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To Karen, for the final chapter  

and my parents for the 

opening pages



"Our travel ler  knew marvel lously the laws of gravitation, and all 

the attract ive and repulsive forces. He used them in such a timely 

way that, once with the help of  a ray of  sunshine, another time 

thanks to a cooperative comet, he went from globe to globe, he and 

his kin, as a bird f lutters  from branch to branch. "

Voltaire -  Micromegas, 1752



Frontispiece An a r t is t ’s impression of an 800x800 metre solar sail 

designed in 1977 by NASA’s Jet Propulsion Laboratory for a mission to 

rendezvous with comet Hailey. The sail is shown ful ly deployed after 

being transported into Earth orbit by the shuttle orbiter.  Reflective 

vanes at the corners of the sail are used to generate torques to 

control the att i tude of the spacecraft, (NASA).
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PREFACE

The concept of solar sailing is by no means a recent innovation, 

having its orig ins in the w ritings of the Soviet pioneers of 

astronautics of the 1920s. The idea has been subject to detailed  

engineering scru tiny  during design studies in the 1970s fo r a

proposed rendezvous mission to comet Hailey. Having been verified  as

a technologically viable means of spacecraft propulsion, solar sailing 

has matured to the extent th a t contem porary solar sail designs have

the potential of rem arkable performance.

With such high performance spacecraft, advanced new tra jectories  

are attainable with unique applications fo r space science missions. 

The dynamics and applications of such tra jec to ries  are investigated in 

th is  thesis. For example, c ircu lar heliocentric o rb its  displaced high 

above the ecliptic plane are capable of continuous o u t-o f-p lane  

observations of the heliosphere. Sim ilarly, c ircu la r geocentric orb its  

displaced along the Sun-E arth  line o ffe r new mission opportunities fo r  

the investigation of the geomagnetic ta il. Since such tra jecto ries  and 

missions are unique to solar sail spacecraft they provide a strong  

motivation fo r the fu r th e r  development of solar sailing. Such 

development may then lead to the flig h t testing of solar sailing and to

its eventual adoption fo r a major mission.

The orig inal work of th is  thesis is contained within chapters 3-7. 

The contents of these chapters have appeared, or are to appear, as a

series of papers in the ESA Journal, Journal of Spacecraft and

Rockets, Celestial Mechanics and Acta Astronautics. Aspects of this  

research have also been presented at various conferences, meetings 

and seminars.
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SUMMARY

In this thesis the dynamics and applications of new advanced 

tra jec to ries  fo r solar sail spacecraft are investigated. By utilising the  

continuously available solar radiation pressure force exotic 

non-Keplerian tra jec to ries  which are unique to solar sail spacecraft 

are developed. Although large families of these new tra jec to ries  are  

found to be unstable, simple feedback control schemes are designed to 

ensure asymptotic s tab ility . The unique nature of these tra jectories  

opens up new space science mission opportunities, impossible fo r  

conventional spacecraft. These missions are shown to o ffer the  

possibility of in teresting  new observations of many aspects of solar 

system physics.

In  chapter 1 the concept of solar sailing is introduced and the  

history of its development reviewed. The fundamental design

parameters fo r solar sail spacecraft are investigated and the  

fabrication of potential sail materials discussed. Square and heliogyro  

typ e  solar sails are then described and th e ir re la tive  m erits discussed. 

Modern s ta te -o f-th e -a r t sail design and performance is then  

considered. Previous studies of solar sail mission applications are  

reviewed and recent concepts fo r fu tu re  advanced applications  

discussed.

The fundamental physics of solar radiation pressure is considered 

in chapter 2 along with the modelling of the solar radiation pressure  

force exerted on a real solar sail. Heliocentric solar sail tra jec to ries  

are investigated and in p a rticu la r the logarithmic spiral tra jec to ry  is 

derived. The lim itations of such tra jec to ries  and the necessity of time 

optimal tra jec to ries  satisfy ing  the two point boundary conditions of an
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in terp lan etary  tra n s fe r tra jec to ry  are then indicated. The dynamics of 

geocentric escape tra jec to ries  are investigated and the use of 

optimised tra jec to ries  is again discussed.

The solar radiation pressure model used in chapter 2 is expanded 

in chapter 3 to include astrophysical effects which have implications 

fo r solar sail dynamics. By the use of the radiation pressure tensor 

the e ffect of the fin ite  angular size of the solar disk on the functional 

form of the solar radiation pressure force is obtained. The resulting  

deviation of the solar radiation pressure force from an inverse square 

variation with heliocentric distance is shown to have a de-stabilising  

effect on solar sails in stationary and c ircu la r orb ita l configurations. 

The effect of small time variations in the solar luminosity is also 

considered.

In  chapter 4 the f irs t  family of advanced solar sail tra jectories  is 

investigated. By obtaining stationary solutions to the heliocentric 

dynamical equations in a co-rotating  reference fram e the conditions fo r  

heliocentric halo o rb its  are obtained. These orb its  are c ircu lar 

heliocentric o rb its  displaced out of the ecliptic  plane by a component 

of the solar radiation pressure force exerted on the sail. Using a 

linear perturbation  analysis the stab ility  characteristics  of the system 

are investigated and unstable families of tra jec to ries  found. Simple 

feedback control schemes are then obtained to ensure asymptotic 

stab ility . Lastly, by patching individual halo o rb its  and Keplerian 

orb its  together, elaborate new patched tra jec to ries  are shown to exist.

A sim ilar analysis is used in chapter 5 to investigate geocentric 

halo orb its , which are near polar c ircu la r o rb its  displaced along the  

S un-line  by the  solar radiation pressure force. Unstable families are 

again found with feedback control schemes developed to ensure
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asymptotic s tab ility . The fundamental family of geocentric halo orbits  

is enlarged by the patching of individual halo orb its  and Keplerlan  

orb its .

In  chapter 6 a rtific ia l stationary solutions to the c ircu lar

restric ted  th ree-body  problem are considered. The addition of the  

solar radiation pressure force leads to extensions of the fiv e  classical 

stationary points to a family of extended stationary surfaces. For the  

E arth -S un  system these new solutions are tru ly  time independent.

However, fo r the Earth-Moon system small trim s in the sail area are 

required to compensate fo r the  rotation of the S un-line  during the  

synodic lunar month. Again, the s tab ility  and control of the system is 

investigated and the ins tab ility  of the solutions demonstrated. An 

o u t-o f-p lan e  tra jec to ry  at the lunar L2 point is also developed.

The application of these new tra jec to ries  fo r potential space 

science missions is discussed in chapter 7. The scientific  benefit of 

o u t-o f-p lan e  observations fo r solar system physics is explored and 

potential missions investigated. A simple, twin solar sail mission

utilis ing  heliocentric halo o rb its  is described. Sim ilarly, the utilisation  

of geocentric halo o rb its  fo r geomagnetic tail observations is also 

investigated. Several applications of the new th ree-body stationary  

solutions are considered, such as the use of payload tra n s fe r from  

Lagrange point stationary surfaces to eliminate lengthy planetary  

spiral tra jec to ries .

Lastly, the conclusions of chapter 8 outline fu r th e r  possible

developments in the areas of dynamics, control and mission analysis. 

Recommendations fo r the progress of advanced solar sail missions are 

given.
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1. INTRODUCTION TO SOLAR SAILING

1.1 Solar Sailing

For ail of its short th ir ty  year h istory practical spacecraft

propulsion has been dominated by the unaltering principles of 

Newton’s th ird  law. All forms of propulsion from the solid rocket 

motor to the so lar-e lectric  ion d rive  rely on a reaction mass which is 

accelerated by some exothermal or electromagnetic means into a high 

velocity je t. A unique and elegant means of propulsion which 

transcends th is  reliance on reaction mass is the solar sail. Of course

solar sail spacecraft must also obey Newton’s th ird  law. However,

solar sails gain momentum from an ambient source, namely photons, the  

quantum packets of energy of which sunlight is composed.

The momentum carried  by an individual photon is vanishingly

small. Therefore, in o rd er to in tercept large numbers of photons solar 

sails must be vast s tructu res . Furtherm ore, to generate as high an 

acceleration as possible from the momentum of the intercepted photons 

solar sails must be extrao rd in arily  light. For a practical solar sail the  

mass per un it area of the whole spacecraft must be an order of

magnitude less than the paper th is  text is w ritten  upon. Not only

must solar sails be vast in area and small in mass, they must also be

near perfect reflectors. Then the momentum tran s fe rred  to the sail 

can be almost double the momentum of the incident photons and the  

solar radiation pressure force is directed normal to the sail surface. 

Therefore, by controlling the orientation of the  sail re lative  to the  

incoming radiation the sail can then gain or loose momentum so that 

its o rb it can be controlled.

The p ic tu re  then is clear. A solar sail is a vast sheet of
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re flec tive  film, typically  the size of a football fie ld , stretched taught 

over a lightw eight s tru c tu re . Using the momentum gained from  

ambient photons the spacecraft is slowly, but continuously accelerated 

to begin any number of possible missions. Solar sailing, with its 

analogies with te rres tria l sailing may be a romantic notion. However, 

as will be shown in th is  thesis, the romanticism is overshadowed by 

the immense practicab ility  and quiet effic iency with which solar sails 

can be put to use fo r scientific  investigation.

1.2 Historical Perspective

Although solar sailing has been considered as a practical means 

of spacecraft propulsion only re la tive ly  recently , the fundamental ideas 

are by no means new. The actual concept of solar sailing has a long 

and rich history dating back to the Soviet pioneers of astronautics. 

As early  as the 1920s the Soviet fa th e r of astronautics Konstantin 

Tsiolkovsky and his co -w orker F rid rickh  Tsander both wrote of 'using  

tremendous m irrors of very  th in  sheets’ and 'using the pressure of 

sunlight to attain cosmic velocities’ , Tsiolkovsky (1921) and Tsander 

(1924). The orig ins of the work of Tsiolkovsky and Tsander can 

however be traced back as fa r  as the seventeenth century.

1.2.1 Theories of Solar Radiation Pressure

In  1619 Johannes Kepler proposed qualitative ly  th a t the material 

of comet tails was pushed outward from the Sun due to some pressure  

from sunlight. At th is  time the corpuscular theory of ligh t was the  

favoured view of optics and the outward pressure due to sunlight was 

a natural consequence of th is  theory , Lebedew (1902) (and references  

contained w ith in). Newton, a strong proponent of the corpuscular
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theory accepted Kepler’s view as a possible explanation but attempted 

in 1687 to explain the phenomenon within his theory of universal

gravitation. He made the hypothesis that there  was an ambient ether 

denser than the material of comet tails. Therefore, the repulsion was

due to buoyancy forces and the Sun had only an a ttractive

gravitational force. Sometime later in 1744 Euler returned to Kepler’s

view. However, Euler adopted the longitudinal wave theory of light 

due to Huygens. With th is  theory Euler was able to show that a 

longitudinal wave would exert a repulsive force on a body in its path. 

Later still, as Coulomb’s experiments of 1785 with electrostatics became 

known, Olbers in 1812 rejected all previous explanations of comet tail 

repulsion and proposed th a t the Sun had a nett electrical charge. 

Particles leaving the comet nucleus had then to be charged with the 

same sign as the solar charge. The fact th a t electrostatic forces have 

an inverse square variation (as does solar radiation pressure) 

supported O lber’s theory which then became prevalent.

The theoretical basis fo r the existence of radiation pressure came 

independently of the  astronomical theories. Maxwell predicted the  

existence of radiation pressure in 1873 as a consequence of his theory  

of electromagnetic radiation. Apparently independently, Bartoli 

demonstrated the existence of radiation pressure as a consequence of 

the second law of thermodynamics. The experimental verification of 

the existence of radiation pressure and the verification of Maxwell's 

quantita tive  results  then came in 1901 when Lebedew fina lly  suceeded 

in isolating the radiation pressure force using a series of torsion 

balance experiments, Lebedew (1902). A detailed account of Lebedew’s, 

and others, experimental work is given by Nichols and Hull (1903).
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1.2.2 The Development of the Solar Sail

A fter the initial w ritings of Tsiolkovsky and Tsander In the 1920s 

the concept of solar sailing appears to have remained dormant, bar a 

few science fiction stories, fo r over th ir ty  years. I t  was not until 

1958 th a t Richard Garwin, of the IBM Watson laboratory at Columbia 

U nivers ity , re-examined solar sailing in the ligh t of modern materials  

technology, Garwin (1958). Garwin recognised the unique and elegant 

features of solar sailing. Namely th a t solar sails require no propellant 

and are continuously accelerated, th ere fo re  allowing large velocity  

changes over extended periods of time. Such was Garwin’s enthusiasm  

and optimism fo r solar sailing th a t his analysis showed a round tr ip  to 

Venus was possible in less than one year using commercially available  

th in  film.

Following the discussion of solar sailing by Garwin more detailed  

studies of the dynamics of solar sails were undertaken by Tsu. By 

approxim ating the heliocentric equations of motion Tsu was able to 

show th a t, fo r a fixed sail a ttitude , solar sail tra jec to ries  were of the  

form of spirals with a fixed opening angle, Tsu (1959). A simple 

comparison with chemical and ion propulsion systems showed th a t solar 

sails could match, and in many cases out perform , these systems. The 

approximations used by Tsu were removed by London, who solved the  

heliocentric equations of motion exactly and obtained a tru e  logarithmic  

spiral solution, London (1960). I t  was recognised th a t since the  

logarithm ic spiral tra jec to ry  did not satisfy the boundary conditions of 

an in te rp lan e tary  tran s fe r, large velocity impulses were required at 

the dep artu re  and terminal points. This problem was later addressed  

in studies of time optimal tra jec to ries . London also explored the case 

of a sail oriented normal to the S un-line  such th a t the solar radiation
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pressure force reduced the e ffective  solar gravitational force. The 

resulting family of modified conic section solutions were found, in some 

cases, to yield shorter tra n s fe r times than the logarithmic spiral, as 

discussed later by Kiefer (1965). These early studies stimulated 

in terest in solar sailing and led to more detailed analyses, fo r example 

Villers (1960), Gordon (1961), Cotter (1973). However, these studies  

were at a low level and lacked a specific solar sail mission.

In  the early 1970s the development of the space shuttle  promised 

the prospect of being able to tran sp o rt and deploy large volume 

payloads in o rb it. Also, the technological development of deployable 

space structures  and th in  films suggested th a t solar sailing could be 

considered fo r a specific mission. By 1973 NASA was funding studies 

of solar sailing at the Battelle laboratories, W right (1974), which gave 

positive recommendations fo r fu r th e r  investigation. During the

continuation of th is  work Jerome W right discovered a tra jec to ry  which 

would allow a solar sail rendezvous with comet Hailey at its perihelion  

in the mid 1980s. The f lig h t time of only fo u r years would allow for a 

late 1981, early 1982 launch. Until then a d iffic u lt rendezvous mission 

was thought to be impossible in such a short time using the  

technology of the day. A seven to eight year mission had been 

envisaged using so lar-e lectric  ion propulsion. These positive results  

prompted NASA Jet Propulsion Laboratory d irector Bruce M urray to 

in itia te  an engineering assessment study of the potential readiness of 

solar sailing. Following the assessment a formal proposal was put to 

NASA in September 1976. The design of a comet Hailey rendezvous 

mission using solar sailing was initiated in November of the same year, 

Friedman et. al (1978).

In the initial design study an 800x800 m th ree-ax is  stabilised
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square sail design was considered, but was dropped in May 1977 due 

to the associated high risk deployment. The design work then focused 

on a spin stabilised heliogyro type  sail. The heliogyro, which was to  

use tw elve 7.5 km long blades of film ra th e r than a single sheet, had 

been developed by Richard MacNeal under NASA contract ten years  

earlie r, MacNeal (1967). The heliogyro could be easily deployed by 

simply unrolling the individual blades. As a result of the design 

study the s tru c tu ra l dynamics and control of the heliogyro were 

understood and potential sail materials were manufactured and 

characterised. Also im portant fo r NASA institutional considerations, 

the solar sail work had sparked public in terest and excitement in the  

comet Hailey rendezvous mission.

As a result of the in terest in solar sailing the solar-electric  

propulsion group re-evaluated  th e ir  performance estimates and had in 

the end been d irec tly  competing with the solar sail group fo r funding.

A detailed account of th is  internal competition is given by Logsdon 

(1989). As a result of an evaluation of these two advanced propulsion 

concepts NASA chose the solar e lectric  system in September 1977, on 

its m erits of being a less, but still considerable risk fo r a comet 

Hailey rendezvous. A short time later the solar electric system was 

also dropped, as eventually was a dedicated NASA comet Hailey mission.

Although dropped by NASA fo r near term mission applications, the  

design studies of the mid-1970s stimulated worldwide interest in solar 

sail technology. Low level European studies were taken up by CNES 

in Toulouse to assess the potential of the Ariane launcher for deep 

space missions, Riviere et. al (1977). Perhaps more importantly fo r the  

long term prospects of solar sailing was the formation of the World 

Space Foundation in California and the Union Pour la Promotion de
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Propulsion Photonique in Toulouse. The WSF, formed principally  of 

JPL engineers shortly  a fte r the term ination of the JPL solar sail work, 

attempted to raise p riva te  funds to continue solar sail development 

and to undertake a small scale demonstration flig h t. Shortly  

afterw ards the U3P group was formed and in 1981 proposed an 

ambitious moon race to promote solar sail technology. Both of these 

groups were joined by the  Solar Sail Union of Japan in 1985 and have 

proposed th a t the moon race be adopted as a pro ject fo r the  

international space year in 1992, Per re t et. al (1989). More recently  

the Columbus Quincentenial Jubilee commission, formed to organise 

celebrations of the quincentenary of Columbus discovering the new 

world, have been attem pting to stimulate in terest in a solar sail race 

to Mars. The proposal has generated international in terest with some 

of the most technically advanced and innovative sail designs to date, 

fo r example Johnson et. al (1989), Fox et. al (1989) and von Flotow et. 

al (1989). At the time of w riting  most, if not all, of the international 

solar sail groups are having extreme d ifficu lty  in raising the 

necessary funds. However, the many new solar sail designs and 

organisations involved have brought about a renaissance in solar 

sailing not seen since the comet Hailey studies of almost tw enty years 

ago. Where this leads to fo r the fu tu re  of solar sailing remains to be 

seen.

1.3 Solar Sail Design

The main considerations in the engineering design of a solar sail 

spacecraft are driven  prim arily  by the mission application and launch 

vehicle. The volume of the payload bay of the launcher dictates the  

maximum sail area and the mass allocation dictates the maximum overall
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spacecraft mass. In  terms of mission analysis, the spacecraft 

acceleration determines the tra n s fe r time to a particu lar ta rget, or 

even w hether a particu lar mission is possible. Secondary 

considerations such as a ttitu d e  and thermal control are driven by the  

tra jec to ry  design. That is, rapid a ttitu d e  manoeuvres may be required  

fo r p lanetocentric tra jec to ries  or the heliocentric phase may take the  

sail close to the Sun.

1.3.1 Fundamental Design Parameters

The crucial design parameter fo r a solar sail spacecraft is the  

characteris tic  acceleration. This is defined as the acceleration of a 

sail oriented normal to the S un-line at a heliocentric distance of one 

astronomical unit. At th is distance the  magnitude of the solar 

radiation pressure P is 4.57x10“ 6 Nm“2 (th is  value will be derived in 

section 2.1). Therefore, allowing fo r a fin ite  sail efficiency n, the  

characteris tic  acceleration is given by

where a  is the solar sail mass per un it area, with m the total 

spacecraft mass and A the total area. The sail efficiency is a function  

of the optical p roperties  of the sail material and the sail shape. The 

total mass may be divided into two components, ms due to the sail 

material and s tru c tu re  and mp the payload mass. I f  the sail mass is 

fu r th e r  divided into the mass of the sail material msj and the 

s tru c tu ra l mass then ms=ms|(1+k) where k is the structura l mass as a 

fraction  of the sail mass, typ ically  of o rd er 0.5 or less. Therefore, the  

ch aracteris tic  acceleration becomes



9

2nP ( 1 . 2 )
a°  " ° s l ( 1 + k ) + (n»p/A)

where oS| is the mass per unit area of the sail material. Using 

equation (1.2) the perform ance of a practical solar sail may now be 

analysed.

For a fixed sail area and efficiency equation (1.2) becomes a 

function of the total (sail material and s tru c tu re ) mass per unit area  

os and the payload mass mp. Therefore, surfaces of characteristic  

acceleration may be generated, F igure 1.1. For an 800x800 m square  

sail with n=0.9 a characteris tic  acceleration of order 1 mms-2 is 

possible with a 103 kg payload and os=5 gm-2 . Such an acceleration 

level, as designed fo r the JPL comet Hailey sail using 1977 technology 

param eters, is suitable fo r most in terp lanetary  missions. I t  can be 

seen th a t fo r a large value of os the sail characteristic  acceleration is 

re la tive ly  insensitive to variations in payload mass. This is due to the  

sail mass exceeding the payload mass so th at the term osj( l+ k )  

dominates in equation (1.2). S im ilarly, fo r a large payload mass the  

characteris tic  acceleration is re la tive ly  insensitive to variations in the  

technology level of the sail, (ie. oS| and k). Therefore, to obtain a 

high characteristic  acceleration of 5-6  mms-2 , as required fo r some 

advanced tra jec to ries , it is clear from Figure 1.1 th a t not only must 

the sail material and s tru c tu re  be ligh t but it is crucial th a t the mass 

of the payload and onboard hardw are must be kept to a minimum. 

In v e rtin g  equation (1.2) an expression fo r the payload mass is 

obtained, viz

Therefore, fo r a fixed characteris tic  acceleration and sail mass per

(1 .3 )
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Surface of sail characteris tic  acceleration (m m s'2) as a function of 

payload mass (k g ) and sail mass per un it area (gm“2)#
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unit area any increase in payload mass must be offset with a 

corresponding proportional increase in sail area.

1.3.2 Sail Material Design

Aside from the fundamental solar sail design parameters there  are  

many secondary considerations which must be addressed. F irs tly , a 

suitable material must be chosen fo r the actual sail. The material must 

have a large enough tensile s treng th  so th a t when fu lly  deployed and 

under tension the material does not fail and create tears which may 

propagate through the en tire  sail. Furtherm ore, since the reflective  

surface of the sail will not be perfect a small fraction of the incident 

solar radiation will be absorbed. This absorbed energy must be 

dissipated through a therm ally emitting rear surface. Since the  

absorbed energy will increase the material tem perature there  must be 

dimensional s tab ility  so th a t the sail has low thermal expansion and 

shrinkage. Once deployed in o rb it the sail material must be free  of 

w rinkles which may cause multiple reflections and intense hot spots. 

The sail shape must be simulated using a fin ite  element method in 

combination with the sail s tru c tu ra l dynamics to calculate the actual 

shape due to billowing. Multiple reflections can then be traced and 

eliminated.

A cross section of a potential sail material developed during the  

JPL comet Hailey studies is shown in Figure 1.2. The sail has a 2 urn 

Kapton plastic substrate upon which a th in 0.1 urn Aluminium layer is 

deposited. This substrate  allows the sail to be folded and packed into 

a small volume fo r launch and to be safely unfurled in orb it. The 

rear surface of the sail has a 0.0125 urn Chromium coating fo r thermal 

control of the sail. The Kapton film is d irectly  manufactured at 2 urn
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Section of 2 um aluminised Kapton sail film , as developed fo r the JPL 

comet Hailey rendezvous mission, (Friedman 1988).
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thickness giving the sail material a mass per unit area of 2.9 gm“2. 

Ind iv idual sheets of sail material are bonded using a high speed heat 

sealing technique and a suitable adhesive. More recent studies and 

laboratory tests have investigated the use of plasma etched Kapton 

giving a mass per unit area of only 1gm-2 , Fox et. al (1989). 

Unetched bands can be formed to increase the tensile strength  of the  

material. Potentially ligh ter sail materials may also be manufactured 

using Lexan film, von Flotow et. al (1989), and Polyimide, Johnson et. 

al (1989).

I f  in -o rb it m anufacturing of sail material were to become possible 

vast improvements in sail performance would be achieved. Since the  

sail material would not be folded and packed a plastic substrate would 

not be requ ired . The construction of such sails has been considered 

by Drexler (1979). Using th in  film techniques samples of 10-100 nm 

sail film were produced. Small tr ia n g u la r panels of sail material would 

be produced and bonded to construct the en tire  sail.

In  o rd er th a t any tears due to fa ilu re  of the sail material, such 

as micrometeorite impacts, do not propagate the sail must be provided  

with ripstops at regular in tervals . These are formed from either 

Kapton tapes joined to the rear sail surface or from double folds in 

the sail forming seams, Figure 1.2. Furtherm ore, since the sail is 

exposed to the solar wind the sail material will acquire a d ifferentia l 

electrical charge between the fro n t and rear surfaces. This is due to 

the incident proton flux from the solar wind and the photoelectric  

effect, Hillard and Whipple (1935). To prevent electrical discharges

from the fro n t to rear of the sail, which is a potential source of 

fa ilu re  and tearing , both surfaces of the sail must be in electrical 

contact, F igure 1.2. Finally, although sail materials have been
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designed in detail and samples fabricated the material lifetime in the  

space envirom ent is uncertain. The material is exposed to hard solar 

radiation and cosmic rays which will almost certain ly  degrade the sail 

surface re flec tiv ity  and reduce tensile s trength . These questions will 

however only be addressed with detailed in -o rb it testing of samples. 

Prelim inary testing has recently been carried out onboard the Soviet 

Almaz satelltie, S h vartzb u rg  (1991).

1.4 Archetypal Solar Sail Configurations

During the JPL comet Hailey studies two individual solar sail 

configurations were investigated in detail. F irs tly , a three-axis  

stabilised square sail design and laterly  a spin stabilised heliogyro. 

Although fundam entally d iffe re n t in th e ir design, construction and 

control it was found th a t th e ir  overall mass per un it area d iffered by 

a few per cent only. The square sail and heliogyro d iffe r  greatly  

however in th e ir method of deployment. I t  was due to the simpler 

deployment of the heliogyro that it was selected fo r the comet Hailey 

rendezvous.

1.4.1 Three-Axis Stabilised Square Sail

The square sail configuration uses a single sheet of sail material 

which is kept in tension using diagonal spars extending from a central 

boom normal to the sail surface on the re flective  side. The spars are 

connected to the boom with stays to reduce s tru c tu ra l loads, Figure  

1.3. For the 800x800 m JPL comet Hailey sail design the spars were 

1.2m diameter open lattice s tructures, constructed of Titanium to 

prevent thermal expansion. Due to the lattice nature of the s tructure  

the spars could be coiled fo r storage. The stays were fla t tapes, to
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Two stage deployment of a single square sail film sheet over a fu lly  

deployed boom and stay s tru c tu re , (Friedm an 1988).
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preven t snarling during  deployment.

For automated in -o rb it deployment the central boom and diagonal 

spars are extended from packaging canisters. During th is  extension 

the stays are pulled along the spars from storage reels. Once the  

en tire  s tru c tu re  is erect the sail itself is deployed. The sail is firs tly  

pulled into a ribbon along a diagonal spar and then pulled fla t along 

the perpendicular diagonal, F igure 1.3. I f  the sail were constructed  

from four individual tr ia n g u la r sheets the same two stage procedure  

would take place fo r each element. Although th is  deployment scheme 

has been shown to be feasible the large number of serial operations 

leads to a large number of potential fa ilures. Since the scheme could 

not be tested on the ground prio r to implementation, even partia lly , 

the deployment had a high element of risk.

The th ree-ax is  a ttitu d e  control of the square sail may be 

provided by several techniques. One method is to use a sh ift in the  

centre of mass re la tive  to the centre of pressure. This can be 

achieved by small displacements in the payload position, using 

deflections in the central boom. This technique has recently been 

studied in detail by Angrilli and Bortolami (1990). However, the use of 

small reflective  vanes at the sail corners provides the greatest 

control. Using combinations of vanes a rb itra ry  roll, pitch and yaw 

torques may be generated, even when the main sail is in a null 

attitu d e  edge on to the Sun-line. I t  can be shown th a t suitable  

control can be achieved with vanes which rotate about axes along the  

spars to which they are attached. Lastly, the en tire  sail may be 

displaced across the s tru c tu re  to sh ift the centre of pressure, while 

the centre of mass remains fixed. The sail is displaced by reeling in 

outboard support lines while reeling out the opposite set. This is
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perhaps the simplest technique and least costly in terms of hardware  

mass.

1.4.2 Spin-S tabilised Heliogyro

Whereas the square sail relies on the three-axis  stabilisation of a 

large single sail the heliogyro has several long blades of sail material, 

rotating to provide tension and spin stabilisation. The JPL comet 

Hailey heliogyro consisted of twelve blades each 8 m wide and 7.5 km 

in length. The blades are joined to a central hub containing the

payload and are pitched to provide a ttitu d e  control. Centrifugal loads 

are carried in tension members at the edges of the blades. These 

tension members are constructerd from several tapes of high tension 2 

mm wide graphite  Polyimide fib res. The tapes have periodic 

crossovers where they are bonded to provide multiple load paths.

This gives each tension member the ab ility  to withstand several 

fa ilu res . I f  a blade were to become detached there is a high 

probability  of impact with the remaining blades leading to a

catastrophic fa ilu re . The blades have transverse battens in 

compression, spaced along th e ir length to provide torsional stiffness.

The deployment of the heliogyro is a simpler procedure than fo r  

the square sail. An initial sp in -up  is provided by small th rusters .

Then a set of ro llers allow the blades to unwind, with the central hub 

directed along the S un-line and the blades held at the same collective  

pitch angle. The radiation pressure torque generated by the blades 

adds angular momentum to the system allowing the blades to fu lly  

extend, F igure 1.4.

The heliogyro a ttitude  may be controlled using the blade pitch in 

a cyclic o r collective manner to a lte r the spin axis of the vehicle. A
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F ig u re  1.4
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Deployment of a single blade heliogyro. The initial spin is provided  

by th ru s te rs , with the solar radiation pressure force exerted on the  

blades adding momentum fo r fu ll deployment, (Friedman 1988).
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collective pitch of the blades is used to spin up or spin down the  

vehicle whereas the cyclic pitch is used to generate asymmetric forces 

to provide a ttitu d e  control torques. The pitch d rive  is provided by 

motors on the  central hub. Although the a ttitu d e  tu rn in g  rates are  

smaller than those of the square sail the magnitude of the radiation  

pressure force may be modulated by up to 20 per cent. A recent 

innovative approach by von Flotow et. al (1989) has considered the  

possibility of using p iezo-electric  actuators with shorter lightweight 

blades.

The most serious problem with the heliogyro is the possibility of 

dynamic instab ility . Various instabilities due to therm o-elastic and 

purely mechanical effects can occur, although blade f lu tte r  appears 

potentially the most serious, MacNeal (1971). This is due to a 

photo-dynamic coupling between the blade pitch and blade bending. 

F lu tte r may however be avoided by separating the frequencies of the  

f irs t  few torsional and bending modes of the blades. Therefore, 

although more dynamically complex the heliogyro is controllable and is 

a more reliable spacecraft to deploy.

1.4.3 S ta te -o f-th e -A rt Solar Sail Design

The JPL square and heliogyro sails are the only two designs to 

have undergone detailed engineering studies. However, a number of 

recent sail designs prompted by the proposed solar sail races have 

the promise of g reater performance than e ith er of the JPL designs. 

In p articu lar a 276 m disc sail developed by Cambridge Consultants 

Ltd is perhaps the most advanced sail yet designed, Johnson et. al 

(1989). The CCL sail Is in the form of a c ircu la r disc of sail material, 

supported on a s tru c tu re  of 36 radial carbon fib re  reinforced plastic
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spars which are cantilevered from a central load bearing hub. A 

unique spiral fold allows both the sail and spars to be packaged into 

a compact form fo r launch.

When constructed the sail and spars are wound around the  

central hub in a unique packing arrangem ent. Therefore, the sail is 

easily deployed by allowing the 36 spars to elastically unwind from the  

central hub, progressively s tre tch ing  the sail, Figure 1.5. The rate of 

deployment is controlled by the  viscous forces of in itia lly  unstretched  

polymer threads linking the spars at regu lar in tervals. These threads  

stretch  visco-elastically as the  sail deploys limiting the deployment 

rate and so the angular velocity of the hub. Otherwise the hub would 

gain a large amount of angular momentum which would create a 

mechanical shock as it was dissipated through the vehicle once the  

deployment was complete.

The sail a ttitude  may be controlled by inducing small distortions  

in the en tire  sail shape by actuating the spars. The spar actuation is 

achieved by applying bending moments at the hub using therm o-elastic  

bracing wires connected to the spars. By applying d ifferentia l 

electrical heating to these wires the sail geometry can be altered from  

a f la t disk to a cone fo r passive s tab ility , or a saddle fo r active  

attitu d e  manoeuvering. With spar bending of less than one degree  

only, extremely rapid a ttitu d e  control may be achieved. The sail spin 

rate may also be controlled by bending alternate spars to form a 

tu rb in e  geometry.

Using the baseline design accelerations of o rder 2 rr.ms"2 may be 

achieved with a 60 kg payload. However, since the sail s tructura l 

design leads to low stresses on the sail much th in n er materials than  

the  2 um Polyimide film  proposed may be used. By plasma etching the
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Packing and deployment of the CCL disc sail. The s tructura l spars 

are wound around the central hub during launch. Once released the  

spars unwind elastically deploying the sail, (Johnson et. al 1989).
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rear surface large improvements in sail performance and characteristic  

acceleration would be possible, Oswald (1990). Such a high 

performance vehicle would be suitable fo r advanced solar sail 

tra jec to ries .

Finally, the solar photon th ru s te r, another varian t on the planar 

typ e  solar sail has recently been discussed, Forward (1989a). The 

concept was orig inally  proposed in the Soviet lite ra tu re  by Malanin 

and Repyakh (1974). The solar photon th ru s te r is constructed from a 

large Sun pointing re flec to r which d irects the solar radiation to a 

small movable secondary re flector, F igure 1.6. By separating the  

functions of collecting and d irecting  the solar radiation, the solar 

photon th ru s te r has a s ign ificant performance improvement over other 

sail designs at large pitch angles. However, as yet no detailed 

engineering design studies have been undertaken fo r th is  type  of sail.

1.5 Solar Sail Mission Applications

Now th at the design, deployment and control of various solar sail 

types have been discussed, possible mission applications will now be 

investigated. Since solar sail spacecraft require no propellant they  

o ffe r considerable advantages fo r transporting  large payloads and for 

round tr ip  sample re tu rn  missions. Furtherm ore, since the solar sail 

has a v irtu a lly  unlimited AV capability multiple mission objectives such 

as asteroid surveys are possible. In  fact both of these advantages  

are inherent in the solar sail in terp lanetary  shuttle  concept, W right 

and Warmke (1976). By using a square sail inherited from the JPL 

comet Hailey vehicle with autonomous on board systems it was 

proposed th a t m ultiple payloads could be transported to bodies within  

the solar system. A fter the payload delivery  the sail would re tu rn
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to Earth o rb it fo r refurbishm ent and a new set of payloads.

In  operational terms a solar sail may be used to simply augment 

the performance of a launch vehicle upper stage by taking the

payload to escape from an initial high Earth o rb it, or the sail may be 

used fo r all the propulsion beyond low Earth orb it. Escape spirals  

must however begin from altitudes above 700 to 1000 km due to 

atmospheric drag on the sail. From these altitudes escape times may 

be of the o rd er of months so th a t it is desirable to place the sail on a 

parabolic escape tra jec to ry  by conventional means. Although Earth

o rb it is not the optimal operating environment fo r solar sails an orbital 

tra n s fe r vehicle using solar sail technology has been investigated, 

Teeter (1977).

Unlike ballistic tran s fe rs  the solar sail has an essentially open

launch window. The tra je c to ry  may be continuously modified fo r any

launch date. For p lanetary rendezvous short spiralling capture times 

are possible in the inner solar system, however at the outer planets 

these times are proh ib itive ly  long due to the greatly diminished solar 

radiation pressure. Payloads would be inserted into p lanetary o rb it 

using burns from space storable propellants, with the sail using a 

g rav ity  assist to re tu rn  to the inner solar system in a shorter time 

than it took fo r the outward tr ip .

1.5.1 In n e r Solar System Missions

Due to the increased solar radiation pressure in the inner solar 

system solar sail spacecraft can de liver large payloads to close, high 

inclination heliocentric orb its . The payload would be delivered by 

sp ira lling  inwards while d irecting  a component of the solar radiation  

pressure force out of the ecliptic plane to increase the orbital
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inclination. Before the desired inclination was reached however, the  

sail would have spiralled to its closest heliocentric distance, 

determined by the thermal tolerance of the sail material (typ ically  0.3 

AU). The sail would then use a cranking o rb it, a lternate ly  directing  

the solar radiation pressure force above and below the ecliptic plane, 

to achieve the final desired inclination. Moderate performance sails 

with characteristic  accelerations of 1 mms"2 can deliver 103 kg 

payloads into a 0.3 AU polar o rb it in 750 days (including escape from  

Earth o rb it), W right and Warmke (1976).

Other inner solar system missions, such as a round tr ip  to 

M ercury, have spectacular possible payload masses. For example, a 

1.7x104 kg payload may be delivered into o rb it around M ercury in 900 

days, Figure 1.7. Such a mission could include both surface landers 

fo r a sample re tu rn  and permanent o rb ite rs , W right and French (1987).

A sample re tu rn  from M ercury using conventional spacecraft 

technology is at best extremely d ifficu lt and costly in terms of 

propellant mass. The ballistic two-impulse tra n s fe r to Mercury 

requires a AV of 17.4 kms”1, although this can be reduced somewhat 

using g rav ity  assists.

For missions to Mars the outward tra n s fe r times tend to be 

somewhat longer than fo r ballistic transfers . However, the solar sail 

tran s fe r is not constrained by the 1.2 year waiting period of the  

ballistic tra n s fe r. Therefore, fo r a waiting time at Mars of a few 

months the total round tr ip  time is of the same o rder as that for 

ballistic tran s fe rs , F igure 1.8. On the outward tr ip  over 5x103 kg may 

be delivered in 500 days. The payload delivered is however d iffe ren t 

than th at from a ballistic tran s fe r. For a solar sail the en tire  payload 

can be used fo r obtaining a sample from the Martian surface,
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whereas fo r the ballistic mission the delivered payload must include 

propellant fo r the re tu rn  tra jec to ry . I t  has been shown that a 200 kg 

sample could be returned using a solar sail vehicle in contrast to less 

than a 1 kg sample using a ballistic mission, W right and Warmke 

(1976). Other studies have shown th a t large sails may greatly reduce 

the total mass required in low Earth o rb it fo r a manned mission to 

Mars, Staehle (1982). In  particu lar it has been shown that advanced 

sails may be constructed and deployed from tethered facilities at the  

international space station, Garvey (1987).

1.5.2 Outer Solar System Missions

Due to the diminished solar radiation pressure in the outer solar 

system insertion of payloads into planetary o rb it would be achieved 

using a conventional chemical propulsion system, or aerobraking. 

Payloads of 1.5x103 kg may be delivered to Jup iter and Saturn, with 

tra n s fe r times of 900 and 1700 days respectively, allowing useful 

masses to be placed in o rb it. For solar system escape a 1.5x103 kg 

payload may be taken as fa r  as 30 AU In 3000 days, allowing long 

baseline astrom etric measurments to be made, W right and Warmke 

(1976). Time optimal tra jec to ries  to the outer planets usually include 

an inward spiral close to the Sun to gain momentum before the  

outward tra je c to ry . The use of g rav ity  assists at the outer planets to  

reduce tra n s fe r times would be of limited use due to the high 

approach velocity. T ransfer times may however be reduced by 

increasing the hyperboiic a rriva l velocity at the target.

Again, due to the v irtu a lly  unlimited av  capability of solar sail 

spacecraft m ultiple asteroid rendezvous missions are possible, as are  

asteroid sample re tu rns. A total round tr ip  time of 1400 days to Eros
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is possible with a 1.5x103 kg payload, W right and Warmke (1976). 

Sim ilarly fo r high eccentric ity , high inclination comets rendezvous and 

sample re tu rns  are possible at the expense of extended mission 

durations.

1.5.3 Advanced Solar Sail Missions

Due to the continually available solar radiation pressure force  

solar sail spacecraft are capable of many advanced missions impossible 

fo r any other spacecraft type. Although many of these missions

req u ire  advanced, high performance solar sail design others are 

possible using the technology level of the JPL comet Hailey sail.

The delivery of payloads to close heliocentric o rb it was discussed 

in section 1.5.1. Although the comet Hailey sail was constrained to 

operate at g reater than 0.25 AU the studies of sail materials

technology indicated th a t sustained operation within 0.2 AU would be 

possible. A sail with a specialised thermal coating may surv ive  the  

thermal environment at only 0.06 AU (15 solar rad ii), W right (1990). At 

these extremely close heliocentric distances it has been proposed that 

the solar radiation pressure force may be used to suitably modify the  

spacecraft orbital period. In  particu lar a 25 day period would allow 

active regions near the  solar equator to be tracked across the solar 

disk, Forward (1986). Furtherm ore, fo r an advanced sail it would be 

possible to choose the total mass per unit area so th a t the solar

radiation pressure force exactly balanced the solar gravitational force

(0=1.53 gm- 2 ). This would allow the spacecraft to remain stationary  

above the solar poles, making continuous observations, Drexler (1979), 

Forward (1986).

