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To Karen, for the final chapter
and my parents for the

opening pages



"Our traveiler knew marvellously the laws of gravitation, and all
the attractive and repulsive forces. He used them in such a timely
way that, once with the help of a ray of sunshine, another time
thanks to a cooperative comet, he went from globe to globe, he and

his kin, as a bird flutters from branch to branch.”

Voltaire - Micromegas, 1752




Frontispiece An artist’s impression of an 800x800 metre <solar sai\.
designed in 1977 by NASA’s Jet Propuision tLaboratory for a mission to
rendezvous with comet Halley. The sail is shown fully depicyed after
being transported into Earth orbit by the shuttle orbiter. Reflective
vanes at the corners of the sail are used to dgenerate torques to

control the attitude of the spacecraft, (NASA).
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PREFACE

The concept of solar sailing is by no means a recent innovation,
having its origins in the writings of the Soviet pioneers of
astronautics of the 1920s. The idea has been subject to detailed
engineering scrutiny during design studies in the 1970s for a
proposed rendezvous mission to comet Halley. Having been verified as
a technologically viable means of spacecraft propulsion, solar sailing
has matured to the extent that contemporary solar sail designs have
the potential of remarkable performance.

With such high performance spacecraft, advanced new trajectories
are attainable with unique applications for space science missions.
The dynamics and applications of such trajectories are investigated in
this thesis. For example, circular heliocentric orbits displaced high
above the ecliptic plane are capable of continuous out-of-plane
observations of the heliosphere. Similarly, circular geocentric orbits
displaced along the Sun-Earth line offer new mission opportunities for
the investigation of the geomagnetic tail. Since such trajectories and
missions are unique to solar sail spacecraft they provide a strong
motivation for the further development of solar sailing. Such
development may then lead to the flight testing of solar sailing and to
its eventual adoption for a major mission.

The original work of this thesis is contained within chapters 3-7.
The contents of these chapters have appeared, or are to appear, as a
series of papers in the ESA Journal, Journal of Spacecraft and
Rockets, Celestial Mechanics and Acta Astronautica. Aspects of this
research have also been presented at various conferences, meetings

and seminars.
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SUMMARY

In this thesis the dynamics and applications of new advanced
trajectories for solar sail spacecraft are investigated. By utilising the
continuously available solar radiation pressure force exotic
non-Keplerian trajectories which are unique to solar sail spacecraft
are developed. Although iarge families of these new trajectories are
found to be unstable, simple feedback control schemes are designed to
ensure asymptotic stability. The unique nature of these trajectories
opens up hew space science mission opportunities, impossible for
conventional spacecraft. These missions are shown to offer the
possibility of interesting new observations of many aspects of solar
system physics.

In chapter 1 the concept of solar sailing is introduced and the
history of its development reviewed. The fundamental design
parameters for solar sail spacecraft are investigated and the
fabrication of potential sail materials discussed. Square and heliogyro
type solar sails are then described and their relative merits discussed.
Modern state-of-the-art sail design and performance is then
considered. Previous studies of solar sail mission applications are
reviewed and recent concepts for future advanced applications
discussed.

The fundamental physics of solar radiation pressure is considered
in chapter 2 along with the modelling of the solar radiation pressure
force exerted on a real solar sail. Heliocentric solar sail trajectories
are investigated and in particular the logarithmic spiral trajectory is
derived. The limitations of such trajectories and the necessity of time

optimal trajectories satisfying the two point boundary conditions of an



interplanetary transfer trajectory are then indicated. The dynamics of
geocentric escape trajectories are investigated and the use of
optimised trajectories is again discussed.

The solar radiation pressure model used in chapter 2 is expanded
in chapter 3 to include astrophysical effects which have implications
for solar sail dynamics. By the use of the radiation pressure tensor
the effect of the finite angular size of the solar disk on the functional
form of the solar radiation pressure force is obtained. The resuiting
deviation of the solar radiation pressure force from an inverse square
variation with heliocentric distance is shown to have a de-stabilising
effect on solar sails in stationary and circular orbital configurations.
The effect of small time variations in the solar luminosity is also
considered.

In chapter 4 the first family of advanced solar sail trajectories is
investigated. By obtaining stationary solutions to the heliocentric
dynamical equations in a co-rotating reference frame the conditions for
heliocentric halo orbits are obtained. These orbits are circular
heliocentric orbits displaced out of the ecliptic plane by a component
of the solar radiation pressure force exerted on the sail. Using a
linear perturbation analysis the stability characteristics of the system
are investigated and unstable families of trajectories found. Simple
feedback control schemes are then obtained to ensure asymptotic
stability. Lastly, by patching individual halo orbits and Keplerian
orbits together, elaborate new patched trajectories are shown to exist.

A similar analysis is used in chapter 5 to investigate geocentric
halo orbits, which are near polar circular orbits displaced along the
Sun-line by the solar radiation pressure force. Unstable families are

again found with feedback control schemes developed to ensure



vi

asymptotic stability. The fundamental family of geocentric halo orbits
is enlarged by the patching of individual halo orbits and Keplerian
orbits.

In chapter 6 artificial stationary solutions to the circular
restricted three-body problem are considered. The addition of the
solar radiation pressure force leads to extensions of the five classical
stationary points to a family of extended stationary surfaces. For the
Earth-Sun system these new solutions are truly time independent.
However, for the Earth-Moon system small trims in the sail area are
required to compensate for the rotation of the Sun-line during the
synodic lunar month. Again, the stability and control of the system is
investigated and the instability of the solutions demonstrated. An
out-of-plane trajectory at the lunar L, point is also developed.

The application of these new trajectories for potential space
science missions is discussed in chapter 7. The scientific benefit of
out-of-plane observations for solar system physics is explored and
potential missions investigated. A simple, twin solar sail mission
utilising heliocentric halo orbits is described. Similarly, the utilisation
of geocentric halo orbits for geomagnetic tail observations is also
investigated. Several applications of the new three-body stationary
solutions are considered, such as the use of payload transfer from
Lagrange point stationary surfaces to eliminate lengthy planetary
spiral trajectories.

Lastly, the conclusions of chapter 8 outline further possible
developments in the areas of dynamics, control and mission analysis.
Recommendations for the progress of advanced solar sail missions are

given.



1. INTRODUCTION TO SOLAR_SAILING

1.1 Solar Sailing

For all of its short thirty year history practical spacecraft
propulsion has been dominated by the unaitering principles of
Newton’s third law. All forms of propulsion from the solid rocket
motor to the solar-electric ion drive rely on a reaction mass which is
accelerated by some exothermal or electromagnetic means into a high
velocity jet. A unique and elegant means of propulsion which
transcends this reliance on reaction mass is the solar sail. Of course
solar sail spacecraft must also obey Newton’s third law. However,
solar sails gain momentum from an ambient source, namely photons, the
quantum packets of energy of which sunlight is composed.

The momentum carried by an individual photon is vanishingly
small. Therefore, in order to intercept large numbers of photons solar
sails must be vast structures. Furthermore, to generate as high an
acceleration as possible from the momentum of the intercepted photons
solar sails must be extraordinarily light. For a practical solar sail the
mass per unit area of the whole spacecraft must be an order of
magnitude less than the paper this text is written upon. Not only
must solar sails be vast in area and small in mass, they must also be
near perfect reflectors. Then the momentum transferred to the sall
can be almost double the momentum of the incident photons and the
solar radiation pressure force is directed normal to the sail surface.
Therefore, by controiiing the orientation of the sail rslative to the
incoming radiation the saill can then gain or loose momentum so that
its orbit can be controlled.

The picture then is clear. A solar sail is a vast sheet of



reflective film, typically the size of a football field, stretched taught
over a lightweight structure. Using the momentum gained from
ambient photons the spacecraft is slowly, but continuously accelerated
to begin any number of possible missions. Solar sailing, with its
analogies with terrestrial sailing may be a romantic notion. However,
as will be shown in this thesis, the romanticism is overshadowed by
the immense practicability and quiet efficiency with which solar sails

can be put to use for scientific investigation.

1.2 Historical Perspective

Although solar sailing has been considered as a practical means
of spacecraft propulsion only relatively recently, the fundamental ideas
are by no means new. The actual concept of solar sailing has a long
and rich history dating back to the Soviet pioneers of astronautics.
As early as the 1920s the Soviet father of astronautics Konstantin
Tsiolkovsky and his co-worker Fridrickh Tsander both wrote of ‘using
tremendous mirrors of very thin sheets’ and ‘using the pressure of
sunlight to attain cosmic velocities’, Tsiolkovsky (1921) and Tsander
(1924). The origins of the work of Tsiolkovsky and Tsander can

however be traced back as far as the seventeenth century.

1.2.1 Theories of Solar Radiation Pressure

In 1619 Johannes Kepler proposed qualitatively that the material
of comet tails was pushed outward from the Sun due to some pressure
from suniight. At this time the corpuscular theory of light was the
favoured view of optics and the outward pressure due to sunlight was
a natural consequence of this theory, Lebedew (1902) (and references

contained within). Newton, a strong proponent of the corpuscular



theory accepted Kepler’s view as a possible explanation but attempted
in 1687 to explain the phenomenon within his theory of universal
gravitation. He made the hypothesis that there was an ambient ether
denser than the material of comet tails. Therefore, the repuision was
due to buoyancy forces and the Sun had only an attractive
gravitational force. Sometime later in 1744 Euler returned to Kepler's
view. However, Euler adopted the longitudinal wave theory of light
due to Huygens. With this theory Euler was able to show that a
longitudinal wave would exert a repulsive force on a body in its path.
Later still, as Coulomb’s experiments of 1785 with electrostatics became
known, Olbers in 1812 rejected all previous explanations of comet tail
repulsion and proposed that the Sun had a nett electrical charge.
Particles leaving the comet nucleus had then to be charged with the
same sign as the solar charge. The fact that electrostatic forces have
an inverse square variation (as does solar radiation pressure)
supported Olber’s theory which then became prevalent.

The theoretical basis for the existence of radiation pressure came
independently of the astronomical theories. Maxwell predicted the
existence of radiation pressure in 1873 as a consequence of his theory
of electromagnetic radiation. Apparently independently, Bartoli
demonstrated the existence of radiation pressure as a conseguence of
the second law of thermodynamics. The experimental verification of
the existence of radiation pressure and the verification of Maxweli’'s
quantitative results then came in 1901 when Lebedew finally suceeded
in isclating the radiaticn pressuirs force using a series of torsion
balance experiments, Lebedew (1902). A detailed account of Lebedew’s,

and others, experimental work is given by Nichols and Hull (19083).



1.2.2 The Development of the Solar Sail

After the initial writings of Tsiolkovsky and Tsander in the 1920s
the concept of solar sailing appears to have remained dormant, bar a
few science fiction stories, for over thirty years. It was not until
1958 that Richard Garwin, of the IBM Wwatson laboratory at Columbia
University, re-examined solar sailing in the light of modern materials
technology, Garwin (1958). Garwin recognised the unique and elegant
features of solar sailing. Namely that solar sails require no propellant
and are continuously accelerated, therefore allowing large velocity
changes over extended periods of time. Such was Garwin’s enthusiasm
and optimism for solar sailing that his analysis showed a round trip to
Venus was possible in less than one year using commercially available
thin film.

Following the discussion of solar sailing by Garwin more detailed
studies of the dynamics of solar sails were undertaken by Tsu. By
approximating the heliocentric equations of motion Tsu was able to
show that, for a fixed sail attitude, solar sail trajectories were of the
form of spirals with a fixed opening angle, Tsu (1959). A simple
comparison with chemical and ion propulsion systems showed that solar
sails could match, and in many cases out perform, these systems. The
approximations used by Tsu were removed by London, who solved the
heliocentric equations of motion exactly and obtained a true logarithmic
spiral solution, London (1960). It was recognised that since the
logarithmic spiral trajectory did not satisfy the boundary conditions of
an interplanetary transfer, large veiccity impuises were iequired at
the departure and terminal points. This problem was later addressed
in studies of time optimal trajectories. London also explored the case

of a sail oriented normal to the Sun-line such that the solar radiation



pressure force reduced the effective solar gravitational force. The
resulting family of modified conic section solutions were found, in some
cases, to yield shorter transfer times than the logarithmic spiral, as
discussed later by Kiefer (1965). These early studies stimulated
interest in solar sailing and led to more detailed analyses, for example
Villers (1960), Gordon (1961), Cotter (1973). However, these studies
were at a low level and lacked a specific solar sail mission.

In the early 1970s the development of the space shuttle promised
the prospect of being able to transport and deploy large volume
payloads in orbit. Also, the technological development of deployable
space structures and thin films suggested that solar sailing could be
considered for a specific mission. By 1973 NASA was funding studies
of solar sailing at the Battelle laboratories, Wright (1974), which gave
positive recommendations for further investigation. During the
continuation of this work Jerome Wright discovered a trajectory which
would allow a solar sail rendezvous with comet Halley at its perihelion
in the mid 1980s. The flight time of only four years would allow for a
late 1981, early 1982 launch. Until then a difficult rendezvous mission
was thought to be impossible in such a short time using the
technology of the day. A seven to eight year mission had been
envisaged using solar-electric ion propulsion. These positive results
prompted NASA Jet Propulsion Laboratory director Bruce Murray to
initiate an engineering assessment study of the potential readiness of
solar sailing. Following the assessment a formal proposal was put to
NASA in Septembeir 1976. The design of a comet Halley rendezvous
mission using solar sailing was initiated in November of the same year,
Friedman et. al (1978).

In the initial design study an 800x800 m three-axis stabilised



square sail design was considered, but was dropped in May 1977 due
to the associated high risk deployment. The desigh work then focused
on a spin stabilised heliogyro type sail. The heliogyro, which was to
use twelve 7.5 km long blades of film rather than a single sheet, had
been developed by Richard MacNeal under NASA contract ten years
earlier, MacNeal (1967). The heliogyro could be easily deployed by
simply unrolling the individual blades. As a result of the design
study the structural dynamics and control of the heliogyro were
understood and potential sail materials were manufactured and
characterised. Also important for NASA institutional considerations,
the solar sail work had sparked public interest and excitement in the
comet Halley rendezvous mission.

As a result of the interest in solar sailing the solar-electric
propulsion group re-evaluated their performance estimates and had in
the end been directly competing with the solar sail group for funding.
A detailed account of this internal competition is given by Logsdon
(1989). As a result of an evaluation of these two advanced propulsion
concepts NASA chose the solar electric system in September 1977, on
its merits of being a less, but still considerable risk for a comet
Halley rendezvous. A short time later the solar electric system was
also dropped, as eventually was a dedicated NASA comet Halley mission.

Although dropped by NASA for near term mission applications, the
design studies of the mid-1970s stimulated worldwide interest in solar
sail technology. Low level European studies were taken up by CNES
in Touiouse to assess the potential of the Ariane iauncher for deep
space missions, Riviere et. al (1977). Perhaps more importantly for the
long term prospects of solar sailing was the formation of the World

Space Foundation in California and the Union Pour la Promotion de



Propulsion Photonique in Toulouse. The WSF, formed principally of
JPL engineers shortly after the termination of the JPL solar sail work,
attempted to raise private funds to continue solar sail development
and to wundertake a small scale demonstration flight. Shortly
afterwards the U3P group was formed and in 1981 proposed an
ambitious moon race to promote solar sail technology. Both of these
groups were joined by the Solar Sail Union of Japan in 1985 and have
proposed that the moon race be adopted as a project for the
international space year in 1992, Perret et. al (1989). More recently
the Columbus Quincentenial Jubilee commission, formed to organise
celebrations of the quincentenary of Columbus discovering the new
world, have been attempting to stimulate interest in a solar sail race
to Mars. The proposal has generated international interest with some
of the most technically advanced and innovative sail designs to date,
for example Johnson et. al (1989), Fox et. al (1989) and von Flotow et.
al (1989). At the time of writing most, if not all, of the international
solar sail groups are having extreme difficulty in raising the
necessary funds. However, the many new solar sail designs and
organisations involved have brought about a renaissance in solar
sailing not seen since the comet Hailey studies of almost twenty years

ago. Where this leads to for the future of solar sailing remains to be

seen.

1.3 Solar Sail Design

The main considerations iin the engineering design of a solar sail
spacecraft are driven primarily by the mission application and launch
vehicle. The volume of the payload bay of the launcher dictates the

maximum sail area and the mass allocation dictates the maximum overall



spacecraft mass. In terms of mission analysis, the spacecraft
acceleration determines the transfer time to a particular target, or
even whether a particular mission is possible. Secondary
considerations such as attitude and thermal control are driven by the
trajectory design. That is, rapid attitude manoceuvres may be required
for planetocentric trajectories or the heliocentric phase may take the

sail close to the Sun.

1.3.1 Fundamental Design Parameters

The crucial design parameter for a solar sail spacecraft is the
characteristic acceleration. This is defined as the acceleration of a
sail oriented normal to the Sun-line at a heliocentric distance of one
astronomical unit. At this distance the magnitude of the solar
radiation pressure P is 4.57x10"¢ Nm~2 (this value will be derived in
section 2.1). Therefore, allowing for a finite sail efficiency n, the

characteristic acceleration is given by

(1.1)

where o is the solar sail mass per unit area, with m the total
spacecraft mass and A the total area. The sail efficiency is a function
of the optical properties of the sail material and the sail shape. The
total mass may be divided into two components, mg due to the sail
material and structure and mp the payload mass. If the sail mass is
further divided into the mass of the sail material mg and the
structural mass then ms=ms|(1+k) where k is the structural mass as a
fraction of the sail mass, typically of order 0.5 or less. Therefore, the

characteristic acceleration becomes



_ 2np
% % 51 (1+K) + (mp/A) (1.2)

where Og is the mass per unit area of the sail material. Using
equation (1.2) the performance of a practical solar sail may now be
analysed.

For a fixed sail area and efficiency equation (1.2) becomes a
function of the total (sail material and structure) mass per unit area
Og and the payload mass mp. Therefore, surfaces of characteristic
acceleration may be generated, Figure 1.1. For an 800x800 m square
sail with n=0.9 a characteristic acceleration of order 1 mms=2 s
possible with a 10°® kg payload and 9425 gm'zl Such an acceleration
level, as designed for the JPL comet Halley sail using 1977 technology
parameters, is suitable for most interplanetary missions. It can be
seen that for a large value of Og the sail characteristic acceleration is
relatively insensitive to variations in payload mass. This is due to the
sail mass exceeding the payload mass so that the term og(1+k)
dominates in equation (1.2). Similarly, for a large payload mass the
characteristic acceleration is relatively insensitive to variations in the
technology level of the sail, (ie. o5 and k). Therefore, to obtain a
high characteristic acceleration of 5-6 mms~2, as required for some
advanced trajectories, it is clear from Figure 1.1 that not only must
the sail material and structure be light but it is crucial that the mass
of the payload and onboard hardware must be kept to a minimum,
Inverting equation (1.2) an expression for the payload mass is
obtained, viz

2nP } (1.3)

Mp = A[—ao- - Os](1+k)

Therefore, for a fixed characteristic acceleration and sail mass per
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Figure 1.1

Surface of sail characteristic acceleration (mms~2) as a function of

payload mass (kg) and sail mass per unit area (gm~2),
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unit area any increase in payload mass must be offset with a

corresponding proportional increase in sail area.

1.3.2 Sail Material Design

Aside from the fundamental solar sail design parameters there are
many secondary considerations which must be addressed. Firstly, a
suitable material must be chosen for the actual sail. The material must
have a large enough tensile strength so that when fully deployed and
under tension the material does not fail and create tears which may
propagate through the entire sail. Furthermore, since the reflective
surface of the sail will not be perfect a small' fraction of the incident
solar radiation will be absorbed. This absorbed energy must be
dissipated through a thermaitly emitting rear surface. Since the
absorbed energy will increase the material temperature there must be
dimensional stability so that the sail has low thermal expansion and
shrinkage. Once deployed in orbit the sail material must be free of
wrinkles which may cause multiple reflections and intense hot spots.
The sail shape must be simulated using a finite element method in
combination with the sail structural dynamics to calculate the actual
shape due to billowing. Multiple reflections can then be traced and
eliminated.

A cross section of a potential sail material developed during the
JPL comet Halley studies is shown in Figure 1.2. The sail has a 2 um
Kapton plastic substrate upon which a thin 0.1 um Aluminium layer is
deposited. This substrate ailows the sail to be folded and packed into
a small volume for launch and to be safely unfurled in orbit. The
rear surface of the sail has a 0.0125 um Chromium coating for thermal

control of the sail. The Kapton film is directly manufactured at 2 um
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Figure 1.2
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thickness giving the sail material a mass per unit area of 2.9 gm~2,
Individual sheets of sail material are bonded using a high speed heat
sealing technique and a suitable adhesive. More recent studies and
laboratory tests have investigated the use of plasma etched Kapton
giving a mass per unit area of only 1gm~™2, Fox et. al (1989).
Unetched bands can be formed to increase the tensile strength of the
material. Potentially lighter sail materials may also be manufactured
using Lexan film, von Flotow et. al (1989), and Polyimide, Johnson et.
al (1989).

If in—orbit manufacturing of sail material were to become possible
vast improvements in sail performance would be achieved. Since the
sail material would not be folded and packed a plastic substrate wouid
not be required. The construction of such sails has been considered
by Drexler (1979). Using thin film techniques samples of 10-100 nm
sail film were produced. Small triangular panels of sail material would
be produced and bonded to construct the entire sail.

In order that any tears due to failure of the sail material, such
as micrometeorite impacts, do not propagate the sail must be provided
with ripstops at regular intervals. These are formed from either
Kapton tapes joined to the rear sail surface or from double folds in
the sail forming seams, Figure 1.2, Furthermore, since the sail is
exposed to the solar wind the sail material will acquire a differential
electrical charge between the front and rear surfaces. This is due to
the incident proton flux from the solar wind and the photoelectric
effect, Hililard and Whipple (1985). To pievent electrical discharges
from the front to rear of the sail, which is a potential source of
failure and tearing, both surfaces of the sail must be in electrical

contact, Figure 1.2. Finally, although sail materials have been
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designed in detail and samples fabricated the material lifetime in the
space enviroment is uncertain. The material is exposed to hard solar
radiation and cosmic rays which will almost certainly degrade the sail
surface reflectivity and reduce tensile strength. These questions will
however only be addressed with detailed in-orbit testing of samples.
Preliminary testing has recently been carried out onboard the Soviet

Almaz satelltie, Shvartzburg (1991).

1.4 Archetypal Solar Sail Configurations

During the JPL comet Halley studies two individual solar sail
configurations were investigated in detail. Firstly, a three-axis
stabilised square sail design and laterly a spin stabilised heliogyro.
Although fundamentally different in their design, construction and
control it was found that their overall mass per unit area differed by
a few per cent only. The square sail and heliogyro differ greatly
however in their method of deployment. It was due to the simpler
deployment of the heliogyro that it was selected for the comet Halley

rendezvous.

1.4.1 Three-Axis Stabilised Square_ Sail

The square sail configuration uses a single sheet of sail material
which is kept in tension using diagonal spars extending from a central
boom normal to the sail surface on the reflective side. The spars are
connected to the boom with stays to reduce structural loads, Figure
1.3. For the 80C0x800C m JFL comet Halley sail design the spars were
1.2m diameter open lattice structures, constructed of Titanium to
prevent thermal expansion. Due to the lattice nature of the structure

the spars could be coiled for storage. The stays were flat tapes, to



15

+Y

PARTIALLY UNFOLDED SAIL

Figure 1.3

P TSI i

— —
= 74

Two stage deployment of a single square sail film sheet over a fully

deployed boom and stay structure, (Friedman 1988).
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prevent snharling during deployment.

For automated in-orbit deployment the central boom and diagonal
spars are extended from packaging canisters. During this extension
the stays are pulled along the spars from storage reels. Once the
entire structure is erect the sail itself is deployed. The sail is firstly
pulled into a ribbon along a diagonal spar and then pulled flat along
the perpendicular diagonal, Figure 1.3. If the sail were constructed
from four individual triangular sheets the same two stage procedure
would take place for each element. Although this deployment scheme
has been shown to be feasible the large number of serial operations
leads to a large number of potential failures. Since the scheme coulid
not be tested on the ground prior to implementation, even partially,
the deployment had a high element of risk.

The three-axis attitude control of the square sail may be
provided by several techniques. One method is to use a shift in the
centre of mass relative to the centre of pressure. This can be
achieved by small displacements in the payload position, using
deflections in the central boom. This technique has recently been
studied in detail by Angrilli and Bortolami (1990). However, the use of
small reflective vanes at the sail corners provides the greatest
control. Using combinations of vanes arbitrary roil, pitch and yaw
torques may be generated, even when the main sail is in a null
attitude edge on to the Sun-line. It can be shown that suitable
control can be achieved with vanes which rotate about axes along the
spars to which they are attached. Lastly, the entire sail may be
displaced across the structure to shift the centre of pressure, while
the centre of mass remains fixed. The sail is displaced by reeling in

outboard support lines while reeling out the opposite set. This is
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perhaps the simplest technique and least costly in terms of hardware

mass.

1.4.2 Spin-Stabilised Heliogyro

Whereas the square sail relies on the three-axis stabilisation of a
large single sail the heliogyro has several long blades of sail material,
rotating to provide tension and spin stabilisation. The JPL comet
Halley heliogyro consisted of twelve blades each 8 m wide and 7.5 km
in length. The blades are joined to a central hub containing the
payload and are pitched to provide attitude control. Centrifugal loads
are carried in tension members at the edges of the blades. These
tension members are constructerd from several tapes of high tension 2
mm wide graphite Polyimide fibres. The tapes have periodic
crossovers where they are bonded to provide multiple load paths.
This gives each tension member the ability to withstand several
failures. If a blade were to become detached there is a high
probability of impact with the remaining blades Ileading to a
catastrophic failure. The blades have transverse battens in
compression, spaced along their length to provide torsional stiffness.

The deployment of the heliogyro is a simpler procedure than for
the square sail. An initial spin-up is provided by small thrusters.
Then a set of rollers allow the blades to unwind, with the central hub
directed along the Sun-line and the blades held at the same collective
pitch angle. The radiation pressure torque generated by the blades
adds anguiar momentum to the system allowing the bLlades to Tully
extend, Figure 1.4.

The heliogyro attitude may be controlled using the blade pitch in

a cyclic or collective manner to aiter the spin axis of the vehicle. A
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is provided

by thrusters, with the solar radiation pressure force exerted on the

blades adding momentum for full deployment, (Friedman 1988).
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collective pitch of the blades is used to spin up or spin down the
vehicle whereas the cyclic pitch is used to generate asymmetric forces
to provide attitude control torques. The pitch drive is provided by
motors on the central hub. Although the attitude turning rates are
smaller than those of the square sail the magnitude of the radiation
pressure force may be modulated by up to 20 per cent. A recent
innovative approach by von Flotow et. al (1989) has considered the
possibility of using piezo-electric actuators with shorter lightweight
blades.

The most serious problem with the heliogyro is the possibility of
dynamic instability. Various instabilities due to thermo-efastic and
purely mechanical effects can occur, although blade flutter appears
potentially the most serious, MacNeal (1971). This is due to a
photo-dynamic coupling between the blade pitch and blade bending.
Flutter may however be avoided by separating the frequencies of the
first few torsional and bending modes of the blades. Therefore,
although more dynamically complex the heliogyro is controllable and is

a more reliable spacecraft to deploy.

1.4.3 State—of-the-Art Solar Sail Design

The JPL square and heliogyro sails are the only two designs to
have undergone detailed engineering studies. However, a number of
recent sail designs prompted by the proposed solar sail races have
the promise of greater performance than either of the JPL designs.
In particular a 276 m disc sail developed by Cambridge Consultants
Ltd is perhaps the most advanced sail yet designed, Johnson et. al
(1989). The CCL sail is in the form of a circular disc of sail material,

supported on a structure of 36 radial carbon fibre reinforced plastic
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spars which are cantilevered from a central load bearing hub. A
unique spiral fold allows both the sail and spars to be packaged into
a compact form for launch.

When constructed the sail and spars are wound around the
central hub in a unique packing arrangement. Therefore, the sall is
easily deployed by allowing the 36 spars to elastically unwind from the
central hub, progressively stretching the sail, Figure 1.5. The rate of
deployment is controlled by the viscous forces of initially unstretched
polymer threads linking the spars at regular intervals. These threads
stretch visco-elastically as the sail deploys limiting the deployment
rate and so the angular velocity of the hub. Otherwise the hub would
gain a large amount of angular momentum which would create a
mechanical shock as it was dissipated through the vehicle once the
deployment was complete.

The sail attitude may be controlled by inducing small distortions
in the entire sail shape by actuating the spars. The spar actuation is
achieved by applying bending moments at the hub using thermo-elastic
bracing wires connected to the spars. By applying differential
electrical heating to these wires the sail geometry can be altered from
a flat disk to a cone for passive stability, or a saddle for active
attitude manoeuvering. With spar bending of less than one degree
only, extremely rapid attitude control may be achieved. The sail spin
rate may also be controlled by bending alternate spars to form a
turbine geometry.

Using the baseline design accelerations of order 2 mms™2 may be
achieved with a 60 kg payload. However, since the sail structural
design leads to low stresses on the sail much thinner materials than

the 2 um Polyimide film proposed may be used. By plasma etching the
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Figure 1.5
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spars unwind elastically deploying the sail, (Johnson et. al 1989).
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rear surface large improvements in sail performance and characteristic
acceleration would be possible, Oswald (1990). Such a high
performance vehicle would be suitable for advanced solar sail
trajectories.

Finally, the solar photon thruster, another variant on the planar
type solar sail has recently been discussed, Forward (1989a). The
concept was originally proposed in the Soviet literature by Malanin
and Repyakh (1974). The solar photon thruster is constructed from a
large Sun pointing reflector which directs the solar radiation to a
small movable secondary reflector, Figure 1.6. By separating the
functions of collecting and directing the solar radiation, the solar
photon thruster has a significant performance improvement over other
sail designs at large pitch angles. However, as yet no detailed

engineering design studies have been undertaken for this type of sail.

1.5 Solar Sail Mission Applications

Now that the design, deployment and control of various solar sail
types have been discussed, possible mission applications will now be
investigated. Since solar sail spacecraft require no propellant they
offer considerable advantages for transporting large payloads and for
round trip sample return missions. Furthermore, since the solar sail
has a virtually unlimited AV capability multiple mission objectives such
as asteroid surveys are possible. In fact both of these advantages
are inherent in the solar sail interplanetary shuttle concept, Wright
and Warmke (1976). By using a sguare sail inherited from the JPL
comet Halley vehicle with autonomous on board systems it was
proposed that multiple payloads could be transported to bodies within

the solar system. After the payload delivery the saill would return
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to Earth orbit for refurbishment and a new set of payloads.

In operational terms a solar sail may be used to simply augment
the performance of a launch vehicle upper stage by taking the
payload to escape from an initial high Earth orbit, or the sail may be
used for all the propulsion beyond low Earth orbit. Escape spirals
must however begin from altitudes above 700 to 1000 km due to
atmospheric drag on the sail. From these altitudes escape times may
be of the order of months so that it is desirable to place the sail on a
parabolic escape trajectory by conventional means. Although Earth
orbit is not the optimal operating environment for solar sails an orbital
transfer vehicle using solar sail technology has been investigated,
Teeter (1977).

Unlike ballistic transfers the solar sail has an essentially open
launch window. The trajectory may be continuously modified for any
launch date. For planetary rendezvous short spiralling capture times
are possible in the inner solar system, however at the outer planets
these times are prohibitively long due to the greatly diminished solar
radiation pressure. Payloads would be inserted into planetary orbit
using burns from space storable propellants, with the sail using a
gravity assist to return to the inner solar system in a shorter time

than it took for the outward trip.

1.5.1 Inner Solar System Missions

Due to the increased solar radiation pressure in the inner solar
system solar sail spacecraft can deliver large payloads to ciose, high
inclination heliocentric orbits. The payload would be delivered by
spiralling inwards while directing a component of the solar radiation

pressure force out of the ecliptic plane to increase the orbital
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inclination. Before the desired inclination was reached however, the
sail would have spiralled to its closest heliocentric distance,
determined by the thermal tolerance of the sail material (typically 0.3
AU). The sail would then use a cranking orbit, alternately directing
the solar radiation pressure force above and below the ecliptic plane,
to achieve the final desired inclination. Moderate performance sails
with characteristic accelerations of 1 mms™2 can deliver 103 kg
payloads into a 0.3 AU polar orbit in 750 days (including escape from
Earth orbit), Wright and Warmke (1976).

Other inner solar system missions, such as a round trip to
Mercury, have spectacular possible payload masses. For example, a
1.7x10* kg payload may be delivered into orbit around Mercury in 900
days, Figure 1.7. Such a mission could include both surface landers
for a sample return and permanent orbiters, Wright and French (1987).
A sample return from Mercury using conventional spacecraft
technology is at best extremely difficult and costly in terms of
propellant mass. The ballistic two-impulse transfer to Mercury
requires a AV of 17.4 kms~™!, although this can be reduced somewhat
using gravity assists.

