may further enhance adhesion between flagella and the surface (Scheffers et 

al., 1976). Similar observations were made for an epiphytic, marine

Vibrio spp. isolated from submerged wooden pilings in tropical waters 

(Belas and Colwell, 1980). When grown on agar medium, this organism 

produced unsheathed peritrichous flagella, as well as a single sheathed 

polar flagellum and pili. Formation of peritrichous flagella may help the 

species to adhere to submerged aquatic surfaces (Belas and Colwell, 1980).

Meadows (1970) found that motile, gram negative marine bacteria 

attached to glass slides by their polar flagella. Cells attaching in this 

way tended to rotate. Three polarly flagellated marine bacteria, Vibrio 

cbolerae, Vibrio alginolyticus and Pseudomonas marina, attached to glass 

surfaces at the pole of flagellar insertion (Sjoblad and Doetsch, 1982). 

After insertion, there was a brief period of bacterial rotation around the 

attachment axis. The bacteria did not attach to glass surfaces following 

deflagellation by blending. The results were interpreted in terms of 

short- and long-range attraction forces involved when particles of 

flagellar and bacterial dimensions approach a glass plate (see Chapter 

1.1).
Pseudomonas marina rapidly aggregated when suspended in buffered 

artificial seawater (Sjoblad et al., 1985). Light microscopy of stained 

preparations showed that flagella-flagella contact was responsible for this
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aggregation. Aggregation did not occur if flagella were sheared off. 

This suggests a role for flagella in marine bacterial aggregation, a

property already known for microbial cell surface polymers (Harris and 

Mitchell, 1973) and cyanobacterial sheaths (see Chapter 2).

Certain species of marine bacteria have been isolated which possess 

rigid, randomly arranged appendages on their cell surfaces. A bacterium 

was isolated from infusions of decaying marine algae in Nova Scotia which 

possessed such appendages, and did not possess a polar flagellum (McGregor- 

Shaw et al., 1973). Similarly, a member of the Pseudomonodaceae family

was isolated which possessed such appendages of about 70nm. diameter 

(Easterbrook et al., 1973). These appendages are known as spinae

(spines). They are normally expanded at the base, with a diameter of 

120nm., and are attached to, but do not originate in, the cell wall. As 

they are not extensions of the cell wall, they are non-prosthecate

appendages, and are "echinuliform" (spine-like) (McGregor-Shaw et al., 

1973). The number of spines on the bacterial cell surface varies from one 

to a maximum of fifteen, and they are randomly distributed (Easterbrook et 

al., 1973 see p. 36). Spinae are composed of a subunit protein, spinin,

which has a molecular weight of 37,000 daltons (Willison et al., 1977).

Striations are present on the surface of spinae (McGregor-Shaw et al., 

1973), and these represent their morphological subunits which are helically 

arranged (Easterbrook et al., 1976). Spinae also occur on certain marine

cyanobacteria (Perkins et al., 1981; Sarokin and Carpenter, 1981).

Cyanobacterial spinae can be conical (Easterbrook and Subba Rao, 1984), as 

well as being cylindrical. The function of bacterial spinae is not 

properly known, and several suggestions have been made.

Cyanobacterial spinae may act as a flotation aid (Perkins et al.,
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1981). Spined organisms tend to interact with each other. This could 

allow a population as a colony to take advantage of suitable areas of high 

nutrient concentration (Easterbrook and Sperker, 1982). Attachment has 

been suggested as a possible function of spinae (Easterbrook and Alexander,

1983). Spined cyanobacteria are surrounded by a mucilaginous capsule; 

the spinae do not protrude beyond the capsule boundary (Sarokin and 

Carpenter, 1981). Cyanobacterial capsules are thought to play a role in 

attachment (see Chapter 2). Spinae may be involved with the mucilaginous 

sheath in adhesion.

There is no direct evidence that spinae are involved in attachment of 

marine bacteria. Further experimental work could be done with spined 

bacteria. This would include both scanning and transmission electron 

microscopic observations of spined bacteria interacting with surfaces. 

Such observations could show whether spinae attach bacterial cells to 

substrata. Evidence of possible ligand-receptor interactions involving 

spinae could also be investigated. This would involve adding certain 

sugars to suspensions of spined marine bacteria and suitable substrata, 

such as seaweed or wood fragments. Association of bacteria with the 

substrates could be observed and enumerated by light microscopy. Any 

inhibition of bacterial association with the substrates could indicate 

binding of sugars to either the spinae or specific receptors. A further 

experiment would involve isolating the spinin protein from spinae removed 

from bacterial cell surfaces. Spinin could then be added to suspensions 

of spined bacteria and substrates, to see the effect of this protein on 

bacterial-substrate association. Proteolytic enzymes could be added to 

spinin, which would show whether bacterial attachment is further 

diminished.



The structural properties, chemical composition and dimensions of 

spinae are similar to bacterial pili. Pili of some cyanobacteria are 

known to be involved in adhesion (see Chapter 2), so that spinae may also 

serve this function.

Summary

1) (i) Certain marine bacteria, such as Caulobacter spp. and Asticcacaulis

biprosthecum, produce stalks with holdfasts which allow attachment, 

Densely staining material is produced from the holdfasts, which 

could be involved in adhesion (Poindexter, 1964, 1981; Umbreit and

Pate, 1978).

(ii) Other bacterial species such as Gallionella spp. and Hyphomicrobium 

spp. produce stalks or hyphae depositing inorganic materials (Starr 

and Skerman, 1965).

2) Other bacteria, particularly marine Pseudomonas and Vibrio spp. 

attach by means of polar or peritrichous flagella (Belas and 

Colwell, 1980; Sjoblad and Doetsch, 1982).

3) Some marine bacteria, particularly Pseudomonas spp. and some 

cyanobacterial species, possess rigid spinae (Easterbrook et al., 

1973; McGregor-Shaw et al., 1973; Sarokin and Carpenter, 1981). As 

well as serving several other functions, spinae may be involved in 

attachment.
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(1.4). Importance of bacterial cell-surface hvdrophobicitv 

in adhesion.

Although electrostatic interactions and production of extracellular 

polymers or cellular appendages are important in marine bacterial adhesion, 

they are not the only factors involved. Bacterial cell surface 

hydrophobicity is also important. The bacterial cell surface is generally 

hydrophobic. At a solid-liquid interface bacteria tend to be rejected 

from the aqueous phase and attracted toward the solid surface (Marshall, 

1976). Production of extracellular polymers or cell surface appendages 

then ensures firm adhesion.

Individual cells of Flexibacter aurantiacus and Hyphomicrobium vulgare 

orientated themselves perpendicularly at the interface in air/water, 

oil/water and solid/water systems (Marshall and Cruickshank, 1973; p. 40 ). 

If the cell surfaces were uniformly hydrophobic, they would lie 

horizontally at the interface. In the oil/water system the cells would 

then be immersed in the oil phase. However, the perpendicular orientation 

suggests that the more hydrophobic polar regions of the cells may be 

attracted to the non-aqueous phase. Rosette formation by both bacterial 

strains in the aqueous phase may also result from hydrophobic interactions 

between the cells (Marshall and Cruickshank, 1973).

The 'A'-protein layer of Aeromonas salmonicida, which causes 

furunculosis in fish, is hydrophobic (Parker and Munn, 1984, see also 

Chapter 5). The cell surfaces of A. salmonicida strains possessing this 

additional 'A'-layer were more hydrophobic than strains lacking it (Parker 

and Munn, 1984). The 'A'-protein is thought to be involved in A. 

salmonicida adhesion to fish tissues (see Chapter 5). The enhanced 

hydrophobicity caused by the 'A'-layer may be important in A. salmonicida
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Fig. 10.1 Orientation o f ceils o f Flexlbacter aurantlacus  CW-7 at an 
o ll-w a te r Interface. Phase contrast (5000x).

Fig. 10.2 O rientation o f ce lls of Hyphom lcroblum  vulgare  ZV-580 
at an o ll-w a te r Interface. Phase contrast (3500x).

Fig. 10.3 Thin section of an embedded araldite block showing the 
o rien ta tion  of F. au ran tiacus  CW-7 at a s o lid - liq u id  
interface. Crystal v io le t stain. (4200x).

1 Fig. 10.4 As in Fig. 10.3 but show ing orientation of H. vulgare  
ZV-580 (3500x).

(R ep roduced  by p e rm is s io n  fro m  M arsha ll and  
Cruickshank, 1973). _ _ _ _ _ ___________________
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adhesion and therefore in furunculosis.

The surfactant Triton X-100 inhibited attachment of ten marine 

bacterial isolates to polystyrene (Paul and Jeffrey, 1985b). In 

particular, attached Vibrio proteolytica cells were detached from 

polystyrene by Triton X-100, and detached cells formed clumps. This also 

occurred with Alteromonas citrea. Hydrophobic interactions between the 

cells may have caused this clumping (Paul and Jeffrey, 1985b). V. 

proteolytica cells were attached to silicone stopcock grease by their poles 

and sides in approximately equal numbers. Consequently, hydrophobic 

regions may be randomly distributed on the cell surface in V. proteolytica. 

Triton X-100 disrupted hydrophobic interactions between the cell surfaces 

and polystyrene (Paul and Jeffrey, 1985b).

Cell surface hydrophobicity is also involved in bacterial scavenging 

of nutrients accumulated at interfaces (see Chapter 1.6). Growth of 

microorganisms on long-chain hydrocarbon compounds by direct contact with 

them is a good example of the role of surface hydrophobicity in adherence. 

The gram-negative bacterium Acinetobacter calcoaceticus, originally 

isolated from aquatic oil spills, adhered strongly to hexadecane, octane 

and ethanol (Rosenberg et al., 1980). It also attached to certain non-

wettable surfaces such as polystyrene petri dishes and siliconized glass. 

Adhesion of A. calcoaceticus RAG-1 to hydrocarbons may, therefore, be via a 

general hydrophobic interaction. Cells harvested during the late 

exponential and stationary growth phases adhered strongly to the test 

hydrocarbons (Rosenberg et al., 1980). An extracellular, non-dialysable

emulsifying agent was produced by A. calcoaceticus RAG-1 when grown on 

hexadecane, ethanol or acetate media (Rosenberg et al., 1979; Sar and

Rosenberg, 1983). Strains which grew well on ethanol medium produced high
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emulsifying activity (Sar and Rosenberg, 1983). Maximum amounts of 

emulsifier were produced during the stationary phase (Sar and Rosenberg,

1983), and production was parallel to growth during the exponential phase 

(Rosenberg et al., 1979).

The emulsifier produced by A. calcoaceticus RAG-1 is known as 

"emulsan". It consists of D-galactosamine, an unidentified amino uronic 

acid, D-glucose, a fatty acid ester and protein (Zuckerberg et al., 1979). 

The use of an emulsan-specific antibody preparation revealed that an 

emulsan-like antigen was a major component of the minicapsule enveloping 

exponential-phase A. calcoaceticus cells. Marked reduction of the capsule 

size in stationary-phase cells correlated with production of emulsifying 

activity (Pines et al., 1983). A mutant strain, A. calcoaceticus MR-481, 

was isolated which had no affinity for three test hydrocarbons (Rosenberg 

and Rosenberg, 1981). Addition of emulsan, however, enabled the mutant to 

grow on hexadecane. This indicated that adherence of A. calcoaceticus is a 

critical factor in its growth on hydrocarbons, and that emulsan could be 

involved (Rosenberg and Rosenberg, 1981).

Late exponential-phase cells of A. calcoaceticus RAG-1 attached with 

high affinity to hexadecane and buccal epithelial cells (Rosenberg et al., 

1981). Hydrophobic interactions were thought to be involved in A. 

calcoaceticus adhesion to hexadecane and epithelial cells. As emulsan is 

mainly produced during the exponential and stationary growth phases, when 

A. calcoaceticus attaches well to hydrocarbons (Rosenberg et al., 1980), it 

could be involved in these hydrophobic interactions.

Wild-type A. calcoaceticus RAG-1 cells were shown to possess thin 

fimbrae, of 3-5nm diameter, on the cell surface (Rosenberg et al., 1982). 

The non-adherent mutant strain, A. calcoaceticus MR-481, lacked these
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fimbrae. Prolonged incubation of A. calcoaceticus MR-481 in hexadecane 

medium produced large numbers of partial adherence revertant strains. 

Reappearance of thin fimbrae was observed in all such revertants (Rosenberg 

et al., 1982). Adherence of RAG-1 cells to hexadecane was considerably

reduced after shearing treatment. The thin fimbrae could be involved in A. 

calcoaceticus adhesion to hexadecane and other hydrophobic surfaces 

(Rosenberg et al., 1982). Emulsan-deficient mutants of A. calcoaceticus

RAG-1, which also lacked fimbrae, adhered strongly to hydrocarbons and 

regained the capacity to grow on them (Pines and Gutnick, 1984). This 

indicated that the cell surface of A. calcoaceticus RAG-1 contained 

additional hydrophobic sites normally masked by emulsan (Pines and Gutnick,

1984). When emulsan is released, these hydrophobic sites are exposed, so 

they could be involved in attachment to hydrocarbons.

Cell-surface hydrophobicity is also important in adhesion of benthic 

cyanobacteria (Shilo, 1982). Filaments of Phormidium spp. attached 

throughout their lengths to oil/water interfaces (Fattom and Shilo, 1984). 

This suggested that the hydrophobic sites were distributed along the entire 

cyanobacterial filament. Mechanical shearing demonstrated that 

hydrophobicity was confined to the outer surface layers (Fattom and Shilo,

1984). Mechanical shearing or treatment with chloramphenicol or 

proteolytic enzymes caused a shift from cell-surface hydrophobicity to 

hydrophilicity in Phormidium str. J-l (Bar-Or et al., 1985).

Ultrastructural analysis showed the cells were enveloped by a double

layered minicapsule. The external surface of the minicapsule was composed 

of 40nm.-long beaded fibrils. The minicapsule possessed a rough surface 

in sheared Phormidium cells. The hydrophobic components could be anchored
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relatively loosely in the cell wall, so that shearing dislodges them (Bar- 

Or et al., 1985).

Phormidium str. J-l also produced a polymeric, extracellular 

emulsifying agent, "emulcyan", particularly during its stationary growth 

phase. Its properties and structure were similar to the emulsan of A. 

calcoaceticus (Fattom and Shilo, 1985). Addition of emulcyan to Phormidium 

suspensions reduced hydrophobicity of the cell surfaces. Hydrophobic cells 

attached to hexadecane droplets became detached on emulcyan addition. As 

suggested for A. calcoaceticus, emulcyan could mask hydrophobic sites on 

the Phormidium cell envelope (Fattom and Shilo, 1985).

A number of substances accumulate at the air/sea interface. These 

substances are highly surface active, sparingly soluble, or have a specific 

gravity below that of seawater. Microorganisms and other particles often 

associate with these materials to form the surface microlayer (Parker and 

Barsom, 1970; Norkrans, 1980). Lipids are the major constituents of the 

uppermost surface microlayer. Fatty acids, glycerides and phospholipids 

are the main lipid components (Odham et al., 1978). A polysaccharide-

protein complex is also found within the microlayer, which although 

essentially hydrophilic, sticks to the surface by means of some hydrophobic 

chains (Norkrans, 1980). In general, high molecular weight, more 

hydrophobic compounds tend to accumulate nearest the surface (Parker and

Barsom, 1970). Glass marbles contacting the air/sea interface accumulated

three orders of magnitude more bacteria than those immersed below the 

interface (Di Salvo, 1973). In general, microorganisms in the uppermost 

10pm. are 10-100 times more abundant than in underlying waters (Crow et

al., 1976; see Table 1 , p. 47 ).
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The abundance of bacteria at the surface microlayer has been shown 

experimentally. Bacterial accumulation occurred at a lipid film spread at 

the interface of an aqueous saline subphase. In particular, the enrichment 

factor (no. of bacteria/ml in the surface microlayer relative to the 

subsurface water) for Serratia marinorubra was about 100 (Norkrans, 1980). 

Enrichment factors for Serratia marinorubra in a decalayer of oleic acid 

were approx. twice that in a monolayer (Norkrans and Sorensson, 1977; Odham 

et al., 1978). Pseudomonas halocrenaea, however, attached in higher 

numbers to monolayers of stearic and palmitic acids than did S. marinorubra 

(Kjelleberg and Stenstrom, 1980). Enrichment factors for both Serratia 

marcescens and S. marinorubra increased during preparation of surface 

microlayer suspensions (Syzdek, 1982).

Pigmented S. marcescens attached to air bubbles in larger numbers than 

non-pigmented strains, probably because they were more hydrophobic 

(Blanchard and Syzdek, 1978). The enrichment factor was greater for 

pigmented S. marcescens cells than for nonpigmented cells at a 

monomolecular stearic acid film (Hermansson et al., 1979). The pigment

prodigiosin might increase surface hydrophobicity of pigmented S. 

marcescens cells. To test this, Rosenberg (1984) enriched for non

hydrophobic mutants of S. marcescens, to see if non-pigmented colonies were 

produced. Two mutant strains were produced. A non-pigmented mutant 

strain was isolated, which attached with intermediate affinity to 

hexadecane. In addition, a pigmented, non-hydrophobic strain was isolated 

which did not attach to hexadecane (Rosenberg, 1984). Hydrophobic 

interactions may be the main forces binding these Serratia cells to the 

surface microlayer. Studies have shown that a positive correlation exists 

between bacterial accumulation at the surface film and the average degree
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of cell-surface hydrophobicity (Norkrans, 1980; Dahlback et al., 1981).

Hydrophobic interactions are a major factor in microbial accumulation at 

the surface microlayer (Shilo, 1982). Some, bacterioneuston produce 

extracellular fibrillar material (Young, 1978). This, together with 

surface hydrophobicity, may allow firmer adhesion of these microorganisms 

at the air/sea interface.

Summary

The main points discussed in this sub-chapter, together with the main 

cited references, are as follows.

1) Cell-surface hydrophobicity is of importance in marine bacterial

adhesion, particularly at interfaces (Marshall and Cruickshank, 1973).

2) Specific cell surface components are involved in adhesion of bacteria

and cyanobacteria to hydrophobic surfaces. Production of emulsan by

Acinetobacter calcoaceticus during the exponential growth phase 

(Rosenberg et al., 1979) correlated with its adhesion to hydrocarbons

and other hydrophobic surfaces (Rosenberg et al., 1980, 1981).

Phormidium spp. produces an emulsifying agent "emulcyan" which may be 

involved in adhesion of this benthic cyanobacterium (Fattom and Shilo, 

1984, 1985).

3) Bacterial cell-surface hydrophobicity is of ecological significance. 

This is shown by the accumulation of large numbers of bacteria at the 

surface microlayer of seawater (Norkrans, 1980). High molecular

weight, more hydrophobic compounds tend to accumulate near the surface 

(Odham et al., 1978). A positive correlation exists between bacterial 

accumulation at the surface film and the degree of cell-surface 

hydrophobicity (Norkrans, 1980).



TABLE 1

Concentration range of microorganisms in surface slicks and 

underlying waters.

Organisms (ml-1

Surface slick 

) (cm-2)

Subsurface

(ml-1)

No samples

Bacteria 103-108 28-2.5xl03 102-106 24

Yeasts 102-104 0-5 102 16

Moulds 103-104 0-28 102 16

(Taken from Crow et al., 1976).



(1.5.) Influence of substratum properties on bacterial adhesion

Bacterial attachment to solid surfaces is known to be influenced by 

three components (Fletcher and Pringle, 1985). These are the bacterial

surface, the liquid medium and the substratum. The earliest phases of

adhesion in saline media are influenced by the surface chemistry, surface 

texture and surface charge of the solid substrate (Baier, 1972). This 

sub-chapter aims to discuss some of the main substratum properties which 

can influence marine bacterial adhesion.

The surface chemical composition of substrata immersed in seawater is 

known to influence microbial adhesion (Sechler and Gundersen, 1972). 

Metals such as aluminium, zinc and steel attracted a more heterogeneous 

bacterial population. Non-metals, wood and plexi-glass, however, 

exhibited a more stable bacterial community. Highest bacterial 

populations developed on wood panels. The surface electrical nature of 

the substrata was suggested as an important factor affecting bacterial 

adhesion in these experiments (Sechler and Gundersen, 1972). The initial 

physical and chemical changes occurring upon immersion of solid surfaces in 

seawater have been investigated by a number of authors. For example,

Neihof and Loeb (1972) measured the surface electrical charge of different 

particles in seawater by electrophoresis. Some seawater samples were 

treated with ultraviolet light to destroy organic constituents. Particles 

of an anion exchange resin, germanium and quartz exhibited charges ranging 

from strongly positive to negative in irradiated seawater (Neihof and Loeb, 

1972). Similar studies showed that platinum particles suspended in 

natural seawater became electronegative (Loeb and Neihof, 1977). These

results suggest that all particles and surfaces immersed in seawater become
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coated with dissolved electronegative, organic material known as a 

"conditioning film". Conditioning film formation has been observed on 

methylated germanium and germanium prisms (Baier, 1980, 1984), model heat

exchanger surfaces (Baier, 1981), and various metals, including copper 

(Kristofferson et al., 1982).

The constituents of the conditioning film must come from either 

seawater or the secretions of attached microorganisms. Zobell (1939) 

noted the accumulation of organic matter on surfaces submerged in seawater, 

and stated that it promoted attachment and development of bacteria.

Harvey (1925, 1941) observed accumulation of bacteria in glass vessels

containing seawater, and attributed it to adsorption of organic matter from 

seawater onto the glass surface. Baier (1984) showed that the

conditioning film from seawater was composed of proteinaceous material. 

Other papers, however, showed the film to consist of glycoproteins and 

proteoglycans (Baier, 1972, 1981). This composition may arise due to

secretion of protein-polysaccharide slimes by initially attaching

microorganisms (Baier, 1972, 1984). Attached marine bacteria were

embedded in a glycoproteinaceous matrix on germanium substrata exposed for 

two hours and two days to seawater cultures (Baier, 1980; see p.50,51).

Baier (1972) stated that a proteinaceous conditioning film modifies 

the initial surface condition of any substrate in seawater. He also said 

that this film is an obligatory precursor to biofilm formation.

Conditioning films are known to alter properties of substrata, such as 

wettability, critical surface tension and surface energy, all of which in 

turn effect bacterial adhesion. Before describing this, however, it is 

necessary to define these terms.

Wettability is a measure of how easily a liquid spreads on a solid
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Fig. 11 S cann ing  e le c tro n  m ic ro g ra p h s  o f clean m e ta llic  
(germ anium ) substra tes  a fte r exposure fo r 2 hrs. to 
lum inous bacte rium  (M4 3 ) In a r t if ic ia l seawater and 

glucose at 28°C .

(Reproduced by permission from Baier, 1980).
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Fig. 12 Scanning electron m icrographs of germanium substrates 
after exposure fo r 2 days to  lum inous bacterium (M 43) In 
a rtific ia l seawater and g lucose  at 28°C , show ing the 
extent of condition ing film  form ation.

(Reproduced by permission from Baler, 1980).
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surface. It is based on the value of the contact angle ( 0 ) existing 

between a liquid drop and a solid surface (Young, 1805; Glasstone, 1940; 

Baier et al., 1968; Baier, 1970). If 0 = 0, the liquid completely

spreads over the surface, so the substrate is highly wettable. However, 

if 0 sf: 0, the liquid does not spread over the surface, so the substrate 

has low wettability (Glasstone, 1940; Baier et al., 1968; Baier, 1970).

There is one disadvantage of using the contact angle as a method of 

measuring wettability. It is not reasonable to assume that a liquid is 

non-spreading when 0 0, as some liquid-to-solid adhesion is always

found, and some spreading will occur (Baier et al., 1968). Further 

problems arise over the use of water and water-miscible liquids for 

measuring contact angles. Variability arises in such measurements due to 

liquid penetration into or swelling of the substratum (Baier, 1980). In 

spite of these limitations, however, the contact angle method has been 

frequently used in the papers cited here. Surface tension of a solid (*f ) 

is defined as the force acting at right angles to any line of 1 cm length 

on the surface (Glasstone, 1940). The critical surface tension of a solid 

surface is obtained from a graph of the cosine of the contact angle (cos 0) 

plotted against the liquid-vapour surface tension ( y l v ) .  The intercept 

of the extrapolated straight line plot with the cos 0 = 1  axis gives the 

critical surface tension (see p. 53 ). Critical surface tension is 

characteristic of the particular surface, and can provide a ranking of 

materials according to their particular surface energies (Baier, 1970). 

Surface energy is numerically equal to surface tension (Glasstone, 1940). 

Surface energy of solids depends on the strength of intermolecular forces. 

Solids having strong intermolecular forces possess high surface energy 

values, and are known as "high-energy surfaces". Those solids with low
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Fig. 13 Z ism an  p lo t s h o w in g  w e t ta b i l i ty  o f p o ly te tra -  
fluoroethylene by the n-alkanes. The c ritica l surface 
tension is given by the in tercep t o f the horizonta l line 
cos 0=1 with the extrapola ted s tra igh t-line  p lo t o f cos 0 
against surface tension o f the series o f liquids.

(Reproduced by perm ission from Marshall, 1976).
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melting points possess weaker intermolecular forces. Such solids have 

lower surface free energies, and are "low-energy" surfaces (Baier et al., 

1968). Liquids will generally spread well on solids of high surface 

energy, but may not spread on low surface energy solids (Baier, 1970).

Having defined wettability, critical surface tension and surface 

energy, the affects of conditioning film formation on some of these 

properties and on bacterial adhesion will now be discussed. Additionally, 

the affects of substratum hydration on surface tension, surface energy and 

bacterial adhesion will be discussed. The effects of alcohol adsorption 

on wettability and adhesion of a marine Pseudomonas spp. will also be 

looked at.

The affects of a conditioning film on critical surface tension, 

wettability and bacterial adhesion varies according to the substratum, 

organic concentration and bacterial species.

Formation of a conditioning film on platinum surfaces after immersion 

in seawater gave high contact angles for water and diiodomethane (Loeb and 

Neihof, 1977; see p. 57 ). These high contact angles indicate a less

wettable, lower energy surface consistent with the presence of an organic 

film. Contact angles of glycerol, methylene iodide and polypropylene 

carbonate measured on gold and copper surfaces in seawater were not high 

(Kristofferson et al., 1982). This indicated the formation of a thin

organic film on these metal surfaces. Adsorption of such a thin film was 

observed. Initial contact angles of 90° and 29° were recorded for 

polystyrene petri dishes (PD) and tissue culture dishes (TCD), 

respectively. A 100 pg ml-1 concentration of bovine glycoprotein reduced 

the contact angle on the TCD substratum to 15°, making it completely 

wettable. The PD substratum became moderately wettable, with a contact
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angle of 64° (Fletcher and Marshall, 1982).

McEldowney and Fletcher (1986) demonstrated the effects of 

conditioning film formation on substrate wettability and bacterial 

adhesion. Attachment of aquatic Pseudomonas fluorescens and

Chromobacterium spp. grown in continuous culture to PD and TCD surfaces 

varied depending on the substratum, organism and dilution rate. Addition 

of yeast extract medium (PYE) either increased or decreased bacterial 

adhesion levels (see p. 58). pye decreased the water contact angle 

values for PD and TCD substrata, indicating conditioning film formation 

(McEldowney and Fletcher, 1986). Formation of a conditioning film may 

explain the varied levels of bacterial adhesion in the presence of PYE. A 

reduction in interfacial free energy caused by a conditioning film would 

lower attachment, whilst polymer bridging and changes in substratum bonding 

capacity may increase attachment (McEldowney and Fletcher, 1986). 

Interfacial free energy is defined as the work required to enlarge the 

separation between two miscible or partially miscible liquids (Glasstone, 

1940). The effects of PYE on bacterial adhesion differed between 5 and 60 

mins. (p. 58 ). Increases in thickness of the conditioning films with

time may account for these differences (McEldowney and Fletcher, 1986).

Some earlier studies have been made of how surface wettability and 

critical surface tension can affect bacterial adhesion.

Wood panels developed high microbial populations on immersion in 

seawater. This is related to the high polarity and wettability of wood 

(Sechler and Gundersen, 1972). Comparisons have been made of bacterial 

adhesion to surfaces differing in these properties. Dexter et al. (1975) 

and Dexter (1976) showed that substrata of high wettability such as glass 

had high numbers of attached marine bacteria. Substrata of low



wettability, such as polystyrene, had low attached bacterial numbers. In 

general, there was a decrease in bacterial adhesion with decreasing

substrate wettability (Dexter et al., 1975; Dexter, 1976). However,

Fletcher and Loeb (1976, 1979), using a marine pseudomonad, obtained

conflicting results. They found that this bacterium attached in high 

numbers to substrata of low energy and wettability. However, the 

pseudomonad attached in low numbers to high energy, high wettability 

substrata such as glass and mica (Fletcher and Loeb, 1979). Fletcher and 

Loeb (1979) suggested possible reasons for the differences in these 

results. One was the presence of different bacteria in the experiments

which may possess different cell surface characteristics. Dexter et al.

(1975) used seawater containing several bacterial species, whilst Fletcher 

and Loeb (1976, 1979) only used a marine pseudomonad. The presence of

variable and undefined dissolved components may alter substrata properties 

and thus bacterial attachment through adsorption. Additionally, different 

types of interactions (e.g. electrostatic, hydrophobic) between the 

bacteria and substratum in the two experiments may produce different

results (Fletcher and Loeb, 1979) .

The surface free energy of a substratum is related to surface tension, 

and so can affect bacterial adhesion (see p. 59 ). Fletcher and Pringle 

(1985) compared levels of marine bacterial attachment to PD and TCD.

These substrata differ in their surface free energy, having values of 28 

and 73 mNnr1, respectively. The bacteria differed in their ability to 

attach to the two polystyrene surfaces (see p. 59 ). For example,

Corynebacterium erythrogenes and Vibrio fisheri attached in high numbers to 

both substrata. Flavobacterium ulginosum and Pseudomonas sp. NCMB 2021, 

however, only attached well to PD (Fletcher and Pringle, 1985). The



TABLE 2

Contact angles on known surfaces and on platinum 

exposed to seawater.

Sample

Contact angles 

diiodomethane

with : 

water

Clean platinum < 10° 0°

Platinum after immersion 

seawater from Chesapeake.

in

Bay 33° 45°

Nylon 2 30° 49°

Poly (methyl glutamate) 30° 49°

Polyethylene 52° 94°

(From Loeb & Neihof, 1977).
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TABLE 3

Effect of nutrients on the attachment of P. fluorescens and 

Chromobacterium sp. to PD and TCD after growth in continuous 

culture at various dilution rates.

Ia (index of attachment) values were calculated as the ratio of the A590

<x 1 03) of the test substratum to that of the relevant control substratum. 

Ia values of 1 were recorded for treatments whose 95% confidence limits of 

the mean (n = 8) overlapped with that of the controls.

% PYE PYE

PD Ia TCD Ia PD Ia TCD Ia

Dilution 5 min 60 min 5 min 60 min 5 min 60 min 5 min 60 min
Species rate

(h-M

0.05 1.3 1.76 1 2.4 1 1 1 1.9
CO
c
0)
0w

0.1 2.7 1 1.4 2.36 1 1 1.86 2.48
(D
S-,O3

0.15 1.22 1 1 1 1.67 0.55 1.42 1

r—1
Cm 0.2 1 0.18 1 1 1 0.16 1.54 1

<XJ Pl,

Ou
W

0.05 1.64 2.2 1 1 1 2.53 0.56 0.38

•H
Sh

0.1 1 1.89 1 1 1 1.46 0.72 0.54
<u

-p0
cti

0.15 1 1.18 1 1.29 0.43 0.54 1 0.41
X3
O
S
O
Sh—  jc j 

O

0.2 0.74 0.75 0.86 1.21 0.33 0.6 0.66 0.86

(From McEldowney and Fletcher, 1986).
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TABLE 4

Attachment of Marine Bacteria to Polystyrene Petri Dishes (PD) 

and Polystyrene Tissue Culture Dishes (TCD).

Number attached 100 pm-2

(± SEM)

Bacterium PD TCD

Bacillus filicolonicus 0.7 (0.1) 1.8 (0.5)

Bacillus epiphytes 0.4 (0.1) 0.2 (0.1)

Bacillus pacificus 0.6 (0.2) 0.5 (0.2)

Micrococcus sp. 7.9 (1.6) 14.5 (0.8)

Flavobacterium uliginosum 15.6 (0.6) 1.0 (0.2)

Pseudomonas sp. 15.3 (0.7) 0.7 (0.1)

Corynebacterium erythrogenes 20.7 (1.7) 18.2 (1.1)

Vibrio fisheri 35.6 (3.7) 28.2 (2.5)

1SEM, Standard Error of the Mean. 

(From : Fletcher and Pringle, 1985)
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adhesion of bacteria to surfaces immersed in an aqueous environment is more 

related to solid/liquid interfacial free energies (Gerson and Scheer, 

1980). The effects of interfacial free energies of five different plastic 

substrata on bacterial adhesion was studied by Gerson and Scheer (1980). 

There was a linear relationship between the density of adhesion of Serratia 

marcescens and the free energy of adhesion for four of the surfaces used. 

Free energy of adhesion, A g 3, is defined as the change in interfacial free 

energy which corresponds to the attachment process. These results confirm 

a direct relationship between the free energy of partition of bacteria 

between the solid surface and liquid phase and the free energy of adhesion 

(Gerson and Scheer, 1980).

The effects of water adsorption and of alcohol adsorption on some of 

these substrata properties and bacterial adhesion will now be discussed.

Adsorbed water is known to alter surface free energy and critical 

surface tension values of substrata. Surface energies of glass, silica, 

alumina and metals are decreased by an adsorbed water layer. One 

monolayer of adsorbed water converts these high-energy surfaces into low- 

energy surfaces (Baier et al., 1968). As more than a monolayer of water

is adsorbed onto a substratum, values decrease to those of a bulk water 

surface (approx. 22 dynes cm-1 at 20°C) (Baier et al., 1968; Baier, 1970). 

Attachment of Pseudomonas fluorescens and an Acinetobacter spp. to hydrogel 

substrata decreased with increasing water content of the hydrogels (Pringle 

and Fletcher, 1986). Reduced attachment levels were found for all the 

hydrogels compared with polystyrene, polystyrene tissue culture dishes and 

sulphonated polystyrene substrata. Adsorbed water could affect adhesion 

by modifying the ionic microenvironment of the surface or by reducing the 

interfacial free energy of the solid-liquid interface. Water can also
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sterically prevent close approach of the surfaces, so reducing the 

spontaneous adsorption of cells (Pringle and Fletcher, 1986). In order 

for adhesion to occur between hydrated bacterial and attachment surfaces, 

water must be displaced as the two surfaces move together (Fletcher and 

Pringle, 1985).

Adsorption of certain alcohols to substrata can also influence 

bacterial adhesion by altering substrata properties. Methanol, ethanol, 

propanol and butanol affected attachment of a marine Pseudomonas spp. to PD 

and TCD substrata (Fletcher, 1983). In particular, there was an increase 

in bacterial attachment to TCD at 1% butanol concentration, but not at 1.5% 

and 2.0% concentrations. Sessile drop and air bubble contact angles (Gsd 

and Ob, respectively) were measured on both substrata in the presence of 

the alcohols. Butanol at the above concentrations decreased the Osd amd 

9b values on PD. There was a progressive decrease in contact angle values 

on TCD with increasing butanol concentrations (Fletcher, 1983). This 

suggests that butanol adsorbs to the substrata. Adsorption of butanol to 

the PD surface may have prevented bacterial adhesion at 1.5% and 2.0% 

concentrations (Fletcher, 1983).

The remainder of this sub-chapter will discuss possible differences in 

bacterial adhesion mechanisms to hydrophobic and hydrophilic substrata, and 

an example of a material produced by Serratia marcescens which affects 

surface wettability.

The results of Dexter et al. (1975) and Fletcher and Loeb (1979), 

although conflicting, suggest that the degree of substratum hydrophobicity 

or hydrophilicity can affect marine bacteria attaching to hydrophobic 

substrata such as polystyrene, and low numbers attaching to hydrophilic 

substrata such as glass and mica (Fletcher and Loeb, 1979). As shown in
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Table 4 (p. 59 ), with some species, bacterial adhesion to the

hydrophilic TCD substratum and the more hydrophobic PD differed (Fletcher 

and Pringle, 1985). McEldowney and Fletcher (1986) also observed 

differences in bacterial adhesion levels to PD and TCD substrata. They 

suggested that there could be different adhesive interactions with these 

two substrata. The surfactant Triton X-100 inhibited attachment of Vibrio

proteolytica to the hydrophobic substratum polystyrene by 99%. (Paul and 

Jeffrey, 1985a). However, it did not affect attachment of the bacterium 

to hydrophilic substrata such as glass or tissue culture dishes. In 

addition, mannose inhibited V. proteolytica adhesion to tissue culture

dishes, but not to polystyrene. These results suggested the existence of 

separate mechanisms for adhesion of V. proteolytica to hydrophobic and 

hydrophilic substrata (Paul and Jeffrey, 1985a). This is also suggested 

by the other papers discussed here (Dexter et al., 1975; Fletcher and Loeb, 

1979; Fletcher and Pringle, 1985; McEldowney and Fletcher, 1986).

Serratia marcescens is a specific example of a marine bacterium

producing material which alters substrata properties. The bacterium 

produced large amounts of a wetting agent when cultivated at 30°C 

(Matsuyama et al., 1985). The contact angle of a S. marcescens suspension 

on a polystyrene surface was 26°C. The wetting agent was identified as an 

aminolipid similar to serratamolide. Cells of S. marcescens possessing 

such wetting activity spread spontaneously on a glass slide (Matsuyama et 

al., 1985).

Microscopic examination of S. marcescens cells spread in this way

showed red granular material surrounding the colourless bacterial cells. 

Further light and electron microscopic observations showed that the red 

pigment was present in vesicles in the bacterial cells (Matsuyama et al.,



63

1986). The vesicles had strong wetting activity. Prodigiosin, the red 

pigment present in S. marcescens, was isolated from these vesicles.

Additionally, three lipids ¥1, ¥2 and W3 were isolated from S. marcescens

strains possessing these vesicles. These lipids had strong wetting 

activity which was shown by small contact angles of dispersions of these 

materials on a polystyrene surface. In addition, the lipids lowered the 

surface tension of saline in which they were suspended on polystyrene.

Chemical analysis showed that wetting agent ¥1 was serratamolide, whilst 

materials ¥2 and ¥3 were aminolipids, although their exact structure could 

not be obtained (Matsuyama et al., 1986). Although prodigiosin was

isolated from these vesicles, it did not impart wetting activity to S. 

marcescens.

The primary function of these aminolipid wetting agents is uncertain 

(Matsuyama et al., 1986). However, it is possible that by increasing 

substrate wettability, these materials could facilitate adhesion of S. 

marcescens to submerged surfaces. These wetting materials would then be 

acting in a similar way to adsorbed organic conditioning films. Cell- 

surface hydrophobicity was mentioned as an important factor in S. 

marcescens adhesion at the air/water interface (see 1.4). This, together 

with increased wetting activity, could further facilitate S. marcescens 

adhesion in the marine environment.

SUMMARY

This sub-chapter has reviewed several aspects of the importance of 

substrata properties on adhesion of marine bacteria. The major points 

discussed, together with the key cited references are
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(1). Surfaces immersed in seawater become coated with dissolved, 

electronegative organic constituents known as a conditioning 

film. This film is usually proteinaceous in nature (Baier, 

1972, 1981, 1984).

(2). A conditioning film can affect marine bacterial adhesion by 

altering substrata properties such as wettability and critical 

surface tension (McEldowney and Fletcher, 1986).

(3) Properties such as surface wettability and critical surface 

tension can affect bacterial adhesion, the effects of which 

depend on the species or interactions between bacterium and 

substratum (Dexter et al., 1975; Fletcher and Loeb, 1979).

(4) Surface free energy of a substratum affects bacterial adhesion 

(Fletcher and Pringle, 1985). Interfacial free energy at a 

solid/liquid interface can be important to attaching bacteria in 

the marine environment (Gerson and Scheer, 1980).

(5) (i) Substratum hydration can alter critical surface tension and

surface free energy values and so affects bacterial adhesion 

(Pringle and Fletcher, 1986).

(ii) Butanol adsorption to certain substrata prevented adhesion 

of a marine Pseudomonas spp. (Fletcher, 1983).

(6) Separate adhesion mechanisms of marine bacteria to hydrophobic 

and hydrophilic substrata may exist (Paul and Jeffrey, 1985).

(7) Serratia marcescens strains produce lipid compounds with strong 

wetting activity from cellular vesicles. (Matsuyama et al., 

1986). These compounds could affect 5. marcescens adhesion to 

submersed surfaces in the marine environment.



(1.6). Influence of nutrients and nutrient accumulation at 

interfaces on bacterial adhesion

An interface is the boundary between two phases in a heterogeneous 

system (Ellwood et al., 1982). Interfaces are usually identified as

liquid-liquid, air-liquid, air-solid and solid-liquid interfaces. The 

most commonly investigated type in the aqueous environment is the solid- 

liquid interface. Such interfaces act as areas of nutrient accumulation 

in the form of inorganic ions, lipids and other organic molecules 

(Marshall, 1980; Kjelleberg et al., 1982). As the marine environment is 

largely oligotrophic (i.e., nutrient deficient), interfaces allow bacteria 

to take advantage of higher nutrient levels. Irreversible bacterial 

adhesion at interfaces under starvation conditions is, therefore, common 

(Dawson et al., 1981; Kjelleberg et al., 1983; Kjelleberg and Hermansson, 

1984) .

Bacterial scavenging of nutrients located at interfaces appears to be 

related to the degree of irreversible binding of bacterial cells at 

interfaces (Kjelleberg et al., 1983; Kefford and Marshall, 1984; Hermansson 

and Marshall, 1985). Pseudomonas sp. NCMB 2021 showed high irreversible 

adhesion to glass beads coated with stearic acid. This was coupled to a 

high respiration rate of surface-bound stearic acid (Hermansson and 

Marshall, 1985). In contrast, Vibrio sp. MH3 showed poor irreversible 

adhesion and a low total number of adhered cells. However, the species 

did show some respiration of the surface bound stearic acid, although this 

was half the rate of Pseudomonas NCMB 2021. Utilization of stearic acid 

by Pseudomonas NCMB 2021 was associated specifically with irreversible 

adhesion (Hermansson and Marshall, 1985). Two strains of Leptospira
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biflexa serovar patoc displayed reversible and irreversible adhesion at a 

solid-liquid interface (Kefford and Marshall, 1984). Scavenging of

nutrients localised at the interface occurred when this organism was 

reversibly and irreversibly bound. However, Hermansson and Marshall

(1985) found that Vibrio MH3 was still able to scavenge stearic acid when

reversibly attached. This suggests that irreversible adhesion is not

absolutely essential for bacteria to benefit from interface-bound

nutrients.

Surface hydrophobicity of the bacterial cell envelope is also involved 

in the scavenging of nutrients at interfaces (Kefford et al., 1982;

Kjelleberg et al., 1983; Kjelleberg and Hermansson, 1984). Leptospira

biflexa and a pigmented strain of Serratia marcescens displayed two 

different strategies of scavenging fatty acids which were related to their 

adhesion methods (Kefford et al., 1982). Leptospira biflexa efficiently

scavenged stearic acid from the surface in 24 hours. The pigmented, 

hydrophobic Serratia strain showed a faster rate of stearic acid removal 

than the hydrophilic, non-pigmented strain. The greater hydrophobicity of 

the pigmented Serratia strain allows closer interaction with the solid 

surface and more efficient scavenging of localised stearic acid. The 

differing rates of stearic acid uptake observed for Leptospira biflexa and 

pigmented Serratia marcescens suggests that two distinct scavenging 

strategies are used. The pigmented Serratia strains adhere irreversibly, 

so the adherent population benefits from the localised nutrients (Kefford 

et al., 1982).

Starvation of Spirillum sp. strain 0114, Vibrio strain DW1 and a 

hydrophobic Pseudomonas sp. strain S9 gave increases in surface 

hydrophobicity. These in turn corresponded with high irreversible binding
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to glass (Kjelleberg and Hermansson, 1984). Starvation of hydrophilic 

marine Vibrio sp. strain DW1 and hydrophobic Pseudomonas sp. strain S9 at a 

solid-liquid interface gave increases in irreversible binding (Kjelleberg 

et al., 1983). This also seemed to be related to increased surface 

hydrophobicity and greater uptake of stearic acid localised at the

interface (Kjelleberg et al., 1983). Increased surface hydrophobicity may

be the reason for the high irreversible adhesion of Pseudomonas NCMB 2021 

compared with Vibrio MH3 (Hermansson and Marshall, 1986). Increases in

cell surface hydrophobicity appear to lead to increases in irreversible

binding of bacteria at nutrient-enriched interfaces (see Chapter 1.4).

Cell size reduction is a phenomenon frequently observed during 

starvation of copiotrophic marine bacteria at a solid-liquid interface. 

Copiotrophic bacteria are defined as those species requiring 100 to 1,000- 

fold concentrations of nutrients for growth on media containing only a few 

mg of organic carbon/1 (Kjelleberg et al., 1985). The copiotrophic marine 

Vibrio spp. DW1 became reduced in size at air-water and solid-water 

interfaces during starvation (Kjelleberg et al., 1982). Twelve rod

shaped, hydrophilic marine bacteria decreased in size more rapidly at the 

solid surface than in the liquid phase (Humphrey et al., 1983). Both the

hydrophilic marine Vibrio spp. DW1 and hydrophobic Pseudomonas sp. S9 

underwent continuous size reduction during starvation at a solid-liquid 

interface (Kjelleberg et al., 1983). Marine bacteria grown in a medium 

with a high carbon concentration reduced in size after 24 h. starvation at 

a glass-seawater interface (Kjelleberg et al., 1985; see p. 69 ). size

reduction of starved copiotrophic cells at interfaces may represent a

survival strategy. This is because their surface area/volume ratio will 

increase allowing greater uptake of localised nutrients (Kjelleberg et al.,
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1982). Size reduction of copiotrophic bacterial cells leads in turn to 

increases in irreversible binding at interfaces (Kjelleberg et al., 1983; 

Kjelleberg and Hermansson, 1984; Kjelleberg et al., 1985). Marine Vibrio 

sp. DW1 decreased rapidly in size within 5 h. of exposure to starvation 

conditions (Dawson et al., 1981). Adhesion of these dwarf cells to

siliconized glass surfaces was enhanced, and was accompanied by production 

of extracellular bridging polymer (Dawson et al., 1981). Adhesion would

allow greater uptake of localised nutrients, so enhancing bacterial 

survival in oligotrophic marine environments. Starvation of Spirillum 

strain 0114, Vibrio sp. DW1 and S. marcescens EF 190 at a glass-seawater 

interface gave increased surface roughness, shown by highly textured outer 

layers in electron micrographs (Kjelleberg and Hermansson, 1984). Reasons 

for the appearance of this roughness are unknown, but it could be the 

prelude to production of extracellular adhesive. Bleb formation at the 

surface of Vibrio DW1 during starvation occurred just before production of 

bridging polymer (Dawson et al., 1981).

In contrast to these observations on copiotrophic marine bacteria, 

Kjelleberg et al. (1985) found that higher numbers of starving oligotrophic 

bacteria were found at a glass-seawater interface. Most of these 

oligotrophic cells were irreversibly bound. Reversibly attached 

aggregates were seen which presumably consisted of copiotrophic bacteria 

(Kjelleberg et al., 1985). This conflicts with the observations that

starving copiotrophic bacteria are the predominant colonizers of solid- 

liquid interfaces, whilst oligotrophic bacteria are more competitive in the 

liquid phase. Cell surface structures of oligotrophic bacteria may be 

different from those of copiotrophic bacteria. This may allow 

oligotrophic bacteria a higher ability to bind to surfaces under starvation



TABLE 5

Changes in bacterial cell size during starvation.

Media1

Original Transferred to

Time of 

starvation 

(h)

Mean cell 

volume2 

(pm3)

0
24

0.76 ± 0.22 (6) 

0.46 ± 0.15 (9)

0
24

0.83 ± 0.43 (7) 

0.73 ± 0.40 (7)

24 0.40 ± 0.10 (7)

1 The growth media used differed in their concentrations of organic carbon. 

Medium B contained 50 mg. of organic C/1., whilst Medium C contained 500 

mg. organic C/1.

2 Figures in parantheses represent the number of bacterial isolates used in 

the measurements.

(Taken from Kjelleberg et al., 1985).
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conditions (Kjelleberg et al., 1985).

The chemostat, by limiting the availability of specific essential

nutrients in a liquid culture, often allows the effects of nutrient

depletion on microbial activity to be tested. Circles of aluminium foil 

were placed into chemostats containing enrichment cultures of river water 

bacteria, which were nitrogen-limited or glucose-limited (Brown et al., 

1977). The aluminium surface taken from the chemostat supplied with

nitrogen-limited medium was coated with polysaccharide material containing 

glucose. Very few bacteria were present. However, the surface taken 

from the chemostat with glucose-limited medium had a wide variety of

bacterial types attached, but no surface polymer was present (Brown et al., 

1977). These results suggest that glucose-limited cultures result in a 

more diverse community of attached microorganisms that do not depend on

extracellular polymer production for adhesion (Ellwood et al., 1982). A

possible explanation is that in the nitrogen-limited medium, any receptor 

sites for bacterial glucose-containing extracellular materials would be

saturated, and not be available for attachment. Conversely, in the

glucose-limited medium, a maximum number of bacterial polymer receptor 

sites would be available. Glucose could bind to aluminium as a molecular 

film. This polysaccharide layer could assist bacterial attachment (Brown 

et al., 1977). In other words, under carbon-limited conditions there is

an increased concentration of the limiting nutrient at the solid surface. 

Organisms with a high-affinity uptake system may recognise molecules of the 

limiting nutrient concentrated at a surface, so that interaction leading to 

adhesion could occur (Ellwood et al., 1982).

However, this proposal does not consider whether there is a constant 

supply of the limiting substrate to the surface. In an attempt to answer
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this, pure chemostat cultures of an estuarine pseudomonad were used to 

study kinetics of growth on an artificial surface (Ellwood et al., 1982).

Nitrogen-limited or carbon-limited cultures were again used. Glass slides 

were immersed at fixed time intervals of 5 h. and after 1-5 generation 

times. Examination of stained films and scanning electron micrographs 

showed that growth occurred as microcolonies that coalesced into relatively 

uniform films after five generations. At higher magnifications, fibrils 

connecting cell to cell and cell to surface were apparent. The fibrils

were well developed in films from carbon-limited cultures, although they 

were also present in nitrogen-limited cultures (Ellwood et al., 1982).

Collisions between bacteria and the surface will be more frequent at high 

culture densities. This must in part account for the increased rate of 

surface film development. The microscopic evidence showed that large 

numbers of bacteria on the surface formed microcolonies. In turn, it 

seems likely that microcolony development is due to an increased rate of 

surface growth compared with the liquid phase (Ellwood et al., 1982).

This would arise if there was an increased concentration of the limiting 

nutrient at the solid-liquid interface.
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Summary

1) Solid-liquid interfaces act as areas of nutrient accumulation in the 

marine environment (Marshall, 1980).

2) Bacterial scavenging of nutrients at interfaces is related to the 

degree of irreversible binding of cells at interfaces (Hermansson and 

Marshall, 1985) and to cell surface hydrophobicity (Kefford et al., 

1982; Kjelleberg et al., 1983).

3) Copiotrophic marine bacteria frequently undergo cell size reduction

during starvation at a solid-liquid interface (Kjelleberg et al., 

1983; 1985). This can lead to increases in irreversible adhesion,

which could be a survival strategy (Dawson et al., 1981).