For geocentric applications it has been demonstrated th a t solar
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sails may be used to displace communication satellites above and below 

geostationary o rb it, Forward (1981,1984). This would allow satellites to 

be stacked above and below the equatorial plane, greatly increasing 

the number of available locations. Angular separations in the sky of 

0.3° are possible using 1 um Kapton sails with a payload mass of one 

th ird  of the sail mass. Furtherm ore, communications payloads may be 

placed in static equilibrium  high above the  n ight side of the Earth  

allowing line of s ight viewing of the spacecraft from high lattitude  

regions, Forward (1989b). For conventional geostationary satellites the  

spacecraft appear low on, or below, the horizon in high lattitude and 

polar regions. This static equilibrium  's ta tite ’ concept requires large  

geocentric distances of o rder 50 Earth radii o r g reater so th at the  

local gravitational acceleration is low, F igure 1.9. However, since the

spacecraft would appear to rotate about the  pole s tar once per day,

clock drives would be required fo r track ing .

1.6 Overview

Although solar sailing is by no means a new concept it has 

undergone many detailed engineering design studies by various  

groups. As a result of these studies it has been demonstrated that 

solar sailing is a viable means of spacecraft propulsion and has

significant capabilites fo r near term missions. By operating without 

propellant a solar sail may deliver s ign ificantly  larger payloads than  

could be achieved by other means. The vehicle may then still re tu rn  

to Earth o rb it, perhaps with p lanetary soil samples, and be

refurbished fo r subsequent missions. Solar sailing may also provide  

the means to accomplish extremely d iffic u lt missions, such as 

rendezvous with high eccentricity , high inclination comets.
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F ig u re  1.9
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Static equilibrium  ’s ta tite ’ concept fo r communication services to high 

la ttitude  regions. For a fixed polar angle £ the a ltitude at the summer 

solstice must be g reater than the w inter solstice due to the oblique  

incidence of the solar radiation, (Forw ard 1989b).
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For c u rren t advanced solar sail designs new unique and

advanced applications become possible. Several of these applications, 

such as the displacement of geostationary satellites, have a useful 

near term application. Others, such as static  equ ilib iria  above the  

solar poles, requ ire  sail performance levels between two and three  

times th a t of c u rre n t designs. These designs can however be

improved upon with fu r th e r  development. In  particu lar the use of 

plasma etching on sail material o ffers  the potential for vast 

improvements. However, as discussed in section 1.3.1, with a low mass 

per unit area sail high performance can only be obtained with a 

minimised payload mass. Therefore, the application of other areas of 

advanced space technology such as lightw eight solar cells and high 

strength , low mass composite s tructura l materials must be considered.

Finally, in analysing solar sail missions and applications

comparison must be made with other viable propulsion schemes, such 

as advanced so lar-e lectric  propulsion. While so lar-e lectric  propulsion 

was ultim ately chosen fo r the comet Hailey rendezvous due to its 

greater technological m aturity  it is not suitable fo r advanced missions 

requ iring  a continuously available th ru s t. That is, a solar-e lectric  

propulsion system may generate the required th ru s t magnitude but the  

mission lifetime will be fin ite  due to its dependence on propellant. For 

this reason the possibilites fo r the large scale development of solar 

sailing relies on the investigation of advanced missions and 

applications which are unique to solar sail spacecraft.
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2. SOLAR SAIL ORBITAL DYNAMICS

2.1 Solar Radiation Pressure

The source of motive force fo r solar sail spacecraft is the  

momentum tran s ferred  to the sail by radiative energy from the Sun. 

Using the electromagnetic description of light the momentum is 

transported to the sail by electromagnetic radiation. Physically, the  

electric  field component E of the incident electromagnetic wave 

generates a cu rren t J in the sail surface. This cu rren t then couples 

to the magnetic field  component of the wave B to generate a Lorentz 

force JxB in the direction of propagation of the wave. The induced 

c u rren t then generates another electromagnetic wave which is 

observed as the reflected component of the incident wave.

A lternative ly, solar radiation pressure can be envisaged as being 

due to the momentum tra n s fe rre d  to the sail by photons. Using the  

photon representation the magnitude of the solar radiation pressure  

can be calculated from the specific intensity of the radiation field, 

Iy (r ,n ;t) , (see appendix A). The radiation pressure tensor P (r;t) is 

then defined as the second angular moment of the specific in tensity  of 

the radiation field in tegrated over the en tire  frequency spectrum, viz

P ( r ; t )  = ±
o

I v ( r , n ; t )  nn dfldv
4TT

( 2 . 1 )

I f  the sail heliocentric distance r>Ro, the solar radius, the photons 

a rr iv e  at the sail surface along approximately parallel rays in direction  

k. The specific in tensity  of the radiation field can then be defined as 

Iv ( r ,n )= Iv°® €(n -k ), assuming the Sun to be a time independent source. 

The function ©c(n -k )  is a un it step function with a small, fin ite  width
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c. Therefore, within a solid angle e of direction k all photons a rriv e  

along parallel rays. Substituting fo r the specific intensity in equation 

(2.1) the radiation pressure tensor then becomes

P (r ) = £  kk Iy °  dv o e€ (n -k ) dft (2 . 2 )
4TT

For a surface element dE of the solar disk the solid angle element may 

be w ritten  as dft=dE/r2. Therefore, in tegrating  over the solar disk it 

is found th a t

P (r )  = 2 ^  kk (2 .3 )

where IQ is the  frequency integrated specific In tensity . For a planar 

solar sail the sail area may be represented as a directed surface A=An, 

Figure 2.1. Therefore, the force exerted on the sail due to the  

incident photons is given by

f 1 = lo  A (k .n ) k (2 .4 a )
G i

I f  the  sail is now considered to be a perfect re flector the component 

of the photon momentum along the sail normal is reversed so th at the  

reaction force due to the reflected photons is given by

f r = in  A (k .n ) 1 (2 .4b )
C i

The total radiation pressure force exerted on the sail is then given by 

the sum of the incident and reflected components. Using the vector 

relation (k+ l)= 2 (n .k )n  the total force may be w ritten  as
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F ig u re  2.1

Incident Reflected

Sail Surface

n

Solar radiation incident or. a solar sail from direction k and reflected  

in direction - I.  The sum of the force due to incident radiation fj and 

the force due to reflected radiation f r generates a total radiation  

pressure force normal to the sail surface in direction n.
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f  .  2Ja _nRa2A(k.n)2 n (2. 5)
V I

so th a t the  solar radiation pressure force has an inverse square  

variation with heliocentric distance. In  fact the solar radiation  

pressure force deviates from an inverse square form, as will be 

discussed in chapter 3.

The frequency integrated specific in tensity  IQ may be obtained 

by calculating the energy flux at the sail surface. The flux is defined 

as the f irs t  angular moment of the specific in tensity , (see appendix A)

F ( r ; t )  = I v ( r , n ; t )  n dftdv
4TT

( 2 . 6 )

However, the flux F at the sail surface is given in terms of the solar 

luminosity L0 simply by L0/4TTr2. Therefore, equation (2.6) gives

Ju
4rrr‘ I v°  dv 0

dE
7s (2 .7 )

4T7

In teg ra tin g  over the solar disk the frequency integrated specific  

in tensity  is found to be I 0 = L 0 / 4 tt2 r 0 2 . Therefore, substituting fo r IQ 

in equation (2.5) and d ivid ing by the total spacecraft mass m the sail 

acceleration is found to be

where o is the  totai spacecraft mass per un it area. The magnitude of 

the solar radiation pressure is therefore  F /c , which is 4.57x10-6  Nm“2 

at a heliocentric distance 1 AU.

For a solar sail in heliocentric o rb it the direction of incidence of
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the radiation k is given by the un it radial vector r / | r | .  Furtherm ore, 

the sail acceleration may be made dimensionless with respect to the  

solar gravitational acceleration u / | r | 2 , where u is the product of the  

solar mass M and gravitational constant G. The radiation pressure  

acceleration may then be conveniently w ritten as

a = £ j p j 4 ( r . n ) 2 n , r.n>0 (2 .9 )

where the dimensionless sail loading parameter £ is defined to be the  

ratio  of the solar radiation pressure acceleration to the solar 

gravitational acceleration. Since both the solar radiation pressure  

acceleration and the solar gravitational acceleration have an inverse  

square variation the sail loading parameter is independent of the sail 

heliocentric distance. Using equation (2.8) the sail loading parameter 

may be w ritten as

£  -  —̂  ■ ( 2 . 1 0 )o ’ * 2ttGMc

where the critical mass per un it area o *= i.53  gm-2 . With th is  mass 

per unit area £=1 so th a t the sail radiation pressure acceleration is 

equal to the local solar gravitational acceleration.

I f  the assumption of perfect re flec tiv ity  is relaxed a more exact

model of the solar radiation pressure acceleration may be constructed.

Taking into account the reflectance, transm ittance and emittance of the

sail material the radiation pressure acceleration may be w ritten as

a = £  -j-pj-4 ( r .n )  [ A t r  + { a 2 |i- | + A3 ( r . n ) J n  ]  , r . n > 0  ( 2 . 1 1 )

where the sail material parameters Aj (j=1 ,3 ) are defined as



38

= 2(1 - A 3 -  t )  (2 .12a)

a 2 = {x l ( i -  x2 ) + |  (1 -  x,_ -  t ) }  sgnfn.jp j-} (2 .12b)

A3 = XtX2 (2 .12c)

with the auxiliary param eter k  is defined as a function of the sail 

tem perature by

« = (2 ' 12d)

The param eter x x represents the total fraction of incident radiation  

reflected from the sail while x2 represents the fraction of that 

radiation which is specularly reflected. The fro n t and rear sail 

emissivities and tem peratures are given by e lf T* and e2, T 2 with t  

representing the fraction  of incident radiation transm itted through the  

sail, Van der Ha and Modi (1977a). For state of the a rt sail materials 

these parameters have yet to be determined experim entally. However, 

fo r a perfectly  re flec tive  sail the parameters are given simply by A3=1 

and A1=a 2=o.

During the JPL solar sail studies fo r the comet Hailey mission

even more precise models were developed using fin ite  element 

simulations of the sail shape combined with experimental data on 

potential sail m aterials. These models may be conveniently represented  

as trigonom etric series in the sail a ttitude angles and have been used 

in tra jec to ry  analysis software, fo r example Sackett (1977). Although 

the solar radiation pressure force may be em pirically parameterised by 

the above means, in -f lig h t calibration is required in practice for 

accurate guidance and control, Jacobson and Thornton (1978).

Although solar radiation pressure generates the largest force on
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solar sails, o ther secondary forces are also present. For example, the

solar wind will exert a small pressure on the sail due to the momentum

transported  by solar wind protons. During periods of high solar wind 

speed the mean proton density p at 1 AU is approximately 4x106 m“3 

with a wind speed v of 700 km s'1, Schwartz (1985). The pressure  

exerted on the sail can then be estimated from the momentum 

tran sp o rt as

Pw s nfip pv2 (2 .13)

where mp is the proton mass. Using the above parameters a solar

wind pressure of 3x10-9  Nm“2 is obtained. That is, a pressure of 

nearly 10-4  less than the d irect solar radiation pressure. The main 

effect of the solar wind is then to e lectrically  charge the sail, as 

discussed in section 1.3.2. F irs t o rd er re lativ istic  effects are  

proportional to the ratio of the sail speed to the speed of light, 

typ ica lly  of o rder 10“4. S im ilarly, fo r solar sails in Earth o rb it the  

secondary pressure due to radiation scattered from the Earth is also 

several orders of magnitude less than th at due to the d irect solar 

radiation pressure, Green (1977).

2.2 Heliocentric Solar Sail Trajectories

The orbita l dynamics of solar sail spacecraft are similar in many 

respects to the orbital dynamics of o ther spacecraft utilising low 

th ru s t propulsion systems. That is, a small continuous th ru s t is used 

to modify the spacecraft o rb it over an extended period of time. 

However, a so lar-e lectric  propulsion system may orient its th ru s t 

vector in any direction, whereas solar sails are constrained to th ru s t 

vector orientations within 90° of the Sun-line. For some mission
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applications th is  leads to sign ificant differences in the final tra jec to ry . 

For example, to tra n s fe r from a prograde to a retrograde orb it a 

so lar-e lectric  system will d irect its th ru s t vector perpendicular to the 

Sun-line to lose prograde angular momentum and then to gain 

retrograde angular momentum. However, fo r solar sails the tran s fe r is 

made by increasing the spacecraft ecliptic inclination to greater than 

90° by a lternate ly  orien ting  the sail above and below the ecliptic  

plane. This scheme was to be implemented fo r the comet Hailey 

rendezvous mission, Sauer (1977). These heliocentric 'cranking o rb it’ 

manoeuvres have been investigated by Van der Ha and Modi (1979).

The dynamical equation fo r a heliocentric orb iting  solar sail may 

be obtained by considering the Sun-sail system in an inertial frame I, 

Figure 2.2. In th is fram e the centre of mass of the system C is at a 

position R, viz

where (d 2R /d t2 )=0 fo r a closed system, (see appendix B). Using 

equation (2.9) the forces acting on the Sun and the spacecraft in the  

inertial frame I are given by

(2.15a)

(2.15b)

Adding equations (2.15a) and (2.15b) the acceleration of the centre of 

mass of the system C is obtained as
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F ig u re  2.2

Sail

Sun

The Sun-sail system in an inertial reference frame I. The Sun (M) is 

located at r x with the sail (m) at r 2. The centre of mass of the  

system C is located on the Sun-sail vector r  at position R.
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d2R _ „ GMm ( r . n ) 2_ 
d F  -  13 i T T i  T r F  n (2 .1 6 )

Therefore, since (d 2R /d t2)#0 the  centre of mass of the Sun-sail system 

accelerates. This is due to the gravitational acceleration of the Sun

towards the sail as the sail is accelerated by the solar radiation

pressure. However, since m«M the term Mm/(M+m)=m so that the

acceleration of the centre  of mass is, of course, negligable.

I f  a Galilean transform ation is now used to transform  to a new 

inertial frame l \  with an orig in at the centre of mass C, then

Mrx + mr2 = 0 , r = r 2 - r 1 (2 .17 )

so th a t the re la tive  acceleration of the Sun and the spacecraft is

given by

Substituting from equation (2.15b) the general dynamical equation for  

a perfectly  reflecting  solar sail in heliocentric o rb it is then given by

where u=GM since m<M.

The fundamental aspects of heliocentric solar sail orbital dynamics 

can be appreciated by calculating the spacecraft orb ita l angular 

momentum and energy. Therefore, taking vector and scalar products 

of equation (2.19) with the sail position and velocity vectors the rate  

of change of orb ita l angular momentum h and energy E are obtained, 

viz

(2 .18 )

d2r
+ U  T T 7 -T r f3 = ^ TrT4 ^r *n^2 n ’ r,n>0 ’ u ~ G^M + (2 .1 9 )
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(2.20a)

P 1 I dr  12 u_
" 2 Id t I 1r I (2.20b)

I t  can be seen from equations (2.20) th a t to maximise the instantaneous 

rate of change of angular momentum the sail normal, and so the solar 

radiation pressure force, must be directed perpendicular to the  

Sun-line. S im ilarly, to maximise the rate of change of energy the sail 

normal must be parallel to the velocity vector. However, if the sail 

normal is oriented perpendicular to the S un-line  the magnitude of the  

radiation pressure force is of course zero.

For an in itia lly  c ircu lar o rb it an increase in energy corresponds 

to an increase in semi-major axis, whereas the eccentricity is a 

function of the orbital angular momentum. Therefore, depending on 

the manner in which the spacecraft o rb it is to be modified the sail 

attitu d e  can be chosen such th a t the azimuthal component of the solar 

radiation pressure force or the component in the direction of the  

velocity vector is maximised. One p articu lar tra jec to ry  which can be 

obtained in closed form is the logarithmic spiral.

2.2.1 Logarithmic Spiral Trajectories

The f irs t  quantita tive  investigation of solar sail orbital dynamics 

approximated the heliocentric dynamical equations to obtain 

approximate solutions and tra n s fe r times, Tsu (1959). However, the  

exact set of equations were solved by London (1960) using the  

logarithmic spiral solution of Bacon (1959). This solution requires that 

the spacecraft th ru s t has an inverse square variation with heliocentric  

distance, which is the case fo r solar sail spacecraft, and th at the  

velocity vector maintains a fixed angle with respect to the
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instantaneous radius vector. W riting the general heliocentric  

dynamical equation, equation (2.19), in polar coordinates it is found 

th a t

d2r fde i 2 u „ u ~
d F  - r y  = -  + e 7 * c° s a

1 d f 2 del n u 2 
r I  t r d t ( :  5 r1 cos “ Slna

where oc=cos_1( r .n / |  r | ) is the Sun-sail pitch angle, 

angle a a solution to equations (2.21) is given by

r = r0eetan^ (2.22)

where the spiral angle t  is the angle between the sail velocity vector 

and the normal to the S un-line, F igure 2.3. Substituting equation

(2.22) into equations (2.21) it may be shown th at there  is an implicit 

relationship between the Sun-sail pitch angle, the sail loading 

parameter and the spiral angle, viz

sirW cost _ slna cosa (t>
2 -  s in * t  ‘  / r 1 -  cos3a U .Z 3 )

For a given sail loading param eter and spiral angle equation (2.23) 

may be solved fo r the required  Sun-sail pitch angle. I t  should be

noted th a t since the spiral angle is constant an initial impulse is 

required to rotate the sail velocity vector from an initial c ircu lar o rb it 

to the angle t  required fo r the logarithmic spiral. In  fact, unless the  

sail loading param eter and the spiral angle are small the impulses 

required at the initial and final points on the spiral are greater than 

the total impulse required  fo r a minimum energy ballistic tran s fe r.

By eliminating the azimuthal coordinate e the tra n s fe r time

(2 .21a)

(2 .21b) 

For a fixed pitch
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F ig u re  2.3

n
Sail

dr
dt

Sun

A solar sail logarithm ic spiral tra jec to ry  with a fixed Sun-sail pitch 

angle a . The velocity vector is at a fixed angle t  with respect to the  

normal to the Sun-line.
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between any two heliocentric distances may be obtained as

t  _ t  -  i l  <Ru\ - 1 /2  r 3/ 2 -  r n3/ 2 f cot4> I 1/ 2 r .
t  t 0 - 3 (£u) rQ Is in a  cos2oc) (2 .2 4 )

The Sun-sail pitch angle required fo r a minimum time tra n s fe r may 

then be found by setting (d t/d a )= 0  and solving simultaneously with 

equation (2.23). The optimised tra n s fe r time is shown as a function of 

heliocentric distance fo r various loading parameters in Figure 2.4. I t  

is found th a t fo r sail characteris tic  accelerations of less than 1 mms“2 

the Sun-sail pitch angle required fo r a time optimal spiral is 

approximately 35°. I t  is in teresting  to note that th is  angle maximises 

the azimuthal component of the solar radiation pressure force.

A second family of closed solutions may be obtained with the sail 

oriented along the S un-line. Setting a=0 in equations (2.21) the

standard two-body dynamical equations are obtained with a reduced

gravitational parameter u’=u(1-/3). The resulting family of modified 

conic sections can yield shorter tran s fe r times than the logarithmic 

spiral in certain cases. A detailed comparison of spiral, modified conic 

and ballistic tra jec to ries  has been made by Kiefer (1965).

The logarithmic spiral solutions have been extended to 

three-dim ensions and explicit asymptotic series solutions fo r the  

optimal Sun-sail pitch angle developed, Van der Ha and Modi (1979). 

Furtherm ore, the initial conditions of the logarithmic spiral may be 

relaxed and a rb itra ry  initial conditions allowed. Using the two 

variable expansion technique, Nayfeh (1973), asymptotic solutions with 

a fixed sail a ttitude  have been obtained, Van der Ha and Modi (1979), 

Van der Ha (1980).
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Transfer times fo r optimal logarithmic spiral tra jec to ries  as a function 

of heliocentric distance and dimensionless sail loading parameter, Van 

der Ha (1980).
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2.2.2 Time Optimal Heliocentric Tra jectories

For practical mission analysis purposes the logarithmic spiral 

solutions and asymptotic series solutions with a fixed sail a ttitude  can 

be used only as a guide in find ing  tru e  time optimal solutions. Such 

solutions require  the use of optimal control techniques to obtain the  

required sail a ttitude  as a function of time. Since the sail a ttitude  is 

time vary ing  the boundary conditions may be met without the use of 

in itial and final impulses.

Time optimal rendezvous tra jec to ries  between c ircu lar, coplanar 

heliocentric orb its  have been investigated by Zhukov and Lebedev 

(1964) who applied the Pontryagin maximum principle of the calculus of 

variations to obtain the required time vary ing  sail a ttitude. The two 

point boundary conditions were satisfied using a numerical iteration  

scheme. An a lternative  approach using a numerical gradient method 

has also been investigated, Kelley (1960). Although both of these 

approaches provide time optimal tra jec to ries  the assumptions of 

c ircu lar, coplanar initial and final o rb its  are too res tric tive  fo r the  

analysis of practical in terp lan etary  tra jecto ries. These restrictions  

were removed in detailed studies of three-dim ensional time optimal 

tra jec to ries  by Sauer (1976) which took account of the eccentricity  

and inclination of the initial and final orb its . Using a large data base 

maximum and minimum tra n s fe r times were obtained as a function of 

the sail characteristic  acceleration, F igure 2.5. I t  is found in general 

th a t fo r outward tran s fe rs  with a low sail characteristic  acceleration 

the Sun-sail pitch angle is near th a t of the time optimal logarithmic 

spira l. For larger accelerations however, a 180° rotation of the sail 

attitu d e  takes place. That is, the spacecraft is accelerated along the  

tra je c to ry  and then decelerated to rendezvous with the ta rg e t planet.



49

Figure 2.5
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maximum tra n s fe r times shown. Only the  minimum tran s fe r time is 

shown fo r M ercury, Sauer (1976).
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In  general the convergence to a tru e  optimal solution is d ifficu lt owing 

to the insensitiv ity  of the tra n s fe r time to small variations in the time 

vary in g  sail a ttitude.

As part of the investigation by Sauer hyperbolic excess velocities 

were included in the boundary conditions to investigate th e ir effect on 

total tra n s fe r times. F igure 2.6a shows an ecliptic projection of a time 

optimal tra n s fe r to M ercury with zero re lative  departure and arriva l 

velocities. A total flig h t time of 523 days is required with the  

spacecraft performing 2.5 revolutions of the Sun. With an Initial 

excess velocity of 5 kms-1 at Earth escape the tran s fe r angle is 

reduced to 1.5 revolutions and the tra n s fe r time is halved, Figure  

2.6b. Therefore, since tra n s fe r times can be sensitive to initial 

conditions the possibility of a hyperbolic excess velocity on escaping 

from Earth o rb it must be considered in the overall mission analysis. 

The use of a single lunar g rav ity  assist to achieve a hyperbolic excess 

has recently been considered by Fox et. al (1989).

2.3 Geocentric Solar Sail Tra jectories

Now that heliocentric solar sail tra jec to ries  have been discussed 

the question of geocentric escape tra jec to ries  must be addressed. 

Since the solar radiation pressure force cannot be directed sunward, 

solar sail escape tra jec to ries  are d istinctly  d iffe ren t from escape 

tra jec to ries  fo r other low th ru s t propulsion systems. In  particu lar  

almost no energy can be gained fo r half of the tra jec to ry  while the  

sail is moving sunward and while the sail is in eclipse. These 

problems can be partia lly  alleviated by using a polar escape tra jec to ry  

normal to the Sun-line. However, th ere  is the added cost of in itia lly  

in jecting  the spacecraft into a high inclination polar orb it.
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The fundamental aspects of geocentric solar sail orbital dynamics 

may be understood by again calculating the spacecraft orbital angular 

momentum and energy. The general dynamical equation fo r a perfectly  

reflecting solar sail in geocentric o rb it is given by, (cf. equation

where the parameter P is now the sail characteristic  acceleration. I t  

is there fo re  assumed th a t the magnitude of the solar radiation  

pressure force is constant over the scale of the orb it. Furtherm ore, 

the S un-line  direction S will have a slow annual rotation due to the  

heliocentric motion of the Earth, but will be assumed to be fixed. I t  

should be noted that if the sail a ttitu d e  is fixed equation (2.25) has a 

closed solution in terms of e llip tic  functions, as will be shown in 

section 5.9.

Taking vector and scalar products of equation (2.25) the rate of 

change of orbital angular momentum and energy are obtained, viz

I f  the sail o rb it is in itia lly  near c ircu lar, is in the ecliptic plane and 

the sail normal is fixed along the S un-line such that n=S, then the  

total change in orbital angular momentum and energy over one o rb it 

may be w ritten  as

(2.19))

^ 5  + jp-j-3 = /3(S.n ) 2 n , S.n > 0 (2 .2 5 )

= P (S .n ) 2 r  x n (2 .26a )

(2 .26b)



where e is the azimuthal position angle of the sail measured from the  

S un-line  and Cl is the orb ita l angular velocity, Figure 2.7. Therefore, 

it can be seen th at if the sail geocentric distance and velocity are 

slowly vary ing  functions the total change in orbita l angular momentum 

and energy over one o rb it is zero. Physically, the energy and 

momentum gained during  the half o rb it when the sail is accelerating  

away from the Sun is lost during the half o rb it when the sail is 

moving towards the Sun.

A simple escape scheme would then be to fix the sail attitude  

along the S un-line when the sail is moving away from the Sun, 0<e^n, 

and to fix the sail a ttitu d e  normal to the Sun-line when moving 

towards the Sun, tt<6^2tt, F igure 2.7. The total change in orbital 

angular momentum and energy are then found to be

l^hl » I r | 0 (2 .28a)

bE *  25 |£ l |  (2 .28b)
u I d t | q

where the spacecraft geocentric distance and velocity are evaluated at 

the initial c ircu la r o rb it.

The change in orbita l angular momentum and energy may be 

related to the change in semi-major axis a and eccentricity  e of the  

o rb it using the relation I ti12=Axa( 1 —e2), (see fo r example Roy (1982)). 

For small values of e an expansion gives
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Figure 2.7

Escape

Sun Earth

Sail

dr
dt

A solar sail geocentric escape tra jec to ry  with the sail a ttitude n fixed 

along the S un-line  S fo r half of each o rb it. The sail reaches escape 

velocity near the perigee point.
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d l h l  =
d t

The semi-major axis may be related to the energy of the system as 

E=(-ju/2a). Therefore, eliminating d a /d t from equation (2.29) it is 

found that

Substitu ting  fo r the rates of change of orbital angular momentum and 

energy the change in eccentric ity  over one o rb it is obtained from 

equation (2.30) using

Performing the integration the change in eccentricity over one o rb it is 

then found to be

-  = -  S (2.32a; e 0 d t | 0

S im ilarly, using the relation E =(-u /2a) the change in semi-major axis is 

found to be

-  = l ^ r  ( 2 . 32b:a 0 1d t | 0

I t  can be seen then th a t an in itia lly  near c ircu lar o rb it will 

slowly become ellip tical, as shown schematically in F igure 2.7. 

Furtherm ore, with a suitable choice of sail a ttitude  control, energy is 

added to the system so th a t the semi-major axis of the o rb it increases 

and the spacecraft may be taken to escape. However, to minimise the

- 1  f d l h l  
C*Sp75 I  d t

•TT
l
I

0
(2 .3 1 )
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escape time more complex schemes are required.

2.3.1 Semi-Qptimal Geocentric Trajectories

The f irs t  investigations of geocentric escape tra jectories  were 

undertaken by Sands (1961) using a simple scheme whereby the sail is 

rotated at half the orbital angular velocity. Although the sail is taken  

to escape the scheme is by no means optimal. A more effective o rb it 

raising scheme has been developed by Fimple (1962) by maximising the  

component of the solar radiation pressure force along the

instantaneous velocity vector. I t  can be seen from equation (2.26b)

th at th is ensures th a t the instantaneous rate of energy increase is 

maximised. An o rb it in itia lly  normal to the Sun-line is used so that 

there  is a continuous gain of energy.

The sail unit normal vector n may be w ritten  as the sum of the  

direction cosines of th ree  attitude angles ocj (j=1 ,3 ), viz

3  3

n = ^ cosocjUj , r  = ^ x j l j  (2 .3 3 )
j= i  j= i

where I j  (j=1 ,3) are the unit vectors of an inertial geocentric cartesian  

coordinate system with directed along the Sun-line, Figure 2.8. To 

maximise the instantaneous rate of increase of energy the function

J=(S .n)2n .(d r /d t )  must be maximised subject to the normalisation

constraint K=0 where

3  3

J = cos2^  ^ ^ j^ cosaj  * K = 5 ( cos2<xj  " (2 .3 4 )
j= i  j= i

By using the techniques of constrained maxima with a set of a rb itra ry  

Lagrange m ultip liers Xj (j=1,3) an optimal set of sail a ttitude angles
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F ig u re  2.8

o Sun
Sail

Earth

Serr.i-optimal Earth escape tra jec to ry  with the solar radiation incident 

along the Sun-line S. The sail a ttitude  n is chosen to maximise the  

component of the solar radiation pressure force along the velocity 

vector.
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may be obtained from  

3 J 3K
5 * j + Xj  35;,- 0 • 0 = 1 ,3 )  (2 .3 5 )

Solving equations (2.35) and eliminating the set of m ultipliers the  

required  a ttitu d e  angles are obtained as a function of the sail velocity 

as

COSO4  = r _1 OcosXi + (8  + cos2^ ) 1/ 2} 

cosa2 = r_1 2cosy2 

cosa3 = r _1 2cosy3 

where the auxiliary  coefficients are given by

r  = (ecos2^  + ecosy^S + cos2/ ! )  + 1 2 }1/ 2 (2 .37a )

° osyj  = a m *  ’ ( j =i , 3)  (2 -37b>

With th is  choice of a ttitude  control the sail is accelerated in the  

orb ita l plane while being simultaneously accelerated along the Sun-line. 

Since the  ratio  of the local gravitational acceleration to the solar

radiation pressure acceleration will in itially be large there  will be little  

displacement along the Sun-line. However, as the sail geocentric  

distance increases the motion along the Sun-line dominates. 

In te g ra tin g  equation (2.25) with equations (2.36) it is found that a 

suitable family of escape trajectories may be obtained, Fimple (1962).

General, long term geocentric solar sail tra jectories  have been 

investigated by Van der Ha and Modi (1977a, 1977b) using the two 

variab le  expansion technique. O rbit raising schemes have been

constructed by switching the sail a ttitude at various points along the

(2 .36a )

(2 .36b)

(2 .36c )
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o rb it between a null configuration normal to the Sun-line and a Sun 

facing a ttitu d e  along the Sun-line, Van der Ha and Modi (1977c). By 

calculating analytically the change in orbital elements over a particu lar 

arc of the o rb it with the sail a ttitude fixed, various schemes may be 

quickly  evaluated. The analytic solutions for the changes in the  

spacecraft orbital elements are used to up-date the tru e  o rb it in a 

numerical rectification procedure. In particular it is found th at 

switching the sail a ttitu d e  at the points where the sail velocity vector 

is normal to the Sun-line leads to a rapid increase in energy.

2.3.2 Time Optimal Geocentric Trajectories

Time optimal escape tra jectories  have been investigated by 

Sackett and Edelbaum (1977) using the Pontryagin maximum princip le  

of the calculus of variations. By averaging the dynamical equations 

o ver one orbita l period short period terms may be eliminated, leading 

to a reduction in numerical computation time. Since the method of 

averaging is only valid fo r a small ratio of solar radiation pressure  

acceleration to local gravitational acceleration the solutions are valid to 

geocentric distances of 10s km only. For an initial high Earth o rb it 

with a geocentric distance of 2.1x104 km a sub-escape point of 10s km 

was attained in 116 days with a spacecraft characteristic acceleration  

of 0.6 mms'2. This tra n s fe r time falls to 70 days with a characteristic  

acceleration of 1 mms”2. For many tra jectories a rapid increase in 

eccentric ity  is found with a lowering of the sail perigee distance. To 

avoid perigee distances of less than the radius of the Earth and to 

avoid the rapid a ttitude manoeuvres associated with high eccentricity  

o rb its  a penalty function was added to bias against a low perigee.

The analysis of Sackett and Edelbaum was extended by Green
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(1977) to large geocentric distances to investigate the final escape 

manoeuvre. From a high Earth o rb it with a geocentric distance of 

1.5x10s km o rb it a solar sail with a characteristic acceleration of 1 

mms-2  reached escape velocity in 20 days. I t  was found that a 

velocity dependent a ttitu d e  control similar to section 2.3.1 produced 

solutions close to optimum with an increase in escape time of only 

1.2x10“ 2. Furtherm ore, it was found that polar escape tra jectories  

required slower a ttitu d e  manoeuvres but were ra th er longer than low 

inclination escape tra jectories . More recently the escape problem has 

been investigated by Borja (1984) who considered the combined rigid  

body dynamics and orbital dynamics of a free ly  precessing, spinning  

disc sail. By maximising the energy gain per o rb it near optimal 

escape tra jec to ries  were generated.

2.4 Conclusions

I t  has been shown that solar sail spacecraft can be manoeuvred 

in geocentric and heliocentric orb it by several methods. For the  

heliocentric case the logarithmic spiral solution provides a simple 

analytic  solution to the problem. However, the large initial and final 

impulses required renders the tra jec to ry  impractical. For practical 

mission analysis purposes time optimal tra jec to ries  which satisfy the  

boundary conditions fo r tran sfer between non-coplanar, non-circular  

o rb its  are required .

For geocentric escape time optimal tra jec to ries  may again be 

generated. While providing the best solution in terms of the orbital 

dynamics of the problem time optimal escape may requ ire  large attitude  

tu rn in g  rates which can be impractical fo r large sails. Excessive 

tu rn in g  rates can however be avoided by choosing the sail normal to



61

be fixed perpendicular to the sail radius vector. The sail may then be 

switched into a null a ttitude when moving sunward by rotation about 

the radial axis, while the s tru c tu re  remains gravity  gradient stabilised.

Finally, nearly all of the studies of solar sail tra jectories  to date 

have investigated the use of solar radiation pressure as a means of 

m odifying the solar sail tra jec to ry  fo r in terp lanetary tran s fe r. 

However, o ther advanced applications, such as the static equilibrium  

's ta tite ’ discussed in section 1.5.3, require the solar radiation pressure  

force only to modify the local gravitational acceleration. This means of 

utilis ing  the solar radiation pressure force fo r advanced applications  

will be investigated in the remainder of this thesis.
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3. AN EXACT SOLAR RADIATION PRESSURE MODEL

3.1 In troduction

In  previous solar sail tra jec to ry  studies, as discussed in chapter

2, it has been assumed th at the solar radiation pressure force has an

inverse square variation with heliocentric distance. This allows in 

some cases a closed analytic solution to the dynamical equations, such 

as the  logarithm ic spiral tra jec to ry . In th is chapter it will be shown 

th a t fo r a planar solar sail the assumption of an inverse square

variation is in fac t not valid when account is taken of the fin ite

angular size and limb darkening of the solar disk. This new 

astrophysical modelling of the source of solar radiation pressure is 

distinct from the modelling of the solar radiation pressure force, which 

is dependent on the optical properties of the sail material.

S ta rtin g  from the fundamental definition of radiation pressure

through the radiation pressure tensor, to take account of the vary ing

direction of incidence of solar radiation from d iffe ren t parts of the

solar disk, it will be shown that the solar radiation pressure is 

modified from an inverse square form by a function of the sail 

heliocentric distance and the solar radius. A more precise calculation 

is also carried  out using a limb darkened solar disk which gives a 

closed, but complex functional form fo r the limb darkened solar 

radiation pressure.

I t  should of course be noted that at large heliocentric distances 

these effects are small and can become comparable to other secondary 

forces, as discussed in section 2.1. However, as will be shown using 

the simpler non-limb darkened solar radiation pressure, this  

modification results in the fu rth e r de-stabilisation of the previously
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assumed marginal instab ility  of solar sails stationary above the solar 

poles, as discussed in section 1.5.3. Furthermore, the sail loading 

param eter required fo r these stationary solutions (£=1) will no longer 

be independent of the sail heliocentric distance, as is the case fo r an 

inverse square variation of the solar radiation pressure. The s tab ility  

analysis is also extended to solar sail c ircular orbital motion. I t  is 

found th a t fo r a given sail orbital period there is an inner 

heliocentric distance where the sail motion becomes unstable.

Finally, the effects of small, time variations in the solar radiation  

pressure are investigated to attempt to model the effect of short 

period fluctuations in the solar luminosity. I t  is found th a t fo r  

one-dimensional sail motion a reduced form of Mathieu’s equation is 

obtained and that Floquet s tab ility  analysis shows th a t the motion 

always remains bound. For the circular orbital case Mathieu’s 

equation is obtained in fu ll. I t  is again found th a t fo r short period 

fluctuations the sail motion is bound with non-periodic, bound 

solutions to Mathieu’s equation. However, for long period variations  

(ie. the eleven year solar cycle) the circu lar orbital motion can become 

unstable fo r certain ranges of parameters.

3.2 Solar Radiation Pressure with an Extended Source

The functional form of the solar radiation pressure exerted on a 

planar, perfectly  reflecting solar sail will now be obtained using the  

radiation pressure tensor. The frequency integrated radiation  

pressure tensor P (r;t) is defined as the second angular moment of the  

specific in tensity  of the radiation field integrated over the en tire  

frequency spectrum, as used in section 2.1
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P ( r ; t )  = ±
o

I v ( r , n ; t )  nn dOdv
ATT

(3 .1)

However, in section 2.1 the solar radiation incident on the sail surface 

was assumed to be incident along parallel rays. The vary ing  direction  

of incidence of radiation from d ifferen t parts of the solar disk will

now be included in the integration of the radiation pressure tensor. 

Therefore, equation (3.1) will be used to obtain the exact radiation

pressure from a uniform ly brigh t and limb darkened, fin ite  sized solar 

disk.

3.2.1 Uniformly B right Solar Disk

In the case of the non-limb darkened solar radiation field where 

the specific in tensity  is time independent and isotropic across the

solar disk, the radiation pressure on a radially oriented, perfectly

reflecting sail at a heliocentric distance r may be w ritten as

P (r )  = f

■00 •2TTre0
Iy

0 ■0 ■0
I v cos2© dGdv , dfl = sin© d©d<t> (3 .2)

where the geometry of the system is specified in Figure 3.1. Making 

use of the conservation of specific intensity along rays, so th a t I y  is 

independent of r, and noting the azimuthal symmetry of the geometry, 

equation (3.2) reduces to the integral

P (r )  = c dn n = cos© Hq = cos©c (3.3)

Ho

where IQ is the frequency integrated specific in tensity. Performing  

th is  integration and substituting for Hq it is found that
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F ig u re  3.1

Sun

Sai

Sun-sail geometry with a fin ite  angular sized solar disk. The solar 

disk has an apparent angular diameter of eQ from a heliocentric  

distance r and the azimuthal angle <t> is defined about the radial 

direction. The viewing angle ^ is the angle between the normal to the  

solar surface and the line of sight.
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P (D  = £  I 0 {1 -  {1 -  { Ba } *  ) • / * }

Equation (3.4) may be expanded in (R0/ r ) 2 and fo r r>Ro may be 

w ritten  to f irs t  o rd er as

P(r )  = H  Z°  { ? ° } 2 + 0 « Rc A ) 4> ( 3-5)

However, at large values of r th is  expansion must match asymptotically 

with the expression fo r the radiation pressure from a distant point 

source, viz

P* ( r )  = c { 4^ }  (3 - 6)

where L0 is the solar luminosity. Hence, by comparing equations (3.5) 

and (3.6) the frequency integrated specific intensity IQ is identified as

- -  ( 3 - 7 )

as derived in section 2.1. Substituting fo r IQ in equation (3.4) an 

expression fo r the solar radiation pressure exerted on a radially  

oriented , perfectly  reflecting  solar sail from a uniformly bright, fin ite  

sized solar disk is obtained as

p' r) = 3^  ( 1 -  ( 1 -  { ? ° n 3 / 2 1 ( 3 -8>

A more useful way of representing equation (3.8) is to express it in 

terms of the point source, inverse square variation P *(r )  defined by 

equation (3 .6), v iz
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P (r ) = P * ( r )F ( r )  , F (r )  = § { ^ } 2 {1 -  { l - {  5a } 2} 3 /2  j  (3 -9 )

I t  is seen th a t the function F (r ) attains its minimum value at 

r=R0 , where F(R0 )=2/3, giving the greatest deviation of the solar

radiation pressure from an inverse square variation. Furtherm ore, as 

r-*», F(r)-»1 since the solar disk becomes more point-like, as shown in 

Figure 3.2. I t  can be seen th a t F (r) approaches unity over a scale of 

a few solar radii so th a t the magnitude of the deviation from an 

inverse square form is extremely small at large heliocentric distances.

Physically, th is  deviation from an inverse square functional form  

is due to photons from the solar limb being incident on the sail at a 

small oblique angle to the sail surface, whereas photons from the

centre  of the disk are incident along the normal to the sail. The

photons from the solar limb therefore  tran s fe r a smaller amount of

momentum to the sail than those from the centre of the disk. At large  

heliocentric distances however, photons from all parts of the solar 

disk are incident along near parallel rays normal to the sail surface.

3.2.2 Limb Darkened Solar Disk

A more accurate model of the solar radiation pressure may be 

obtained by the inclusion of solar limb darkening in the functional 

form of the specific in tensity. Limb darkening is an effect due to the  

specific in tensity  of the solar radiation field having a directional 

dependence. That is, as the radiation from a point on the solar 

surface is viewed from an oblique angle the associated specific  

in tensity  fa lls  so th a t the limb of the solar disk appears d arker than  

the disk centre. Empirically, solar limb darkening has a complex 

functional form, Allen (1955). However, using an approximate model of
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F ig u re  3.2

F  ( r )  ,  G  ( r )

. 0

0 .9

0.8

0 .7

0.6 R o

Deviation of the solar radiation pressure from an inverse square form.