For missions to Mars the outward transfer times tend to be
somewhat longer than for ballistic transfers. However, the solar sail
transfer is not constrained by the 1.2 year waiting period of the
ballistic transfer. Therefore, for a waiting time at Mars of a few
months the total round trip time is of the same order as that for
ballistic transfers, Figure 1.8. On the outward trip over 5xi0® kg may
be delivered in 500 days. The payload delivered is however different
than that from a ballistic transfer. For a solar sail the entire payload

can be used for obtaining a sample from the Martian surface,
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Figure 1.7
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Departure is

on 1/5/88 with arrival at Mars on 10/1/90. The return trajectory

begins on 11/6/90 with return to Earth on 13/4/92, (Friedman 1988).
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whereas for the ballistic mission the delivered payload must include
propellant for the return trajectory. It has been shown that a 200 kg
sample could be returned using a solar sail vehicle in contrast to less
than a 1 kg sample using a ballistic mission, Wright and Warmke
(1976). Other studies have shown that large sails may greatly reduce
the total mass required in low Earth orbit for a manned mission to
Mars, Staehle (1982). In particular it has been shown that advanced
sails may be constructed and deployed from tethered facilities at the

international space station, Garvey (1987).

1.6.2 Outer Solar System Missions

Due to the diminished solar radiation pressure in the outer solar
system insertion of payloads into planetary orbit would be achieved
using a conventional chemical propulsion system, or aerobraking.
Payloads of 1.5x10° kg may be delivered to Jupiter and Saturn, with
transfer times of 900 and 1700 days respectively, allowing useful
masses to be placed in orbit. For solar system escape a 1.5x10° kg
payload may be taken as far as 30 AU In 3000 days, allowing long
baseline astrometric measurments to be made, Wright and Wwarmke
(1976). Time optimal trajectories to the outer planets usually include
an inward spiral close to the Sun to gain momentum before the
outward trajectory. The use of gravity assists at the outer planets to
reduce transfer times would be of limited use due to the high
approach velocity. Transfer times may however be reduced by
increasing the hyperboiic arrival veiocity at the target.

Again, due to the virtually unlimited AV capability of solar sall
spacecraft multiple asteroid rendezvous missions are possible, as are

asteroid sample returns. A total round trip time of 1400 days to Eros
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is possible with a 1.5x10° kg payload, Wright and Warmke (1976).
Similarly for high eccentricity, high inclination comets rendezvous and
sample returns are possible at the expense of extended mission

durations.

1.6.3 Advanced Solar Sail Missions

Due to the continually available solar radiation pressure force
solar sail spacecraft are capable of many advanced missions impossible
for any other spacecraft type. Although many of these missions
require advanced, high performance solar sail design others are
possible using the technology level of the JPL comet Halley sail.

The delivery of payloads to close heliocentric orbit was discussed
in section 1.5.1. Although the comet Halley sail was constrained to
operate at greater than 0.25 AU the studies of sail materials
technology indicated that sustained operation within 0.2 AU would be
possible. A sail with a specialised thermal coating may survive the
thermal environment at only 0.06 AU (15 solar radii), Wright (1990). At
these extremely close heliocentric distances it has been proposed that
the solar radiation pressure force may be used to suitably modify the
spacecraft orbital period. In particular a 25 day period would allow
active regions near the solar equator to be tracked across the solar
disk, Forward (1986). Furthermore, for an advanced sail it would be
possible to choose the total mass per unit area so that the solar
radiation pressure force exactly balanced the solar gravitational force
(0=1.53 gm™2). This would allow the spacecraft to remain stationary
above the solar poles, making continuous observations, Drexler (1979),
Forward (1986).

For geocentric applications it has been demonstrated that solar
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sails may be used to displace communication satellites above and below
geostationary orbit, Forward (1981,1984). This would allow satellites to
be stacked above and below the equatorial plane, greatly increasing
the number of available locations. Angular separations in the sky of
0.3° are possible using 1 um Kapton sails with a payload mass of one
third of the sail mass. Furthermore, communications payloads may be
placed in static equilibrium high above the night side of the Earth
allowing line of sight viewing of the spacecraft from high lattitude
regions, Forward (1989b). For conventional geostationary satellites the
spacecraft appear low on, or below, the horizon in high lattitude and
polar regions. This static equilibrium ‘statite’ concept requires large
geocentric distances of order 50 Earth radii or greater so that the
local gravitational acceleration is low, Figure 1.9. However, since the
spacecraft would appear to rotate about the pole star once per day,

clock drives would be required for tracking.

1.6 Overview

Although solar sailing is by no means a new concept it has
undergone many detailed engineering design studies by various
groups. As a result of these studies it has been demonstrated that
solar sailing is a viable means of spacecraft propulsion and has
significant capabilites for near term missions. By operating without
propellant a solar sail may deliver significantly larger payloads than
could be achieved by other means. The vehicle may then still return
io Earth orbit, perhaps with pianetary soil sampies, and be
refurbished for subsequent missions. Solar sailing may also provide
the means to accomplish extremely difficult missions, such as

rendezvous with high eccentricity, high inclination comets.
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Static equilibrium ‘statite’ concept for communication services to high

lattitude regions. For a fixed polar angle B the altitude at the summer

solstice must be greater than the winter solstice due to the oblique

incidence of the solar radiation, (Forward 19889b).
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For current advanced solar sail designs new unique and
advanced applications become possible. Several of these applications,
such as the displacement of geostationary satellites, have a useful
near term application. Others, such as static equilibiria above the
solar poles, require sail performance levels between two and three
times that of current designs. These designs can however be
improved upon with further development. In particular the use of
plasma etching on sail material offers the potential for vast
improvements. However, as discussed in section 1.3.1, with a low mass
per unit area sail high performance can only be obtained with a
minimised payload mass. Therefore, the application of other areas of
advanced space technology such as lightweight solar cells and high
strength, low mass composite structural materials must be considered.

Finally, in analysing solar sail missions and applications
comparison must be made with other viable propulsion schemes, such
as advanced solar-electric propulsion. While solar-electric propulsion
was ultimately chosen for the comet Halley rendezvous due to its
greater technological maturity it is not suitable for advanced missions
requiring a continuously available thrust. That is, a solar-electric
propulsion system may generate the required thrust magnitude but the
mission lifetime will be finite due to its dependence on propeliant. For
this reason the possibilites for the large scale development of solar
sailing relies on the investigation of advanced missions and

applications which are unique to solar sail spacecraft.
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2. SOLAR SAIL ORBITAL DYNAMICS

2.1 Solar Radiation Pressure

The source of motive force for solar sail spacecraft is the
momentum transferred to the sail by radiative energy from the Sun.
Using the electromagnetic description of light the momentum is
transported to the sail by electromagnetic radiation. Physically, the
electric field component E of the incident electromagnetic wave
generates a current J in the sail surface. This current then couples
to the magnetic field component of the wave B to generate a Lorentz
force JxB in the direction of propagation of the wave. The induced
current then generates another electromagnetic wave which s
observed as the reflected component of the incident wave.

Alternatively, solar radiation pressure can be envisaged as being
due to the momentum transferred to the sail by photons. Using the
photon representation the magnitude of the solar radiation pressure
can be calcuiated from the specific intensity of the radiation field,
Iy(r,n;t), (see appendix A). The radiation pressure tensor P(r;t) Is
then defined as the second angular moment of the specific intensity of

the radiation field integrated over the entire frequency spectrum, viz

P(r;t) = % r§ Iy(r,n;t) nn dodv (2.1)
(o] 4

m

If the sail heliocentric distance r3R,, the solar radius, the photons
arrive at the sail surface along approximately paraliel rays in direction
k. The specific intensity of the radiation field can then be defined as
Iy(r,n)=1,,6:(n-k), assuming the Sun to be a time independent source.

The function ©c(n~k) is a unit step function with a small, finite width



€. Therefore, within a solid angle € of direction k all photons arrive
along parallel rays. Substituting for the specific intensity in equation

(2.1) the radiation pressure tensor then becomes

P(r) =

OI-b

kk rlvo dv } 6c(n-k) do (2.2)
o 4

m

For a surface element dL of the solar disk the solid angle element may
be written as dQ=dL/r2. Therefore, integrating over the solar disk it

is found that

P(r) = ia -—9— kk (2.3)

where I, is the frequency integrated specific intensity. For a planar
solar sail the sail area may be represented as a directed surface A=An,
Figure 2.1. Therefore, the force exerted on the sail due to the

incident photons is given by

2
fy = 20 TBg” ack.n) k (2.4a)

If the sail is now considered to be a perfect reflector the component
of the photon momentum along the sail normal is reversed so that the

reaction force due to the reflected photons is given by

-laom _9_ A(k.n) 1 (2.4b)

(o]

The total radiation pressure force exerted on the sail is then given by
the sum of the incident and reflected components. Using the vector

relation (k+l)=2(n.k)n the total force may be written as
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Figure 2.1
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Solar radiation incident cn a solar sail from directicn k and reflected
in direction -I. The sum of the force due to incident radiation f; and
the force due to reflected radiation f- generates a total radiation

pressure force normal to the sail surface in direction n.
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f - E%Q —EQQZA(k.n)Z n (2.5)

so that the solar radiation pressure force has an inverse square
variation with heliocentric distance. In fact the solar radiation
pressure force deviates from an inverse square form, as will be
discussed in chapter 3.

The frequency integrated specific intensity I, may be obtained
by calculating the energy flux at the sail surface. The flux is defined

as the first angular moment of the specific intensity, (see appendix A)

F(r;t) = r é I,(r,n;t) n dodv (2.6)
[o} 4

m

However, the flux F at the sail surface is given in terms of the solar

luminosity Lo simply by Lo/411r2. Therefore, equation (2.6) gives

00
Lo . dr
4_"?.2. - j IvO dv } Fz- (2.7)
4

o

Integrating over the solar disk the frequency integrated specific
intensity is found to be I =Lo/4m2R,2. Therefore, substituting for I,
in equation (2.5) and dividing by the total spacecraft mass m the sail

acceleration is found to be

ol

[#22) L emzn (2.8)

where o is the totai spacecraft mass per unit area. The magnitude of
the solar radiation pressure is therefore F/c, which is 4.57x10"® Nm~2
at a heliocentric distance 1 AU.

For a solar sail in heliocentric orbit the direction of incidence of
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the radiation k is given by the unit radial vector r/|r|. Furthermore,
the sail acceleration may be made dimensionless with respect to the
solar gravitational acceleration w/|r|2, where u is the product of the
solar mass M and gravitational constant G. The radiation pressure

acceleration may then be conveniently written as

az- B Télu(r.n)2 n , r.n>0 (2.9)

where the dimensionless sail loading parameter B is defined to be the
ratio of the solar radiation pressure acceleration to the solar
gravitational acceleration. Since both the solar radiation pressure
acceleration and the solar gravitational acceleration have an inverse
square variation the sail loading parameter is independent of the sail
heliocentric distance. Using equation (2.8) the sail loading parameter

may be written as

- % - Lo
B=35 + % % 7uaMe (2.10)

where the critical mass per unit area ox=1.53 gm~2. With this mass
per unit area B=1 so that the sail radiation pressure acceleration is
equal to the local solar gravitational acceleration.

If the assumption of perfect reflectivity is relaxed a more exact
model of the solar radiation pressure acceleration may be constructed.
Taking into account the reflectance, transmittance and emittance of the

sail material the radiation pressure acceleration may be written as

M

az=@pB |T|4(r.n) {Air + {Azlrl + A3(r.n)}n } , r.n>0 (2.11)

where the sail material parameters AJ (j=1,3) are defined as



Ay =2(1 = A3 = T) (2.12a)
Az = {21 -0 + 5 (-2 - 1) sonfn.E] (2.12b)
Ay = A, (2.12¢)

with the auxiliary parameter « is defined as a function of the sail

temperature by

87,4 - e, T4
81T14 + esz4

K = (2.12d)

The parameter X\, represents the total fraction of incident radiation
reflected from the sail while X, represents the fraction of that
radiation which is specularly reflected. The front and rear sail
emissivities and temperatures are given by e;, T, and e, T, with T
representing the fraction of incident radiation transmitted through the
sail, Van der Ha and Modi (1977a). For state of the art sail materials
these parameters have yet to be determined experimentally. However,
for a perfectly reflective sail the parameters are given simply by Aj=1
and A =A,=0.

During the JPL solar sail studies for the comet Halley mission
even more precise models were developed using finite element
simulations of the sail shape combined with experimental data on
potential sail materials. These models may be conveniently represented
as trigonometric series in the sail attitude angles and have been used
in trajectory analysis software, for example Sackett (1977). Although
the solar radiation pressure force may be empirically parameterised by
the above means, in-flight calibration is required in practice for
accurate guidance and control, Jacobson and Thornton (1978).

Although solar radiation pressure generates the largest force on
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solar sails, other secondary forces are also present. For example, the
solar wind will exert a small pressure on the sail due to the momentum
transported by solar wind protons. During periods of high solar wind
speed the mean proton density e at 1 AU is approximately 4x10® m~2
with a wind speed v of 700 kms~!, Schwartz (1985). The pressure
exerted on the sail can then be estimated from the momentum

transport as

Py = mp ov2 (2.13)

where Mp is the proton mass. Using the above parameters a solar
wind pressure of 3x10™°® Nm~2 is obtained. That is, a pressure of
nearly 10™* less than the direct solar radiation pressure. The main
effect of the solar wind is then to electrically charge the sail, as
discussed in section 1.3.2. First order relativistic effects are
proportional to the ratio of the sail speed to the speed of light,
typically of order 10™4, Similarly, for solar sails in Earth orbit the
secondary pressure due to radiation scattered from the Earth is also
several orders of magnitude less than that due to the direct solar

radiation pressure, Green (1977).

2.2 Heliocentric Solar Sail Trajectories

The orbital dynamics of solar sail spacecraft are similar in many
respects to the orbital dynamics of other spacecraft utilising low
thrust propulsion systems. That is, a small continuous thrust is used
to modify the spacecraft orbit over an extended period of time.
However, a solar-electric propulsion system may orient its thrust
vector in any direction, whereas solar sails are constrained to thrust

vector orientations within 90° of the Sun-line. For some mission



applications this leads to significant differences in the final trajectory.
For example, to transfer from a prograde to a retrograde orbit a
solar-electric system will direct its thrust vector perpendicular to the
Sun-line to lose prograde angular momentum and then to gain
retrograde angular momentum. However, for solar sails the transfer is
made by increasing the spacecraft ecliptic inclination to greater than
90° by alternately orienting the sail above and below the ecliptic
plane. This scheme was to be implemented for the comet Halley
rendezvous mission, Sauer (1977). These heliocentric ‘cranking orbit’
manoeuvres have been investigated by Van der Ha and Modi (1979).
The dynamical equation for a heliocentric orbiting solar sail may
be obtained by considering the Sun-sail system in an inertial frame I,
Figure 2.2. In this frame the centre of mass of the system C is at a

position R, viz

Mr, + mr,
-
R:= =+ (2.14)

where (d2R/dt2)=0 for a closed system, (see appendix B). Using
equation (2.9) the forces acting on the Sun and the spacecraft in the

inertial frame I are given by

M at = Tri2 r (2.15a)
d?rp _ _ GMm GMm 2
maEz T T Tre Tt B Irl‘(r‘") n (2.15b)

Adding equations (2.15a) and (2.15b) the acceleration of the centre of

mass of the system C is obtained as
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Figure 2.2

Sun

The Sun-sail system in an inertial reference frame I. The Sun (M) is
located at r; with the sail (m) at r,. The centre of mass of the

system C is located on the Sun-sail vector r at position R.
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dR _ GMm (r.nz2
" Bwem o rF" (2.16)

Therefore, since (d2R/dt2)#0 the centre of mass of the Sun-sail system
accelerates. This is due to the gravitational acceleration of the Sun
towards the sail as the sail is accelerated by the solar radiation
pressure. However, since m¢&M the term Mm/(M+m)zm so that the
acceleration of the centre of mass is, of course, negligable.

If a Galilean transformation is now used to transform to a new

inertial frame I’, with an origin at the centre of mass C, then

Mry +mr =0 , r=ra-nry (2.17)

so that the relative acceleration of the Sun and the spacecraft is

given by
d?r m} d?r
w1 R (2.18)

Substituting from equation (2.15b) the general dynamical equation for

a perfectly reflecting solar sail in heliocentric orbit is then given by

ala
N
S
+
r
-llﬂ

3 =B —l%lu(r.n)z n , r.n>0 , u=GM+m (2.19)

where u=GM since m<M.

The fundamental aspects of heliocentric solar sail orbital dynamics
can be appreciated by calculating the spacecraft orbital angular
momentum and energy. Therefore, taking vector and scalar products
of equation (2.19) with the sail position and velocity vectors the rate

of change of orbital angular momentum h and energy E are obtained,

viz
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dh _ , o 2 = dr

qt - B |r|4(r.n) rxn , h=rx [dt} (2.20a)
dE _ 5 _u_ 2 ar -1 lQE‘Z_ M

3t - B Ir,|4(r.n) "'[dt} , E = > |at Trl (2.20b)

It can be seen from equations (2.20) that to maximise the instantaneous
rate of change of angular momentum the sail nhormal, and so the solar
radiation pressure force, must be directed perpendicular to the
Sun-line. Similarly, to maximise the rate of change of energy the sail
normal must be parallel to the velocity vector. However, if the sail
normal is oriented perpendicular to the Sun-line the magnitude of the
radiation pressure force is of course zero.

For an initially circular orbit an increase in energy corresponds
to an increase in semi-major axis, whereas the eccentricity is a
function of the orbital angular momentum. Therefore, depending on
the manner in which the spacecraft orbit is to be modified the sail
attitude can be chosen such that the azimuthal component of the solar
radiation pressure force or the component in the direction of the
velocity vector is maximised. One particular trajectory which can be

obtained in closed form is the logarithmic spiral.

2.2.1 Logarithmic Spiral Trajectories

The first quantitative investigation of solar sail orbital dynamics
approximated the heliocentric dynamical equations to obtain
approximate solutions and transfer times, Tsu (1959). However, the
exact set of equations were solved by London (1960) using the
logarithmic spiral solution of Bacon (1959). This solution requires that
the spacecraft thrust has an inverse square variation with heliocentric
distance, which is the case for solar sail spacecraft, and that the

velocity vector maintains a fixed angle with respect to the



instantaneous radius vector. Writing the general heliocentric
dynamical equation, equation (2.19), in polar coordinates it is found

that

d2r _ _[dej2. _u u 3

gz~ {Ge) = - F= B Er cos (2.212)
1 df2d8 _ g4 20 si

rat [r dt} =B 72 cosfx sinx (2.21b)

where x=cos~!(r.n/|r|) is the Sun-sail pitch angle. For a fixed pitch

angle « a solution to equations (2.21) is given by

r = roetan¥ (2.22)

where the spiral angle ¥ is the angle between the sail velocity vector
and the normal to the Sun-line, Figure 2.3. Substituting equation
(2.22) into equations (2.21) it may be shown that there is an implicit
relationship between the Sun-sail pitch angle, the sail loading

parameter and the spiral angle, viz

siny cos¥ _ sinx cosx
2 - sinéy T Bl - cos«x

(2.23)

For a given sail loading parameter and spiral angle equation (2.23)
may be solved for the required Sun-sail pitch angle. It should be
noted that since the spiral angle is constant an initial impulse is
required to rotate the sail velocity vector from an initial circular orbit
to the angle ¥ required for the logarithmic spiral. In fact, uniess the
sail loading parameter and the spiral angle are smail the impulses
required at the initial and final points on the spiral are greater than
the total impulse required for a minimum energy ballistic transfer.

By eliminating the azimuthal coordinate e the transfer time
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Figure 2.3

A solar sail logarithmic spiral trajectory with a fixed Sun-sail pitch
angle « The velocity vector is at a fixed angle ¥ with respect to the

normal to the Sun-line.
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between any two heliocentric distances may be obtained as

2 r3/2 - r3/2 { cotw }1/2

- - 72 -1/
t -ty = 3 (B o sinx cosex

(2.24)

The Sun-sail pitch angle required for a minimum time transfer may
then be found by setting (dt/dx)=0 and solving simultaneously with
equation (2.23). The optimised transfer time is shown as a function of
heliocentric distance for various loading parameters in Figure 2.4. It
is found that for sail characteristic accelerations of less than 1 mms~2
the Sun-sail pitch angle required for a time optimal spiral is
approximately 35°. It is interesting to note that this angle maximises
the azimuthal component of the solar radiation pressure force.

A second family of closed solutions may be obtained with the sail
oriented along the Sun-line. Setting «=0 in equations (2.21) the
standard two-body dynamical equations are obtained with a reduced
gravitational parameter ’=u(1-8). The resulting family of modified
conic sections can yield shorter transfer times than the logarithmic
spiral in certain cases. A detailed comparison of spiral, modified conic
and ballistic trajectories has been made by Kiefer (1965).

The logarithmic spiral solutions have been extended to
three-dimensions and explicit asymptotic series solutions for the
optimal Sun-sail pitch angle developed, Van der Ha and Modi (1979).
Furthermore, the initial conditions of the logarithmic spiral may be
relaxed and arbitrary initial conditions allowed. Using the two
variable expansion technique, Nayfeh (1973), asymptotic solutions with
a fixed sail attitude have been obtained, Van der Ha and Modi (1979),

Van der Ha (1980).
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Figure 2.4
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Transfer times for optimal logarithmic spiral trajectories as a function
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der Ha (1980).



2.2.2 Time Optimal Heliocentric Trajectories

For practical mission analysis purposes the logarithmic spiral
solutions and asymptotic series solutions with a fixed sail attitude can
be used only as a guide in finding true time optimal solutions. Such
solutions require the use of optimal control techniques to obtain the
required sail attitude as a function of time. Since the sail attitude is
time varying the boundary conditions may be met without the use of
initial and final impulses.

Time optimal rendezvous trajectories between circular, coplanar
heliocentric orbits have been investigated by Zhukov and Lebedev
(1964) who applied the Pontryagin maximum principle of the calculus of
variations to obtain the required time varying sail attitude. The two
point boundary conditions were satisfied using a numerical iteration
scheme. An alternative approach using a numerical gradient method
has also been investigated, Kelley (1960). Although both of these
approaches provide time optimal trajectories the assumptions of
circular, coplanar initial and final orbits are too restrictive for the
analysis of practical interplanetary trajectories. These restrictions
were removed in detailed studies of three—dimensional time optimal
trajectories by Sauer (1976) which took account of the eccentricity
and inclination of the initial and final orbits. Using a large data base
maximum and minimum transfer times were obtained as a function of
the sail characteristic acceleration, Figure 2.5. It is found in general
that for outward transfers with a low sail characteristic acceleration
the Sun-sail pitch angle is near that of the time optimal logarithmic
spiral. For larger accelerations however, a 180° rotation of the sail
attitude takes place. That is, the spacecraft is accelerated along the

trajectory and then decelerated to rendezvous with the target planet.
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shown for Mercury, Sauer (1976).

Only the minimum transfer time is
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In general the convergence to a true optimal solution is difficult owing
to the insensitivity of the transfer time to small variations in the time
varying sail attitude.

As part of the investigation by Sauer hyperbolic excess velocities
were included in the boundary conditions to investigate their effect on
total transfer times. Figure 2.6a shows an ecliptic projection of a time
optimal transfer to Mercury with zero relative departure and arrival
velocities. A total flight time of 523 days is required with the
spacecraft performing 2.5 revolutions of the Sun. With an Initial
excess velocity of 5 kms™! at Earth escape the transfer angle is
reduced to 1.5 revolutions and the transfer time is halved, Figure
2.6b. Therefore, since transfer times can be sensitive to initial
conditions the possibility of a hyperbolic excess velocity on escaping
from Earth orbit must be considered in the overall mission analysis.
The use of a single lunar gravity assist to achieve a hyperbolic excess

has recently been considered by Fox et. al (1989).

2.3 Geocentric Solar Sail Trajectories

Now that heliocentric solar sail trajectories have been discussed
the question of geocentric escape trajectories must be addressed.
Since the solar radiation pressure force cannot be directed sunward,
solar sail escape trajectories are distinctly different from escape
trajectories for other low thrust propulsion systems. In particular
almost no energy can be gained for half of the trajectory while the
sail is moving sunward and while the sail is in eclipse. These
problems can be partially alleviated by using a polar escape trajectory
normal to the Sun-line. However, there is the added cost of Initially

injecting the spacecraft into a high inclination polar orbit.
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Figure 2.6

ARRIVAL

Time optimal solar sail trajectories from Earth orbit to Mercury with
(a) zero hyperbolic excess and a 523 day transfer, (b) 5 kms™!

hyperbolic excess and a 260 day transfer, Sauer (1976).
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The fundamental aspects of geocentric solar sail orbital dynamics
may be understood by again calculating the spacecraft orbital angular
momentum and energy. The general dynamical equation for a perfectly
reflecting solar sail in geocentric orbit is given by, (cf. equation

(2.19))

2

a
-

L

+ U

&

where the parameter B is now the sail characteristic acceleration. It
is therefore assumed that the magnitude of the solar radiation
pressure force is constant over the scale of the orbit. Furthermore,
the Sun-line direction S will have a slow annual rotation due to the
heliocentric motion of the Earth, but will be assumed to be fixed. It
should be noted that if the sail attitude is fixed equation (2.25) has a
closed solution in terms of elliptic functions, as will be shown in
section 5.9.

Taking vector and scalar products of equation (2.25) the rate of

change of orbital angular momentum and energy are obtained, viz

B (S.n)2rxn (2.26a)

B (S.n)? n{%} (2.26b)

If the sail orbit is initially near circular, is in the ecliptic plane and
the sail normal is fixed along the Sun-line such that n=S, then the
total change in orbital angular momentum and energy over one orbit

may be written as
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-2
=1 dh dh| ~
l&h| = g J, |dt| de , |dt| = Blr|sine (2.27a)
1 [ dE dE _ .|d
-1 [+ gt _ idri .
8E = g 'dt’ de 3t - Bldt'sme (2.27b)
Jo

where 6 is the azimuthal position angle of the sail measured from the
Sun-line and & is the orbital angular velocity, Figure 2.7. Therefore,
it can be seen that if the sail geocentric distance and velocity are
slowly varying functions the total change in orbital angular momentum
and energy over one orbit is zero. Physically, the energy and
momentum gained during the half orbit when the sail is accelerating
away from the Sun is lost during the half orbit when the sail is
moving towards the Sun.

A simple escape scheme would then be to fix the sail attitude
along the Sun-line when the sail is moving away from the Sun, 0<e4m,
and to fix the sail attitude normal to the Sun-line when moving
towards the Sun, n<eg{2m, Figure 2.7. The total change in orbital

angular momentum and energy are then found to be

lahl = 22 |rlq (2.28a)

AF = 2B |9§| (2.28b)
[o]

where the spacecraft geocentric distance and velocity are evaluated at
the initial circular orbit.

The change in orbital angular mcmentum and energy may be
related to the change in semi-major axis a and eccentricity e of the
orbit using the relation |h|2=ua(1-e2), (see for example Roy (1982)).

For small values of e an expansion gives
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Figure 2.7

Sun

A solar sail geocentric escape trajectory with the sail attitude n fixed
along the Sun-line 8 for half of each orbit. The sail reaches escape

velocity near the perigee point.
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1/2
dihl . 1da (V= {y - 1 ez} - 8 oqua)i/z + 0 (e (2.29)

The semi-major axis may be related to the energy of the system as
E=(-u/2a). Therefore, eliminating da/dt from equation (2.29) it is

found that

g—i = e(;;)l/z {dé:l - a{%}l/z 3_% {1 - % ez} } +0 (e (2.30)

Substituting for the rates of change of orbital angular momentum and
energy the change in eccentricity over one orbit is obtained from

equation (2.30) using

Q | dt

m
fe = 4 ] de 4o (2.31)
(o]

Performing the integration the change in eccentricity over one orbit is

then found to be

-1
' (2.32a)

Similarly, using the relation E=(-u/2a) the change in semi-major axis is

found to be

4B |dr|~

1
- 48 Idtlo (2.32b)

o|&

It can be seen then that an initially near circular orbit will
slowly become elliptical, as shown schematically in Figure 2.7.
Furthermore, with a suitable choice of sail attitude control, energy is
added to the system so that the semi-major axis of the orbit increases

and the spacecraft may be taken to escape. However, to minimise the
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escape time more complex schemes are required.

2.3.1 Semi-Optimal Geocentric Trajectories

The first investigations of geocentric escape trajectories were
undertaken by Sands (1961) using a simple scheme whereby the sail is
rotated at half the orbital angular velocity. Although the sail is taken
to escape the scheme is by no means optimal. A more effective orbit
raising scheme has been developed by Fimple (1962) by maximising the
component of the solar radiation pressure force along the
instantaneous velocity vector. It can be seen from equation (2.26b)
that this ensures that the instantaneous rate of energy increase is
maximised. An orbit initially normal to the Sun-line is used so that
there is a continuous gain of energy.

The sail unit normal vector n may be written as the sum of the

direction cosines of three attitude angles «j (j=1,8), viz

3 3
} cosxjuj , = } x4I4 (2.33)
: J=1

where IJ- (j=1,3) are the unit vectors of an inertial geocentric cartesian
coordinate system with I, directed along the Sun-line, Figure 2.8. To
maximise the instantaneous rate of increase of energy the function
J=(8.n)2n.(dr/dt) must be maximised subject to the normalisation

constraint K=0 where

ch cosxjy , K= } (coszaj - 1) (2.34)
1 j=1

J = cos?x,
J

" Mw

By using the techniques of constrained maxima with a set of arbitrary

Lagrange multipliers kj (j=1,3) an optimal set of sail attitude angles



57

Figure 2.8

Semi-optimal Earth sscape trajectory with the sclar radiation incident
along the Sun-line 8. The sail attitude n is chosen to maximise the
component of the solar radiation pressure force along the velocity

vector.
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may be obtained from

3J K _ _
53.* 25 3ay” 0, (J=1,3) (2.35)

Solving equations (2.35) and eliminating the set of multipliers the
required attitude angles are obtained as a function of the sail velocity

as

cosx, = ™! (3cosy, + (8 + cos2y,)!/2) (2.36a)
cosxy, = ™1 2cosy, (2.36b)
cosxy = [~ 2cosy, (2.36¢)

where the auxiliary coefficients are given by

r-= (6005271 + 500571(8 + 008271) + 12)1/2 (2.37a)
dr|{~i(dr .
. = =1 7. = 2.37
COSVJ ldt‘ [dt}.IJ , (J 1,3) (2.3 b)

With this choice of attitude control the sail is accelerated in the
orbital plane while being simultaneously accelerated along the Sun-line.
Since the ratio of the local gravitational acceleration to the solar
radiation pressure acceleration will initially be large there will be little
displacement along the Sun-line. However, as the sail geocentric
distance increases the motion along the Sun-line dominates.
Integrating equation (2.25) with equations (2.36) it is found that a
suitable family of escape trajectories may be obtained, Fimple (1962).
General, long term geocentric solar sail trajectories have been
investigated by Van der Ha and Modi (1977a, 1977b) using the two
variable expansion technique. Orbit raising schemes have been

constructed by switching the sail attitude at various points along the
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orbit between a null configuration normal to the Sun-line and a Sun
facing attitude along the Sun-line, Van der Ha and Modi (1977¢). By
calculating analytically the change in orbital elements over a particular
arc of the orbit with the sail attitude fixed, various schemes may be
quickly evaluated. The analytic solutions for the changes in the
spacecraft orbital elements are used to up-date the true orbit in a
numerical rectification procedure. In particular it is found that
switching the sail attitude at the points where the sail velocity vector

is normal to the Sun-line leads to a rapid increase in energy.

2.3.2 Time Optimal Geocentric Trajectories

Time optimal escape trajectories have been investigated by
Sackett and Edelbaum (1977) using the Pontryagin maximum principle
of the calculus of variations. By averaging the dynamical equations
over one orbital period short period terms may be eliminated, leading
to a reduction in numerical computation time. Since the method of
averaging is only valid for a small ratio of solar radiation pressure
acceleration to local gravitational acceleration the solutions are valid to
geocentric distances of 10% km only. For an initial high Earth orbit
with a geocentric distance of 2.1x10* km a sub-escape point of 105 km
was attained in 116 days with a spacecraft characteristic acceleration
of 0.6 mms~2. This transfer time falls to 70 days with a characteristic
acceleration of 1 mms™2. For many trajectories a rapid increase in
eccentricity is found with a lowering of the sail perigee distance. To
avoid perigee distances of less than the radius of the Earth and to
avoid the rapid attitude manoeuvres associated with high eccentricity
orbits a penalty function was added to bias against a low perigee.

The analysis of Sackett and Edelbaum was extended by Green
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(1977) to large geocentric distances to investigate the final escape
manoeuvre. From a high Earth orbit with a geocentric distance of
1.5x10% km orbit a solar sail with a characteristic acceleration of 1
mms~2 reached escape velocity in 20 days. It was found that a
velocity dependent attitude control similar to section 2.3.1 produced
solutions close to optimum with an increase in escape time of only
1.2x1072, Furthermore, it was found that polar escape trajectories
required slower attitude manoeuvres but were rather longer than low
inclination escape trajectories. More recently the escape problem has
been investigated by Borja (1984) who considered the combined rigid
body dynamics and orbital dynamics of a freely precessing, spinning
disc sail. By maximising the energy gain per orbit near optimal

escape trajectories were generated.