4) Chemostat studies show how an increased concentration of a limiting 

nutrient at a solid-liquid interface can lead to increased bacterial 

adhesion (Ellwood et al., 1982).
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Chapter 2: Adhesion mechanisms in Cyanobacteria

This chapter describes the production of sheaths, cell surface pili

and other appendages such as bristles and spikes in cyanobacteria.

Although there is little direct evidence for the involvement of these

structures in cyanobacterial adhesion, attempts will be made to justify 

this.

Many cyanobacteria synthesize a fibrous material, which although

deposited outside the cell is always closely adherent to the outer membrane 

(Stanier and Cohen-Bazire, 1977; Drews and Weckesser, 1982). Aggregates 

of cyanobacterial cells are often formed in which groups of cells are 

enveloped by this material. Some cyanobacteria excrete slime or mucilage 

which becomes dispersed around them (Drews and Weckesser, 1982). It may 

make liquid cultures of cyanobacteria highly viscous or gelatinous (Stanier 

and Cohen-Bazire, 1977).

Ultrastructural studies of Anabaena spp. showed fine filaments of 

mucilaginous material radiating from the cell surface (Leak, 1967). This 

material stained with ruthenium red, suggesting that it was composed of 

mucopolysaccharides. Chemical analysis of the sheath material of 

Anabaena cylindrica showed that it consisted mainly of carbohydrate, with a 

small amount of amino compounds (Dunn and Wolk, 1970). The sugars present 

in the sheath material were glucose, mannose, galactose and xylose. Light 

microscopic observations of Nostoc spp. suggested that the sheath was 

similar to many bacterial capsules (Tuffery, 1969). Sheaths surrounding 

trichomes of Nostoc spp. stained intensely with Alcian blue, suggesting 

that the sheath was largely composed of polysaccharide. Electron 

microscopy showed a dense, striated sheath structure close to the cell, 

whilst a micro-fibrillar network was seen further out (Tuffery, 1969).
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Nostoc spp. isolated from subaquatic habitats by Martin and Wyatt (1974) 

often possessed a slimy sheath. The pronounced sheath occurred mostly in 

cyanobacterial strains within the genera Scytonemataceae, Stigonemataceae 

and Oscillatoraceae. Filaments which had pronounced sheaths in liquid 

culture were adhesive and produced entangled masses. These were difficult 

to disrupt. Many euplanktonic Anabaena spp. and aquatic unicellular 

cyanobacteria such as Microcystis and Aphanocapsa spp. had cloud-like slimy 

sheaths (Martin and Wyatt, 1974). The branching blue-green bacterium 

Fischerella ambigua possesses a sheath continuous throughout the length of 

the filament (Thurston and Ingram, 1971). Numerous vesicles were

associated with the regions of active sheath formation. These vesicles 

could be secreting the raw material from which the sheath is constructed 

(Thurston and Ingram, 1971). This may be similar to the involvement of 

vesicles in the secretion of adhesives in algal spores (see Chapter 3).

The colonial sheath of Microcystis marginata consists of a relatively

smooth inner surface with densely packed, long fibrils on the outer surface 

(Kessel and Eloff, 1975). Shadow casting shows that the sheath surface

appears as a very fine network of 50nm thick fibrils. Ruthenium red 

staining suggests that the Microcystis marginata sheath consists of 

mucopolysaccharides and pectates, similar to Anabaena spp. (Leak, 1967). 

The marine cyanobacterium Agmenellum quadruplicatum possesses an 

extracellular glycocalyx, which is shown by freeze-etching to consist of a 

network of small fibrils (Balkwill and Stevens, 1980; see p. 76 ).

Ruthenium red staining again suggests that the glycocalyx is composed of 

acidic polysaccharides. Projections of glycocalyx material extend

outwards at several points around A. quadruplicatum cells. (see p. 76 ). 

Freeze-etching shows that these projections are aggregates of closely
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packed glycocalyx fibrils arranged in parallel. These projections probably

bind adjacent A. quadruplicatum cells together. They could be areas of the

glycocalyx which are stretched out by physical forces, and sorb to adjacent 

cells, as predicted by the polymer bridging theory of Harris and Mitchell 

(1973). The glycocalyx of A. quadruplicatum is probably involved in attachment 

to solid surfaces in the natural environment (Balkwill and Stevens, 1980).

The chemical composition and adhesive properties of cyanobacterial sheaths 

are similar to the extracellular polysaccharides produced by periphytic marine 

bacteria. These secretions appear to be involved in the adhesion of certain

marine bacteria to surfaces (see Chapter 1.2). In the same way, sheath

material may mediate cyanobacterial adhesion to surfaces in the aqueous 

environment.

There have been several reports on the occurrence of pili or surface

fimbrae in cyanobacteria. However, cyanobacterial pili are poorly

characterized. Lounatmaa et al. (1980) observed numerous projections 

penetrating the cell wall of the cyanobacterium Synechocystis sp. CB3. These 

projections were approx. 1pm in length, and negative staining showed them to

consist of bundles of thin filaments (see p. 78,79). The filaments were 

morphologically similar to bacterial pili, although enzymic tests did not 

suggest that they were composed of protein. A survey of chroococcacean 

cyanobacteria showed piliation to be a common feature (Vaara, 1982). 

Microcystis firma and all Synechocystis strains which were studied produced 

pili, as did three out of twelve Synechococcus strains. Chroococcaean pili 

resembled those of heterotrophic bacteria, as they were long, virtually stiff, 

had an even width, and appeared to have a subunit structure. MacRae et al. 

(1977) found that all but three out of twenty-two strains of 

gliding cyanobacteria examined possessed polar fimbrae. In
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Fig. 14.1 Low M agnification e lectron m icrograph of thin-sectioned 
A gm ene llum  q u a d ru p lic a tu m  c u ltu re ,  s h o w in g  
glycocalyx (G) that surrounds each cell. Projections (P) 
of glycocalyx material extend from  the surfaces of most 
cells. Ruthenium red procedure.
Bar = 1|im.

Fig. 14.2 High m agnification e lectron m icrograph of thin-sectioned 
A. quadruplicatum  c e l l ,  show ing deta ils  o f g lycoca lyx 
(G) and projections (P). Ruthenium red procedure.
Bar = 0.25(i,m.

Fig. 14.3 Electron m icrograph of frozen-etched A. quadruplicatum  
cu lture show ing the g lycocalyx surface of two adjacent 
cells (C1 and C2). Ind iv idual g lycoca lyx f ib r ils  (F) are 
v is ib le  at va rious s ites on the ce ll surfaces. Two
glycocalyx pro jections (P1 and P2) are visib le.
Bar = 0.25|im.

(Reproduced by perm ission from Balkwill and Stevens, 1980).
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particular, Chloroflexus aurantiacus bore peritrichous fimbrae.

Further studies of Synechocystis str. CB3 showed that it was covered 

by a large number of pili with a diameter of approx. 6nm (Vaara et al., 

1984). The pili had a tendency to attach side by side to form bundles of 

several dozen pili (see p. 78 ). Isolation and purification of 

Synechocystis CB3 pili showed that they consisted mainly of hydrophobic 

amino acids, similar to other bacterial pili.

Dick and Stewart (1980) found that the Nostoc cyanobiont of the lichen 

Peltigera canina possessed discrete unbranched pili when grown on nitrogen- 

containing medium. These arose from the cyanobacterial cell surface in a 

peritrichous manner, and were up to 3pm long. The pili of this symbiotic 

cyanobacterium may serve as attachment organelles.

Pili of other bacterial species, particularly pathogenic bacteria, are 

known to play a role in their adhesion to tissue surfaces. The pili of 

the cyanobacterial species described here may be involved in their initial 

adhesion which would be further enhanced by mucilaginous sheath production. 

Further experimental work could show the possible involvement of pili in 

cyanobacterial adhesion. This would include comparing the attachment 

strengths of piliated cyanobacteria with cells of the same species from 

which pili were removed. Strength of attachment could be compared using a 

hosing technique similar to that described in Chapter 4 for fungal spores 

(see p. 139). Further scanning and transmission electron microscopic 

observations of piliated cyanobacteria interacting with artificial 

substrates could show the involvement of pili in adhesion.

The occurrence of spinae on the cell surfaces of certain marine 

bacteria was discussed in Chapter 1.3. Some reference has also been made 

to their occurrence on cyanobacteria (see p. 35,36). Mar^enko (1973)
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Fig. 15.1 S ynechocystis  CB3 ce lls  abundantly  covered by p ili.
Negative s ta in ing  w ith  1% aqueous phospho tungstic  
acid, pH 6.5, was used in all the m icrographs. Bar 
represents in th is  and a ll subsequent m icrographs, 
0.2p.m.

Fig. 15.2 The S ynechocystis  CB3 pill attach side by side and form
characteristic bundles. Due to the uneven length of the 
p ilus fiaments, ind iv idual filam ents can be seen at the 
tips of the bundles.

(Reproduced by permission from  Vaara et al, 1984).
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Fig. 15.3 Purified pili of S ynechocystis  CB3.

(Reproduced by permission from Vaara et al, 1984).
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observed bristles or hair-like appendages on the cell surfaces of

Scenedesmus species. Staining of the bristles suggested that they had a 

protein composition. The bristles had a morphological similarity to

bacterial flagella, which are known to play a role in the adhesion of 

certain marine bacteria (see Chapter 1.3). Schnepf et al. (1980)

investigated surface appendages in several chlorococcacean species of 

cyanobacteria. They found that bristles on the cell surfaces of

Scenedesmus armatus, Sc. opohiensis, Sc. subspicatus and Sc. nanus had the

same appearance as those described for other Scenedesmus species. They 

were also similar to the spiny bristles on Polyhedriopsis spinulosa. The 

bristles in this species were directly attached to the outer layer of the 

cell wall. Micractinium pusillum possessed asymmetrically distributed

tapering appendages, which resembled the bristles of Scenedesmus and 

Polyhedriopsis spp. Siderocystopsis fusca possessed Spm-long "spikes" 

which were attached directly to the cell wall. Acanthosphaera zachariasi

also possessed between 20 and 40 spikes on the cell surface (Schnepf et

al., 1980).

Capitate surface appendages were seen on Scenedesmus str.16 using

electron microscopy (Massalski and Trainor, 1971). They appeared as 

mushroom-like structures, with a straight or curved elongate stipe and an 

apical cap. Appendages on two adjacent Scenedesmus cells were frequently 

inter-connected and entangled. These long appendages may join adjacent 

cells causing colonial aggregations (Massalski and Trainor, 1971). If 

these appendages are involved in cell aggregation then they may also be 

involved in attachment of Scenedesmus spp. to surfaces.

These cell surface bristles and spinae may also facilitate 

cyanobacterial adhesion. They may allow initial settlement of
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cyanobacterial cells, which would be enhanced by sheath production. 

Further experimental work could be done with cyanobacteria possessing these 

appendages to show their possible attachment role. Some of this work 

would be similar to that described in Chapter 1.3 (p. 37) for bacterial 

spinae. This would include the analysis and isolation of the main 

chemical components of these bristles, and a study of the effects of this 

material on cyanobacterial adhesion. This work would show whether protein 

is the main component, as suggested by Mar^enko (1973) for Scenedesmus spp.

Summary

The main points discussed in this Chapter are

(1) Some cyanobacteria produce mucilaginous sheaths. Cytochemical 

analysis and electron microscopic work suggests that the sheaths are 

similar in structure and appearance to marine bacterial adhesives. 

Sheaths may be involved in adhesion of cyanobacteria to surfaces in 

aqueous environments (Tuffery, 1969; Martin and Wyatt, 1974; Kessel 

and Eloff, 1975; Balkwill and Stevens, 1980).

(2) Certain cyanobacteria have been shown by electron microscopy to

possess pili or surface fimbrae. These include Synechocystis spp. 

The dimensions and chemical structure of some cyanobacterial pili are 

similar to other bacterial pili (Lounatmaa et al., 1980; Vaara et al.,

1984). Pili could be involved in the initial attachment of

cyanobacteria to surfaces.

(3) Other cyanobacteria, such as Scenedesmus spp. possess cell surface 

bristles or hair-like appendages (Mar^enko, 1973; Schnepf et al.,

1980). Some of these appendages on adjacent cells can become

entangled causing colonial aggregations (Massalski and Trainor,
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1971). Like pili, these appendages may also be involved in initial 

cyanobacterial attachment.
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Chapter 3 Adhesion mechanisms of marine algae.

Marine algae are major world-wide fouling organisms which occur on a

wide range of immersed structures including ships, buoys and oil platforms

(Fletcher et al., 1984). The presence of algal growths on these

structures can cause problems. Accumulation of algae on ships increases

frictional resistance of the hull resulting in increased fuel consumption

to keep at cruising speeds. Algal fouling on oil and gas platforms can 

increase structural loading and block safety inspections (Fletcher et al., 

1984). Firm attachment of algal spores is a necessary initial stage in 

the ultimate development of fouling macroalgae, and so is important in the 

understanding of algal fouling.

Microscopic diatoms, together with bacteria, fungi and protozoa, are 

important components of the initial primary film community (Jones et al., 

1983). Formation of the primary film allows settlement of macroscopic 

fouling organisms such as seaweeds, barnacles and mussels. Formation of 

diatom films on metal surfaces has been shown to inhibit corrosion (see 

Chapter 11).

This chapter considers adhesion mechanisms of algal spores and primary 

rhizoids. Attachment mechanisms of several diatom species are also

discussed. Although the major fouling seaweeds are macrofouling

organisms, it was considered useful to discuss their initial stages of 

adhesion, as these stages have similarities with marine bacterial adhesion. 

Some recent antifouling methods are based on certain factors which affect 

algal spore and rhizoid adhesion (see Chapter 12).
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(3.1). Adhesion mechanisms of algal spores and initial 

stages of rhizoid adhesion.

(3.1.1). Adhesion of algal spores

Marine algal dissemination involves a dispersal phase in which spores 

are released into the surrounding seawater, followed by an attachment phase 

in which the spores attach to a new substratum (Jones et al., 1983). 

Spore attachment is divided into stages of initial and permanent 

attachment. Initial attachment of red algal spores is probably achieved 

by the copious mucilage envelope surrounding spores after expulsion from 

the sporangium (Chamberlain, 1976; Boney, 1981; Jones et al., 1983). This 

mucilage is a fibrillar polysaccharide formed by the Golgi apparatus during 

spore differentiation within the sporangium, and is sticky in texture 

(Chamberlain, 1976; Boney, 1981; Jones et al., 1983). Similar

mucilaginous material surrounds differentiating green and brown algal 

spores. However, it does not remain around the spores following their 

release into seawater. Motile green and brown algal spores initially 

attach to substrata by their flagella (Jones et al., 1983; see p. 90).

Following the initial phase, more permanent attachment of algal spores 

occurs by the release of an adhesive material. This process appears to 

occur in all the major algal fouling groups, and involves the Golgi 

apparatus. The spore adhesive appears to be reticulate and fibrillar by 

S.E.M.. The adhesive is a continuous sheet near the spore which becomes 

perforated in the outer regions, eventually forming a fibrous meshwork at 

the periphery (Chamberlain, 1976; Jones et al., 1983; see p. 85).

The next part of this chapter discusses in more detail the permanent 

attachment of certain algal spores. Representative species from the main 

algal families, the Chlorophyceae (green algae), Rhodophyceae (red algae)
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Fig. 16 A settled algal spore w ith secreted adhesive pad. 
adhesive m ateria l becom es m ore re ticu la te  at 
periphery. (Mag. x3420).

(Reproduced by permission from Chamberlain, 1976).

The
the



and Phaeophyceae (brown algae), are discussed.

(3.1.1.1). Chlorophvceae

Swimming zoospores of Enteromorpha intestinalis can be seen, by 

transmission electron microscopy, to possess several types of cytoplasmic

vesicles. Large vesicles, of diameter 450-650 A, are present in the 

anterior region of settling zoospores. These vesicles, together with

other smaller vesicles, are derived from the Golgi apparatus. Zoospores 

settled for 1 hour appear to have lost these vesicles, and fibrillar 

material attaches them to the substratum (Evans and Christie, 1970;

Christie, 1972). The vesicles can occasionally be seen in the fibrillar

material. This observation, together with the complete absence of these 

vesicles from settled E. intestinalis zoospores, suggests that the vesicles 

may be involved in the early stages of attachment. Additionally, the 

plasmalemma of settled zoospores appears convoluted. The vesicles may 

cause this by coalescing with the plasmalemma, and extruding their contents

by reverse pinocytosis (Evans and Christie, 1970).

Further evidence of the adhesive function of these zoospore vesicles 

came from biochemical studies. Addition of the enzymes trypsin and 

pronase to suspensions of swimming E. intestinalis zoospores completely 

digested the anterior vesicles contents. The external fibrillar material

was completely absent from settled zoospores incubated in trypsin (Evans 

and Christie, 1970; Christie, 1972). Zoospores were, additionally, found 

to attach only weakly in the presence of the enzyme a-amylase. These 

results suggested that proteinaceous material is present in the anterior 

vesicles of settling zoospores. The adhesive material secreted by E.

intestinalis zoospores appears to be a glycoprotein. These observations



further suggest that the adhesive is secreted from the anterior vesicles. 

A carbohydrate moiety, produced from the Golgi apparatus, may also be 

present in the zoospore vesicles (Evans and Christie, 1970; Christie,

1972) .

Further cytochemical staining of the anterior vesicles of E. 

intestinalis zoospores confirmed that carbohydrate was present as well as 

protein (Callow and Evans, 1974). Autoradiographic experiments using 3H- 

leucine showed that material synthesized in the endoplasmic reticulum moved 

into the Golgi apparatus. From these, the labelled material passed into 

anterior vesicles, the contents of which passed through the plasmalemma to 

form the attachment material (Callow and Evans, 1974; see p. 88 ).

Settled zygotes of Ulva mutabilis produced a ruthenium red-staining 

adhesive material. Treatment of attached zygotes with pronase and a- 

amylase enzymes removed this material (BrSten, 1975). This suggests that 

the spore adhesive is a glycoprotein, similar to E. intestinalis zoospores. 

Large numbers of electron dense vesicles were present in the cytoplasm of 

free-swimming and newly settled zygotes. These vesicles were secreted 

during the settling of U. mutabilis spores, and they may be involved in 

secretion of the adhesive material. However, the ruthenium red stain did

not penetrate into the cells. As a result, it was not possible to stain 

the vesicles to see if they represented the origin of the ruthenium red- 

positive material (Br^ten, 1975). Further autoradiographic work, as

performed by Callow and Evans (1974), could show the role of the spore 

vesicles of Ulva mutabilis in secretion of adhesive. Additionally, 

further enzymic work, such as that described by Evans and Christie (1970), 

could show any similarities between the vesicle contents and spore adhesive 

of Ulva mutabilis.



Fig. 17.1 and 17.2
A u to ra d iog ra p hs  of a n te rio r reg ion  of sw im m ing 
zoospore of Enterom orpha in te s tin a lis  after 30 mins. 
incubation  in 3 H-leucine, show ing the association of 
silver grains with a Golgi body (arrow) and vesicles.
(Mag. x30000).

Fig. 17.3 Autoradiographs of zoospores incubated In 3 H -leucine 
fo r 30 m ins. and allowed to settle fo r 1 hour. Silver 
grains are mainly associated with the chloroplast (C) and 
external f ib r illa r  adhesive.
(Mag. X15000).

(Reproduced by perm ission from Callow and Evans, 1974).



(3.1.1.2). Rhodophvceae

Permanent attachment of red algal spores occurs by a similar mechanism 

to that of green algae. During attachment of tetraspores of Ceramium 

spp., large, dense-cored vesicles are produced in the cytoplasm from the 

Golgi apparatus. These vesicles remain in the cytoplasm until initial 

surface contact by the spore, and are believed to secrete the spore 

adhesive (Chamberlain, 1976; Chamberlain and Evans, 1981). Histochemical 

staining suggests that the spore adhesive is largely polysaccharide in 

nature. However, enzymic experiments show that a-amylase and pronase 

enzymes detach settled Ceramium spores, suggesting that the adhesive is a 

polysaccharide-protein complex (Chamberlain, 1976; Chamberlain and Evans, 

1981).

Attachment of spores of Polysiphonia spp. occurs by a similar process. 

Once again, the Golgi apparatus is involved in the production of dense 

cored vesicles with swirled contents. The vesicle contents are secreted 

as the spore adhesive during the settlement of the spores (Fletcher, 1979). 

Few details have been given, however, of the chemical composition of the 

spore adhesive of Polysiphonia spp. Further experimental work on this 

would be useful, as it would allow the adhesive composition of Polysiphonia 

spores to be compared with Ceramium spp. and other algae.

(3.1.1.3). Phaeophvceae

Zoospores of the filamentous brown alga Ectocarpus spp. also contain 

electron transparent vesicles during their settlement to substrata. These 

vesicles are also produced by the Golgi apparatus (Baker and Evans, 1973). 

Fibrous adhesive material is produced upon zoospore settlement and this 

again coincides with disappearance of the vesicles. Cytochemical



staining also suggests that the spore adhesive is initially located in the 

vesicles. The adhesive material is mainly composed of polysaccharide, 

although a protein moiety may also be produced from the Golgi apparatus 

(Baker and Evans, 1973). The composition and production of the Ectocarpus 

zoospore adhesive are very similar to that which occurs in Enteromorpha 

intestinalis and Ceramium spp.

Studies have been made of the life history and attachment mechanisms 

of the fouling alga Giffordia granulosa in the Solent. Zoospores of G. 

granulosa attached by the production of a fibrillar, mucilaginous adhesive 

material (Fletcher, 1981; see p. 91). Electron transparent vesicles were 

observed discharging their contents into the zoospore cell wall. However, 

there was no evidence of these vesicles discharging the extracellular 

adhesive of the zoospores (Fletcher, 1981). Autoradiographic work and 

cytochemical staining could show the involvement of vesicles in production 

of zoospore adhesive. Additionally, work to reveal the composition of G. 

granulosa adhesive, such as enzymic detachment of zoospores, would be 

useful.

Released zoospores of the brown alga Chorda tomentosa possess a long 

anterior flagellum which consists of a tightly coiled terminal region and a 

rigid lower section (Toth, 1976). A settling zoospore initially contacts 

a substratum by the tightly coiled region of the flagellum. This part of 

the flagellum may be coated with a sticky protein, which allows zoospore 

attachment. Following this initial attachment, the C. tomentosa zoospore 

draws itself to the substratum by withdrawing the flagellum. Immediately 

after settlement, numerous vesicles containing fibrillar material are 

present in the cytoplasm of the zoospores. These vesicles also discharge 

their contents producing a cushion of fibrous adhesive material for the
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Fig. 18.1 Scanning e lectron  m icrograph (S.E.M.) show ing settled 
zoospore of G iffo rd ia  g ranu losa  w ith released adhesive 
material. (Mag. x4000).

Fig. 18.2 and 18.3
S.E.M. show ing developm ent and attachm ent of primary 
rh lzoids of G. granulosa. Note hem ispherical shape and 
peripheral rhlzoid adhesive in fig . 18.3.
Mags: 18.2 x3350 

18.3 X4650

(Reproduced by permission from Fletcher, 1981).



settled zoospores (Toth, 1976). The initial adhesion of Chorda tomentosa 

zoospores occurs by a different mechanism from the production of an initial 

mucilage layer in spores of the red alga Ceramium spp.

(3.1.1.4). Strength of algal spore adhesion

Attached algal spores have to contend with a surrounding mass of 

seawater which is in constant motion. They must remain strongly attached 

if they are to successfully germinate and develop into a macroscopic plant. 

Studies have been made of how strongly certain algal spores attach to 

substrata.

Charters et al. (1973) used a "waterbroom" apparatus to measure the

attachment strength of spores of Agardhiella tenera, Cryptopleura violacea 

and Gracilariopsis sjoestedtii. The "waterbroom" produces water motion, 

similar to wave surge, over the surface of a submerged substrate in a 

laboratory aquarium. Strength of spore attachment was measured by a spore 

survival ratio, Na:Nb, where Na = the number of attached spores remaining 

after the waterbroom test, and Nb = the numbers attached before the test 

(Charters et al., 1973). The spore survival ratio of Agardhiella tenera

improved with time, whilst that of Cryptopleura violacea decreased. The 

ratio for Gracilariopsis sjoestedtii spores increased with time up to 10 

hrs after settlement. After this period, however, the survival ratio 

decreased, reaching an asymptotic limit after 20 hrs. The spores of G. 

sjoestedtii were found to attach firmly, resisting removal by shear forces 

nearly 100 times their weight (Charters et al., 1973).

A "water tunnel" was used by Jones et al. (1983) to study the strength 

of attachment of Ceramium rubrum spores and germlings (see p. 99 ). Spore 

attachment strength is measured in the water tunnel by the water velocity 

required to separate spores from a substratum. Three main stages of



attached C. rubrum spores were used. These were recently settled spores, 

settled spores with released adhesive and germinating spores. The effect 

of calcium on spore attachment was also examined, by growing the stages in 

calcium deficient seawater. After exposure of recently settled C. rubrum 

spores for up to 2 hours in the water tunnel, 30% of the spores remained 

attached. They were held to the substrate by a combination of 

physical/chemical forces and the peripheral mucilage layer (Jones et al., 

1983). Spores exposed for between 2 and 9 hours had produced adhesive 

mucilage. Consequently, there was an increase to 55% in the number 

remaining attached. After 9 hours exposure spore germination was 

observed, and the number of germlings remaining attached increased to 80%. 

The absence of calcium from seawater had little effect during the early 

stages of spore attachment (Jones et al., 1983). However, post 

germination attachment stages were markedly affected (see p. 99 ).

The results of Charters et al. (1973) and Jones et al. (1983) confirm 

that in the initial stages of algal spore adhesion spores attach to 

substrata mainly by chemical bonding. Both sets of results also suggest 

that spore adhesion involves wetting the surfaces of both spore and 

substratum by a liquid adhesive, before it changes phase to a solid 

adhesive (Charters et al., 1973). The strong attachment of Gracilariopsis 

sjoestedtii spores, as well as the large numbers of Ceramium rubrum spores 

remaining attached in the water tunnel, further supports formation of a 

solid adhesive.

It would be interesting to perform further experiments of the type 

described by Charters et al. (1973) and Jones et al. (1983) to compare 

attachment strengths of other algal spores. Such work could be done with 

spores of Enteromorpha intestinalis, Ectocarpus spp., Giffordia granulosa
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and Polysiphonia spp. This work would show whether spores from different

algal families, which attach by the same mechanism, possess similar

attachment strengths. It would also allow comparison with strength of

adhesion of marine fungal spores through appendages and mucilage production

(see Chapter 4).

(3.1.2). Adhesion of primary rhizoids

When an algal spore has attached successfully to a substratum, spore 

germination and rhizoid formation occurs under suitable environmental 

conditions. Primary rhizoids develop directly from the initial germ tube. 

In some algae, however, rhizoid production occurs after spore cell division 

has taken place and they emerge from the basal rhizoid initial cell (Jones 

et al., 1983). A characteristic feature of all rhizoids is their adhesive 

property. Rhizoid attachment results from secretion of a peripheral, 

mucilaginous adhesive material. The mucilaginous adhesive is usually 

secreted from the rhizoid tip and spreads out across the substratum.

Scanning electron microscopy shows that the adhesive is reticulate and

fibrillar (Fletcher, 1976; Jones et al., 1983). Vesicles produced from

the Golgi apparatus are believed to be involved in the production of 

rhizoid adhesive material. Histochemical work has indicated that rhizoid 

adhesive is composed of complex sulphated polysaccharides (Jones et al.,

1983).

The next section will describe in more detail primary rhizoid adhesion 

in species from the Chlorophyceae, Rhodophyceae and Phaeophyceae.

(3.1.2.1). Chlorophyceae

Spores of the species Blidingia marginata undergo divisions to form a 

small rosette-shaped disc of cells. This basal disc is composed of large
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numbers of small intertwined rhizoidal filaments. The rhizoids are 

covered by a fibrous matrix which connects to adjacent filaments helping to 

attach them together (Fletcher, 1976). The basal disc is probably the 

main attachment structure for this species.

Rhizoidal filaments of Enteromorpha intestinalis also cohere to form a 

basal disc. The constituent filaments in the disc are enveloped in 

mucilage, which makes the disc a strong attachment structure. Individual 

rhizoidal filaments also extend from the basal disc across the substratum 

(Fletcher, 1976; see p. 96 ).

Germinating spores of Ulothrix flacca produce an erect filament which 

is attached by the original spore adhesive. The base of the filament 

attaches by the pointed tip of a downwardly extending germ tube. A small 

circle of mucilage is present at the point of contact of the filament. 

This mucilage flows out over the substratum and allows attachment of the 

rhizoids (Fletcher, 1976).

Attached zygotes of Ulva mutabilis develop a pear shape, and the 

pointed end of the cell initiates formation of the primary rhizoid (BrSten,

1975). The developing rhizoid is surrounded by a homogeneous substance 

which makes intimate contact with the substratum. This material is the 

rhizoid adhesive. It appears as a fibrous coating around the rhizoid cells 

on fixation with osmium tetroxide. However, no electron dense vesicles 

which may secrete the rhizoid adhesive are seen in the cytoplasm of Ulva 

mutabilis rhizoids. The enzymes hyaluronidase and a-amylase do not affect 

the rhizoid adhesive material. However histochemical staining of the

adhesive suggests that it contains mainly proteins. Consequently, the

composition of the Ulva mutabilis rhizoid adhesive is different from the

zygote adhesive (BrSten, 1975).
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Fig. 19 S.E.M. of young basal disc of E nterom orpha In te s tln a lls . 
(Mag. x9090).

(Reproduced by permission from Fletcher, 1976).



(3.1.2.2). Rhodophyceae

A small bulbous germ tube is produced at the base of the germinating 

rhizoidal cell in Polysiphonia spp. This germ tube has a rounded 

mucilaginous terminal region which ultimately develops into a terminal 

disc-like structure upon further rhizoid growth (Fletcher, 1976, 1979).

Polysiphonia urceolata characteristically produces a four-lobed attachment 

disc from which mucilage spreads over the substrate, allowing firm 

attachment (Fletcher, 1976).

Polysiphonia lanosa also produces a mucilaginous attachment disc 

during rhizoid development on the surface of Ascophyllum nodosum. Large 

numbers of electron-dense vesicles with fibrous content are present in the 

peripheral rhizoid region. These vesicles appear to be discharging their 

contents at the cell surface, and this coincides with the appearance of 

toluidine-blue staining material in the mucilaginous disc (Rawlence and 

Taylor, 1972). This observation suggests the involvement of the vesicles 

in secretion of mucilaginous material in the attachment discs. However, 

further experimental work using cytochemical stains, enzyme treatment and 

autoradiographic studies of adhesive production are needed to confirm the 

role of the vesicles.

The type of substrate influences the formation of holdfast discs in 

rhizoids of Polysiphonia spp. The discs are formed on plastic petri 

dishes, but not on glass coverslips (Fletcher, 1976). These observations 

suggest that rhizoid attachment in Polysiphonia spp. is affected by the 

nature of the substratum, an observation shown to occur in other algae, 

(see p. 102 ). Rhizoid attachment in Ceramium rubrum is very similar to 

Polysiphonia spp.. Following spore germination, a multicellular rhizoid 

filament develops which produces a terminal disc. Additional thinner
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rhizoids are then produced which spread over the substrate, although they 

do not produce discs (Fletcher, 1976).

(3.1.2.3). Phaeoohvceae

Settled spores of Ectocarpus fasciculatus produce lateral branches 

which continue to expand, forming an elaborate network over the substrate. 

The actively growing apices of the filamentous rhizoids produce a 

mucilaginous material. This material spreads out over the substrate, 

allowing firm attachment of the growing rhizoidal filaments (Fletcher,

1976).

The developing germ tubes and primary rhizoidal filaments of Giffordia 

granulosa maintain close surface contact. This contact is achieved 

through frequent lateral adherence of the filaments, and by secretion of 

surrounding fibrillar adhesive (Fletcher, 1981; see p. 91 ). Transmission 

electron microscopic examination of the growing apex of the Giffordia 

granulosa rhizoids shows large, electron-transparent vesicles containing a 

reticulate microfibrillar material. These vesicles are derived from Golgi 

bodies situated slightly further back from the rhizoid apex (Fletcher,

1981). It is possible that they may be involved in the secretion from the 

rhizoid apex of adhesive material surrounding rhizoids. Further 

experimental work, such as autoradiographic studies is needed of any 

passage of rhizoid adhesive from the vesicles. Cytochemical and enzymic 

studies of the vesicle contents and rhizoid adhesive are also necessary.

These descriptions of the main algal groups show that most rhizoids in 

their initial stages of development attach by production of mucilaginous 

material from the rhizoid apex or the formation of a mucilaginous disc. 

However, little is known about the origin of rhizoid adhesive, particularly 

in the growing apex. Some transmission electron microscopic studies of
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rhizoid attachment, such as Polysiphonia lanosa (Rawlence and Taylor, 1972) 

and Giffordia granulosa (Fletcher, 1981), have shown the possible 

involvement of cytoplasmic vesicles in production of adhesive material. 

However, it has also been suggested that these vesicles may be secreting 

material into the rhizoid cell wall. The adhesive may, therefore, be 

excess gelatinous cell wall which has exuded from the rhizoid tip 

(Fletcher, 1976). Further transmission electron microscopic studies of 

the tip regions of developing rhizoids in a wide range of algae are needed. 

This, together with autoradiographic, cytochemical and enzymic work, may 

show whether rhizoid adhesive production from vesicles occurs generally in 

algae.

Calcium has been shown to affect rhizoid attachment (Jones et al.,

1983). Growth of Ceramium rubrum germlings in seawater deficient in 

calcium resulted in only 40% of the germlings remaining attached after five 

days compared with 100% attachment in normal seawater. Calcium may 

increase the cohesive strength of the Ceramium rubrum rhizoid adhesive by 

forming divalent cationic bridges linking negatively charged sites (Jones

et al., 1983). The lack of rhizoid attachment observed in the absence of

calcium suggests that calcium removal from a fouling film, such as by a

chelating agent, could be a useful antifouling mechanism (see Chapter 12).

(3.1.3). Some physicochemical aspects of algal adhesion and effects 

of substratum properties on attachment of algal spores and 

rhizoids.

Before algal spores even settle onto a substratum by production of 

organic adhesives, they are influenced by physical and chemical forces

similar to those occurring in bacterial adhesion (see Chapter 1.1).
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However, very few studies have been conducted on the physicochemistry of 

algal spore adhesion. Substratum properties such as surface free energy 

or the formation of conditioning films can, as with marine bacteria (see 

Chapter 1.5), influence attachment of algal spores and rhizoids. This may 

lead to the development of new antifouling techniques.

The initial stages in the adhesion of the unicellular green alga 

Chlorella spp. to glass surfaces in ionic solutions was studied by Nordin 

et al. (1967). The principal mechanisms governing Chlorella adhesion were 

electrostatic interaction between the electrical double layers and specific 

surface interactions resulting from surface heterogeneity and ion 

adsorption. Sodium chloride concentration in the suspending medium 

affected Chlorella attachment. The Chlorella cells attached to glass more 

readily at higher sodium chloride concentrations (Nordin et al., 1967).

At high electrolyte concentrations, the thickness of the electrical double 

layer surrounding the cells decreases, as occurs in bacterial adhesion (see 

Chapter 1.1; see p. 14 ). Consequently, the algal cells are held in a

secondary attraction minimum. Therefore, forces other than electrostatic

interactions, such as London-van der Waals forces, must operate in 

attachment. An increase in ferric chloride concentration also increased 

Chlorella adhesion (Nordin et al., 1967). Other forces must also attract

the algal cells to glass in the presence of ferric chloride.

Little other work has been reported on the physicochemistry of algal 

adhesion. Further work, such as the effects of electrolytes on attachment 

of spores from a wide range of algal species, is needed. Such work could 

show whether algal spore adhesion, like bacterial adhesion, involves an 

instantaneous reversible phase and time-dependent irreversible phase.

Some studies on the affects of substratum properties on algal spore



and rhizoid attachment will now be discussed.

Adhesion of Chlorella vulgaris to glass tubes was enhanced by non- 

diffusable materials isolated from Chlorella adhesive exudate, marine 

bacterial cultures, natural seawater and fouled marine surfaces (Tosteson 

and Corpe, 1975). Cell aggregation was observed when a Chlorella exudate 

concentration of 0.2ng/cell was used. The materials which were most 

active at enhancing Chlorella vulgaris adhesion were the adhesive polymer 

isolated from the bacterium Pseudomonas atlantica and seawater-insoluble 

material isolated from wooden panels exposed to seawater. Active polymer 

materials isolated from several sources were chromatographed on DEAE- 

cellulose (DEAE - Diethylamino-ethyl Cellulose, an anionic exchanger). 

The major fraction eluted contained both carbohydrate and protein. 

Chromatographed polymeric material enhanced Chlorella vulgaris adhesion 

more than unchromatographed material. Adhesion-enhancing materials from 

bacteria and other marine sources may function as "inducers" of adhesive 

polymer synthesis by Chlorella vulgaris or could stabilize the secreted 

adhesive. These materials could also substitute for the adhesive material 

synthesized by Chlorella vulgaris (Tosteson and Corpe, 1975).

In addition to bacterial exudates affecting algal adhesion, periphytic 

marine bacteria precondition surfaces prior to colonization by marine 

algae. Thomas and Allsopp (1983) found that some marine bacteria, when 

present in thin films on glass surfaces, encouraged settlement and growth 

of Enteromorpha germlings. Other bacteria discouraged settlement of the

algal spores. An unidentified marine pseudomonad, isolate 01, increased 

Enteromorpha adhesion. 110 algal germlings per 47mm2 were found on glass 

coverslips in the presence of this bacterium. Another bacterial isolate, 

03, had the opposite effect. In this case, 7 germlings per 47mm2 were



found on glass coverslips coated with the bacterium (Thomas and Allsopp,

1983). These results indicate that certain marine bacteria can alter 

substratum properties to allow attachment of algae.

These results of both Tosteson and Corpe (1975) and Thomas and Allsopp 

(1983) show that polymeric materials and bacterial films can condition a 

surface for algal attachment. This is similar to the formation of a 

proteinaceous conditioning film which modifies a substratum allowing 

attachment of marine bacteria (see Chapter 1.5, see p. 49 ). It would be 

interesting to carry out further experimental work on the effects of 

proteinaceous materials on attachment of spores and rhizoids of other 

algae.

The results of Thomas and Allsopp (1983) also suggested that certain 

bacterial films inhibit settlement of algal spores. This observation may 

have applications in antifouling technology. This would occur by thin 

bacterial films grown upon antifouling paints preventing attachment of 

Enteromorpha spp. and other fouling algae. Further work studying the 

affect of bacterial films on attachment of a wider range of algal spores 

and rhizoids is needed to show whether an effective antifouling technique 

can be devised.

Substratum properties such as surface free energy, known to affect

bacterial attachment (see Chapter 1.5), have been shown to influence

attachment of algal rhizoids. Glass slides, which were coated with 

silane-based compounds with surface free energies ranging from less than 

20mN/m to over 70mN/m, were used to study attachment of Enteromorpha 

intestinalis rhizoids (Fletcher and Baier, 1984). Considerable 

differences were observed in the development of the basal attachment

rhizoids of this alga on the different surface types. A decrease in
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surface free energy resulted in an increase in the growth and outward

spread of the rhizoids (Fletcher and Baier, 1984; see p. 105 ). Long,

outwardly spreading rhizoidal filaments were produced by E. intestinalis on 

glass slides with low surface free energies. The alga developed a 

compact, discoid rhizoidal base with a smaller diameter on silane coatings

with high surface free energy (see p. 105 ). Short, branched and tightly

adjoined rhizoidal filaments were produced on such surfaces. There was a 

significant difference observed in the attachment strengths of the rhizoid 

bases on these glass slides. The disc-like attachment base produced on 

the high-energy surfaces was strongly adherent and difficult to remove by 

gentle brushing. However, the filamentous rhizoid base produced on the 

low-energy surfaces was more loosely attached and easily removed (Fletcher 

and Baier, 1984). Similar observations were made on Ulva lactuca rhizoids 

(Fletcher et al., 1984).

The effects of surface free energy on the attachment of rhizoids of 

some brown and red algae has also been investigated. The same silane 

coatings on glass slides with surface free energies from 20mN/m to 70mN/m 

were used. Differences were observed in the development of primary 

rhizoids of Giffordia granulosa on each surface (Fletcher et al., 1984).

The average diameter of the rhizoid base produced on the glass slide with 

intermediate surface energy of 30mN/m was smaller than those rhizoids that 

developed on the other surfaces. The appearance of the rhizoids on this 

glass surface, in addition, was different from those produced on the other 

surfaces. The rhizoids were shorter and comprised short, closely adherent 

cells. Additionally, the rhizoids on this surface were very firmly 

attached and could not be removed by gentle brushing (Fletcher et al.,

1984).



Development of rhizoids of the red algae Bangia atropurpurea was also 

influenced by the surface energies of the silane-coated glass slides. 

Several rhizoidal filaments were produced on the high energy surfaces, and 

these were closely adherent and disc-like in appearance. Single rhizoidal 

filaments were formed on low energy surfaces. The rhizoids which 

developed on the high energy glass surfaces were more firmly attached than 

those on the other surfaces (Fletcher et al., 1984).

Polysiphonia spp. formed two types of attachment system, depending on 

the surface energy of the glass slide. Discoid attachment systems 

developed on the silane-coated slides with intermediate surface energies of 

20-30mN/m. The formation of attachment discs on the glass reduced the 

horizontal spread of the rhizoid attachment system. Filamentous

rhizoids, however, developed on the high surface energy slides. There was 

little difference between the strengths of attachment of filamentous and 

discoid rhizoid systems (Fletcher et al., 1984).

The surface energy properties of the substrata therefore exert an 

influence on two main features of algal rhizoid development. They 

influence the outward spread of the rhizoids and modify the degree of 

surface contact. This causes development of the compact, discoid 

attachment structures and the long rhizoidal filaments (Fletcher et al.,

1984). In most of the algae investigated, with the exception of 

Polysiphonia spp., the short discoid bases were firmly attached, whilst the 

long rhizoidal filaments were more weakly attached. The surface energy 

properties of the substrata may have affected the attachment of the algal 

spores, which will ultimately influence rhizoid attachment. In addition, 

surface energy may influence the adhesive quality of the rhizoids, either 

by affecting the attachment properties of the cell wall material or the



TABLE 6

Effect of surface energy on attachment in 

Enteromorpha intestinalis

Surface type Measured critical Algal base

surface tension (mN/m). (diameter in pm)

(1) RFGDT* - water stored. > 70 69

(2) RFGDT - lab equilibrated. 30-40 75

(3) Chloroprophyltrichlorosilane. 30 125

(4) Dichlorodimethylsilane. 20-30 143

(5) Fluorosilane > 20 195

* RFGDT - Radio Frequency Glow Discharge Treated glass slides.

'water stored1 - glass slides stored in boiled 3x distilled water, 

'lab. equilibrated' - glass slides allowed to equilibrate in a

laboratory "white room" and then packaged in 

tissue.

(Taken from Fletcher and Baier, 1984).



rhizoid adhesive material or both (Fletcher et al., 1984).

Silane coatings of low energy are least favourable for the development 

of effective rhizoidal attachment systems. Rhizoids of Enteromorpha 

intestinalis, Ulva lactuca and Bangia atropurpurea, in particular, were 

loosely attached on the low energy silane surfaces (Fletcher and Baier, 

1984; Fletcher et al., 1984). These observations could allow the

development of an antifouling technique based on substratum properties (see 

Chapter 12; p. 334). Algae would only attach weakly to low energy silane 

surfaces, for example, and so would be easily dislodged. Further

experiments on attachment of a wider range of fouling algae to low surface

energy silane coated substrates could be done.

(3.2). Adhesion mechanisms of diatoms

Diatoms, along with marine bacteria, are amongst the earliest 

colonizers of surfaces submerged in seawater. They make up the primary 

slime film along with adhesive secretions and various organic and inorganic

particles (Jones et al., 1983). Diatom attachment to substrata occurs by

the production of mucilage which is morphologically elaborated to form 

particular attachment structures.

An early observation of a possible diatom adhesion mechanism was a 

gelatinous capsule surrounding Navicula pelliculosa cells (Lewin, 1955). 

Capsule formation occurred when the diatom grew in culture medium deficient 

in certain elements, such as silicon, nitrogen or phosphorous. The 

gelatinous nature of the capsule, which is similar to some pathogenic 

bacterial capsules, suggests that it may have an attachment role. 

However, other functions were suggested, such as a flotation device or as a 

protection mechanism against aquatic herbivores (Lewin, 1955).
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(3.2.1). Methods of diatom attachment

There are four main methods of diatom attachment to surfaces, which 

can be grouped as follows.

Group 1 - Production of basal or unipolar adhesive pads

This group includes Cocconeis scutellum, which produces a peripheral 

pad of adhesive mucilage (Chamberlain, 1976; Jones et al., 1983; see p.108). 

Synedra affinis secretes adhesive material through pore fields situated in 

the corner of the valves (Jones et al., 1983).

Group 2 - Formation of mucilaginous stalks.

Achnanthes subsessilis cells produce either simple or compound 

branched stalks which attach them to substrata. The stalk extends from 

the apical region of the raphe valve (The raphe is an opening in the lower 

diatom valve from which cytoplasmic or adhesive contents can pass). The 

stalk material is believed to be secreted from Golgi-derived vesicles 

observed near the raphe opening (Blunn and Evans, 1981). A cup-shaped 

collar is found at the apical region. The stalk spreads out over the 

substratum at the point of attachment. Achnanthes subsessilis frequently 

grows on antifouling paint surfaces, and the stalk raises the cell above 

the toxic boundary layer (Blunn and Evans, 1981; see Chapter 12). 

Licmophora flabellata also produces a mucilaginous stalk which attaches to 

the substratum by a basal mucilage pad. This pad consists of an 

irregularly perforated sheet of mucilage with a fibrous appearance. The 

mucilage is probably secreted through pores in the diatom frustule 

(Chamberlain, 1976; Jones et al., 1983; see p. 108).
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Fig. 20 Cocconeis scu te llum  w ith m ucilag inous adhesive around 
the periphery of the lower valve. (Mag. x15000).

Fig. 21 L icm o ph o ra  flabe lla ta . The basal region with mucilage 
pad show ing irregu la r perfo ra tions and frustu le  pores 
(arrowed). (Mag. X17250).

(Reproduced by permission from Chamberlain, 1976).



Group 3 - Formation of mucilaginous tubes

Diatoms such as Navicula grevellei and Berkeleya rutilans form groups 

of cells which are enveloped by a tube of mucilage. The colonies are 

usually flat and closely attached to the substratum by the mucilage 

(Chamberlain, 1976; Jones et al., 1983).

Group 4 ~ Mucilage production from single cells

Amphora spp., particularly Amphora veneta, colonize submerged metal 

test panels coated with copper oxide antifouling paint (Daniel et al., 

1980; see also Chapter 12) . The diatoms attach to the test panels by the 

production of copious amonts of mucilage, which unites the cells into a 

cohesive mass. Observations of attached Amphora veneta cells by scanning 

electron microscopy suggests that the adhesive mucilage is produced from 

the lower diatom valve, particularly the polar regions. Detached Amphora 

veneta cells leave a characteristic "footprint" pattern of mucilage 

complementing the underside of the cell (Daniel et al., 1980; see p. 110).

Distinct lines of adhesive, indicative of the position of the raphes, are 

located along the longitudinal axis of the adhesive "footprint" (see p.110). 

These observations suggest that mucilage secretion is associated with the 

polar, raphe and valve margin areas of the cells. Transmission electron 

microscopic studies have indicated the presence of large numbers of 

vesicles in close proximity to the raphe fissures. Fibrous material is 

often observed extruding from these fissures, and is believed to be the 

mucilaginous adhesive of Amphora veneta (Daniel et al., 1980). The 

adhesive material may be produced from these vesicles. Further 

autoradiographic studies of the passage of the adhesive or cytochemical 

staining of the vesicles and secreted material could show this.



Fig. 22 S.E.M. o f cu ltu re d  A m phora  ce lls  on "T herm anox"
covers lip s .

22.1 Recently attached cells. Mucilage (m) is located around 
the peripheral margins of the cells. (mag. x2000).

22.2  Show ing  ce lls  and respective  m ucilag inous m oulds, 
complem enting the underside of the cell. (Mag. x2000).

22.3 An adhesive 'm ould ' (md) remaining after removal of the 
ce ll. The mould Is characterised by d is tinc t lines of 
m ucilage (Im) In the region of the raphes (r) and margin 
(mr). (Mag. x3360).

22.4 Shows the sub-lunate shape of the cell and adhesive 
material (m) extruding from the margin (m). (Mag. x3360).

(Reproduced by permission from Daniel et al, 1980).



(3.2.2). Cytochemistry of diatom adhesives

Early work suggested that diatom adhesive mucilage was "pectoid" in 

nature (Jones et al., 1983). The capsule surrounding Navicula pelliculosa 

cells was shown to be a polyuronide, consisting solely of glucuronic acid
r

(Lewin, 1955). More recent studies have shown that diatom extracellular 

mucilage consists of high molecular weight polysaccharides, often with 

protein and sulphated substituents (Jones et al., 1983; Daniel et al., 

1987). Examples of the cytochemistry of diatom adhesives from the four

main groups will now be discussed.

Group 1

The mucilage produced in the pad of Cocconeis scutellum consists 

predominantly of carboxylated polysaccharide with little sulphate. 

However, the adhesives of Grammatophora marina and Synedra affinis contain 

larger amounts of sulphate with smaller quantities of carboxyl components 

(Daniel et al., 1987).

Group 2

The stalk produced by Achnanthes longipes consists of anionic 

polysaccharides with a high concentration of uronic acids in the peripheral 

layers and a sulphated core (Daniel et al., 1987). The adhesive stalk of 

Achnanthes subsessilis has a similar composition (Blunn and Evans, 1981). 

Licmophora flabellata stalks also consist largely of anionic 

polysaccharides. Sulphated polysaccharide was also found in longitudinal 

striations of the stalk. The attachment pad formed when the stalks 

contact the substratum consists of carboxylated polysaccharides in both A. 

longipes and L. flabellata (Daniel et al., 1987).



Group 3

The mucilage tubes of Navicula delognei consist predominantly of 

sulphated polysaccharides with small amounts of carboxyl groups. Intact 

tubes of Berkeleya rutilans also contain large amounts of sulphated 

polysaccharide with some protein (Daniel et al., 1987). These findings

confirm the observations of Lewin (1958), who found a protein content of 

30% in the mucilage tubes.

Group 4

The mucilaginous adhesive surrounding cells of Amphora veneta also 

consists of a carboxylated polysaccharide with uronic acid and sulphate 

substituents. No protein was detected in the mucilage (Daniel et al., 

1980). The adhesive composition of Amphora coffeaeformis and Amphora 

turgida is identical to A. veneta. In addition, application of the 

Calcium Red stain to the adhesive of A. veneta shows a weakly positive 

reaction. This suggests that calcium is present in the mucilage (Daniel 

et al., 1987) .

These observations suggest that diatom adhesives are very similar to 

marine bacterial extracellular polymers, in consisting largely of acidic 

polysaccharides (see Chapter 1.2). Differences exist between the 

composition of diatom adhesive mucilages and thos of macroalgal spores, 

which are mostly protein-polysaccharide complexes (Daniel et al., 1987).