F (r )  (------- ) gives the deviation fo r a uniformly b rig h t disk and G(r)

( -------) fo r a limb darkened disk.
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the solar atmosphere an analytic expression fo r the limb darkening can 

be obtained. The Eddington grey solar atmosphere model, Mihalas and 

Mihalas (1984), which assumes that the solar atmosphere is convection 

free  and is in both radiative and local thermodynamic equilibrium , 

allows such an analytic solution to the radiative tran sfer equations. 

The specific in tensity  of the solar radiation field may then be w ritten  

as

I  = (2 + 3cost) (3 .1 0 )

where IQ is the frequency integrated specific intensity defined in 

equation (3.7) and the viewing angle t  is shown in Figure 3.1. I t  is 

seen from equation (3.10) th a t the solar limb will appear darker than  

the centre  of the solar disk by a factor of 0.4 using th is  grey  

atmosphere approximation. I t  would appear then that solar limb 

darkening will have an important effect when the radiation pressure  

tensor is in tegrated.

The angle t  may be related to the integration variable e through  

the equation

cos t  = [ l  -  s in 2e j (3 .1 1 )

so th a t the required integral now becomes

r2TT

P (r ) = % ^ I 0 [2 + 3{ 1"{^“ } s in 2*}   ̂ ] cos2e dO (3 .1 2 )

A fter some lengthy integration an expression fo r the solar radiation  

pressure from a fin ite  angular sized, limb darkened solar disk is
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obtained as

This expression can again be written in terms of the point source, 

inverse square radiation pressure P *(r ), viz

The functional form of equation (3.15) is shown in Figure 3.2. At the  

solar surface G(Ro )=0.708 so th a t the limb darkened solar radiation  

pressure deviates less from an inverse square form than the non-limb 

darkened pressure. This is due to the reduced momentum tran s fer  

from the solar limb. However, at large heliocentric distances G(r)-*1 as 

expected. I t  can be seen then th at the functions F (r) and G (r) have 

the same overall functional behaviour but d iffe r somewhat in precise 

numerical values, th e ir  fractional difference being of o rder 10“ 2 or 

less fo r all but the closest heliocentric distances. For th is  reason the  

uniform ly b rig h t solar disk approximation with its much simpler 

functional form will be used in the following analysis.

P( r )  = P * ( r )G ( r ) (3 .1 4 )

where the function G (r) is defined by
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3.3 Consequences fo r S tability: 1-Dimensional Motion

Using the expression for the solar radiation pressure derived in 

section 3.2.1 the s tab ility  of a solar sail stationary above the solar 

poles will be investigated. By linearising the dynamical equations 

about a stationary point the form of the resulting sail motion will be 

examined to determine the dynamical stab ility  of the system.

A rad ia lly  oriented solar sail with n = r / | r |  and with a total mass 

per u n it area o will now be considered under the influence of solar 

g ra v ity  and an inverse square solar radiation pressure given by 

P *(r ) . Equation (2.19) then gives the dynamical equation as

From equation (3.16) it can be seen that there  is a unique value of £ 

which gives a stationary solution independent of r, (ie. £=1 ). This 

independence is of course due to the solar gravitational and radiation  

pressure accelerations both having an inverse square variation. The 

critica l sail mass per unit area fo r a stationary solution o* is then 

given by equation ( 2 .10 ) as

I f  the  sail is in itially  at rest at some heliocentric position r Q, 

with £=1 and a perturbation S is applied, such that r0->r0+S, the  

resulting  sail motion is obtained from equation (3.16) as

(3 .1 6 )

2ttGMc
, (o* = 1.53 gm 2) ( 3 . 1 7 )

^ | = 0 *  S ( t )  = S0 i + s 02 t  (3 .1 8 )

where s01> S02 are constants of the motion. Equation (3.18) is in fact
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valid fo r |S |»1 since the system is force free with £=1. i t  can be

seen then th at fo r an inverse square variation of solar radiation  

pressure a stationary sail has marginal type instab ility , (see appendix 

C). That is, if perturbed the sail will move from its stationary point, 

but with a linear ra th er than exponential growth.

Consider now the one-dimensional dynamical equation with the  

modified solar radiation pressure of a uniformly b rig h t solar disk 

given by equation (3.9). The dynamical equation now becomes

= -  u(1 -  /3F(r )> ypj - 3  ( 3 . 1 9 )

where the sail loading parameter /3 is the ratio of the inverse square

radiation pressure force to the solar gravitational force exerted on the

sail. Therefore, the param eter £ is not, in this context, the ratio of 

the actual forces acting on the sail but is still defined as the ratio  

o */o . Clearly then, th ere  is no longer a unique value of £ giving a 

stationary solution at all heliocentric distances. The required value of 

£ will now be a function of the sail heliocentric distance given by

/3c ( r )  = F ( r ) - 1 (3 .2 0 )

The sail will now be considered to be stationary at a heliocentric  

position r0 with £=/sc( r 0 ) and a perturbation of « applied, such that 

r0-*r0+c. Then, expanding equation (3.19) in powers of S, the equation 

of the subsequent sail motion is obtained. Considering a radial 

pertu rbation  only it is found that

3 F  = -  % .{1  -  * c { F (ro> *  i ? M  H 1 -  3 y  ( r °  + S) (3 ' 21)
r= r0
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Substitu ting  fo r £c a second order variational equation defining the  

sail motion in the neighbourhood of the stationary position r Q is 

obtained. Retaining linear terms only it is found that

The s tab ility  characteristics of the system may now be investigated by 

calculating the eigenvalues of the variational equation. This may be 

carried  out by substitu ting  an exponential solution of the form

Therefore, substitu ting  th is  solution in equation (3.22) it is found that

Evaluating the d eriva tive  of F (r) and making the substitution  

v=(R o /r0 ) 2 the function D(r0 ) reduces to

where the sign of the function M(v) determines whether the system 

eigenvalues are real o r purely imaginary.

The asymptotic behaviour of the function M(v) in the limits of 

V -+1 , ( r 0 -»R0 ) and v-»0, ( r 0-*») will now be examined. F irs tly , as v-M it is 

seen th a t M(v)-*1 and as v-K) the function M(v) may be expanded as

(3 .2 2 )

s = s0ewt (3 .2 3 )

(w2 -  D (r0 )> S0 = 0 (3 .2 4 )

so th a t the  system eigenvalues u 1>2 are given by iD (ro )1/ 2.

(3 .2 5 )

M(v) = 1- 1-  >fl/+ 0 (v 2 ) 
1-  Mv + 0 (v 2 ) -> 0 , v-»0 (3 .2 6 )
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Since it may also be shown th at the function M(v) has only one real 

root at v=o, and so does not change sign for 0 <v<i, it is concluded 

th a t M(v)>0, 0 < V < 1 .  Therefore, there  are two real eigenvalues of 

opposite sign and an exponential solution of the form

where S01, S02 are constants and the system eigenvalues u1>2 are  

given by

where is the angular velocity of a Keplerian c ircu lar o rb it at a 

heliocentric distance r Q.

I t  has been shown then that by considering the Sun as a 

uniform ly brigh t, extended source of radiation that a solar sail of a 

given loading has only one possible stationary point and th at this  

point is exponentially unstable, the instability being independent of 

the sail parameters. The timescale of the instab ility  is

however dependent on the sail heliocentric distance. The instab ility  

timescale is itself large (eg. t =o.96 years fo r ro=0.1 AU) but the  

existance of the instab ility  adds to the need fo r active sail 

station-keeping so th a t the dynamics of the one-dimensional Sun-sail 

system are not as elementary as is at f irs t thought.

The instab ility  may be understood physically as shown 

schematically in Figures 3.3a and 3.3b. Figure 3.3a shows the  

variation of the solar gravitational force Fg and the inverse square  

solar radiation pressure force F r . I t  can be seen th at the solar

2

(3 .2 7 )

= ±V2 w0 M (r/R0 ) 1/ 2 , u0 2 = £ _ 3
' 0

(3 .2 8 )
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F ig u re  3.3

Inverse square radiation pressure
F

Modified radiation pressure
F

r
o

Schematic form of (a) the solar gravitational and inverse square  

radiation pressure forces and (b ) the modified radiation pressure force  

with a s tationary solution at r=r0 .
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gravitational force may be balanced at all heliocentric distances by the  

solar radiation pressure force with a suitable choice of sail loading,

th e re fo re  giving a stationary solution with marginal instab ility  as 

discussed above. However, in Figure 3.3b with the deviation of the  

solar radiation pressure force from an inverse square form, it can be 

seen th a t fo r a given sail loading there  is only one heliocentric

distance r Q where Fg and F r intersect and so there is only one 

stationary  solution. For r>rQ, Fr>Fg so that the sail is accelerated 

outward by the solar radiation pressure force and for r<rQ, Fr <Fg so 

th a t the spacecraft falls sunwards accelerated by the solar

gravitational force. Therefore the stationary solution at rQ is

unstable.

3.4 Consequences fo r S tab ility : 2-Dimensional Motion

I t  has been shown th at the modification to the inverse square  

form of the solar radiation pressure gives unstable stationary

solutions fo r the one-dimensional Sun-sail system. The s tab ility  of a 

solar sail in a c ircu lar heliocentric orb it, such as a 25 day o rb it 

following the solar equatorial rotation or a one year earth synchronous 

o rb it, will now be investigated.

A solar sail in heliocentric o rb it with a sail loading parameter P 

will now be considered. For a radial sail orientation with n = r / | r |  the  

dynamical equations are given by equations (2 .2 1 ) as

(3 .29a)

(3 .29b)

where P is again defined as the ratio o */o . From equation (3.29b) it is



77

seen th a t an angular momentum integral may be immediately obtained, 

viz

where h is the spacecraft angular momentum per unit mass. Using 

equation (3.30) to eliminate (d e /d t) from equation (3.29a) a single 

radial equation is obtained as

0  -  7 3  = -  7 5  <1 -  *F (r )>  (3 .31 )

F irs tly , the case of a purely inverse square variation of the solar 

radiation pressure will be considered with F(r)=1. A reduced

gravitational constant u*=u( ̂ -P) may therefore be defined. I f  the sail 

is on an in itia lly  c ircu la r o rb it with (d 2r /d t 2 )=0  at r= r0 then h2=/i*r0. 

I f  a perturbation  S is applied, such that r0-»r0+s (assuming without 

loss of generality  th a t h remains constant) and equation (3.31) is 

linearised with respect to s a variational equation is obtained defining  

the sail motion in the neighbourhood of the initial c ircu lar o rb it, viz

d2s * 
d t2

+ U-3 s = 0 (3.32)

which has a solution of the form

set )  = }  so j e iu * j t  , < A ,2 = * { f ^ } l / 2  (3 .33)
j= l

where s01, s02 are constants and u* is the angular velocity of a 

c ircu la r o rb it at a heliocentric distance rQ with a reduced gravitational 

constant w*. Therefore, as expected, solar sail o rb its  with an inverse
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square  varia tio n  of solar radiation pressure are linearly  stable.

Since th e  eigenvalues of the  system are purely im aginary it 

would appear th a t the sail motion is Lyapunov stable, (see appendix  

C). However, the azimuthal d r if t  in the sail motion due to the  

assumption th a t h remains constant has been ignored. This d r i f t  is 

due to th e  sail at p ertu rb ed  position rQ+S having a f ir s t  o rd e r  

d iffe ren ce  in an g u lar velocity  to the unperturbed  o rb it at rQ. I f  the  

applied p e rtu rb a tio n  is of the  form r0 ->r0+s and e-x^t+'P then equation  

(3 .29b) g ives th e  f ir s t  o rd e r d r if t  as

I f  = -  -  (S0 1+S0 2 )> (3 .3 4 )

T h ere fo re  th e  sail motion is Lyapunov unstable (th e  sail d iverges from  

its u n p e rtu rb e d  position), although the heliocentric distance remains 

bound so th a t th e  motion is Poincare stable (see appendix C).

The analysis is now repeated with the modified, uniform ly b rig h t 

form of th e  solar radiation pressure as defined by equation (3 .9). The 

sail an g u la r momentum per un it mass is now given by 

h2=ur0 (1 -/3 F (r0 )>. A p e rtu rb a tio n  of s is applied to equation (3.31) 

and expanding in powers of s it is found th a t

- -k}-~ W1 - SH1 - *(ro> - €\ *} (3-35)d2S h2 
dt-

r= r,

S u b s titu tin g  fo r  h2 and re ta in ing  linear term s only a modified 

varia tional equation is obtained, viz

0 "  *%»{F(r°) + r° H?l '  1) S = °
r= ro

(3 .3 6 )
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which may be w ritten  more compactly as

d2s
(3 .3 7 )

Evaluating th e  d e riv a tiv e  of F (r ) and making the substitution  

v=( Ro / ro )2 't ^e function  P (r0 ) may be w ritten as

P (r0 ) = - A  Qt^) . 0(v) = w { l  ( 1 - ( 1 - v ) 3 / 2 ) - 0 - v ) 1 /2 } - i  (3 .3 8 )

For s ta b ility  it is req u ired  th a t the variational equation has purely  

im aginary e igenvalues so th a t Q(v)<o, 0 < V < 1 . This condition may then  

be w ritten  in term s of an inequality  on viz

Equation (3 .39) d iv ides  the  parameter space (£ ,r ) into two d istinct 

regions of s ta b ility  and in s tab ility , as shown in F igure 3.4. The 

regions of s ta b ility  and in s tab ility  are partitioned by /?*, defined by 

an eq uality  in equation (3 .39). There is a fu r th e r  hyperbolic  region 

defined by /3>£c ( r ) .  The solution to the variational equation in the  

regions of s ta b ility  and in s tab ility  is of th ere fo re  the  form

where the  eigenvalues of the system w1>2 are defined by

wi , 2  = =^0 Q Cr/Ro)1^2 (3 .4 1 )

I t  can be seen from  F igure  3.4 th a t fo r all but the  closest heliocentric

(3 .3 9 )

2

(3 .4 0 )

j = l
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F ig u re  3.4

1. 4

HYPERBOLIC
1 . 2

1.0 UNSTABLE

0.8
STABLE

0.6

R o

1 2  3 4 5

The th re e  regions of the sail param eter space (£ ,r) with stable, 

unstable and hyperbo lic  regions partitioned by £ * and £c respective ly .
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distances the  condition fo r ins tab ility  is confined to a very  narrow  

region of the  sail param eter space close to £=1, (ie. a narrow range of 

long orb ita l periods close to a stationary solution). In  general 

th e re fo re , a ve ry  specific  set of parameters are requ ired  fo r an 

unstable o rb it.

S u b s titu tin g  fo r h in equation (3.30) it is found th a t

u = u0 <1 -  /3 F (r)> V 2  ( 3 . 4 2 )

where w is the  an g u lar velocity of a c ircu lar solar sail o rb it with 

loading param eter P at a heliocentric distance r. For r»Ro the  

function F (r )*1  and so fo r  /3>/3* the orbital angular velocity wci. I f  

the sail then o rb its  with a h igher angular velocity then a smaller 

value of P, w ithin the  stable region of the param eter space, will be 

requ ired  to m aintain a heliocentric distance r. The value of the  

spacecraft o rb ita l an g u lar uc velocity required to obtain s tab ility  can 

be obtained by su b stitu tin g  fo r P* in equation (3.42), v iz

uc = U0 <1 -  /3 * ( r )F ( r )> 1/ 2 (3 .4 3 )

However, a sail o rb ita l angular velocity of less than th a t required  

fo r s ta b ility  may be desired and so a value of P w ithin the  unstable  

region of the  param eter space may be required . For the  case of a 

solar sail in a heliostationary o rb it following the  25 day solar 

equatorial rotation the  value of P required to obtain th is  o rb it is 

shown as a function  of the  sail heliocentric distance in F igure 3.5. I t  

can be seen th a t P+0 as r-»35.76 R0 , corresponding to a Keplerian o rb it  

with a period of 25 days at 0.167 AU under the  action of solar g ra v ity  

only. However, th e  requ ired  value of P crosses into the unstable
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F igure  3.5

25

0.0 R o

302010

In te rsec tio n  of /325, the sail loading param eter required  fo r a 25 day 

o rb it synchronous with the solar rotation, with /s* the sail loading 

param eter defin ing  the  region of in s tab ility . The intersection occurs  

at a he liocen tric  d istance of 6.7 R0.
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region of th e  param eter space at a heliocentric distance of 6.7 R0 (0.03 

AU) so th a t any 25 day solar sail o rb it at a closer heliocentric  

distance will be necessarily unstable. Similarly fo r a sail in an Earth  

synchronous one year o rb it  the  region of instab ility  is bounded by a 

heliocentric  distance of 19.1 R0 (0.09 AU). Therefore, it is concluded  

th a t if a solar sail o rb its  with even a small angular velocity it will 

re q u ire  a value of to maintain the required heliocentric distance

and so will be dynam ically stable. However, when some p articu la r  

orb ita l period is req u ired , such as the heliostationary o r Earth  

synchronous o rb its  th e re  will always be a region of in s tab ility .

I t  has been shown th a t a dynamically unstable solar sail may be 

stabilised , depending on the  required orbital period and heliocentric  

distance, if it has a small o rb ita l angular velocity and th a t any 

p ertu rb a tio n s  will then resu lt merely in periodic oscillations about its 

nominal c irc u la r o rb it w ith a frequency given by equation (3.41). For 

solar sails s ta tio n ary  in the ecliptic  plane th is  may be acceptable or 

even necessary fo r  many purposes, such as a solar observation  

mission u tilis ing  the  25 day heliostationary o rb it. However, fo r sails 

above the  solar poles where the mission ob jective  would be to have 

continuous observations of the  poles, it would not be desirable to have 

the sail o rb itin g  and so the  sail would have to be active ly  controlled  

to remain at a dynam ically unstable stationary ponit.

3.5 Time V ary ing  Solar Radiation Pressure

Now th a t the  dynamical effects of the fin ite  angu lar size of the  

solar disk have been investigated  the effects of varia tions  in the  solar 

lum inosity, which re la te  d irec tly  to the solar radiation pressure, will 

be examined.
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The solar lum inosity has a well known and well defined eleven  

year period of varia tio n  due to in ternal physical processes. However, 

over sh o rt timescales the solar luminosity varies in an extremely  

non-p eriod ic  m anner due to flares, sunspots etc. To attem pt to obtain  

some un d erstan d in g  of how the time vary in g  luminosity L (t) affects  

solar sail dynam ics a simple sinusoidal variation will be superimposed 

upon the  mean solar lum inosity L0, v iz

L ( t )  = L0 { 1 + eco s (G t)) (3 .4 4 )

where c«1 is th e  fractional variation in the  solar luminosity with a 

freq u en cy  Cl. This functional form of the solar luminosity has in fact 

some em pirical ju s tifica tio n  in th a t th ere  appears to be variations with 

e=10~3 due to  sunspot features. The sunspot features  cover a small 

p a rt o f th e  solar disk th e re fo re  reducing the solar luminosity. These 

varia tio n s  have an associated timescale of o rd er 25 days due to  the  

solar rotation c a rry in g  the sunspot features across and behind the  

solar d isk, Wilson et. al (1981). I t  will be assumed th a t r»Ro so th a t 

an in verse  square  solar radiation pressure model may be used.

3.5.1 Consequences fo r  S tab ility : 1-Dimensional Motion

For a solar sail with £=1 at a sta tionary  position r0 the  

one-dim ensional dynamical equation with a time vary ing  solar 

lum inosity is g iven by (c f. equation (3.16))

= -  U(1 -  13) - p j - 3  + U - p i ’s  C O S ( Q t )  (3 .4 5 )

S u b s titu tin g  fo r  /3, app lying  a pertu rbation  S such th a t r0-*ro+s and 

linearis ing  about th e  s tationary point rQ a variational equation with a
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period ic  coeffic ien t is obtained. Considering a radial p ertu rb atio n  only  

it is found th a t

This equation may be reduced to a form of Mathieu’s equation by 

using the  variab le  transform ation  v=x1s+x2 and re-scaling  the time 

variab le  such th a t t ’=ftt

The s ta b ility  ch arac te ris tics  of th is  type  of equation may be 

investigated  using Floquet th eo ry , Jordan and Smith (1987). In  th is  

analysis the  solution to equation (3.48) is w ritten  as the product of a 

p u re ly  periodic and an exponential solution, with the exponent 

determ ining the  s ta b ility  of the stationary solution. W hether the  

exponent is real o r p u re ly  imaginary (unbound or bound solutions) 

depends on the  values of the two coefficients ^  's found using

Floquet th eo ry  th a t fo r  stable, bound solutions to equation (3.48) it is 

requ ired  th a t g2<0.5 (w ith  g ^ O ), as shown in F igure 3.6. That is, g2 

must lie between the  two trans itio n  curves T 1>2 on the g i=0  axis. 

This condition will always be satisfied since €»10“ 3 at maximum and the  

varia tion  has a timescale of o rd er 25 days. Since th is  freq u en cy  is 

fa r  g re a te r than the  Keplerian orb ita l angular velocity w0 (consistent 

with th e  assumption th a t r»R0 ) 0<g2<0.5 so th a t the

(3 .4 6 )

which may be more conveniently  w ritten  as

+ g2c o s ( t ’ )v  = o (3 .4 8 )
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Figure 3.6

f ' i  • .

j"'
«•»

T i  t 2

S tab ility  map fo r  M athieu’s equation, viz

+ <9i + g2c o s (t))x  = 0

The shaded region corresponds to unbound solutions and the  

unshaded region to bound solutions. The zero and f ir s t  o rder

trans itio n  cu rves  T 1>2 are  shown, (--------  Solution of period 4 tt exists,

 Solution of period 2n exists), (Adapted from Jordan and Smith

(1987)).
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sta tio n ary  solution does not become unstable with exponential growth. 

I t  is th e re fo re  concluded th a t short period time variations in the  solar 

lum inosity have little  e ffec t on the s tab ility  of one-dimensional 

sta tio n ary  solutions.

3.5.2 Consequences fo r  S tab ility : 2-Dimensional Motion

For the  c irc u la r o rb ita l case a sim ilar analysis can be carried  out 

using th e  time v ary in g  solar luminosity. The dynamical equations now 

become (c f. equations (3 .29))

d2j  -  r -  7 ? + I3 <1 + ecos(Ot)> (3 .4 9 a )d t

f  k  (r2 af) = 0 (3-49b)

These equations may be reduced to a single radial equation by again 

using th e  an g u lar momentum integral h=r2(d e /d t) , viz

-  jpg- = -  { (1  -  /3) -  /3£COS(&t)) (3 .5 0 )

For an in itia l c irc u la r o rb it at heliocentric distance rQ the  spacecraft 

orb ita l angu lar momentum per unit mass is given by 

h2=ur0 ((1-jB )-£cos(at)>  so th a t only the time averaged angular  

momentum is conserved. Applying a perturbation  r0-»r0 +s and 

linearis ing  about the in itia l c ircu la r o rb it it is found th a t

d£§ .  h£ ( ,  _ 3S1 _ a_ U  .  2 S lf (1 _ p) _ p eco s(fit)) (3 .5 1 )
d t *  r0 I r0J r02l r0Jr >

S u b s titu tin g  fo r  h2 and reta in ing  linear terms only a variational 

equation is obtained
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d2s . u 
d t4 + 7 “ 2 { ( 1 " &) ~ £ecos(G t)}s = 0 (3 .5 2 )

I t  has again been assumed th a t h remains constant with the applied  

p ertu rb a tio n  so th a t the  azimuthal d r if t  of the spacecraft has been 

ignored. Equation (3 .52) may be reduced d irec tly  to Mathieu’s

equation by tran sfo rm in g  the time variable such th a t t ’=Gt, v iz

+ <9i+g2c o s ( t ’ ))S  = 0 , gt = O - 0 ) { 5 ° } 2 . 92 = -0 e { j j° } 2 (3 .5 3 )

where g ij2 «1. For small coefficient values the transition  curves T 1>2 

of F igure  3.6 may be approxim ated, Jordan and Smith (1987). For the  

f irs t  tra n s itio n  c u rv e  the  approximation is given by a parabolic  

relation g i= - (1 /2 ) g 22 and the  s tab ility  condition is th ere fo re

9 i > “ \  922 + 0 (g23) (3 .5 4 )

where g23s10~9 in th is  case. Since g ^O  fo r 0<£<1 th is  condition is 

always satis fied . The second transition curve  T2 has a linear 

approxim ation g l = (1 /4 )+ (1 /2 )g 2 and a resulting s tab ility  condition

9i  < \ + \ g2 + o ( g22 ) ( 3 . 5 5 )

S u b stitu tin g  fo r  g 1>2 the  resulting condition on P is given by

p >  (U n /Q )2 ~ d / 4 ) —  (3 .5 6 )
P > (u0/b >  <1 - (e/2))

To f ir s t  o rd e r in e th is  condition may then be more conveniently  

w ritten  as
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12 > 1 - i { }̂2+ f {1 - 1  {^f} (3 .5 7 )

Therefo re, fo r  short period, sunspot related fluctuations in the  solar 

lum inosity (n/(J0 )2» i ,  so th a t fo r 0</3<1 the sail motion is always stable  

with p u re ly  im aginary characteris tic  exponents.

I t  has been shown then th a t short period fluctuations in the  

solar lum inosity have little  e ffect on solar sail orb ita l s tab ility

provided th e  timescale of fluctuation is fa r  less than the sail o rb ita l

period. Even fo r  the  short period 25 day o rb it following the solar

rotation th e re  will be litt le  e ffect on orbital s tab ility  since the sail is 

c o -ro ta tin g  with the sunspot featu res  which give rise to the  luminosity  

varia tions. However, fo r the  long period eleven year variations in the  

solar lum inosity the sail motion will in fact become unstable, although  

the in s tab ility  timescale will be extremely long. I t  can be seen from  

Figure  3.6 th a t fo r eC1, and so g2<1> the sail motion will become 

unstable fo r  g1<0.25. Therefore  if, fo r example, the sail has an eleven  

year o rb ita l period so th a t, (&/uQ)2*  1 the motion will become unstable  

fo r /3>0.75.

3.6 Conclusions

I t  has been shown in th is  chapter th a t due to the fin ite  angu lar  

size and limb darken ing  of the solar disk the solar radiation pressure  

exerted on a solar sail spacecraft does not have an inverse square  

varia tion  w ith heliocentric  distance, as assumed in previous studies. 

In general th e  e ffe c t of th is  deviation will be to introduce small e rro rs  

into numerical calculations of solar sail tra jec to ries . However, by 

id e n tify in g  th a t th is  deviation of the functional form of the  solar 

radiation p ressu re  exists more accurate nominal solar sail tra jec to rie s
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may be obtained. This is p a rticu la rly  im portant fo r tra jec to rie s  in the  

inner solar system and fo r any fu tu re  solar sail missions with

advanced sail m aterials making extremely close passes (<0.1 AU) to the  

Sun. Such close passes are  found fo r time optimal tra jec to rie s  to the

outer planets, as discussed in section 1.5.2.

Although the  actual magnitude of the deviation of the  solar

radiation p ressu re  from an inverse square form is small except at 

close he liocentric  distances, it has been shown th a t the

one-dim ensional dynamics of a stationary solar sail is not as simple a 

system as is a t f i r s t  thoug ht. A solar sail of a given loading now has 

only one possible s ta tionary  solution th a t is exponentially unstable.

Furtherm ore, with the  sail in a c ircu lar o rb it it has been shown th a t 

fo r a s u ffic ien tly  large  o rb ita l angular velocity the sail o rb it becomes 

linearly  stable against perturbations. However, with specific  

requirem ents on th e  sail o rb ita l period th ere  exists a region within  

which the  sail o rb it necessarily becomes unstable.

F ina lly , it has been shown th a t short period time variations in

the solar lum inosity appear to have little  e ffect on solar sail s tab ility  

in s ta tio n ary  and c irc u la r orb ita l configurations. However, fo r long

period varia tio n s  with the timescale of variation of the same o rd er as 

the sail o rb ita l period the  motion can become unstable with a long 

in s tab ility  timescale.
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4. SOLAR SAIL HELIOCENTRIC HALO ORRTTS

4.1 In tro d u c tio n

In  th is  chapter the  dynamics of a new mode of operation of solar 

sail spacecra ft is discussed, th a t of heliocentric halo o rb its . These 

o rb its  are  equ iva len t to  c irc u la r solar sail orb its , but displaced out of 

the  ec lip tic  plane. They are achieved by orienting the sail so th a t a 

component of the  solar radiation pressure force is directed out of the  

orb ita l plane, F igure  4.1. The heliocentric halo o rb it is unlike o ther  

solar sail o rb its  in th a t it is essentially a stationary solution to the  

dynamical equations, un like  tra n s fe r  tra jec to ries  which have a time 

v ary in g  sail a ttitu d e  and boundary conditions to be satisfied. Since 

the  he liocentric  halo o rb it  is the  progenitor of the geocentric halo 

o rb it fam ilies the  u n d erly in g  dynamics will be discussed in some detail.

I t  will be dem onstrated th a t the spacecraft halo orb ita l period T, 

halo am plitude p and o u t-o f-p la n e  displacement distance z may be 

chosen independently  with a suitab le choice of Sun-sail pitch angle oc 

and loading param eter £. The sail orb ita l period may then be chosen 

to be synchronous with a Keplerian o rb it of the same heliocentric  

distance o r chosen to be some p articu la r fixed value, such as a one

year Earth  synchronous halo o rb it. Perhaps more im portantly , the

halo o rb it  period may be chosen to minimise the sail loading requ ired  

fo r a given set of halo o rb it param eters (p,z).

The dynamical s ta b ility  of the various modes of halo o rb it is 

investigated  and fam ilies of linearly  stable o rb its  established. I t  is 

found th a t th e  optimised halo o rb its  are stable fo r all o rb ita l 

param eters, whereas th e  fixed period halo o rb its  have a fin ite  region

of s ta b ility  near the  orb ita l plane. The Keplerian synchronous halo
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F ig u re  4.1

z

Ecliptic Planex

Schematic geom etry of a heliocentric halo o rb it with the solar sail 

above the ec lip tic  plane at position r=(p ,e,z). The sail a ttitu d e  is 

defined by a u n it vector n and the reference fram e rotates with 

angu lar ve loc ity  O. The axis of the halo need not be normal to the  

eclip tic  plane.
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o rb its  are  always unstable. Simple control schemes are then developed  

fo r the  unstable halo o rb it families. I t  is found th a t by fix ing  the  

S un-sail p itch angle a  all of the halo o rb it families become stable, 

although th e re  is no damping of initial injection e rro rs . A more 

complex feedback scheme to the sail pitch is developed to include  

velocity  term s, but is found to be unsuitable due the long damping 

timescale. By allowing small changes in the sail area along with  

changes in sail a ttitu d e  a robust and well damped control is obtained.

Lastly , by patching individual halo orb its  together, complex and 

elaborate new tra jec to rie s  may be generated. By patching fo u r  

p erp en d icu la r halo o rb its  together the sail may be forced to follow the  

surface  of a cube. Furtherm ore, by switching the sail a ttitu d e  to a 

null con figuration  with o c = t t /2  the halo o rb it may be patched to a 

heliocentric  Keplerian ellipse. The applications of such o rb its  are  

many and varied  both fo r unique astronomical observations and fo r  

communications with spacecraft on in terp lanetary  tra jec to ries , as will 

be discussed in chapter 7.

4.2 Dynamical Equations and The ir Solution

To in vestig a te  the dynamics of heliocentric solar sail halo o rb its  

the  dynamical equations will be considered in a heliocentric ro tating  

re ference  fram e (see appendix B). S tationary solutions to the  

dynamical equations will then be found in th is  co -ro ta ting  fram e. 

These s ta tio n ary  solutions correspond to halo typ e  o rb its  when viewed  

from an in e rtia l fram e. Since the orientation of the co -ro ta tin g  fram e  

is a rb it ra ry , the axis of the  halo may have any desired orien tation

with respect to the  eclip tic  plane.

Using an idealised spacecraft model with a p lanar, p erfec tly
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re flec ting  sail a solar sail at position r  in the co -ro ta ting  fram e with 

angular velocity  O will be considered, as shown in F igure  4 .1 . The 

sail o rien tation  is defined by the unit vector n, fixed in the  

co -ro ta tin g  fram e and the  ratio  of the solar radiation pressure force  

to the  solar g rav ita tio n a l force is given by the dimensionless sail 

loading param eter ^=o*/o . Since the sail orientation is fixed in the  

co -ro ta tin g  fram e the  sail must rotate once per o rb it with respect to 

an in ertia l fram e. The vector dynamical equation of the sail in the  

c o -ro ta tin g  fram e may then be w ritten as

where the term s on the  le ft represent the kinematic, coriolis and 

cen trifu g a l accelerations respectively . These accelerations are equated  

to the  solar rad iation  pressure and solar gravitational accelerations  

exerted on the  sail. The tw o-body gravitational potential ^ U r l )  and 

solar rad iation  pressure  acceleration a are given by

as derived  in section 2.1. Since the solar radiation pressure  

acceleration can n ever be directed sunwards the constra in t r.n>0 is 

imposed so th a t th e  Sun-sail pitch angle Ioc| < ( t t / 2 ) .

I t  is noted now th a t the centrifugal term in equation (4.1) is 

conservative  and so may be w ritten in terms of a scalar potential *Kr) 

defined such th a t

^ + 2 0 x ^  + 0 x ( 0 x r ) = a  - W2( | r | ) (4 .1 )

* z ( l r l )  = '  TrT ’ a = 13 TrT4(r ‘ n)2 n (4 .2 )

WKr.a) : a x(4 *  r) , *(r,G) = -  ^ 1° x r | 2 ( 4 . 3 )
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A new modified potentia l, U(r,n)=<I>2( | r |  )+ t(r,G ), will now be defined so

th a t a reduced dynamical equation is obtained, viz

0  + 20 X ^  + v u (r ,0 )  = a (4 .4 )

In  th e  co -ro ta tin g  fram e a stationary solution is requ ired  so th a t  

the  f i r s t  two term s of equation (4.4) must vanish. Since the vector a

is o rien ted  in d irection n, tak ing  the vector product of n with

equation (4 .4 ) it is found th a t

v u (r ,G ) x n = 0 => n = x v u (r ,ft)  ( 4 . 5 )

w here x is an a rb it ra ry  scalar m ultip lier. Using the normalisation  

condition |n |= 1 , x is identified  as iv u (r ,0 ) | ~ 1 so th a t the requ ired  sail 

a ttitu d e  is defined by

n r VU(r |ft) (4  5)
|V U (r ,0 ) |

Since th e  spacecraft is to have uniform azimuthal motion th e re  can be 

no component o f the  vector n, and so of a, in the  azimuthal d irection . 

T h ere fo re , th e  sail a ttitu d e  may be conveniently described in term s of 

a sing le  angle oc between n and r. Taking vector and scalar products  

of equation (4 .6 ) w ith r, it is found th a t

S im ilarly , th e  req u ired  sail loading param eter is obtained by tak in g  a 

scalar p ro d u ct o f equation (4 .4 ) with n, again requ iring  a s ta tionary  

solution, v iz
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« r .O )  = (4-8)

Therefore, general vector valued functions fo r the sail a ttitu d e  and 

loading have been obtained in terms of the tw o-body co -ro ta ting  

potential U (r,G ). For a given halo o rb it period and spacecraft position 

the Sun-sail pitch angle and loading parameter can then be obtained.

I f  a system of heliocentric  cylindrical coordinates, (p ,e ,z), is now 

used the  c o -ro ta tin g  tw o-body potential function may be w ritten  as

U (p ,z ;G ) = -  [ I  P2^2 + 7 } , r 2 = p2 + z2 (4 .9 )

where the  sail o rb ita l period is given by T = (2 t t /G ) . Evaluating the  

potential g rad ien t in equations (4.7) and (4.8) it is found th a t

tan (4 .1 0 a )

„ ,D .  r . . m 2W 2 ( ( z /p ) 2 + (1 -  (a /a » )2) 2 ) 3/ 2 , ,  in h .
( e ’ ’ ) ■ I 1 tp l I  ( ( z /p ) 2 + (1 -  (0 /a « )2> >2 (4 .10b )

where is the  an g u lar velocity of a c ircu la r Keplerian o rb it at 

heliocentric  distance r. I f  the parameter u is now chosen to be un ity  

then th e  u n it of distance becomes the astronomical u n it and the un it 

of time becomes 2tt E arth  years. These relations may now be used to  

investigate  the  various heliocentric halo o rb it modes.

4.3 Keplerian Synchronous Mode

For th is  mode of operation the spacecraft o rb ita l period is chosen 

to be th a t of a Keplerian o rb it of semi-major axis equal to the sail 

heliocentric  d istance r, (ie. G=r”3//̂ 2). S ubstitu ting  fo r th is  functional 

form of G the  req u ired  loading and Sun-sail pitch are obtained as
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tan oc(p,z) = |  ( 4 . 11a)

P( P’ Z) -  j f y  (4 .11 b )

For a fixed sail loading, equation (4.11b) defines topologically nested 

surfaces of revolution  about the z-axis. A section of these level 

surfaces of constant sail loading is shown in Figure 4.2 along with the  

req u ired  sail p itch . I t  can be seen th a t the sail pitch is such th a t 

the u n it normal to the  sail surface is required  to be oriented  

p erp en d icu lar to the  plane of the system. Therefore the constrain t 

r.n>0 is always satisfied . The sail loading increases with lower ecliptic  

la titudes (ie. sm aller payloads at lower latitudes fo r a given sail 

design). For any set of orb ita l parameters a sail loading of £>1 is 

requ ired  so th a t th is  mode of operation is of little  practical in terest.

The surfaces of co-rotation  (equal orb ita l period) are defined by 

spheres of constant radius so th a t the intersection of these spheres  

with th e  constant loading level surfaces defines regions where solar 

sails will o rb it  synchronously with each other. The sail loading 

param eter may be related to the actual sail mass per un it area using 

the re lation  P=o*/o, (ie. o = 1 .5 3 £ -1  gm"2).

I t  is again noted th a t owing to the  symmetry of the  problem the  

axis o f th e  halo need not be normal to the ecliptic  plane. In  fac t a 

halo o rb it  may be established about any axis passing through the  

orig in  so th a t o ff-a x is  halo orb its , inclined to the ecliptic  are possible.

4.4 General Synchronous Mode

For th is  mode of operation the sail orb ita l period will be chosen 

to be some p a rtic u la r  fixed value fo r all halo o rb it parameters (p ,z). A 

section of th e  equal loading level surfaces and the  required sail pitch
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F ig u r e  4.2

Z  (A U )

6 "

(A U )

- 0. 4 -

1 . 20.80.00. A1 . 2 0.8

Section of surfaces of constant sail loading and the required  sail pitch  

fo r the  Keplerian synchronous mode. The required sail loadings are  

given by; ( 1 ) 1.0 (2 ) 1.05 (3 ) 1.2 (4) 1.5 (5) 2.0 (6 ) 3.0.
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is shown in F ig u re  4.3 fo r an Earth synchronous one year halo o rb it. 

These surfaces are  generated by setting G= 1 in equation (4.10b). 

Topologically, the  fu ll three-dim ensional level surfaces of equal sail

loading are  a fam ily of tori fo r /3< 1 and cylinders fo r /3>1, nested 

around the  z-ax is . The topology change occurs at /3=1 when the inner 

radius of the  to ru s  vanishes.

The nested to ri in tersect the ecliptic plane in a set of c ircu la r  

contours g iv in g  the  requ ired  sail loading fo r co-rotation in the ecliptic  

plane with a period of one year. From equation (4.10a) it can be seen

th a t in th is  case a radial sail a ttitu d e  with zero pitch angle is

requ ired . Furtherm ore , along the z-axis it is seen from equations  

(4.10) th a t a=0 and £=1 corresponding to a stationary solution at any 

heliocentric  d istance above the solar poles. This requires a spacecraft 

mass per u n it area  of 1.53 gm“2. With the sail deployed on a halo 

o rb it a lower sail loading, and so a la rg er mass per un it area, is 

requ ired . This is however at the expense of a decrease in the  

potential o u t-o f-p la n e  distance. For example, fo r a halo o rb it at z=0.5, 

p=0.7 AU a sail mass per un it area of 1.91 gm“ 2 is required .

The region of space in the co-ro tating  fram e in which stationary  

solutions exist is bounded, being defined by the region in te rio r to the  

surface r.n=0. I t  can be seen from equation (4 .8) and Figure 4.3 th a t

as th is  lim iting surface  is approached the sail loading param eter /3-»«.

The boundary is defined by

S (p ,z )  = £  -  P2ft2 = 0 ( 4 - 12)

Outside th is  su rface  r.n-<0, corresponding to a Sun-sail pitch angle of

°̂ >(tt/ 2 ), so th a t th e  total gravitational and cen trifu g al force is
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F ig u r e  4.3

Z  (A U )
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Section of surfaces of constant sail loading and the required  sail pitch  

fo r th e  E arth  synchronous mode. The required  sail loadings are given  

by; ( 1 ) 0.5 (2 ) 0.8 (3 ) 0.9 (4 ) 0.99 (5) 1.0 (6 ) 1.1. The outer contour 

S i rep resen ts  th e  boundary S(p,z)=0.
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outw ard . The solar radiation pressure force will then only augment 

these forces and so s ta tionary  solutions in the co -ro ta ting  fram e will 

not be possible. In s id e  the  surface r.n>0 and stationary solutions are  

possible w ith th e  g rav ita tiona l, centrifugal and solar radiation  

pressure forces in equilibrium . The surface S(p,z)=0 is shown as the  

o uter contour S i in F ig u re  4.3.