2.4 Conclusions

It has been shown that solar sail spacecraft can be manoeuvred
in geocentric and heliocentric orbit by several methods. For the
heliocentric case the logarithmic spiral solution provides a simple
analytic solution to the problem. However, the large initial and final
impulses required renders the trajectory impractical. For practical
mission analysis purposes time optimal trajectories which satisfy the
boundary conditions for transfer between non-coplanar, non-circular
orbits are required.

For geocentric escape time optimal trajectories may again be
generated. While providing the best solution in terms of the cibital
dynamics of the problem time optimal escape may require large attitude
turning rates which can be impractical for large sails. Excessive

turning rates can however be avoided by choosing the sail normal to
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be fixed perpendicular to the sail radius vector. The sail may then be
switched into a null attitude when moving sunward by rotation about
the radial axis, while the structure remains gravity gradient stabilised.

Finally, nearly all of the studies of solar sail trajectories to date
have investigated the use of solar radiation pressure as a means of
modifying the solar sail trajectory for interplanetary transfer.
However, other advanced applications, such as the static equilibrium
‘statite’ discussed in section 1.5.3, require the solar radiation pressure
force only to modify the local gravitational acceleration. This means of
utilising the solar radiation pressure force for advanced applications

will be investigated in the remainder of this thesis.
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3. AN EXACT SOLAR RADIATION PRESSURE MODEL

3.1 Introduction

In previous solar sail trajectory studies, as discussed in chapter
2, it has been assumed that the solar radiation pressure force has an
inverse square variation with heliocentric distance. This allows in
some cases a closed analytic solution to the dynamical equations, such
as the logarithmic spiral trajectory. In this chapter it will be shown
that for a planar solar sail the assumption of an inverse square
variation is in fact not valid when account is taken of the finite
angular size and limb darkening of the solar disk. This new
astrophysical modelling of the source of solar radiation pressure is
distinct from the modelling of the solar radiation pressure force, which
is dependent on the optical properties of the sail material.

Starting from the fundamental definition of radiation pressure
through the radiation pressure tensor, to take account of the varying
direction of incidence of solar radiation from different parts of the
solar disk, it will be shown that the solar radiation pressure Iis
modified from an inverse square form by a function of the sail
heliocentric distance and the solar radius. A more precise calculation
is also carried out using a limb darkened solar disk which gives a
closed, but complex functional form for the I|limb darkened solar

radiation pressure.

It should of course be noted that at large heliocentric distances
these effects are small and can become comparable to other secordary
forces, as discussed in section 2.1. However, as will be shown using
the simpler non-limb darkened solar radiation pressure, this

modification results in the further de-stabilisation of the previously
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assumed marginal instability of solar sails stationary above the solar
poles, as discussed in section 1.5.3. Furthermore, the sail loading
parameter required for these stationary solutions (B=1) will no longer
be independent of the sail heliocentric distance, as is the case for an
inverse square variation of the solar radiation pressure. The stability
analysis is also extended to solar sail circular orbital motion. It is
found that for a given sail orbital period there is an inner
heliocentric distance where the sail motion becomes unstable.

Finally, the effects of small, time variations in the solar radiation
pressure are investigated to attempt to model the effect of short
period fluctuations in the solar luminosity. It is found that for
one-dimensional sail motion a reduced form of Mathieu's equation is
obtained and that Floquet stability analysis shows that the motion
always remains bound. For the circular orbital case Mathieu's
equation is obtained in full. It is again found that for short period
fluctuations the sail motion is bound with non-periodic, bound
solutions to Mathieu’s equation. However, for long period variations
(ie. the eleven year solar cycle) the circular orbital motion can become

unstable for certain ranges of parameters.

3.2 Solar Radiation Pressure with an Extended Source

The functional form of the solar radiation pressure exerted on a
planar, perfectly reflecting solar sail will now be obtained using the
radiation pressure tensor. The frequency integrated radiation
pressure tensor P(r:t) is defined ac the second angular mcment of the

specific intensity of the radiation field integrated over the entire

frequency spectrum, as used in section 2.1
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P(r;t) = % Jd § Iy(r,n;t) nn dodv (3.1)
o ’a

m

However, in section 2.1 the solar radiation incident on the sail surface
was assumed to be incident along parallel rays. The varying direction
of incidence of radiation from different parts of the solar disk will
now be included in the integration of the radiation pressure tensor.
Therefore, equation (3.1) will be used to obtain the exact radiation
pressure from a uniformly bright and limb darkened, finite sized solar

disk.

3.2.1 Uniformly Bright Solar Disk

In the case of the non-limb darkened solar radiation field where
the specific intensity is time independent and isotropic across the
solar disk, the radiation pressure on a radially oriented, perfectly

reflecting sail at a heliocentric distance r may be written as

© 27 60
P(r) = [ l [ I, cos?0 dadv , d@ = sin® déde (3.2)

o 0 J0O

O jro

where the geometry of the system is specified in Figure 3.1. Making
use of the conservation of specific intensity along rays, so that [, is
independent of r, and noting the azimuthal symmetry of the geometry,

equation (3.2) reduces to the integral

1
P(r) = 4—’; I°J n2dn , n=cose , NG = cosy (3.2)

"o

where I, is the frequency integrated specific intensity. Performing

this integration and substituting for ng it is found that
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Figure 3.1

Sun-sail geometry with a finite angular sized solar disk. The solar

disk has an apparent angular diameter cf e5 from a heliocentric

distance r and the azimuthal angle ¢ is defined about the radial

direction. The viewing angle ¥ is the angle between the normal to the

solar surface and the line of sight.
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Py =1, (1-{1-{R} }3/2] (3.4)

Equation (3.4) may be expanded in (Ry/r)2 and for r’»R, may be

written to first order as

p(r) = £ 1, {%0}2 + 0 ((R/1)*) (3.5)

However, at large values of r this expansion must match asymptotically
with the expression for the radiation pressure from a distant point

source, viz

where L, is the sclar luminosity. Hence, by comparing equations (3.5)

and (3.6) the frequency integrated specific intensity I, is identified as

- _Lp
Io * &7 Ro 3.7)

as derived in section 2.1. Substituting for I in equation (3.4) an
expression for the solar radiation pressure exerted on a radially
oriented, perfectly reflecting solar sail from a uniformly bright, finite

sized solar disk is obtained as

oo = e [ [ (21

A more useful way of representing equation (3.8) is to express it in
terms of the point source, inverse square variation P*(r) defined by

equation (3.6), viz
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P(r) = PR, R = 3 - {1 B FI% ) e

It is seen that the function F(r) attains its minimum value at
r=Ro, where F(Ry)=2/3, giving the greatest deviation of the solar
radiation pressure from an inverse square variation. Furthermore, as
r-+~, F(r)»1 since the solar disk becomes more point-like, as shown in
Figure 3.2. It can be seen that F(r) approaches unity over a scale of
a few solar radii so that the magnitude of the deviation from an
inverse square form is extremely small at large heliocentric distances.

Physically, this deviation from an inverse square functional form
is due to photons from the solar limb being incident on the sail at a
small oblique angle to the sail surface, whereas photons from the
centre of the disk are incident along the normal to the sail. The
photons from the solar limb therefore transfer a smaller amount of
momentum to the sail than those from the centre of the disk. At large
heliocentric distances however, photons from all parts of the solar

disk are incident along near parallel rays normal to the sail surface.

3.2.2 Limb Darkened Solar Disk

A more accurate model of the solar radijation pressure may be
obtained by the inclusion of solar limb darkening in the functional
form of the specific intensity. Limb darkening is an effect due to the
specific intensity of the solar radiation field having a directional
dependence. That is, as the radiation from a point on the solar
surface is viewed from an oblique angle the associated specific
intensity falls so that the limb of the solar disk appears darker than
the disk centre. Empirically, solar limb darkening has a complex

functional form, Allen (1955). However, using an approximate model of
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Figure 3.2
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Deviation of the solar radiation pressure from an inverse square form.

F(r) (—) gives the deviation for a uniformly bright disk and G(r)

(----) for a limb darkened disk.
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the solar atmosphere an analytic expression for the limb darkening can
be obtained. The Eddington grey solar atmosphere model, Mihalas and
Mihalas (1984), which assumes that the solar atmosphere is convection
free and is in both radiative and local thermodynamic equilibrium,
allows such an analytic solution to the radiative transfer equations.
The specific intensity of the solar radiation field may then be written

as

—

I-= 30 (2 + 3cosy) (3.10)

where I, is the frequency integrated specific intensity defined in
equation (3.7) and the viewing angle ¥ is shown in Figure 3.1. It is
seen from equation (3.10) that the solar limb will appear darker than
the centre of the solar disk by a factor of 0.4 using this grey
atmosphere approximation. It would appear then that solar Ilimb
darkening will have an important effect when the radiation pressure
tensor is integrated.

The angle ¥ may be related to the integration variable & through

the equation

cos ¥ = [1 - {%;}zsinze}l/z (3.11)

so that the required integral now becomes

2m (@

-2 °1 1 (F1Pcin2e} %) cos2e da 2.1

P(r) = e J J 7 log2t 3{1 {Ro] cin e] j cose ¢ (3.12)
o Jo

After some lengthy integration an expression for the solar radiation

pressure from a finite angular sized, limb darkened solar disk is
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obtained as

) = o {1 () 1 ) o B () O ()

1 _{r121° (r/Rp) = 1
3 (1 {Ro} } o {(r/Ro) =1 (3.13)
This expression can again be written in terms of the point source,

inverse square radiation pressure P*(r), viz

P(r) = P¥(r)G(r) (3.14)

where the function G(r) is defined by

st = J (- (- B ) ) 0 (R O+ ()
ci - /Y GRS (3.19)

The functional form of equation (3.15) is shown in Figure 3.2. At the
solar surface G(R,)=0.708 so that the limb darkened solar radiation
pressure deviates less from an inverse square form than the non-limb
darkened pressure. This is due to the reduced momentum transfer
from the solar limb. However, at large heliocentric distances G(r)»1 as
expected. It can be seen then that the functions F(r) and G(r) have
the same overall functional behaviour but differ somewhat in precise
numerical values, their fractional difference being of order 1072 or
less for all but the closest heliocentric distances. For this reason the
uniformly bright solar disk approximation with its much simpler

functional form will be used in the following analysis.
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3.3 Consequences for Stability: 1-Dimensional Motion

Using the expression for the solar radiation pressure derived in
section 3.2.1 the stability of a solar sail stationary above the solar
poles will be investigated. By linearising the dynamical equations
about a stationary point the form of the resulting sail motion will be
examined to determine the dynamical stability of the system.

A radially oriented solar sail with n=r/|r| and with a total mass
per unit area o will now be considered under the influence of solar
gravity and an inverse square solar radiation pressure given by

P*(r). Equation (2.19) then gives the dynamical equation as

2 o¥
g—tg=-u(1-mﬁ3,/z=5 (3.16)

From equation (3.16) it can be seen that there is a unique value of B
which gives a stationary solution independent of r, (ie. B=1). This
independence is of course due to the solar gravitational and radiation
pressure accelerations both having an inverse square variation. The
critical sail mass per unit area for a stationary solution o* is then

given by equation (2.10) as
* - —Lo— ¥ - 9, -2 (3.17)
o smeae 0 (@ 1.53 gm~2)

If the sail is initially at rest at some heliocentric position rq,
with B=1 and a perturbation ® is applied, such that rgo+ro+s, the

resulting sail motion is obtained from equation (3.16) as

2
(d’ﬁ-ts = 0 # S(t) = s°1+ SOZ t (3.18)

where $5,, S0, are constants of the motion. Equation (3.18) is in fact
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valid for |8|31 since the system is force free with B=1. It can be
seen then that for an inverse square variation of solar radiation
pressure a stationary sail has marginal type Iinstability, (see appendix
C). That is, if perturbed the sail will move from its stationary point,
but with a linear rather than exponential growth.

Consider now the one-dimensional dynamical equation with the
modified solar radiation pressure of a uniformly bright solar disk

given by equation (3.9). The dynamical equation now becomes

d2
d

-

= - w1 - BF(r)) T:—I:* (3.19)

4

where the sail loading parameter B is the ratio of the inverse square
radiation pressure force to the solar gravitational force exerted on the
sail. Therefore, the parameter B is not, in this context, the ratio of
the actual forces acting on the sail but is still defined as the ratio
o*/o. Clearly then, there is no longer a unique value of B giving a
stationary solution at all heliocentric distances. The required value of

B will now be a function of the sail heliocentric distance given by

Be(r) = F(r)~? (3.20)

The sail will now be considered to be stationary at a heliocentric
position rg with B=Bs(ro) and a perturbation of $ applied, such that
ro°ro*s. Then, expanding equation (3.19) in powers of 8, the equation
of the subsequent sail motion is obtained. Considering a radial

perturbation only it is found that

%g = - ":;3{1 - BC{F(rO) + g—f_l $ ] ]{1 -3 %;} (rg + ®) (3.21)
r=ro
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Substituting for B a second order variational equation defining the
sail motion in the neighbourhood of the stationary position ro is

obtained. Retaining linear terms only it is found that

%8

Q

- S [ r dF
S -D(rg$=0 , D(ry) = roa{F(r) d:_r} (3.22)
=10

The stability characteristics of the system may now be investigated by
calculating the eigenvalues of the variational equation. This may be

carried out by substituting an exponential solution of the form

8 = seWt (3.23)

Therefore, substituting this solution in equation (3.22) it is found that

(W2 - D(rg)) 85 =0 (3.24)

so that the system eigenvalues w; > are given by tD(ro)i/Z.
Evaluating the derivative of F(r) and making the substitution

V=(Ry/rg)? the function D(r,) reduces to

-v)1/2
D(rg) = f—‘;s M) L oM =1 - Sy e, (3.25)

where the sign of the function M(V) determines whether the system
eigenvalues are real or purely imaginary.

The asymptotic behaviour of the function M(V) in the limits of
V=1, (rg*Ry) and V-0, (ro»=) will now be examined. Firstly, as V-1 it is

seen that M(V)»1 and as V-0 the function M(V) may be expanded as

o gl 1o et 0(v2) Y 3.26
M(V) = 1- 1= %y + 0(V9) -0 , -0 ( )
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Since it may also be shown that the function M(V) has only one real
root at v=0, and so does not change sign for 0<v<1, it is conciuded
that M(V)>0, 0<v{1. Therefore, there are two real eigenvalues of

opposite sign and an exponential solution of the form

2
8(t) = } So5 e¥jt (3.27)
j=1

where 85, 8y, are constants and the system eigenvalues Wy > are

given by

Wy o = #/2 Wo M(r/RQIY/2 | wp? = =, (3.28)

where wy is the angular velocity of a Keplerian circular orbit at a
heliocentric distance rg.

It has been shown then that by considering the Sun as a
uniformly bright, extended source of radiation that a solar sail of a
given loading has only one possible stationary point and that this
point is exponentially unstable, the instability being independent of
the sail parameters. The timescale of the instability T=2m/w, is
however dependent on the sail heliocentric distance. The instability
timescale is itself large (eg. 7=0.96 years for rg=0.1 AU) but the
existance of the instability adds to the need for active sail
station-keeping so that the dynamics of the one-dimensional Sun-sail
system are not as elementary as is at first thought.

The instability may be understood physically as shown
schematically in Figures 3.3a and 3.3b. Figure 3.3a shows the
variation of the solar gravitational force Fg and the inverse square

solar radiation pressure force F,.. It can be seen that the solar
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Figure 3.3

Inverse square radiation pressure

(a)

Modified radiation pressure

Schematic form of (a) the solar gravitational and inverse square
radiation pressure forces and (b) the modified radiation pressure force

with a stationary solution at r=rq.
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gravitational force may be balanced at all heliocentric distances by the
solar radiation pressure force with a suitable choice of sail loading,
therefore giving a stationary solution with marginal instability as
discussed above. However, in Figure 3.3b with the deviation of the
solar radiation pressure force from an inverse square form, it can be
seen that for a given sail loading there is only one heliocentric
distance ro where Fg and F, intersect and so there is only one
stationary solution. For r>ro, Fr>Fg so that the sail is accelerated
outward by the solar radiation pressure force and for r<ry, Fr<Fg so
that the spacecraft falls sunwards accelerated by the solar
gravitational force. Therefore the stationary solution at rg is

unstable.

3.4 Consequences for Stability: 2-Dimensional Motion

It has been shown that the modification to the inverse square
form of the solar radiation pressure gives unstable stationary
solutions for the one-dimensional Sun-sail system. The stability of a
solar sail in a circular heliocentric orbit, such as a 25 day orbit
following the solar equatorial rotation or a one year earth synchronous
orbit, will now be investigated.

A solar sail in heliocentric orbit with a sail loading parameter B
will now be considered. For a radial sail orientation with n=r/|r| the

dynamical equations are given by equations (2.21) as

d?r _  [de}Z_ _ u u (3.29a)
et S = (Y

1.d (.24 _ (3.29b)
Fat [r dt} =0

where B is again defined as the ratio o*/o. From equation (3.29b) it is
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seen that an angular momentum integral may be immediately obtained,

viz

r2 [gg} = h (3.30)

where h is the spacecraft angular momentum per unit mass. Using
equation (3.30) to eliminate (de/dt) from equation (3.29a) a single

radial equation is obtained as

2 2
%EQ - 25 = -5 (1 - BF(r) (3.31)

Firstly, the case of a purely inverse square variation of the solar
radiation pressure will be considered with F(r)=1. A reduced
gravitational constant u*=u(1-B) may therefore be defined. If the sail
is on an initially circular orbit with (d2r/dt2)=0 at r=ro then h2=u*r..
If a perturbation © is applied, such that roorots (assuming without
loss of generality that h remains constant) and equation (3.31) is
linearised with respect to © a variational equation is obtained defining

the sail motion in the neighbourhood of the initial circular orbit, viz

2 X
T (3.32)
o]

which has a solution of the form

2

-~ u* 11/2
8(t =§g.e1w-t’w* = 4]
() ‘ OJ J 1,2 [ro}

j=1

(3.33)

where %4y, $gp, are constants and w* is the angular velocity of a
circular orbit at a heliocentric distance ro with a reduced gravitational

constant t*. Therefore, as expected, solar sail orbits with an inverse
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square variation of solar radiation pressure are linearly stable.

Since the eigenvalues of the system are purely imaginary it
would appear that the sail motion is Lyapunov stable, (see appendix
C). However, the azimuthal drift in the sail motion due to the
assumption that h remains constant has been ignored. This drift is
due to the sail at perturbed position ro+8 having a first order
difference in angular velocity to the unperturbed orbit at ro. If the
applied perturbation is of the form ry-ro+% and - t+¥ then equation

(3.29b) gives the first order drift as

a¥ _

2w¥
dt - ~ r._o {(8(t) - (Sg11802)) (3.34)

Therefore the sail motion is Lyapunov unstable (the sail diverges from
its unperturbed position), although the heliocentric distance remains
bound so that the motion is Poincaré stable (see appendix C).

The analysis is now repeated with the modified, uniformly bright
form of the solar radiation pressure as defined by equation (3.9). The
sail angular momentum per unit mass is now given by
h2=uro(1-BF(rg)). A perturbation of  is applied to equation (3.31)

and expanding in powers of ¢ it is found that

S5 - - 8 s - (- B - o) - rs—rlr (3.35)
o

Substituting for h2 and retaining linear terms only a modified

variational equation is obtained, viz

d2s u dF -
r'ro
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which may be written more compactly as

28

Q

- P(rg)®e =0 (3.37)

A

Evaluating the derivative of F(r) and making the substitution

V=(Ro/ro)? the function P(rg) may be written as

P(ro) = t£3 Q) , A = 285 (1-(1-1)%/2)-(1-1)1/2}-1 (3.38)

For stability it is required that the variational equation has purely
imaginary eigenvalues so that Q(V)<0, 0<v<i. This condition may then

be written in terms of an inequality on B, viz

B < { & (-(1=0)3/2) - 20-wy1/z | (3.39)

Equation (3.39) divides the parameter space (B,r) into two distinct
regions of stability and instability, as shown in Figure 3.4, The
regions of stability and instability are partitioned by By, defined by
an equality in equation (3.38). There is a further hyperbolic region
defined by B>B.(r). The solution to the variational equation in the

regions of stability and instability is of therefore the form

2
S(t) = ) 8oy e¥jt (3.40)
571

where the eigenvalues of the system w; . are defined by

“"1,2 - :H"O Q(r/Ro)i/Z (3.41)

It can be seen from Figure 3.4 that for all but the closest heliocentric
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Figure 3.4
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The three regions of the sail parameter space (B,r) with stable,

unstable and hyperbolic regions partitioned by B* and B respectively.
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distances the condition for instability is confined to a very narrow
region of the sail parameter space close to B=1, (ie. a narrow range of
long orbital periods close to a stationary solution). In general
therefore, a very specific set of parameters are required for an
unstable orbit.

Substituting for h in equation (3.30) it is found that

W= wy (1 - BF(r))t/2 (3.42)

where w is the angular velocity of a circular solar sail orbit with
loading parameter B at a heliocentric distance r. For rd»Ry the
function F(r)s1 and so for B>B* the orbital angular velocity w¢i. If
the sail then orbits with a higher angular velocity then a smaller
value of B, within the stable region of the parameter space, will be
required to maintain a heliocentric distance r. The value of the
spacecraft orbital angular w. velocity required to obtain stability can

be obtained by substituting for B* in equation (3.42), viz

We = Wy (1 - B¥(r)F(r))t/2 (3.43)

However, a sail orbital angular velocity of less than that required
for stability may be desired and so a value of B within the unstable
region of the parameter space may be required. For the case of a
solar sail in a heliostationary orbit following the 25 day solar
equatorial rotation the value of B required to obtain this orbit is
shown as a function of the sail heliocentric distance in Figure 3.5. It
can be seen that A0 as r-35.76 Ry, corresponding to a Keplerian orbit
with a period of 25 days at 0.167 AU under the action of solar gravity

only. However, the required value of B crosses into the unstable
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region of the parameter space at a heliocentric distance of 6.7 R, (0.03
AU) so that any 25 day solar sail orbit at a closer heliocentric
distance will be necessarily unstable. Similarly for a sail in an Earth
synchronous one year orbit the region of instability is bounded by a
heliocentric distance of 19.1 Ry (0.09 AU). Therefore, it is concluded
that if a solar sail orbits with even a small angular velocity it will
require a value of B<B* to maintain the required heliocentric distance
and so will be dynamically stable. However, when some particular
orbital period is required, such as the heliostationary or Earth
synchronous orbits there will always be a region of instability.

It has been shown that a dynamically unstable solar sail may be
stabilised, depending on the required orbital period and heliocentric
distance, if it has a small orbital angular velocity and that any
perturbations will then result merely in periodic oscillations about its
nominal circular orbit with a frequency given by equation (3.41). For
solar sails stationary in the ecliptic plane this may be acceptable or
even necessary for many purposes, such as a solar observation
mission utilising the 25 day heliostationary orbit. However, for sails
above the solar poles where the mission objective would be to have
continuous observations of the poles, it would not be desirable to have
the sail orbiting and so the sail would have to be actively controlled

to remain at a dynamically unstable stationary ponit.

3.5 Time Varying Solar Radiation Pressure

Now that the dynamical effects cf the finite angular size of the
solar disk have been investigated the effects of variations in the solar
luminosity, which relate directly to the solar radiation pressure, will

be examined.



The solar luminosity has a well known and well defined eleven
year period of variation due to internal physical processes. However,
over short timescales the solar l|uminosity varies in an extremely
non-periodic manner due to flares, sunspots etc. To attempt to obtain
some understanding of how the time varying luminosity L(t) affects
solar sail dynamics a simple sinusoidal variation will be superimposed

upon the mean solar luminosity Lg, Vviz

L(t) = Lo{1 + ecos(Qt)) (3.44)

where €K1 is the fractional variation in the solar iuminosity with a
frequency Q. This functional form of the solar luminosity has in fact
some empirical justification in that there appears to be variations with
€2107% due to sunspot features. The sunspot features cover a small
part of the solar disk therefore reducing the solar luminosity. These
variations have an associated timescale of order 25 days due to the
solar rotation carrying the sunspot features across and behind the
solar disk, Wilson et. al (1981). It will be assumed that r»R, so that

an inverse square solar radiation pressure model may be used.

3.5.1 Consequences for Stability: 1-Dimensional Motion

For a solar sail with B=1 at a stationary position ry the
one-dimensional dynamical equation with a time varying solar

luminosity is given by (cf. equation (3.16))

2
LE -t - ) Dy + u T <8 cos(at) (3.4

Substituting for B, applying a perturbation ® such that ro°rot® and

linearising about the stationary point ro a variational equation with a
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periodic coefficient is obtained. Considering a radial perturbation only

it is found that

d3s _ _u_ _ 28
di:c r02{1 ro} cos(Qt) (3.46)

which may be more conveniently written as

2g
gE? + (38 + Xx)cos(Rt) = 0, X=2€wg? , Xp= - €rgug?  (3.47)

This equation may be reduced to a form of Mathieu’s equation by
using the variable transformation v=X,$+A, and re-scaling the time

variable such that t’=Qt

d3v wal 2
oz t92c08(t)v =0 , g3=0 , gp= 2€{5°} (3.48)

The stability characteristics of this type of equation may be
investigated using Floquet theory, Jordan and Smith (1987). In this
analysis the solution to equation (3.48) is written as the product of a
purely periodic and an exponential solution, with the exponent
determining the stability of the stationary solution. Whether the
exponent is real or purely imaginary (unbound or bound solutions)
depends on the values of the two coefficients g; ». It is found using
Floquet theory that for stable, bound solutions to equation (3.48) it is
required that g,<0.5 (with g,=0), as shown in Figure 3.6. That is, g,
must lie between the two transition curves T, > on the g,=0 axis.
This condition will always be satisfied since €x1072 at maximum and the
variation has a timescale of order 25 days. Since this frequency is
far greater than the Keplerian orbital angular velocity wg (consistent

with the assumption that r»Ry) 0<g;<0.5 so that the
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stationary solution does not become unstable with exponential growth.
It is therefore concluded that short period time variations in the solar

luminosity have little effect on the stability of one-dimensional

stationary solutions.

3.5.2 Consequences for Stability: 2-Dimensional Motion

For the circular orbital case a similar analysis can be carried out
using the time varying solar luminosity. The dynamical equations now

become (cf. equations (3.29))

2 2
%E; -r {%%} = -5+ 85 (1 + ecos(at)) (3.49a)
%£ [rz %‘.} -0 (3.49b)

These equations may be reduced to a single radial equation by again

using the angular momentum integral h=r2(de/dt), viz

fj—’f?r - B s - % ((1 - B - pecos(at)) (3.50)

For an initial circular orbit at heliocentric distance ro the spacecraft
orbital angular momentum per unit mass is given by
h2zury((1-B)-€cos(@t)) so that only the time averaged angular
momentum is conserved. Applying a perturbation rgorg+®  and

linearising about the initial circular orbit it is found that

312;8 ) :1_23{1 _ FS—E] _ y_2{1 ; .i_:}{m -B) - Becos(m:)} (3.51)
0 [o]

Substituting for h2 and retaining linear terms only a variational

equation is obtained



d2s , U
+ —51(1 - B) - Becos(Qt){s = 0
dt? roz{ ( )] (3.52)

It has again been assumed that h remains constant with the applied
perturbation so that the azimuthal drift of the spacecraft has been
ignored. Equation (3.52) may be reduced directly to Mathieu’s

equation by transforming the time variable such that t'=Qt, viz

2¢ 2 2
%gz + (g1+gzc08(t*))8 = 0, gy = (1-A){50} ", 9z = -re{30} " (3.53)

where g, »<1. For small coefficient values the transition curves Ty,2
of Figure 3.6 may be approximated, Jordan and Smith (1987). For the
first transition curve T, the approximation is given by a parabolic

relation g,=-(1/2)g»2 and the stability condition is therefore

9 > - % g22 + 0 (923) (3.54)

where gz3z10'9 in this case. Since g,>0 for O0<B<1 this condition is
always satisfied. The second transition curve T, has a linear

approximation g,=(1/4)+(1/2)g, and a resulting stability condition

91 < % + % g2 + 0 (92%) (3.55)

Substituting for g, , the resulting condition on B is given by

(Wa/R)2 = (1/4) 3.56
B> Tag/Z (1 = (e/2) (3.56)

To first order in € this condition may then be more conveniently

written as
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Therefore, for short period, sunspot related fluctuations in the solar
luminosity (Q/wo)2>>1, so that for 0<B<1 the sail motion is always stable
with purely imaginary characteristic exponents.

It has been shown then that short period fluctuations in the
solar luminosity have little effect on solar sail orbital stability
provided the timescale of fluctuation is far less than the sail orbital
period. Even for the short period 25 day orbit following the solar
rotation there will be little effect on orbital stability since the sail is
co-rotating with the sunspot features which give rise to the luminosity
variations. However, for the long period eleven year variations in the
solar luminosity the sail motion will in fact become unstable, although
the instability timescale will be extremely long. It can be seen from
Figure 3.6 that for €1, and so g,«1, the sail motion will become
unstable for g,<0.25. Therefore if, for example, the sail has an eleven
year orbital period so that, (®/wy)?21 the motion will become unstable

for B>0.75.

3.6 Conclusions

It has been shown in this chapter that due to the finite angular
size and limb darkening of the solar disk the solar radiation pressure
exerted on a solar sail spacecraft does not have an inverse square
variation with heliocentric distance, as assumed in previous studies.
In general the effect of this deviation will be to introduce small errors
into numerical calculations of solar sail trajectories. However, by
identifying that this deviation of the functional form of the solar

radiation pressure exists more accurate nominal solar sail trajectories
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may be obtained. This is particularly important for trajectories in the
inner solar system and for any future solar sail missions with
advanced sail materials making extremely close passes (<0.1 AU) to the
Sun. Such close passes are found for time optimal trajectories to the
outer planets, as discussed in section 1.5.2.

Although the actual magnitude of the deviation of the solar
radiation pressure from an inverse square form is small except at
close heliocentric distances, it has been shown that the
one-dimensional dynamics of a stationary solar sail is not as simple a
system as is at first thought. A solar sail of a given loading now has
only one possible stationary solution that is exponentially unstable.
Furthermore, with the sail in a circular orbit it has been shown that
for a sufficiently large orbital angular velocity the sail orbit becomes
linearly stable against perturbations. However, with specific
requirements on the sail orbital period there exists a region within
which the sail orbit necessarily becomes unstable.

Finally, it has been shown that short period time variations in
the solar luminosity appear to have little effect on solar sail stability
in stationary and circular orbital configurations. However, for long
period variations with the timescale of variation of the same order as
the sail orbital period the motion can become unstable with a long

instability timescale.
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4. SOLAR SAIL HELIOCENTRIC HALO ORBITS

4.1 Introduction

In this chapter the dynamics of a new mode of operation of solar
sail spacecraft is discussed, that of heliocentric halo orbits. These
orbits are equivalent to circular solar sail orbits, but displaced out of
the ecliptic plane. They are achieved by orienting the sail so that a
component of the solar radiation pressure force is directed out of the
orbital plane, Figure 4.1. The heliocentric halo orbit is unlike other
solar sail orbits in that it is essentially a stationary solution to the
dynamical equations, unlike transfer trajectories which have a time
varying sail attitude and boundary conditions to be satisfied. Since
the heliocentric halo orbit is the progenitor of the geocentric halo
orbit families the underiying dynamics will be discussed in some detail.

It will be demonstrated that the spacecraft halo orbital period T,
halo amplitude ¢ and out-of-plane displacement distance z may be
chosen independently with a suitable choice of Sun-sail pitch angle «
and loading parameter B. The sail orbital period may then be chosen
to be synchronous with a Keplerian orbit of the same heliocentric
distance or chosen to be some particular fixed value, such as a one
year Earth synchronous halo orbit. Perhaps more importantly, the
halo orbit period may be chosen to minimise the sail loading required
for a given set of halo orbit parameters (e,z).

The dynamical stability of the various modes of halo orbit is
investigated and families of linearly stable orbits established. It is
found that the optimised halo orbits are stable for all orbital
parameters, whereas the fixed period halo orbits have a finite region

of stability near the orbital plane. The Keplerian synchronous halo
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Figure 4.1

X Ecliptic Plane

Schematic geometry of a heliocentric halo orbit with the solar sail
above the ecliptic plane at poeition r=(p,8,z). The sail attitude is
defined by a unit vector n and the reference frame rotates with

angular velocity 8. The axis of the halo need not be normal to the

ecliptic plane.
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orbits are always unstable. Simple control schemes are then developed
for the unstable halo orbit families. It is found that by fixing the
Sun-sail pitch angle « all of the halo orbit families become stable,
although there is no damping of initial injection errors. A more
complex feedback scheme to the sail pitch is developed to include
velocity terms, but is found to be unsuitable due the long damping
timescale. By allowing small changes in the sail area along ‘with
changes in sail attitude a robust and well damped control is obtained.
Lastly, by patching individual halo orbits together, complex and
elaborate new trajectories may be generated. By patching four
perpendicular halo orbits together the sail may be forced to follow the
surface of a cube. Furthermore, by switching the sail attitude to a
null configuration with «=m/2 the halo orbit may be patched to a
heliocentric Keplerian ellipse. The applications of such orbits are
many and varied both for unique astronomical observations and for
communications with spacecraft on interplanetary trajectories, as will

be discussed in chapter 7.