However, the attachment mechanisms are similar in some cases. The 

presence of vesicles which may secrete the mucilaginous stalk of Achnanthes 

subsessilis or the enveloping mucilage of Amphora veneta show similarities 

with algal spore adhesion.

Table 7 (p. 114) summarises the attachment mechanisms of some diatoms



from the four groups, together with their adhesive compositions.

(3.2.3). Other aspects of diatom attachment

Studies have been made of the attachment strengths of certain diatoms 

using a radial flow growth chamber (Pyne et al., 1984). In this

apparatus, test perspex discs on which the particular diatoms have been 

grown^are subject to water flow under different conditions of shear stress. 

Water is pumped from a reservoir through an inlet pipe and flows radially 

across the test disc between two parallel metallic discs. At constant 

flow, the water velocity and surface shear stress decreases radially from 

the centre of the test disc (Milne and Callow, 1985). Consequently, the 

radius of a zone of cell detaachment on the test disc is used as a measure 

of the strength of cell attachment. The diatoms used in this study were 

Licmophora flabellata, Achnanthes longipes and Amphora coffeaeformis. 

They were allowed to settle on the perspex discs for varying periods from 

1 hr. to 120 hrs. There was a general increase in the force needed to 

detach all three diatom species with an increase in settlement time. 

After 120 hrs. incubation, Achnanthes longipes cells on the outer part of 

the perspex disc were attached by a stalk and pad of mucilage. However, 

only cells with a stalk were attached in the inner region of the disc after 

this time (Pyne et al., 1984). Similar observations were made for the

stalked diatom Licmophora flabellata. Both diatoms remained attached at a 

high shear stress of 4N/m2 after 120 hrs. Amphora coffeaeformis, which 

produces copious amounts of mucilage, did not attach so strongly. After 8 

hrs. incubation, the diatom remained attached at a shear stress of 2.9 

N/m2, but a monolayer of cells was easily removed after 120 hrs. 

incubation. These results suggest that strength of diatom attachment is 

interspecific and dependent on the attachment method. Stalked diatoms,



TABLE 7

SPECIES

Cocconeis
scutellum

Achnanthes
subsessilis

Licmophora
flabellata

Berkeley a 
rutiIans

Navicula
delognei

Amphora
veneta

DIATOM ATTACHMENT MECHANISMS 

AND CYTOCHEMISTRY OF MUCILAGE

ATTACHMENT
MECHANISM.

Production of basal 
mucilage pad.

Production of extra
cellular, mucilag
inous stalk.

Production of 
stalk.

Diatom colonies 
surrounded by 
mucilage tube.

Formation of 
mucilage tube.

Encapsulating 
mucilage produced 
from raphe fissures.

HISTOCHEMICAL 
NATURE OF 
MUCILAGE

Carboxylated
polysaccharide.

Anionic poly
saccharide with 
uronic acids in 
peripheral region 
and sulphated 
core.

Anionic poly
saccharide with 
substituents.

Sulphated poly
saccharide with 
protein.

Carboxylated, 
sulphated poly
saccharide.

Carboxylated, 
polysaccharide 
with sulphate and 
uronic acid 
substituents.

REFERENCES

Chamberlain (1976); 
Daniel et al.(1987)

Blunn & Evans (1981)

Chamberlain (1976); 
Daniel et al.(1987)

Lewin (1958);
Daniel et al.(1987)

Daniel et al.(1987)

Daniel et al.(1980)



such as Achnanthes longipes and L. flabellata, attach more strongly at high 

shear stresses than mucilage-producing Amphora coffeaeformis. This could 

result from the greater flexibility of the stalks, allowing the diatoms to 

be orientated with the water flow and reduce drag (Pyne et al., 1984).

The attachment strength of spores of Gracilariopsis sjoestedtii is lower 

than these diatoms. The spores of this alga were found to resist shear 

stresses of 2N/m2 after 24 hours settlement (Charters et al., 1973).

However, Jones et al. (1983) found that greater shear stresses were 

required to remove Ceramium rubrum spores after 60 hrs. settlement than 

the above three diatoms. It would be useful to carry out further 

experimental work with other species of diatoms using the radial flow

growth chamber. This work would further show whether diatom attachment 

strength is related to mode of adhesion, and whether shear stress could be 

an effective microfouling control method (see Chapter 12).

Adhesion of Amphora coffeaeformis to glass surfaces increased in the 

presence of calcium ions (Ca2+) (Cooksey, 1981; Cooksey et al., 1984).

Strontium ions (Sr2+) also promoted adhesion, although a higher

concentration of strontium was required. This suggests that calcium is 

necessary for adhesion of A. coffeaeformis, an observation which is further 

suggested by the Calcium Red staining of Amphora spp. mucilage (Daniel et 

si., 1987). Calcium could stabilize the structure of the acidic

polysaccharide mucilage. However, it is not properly known whether 

calcium acts inside or outside the diatom. Adhesion of A. coffeaeformis 

was inhibited by cycloheximide and by the compounds CCCP (carbonyl cyanide 

3-chlorophenyl hydrazone) and D-600. Cycloheximide inhibits protein 

synthesis and CCCP inhibits both photosynthesis and oxidative 

phosphorylation, thereby preventing ATP synthesis. Consequently, adhesion



of Amphora coffeaeformis must be an active process, requiring metabolic 

activity. Inhibition of protein synthesis by cycloheximide is unlikely to 

be important in preventing adhesion, as there is no protein in the diatom's 

adhesive mucilage. However, cycloheximide may interfere with calcium 

membrane transport. The drug D-600 inhibits A. coffeaeformis adhesion in 

this way (Cooksey, 1981; Cooksey et al., 1984).

The use of metabolic inhibitors or compounds which prevent calcium 

transport could provide a means of preventing fouling by Amphora spp. 

Additionally, the use of calcium chelating agents which could remove a 

diatom fouling film could provide a further anti-fouling method (Cooksey, 

1981; Cooksey et al., 1984; see Chapter 12).

(3.3). Summary of Chapter

The main aspects of macroalgal and diatom adhesion discussed in this 

chapter, together with the key cited references, are as follows.

1) Permanent attachment of spores from the three main algal families

occurs by a similar mechanism. This involves the secretion of

adhesive material by reverse pinocytosis from vesicles which are 

derived from the Golgi apparatus (Evans and Christie, 1970; Baker and 

Evans, 1973; Chamberlain and Evans, 1981).

2) The extracellular adhesive of spores of Enteromorpha intestinalis,

Ulva mutabilis and Ceramium rubrum has a polysaccharide-protein 

composition (Evans and Christie, 1970; Braten, 1975; Chamberlain and 

Evans, 1981). Ectocarpus spp. spores produce a mainly polysaccharide 

adhesive (Baker and Evans, 1973).
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3) Algal spores attach with great strength to substrata. This is shown

by spores of Gracilariopsis sjoestedtii withstanding shear forces 100 

times their weight (Charters et al., 1973) and 80% of Ceramium rubrum

spores withstanding shear stress after 9 hrs. settlement (Jones et 

al., 1983) .

4) Primary rhizoids of algae have adhesive properties. Some algae, such 

as Blidingia marginata, Enteromorpha intestinalis and Polysiphonia 

spp. form basal, mucilaginous discs allowing attachment (Fletcher, 

1976). Other species, such as Ulothrix flacca, Ectocarpus 

fasciculatus and Giffordia granulosa produce filamentous rhizoids 

which are attached by mucilage flowing over the substrate. The 

adhesive is produced from the rhizoid tip in these species (Fletcher, 

1976).

5) (i) Adhesion of unicellular Chlorella vulgaris to glass surfaces was 

particularly enhanced by adhesive polymer of Pseudomonas atlantica and 

seawater-insoluble material isolated from submerged wooden panels 

(Tosteson and Corpe, 1975). This suggests that polymeric materials 

condition a surface for algal attachment as occurs in marine bacterial 

attachment.

(ii) Periphytic marine bacterial films also appear to precondition 

surfaces prior to colonization by marine algae. Some marine bacteria 

encouraged settlement of Enteromorpha spp. germlings, whilst other

bacteria discouraged this (Thomas and Allsopp, 1983).

6) Surface free energy of substrata influences attachment of algal

rhizoids. Silane-coated glass slides with surface free energies 

ranging from 20 to over 70mN/m affected attachment of E. intestinalis, 

Giffordia granulosa, Bangia atropurpurea and Polysiphonia spp.
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rhizoids. Filamentous rhizoids which formed on low-energy surfaces 

were weakly attached, whilst discoid attachment structures formed on 

high-energy surfaces were more strongly attached. These observations 

suggest that surface free energy properties of substrata could be 

developed as an anti-fouling technique (Fletcher and Baier, 1984; 

Fletcher et al., 1984).

7) Diatoms attach to surfaces by the production of mucilage which is

morphologically elaborated to form attachment structures. These are 

basal adhesive pads, mucilaginous stalks and tubes, and mucilage which 

encapsulates single cells (Chamberlain, 1976; Daniel et al., 1983).

8) The adhesive material of most diatoms consists of acidic

polysaccharide with sulphate and uronic acid substituents. Diatom 

adhesives are similar in composition to extracellular polymers of 

marine bacteria (Jones et al., 1983; Daniel et al., 1987).

9) (i) The strength of diatom attachment, as measured by the radial flow

growth chamber, is dependent on the attachment method. Stalked 

diatoms, such as Achnanthes longipes and Licmophora flabellata attach

more strongly after 120 hrs. than mucilage-producing Amphora

coffeaeformis (Pyne et al., 1984).

(ii) Calcium increases adhesion of Amphora coffeaeformis to glass. 

Cycloheximide and the metabolic inhibitors CCCP and D-600 inhibit 

adhesion of this diatom. The use of metabolic inhibitors or 

compounds which interfere with calcium transport could provide an 

anti-fouling method for Amphora spp. (Cooksey, 1981).
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Chapter 4 - Adhesion mechanisms in marine fungi

Marine fungi are frequently found as part of the primary slime film 

which forms on surfaces immersed in seawater. They play an important role 

in the biodeterioration of wood materials in seawater.

Successful adhesion of the fungal spore to the wood surface is an 

important initial stage in the biodeterioration process. Firm adhesion 

allows spore germination which results in hyphal and mycelial formation. 

This will ultimately lead to fungal penetration of the wood and production 

of substances which will degrade the wood structure. This chapter 

discusses in detail the methods which some marine fungi have adopted to 

allow adhesion. There is also a discussion of possible anchoring 

mechanisms in thraustochytrids, marine coccoid fungi.

Many species of marine fungi, classified within the families of

Ascomycetes, Basidiomycetes and Fungi Imperfecti, possess spores with

appendages. These appendages may have several functions.

(Jones, 1972; Kohlmeyer and Kohlmeyer, 1979).

(1) They may enlarge the spore surface, so minimizing the settling

rate in seawater which helps to keep the spores afloat;

(2) They may help spores to catch unorganised eddy diffusion

currents;

(3) They may help to entangle and attach the spores to suitable

substrates.

Spore attachment appears to be a likely function of

these appendages. Certain aquatic fungi produce tetraradiate spores 

which have four appendages. A tetraradiate shape is known to increase 

the impaction efficiency of aquatic fungal spores (Kohlmeyer and
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Kohlmeyer, 1979). Some appendages may only be involved in the initial 
stages of spore adhesion, while others allow firmer attachment. This will 
be further discussed later in the chapter.

The Ascomycetes, particularly the family Halosphaeriaceae show the 

greatest variability of appendages. Their ascospore appendages are thorn-, 

spine-, cap- or fibrelike, and have a tough, gelatinous or mucilaginous

nature (Kohlmeyer and Kohlmeyer, 1979). Consequently, the appendages are

dry or sticky, which enhances their ability to attach to substrata.

Ascospore appendages develop in different ways. Before discussing this, 

however, it is necessary to define the terms endospore, mesospore and

epispore. These are the three inner layers of the fungal spore, the 

epispore surrounding the mesospore which in turn surrounds the endospore 

(Kirk, 1976; see p. 123). An exosporic layer usually surrounds the 

epispore. In some fungal species a mucilaginous sheath derived from the 

epispore surrounds the ascospore and appendages (Kirk, 1976; Kohlmeyer and 

Kohlmeyer, 1979). The endospore is usually only prominent during 

germination, when it is continuous with the germ tube (Kirk, 1976).

Ascospore appendages have been studied cytochemically in some marine 

ascomycetes. They are usually chitinized membranous or non-chitinized,

mucilaginous processes and are exosporic (Kirk, 1976; Kohlmeyer and

Kohlmeyer, 1979). The presence of chitin would make the appendages rigid 

and tough. Further details of the cytochemistry of ascospore appendages 

of specific Ascomycetes will be given later.

Fungal spore appendages may serve to enhance the attachment response

of the spore by increasing the surface area available for physicochemical
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forces (Rees and Jones, 1984). The physicochemical factors which are 

involved are similar to those in the initial stages of bacterial adhesion 

(see Chapter 1.1). They include forces of electrical attraction and 

repulsion, chemical forces, and physical forces such as London-van der 

Waals forces. Charges of the substratum and spore and surface energy of 

the substratum are also important factors (for a definition of surface free 

energy, see Chapter 1.5). The physicochemical forces will act regardless 

of the "stickiness" of the appendages (Rees and Jones, 1984).

In some fungal species, spore adhesion resembles an active process 

(see Chapter 1.1). This is because attachment consists of two phases, a 

reversible phase followed by an irreversible phase of firm attachment 

resulting from mucilage production from appendages. However, there are 

few further details about the physicochemical factors involved in spore 

adhesion in specific marine fungi. The initial stages of spore adhesion 

as described by Rees and Jones (1984), however, appear to resemble those in 

bacterial adhesion (see Chapter 1.1) and algal spore adhesion (see Chapter

3).

The next part of this chapter will discuss the types of appendages 

produced by spores of several marine fungal spores, and their roles in 

adhesion. The fungi described are mainly Ascomycetes.



(4.1). Spore appendage types of marine fungi and their 

roles in adhesion.

Johnson (1980) divides marine Ascomycetes into three groups, according 

to their spore appendage morphology and method of formation

Group (1.) Appendages formed by direct outgrowth or exudation from an

ascospore wall;

Group (2.) Appendages formed by fragmentation or elaboration of an

outer wall layer of the ascospore;

Group (3.) Appendages formed by a combination of methods in groups

(1) and (2).

These groupings will be used to discuss representative marine fungal 

species possessing these spore appendage types. The formation and 

morphology of the spore appendages will be discussed in detail. This is 

considered necessary in order to emphasise the possible role that the 

appendages may play in spore adhesion.

Group (1) includes Ascomycete species in the genera Torpedospora and 

Halosphaeria. Amylocarpus encephaloides possesses ascospores with 10-20 

spine-like appendages radiating from the surface (Jones and Moss, 1978; 

Johnson, 1980; see p. 123). These appendages arise as extensions of the 

mesospore. There were no observations of slime production from these 

appendages (Jones and Moss, 1978). These appendages, therefore, may not 

be involved in firm attachment of A. encephaloides spores. They may, 

however, be involved in initial entrapment of the spores to a substrate. 

Halosphaeria appendiculata possesses four equatorial and two polar 

appendages (Jones and Moss, 1978; Johnson, 1980). ('Polar' appendages are
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Fig. 23 Schematic representation of laminated wall of germ inating 
ascospore. D: endospore; E: epispore; M: mesospore; 
X: exosporic layer.

(Reproduced by perm ission from Kirk, 1976)

Fig. 24 Unicellu lar ascospore of Am ylocarpus encephalo ides  on 
wood, with many spine-like radiating appendages.
Bar represents 5p.m.

(Reproduced by permission from Jones and Moss, 1978)
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those structures found at the 'top' and 'bottom' of a spore as viewed in 

electron micrographs. 'Equatorial' appendages are found in the central

part of the spore). These appendages appear to have a spoon-shaped

structure, and seem sticky when viewed under the light microscope (Rees and 

Jones, 1984). The spore appendages of H. appendiculata possess chitin, 

which makes them rigid (Kirk, 1976). This rigid nature of the appendages, 

together with their stickiness, probably allows firm attachment of H. 

appendiculata spores. The spore appendages of Halosphaeria trullifera

differ from H. appendiculata in structure and development. The appendages 

are initially adpressed to the spore wall, and are composed of an amorphous 

material. However, upon exposure to seawater, the appendages uncoil to 

form long, thread-like polar appendages (Jones et al., 1983). Spores of

H. trullifera do not possess equatorial appendages, whilst these are 

present on H. appendiculata spores. A further difference arises in the 

thread-like nature of H. trullifera spore appendages, compared with the 

spoon-shaped appendages of H. appendiculata. However, the long, thread

like and tightly coiled nature of Halosphaeria trullifera ascospore 

appendages probably aids attachment to substrata.

Cucullospora mangrovei is a new species isolated from mangrove wood in 

the Seychelles (Hyde and Jones, 1986). The ascospore appendages of this 

species are initially composed of tightly coiled filaments enclosed within 

a membrane. On exposure to seawater these appendages uncoil to form 

sticky polar filamentous threads (Hyde and Jones, 1986). These are 

similar to the spore appendages of Halosphaeria trullifera (Jones et al.,

1983). The long, sticky nature of the Cucullospora mangrovei spore 

appendages probably aids their entrapment and firm attachment to wood 

surfaces.



Torpedospora radiata possesses three spine-like, radiating appendages 

at the ascospore apex (Jones and Moss, 1978; Johnson, 1980). The 

appendages are composed of numerous, electron-dense fibrils which can be 

seen by transmission electron microscopy (Johnson, 1980). As these 

appendages swell in seawater, they become more fibrillar, developing a 

"tuft-like" appearance (Jones and Moss, 1978; see p.126). The fibrillar 

nature of the appendages increases the surface area available for contact 

with a substratum. This probably ensures attachment of T. radiata spores. 

Spore appendages in a wood isolate of Torpedospora ambispinosa were quite 

different from T. radiata (Jones, 1985). T. ambispinosa possesses 

subterminal, radiating appendages at either end of the spore. Spore 

appendages in this species are rigid, straight or curved, and do not seem 

to be fibrillar as in Torpedospora radiata (Jones, 1985). The rigid 

nature of the spore appendages of T. ambispinosa probably allows their 

involvement in the initial stages of spore entrapment.

Group (2.). Appendages formed by fragmentation of 

an outer ascospore wall layer.

The sheath surrounding ascospores of Halosphaeria mediosetigera 

undergoes fragmentation to form three equatorial appendages and two small, 

apical, cap-like appendages (Moss and Jones, 1977; Jones and Moss, 1978; 

Johnson, 1980). The equatorial appendages are initially spirally arranged 

around the central septum of the ascospore. The apical appendages are 

formed by inversion of the sheath remnants (Moss and Jones, 1977; Jones and 

Moss, 1978). Both polar and equatorial appendages are smooth and do not 

become fibrillar. There is no microscopic evidence of mucilage production
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Fig. 25 A scospo re  o f Torpedospora  rad ia ta  show ing  p o la r 
appendages which become fib rilla r w ith age.
Bar represents 5|im.

(Reproduced by permission from Jones and Moss, 1978)
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and stickiness in the spore appendages of H. mediosetigera. However, the 

presence of several equatorial and polar appendages on H. mediosetigera 

spores probably ensures their initial entrapment.

Ascospore appendages of Corollospora comata are formed in a similar 

way. Two sets of appendages develop from the sheath. Polar, hair-like, 

flexuous appendages are formed by fibrillation of the sheath surrounding 

the two apical cells of the spore (Jones and Moss, 1978; Johnson, 1980). 

Similar tuft-like equatorial appendages develop from the sheath surrounding 

the two central spore cells. Appendage fibres are electron-dense 

structures. The equatorial appendage tufts are themselves frequently 

bordered by electron-dense material (Johnson, 1980). This may be 

mucilaginous material produced by the equatorial appendages which would 

allow firmer spore attachment. The tuft-like nature of the Corollospora 

comata spore appendages is similar to those of Torpedospora radiata (Jones 

and Moss, 1978).

Five Remispora species possess spore appendages which are very 

similar. The appendages in all four species are composed of an amorphous, 

electron-transparent and a fibrous, electron-dense component (Johnson, 

1980). Remispora maritima spores possess wing-like polar appendages 

which appear to attach spores firmly to substrata (Jones and Moss, 1978; 

Rees and Jones, 1984; see p . 128 ). Remispora pilleata possesses similar 

wing-like polar appendages at either end of the spore (Jones and Moss, 

1978). These polar appendages form an extensive attachment zone along the 

length of the spore (Rees and Jones, 1984). A Remispora "hamata" -type 

fungus (a previously undescribed species similar in morphology to R. 

hamata) possesses tufts of fibrillar material at either end of the spores.
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Fig. 26 (1 and 2)
Ascospore of Remispora m arltlm a  showing adhesion of 
polar appendage to the surface (arrowed).
Bar lines: in fig. 26,1 represent 10|im;

in fig. 26.2 represent 5|im.

(Reproduced by permission from Rees and Jones, 1984)



129

These tufts allow attachment of the spores to substrata (Rees and Jones,

1984). Remispora galerita, a more recently isolated species, also 

possesses polar appendages formed from a fragmented sheath. These 

appendages are composed of fine fibrillar elements which appear cobweb-like 

in electron micrographs (Jones, 1985). As with the other Remispora 

species, the fibrillar nature of the polar appendages in R. galerita 

probably allows firm spore attachment.

Haligena salina, a new species isolated from wood in the U.S.A., 

possesses spore appendages which show similarities and differences to those 

of Remispora maritima (Farrani and Jones, 1986). As with R. maritima, 

Haligena salina spores possess polar appendages which are amorphous in 

nature, and appear to secure spore attachment (Farrani and Jones, 1986; see 

p. 13D). However, these appendages develop as outgrowths of the ascospore 

wall, and not by fragmentation of a sheath as occurs in Remispora maritima. 

In addition, although the spore appendages of Haligena salina appear to 

have a fibrillar structure (see Fig.27.3,  p. 130),  the fibrillar material 

appears unorganized compared to the spore appendages of R. maritima 

(Farrani and Jones, 1986).

Groenhiella bivestia, isolated from wood buried in sand dunes, 

possesses ascospores with polar and equatorial appendages (Koch et al., 

1983). The appendages are amorphous in appearance, and are similar to 

those of Remispora spp. However, spores of Remispora spp. lack equatorial 

appendages.

Carbospbaerel1 a leptosphaeroides ascospores are initially surrounded 

by a reticulate, net-like sheath. This sheath fragments to form long, 

flexuous, fibrillar strands which surround the spore (Jones and Moss, 1978;
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Fig 27.1 Ascospore of H a ligena  salina  showing am orphous nature 
of polar appendage.
Bar represents 5pm.

Fig. 27.2 Appendage attachment to protrusion from H. salina  spore 
(arrow ed).
Bar represents 1pm.

Fig. 27.3 Appendage (arrowed), showing fib rilla r structure.
Bar represents 0.5pm.

(Reproduced by permission from Farrani and Jones, 1986)
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Johnson, 1980). The polar ends of the spore, however, do not become 

fibrillar, but retain the reticulate appearance of the sheath. Amorphous 

material is associated with the fibrillar appendages, which could be 

mucilaginous material aiding spore attachment (Johnson, 1980).

The ascospore appendages of Crinigera maritima develop in a similar 

way to those of C. leptosphaerioides. The sheath enveloping the 

ascospores of Crinigera maritima is composed of closely aggregated 

fibrillar material. When ascospores are immersed in seawater, the outer 

layer of the sheath swells, becomes more diffuse, and breaks up to form 

ball-like structures (Jones et al., 1980; see p. 1 3 2 ) .  This leaves an

inner layer of spirally arranged strands in the spores. These strands in

turn uncoil to form a large number of radiating appendages (see p.132 ) .  

These appendages frequently terminate in the ball-like structures derived 

from the outer sheath (Jones et al., 1980; see p. 1 3 2 ) .  The ball-like

structures become more fibrillar with time and appear to attach C. maritima 

spores to the substratum (Jones et al., 1980; Rees and Jones, 1984,

see p. 1 3 2 ) .  This development of aggregated ball-like structures from the 

C. maritima spore sheath is similar to the fibrillation of the sheath in 

C. leptosphaerioides. However, the compact, ball-like structures produced 

on Crinigera maritima spores probably secures firmer attachment than the 

fibrillar appendages of C. leptosphaerioides spores.

Spore appendages of Halosarpheia retorquens initially form compact, 

tightly coiled polar structures. These uncoil to form extremely long, 

thread-like polar appendages which increase the spore surface area in

contact with the substratum. These appendages ensure firm attachment of 

Halosarpheia retorquens spores to substrata (Rees and Jones, 1984). The



C rin igera  m aritim a

Fig. 28 SEMs of Crinigera m aritim a  spores. Bar line represents
5pm in all micrographs.

Fig. 28.1-28.3
Progressive separation of the outer sheath revealing the 
strands of the inner layer.

Fig. 28.4 M ature  ascospo re  sh ow ing  u n co ile d  appendages
term inating in ball-like structures.

Fig. 28.5 Terminal ball-like structures.

Fig. 28.6 F ibrilla r terminal portion o f the appendages derived from
the ba ll-like  s tructu res a ttach ing  the spores to the 
substratum.

(Reproduced by permission from Jones et al, 1980)
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formation of these thread-like polar appendages in H. retorquens spores is

similar to the uncoiling of the sheath observed in Crinigera maritima

ascospores.

Group (3.) Appendages formed bv a combination of

fragmentation and exudation from the ascospore wall

Ascospores of Corollospora martima are initially surrounded by a 

sheath which, at maturity, splits longitudinally from the septum region to 

the spore tips. The strips formed in this way recurve and detach to form 

paired sheet-like equatorial appendages (Jones and Moss, 1978; Johnson, 

1980). A primary, spine-like polar appendage is also initially present on 

C. maritima spores. The sheath region surrounding this appendage also 

splits and inverts to form a trumpet-like polar appendage. These

secondary appendages are smooth and do not become fibrillar (Jones and 

Moss, 1978; Johnson, 1980).

Appendages of spores of Chaetosphaeria chaetosa develop in a similar 

way to those of Corollospora maritima. Ascospores of Ch. chaetosa are 

also surrounded by a sheath within which fragmentation lines develop. 

Individual sheath segments peel away from the spore wall and recurve to 

form equatorial appendages (Jones et al., 1983). Incomplete fragmentation 

of the sheath at the polar spore regions results in formation of cap-like 

appendages. There are, however, slight differences in spore appendage 

development between the two species. The sheath in C. maritima spores 

separates along preformed cleavage lines to form equatorial appendages. 

However, in Ch. chaetosa, the appendages are irregular in morphology and 

are not formed along predetermined cleavage lines. Additionally, the
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polar appendages of Chaetosphaeria chaetosa are not spine-like as in C. 

maritima (Jones et al., 1983). The presence of polar and several

equatorial appendages on spores of both species probably secures initial 

spore entrapment. However, there is no evidence of mucilage production 

from the spore appendages of both fungi which would allow firm attachment.

Ascospores of Ceriosporopsis tubulifera are surrounded by an 

appendage which forms a ring around the septum and a tube containing 

mucilage at each end (Johnson, 1980). This appendage appears in electron 

micrographs, as an expanded, sponge-like sheath composed of electron-dense 

reticulated fibres close to the epispore. These are surrounded by a 

continuous electron-dense fibrous layer. At the spore apex, the 

reticulated appendage fibres form a fibrous collar that extends a short 

length along the tube (Johnson, 1980). An electron-dense, amorphous, 

mucilaginous material is present within this tube. This mucilage may 

exude from the tube, providing a means for firm attachment of

Ceriosporopsis tubulifera spores to substrata (Johnson, 1980).

Ceriosporopsis halima ascospores are surrounded by a pair of unit 

membranes, the outer of which becomes the spore outer membrane, the inner 

becoming the spore plasmalemma (Lutley and Wilson, 1972). The entire 

spore is in turn surrounded by a mucilaginous sheath. Polar spore 

appendages develop from apical caps of the epispore and are contained

within the spore outer membrane. The appendages are composed of an

electron-transparent matrix supported by an electron-dense internal 

skeleton of fibrils (Lutley and Wilson, 1972). Both the spore sheath and 

apical appendages in C. halima appear to be composed of polysaccharides 

(Kirk, 1976). When the spores are released into seawater, the



mucilaginous sheath surrounding them expands and swells. The appendages 

stretch out but remain intact. The appendage tips become soft and sticky, 

and the whole appendage structures are drawn out into long tendrils. 

These tendrils are formed on contact with any solid object, and probably 

ensure firm attachment of Ceriosporopsis halima spores to substrata (Lutley 

and Wilson, 1972) .

Spores of Ceriosporopsis circumvestita possess disc-shaped polar and 

equatorial appendages. These appendages differ considerably from those of 

Ceriosporopsis tubulifera and C. halima. However, the disc-shaped polar 

appendages form adhesive pads which appear to aid firm attachment of 

Ceriosporopsis circumvestita spores to substrata (Rees and Jones, 1984).

Kohlmeyerie11a tubulata possesses single-celled, sigmoid-shaped 

ascospores. Each end of the spore extends into a tube-like spine appendage 

(Johnson, 1980; Rees and Jones, 1984; see p. 136). At maturity, the tip of 

the appendage spine produces a mucilage droplet. This mucilage droplet 

forms a disc or pad-like structure on contact of the spore with a surface 

(Rees and Jones, 1984; see p. 136). These disc-like structures probably 

ensure firm attachment of K. tubulata spores, as considerable force is 

required to dislodge them (Rees and Jones, 1984).

Nimbospora effusa and Nimbospora bipolaris are two species of 

filamentous Ascomycetes isolated from the Seychelles (Hyde and Jones,

1985). The ascospores of both species are surrounded by an elongated 

sheath. This sheath is drawn out at the spore apices, and forms an 

appendage in both species. In addition, N. effusa and N. bipolaris spores 

possess equatorial, lateral appendages at the spore septa. The equatorial 

appendages in N. bipolaris spores are longer than those of N. effusa.
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Fig. 29 Kohlm eyerie lla tubulata  spores.

Fig. 29.1 & 29.2
Light m icroscope and SEMs show ing the prim ary polar 
appendages.
Bar lines: Fig. 29.1 represents 10jim

Fig. 29.2 represents 40ji.m.

Fig. 29.3 Shows attachment discs. Bar represents 2^im.

Fig. 29.4 Polar appendage with a drop of extruded mucilage.
Bar represents 5|im.

(Reproduced by permission from Rees and Jones, 1984)
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These appendages become more fibrillar and mucilaginous in appearance in 

seawater. The outer sheath-like appendage aids firm attachment of spores 

of both N. bipolaris and N. effusa to substrata. The sticky equatorial 

appendages may also assist in adhesion of spores of both species (Hyde and 

Jones, 1985).

(4.2). Spore appendages of some other marine fungi.

Ascospores of Lulworthia medusa possess conoid polar appendages from 

which a drop of mucilage is released at maturity. The mucilage drop is 

initially surrounded by a membrane-like structure which ruptures to release 

the mucilage. When the spore contacts the substratum, the mucilage forms 

a pad-like structure (Rees and Jones, 1984; see p. 138). This pad 

structure provides firm attachment, and the spores anchored at both ends 

form a 'U'-shape. When the spores of Lulworthia medusa are firmly 

anchored, the mucilage spreads out along the substratum to form a thin 

adhesive layer (Rees and Jones, 1984; see p.138). Cytochemical studies of 

the spore mucilage of Lulworthia medusa have shown it to be a mucoprotein 

or neutral polysaccharide resembling dextran (Kirk, 1976).

Spores of Lulworthia purpurea also release drops of mucilage from the 

end chambers. The mucilage is also surrounded by a thin membrane which 

ruptures when the spore contacts a substratum (Jones, 1985). As with 

L. medusa, this mucilage ensures firm attachment of L. purpurea spores to 

substrata.

The basidiomycete Nia vibrissa frequently causes a white rot-type 

decay of wood in seawater. Basidiospores of Nia vibrissa were ovoid or 

ellipsoidal with a single terminal appendage and four sub-equatorial
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Fig. 30 SEMs of Lulworthia medusa spores.
Fig. 30.1 Drop of mucilage released from the conoid appendage

(arrowed).
Fig. 30.2 &30.3

Ascospore attached to polycarbonate membrane by disc of 
mucilage. Conoid appendage arrowed.

Fig. 30.4 Drop of mucilage with enveloping membrane arrowed.
Fig. 30.5 Mucilage (arrowed), from appendage spreading out on to

the polycarbonate membrane.
Fig. 30.6 Spore settled on to polycarbonate membrane for 1 hour,

showing mucilage form ing a thin layer over the surface.
All bar lines represent 5|im.

(Reproduced by permission from Rees and Jones, 1984)
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appendages (Leightley and Eaton, 1979). The spore appendages all have 

slightly inflated and sticky tips. The appendages were frequently 

observed entangling the Nia vibrissa basidiospores within wood crevices 

(Leightley and Eaton, 1979; Rees and Jones, 1984). The inflated appendage 

tips probably ensure firmer attachment of basidiospores to the wood 

surface. Basidiospores of Nia vibrissa were embedded in mucilage within 

the basidiocarps. This mucilage probably imparts stickiness to the 

inflated appendage tips and ensures firm attachment of basidiospores to 

wood (Leightley and Eaton, 1979).

(4.3). Strength of fungal spore attachment and discussion 

of role of appendages in adhesion

Rees and Jones (1984) carried out quantitative studies on the strength 

of spore attachment in several marine fungi. Measurements were made of 

the percentage of spores of particular species which remained attached to 

wood after exposure to a water jet at a specific pressure (hosing). 

Spores were allowed to settle for periods of 0, 0.5, 1, 3, 6 and 24 hours

before being subjected to hosing. With Halosphaeriopsis mediosetigera, 

Remispora maritima and Nia vibrissa, the number of spores remaining 

attached increased up to 24 hours. A similar pattern was observed with 

Groenhiella bivestia spores up to 3 hours after settlement. Following 

this period, there was a reduction in the number of spores of this species 

remaining attached (Rees and Jones, 1984). The number of Halosphaeriopsis 

mediosetigera spores remaining attached increased linearly, reaching 76% 

after the 24 hour period. After three hours, 45-50% of Remispora maritima 

spores remained attached. However, spores of Amylocarpus encephaloides 

did not attach so firmly. After 30 minutes, the quantity of spores



attached fell from 40% to 30%, and remained at this value until the end of 

the 24 hour period (Rees and Jones, 1984).

Rees and Jones' (1984) experiments have implications for the role of 

appendages in marine fungal spore attachment. In some species, the 

appendages allow firm, irreversible spore adhesion. In other species, the 

appendages may only be involved in initial stages of spore entrapment. 

This will now be discussed with reference to some of the fungal species 

previously described. Further experimental work which could prove whether 

or not appendages are involved in firm spore adhesion will also be 

discussed.

In the case of Amylocarpus encephaloides spores, the results of the 

hosing experiments of Rees and Jones (1984) indicate that the spore 

appendages may not be involved in firm spore adhesion. There is no 

evidence, in electron micrographs of mucilage production from the 

appendages which would ensure firm adhesion (Jones and Moss, 1978). The 

spine-like nature of the appendages of Amylocarpus encephaloides spores 

probably aids in flotation of the spores to a substrate and in their 

initial entrapment. Firmer adhesion of Amylocarpus encephaloides occurs 

upon production of hyphae (Rees and Jones, 1984; see p. 144). 

Sedimentation experiments could be carried out with Amylocarpus 

encephaloides spores to study the effect of the appendages on spore 

settlement. This could be done by measuring the speed of spore movement 

through a seawater column onto wood particles. Similar measurements could 

be made for A. encephaloides spores from which appendages were removed. 

The hosing method of Rees and Jones (1984) could be used to compare the 

strength of adhesion of appendaged and non-appendaged A. encephaloides



spores.

There are other fungal species for which there is little direct

evidence that appendages are involved in firm spore adhesion. Hosing 

experiments could be used to demonstrate strength of spore attachment in 

these species. In each case, control experiments using spores from which 

appendages were removed would also be carried out. Hosing experiments 

could be done with the fibrillar appendaged spores of Torpedospora radiata. 

This technique could also be used for Halosphaeria mediosetigera, 

Corollospora maritima and Chaetosphaeria chaetosa.

There are also some fungal species described here in which further

detailed electron microscopic work could show involvement of appendages in 

spore adhesion. Both scanning and transmission electron microscopic 

techniques could be used. Such work could be done with spores of

Corollospora comata. Electron-dense material was associated with the 

equatorial appendages of C. comata spores (Johnson, 1980). Electron

microscopic studies would show the possible involvement of the equatorial 

appendages, and the electron-dense material in securing spore adhesion. 

Similar work could be done with the fibrillar strands of Carbosphaerella 

leptospbaerioides ascospores which also have amorphous material associated 

with them (Jones and Moss, 1978; Johnson, 1980). Electron microscopic 

work could also show whether the mucilage produced from the "tube-like" 

appendage surrounding Ceriosporopsis tubulifera spores is involved in their 

adhesion (Johnson, 1980). Spores of Groenhiella bivestia were shown by 

Rees and Jones (1984) not to attach so firmly after 3 hours. Electron 

microscopic work could show how firmly spores of this species attach with 

polar and equatorial appendages. This technique could also show the extent



of involvement of the sticky equatorial appendages in attachment of

Nimbospora bipolaris and N. effusa spores (Hyde and Jones, 1985).

Further experimental work which could be done with some of these fungi

is cytochemical analysis of the appendages or material produced by them.

Such work could indicate the chemical nature of the spore appendages and of 

any mucilage produced. The results of these cytochemical analyses could 

in turn indicate whether material produced from the appendages resembles 

extracellular adhesives of bacteria (see Chapter 1.2) or algal spores and 

diatoms (see Chapter 3). These results, together with the electron 

microscopical observations, could further show the role of appendages and 

their secretions in firm spore adhesion. Cytochemical work could be used 

for spores of Corollospora comata, Carbosphaerella leptosphaerioides,

Ceriosporopsis tubulifera, Nimbospora bipolaris and N. effusa.

There is strong evidence, however, particularly from electron 

micrographs, that the spore appendages of all other fungal species

discussed here are involved in firm adhesion. This direct involvement of 

spore appendages and mucilage secretions has been shown for Remispora 

maritima (Rees and Jones, 1984), Haligena salina (Farrani and Jones, 1986), 

Crinigera maritima (Jones et al., 1980), Kohlmeyeriella tubulata and

Lulworthia medusa (Rees and Jones, 1984). Although the electron

microscopic evidence of firm spore adhesion is conclusive it would be

useful to do further experimental work with these species. For example,

hosing experiments using spores of these species would demonstrate the 

firmness of adhesion. Additionally, cytochemical analysis of mucilage 

material produced from spore appendages of these species would be useful. 

Such work would show whether the chemical composition of spore mucilage



from these species resembles the long-chain, "sticky" polysaccharide 

dextran produced from Lulworthia medusa spores (Kirk, 1976).

(4.4). Post-germination adhesion mechanisms in 

marine fungi.

Attachment of fungal hyphae following spore germination has been 

observed in several marine fungi. There is again firm evidence of hyphal

adhesion in some species but not in others.

Well-defined, extracellular sheaths were observed surrounding hyphae 

of Amylocarpus encaphaloides (see p. 144 ) and Orbimyces spectabilis 

immediately after spore germination. Extracellular material was also 

observed enveloping spores and germ tubes of Corollospora maritima (Rees 

and Jones, 1984; see p. 144). The sheaths were present along the whole 

length of the hyphae, with the exception of the hyphal tips in Corollospora 

maritima. The hyphal extracellular material appears to ensure firm 

adhesion of these fungi to a substratum (Rees and Jones, 1984; see p.144). 

In Amylocarpus encephaloides, the hyphal material allows firmer adhesion 

than the spine-like appendages (see p. 144). The observations of Rees and 

Jones (1984) again show how electron microscopy can be used to confirm an 

adhesion mechanism in certain marine fungi.

Light microscopic examination of cultured mycelia of the filamentous 

marine fungus Leptosphaeria albopunctata suspended in India ink showed the 

presence of capsules (Szaniszlo et al., 1968). These capsules became 

dissociated from the fungal mycelia during centrifugation. Precipitation 

of the supernatant of centrifuged L. albopunctata cultures with ethanol



Fig. 31 SEMs of hyphal adhesion.
Fig. 31.1 Ascospore of Corollospora m aritim a  settled on wood for

48 hours. Equatorial appendages (arrowed) attach the 
spore to the surface. Bar represents 2pm.

Fig. 31.2 Ascospore of C. maritima settled fo r 48 hours onto wood
germ inating  w ith  extrace llu la r material enshrouding the 
spore and germ tubes. . Bar represents 2p.m.

F ig .31.3 Ascospore settled onto wood for 24 hours, showing spore
and germ tube covered with extrace llu la r material and 
form ing an attachment pad (arrowed).
Bar represents 2pm.

Figs 31.4 & 31.5
Hypha of C. maritima, a fter 48 hours, on wood
ensheathed In extracellular material which forms numerous 
attachment points (arrowed).
Bar: In fig. 31.4 represents 2pm, in 31.5 represents 1pm.

Fig. 31.6 Ascospores of Am ylocarpus encephaloides, settled onto
wood fo r 48 hours, germinating and attaching the spores 
to the surface. Bar represents 4pm.

Fig. 31.7 Hypha of A. encephaloides  after 42 hours settlem ent.
Dense fib res o f extrace llu la r material form  attachm ent 
regions to the wood surface (arrowed).
Bar represents 1pm.

(Reproduced by permission from Rees and Jones, 1984)
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yielded polysaccharide material containing large amounts of glucose and 

smaller amounts of mannose. The hyphal capsular material is composed of 

this polysaccharide. High amounts of capsular polysaccharide were 

produced when MgCL2 or CaCl2 were added to the seawater medium (Szaniszlo 

et al., 1968). The capsular material appears to resemble some bacterial

capsules as well as the hyphal sheaths observed on Amylocarpus 

encephaloides and Corollospora maritima. The polysaccharide nature of the 

capsules surrounding L. albopunctata hyphae suggests that they may secure 

hyphal adhesion. However, Szaniszlo et al. (1968) did not provide any

direct evidence of this.

A similar mucoid sheath was observed, by light microscopy, surrounding 

hyphae of Lulworthia medusa (Davidson, 1973). The sheath resembled the 

hyphal capsule of Leptosphaeria albopunctata when it was unstained. 

Additionally, the Lulworthia medusa hyphal sheath stains for mucin,

suggesting that it is largely polysaccharide in nature. The mycelium of

L. medusa adhered to the sides of the culture flask when grown in natural

or artificial seawater media (Davidson, 1973). This observation suggests 

that the hyphal sheath of Lulworthia medusa may be involved in adhesion of 

this species. However, Davidson (1973) did not give any direct evidence.

The electron microscopic observations of Amylocarpus encephaloides, 

Orbimyces spectabilis and Corollospora maritima clearly showed the 

involvement of the hyphal sheaths in post-germination adhesion (Rees and 

Jones, 1984). There is little direct evidence, however, for involvement

of the capsular sheaths in hyphal adhesion of Leptosphaeria albopunctata 

and Lulworthia medusa. Further light and electron microscopic 

observations of the hyphal sheaths of both species should be done. As the



sheaths are largely polysaccharide in nature, they should be easily stained 

for light microscopy. Light microscopic observations may indicate the

possible involvement of the capsular sheaths in hyphal adhesion of both 

fungi. Scanning and transmission electron microscopy would conclusively 

show whether the hyphal sheaths are involved in secondary adhesion. In 

addition, hyphal capsule production in both L. albopunctata and Lulworthia 

medusa only occurred in seawater growth media, not in the natural 

environment. It would be interesting to know whether hyphal sheaths are 

also formed by these fungi in the marine environment.

Further cytochemical analysis of hyphal mucilage produced by 

Amylocarpus encephaloides, Orbimyces spectabilis and Corollospora maritima 

could also be done. This would allow comparisons with the capsular

material produced by L. albopunctata and Lulworthia medusa, as well as 

adhesive material of bacteria, algal spores and diatoms. These results 

would in turn show any similarities between fungal hyphal mucilage and 

adhesives of other marine microorganisms. Conclusions could then be made 

about the role of hyphal mucilage in secondary adhesion of marine fungi.

Transmission electron microscopic observations of the tip regions of 

mucilage-producing fungal hyphae could also be done. This work would show 

whether vesicles producing mucilage material are present, as occurs during 

primary rhizoid adhesion in marine algae (see Chapter 3, p. 94). Vesicle 

production has not yet been shown to occur at the tips of marine fungal 

hyphae.

(4.5). Possible adhesion mechanisms in Thraustochytrids.

Thraustochytrids are marine coccoid fungi. They are often thought to
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be "lower" marine fungi, which include eukaryotic organisms in the 

Myxomycota and Zygomycotina families. The family Thraustochytriaceae is 

made up of thraustochytrids and labyrinthulids (Perkins, 1976). 

Thraustochytrids are characterised by the formation of ectoplasmic nets 

from zoospores (see p. 148), which are produced from specialized organelles 

called sagenogenetosomes (Perkins, 1973, 1976). Thraustochytrids have

been observed associated with sand particles (see Chapter 9, p.251).

The ectoplasmic nets produced by thraustochytrids are interesting 

because they may be involved in zoospore adhesion.

Labyrinthula algeriensis produced a coarse ectoplasmic network on 

formvar rafts in seawater (Perkins, 1973). Cells of L. algeriensis were 

embedded in the larger net elements. Thraustochytrium motivum and 

Schizocbytrium aggregatum formed smaller ectoplasmic networks, which were 

produced from one side of the cells. Perkins (1973) acknowledged that 

ectoplasmic nets serve to anchor thraustochytrid cells.

Ectoplasmic net material is similar in appearance to bacterial 

extracellular polysaccharide material and algal spore adhesives (see p.148). 

This observation alone does not conclusively prove the involvement of 

ectoplasmic material in adhesion. However, if there were similarities in 

composition between ectoplasmic net material and other microbial adhesives, 

this would imply an attachment role.

Bremer (1976) showed that zoospores of Thraustochytrium kinnei

attached to the exoskeleton of the brine shrimp Artemia salina by

production of extracellular adhesive material. This material appears to 

be produced from T. kinnei zoospores before the development of the
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Fig. 32 E lectron m icrograph of th rau s to chy trid  zoospore (T), 
producing ectoplasm ic net material.

(Reproduced by permission from Perkins, 1976)
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ectoplasmic net system. It is possible that this adhesive material may 

allow initial anchorage of T. kinnei zoospores to a substrate (Bremer,

1976). Zoospore adhesion may then be further strengthened by production 

of ectoplasmic net material.

Experimental work is needed to demonstrate the role of ectoplasmic net 

material in adhesion. Hosing experiments of the type described by Rees 

and Jones (1984) could be done. These experiments would involve exposing 

settled thraustochytrid zoospores which had produced ectoplasmic net 

material to a water jet. A wide range of thraustochytrid species could be 

treated in this way. This work, as for fungal spores, would demonstrate 

the strength of thraustochytrid zoospore adhesion.

Electron microscopic observations of settling and settled 

thraustochytrid zoospores would be interesting. In particular, 

transmission electron micrographs could be made at specific time intervals 

before and after thraustochytrid zoospore adhesion. The resulting

observations would indicate whether extracellular material is produced 

prior to ectoplasmic net material as was observed in T. kinnei zoospores 

(Bremer, 1976). The observations would in turn indicate the extent to

which ectoplasmic nets secure adhesion of zoospores. By sectioning

thraustochytrid zoospores and substrata, transmission electron microscopy 

would accurately distinguish between involvement of initial extracellular 

material and ectoplasmic nets.

Cytochemical studies could also be made of the ectoplasmic material, 

as was suggested for fungal spore mucilage and hyphal sheaths (see p.142 ). 

Little work of this kind has been reported.
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The interesting observations of Miller and Jones (1983) suggest that 

attached thraustochytrids may be involved in seaweed decomposition.

Miller and Jones (1983) observed that thraustochytrid propagules were 

associated with the seaweed Fucus serratus. The thraustochytrids were 

initially present in low numbers on the seaweed surface. However, as the 

amount of dissolved carbohydrate in the seawater increased, the numbers of 

thraustochytrids increased. Thraustochytrids continued to increase in 

number until 16 days after the start of the experiment. There was then a 

decrease in the numbers recovered from the seaweed surface, and an increase 

in the numbers of other higher marine fungi (Miller and Jones 1983). An 

increasing cover of the algal surface with coccal and filamentous bacteria 

during the experiment was observed by scanning electron microscopy. 

Immature thraustochytrid zoospores were also observed on the seaweed, and 

some ectoplasmic net material was present. The shape of the Fucus 

serratus epithelial cells could be seen in the first few days, but had 

visibly deteriorated by the end of the experiment. High numbers of 

zoospores were observed on sections of decaying algal thalli (Miller and 

Jones, 1983). Further experiments studying the effects of

thraustochytrids on growth of axenic algal cultures are needed. 

Additionally, biochemical studies of enzymes which thraustochytrids may 

produce on seaweed surfaces are needed.

The observations of Miller and Jones (1983) suggest that 

thraustochytrids need a microorganism layer before they will attach to 

macroalgae. The microorganism layer may condition the seaweed surface in

some way. This can be compared with algal spores of Chlorella spp. and

Enteromorpha spp. depending on a bacterial "conditioning layer for



attachment to substrata (see Chapter 3, p.101). The thraustochytrids may 

also depend on release of nutrients from the microorganisms (Miller and 

Jones, 1983). Experiments looking at the attachment and growth of several 

thraustochytrid species on bacterial "conditioning" films should be done.

A seawater microbial film, to which thraustochytrids had been added, could
14be radioactively labelled with C-isotopes. After a suitable incubation

1 4period, C levels within the thraustochytrids could be measured. This 

may indicate possible transfer of nutrients from the bacterial film to the 

thraustochytr ids.
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(4.6). Summary

(1) Many marine fungi possess spores with appendages. These appendages 

may serve several functions, including attachment of spores to 

substrata (Jones, 1972; Kohlmeyer and Kohlmeyer, 1979).

(2) Ascospores of marine Ascomycetes tend to form appendages in three 

different ways, as discussed by Johnson (1980).

(3) Ascospore appendages of some Ascomycetes may not allow firm adhesion, 

although they may serve initial entrapment. Such species include 

Amylocarpus encephaloides (Jones and Moss, 1978), Halosphaeria 

mediosetigera (Moss and Jones, 1977) and Groenhiella bivestia (Rees 

and Jones, 1984). Ascospore appendages of other Ascomycetes, 

however, produce mucilage which secures firm adhesion. This occurs 

in Remispora maritima (Rees and Jones, 1984), Crinigera maritima 

(Jones et al., 1980) and Lulworthia medusa (Rees and Jones, 1984).



(4) Some marine fungi have been shown to produce extracellular, 

mucilaginous hyphal sheaths. These sheaths appear to secure hyphal 

adhesion following spore germination. Firm hyphal adhesion by 

sheaths has been shown to occur in Amylocarpus encephaloides and 

Corollospora maritima (Rees and Jones, 1984). Hyphal sheaths were 

also observed in Leptosphaeria albopunctata (Szaniszlo et al., 1968) 

and Lulworthia medusa (Davidson, 1973). However there was no direct 

evidence for involvement of the sheaths in hyphal adhesion.

(5) (i) Zoospores of thraustochytrids produce ectoplasmic net material 

which could anchor them to substrata (Perkins, 1973; 1976).

(ii) Thraustochytrium kinnei zoospores, on attaching to the brine 

shrimp Artemia salinaf produce extracellular adhesive material prior 

to ectoplasmic material (Bremer, 1976). Further experimental work 

with other thraustochytrids is needed to distinguish between 

involvement of ectoplasmic material and any extracellular adhesives in 

zoospore adhesion.