4.5 Optimal Halo Mode

To generate  an optimal family of halo o rb its  the spacecraft orb ita l 

period will be tre a ted  as a free  parameter of the system with respect 

to which th e  sail loading requirem ents may be minimized. Therefore, 

setting  the  d e r iv a tiv e  o f I* with respect to 0  to zero a quadratic  in ft2 

is obtained, v iz

~~~ffiZ'n)= 0 * Q4-fi2Q*2{2 + 3 { | } 2} + G*4{l + { | } 2} = 0 (4 .1 3 )

The q u ad ratic  gives two solutions fo r G2, one of which fa ils  to satisfy  

the condition r.n>0. The o ther solution always satisfies th is  condition. 

The req u ired  solution fo r  the  sail orbital angular velocity to give a 

minimum in th e  sail loading requirem ent is then given by

■ w .  » . h  -  t h o t a W ' T '  *  ■ a !  < * • « >

Using th is  functional form  of the  sail orb ita l angu lar velocity surfaces  

of constant sail loading may again be generated from equation (4.10b). 

A section of these surfaces is shown in F igure  4.4 along with the  

requ ired  sail p itch . I t  can be seen th a t a halo o rb it may be 

established a t all points in space, always with 0 < W . Therefore, by 

tre a tin g  0  as a fre e  param eter of the system, halo o rb its  with large
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F i g u r e  4.4
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Section of surfaces of constant sail loading and the  required  sail pitch  

fo r  th e  optimal mode. The required  sail loadings are given by; (1 ) 0.2 

(2 ) 0.5 (3 ) 0.8 (4 ) 0.9 (5 ) 0.99 (6 ) 1.0.

(A U )
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o u t-o f-p la n e  displacem ents may be achieved with the required  sail 

loading lower than fo r  the  synchronous case. C u rren t sail designs 

allow sail loading values of up to £s0.3, as discussed in section 1.4 .3 , 

which allows an optim ised halo o rb it with z»0.3 AU at p=1.0 AU. A 

solar sail on such a halo o rb it has a period of 1.37  years.

4.6 H eliocentric  Halo O rb it S tab ility

Now th a t th e  th re e  halo o rb it families have been established th e ir  

s ta b ility  ch arac te ris tics  will now be investigated. This is carried  out 

by linearis ing  th e  dynamical equations about a nominal halo o rb it to  

obtain a varia tiona l equation. The variational equation describes the  

sail motion in th e  neighbourhood of the nominal halo o rb it. Therefore, 

the s ta b ility  of th e  tra je c to ry  may be determined by examining the  

eigenvalues of the  variational equation. The non-linear dynamical 

equations may be linearised by p ertu rb in g  the sail from its nominal 

halo o rb it with th e  sail pitch fixed in the (p ,z) frame. The 

p e rtu rb a tio n  is th e re fo re  applied with the inertia l sail pitch angle y 

fixed, as shown in F ig u re  4.1, so th a t the Sun-sail pitch angle a  is 

variab le.

A pplying a p e rtu rb a tio n  s to a sail at an operating point 

r o = (ro>eo>zo) such th a t r 0->r0+S a linear variational equation is obtained  

from the  n o n -lin e a r dynamical equation, equation (4.4)

+ 20 x + v u (r 0+6) -  a ( r 0+S) = 0 (4 .1 5 )

where the  vec to r s=(S,¥,r\) represents  f ir s t  o rd e r displacements in the  

co -ro ta tin g  fram e in th e  (p ,e,z) d irections respective ly . The potential 

g rad ien t and th e  rad iation  pressure acceleration may be expanded in



t r iv a r ia te  T ay lo r series about the  operating point r0 to f ir s t  o rd e r as

v u (r 0+s) = v u (r0 ) + ^  v u (r  + 0 ( | s | 2) (4 .16 a )

a ( r 0+s) = a ( r 0 ) + ~  a ( r ) j  s + 0 ( | S | 2) (4 .16b )

r= r0 , n=n0

Then, since v u ( r 0 )= a (r0 ) on the  nominal halo o rb it a linear variational 

system w ith constant coefficients is obtained, viz

where M and N, the  g ra v ity  and radiation gradient tensors in 

equations (4 .16) and the  skew symmetric gyroscopic matrix Mj are  

given by

The tensor components Ujj are  the  ( i , j )  partia l d erivatives  of the  

potential w ith respect to the  cylindrica l polar coordinates and ajj is 

the  jth  d e r iv a tiv e  of the  i ^  component of the  solar radiation pressure  

acceleration. Owing to the  azimuthal symmetry of the system all 

d e riv a tiv es  with respect to 0 in the  m atrices M and N vanish. In  

component form  th e  variational equation then becomes

(4 .1 7 )

0 - 2  0 
H i = 2 0 0

0 0 0
, H = (l-l-jj) , N = (a - jj)  

( i , j ) 6 (p ,e ,z )

(4 .1 8 )
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h 2 n
+ L3 i^  + L33r\ = 0 (4 .19c )

w here L j j = M j j - N j j .  This set of th ree  coupled o rd in ary  d iffe ren tia l 

equations may be reduced to two by in tegrating  equation (4 .19b) to  

obtain

d^ 20
dt = P0 ^  (4 .2 0 )

This equation is in e ffe c t a linearised version of Kepler’s th ird  law, 

g iv ing  the a n g u la r ve locity  of the sail re la tive  to the  nominal halo 

o rb it. The equation may then be substituted into equation (4.19a) to  

elim inate the  azim uthal coordinate. However, th is  leads to a constant 

term  402£q in equation (4.19a) so th a t the variational system becomes 

non-homogeneous. The non-homogeneity can be easily removed by 

re -sca lin g  th ro u g h  a change of variable

s ’ = 5 -  ,  * ° 2!;m  ■■ So (4 .21a )
L 1 1 1 - 3 3  l 1 3 l 3 1

n = n + , ,  I 40' ! : 1? - r ~  *0  (4.21b)
L 1 1  * - 3 3  L 1 3 L 3 1

where L * 11=L11+402. Using th is  transform ation a reduced variational 

system with a set o f two coupled equations is obtained, v iz

A 2
S’ L * n  ■ L13

d t2 n ’
+

1-31 • L33

S’ 0

n ’ 0
(4 .2 2 )

By elim inating th e  azim uthal coordinate the o rd e r of the variationai 

system is reduced, however the sail is fre e  to d r if t  along the halo 

o rb it. T h ere fo re , th e  o rb it cannot have Lyapunov typ e  s tab ility  but
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may a t least be Poincare stable (see appendix C). The coefficients of 

the  m atrix L a re  given by

(4 .2 3 a )  

(4 .23b )  

(4 .2 3 c )  

(4 .23 d )

2/3
x i = p  (pcosy + zs in y) (4 .2 3 e )

x 2 = 1 -  { 1 + §  tany} (4 .2 3 f )

= 1 -  ( l  + |  coty} (4 .23 g )

The s ta b ility  characteris tics  of the reduced variational system  

defined by equation (4 .2 2 ) may now be investigated by calculating the  

system eigenvalues. This may be carried out by substitu ting  an 

exponential solution of the  form

S ’ ^ 0
. =

-»->30) (4 .2 4 )
IV

. ^  .

S u b s titu tin g  th is  solution into equation (4.22) gives a matrix equation  

of th e  form

L* n  = 402 ~ { (& 2 ~ p }  + p s  } -  > ! * 2cos2y

Li 3 = " p ^  “ \ X 3Sinyc0sy

i 3pz . .L31 = -  p —  >'1x2sinycosy

l 33 = { p  -  p s }  -  x i^ 3 s in 2y 

and th e  a u x ilia ry  coefficients Xj ( j =1,3) are given by
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u 2 + L* X1 l 13 ^0 0

1-31 w2 + L33 0

For n o n -tr iv ia l solutions a vanishing secular determ inant of the  m atrix  

equation is req u ired . This then gives the characteris tic  polynomial of 

the system, viz

w4 + t r ( L ) u 2 + d e t (L )  = 0 (4 .26 )

with the  trace  of th e  system m atrix tr (L )= L * 11+L33 and its determ inant 

d e t(L )= L *1 1L33 - L 1 3 L31. The fundamental theorem of a lgebra  implies 

th a t the  ch arac te ris tic  polynomial has four complex roots wj ( j= i , 4 ), the  

fo u r frequencies  of th e  eigenmodes of the system. Formally these  

eigenvalues may be w ritten  as

U l - - 4 :  ( - t r ( L )  ± j t r ( L ) 2 -  4det (L)}  } (4 .27 )

where the positive root gives a long period response and the  negative  

root a short period response. The sail motion in the neighbourhood of 

the nominal halo o rb it is then given by the superposition of the  fo u r  

eigenmodes as

S’ 4
^oj

ewj t (4 .28 )
n ’ L+

j = i noj

The s ta b ility  ch aracteris tics  of the families of halo o rb its  may 

now be investigated  by num erically searching fo r regions with purely  

im aginary eigenvalues, wj2 <0, ( j =1>4) giving stable, bound oscillations  

in th e  (p ,z) plane, (ie . det(L)>0 and tr(L )> 0 ). F irs tly , the  stable
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regions of the  general synchronous mode with 0=1 will be mapped. 

Using the  scale invariance of the system the s tab ility  of the Keplerian  

synchronous and optimal halo modes will then be determ ined. Setting  

0=1 in equation (4 .27) it is found th a t th ere  exists a stable family of 

halo o rb its  w ith Wj2 <0, (j=1 ,4 ) near the ecliptic plane. This region is 

bounded by th e  surface  Clf  the section of which is shown in F igure  

4.5. Along th e  z-ax is  it is found th a t th e re  exists a marginal 

in s tab ility  since equation (4.19c) reduces to (d 2n /d t 2 )=0.

For th e  Keplerian synchronous case the surface 0 = r_3 / 2= 1 is a 

unit sphere , th e  section of which is shown in F igure 4.5 by the cu rve  

C2. I t  can be seen th a t th is  surface lies outside the stable region of 

the map so th a t the  0=1 Keplerian synchronous halo o rb its  will be 

unstable, ( i t  may in fac t be easily shown th a t d e t(L K 0  fo r 0=0* in 

genera l). Fu rth erm o re , the surface defined by G0 p t=1> shown as C3 in 

F igure  4.5, may also be generated and is found to lie w ithin the stable  

region.

Examining equations (4.10) it can be seen th a t th ere  exists a 

scaling law of th e  form

so th a t th e  problem is scale in varian t to changes in 0. Therefore, the  

h ierarch y  of th e  surfaces shown in Figure 4.5 will hold fo r any value  

of 0 . The Keplerian synchronous mode is th e re fo re  always unstable  

and th e  optimal mode is always stable.

The coupling of the halo amplitude pertu rb atio n s  to the azimuthal 

motion may be found by in tegrating  equation (4 .20), viz

(4 .2 9 )
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F ig u r e  4.5
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Halo o rb it  s ta b ility  map in the p -z  plane. The contour Cx defines the

stable region fo r  th e  6=1 mode and the contours C2>3 define the

surfaces given by 6 = r_3/ 2=1 and 6op t=1 respectively. The s ta tionary

solutions along the  z-ax is  have a marginal ins tab ility .
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Po
S ( t ' )  d t ’ (4 .3 0 )

where S (t) is the  response given by equations (4.28) and (4.21a). The 

f ir s t  o rd e r d r i f t  in azimuthal position can then be obtained as

For th e  stab le  halo o rb it families the azimuthal pertu rbations  are of

the form  of period ic  oscillations with a secular increase. This d r if t  is

due to the  sail having an initial perturbation  in the p coordinate so 

th a t the  sail has a f ir s t  o rd er d ifference in orb ita l period from the  

nominal halo o rb it. The sail motion is th ere fo re  constrained to a to rus  

around the  nominal o rb it and has Poincare typ e  s tab ility .

Typical s tab le  and unstable responses fo r a one year Earth  

synchronous halo o rb it  are shown in Figures 4.6 and 4.7, using a

numerical in teg ra tio n  of the fu ll non-linear dynamical equations. I t  

can be seen th a t the  unstable halo o rb it has a ra th e r long in s tab ility  

timescale of almost one year. The instab ility  manifests itse lf in the

sail fa llin g  sunw ard . For the stable case it is seen th a t even fo r a 

large in itia l p e rtu rb a tio n  outside the linear regime, the halo o rb it 

remains bound with large amplitude in -p lane  and o u t-o f-p la n e  

oscillations.

4.7 H eliocentric  Halo O rb it Control

Since th e  s ta b ility  analysis has shown th a t the halo o rb it families 

have regions of in s tab ility , simple closed loop control schemes th a t 

ensure asym ptotic s ta b ility  will now be investigated . I f  the spacecraft 

azimuthal position is unim portant (as would be the  case fo r a passive
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Stable response fo r  a one year halo o rb it with p=0 .6 , z=0.5 and 

in jection  e rro rs  of ^o=nQ=5 x10“2; (a) x -y  projection (b ) x -z  pro jection .
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F ig u r e  4 .7 (a)

Y (A U )

1 . 2  

0.8  

0. 4  

0.0 

-0.  4 

- 0.8  

- 1 . 2

- 1 . 2  - 0 . 8  - 0 . 4  0 . 0  0. 4 0 . 8  1.2

Unstable response fo r  a one year halo o rb it with p=0.7, z=1.0  and 

in jection  e rro rs  of ^0 =̂ 0̂ =^x^0 " 4; (a ) x -y  projection (b ) x -z  pro jection .
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F ig u r e  4 .7 (b )
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m onitoring p latform ) then the  reduced two-dimensional system may be 

considered. I t  will be shown th a t the two-dimensional system is in 

p rin c ip le  contro llab le  using feedback to the sail pitch. However, 

sim ulations show th a t the damping timescale is too long fo r  practical 

purposes. Therefo re , a general feedback scheme, with variab le  sail 

loading is developed. This scheme is found to produce a suitab le  

contro l.

4.7.1 C o n tro llab ility  by Sail Pitch

The f i r s t  ty p e  of control to be investigated is a proportional and 

d e riv a tiv e  feedback to the  inertia l sail pitch angle y. However, it 

must f ir s t ly  be established th a t the system is in fac t controllable  

using th e  sail pitch alone.

I f  th e  vector dynamical equation is linearised by allowing f irs t  

o rd e r changes in the  sail position r 0 -»r0 + s  and also the sail a ttitu d e  

n0-»n0+Sn then a modified variational equation is obtained, v iz

d2*  + Mi ^ |  + (H -  M) s :  K Sndt
K -  —  *  3n (4 .3 2 )

r= r 0 , n=n(

w here th e  m atrix K gives the f irs t  o rd er variation in the  solar 

radiation  p ressu re  acceleration with changes in sail a ttitu d e . The 

azim uthal coordinate may again be eliminated using equation (4.20). 

The v aria b le  transform ations defined by equations (4.21) are then used 

to reduce the  modified variational equation to the variables S =(S ,n ). 

The varia tiona l equation then becomes

d2s ’
d t2 + L S = K Sy

I *L 1 1 L l3

*-31 l 3 3

, K =

d3p
3 y
3az
By

(4 .3 3 )
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w here the  f ir s t  o rd e r a ttitu d e  change Sn now becomes the  change in 

inertia l sail p itch angle $y. The radiation pressure acceleration partial 

d eriva tives  given by the  components of K=(K1,K2)T are

Kl = \  r *  9̂cosy + zs1ny) {3cos2y[l -  |ta n 2 y } + i j  (4 .34 a )

K2 = \  (pcosy + zs in y) [3cos2y{l -  |ta n 2 y ] -  1] (4 .34b )

The system is now reduced fu r th e r  by transform ing to a set of 

fo u r f ir s t  o rd e r equations in the state variab le  x=(s’ ,ds’/d t ) .  The 

variational equation may then be w ritten in standard form as

= L*x + K*Sy L* =
-L

K* =
0

K
(4 .3 5 )

To determ ine th e  co n tro llab ility  of system the  rank of the  4x4 

co n tro llab ility  m atrix C = (K *,L *K *,L *2K *,L *3K*), formed from the system  

m atrix L* and th e  in p u t d is tribu tion  matrix K*, is calculated. For the  

system to be fu lly  contro llab le  the matrix C must have fu ll rank, (see 

appendix C). E valuating  the  contro llab ility  m atrix it is found th a t

C =

Ki

k2

0

0

■ L * n K i  -  L 1 3 K2  

- L 3 1 K1 -  L3 3 K2

“ L *n K i I-13K2 

- L 3 1 K1 -  L 3 3 K2

0

0

(4 .3 6 )

I t  is c lear then th a t r(C )=4 if K1>2*0 (ie. pcosy+zsiny*0). However, 

r.n=pcosy+zsiny is always non-zero  fo r the Keplerian synchronous and 

optimal halo o rb it  modes and is non-zero fo r the  Earth synchronous
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mode, provided  th a t the  o rb it is w ithin the allowed region of the  (p ,z) 

plane. There  are  also several o ther d iscrete uncontrollable cases 

found by settin g  the  term s in brackets in equations (4 .3 4 ) to zero or 

equating  K1=K2. F ina lly , it is found th a t fo r the  fu ll three-dim ensional 

varia tional equation the  system is uncontrollable using sail pitch alone. 

That is, although equation (4.19b) shows a coupling between the  

azim uthal and radial motion it is not su ffic ien t to give fu ll rank to the  

co n tro llab ility  m atrix.

4.7.2 Control by Variable Sail Pitch

Now th a t th e  co n tro llab ility  of the system has been established a 

closed loop feedback scheme to the sail pitch will be investigated . 

The sail p itch will be related to the state variables through a general 

feedback expression

where xj ( j= l ,4 )  are  the components of the state vector. The fo u r  

feedback gains gj ( j= 1,4 ) are chosen to ensure all fo u r of the  

eigenvalues of the  system are in the le ft hand complex plane so th a t 

the  system has asym ptotic s tab ility . Since the reference state of the  

system is x=0 th e  con tro ller is a state regu lato r. Equation (4.37) can 

be su b stitu ted  into equation (4.33) and a new characteris tic  polynomial 

obtained. The R outh -H urw itz  c riterion  (see fo r example B arnett and 

Cameron (1985)) then defines limits to the  range of values the  gains 

may take  so th a t all eigenvalues are in the le ft hand complex plane. 

Since th e re  are  fo u r gains it is not useful to design the control 

scheme by p lo ttin g  th e  positions of the  closed loop eigenvalues in the

4

(4 .3 7 )

j  = i
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complex plane, (ie. root locus technique, see fo r example B arnett and 

Cameron (1985)). Ins tead , a simulation using a numerical in tegration  of 

the fu ll n o n -lin e ar dynamical equations was used. The R outh-H urw itz  

conditions were im plicit in the simulation to ensure the  values of the  

gains were w ith in  the  co rrec t bounds.

The perform ance of the  variab le  sail pitch control is shown fo r a 

low displacem ent halo o rb it, F igures 4.8 and 4.9. The free , open loop 

response fo r  a stable Earth  synchronous halo o rb it is shown in F igure  

4.8. I t  can be seen th a t th e re  is a combination of long and short 

period responses, corresponding to the two sets of eigenvalues of the  

stable system. The azim uthal d r if t  corresponding to equation (4.31) is 

also seen. The closed loop response fo r the same halo o rb it with

feedback to the  sail p itch is shown in Figure 4.9. The gains were

chosen to attem pt to minimise the damping time while avoiding  

excessive overshoot. I t  can be seen th at the damping timescale is 

extrem ely long. This is due to the coupling between the  magnitude  

and d irection  of the  solar radiation pressure force. I t  will la ter be 

shown in section 4.7.4 th a t if f irs t  o rder variations in the sail area  

are allowed to overcome th is  coupling, much sh o rte r damping 

timescales are  possible. The azimuthal d r if t  is again present, but with  

the superim posed oscillations being damped out.

I t  can also be seen from Figure 4.9 th a t the in jection e rro rs  

damp out to  no n -zero  values. This is due to the variab le  

transform ations, defined by equations (4.21), used to obtain the

reduced varia tional equation. That is, the control scheme ensures th a t 

(£ , ,r , )-»0 leaving the  constant terms in equations (4.21) as residual

e rro rs . Physically  these residual e rro rs  are due to the sail having  

excess o rb ita l an g u lar momentum due to the in itial e rro r  Zq along the
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F i g u r e  4 .8 (a )
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r  (Y R S )

Open loop response fo r  a one year halo o rb it with p=0 .6 , z - 0 .2  and 

in jection  e rro rs  o f So=no=,4,o=1x10"4; (a ) S (x 10 4) response (b ) n 

(x 10 - 4 ) response (c ) V response.
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F ig u r e  4 .8 (b )
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F i g u r e  4 .8(c)
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F i g u r e  4 .9(a)
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Closed loop response fo r  a one year halo o rb it with p=0 .6 , z=0 .2 , 

in jection  e rro rs  of ^0 =n0 =,4,0 =1 x10-4  and a variab le  sail pitch angle  

control. The feedback gains are gl =-1.5, g2 =-1.2, g3=-2 .0  and g4 =-1.5; 

(a ) S (x 10“ 4 ) response (b ) n (x 10- 4 ) response (c) ^ response (d ) sail 

in e rtia l pitch angle control (x 10“ 2).
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F ig u re  4 .9 (b )

n  (1 0 -+ )

-0.  5 »

- 2. 0 -
T (Y R S )



124

F ig u r e  4 .9 (c )
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F ig u re  4 .9 (d )
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p-axis. This excess momentum can in fac t be removed through  an 

open loop control manoeuvre. The manoeuvre uses a sail rotation  

about th e  yaw axis to generate a control acceleration in the azimuthal 

direction . This technique will be discussed in detail in section 5.8.3.

4.7.3 Control by Fixed Sun-Sail Pitch

An extrem ely simple closed loop scheme is now investigated which 

ensures Lyapunov s tab ility  fo r all of the  halo o rb it families. The 

scheme does not damp out injection erro rs , but is used only to  

stab ilize  unstable o rb its , such as Earth synchronous halo o rb its  high  

above the  ec lip tic  plane. The scheme requires th a t the Sun-sail pitch  

angle oc remains fixed. Therefore , as the sail moves from the nominal 

halo o rb it  the inertia l sail pitch angle y must vary .

In  term s of the fixed Sun-sail pitch angle oc the components of 

the rad iation  pressure  acceleration (ap,az ) may be w ritten  as

= 7 ? cos2a Jcosa p -  s in a  p} (4 .3 8 a )

These expressions may then be used to evaluate the new radiation  

g rad ien t tensor, in a sim ilar procedure to section 4.6. Therefore, a 

new system m atrix may be formed and its s tab ility  characteris tics  

examined. I t  is found th a t the  reduced variational equation becomes

_d2 S ’ HH
■i*CL • Pl3

d t 2 n*
+

P31 V  P33 n ’

where th e  coeffic ients  o f the matrix P are given by

(4 .38 b )
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P*11  = 402 ■ { ( ° 2 ■ 7 3 } + ^  } -  r i (cosoc -  r 2r 4 ) (4 .4 0 a )

13 = -  + r x (s in a  + r 3r 4 ) (4 .40b )

3pz r  f . p _ .
II = - p r -  - r i (sina -  r 2r 5 ) (4.40c)

p 3 3  = { 7 3  ~ "  r i  (cosa  -  r 3r 5 )

The au x ilia ry  coeffic ien ts  f j  (j=1 ,5 ) are given by

( 4 . 40d)

r i = 7 3  cos2a  (4 .41 a )

r 2 -  (4 .41b )

r 3 = “f  (4.41c)

r 4 = pcosa -  zs in a  (4 .41d )

r 5 = psinoc + zcosoc (4 .41 e )

To determ ine th e  s ta b ility  of the system the new characteris tic  

polynomial is obtained and the  eigenvalues found, v iz

w4 + t r (P )w 2 + d e t(P ) = 0 (4 .4 2 )

The conditions fo r  pure ly  imaginary eigenvalues and Lyapunov  

s ta b ility  are  again th a t tr (P )> 0  and det(P)>0. However, due to the  

scale in varian ce  of th e  system, as discussed in section 4.6, only the  

stab ility  ch arac te ris tics  of the Keplerian synchronous mode need be 

examined. S u b s titu tin g  fo r  it is found th a t
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t r ( P )  = G*2{2 + {p}2} > 0 , d e t(P ) = i l* * {£ ]2> o (4 .4 3 )

I t  is c lear then th a t the Keplerian synchronous mode has Lyapunov  

s ta b ility  w ith the  fixed Sun-sail pitch angle control. Therefore, due to  

the  scale invariance, all halo o rb it modes become stable. There will of 

course be an azimuthal d r if t  due to the excess orbita l angu lar

momentum of th e  sail owing to the initial e rro r  along the p-axis.

The change inertia l pitch angle Sy can be related to a feedback  

control by eva luating  the change in Sun-sail pitch angle with f ir s t

o rd e r changes in p and z. The angle a is given by

a = y -  tan - 1 J^J ( 4 . 4 4 )

so th a t Soc may be formed from 3oc/3p and 3oc/3z. The requ ired  control

to m aintain a fixed Sun-sail pitch angle is then Sy=-S<x, v iz

This control scheme is appealing in practice since no state  

variab le  inform ation is requ ired . A Sun track ing  sensor would 

measure th e  change in Sun-sail pitch angle Soc which would then be 

used d ire c tly  to command the change in sail inertia l pitch angle Sy. i t  

is th is  s im plic ity  of the  control scheme which makes it so a ttra c tive .

A series  of open loop commands would be used to remove any in itial 

in jection  e rro rs . The fixed Sun-sail pitch angle control may then be 

used to ensure  the  o rb its  remain Lyapunov stable.

(4 .4 5 )

4.7.4 Control by Variable Sail A ttitude and Loading

The variab le  sail pitch control investigated in section 4.7.2
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showed th a t the  coupling between the magnitude of the  solar radiation  

pressure  acceleration and the sail a ttitude  lead to long damping 

timescales. To overcome th is  coupling f irs t  o rd er changes in the  sail 

loading (ie. changes in the  sail area) will be allowed. Then, a rb itra ry  

control accelerations may be generated and the requ ired  varia tion  in 

the sail a ttitu d e  and loading obtained.

The fu ll three-d im ensional variational equation with a control

acceleration A may be w ritten  as

0  + Mi Jjf + (M -  N) S = A , A = A,S + A2 (4 .4 6 )

where the  control acceleration is related to the  state variab les  by the  

feedback gain m atrices A1>2. I t  would in princ ip le  be possible to  

choose the elements o f these matrices so th a t the o ff-d iagonal term s in 

the variational equation, which lead to dynamic coupling, were 

elim inated, (c f. th e  elements L13 and L31 in equation (4 .22)). However, 

since these term s are  of the  same magnitude as the  principal diagonal 

term s the system is not suitab le  fo r artific ia l de-coupling .

The varia tio n s  in the  sail a ttitu d e  and loading requ ired  to  

generate  the  control acceleration may be obtained from the expression

fo r the  solar radiation  pressure acceleration given by equation (4.2).

Allowing f ir s t  o rd e r varia tions  in the sail a ttitu d e  S n  and the  sail 

loading it is req u ired  th a t

(/3+S/3) -j^pp (r .(n + S n ) > 2 (n+sn) = £ ( r . n ) 2n + A (4 .4 7 )

By noting th a t | n + S n | = 1  th is  vector equation may be solved by taking  

vector products to obtain the required sail a ttitu d e  control as
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„ a + A
" = |a  + A| " n (4 .4 8 )

where a  is the  nominal solar radiation pressure acceleration given by 

equation (4 .2 ). This expression can then be related to the inertia l sail 

pitch angle control Sy and the  yaw angle control Sx, (ro tation  about 

the z -a x is ). The loading control is also obtained as

SPz *r l | r |4  (rl(«Vl)>» - 3 <4-49>

The req u ired  sail pitch and yaw controls along with the required  

loading control can th e re fo re  be obtained as a function of the control 

acceleration.

The 3x3 gain matrices will be chosen to be diagonal so th a t each 

component of the  control acceleration is a simple function of the  

position and velocity  along th a t axis, viz

= j 9 i j )  > ^ 2  = j 9 2 j ) > ( i» j -1 > 3 )  (4 .5 0 )

where Sjj is th e  kronecker delta function. Using th is  form fo r the  

gain m atrices a simulation of the  control scheme is used to choose the  

ind iv idual gains to achieve a suitable time response, F igure 4.10. I t  

can be seen th a t th e  in jection e rro rs  are damped out in approxim ately  

60° o f o rb it, with a maximum loading variation  of less than 10“ 2. 

S h o rte r damping timescales are possible, but at the expense of a 

la rg e r overshoot and la rg e r variations in the sail loading.

I t  has been shown then th a t the unstable families of halo o rb it  

may be well controlled by using a combination of sail a ttitu d e  and 

loading varia tio n s  to give adequate damping timescales. However, the  

simple fixed S un-sail pitch angle control is appealing in th a t no state
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F ig u re  4 .10(a)
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Closed loop response fo r  a one year halo o rb it with variab le  sail pitch, 

yaw and loading control. The o rb it param eters are p=0.5, z=1.5 with 

in jection  e rro rs  of ^ = ^ = ^ = 1 x 1 0 "4. The feedback gains are g ^ - 1 0  

and g2 j= -5 , (j=1 ,3 ); (a ) S (x1CT4 ) response (b ) n (x1CT4 ) response (c) S' 

(x 1 0~3) response (d ) sail inertia l pitch angle control (e) sail yaw angle 

control ( f )  sail loading control (x 10“ 2).
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F ig u re  4 .1 0 (b )
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F ig u re  4 .10 (c )
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F ig u re  4 .1 0 (d )
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F ig u re  4 .10 (e )
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F ig u re  4 .1 0 ( f )
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v ariab le  inform ation is requ ired  onboard fo r the control system. All 

th a t is req u ired  is a Sun track in g  sensor to generate inertia l sail 

pitch angle commands. Open loop commands may then be used to lim it

the sail motion and to remove the  initial injection erro rs .

4.8 Patched Heliocentric Halo O rbits

In  th is  final section the  possibility of patching halo o rb its  

to g e th e r will be investigated . By a simple, assumed instantaneous, 

sw itch ing operation on the sail a ttitu d e  at discrete points along the  

t ra je c to ry  complex and elaborate new tra jec to ries  may be generated. 

In  o rd e r th a t th e  operation involves only a change in the  sail a ttitu d e  

several boundary conditions must be satisfied. Denoting the  in itial 

halo ( I )  by the  su b scrip t 1 and the final halo ( I I )  by the su b scrip t 2 

these conditions may be w ritten  as

( i )  r 1- r 2 ; In te rs e c t io n  o f the halo o rb i ts .

( i i )  v 1=v2 ; No v e lo c i ty  impulse required at the switching p o in t.

( i i i )  Ei=E2 ; S a il  energy is  continuous across the switching operation .

( i v )  £ i= £ 2 ; S a i l  loading is  continuous across the switching operation .

4.8.1 Halo-Halo T ra n s fer

Since the  sw itching of the  sail a ttitu d e  is assumed to take  place 

instantaneously  condition ( i)  implies th a t the sail gravitational potential 

is continuous across the  operation. Furtherm ore, since the radiation  

fie ld  is n o n -conservative  with respect to sail rotations (ie. the  sail 

does no work against the field  by being re -o rien ted ) it is only  

req u ired  th a t the  sail k inetic  energy is continuous across the  

sw itch ing operation. Condition ( ii i)  th e re fo re  reduces to | v 1 | = | v 2 |,
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(ie. p 1Q1-p 2&2). The period of halo I I  is then determ ined exp lic itly  by 

a 2= f t i ( P i / P 2 ).

Using th is  relation and equating the sail loadings to satisfy  

condition ( iv )  it is found th a t the required conditions are p !=p 2 and 

so z 1=z2. T h erefo re , the  spacecraft must tra n s fe r to an identical halo 

o rb it I I ,  bu t w ith an axis perpendicular to halo I. Using th is  

procedure fo u r halo o rb its  may be patched together, with the sail 

a ttitu d e  being switched at each of the intersections to form an 

elaborate new tra je c to ry  in which the sail o rb its  over the  surface of a 

cube, F igure  4.11. I t  should be noted th at halo I I I  is re tro g rad e  with 

respect to halo I. Furtherm ore, the en tire  patched tra je c to ry  is 

sym m etric to ro tations and so the cube may be orien ted in any way 

with respect to  the  ec lip tic  plane.

4.8.2 Keplerian T ra n s fe r

T ra n s fe r to  and from o ther halo o rb its  is not the  only means of 

patching tra je c to rie s . The sail a ttitude  may be switched into a null 

orien tation  with oc=tt/2, so  th a t the sail will be tra n s fe rre d  onto a 

Keplerian e llipse, F ig u re  4.12. This tra n s fe r may take place at the  

perihelion o r aphelion of the ellipse. The perihelion and aphelion  

velocities to be matched are given by, (see fo r example Roy (1982))

where a and e a re  th e  sem i-m ajor axis and eccentric ity  of the ellipse.

I f  a tra n s fe r  a t th e  perihelion point is considered the requ ired  halo

am plitude is g iven by p 1=rpCos(i), where rp = a (1 -e ) is the  perihelion

distance and i is th e  eclip tic  inclination of the  ellipse. Therefore,

(4 .5 1 )
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F ig u re  4.11
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Ecliptic Plane

Halo

Switching point
Switching point

RetrogradeHalo

Patched 'c u b ic ’ tra je c to ry  formed from fo u r perpend icu lar halo o rb its . 

The sw itch ing  of the sail a ttitu d e  occurs at the  intersection points.
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F ig u re  4.12
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Halo o rb it patched to a Keplerian ellipse. The tra n s fe r  may occur at 

e ith e r the  perihelion o r aphelion points and to or from an o ff-ax is  

halo.
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app ly ing  condition ( ii i)  the  required  angular velocity of the inital halo 

o rb it is g iven in term s of the  orb ita l elements of the ellipse by

( a , e ; i ) = a" 3/ 2 c o s ^ O )  | f 4 " f p 72  (4 .5 2 )

For an aphelion tra n s fe r  an angu lar velocity of 0 t (a ,-e ;i) is requ ired  

and fo r  a tra n s fe r  to a c ircu la r o rb it an angular velocity of 0 1(a ,0 ;i) 

is re q u ire d . Again, due to the  symmetry of the system the sail may 

be tra n s fe rre d  to o r from an o ff-ax is  halo o rb it. In  p a rticu la r the  

sp acecra ft may be tra n s fe rre d  from an o ff-ax is  halo o rb it to a solar 

polar o rb it.

4.9 Conclusions

I t  has be shown in th is  chapter th a t solar sail spacecraft may be 

used to establish heliocentric  halo typ e  orb its . Three d is tinct fam ilies  

of he liocentric  halo o rb it exist with d iffe re n t requirem ents on the  sail 

loading param eter and with d iffe re n t s tab ility  characteristcs. The 

fixed period o rb its , such as the Earth synchronous one year halo

o rb it, are  th e  most dynam ically complex. However, the minimal loading

halo o rb its  a re  of more in te res t fo r practical applications due to the

less dem anding requirem ents on the total spacecraft mass per un it 

area.

Although the  Keplerian synchronous halo o rb its  and some of the  

fixed period halo o rb its  are unstable a simple feedback control scheme 

using v ariab le  sail a ttitu d e  and loading gives a suitable control fo r

the unstab le  modes. The simpler fixed Sun-sail pitch angle control is 

easier to implement, although open loop control would be requ ired  at 

re g u la r in te rv a ls  to compensate fo r any d r if t  in the  sail position.
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F in a lly , it has been demonstrated th a t the  individual halo o rb its  

may be patched to g eth er to form complex new tra jec to ries , such as the  

'cu b ic ’ tra je c to ry . The patching of a halo o rb it to a Keplerian ellipse  

is also possible by sw itching th e  sail a ttitu d e  into a null orien tation .
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5. SOLAR SAIL GEOCENTRIC HALO O R B IT S

5.1 In tro d u c tio n

Following th e  investigation  of the heliocentric halo o rb it families 

in ch ap ter 4 another new mode of operation of solar sail spacecraft is 

now discussed, th a t o f geocentric halo orb its . These o rb its  are sim ilar 

to th e  he liocentric  halo o rb it families in th a t they are achieved by 

o rien tin g  th e  sail such th a t a component of the  solar radiation  

pressure  fo rce  is d irected  out of the orbita l plane. Therefore, the  

geocentric halo o rb it  is a c ircu la r geocentric o rb it, but displaced in 

the an ti-S u n  d irec tio n , F igure  5.1.

By su itab ly  choosing the sail pitch angle a  and loading param eter 

£ it will be dem onstrated th a t the spacecraft o rb ita l period T, halo 

am plitude p and o u t-o f-p la n e  displacement distance z may be chosen at 

will. The sail o rb ita l period may be chosen to be synchronous with a 

Keplerian near polar o rb it of semi-major axis equal to the halo 

am plitude, fixed at some p articu la r value fo r all o rb it param eters (p,z) 

or, chosen to minimise the  sail loading requirem ents. For the minimal 

loading fam ily of halo o rb its  it is found th a t the axis of the  halo need 

not lie along the  S u n -E a rth  line, Figure 5.1.

The dynamical model assumes a radiation fie ld  th a t is uniform  

over the  scale of the  problem (tens of p lanetary  rad ii) so th a t the  

ratio  of th e  solar radiation pressure acceleration to the local 

gravita tiona l acceleration increases with increasing distance from the  

p lanetary  cen tre . I t  is th is  relation th a t leads to in terestin g  new 

dynamics. The region of space over which the  assumptions remain 

valid will be lim ited due to solar and lunar g ravita tional perturbations. 

Given th a t th e  lu n ar sphere of influence has a radius of o rd e r 10 R0



144

F ig u re  5.1

k

Off-axis Halo

Incoming Radiation

On-axis Halo

Schematic geom etry of a geocentric halo o rb it with the  solar sail at 

position r= (p ,e ,z ) displaced in the anti-S un  d irection . The sail a ttitu d e  

is defined by a u n it vector n and the solar radiation is incident along 

the S u n -lin e  d irection  I. The reference fram e rotates with angular 

velocity O d irected  along I or, fo r the o ff-ax is  case, d irected  along k.
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(p la n e ta ry  ra d ii) halo o rb its  with a geocentric distance of up to 40-50  

Rq will be considered. O ver th is  distance the  solar radiation pressure  

varies  by only 4x10~3 from its value at 1 AU. The analysis is of 

course invalid  along the  p lanetary  shadow near p=0. In  the  in itial 

analysis th e  annual rotation of the S u n -lin e  will also be neglected. 

The in e rtia l forces introduced by a fu r th e r  rotation of the coordinate  

system with th e  S u n -lin e  are re la tive ly  small with respect to the large  

solar rad iation  pressure force required  to establish the halo o rb its . 

The e ffe c t of these p e rtu rb in g  forces will be considered in section 5.7. 

I t  will be assumed th a t these effects  may be corrected fo r th rough  

active contro l, as discussed in section 5.8.

The dynamical s tab ility  of the various modes of halo o rb it will be 

investigated  and linearly  stable families identified . For the unstable  

fam ilies simple control schemes are developed by using a feedback to  

the sail p itch . However, long damping timescales are obtained which 

renders  th is  control unsuitable. A well damped control is obtained by 

including f ir s t  o rd e r variations in the sail loading param eter in the  

feedback loop. This control is suitable fo r stabilis ing the unstable  

halo o rb it  fam ilies against pertu rbations , such as the annual rotation  

of th e  S u n -lin e .

Lastly , by patching together individual halo o rb its  it will be 

dem onstrated th a t complex new tra jec to ries  may be formed by a simple 

switching operation on the sail a ttitu d e  at d iscrete points along the  

o rb it. The patching may be between individual halo o rb its  or between 

a halo o rb it  and a Keplerian ellipse. Geocentric halo o rb it families  

have p o ten tia lly  useful applications fo r near Earth space science 

missions, as will be discussed in chapter 7.
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5.2 Dynamical Equations and The ir Solution

Following the  analysis of section 4.2 the dynamical equations will 

be considered fo r a p lanar, perfectly  reflecting  solar sail in a 

c o -ro ta tin g  re feren ce  fram e with the origin centred on a point mass 

Earth . The axis of rotation 0  will be directed along the  S u n -E arth  

line, F igure  5.1. The sail a ttitu d e  is again defined by a un it vector n 

fixed in the  c o -ro ta tin g  fram e and the magnitude of the solar radiation  

pressure  acceleration is given by the param eter P= P0 /o , where PQ is 

the  solar rad iation  p ressure  acceleration at 1 All and o is the  total 

spacecraft mass per u n it area. Since the sail a ttitu d e  is fixed in the  

co -ro ta tin g  fram e the  sail must rotate once per o rb it with respect to 

an inertia l fram e.

The vector dynamical equation fo r a solar sail in the co -ro ta ting  