4.2 Dynamical Equations and Their Solution

To investigate the dynamics of heliocentric solar sail halo orbits
the dynamical equations will be considered in a heliocentric rotating
reference frame (see appendix B). Stationary solutions to the
dynamical equations will then be found in this co-rotating frame.
These stationary solutions correspond to halo type orbits when viewed
from an inertial frame. Since the orientation of the co-rotating frame
is arbitrary, the axis of the halo may have any desired orientation
with respect to the ecliptic plane.

Using an idealised spacecraft model with a planar, perfectly
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reflecting sail a solar sail at position r in the co-rotating frame with
angular velocity @ will be considered, as shown in Figure 4.1. The
sail orientation is defined by the unit vector n, fixed in the
co-rotating frame and the ratio of the solar radiation pressure force
to the solar gravitational force is given by the dimensionless sail
loading parameter B=o*/0. Since the sail orientation is fixed in the
co-rotating frame the sail must rotate once per orbit with respect to
an inertial frame. The vector dynamical equation of the sail in the

co-rotating frame may then be written as

d?r dar - a -
Eg+20xdt+0x(ﬁxr)-a W, (lr|) (4.1)

where the terms on the left represent the kinematic, coriolis and
centrifugal accelerations respectively. These accelerations are equated
to the solar radiation pressure and solar gravitational accelerations
exerted on the sail. The two-body gravitational potential ®-(|r|) and

solar radiation pressure acceleration a are given by

oo(lrl) = - ﬁ , a= Bﬁdr.n)z n (4.2)
as derived in section 2.1. Since the solar radiation pressure

acceleration can never be directed sunwards the constraint r.n>0 is
imposed so that the Sun-sail pitch angle |x|<(m/2).

It is noted now that the centrifugal term in equation (4.1) is
conservative and so may be written in terms of a scalar potential ¥(r)

defined such that

Wr,e) = @x@xr) , ¥re=-jzlaxr? (4.3)
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A new modified potential, U(rQ)=0.(|r})+¥(r,2), will now be defined so

that a reduced dynamical equation is obtained, viz

2

In the co-rotating frame a stationary solution is required so that
the first two terms of equation (4.4) must vanish. Since the vector a
is oriented in direction n, taking the vector product of n with

equation (4.4) it is found that

wWr,2) xn=0 3 n = xXW(r,Q) (4.5)

where X is an arbitrary scalar multiplier. Using the normalisation
condition In|=1, X is identified as |VU(r,Q)|~! so that the required sail

attitude is defined by

- _W(r,8) 4,
n-= _’_'IVU(r,Q)I (4.6)

Since the spacecraft is to have uniform azimuthal motion there can be
no component of the vector n, and so of a, in the azimuthal direction.
Therefore, the sail attitude may be conveniently described in terms of
a single angle « between n and r. Taking vector and scalar products

of equation (4.6) with r, it is found that

Similarly, the required sail loading parameter is obtained by taking a
scalar product of equation (4.4) with n, again requiring a stationary

solution, viz
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A(r,@) = utir|s TULALN (4.8)

Therefore, general vector valued functions for the sail attitude and
loading have been obtained in terms of the two-body co-rotating
potential U(r,2). For a given halo orbit period and spacecraft position
the Sun-sail pitch angle and loading parameter can then be obtained.
If a system of heliocentric cylindrical coordinates, (p,0,z), is now

used the co-rotating two-body potential function may be written as

U(e,2;0) = - [3 0202 + &} | r2 =024 22 (4.9)

where the sail orbital period is given by T=(2m/Q). Evaluating the

potential gradient in equations (4.7) and (4.8) it is found that

2
tan «(0,2:0) = 737p Rl Ry, ag2ayrd (4.10a)

2}2}1/2 ((Z/p)z + {1 - (Q/Q*)z)z )3/2 (4.10b)

Ale,z;2) = {1 ¥ {5 ((z/0)° + (1 - (/Q4)%) )<

where Q4 is the angular velocit} of a circular Keplerian orbit at
heliocentric distance r. If the parameter u is now chosen to be unity
then the unit of distance becomes the astronomical unit and the unit
of time becomes 2m Earth years. These relations may now be used to

investigate the various heliocentric halo orbit modes.

4.3 Keplerian Synchronous Mode

For this mode of operation the spacecraft orbital period is chosen
to be that of a Keplerian orbit of semi-major axis equal to the sail

heliocentric distance r, (ie. 9=r-3/2). Substituting for this functional

form of © the required loading and Sun-sail pitch are obtained as
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tan x(p,2) = % (4.11a)

r

Ble,z) = 71 (4.11b)

For a fixed sail loading, equation (4.11b) defines topologically nested
surfaces of revolution about the z-axis. A section of these level
surfaces of constant sail loading is shown in Figure 4.2 along with the
required sail pitch. It can be seen that the sail pitch is such fhat
the unit normal to the sail surface is required to be oriented
perpendicular to the plane of the system. Therefore the constraint
r.n>0 is always satisfied. The sail loading increases with lower ecliptic
latitudes (ie. smaller payloads at lower latitudes for a given sail
design). For any set of orbital parameters a sail loading of A1 is
required so that this mode of operation is of little practical interest.

The surfaces of co-rotation (equal orbital period) are defined by
spheres of constant radius so that the intersection of these spheres
with the constant loading level surfaces defines regions where solar
sails will orbit synchronously with each other. The sail loading
parameter may be related to the actual sail mass per unit area using
the relation B=o*/o, (ie. 0=1.538"1 gm~2),

It is again noted that owing to the symmetry of the problem the
axis of the halo need not be normal to the ecliptic plane. In fact a
halo orbit may be established about any axis passing through the

origin so that off-axis halo orbits, inclined to the ecliptic are possible.

4.4 General Synchronous Mode

For this mode of operation the sail orbital period will be chosen
to be some particular fixed value for all halo orbit parameters (e,2). A

section of the equal loading level surfaces and the required sail pitch
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Figure 4.2

ES
-

n
T

0.8 + __

0.4 +

-+
4
+
+

1.2 0.8 0. 4 0.0 0. 4 0.8 1.2

Section of surfaces of constant sail loading and the required sail pitch
for the Keplerian synchronous mode. The required sail loadings are

given by; (1) 1.0 (2) 1.05 (3) 1.2 (4) 1.5 (5) 2.0 (6) 3.0.
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is shown in Figure 4.3 for an Earth synchronous one year halo orbit.
These surfaces are generated by setting Q=1 in equation (4.10b).
Topologically, the full three-dimensional level surfaces of equal sail
loading are a family of tori for B<1 and cylinders for 21, nested
around the z-axis. The topology change occurs at B=1 when the inner
radius of the torus vanishes.

The nested tori intersect the ecliptic plane in a set of circular
contours giving the required sail loading for co-rotation in the ecliptic
plane with a period of one year. From equation (4.10a) it can be seen
that in this case a radial sail attitude with zero pitch angle is
required. Furthermore, along the z-axis it is seen from equations
(4.10) that =0 and B=1 corresponding to a stationary solution at any
heliocentric distance above the solar poles. This requires a spacecraft
mass per unit area of 1.53 gm™2. With the sail deployed on a nalo
orbit a lower sail loading, and so a larger mass per unit area, is
required. This is however at the expense of a decrease in the
potential out-of-plane distance. For example, for a halo orbit at z=0.5,
0=0.7 AU a sail mass per unit area of 1.91 gm~2 is required.

The region of space in the co-rotating frame in which stationary
solutions exist is bounded, being defined by the region interior to the
surface r.n=0. It can be seen from equation (4.8) and Figure 4.3 that
as this limiting surface is approached the sail loading parameter [,

The boundary is defined by
s(e,2) = & - 0202 = 0 (4.12)

Outside this surface r.n<0, corresponding to a Sun-sail pitch angle of

o>(m/2), so that the total gravitational and centrifugal force is
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Figure 4.3
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Section of surfaces of constant sail loading and the required sail pitch
for the Earth synchronous mode. The required sail loadings are given
by; (1) 0.5 (2) 0.8 (3) 0.9 (4) 0.99 (5) 1.0 (6) 1.1. The outer contour

S, represents the boundary S(e,z)=0.
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outward. The solar radiation pressure force will then only augment
these forces and so stationary solutions in the co-rotating frame will
not be possible. Inside the surface r.n>0 and stationary solutions are
possible with the gravitational, centrifugal and solar radiation
pressure forces in equilibrium. The surface S(p,z)=0 is shown as the

outer contour S, in Figure 4.3.

4.5 Optimal Halo Mode

To generate an optimal family of halo orbits the spacecraft orbital
period will be treated as a free parameter of the system with respect
to which the sail loading requirements may be minimized. Therefore,
setting the derivative of B with respect to @ to zero a quadratic in Q2

is obtained, viz

aB(Sﬂ,Z',Q)z S 94_929*2{2 + 3{?}2} + 0*4{1 + {5}2] =0 (4.13)

The quadratic gives two solutions for ©2, one of which fails to satisfy
the condition r.n>0. The other solution always satisfies this condition.
The required solution for the sail orbital angular velocity to give a
minimum in the sail loading requirement is then given by

1+A }1/2}1/2 A= {é—}z (4.14)

o0pt = 9x{143 A} (-1 - rrstormardl ]
Using this functional form of the sail orbital angular velocity surfaces
of constant sail loading may again be generated from equation (4.10b).
A section of these surfaces is shown in Figure 4.4 along with the
required sail pitch. It can be seen that a halo orbit may be
established at all points in space, always with O0<A<1. Therefore, by

treating @ as a free parameter of the system, halo orbits with large
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Figure 4.4
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out-of-plane displacements may be achieved with the required sail
loading lower than for the synchronous case. Current sail designs
allow sail loading values of up to B=0.3, as discussed in section 1.4.3,
which allows an optimised halo orbit with z=0.3 AU at p=1.0 AU. A

solar sail on such a halo orbit has a period of 1.37 years.

4.6 Heliocentric Halo Orbit Stability

Now that the three halo orbit families have been established their
stability characteristics will now be investigated. This is carried out
by linearising the dynamical equations about a nominal halo orbit to
obtain a variational equation. The variational equation describes the
sail motion in the neighbourhood of the nominal halo orbit. Therefore,
the stability of the trajectory may be determined by examining the
eigenvalues of the variational equation. The non-linear dynamical
equations may be linearised by perturbing the sail from its nominal
halo orbit with the sail pitch fixed in the (p,z) frame. The
perturbation is therefore applied with the inertial sail pitch angle ¥
fixed, as shown in Figure 4.1, so that the Sun-sail pitch angle « is
variable.

Applying a perturbation ® to a sail at an operating point
ro=(ro,90,2g) such that rgoro+$ a linear variational equation is obtained

from the non-linear dynamical equation, equation (4.4)

2
93+ 20 x T+ W(ry+S) - a(rg#®) = 0 (4.15)

where the vector $=(&,%,n) represents first order dispiacements in the
co-rotating frame in the (p,8,z) directions respectively. The potential

gradient and the radiation pressure acceleration may be expanded in
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trivariate Taylor series about the operating point ro to first order as

VW(rgts) = Wirg) + 32 W(N| 8+ 0 (I8]2) (4.16a)
:ro
a(rot®) = a(rgy) + 5% a(r)| & + 0 (]18]2) (4.16b)
r=rg, N=n,

Then, since VU(rg)=a(ry) on the nominal halo orbit a linear variational

system with constant coefficients is obtained, viz

2
B m-ms=o (4.17)

where M and N, the gravity and radiation gradient tensors in
equations (4.16) and the skew symmetric gyroscopic matrix M, are

given by

"1:

oMo

—(2) g » M= Uiy ., N={ajj (4.18)
0 0 (1,3)€(e,8,2)

The tensor components Uij are the (i,j) partial derivatives of the
potential with respect to the cylindrical polar coordinates and aj is
the jth derivative of the ith component of the solar radiation pressure
acceleration. Owing to the azimuthal symmetry of the system all
derivatives with respect to © in the matrices M and N vanish. In

component form the variational equation then becomes

2
g?e' - 29@0% + Lile + L13n = 0 (4.193)
d2¥ 20 df _ 0 (4.19b)

dt? 7 gy dt -~
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a
N
po

+ L31€ + L33l'\ =0 (4.19C)

2

where Ljj=M;;-Njj. This set of three coupled ordinary differential
equations may be reduced to two by integrating equation (4.19b) to

obtain

dw 20
dt ° "o (€ - &) (4.20)

This equation is in effect a linearised version of Kepler’s third law,
giving the angular velocity of the sail relative to the nominal halo
orbit. The equation may then be substituted into equation (4.19a) to
eliminate the azimuthal coordinate. However, this leads to a constant
term 40-’-80 in equation (4.19a) so that the variational system becomes
non-homogeneous. The non-homogeneity can be easily removed by

re-scaling through a change of variable

, 4021
€ =€ - 33 (4.21a)
L¥353las - Lyalay %o
, 2
R =no+ K = (4.21b)

L*11Lss - Lislay
where L*,,=L,,+402. Using this transformation a reduced variational

system with a set of two coupled equations is obtained, viz

_g? P T - (4.22)

By eliminating the azimuthal coordinate the order of the variationai
system is reduced, however the sail is free to drift along the halo

orbit. Therefore, the orbit cannot have Lyapunov type stability but
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may at least be Poincare stable (see appendix C). The coefficients of

the matrix L are given by

L*,, = 402 - { {Q?- - 1;5} + ﬂ:; } - A\ cos2y (4.23a)
Lizg = - %‘;’E = A Azsinycosy (4.23b)
Lay = - %SE =~ XgA,sinycosy (4.23c)
Lss = {%:; - ?fz} = A Xgsin?y (4.23d)

and the auxiliary coefficients >\j (j=1,3) are given by

S . 28

1777 (ecosy + zsiny) (4.23e)
-4 _ 207 z
)\2 =1 P_ {1 + o tany} (4.23f)
22¢° e
-1 - e 4,
2y = 1 - 25 {1+ € coty) (4.239)

The stability characteristics of the reduced variational system
defined by equation (4.22) may now be investigated by calculating the
system eigenvalues. This may be carried out by substituting an

exponential solution of the form

- oWt (4.24)

Substituting this solution into equation (4.22) gives a matrix equation

of the form
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S (4.25)
Lay . Wt Lgs "o 0
For non-trivial solutions a vanishing secular determinant of the matrix

equation is required. This then gives the characteristic polynomial of

the system, viz

w* + tr(L)w? + det(L) = 0 (4.26)

with the trace of the system matrix tr(L)=L*,,+L;; and its determinant
det(L)=L*,;,L35-Ly5Ls;. The fundamental theorem of algebra implies
that the characteristic polynomial has four complex roots wj (j=1,4), the
four frequencies of the eigenmodes of the system. Formally these

eigenvalues may be written as

]1/2}1/2

0y, .4 = 5 [-tr) £ {tr)? - adetn) (4.27)

where the positive root gives a long period response and the negative
root a short period response. The sail motion in the neighbourhood of
the nominal halo orbit is then given by the superposition of the four

eigenmodes as

5 foi| it (4.28)
= eWj .

The stability characteristics of the families of halo orbits may
now be investigated by numerically searching for regions with purely
imaginary eigenvalues, wj2<o, (j=1,4) giving stable, bound oscillations

in the (p,z) plane, (ie. det(L)>0 and tr(L)>0). Firstly, the stable
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regions of the general synchronous mode with Q=1 will be mapped.
Using the scale invariance of the system the stability of the Keplerian
synchronous and optimal halo modes will then be determined. Setting
Q=1 in equation (4.27) it is found that there exists a stable family of
halo orbits with wj2<0, (j=1,4) near the ecliptic plane. This region is
bounded by the surface C,, the section of which is shown in Figure
4.5, Along the z-axis it is found that there exists a marginal
instability since equation (4.19¢c) reduces to (d2n/dt2)=0.

For the Keplerian synchronous case the surface Q=r-3/2z1 s a
unit sphere, the section of which is shown in Figure 4.5 by the curve
C,. It can be seen that this surface lies outside the stable region of
the map so that the Q=1 Keplerian synchronous halo orbits will be
unstable, (it may in fact be easily shown that det(L)<0 for Q=Q4 in
general). Furthermore, the surface defined by Qopt=1» shown as Cy in
Figure 4.5, may also be generated and is found to lie within the stable
region.

Examining equations (4.10) it can be seen that there exists a
scaling law of the form

}2/3 Q }2/3

’ 2y 2 24 [ﬁ“z‘ as Ql d 02 (4.29)

Q
o1 - ex (g

so that the problem is scale invariant to changes in Q. Therefore, the
hierarchy of the surfaces shown in Figure 4.5 will hold for any value
of . The Keplerian synchronous mode is therefore always unstable
and the optimal mode is always stable.

The coupling of the halo amplitude perturbations to the azimuthal

motion may be found by integrating equation (4.20), viz
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The contour C; defines the

stable region for the @=1 mode and the contours C; ; define the

surfaces given by Q=r-3/2=1 and Qopt=1 respectively.

solutions along the z-axis have a marginal instability.

The stationary
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t
w(t) = ¥y + (ol - 22 ) ony gp (4.30)
€o €o o

where €(t) is the response given by equations (4.28) and (4.21a). The

first order drift in azimuthal position can then be obtained as

4
20 402 20 ; .
w(t) = v + {25y - 33 t'—E&Jewt 4.31
o { €0 }{ L*11L33"|—13L31] Oj_1 Wj ’ ( )

For the stable halo orbit families the azimuthal perturbations are of
the form of periodic oscillations with a secular increase. This drift is
due to the sail having an initial perturbation in the o coordinate so
that the sail has a first order difference in orbital period from the
nominal halo orbit. The sail motion is therefore constrained to a torus
around the nominal orbit and has Poincaré type stability.

Typical stable and unstable responses for a one year Earth
synchronous halo orbit are shown in Figures 4.6 and 4.7, using a
numerical integration of the full non-linear dynamical equations. It
can be seen that the unstable halo orbit has a rather long instability
timescale of almost one year. The instability manifests itself in the
sail falling sunward. For the stable case it is seen that even for a
large initial perturbation outside the linear regime, the halo orbit
remains bound with large amplitude in-plane and out-of-plane

oscillations.

4.7 Heliocentric Halo Orbit Control

Since the stability analysis has shown that the halo orbit families
have regibns of instability, simple closed loop control schemes that
ensure asymptotic stability will now be investigated. If the spacecraft

azimuthal position is unimportant (as would be the case for a passive
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Figure 4.6(a)
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Figure 4.7(a)
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monitoring platform) then the reduced two-dimensional system may be
considered. It will be shown that the two-dimensional system is in
principle controllable using feedback to the sail pitch. However,
simulations show that the damping timescale is too long for practical
purposes. Therefore, a general feedback scheme, with variable sail
loading is developed. This scheme is found to produce a suitabie

control.

4.7.1 Controllability by Sail Pitch

The first type of control to be investigated is a proportional and
derivative feedback to the inertial sail pitch angle ¥. However, it
must firstly be established that the system is in fact controllable
using the sail pitch alone.

If the vector dynamical equation is linearised by allowing first
order changes in the sail position rgoro+® and also the sail attitude

no°Notsn then a modified variational equation is obtained, viz

2 3
M T M-ms=Ken , K= 3 (4.32)
r=rg, n=n,

where the matrix K gives the first order variation in the solar
radiation pressure acceleration with changes in sail attitude. The
azimuthal coordinate may again be eliminated using equation (4.20).
The variable transformations defined by equations (4.21) are then used
to reduce the modified variational equation to the variables &' =(g’,n).

The variational equation then becomes

J
L* L
2’ , 11+ Lis |
g_tg*l_s :KS)’ 3 L= . s e -.- o e 7K- iez (4'33)
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where the first order attitude change n now becomes the change in

inertial sail pitch angle $¥. The radiation pressure acceleration partial

derivatives given by the components of K=(K1,K2)'r are

1 Bz .
Ky = 3 73 (pecosy + zsiny) [300327[1 - %tanzy} + 1} (4.34a)
_1Be ‘ _Z -
Ky = > T4 (ecosy + zsiny) [3cosz>'{1 ptanzy} 1} (4.34b)

The system is now reduced further by transforming to a set of
four first order equations in the state variable x:(s’,ds’/dt). The

variational equation may then be written in standard form as

dx o . I 0

gt - L*x + K¥sy , L¥={.. ... .. K¥ = (4.35)

To determine the controllability of system the rank of the 4x4
controllability matrix C=(K* L*K*,L*2K* L*3K*), formed from the system
matrix L*¥ and the input distribution matrix K¥, is calculated. For the
system to be fully controllable the matrix C must have full rank, (see

appendix C). Evaluating the controllability matrix it is found that

Ky 0 -L¥; 1Ky = LiaKe
Ko 0 -L31Ky - LagKz
c - (4.36)
Ky 0 -L¥ K, - LysKo 0
| Kz 0 -L31Ky - LasKz

It is clear then that r(C)=4 if K, .#0 (ie. pcosy+zsiny#0). However,
r.n=pcosy+zsiny is always non-zero for the Keplerian synchronous and

optimal halo orbit modes and is non-zero for the Earth synchronous
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mode, provided that the orbit is within the allowed region of the (p,z)
plane. There are also several other discrete uncontrollable cases
found by setting the terms in brackets in equations (4.34) to zero or
equating K;=K,. Finally, it is found that for the full three-dimensional
variational equation the system is uncontrollable using sail pitch alone.
That is, although equation (4.19b) shows a coupling between the
azimuthal and radial motion it is not sufficient to give full rank to the

controllability matrix.

4.7.2 Control by Variable Sail Pitch

Now that the controliability of the system has been established a
closed loop feedback scheme to the sail pitch will be investigated.
The sail pitch will be related to the state variables through a general

feedback expression

4
S =) gy . x= () (3=1,4) (4.37)
j=1

where Xj (j=1,4) are the components of the state vector. The four
feedback gains 9j (j=1,4) are chosen to ensure all four of the
eigenvalues of the system are in the left hand complex plane so that
the system has asymptotic stability. Since the reference state of the
system is x=0 the controller is a state regulator. Equation (4.37) can
be substituted into equation (4.33) and a new characteristic polynomial
obtained. The Routh-Hurwitz criterion (see for example Barnett and
Cameron (1985)) then defines limits to the range of values the gains
may take so that all eigenvalues are in the left hand complex plane.
Since there are four gains it is not useful to design the control

scheme by plotting the positions of the closed loop eigenvalues in the
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complex plane, (ie. root locus technique, see for example Barnett and
Cameron (1985)). Instead, a simulation using a numerical integration of
the full non-linear dynamical equations was used. The Routh-Hurwitz
conditions were implicit in the simulation to ensure the values of the
gains were within the correct bounds.

The performance of the variable sail pitch control is shown for a
low displacement halo orbit, Figures 4.8 and 4.9. The free, open loop
response for a stable Earth synchronous halo orbit is shown in Figure
4.8. It can be seen that there is a combination of long and short
period responses, corresponding to the two sets of eigenvalues of the
stable system. The azimuthal drift corresponding to equation (4.31) is
also seen. The closed loop response for the same halo orbit with
feedback to the sail pitch is shown in Figure 4.9. The gains were
chosen to attempt to minimise the damping time while avoiding
excessive overshoot. It can be seen that the damping timescale is
extremely long. This is due to the coupling between the magnitude
and direction of the solar radiation pressure force. It will later be
shown in section 4.7.4 that if first order variations in the sail area
are allowed to overcome this coupling, much shorter damping
timescales are possible. The azimuthal drift is again present, but with
the superimposed oscillations being damped out.

It can also be seen from Figure 4.9 that the injection errors
damp out to non-zero values. This is due to the variable
transformations, defined by equations (4.21), used to obtain the
reduced variational equation. That is, the control scheme ensures that
(€',n')0 leaving the constant terms in equations (4.21) as residual
errors. Ph‘ysically these residual errors are due to the sail having

excess orbital angular momentum due to the initial error €, along the
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Figure 4.8(a)
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Open loop response for a one year halo orbit with ¢=0.6, z=0.2 and
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(x10™*) response (c) ¥ response.
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Figure 4.8(b)
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Figure 4.8(c)
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Figure 4.9(a)
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Closed loop response for a one year halo orbit with =0.6, 2=0.2,
injection errors of Eozrb=‘l»‘o=1x1o" and a variable sail pitch angle
control. The feedback gains are g,=-1.5, g,=-1.2, 93=-2.0 and g,=-1.5;
(a) € (x10™*) response (b) n (x10~*) response (c) ¥ response (d) sail

inertial pitch angle control (x1072).
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Figure 4.9(b)
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Figure 4.9(c)
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p-axis. This excess momentum can in fact be removed through an
open loop control manoeuvre. The manoeuvre uses a sail rotation
about the yaw axis to generate a control acceleration in the azimuthal

direction. This technique will be discussed in detail in section 5.8.3.

4.7.3 Control by Fixed Sun-Sail Pitch

An extremely simple closed loop scheme is now investigated which
ensures Lyapunov stability for all of the halo orbit families. The
scheme does not damp out injection errors, but is used only to
stabilize unstable orbits, such as Earth synchronous halo orbits high
above the ecliptic plane. The scheme requires that the Sun-sail pitch
angle «x remains fixed. Therefore, as the sail moves from the nominal
halo orbit the inertial sail pitch angle ¥ must vary.

In terms of the fixed Sun-sail pitch angle « the components of

the radiation pressure acceleration (ap,az) may be written as

-
ap = % cos®x [coson % - sinx F} (4.38a)
a, = % cos2«x {sinoz G—: + cosx %.} (4.38b)

These expressions may then be used to evaluate the new radiation
gradient tensor, in a similar procedure to section 4.6. Therefore, a
hew system matrix may be formed and its stability characteristics

examined. It is found that the reduced variational equation becomes

g’ P¥yy . P g’
-d_dz + . -1} -.- -1? . = 0 (4.39)
Y Psy - Pas n’

where the coefficients of the matrix P are given by
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x . 1 3e2

P¥yy = 402 - | o2 - L)+ 3 } -y (cosx - r,ry) (4.40a)
30z ,

Pys = - Fg_ + [y (sinx + [,r,) (4.40b)

b = 302 _p (o

a1 2 - ;& - Ty (sinx - [Llg) (4.40c)

P = [1 322 r

33 T |73 - —rs} - [y (cosx - Tyl) (4.40d)

The auxiliary coefficients I‘j (j=1,5) are given by

r, = % cos?«a (4.41a)
L, = %g (4.41b)
r, = % (4.41c)
[, = pcosx - zsinx (4.41d)
[g = psinx + zcosx (4.41e)

To determine the stability of the system the new characteristic

polynomial is obtained and the eigenvalues found, viz

w* + tr(P)w? + det(P) = 0 (4.42)

The conditions for purely imaginary eigenvalues and Lyapunov
stability are again that tr(P)>0 and det(P)>0. However, due to the
scale invariance of the system, as discussed in section 4.6, only the
stability characteristics of the Keplerian synchronous mode need be

examined. Substituting for Q=04 it is found that
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tr(P) = ,2f2 + {%}2} >0 , det(P) = 9*4{‘;’]2> 0 (4.43)

It is clear then that the Keplerian synchronous mode has Lyapunov
stability with the fixed Sun-sail pitch angle control. Therefore, due to
the scale invariance, all halo orbit modes become stable. There will of
course be an azimuthal drift due to the excess orbital angular
momentum of the sail owing to the initial error along the e-axis.

The change inertial pitch angle 8y can be related to a feedback
control by evaluating the change in Sun-sail pitch angie with first

order changes in ¢ and z. The angle « is given by

o=y - tan‘l{é} (4.44)

so that S« may be formed from 3dx/3¢ and 3x/3z. The required control

to maintain a fixed Sun-sail pitch angle is then sy=-%«, viz

_ 1 1 -2
Sy = o T+ (2/0)2 {T\ o E} (4.45)

This control scheme is appealing in practice since no state
variabie information is required. A Sun tracking sensor would
measure the change in Sun-sail pitch angle sx which would then be
used directly to command the change in sail inertial pitch angle s». It
is this simplicity of the control scheme which makes it so attractive.
A series of open loop commands would be used to remove any initial
injection errors. The fixed Sun-sail pitch angle control may then be

used to ensure the orbits remain Lyapunov stable.

4.7.4 Control by Variable Sail Attitude and Loading

The variable sail pitch control investigated in section 4.7.2
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showed that the coupling between the magnitude of the solar radiation
pressure acceleration and the sail attitude lead to long damping
timescales. To overcome this coupling first order changes in the sail
loading (ie. changes in the sail area) will be allowed. Then, arbitrary
control accelerations may be generated and the required variation in
the sail attitude and loading obtained.

The full three-dimensional variational equation with a control

acceleration A may be written as

2 13
3T§+"1%+("—N)S:A,A:A1$+Azg—t (4.46)

where the controi acceleration is related to the state variables by the
feedback gain matrices A ;. It would in principle be possible to
choose the elements of these matrices so that the off-diagonal terms in
the variational equation, which Ilead to dynamic coupling, were
eliminated, (cf. the elements L,;3; and L3, in equation (4.22)). However,
since these terms are of the same magnitude as the principal diagonal
terms the system is not suitable for artificial de-coupling.

The variations in the sail attitude and loading required to
generate the control acceleration may be obtained from the expression
for the solar radiation pressure acceleration given by equation (4.2).
Allowing first order variations in the sail attitude ®n and the sail

loading $B it is required that

(B+8R) I—’:.'—z (r.(ntsn))2 (ntsn) = B '—"fl—x (r.n)2n + A (4.47)

By noting that |n+Sn|=1 this vector equation may be solved by taking

vector products to obtain the required sail attitude control as
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on = T;—:—ZT -n (4.48)

where a is the nominal solar radiation pressure acceleration given by
equation (4.2). This expression can then be related to the inertial sail
pitch angle control 8y and the yaw angle control $x, (rotation about

the z-axis). The loading control is also obtained as

3
SB = (tr|4 (r!‘(‘a++AA)> - B (4.49)

The required sail pitch and yaw controls along with the required
loading control can therefore be obtained as a function of the control
acceleration.

The 3x3 gain matrices will be chosen to be diagonal so that each
component of the control acceleration is a simple function of the

position and velocity along that axis, viz

Al = (Sijg1j) ’ Az = (Sijgzj) ’ (11j=113) (4.50)

where %;; is the kronecker delta function. Using this form for the
gain matrices a simulation of the control scheme is used to choose the
individual gains to achieve a suitable time response, Figure 4.10. It
can be seen that the injection errors are damped out in approximately
60° of orbit, with a maximum loading variation of less than 1072,
Shorter damping timescales are possible, but at the expense of a
larger overshoot and larger variations in the sail loading.

It has been shown then that the unstable families of halo orbit
may be well controlled by using a combination of sail attitude and
loading variations to give adequate damping timescales. However, the

simple fixed Sun-sail pitch angle control is appealing in that no state
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Figure 4.10(a)
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Closed loop response for a one year halo orbit with variable sail pitch,
yaw and loading control. The orbit parameters are p=0.5, z=1.5 with
injection errors of €o=no='¥o=1x10“. The feedback gains are glj=—10
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Figure 4.10(c)
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Figure 4.10(d)
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Figure 4.10(e)

Sx (OEG)

0.15 ¢

0.05 +

0. 00 +

-0.05 +

+

“0- ‘0 -

-0.15 ¢

0.00 . 0. 25 0. 50

0.75

1

135

T (YRS)

.00



Figure 4.10(f)
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variable information is required onboard for the control system. All
that is required is a Sun tracking sensor to generate inertial sail
pitch angle commands. Open loop commands may then be used to limit

the sail motion and to remove the initial injection errors.

4.8 Patched Heliocentric Halo Orbits

In this final section the possibility of patching halo orbits
together will be investigated. By a simple, assumed instantaneous,
switching operation on the sail attitude at discrete points along the
trajectory complex and elaborate new trajectories may be generated.
In order that the operation involves only a change in the sail attitude
several boundary conditions must be satisfied. Denoting the initial
halo (I) by the subscript 1 and the final halo (II) by the subscript 2

these conditions may be written as

(1)  ry=r, ; Intersection of the halo orbits.
(ii) wvy=v, ; No velocity impulse required at the switching point.
(iii1) E4=E, ; Sail energy is continuous across the switching operation.

(iv) By=B, ; Sail loading is continuous across the switching operation.

4.8.1 Halo-Halo Transfer

Since the switching of the sail attitude is assumed to take place
instantaneously condition (i) implies that the sail gravitational potential
is continuous across the operation. Furthermore, since the radiation
field is non-conservative with respect to sail rotations (ie. the sall
does no work against the field by being re-oriented) it is only
required that the sail kinetic energy is continuous across the

switching operation. Condition (iii) therefore reduces to |vyl={vzl,
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(ie. 2101=0283). The period of halo II is then determined explicitly by
Q,=Q,(01/02)-

Using this relation and equating the sail loadings to satisfy
condition (iv) it is found that the required conditions are p1=p> and
so z,=z,. Therefore, the spacecraft must transfer to an identical halo
orbit II, but with an axis perpendicular to halo I. Using this
procedure four halo orbits may be patched together, with the sail
attitude being switched at each of the intersections to form an
elaborate new trajectory in which the sail orbits over the surface of a
cube, Figure 4.11. It should be noted that halo III is retrograde with
respect to halo I. Furthermore, the entire patched trajectory is
symmetric to rotations and so the cube may be oriented in any way

with respect to the ecliptic plane.