(iii) Thraustochytrid zoospores have been observed on the surface of 

the seaweed Fucus serratus. They appear to be present on the seaweed 

after the development of a microorganism layer (Miller and Jones, 

1983). Thraustochytrids may be involved in seaweed decomposition, as 

large numbers have been found on decaying F. serratus thalli. 

Thraustochytrids may depend on nutrient supply from the microorganism 

layer for attachment to F. serratus (Miller and Jones, 1983).



154

Chapter 5 - Attachment of marine microorganisms to fish tissues

Attachment of a microorganism to host surfaces is an essential 

prerequisite in the initiation of an infection. In the same way, adhesion 

of pathogenic microorganisms to fish tissues is essential for their 

successful entry and proliferation, and ultimately, in the occurrence of 

fish diseases (Munro, 1982).

This chapter describes the importance of microbial adhesion in fish 

diseases.

A bacterial fish pathogen which has been extensively studied is 

keroaonas salmonicida. This bacterium causes a systemic disease called 

furunculosis, and other skin diseases, in salmonid fishes. Several 

workers have observed an additional surface layer on highly virulent

strains of A. salmonicida (Udey and Fryer, 1978; Hubbert and Brain, 1980;

Trust et al., 1980; Hamilton et al., 1981; Trust et al., 1983). Strains

of A. salmonicida which aggregated in liquid culture possessed this 

external layer, whilst non-aggregating strains did not (Udey and Fryer, 

1978). Trust et al. (1980) observed an additional surface layer external 

to the outer membrane on aggregating strains of A. salmonicida.

Ultrathin sections of virulent strains of A. salmonicidia subsp. 

zchromogenes isolated from ulcer lesions in roach and grown in axenic 

culture revealed an additional layer external to the cell envelope (Hubbert 

and Brain, 1980). A. salmonicida strain 1107/IB isolated from ulcers in 

Australian goldfish also possessed an extra layer beyond the outer membrane 

approximately lOnm. thickness (Hamilton et al., 1981; see p. 156 ).

The bacteria aggregated when suspended in isotonic saline. Electron



microscopy showed that aggregating bacteria were joined by contact of the 

extra layers (Hamilton et al., 1981; see p. 156). This additional layer 

may play an important role in the attachment of A. salmonicida to either 

the slime layer or skin of the fish.

Udey and Fryer (1978) showed that aggregating strains of A. 

salmonicida attached to human, rabbit and fish white cells as well as to 

fish intestinal mucosa cells. They also showed that A. salmonicida strain 

S3-70, an aggregating strain, adhered markedly to Chinook salmon embryo 

cells. However, A. salmonicida SS-70-Smd-RBV, a streptomycin sensitive, 

non-aggregating revertant mutant did not adhere so markedly to these cells 

(Udey and Fryer, 1978). This suggested that the additional layer present 

on aggregating strains of A. salmonicida facilitated its adhesion to fish 

tissue cells. This provides a mechanism whereby the bacterium could 

deliver aggressins to the fish (Udey and Fryer, 1978).

Electron microscopic studies of aggregating cells of A. salmonicida 

showed that the additional layer had a periodic staining pattern, and 

consisted of subunits with a tetragonal repeat pattern (Udey and Fryer, 

1978; Hubbert and Brain, 1980; Trust et al., 1980; Kay et al., 1981). 

Ultrathin transverse sections of bacteria with this additional layer 

confirmed that it had a subunit arrangement with centre to centre spacing 

7.5nra. Some bacterial cells exhibited more than one subunit layer 

(Hubbert and Brain, 1980). Electrophoretic analysis using SDS-PAGE of 

four aggregating strains of A. salmonicida showed a common protein which 

Was not present in smooth, non-aggregating strains. This protein layer 

'#as associated with the outer membrane (Trust et al., 1980). Virulent 

Stains of a. salmonicida were again shown by SDS-PAGE to contain a 49k
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Fig. 33 E lectron m icrographs of A erom onas sa lm o n ic id a . Bar
lines represent 0.5(im in all m icrographs.

Fig. 33.1 A. sa lm onic ida  str. 1107/1B show ing the extra surface
layer (arrowed).

Fig. 33.2 A. sa lm onic ida  str. 1107/1B suspended in isotonic saline,
showing the zones of cell aggregation.

Fig. 33.3 Cells from aberrant co lonies grown w ith 0.25% (w/v) LiCI
and suspended in growth medium. Note the absence of 
the extra layer and the blebs of outer membrane.

(Reproduced by permission from Hamilton et al, 1981)



dalton protein, known as the 'A'-protein (Kay et al., 1981). The ’A'—

protein was shown to be a major component of outer membrane fractions of 

virulent A. salmonicida strains. Growth of virulent strains of A. 

salmonicida at a higher-than-optimal temperature resulted in loss of the A- 

layer and attenuation of virulence (Ishiguro et al., 1981). This again

suggests a connection between the A-layer and virulence of A. salmonicida.

The amino acid composition of the 'A' protein has been determined, and 

has shown it to be extremely hydrophobic (Kay et al., 1981; Evenberg and

Lugtenberg, 1982; Phipps et al., 1983; Parker and Munn, 1984). The

protein was insoluble in water, which is further proof of its 

hydrophobicity (Evenberg and Lugtenberg, 1982). Strains of A. 

salmonicida possessing the A-layer dramatically increased in cell surface 

hydrophobicity. This was shown by 80% of such cells binding to octyl and 

phenyl sepharose gels and bacterial aggregation in 0.01M ammonium sulphate 

(Trust et al., 1983; Parker and Munn, 1984). Strains lacking the A-layer, 

however, adsorbed poorly to both hydrophobic gels and only aggregated in 

1.2-1.5M ammonium sulphate solutions. A. salmonicida strains possessing 

the A-layer also displayed enhanced association with both trout and mouse 

macrophages (Trust et al., 1983). The increased hydrophobicity of the

cell surface in these strains is likely to be important in this enhanced 

association. The increase in hydrophobicity may be caused by the physical 

masking by the A-layer of many of the lipopolysaccharide '0' side chains 

(Trust et al., 1983).

Studies by Chart et al., (1984) suggested that some lipopolysaccharide 

0~side chains penetrated the A-layer on A. salmonicida strains and were 

exposed on the cell surface. This was shown by anti-lipopolysaccharide
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polyclonal antibodies and anti-O-polysaccharide monoclonal antibodies 

reacting with the lipopolysaccharide on both fixed and unfixed cells 

possessing the A-layer (Chart et al., 1984). It was confirmed by using

bacteriophage 55R-1, which uses the lipopolysaccharide of A. salmonicida 

as a receptor. Bacteriophage 55R-1 adsorbed to A. salmonicida strain 

A451 which possesses the A-layer, confirming the exposure of 

lipopolysaccharide (Chart et al., 1984). Non-aggregating strains of A.

salmonicida were found to possess cellular appendages which may be 

lipopolysaccharide extrusions, again serving as bacteriophage receptors 

(Udey and Fryer, 1978). Lipopolysaccharides of Gram-negative bacteria are 

thought to play a role in bacterial adherence. It is possible that an 

additional function of the exposed lipopolysaccharides of A. salmonicida is 

in the initial attachment of this bacterium to tissue surfaces. Further 

experimental work which could show this would involve isolating exposed 

'O'-side chains from A. salmonicida strains. These 'O'-chains, or 

structural analogues of them, could be added to assays of A. salmonicida 

strains with the A-layer attaching to fish tissue cells. Any inhibition 

of attachment by the 'O'-chains may indicate involvement of the exposed 

lipopolysaccharides in A. salmonicida adhesion. No inhibition of 

attachment may confirm that the A-layer is principally involved in 

adhesion.

Aeromonas salmonicida has also been isolated from Atlantic salmon 

with severe fin rot disease (Schneider and Nicholson, 1980). Electron 

Microscopy of fins with severe rot revealed numerous Gram-negative, rod

shaped bacteria with glycocalyx fibres extending from them. This again 

suggests the role of glycocalyx in mediating adhesion of infective bacteria 

to fish tissue surfaces (Schneider and Nicholson, 1980).
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Red-sore disease causes heavy mortality among species of fish having 

sport or commercial value. The bacterium Aeromonas hydrophila appears to 

be intimately associated with the peritrich ciliate Epistylis spp. in 

causing this disease. Scanning electron micrographs of red-sore disease

lesions revealed that Epistylis attachment appeared as a spreading of stalk

fibres over the substrate (Hazen et al., 1978). Large numbers of rod

shaped bacteria were clearly adhering to the stalk of Epistylis spp..

Transverse and longitudinal sections of Epistylis spp. stalks revealed a 

fuzzy material, which may have been a mucilaginous coat with attachment 

qualities for the associated bacteria (Hazen et al., 1978). A. hydrophila 

could be the primary invader in red-sore disease, inducing the lesions, 

whilst Epistylis spp. appears to be a secondary, benign ectocommensal 

(Hazen et al., 1978) .

Vibriosis is a disease of fish caused by the organism Vibrio

anguillarum which can often be fatal (Horne, 1982). The pathogenesis of 

vibrio infections such as cholera in mammals, is primarily one of gut 

infection. V. anguillarum bacteria were shown to adhere to sections of 

rainbow trout gut (Horne and Baxendale, 1983). Bacteria consistently

attached in greater numbers to the mid and upper gut regions, followed by

the oesophagus, stomach and lower gut of rainbow trout (Horne and

Baxendale, 1983). The numbers of adherent vibrios fell during the first

two days, probably as a result of host clearance mechanisms. This

suggested that the fish intestine is important in slower developing

infections of V. anguillarum. However, the mechanism of adhesion of V. 

Zhffuillarum to fish tissues is not known. Krovacek et al. (1987) 

investigated the adhesion of marine environmental and clinical isolates of



y. anguillarum and A. hydrophila to rainbow trout liver and chinook salmon 

embryo tissue cells. Adsorption of these bacteria to glass slides coated 

with mucus from rainbow trout body surfaces was also studied. Two of the 

marine V. anguillarum strains attached strongly to the fish cells, with 

over 100 bacteria attached per cell (Krovacek et al., 1987). Only one

strain of A. hydrophila isolated from fish was highly adhesive. Human 

isolates of this bacterium were poor binders. Treatment of both species 

with the enzymes papain, trypsin and pepsin decreased their adhesion to 

fish tissue cells. The same bacterial strains attached strongly to glass 

slides coated with mucus, whilst they did not bind to uncoated slides. 

Treatment with heat and proteolytic enzymes also decreased adhesion to 

mucus. These results suggest that cell-surface adhesins are involved in 

the attachment of V. anguillarum and A. hydrophila to fish tissue culture 

cells. In particular, the effects of the proteolytic enzymes and heat on 

bacterial adhesion suggest that proteinaceous adhesins could be involved. 

Adhesion may also involve specific receptors on the fish cells. The 

adsorption of bacteria to mucus from rainbow trout demonstrates another 

property of fish-associated bacteria. The mucus may also possess 

receptors necessary for adsorption. In addition, the presence of such 

mucus material may enhance the accumulation of V. anguillarum and A. 

hydrophila in the vicinity of marine fish. Successful attachment to fish 

skin mucus may allow V. anguillarum to produce a cytotoxin which penetrates 

the skin through the mucus layer (Krovacek et al., 1987).

The epidermis of the sea horse Hippocampus kuda is characterized by 

flame cone cells. These cells protrude 20-40|jm. above the epidermal 

surface, and are covered by a mucous cap. Histochemically, the flame cone
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cell cap is a neutral mucopolysaccharide-protein complex (Bereiter-Hahn et 

al., 1980). Scanning electron microscopy showed that epiphytic 

microorganisms were associated with the mucous flame cone cell caps, but 

not with the epidermal surfaces between them. Threads of algae or 

bacteria interconnected several mucous caps. The concave side of the sea 

horse's prehensile tail was covered by a confluent layer of epiphytes. 

Bacterial adhesion is known to increase with decreasing negative charge and 

increasing hydrophobicity of the cell surface (see Chapter 1.4). This is 

supported by the observation that bacteria and other microorganisms settled 

extensively on neutral glycoproteins of the flame cell mucous caps. The 

epiphytic growth of microorganisms is ecologically significant, in that it 

may offer protection against cnidarian nematocysts in coral environments 

(Bereiter-Hahn et al., 1980). This example shows how epiphytic microbial

growth can be beneficial to sea horses rather than causing disease.

Summary
The main points discussed in this chapter are as follows.

(1.). Attachment of Aeromonas salmonicida to fish tissues is important 

in furunculosis and fin rot disease. Adhesion of this bacterium 

appears to be mediated by a layer external to the outer membrane, 

the 'A'-protein (Udey and Fryer, 1978; Hubbert and Brain, 1980; 

Hamilton et al., 1981). This protein is hydrophobic in nature

(Kay et al., 1981; Evenberg and Lugtenberg, 1982; Parker and

Munn, 1984), and this may be important in the enhanced 

association of A. salmonicida with trout macrophages (Trust et 

al., 1983).
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(2.). Red-sore disease is characterized by attachment of the ciliate

Epistylis spp., although it may be initiated by Aeromonas 

hydrophila. This bacterium appears to be intimately associated 

by mucilage with the ciliate's stalk. A. hydrophila could be 

the primary invader in red-sore disease, whilst Epistylis spp. 

may be a secondary, benign ectocommensal (Hazen et al., 1978).

(3.). Adhesion of Vibrio anguillarum to fish intestine is important in

vibriosis (Horne and Baxendale, 1983). Attachment of V. 

anguillarum to fish tissue cells and mucus-coated glass slides 

was decreased by proteolytic enzymes and heat. This suggests 

that proteinaceous adhesins and receptors in the fish mucus may 

be involved in V. anguillarum attachment (Krovacek et al., 1987).

(4.). Flame cone cell caps of the sea horse Hippocampus kuda are coated

by a neutral glycoprotein complex. Extensive microbial adhesion 

and growth occurred on these cells. Such epiphytic growth could 

protect the sea horse against predation (Bereiter-Hahn et al., 

1980).
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Chapter 6 - Microbial attachment to marine plants

Macroscopic marine plants play an important role in the production of 

organic matter in inshore waters. Periphytic microorganisms which attach 

to them may be an important part of this production (Sieburth et al., 

1974). In addition, seaweeds are grazed by snails and gammarid amphipods. 

Microbial enrichment of these plants may be an important factor in their 

nutritional value (Sieburth et al., 1974).

(6.1). Microbial attachment to seaweeds

A great variety of microbial epiphytes occur on seaweed surfaces. 

The brown alga Ascophyllum nodosum supported microcolonies of diatoms, 

yeasts and the filamentous bacterium Leucothrix mucor during winter 

(Sieburth et al., 1974; Sieburth, 1975; see p.164 ). Cundell et al.(1977) 

observed differences in the microbial populations on the holdfast, 

internodal regions of the stipe and the apical tips of Ascophyllum nodosum. 

A lawn of rod-shaped bacteria covered the surface above the holdfast, and 

h. mucor projected from the surface. Pennate diatoms and filamentous 

cyanobacteria covered the internodal region. Near the apical region, the 

surface was mainly colonized by yeast microcolonies. However, the apical 

tips of A. nodosum were completely devoid of adherent microorganisms. 

Tannin secretion by A. nodosum in this region probably caused this (Cundell 

et al., 1977). Graze marks from the marine snails Littorina littorea and

Littorina obtusata were seen on the stipe. The exposed tissue was 

colonized by a diverse population of bacteria, including a number of curved 

and pointed rods, together with a possible dinoflagellate (Cundell et al.,

1977). The red alga Polysiphonia lanosa, an epiphyte on A. nodosum, 

supported a dense epiflora during the summer. Filaments of L. mucor, 

yeasts and pennate diatoms were present (Sieburth et al., 1974; p. 166 ).
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Fig. 34 The brown alga Ascophyllum nodosum  showing light fouling 
by co cco id  bacteria , yeasts and L e u c o t h r i x  m u c o r ,  
possib ly due to tannin production.
Mag.: x6420

(Reproduced by permission from Sieburth, 1975)
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Fig. 35 Ascophyllum  n o d o s u m , show ing heavy co lon isa tion  by 
filam ents of Leucothrlx m u c o r . Mag.: x5370.

(Reproduced by permission from Sieburth, 1975)
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Fig. 37 F ilam en ts  of Leucothrix  m u co r  on the su rface  of 
Polysiphonla  lanosa. Mag.: x4900.

(Reproduced by permission from Sieburth, 1975)



I. mucor is a common microbial epiphyte of algae, which provide a suitable 

substratum for its attachment (Brock, 1966). It attaches particularly 

well to the red alga Bangia fuscopurpurea from which it may obtain 

nutrients (Bland and Brock, 1973).

Yeasts of the genus Candida were observed in high numbers on nine 

seaweed species isolated from Narrangansett Bay (Seshadri and Sieburth, 

1975). Patches of pseudomycelia characteristic of Candida spp. were seen

on the seaweed surfaces. Budding vegetative cells and bud scars were also 

seen, together with well-developed pseudomycelia with attached 

blastospores. Candida yeasts may also utilize nutrients released from the 

seaweed surfaces. Leucothrix mucor and pennate diatoms were again the 

predominant epiphytes of these seaweed species. Candida yeasts appeared 

sporadically as single cells or microcolonies in the surface areas examined 

(Seshadri and Sieburth, 1975).

Microorganisms associated with the surfaces of seaweeds and sea 

grasses are involved in the degradation of particulate debris and released 

mucilage (Linley et al., 1981; see also Chap. 10). There was a clear

succession of microorganisms which colonized mucilage released from the 

kelps Ecklonia maxima and Laminaria pallida. Rod-shaped and coccoid 

bacteria colonized the mucilage first. These were subsequently replaced 

by flagellates together with some diatoms and ciliates (Linley et al.,

1981). Adhesion of these colonizing microorganisms is essential in order

for mucilage degradation to occur.

(6-2). Microbial attachment to salt marsh grasses.

Estuarine salt marsh grasses show markedly different patterns of 

microbial colonization from seaweeds. The fungus Sphaerulina pedicellata



colonizes the shaded and moist internodal areas of Spartina alterniflora 

(Gessner et al., 1972; Sieburth et al., 1974). Mycelia of this fungus

possess hyphopodial appendages which serve for attachment (see p. 170 ). 

Ascocarps and ascospores characteristic of this species developed, and 

there was some evidence of mucilage production from ascospores, which could 

also be involved in adhesion (see Chap. 4 ; see also p. 171 ). When S. 

alterniflora falls and is decomposed, bacteria and diatoms become 

associated with it (Gessner et al., 1972; Sieburth et al., 1974). The

eelgrass Zostera marina was initially colonized by the diatom Cocconeis 

scutellum, which formed a unialgal mat (Sieburth and Thomas, 1973; Sieburth 

et al., 1974; see p. 172). Other pennate diatoms, such as Navicula and

Amphora spp. settled on this crust, together with cyanobacteria, L. mucor 

and fungi (Sieburth and Thomas, 1973; Sieburth, 1975; see p.173 ). The 

crust that eventually formed could equal or exceed the biomass of Zostera 

marina. Heavy colonization like this would probably interfere with 

nutrient adsorption and photosynthetic activity. However, an advantage of 

this heavy microfouling is that it could offer protection for the eelgrass 

from grazing omnivores and herbivores (Sieburth and Thomas, 1973; Sieburth 

et al., 1974).

Diatom colonization was prominent on the estuarine grass Ruppia 

maritima (Ferreira and Seeliger, 1985). A unialgal layer of Cocconeis 

placentula formed initially at the base of the leaf in a similar way to the 

colonization of Z. marina. Dense mucilage production by this diatom 

allowed firm adhesion to the host epidermis. Synedra fasciculata attached 

to the layer of Cocconeis cells by the production of mucus pads. A 

secondary, selective colonization by Synedra fasiculata also occurred over 

detritus, broken frustules and living Cocconeis cells (Ferreira and
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Fig. 38.1 and 38.2
SEMs of hyphopodia of the fungus Sphaerullna pedicella ta  
a llow ing  Its a ttachm ent to the in ternodes of Spartina  
a ltern if lo ra .

(Reproduced by permission from Gessner et al, 1972)



Fig. 39.1 and 39.2
SEMs of ascospores of S ph a eru l lna  p ed ice l la ta  in the
In te rnoda l reg ions of S pa rt ina  a l te rn i f lo ra , showing
evidence of possible mucilage production.

(Reproduced by permission from Gessner et al, 1972)
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Fig. 40 Unialgal layer of the diatom Cocconeis scute llum  on the 
surface of the eelgrass Zostera marina  Mag.: x540.

(Reproduced by permission from Sieburth, 1975)
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Fig. 41 Multispecies diatom crust, together w ith ep lb io tic bacteria, 
on the surface of Zostera marina  Mag.: x300

(Reproduced by permission from Sieburth, 1975)
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Seeliger, 1985). The formation of dense Synedra populations in the median 

leaf region permitted attachment of Amphora and Nitzschia spp.. During 

the final stage of colonization the entire apex of the leaf was covered. 

Filamentous diatoms such as Melosira and Biddulphia spp. were found among 

the upright epiphytes in this region (Ferreira and Seeliger, 1985).

(6.3). Ecological aspects of microbial adhesion 

and control of epiphytic populations 

As well as their beneficial roles for the plants, microbial epiphytes 

of seaweeds and sea grasses can also be involved in plant decomposition. 

Cellulolytic bacteria were isolated from newly emerged and decomposing 

leaves of Potamogeton pectinatus from a brackish lake (Robb et al., 1979). 

A rough-walled bacterium, which showed strongest cellulase enzyme 

production, was attached by a stalk. A cover of smooth-walled bacilli were 

seen attached by their axes to a leaf in the early stages of decomposition.

The bacilli were surrounded by a sheet of fimbriate mucilaginous material.

Microscopic examination of older decomposing plant material showed 

extensive damage to the epidermis, with some destruction of the outer 

cellulose cell walls. Short bacilli, surrounded by fimbriate material,

were seen adhering to the inner walls of the damaged epidermal cells (Robb

et al., 1979). The fimbriate material and holdfasts produced by these

bacteria, apart from allowing adhesion, may be involved in localization of 

cellulolytic enzymes. These bacteria are highly likely to be responsible 

for tissue injury and subsequent destruction of Potamogeton pectinatus 

leaves (Robb et al., 1979). Further experimental work could be done to

isolate these cellulolytic bacteria and study their role in the

decomposition of P. pectinatus leaves. This could involve observations of

the extent of decomposition in liquid culture, and measurements of levels



of cellulase activity. The effects of the detachment of these bacteria, 

through enzymic action, on the extent of leaf decomposition could also be 

studied.

Marine plants have mechanisms of controlling epiphytic microbial 

populations. Production of antimicrobial compounds, such as the tannin 

produced by Ascophyllum nodosum is one means of control. Peeling or 

sloughing of the algal cuticle occurs in certain seaweeds. This removes 

the epiphytic fouling layer leaving a clean algal surface. Cuticular 

sloughing occurs in A. nodosum and Chondrus crispus (Sieburth, 1975; 

Sieburth and Tootle, 1981; see p. 177 ). Peeling of the extensive 

Cocconeis scutellum layer on Zostera marina has also been observed

(Sieburth, 1975; see p . 176 ). Although cuticular or epidermal sloughing 

can clear an epiphytic layer, the newly exposed algal surface usually 

becomes rapidly re-colonized. A more artificial means of controlling

epiphytic diatom populations on seaweeds is by using enzymes (Booth, 1981).

Short-term exposure to the proteolytic enzymes actinidin and pepsin removed 

the stalked diatoms Synedra tabulata and Licmophora spp. from their algal 

hosts. However, Cocconeis scutellum, Gomphonema pseudexigium and

Achnanthes brevpipes were more resistant to detachment (Booth, 1981). 

These enzymes may act by breaking down the acidic polysaccharides secreted 

by the diatoms (see Chapter 3.2). Enzyme mediated separation occurs at 

the stalk of Licmophora spp. and Synedra tabulata (Booth, 1981).
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Fig. 42 Diatom  c ru s t pee ling  from  the su rface  of ee lgrass 
Zostera  marina. Mag.: x220

(Reproduced by perm ission from Sieburth, 1975)
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Fig. 43 Removal of the fou ling  layer cons is ting  of bacterial rods, 
filam en ts  and d ia tom s, during  cu tic u la r s lough ing  in 
Chondrus cr lspus.  Mag.: x2170

(Reproduced by permission from Sieburth, 1975)
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Summary
The main points shown in this chapter are as follows :

1.) Marine plants can accumulate dense and varied populations of 

microbial epiphytes. These can include bacteria, cyanobacteria, 

diatoms, and yeasts (Sieburth et al., 1974; Sieburth, 1975;

Cundell et al., 1977; Sieburth and Tootle, 1981; Ferreira and

Seeliger, 1985). Leucothrix mucor is a common epiphyte, 

particularly of red algae (Bland and Brock, 1973).

2.) (i.). Epiphytic microorganisms are involved in the

degradation of particulate debris and mucilage released from 

seaweeds and salt marsh grasses, so contributing to the formation 

of detritus (Linley et al., 1981).

(ii.). A heavy microfouling layer, such as the crust which 

forms on Zostera marina, may protect the plants from grazing 

omnivores and herbivores (Sieburth and Thomas, 1973).

(iii.). Some epiphytic bacteria may be involved in the 

decomposition of marine plants. Cellulolytic bacteria attached 

by fimbriate material to damaged epidermal cells of Potamogeton 

pectinatus (Robb et al., 1979). This showed that bacterial 

adhesion is necessary for cellulose breakdown.

3.) Marine plants have methods of controlling epiphytic 

microorganisms. Production of antimicrobial compounds, which 

occurs in Ascophyllum nodosum, is one method (Cundell et al.,

1977). Peeling or sloughing of the cuticular layer also removes 

the fouling layer (Sieburth, 1975; Sieburth and Tootle, 1981).



Chapter 7 - Attachment between marine microorganisms.

(7.1). Bacterial attachment to cyanobacteria and other 

phvtoplankton.

Several studies have shown that certain marine bacteria undergo 

chemotactic attraction towards marine phytoplankton. This led to the use 

of the term "phycosphere", which is the zone surrounding phytoplankton 

cells created by their production of extracellular products, which 

chemotactically attract bacteria. The phycosphere is ecologically 

important to bacteria, as it represents a source of organic nutrients and 

photosynthetically derived organic carbon. In turn, the bacteria 

surrounding the algae may themselves produce nutrients which benefit the 

phytoplankton. Only Gram-negative bacteria are attracted to

phytoplankton. This may be because the algae produce inhibitors specific 

for Gram-positive bacteria (Jones, 1982).

The first part of this Chapter examines mechanisms of bacterial 

attachment to cyanobacteria and other phytoplankton which result in such 

associations. Chapter 7.2 discusses in detail a specific example of 

association between the parasitic marine bacterium Bdellovibrio spp. and 

other host bacteria.

(7.1.1.). Bacterial attachment to cyanobacteria and its

ecological significance.

Bacterial association with cyanobacteria seem to produce symbiotic 

benefits for both microorganisms. Most of the associations discussed here 

were observed in the freshwater environment. It should be reasonable to 

assume that such associations also occur between bacteria and particular 

cyanobacteria in the marine environment. This is further suggested by



observations of bacteria associated with the mucilage sheath of blue-green 

bacteria in the Baltic Sea (Rheinheimer, 1985).

Bacteria were associated with the heterocysts of Anabaena circinalis 

and Aphanizomenon flos-aquae in two lakes (Paerl, 1976 ; see p. 182). In 

particular, extensive bacterial colonization of heterocysts of Anabaena 

circinalis was observed. The bacteria were observed in large numbers on 

the polar regions of the heterocysts. Autoradiographic examination showed 

that the attached bacteria on both species readily assimilated glucose, 

acetate and alanine. The accumulation of bacteria at the polar regions of 

the heterocysts suggests that this is a major site of nutrient secretion by 

the cyanobacteria. A successional pattern in bacterial colonization of 

heterocysts was observed in Clear Lake, U.S.A.. During late spring, 

Aphanizomenon flos-aquae heterocysts were mainly colonized, while 

heterocysts of Anabaena circinalis were not. During the summer months, 

bacterial attachment to A. circinalis heterocysts was more common. 

Bacterial colonization of both cyanobacterial species was highest at the 

times of year when heterocyst frequency was high. As heterocysts are 

sites of nitrogen fixation in cyanobacteria, these observations suggest a 

possible bacterial association with this process (Paerl, 1976).

Two marine bacterial isolates, Pseudomonas sp. SL10 and Zoogloea sp. 

SL20 also attached to heterocysts of Anabaena spp., and showed a high 

degree of selectivity (Lupton and Marshall, 1981). Pseudomonas sp. SL10 

attached in greater numbers to heterocysts of Anabaena flos-aquae and 

Anabaena azollae than to Anabaena cylindrica and Anabaena oscillarioides 

heterocysts. Zoogloea sp. SL20 attached more to heterocysts of A. 

cylindrica and A. oscillarioides. This selectivity may reflect the 

distribution and abundance of binding sites on the heterocysts of different



cyanobacteria. Pseudomonas sp. SL10 attached perpendicularly to the 

heterocysts, with the polar end of the bacterium attached to the outer 

fibrous covering of the heterocysts. The polar orientation caused this 

bacterium to attach as a monolayer. Zoogloea sp. SL20 orientated in a

random manner around the heterocysts, and some cells were attached by 

production of extracellular fibrils. Zoogloea cells were agglutinated to

each other and formed a multilayer, with bacterial cells enmeshed in a 

matrix of extracellular polysaccharide fibrils (Lupton and Marshall, 1981). 

Pseudomonas sp. SL10 and Enterobacter aerogenes produced a greater 

stimulation of growth of A. cylindrica than Zoogloea sp. SL20. However, 

Zoogloea sp. SL20 promoted acetylene reduction, which is a measure of 

nitrogen fixation, by the cyanobacterium. Both bacteria promoted 

acetylene reduction under oxygenated conditions, although by a smaller 

amount than under anaerobic conditions. These observations suggest that 

bacteria attached to cyanobacterial heterocysts are involved in nitrogen 

fixation (Lupton and Marshall, 1981).

Other transmission electron microscopic studies have shown that 

bacteria attach to heterocysts of Anabaena spp. by production of fibrillar 

material (Paerl, 1980; see p. 182 ). Further evidence of the nitrogen 

fixation role comes from more observations of bacteria associated with 

heterocysts of Anabaena spp. in a freshwater lake. Axenic cultures of A. 

oscillarioides were allowed to develop heterocysts by omission of nitrogen. 

Bacteria added to the cultures were exclusively located on the heterocysts, 

and were mainly attached to the polar regions (Paerl, 1978). Attached 

bacteria were also observed in the mucus layers surrounding Anabaena 

spiroides. The use of the redox indicator NBT formazan showed blue 

darkening in the heterocyst regions and in the bacteria associated with
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Fig. 44.1 Transm ission electron micrograph (TEM) of bacteria attached 
to a heterocyst of Anabaena  spp., showing some evidence 
of the production  of f ib r illa r  m ateria l from  bacterial and 
heterocyst surfaces. Mag. x40,500.

Fig. 44.2 SEM of bacteria attached to a heterocyst of Anabaena  spp. 
Mag. x12,625.

(Reproduced by permission from Paerl, 1980).



them. Steep gradients of NBT formazan deposition occurred in the polar 

regions of the heterocysts. This suggests the existence of reductive 

microzones in the heterocyst polar regions. The attached bacteria could 

remove oxygen, thereby protecting the oxygen-sensitive nitrogenase enzyme 

at the heterocyst poles (Paerl, 1978, 1980; Jones, 1982). Acetylene

reduction by heterocyst-attached bacteria also suggests their role in 

nitrogen fixation by Anabaena spp. (Paerl, 1978).

Autoradiographic experiments using 3H-serine showed that heterocystic 

bacteria were able to utilize serine, alanine, protein hydrolysate, 

glycine and glucose. More 3H-serine labelling was found in the bacteria 

colonizing the heterocysts than in bacteria embedded in the mucilage 

layers. Consequently, a symbiotic association exists whereby bacteria are 

nourished by cyanobacterial extracellular products and the attached 

bacteria protect the heterocystous nitrogenase system from oxygen (Paerl, 

1978; Jones, 1982).

There is a need for such studies to be performed with cyanobacteria in 

the marine environment.

Aggregates of Zoogloea spp. were associated with the mucilage of both 

Anabaena flos-aquae and Microcystis aeruginosa. The population density of 

bacteria in the mucilage was 2.6 x 1011 cells/ml. (Caldwell and Caldwell,

1978). When the Zoogloea spp. was grown with culture filtrates of 

Anabaena spp., it produced tough colonies on agar growth media. Soft 

colonies were produced when the Zoogloea spp. was grown without Anabaena 

SPP- filtrates. This bacterium may therefore utilize an extracellular 

carbohydrate from the cyanobacterium in order to produce its own mucilage. 

Some of the extracellular carbohydrate products of Anabaena spp. were



adsorbed to suspensions of Zoogloea spp. Consequently, the cyanobacterium 

must be responsible for the production of mucilage precursors.

In addition, aggregates were formed when Zoogloea sp. was added to a 

liquid culture of Anabaena spp. Other bacteria which were isolated from 

the planktonic environment did not form aggregates with Anabaena spp. 

This suggests that Zoogloea spp. depends on the cyanobacterium for growth 

in liquid culture (Caldwell and Caldwell, 1978). There is a possibility 

of nutrient cycling between Anabaena flos-aquae and Zoogloea spp. because 

of the high numbers of bacteria in the cyanobacterial mucilage. Further 

autoradiographic work within the mucilage could show nutrient transfer to 

Zoogloea spp.. Anabaena flos-aquae may also receive nutrients from the 

bacterium for its own growth, and this could be shown by autoradiographic 

work.

(7.1.2). Bacterial attachment to diatoms and other phvtoplankton.

There is conflicting evidence in the literature over bacterial 

association with diatoms. Bacteria were loosely associated with 

Coscinodiscus concinnus and a low attached bacteria/diatom cell ratio was 

observed during a diatom bloom period in the Clyde Estuary (Droop and 

Elson, 1966). Some diatoms produce an acidic microzone which repels 

attaching bacteria (Rheinheimer, 1985).

However, a rod-shaped bacterium was observed, by DAPI staining, 

attached to the frustule of the diatom Thalassiosira sp. (Coleman, 1980). 

(DAPI - 4'6-diamidino-2-phenylindole, a fluorescent DNA stain). Other 

rod-shaped bacteria producing polymeric fibrils were attached to 

Thalassiosira sp. (Rheinheimer, 1985). Bacterial attachment to pennate 

diatoms was also observed by Sieburth (1975) (see p. 185).

An abundant and diverse bacterial community was found in brine
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Fig. 45 SEM show ing bacteria l a ttachm ent to a pennate diatom. 
Mag. x1,780.

(Reproduced by permission from Sieburth, 1975).



channels of sea ice and at the ice-seawater interface in Antarctica. 

Approximately 70% of the ice bacteria were free-living, whereas 30% were 

attached to either living algal cells or detritus (Sullivan and Palmisano, 

1984). Epibacteria were associated with the diatom Amphiprora spp.. 

Scanning electron microscopy showed a diversity of epibacteria, including 

cocci, rods, straight and branching filamentous cells and prosthecate 

forms. The stalked bacterium resembled Prosthecobacter fusiformis as it 

possessed a well-defined holdfast on the stalked end of both symmetrical 

daughter cells. Some of the epibacteria colonizing Amphiprora spp. 

produced exocellular polymeric substances (EPS) which may aid their

attachment (Sullivan and Palmisano, 1984). A filamentous rod-shaped

bacterium also showed cell surface modification at one pole. Transmission

electron microscopy showed that the pole of this bacterium was surrounded 

by an EPS layer which was embedded in the diatom wall. This layer 

probably anchors the bacterium to Amphiprora spp. (Sullivan and Palmisano, 

1984; .

Evidence of possible symbiotic relationships between sea ice algae and 

bacteria comes from a positive correlation between bacterial concentration 

and chlorophyll 'a1 at the bottom of the ice. The close physical

association observed between epibacteria and Amphiprora spp. suggests that 

a symbiotic relationship exists between them. However, there is no 

evidence for this. Amphiprora spp. may excrete a large portion of its 

photosynthate, which could be utilized by the epibacteria. Metabolic 

activities of the attached bacteria could provide vitamins and growth 

factors for the diatom. In addition, the bacteria could recycle waste 

organic nitrogen compounds to inorganic nutrients, such as nitrate, nitrite 

ai>d ammonium compounds (Sullivan and Palmisano, 1984). Further



autoradiographic work using 14C could show transfer of photosynthetic 

products from Amphiprora spp. to epibacteria in the sea ice. Transfer of 

nitrogenous compounds to the diatom could be shown by 3H-thymidine

labelling. This work could be extended to other bacterial-algal

associations in sea ice.

Kogure et al. (1982) studied bacterial attachment to Skeletonema

costatum in natural seawater and in cultures. Most of the diatom cells 

were free of bacteria when they were collected from Otsuchi Bay, Japan. 

When cultured in a flask, however, diatom cells began to harbour bacteria. 

Flavobacterium sp. T-8D began to attach to S. costatum after 1-2 days 

incubation. There was an increase in the numbers of this attached

bacterium after 5-6 days. Flavobacterium spp. attached perpendicularly, 

forming "clusters" near the edge of the diatom cells. "Cluster" formation 

may arise by the bacterium altering the physicochemical or biological

conditions around it when attached to S. costatum. This may make the 

surface more favourable for the subsequent attachment of other bacteria 

(Kogure et al., 1982). Further incubation caused coagulation of heavily

bacteria-colonized diatom cells, resulting in formation of amorphous 

detrital particles. Rapid bacterial colonization must occur in order for 

detritus formation from phytoplankton to take place (see Chapter 10). 

Flavobacterium spp. T-8D may become the dominant attached bacterium on 

decaying S. costatum cells (Kogure et al., 1982).

Albright et al. (1986) carried out an investigation into the factors 

affecting bacterial attachment to particles, including phytoplankton, in 

Howe Sound, Canada, a coastal temperate fjord. Silt and salinity levels 

in the fjord seawater did not appear to influence bacterial attachment. 

However, the percent attached bacteria was related to both chlorophyll 'a'



concentrations and primary productivity. During periods of high primary 

productivity, the percentage of attached bacteria was low, whilst during 

periods of low, increasing and declining primary productivity, attachment 

was high (Albright et al.r 1986). A significant portion of the euphotic 

zone bacteria became attached at the time primary production increased. 

The physiological condition of the phytoplankton, the major nutrient 

source, was the main factor affecting bacterial attachment. A similar 

pattern of bacterial attachment was observed when three phytoplankton, 

Prorocentrum minimum, Dunaliella tertiolecta and Skeletonema costatum, were 

grown in batch culture. The sequence of events which occurred during the 

association of bacteria, with Dunaliella tertiolecta in culture were 

followed (Albright et al., 1986). During growth of this alga, bacterial 

cells were both free and attached. Attached bacteria appeared to be 

enmeshed in a sheetlike organic matrix. When this alga entered the 

stationary growth phase, bacterial numbers in the culture increased. Many 

bacteria accumulated near, but not on, the algal cells as aggregated masses 

of cells within a translucent mesh of organic material (Albright et al., 

1986). Late in the stationary phase, most of the culture was composed of 

a mass of amorphous detritus-like material containing bacteria. The 

bacteria were not attached to the algae at that time. This sequence of 

events also occurred in cultures of Prorocentrum minimum and Skeletonoma 

costatum (Albright et al., 1986). These observations further show that

bacterial attachment to phytoplankton causes decomposition of the algal 

cells and ultimate formation of detrital material.

The changes in attached bacterial numbers during phytoplankton growth 

was similar in both batch culture and seawater (Albright et al., 1986). 

The portion of attached bacteria increased at about the same time that



phytoplankton growth started. Whilst the algae were growing, attached 

bacterial numbers decreased. After cessation of growth, a high number of 

bacteria became attached. The low numbers of attached bacteria observed 

during phytoplankton growth may partly be due to algal antibiotic 

production (Albright et al., 1986). Formation of an amorphous, organic

matrix observed after cessation of D. tertiolecta growth may result from 

bacteria utilizing nutrients released by this alga. The synthesis of 

glycocalyx material by the bacteria produces an attachment matrix. The 

bacteria may be using the algal cell wall and other less soluble materials 

as substrates for synthesis of glycocalyx (Albright et al., 1986).

It would be useful to do further experimental work using 14C-isotopes 

to trace the possible transfer of nutrients from D. tertiolecta to the 

bacteria. Such autoradiographic work could show the incorporation of 

nutrients into bacterial attachment material. This work could also be 

done with Skeletonema costatum and Prorocentrum minimum.

Cystodinium bataviense is a dinoflagellate which colonizes the 

epineustonic region of seawater. Its cell wall is often colonized by 

bacteria (Timpano and Pfiester, 1985). These bacteria may affect the 

surface/volume ratio of the dinoflagellate and the wettability of its 

hydrophobic cell wall. This in turn could affect the stability and 

attachment of C. bataviense in the epineuston (Timpano and Pfiester, 1985).

Further work could be done to investigate possible hydrophobicity 

changes in C. bataviense cells possessing attached bacteria. This could 

be done by measuring cell hydrophobicity using octyl sepharose beads. 

Control measurements would be made using dinoflagellates from which 

bacteria were removed. Accumulation of C. bataviense cells possessing 

attached bacteria at the surface microlayer could be observed using



seawater samples and light microscopy. If the bacteria increased the 

surface hydrophobicity of the dinoflagellate cells, there would be an 

accumulation of them at the surface microlayer in the epineuston (see 

Chapter 1.4).

Imam et al. (1984) looked at the specificity of the interaction of

bacterial cells with the cell surface of the microalga Chlorella vulgaris.

Three bacterial strains were used. These included Micrococcus sp. 

ASB1, a bacterium known to be closely associated with C. vulgaris in the 

natural environment. The other two bacteria were Escherichia coli str. 

NAS, and E. coli str. NAS-OTEC, which was isolated from Ocean Thermal

Energy Conversion equipment (Imam et al., 1984). Cell surface antigens

isolated from these bacteria, which were of high molecular weight, enhanced

the adhesion of C. vulgaris to glass surfaces (Imam et al., 1984).

Consequently, these antigens are referred to as "Adhesion-enhancing" (AE)

molecules. Antigens were also isolated from the surface of C. vulgaris

cells.

The effects of certain sugars on the adhesion of C. vulgaris to glass 

surfaces in the absence and presence of AE antigens was examined (Imam et 

al., 1984). Three sugars, L-fucose, a L-rhamnose and D-glucosamine, when

tested alone, significantly enhanced the adhesion of C. vulgaris. 

However, AE antigens isolated from E. coii-NAS and NAS-OTEC strains

inhibited C. vulgaris adhesion in the presence of D-mannose (Imam et al., 

1984). The effects of five other sugars on the AE antigens were also 

measured. No individual sugar inhibited the activities of all the AE 

antigens. Consequently, although all the AE antigens enhanced C. vulgaris 

adhesion, their activities were inhibited by different sugars. These 

observations suggest that attachment between C. vulgaris and its associated



bacteria is mediated by lectin-like macromolecules on the surfaces of both 

cells (Imam et al., 1984).

The association of the bacterial strains with C. vulgaris in the

absence of all four AE antigens was observed by epifluorescence microscopy. 

Significantly more C. vulgaris cells were colonized by Micrococcus sp. ASB1 

cells than by the E. coli NAS and NAS-OTEC strains (Imam et al., 1984; see 

p. 192). This was observed when the three bacterial strains were 

individually suspended with C. vulgaris, and when all three bacteria were 

mixed with the alga. The number of sites on the Micrococcus sp. ASB1 

cells available for binding to C. vulgaris must be higher than for both E. 

coli strains (Imam et al., 1984).

The association between the bacteria and C. vulgaris was also observed 

in the presence of the AE antigens. This was done firstly to show whether

the AE antigens produced by different bacterial strains interact with

distinct receptors on the Chlorella cell surface. It was also done to show

if the AE antigens affect the surface interactions of bacterial cells with 

C. vulgaris in mixed suspension (Imam et al., 1984). In the presence of 

ASB1 antigen, significantly more C. vulgaris cells were colonized by 

Micrococcus sp. ASB1 than by E. coli NAS-OTEC. However, in the presence 

of the NAS-OTEC antigen, significantly more C. vulgaris cells were 

colonized by E. coli NAS-OTEC than by Micrococcus sp. ASB1 (Imam et al., 

1984; see p. 192 ). The ASB1 antigen also enhanced aggregation of C. 

vulgaris cells. This suggests that both the Micrococcus sp. ASB1 cell 

surface and the Chlorella surface interact with this antigen (Imam et al., 

1984). The NAS-OTEC antigen enhanced the aggregation of E. coli NAS-OTEC 

cells, suggesting that the bacterial cell surfaces were affected by this 

antigen.



TABLE 8 Percentage of Chlorella vulgaris cells 

colonized by bacterial strains.

Suspension Antigen1 Strain Percentage of colonized
C. vulgaris ± SE2
(no. of duplicate assays).

Individual None ASB1 74.6 + 0.40 (20)
(control) NAS-OTEC 35.6 + 0.13 (20)

NAS-£. coli 24.6 ± 0.10 (20)

Mixed None ASB1 56.1 ± 0.50 (15)
(control) NAS-OTEC 30.0 ± 0.15 (15)

NAS-5. coli 20.1 + .0.20 (15)

ASB1 ASB1 94.8 + 1.80 (15)
NAS-OTEC 33.5 + 0.25 (15)

NAS-OTEC ASB1 49.5 ± 0.44 (20)
NAS-OTEC 52.0 + 0.42 (20)

NAS-OTEC NAS-OTEC 36.5 + 0.50 (15)
NAS-2F. coli 18.5 + 0.10 (15)

1 Antigen concentration, 10-3 pg/ml.

2 SE, Standard error of the mean.

(Taken from Imam et al., 1984).



These results indicate that the ASB1 AE antigens are distinct from the 

NAS-OTEC antigens in both their inter- and intraspecific aggregations (Imam 

et al., 1984). In general, the AE antigens isolated from the four

microbial sources used in this study are distinct in their interactions 

with the C. vulgaris cell surface. They are also distinct to the bacterial 

surfaces which the Chlorella cells interact with in mixed culture (Imam et 

al., 1984).

The specificity of microbial cell interactions observed by Imam et al. 

(1984) could provide an alternative explanation of other such interactions 

discussed here. It could be a further reason as to why certain bacteria 

attach to the heterocysts of certain cyanobacteria in the freshwater 

environment. Specificity of interactions could also explain why bacteria 

attach to certain diatoms but not to others. Further work of the type 

carried out by Imam et al. (1984) could be done with other microbial

interactions. Extraction and investigation of possible antigens involved 

in bacterial attachment to cyanobacterial heterocysts or phytoplankton 

could be done. The possible involvement of lectins in binding could be 

shown by addition of sugars to these microbial interactions.

(7.1.3). Summary

(1.). (i.). Bacteria are attached to the heterocysts of Anabaena

spp. in the freshwater environment (Paerl, 1976, 1978).

Staining by redox indicators (Paerl, 1978) and evidence of 

acetylene reduction in the heterocyst regions (Paerl, 1978;

Lupton and Marshall, 1981) suggests bacterial involvement in 

nitrogen fixation by Anabaena spp.. Heterocystic bacteria were 

also shown to utilize nutrients from Anabaena spp., so that a
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symbiotic relationship could exist (Paerl, 1978).

(ii.). Zoogloea spp. were associated with the mucilage

surrounding Anabaena flos-aquae. The bacterium produced tough 

colonies on agar media when grown in culture filtrates of A. 

flos-aquae. Zoogloea spp. may utilize an extracellular 

carbohydrate from the cyanobacterium, and nutrient cycling may 

occur between the microorganisms (Caldwell and Caldwell, 1978).

(2.). (i.). Conflicting evidence exists over bacterial attachment

to diatoms. Some authors report extensive bacterial attachment 

to diatoms, such as Thalassiosira spp. (Rheinheimer, 1985) whilst 

others report weak or little association (Droop and Elson, 1966). 

(ii.). Bacteria were attached to the diatom Amphiprora spp. in 

Antarctic sea ice (Sullivan and Palmisano, 1984). Some of the 

bacteria produced exocellular polymeric substances which may aid 

their attachment. A positive correlation between bacterial and 

chlorophyll 'a' concentration in the sea ice suggests existence 

of a symbiotic relationship between bacteria and the diatoms 

(Sullivan and Palmisano, 1984).

(3.). (i.). Flavobacterium sp. attached to Skeletonema costatum in

seawater cultures. The bacterium attached perpendicularly, 

forming "clusters" on the diatom. Further incubation caused 

coagulation of heavily bacteria-colonized diatom cells, resulting 

in formation of amorphous detrital particles (Kogure et al.,

1982).

(ii.). Bacterial attachment to phytoplankton in a Canadian 

coastal temperate fjord was inversely related to primary 

productivity. The physiological condition of the phytoplankton
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also affected bacterial attachment (Albright et al., 1986).

During growth of Dunaliella tertiolecta in batch culture,

attached bacteria were enmeshed in an organic matrix. Late in

the stationary phase, the culture was mainly composed of 

amorphous detritus-like material containing bacteria. This 

sequence of events also occurred in cultures of Prorocentrum 

minimum and S. costatum (Albright et al., 1986).

(4.). The dinoflagellate Cystodinium bataviense usually colonizes the

epineuston. Bacteria often colonize its cell wall, and they may 

affect the hydrophobicity of the cell wall. This could affect 

the stability and attachment of C. bataviense in the epineuston 

(Timpano and Pfiester, 1985).

(5.). Specific surface interactions occurred between the microalga

Chlorella vulgaris and three associated bacteria, Micrococcus sp. 

ASB1, E. coli strains NAS and NAS-OTEC (Imam et al., 1984). The 

effects of "adhesion-enhancing" antigens isolated from the 

bacterial cells on C. vulgaris adhesion was inhibited by 

different sugars. This suggests that associations between the 

bacteria and C. vulgaris are mediated by lectin-receptor 

interactions. The AE antigens isolated from the bacterial 

strains were distinct in their interactions with the C. vulgaris 

cell surface. They were also distinct to the bacterial surfaces 

which the Chlorella cells interact with in mixed culture (Imam et 

al., 1984).



(7.2). Attachment of Bdellovibrio bacteriovorus to host 

bacterial cells

Bdellovibrio spp. are a group of parasitic bacteria which are found in 

the marine environment, in soil and sewage. They were first discovered in 

1962 in the course of experiments designed to isolate bacteriophages from 

soil (Stolp and Starr, 1963). They attack host bacteria in a similar way 

to bacteriophages, by attaching to and lysing the bacterial cells. 

Plaques are produced on an agar overlay consisting of Bdellovibrio spp. and 

host bacteria, in the same way as for bacteriophages (Stolp and Starr, 

1963; Scherff et al., 1966).

Bdellovibrio bacteriovorus is the parasitic species which has been

most extensively studied. It is a Gram-negative, vibrio-shaped organism, 

with a diameter of 0.3pm and possesses a single polar flagellum of about

50mp diameter (Stolp and Starr, 1963).

Extensive work has been performed on the parasitic life cycle of

Bdellovibrio bacteriovorus. However, this sub-chapter will be concerned

only with the initial stage of the process, namely the attachment of the 

Bdellovibrio cell to its host bacterium.

Attachment of Bdellovibrio bacteriovorus to its host cell is initially 

a reversible process (Stolp and Starr, 1963). The Bdellovibrio cell can 

become detached from one host cell and become attached to another cell. 