fram e under th e  action of a point mass potential and superimposed  

uniform  rad iation  fie ld  is given by

+ 2Q x + O x (O x r )  = a -  TO2( | r | )  (5 .1 )
d t*  d t

The tw o-bo dy g rav ita tio n a l potential <I>2( | r | )  and the  solar radiation  

pressure  acceleration a  are  given by

* 2 ( | r l )  = -  j p r  , a = 13 n . n ) 2 n (5 .2 )

where the  u n it vec to r l= (0 ,0 ,1 ) is directed along the (assumed) fixed  

S u n -lin e . The requ irem ent l.n>0 is imposed to ensure th a t the  normal 

to the  sail always points away from the Sun which consequently  

constrains th e  sail motion to the planetary n ig h t-s id e  (+z).

Equation (5 .1 ) may be simplified by in troducing the scalar 

potential 'K r )  to  rep resen t the conservative cen trifu g al term . S im ilarly
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the solar radiation  pressure acceleration is, in th is  case, conservative  

and may be w ritten  in term s of a scalar potential T(r ,n) ,  v iz

= O x ( 0  x r )  , vp(r,Q) = -  £ |0  x r | 2 (5 .3a )

V T ( r ,n )  = /3 ( l . n ) 2 n , r ( r , n )  = jS ( l . n ) 2 ( r . n )  (5 .3b )

Defining new potentia ls  U(r,G)=<I>2( | r |  )+*Hr,ft) and V(r ,n ;0 )=U(r ,0 )+r ( r ,n ) ,

equation (5 .1 ) then becomes the reduced dynamical equation

^  + 20 x ^  + W ( r , n ; 0 )  = 0 ( 5 .4 )

In  the  c o -ro ta tin g  frame stationary solutions are again requ ired  

so th a t the  f ir s t  two term s of equation (5.4) vanish. Therefore, since  

the vec to r v r ( r , n )  is oriented in direction n, tak ing  the vector product 

of n w ith equation (5.4) it is found th a t

v u ( r ,G )  x n + v r ( r , n )  x n = 0 => n = *v u ( r , f t )  ( 5 .5 )

where > is an a rb it ra ry  scalar m ultip lier. The normalisation condition  

I n | =1 is then used to iden tify  > as | v u ( r , & ) | - 1 . The sail a ttitu d e  

req u ired  fo r  a s ta tionary  solution in the co -ro ta tin g  frame is th e re fo re  

defined by

V U ( r , Q ) „ ( 5 6 )
n I v u ( r , o ) I

Since the  spacecra ft is to be in uniform co-ro tation  th ere  can be no 

azim uthal component of the solar radiation pressure acceleration. 

T h erefo re , th e re  can be no component of the  vector a  in the azimuthal
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direction . The sail a ttitu d e  may then be described by a single angle oc 

between I and n defined by

« ' • “ > ■ <»■»

Sim ilarly , the  requ ired  solar radiation pressure acceleration may be 

obtained by tak in g  a scalar product of n with equation (5 .4). Again 

re q u irin g  a s ta tio n ary  solution in the co-ro tating  fram e it is found  

th a t

ax _ v u ( r ) . n  _
£ ( r , f t )  = ( ( 5. 8)

In  geocentric cy lindrica l polar coordinates (p,e,z) the  co -ro ta tin g  

potential may be w ritten  as

U (p ,z ;Q ) = -  { \  (Op) 2 + p } , r 2 = p2 + z 2 (5 .9 )

w here the  period of the  halo o rb it is given by T=2ti /Ci . Therefore, 

evaluating  th e  potential g rad ien t it is found th a t the  scalar 

expressions fo r  th e  Sun-sail pitch angle and the solar radiation  

pressure  acceleration requ ired  fo r a halo o rb it of am plitude p, 

displacem ent z and period T are given by

tan oc(p,z;Q) = {§} { 1 “ { i j }  } ’ ^ * 2 = u^f3  (5 .1 0 a )

« P , z ; 0 )  = 0 * 2 { l  + { f } 2 {1 -  ( I ; } 2 Y  } 3 /2 z (5 .10b )

where is th e  an g u lar velocity of a c irc u la r Keplerian o rb it at 

geocentric distance r. The case of &=0 corresponds to the  static
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equ ilib rium  s ta tite  concept fo r low b it rate communications with high 

la titu d e  regions, as discussed in section 1.5.3. The sail is then

s ta tio n ary  above the  n ig h t-s id e  of the Earth with the solar radiation  

pressure  acceleration exactly balancing the local gravitational 

acceleration. The requ ired  sail acceleration is th ere fo re  uz~2, as 

discussed by Forw ard (1989b) using the same dynamical model. I f  the  

un it of length is chosen to be the p lanetary radius R0  and u- 1 then  

the param eter £ will be the solar radiation pressure acceleration made 

dimensionless w ith respect to the gravitational acceleration at Rq. 

This will now be termed the sail loading param eter. The total 

spacecraft mass per un it area is then obtained from the relation  

a=9.31 x10“ 4^_ l gm-2 .

5.3 Polar Synchronous Mode

For th is  mode of operation the spacecraft o rb ita l period will be 

chosen to be equal to th a t of a Keplerian near polar o rb it above the  

p lan etary  te rm in a to r with a geocentric distance equal to the halo 

am plitude p, (ie. ft=p“3/ 2 ). Therefore, the  sail will maintain polar 

synchronism  at all displacement distances z so th a t th e re  will be 

cylin d rica l surfaces of co-rotation extending in the an ti-S un  d irection. 

Solar sails w ith the  same halo am plitude will then o rb it synchronously  

with each o th e r a t d iffe rin g  displacement distances. The equatorial 

inclination of the  Keplerian o rb it will vary  from 66.5° at the  solstices 

to 90° at th e  equinoxes. From equations (5.10) the  requ ired  Sun-sail 

pitch angle and sail loading param eter are obtained as

tan <x(p,z) = ( f )  ( l  -  { l  + {§} } /  } (5 .11a )
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* ( p , z )  = 7 3  {1 + { f } 2 {1  -  {1 + { f } 2 } 3/2 } 2 } 3/2  (5 .11b )

A section of the  level surfaces of constant sail loading generated by 

equation (5 .11b), along with the  required sail pitch fo r polar 

synchronism  is shown in F igure  5.2. I t  can be seen th a t fo r  

reasonably low sail loadings halo o rb its  of large am plitude with respect 

to th e ir  displacem ent distance are  required . For example a 5.24 day 

halo o rb it  with an am plitude of 20  Rq and a displacement distance of 5 

R0  req u ires  a demanding spacecraft mass per unit area of 1.33 gm"2. 

The surfaces of constant sail loading approach the z=0 plane as P+0 

corresponding to near polar Keplerian orb its .

5.4 General Synchronous Mode

For th is  mode of operation the sail orb ita l period will be chosen 

to be fixed at some p a rtic u la r value fo r all halo o rb it param eters (p ,z). 

This is eq u iva len t to choosing the  period to be synchronous with some 

p a rtic u la r Keplerian o rb it  w ith a geocentric distance r 0, (ie. Q=r0-3 / 2 ). 

From equation (5 .10b) surfaces of constant sail loading may be 

generated with Cl chosen to be some fixed value. F igure  5.3 shows a 

section of these level surfaces with the sail o rb ita l period chosen to  

be synchronous w ith a Keplerian o rb it of radius 30 Rq, (period=9.6  

days in the  geocentric  case). I t  can be seen th a t fo r the lower values  

of sail loading th e re  are  two topologically disconnected surfaces. 

These surfaces correspond to large am plitude halo o rb its  near the  30 

R0  synchronous region and large displacement, low am plitude halo 

o rb its  with a low iocal g ravitational acceleration. As the sail loading 

increases these surfaces expand and connect. I t  can be seen th a t 

along the  p=0 axis th e  sail pitch angle is zero corresponding to
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F ig u re  5.2
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Section of surfaces of constant sail loading and the  requ ired  sail pitch  

fo r th e  polar synchronous case. The requ ired  sail loadings are given  

by; ( 1 ) 2x10 “ 4 (2 ) 8x10" 4 (3) 2x10 ' 3 (4) 3x10- 3  (5 ) 9x10"3. The contour 

Si rep resen ts  th e  p artition ing  of the stable and unstable halo o rb it 

families.
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F ig u re  5.3
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Section of surfaces of constant sail loading and the requ ired  sail pitch  

fo r th e  general synchronous case. The required  sail loadings are  

given by; (1) 5x10" 4 (2 ) 8x10“ 4 (3) 1x10- 3  (4) 3x10~3 (5) 9x10’ 3. The 

contour S2 represen ts  the partition ing  of the  stable and unstable halo 

o rb it fam ilies.
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sta tio n ary  solutions.

5.5 Optimal Halo Mode

The sail o rb ita l period will now be trea ted  as a fre e  param eter of 

the system so th a t th e  sail loading requirem ents may be minimized 

with respect to  it, to  obtain an optimal fam ily of halo orb its . 

T herefore , settin g  the  d e riv a tiv e  of £ with respect to G to zero it is 

found th a t

For th e  minimisation of the  sail loading it is th e re fo re  required  th a t 

the sail o rb ita l period is equal to the orb ita l period of a Keplerian  

o rb it of geocentric  distance r. With th is  orb ita l period the  minimized 

sail loading and th e  requ ired  sail pitch angle are given by equations  

(5.10) as

tan a = 0 ( 5 . 13a)

The sail a ttitu d e  is th e re fo re  such th a t the  normal to the  sail surface

three-d im ensional motion of the  sail can be obtained in closed form, as 

discussed in section 5.9.

Level surfaces of constant sail loading may be generated by 

fix ing  /3=£0. Then, equation (5.13b) can be in verted  to give

(5 .13b )

is d irected  along th e  S un-line. In  th is  case the  general

(5 .1 4 )
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which defines a surface of revolution about the z-axis. Making the  

su b stitu tio n  u=z2/ 3 to c lear the radical equation (5.14) may be w ritten  

as

P2 ( u )  = u (A- 1 / 2 + u ) ( A  1/ 2 -  u)  ( 5 . 1 5 )

so th a t p=0 when u=0 o r u=±A-1 / 2, (ie. z=0 or z=/30 -1 / 2 ). The point 

z =/3q - 1 / 2  corresponds to the  's ta tite ’ solution with the solar radiation  

p ressu re  acceleration balancing the  local gravitational acceleration. 

For a fixed sail loading the  point of maximum halo am plitude may be 

obtained by setting  (d p /d u )= 0 , v iz

dp(u) _ 1 (A 1 -  3u2 ) i r .
"dU-  -  2 (A 'iu  -  U3) 1/ 2 *  u -  (3A) /  (5 .1 6 )

The maximum displacem ent along the S un-line  is th e re fo re  

zm= (3 )_3/ 4£0 -1 / 2. Furtherm ore , at th is  extremal value of z it is found  

from equation (5.14) th a t

pm = 21/ 2 (3 ) - 3 / 4 /30- 1/ 2 (5 .1 7 )

T h ere fo re , th e  locus of the  maximum of halo amplitudes is given by a 

cone defined by

9m -  n  zm (5 .1 8 )

Sections of level surfaces of constant sail loading are  shown in 

F ig u re  5.4. I t  can be seen th a t fo r small amplitudes and displacements  

the  req u ired  minimized sail ioading varies rap id ly . The iine S4 gives  

the locus of the maximum halo am plitudes, as defined by equation  

(5 .18). S ta tite  ty p e  solutions are again shown along the p=o axis. The
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F ig u re  5.4
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Section of surfaces of constant sail loading and the requ ired  sail pitch  

fo r the  optimal case. The required sail loadings are  given by; (1) 

3x10-4  (2 ) 6x10” 4 (3 ) 1x10"3 (4) 2x10"3 (5) 9x10"3. The contour S3 

represents  the  p a rtitio n in g  of the stable and unstable halo o rb it 

families and th e  contour S4 represents the  locus of maximum am plitude  

halo o rb its .
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surfaces of co -ro tation  are defined by spheres of constant 0 *. The 

in tersection  of these co-ro tation  surfaces with the surfaces of constant 

sail loading then defines regions where solar sails deployed on minimal 

loading halo o rb its  will o rb it synchronously with each other.

I t  can be seen from F igure 5.4 th a t fo r reasonable values of 

sp acecra ft mass per un it area of 2-10 gm“2 large am plitude halo o rb its  

are re q u ire d . A 15.38 day optimised geocentric halo o rb it with an 

am plitude of 30 R0 and a displacement distance of 40 R0 req u ires  a 

mass per u n it area of 2.91 gm“2, which is near c u rre n t a tta inable  

values. For halo o rb its  around o th er bodies the requirem ents on the  

spacecra ft mass per un it area are not so great, even fo r Mars and 

especially fo r  M ercury. For halo o rb its  at M ercury however the  

S u n -p la n e t line rotates rap id ly  so th a t large corrective  manoeuvres 

would be req u ired  to maintain the halo o rb it. Furtherm ore, as the  

halo am plitude and displacement distance increase solar p ertu rb a tio n s  

become of increasing importance as do lunar pertu rbations  fo r  the  

geocentric  case. However, with advanced sail m aterials and designs  

much sm aller and less p ertu rb ed  halo o rb its  would be possible.

Since, fo r  the  optimal case, the sail normal is d irected along the  

axis o f sym m etry of the system, the axis of the halo o rb it need not in 

fac t lie along the S u n -lin e . Any axis k passing through the  o rig in , 

such th a t l.k>0, will generate new o ff-ax is  halo o rb its , as shown in 

F ig u re  5.1. The sail loading requirem ents are however increased by a 

fac to r ( l .k ) -2  due to the  oblique incidence of the  photons on the  sail 

as th e  normal to  the  sail surface is directed along the  new axis n=k.

5.6 G eocen tr ic  Halo O rb it  S ta b i l i ty

Th e  dynamical s ta b i l i ty  of th e  geocen tr ic  halo o r b i t  modes will
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now be investigated  th rough  a linear perturbation  analysis sim ilar to 

section 4.6 and stable fam ilies of halo o rb its  identified . Since the  

dynamical model is conservative  th ere  are no d issipatve term s so th a t 

asym ptotic s ta b ility  will not be possible. Assuming the  sail is at some 

operating  point r0=(p0 ,e0 ,z0 ), a perturbation  r0->rQ+S is applied to 

equation (5 .4) to obtain a variational equation, viz

0  + 20 x | j f  + W ( r 0+6) = 0 (5 .1 9 )

where represen ts  small displacements in the co -ro ta tin g  frame

along the (p ,e ,z) d irections. Expanding the  potential g rad ien t in a 

t r iv a r ia te  T ay lo r series about the point r 0 it is found th a t

W ( r 0 + 6 )  = W ( r 0 ) + W ( r ) S + 0 ( | 6 | 2 ) ( 5 . 2 0 )

r = r 0 , n=n0

Then, since W ( r o )=0 and the radiation fie ld  is uniform , so th a t 

(3VT/3r)=0, a lin ear varia tional system is obtained, v iz

^ | + H i ^ |  + M S  = 0 ( 5 . 2 1 )dt* dt

where M =3VU/3r, the  g ra v ity  grad ient tensor, and the  skew symmetric  

gyroscopic m atrix M i a re  given by

, H = (U-j j )  ( 5 . 2 2 )

( i , j )6(P,e,z)

where Ujj is the  ( i , j )  partia l deriva tive  of the potential. Since the  

potential is azim uthally  symmetric all partia l d e riva tives  with respect
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to e vanish. Furtherm ore, due to the potential being conservative, 

VxVU=0 so th a t M31=M13. In  component form the variational equations  

are then

(5 .23 a )

d2*  , 20 dS _ n 
d t2 p0 dt

+ M13£ + M33n = 0

(5 .23b )

(5 .23 c )

This set o f th re e  coupled o rd in a ry  d iffe ren tia l equations may be 

reduced by in teg ra tin g  equation (5.23b), viz

(5 .2 4 )

which can then be substitu ted  into equation (5.23a). This then leads 

to a constant term  402£q in equation (5.23a) which may easily be 

removed by re -sca lin g  th rough a change of variable

402M
S = S ~ n?— 5— T u — 2 So

M 1 1 M3 3  m13

402Mia
n = n + rpr T  Sq

(5 .25a )

(5 .25b )
M 11M33 -  M13

where M *11=M11+402. A reduced variational equation is then obtained, 

viz

d2 • m13

d t 2 n ’
+

M13 • M33

’ S’ 0 '

n ’ 0
(5 .2 6 )

As w ith th e  heliocentric  case the  sail is fre e  to d r if t  along the  halo



159

o rb it. T herefo re , th e  o rb it may only be Poincare stable and cannot be 

Lyapunov stable. The coefficients of the matrix M are given by

h * u  = 4 ^  -  { { n *  -  }

'13
3pz

r s

M3 3  = f a  -

(5 .2 7 a )

(5 .27b )

(5 .27 c )

The s ta b ility  characteris tics  of the system may now be 

nvestigated  by s u b stitu tin g  a solution of the form

S’ So
. = eu>t

n*
. ^  .

(5 .2 8 )

to calculate th e  system eigenvalues. S ubstitu ting  th is  solution into  

equation (5 .26) yie lds a m atrix equation

U2 + M * ! ! h 13 ’ So' 0

h 13 W2 + m33
. no.

0
(5 .2 9 )

For n o n -tr iv ia l solutions it is required th a t the secular determ inant of 

th is  m atrix equation vanish. The characteris tic  polynomial of the  

system is then found to be

u4 + tr(M )w 2 + d e t(H ) = 0 (5 .3 0 )

where the  e igenvalues wj (j=1 ,4 ) are the fo u r frequencies  of the  

eigenmodes of th e  system. Formally the eigenvalues may be w ritten  as
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wi . . 4  = %  [ - t r (M )  ± { t r ( H ) 2 -  4 d e t(M )}1 2]  (5 .3 1 )

w here th e  trace  and determ inant of the m atrix M are given by

tr (M )  = 3G2 -  Clt 2 , de t(H ) = 3&*2n2 { l  -  |^ } 2} -  2G*4 (5 .3 2 )

T h ere fo re , s u b stitu tin g  into equation (5.31) the fo u r eigenvalues of the  

system may be w ritten  as

Cl,
{ {i-3&n * { •{i-fclT* - t l / f e l T T 2

The sail motion in the neighbourhood of the  nominal halo o rb it is 

then given by the  superposition of the long period and short period  

eigenmodes as

S ’ 4

:  I
^Oj

ewj t (5 .3 4 )
n ’

Lmt
3 = 1 no j

The sail azim uthal motion may then be obtained by in teg ra tin g  

equation (5 .24), v iz

* ( t )  = *0  + { ^ J t  -  2i20
Po

S ( t ’ ) d t ’ (5 .3 5 )

where S (t) is given by equations (5.34) and (5.25a). The f ir s t  o rd er  

d r if t  in azim uthal position is then be obtained as

(5 .3 6 )

The s tab le  halo o rb it  families will th e re fo re  have a secular increase in
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azim uthal position and so will be constrained to a to rus  around the  

nominal halo o rb it. The stable families are th ere fo re  Poincare stable.

The s ta b ility  ch aracteris tics  of each halo o rb it mode may now be 

investigated  by s u b stitu tin g  fo r the required functional form of 0 and 

determ ining the  regions where the roots of the ch aracteris tic  

polynomial are p u re ly  im aginary w j2<0 (j=1 ,4) g iving bound, stable  

oscillations in the  (p ,z) plane (ie. tr(M )>0  and det(M )>0).

5.6.1 Polar Synchronous Mode

For th is  mode &=p“3/ 2 so th a t the f irs t  condition fo r s tab ility  

tr(M )> 0  may be w ritten  as

T h erefo re , since p^r, th e  inequality  in equation (5.37) always holds so 

th a t th e re  will always be at least one pair of pure ly  im aginary  

eigenvalues. For s ta b ility , with fo u r purely im aginary eigenvalues it 

is req u ired  th a t the  additional condition det (M)>0 holds. I t  may be 

shown th a t th is  condition reduces to

with an eq uality  in equation (5.38) defining the  boundary between 

regions of s ta b ility  and in s tab ility . With an equality  the  solution of

equation (5.38) is o f the  form z=^p, where ^ is a constant. 

S u b s titu tin g  fo r  z, *  can be obtained as the solution of

(5 .37 )

(5 .38 )

-  + 3 > 2 (1 + X 2 ) 1/ 2 -  (1 + > 2 ) 3//2 = 0
O

(5 .39)



Num erically it is found th a t >=0.442 so th a t the (p ,z) plane is 

p artitioned  into  d is tin c t regions of s tab ility  and ins tab ility  with the  

condition fo r  s ta b ility

P > 2 .26  z (5 .4 0 )

The p a rtitio n in g  is th e re fo re  defined by a cone, the  section of which 

is shown in F ig u re  5.2 as the line Sx.

5.6.2 General Synchronous Mode

For th e  general synchronous mode the  halo o rb it period is fixed  

with 0=ro“ 3/ 2, w here rQ is a constant. The condition tr(M )>0  may then  

be w ritte n  as

3 { y 3- 1 > °  <5 - 4 i >

so th a t th e  region defined by r < (1 /3 ) l / 3r0 will necessarily be 

unstable. The determ ination of the overall s tab ility  map requ ires  a 

numerical solution of the  condition det(M )>0 which reduces to

f { y 3+ 3{?)2- 1 < o (s - 42)

The section of th e  resu lting  boundary surface is shown as S2 in 

F ig u re  5.3 fo r  th e  30 day halo o rb it. The intersection of the  surface  

and th e  p -ax is  is a t the  point p = (1 /3 )l / 3r 0.

5.6.3 Optimal Halo Mode

Fo r th is  mode o f halo o r b i t  with a minimized sail loading th e

s p a c e c ra f t  a n g u la r  ve lo c ity  is g iven  by equation  (5 .12) as Q=q*. I t  is
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th e re fo re  found th a t tr (M )= 2 0 *2 which is of course s tr ic tly  positive. 

The condition det(M )>0 then reduces to

so th a t th e re  are  again two d istinct regions of s tab ility  and

in s ta b ility . The p artitio n in g  is there fo re  defined by a cone, whose

section is shown in F igure  5.4 as S3. For a given sail loading

param eter the  maximum stable halo displacement distance and

corresponding am plitude are given by

which corresponds to an operating  point on the partition ing  cone. On 

the cone of maximum halo am plitude, where p=/2z, the shortest 

timescale o f in s tab ility  is given by

so th a t th e  maximum am plitude, minimal loading halo o rb its  are  

unstable on a timescale approxim ately equal to th e ir  o rb ita l period.

Typical stable and unstable responses fo r 10.13 day and 11.38 

day optimal halo o rb its  are shown in F igures 5.5 and 5.6 using a 

numerical in tegration  of the fu ll non -linear dynamical equations. I t  

can be seen th a t the  10.13 day halo o rb it is bound, even fo r large  

in jection  e rro rs  o f £=n=0.1. However, the  11.38 day halo o rb it becomes

(5 .4 3 )

This condition is satisfied  provided th a t

P > 2 /2  z (5 .4 4 )

(5 .4 5 )

T = g  ( ' 3 -  d - 1 /2 (5 .4 6 )
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F ig u re  5 .5 (a )

Y ( R o )
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Stab le  resp on se fo r  a 10.13 day optimal halo o r b i t  with p=30, z=8 and

in jec t io n  e r r o r s  o f  So=nQ=0.1; (a) x -y  p ro jec t io n  (b )  y - z  p ro jec t ion .
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F ig u r e  5 .5 (b )
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F ig u re  5 .6 (a )
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U nstab le  response  f o r  a 11.38 day optimal halo o r b i t  with P=30, z=15

and in je c t io n  e r r o r s  of ^o=ho=10"2; (a )  x - y  p ro jec t ion  (b )  y - z

p ro jec t io n .
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F ig u re  5 .6 (b )
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unbound with the  solar radiation pressure acceleration d riv in g  the  

spacecraft out o f th e  gravitational potential well.

5.7 Rotating S u n -lin e  Perturbation

Now th a t th e  dynamical s tab ility  of the various halo o rb it modes 

has been investigated  it is necessary to evaluate the  e ffec t of 

p ertu rb a tio n s  on the  nominal halo orb its . These p ertu rb a tio n s  are due 

to th e  assumptions of the  dynamical model used, as discussed in 

section 5.1.

The main p e rtu rb a tio n  arises from the  assumption of a fixed  

S u n -lin e . In  fac t the  S u n-line  rotates at 0.986° per day due to the

heliocentric  motion of the  Earth. The fu r th e r  rotation of the  reference  

fram e to follow th e  S u n -lin e  there fo re  results  in additional coriolis and 

c en trifu g a l accelerations. Rotating the reference fram e about the  

y -ax is  with an an g u lar velocity 0^=ao(0 ,1 ,0 )T the  coriolis and 

cen trifu g a l accelerations are obtained as

where the  sail position vector r=(pcose,psine,z). In  the  units  of the  

system Go=1.604x10-4  so th a t the second o rd e r cen trifu g al term  is 

ignorable. T h ere fo re , evaluating the coriolis acceleration in cylindrica l 

polar coordinates th e  p e rtu rb a tive  acceleration components are  

obtained as

(5 .4 7 )

(5 .4 8 a )

ae = -2 ft0 cose{^2} (5 .48b )
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az = 2G0 s ine{^£} + 2Cl0 P c o s e [^ } (5 .4 8 c )

These accelerations are included in the  non-linear dynamical equations  

in th e  numerical in tegration  of the sail dynamics. A typ ical response  

of a stab le, optimal 10.13 day halo o rb it is shown in F igure  5.7. I t  

can be seen the  the  S un-line  rotation gives a periodic response, as 

would be expected from the periodic nature  of the pertu rb a tio n . For 

the  unstable halo o rb it families the pertu rbation  will excite the  

unstab le  eigenmodes of the system leading to unbound motion.

The o th e r major d isturbance to the nominal halo o rb it, fo r the  

geocentric  case, is th a t of lunar perturbations. Given th a t the  lunar  

mean sphere  of influence is of o rd e r 10 R0 lunar p ertu rb atio n s  will be 

small fo r  halo o rb its  with a geocentric distance of less than 40-50 R0. 

I t  is found in general th a t lunar p ertu rbations  are approxim ately an 

o rd e r o f m agnitude less than those due to the  rotating S u n -lin e .

5.8 G eocentric Halo O rb it Control

The s ta b ility  analysis of section 5.6 has shown th a t unstable  

fam ilies of geocentric halo o rb its  exist. Furtherm ore, fo r the  stable  

fam ilies th e  S u n -lin e  rotation induces periodic oscillations about the  

nominal o rb it. I t  is th e re fo re  necessary to develop simple control 

schemes to s tab ilize  the unstable families and to damp the sail 

response to the  S u n -lin e  rotation.

As in section 4.7 the reduced two-dimensional system will be used 

so th a t, in the  f ir s t  instance, the azimuthal motion of the  spacecraft 

will be ignored. I t  will be shown th a t the  system is controllable using  

a feedback to the sail pitch, but th a t the  associated damping timescale  

is too long. Therefo re , a well damped control using
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F ig u re  5 .7 (a )
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P e r tu rb e d  response  fo r  a stab le  10.13 day optimal halo o r b i t  with p=30,

z=8 and a ro ta t in g  S u n - l in e ;  (a ) x -y  p ro jection  (b )  y - z  p ro jec t io n .
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F ig u re  5 .7 (b )
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varia tions  in sail a ttitu d e  and loading is developed.

5.8.1 C ontro llab ility  by Sail Pitch

I t  will now be demonstrated th a t the reduced two-dim ensional 

system is contro llab le  using sail pitch alone. Making use of the  

variational equation (5 .21) and allowing f irs t  o rd er changes in sail 

a ttitu d e  Sn a modified variational equation is obtained

d2S
d t2

dS
dt+ Mi -  + H 8 = K Sn „  _ 3a 

*  " 9n (5 .4 9 )

r= r0 , n=n(

The varia tional equation may again be reduced to the  variables  

s ’=(^’ ,n’ ) by elim inating the  azimuthal coordinate, viz

d2s ’
d t2

9 M n m13
S :  K Sa M =

M3i m33
, K =

3ap
8a
8a7
dot

(5 .5 0 )

where the  general f i r s t  o rd e r a ttitu d e  change Sn now becomes the  

change in S un-sail pitch angle Soc. The solar radiation pressure  

acceleration partia l d e riv a tiv es  K=(K1,K2)T are given by

= /3cos3a  (1 -  2 tan2a ) (5 .51 a )

K2 = -3/3cos2oc sinoc (5 .51b )

W riting the  system in standard  state variab le  form x = (S ,d S /d t )  a set 

of fo u r f ir s t  o rd e r equations are obtained

dx
dt

= M*x + K*Soc , =
0

K
(5 .5 2 )
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The c o n tro llab ility  m atrix C = (^ M * K * ,M * 2K *,M *3K*) formed from the  

system and in p u t d is tribu tion  matrices then becomes

C =

0

0

Ki

*2

Ki

k2

0

0

0

0

-M *nK i -  M33K2 

_M31Ki  -  M33K2

M*h Ki  -  M33K2 

~M31Ki  -  M33K2
(5 .5 3 )

For C to have fu ll rank it is requ ired  th a t detC*0. The m atrix  

determ inant is then given by

detC = K iM M * ! !  -  M33) -  (K i2 -  K22)M13 (5 .5 4 )

For th e  optimal halo mode equation (5.54) reduces to detC=3/32p z / r 5. 

T h ere fo re  th e  s ta tite  typ e  solutions with p=0 are uncontrollable using 

the  sail p itch alone. However, all halo o rb it modes are in princ ip le  

contro llab le  using a feedback control to the Sun-sail pitch angle.

5.8.2 Control by Variable Sail Pitch

Since it has now been demonstrated th a t the  geocentric halo o rb it  

modes are  all contro llable using variab le  sail pitch a closed loop 

feedback control will now be investigated. A general expression fo r  

the  feedback will be used, viz

S°c = ^ g jx j  , x = ( X j )  ( j= 1 ,4 )  (5 .5 5 )

j  = i

where th e  gains (g p , (j=1 ,4 ) are chosen to ensure th a t all fo u r of the  

system eigenvalues are in the le ft hand complex plane so th a t the  

system has asym ptotic s tab ility . Constraints on the gains are  found
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using th e  R ou th -H u rw itz  c rite rio n .

The closed loop response of an unstable 15.51 day optimal halo 

o rb it  with a ro ta ting  S u n -lin e  is shown in F igure 5.8. I t  can be seen 

th a t large  varia tio n s  in sail pitch angle are required  to maintain the  

o rb it  and th a t th e re  is a large amplitude response. Due to the  

variab le  transform ations used in equations (5.25) the control scheme 

attem pts to damp the  system to s’=n’=0. Therefore  th e re  are  constant 

residual displacem ents, as with the heliocentric case. These e rro rs  

can however be removed th ro u g h  a simple open loop manoeuvre.

5.8.3 Open Loop Control

I t  was found in section 5.8.2 th a t with the pitch angle control the  

in jection  e rro rs  damped out to non-zero values and th a t th e re  was an 

azimuthal d r if t  in the  sail position. Physically, th is  is due to the  sail 

having excess azim uthal angu lar momentum at the  in jection point. 

Since the sail has pitch control only there  is no means of removing 

th is  excess momentum. I t  will be shown now th a t the o ff-s e t and d r if t  

in sail position can in fac t be removed through a simple open loop 

manoeuvre using a rotation about the sail yaw axis.

Considering the  optimal halo o rb it fam ily with zero sail pitch  

angle and allowing f ir s t  o rd e r changes in the sail yaw angle Sx, the  

azim uthal component of the  solar radiation pressure acceleration is 

obtained from the  relation (3ae/3x)=/3. Therefore, the set of variational 

equations become

(5 .56 a )

d2¥ , 2Ci d£ _ £ (5 .56b )
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F ig u re  5 .8 (a )
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Closed loop response fo r an unstable 15.51 day optimal halo o rb it with  

p=10, z=40 and w ith a variab le  Sun-sail pitch angle control. The  

feedback gains a re  gx=-0.6, g2=-0.3, g3=-0 .6  and g4=-0.3; (a ) S

response (b ) n response (c) ^ response (d ) sail pitch angle control.
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F ig u re  5 .8 (b )
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F ig u re  5 .8 (c )
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F ig u re  5 .8 (d )
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d2n
dt?  + Mi3 ^  + m33r = 0 (5 .56 c )

In te g ra tin g  equation (5 .56b) the  azimuthal d r if t  ra te  of the  sail may be 

w ritten  as

d* fd<n i2Ci\ , p t *
dt '  Id tJo  lp 0J ( ^ ( t )  ‘  Zo> + p0 Sx (5 .5 7 )

T herefo re , S (t) is requ ired  to obtain the fu ll azimuthal time response. 

S u b s titu tin g  equation (5.57) in equation (5.56a) to elim inate the  

azim uthal term  a set of variational equations in S=(S,n) is obtained

d2S
+ h s = r 1 + r 2t  ( 5 . 58)

where the  vectors  F j = ( r j x 2 ) (j=1 ,2 ) are given by

r i = { 2f!po { { ^ ] 0+ { 0 5o}> 0 }T , r 2 = (200 sx, 0 )T (5 .5 9 )

Using the  variab le  transform ation s ’=S-M _ 1r 1 equation (5.58) may be 

reduced to

d2s ’
d t2 + H s = r 2t  (5 .6 0 )

This equation may now be solved by standard Laplace transform  

methods. Defin ing th e  transform  variable as s such th a t LCf(t)U=F(s) 

the  solution of equation (5.60) may be w ritten  as

S ( t ) ’ = L_ 1 { d ( s ) { sS0 ’ + { | j f - } o} } + L“ 1 { d ( s ) | ? r 2J (5 .6 1 )

w here  D (s )= (s 2I+ M ) - 1 . Noting th a t  d e t (s 2I+ M ) is th e  c h a ra c te r is t ic

polynomial o f  th e  system , th e  matrix  D(s) may be w r i t te n  as
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D (s) = A d j(s 2 + I )  { ^ ( s  -  Wj)J 1 (5 .6 2 )

where uj (j= 1 ,4 ) are the  fo u r eigenvalues of the system defined by

equation (5 .33). The f ir s t  term  of equation (5.61) represents the  open

loop response of the  system and the second term represents  the  

response due to the sail yaw. For the stable, optimal halo o rb it fam ily  

the open loop response is of the  form of periodic oscillations. The 

general solution fo r the  response may be w ritten in the  physical

variab les  (S,r\) as

6

S ( t )  = f l 1  M11*M33-M1"3S + r »  t  + }  (5 .6 3 a )

n ( t )  = r t l  M ll*M33 -H 13  ̂ " r21 J ^ w 22 t  + 1 HjQ j(wi>w2 ; t )  (5 .63 b )
j= l

w here Gj, Hj (j=1 ,6 ) a re  constants and Pj, Qj (j=1 ,6) are the short and 

long term  periodic functions corresponding to the open loop response. 

The yaw response may now be used to remove the residual 

displacem ent term s in equations (5.63).

I f  th e  f ir s t  two term s in equations (5.63) are now set to zero at 

time T then the  sail yaw angle required  is found to be

* * *  = -  %  ( { £ } 0+ ( § K )  (5 - 64)

T h erefo re , app lying  a yaw control angle Sx* fo r time T will place the  

sail on th e  nominal halo o rb it with periodic motion about the  o rb it. 

S u b s titu tin g  fo r S (t) in equation (5.57) the azimuthal d r i f t  ra te  

becomes
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6

t  + 2 G jP jC U i.U a it) (5 .6 5 )

As be fo re , th e  sail yaw ang le  may be used to remove th e  azimuthal 

d r i f t .  I f  th e  f i r s t  t h r e e  te rm s  in equation (5 .65) a re  now set to zero  

at tim e T, i t  is fo un d  th a t  th e  same yaw angle Sx* of equation (5 .64) is 

re q u ire d .  T h e re fo re ,  a s ing le  open loop control m anoeuvre may be 

used to  rem ove th e  o f f -s e ts  along the  p and z axes and th e  azimuthal  

d r i f t .

The fa c t  th a t  th e  o r b i t  o f f -s e ts  and azim uthal d r i f t  a re  removed  

sim ultaneously  w ith  th e  one m anoeuvre is re la ted  to  th e  sail azimuthal  

a n g u la r  momentum he =p2( d e /d t ) .  The f i r s t  o rd e r  d i f fe re n c e  in 

azim uthal a n g u la r  momentum between the  nominal and p e r tu rb e d  halo 

o r b i t  is g iven  by

F u r th e rm o re ,  th e  az im uthal acceleration /3Sx due to th e  yaw m anoeuvre  

g e n era tes  a to rq u e  on th e  o rb i t  (d h e/d t ) = p 0£Sx. T h e re fo re ,  th e  total 

azim uthal a n g u la r  momentum change at time T is g iven by

To rem ove th e  excess a n g u la r  momentum it is re q u ire d  th a t  SHe=0. 

T h e re fo re ,  so lv in g  fo r  th e  re q u ire d  sail yaw ang le  th e  expression Sx*

g iven  by eq uation  (5 .64 ) is obta ined.

I t  has been shown th en  th a t  th e  excess azim uthal o rb ita l  an g u la r

momentum due to  th e  in jec t io n  e r ro rs  may be removed with  a simple

open loop yaw m anoeuvre . This m anoeuvre may be used in it ia l ly  to  

b r in g  th e  sail to  th e  nominal halo o rb i t  b e fo re  th e  p itch  control

(5 .6 6 )

s Hq = She + Pq/3SxT (5 .6 7 )
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scheme is used fo r o rb it maintenance. An extension of the  scheme may 

also be used fo r the controlled, unstable halo o rb it families.

5.8.4 Control by Variable Sail A ttitude  and Loading

As with the heliocentric halo o rb its  it has been found th a t pitch  

only control leads to long damping timescales. Therefore, a variab le  

sail a ttitu d e  and loading control is now developed. The varia tions in 

both th e  sail a ttitu d e  and loading allows a rb itra ry  control accelerations  

to be generated. Therefo re , short damping timescales may be 

achieved.

Allowing fo r an a rb itra ry  control acceleration A the fu ll 

th ree-d im ensional variational equation may be w ritten  as

^  ^  + H 8 = A , A = AXS + A2 ^  (5 .6 8 )

w here th e  gain m atrices A1 2  are chosen to ensure asym ptotic s ta b ility . 

The varia tio n s  in the sail a ttitu d e  and loading required  to generate  

the  control acceleration may be obtained from equation (5 .2), v iz

O+S0) < 1 . (n + S n ) )? (n+sn) = P ( l . n ) 2 n + A (5 .6 9 )

Taking  vec to r and scalar products of equation (5.69) and using the  

norm alisation condition |n+Sn|=1 the requ ired  sail a ttitu d e  control is 

obtained as

8n = T f f f ! - n (5-70)

where th e  nominal radiation pressure acceleration a  is given by

equation (5 .2). The a ttitu d e  control Sn can then be related to the
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scalar pitch angle So: and yaw angle Sx controls. The sail loading 

control can also be obtained from equation (5.69) as

_ _ | a  + A|  _
e '  < l . (a + A ) )2 '  p (5 .7 1 )

so th a t expressions fo r  the  sail a ttitude  and loading control are  

obtained as a function  of the  control acceleration.

Using diagonal gain m atricies Aj=<S jjg j> (j=1 ,2 , i=1,3) a suitab ly  

damped response may be obtained, as shown in F igure  5.9. I t  can be 

seen th a t with a maximum variation in the sail loading of 3 x10- 2  the  

am plitude of the  response to the perturbations due to th e  rotating  

S u n -lin e  are  extrem ely small. A smaller am plitude response is possible 

but at the  expense of la rg e r variations in the sail loading.

5.9 Solution bv th e  Hamilton-Jacobi Method

The dynamics of the  optimal halo o rb it problem will now be 

investigated  th ro u g h  the  use of Hamilton-Jacobi th eo ry , Goldstein 

(1980). I t  will be dem onstrated th a t a general closed an aly tic  solution  

exists fo r th e  optimal case with n=l, or indeed the o ff-a x is  case with 

n=k. The dynamics are  exactly equivalent to the  S ta rk  e ffec t on the  

hydrogen atom when a uniform  electric  fie ld  is superimposed upon the  

Coulomb potentia l. The fac t th a t the Hamilton-Jacobi equation of th is  

system is separable can be demonstrated using the  Staeckel conditions  

on th e  Hamiltonian when using a set of parabolic coordinates, Epstein  

(1916). The solution of the  S tark  problem is considered in detail in 

Born (1927).

Through the use of Hamilton-Jacobi th eo ry  constrain ts  on the  sail 

motion will be obtained by deriv ing  the canonical momentum in terms
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F ig u re  5 .9 (a )
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Closed loop response fo r an unstable 15.51 day optimal halo o rb it with  

P=10, z=40 and with sail pitch, yaw and loading control. The feedback  

gains are  g n = g i 3= -4 x 1 0 '4, g2 l =g23=-3x1CT4, g i 2=-3x1CT3 and

g2 2 = -2x 10~3; (a) S (x 10~3 ) response (b ) n (x 1(T 3 ) response (c) ¥  

response (d ) sail pitch angle control (e) sail yaw angle control ( f )  sail 

loading contro l.
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F ig u re  5 .9 (b )
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F ig u re  5 .9 (c )
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F ig u re  5 .9 (d )
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F ig u re  5 .9 (e )
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F ig u re  5 .9 ( f )
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of parabolic  coordinates. These constraints can then be related to the  

existence of geocentric  halo orb its . A set of parabolic coordinates  

(S,n,e) defined as

will now be used where constant S and n coordinates define  

diam etrically  o rien ted  parabolae of revolution about the  z-axis , with e 

the azim uthal angle. Using these new coordinates the  kinetic  energy  

of th e  system may be w ritten  as

so th a t th e  new conjugate momemta pj=3T/3xj  ( j =1,3) may be obtained  

as

where Pe is an in tegral of the  system since the  potential r(r,n)+<I>2( | r | ) 

is independent o f e.

Equations (5 .73) and (5.74) may now be used to construct the  

Hamiltonian of th e  system H=T+r+<J>2. In  term s of the parabolic  

coordinates and conjugate  momenta it is found th a t

x = Sn cose , y = £j\ s ine , z -  -  (£ 2  -  n2) (5 .72 )

T = ? { { f r+ m 2} {* * + m 2« *  i (5 .73 )

H = i  (S2 + n2 ) - 1 {ps2 + Pn2 + (§2 + ^ } P e 2 -  M S * -  " 4 ) -  4} (5 .7 5 )

D efin ing th e  Hamilton-Jacobi function as S, the  Hamilton-Jacobi 

equation may now be w ritten  as
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| f  + i ( ^ + n 2 ) - i { { i | } 2+ ( J | } %  (1 2+ f 2} { | | } 2-  p & - n * )  -  4} = o (5 .7 6 )