4.8.2 Keplerian Transfer

Transfer to and from other halo orbits is not the oniy means of
patching trajectories. The sail attitude may be switched into a null
orientation with «=m/2, so that the sail will be transferred onto a
Keplerian ellipse, Figure 4.12. This transfer may take place at the
perihelion ovr aphelion of the ellipse. The perihelion and aphelion

velocities to be matched are given by, (see for example Roy (1982))

[ 1 [+ e 232 (1 f1-e) (/2
VP"[E{1—e}} ’ Va'[a[1+e}} (4.51)
where a and e are the semi-major axis and eccentricity of the ellipse.
If a transfer at the perihelion point is considered the required halo

amplitude is given by e,=rpcos(i), where rp=a(1-e) is the perihelion

distance and i is the ecliptic inclination of the ellipse. Therefore,
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Figure 4.11
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Patched ‘cubic’ trajectory formed from four perpendicular halo orbits.

The switching of the sail attitude occurs at the intersection points.
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Figure 4.12
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Halo orbit patched to a Keplerian ellipse. The transfer may occur at
either the perihelion or aphelion points and to or from an off-axis

halo.
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applying condition (iii) the required angular velocity of the inital halo

orbit is given in terms of the orbital elements of the ellipse by

2, (a,e;i) = a=?/2 cos~1(i) %—t—:%%z (4.52)

For an aphelion transfer an angular velocity of ,(a,-e;i) is required
and for a transfer to a circular orbit an angular velocity of Q,(a,05i)
is required. Again, due to the symmetry of the system the sail may
be transferred to or from an off-axis halo orbit. In particular the
spacecraft may be transferred from an off-axis halo orbit to a solar

polar orbit.

4.9 Conclusions

It has be shown in this chapter that solar sail spacecraft may be
used to establish heliocentric halo type orbits. Three distinct families
of heliocentric halo orbit exist with different requirements on the sail
loading parameter and with different stability characteristcs. The
fixed period orbits, such as the Earth synchronous one year halo
orbit, are the most dynamically complex. However, the minimal loading
halo orbits ére of more interest for practical applications due to the
less demanding requirements on the total spacecraft mass per unit
area.

Although the Keplerian synchronous halo orbits and some of the
fixed period halo orbits are unstable a simple feedback control scheme
using variable sail attitude and loading gives a suitablg control for
the unstable modes. The simpler fixed Sun-sail pitch angle control is
easier to implement, although open loop control would be required at

regular intervals to compensate for any drift in the sail position.
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Finally, it has been demonstrated that the individual halo orbits
may be patched together to form complex new trajectories, such as the
‘cubic’ trajectory. The patching of a halo orbit to a Keplerian ellipse

is also possible by switching the sail attitude into a null orientation.
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5. SOLAR SAIL GEOCENTRIC HALO ORBITS

5.1 Introduction

Following the investigation of the heliocentric halo orbit families
in chapter 4 another new mode of operation of solar sail spacecraft is
now discussed, that of geocentric halo orbits. These orbits are similar
to the heliocentric halo orbit families in that they are achieved by
orienting the sail such that a component of the solar radiation
pressure force is directed out of the orbital plane. Therefore, the
geocentric halo orbit is a circular geocentric orbit, but displaced in
the anti-Sun direction, Figure 5.1.

By suitably choosing the sail pitch angle « and loading parameter
B it will be demonstrated that the spacecraft orbital period T, halo
amplitude ¢ and out-of-plane displacement distance z may be chosen at
will. The sail orbital period may be chosen to be synchronous with a
Keplerian near polar orbit of semi-major axis equal to the halo
amplitude, fixed at some particular value for all orbit parameters (p,z)
or, chosen to minimise the sail loading requirements. For the minimal
loading family of halo orbits it is found that the axis of the halo need
not lie along fhe Sun-Earth line, Figure 5.1,

The dynamical model assumes a radiation field that is uniform
over the scale of the problem (tens of planetary radii) so that the
ratio of the solar radiation pressure acceleration to the local
gravitational acceleration increases with increasing distance from the
planetary centre. It is this relation that leads to interesting new
dynamics. The region of space over which the assumptions remain
valid will be limited due to solar and lunar gravitational perturbations.

Given that the lunar sphere of influence has a radius of order 10 R,
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Figure 5.1
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Schematic geometry of a geocentric halo orbit with the solar sail at

position r=(p,e,z) displaced in the anti-Sun direction. The sail attitude

is defined by a unit vector n and the solar radiation is incident along

the Sun-line direction I. The reference frame rotates with angular

velocity @ directed along | or, for the off-axis case, directed along k.
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(planetary radii) halo orbits with a geocentric distance of up to 40-50
Ro will be considered. Over this distance the solar radiation pressure
varies by only 4x107° from its value at 1 AU. The analysis is of
course invalid along the planetary shadow near e=0. In the initial
analysis the annual rotation of the Sun-line will also be neglected.
The inertial forces introduced by a further rotation of the coordinate
system with the Sun-line are relatively small with respect to the large
solar radiation pressure force required to establish the halo orbits.
The effect of these perturbing forces will be considered in section 5.7.
It will be assumed that these effects may be corrected for through
active control, as discussed in section 5.8.

The dynamical stability of the various modes of halo orbit will be
investigated and lineariy stable families identified. For the unstable
families simple control schemes are developed by using a feedback to
the sail pitch. However, long damping timescales are obtained which
renders this control unsuitable. A well damped control is obtained by
including first order variations in the sail loading parameter in the
feedback loop. This control is suitable for stabilising the unstable
halo orbit families against perturbations, such as the annual rotation
of the Sun-line.

Lastly, by patching together individual halo orbits it will be
demonstrated that complex new trajectories may be formed by a simple
switching operation on the sail attitude at discrete points along the
orbit. The patching may be between individual halo orbits or between
a halo orbit and a Keplerian ellipse. Geocentric halo orbit families
have potentially useful applications for near Earth space science

missions, as will be discussed in chapter 7.
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5.2 Dynamical Eguations and Their Solution

Following the analysis of section 4.2 the dynamical equations will
be considered for a planar, perfectly reflecting solar sail in a
co-rotating reference frame with the origin centred on a point mass
Earth. The axis of rotation 8 will be directed along the Sun-Earth
line, Figure 5.1. The sail attitude is again defined by a unit vector n
fixed in the co-rotating frame and the magnitude of the solar radiation
pressure acceleration is given by the parameter B=Pg/0, where Po is
the solar radiation pressure acceleration at 1 AU and o is the total
spacecraft mass per unit area. Since the sail attitude is fixed in the
co-rotating frame the sail must rotate once per orbit with respect to
an inertial frame.

The vector dynamical equation for a solar sail in the co-rotating
frame under the action of a point mass potential and superimposed

uniform radiation field is given by

2

Q.
-
Q.

rseax@xr)=a-w,(lrl) (5.1)

+2QXE

%

The two-body gravitational potential ®,(ir|) and the solar radiation

pressure acceleration a are given by

O2(Irl) = = fp » @a= B8 (LmZn (5.2)

‘where the unit vector 1=(0,0,1) is directed along the (assumed) fixed
Sun-line. The requirement 1.n»0 is imposed to ensure that the normai
to the sail always points away from the Sun which consequently

constrains the sail motion to the planetary night-side (+2).

Equation (5.1) may be simplified by introducing the scalar

potential ¥(r) to represent the conservative centrifugal term. Similarly
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the solar radiation pressure acceleration is, in this case, conservative

and may be written in terms of a scalar potential [(r,n), viz

wir,Q) =8 x( xr) , ¥rQ

1
-3 1@ x r|2 (5.3a)

vI'(r,n)

B(1l.m)2n , C(rn) = B (1.n)2 (r.n) (5.3b)

Defining new potentials U(r,Q)=0,(Ir|)+(r,2) and V(r,n;2)=U(r,Q)+(r,n),

equation (5.1) then becomes the reduced dynamical equation

2
ng + 20 x g{ FW(r,n) = 0 (5.4)

In the co-rotating frame stationary solutions are again required
so that the first two terms of equation (5.4) vanish. Therefore, since
the vector VI'(r,n) is oriented in direction n, taking the vector product

of n with equation (5.4) it is found that

w(r,2) xn+ vI['(r,n) xn=0 3 n=XXW(r,Q) (5.5)

where X\ is an arbitrary scalar multiplier. The normalisation condition
Inl=1 is then used to identify » as |VU(r,Q)|~t. The sail attitude
required for a stationary solution in the co-rotating frame is therefore

defined by

_ _W(r,®)
= —’_lvu(r,e)l (5.6)

Since the spacecraft is to be in uniform co-rotation there can be no
azimuthal component of the solar radiation pressure acceleration.

Therefore, there can be no component of the vector a in the azimuthal
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direction. The sail attitude may then be described by a single angle «

between | and n defined by

1T x W(r,2)|
1.VU(r,Q) (5.7)

tan «(r,Q) =

Similarly, the required solar radiation pressure acceleration may be
obtained by taking a scalar product of n with equation (5.4). Again
requiring a stationary solution in the co-rotating frame it is found

that

A(r,8) = THID (5.8)

In geocentric cylindrical polar coordinates (e,8,z) the co-rotating

potential may be written as

Ue,z;0) = - {3 ()2 + &} | rz=p2 4 22 (5.9)

where the period of the halo orbit is given by T=2n/Q. Therefore,
evaluating the potential gradient it is found that the scalar
expressions for the Sun-sail pitch angle and the solar radiation
pressure acceleration required for a halo orbit of amplitude p,

displacement z and period T are given by

tan «(e,2;0) = {8} 1 - {g;}z b= e (5.10a)

Ble,zi0) = ;2 {1+ [8)° [1 - [g;}z }* }3/2z (5.10b)

where 9y is the angular velocity of a circular Keplerian orbit at

geocentric distance r. The case of Q=0 corresponds to the static
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equilibrium ‘statite’ concept for low bit rate communications with high
latitude regions, as discussed in section 1.5.3. The sail is then
stationary above the night-side of the Earth with the solar radiation
pressure acceleration exactly balancing the local gravitational
acceleration. The required sail acceleration is therefore wuz™2, as
discussed by Forward (1989b) using the same dynamical model. If the
unit of length is chosen to be the planetary radius Ry and u=1 then
the parameter B will be the solar radiation pressure acceleration made
dimensionless with respect to the gravitational acceleration at Ro-
This will now be termed the sail loading parameter. The total
spacecraft mass per unit area is then obtained from the relation

0=9.31x10"4B~1 gm~2,

5.3 Polar_Synchronous Mode

For this mode of operation the spacecraft orbital period will be
chosen to be equal to that of a Keplerian near polar orbit above the
planetary terminator with a geocentric distance equal to the halo
amplitude e, (ie. Q:p‘3/2). Therefore, the sail will maintain polar
synchronism at all displacement distances z so that there will be
cylindrical surfa‘ces of co-rotation extending in the anti-Sun direction.
Solar sails with the same halo amplitude will then orbit synchronously
with each other at differing displacement distances. The equatorial
inclination of the Keplerian orbit will vary from 66.5C at the solstices
to 90° at the equinoxes. From equations (5.10) the required Sun-sail

pitch angle and sail loading parameter are obtained as

tan x(p,z) = {%} {1 - [1 + [é}z }3/2 } (5.11a)
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se, = & {1+ {87 (- (1« {7 )71 (5.11b)

A section of the level surfaces of constant sail loading generated by
equation (5.11b), along with the required sail pitch for polar
synchronism is shown in Figure 5.2, It can be seen that for
reasonably low sail loadings halo orbits of large amplitude with respect
to their displacement distance are required. For example a 5.24 day
halo orbit with an amplitude of 20 Ry and a displacement distance of §
Ro requires a demanding spacecraft mass per unit area of 1.33 gm~2.
The surfaces of constant sail loading approach the z=0 plane as B30

corresponding to near polar Keplerian orbits.

5.4 General Synchronous Mode

For this mode of operation the sail orbital period will be chosen
to be fixed at some particular value for all halo orbit parameters (p,z).
This is equivalent to choosing the period to be synchronous with some
particular Keplerian orbit with a geocentric distance rg, (ie. Q:ro‘3/2).
From equation (5.10b) surfaces of constant sail loading may be
generated with @ chosen to be some fixed value. Figure 5.3 shows a
section of these level surfaces with the sail orbital period chosen to
be synchronous with a Keplerian orbit of radius 30 R,, (period=9.6
days in the geocentric case). It can be seen that for the lower values
of sail loading there are two topologically disconnected surfaces.
These surfaces correspond to large amplitude halo orbits near the 30
Ro synchronous region and large displacement, low amplitude halo
orbits with a low iocal gravitational acceleration. As the sail loading
increases these surfaces expand and connect. It can be seen that

along the e=0 axis the sail pitch angle is zero corresponding to
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Figure 5.2
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Section of surfaces of constant sail loading and the required sail pitch
for the polar synchronous case. The required sail loadings are given
by; (1) 2x10~* (2) 8x10~* (3) 2x1072 (4) 3x1072 (5) 9x1073. The contour
S, represents the partitioning of the stable and unstabie halo orbit

families.
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Figure 5.3
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Section of surfaces of constant sail loading and the required sail pitch
for the general synchronous case. The required sail loadings are
given by; (1) 5x10™4 (2) 8x10™* (3) 1x1072 (4) 3x1072 (5) 9x1073. The
contour S, represents the partitioning of the stable and unstable halo

orbit families.
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stationary solutions.

5.5 Optimal Halo Mode

The sail orbital period will now be treated as a free parameter of
the system so that the sail loading requirements may be minimized
with respect to it, to obtain an optimal family of halo orbits.
Therefore, setting the derivative of B with respect to @ to zero it is

found that

aB(SQIZ;Q) =0 > Q = Q* (5-12)

For the minimisation of the sail loading it is therefore required that
the sail orbital period is equal to the orbital period of a Keplerian
orbit of geocentric distance r. With this orbital period the minimized

sail loading and the required sail pitch angle are given by equations

(5.10) as
tan x = 0 (5.13a)
B =% (5.13b)
?5 .

The sail attitude is therefore such that the normal to the sail surface
is directed along the Sun-line. In this case the general
three-dimensional motion of the sail can be obtained in closed form, as
discussed in section 5.9.

Level surfaces of constant sail loading may be generated by

fixing B=B,. Then, equation (5.13b) can be inverted to give

e = [ £ 22 )0 aar (514
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which defines a surface of revolution about the z-axis. Making the
substitution u=z2/3 to clear the radical equation (5.14) may be written

as

e2(u) = u (A"1/2 + u)(ATt/2 - ) (5.15)

so that =0 when u=0 or u=#A"1/2, (je. z=0 or z=B,"%/2). The point
z:ﬁlo’i/2 corresponds to the ‘statite’ solution with the solar radiation
pressure acceleration balancing the local gravitational acceleration.
For a fixed sail loading the point of maximum halo amplitude may be

obtained by setting (de/du)=0, viz

The maximum displacement along the Sun-line is therefore
zm:(3)'3/4/30‘1/2. Furthermore, at this extremal value of z it is found

from equation (5.14) that

op = 21/2 (3)73/4 p,mt/2 (5.17)

Therefore, the locus of the maximum of halo amplitudes is given by a

cone defined by

fm = Y2 Zp (5.18)

Sections of level surfaces of constant sail loading are shown in
Figure 5.4. It can be seen that for small amplitudes and displacements
the required minimized sail ioading varies rapidly. The iine S, gives
the locus of the maximum halo amplitudes, as defined by equation

(5.18). Statite type solutions are again shown along the p=o axis. The
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Figure 5.4
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Section of surfaces of constant sail loading and the required sail pitch
for the optimal case. The required sail loadings are given by; (1)
3x10™% (2) 6x10~% (3) 1x1072 (4) 2x1072 (5) 9x1073. The contour S,
represents the partitioning of the stable and unstable halo orbit

families and the contour S, represents the locus of maximum amplitude

halo orbits.
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surfaces of co-rotation are defined by spheres of constant Q4. The
intersection of these co-rotation surfaces with the surfaces of constant
sail loading then defines regions where solar sails deployed on minimal
loading halo orbits will orbit synchronously with each other.

It can be seen from Figure 5.4 that for reasonable values of
spacecraft mass per unit area of 2-10 gm~2 large amplitude halo orbits
are required. A 15.38 day optimised geocentric halo orbit with an
amplitude of 30 R, and a displacement distance of 40 R, requires a
mass per unit area of 2.91 gm™2, which is near current attainable
values. For halo orbits around other bodies the requirements on the
spacecraft mass per unit area are not so great, even for Mars and
especially for Mercury. For halo orbits at Mercury however the
Sun-planet line rotates rapidly so that large corrective manoeuvres
would be required to maintain the halo orbit. Furthermore, as the
halo amplitude and displacement distance increase solar perturbations
become of increasing importance as do lunar perturbations for the
geocentric case. However, with advanced sail materials and designs
much smaller and less perturbed halo orbits would be possible.

Since, for the optimal case, the sail normal is directed along the
axis of symmetry of t‘he system, the axis of the halo orbit need not in
fact lie along the Sun-line. Any axis k passing through the origin,
such that I.k>0, will generate new off-axis halo orbits, as shown in
Figure 5.1. The sail loading requirements are however increased by a
factor (I.k)~2 due to the oblique incidence of the photons on the sail

as the normal to the sail surface is directed along the new axis n=k.

5.6 Geocentric Halo Orbit Stability

The dynamical stability of the geocentric halo orbit modes will
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now be investigated through a linear perturbation analysis similar to
section 4.6 and stable families of halo orbits identified. Since the
dynamical model is conservative there are no dissipatve terms so that
asymptotic stability will not be possible. Assuming the sail is at some
operating point rg=(f,00,Z5), a perturbation rgoro+$ is applied to

equation (5.4) to obtain a variational equation, viz

2
95+ 20 x 2+ Wirgs) = 0 (5.19)

where 8=(g€,%,n) represents small displacements in the co-rotating frame
along the (p,8,2) directions. Expanding the potential gradient in a

trivariate Taylor series about the point ry it is found that

W(rgts) = W(ry) + 32 W(r)| § + 0 (I812) (5.20)
r=ro, n=ng

Then, since W(rg)=0 and the radiation field is uniform, so that

(3VL/3r)=0, a linear variational system is obtained, viz

2
‘j—t§+m%§+"'6=° (5.21)

where M=3VU/3r, the gravity gradient tensor, and the skew symmetric

gyroscopic matrix M; are given by

0 -2 0
M, - {2 0 O , M= Uiy (5.22)
o o0 O

(i,3)€(e,8,2)

where Ujj is the (i,j) partial derivative of the potential. Since the

potential is azimuthally symmetric all partial derivatives with respect
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to & vanish. Furthermore, due to the potential being conservative,
VxVU=0 so that Mj;=M,;. In component form the variational equations

are then

d2€ dy
atz ~ MWogp * M11€ + Myan = 0 (5.23a)

d2¢ | 20 d _
gtz Y op at - ° (5.23b)

d2n -
W + Mlgg + M33T1 =0 (5.23c)

This set of three coupled ordinary differential equations may be

reduced by integrating equation (5.23b), viz

g¥ _ 2@ _
at = "o (€ - &) (5.24)

which can then be substituted into equation (5.23a). This then leads
to a constant term 4-0280 in equation (5.23a) which may easily be

removed by re-scaling through a change of variable

4Q2M
g -¢g- 33
M¥ 1M33 - My3°

2 (5.25a)

’ 492”13
N+ e g %o (5.25b)

pu
"

~where M*;,=M,,+402, A reduced variational equation is then obtained,

viz

g’ M1 L Mo & 0
_Q; +{ . .1? e = s e s = (5.26)
dt n’ Mys © My n’ 0

As with the heliocentric case the sail is free to drift along the halo
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orbit. Therefore, the orbit may only be Poincare€ stable and cannot be

Lyapunov stable. The coefficients of the matrix M are given by

1 3p2
WK, = 402 - { {Qz - Fﬁ} + 3 } (5.27a)
3pz
Mip = - 2% (5.27b)
1 322
Mas = [,3 - —,:s} (8.27¢)

The stability characteristics of the system may now be

investigated by substituting a solution of the form

= ewt (5.28)

to calculate the system eigenvalues. Substituting this solution into

equation (5.26) yields a matrix eguation

we + M*,, M3 € 0
= (5.29)
For non-trivial solutions it is required that the secular determinant of

this matrix equation vanish. The characteristic polynomial of the

system is then found to be

W + tr(Mw? + det(M) = 0 (5.30)

where the eigenvalues Wi (j=1,4) are the four frequencies of the

eigenmodes of the system. Formally the eigenvalues may be written as
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: 1/241/2
w14 = 55 {-tron & {tron? - adetn) / | / (5.31)
where the trace and determinant of the matrix M are given by
2
tr(M) = 307 - @2, det(M) = 30,202(1 - (B} - 20 (5.32)

Therefore, substituting into equation (5.31) the four eigenvalues of the

system may be written as

Wy, .e = ek [1-3{%;}2] + { 9{1-{%;}2}2+ 36{%*]2[52]2]1/2}1/2 (5.33)
The sail motion in the neighbourhood of the nominal halo orbit is

then given by the superposition of the long period and short period

eigenmodes as
eWjt (5.34)

The sail azimuthal motion may then be obtained by integrating

eguation (5.24), viz

t
w(t) = ¥, + [ggfﬂ}t - gg [ g(t’) dt’ (5.35)
o]

where €(t) is given by equations (5.34) and (5.25a). The first order

drift in azimuthal position is then be obtained as

Y(t) = q;o + {295.0}[1 - ﬁ_!_ﬁ‘lzﬁa.‘i_z}t

€o 11MazM1s

'Olm
lll\/la

504 (5.36)
J

The stable halo orbit families will therefore have a secular increase in
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azimuthal position and so will be constrained to a torus around the
nominal halo orbit. The stable families are therefore Poincaré stable.
The stability characteristics of each halo orbit mode may now be
investigated by substituting for the required functional form of & and
determining the regions where the roots of the characteristic
polynomial are purely imaginary wj2<0 (j=1,4) giving bound, stable

oscillations in the (p,z) plane (ie. tr(M)>0 and det(M)>0).

5.6.1 Polar Synchronous Mode

For this mode ©=p~3/2 so that the first condition for stability

tr(M)>0 may be written as

3[5}3— 150 (5.37)

Therefore, since p{r, the inequality in equation (5.37) always holds so
that there will always be at least one pair of purely imaginary
eigenvalues. For stability, with four purely imaginary eigenvalues it
is required that the additional condition det (M)>0 holds. It may be

shown that this condition reduces to

4" ) <o

with an equality in equation (5.38) defining the boundary between
regions of stability and instability. With an equality the solution of
equation (5.38) is of the form z=Xp, where X is a constant.

Substituting for z, » can be obtained as the solution of

221 4a0)/2 - (14202 =0 (5.39)
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Numerically it is found that X=0.442 so that the (p,z) plane is
partitioned into distinct regions of stability and instability with the

condition for stability

o> 2.26 z (5.40)

The partitioning is therefore defined by a cone, the section of which

is shown in Figure 5.2 as the line S;.

5.6.2 General Synchronous Mode

For the general synchronous mode the halo orbit period is fixed
with @=rg~3/2, where rq is a constant. The condition tr(M)>0 may then

be written as

3[;—0}3- 150 (5.41)

so that the region defined by r<(1/3)1/3ro will necessarily be

unstable. The determination of the overall stability map requires a

numerical solution of the condition det(M)>0 which reduces to

e sy <o

The section of the resulting boundary surface is shown as S; in
Figure 5.3 for the 30 day halo orbit. The intersection of the surface

and the p-axis is at the point p=(1/3)1/3r‘0.

5.6.3 Optimal Halo Mode

For this mode of halo orbit with a minimized sail loading the

spacecraft angular velocity is given by equation (5.12) as Q=0y. It is
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therefore found that tr(M)=2Q4,2 which is of course strictly positive.

The condition det(M)>0 then reduces to

{1 - 9[%}2} >0 (5.43)

This condition is satisfied provided that

o> 2v2 z (5.44)

so that there are again two distinct regions of stability and
instability. The partitioning is therefore defined by a cone, whose
section is shown in Figure 5.4 as S,. For a given sail loading
parameter the maximum stable halo displacement distance and

corresponding amplitude are given by

-1 g1/2 - (22 sz
25 = 55 B2, e = ()T Y/ (5.45)

which corresponds to an operating point on the partitioning cone. On
the cone of maximum halo amplitude, where e=v2z, the shortest

timescale of instability is given by

S %z (/3 - 1)-1/2 (5.46)
b 4

so that the maximum amplitude, minimal loading halo orbits are
unstable on a timescale approximately equal to their orbital period.
Typical stable and unstable responses for 10.13 day and 11.38
day optimal halo orbits are shown in Figures 5.5 and 5.6 using a
numerical integration of the full non-linear dynamical equations. It
can be seen that the 10.13 déy halo orbit is bound, even for large

injection errors of €=n=0.1. However, the 11.38 day halo orbit becomes
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Figure 5.5(a)
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Stable response for a 10.13 day optimal halo orbit with =30, z=8 and

injection errors of £5=ny=0.1; (a) x-y projection (b) y-z projection.
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Figure 5.5(b)
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Figure 5.6(a)
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Unstable response for a 11.38 day optimal halo orbit with =30, z=15
and injection errors of €5=Ny=10"%; (a) x-y projection (b) y-z

projection.
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Figure 5.6(b)
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unbound with the solar radiation pressure acceleration driving the

spacecraft out of the gravitational potential well.

5.7 Rotating Sun-line Perturbation

Now that the dynamical stability of the various halo orbit modes
has been investigated it is necessary to evaluate the effect of
perturbations on the nominal halo orbits. These perturbations are due
to the assumptions of the dynamical model used, as discussed in
section 5.1.

The main perturbation arises from the assumption of a fixed
Sun-line. In fact the Sun-line rotates at 0.986° per day due to the
heliocentric motion of the Earth. The further rotation of the reference
frame to follow the Sun-line therefore results in additional coriolis and
centrifugal accelerations. Rotating the reference frame about the
y-axis with an angular velocity €,=05(0,1,0)T the coriolis and

centrifugal accelerations are obtained as

dr

ol a= e x@ x ) (5.47)

a; = -285 X {

where the sail position vector r=(pcose,psin®,z). In the units of the
system Q,=1.604x10"*% so that the second order centrifugal term is
ignorable. Therefore, evaluating the coriolis acceleration in cylindrical

polar coordinates the perturbative acceleration components are

obtained as

ap = -2 sine[g%} (5.48a)
ae = -29, cose|$S] (5.48b)
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a; = 29, sine{g—‘:} + 28, pcose{g%} (5.48¢c)

These accelerations are included in the non-linear dynamical equations
in the numerical integration of the sail dynamics. A typical response
of a stable, optimal 10.13 day halo orbit is shown in Figure 5.7. It
can be seen the the Sun-line rotation gives a periodic response, as
would be expected from the periodic nature of the perturbation. For
the unstable halo orbit families the perturbation will excite the
unstable eigenmodes of the system leading to unbound motion.

The other major disturbance to the nominal halo orbit, for the
geocentric case, is that of lunar perturbations. Given that the lunar
mean sphere of influence is of order 10 Ry lunar perturbations will be
small for halo orbits with a geocentric distance of less than 40-50 Rg.
It is found in general that lunar perturbations are approximately an

order of magnitude less than those due to the rotating Sun-line.

5.8 Geocentric Halo Orbit Control

The stability analysis of section 5.6 has shown that unstable
families of geocentric halo orbits exist. Furthermore, for the stable
families the Sun-line rotation induces periodic oscillations about the
nominal orbit. It is therefore necessary to develop simple control
schemes to stabilize the unstable families and to damp the sail

response to the Sun-line rotation.

As in section 4.7 the reduced two-dimensional system will be used
so that, in the first instance, the azimuthal motion of the spacecraft
will be ignored. It will be shown that the system is controllable using
a feedback to the sail pitch, but that the associated damping timescale

is too long. Therefore, a well damped control using
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Figure 5.7(a)
A

30 + +

20 + 4

10 4 4

0 ¢ ix Ro)
-10 + 1

-20 ¢ 1
=30 + 4

% w0 o 0 = ®

Perturbed response for a stable 10.13 day optimal halo orbit with =30,

z=8 and a rotating Sun-line; (a) x-y projection (b) y-z projection.
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Figure 5.7(b)
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variations in sail attitude and loading is developed.

5.8.1 Controllability by Sail Pitch

It will now be demonstrated that the reduced two-dimensional
system is controllable using sail pitch alone. Making use of the
variational equation (5.21) and allowing first order changes in sail

attitude &n a modified variational equation is obtained

d2s ds _ _ da
W+"1E€+MS'KS"’ K'ﬁ (5.49)
r=rg, n=ng

The variational equation may again be reduced to the variables

§'=(g’,n’) by eliminating the azimuthal coordinate, viz

. 3
dzs’ , M*11 : L 529
at7+"s = K 5« ’ M= ORI ,K- aaz (5.50)
Mas . Mss I

where the general first order attitude change ®n now becomes the
change in Sun-sail pitch angle %o The solar radiation pressure

acceleration partial derivatives K=(K;,K,)T are given by

K, = Bcos3x (1 - 2tan3«x) (5.51a)

K, = -3Bcos?x sinx (5.51b)

Writing the system in standard state variable form x=(§,d§/dt) a set

of four first order equations are obtained

X - owkxos Kfsa , MF = {. .. .. , K¥

dt M O K

(5.52)
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The controllability matrix C=(K*,M*K* M*2K* M*3K*X) formed from the

system and input distribution matrices then becomes

Ky 0 -M* 1Ky - MasKs
K2 0 “M31Ky = M3k,
C= . (5.53)
Ki 0 -M 11K1 - M33K2 0
| Kz 0 “Ma1Ky - MasKe 0

For € to have full rank it is required that detC=0. The matrix

determinant is then given by

detC = K Ko(M¥;, - Ms3) - (K32 - Kx2)M,4 (5.54)

For the optimal halo mode equation (5.54) reduces to detC=3B2pz/rS.
Therefore the statite type solutions with =0 are uncontrollabie using
the sail pitch alone. However, all halo orbit modes are in principle

controllable using a feedback control to the Sun-sail pitch angle.

5.8.2 Control by Variable Sail Pitch

Since it has now been demonstrated that the geocentric halo orbit
modes are all controliable using variable sail pitch a closed loop
feedback control will now be investigated. A general expression for

the feedback will be used, viz

4
B = } gj%j » X = (x3) (3=1,4) (5.55)
=1

where the gains (gj), (j=1,4) are chosen to ensure that all four of the
system eigenvalues are in the left hand complex plane so that the

system has asymptotic stability. Constraints on the gains are found
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using the Routh-Hurwitz criterion.

The closed loop response of an unstable 15.51 day optimal halo
orbit with a rotating Sun-line is shown in Figure 5.8. It can be seen
that large variations in sail pitch angle are required to maintain the
orbit and that there is a large amplitude response. Due to the
variable transformations used in equations (5.25) the control scheme
attempts to damp the system to €=n'=0. Therefore there are constant
residual displacements, as with the heliocentric case. These errors

can however be removed through a simple open loop manoeuvre.

5.8.3 Open Loop Control

It was found in section 5.8.2 that with the pitch angle control the
injection errors damped out to non-zero values and that there was an
azimuthal drift in the sail position. Physically, this is due to the sail
having excess azimuthal angular momentum at the injection point.
Since the sail has pitch control only there is no means of removing
this excess momentum. It will be shown now that the off-set and drift
in sail position can in fact be removed through a simple open loop
manoeuvre using a rotation about the sail yaw axis.