The initial interaction of Bdellovibrio with its host can be described as a 

"recognition of prey", which is probably mediated by chemotaxis (Starr and 

Seidler, 1971; Starr and Huang, 1972). A violent collision occurs on 

impact between the highly motile Bdellovibrio cell and its host cell. 

This often results in the host cell being moved for a distance equivalent 

to several cell lengths (Stolp and Starr, 1963; Starr and Baigent, 1966).



When the Bdellovibrio is firmly attached to its host cell it often rotates 

about its own long axis, with speeds of up to 100 revolutions per second 

(Starr and Seidler, 1971). This is similar to an "arm-in-socket" type of 

motion and suggests a strong surface binding between Bdellovibrio and its 

host (Starr and Baigent, 1966).

The mechanism by which Bdellovibrio bacteriovorus attaches to its host 

cell is not properly understood, although some evidence has been reported. 

Abram et al. (1974) did a transmission electron microscopic study of the

penetration of B. bacteriovorus into host cells. They showed that the 

penetration pole of the Bdellovibrio cell was firmly associated with the 

cytoplasmic membrane of the host cell. They found that this firm contact 

persisted throughout the penetration process and at the end of this phase 

of the infection. Abram et al. (1974) also showed that electron opaque 

material, which was seen as fine strands, was present in the interspace 

between the two unit membranes of the Bdellovibrio cell and host cell. 

This material was seen to extend from the Bdellovibrio cytoplasmic membrane 

through its cell wall and interspace to the host cell membrane. Abram et 

al. (1974) suggested that these linearly oriented fine strands probably 

mediated the association between B. bacteriovorus and the host cell.

Similar fibres have been reported in other papers. Transmission 

electron micrographs of the infection of Erwinia amylovora, Pseudomonas 

tabaci and P. phaeseolicola by B. bacteriovorus clearly showed fibres 

attaching the anterior pole of the Bdellovibrio cell to the host cell 

membrane (Starr and Baigent, 1966). Further electron micrograph studies 

of the penetration of B. bacteriovorus into two strains of E. coli (Burnham 

al., 1968), showed several rigid fibres emerging from a "holdfast" 

structure present at the Bdellovibrio anterior pole. These fibres may be



involved in attachment to the E. coli cytoplasmic membrane. Abram and 

Davis (1970) also observed fibres emerging from the anterior end of B. 

bacteriovorus. They also suggested that these structures may support a

firm connection between the parasite and host cell. Negatively stained, 

shadow cast electron micrograph studies of the attachment of B. 

bacteriovorus to E. coli and Pseudomonas putida (Abram and Shilo, 1967) 

showed several rigid straight fibres emerging from the aflagellated pole of 

the Bdellovibrio cell. Similar rigid, spike-like filaments have been 

observed at the anterior pole of Bdellovibrio bacteriovorus by other 

authors (Shilo, 1969; Stolp, 1973), and have also been suggested to allow 

attachment to the host cell.

Starr and Seidler (1971) suggested that these fibre-like structures 

may be pili, which form sporadically at the cell anterior. They suggested 

that these structures may have a direct function in the attachment process 

(Starr and Seidler, 1971). Scherff et al. (1966) suggested the existence 

of an "infection cushion" which attaches the cell wall of B. bacteriovorus 

to the host’s cell wall. Starr and Huang (1972) suggested that the

filaments may be artifacts formed during the electron microscopic fixation 

and staining. This is unlikely, however, due to the number of similar 

reports of fibres on the anterior cell pole of B. bacteriovorus.

Cells of the cyanobacterium Microcystis aeruginosa were observed to be 

lysed by Bdellovibrio-like bacteria (Caiola and Pellegrini, 1984).

Transmission electron micrographs showed that both the cyanobacterium and 

extracellular bacteria were surrounded by glycocalyx material. The

Wlycocalyx probably acts as a bridge between the Bdellovibrio bacterium and 

its prey. In addition, the penetrated bacteria were mainly localized



between the cell wall and cytoplasmic membrane of Microcystis cells. 

Tubular structures were observed attaching the bacterial outer membrane to 

the cyanobacterial plasmalemma (Caiola and Pellegrini, 1984). Owing to 

their dimensions, they could not be identified as pili, fimbrae or 

flagella. It is possible that these structures could be the fibres 

previously observed on the Bdellovibrio anterior pole.

Further evidence that the Bdellovibrio cell associates with the host 

cell's cytoplasmic membrane has come from electron microscopic studies 

(Snellen and Starr, 1974). They described localized damage to the 

cytoplasmic membrane of Spirillum serpens VHL. This damage took the form

of a "scar" or "blister" which was either adjacent or fairly close to the

Bdellovibrio cell (see p. 200 ). The scar may be the site of attachment 

of the Bdellovibrio cell. However, it was uncertain whether this 

structure was a response of Spirillum to the presence or activity of the

Bdellovibrio cell or if Bdellovibrio itself was directly responsible for

its formation. They concluded that Bdellovibrio may inflict some 

localised damage to a host cell's cytoplasmic membrane whilst leaving the 

rest of the membrane intact (Snellen and Starr, 1974). Extensive 

"blebbing" or deformation, in the form of wrinkling, of the substrate cell 

wall next to the Bdellovibrio attachment site, was also reported for S. 

serpens VHL (Snellen and Starr, 1976).

During intraperiplasmic growth of B. bacteriovorus 109J in cells of 

Salmonella typhimurium and E. coli, the substrate cell surfaces became more 

hydrophobic (Cover and Rittenberg, 1984). At least two sites on the 

Bdellovibrio cell surface bound to octyl Sepharose beads, one of these 

being the cell pole opposite the flagellum which is the attachment site. 

The binding may be via a hydrophobic interaction between the Bdellovibrio
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Fig. 46 In te rac tion  of B d e l lo v ib r io  b a c te r io v o ru s  109D w ith
S p ir i l lu m  se rpens  VHL.

Fig. 46.1 A g lu ta ra ld e h yd e -fixe d  freeze -e tched  p re p a ra tio n  of
S p irillum  serpens VHL 40 m ins. a fte r a ssoc ia tion  w ith
Bdellov ib rio  bacteriovorus  has begun. The prom inent 
bleb (B) on the cell wall (cw), is shown to conta in  a 
bdellovibrio (bd). Note the blister site (arrow) on the plasma 
membrane (pm) adjacent to the bleb.

Fig. 46.2 & 46.3
G lutara ldehyde-fixed prepara tions s im ila r to 46.1. The
bdellovibrio  (bd) in 46.3 extends below the substra te  level
and very like ly is in contact w ith the b lis te r s ite  on the
plasma membrane (pm) of S. serpens VHL.

(Reproduced by permission from Snellen and Starr, 1974).



cell surface and the host's cytoplasmic membrane (Cover and Rittenberg,

1984).

Investigations have been carried out on the nature of a receptor 

molecule for Bdellovibrio in the envelope of the host cell. Varon and 

Shilo (1969) studied the attachment of B. bacteriovorus to wild type and

mutant strains of Salmonella spp. and E. coli. Mutant strains had 

deficiencies in the structure of the cell envelope lipopolysaccharide. 

Host bacteria lacking the O-specific side chains but containing a complete

"rough" core were better receptors than wild type or "smooth" strains

containing complete cores and outer repeating units. Absence of specific

sugars from the "rough" core or R-antigen of the host cell, reduced the 

numbers of attached Bdellovibrio cells (Varon and Shilo, 1969). Houston 

et al. (1974) found that as increasing amounts of the R-antigen were used 

in an assay, there was greater inhibition of attachment of B. bacteriovorus 

to S. typhimurium. This suggests that the receptors for Bdellovibrio are 

in the host cell's R-antigen (Houston et al., 1974). However, a masking

of receptors or steric hindrance of attachment may also explain the 

decrease in Bdellovibrio attachment (Varon and Shilo, 1980).

Chemeris et al. (1984) carried out investigations into carbohydrate-

lectin interaction during Bdellovibrio attachment. Sugars capable of

binding to lectins and so blocking the Bdellovibrio - host cell contact,

were added to the host-parasite mixtures. The sugars which inhibited 

attachment of B. bacteriovorus IBFM B-608 to Erwinia carotovora were 

mannose, glucose, arabinose, lactose, sucrose and rhamnose. When B. 

bacteriovorus 109 was combined with E. coli the inhibitory sugars were 

mannose, glucose and galactose. Both sets of host-parasite cells were 

treated with concanavalin A (con A) to clarify which of the partners was



the carrier of carbohydrate receptors (Chemeris et al., 1984). Treatment

of B. bacteriovorus 109 with con A had no effect on the interaction with E. 

coli B. Con A blocks the mannose receptors on the surfaces of E. coli 

cells, so preventing Bdellovibrio attachment (Chemeris et al., 1984).

Blocking of mannose and glucose-containing receptors in the cells of 

Erwinia carotovora had no effect on Bdellovibrio attachment. This is due 

to the presence of free host cell receptors in E. carotovora containing 

arabinose, lactose, sucrose and rhamnose (Chemeris et al., 1984).

Modification of the polysaccharide layer of E. carotovora with sodium

periodate slowed down the interaction with Bdellovibrio. The presence of

lectins on the Bdellovibrio cells for which carbohydrates in the host cells 

act as receptors appears to determine the specificity of interaction 

(Chemeris et al., 1984).

On a molecular level, Thomashow and Rittenberg (1978) found that 

during the initial stages of intraperiplasmic growth of B. bacteriovorus on 

E. coli, peptidoglycan of E. coli becomes acylated with long-chain fatty 

acids. The fatty acids, some from the murein lipoprotein in the E. coli 

envelope, were also covalently linked to the peptidoglycan of the 

developing bdelloplast (Thomashow and Rittenberg, 1978). Ruby and 

Rittenberg (1984) found that an early event in the infective cycle of B. 

bacteriovorus 109J was the attachment of diaminopimelic acid to the 

peptidoglycan of its prey. This process occurs over a range of prey 

genera, so that it is a general facet of the Bdellovibrio attack process.



Summary
1) Bdellovibrio bacteriovorus is a parasitic bacterium which occurs in 

the marine environment. Bdellovibrio multiplies in, and eventually 

lyses, its host cells (Stolp and Starr, 1963; Scherff et al., 1966).

2) (i.). B. bacteriovorus appears to associate firmly with the host

cell's cytoplasmic membrane during penetration. Fibres linking the 

Bdellovibrio anterior cell pole to the host's cytoplasmic membrane 

have been observed (Starr and Baigent, 1966; Burnham et al., 1968;

Abram and Davis, 1970; Abram et al., 1974).

(ii.). Localized damage, in the form of a "scar" or "blister" was 

observed on the cytoplasmic membrane of Spirillum serpens during 

association with Bdellovibrio (Snellen and Starr, 1974). This could 

be the site of attachment of the Bdellovibrio cell.

3) (i.). Bdellovibrio appears to bind to sugars in the "rough" core

of the outer cell envelope lipopolysaccharide of Gram-negative 

bacteria (Varon and Shilo, 1969). This was further shown by the 

inhibition of B. bacteriovorus attachment to S. typhimurium on 

addition of R-antigen (Houston et al., 1974).

(ii.). Sugar inhibition tests have suggested that lectins on the 

Bdellovibrio cell may bind to carbohydrate receptors in the cell 

envelope of certain host cells during the interaction (Chemeris et 

al., 1984).



chapter 8 Microbial adhesion to marine invertebrates

The adhesion of microorganisms to certain marine invertebrates, as 

with fish tissues, can be an important initial stage in causation of

invertebrate diseases. Additionally, the association of bacteria 

pathogenic to man with some invertebrates can spread human diseases.

There are, however, some cases where microbial adhesion to invertebrates

can be a symbiotic association, where both microorganism and invertebrate 

benefit. This quite extensive chapter considers microbial association 

with several invertebrate species, in an attempt to illustrate these 

points.

(8.1.). Wood-boring isopods

The exoskeleton of the marine wood-boring isopod Limnoria tripunctata 

is extensively colonized by microorganisms (Sleeter et al., 1978; Boyle and 

Mitchell, 1981, 1984; Zachary et al., 1983). A diverse population of rod

shaped, stalked and coccal bacteria are present on the outer surfaces of 

both Limnoria tripunctata and Limnoria lignorum. In particular, the 

pleopods and telson of these isopods are densely colonized (Sleeter et 

al., 1978). However, there are few colonizing bacteria on the mandibular 

apparatus and head surfaces of these isopods. These are closely pressed 

against the wood surface during boring (Sleeter et al., 1978). Many rod

shaped bacteria seen on the pleopods and telson produce large amounts of 

extracellular polymer (Boyle and Mitchell, 1981, 1984). Limnoria spp.

frequently groom their appendages by passing them over the mouth parts; 

this could result in ingestion of bacteria. Consequently, attached 

bacteria on these appendages may represent a food source for Limnoria spp.



(Boyle and Mitchell, 1981). Bacteria attached to the pleopods may utilize 

waste products and respiratory metabolites passed across the pleopod 

surfaces (Sleeter et al., 1978; Boyle and Mitchell, 1981). The

association of bacteria with Limnoria spp. may be symbiotic, as both the 

isopods and bacteria appear to benefit.

Bacteria have been readily observed in the digestive tract of L. 

tripunctata feeding on creosote-treated wooden pilings (Zachary and 

Colwell, 1979; Zachary et al., 1983). This resident microflora was

closely associated with the gut lining, and was separated by a peritrophic 

membrane from other ingested microorganisms. The bacteria attached to the 

gut lining by production of extracellular polysaccharide material (Zachary 

and Colwell, 1979). Some of these ingested bacteria are lysed and so serve 

as an additional nitrogen source for L. tripunctata. Additionally, the 

isopod may benefit from bacterial detoxification of the creosote 

hydrocarbons, so allowing greater boring activity into creosoted wood 

(Zachary et al., 1983). The creosote hydrocarbons could also provide 

nutrition for the bacteria, so that this could also be a symbiotic 

association.

However, species of L. tripunctata and L. lignorum exist which have a 

digestive tract free of attached microorganisms (Boyle and Mitchell, 1978; 

Sleeter et al., 1978). Zachary et al. (1983) found that isopods on non-

creosoted wood did not possess a gut microflora. Possible reasons for 

this are discussed later in this chapter (see p.225).

(8-2.). Crustacea - (1) Copepods

Most of the examples given here discuss the role of attached 

microorganisms in causing crustacean diseases.



Vibrio parahaemolyticus was found to adsorb to chitin particles and 

copepods from estuarine water suspensions (Kaneko and Colwell, 1975). The 

adsorption mechanism of V. parahaemolyticus to both surfaces may be 

electrostatic. Bacterial adsorption to copepods was less than to chitin 

particles. This may arise due to the wax layer on the copepod exoskeleton 

surface affecting the electrostatic interaction. Adsorption of V. 

parahaemolyticus to chitin is important in establishing an ecological niche 

for this bacterium (Kaneko and Colwell, 1975).

The human pathogen Vibrio cholerae associated in high numbers with 

calcium carbonate particles, but not with chitin (MacDonnell et al., 

1984). Strains of V. cholerae isolated from Chesapeake Bay and Bangladesh 

waters multiplied to high numbers when grown in association with live 

copepods (Huq et al., 1983; 1984b). The bacterium was seen to attach in

high numbers to the oral region of the copepods and the egg sac surfaces 

(Huq et al., 1983, 1984b; see p. 207). Low attachment values of V.

cholerae to dead copepods is backed up by the observations of low 

association with chitin by MacDonnell et al. (1984). Live copepods may 

excrete chemical attractant compounds specific for V. cholerae (Huq et al.,

1983). Attachment of V. cholerae to the copepod oral region suggests that 

the bacteria may act as a food source. V. cholerae may multiply when 

taken into the copepod gut, and subsequently be released back into the 

aquatic environment via faecal material. Attachment to the female copepod 

egg sac may also disseminate V. cholerae, as most planktonic copepods spawn 

fertilised eggs freely into the water (Huq et al., 1983, 1984b). This

association between V. cholerae and live planktonic copepods has 

implications for the epidemiology of cholera in endemic and non-endemic



Fig. 47

Fig. 48

Fig. 49

Colonisation of a copepod oral region after incubation  fo r 
36 hours in Patuxent R iver w ater and Vibrio cholerae  
CA401. Bar represents 10|im.

C o lonisation  of a copepod egg sac a fte r incuba tion  fo r 
36 hours in Patuxent R iver water and Vibrio cholerae  
CA401. Bar represents 50|im.

Attachment of Vibrio cholerae  CA 401 to a copepod egg 
sac surface and the presence of dividing cells (arrows).
Bar represents 1(im.

(Reproduced by permission from Huq et al., 1984b).



global areas. There is an epidemic of cholera in Bangladesh every year, 

commencing around September or October (Huq et al.r 1983, 1984b).

Zooplankton populations in Bangladesh waters increase significantly during 

this time. This increase is usually followed by the appearance of epidemic 

cholera in Bangladesh (Huq et al., 1983, 1984b). The observed colonisation 

of copepods by V. cholerae may well be an important means of spreading 

cholera in such locations.

However, although these observations show the role of planktonic 

copepods in dissemination of cholera in the aquatic environment, they do 

not show that this applies for other zooplankton. Huq et al. (1983, 1984b) 

only used planktonic copepods isolated from Chesapeake Bay (U.S.A.) and 

Bangladesh in their studies. V. cholerae may not attach so readily to

other zooplankton which may dominate planktonic copepod populations in 

other parts of the World. Consequently, although the spread of cholera 

through planktonic copepods is probably important in Bangladesh, this 

should not be assumed to apply in general.

The observed association between V. cholerae and live copepods also 

has ecological significance. Vibrio spp. are known to produce active

chitinase enzymes. Bacteria such as V. cholerae and V. parahaemolyticus 

could, therefore, be involved in the degradation of dead copepods in 

aquatic ecosystems (Huq et al., 1983).

The effects of water temperature, salinity and pH on attachment of V. 

cholerae serovar 01 to planktonic copepods was studied by Huq et al. 

(1984a). Maximum attachment of the bacterium to copepods was observed to 

occur at 30°C, with significantly less attachment occurring at 5 and 15°C. 

Increases in salinity from 5 to 15% gradually increased V. cholerae



attachment. Most of the copepod surfaces were colonized at a salinity of 

15%. An alkaline pH of 8.5 was optimal for attachment and multiplication 

of V. cholerae (Huq et al., 1984a). As observed by Huq et al. (1983), the 

highest concentration of attached bacterial cells was seen in the oral 

region. These results also have implications for cholera epidemiology in 

Bangladesh. The water temperature in Bangladesh during the zooplankton 

bloom often exceeds 25°C. This temperature allows extensive colonization 

of copepods by V. cholerae, despite the low salinities in much of the 

Bangladesh delta regions. A temperature range of 25-30°C gave the largest 

increase in numbers of V. cholerae attaching to copepods (Huq et al., 

1984a). The conditions existing in Bangladesh just after the monsoon 

season are ideal for extensive attachment of V. cholerae to copepods, and 

consequently for the spread of cholera (Huq et al., 1984a). However,

these particular conditions of pH, salinity and temperature may not be so 

suitable for V. cholerae attachment in other aquatic environments, or to 

other crustacea (see p . 221 ). Consequently, although these conditions may 

allow the spread of cholera in Bangladesh, they cannot be assumed to be 

generally suitable.

Some of these factors also affected V. parahaemolyticus adsorption to 

chitin and copepods (Kaneko and Colwell, 1975). Maximum adsorption in 

sodium chloride solution was found at 17% salinity. A pH range of 4-8 

gave high V. parahaemolyticus adsorption, whilst 50% adsorption occurred at 

PH 10 (Kaneko and Colwell, 1975). This suggests that a more acidic 

environment favours adsorption of V. parahaemolyticus to copepods. These 

results also suggest that other pathogenic bacteria favour different 

environmental conditions from V. cholerae for adhesion to copepods and 

other crustacea.



Bacterial colonization of other copepods has been observed in some 

recent publications. There has been no taxonomic identification of the 

fouling species, although filamentous bacteria are frequent.

Extensive bacterial colonization of the copepod Acartia clausi was 

observed by Nagasawa et al. (1985b). In particular, the joints of segments 

and legs and indented parts of the copepod body surface were densely 

covered by bacteria. The attached bacteria included short rods, long and 

slender rods and stalked bacteria. Some attached rod-shaped bacteria were 

surrounded by extracellular material (Nagasawa et al., 1985b). In

addition, a branch-like filamentous growth, possibly of the bacterium 

Leucothrix mucor or cyanobacteria, covered parts of the copepod surface. 

The presence of abundant copepods with associated bacteria is ecologically 

important for marine food chains, as copepods are important food sources 

for carnivores (Nagasawa et al., 1985b).

Extensive bacterial colonization of normal and abnormal specimens of 

the chaetognath Sagitta crassa was observed by Nagasawa et al. (1985a). 

Three main types of periphyte were observed on the chaetognath body 

surfaces : branch-like growths, filamentous bacteria and protruberances.

Abnormal chaetognaths were also colonized by large numbers of bacteria. 

Large colonies of bacteria were seen in some cases, and there was evidence 

of extracellular polymer production which would attach bacteria to tissues 

(Nagasawa et al., 1985a). Bacterial colonization was also observed in the 

muscles. The musculature of the body wall looked as if it had degenerated. 

Consequently, chaetognaths became knotty and flabby. Some chaetognaths had 

damage to their heads; extensive bacterial colonization was found on these



specimens. Attached bacteria thus appear to be agents of two different 

types of deformity in Sagitta crassa (Nagasawa et al., 1985a).

Bacteria are also involved in two different 'X'-diseases of Sagitta 

crassa (Nagasawa and Nemoto, 1984). One of these diseases again results in 

an abnormal and grotesque appearance of the chaetognath. The other ’X'- 

disease involves a bacterial attack on the ciliary sense organs of Sagitta 

crassa and Sagitta helenae. The sense organs become heavily infested with 

bacteria, and some ciliary hairs are covered by bacterial slime (Nagasawa 

and Nemoto, 1984).

Leucothrix mucor frequently attaches to living marine surfaces, 

including seaweeds (see Chapter 6), and several invertebrate species. 

Appendages and eggs of benthic marine crustacea are often populated with L. 

mucor. Eggs of the rock crab Cancer irroratus possess a dense fungal-like 

growth between them which is L. mucor (Johnson et al., 1971). The

planktonic copepods Acartia clausi and Pseudocalanus minutus develop 

growths of L. mucor on their appendages in aquaria without antibiotics. 

Eggs of the copepod Pseudocalanus americanus also develop dense filamentous 

growth of L. mucor (Johnson et al., 1971). Treatment with penicillin and

streptomycin reduces the numbers of L. mucor filaments attaching to the 

crustacea. In some crustacea, the bacterium acts as a food source 

(Johnson et al., 1971).

L. mucor frequently fouls the gills of shrimps, crabs and lobsters, 

and is usually accompanied by other epiphytes. Fouling of gills of these 

crustacea follows a similar sequence, with L. mucor and cyanobacterial 

attachment causing diatoms and detritus to become entangled. Stalked 

protozoa also attach to the crustacean gills or cuticle. This heavy



accumulation of microbial epiphytes on the gills is usually fatal. This 

next part discusses fouling of shrimps, crabs and lobsters by L. mucor and 

other microorganisms, and also gives some fouling control methods.

(8.2.). (2) Shrimps

The chemoreceptor setae of the brown shrimp Crangon crangon are 

infested by L. mucor filaments. Multifilament rosettes, characteristic of 

this epiphyte, can be seen arising from a holdfast structure on the setae 

(Shelton et al., 1975). The association did not appear to be pathogenic

in this case, as Crangon crangon could graze on the attached L. mucor 

filaments and obtain nutrients.

Certain species of shrimps, such as brown shrimp (Penaeus aztecus and 

vhite shrimp (Penaeus setiferus) develop filamentous gill disease. 

Leucothrix mucor has frequently been isolated from gills and pleopods of 

shrimps with this disease (Lightner et al., 1975; Lightner, 1977).

Filaments of L. mucor become entangled in the shrimp gills and trap

detritus, filamentous blue-green bacteria and diatoms. This causes a

green to dark brown discoloration of the gills. Death of shrimps with

this disease usually results from anoxia. This is due to heavy

accumulation of filamentous bacteria on the gills (Lightner et al., 1975).

L. mucor also appears to infest the brine shrimp Artemia salina. It

attaches by a holdfast to the gills, swimming appendages and antennae of 

the shrimp. However, the bacterial filaments do not penetrate into the 

cuticle (Solangi et al., 1979).

The peritrich ciliate Zoothamnion spp. also causes gill disease in 

penaeid shrimp (Lightner et al., 1975). The protozoan attaches to the



shrimp's cuticle by a stalk, which terminates in a circular plate of 9-12pm 

in diameter (Foster et al., 1978; see p.214). This basal disc adheres to

the cuticle without penetrating it or the underlying tissue. As with 

filamentous gill disease, death results from anoxia due to the presence of 

numerous colonies of Zoothamnion spp. on the shrimps (Lightner et al., 

1975; Foster et al., 1978).

Chemotherapy has been useful in the treatment of L. mucor infestations 

of crustacea. The commercially available algacide Cutrine-Plus was 

effective against filamentous gill disease of penaeid shrimp (Lightner and 

Supplee, 1976). Cutrine-Plus was administered to infested shrimps using 

both static and "flow-through" techniques. In 24hr "flow-through" 

treatments, a 0.1 ppm. concentration of Cutrine-Plus reduced L. mucor 

infestation of Penaeus californiensis. A 0.5 ppm Cutrine-Plus 

concentration over 4hr static treatments was equally effective (Lightner 

and Supplee, 1976; see p.217). Solangi et al. (1979) found that treatment 

with 100 ppm. of terramycin over a 2-day period effectively reduced L. 

mucor infestation of Artemia salina. The routine use of chemotherapeutic 

agents, such as Cutrine-Plus, in high density crustacean culture seems to 

be essential in controlling microbial diseases.

(8.2.). (3) Lobsters and Crabs

Certain cultured lobsters are extensively fouled by L. mucor, 

Particularly on the carapace (Sieburth, 1975; see p.215,216). The epibiont 

frequently occurs on the cultured American lobster Homarus americanus 

(Nilson et al., 1975; Fisher et al., 1978). Certain filamentous 

cyanobacteria, such as Oscillatoria spp. and Anabaena spp. also attach to



Fig. 50 SEM showing the attachm ent of Zootham nion  spp. to the 
cutic le  of penaeid shrim p by a stalk term inating in a basal 
disc. Arrows denote the edge of the attachm ent plate on 
the cuticle. Mag. x11,000.

(Reproduced by permission from Foster et al., 1978).
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Fig. 51 Carapace of three-day-old lobster, showing d ifferent stages 
in the life cycle of Leucothrix mucor. Mag. x2,600.



Fig. 52 Carapace of three-day-old lobster, showing m icrocolonies of 
Leucothrix mucor and rod-shaped bacteria. Mag. x2,770.

(Reproduced by permission from Sieburth, 1975).



TABLE 9

Results of 4-hr. static treatments using 0.5 ppm copper as Cutrine- 

Plus as a chemotherapeutic for filamentous gill disease of shrimps.

Time period No. examined Average filamentous

infestation of gills

Sept. 8-15 6 0.33

Sept. 16-30 6 0.66

Oct. 1-15 6 0.33

Oct. 16-31 6 0.33

Nov. 1-17 9 0.11

x = 0.40

(from Lightner and Supplee, 1976)



the gills of this lobster. Stalked protozoans such as Vorticella spp.

also occur heavily on egg or larval stages. Severe diatom accumulations 

which spread rapidly over the lobster gills can restrict metabolic exchange 

across the gill membranes. This causes mortality in juvenile stages of

the lobster. This massive infestation of gill tissues by filamentous

microorganisms kills lobsters (Nilson et al., 1975; Fisher et al., 1978). 

The antibiotics streptomycin and neomycin are effective in treatment of L. 

mucor infestations. Malachite green inhibits growth of bacterial and 

algal epibionts (Fisher et al., 1978). Heavy microbial fouling was

observed on eggs of the Dungeness crab Cancer magister (Fisher and Wickham, 

1976). Egg mortalities were higher as the fouling increased. These were 

higher in the more developed eggs. Once again, prominent fouling 

microorganisms included filamentous cyanobacteria such as Oscillatoria spp. 

and filamentous Leucothrix spp. Stalked protozoans were also observed in 

heavily fouled egg samples. Again, the filamentous microorganisms trapped 

detrital material, which increased the overall fouling of the eggs (Fisher 

and Wickham, 1976). As with microbial fouling of shrimp and lobster gills, 

egg mortalities are caused by anoxia. The reproductive capacity of the 

Dungeness crab must be affected by epibiotic fouling of the eggs (Fisher 

and Wickham, 1976).

Gills of the rock crab Cancer irroratus were also extensively fouled 

by bacteria, peritrich and suctorian ciliates and diatoms (Bodammer and 

Sawyer, 1981). The authors did not identify many species of fouling 

microorganisms. However, L. mucor appeared to attach to the gill 

epicuticle by lightly staining holdfast material. Other filamentous 

bacteria were enmeshed in extracellular polysaccharide material on the



gill surface. Some bacteria, possibly Caulobacter spp., attached to the 

gill by holdfast structures embedded in amorphous material. Certain 

attached filamentous bacteria showed narrow hyphal-like extensions 

resembling Rhodomicrobium spp. or Hyphomicrobium spp. (Bodammer and Sawyer, 

1981). Naviculoid diatoms were found associated with the extracellular 

material produced by fouling bacteria. A substratum, such as the crab 

gills, enriched with a bacterial polysaccharide slime layer, may attract 

fouling diatoms (see Chapter 3). As with shrimp and lobster gills, fouling 

bacteria and diatoms attracted dense detrital material between the gill 

lamellae. This extensive fouling would also greatly impair respiration in 

the rock crab. However, these epibionts may also serve as a food source 

for the grazing protozoa which were present.

From this account, it can be seen that there are similarities in 

epibiotic microbial fouling of gills of shrimps, lobsters and crabs. This 

also applies to Dungeness crab eggs (Fisher and Wickham, 1976).

The similarities in fouling sequence in these invertebrates suggests 

that there may be similarities in the substratum nature, that is, the gill 

surfaces. The presence of bacterial polysaccharide slime may attract 

fouling diatoms to the gills, as suggested by Bodammer and Sawyer (1981). 

An accumulation of microorganisms producing extracellular slime would 

easily trap detrital material. This would result in the heavy fouling 

observed on the gills. Certain antibiotics appear to effectively 

alleviate this fouling. However, further research on the effectiveness of 

antibiotics and other anti-fouling agents on invertebrate gill fouling is 

needed.

Examples are known where pathogenic microorganisms, usually present in



discharged sewage, associate with crab tissues. This can result in the 

spread of human disease. These will now be described.

Several potentially pathogenic bacteria were isolated from edible 

crabs collected near Kodiak Island in Alaska (Faghri et al., 1984). The

bacteria isolated included Yersinia enterocolitica, Klebsiella pneumoniae 

and Staphylococcus spp. The presence of these bacteria may have resulted 

from faecal contamination of the crab tissues with sewage. Examination of 

the rock crab shells by scanning electron microscopy revealed many cracks 

and fissures. Bacteria and fungi were attached within these fissures. 

Many attached coccoid-shaped bacteria appeared to be growing through the 

crab shells (Faghri et al., 1984). Chitinase-producing microorganisms, 

many of which were coccoid-shaped, could cause breaks in the shell surface. 

These openings through the shell provide one route by which microorganisms 

could reach and contaminate underlying muscle tissues. This in turn could 

result in food poisoning outbreaks from consumption of these crabs (Faghri 

et al., 1984) .

These observations raise questions over the safety of crabs collected 

from sea regions that receive untreated sewage effluent. They show that 

potential human pathogens in seawater can readily accumulate in crab 

tissues. The levels of contaminating, pathogenic microorganisms in the 

crab tissues must be measured by adequate microbiological tests. These 

tests could measure the levels of pathogenic bacteria before possible 

consumption of the crabs.

Eleven sporadic incidents of cholera occurred in Louisiana during 

1978. The disease was probably spread by the blue crab Callinectes
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sapidus. Vibrio cholerae must be associated with the blue crab for this 

to occur. Dietrich et al. (1984) studied the effects of certain 

environmental factors on attachment of V. cholerae to blue crab shell. The

organism adhered more readily at a temperature of 35°C than at 25°C. This

compares with maximum attachment of the bacterium to copepods occurring at 

30°C (Huq et al., 1984a; see p.209). a sodium chloride concentration in

seawater of 1.5 to 2.0% was optimum for bacterial adherence (see p. 222 ). 

Acidic to neutral pH values were more suitable for V. cholerae attachment

to blue crab shell (Dietrich et al., 1984). This bacterium did not

associate well with chitin compared to calcium carbonate particles 

(MacDonnell et al., 1984; see p.206 ). Approximately the same number of

V. cholerae cells attached to blue crab shell with some chitin extracted as 

attached to crude chitin (Dietrich et al., 1984). This suggested that 

other components of the crab shell, such as calcium carbonate, influence V. 

cholerae adhesion.

Dietrich et al's (1984) results show differences from those of Huq et 

ai. (1984a). An alkaline pH value was optimal for V. cholerae attachment 

to copepods (Huq et al., 1984a). This differs from the acidic to neutral

pH values which allowed higher V. cholerae adhesion to blue crab shell 

(Dietrich et al., 1984). A salinity of 15% was optimal for V. cholerae

adhesion to copepods (Huq et al., 1984a). This is higher than the 1.5 to 

2.0% salinity range which gave high bacterial adhesion to blue crab shell 

(Dietrich et al., 1984). These observations support the suggestion (see

p. 209 )f that different environmental conditions may be suitable for 

adhesion of V. cholerae to different Crustacea.

Vibrio cholerae was also observed to attach to the gut wall of



TABLE 10

Adherence of Vibrio cholerae to Crab Shells as a function of 
concentration after 3-hrs. incubation at 35°C.

Salt Concentration Cell counts per gram of shell®'

0% 5.0 x 107

0.5% 8.6 x 107

1.0% 1.7 x 108

1.5% 1.9 x 108

2.0% 2.2 x 108

2.5% 1.3 x 108

3.0% 1.1 x 108

3.5% 4.2 x 107

a Initial inoculum : 1.4 x 107 cells/g of shell. 

b Mean of two trials.

(from Dietrich et al., 1984).

salt

b .
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Callinectes sapidus (Huq et al., 1986). Examination of the crab guts

showed that the bacterium attached in greater numbers to the hindgut than 

the midgut. Huq et al. (1983, 1984b) showed that V. cholerae attached in 

high numbers to the oral region and egg sacs of planktonic copepods (see p. 

207). These observations, together with those of Huq et al. (1986), suggest 

that Crustacea are important reservoirs of V. cholerae in the aquatic 

environment. These findings are also significant for the transmission and 

epidemiology of cholera in aqueous environments. The observations of Huq 

et al. (1986) further emphasize the importance of adequate microbiological 

tests of seafood to detect levels of human pathogens.

(8.3.). Absence or presence of an intestinal microflora in 

certain invertebrates

Certain invertebrates, such as the oyster Crassostrea gigas and some 

wood boring isopods, do not possess an intestinal microflora. However, 

others such as the large deep-sea isopod Bathynomus giganteus do. Reasons 

for these differences are not fully known. Some examples will now be 

discussed.

An attached microflora was absent from the epithelial surfaces of the 

mantle cavity and alimentary tract of the adult oyster Crassostrea gigas 

(Garland et al., 1982). The external shell surface of this oyster,

however, was colonized by various diatoms and bacteria. Some anatomical 

and physiological aspects of suspension-feeding oysters could explain these 

results. The alimentary tract of Crassostrea gigas contains a ciliated 

epithelium and mucous layer. Some microorganisms can become enmeshed in 

the mucous layer. However, the rapid pumping of the ciliated epithelium 

will clear any settled microorganisms from the digestive tract. Release



of digestive enzymes from the digestive tract and crystalline style of the 

oyster may also inhibit microbial growth (Garland et al., 1982).

In contrast to these observations, Cristispira spp. spirochaetes were 

associated with the crystalline style of Crassostrea virginica (Tall and 

Nauman, 1981). Cristispira spp. were not observed on the styles of 

Crassostrea gigas by Garland et al. (1982). The style of Crassostrea 

virginica consists of a spongy inner layer covered by a smoother outer 

layer. Cristispira spp. were associated with both the inner and outer 

layers of the style. Some spirochaetes were observed emerging through and 

adhering to the style surface by blunt-tipped ends (Tall and Nauman, 1981). 

The presence of Cristispira spp. spirochaetes inside the style suggests 

that they may obtain nutrients from the style.

Digestive tracts of the wood-boring isopods Limnoria tripunctata and 

L. lignorum are free of attached microorganisms. This was observed by 

Boyle and Mitchell (1978) and Sleeter et al. (1978) using entire digestive 

tracts. Faecal pellets within the isopod digestive tracts are sparsely 

colonized by bacteria.

There was also a lack of surface microorganisms associated with the 

Arctic amphipod Boeckosimus affinis (Atlas et al., 1982). As with the

wood-boring isopods, no microorganisms were associated with the lining of 

the foregut, midgut and hindgut. However, some microorganisms were 

observed colonizing food particles within the amphipod's midgut. Low 

microbial populations were attached to faecal matter in the hindgut. There 

are possible reasons for the lack of a surface microflora. These 

amphipods burrow in sediment, and so become covered with sediment particles
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and microorganisms. However, when they move into seawater in search of 

food, these sediment particles and microorganisms may be removed during 

swimming. The amphipods used in this work (Atlas et al., 1982) were

captured on bait suspended in the water column. Consequently, the 

swimming period prior to capture could remove any attached microorganisms 

from the amphipod intestine.

On the other hand, the large deep-sea isopod Bathynomus giganteus 

possessed a diverse and dense digestive tract microflora (Boyle and 

Mitchell, 1982). Anterior sections of the isopod intestine contained a 

mixed microflora occurring in close association with the gut lining. 

Large numbers of bacteria and other microorganisms were seen associated 

with food material filling the gut lumen. Some stalked bacteria were seen, 

together with filamentous material which was probably bacterial 

extracellular polysaccharide (Boyle and Mitchell, 1982). This material

would allow bacterial adhesion. There was a distinctive microflora in the

digestive tract area posterior to the midgut sphincter. The population 

consisted almost entirely of a large, rod-shaped bacterium. These 

bacterial cells measured approx. 1.9 x 8.5(jm. They were firmly attached 

to the intestinal lining, and were associated with a large quantity of 

mucus-like material (Boyle and Mitchell, 1982).

Wood-boring isopods, oysters and an Arctic amphipod appear to have

digestive tracts which contrast with the tract of Bathynomus giganteus. 

The production of anti-microbial agents or digestive enzymes within these 

invertebrate groups could be possible reasons for the absence of a gut 

microflora. However, no such substances have been isolated from their 

guts. Certain colonizing bacteria may become resistant to such substances



a ciliated epithelium or by the passage of seawater through the gut are 

unlikely to occur in Limnoria tripunctata. Conditions such as pH,

temperature and nutrient availability within the digestive tract of 

Bathynomus giganteus may be more suitable for extensive microbial 

colonization.

(8.4.). Bacterial associations with octopuses and squids

Skin ulcers developed on the octopuses Octopus joubini and 0. briareus 

when they were reared in high density groups (Hanlon et al., 1984). The

ulcers first affected the skin epidermis of the octopuses, before 

penetrating down through the dermis and underlying muscle tissues. These 

ulcers were usually fatal if untreated. Bacteria were found in moderate 

to high densities on diseased octopus skin epidermis. Numerous bacteria 

were embedded in a mesh of polymeric fibres when the ulcers penetrated the 

muscle tissues. These fibres may have been extracellular polysaccharide 

material, which would aid bacterial adhesion to the diseased tissue. The 

bacterial mat in the ulcers was similar in appearance to the floe produced 

by Vibrio alginolyticus in liquid culture. Five bacterial species were 

isolated from octopus ulcers, including V. alginolyticus, Vibrio 

parahaemolyticus and Pseudomonas stutzeri. The ulcers were successfully 

treated with the antibacterial agent nufurpirinol. This further suggests 

that skin ulcer formation was a bacterial disease, with few other 

microorganisms involved (Hanlon et al., 1984).

The accessory nidamental gland of the female squid Loligo pealei is 

thought to play a secretory role in the reproductive system. The tubules 

of the accessory gland contain a dense population of rod- and coccoid-
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shaped bacteria (Bloodgood, 1977). There was some evidence in electron 

micrographs of extracellular polymeric fibrils being produced by these 

bacteria. This material would aid their adhesion in the nidamental gland. 

The accessory glands of sexually mature squids contain a mixture of red, 

white and yellow tubules. In each case, the colours of tubules were due 

to the colours of the bacterial populations present. This was particularly 

true of the red coloured tubules. Repeated washings of cell pellets of 

the red-pigmented colonizing bacteria did not remove the colour (Bloodgood, 

1977). The red coloration of the squid nidamental gland makes it sexually 

attractive. Consequently, the red pigmented bacteria within the tubules 

are in turn making the squid sexually attractive.

This example shows that bacteria colonizing a marine invertebrate 

serve a commensalistic function. The red pigmented bacteria in the 

accessory nidamental gland tubules make the squid more sexually attractive. 

Consequently, Loligo pealei benefits, in reproductive terms, from these red 

pigmented bacteria. There are other examples of possible symbiotic 

relationships resulting from microbial associations with marine 

invertebrates. The existence of these relationships have not all been 

proved experimentally, but have been mainly derived from electron 

microscope observations. Some of these will now be discussed.

(8.5.). Role of microbial adhesion in symbiosis with marine invertebrates

Most of these examples relate to microbial associations with deposit- 

feeding and deep-sea invertebrates. However, an interesting example of 

symbiosis between a sponge and marine bacterium is also mentioned.
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The gutless marine oligochaete Phallodrilus leukodermatus possesses a 

narrow subcuticular space between the epidermis and cuticle. This 

subcuticular space contained numerous aggregations of rod—shaped bacteria 

(Giere, 1981) . Some of these bacterial cells were close to the 

oligochaete's cuticle. The cells would probably aggregate by production 

of extracellular polymeric material, although large amounts were not 

observed (Giere, 1981) . As these bacteria appear to be well integrated in 

the anatomy of Phallodrilus leukodermatus, a symbiotic relationship seems 

possible. The bacteria could act as nutritional intermediaries for the 

oligochaete. They could take up dissolved organic compounds for their own 

use, whilst producing substances needed for metabolism of Phallodrilus 

leukodermatus (Giere, 1981). This relationship may not be symbiotic, 

however, as none of the bacteria were attached to the oligochaete tissues. 

Closer association between the bacteria and oligochaete would allow 

nutrient exchange to occur more easily.

Another marine oligochaete, Tubificoides benedii found in a sulphide- 

rich sediment habitat, was colonized in the posterior region by filamentous 

epibacteria (Dubilier, 1986). The bacteria were embedded in the 

oligochaete cuticle, although they did not penetrate into the epidermis. 

Collection sites of densely colonized oligochaetes smelt strongly of 

hydrogen sulphide. This suggested that the epibacteria could be 

filamentous sulphur-oxidizing bacteria such as Leucothrix spp. There was 

no evidence of the colonization being pathogenic. The bacteria were never 

observed in the vicinity of cuticle lesions. There was no change in the 

physical condition and behaviour of colonized worms (Dubilier, 1986). 

These two observations suggest that this bacterium is unlikely to be an 

ectoparasite of Tubificoides benedii. The presence of bacterial



colonization on the posterior end of the oligochaete suggests existence of 

an interaction. T. benedii is usually oriented in the sediment with its

tail sticking out. This could benefit the colonizing bacteria by giving 

them an aerobic environment. An influx of essential nutrients, such as 

oxygen, sulphate and low molecular weight organics, from seawater alongside 

the oligochaete, may also benefit the bacteria. This interaction, 

therefore, appears to be commensalistic (Dubilier, 1986). Possible 

benefits for T. benedii are not fully understood. Further investigations 

are needed to show whether the association is a symbiotic one.

A previously undescribed archaeogastropod limpet was found on 

hydrothermal vents in the N.E. Pacific. Dense aggregations of filamentous 

bacteria were observed on the epithelium of the limpet gill (de Burgh and 

Singla, 1984). Densely-staining material was observed in the space 

between the bacterial cell walls and the gill epithelial cell membrane. 

This was probably bacterial extracellular polymeric material which would 

allow adhesion of the bacterial cells to the limpet gill. Bacteria 

similar in appearance to those on the gill were also observed in transverse 

sections of the limpet's gut (de Burgh and Singla, 1984). These 

observations suggest the existence of a mutualistic relationship. The 

filamentous bacteria on the gill surface may benefit from the exchange of 

essential nutrients across the gill. The limpet could benefit from the 

release of dissolved organic molecules as by-products of bacterial 

metabolism. These substances would be absorbed by the gills. 

Endocytosis of bacteria into the gill tissues was also observed. The 

bacteria were seen to pass into lysosomes, in which they were digested (de 

Burgh and Singla, 1984). Digestion of the endocytosed bacteria would also
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benefit the limpet. A further benefit for the limpet may arise from 

digestion of bacteria seen in the gut. It is uncertain how these bacteria 

are taken into the gut, although they could be orally ingested (de Burgh 

and Singla, 1984). Further electron microscopic investigations of possible 

bacterial colonization of the limpet's oral region are needed to study 

possible ingestion.

Individuals of the deposit-feeding echinoid Echinocardium cordatum 

possessed irregular to round-shaped nodules in their intestinal caeca (de 

Ridder et al., 1985). The nodules consisted of a central detrital core

surrounded by coats of actively growing bacteria and empty bacterial 

sheaths. Four main types of bacteria were observed around the core. The 

included chains of large rod-shaped bacteria which formed the main coat of 

the nodules and rosette-forming bacteria. The large rod-shaped bacteria 

possessed sheaths which contained ferric oxide and some polysaccharide 

Material. The sheaths probably help bacterial adhesion in the nodule's 

core. The bacterial rosettes were attached to chains of large, unsheathed 

bacteria (de Ridder et al., 1985). A symbiotic relationship could exist

between the bacteria around the core and the echinoid, although it has not 

been experimentally proven. Some hypotheses have been suggested which 

will now be discussed.

The central detrital core in the nodules may provide energy for the 

colonizing bacteria and the echinoid (de Ridder et al., 1985). 

Experimental work which could prove this would include isolating the 

Leptothrix-like bacteria and core detrital material to carry out bacterial 

growth and metabolism experiments. The bacteria and detrital material 

could firstly be separated by a technique such as ultracentrifugation.



Following this, they would be grown in a medium containing the detrital 

material alone. A control experiment using a medium containing detrital 

material together with additional, essential growth supplements would also 

be needed. Comparisons would then be made of bacterial metabolism in each 

of the media, by, for example, bacterial protein measurements and lipid 

content assays. This would show whether the Leptothrix spp.-like bacteria 

are utilizing the detrital material. A further experiment could show 

whether the echinoid, as well as the sheathed bacteria, are obtaining 

energy from the detrital core. This would involve measuring ATP levels in 

isolated E. cordatum caecal tissue which contains nodules. Similar 

control measurements would be made in echinoid caecal tissue from which 

nodules were extracted. However, the disadvantage of this method is that 

any increased ATP levels in caecal tissue may not necessarily indicate 

utilization of core organic material. Increased ATP levels may result 

from aerobic respiration or lipid metabolism in the caecal tissues. An 

alternative method would involve 14C-labelling of the nodule core organic 

material. After a few hours incubation, caecal tissue would be isolated 

and 14C-levels measured. The presence of 14C in surrounding caecal tissue 

would indicate possible assimilation of detrital material into carbohydrate 

or lipid. A control experiment would be set up by 14C-labelling E. 

cordatum caecal tissues from which nodules were removed.

Further evidence of possible symbiosis comes from previous 

observations of high quantities of ferric phosphate in the echinoid's 

intestinal connective tissue. The investigation by de Ridder et al. 

(1985) confirmed the presence of oxidized iron deposits in the echinoid's 

tissue. E. cordatum may benefit from bacterial iron oxidation preventing 

reduction of intra-digestive sediment to form hydrogen sulphide in the



hindpart of the gut (de Ridder et al., 1985). However, this theory fails

to allow for the possibility that iron oxidation may provide the necessary 

anaerobic conditions in the hindgut for reduction of sediment sulphate to 

hydrogen sulphide (see Chapter 11). An experiment which could show this 

would involve removing hindgut tissue from echinoids containing nodules, 

and ligaturing it at either end to keep it closed. The hindgut tissue 

could then be placed on a small iron sheet to show iron sulphide formation. 

The formation of a black precipitate on the iron sheet, representing iron 

sulphide, would indicate hydrogen sulphide formation within the hindgut. A 

control experiment would involve using hindgut tissue from echinoids whose 

nodules were removed.

Deposits of ferric iron were also found in the sheaths of the rod

shaped bacteria in the nodule coats. The bacteria may benefit from iron 

oxidation for the following reasons. Leptothrix- spp. bacteria produce 

sheaths of inorganic materials, containing iron or manganese oxides which 

facilitate their adhesion to surfaces (see Chapter 1.2, p. 26). Formation 

of further ferric iron within the bacterial sheaths would allow production 

of more adhesive material. This, in turn, may either allow firmer 

adhesion in the nodules or greater numbers of bacteria to attach. 

Experiments to test these possibilities would involve isolating nodule 

bacteria and culturing them in a medium containing iron. A control 

experiment would involve growing the bacteria in a medium without iron. 

Attachment of the cultured bacteria to glass slides could then be observed 

by light microscopy. These observations would show whether oxidation of 

iron in the medium leads to higher numbers of Leptothrix spp.-like bacteria 

attaching. Increased firmness of adhesion could be tested by subjecting
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the glass slide to shear such as that produced by a water jet. If the

nodule bacteria benefit more from iron oxidation than does the echinoid,

then the relationship could be regarded as being commensalistic rather than

symbiotic. The matter clearly needs further investigation.

A further interesting example of possible symbiosis arose from the

isolation and characterization of a lectin from the marine sponge 

Halichondria panicea (Muller et al., 1981). Bacteria of the species

Pseudomonas insolita were also isolated from this sponge. The lectin 

consisted of 80.7% protein and 14% carbohydrate. Addition of the lectin 

to a culture of P. insolita caused rapid growth. Other lectins, such as 

concanavalin A, did not exhibit a growth-promoting effect. The lectin 

isolated from the sponge did not affect growth of P. insolita isolated from 

six other species of marine sponges.

These observations led Muller et al (1981) to suggest the possibility 

of a lectin-mediated symbiotic relationship existing between the sponge and 

P. insolita. However, there is a weakness in this suggestion. Muller et 

al. (1981) only showed the benefits of this lectin to the bacterium. They 

did not demonstrate that Halichondria panicea benefits. Further 

experimental work would be required to show this.

There is another interesting aspect of this work. Certain lectins 

are known to be involved in a re-aggregation of sponge cells (see refs, in 

Muller et al., 1981). If cells of P. insolita are added to a suspension of 

dissociated H. panicea cells, then the bacteria may bind to sponge cell 

lectins. The bacteria would be able to bind to lectin molecules on the 

surfaces of several sponge cells. This would ultimately lead to clumping 

of the separated H. panicea cells, which would in turn result in sponge



cell re-aggregation. This process is similar to viral haemagglutination, 

where viruses bind to red blood cells by haemagglutinins present in the 

virion. This results in clumping of the red blood cells. However, it is 

also possible that bacteria binding to sponge cell lectins may block any 

interaction between the sponge cells leading to re-aggregation.