w here pg=as/3S, pn=as/3r\ and pe=8S/ae. Since the Hamiltonian is 

independent of e and t  the Hamilton-Jacobi function becomes

S = <xxt  + oc3e + S *(S ,n ) , (5 .7 7 )

w here <xx may be identified  with the  total energy of the  system and 0C3 

with th e  azim uthal momentum pe. I f  the  separab ility  p ro p erty  is now 

used and S*(S,rO=S1(S)+S2 (n) then the Hamilton-Jacobi equation may be 

separated into

( H i ]"+  2 a ^ 2 + oc3S"2 -  £S4 = -oc22 (5 .7 8 a )

{ i ! 2} ^  2oc1h2 + a 3n - 2 + m 4 -  4 = a 22 (5 .78 b )

where oc2 is the  separation constant.

The momenta may now be w ritten  in terms of the  parabolic  

coordinates and the constants of the  motion, viz

pe = F ^ S ) 1/ 2 , Pn = F2( r \ W 2 (5 .7 9 )

w here the  functions F* and F 2 are defined as

Fl = !  { *  -  2 2 .  *  -  2 g i  *  -  2 $ 1 /2  (5 .8 0 a )

and

B r * 2«i *  . oc,2+4/l/ a 32) 1/ 2F2 = fj- l-n6 - - f -  n4 + -*3 —  n2 - -g-j (5 .80 b )

The roots of these bicubic polynomials ±Sj ( j =1,3) and ±hj ( j -1 ,3 )  then
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define the  region of space accessible to the sail.

For £ 1 * ^ 2  and ^ 1 *^ 2  the  motion is periodic and is constrained to 

the  in te rio r of an annu lar ring defined by the intersections of the  

fo u r paraboloids of revolution . Sim ilarly fo r 2 and the  sail

tra je c to ry  lies on the  surface of a paraboloid of revolution defined by 

^ = 1̂ 2 and is constrained by the two paraboloids of revolution ^  and 

Z2. F ina lly , th e  halo o rb it case corresponds ^ = £ 2  and so th a t

the motion is constrained to a c irc le  displaced in the  an ti-S un  

direction . T h ere fo re , the  minimal loading halo o rb its  are in fact 

defined by th e  in tersection  of two paraboloids of revolution.

The problem can be solved fu lly  by obtaining the  parabolic  

coordinates th ro u g h  the inversion of e llip tic  quadratures , Isayev and 

Kunitsyn (1972). Defining a new time variab le  r  such th a t, dt=(S+n)dT, 

it may be shown th a t a closed solution is obtained in term s of 

Jacobian e llip tic  functions sn, cn as

where X j j ( i = 1 , 2 ,  j=1 ,4 ) and t q are constants of the system defined by 

the  canonical constants aj (j=1 ,3). For a small solar radiation pressure  

acceleration the  e llip tic  functions may be expanded in rapid ly  

convergent power series. However, th is  technique is not available fo r  

the geocentric  halo o rb its  as the solar radiation pressure acceleration  

is of the  same o rd e r as the local gravitational acceleration.

5.10 Patched Geocentric Halo Orbits

Now th a t the  s tab ility  and control of the  fundam ental modes of

( 5 . 8 1 a )

( 5 . 8 1 b )
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operation of geocentric halo o rb its  have been established the  patching

of halo o rb its  to form complex and elaborate new tra jec to ries  will be

in vestig a ted . The patching process will be carried  out by 

tra n s fe rr in g  from one halo o rb it to another through a simple, assumed 

instantaneous, sw itching operation on the sail a ttitude . At each of 

these sw itching points a number of boundary conditions must be 

satis fied  to make the  tra n s fe r  possible. The conditions to be met are

( i)  r i = r 2 ; In tersection  of the  halo orb its .

( i i )  V != v 2 ; No velocity impulse requ ired  at the switching point.

( i i i)  E1=E2 ; Sail energy is continuous across the switching operation.

( iv )  /3i=/32 ; Sail loading is continuous across the switching operation.

Condition ( i)  ensures th a t the tra n s fe r is possible while 

conditions ( i i) ,  ( i i i) ,  ( iv ) ensure th a t no o ther operation o ther than the  

sw itch ing  of the  sail a ttitu d e  is requ ired . As a consequence of

condition ( i i)  the  halo o rb its  must in tersect tangentia lly . I t  is clear

then th a t th e  spacecraft can only tra n s fe r to or from an o ff-a x is  halo 

o rb it  ( I )  to an on-axis halo o rb it ( I I ) ,  or between two o ff-a x is  halo 

o rb its . The tra n s fe r  may occur at an upper or lower point on the  

o ff-a x is  halo o rb it, F igure  5.10.

Since the switching operation is assumed to take  place

instantaneously  th e re  is no change in the spacecraft g ravita tional 

potential across the  switching operation. Furtherm ore, since the  

rad iation  fie ld  potential is non-conservative with respect to rotations  

of th e  sail (ie. no work is done against the  fie ld  by re -o rie n tin g  the  

sail), condition ( i i i)  reduces to ensuring  th a t | v 1 | = | v 2 |, (ie. 

p ^ ^ p ^ ) .  This condition th e re fo re  determ ines the period of halo
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F ig u re  5.10

Switching Point

Halo

Halo
Switching Point

Halo

X Retrograde
Direct

Patched tra je c to rie s  formed from off~axis and on-axis halo o rb its . The 

sw itch ing  of th e  sail a ttitu d e  occurs at the intersection points.
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o rb it  I I  as

5.10.1 U pper T ra n s fe r

F irs tly  th e  upper sw itching point will be considered with a 

tra n s fe r  from the  o ff-a x is  to on-axis halo o rb it. Owing to the  dynamic 

re v e rs ib ility  o f the  problem the  tra n s fe r can of course take place from  

th e  on-axis  to o ff-a x is  halo o rb it. The sail loadings requ ired  fo r each 

halo o rb it are  given by equations (5.13b) and (5 .10b) as, using 

conditions ( i - i i i )

&i = cos"20 ? qi  -  cit  , a  = 0 (5 .8 2 a )

* * = ¥  (1 + (ifH1 ■ {̂ } I }7 - ^ (5-82b)
with th e  sail p itch angle on halo o rb it I I  given by equation (5.10a). 

The sail loadings can be equated using condition ( iv )  to obtain a 

function  This function can be reduced to two variab les  by

elim inating (p2,z2 ), which are related to ( p ^ z ^  through  a rotation

92

Z2

COS0

-s in 0

sin0

COS0

Pi

Zl
(5 .8 3 )

The resu ltin g  condition fo r  a patched, equal loading tra je c to ry  then  

becomes F1(0,0)=O, where

= cos2*  { l  + ta n 2(<w-*){l -  cos 2* { l  + ] }

(5.84)

-  ( l  -  ta n * ta n * j , ta n *  =
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The numerical solution to th is  equation is shown in F igure 5.11 as 

in th e  (<M>)-plane. I t  can be seen th a t 0+0<(tt/2) so  th a t halo o rb it I I  

always lies on th e  +z (n ig h t-s id e ) of the  planet, as is required  fo r the  

solution to be physical.

I t  should be noted th a t the  system is rotational I y symmetric  

about th e  z-ax is  so th a t the sail may tra n s fe r  from halo o rb it I I  to  

halo o rb it  I  at any azimuthal position.

5.10.2 Lower T ra n s fe r

The analysis fo r the lower sw itching point is sim ilar to th a t of 

the u p p er point w ith the resu lting  condition F2( M >)=F1(<t>,-<I>)=0. The  

num erical solution is shown as C2 in F igure 5.11. The sail may

tra n s fe r  at will to and from halo o rb it I as it moves along halo o rb it

I I I ,  w ith halo o rb it  I I I  being re tro g rad e  with respect to halo o rb it I I .  

I t  can be seen th a t th e re  is no intersection of the  curves in F igure

5.11 so th a t it is not possible, with the  imposed boundary conditions, 

to tra n s fe r  at both the upper and lower switching points from the  

same in itia l o ff-a x is  halo o rb it I.

5.10.3 Azimuthal T ran s fer

The possib ility  of patching o ff-ax is  halo o rb its  together will now 

be in vestig ated . Consideration of the  geometry shows th a t fo r

condition ( iv )  to hold the  o ff-ax is  angles <t> must be equal. Then, fo r  

conditions ( i - i i i )  to hold, it is clear th a t the  sail may only tra n s fe r  

onto ne ighbouring  o ff-ax is  halo o rb its  of the same am plitude and

displacem ent. Therefo re , by patching to g e th er these azim uthally  

neighbouring  halo o rb its  with on-axis halo o rb its , extremely complex 

patched halo tra jec to rie s  may be constructed.
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F ig u re  5.11

7t

2

n

4

0 n n

4 2

Conditions fo r  patching o ff-a x is  to on-axis halo o rb its . The cu rve  

rep resen ts  the  conditions fo r a tra n s fe r from the upper point of an 

o ff-a x is  halo o rb it and C2 represents the condition fo r  the  lower 

tra n s fe r.
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5.10.4 Keplerian T ra n s fe r

The sail a ttitu d e  may also be switched into a null orientation with  

o c = t t /2 ,  s o  th a t the  sail is tra n s fe rre d  onto a Keplerian o rb it. This 

Keplerian o rb it  may be c ircu la r or elliptical depending on the  in itial 

halo o rb it.

O ff-A xis  T ran s fer F irs tly  a tra n s fe r to or from an o ff-ax is  halo o rb it  

I to a Keplerian ellipse will be considered ( it  may be shown th a t  

condition ( i i i )  cannot be satisfied fo r tra n s fe r  to a c ircu la r o rb it). 

The sw itch ing  point may be at e ith er the apogee or perigee of the  

ellipse and at any point on the halo o rb it, F igure 5.12. At these  

sw itch ing points the  Keplerian perigee and apogee velocities are  given  

by

where a is th e  sem i-m ajor axis and e is the  eccen tric ity  of the ellipse. 

I f  a tra n s fe r  to o r from the  perigee is considered then fo r condition  

( i)  to  be satisfied  the  sail orb ita l angular velocity on the o ff-ax is  halo 

o rb it must be G *=rp-3 / 2, where r p=a(1-e) is the perigee distance. 

T h erefo re , equating  v p to the sail orb ita l velocity to satis fy

condition ( i i i )  the  requ ired  halo am plitude is found to be

Pi = a(1 -  e )(1  + e ) 1/ 2 (5 .8 6 )

Fu rth erm o re , since sin(d>-i)=P1/ r p the  requ ired  orien tation of the  

o ff-a x is  halo o rb it  is obtained as

(5 .8 5 )

<t> = i + s in  l (1 + e )1/ 2 (5 .8 7 )
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F ig u re  5.12

Halo

% Switching Point

Keplerian Ellipse 
a  = n/2

Patching o f an o ff-a x is  halo o rb it to a Keplerian ellipse. The tra n s fe r  

may occur a t e ith e r the  perigee o r apogee point and to o r from an 

o ff-a x is  o r on-axis  halo o rb it.
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where i is the  eclip tic  inclination of the Keplerian ellipse. In  

p a rtic u la r the  sail may be tra n s fe rre d  from an o ff-a x is  halo o rb it onto  

a Keplerian polar o rb it. A sim ilar set of expressions are obtained fo r  

an apogee tra n s fe r  (ie. p1=p1(-e ) ,  <t>=<t>(-e)).

On-Axis T ran sfer With th is  typ e  of patched tra je c to ry  the  spacecraft 

is tra n s fe rre d  from an on-axis halo o rb it I  to a Keplerian o rb it, which 

may in th is  case be c ircu la r. The c irc u la r tra n s fe r  is possible since 

the sail an g u la r velocity  is now a free  param eter, unlike the o ff-ax is  

case, and can be chosen to satisfy the boundary conditions.

I t  can be seen from F igure 5.12 th a t fo r  a perigee tra n s fe r the

halo am plitude and displacement distances are given in term s of the  

orb ita l elements of the  ellipse by p l = a (1 -e )s in (i), z l =a(1-e)cos(i). 

Th erefo re  to satis fy  condition ( iii)  the requ ired  sail o rb ita l angu lar  

velocity  is g iven by

= a '3/ 2 s in -1  ( i ) (5 .8 8 )

For an apogee tra n s fe r  the required  angu lar velocity  is given by

^ 1(a ,e ,i)= ^ 1(a ,-e ,i)  and with the angu lar velocity fo r a tra n s fe r

onto a c irc u la r  o rb it  is obtained.

5.11 Conclusions

I t  has been shown in th is  chapter th a t geocentric halo typ e  

o rb its  are  possible with solar sail spacecraft. As with the  heliocentric  

balo o rb its  th re e  d is tin c t families of halo o rb it exist with d iffe rin g  

s ta b ility  ch arac te ris tics . The least demanding mode of operation is the  

optimal halo o rb it  w ith the  sail o rb ita l period chosen to be th a t o f a
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c irc u la r  Keplerian o rb it  w ith a geocentric distance equal to th a t of the  

sail. With th is  o rb ita l period the  sail loading is minimized. 

F urtherm ore , w ith the  optimal halo o rb it family o ff-ax is  halo o rb its  are  

possible with the  sail normal d irected  along the  new halo axis.

Since it was found th a t unstable halo o rb it families exist simple 

feedback control schemes have been developed. Although a feedback  

control to the  sail p itch gives a damped response, the  associated 

damping timescale is ra th e r  long. Therefore, a feedback to the  sail 

loading has been included to achieve a well damped response.

F ina lly , it has been shown th a t individual halo o rb its  may be 

patched to form complex new tra jec to ries . The patching may be 

between ind ividual halo o rb its  or, by switching the sail a ttitu d e  into a 

null o rien tatio n , a halo o rb it and a Keplerian ellipse.
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6. SOLAR SAIL PARKING IN RESTRICTED THREE-BODY SYSTEMS

6.1 In tro d u c tio n

In  th is  ch ap ter s ta tionary  solutions fo r  solar sails in the  

E arth -S u n  and Earth-M oon restric ted  th re e -b o d y  dynamical systems 

are in ves tig a ted . The classical c irc u la r res tric ted  th ree -b o d y  problem  

has fiv e  well known stationary  solutions Lj (j=1 ,5 ) where an 

in fin itesim al mass will remain at rest with respect to the  two prim ary  

masses o f th e  system. I t  is found th a t in general the  col I inear points  

Lj ( j =1,3) a re  unstable while the  tr ia n g u la r  points Lj (j=4 ,5 ) are  stable  

in th e  Lyapunov sense, (see fo r  example Roy (1982)). The classical 

re s tric te d  problem has been extended to Include a radiation pressure  

fo rce  from  e ith e r  o r both o f th e  prim ary masses, exerted on the  

infin itesim al mass. This form ulation generates fo u r n6W additional 

s ta tio n ary  solutions with in teresting  s tab ility  characteristics. The  

rad iation  p ressu re  fo rce  vector is however constrained to  lie along the  

Sun-m ass line.

For th e  E arth -S u n -s a il th ree -b o d y  system the sail a ttitu d e  may 

be fre e ly  o rien ted  so th a t the solar radiation pressure force vector is 

not constrained to  lie along the Sun-sail line. Furtherm ore, th e  

m agnitude o f th e  solar radiation pressure force may be chosen 

th ro u g h  th e  sp acecra ft mass per u n it area. Therefore, since certain  

param eters o f th e  system can be a rb itra r ily  chosen it is c lear th a t  

rich  new possib ilites fo r  a rtific ia l s ta tionary  solutions will arise. In  

fac t it  will be dem onstrated th a t th e re  is a continuum of new 

sta tio n ary  solutions param eterised by the sail a ttitu d e  and loading. 

The dynamical s ta b ility  of these new stationary  solutions is 

investiga ted  and th e ir  ins tab ility  established. Therefore , a control
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scheme is developed w hereby a feedback to the sail a ttitu d e  is used to  

ensure  the  asym ptotic s tab ilty  o f the  solutions.

For the  Earth-M oon th re e -b o d y  system the dynamics are  no 

longer autonomous as the  S u n -lin e  rotates once per synodic month 

with respect to the  Earth-M oon co -ro ta tin g  reference fram e. However, 

sta tio n ary  solutions are  again possible by u tilis ing  small trim s in the  

sail loading param eter to  compensate fo r the rotation of the  S u n -lin e . 

Using th is  technique the  spacecraft may be parked fo r  a short 

duration  in the  Earth-M oon system. Furtherm ore, by linearis ing  the  

dynamical equations it will be shown th a t an o u t-o f-p la n e  halo ty p e  

tra je c to ry  is possible about the  lunar L2 point. These new th re e -b o d y  

s ta tio n ary  solutions have potential applications fo r space science 

missions and solar sail p a rk in g , as will be discussed in ch ap ter 7.

6.2 The Classical R estricted Three-B odv Problem

The classical Lagrange sta tionary  solutions to  th e  res tric ted  

th re e -b o d y  problem Lj (j= 1 ,5 ), have been studied in g reat depth since 

th e ir  d iscovery in 1772. More recently  much attention  has been given  

to th e  modified photogravitational problem, where one o r both o f the  

prim ary  masses is a source o f radiation pressure, the  most complete 

work to date being th a t of Simmons et. al (1985). I t  has been shown 

th a t th e  fiv e  in -p lan e  s ta tionary  solutions are  modified by the  

existence of radiation pressure and th a t th e re  exists fo u r new 

o u t-o f-p la n e  solutions, Lj (j= 6 ,9 ), with L0 and L9 existing only when 

both o f th e  prim ary  masses are  luminous. O ther investigations, such 

as Schuerman (1980), have included the re la tiv is tic  Poynting-R obertson  

e ffe c t in th e  dynamical equations, which has bearing on th e  s tab ility  

of th e  solutions.
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The geom etry o f the  c ircu la r restric ted  th re e -b o d y  problem with  

the  f iv e  Lagrange points is shown schematically in F igure  6.1 fo r the  

E arth -S u n  system. The mass ratio  of the  system is defined as 

u=m2 / ( r n 1+m 2 ) and the  Sun-Sail and E arth -S ail distances given by 

and r 2 resp ective ly . The motion of m* and m2 about th e ir  common 

cen tre  o f mass defines a co -ro ta ting  cartesian re ference fram e (x ,y ,z )  

with a n g u la r velocity  O in which the dynamical equations are  

form ulated . Dimensionless units  are used so th a t the  m i-rrij distance  

is u n ity . The classical s tationary solutions are  found at the  

equ ila tera l points Lj (j= 4 ,5 ) which are located at vertices  of equilateral 

tr ia n g le s  defined by r l = r2=1 and the  collinear points Lj (j=1 ,3 ) are  

given by th e  solution of a qu in tic  polynomial. I t  may be shown th a t  

the  eq u ila tera l points are  Lyapunov stable provided u<0.0385 (R outh’s 

value) and th a t th e  collinear points are always unstable. I t  is around  

the  co llinear L t and L2 points th a t the  new sta tionary  solutions fo r  

solar sails a re  found to exist. Away from the  Earth the  solar sail 

solutions are  sim ilar to the  Earth synchronous heliocentric  halo o rb its  

of ch ap ter 4.

With th e  in troduction  to the classical case, of radiation pressure  

from mx th e  g rav ita tiona l potential of m i is modified by the ratio  of 

the  rad iation  p ressure  force to the grav ita tiona l force P. This  

m odification resu lts  in the  classical Lagrange points moving to new 

positions as P increases, the tr ia n g u la r points L4>5 now being defined  

by th e  co n stra in ts  r ^ O - 0 ) 1/ 3, r 2=1. I t  can be seen th a t as £+1 the  

tr ia n g u la r  points will coalesce on m*. I t  is also found th a t L1>3 

coalesce a t mi w ith L2 moving onto m2. Furtherm ore, two new 

s ta tio n ary  solutions I-e, 7 appear out of eclip tic  plane, moving

asym ptotically  tow ards the  z-axis with z-*» as P+1.
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F ig u re  6.1

L 
x 4

X

Schematic geometry of th e  E arth -S u n  solar sail res tric ted  th re e -b o d y  

system  with the  sail positioned at r= (x ,y ,z ). The sail a ttitu d e  is 

defined by the  u n it vector n fixed in the co -ro ta tin g  fram e and the  

fram e rotates with an angu lar velocity O. The cen tre  o f mass of mi 

and m2 is located a t the  o rig in  with it^ located at (-M ,0,0) and m2 

located a t (1-/u,o,0) where /i=m2/(m 1+m2).
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6.3 Dynamical Equations fo r  the  E arth -S un  System

Consider now an idealised perfectly  re flec tin g , p lanar solar sail in 

a c o -ro ta tin g  cartesian reference fram e of angu lar velocity a  with two 

point p rim ary  masses mt and m2, as shown In F igure  6.1. The sail 

a ttitu d e  is defined by a un it vector n, fixed in the  co -ro ta tin g  frame  

and the  ra tio  o f the  solar radiation pressure force to the solar 

g ravita tio n a l fo rce  exerted on the sail is again given by the  sail 

loading param eter /s=o*/o. Since the sail a ttitu d e  is to be fixed in the  

co -ro ta tin g  fram e the  sail must rotate about the  normal to the plane of 

the system once with respect to a fixed inertia l fram e in time 2 tt/ | 0 | .  

The un its  of the  system will be chosen such th a t the  gravitational 

constant, the  distance between the two prim ary masses, the  sum of the  

prim ary  masses and so the  angular velocity of co -ro tation  are all 

taken to be u n ity .

The vector dynamical equation fo r a solar sail in the  co -ro ta tin g  

fram e may be w ritten  in the  usual form as

w here th e  th re e -b o d y  gravitational potential ^ ( r )  and the  

n o n -co n serva tive  solar radiation pressure acceleration a are given by

Although th e  system is non-conservative  it is however autonomous 

owing to th e  co -ro ta tio n  of the reference fram e. The radiation solar 

p ressure  fo rce  vecto r can never be d irected  sunward so th a t the  sail 

a ttitu d e  is constrained such th a t r^ n X ). The sail position vectors are  

given w ith respect to th e  cartesian fram e by

+ 20 x -  + ft x (0  x r )  = a -  ^ 3 ( r )  
d t *  a t

( 6 . 1 )

( 6 . 2 )
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r i  = (x+u, y, z) , r 2 = ( x - ( 1 - u ) ,  y, z)  ( 6 .3 )

w here M=m2/(m 1+m2) is th e  mass ra tio  of the  system.

Since th e  cen trifu g al term  in equation (6 .1) is conservative  it may 

again be w ritten  as a scalar potential 'Hr) such th a t

^ K r )  = O x (0  x r )  , t ( r )  = -  ^ |0  x r | 2 ( 6 . 4 )

Defin ing a new potential, U(r)=<l>3(r)+4'(r),  a reduced dynamical equation  

is ob ta ined , v iz

5F + 20 x HE + * u<- r )  = a (6-5>

In  th e  co -ro ta tin g  fram e s ta tionary  solutions are  req u ired  so th a t  

th e  f i r s t  two term s of equation (6 .5) vanish. The fiv e  classical 

s ta tio n ary  solutions r Lj (j= 1 ,5 ) are then given by the  solutions to the  

equation v u ( r ) = 0. However, fo r  the  solar sail th ree -b o d y  system th e re  

exists an additional acceleration term  a  which is a function  of the  sail 

loading param eter P and a ttitu d e  n so th a t new a rtific ia l s ta tio n ary  

solutions may be generated.

Since the  vector a is orien ted  in direction n, tak in g  the  vector  

pro d u ct o f n with equation (6 .5 ) it follows th a t

v u ( r )  x n = 0 £  n = > v u (r )  ( 6 . 6 )

w here *  is an a rb it ra ry  scalar m ultip lier. Using the  normalisation  

condition |n |=1 ,  > is identified  as |v u ( r ) I -1  so th a t the  sail a ttitu d e  

req u ire d  fo r  a s ta tionary  solution is given by
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The sail a ttitu d e  may then be expressed in term s of two angles (oc,x), 

defined with respect to the  coordinate triad  ( f 1, f 1xft , ( f1xO)xf1) centred  

on the  sail, where ^ = 1 ^ /1 ^ ! .  The pitch angle a  is defined as the  

angle o f n w ith respect to ^  and the clock angle x is defined as the  

angle o f the  pro jection  of n in the  plane normal to  with respect to 

(TiXO). T h erefo re , tak in g  vector and scalar products of equation (6.7) 

with f*! these angles may be w ritten  as

tan  “ ( r )  = r j  . ' 6 - 8a>

■ «  « a > = ' i a s i ;  i a s K i i 1 < • ■ » >

The sail loading requ ired  may also be obtained by tak in g  a scalar

p roduct of equation (6 .5 ) with n. Requiring a s ta tionary  solution it is 

found th a t

/3(r) = ( 1 - w ) - 1 l ^ l 4 ^ T j ip r  ( 6 . 9 )

T h erefo re , general vector valued functions fo r the  sail a ttitu d e  

and loading req u ired  fo r  stationary solutions have been obtained in 

term s of th e  c o -ro ta tin g  th ree -b o d y  potential U(r ) .  Since the  sail 

loading and a ttitu d e  may be chosen at will the set of fiv e  classical 

s ta tio n ary  solutions will be replaced by an in fin ite  set of a rtific ia lly  

generated s ta tio n ary  solutions. The classical solutions then  

correspond to th e  subset £=0. This in fin ite  set of solutions is 

param etrised into level surfaces by the sail loading. A p a rticu la r  

sta tio n ary  solution on a level surface is then defined by the two
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a ttitu d e  angles (oc,x).

6.4 Existence of S tationary  Solutions

Now th a t the  existence of new stationary  solutions has been

established the  regions in which these solutions may exist must be

in ves tig a ted . These regions are  defined by the  constrain t

r i - V U C r )  > 0 ( 6 . 1 0 )

w ith th e  boundary surface defined by an equality  in equation (6 .10). 

This  co n stra in t may be understood physically  since the solar radiation  

p ressu re  acceleration vector a, and so the sail a ttitu d e  vecto r n, can 

n ever be d irected sunwards. The sail pitch angle is th e re fo re  

constrained such th a t | oc| < tt/ 2 .

In  scalar form the  th re e -b o d y  potential U(r)=<I>3 (r)-H H r) may be

w ritte n  as

T h ere fo re , evaluating  the  g rad ien t of U (r )  in equation (6 .10) a function  

S (r)= 0  is obtained, v iz

The function  S (r )  has two topologically disconnected boundary  

su rfaces  and S2 which define the boundary to the  region of 

existence of s ta tionary  solutions, F igures 6.2 and 6.3. The region of 

existence o f th e  s ta tionary  solutions lies between these two surfaces  

and is defined by the  region S 1flS2’.

(6 . 11)

S (r )  = x(x+u) + y2 -  -  ~ r * ' 3 2
r l  r 2

(6 . 12)
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F ig u re  6 .2 (a )

Z  (A U )
. 2

0.8

0 . 4

0.0 L  - X  (A U )

- 0 . 4

- 0.8

. 2

0.0 0 . 4 0.8 1 . 2- 0 . 4- 0.81 . 2

F ig u re  6.2 Section of th e  level surfaces in the  E arth -S u n  system (a) 

normal to the  plane of the  system and (b ) in the  plane of the system. 

The req u ired  sail loadings are given by; (1 ) 0.3 (2 ) 0.5 (3 ) 0.7 (4 ) 0.9 

(5 ) 1.0 (6 ) 1.01 (7 ) 1.1. The contour S x represents  the  o u te r boundary  

surface.
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F ig u re  6 .2 (b )

Y (A U )

-  L [_ - X  (A U )

- 0 .  4

- 0 .8

0.4 0.8 1.20.0-0 .81 . 2
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F ig u re  6 .3 (a )

0 . 01

0. 00 -

- 0 . 0 1  -

Z  (A LI)

I . .X  (A U )

0. 99 .00 . 01

Section of th e  level surfaces in the near Earth region (a ) normal to  

the  plane of th e  system and (b ) in the plane of the  system. The 

req u ired  sail loadings are  given by; (1 ) 0.02 (2) 0.04 (3 ) 0.06 (4 ) 0.1 

(5 ) 0.2 (6 ) 0.4 (7 ) 1.0 (8 ) 3.0. The contour S2 represents  th e  inner 

boundary surface.
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F ig u re  6 .3 (b )

Y (AU)

0.01
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The o u te r surface  S 1 possesses a cylindrica l topology and 

excludes solutions along the x -axis  from -*><x<xL 3 and x l 2 < x < -h »  while 

th e  in n er surface  S2 excludes solutions along x L !<x<1 -u . All of the  

f iv e  classical s ta tio n ary  solutions lie on S 1US2 since th ey  are  the  

solutions v u (r )= 0  o f equation (6 .10). In  general the sail loading level 

surfaces approach th e  boundary surface asym ptotically with as 

then  T i.vuC rHO  in equation (6 .9).

6.5 S ta tionary  Solutions in the  E arth -S u n  System

Level surfaces of constant sail loading may now be generated  

from  equation (6 .9) fo r  the  E arth -S u n  system (u=3.036x10"6 ). For ease 

of illu s tra tio n  sections of th e  surfaces through the  x -y  and x -z  planes 

are  used. Then, only the pitch angle oc will be requ ired  to completely 

describe the  sail a ttitu d e  requ ired  fo r a s ta tionary  solution. In  

general though th e  two angles (a ,x) are  requ ired  to describe the  sail 

a ttitu d e  fo r a s ta tio n ary  solution at some a rb itra ry  position.

The sections of th e  level surfaces generated by equation (6 .9) are  

shown in F igures 6.2 and 6.3. The sections define fam ilies of one 

param eter level curves  represen ting  subsets of the  continuum of new 

a rtific ia l s ta tio n ary  solutions with equal sail loading. The sail a ttitu d e  

req u ired  is also shown. From F igure  6.2 it can be seen th a t in the  

fa r  E arth  region th e  level surfaces are a fam ily of topologically nested 

to ri w ith the  in n er rad ius  of the  to rus  vanishing as £*1. In  th e  plane 

of th e  system th e  level curves are  near c irc u la r with the  sail pitch  

angle a=0. These cu rves  represent the sail loading req u ired  fo r a 

c irc u la r  heliocentric  o rb it  with an orb ita l period of one year. Out of 

the  plane of the  system it can be seen th a t th e  solutions are  

essentia lly  Earth  synchronous heliocentric halo o rb its , as discussed in
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ch ap ter 4. Along the  z-ax is  of the  system th e re  are s ta tionary

solutions above th e  poles of th e  Sun with £=1.

A detailed plot of the  sections of the  level surfaces near the

E arth  is shown in F igure  6.3. I t  can be seen th a t the  level surfaces

around L i and L2 accessible to  the  solar sail expand with increased

sail loading, bu t always contain the  classical Lagrange point they  are

associated w ith , as th is  corresponds to the  solution P*0, r lBn=0.

For th e re  are  no solutions in th e  plane of the  system, except

at th e  f iv e  classical Lagrange points where r lan=0. I t  can be seen in

F ig u re  6.2 away from th e  Earth th a t fo r  £>1 the  level surfaces have
to

undergone a topological change become a fam ily of nested cylinders. 

There  a re  also no intersections w ith, and so no solutions in, the  x -y  

plane except a t the  L4>5 points where ^ . 11=0 and the  sail loading is 

undefined. There  are  however o u t-o f-p la n e  solutions corresponding to  

halo ty p e  o rb its  a t g re a te r distances above th e  plane of the  system. 

In  th e  near Earth  region, F igure  6.3, it is seen th a t fo r an increased  

sail loading the  level surfaces continue to expand, asym ptotically  

approaching th e  boundary surfaces and S2.

6 .6  S ta b ility  and Control

Now th a t the  existence of the a rtific ia l s ta tionary  solutions has 

been established it is necessary to  examine th e ir  s tab ility . The 

general vec to r dynamical equation is given by equation (6 .5) as

+  20 X  + v u ( r )  = a  ( 6 . 1 3 )
d t*  d t

I t  will be assumed th a t the  sail is s ta tio n ary  on some level surface at 

a po in t rQ. Then th e  dynamical equation in a local neighbourhood of
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rQ is obtained in the  usual manner using an a rb it ra ry  linear  

p ertu rb a tio n  s, such th a t r 0->r0+s. since r0 is a s ta tio n ary  solution a 

varia tiona l equation is obtained, v iz

3 F  + 2 0  x 51 + 7 u ( r o+s) “ a ( r 0+S) = 0 (6 .1 4 )

The potential g rad ien t and the  radiation pressure acceleration may be 

expanded in tr iv a r ia te  Tay lo r series about the s ta tio n a ry  solution to  

f i r s t  o rd e r as

v u ( r 0+s) = v u ( r 0 ) + ^  v u ( r ) |  s + 0 ( | s | 2) (6 .1 5 a )

r= ro

a ( r 0+S) = a ( r 0 ) + 3^ a ( r ) |  s  + 0 ( | S | 2) (6 .15 b )

r = r0 , n=n0

Then, since v u ( r 0 )=a (r0 ) fo r  a s ta tionary  solution, a linear variational 

equation is obtained, v iz

5F  + M1 s l  + (M2-  s  = 0 (6 .1 6 )

w here M2>3 the g ra v ity  and radiation grad ien t tensors and the  skew  

sym m etric gyroscopic m atrix M* are  given by

- 2
0
0

H2 -  (U -jj) , M3 = (a - j j)  

( 1 , j ) 6 ( x ,y ,z )

(6 .1 7 )

w here U jj is the  ( i , j )  partia l d e riv a tiv e  of the  potential with respect to  

th e  cartesian  axes and a jj is the  j th  d e riv a tiv e  of the  ith  component 

of th e  solar radiation  pressure  acceleration. The s ta b ility  o f the
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system may be investigated  in the  usual manner by examining the  

system eigenvalues resu ltin g  from the  ch aracteris tic  polynomial. This  

may be c a rried  ou t by su b stitu tin g  an exponential solution of the  form

6  = S0  es t , s = o + iu  , 1 = A 1 (6 .1 8 )

S u b s titu tin g  th is  solution into equation (6.16) yie lds a m atrix equation  

of th e  form

(s 2I  + sH! + M*)S0 = 0 (6 .1 9 )

where M *=M 2-M 1. For n o n -tr iv ia l solutions a vanishing secular 

determ inant is re q u ire d , which then gives th e  charac te ris tic  polynomial 

of th e  system P(s)=0, v iz

P(s) = 5 a6 - j  sj (6.20)
j =o

w here, owing to th e  fundam ental theorem of a lgebra, P(s) has roots  

Sj=Oj+|wj ( j =1,6 ). For asym ptotic s tab ility  it is requ ired  th a t all of the  

system eigenvalues are  in the le ft hand complex plane so th a t o j<0 

( j =1,6 ). However, fo r  s tab ility  in the  Lyapunov sense the weaker 

condition, th a t all th e  roots of P(s) are a t least p u re ly  im aginary, is 

re q u ire d . This constrains the motion to a local neighbourhood of the  

nominal s ta tio n ary  solution.

The coeffic ien ts  o f the  polynomial P (s) a re  given by

a0 = 1 ( 6 . 2 1 a )

ai = 0 (6.21b)
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~  +  M * 2 2  +  ^ * 3 3  +  4 ( 6 . 21c)

83  = 2(H*2i  ^ * 1 2 ) ( 6 . 21d)

a4 = M*11H*2 2  + M:*:11M*3 3  + M*22M*3 3  “ M*23M* 32 ( 6 .21e)

a5 = 2M^33(H*21 “ 12 ) + 2 (M *32M* l3  “ M*23M *3i)

a 6  = M * h M * 2 2 M * 3 3  “  M *  1 1  ^ * 2 3 ^ * 3 2  ”  M * 3 3 M * 1 2 M * 2 1

( 6 . 2 1 f )

( 6 . 21g)

M*22M *3lM *i3 + M*21M*32M*13 + M* A 2M*23M*31

Since a t =0, an application of the  R outh -H urw itz c rite rio n  implies th a t  

at least one eigenvalue will not lie in the  le ft hand complex plane, (ie. 

th e re  is a t least one eigenvalue with o p o ). Therefore  the  system does 

not n a tu ra lly  possess asym ptotic s tab ility . Given th is  fac t the  

condition fo r  Lyapunov ty p e  s tab ility  with p u re ly  im aginary  

eigenvalues, oj=0 ( j= 1 ,6 ), will be established. S u b s titu tin g  fo r  s=iu  

P(s) becomes

P (iu )  = -w 6 + a2w4 -  ia 3w3 -  a4w2 + ja 5w + a6 (6 .2 2 )

For th e  condition P(s)=0 to hold it is required  th a t both th e  real and 

p u re ly  im aginary p arts  o f the  polynomial are identica lly  zero, v iz

-u 6 + a2w4 -  a4w2 + a6 = 0 (6 .2 3 a )

iw (a 5 -  w2a3 ) = 0 (6 .2 3 b )

Six consistent solutions of equations (6.23) with w j2>0 (j= 1 ,6 ) a re  now 

re q u ire d . From equation (6 .23b) it is seen th a t w«=0, w2 ,3=:fcA a 5 / a 3 ). 

However, the  solution w1=0 is obviously inconsistent with equation  

(6 .23a). The rem aining solutions w2>3 are  also not generally  consistent 

w ith equation (6.23a). However, equation (6 .23b) is satisfied  if 3 3 =3 5 =0 .
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The e igenvalues o f th e  system are  then determ ined as conjugate pairs  

from equation (6 .23a), which may or may not have real solutions.

T h ere fo re  a necessary, but not su ffic ien t, condition fo r  Lyapunov  

s ta b ility  is then a3=0 *  (M *2 i - M * 12 )=0 . However, since the  potential is 

co n servative  Uyx- U Xy=0, so th a t a3=0 $  (a yx- a x y )=0. S im ilarly the  

condition a5=0 req u ires  th a t azx-a xz=0 and a y z- a z y =0. Taken together  

these conditions imply th a t P=0 o r

V x a = 0 (6 .2 4 )

That is, th a t th e  solar radiation pressure  acceleration must be 

co n servative  and so must be derivab le  from  some scalar potential. 

T h erefo re , th e  req u ired  conditions fo r Lyapunov s tab ility  are oc=o 

(m odified photogravita tional system ), or £=0  (classical restric ted  

system ). In  practice  th e  solutions away from the  Earth  will behave as 

Earth  synchronous heliocentric  halo o rb its  w ith th e ir  associated 

regions of Poincare s ta b ility  and in s tab ility .

I t  has been shown then th a t the set of new s ta tionary  solutions  

do not possess a natura l asym ptotic s ta b ility  and th a t Lyapunov  

s ta b ility  is only possible fo r  the  p a rticu la r solutions when the  sail is 

orien ted  along th e  S u n -lin e . In  general th e re fo re  a control scheme is 

req u ired  to  ensure  asym ptotic s ta b ility . A simple control scheme using 

a combination of proportional and d e riv a tiv e  feedback to the  sail 

a ttitu d e  will now be developed.

In c lu d in g  f ir s t  o rd e r variations in th e  sail a ttitu d e  n0 ->no+Sn, the  

open loop varia tiona l system becomes

(6 .2 5 )

t =Tq, n=n0
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In  th e  fu ll six-dim ensional phase space x=(S ,dS /dt) the  system then  

becomes

dx
d t

0 : i 0
Px + Q Sn P =

-M*
: ~ M l

, Q =
N

(6 .2 6 )

where P is the  system m atrix and Q is the input d is tribu tion  matrix.

In  o rd e r to proceed fu r th e r  it is necessary to determ ine if the  

system is fu lly  contro llable. Therefo re, the 6x6 co n tro llab ility  m atrix  

C=(Q, PQ, P2Q, P3Q) must have fu ll rank, viz

C =
0 : n -M iH : - m* n + h 12n

N : -H iN  : -M*N + H12N : 2H*H1N -  H13N

if r^n^O , in general all the rows of

(6 .2 7 )

independent so th a t r ( C )= 6  and th e  system is fu lly  contro llable. The  

control will then be defined as

(6 .2 8 )

so th a t th e  sail a ttitu d e  trim  is given as function of the  sail position  

and veloc ity  re la tive  to the  nominal sta tionary  solution. The closed 

loop system is then given by

dt
(6 .2 9 )

T h ere fo re , th e  feedback control now allows oj<0 (j=1 ,6 ) with a su itab le  

choice of gain m atrices A1>2 so th a t the  s ta tio n ary  solutions may have  

asym ptotic s ta b ility . In  general the  choice o f gains will depend to a
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large exten t on operational requirem ents. However, to dem onstrate the  

existence of asym ptotic s ta b ility  the  gain m atrices will be chosen as

S u b s titu tin g  these gains into the  variational system a damped harmonic 

equation is obtained with the  damping proportional to the  gain 

constants > i >2, v 'z

Since th e  gain constants x 1>2 may be a rb it ra r i ly  chosen the  

eigenvalues may be chosen to be in the  le ft hand complex plane  

ensuring  asym ptotic s ta b ility . A solution of equation (6 .31) is then

so th a t fo r  asym ptotic s tab ility  it is requ ired  th a t * !> 0 , >2>x12 /4 .  I t  

has been shown then th a t, in princip le , the  s ta tio n ary  solutions are  

contro llab le  using a feedback to the sail a ttitu d e  and th a t asym ptotic  

s ta b ility  can th e re fo re  be achieved.

6.7 Dynamical Equations fo r  the Earth-M oon System

An idealised p e rfe c tly  reflecting  solar sail will now be considered  

in a c o -ro ta tin g  re fe ren ce  fram e of constant an g u lar velocity  O with a 

point mass E arth  m* and Moon m2. The dynam ics of the  Earth-M oon

(6 .3 0 )

(6 .3 1 )

which has a ch ara c te ris tic  polynomial

s2 + x xs + x2 = 0 (6 .3 2 )

(6 .3 3 )
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re s tric te d  th re e -b o d y  system are qu ite  d iffe re n t from the  E arth -S u n  

system in th a t the S u n -lin e  S is not fixed in the co -ro ta tin g  fram e, 

but ro ta tes  once per synodic lu n ar month. I t  will be assumed th a t the  

solar rad iation  pressure is constant in m agnitude over the  scale of the  

problem . In  the  units  of the  system the  Earth-M oon distance is taken  

to be u n ity . Therefore, the  sail loading param eter is now defined as 

th e  solar radiation pressure acceleration made dimensionless with  

respect to th e  E arth ’s gravita tional acceleration at the lu n ar distance. 

The sp acecra ft mass per u n it area is then related to the sail loading 

param eter by the  relation o=3.385/3” 1 gm-2 .

The vector dynamical equation fo r  a solar sail in th is  co -ro ta tin g  

fram e may be w ritten  as

5 F  + 2 0  x + V U (r) = a (6 .3 4 )

w here th e  co -ro ta tin g  th re e -b o d y  potential U (r )  and the solar 

rad ia tion  pressure  acceleration a  are  given by

U (r )  = -  { i  |fi X  r l 2 + + y~~y} , a = P (S .n )2 n (6 . 35 )

w here ju=(m2/m l +m2 )=0.01215 is the  mass ra tio  of the Earth-M oon  

system . The sail a ttitu d e  is constrained such th a t S.n^O and the  

d irection  of th e  S u n -lin e  is given by

S = (c o s (G *t) , - s in ( G * t ) ,  0) (6 .3 6 )

w here G*=0.3252 is the  angu lar ra te  o f the  S u n -lin e  in th e  co -ro ta tin g  