Considering the optimal halo orbit family with zero sail pitch
angle and allowing first order changes in the sail yaw angle ®X, the
azimuthal component of the solar radiation pressure acceleration is
obtained from the relation (dag/3x)=B. Therefore, the set of variational

equations become

2
%é- - 2990-3% + My4€ + Mygn = 0 (5.56a)
d2¥ , 20dE _ B o (5.56b)

a_t.—z+90dt-9°
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Figure 5.8(a)
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Closed loop response for an unstable 15.51 day optimal halo orbit with
©=10, z=40 and with a variable Sun-sail pitch angle control. The
feedback gains are g;=-0.6, g9,=-0.3, 95=-0.6 and g,4=-0.3; (a) €

response (b) n response (c) ¥ response (d) sail pitch angle control.
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Figure 5.8(b)
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Figure 5.8(c)
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Figure 5.8(d)
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d2n+M €+ M =
FTY 13 33N = 0 (5.56¢)

Integrating equation (5.56b) the azimuthal drift rate of the sail may be

written as
a¥ _ [d¥ _ [20 - Bt
dt - {dt}o {po} (B(t) - &) + 5= (5.57)

Therefore, €(t) is required to obtain the full azimuthal time responsé.
Substituting equation (5.57) in equation (5.56a) to eliminate the

azimuthal term a set of variational equations in €=(€,n) is obtained

d—2§+HS-F + ot
dt2 = h 2 (5.58)

where the vectors I‘J-=(l‘j1,1‘j2) (j=1,2) are given by

r = (eoeof (5] ¢ 5

Using the variable transformation §'=6-M"1T equation (5.58) may be
1

Jeo} o}T , T, = (208 sx, 0)T (5.59)

reduced to

2g’ .
d_§ +M8% =TIt (5.60)
dat

This equation may now be solved by standard Laplace transform
methods. Defining the transform variable as s such that L[f(t)]=F(s)

the solution of equation (5.60) }r\ay be written as

s(t)’ = Utfo(s) {sso + [g%i]o} }+ o) £z 12} (5.61)

where D(s)=(s2I+M)~!. Noting that det(s?I+M) is the characteristic

polynomial of the system, the matrix D(s) may be written as
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D(s) = Adj(s? + I) {jﬁl(s - wp)” (5.62)

where wj (j=1,4) are the four eigenvalues of the system defined by
equation (5.33). The first term of equation (5.61) represents the open
loop response of the system and the second term represents the
response due to the sail yaw. For the stable, optimal halo orbit family
the open loop response is of the form of periodic oscillations. The
general solution for the response may be written in the physical

variables (€,n) as

5]
- M M P .
20 = Ty rmig T G U L 0Py usit) (5000
=1
M 6
- M - E Q. :
j=1

where Gj, H; (j=1,6) are constants and Pj, Qj (j=1,6) are the short and
long term periodic functions corresponding to the open loop response.
The yaw response may how be used to remove the residual
disptacement terms in equations (5.63).

If the first two terms in equations (5.63) are now set to zero at

time T then the sail yaw angle required is found to be

o <5 (1) @

Therefore, applying a yaw control angle sx* for time T will place the
sail on the nominal halo orbit with periodic motion about the orbit.

Substituting for €(t) in equation (5.57) the azimuthal drift rate

becomes’ -
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6
a¥ _ Ty atloy IPPL T,,M
dt © T2, ¥ Tt otudt +.§ GiPj(wy,wz;t) (5.65)

M117M33-My5 i

As before, the sail yaw angle may be used to remove the azimuthal
drift. If the first three terms in equation (5.65) are now set to zero
at time T, it is found that the same yaw angle sx* of equation (5.64) is
required. Therefore, a single open loop control manoeuvre may be
used to remove the off-sets along the ¢ and z axes and the azimuthal
drift.

The fact that the orbit off-sets and azimuthal drift are removed
simultaneously with the one manceuvre is related to the sail azimuthal
angular momentum hg=p4(de/dt). The first order difference in
azimuthal angular momentum between the nominal and perturbed halo

orbit is given by

She = 002 {J2] + 20008 (5.66)

Furthermore, the azimuthal acceleration B%X due to the yaw manoeuvre
generates a torque on the orbit (dhg/dt)=eo88X. Therefore, the total

azimuthal angular momentum change at time T is given by

SHe = She + QOBSXT (5.67)

To remove the excess angular momentum it is required that $Hg=0.
Therefore, solving for the required sail yaw angle the expression sx*
given by equation (5.64) is obtained.

It has been shown then that the excess azimuthal orbital angular
momentum due to the injection errors may be removed with a simple
open |oop yaw manhoeuvre. THis .manoeuvre may be used initially to

bring the sail to the nomi‘nal halo orbit before the pitch control
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scheme is used for orbit maintenance. An extension of the scheme may

also be used for the controlled, unstable halo orbit families.

5.8.4 Control by Variable Sail Attitude and Loading

As with the heliocentric halo orbits it has been found that pitch
only control leads to long damping timescales. Therefore, a variable
sail attitude and loading control is now developed. The variations in
both the sail attitude and loading allows arbitrary control accelerations
to be generated. Therefore, short damping timescales may be
achieved,

Allowing for an arbitrary control acceleration A the full

three-dimensional variational equation may be written as

2
g_t§+ulg—§-+ns=A,A=A1s+A2%§ (5.68)

where the gain matrices A; , are chosen to ensure asymptotic stability.
The variations in the sail attitude and loading required to generate

the control acceleration may be obtained from equation (5.2), viz

(B+8R) (1.(n+sn))2 (n+sn) = B (1.n)° n + A (5.69)

Taking vector and scalar products of equation (5.69) and using the
normalisation condition |n+Sn|=1 the required sail attitude control is

obtained as

sn = -n (5.70)

_ata
la + Al
where the nominal radiation pressure acceleration a is given by

equation (5.2). The attitude control ®n can then be related to the
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scalar pitch angle S« and yaw angle §x controls. The sail loading

control can also be obtained from equation (5.69) as

- _la+ 4
SB—m)—)g-B (5.71)

so that expressions for the sail attitude and loading control are
obtained as a function of the control acceleration.

Using diagonal gain matricies Ajz(sjigi) (j=1,2, i=1,3) a suitably
damped response may be obtained, as shown in Figure 5.9. It can be
seen that with a maximum variation in the sail loading of 3x1072 the
amplitude of the response to the perturbations due to the rotating
Sun-line are extremely small. A smaller amplitude response is possible

but at the expense of larger variations in the sail loading.

5.9 Solution by the Hamilton-Jacobi Method

The dynamics of the optimal halo orbit problem will now be
investigated through the use of Hamilton-Jdacobi theory, Goldstein
(1980). It will be demonstrated that a general closed analytic solution
exists for the optimal case with nz=l, or indeed the off-axis case with
n=k. The dynamics are exactly equivalent to the Stark effect on the
hydrogen atom when a uniform electric field is superimposed upon the
Coulomb potential. The fact that the Hamilton-Jacobi equation of this
system is separable can be demonstrated using the Staeckel conditions
on the Hamiltonian when using a set of parabolic coordinates, Epstein
(1916). The solution of the Stark problem is considered in detail in
Born (1927).

Through the use of Hamilton-Jacobi theory constraints on the sail

motion will be obtained by deriving the canonical momentum in terms
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Figure 5.9(a)
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Figure 5.9(b)
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Figure 5.9(¢)
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Figure 5.9(d)
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Figure 5.9(f)
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of parabolic coordinates. These constraints can then be related to the
existence of geocentric halo orbits. A set of parabolic coordinates

(g,n,8) defined as

X = €n cose , y = €n sine , z = % (€2 - n?) (56.72)

will now be wused where constant € and n coordinates define
diametrically oriented parabolae of revoiution about the z-axis, with ©
the azimuthal angle. Using these new coordinates the kinetic energy

of the system may be written as

=g H?Tf‘}z" {%}2} {2 + n2} + {%%}282n2 } (5.73)
so that the new conjugate momemta p;=3T/3dx; (j=1,3) may be obtained

as

e () [ o) oo () (o] e B e o

where Pg is an integral of the system since the potential ['(r,n)+®,(|r|)
is independent of e.

Equations (5.73) and (5.74) may now be used to construct the
Hamiltonian of the system H=T+[+d,, In terms of the parabolic

coordinates and conjugate momenta it is found that

H = % (€2 + n2)~t {Pg? + Py + [%2 + %z]Pez - B(E* - n*) - 4} (5.75)

Defining the Hamiiton-Jacobi function as S, the Hamilton-Jacobi

equation may now be written as
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38 | 1ie2,n2y-1[[38)%, [3812, [1 . 11[38)2
5t * 2@ (5} [3R) e oot bR} - et - 4] 2 0 7o)
where pg=3S/3€, pp=3S/9n and pe=3S/36. Since the Hamiltonian is

independent of @ and t the Hamilton-Jacobi function becomes

S = ot + ®38 + Sg(€,n) , (5.77)

where «; may be identified with the total energy of the system and «,
with the azimuthal momentum pg. If the separability property is now
used and Sx(g,n)=8,(€)+S,(n) then the Hamilton-Jacobi equation may be

separated into

38,1° -

{521} + 20,82 + ®y€72 - BE* = -2 (5.78a)
ras., 2 - -

t-Ts\b} + 2¢4N2 + xgN~2 + ARt - 4 = x,° (5.78b)

where x, is the separation constant.
The momenta may now be written in terms of the parabolic

coordinates and the constants of the motion, viz

Pg = Fy(8)1/2 , Pp = Fa(n)*/2 (5.79)

where the functions F; and F, are defined as

B [es _ 2% ca _ %22 g2 _ %a?)1/2
Fooz e - Bres - @2 - 2y (5.80a)
and

LB [ 204 4, Sa2HAM o _ %3%)1/2

Frm B [one - Bare 4 22 2%} (5.80b)

The roots of these bicubic polynomials tEj (j=1,3) and N (j=1,3) then
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define the region of space accessible to the sail.

For €;#&, and n;#n, the motion is periodic and is constrained to
the interior of an annular ring defined by the intersections of the
four paraboloids of revolution. Similarly for £€,#€, and n,=n, the sail
trajectory lies on the surface of a paraboloid of revolution defined by
ny =N, and is constrained by the two paraboloids of revolution €; and
€>. Finally, the halo orbit case corresponds €;=€, and n,=n, so that
the motion is constrained to a circle displaced in the anti-Sun
direction. Therefore, the minimal loading halo orbits are in fact
defined by the intersection of two paraboloids of revolution.

The problem can be solved fully by obtaining the parabolic
coordinates through the inversion of elliptic quadratures, Isayev and
Kunitsyn (1972). Defining a new time variable T such that, dt=(€+n)dr,
it may be shown that a ciosed solution is obtained in terms of

Jacobian elliptic functions sn, cn as

e(r) X311 ¢t xlzsnz{xlg, X14(T_To)} (5.81a)

n(T) X2q * Xzzcnz{x?_3, X24(T'To)} (5.81b)

where xi,j(i=1,2, j=1,4) and T, are constants of the system defined by
the canonical constants «; (j=1,3). For a small solar radiation pressure
acceleration the elliptic functions may be expanded in rapidly
convergent power series. However, this technique is not available for
the geocentric halo orbits as the solar radiation pressure acceleration

is of the same crder as the loca! gravitationa! acceleration.

5.10 Patched Geocentric Halo Orbits

Now that the stability and control of the fundamental modes of
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operation of geocentric halo orbits have been established the patching
of halo orbits to form complex and elaborate new trajectories will be
investigated. The patching process will be carried out by
transferring from one halo orbit to another through a simple, assumed
instantaneous, switching operation on the sail attitude. At each of
these switching points a number of boundary conditions must be

satisfied to make the transfer possible. The conditions to be met are.

(i) ry=r- ; Intersection of the halo orbits.
(ii) wvy=v, ; No velocity impulse required at the switching point.
(iii) Ey=E, ; Sail energy is continuous across the switching operation.

(iv) By=B, ; Sail loading is continuous across the switching operation.

Condition (i) ensures that the transfer is possible while
conditions (ii), (iii), (iv) ensure that no other operation other than the
switching of the sail attitude is required. As a consequence of
condition (ii) the halo orbits must intersect tangentially. It is clear
then that the spacecraft can only transfer to or from an off-axis halo
orbit (I) to an on-axis halo orbit (II), or between two off-axis halo
orbits. The transfer may occur at an upper or lower point on the
off-axis halo orbit, Figure 5.10.

Since the switching operation is assumed to take place
instantaneously there is no change in the spacecraft gravitational
potential across the switching operation. Furthermore, since the
radiation field potential is non-conservative with respect to rotations
of the sail (ie. no work is done against the field by re-orienting the
sail), condition (iii) reduces to ensuring that |vyl=lval, (ie.

0,2,=0.0,). This condition therefore determines the period of halo



194

Figure 5.10
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orbit II as Q,=Q,(p,/P>).

5.10.1 Upper Transfer

Firstly the upper switching point will be considered with a
transfer from the off-axis to on-axis halo orbit. Owing to the dynamic
reversibility of the problem the transfer can of course take place from
the on-axis to off-axis halo orbit. The sail ioadings required for each
halo orbit are given by equations (5.13b) and (5.10b) as, using

conditions (i-iii)

By = %% cos™2¢ , 0 =0 , x= o (5.82a)
B[ @0 BT eafy) s

with the sail pitch angle on halo orbit II given by equation (5.10a).
The sail loadings can be equated using condition (iv) to obtain a
function B,-B»=0. This function can be reduced to two variables by

eliminating (p,,z,), which are related to (p;,z;) through a rotation

(2P coso ‘ sine f;
= (5.83)
Z -sino coso Zy

The resulting condition for a patched, equal loading trajectory then

becomes F,(9,2)=0, where

Fu(0,8) = cos?e {1+ tani(or){1 - cos™20{1 + %%%%}—2]2 }

(5.84)

-2/3
- {1 - tan¢tan¢} , tand = %t
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The numerical solution to this equation is shown in Figure 5.11 as C,
in the (¢,0)-plane. It can be seen that ¢+&4(m/2) so that halo orbit II
always lies on the +z (night-side) of the planet, as is required for the
solution to be physical.

It should be noted that the system is rotationally symmetric
about the z-axis so that the sail may transfer from halo orbit II to

halo orbit I at any azimuthal position.

5.10.2 Lower Transfer

The analysis for the lower switching point is similar to that of
the upper point with the resulting condition F,(¢,8)=F,(¢,-$)=0. The
numerical solution is shown as C, in Figure 5.11. The sail may
transfer at will to and from halo orbit I as it moves along halo orbit
III, with halo orbit III being retrograde with respect to halo orbit II.
It can be seen that there is no intersection of the curves in Figure
5.11 so that it is not possible, with the imposed boundary conditions,
to transfer at both the upper and lower switching points from the

same initial off-axis halo orbit I.

5.10.3 Azimuthal Transfer

The possibility of patching off-axis halo orbits together will now
be investigated. Consideration of the geometry shows that for
condition (iv) to hold the off-axis angles ® must be equal. Then, for
conditions (i-iii) to hold, it is clear that the sail may only transfer
onto neighbouring off-axis halo orbits of the same amplitude and
displacement. Therefore, by patching together these azimuthally
neighbouring halo orbits with on-axis halo orbits, extremely complex

patched halo trajectories may be constructed.
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Figure 5.11
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Conditions for patching off-axis to on-axis halo orbits. The curve C,
represents the conditions for a transfer from the upper point of an

off-axis halo orbit and C, represents the condition for the lower

transfer.
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5.10.4 Keplerian Transfer

The sail attitude may also be switched into a null orientation with
x=1m/2, so that the sail is transferred onto a Keplerian orbit. This
Keplerian orbit may be circular or elliptical depending on the initial

halo orbit.

Off-Axis Transfer Firstly a transfer to or from an off-axis halo orbit

I to a Keplerian ellipse will be considered (it may be shown that
condition (iii) cannot be satisfied for transfer to a circular orbit).
The switching point may be at either the apogee or perigee of the
ellipse and at any point on the halo orbit, Figure 5.12. At these
switching points the Keplerian perigee and apogee velocities are given

by

o= (LYY s () (5.9

where a is the semi-major axis and e is the eccentricity of the ellipse.
If a transfer to or from the perigee is considered then for condition
(i) to be satisfied the sail orbital anguiar velocity on the off-axis halo
orbit must be Q*=rp‘3/2, where rp=a(1-e) is the perigee distance.
Therefore, equating Vp to the sail orbital velocity 4o, to satisfy

condition (iii) the required halo amplitude is found to be

o, = a(1 - e)(1 + e)t/2 (5.86)

Furthermore, since sin(®-i)=e,/rp the required orientation of the

off-axis halo orbit is obtained as

o= 1+ sin~i(1+e)1/2 (5.87)
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Figure 5.12

P <

Switching Point

Keplerian Ellipse
o =T/2

Patching of an off-axis halo orbit to a Keplerian ellipse. The transfer
may occur at either the perigee or apogee point and to or from an

off-axis or on-axis halo orbit.
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where i is the ecliptic inclination of the Keplerian ellipse. In
particular the sail may be transferred from an off-axis halo orbit onto
a Keplerian polar orbit. A similar set of expressions are obtained for

an apogee transfer (ie. p;=p,(-e), ¢o=0(-e)).

On-Axis Transfer With this type of patched trajectory the spacecraft

is transferred from an on-axis halo orbit I to a Keplerian orbit, which
may in this case be circular. The circular transfer is possible since
the sail angular velocity is now a free parameter, unlike the off-axis
case, and can be chosen to satisfy the boundary conditions.

It can be seen from Figure 5.12 that for a perigee transfer the
halo amplitude and displacement distances are given in terms of the
orbital elements of the ellipse by py=a(1-e)sin(i), z,=a(1-e)cos(i).
Therefore to satisfy condition (iii) the required sail orbital angular

velocity is given by

(1 + e)1/2

Q, = a=3/2 sin~1(i) T —e)3/2 (5.88)

For an apogee transfer the required angular velocity is given by
Q,(a,e,i)=0,(a,-e,i) and with ©,(a,0,i) the angular velocity for a transfer

onto a circular orbit is obtained.

5.11 Conclusions

It has been shown in this chapter that geocentric halo type
orbits are possible with solar sail spacecraft. As with the heliocentric
halo orbits three distinct families of halo orbit exist with differing
stability characteristics. The least demanding mode of operation is the

optimal halo orbit with the sail orbital period chosen to be that of a
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circular Keplerian orbit with a geocentric distance equal to that of the
sail. With this orbital period the sail loading is minimized.
Furthermore, with the optimal halo orbit family off-axis halo orbits are
possible with the sail normal directed along the new halo axis.

Since it was found that unstable halo orbit families exist simple
feedback control schemes have been developed. Although a feedback
control to the sail pitch gives a damped response, the associated
damping timescale is rather long. Therefore, a feedback to the sail
loading has been included to achieve a well damped response.

Finally, it has been shown that individual halo orbits may be
patched to form complex new trajectories. The patching may be
between individual halo orbits or, by switching the sail attitude into a

null orientation, a halo orbit and a Keplerian ellipse.
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6. SOLAR SAIL PARKING IN RESTRICTED THREE-BODY SYSTEMS

6.1 Introduction

In this chapter stationary solutions for solar sails in the
Earth-Sun and Earth-Moon restricted three-body dynamical systems
are investigated. The classical circular restricted three-body problem
has five well known stationary solutions Lj (j=1,5) where an
infinitesimal mass will remain at rest with respect to the two primary
masses of the system. It is found that in general the collinear points
LJ- (j=1,3) are unstable while the triangular points Lj (j=4,5) are stable
in the Lyapunov sense, (see for example Roy (1982)). The classical
restricted problem has been extended to include a radiation pressure
force from either or both of the primary masses, exerted on the
infinitesimal mass. This formulation generates four new additional
stationary solutions with interesting stability characteristics. The
radiation pressure force vector is however constrained to lie along the
Sun-mass line.

For the Earth-Sun-sail three-body system the sail attitude may
be freely oriented so that the solar radiation pressure force vector is
not constrained to lie along the Sun-sail line. Furthermore, the
magnitude of the solar radiation pressure force may be chosen
through the spacecraft mass per unit area. Therefore, since certain
parameters of the system can be arbitrarily chosen it is clear that
rich new possibilites for artificial stationary solutions will arise. In
fact it will be demonstrated that there is a continuum of new
stationary solutions parameterised by the sail attitude and loading.
The dynamical stability of these new stationary solutions Is

investigated and their instability established. Therefore, a control
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scheme is developed whereby a feedback to the sail attitude is used to
ensure the asymptotic stabiity of the solutions.

For the Earth-Moon three-body system the dynamics are no
longer autonomous as the Sun-line rotates once per synodic month
with respect to the Earth-Moon co-rotating reference frame. However,
stationary solutions are again possible by utilising small trims in the
sail loading parameter to compensate for the rotation of the Sun-line.
Using this technique the spacecraft may be parked for a short
duration in the Earth-Moon system. Furthermore, by linearising the
dynamical equations it will be shown that an out-of-plane halo type
trajectory is possible about the lunar L, point. These new three-body
stationary solutions have potential applications for space science

missions and solar sail parking, as will be discussed in chapter 7.

6.2 The Classical Restricted Three-Body Problem

The classical Lagrange stationary solutions to the restricted
three-body problem Lj (j=1,5), have been studied in great depth since
their discovery in 1772. More recently much attention has been given
to the modified photogravitational problem, where one or both of the
primary masses is a source of radiation pressure, the most compiete
work to date being that of Simmons et. al (1985). It has been shown
that the five in-plane stationary solutions are modified by the
existence of radiation pressure and that there exists four new
out-of-plane solutions, Lj (j=6,9), with Lg and Lg existing only when
both of the primary masses are luminous. Other investigations, such
as Schuerman (1980), have included the relativistic Poynting-Robertson

effect in the dynamical equations, which has bearing on the stability

of the solutions.
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The geometry of the circular restricted three-body problem with
the five Lagrange points is shown schematically in Figure 6.1 for the
Earth-Sun system. The mass ratio of the system is defined as
u=m>/(my+m,) and the Sun-Sail and Earth-Sail distances given by r,
and r, respectively. The motion of my and m, about their common
centre of mass defines a co-rotating cartesian reference frame (x,y,z)
with angular velocity 8 in which the dynamical equations are
formulated. Dimensionless units are used so that the m;-m, distance
is unity. The classical stationary solutions are found at the
equilateral points Lj (j=4,5) which are located at vertices of equilateral
triangles defined by ry=r,=1 and the collinear points Lj (j=1,3) are
given by the solution of a quintic polynomial. It may be shown that
the equilateral points are Lyapunov stable provided wu<0.0385 (Routh’s
value) and that the collinear points are always unstabie. It is around
the collinear L, and L, points that the new stationary solutions for
solar sails are found to exist. Away from the Earth the solar sail
solutions are similar to the Earth synchronous heliocentric halo orbits
of chapter 4.

With the introduction to the classical case, of radiation pressure
from m, the gravitational potential of m; is modified by the ratio of
the radiation pressure force to the gravitational force &. This
modification results in the classical Lagrange points moving to new
positions as B increases, the triangular points L, g now being defined
by the constraints ry=(1-8)1/3, r,=1. It can be seen that as B»1 the
triangular points will coalesce on m;. It is also found that L, 5
coalesce at m, with L, moving onto my. Furthermore, two new
stationary solutions Lg > appear out of the ecliptic plane, moving

asymptotically towards the z-axis with z»= as B-1.
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Figure 6.1

Schematic geometry of the Earth-Sun solar sail restricted three-body
system with the sail positioned at r=(x,y,z). The sail attitude Is
defined by the unit vector n fixed in the co-rotating frame and the
frame rotates with an angular velocity & The centre of mass of m,
and m, is located at the origin with m, located at (-4,0,0) and m;

located at (1-u,0,0) where u=my/(my+mz).
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6.3 Dynamical Equations for the Earth-Sun System

Consider now an idealised perfectly reflecting, planar solar sail in
a co-rotating cartesian reference frame of angular velocity @ with two
point primary masses m; and m,, as shown in Figure 6.1. The sail
attitude is defined by a unit vector n, fixed in the co-rotating frame
and the ratio of the solar radiation pressure force to the solar
gravitational force exerted on the sail is again given by the sail
loading parameter B=c*/c. Since the sail attitude is to be fixed in the
co-rotating frame the sail must rotate about the normal to the plane of
the system once with respect to a fixed inertial frame in time 2n/{Q]|.
The units of the system will be chosen such that the gravitational
constant, the distance between the two primary masses, the sum of the
primary masses and so the angular velocity of co-rotation are all
taken to be unity.

The vector dynamical equation for a solar sail in the co-rotating

frame may be written in the usual form as
2
:—t£—+20xg-'€'+ox(0xr)=a-%3(r) (6.1)

where the three-body gravitational potential &,(r) and the

non-conservative solar radiation pressure acceleration a are given by

azR :.T‘:I—‘ (ry.n)2n (6.2)

-
|
=
=
———

Oy(r) = - [

-
-

Although the system is non-conservative it is however autonomous
owing to the co-rotation of the reference frame. The radiation solar
pressure force vector can never be directed sunward so that the sail
attitude is constrained such that r;.n30. The sail position vectors are

given with respect to the cartesian frame by
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r1 = (X+u, Y, Z) ’ r. = (x_(1—“)) Y, Z) (6'3)

where u=m,/(m;+m;) is the mass ratio of the system.
Since the centrifugal term in equation (6.1) is conservative it may

again be written as a scalar potential ¥(r) such that

W(r) =8 x(@xr) , wr): -% 19 x r|?2 (6.4)

Defining a new potential, U(r)=0,;(r)+¥(r), a reduced dynamical equation

is obtained, viz

2
%+29X%+W(r)=a (6.5)

In the co-rotating frame stationary solutions are required so that
the first two terms of equation (6.5) vanish. The five classical
stationary solutions rLj (j=1,5) are then given by the solutions to the
equation VU(r)=0. However, for the solar sail three-body system there
exists an additional acceleration term a which is a function of the sail
loading parameter B and attitude n so that new artificial stationary
solutions may be generated.

Since the vector a is oriented in direction n, taking the vector

product of n with equation (6.5) it follows that

W(r) xn=0 3 n=XW(r) (6.6)

where )\ is an arbitrary scalar multiplier. Using the normalisation
condition |nl=1, X is identified as |VU(r)|~! so that the sail attitude

required for a stationary solution is given by
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M= TN (6.7)

The sail attitude may then be expressed in terms of two angles (o,X),
defined with respect to the coordinate triad (f,,f,x®,(fx@)xf,) centred
on the sail, where f;=r;/lr;l. The pitch angle « is defined as the
angle of n with respect to f; and the clock angle x is defined as the
angle of the projection of n in the plane normal to #, with respect to
(ryxR). Therefore, taking vector and scalar products of equation (6.7)

with , these angles may be written as

tan «(r) = '—:%—E{%' (6.8a)
_ 1(ryx@) x (ryxVW(r))]
tan x(r) = (rixﬁ) - (rixw(r)) (6.8b)

The sail loading required may also be obtained by taking a scalar
product of equation (6.5) with n. Requiring a stationary solution it is

found that

YU(r).n

B(r) = (1-u)~% |ryl* ICGYOLA

(6.9)

Therefore, general vector valued functions for the sail attitude
and loading required for stationary solutions have been obtained in
terms of the co-rotating three-body potential U(r). Since the sail
loading and attitude may be chosen at will the set of five classical
stationary solutions will be replaced by an infinite set of artificially
generated stationary solutions. The classical solutions then
correspond to the subset B=0. This inflnite set of solutions Is
parametrised into level surfaces by the sail loading. A particular

stationary solution on a level surface is then defined by the two



209

attitude angles (x,Xx).

6.4 Existence of Stationary Solutions
Now that the existence of new stationary solutions has been
established the regions in which these solutions may exist must be

investigated. These regions are defined by the constraint

ri.vu(r) » 0 (6.10)

with the boundary surface defined by an equality in equation (6.10).
This constraint may be understood physically since the solar radiation
pressure acceleration vector a, and so the sail attitude vector n, can
never be directed sunwards. The sail pitch angle is therefore
constrained such that |«|<mn/2.

In scalar form the three-body potential U(r)=05(r)+¥(r) may be

written as

i, u )

u(r) = - { % (x2 + y2) + 1%;— + r (6.11)

Therefore, evaluating the gradient of U(r) in equation (6.10) a function

S(r)=0 is obtained, viz

S(r) = x(x+u) + y2 - 1%‘: - 5-}??2 (6.12)

The function S(r) has two topologically disconnected boundary
surfaces S, and S, which define the boundary to the region of
existence of stationary soiutions, Figures 6.2 and 6.3. The region of

existence of the stationary solutions lies between these two surfaces

and is defined by the region S,NS;’.
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Figure 6.2(a)
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Figure 6.2 Section of the level surfaces in the Earth-Sun system (a)
normal to the plane of the system and (b) in the plane of the system.
The required sail loadings are given by; (1) 0.3 (2) 0.5 (3) 0.7 (4) 0.9

(5) 1.0 (6) 1.01 (7) 1.1. The contour S,; represents the outer boundary

surface.
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Figure 6.2(b
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Figure 6.3(a)
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Section of the level surfaces in the near Earth region (a) normal to
the plane of the system and (b) in the plane of the system. The
required sail loadings are given by; (1) 0.02 (2) 0.04 (3) 0.06 (4) 0.1

(5) 0.2 (6) 0.4 (7) 1.0 (8) 3.0. The contour S, represents the inner

boundary surface.
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Figure 6.3(b)
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The outer surface S,; possesses a cylindrical topology and
excludes solutions along the x-axis from -w<x<xL; and xL,<x<+e while
the inner surface S, excludes solutions along xbk,<x<1-i.  All of the
five classical stationary solutions lie on S,US, since they are the
solutions VU(r)=0 of equation (6.10). In general the sail loading level
surfaces approach the boundary surface asymptotically with B> as

then ry.VU(r)»0 in equation (6.9).

6.5 Stationary Solutions_in the Earth-Sun System

Level surfaces of constant sail loading may now be generated
from equation (6.9) for the Earth-Sun system (u=3.036x10"%). For ease
of illustration sections of the surfaces through the x-y and x-z planes
are used. Then, only the pitch angle « will be required to completely
describe the sail attitude required for a stationary solution. In
general though the two angles (x,X) are required to describe the sail
attitude for a stationary solution at some arbitrary position.

The sections of the level surfaces generated by equation (6.9) are
shown in Figures 6.2 and 6.3. The sections define families of one
parameter level curves representing subsets of the continuum of new
artificial stationary solutions with equal sail loading. The sail attitude
required is also shown. From Figure 6.2 it can be seen that in the
far Earth region the level surfaces are a family of topologically nested
tori with the inner radius of the torus vanishing as B»1. In the plane
of the system the level curves are near circular with the sail pitch
angle «=0. These curves represent the sail loading required for a
circular heliocentric orbit with an orbital period of one year. Out of
the plane of the system it can be seen that the solutions are

essentially Earth synchronous heliocentric halo orbits, as discussed In
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chapter 4. Along the z-axis of the system there are stationary
solutions above the poles of the Sun with B=1.

A detailed plot of the sections of the level surfaces near the
Earth is shown in Figure 6.3. It can be seen that the level surfaces
around L; and L, accessible to the solar sail expand with increased
sail loading, but always contain the classical Lagrange point they are
associated with, as this corresponds to the solution B#0, r,.n=0.

For B»1 there are no solutions in the plane of the system, except
at the five classical Lagrange points where ry.n=0. It can be seen in
Figure 6.2 away from the Earth that for B>1 the level surfaces have
undergone a topological changzobecome a family of nested cylinders.
There are also no intersections with, and so no solutions in, the x-y
plane except at the L4’5 points where r,.n=0 and the sail loading is
undefined. There are however out-of-plane solutions corresponding to
halo type orbits at greater distances above the plane of the system.
In the near Earth region, Figure 6.3, it is seen that for an increased
sail loading the level surfaces continue to expand, asymptotically

approaching the boundary surfaces S; and S..

6.6 Stability and Control

Now that the existence of the artificial stationary solutions has
been established it is nhecessary to examine their stability. The

general vector dynamical equation is given by equation (6.5) as

2
%{”mxg—{afvu(r):a (6.13)

It will be assumed that the sail is stationary on some level surface at

a point ro. Then the dynamical equation in a local neighbourhood of
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ro is obtained in the usual manner using an arbitrary linear
perturbation 8, such that roorgo+8. Since r, is a stationary solution a

variational equation is obtained, viz

d2s ds
giz t 28 x gp + W(rgts) - a(ry+s) = 0 (6.14)

The potential gradient and the radiation pressure acceleration may be
expanded in trivariate Taylor series about the stationary solution to

first order as

W(rg+S) = Wrg) + 32 WD | $+ 0 (I512) (6.15a)
r=rg
a(rots) = a(rg) + 32 a(r)‘ $ + 0 (|8]2?) (6.15b)
r=rg, N=n,

Then, since VU(ry)=a(rg) for a stationary solution, a linear variational

equation is obtained, viz

2
gE§ + M, g% + (My- Mg) S =0 (6.16)

where M. ; the gravity and radiation gradient tensors and the skew

symmetric gyroscopic matrix M, are given by

0 0
"1 = 2 0 0 N “2 = (U]‘j) y "3 = (313) (6.17)
0 0 (1,3)8(x,y,2)
where Uj; is the (i,j) partial derivative of the potential with respect to
the cartesian axes and ajj is the jth derivative of the ith component

of the solar radiation pressure acceleration. The stability of the
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system may be investigated in the usual manner by examining the
system eigenvalues resulting from the characteristic polynomial. This

may be carried out by substituting an exponential solution of the form

8=%,eSt |, s=zo04+ 40, izs-1 (6.18)

Substituting this solution into equation (6.16) yields a matrix equation

of the form

(S21 + sMy + M¥)85 = 0 (6.19)

where M¥*=M,-M,. For non-trivial solutions a vanishing secular
determinant is required, which then gives the characteristic polynomial

of the system P(s)=0, viz

6
P(s) = } ag-j I (6.20)
j=o
where, owing to the fundamental theorem of algebra, P(s) has roots
$j=0;+lw; (j=1,6). For asymptotic stability it is required that all of the
system eigenvalues are in the left hand complex plane so that cj<0
(j=1,6). However, for stability in the Lyapunov sense the weaker
condition, that all the roots of P(s) are at least purely imaginary, is
required. This constrains the motion to a local neighbourhood of the
nominal stationary solution.