Muller et al. (1981) provided further evidence which suggested that 

there is an interaction between P. insolita and the sponge cell lectin. A 

polysaccharide-containing fraction was isolated from the cell envelope of 

P. insolita. Addition of the polysaccharide fraction to a suspension of 

lectin and the bacteria abolished the growth promoted by the lectin. The 

polysaccharide may bind to receptor molecules on the P. insolita cell 

surface which themselves bind to the sponge cell lectin. The 

polysaccharide may therefore prevent the bacterium binding to the lectin. 

Muller et al. (1981) suggested that the H. panicea lectin may trigger 

bacterial nucleic acid synthesis after binding to the cell wall. Hence, 

the polysaccharide material, by blocking the bacterium-lectin interaction, 

may diminish growth of P. insolita by preventing bacterial protein 

synthesis.

There is further experimental work which could be done to show that an 

interaction occurs between P. insolita and the sponge cell lectin. These 

would include 14C-labelling experiments. 14C isotopes would be added to a 

suspension of the lectin and P. insolita. They would label any 

polysaccharide-containing material on the bacterial cell surface which may 

bind to the lectin, as well as labelling the carbohydrate material in the 

lectin. Autoradiographs would show any bacterium-lectin interaction. 

Other work would involve use of enzymes which could inhibit any



interaction. Enzymes, such as amylases, lipases or proteinases, could be 

added at specific concentrations to suspensions of the lectin and 

bacterium. If the enzymes block the interaction, then bacterial growth 

will cease. The enzymes might completely digest or alter the bacterial 

cell surface component which binds to the lectin or the lectin itself. 

Either process would certainly block the bacterium-sponge lectin 

interaction. Further work could involve addition of certain sugars, such 

as L-fucose, D-galactose or D-galacturonic acid, which could be lectin or 

bacterial receptor analogues, to bacterium-lectin suspensions. As with 

the enzyme work, any block in the interaction would be shown by diminished 

bacterial growth. The sugars would block the interaction either by 

binding to the chemically related binding site on the sponge lectin, or to 

the bacterial cell surface component. Further experimental work, using 

antibodies targeted against specific antigens on the bacterial cell surface 

or the sponge lectin, could ultimately isolate the specific components 

involved in the interaction. The antibodies would either bind to bacterial 

cell surface antigens or to antigens in the sponge lectin, so again 

blocking the interaction.

Muller et al. (1981) also showed that erythrocytes bound to H. panicea 

cells to form rosettes. Rosette formation was inhibited by 80% upon 

addition of D-galacturonic acid to the erythrocyte-sponge cell suspension. 

These observations suggest that lectin molecules on the sponge cell 

surfaces interact with the erythrocytes resulting in rosette formation. 

It should therefore be possible, in the same way, to set up P. insolita - 

panicea suspensions. Bacteria binding to sponge cells could then be 

observed by light or phase-contrast microscopy. These observations could



be further enhanced by, for example, acridine orange straining. This 

would further show that an interaction occurs between lectin molecules on 

the sponge cells and P. insolita cells. This in turn could allow further 

sugar or enzyme or antibody inhibition tests to further study the 

interaction mechanism.

Overall summary of Chapter

This extensive Chapter has discussed several important ecological 

aspects of microbial attachment to marine invertebrates. The major points 

shown, together with the key cited papers, are as follows.
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1) Microorganisms frequently extensively colonize the pleopods and telson 

of wood-boring isopods, such as Limnoria tripunctata (Sleeter et al., 

1978; Boyle and Mitchell, 1981). These microorganisms may act as a 

food source for the isopods. Bacteria are also found associated with 

the gut-lining of isopods feeding on creosote-treated wood (Zachary et 

al., 1983).

2) Vibrio cholerae attaches in high numbers to the oral region and egg 

sacs of planktonic copepods (Huq et al., 1983,1984a,b). The pathogen 

may subsequently be released back into the aquatic environment. An 

increase in zooplankton populations is usually followed by a cholera 

epidemic in Bangladesh. Attachment of V. cholerae copepods is 

affected by salinity, water temperature and pH (Huq et al., 1984a).

3) Extensive bacterial colonization of other copepods, such as Acartia

clausi, has also been observed (Nagasawa et al., 1985b). Some

attached bacteria produced extracellular material; filamentous 

Leucothrix mucor were also attached to the copepod surface.

4) (i) Leucothrix mucor frequently attaches to gill tissues of shrimps,

lobsters and crabs (Lightner et al., 1975; Nilson et al., 1975;

Bodammer and Sawyer, 1981). Attachment of this bacterium to gill 

tissues is usually accompanied by attachment of diatoms, cyanobacteria 

and detritus. Stalked protozoa such as Zoothamnion spp. (Foster et 

al., 1978) and Vorticella spp. (Fisher et al., 1978) also attach to

gills of these invertebrates. This heavy accumulation of microbial 

epiphytes on these invertebrate gills causes death by suffocation.
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(ii) Chemotherapy can control L. mucor and other microbial 

infestations of these invertebrate gills. The algacide Cutrine-Plus 

was effective at controlling L. mucor infestation of penaied shrimp 

gills (Lightner and Supplee, 1976). Antibiotics, such as terramycin, 

streptomycin and neomycin are also effective at controlling L. mucor 

infestations of shrimps and lobsters (Fisher et al., 1978; Solangi et

al., 1979).

5) Vibrio cholerae attaches to the shell of the blue crab Callinectes 

sapidus. Attachment was also affected by temperature, pH and 

salinity values (Dietrich et al., 1984). This bacterium also

attaches to the gut wall, particularly the hindgut, of the blue crab 

(Huq et al., 1986). These findings are also important for the

transmission and epidemiology of cholera in the aqueous environment.

6) (i) Certain marine invertebrates appear to lack an attached gut 

microflora. These include the oyster Crassostrea gigas (Garland et 

al., 1982), wood-boring isopod Limnoria tripunctata (Boyle and 

Mitchell, 1978) and the amphipod Boeckosimus affinis (Atlas et al., 

1982). Production of anti-microbial agents within the guts or removal 

of attached microorganisms by seawater could be possible reasons for 

absence of a microflora.

(ii) In contrast, the large deep-sea isopod Bathynomus giganteus 

possesses a rich and diverse gut microflora (Boyle and Mitchell, 

1982). The tract area posterior to the midgut sphincter contained a 

large rod-shaped bacterial morphotype which was firmly attached to the 

gut lining. Conditions within this isopod's digestive tract may be
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more suitable for microbial colonization.

7) Fatal skin ulcers developed on the octopuses Octopus joubini and 0. 

briareus when they were reared in high density groups. Bacteria 

isolated from the diseased tissue included pathogenic Vibrio spp. 

Numerous bacteria were embedded in a mesh of polymeric fibres, 

probably extracellular adhesive, within the ulcer tissue ( Hanlon et 

al., 1984).

8) The tubules of the accessory nidamental gland of the squid Loligo 

pealei contain a large population of rod- and coccoid-shaped bacteria. 

The accessory glands of these squids contain red pigmented tubules. 

The colour was due to the red pigmented bacteria present. The red 

colouration of the squid nidamental gland makes it sexually 

attractive. Consequently, the red pigmented bacteria in the tubules 

are making L. pealei sexually attractive. These pigmented bacteria 

are serving a commensalistic function for the squid (Bloodgood, 1977).

9) Several examples are known of microbial associations with marine 

invertebrates which lead to possible symbiotic relationships. The 

existence of these relationships have not all been proved 

experimentally. Further experimental work is required to prove the 

hypotheses.

(i) The marine oligochaete Tubificoides benedii, found in a sulphide- 

rich sediment habitat, was colonized by filamentous epibacteria in the 

posterior region (Dubilier, 1986). There was no evidence of the 

colonization being pathogenic. The existence of an aerobic 

environment, together with an influx of essential nutrients from



seawater, would benefit the bacteria. This appears to be a 

commensalistic relationship.

(ii) Dense aggregations of filamentous bacteria were observed on the 

gill epithelium of an archaeogastropod limpet (de Burgh and Singla, 

1984). Bacteria similar to those on the gill were also observed in 

the limpet's gut. The bacteria on the gill surface may benefit from 

the exchange of essential nutrients across the gill. The limpet, in 

turn, could benefit from the release of dissolved organic molecules as 

by-products of bacterial metabolism. Bacteria were also observed to 

be endocytosed into lysosomes in the gill tissues. Subsequent 

digestion of the bacteria would also benefit the limpet (de Burgh and 

Singla, 1984).

(iii) Individuals of the deposit-feeding echinoid Echinocardium 

cordatum possess irregular to round-shaped nodules in their intestinal 

caeca. These nodules consisted of a central detrital core surrounded 

by coats of actively growing bacteria (de Ridder et al., 1985). The 

bacteria included Leptothrix spp.-like rod-shaped bacteria possessing 

ferric oxide sheaths. The central detrital core in the nodules may 

provide energy for the echinoid and the bacteria. Further 

experimental work is needed to prove this. High quantities of 

oxidized iron were found in the echinoid's intestinal connective 

tissue. E cordatum may benefit from bacterial iron oxidation 

preventing reduction of intradigestive sediment to form hydrogen 

sulphide in the gut hindpart. The Leptothrix-like bacteria could 

themselves benefit from iron oxidation producing more adhesive 

material in their sheaths. This could either allow firmer adhesion



or greater bacterial numbers to attach in the nodules.

A lectin containing protein and carbohydrate was isolated from the 

marine sponge Halichondria panicea. This lectin caused rapid growth 

of Pseudomonas insolita, which was isolated from the sponge (Muller et 

al., 1981). This suggested the existence of a symbiotic

relationship, although only the bacterium appeared to benefit from it. 

P. insolita may be involved in re-aggregation of dissociated sponge 

cells by binding to lectin molecules on several sponge cells. 

Addition of a polysaccharide-containing fraction from the P. insolita 

cell envelope to a bacteria-lectin suspension abolished the bacterial 

growth-promoting effect. This suggested that the bacterial 

polysaccharide may block the interaction between P. insolita and the 

sponge cell lectin (Muller et al., 1981). Further experimental work

is needed to study the mechanism of this interaction, and to reveal 

any benefits which H. panicea as well as P. insolita may receive from 

this association.



SECTION 3.

ATTACHMENT OF MICROORGANISMS TO 
NON-LIVING MARINE SURFACES
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chapter 9 Microbial attachment to sediment particles

(9.1.). Attachment of marine microorganisms and role in

formation of microbial mats and sediment stability 

This chapter considers observed mechanisms, and the ecological 

importance of, microbial attachment to sediments. The first part 

describes observations of marine microbial attachment and its importance in 

the weathering of sediment particles and microbial mat formation. The 

second part discusses the importance of the attached sediment microflora in 

the nutrition of benthic invertebrates.

(9.1.1.). Observations of marine microbial attachment 

to sediment particles 

Waksmaan and Vartiovaara (1938) made some of the earliest observations 

of microbial adsorption to marine sediments. They found that marine muds 

exerted an adsorptive effect upon bacteria. They added marine mud samples 

to flasks containing liquid bacterial cultures, which were then shaken. 

The bacterial populations in the supernatant liquid decreased over 21 hrs., 

indicating adsorption by the muds. Sand, however, had little adsorptive

action upon either mixed or pure cultures of bacteria.

Meadows and Anderson (1968) made light microscopic observations of the 

distribution, types and abundance of microorganisms attached to littoral 

and sublittoral sand grains. Attached microorganisms were often present 

as colonies, consisting of 5-150 cells per colony. Many colonies

contained one microbial species. Some colonies were surrounded by

staining material, whilst others were unstained. The staining surrounding 

the colonies may represent microbial extracellular adhesive material



(Meadows and Anderson, 1968). Stained colonies were predominantly found

in hollows on the sand grains. Large areas of the grain surface in 

between the colonies were completely bare. These observations suggest 

that microbial distribution may be related to the microtopography of the 

sand grain surface. Microorganisms appear to preferentially colonize 

sheltered parts of the grains. Coccoid bacteria, diatoms and blue-green

bacteria were the main microorganisms observed on grains from the sediment 

surface. Meadows and Anderson (1968) also performed abrasion experiments 

to study the effects of agitation of the sand grains on the microbial 

distribution. Grains in flasks were shaken daily over a four week period, 

whilst control flasks were left unshaken. At the end of this period, some 

microbial colonies had appeared on the open surfaces of sand grains from 

the non-shake flasks but not from the shake flasks. However, 

microorganisms were still attached in the sheltered parts of grains from 

the shaken flasks. This shows that abrasion must be an environmental 

factor limiting attached microorganisms to hollows on sand grains (Meadows 

and Anderson, 1968). Abrasion may explain the lack of bacterial 

adsorption by sand grains added to shaken liquid bacterial cultures 

observed by Waksmaan and Vartiovaara (1938).

Wiese and Rheinheimer (1978) made similar observations of microbial 

colonization of quartz grains using scanning electron microscopy. They

also observed a correlation between the site and density of bacterial 

colonization and the microtopography of individual sand grains. Quartz

grains with a medium or weak degree of roundness showed the highest

microbial population density. The highest density of colonizing bacteria 

was found in the vicinity of detrital depositions. These were also mainly 

observed in sheltered regions of the quartz grain, such as surface



fissures, conchoidal breakage sites and slight indentations. Diatoms were 

also attached in these sites (Wiese and Rheinheimer, 1978). Rod-shaped 

bacteria were attached to exposed parts of the grains which were free of 

detritus. Coccoid bacteria were observed in microcolonies of 5-20 cells, 

large colonies of 150 cells, such as those seen by Meadows and Anderson 

(1968), were rarely observed. Cocci were often attached to diatom 

frustules. Disc-shaped bacteria were also firmly attached to the grain 

surface. They produced protrusions which appeared to be polymeric threads 

excreted by the cells. However, the diameter of some of these appendages 

was so small that they could have been fimbrae. Bacteria which attached 

by polymer production were often associated with detrital matter. 

Filamentous, net-shaped polymeric structures were often observed. Cocci 

were often "tied" to these nets without having direct contact with the 

grain surface. This indirect mode of attachment allows these bacteria to 

use the major part of their cell surfaces to absorb nutrients from the 

interstitial water.

Observations of microbial colonization of silicate sand grains 

differing in microtopography also showed differences in biomass and 

community structure after eight weeks exposure to running seawater (Nickels 

et al., 1981a). Scanning electron microscopy showed that a diverse

microflora was sheltered in surface irregularities on some sand grains. 

Rod-shaped bacteria and diatoms were observed on these grains. Biomass 

measurements showed that phospholipid content, which was a measure of 

bacterial biomass, increased as the silicate grain shape became more 

irregular. Quantities of a-linoleic fatty acids, which was a measurement 

of algal populations, increased progressively like the bacteria. 

Increasing smoothness of the silicate grain surface resulted in a marked
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decrease in bacterial and microeukaryotic populations. This was shown by 

a decrease in the total microbial biomass measured as phospholipid and 

extractable palmitic acid. Sand particles with rounded edges but with 

cracks and crevices on the grain surfaces had higher microeukaryotic 

populations than on the smooth glass beads. This was shown by increased 

amounts of polyenoic fatty acids.

Nickels et al. (1981a) also investigated the effects of location on 

microbial colonization of angular sand grains. Sand grains were incubated 

at the surface of a running seawater microcosm or taken from the sea bottom 

at 32m.. The angular sand grains incubated at the surface in flowing 

seawater showed a different microbial population than those taken from the 

sea floor. Sand grains from the running seawater microcosm had higher

amounts of cyclopropane fatty acid-containing bacteria than grains from the 

sea floor. Microeukaryotes were found in greater amounts on sand grains

from the sea bottom. Surface abrasion, which would tend to occur more 

often on the bottom sediment than in the running seawater tanks, probably 

would not have caused the community changes. This is mainly because the 

bottom sediment particles supported the richest microbial assemblies. 

Bacterial grazing by benthic invertebrates may have altered the community 

structure giving higher microeukaryotic populations (Nickels et al., 

1981a). ' However, the bacterial communities present on surface sand grains 

in the microcosms exposed to running seawater may not occur in the natural 

environment. Surface abrasion caused by tidal and wave action could alter 

the bacterial populations on the sand grains more than in the seawater 

microcosms. Bacterial populations in the natural environment may be much 

lower than those shown by Nickels et al. (1981a).

De Flaun and Mayer (1983) conducted scanning electron microscope



observations of microbial colonization of feldspar and clay grains from 

intertidal sediments. They also found that microtopography of feldspar

grain surfaces influenced colonization by microbiota. Bacterial 

colonization was particularly observed in surface fissures, crevices, 

cleavages or ledges and concave abrasions. Bacteria colonizing feldspar 

grains attached by mucilage secretions. The mucilage was initially 

secreted as a holdfast, which became more intricate, webbed and fibrous 

until entire bacterial colonies were covered by mucopolysaccharide. 

Diatoms were also attached by mucilage produced from the periphery of their 

frustules. These mucilaginous webs tended to collect fine clay particles. 

These were either caught in bacterial fibrous webs or embedded in mucus 

surrounding diatoms. However, bacteria did not colonize clay particles 

which were smaller than 10pm.. The main reason for this is that the clay 

grains have smooth surfaces, with no shallow depressions favourable for 

bacterial colonization. In addition, clay particles will not provide

protection against resuspension by shear forces unless they are larger than 

the bacteria.

De Flaun and Mayer (1983) also followed changes in the surface area of

the sediment particles over a one year period. They found that particle

surface areas increased from February to a peak in April. There was then

a decline through the spring and summer until a further increase in the

autumn. Bacterial populations on the sediment particles also fluctuated 

seasonally. Bacterial numbers and the extent of mucus coating development 

gradually increased from February to June, and there was a rapid increase 

into July. Bacterial populations appeared to follow increases in particle 

surface area during the first part of the year. However, the strong 

association of clay grains with bacterial exudates suggests that the
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relationship of bacteria to surface area may partly be due to the bacteria. 

This can be explained as follows. Clay accumulation is important to the 

total sediment surface area. The accumulation of clays in these 

intertidal sediments requires biological incorporation of particles in 

bacterial extracellular polymers. Consequently, the relationship between 

bacteria and surface area may be caused by the extent of bacterial 

attachment and polymer secretion controlling clay incorporation (De Flaun 

and Mayer, 1983).

The extensive development of microbial mucus coatings observed during 

the spring and summer suggests that they may also be a significant source 

of nutrition for deposit feeders (De Flaun and Mayer, 1983; see Chapter 

9.2).

The measurement of the biomass of sediment microflora by biochemical 

methods (Nickels et al. 1981a) and direct observation by scanning electron 

microscopy have several advantages and disadvantages. Some of these will 

now be discussed and compared.

One disadvantage of the biomass measurements which were used by

Nickels et al. (1981a) was the use of phospholipid levels as a measure of

bacterial populations. Phospholipids are also present in the cytoplasmic 

membranes of other attached microeukaryotes, such as green algae, diatoms 

and cyanobacteria. Hence they may over-estimate bacterial populations. 

In addition, the measurements of Nickels et al. (1981a) may include dead as 

well as living microbial cells. It is difficult using this method to 

distinguish between such dead cells and living microbial cells which could 

he associated with detritus in sheltered parts of the sand grain. 

However, an advantage of biomass measurements is that they can give an

overall indication of the effects of environmental factors on attached
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microbial populations.

The use of scanning electron microscopy has the advantage of allowing 

direct observation of attached microorganisms and their modes of adhesion. 

It may also be easier to distinguish between living and dead microbial 

cells. Disadvantages of scanning electron microscopy include the 

detachment of loosely attached or non-attached cells during the preparation 

of samples. Microbial extracellular polymers may shrink during the 

alcohol dehydration step, causing significant distortion in its appearance 

(Nicholson et al., 1987).

Tufail (1985, 1987) made further observations of microbial attachment

to intertidal sand grains which were enriched in photosynthetic and 

heterotrophic growth media. Sand grains from both growth media showed 

rich microbial growth. Grains from both enrichment media showed microbial 

growth on flat, rough and hollow regions (Tufail, 1985). This is in 

contrast to previous observations (Meadows and Anderson, 1968; Wiese and 

Rheinheimer, 1978). Tufail (1985) suggested that microbial growth may 

develop on flat surfaces when high levels of nutrients and low levels of 

sediment disturbance occur. This would occur in sheltered depositional 

environments such as estuaries and muddy shores.

Amphora spp. and the cyanobacterium Schizothrix spp. often formed 

single species aggregates on sand grains from the photosynthetic enrichment 

medium (Tufail, 1985 ;see p. 249 ). They were often also associated with 

each other as a double species aggregate. Schizothrix spp. formed an 

intricate network of filaments enveloping Amphora spp. (Tufail, 1985, 1987; 

see p. 249 ). The physiological basis for this association is not known.

It may be a symbiotic relationship, although there is no evidence for this. 

Further work to show possible nutrient transfer between the microorganisms
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Fig. 53.1 SEM show ing mixed colony of Am phora  spp. (diatom) and
Schizothrix  (cyanobacterium) on a sand grain. Mag x1100. 

Fig. 53.2 A monospecific colony of Amphora spp. on a sand grain.
Mag. x1100.

(Reproduced by permission from Tufail, 1985)



would be needed. Cells of Amphora spp. often formed clumps resembling 

segments of an orange which were found in crevices. Bacteria forming 

stellate colonies were also observed on sand grains from the photosynthetic 

medium. These bacteria had a beaded structure with pointed ends similar 

to the epiphyte Leucothrix mucor (Tufail, 1985; see Chapters 6 and 8).

Clusters of coccoid bacteria and scattered growth of bacilli were 

observed on sand grains grown in the heterotrophic enrichment medium. 

Coccoid cells formed dense and almost spherical colonies surrounded by a 

peripheral growth-free zone. This implied that some bacterial inhibition 

of the growth of adjacent microbial colonies was occurring. Bacilli were 

sometimes aggregated around what may have been detrital organic material. 

If this material was organic, then this observation further indicates the 

importance of the accumulation of organic matter on surfaces in bacterial 

adhesion (Zobell, 1943; Tufail, 1985).

Further observations were made by Tufail (1987) using sediment cores 

incubated with photosynthetic or heterotrophic media in the light and dark 

(PL, PD and HL, HD). The sediments incubated in the light (PL, HL) were 

designed to be comparable to intertidal and inshore surface sediments where 

there is high light intensity. The cores incubated in the dark (PD, HD) 

represented subsurface sediments in the same environments and also surface 

sediments below the euphotic zone (Tufail, 1987).

The observations of PL sand grains were similar to those made by 

Tufail (1985). More microbial growth was observed on subangular than on 

subrounded grains. This confirms the observations of Wiese and

Rheinheimer (1978). Clumps of three to seven grains were sometimes bound

together by dense growth of filamentous cyanobacteria and pennate diatoms. 

Sporangia of Thraustochytrium spp. (see Chapter 4) also occurred on PL sand



grains. The sporangium appeared as a thick-walled, semi-globular 

structure with a corrugated surface. Thraustochytrids occurred amongst 

diatoms, bacteria and detritus or near cyanobacterial filaments. They 

were also found on flat, bare grain surfaces (Tufail, 1987). There was no 

sign, however, of ectoplasmic net material produced from the

thraustochytrid sporangia (see Chapter 4).

Microbial growth occurred mainly in crevices and depressions on PD 

sand grains. Blue-green bacteria and diatoms were very rare. Bacterial 

rods, cocci, a few filaments and detrital aggregates were present (Tufail, 

1987). Clumping of sand grains rarely occurred. Long fungal-like hyphae 

were attached to individual grains. They also stretched from one point to 

another on the same grain surface or to an adjacent grain.

The HL sand grains had a similar appearance to those observed by 

Tufail (1985). Microbial mats were common and contained rods, cocci,

filaments and detrital aggregates. Filamentous bacteria sometimes formed 

a characteristic network amongst other bacteria and detritus (Tufail,

1987). Caulobacters were also occasionally seen. Similar coccoid

bacterial colonies to those observed by Tufail (1985) were seen. Some 

cocci formed microcolonies of 15 to 50 cells connected by polymer strands.

Observations of HD sand grains showed that dense microbial growth 

occurred more on subrounded than on subangular grains. Cocci and rods

formed thick, irregular mats (Tufail, 1987). Other recognisable bacteria 

including Caulobacter spp. and Flexibacter spp. were also seen. Some 

spirochaetes were observed in close association with other bacteria and 

detrital aggregates. Fine threadlike strands, probably adhesive polymer, 

were observed bridging between bacterial cells and detritus.

These observations show how sediment enrichment cores simulating



different environments can produce different microbial communities. They 

also demonstrate how ecological stress factors can influence the 

development of different microbial communities.

There were some interesting aspects of the populations that developed 

in these enrichment cores. Sand grains from the PL cores showed a large 

growth of photosynthetic microorganisms such as diatoms and blue-green 

bacteria. These would develop in highly illuminated sheltered sediments 

occurring intertidally or in the immediate subtidal range (Tufail, 1987). 

In addition, the occurrence of thraustochytrids on PL sand grains is 

interesting. Such observations show that thraustochytrid sporangia from 

marine sediments can be grown under controlled enrichment conditions

similar to their natural environment.

The microbial populations on the PD grains were similar to those on

the HL grains. Heterotrophic bacteria were present on the PD grains,

although not in such large numbers as in the HL and HD sediments. Their 

appearance on the PD grains suggests that the abundance of heterotrophic 

bacteria is not affected by light (Tufail, 1987). The HL and HD cores 

contained a wide range of morphological types and high numbers of

heterotrophic bacteria. This shows the effects of high levels of

nutrients, as would occur near sewage outlets, on bacterial numbers.

Microbial attachment is also of importance in the weathering of 

sediment particles. Frankel (1977) showed how this occurred in biotite 

and hornblende grains from estuarine sands. Attached microorganisms were 

concentrated in depressed areas of hornblende grains. Diatoms,

cyanobacteria and suctorian ciliates were particularly abundant in cleavage 

regions on hornblende grains. Microorganisms penetrated the grains via

fractures and cleavage planes. Further "quarrying" by the microorganisms



resulted in short cleavage fragments breaking off, which reduced the size 

of the grains. A similar process occurred in biotite grains. Bacteria 

were the main colonizers of the flat and smooth grain surfaces. The 

largest number of colonizing microorganisms were again found in grain 

fractures and cleavages. Weathering of biotite grains occurred in a 

similar way to hornblende. Growth and reproduction by colonizing 

microorganisms caused openings to develop, which ultimately resulted in the 

grains splitting apart (Frankel, 1977). Weathering can increase the 

surface area of sediment particles available for microbial colonization. 

An increase in the numbers of attached microorganisms could increase 

sediment stability. This would result from microbial extracellular 

secretions binding sediment particles together (see sub-Chapter 9.1.2.).

Rades-Rohkohl et al. (1978) observed the attachment of Brevibacterium 

sp. S and Bacillus sp. U and W to quartz surfaces using TEM, SEM and phase- 

contrast microscopy. They assessed microbial weathering of the quartz 

surface. The three bacterial strains were chosen because they had the 

following properties (Rades-Rohkohl et al., 1978):-

1.) They were all originally isolated from a quartzitic surface ;

2.) They differed in their ability to produce surface polymer ;

3.) They showed differences in their tendancy to adhere.

After eight days' incubation, Bacillus sp. U and Brevibacterium sp. S 

covered nearly the entire quartz surface. This could result from a gradual 

accumulation of nutrients on quartz (Rades-Rohkohl et al., 1978).

The three bacteria showed different mechanisms of adhesion. 

Molecular attraction forces probably allowed the attachment of



Brevibacterium sp. S. There was no evidence for the production of

adhesive polymer and fimbrae or flagella were not present.

Bacillus sp. U was attached by copious amounts of adhesive polymer. 

It was difficult to see whether the entire polymer capsule mediated 

bacterial attachment or only specific polymer threads. Bacillus sp. W 

showed little tendency to adhere. This bacterium seemed to attach partly 

by polymer production and partly by adhesive forces.

Rades-Rohkohl et al. (1978) used a replica technique to observe 

hollows on the quartz surface which may have been caused by microbial 

weathering. The technique involved placing thin cellulose acetate 

replicating tape over the entire quartz surface, including any attached

bacterial colonies. The tape was then removed and turned upside down and

coated with gold. It was then turned back and the cellulose acetate was 

dissolved with acetone. The resulting mould showed the upper surface of

attached bacterial colonies and any hollows on the quartz surface. It was 

also possible to see the part of the bacterial colonies which had been in 

contact with the quartz (Rades-Rohkohl et al., 1978). Some hollows were

observed close to colonies of Bacillus sp. U. These hollows may have

resulted from erosion, or been areas of bacterial contact with the quartz,

which were similar in appearance. However, processes such as repeated 

drying and wetting during the preparation of materials for S.E.M. may have 

caused interaction of bacterial polymers with quartz.

In interpreting these observations, it should be remembered that 

quartzite may not be the natural habitat of these bacteria (Rades-Rohkohl 

et al., 1978). It would be interesting to undertake further studies of 

these bacteria interacting with other sediment minerals such as feldspar. 

This may show whether such bacterial interactions are unique to quartz, or



whether certain minerals are more prone to bacterial weathering than 

others.

(9.1.2). Formation of microbial mats and role of these and

microbial polymeric secretions in sediment stability.

Microbial mat formation is known to be important in binding together 

sediment particles and providing sediment stability. Production of 

microbial adhesive polymers often occurs during mat formation and is also 

of importance in stabilization.

Stal et al. (1985) made observations of vertically stratified

microbial communities in the upper intertidal zones of the North Sea island 

Mellum. Growth and development of the cyanobacterial mat was followed 

over three years. Initial colonization was by Oscillatoria spp.

Microcoleus chthonoplastes then became the dominant organism, and was 

sometimes mixed with Oscillatoria spp.. M. chthonoplastes formed a tough, 

coherent mat structure largely through the production of a mucilaginous 

sheath. Cyanobacteria occurred in the top layer of the mat, covering a 

layer of purple sulphur bacteria and sulphate-reducing bacteria (Stal et 

al., 1985).

The appearance of Oscillatoria spp. in the mat was correlated with 

nitrogenase activity. This indicates that nitrogen fixation remains an

important ecological factor even after establishment of the mat system 

(Stal et al., 1985). In addition, cyanobacteria in microbial mats need to 

glide in the direction of light so as to find optimal growth conditions. 

Experiments showed that light penetrated through 5mm. of the sand above the 

microbial mat. Light penetrated better through wet sand than dry sand. 

This would tend to occur in the natural environment. Artificial mats of



M. chthonoplastes were buried under 3mm. of sand in the laboratory and 

exposed to light. The cyanobacteria were found at the surface within 2 or 

3 h.

Nicholson et al. (1987) made interesting observations of a flat, 

laminated microbial mat at Great Sippewissett Marsh, Cape Cod, 

Massachusetts. They studied the microzonation of phototrophic bacteria in 

the mat using a combination of light microscopy, scanning and transmission 

electron microscopy. The mat was approx. 1 cm. thick and was located in

sandy intertidal sediments of the marsh. It consisted of four to five

distinctly coloured layers, which were named as follows :

1) Layer 1 on the surface was yellowish-brown in colour and was named the

"Gold Layer";

2) Layer 2 below that was dark green to bluish green in colour, and was 

named the "Upper Green Layer";

3) Layer 3 was the "Pink Layer";

4) Layer 4 was the "Peach Layer" because of its salmon-orange hue,

5) Layer 5 was the "Lower Green Layer" which was very thin, of 1 mm.

thickness, or was non-existent in places.

Extensive production of microbial extracellular polymers was observed 

in all the layers. This material was responsible for cell attachment to 

sand grains, for lamination of layers and the structural integrity of the 

mat.

Filamentous cyanobacteria and diatoms were the predominant

microorganisms in the uppermost Gold Layer. Small coccoid bacteria were 

observed singly or in clusters. Cyanobacteria which were present 

included Lyngbya aestaurii, some heterocystous and filamentous



cyanobacteria and Phormidium spp.. Diatoms, particularly Navicula spp. 

were particularly abundant. Areas of the mat and marsh which appeared 

brown on the surface contained large numbers of diatoms producing much 

extracellular polymer. This adhesive material bound sediment particles 

together, so contributing to sediment stability.

The Upper Green Layer was similar to the Gold Layer in that the main 

photosynthetic organisms present were filamentous cyanobacteria and 

diatoms. Clusters of coccoid purple sulphur bacteria, Thiocapsa spp., 

were also present in smaller amounts. The diversity of cyanobacteria in 

this layer was more limited. Filaments of Oscillatoria spp. dominated 

this layer and probably imparted its blue-green colour. Phormidium spp. 

were also observed. Many diatoms were dead or undergoing degradation. 

The sediment particles were also coated and held together by the abundant 

microorganisms and their extracellular polymers. Intertwining of the

sediment particles by filamentous microbial adhesive together with their 

coating of bacterial slime resulted in good cohesion of this layer.

In the Pink Layer, various photosynthetic purple sulphur bacteria were 

present in abundance, forming a "coccoid mat layer". Such bacteria which 

could be distinguished included Amoebobacter roseum, Thiocapsa spp. and 

Chromatium spp.. Large clumps of coccoid bacterial cells were held

together by extracellular polymers and/or a film-like sheath. Single 

coccoid cells were often attached to these larger clumps or to sediment

particle surfaces. Long chains of cyanobacterial cells, possibly Nostoc

or Nodularia spp. were directly attached to the sediment particles. A 

large amount of microbial polymeric material was present. This probably 

accounted for the high degree of cohesion of both this layer and the Peach 

Layer below. The purple sulphur bacteria contributed greatly to the



binding of sediment by copious production of extracellular polymer.

The Peach Layer was dominated by small to medium-sized coccoid cells 

which possessed internal sulphur globules. These were identified as being 

the purple sulphur bacterium Thiocapsa pfennigii. "Asterisk-shaped" cells 

which were probably the green sulphur bacterium Prosthecochloris aestaurii 

were also present. Some filamentous bacteria were also observed. 

Coccoid cells in this layer formed looser sheets of cells than in the Pink 

Layer. Filamentous bacteria were often intertwined amongst coccoid cells. 

The cohesion of sediment particles in this layer was comparable to the Pink 

and Upper Green Layers. Sediment stability was again imparted by 

bacterial polymeric material, which often formed filamentous strands.

The small prosthecate green sulphur bacterium Prostheocochloris 

aestaurii was conspicuous in the very thin Lower Green Layer. This

bacterium possessed numerous knobby cell surface projections. Thiocapsa

pfennigii and other purple sulphur bacteria also occurred in this layer.

Small coccoid cells were frequently observed. Cells of P. aestaurii 

occurred in large or small irregular masses surrounded by large amounts of 

extracellular polymeric material. Some of this was dried into long, 

uneven strands. Sediment cohesion in this layer was much less than in the 

above layers.

Although microbial extracellular polymers gave good cohesion to each 

of the mat layers, some differences existed between them. This was shown 

by differential separation of the Pink, Peach, Upper Green and Gold Layers 

occurring when any shear force was applied.

The overall appearance of the microbial populations in each mat layer 

was not only due to their cellular morphologies, but also to their general 

habits of growth. This included the degree of cell clumping and the



degree of binding of cells to sediment particles by filamentous

microorganisms and adhesive polymers.

It should be remembered that this study by Nicholson et al. (1987) 

represented the mat community at the height of its development in the

summer. Seasonal changes occurred, and markedly changed the mat's

structure. These changes may be more drastic for these portions of the

mat closely adjacent to sand dunes. Prevailing onshore winds and tidal 

inundation would tend to bury the mat. Observations during the winter 

indicated that the mat was periodically buried by sand but remained

colourful for some weeks. However, it began to decompose when the

temperature rose above freezing. Decomposition of the Upper Green Layer 

was most marked with the development of black sulphide-rich sediments. 

Periodic burial of a mat near a sand dune resulted in the formation of

layers of distinctively banded sediment. Iron sulphide precipitation took 

place in these layers. Sediment stability would probably not be so high

in the decomposing mat. It would be interesting to do further

measurements of the cohesion of the mat during decomposition. Further 

electron microscopic observations of the extent of microbial adhesive

production in decomposing mats could show the extent of sediment stability.

Gelatinous material was observed binding together calcarenite grains 

to form a coherent mat on the Bahamas sea floor (Bathurst, 1967). The

subtidal mat was of a pale brown or green colour, and had a fibrous

appearance under the microscope. It contained many microorganisms, 

including filamentous bacteria, diatoms and numerous cyanobacteria 

including Oscillatoria spp.. The colour of the mat was largely derived

from the motile diatoms that were on the upper surfaces of the calcarenite

grains. The gelatinous material is probably derived from microbial



adhesive secretions, mainly from diatoms and cyanobacteria. The 

gelatinous nature of the mat binds surface calcarenite grains together, 

making a hydrodynamically stable sediment. However, the mat was rapidly 

destroyed if buried. This suggests a similar pattern of decomposition to 

that observed by Nicholson et al. (1987) after the burial of the mat at 

Great Sippewissett Marsh.

Mucilaginous material was also observed on and within the interstices 

between sand grains in estuarine sand flats in Connecticut (Frankel and 

Mead, 1973). This matrix also probably results from mucilaginous adhesive 

secretions of the microorganisms. Bacteria, diatoms, cyanobacteria, 

filamentous algae, peritrichs and suctorian ciliates were abundant in this 

matrix. Chemical analysis showed that the mat was largely composed of 

pectic carbohydrate with small amounts of protein. This compares

favourably with microalgal adhesive secretions. Microscopic examination 

showed that each mucilage clump was an aggregate. It was composed of many 

small subclumps of clear to cloudy material which enveloped mineral clumps, 

skeletal parts and small living organisms. The mucilage consisted of 

viscid, viscous and elastic substances. It acted not only as a grain 

binder but also as an elastic cushion between the grains. The algal mat

complex represented only the upper part of an extensive biogenic sediment 

stabilizing system. Below the mat, stability was rendered by the 

accumulation of adhesive secretions produced by microorganisms attached to 

the grains and within the interstices.

Mucilage-producing diatoms were cultured in flasks containing a 

variety of sediments (Holland et al., 1974). The sediments used included

sand, mixtures of sands, silts and clays, sand and kaolin, and kaolin 

itself. The diatoms were effective sediment stabilizers, in that they



significantly reduced resuspension and retarded laminar flow of sediments. 

The ability of diatoms to reduce sediment resuspension was related to their 

production of adhesive mucilage. This could be associated with the 

production of mucilaginous tubes or stalks (see Chapter 3.2). Non

mucilage secreting diatoms were not so effective at stabilizing sediments. 

The diatoms Cylindrotheca closterium, Hantzschia amphioxys and Navicula 

directa significantly reduced resuspension in cultures containing silts and 

clays or clay alone. These diatoms also produced mucilage in control 

flasks which did not contain sediment. The mucilage formed a film on the 

walls of the flasks. When these flasks were severely agitated, pieces of 

mucilage broke away from the walls. They formed flakes that consisted of 

large numbers of cells bound by a common mucilage.

The diatom mucilage promoted adhesion between sediment particles by 

filling interstitial voids. This in turn will decrease particle 

resuspension and increase sediment stability. Stabilization could also be 

extended to deeper layers of the sediment, due to the vertical migration of 

benthic diatoms (Holland et al., 1974).

Further experimental work of this kind should be done with other 

mucilage-producing diatoms. These would include Amphora spp., Licmophora 

spp. and Achnanthes spp. (see Chapter 3.2). Sheath-producing 

cyanobacteria, such as Oscillatoria spp. which have frequently been 

observed in mucilaginous mats, should also be studied. These studies would 

further show the effects of other adhesive microorganisms on sediment 

stability.



Summary

The key points discussed in this sub-chapter are as follows :

1.) (i.). Observations of microbial attachment to sand grains suggests 

that microbial distribution is related to the microtopography of the 

grain surface (Meadows and Anderson, 1968; Wiese and Rheinheimer, 

1978; Nickels et al., 1981a). Rod-shaped bacteria, coccoid bacterial 

colonies and diatoms were often attached to sheltered regions of the 

grains.

(ii.). Agitation of sand grains limited attached microorganisms to

hollow regions on the grain surface (Meadows and Anderson, 1968). 

Nickels et al. (1981a) showed that location of silicate grains affects 

the attached microbial populations. Grains incubated at the surface 

of a seawater microcosm had higher bacterial populations than those 

from the sea bottom, which were high in microeukaryotes.

2.) Microtopography of feldspar grain surfaces also influenced bacterial 

colonization (De Flaun and Mayer, 1983). Bacteria attached to 

feldspar grains by mucilage production which ultimately covered entire 

colonies. Clay particles tended to collect in the mucilaginous webs. 

Bacterial populations and mucilage production tended to follow 

increases in feldspar grain surface area. The accumulation of clay 

particles in bacterial polymers suggests that bacterial attachment and 

polymer secretion may control sediment surface area.

3.) Observations of microbial attachment and growth to sand grains 

incubated in photosynthetic or heterotrophic growth media were made by 

Tufail (1985, 1987). Photosynthetic microorganisms, such as Amphora 

spp. and cyanobacteria, tended to attach to grains from the 

photosynthetic enrichment medium. Thraustochytrids were mainly
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observed on grains from the heterotrophic growth medium. The 

observations showed how sediment enrichment simulating different 

environment produce different microbial communities.

4.) (i.). Microorganisms attached to biotite and hornblende grains can 

cause weathering. Attached diatoms, cyanobacteria and ciliates were 

particularly abundant in cleavage regions (Frankel, 1977). Further 

penetration by these microorganisms into cleavage planes and fractures 

may cause grain fragments to break off.

(ii.). Rades-Rohkohl et al. (1978) observed that three bacterial 

strains, Brevibacterium sp. S, Bacillus spp. U and W, attached in 

different ways to quartz. A replica technique showed hollows on the 

quartz surface close to bacterial colonies. These may have been

sites of bacterial erosion.

5.) (i.). Stal et al. (1985) followed the growth and development of a 

cyanobacterial mat in an upper intertidal zone. Oscillatoria spp. 

was the initial colonizing organism, and its appearance was correlated 

with nitrogenase activity. Microcoleus chthonplastes then became the 

dominant organism, and formed a tough coherent mat structure.

(ii.) Nicholson et al. (1987) made observations of a laminated

microbial mat in Cape Cod, Massachusetts. The mat was approx. 1 cm. 

thick and consisted of four to five distinctly coloured layers. 

Extensive production of microbial extracellular polymers was observed 

in all layers. This material was responsible for cell attachment to 

sand grains, lamination of mat layers and structural integrity of the 

mat. Seasonal changes markedly altered the mat's structure and

stability.

6.) (i.). Gelatinous material was observed binding together



calcarenite grains on the Bahamas sea floor to form a coherent mat

(Bathurst, 1967). It contained many microorganisms, and its

gelatinous nature was probably derived from microbial adhesive

secretions. The gelatinous mat produced a hydrodynamically stable

sediment.

(ii.). Mucilaginous material was also observed on and within the 

interstices between sand grains in estuarine sand flats (Frankel and 

Mead, 1973). Chemical analysis showed the mat's composition to be 

similar to microalgal adhesive secretions. The mucilage acted as a 

grain binder and an elastic cushion.

The diatoms Cylindrotheca closterium, Hantzschia amphioxys and 

Navicula directa significantly reduced resuspension and retarded 

laminar flow of a variety of sediments. The ability of the diatoms 

to stabilize sediments was related to their production of adhesive 

mucilage (Holland et al., 1974).



(9.2). Importance of attached sediment microflora 

in the nutrition of benthic invertebrates

The utilization of microorganisms attached to sediment particles by 

various species of benthic invertebrates has generated an extensive 

literature. Other studies have indicated the importance of microbial 

extracellular adhesive materials as alternative food sources for these 

invertebrates. This sub-chapter will review the importance of both these 

factors.

Hargrave (1970) compared the relative importance of benthic bacteria, 

algae and non-living organic matter as food for the common freshwater 

amphipod Hyallela azteca. In preliminary experiments, H. azteca rapidly 

converted samples of surface sediment into faecal pellets. Their contents 

consisted of aggregates of diatom frustules, green algal and cyanobacterial 

chains which had been attached to the sediment particles (Hargrave, 1970). 

Certain bacteria, such as Pseudomonas spp. and the diatom Navicula spp. 

were efficiently assimilated- Measurements of sediment protein levels 

suggested that bacteria were consumed more often by H. azteca than the rest 

of the attached organic matters.

Fenchel et al. (1975) compared the particle size selection of the

prosobranch Hydrobia ulvae with that of the amphipod Coropbium volutator. 

Qualitative differences in the diets of these invertebrates were explained 

by their particle size selection. Diatoms played a larger role in the 

diet of H. ulvae, whilst C. volutator fed mainly on bacteria (Fenchel et 

al., 1975). Feeding experiments using 14C-labelled microorganisms showed

that C. volutator only utilized bacteria adsorbed to sand particles in the 

size range of 4-63 pm.. This explained why clay and silt particles were



necessary in this sediment for efficient feeding of C. volutator. 

However, H. ulvae only utilized microorganisms attached to larger sediment 

particles in the size range 200-300 pm.* There w as also evidence that 

this prosobranch utilized free, unattached bacteria o n  the seawater surface 

film by using secreted mucus (Fenchel et al., 1975).

Kofoed (1975) s t u d ie d  th e  b e n t h i c  nutrition of Hydrobia wentrosa. 

The assimilation efficiencies o f  seven d ia to m  s p e c ie s ,  tw o  c y a n o b a c t e r ia  

and one bacterial s p e c ie s  w e re  c o m p a re d  u s in g  a 14C-radiotracer te c h n ig m e .  

The diatoms w e re  a s s i m i l a t e d  a t  an  e f f i c i e n c y  o f  6 0 -7 0 %  (s e e  p. 267 j. 

This suggested t h a t  a t t a c h e d  d ia to m s  a r e  a s  im p o r t a n t  e n e r g y  s o u r c e  for M. 

ventrosa. The b a c t e r i a  w e re  a s s im i l a t e d  with 75% e f f i c i e n c y ,  w h i l s t  t h e  

cyanobacteria were less w e l l  u t i l i z e d .  A t t a c h e d  a n d  clumped b a c t e r i a  w e re  

also an important food source. S in g le ,  u n a t ta c h e d  b a c t e r i a l  c e l l s  w e re  

below the normal size range for u t i l i z a t i o n  by B. wentrosa.

Biochemical m e a s u re m e n ts  o f  m i c r o b i a l  c e l l u l a r  c o m p o n e n ts  h a v e  b e e n  

used as a means of o b s e r v in g  m i c r o b i a l  c o l o n i z a t i o n  o f  s i l i c a t e  g r a in s  (s e e  

Chapter 9 . 1 ) .  S uch  m e th o d s  c a n  a l s o  be  u s e d  t o  o b s e rv e  b e n t h i c  m i c r o b i a l  

consumption. F in d la y  and  W h ite  (1 9 8 3 )  u s e d  b io c h e m ic a l  a n a l y s i s  t o  s t u d y  

the effects of th e  s a n d  d o l l a r  Mellita quinquiesperforata on a b e n t h i c  

microbial community. S e v e r a l  lipid components o f  t h e  microbiota d e c re a s e d  

during feeding. T h e re  was a 45% r e d u c t io n  i n  t h e  community m i c r o b i a l  

biomass measured as lipid phosphate. M ovem ent of M. quinquiesperforata 

through the field s e d im e n ts  d e c re a s e d  th e  a m o u n ts  o f  muramic a c i d ,  w h ic h  

was also used as a measure of microbial biomass. Analysis of the g u t  

contents showed that the sand dollar fed mainly on diatoms, foraminifera, 

dinoflagellates, and other non-photosynthetic microeukaryotes. X. 

quinquiesperforata a l s o  u t i l i z e d  b a c t e r i a  a t t a c h e d  to s i l t  a n d  c l a y



TABLE 11

The assimilation efficiency of Hydrobia ventrosa measured 
by the "total consumption radiotracer" method. 

(Number of experiments in parantheses).

Food % Assimilation efficiency

Range Mean

Chroococcus sp. (1) 8 8

Oscillatoria sp. (5) 48-53. 49.

Nitzscbia angularis (6) 60-70. 64.

Cylindrotbeca fusiformis (2) 64-66. 65.

Nitzschia sp. (3) 68-70. 69.

Amphora sp. (1). 61. 61.

Diatom sp. 30d (1) 74. 74.

Diatom sp. A2 (2) 63-70. 67.

Diatom sp. 500 (2) 66-69. 67.

(Taken from Kofoed, 1975).



particles in the sediments.

Possible disadvantages of using biochemical assays to measure

microbial colonization of sediment particles were discussed in Chapter 9.1 

(see p. 247 ). There are also some disadvantages in using this method to 

study microbial utilization. One disadvantage is that reductions in the 

levels of certain compounds, such as lipid phosphate, may not completely 

reflect microbial consumption. Microorganisms may become detached from 

sand particles by movements of invertebrates. In addition, measurements 

of changes in the community microbial biomass (Findlay and White, 1983) may 

include unattached as well as attached microorganisms. Consequently, this 

may not give such accurate results. The use of muramic acid levels as a 

measure of microbial biomass (Findlay and White, 1983) is also inaccurate. 

Muramic acid is a component of bacterial cell walls and is not present in 

other microorganisms. It would therefore be a more accurate measure of 

bacterial levels, and not of other microeukaryotes which formed a large

part of the sand dollar's diet (Findlay and White, 1983).

The 14C-measurements used by Fenchel et al. (1975) are probably a more

accurate method. This technique provides a direct means of observing the 

passage of attached microorganisms into invertebrates. The 14C-method 

does not rely on measuring changes in the levels of certain microbial cell 

components. However, as with the biochemical assays, this method does not 

take account of the detachment of microorganisms.

Robertson and Newell (1982) compared the abilities of three species of 

fiddler crab to remove particle-bound bacteria from sandy sediments. The 

crab species were Uca pugilator, Uca pugnax and Uca minax. Uca pugilator 

removed over 60% of bacteria bound to noningested particles, whilst U. 

pugnax removed half as many bacteria. Uca minax, however, did not remove



any bacteria (Robertson and Newell, 1982). These results showed that U. 

pugilator was more efficient at utilizing bacteria bound to and dispersed 

among large uningested sand grains than were U. pugnax and U. minax. This 

in turn explains why the latter two species predominate in muddy rather 

than sandy sediments.

The subtidal gelatinous mat which binds together calcarenite grains in 

the Bahamas (Bathurst, 1967; see Chapter 9.1) may be an important food 

source. Invertebrates which browse on the sand floor may not be able to 

survive without this mat, which may occupy an essential position in the 

local food chain.

Cammen (1980) looked at the carbon resources available to the deposit 

feeding polychaete Nereis succinea, and suggested that the species might 

obtain some organic carbon from microbial cellular debris or 

mucopolysaccharides in the sediment. This organic carbon fraction may be 

more readily available to consumers than the remainder of the organic 

carbon in the sediment.

Hobbie and Lee (1980) discussed these views of benthic nutrition in 

more detail. They suggested that sediment microbes were not abundant 

enough to nourish a non-selective feeder. This led to their hypothesis 

that microbial extracellular mucopolysaccharides are more abundant than the 

microbes themselves, and may provide the majority of food for many benthic 

invertebrates. The major evidence for this came from studies of bacterial 

attachment to particles and the accumulation of microbial slimes where 

water moves past surfaces.

The source of the mucopolysaccharide could be the dissolved organic 

matter in the surrounding seawater. Attached microorganisms are 

particularly effective at removing dissolved organic matter from solution



and transforming it into particulate organic matter in the form of 

mucopolysaccharide (see Chapter 10). The apparent resistance of the 

bacterial mucopolysaccharide material to microbial enzymes does not rule 

out its use as food by benthic invertebrates. As an example, some 

nematodes are able to produce mucopolysaccharide hydrolases from ingested 

bacteria (Hobbie and Lee, 1980).