fram e in dimensionless units. The small annual changes (± 5 °) in the  

inc lination  of the  S u n -lin e  with respect to  th e  plane of th e  system are
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ignored.

By again re q u irin g  s ta tionary  solutions in th e  c o -ro ta tin g  fram e  

and ta k in g  vec to r products  equation (6.34) may be solved to obtain  

the  req u ired  sail a ttitu d e  as

v u ( r )
"  ■ |V U (r ) I (6 .3 7 )

which is time independant. The requ ired  sail loading may also be 

obtained, bu t is however time dependent due to the  ro ta ting  S un-line , 

viz

* < « > = < 8 ^  < . . » >

As before th e  region of existence of s ta tionary  solutions is bounded, 

the  boundary being defined by the time dependent condition S.n>0. 

This condition y ie lds a function  T (r;t)= 0  defin ing  the  time dependent 

boundary surface to the  regions of existence of solutions. This  

function  is given by

T ( r ; t )  = cos('a * t '> -  s 1 n (0 *t)  (6 .3 9 )

so th a t on th is  surface  the  sail a ttitu d e  is normal to  the  S un-line. 

Again th e re  a re  two topologically disconnected regions T x and T 2.

For a fixed sail loading the  conditions fo r  s ta tio n ary  solutions  

derived  above a re  only valid instantaneously at some time t ^  For a 

short, f in ite  duration  stay a small open loop control acceleration is 

requ ired  to  compensate fo r  the  moving S u n -lin e . This acceleration will 

re q u ire  a small varia tio n  in the sail loading since th e  sail a ttitu d e  

req u ired  is time independent. Although equation (6 .38) gives the
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req u ired  change in sail loading as a function  of the  S u n -lin e  position, 

an approxim ate expression can be obtained by expanding the  solar 

rad iation  pressure  acceleration about th e  sta tionary  solution at 

position rQ and time to- At a time At la te r the  condition fo r continued  

s ta tio n a rity  is given by

T h ere fo re , fo r  a short duration  stay ( A t d ) the  f ir s t  o rd er trim  in the  

sail loading is given by

I f  A£/&  is remains by lim iting At to 5x10 " 3 a stay of 3.3 hours is 

possible. For sails with a large trim  capab ility  much longer duration

n .(d S /d t)= 0  so th a t, to f ir s t  o rd er, no varia tion  in the  sail loading is 

re q u ire d .

6 .8  S ta tio n ary  Solutions in the  Earth-M oon System

Using equation (6.38) level surfaces of constant sail loading in 

th e  Earth-M oon sytem may be generated. Again, sections of the  

surfaces th ro u g h  the x -y  and x -z  planes are  used. Then, only the  

pitch angle oc is requ ired  to  describe th e  sail a ttitu d e .

At time G *t=0° S u n -lin e  is d irected  along the  Earth-M oon line. 

Sections o f th e  level surfaces of constant sail loading at th is  time are  

shown in F ig u re  6.4. I t  can be seen th a t th e  surfaces expand with  

increasing  sail loading in a sim ilar m anner to the  E arth -S u n  system.

00

(6 .4 0 )

(6 .4 1 )

stays  would however be possible. Furtherm ore, if n=S then
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F ig u re  6 .4 (a )

Z  (R o )

1 . 21 . 00.8

Section of th e  level surfaces in the near lu n ar region (a ) normal to  

th e  plane o f th e  system and (b ) in the plane of th e  system at time 

G*t=0°. The sail loading values are given by; (1 ) 0.3 (2 ) 0.6 (3 ) 1.0 (4 ) 

1.5 (5 ) 3.0. The contours Tj. and T2 rep resen t th e  time dependent 

boundary surfaces.
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F ig u r e  6 .4 (b )

Y  ( R o )

- 0.2  -

0.8 1 . 0
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This is to  be expected due to th e  configuration of th e  Earth -M oon-Sun  

system at th is  time. Sections of th e  boundary surfaces T 1 and T2 are  

also shown.

Some time la te r in th e  synodic month when 0 *t= 4 5 ° th e  topology  

of th e  surfaces rad ica lly  transform s, F igure 6.5. Normal to  the  plane 

of th e  system th e  surfaces are  still symmetric. However, in the  plane  

of th e  system th e  surfaces about the  and L2 points are  asymmetric  

and connect a t a loading value of approxim ately 1.2. S im ilarly , the  

boundary surfaces and T2 are now connected. I t  can however be 

seen th a t th e  req u ired  sail a ttitu d e  is time independent. F ina lly , at 

time 0 *t=180° th e  regions of existance of solutions have reversed  with  

respect to fl* t= 0 °  and so solutions are  now forb idden  w ithin surface  T2 

and are  allowed outw ith  T l t  F igure  6 .6 .

6.9 Lunar Lagrange Point H alo-Type O rbits

The dynamics of a solar sail in the  neighbourhood of the  lunar  

L2 po in t at r|_ will now be investigated  and it will be dem onstrated  

th a t a periodic o u t-o f-p la n e  tra je c to ry  exists. P e rtu rb in g  th e  vector 

dynamical equation such th a t r|_-»rL+S It is found th a t

d F  + 20 x d f  + v u ( r L+*> = a ( r L+«) (6 .4 2 )

where S=(S,n,G) rep resen t small displacements from  the  L2 point along 

th e  (x ,y ,z ) d irections. The potential g rad ien t may be expanded in a 

tr iv a r ia te  Tay lo r seies about th e  L2 point to f ir s t  o rd e r as

v u ( r L+s) = v u ( r L) + 0 ”  ? u ( r ) |  s  + 0  ( | s | 2) 

r=r*L

(6 .4 3 )
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F ig u re  6 .5 (a )

Z  (Ro)

/  5

- 0 . 2  +

0.8 1 . 0 1 . 2

Section of th e  level surfaces in th e  near lu n ar region (a ) normal to  

th e  plane of th e  system and (b ) in the  plane of the  system at time 

0* t= 4 5 ° .  The sail loading values are  given by; (1 ) 0.3 (2 ) 0.6 (3 ) 1.0 

(4 ) 1.5 (5 ) 3.0. The contours Tx and T 2 re p res e n t the  time dependent 

boundary surfaces.
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F ig u r e  6 .5 (b )

Y (R o )

X X  (R o )

- 0.2  +

0.8 1 . 0
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F ig u re  6 .6 (a )

Z  (R o )

. .X  (R o )

- 0.2  -

0.8 1 . 0 1 . 2

Section of th e  level surfaces in th e  near lu n ar region (a) normal to  

th e  plane of th e  system and (b ) in the  plane of th e  system at time 

0*t=180°. The sail loading values are  given by; (1 ) 0.3 (2 ) 0.6 (3 ) 1.0 

(4 ) 1.5 (5 ) 3.0. The contours and T2 rep res e n t the  time dependent 

boundary surfaces.
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F ig u r e  6 .6 (b )

Y (Ro)

..X  (Ro)

5 \

- 0. 2 -

0.8 1 . 0 1.2
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Then, since vu(r|_)=0 and 3a /3r=0  (since th e  rad iation  fie ld  is assumed

to be un iform ) a lin ea r variational system is obta ined, v iz

0  + Mt f  + M2 S = a (6 .4 4 )

w here M2, th e  g ra v ity  g rad ien t tensor and th e  skew symmetric

gyroscopic m atrix are  given by

■ i  -

0 - 2  0 
2 0 0
0 0 0

M2 = (U°-j j )  (6 .4 5 )

( i , j ) € ( x ,y , z )

where U °jj is th e  ( i , j )  partia l d e riv a tiv e  of th e  potential with respect 

to th e  cartesian  axes, evaluated at the  L2 point.

The sail a ttitu d e  is now fixed such th a t the  sail normal points  

along th e  S u n -lin e , bu t is pitched at an angle y to th e  plane of the  

system, F ig u re  6.7. With th is  choice of sail a ttitu d e  control equation  

(6 .44) may be w ritte n  in component form as

-  2 ^  + U°XXS = /3cos(G*t) cos3y (6 .4 6 a )

+ + U°yyn = -/3 s in (ft* t)  cos3y (6 .46 b )

+ U°ZZC = /3cos2>' s in y  (6 .4 6 c )

The complete solution to equations (6 .46) will in general have 

d iv e rg e n t modes g iv in g  unbound motion. T h ere fo re , since the

in s tab ility  tim escale a t th e  l_2 point is 12.7 days, active  control using  

a feedback to th e  sail a ttitu d e  is req u ired  to suppress these modes.

A p a rtic u la r  period ic  in -p la n e  solution will now be re q u ire d , v iz



F ig u r e  6.7

c

1130 km

3500 km

10 km■22,1
64,000 km

Moon

Earth

A period ic  o u t-o f-p la n e  solar sail tra je c to ry  a t the  lu n ar L2 Lagrange  

point. The sail is p itched at an angle y to th e  S u n -lin e  S.



234

S ( t )  = S0  co s (G *t) , n ( t )  = r\0 s in (G * t)  ( 6 . 4 7 )

This period ic  solution is now substitu ted  in equations (6 .46) to yield

(§o \ -  -  \a * 2 + za* 2 ~ uy y°l re a* \I r u )  lG *z + 2 0 *z -  U , , ° )  (6 .4 8 )InoJ '  I0*z + 20*'

T herefore , since Uxx° * U y y °  the  tra je c to ry  will be an ellipse centred  

on th e  L2 point. The req u ired  sail loading may also be obtained as

The uncoupled o u t-o f-p la n e  motion defined by equation (6.46c) 

may now be solved by Laplace transform s to g ive a general solution of 

the form

C(t) = G0cos(ut) + { ^ 1  (Uzz0) -1 / 2 sin(wt)
0 (6 .50)

+ /3cos2ys1ny (Uzz° ) " 1 (U ( t )  -  co s (w t))

w here U (t) is th e  u n it step function and w=(Uzz° ) 1/ 2. Choosing 

(d G /d t )o =0  th e  solution can be more conveniently  expressed as

C (t )  = U (t )  /3cos2ysin y  (Uz z ° ) _1

+ cos(w t)(Q 0 -  /3cos2ysiny (Uzz° ) _1 )

I t  can be seen from  th is  form of the solution th a t once the  sail is 

pitched from  x=0  a t t =0 the  motion is o f th e  form  of periodic  

oscillations a t an o u t-o f-p la n e  distance ^cos2ys in y (U zz° ) " 1. However, 

by choosing th e  in itia l o u t-o f-p la n e  distance Q0 =^cos2ys in y (U z z 0 ) _1 the  

sail remains a t th is  fixed distance. The G component o f the  solar 

rad iation  p ressu re  acceleration, and so the  o u t-o f-p la n e  distance, may 

be maximised by an optimal choice of sail p itch angle y *, v iz
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~  £cos2ysin y  = 0  =* y * -  ta n " 1 ( 2 - 1 / 2) (6 .5 2 )

Using th is  optimal pitch angle (y*=35.264°) the  sail may execute an

o u t-o f-p la n e  e llip tical tra je c to ry  centred  at the L2 point. The  

sp acecra ft may be placed on such a tra je c to ry  by inserting  it into a 

su itab le  e llip tica l path about th e  L2 point. Once the  sail is pitched to  

an angle y * the  o u t-o f-p la n e  oscillations may be damped in a time 

optimal manner.

At an o u t-o f-p la n e  d istance of 3.5x103 km both the lu n ar fa r -s id e  

and th e  equatorial regions o f the E arth  would be v is ib le, re q u irin g  a

v e ry  low sail acceleration of o rd e r 0.2 mms"2. The applications of

such a tra je c to ry  will be discussed in ch ap ter 7. The tra je c to ry  its e lf 

would be a narrow  ellipse with sem i-m ajor and minor axes of 1.105x104 

km (no=2.876x10- 2 ) and 5.655x102 km (£o=1.471x10- 3 ) and a period of 

29.53 days (synodic lu n ar m onth), F ig u re  6.7. Since tra je c to rie s  in th e  

neighbourhood of the  lu n ar L2 point are  n a tu ra lly  unstable active  

control is requ ired  to ensure  damping o f the  d iv erg e n t modes. Also, 

th e  neglected n o n -lin e ar term s in equations (6.46) will p e rtu rb  th e  

spacecra ft from its  nominal e llip tica l tra je c to ry .

6.10 Conclusions

I t  has been dem onstrated th a t c irc u la r res tric ted  th re e -b o d y  

system s fo r  solar sail spacecraft have an in fin ite  set of new s ta tio n ary  

solutions. For the  E arth -S u n  system these new solutions appear as 

level surfaces of constant sail loading around th e  classical Lagrange  

points. A lin ear s ta b ility  analysis shows th a t the  solutions are  in 

general unstable, a p art from th e  p a rtic u la r solutions w ith th e  sail 

o rien ted  along th e  S u n -lin e . However, since it is found th a t th e



236

system is contro llab le , asym ptotic s tab ility  may be ensured through  

the  use of a feedback control to the  sail a ttitu d e .

For th e  Earth-M oon system the  surfaces of constant sail loading 

become time dependent due to the  synodic rotation of th e  S u n -lin e . 

T h erefo re , tru e  s ta tio n ary  solutions are  not in fa c t possible. However, 

since the  req u ired  sail a ttitu d e  is time independent small trim s in the  

sail loading allow th e  sail to  remain at a s ta tio n ary  point fo r  a short 

duration . Lastly , by linearis ing  the  dynamical equations about the  

lu n ar L2 point, period ic  o u t-o f-p la n e  tra je c to rie s  are  obtained. These 

tra je c to rie s  can be achieved with a re la tiv e ly  low sail loading, 

although active  control is req u ired  due to th e  natura l in s tab ility  of 

tra je c to rie s  about th e  col I inear Lagrange points.
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7. ADVANCED TRAJECTORY APPLICATIONS

7.1 H eliocentric  Halo O rb it Applications

The dynamics, s ta b ility  and control of heliocentric  halo o rb its  

were discussed in ch ap ter 4 w here it was shown th a t unique  

heliocentric  solar sail tra je c to r ie s  a re  possible. The applications of 

these advanced tra je c to rie s  a re  p a rtic u la rly  in te res tin g  fo r  solar 

system  space science missions. Using heliocentric  halo o rb its  unique  

observations of the  Sun and in te rp la n e ta ry  dust complex may be made.

7.1.1 Polar Stationed Solar Sail Missions

The simplest he liocentric  solar sail mission u tilises  th e  solar 

rad ia tion  p ressure  force  to balance th e  solar g rav ita tiona l fo rce  so 

th a t th e  sail will remain s ta tio n ary  above the  solar poles, o r any o th e r  

point on th e  solar surface . This case is a degenerate  halo o rb it  w ith  

zero  halo am plitude. The dynamics of th is  system have been 

in vestiga ted  in detail in section 3.3 where it was shown th a t a total 

sp acecra ft mass per u n it area  of 1.53 gm~2 is req u ired . For a small 

1 0 2 kg payload and an advanced sail mass per u n it area  of 1 gm~2, 

sail m aterial and s tru c tu re , a 434x434 m square sail is re q u ire d . By 

being stationed above th e  solar poles continuous observations of th e  

poles would be possible allowing th e  o u t-o f-p la n e  solar polar m agnetic  

fie ld  and solar wind to be investigated . When combined with in -p lan e  

data obtained from sp acecra ft o rb itin g  in th e  eclip tic  plane th is  would 

allow th e  fu ll three-d im ensional s tru c tu re  o f th e  solar m agnetic fie ld  

and wind to be mapped. This task  is a prim ary  o b je c tiv e  o f th e  

Ulysses In ternational solar polar mission which will spend a total o f 

230 days above a heliographic  la titu d e  of 70° with a perihelion
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distance of 1.28 AU, Wenzel et. al (1990). For a polar stationed solar 

sail how ever, t ru ly  continuous observations could be made from a close 

heliocentric  distance.

O bservations of th e  solar magnetic fie ld  near th e  poles involves  

less rotational tw is t o f th e  fie ld  lines than near the  equator and so 

yield a more d ire c t indication of th e ir  connection to th e  solar surface. 

S im ilarly , th e  solar wind flow above the poles is less d is to rted . In  the  

eclip tic  plane th e  high and low speed solar wind flows mix due to  

th e ir  re la tiv e  radial speeds and th e ir  azim uthal motion, induced by the  

solar ro tation . The high speed flows o vertake  th e  low speed flows and 

are mixed due to th e  solar rotation leading to  a complex mixed plasma 

flow. O ver th e  solar poles however the  solar wind flow is expected to  

be paralle l to th e  near radial magnetic fie ld  lines g iv ing  a less complex 

flow which will be easier to understand . F urtherm ore , d u rin g  the  

qu iet p a rt o f th e  eleven year solar cycle coronal holes appear in the  

polar regions. These regions of low magnetic fie ld  a re  sources fo r  

en erg e tic  solar wind stream s, with speeds of up to 103 kms- 1 . Since 

the  solar wind flows rad ia lly  from coronal holes th e  flows can only be 

investiga ted  from  d irec tly  above the  holes. T h erefo re , solar sail 

spacecra ft positioned a t high heliographic la titu d es  are  advantageous.

O bservations of th e  d is trib u tio n  of in te rp la n e ta ry  dust from  

sp acecra ft o rb itin g  in the  eclip tic  plane allow th e  in -p la n e  density  to  

be calculated. However, the o u t-o f-p la n e  d is trib u tio n  can only be 

obtained rem otely from  th e  observed b rig h tn ess  in teg rated  along the  

line o f s ig h t and polarisation of scattered rad ia tion . The dust density  

must then  be obtained by data inversion techniques. By obtain ing  

b rig h tn ess  and from  polarisation observations ou t of th e  eclip tic  plane  

the fu ll th ree-d im ensional s tru c tu re  o f th e  dust complex may be easily
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obta ined , Dumont et. al (1980). O ther unique observations possible  

from  a polar stationed solar sail a re  uncorrupted  measurements of 

cosmic rays. As cosmic rays  pass th ro u g h  the  solar system th e ir  

tra je c to r ie s  are  p ertu rb ed  by th e  solar magnetic fie ld . S im ilarly  th e ir  

flu x  a t the  Earth  is modulated by th e  eleven year solar cycle. Along 

th e  polar axis of the Sun however, where th e  magnetic fie ld  lines are  

more rad ia l, cosmic ray p artic les  may p en etrate  more easily into the  

in n er solar system, Wenzel et. al (1990).

7.1.2 Heliosynchronous Solar Sail Missions

At a heliocentric  distance of 0.167 AU a spacecraft in the  eclip tic  

plane will have a Keplerian o rb ita l period of 25 days and so will follow  

th e  solar equatorial rotation , allowing th e  possib ility  o f unique solar 

observations, C hristensen-D alsgaard  et. al (1984). However, the  

heliosynchronism  may be m aintained at distances of less than 0.167 AU 

by decoupling the spacecraft o rb ita l period from its  heliocentric  

distance. This is achieved by using a solar sail spacecraft so th a t the  

solar radiation  p ressure  force  reduces the  e ffe c tive  local g rav ita tiona l 

fo rce  and so lengthens th e  o rb ita l period. This is a degenerate  halo 

o rb it  w ith zero o u t-o f-p la n e  displacem ent distance. The dynamics of 

these tra je c to rie s  have been investigated  in detail in section 3.4.

By follow ing the  solar rotation from  close heliocentric  distances, 

less than 0.167 AU, active  regions on th e  solar surface  may be 

followed and th e ir  evolution studied in detail. With te rre s tr ia l  

observations, o r indeed with E arth  o rb itin g  o r Lagrange point 

sp acecra ft, events  may only be studied until they  move across the  

solar disk and disappear behind th e  solar limb. By using a netw ork  

of several heliosynchronous solar sail spacecraft, possibly in
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combination w ith polar stationed sails, global coverage and monitoring  

of the  Sun would be possible. This would also allow stereoscopic  

views of th e  solar atm osphere and the  m ultip le  lines of s ig h t would 

allow limb occultation s tud ies of the  d iffe re n tia l he ight s tru c tu re  in 

the  solar atm osphere, Kane (1982).

7.1.3 Halo O rb it Solar Sail Missions

As discussed in section 7.1.1 o u t-o f-p la n e  observations have many 

unique advantages both alone and when convolved w ith observations  

obtained from  in -p la n e  spacecraft. Stereoscopic imaging of th e  Sun at 

various w avelengths and stereo observations of th e  in te rp lan e ta ry  

dust complex may prov ide  insights  into many aspects solar system  

physics. By u tilis in g  solar sail spacecraft on he liocentric  halo o rb its  

continuous observations of the  temporal and three-d im ensional spatial

s tru c tre  o f th e  heliosphere may be made.

A mission w ith tw in  solar sails fo r  such o u t-o f-p la n e  

observations is shown schem atically in F ig u re  7.1. The spacecraft are  

chosen to be on one year Earth  synchronous halo o rb its  with p=0.56 

AU, z=0.56 AU, £=0.9 (sail I )  and p=0.88 AU, z=0.19 AU, £=0.5 (sail I I ) .  

The loading req u ired  fo r  sail I  is extrem ely h igh , th re e  times th a t of 

c u rre n t solar sail designs, bu t could be achieved using th e  advanced  

fab rica tio n  techniques discussed in section 1.4.3. For a small payload 

mass of 102 kg and a sail mass per u n it area, sail material and 

s tru c tu re , o f 1 gm“ 2 a 380x380 m square sail is re q u ire d . A tra d e -o ff

between payload mass, th e  sail total mass per u n it area  and sail area

is shown in F ig u re  7.2, assuming an overa ll 98% sail e ffic ien cy . I t  can 

be seen th a t th e  sail area  can be extrem ely sen s itive  to  payload mass. 

However, payloads of up to 700 kg are  possible w ith large  1x1 km
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F ig u re  7.1

z

Retrieval
* Sail

Operation

♦  ^

Earth Orbit
Deployment

Ecliptic Planex

Schematic p ro file  of a tw in  solar sail mission fo r  three-d im ensional 

solar observations. Both sail I  and sail I I  a re  chosen to be on Earth  

synchronous halo o rb its .
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F ig u re  7.2

Surface  of payload mass (k g ) as a function  of th e  sail a rea  (m2) and 

th e  sail total mass p er u n it area (gnrr2).



243

sails. The region with zero payload mass corresponds to th e  sail total 

mass per u n it area, sail material and s tru c tu re , being g re a te r than the  

to tal sp acecra ft mass per u n it area  req u ired  to  establish the  halo 

o rb it. Since th e  sail a ttiu d e  is fixed , a p a rt from a slow annual 

rotation to m aintain a Sun pointing o rien ta tio n , operational s tru c tu ra l 

loads would be re la tiv e ly  low. S im ilarly , a small payload mass does not 

re q u ire  a large  sail s tru c tu re  to  su p p o rt it. In  fac t the  payload may 

be d is tr ib u te d  o ver the  sail s tru c tu re  to  reduce the  re la tiv e ly  large  

s tru c tu ra l loads experienced with a cen tra lised  payload.

Due to the  large sail loading req u ired  fo r  the  two halo o rb its

d ire c t s p ira llin g  out of the  ec lip tic  plane would be possible fo r  

deploym ent of th e  two spacecraft, w ith tra n s fe r  times of a few months 

only . A lte rn a tiv e ly , d irec t in jection  w ith conventional upper stages  

would be possible so th a t th e  sails may be configured  fo r  halo o rb it  

operation  only. Once operational th e  tw in  spacecra ft would have a 

re la tiv e  view ing angle of the  Sun of 33° allowing stereoscopic  

o bservations. Furtherm ore , due to th e  one year o rb ita l period th e re  

would be a constant path length , and so constant b it ra te , fo r  data  

re tu rn s . A part from optical s te reo g rap h ic  imaging of th e  solar

atm osphere observations of anisotropic x -ra y  emissions from two 

d iffe re n t angles would allow anisotropic  p a rtic le  beams in th e  solar 

atm osphere to  be investigated , Kane (1982). S im ilarly , the  separation  

of th e  two spacecra ft o f nearly  0.5 AU allows a large  baseline fo r  the  

investiga tion  of the  three-d im ensional s tru c tu re  o f the  solar magnetic  

fie ld .

Since th e  upper halo o rb it (sail I )  has equal am plitude and

displacem ent d istances it would be possible fo r  sail I  to  be patched to  

o th e r halo o rb its , as discussed in section 4.8.1. By patching to a halo
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o rb it  p erp en d icu lar to  th e  ec lip tic  plane sail I  would fa ll below the  

eclip tic  in six months. The sail could then be patched to  another halo 

o rb it  below the  ec lip tic  plane, but re tro g rad e  to th e  in itia l halo o rb it. 

A lte rn a tive ly , th e  sail could be patched to a Keplerian ellipse to allow 

closer in -s itu  solar observations a t various distances above and below 

the  eclip tic  plane. For sail I  th is  Keplerian e llipse would have a 

period of 147 days and a perigee distance of only 0.11 AU allowing  

close heliocentric  observations. These patching m aneouvres could be 

implemented at the  end o f th e  nominal tw in  solar sail mission above 

the  eclip tic  plane. Once th e  e n tire  mission is complete th e  two  

spacecraft may be re tu rn e d  to Earth  o rb it  fo r  re fu rb ish m en t and 

re -u se.

Along with p u re  space science applications he liocentric  halo o rb its  

have applications as rep ea te r stations fo r  high b it ra te  in te rp lan e ta ry  

communications. The design and operation of such rep ea te r satellites  

deployed on Keplerian o rb its  has been investigated  by M ercader del 

Rio (1989). I t  was proposed th a t a heliocentric  rin g  o f sa te llites  could 

be used to ensure communications with spacecra ft on th e  opposite side  

of th e  Sun from  th e  E arth . This would how ever be possible using  

ju s t a single polar stationed solar sail.

7.2 Geocentric Halo O rb it Applications

Geocentric halo o rb its  were discussed in ch ap ter 5 w here it  was 

dem onstrated th a t solar sail spacecraft could achieve geocentric  

c irc u la r o rb its  normal to th e  eclip tic  plane, bu t displaced in the  

an ti-S u n  d irection . A lthough large fam ilies o f unstab le  o rb its  were  

found to exist it was shown th a t they  may be stab ilised  w ith a 

su itab le  control scheme. Geocentric halo o rb its  have many in te res tin g
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applications fo r  near Earth space science missions, investigating  the  

in teraction  o f th e  solar wind w ith th e  geomagnetic fie ld .

7.2.1 S ta tic  E qu ilib rium  Solar Sail Missions

The sim plest form  of th e  geocentric  halo o rb it is th e  s ta tic  

eq u ilib rium  case, a degenerate halo o rb it  w ith zero orb ita l period. 

With th e  sail normal d irected along th e  E arth -sa il line th e  solar 

rad ia tion  p ressure  fo rce  balances th e  local g rav ita tio n a l force. The 

req u ired  sail loading then varies  as z~2 and is independent of p, as 

discussed in section 5.2. For large  geocentric  distances however, the  

fu ll th re e -b o d y  analysis of ch ap ter 6 is re q u ire d .

At a distance of 40 R0 along th e  S u n -lin e  the  requ ired  sail 

c h a ra c te ris tic  acceleration is 6.13 m m s'2, independent o f the  distance  

p. For a 102 kg payload and a saii mass p er u n it area, sail material 

and s tru c tu re , o f 1 gm"”2 a 450x450 m square  sail is req u ired . A space 

plasma physics payload onboard such a sail may then be positioned in 

the  geomagnetic tail and so may p rov ide  continuous observations of 

th e  ta il. When combined with data  obtained from near Earth  

spacecra ft th e  propagation of d is turbances along the  geomagnetic ta il 

may be observed. Since the  sail is s ta tio n ary , varia tions  in m agnetic  

fie ld  a re  p u re ly  tem poral, whereas fo r  a s in g le  o rb itin g  sate llite  it is 

d iff ic u lt  to  de-convo lve  temporal and spatial varia tions . Since the  

req u ired  sail loading is independent of th e  distance p, the  spacecraft 

may be q u a s i-s ta tic a lly  tra n s fe rre d  from  near th e  cen tre  of th e  tail 

th ro u g h  the  plasma sheet to th e  edge of th e  ta il a t the  magnetopause 

boundary , th e re b y  obta in ing  a cross-sectional p ro file  of the  ta il. 

Fu rth erm o re , th e  4 °  aberrational t i l t  o f th e  geomagnetic ta il with  

respect to  th e  S u n -lin e , due to  th e  he liocen tric  motion of th e  E arth ,
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can be accommodated by a simple o ff -s e t of the  s ta tio n ary  position.

7.2.2 Halo O rb it Solar Sail Missions

The investigation  of th e  geomagnetic tail using solar sail 

sp acecraft deployed on geocentric  halo o rb its  allows th e  possib ility  of 

several unique missions. One such mission using tw in solar sails is 

shown schematically in F ig u re  7.3. The am plitude p of th e  two halo 

o rb its  is chosen to  be 2 0  Rq  s o  th a t th ey  are  stationed on the  

magnetopause boundary. The req u ired  sail perform ance is then kept 

to a reasonable level by choosing optimal halo o rb its  of large  

displacem ent distances z o f 40 Rq fo r  sail I  and 50 Rq fo r  sail I I .  The  

separation of 10 Rq allows th e  possib ility  o f observ ing  th e  propagation  

of d isturbances along th e  geomagnetic ta il. Since optimal halo o rb its  

are  chosen the  spacecraft will have d iffe r in g  o rb ita l periods, w ith a 

period of 17.52 days fo r  sail I  and 23.15 days fo r  sail I I .  The two  

spacecra ft will th e re fo re  d r i f t  re la tiv e  to each o th e r in azim uthal 

position with a synodic period of 72.04 days. This d r i f t  may however 

be overcome by using polar synchronous halo o rb its , bu t a t the  

expense of increased sail loading requirem ents. For optimal halo 

o rb its  with 102 kg payloads and a sail total mass per u n it area  of 

1grrT2 , sail I req u ires  a 304x304 m square sail and sail I I  req u ires  a 

229x229 m square sail.

As with th e  he liocentric  case the  spacecra ft may be tra n s fe rre d  

to th e ir  operational o rb its  by sp ira llin g  from  low E arth  o rb it. 

However, the  re la tiv e ly  long sp ira llin g  times from  low E arth  o rb it , due  

to  th e  high local g rav ita tio n a l acceleration, suggests th a t d irec t 

ballis tic  tra n s fe r  should be considered. The tra n s fe r  is made by 

ap p ly in g  an impulse AVi w ith an u pper stage to  th e  undeployed sail
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F ig u re  7.3

y

Operation

Deployment

x

Ecliptic Plane

SailRetrieval

Sail

Schematic p ro file  o f a tw in  solar sail mission fo r  three-d im ensional 

observations of th e  geomagnetic ta il. Both sail I  and sail I I  are  

chosen to  be on optimal halo o rb its  and a re  deployed using two  

impulses A v1>2*



on a low Earth park ing  o rb it  at geocentric d istance r ^  The apogee of 

th e  resu ltin g  Keplerian ellipse is chosen to be equal to th e  halo o rb it  

geocentric  distance r, v iz

Avt
1/2 cu I 1/2

(7 .1 )

Once th e  s a il-u p p e r stage stack is a t the  apogee point another small 

impulse is applied to a tta in  th e  velocity  po* req u ired  fo r  th e  optimal 

halo o rb it. The requ ired  impulse Av2 is then given by

When th e  final impulse is applied the  sail is deployed and pitched to  a 

Sun facing  a ttitu d e . For sail I an in itia l impulse A o f  3.08 km s"1 

and a final impulse Av2 of 0.28km s_1 is req u ired  fo r  tra n s fe r  from  a 

300 km p ark ing  o rb it. The fina l mass m in jected  into th e  halo o rb it  is 

easily obtained from

w here mQ is the  in itia l mass in low Earth o rb it  and c is th e  upper  

stage exhaust velocity . This final mass includes the  total sail mass 

and u pper stage booster d ry  mass. A tra d e -o ff  between th e  sail total 

mass per u n it area and th e  sail area  is shown in F ig u re  7.4 fo r  sail I  

using the  above analysis. A maximum in itia l low Earth  o rb it  mass of 

2100 kg was assumed along w ith typ ica l upper stage param eters, v iz  a 

300 kg d ry  mass and 2.84 kms"1 exhaust veloc ity , Tim nat (1987). The 

boundary S3 then rep resen ts  th e  maximum allowed mass in low Earth  

o rb it. To the  r ig h t o f S3 th e  total sp acecraft and u pper stage mass

(7 .2 )

(7 .3 )
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F ig u re  7.4

Section of a surface  of payload mass as a fu n c tio n  of th e  sail area and 

the  sail total mass per u n it area. The c u rv e  S2 is a contour of 

constant payload mass of 102 kg, with th e  po int P th e  optimal design  

point on th is  contour. The contour S3 rep resen ts  the  maximum low 

E arth  o rb it  mass w ith representing  th e  minimum sail total mass per 

u n it area.
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in low Earth  o rb it is g re a te r than 2100 kg. S im ilarly , to th e  le ft of 

th e  payload mass contour S2 th e  payload mass fa lls  below a minimum 

of 102 kg. The boundary Sx rep resen ts  an imposed lower lim it on the  

sail m aterial and s tru c tu ra l mass per u n it area  of 1 gm-2 . The allowed 

design point of the  spacecra ft then lies in th e  region defined by th e  

in tersection  of these th re e  curves . The optimal design point P lies on 

th e  in tersection  of S2 and S3. This point has a 102 kg payload mass 

bu t minimises the  requ irem ents  on th e  sail material and s tru c tu ra l 

design.

Once the  tw in  solar sails have been deployed on th e ir  nominal 

halo o rb its  continuous observations of th e  geomagnetic ta il may be 

made at fixed distances along the  ta il. For investigations using  

conventional ballistic  tra je c to rie s  long, h igh ly  e llip tical o rb its  must be 

used in o rd e r to maximise th e  tim e spent in th e  ta il, as is th e  case fo r  

th e  proposed Geotail mission, Dunham (1989). When combined with  

observations from near E arth  o rb itin g  spacecraft th e  propagation of 

dis tu rbances  along th e  geomagnetic ta il may be observed and th e  fu ll 

three-d im ensional s tru c tu re  of th e  tail mapped. By using two  

spacecra ft pure ly  tem poral varia tio n s  in th e  observations may be 

de-convo lved from spatial varia tions . The 4 °  aberrational t i l t  o f the  

ta il may be compensated fo r  by moving th e  halo o rb its  o ff-a x is  by th e  

same angle. The increase in sail loading due to  th e  oblique incidence  

of th e  incoming radiation  is only 0.48 %.

At th e  end of th e  nominal tw in  spacecra ft mission sail I  (o r  sail 

I I )  may be patched to a Keplerian ellipse to  in ves tig a te  th e  in n er  

regions of the  geomagnetic ta il, much in the  same way as a 

conventional ballis tic  spacecraft. From th e  halo o rb it  of sail I  th e  

spacecra ft may be patched to a 12.01 day Keplerian ellipse w ith a
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perigee d istance of 24.85 R0, tak in g  th e  payload th ro u g h  the  bow 

shock region. However, un like  conventional ba llis tic  tra je c to rie s  the  

orien tation  of th e  e llipse may be chosen so th a t th e  polar o r equatorial 

regions of th e  near E arth  tail are  tra v e rs e d . That is, by sw itching  

the  sail a ttitu d e  into a null o rien tation  as th e  spacecraft passes 

th ro u g h  the  ec lip tic  plane the  o rb ita l plane of th e  resu ltin g  ellipse will 

be normal to the  eclip tic . S im ilarly by sw itch ing  the  sail a ttitu d e  a t 

the  upper a rc  of th e  halo o rb it the  line of nodes of the  resu lting  

ellipse will lie in th e  eclip tic  plane. T h ere fo re , observations of 

sections of th e  geomagnetic tail may be made. As w ith the  heliocentric  

case, at th e  completion of the  fu ll mission th e  two sp acecraft may be 

re tu rn ed  to low E arth  o rb it.

Not only can investigations of the  geomagnetic tail be made using  

geocentric halo o rb its  but the magnetic ta ils  o f o th e r planets can be 

investiga ted , w ith su b stan tia lly  lower sail loadings. Furtherm ore , by 

using a solar sail on an o ff-a x is  halo o rb it  in combination with a 

sp acecraft o rb itin g  on a low a ltitu d e  polar e llipse real time 

stereograph ic  imaging of a p lanetary  su rface  may be made. 

Displacement distances of several thousand kilom eters are  requ ired  fo r  

a large  re la tiv e  v iew ing angle between th e  two spacecraft. Therefo re, 

th is  application is extrem ely demanding fo r  th e  geocentric  case but is 

achievable fo r  o th e r in n e r solar system bodies.

7.3 Three-B odv S ta tio n ary  Solution Applications

The th re e -b o d y  dynamics of solar sail spacecraft in the  

E arth -S u n  and Earth-M oon systems were discussed in ch ap ter 6. I t  

was shown th a t fo r  th e  E arth -S u n  system s ta tio n ary  solutions exist 

around th e  classical Lagrange points. For th e  Earth-M oon system no
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t ru ly  time independent s ta tio n ary  solutions exist. However, w ith small 

trim s in the  sail loading s h o rt duration  stays were shown to  be 

possible. These s ta tio n ary  solutions have potential applications fo r  

small space science missions and fo r  the  staging of large  

in te rp la n e ta ry  missions.

7.3.1 S ta tionary  Solutions in th e  E arth -S u n  System

For in te rp lan e ta ry  solar sail missions a large frac tion  of th e  total 

tra n s fe r  time is contained in th e  in itia l and final p lanetocentric  sp ira ls  

to  and from  low p lanetary  o rb it  and escape. This element of th e  total 

tra n s fe r  time can however be elim inated by p ark in g  th e  solar sail near 

th e  p lan etary  L2 point on a level surface  of constant sail loading  

equal to  the  total sp acecraft loading. At th e  end of an in te rp la n e ta ry  

t ra je c to ry  the  spacecraft would tra n s fe r  its  payload to a low p lan etary  

o rb it  w ith an impulse from  a chemical motor with space storab le  

prope llan ts , F igure  7.5. From an o u t-o f-p la n e  s ta tio n ary  point high  

p lan etary  la ttitu d es  may be easily reached fo r  surface  landers. For 

conventional schemes th e  payload is in jected  into a p lan etary  p ark in g  

o rb it  in the  eclip tic  plane. To reach th e  p lanetary  polar regions then  

re q u ire s  large  plane changes and so a large  Av maneouvre. 

Furtherm ore , the  window fo r  tra n s fe r  to the  p lan etary  surface  is 

alw ays open from a s ta tio n ary  point. For a p ark ing  o rb it  th e  window  

occurs only tw ice per p lan etary  day when th e  park in g  o rb it  crosses  

th e  landing site.

The solar sail p a rk in g  scheme also allows th e  sail to  be optim ally  

designed fo r  in te rp la n e ta ry  space. P lanetocentric  sp ira l tra je c to rie s  

re q u ire  large  a ttitu d e  tu rn in g  rates which puts demands on th e  sail 

s tru c tu re  and a ttitu d e  control mechanisms. S im ilarly , fo r  sample
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F ig u re  7.5
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Ecliptic Planex

Schematic p ro file  o f a Mars mission using a rtif ic ia l s ta tio n ary  point 

stag ing . The payload is tra n s fe rre d  to low a p lan etary  o rb it  o r to the  

p lan etary  su rface  from  a level surface near th e  L2 point using two  

impulses A vl>2.
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re tu rn s , if th e  sample was tra n s fe rre d  to the  parked sail by chemical 

means th e  long spiral out of th e  p lan et’s g ra v ity  well could be 

avoided. A fte r the  in itia l payload drop to the  p lanetary  surface  the  

sail would have an increased loading and so would be stationed on a 

level surface  closer to the  p lanet to aw ait th e  sample re tu rn  from  the  

p lan etary  surface. Of course, th e re  is a mass penalty  imposed due to  

th e  need fo r  propellan t to be tra n s p o rte d  to  the destination. However, 

th e  shortened total mission duration  may more than compensate.

At the  E arth -S u n  L j point a num ber of spacecraft, such as 

IS E E -3 , F arq u h ar (1980), have been, o r will be, positioned fo r  solar 

observations and fo r 'u p w in d ’ observations of the  solar wind to be 

combined with data from  near E arth  o rb itin g  spacecraft. However, 

spacecra ft positioned d ire c tly  a t th e  point would appear in the  

c en tre  o f the  solar radio  disk when observed from Earth and so would 

be unable to make data re tu rn s . This problem is overcome however 

by fo rc in g  th e  spacecraft to  execute a ballis tic  Lagrange point halo 

o rb it. This highly unstable tra je c to ry  is a periodic o rb it normal to  

th e  ec lip tic  plane so th a t, when viewed from Earth , the  spacecraft 

appears to o rb it around the  solar radio  disk allowing data re tu rn s . 

To m aintain the  Lagrange point o rb it  however req u ires  re g u la r  

s ta tio n -keep in g  m aneouvres so th a t th e  on-bo ard  p rope llan t mass 

ultim ately  determ ines the  mission lifetim e.

Using a re la tive ly  small sail a payload could be positioned at the  

\_1 point, but simply displaced above the  ec lip tic  plane to avoid the  

solar radio  disk. At a distance o f 1.2x10s km above the  ec lip tic  plane  

and 7.2x104 km sunw ard of th e  L t point a minimised total spacecraft 

mass per u n it area of 205 gm "2 is re q u ire d . For a low perform ance  