The coefficients of the polynomial P(s) are given by

ag = 1 (6.21a)

a; = 0 (6.21b)
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az = M¥yq + M¥, + MF55 + 4 (6.21¢)

az = 2(M*;y - M¥ ) (6.21d)

ay = M¥ MFo + M¥ M¥55 + M¥ M5 - M, oM, (6.21e)
- M¥ aMF5y - MR oME,, ¢ aM¥,,

ag = 2M¥33(M¥zy = M¥ o) + 2(M¥M¥ 5 - M¥, M%,,) (6.21F)

ag = M¥  M¥2oM¥ 55 — MY M¥ aM% 5, - MF5oM¥ oM%,, (6.219)

oMk ME Gk X uk Mk x x
M¥2 oMY 3 MP 5 + M M oM (5 + M¥ oMF M*,,

Since a;=0, an application of the Routh-Hurwitz criterion implies that
at least one eigenvalue will not lie in the left hand complex plane, (ie.
there is at |least one eigenvalue with oj>0). Therefore the system does
not naturally possess asymptotic stability. Given this fact the
condition for Lyapunov type stability with purely imaginary
eigenvalues, oj=0 (j=1,6), will be established. Substituting for s=zjw

P(s) becomes

P(iw) = -w€ + a,w* - iagw® - a,w? + jagw + ag (6.22)

For the condition P(s)=0 to hold it is required that both the real and

purely imaginary parts of the polynomial are identically zero, viz

-wé + a,w* - a,w? + ag = 0 (6.23a)
jw(ag - w?az) = 0 (6.23b)

Six consistent solutions of equations (6.23) with wjz>0 (j=1,6) are now
required. From equation (6.23b) it is seen that w,=0, w2’3=t/(85/a3).
However, the solution w;=0 is obviously inconsistent with equation
(6.23a). The remaining solutions w, ;3 are also not generally consistent

with equation (6.23a). However, equation (6.23b) is satisfied if aj=ag=0.
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The eigenvalues of the system are then determined as conjugate pairs
from equation (6.23a), which may or may not have real solutions.
Therefore a necessary, but not sufficient, condition for Lyapunov
stability is then a;=0 3 (M*21-M*12)=0. However, since the potential is
conservative Uyy-Uyy=0, so that as=0 3> (ayx-ayy)=0. Similarly the
condition ag=0 requires that a;x-ay;=0 and ay,-a;y=0. Taken together

these conditions imply that B=0 or

Vxa=0 (6.24)

That is, that the solar radiation pressure acceleration must be
conservative and so must be derivable from some scalar potential.
Therefore, the required conditions for Lyapunov stability are «=0
(modified photogravitational system), or B=0 (classical restricted
system). In practice the solutions away from the Earth will behave as
Earth synchronous heliocentric halo orbits with their associated
regions of Poincaré stability and instability.

It has been shown then that the set of new stationary solutions
do not possess a hatural asymptotic stability and that Lyapunov
stability is only possible for the particular solutions when the sail is
oriented along the Sun-line. In general therefore a control scheme is
required to ensure asymptotic stability. A simple control scheme using
a combination of proportional and derivative feedback to the sail
attitude will now be developed.

Including first order variations in the sail attitude ngsny+en, the

open loop variational system becomes

2 )
g—t§+n1g—:+n*s='l8n, "= (6.25)

r=ro, N=ng
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In the full six-dimensional phase space x=(%,d8/dt) the system then

becomes
dx ) 0 I 0
a-Px+QSn,P- . . , Q= (6.26)
-M* -M, N

where P is the system matrix and Q is the input distribution matrix.
In order to proceed further it is necessary to determine if the
system is fully controllable. Therefore, the 6x6 controllability matrix

C=(Q, PQ, P2Q, P3Q) must have full rank, viz

0 . N  -M)N © -M*N + M, 2N
C = . . . (6.27)
N © -M,N: -M*N + M;2N [ 2M*M;N - M,3N
Since N=0 if r;.n#0, in general all the rows of C are linearly
independent so that r(C)=6 and the system is fully controllable. The
control will then be defined as

2 (6.28)

Sn = Al-s + Az-{a

so that the sail attitude trim is given as function of the sail position
and velocity relative to the nominal stationary solution. The closed

loop system is then given by

2
g_tg + (Mg-NA,) g-:: + (M*-NA;) 8 = 0 (6.29)

Therefore, the feedback control now allows oJ-(O (j=1,6) with a suitable
choice of gain matrices A, , so that the stationary solutions may have

asymptotic stability. In general the choice of gains will depend to a
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large extent on operational requirements. However, to demonstrate the

existence of asymptotic stability the gain matrices will be chosen as

Ay = NCE(ME - 20, Ay = NTH(My - M) (6.30)

Substituting these gains into the variational system a damped harmonic
equation is obtained with the damping proportional to the gain

constants X, », Vviz

{géts-} + )\i{g%} + 2, =0 (6.31)

which has a characteristic polynomial

$2 + A + 25 = 0 (6.32)

Since the gain constants X; , may be arbitrarily chosen the
eigenvalues may be chosen to be in the left hand complex plane

ensuring asymptotic stability. A solution of equation (6.31) is then

S = soest , S = —{)2—\1-} + [)—‘i—z - )\2}1/2 (6.33)

so that for asymptotic stability it is required that X;>0, X,>X,2/4, It
has been shown then that, in principle, the stationary solutions are
controllable using a feedback to the sail attitude and that asymptotic

stability can therefore be achieved.

6.7 Dynamical Equations for the Earth-Moon System

An idealised perfectly reflecting solar sail will now be considered
in a co-rotating reference frame of constant angular velocity 8 with a

point mass Earth m,; and Moon m,. The dynamics of the Earth-Moon



222

restricted three-body system are quite different from the Earth-Sun
system in that the Sun-line § is not fixed in the co-rotating frame,
but rotates once per synodic lunar month. It will be assumed that the
solar radiation pressure is constant in magnitude over the scale of the
problem. In the units of the system the Earth-Moon distance is taken
to be unity. Therefore, the sail loading parameter is now defined as
the solar radiation pressure acceleration made dimensionless with
respect to the Earth’s gravitational acceleration at the lunar distance.
The spacecraft mass per unit area is then related to the sail loading
parameter by the relation 0=3.3858"1 gm~2,

The vector dynamical equation for a solar sail in this co-rotating

frame may be written as

d2r dr

g tr@x g+t W) = a (6.34)

where the co-rotating three-body potential U(r) and the solar

radiation pressure acceleration a are given by

u(r) = - [% 18 x r|2 + | } , a=B(sS.n)?n (6.35)

Ir2|

where u=(m,/m,;+m,)=0.01215 s the mass ratio of the Earth-Moon
system. The sail attitude is constrained such that S.n30 and the

direction of the Sun-line is given by

S = (cos(8xt), -sin(84t), 0) (6.36)

where £4=0.9252 is the angular rate of the Sun-line in the co-rotating
frame in dimensionless units. The small annual changes (+5°) in the

inclination of the Sun-line with respect to the plane of the system are
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ignored.

By again requiring stationary solutions in the co-rotating frame
and taking vector products equation (6.34) may be solved to obtain

the required sail attitude as

_ W)
N = TROT (6.37)

which is time independant. The required sail loading may also be
obtained, but is however time dependent due to the rotating Sun-line,

viz

_ W(r).n
B(t) = s.m2 (6.38)

As before the region of existence of stationary solutions is bounded,
the boundary being defined by the time dependent condition S.n)0.
This condition yields a function T(r;t)=0 defining the time dependent
boundary surface to the regions of existence of solutions. This
function is given by

T(rit) = 2580 cos(ayt) - 2L sin(agt) (6.39)
so that on this surface the sail attitude is normal to the Sun-line.
Again there are two topologically disconnected regions T, and T,.

For a fixed sail loading the conditions for stationary solutions
derived above are only valid instantaneously at some time t,. For a
short, finite duration stay a small open loop control acceleration is
required to compensate for the moving Sun-line. This acceleration will
require a small variation in the sail loading since the sail attitude

required is time independent. Although equation (6.38) gives the
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required change in sail loading as a function of the Sun-line position,
an approximate expression can be obtained by expanding the solar
radiation pressure acceleration about the stationary solution at
position ro and time t,. At a time At later the condition for continued

stationarity is given by

VU(rgy) = a(ty) + %T } g%% (6.40)
j=1

Therefore, for a short duration stay (At€1) the first order trim in the

sail loading is given by

- - 28.n {n.%%} At (6.41)

LB
B

If AB/B is remains by limiting At to 5x107° a stay of 3.3 hours is
possible. For sails with a large trim capability much longer duration
stays would however be possible. Furthermore, if n=S8 then
n.(dS/dt)=0 so that, to first order, no variation in the sail loading is

required.

6.8 Stationary Solutions in the Earth-Moon System

Using equation (6.38) level surfaces of constant sail loading in
the Earth-Moon sytem may be generated. Again, sections of the
surfaces through the x-y and x-z planes are used. Then, only the
pitch angle « is required to describe the sail attitude.

At time Oxt=0° the Sun-line is directed along the Earth-Moon line.
Sections of the level surfaces of constant sail loading at this time are
shown in Figure 6.4. It can be seen that the surfaces expand with

increasing sail loading in a similar manner to the Earth-Sun system.
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Figure 6.4(a)

+X (RO)

Section of the level surfaces in the near lunar region (a) normal to
the plane of the system and (b) in the plane of the system at time
Qxt=0°. The sail loading values are given by; (1) 0.3 (2) 0.6 (3) 1.0 (4)

1.5 (5) 3.0. The contours T, and T, represent the time dependent

boundary surfaces.
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Figure 6.4(b)
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This is to be expected due to the configuration of the Earth-Moon-Sun
system at this time. Sections of the boundary surfaces T, and T, are
also shown.

Some time later in the synodic month when Q4t=45C the topology
of the surfaces radically transforms, Figure 6.5. Normal to the plane
of the system the surfaces are still symmetric. However, in the plane
of the system the surfaces about the L; and L, points are asymmetric
and connect at a loading value of approximately 1.2. Similarly, the
boundary surfaces T, and T, are now connected. It can however be
seen that the required sail attitude is time independent. Finally, at
time Qxt=180° the reglions of existance of solutions have reversed with
respect to Oxt=0° and so solutions are now forbidden within surface T,

and are allowed outwith T;, Figure 6.6.

6.9 Lunar_Lagrange Point Halo-Type Orbits

The dynamics of a solar sail in the neighbourhood of the lunar
L, point at r_ will now be investigated and it will be demonstrated
that a periodic out-of-plane trajectory exists. Perturbing the vector

dynamical equation such that r -r +8 it is found that

2
g—tg + 28 X %% + W(r +8) = a(r +%) (6.42)

where $=(g,n,6) represent small displacements from the L, point along
the (x,y,z) directions. The potential gradient may be expanded in a

trivariate Taylor seies about the L, point to first order as

W(rL+8) = W(r) + 32 W(R)| § + 0 (I812) (6.43)

r=r_
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Figure 6.5(a)

1 X (Ro)

Section of the level surfaces in the near lunar region (a) normal to
the plane of the system and (b) in the plane of the system at time
Oxt=45°. The sail loading values are given by; (1) 0.3 (2) 0.6 (3) 1.0

(4) 1.5 (5) 3.0. The contours T, and T, represent the time dependent

boundary surfaces.
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Figure 6.6(a)
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Section of the level surfaces in the near lunar region (a) normal to
the plane of the system and (b) in the plane of the system at time
0 t=180°. The sail loading values are given by; (1) 0.3 (2) 0.6 (3) 1.0
(4) 1.5 (5) 3.0. The contours T, and T, represent the time dependent

boundary surfaces.
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Figure 6.6(b)
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Then, since VU(r_ )=0 and 3a/3r=0 (since the radiation field is assumed

to be uniform) a linear variational system is obtained, viz

r{ S
g_tf""ig—t“"zs” (6.44)

where M,, the gravity gradient tensor and the skew symmetric

gyroscopic matrix My, are given by

=2 0
o 0 y Mz = (U9%y) (6.45)
0

(i,3)e(x,y,2z)

"1--

oo

where Uoij is the (i,j) partial derivative of the potential with respect
to the cartesian axes, evaluated at the L, point.

The sail attitude is now fixed such that the sail normal points
along the Sun-line, but is pitched at an angle ¥ to the plane of the
system, Figure 6.7. With this choice of sail attitude control equation

(6.44) may be written in component form as

d2€ dn

gz " 2@t U9yxE = Bcos(Q4t) cos3y (6.46a)
%%% + 2%% + UOyyn = -Bsin(Qgt) cos3y (6.46b)
% + U%,,6 = Bcos?y siny (6.46¢)
The complete solution to equations (6.46) will in general have
divergent modes giving unbound motion. Therefore, since the

instability timescale at the L. point is 12.7 days, active control using
a feedback to the sail attitude is required to suppress these modes.

A particular periodic in-plane solution will now be required, viz
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500 km

A periodic out-of-plane solar sail trajectory at the lunar L, Lagrange

point. The sail is pitched at an angle ¥ to the Sun-line S.
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€(t) = €5 cos(f4t) , nN(t) = ng sin(Qgt) (6.47)

This periodic solution is now substituted in equations (6.46) to yield

[go} - _ [9*2 + 2042 - vao} (6.48)

DY et
Therefore, since uxxog.uyyo the trajectory will be an ellipse centred

on the L, point. The required sail loading may also be obtained as

Qg - 042Uy O+ Uy O+ 4) + UyyOU,,0
- -3 X X XX vy XX -Vyy
B = cos™3y { Uy,0 = 205 - B2 o } € (6.49)

The uncoupled out-of-plane motion defined by equation (6.46¢)

may now be solved by Laplace transforms to give a general solution of

the form
8(t) = Gocos(ut) + {S2) (U772 sin(ut)
° (6.50)
+ Bcos2ysiny (Uy;9)"1{U(t) - cos(wt))
where U(t) is the unit step function and w=(Uz7_°)1/2. Choosing
(d&/dt)o=0 the solution can be more conveniently expressed as
- 2 i o)—-1
C(t) = U(t) Bcos?ysiny (U, (6.51)

+ cos(wt){Gy - Bcos?ysiny (Uyz%)~1)

It can be seen from this form of the solution that once the sail is
pitched from ¥=0 at t=0 the motion is of the form of periodic
oscillations at an out-of-plane distance Bcos?ysin¥(U,,°)"i. However,
by choosing the initial out-of-plane distance §o=Bcos?rsin¥(U,,°)"! the
sail remains at this fixed distance. The & component of the solar
radiation pressure acceleration, and so the out-of-plane distance, may

be maximised by an optimal choice of sail pitch angle ¥*, viz
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%, Bcos2ysiny = 0 3 ¥* = tan~1(2-1/2) (6.52)

Using this optimal pitch angle (»*=35.2640) the sail may execute an
out-of-plane elliptical trajectory centred at the L, point. The
spacecraft may be placed on such a trajectory by inserting it into a
suitable elliptical path about the L, point. Once the sail is pitched to
an angle »* the out-of-plane oscillations may be damped in a time
optimal manner.

At an out-of-plane distance of 3.5x10° km both the lunar far-side
and the equatorial regions of the Earth would be visible, requiring a
very low sail acceleration of order 0.2 mms~2, The applications of
such a trajectory will be discussed in chapter 7. The trajectory itself
would be a narrow ellipse with semi-major and minor axes of 1.105x10*
km (ng=2.876x1072) and 5.655x102 km (£,=1.471x107%) and a period of
29.53 days (synodic iunar month), Figure 6.7. Since trajectories in the
neighbourhood of the lunar L, point are naturally unstable active
control is required to ensure damping of the divergent modes. Also,
the neglected non-linear terms in equations (6.46) will perturb the

spacecraft from its nominal elliptical trajectory.

6.10 Conclusions

It has been demonstrated that circular restricted three-body
systems for solar sail spacecraft have an infinite set of new stationary
solutions. For the Earth-Sun system these new solutions appear as
level surfaces of constant sail loading around the classical Lagrange
points. A linear stability analysis shows that the solutions are in
general unstable, apart from the particular solutions with the sail

oriented along the Sun-iine. However, since it is found that the
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system is controllable, asymptotic stability may be ensured through
the use of a feedback control to the sail attitude.

For the Earth-Moon system the surfaces of constant sail loading
become time dependent due to the synodic rotation of the Sun-line.
Therefore, true stationary solutions are not in fact possible. However,
since the required sail attitude is time independent small trims in the
sail loading allow the sail to remain at a stationary point for a short
duration. Lastly, by linearising the dynamical equaticns about the
lunar L, point, periodic out-of-plane trajectories are obtained. These
trajectories can be achieved with a relatively low sail loading,
although active control is required due to the natural instability of

trajectories about the collinear Lagrange points.
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7. ADVANCED TRAJECTORY APPLICATIONS

7.1 Heliocentric Halo Orbit Applications

The dynamics, stability and control of heliocentric halo orbits
were discussed in chapter 4 where it was shown that unique
heliocentric solar sail trajectories are possible. The applications of
these advanced trajectories are particularly interesting for solar
system space science missions. Using heliocentric halo orbits unique

observations of the Sun and interplanetary dust complex may be made.

7.1.1 Polar Stationed Solar Sail Missions

The simplest heliocentric solar sail mission utilises the solar
radiation pressure force to balance the solar gravitational force so
that the sail will remain stationary above the solar poles, or any other
point on the solar surface. This case is a degenerate halo orbit with
zero halo amplitude. The dynamics of this system have been
investigated in detail in section 3.3 where it was shown that a total
spacecraft mass per unit area of 1.53 gm~™2 is required. For a small
102 kg payload and an advanced sail mass per unit area of 1 gm~23,
sail material and structure, a 434x434 m square sail is required. By
being stationed above the solar poles continuous observations of the
poles would be possible allowing the out-of-plane solar polar magnetic
field and solar wind to be investigated. When combined with in-plane
data obtained from spacecraft orbiting in the ecliptic plane this would
allow the full three-dimensional structure of the solar magnetic field
and wind to be mapped. This task is a primary objective of the
Ulysses international solar polar mission which will spend a total of

230 days above a heliographic latitude of 700 with a perihelion
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distance of 1.28 AU, Wenzel et. al (1990). For a polar stationed solar
sail however, truly continuous observations could be made from a close
heliocentric distance.

Observations of the solar magnetic field near the poles involves
less rotational twist of the field lines than near the equator and so
yield a more direct indication of their connection to the solar surface.
Similarly, the solar wind flow above the poles is less distorted. In the
ecliptic plane the high and low speed solar wind flows mix due to
their relative radial speeds and their azimuthal motion, induced by the
solar rotation. The high speed flows overtake the low speed flows and
are mixed due to the solar rotation leading to a complex mixed plasma
flow. Over the solar poles however the solar wind flow is expected to
be parallel to the near radial magnetic field lines giving a less complex
flow which will be easier to understand. Furthermore, during the
quiet part of the eleven year solar cyclie coronal holes appear in the
polar regions. These regions of low magnetic field are sources for
energetic solar wind streams, with speeds of up to 10° kms~!. Since
the solar wind flows radially from coronal holes the flows can only be
investigated from directly above the holes. Therefore, solar sail
spacecraft positioned at high heliographic latitudes are advantageous.

Observations of the distribution of interplanetary dust from
spacecraft orbiting in the ecliptic plane allow the in-plane density to
be calculated. However, the out-of-plane distribution can only be
obtained remotely from the observed brightness integrated along the
line of sight and polarisation of scattered radiation. The dust density
must then be obtained by data inversion techniques. By obtaining
brightness and from polarisation observations out of the ecliptic plane

the full three-dimensional structure of the dust complex may be easily



239

obtained, Dumont et. al (1980). Other unique observations possible
from a polar stationed solar sail are uncorrupted measurements of
cosmic rays. As cosmic rays pass through the solar system their
trajectories are perturbed by the solar magnetic field. Similarly their
flux at the Earth is modulated by the eleven year solar cycle. Along
the polar axis of the Sun however, where the magnetic field lines are
more radial, cosmic ray particles may penetrate more easily into the

inner solar system, Wenzel et. al (1990).

7.1.2 Heliosynchronous Solar Sail Missions

At a heliocentric distance of 0.167 AU a spacecraft in the ecliptic
plane will have a Keplerian orbital period of 25 days and so will follow
the solar equatorial rotation, allowing the possibility of unique solar
observations, Christensen-Dalsgaard et. al (1984). However, the
heliosynchronism may be maintained at distances of less than 0.167 AU
by decoupling the spacecraft orbital period from its heliocentric
distance. This is achieved by using a solar sail spacecraft so that the
solar radiation pressure force reduces the effective local gravitational
force and so lengthens the orbital period. This is a degenerate halo
orbit with zero out-of-plane displacement distance. The dynamics of
these trajectories have been investigated in detail in section 3.4.

By following the solar rotation from close heliocentric distances,
less than 0.167 AU, active regions on the solar surface may be
followed and their evolution studied in detail. With terrestrial
observations, or indeed with Earth orbiting or Lagrange point
spacecraft, events may only be studied until they move across the
solar disk and disappear behind the solar limb. By using a network

of several heliosynchronous solar sail spacecraft, possibiy in
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combination with polar stationed sails, global coverage and monitoring
of the Sun would be possible. This would also allow stereoscopic
views of the solar atmosphere and the multiple lines of sight would
allow limb occultation studies of the differential height structure in

the solar atmosphere, Kane (1982).

7.1.3 Halo Orbit Solar Sail Missions

As discussed in sectior 7.1.1 out-of-plane observations have many
unique advantages both alone and when convolved with observations
obtained from in-plane spacecraft. Stereoscopic imaging of the Sun at
various wavelengths and stereo observations of the interplanetary
dust complex may provide insights into many aspects solar system
physics. By utilising solar sail spacecraft on heliocentric halo orbits
continuous observations of the temporal and three-dimensional spatial
structre of the heliosphere may be made.

A mission with twin solar sails for such out-of-plane
observations is shown schematically in Figure 7.1. The spacecraft are
chosen to be on one year Earth synchronous halo orbits with ©=0.56
AU, z=0.56 AU, B=0.9 (sail I) and ¢=0.88 AU, z=0.19 AU, B=0.5 (sail II).
The loading required for sail I is extremely high, three times that of
current solar sail designs, but could be achieved using the advanced
fabrication techniques discussed in section 1.4.3. For a small payload
mass of 102 kg and a sail mass per unit area, sail material and
structure, of 1 gm~2 a 380x380 m square sail is required. A trade-off
between payload mass, the sail total mass per unit area and sail area
is shown in Figure 7.2, assuming an overall 98% sail efficiency. It can
be seen that the sail area can be extremely sensitive to payload mass.

However, payloads of up to 700 kg are possible with large 1x1 km



241

Figure 7.1
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Schematic profile of a twin solar sail mission for three-dimensional
solar observations. Both sail I and sail II are chosen to be on Earth

synchronous halo orbits.
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Figure 7.2

Surface of payload mass (kg) as a function of the sail area (m2) and

the sail total mass per unit area (gm~2).
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sails. The region with zero payload mass corresponds to the sail total
mass per unit area, sail material and structure, being greater than the
total spacecraft mass per unit area required to establish the halo
orbit. Since the sail attiude is fixed, apart from a slow annual
rotation to maintain a Sun pointing orientation, operational structural
loads would be relatively low. Similarly, a small payload mass does not
require a large sail structure to support it. In fact the payload may
be distributed over the sail structure to reduce the relatively large
structural loads experienced with a centralised payload.

Due to the large sail loading required for the two halo orbits
direct spirailing out of the ecliptic plane would be possible for
deployment of the two spacecraft, with transfer times of a few months
only. Alternatively, direct injection with conventional upper stages
would be possible so that the sails may be configured for halo orbit
operation only. Once operational the twin spacecraft would have a
relative viewing angle of the Sun of 33° allowing stereoscopic
observations. Furthermore, due to the one year orbital period there
would be a constant path length, and so constant bit rate, for data
returns. Apart from optical stereographic imaging of the solar
atmosphere observations of anisotropic x-ray emissions from two
different angles would allow anisotropic particle beams in the solar
atmosphere to be investigated, Kane (1982). Similarly, the separation
of the two spacecraft of nearly 0.5 AU allows a large baseline for the
investigation of the three-dimensional structure of the solar magnetic
field.

Since the upper halo orbit (sail I) has equal amplitude and
displacement distances it would be possible for sail I to be patched to

other halo orbits, as discussed in section 4.8.1. By patching to a halo
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orbit perpendicular to the ecliptic plane sail I would fall below the
ecliptic in six months. The sail could then be patched to another halo
orbit below the ecliptic plane, but retrograde to the initial halo orbit.
Alternatively, the sail could be patched to a Keplerian ellipse to allow
closer in-situ solar observations at various distances above and below
the ecliptic plane. For sail I this Keplerian ellipse would have a
period of 147 days and a perigee distance of only 0.11 AU allowing
close heliocentric observations. These patching maneouvres could be
implemented at the end of the nominal twin solar sail mission above
the ecliptic plane. Once the entire mission is compliete the two
spacecraft may be returned to Earth orbit for refurbishment and
re-use.

Along with pure space science applications heliocentric halo orbits
have applications as repeater stations for high bit rate interplanetary
communications. The design and operation of such repeater satellites
deployed on Keplerian orbits has been investigated by Mercader del
Rio (1989). It was proposed that a heliocentric ring of satellites could
be used to ensure communications with spacecraft on the opposite side
of the Sun from the Earth. This would however be possible using

just a single polar stationed solar sail.

7.2 Geocentric Halo Orbit Applications

Geocentric halo orbits were discussed in chapter 5 where it was
demonstrated that solar sail spacecraft could achieve geocentric
circular orbits normal to the ecliptic plane, but displaced in the
anti-Ssun direction. Although large familles of unstable orbits were
found to exist it was shown that they may be stabilised with a

suitable control scheme. Geocentric halo orbits have many interesting
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applications for near Earth space science missions, investigating the

interaction of the solar wind with the geomagnetic fieid.

7.2.1 Static Equilibrium Solar Sail Missions

The simplest form of the geocentric halo orbit is the static
equilibrium case, a degenerate halo orbit with zero orbital period.
With the sail normal directed along the Earth-sail line the solar
radiation pressure force balances the local gravitational force. The
required sail loading then varies as z72 and is independent of p, as
discussed in section 5.2. For large geocentric distances however, the
full three-body analysis of chapter 6 is required.

At a distance of 40 R, along the Sun-line the required sail
characteristic acceleration is 6.13 mms™2, independent of the distance
o. For a 102 kg payload and a saii mass per unit area, sail material
and structure, of 1 gm™2 a 450x4560 m square sail is required. A space
plasma physics payload onboard such a sail may then be positioned in
the geomagnetic tail and so may provide continuous observations of
the tail. wWhen combined with data obtained from near Earth
spacecraft the propagation of disturbances along the geomagnetic tail
may be observed. Since the sail is stationary, variations in magnetic
field are purely temporal, whereas for a single orbiting satellite it is
difficult to de-convolve temporal and spatial variations. Since the
required sail loading is independent of the distance ¢, the spacecraft
may be quasi-statically transferred from near the centre of the tail
through the plasma sheet to the edge of the tail at the magnetopause
boundary, thereby obtaining a cross-sectional profile of the tail.
Furthermore, the 4° aberrational tilt of the geomagnetic tail with

respect to the Sun-line, due to the heliocentric motion of the Earth,
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can be accommodated by a simple off-set of the stationary position.

7.2.2 Halo Orbit Solar Sail Missions

The investigation of the geomagnetic tail using solar sail
spacecraft deployed on geocentric halo orbits allows the possibility of
several unique missions. One such mission using twin solar sails is
shown schematically in Figure 7.3. The amplitude ¢ of the two halo
orbits is chosen to be 20 R, so that they are stationed on the
magnetopause boundary. The required sail performance is then kept
to a reasonable level by choosing optimal halo orbits of large
displacement distances z of 40 R, for sail I and 50 R, for sail II. The
separation of 10 R, allows the possibility of observing the propagation
of disturbances along the geomagnetic tail. Since optimal halo orbits
are chosen the spacecraft will have differing orbital periods, with a
period of 17.52 days for sail I and 23.15 days for sail II. The two
spacecraft will therefore drift relative to each other in azimuthal
position with a synodic period of 72.04 days. This drift may however
be overcome by using polar synchronous halo orbits, but at the
expense of increased sail loading requirements. For optimal halo
orbits with 102 kg payloads and a sail total mass per unit area of
1gm™2, sail I requires a 304x304 m square sail and sail II requires a
229x229 m square sail.

As with the heliocentric case the spacecraft may be transferred
to their operational orbits by spiralling from Ilow Earth orbit.
However, the relatively long spiralling times from low Earth orbit, due
to the high local gravitational acceleration, suggests that direct
ballistic transfer should be considered. The transfer is made by

applying an impulse Av; with an ubper stage to the undeployed salil
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Figure 7.3
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Schematic profile of a twin solar sail mission for three-dimensional
observations of the geomagnetic tail. Both sail I and sail II are
chosen to be on optimal halo orbits and are deployed using two

impulses Avi’z.
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on a low Earth parking orbit at geocentric distance roo The apogee of
the resulting Keplerian ellipse is chosen to be equal to the halo orbit

geocentric distance r, viz

/
sy = (B () 15 ) (7.1)

Once the sail-upper stage stack is at the apogee point another small
impulse is applied to attain the velocity efx required for the optimal

halo orbit. The required impulse Av, is then given by

R N S

When the final impulse is applied the sail is deployed and pitched to a
Sun facing attitude. For sail I an initial impulse Av, of 3.08 kms™!
and a final impulse Av, of 0.28kms™! is required for transfer from a
300 km parking orbit. The final mass m injected into the halo orbit is

easily obtained from

m = mg exp {— (Bvy Z AVz)}

(7.3)

where mgy is the initial mass in low Earth orbit and c is the upper
stage exhaust velocity. This final mass includes the total sail mass
and upper stage booster dry mass. A trade-off between the sail total
mass per unit area and the sail area is shown in Figure 7.4 for sail I
using the above analysis. A maximum initial low Earth orbit mass of
2100 kg was assumed along with typical upper stage parameters, viz a
300 kg dry mass and 2.84 kms~! exhaust velocity, Timnat (1987). The
boundary S; then represents the maximum allowed mass in low Earth

-orbit. To the right of S; the total spacecraft and upper stage mass
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Figure 7.4
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Section of a surface of payload mass as a function of the sail area and
the sail total mass per unit area. The curve S, is a contour of
constant payload mass of 10® kg, with the point P the optimal design
point on this contour. The contour S; represents the maximum low
Earth orbit mass with S, representing the minimum sail total mass per

unit area.
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in low Earth orbit is greater than 2100 kg. Similarly, to the left of
the payload mass contour S, the payload mass falls below a minimum
of 102 kg. The boundary S, represents an imposed lower limit on the
sail material and structural mass per unit area of 1 gm~2. The allowed
design point of the spacecraft then lies in the region defined by the
intersection of these three curves. The optimal design point P lies on
the intersection of S, and Si;. This point has a 102 kg payload mass
but minimises the requirements on the sail material and structural
design.

Once the twin solar sails have been deployed on their nominal
halo orbits continuous observations of the geomagnetic tail may be
made at fixed distances along the tail. For investigations using
conventional ballistic trajectories long, highly elliptical orbits must be
used in order to maximise the time spent in the tail, as is the case for
the proposed Geotail mission, Dunham (1989). When combined with
observations from near Earth orbiting spacecraft the propagation of
disturbances along the geomagnetic tail may be observed and the full
three-dimensional structure of the tail mapped. By using two
spacecraft purely temporal variations in the observations may be
de-convolved from spatial variations. The 49 aberrational tilt of the
tail may be compensated for by moving the halo orbits off-axis by the
same angle. The increase in sail loading due to the oblique incidence
of the incoming radiation is only 0.48 %.

At the end of the nominal twin spacecraft mission sail I (or sail
II) may be patched to a Keplerian ellipse to investigate the inner
reglons‘ of the geomagnetic tail, much in the same way as a
conventional ballistic spacecraft. From the halo orbit of sail I the

spacecraft may be patched to a 12.01 day Keplerian ellipse with a
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perigee distance of 24.85 Rg, taking the payload through the bow
shock region. However, unlike conventional ballistic trajectories the
orientation of the ellipse may be chosen so that the polar or equatorial
regions of the near Earth tail are traversed. That is, by switching
the sail attitude into a null orientation as the spacecraft passes
through the ecliptic plane the orbital plane of the resulting ellipse will
be normal to the ecliptic. Similarly by switching the sail attitude at
the upper arc of the halo orbit the line of nodes of the resulting
ellipse will lie in the ecliptic plane. Therefore, observations of
sections of the geomagnetic tail may be made. As with the heliocentric
case, at the completion of the full mission the two spacecraft may be
returned to low Earth orbit.

Not only can investigations of the geomagnetic tail be made using
geocentric halo orbits but the magnetic tails of other planets can be
investigated, with substantially lower sail loadings. Furthermore, by
using a solar sail on an off-axis halo orbit in combination with a
spacecraft orbiting on a low altitude polar ellipse real time
stereographic imaging of a planetary surface may be made.
Displacement distances of several thousand kilometers are required for
a large relative viewing angle between the two spacecraft. Therefore,
this application is extremely demanding for the geocentric case but is

achievable for other inner solar system bodies.