Moriarty and Hayward (1982) did transmission electron micrograph 

studies of the bacteria present in the surface aerobic layer and a deeper 

anaerobic layer of sediments. Many bacterial cells, especially those in 

colonies, were surrounded by extensive slime layers. These authors 

suggested that the slime layers and bacterial cell envelopes would be 

trophically important to benthic animals. Bacterial biosynthetic products 

would represent a larger proportion of utilizable organic matter than the 

bacterial biomass.

Moriarty (1982) studied the utilization of organic carbon and nitrogen 

by the holothurians Holothuria atva and Stichopus chloronotus in sediments 

of the Great Barrier Reef. Transmission electron micrographs showed that 

many of the sediment bacteria were embedded in slime layers and mucus. 

Mucus from bacterial slime and that produced by other organisms were 

probably the main sources of detritus in the reef sediments. Some of this 

material was readily digested by the holothurians.

These observations of Moriarty (1982) are the only studies discussed 

that have substantiated Hobbie and Lee's (1980) hypothesis that benthic 

invertebrates may utilize microbial extracellular materials. Further 

experimental work should be done. This would involve radioactive 

labelling, using 14C or 3H-isotopes, of sediment samples containing 

microbial mucilage. Uptake of such material by benthic invertebrates



could then be followed. Biochemical measurements of the utilization of

mucilage components could also be used. This method would probably be more

accurate than when used to measure the utilization of attached sediment

microflora (Findlay and White, 1983; see p. 266 ). Measurements of 

enzymic activity occurring during invertebrate feeding could also be done.

Summary

(1.). Studies have shown that microorganisms attached to sediment

particles are an important food source for benthic deposit-

feeding invertebrates. This has been shown for several

invertebrates, including Hyallela azteca (Hargrave, 1970),

Coropbium volutator and Hydrobia ulvae (Fenchel et al., 1975),

Hydrobia ventrosa (Kofoed, 1975) and Mellita quinquiesperforata 

(Findlay and White, 1983).

(2.). Extracellular mucopolysaccharide material produced by attached

microorganisms could act as an alternative food source. It may

provide a richer source of organic nutrients than the microbial

cells (Bathurst, 1967; Cammen, 1980; Hobbie and Lee, 1980; 

Moriarty, 1982; Moriarty and Hayward, 1982).



Chapter 10 Microbial adhesion to detritus.

This chapter firstly considers the attachment of marine microorganisms 

to particulate detritus and the formation of detrital aggregates from 

dissolved detritus. The ecological importance of microbial adhesion and 

aggregation in the decomposition and recycling of detrital material is also

considered. The second part considers microbial adhesion to a specific

type of particulate detritus, copepod faecal pellets.

(10.1). Microbial adhesion to particulate detritus

and role of dissolved detritus in aggregation.

Detritus has had several definitions in the literature. One

definition (Fenchel and Jorgensen, 1977) has described it as "non-predatory 

losses of organic carbon from any trophic level (including egestion, 

excretion, secretion, etc.) or inputs from sources external to the

ecosystem that enter and cycle in the system". Detritus is usually found 

in two forms in the marine environment, particulate and dissolved.

Particulate detritus usually constitutes the largest part of 

suspended particles in natural waters. It is found in concentrations 

between 0.02 and 6mg./l. in oceanic waters (Fenchel and Jorgensen, 1977). 

Particulate detritus comes from several sources. Animals which have 

avoided predators eventually contribute to the pool of dead particulate 

organic material. Decomposing chitin from crustacean exoskeletons also 

forms particulate material (see Chapter 8), as do microbial cell fragments, 

such as diatom frustules. Faecal pellets produced by herbivorous or 

detritivorous animals also contribute significantly to particulate detritus. 

Broken down tissue of dead leaves, roots, stems or thallus of macrophytes 

can also form a considerable part of suspended material. The macrophytes



in the sea which form such particulate detritus include seagrasses, 

mangroves and macroalgae (Fenchel and J0rgensen, 1977).

Dissolved detritus is also derived from several sources. Healthy and 

growing macrophytes secrete a part of their assimilated carbon as dissolved 

organic matter. Active bacteria also produce dissolved organic carbon 

through the decomposition of particulate material (see p. 280 ). However, 

the main source of dissolved organic matter in seawater comes from primary 

producers. Between 10 and 30% of all primary production enters the pool 

of dissolved organic matter. This dissolved material is rendered available 

to higher levels of the food chain as particulate organic matter mainly 

through bacterial activities (see p. 277 ). The utilization of dissolved

detritus is embodied in the term "detritus food chain". This is defined 

as "any route by which chemical energy contained within detrital organic 

carbon becomes available to the biota" (Fenchel and Jorgensen, 1977).

Microscopic observations have shown that the microbial communities 

associated with detritus are complex but with a relatively constant 

composition. Most microbial activity is associated with the surface of 

individual particles. Between 2 and 15 bacterial cells per 100pm2 of 

surface area are often found, depending on the nature of the particle 

surface. The bacterial flora is diverse and contains rods, cocci, 

filamentous and mycelial forms. Other microorganisms which are found on 

detritus include diatoms and unicellular cyanobacteria (Fenchel and 

J0rgensen, 1977).

Paerl (1973, 1974, 1975) made scanning electron microscopic

observations of microbial attachment to particulate detritus obtained from 

Lake Tahoe, California and from the Pacific Ocean. Scanning electron 

microscopy of detrital samples from various depths in Lake Tahoe showed



vertical changes in microbial attachment. At relatively shallow depths of 

20m., there was a close association between bacterial and fungal cells and 

pieces of detrital material (Paerl, 1973). Gram-negative, rod shaped 

bacteria with polar flagella, which may have been Pseudomonas spp., were 

predominant. Cocci were also observed, and filamentous bacteria and fungi 

were tightly attached. Extensive fungal and bacterial "webbing", caused 

by production of adhesive material, was observed in near-surface samples. 

Bacterial cells were surrounded by fine adhesive webs which kept them 

tightly anchored to detrital particles. Luxuriant webs surrounding small 

cocci and rods were seen, and filamentous bacteria were embedded in 

networks of fibrillar material (Paerl, 1974, 1975). There was a decrease 

in microbial attachment with increasing depth in Lake Tahoe. At a depth of 

75m., detrital particles were larger and smoother and showed less attached 

microorganisms. Fungal attachment was absent at depths greater than 75m.. 

Below 150m. depth there were few attached bacteria on detritus, although 

attached remains of microbial cell walls and stalks were observed. 

Extensive microbial attachment was only noticed to diatoms, which showed 

signs of partial decomposition. Between 150m. and 400m., there was little 

change in the extent of microbial association. At these depths, detritus 

was composed of aggregated pieces of mineral and organic material which 

were compacted into smooth pellets with little microbial attachment. At 

440m., where the sample was taken approx. 20cm. above the lake bottom, 

compacted pellets showed a slight increase in attached microorganisms. 

However, microbial growth was far less at this depth than it was on near

surface detritus (Paerl, 1973). Bare detrital surfaces were more common 

in deeper water, with cellular remains scattered on, as well as within, 

particles. In the same way, fibrillar networks, which were well defined



above 100m., were either absent or p a rtially destroyed in deep water. 
Fragmentation of detritus occurred wherever there was destruction of 
fibrillar material.

The general appearance of attached microbial growths on detritus from 

both marine and freshwater environments was similar. However, the marine 

samples possessed a more heterogeneous composition of bacteria, diatoms, 

dinoflagellates and green algae (Paerl, 1974). Near-surface particles 

were composed of diatom frustules and the remains of algal cells coated 

with mucoid material and bacteria. Both rod and coccal forms of bacteria 

were present. Single cells were often seen on particles with strings of 

secreted material behind them. Stalked bacteria were often attached to

particles which also supported small rods (Paerl, 1975). There was also a

decrease in microbial attachment observed in deeper water. However,

attached growth was not completely absent. Marine samples collected at 

300m. depth contained clusters of small coccoid cells attached to detritus. 

It was difficult to observe fibrillar structures associated with these 

cells. The occurrence of clumping suggested that the cells were adhesive

(Paerl, 1974).

Paerl (1973) also conducted a separate study using fresh detritus 

collected from the mouth of a tributary, Ward Creek. The detritus 

consisted mainly of the remains of attached periphytic algae. The 

detrital samples were divided equally among two sets of sealed 150ml.

dialysis bags. The bags allowed free diffusion of nutrients and metabolic 

waste products, although they were impermeable to detritus and associated 

microorganisms. One set of dialysis bags contained sterile detritus and a 

50ml. inoculum of lake water collected from 20m. depth which contained live 

microorganisms. The other had a similar content but was sterilized by



immersion in 0.001M mercuric chloride for 12 hrs. after sealing. Both 

sets of bags were incubated at a depth of 20m. in Lake Tahoe. A sequence 

of light microscopic pictures of the contents of both sets of bags were 

made. Aggregation of small detrital particles into large particles was 

observed over three days in the bags containing live microorganisms. The 

sterilized bags showed a slight aggregation of particles. The particle 

size was only 10% of that in the unsterilized bags. Aggregation of 

detrital particles was largely caused by microbial adhesion and S.E.M. 

observations showed that particles were trapped together by web-like 

adhesive structures produced by bacteria and fungi.

Paerl (1974) carried out autoradiographic studies of the uptake of 3H- 

labelled glucose and acetate in detrital aggregates in both marine and 

freshwater systems. Initial incubation showed dissolved organic material 

to be confined to filamentous bacteria. At a depth of 10m. and after 24 

hrs. incubation, dispersion of the label to sections of detritus adjacent 

to bacterial cells occurred. Dense patches of radioactivity surrounded 

bacterial filaments which were embedded in detritus. After 48 and 70 hrs.

incubation, dense areas of radioactivity appeared within and around

detrital aggregates. These areas were mostly centred around bacteria. 

Scanning electron micrographs in Lake Tahoe showed that after 24 hrs., 

bacteria and associated fibrillar networks were present in aggregates 

consisting of fragments of the diatom Cyclotella spp.. The uptake of both 

substrates by attached microorganisms was significantly higher in the

euphotic than in the aphotic zone, as was the extent of detrital

aggregation. This may be due to the high amount of dissolved organic

matter there. Extracellular production or leakage of low molecular weight

dissolved organic carbon (DOC) in this zone presents one source of



substrates for bacteria, while lysis and partial decay of cellular 

materials also supply DOC. Paerl's (1974) results show that DOC is 

essential for biologically mediated detrital aggregation. In deeper 

water, microbial death decreased detrital aggregation levels. The 

autoradiographs showed that dissolved organic materials which were 

assimilated by bacteria were linked to the formation of capsular materials. 

This process is important in building detrital aggregates. A favourable 

combination of substrates and physical growth conditions is necessary for 

the formation of capsular and fibrillar materials from DOC in both 

environments.

These observations also show that particles serve as growth-conducive 

surfaces in both marine and freshwater environments. Extensive microbial 

attachment occurred even in oligotrophic waters. This may be explained by 

the tendancy for bacteria to remain near nutrient sources in oligotrophic 

environments (see Chapter 1.6). Particulate material may act as a 

suitable source of nutrients. Adsorption of nutrients leading to the 

formation of "microlayers" of concentrated nutrients may occur in dilute 

aquatic systems (Paerl, 1975). This may offer an attractive growth site 

for microorganisms capable of attaching to particles.

Biddanda (1986) made transmission electron microscopic observations of 

laboratory-produced marine aggregates. Bacterial extracellular

polysaccharide processes were responsible for the formation of aggregates. 

They caused inter-bacterial bridging which enabled the bacteria to attach 

to each other, resulting in the formation of macroaggregates. The same 

Material was responsible for bacterial attachment to particles of 

decomposing seaweed. This resulted in the formation of bacterio-seaweed 

particle aggregates. The electron opaque and fibrillar appearance of the



bacterial extracellular material resembled that observed by Fletcher and 

Floodgate (1973) (see Chapter 1.2). These observations show the 

importance of microbial extracellular adhesive in the ecology of detritus 

and macroaggregate synthesis. Microorganisms invest considerable energy 

into the production and maintenance of extracellular structures that aid 

them in attachment. This may be an adaptation to allow utilization of 

nutrients occurring at a solid/liquid interface, such as a particle surface 

(Biddanda, 1986). The aggregation of bacteria and their attachment to 

detrital particles allows easier utilization of them by grazer organisms. 

Both selective and non-selective feeders may derive significant amounts 

of energy from bacterial aggregates and bacteria in detritus. This is 

similar to the utilization of microbial extracellular materials by benthic 

invertebrates (see Chapter 9.2). The transfer of microbial 

macroaggregates directly to the macro food chains may also occur. This 

may be a major pathway for the flow of carbon and energy to the higher 

trophic levels in aquatic ecosystems (Biddanda, 1986).

Elevated counts of bacteria were found in the surface microlayers of 

two salt marshes (Harvey and Young, 1980). At both sites, the 

concentration of bacteria in the surface microlayer was linearly related to

the surface concentration of particulate material. A significant

concentration of bacteria were attached to particles in the surface

microlayer of both marshes. Bacterial populations in the subsurface water 

were largely planktonic. Both plate count and total count methods were

used to measure bacterial populations. There was some variability between 

the results obtained using these methods. The numbers of plate count 

bacteria were several orders of magnitude lower than the total counts in 

all samples (Harvey and Young, 1980). The total count method alone may



have been more accurate. This is because it gives a measurement of the 

total bacterial population associated with particulate material rather than 

a selected population. Large bacterial counts in the surface microlayers 

were, however, recorded using both methods. The relationship between the 

surface enrichment of plate counts and total bacterial counts in relation 

to particle concentration was investigated graphically. The slope of the 

line relating surface enrichment of plate count bacteria was significantly 

steeper. This observation suggests that as the enrichment of particles 

increases, there is a greater influence on the surface enrichment of plate 

count bacteria (Harvey and Young, 1980). The ratio of plate counts to 

total counts in the surface microlayers and the percentage of particle- 

bound bacteria for each sample were also illustrated graphically. The 

ratios were highest in samples with the highest proportion of particle- 

bound cells. This further suggests that particle association positively

influences the numbers of bacteria which grow on plates. In addition, as 

a higher concentration of surface-collected bacteria were particle-bound, 

this suggests that particles influence bacterial activity in the microlayer 

environment. The higher concentration factors observed for plate count

bacteria suggests that the metabolically active population is greater in 

the surface layers. The greater increase observed in the enrichment of 

plate count bacteria with increasing particle surface enrichment further 

suggests that particulates may promote bacterial metabolic activity. The 

particulates in the microlayers may also be a resource of nutrients for the 

bacterioneuston (Harvey and Young, 1980).

Biddanda and Pomeroy (1988) made a series of observations of the 

microbial degradation of three phytoplankton species in seawater cultures. 

The phytoplankton studied were the cyanobacterium Synechococcus spp., the



flagellate Dunaliella spp. and the pennate diatom Cylindrotheca fusiformis. 

The sequence of events occurring during decomposition were followed at 

various time intervals over a sixteen-day period using epifluorescence 

microscopy and SEM. A similar and well-defined pattern of microbial 

succession occurred in all three species (see Albright et al. (1986), 

Chapter 7.1). The successional pattern was closely followed in 

Cylindrotheca fusiformis, as the stages could be clearly identified. 

During the first few days of incubation, an increasing proportion of rod

shaped bacteria became associated with the phytoplankton. These were 

then replaced by a mixed assemblage of bacteria including cocci, rods,

spirilla and filamentous forms. Aggregation of bacteria and the 

phytoplankton detritus occurred after four days. This was mediated by the 

production of bacterial extracellular mucopolysaccharides. A mixed

assemblage of bacterivorous protozoa also appeared at this time, including 

flagellates, ciliates and amoeboid forms. These protozoa kept the

bacterial numbers in check by consumption. The appearance of the

protozoan community was accompanied by changes in morphology of aggregates. 

Disaggregation occurred due to the consumption of bacteria and their

associated attachment structures. At the end of the sixteen-day period, 

the aggregates had broken up and largely disappeared. The aggregation and 

disaggregation events are important to the functioning of marine food 

chains (Biddanda and Pomeroy, 1988). The microbe-rich aggregated phase is 

of food value to metazoans. Disaggregation of the phytoplankton detritus 

may be of nutrient value to the primary producers. Such bacterial and 

Microzooplankton activity may establish a microzone of enriched nutrients 

in and around the detrital aggregate. Microorganisms may optimize their 

position within these nutrient fields, leading to the formation of



"microbial clusters" in the vicinity of aggregates. This microenvironment 

around degrading detritus is known as the "detritosphere" (Biddanda and 

Pomeroy, 1988). It is similar to the 'phycosphere' concept describing the 

environment of bacteria associated with live phytoplankton (see Chapter 

7.1).

Biddanda and Pomeroy (1988) also proposed a model of detrital 

aggregate dynamics based on their observations of particle aggregation and 

disaggregation. The model is driven by the inputs from primary and 

secondary producers. It proposes that regardless of the form of organic 

input, particulate matter is aggregated by bacteria and subsequently 

degraded by them, together with the actions of protozoa. The organic 

material could be mucus, faecal pellets, dead animals or degrading 

phytoplankton. Consequently, the fate of detritus in the water column can 

be seen as aggregation-disaggregation sequences in time and space. This 

model is generally consistent since loss of detritus by degradation or 

sinking would be compensated by primary and secondary production inputs or 

resuspension from the benthos.

Morrison et al. (1977) made observations of successional changes in 

microfloral populations on plant litter, made up of Quercus virginica 

leaves, in a semi-tropical estuary. Changes in hydrolytic, respiratory, 

catabolic and lipid biosynthetic activities were used as a measure of 

successional changes in microbial populations. SEM was also used to 

observe the dorsal and ventral surfaces of Quercus virginica leaves over a 

six-week period. The dorsal surface was colonized slowly and in patches. 

Newly fallen leaves, which were not yet exposed to estuarine water, had a 

sparse distribution of debris particles. Most of these particles were 

unidentifiable even at high magnifications. After two weeks, the dorsal



surface was covered by patches of microorganisms and debris, although much 

of it remained uncolonized. Several bacterial forms were seen during the 

early stages of colonization. These included debris-covered organisms 

attached by filaments, bacilli with distinct attachment appendages and 

coccoid forms. A few filamentous bacteria were also present which could 

have been Leucothrix mucor. By the fourth week, the surface was more 

densely colonized, and filamentous fungi were in abundance. The dorsal 

surface was not fully colonized until the fifth and sixth weeks. The 

ventral leaf surface was also rapidly colonized by debris. Bacterial 

forms were present, but were often barely visible among the mass of debris. 

Other microorganisms were commonly observed, including intact and 

fragmented diatoms, algal or fungal filaments and spirochaete-like 

organisms. As with the dorsal surface, fungal filaments became more 

abundant in the later stages of submersion. Dense filamentous fungal 

mats, which were probably responsible for macroscopic white patches on the 

leaf surface were observed after four or five weeks.

Biochemical measurements of microbial succession showed high levels of 

muramic acid in the early stages of colonization (Morrison et al., 1977).

This was indicative of high bacterial populations, which were the initial 

colonizers. With longer submersion time in the estuary, ATP levels on the 

leaves rose, whilst muramic acid levels decreased. The increase in ATP 

levels corresponded to increased colonization by fungi, algae and other 

complex organisms not containing muramic acid. These biochemical changes 

agreed with the SEM observations. However, the use of ATP to measure 

levels of algae or fungi may not be accurate. Such measurements could 

also include ATP levels in attached bacteria which were still present. 

Measurements of certain lipid or fatty acid levels could have been a more



accurate measure of algal or fungal populations (see Chapter 9.1) at later 

stages in the succession.

The observations of Morrison et al. (1977) did not show any protozoal 

colonization of Quercus virginica leaves later in the succession. The 

absolute microbial population sizes occurring on detritus depends on a 

number of factors, including nutrient levels in the surrounding water 

(Fenchel and Jorgensen, 1977).

(10.2). Microbial attachment to copepod faecal pellets

Faecal pellets are an example of particulate detritus (see p. 272 ). 

This part concentrates on bacterial attachment to, and their role in, 

decomposition of, copepod faecal pellets.

Turner (1979) analysed faecal pellets produced by the copepod Pontella 

meadi over 14 days of aging at 5°C and 22°C. Initial decreases in carbon 

and nitrogen levels occurred at 22°C, followed by fluctuating values for 

both. These fluctuations may reflect the contents of microorganisms 

colonizing the pellets. SEM examination showed that fresh pellets were 

surrounded by intact peritrophic membranes. These became colonized by

rod-shaped bacteria within a few hours. After 3-11 days of aging at 22°C, 

the membranes were biodegraded, and stalked ciliates were attached to the 

pellets. By the end of 35 days' aging at 22°C, pellet fragmentation had 

reached an advanced state. At a temperature of 5°C, however, pellet 

carbon levels were unchanged over 14 days. SEM observations showed that 

microbial attachment to the pellets was greatly reduced at this

temperature. After 35 days aging, the pellets and their peritrophic 

membranes were still relatively intact. These observations suggest that

when faecal pellets descend to the cooler waters of the deep sea, they



remain virtually intact. Zooplankton faecal pellets with their attached 

microbiota may then be a significant source of nutrition for abyssal 

detritivores (Turner, 1979).

Gowing and Silver (1983) examined bacterial populations on the surface 

and interior of copepod faecal pellets. Some pellets were collected from

the upper 50m. of seawater using particle interceptor traps. Faecal 

pellets were also produced by swimming crabs, Pleuroncodes planipes, when 

they were placed in fixative solutions in a shipboard laboratory. Both 

sets of pellets were examined by SEM and TEM. The contents of the larger

faecal pellets collected by the sediment traps were identical to those

produced by Pleuroncodes planipes. They consisted predominantly of 

amorphous material, including diatom fragments, crustacean cuticle pieces, 

Chiorel1a-1ike cells, dinoflagellates and several bacterial types. There 

were noticeable differences in the surface bacterial populations on

incubated field and laboratory pellets. After 7h. incubation, bacterial 

populations on pellets collected in the laboratory were much higher than 

those on field-collected pellets. Some of these bacteria could have been 

obtained from contact with the glass vials in which the pellets were 

incubated (Gowing and Silver, 1983). The inner surfaces of the glass

vials were examined by SEM in an attempt to show this. These examinations 

showed that the walls of vials incubated for 48h. had a bacterial 

population of 1.4 x 1024 bacteria mm-2. The population increased

substantially in vials incubated for longer periods. These results 

suggest that the vial walls could be a source of the bacteria found on the 

pellet exteriors. There may be other reasons. Bacteria could have been 

selectively removed from faecal pellets collected in the sea but not from 

those incubated in the laboratory. Bacteria may have been more loosely



attached to pellets collected in the sea. However, examination by SEM and 

TEM showed no differences in the surface condition of laboratory and field 

pellets. Bacterial populations on pellets from the sea may have been 

substantially reduced by metazoan grazing. Such grazers were excluded 

from shipboard incubations. The metazoans must be very efficient grazers

if they do remove bacteria from pellet surfaces in the sea (Gowing and 

Silver, 1983).

Faecal pellets collected from the sea contained a higher internal 

bacterial population than those produced in the laboratory. The low 

bacterial population in the laboratory pellets could be caused by factors 

which alter bacterial numbers or the environment within the pellets. 

These factors could include the use of antibiotics in the laboratory. The 

high bacterial populations inside faecal pellets collected from the sea 

suggests that pellet decomposition occurs from the interior. Bacteria 

inside the faecal pellets could arise as either enteric or ingested 

species.

Whatever their origins, the bacterial populations would be introduced 

into the pellets at the same time that they are produced by the 

zooplankton. Any increase in these populations could only occur through 

their own growth. Decomposition on the faecal pellet surfaces would be an 

aerobic process, as long as they remained in oxygenated waters. The 

microhabitats of pellet interiors may differ considerably from those on the 

surface. Contents of fresh pellets would already have low oxygen levels 

at the time of defecation. Further internal decomposition by bacteria

would continue to deplete oxygen. Surface bacterial populations could 

also further reduce oxygen levels in the microzone of the pellet boundary. 

Only microaerophilic or anaerobic bacteria would be able to decompose the



pellets at these low oxygen levels (Gowing and Silver, 1983). Further 

experimental work to study the role of internal bacteria in faecal pellet 

decomposition should be done. This could include measurements of carbon

dioxide production from pellets using 14C-labelling (see p. 287 ). 

Bacteria from the interior of the pellets could be isolated and 

taxonomically identified. Studies could then be made of the decomposition 

of Pleuroncodes planipes faecal pellets under anaerobic or microaerophilic 

conditions. Biochemical studies on the decomposition pathways, using 

enzymic or metabolic inhibitors would be interesting. Similar work could 

also be done with bacteria on the pellet surfaces.

Jacobsen and Azam (1984) studied the colonization of faecal pellets of 

Calanus pad ficus by bacteria during a four day decomposition experiment. 

Bacterial populations were estimated by acridine orange staining. Initial 

colonization was very rapid. Bacteria occupied 27% of the available area

of the pellets after 24 h.. The bacterial concentration after one day was 

1 x 103 cells per faecal pellet. The numbers declined to 1 x 104 cells 

per pellet after four days. Bacterial attachment to sinking and non

sinking faecal pellets was compared. The sinking pellets had a higher 

initial rate of colonization than those which were in a container. 

However, the enhanced initial colonization rate of the sinking pellets did 

not further increase the bacterial numbers after one or more days. The 

same bacterial densities were found on sinking and non-sinking pellets 

after 24 h.. The exact mechanism of attachment of bacteria to the sinking 

faecal pellets is not known. Observations of bacteria attached to 

fluorescent-labelled pellets suggested that the peritrophic membrane may 

allow attachment. The high bacterial populations on the stationary 

pellets in containers suggests that surface receptors may be present



(Jacobsen and Azam, 1984). Further experimental work, such as TEM 

observations of bacterial colonization could be done. Studies of sugar

inhibition of bacterial attachment could also be done to show possible 

ligand-receptor interactions (see Chapter 7.1 and 8).

Measurements of bacterial mineralization of faecal pellet carbon and 

bacterial growth rates were also made. Faecal pellets were incubated in a 

1 pm. filtrate of bacteria in seawater or a 35 pm. filtrate of bacteria and 

microzooplankton. Bacterial mineralization of 14C-carbon to carbon 

dioxide in the pellets with the 35 pm. filtrate including zooplankton 

doubled the rate of mineralization. However, the results suggest that 

bacteria alone are not responsible for the complete remineralization of 

faecal pellet carbon. If the estimates made under laboratory conditions 

were correct, complete pellet decomposition by bacteria would require 

approx. 50 days at 18°C. However, the remineralization results may be 

inaccurate. This is because the release of dissolved 14C-label and the 

presence of particulate label in seawater may make up as much of the lost 

label as the carbon dioxide evolved. Some of the particulate label may 

arise from portions of the faecal pellet breaking off. Bacteria may also

utilize the dissolved 14C-label. These labelled bacteria could become 

detached from the pellets (Jacobsen and Azam, 1984).

The growth rates of bacteria associated with the faecal pellets were 

estimated by measuring 3H-thymidine incorporation. Measurements were made 

using faecal pellets incubated in the 1 pm. or 35 pm. filtrates. The 

specific growth rate of free bacteria in the water was greater than 

attached bacteria in both filtrates. This observation does not support 

those that suggest that attached bacteria are metabolically more active 

than free-living cells (Harvey and Young, 1980; see p . 279 ). However, the



growth rate of attached bacteria could be underestimated if the faecal 

pellet was acting as a "baby machine". A "baby machine" is defined as a 

site of bacterial growth where the progeny do not remain at that site 

(Jacobsen and Azam, 1984). Detachment of bacteria from the pellet could 

cause this, which in turn could significantly increase the production 

estimates of free-living bacteria. Bacterial detachment tends to occur 

with the initial colonizers of faecal pellets. It may not occur in the 

latter stages of pellet decomposition.

Colonizing bacteria were also found on the inside of the faecal 

pellets within a few hours. This suggests that a similar pattern of 

colonization occurs to that observed by Gowing and Silver (1983) for 

Pleuroncodes planipes faecal pellets. Decomposition of Calanus pacificus 

pellets may occur in a similar way to those of P. planipes. The number of 

bacteria associated with young C. pacificus pellets was a minimal estimate. 

It was difficult to accurately quantify bacteria within the faecal pellet. 

Further experimental work, such as comparing the internal and surface 

bacterial populations of the pellets should be done, along with some 

biochemical work. The results of these laboratory studies need to be 

confirmed in natural samples. In addition, they need confirmation in 

relation to faecal pellet size and abundance (Jacobsen and Azam, 1984). 

The observations which have been discussed suggest that free-living 

bacteria colonize freshly egested copepod faecal pellets and are involved 

in their decomposition.



Summary
The main points discussed in this chapter are as follows :

1. Detritus usually occurs in two forms in the marine environment as 

particulate and dissolved detritus. A diverse bacterial flora 

together with diatoms and cyanobacteria often colonize detritus 

(Fenchel and Jorgensen, 1977).

2. (i.). SEM observations of microbial attachment to particulate

detritus in freshwater and marine environments showed vertical 

changes. Microbial attachment was common in near-surface samples, 

with extensive production of extracellular adhesive keeping them 

tightly anchored to particles. There was a decrease in microbial 

attachment with increasing depth (Paerl, 1973, 1974, 1975).

(ii.). Autoradiographic studies on detrital aggregates over a 70

hr. period showed dense patches of radioactivity centred around 

bacteria in the aggregates. These observations suggested that the 

bacteria utilize dissolved organic carbon for the formation of 

adhesive materials which result in detrital aggregation (Paerl, 

1974).

(iii.). Bacterial extracellular polysaccharide was responsible for

bacterial attachment to decomposing seaweed particles, and in the 

formation of bacterio-seaweed aggregates (Biddanda, 1986). 

Aggregation of bacteria and their attachment to detrital particles 

may allow grazer organisms to utilize them more easily.

3. High bacterial populations were found in the surface microlayers of 

two salt marshes. A higher enrichment of surface particles gave an 

increase in the numbers of plate count bacteria. These observations 

suggest that particles influence bacterial activity, and that the
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metabolically active population is highest in the surface microlayer 

(Harvey and Young, 1980).

4. (i.). Observations of the microbial degradation of the diatom

Cylindrotheca fusiformis and two other phytoplankton showed a common 

successional sequence. Bacteria were initially associated with the 

phytoplankton, causing detrital aggregation by the production of 

adhesive. Protozoa appeared after four days, reducing the bacterial 

numbers by consumption. This protozoal activity caused

disaggregation of the detrital aggregates. These observations

suggest that the fate of detritus in the water column can be seen as 

aggregation-disaggregation sequences in time and space (Biddanda and 

Pomeroy, 1988).

(ii.). Successional changes in microfloral populations were

similar on the dorsal and ventral surfaces of Quercus virginica 

leaves in a semi-tropical estuary. Several bacterial forms were 

present, together with diatoms, and algal or fungal filaments. 

Dense filamentous fungal mats were later observed on both leaf 

surfaces. Changes in muramic acid and ATP levels appeared to follow 

observed changes in microbial populations. Protozoa were not

observed (Morrison et al., 1977).

5. (i.). Attached marine bacteria appear to be involved in faecal

pellet decomposition. Faecal pellets of Pontella meadii incubated 

at 22°C became heavily colonized by bacteria and stalked ciliates. 

Pellet fragmentation reached an advanced state after 35 days aging at 

22°C. Microbial attachment was greatly reduced at 5°C, however, and 

the pellets remained intact after 35 days (Turner, 1979).

(ii.). Comparisons were made of surface and internal bacterial



populations of faecal pellets collected from seawater and those 

produced by Pleuroncodes planipes crabs in the laboratory (Gowing and 

Silver, 1983). A higher internal bacterial population was found in 

the pellets collected from the sea. These observations suggest that 

faecal pellet decomposition occurs from the interior. The 

microhabitats of pellet interiors may differ from the surface. 

Microaerophilic or anaerobic bacteria would only be able to decompose 

the pellets at the low oxygen levels which would exist (Gowing and 

Silver, 1983).

(iii.). Bacteria initially rapidly colonized faecal pellets of 

Calanus pacificus. The same bacterial densities were found on 

sinking and non-sinking pellets after 24 h.. Measurements of

bacterial mineralization of faecal pellet carbon suggests that 

bacteria alone are not responsible for it's complete 

remineralization. The specific growth rate of free bacteria in the 

surrounding water was greater than for attached bacteria. The 

growth rate of attached bacteria could be underestimated if the 

pellet was acting as a "baby machine". Colonizing bacteria were 

also found on the inside of the pellets, suggesting a similar 

decomposition pattern to those of P. planipes (Jacobsen and Azam,

1984).



SECTION 4

AN ECONOMIC PROBLEM CAUSED BY 

MARINE MICROFOULING AND 

METHODS OF PREVENTION AND CONTROL 

OF MICROFOULING



Chapter 11 Corrosion of metals by marine microfilms

Corrosion is best defined as the destructive attack of a metal by 

reaction with its environment (Iverson, 1974). It is frequently thought 

of as "rusting". This term, however, applies to the corrosion of iron or 

iron-based alloys which results in the formation of corrosion products such 

as hydrous ferric oxides (Iverson, 1974). In an electrolytic solution, 

such as seawater, a metal undergoes an anodic, or oxidation, reaction 

(Gerchakov and Udey, 1984) :-

M ----- >  MQ+ + ne- (1.)

A cathodic, or reduction, reaction must occur simultaneously to accept 

these electrons. Water can act as an electron acceptor with the evolution 

of hydrogen (Gerchakov and Udey, 1984):-

nH2 0 + ne- + nOH- (2.)
2

Alternatively, oxygen may also serve as an electron acceptor (Iverson, 

1974; Gerchakov and Udey, 1984):-

11O2 + 11H2O + ne-— ^nOH~ (3.)
4 2

Reaction (3) usually occurs in solutions of neutral or alkaline pH. In 

reaction (2), the hydrogen which forms accumulates on the metal surface. 

Removal of hydrogen by bacterial action causes reactions (1) and (2) to 

move to the right, resulting in corrosion of the metal (Iverson, 1974). 

In this case, the metal corrodes by cathodic depolarization, to be 

discussed later (see p. 301 ).

Seawater is a mildly alkaline solution of various salts, of which 

sodium chloride is predominant. Seawater can become corrosive depending



on the concentrations of salts present (Godard, 1979).

Microbial films forming on metal surfaces in seawater may cause 

corrosion in various ways. Corrosion occurs by the microorganisms being 

in close contact with the metal surface through attachment (La Que, 1975; 

Gerchakov and Udey, 1984). One corrosion mechanism is by the production 

of organic acids. Organic acids which are involved in the reactions of 

glycolysis and the citric acid cycle are particularly effective at 

corroding copper (Staffeldt and Calderon, 1967). These acids cause much 

corrosion at gas/liquid interfaces and under submerged conditions.

A further mechanism may be the reduction in oxygen concentration which 

occurs under respiring microbial colonies on the metal surface (Iverson, 

1974). This is thought to cause the formation of differential aeration 

cells, where areas under the microbial colonies are depleted of oxygen 

relative to the surrounding areas (La Que, 1975; Gerchakov and Udey,

1984). Such differential aeration cells result particularly from non- 

uniform microbial colonization on the metal (Gerchakov and Udey, 1984). A 

potential difference is formed as a result of the lower oxygen 

concentration underneath the microbial colonies and higher oxygen 

concentration adjacent to them (Iverson, 1974).

This in turn will give rise to corrosion currents. Pitting corrosion 

results from sustained differential aeration cells (Godard, 1979; Gerchakov 

and Udey, 1984). On the other hand, a heavy microbial film on a metal 

surface can suppress a corrosion reaction which is controlled by access of 

oxygen to cathodic surfaces (La Que, 1972).

Various microalgae, particularly diatoms, as well as cyanobacteria, 

attach readily to submersed metals (see Chapters 3 and 12). Terry and 

Edyvean (1981) made observations of microalgal attachment to unprotected



steel, cathodically protected steel, and steel coated with antifouling 

paint. Diatoms and cyanobacteria attached by copious mucilage production 

to all the steel samples (Terry and Edyvean, 1981, see p.295 ; Edyvean and 

Terry, 1983b). Graphs of pH changes under such an algal film showed pH 

falls during the night (Terry and Edyvean, 1981). Increased acidity may 

increase the corrosion rate, and could give rise to corrosion cells 

(Edyvean and Terry, 1983b). Edyvean and Terry (1983a) studied the 

polarization characteristics of 50D structural steel in cultures of marine 

algae. Polarization can be defined as follows (McDonnell et al., 1984).

When a metal is placed in a solution, it establishes a corrosion potential, 

E c o r r .  At E c o r r ,  the oxidation-reduction reactions are balanced, so the 

current is zero, and the metal is polarized. If an external negative 

voltage is applied, the metal will obtain a potential more negative than 

E c o r r ,  and the cathodic (reduction) reaction will predominate. In this 

case, the metal becomes cathodically depolarized. However, if a positive 

voltage is applied, the anodic (oxidation) reaction will predominate, and 

the metal becomes anodically depolarized (McDonnell et al., 1984).

In the studies of Edyvean and Terry (1983a), corrosion was enhanced by 

anodic depolarization under cultures of the cyanobacterium Oscillatoria 

spp. (see p. 296 ). A primary film of bacteria and diatoms on 50D steel

produced some cathodic depolarization (see p. 297). (50D steel is

defined as carbon-manganese steel conforming to British Standard 4360, 

which is designated 50D). Corrosion enhancement by Oscillatoria spp. may 

be caused by the organism itself, or by associated bacteria. However, 

under a thick, mucilaginous mat of Oscillatoria spp., anodic polarization 

occurred which resulted in a decrease in corrosion. This protection may 

have been caused by the closely adherent mucilage preventing oxygen



295

Fig. 54 Corrosion of mild steel by attached microorganisms
Fig. 54.1 S.E.M. show ing rust surface of unpro tected mild steel

exposed to flowing seawater for 105 days. The surface is 
covered  by a m u c i la g e -bo u nd  mat o f f i la m e n to u s  
cyanobacteria and a pennate diatom.

Fig. 54.2 S.E.M. showing the penetration of the epoxy coal tar paint 
surface by pennate diatoms grown in static laboratory culture 
after 100 days.

Fig. 54.3 S.E.M. showing the layered structure of the scale formed on
mild steel cathodically protected using a zinc alloy sacrificial 
anode, after 100 days. A, upper surface of scale; B, 
under surface showing an im prin t pattern of the steel 
surface.

Fig. 54.4 Pennate diatom after 100 days in static  laboratory culture
attached by one end to the scale formed on cathodically 
protected mild steel. The attachment is so secure, that the 
cracking of the scale during S.E.M. preparation also resulted 
in the cracking of the diatom itself.

(Reproduced by permission from Terry and Edyvean, 1981)
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diffusion to the steel surface, hence smothering the corrosion reaction 

(Edyvean and Terry, 1983a).

Comparisons have been made by McDonnell et al. (1984) of the 

attachment patterns, polarization and amount of corrosion produced by the 

diatoms Amphora spp. and Achnanthes spp. on 50D steel surfaces. Diatom 

cultures were added to stubs of 50D steel which were observed by SEM. 

Rust formation was observed with both diatoms. However, the corroding 

metal surfaces showed different appearances with the two species. After 

two weeks the stubs with Achnanthes spp. showed abundant rust formation, 

while those with Amphora spp. had little loose corrosion material but a 

more dense adherent layer. Polarization measurements initially showed no 

significant differences in the cathodic polarization curves of both steel 

samples. After four weeks, the Achnanthes spp.-treated steel showed 

greater cathodic depolarization than the steel with Amphora spp.. After 

20 weeks, the Amphora spp.-treated steel continued to show less cathodic 

depolarization, whilst Achnanthes spp. seemed to cause most corrosion. 

These observations can be explained by the nature of the adhesive mucilage 

produced by the diatoms which is thought to act as a barrier to oxygen 

diffusion. Cells of Amphora spp. produce mucilage pads which can 

ultimately cover the entire metal surface, producing a uniform mucilage 

layer (see Chapter 3.2). This layer would act as an effective corrosion 

barrier. On the other hand, Achnanthes spp. would form an irregular and 

incomplete mucilage cover over the metal surface due to the production of 

stalks (see Chapter 3.2 also). This non-uniform mucilage layer may 

accelerate corrosion.

The polarization results obtained with these diatoms differ from the 

anodic polarization observed by Edyvean and Terry (1983a) under a thick 

Oscillatoria spp. mat. Such dissimilarities may result from the variable



effects of different organisms. In addition, the time scale of these 

events may also be important (McDonnell et al., 1984). The longer term

effects of microalgae on corrosion would depend upon interactions with 

other microorganisms such as bacteria, which are often found in close 

association with diatoms in the natural environment (see Chapter 7.1).

Experimental evidence has shown that photosynthetic and non

photosynthetic bacteria can corrode metals by a hydrogenase enzyme system 

(Mara and Williams, 1971, 1972). This system enables the organisms to

depolarize the cathodic areas of a metal surface by the removal of 

hydrogen. This enhances corrosion by cathodic depolarization. 

Cyanobacteria as well as photosynthetic and non-photosynthetic bacteria 

also oxidize hydrogen by a nitrate-reducing enzyme system (nitrate 

reductase). Coupling of hydrogenase and nitrate reductase systems 

provides a corrosion mechanism which may be widespread in natural 

environments (Mara and Williams, 1971, 1972).

Analysis of algal holdfasts on 50D steel surfaces revealed high 

amounts of sulphur. Sulphate-reducing bacteria, together with green and 

blue-green algae can reduce sulphur and sulphates to hydrogen sulphide and 

iron sulphide which accelerates corrosion (Edyvean and Terry, 1983b). 

Corrosion was enhanced by cathodic depolarization in a suspension of 

decomposing Enteromorpha spp. under anaerobic conditions (see p. 300). 

This occurred through hydrogen removal by sulphate-reducing bacteria 

(Edyvean and Terry, 1983a).

Sulphate-reducing bacteria are frequently found within bacterial slime 

films, or biofilms, in the aquatic environment. Even in aerobic

environments, biofilms can create ideal anaerobic conditions for the growth 

of sulphate-reducing bacteria. This gives rise to sulphide production and
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corrosion (Hamilton, 1985).

These bacteria, such as Desulphovibrio desulphuricans, cause corrosion 

by hydrogen sulphide production from sulphates (La Que, 1975; Hamilton,

1985). The corrosion occurs by cathodic depolarization, which can be 

represented by the following equations (La Que, 1975):-

4Fe ^4Fe2 + + 8e~ (1.)

8e~ + 4HZ0 + SO2 ~ 4-->S2" + 80H" (2.)
SRB

Combining these two equations gives :

4Fe + 4H20 + S02"4  ^3Fe(0H)2 + FeS + 20H" (3.)

The reduction of hydrogen ions, shown in Eq. 2, is the only possible 

cathodic reaction in oxygen-free neutral solutions. The theory of von 

Wolzogen Kuhr and van der Vlugt suggests that bacteria depolarize the 

cathode by the removal of hydrogen atoms from the cathodic surface, as in 

Eq. 2 (La Que, 1975). This would drive the equilibrium of Eq. 3 to the 

right, with subsequent formation of iron sulphide which would cause 

corrosion. Removal of hydrogen atoms depends on the action of the enzyme 

dehydrogenase. This bacterial enzyme catalyses the overall reaction of 

cathodic depolarization (La Que, 1975; Hamilton, 1985) :-

SO2** + 8H-->S2" + 4H20 (4.).

Direct experimental evidence for this reaction was obtained by Iverson 

(1966), using benzyl viologen as an electron acceptor in place of sulphate. 

Benzyl viologen is a dye which is colourless when oxidized and violet when 

reduced. A culture of Desulphovibrio desulphuricans was used together
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with a steel coupon. After incubation, a violet area of reduced benzyl 

viologen was observed underneath the part of the coupon (test plate) over 

the area previously covered with cells. This showed that hydrogen, formed 

at the iron surface, was removed by D. desulphuricans to reduce benzyl 

viologen (Iverson, 1966). However, Hamilton (1985) suggested that 

hydrogenase-dependent cathodic depolarization was an experimental artifact 

resulting from using benzyl viologen to 'simplify' the system. Using 

electrochemical theory, it was concluded that the cathodic reactant is 

hydrogen sulphide, which is reduced according to the equation (Hamilton,

1985)

H2S + e- ,J>HS- + 1H2 (5.).
2

However, hydrogenase may have a secondary role through removal of the 

hydrogen generated in Eq. 5, with further generation of hydrogen sulphide. 

Indeed, hydrogen sulphide is a common factor in many areas where severe 

corrosion conditions exist (Munger, 1978). It reacts rapidly with iron to

form iron sulphide, which in turn reacts with oxygen forming iron oxide,

commonly known as "rust". Iron sulphide can itself remove hydrogen on a 

metal surface, causing cathodic depolarization. This increases the anodic 

reaction giving increased corrosion at the anode (Munger, 1978).

Iverson (1972) found that addition of iron (ferrous, Fe2+) ions to a

Desulphovibrio-free culture filtrate to remove sulphide ions increased the 

corrosion of mild steel. A black precipitate formed on the steel surface 

upon the addition of iron ions. This was thought to be iron sulphide. 

When the black precipitate was removed the resulting filtrate was still 

highly corrosive which suggested that the corrosive agent was water 

soluble. The high corrosion rates obtained suggest that the corrosive



agent removes electrons directly from the metal rather than through the 

utilization of hydrogen (Iverson, 1972). The corrosive agent has so far 

not been characterized further than being a volatile phosphorus compound 

(Hamilton, 1985).

The presence of ferrous iron was shown to affect the cathodic 

depolarization of mild steel in semi-continuous cultures of sulphate- 

reducing bacteria (Booth et al., 1969). In the presence of a minimum

concentration of ferrous ions, cathodic depolarization was transient, and a 

protective film of iron sulphide was formed on the steel surface. The 

organisms were not able to utilize hydrogen from a film of ferrous 

sulphide. However, in the presence of high ferrous iron concentrations 

much cathodic depolarization occurred. This was due to ferrous ions 

combining with the sulphide produced by the bacteria, thus preventing 

protective film formation and increasing corrosion. The presence of high 

ferrous ion concentrations even allowed a hydrogenase-negative organism 

such as Desulphotomaculum orientis to cause vigorous cathodic 

depolarization (Booth et al., 1969). This observation reinforces

Hamilton's (1985) suggestion that hydrogen sulphide may be the main 

electron acceptor in cathodic depolarization, with hydrogenase playing a 

secondary role.

As mentioned previously (p. 293 ), biofilms on a metal surface can

give rise to differential aeration cells causing non-uniform corrosion. 

This process can occur with films of sulphate-reducing bacteria. Hardy 

and Brown (1984) investigated the influence of sulphate-reducing bacteria 

and the effects of aeration on the corrosion of mild steel. Corrosion 

rates of steel determined by weight loss measurements, were low in 

anaerobic cultures (see p. 305 ). However, the exposure of steel to



304

aerobic conditions by air sparging increased corrosion, resulting in 

pitting and perforation of the steel. A black precipitate, presumably of 

iron sulphide, developed on the steel surface during incubation. Mounds 

or tubercles of precipitate were randomly distributed across the steel 

surface. The areas of steel underneath these tubercles corresponded to

the sites of pitting corrosion, shown by air sparging (Hardy and Brown, 

1984). These observations again show how areas under microbial colonies

on a model surface can act as differential aeration cells, so increasing 

localised corrosion.

Pitting potentials of steel became more active in seawater containing 

sulphate-reducing bacteria (Salvarezza and Videla, 1980). This was also 

found for steel in seawater containing sulphide ions. This again shows 

that sulphate-reducing bacteria corrode localized areas of steel by 

cathodic depolarization causing pitting corrosion.

Thomas et al. (1 9 8 7 )  compared the effects of microbially produced and 

abiological hydrogen sulphide (Ĥ S) on the corrosion of two high strength 

steels. Biologically produced hydrogen sulphide was obtained from the 

decomposition of the algae Enteromorpha spp., Porphyra spp. and Pelvetia 

spp. in an enclosed seawater environment. The seawater containing 

bacterially produced hydrogen sulphide was transferred to corrosion fatigue 

test chambers. Corrosion measurements were made using 13mm. thick compact 

tension specimens obtained from steel grades RQT 501 and RQT 701. The 

results showed that the crack growth rates for RQT 701 steel in seawater 

containing biologically generated hydrogen sulphide increased with 

increasing HpS concentrations. C r a c k  g r o w t h  r a t e s  becam e s i m i l a r  a t  

higher H2S levels of 204, 370 and 477 p p m . .  The c o r r o s i o n  f a t i g u e  r e s u l t s  

obtained for RQT 501 steel exposed t o  b i o l o g i c a l l y  p r o d u c e d  H2S w e re



TABLE 12

Weight Losses from Mild Steel Foils in

Batch Cultures of Sulphate-Reducing Bacteria 

and in Sterile Media.

Treatment and Time Mean Weight Loss 

per Foil ± Standard

(mg)

Deviation

Aerated sterile culture (lOOh) 205

Anaerobic culture of SRB (5 days) 1.73 ± 0.39

Air-sparged (5h) culture of SRB (5 days) 8.17 ± 1.3

(from Hardy and Brown, 1984).



similar. However, higher levels of abiologically produced H2 S had a much 

greater effect on the crack growth rates of RQT 501 steel than biologically 

produced H2 S. The reason for the lack of crack growth enhancement with 

biologically produced H2 S is not properly known. However, it appeared 

that when there was a detectable increase in sulphide ions, there was no 

sulphide available at the crack tip to enhance hydrogen entry. The 

formation of a bacterial slime layer on the steel surfaces could provide a 

barrier to the transport of sulphide ions to the metal. An interspecies 

transfer of ions between bacteria could also make much of the measured H2 S 

unavailable to the steel. In contrast, all of the artificially added H2 S 

could contribute to the corrosion fatigue process (Thomas et al., 1987).

A specific example of metal corrosion related to microfouling on mild 

steel coupons was shown with a ferric (Fe3+)-reducing pseudomonad isolated 

from crude oil (Obuekwe et al., 1981a,b). In the absence of the 

bacterium, a dense amorphous crystalline coat formed on the steel surface 

(see p.307,309). However, in the presence of the pseudomonad the 

crystalline coating was removed, exposing the metal to the atmosphere (see 

p. 308 ). Bacterial colonization was mediated by the production of 

fibrous, exopolysaccharide material over the steel surface (Obuekwe et al., 

1981a, b). The steel remained passive in the absence of the organism; 

the crystalline surface coat formed a protective coating. However, in the 

presence of the bacterium, intense anodic depolarization of the steel 

occurred (Obuekwe et al., 1981a; see p. 310 ). The pseudomonad 

(Pseudomonas isolate 200) reduces ferric [Fe(III)] iron to soluble ferrous 

[Fe(II)] iron, which removed the protective coating so exposing the steel 

to the atmosphere and enhancing corrosion (Obuekwe et al., 1981a, b). 

Addition of nitrate inhibited corrosion as a result of the formation of
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Fig. 58 S.E.M. of mild steel coupon submerged In uninocu la ted
(control) medium for 48 hours. The coupon was f irs t  rinsed 
in distilled water and dehydrated in a regime of increasing 
ethanol concentration - 30% to 100%. The m icrograph 
shows the formation of a protective, densely packed, 
crysta ll ine surface covering in the absence of the iron 
reducing bacterium.

(Reproduced by permission from Obuekwe et al. 1981a)
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Fig. 59 S.E.M. of m ild  steel coupon subm erged  in medium
containing culture of isolate #200 (iron reducing bacterium) 
for 42 hours. The micrograph shows extensive removal of
the protective, dense, crystalline surface covering in the 
presence of the bacterium. Mag. x245.