sail o f 5 gm“ 2 and a 103 kg payload only a small 70x70 m square sail
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is req u ired . A tra d e -o ff  between payload mass, sail area and the sail 

total mass per u n it a rea  is shown in F igure  7.6. I t  can be seen th a t  

fo r  low payload masses extrem ely small sails a re  req u ired . Since 

s ta tio n -keep in g  may be perform ed using trim s on th e  sail a ttitu d e  no 

prope llan t is req u ired  and th e  mission lifetim e is limited only by the  

lifetim e of the  payload and th e  sail. This is also of im portance fo r  

potential payloads as chemical exhaust plumes may c o rru p t solar 

spectral data. Since th e  solar sail is s ta tio n ary , instrum ent pointing  

can be achieved more easily than  w ith an o rb itin g  ba llis tic  spacecraft. 

Furtherm ore , the  sp acecra ft position and velocity  may be determ ined  

with g re a te r accuracy, as would be req u ired  fo r  accurate  doppler 

observations of spectra l lines, such as those to  be carried  out by the  

Soho spacecraft, Domingo et. al (1985).

O ther space science missions u tilis in g  th re e -b o d y  solar sail 

sta tio n ary  solutions would re q u ire  a solar sail to  be stationed near the  

l_2 point to in ves tig a te  th e  fa r  regions of th e  geomagnetic ta il. Since 

the  sail would be s ta tio n ary  temporal and spatial varia tio n s  in the  

observations may be de-convo lved. The fu ll three-d im ensional 

s tru c tu re  o f th e  ta il may then be investigated  by tra n s fe rr in g  from  

in -p la n e  to o u t-o f-p la n e  s ta tio n ary  points. F ina lly , applications fo r  

communications purposes have been made by Forw ard (1991) as an 

extension of th e  's ta t ite ’ concept, as discussed in section 1.5.3, to 

large  geocentric d istances where a fu ll th re e -b o d y  analysis is 

req u ired .

7.3.2 S ta tionary  Solutions in th e  Earth-M oon system

The stag ing  scheme proposed in section 7.3.1 may also be applied  

to  th e  Earth-M oon system. To reduce long s p ira llin g  times from  low
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F ig u re  7.6
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S u rface  of payload mass (k g ) as a fu n ctio n  o f th e  sail area  (m2 ) and 

th e  sail to tal mass per u n it area  (gm - 2 ).
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Earth  o rb it to low lu n a r o rb it  th e  sail may be parked on a suitab le  

level surface of constant sail loading near th e  lu n ar L1>2 points. 

T yp ica lly , a total spacecra ft mass p er un it area  of 3 gm“2 is requ ired  

fo r  th e  level surfaces a t these points. Small trim s in th e  sail loading  

may be used to compensate fo r  the  motion of the  S u n -lin e . The 

payload would then be tra n s fe rre d  to  low lu n ar o rb it by an impulse 

from  a chemical motor using space storab le  propellants . From a 

s ta tio n ary  point out o f th e  plane of the  system regions of high lunar  

I a ttitu d e  are easily accessible.

The lu n ar L2 point has been proposed as a location fo r  repeater  

stations fo r  lu n ar fa r -s id e  communications. Such a communications 

path is essential fo r  any fu tu re  sc ien tific  investigation  and utilisation  

of th e  lunar fa r -s id e . In  o rd e r th a t both th e  lu n ar fa r -s id e  and the  

E arth  are  v is ib le  from th e  rep ea te r, the  spacecra ft must be forced to  

follow a ballis tic  Lagrange point halo o rb it, as discussed in section  

7.3.1. A lte rn a tive ly  th e  rep ea te r may be displaced from  th e  L2 point 

out o f the  plane of th e  system using a low th ru s t  propulsion system, 

Von bun (1968). The lifetim e o f th e  spacecraft is again d ictated by the  

onboard p ropellan t mass. A s im ilar scheme is also possible using the  

solar sail Lagrange point halo o rb it  discussed in section 6.9. With an 

o u t-o f-p la n e  displacem ent d istance of 3.5x10 3 km both the  lunar  

fa r -s id e  and th e  E arth  are  v is ib le  from the  solar sail halo o rb it. The 

in -p la n e  motion takes th e  spacecra ft 1.1x104 km from  th e  L 2 point so 

th a t it moves in a 20° a rc  about th e  position of th e  L2 point in the  

lu n ar sky with a period o f 29.53 days. The sail position in th e  sky is 

th e re fo re  re la tiv e ly  constant when viewed from  th e  lu n ar surface. 

Since no prope llan t is req u ired  th e  rep ea ter lifetim e is lim ited only by 

th e  lifetim e o f th e  payload and the  sail. The req u ired  sail
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c h a ra c te ris tic  acceleration of 0.2 mms"2 corresponds to a total 

spacecra ft mass per u n it area of 46 gm“ 2. T herefo re , even fo r  a low 

perform ance sail w ith a total mass per u n it area  of 5 gm“ 2 a 103 kg 

payload may be deployed using a re la tiv e ly  small 158x158 m square  

sail.

7.4 Conclusions

I t  has been shown th a t solar sail spacecra ft o ffe r  o p portu n ities  

fo r  un ique space science missions both in geocentric and heliocentric  

space. O bservations of solar active  regions by synchronously o rb itin g  

solar sails and investigations of th e  fu ll th ree-d im ensional s tru c tu re  of 

the  solar m agnetic fie ld  using he liocentric  halo o rb its  are possible. 

S im ilarly , fo r  geocentric halo o rb it  missions unique investigations of 

the  geomagnetic ta il are possible.

Along with pure  space science missions th e  a rtific ia l th re e -b o d y  

s ta tio n ary  solutions may be used fo r  th e  staging of in te rp lan e ta ry  

tra n s fe rs . By elim inating th e  final p lanetocen tric  spiral sh o rte r total 

tra n s fe r  times appear to be possible as do lower mass sail designs, 

configured  fo r  in te rp lan e ta ry  f l ig h t only. O ther applications fo r  

communications purposes are  possible w ith solar radio disk avoidance  

at th e  E arth -S u n  point and lu n ar fa rs id e  communications at th e  

Earth-M oon L 2 point.

The unique aspect of many of these missions is a prim ary  d r iv e r  

fo r  th e  adoption o f solar sailing fo r  an actual mission. For example, 

only a solar sail spacecraft can make t r u ly  continuous o u t-o f-p la n e  

observations of th e  Sun using a he liocentric  halo o rb it. O ther low 

th ru s t propulsion systems can achieve such a tra je c to ry  but have a 

lim ited mission lifetim e due to th e ir  f in ite  onboard prope llan t mass.
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T h erefo re , if such an o u t-o f-p la n e  mission was in fa c t sc ien tifica lly  

desirab le  the  only v iab le  option would be to  use solar sail spacecraft.



260

8. CONCLUSIONS AND FUTURE PROSPECTS

8.1 Review

The o b jec tive  of th is  thesis  has been to dem onstrate th a t solar 

sail spacecra ft may execute unique, advanced tra jec to rie s  which have  

potentia l applications fo r space science missions. The various fam ilies  

of tra je c to rie s  have been investigated  and th e ir  s ta b ility  

c h arac te ris tics  s tud ied . Although larg e  sub-fam ilies  of unstable

tra je c to r ie s  were found to exist simple control schemes have been 

developed to ensure asym ptotic s ta b ility . These fam ilies of advanced  

tra je c to r ie s  have also been extended by patching ind ividual 

tra je c to r ie s  together.

A detailed model o f th e  solar rad iation  pressure  exerted on a

p lan ar solar sail has been constructed  in ch ap ter 3 by considering th e  

Sun as an extended source o f rad ia tion . The resu lting  form  of th e  

solar rad iation  pressure  is found to  devia te  from  the  inverse  square  

form  assumed in all p revious s tud ies of solar sail dynamics. This  

deviation  leads to in s tab ilities  fo r  solar sails in s ta tio n ary  and c irc u la r  

o rb ita l configurations. This is o f p a rtic u la r im portance fo r  

heliosynchronously o rb itin g  and polar stationed spacecraft. The e ffe c t 

of tem poral varia tions  of th e  solar lum inosity has also been 

in ves tig a ted . By modelling th e  varia tio n s  w ith a simple sinusoidal 

function  M athieu’s equation was obta ined, with its well known 

conditions fo r  s ta b ility  and in s tab ility .

Following the  investigation  of polar stationed and

heliosynchronous o rb its  th e  he liocentric  halo o rb it  was developed in

c h ap ter 4. By p itch ing  th e  sail such th a t a component o f th e  solar 

rad ia tion  p ressure  force was d irec ted  ou t o f the  o rb ita l plane, a
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displaced, o u t-o f-p la n e  c irc u la r  o rb it was obtained. The geometry and 

period of th e  halo o rb it  were found to be a function  of th e  sail 

loading param eter and th e  Sun-sail pitch angle. These functional 

re lationships were obtained by considering the  halo o rb it  to be a 

sta tio n ary  solution to the  dynamical equations in a co -ro ta tin g  

re ference  fram e with an a rb it ra ry  co -ro tation  period. Extensions of 

the  heliocentric  halo o rb it  were obtained by patching fo u r  

perp en d icu lar halo o rb its  to g e th er to  form a 'cu b ic ’ tra je c to ry  and by 

patching to a ba llis tic  Keplerian o rb it. By using a linear pertu rb a tio n  

analysis stable and unstable fam ilies o f halo o rb its  were iden tified . 

For the  unstable fam ilies a simple feedback control to  th e  sail pitch  

was found to ensure asym ptotic s ta b ility . However, by allowing small 

trim s in the sail loading param eter s h o rte r damping timescales were  

obtained.

Using a s im ilar c o -ro ta tin g  re ference  fram e analysis the  

geocentric halo o rb it  was developed in ch ap ter 5. By again d irec ting  

a component of th e  solar radiation  pressure  fo rce  out of th e  orb ita l 

plane, a displaced o u t-o f-p la n e  c irc u la r o rb it  was obtained. I t  was 

dem onstrated th a t geocentric  halo o rb its  may be patched to g e th er or 

patched to ba llis tic  Keplerian o rb its  to form  complex new tra jec to rie s . 

The annual rotation of the  S u n -lin e  was shown to induce periodic  

p ertu rb a tio n s  which excited the  unstable modes of the  unstable halo 

o rb it fam ily. However, a simple feedback control was shown to  

stab ilize  these o rb its .

The extension from  tw o-body to th re e -b o d y  dynamical systems 

was made in ch ap ter 6 w here a rtific ia l s ta tio n ary  solutions in the  

E arth -S u n  and Earth-M oon systems were in vestig ated . By again 

considering s ta tio n ary  solutions in a c o -ro ta tin g  re fe ren ce  fram e
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extensions of th e  fiv e  classical Lagrange points were obtained fo r  the  

E arth -S u n  system. Rather than  ind iv idua l s ta tio n ary  points, extended  

surfaces around th e  classical Lagrange points were found to exist. I t  

was then dem onstrated th a t these new s ta tio n ary  solutions are  

unstab le, bu t th a t it was in p rin c ip le  possible to  obtain s tab ility  using  

a general feedback control to th e  sail a ttitu d e . S im ilarly, in the  

Earth-M oon system sta tionary  solutions were obtained by trim m ing the  

sail loading param eter to compensate fo r  th e  motion of the S u n -lin e  

d u rin g  th e  synodic lunar month. At th e  lu n ar L2 Lagrange point 

an o th er period ic  o u t-o f-p la n e  tra je c to ry  was found by linearis ing  the  

dynamical equations about th is  point. The in h eren t in s tab ility  of th is  

t ra je c to ry  necessitates the  use of active  contro l.

F ina lly , in chapter 7 possible applications of these advanced  

tra je c to r ie s  were discussed. Several sc ien tifica lly  in teresting  missions 

were id en tified  and pre lim inary  stud ies o f th e  tra d e -o ff  between 

payload mass and sail design made. Using tw in  solar sails deployed  

on he liocentric  halo o rb its  stereoscopic solar observations were shown 

to be possible. S im ilarly , fo r  geocentric  applications a tw in solar sail 

mission fo r  geomagnetic tail observations was id en tified .

8.2 Dynamics and Control

The analysis o f the  various fam ilies o f solar sail tra je c to rie s  has 

assumed a p e rfe c tly  re flec tin g , p lanar sail. A lthough th is  is a su itab le  

approxim ation fo r  a f ir s t  o rd e r analysis any fu r th e r  detailed studies  

will re q u ire  an accurate  force  model. Such fo rce  models exist from the  

JPL comet Hailey design stud ies, however no such model exists fo r  

s ta te -o f - th e -a r t  solar sail design. T h ere fo re , a model of an advanced  

solar sail design w ith a lig h tw e ig h t s tru c tu re  and a low mass per u n it
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area  is req u ired . Using a f in ite  element simulation and estim ating real 

m aterial p roperties  a fo rce  model which includes detailed e ffec ts  such 

as therm al re-em ission and billow ing of the  sail shape may be 

obtained. S im ilarly , it has been assumed th a t the  sail a ttitu d e  may be 

controlled with exact precision. O ther simulations of th e  sail a ttitu d e  

control are th e re fo re  req u ired  to obtain a model of th e  responses to  

a ttitu d e  control commands and the  sta tic  pointing accuracy.

The dynamic models used fo r  the  heliocentric  halo o rb its  and 

th re e -b o d y  s ta tio n ary  solutions are  su itab le  and accurate. However, 

although the  annual rotation o f th e  S u n -lin e  has been included in the  

analysis of the  geocentric  halo o rb it dynamics, a more complete 

dynam ic model is req u ired . The S u n -lin e  ro tation , along with lunar  

and solar p ertu rb a tio n s  must be included in th e  dynamical equations  

and an asym ptotic series  solution obtained. By includ ing these  

p ertu rb a tio n s  th e  resu ltin g  deviations from th e  nominal displaced  

c irc u la r halo o rb it  may be more fu lly  understood. Using a more 

accurate  nominal tra je c to ry  a more ap p ro p ria te  control scheme may be 

designed with sm aller control accelerations.

The simple control schemes used with the  heliocentric  and 

geocentric halo o rb its  have been designed to dem onstrate th a t the  

unstable fam ilies o f these tra je c to rie s  may be contro lled . A more 

detailed and realis tic  control analysis is req u ired  which gives fa s te r  

damping ti mescal es and is designed fo r  specified accuracies. 

Furtherm ore , it was found th a t extrem ely accurate  sail pointing was 

req u ired  to generate  th e  necessary control accelerations. R ather than  

using the  e n tire  sail fo r  o rb it  control a separate  system of vanes  

would allow accurate  o rb it  contro l, with the  main sail used only fo r  

generating  th e  acceleration req u ired  to  establish th e  halo o rb it. Once
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deployed on th e  halo o rb it a lin ear q u ad ra tic  reg u lato r may be 

desirab le  fo r  s ta tio n -keep in g  purposes to minimise d r if t  of the  

spacecra ft from  the  nominal tra je c to ry . However, to p reven t 

continuous sail a ttitu d e  trim m ing, a control w ith positional deadbands  

may be req u ired . The size of th e  deadbands would be dependent on 

the  s ta tio n -keep in g  accuracy req u ired  which in tu rn  is dependent on 

the  p a rtic u la r  mission being u n d ertaken .

A dynam ic problem related to  th e  th re e -b o d y  sta tionary  solutions  

is th a t of solar sail rendezvous. I t  was proposed th a t by stationing a 

solar sail sp acecra ft on a level surface  of constant sail loading long 

p lanetocentric  sp ira l times may be elim inated. However, fo r sample 

re tu rn  missions the  sail may be req u ired  to maneouvre to rendezvous  

with th e  payload re tu rn in g  from th e  p lan etary  surface. Such 

m aneouvres may be investigated  by a linearisation  of the  dynamical 

equations about th e  s ta tio n ary  solution. Optimal control techniques  

may then be applied to obtain time optimal rendezvous tra jec to rie s .

8.3 Mission Analysis

More detailed studies o f th e  tra d e -o ff  between the sail mass per 

u n it area, payload mass and sail area  are  req u ired . Then it will be 

possible to define more accurate ly  th e  range o f possible payload mass 

th a t may be in jected  onto heliocentric  and geocentric  halo o rb its  with  

various o rb ita l param eters. To define such a range of payload mass 

how ever, req u ires  an estimate o f c u rre n tly  ach ievable  sail material and 

s tru c tu ra l mass per u n it areas. S im ila rly , th e  investigation  of 

potential space science missions will be req u ired  to define the  

necessary geocentric  and heliocentric  halo o rb it  param eters. This then  

defines the  req u ired  sail loading and so defines th e  requ ired  range of



265

payload mass. T herefo re , fo r  a given mission a final sail design may 

be iterated  to between th e  bounds imposed by th e  scientific  

requirem ents and the  technological constrain ts .

The th re e -b o d y  stag ing  techn ique fo r  sample re tu rn s  req u ires  a 

global optim isation s tudy to minimise the  total mission duration  fo r  a 

given payload. That is, the  ind iv idua l elements of th e  mission may be 

optimised but th is  is not necessarily eq u iva len t to optim ising the  

e n tire  mission. The main param eter fo r  such a mission is th e  mass of 

the  re tu rn ed  sample. T h ere fo re , th e  surface sample mass must be 

investigated  as a function  of th e  total mission duration  and the  sail 

design.

For a given mission th e  sc ien tific  payload will have a requirem ent 

fo r  a certa in  accuracy fo r  th e  instrum ent pointing and fo r  o rb it  

s ta tio n -keep in g . While accurate  payload pointing may be accomplished 

by a separate payload a ttitu d e  control mechanism th e  requ ired  

sta tio n -keep in g  accuracy determ ines the req u ired  accuracy of the  

solar sail o rb it control scheme. For certain  typ es  of instrum entation , 

such as magnetometers and p artic le  flux  detectors, th e re  is little  

pointing accuracy re q u ired . However, fo r optical o r x -ra y  detectors  a 

high pointing accuracy may be req u ired .

O ther mission analysis requirem ents fo r  a solar sail mission are  

sim ilar to those fo r  conventional space science missions. The therm al 

control of the  payload is o f im portance fo r  close heliosynchronous  

missions as is e lec tro s ta tic  charg ing  fo r  geomagnetic ta il missions. 

Furtherm ore , fo r  a chosen set o f onboard experim ents th e  total power 

budget must be calculated which then defines th e  area o f th e  solar 

a rra y . S im ilarly , the  te lem etry  ra te  fo r data re tu rn s  defines the  size 

of th e  communications dish and o th e r param eters of th e  link  budget.
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8.4 Recommendations

Before any advanced solar sail tra je c to ry  may be utilised fo r  an 

actual mission a high perform ance solar sail w ith a dimensionless sail 

loading param eter o f o rd e r u n ity  must be designed. The c u rre n t level 

of th in  film  technology and large  space s tru c tu re  design must be 

assessed so th a t an estimate o f sail m aterial and s tru c tu ra l mass per 

u n it areas can be obtained. Only when an advanced, realis tic  sail 

design has been developed can th e  s tud ies discussed in sections 8.2 

and 8.3 be u n d ertaken .

A nother necessary requ irem ent fo r  th e  u tilisation of these  

advanced tra je c to r ie s  is an actual f l ig h t  dem onstration of solar sailing. 

Such a dem onstration is requ ired  to va lid a te  designs and to f lig h t tes t 

sail m aterials and o th e r hardw are. Such a dem onstration has been 

p a rtia lly  u n dertaken  with the te s t o f samples of sail material onboard  

th e  Soviet Almaz sate llite , S h v a rtzb u rg  (1991). I f  a small f l ig h t tes t of 

solar sailing is u n dertaken  then th e  unique aspects of the advanced  

solar sail tra je c to rie s  investigated  in th is  thes is  may be a prim ary  

d r iv e r  fo r the  adoption of solar sailing fo r  an actual mission.
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APPENDIX A. RADIATIVE TRANSFER

A.1 Specific In te n s ity

For a to ta lly  general rad iation  fie ld  the  p roperties  of th e  fie ld  

are  a function  of both position and time. Furtherm ore , a t a p a rtic u la r  

position w ithin th e  rad iation  fie ld  th e  properties  have a d is trib u tio n  in 

direction  and freq u en cy . The p ro p erties  of a radiation fie ld  may be 

completely described in a macroscopic sense by the  specific  in ten s ity

of th e  fie ld . The specific  in ten s ity  I v ( r , n ; t )  of the  radiation at

position r  and time t  propagating  in d irection  n with freq u en cy  v is 

defined to be the en erg y  dE tran sp o rted  across a d irected  surface  

element dA in time d t in to  a solid angle dG about d irection  n in the  

freq u en cy  range (v ,v+dv), v iz

dE = I v ( r , n ; t )  (n.dA)dGdtdv (A .1 )

w here n.dA is th e  pro jected  surface  area normal to th e  d irection  of 

propagation n.

From a microscopic p ersp ective  the  radiation fie ld  is composed of 

ind iv idual photons which may be described by the  photon num ber 

density  function 4 v (r >n ;t)- This function  is defined such th a t  

4V (r,n ;t)d ftdv  is the  num ber of photons per u n it volume at position r  

at time t  and in a freq u en cy  range (v,v+dv) propagating w ith speed c 

into a solid angle dO about d irection  n. Therefo re , th e  num ber of

photons crossing a su rface  element dA in time d t is g iven by

4v(r,n ;t)(n .d A )d G d v(cd t). Since each photon has energy  hv, w here h is 

th e  Planck constant, th e  en erg y  tran sp o rted  is given by

dE = chv 4 v C r ,n ; t )  (n.dA)dOdtdv (A .2)
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Comparing equations (A.1) and (A .2) it is c lear th a t the  specific  

in ten s ity  is re lated to the  photon num ber density  function  by

I v ( r , n ; t )  = chv 4 v ( r ,n ; t )  (A .3)

The photon num ber density  function  may then be related to the  

photon d is trib u tio n  function  *Py(r,n;t). This function  is defined such 

th a t th e  num ber o f photons per u n it volume in frequency  range  

(v,v+dv) and w ith momenta in th e  range (p ,p +d p ) is given by 

^ y (r ,n ;t)d 3p, w here p = (h v /c )n  is th e  photon momentum. Using the  

re lation d 3p=p2dpdfl and equating photon num bers in a u n it volume of 

space using th e  functions  ty ( r ,n ; t )  and ^ ( r ^ t )  it is found th a t

^ v ( r ,n ; t )  dvdG = 4 *y (r ,n ; t )  dvdG (A .4)

T h erefo re , th e  specific  in ten s ity  of th e  rad iation  fie ld  is given in 

term s of the  photon d is trib u tio n  function  as

I v ( r , n ; t )  = { ~ r “} M r . n j t )  (A .5)

For a black body radiation fie ld , as th e  Sun may be assumed to  

be, th e  photon d is trib u tio n  function  is a time independent, 

homogeneous and isotropic scalar function

%  = p  <e(h v /k t )  -  1> (A .6)

such th a t Iy  is sim ply the  Planck function . T h ere fo re , by knowing the  

photon d is trib u tio n  function  of the  rad iation  fie ld  and s °  the  

specific  in te n s ity , th e  p roperties  of th e  e n tire  black body radiation  

fie ld  are  known. These derived  quantities , such as th e  flu x  and the
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rad iation  pressure tensor, may be calculated by tak in g  angu lar

moments o f the  specific  in ten s ity .

A.2 Conservation of Specific  In te n s ity

A useful p ro p erty  o f the  specific  in ten s ity  function is th a t, fo r  a 

time independent radiation fie ld  propagating  in a vacuum , it is a

conserved q u an tity  along th e  d irec tion  of propagation.

Consider now radiation  propagating  in d irection n a t positions r  

and r+ ln , and so at times t  and t+ ( l /c ) .  At position r  th e  num ber of 

photons crossing surface  element dA i in time d t into solid angle d ^

in th e  frequency  range (v ,v+dv) is given by c ^ v (r,n ;t)d A 1d 01dtdv.

S im ilarly , the  number o f these photons dNx which also cross surface  

elem ent dA2 at r+ln must be contained w ithin a solid angle dA2/ l 2, v iz

dNi = c ^ v (r >n ; t )  dA1(dA2/ l 2 )d td v  (A .7)

At position r+ ln  the  num ber of photons dN2 crossing surface  element 

dA2 which have also crossed surface  element dAx must be contained  

w ith in  solid angle d A ^ I2, v iz

dN2 = c '+ v ( r + ln ,n ; t+ ( l /c ) )  dA2 (dA1/ l 2 )d tdv  (A .8)

Since no photons have been created o r destroyed between r  and r+ln  

th e  num ber of photons must be conserved so th a t dN i=dN 2. 

M u ltip ly in g  each side of equation (A .8) by hv it is th e re fo re  found  

th a t

I y ( r , n ; t )  = I v ( r + 1 n ,n ; t + ( l /c ) )  (A .9)

so th a t th e  specific in ten s ity  is conserved along the  d irection  of
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propagation of th e  rad ia tion . As a consequence of th is  conservation  

the  value of I v (r ,n ; t ) ,  and so the  radiation fie ld  characteris tics , may 

be obtained from  remote measurements of th e  en erg y  fa llin g  in a given  

time on a known collecting area from a source subtending a known 

solid angle.

A.3 The R adiative Energy Flux and P ressure Tensor

The radiation  flu x  F (r ; t )  is defined to be th e  vector such th a t 

F (r;t).d A  gives th e  n e tt ra te  of flow of ra d ia tiv e  energy across a 

d irected  surface  elem ent dA in all frequencies . The ne tt number of 

photons crossing dA in u n it time and in th e  freq u en cy  range (v,v+dv) 

from ail solid angles is given by

Th erefo re , m u ltip ly in g  by hv th e  monochromatic ra d ia tiv e  energy flux  

is obtained. Using equation (A .3), so th a t I v (r ,n ;t)= c h i* lv (r ,n ;t) , and 

in teg ra tin g  o ver th e  e n tire  freq u en cy  spectrum  equation (A .10) may be 

w ritten  as

The radiation pressure tensor, or radiation stress tensor, P(r;t) 

is defined such that pU is the nett rate of transport, per unit area of 

surface oriented normal to jth  coordinate axis, of the i**1 component of 

momentum. The number of photons with frequency v propagting in 

direction nJ and crossing unit surface area in unit time is c4v(r,n;t)nJ 

with each photon transporting momentum (hv/c)n* in the ith  direction.

N = { 0 c ^ v (r ,n ;t)  n dfldv J .  dS (A .10 )
4T7

F ( r ; t )  = 0 I y ( r , n ; t )  n dOdv (A .11)
O J 47T
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T h ere fo re , in teg ra tin g  o ver all solid angles th e  monochromatic radiation  

pressu re  tensor is obtained as

P y i ^ ( r ; t )  = 0 M V ( r , n ; t )  {“ ? “ ) (cnJ) da (A .12)
477

However, from  equation (A .3) I v (r ,n ;t)= c h W v (r ,n ;t)  so th a t by 

in te g ra tin g  o ver the e n tire  freq u en cy  spectrum  equation (A.12) may be 

w ritte n  in dyadic form as

P ( r ; t )  = ^
O

1 I v ( r , n ; t )  nn dOdv
47T

(A .13)

T h ere fo re , fo r  a given specific  in ten s ity  equation (A.13) may be used 

to  obtain the  radiation p ressure  at any point and in any d irection  in

th e  rad iation  fie ld . Fu rth erm o re , by knowing th e  surface geometry of

any body placed w ithin th e  rad iation  fie ld  the  resu lting  radiation

pressu re  fo rce  exerted on th e  body may be obtained.
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APPENDIX B. REFERENCE FRAMES

B.1 In e rtia l Systems

Consider a system of n in te rac tin g  partic les  in an inertia l 

re ference fram e I. By Newton’s second law th e  force exerted on the  

jth  p artic le  o f mass mj a t position rj  may be w ritten  as

f j  = mj , r j  6 R3 ( j=1 ,n ) (B .1 )

The total mass M of th e  system may be w ritten  as

M = ^  mj ( B . 2)

j  = i

S im ilarly , the  c en tre  o f mass R of the  system of partic les  may be 

defined in th e  in e rtia l fram e I  as

n
E m-sTi

j = i  J J
R = — n  (B.  3 )

E m-j 
J = i

I f  equation (B .1) is now summed over all the  n partic les  of the  system  

it is found th a t

I - j  =  I fieX +  5  l f U 1 n  ( B ' 4 )
j = l  j = l  1=1 j= l

where f j ex (j= 1 ,n ) a re  th e  external forces applied in th e  in ertia l fram e  

I  and f j j ' n ( i,j= 1 ,n ) a re  th e  in ternal in teraction  forces between the  i 

and j'th partic les . However, by Newton’s th ird  law f j j in = - f j j in (i,j= 1 ,n )  

so th a t the  last term  of equation (B .4) vanishes. T h ere fo re  if the
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system is isolated, so th a t th e re  are  no external forces acting on the  

system , equations (B .3) and (B .4) g ive

where R01 and R02 are  constants of th e  motion. Therefore, the  cen tre  

of mass of th e  system moves with constant velocity  with respect to the  

in e rtia l fram e I.

A Galilean transform ation  R’=R -(R 01+R02t )  may then be used to  

tran sfo rm  to a new inertia l fram e i ’ so th a t the  centre  of mass of the  

system now lies at the  o rig in . I f  r ’ j is the  position vector of the  

p a rtic le  with respect to the  cen tre  of mass of the  system then  

r j= R ’+ r ’j so th a t dynamical equations become

T h ere fo re , tak in g  r ’=0 th ro u g h  th e  Galilean transform ation  the  

dynamical equations of th e  system may be form ulated in an inertia l 

fram e with an o rig in  at the cen tre  of mass.

B.2 Rotating Systems

Although Newtonian dynamics applies in pure ly  in erita l re ference  

fram es, ro ta ting  systems re q u ire  th e  use of n o n -in ertia l re ference  

fram es. In  such fram es th e  dynamical equations contain additional 

'in e rtia l fo rces ’ due the  n o n -in e rtia l n a tu re  o f the  system.

Consider a coordinate fram e S which rotates with an angu lar  

veloc ity  Cl about an a rb it ra ry  d irection  n with respect to the  in ertia l 

fram e I. For a p artic le  P w ith position vecto r r  fixed in S the  

infin itesim al change in r  w ith respect to I  d u rin g  a rotation of se is

M d2R -  0 ^ R — Rqj + Rq2^ (B. 5)d t

(B. 6)
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given by se(nxr) .  I f  th e  p a rtic le  position vecto r r  also changes in the  

ro ta ting  fram e d u rin g  th e  infinitesim al ro tation , th e  total change in 

position measured in th e  in e rtia l fram e I is given by

Sr|-j = s r | s + sen x r  (B.7)

Therefo re , given th a t & = (d e /d t), the ra te  of change of r  in I  is 

obtained from the  lim it o f S r /S t as st-K), v iz

S t ' S * ” -'- • (39- <»•*>
w here the partia l d e r iv a tiv e  is evaluated in th e  ro ta tin g  fram e S and 

the fu ll d e riv a tiv e  in th e  in ertia l fram e I.  I f  equation (B .8) is now 

w ritten  as an o p era to r from  th e  ro tating  fram e to  the  in ertia l frame, 

acting on an a rb it ra ry  vec to r, v iz

^  ( * )  = ( * )  + o  X ( * )  (B .9)

Then, the  in ertia l acceleration may be obtained from

a? (39 ■ j! (39 *»«(39 <>•■«>
Therefore , su b s titu tin g  equation (B.8) in equation (B .10) and collecting  

term s the acceleration, as observed from th e  in e rtia l fram e, is given  

by

^ j r  = + 20 x x r  + O x (O x r )  CB. 11)

For uniform  rotation  (3O /3t)=0  so th a t th e  tra n s v e rs e  acceleration term  

vanishes. The rem aining term s are then th e  p a rtic le  acceleration in
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th e  ro ta tin g  fram e, the corio lis acceleration and the  cen trifu g a l 

acceleration respective ly . T h erefo re , fo r  a p artic le  of mass m the  

dynamical equation in the ro ta ting  fram e S is given by

+ 20 X  §£ + a X  (O x r) = I } f j  (B.12)
j = l

w here th e  external forces f j  ( j= 1 ,n ) exerted on partic le  P are applied  

from  th e  in ertia l fram e I.



APPENDIX C. DYNAMICS AND CONTROL OF LINEAR SYSTEMS

C.1 Solution of L inear Systems

Many natura l and a rtific ia l systems may be described in term s of 

systems of linear o rd in a ry  d iffe re n tia l equations. More often  though  

systems of n o n -lin e ar d iffe re n tia l equations are  requ ired  to fu lly  

define the  dynamics. However, once a p a rtic u la r solution of the  

n o n -lin ear system is known th e  dynamics in the  neighbourhood of th is  

solution may be described by a linear system.

For a general n o n -lin e a r n-dim ensional dynamical system with a 

state  vector X and in p u t vecto r U the dynamical equation may be 

w ritten  as

gjr = F (X ,U ;t )  , X 6 Rn (C .1 )

I f  a p a rticu la r solution X * exists with a piecewise continuous in p u t U *  

equation (C .1) may be linearised about th is  solution. New variab les  in 

the  neighbourhood of X * may be defined as X=X*+x and U=U*+u. 

Therefore , the  non linear system may now be w ritten  as

+ j  j r  xo + j  j y  | g j |  c c . 2 )
j=1 X=X*, u=u* j=1 x=x*, u=u*

I f  |x I and |u |<1  then  all th e  term s of o rd e r two or g re a te r may be 

ignored in equation (C .2) so th a t a lin ear varia tional system is 

obtained, v iz
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with A th e  system m atrix and B th e  in p u t d is trib u tio n  m atrix. I t  

should be noted th a t if X * is a time v a ry in g  solution, ra th e r than a 

sta tio n ary  solution, then the  system and in p u t d is trib u tio n  m atrices  

will have tim e v a ry in g  coefficients. I f  however, X * is time 

independent, o r may be transform ed to  a time independent form using  

a su itab le  coordinate system, then equation (C .3) defines a set of f i r s t  

o rd e r lin ear, o rd in a ry  d iffe re n tia l equations w ith constant coefficients.

The s ta te  tran s itio n  m atrix * ( t 1,t0 ) fo r  equation (C.3) is defined  

by th e  m atrix d iffe re n tia l equation

= A ♦ ( ! ; ,  , t 0 ) , * ( t 0 , t 0 ) = I  (C .4)

so th a t ♦ ( t 1,t0 )= e A (t i- t0 ). The solution of equation (C.3) with a null

in p u t is then simply

x ( t x) = ♦ ( t 1 , t 0 ) x ( t 0 ) (C .5)

so th a t any in itia l s tate  vector may be propagated fo rw ard s  or 

backw ards in time once the  sta te  tran s itio n  matrix is known. 

Fu rth erm o re , with a non-zero  in p u t it may easily be shown th a t the  

general solution of equation (C .3) is given by

x ( t t ) = ♦ ( t 1 , t 0 ) x ( t 0 ) + • ( t l f T) B u ( t )  d t (C .6)

to

w here th e  in teg ra l term  in equation (C .6) represents  the  cum ulative  

e ffe c t o f th e  in p u t vector on the  system dynamics. Therefore , fo r  a 

known in p u t u (t ) ,  1o<t<ti and sta te  tra n s itio n  m atrix ♦ ( t 1,^ ) ) the  

solution o f th e  linear system is known.
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C.2 S ta b ility  Analysis

The s ta b ility  ch arac te ris tics  of linear dynamical systems may be 

classified according to th e  system eigenvalues which are  obtained from  

the  ch arac te ris tic  polynomial. S u b stitu tin g  an exponential solution of 

the  form x=Xoest into equation (C.3) with a null in p u t, a set of 

homogeneous lin ear equations are  obtained, v iz

( s i  -  A)x0 = 0 (C .7)

The n o n -tr iv ia l solution of equation (C .7) req u ires  th a t the  determ inant 

of th e  m atrix (s I-A )  vanishes. The resu lting  ch arac te ris tic  polynomial 

P(s)=0 is then of th e  form

X
P (s) = 2 An - j  sJ = Ao n ( s - s j )  , S j = O j  + iU j ( j= 1 ,n )  (C .8 ) 

j=o J" °

w here th e  fundam ental theorem  of a lg ebra  allows P(s) to  be w ritten  as 

th e  product of th e  complex roots sj (j= 1 ,n ). The form of th e  solution  

of th e  linear system, and so the  s tab ility  of th e  solution to the  

n o n -lin e a r system, can now be determ ined from th e  sign of O j=R e(s j) ,  

(j= 1 ,n ).

D efin ition  C.1 Unstable (o j>0)

A solution X * o f equation (C .1) is stable if

3n>0: |X ( t0 ) - X * ( t 0 ) |  < n *  11m | X ( t ) - X * ( t ) |  V X (t)  (C .9 )
t-*»

D efin ition  C.2 Asym ptotic S ta b ility  (o j<0)

A solution X * o f equation (C .1) is asym ptotically  stable if
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3n>0: IX ( t 0 ) - X * ( t 0 ) |  < n =» l im | X ( t ) - X * ( t ) l  = 0 V X (t) (C .10 )

Defin ition C.3 Lyapunov S tab ility  (Oj=0)

A solution X * of equation (C .1) is Lyapunov stable if

Vc>0 3S>0: IX ( t 0 ) - X * ( t 0 ) I  < S *  | X ( t ) - X * ( t ) |  < £  V X (t) (C .11 )

Along with these th re e  defin itions related to th e  sign of R e(sj) two

o th e r supplem entary defin itions are  used, v iz

Defin ition  C.4 Poincare S tab ility

Let S * be th e  phase tra je c to ry  o f X * ( t ) .  Then, X * (t)  is a 

Poincare stab le  solution of equation (C .1) if

Ve>0 3S>0: IX ( t 0 ) - X * ( t 0 ) I  < S *  sup d is t (X ,S * )  < e (C .12 )

w here th e  supremum of d is t(X ,S *) is th e  least, usually perpend icu lar  

distance, from X to th e  nearest point on th e  phase tra je c to ry  S*.

D efin ition C.5 M arginal In s ta b ility

A solution X * of equation (C .1) is m arg inally  stable if

VOO 3M>0: |X ( t 0 ) - X * ( t 0 ) |  < e *  | X ( t ) - X * ( t ) |  < Mt V X (t) (C .13 )

so th a t th e  in s tab ility  is res tric ted  to  linear grow th.

C.3 Feedback Control

For an unstable system a feedback control scheme may be 

developed to ensure  asym ptotic s ta b ility  by re la tin g  the input of the  

system to th e  o u tp u t in a feedback loop. However, it must f irs t ly  be
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dem onstrated th a t the  system may be controlled in such a manner.

Without loss of g en era lity  it may be assumed th a t x(to)=0 in 

equation (C .6 ). Then, w ritin g  th e  sta te  tran s itio n  m atrix as a power 

series, the  solution a t time tj, may be w ritten  as

r t i  »
x ( t i )  = (  ̂ B u(T) dT 

t 0 j=o
( C . 14)

Since the  system and in p u t d is trib u tio n  m atrices are  time independent 

equation (C.14) may be w ritte n  as

x ( t ! )  = ^ Wj (AJB)
3-o

where the  set of constant vecto rs  wj are defined by

( C . 15)

( t i - T ) j  , x ,
j i  U^T ) dT ( C . 16)

Th ere fo re , the  solution x ( t x) is a linear combination of th e  columns of 

th e  in fin ite  m atrix (B,AB, ). However, it may dem onstrated th a t

r (B ,A B ,. . . . , aN- 1B) = r (B ,A B ,. . . . ,An -1B) , VN>n (C .17 )

so th a t if r(B ,A B ,....,A n_1B)<n then a fu ll basis fo r  the  n-dim ensional 

sta te  space does not exist. Therefo re , owing to the  construction of 

th e  solution in equation (C .15) it can be seen th a t th e re  will be a t 

least one final s ta te  x * ( t i )  th a t cannot be atta ined.

D efin ition  C.6 C o n tro llab ility

The linear system (C .3) o f dimension n is completely contro llab le
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if  fo r  any given in itia l state Xq and final s ta te  x x th e re  exists a fin ite  

time t x and a piecewise continuous in p u t u (t) , t^t-C tj. such th a t  

x ( t i )= x 1. The condition fo r  complete co n tro llab ility  is then th a t the  

co n tro llab ility  m atrix C=(B,AB,....,An_1B) has fu ll rank, (a  rigorous  

proof is given by B arnett and Cameron (1985)).

Given th a t a system is completely contro llab le , feedback control 

may be used to ensure  asym ptotic s ta b ility  fo r  an unstable system. 

For a general o u tp u t vecto r y=Cx th e  in p u t vector may be w ritten  as 

u = K (r -y )  w here K is the  gain m atrix and r  is a re ference  inpu t which 

is to be tra c ke d . S u b s titu tin g  in equation (C .3) it is found th a t

3#  = (A -  BKC)x + BK r  (C .18 )d t

I f  th e  req u ired  system dynamics can be specified in term s of a new 

system m atrix A * then th e  requ ired  gain m atrix can be obtained as

K = B” 1(A -  A *) C~ 1 , detB *  0 , detC *  0 (C .19 )

w here the  condition detC *0 requ ires  th a t all of th e  state varib les  are  

known. T h ere fo re , by choosing the  new system m atrix A* to have 

eigenvalues which lie in the  le ft hand complex plane asym ptotic  

s ta b ility  can be ensured. The requ ired  gain m atrix is then obtained  

from  equation (C .19) as a function  of th e  new and old system matrices.
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