7.3 Three-Body Stationary Solution Applications

The three-body dynamics of solar sail spacecraft in the
Earth-sun and Earth-Moon systems were discussed in chapter 6. It
was shown that for the Earth-Sun system stationary solutions exist

around the classical Lagrange points. For the Earth-Moon system no
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truly time independent stationary solutions exist. However, with small
trims in the sail loading short duration stays were shown to be
possible. These stationary solutions have potential applications for
small space science missions and for the staging of large

interplanetary missions.

7.3.1 Stationary Solutions in the Earth-Sun System

For interplanetary solar sail missions a large fraction of the total
transfer time is contained in the initial and final planetocentric spirais
to and from low planetary orbit and escape. This element of the total
transfer time can however be eliminated by parking the solar sail near
the planetary L, point on a level surface of constant sail loading
equal to the total spacecraft loading. At the end of an interplanetary
trajectory the spacecraft would transfer its payload to a low planetary
orbit with an impuise from a chemical motor with space storable
propellants, Figure 7.5. From an out-of-plane stationary point high
planetary lattitudes may be easily reached for surface landers. For
conventional schemes the payload is injected into a planetary parking
orbit in the ecliptic plane. To reach the planetary polar regions then
requires large plane changes and so a large Av maneouvre.
Furthermore, the window for transfer to the planetary surface is
always open from a stationary point. For a parking orbit the window
occurs only twice per planetary day when the parking orbit crosses
the landing site.

The solar sail parking scheme also allows the sail to be optimally
designed for interplanetary space. Planetocentric spiral trajectories
require large attitude turning rates which puts demands on the sail

structure and attitude control mechanisms. Similarly, for sample
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Figure 7.5
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returns, if the sampie was transferred to the parked sail by chemical
means the long spiral out of the planet’s gravity well could be
avoided. After the initial payload drop to the planetary surface the
sail would have an increased loading and so would be stationed on a
level surface closer to the planet to await the sample return from the
planetary surface. Of course, there is a mass penalty imposed due to
the need for propeliant to be transported to the destination. However,
the shortened total mission duration may more than compensate.

At the Earth-Sun L,; point a number of spacecraft, such as
ISEE-3, Farquhar (1980), have been, or will be, positioned for solar
observations and for ‘upwind’ observations of the solar wind to be
combined with data from near Earth orbiting spacecraft. However,
spacecraft positioned directly at the L, point would appear in the
centre of the solar radio disk when observed from Earth and so would
be unable to make data returns. This problem is overcome however
by forcing the spacecraft to execute a ballistic Lagrange point halo
orbit. This highly unstable trajectory is a periodic orbit normal to
the ecliptic plane so that, when viewed from Earth, the spacecraft
appears to orbit around the solar radio disk allowing data returns.
To maintain the Lagrange point orbit however requires regular
station-keeping maneouvres so that the on-board propellant mass
ultimately determines the mission lifetime.

Using a relatively small sail a payload could be positioned at the
L, point, but simply displaced above the ecliptic plane to avoid the
solar radio disk. At a distance of 1.2x10% km above the ecliptic plane
and 7.2x10* km sunward of the L, point a minimised total spacecraft
mass per unit area of 205 gm~2 is required. For a low performance

sail of 5 gm™2 and a 10° kg payload only a small 70x70 m square sail
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is required. A trade-off between payload mass, sail area and the sail
total mass per unit area is shown in Figure 7.6. It can be seen that
for low payload masses extremely small sails are required. Since
station-keeping may be performed using trims on the sail attitude no
propellant is required and the mission lifetime is limited only by the
lifetime of the payload and the sail. This is also of importance for
potential payloads as chemical exhaust plumes may corrupt solar
spectral data. Since the solar sail is stationary, instrument pointing
can be achieved more easily than with an orbiting ballistic spacecraft.
Furthermore, the spacecraft position and velocity may be determined
with greater accuracy, as would be required for accurate doppler
observations of spectral lines, such as those to be carried out by the
Soho spacecraft, Domingo et. al (1985).

Other space science missions utilising three-body solar sail
stationary solutions would require a solar sail to be stationed near the
L, point to investigate the far regions of the geomagnetic tail. Since
the sail would be stationary temporal and spatial variations in the
observations may be de-convolved. The full three-dimensional
structure of the tail may then be investigated by transferring from
in-plane to out-of-plane stationary points. Finally, applications for
communications purposes have been made by Forward (1991) as an
extension of the ‘statite’ concept, as discussed in section 1.5.3, to
large geocentric distances where a full three-body analysis s

required.

7.3.2 Stationary Solutions in _the Earth-Moon system

The staging scheme proposed in section 7.3.1 may also be applied

to the Earth-Moon system. To reduce long spiralling times from low
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Figure 7.6

Surface of payload mass (kg) as a function of the sail area (m?) and

the sail total mass per unit area (gm~2),
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Earth orbit to low lunar orbit the sail may be parked on a suitable
level surface of constant sail loading near the lunar Ly,2 points.
Typically, a total spacecraft mass per unit area of 3 gm™2 is required
for the level surfaces at these points. Small trims in the sail loading
may be used to compensate for the motion of the Sun-line. The
payload would then be transferred to low lunar orbit by an impulse
from a chemical motor using space storable propellants. From a
stationary point out of the plane of the system regions of high lunar
lattitude are easily accessible.

The lunar L, point has been proposed as a location for repeater
stations for lunar far-side communications. Such a communications
path is essential for any future scientific investigation and utilisation
of the lunar far-side. In order that both the lunar far-side and the
Earth are visible from the repeater, the spacecraft must be forced to
follow a ballistic Lagrange point halo orbit, as discussed in section
7.3.1. Alternatively the repeater may be displaced from the L, point
out of the plane of the system using a low thrust propulsion system,
Vonbun (1968). The lifetime of the spacecraft is again dictated by the
onboard propellant mass. A similar scheme is also possible using the
solar sail Lagrange point halo orbit discussed in section 6.9. With an
out-of-plane displacement distance of 3.5x10°® km both the lunar
far-side and the Earth are visible from the solar sail halo orbit. The
in-plane motion takes the spacecraft 1.1x10* km from the L, point so
that it moves in a 20° arc about the position of the L, point in the
lunar sky with a period of 29.53 days. The sail position in the sky is
therefore relatively constant when viewed from the lunar surface.
Since no propellant is required the repeater lifetime is limited only by

the lifetime of the payload and the sail. The required sail
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characteristic acceleration of 0.2 mms~2 corresponds to a total
spacecraft mass per unit area of 46 gm~2. Therefore, even for a low
performance sail with a total mass per unit area of 5 gm~2 a 103 kg

payload may be deployed using a relatively small 158x158 m square

sail.

7.4 Conclusions

It has been shown that solar sail spacecraft offer opportunities
for unique space science missions both in geocentric and heliocentric
space. Observations of solar active regions by synchronously orbiting
solar sails and investigations of the full three-dimensional structure of
the solar magnetic field using heliocentric halo orbits are possible.
Similarly, for geocentric halo orbit missions unique investigations of
the geomagnetic tail are possible.

Along with pure space science missions the artificial three-body
stationary solutions may be used for the staging of interplanetary
transfers. By eliminating the final planetocentric spiral shorter total
transfer times appear to be possible as do lower mass sail designs,
configured for interplanetary flight only. Other applications for
communications purposes are possible with solar radio disk avoidance
at the Earth-Sun L; point and lunar farside communications at the
Earth-Moon L, point.

The unique aspect of many of these missions is a primary driver
for the adoption of solar sailing for an actual mission. For example,
only a solar sail spacecraft can make truly continuous out-of-plane
observations of the Sun using a heliocentric halo orbit. Other low
thrust propulsion systems can achieve such a trajectory but have a

limited mission lifetime due to their finite onboard propellant mass.
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Therefore, if such an out-of-plane mission was in fact scientifically

desirable the only viable option would be to use solar sail spacecraft.
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8. CONCLUSIONS AND FUTURE PROSPECTS

8.1 Review

The objective of this thesis has been to demonstrate that solar
sail spacecraft may execute unique, advanced trajectories which have
potential applications for space science missions. The various families
of trajectories have been investigated and their stability
characteristics studied. Although large sub-families of unstable
trajectories were found to exist simple control schemes have been
developed to ensure asymptotic stability. These families of advanced
trajectories have also been extended by patching individual
trajectories together.

A detailed model of the solar radiation pressure exerted on a
planar solar sail has been constructed in chapter 3 by considering the
Sun as an extended source of radiation. The resulting form of the
solar radiation pressure is found to deviate from the inverse square
form assumed in all previous studies of solar sail dynamics. This
deviation leads to instabilities for solar sails in stationary and circular
orbital configurations. This is of particular importance for
heliosynchronously orbiting and polar stationed spacecraft. The effect
of temporal variations of the solar Iluminosity has also been
investigated. By modelling the variations with a simple sinusoidal
function Mathieu’s equation was obtained, with its well known
conditions for stability and instability.

Following the investigation of polar stationed and
heliosynchronous orbits the heliocentric halo orbit was developed in
chapter 4. By pitching the sail such that a component of the solar

radiation pressure force was directed out of the orbital plane, a
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displaced, out-of-plane circular orbit was obtained. The geometry and
period of the halo orbit were found to be a function of the sail
loading parameter and the Sun-sail pitch angle. These functional
relationships were obtained by considering the halo orbit to be a
stationary solution to the dynamical equations in a co-rotating
reference frame with an arbitrary co-rotation period. Extensions of
the heliocentric halo orbit were obtained by patching four
perpendicular halo orbits together to form a ‘cubic’ trajectory and by
patching to a ballistic Keplerian orbit. By using a linear perturbation
analysis stable and unstable families of halo orbits were identified.
For the unstable families a simple feedback control to the sail pitch
was found to ensure asymptotic stability. However, by allowing small
trims in the sail loading parameter shorter damping timescales were
obtained.

Using a similar co-rotating reference frame analysis the
geocentric halo orbit was developed in chapter 5. By again directing
a component of the solar radiation pressure force out of the orbital
plane, a displaced out-of-plane circular orbit was obtained. It was
demonstrated that geocentric halo orbits may be patched together or
patched to ballistic Keplerian orbits to form complex new trajectories.
The annual rotation of the Sun-line was shown to induce periodic
perturbations which excited the unstable modes of the unstable halo
orbit family. However, a simple feedback control was shown to
stabilize these orbits.

The extension from two-body to three-body dynamical systems
was made in chapter 6 where artificial stationary solutions in the
Earth-Sun and Earth-Moon systems were investigated. By again

considering stationary solutions in a co-rotating reference frame
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extensions of the five classical Lagrange points were obtained for the
Earth-Sun system. Rather than individual stationary points, extended
surfaces around the classical Lagrange points were found to exist. It
was then demonstrated that these new stationary solutions are
unstable, but that it was in principle possible to obtain stability using
a general feedback control to the sail attitude. Similariy, in the
Earth-Moon system stationary solutions were obtained by trimming the
sail loading parameter to compensate for the motion of the Sun-line
during the synodic lunar month. At the lunar L, Lagrange point
another periodic out-of-plane trajectory was found by linearising the
dynamical equations about this point. The inherent instability of this
trajectory necessitates the use of active control.

Finally, in chapter 7 possible applications of these advanced
trajectories were discussed. Several scientifically interesting missions
were identified and preliminary studies of the trade-off between
payload mass and sail design made. Using twin solar sails deployed
on heliocentric halo orbits stereoscopic solar observations were shown
to be possible. Similarly, for geocentric applications a twin sotar sail

mission for geomagnetic tail observations was identified.

8.2 Dynamics and Control

The analysis of the various families of solar sail trajectories has
assumed a perfectly reflecting, planar sail. Aithough this is a suitable
approximation for a first order analysis any further detailed studies
will require an accurate force model. Such force models exist from the
JPL comet Halley design studies, however no such model exists for
state-of-the-art solar sail design. Therefore, a model of an advanced

solar sail design with a lightweight structure and a low mass per unit
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area is required. Using a finite element simulation and estimating real
material properties a force model which includes detailed effects such
as thermal re-emission and billowing of the sail shape may be
obtained. Similarly, it has been assumed that the sail attitude may be
controlled with exact precision. Other simulations of the sail attitude
control are therefore required to obtain a model of the responses to
attitude control commands and the static pointing accuracy.

The dynamic models used for the heliocentric halo orbits and
three-body stationary solutions are suitable and accurate. However,
although the annual rotation of the Sun-line has been included in the
analysis of the geocentric halo orbit dynamics, a more complete
dynamic model is required. The Sun-line rotation, along with lunar
and solar perturbations must be included in the dynamical equations
and an asymptotic series solution obtained. By inciuding these
perturbations the resulting deviations from the nominal displaced
circular halo orbit may be more fully understood. Using a more
accurate nominal trajectory a more appropriate control scheme may be
designed with smaller control accelerations.

The simple control schemes used with the heliocentric and
geocentric halo orbits have been designed to demonstrate that the
unstable families of these trajectories may be controlled. A more
detailed and realistic control analysis is regquired which gives faster
damping timescales and is designed for specified accuracies.
Furthermore, it was found that extremely accurate sail pointing was
required to generate the necessary control accelerations. Rather than
using - the entire sail for orbit control a separate system of vanes
would allow accurate orbit control, with the main sail used only for

generating the acceleration required to establish the halo orbit. Once
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deployed on the halo orbit a linear quadratic regulator may be
desirable for station-keeping purposes to minimise drift of the
spacecraft from the nominal trajectory. However, to prevent
continuous sail attitude trimming, a control with positional deadbands
may be required. The size of the deadbands would be dependent on
the station-keeping accuracy required which in turn is dependent on
the particular mission being undertaken.

A dynamic probiem related to the three-body stationary solutions
is that of solar sail rendezvous. It was proposed that by stationing a
solar sail spacecraft on a level surface of constant sail loading long
planetocentric spiral times may be eliminated. However, for sample
return missions the sail may be required to maneouvre to rendezvous
with the payload returning from the planetary surface. Such
maneouvres may be investigated by a linearisation of the dynamical
equations about the stationary solution. Optimal control techniques

may then be applied to obtain time optimal rendezvous trajectories.

8.3 Mission_Analysis

More detailed studies of the trade-off between the sail mass per
unit area, payload mass and sail area are required. Then it will be
possible to define more accurately the range of possible payload mass
that may be injected onto heliocentric and geocentric halo orbits with
various orbital parameters. To define such a range of payload mass
however, requires an estimate of currently achievable sail material and
structural mass per unit areas. Similarly, the investigation of
potential space science missions will be required to define the
necessary geocentric and heliocentric halo orbit parameters. This then

defines the required sail loading and so defines the required range of



265

payload mass. Therefore, for a given mission a final sail design may
be iterated to between the bounds imposed by the scientific
requirements and the technological constraints.

The three-body staging technique for sample returns requires a
global optimisation study to minimise the total mission duration for a
given payload. That is, the individual elements of the mission may be
optimised but this is not necessarily equivalent to optimising the
entire mission. The main parameter for such a mission is the mass of
the returned sample. Therefore, the surface sample mass must be
investigated as a function of the total mission duration and the sail
design.

For a given mission the scientific payload will have a requirement
for a certain accuracy for the instrument pointing and for orbit
station-keeping. While accurate payload pointing may be accomplished
by a separate payload attitude control mechanism the required
station-keeping accuracy determines the required accuracy of the
solar sail orbit control scheme. For certain types of instrumentation,
such as magnetometers and particle flux detectors, there is little
pointing accuracy required. However, for optical or x-ray detectors a
high pointing accuracy may be required.

Other mission analysis requirements for a solar sail mission are
similar to those for conventional space science missions. The thermal
control of the payload is of importance for close heliosynchronous
missions as is electrostatic charging for geomagnetic tail missions.
Furthermore, for a chosen set of onboard experiments the total power
budget must be calculated which then defines the area of the solar
array. Similarly, the telemetry rate for data returns defines the size

of the communications dish and other parameters of the link budget.
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8.4 Recommendations

Before any advanced solar sail trajectory may be utilised for an
actual mission a high performance solar sail with a dimensioniess sail
loading parameter of order unity must be designed. The current level
of thin film technology and large space structure design must be
assessed so that an estimate of sail material and structural mass per
unit areas can be obtained. Only when an advanced, realistic sail
design has been developed can the studies discussed in sections 8.2
and 8.3 be undertaken.

Another necessary requirement for the utilisation of these
advanced trajectories is an actual flight demonstration of solar sailing.
Such a demonstration is required to validate designhs and to ftight test
sail materials and other hardware. Such a demonstration has been
partially undertaken with the test of samples of sail material onboard
the Soviet Almaz satellite, Shvartzburg (1991). If a small flight test of
solar sailing is undertaken then the unique aspects of the advanced
solar sail trajectories investigated in this thesis may be a primary

driver for the adoption of solar sailing for an actual mission.
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APPENDIX A. RADIATIVE TRANSFER

A.1 Specific Intensity

For a totally general radiation field the properties of the field
are a function of both position and time. Furthermore, at a particular
position within the radiation field the properties have a distribution in
direction and frequency. The properties of a radiation field may be
completely described in a macroscopic sense by the specific intensity
of the field. The specific intensity Iy(r,n;t) of the radiation at
position r and time t propagating in direction n with frequency V is
defined to be the energy dE transported across a directed surface
element dA in time dt into a solid angle d® about direction n in the

frequency range (v,v+dv), viz

dE = Iy(r,n;t) (n.dA)dQdtdv (A.1)

where n.dA is the projected surface area normal to the direction of
propagation n.

From a microscopic perspective the radiation field is composed of
individual photons which may be described by the photon number
density function Wy(r,n;t). This function is defined such that
$(r,n;t)d@dv is the number of photons per unit volume at position r
at time t and in a frequency range (V,v+dV) propagating with speed ¢
into a solid angle d& about direction n. Therefore, the number of
photons crossing a surface element dA in time dt is given by
Y(r,n;t)(n.dA)dQdv(cdt). Since each photon has energy hv, where h is

the Planck constant, the energy transported is given by

dE = chv W, (r,n;t) (n.dA)dedtdv (A.2)
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Comparing equations (A.1) and (A.2) it is clear that the specific

intensity is related to the photon number density function by

Iy(r,n;t) = chv W,(r,n;t) (A.3)

The photon number density function may then be related to the
photon distribution function ¥,(r,n;t). This function is defined such
that the number of photons per unit volume in frequency range
(v,v+dv) and with momenta in the range (p,p+tdp) is given by
¥,(r,n;t)d3p, where p=(hv/c)n is the photon momentum. Using the
relation d®p=p2dpd® and equating photon numbers in a unit volume of

space using the functions W,(r,n;t) and ¥,(r,n;t) it is found that

h3Vz
{-C-g—} w,(r,n;t) dvde = ey(r,n;t) dvde (A.4)

Therefore, the specific intensity of the radiation field is given in

terms of the photon distribution function as

3
Iy(r,n;t) = {D%Vz—} ¥,(r,n;t) (A.5)

For a black body radiation field, as the Sun may be assumed to
be, the photon distribution function is a time independent,

homogeneous and isotropic scalar function

w, = 35 (e(hV/kt) - 1) (A.6)

such that I, is simply the Planck function. Therefore, by knowing the
photon : distribution function of the radiation field ¥%,, and so the
specific intensity, the properties of the entire black body radiation

field are known. These derived quantities, such as the flux and the
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radiation pressure tensor, may be calculated by taking angular

moments of the specific intensity.

A.2 Conservation of Specific Intensity

A useful property of the specific intensity function is that, for a
time independent radiation field propagating in a vacuum, it is a
conserved quantity along the direction of propagation.

Consider now radiation propagating in direction n at positions r
and r+ln, and so at times t and t+(l/c). At position r the number of
photons crossing surface element dA; in time dt into solid angle d,
in the frequency range (V,v+dV) is given by c¥,(r,n;t)dA,dQ,dtdv.
Similarly, the number of these photons dN; which also cross surface

element dA, at r+ln must be contained within a solid angle dA,/12, viz

dN, = c¥y(r,n;t) dA,(dA,/12)dtdv (A.T)

At position r+in the number of photons dN, crossing surface element
dA, which have also crossed surface element dA; must be contained

within solid angle dA,/I3, viz

dN, = cwp(r+1n,n;t+(1/c)) dAo(dA,/12)dtdv (A.8)

Since no photons have been created or destroyed between r and r+in
the number of photons must be conserved so that dN;=dN..
Multiplying each side of equation (A.8) by hv it is therefore found

that

Iy(r,n;t) = Iy(r+in,n;t+(1/c)) (A.9)

so that the specific intensity is conserved along the direction of



270

propagation of the radiation. As a consequence of this conservation
the value of Iy(r,n;t), and so the radiation field characteristics, may
be obtained from remote measurements of the energy falling in a given
time on a known collecting area from a source subtending a known

solid angle.

A.3 The Radiative Energy Flux and Pressure Tensor

The radiation flux F(r;t) is defined to be the vector such that
F(r;t).dA gives the nett rate of flow of radiative energy across a
directed surface element dA in all frequencies. The nett number of
photons crossing dA in unit time and in the fregquency range (V,v+dv)

from all solid angles is given by

= ,n;t ded . ds
N = T \[Yi\lc‘f}{ft;nu 3'-\’:' J-vut]; (A-10)

4n

Therefore, multipiying by hv the monochromatic radiative energy flux
is obtained. Using equation (A.3), so that I (r,n;t)=chw,(r,n;t), and
integrating over the entire frequency spectrum equation (A.10) may be

written as

F(r;t) = I % Iy(r,n;t) n dadv (A.11)
o Jam

The radiation pressure tensor, or radiation stress tensor, P(r;t)
is defined such that PlJ is the nett rate of transport, per unit area of
surface oriented normal to jth coordinate axis, of the ith component of
momehtum. The number of photons with frequency V propagting in
direction nJ and crossing unit surface area in unit time is cwv(r,n;t)n.i

with each photon transporting momentum (hv/c)ni in the ith direction.
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Therefore, integrating over all solid angles the monochromatic radiation

pressure tensor is obtained as

Pyid(r;t) = §¢V(r,n;t) {bz—'ﬂ} (cnd) de (A.12)

47

However, from equation (A.3) Iy(r,n;t)=chw,(r,n;t) so that by
integrating over the entire frequency spectrum equation (A.12) may be

written in dyadic form as

P(rit) = % r § I,(r,n;t) nn dodv (A.13)
(o] 477

Therefore, for a given specific intensity equation (A.13) may be used
to obtain the radiation pressure at any point and in any direction in
the radiation field. Furthermore, by knowing the surface geometry of
any body placed within the radiation field the resulting radiation

pressure force exerted on the body may be obtained.
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APPENDIX B. REFERENCE FRAMES

B.1 Inertial Systems

Consider a system of n interacting particles in an inertial
reference frame I. By Newton’s second law the force exerted on the

jth particle of mass m; at position rj may be written as

f‘ - , dzrj , R3 P o
J - mJ 'atT ’ I'J e (J-1,n) (8.1)

The total mass M of the system may be written as

n
M= } "‘j (3.2)
i=1

Similarly, the centre of mass R of the system of particles may be

defined in the inertial frame I as

e (B.3)

If equation (B.1) is now summed over all the n particles of the system

it is found that

dzr .
mj J =

1 J

0 i~NA~1D

5‘:1

n [\/l:s

where fjex (j=1,n) are the external forces applied in the inertial frame

1 1'

n
) f1J (8.4)
1 =

J

I and fijin (i,j=1,n) are the internal interaction forces between the ith
and jth particles. However, by Newton’s third law fj;in=-f;in (i,j=1,n)

so that the last term of equation (B.4) vanishes. Therefore if the
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system is isolated, so that there are no external forces acting on the

system, equations (B.3) and (B.4) give

d3R _

M dt =0 > R= R01 + Rozt (B.S)

where Ro; and Rgps are constants of the motion. Therefore, the centre
of mass of the system moves with constant velocity with respect to the
inertial frame I.

A Galilean transformation R’:R—(Ro1+R°2t) may then be used to
transform to a new inertial frame I so that the centre of mass of the
system now lies at the origin. If r’j is the position vector of the Jth
particle with respect to the centre of mass of the system then

r_i:R’+r’j so that dynamical equations become

—szr’i = 1g. (3=1,n) (B.6)
dt my J ’ .

Therefore, taking R’ =0 through the Galilean transformation the
dynamical equations of the system may be formulated in an inertial

frame with an origin at the centre of mass.

B.2 Rotating Systems

Although Newtonian dynamics applies in purely inerital reference
frames, rotating systems require the use of non-inertial reference
frames. In such frames the dynamical equations contain additional
‘inertial forces’ due the non-inertial nature of the system.

Consider a coordinate frame S which rotates with an angular
velocit-y Q@ about an arbitrary direction n with respect to the inertial
frame I. For a particle P with position vector r fixed in S the

infinitesimal change in r with respect to I during a rotation of %e is
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given by te(nxr). If the particle position vector r also changes in the
rotating frame during the infinitesimal rotation, the total change in

position measured in the inertial frame I is given by

erlj = Srlg + %en x r (B.7)

Therefore, given that Q=(de/dt), the rate of change of r in I is

obtained from the limit of sr/st as $t20, viz
dr _ ar _ [de
o rexr Q'{dt}n (B.8)

where the partial derivative is evaluated in the rotating frame S and
the full derivative in the inertial frame I. If equation (B.8) is now
written as an operator from the rotating frame to the inertial frame,

acting on an arbitrary vector, viz

Sm=gmrex® NG

Then, the inertial acceleration may be obtained from

d (dr} _ 9 [dr dr
g G5 =5 (&) o x [§ (B.10)
Therefore, substituting equation (B.8) in equation (B.10) and collecting

terms the acceleration, as observed from the inertial frame, is given

by

2 2
%:gtr+2cx§%+%xr+ax(nxr) (B.11)

For uniform rotation (38/3t)=0 so that the transverse acceleration term

vanhishes. The remaining terms are then the particie acceleration in
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the rotating frame, the coriolis acceleration and the centrifugal
acceleration respectively. Therefore, for a particle of mass m the

dynamical equation in the rotating frame S is given by

n
a2r ar 1 _
§g+20xi+0x(0xr)-m2fj (B.12)
=1

where the external forces fj (j=1,n) exerted on particle P are applied

from the inertial frame I.
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APPENDIX C. DYNAMICS AND CONTROL OF LINEAR SYSTEMS

C.1 Solution of Linear Systems

Many natural and artificial systems may be described in terms of
systems of linear ordinary differential equations. More often though
systems of non-linear differential equations are required to fully
define the dynamics. However, once a particular solution of the
non-linear system is known the dynamics in the neighbourhood of this
solution may be described by a linear system.

For a general non-linear n-dimensional dynamical system with a
state vector X and input vector U the dynamical equation may be

written as

g% = F(X,U;t) , X € RN (c.1)

If a particular solution X* exists with a piecewise continuous input U¥
equation (C.1) may be linearised about this solution. New variables in
the neighbourhood of X* may be defined as X=X*+x and U=U*+u.

Therefore, the nonlinear system may now be written as

d(X*+x) aJF j } aJF

- X y*.
at = F(X*,U%;t) +

L
37 (C.2)

“[\/ls

j=1

kv,wa‘ kﬁ,ww
If |x|] and jul«1 then all the terms of order two or greater may be
ignored in equation (C.2) so that a linear variational system is

obtained, viz

JF| gL
I ! 1]

X=x*, u=U* Xx=x*, u=u*

(C.3)
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with A the system matrix and B the input distribution matrix. It
should be noted that if X* is a time varying solution, rather than a
stationary solution, then the system and input distribution matrices
will have time varying coefficients. If however, X* is time
independent, or may be transformed to a time independent form using
a suitable coordinate system, then equation (C.3) defines a set of first
order linear, ordinary differential equations with constant coefficients.
The state transition matrix ®(t,,ty) for equation (C.3) is defined

by the matrix differential egquation

20ty to) = AO(ty,t) , Otg,to) = I (c.4)

so that #(t,,t5)=eA(ti-to). The solution of equation (C.3) with a null

input is then simply

x(ty) = ®(ty,tg) x(tg) (C.5)

so that any initial state vector may be propagated forwards or
backwards in time once the state transition matrix is known.
Furthermore, with a non-zero input it may easily be shown that the

general solution of equation (C.3) is given by

ty
x(ty) = ®(ty,tg) x(tg) + J ®(ty,7) B u(T) dr (C.6)

to
where the integral term in equation (C.6) represents the cumulative
effect of the input vector on the system dynamics. Therefore, for a

known input u(t), t,<t<t; and state transition matrix &(t,,t;) the

solution of the linear system is known.
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C.2 Stability Analysis

The stability characteristics of linear dynamical systems may be
classified according to the system eigenvalues which are obtained from
the characteristic polynomial. Substituting an exponential solution of
the form x=xoeSt into equation (C.3) with a null input, a set of

homogeneous linear equations are obtained, viz

(sI - A)xg = 0 c.7)

The non-trivial solution of equation (C.7) requires that the determinant
of the matrix (sI-A) vanishes. The resulting characteristic polynomial

P(s)=0 is then of the form

n

. n
P(s) = ) Ap—s SJd = A, T (s-S4) , S = O4 + iwg j=1,n c.8
(s) j}onj oj:o( 3) 3 § 5 (3 ) (C.8)

where the fundamental theorem of algebra aliows P(s) to be written as
the product of the complex roots Sj (j=1,n). The form of the solution
of the linear system, and so the stability of the solution to the
non-linear system, can now be determined from the sign of oj=Re(sJ-),

(j=1,n).

Definition C.1 Unstable (oj>0)

A solution X* of equation (C.1) is stable if

ING0: [X(tg)-X¥(tg) ! < N3 Tim IX(t)-X¥(t)| » » WwX(t)  (C.9)

Lo

Definition C.2 Asymptotic Stability (cj<0)

A solution X* of equation (C.1) is asymptotically stable if
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IS0 IX(to)-X*(to) |l < M3 Tim IX(t)-X*(t)| = 0 W¥X(t)  (C.10)

toe

Definition C.3 Lyapunov_ Stability (oJ-:O)

A solution X* of equation (C.1) is Lyapunov stable if

Ve>0 38>0: |X(to)-X*(to)l < & 3 IX(t)-X*¥(t)| <€ 9vX(t) (C.11)

Along with these three definitions related to the sign of Re(sj) two

other suppiementary definitions are used, viz

Definition C.4 Poincaré Stability

Let S* be the phase trajectory of X*(t). Then, X*(t) is a

Poincaré stable solution of equation (C.1) if

ve>0 38>0: | X(tgy)-X*(tg)| < © 3 sup dist(X,8%) < € (C.12)

where the supremum of dist(X,S*) is the least, usually perpendicular

distance, from X to the nearest point on the phase trajectory s*,

Definition C.5 Marginal Instability

A solution X* of equation (C.1) is marginally stable if

Ve>0 3M>0: |X(tg)-X*(tg)| < € 3 IX(t)-X¥(t)| < Mt VX(t) (C.13)

so that the instability is restricted to linear growth.

C.3 Feedback Control
For an unstable system a feedback control scheme may be
developed to ensure asymptotic stability by relating the input of the

system to the output in a feedback loop. However, it must firstly be
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demonstrated that the system may be controlied in such a manner.
Without loss of generality it may be assumed that x(ty)=0 in
equation (C.6). Then, writing the state transition matrix as a power

series, the solution at time t; may be written as

t1 o .
x(ty) = l [ %% (tl-T)J} B u(T) dr (C.14)
to Jj=o .

Since the system and input distribution matrices are time independent

equation (C.14) may be written as

x(ty) = ) wy (AJB) (.15)
jo

where the set of constant vectors W; are defined by

ty .

-3 :

wj = J LigTIl u(T) dr (C.16)
to

Therefore, the solution x(t;) is a linear combination of the columns of

the infinite matrix (B,AB,..... ). However, it may demonstrated that

r(B8,AB,....,AN"1B) = r(B,AB,....,AN"1B) , WN>n (C.17)

so that if r(B,AB,....,AN"1B)<n then a full basis for the n-dimensional
state space does not exist. Therefore, owing to the construction of
the solution in equation (C.15) it can be seen that there will be at

least one final state x*(t,) that cannot be attained.

Definition C.6 Controllability

The linear system (C.3) of dimension n is completely controllable
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if for any given initial state X, and final state x; there exists a finite
time t; and a piecewise continuous input u(t), ty<t<t; such that
x(t;)=xy. The condition for complete controllability is then that the
controliability matrix C=(B,AB,....,A""1B) has full rank, (a rigorous

proof is given by Barnett and Cameron (1985)).

Given that a system is completely controllable, feedback control
may be used to ensure asymptotic stability for an unstable system.
For a general output vector y=Cx the input vector may be written as
u=K(r-y) where K is the gain matrix and r is a reference input which

is to be tracked. Substituting in equation (C.3) it is found that

g% = (A - BKC)X + BK (C.18)

If the required system dynamics can be specified in terms of a new

system matrix A* then the required gain matrix can be obtained as

K=B1(A-A¥)C! , detB#0 , detC =0 (C.19)

where the condition detC#0 requires that all of the state varibles are
known. Therefore, by choosing the new system matrix A* to have
eigenvalues which lie in the left hand complex plane asymptotic
stability can be ensured. The required gain matrix is then obtained

from equation (C.19) as a function of the new and old system matrices.
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