(Reproduced by permission from Obuekwe et al. 1981a)
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Fig. 60 Closer view of the protective, densely packed, crystalline 
covering formed on submerged metal in the absence of the 
iron reducing bacterium. Such a covering wil l pose a 
p ro tective  barrier between the metal and its corros ive  
environment. Mag. x1225.

(Reproduced by permission from Obuekwe et al. 1981a)
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nitrite and protective ferric oxide layers by the bacterium which prevented 

the corrosion of the steel specimen (Obuekwe et al., 1981a).

Additionally, corrosion of the steel may also be due to the formation of 

differential aeration cells under the exopolysaccharide deposited by the 

pseudomonad (Obuekwe et al., 1981a).

Summary

This chapter has brought out the following main points.

(1.). The corrosion of metals in seawater can be caused by marine 

microorganisms which are attached to the metal surface (Obuekwe 

et al., 1981a, b; Gerchakov and Udey, 1984).

(2.). One corrosion mechanism is the formation of differential aeration 

cells under a non-uniform film of attached microorganisms (La 

Que, 1975; Gerchakov and Udey, 1984).

(3.). (i.). Certain attached microorganisms, such as bacteria and

diatoms and the cyanobacterium Oscillatoria spp. can corrode 

metals by depolarization of the anodic or cathodic areas of the 

metal surface (Edyvean and Terry, 1983a).

(ii.). Diatoms of Amphora spp. appear to inhibit corrosion by 

the production of a uniform layer of adhesive mucilage over the 

metal surface (McDonnell et al., 1984).

(4.). (i.). Sulphate-reducing bacteria, which can be present in

biofilms under anaerobic conditions, can corrode metals by the 

production of hydrogen sulphide and iron sulphide formation from 

sulphates by cathodic depolarization (Iverson, 1966; La Que, 

1975; Munger, 1978; Hamilton, 1985).



(ii.). Artificially produced hydrogen sulphide had a greater 

effect on the corrosion fatigue of steel than hydrogen sulphide 

produced biologically from the decomposition of seaweeds (Thomas 

et al., 1987).

(iii.). Photosynthetic and non-photosynthetic bacteria and 

cyanobacteria can also corrode metals by cathodic depolarization, 

through hydrogenase and nitrate reductase enzyme systems (Mara 

and Williams, 1971, 1972).
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Chapter 12 Antifoulincr and microfouling control methods

As this thesis has concentrated mainly on adhesion mechanisms of 

marine microorganisms and the consequences of their attachment to living 

and non-living surfaces, it was felt necessary to end it by a discussion of 

methods of preventing attachment. Microfouling control methods, in 

particular, are seen as being important in controlling macrofouling by 

seaweeds and fouling invertebrates (Fischer et al., 1984). This could be

of importance for bulk carrier ships and oil tankers where algal fouling 

and its removal can be a problem.

There is no single solution to the problem of marine fouling. 

Antifouling systems which have worked well in similar circumstances have 

sometimes failed. Although 'traditional' antifouling techniques such as 

the use of toxic paints or chlorination may prove useful in some cases, 

they do not represent a universal solution. As no individual antifouling 

method may be completely effective, broad-spectrum treatments need to be 

tried. These methods use general energy inputs to remove attached 

microorganisms, and include mechanical scrubbing, heat and ultraviolet 

light (Fischer et al., 1984). Antifouling techniques can also be based on 

an understanding of the attachment mechanisms of microorganisms and of 

factors affecting their attachment.

This chapter discusses traditional and more advanced chemical fouling 

control methods and non-chemical antifouling methods. More recent 

developments and possible future antifouling techniques are also discussed.
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(12.1). Chemical fouling control methods

Marine microfouling can be most economically controlled by chemical 

methods (Fischer et al., 1984). The use of cuprous oxide antifouling

paints is one of the most traditional methods (Meadows and Anderson, 1979). 

These paints work by dissolving in seawater and releasing toxic copper ions 

from the metal surface, a process called leaching. A boundary layer of 

high toxin concentration is created at the paint surface which poisons 

settling organisms (Evans, 1981; Fischer et al., 1984). The leaching

rate, which influences the thickness of the toxic boundary layer, depends 

on the temperature, pH and salinity of the seawater and on the water flow 

rate over the surface.

Two main types of cuprous oxide antifouling paints have been widely 

used. They are separated by the mechanism of toxin release into the 

seawater. In soluble matrix paints, the toxin particles are distributed 

in a binder based on compounds called rosins. Rosins are resinous organic 

acids which dissolve slowly in the slightly alkaline seawater, so exposing 

the toxic paint particles, which themselves dissolve. Degradation of 

rosins is also accelerated by slime-forming marine bacteria which foul the 

paint surfaces (see p. 317) (Evans, 1981; Fischer et al., 1984).

Contact leaching paints have a higher copper oxide content, and the 

particles are closely packed. As particles at the surface dissolve, 

deeper ones become exposed (Evans, 1981).

Cuprous oxide antifouling paints are still widely used in most 

situations nowadays. However, during the 1960s, they were not performing 

efficiently, particularly in the control of algal fouling on tankers. This 

led to the introduction of organometallic biocides in antifouling 

compositions by the end of the 1960s (Evans, 1981).
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The use of tributyltin and triphenyltin compounds gave early promise 

of fouling control on steel, aluminium and wood test panels {Evans, 1970). 

Vinyl-based organotin paints were more effective in preventing fouling on 

aluminium boats.

There are two main types of organometallic paints now used. Type I 

are coatings which incorporate organotin compounds into the composition. 

These would include tri-n-butyltin fluoride and tripropyltin fluoride used 

as plasticizers and pigments. Type II are coatings based on film-forming 

resins containing a chemically bound organotin moiety (Fischer et al., 

1984). They further separate into Type IIA and Type IIB coatings. Type 

IIB have been successfully used commercially and are used in co-polymer 

antifouling paints. These consist of an organotin residue, such as 

tributyltin, incorporated into methacrylate-organotin copolymers. In 

seawater, the organotin residue and the polymer dissolve from the surface 

and are released together, so exposing more toxicant (Evans, 1981; Fischer 

et al., 1984).

Toxicity experiments with Enteromorpha spp. showed that the organotin 

toxin should be present early during settlement to prevent spore 

attachment. Settled spores of Enteromorpha spp. were more resistant to 

triphenyltin chloride than swimming spores (Christie, 1972). There was a 

progressive increase in LD50 value (the concentration of triphenyltin 

chloride needed to kill 50% of Enteromorpha spp. spores) with increasing 

time after spore settlement. This resistance to toxic action was thought 

to be due partly to synthesis of a cell wall around the settled spore. 

The cell wall rapidly thickened, so giving considerable protection to the 

spore from the organotin toxin (Christie, 1972).
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The effects of triphenyltin chloride on attachment and growth of the 

stalked diatom Achnanthes subsessilis has also been studied (Callow and 

Evans, 1981). The microscopic appearance of diatom cells after five days 

incubation with triphenyltin chloride was recorded. A diffuse clump of 

cells with long mucilage stalks was observed at a toxin concentration of 

50pmolnr3. At a concentration of lmmolnr3, the diatom cells were dead 

(Callow and Evans, 1981). The effects of triphenyltin chloride on H14C0-3 

(*4C-labelled bicarbonate) fixation, which is a measure of CO2 uptake, was 

also investigated. A greater inhibition of H14C0~3 fixation was observed 

after 1-2 hrs. incubation of diatoms with triphenyltin chloride than after 

five days incubation at the same toxin concentration. These observations 

suggest that Achnanthes subsessilis cells can become more resistant to 

organotin paints after a period of time. The increased length of stalks 

observed at a toxin concentration of 50pmolm_3 suggests that triphenyltin 

chloride may stimulate stalk production. As stalk formation proceeds on 

the paint surface, the diatom cells will move out of the highly toxic 

boundary layer into a region of lower toxicity (Callow and Evans, 1981).

These observations suggest that certain organometallic paints may not 

be so effective at controlling microfouling, particularly by algae. There 

have been several other detailed studies of microfouling of traditional 

antifouling paints which have brought their effectiveness into doubt. 

Some of these studies will now be discussed.

The formation of microfouling slimes on antifouling paint surfaces 

makes a considerable contribution to the frictional resistance of moving 

ships. In addition, their presence restricts the outward diffusion of



toxin, which enables spores of macrofouling algae to settle (Evans, 1981). 

Bacteria and diatom slime films developed on cuprous oxide paints within 

five days- The quantity of copper in these slimes was 0.1-0.3g. per

100g., which was insufficient to poison the larvae of other settling

organisms. These observations suggest that fouling microorganisms are

resistant to copper in antifouling paints (Dolgopolskaya and Gurevich, 

1968).

Diatoms, predominantly Amphora spp. were the main fouling 

microorganisms found on copper oxide antifouling paint specimens from 

Australian naval vessels (Bishop et al., 1974). Bacterial slimes were 

also observed. Biodegradation of the paint material by attached bacteria 

can occur, which increases the rate of release of copper ions. Large 

numbers of Amphora spp. were observed on the paint surfaces, producing

layers varying in thickness from 2-30 pm. These layers formed a barrier 

to the diffusion of toxic material from the coating, and affected the 

frictional resistance of the ships. The effectiveness of the antifouling 

paint must be reduced because of the rapid release of toxic material by 

bacteria and diffusion being hindered by diatoms (Bishop et al., 1974).

Further observations of microfouling of copper-containing paints 

showed a wide range of diatom species to be present. A dense bacterial 

film developed after two months exposure of paint-coated aluminium surfaces 

to seawater (Robinson et al., 1985). After four months, dense colonies of 

the diatoms Amphora coffeaeformis, Nitzschia ovalis and Amphiprora paludosa 

were present. Two other diatoms, Stauroneis constricta and Achnanthes 

brevipes, had settled after five months (Robinson et al., 1985). There

was evidence of sloughing of the slime film as it approached a thickness of
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lOOpm. This left sparsely settled areas which were recolonized by the 

same diatom species. Nitzschia ovalis was the predominant species in the 

slime films, representing 94% of the population.

Amphora spp. was the most common fouling organism observed on cuprous 

oxide antifouling paints by Callow (1986). This diatom often forms thick, 

mucilaginous slime films on such paint surfaces (Daniel et al., 1980; see 

p. 319 ; see also Chapter 3). Transmission electron microscopic

examination of Amphora cells from such films showed dense inclusion bodies 

in the cytoplasm. The elemental composition of these inclusion bodies was 

analysed using an energy dispersive spectrometer. Copper was one of the 

elements present, together with silicon, phosphorous, sulphur and calcium

(Daniel et al., 1980). In a further investigation of these inclusion

bodies, Amphora cells isolated from toxic coatings were cultured and 

treated with 0,0.75 and 1.5 ppm. of copper chloride. Diatoms were treated 

this way for one week, and then examined by transmission electron 

microscopy. Amphora cells treated with 0.75 ppm. of copper chloride 

contained at least five inclusion granules per cell (Daniel et al., 1980).

These granules were usually located within or protruding into large cell 

vacuoles (see p. 320 ). Elemental analysis showed that this contained 

copper, sulphur, silicon and aluminium. The presence of copper suggests

that the granule may allow Amphora spp. to immobilize copper ions from

toxic paints. This could allow Amphora spp. to become resistant to 

cuprous oxide paints. The extracellular, anionic polysaccharide mucilage 

produced by this diatom could also bind copper ions (Daniel et al., 1980).

Microfouling has also been observed on organometallic paints 

(Robinson et al., 1985; Callow, 1986). A dense bacterial layer developed



Fig. 62 (1-6) S.E.M. of paint fragments from test panels immersed in
seawater.

Fig. 62.1 Shows heavy settlement of Amphora  spp. on a slow-leaching 
cuprous oxide paint. Mag. x280

Fig 62.2 Cross-section of cuprous oxide paint showing thickness of
Amphora  film in comparison with paint. Mag. x800

Fig. 62.3 Shows peeling from the surface of a primary film. Note the
amorphous underside of the film (arrowed) which is probably 
bacterial in origin. Mag. x1520 

Fig. 62.4 Cross section of a cuprous oxide paint with Amphora  cells
adpressed to the surface. The leached (I) and unleached 
(ul) layers of the paint are apparent. Mag. x1760 

Fig. 62.5 Showing the underside of an A m p h o ra  f i lm . Note the
intricate meshwork and copious mucilage (m) involved in 
holding the film together. Mag. x2600 

Fig. 62.6 High power micrograph showing A. veneta, one of the most
prominent diatom foulers found in this study. Mag. x3000

(Reproduced by permission from Daniel et al. 1980)
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Fig. 63 (1-3) Amphora  cells treated with varying concentrations of copper
chloride (CuCI2).

Fig. 63.1 Transverse section of an Amphora cell treated with 0.75 ppm
C u C I 2 for  one week. A dense granule (dg) is observed
protruding into the cell vacuole. Mag. x11200 

Fig. 63.2 Amphora cells (oblique transverse section) treated as above.
Two large granules are visible within the cell vacuoles (cv) 
and appear attached to peripheral cytoplasm (pc).
Mag. x8160

Fig. 63.3 High power of an intracellular granule. L ighter regions 
(arrows) may be observed within the structure. Mag. x37850

■

(Reproduced by permission from Daniel et al. 1980)



on aluminium surfaces coated with tributyltin fluoride after one month's 

submersion in seawater. After a further month, the surface was covered by 

a single layer of ten species of pennate diatoms (Robinson et al., 1985). 

Amphora coffeaeformis and Nitzschia ovalis were amongst the diatoms present 

on tributyltin fluoride. There was a greater diversity of fouling species 

on this paint surface than on cuprous oxide paint (Robinson et al., 1985).

Achnanthes spp. was a major fouling organism on traditional paints 

containing tributyltin or organoarsenical compounds. The diatom was 

particularly found on coastal vessels (Callow, 1986).

The extent of microfouling of self-polishing copolymer (SPC) paints 

used on large ocean-going vessels was also investigated by Callow (1986). 

Self-polishing copolymer paints are composed of a copolymer formed between 

tributyltin methacrylate and methyl methacrylate, which incorporates other 

biocides. The copolymer hydrolyses in seawater releasing tributyltin 

(Callow, 1986). The SPC paints used in this study contained either 

cuprous oxide or cuprous thiocyanate. Amphora spp., Amphiprora spp., 

Navicula spp. Stauroneis spp. and Achnanthes spp. were observed on SPC 

paints from large ocean-going vessels (Callow, 1986). Amphora palludosa 

and A. coffeaeformis were observed in large numbers on aluminium panels 

coated with SPC paints (Robinson et al., 1985). Differences were found in 

the composition of diatom slime films on a Very Large Crude Carrier after 

six months lay-up and also after cleaning and three months "in-service". 

After lay-up, the composition was Stauroneis spp. 80%, Navicula spp. 10% 

and Amphora spp. 10%; cyanobacteria were also present. After cleaning 

and three months trading, the slime composition was Amphora spp. 80%, 

Stauroneis spp. 10% and Navicula spp. 10% (Callow, 1986). This shows
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that, even after a period of cleaning to remove fouling growths the same 

diatoms attach to the ship's surface, although in different amounts.

Fouling by macroalgae, particularly Enteromorpha spp. and Ectocarpus 

spp., was observed on both soluble matrix and contact leaching cuprous 

oxide paints. They were also found as the dominant fouling organisms on 

SPC-coated vessels which had been laid up for 12-24 months (Callow, 1986). 

This observation further suggests that formation of diatom slime films on 

such surfaces allows settlement of algal spores, which ultimately leads to 

macrofouling by other organisms.

These observations raise doubt about the overall effectiveness of 

'traditional' cuprous oxide and organometallic antifouling paints. The 

quality of the fouling microflora, rather than the quantity, is an

important factor indicating the potential effectiveness of a paint. A 

higher number of attached microalgal species may reduce toxicity in the 

long term (Robinson et al., 1985). Microorganisms may have developed

methods of resistance to such toxic paints over a long period of time. In 

addition, triphenyltin paints have recently been found to be highly toxic 

in the marine environment, and their use has been discontinued.

Although traditional antifouling paints are still widely used, their 

disadvantages may result in more use of alternative chemical fouling 

control methods (Fischer et al., 1984). Some of these will now be

discussed.

(12.2). Advanced and Alternative Chemical Control Methods

Flocculants are non-toxic additives which can remove fouling growths 

from surfaces. Acrylate additives, which are cationic flocculants, are
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often used with chlorination to remove slime films from heat exchangers. 

They improve the efficacy of chlorine in removal of fouling deposits 

(Fischer et al., 1984). The calcium chelating agent EGTA removed a

biofilm from the walls of a recycle tube reactor. This probably occurred 

by removal of calcium from the biofilm by EGTA, which may suggest that 

calcium is essential for its structural integrity (Turakhia et al., 1983).

Suspended solids in the effluent after EGTA treatment were mainly composed 

of carbohydrates. This suggests that the biofilm material removed by EGTA 

consists largely of bacterial adhesive material. Further evidence came 

from the addition of EGTA to biofilm samples suspended in growth media. 

Disaggregation of the bioflocs, and presumably extracellular polymeric 

material, was observed (Turakhia et al., 1983).

Chelating agents could be used to remove diatom fouling films, 

particularly films of Amphora spp.. Calcium was present in the mucilage of 

Amphora coffeaeformis, and was essential for adhesion of this diatom to 

glass (see Chapter 3.2). Further research is needed on the effects of 

chelating agents, such as EGTA, on the removal of bacterial and algal 

fouling films.

Young and Mitchell (1973) studied the effects of certain toxic 

chemicals on the attraction of certain bacteria. They found that bacteria 

avoided the area adjacent to a capillary mouth when such chemicals were 

present. Chloroform, ethanol, benzene and toluene repelled over 90% of 

the test bacteria from the capillary. These observations suggest that 

certain toxic chemicals evoke a negative chemotactic response by bacteria 

(Young and Mitchell, 1973).
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Further studies were made using certain chemical compounds 

incorporated into non-toxic paints on submersed metal surfaces (Chet et 

al., 1975; Chet and Mitchell, 1976). The most effective compounds to

cause negative bacterial chemotaxis were acrylamide, tetramethylethylene 

diamine, indole, tannic acid, benzoic acid and thiourea. The bacterial 

population on untreated panels after 12 days immersion was 5 x 1012 

cells/cm2. However, the population on panels treated with benzoic and 

tannic acids was 106/cm2 after the same period (Chet et al., 1975; Chet and 

Mitchell, 1976). The amounts of slime film developing on panels coated 

with repellant paints and untreated panels was compared gravimetrically and 

by chemical analysis. The slime which developed on panels coated with 

acrylamide, tannic and benzoic acids was of lower weight than on untreated 

panels (Chet et al., 1975; Chet and Mitchell, 1976; see p. 325). In

addition, algal growth on the metal panels was inhibited by tannic, benzoic 

and humic acids, phenylthiourea and thiosalicylic acid (Chet and Mitchell, 

1976).

These results show that certain non-toxic organic compounds can be 

used in repellant paints to prevent microbial film formation on surfaces. 

These compounds work by preventing marine bacteria and other microorganisms 

from approaching them. Repellant paints could be used to replace 

conventional, toxic antifouling paints. They have the advantage of not 

being so hazardous in the marine environment as conventional paints (Chet 

et al., 1975; Chet and Mitchell, 1976). Further research on the effects

of a wider range of non-toxic compounds on the settlement of marine 

microorganisms is needed. The use of repellant paints has so far not been 

shown to be practical on a large scale (Fischer et al., 1984).



TABLE 13

Effect of repellants on the production of bacterial slime on 

Surfaces 40 days after immersion in the sea.

Repellants Amount of slime 

(pg/cm2)

Control 3,450

Phenylthiourea 2,400

N,N,N',N'-tetramethylethylenediamine 1,630

Acrylamide 620

Tannic acid 210

Benzoic acid 190

(Taken from Chet et al., 1975).



The use of chlorine and its derivatives has been effective in 

preventing microbial settlement (Meadows and Anderson, 1979). The usual 

method is the injection of gaseous chlorine. Electrolytic generation of 

chlorine has also been used, particularly in closed systems such as ships’ 

condensers. In these structures, chlorine is effective against slime- 

forming bacteria and diatoms (Meadows and Anderson, 1979).

Production of chlorine by the electrolytic hypochlorination of 

seawater has been developed in recent years. This technique has been used 

in the U.S.A. to study biofouling control using an ocean thermal current 

sensor (Smith and Kretschmer, 1984). Electrolytic hypochlorination

involves making the surface to be protected become the anode for chlorine

generation by the electrolysis of seawater. The anode was formed by 

depositing a thin platinum film on the exterior of the thermal current 

sensor (Smith and Kretschmer, 1984). Biofouling control on the thermal 

current sensor and on glass slides containing platinum films were studied 

using continuous and intermittent hypochlorination. Continuous

hypochlorination at a current density of 5pA/cm2 over six months adequately 

controlled fouling on both the thermal current sensor and glass slides. A 

current density of lOpA/cm2 or greater completely removed all fouling 

organisms from both surfaces (Smith and Kretschmer, 1984).

Intermittent hypochlorination was also carried out at different 

current densities during active cycle times of 15, 30 and 60 mins. over 8

and 24 hrs. After six months of exposure, no significant biofouling had

formed on any of the test slides. Examination by light microscopy showed

scattered colonies of algae on the slides exposed to a current density of
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25pA/cm2 (Smith and Kretschmer, 1984). Intermittent current densities of 

125 and 250 pA/cm2 removed all biofouling from the slides. A submerged 

thermal current sensor was also subject to intermittent hypochlorination 

over a four month period at a current density of 80pA/cm2 for 30 min. every 

24 hrs.. After this period, the thermal sensor did not possess so many 

attached algae as the control sensor, which was not chlorinated (Smith and 

Kretschmer, 1984).

In order to further show the effectiveness of chlorine, a thermal 

current sensor was allowed to accumulate biofouling for one month. The 

sensor was then chlorinated at a current density of 500 pA/cm2, and was 

observed continuously. No biofouling was observed on the sensor's surface 

by the light microscope after 24 hrs. hypochlorination (Smith and 

Kretschmer, 1984). Additional tests were performed on the sensor after 

two and three months of biofouling accumulation. The current densities 

used during chlorination were 500 and 1000 pA/cm2, respectively. In both 

cases, 24 hrs. was required to completely remove biofouling growth (Smith 

and Kretschmer, 1984).

These observations demonstrate that electrolytic hypochlorination is a 

practical, non-toxic method of controlling biofouling. This technique 

could be used to control fouling in large-scale heat exchangers and on 

other large surface areas (Smith and Kretschmer, 1984). However, it is 

uncertain whether this technique would be practical on ship's hulls. 

Further research is needed to show whether electrolytic hypochlorination is 

as effective as antifouling paints in controlling accumulated fouling on 

such large surface areas as ship's hulls.
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(12.3). Other non-chemical microfouling control methods

Certain antifouling methods have been developed which do not depend on 

the use of toxic or non-toxic chemical methods. These methods tend to use 

physical principles, such as scrubbing or irradiation or temperature 

changes to control fouling.

Scrubbing is one of the oldest fouling control methods known. It is a 

broad-spectrum technique which uses mechanical energy to remove fouling 

growths (Fischer et al., 1984). Scrubbing of ship's hulls reduces the 

drag or damage caused by marine fouling. Scrubbing is also justified 

economically, due to the fuel penalty suffered by ships whose hulls have 

fouling growths (Fischer et al., 1984).

Three main scrubbing techniques are used for exterior surfaces, such 

as ship's hulls. These include rotary-powered brushes, which can be 

mounted on an underwater cart designed to travel along the hull. 

Cavitating jets use high pressure and imploding cavitating bubbles to 

rapidly clean surfaces (Fischer et al., 1984). Large, boat-mounted

brushes up to 20 ft. long are used for scrubbing the waterlines of ships. 

All of these methods, however, must work by removing the fouling growths 

without damaging the underlying antifouling paint. Such damage could lead 

to severe corrosion problems which may result in serious structural damage 

(Fischer et al., 1984).

Mechanical cleaning systems have also been used for certain nonship 

devices, such as the optical surfaces of submerged instruments. Scrubbing 

is also used to clean the surfaces of OTEC (Ocean Thermal Energy 

Conversion) systems (Fischer et al., 1984). Microbial s l im e  f i l m s
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frequently develop on OTEC equipment, and must be completely removed so as 

to prevent losses in performance (Fischer et al., 1984).

Scrubbing methods are also used to clean interior surfaces, such as

piping systems and heat exchangers. Rods and brushes can be used to

remove fouling communities from such surfaces (Fischer et al., 1984).

Sponge rubber balls are often used which are slightly larger than the

internal diameter of the fouled tube or pipe. They are usually inserted

upstream of the area of the pipe or tube to be cleaned, and are retrieved

downstream (Fischer et al., 1984). Although this technique has shown

potential in fouling control, it has also caused tube corrosion and 

erosion. Another interior cleaning system uses flow-driven brushes.

These brushes are often used in marine heat exchangers (Fischer et al.,

1984). The system works by having permanently attached catching baskets 

at either end of the tubing to be cleaned. The brush is contained in one 

of these baskets. During operation, the flow of seawater to the tube is 

reversed, and the brush is driven to the opposite end. As it moves, the 

brush cleans the tubing and is ultimately caught in the other basket. 

When the seawater flow is returned to normal, the brush cleans the tubing 

in the opposite direction (Fischer et al., 1984).

Caron and Sieburth (1981) investigated the use of a circular brush 

assembly to remove microfouling communities from fibre-glass reinforced 

plastic surfaces. The surfaces were immersed in an estuarine environment 

over a 14-day period. Before cleaning, diatoms dominated the fouling 

population, covering 90% of the plastic surfaces. A bacterial film which 

had developed after three days submersion covered 12% of the surface (Caron 

and Sieburth, 1981). The main diatoms present were Nitzschia spp.. A 

twice-weekly brushing removed most of the diatoms. Stalked bacteria and
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those possessing pili or fimbrae were easily removed by the circular brush. 

A bacterial film consisting mainly of bacteria surrounded by extracellular 

secretions was left on the plastic surface. Certain protozoa, such as 

amoebae and ciliates, which had a strong affinity for the substratum, were 

removed (Caron and Sieburth, 1981). The smooth nature of the fibre-glass 

surface probably allows a high efficiency of removal of microorganisms by 

brushing. Periodic removal of the faster accumulating diatoms, whilst 

leaving a bacterial film, seems to prevent further succession in the 

fouling film (Caron and Sieburth, 1981).

Nickels et al. (1981b) observed that aluminium and titanium surfaces 

exposed to rapidly flowing seawater quickly developed fouling communities. 

The effects of manual brushing using a stiff-bristle nylon brush on removal 

of fouling microorganisms was investigated. Three cycles of free fouling 

and manual brushing increased the rate of fouling on both surfaces (Nickels 

et al.., 1981b) . The rate of fouling was greater on the titanium surface 

than on aluminium, although titanium was more readily cleaned. The micro

fouling community which re-formed on aluminium after cleaning was enriched 

in bacteria containing short-branched fatty acids. Progressive 

colonization of aluminium by bacteria producing web-like adhesive was 

observed by scanning electron microscopy (Nickels et al., 1981b).

Following cleaning, the microfouling community on titanium contained a 

diverse population, including microeukaryotes. There was an increase in 

bacteria containing short-branched fatty acids on titanium as cleaning 

continued (Nickels et al., 1981b).

The results of Nickels et al. (1981b) indicate that certain scrubbing 

techniques may not be so effective as others in removing microfouling 

growths from surfaces. The scrubbing device must itself be protected from
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marine fouling, as failure to do so will reduce its effectiveness.

Rotating-brush devices which are used to clean the heat-exchanger surfaces

of OTEC equipment often become fouled with microorganisms (Fischer et al.,

1984). Fouling of the nylon brush after cleaning may have caused the 

accelerated fouling of aluminium and titanium surfaces observed by Nickels 

et al. (1981b). The results of Caron and Sieburth (1981) suggest that more 

frequent brushing of surfaces may control microfouling more effectively. 

Scrubbing could be used in combination with a technique such as 

chlorination. This might well be particularly effective in controlling 

fouling on interior surfaces, such as the tubes of heat exchangers.

Optical methods, such as the use of ultraviolet light, have been shown

to be completely effective in repelling all forms of microfouling and 

macrofouling (Fischer et al., 1984). Di Salvo and Cobet (1974)

investigated the use of ultraviolet radiation to control microfouling on 

quartz underwater windows submerged in an estuarine environment. 

Ultraviolet light was administered to the quartz windows from three 

different positions : exterior to the window, from directly behind the

window (regarded as 'internal' irradiation) and from the edge of the window 

(Di Salvo and Cobet, 1974). Preliminary results using internal 

irradiation produced clean, unwettable quartz windows. This was compared 

with the non-irradiated controls which were heavily obscured by slime and 

macroorganisms. Further work using internal irradiation showed that 

the threshold for fouling control was lOpW/cm2 of ultraviolet light (Di 

Salvo and Cobet, 1974). Below this irradiation level, the fouling 

sequence occurred slowly resulting in the development of wettable films. 

Above this level, however, slime formation was prevented and only minor 

amounts of microscopic particulate matter attached to the quartz windows.
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External irradiation was not found to be so effective as the internal 

methods. Almost two orders of magnitude more external ultraviolet energy 

was needed to achieve the same level of fouling control (Di Salvo and 

Cobet, 1974). Ultraviolet radiation administered from the edge of the 

quartz windows over six weeks produced a generally nonwettable surface with 

poorly developed microcolonies. A gradient of ultraviolet energy was also 

delivered to the quartz window from the internal position. This was done 

by half covering a window on the inside with silver foil. The gradient of 

ultraviolet energy began at the border of the foil and proceeded towards 

the darkened end of the window (Di Salvo and Cobet, 1974). The bacterial 

count on the quartz surface decreased with increasing ultraviolet 

irradiation. Towards the non-irradiated end of the window, the population 

of stalked protozoans increased markedly, although there was a decrease in 

bacterial numbers.

These results suggest that low-power ultraviolet lamps can effectively 

prevent fouling of glass surfaces in an estuarine environment. The 

greater effectiveness of ultraviolet light applied from the internal 

position may occur because particle shading effects are avoided (Di Salvo 

and Cobet, 1974). Bacteria and other fouling organisms require intimate 

physical contact when attaching to the substratum. Shading out of 

externally applied ultraviolet radiation by surrounding detrital particles 

could allow microbial adhesion to occur. However, shading out of 

ultraviolet light applied from directly behind the quartz window is 

unlikely to occur. Di Salvo and Cobet (1974) put forward a unifying 

biological principle for fouling control based on the laws of 

thermodynamics. They stated that a higher level of stress energy, such as
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ultraviolet radiation, is required to arrest succession in a high entropy, 

rapid turnover fouling microsystem.

The results of Di Salvo and Cobet (1974) also suggest that ultraviolet 

radiation could control fouling on submerged optical instruments. At 

present, this method appears to be suitable for closed systems only

(Fischer et al., 1984). Further research is needed to show the

effectiveness of use of ultraviolet radiation on normal surfaces.

Thermal-control methods are based on temperature changes affecting the 

growth of fouling microorganisms. If the temperature is raised 40°C above 

the freezing point of water it goes well above the optimal growth 

temperature for nearly all microorganisms (Fischer et al., 1984). As the

temperature continues to increase, fewer organisms are able to grow. 

Significantly higher temperatures are required to prevent growth of slime- 

forming microorganisms. High temperatures have been found to be effective 

at keeping optical surfaces free of fouling for three month periods. 

However, this technique is energy intensive and can only be justified for

small, extremely critical surfaces (Fischer et al., 1984). Further work

would be needed to show the effectiveness of thermal methods on larger, 

external surfaces. This method, however, may be one of the more 

environmentally acceptable fouling control methods currently available 

(Fischer et al., 1984).

The control of fouling by osmotic methods has also been suggested. 

The attachment of most common fouling microorganisms is inhibited by 

salinity changes (Meadows, 1965; Fischer et al., 1984). This method makes 

use of the lower salinity of freshwater rather than higher salinity waters. 

However, the diversion of ships to freshwater areas to control fouling is
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not economically feasible. A ready source of freshwater must be available 

in order for osmotic-control methods to be economically effective (Fischer 

et al., 1984).

(12.4). Control of microfouling by substratum properties and possible 

future developments in antifouling technology

Substratum properties are known to affect adhesion of marine bacteria 

(see Chapter 1.5) and algal rhizoids (see Chapter 3.1). The use of 

surface chemical properties as a means of preventing microfouling has been 

recognized for many years (Fischer et al., 1984).

Baier (1972) proposed an approach to antifouling based on the 

formation of a proteinaceous conditioning film on surfaces immersed in 

seawater (see Chapter 1.5). He suggested that the adsorbed protein film 

should be maintained in a form similar to the three-dimensional 

conformational state assumed in solution. If this occurred, cellular 

elements would arrive at a passive surface and not accumulate (Baier, 

1972).

Goupil et al. (1973) suggested three theoretical "routes" for 

achieving resistance to biological fouling using substratum chemical 

properties

(1) Adjustment of the initial surface properties of a substratum to 

form a "biocompatible range" which prevents fouling. This could 

be achieved by using selected materials which create a properly 

organized "watery" surface, such as hydrophilic polymers.
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(2) Creation of ablative or exfoliating surfaces from which initially 

attached fouling masses could be spontaneously shed. This could 

be done by the use of surfactant-doped polymers or exfoliating 

additives such as drag-reducing polymers or sparingly soluble 

polysaccharides.

(3) Formation of "natural" fouling-resistant layers, which could be 

types of fouling organisms whose initial attachment would 

discourage subsequent colonization by other organisms. This 

could be done by the formation of a film of algal spores or 

bacteria (see Chap. 3.1.1.3) which would resist layer thickening.

Studies were made of the effects of the formation of a conditioning 

film on surface properties, such as critical surface tension, of certain 

substrates. The substrates included polyvinylchloride, FEP Teflon, 

cellulose acetate and polyvinyl fluoride. In all cases, it was found that 

acquisition of a conditioning film altered the critical surface tension of 

these substrates towards a common middle ground. This in turn suggests 

that specific outermost chemical arrays on certain substrata might minimize 

the attraction and adhesion of microorganisms. Surface arrays of closely

packed methyl groups were found to be particularly fouling resistant 

(Goupil et al., 1973).

Surface wettability and critical surface tension are known to 

influence, and in some cases to decrease, marine bacterial adhesion (see 

Chapter 1.5). Surface free energy has also been shown to affect 

attachment of algal rhizoids (see Chapter 3). This suggests that these

substratum properties could inhibit fouling by certain microorganisms. 

Most substrata immersed in seawater possess a "biocompatible range" of
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critical surface tension within which lower rates of microfouling occur 

(Goupil et al., 1973; Fischer et al., 1984). The biocompatible range for

most substrata occurs within critical surface tension values of 22-25 

dynes/cm. (Fischer et al., 1984). Formation of a conditioning film on

substrata was thought to modify the critical surface tension values towards 

the biocompatible range (Goupil et al., 1973). It was also proposed that

the first effect of surface wettability was to influence the nature or 

rate of accumulation of the conditioning film. In addition, as the 

conditioning film influences bacterial attachment, then wettability will 

also indirectly affect attachment. Studies have shown, however, that

microbial fouling does increase with time on surfaces in the biocompatible 

range, although at a lower rate (Fischer et al., 1984).

Studies with substrata incorporating silicone elastomer compounds have 

indicated a further method of controlling bacterial and diatom fouling 

(Milne and Callow, 1985; Callow et al., 1986). The structure of silicone 

elastomers is based on a backbone of repeating silicate (-Si-0-) units. 

The silicone polymers can be modified by the addition of other organic 

compounds, such as phenyl methyl silicone fluid (Milne and Callow, 1985; 

Callow et al., 1986).

A comparison was made of bacterial and diatom adhesion to glass, 

polytetrafluoroethylene (PTFE) and silicone elastomers (Milne and Callow,

1985). There were 80% fewer bacteria attached to the silicone elastomers 

than either to glass or PTFE. Silicone elastomers also reduced the number 

of attached diatoms by 69% compared with glass. The numbers of bacteria 

and diatoms attaching to the silicone elastomers was further reduced by the 

inclusion of 5% phenyl methyl silicone fluid (PMS) (Milne and Callow, 1985;
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see p. 338 ) .

Further studies of the detachment of Amphora spp. from silicone 

elastomers were made using a radial flow growth chamber (Milne and Callow, 

1985; see Chapter 3.2 for a description of the principles of the radial 

flow growth chamber). The radial zone of diatom detachment was greater on

the silicone elastomers compared with glass or PTFE. The addition of 5%
PMS to the silicone elastomers further increased the zone of Amphora spp. 

detachment. There was no change over 48 h. in the shear force required 

for cell detachment from the silicone elastomers with 5% PMS (Milne and 

Callow, 1985).

Further work was then performed on the effects of three groups of 

silicone elastomers on the attachment of Amphora coffeaeformis (Callow et 

al., 1986). The three groups of elastomers used were :-

1) Room-temperature vulcanizing silicone elastomers, referred to as 

RTV(i) - (iv);

2) Platinum-cured silicone elastomers, known as PC(i) - (iii);

3) Moisture-cured acetyl-tipped silicone elastomers, referred to as

MC(i) - (iv).

Measurements were made of chlorophyll 'a' content in the Amphora

coffeaeformis films. The results showed the lowest biomass to occur on 

the RTV silicone elastomers, particularly RTV (i) (Callow et al., 1986).

This also occurred when ATP measurements were used as an indicator of cell 

biomass. Consequently, the RTV (i) silicone elastomer caused the greatest 

reduction in adhesion of A. coffeaeformis. Addition of PMS to RTV (i) did 

not influence the adhesion of Amphora spp. (Callow et al., 1986).



TABLE 14

Number of bacteria attached to a range of surfaces after 2h.

Surface Number of cells/pm2

Glass 22.3 ± 1.8

PTFE1 23.3 ± 0.5

SE2 4.3 ± 0.5

SE + 5% PMS3 2.8 ± 0.2

TABLE 15

Number of cells of Amphora attached to a range of surfaces

after 16h.

Surface Number of cells/mm2 Reduction compared

to glass (%).

Glass 427.6 ± 7.8

SE2 130.6 ± 4.3 69

SE + 5% PMS3 102.3 ± 3.4 76

1 PTFE - Polytetrafluorethylene

2 SE - Silicone elastomer

3 PMS - Phenyl methyl silicone fluid.

(Taken from Milne and Callow, 1985).
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However, visual fouling differences were observed on glass slides coated 

with the RTV (i) elastomer with and without addition of PMS. The slides 

were immersed in seawater for periods of 3 months or longer. After 16 

weeks, slides coated with RTV (i) possessed a mixed diatom slime, whilst 

those with PMS added were free of any organisms (Callow et al., 1986).

The addition of PMS also improved the antifouling performance of other 

silicone elastomers on slides immersed for 16 weeks. Polymer RTV (ii) had 

an approximately 60% and 2 0% cover of slime and macroalgae, respectively. 

After the addition of PMS, the slime cover was reduced to 20% and there was 

no macroalgal attachment. The polymer MC(i) possessed approx. 80% slime

and 5% macroalgal cover after 16 weeks immersion. PMS reduced the slime

cover to 30% and completely removed the macroalgae (Callow et al., 1986).

These observations suggest that addition of PMS to silicone elastomers is 

effective at removing fouling macroalgae.

Differences were apparent in the quantitative observations of Milne 

and Callow (1985) and Callow et al. (1986) on the effects of PMS addition 

on diatom adhesion. It is uncertain whether these differences are due to 

cell variability or variability between the batches of RTV polymer used. 

Variability would have existed between replicates treated with any one 

silicone elastomer. The techniques used did not allow small differences 

in diatom adhesion caused by this variability to be determined (Callow et 

al., 1986). In addition, these quantitative measurements do not take

account of surface shear forces. The glass slides coated with silicone 

elastomers and immersed in seawater for 16 weeks were exposed to shear

stress caused by tidal flow (Callow et al., 1986). This could remove more

attached organisms with or without PMS addition. Consequently, these 

visual observations showed more fouling removal than the biomass
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measurements (Callow et al., 1986). Shear stress would also contribute to 

the enhanced detachment of Amphora spp. observed in the radial flow growth 

chamber (Milne and Callow, 1985).

Paul (1984) studied the effects of certain antibiotics and metabolic 

inhibitors on the attachment of estuarine Vibrio proteolytica to 

polystyrene. Some of these results indicated the involvement of proteins 

in the attachment of V. proteolytica (see Chapter 1.2). The observations 

could also have implications for antifouling methods. Some antibiotics, 

such as ampicillin, oxacillin and streptomycin, inhibited V. proteolytica 

adhesion after growth at the 25% minimal inhibitory concentration (MIC) 

(Paul, 1984). These antibiotics inhibit bacterial cell wall synthesis, 

and caused deformation of cell morphology. Other antibiotics inhibited 

attachment when administered simultaneously with the substratum. These 

included dinitrophenol, chloramphenicol, puromycin and cephalothin (Paul, 

1984). In these cases, a greater concentration of antibiotic was required 

to inhibit attachment than to inhibit growth. This may be caused by an 

adhesive moiety present on the bacterial cell surface. Elevated 

concentrations of the antibiotics may be required to prevent further 

synthesis of this material (Paul, 1984). In addition, certain metabolic 

uncouplers also inhibited bacterial attachment. These included

inhibitors of oxidative phosphorylation such as valinomycin, DNP (2,4 

dinitrophenol) and azide. Elevated concentrations of these compounds were 

also required to inhibit attachment (Paul, 1984).

These observations of the inhibition of V. proteolytica adhesion by 

certain antibiotics suggests that this could be a further antifouling 

development. The use of antibiotics suggests a further way of using the
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substratum to influence bacterial adhesion. This is particularly shown by 

the antibiotics which inhibited attachment when simultaneously 

administered with the substratum (Paul, 1984). Further work is needed to 

show the effectiveness of antibiotics in inhibiting attachment of other 

fouling marine bacteria. In addition, work on the ease of incorporating 

antibiotics into antifouling paints would be needed. A problem with using 

antibiotics in antifouling is that certain marine bacteria may develop 

resistance to them. Research would also be needed into this problem, and 

ways of overcoming it.

Antibiotics are less likely to affect the attachment of algal spores 

and diatoms. The different structures of algal and diatom cell walls and 

the lack of protein in algal adhesives (see Chapter 3) may make antibiotics 

less effective. However, metabolic uncouplers which inhibited V. 

proteolytica adhesion (Paul, 1984), may be effective. Certain metabolic 

inhibitors, such as DNP and azide, removed films of Amphora coffeaeformis 

(see Chapter 3.2). Further work is also needed on the effectiveness of 

metabolic uncouplers in preventing algal fouling.

The control of marine microfouling by substrata physicochemical 

properties is a major development in antifouling technology. More 

research is needed on the effects of a wide range of substrata of differing 

properties on the attachment of various microorganisms. The difficulty in 

this work is finding individual substrata whose properties decrease the 

attachment of all fouling bacteria, algae, fungi and protozoa.

The use of silicone elastomers (Milne and Callow, 1985; Callow et al., 

1986) is an encouraging development. In particular, the results obtained
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with RTV silicone elastomers suggests that they are worth studying further. 

However, their physical properties of poor abrasion resistance and tear 

strength limit the range of possible applications (Callow et al., 1986).

Silicone elastomers may be best applied in situations where these 

characteristics are not important. These include in aquaculture or on

offshore structures and piping systems (Callow et al., 1986). The use of

substrata properties to control fouling is a non-hazardous, non-polluting 

technique. There may be a tendancy in the future to move away from using 

the 'traditional' antifouling paints. Both cuprous oxide and 

organometallic paints have been found to be less effective as 

microorganisms develop resistance to them. In addition, some 

organometallic paints are known to be toxic in the marine environment (see 

p. 322 ).

Other chemical antifouling techniques such as the use of repellant 

paints or flocculants (Fischer et al., 1984) are worthy of further study.

In particular, repellants appear to offer a non-toxic, non-polluting way of 

preventing microbial adhesion. However, at present the long-term 

effectiveness of these methods is much less than conventional toxic paints. 

In addition, these methods have not yet been shown to be practical on the

large scale (Fischer et al., 1984).

Overall, as environmental pollution is recognised as a major global 

problem, more use may be made of non-polluting antifouling methods.

(12.5). Summary

It is not possible to cover all aspects of antifouling technology in 

this thesis. However, this chapter has discussed several traditional
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antifouling methods as well as some more recent developments. The main 

points discussed in this chapter, together with the key cited references, 

are as follows.

1) (i) Cuprous oxide and organometallic paints have been, and are 

still used as traditional antifouling paints. These paints were 

effective in preventing fouling by marine bacteria, diatoms and 

macrofouling algae such as Enteromorpha spp. (Evans, 1981; 

Fischer et al., 1984).

(ii) Further studies showed that bacterial and diatom slime films 

were easily formed on copper oxide antifouling paints (Bishop et 

al., 1974; Daniel et al., 1980). Amphora spp. were found to

possess inclusion bodies which may immobilize copper ions from 

toxic paints (Daniel et al., 1980). Fouling by a wide range of 

diatoms, such as Amphora spp., Nitzschia ovalis, Achnanthes spp. 

and Navicula spp. was observed on tributyltin-containing paints 

(Robinson et al., 1985; Callow, 1986). These observations

suggested that traditional antifouling paints may not be so 

effective.

2) (i) Flocculants, such as calcium chelating agents, could detach 

biofilms or diatom films from surfaces by the removal of calcium 

(Turakhia et al., 1983; Fischer et al., 1984).

(ii) Certain non-toxic organic compounds can be used in repellant 

paints to prevent microbial film formation. These compounds 

cause negative chemotaxis to occur in bacteria and other 

microorganisms approaching them. Acrylamide, tannic and benzoic
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acids were most effective at reducing bacterial populations on 

treated panels (Chet et al., 1975; Chet and Mitchell, 1976).

3) Electrolytic generation of chlorine is particularly effective at 

controlling fouling in closed systems such as ships' condensers. 

Intermittent hypochlorination was effective at removing 

biofouling from an ocean thermal current sensor. Two to three 

months biofouling growth on a thermal current sensor was 

completely removed within 24 hrs. by intermittent 

hypochlorination (Smith and Kretschmer, 1984).

4) (i) Scrubbing is one of the oldest fouling control methods 

known. It can be used for cleaning both interior and exterior 

surfaces. Rods, brushes, sponge rubber balls and flow-driven 

brushes are often used for interior surfaces (Fischer et al., 

1984).

(ii) A twice-weekly brushing of fibre-glass reinforced plastic 

surfaces was effective at preventing succession in a microbial 

fouling film (Caron and Sieburth, 1981). However, three cycles 

of manual brushing increased the rate of microfouling on both 

aluminium and titanium surfaces (Nickels et al., 1981b). This

suggests that certain scrubbing techniques may not be so 

effective as others.

5) (i) Ultraviolet radiation administered from directly behind a 

quartz underwater window was particularly effective at 

controlling an estuarine microfouling sequence (Di Salvo and 

Cobet, 1974). Radiation administered exterior to the quartz
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window did not control microfouling so well as the 'internal' 

method. Delivery of a gradient of ultraviolet radiation to the 

quartz window showed that the bacterial population decreased with 

increasing irradiation (Di Salvo and Cobet, 1974).

(ii) Temperature increases which affect the growth of fouling 

microorganisms could be used to prevent fouling. Significantly 

high temperatures are needed to prevent growth of slime-forming 

microorganisms. Thermal-control methods could be one of the 

most environmentally acceptable methods available (Fischer et 

al., 1984).

6 ) (i) A proteinaceous conditioning film formed on surfaces

immersed in seawater could prevent microbial adhesion by 

maintaining a three-dimensional conformational state (Baier, 

1972).

(ii) Conditioning film formation can alter substratum 

wettability and critical surface tension values towards a 

biocompatible range. Lower rates of microfouling occur within 

this range (Goupil et al., 1973; Fischer et al., 1984).

(iii) Silicone elastomers incorporated in substrata were 

effective in controlling bacterial and diatom fouling (Milne and 

Callow, 1985; Callow et al., 1986). Room-temperature 

vulcanizing silicone elastomers caused a large reduction in 

attachment of Amphora coffeaeformis. Addition of phenyl methyl 

silicone fluid (PMS) further reduced bacterial and diatom
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attachment. PMS addition to other silicone elastomers was also 

effective at removing fouling macroalgae (Milne and Callow, 1985; 

Callow et al., 1986).

(iv) Certain antibiotics, such as ampicillin and streptomycin, 

which prevent bacterial cell wall synthesis, inhibited attachment 

of Vibrio proteolytica to polystyrene (Paul, 1984). Other 

antibiotics inhibited bacterial attachment when administered 

simultaneously with the substratum. The inhibition of bacterial 

attachment by antibiotics could be a further antifouling 

development. Metabolic inhibitors such as DNP and azide also 

inhibited V. proteolytica attachment (Paul, 1984). These 

compounds could prevent algal as well as bacterial attachment.

(v) The control of marine microfouling by substratum 

physicochemical properties could be further developed in the 

future. It offers a non-hazardous, non-polluting technique. 

Further research is needed on the effects of a wide range of 

substrata on the attachment of various microorganisms.
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APPENDIX OF SELECTED TERMS AND ABBREVIATIONS

Prosthecae/prosthecate - Cell organelles, usually localised

protruberances of the bacterial cell wall and membrane, which 

occur at one or more sites on the cell surface (Chapter 1.3).

Chlorococcacean cyanobacteria - An order of cyanobacteria having non- 

motile unicellular and colonial vegetative stages, the colonial 

ones with no vegetative cell division (Chapter 2).

Silane compounds - A group of compounds based on the silicon atom, 

with organic and halogen substituents present (Chapter 3).

R-antiqen - Also known as the 'rough* core or R-core of the 

lipopolysaccharide molecule found in the outer membrane of the 

cell envelope of Gram-negative bacteria. It is a short chain of 

sugars, which include 2-keto, 3-deoxyoctonic acid (KDO) and 

heptose (Chapter 7.2).

'O'-side chain - A long chain of sugars which are linked to the R-core 

in the lipopolysaccharide molecule. It is much longer than the 

R-core, being composed of many repeating tetra- or 

pentasaccharide units. Confers strain-specific antigenic 

properties on certain Gram-negative bacteria (Chapters 5 and 

7.2).

Murein lipoprotein - A molecule found in the cell envelope of certain 

enteric bacteria, such as E. coli. The lipoprotein is 

covalently linked to the peptidoglycan layer of the cell 

envelope. It extends outward from this layer, thus serving as a 

bridge from the peptidoglycan layer to the outer membrane of the 

cell envelope (Chapter 7.2).



Alqacide

Silicone

PMS

SDS-PAGE

ATP - 

SEM - 

TEM - 

EGTA -

A chemotherapeutic agent which is toxic to algae (Chapter

8).

elastomers - Silicone polymer compounds which are based on a 

backbone of repeating [-Si-0-] units with the non-backbone 

valencies of the silicon attached to saturated organic radicals 

(Chapter 12).

Phenyl methyl silicone fluid, a silicone polymer based on the 

repeating unit :-

Ph
/

-0-Si-
ICH 3 (Chapter 12)

Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(Chapter 5).

Adenosine triphosphate (Chapter 8 ).

Scanning electron microscopy (Chapter 9 and other Chapters). 

Transmission electron microscopy (Chapter 9 and other Chapters). 

Ethylene glycol-bis (p-aminoethyl ether)-N,N-tetraacetic acid 

(Chapter 12).
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